PAGE 1
DYNAMICSANDNONLINEARCONTROLOFELECTROMAGNETICDOCKING/ASSEMBLYANDPROXIMITYOPERATIONSByKEHUOATHESISPRESENTEDTOTHEGRADUATESCHOOLOFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOFMASTEROFSCIENCEUNIVERSITYOFFLORIDA2012
PAGE 2
c2012KeHuo 2
PAGE 3
Tomyparents 3
PAGE 4
ACKNOWLEDGMENTS Iwouldliketakethetimetopubliclyacknowledgeandthank:committeemembers,Dr.Wiens,CarlD.CraneandPrabirBarooah,forallthefeedbacksonmythesis,professorsfromclass,WarrenDixonandNormanG.Fitz-Coy,forlecturinggreatonnonlinearcontrolanddynamicsrespectively.IalsowanttothankYimingXu,KarlBrandt,YilunLiu,PaulMoore,forthegreatsupports.Ofcourse,anotherpersonIshouldthankismygirlfriendwhohasn'tbeenappearingforlasttwoyears.AdditionallythanksgoouttoallthehelpIhavereceivedinwriting. 4
PAGE 5
TABLEOFCONTENTS page ACKNOWLEDGMENTS .................................. 4 LISTOFTABLES ...................................... 7 LISTOFFIGURES ..................................... 8 LISTOFSYMBOLS .................................... 10 ABSTRACT ......................................... 13 CHAPTER 1INTRODUCTION ................................... 15 1.1Motivation .................................... 15 1.2PreviousRelativeWork ............................ 16 1.3OverviewoftheResearchandThesis .................... 18 2MODELLINGTHEELECTROMAGNETICFORCESADCTORQUES ..... 20 2.1Overview .................................... 20 2.2DerivationoftheExactModel ......................... 20 2.2.1MagneticField ............................. 20 2.2.2ForceandTorque ............................ 23 2.3Far-FieldModelofElectromagneticForceandTorque ........... 24 2.3.1DerivationofFar-FieldModel ..................... 24 2.3.22Dimensional(2-D)CoplanarCase ................. 28 2.3.3Co-AxialTwistCase .......................... 30 2.3.43Dimensional(3-D)Representation ................. 32 2.3.5DipoleLinearSuperposition ...................... 35 2.4ModelEvaluation ................................ 36 3DYNAMICMODELS ................................. 38 3.1Overview .................................... 38 3.2SystemDescription .............................. 38 3.2.1GeometryofDifferentCoordinateSystem .............. 38 3.2.2DockingStrategy ............................ 42 3.3BasicDynamicFundamentalEquations ................... 43 3.4DynamicsforSpecicSteps .......................... 43 3.4.1Step1.A ................................. 43 3.4.1.1Translationaldynamics ................... 44 3.4.1.2Rotationaldynamics ..................... 47 3.4.2Step1.B ................................. 49 3.4.2.1Translationaldynamics ................... 50 5
PAGE 6
3.4.2.2Rotationaldynamics ..................... 51 3.4.3Step1.C ................................. 52 3.4.3.1Translationaldynamics ................... 53 3.4.3.2Rotationaldynamics ..................... 53 3.4.4Step2 .................................. 54 4CONTROLLAWSANDSIMULATIONRESULTS ................. 56 4.1Overview .................................... 56 4.2ControlStrategy ................................ 56 4.3ControllerDesignforEachStep ........................ 58 4.3.1ControllerforStep1.A ......................... 61 4.3.1.1Step1.A.0controlofdand ................ 62 4.3.1.2Step1.A.1controldand ................. 65 4.3.2ControllerforStep1.B ......................... 65 4.3.2.1Step1.B.0controldand ................. 66 4.3.2.2Step1.B.1controldand ................. 66 4.3.3ControllerforStep1.C ......................... 67 4.3.4ControllerforStep2 .......................... 68 4.4AssumptionsforSimulationParameters ................... 68 4.5SimulationandResult ............................. 70 4.5.1SeparateSimulationResultforEachController ........... 70 4.5.1.1SimulationforStep1.A.0 .................. 70 4.5.1.2SimulationforStep1.A.1 .................. 73 4.5.1.3SimulationforStep1.C ................... 74 4.5.1.4SimulationforStep2 .................... 76 4.5.2CompleteSimulation .......................... 76 5THELOWEARTHORBITCHALLENGES ..................... 82 5.1Overview .................................... 82 5.2GravitationalField ............................... 82 5.3GeomagneticField ............................... 85 6CONCLUSION .................................... 88 6.1SummaryoftheThesis ............................ 88 6.2FutureWork ................................... 89 APPENDIX AMATRIXNORM .................................... 90 REFERENCES ....................................... 91 BIOGRAPHICALSKETCH ................................ 93 6
PAGE 7
LISTOFTABLES Table page 4-1InitialconditionforsimulationofStep1.A.0 .................... 72 4-2InitialconditionsforsimulationofStep1.A.1 .................... 73 4-3InitialconditionsforsimulationofStep1.C ..................... 75 4-4Initialconditionsforcompletesimulation ...................... 78 4-5Completesimulationresult ............................. 79 7
PAGE 8
LISTOFFIGURES Figure page 1-1MagneticactuatorcongurationinaCubeSat. .................. 16 1-2Electromagneticformationightvehicle. ...................... 17 1-3Electromagneticdockingstrategy. ......................... 18 2-1Aloopofcurrent. ................................... 22 2-2Twoloopsofcurrent. ................................. 23 2-32dimensional(2-D)coplanarcoils. ......................... 29 2-4Alignedconguration. ................................ 30 2-5Torquesvarywithangles. .............................. 31 2-6Intersectinglinesforcontrollostfortorques. .................... 31 2-7Co-axialtwistcase. ................................. 32 2-8Euleranglerepresentation. ............................. 33 2-9Linearsuperposition. ................................. 35 2-10Comparingthefar-eldforcemodelagainsttheexactmodel. .......... 36 2-11Comparingthefar-eldtorquemodelagainsttheexactmodel. ......... 36 3-1Geometryofdifferentcoordinatesystem. ..................... 39 3-2Denitionofrotatedreferencecoordinatesystem. ................. 40 3-3Relationshipbetweenbodyxedframeandrotatedreferenceframe. ...... 41 3-4SubdivisionforStep1. ................................ 42 3-53dimensional(3-D)illustrationforStep1.A. .................... 44 3-6FrontviewofStep1.A. ................................ 45 3-73-DillustrationforStep1.B. ............................. 50 3-8FrontviewofStep1.B. ................................ 50 3-93-DillustrationforStep1.C. ............................. 52 3-10FrontviewofStep1.C. ................................ 53 3-113-DillustrationforStep2. .............................. 54 8
PAGE 9
4-1Repeatelectromagneticdockingstrategy. ..................... 57 4-2Roughdockingmechanism:foldabledockingMechanism ............ 58 4-3Controlowchartpart1. .............................. 59 4-4Controlowchartpart2. .............................. 60 4-5Controldiagram. ................................... 61 4-6Simulationresultforinitialcondition1. ....................... 71 4-7Simulationresultforinitialcondition2. ....................... 71 4-8Simulationresultforinitialcondition3. ....................... 72 4-9SimulationresultforStep1.A.1ininitialcondition1. ............... 74 4-10SimulationresultforStep1.A.1ininitialcondition2. ............... 75 4-11SimulationforStep1.Cininitialcondition1withsaturation. ........... 76 4-12SimulationforStep1.Cininitialcondition2withsaturation. ........... 77 4-13SimulationresultforStep2. ............................. 77 4-14Completesimulationforinitialcondition1:signal. ................. 79 4-15Completesimulationforinitialcondition1:magneticmoment. .......... 80 4-16Completesimulationforinitialcondition2:signal. ................. 80 4-17Completesimulationforinitialcondition2:magneticmoment. .......... 81 5-1A2-Dcaseconcernsorbitaldynamics. ....................... 83 5-2Asimple2-Dcaseconcernsgeomagneticeld. .................. 86 9
PAGE 10
LISTOFSYMBOLS ATheareaenclosedbyacoilloopA VectorpotentialB Magneticeldwithunitoftesla(symbolT)E ElectriceldwithunitofV/mF ForceF exExternalforceFAReferenceframexedonfoilAF AReactionforceoncurrentloopAFITheinterialreferenceframeFoTheorbitreferenceframeFRRotatedreferenceframeH AoAngularmomentumofbodyAaboutpointoiCurrentthroughacoilJ CurrentdensityvectorwithunitofA/mJ dDisplacementcurrentdensityvectorl LinesegmentofthecoilL1Thespaceofboundedsequences MagneticdipolemomentmMassmAMassofbodyA 10
PAGE 11
0Permeabilityoffreespaceconstant,410)]TJ /F8 7.97 Tf 6.58 0 Td[(6N/A)]TJ /F8 7.97 Tf 6.58 0 Td[(2NNumberofturnsinacoil^n TheunitvectoralongaxisofcoillooprGradientoperatorr Divergencer Curl! AngularvelocityC! A=BAngularvelocityofbodyAwithrespecttoFrameBexpressedinFrameCP ALinearmomentumofbodyATheratioofacircle'scircumferencetoitsdiameterR(x,)PrincipalrotationmatrixofangleaboutxaxisR(y,)PrincipalrotationmatrixofangleaboutyaxisR(z, )Principalrotationmatrixofangle aboutzaxisRA=BRotationmatrixfromFrameAtoFrameB Torqueaboutthecenterofaloop ATorqueaboutthecenterofaloopA exExternaltorqueUPotentialenergyuControlinputsignalu Controlinputsignalvector 11
PAGE 12
VLLyapunovcandidatefunction^x Unitvectoralongxaxis^y Unitvectoralongyaxis^z Unitvectoralongzaxis 12
PAGE 13
AbstractofThesisPresentedtotheGraduateSchooloftheUniversityofFloridainPartialFulllmentoftheRequirementsfortheDegreeofMasterofScienceDYNAMICSANDNONLINEARCONTROLOFELECTROMAGNETICDOCKING/ASSEMBLYANDPROXIMITYOPERATIONSByKeHuoAugust2012Chair:GloriaJ.WiensMajor:AerospaceEngineeringTheuseofelectromagneticactuatorsinattitudecontrolsystemhasbeenconsideredasaneffectiveandreliableapproachforlowEarthorbit(LEO)satellites.OnerecentapplicationisElectromagneticFormationFlight(EMFF)whichcontrolstherelativetranslationaldegreesoffreedombetweensatellites.Comparedtotheuseoftraditionalthrusters,usinganelectromagneticforceandtorqueinmulti-spacecraftsmissionshassomedistinctadvantages,suchasnopropellantconsumptionandplumecontamination,aswellascontinuouscontrollability.Theadvantagesofelectromagnetshowevercomeatthecostofhighlynonlinearandcoupleddynamics.ExtendingtheEMFFapproachtorendezvousanddocking,thispaperfocusesonprovidingsmallsatellitesadockingcapabilityinbothaxialandcircumferentialdirectionsthroughtheuseoftwosetsofelectromagneticcoils.Forimplementation,anovelcontrolstrategyisalsopresented.Therstproblemwhichneedstobesolvedisthemodelofelectromagneticeldandgeneratedforceandtorquebetweentwoelectromagneticcoils.Theforceandtorquearenotonlyfunctionallyrelatedtothecharacteristicsofthecoilsbutarealsodependentontherelativepositionandattitudeofthetwosatellitesinproximityofoneanother.Bothanumericallyexactmodelandananalyticfar-eldmodelhavebeenbuiltandcomparedinthispaper.Thisthesisprovidesacapableelectromagneticdockingstrategyfortwosatellites.Eachofthesatellitesinelectromagneticdockingsystemisequippedwithreaction 13
PAGE 14
wheelsandasetofthreeorthogonalcurrentdrivencoils.Withtheassistanceofreactionwheels,decouplingthe3-dimensionaldockingproblemtoseveralstepsofprincipalbasiccasesprovidesfulldockingcapabilitiesofthesmallsatellites.Dynamicsanalysisandnonlinearcontrollerdesignhavebeendeveloped.Aswell,anoverallcontrolstrategyandacompletesimulationhavebeendemonstrated.Powerconsumptionanddisturbancesduetobothgravityandtheearthmagneticeldareconsideredinanon-orbitscenario. 14
PAGE 15
