PAGE 1
CHARGETRANSPORTANALYSISFORLIGHTNINGByWEIFENGADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOLOFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOFDOCTOROFPHILOSOPHYUNIVERSITYOFFLORIDA2013
PAGE 2
c2013WeiFeng 2
PAGE 3
Tomyparents,Iloveyouallthetime 3
PAGE 4
ACKNOWLEDGMENTS IwouldliketothankWilliamW.Hager.Hehasbeenamentorandfriend.Hisguidancemadethisworkdone.IwouldliketothankmydissertationcommitteeofYumeiChen,SergeiS.Pilyugin,VladimirRakovandLeiZhangfortheirsupportovertheyears.Iwouldliketothankthosewhocollecteddataandsharedthemwithus.IwouldliketothankalloftheprofessorswhogavemehelpduringmyPh.D.research. 4
PAGE 5
TABLEOFCONTENTS page ACKNOWLEDGMENTS .................................. 4 LISTOFTABLES ...................................... 7 LISTOFFIGURES ..................................... 8 LISTOFSYMBOLS .................................... 9 ABSTRACT ......................................... 10 CHAPTER 1INTRODUCTION ................................... 11 2CHARGEREARRANGEMENTFORLIGHTNING ................ 18 2.1Instruments ................................... 18 2.2DescriptionofData ............................... 18 2.3ChannelReconstruction ............................ 21 2.4ElectricFieldAnalysisforPointCharge ................... 25 2.5MathematicalSolverforV0 .......................... 27 2.6ChargeTransportAnalysis .......................... 29 2.6.1DipoleChargeTransportModel .................... 29 2.6.2UniformChargeTransportModel ................... 30 2.6.3SmoothChargeTransportModel ................... 31 3CHARGEREARRANGEMENTBYSPRITESOVERAMESOSCALECONVECTIVESYSTEM ....................................... 42 3.1Overview .................................... 42 3.2DescriptionofDataSet ............................ 44 3.3ElectromagneticFieldDataandLightIntensity ............... 46 3.4MathematicalModel .............................. 48 3.4.1SinglePerfectlyConductingPlaneCase ............... 48 3.4.2DoublePerfectlyConductingPlanesCase .............. 49 3.4.3SphericalCaseApproximation .................... 53 3.5ChargeTransportAnalysis .......................... 56 3.5.1Assumptions .............................. 57 3.5.2AnalysisfortheHumpofSprite2 ................... 58 4CONCLUSIONS ................................... 63 APPENDIX ACONVENTIONS ................................... 65 5
PAGE 6
BDESCRIPTIONOFTHECALCULATIONOFV0 .................. 66 REFERENCES ....................................... 67 BIOGRAPHICALSKETCH ................................ 72 6
PAGE 7
LISTOFTABLES Table page 2-1Dipolechargetransportmodel ........................... 29 2-2Uniformchargetransportmodel .......................... 31 2-3Smoothchargetransportmodel(l=0) ...................... 35 2-4Smoothchargetransportmodel(l=)]TJ /F5 11.955 Tf 9.3 0 Td[(0.06fori2neg)att2 ........... 37 3-1Asummaryofthevideorecords(left)andcloselycorrelatedNLDNstrokerecords(right)forthesprites ..................................... 45 3-2Chargetransportforthesprite ........................... 62 7
PAGE 8
LISTOFFIGURES Figure page 2-1PlanviewsofLMAsourcesfortheICash .................... 19 2-2EastviewandhistogramofLMAsourcesfortheICash ............. 20 2-3ElectricelddatafortheICash .......................... 22 2-4DifferentviewsofreconstructedchannelsfortheICash ............ 24 2-5ComparisonbetweenmodeledandmeasuredelectriceldsforICash .... 38 2-6LinearchargedensityofICashatthreedifferenttimes ............. 39 2-7ChargemovementinnegativeregionforICashat23:05:42.023243UT .... 40 2-8ChargemovementinnegativeregionforICashat23:05:42.1UT ....... 40 2-9ChargemovementinnegativeregionforICashat23:05:42.3UT ....... 41 3-1NationalWeatherServiceStationKFDXNEXRADlevelIIIcompositeradarreectivityforSprites ................................. 43 3-2Aphotoofsprite2 .................................. 46 3-3Measureddataforsprite2 .............................. 47 3-4AverticalantennaofheightHaboveaperfectlyconductingplane ....... 49 3-5Averticalantennasuitedbetweentwoperfectlyconductingplanes ....... 50 3-6Imagedipolesequences ............................... 51 3-7Sphericalcaseforspriteresearch ......................... 54 3-8Plotoftheelectriceldasafunctionofdistance ................. 55 3-9Plotoftheelectriceldasafunctionofdistancefordifferentaltitudes ..... 57 3-10Theelectriceldwhichcorrelateswiththelightforsprite2 ............ 59 3-11Thespritecurrentatthetopofthespritechannelasafunctionoftime ..... 60 3-12Comparisonbetweenthemeasuredelectriceldandthemodeledelectriceldforsprite2 .................................... 61 3-13Threecomponentsoftheelectriceldforsprite2 ................. 62 8
PAGE 9
LISTOFSYMBOLSANDABBREVIATIONS Thelistshownbelowgivesabriefdescriptionofsymbolsandabbreviationsusedinthisdissertation: r2 Laplaciankk EuclideannormE ElectricFieldGPS GlobalPositioningSystemreceiversLEFA LangmuirElectricFieldArrayLMA NewMexicoInstituteofMiningandTechnologyLightningMappingArrayMCS MesoscaleConvectiveSystemNLDN NationalLightningDetectionNetworkUT UniversalCoordinatedTimeULF UltraLowFrequencyVLF VeryLowFrequency 9
PAGE 10
AbstractofDissertationPresentedtotheGraduateSchooloftheUniversityofFloridainPartialFulllmentoftheRequirementsfortheDegreeofDoctorofPhilosophyCHARGETRANSPORTANALYSISFORLIGHTNINGByWeiFengDecember2013Chair:WilliamW.HagerMajor:Mathematics ChargerearrangementisanalyzedforanintracloudashonAugust24th2007.Theanalysisemployeddatafromaballoonborneelectriceldsensor,orEsonde,datafromanexactlyEsondeonamountain,anddatafromtheNewMexicoInstituteofMiningandTechnologyLightningMappingArray(LMA).Anewsmoothchargetransportmodelisusedtoanalyzethechargemovement,demonstratinghighconsistencywithmeasureddata.Basedontheresult,26%ofthenegativechargewastransportedtotheendofthechannel;36%wasdepositedalongthechannelinthepositiveregion;8%wasdepositednearthestartofthechannelinthepositiveregion;and30%wasdepositedinanotherpositiveregionseveralkilometersbeneaththemainchannel.Chargerearrangementbyspritesisalsoanalyzedforamesoscaleconvectivesystem(MCS)onJuly15th2010.TheelectricelddatawererecordedbyLangmuirElectricFieldArray(LEFA)andthemagneticelddatawererecordedbythecharge-momentnetworknearDukeUniversity.AhighspeedvideosysteminLangmuirLaboratoryrecordedtelescopicimagesofthesprites.Foroneoutofthetenspritesthatwererecorded,therewasapositivehumpinelectriceldafewmillisecondsafterthe+CGreturnstroke.Theelectriceldhumpistbyaspritecurrentthatpropagatesfromtheionospheretoabout50kminaltitude.Thetotalchargetransport,whichwastheintegralofthecurrenthump,was23.9Cwhenthevelocityofthecurrentpulsewasbetween0.25cand0.55c. 10
PAGE 11
CHAPTER1INTRODUCTION Lightningisahigh-currentdischargeeventthatoccurswithincloudsaswellasbetweencloudsandtheground.Therearethreebasictypesoflightningashbasedonwheretheashoccurs.Intracloud(IC)ash,themostcommontypeofash,occurswithinacloud;cloudtocloud(CC)ashoccursbetweendifferentclouds;andcloudtoground(CG)ash,themostdangerousash,occursbetweencloudsandtheearth'ssurface. Aboltoflightningisconsideredoneofthemostdangerousnaturalphenomena.Everyyear,aboutonehundredorsopeoplearekilledbylightning,letaloneseveralhundredmoreinjuries,intheUnitedStatesalone.Lightningisalsoresponsibleforthedeathsandinjuriestolivestockandotheranimals,thousandsofbrushandforestres,aswellasdamagetobuildings,communicationssystems,airplanes,powerlines,andelectricalsystemsworthofmillionsofdollars.Becauseofthedamageoflightning,itisnecessaryforustostudyitthatwecanforecastitandprotectourselves.Wemayevenbeabletoutilizeitconsideringthehugeamountofenergystoredinthisuniquenaturalphenomena.Sofar,researchonlightninghasbeendevelopedtheoreticallyandexperimentally(fromground-basedelectriceld-changemetersaswellasfromtriggeredinstruments). Sincelightningispartofthestorm,mosttheoreticalworkoflightningisbasedonthemodelsofstorms.Therearetwotypesofstormmodels:convectivedynamicstormmodelsandmicrophysicalcloudelectricationmodels.Convectivedynamicstormmodels(forexample,KlempandWilhelmson[1978])startswiththedynamicboundaryconditionsandsolvesthemomentumandenergyequations.Theimportantcharacteristicofthismodelisassociatingtheinputswiththephasechangesofwater.Microphysicalcloudelectricationmodels(e.g.ZivandLevin[1974]andChiu[1978])includesdetailedmicrophysicalcalculationsofthechargeseparatedduringdynamic 11
PAGE 12
sizechangesoncollision,meltingorvaporizationinagivenelectriceld.Basedonthesetwomodels,Helsdon[1980]presentedatwo-dimensional,slab-symmetric,time-dependentcloudmodeltosimulatedeepconvectionintheatmosphere.Nisbet[1983]developedatwodimensionalcylindricallysymmetriccomputermodelandfoundthattheelectricationprocessesaremuchmoredirectlyrelatedtothetotalcurrentdensityatthesurfaceunderathundercloudthaneithertheconductioncurrentdensityortheelectriceldatthesurface. Sincetwodimensionalmodelisimpracticalforthreedimensional(realworld)problems,Hageretal.[1989]developedathreedimensionalmodel,combiningconvectiveandmicrophysicalthunderstormmodels,fortheevolutionoftheelectriceldinathunderstorm.Theoutputofthemodelistheelectriceldasafunctionoftimeandtheinputsarecurrentsgeneratedbythemovementofchargedparticleswithinclouds.StartingwithMaxwell'sequation: Gauss'slawfortheElectricField:rE= 0Gauss'slawfortheMagneticField:rB=0Faraday'slawofinduction:rE=)]TJ /F8 11.955 Tf 10.49 8.08 Td[(@B @tAmpere'sLawwithConservation:rB=0J+1 c2@E @t, thecurlofthemagneticeldstrengthHisgivenby rH=@E @t+E+J (1) whereisthepermittivity,istheconductivity,Eistheelectriceld,andJisthecurrentdensityassociatedwiththemovementofchargedparticles.Fromequation( 1 ),they 12
PAGE 13
derivedanequationforcomputingelectriceld: @ @t+rZSrG(r,s) (s)+rJ=0 (1) whereG(,)isGreen'sfunction,and istheLaplacianof-theelectricpotential,i.e.E=r.Byintegratingequation( 1 ),wecanobtain andthencomputetheelectriceldE.Bydiscretizingequation( 1 )forauniformmesh,theyobtainedamatrix-vectorofthediscretizedformula: A[n+1)]TJ /F5 11.955 Tf 11.96 0 Td[(n]+tB[n+1+(1)]TJ /F8 11.955 Tf 11.96 0 Td[()n]=tIn (1) whereAandBaresymmetricpositivedenitematrices,tistimestep,andisthevectorwithcomponents.TheerrorofthemodelisO(tm)+O(h2),wheretandharethetemporalandspatialdiscretizationparametersandm=2fortheCrank-Nicholsonschemewhilem=1otherwise.Whenapplyingthismodeltolightning,theyutilizedtheInverseMatrixModicationFormula(Hager[1989])toget: after=before)]TJ /F7 11.955 Tf 11.95 0 Td[(A)]TJ /F4 7.97 Tf 6.59 0 Td[(1W(WTA)]TJ /F4 7.97 Tf 6.59 0 Td[(1W))]TJ /F4 7.97 Tf 6.59 0 Td[(1WTbefore (1) wherebeforeandafterareelectricpotentialbeforeandafterdischarge. Astheprogressoftheoreticalworkforlightning,alotofground-basedmeasurementshavebeendevelopedforlightningresearch.Thedataweusedinourresearchareprovidedbyseverallightingdetectionsystemswhichisintroducedinbrief. TheNationalLightningDetectionNetwork(NLDN)(Cumminsetal.[1998]),themostaccurateandreliablelightningdetectionsystem,hasbeenprovidingdataforlightningresearchsince1987.Over100ground-basedsensingstationsareconstructedinthenetworkwhichmonitorstheCGlightningactivitiesacrosstheUnitedStates.. NewMexicoInstituteofMiningandTechnologyLightningMappingArray(LMA)wasintroducedbyRisonelal.[1999].LMAisathree-dimensionalvery-high-frequency(VHF)time-of-arrival(TOA)totallightninglocationsystem(Thomasetal.[2001,2004]and 13
