Citation
High-Speed Flickering and Jet Formation in GRS 1915+105

Material Information

Title:
High-Speed Flickering and Jet Formation in GRS 1915+105
Creator:
Lasso Cabrera, Nestor Miguel
Place of Publication:
[Gainesville, Fla.]
Florida
Publisher:
University of Florida
Publication Date:
Language:
english
Physical Description:
1 online resource (177 p.)

Thesis/Dissertation Information

Degree:
Doctorate ( Ph.D.)
Degree Grantor:
University of Florida
Degree Disciplines:
Astronomy
Committee Chair:
Eikenberry, Stephen S
Committee Members:
Hamann, Fredrick
Kargaltsev, Oleg
Bandyopadhyay, Reba M
Reitze, David H
Graduation Date:
8/11/2012

Subjects

Subjects / Keywords:
Accretion disks ( jstor )
Electronics ( jstor )
Light curves ( jstor )
Photometry ( jstor )
Pixels ( jstor )
Power laws ( jstor )
Relativistic jets ( jstor )
Signals ( jstor )
X ray flares ( jstor )
X ray observatories ( jstor )
Astronomy -- Dissertations, Academic -- UF
circe -- electronics -- grs1915 -- gtc -- hawaii-2rg -- hexte -- infrared -- jet -- microquasar -- pca -- qpo -- rms -- rxte
Genre:
bibliography ( marcgt )
theses ( marcgt )
government publication (state, provincial, terriorial, dependent) ( marcgt )
born-digital ( sobekcm )
Electronic Thesis or Dissertation
Astronomy thesis, Ph.D.

Notes

Abstract:
In this dissertation we study the different phenomena of accretion and relativistic jet formation observed in the microquasar GRS 1915+105. Our final goal is to understand the processes producing the relativistic outflows, as well as their relation with the inflow mechanisms. Initially, we analyze X-ray emission (RXTE PCA and HEXTE) from GRS 1915+105 during and after an X-ray/radio plateau epoch. The high signal-to-noise levels in our observations allow the first published measurement of quasi-periodic oscillations (QPO) RMS values using RXTE/HEXTE data. We find that the spectral energy distribution of the QPO strongly indicates an origin in the hard non-thermal emission component, suggesting a second spectral component to the hard non-thermal X-ray emission. Given the association of the QPOs with the observed jet activity in GRS 1915+105, we suggest that this additional non-thermal X-ray spectral component may be directly linked to the relativistic jet formation process. We also analyze simultaneous X-ray (RXTE/PCA) and near-IR (Palomar 200-inch) observations from the microquasar GRS 1915+105 during two similar low/hard state epochs and two different high X-ray variability epochs – X-ray classes alpha and beta. The X-ray to IR cross-correlation function (CCF) shows that both low/hard state observations as well as the class beta observations present little or null interaction between the X-ray and IR fluxes, while the class alpha observations present a strong correlation between the X-ray (inner accretion disk) and the IR (compact jet) light curves. We also use the X-ray to IR CCF to study the relative evolution of the two signals and find no significant evolutionary track in any of the epochs. Simulated IR light curves confirm the results of the CCF, showing a flickering IR emission during the class beta high X-ray variability period that strengthens ~10 s after every X-ray subflare. The existence of a flickering IR emission with frequencies in the range 0.1 to 0.3 Hz that is strongly correlated with the X-ray emission allow us to place the origin of the IR emission in a synchrotron emitting relativistic jet with the IR launch site located at ~0.02 AU from the accretion disk. These results will be especially relevant for constraining the current models of relativistic jet production in GRS 1915+105 and other microquasars. The second part of this work is dedicated to overcoming the limitation in the acquisition of high time resolution infrared data of microquasars. We introduce the Canarias InfraRed Camera Experiment (CIRCE), a new IR instrument for the 10-meter Gran Telescopio Canarias (GTC). Among other properties, CIRCE is specifically designed for the observation of relativistic jet events in microquasars, and along with the capabilities of the GTC, will enable us to observe any microquasar in the J, H, and K IR bands, with a time resolution of ~12 Hz and a signal-to-noise level never achieved before. We plan to use CIRCE in the future to confirm the final results of the jet production study of this dissertation. We present the electronics design of CIRCE, including the housekeeping electronics, the Logic Control Unit (LCU), and the readout electronics. We also present the result of the analysis of the image quality tests performed on the CIRCE optical system. ( en )
General Note:
In the series University of Florida Digital Collections.
General Note:
Includes vita.
Bibliography:
Includes bibliographical references.
Source of Description:
Description based on online resource; title from PDF title page.
Source of Description:
This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Thesis:
Thesis (Ph.D.)--University of Florida, 2012.
Local:
Adviser: Eikenberry, Stephen S.
Electronic Access:
RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2013-02-28
Statement of Responsibility:
by Nestor Miguel Lasso Cabrera.

Record Information

Source Institution:
UFRGP
Rights Management:
Copyright Lasso Cabrera, Nestor Miguel. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Embargo Date:
2/28/2013
Resource Identifier:
857767222 ( OCLC )
Classification:
LD1780 2012 ( lcc )

Downloads

This item has the following downloads:


Full Text

PAGE 2

2

PAGE 3

Tomyfamilyforbeingalwaysthere 3

PAGE 4

Thanksgoouttoallthepeoplewhohavehelpedmethroughthislongjourney.Here,Iincludethosedirectlynamedhereandthose,thatbecauseofthelimitedextensionofthesepages,cannotbeincluded.Iwouldliketostartbythankingmyadvisor,ProfessorStephenEikenberry,forhisguidance,hissupport,hisfriendship,hisoptimism.Iwouldalsoliketothankhimfortransferringtomehisenthusiasmaboutmicroquasarsandinstrumentation,andespeciallyforlettinganinexpertengineerparticipatesincedayoneinsuchabiginstrumentationprojectasCIRCE.Also,Iwanttothankhimforhisguidanceaboutmyacademiccareerandforalwaysremainingcalm,especiallyinthislastyear.IwouldalsoliketothankDr.RebaBandyopadhyayandDr.NicholasRainesfortheircontinuousacademicandnon-academicadvice.Theycouldeasilybeconsideredasco-advisorinthescienticandinstrumentalportionofthiswork.Ithanktheothermembersofmycommittee,Dr.OlegKargaltsev,Dr.FredHamann,andDr.DavidReitzefortheirusefulinputanddiscussions.Ialsothankallthepeoplewhothroughtheyearshaveformedpartofourscienticgroup.Theirdiscussionshelpedmetogrowasascientistandtonavigatethroughmygraduateschoolyears.Finally,Ialsowanttothankthemanyengineersfromthefourthoorwhohavegivenmetheiradvice.Inadditiontomyacademicmentors,noneofthiswouldhavebeenpossiblewithoutthesupportofmygoodfriends.IwillneverforgetthosepricelessmomentswithDimitriVeras,CurtisDeWitt,SunMiChung,JesusMartinez,andmywifea.k.atheTopChefGangandallotherswhooccasionallyjoinedus.Iamthankfulforthelongextendeddinners,thebeachtrips,theunexpectedadventures,andespeciallyforlettingmebepartoftheirlives.IalsothanktheSpanishtribe,fromtheonesthatwelcomedmetotheoneswhoIhavewelcomed.Theyhavebeenlikeasmallfamily,alwaysmakingthisprocessmoreenjoyable.IcannotforgettothanktoallthepeoplewhohaveplayedsoccerwithmeduringalltheseyearsinGainesville,especiallymyteammates.Theyhavegivenmethatpointofsanitythathasallowedmetosurvivemygraduateschool 4

PAGE 5

THANKSTOALL! 5

PAGE 6

page ACKNOWLEDGMENTS .................................. 4 LISTOFTABLES ...................................... 9 LISTOFFIGURES ..................................... 10 ABSTRACT ......................................... 13 CHAPTER 1INTRODUCTION ................................... 15 2GRS1915+105ANDJETFORMATIONPROCESSES .............. 18 2.1X-rayBinarySystems ............................. 18 2.2GRS1915+105 ................................. 22 2.3X-rayLightCurves ............................... 25 2.4Low-FrequencyQuasiperiodicOscillations(LFQPOs) ........... 27 2.5LongWavelengthFlaringandJetFormationProcesses .......... 30 3HARDX-RAYOBSERVATIONSOFHIGH-SPEEDFLICKERINGANDJETFORMATIONINGRS1915+105 .......................... 33 3.1IntroductiontoGRS1915+105 ........................ 33 3.2Observations .................................. 36 3.3X-rayLightCurves ............................... 37 3.4QPOPowerSpectralFeatures ........................ 37 3.5X-rayEnergySpectra ............................. 38 3.6FractionalQPORMSSpectra ......................... 41 3.7Discussion ................................... 45 4SIMULTANEOUSX-RAYANDNEAR-INFRAREDOBSERVATIONSANDJETFORMATIONINGRS1915+105 .......................... 51 4.1IntroductiontoSimultaneousMulti-WavelengthObservations ....... 52 4.2ObservationsandDataReduction ...................... 55 4.3SimultaneousX-rayandIRLightCurves ................... 57 4.4MeanX-raytoIRCross-correlation ...................... 58 4.5CCFEvolution ................................. 61 4.6SimulatedIRlightcurves ........................... 64 4.7Summary .................................... 72 5CIRCEANDTHEOBSERVATIONOFJETSINMICROQUASARS ....... 74 5.1CIRCE ...................................... 75 5.1.1OpticalDesign ............................. 77 6

PAGE 7

........................... 78 5.1.2.1FilterBox ........................... 81 5.1.2.2FocalPlaneMechanism ................... 83 5.2SciencewithCIRCE .............................. 84 5.3ObservationofJetsinMicroquasars ..................... 85 5.3.1PhotometricStudies .......................... 85 5.3.2SpectroscopicStudies ......................... 87 5.3.3PolarimetricStudies .......................... 88 5.3.4CIRCEObservationsofGRS1915+105 ............... 88 5.4Summary .................................... 89 6READOUTELECTRONICSFORCIRCE:INITIALDESIGNANDFASTPHOTOMETRYDRIVERS ............. 91 6.1InitialDesign .................................. 93 6.1.1ArrayControllerSubsystem(MCE-3) ................. 93 6.1.2BiasBoard ............................... 94 6.1.2.1Opto-Isolation ........................ 94 6.1.2.2DCBiasGeneration ..................... 95 6.1.2.3ESDProtection ........................ 95 6.1.3PreampBoard ............................. 96 6.1.4FanoutBoardColdClocking ...................... 97 6.1.5Electro-StaticProtection ........................ 97 6.1.6HAWAII-2OutputModes ........................ 98 6.1.7Firmware ................................ 98 6.1.8ArrayReadout ............................. 100 6.2FastPhotometryDrivers ............................ 102 6.2.1FastPhotometry ............................ 102 6.2.2FastPhotometryModePossibilities .................. 104 6.2.2.1Option1:EightOutputPlusFirmwareModications ... 104 6.2.2.2Option2:EightOutputPlusFirmwareModicationsPlusMCE-3Modications .................... 105 6.2.2.3Option3:SingleOutputPlusFirmwareModicationsPlusMCE-3Modications .................. 106 6.2.2.4Option4:EightOutputPlusFirmwareModicationsPlusMCE-3ModicationsPlusRewiring ............ 107 6.3Summary .................................... 107 7CIRCEELECTRONICS:FINALDESIGNANDIMPLEMENTATION ....... 117 7.1TopLevelandDewarCableMaps ...................... 119 7.1.1TopLevelCableMap .......................... 120 7.1.2DewarCableMap ............................ 123 7.2HousekeepingElectronics ........................... 123 7.2.1TemperatureandPressureControl .................. 125 7.2.2MovingMechanisms .......................... 129 7

PAGE 8

................. 134 7.3LogicControlUnit ............................... 135 7.4ReadoutElectronics:FinalDesign ...................... 143 7.5ISDECBoardPerformance .......................... 147 7.6Summary .................................... 149 8OPTICALSYSTEMIMAGEQUALITYTEST .................... 152 8.1SurfaceRoughnessTest ............................ 153 8.2ImageQualityTest ............................... 155 8.2.1OpticalAberrations ........................... 156 8.2.2FocalPlaneFieldCurvature ...................... 157 8.2.3FWHMMeasurements ......................... 158 8.2.4OpticalSystemFlexureTest ...................... 160 8.3Summary .................................... 161 9CONCLUSION .................................... 163 APPENDIX:CALCULATIONOFFRACTIONALRMSERRORBARS ......... 168 REFERENCES ....................................... 170 BIOGRAPHICALSKETCH ................................ 177 8

PAGE 9

Table page 3-1ObservationSummary ................................ 37 3-2SpectralFittingSummary .............................. 41 3-3ModelsoftheX-rayEmissionofGRS1915+105 ................. 49 4-1IRsimulatedlightcurves:KStestandMonteCarlosimulationresults ..... 65 4-2ParameteroftheIRsimulatedlightcurves ..................... 68 6-1ReadoutTimes .................................... 105 6-2FrameRates ..................................... 107 7-1MCE-3vsISDECFrameRates ........................... 147 8-1MirrorsSurfaceRoughness ............................. 154 8-2ImageQuality ..................................... 159 9