CHAPTER1INTRODUCTION 1.1MotivationIngeneral,autonomousrendezvousanddockingtechnologyincludestwospacecraftsstartingataremotedistance,comingtogetherintoacommonorbit,rendezvous,dockingandcontrolofthenewcombinedspacecraft[ 19 ].Traditionaluseofthistechnologycontainsspaceexplorationandsupplyandrepairofvehicles[ 11 ].Moreover,therehasbeenatendencyinrecentyearstodevelopaspacecraftmodulararchitecturedesignconcept[ 14 ].Thisconceptexpandsapplicationandneedsofthedockingtechnologymorewidely.Proximityoperationsanddockingarecriticalphasesofarendezvousanddockingmissionduetobothtranslationalandrotationalmaneuversarerequired.Somecriticalissuesduetouseoftraditionalmaneuveringtechniques,suchasathrusterbasedpropellantsystem,arepronetoplumeimpingementandthepossibilityofcollisioncausedbythediscontinuouspropulsion[ 19 ].Inspiredbyacommondailyphenomenonthattwomagnetscanadjusttherelativepositionandattitude,andthenachieveself-docking,theideaofintroducingelectromagneticforceandtorqueintodocking/assemblyandproximityoperationsistheapproachofinterestinthisthesis.Comparedtotheuseofthrusters,usinganelectromagneticforceandtorquehassomedistinctadvantages,suchasnopropellantconsumptionandplumecontamination,aswellascontinuouscontrollability.Theadvantagesofelectromagnetshowevercomeatthecostofhighlynonlinearandcoupleddynamics.Thisthesisstartsfromtheideaofelectromagneticdocking,providesacapablewaytoimplementthisideainascenariowithfairassumptions,demonstratesacompletedockingmissionsimulationinthisscenario. 15
PAGE 16
1.2PreviousRelativeWorkTheexploitationoftheuseofmagneticforceandtorqueinspacemissionscanberoughlycategorizedintothefollowingthreeareas:usingelectromagneticactuatorsproventobeaneffectiveandreliableattitudecontrolsystemforlowEarthorbit(LEO)satellites[ 16 ];theelectromagneticformationight(EMFF)controlstherelativetranslationaldegreesoffreedombetweensatellites[ 15 ];andelectromagneticdocking/assemblyconsideringbothtranslationalandrotationaldegreesoffreedom[ 22 23 ].Inthefollowingparagraphs,previousworkrelatedtothesethreetypesofapplicationsisintroduced.Theelectromagneticactuatorsinanattitudecontrolsystemoperateonthebasisofinteractionbetweenasetofthreeorthogonalcurrent-drivenmagneticcoilsandthegeomagneticeld.Thesecoilscanthereforegeneratecorrespondingtorques.Thesetorquescaneitherbeusedtodumpangularmomentum[ 2 ]ortoactivelycontrolattitude.First,themagneticcontrolsystemisdesignedforusewithsomestabilizationmethodsuchasspinningandbiasmomentum[ 17 ].Then,inmorerecentdecades,purelymagneticattitudecontrolhasbeenstudied.Duetothelowcost,exibleshaping,lowenergyconsuming,simplehardwarerequirementformoderateattitudecontrolofmagneticattitudecontrol,magneticactuatorsarepreferredinsmallsatellitesandmicro-satellites,asshowninFigure 1-1 [ 5 ]. Figure1-1. MagneticactuatorcongurationinaCubeSat. Theconceptofusingelectromagneticforcetoprovidetherelativepositioningcontrolforsatellitesformationighthavebeenresearchedbytwomaingroups:MIT 16
PAGE 17
SpaceSystemsLab[ 15 ],andtheUniversityofTokyo/ISAS[ 9 ].TheEMFFuseshightemperaturesuperconductingwiretechnologytogeneratetheelectromagneticforcetomaintainandrecongurethesatellitesformation[ 1 ].TheEMFFconcentratesontranslationaldegreesoffreedomcontrol.Itisassumedthatthetorqueandangularmomentumgeneratedduringtheoperationwillbeabsorbedbyreactionwheels[ 15 ]. Figure1-2. Electromagneticformationightvehicle. SpacecraftelectromagneticdockingtechnologyissimilartotheEMFFconception(Figure 1-2 ),yetthemaindifferencebetweenthesetwoinclude,bothtranslationalandrotationalcontrolhavetobeconcerned.Analogyofthedailymagnetsattractionphenomenontodockingproblemisstraightforward.Aconceptofself-dockingcapabilityofelectromagnetspresentsthatundersomespecicconstraintsforinitialconditions,therelativeposition/attitudeautomaticallydecreasingtozero,notconsideringthedockingvelocity[ 22 23 ].Then,reference[ 22 23 ]hasconstrainedthedockingproblemtosmallrelativeattitudeassumption.Aswell,therelativevelocityistheonlycontrolobjective.However,thelinearizationbasedonsmallrelativeattitudeandcoplanarassumptionmakesthispaperinsubstantialinsomedegree.Basedontheabove,thisthesisprovidesafeasiblewaytouseelectromagneticindocking/assemblyandproximityoperationforsmallsatellitesundersomefairassumptions.Notonlythetranslationalcontrolbutalsotherotationalcontrolduringthedockingprocesshasbeeninvestigated.DifferentfromEMFFconception,thetorquesgeneratedduetothemisalignmentofdipoleshavebeenconsideredasthetorquesourceforattitudeadjustment,insteadofbeencanceledbyreactionwheels. 17
PAGE 18
1.3OverviewoftheResearchandThesisElectromagneticdockinginthisthesisistheideaofusingsetsoforthogonalcurrentdrivencoils,coupledwithreactionwheels,toprovidetherelativepositionandattitudecontrolindockingmission.Noticethat,thereactionwheelsinthisthesisareusedonlyforstabilizingthesatellitewhenthedockingstrategyneeds,thetorquegeneratedbyelectromagneticcoilsprovidethecontrolofrelativeattitude.Thedockingstrategyisdesignedtoadjusttheattitudeandtrackadesireddistancetrajectorysimultaneously,thenmaintaintheadjustedrelativeattitudeandtrackadesiredapproachingtrajectory.Theattitudeadjustmenthasbeendecoupledtotwosteps,alignmentofthedominantringsandtwistadjustmentofcoilsperpendiculartothedominantcoilaboutthealignedco-axial.TheFigure 1-3 demonstratesthedockingstrategy. Figure1-3. Electromagneticdockingstrategy. Theelectromagneticdockinghaswideprospectsofapplicationsinthefuture: 18
PAGE 19
Orbitservicecouldbenetfromtheimprovementofcontinuouscontrollabilityandzeropropellantconsumption. Thinkingaboutaseriesofmodulesequippedwithelectromagneticdockingsystem,eachofthemhasapartialfunction.Bydockingtogethertheymighthaveabilitytocooperateasacompletefunctionalsatellite. Ifaconceptualyingspaceroboticsisdesignedtobemanipulatedbyasetofcoilsequippedonthemotherstation,thenthepropulsionsystemandattitudecontrolsystemofroboticscouldbediminished. Also,consideringself-assemblyarchitectureinthespace,byusingautonomouselectromagneticdockingtechnology,onlythemainbodyneedsfullattitudecontrolsystemandpropulsionsystem.Thestructureofthisthesisisdevelopedassuch:InChapter 2 ,exactmodelandfareldmodelofelectromagneticforceandtorquehasbeenpresentedandcompared.Thischapteristhebasisofderivationofdynamicsequations.InChapter 3 ,detailsofthesystemdescriptionhavebeendemonstrated,followedbytheoveralldockingstrategyintroduction.Dockingmissionhasbeendividedtoseveralstepsofprincipalbasiccases.Thedevelopmentofdynamicmodelsofprincipalbasiccasesconstitutesthemainbodyofthischapter.InChapter 4 ,controlstrategyandcontrollerdesignforeachstephasbeeninvestigated.Aswell,simulationresultsofeachcontrolleraredemonstratedanddiscussed.Acompletesimulationcombinedthesecontrollersguidedbythecontrolstrategyispresented.InChapter 5 ,challengeswhenthissystemisoperatinginLEOscenariohavebeenshown.Difcultiesandpossiblesolutionshavebeendiscussed.InChapter 6 ,summaryandmaincontributesofthisthesishavebeenconcluded.Somesuggestionsonfutureworkalsoareincluded. 19
PAGE 20
CHAPTER2MODELLINGTHEELECTROMAGNETICFORCESADCTORQUES 2.1OverviewInthisthesis,theelectromagneticdockingsystemconsistsoftwosatellites.Eachsatelliteisequippedwithoneormorecoils.Tostudythedynamicsandderivethedynamicsequationsofthissystem,onemustrstdevelopthetheoreticalmodelsofthemagneticeld,forcesandtorquesgenerated.Usingtheprincipleofmagneticeldtheory[ 13 ],thefollowingsectionsdescribetheapplicabletheory.Basedonthistheory,thecorrespondingforceandtorqueequationsneededforgeneratingthefulldynamicmodelarepresented.Chapter 3 willdetailthecorrespondingdynamicsequations. 2.2DerivationoftheExactModel 2.2.1MagneticFieldThedifferencebetweenelectriceldE andthemagneticeldB :electricchargeisapointsourceofE ,whilemotionofchargedparticles,(i.e.current),isthesourceofB .Theliteraturesshowthattherearenoexperimentsindicatingexistenceofmagneticmonopolesormagneticcharge,thoughsearchingforthemcontinuestobeaninterestingchallenge[ 13 ].sinceamagneticelddoesnothaveapointsource,thedivergenceofthemagneticeldmustbezero,andcanbeexpressedas: r B =0 ,(2)whereristhegradientoperator,r B =0 isthedivergenceofB .ThecurlofmagneticeldisgivenbyAmpere'sequationformagnetostatics,i.e.fortheeldfromcurrentdistributionwhichisconstantintime r B =0J ,(2) 20
PAGE 21
whereJ isthecurrentdensityvector,and0isthepermeabilityoffreespace.Equation( 2 )canalsobemodiedasfollowingfortimevariantproblems. r B =0(J +J d),(2)whereJ disdisplacementcurrentdensityvector.Inalaboratorysystemofchargesandcurrents,thedisplacementcurrentisnormallyverysmallcomparedtotypicalchargecurrents.ToobserveJ dexperimentallyrequireshighfrequencies,largeelectriceld,orboth.Furthermore,thepresumptionthatthemagneticeldsandcurrentswillvaryslowlyovertimecouldbemade,thenmagnetostaticscanbeassumed.ByintroducingavectorpotentialA ,theelectromagneticeldcanbeexpressedas: B =r A .(2)Fromreference[ 13 ],thegeneralsolutionforA couldbewrittenas: A (s)=0 4ZZZVolJ ( ) js )]TJ /F4 11.955 Tf 11.96 0 Td[( jd3 ,(2)where isthepositionvectoroftheelementvolume(d3 =dxdydz)withinelectricalconductingmaterial,s isthepositionvectorfromtheelementvolumetopotentialvector'slocation.Foracurrentloop,asshowninFigure 2-1 ,thewireisassumedtohavenegligiblethickness,andthecurrentdensityiszeroeverywherebutwithinthewire.TheequationforthevectorpotentialatlocationPcanthenbereducedtoapathintegralaroundtheloopofcurrent. A (s )=0Ni 4I1 ks )]TJ /F3 11.955 Tf 11.96 0 Td[(a kdl ,(2)whereNisthenumberofturns;iisthecurrent,s isthevectorfromasmallsegmentofthecoil,dl ,topointP,a istheradialpositionvectorofsegmentdl relativetothecenterofcoil. 21
PAGE 22
Figure2-1. Aloopofcurrent. Substitutinginto( 2 )to( 2 ),themagneticeldcanbeexpressedas: B =r 0Ni 4I1 ks )]TJ /F3 11.955 Tf 11.96 0 Td[(a kdl .(2)SincetheoperationHisbasedons ,itcancommutewithintegrand.Also,byusing r 1 ks )]TJ /F3 11.955 Tf 11.95 0 Td[(a k=)]TJ /F3 11.955 Tf 18.94 8.09 Td[(s )]TJ /F3 11.955 Tf 11.95 0 Td[(a ks )]TJ /F3 11.955 Tf 11.96 0 Td[(a k3,(2)( 2 )gives B =0Ni 4Is )]TJ /F3 11.955 Tf 11.96 0 Td[(a ks )]TJ /F3 11.955 Tf 11.95 0 Td[(a k3dl .(2)Duetothedifcultyofintegratingthereciprocalofthesquareofmagnitudeoftheks )]TJ /F3 11.955 Tf 12.71 0 Td[(a k3,solvingforthemagneticeldisnotstraightforward.Assuch,themagneticeldB canonlybewrittenanalyticallyintermsofellipticalintegralswhenitisoffaxis.Fortheoffaxiscasethemagneticeldcanbeexpressedintermsofradialandaxialcomponentsas[ 4 ]:B =0Ni 2a1 p QE(m)1)]TJ /F4 11.955 Tf 11.95 0 Td[(2B)]TJ /F4 11.955 Tf 11.96 0 Td[(2B Q)]TJ /F9 11.955 Tf 11.96 0 Td[(4B+K(m)^z +0Ni 2a1 p QE(m)1+2B+2B Q)]TJ /F9 11.955 Tf 11.95 0 Td[(4B)]TJ /F3 11.955 Tf 11.95 0 Td[(K(m)^r (2) 22
PAGE 23
whereE(m)istherstkindofellipticalintegral,andK(m)isthesecondkindofellipticalintegral,and B=r a,B=z a,B=z r,QB=(1+B)2+2B,mB=r 4B QB.(2) 2.2.2ForceandTorqueInthissection,theforceandtorquearederivedsothatonemaymodeltheinteractionbehaviorbetweenofthetwosatellites.Figure 2-2 illustratesthefundamentalcongurationofthecoilseachrepresentsasatellite. Figure2-2. Twoloopsofcurrent. Whenawirecarryinganelectricalcurrentisplacedinamagneticeld,eachmovingcharges,experiencesheLorentzforce.ByusingLorentzforcelaw,foreachsmallsegmentofwiredl carryingcurrenti,theforceactingonthissegmentisgivenby: dF =idl B .(2)Integrating( 2 )overthelengthofthewire,totalelectromagneticforceonthewireisgivenby: F =iZdl B ,(2) 23
