xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EPML9G9QV_5LXDM7 INGEST_TIME 2014-10-03T22:49:29Z PACKAGE UFE0046833_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
PAGE 1
Ecology ,95(1),2014,pp.68…77 2014bytheEcologicalSocietyofAmericaDelayedlifehistoryeffects,multilevelselection,andevolutionary trade-offsintheCaliforniatigersalamanderCHRISTOPHERA.SEARCY,1,5LEVIN.GRAY,2PETERC.TRENHAM,3ANDH.BRADLEYSHAFFER41DepartmentofEvolutionandEcologyandCenterforPopulationBiology,UniversityofCalifornia,OneShieldsAvenue,Davis, California95616USA2DepartmentofBiology,UniversityofNewMexico,Albuquerque,NewMexico87131USA3BiologyDepartment,WesternWashingtonUniversity,Bellingham,Washington98225USA4DepartmentofEcologyandEvolutionaryBiology,621CharlesE.YoungDriveSouthandLaKretzCenterforCalifornia ConservationScience,619CharlesE.YoungDriveSouth,UniversityofCalifornia,LosAngeles,California90095USAAbstract .Delayedlifehistoryeffects(DLHEs)occurwhen“tnessinonelifestageaffects “tnessinsubsequentlifestages.Giventheirbiphasiclifecycle,pond-breedingamphibians provideanaturalsystemforstudyingDLHEs,althoughtheseeffectsarenotrestrictedto specieswithbiphasiclifehistories.Inthisstudy,weusedmultiplemark…recapturetechniques enabledbyalargetrappingarraytomonitorcomponentsof“tnessandresultingDLHEsina populationoftheendangeredCaliforniatigersalamander( Ambystomacaliforniense ).We foundthatDLHEsareprominentacrossalllifestagetransitionsandthatthereisvariationin whetherselectionactsprimarilyattheindividualorcohortlevel.Wealsodemonstratedthat thereismorethananorderofmagnitudevariationinmeancohort“tness,providing tremendousvariationforDLHEstoactupon.Wedocumentedanevolutionarytrade-off betweenmassatemergenceanddateofemergence,whichmayplayaroleinmaintainingthe variationinmass(“tness)atemergence.Aliteraturereviewrevealedthatsuchhighlevelsof intercohortvariationoccurinmanyotherpond-breedingamphibians,andthatappropriately documentingthemagnitudeofintercohortvariationrequireslong-termstudies(roughlytwo populationturnovers).GiventheprofoundeffectthatDLHEscanhaveonpopulation dynamics,quantifyingintercohortvariationinmean“tnessandthelevel(s)atwhichselection actswillbeveryimportantfordevelopingaccuratemodelsofpopulationdynamics.Ingeneral, whendevelopingmodelsofpopulationdynamics,moreattentionshouldbepaidtovariation inmean“tnessandnotjustvariationintotalnumbers.Keywords: Ambystomacaliforniense; Californiatigersalamander;contextualanalysis;dateof emergence;intercohortvariation;JepsonPrairiePreserve,California,USA;massatemergence;pondbreedingamphibian;populationturnover;selectiongradient .INTRODUCTIONManytaxa,butmostnotablyholometabalousinsects andmanyamphibians,havecomplexlifecycles.Given thenumericaldominanceofsuchspeciesonearth,itis importanttounderstandhowtheirpopulationsare regulated.Inparticular,wewouldliketoknowwhether densitydependenceoccursinoneormanystagesand how“tnessinonestageaffects“tnessinsubsequent ones.Thislatterproblemconstitutesthegeneralpurview ofdelayedlifehistoryeffects(DLHEs;Beckermanetal. 2002),whichareknowntocreatelimitcyclesin populationsize(Leslie1959,ProutandMcChesney 1985).Such”uctuationshavebeenobservedinmany amphibianpopulations,buttheyareusuallyattributed toclimaticeffects(Pechmannetal.1991).Infact, DLHEsandclimaticvariationcanactsynergistically,as thepopulationoscillationscreatedbyDLHEscanbe entrainedbystochasticfactors,suchasclimatic”uctuation(Leslie1959).Moregenerally,thelessonsthatcan belearnedfromthestudyofDLHEsarenotapplicable solelytospecieswithcomplexlifecycles,astheyhave alsobeenfoundinhumans(LummaaandCluttonBrock2002)andothermammals(Albonetal.1987, Roseetal.1998). Althoughagreatdealoftheworkthatisrelevantto DLHEshasinvolvedamphibians,ithasnotbeen referredtoassuchintheliterature.Manyspeciesof amphibianshaveanaquaticlarvalstagefollowedbya terrestrialadultstage,andtheecologicalconsequences ofselectioninthelarvalstageonlaterterrestriallife provideanobviousquestionforlifehistorytheory.The mainstumblingblockinlearningaboutDLHEsin amphibianshasbeenlackofknowledgeaboutthe terrestrialadultstage,aconsequenceofthesecretive, oftenfossorial,natureofpost-metamorphicterrestrial amphibians.Breedingsitesaregenerallymuchsmaller thantheirassociatedterrestrialhabitat(Semlitschand Bodie2003,RittenhouseandSemlitsch2007),andare theoneconcentratedareathatmanymembersoftheManuscriptreceived20January2013;revised12June2013; accepted19June2013.CorrespondingEditor:W.D.Koenig.5E-mail:casearcy@ucdavis.edu 68
PAGE 2
populationcanbecountedontovisit,oftenata predictabletimeofyear.Thus,mostofwhatisknown aboutDLHEsinamphibianshasfocusedonthe relationshipbetweenthe“tnessofdispersingmetamorphsleavingthebreedingsiteandthe“tnessofthose sameindividualswhentheyreturninsubsequentyears assexuallymatureadults(Berven1990,Scott1994, Berven2009).Littleisknownaboutthe“tness relationshipsbetweenmetamorphsandjuveniles,betweenthemultipleyearsasterrestrialjuvenilesthat manyamphibiansrequiretomature,andbetween juvenilesandadults,andyet,suchstudiesarecriticalif wearetopiecetogetheracompleteanalysisofDLHEs innature. Here,weuseadisperseddriftfencearraytostudya populationoftheendangeredCaliforniatigersalamander( Ambystomacaliforniense ;CTS;seePlate1)during theentiresurface-activeseason.Thisallowsusto examine“tnessrelationshipsnotonlybetweenmetamorphsandadults,butalsoacrossthepoorlystudied interveningage-classtransitions.TheseDLHEsmaybe particularlyimportantinlightofthehugevariationthat weobservein“tness,notonlybetweenindividuals,but alsobetweenwholeannualcohorts.Studiesofother pond-breedingamphibianshavefoundvariationin meancohort“tness(Semlitschetal.1988,Scottetal. 