PAGE 10

Figure page 2-1GalacticMicroquasars ................................ 20 2-2MicroquasarDiagram ................................ 21 2-3LMXBstates:Evolutionoftheaccretionandejectioncomponents ....... 23 2-4Classlightcurveandcolordiagram ....................... 28 2-5Classlightcurveandcolordiagram ....................... 28 2-6Classlightcurveandcolordiagram ....................... 28 3-1PowerSpectrum ................................... 39 3-2FractionalQPORMS ................................. 43 3-3CombinedQPORMSSpectra ........................... 45 3-4StandardandLasso-Cabreraetal.modelsoftheX-rayemissionofGRS1915+105 48 4-1SimultaneousGRS1915+105classX-rayandclassBIRaresobservations 56 4-2SimultaneousGRS1915+105classX-rayandclassCIRaresobservations 56 4-3MeanCCFofLow/HardStates ........................... 58 4-4MeanCCFofthe1997HighclassX-rayVariabilityStates ........... 59 4-5MeanCCFofthe2002HighclassX-rayVariabilityStates ........... 60 4-6CCFEvolutionDuringLow/HardStates ...................... 62 4-7CCFEvolutionDuringHighX-rayVariabilityStates ................ 63 4-8X-rayandSimulatedIRLightCurvesandCCFs .................. 66 4-9X-rayandSimulatedIRLightCurvesandCCFs .................. 67 4-10DiagramofJetDistancesandPlasmaBlobDiameters .............. 71 5-1CIRCETechnicalSpecicationsandObservingModes .............. 76 5-2CIRCEOpticalLayout ................................ 77 5-3CIRCEOpticalBench ................................ 79 5-4CIRCEOpticalBenchCurrentState ........................ 79 5-5CIRCEDewarDesign ................................ 80 10

PAGE 11

..................................... 80 5-7CIRCEFilterBox ................................... 82 5-8CIRCEFilterBoxImage ............................... 82 5-9CIRCEFocalPlaneMechanism ........................... 83 6-1Bias&PreampBoards ................................ 95 6-2BiasBoard ...................................... 96 6-3HAWAII-2Readout .................................. 99 6-432Outputs2048x2048ArrayReadoutSchematic ................. 101 6-5HAWAII-2FrameSizes ............................... 106 6-6Option1:512x512SubarrayReadoutSchematic ................. 109 6-7Option1:256x256SubarrayReadoutSchematic ................. 110 6-8Limited32Outputs256x256SubarrayReadoutSchematic ........... 111 6-9Option2:256x256ArrayReadoutSchematic ................... 112 6-10Option3:512x512ArrayReadoutSchematic ................... 113 6-11Option3:256x256ArrayReadoutSchematic ................... 114 6-12Option4:512x512ArrayReadoutSchematic ................... 115 6-13Option4:256x256ArrayReadoutSchematic ................... 116 7-1ExampleCIRCECableDocument ......................... 120 7-2CIRCECableMapTopLevel ............................ 122 7-3CIRCEDewarCableMap .............................. 124 7-4WarmupBoxCableMap ............................... 128 7-5LCU:Temperature&PressureChassisCableMap ................ 130 7-6LCU:MotorChassisCableMap .......................... 131 7-7LCU:Temperature&PressureChassis ...................... 133 7-8LCU:MotorChassis ................................. 133 7-9ConnectorVacuumPlate .............................. 136 7-10FanoutBoardSchematics .............................. 137 11

PAGE 12

................................ 139 7-12LCURackRearView ................................ 140 7-13LCU:ThermalEnclosureTemperatureControlCableMap ............ 141 7-14LCURackDesign .................................. 142 7-15ReadNoisevs.PixelRate .............................. 151 7-16ReadNoisevs.ExposureTime ........................... 151 7-17Singlevs.DoubleFlexCableReadNoiseatDifferentPixelRates ........ 151 8-1MirrorsDiffractionPatterns ............................. 155 8-2PinholeMask ..................................... 156 8-3OpticalAberrations .................................. 157 8-4FocalPlaneFieldCurvature ............................. 158 8-5ImageQuality ..................................... 160 12

PAGE 13

13

PAGE 14

14

PAGE 15

15

PAGE 16

16

PAGE 17

2 isfocusedonthedescriptionofmicroquasarsandaccretion/ejectionprocesses,givingparticularemphasistothecaseofGRS1915+105.Chapter 3 isdedicatedtotheanalysisofquasi-periodicoscillations(QPOs)inthehardX-rayemissionofthemicroquasarGRS1915+105.WeprovideevidenceforthepresenceofanewcomponentintheX-rayemissionofGRS1915+105,andsuggestanoriginofthenewcomponentinthejet-formingregion.ThischapterhasbeensubmittedtotheAstrophysicalJournal(Lasso-Cabreraetal.insubmitted).Chapter 4 isastudyoftherelationbetweentheIR(ejection)andX-ray(accretion)signalsofGRS1915+105.Weproduceadetailedcross-correlationstudyofsimultaneousIRandX-raylightcurves.InChapter 5 ,weintroduceCIRCEanditscapabilitiesfortheobservationofjet-producingregions.Chapter 6 isdedicatedtothedescriptionoftheinitialdesignofthereadoutelectronics,andtheimplementationofthefast-photometrymodeinCIRCE.ThischapteristhecombinationoftwoSPIEproceedings( LassoCabreraetal. 2008 & LassoCabreraetal. 2010 ).Chapter 7 includesadescriptionofthenaldesignofthereadoutelectronicsandthehousekeepingelectronics.Finally,inChapter 8 wepresenttheresultsoftheimagequalitytestsperformedontheopticalsystemofCIRCE.TheseresultshavealreadybeenpresentedintheIVSciencewiththeGTCconferenceandsubmittedasaproceedingtothe2012SPIEconference(Lasso-Cabreraetal.2012). 17

PAGE 18

18

PAGE 19

Giacconietal. 1962 ).IntheoutburstphaseofLMXBs,matteristransferredfromthedonorstartotheblackholethroughanopticallythickaccretiondisk.Duringthespiralinfallprocess,thedensityandtemperatureofthegasincreasesdrasticallywithproximitytothecompactobject.TheinnerpartoftheaccretiondiskemitshighluminosityX-rays(T2keV),illuminatingthewholesystem.However,morethan30%ofLMXBsaretransient,andspendmostoftheirtimeinaquiescentstate( Tanaka&Shibazaki 1996 ).OutburstlengthsinLMXBsrangefrommonthsto20yearsforGRS1915+105beforereturningtothequiescentstate.TypicalX-rayluminositiesduringtheoutburstarebetween1037and1039ergss1,whileLMXBsinthequiescentstatearefainter,withupperlimitsintherangeof1032ergss1( Asaietal. 1998 ).TherearemorethanahundredLMXBsknowninourGalaxy( Liuetal. 2007 )andhundredsoftheminexternalgalaxies( Fabbiano 2006 ; Evansetal. 2010 ).Currently,only20blackholebinarysystemshavebeendynamicallyconrmedintheGalaxy,with17ofthemhavingalow-masscompanion( Remillard&McClintock 2006 ; Casares 2010 ).Aschematicdiagramofthe20dynamicallyconrmedLMXBsisshowninFig. 2-1 ,wherediskandcompanionstarssizes,distances,andtemperatureareshowntoscale.Onveryrareoccasions,LMXBsalsoshowejectioneventssimultaneouslywiththeaccretionevents.Todate,tenLMXBshaveexhibitedthepresenceofrelativisticjets( Fenderetal. 2004 ).Theejectioneventsareobservedintheformofrelativisticsynchrotroninfrared(IR)andradiojets.Inthisway,LMXBsdisplaymanyofthecharacteristicsseenindistantquasars,butonasmallertimescale( Mirabel&Rodrguez 1999 ).Theirsimilaritytoquasarshasgainedtheseobjectsthenameofmicroquasars.Theshorttimescalesexhibitedbymicroquasarsminutestodaysratherthanyearsin 19

PAGE 20

Schematicdiagramofthe20dynamicallyconrmedblackholebinaries.Seventeenhavelowmasscompanions(i.e.starswithmasseslessthanabout3solarmasses),andthethreeonthetophavehighmasscompanions.Thecolorscaleforthe17objectswithlowmasscompanionsrepresentsthetemperatureofthestar(CygX-1,LMCX-1,andLMCX-3allhavecompanionswhichareconsiderablyhotter).ReprintedbypermissionfromOrosz,Jerome.( quasarsprovideusefulopportunitiesforobservingthesephenomenaandimprovingourunderstandingoftheaccretionandejectionmechanismsonmoreaccessibletimescales.Fig. 2-2 showsadiagramofamicroquasarwithallthedifferentelementsofthesystemlabeled.Thestudyoftheaccretionandejectionprocessesinthesedistantobjectsisaccomplishedthroughtheobservationofchangesinluminosityatdifferentwavelengths. 20

PAGE 21

MicroquasarDiagram.ReprintedbypermissionfromHynes,Rob.( InLMXBs,changesinluminosityaredirectlyrelatedtothestateoftheLMXBs,i.e.,withthephysicalprocesseshappeningintheobject.Forexample,thelevelandenergyoftheX-rayluminosityaredirectlyrelatedwiththeinnerradiusandtemperatureoftheaccretiondisk( Bellonietal. 1997 );oranincrementintheIRand/orradioluminosityimpliesanejectionevent( Mirabel&Rodrguez 1996 ; Eikenberryetal. 1998a ).Throughanalysisoftheluminosityatdifferentwavelengths,threestatescommontoallmicroquasarshavebeenfound:quiescent,soft,andhardstates( Fender&Belloni 2004 ).Thequiescentstateisthedormantphaseinwhichmicroquasarsspendmostoftheirlife.Inthequiescentstate,theaccretionandejectionarereducedtoaminimum,andtheinneraccretiondiskisnonexistentwiththeouterdiskemittingintheoptical/UVwavelengths.ThesoftstaterepresentsthestatedominatedbyasoftblackbodyX-rayspectrumwithhighsoft(<10keV)X-rayluminosity.Thereisnopresenceofjets,andtheinneraccretiondiskisfullydevelopedwiththeinnerradiusclosetoitsminimum 21

PAGE 22

Vilhuetal. 2001 ).Thepresenceoftheinneraccretiondiskisappreciableinthehardstate,althoughitisnotfullydeveloped.SimultaneousX-ray,IR,andradioobservationsofthehardstateshowdirectevidenceofadisk-jetconnection( Mirabeletal. 1998 ).Thequiescent,soft,andhardstatesarecommontoallmicroquasarsalthoughnotunique.Somesourcesexhibitotherintermediatestatesthatseemtobetransitionstatesbetweenthesoftandhardstates.SeeFig. 2-3 foradetaileddiagramofthecycleofstatesinmicroquasars.WhilethequiescentandsoftstatesarecommontoLMXBsandmicroquasars,thehardstatethejetstateisdistinctiveofmicroquasars.ThedifferentiationbetweenLMXBsandmicroquasarsisbasedontheexhibitionornotofthehardstateatsomepointoftheirlifetimes. Mirabel&Rodrguez 1999 )makesGRS1915+105themostsuitablelaboratorytostudytheintricatemechanismspresentintheaccretion/ejectionprocessesofmicroquasars.Unliketheothermicroquasars,GRS1915+105hasnotreturnedtothequiescentstateafterafewyears,andhasbeenactivesinceitsdiscoveryasanX-raytransientin1992( Castro-Tiradoetal. 1994 ).GRS1915+105isthelongestcontinuouslyactiveGalacticmicroquasartodate,andhasprovideduswithatreasured 22

PAGE 23

Representationoftheobservationalpropertiesoftheevolutionofaccretion/ejectioncomponentsinGalacticblack-holebinaries.ReprintedbypermissionfromBelloni,Tomaso.(

PAGE 24

Mirabel&Rodriguez 1994 ).LocatedintheGalacticplaneatadistanceof11kpc,theorientationofthe0.9cspeedjetspresentsaninclinationof662( Fenderetal. 1999 ).GRS1915+105istheheaviestknownGalacticmicroquasar,withablackholemassofMBH=14.04.4M( Harlaftis&Greiner 2004 ).TheShakura-Sunyaevthindiskmodel( Shakura&Sunyaev 1973 )predictsforthisobjectanaccretiondiskinnerradiusof42kmforanon-spinningblackhole(Schwarzschildradius),or21kmforatheoreticalmaximallyspinningblackhole(Kerrradius-1150timespersecond).Theinnerradiusofanyaccretingblackholecanbemeasuredusingaccuratemodelsoftheemissionoftheinnermostpartoftheaccretiondisk.InthecaseofGRS1915+105,thedistancebetweenthecenteroftheblackholeandtheinnermoststablecircularorbitvariesdependingonthestateofthemicroquasar,withminimumradiirangingfrom21to25km.Suchsmalldistancesinfervaluesofthespinningratebetween0.8and1ofthetheoreticalmaximumspinningblackhole( Narayanetal. 2008 ).Thefastrotationoftheblackholeisreplicatedtosomeextentbytheinneraccretiondisk.Thespiraling-inmatterreachesthemaximumtemperatureintheveryinnerpartofthedisk,producingamaximumofemissioninthesoftX-ray(0.7-10keV)withluminositiesrangingfrom1038to6x1039ergss1( Greineretal. 1996 ).GRS1915+105isoneofthebrightestX-rayobjectsinthesky.TheX-rayspectrumofGRS1915+105isbestttedwithasoftthermalblackbodycomponentplusahardpowerlaw.ThesoftblackbodycomponentischaracteristicofafastrotatingaccretiondiskwhilethehardpowerlawcomponentisproducedbythermalComptonizationofseedsoftblackbodyphotons.AsaLMXB,thestellarmassblackholeoftheGRS1915+105binarysystemisaccretingmatterfromadonorstar.ThelowmasscompanionstarofthemicroquasarGRS1915+105wasunveiledthroughidenticationofabsorptionlinesintheIRspectrum.ThecompanionstarwasclassiedasaK-MIIIstarwithamassrange 24

PAGE 25

Greineretal. 2001 ).OneofthemajordifcultiesfacedinthestudyofGRS1915+105isthemoderatedluminosityoftheobjectintheinfraredandvisibleregimes.ThelocationofGRS1915+105intheGalacticplaneat11Kpcawaytranslatesintoahighextinctionatallwavelengths,withahydrogencolumndensityalongthelineofsightof6x1022cm2( Munoetal. 1999 ).AlthoughthehighlyactiveX-rayandradiowavelengthspartiallyexceedtheextinction,attheradiopositiontheopticalcounterparthasonlybeendetectedintheIbandat23.4mag,withmagnitudesfainterthan26fortheB,V,andRbands( Boeeretal. 1996 ).TheIRregimealsopresentsaconsiderableextinctionwithapproximatevaluesof17,14,and13magnitudesfortheJ,H,andKbandsrespectively( Mahoneyetal. 1997 ).TheintermediatemagnitudesshownintheIRemissionlimittheobservationofthesource,preventingthestudyofhighlyvariablecomponentsintheIRsignal. Jahodaetal. 1996 ),whichprovidesalargecollectionareaandhightime 25