PAGE 14
Colemanetal.[2003]).Inatypicaldeployment,tentofteenVHFreceiverstationsarearrangedoveranareaabout90kmindiameter.GPStimingisusedtoaccuratelymeasurethearrivaltimeofimpulsiveradiationeventswithabout40nsaccuracy.Eachstation,receivingandprocessingthelightningsignalsindependently,isabletodetermineupto12,500strongestVHFradiationsourcespersecond.TheLMAmeasurestheTOAofalightningdischargeandlocatesthesourceoftheradiationtogenerateathree-dimensionalmapoflightning. LangmuirLaboratoryforAtmosphericResearch,withfundsfromNationalScienceFoundation,wasbuiltintheMagdalenaMountainsofcentralNewMexicoin1963.Itisabasefortheresearchofcloudprocessesthatproducelightning,hail,andrain.LangmuirElectricFieldArray(LEFA)(Hageretal.[2012])islocatednortheastofLangmuirLaboratoryinaregionofsize25kmby15km,includingnineslowantennastations.Eachstationmeasurestheelectriceldonthreechannelsinparallel:sensitivechannel(withsensitivityfrom30mV/mto1kV/m),mediumchannel(withsensitivityfrom1V/mto30kV/m)andinsensitivechannel(withsensitivityfrom25V/mto750kV/m).LEFAtimesareGPSbased,withfrequency50kHzandaccuracyof20s. Formuchresearch,lightningmustbeobservedascloseaspossibletoensuretheaccuracyofmeasurement.Rocket-triggeredlightning([RakovandUman2003]),animportanttoolforclose-upinvestigation,providesamorecontrolledandpredictablemethodforlightningresearch.Recently,theballoon-borneEsondewasintroducedbySonnenfeldetal.[2006]forcloseobservationoflightning.ItusesGPS-timingandcontainsanarrayoffourelectrodes(slowantennas),whichiscapableofdetectingthundercloudelectriceldvectorwithafrequencybetween1Hzand5000Hz. InChapter2,wewillfocusonthechargetransportanalysisforanICashincentralNewMexicoonAugust24th,2007.WewillstudythechargerearrangementfortheinitialchargetransportofanIC. 14
PAGE 15
Formanyyears,severalchargemodelshavebeenproposedforthunderstorms.Wilson[1916,1920,1925]proposeddipolemodelsforthechargestructure.SimpsonandScrase[1937]andSimpsonandRobinson[1941]latercameupwithtriplemodels.Luetal.[2011]presentedatime-dependentmultidipolemodelforcomputingthechargedistribution. Hageretal.[2007,2010]achievedgoodtbyestimatingCGandICwithdynamicmonopolemodelanddynamicdipolemodelrespectively.Hageretal.[2007]developednewtechniquestoaccuratelylterthebackgroundelectriceldchangesandpresentedpulsegraphtoobtainagraphicalapproximationtothelightningchannel.OneCGashandtwoICasheswereanalyzedbyusingdatafromLMAandaballoonEsonde.Hageretal.[2010]furtherenhancedthetechniquesdevelopedinHageretal.[2007]anddevelopednewtechniquetocomputetheelectriceldwhentheinstrumentrotateseithersteadilyorrapidly.ThestormcharginganddischargingprocesswerestudiedbyusingdatafromLMA,aballoonEsondeandnextGenerationWeatherRadar.ItisshownthatICashestransportedalmost6timesasmuchchargeasCGashesdid. InChapter2,wewillpresentanewsmoothdistributedchargemodelforanalyzingthechargetransportinanIC.ThesubstantialliteratureinsupportofthedistributedchargemodelincludingworkbyFew[1970],Krehbiel[1981],LiuandKrehbiel[1985],Proctor[1981,1997],Weberetal.[1982]andLuetal.[2011]. Datafromground-basedmeasurementshavebeenusedfortheoreticalanalysisofthundercloudchargedistributionsincetheearly20thcentury(JacobsonandKrider[1976],Koshak[1999],KoshakandKrider[1989,1994],Krehbieletal.[1979],Krehbiel[1981,1986],Murphyetal.[1996],Wilson[1916,1930],WorkmanandHolzer[1939]).Wilson[1916,1930]rststudiedtheelectricdischargesinlightningashesbyusingtheelectriceldmeasurements.KoshakandKrider[1994]andKoshak[1999]incorporatedconstraints,suchasconservationofthecharge,intheestimationprocess.More 15
PAGE 16
recently,Sonnenfeldetal.[2006]andHageretal.[2007,2010]usedballoon-basedmeasurementsofthechangeintheelectriceldinchargeretrievalanalysis. OuranalysisinChapter2isbasedondatareportedbyWinnetal.[2011].TheelectricelddataweremeasuredbytwoEsondes:aballoonEsonde(ightEsonde)andagroundEsonde.ThethreecomponentsoftheelectriceldchangemeasuredbyightEsondeandtheverticalelectriceldmeasuredbygroundEsondearethebasisforourchargetransportanalysis.DuetothelocationofthegroundEsonde,themountaingeometryistakenintoaccountinouranalysis.Winnetal.[2011]foundthattheleaderchannelclosetotheightEsondehasaline-chargedensityof-0.36mC/m. Hageretal.[2007,2010]incorporatedthemodelwithconstraints,includingthechargelocations,conservationofcharge,separatedchargecentersandlocationconstrainedbyLMAdata,toeliminatedegreesoffreedom.OurnewsmoothchargetransportmodelconstrainsthetransporttooccurwithindomainofLMAsourcesinasmoothway.Thissmoothnessinthechargetransportparallelsthesmoothnessinchargedensityseeninballoonsoundingsofthunderclouds(MarshallandRust[1991,1993]),StolzenburgandMarshall[1994],Stolzenburgetlal.[1994,1998a,1998b,1998c,2001,2002]).Thesmoothnessconstraintsallowsustotthevastlyunder-determinedsystemofequationsrelatingchargetoelectriceldinaphysicallyplausibleway. InChapter3,wewillstudychargerearrangementinassociationwithsprites.Spritesarelarge-scaleelectricaldischargingeventthatoftentriggeredbylarge,positivecloud-to-groundlightning(Boccippioetal.[1995]).Theyextendhighabovethundercloudsfromabout50kmto90km.ResearchonspritesstartedbyFranzetal.[1990]in1989.Theoriesfortheinitiationofspritesincludetheconventionalbreakdowntheory(Paskoetal.[1997])andarunawaybreakdownmodel(e.g.Belletal.,[1995]).Ithasbeenpredictedthatthe+CGprecedingspriteiscapableoftransferringlargeamountsofcharge.Estimateshaverangedfrom410Cto1500Cfordaytime 16
PAGE 17
sprites[Stanleyetal.2000]tobetween50Cand500Cfornighttimesprites(CummerandInan[1997]).CummerandInan[2000]analyzedthecurrentandchargetransportinspritesbyextractingalowfrequencysfericwaveformfromdistantmagneticeldmeasurements.Thenadeconvolutionmethodwasusedtoestimatethecurrentandchargemomentassociatedwithsprite.InChapter3,wewillfocusonwherechargeismovedbythespriteitselfusingdatafromtheLEFAforspritesassociatedwithlightningstrokeslocatedwithin500kmofLEFA. InChapter4,wepresentourconclusions. 17
PAGE 18
CHAPTER2CHARGEREARRANGEMENTFORLIGHTNING 2.1Instruments Winnetal.[2011]launchedaballoonborneEsonde(ightEsonde)fromtheballoonhangernearLangmuirLaboratoryatabout22:53:51UTAugust24th2007.TheballoontraveledprimarilytoeastandwasretrievedatthewestofInter-state25andtheRioGrandeRiver.Atabout23:05:42UT,theightEsonde,atanaltitudeofabout9100m,passedwithin181mofanLMAsource(oftheICash)detectedbyLMA.ThreecomponentsoftheelectriceldchangenearthelightningchannelwererecordedbytheightEsonde.ThegroundEsonde,whichwasidenticaltotheightEsondeandlocatedonamountainatanaltitudeof3226mnearLangmuirLaboratory,measuredtheverticalelectriceldchangeontheground. 2.2DescriptionofData 719LMAsourceswererecordedfortheICash.Figure 2)]TJ /F5 11.955 Tf 11.96 0 Td[(1 and 2)]TJ /F5 11.955 Tf 11.95 0 Td[(2 (Figure2andFigure3inHageretal.[2013])showdifferentviewsofLMAdatafortheICash.WecalledthisICashFlash83141b.Here,83141meanstheICashoccurred83141secondspastmidnight;bmeansthisICashisoneofthetwoashesoccurredatthesametime.TherstLMAdatawasrecordedat23:05:41.917228UTandthelastat23:05:42.263568UT.TheLMAsourcesrstpropagatedeastward-theseLMAsourcesarereferredaschannel1.ThentheLMAsourcesreturnedtotheinitialpointandpropagatednorthward-theseLMAsourcesarereferredaschannel2(seeFigure 2)]TJ /F5 11.955 Tf 11.95 0 Td[(2 A).Channel1andchannel2constructpositiveregionoftheICashbecausechargewithinthisportionarepositivelycharged.Correspondingly,theLMAsourcesbelowthechannelconstructnegativeregionoftheICash.ItcanbeseenfromFigure 2)]TJ /F5 11.955 Tf 11.95 0 Td[(2 Athatthepositiveregionextendsfrom8to12kmaltitudeandthenegativechargeregionextendsfrom6to8kmaltitude. 18
PAGE 19
A B Figure2-1. PlanviewsofLMAsourcesfortheICash.A)PlanviewoftheLMAsources,depictedasdots,intheLangmuirLaboratorycoordinatesystem.Thecolorofthedotsisbasedonthetimesincethestartoftheash;therstLMAsourcesarecoloreddarkbluewhilethelastaredarkred.Theballoonappearsasalargeblackdotwitharededge.B)ThesameviewoftheLMAsourcesbutwiththedotcolorbasedonthealtitudeofthesource.ThelowaltitudeLMAsourcesinthenegativeregionarebluewhilethehighersourcesinthepositiveregionaregreen,yellow,andred. 19
PAGE 20
A B Figure2-2. EastviewandhistogramofLMAsourcesfortheICash.A)AviewoftheLMAsourcesfromthewestlookingeast.Channel1appearsontheleftside,whilechannel2appearsontheright.ThepartoftheplotlabeledNegativeindicatestheregionwheremostofthenegativechargewaslocated.B)ThehistogramcountsthenumberofLMAsourcesin200mthickhorizontalslicesthroughthecloud. 20
PAGE 21
Figure 2)]TJ /F5 11.955 Tf 11.95 0 Td[(3 (Figure6inHageretal.[2013])showstheelectricelddatameasuredbytheightEsondeandthegroundEsonde.TheelectricelddatashowninthegurewereobtainedbyusingthealgorithmpresentedinHageretal.[2010].Hageretal.[2010]developedtwopolynomialinterpolationmethodtorecoverythemeasuredelectriceld:oneistocomputetheelectriceldchangeattheEsondewhentheinstrumentrotatesslowlyandsteadily;theothercanonlycomputetheverticalelectriceldchangeandthehorizontalelectriceldwhentherotationoftheinstrumentislargeenough(30ormoredegreespersecond).Sincewecanonlymeasuretheelectriceldchangeinthezdirection,Ezisinitializedtozeroatthestartoftheash.Duringthe300msoftheash,theightEsonderotated24.Thiswassufcientrotationtorecoverboththexandycomponentsoftheelectriceld.Hence,theinitialxandycomponentsoftheelectriceldarenonzero,andcorrespondtotheirtruevalues.ThedashedverticallinespresentthetimethattherstLMAsourceoftheICash,thetime(t0)thattheLMAsourcesreachedtheendofchannel1,andthetimethattheLMAsourcesreachedtheendofchannel2.Theinstantoftimet1occurredaftertheLMAsourcesreachedtheendofchannel2.Andtheinstanttimeoft2occurredafterthecompletionoftheICash.Atbothtimet1andt2,theelectriceldwasrelativelystable.NotethatK1,K2andK3inFigure 2)]TJ /F5 11.955 Tf 11.95 0 Td[(3 representthreeK-changesduringthisICash,referringHageretal.[2013]fordetailedstudyofK-changesforthisIC-ash. 2.3ChannelReconstruction SinceoursmoothchargetransportmodelconstraintsthetransporttooccurwithinthedomainofLMAsourcesinasmoothway,weneedtoreconstructasmoothlightningchannelbasedonthelocationoftheLMAsources.Ourgoalistoconstructarelativelysmoothone-dimensionalcurveinthree-dimensionalspacethatinsomesensepassesthroughthemiddleoftheLMAdata.Thealgorithmisthefollowing: 1.ExtractalltheLMAsourcesthatweuseforreconstructingthechannel.ForthisICash,weextractedalltheLMAsourcescorrespondingtochannel1andchannel2, 21