2007,Berven2009),buttherehasbeenlittlediscussion oftheimpactofthatvariationonpopulationdynamics. Wealsousecontextualanalysis(HeislerandDamuth 1987)todeterminewhethervariationin“tnessisbetter modeledattheindividualorcohortlevel,becausethis willinformhowsubsequentmodelsofpopulation dynamicscanbestbedeveloped(TaylorandScott 1997). METHODSDatacollection OurstudywasconductedattheJepsonPrairie Preserve,SolanoCounty,California,USA,oneofthe bestremainingexamplesofnativeCaliforniaprairie (Ku ¨ chler1977).Themostprominentfeatureofthe preserveisOlcottLake,a33-haplayapoolthatservesas abreedingsiteforCTS.OlcottLakeisephemeraland “llstoamaximumdepthof ; 0.6m.Ourdriftfence arrayislocatedalongthenortheastshoreofOlcott Lake.Thefencesofthearrayareevenlydistributed acrosstheuplandlandscape,10Â…1000mfromthe shoreline.Theshorelinefenceiscontinuous,covering ; 17 % ofthepondshoreline(390m),withpitfalltraps every10m.Theremainingfencesare10mlongand separatedfromeachotherby90-mgaps.Pitfalltrapsare relativelylarge,3.78-Lbucketsthatcanaccommodate 20individuals,evenofthelargestsizeclass.Fora moredetaileddescriptionofthearrayseeSearcyand Shaffer(2011).Duringthefallof2010,asecond continuous840mlongdriftfencewasinstalled275m fromtheshoreline. ThepitfalltraparraywasoperatedMay2005Â…July 2011.Trapswereopeneveryrainynightbetween OctoberandMarchandforeverynightduringthe MayÂ…Julyemergenceperiod,andweremonitoreddaily (SearcyandShaffer2011).Werecordedthebodymass, traplocation,ageclass,andadigitalimageforeach salamandercaptured.Onaverage,CTSreachsexual maturityatfouryearsold;however,givenafastenough growthrate,somefemaleshavebeenknowntoreach sexualmaturityinthreeyearsandsomemalesintwo years(Trenhametal.2000).Weobservedafew individuals(bothmaleandfemale)thatweremature atoneyearold.Thelocationofeachdriftfencewas determinedusingaTripod200CRanger(TripodData Systems,Corvallis,Oregon,USA)withanaccuracyof 6 2.1m. Adultandjuvenilerecapturesweredeterminedusinga patternrecognitionprogramcustomdesignedforCTS (SearcyandShaffer2011).Metamorphslackdiscrete spots(spotstakeseveralmonthstofullycoalescepostmetamorphosis),sorecapturesweredeterminedusing eitherVIAT(visualimplantalphanumerictags)orVIE (visualimplantelastomer;NorthwestMarineTechnology,ShawIsland,Washington,USA)(Jerryetal.2001). In2005and2006,2335metamorphswereimplanted withVIATandin2010another1289metamorphswere implantedwithVIE(AppendixA). Analysis Throughoutthisstudy,weconducttwodifferenttypes ofanalyseswhenmakingcomparisonsamongthe“ve possibleage-classtransitions(metamorphÂ…juvenile, metamorphÂ…adult,juvenile Â…juvenile,juv enileÂ…adult, adultÂ…adult).Within-yearcomparisonscompareanimals toothermembersoftheirowncohort,askingwhether thereisasurvivaladvantagetobeinglargerthan animalscapturedinthesameyearfromthesameage class.Across-yearcomparisonspoolacrosscohorts, askingwhetherthereisanadvantagetobeinglarger thananimalsfromthesameageclass,regardlessofthe yearinwhichtheywerecaptured.Within-yearcomparisonsstatisticallyremovetheeffectsofgoodandbad years(currentpopulationdensity,rainfall,andother climacticvariablesbeingtheprimarydrivers),whereas across-yearcomparisonsincludethoseeffects. Inmanyofthefollowinganalyses,weuserecaptureas aproxyforsurvivaland,thus,“tness.Presumably,some (unknown)numberofanimalsthatwerenotrecaptured didsurvive,andaslongastherecapturedanimalswerea randomsubsetofthesurvivors,itshouldnotaffectour interpretations(AppendixB).Thealternativeistouse survivalestimatesfromMARK(WhiteandBurnham 1999).WeranMARKforourdata,andfoundthatthe survivalestimatesobtainedwereunrealisticallylow comparedtothosefromanotherCTSpopulationin MontereyCounty(P.C.Trenham, unpublisheddata ). Forexample,MARKprovidedadultÂÂsurvivalÂÂestimatesof0.24/yr(in2007)and0.28/yr(in2008),whichJanuary2014 69 AMPHIBIANDELAYEDLIFEHISTORYEFFECT
PAGE 3
areroughlyone-thirdofthosefromMontereyCounty. WebelievethatthisisbecauseourJepsondriftfences arealargelyopensystem,surroundingone-sixthofthe breedingpond,andthusmanyanimalsmigrateintoand outofourstudyarea.IntheCormack-Jolly-Seber model,onwhichourMARKanalysiswasbased, emigrantsarelumpedwithmortalities,thusdecreasing theestimatedsurvivalrate.Giventhis,wefeelthatinthe absenceofemigrationrates,estimatedmortalityschedulesfromMARKarebothbiasedandunrealistically lowforthissystem.Amoredetailedanalysisofthisissue willbepresentedelsewhere. WeusedstandardANOVAandregressiontotestfor selectiononmass.Thisstartedwith10ANOVAs lookingatindividual-levelselection,halfwithablocking termforyeartomeasurewithin-yearselectionandthe otherhalfwithoutablockingtermtomeasureacrossyearselection.Oneofeachtypewasusedforeachofthe “vebetween-andwithin-age-classtransitions.Wetested forcohort-levelselectiononmassbetweenthemetamorphandjuvenilestages,usingalinearregression betweenmeancohortmassatemergence(ME)and percentagerecapturedas“rst-yearjuveniles.Acontextualanalysis(HeislerandDamuth1987)wasusedtotest whetherselectiononmassbetweenthemetamorphand juvenilestageswasbettermodeledattheindividualor cohortlevel(i.e.,asafunctionofindividualmassorasa