PAGE 26

Rothschildetal. 1998 ),whichischaracterizedbyabroad-band(15-250keV)coveragealsowithhightimeresolution(8s);andthewide-angleAll-SkyMonitor(ASM)( Levineetal. 1996 ).TheRXTEsatellitehasbeenapricelessinstrumentforX-rayobservationsofGRS1915+105,accountingformorethanathousandobservationsthroughtheapproximately20yearoutburstofthesource.AlthoughothermicroquasarsreplicateisolatedstatesofGRS1915+105,theX-rayvariabilityexhibitedbyGRS1915+105hasnocomparisonwithanyothersource.RXTEsatellitesemi-continuousmonitoringoftheobjectallowedaclassicationofitsX-rayemissioninto12separateclasses( Bellonietal. 2000 ),withalateraddition( Klein-Woltetal. 2002 ),basedonX-raycolorsandcountrates.Eachoneoftheseclassescanlastfromminutestodays,onlyshowingpreferencetoremaininthelong-lastingclass.Theobservedoccupationtimeofclassisseveraltimeslargerthananyotherclass.Thetransitionsamongclassesalternatewithnoregularpatternobserved.Despitethecomplicatedlightcurvesofeachclass,allclassescanberepresentedasarepetitivecycleoftransitionsbetweenthreedifferentstates:A,B,andC( Bellonietal. 2000 ; Fender&Belloni 2004 ).StatesAandBaredominatedbyasoftdiskcomponent,withstateBhavingahigherdisktemperatureandcountratethanstateA.StateBalsoshowsaweakcorona.Nojetsarepresentduringthesestates.StateCcorrespondswiththehardstateofmicroquasars.Astrongcoronaandajetarepresent,andtheX-rayradiationisdominatedbyaatpowerspectrumwithlowcountrate.BidirectionaltransitionsamongallthreestateshavebeenobservedwiththeexceptionofthetransitionfromstateCtoB.Thisworkisbasedontheanalysisofthreeoftheclasses:class,class,andclass.Thesethreeclassesseemtobeconsistentlylinkedwiththepresenceofquasi-continuousIRandradiosynchrotron-emittingrelativisticjetoutows( Eikenberryetal. 1998a ; Mirabeletal. 1998 ; Fender&Pooley 1998a ; Klein-Woltetal. 2002 ). 26

PAGE 27

2-4 ).Thecountrateislow(<10Kcts/s)withanabsenceofstrongvariability.TheX-rayspectrumischaracterizedbythepresenceofaatpowerlaw. 2-5 ).Long1000sstateCdips(<5Kcts/s)alternatewithvariabilityperiods.Thevariableportionstartswithastrongare(>20Kcts/s)thatisfollowedbyasetofsmallerares(10Kcts/s).DuringthisparttheobjectalternatesbetweenstateBaresandstateCshortdips. 2-6 ).Thelong500sdipsstartinthestateC(<10Kcts)changingrapidlytothestateA(10-20Kcts)afterthebigsoftspike.ThesourcetransitionsthenfromstateAtostateB(40Kcts),beforegoingintoalonghighvariabilityperiod.Thevariableperiodischaracterizedforthealternationbetweenstrongspikesandshortdips.WhilethedipsareinthestateA,therisingpartofthespikesareinthestateB,andthefallingpartinthestateC,i.e.,arepetitiveA-B-Ccycle. Leahyetal. 1983 ).PDSofGRS1915+105showaverycomplexstructurewithseveralcontinuumnoisecomponents( Morganetal. 1997 ).Theyalsoexhibitthepresenceoftransientquasi-periodicoscillations(QPOs)dependingonthestateofthemicroquasar.Lowfrequency(1-30Hz)andhighfrequency(100-450Hz)QPOs(LFQPOs-HFQPOs)arecharacteristicoftheverysoftandintermediatestates,withLFQPOs(0.01-20Hz)beingpredominantlyseeninthesoftandhardstates( vanderKlis 2004 ).MostofLFQPOanalysesarerestrictedtothestateCbecauseofthehighsignal-to-noiselevelprovidedbythelonglightcurvesofthisstate.ThestudyofLFQPOsprovidesveryrelevantinformationforunderstandingthephysicalprocesseshappeningintheproximity 27

PAGE 28

Exampleclasscolordiagram(top)andlightcurve(bottom).Inthecolordiagram,HR1=B/AandHR2=C/A,whereA,B,andCarethevaluesoftheuxesinthePCAenergybands2-5,5-13,and13-60keV.ReprintedbypermissionfromBelloni,Tomaso.2000. Bellonietal. ( 2000 ). Exampleclasscolordiagram(top)andlightcurve(bottom).Inthecolordiagram,HR1=B/AandHR2=C/A,whereA,B,andCarethevaluesoftheuxesinthePCAenergybands2-5,5-13,and13-60keV.ReprintedbypermissionfromBelloni,Tomaso.2000. Bellonietal. ( 2000 ). Exampleclasscolordiagram(top)andlightcurve(bottom).Inthecolordiagram,HR1=B/AandHR2=C/A,whereA,B,andCarethevaluesoftheuxesinthePCAenergybands2-5,5-13,and13-60keV.ReprintedbypermissionfromBelloni,Tomaso.2000. Bellonietal. ( 2000 ). 28

PAGE 29

Varniereetal. 2007 ).EnergydependenceanalysesrevealthattheuxoftheLFQPOsismaximuminthesameenergyrangethantheblackbodyradiation,associatingdirectlytheQPOswiththephysicalprocessesoccurringintheinneraccretiondisk( Mirabel&Rodriguez 1994 ; Bellonietal. 1997 ).However,ndingadirectrelationbetweenthelowfrequencyoftheQPOsandthehighlydynamicalKeplerianfrequenciesoftheaccretionowshasbeenprovedanarduoustask.SeveralrelationshasbeenfoundbetweenQPOsandphysicalparametersofthesystem.Forexample,thecentroidfrequencyiscorrelatedwiththeuxoftheinneraccretiondisk( Markwardtetal. 1999 ; Munoetal. 1999 ),andwiththelengthofthestateCinterval( Trudolyubovetal. 1999 );thecentroidfrequencyhasalsobeencorrelatedwiththepower-lawphotonindex( Vignarcaetal. 2003 ).However,laterworkseemstoindicateahardernon-blackbodyoriginoftheQPOs( Zdziarskietal. 2005 ; Sobolewska&Zycki 2006 ; Miklesetal. 2006 ; Rodriguezetal. 2008 ).TheenergydependenceoftheQPORMSvariabilityhasbeenobservedtobeharderthantheblackbodyemission( Zdziarskietal. 2005 ; Sobolewska&Zycki 2006 ; Rodriguezetal. 2008 ).ThehardQPOspectradecoupletheQPOsfromtheblackbodyemission,leavingthehardX-ray(E>10keV)astheenergyrangefromwhichtheQPOarises.Theobservationalevidenceyieldstwopotentialscenariosfortheoriginoftheoscillations:intherstone,theoscillationisproducedintheinneraccretiondiskandtransferredtohigherenergiesthroughthenon-destructiveComptonizationoftheoscillatingseedphotonsonthecorona;inthesecondone,anoscillatorytypeofinstabilityisactingintheComptonizingcorona.Softseedphotonsareupscatteredatthesametimethattheoscillationisintroducedintheradiation.InbothscenariostheQPOshavehardspectra,aswellasthetemperatureandradiusoftheinnerdiskcontrolthepropertiesoftheQPOs. 29

PAGE 30

Nowak&Wagoner 1993 ).Thedriftblobmodel(DBM)assumedblobsspiralinginwardthroughtheinneraccretiondisktoexplaintheformationoftheQPOs( Bottcher&Liang 1998 ).Theglobaldiskmodel(GDM)suggestedthattheoriginoftheLFQPOsisassociatedwithgravitationalinteractionsbetweentheblackholeandtheaccretiondisk( Titarchuk&Osherovich 2000 ).Insomecases,theoriginoftheLFQPOsisexplainedthroughtherelationbetweentheQPOfrequencyandafrequencyassociatedwiththeinneraccretiondisk,e.g.,magnetoacousticalfrequency( Titarchuk&Fiorito 2004 )orKeplerianfrequency( Trudolyubovetal. 1999 ).ThelattermodelrelatedtheviscoustimescaleatacertainradiuswiththeKeplerianfrequencyatthesameradius.ThesearchforamodeltoexplaintheformationoftheQPOsgoesbeyondtheexplanationofsomepropertiesoftheQPOs.TheinterpretationoftheQPOformationcannotbeisolatedfromtherestofthesystem,hencetheQPOmodelneedstobeintegratedwithinamorecomplexglobalmodelthatexplainsthewholeaccretion-ejectionsystem.Forexample,theAccretionEjectionInstability(AEI)modelexplainstheaccretiontowardtheblackhole,linkstheaccretionwiththeemissionofcompactjets,andexplainstheLFQPOsthroughmagneticinstabilitiesandKeplerianmotion( Tagger&Pellat 1999 ; Varniereetal. 2002 ; Tagger&Varniere 2006 ). Mirabel&Rodriguez 1994 ; Pooley 1995 ; Fenderetal. 1997 ; Eikenberryetal. 1997 ; Mirabeletal. 1998 ).Simultaneousobservationsofthesourceatseveralwavelengthshaveprobedascenarioofdisk-jetcoupling,whereinX-raylightcurvescorrespondtoaccretion,andIRandradiolightcurvestoejection 30

PAGE 31

Eikenberryetal. 1998a ; Mirabeletal. 1998 ).TheIRandradiooutowsareconsistentwithquasi-continuouscollimatedjetseventsarisingfromarelativisticsynchrotron-emittingplasma.Thequasi-continuousoutoweventsaretypicallyassociatedwiththestateCofthemicroquasar,i.e.,withthehardX-rayplateau,andthereforewiththepresenceofQPOs( Klein-Woltetal. 2002 ).Therelationbetweentheemissionofahotplasma,withtherecessionoftheinnerradiusoftheaccretiondiskduringthehardX-raystate,seemsconsistentwithascenariowheretheinneraccretiondiskisejectedduringthehardX-raydips,andreplenishedduringthesoftstatesAand/orB.Also,duringahardX-raydip,highfrequency(25s)ickeringhasbeenobservedintheIRradiationemittedfromthebaseofthejet( Eikenberryetal. 2008 ).Thisobservationsupportstheideaofanoscillatingjet,andaccentuatestherelationbetweentheoscillatingjetandtheQPOsoccurringsimultaneouslyduringthehardX-raystate.Inadditiontothequasi-continuousoutowevents,GRS1915+105hasdisplayedthreedifferenttypesoflongwavelengtharesduringitsactivelife:classesA,B,andC.AllthreeclassesofaresareobservedconsistentlyafterlonghardX-raydips,emphasizingtherelationbetweenthehardX-raystatewiththeejectionevents.InthisworkwefocusourattentioninclassesBandC,thoseshowingIRares.Followingthereisadescriptionofthethreeclassesofares: Mirabel&Rodriguez 1994 ),classAaresaretheleaststudiedbecauseofthelongrecurrenceintervals,onceeveryoneortwoyears. Fenderetal. 1997 ; Eikenberryetal. 1998a ),andsynchrotronorigin.IRandradiooutowsshowatimedelay,withIRarescomingrst,compatiblewithadiabaticexpansion/coolingoftheejectedplasma( Fenderetal. 1997 ; Mirabeletal. 1998 ).Thedelaycanbeexplainedasthetransitionfromanopticallythicktoanopticallythinsynchrotron-emittingplasmaatlongerwavelengths.ClassBaresareassociatedwithX-rayclasslightcurves,wheretheIRareispresumablytriggeredbythestrongspikeafterthedip( Eikenberry 31

PAGE 32

, 2000 ; Rothsteinetal. 2005 ; Miklesetal. 2006 ).Thoseobservations( Fenderetal. 1997 ; Eikenberryetal. 1998a ; Mirabeletal. 1998 )areconsideredtherstdirectobservationofrelativisticjetformingeventsinmicroquasars. Eikenberryetal. 2000 ).Inthiscase,classCaresareassociatedwithX-rayclasslightcurves,wheretheIRexcessseemstoarisemarginallyearlierthantherstbigX-rayspike( Eikenberryetal. 2000 ; Rothsteinetal. 2005 ; Miklesetal. 2006 ).WithinaclassCare,occasionalIRmicro-areshavebeenobservedbeensimultaneouslywithX-rayspikes.AnalysisofsimultaneousIRandX-raylightcurveshasprovedthatclassCarescanbereconstructedassumingacounterpartIRmicro-aresforeachoneoftheX-rayspikes Rothsteinetal. ( 2005 ).Atthispoint,wehavelaidthefoundationsfortherestofthescienticcomponentofthiswork.WehaveestablishedtheuniquenessofthemicroquasarGRS1915+105,aswellasitsconditionasideallaboratoryforthestudyoftheejectioneventsinmicroquasars.Wehavealsodemonstratedtheaccretion-ejection,X-ray-IR,andQPO-jetrelations.Inchapters 3 and 4 weanalyzeX-rayandIRobservationsofGRS1915+105tofurtherourunderstandingontheaccretion-ejectionprocessesinthismicroquasar.. 32