PAGE 22
A B Figure2-3. ElectricelddatafortheICash.A)TheelectriceldattheightEsondestartfrom23:05:42UT.TherstdashedverticallineshowstheinstantoftimewhentherstLMAsourcewasrecorded;Theseconddashedverticallineshowsthetimet0thattheLMAsourcesreachedtheendofchannel1.t1occursaftertheLMAreachedtheendofchannel.t2occursafterthecompletionoftheash.B)TheelectriceldatthegroundEsondeonthegroundnearLangmuirLaboratory. 22
PAGE 23
i.e.thoseLMAsourcesoccurredbetweenthetimeoftherstLMAsourcesandthetimeoftheLMAsourcesreachedtheendofchannel2above8kminaltitude. 2.Initializethealgorithmwiththelocationoftheinitialpointandtheinitialunitvectorpointingalongthechannel.WechosetherstLMAsourceastheinitialpointofthechannel,denotedasp1.WecalculatedtheunitvectorspointingfromtheinitialpointtothersttenLMApoints,andchosetheonethatpointedalongthechannelandpassedthroughthemiddleofthersttenLMAsources,denotedthisunitvectorasd1. 3.Choosetheappropriateparametersforthechannelreconstruction.Inordertoreconstructthechannel,weneedtochoosethelengthofthechannelsegments,denotedasl,andtheregionthatcontainsthoseLMAsourcesthatweusedforcalculatingthechannelsegment.Herewechoselengthofthechannelsegmentl=100m,andaspherewithradiusr=750mthatcontainsLMAsourcesforcalculating. 4.Assumingthekthpointpkandthecorrespondingdirectiondkofthereconstructedchannelareknown,weusedthefollowingalgorithmtochoosethe(k+1)stpointpk+1andthecorrespondingdirectiondk+1.WeextractedalltheLMApointsintheintersectionofthesphereofradiusrcenteredatpkwiththehalf-spacepassingthroughpkwithinwardnormaldk.AssignedthesetofthesepointasH.Foranydirectiondstartedfrompk,wetooktheunitvectordk+1astheminimizerthatminimizesthesumofthedistancesofpointsinHtothedirection.Andpk+1=pk+ldk+1.Astheprocesswent,weremovedthosepointsinpreviousspheresbutoutsideofthecurrentsphere.Eventually,weranoutoftheLMApointsandgotthecompletereconstructedchannel. 153channelpointspk,i.e.152channelsegments,wereobtainedforthechanneloftheICash.Figure 2)]TJ /F5 11.955 Tf 11.95 0 Td[(4 (Hageretal.[2013]Figure7)plotteddifferentviewsofthereconstructedchannel. Ourchoicesforthesphereradiusrandthelengthlofthechannelsegmentswerebasedonthefollowingconsiderations:SincetheLMApointsarespreadoutspatiallyaroundthechannel,theradiusofthespherershouldbeseveraltimesthespatial 23
PAGE 24
A B Figure2-4. DifferentviewsofreconstructedchannelsfortheICash.A),B)Differentviewsofreconstructedchannels.EmptycirclesareLMAsourcesandlledcirclesarereconstructedchannelpoint,i.e.pks. 24
PAGE 25
spread.Becausethespatialspreadisintherangeorderof100to200m,r=750mislargeenoughtogetpastthespreadanddeterminethechanneldirection.Thelengthlofthechannelsegmentswaschosentoapproximatethelengthofthechannelsegmentsassociatedwiththesteppedleader.l=100misareasonablevaluebecauselightningbuildsitschannelinsegmentsthatvaryfrom10to200m(RakovandUman[2003]). 2.4ElectricFieldAnalysisforPointCharge Forourash,theanalysisoftheelectriceldfromapointchargeiscomplicatedbythemountainonwhichthegroundEsondeissituated.AsnotedbyHageretal.[2012],themountaingeometrycanstrengthentheelectriceldbyafactorontheorderof2.Hence,inordertocorrectlyinterprettheelectricelddatafromthetwoEsondes,oneonthemountainandtheotherintheair,itisimportanttotakeintoaccountthegeometryofthemountain. TheelectriceldofchargedparticleswithinashescanbecalculatedbysolvingthePoisson'sequation0r2V=)]TJ /F8 11.955 Tf 9.3 0 Td[(on. whereVistheelectricpotential,0isthevacuumpermittivity,ischargedensityandisthedomainoftheproblem.Theboundaryofalwaysdenoted@.Theelectriceldisthenegativegradientofpotential:E=rV. Poisson'sequationdoesnothaveauniquesolution.InordertoobtaintheuniquenessofV,Vmustsatisfyconditionsontheboundaryof,@.Inourcase,theboundaryconditionsaresimplythehomogeneousboundaryconditions:V=0onthesurfaceoftheearth,attheionosphereand100kmawayfromthechargepoint.Thereasonofourchoiceoftheconditionisthefollowing:[AdlermanandWilliams,1996]presentedthatthepotentialontheverticalsidesofisfaireldif@isfarfromthestorm,andthepotentialabovethestormisionosphericpotentialwhencomputingtheelectricpotentialassociatedwiththestorm.However,weareonlyinterestedinthe 25
PAGE 26
potentialchangeassociatedwithachargepointintheatmosphere,i.e.weneedtosolvePoisson'sequationwithreplacedbyadeltafunctioncorrespondingtoapointcharge.Hence,Theboundaryconditionsarereducedtothehomogeneousboundaryconditions.Notethatourboundaryconditionsareapproximationsbecausetheearthandtheionospherearenotperfectconductors,andthedistantpotentialisnotzero,butdecayslikethereciprocalofdistance.Nonetheless,theerrorsduetoourapproximationstothetrueboundaryconditionsarerelativelysmallcomparedtotheuncertaintyinthedata. InordertoimplementthehomogeneousboundaryconditiononthesurfaceoftheEarth,weusedthe1/3arc-secondelevationdatafromU.S.GeologicalSurvey.Thisdataroughlycorrespondstoelevationsona10mby10mgridoverthesurfaceoftheUnitedStates.ThedistancefromthesurfaceoftheEarthtothecenteroftheEarthwas6378135m(theapproximateradiusoftheEarth)plustheelevationgivenbytheU.S.GeologicalSurvey. Inordertomodelthechargetransport,weplaceddeltafunction(chargepoint)atthemidpointsofthe100msegments,obtainedfromsection2.3,onthelightningchannelsandmodeledtheelectriceldgeneratedbythesechargepointstomatchthemeasuredtheelectricelddata.IfwenumericallysolvePoisson'sequationwithadeltafunction,largeerroroftenoccursduetothesingularityinthepotentialatthelocationofthedeltafunction.Inordertocomputethesolutionwithgreateraccuracy,wedividedVintotwoparts:V=Vf+V0.HereVfisthefundamentalsolutionforLaplace'sequationontheexteriorofasphere Vf(P)=1 401 kP)]TJ /F3 11.955 Tf 11.96 0 Td[(P0k)]TJ /F3 11.955 Tf 47.07 8.09 Td[(R=kP0k kP)]TJ /F5 11.955 Tf 11.95 0 Td[((R2=kP0k2)P0k whereRistheradiusoftheEarth,P0isthelocationofthechargepointandPisthelocationofthepointwherethepotentialismeasured.V0isaharmonicfunctionthat 26
PAGE 27
satisesr2V0=0,andV0=)]TJ /F3 11.955 Tf 9.3 0 Td[(Vfon@.ThustheelectriceldisexpressedasE=)]TJ /F5 11.955 Tf 9.3 0 Td[((rVf+rV0),whereVfwascomputedanalyticallyandV0wascomputednumerically. 2.5MathematicalSolverforV0 Inthissection,weshowthediscretizationprocessforcalculatingtheharmonicfunctionV0insection2.4.Sincetheelectricelddata,measuredbythegroundEsonde,isonthesurfaceoftheearth,weneedanemeshnearthegroundEsondewhilearoughmeshissufcientfarfromthegroundEsondewherethepotentialissmall.ThissuggeststhatweshoulduseasphericalcoordinatesystemwithoriginatthecenteroftheearthandzaxispointsthroughthegroundEsonde. Letusconsiderasphericalcoordinate(,,)correspondstoarectangularcoordinatesystem(x,y,z),whereisthedistancetothecenteroftheearth,istheangleofrotationin(x,y)plane(=0correspondstoxaxis,= 2correspondstoyaxis),andistheangleofrotationawayfromthezaxis(=0correspondstozaxis).Thesphericalcoordinateandtherectangularcoordinateofapointarerelatedasfollows:x=sincos,y=sinsin,z=cos Wesplitthewholedomainintomeshes:i:1iI,j;1jJ,k:1kK. WecanapproximatethesolutionV0atthecentroidofeachvolumeelementinthemesh.Atypicalvolumeelement(Sijk)hastheformf(,,):ii+1,jj+1,kk+1g. 27
PAGE 28
Thecentroid(ri,tj,pk)ofthevolumeelement(Sijk)isgivenbyri=i+i+1 2,tj=j+j+1 2,pk=k+k+1 2. Next,weintegrater2V0=0overthevolumeelementSijkandapplythedivergencetheoremtoobtain:Z@SijkrV0dS=0. Thegradientinsphericalcoordinatesisr=^@ @+^1 sin@ @+^1 @ @ Thenthevolumeelementapproachat(ri,tj,pk)hastheapproximation:)]TJ /F4 7.97 Tf 13.89 5.26 Td[(3Xl=1Cl@+l)]TJ /F4 7.97 Tf 18.37 14.94 Td[(3Xl=1Dl@)]TJ /F10 7.97 Tf -.65 -8.27 Td[(lVijk=0 where@)]TJ /F10 7.97 Tf -.65 -8.28 Td[(l=@+l)]TJ /F4 7.97 Tf 6.59 0 Td[(1,@+1Vijk=Vi+1,jk)]TJ /F3 11.955 Tf 11.96 0 Td[(Vijk ri+1)]TJ /F3 11.955 Tf 11.96 0 Td[(ri,@+2Vijk=Vi,j+1,k)]TJ /F3 11.955 Tf 11.96 0 Td[(Vijk tj+1)]TJ /F3 11.955 Tf 11.95 0 Td[(tj,@+3Vijk=Vij,k+1)]TJ /F3 11.955 Tf 11.96 0 Td[(Vijk pk+1)]TJ /F3 11.955 Tf 11.96 0 Td[(pk, andC1=2(j+1)]TJ /F8 11.955 Tf 11.95 0 Td[(j)2i+1sinpksink+1)]TJ /F8 11.955 Tf 11.96 0 Td[(k 2D1=2(j+1)]TJ /F8 11.955 Tf 11.95 0 Td[(j)2isinpksink+1)]TJ /F8 11.955 Tf 11.95 0 Td[(k 2C2=1 sinpk(i+1)]TJ /F8 11.955 Tf 11.96 0 Td[(i)(k+1)]TJ /F8 11.955 Tf 11.95 0 Td[(k)=D2C3=sink+1(i+1)]TJ /F8 11.955 Tf 11.96 0 Td[(i)(j+1)]TJ /F8 11.955 Tf 11.96 0 Td[(j)D3=sink(i+1)]TJ /F8 11.955 Tf 11.96 0 Td[(i)(j+1)]TJ /F8 11.955 Tf 11.95 0 Td[(j) 28
PAGE 29
2.6ChargeTransportAnalysis Inthissection,wewillstudythechargetransportassociatedwiththeelectricelddatainFigure 2)]TJ /F5 11.955 Tf 11.95 0 Td[(3 .Dipolechargetransportmodelanduniformchargetransportmodelareanalyzedbeforepresentingournewsmoothchargetransportmodel.Wefocusonthechargetransportfromthebeginningoftheashupuntileither23:05:42.1UT(t1)or23:05:42.3UT(t2).Atbothofthesetimes,theelectriceldisrelativelystationary. 2.6.1DipoleChargeTransportModel Hageretal.[2007,2010]showedthatthechargetransportinanICwasoftencloselyapproximatedbyadipole.ForthisIC,negativechargeistransportedfromthenegativeregionanddepositedneartheendsofthechannels(positiveregion).Considerthefollowingassumption:achargeQ1isdepositedatalocation700mfromtheendofchannel1,anotherchargeQ2isdepositedatalocation700mfromtheendofchannel2,atotalchargeQistransportedfromthenegativeregiontopositiveregionandthetotalchargeQisequallyassignedtoeachLMAsourceinnegativeregion.Byconventionofcharge,jQ1+Q2j=Q.ChargeQ1andQ2arechosentogivethebestleastsquaresttothemeasuredelectricelddata.Theresultofmeasured,modeleddata,Q1andQ2isshowninTable 2)]TJ /F5 11.955 Tf 11.96 0 Td[(1 (Hageretal.[2013]Table1). Table2-1. Dipolechargetransportmodel t1=23:05:42.1UTt2=23:05:42.3UT MeasuredModeledMeasuredModeled EGz(kV/m)-6.85.5-7.25.0EFx(kV/m)20.4-7.029.9-8.1EFy(kV/m)35.022.641.125.6EFz(kV/m)-9.4-11.3-17.1-18.7Q1(C)31.228.1Q2(C)-31.1-27.9 29
PAGE 30