functionofmeancohortME). WenextexaminedtherelationshipbetweenMEand dateofemergence(DE).BecauseDEandMEare correlatedinCTS(Trenhametal.2000),weuseda correlatedselectionapproach(LandeandArnold1983) toinvestigateindividual-levelselectiononbothtraits. Thistestwasonlyrunforthetransitionbetween metamorphandjuvenilestages,asthatwasthe transitionmostlikelytobeaffectedbyDE.Wethen examinedhowthesetraitsaffectdistancetraveledasa metamorph.ThisanalysisutilizedanANCOVAwith DEandMEascovariatesandyearasaclassvariable. WeusedaseparateANCOVAtolookdirectlyatthe relationshipbetweenMEandDE,withMEasthe responsevariable,DEasthecovariate,andyearasthe classvariable.Toplacetheseselectionanalysesinthe contextofCTSlifehistory,weusedanANCOVAtotest therelationshipbetweenMEandmassasa“rst-year juvenile,withjuvenilemassastheresponsevariable,ME asthecovariate,andyearastheclassvariable.Wealso usedageneraladditivemodeltodescribetheaverage masstrajectoryforaCTS.Here,thenumberofdays sinceemergencewasusedtopredictfactorialchangein masssinceemergence. Becausetheimportanceofthesemass-dependent effectsdependscriticallyontheamountofstanding variationinME,wealsocollecteddataonthisvariation fromotherstudiesofpond-breedingamphibians.We identi“ed,tothebestofourknowledge,allstudiesthat includeddataonmeancohortmassacrossmultiple yearsatthesamebreedingsite.Wesummarizedthis variationastheratiobetweenthemeanmassofthe largestcohortandthemeanmassofthesmallestcohort, andplottedthisratioasafunctionofthenumberof annualcohortsavailableforthatsite.Wethen comparedthe“tofalinearvs.aquadraticregression toaskhowmanyyearsofdata,onaverage,areneeded toestimatethetotalvariationinMEforapopulation. Foramoredetaileddescriptionofthemethods,see AppendixB. RESULTSAnalysesacrossthreeyearsatOlcottLake Intotal,25344salamanderswerecaptured:4247 (spring2005),5582(2005…2006),1509(2006…2007), 1078(2007…2008),314(2008…2009),2448(2009…2010), and10166(2010…2011).WedetectedDLHEsacrossall lifestagetransitionsinCTSintheformofselectionfor increasedmass(Table1),althoughinsomecasesthis wasonlytrueoftheacross-yearandnotthewithin-year selection.Thisdifferencebetweenacross-andwithinyearselectionwasgreatestforthemetamorph-tojuveniletransition,wherewithin-yearselectioniseither neutralorinthedirectionofsmallermass,butacrossyearstronglyfavorslargermass.Thisdifferenceis drivenbystrongcohort-levelselectionforlargermass( P 0.03)thatoverwhelmsweakerindividual-levelselectionforsmallermass( P 0.17).Signi“cantcohort-level selectionforlargermasswasdetectablewithonlythree markedmetamorphcohortsduetotheexceptionally strongrelationshipbetweenrecapturerateandmean cohortME( R2 0.998;AppendixB:Fig.B.1).A contextualanalysis(HeislerandDamuth1987)revealed thatselectiononmassatemergenceacrossthe metamorph-to-juveniletransitionwasmodeledsigni“cantlybetteratthecohortlevelthanattheindividual level(multiplelinearregression; bI[coef“cientofpartial regressionontheindividualcharacter] 0.02, P 0.17; bC[coef“cientofpartialregressiononthecohortmean] 0.24, P 0.001). Althoughtherewasnoindividual-levelselectionfor largerbodysizeacrossthemetamorph-to-juvenile transition,therewassigni“cantindividual-levelselection forearlieremergence.Aselectionanalysisoncorrelated characters(LandeandArnold1983)revealedthat, withinyears,therewassigni“cantselectionforearlier emergenceandmarginallysigni“cantselectionfor smallermass(multiplelogisticregression;forDE, P 0.01;forME, P 0.07;foryear, P 0.001).Inaddition, metamorphsthatemergedearliertraveledfartherinthe metamorphstageandthushadtheopportunityto samplealargerareabeforeselectinganover-summering refugesite.AnANCOVArevealedthatmetamorphs thatemergedearliertraveledsigni“cantlyfarther, althoughtherewasalsosigni“cantinterannualvariation inthiseffect(ANCOVA;forDE, P 0.001;forME, P 0.97;foryear, P 0.001;forDE 3 year, P 0.001; forME 3 year, P 0.01).Whenanalyzedwithineach cohort,earlieremergencewasconsistentlyassociatedCHRISTOPHERA.SEARCYETAL. 70 Ecology,Vol.95,No.1
PAGE 4
withtravelingfarther,anditwasonlytheextentofthis effectthatvariedbyyear(AppendixB:TableB.1). Becausenoneofthesimpleeffectscontradictedthemain effect,weconcludethat,ingeneral,metamorphsthat emergedearliertraveledfarther. Althoughtherewasnowithin-yearselectionforlarger sizeasametamorph,therewasstrongwithin-year selectionforlargersizeasajuvenile(Table1).MEwasa strongpredictorofmasswhen“rstcapturedasa juvenile(Fig.1),implyingthatalthoughtherewasnot animmediateadvantagetolargesizeatemergence,there wasanadvantagetothislargersizelaterinlife.This madeMEaclassicexampleofaDLHE;therewasno immediateadvantagetoalargeME,butlargerMEwas selectedforthroughitspositivecorrelationwithmassas a“rst-yearjuvenile.Therewasalsostrongwithin-year selectionformetamorphstoemergebothearlyandata largesize,creatingapotentialevolutionarytrade-off, becauseearlyemergencenecessarilymeanstruncating theperiodofrapidlarvalgrowth.Thiswithin-year selectionresultedinanegativecorrelationbetweenME andDE(Fig.2),becausethemost“tlarvaeemerged bothearlyandlargeandtheleast“tlarvaeemerged bothlateandsmall. Fig.3showsthemasstrajectoryoftheaverageCTS, providingacontextforthesesometimescon”icting “tnesscomponents.MeanDEatJepsonPrairiewas10 June.Overthecourseofthatsummer,whentherewas selectionforearlyemergencebutnoneonME,the averagesalamanderlost36 % ofitsbodymass. Maximumlossregisteredon2October,justbeforethe wetseasonÂÂof“ciallyÂÂbeginson26October(Ko ¨ ppen 1936).Assoonasthewetseasonbegan,salamanders wereconsideredone-year-oldjuvenilesandselection switchedtofavoringgreaterME.Thiscorrespondedtoa periodofrapidgrowthduringwhichtheaverage salamanderreturnedtoitsMEby5March.Growth stalledagain(2MayÂ…26September),againmatching closelythedryseason(17AprilÂ…26October).Rapid growthcontinuedduringthesecondyearasajuvenile, suchthatby5Octoberofthethirdyear,theaverage salamanderhadreachedthemeanadultsize(23.43 6 0.17g;alldatareportedasmean 6 SE)andwas presumablyreadytobreed.Pastthispointinthethird year,wehaveverylittleinformation,andcanonlynote thatsalamandersappeartocontinuegrowingintotheir fourthyearandpossiblybeyond,probablyata deceleratingrate. Fromtheperspectiveofmodelingpopulationdynamics,theimportanceoftheseDLHEswilldependupon theamountofvariationinMEthatselectionhastoact upon.Overourstudy,therewassubstantialvariation bothinindividualME(range3.7Â…21.0g)andinmean cohortME(range7.1 6 0.1gto13.7 6 0.4g).Thus, regardlessoftheirsizeintermsofnumberofindividuals, somecohortswillcontributealmostnobreedingadults tothepopulation,whereasothercohortswillhavevery highsurvivorshiptomaturity. PatternsacrossCaliforniatigersalamandersites OlcottLakeisanenormousandsomewhatunusual breedingsiteintermsofitssize.Toexaminethe generalityofthevariationinmeancohortMEthatwe foundatOlcott,wesummarizevariationinMEfromtwo otherbreedingsitesoverarangeofyearsandhydroperiodsinFig.4.RoundPondisasmaller,butstillquite large,3-habreedingsite0.9kmfromOlcott;Blomquist Pondisamoretypical0.07-habreedingsiteinMonterey CountyadjacenttotheHastingsNaturalHistory Reservationthatwasstudiedwithasingledriftfence TABLE1.Effectofmass(mean 6 SE)onsurvivaloftheCaliforniatigersalamander( Ambystomacaliforniense )fromwithin-and across-yearanalysesof“veage-classtransitions. Age-class transition Massbeforeselection(g)Massafterselection(g)Masschange( % )WithinyearAcrossyear WithinyearAcrossyearWithinyearAcrossyearWithinyearAcrossyeardf P df P Metamorph tojuvenile 9.92 6 0.059.48 6 0.069.62 6 0.2110.89 6 0.29 3.014.93,24520.171,2454 0.001 Metamorph toadult 11.34 6 0.089.48 6 0.0613.08 6 1.0012.51 6 1.2215.432.13,23240.071,23260.01 Juvenileto juvenile 8.97 6 0.117.51 6 0.0811.56 6 0.7810.61 6 0.8528.841.23,1449 0.0011,1451 0.001 Juvenileto adult 8.98 6 0.117.51 6 0.0811.47 6 0.9711.25 6 1.1427.849.73,14390.011,1441 0.001 Adultto adult 22.86 6 0.2123.43 6 0.1724.43 6 0.8325.33 6 0.876.98.14,11130.061,11160.03 Notes: Thewithin-yearanalysisincludesablockingtermforyearsothatanimalsareonlycomparedtoindividualsinthesame ageclassthatwerecapturedinthesameyear.Thiscontrolsforthedifferentclimaticconditionsthatanimalsexperiencedin differentyears.Theacross-yearanalysiscomparesanimalstoallindividualsinthesameageclass,regardlessoftheyearinwhich theywerecaptured.Meanmassbeforeselectionisthemeanmassofallanimalsintheageclassbeforethetransition;meanmass afterselectionismeanmassintheageclassbeforethetransition,calculatedforthoseanimalsthatwererecapturedafterthe transition.Allestimatesofmeanmassareleast-squaremeanstakenfromtheANOVAmodels,whichexplainswhyvaluesare slightlydifferentdependingonthespeci“cmodel.Thelargerdiscrepancyinmeanmetamorphmassbeforeselectionforthewithinyearanalysisisduetothefactthat,forthemetamorphÂ…adulttransition,alldatafromthe2006cohorthadtobedroppedbecause nomembersofthatcohorthadbeenrecapturedasadults.Masschangeexpressesthedifferencebetweenmeanmassbeforeand afterselectionasapercentage,andsigni“cancegivesthe P valuefortheANOVAassociatedwiththatmasschange. January2014 71 AMPHIBIANDELAYEDLIFEHISTORYEFFECT
PAGE 5
FIG.1.MassatemergencestronglypredictsjuvenilemassintheCaliforniatigersalamander( Ambystomacaliforniense ).Data fromallthreeyearswithmetamorphsmarked(2005,2006,and2010)areshown;factorsaremeancohortmassatemergence(ME), year,andtheirinteraction.Log-transformedmasswasoriginallymeasuredingrams. FIG.2.Duetocon”ictingselectionpressures,massatemergencedecreaseswithemergencedate.Dateisrepresentedasthe numberofdaysafter30April.Datafromallthreeyearswithmetamorphsmarked(2005,2006,and2010)areshown;factorsare dateofemergence(DE),year,andtheirinteraction.Log-transformedmasswasoriginallymeasuredingrams. CHRISTOPHERA.SEARCYETAL. 72 Ecology,Vol.95,No.1
PAGE 6
fornineyearsduringthe1990s(Trenhametal.2000). VarianceamongmeancohortMEisfairlysimilar betweenthethreesites:forBlomquist,SD 3.05g;for Olcott,SD 2.62g;forRound,SD 3.56g.This suggeststhatsubstantial“tnessvariationforDLHEsto actuponwillbecommonacrossCTSsites,regardlessof theirsizeandlocation.WealsonotethatOlcottLakeand RoundPondareincloseproximitytoeachotherand experienceidenticalclimaticconditions,yetthecorrelationinmeancohortMEbetweenthetwositesislow( r 0.27),indicatingthatthefactorscontrollingmeancohort MEarenotpurelyafunctionoflocalweatherconditions. FIG.3.MasstrajectoryforCaliforniatigersalamanders(solidline,mean;dashedlines,SE).Eachcirclerepresentsarecapture event.Thelinewas“tusingageneraladditivemodel.Numbersinparenthesesarecoordinatesforeachlocalminimumand maximumofthemodel.Valuesonthe x -axisaredaysafterdateofemergence(meandateofemergenceis10June); y valuesarethe percentageincreaseordecreaseinmassrelativetomassatemergence(meanmassatemergenceis10.77g).Thus,ÂÂ100ÂÂonthe y axisrepresentsa100 % increaseinmasssinceemergence(i.e.,21.54gforasalamanderwiththemeanmassatemergence). FIG.4.MeancohortmassatemergenceforthreedifferentCaliforniatigersalamanderbreedingpondsacross7Â…9yearsof studyinCalifornia.Eachbreedingpondisrepresentedbyadifferentpattern:lightgray,BlomquistPond,HastingsNaturalHistory Reservation,MontereyCounty;mediumgray,OlcottLake,JepsonPrairie,SolanoCounty;black,RoundPond,JepsonPrairie, SolanoCounty. January2014 73 AMPHIBIANDELAYEDLIFEHISTORYEFFECT