PAGE 24
ApplyingthisequationtothecaseillustratedinFigure 2-2 ,theforceactingonthesecondloopofcurrentis: F B=iBZdlB B A,(2)inwhichB AistheelectromagneticeldatpositionofdlB createdbyloopA.ThereactionforceactsoncurrentloopAisofcourse: F A=)]TJ /F3 11.955 Tf 9.29 0 Td[(F B=)]TJ /F3 11.955 Tf 9.3 0 Td[(iBZdl BB A.(2)ThetorqueonloopBaboutthecenteroftheloopduetoincrementalforcedF Bisgivenby: B=Za BdF B.(2)CombiningtheaboveequationswiththeeldresultsinSection 2.2.1 ,theequationsforbothforceandtorquehavedoubleintegrals,whichlimitstheabilitytosolvethemanalytically.Consequently,insightsabouttheforceandtorquemodelarehardtodetermine.Therefore,toobtainapproximationsthatcanbederivedanalytically,simplicationandlinearisationbyusingTaylorserieswillbeusedinthefollowingsection. 2.3Far-FieldModelofElectromagneticForceandTorque 2.3.1DerivationofFar-FieldModelAtasufcientlylargedistance,themagneticeldgeneratedbyacurrentloopbehavesasamagneticdipolewhenitcomestoasufcientlargedistance.Hence,acurrentloopcouldbevisualizedasabarmagnetalignedwiththeaxisofthelooppointinginthedirectiongivenbyrighthandrule.Toanalyticallyexpressthisbehavior,theforceandtorqueexpressioncontainsks )]TJ /F3 11.955 Tf 11.96 0 Td[(a kterminthedominator.Whenlargedistanceassumptionismade,wecansimplifythemodeldueto ka kks k.(2) 24
PAGE 25
Expand1=ks )]TJ /F3 11.955 Tf 11.95 0 Td[(a kabouta=s0usingTaylorseriesyields 1 ks )]TJ /F3 11.955 Tf 11.96 0 Td[(a k=1 s+s a s3+H.O.T,(2)wheres a isdotproductofvectorss anda ,andH.O.Tarethehigherordertermsthatareapproximatedtobezero.Substituting( 2 )into( 2 )and( 2 )forthemagneticvectorpotential,andobservingthersttermwith1=sintegratestozero,then:A (s )=0 4ZZZ1 s+s a s3J ( )d3 =0 4ZZZs a s3J ( )d3 (2)andA (s )=0Ni 4I1 s+s a s3dl =0Ni 4s3I(s a )dl (2)Usingvectorcalculus,ithasbeenproveninreference[ 13 ],theintegralin( 2 )and( 2 )canberewrittenas:ZZZs s3J ( )d3 = s (2)NiIs a dl = s (2)inwhich iscalledmagneticdipolemoment: =1 2ZZZ J ( )d3 .(2)Substitutebackto( 2 ),thevectorpotentialofamagneticdipolecanbeexpressedas: A (s )=0 4 s s3.(2)Foracurrentloop,themagneticdipolemomentis: =NiI1 2a dl =NiA^n ,(2)whereNisthenumberofturns,iisthecurrent,Aistheareaenclosedbytheloop,and^n isthevectoralongtheaxisoftheloop.Thecorrespondingmagneticeld 25
PAGE 26
mathematicalexpressionthentakestheform: B =r A =0 4r ( s s3),(2)Usingthepropertiesofthegradientoperator(r ) r (u v )=u (r v ))]TJ /F3 11.955 Tf 11.96 0 Td[(v (r u )+(v r )u )]TJ /F9 11.955 Tf 11.96 0 Td[((u r )v ,(2)yields r ( s s3)= (r s s3))]TJ /F3 11.955 Tf 15.61 8.09 Td[(s s3(r )+(s s3r ) )]TJ /F9 11.955 Tf 11.96 0 Td[(( r )s s3.(2)Since isnotafunctionofs,thenr 0and(s s3r ) 0 .Therefore,r s s3=@ @xx s3+@ @yy s3+@ @zz s3=1 s3)]TJ /F9 11.955 Tf 15.8 8.09 Td[(3 x5x2+1 s3)]TJ /F9 11.955 Tf 15.8 8.09 Td[(3 x5y2+1 s3)]TJ /F9 11.955 Tf 15.8 8.09 Td[(3 x5z2=0, (2)( r)s s3=x@ @xx s3+y@ @yy s3+z@ @zz s3=x^e x s3)]TJ /F9 11.955 Tf 15.38 8.08 Td[(3 s5xs +y^e y s3)]TJ /F9 11.955 Tf 15.38 8.08 Td[(3 s5ys +z^e z s3)]TJ /F9 11.955 Tf 15.37 8.08 Td[(3 s5zs =1 s3 )]TJ /F9 11.955 Tf 13.15 8.09 Td[(3s s5(s ). (2)Finally,wehave: B =0 43s (s ) s5)]TJ /F4 11.955 Tf 15 9.38 Td[( s3=B (s ),(2)whichvariesins and ).Forthefar-eldapproximations a .Hence,thepotentialenergyofamagneticdipoleofcoilBinamagneticeldofcoilA(B A(d )isgivenby: U(d )=)]TJ /F4 11.955 Tf 9.3 0 Td[( BB A(d ),(2)whered isthevectorconnectingthecenterofdipoleAtodipoleB,B A(d )istheapproximationofB A(s ),and BismagneticmomentduetocoilB.Theforceondipole 26
PAGE 27
Bissimplyderivedfromthegradientofthepotentialenergy. F B=rU=r( BB A)=0 4r3( Bd )(d A) d5)]TJ /F4 11.955 Tf 13.15 9.88 Td[( B A d3.(2)Again,noting Aand Barenotfunctionsofd,thereforer A=0,r B=0.Similartotheabovederivation,( 2 )resultsin F B=)]TJ /F9 11.955 Tf 10.5 8.09 Td[(30 4)]TJ /F9 11.955 Tf 9.3 0 Td[(( A B)d d5)]TJ /F9 11.955 Tf 11.96 0 Td[(( Ad ) B d5)]TJ /F9 11.955 Tf 11.96 0 Td[((d B) A d5+5( Ad )(d B)d d7.(2)Atorqueappliedoverarotationisequaltothechangeinpotentialenergy. dU=)]TJ /F4 11.955 Tf 9.3 0 Td[( d =)]TJ /F9 11.955 Tf 9.3 0 Td[(d B ,(2)where d =d .(2)Then, )]TJ /F4 11.955 Tf 11.96 0 Td[( d =)]TJ /F9 11.955 Tf 9.3 0 Td[((d )B =)]TJ /F9 11.955 Tf 9.3 0 Td[(( B )d ,(2)and B= BB A.(2)Substituting, B=0 4 B3( Ad )d d5)]TJ /F4 11.955 Tf 13.15 9.88 Td[( A d3.(2)ByusingNewton'sthirdlaw,wehave: F A=)]TJ /F3 11.955 Tf 9.3 0 Td[(F B.(2)Note:F Acouldhavebeenderivedusing F A=rU=r( AB B),(2)whichyieldsthesameexpressionas( 2 ). 27
PAGE 28
Duetotheconservationofangularmomentum:sincetherearenoexternalforceandtorqueactedonthissystem,thetotalangularmomentumshouldbezero: A+ B+d F B=0 .(2)Therefore,wecandeterminetorqueactingonloopA: A=)]TJ /F4 11.955 Tf 9.3 0 Td[( B)]TJ /F3 11.955 Tf 11.96 0 Td[(d F B.(2)Theabovecompletesthederivationoftheforcesandtorquesinthevectorfar-eldmodelbetweentwocurrentsloops.TheanalysisofthedynamicsofthissystemdetailedinChapter 3 isbasedonthismodel.Thedynamicscanbedescribedfortwocases:2dimensional(2-D)coplanar,co-axialtwist.Thesetwospecialcaseswillleverageforachievingorientationandpositioncontroloftwosatelliteswhichingeneralcouldbeuncontrollableinatleastonedegreeoffreedom.Thefollowingsections, 2.3.2 through 2.3.4 ,providerepresentationsofforceandtorqueforthreedifferentcases.Theconciseformandcomputationalconvenienceofthismodelwillshownaswell. 2.3.22Dimensional(2-D)CoplanarCaseInthe2-Dcoplanarcase,twocurrentloopsAandBarerestrictedtoaplaneasshowinginFigure 2-3 .Thexzcoordinatesystemisinertialcoordinatesystem,FI;xAzAandxBzBarebodyxedcoordinatesystemsFAandFB,coilAandcoilBrespectively;andxRzRisrotatedreferencecoordinatesystem,FR.Forcomputingconvenience,theforceandtorqueisderivedintheFRframe.ReferringtoFigure 2-3 ,thedipolemomentvectorofcoilAandB(alignedwithaxesxAandxB,respectively)arerstalignedwithxR,thenrotate()]TJ /F4 11.955 Tf 12.54 0 Td[(=2)and()]TJ /F4 11.955 Tf 12.54 0 Td[(=2)respectivelyaboutyR. 28
PAGE 29
Figure2-3. 2dimensional(2-D)coplanarcoils. InFR,thedipolemomentcanberepresentedas:R A=Asin^x R+Acos^z R, (2)R B=Bsin^x R+Bcos^z R, (2)Rd =d ^z R. (2)Substituting( 2 )into( 2 ),( 2 ),( 2 )and( 2 )resultsinfollowinginteractionforcesandtorquesactingonthetwocoilsintherotatedreferencecoordinatesystem,FR.F A=30 4AB d4()]TJ /F9 11.955 Tf 9.3 0 Td[((cossin+cossin)^x R+(2coscos)]TJ /F9 11.955 Tf 11.95 0 Td[(sinsin)^z R), (2)F B=)]TJ /F9 11.955 Tf 10.49 8.09 Td[(30 4AB d4()]TJ /F9 11.955 Tf 9.3 0 Td[((cossin+cossin)^x R+(2coscos)]TJ /F9 11.955 Tf 11.95 0 Td[(sinsin)^z R), (2) A=)]TJ /F4 11.955 Tf 12.18 8.08 Td[(0 4AB d3(2sincos+cossin)^y R, (2) B=)]TJ /F4 11.955 Tf 12.18 8.09 Td[(0 4AB d3(2cossin+sincos)^y R. (2)Fromtheaboveforceandtorqueequations,onecanobservesomeintuitivepropertiesoftwodipoles.AsFigure 2-4 shows,whenandarezero,theforceisonly 29
PAGE 30
alongwiththezRaxis,aswellthetorquebecomestobezero.I.e.attractionorrepulsiveforcesarepresentwhenthetwocoilsareperfectlyaligned.Inthisconguration,forceandtorqueequationsreducetobe: Figure2-4. Alignedconguration. F A=30 4AB d4^z R,F B=)]TJ /F9 11.955 Tf 10.49 8.09 Td[(30 4AB d4^z R, A= B=0 .(2)AsFigure 2-5 shows,thereareasetoflinesduetotheintersectionofthe Asurfacewiththezeroplane.Noticethatforcomputationalconvenience,thefactor0AB 4d3hasbeennormalizedas1.Theselinescorrespondtothevaluesofandforwhenthecontrollabilityof Avanishes.Similarsituationwilloccurfor B.ObservingtheintersectionlinesinFigure 2-6 ,itisfoundthatthecontrolislostsimultaneouslyforboth Aand Bat(,)=f...,()]TJ /F4 11.955 Tf 9.3 0 Td[(,),(0,0),(,)]TJ /F4 11.955 Tf 9.3 0 Td[(),...g,f...,()]TJ /F4 11.955 Tf 9.3 0 Td[(=2,)]TJ /F4 11.955 Tf 9.29 0 Td[(=2),(=2,)]TJ /F4 11.955 Tf 9.3 0 Td[(=2),(=2,=2),...g,andf...,()]TJ /F4 11.955 Tf 9.3 0 Td[(,0),(,0),(0,)]TJ /F4 11.955 Tf 9.3 0 Td[(),...g. 2.3.3Co-AxialTwistCaseInco-axialcase,twocurrentloopsCandDarerestrictedtobeco-axialinzRasshowninFigure 2-7 .ThexRzRcoordinatesystemisrotatedreferencecoordinate 30
PAGE 31
ATorqueactingoncoilA BTorqueactingoncoilBFigure2-5. Torquesvarywithangles. Figure2-6. Intersectinglinesforcontrollostfortorques. system,FR.RefertoFigure 2-7 ,dipolemomentvectorsofcoilCandD(alwaysalignedwithxCandxD,respectively)arerstalignedwithxR.ThenrotateandrespectivelyaboutzR.Whenthetwoanglesarezeros,thecoilsCandDareintheyRzRplane.ThefollowingmathematicalexpressionsrepresentdipolemomentsinFR:R C=Ccos^x R+Csin^y R, (2)R D=Dcos^x R+Dsin^y R, (2)Rd =d^z R. (2) 31
PAGE 32
Figure2-7. Co-axialtwistcase. Substituteto( 2 ),( 2 ),( 2 )and( 2 ),wehave:F C=30cD 4d4cos()]TJ /F4 11.955 Tf 11.96 0 Td[()^z R, (2)F D=)]TJ /F9 11.955 Tf 10.49 8.09 Td[(30cD 4d4cos()]TJ /F4 11.955 Tf 11.96 0 Td[()^z R, (2) C=)]TJ /F4 11.955 Tf 10.49 8.08 Td[(0cD 4d3sin()]TJ /F4 11.955 Tf 11.96 0 Td[()^z R, (2) D=0cD 4d3sin()]TJ /F4 11.955 Tf 11.96 0 Td[()^z R, (2)Somepropertiesoftheforceandtorqueinthiscasecanbeconcluded.First,forcesareonlyonthe^z Raxis.Thismeansthatoncetwocoilsentertheco-axialconguration,theywouldstayinthisconguration.Second,torquesarefunctionsofcDand()]TJ /F4 11.955 Tf 12.01 0 Td[().Systemwouldlosecontroloftorquewhen)]TJ /F4 11.955 Tf 12.12 0 Td[(=0,happens.However,thissituationingeneralsatisesdockingrequirementsofalignment(eitherN,NorN,Saligned).MoredetailsaboutthissingularitywillbeshowninChapter 3 2.3.43Dimensional(3-D)RepresentationInthissectiontheEulerAngleareusedwhichareknownfortheirintuitivenesstorepresenttherotationfromrotatedreferencecoordinatesystemFRtobodyxedcoordinatesystem,FAandFB.3-2-1sequencerotationwillbeused. 32
PAGE 33
ReferringtoFigure 2-8 ,thedipolemomentvectorsofcoilAandB(whicharealwaysalignedwithxAandxB)areinitiallyalignedwithzR,thenrotateandrespectivelyaboutzR,followingbyrotating()]TJ /F4 11.955 Tf 12.94 0 Td[(=2)aboutbodyxedaxisyAand()]TJ /F4 11.955 Tf 12.19 0 Td[(=2)aboutbodyxedaxisyB.Sincetheaxialsymmetryofrings,thelastrotationsaboutxAandxBdonotaffecttheforceandtorquecalculation. Figure2-8. Euleranglerepresentation. ThedirectcosinematrixrepresentsthetransformationfromFRtoFA,couldbewrittenasproductoftwoprinciplerotationmatrices:RR=A=R2()]TJ /F4 11.955 Tf 13.15 8.09 Td[( 2)R3()=266664sin0cos010)]TJ /F9 11.955 Tf 11.29 0 Td[(cos0sin377775266664cossin0)]TJ /F9 11.955 Tf 11.29 0 Td[(sincos0001377775=266664sincossinsincos)]TJ /F9 11.955 Tf 11.29 0 Td[(sincos0)]TJ /F9 11.955 Tf 11.29 0 Td[(coscos)]TJ /F9 11.955 Tf 11.29 0 Td[(cossinsin377775. (2) 33
PAGE 34
InFR,dipolemomentvectorofringAcouldbedescribedas:R A=RR=AA A=266664sincossinsincos)]TJ /F9 11.955 Tf 11.29 0 Td[(sincos0)]TJ /F9 11.955 Tf 11.29 0 Td[(coscos)]TJ /F9 11.955 Tf 11.29 0 Td[(cossinsin377775266664A00377775=A266664sincossinsincos377775. (2)Similarly,wecanderiveR Bouteasily. R B=B266664sincossinsincos377775.(2)Also, Rd =26666400d377775.(2)Substitute( 2 ),( 2 )and( 2 )to( 2 )and( 2 ),wehaveforceandtorqueactonringBrepresentedinreferenceframe:RF B=30AB 4d4266664cossincos+sincoscoscossinsin+sincossinsinsincos()]TJ /F4 11.955 Tf 11.96 0 Td[())]TJ /F9 11.955 Tf 11.96 0 Td[(2coscos377775, (2)R B=0AB 4d3266664sincossin+2cossinsin)]TJ /F9 11.955 Tf 11.29 0 Td[(sincoscos+2cossincos)]TJ /F9 11.955 Tf 11.3 0 Td[(sinsinsin()]TJ /F4 11.955 Tf 11.95 0 Td[()377775. (2) 34
PAGE 35