InTable 2)]TJ /F5 11.955 Tf 11.95 0 Td[(1 ,EGzistheverticalelectriceldatthegroundEsonde.EFx,EFyandEFzarethreecomponentoftheelectriceldattheightEsonde.Itcanbeenseenthatdipolemodelfailstotthemeasureddatainthefollowingway:thesignbetweenmeasuredandmodeleddataofEGzandEFxisopposite;themodeledQ1ispositivewhileitshouldbenegative.ThereasonwhydipolemodeldidnotworkwasthattheightEsondewasnearthelightningchannel,andthenearbychargeonthechannelhadasignicantimpactonitschargemeasurement.Unlessweputchargealongthechannel,wearenotabletomatchtheelectriceldattheightEsonde. 2.6.2UniformChargeTransportModel Thefailureofdipolemodelinspiresusthatweshoulduseamodelwithchargeplacedalongthechannel.Theuniformlydistributedchargetransportmodelisonesimplemodelofthistype.Assumethatanequalamountofchargeq1isplacedatthecentroidofeachsegmentofchannel1,andanotherequalamountofchargeq2isplacedatthecentroidofeachsegmentofchannel2.Thetotalamountofchargeonchannel1andchannel2areQ1andQ2respectively.Weplaceanequalamountofchargeq)]TJ /F1 11.955 Tf -441.06 -22.12 Td[(ineachLMAsourceinthenegativeregion.Thetotalamountofchargeq)]TJ /F1 11.955 Tf 7.09 1.79 Td[(,transportedfromthenegativeregiontothepositiveregion,Q=jQ1+Q2jbyconventionofcharge.TheresultofbestleastsquarestbetweenthemodeledandmeasuredelectricelddataisshowninTable 2)]TJ /F5 11.955 Tf 11.96 0 Td[(2 (Hageretal.[2013]Table2). ItcanbeenseenfromTable 2)]TJ /F5 11.955 Tf 11.95 0 Td[(2 thattheuniformlydistributedchargemodelisabetterttothemeasureddatacomparedtodipolemodel.However,themodeledQ2ispositivewhileitshouldbenegative.Thettothegroundelectriceldisinerrorbyafactorof2att1andbyafactorof4att2.Thus,theuniformlydistributedchargemodelalsofailstoreproducethemeasuredelectriceld,evenforthebestpossiblechoicesofq1,q2,andq.Thisindicatesthatthechargeisnotuniformlydistributedalongthechannel,andthatgreaterexibilityinthechargedepositionisneededinordertoreproducethemeasuredelectriceld. 30
PAGE 31
Table2-2. Uniformchargetransportmodel t1=23:05:42.1UTt2=23:05:42.3UT MeasuredModeledMeasuredModeled EGz(kV/m)-6.8-3.4-7.2-1.8EFx(kV/m)20.424.129.931.7EFy(kV/m)35.033.141.140.9EFz(kV/m)-9.4-6.8-17.1-14.4Q1(C)-7.7-10.3Q2(C)0.17.0 2.6.3SmoothChargeTransportModel Inthissection,wepresentanewSmoothChargeTransportModelbasedonuniformchargetransportmodel.152channelsegmentsforthechanneloftheICashwereobtainedfromsection2.3.Sincethechargeoneachsegmentisunknown,152degreesoffreedomcouldbeusedtotthemeasuredelectriceldatanyinstantoftime.However,thereareonlyfourdataconstraintscorrespondingtothethreecomponentsoftheelectriceldchangeattheightEsondeandtheverticalelectricaleldchangeonthegroundEsonde.Thedegreesoffreedomneedtobereducedtoavoidoverttingthedata,i.e.wecantthemeasureddataverypreciselyusingchargedistributionsthatlosstheactualphysicalsignicance.Intheprevioussubsections,weremoveddegreesoffreedombyassumingthechargedistributionhadveryspecialforms.Inthedipolet,weassumedthatthechargeonallthechannelsegmentswaszeroexceptforthechargeonasegmentneartheendofeachchannel.Intheuniformt,weassumethatthechargeoneachchannelsegmentwasthesame.Eitherofthesemodelsremovednearlyallthedegreesoffreedom,buttherewasasignicantdiscrepancybetweentheelectriceldsproducedbythemodelandthemeasuredelds.Wenowdevelopacompletelydifferent 31
PAGE 32
waytoremovethedegreesoffreedom,whilepreservingtheexibilitythatisneededtomatchthemeasuredelectricelds. Inoursmoothchargetransportmodel,wetrytotthemeasuredelectriceldusingachargedistributionthatisasmooth,slowlyvaryingfunctionofdistancealongthechannel.Thesmoothnessrequirementremovesmanydegreesoffreedomandleadstoatwithphysicalsignicance.Atanyinstantoftime,assumingthatanamountofchargeqiisplacedatthecentroidofithchannelsegment,thesmoothnessisachievedbykeepingjqi+1)]TJ /F3 11.955 Tf 11.15 0 Td[(qijsmallbutnotzero.Intheuniformchargetransportmodel,wemakethischangezero,butfoundthatwewerenotabletoreproducetheobservedelectriceldswiththisrequirement.Wewillnowuseapenaltyapproachtokeepthisdifferencesmall,butnotzero.Asaresult,wearebetterabletottheobservedelectriceld.Inadditiontokeepingthechargechangesmallbetweenadjacentchannelsegments,wealsoincorporatethefollowingconstraints: (C1)Thetotalchargetransportisrestrainedsmalltomatchthephysicalsignicance. (C2)Inthenegativeregion,eachLMAsourceistreatedasachargelocationwithauniformchargeamplitude.ItcanbeenseenfromFigure 2)]TJ /F5 11.955 Tf 11.96 0 Td[(1 thattheLMAsourcesishighlybranchedinthenegativeregion.SincethereareasmallnumberofLMAsourcesassociatedwitheachbranch,wesimplytreateachLMAsourceinthenegativeregionasthelocationofasmallchannelsegment. (C3)Inthepositiveregion,aconstraintqi+1qiistakenintoaccountneartheendsofthechannelsduetodecreaseofthemodeledchargedensityalongthechannelpresentedbyMazurandRuhnke[1998].Withoutthisconstraint,thechargedensitycoulddroptononphysicalvalueof0severalkilometersfromtheendofthechannel.Whenthisconstraintisimposedontheentirechannel(insteadofjustattheendsofthechannel),weobtainedterrorsbetween2%and5%,whicharequitereasonable;however,therecoveredchargedensityexhibitedsomenonphysicalcharacteristics.Forexample,thechargedensitycanbecomecompletelyconstantonthechannelwithout 32
PAGE 33
anygrowthatallneartheendofthechannelwhereend-of-channelstreamersshouldeffectivelyyieldanincreasedchargedensity. Theleastsquaresproblemthatembodiesallourconstraintsisthefollowing: minimize3(EGmodeled)]TJ /F1 11.955 Tf 11.95 0 Td[(EGmeas)2+kEFmodeled)]TJ /F1 11.955 Tf 11.95 0 Td[(EFmeask2+p+Xiq2i+Xi2ch1pi(qi+1)]TJ /F3 11.955 Tf 11.96 0 Td[(qi)2+Xi2ch2pi(qi+1)]TJ /F3 11.955 Tf 11.95 0 Td[(qi)2+p)]TJ /F9 11.955 Tf 14.57 13.15 Td[(Xi2neg(qi)]TJ /F5 11.955 Tf 15.45 0 Td[(q)]TJ /F5 11.955 Tf 7.09 1.79 Td[()2subjecttoXi2ch1qi+Xi2ch2qi+Xi2negqi=0,qi0,i2ch1[ch2,qili,i2neg,qi+1qiforinearendsofchannels Here,EFisthevectorelectriceldattheightEsonde,EGistheverticalelectriceldatthegroundEsonde,andk.kistheEuclideannorm.Whenwecomparethemodeledandmeasuredelectriceld,weneedtogiveequalimportancetothegroundandtheballoonborneEsondes.Hence,weweightedtheleastsquaresdifferencebetweenthemodeledandmeasuredelectriceldatthegroundbyafactorof3.i2ch1referstothechargeplacedatthemidpointofsegmentsofchannel1andq)]TJ /F1 11.955 Tf 10.41 1.8 Td[(denotesthemeanvalueofchargeinnegativeregion.TheconstraintXi2ch1qi+Xi2ch2qi+Xi2negqi=0 isconservationofcharge. Sinceweonlydepositnegativechargeinpositiveregion,qi0fori2ch1[ch2.Thechargemovementinthenegativeregioniscomplicated,andwewillanalyzeitlaterinthissection.Letusrstassumethatnegativechargeisextractedfromthenegativeregionanddepositedinthepositiveregion,i.e.li=0andqi0fori2neg. Thetermpi(qi+1)]TJ /F3 11.955 Tf 12.82 0 Td[(qi)2onlyvanisheswhenqi+1=qi.Hence,thisterm,whichcreatesthesmoothnessinourmodel,keepsthechangeqi+1)]TJ /F3 11.955 Tf 12.56 0 Td[(qiinchargebetweenadjacentchannelsegmentssmall.Increasingpiforcesqiandqi+1toapproacheach 33
PAGE 34
other.SincetheelectriceldmeasuredbytheightEsondeisverysensitivetothechargeplacedonthenearbychannel,wewantqiconstantalongchannelsegmentsneartheEsonde.ThereissimplynotenoughinformationinthefourvaluesoftheelectriceldtodeterminemorethantheconstantchargedensityalongthechannelneartheightEsonde.ThisrequirementisenforcedbytakingpireallybigwhenqiisneartheEsonde. Theterm(qi)]TJ /F5 11.955 Tf 12.37 0 Td[(q)]TJ /F5 11.955 Tf 7.09 1.8 Td[()2onlyvanisheswhenqi=q)]TJ /F1 11.955 Tf 7.08 1.8 Td[(.SincewehavelimitedinformationconcerningtheoriginofthenegativechargeotherthantheLMAsourcebelow8kmaltitude,wepenalizethedeviationofthechargeremovalateachLMAsourcelocationfromthemean,i.e.chargeremovaliskeptrelativelyconstantateachLMAsourcelocationinthenegativeregion. Fromexperimentresult,thepenaltyparameterswerechosenasfollows: (P1)pi=1012whenqiisnearightEsonde (P2)pi=105whenqiisfarfromightEsonde (P3)p+=1012forchargedeposition (P4)p)]TJ /F5 11.955 Tf 10.41 1.8 Td[(=1012fordeviationofchargefrommeaninnegativeregion Here,weapplythelarge(P1)penaltyalongthe1.4kmofchannelsegmentstothewestandnorthoftheEsondeandalongthe4.9kmofchannelsegmentstotheeastandsourthoftheEsonde.Theoptimizationisrelativelyinsensitivetothepenaltyparameteraslongaswekeep(P1)muchlargerthantheotherpenalties.Notethat(P1)forchannelsegmentsneartheballoonmakesqicurveisessentiallyconstant. InTable 2)]TJ /F5 11.955 Tf 11.95 0 Td[(3 (Hageretal.[2013]Table3),wecomparethemeasuredelectriceldtothemodeledelectriceldattimet1andt2.Q1isthetotalchargeonchannel1andQ2isthetotalchargeonchannel2.Fromtheresult,itcanbeenseenthatthetbetweenmodeledandmeasuredelectriceldisalmostperfectatt1.However,therelativeerrorinthetincreasedfrom1%to7%attheinstantoftimet2.NotethattherelativeerroristhenormofthemodeledEminusthemeasuredEoverthenormofthemeasuredE. 34
PAGE 35
Table2-3. Smoothchargetransportmodel(l=0) t1=23:05:42.1UTt2=23:05:42.3UT MeasuredModeledMeasuredModeled EGz(kV/m)-6.8-6.7-7.2-6.9EFx(kV/m)20.420.429.930.0EFy(kV/m)35.035.041.142.3EFz(kV/m)-9.4-9.1-17.1-13.6Q1(C)-15.0-13.1Q2(C)-0.2-1.8 Thereseemstobeverylittlechargetransportonchannel2becauseQ2ismuchsmallerthanQ1.Infact,thechargedepositQ2onchannel2wasonchannelsegmentsveryclosetochannel1,i.e.thestartofthechannel2.Hence,thechargetransportanalysisimpliesthattherewasalmostnochargetransportalongchannel2,and-1.8CgiveninTable 2)]TJ /F5 11.955 Tf 11.95 0 Td[(3 att2actuallyrepresentschargedepositedonchannel1.Inourmodel,wecanforceallthechargetobedepositedonchannel1bysettingpi=1012wheni2ch2. FromTable 2)]TJ /F5 11.955 Tf 11.96 0 Td[(3 ,thetattimet2wasnotasgoodasthetattimet1.ThemainmismatchoccursatEFz.Wehavefoundthattheerrorbetweenthemodeledandthemeasuredeldscanberemovediftheconstraintqi0fori2negisrelaxedtoqiliforanegativenumber.Hageretal.[2013]presentedthatli=)]TJ /F5 11.955 Tf 9.3 0 Td[(0.06Cissufcient.Hence,chargetransportanalysisimpliesthatchargemovementinnegativeregioniscomplicated:duringtheinitialchargetransport,negativechargeisextractedfromthenegativeregionanddepositedinthepositiveregion,i.e.,li=0andqi0fori2neg;aftertheinitialchargetransport,thechargeisrearrangedinthenegativeregion,i.e.qi>0wherethenegativechargeisremovedandqi<0wherenegativechargeisdeposited. 35
PAGE 36