PAGE 7
Patternsacrosspond-breedingamphibians Finally,toplacethevariationthatweobservedinME intoabroadercontext,wecompiledaliteraturereview ofstudiesofpond-breedingamphibiansthathave documentedmeancohortMEovermultipleyearsfrom thesamebreedingsite(AppendixB:TableB.2).We calculatedamong-cohortvariationastheratioofthe largesttothesmallestmeancohortME.Thevariation rangesfrom1.0to 5.0,andthevariationinmean cohortMEinCTS(2.8)fallsinthemiddleofthe variationobservedinotherspecies.Asexpected,the largest/smallestMEratioincreaseswiththenumberof cohortsthatareinvestigated( P 0.001;AppendixB: Fig.B.2).Basedontheavailabledata,thereisno indicationthattherangeofvariationissaturatingwith thenumberofmeasuredcohorts(thequadratictermis notsigni“cant, P 0.19),evenwiththelongestexisting studies(22and23annualcohorts). DISCUSSIONDelayedlifehistoryeffectsoccurwhenlifehistory traits(e.g.,survival)dependonbothcurrentand previousenvironments(Beckermanetal.2002).We havefoundpervasiveevidencefordelayedlifehistory effectsacrossthelifehistoryofCTS.Ateachstagein CTSÂslifecycle,greatermass,whichmustbegoverned inpartbycurrentandpreviousenvironments,leadsto highersurvivaltothenextstage(Table1).Previous studiesofpond-breedingamphibianshaveshownthat variationinMEaffects“tnessofbreedingadults (Berven1990,Scott1994,Berven2009;butseeBeck andCongdon1999,Boone2005,Gramapurohit2009 forcounterexamples).However,noneofthesestudies hasbeenabletopartitionthislarge-sizeadvantageat metamorphosisamongtheinterveninglifestagetransitions.Wefoundthatlargersizeisadvantageousatall lifehistorystagetransitions,althoughatthemetamorph-to-juveniletransition,thisselectionadvantageis bettermodeledatthecohortlevelthanattheindividual level.Themetamorph-to-juveniletransitionisparticularlynuanced,andinvolvesapotentialtrade-off betweenMEandDE,withearlierDEprovidingan immediate“tnessbene“ttometamorphs,whereas greaterMEonlyprovidesa“tnessadvantagelaterin life. Delayedlifehistoryeffects ModelsthatincorporateDLHEshaveproventomore accuratelyresembletruepopulationdynamicsinboth plantandinsectsystems(GinzburgandTaneyhill1994, Crone1997).Itisthusessentialthatweunderstandhow DLHEsoperateifwewanttobuildaccuratepopulation modelsforamphibiansandothertaxa.Thepervasive DLHEsthatwefoundinCTS,coupledwiththe substantialvariationinmeancohortME,clearlycould havealargeeffectonpopulationdynamics.In particular,themodelforacross-yearselectiononmass betweenthemetamorphandadultstagessuggeststhat withinasinglebreedingpond,terrestrialsurvivalofthe averagemetamorphintheheaviestcohort(14.9 6 0.3g) isupto18.8timesthatoftheaveragemetamorphinthe lightestcohort(5.3 6 0.1g).Althoughthisvariationin averagemetamorphqualityisnotasgreatasthe variationthathasbeendetectedinmetamorphquantity (whichrangesoverfourordersofmagnitude;seeSearcy etal.2013),itwillhavealargeeffectonpopulation dynamics. Unfortunately,westilldonotfullyunderstandwhich environmentalfactorsaregoverning”uctuationsin meanmetamorphmass.Noneoftheenvironmental factorsthatwetested(e.g.,numberofmetamorphs, numberofbreedingfemales,meantemperature,annual precipitation)wassigni“cantlycorrelatedwithmean cohortME.Whatwedounderstandisthetremendous levelofvariationinmeancohortMEinCTS populations,andthatsimilarlevelsofvariationare foundinvirtuallyallpond-breedingamphibiansthat havebeenstudiedtodate.Fig.B.2(AppendixB) suggestsboththattherangeofvariationinmeancohort MEisverylarge(5.42timesin Ambystomatalpoideum ; D.E.Scott, unpublisheddata )andthataccurately estimatingtherangeofvariationwillrequiremonitoring apopulationforaverylongtime(over20years). Averageturnoverperiodforthesespeciesis ; 10years (e.g.,GibbonsandSemlitsch1991,TaylorandScott 1997,Trenhametal.2000),andourliteraturereviewis consistentwithConnellandSousa(1983),whoconcludedthat,asagoodruleofthumb,populationsshouldbe followedfortwofullturnoverperiods(seealsoBlaustein etal.1994,PechmannandWilbur1994). Multilevelselection Ouranalysispointstoselectionactingatboththe individualandcohortlevel,andeachmaybeimportant contributorstothetotalselectiononapopulationover time.Otherstudieshaveshownthatthereisasigni“cant correlationbetweenmeancohortMEandsurvival (Berven1990,Scott1994),butdidnotutilizea contextualanalysis(HeislerandDamuth1987)to partitionthecohort-levelrelationshipintoindividuallevel(withineachcohort,ahigherpercentageoflarge individualssurvive)orcohort-level(arandomsampling fromwithineachcohortsurvive,butahigherpercentage arefromcohortswithalargermeansize)selection.Our contextualanalysisrevealsthatacrossthecritical metamorph-to-juveniletransition,selectionforlarger massisbetterrepresentedascohort-levelselection.This willplayanimportantroleinhowselectiononmassis modeledforapopulation,becausepredictionsmadeby modelsbasedoncohortvs.individuallevelselection divergeastheintrinsicrateofpopulationgrowth increases(TaylorandScott1997). Itisalsoimportanttokeepinmindthatthisisa purelycorrelationalanalysis.Itishardtoconceiveofa mechanismbywhichafocalmetamorphÂssurvival probabilitywouldbeincreasedbybeingsurroundedbyCHRISTOPHERA.SEARCYETAL. 74 Ecology,Vol.95,No.1