PAGE 33

Eikenberryetal. 2008 )conrmsthattheQPOisassociatedwithjetactivity,highlightingtheimportanceoftheanalysisofthisepochfortheunderstandingoftheaccretion-ejectionconnection.WecalculatethefractionalQPORMSvaluesatdifferentenergybands.ThehighQPOsignal-to-noiselevelsinourobservationsallowtherstpublishedmeasurementofQPORMSvaluesusingHEXTEdata.WendthatthespectralenergydistributionoftheQPOstronglyindicatesanorigininthehardnon-thermalemissioncomponent,suggestingasecondspectralcomponenttothehardnon-thermalX-rayemission.GiventheassociationoftheQPOswiththeobservedjetactivityinGRS1915+105,wesuggestthatthisadditionalnon-thermalX-rayspectralcomponentisdirectlylinkedtotherelativisticjetformationprocess. Castro-Tiradoetal. 1994 ),andlaterconrmedastherst-knownGalacticsuperluminaljetsource( Mirabel&Rodriguez 1994 ).Subsequentstudiesofthemicroquasarhave 33

PAGE 34

Mirabel&Rodrguez 1999 ).Inparticular,theX-rayemissionhasbeenclassiedinto12separateclassesbasedontheX-raycolorandcountrateoftheobservations( Bellonietal. 2000 ).SimultaneousobservationsofGRS1915+105atdifferentwavelengthsshowevidenceofadisk-jetcoupling( Eikenberryetal. 1998a ; Mirabeletal. 1998 ; Fender&Pooley 1998a ),basedonrepeatedX-rayactivity(boththermalandnon-thermal)associatedwithlong-wavelength(infraredandradio)ares.Diverseobservationsconrmthepresenceofaquasi-continuousradiosynchrotron-emittingrelativisticjetoutowduringX-ray/radioplateaustates( Klein-Woltetal. 2002 ).Low-frequencyX-rayQPOswerealsoseenintheprecedingwork,andseemtobeconsistentlylinkedtothepresenceofjets( Varniereetal. 2007 ). Eikenberryetal. ( 2008 )foundfastIRickering(timescalesof25s)apparentlyarisinginthebaseofthejet-formingregion,aswellasastrongX-rayQPO(1s)occurringsimultaneouslyduringthesameX-ray/radioplateauepochthatweanalyzeinthischapter.AlthoughX-rayQPOsinGRS1915+105havebeenknownalmostsincethediscoveryofthemicroquasar( Pauletal. 1997 ),thephysicaloriginoftheQPOsisstillunderdebate.X-rayQPOswereinitiallyconsideredasinstabilitiesintheinneraccretiondisk( Mirabel&Rodriguez 1994 ; Bellonietal. 1997 ),simplybasedonthefactthatQPOamplitudesareeasiertodetectattheenergiesatwhichtheblackbodyemissionisproducedintheaccretiondisk(2-10keV).SomemodelsexplainingtheLFQPOs(1-30Hz)inmicroquasarsstillrelatetheQPOfrequencywithafrequencyassociatedtotheinneraccretiondisk:e.g.,magnetoacousticalfrequency( Titarchuk&Fiorito 2004 )orKeplerianfrequency( Trudolyubovetal. 1999 ).PreviousstudieshavelargelyavoidedthestudyoftheX-rayLFQPOsathighenergies(15-100keV)becauseofthegreaterstrengthoftheQPOsatlowenergies(2-15keV),andhencestudieswerelimitedinmostcasestoenergiesbelow20keV.TheexactoriginoftheLFQPOsinGRS1915+105remainsunclear,withinitialworksuggestinganorigininthesoft/thermal 34

PAGE 35

Markwardtetal. 1999 ),butlaterworkinsteadindicatingahardernon-blackbodyorigin( Miklesetal. 2006 ).ThestudyofthefractionalQPORMSspectrahasshownsubsequentlythattheenergydependenceoftheQPORMSvaluesisharderthantheblackbodyemission( Zdziarskietal. 2005 ; Sobolewska&Zycki 2006 ; Rodriguezetal. 2008 ).ThehardQPORMSspectradecouplestheQPOsfromtheblackbodyemission,leavingthehardX-ray(E>10keV)astheenergyrangefromwhichtheQPOarises.TheconrmationofthehardspectraoftheQPOs,andthelinkbetweenQPOsandjetactivity( Varniereetal. 2007 ),bothduringX-rayplateauepochssimilartotheoneweanalyzeinthischapter,opennewpossibilitiesforthephysicaloriginoftheQPOs.WehaveuseddatafromboththeProportionalCounterArray(PCA)andtheHighEnergyX-rayTimingExperiment(HEXTE)instrumentsofRXTEtoanalyzetheX-rayemissionfromGRS1915+105.TodateveryfewstudieshavebeenconductedtoanalyzetheemissionfromGRS1915+105usingHEXTEdata,despiteHEXTEdatagenerallybeingavailablewheneverPCAdataisavailable.Sections 3.2 and 3.3 aredevotedtothedatareductionandtheclassicationofourobservations.InSection 3.4 ,wepresentanalysisoftheX-rayhigh-speedickering.Section 3.5 isfocusedontheanalysisofthespectraltting.Finally,inSection 3.6 wecalculatethefractionalQPORMSspectrainordertostudytheoriginoftheQPOs.WendevidencesuggestingthatthesourceofemissionoftheQPOisdifferentthanthatoftheblackbodyemissionorthepowerlawradiation,contradictingtheoriesthatplaceitsformationintheinnerpartoftheaccretiondiskorinthehotcorona,andsupportingtheconclusionsof Zdziarskietal. ( 2005 ); Sobolewska&Zycki ( 2006 ); Miklesetal. ( 2006 );and Rodriguezetal. ( 2008 )whichpointtoanon-thermaloriginfortheQPO.InthischapterweanalyzeevidencethatsupportsanewinterpretationoftheoriginoftheX-rayLFQPOsinGRS1915+105.Thisprojectispartofamulti-wavelengthstudyoftheGRS1915+105system(Eikenberryetal.2012inprep.)thatwillpresentafully 35

PAGE 36

3-1 ).Thetwoepochscorrespondtotwochronologicallyconsecutivebutphenomenologicallydifferentstatesofthemicroquasar.ObservationsduringEpoch1correspondtoatypicalhardstatewithQPOs:April16th(2observations)and23rd,2003;theotherthreeobservationscorrespondtohigh-variabilitysoftstates,Epoch2:June9th,19thand24th,2003.WeuseddatafromboththePCAandtheHEXTEinstrumentsonboardtheRossiX-rayTimingExplorer(RXTE).CoevalHST/NICMOSobservationsconrmthepresenceofrelativisticjetoutowsduringEpoch1,andtheabsenceofthejetduringEpoch2( Eikenberryetal. 2008 ).Wehavefollowedtheschemeof Bellonietal. ( 2000 )forclassifyingtheX-rayvariability.Weclassifyobservations1,2,and3asbelongingtoclass,observations4and5asclass,andobservation6asclass(Table 3-1 ).Wehavealsoanalyzedoverahundreddifferentadditionalclassobservationsfromotherobservationdates.AlthoughallofthemcontainaQPO,thesignaltonoiselevelsoftheQPOsintheHEXTEdatagenerallyaretoolowforasignicantanalysisofthefractionalQPORMSspectraathighenergies.Thoseobservationsincludethesetsofobservationsusedby Sobolewska&Zycki ( 2006 )and Rodriguezetal. ( 2008 )intheiranalysisoftheQPORMSvariability.Theseanalyses,restrictedtoPCAdata,arediscussedinSection 3.7 .OursetofobservationspresentssignaltonoiselevelsoftheQPOamplitudeatleasttwotimeshigherintheHEXTEenergybands15-20keVand20-25keVthaninthoseotherepochs,allowingustocalculate,forthersttime,theRMSvariabilityofQPOsinGRS1915+105usingHEXTEdata. 36

PAGE 37

Observationsummary Obs.ObsIDExp.DateMJDX-rayQPONo(sec)class 170702-01-50-003373Apr.16,200352745.1839Yes270702-01-50-012052Apr.16,200352745.2568Yes370702-01-51-002924Apr.23,200352752.2202Yes480701-01-05-006863Jun.09,200352799.0397No580701-01-06-004514Jun.19,200352809.0377No680701-01-07-001155Jun.24,200352814.9790No Bellonietal. ( 2000 )schemeasshowninSection 3.2 3-1 :leftandcentralpanels).ObservationstakenduringthehighX-ray/radioactivityepoch(Obs.4,5,and6)donotshowanytraceofaQPOatanyenergyband(Fig. 3-1 :rightpanels).InallEpoch1observations,the 37

PAGE 38

Miklesetal. 2006 ),thefrequencyoftheQPOsshowsnoevolutionwithtimeduringanyofthethreeobservationsofEpoch1.ThestablecentroidfrequencyexhibitedbytheQPOduringourobservationsfacilitatestheintegrationofthelongclasslightcurves,increasingthesignal-to-noiseleveloftheQPO,andallowingustoproduceananalysisoftheRMSvariability.Thisisakeyfactorinourstudy,especiallywhenusingHEXTEdatawherethemeannumberofcountsismuchlowerthaninthePCAdata. Munoetal. 1999 );andthe15-240keVHEXTEspectrumwithastandardmodelofahardpowerlawwiththesamehydrogencolumndensity.Theadditionofanironlinearound6keVwasnecessaryinobservations1,2,and3( Miller&Homan 2004 ).Inobservation4,5,and6anironlinearound6keVisalsoobservedintheresidualsofthettingbuttheimprovementtothe 38

PAGE 39

Leftpanels,fromtoptobottom:PCAdata,non-normalizedpowerspectrumfromobservations1,2,and3.Centralpanels,fromtoptobottom:HEXTEdata,non-normalizedpowerspectrumfromobservations1,2,and3.Astrong0.8HzQPOispresentatallenergiesbelow30keV.Theamplitudeofthe0.8HzQPOismaximumforthe5-8keVband,decreasingafterwardswithincreasingenergy,anddisappearingabove30keV.Rightpanels,fromtoptobottom:PCAdata,non-normalizedpowerspectrumfromobservations4,5,and6.NoQPOispresentatanyenergybands. tisstatisticallymarginalwhenaddingtheline.Thevaluesofreduced2forthettingofbothPCAandHEXTEspectraforoursixobservationsarealwayslowerthan1.37,showingagoodstatisticalt.Backgroundemissionstartstakingoverthepowerlawemissionaround80keVanddominatesaround100keV.ForthisreasonwelimittheanalysisoftheX-rayemissionfromthemicroquasartothe2to80keVenergyrange. 39

PAGE 40

3-2 .AsteeppowerlawispresentintheHEXTEobservationswithalmostconstantphotonindices(3.3)throughoutallobservations.FromtheseHEXTEphotonindicesweexpectsimilarconstantphotonindicesforthesixPCAobservations.However,thevaluesofthePCAphotonindicesaresignicantlylower(atter)inthethreeobservationswithoutQPOspresent(2.5),andareevenlowerinthethreeobservationswithQPOspresent(2.0).WhenttingthePCAspectrumusingtheparametersobtainedforthepurepowerlawspectrumoftheHEXTE-onlydata,thetsarepoor,andstatisticallyrejectable.Thisdiscrepancyinthepowerlawphotonindexseeninseveralsourceshasbeenassumedbysomeauthorstobeaninstrumentalcalibrationerror( Sobczaketal. 2000 ). Wilmsetal. ( 1999 )obtainavalueof0.134fortheinstrumentalcalibrationuncertaintyusingthePCAandHEXTEbesttphotonindicestotheCrabNebula.Whilesuchcalibrationuncertaintiesarecertainlypresentinourdata,theyareapproximately5to10timestoosmalltoexplainthediscrepancieswefoundhere.Instead,wesuggestthatthehigherdiscrepancyseeninthephotonindexesofobservationswithQPOsisanobservationalfactsupportingtheexistenceofasecondemissioncomponentcontributingtothepowerlawatenergieslowerthan30keV,alongwiththe(stronger)evidencefromtheQPORMSspectra(Section 3.6 ).Thechangeinthepowerlawindicescanbeexplainedassumingthatthenewcomponentisacut-offpowerlawlikecomponent.Thepresenceofacut-offpowerlawwillaccountforthehardeningofthephotonindices.Wefurthernotethat Rodriguezetal. ( 2008 )investigatetheQPORMSspectraandndthattheQPOisbest-ttedwithacut-offpowerlaw.Weperformedspectraltsincorporatingasecondhardpowerlawcomponent.Themodelsusedtotthespectrumincludeatypicalblackholemodelwiththeinclusionofacut-offpowerlaw(i.e.gaussian+blackbody+cut-offpowerlaw+powerlaw).Althoughstatisticallygoodtswerefoundtotheoveralluxspectrumineachcase,noneoftheindividualspectralcomponentstracktheQPOspectraverywell.Thecut-offpowerlaw 40

PAGE 41

SpectralFittingSummary.Obs:ObservationID.Tin:kTtemperatureatinnerdiskradius(keV).Norm bb:diskbbnormalizationfactor.PhoIndex:photonindexofpowerlaw.Norm pl:photonskeV1cm2s1at1keV.Red.2:reduced2. PCA Tin2.030.032.010.032.020.031.5190.0151.5360.0151.5020.013Norm bb36.34.834.65.133.74.6273.423.9267.723.8206.616.4PhoIndex1.980.052.010.051.940.052.550.032.490.032.510.03Norm pl4.80.75.20.74.20.631.12.728.92.617.31.7Red.21.2521.4101.3461.3171.0871.234 HEXTE PhoIndex3.310.013.290.013.280.013.260.013.220.012.960.03Norm pl172.77.9162.59.1154.97.8196.56.0198.66.849.14.3Red.21.3701.0141.3061.2261.1731.108 Sobolewska&Zycki ( 2006 )(gaussian+blackbody+thcomp+thcomp)and Rodriguezetal. ( 2008 )(gaussian+comptt+powerlaw).WefoundthatthesoftComptonizationcomponentof Sobolewska&Zycki ( 2006 )modeldoesnotttheQPOathighenergies,whilethecompttcomponentof Rodriguezetal. ( 2008 )failstotthelowenergiesoftheQPOspectrum.Theimprovementinthereduced2ismarginalinallcasescomparedwiththatobtainedusingthestandardsoftblackbodyplussinglehardpowerlawmodel.DespiteourinabilitytondacommonlyusedmodelthattstheQPOspectraovertheentirerangeofenergies,wediscussinSection 3.7 alltheevidencesupportingtheexistenceofsuchaQPOcomponent. 3.4 ,thepoweroftheQPOatdifferentenergybandsfollowsthesameroughtrendastheuxofthesource;thepowerpeaksatthesameenergies 41