Theelectriceldchangeprovidesstrongevidenceofthechargerearrangementtakingplacebetweent1andt2intheregionlabeledNegativeinFigure 2)]TJ /F5 11.955 Tf 11.96 0 Td[(3 .Duringthistimeinterval,mostofthechangeintheelectriceldattheightEsondeoccurredinthexandzcomponentswiththezcomponentofEdecreasingandthexcomponentincreasing.ThedecreaseinEZcorrespondstonegativechargebeingplacedbeneaththeEsonde.Incontrast,negativechargeplacedattheendofchannel1increasesEzsincetheendofchannel1is2kmabovetheballoon.IfnegativechargeisplacedbeneaththeEsonde,thenweneedtorelaxtheconstraintqi0fori2negsincethisconstraintonlyallowsustoputpositivechargeintheregionbeneaththeEsonde. Wenowrepeatthechargetransportanalysiswithpi=1012fori2ch2andli=)]TJ /F5 11.955 Tf 9.3 0 Td[(0.06Cfori2negattimet2.Wealsoinvestigateelectriceldatanotherinstantoftimet0.ThetbetweenmodeledandmeasuredelectriceldisshowninTable 2)]TJ /F5 11.955 Tf 11.96 0 Td[(4 .Here,jQ)]TJ /F2 11.955 Tf 7.08 1.79 Td[(jisthemagnitudeofthetotalchargetransportinthenegativeregion.Itcanbeseenthattherelativeerrorisnomorethan1%atalltimes.jQ)]TJ /F2 11.955 Tf 7.09 1.79 Td[(j=Q1attimet0andt1.Attimet2,wehave jQ)]TJ /F2 11.955 Tf 7.09 1.79 Td[(j=Xi2negjqij=22.4C, whichisthesumofthechargetransportQ1=)]TJ /F5 11.955 Tf 9.3 0 Td[(15.6Cfromthenegativeregiontothepositiveregion,and-6.8Cthatdepositedtoadifferentlocationbeneath8kmaltitude. Itisnotedthatthechargetransportanalysisdidnotshowmeasurablechargetransportalongchannel2.Toexamineifthisobservationisstatisticallysignicant,wenowstudythesensitivityoftheelectriceldmeasurementstochargedepositiononchannel2.If1Cnegativechargeisplacedatthemidpointofchannel2,thenthechangeinelectriceldis4E=(69,859,98)V/mattheightEsondeand 4Ez=424V/matthegroundEsonde.ThesefournumbersshouldbeaddedtothefourmodeledeldsinTable 2-4 toobtainthetotalelectriceldcorresponding 36
PAGE 37
Table2-4. Smoothchargetransportmodel(l=)]TJ /F5 11.955 Tf 9.29 0 Td[(0.06fori2neg)att2 t0=23:05:42.023UTt1=23:05:42.1UTt2=23:05:42.3UT MeasuredModeledMeasuredModeledMeasuredModeled EGz(kV/m)-4.2-4.2-6.8-6.7-7.2-7.0EFx(kV/m)16.816.820.420.429.930.0EFy(kV/m)26.926.935.035.041.141.3EFz(kV/m)-7.4-7.6-9.4-9.1-17.1-16.4Q1(C)-9.7-15.4-15.6jQ)]TJ /F2 11.955 Tf 7.09 1.79 Td[(j(C)9.715.422.4 toanadditional1Cnegativechargeonchannel2alongwiththechargedepositiongeneratingTable 2-4 .Noticethatwhenthisnegativechargeisplacedonchannel2,allfourcomponentsofthemodeledelectriceldatt1moveawayfromthemeasuredelectricelds.Inparticular,if10,5,or2Cnegativechargewereplacedatthemidpointofchannel2,thenthecorrespondingrelativeerrorsinthemodeledelectriceldatthegroundEsondeare63%,33%,and14%respectively.Sincethetotalchargetransportwas22.4C,weconcludethatrelativelysmallamountsofchargeplacedonchannel2areeasilydetectedandhaveasignicantinputintheanalysis.Sinceanychargethatweputonchannel2seemstomovethemodeledeldsawayfromthemeasureddata,thedatadoesnotsupportmeasurablechargetransportonchannel2 Themodeledandmeasuredelectriceldfortheentiretime[t0,t2]isshowninFigure 2)]TJ /F5 11.955 Tf 11.95 0 Td[(5 (Hageretal.[2013]Figure8).Thelargesterrorisattimet2.TherelativeerroratthegroundEsondeandinthezcomponentofightEsondeareabout3%and4%respectively.TheerrorsinthexandycomponentofightEsondearelessthan1%. Thechargetransportalongchannel1asafunctionofdistancealongthechannelisshowninFigure 2)]TJ /F5 11.955 Tf 11.96 0 Td[(6 (Hageretal.[2013]Figure9),wherelinearchargedensityisinmC/m.Theleastsquarestyieldsthechargeatthemidpointofeach100mchannel 37
PAGE 38
A B Figure2-5. Comparisonbetweenmodeledandmeasuredelectricelds.A)ComparisonbetweenmodeledandmeasuredelectriceldsatightEsonde.B)ComparisonbetweenmodeledandmeasuredelectriceldsongroundEsonde. segment;thechargepermeteronthatchannelsegmentisobtainedbydividingby100.Analysisofthechargedensityonchannel1couldbefoundinHageretal.[2013].Neartheballoon,thelinearchargedensitywasabout)]TJ /F5 11.955 Tf 9.3 0 Td[(5.5mC/matt0,)]TJ /F5 11.955 Tf 9.3 0 Td[(0.69mC/matt1and)]TJ /F5 11.955 Tf 9.3 0 Td[(0.90mC/matt2,whicharelargerthan-0.36mC/mreportedbyWinnetal.[2011].Thedifferencemaybecausedbythechannellocation.Winnetal.[2011]used200mforthedistancebetweentheballoonandthelightningchannelwhile304misusedin 38
PAGE 39
ourassumption.Thusmorechargemustbeplacedonthechanneltotthemeasuredelectriceld. Figure2-6. Linearchargedensityonchannel1asafunctionofdistancealongthechannelatthreedifferenttimes. FromFigure 2)]TJ /F5 11.955 Tf 11.95 0 Td[(7 to 2)]TJ /F5 11.955 Tf 11.95 0 Td[(9 (Hageretal.[2013]Figure11),weplotthelocationsintheregionbeneaththe8kmaltitudewherenegativechargewasremovedordeposited.Theareaofeachcircleisproportionaltothechargemagnitude,andthecenterofeachcircleisanLMAsource.Thecircleislledifnegativechargewasremoved;oropenifnegativechargewasdeposited.Figure 2)]TJ /F5 11.955 Tf 11.96 0 Td[(7 andFigure 2)]TJ /F5 11.955 Tf 11.96 0 Td[(8 correspondtotimet0andt1,wherethereareonlyremovedcharge;Figure 2)]TJ /F5 11.955 Tf 11.95 0 Td[(9 correspondstotimet2,wheretherearebothremovedchargeanddepositedcharge. 39
PAGE 40
Figure2-7. Chargemovementinnegativeregionat23:05:42.023243UT.Theareaofeachcircleisproportionaltochargeamplitude.Thelledcirclerepresentwherenegativechargewasremovedandtheopencirclesrepresentwherenegativechargeisdeposited. Figure2-8. Chargemovementinnegativeregionat23:05:42.1UT. 40
PAGE 41
Figure2-9. Chargemovementinnegativeregionat23:05:42.3UT. 41
PAGE 42
CHAPTER3CHARGEREARRANGEMENTBYSPRITESOVERAMESOSCALECONVECTIVESYSTEM 3.1Overview ThestormproducingthespriteswasaMesoscaleConvectiveSystem(MCS-acomplexmediumscaleorganizedthunderstorm)situatedbetweennorthTexasandeastNewMexicoonJuly15th2010.Theterrainunderneaththestormwasrelativelyatwiththegroundelevationroughly1000m.Tenspritesoccurredintwoclustersbetween5:22UTand7:06UT.Therstsevenspritesoccurredbetween5:22UTand5:56UT,roughly1spriteevery5minutes,ontheeasternsideofthestormwithgroundelevationabout1100m.About45minuteslater,threemorespritesappearedtothewestoftheinitialspritesbetween6:41UTand7:06UTwithgroundelevationabout1300m.Figure 3)]TJ /F5 11.955 Tf 11.96 0 Td[(1 (Hageretal.[2012])showsthattheNEXRADlevelIIIcompositeradarreectivityat5:40UTand6:53UTrecordedbytheNationalWeatherServiceStationKFDX.Here,thelocationoftheNLDNlightningevent,either+CGreturnstrokeorcloudash,wassuperimposedoneachplot.TheseNLDNlightningeventswereassociatewithtensprites.Thenumbers(1to10)indicatetheorderinwhichthespritesoccurred,andalsocorrespondtothenumbersinTable 3)]TJ /F5 11.955 Tf 11.96 0 Td[(1 (Hageretal.[2012]Table2).ThelocationofLEFA2whichisusedinouranalysis,andLangmuirLaboratorywherethespriteswererecordedaremarkedonthegure. ThelightdatapresentedinthischapterwererecordedbyavideosysteminLangmuirLaboratory.ThesystemhastwohighspeedPhantom7camerasoperatingat12,500framespersecondandaWatecvideocameraoperatingat30framespersecondandaWatecvideocameraoperatingat30framespersecond.Thetimeresolutionofthehighspeedcameraswas80microseconds.Ourdataareobtainedfromcamera1,whichhadawidereldofview-roughly3.5Aby7.0A. ThechargetransportanalysisisbasedondatafromLEFA.Hageretal.[2012]presentedthedetailofLEFAcalibration.Horizontalmagneticelddatawererecorded 42
PAGE 43
A B Figure3-1. NationalWeatherServiceStationKFDXNEXRADlevelIIIcompositeradarreectivityonJuly15th2010atA)5:40UTandB)6:53UT.Eachspriteissuperimposedontheplot.A+signcorrespondstoa+CGreturnstokeandtheblackdotcorrespondstoacloudash.Thenumbersindicatetheorderinwhichthespriteoccurred.LEFA2andLangmuirLaboratoryarethewhitedots. 43
PAGE 44
byDukesultralowfrequency(ULF)andverylowfrequency(VLF)instrumentation.ThefrequencyrangefortheULFsystemis1to400Hz,whilethefrequencyrangefortheVLFsystemis50Hzto30kHz.ThesamplingfrequencyoftheULFsystemandVLFsystemsis2.5and100kHzrespectively.Accordingly,thetimingresolutionandaccuracyis400msfortheULFsystemand10msfortheVLFsystem.Thenoiseleveloftheinstrumentsisabout10pTRMS. 3.2DescriptionofDataSet LEFAstations2(LEFA2),LEFA5,andLEFA7wereoperationalduringthestormofJuly15th2010.OnlythesensitivechannelprovidedareliablemeasurementoftheverticalelectriceldchangebecausetheMCSwasfar(between300and500km)fromtheLEFAnetwork.Bycomparingthedatarecords,theamplitudeofthenoisewassmallestforLEFA2.Moreover,LEFA2wasthecloseststationstotheMCS,i.e.theamplitudeoftheelectriceldatLEFA2waslargest.Therefore,ouranalysisisbasedonthedataobtainedfromthesensitivechannelofLEFA2. Datafromthehighspeedcamera1andNLDNfortenspritesisgiveninTable 3)]TJ /F5 11.955 Tf 11.96 0 Td[(1 .Therstcolumndescribesthepredominantstructureofthesprite,eithercarrot,column,orastreamertipsplittingspriteasdiscussedbyMcHargetal.[2010].Sprite9wasnotclassiedsincethecameradidnotcatchthewholesprite.ThecolumnlabeledDelayisthedifferenceofthesourcetimebetweenthespriteanditsparentstrokegivenbyNLDN.ThecolumnlabeledLightSumgivesameasureoftherelativeintensityofthesprite.ThecolumnlabeledDischags.Beforegivesthenumberofdischargesinthe3secondsprecedingtheNLDNeventassociatedwithsprite.Columns9and10givethelat/lonoftheparentCGforeachsprite.ThelastcolumniCMC,denedbyCummerandLyons[2005],isbasedonananalysisoftheULFmagneticelds. 44
PAGE 45
Table3-1. Asummaryofthevideorecords(left)andcloselycorrelatedNLDNstrokerecords(right)forthesprites CameraNLDNDuke SpriteDelayLightCurTimeTriggerDischgs.iCMCTypeTime(UT)(ms)Sum(kA)(s)TypeLatLonDist.(km)Before(Ckm) 1Carrot05:22:01.7138092.12??6801.710146+CG34.3355-102.2054460313482.Carrot05:27:09.6964090.7790.478509.694066+CG34.2303-102.1123467326103.Carrot05:32:57.58216916.342.473357.564323+CG34.3625-102.3073450351184.Carrot05:37:59.5443293.314.815459.539386IC34.7223-101.9781485472075.Carrot05:45:14.49488966.621.562214.426730+CG34.2059-102.192646031??6.Carrot05:50:01.58472913.993.083101.569140IC34.4187-102.0331476181007.Column05:55:54.8116092.742.245254.807285+CG34.3785-102.0794471182268.Column06:41:36.0837691.000.327936.081595+CG34.0208-103.3953349173569.??07:00:31.8463290.37??4031.844769+CG34.0088-103.32473551840810.Split07:06:09.8099290.05??11209.808870+CG33.7988-103.930630120718 45
PAGE 46
Figure 3)]TJ /F5 11.955 Tf 11.95 0 Td[(2 (Hageretal.[2012]Figure4)showsaphotoofthesprite2takenbyWateccamera.Theboxshowstheeldofviewofthehighspeedcamera1. Figure3-2. AphotoofSprite2takenbytheWateccamera.Thespriteextendsbetween50and90kminaltitude.Therectangleshowstheeldofviewofthehighspeedcamera. 3.3ElectromagneticFieldDataandLightIntensity Startfromthissection,wewillfocusonsprite2,aspecialspritewithbroadhumpassociatedwithluminosityandmagneticeld.TheanalysisofotherspritescanbefoundinHageretal.[2012]. Theelectriceldforsprite2isshowninFigure 3)]TJ /F5 11.955 Tf 11.95 0 Td[(3 A(Hageretal.[2012]Figure7).ThezeropointonthetimeaxisrepresentsthetimeofthereturnstrokeasreportedbyNLDN.Theinitialsharppositivestepintheelectriceldisthe+CGreturnstroke.Theelectriceldforsprite2isdifferentfromthatoftheother9spritesinthefollowingaspect:Between4and8msafterthe+CGreturnstroke,thereisasignicanthumpintheelectriceldthatcloselycorrelateswithapeakintheluminousvolumeofthespriterecordedbyhighspeedvideo(Figure 3)]TJ /F5 11.955 Tf 11.95 0 Td[(3 B)andahumpinthemagneticeld(Figure 3)]TJ /F5 11.955 Tf 11.96 0 Td[(3 B).Inourstudy,wehaveexcellentconsistencybetweenallthree 46