2.3.5DipoleLinearSuperpositionWithoutlossofgenerality,assumesatelliteAandBareequippedbythreeorthogonalcurrentrings,thentheelectromagneticforcesactingonringsequippedonsatelliteBcouldbecalculatedbysumminguptheforcesduetothemagneticeldgeneratedbyeachringonsatelliteA. F B=3Xj=13Xi=1f ij,(2)wheref ijistheforceactingonj-thringonsatelliteBduetotheeldgeneratedbyi-thringonsatelliteA.Figure 2-9 showsthelinearsuperposition Figure2-9. Linearsuperposition. Notice,thatthefar-eldmodelforforceandtorqueislinearfunctionofthemagneticdipolemoments.Therefore,threeorthogonaldipolescouldbeconsideredasasetofbasisofaR3space.Thatmeans,onecanconsidercombinationofthesethreedipolevectorsasanewdipolevector.Bychangingthedipolemomentofeachoforthogonalrings,wehavetheabilitytocontrolboththedirectionandmagnitudeoftheoveralldipolevector. =3Xi=1 i.(2)Thelinearsuperpositionsimpliesthedynamicmodelwhenitinvolvesmulti-ringspersatellite. 35
PAGE 36
2.4ModelEvaluationToverifythesuitabilityoftheaboveapproximationsusedinmodelling,theforcesandtorquesofthefar-eldmodelandexactmodelarecompared.Figure 2-10 presentsthepercentageerrorofmagnitudewiththecoilsindifferentcongurations.Figure 2-11 presentstheresultsfortorque. Figure2-10. Comparingthefar-eldforcemodelagainsttheexactmodel. Figure2-11. Comparingthefar-eldtorquemodelagainsttheexactmodel. 36
PAGE 37
Usually,weadmitamodelisvalidwhenthepercentageerrorislessthan10%.Fromthetwogures,wecanseetheerrorvarieswithdifferentcongurationofcoils.Yet,overall,whendistanceisaboveapproximately6timesofthecoilradii,errorstayslessthan10%. 37
PAGE 38
CHAPTER3DYNAMICMODELS 3.1OverviewThepurposeofthischapteristodevelopsystemmodels.Thesemodelswillbeusedforsimulatingandcontrollerdesign.Thischapterwillstartsoffwithsystemdescriptionaswellastheoveralldockingstrategy.Specically,3-Ddocking/operationproblemwillbedecoupledtobeseveralstepsofprincipalbasiccases,suchas2-Dco-planarsinglecoilcaseandco-axialtwistsinglecoilcase.Next,thegeneralrigidbodydynamicmodelingprocedurewillbepresented.Then,developmentofdynamicmodelsofprincipalbasiccasesconstitutesthemainbodyofthischapter.Inthenextchapter,theopenloopbehaviorsofthesecases,andsubsequentcontrollersdesignfortheprincipalbasiccases,willbeinvestigated.Theoverallcontrolschemewillalsobedescribed,detailinghowtheresultingcontrollerisimplementable. 3.2SystemDescriptionTheelectromagneticdocking/proximityoperationsysteminthisthesistypicallyinvolvestwocooperativeentitiessuchassatellites,spacecraftsorassemblypartsinspace.Eachofthemwillbeequippedwiththreeorthogonalcurrentloops.Focusingonthedynamicsandcontrolproblemofthissystem,thedocking/operation/assemblywillbesimpliedasfollowsintosequentialoperationalsteps:Step1,adjusttheattitudeandmaintainaconstantdistanceortrackadesiredtrajectoryrstly;andStep2,maintaintheadjustedrelativeattitudeandtrackadesiredapproachingtrajectory. 3.2.1GeometryofDifferentCoordinateSystemSinceorbitaldynamicsisnottheprimaryobjectiveinthisthesis,severalsimpli-cationswillbemadehere.Consequently,thedenitionsofcoordinatesystemmightbeslightlydifferentfromcommonuses.InertialframeFIissettobetheECIreferenceframewhichhasitsoriginatthecenteroftheEarth,oneaxisaalinedwithnorthpole,onepointstovernalequinox,and 38
PAGE 39
thethirdonecompletesarighthandedaxissystem.OrbitframeFoisdenedassuch,itsoriginissameasECIframe's,oneaxispointstowardstheorbitalplanenormal,oneaxisalignedwiththesemi-majoraxisoftheobit,thethirdonecompletesarighthandedaxissystem.TheFAandFBaredenedasbodyxedcoordinatesystemtorepresenttheorientationsofsatelliteAandB.Figure 3-1 illustratesthesedenitions.Withoutlosinggenerality,setFI=Fo,showedasrightpartofFigure 3-1 .Fortheconvenienceofelectromagneticforceandtorquerepresentation,FRisdenedasrotatedreferencecoordinatesystem,inwhichzRaxisisalignedwithdistancevectord pointsfromoriginofFAtooriginofFB,asshowninFigure 3-2 .OriginofFRisatthecenterofmassofthesystemoftwosatellites. Figure3-1. Geometryofdifferentcoordinatesystem. SinceFRisalwayschangingwiththepositionsofOAandOB,forderivationconvenience,alocalinorbitframeFLisdenedassuch:originistheoriginFR,oneaxisisnormaltotheorbitalplane,secondonetowardsthevelocitydirection,thirdonecompletetherighthandcoordinatesystem.Figure 3-2 alsoshowstherelationshipbetweenFRandFI.MovingFItooriginOAisjustfordrawingconvenience.RotationmatrixfromFRtoFIcouldbeexpressedas: RR=I=R(y,y)R(x,)]TJ /F4 11.955 Tf 9.3 0 Td[(x),(3)where x=tan)]TJ /F8 7.97 Tf 6.58 0 Td[(1dx dz,y=sin)]TJ /F8 7.97 Tf 6.59 0 Td[(1dx d.(3) 39
PAGE 40
Figure3-2. Denitionofrotatedreferencecoordinatesystem. Also,dx,dyanddzarethreecomponentsofvectord .Averyusefulterm,dominantaxis,isdenedtobetheaxisalignedwiththeapproachaxisforthedockingmechanism.AsshowninFigure 3-3 ,xAandxBarethedominantaxesforsatelliteAandBrespectively.Theringperpendiculartodominantaxisisdenedasthedominantring.Bydeningadominantaxis,thecontrolobjectiveofachievingarelativeattitudebetweensatellitesnecessaryfordockingbecomesdetermininghowtoalignthesedominantaxesandtwistabouttheco-axisafterthealignment.Now,startingwithrepresentationoforientationsofAandB,areductiontheofdegreesoffreedomisdiscussedhere.The3-2-1sequentialEuleranglerotationisusedforrepresentingtheorientationsofbodyxedcoordinatesystemFAandFBwithrespecttoFR.ReferringtoFigure 3-3 ,rotationfromFRtoFBhasbeenshownas:FBisinitiallyalignedwithFR,thenrotateaboutzR,followingbyrotatingand)]TJ /F4 11.955 Tf 12.54 0 Td[(=2aboutbodyxedaxisyB,thenrotate aboutbodyxedaxisxB.RotationmatrixfromFRtoFBisexpressedas: RB=R=R(x, )R(y,)]TJ /F4 11.955 Tf 11.95 0 Td[(=2)R(z,).(3) 40
PAGE 41
Figure3-3. Relationshipbetweenbodyxedframeandrotatedreferenceframe. ItissimilartogetFA:FAisinitiallyalignedwithFR,thenrotateaboutzR,followingbyrotatingand)]TJ /F4 11.955 Tf 12.71 0 Td[(=2aboutbodyxedaxisyA,thenrotateaboutbodyxedaxisxA.RotationmatrixfromFRtoFAisexpressedas: RA=R=R(x,)R(y,)]TJ /F4 11.955 Tf 11.96 0 Td[(=2)R(z,).(3)Consideringthatwearedealingwithalignmentproblemoftworings,recallsomecontentsinChapter 2 .PerSection 2.3.4 andbecauseoftheaxialsymmetryofrings,rotationsaboutxAandxBdeterminingdonotaffecttheforceandtorquegeneratedbythesetworings.Consideringthatthealignmentproblemisdealingwiththerelativeattitudebetweentwodominantrings,the3-2sequentialEuleranglerotationcouldbeusedtoidentifytheattitudeofdominantrings.Thethirdrotationaboutthedominantaxiscouldbehandledinthetwiststep.Again,toemphasizethepeculiaritiesofdynamicsbetweencurrentloops,wewillstartfromdeepspaceassumption.Fordeepspacemissions,orbitaldynamics(theinuenceofearthgravityandgeomagneticeld)isusuallyignored.Deepspaceassumptionisthebaseofderivationsofthischapter'sdynamicequations.Sinceindeepspaceassumptiontheorbitdynamicsarenotconsidered,theassumptionthatFLis 41
PAGE 42
alignedwithFIcanbemade.Chapter5willdiscussmoreabouttheimpactofignoringtheorbitaldynamicsandgeomagneticeldontheperformanceofthecontroller. 3.2.2DockingStrategyAsdiscussedinlastsection,thecontrolobjectiveofadjustingtherelativeattitudecanbeseparatedintotwosequentialsteps:aligningthedominantaxeswiththedistancevector(i.e.,thezR),followedbytwistingthesatellitesaboutthealignedaxiszRtothenaldesiredrelativeattitude.Further,thealignmentin3-Drealitycanbeobtainedbybreakingtheprocedureintotwoindependent2-Dcoplanarcases.First,alignonedominantaxiswithzR,thenalignanother.Withoutlosinggenerality,wechoosetorstalignxAwithzR.Detailsabouthowtodecouplethe3-Dcasealignmentcaseinto2-DcoplanarcasesareinSection 3.4 ,includingthedynamicsforeachspecicstep.Oncethedominantaxesareco-axialwithzRtwistingthesatellitesabouttheco-axisisthelaststepforattitudeadjustment.Thisstepcanbeachievedbutrequiresareductioninthecontrolleddegreesoffreedomofthesystemasmentionedinlastsection.Overall,Step1canbedividedinto3sequentialsteps:Step1.A,Step1.B,andStep1.C.OnceStep1isaccomplished,Step2isjusta1-Ddistancecontrolproblem.SeeFigure 3-4 Figure3-4. SubdivisionforStep1. 42
PAGE 43
Oneimportantremark:inStep1.AandStep1.B,takingintoaccounttheproblemofdegreeoffreedom,torquesactonSatelliteAandSatelliteBaresettobecanceledbyreactionwheelsrespectively. 3.3BasicDynamicFundamentalEquationsMomentumofrigidbodyAisdenotedasP A.Ifwechoosethecenterofmasscasreferencepoint,P Aisgivenby: P Ac=mv c,(3)inwhich,misthemassofA,v cisthevelocityofc.Forconvenienceofrepresentation,P AcsometimesissimpliedtobeP A.AngularmomentumofrigidbodyAaboutreferencepointoisdenotedasH Ao.Ifwechoosethecenterofmasscasreferencepoint,H Acisgivenby[ 7 ] H Ac=I! ,(3)where! isangularvelocityofA.Generally,dynamicequationsofrigidbodyAincludetranslationalequationandrotationalequation. _P Ac+[! ]P Ac=f ex,(3)wheref existheexternalforceactonbodyA. _H Ac+[! ]H Ac= ex,(3)where existheexternaltorqueactonbodyA. 3.4DynamicsforSpecicSteps 3.4.1Step1.AInthisstep,alignmentofxBwithd (zR)willbeaccomplished.OrientationofSatelliteAisxed.Comparingtothegeneralcoplanarcase,in3-Dreality,alignmentdoesnothavetohappeninplanexRzR.Therefore,anauxiliarycoordinatesystemFisdened. 43
PAGE 44
AsshownintheFigure 3-5 ,FisinitiallyalignedwithFR,thenrotatesangleaboutaxiszR.Thearrowofthisrotationinthegureisjustforshowingthepositivedirectionof.RotationmatrixfromFRtoFisgivenby: Figure3-5. 3dimensional(3-D)illustrationforStep1.A. R=R=R(z,)=266664cossin0)]TJ /F9 11.955 Tf 11.29 0 Td[(sincos0001377775.(3)Now,itiseasytoseethat,dominantaxisxBanddistancevectorzRbothlieinplanexz.Therefore,Step1.Aisactuallyasimplecoplanarcasewhichoccursinthisplane.InFigure 3-6 ,frontviewofplanexzshowshowthisstepreducestothegeneral2-Dcoplanarcase. 3.4.1.1TranslationaldynamicsThedynamicequationsforStep1.AwillbederivedincoordinatesystemF.PositionvectorofAandBinFcanbeexpressedas: p A=00)]TJ /F6 7.97 Tf 10.49 4.71 Td[(d 2>,p B=00d 2>.(3) 44
PAGE 45
Figure3-6. FrontviewofStep1.A. ChoosingtheseAandBlocationsinFisforcalculationconvenience.Thus,momen-tumsofAandBrepresentedinFaregivenby P A=mA(_p A+! =Ip A),P B=mB(_p A+! =Ip B),(3)inwhich,mAandmBaremassofAandB,! =IistheangularvelocityofFwithrespecttoinertialframe.Consideringthatinthis2-Dcoplanarcasethemotionhappensoccursinplane,itdoesnotchangetherotationmatrixfromFRtoF,R=R,whichmeansangularvelocityofFisthesameof! =I: =I=! R=I.(3)Duetothedeepspaceassumption(FI=FL), =I=! R=I=! R=L=2666640_0377775.(3)Notice,inlowearthorbitcase,! L=Iisnolongerzero.Chapter 5 showsmoreaboutthisinuenceonthemodelingandcontrollerperformance. 45
PAGE 46
Substituting,wehave: P A=mA266664)]TJ /F6 7.97 Tf 10.5 5.12 Td[(d_ 20)]TJ /F8 7.97 Tf 11.83 6.48 Td[(_d 2377775,P B=mB266664d_ 20_d 2377775.(3)Recall( 3 ),wehave: _P A+! =IP A=F A.(3)Substitute( 3 )to( 3 ),wegot: mA264)]TJ /F6 7.97 Tf 10.49 5.11 Td[(d 2)]TJ /F8 7.97 Tf 14.48 6.88 Td[(_d_ 2)]TJ /F8 7.97 Tf 14.49 6.88 Td[(_d_ 20)]TJ /F8 7.97 Tf 13.5 6.48 Td[(d 2+d_2 2375=F A.(3)InF, Aonlygivescomponentsinplanexz, A=266664x0z377775=A266664sin~0cos~377775.(3)Also, BinthisstepisonlygivenbydominantringofB: B=Bx^x B.(3)Substitute Aintoto( 2 ),forceactonAisgivenby: F A=30 4Bx d4266664)]TJ /F4 11.955 Tf 9.3 0 Td[(zsin)]TJ /F4 11.955 Tf 11.95 0 Td[(xcos02zcos)]TJ /F4 11.955 Tf 11.96 0 Td[(xsin377775.(3) 46
PAGE 47