PAGE 8
otherlargemetamorphs.Itseemsmorelikelythatthere issomeenvironmentalfactor,orsuiteofcorrelated environmentalfactors,thatbothimprovesthequalityof theaquaticenvironment,therebyincreasingmean cohortME,andsimultaneouslyamelioratesmortality pressuresintheterrestrialenvironment,therebyincreasingsubsequentover-summersurvivorship.Onefactor thatcouldpotentially“llthisroleisthenumberof cohortmates,becausecompetitionwithotherindividualsinthesamecohortforbothaquaticpreyand terrestrialburrowswoulddecreasebothmeanMEand terrestrialsurvival.Althoughwedidnotdetecta signi“cantrelationshipbetweennumberofmetamorphs andmeancohortME(seeprecedingsection),and survivaloverthe“rstsummerwasbetterpredictedby meancohortME( R2 0.998)thanbynumberof metamorphs( R2 0.88),thisdoesnotprecludethe possibilitythatadatase twithmoreacross-year replicationwoulddetectasigni“cantcontributionof numberofmetamorphstobothoftheothermetrics. Whenconsideringthemeanmasstrajectorydepicted inFig.3,itisdif“culttobelievethatindividualselection onmassisnotoperatingacrossthemetamorph-tojuveniletransition.Duringthistransition,theaverage salamanderloses36 % ofitsmass.Largersalamanders presumablyhavelargerfatandwaterstores,andthus shouldbebetterabletotoleratethismassloss.For example,itishasbeenshownthatlargermassincreases timetodehydrationinadesert-adaptedanuran(NewmanandDunham1994),andshouldthereforebean importantcomponentofsurvivalovercentralCaliforniaÂshot,rainlesssummer.However,itmaybethecase thatthethreatofdehydrationissoseverethatsuchan effectisoutweighedbytheover-summeringsitethata salamanderselects,becauseevenahigh-qualitysalamanderwilldieinalow-qualityretreat.Thismay explainwhyearlyemergence,whichiscorrelatedwith samplingalargerareaasametamorphandthushaving alargerrangeofover-summeringsitestochoosefrom,is suchanimportantcomponentof“tness. Optimalsizeatmetamorphosis Fig.2revealsanegativecorrelationbetweenMEand DE.IfthisrelationshipisdrivenbyselectiononME alone,aswasassumedinclassicmodelsofamphibian metamorphosis(Wilbur andCollins1973,Werner 1986),itrequiresthattheoptimalvalueofMEdecreases overtime.UndertheWilburandCollins(1973)model, thiswouldrequirethebodysizeatwhichlarvalgrowth rateslowstodecreaseovertime,asthisdecreasinglarval growthrateisthepostulatedtriggerinitiatingmetamorphosis.Thiscouldbethecaseiflargerlarvaerequirea higherrateofpreycapturethansmalleronesto maintainthesamesize-speci“cgrowthrate.Giventhat CTSaresit-and-waitpredatorsthatswallowtheirprey whole,thepro“tabilityofpreymaybegovernedsolely bysearchtime,whichislinearlycorrelatedwithprey density.Preydensitymaywelldecreaselinearlyoverthe courseoftheemergenceperiod,consistentwithalinear decreaseinoptimalME.Fromtheperspectiveofthe PLATE1.AdultCaliforniatigersalamander( Ambystomacaliforniense )attheJepsonPrairiePreserve,SolanoCounty, California,USA.AdultandjuvenileCaliforniatigersalamandersareonlysurface-activeintheterrestrialhabitatonrainynights duringthefallandwinter.Individualstravelhundredsofmetersbetweentheirbreedingpondandrefugesites(rodentburrows), wheretheyareprotectedfromCaliforniaÂshot,drysummers.Photocredit:VideOhlin. January2014 75 AMPHIBIANDELAYEDLIFEHISTORYEFFECT
PAGE 9
Werner(1986)model,earlymetamorphosisatalarger sizecanbeexplainediftheaquatic l / g (mortality/ growth)curvemovesupwardoverthecourseofthe emergenceperiod,shiftingitsintersectionwiththe terrestrial l / g curvetoalowermass.Thisupward movementoftheaquatic l / g curvecouldoccurifeither l increasesor g decreases.Bothoftheseseemplausible, since l presumablyincreasesdramaticallyasponddryingreducesthevolumeofwater,and g maydecrease asthedensityofaquaticpreydecreases.However,a simplerexplanationforthenegativecorrelationbetween MEandDEresultsifweconsiderthatbothtraitsare underselectionsimultaneously,andthatthereisatradeoffbetweenthem. Evolutionarytrade-offs Agrawaletal.(2010:245)de“neamulti-traittrade-off asoccurringÂÂwhentwoormoretraits,whichareboth underdirectionalselectiontoincrease,sharealimiting resource.ÂÂOuranalysesdemonstratethat,inCTS,both MEandDEareunderdirectionalselection(MEfor largersizeandDEforearliertime).Wepositthatthe sharedlimitingresourceistime.Clearly,individualsthat emergefromthepondearlieraresacri“cingtimeinthe aquaticenvironment.Aslongasextratimeinthe aquaticenvironmentwouldalsoleadtogreaterME, thenthelimitingresourceisshared.Althoughthe“rst metamorphsemergeinlateMay,otherlarvaeremainin theaquaticenvironmentforanothermonth.Ifthereare enoughresourcestosustainthegrowthoftheselateremergingmetamorphs,thenthereiseveryexpectation thattheearly-emergingmetamorphs,whichmusthave hadahigherrateofresourceacquisitiontoobtaintheir earlysizeadvantage,wouldcontinuetogrowifthey remainedintheaquaticenvironment. Wepostulatethatanevolutionarytrade-offbetween MEandDEcaneasilyexplainthenegativecorrelation betweenthesetwocriticallifehistoryfeatures.Clearly, theoptimalstrategyinthissituationistoemergeboth earlyandlarge.Larvaewithahighrateofresource acquisitionmaybeclosetothisoptimumandhavethe luxuryofmakingsmallsacri“cesinbothMEandDEas partoftheirtrade-off.Larvaewithlowerratesof resourceacquisitionwillalsobeforcedintoatrade-off