PAGE 47
A B C Figure3-3. Measureddataforsprite2.A)Theelectricelddata,B)lightintensity,andC)azimuthalmagneticeldchangeversustimeforsprite2. 47
PAGE 48
distinctinstrumentsappliedtothesamesprite.Notethatonlyoneoutoftenspriteshasthishump. ThehumpwitnessedinallpanelsofFigure 3)]TJ /F5 11.955 Tf 11.95 0 Td[(3 willbeanalyzedinsection3.5.Wewilldemonstratethatmodelingaspriteasadownwardpropagatingverticalcurrentpulsereducingthepositivechargeintheionospherecanproducejustsuchahump.TheexplanationofthesignofthespritehumpcanbefoundinHageretal.[2012]. 3.4MathematicalModel ThemathematicalmodelforanalyzingthespritehumpisbasedontheexactsolutiontoMaxwell'sequationgivenbyUmanetal.[1975]foraverticalantennaonaperfectlyconductinggroundplane. 3.4.1SinglePerfectlyConductingPlaneCase ThegeometryconsideredinUmanetal.[1975]isshowninFigure 3)]TJ /F5 11.955 Tf 11.96 0 Td[(4 (Hageretal.[2012]Figure9).AverticalantennaofheightHisonaperfectlyconductinggroundplane.zaxisisperpendiculartothegroundplane.Thecurrentatanyheightisi(z,t)andi(z,t)=0fort0.Pistheobservationpoint.ThedistancefromPtothebaseoftheantennaisD.Umanetal.[1975]presentedthattheverticalelectricaleldE(t)attimetandobservationpointPonthegroundplanecanbeexpressed E(t)=1 2"0ZH0Zt02)]TJ /F5 11.955 Tf 11.96 0 Td[(3sin2 R(z)3i(z,)]TJ /F3 11.955 Tf 13.15 8.09 Td[(R(z) c)ddz+ZH02)]TJ /F5 11.955 Tf 11.95 0 Td[(3sin2(z) cR(z)2i(z,)]TJ /F3 11.955 Tf 11.95 0 Td[(R(z)=c)dz)]TJ /F9 11.955 Tf 11.29 16.27 Td[(ZH0sin2(z) c2R(z)@i(z,)]TJ /F3 11.955 Tf 11.95 0 Td[(R(z)=c) @tdz (3) wherei(z,t)=i(t)]TJ /F3 11.955 Tf 11.95 0 Td[(z=c),R(z)=p D2+z2andsin(z)=D R(z). Thethreetermsontherightsideofformula( 3 )aretheelectrostaticeld,theinductioneldandtheradiationeld.Formula( 3 )wasderivedbycombiningtheeldsassociatedwithadipolecurrentsourcewiththeeldassociatedwithan 48
PAGE 49
Figure3-4. AverticalantennaofheightHaboveaperfectlyconductinggroundplane. oppositecharged(image)dipolecurrentbeneaththeconductinggroundplane.Wenotethatimagechargetechniquesdevelopedfortheelectrostaticeldassociatedwithaconductingspheredonotextendtotimevaryingelectromagneticelds,sotheplanargeometryassociatedwithformula( 3 )isanimportantrequirement. 3.4.2DoublePerfectlyConductingPlanesCase Formula( 3 )includestheboundaryconditionassociatedwithaperfectlyconductinggroundplane.However,theboundaryconditionattheionosphere,whichisrelativelyhighlyconductive,isnottakenintoaccount.Weapproximatetheionosphereasaperfectlyconductingplane,andconsiderthetwoperfectlyconductingplanescase.SuchassumptioncanbeseeninFigure 3)]TJ /F5 11.955 Tf 11.96 0 Td[(5 (Hageretal.[2012]Figure10).Thetwoplanesareparalleltoeachotherwithz-axisperpendiculartothem.Thegroundconductingplaneisatz=0andtheionosphereconductingplaneatz=H.Theverticalantennatravelsfromz=z0toz=H.SupposethereisasmallcurrentdipoleSoflengthdzataltitudezontheantenna.ThesubterraneanimageofS,associatedwithgroundplane,isS1.ThedistantfromS1togroundplaneisz1=z.Applyingformula( 3 ),the 49
PAGE 50
totalelectriceldofSandS1atobservationpointPisE1(t)=ES1(t)+ES(t)=1 2"0ZHz0Zt02)]TJ /F5 11.955 Tf 11.95 0 Td[(3sin21 R1(z)3i(z,)]TJ /F3 11.955 Tf 13.15 8.08 Td[(R(z) c)ddz+ZHz02)]TJ /F5 11.955 Tf 11.96 -.01 Td[(3sin21(z) cR1(z)2i(z,)]TJ /F3 11.955 Tf 11.95 0 Td[(R(z)=c)dz)]TJ /F9 11.955 Tf 11.29 16.27 Td[(ZHz0sin21(z) c2R1(z)@i(z,)]TJ /F3 11.955 Tf 11.95 0 Td[(R(z)=c) @tdz whereR1(z)=p z21+D2isthedistancefromthedipoletotheobservationpoint,andtheassociateangleis1.sin1=D R1(z). Figure3-5. Averticalantennasuitedbetweentwoperfectlyconductingplanes. TheimageofS1aboutionosphereplaneisI2,andtheimageofI2aboutgroundplaneisS3.ThedistancefromS3togroundplanez3=2H+z.ReferringFigure 3)]TJ /F5 11.955 Tf 11.96 0 Td[(6 (Hageretal.[2012]Figure11)forthesequenceofimages.Wecanuseformula( 3 )tocalculatethetotalelectriceldofS2andI2atP: E3(t)=ES3(t)+EI2(t)=1 2"0ZHz0Zt02)]TJ /F5 11.955 Tf 11.95 0 Td[(3sin23 R3(z)3i(z,)]TJ /F3 11.955 Tf 13.15 8.09 Td[(R(z) c)ddz+ZHz02)]TJ /F5 11.955 Tf 11.96 0 Td[(3sin23(z) cR3(z)2i(z,)]TJ /F3 11.955 Tf 11.95 0 Td[(R(z)=c)dz)]TJ /F9 11.955 Tf 11.29 16.27 Td[(ZHz0sin23(z) c2R3(z)@i(z,)]TJ /F3 11.955 Tf 11.95 0 Td[(R(z)=c) @tdz whereR(z)3=p z23+D2andsin3=D R3(z). 50
PAGE 51
Figure3-6. Imagedipolesgeneratedbythesourcedipolecurrentataltitudez. Likewise,wehaveI4whichistheimageofS3aboutionosphereplane.TheimageofI4aboutgroundplaneisS5.Thus,wehaveaninnitepairofI2k)]TJ /F4 7.97 Tf 6.58 0 Td[(2andS2k)]TJ /F4 7.97 Tf 6.58 0 Td[(1,whereI2k)]TJ /F4 7.97 Tf 6.58 0 Td[(2istheimageofS2k)]TJ /F4 7.97 Tf 6.59 0 Td[(3aboutionosphereplaneandI2k)]TJ /F4 7.97 Tf 6.59 0 Td[(2istheionosphericimageofS2k)]TJ /F4 7.97 Tf 6.59 0 Td[(1.ThedistancefromS2k)]TJ /F4 7.97 Tf 6.59 0 Td[(1togroundplaneisz2k)]TJ /F4 7.97 Tf 6.59 0 Td[(1=2(k)]TJ /F5 11.955 Tf 12.19 0 Td[(1)H+z,k=2,3....Applyingformula( 3 ),thetotalelectriceldforonepairatPisEz2k)]TJ /F15 5.978 Tf 5.75 0 Td[(1(t)=ES2k)]TJ /F15 5.978 Tf 5.75 0 Td[(1(t)+EI2k)]TJ /F15 5.978 Tf 5.76 0 Td[(2(t)=1 2"0ZHz0Zt02)]TJ /F5 11.955 Tf 11.96 0 Td[(3sin22k)]TJ /F4 7.97 Tf 6.58 0 Td[(1 R2k)]TJ /F4 7.97 Tf 6.58 0 Td[(1(z)3i(z,)]TJ /F3 11.955 Tf 13.15 8.08 Td[(R(z) c)ddz+ZHz02)]TJ /F5 11.955 Tf 11.96 0 Td[(3sin22k)]TJ /F4 7.97 Tf 6.58 0 Td[(1(z) cR2k)]TJ /F4 7.97 Tf 6.59 0 Td[(1(z)2i(z,)]TJ /F3 11.955 Tf 11.95 0 Td[(R(z)=c)dz)]TJ /F9 11.955 Tf 11.3 16.27 Td[(ZHz0sin22k)]TJ /F4 7.97 Tf 6.59 0 Td[(1(z) c2R2k)]TJ /F4 7.97 Tf 6.58 0 Td[(1(z)@i(z,)]TJ /F3 11.955 Tf 11.95 0 Td[(R(z)=c) @tdz 51
PAGE 52
whereR2k)]TJ /F4 7.97 Tf 6.58 0 Td[(1(z)=q z22k)]TJ /F4 7.97 Tf 6.58 0 Td[(1+D2andsin=D R2k)]TJ /F15 5.978 Tf 5.76 0 Td[(1(z). Similarly,theimageofSaboutionosphereplaneisI1.TheimageofI1aboutgroundplaneisS2.Byusingformula( 3 ),thetotalelectriceldofS2andI1isE2(t)=ES2(t)+EI1(t)=1 2"0ZHz0Zt02)]TJ /F5 11.955 Tf 11.95 0 Td[(3sin22 R2(z)3i(z,)]TJ /F3 11.955 Tf 13.15 8.09 Td[(R(z) c)ddz+ZHz02)]TJ /F5 11.955 Tf 11.96 0 Td[(3sin22(z) cR2(z)2i(z,)]TJ /F3 11.955 Tf 11.95 0 Td[(R(z)=c)dz)]TJ /F9 11.955 Tf 11.29 16.27 Td[(ZHz0sin22(z) c2R2(z)@i(z,)]TJ /F3 11.955 Tf 11.95 0 Td[(R(z)=c) @tdz whereR2(z)=p z22+D2,sin2=D R3(z)andz3=2H)]TJ /F3 11.955 Tf 11.96 0 Td[(z. Also,wehaveaninnitepairwisepointsI2k+1andS2k+2,whereI2k+1istheimageofS2kaboutionosphereplaneandS2k+2isthesubterraneanimageofI2k+1.ThedistanceofS2k+2tothegroundisz2k+2=(2k+2)H)]TJ /F3 11.955 Tf 12.01 0 Td[(z,k=1,2....ThetotalelectriceldofI2k+1andS2k+2isE2k+2(t)=ES2k+2(t)+EI2k(t)=1 2"0ZHz0Zt02)]TJ /F5 11.955 Tf 11.95 0 Td[(3sin22k+2 R2k+2(z)3i(z,)]TJ /F3 11.955 Tf 13.15 8.09 Td[(R(z) c)ddz+ZHz02)]TJ /F5 11.955 Tf 11.96 0 Td[(3sin22k+2(z) cR2k+2(z)2i(z,)]TJ /F3 11.955 Tf 11.95 0 Td[(R(z)=c)dz)]TJ /F9 11.955 Tf 11.29 16.27 Td[(ZHz0sin22k+2(z) c2R2k+2(z)@i(z,)]TJ /F3 11.955 Tf 11.96 0 Td[(R(z)=c) @tdz Fromabove,thetotalelectriceldEattheobservationpointPis E(t)=1Xk=1Ek(t) (3) 52
PAGE 53
whereEk(t)=ESk(t)+EIk)]TJ /F15 5.978 Tf 5.76 0 Td[(1(t)=1 2"0ZHz0Zt02)]TJ /F5 11.955 Tf 11.95 0 Td[(3sin2k Rk(z)3i(z,)]TJ /F3 11.955 Tf 13.15 8.08 Td[(R(z) c)ddz+ZHz02)]TJ /F5 11.955 Tf 11.96 -.01 Td[(3sin2k(z) cRk(z)2i(z,)]TJ /F3 11.955 Tf 11.96 0 Td[(R(z)=c)dz)]TJ /F9 11.955 Tf 11.29 16.27 Td[(ZHz0sin2k(z) c2Rk(z)@i(z,)]TJ /F3 11.955 Tf 11.96 0 Td[(R(z)=c) @tdz,Rk(z)=p z2k+D2,sink=D Rk(z)andzk=8><>:kH)]TJ /F3 11.955 Tf 11.95 0 Td[(zifkisevenkH+z)]TJ /F3 11.955 Tf 11.95 0 Td[(Hifkisodd SinceE(t)=O(1 k2),E(t)isconvergent.E(t)satisestheboundaryconditionongroundplanebecauseeachpairaresymmetryaboutgroundplane.IfwerearrangethetermsofE(t)E(t)=(ES1(t)+ES(t))+(ES2(t)+EI1(t))...+(ESk(t)+EIk)]TJ /F15 5.978 Tf 5.75 0 Td[(1(t))+...=(ES(t)+EI1(t))+(ES1(t)+EI2(t))...+(ESk(t)+EIk+1(t))+... Becauseeachnewpairsatisestheboundaryconditiononionosphere(symmetryaboutionosphereplane),sodoestheentiresum.Thus,formula( 3 )satisesboundaryconditiononbothconductinggroundplaneandconductingionosphereplane. 3.4.3SphericalCaseApproximation Inpractice,theinniteseriesinformula( 3 )mustbeterminatedwhenkissufcientlylarge.InthissectionweanalyzeboththeatEarthapproximationusedinsection3.4.2andtheeffectoftruncatingthesuminformula( 3 ).First,wefocusonadoubleconductingsphericalcase:InFigure 3)]TJ /F5 11.955 Tf 11.96 0 Td[(7 (Hageretal.[2012]Figure13),wecomputetheelectriceldattheobservationpointP0duetoapointchargeQatlocationP.ChargepointPwithQchargeishabovethesphereS1.Thesecondconducting 53
PAGE 54
sphereS2surroundsthetheconductingsphereS1.TheimagechargeofPaboutS1isPwithchargeQ=)]TJ /F10 7.97 Tf 12.75 4.7 Td[(QR R+handdistanceR2 R+h,whereRistheradiusofS1.TheelectricofPandPatP0is E0=1 40[Q(P0)]TJ /F3 11.955 Tf 11.96 0 Td[(P) kP0)]TJ /F3 11.955 Tf 11.96 0 Td[(Pk3+Q(P0)]TJ /F5 11.955 Tf 13.24 2.66 Td[(P kP0)]TJ /F5 11.955 Tf 13.24 2.65 Td[(Pk3]. (3) ThedirectionoftheelectriceldisperpendiculartothesurfaceofS1. Figure3-7. Themethodofimagesforsphericalelectriceldresearch. PalsohasanimagechargePaboutS2andthetotalelectriceldofPandPatP0canbecalculatedbyusingformula( 3 ).ByusingthesamemethodwithSection3.4.2,thetotalelectriceldatP0isaninnitesequenceofformula( 3 ). SupposetheEarthisaperfectconductingsphereofradius6,371km,andtheionosphereistheperfectlyconductingsphericalshellofradius6,471km(100kmabovethesurfaceoftheEarth).Figure 3)]TJ /F5 11.955 Tf 11.95 0 Td[(8 (Hageretal.[2012]Figure14)plotstheelectriceldduetoa)]TJ /F5 11.955 Tf 9.3 0 Td[(100Cchargepointatanaltitudeof75km.ThehorizontalaxisisthecircledistancefromtheobservationpointtothechargelocationontheEarthandthe 54
PAGE 55
verticalaxisisthebase10logoftheelectriceld(V/m).Thesolidblackcurve,showingtheelectriceldasafunctionofdistancebyusing80imagepairs,iscorrectto16digits.Thebase10logofelectriceldisnearlyalinearfunctionofdistance.ThisimpliesthatEc10)]TJ /F13 7.97 Tf 6.58 0 Td[(D,whereistheslopeoftheline.Forasingleimagechargeinformula( 3 ),thedecayoftheelectriceldisproportionalto1/D3forP0nearP.The1/D3correspondstothesmallbendatthetopofthecurveinFigure 3)]TJ /F5 11.955 Tf 11.95 0 Td[(8 .ThecurveisessentiallylinearwithDisgreaterthan50km.Thistransitionfrom1/D3to10)]TJ /F13 7.97 Tf 6.59 0 Td[(Disduetotheinnitesequenceofimagechargesproducedbytheionosphere.Thereiscancelationintheseriescausingtheelectricelddecayexponentiallyinsteadof1/D3. Figure3-8. Thebase10logoftheelectriceldasafunctionofdistancefromanelectriceldmeterfora-100Cchargepoint75kmabovethesurfaceoftheEarth.ThesolidcurvecorrespondstoasphericalEarthandionosphere.ThedashedcurvescorrespondtoatEarthandionosphere,andeither50,200,800,or3200imagepairsintheapproximation. Next,supposetheEarthandionosphereareperfectlyconductingplanes.Formula( 3 )canstillbeusedtocalculatetheelectriceldbysubstituteQ=)]TJ /F3 11.955 Tf 9.3 0 Td[(QandPthe 55