PAGE 42

3 ).ThefractionalRMSvaluesgiveusameasureoftheproportionofthetotalenergyemittedthatisbeingusedtogeneratetheQPO,i.e.,providesuswithameasureofthepercentageofthetotalenergyateachenergybandthatcontributestotheQPO.ThereforetheRMSvaluesareameasurementthatdoesnotdependdirectlyonthetotalux.Wecalculatethenon-normalizedpowerspectrumon32s-longlightcurvesegments.ThefractionalQPORMSvaluesareobtainedusingEqs. 3 .WedeterminethebackgroundamplitudeintherangeoffrequenciesoftheQPObyttingthemeannon-normalizedpowerspectrumtoaquadraticexpressionintherangeoffrequenciesfrom0.5Hzto1.5Hz,excludingthefrequenciesoftheQPO. Pqpo(E)=Non-normalizedpoweroftheQPOateachenergyband 42

PAGE 43

FractionalQPORMSamplitudeatthedifferentenergybandsforobservations1,2,and3,fromtoptobottomrespectively.ThefractionalRMSspectraincreaseswithenergyinthesoftX-rays,getstoamaximumandisapproximatelyconstantbetween10and25keV,correspondingtothemaximumemissionofthehardX-rays,anddecreasesafterwardsremainingverylowandconstantabove30keV.Forcomparison,valuesoffractionalRMSforbothinstrumentsareshownintheenergybandD(15-20keV).SeeAppendix 9 forerrorbarcalculations. 43

PAGE 44

3-2 ).ForthepurposeofcomparingPCAandHEXTEinstrumentswehaveplottedthevaluesofRMSamplitudeintheenergybandD(15-20keV)fordatafrombothinstruments.WehavecombinedthethreefractionalRMScurvesintoonesinglecurveforbetterstatisticalanalysis(Fig. 3-3 ).ComparingtheRMScurvewiththedifferentcomponentsofthemicroquasaremission,wendthatthefractionalRMSvaluesarelowintherangeofenergieswheretheblackbodyemissionismaximum(2to5keV);increaseswithenergyintherangeofenergieswheretheblackbodyemissiondecreases(5to15keV);andismaximumwherethepowerlawemissiondominates(15-25keV).WeconcludefromthoseresultsthatblackbodyemissionprovidesasmallercontributiontotheQPOsthanthepowerlawemission;andtherefore,despitethelowerstrengthoftheQPOathigherenergies,thehighervaluesofthefractionalRMSintherangeofhardX-rayenergies,wherethepowerlawradiationdominatesovertheblackbodyradiation,implyacommonsourceofemissionfortheQPOsandthepowerlawradiation.OncewehaveestablishedacommonoriginfortheQPOsandthepowerlaw,weexaminethedrop-offofthefractionalRMSvaluesatenergiesabove30keV.Tothatend,inFig. 3-3 wehaveoverplottedthenormalizedfractionaluxofboththeblackbodyandpowerlawemissionextractedwiththeXSPECpackage.Above18keVtheemissionisexclusivelypowerlawradiation.AssumingtheQPOhasacommonoriginwiththepowerlawradiation,thevalueoftheexpectedRMSspectrashouldremainconstantandmaximumabove18keV.Instead,themeasuredRMSvaluesdecreaseabove25keVandareminimumabove30keV.ThediscrepancybetweenthemeasuredRMSvaluesoftheenergybandG(30-80keV)andtheexpectedmaximumRMSvaluesis2.86.Thisindicatesthatthedrop-offoftheRMSspectraisnotaneffectofthecalculationerrors.The2testgivesavalueof8.46whenappliedbetweenthemeasuredRMSvalues(HEXTEvaluesonly)andtheexpectedspectra(powerlawfractionalux).Thus,weconcludethatthedecreaseintheRMSspectraisarealeffectinthedata.Thiseffect 44

PAGE 45

CombinationofthethreefractionalQPORMSspectracurveswith1errorbarsoverplotted.Alsoplottedarethenormalizedfractionaluxfortheblackbodyandpowerlawemission.Thediscrepancybetweenthenormalizedfractionalux(expectedRMSspectra)ofthepowerlawandthemeasuredfractionalRMSvalueintheenergybandG(30-80keV)isjustbelow3.0(seeSection 3.6 ). canbeexplainediftherearetworatherthanonepowerlawcomponents,thesofteronebeingacut-offpowerlawaccountingfortheQPO.ThecombinationoftheresultsobtainedfromthePCA/HEXTEphotonindexdiscrepancy(Section 3.5 )andfromtheRMSspectracurveleadsustoproposeanewmodeloftheemissionofGRS1915+105comprisedofasoftmulti-temperaturediskblackbodycomponentplustwopowerlawcomponents.Thesecondcomponentofthepowerlawemissionwouldhaveashorterdetectablerangeofenergythantheoverallpowerlawemission,E<30keV;andwouldhaveacommonoriginwiththeLFQPO. 45

PAGE 46

Bellonietal. ( 2000 )scheme.InoureffortstounveiltheoriginoftheX-rayLFQPOsinGRS1915+105,wehaveusedthesamefractionalRMSmethodappliedby Zdziarskietal. ( 2005 ); Sobolewska&Zycki ( 2006 ); Rodriguezetal. ( 2008 )tointerprettheemissionfromthemicroquasar.WendthatthefractionalamplitudeoftheuxcontributingtotheQPOcontinuestobehighatenergiesbeyondwhichtheaccretiondiskblackbodyemission(withT2keV)isnegligible,andinfactreachesitspeakatenergiesof15-20keVbeforedecliningsharplyandbecomingnon-detectableatE>30keV.ThisclearlyindicatesthattheQPOphenomenonismuchmorestronglylinkedtothehardpowerlawemissionfromGRS1915+105thanitistothesoftthermalblackbodyemissioninfact,theenergydependenceoftheQPOfractionalamplitudeisconsistentwithzeroQPOcontributionfromthethermalcomponent(i.e.apurenon-blackbodyorigin).ThecombinationofthefractionalRMSmethodwithanalysisoftheX-rayspectrumrevealsreasonableevidencetoproposeanewmodelofthehardX-rayemissionofthemicroquasarGRS1915+105,incorporatingacut-offpowerlawcomponentinadditiontothetraditionalmodelcomprisedofthecombinationofonesoftmulti-temperaturediskblackbodyplusonehardpowerlaw.TheprimaryevidenceforthissecondhardX-raypowerlawcomponentcomesfromthefactthattheenergydependenceofthe1.2sQPOwhileclearlyharderthanthethermalcomponentissignicantlysofterthantheoveralldependenceofthehardX-rayuxfromGRS1915+105intheHEXTEbandpass.Infact,thisQPOcut-offpowerlawcomponentessentiallydisappearsatenergiesabove30keV,whilethehardX-rayuxcontinues.Asecondarypieceofevidencecomesfromthestatistically-signicantdifferenceinpowerlawindicesderivedfromthePCAandHEXTEbandpasses.Previousauthorshaveinvestigatedthisdiscrepancyandhaveascribedthedifferencetolarger-than-expectedcalibrationerrorsbetweenthePCAandHEXTEinstruments.Thelargediscrepanciespresentinourobservations,5to10timeslargerthanthecalibrationerrorsmeasuredby Wilmsetal. ( 1999 )intheCrab 46

PAGE 47

Varniereetal. 2007 ),andthatmanymodelsofjetformationpredictnon-thermalX-raypowerlawemissionarisingfromthejet-producingregion( Markoffetal. 2005 ),themostobviousexplanationisthatthisspectralcomponentarisesinthejet-producingregioninGRS1915+105.Inthatcase,thenwehave,forthersttime,identiedX-rayemissionarisingdirectlyfromthejet-producingregioninGRS1915+105.AmoredetailedstudyofthispossibilityisanalyzedinEikenberryetal.2012(inprep),wherethisnewmodeloftheX-rayemissionisincorporatedwithinamulti-wavelengthmodeloftheemissionofGRS1915+105.Fig. 3-4 showsarepresentationofthestandardandLasso-Cabreraetal.modeloftheX-rayemissionofGRS1915+105.OurtheoryofathirdcomponentinthemodelofemissionofGRS1915+105arisingfromthejet-producingregionissupportedbythepresenceofcoevalickeringon 47

PAGE 48

Standard(left)andLasso-Cabreraetal.(right)modelsoftheX-rayemissionofGRS1915+105.IntheLasso-Cabreraetal.modeltheoriginoftheQPOislocatedinthejet-formingregion. timescalesof25sintheIRsynchrotronemission( Eikenberryetal. 2008 ).ThehighfrequencyoscillationintheIRemissionprovidesthebasisforconsideringanoscillatingjetwhichcouldbelinkedtotheoscillationfoundintheX-rayemission.TheinclusionoftheQPOcut-offpowerlawarisingfromthebaseofthejetintheX-raymodelofGRS1915+105complementsthetheoryofanIRoscillatingjetbutatdistancesmuchshorter,i.e.inthejetformingregionitself.AlthoughinthischapterwehaveonlyanalyzedtheQPOcut-offpowerlawcomponentduringclassobservations,wethinksuchacomponentisnotlimitedtothisclassofobservations. Miklesetal. ( 2006 ),usingclassobservations,foundastrongcorrelationbetweentheQPOandbothcomponentsofamodelcomprisedofamulti-temperatureblackbodyplusahardpowerlaw.TheyshowthatthecorrelationoftheQPOwiththepowerlawcomponentisstrongerthanwiththeblackbodycomponent,althoughitweakenssignicantlyinsomeepochs.Wethinktheoccasionalweakeningoftheoverallcorrelationwouldbeduetodecouplingbetweenourproposedthirdcomponentandtheaccretiondisk/corona.TheyalsoshowthatthecorrelationoftheQPOwitheitherthepowerlawuxortheblackbodytemperatureisweakerwhenthe 48

PAGE 49

ModelsoftheX-rayemissionofGRS1915+105. ComponentStandardSobolewskaRodriguezLasso-CabreraModelZycki(2006)etal.(2008)etal. SoftBBAccret.DiskAccret.Disk-Accret.DiskHardPLHotCorona-JetHotCoronaQPOPL---JetSofCompt.-Cooling/HeatHotCorona-HardCompt.-HotCorona-partialcontributionoftheotherisremoved.Suchadecreaseinthecorrelationcouldbeexplainedbythepresenceofathirdspectralcomponent,i.e.theQPOcut-offpowerlaw,whichhasitspeakofemissioninenergiesabovethepeakoftheblackbodyandbelowthepeakofemissionofthepowerlaw.So,thehiddenthirdcomponentwillbedividedbetweentheothertwocomponentsoftheemissioninthettingprocess,decreasingtheobservedcorrelationoftheQPOwithonecomponentwhentheothercomponentincludingpartoftheQPOcut-offpowerlawiseliminated.RMSvariabilityanalysissuchastheonepresentedinthischapterarelimitedinclassobservationsbytheshortdurationofthedipsandtheevolutionofthecentroidfrequencyalongthedip( Miklesetal. 2006 ).Thus,thesignaltonoiseleveloftheQPOistoolowtoperformouranalysis,especiallyinthecaseoftheHEXTEdata.PreviousauthorshavealsodetectedtheatteningoftheRMSspectra( Zdziarskietal. 2005 )orthebeginningoftheturnoverintheQPOspectrumaround20keV( Sobolewska&Zycki 2006 ; Rodriguezetal. 2008 )usingQPORMSindifferentsetsofclassobservations.TheirstudieswerelimitedinbothcasesbytheuseofonlyPCAdata.WeanalyzedallthepreviousobservationsandfoundthattheQPOsignaltonoiselevelsintheHEXTEenergybandsaretoolowtoperformaQPORMSanalysis.OurworkheresolidiesthediscoveryoftheturnoverintheQPOspectrumbyaddingtothestudytheuseofHEXTEdata,andweproposeacompletelydifferentexplanationfortheoriginoftheQPO. Zdziarskietal. ( 2005 ),detectingonlytheatteningoftheQPORMSspectrabutnotobservingtheturnover,concludedthattheQPORMSvalues 49

PAGE 50

Sobolewska&Zycki ( 2006 )proposedamodelcomprisedofablackbodycomponentplustwothermalComptonizedcomponents.TheysuggestthatthesofterofthethermalComptonizedcomponentsaccountsfortheQPOspectrumbymeansofmodulationofthecooling/heatingrates.However,theyalsondthatnoneoftheirproposedcomponentsexactlytrackedtheQPOspectrum. Rodriguezetal. ( 2008 )proposedamodeloftheemissionofGRS1915+105composedofaComptonizedcomponentplusahardpowerlawlinkedwiththeemissionofthejet.Theyfoundnowell-matchedcontributiontothespectrumoftheQPOfromeitherofthosetwocomponents,andproposedtheLFQPOstobemorecompatiblewithmodelsofdiskinstabilities.Incontrast,webelieveourwork,supportedbythestrongcorrelationbetweentheQPOandthehardpowerlaw( Miklesetal. 2006 )andespeciallybythepresenceofsimultaneous25sIRjetickering( Eikenberryetal. 2008 ),laysasolidfoundationforplacingtheoriginoftheQPOinthejet-producingregion,andthereforeforproposingathirdcomponentinthemodelofemissionofthemicroquasarGRS1915+105withitsorigininthejet-producingregion.Table 3-3 showsacomparisonbetweenthedifferentmodelsoftheX-rayemission.Thisidenticationwillbeparticularlyimportantfortheoreticalmodelsofrelativisticjetproductionaroundblackholes.Forinstance,theAccretionEjectionInstability(AEI)modelforjetproduction( Varniereetal. 2007 )hasrecentlybeenshowntomatchcorrelationsbetweentheinneraccretiondiskradiusandQPOfrequency( Miklesetal. 2009 ).However,theAEImodeldependsonalarge-scaleglobaloscillationproducingtheQPOatlargediskradii.Thus,theassociationofthejetproducingregionwithnon-thermalX-rayemissionextendinguptoE30keVwillprovideimportantconstraintsformodelssuchasthisinfuturework. 50