betweenDEandME,andduetotheirslowgrowthrate, willemergewithanevenlowerME,despitemakinga largersacri“ceinDE.Anadvantagetoearlyemergence seemstobeacommonthemeacrossamphibianspecies (Smith1987,Semlitschetal.1988,AltweggandReyer 2003),suggestingthatthistrade-offmaybecommon, andmaymaintainvariationinbothmetrics(Bervenand Gill1983)withinandacrosscohorts. Conclusions Previousworkhasshownthat:(1)iftheyexist, DLHEswillplayanimportantroleinpopulation dynamics(Leslie1959);(2)thatDLHEsarecommon inpond-breedingamphibians(Berven1990,Scott1994, Berven2009);and(3)thatthereissubstantialintercohortvariationinmetamorphqualityforDLHEsto actupon(Semlitschetal.1988,Scottetal.2007,Berven 2009).Althoughthisintercohortvariationinmetamorphqualityhasbeendocumented,itspotential impactonpopulationdynamicsanditspartitioning amongterrestriallifehistoryphaseshavereceivedvery littleattention.WedemonstratethatinCTS,intercohort variationinaveragemetamorphqualitysubstantially impactspopulationdynamics.Wehavealsoshownthat accuratelydocumentingintercohortvariationinmetamorphqualityrequiresdataforatleasttwocomplete populationturnovers,thatDLHEsareprominentacross alllifestagetransitions,andthatthereisvariationin whetherselectionisprimarilyattheindividualorcohort level.Alloftheseempiricalobservationsaffecthow populationmodelsshouldbedeveloped(Taylorand Scott1997).GiventhatDLHEsarecommonacross diversetaxa,notjustpond-breedingamphibians(Rose etal.1998,Beckermanetal.2002,Lummaaand Clutton-Brock2002),ourobservationsontheimportanceofvariationinqualityaswellasquantityandhow itinteractswithDLHEsarewidelyapplicabletothe understandingofpopulationdynamics.ACKNOWLEDGMENTSWethankK.PopeandD.Scottforcontributingdataforthe meta-analysis,A.Clause,J.Ersan,E.Gabbai-Saldate,B. Johnson,andM.Starkeyfortremendoushelpatthedrift fences,andE.Cole,R.Hartman,S.Lawler,J.Rose,andtwo anonymousreviewersforgreatlyimprovingthemanuscript. ThisworkwasconductedunderFederalFishandWildlife permitTE094642-0andwasfundedbygrantsfromtheBureau ofReclamation,theCaliforniaDepartmentofTransportation, theNationalScienceFoundation,theSolanoCountyWater Agency,UCÂ…Davis,andtheUCNaturalReserveSystem. LITERATURECITEDAgrawal,A.,J.K.Conner,andS.Rasmann.2010.Tradeoffs andnegativecorrelationsinevolutionaryecology.Pages243Â… 268 in M.A.Bell,D.J.Futuyma,W.F.Eanes,andJ.S. Levinton,editors.EvolutionsinceDarwin,the“rst150years. SinauerAssociates,Sunderland,Massachusetts,USA. Albon,S.D.,T.H.Clutton-Brock,andF.E.Guinness.1987. Earlydevelopmentandpopulationdynamicsinreddeer.2. Density-independenteffectsandcohortvariation.Journalof AnimalEcology56:69Â…81. Altwegg,R.,andH.Reyer.2003.Patternsofnaturalselection onsizeatmetamorphosisinwaterfrogs.Evolution57:872Â… 882. Beck,C.W.,andJ.D.Congdon.1999.Effectsofindividual variationinageandsizeatmetamorphosisongrowthand survivorshipofsoutherntoad( Bufoterrestris )metamorphs. CanadianJournalofZoology77:944Â…951. Beckerman,A.,T.G.Benton,E.Ranta,V.Kaitala,andP. Lundberg.2002.Populationdynamicconsequencesof delayedlife-historyeffects.TrendsinEcologyandEvolution 17:263Â…269. Berven,K.A.1990.Factorsaffectingpopulation”uctuationsin larvalandadultstagesofthewoodfrog( Ranasylvatica ). Ecology71:1599Â…1608. Berven,K.A.2009.Density-dependenceintheterrestrialstage ofwoodfrogs:evidencefroma21-yearpopulationstudy. Copeia2009:328Â…338. CHRISTOPHERA.SEARCYETAL. 76 Ecology,Vol.95,No.1
PAGE 10
Berven,K.A.,andD.E.Gill.1983.Interpretinggeographic variationinlife-historytraits.AmericanZoology23:85…97. Blaustein,A.R.,D.B.Wake,andW.P.Sousa.1994. Amphibiandeclines:judging stability,persistence,and susceptibilityofpopulationstolocalandglobalextinctions. ConservationBiology8:60…71. Boone,M.D.2005.Juvenilefrogscompensateforsmall metamorphsizewithterrestrialgrowth:overcomingthe effectsoflarvaldensityandinsecticideexposure.Journalof Herpetology39:416…423. Connell,J.H.,andW.P.Sousa.1983.Ontheevidenceneeded tojudgeecologicalstabilit yorpersistence.American Naturalist121:789…824. Crone,E.E.1997.Parentalenvironmentaleffectsandcyclical dynamicsinplantpopulations.AmericanNaturalist150: 708…729. Gibbons,J.W.,andR.D.Semlitsch.1991.Guidetothereptiles andamphibiansoftheSavannahRiverSite.Universityof GeorgiaPress,Athens,Georgia,USA. Ginzburg,L.R.,andD.E.Taneyhill.1994.Populationcycles offorestLepidoptera:amaternaleffecthypothesis.Journal ofAnimalEcology63:79…92. Gramapurohit,N.P.2009.Catch-upgrowthduringjuvenilelife cancompensateforthesmallmetamorphicsizein Euphlyctis cyanophlyctis .CurrentScience97:1243…1246. Heisler,I.L.,andJ.Damuth.1987.Amethodforanalyzing selectioninhierarchicallystructuredpopulations.American Naturalist130:582…602. Jerry,D.R.,T.Stewart,I.W.Purvis,andL.R.Piper.2001. Evaluationofvisualimplantelastomerandalphanumeric internaltagsasamethodtoidentifyjuvenilesofthe freshwatercray“sh, Cheraxdestructor .Aquaculture193: 149…154. Ko ¨ ppen,W.1936.Dasgeographischesystemderklimate.Pages 1…44 in W.Ko ¨ ppenandR.Geiger,editors.Handbuchder Klimatologie.VerlagvonGebru ¨ derBorntraeger,Berlin, Germany. Ku ¨ chler,A.W.1977.Themapofthenaturalvegetationof California.UniversityofKansas,Lawrence,Kansas,USA. Lande,R.,andS.J.Arnold.1983.Themeasurementof selectiononcorrelatedcharacters.Evolution37:1210…1226. Leslie,P.H.1959.Thepropertiesofacertainlagtypeof populationgrowthandthein”uenceofanexternalrandom