PAGE 56
mirrorimageofPintheplane.InFigure 3)]TJ /F5 11.955 Tf 11.96 0 Td[(8 ,Thedashedcurvesareobtainedbyusing50,200,,800,3200imagepairs.FromFigure 3)]TJ /F5 11.955 Tf 11.96 0 Td[(8 ,itcanbeseenthattheelectriceldgottenfromplanemodelisveryclosetotheresultfromsphericalmodelwhenenoughpairsareused. Ifwevarythealtitudeofthecharge,similarplotscanbeobtainedwiththesameslope.Figure 3)]TJ /F5 11.955 Tf 11.95 0 Td[(9 (Hageretal.[2012]Figure15)plotsthebase10logoftheelectriceldforthesame-100Cchargeat3,10,and50kmaltitude.Byttingtheplotswithstraightlines,weobtainthattheverticalelectriceldonthesurfaceoftheEarthisgivenby E=)]TJ /F3 11.955 Tf 9.3 0 Td[(Qc(h)10)]TJ /F13 7.97 Tf 6.59 0 Td[(D,=(.0140930.000002)=km,c(h)=4Xi=0aihi, whereDisthegreatcircledistancefromthesensortothechargeinkilometers,histheheightofthechargeinkilometers,andthecoefcientsaiare: a0=4:84546e)]TJ /F5 11.955 Tf 11.96 0 Td[(3,a1=2:00712e)]TJ /F5 11.955 Tf 11.96 0 Td[(1,a2=2:32032e)]TJ /F5 11.955 Tf 11.96 0 Td[(4,a3=)]TJ /F5 11.955 Tf 9.3 0 Td[(4:53918e)]TJ /F5 11.955 Tf 11.96 0 Td[(5,a4=2:30095e)]TJ /F5 11.955 Tf 11.96 0 Td[(7. 3.5ChargeTransportAnalysis Wenowapplythemodeldevelopedinsection3.4.2tothehumpofsprite2.Accordingtotheconventionalbreakdowntheoryforsprites[Paskoetal.1997],thelightemittedbythespritecorrespondstoregionsoftheatmospherethatwereionizedbytheelectriceld.Totheextentthattheionizedchannelisanequipotential,itwillhaveapolarizationchargeoneitherend.Astheionizationspreadstoloweraltitudes,itlooks 56
PAGE 57
Figure3-9. Thebase10logoftheelectriceldasafunctionofdistancefromanelectriceldmeterfora-100CpointchargeplacedatdifferentaltitudesabovethesurfaceoftheEarth. likeadescendingpositivecurrent.Itisshownthattheelectriceldhumpcorrespondstothisionizationcurrentsincetheamplitudeofthehumpalmostexactlymatchesthelightintensityofthesprite. 3.5.1Assumptions Ourapplicationofthemodeldevelopedinsection3.4.2entailsthefollowingapproximations: 1.Theionosphereistreatedasaperfectconductor.Theconductivityoftheionosphereisabout10)]TJ /F4 7.97 Tf 6.58 0 Td[(7to10)]TJ /F5 11.955 Tf 7.08 -4.34 Td[(4siemens/m,whichismuchlargerthantheconductivityoftheair(3.010)]TJ /F4 7.97 Tf 6.59 0 Td[(15to10)]TJ /F2 11.955 Tf 7.08 -4.34 Td[()]TJ /F5 11.955 Tf 9.3 0 Td[(13siemens/m)nearthesurfaceoftheEarth[Pawaretal.2009;U.S.AirForce,1960]. 2.Thesurfaceoftheearthistreatedasaplane.Thedistancebetweentheequipmentandthespriteisabout442km.DuetothecurvatureoftheEarth,the 57
PAGE 58
equipmentdropsabout15kmbeneaththehorizon,whichhavealine-of-sightviewofthesprite.Moreover,Insection2.2.3,Itisindicatedthattheplanemodelisrelativelyaccuratebyincludingenoughimagescharges,. 3.Thecurrenttransportinthespriteisapproximatedbythatofaninnitelysmallwire.Thediameterofthespriteissmallrelativetothedistancebetweenequipmentandthesprite. 4.Thecurrentmaintainsthesameshapeasitpropagatesatconstantspeedonthewire.Thisisanapproximationthatallowsustocalculateaspeedandacurrentwaveform. 5.Conductioncurrentintheairabovethecloudisneglected.Sincethehumponlylastsforafewmilliseconds,thenegativechargetransportthatcanbeaccomplishedbyconductionisafractionofthenegativechargetransportpossibleonahighlyconductivelightningchannel. 3.5.2AnalysisfortheHumpofSprite2 TheelectricelddataofthehumpisplottedinFigure 3)]TJ /F5 11.955 Tf 11.96 0 Td[(10 (Hageretal.[2012]Figure16).Thelengthoftheintervalisabout3ms.ItbeginswhentheelectriceldreacheszeroinFigure 3)]TJ /F5 11.955 Tf 11.95 0 Td[(3 ,anditcontinuesuntiltheendofthehump,justbeforethelargeoscillationsthatoccurattheendofthespritecurrentpulse. Thevideoofthesprite2showsaninitialbroadglowextendingfrom70to85km.Latertheluminositywaveproceedsdownwardtoabout60km,thensuddenlybloomsinbothdirections,proceedingbackuptotheionosphereanddowntoabout50kminaltitude.[Paskoetal.1997]presentedthattheextentoftheluminositywaveindicatestheextentoftheionizedregion.Inouranalysis,wealsoassumethattheregionilluminatedbythespritecorrespondstotheregionwheretheatmosphereisionized. Byapplyingthemodeltothehump,weplacetheionosphereatanaltitude100kmaboveLEFA.Supposethespriteextendsfromz0=50km(thebottomofthesprite)up 58
PAGE 59
Figure3-10. Theelectriceldwhichcorrelateswiththelightforsprite2. totheionosphere(thetopofthesprite).Thecurrentiisatransmissionline(UmanandMcLain,[1969,1970]):i(z,t)=i(t+z v) wherezisthealtitudeandvisthevelocityofthedownwarddescendingcurrentpulse. Sincewedonotknowthecurrentpropagationvelocity,wetrieddifferentvelocitiestotthemeasuredelectriceld.Thevelocityofspritestreamersisintherange106)]TJ /F5 11.955 Tf 10.84 0 Td[(108m/s(Stanleyetal.[1999];Cummeretal.[2006]),i.e.0.003cto0.3c.Inourcase,theagreementwithmeasurementswasrelativelypoorwhenthevelocitieswentbelow0.1c.Onepossiblereasonisthatthecurrentwaveneedsatleastthismuchspeedtotraversethedistancefromtheionospheretothebottomofthespriteduringthetimeintervaloftheelectriceldhump.Hence,wefocusonvelocitiesofatleast0.1c.Resultsaregivenforthreevelocities0.25c,0.40cand0.55c.Thewidthofthecurrentpulseischosenso 59
PAGE 60
thatthecorrespondingelectriceldpulsedetectedbyLEFAhasthewidthseeninFigure 3)]TJ /F5 11.955 Tf 11.96 0 Td[(10 .Thecurrentpulseisapproximatedbyapiecewiselinearsplinewith20equallyspacedknots.Wecomputethecurrentithatresultsinthebestleastsquaresttothemeasureddataforeachcurrentpulsevelocity. ThebestttingcurrentpulseforthethreevelocitiesareshowninFigure 3)]TJ /F5 11.955 Tf 11.95 0 Td[(11 (Hageretal.[2012]Figure17).Theplotsdemonstratethecurrentattheionosphereasafunctionoftime.Weshift0.40cresultup20kAand0.25cresultup40kAtoavoidoverlapoftheplots.Forthetransmissionlinemodel,thecurrentatanyaltitudebetweenthebottomofthespriteandtheionospherewouldbethesameasthecurrentatthetopofthechannel,butdelayedbythetimeittakestothepulsetotraveltothataltitude. Figure3-11. Thespritecurrentatthetopofthespritechannelasafunctionoftime. InFigure 3)]TJ /F5 11.955 Tf 11.96 0 Td[(12 (Hageretal.[2012]Figure18),wecomparethemodeledelectriceldtothemeasuredelectriceldforthecurrentvelocity0.40c(currentvelocitiesof0.25cand0.55calsotthemeasuredelectriceldwithcomparableaccuracy).Thepeakcurrentforthecurrentpulsetravelingat0.55cis-17.7kA,whichislargerinmagnitudethanthe3.3kA,3.3kA,and1.6kAobtainedbyCummeretal.[1998]forthreedifferentsprites,butlessthanthe25kAobtainedforaspritebyCummer[2003].ThetechniquesusedtorecoveraspritecurrentweredevelopedinCummerandInan[2000],Lietal.[2008],andHuandCummer[2006].Intheirtechniques,acurrent 60
PAGE 61
momentiscomputedandthenfromthelengthofthechannel,acurrentisobtained.Ourtechnologydistinguishesitselffromtheirsbyprovidingthestartandtheendofthechannelalongwhichthecurrentpropagates. Figure3-12. Comparisonbetweenthemeasuredelectriceldandthemodeledelectriceldforthecurrentpulsetravelingat0.40c. InFigure 3)]TJ /F5 11.955 Tf 11.96 0 Td[(13 (Hageretal.[2012]Figure19),wedecomposethemodeledelectriceldintoelectrostaticeld,theinductioneldandtheradiationeldforthecurrentvelocity0.4c.Theradiationeldsdominatestheelectriceldatthebeginning.Astimeprogresses,theinductiontermbecomesmoresignicant.Theradiationeldchangesfastestwhiletheelectrostaticeldgrowsslowest.Theelectrostaticeldisthesmoothestcomponentoftheelectriceld. Byintegratingthecurrent,weobtainthetransportchargeforthethreevelocities(seeTable 3)]TJ /F5 11.955 Tf 11.96 0 Td[(2 ,Hageretal.[2012]Table3).Cummeretal.[1998]reportedthatthechargetransportfor3spritesare5C,6C,and42Cbyassuming50%ofthetotalchargetransportwenttothegroundand50%totheionosphere.Ouranalysisisbasedontheassumptionthatthechargetransportonlyfromtheionosphere. 61
PAGE 62
Figure3-13. TheelectriceldassociatedwithethecurrentpulseofFigure 3)]TJ /F5 11.955 Tf 11.95 0 Td[(11 traveling0.40cisdecomposedintoitsthreecomponents. Table3-2. Chargetransportforthesprite VelocityCharge(C) 0.25c-24.00.40c-23.90.55c-23.9 62
PAGE 63
CHAPTER4CONCLUSIONS AnICashonAugust24th2007wasanalyzedinChapter2.TheightEsondewasabout300mfromtheIClightningchannel,providingauniqueopportunityfortheanalysisoflightningchargetransport.Boththedipolemodelandtheuniformchargetransportmodelfailedtotthedata.Wepresentedanewsmoothchargetransportmodelallowinggreaterexibilityinchoosingthechargeamplitude.Inthepositiveregion,weplacednegativechargeatthemidpointsofsegmentsformingthelightningchannel.Inthenegativeregion,weplacedchargeatthelocationofLMAsources.Penaltieswereusedtocreateasmoothlyvaryingchargedensity.Withthisexibility,weobtainedaverygoodttothemeasuredelectriceldchangeshowninTable 2)]TJ /F5 11.955 Tf 11.96 0 Td[(4 .Thechargetransportanalysisshowedthefollowing:Afterthetransportwascomplete,about-1.8Cand-5.8Cwaslocatedatthebeginningandendofchannel1respectively;-8.0Cwasdistributedalongchannel1withalinearchargedensityofabout-0.9mC/m.Hence,relativetothe-15.6Cdepositedalongchannel1,37%wasdepositedneartheendofthechannel,11%wasdepositednearthebeginningofthechannel,and51%wasdistributedalongthechannel.Inthenegativeregion,outof-22.4Cthatwastransportedfromthenegativeregion,30%ofthechargewasmovedtoaloweraltitudebeneaththelightningchannel,while70%wasdepositedalongchannel1.Therewasnomeasurablechargetransportalongchannel2. AspritewithsignaturehumponJuly15th2010wasanalyzedinChapter3.Weshowedthatthehumpintheelectriceldthatfollowedthe+CGreturnstroke,couldbemodeledbyacurrentpulsethattraveledverticallythroughthevolumeilluminatedbythesprite.Weadaptedatransmissionlinemodelwhichhasbeenroutinelyappliedtolightningreturnstrokesandchangedtheboundaryconditionstoapplyittospritesbyincludingtwoconductingboundaries(ionosphereandground).Usingthetransmission 63
PAGE 64
linemodelandapulsevelocitybetween0.25cand0.55c,thechargetransporttotheionospherewasabout23.9C. 64
PAGE 65