PAGE 51

51

PAGE 52

Castro-Tiradoetal. 1994 ),andlaterrevealeditselfasthemostvariablemicroquasarinthesky.TheGRS1915+105systemcontainsoneofthemostmassiveGalacticstellarmassblackholes14Mknowntodate( Harlaftis&Greiner 2004 ),andpresentsanextremelyhighaccretionrate,whichislikelytoaccountforthehighvariabilityobservedintheradio,infrared(IR),andX-rayemissionofthisobject.Duringthe20-yearlifespanofthecurrentoutburststate,GRS1915+105hasexhibitedhighly-variableX-rayemissionthathasbeenclassiedin12differentclassesdependingoncountratesandcolor-colordiagram( Bellonietal. 2000 ),threetypesofdifferentIRaresclassesA,B,andCdependingonthedurationandtheuxdensitystrength( Eikenberry 2001 ),andpresenceofsuperluminalradioejections( Mirabel&Rodriguez 1994 ).Simultaneousmulti-wavelengthobservationsofGRS1915+105haveprovedtheinterconnectionbetweenallthosephenomena,showingevidenceofadisk-jetcoupling( Eikenberryetal. 1998a ; Mirabeletal. 1998 ; Fender&Pooley 1998b ; Rothsteinetal. 2005 ).Inparticular, Eikenberryetal. ( 1998a )and Rothsteinetal. ( 2005 )showclearevidenceoftheconnectionbetweentheX-rayemittinginneraccretiondiskandtheIRcompactjetwiththeobservationofseveralcyclesofsimultaneousIRaresandhighX-rayvariability. Eikenberryetal. ( 1998a )presentrepeatedepisodesofsimultaneoussynchrotronproducedclassBIRares(100mJy)andclassX-rayvariabilityastherst-everobservationalevidenceoftheinteractionbetweentheinnerdiskandtherelativisticcompactjetinablackholesystem(Fig. 4-1 ).TheyassumeasynchrotronoriginoftheIRemission( Fenderetal. 1997 ; Pooley&Fender 1997 ),withadiabaticexpansionasthedominantcoolingmechanism( Mirabeletal. 1998 ),andruleoutthermalreprocessingoftheX-rayuxontheouterdiskand/orthecompanionstarastheoriginoftheIRaresbecauseofthedecouplingoftheX-rayandIRexcessesatlatetimesinsomeoftheares.Theyexplainthoseepisodesassumingascenarioof 52

PAGE 53

Eikenberryetal. ( 2000 )explainsthelowIRexcessobservedafterthedecouplingofthe Eikenberryetal. ( 1998a )IRandX-rayaresandbeforethereturntothequiescentvaluebyassociatingeachX-rayoscillationwithasmall(5-10mJy)IRsubare. Rothsteinetal. ( 2005 )usethissameideatoexplaintheIRaresobservedinasimilarscenarioofrepeatedepisodesofsimultaneousclassCIRares(40mJy)and,inthiscase,classX-rayvariability,whichisalsopresentedasevidenceofjetformationinGRS1915+105(Fig. 4-2 ).TheyassociateeachX-rayoscillationtoasimulated8mJygaussiansubarewithvariableFWHM,obtainingasimulatedoverallIRarecomposedofthesuperpositionoffaintsubaresthatresemblestheoriginallightcurve.TheyconsidertheseIRaresofthesametypeastheonesobservedby Eikenberryetal. ( 2000 )andthereforealsoassumeasynchrotronoriginforthem.WeinterpretthisresultsasanscenariowherethejetoutowsareformedbyplasmoidblobslaunchedfromtheaccretiondiskandickeringintheIRmicroares.ThefrequencyoftheickeringofthemicroaresgivesusanupperlimitofthediameteroftheblobsandthedelaybetweentheX-rayandIRisanindicationofthedistancebetweentheoriginoftheX-rayandtheoriginoftheIRemission.However,inthissecondsetofobservations,thedurationoftheIRandX-rayaresarealwayssimilar,leavingopenthepossibilityforthermalreprocessingastheoriginoftheIRares.Inbothscenariosobservedby Eikenberryetal. ( 1998a )and Rothsteinetal. ( 2005 ),theIRandX-rayexcessesseemtobetriggeredbyaninitialX-rayspike.Moreover,thedelaysbetweenthistriggerspikeandthepeaksoftheIRandX-rayuxesareconstantwithineachscenarioindicatingapossiblecommontriggerfortheIRandX-rayaresineachcase,thusaccentuatingthesimilaritiesbetweenthosetwosetsofobservationsdespitehavingdifferenttypeofX-rayvariability.Thestudyofsimultaneousdifferentenergyrangelightcurvesfrommicroquasarsiscurrentlythemostpromisingsourceofinformationtoextendourknowledgeofthe 53

PAGE 54

Gandhietal. 2008 2010 ; Durantetal. 2011 ),SWIFTJ1753.5-0127( Durantetal. 2008 2011 ),ScoX-1( Durantetal. 2011 ),andCygX-2( Durantetal. 2011 ),whichwereobservedintheoptical(VLT/ULTRACAM)andX-ray(RXTE/PCA)wavelengthalwaysduringthelow/hardstateofthemicroquasars.TheCCFtechniquerevealslagsbetweentheopticalandtheX-rayemissioninallthoseobjects,withtheopticalleadingtheX-ray,thatcannotbeexplainedbytheexpectedreprocessingoftheX-rayradiationintheopticallythickouterdiskand/orthesurfaceofthecompanionstar.Thisimpliesanewsourceofopticalemissionneverconsideredbeforeinmicroquasarmodels.However,CCFstudiesinvolvingIRandX-rayradiationofmicroquasarswerelimiteduntilnowtothemicroquasarGX339-4. Casellaetal. ( 2010 )presentasubsecondtimeresolutionCCFstudyoftheIR(VLT/ISAAC)andX-ray(RXTE/PCA)emissionofGX339-4duringthehighlyvariablelow/hardstate.TheyobserveastrongcorrelationbetweentheIRandtheX-rayemission,withtheIRlaggingtheX-rayby100ms,thusconstrainingtheLorentzfactorofthejetto>2andthejetspeedtomildlyrelativisticneartheformingregion.InthecaseofGRS1915+105,thehighextinctiontowarditslocationintheGalacticPlanereducesitsbrightnesstoK-band 54

PAGE 55

Eikenberryetal. ( 1998a )and Rothsteinetal. ( 2005 ).WealsousetheresultsoftheCCFtocomparesimulatedIRlightcurveswiththerealones.ThesimulatedIRlightcurvesprovideevidenceofickeringIRemissionwithquasi-periodicfrequenciesintherange0.1to0.3HzsimultaneouslywiththeX-rayclassepoch.Ourresultsareconsistentwiththepreviouslyobserved25sIRvariabilityinGRS1915+105( Eikenberryetal. 2008 )inthattheyconrmthepresenceofahighlyvariableIRrelativisticjetanddismissestheideaofreprocessingasthesourceofemissionoftheIRradiationintheobservationsof Rothsteinetal. ( 2005 ). Eikenberryetal. ( 1998a )and Rothsteinetal. ( 2005 ),respectively.Forbrevity'ssake,weprovideanabbreviatedsummaryhereandreferthereadertothosearticlesformoredetailsaboutthedatareduction.IRobservationswereobtainedusingthePalomar200-inchtelescopeandtheCassegrainD-78near-IRcameraintheK(2.2m)band,withX-rayobservationsobtainedusingtheProportionalCounterArray(PCA)on-boardtheRossiX-rayTimingExplorer(RXTE).The1998IRdatawereobtainedwith0.1stimeresolutionandrebinneddownto1sinpost-processing,andthe2002IRdataandtheX-rayobservationswereobtainedwith1stimeresolution.AbsolutetimingfortheIRobservationswasprovidedbyaWWVBreceiverwith1msaccuracy.IRuxesarecalibratedusingthenearbyStarA(K=13.3mag),andinthecaseofthe2002observationsdereddenedbyAK=3.3magtocompensateforthehighGalacticplaneabsorption( Fenderetal. 1997 ).ToconrmtheclassicationoftheX-rayobservations,wehavereducedtheoriginalPCARXTEdataandhavefollowedtheschemeof Bellonietal. ( 2000 )forclassifyingtheX-rayvariability.Weagreewith Rothsteinetal. ( 2005 )in 55

PAGE 56

OriginalsimultaneousX-rayandIRobservationson1997August14(leftcolumn)and15(rightcolumn)at1stimeresolution.ShownherearetheportionsofthelightcurveswheresimultaneousclassBIRaresandhighclassX-rayvariabilityperiodsarepresent.ReprintedbypermissionfromEikenberry,Stephen.1998. Eikenberryetal. ( 1998a ). OriginalsimultaneousX-rayanddereddenedIRobservationson2002July27(upperpanel)and28(lowerpanel)at1stimeresolution.SeveralClassBIRaresaresimultaneouswithhighclassX-rayvariabilityperiods.ReprintedbypermissionfromRothstein,David.2005. Rothsteinetal. ( 2005 ). 56

PAGE 57

4-1 showsonlytheportionofthe1997lightcurveswheresimultaneousclassBIRaresandhighX-rayclassvariabilityarepresent( Eikenberryetal. 1998a ),andFig. 4-2 showsthe2002lightcurveswiththeIRuxdereddenedtocompensatetheGalacticplaneabsorption( Rothsteinetal. 2005 ).Forcomparison,uxdensityonthe1997observationscanbedereddenedmultiplyingbyafactorof100.4AK,withAKequalto3.3mag( Fenderetal. 1997 ).Ineachepoch,weindividuallyanalyzealltheportionsofthelightcurvesthatcontainsimultaneouscoverageoftheX-raylow/hardstateperiods,i.e.,theX-raydips,andoftheX-rayhigh-variabilitystateperiods,i.e.,theares.Wedividealltheperiodsin60sbinsandcalculatetheCCFineachbin.ForourcomparisonofthelowhardplateaustatewecalculatethemeanCCFofallconsecutive60sbinscoveringeachentirelongdippresentintheclassesandobservations.Whilethistechniqueisvalidfortheplateaustatewheretherearenovisualfeaturesasreferences,itisnotvalidforthehigh-variabilityperiodsbecauseofthepresenceoftheX-rayspikes.ThevariableperiodicityoftheX-rayspikeswouldcausethespiketobeinadifferentpositionineachbin,therefore,wecalculatethemeanCCFusing60sbinscenteredonlyontheX-rayspikesthatpresentawelldenedvisualpeak.Thisapproximationgivesusareferenceforthecenterofthebinsthatfacilitatesthecomparisonbetweenallbins,althoughitcausessomelossoftemporalinformationwhendismissingthelesswell-denedpeaks.WealsoinvestigatetherelativeevolutionofthetwosignalsrepresentingtheindividualCCFsofall60sbinsversustimeforthelow/hardstate 57

PAGE 58

MeanCCFofeachoftheclass(leftcolumn)andclass(rightcolumn)low/hardstateperiodsshowninFig. 4-6 .Nocorrelationisfoundinanyofthelow/hardstates. epochs,andversusthepeakpositionwherepeaknumber1istherstnarrowpeakforthehigh-variabilityepochs. 4-3 showsthemeanCCFoftheclassandclasslow/hardstateperiods.ThemeanCCFplotsoftheclasslow/hardstateperiodspresentastrongcorrelationwithalmostzero 58

PAGE 59

MeanCCFofeachofthe1997August14(leftcolumn)and15(rightcolumn)highclassX-rayactivityperiodsshowninFig. 4-7 .Althoughwithsimilarshape,thelagofthecorrelationvariesfromperiodtoperiod,i.e.,avariablecorrelation. lagthat,asweshowinSection 4.5 ,areclearlydominatedbytherstthree60sbins.ItisstraightforwardtoseetheresemblancebetweenthemeanCCFoftheclassesandperiodsincaseofeliminationofthestrongcorrelationbins.Theseresultssuggestthatthephysicalprocesseshappeningbetweenthecompactjetandtheaccretiondiskduringthelow/hardstatesoftheX-rayclassesandobservationshaveasimilarbehaviorwithlittleornointeraction.Figs. 4-4 and 4-5 showthemeanCCFoftheclassandclasshighX-rayvariabilityperiods.ThemeanCCFplotsofthehigh-variabilityperiodsaresimilarwithin 59

PAGE 60

MeanCCFofeachofthe2002July27highclassX-rayactivityperiodsshowninFig. 4-7 .Asimilarstrongcorrelationispresentinallperiods. eachvariabilitytypealthoughcompletelydifferentbetweenthem.Inotherwords,theclasshigh-variabilityepochsallresembleeachother,andtheclasshigh-variabilityepochsallresembleeachother,buttheclassCCFsaredifferentformtheclassCCFs.ThemeanCCFsoftheclasshigh-variabilityperiodsshowasimilarpatternofcorrelationsandanti-correlationsinallperiodsalthoughwithvariablelags,i.e.,avariablecorrelation.ConsideringthatwehaveplacedtheX-raypeaksasareferenceinthecenterofthe60slightcurvesandthatallX-raypeakswithinthesamevariabilitytypehaveacommonorigin,theclassmeanCCFplotssuggestthattheIRuxhaveacommonbehaviorwithsomekindoforganizationinallperiodsalthoughwith 60

PAGE 61

Rothsteinetal. ( 2005 ). 4-6 ).WeobserveasmallevolutionoftheCCFduringthelow/hardstateoftheX-rayclassobservationswithastrongcorrelationintherst3bins(180s)atapproximately 61