factoronanumberofsuchpopulations.Physiological Zoology32:151…159. Lummaa,V.,andT.Clutton-Brock.2002.Earlydevelopment, survivalandreproductioninhumans.TrendsinEcologyand Evolution17:141…147. Newman,R.A.,andA.E.Dunham.1994.Sizeatmetamorphosisandwaterlossinadesertanuran( Scaphiopuscouchii ). Copeia1994:372…381. Pechmann,J.H.K.,D.E.Scott,R.D.Semlitsch,J.P. Caldwell,L.J.Vitt,andJ.W.Gibbons.1991.Declining amphibianpopulations:theproblemofseparatinghuman impactsfromnatural”uctuations.Science253:892…895. Pechmann,J.H.K.,andH.M.Wilbur.1994.Puttingdeclining amphibianpopulationsinperspective:natural”uctuations andhumanimpacts.Herpetologica50:65…84. Prout,T.,andF.McChesney.1985.Competitionamong immaturesaffectstheiradultfertility:populationdynamics. AmericanNaturalist126:521…558. Rittenhouse,T.A.G.,andR.D.Semlitsch.2007.Distribution ofamphibiansinterrestrialhabitatsurroundingwetlands. Wetlands27:153…161. Rose,K.E.,T.H.Clutton-Brock,andF.E.Guinness.1998. Cohortvariationinmalesurvivalandlifetimebreeding successinreddeer.JournalofAnimalEcology67:979…986. Scott,D.E.1994.Theeffectoflarvaldensityonadult demographictraitsin Ambystomaopacum .Ecology75:1383… 1396. Scott,D.E.,E.D.Casey,M.F.Donovan,andT.K.Lynch. 2007.Amphibianlipidlevelsatmetamorphosiscorrelateto post-metamorphicterrestrialsurvival.Oecologia153:521… 532. Searcy,C.A.,E.Gabbai-Saldate,andH.B.Shaffer.2013. Microhabitatuseandmigrationdistanceofanendangered grasslandamphibian.BiologicalConservation158:80…87. Searcy,C.A.,andH.B.Shaffer.2011.Determiningthe migrationdistanceofavagilevernalpoolspecialist:how muchlandisrequiredforconservationofCaliforniatiger salamanders?Pages73…87 in D.G.AlexanderandR.A. Schlising,editors.Researchandrecoveryinvernalpool landscapes.StudiesfromtheHerbarium,Number16. CaliforniaStateUniversity,Chico,California,USA. Semlitsch,R.D.,andJ.R.Bodie.2003.Biologicalcriteriafor bufferzonesaroundwetlandsandriparianhabitatsfor amphibiansandreptiles.ConservationBiology17:1219… 1228. Semlitsch,R.D.,D.E.Scott,andJ.H.K.Pechmann.1988. Timeandsizeatmetamorphosisrelatedtoadult“tnessin Ambystomatalpoideum .Ecology69:184…192. Smith,D.C.1987.Adultrecruitmentinchorusfrogs:effectsof sizeanddateatmetamorphosis.Ecology68:344…350. Taylor,B.E.,andD.E.Scott.1997.Effectsoflarvaldensity dependenceonpopulationdynamicsof Ambystomaopacum Herpetologica53:132…145. Trenham,P.C.,H.B.Shaffer,W.D.Koenig,andM.R. Stromberg.2000.Lifehistoryanddemographicvariationin theCaliforniatigersalamander( Ambystomacaliforniense ). Copeia2000:365…377.Werner,E.E.1986.Amphibianmetamorphosis:growthrate, predationrisk,andtheoptimalsizeattransformation. AmericanNaturalist128:319…341. White,G.C.,andK.P.Burnham.1999.ProgramMARK: survivalestimationfrompopulationsofmarkedanimals. BirdStudy46Supplement:120…138. Wilbur,H.M.,andJ.P.Collins.1973.Ecologicalaspectsof amphibianmetamorphosis:nonnormaldistributionsof competitiveabilityre”ectselectionforfacultativemetamorphosis.Science182:1305…1314.SUPPLEMENTALMATERIALAppendixA Descriptionofmethodsfordeterminingwhichcaptureeventsarerecaptures( EcologicalArchives E095-007-A1 ). AppendixB DetaileddescriptionofregressionandANOVAanalysesmentionedinthetextwithsupplementaltablesand“gures,plus additionalanalysesprovidingevidencethatrecapturedanimalsarearandomsubsetofthosethatsurvived( EcologicalArchives E095-007-A2 ). January2014 77 AMPHIBIANDELAYEDLIFEHISTORYEFFECT
PAGE 9
Panulirus argus
PAGE 10
Panulirus argus Menippe mercenaria Mithrax spinosissimus
PAGE 14
Tribolium Balanus balanoides Chthamalus stellatus C. stellatus
PAGE 16
Panulirus argus Menippe mercenaria
PAGE 17
Pagurus acadianus Pagurus pubescens P. acadianus, P. pubescens Pagurus longicarpus Pagurus pollicaris P. argus P. argus Laurencia
PAGE 18
M. mercenaria Mithrax spinosissimus Octopus spp. Opsanus tao
PAGE 19
Octopus Sargassum fluitans Crassostrea virginica
PAGE 21
Mesocosm Shelter Competition Experiment Animal Collection Experimental Setup
PAGE 22
Experimental Procedure
PAGE 23
Statistical Analysis
PAGE 24
Chemosensory Driven Shelter Selection Experimental Setup Mithrax spinosissimus
PAGE 25
Experimental Procedure Statistical Analysis
PAGE 26
Hard-bottom habitat surveys Survey Locations Statistical Analysis
PAGE 27
Stone Crab Density Manipulations Experimental Design Experimental Procedure
PAGE 28
Statistical Analysis
PAGE 30
Mesocosm Shelter Competition Experiments Influence of Chemical Cues on Shelter Choice
PAGE 31
Hard-Bottom Habitat Surveys
PAGE 32
Stone Crab Density Manipulations
PAGE 35
df P
PAGE 36
Within-subjects effects Between subjects effects
PAGE 37
F P F P
PAGE 39
*
PAGE 43
Procambarus clarkii Procambarus zonangulus Homarus americanus
PAGE 46
P. pollicaris P. longicarpus, P. pollicaris P. longicarpus
PAGE 49
Panulirus argus Panulirus argus Menippe mercenaria Panulirus argus
PAGE 50
menippe Panulirus argus Panulirus argus Panulirus argus Octopus briareus Panulirus argus
PAGE 51
Panulirus argus Chthamalus stellatus
PAGE 52
Panulirus argus Ficedula Albicollis
PAGE 53
Panulirus argus Panulirus argus Gobiodon histrio Panulirus argus,
PAGE 54
Menippe mercenaria Panulirus argus. Microtus arvalis Menippe
PAGE 55
Laurencia Panulirus argus Tribolium confusum Tribolium castaneum Tribolium Menippe mercenaria
PAGE 56
The biology of symbiosis Menippe mercenaria
PAGE 57
Thalassia testudinum ex
|