Then,assumemA=mB=3m,wheremisthemassofeachcoil,aftersomereorganization,translationaldynamicsequationsaregivenby:=1 m0 2Bx d5(zsin+xcos))]TJ /F9 11.955 Tf 13.15 8.09 Td[(2_d_ d, (3)d=)]TJ /F9 11.955 Tf 12.34 8.09 Td[(1 m0 2Bx d4(2zcos)]TJ /F4 11.955 Tf 11.96 0 Td[(xsin)+d_2. (3)SinceforthesystemofsatelliteAandB,thereisnoexternalforce,thechangeinmomentumofthiswholesystemequalszero.ThustakingthetimederivativeofP Bwillgiveouttheexacttwoequations. 3.4.1.2RotationaldynamicsSinceinStep1.A,attitudeofsatelliteAisxed,rotationaldynamicequationforBwillbederived.AngularmomentumofBaboutcenterofmassrepresentedinFisasfollows: H Bc=IB! B=I,(3)inwhichIBistheinertiamatrixofBaboutcenterofmassrepresentedinF.Byusingtransformationofinertiamatrix,wehave: IB=R>B=BIBRB=,(3)whereRB=isrotationmatrixfromFtobodyxedframe: RB==R(y,)]TJ /F4 11.955 Tf 13.15 8.09 Td[( 2).(3)Aswell,forthreeringswithradiusr,massm, BIB=2mr2266664100010001377775.(3) 47
PAGE 48
SinceR>B=RB==Iidentity, IB=2mr2266664100010001377775.(3)Note,inthisthesis,onlythemassandinertiaofthethreecoilsisusedintheanalysis.However,infuturesimulations,thesetermscaneasilybeupdatedtoincludethefullsatellitemassandinertia.AngularvelocityofBwithrespecttoinertiaframerepresentedinF,! B=Iisgivenby: B=I=! B=+! =I,(3)where B==2666640_0377775,! =I=2666640_0377775.(3)Substituting,wehave H Bc=IB! B=I=2mBr2B2666640_+_0377775(3)TaketimederivativeofH Bc, _H Bc+[! =I]H Bc= B.(3)Substitute( 3 )and( 3 )into( 3 ),wehaverotationaldynamicsequations: 2mr22666640+0377775= B.(3) 48
PAGE 49
Recall( 2 ),wehave: B=)]TJ /F4 11.955 Tf 12.17 8.09 Td[(0 4B d3(2zsin+xcos).(3)Combine( 3 )and( 3 ),wehave: =)]TJ /F4 11.955 Tf 12.18 8.08 Td[(0 8B d3mr2(2zsin+xcos))]TJ /F9 11.955 Tf 12.68 2.65 Td[(.(3)Then,wehave: =)]TJ /F4 11.955 Tf 12.17 8.09 Td[(0 8B d3mr2(2zsin+xcos))]TJ /F9 11.955 Tf 12.44 8.09 Td[(1 m0 2Bx d5(zsin+xcos)+2_d_ d.(3)Rememberthe Aisgeneratedbythreeorthogonalrings,representationinF.Therefore, AmustbetransferredbacktoFA.IfwecancelthetorqueactingonsatelliteAbymomentummanagement,rotationmatrixfromFRtoFR,RA=R,willbeaconstantmatrix.Also,satelliteBonlyrotatesintheplanexz.Hence, A A=R>A=RR A=R>A=RR>=R A.(3) 3.4.2Step1.BStep1.Bhappensinplanexz,inwhichxAandzRlie.DynamicsequationsforthisstepisderivedincoordinatesystemF.AnauxiliarycoordinatesystemFisdenedasfollows.AsshownintheFigure 3-7 and 3-8 ,FisinitiallyalignedwithFR,thenrotatesangleaboutaxiszR.Thearrowofthisrotationinthegureisjustforshowingthepositivedirectionof.RotationmatrixfromFRtoFisgivenby: R=R=R(z,).(3)DerivationofdynamicequationsissimilartoStep1.A.Remember,orientationofsatelliteBissettobexedinthisstep. 49
PAGE 50
Figure3-7. 3-DillustrationforStep1.B. Figure3-8. FrontviewofStep1.B. 3.4.2.1TranslationaldynamicsBasically,thereisnodifferencefromStep1.A'sdynamicsmodelingexceptforderivingincoordinatesystemFR.Tosavespace,onlyimportantresultswillbeshowninthissection.Translationaldynamicsequationisgivenby: 3m266664)]TJ /F6 7.97 Tf 10.5 5.86 Td[(d 2)]TJ /F8 7.97 Tf 14.49 7.63 Td[(_d_ 2)]TJ /F8 7.97 Tf 14.49 7.63 Td[(_d_ 20)]TJ /F8 7.97 Tf 10.85 6.48 Td[(d 2+d_2 2377775=F A.(3) 50
PAGE 51
InF, Bonlygivescomponentsinplanexz, B=266664x0z377775=B266664sin~0cos~377775(3)Also, AinthisstepisonlygivenbydominantringofA: A=Ax^x A.(3)Substitute Bintoto( 2 ),forceactingonAisgivenby: F A=30 4Ax d4266664)]TJ /F4 11.955 Tf 9.3 0 Td[(xcos)]TJ /F4 11.955 Tf 11.96 0 Td[(zsin02zcos)]TJ /F4 11.955 Tf 11.96 0 Td[(xsin377775.(3)Reorganizing,=1 m0 2Ax d5(xcos+zsin))]TJ /F9 11.955 Tf 13.15 8.09 Td[(2_d_ d, (3)d=1 m0 2Ax d4(2zcos)]TJ /F4 11.955 Tf 11.95 0 Td[(xsin)+d_2. (3) 3.4.2.2RotationaldynamicsSimilarly,onlymainequationswillbeshownforStep1.B. 2mr22666640+0377775= A.(3)Byusing( 2 ),torqueactonAisgivenby: A=2666640)]TJ /F5 7.97 Tf 11.53 5.26 Td[(0 8AB d3(2zsin+xcos)0377775(3) 51
PAGE 52
Therefore =)]TJ /F4 11.955 Tf 12.17 8.09 Td[(0 8Ax d3mr2(2zsin+xcos))]TJ /F9 11.955 Tf 14.99 8.09 Td[(1 m0 2B d5(xcos+zsin)+2_d_ d.(3)Transfer BtoFB: B B=R>B=RR>=R B.(3) 3.4.3Step1.CAfterStep1.AandStep1.B,bothtwodominantaxesarealignedwithdistancevector.ControllingthedistancebetweenofAandBnowreducestoa1-Dattractionorrepulsivecase.Whentwistingothercoilswhichareperpendiculartothedominantringsaboutco-axial,wehave2satevariablesdandangledifference(')]TJ /F4 11.955 Tf 13.01 0 Td[( )withonlyoneinput(AyBy)whichmeansthatdistancecontrolcannotbeguaranteed.However,byintroducinga`roughdocking'approachwhichisdenedasdistancemaintenancebyusingmechanicalcontacts,thetwistingthesatelliteaboutco-axiscouldbeaccomplished.Inthisstep, A A=2666640Ay0377775,B B=2666640By0377775.(3) Figure3-9. 3-DillustrationforStep1.C. 52
PAGE 53
Figure3-10. FrontviewofStep1.C. 3.4.3.1TranslationaldynamicsFromSection 2.3.3 ,wehavetheforcegeneratedbytheAyandBycomponents: F A=30AyBy 4d4cos(')]TJ /F4 11.955 Tf 11.95 0 Td[( )^z R,F B=30AyBy 4d4cos(')]TJ /F4 11.955 Tf 11.96 0 Td[( )^z R.(3)Sumup, F A=30AyBy 4d4cos(')]TJ /F4 11.955 Tf 11.95 0 Td[( )^z R,F B=30AyBy 4d4cos(')]TJ /F4 11.955 Tf 11.96 0 Td[( )^z R.(3)Fortranslationaldynamicsthereisonlyonestatevariable,d.TimederivativeofmomentumforAcouldbeexpressed: )]TJ /F9 11.955 Tf 11.96 0 Td[(3md 2=F A.(3)Reorganizing: d=0AyBy 2md4cos(')]TJ /F4 11.955 Tf 11.96 0 Td[( ).(3) 3.4.3.2RotationaldynamicsFromSection 2.3.3 ,wehavethetorquegeneratedbytheAyandBy: A=)]TJ /F4 11.955 Tf 10.49 8.09 Td[(0AyBy 4d3sin(')]TJ /F4 11.955 Tf 11.95 0 Td[( )^z R, B=0AyBy 4d3sin(')]TJ /F4 11.955 Tf 11.95 0 Td[( )^z R.(3) 53
PAGE 54
TimederivativeofangularmomentumsforAandBarederivedas: 266664002mr2'377775= A,266664002mr2 377775= B.(3)Subtracting: ')]TJ /F9 11.955 Tf 14.13 2.66 Td[( =)]TJ /F4 11.955 Tf 10.5 8.09 Td[(0AyBy 4mr2sin(')]TJ /F4 11.955 Tf 11.96 0 Td[( ).(3) 3.4.4Step2InStep2,therelativeattitudehasbeenadjustedbyStep1.Hence,onlythingneedingtobeaccomplishedinthisstepisgeneratingattractionorrepulsiveforcerepulsivewithdockingmechanism.Sincetheforcedirectionisalongthedistancevector,itisbasicallya1-Dcase.Inthisstep,thedominantringsareusedtogeneratetheforce. A A=266664Ax00377775,B B=266664Bx00377775.(3) Figure3-11. 3-DillustrationforStep2. 54
PAGE 55
FromSection 2.3.2 ,theforceandtorquefor1-Dcasehasbeenderived: F A=30 2AxBx d4^z R,F B=)]TJ /F9 11.955 Tf 10.49 8.09 Td[(30 2AxBx d4^z R,(3)TimederivativeofmomentumforAisderivedas: )]TJ /F9 11.955 Tf 11.96 0 Td[(3md 2=F A.(3)Reorganizing: d=)]TJ /F4 11.955 Tf 14.02 8.08 Td[(0 mAxBx d4.(3)Pertheabove,thesetofdynamicmodelsthatcapturethebehaviorofthetwosatellitesinthepresenteddockingstrategywillnowbeusedforderivingthecontrollerforthemagneticcoildockingsystem.Designdetailsandsimulatedresultsarepresentedinthenextchapter. 55
PAGE 56
CHAPTER4CONTROLLAWSANDSIMULATIONRESULTS 4.1OverviewInthischapter,theoverallcontrolstrategyforthemagneticcoildockingapproachisshown.Detailsofthecontrollerdesignforeachstepinthedockingispresented.Thisisfollowedbysimulationresultsoftheindividualcontrollersanddemonstrationofthesequentialcombinationofthesecontrollers.AllthesimulationsareperformedusingMatlabandSimulink.Importantassumptionsare: Fullrelativepositionandattitudeestimationcanbeachieved,includingrelationshipbetweenFRandbodyxedframesFAandFB.WhichmeansthatbothRB=RandRA=Rarereachable. The3-2-1sequentialEulerangles(,,,,'and )canbedeterminedfromrotationmatrix. Forconvenience,thed,,,,,'and arethestatevariablesdirectlyusedinsimulation. Therelativepositioncanbeusedtodetermineand. Firstordertimederivativeofd,,,,,', ,andcanbemeasured.Determining_,_,_,_,_',and_ isreasonableiftheangularvelocitysensorsisequipped.Relativevelocityestimationbetweentwosatelliteswillgive_d,_,and_.Since,positionandattitudeestimationisawholenewarea,thisthesiswillfocusonthedynamicsandcontrollerdesignforeachstepinthedockingstrategywhereallthestatesandtheirtimederivativesaremeasureddirectlyand/orestimated. 4.2ControlStrategyPerthecontrolstrategymentionedinSection 3.2.2 ,thecorrespondingcontrolowchartisdesignedtomorefullydemonstratetheapproachofthisthesisrefertoFigure 4-3 and 4-4 .Tohelpvisualizingeachstepofthisowchart,Figure 1-3 isrepeatedhere. 56
PAGE 57
Note:inthisthesis,detumblingFRorandisdenedassuch,consideringthesetwosatellitesasasystem,preventingtherotationoftwosatellitesaboutthecenterofmassofthissystem.Note,itisdifferentfromdetumblingasatellitewhichmeansstabilizingtheattitudeofthissatellite.Also,a`roughdocking'approachisdenedasdistancemaintenancebyusingmechanicalcontacts.Figure 4-2 hasshownasuitabledockingmechanism.Thisfoldabledockingmechanism[ 20 ]givesthedistanceconstraintaswellasthecircumferentialconstraint,meanwhile,itleavesonedegreeoffreedomfortwistingabouttheco-axial. Figure4-1. Repeatelectromagneticdockingstrategy. Figure 4-5 showsthecorrespondingcontroldiagramanditsimplementationasusedinsimulation.Thecontrolstrategyisimplementedtothistwosatellitesystembyusingamulti-porttriggerandswitch.Toguaranteetheinputisimplementable,inputsaturationisnecessary.DisturbanceDandDNareintroducedtoexaminetherobustnessofthecontrollers. 57
PAGE 58
Figure4-2. Roughdockingmechanism:foldabledockingMechanism Asindicatedinpriorchapters,thecontrolisachievedbyacombinationofcontrollerswhereeachcontrollerisdesignedusingthecorrespondingdynamicmodelforthespecicstepinthealignmentanddockingprocess.Asshownintheowchartandcontroldiagram,therearesteps1.A.,1.B.and2withtransitionalmodes(e.g.,steps1.A.0,1.A.1/1.B.0,1.B.1)betweencontrollersinvolvingthereactionwheelstates.Thetransitionalmodesuseeachsatellite'sreactionwheelstoconstrainthesatellitebehaviorsuchthatitsdynamicscanbeapproximatedasthe2-DcasespresentedinChapter 3 .Thus,severalcontroltriggerindicesaredenedforjudgingstepscompletedornot,switchingfromonestep'scontrollertothenextcontroller.Criterionsofthesetriggerswillbedenedlaterinthesimulationsection. 4.3ControllerDesignforEachStepReferringto[ 10 ],Lyapunovbasedhighgainrobustcontrollerdesignmethodologyisappliedinfollowingcontrollerdesigns. 58
PAGE 59
Figure4-3. Controlowchartpart1. 59
PAGE 60
Figure4-4. Controlowchartpart2. 60
PAGE 61
Figure4-5. Controldiagram. 4.3.1ControllerforStep1.ARecallthedynamicsequationsforStep1.A:=1 m0 2B d5(zsin+xcos))]TJ /F9 11.955 Tf 13.15 8.08 Td[(2_d_ d, (4)d=)]TJ /F9 11.955 Tf 12.34 8.08 Td[(1 m0 2B d4(2zcos)]TJ /F4 11.955 Tf 11.96 0 Td[(xsin)+d_2, (4)=)]TJ /F4 11.955 Tf 12.17 8.09 Td[(0 8B d3mr2(2zsin+xcos))]TJ /F9 11.955 Tf 15 8.09 Td[(1 m0 2B d5(zsin+xcos)+2_d_ d. (4)Noticethatthereare3statesvariablesinthissystem,yetonlytwoinputsxBandzBcouldbesupplied.Comparingtothecontrolobjectiveinthisstep(showninFigure 3-4 ),controllingisforthepurposeofaligningB'sdominantaxiswithdistancevector,controllingdgivestheabilityofregulatingthedistanceortrackingadesiredtrajectory,controllingisfordetumblingtherotatedreferencecoordinatesystemFR.Toavoidcollision,controllingdshouldalwaystakeprecedenceoverothertwoobjectives.Thus,wedividedthisstepintotwosmallsteps:controldandtoachievethecontrolobjectiveofaligning,setattitudeofsatelliteBtobexedanddrivetobezero.Betweenthesetwosmallsteps,atriggerswitchshouldbedesigned. 61
PAGE 62