APPENDIXACONVENTIONS PolarityConvention:Thesignconventionfortheelectriceldisthesameasthephysicsconvention,i.e.theeldvectorpointsinthesamedirectionoftheforceexertedonapositivetestcharge.Inourcase,positiveelectriceldpointsawayfromthesurfaceoftheearthforthemeasurementsoftheverticalelectriceld. CoordinateSystem:ThecoordinatessystemusedinChapter2isdenedasfollows:theoriginpointsitsatsealeveldirectlybelowapointnearNWcorneroftheannexbuildingofLangmuirLaboratory;x)]TJ /F1 11.955 Tf 9.3 0 Td[(axispointstotheeast;y)]TJ /F1 11.955 Tf 9.3 0 Td[(axispointsto(true)north,andz)]TJ /F1 11.955 Tf 9.3 0 Td[(axisverticallypointsawayfromthesurfaceoftheEarth. 65
PAGE 66
APPENDIXBDESCRIPTIONOFTHECALCULATIONOFV0 Inthisappendix,wegiveabriefdescriptionofhowtocalculateV0derivedfromsection2.5.Thedomainthatwediscretizedextendedfromthesurfaceoftheearthtotheionosphere(100kmabovethesurfaceoftheearth)andradiallyadistance100kmawayfromLangmuirLaboratoryalongthesurfaceoftheEarth.Weconsideredameshofsize298inthedirection,101inthedirection,and101inthedirection.NeartheLanmuirLaboratory,themeshelementshavesidesbetween20and50m,while100kmaway,thelargestsideofmeshelementsisaround4.5km.Wecomputedthepotentialatroughlythreemillion(298101101)pointsinthedomain.WeusedMETIS(KarypisandKumar[1998])toreorderthelinearsystemtoasymmetric,positivedenitelinearsystem.ThenCHOLMODpackage(DavisandHager[2009])wasusedtosolvethelinearequations(ReferringHageret.al[2013]formoredetail). 66
PAGE 67
REFERENCES Adlerman,E.J.,andE.R.Williams(1996),Seanonalvariationoftheglobal electricalcircuit,J.Geophys.Res.,101,29,679-29,288. Bell,T.F.,etal.(1996),Runawayelectronsasasourceofredspritesinthe mesosphere,Geophys.Res.Lett.,22,21272130. Boccippio,D.J.,etal.(1995)Sprites,ELFtransients,andpositivegroundstrokes, Science,269,10881091. Chiu,C.S.(1978),Numericalstudyofcloudelectricationinanaxisymmetric,time dependentcloudmodel,J.Geophys.Res.,83,5025-5049. Coleman,L.M.,etal.(2003),Effectsofchargeandelectromagnetic potentialonlightningpropagation,J.Geophys.Res.,108108(D9),4298, doi:10.1029/2002JD002718. Cummer,S.A.(2003),Currentmomentinsprite-producinglightning,J.Atmos. SolarTerr.Phys.,65,499508. Cummer,S.A.,andU.S.Inan(1997),Measurementofchargetransferin sprite-producinglightningusingELFradioatmospherics,Geophys.Res. Lett.,24,17311734. Cummer,S.A.,etal.(1998),ELFradiationproducedbyelectricalcurrentsin sprites,Geophys.Res.Lett.,25,12811284. Cummer,S.A.,andU.S.Inan(2000),ModelingELFradioatmospheric propagationandextractinglightningcurrentsfromELFobservations, RadioSci.,35,385394. Cummer,S.A.,andW.A.Lyons(2005),Implicationsoflightningcharge momentchangesforspriteinitiation,J.Geophys.Res.,33,L04104. doi:10.1029/2005GL024969. Cummer,S.A.,etal.(2006),Submillisecondimagingofspritedevelopmentand structure,J.Geophys.Res.,110,A04304,doi:10.1029/2004JA010812. Cummins,K.L.,etal.(1998),AcombinedTOA/MDFtechnologyupgradeof theU.S.NationalLightningDetectionNetwork,J.Geophys.Res.,103, 90359044. Davis,T.A.,andW.W.Hager(2009),DynamicsupernodesinsparseCholesky update/downdateandtriangularsolves,ACMTrans.Math.Softw.,35. Franz,R.C.,etal.(1990),Televisionofalargeupwardelectricaldischargeabove athunderstormsystem,Science,249,4851. 67
PAGE 68
Few,A.A.(1970),Lightningchannelreconstructionfromthundermeasurements, J.Geophys.Res.,75,75177523. Hager,W.W.(1989),Updatingtheinverseofamatrix,SIAMRev,31,221. Hager,W.W.,etal.(1989),Theevolutionanddischargeofelectriceldswithina thunderstorm,J.Comput.Phys.,82,193-217 Hager,W.W.,etal.(2007),Analysisofchargetransportduringlightningusing balloonborneelectriceldsensorsandLMA,J.Geophys.Res.,112, D18204,doi:10.1029/2006JD008187. Hager,W.W.,etal.(2010),Threedimensionalchargestructureofamountain thunderstorm,J.Geophys.Res.,115,D12119,doi:10.1029/2009jd013241. Hager,W.W.,etal.(2012),Chargerearrangementbyspritesoveranorth Texasmesoscaleconvectivesystem,J.Geophys.Res.,117,D22101, doi.10.1029/2012JD018309. Hager,W.W.,andW.Feng(2013),ChargeRearrangementDeducedfromNearby ElectricFieldMeasurementsofanIntracloudFlashwithK-Changes,J.Geophys.Res.,118,doi.10.1002/jgrd.50782 Helsdon,J.H.,Jr.,(1980),ChargeChaffseedingeffectsinadynamical-electrical cloudmodel,J.Appl.Meteor.,,19,1101-1125 Hu,W.,andS.A.Cummer(2006),AnFDTDmodelforlowandhighaltitude lightning-generatedEMelds,IEEETrans.AntennasPropag.,54(5), 1513)]TJ /F1 11.955 Tf 9.3 0 Td[(1522. Jacobson,E.A.,andE.P.Krider(1976),Electrostaticeldchangesproducedby Floridalightning,J.Atmos.Sci.,33,103117. Karypis,G.,andV.Kumar(1998),AAfastandhighqualitymultilevelschemefor partitioningirregulargraphs,SIAMJ.Sci.Comput.,20,359392. Klemp,J.B.,andR.B.Wilhelmson(1978),Thesimulationofthree-dimensional convectivestormdynamics,J.Atmos.Sci.,35,1070-1096 Koshak,W.J.,andE.P.Krider(1989),Analysisoflightningeldchangesduring activeFloridathunderstorms,J.Geophys.Res.,94,11651186. Koshak,W.J.,andE.P.Krider(1994),Alinearmethodforanalyzinglightningeld changes,J.Atmos.Sci.,51,473488. Krehbiel,P.R.(1981),Ananalysisoftheelectriceldchangeproduced bylightning,Ph.D.thesis,Univ.ofManchesterInst.ofScie.andTechnol., Manchester,England. 68
PAGE 69
Krehbiel,P.R.(1986),Theelectricalstructureofthunderstorms,inTheEarths ElectricalEnvironment,,pp.90113,NationalAcademyPress, Washington,D.C. Krehbiel,P.R.,etal.(1979)Ananalysisofthechargestructureoflightning dischargestoground,J.Geophys.Res.,84,24322456. Li,J.,etal.(2008),Coordinatedanalysisofdelayedspriteswithhigh-speed imagesandremoteelectromagneticelds,J.Geophys.Res.,113,D20206, doi:10.1029/2008JD010008. Liu,X.,andP.R.Krehbiel(1985)Theinitialstreamerofintracloudlightning ashes,J.Geophys.Res.,90,62116218. Lu,G.,etal.(2011),Chargetransferduringintracloudlightningfrom atime-dependentmultidipolemodel,,J.Geophys.Res.,116,D03209, doi:10.1029/2010JD014495. Marshall,T.C.,andW.D.Rust(1991),Electriceldsoundingsthrough thunderstorms,J.Geophys.Res.,96,22,29722,306. Marshall,T.C.,andW.D.Rust(1993),Twotypesofverticalelectricalstructures instratiformprecipitationregionsofmesoscaleconvectivesystems,Bull.Am. Meteorol.Soc.,74,21592170. Mazur,V.,andL.H.Ruhnke(1998),Modelofelectricchargesinthunderstorms andassociatedlightning,J.Geophys.Res.,103,23,299-23,308 McHarg,M.G.,etal.(2010),Streamertipsplittinginsprites,J.Geophys.Res., 115,A00E53,doi:10.1029/2009JA014850. Murphy,M.J.,etal.(1996),LightningchargeanalysesinsmallConvectionand PrecipitationElectrication(CaPE)experimentstorms,J.Geophys.Res.,101, 29,61529,626. Nisbet,J.S.(1983),Adynamicmodelofthundercloudelectricelds, J.Atmos.Sci.40:2855-73. Pasko,V.P.,etal(1997)Spritesproducedbyquasi-electrostaticheatingand ionizationinthelowerionosphere,J.Geophys.Res.,102,45294561. Pawar,S.D.,etal(2009),Effectofrelativehumidityandsealevelpressureon electricalconductivityofairoverIndianOcean,J.Geophys.Res.,114, D02205,doi:10.1029/2007JD009716. Proctor,D.E.(1981),VHFradiopicturesofcloudashes,J.Geophys.Res.,86, 40414071. 69
PAGE 70
Proctor,D.E.(1997),Lightningasheswithhighorigins,J.Geophys.Res.,102, 16931706. Rakov,V.A.,andM.A.Uman(2003),Lightning,PhysicsandEffects,Cambridge Univ.Press,Cambridge,U.K. Rison,W.,etal.(1999),AGPS-basedthree-dimensionallightningmapping system:InitialobservationsincentralNewMexico,Geophys.Res.Lett.,26, 3573-3576. Rison,W.,etal.(2003),NewMexicoTechLightningMappingArray:Real-Time SystemMonitoringandDataDisplay,AmericanGeophysicalUnion,Fall Meeting2003,abstractAE22A-1108 Simpson,G.C.,andG.D.Robinson(1941)Thedistributionofelectricityin thunderclouds,II,,,Proc.R.Soc.,Ser.A,,177,281329. Simpson,G.C.,andF.J.Scrase(1937)Thedistributionofelectricityin thunderclouds,Proc.R.Soc.,Ser.A,161,309352. Sonnenfeld,R.G.,etal.(2006),ComparingEeldchangesalofttolightning mappingdata,J.Geophys.Res.,111,D20209,doi:10.1029/2006JD007242. StanleyM,etal.(1999),Highspeedvideoofinitialspritedevelopment,Geophys. Res.Lett.,26,32013204.doi:10.1029/1999GL010673 Stanley,M.,etal.(2000),DetectionofdaytimespritesviaauniquespriteELF signature,Geophys.Res.Lett.,27(6),871874,doi:10.1029/1999GL010769. Stolzenburg,M.,andT.C.Marshall(1994),Testingmodelsofthunderstorm chargedistributionswithCoulombslaw,J.Geophys.Res.,99,25,92125,932. Stolzenburg,etal.(1994),Horizontaldistributionofelectricalandmeteorological conditionsacrossthestratiformregionofamesoscaleconvectivesystem, Mon.Wea.Rev.,122,17771797,MWRSpecialIssue. Stolzenburg,M.,etal.(1998a),Electricalstructureinthunderstormconvective regions2.Isolatedstorms,J.Geophys.Res.,103,14,07914,096. Stolzenburg,M.,etal.(1998b),Electricalstructureinthunderstormconvective regions3.Synthesis,J.Geophys.Res.,103,14,09714,108. Stolzenburg,M.,etal.(1998c),Electricalstructureinthunderstormconvective regions1.Mesoscaleconvectivesystems,J.Geophys.Res.,103, 14,05914,078. Stolzenburg,M.,etal.(2001),Serialsoundingsofelectriceldthrougha mesoscaleconvectivesystem,J.Geophys,Res.,106(D12),12,37112,380. 70
PAGE 71
Stolzenburg,M.,etal.(2002),Twosimultaneouschargestructures inthunderstormconvection,J.Geophys.Res.,107(D18),4352, doi:10.1029/2001JD000904. Thomas,R.J.,etal.(2001),ObservationsofVHFsourcepowersradiatedby lightning,,Geophys.Res.Lett.,28,143146. Thomas,R.J.,etal.(2004),Accuracyofthelightningmappingarray, J.Geophys.Res.,109,D14207,doi:10.1029/2004JD004549. Uman,M.A.,andD.K.McLain.(1969),Magneticeldofthelightningreturn stroke,Am.J.Phys.,74,6899-6910. Uman,M.A.,andD.K.McLain.(1970),Radiationeldandcurrentofthelightning steppedleader,J.Geophys.Res.,75,1058-1066. Uman,M.A.,etal.(1975),Theelectromagneticradiationfromaniteantenna, Am.J.Phys.,43,33-38 U.S.AirForce(1960),HandbookofGeophysics,MacMillam,NewYork. Weber,M.E.,etal.(1982),Athundercloudelectriceldsounding:Charge distributionandlightning,J.Geophys.Res.,87,71587169. Wilson,C.T.R.(1916),Onsomedeterminationsofthesignandmagnitudeof electricdischargesinlightningashes,Proc.R.Soc.Ser.A,92,555574. Wilson,C.T.R.(1920),III.Investigationsonlightningdischargesandonthe electriceldofthunderstorms,Phil.Trans.R.Soc.,Ser.A,221,73115. Wilson,C.T.R.(1925)Theelectriceldofathundercloudandsomeofitseffects, Proc.R.Soc.,Ser.D,37,3237. Winn,W.P.,etal.(2011),Lightningleaderstepping,Kchanges,andother observationsnearanintracloudash,J.Geophys.Res.,116,D23115, doi:10.1029/2011JD015998. Workman,E.J.,andR.E.Holzer(1939),Quantitiesofchargetransfersin lightningdischarges,JPhys.Rev.,55,598. Ziv,A.,andZ.Levin(1974),Thundercloudelectrication:Cloudgrowthand electricaldevelopment,J.Atmos.Sci.,31,1652-1661. 71
PAGE 72
BIOGRAPHICALSKETCH WeiFengwasbornininJiamusi,China.ShewasawardedaBachelorofSciencedegreeinappliedmathematicsin2006fromUniversityofScienceandTechnologyofChina.Aftergraduation,WeistartedhergraduatestudyinmathematicsattheUniversityofFlorida,fromwhichshereceivedherPh.D.inmathematicsin2013. 72
|