PAGE 62

Evolutionofthe60sCCFsduringthe1997August14class(leftcolumn)and2002July27class(rightcolumn)low/hardstateperiods.Clearevidenceofanevolutionarypatternisseenintheclassperiods,withastrongcorrelationatthebeginningoftheperiodthatdisappearswithtime.Despitebeinginasimilarstate,theclassobservationsdonotshowsuchanevolutionarypattern. zerolagthatfadeswithtime.SincethecorrelationishappeningwhentheX-rayandIRuxesarestilldecreasingandbeforetheyreachtheminimumvalues,webelievethisstrongcorrelationcouldbecontaminationduetoaremnantoftheprevioushighX-rayvariabilitystate.Thethreebinscorrespondtoapproximately25%oftheanalyzedlightcurvesandwillrequiredfurtherinvestigation.SuchevolutionisnotobservedduringthecomparablestateintheclassobservationsdespiteshowingasimilarrandombehavioroftheCCFatlatertimes.Ifwedismissthosethreebinsoftheclassobservations,bothclassesandlow/hardstatesshownointerconnectionbetweentheX-rayandIRlightcurves.Unlikethelow/hardstateperiods,thehighX-rayvariabilityperiodsshownoCCFresemblancebetweentheclassesandobservationsatanytime.Fig. 4-7 showstheevolutionoftheCCFwithinthehighX-rayvariabilityperiodsofbothepochs.Theclass 62

PAGE 63

Evolutionofthe60sCCFscenteredontheX-raypeaksduringtheclass(August14:threeupperpanelsofleftcolumn;August15:threelowerpanelsofleftcolumn),andclass(rightcolumn)highX-rayactivityperiods.Noevolutionarypatternisobservedinanyoftheplots,althoughtheclassCCFsshowhighertendencyforanti-correlationsatnegativelagsthanatpositivelags. 63

PAGE 64

4-8 and 4-9 showthenormalized60sX-rayandsimulatedIRlightcurves(leftcolumns)andtheX-raytorealandsimulatedCCF(rightcolumns)forsomeoftheclassesandhighX-rayvariabilitypeaks,respectively.TheKStestindicatesthattheprobabilityofthetwoCCFbeingsimilarforeachpeakisalwayshigherthan1andinsomecasesbeyondthe2levelofcondence(Table 4-1 ).Despitehavinghighprobabilitiesthese 64

PAGE 65

KStestandMonteCarlosimulationresultsfortheclassesandhighX-rayvariabilitypeaksshowninFigs. 4-8 & 4-9 PeakKStestMonteCarlo(%)(%) Aug14-278.377.9Aug14-378.370.8Aug14-691.052.2Aug14-778.378.9Jul27-298.080.6Jul27-398.081.4Jul27-491.050.1Jul27-778.370.1 resultsarenotstatisticallyconclusivebythemselvestoconrmthesimulatedlightcurvesassignicants.TodeterminetherealstatisticalsignicanceofthesimulatedIRlightcurvesweperformaMonteCarlosimulationofthesimulatedIRlightcurvesusingthesamegroupofgaussiansineachcasebutallowingrandomvaluesofthecenterofthegaussians.Weperform1000realizationsforeach60sbinandfoundthatfortheclasspeaks<10%exceedthemanualCCFKSvalues,andthatfortheclasspeaksthatnumbergoesdownto<1%.Table 4-1 showstheresultsoftheMonteCarlosimulations.TheMonteCarlosimulationindicatesthattheprobabilityofhavingKStestvaluesequalorhigherthantheoneobtainedwiththesimulatedlightcurveswhentheindividualgaussiansarerandomlydistributedisaround2fortheindividualclasspeaksandaround3levelofstatisticalsignicancefortheindividualclasspeaks.Therefore,assumingallgaussiansubareswithineachepochoriginatefromthesamephenomenon,theoverallsignicanceofthesimulatedlightcurvesduringclassesand,consideringonlythefourexamplesofeachclasspresentedhere,become4and6,respectively.Fromtheseresults,weconcludethatthesimulatedIRlightcurvesthatwehavecreatedtoreproducetheIRemissionofGRS1915+105duringthe1997X-rayclassandthe2002X-rayclassperiodsarestatisticallysignicant,indicatingthepresenceofaickeringIRemissioninGRS1915+105duringbothhighX-rayvariabilityepochs. 65

PAGE 66

NormalizedrealX-rayandsimulatedIRlightcurves(leftcolumn),andrealandsimulatedCCFs(rightcolumn)forthepeaknumbers2,3,6,and7oftheclassrstperiod(topleftpanelinFig. 4-7 ). AnanalysisofthesimulatedIRlightcurvesshowthatwhiletheclassIRlightcurvesarecomposedofagroupofindependentpeaksnotassociatedwiththeX-rayemission,theclasssimulatedIRlightcurvesarecomposedofquasi-periodicgaussiansubareswithsteadyfrequencieswithineach60speriodandvaryingamongperiods 66

PAGE 67

NormalizedrealX-rayandsimulatedIRlightcurves(leftcolumn),andrealandsimulatedCCFs(rightcolumn)forthepeaknumbers2,3,4,and7oftheclassrstperiod(toprightpanelinFig. 4-7 ). intherange0.1to0.3Hz(Table 4-2 ),i.e.,between3and8timesfasterthananypreviouslyobservedIRvariabilityinGRS1915+105( Eikenberryetal. 2008 ).Moreover,theclasssimulatedIRlightcurvesshow,inmostcases,incrementsinstrengthaftertheX-raypeaks.TheratioofthetotalIRnormalizeduxatpositivelagsversusthe 67

PAGE 68

ParametersoftheIRsimulatedlightcurves:meanfrequencyoftheIRickering;ratiooftheoveralluxatpositivelagsrespecttheoveralluxatnegativelagsfortheclasshighX-rayvariabilitypeaksshownin 4-9 ;lagbetweentheX-raypeakandthecentroidoftheIRexcess;andlagbetweenthebeginningoftheX-rayriseandtherstIRsubareoftheexcess. PeakPeriodPost/NegLagFluxIRPeakLagIRRiseLag(s)(%)(s)(s) Jul27-271+24117Jul27-361-413Jul27-462+671512Jul27-752+451913 totalIRnormalizeduxatnegativelagsvariesbetween20%and70%(Table 4-2 ).ThestrengtheningoftheIRickeringaftertheX-raypeakindicatesaninterconnectionbetweentheX-rayandIRuxes,i.e.,betweenthephysicalprocesseshappeninginthehotinneraccretiondiskandtheIRemission.Theseresultsconrmtheexistenceofquasi-periodicoscillationsintheIRemissionofGRS1915+105duringtheclassCIRaressimultaneouswithX-rayclassvariability.ApossibleexplanationfortheoriginoftheIRemissioncouldbereprocessingoftheX-rayemissionintheouterdiskand/orcompanionstar.WebelievethatthepresenceofverynarrowfeaturesintheIRemissionofGRS1915+105isinconsistentwithreprocessingoftheX-ray.ReprocessingblurstheX-raysignaltolongeraIRsignal,whileweseetheoppositeherewiththepresenceofthenarrowfeatures.Also,althoughthefastmodulation(0.1-0.3Hz)observedinthesimulatedIRlightcurvescouldbeexplainedasreprocessingoftheX-rayinafastspinningouterdiskorcompanionstar,itwouldbehard,ifnotimpossible,toexplainthechangeonthemodulationfrequencyoftheIRvariabilityfromX-raypeaktoX-raypeakonperiodsshorterthan100s,i.e.,muchfasterthantheorbitaltimescalesfortheouterdiskorcompanionstar.Hence,thepresenceofickeringIRemissionrelatedwiththeX-rayemissiondismissestheideaofreprocessingoftheX-rayuxintheouterdiskand/orcompanionstarastheoriginoftheIR,andstrengthentheideaofaickeringsynchrotronemittingIRjet. 68

PAGE 69

Rothsteinetal. 2005 ),itisstraightforwardtoassumethatthe2002overallclassCIRaressimultaneouswithX-rayclassvariabilityalsohaveanoriginintheoutowevents.Asimilarassumptionismoredifculttoapplytothe1997classBIRaressimultaneouswithX-rayclassbecauseofthelackofcorrelationbetweenthesimulatedIRlightcurvesandtheX-rayemission.However, Eikenberryetal. ( 1998a ),forthosesameobservations,probethejetoriginoftheares.Consequently,theclassBandCaresanalyzedherehaveasimilarorigininarelativisticIRjet.Nevertheless,thesimulatedIRlightcurvesshownoresemblancebetweenepochs,suggestingdifferentnatureofthejetformationinthesetwoepochs.Theclasssimulatedsignalsindicateawell-organizedjetwheretheickeringpresentsaquasi-steadyrepetitionandwithastrongcoherencewiththeprocesseshappeningintheX-rayemission,typicalofajetstronglycorrelatedwiththeaccretionprocesses.Meanwhile,theclasssimulatedsignalsshowanunorganizedjetformedbystochasticprocesseswithnocoherencewiththeX-rayemission,moretypicalofanoisyformationprocess.OncewehaveestablishedtheoriginoftheIRemissioninasynchrotron-emittingrelativisticjetoutow,weusethesimulatedIRlightcurvesoftheclasshigh-variabilityepochtoanalyzethephysicalprocesseshappeningbetweentheaccretiondiskandthejet.RadioobservationsofGRS1915+105duringalow/hardstateplacetheoriginoftheradiosynchrotronemissionatadistanceof50AUfromtheaccretiondisk( Klein-Woltetal. 2002 ; Dhawanetal. 2000 ). Eikenberryetal. ( 2008 ),assumingconservationof 69

PAGE 70

Eikenberryetal. 2008 ),wecanplacethesourceofproductionoftheIRickeringlocatedbetween0.3and0.8AUfromthecompactobject,andwithadiameteroftheplasmoidblobsbetween0.006and0.016AU.However,thesimulatedIRlightcurvesalsoshowameantimelagbetweentheX-raypeakandthecentroidoftheIRexcessof14sandameantimelagbetweenthebeginningoftheX-rayriseandthebeginningoftherstsubareoftheIRexcessof10s(Table 4-2 ).Adelayof10sbetweentheX-rayandIRemissionindicatesamaximumdistancebetweentheaccretiondiskandtheIRlaunchsiteof0.02AU,i.e.,50timesshorterthanexpectedfromtheIRickering.Theshortdistanceofthelaunchsiteandthelowerlimitof0.006AUforthediameteroftheplasmoidblobsobtainedfromthe3sickeringindicatethatweareobservingphysicalphenomenaproducedveryclosetotheoriginoftheIRplasmoidejection.Fig. 4-10 showsarepresentationofthejetdistancesanddiameters.WehavedemonstratedthatbothmeasurementsofthetimelagsbetweentheX-rayandIRemissionindicateanunambiguoustimedelaybetweentheX-rayemissionandtheplasmoidejectionsincontradictiontothehypothesisofanoutside-inprocesspresentedby Eikenberryetal. ( 2000 ).Also,thedistanceobtainedfortheoriginoftheIRemissionis15timesshorterthantheaccretiondiskouterradiusofGRS1915+1050.3AU( Rauetal. 2003 ),denitelyconrmingtheinconsistencyofourresultswiththereprocessingintheouterdiskand/orcompanionstarasoriginoftheIRemission.Reprocessingcouldstillbepossibleinalumpintheinnerdisk,althoughthepresenceofthenarrowIRpulsescontradictsthatexplanation. 70

PAGE 71

Diagramofthejetdistancesandplasmablobdiametersatscale. OursimulatedIRlightcurvespresentvariationswithfrequenciesintherange0.1to0.3Hzthatcannotbedetectedintheoriginallightcurves.Thepowerspectrumofthe60soriginalIRlightcurvesshowthepresenceofweakquasi-periodicoscillations(QPOs)atthesamefrequenciesthanthesimulatedlightcurvesbutwithaverylowstatisticalsignicance.Althoughourresultsconrmtheinteractionbetweentheaccretiondiskandthejetinatleastoneofthevariabilitytypes,thehighX-rayvariabilityportionoftheclass,theyalsoshowthatthetimeresolution1saswellastheIRS/N10and25forthe1997and2002observations,respectivelyoftheobservationsanalyzedhere,andespeciallyofthehigh-variabilityperiods,areinsufcienttoproduceasignicantanalysisofthereallightcurvesandtounderstandthephysicalprocesshappeningbetweentheX-rayemittingaccretiondiskandtheIRejectionevents.DespitetheevidencepresentedhereofnoapparentIRtoX-raycorrelationduringtheclasshigh 71

PAGE 72

Eikenberryetal. ( 2008 )andaredifculttoexplainasreprocessingoftheX-rayemissionintheouterpartoftheaccretiondiskand/orcompanionstar.WeproposeinsteadthattheoriginoftheIRemissionisasynchrotron-emittingcompactjet,consistentwithseveralpreviousauthors( Fenderetal. 1997 ; Pooley&Fender 1997 ; Mirabeletal. 1998 ; Eikenberryetal. 1998a ; Rothstein 72

PAGE 73

, 2005 ).ThedelaybetweentheX-rayandIRlightcurvesindicatesalocationoftheIRlaunchsiteveryclosetothecompactobjectat<0.02AU.AlthoughthesimulatedlightcurvesclearlyindicatesadelaybetweentheX-rayandIRuxes,anaccurateestimationofthetimedelaycannotbeobtainedfromthemandwillhavetowaituntilhighertimeresolutionobservationsareavailable.Thefollowinginstrumentalpartofthisworkisfocusedonthedevelopmentofanear-IRastronomicalinstrument,theCanariasInfraRedCameraExperiment(CIRCE),thatwillallowustocaptureobservationsofGRS1915+105withatimeresolutionandS/Nlevelsneverachievebefore.WeexpecttouseCIRCEinthefuturetoconrmtheresultsofaickeringjetintheIRemissionofGRS1915+105presentedhere. 73