4.3.1.1Step1.A.0controlofdandTokeepthecontrollerdesignprocessconcise,replacezBxandxBxwithu1andu2, 264d375=264)]TJ /F8 7.97 Tf 11.79 4.71 Td[(1 m0 1 d4cos1 m0 1 d4sin)]TJ /F11 11.955 Tf 11.29 9.69 Td[()]TJ /F5 7.97 Tf 7.71 -4.43 Td[(0 41 d3mr2+1 m0 21 d5sin)]TJ /F11 11.955 Tf 11.29 9.69 Td[()]TJ /F5 7.97 Tf 7.71 -4.43 Td[(0 81 d3mr2+1 m0 21 d5cos375264u1u2375+2642d_2d_2 d375,(4)andreorganizedynamicsmodelassuchaform: q =B(q ,_q )u +G(q ,_q )+D,(4)inwhich q =264d375,_q =264_d_375,q =264d375,u =264u1u2375,B=264)]TJ /F8 7.97 Tf 11.79 4.71 Td[(1 m0 1 d4cos1 m0 1 d4sin)]TJ /F11 11.955 Tf 11.29 9.69 Td[()]TJ /F5 7.97 Tf 7.72 -4.43 Td[(0 41 d3mr2+1 m0 21 d5sin)]TJ /F11 11.955 Tf 11.3 9.69 Td[()]TJ /F5 7.97 Tf 7.71 -4.43 Td[(0 81 d3mr2+1 m0 21 d5cos375,G=2642d_2d_2 d375,(4)andD 2R2isunknowndisturbancecausedbythemodelinaccuracyorsomeotherfactors.Controlobjectivearesettobe: e =q )]TJ /F3 11.955 Tf 11.96 0 Td[(q des!0 ,_e =_q )]TJ /F9 11.955 Tf 13.59 0 Td[(_q des!0 ,(4)inwhichq desisthedesiretrajectoryforq ,_q desistimederivativeof_q .Beforedesignofthecontroller,somepropertiesshouldbeprovedorassumedasfollows[anewclassofmodularadaptivecontrollers,[ 12 ].TheB)]TJ /F8 7.97 Tf 6.59 0 Td[(1isassumedtoexist.Theq desisdesignedsuchthatn-thorderoftimederivativeofq desexistsandis 62
PAGE 63
bounded.Ifq ,_q 2L1,thenB,G,D2L1(L1meansbeingbounded).FormatrixB,q ,_q 2L1)Bij2L1(refertoAppendix A ),andBij2L1)B.Also,forvectorG,q ,_q 2L1)Gi2L1,thenjGj=p G21+G22isboundedtoo.TheboundednessaboutunknowndisturbanceDmustbeassumed.ToproveB)]TJ /F8 7.97 Tf 6.59 0 Td[(1exists,fromthefar-eldmodelassumptioninSection 2.3.1 wehaverd.Thusr2=d2,ahigherordertermforr=d,r2=d2=0canbeassumed.Then,inmatrixB,thefollowingapproximationcouldbemade: 0 41 d3mr2+1 m0 21 d5sin=0 41 d3mr2sin.(4)Similarly, )]TJ /F11 11.955 Tf 11.96 16.86 Td[(0 81 d3mr2+1 m0 21 d5cos=)]TJ /F4 11.955 Tf 12.18 8.09 Td[(0 81 d3mr2cos.(4)Then, det(B)1 m0 1 d40 81 d3mr26=0.(4)So,matrixBcanbeconsideredasinvertible.Insteadofusingbacksteppingdesignmethod,lteredtrackingerrorisintroducedhere, r =_e +ce ,(4)wherecisapositiveconstant.Openloopanalysisoferror: _q =q )]TJ /F9 11.955 Tf 12.2 0 Td[(q des+c_e =B(q ,_q )u +G(q ,_q )c_e )]TJ /F9 11.955 Tf 12.2 0 Td[(q des+D.(4)Designu as: u =B)]TJ /F8 7.97 Tf 6.59 0 Td[(1()]TJ /F3 11.955 Tf 9.3 0 Td[(G)]TJ /F3 11.955 Tf 11.96 0 Td[(ce +q des)]TJ /F3 11.955 Tf 11.95 0 Td[(k1r )]TJ /F3 11.955 Tf 11.96 0 Td[(k2r ).(4)Bysuchdesign,sincer ismeasureable,u isimplementable.Also,sinceB,G,D2L1,q ,q des2L1also_q ,_q des2L1,conclusionu 2L1canbemade. 63
PAGE 64
Closedloopanalysisoferror: _r =q )]TJ /F9 11.955 Tf 12.2 0 Td[(q des+c_e =)]TJ /F3 11.955 Tf 9.3 0 Td[(k1r )]TJ /F3 11.955 Tf 11.95 0 Td[(k2r +D,(4)inwhich,k1andk2aredesignedtobepositiveconstant.Forclosedloopstabilityanalysis,Lyapunovstabilityanalysismethodisused.LetVLbeacontinuouslydifferentiablepositivedenitefunctiondenedas: VL=1 2r >r .(4)TaketimederivativeofVL, _VL=1 2r >_r .(4)Substitutingwehave:_VL=R >()]TJ /F3 11.955 Tf 9.3 0 Td[(k1r )]TJ /F3 11.955 Tf 11.96 0 Td[(k2r +D)=)]TJ /F3 11.955 Tf 9.3 0 Td[(k1r >r )]TJ /F9 11.955 Tf 11.95 0 Td[((k2r >r )]TJ /F3 11.955 Tf 11.96 0 Td[(r >D+1 4k2D>D)+1 4k2D>D=)]TJ /F3 11.955 Tf 9.3 0 Td[(k1r >r )]TJ /F3 11.955 Tf 11.95 0 Td[(k2(r )]TJ /F9 11.955 Tf 19.53 8.09 Td[(1 2k2D)>(r )]TJ /F9 11.955 Tf 19.53 8.09 Td[(1 2k2D)+1 4k2D>D)]TJ /F3 11.955 Tf 21.92 0 Td[(k1VL+", (4)Inwhich "=1 4k2D>D.(4)Ifk2canbepickedbigenough,wecanhaveaverysmall".Consequently, VL(t)VL(0)e)]TJ /F6 7.97 Tf 6.59 0 Td[(k1t)]TJ /F4 11.955 Tf 11.95 0 Td[("k1(1)]TJ /F3 11.955 Tf 11.96 0 Td[(e)]TJ /F6 7.97 Tf 6.59 0 Td[(k1t).(4)Thus,globalultimateboundedresulthasbeenproven.Thelargerk2is,thebettercontrolperformanceitdemonstrates. 64
PAGE 65
Recall( 3 )and( 3 )inSection 3.4.1 A=266664x0z377775, B=Bx^x B.(4)ActualcontrolinputarefromthreeorthogonalringsonsatellitesAandB,thefollowingequationgivesouthowtotransfer Abacktobodyxedcoordinatesystem: A A=R>A=RR A=R>A=RR>=R A.(4)Aswell,BxisgeneratedbydominantringofsatelliteB. 4.3.1.2Step1.A.1controldandInthisstep,attitudesofsatelliteAandBaresettobexed.Similartocontrollerdesignfordand,,highgainrobustcontrollerfordandcouldbedesigned.First,reorganizethedynamicequationsintheformofq =B(q ,_q )u +G(q ,_q )+D, q =264d375=2641 m0 21 d5cos1 m0 21 d5cos)]TJ /F8 7.97 Tf 11.79 4.7 Td[(1 m0 1 d4cos1 m0 21 d4sin375264u1u2375+2642d_2)]TJ /F8 7.97 Tf 10.5 6.48 Td[(2_d_2 d375.(4)ThedesignedcontrollerhasthesameformwithStep1.A.0: u =B)]TJ /F8 7.97 Tf 6.59 0 Td[(1()]TJ /F3 11.955 Tf 9.3 0 Td[(G)]TJ /F3 11.955 Tf 11.96 0 Td[(c_e+q des)]TJ /F3 11.955 Tf 11.95 0 Td[(k1r )]TJ /F3 11.955 Tf 11.96 0 Td[(k2r ).(4)Similarityforstabilityanalysisalsoexists. 4.3.2ControllerforStep1.BThereisatrickydifferencebetweenStep1.BandStep1.A.Tosavecontroleffort,detumblingfor_willconcentrateondriving_tozero,thus,afterStep1.Acompleted,therewillbeaconstantstays.However,sinceduringthedetumblingprocess(Step1.A.1),attitudesofsatelliteAandBarestabilizedbyangularmomentum,aconstantwillnotaffecttherelationshipbetweenFA,FB,andFR. 65
PAGE 66
DuetothehighsimilaritybetweenStep1.AandStep1.B,thecontrollerdesignmethodforStep1.BfollowsthesamedesignprocessasStep1.A.Recallthedynamicsequations:=1 m0 2Ax d5(xcos+zsin))]TJ /F9 11.955 Tf 13.15 8.08 Td[(2_d_ d, (4)d=)]TJ /F9 11.955 Tf 12.33 8.08 Td[(1 m0 2Ax d4(2zcos)]TJ /F4 11.955 Tf 11.96 0 Td[(xsin)+d_2, (4)=)]TJ /F4 11.955 Tf 12.18 8.09 Td[(0 8Ax d3mr2(2zsin+xcos))]TJ /F9 11.955 Tf 15 8.09 Td[(1 m0 2Ax d5(xcos+zsin)+2_d_ d. (4) 4.3.2.1Step1.B.0controldandOrganizethedynamicequations: 264d375=264)]TJ /F8 7.97 Tf 11.79 4.71 Td[(1 m0 1 d4cos1 m0 21 d4sin)]TJ /F11 11.955 Tf 11.29 9.68 Td[()]TJ /F5 7.97 Tf 7.71 -4.42 Td[(0 41 d3mr2+1 m0 21 d5sin)]TJ /F11 11.955 Tf 11.29 9.68 Td[()]TJ /F5 7.97 Tf 7.72 -4.42 Td[(0 81 d3mr2+1 m0 21 d5cos375264u1u2375+264d_22_d_ d375(4)whereu isdenedas: 264u1u2375=264AxzAxx375.(4) 4.3.2.2Step1.B.1controldandOrganizethedynamicequationsas: 264d375=2641 m0 21 d5sin1 m0 1 d4cos)]TJ /F8 7.97 Tf 11.79 4.71 Td[(1 m0 21 d4cos1 m0 21 d4sin375264u1u2375+264d_2)]TJ /F8 7.97 Tf 10.5 5.87 Td[(2_d_ d375(4)ThendesignedinputhasthesameformasintheStep1.A.1.RefertoSection 3.4.2 ,transformationof BtobodyxedframeFB,actualinputB Bisgivenby: B=R>B=RR>=R B.(4)Also,AxisgivenbydominantringofsatelliteA. 66
PAGE 67
4.3.3ControllerforStep1.CRecallthedynamicequationinSection 3.4.3 .Inthisstep,amechanicallatchisintroducedtokeepdistanceaconstant.Thus,theangledifferencebetweenyAandyB,(')]TJ /F4 11.955 Tf 11.95 0 Td[( )istheonlyoneweneedtoconcern.d=0AyBy 2md4cos(')]TJ /F4 11.955 Tf 11.96 0 Td[( ), (4)')]TJ /F9 11.955 Tf 14.14 2.66 Td[( =)]TJ /F4 11.955 Tf 11.38 8.09 Td[(0AyBy 4mr2d3sin')]TJ /F4 11.955 Tf 11.96 0 Td[( (4)Letq=')]TJ /F4 11.955 Tf 11.95 0 Td[( ,u=AyBy: q=)]TJ /F4 11.955 Tf 27.12 8.09 Td[(0u 4mr2d3sinq.(4)ExaminethepropertiesmentionedinSection 4.3.1.1 ,sinqhassingularitywhenq=0,pi.Thismightcausecontrolinputtobeunbounded.Thussaturationforinputuisnecessary.Also,whentheinitialconditionissettobeq=,whichmeansyAandyBareintheoppositedirection,thecontrollerwillbeinvalid.Ifitisthiscase,asymmetricmechanicaldesignfordockingmechanismcouldturnq=tobeavaliddockingattitude.Controllerobjectivecouldbeexpressedas: e=q)]TJ /F3 11.955 Tf 11.96 0 Td[(qdes!0.(4)FollowingthesimilarLyapunovbasedcontrollerdesignmethod,timederivativeoflterederrorr=_e+ce,canbeexpressedas: _r=q+c_e=)]TJ /F4 11.955 Tf 27.12 8.09 Td[(0u 4mr2d3(sinq+c_e).(4)inwhichcisapositiveconstant.Designthecontrolleras: u=)]TJ /F9 11.955 Tf 10.5 8.09 Td[(4mr2d3 sinq0()]TJ /F3 11.955 Tf 9.3 0 Td[(c_e+qdes)]TJ /F3 11.955 Tf 11.96 0 Td[(k_e)]TJ /F3 11.955 Tf 11.95 0 Td[(kcq),(4)wherekisapositiveconstant. 67
PAGE 68
Morediscussionaboutthebehaviorofthiscontrollerwillbeconductedinsimulationsection.Itishardtotellifuisbounded,sincewhenq!0,_e,qdes,and_e!0.Informationontheconvergespeedsareneededtoverifyboundednessofu. 4.3.4ControllerforStep2Recalldynamicequationforthisstep.Noticethat,sincethisstepiscooperatingwiththedockingmechanism,whilethedynamicmodelisonlyfortheidealdockingsituation,anindicativecontrollerisdevelopedhere. d=)]TJ /F4 11.955 Tf 14.02 8.09 Td[(0 mAxBx d4.(4)ExaminethepropertiesmentionedinSection 4.3.1.1 ,assumethenaldwhichdockingmechanismrequiresisdf,then)]TJ /F5 7.97 Tf 18.01 5.25 Td[(0 md4canbeconsideredasboundedandinvertible.Controlobjectiveissettobetrackingadesiredtrajectoryddes,thentheerroris: e=d)]TJ /F3 11.955 Tf 11.96 0 Td[(ddes.(4)Introducinglterederror: r=_e+ce.(4)Again,Tokeepthecontrollerdesignprocessconcise,replaceAxBxwithu,anddesigncontrolinputas: u=)]TJ /F4 11.955 Tf 10.49 8.09 Td[(md4 0()]TJ /F3 11.955 Tf 9.3 0 Td[(kr+ddes)]TJ /F3 11.955 Tf 11.95 0 Td[(c_e),(4)inwhichkischosentobeapositiveconstant.Closedloopstabilityanalysishasnodifferencefromabovecontrollerdesigns. 4.4AssumptionsforSimulationParametersSincethissystemisdesignedfordocking/proximityoperationsofsmallsatellitesorsmallassemblyparts,alltheassumptionsfortheparametersandlimitationsarebasedoncommondesignsforsmallsatellitesormicrosmallsatellites.TakeCubeSatwhichisapopularprogramforsmallsatellitesforexample[ 6 ],thetotalmassofsuchasatellitesliesintheorderof1kg,typicalsizeis0.1m0.1m0.1m,powerbudget 68
PAGE 69
forsatelliteusuallystaysafewwatts(however,newtechnologyinvolvesthemembranelikecongurationofsolarcellsmightgivesmorethan20W(Watts)power).Note,whensatellitesaresetindockingmode,mostofthepowerwillbeusedfordockingmissionincludingactuatingthedockingprocess,measuringandcontrollercomputing.Satellitesinthisthesisaresimpliedtodistributethemassuniformlytothecoils.Basedontheaboveinformation,satellitesmassandcoilradiusaresetas: m=1kg,r=0.1m.(4)Assumptionof4.5Wbudgetfordrivingtheelectromagneticcoilsforeachsatellitecanbefairlymade.Thenforeachcoil,1.5Wisthepowerlimitation.Referringtothedesignofmagnetictorquerin[ 5 ]and[ 8 ],thepowerdissipationinonecoilcanbedeterminedby: P=i2R,(4)whereiiscurrentincoil,andRisresistanceofthecoil.Thecoilresistanceisgivenby: R=2Nr aw,(4)whereNisthenumberorturns,ristheradiusofcoil,=1.5510)]TJ /F8 7.97 Tf 6.58 0 Td[(8mforcopperwire,awissectionareaofthecoil.Foracoilwithradiusof0.1m,aw25mm2isreasonableandsuitableforinertialmatrixassumptioninChapter 3 .Recall( 2 )magneticmomentofacoilisgivenby: =Nr2i=Nr2r Paw 2Nr.(4)ThelargerNis,thelargerthecoilcangenerate.Thus,asmalldiameter(dw)ofcopperwirewithinsulationwhichisavailablehasbeenchosentobe0.15mm.ThenN=4aw d2wcanbeapproximated. 69
PAGE 70
Substituting,alimitationforthemagneticmomentonecoilcangeneratemax=73Am2thencanbedesigned.Additionally,disturbancesandnoisesinsimulationwillbedesignedaswhitenoiseswhichhaveanorderoftenthofinputforcesandtorques.Undertheseassumptions,simulationsforseparatestepsandseveralcompletesimulationresultcombinedwithcontrolstrategyindifferentscenarioswillbeinvestigatedinfollowingsections. 4.5SimulationandResult 4.5.1SeparateSimulationResultforEachControllerBeforecompletesimulationsfordifferentdockingscenariosbegin,vericationforeachcontrollerisessential.Alsotherearesomedetailsaboutthesecontrollerarediscussed.BecauseofthesimilaritybetweenStep1.AandStep1.B,simulationsforStep1.AincludingStep1.A.0andStep1.A.1coulddemonstratetheperformanceofcontrollersinbothofthesetwosteps. 4.5.1.1SimulationforStep1.A.0Consideringthedockingstrategy,aregulationford0and0todesiredconstantddesanddesissimulated.Acontinuoustrajectoryqcfrominitialvalueq0toqdeshasbeendesignedassuch: qc=q0+(qdes)]TJ /F3 11.955 Tf 11.96 0 Td[(q0)tanh(!t)]TJ /F4 11.955 Tf 11.96 0 Td[())]TJ /F9 11.955 Tf 11.96 0 Td[(tanh()]TJ /F4 11.955 Tf 9.3 0 Td[() 1)]TJ /F9 11.955 Tf 11.96 0 Td[(tanh()]TJ /F4 11.955 Tf 9.3 0 Td[(),(4)where!isapositiveconstantfactoradjustingthetimethetrajectorytakestoconvergetoqdes,thelargeritis,thefastertrajectoryconverge,thelargercontroleffortitneeds.RecalltheowchartinFigure 4-3 and 4-4 eachstepneedsacriteriontojudgewhetherthisstepisnishedandtrigcorrespondingcontrollerandangularmomentummanagementbehavior.ForStep1.A.0,itissettobetsA1.Itisdenedtobe1whenthefollowingconditionsaresatised:q)]TJ /F3 11.955 Tf 11.96 0 Td[(qdes0.01,_q0.001otherwise,itstays0.Tofullyinspecttheperformanceofcontroller,3setofinitialconditionshavebeentested,asshowninTable 4-1 70
PAGE 71
ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-6. Simulationresultforinitialcondition1. ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-7. Simulationresultforinitialcondition2. 71
PAGE 72
Table4-1. InitialconditionforsimulationofStep1.A.0 d0(m)_d0(m/s)0_0(1/s) 11.50=3021.50.01=2)]TJ /F9 11.955 Tf 9.3 0 Td[(0.0230.8)]TJ /F9 11.955 Tf 9.3 0 Td[(0.020.01 ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-8. Simulationresultforinitialcondition3. Sincethedockingscenariosareallsettostartfromattitudestableinitialconditions,_0isalwayssettobe0.Also,consideringtheinputlimits,_d0cannotbelarge.Actually,forobjectwithdimensionof0.1m,0.01m/sisareasonableassumption.Desiredconstantddesanddesaresettobe1mand0radrespectively.Simulationresultsfortheseconditionsincludingstatesvariable,errorandinput,aredemonstratedinthefollowinggures:Figure 4-6 ,Figure 4-7 ,Figure 4-8 .Thedesignedsmoothtrajectoriesfromd0and0toddesanddeshavebeendemonstratedinplotAofeachgure.CombiningwithplotB,presentingthetrackingerror,andplotC,presentingtheinputs,onecandrawaconclusionthatwhencontrolsignalsstaysintherangeofinputlimitations(generallyfrom0-10sand20-30s),trackingerrorhasa 72
PAGE 73
goodperformance(under1103).However,eventhesaturationaffectsthetrackingerrors(generallyfrom10-20s),astimegoesby,errorstillcanbedriventozero.TriggerindicatortsA1isturnedonabout32sto35s,whichmeansthetimeconsumptionforthisstepisacceptableconsideringanusualcompletedockingmissionrequires5)]TJ /F1 11.955 Tf 9.3 0 Td[(10minutes[ 19 ].Alsothegoodperformanceontrackingerrorindicatesthatthiscontrollerissuitableforthegeneralreasonableinitialvelocitiesandanglerates. 4.5.1.2SimulationforStep1.A.1Since,thecontrolobjectivesinthissteparedistanceregulatingortracking,anddetumblingtherotatedreferenceframe,themaincontroleffortshouldbespentondistancecontrolanddetumbling(_!0).Whendesignthetrajectory,desiredtrajectoryofusuallyispreferredtodrivetoaconstantnearbyinitialcondition0.Withoutloseofgenerality,controlobjectivearesettoberegulatingtoddes=1anddes=0+.Inwhichisasmallangle,againtosavecontrolenergy,signofisdenedduetoinitialratesof_0.Carefulchoosingofwillreducethetimetoachievecontrolobjective.Inthisstep,sincetheattitudesofsatelliteAandBaresettobestabilizedbyreactionwheels,issettobe0,sois_.Also,duetothetrigconditionofStep1.A.1(q)]TJ /F3 11.955 Tf 11.71 0 Td[(qdes0.01,_q0.001),initialcondition_d0issettobenolargerthan0.001,_0isthevalueof_whenStep1.A.1istriggered.Yettotestifytherobustnessofthecontroller,thefollowing2initialconditionswithfairlylarge_d0and_showninTable 4-2 aretested. Table4-2. InitialconditionsforsimulationofStep1.A.1 d0(m)_d0(m/s)0_0(1/s) 11.2)]TJ /F9 11.955 Tf 9.3 0 Td[(0.01=30.0220.80.02=2)]TJ /F9 11.955 Tf 9.29 0 Td[(0.02 Followingtheguidelineinthebeginningparagraph,des==3+=10anddes==2)]TJ /F4 11.955 Tf 12.33 0 Td[(=10.Thesimulationresultsforcondition1and2aredemonstratedin2gures,Figure 4-9 andFigure 4-10 .SimilarwithStep1.A.0,thetrackingerrorshowsagoodperformancewhensaturationsarenotreached(from10-80s).Detumbling 73
PAGE 74
a0.02rad/slevel_ismoretimeconsumingthandrivingtozeroinStep1.A.0.ReferringtotheplotD,trigconditionsareusuallysatisedataround90s.Nevertheless,inacompletesimulation,Step1.A.1alwayshappensaftercontrolobjectivesofStep1.A.0hasbeenachievedwhichcomesusuallywithasmall_(about0.005rad/s).Ifthisisthecase,thentimeconsumptionwillbereduced.MoredetailsaboutthiscanbereachedincompletesimulationsinSection 4.5.2 ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-9. SimulationresultforStep1.A.1ininitialcondition1. 4.5.1.3SimulationforStep1.CThisstepstartswithroughdocking,whichxedthedistancebetweentwosatellites.Onlytwistingangledifference')]TJ /F4 11.955 Tf 13.12 0 Td[( willbedealtwithinthisstep.Assumeroughdockingkeepsdistancetobedr=0.5,twosetsofinitialconditionswillbetestedforthiscontroller,asshowninTable 4-3 .TriggertsCisdenedtobe1when')]TJ /F4 11.955 Tf 12.51 0 Td[( 0.001,_')]TJ /F9 11.955 Tf 15.53 2.65 Td[(_ 0.001.SimulationresultsfortwoinitialconditionswithinputsaturationareillustratedinFigure 4-11 and 4-12 .TrajectoryiswellfollowedbyobservingtheplotAandB.As 74
PAGE 75
ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-10. SimulationresultforStep1.A.1ininitialcondition2. Table4-3. InitialconditionsforsimulationofStep1.C '0)]TJ /F4 11.955 Tf 11.95 0 Td[( 0(rad)_'0)]TJ /F9 11.955 Tf 15.53 2.66 Td[(_ 0(1/s) 1=2)]TJ /F9 11.955 Tf 9.29 0 Td[(0.012)]TJ /F4 11.955 Tf 9.3 0 Td[(=30.02 discussedinthecontrollerdesignprocedureinSection 4.3.3 ,boundednessofcontrolinputscannotbeguaranteed.ComparingplotAandplotC,singularityofcontrolinputhappenswhenyisclosetozero.However,astimegoesby,onecanobservethissingularityisanonetimeaccident.Afterthat,theinputconvergestoaconstant.And,plotDshowstrigindicatorts2isturnedonaround30s.Comparingwith( 4 ),throughtadditionalsimulations,anunconrmedconclusioncanbeinductedthat: limt!+1u=4k2mr2d3 0.(4)inthetwosimulationsshown,kischosentobe0.1,limt!+1u=12.5Am2Am2.Sumup,saturationforthisstepisnecessaryforthesingularityissue.Tokeeptheachieved 75
PAGE 76
objective,aconstantinputisneeded.Thus,cooperatingwithdockingmechanismisessentialforthisstep.Also,timeconsumptionisacceptable. ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-11. SimulationforStep1.Cininitialcondition1withsaturation. 4.5.1.4SimulationforStep2Initialconditionforthisstepiscomingfromtheroughdockingsetting.Assumeroughdockingkeepsdistancetobedr=0.5.Theactualrequireddistanceformechanicallatchissettobeddes=0.3.SimulationresultisshowninFigure 4-13 .Triggercriterionissatisedaround25s.TrackingerrorinplotBpresentsagoodperformanceofthiscontroller.Timeconsumptionandenergyconsumptionperformwellinthis1-Dattractioncase. 4.5.2CompleteSimulationInthissection,onecompletesimulationisdemonstrated.Withoutlossofgenerality,2setsofinitialconditionsaresetasTable 4-4 .Exceptforintroducingcontrolalgorithminthissection,transformingvirtualcontrolinputsforeachsteptoactualcurrentsofringsisalsoincluded. 76
PAGE 77
ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-12. SimulationforStep1.Cininitialcondition2withsaturation. ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-13. SimulationresultforStep2. 77
PAGE 78
Table4-4. Initialconditionsforcompletesimulation d(m)_d(m/s)(rad)(-)(-)(-)'(-) (-) 11.50.01 3)]TJ /F8 7.97 Tf 10.5 4.71 Td[(3 4)]TJ /F5 7.97 Tf 10.5 4.71 Td[( 4 6 5)]TJ /F5 7.97 Tf 10.5 4.71 Td[( 221.70.02)]TJ /F5 7.97 Tf 10.49 4.7 Td[( 3)]TJ /F5 7.97 Tf 10.5 4.7 Td[( 3)]TJ /F5 7.97 Tf 10.5 4.7 Td[( 6 4)]TJ /F8 7.97 Tf 10.49 4.7 Td[(3 4 Observingthevirtualcontrolinputuforeachstep,takeStep1.Aforexample: u =264u1u2375=264zBxxBx375.(4)Calculatethemagnitudeforinput: u=q u21+u22=Bxq 2z+2x.(4)Assumetwosatellitehasthesamepowersupplyability,thenmake Bx=q 2z+2x=p u.(4)Thus,magneticmomentumofArepresentedinF, A,isgivenby: A=266664x0z377775.(4)Transfer AtoFA, A =R>A=RR A=RA=RR=R A.(4)Refertotheequations( 3 )and( 3 )forRA=RandR=RinSection 3.2.1 and 3.4.1 .ItisstraightforwardtocalculateA A.Also,BxisgeneratedbydominantringofB,B Bisobviouslyshownas: B B=266664Bx00377775.(4)Thetransformationsforotherstepsaresimilartothisprocedure. 78
PAGE 79
Thefollowingtwosetofgures(Figure 4-14 and 4-15 andFigure 4-16 and 4-17 )showthed,,,and(')]TJ /F4 11.955 Tf 12.34 0 Td[( )variesduringdifferentsteps,andthecontrolinputs(Ax,Bx,Ay,By,AzandBz)generatedbyeachofthecoilswhichareperpendiculartoaxesxA,xB,yA,yB,zA,andzB,respectively.Also,vetrigindicatorsforStep1.A.1,Step1.B.0,Step1.B.1,Step1.C,Step2anddockingcompletion(tsA1,tsB,tsB1,tsC,ts2andtsf)havebeendemonstrated.RefertoTable 4-5 ,controlobjectivesandtriggertimeforeachstephavebeenshowed. Table4-5. Completesimulationresult StepnameControlobjectiveTriggertimefornextstep(s) Step1.A.0Regulatedto1m,to0tsA1(32,44s)Step1.A.1Detumbling(_!0),keepingdtsB(107,118s)Step1.B.0Regulatedtodr(0.5m),to0tsB1(140,152s)Step1.B.1Detumbling(_!0),keepingdtsC(210,188s)Step1.CRoughdocking,regulate(')]TJ /F4 11.955 Tf 11.95 0 Td[( )to0ts2(247,226s)Step2Drivedistancetoddes(0.3m)tsf(270,249s) Figure4-14. Completesimulationforinitialcondition1:signal. Tosummarize,thecontrollersfordifferentstepsareunitedtogetherandtestedfor2generaldifferentscenariostodemonstratetheeffectivenessofthedockingandcontroloftwosatelliteseachequippedwith3orthogonalmagneticcoils.Theaboveresults 79
PAGE 80
Figure4-15. Completesimulationforinitialcondition1:magneticmoment. Figure4-16. Completesimulationforinitialcondition2:signal. 80
PAGE 81
Figure4-17. Completesimulationforinitialcondition2:magneticmoment. showthewholedockingmissioncostslessthan300swhichisthegeneraltimewithotherdockingpropellentsystemwillcost.RecallSection 4.4 ,thepowerrequirementsforthecasespresentedmatchwiththeinputlimitationanalysis.Aswell,foreachstep,disturbancescausedbyinaccuracyofdynamicsmodel,forceandtorquegeneratedbyuncertainties,andcomponentsofforcesantorquesactingoutofthealignmentplanesoraxeshavebeenaddedtosimulation.TherobustnessofthecontrollersstaysconsistentwiththeresultsshowninseparatesimulationsinSection 4.5.1 .Thus,underdeepspaceassumptions,thisdockingstrategyandcontrollawareapplicableforsmallsatellitesorassemblyparts.Innextchapter,moredetailsaboutexpandingthisdockingstrategytolowEarthorbitscenarioswillbeintroduced. 81
PAGE 82
CHAPTER5THELOWEARTHORBITCHALLENGES 5.1OverviewComparingtodeepspaceassumption,therealityinlowearthorbit(LEO)introducesasetofchallenges,includingtheeffectsoftheEarth'sgravitationaleldandmagneticeld.InSection 5.2 and 5.3 ,thesetwowillbeaddressed.Byasimple2-Dcase,thischapterpresentsthedynamicsequationsinLEOscenario.Aswelldifferencesfromthedeepspacescenarioaredemonstrated.Difcultiesofsolvingthisproblemhavebeendiscussed. 5.2GravitationalFieldWhenitcomestoinorbitcase,twotypesoftermsmainlyaffectthedockingdynamics:oneistheEarthgravity,anotheroneisorbitalangularvelocity.RecallSection 3.2.1 ,thegeometryofdifferentcoordinatesystem,whenthedocking/assemblyareoperatinginsomeorbitinsteadofindeepspace,FI6=FL.Consequently,! L=I6=0 .TakedynamicsforStep1.Aforexample.! =I=! R=L+! L=I, (5)P A=mA(_p A+! =IP A)=mA(_p A+(! R=L+! L=I)P A), (5)_P A+(! R=L+! L=I)P A=F A, (5)inwhichF Aincludebothelectromagneticforceandgravityforce.Similarchangeswillhappentorotationaldynamics.Fordescribingtheorbitalrelativeposition/attitudeproblem,whentheEarthismodeledasaperfectsphere,Clohessy-Wiltshire(CW)orHill'sequationsareusually 82
PAGE 83
used[ 18 ].SinceCWequationsareexpressedinthelocalinorbitframeFLasfollowing,Lx+n2Lx=LFx m, (5)Ly)]TJ /F9 11.955 Tf 11.95 0 Td[(3n2Ly)]TJ /F9 11.955 Tf 11.96 0 Td[(2nL_z=LFy m, (5)Lz+2nLy=LFz m, (5)whereLFistheforceactonthisobjectexceptgravity,nistheorbitalfrequency,givenby: n=r e r3e,(5)wherethegravitationalconstantofEarthe=3.98105km3=s2,reistheorbitalradiusofthesetwosatellites'centerofmass.Whenstudyinginorbitcase,translationaldynamicsmodelispreferredtobederivedinFL.Thecomplexityoftransfermatrixandstatesvariableestimationin3-Drealityisnothelpfulfordemonstratinghoworbitcaseshouldbederived.Thus,asimplenew2-DcaseasshowninFigure 5-1 ispresentedinthissection. Figure5-1. A2-Dcaseconcernsorbitaldynamics. 83
PAGE 84
AssumedipoleAandBaregeneratedbyringAandB,whichhastheidenticalsizeandmass.Inthiscase,byusingCW( 5 ),translationaldynamicsequationsarederivedas:LyA)]TJ /F9 11.955 Tf 11.96 0 Td[(3n2LyA)]TJ /F9 11.955 Tf 11.96 0 Td[(2nL_zA=LFy m, (5)LzA+2nLyA)]TJ /F9 11.955 Tf 11.96 0 Td[(2nL_zA=LFz m. (5)PositionofOArepresentedinFLis(LyA,LzA),misthemassofringA,and 264LFyLFz375=264cossin)]TJ /F9 11.955 Tf 11.3 0 Td[(sincos375264RFAyRFAz375.(5)where cos=LyA p Ly2A+Lz2A,sin=LzA p Ly2A+Lz2A.(5)RecallexpressionsforelectromagneticforceinSection 2.3.2 264RFAyRFAz375=30 4AB d42642cosRcosR)]TJ /F9 11.955 Tf 11.95 0 Td[(sinRsinR)]TJ /F9 11.955 Tf 11.29 0 Td[(cosRsinR)]TJ /F9 11.955 Tf 11.96 0 Td[(cosRsinR375,(5)whered=2p Ly2A+Lz2A.Therotationaldynamicsequationcanbeeasilyderivedsincethisisacoplanarcase:Ix(R+)=)]TJ /F4 11.955 Tf 12.18 8.09 Td[(0 4AB d3(2sinRcosR+cosRsinR), (5)Iy(R+)=)]TJ /F4 11.955 Tf 12.18 8.09 Td[(0 4AB d3(2cosRsinR+sinRcosR), (5)whereIxisthexcomponentofinertiaofringA=B.Observingthedynamicsequations,anddnolongerstayindynamicsequationsexplicitly.Eithercontrolobjectiveneedstobetransformedorthedynamicequationshould.Itdependsontheactualsensorsandstatesestimationmethod.Especially,whenitcomesto3-D,thetransformingbecomesmoredifcult.However,thedocking 84
PAGE 85
strategyandcontrollerdesignmethodshowninChapter 4 stillworks.Besides,whentheorbitperiodislongenoughcomparingtotheconsumedtimeondocking,theinuenceoforbitdynamicscouldbeconsideredasdisturbances.Basedonmoreknowledgeonstatesestimation,consideringaboutorbitdynamicswillbecomeeasier.Infuturework,thispartishighlyrecommended. 5.3GeomagneticFieldWhenthissystemisoperatinginEarth'smagneticeld,theelectromagneticcoilsproduceforceandtorqueonthesatellites.Forcegeneratedbygeomagneticeldisafunctionofthegradientofthelocalmagneticeld[ 15 ]: F GM=rBE ,(5)whereBEisthemagnitudeoflocalmagneticeld, isadipolemomentgeneratedbythecoil.Torquegeneratedbygeomagneticeldisgivenby: GM= B E.(5)Byexaminingandthequalitativeanalysis[ 15 ],theamountofdisturbanceforceproducedonsatelliteduetogeomagneticeldislessthantenthsofapercentoftheinteractingforcesbetweentwosatellites.However,thetorqueisonthesameorderofinteractingtorque.Sowhengeomagneticeldisconsidered,thedisturbanceforceisnegligible,whilethetorquemustbetakenintoaccount.TakethesimpleexampleinSection 5.2 forexample,consideringthesmallsizeofcoils,thedirectionandmagnitudeofB Eareassumedxed,presentedinFigure 5-2 .Thetorqueproducedbygeomagneticeldcanbecalculated:L AG=L ALB E=A(cosRBEz)]TJ /F9 11.955 Tf 11.96 0 Td[(sinRBEy), (5)L BG=L BLB E=B(cosRBEz)]TJ /F9 11.955 Tf 11.96 0 Td[(sinRBEy), (5) 85
PAGE 86
Figure5-2. Asimple2-Dcaseconcernsgeomagneticeld. Therotationaldynamicsequationsbecome:Ix(R+)=)]TJ /F4 11.955 Tf 12.17 8.08 Td[(0 4AB d3(2sinRcosR+cosRsinR)+A(cosRBEz)]TJ /F9 11.955 Tf 11.96 0 Td[(sinRBEy), (5)Iy(R+)=)]TJ /F4 11.955 Tf 12.17 8.09 Td[(0 4AB d3(2cosRsinR+sinRcosR)+B(cosRBEz)]TJ /F9 11.955 Tf 11.95 0 Td[(sinRBEy). (5)Thesimilardockingstrategycanbetransplantedtothiscase.Firststep,setattitudeofAxed,regulateRtozero.ThensetBxed,regulateRtozero.Considerbothofthetwodipolesaresteerable,whichmeansanydirectionandmagnitudeofthemagneticmomentcanbegenerated.Taketherststepforexample,reorganizeitas: Ix(R+)=)]TJ /F4 11.955 Tf 12.18 8.09 Td[(0 4A d3(2sinRBy+cosRBz)+A(cosRBEz)]TJ /F9 11.955 Tf 11.96 0 Td[(sinRBEy),(5)inwhichBy=BcosR,Bz=BsinR.Itisinterestingthatthereare3inputs(A,ByandBz).RecallthecontrolobjectiveforStep1.AinSection 4.3.1 :controllingisforthepurposeofaligningB'sdominantaxiswithdistancevector,controllingdgivestheabilityofregulatingthedistanceor 86
PAGE 87
trackingadesiredtrajectory,controllingisfordetumblingtherotatedreferencecoordinatesystemFR.Thedynamicequationshows3degreesoffreedom.SeparatingStep1.Atotwostepsistryingtoavoidtheproblemoflackingcontrolinput.Afterintroducinggeomagnetic,allthe3controlobjectivescanbedoneinonecontroller.Thiscouldalsobeapartoffuturework. 87
PAGE 88
CHAPTER6CONCLUSION 6.1SummaryoftheThesisThisthesisstartsfromtheideathatusingelectromagneticforceandtorquetoadjusttherelativepositionsandattitudesindocking/assemblyandotherproximityoperations.Basedonsomecarefulassumptions,thisthesisinvestigatesacapabledockingstrategytoachievethisgoal.Thekeyobjectivesofthisthesisweretopresentthiselectromagneticdockingideaisfeasiblefromthedynamicsandcontrolpointofview.Inthefollowingparagraphs,thechapter-wisesummaryofthisthesisaredemonstrated:Chapter 1 introducesthebasicideaofelectromagneticdockingandshowstheadvantagesoverconventionalpropulsion.Also,previousrelativeworksandthedifferencesfromotherresearcheshavebeenprovided.Chapter 2 usestheprincipleofmagneticeldtheory,describestheapplicabletheoryofmagneticeldmodelforthisthesis.Exactmodelhasbeenpresentedrstly,andthenlinearizationofthismodelleadstoafareldmodel.Baseonthisfareldmodel,forceandtorqueequationsforseveralprincipalbasiccongurationsofcoilshavebeenderived.Chapter 3 describesthesystemandtheoveralldockingstrategywithdeepspaceassumption.Decoupling3-Dproblemtoseveralstepsofprincipalbasiccasesincluding2-Dco-planarcase,co-axialtwistcaseand1-Ddistancecontrolcase.Thendevelopmentofdynamicmodelsforeachofthesecaseshasbeeninvestigated.Chapter 4 demonstratestheoverallcontrolstrategywhichaccommodateswiththedockingstrategy.Then,thecontrollerdesignandsimulationresultsofeachstephavebeenpresented.Aswell,acompletedockingproceduresimulationhasbeenperformed.Chapter 5 statesthedifcultieswhenthissystemisoperatinginlowearthorbit.Basedonasimple2-Dcase,thischapterpresentshowthegravitationaleldand 88
PAGE 89
geomagneticeldaffectthissystem.Afterdiscussionaboutthedynamicofthissimplecase,suggestionsforfutureworkdirectionshavebeengiven.Thisthesisstartsanewthinkingofintroducingelectromagneticforcesandtorquestodocking/assemblyandproximityoperationsmissions,whichiscombiningthetranslationalandrotationaldegreesoffreedomtogetheranddesigningcontrollawforthem.Otherpresentedworksusuallydecoupledthemtotwoindependentproblembycooperatingwithacompleteattitudecontrolsystem.Though,thisapproachisstraightforwardtothink,italsolosestheinsightaboutthebehavioursofelectromagneticforcesandtorques,abouthowtheyarecoupledwiththerelativepositionandattitude.Byaseriesofsimulations,thedockingstrategyinthisthesishasbeenproventobefeasibleandrobustformulti-scenarios.Also,powerconsumptionandtimecosthavebeendemonstratedsuitableforsmallspacevehicles. 6.2FutureWorkThisthesisconcentratesontheconceptionofelectromagneticdocking/assemblyandproximityoperationsystemfromthebasicdynamicsandcontrolpointofview.Thusnecessaryassumptionsabouttheworkscenario,implementmethodsandequipmentshavebeenmade.Severalrecommendationsaregivenforfuturework:Theinputsaturationinuencesthecontrollerperformanceheavily.Controllerdesignwithsaturationcompensatorisagooddirectiontoimprovetheperformance.Combiningwithstatesestimationresearch,inorbitcasecanbeinvestigatedmoredeep.BasedontheideaintroducedinChapter 5 abouthowtoexploitgeomagneticeldforthissystem,3-Dexpansioncouldbepartofthefuturework. 89
PAGE 90
APPENDIXAMATRIXNORMAmatrixnormisanaturalextensionofthenotionofavectornormtomatrices[ 3 ],[ 21 ].Thep-normforanmmatrixAisdenedas: kAkp=maxx6=0kAxkp kxkp.(A)Inthecaseofp=1,thenormcanbecomputedas: kAk1=max1jnmXi=1jaijj,(A)whichissimplythemaximumabsolutecolumnsumofthematrixA.Incaseofp=1thenormscanbecomputedas: kAk1=max1jmnXj=1jaijj,(A)whichisthemaximumabsoluterowsumofthematrixA.The2-normistheone,usuallyusedinboundingamatrix.ThereisaninequalitiesrelationshipamongkAk2andkAk1andkAk1:1 p nkAk1kAk2p mkAk1, (A)1 p mkAk1kAk2p nkAk1. (A)So,provingmatrixAisbounded,isequivalenttoprovingeveryabsolutecolumnsumofthematrixAisbounded.ItissufcienttohaveeveryabsoluteelementofmatrixAbebounded. 90
PAGE 91
REFERENCES [1] Ahsun,U.Dynamicsandcontrolofelectromagneticsatelliteformations.Ph.D.thesis,MassachusettsInstituteofTechnology.Dept.ofAeronauticsandAstronautics.,2007. [2] Camillo,P.J.andMarkley,F.L.Orbit-averagedbehaviorofmagneticcontrollawsformomentumunloading.JournalofGuidanceandControl3(1980):563. [3] Demmel,J.W.AppliedNumericalLinearAlgebra.SIAM,1997. [4] Dennison,E.Off-AxisFieldDuetoaCurrentLoop.2005.URL http://www.netdenizen.com/emagnet/offaxis/iloopoffaxis.htm [5] Graversen,T.,Frederiksen,M.K.,andVedstesen,S.V.AttitudeControlsystemforAAUCubeSat.Master'sthesis,AalborgUniversity,2002. [6] Hank,H.,Jordi,P.S.,Augustus,S.M.,Schinichi,N.,andRobert,J.T.CubeSat:AnewGenerationofPicosatelliteforEducationandIndustryLow-CostSpaceExperimentation.14thAnnual/USUConferenceonSmallSatellites5(2000). [7] Hughes,P.C.SpacecraftAttitudeDynamics.DoverPublications,2004. [8] Jens,G.DevelopmentofanActiveMagneticAttitudeDeterminationandControlSystemforPicosatellitesonhighlyinclinedcircularLowEarthOrbits.Master'sthesis,SchoolofAerospace,MechanicalandManufacturingEngineering,Science,EngineeringandTechnologyPortfolio,RMITUniversity,2006. [9] Kaneda,R.,Yazaki,F.,Sakai,S.,Hashimoto,T.,andSaito,H.TheRelativePositionControinFormationFlyingSatellitesusingSuper-ConductingMagnets.2ndInternationalSymposiumonFormationFlyingMissionsandTechnologies.2004. [10] Khalil,H.K.NonlinearSystems.PrenticeHall,Inc.,2002,3rded. [11] Lee,D-RandPernicka,H.OptimalControlforProximityOperationsandDocking.InternationalJournalofAeronauticalandSpaceSciences11(2010).3:206. [12] M.Patre,P.,MacKunis,W.,Dupree,K.,andDixon,W.E.Anewclassofmodularadaptivecontrollers,PartI:Systemswithlinear-in-the-parametersuncertainty.AmericanControlConference(2008):1208. [13] Pollack,G.L.andStump,D.R.Electromagnetism.AddisonWesley,2002. [14] Reynerson,C.M.Spacecraftmodulararchitecturedesignforon-orbitservicing.IEEEAerospaceConferenceProceedings4(2000):227238. 91
PAGE 92
[15] Schweighart,S.A.Electromagneticformationightdipolesolutionplanning.Ph.D.thesis,MassachusettsInstituteofTechnology,Dept.ofAeronauticsandAstronautics,2005. [16] Silani,E.andLovera,M.Magneticspacecraftattitudecontrol:asurveyandsomenewresults.ControlEngineeringPractice13(2005):357C371. [17] Sofyali,A.andAslan,A.R.Magneticattitudecontrolofsmallsatellites:asurveyofapplicationsandadomesticexample.Tech.rep.,IstanbulTechnicalUniversity,SpaceSystemsDesignandTestingLaboratuary,2011. [18] Steve,N.ASEN5050SpaceightDynamics.2011.URL http://ccar.colorado.edu/asen5050/ASEN5050/Lectures_files/lecture11.pdf [19] Werts,J.R.andBell,R.AutonomousRendezvousandDockingTechnologies-StatusandProspects.ProceedingsofSPIEAeroSenseSymposium5088(2003):20. [20] Wiens,G.J.andMaldonado,L.AutonomousTorque-ActuatedFoldableDockingMechanismforSmallSpaceVehicles.2011FloridaConferenceonRecentAdvancesinRobotics1(2011):200. [21] Wikipedia,thefreeencyclopedia.Matrixnorm.2010.URL http://en.wikipedia.org/wiki/Matrix_norm [22] Zhang,Y.W.,Yang,L.P.,Zhu,Y.W.,Ren,X.H.,andHuang,H.Self-dockingcapabilityandcontrolstrategyofelectromagneticdockingtechnology.ActaAstronautica69(2011):1073C1081. [23] .Nonlinear6-DOFcontrolofspacecraftdockingwithinter-satelliteelectromagneticforce.ActaAstronautica77(2012):97. 92
PAGE 93
BIOGRAPHICALSKETCH KeHuoreceivedhisBachelorofScienceinAerospaceEngineeringfromtheBeihangUniversity,China,in2009,MasterofScienceinAerospaceEngineeringfromtheUniversityofFloridain2012. 93
|