PAGE 74

6 ,wepresentacombinationoftwoSPIEproceedings( LassoCabreraetal. 2008 ; LassoCabreraetal. 2010 )dedicatedtothedescriptionoftheoriginalreadoutelectronicsdesign,andthedevelopmentandsignicanceofthefastphotometrymode.CIRCEwasinitiallydesignedtousea2048x2048HAWAII-2HgCdTearrayfromtheRockwellScienceCenter,incombinationwithin-housedesignedreadoutelectronics.Half-waythroughthecompletionofthisdissertationtheHAWAII-2HgCdTewasdiscontinued,forcingtheGeminiObservatorytheproviderofthesciencearrayforCIRCEtoprovideCIRCEwiththemoremodern2048x2048HAWAII-2RGarrayfromTeledyneScientic&Imaging.Thenewsciencearraywasincompatiblewiththeoriginalreadoutelectronics;thus,replacementreadoutelectronicsdevelopedincollaborationwiththeInter-UniversityCentreforAstronomyandAstrophysicsiscurrentlybeingtested.Chapter 7 describesthenalreadoutelectronicsdesignusedinCIRCE,aswellasthe 74

PAGE 75

8 ,wepresenttheresultoftheanalysisoftheimagequalitytestsperformedontheCIRCEopticalsystem.Wepresentedtheseresultsduringtherecent2012SPIEconference(Lassoetal.2012). Edwardsetal. 2004 2006 2008 ; Marn-Franchetal. 2006 ; Charcos-Llorensetal. 2008 ; LassoCabreraetal. 2008 2010 )1.SeeFig. 5-1 fordetailedtechnicalspecicationsandobservingmodesofCIRCE.Wheninitiallydesigned,CIRCEwasintendedtoprovidenear-IRimagingandspectroscopy

PAGE 76

CIRCEtechnicalspecicationsandobservingmodes. 76

PAGE 77

CIRCEOpticalLayout. capabilitieswiththeGTCuntilthearrivaloftheEspectrografoMultiobjetoInfraRojo(EMIR).TheimproveddesignofCIRCE,particularlytheadditionofpolarimetryandfastphotometrycapabilities,willcomplementthecapabilitiesofEMIR,ensuringthefunctionalityofCIRCEbeyondthearrivalofEMIR.CIRCEwillbetheonlynear-IRinstrumentattheGTCwithpolarimetryandfastphotometrycapabilities. 77

PAGE 78

5-2 showstheopticallayoutofCIRCE.Figs. 5-3 & 5-4 showthelocationoftheopticalcomponentswithinthedesignoftheinstrument.Toassureaminimumlevelofbackgroundnoisefromtheinstrument,thetemperatureofthesystemismaintainedat77Kusingliquidnitrogencooling. 78

PAGE 79

CIRCEOpticalBench. CIRCEOpticalBenchCurrentState.PhotocourtesyofLassoCabrera,NestorM. 79

PAGE 80

CIRCEDewardesignrearview. CIRCEDewarmountedonthecart.PhotocourtesyofLassoCabrera,NestorM. 80

PAGE 81

5-3 & 5-4 showtheopticalbenchwiththemirrors,lterbox,andnitrogentanks.Fig. 5-5 & 5-6 showthedesignandcurrentstateofthedewarrespectively. 5-2 & 5-3 ).Itslocationiscrucialtothecorrectfunctioningofthewholesystem.Atthepupil,theparallelraysfromdifferenteldpointscross,thereforeanyopticalelementplacedatthislocationwillintroduceanidenticallightlossinallpointsoftheimage,reducingthetotalthroughputofthesystembuteliminatingthecontributiontosystematicnoiseintheateld.Thelterbox,incombinationwiththefocalplanemechanism(Subsection 5.1.2.2 ),willempowertheobservertoswitchltersand/orobservingmodesinstantlyduringthenight.Awellplannedobservingrunwillallowtheobservertoaccommodateseveraldifferentcongurationsduringasinglenight,withoutopeningtheinstrument.Manufacturedinourmachineshop,thelterboxismadeentirelyofthesameAl-6061aluminumasthebenchandmirror,reducingthecontractiondifferenceswiththerestofthesystematworkingtemperatures.Thelterboxiscomposedof3lterwheels,onegrismwheel,andoneLyotwheel.Thelterandgrismwheelswillaccommodate4opticalelementseach.TheelectronicscomponentsthatallowthemovementofthedifferentwheelsaredescribedinChapter 7 .Figs. 5-7 & 5-8 showthelterboxdesign. 81

PAGE 82

CIRCEFilterBox. CIRCEFilterBoxImage.PhotocourtesyofLassoCabrera,NestorM. 82

PAGE 83

CIRCEFocalPlaneMechanismplacedinsidethetestdewarandreadyforthecryogenictesting.PhotocourtesyofLassoCabrera,NestorM. 7 .Fig. 5-9 showsthecurrentstateofthefocalplanemechanism.AlthoughmissingtheHWPmechanism,wehavestartedcryogenictestingofthein-outstage. 83

PAGE 84

84

PAGE 85

2.5 ).ThehighextinctionatvisiblewavelengthstowardtheobjectI23.4mag,R>26mag( Boeeretal. 1996 )limitstheobservationofthecompanionstartoIRwavelengths. Mirabel&Rodriguez ( 1994 )obtainedtherstinfraredobservationofGRS1915+105usingthe2.2-mESO/IRAC2.TheyunveiledtheIRcounterpartofthesystem,aswellas,placedlimitsontheIRbandmagnitudes,J16mag,H15.5mag,andK13.5mag. Chatyetal. ( 1996 )observedthecounterpartintheJ,H,andKbandswiththe 85

PAGE 86

Bandyopadhyayetal. ( 1998 )observedanIRmodulationintheK-bandontheorderof30-40daysinamulti-wavelengthstudyusingK-bandobservationsfromthe1.8-mPerkins/OSIRIS. Neiletal. ( 2007 )present7yearsofK-bandmonitoringofGRS1915+105usingthe1.0-mYale/ANDICAMandthe1.3-mCTIO/ANDICAM.TheyconrmedthattheIRuxcontainsacomponentcorrelatedwiththeX-rayux,andthereforeassociatedwiththedisk,plusnonthermalIRaresnon-correlatedwithX-rayux.Theyalsoobservedathirdcontributionfromthecompanionstar,fromwhichtheyobtainedaPorb=30.80.2days.ClassAandBaresfromGRS1915+105havebeenobservedmultipletimesinradiowavelengths,e.g.,usingVLA( Mirabel&Rodriguez 1994 ; Rodriguez&Mirabel 1998 )orMERLIN( Fenderetal. 1998 ).However,theyarelimitedtothreeclassAandveclassBobservationsintheIRwavelengths. Mirabel&Rodrguez ( 1996 )usingthe3.8-mUKIRT,observedtherstclassAIRaresimultaneouslywitharadio-emittingoutow. Samsetal. ( 1996 )usingthe3.58-mNTT/SHARPobservedtheonlyevidenceofaresolvedIRjetattheradiolocationtodate. Eikenberryetal. ( 1997 )usedK-bandobservationswiththe2.1-mtelescopeatKittPeakNationalObservatorytofollowuptheresolvedIRjetobservedby Samsetal. ( 1996 ).Theyfoundnoevidenceoftheextendedemission,provingthelinkbetweentheIRoutowsandtheradio-emittingjets. Araietal. ( 2009 )observedaclassAareintheHandKbandusingthe1.5-mKANATA/TRISPEC. Fenderetal. ( 1997 )usingthe3.8-mUKIRT/IRCAM3,observedclassBIRaresintheK-band.Theyobservedevidenceforinfraredsynchrotronemission. Eikenberryetal. ( 1998a )usingthe5-mHaletelescope,observedclassBIRaresintheK-bandduringaclassX-rayepoch. Mirabeletal. ( 1998 )and Fender&Pooley ( 1998a )observedclassBIRaressimultaneouslywitharadio-emittingoutows,usingthe3.8-mUKIRT/IRCAM3andthe4.2-mWHT/WHIRCAM,respectively.ClassCaresofGRS1915+105arelimitedtoaveryfewIRobservations. Eikenberry 86

PAGE 87

( 2000 )and Rothsteinetal. ( 2005 )usingthe5-mHaletelescope,observedclassCIRaresassociatedwithshortX-raysoftdipsandwithaclassX-rayepochrespectively. Rothsteinetal. ( 2005 )discoveredseveralsporadicIRmicroareshappeningsimultaneouslywithX-rayuxpeaks.AssumingthenthateveryX-raypeakhasanIRcounterpart,theywereabletosimulatethewholeIRare.Thistechniquewasalsoappliedtotheclassaresobservedby Eikenberryetal. ( 1998a )withdifferentresults. Fuchsetal. ( 2003 )observedsimultaneouslyresolvedradiojet,brightnear-IRemission(possibleclassCare),andX-rayQPO,usingthe3.58-mNTT/SOFI. Uedaetal. ( 2006 )usingthe8.2-mSubaru/CISCOobservedclassCIRaresduringthedipsofanX-rayclass.OnsetoftheIRaresshowsadelaybetween0-3minuteswithrespecttothebeginningofthedips.Besidethoseground-basedobservations,theonlyIRspace-basedobservationofGRS1915+105wasmadeby Eikenberryetal. ( 2008 )usingtheHST/NICMOS.Theyfoundinfraredvariabilityof20-30%withatimescaleof25sduringaX-rayclassstate. Castro-Tiradoetal. ( 1996 )madetherstspectroscopicobservationsofGRS1915+105usingthe3.8-mUKIRT.TheyclaimedthatGRS1915+105waslikelyaLMXB. Eikenberryetal. ( 1998b )usingthe5-mHale/HNAstudiedtheH-I,He-I,andHe-IIlines.Theyfoundthelinesarisefromtheaccretiondisk,andthattheareemissionoriginatesfromejectamovingoutoftheaccretiondisk. Greineretal. ( 2001 )usingthe8.2-mVLT/ISAACidentiedthedonorstarasaK-MIIIstarwith1-1.5M,andclassiedGRS1915+105asaLMXB. Harlaftis&Greiner ( 2004 )usingalsothe8.2-mVLT/ISAAC,identiedthedonorstarasK-typegiantstarwithM=0.810.53M. Shahbazetal. ( 2008 )usedthe3.8-mUKIRT/UISTtoobtainHandKspectrafromGRS1915+105. 87

PAGE 88

Samsetal. ( 1996 )measuredthetotalpolarizationofthesystemusingthe3.58-mNTT/SHARP.Theyobtainedavalueofthepolarizationof2.70.6%.Thetotalnear-IRemissionisnotintrinsicallyhighlypolarized,andisconsistentwiththepolarizationduetomagneticorientationofinterstellardustgrainsintheGalacticPlane.Theyalsocalculatedanupperlimitforthejetpolarizationof30%,basedonthehighextinctionoftheIRwavelengths. Shahbazetal. ( 2008 )obtainedasimilarresultforthepolarizationofGRS1915+105.Theyusedthe3.8-mUKIRT/IRPOL2,andmeasuredatotalpolarizationof5.0%1.2%,alsoconsistentwithinterstellarpolarization. 88

PAGE 89

Eikenberryetal. ( 1997 )and Rothsteinetal. ( 2005 ).The Eikenberryetal. ( 1997 )observationsyieldS/Nvaluesof10whenusingthe5-mHaleTelescopewithtimeresolutionof0.1s,andlaterrebinnedto1s.The Rothsteinetal. ( 2005 )observations,withthesametelescopeandatimeresolutionof1s,yieldS/Nvaluesof25.Finally,S/Nlevelsinthe25saresobservedwithHST/NICMOSby Eikenberryetal. ( 2008 )arebetween12and100.Becauseoftherelevanceofthesearesforthiswork,wespecicallycalculatetheimprovementintimeresolutionandS/NlevelthatCIRCEwillprovideforsimilarares.WithK-bandmagnitudeof12.6andseeingof0.5arcsec,CIRCE'sS/NcalculatorgivesS/Nlevelsof175foratimeresolutionof0.1s,i.e.,GTC/CIRCEwillalmostdoublethebestS/NofHST/NICMOSwith80timeshighertimeresolution.Clearly,GTC/CIRCES/Nlevelswillsignicantlyimproveonanypreviousobservation,allowinghigherprecisionphotometric,polarimetricandspectroscopicstudies.ThehighS/NlevelsobtainedwiththeGTC/CIRCEwillallowforthersttimereliablephotometry,polarimetry,andspectroscopywithatimeresolutionlowerthan1s. 89

PAGE 90

4 .WeexpectthisobservationtoprovidedenitiveproofofthephysicaloriginoftheX-rayQPOs,allowingustoplacetheX-rayQPOswithinthecontextofthemicroquasaremissionmodel. 90

PAGE 91

Edwardsetal. 2008 ; Charcos-Llorensetal. 2008 ; LassoCabreraetal. 2008 2010 )( Elston 1998 ; Elstonetal. 2003 ; Eikenberryetal. 2004 ).BasedonthosesystemsweexpecttheinitialCIRCEelectronicstobeassuccessfulasitspredecessors.WediscussherethedifferentsubsystemsoftheinitialdesignofCIRCE'sreadoutelectronics. 91

PAGE 92

92

PAGE 93

3 & 4 .Thebeginningofthischapterisdedicatedtothedescriptionofthebasicsubsystemsthatwereusedtocontroltheoriginalreadoutelectronicsoftheinstrument.TheinitialdesignofCIRCEreadoutelectronicswascreatedbyourformerelectricalengineerKevinHanna.MycontributiontothesystemwasbybuildingtheBiasandPreampBoards,aswellas,testingtheirfunctionality.TheremainderpartofthechapterisdevotedtotheworkIhavedoneonthedevelopmentoftheFastPhotometryMode. 6.1.1ArrayControllerSubsystem(MCE-3)DrivingandacquiringtheanalogdatafromtheRockwell2048x2048HgCdTeHAWAII-2arrayinthedewarrequiresapowerfulexternalcontroller.TheMCE-3(ModularCameraElectronicsver.#3)performsthosefunctionsfromwithinitsownthermalenclosure.Designedbasedonitspredecessors,andresidinginacustomVMEchassislocatedintheArraySignalProcessor(ASP),thefourmajorhardwarecomponentsassociatedwiththeASPare:thePatternGeneratorBoard(PGB),theMicroprocessorboard,theADCboard(s),andtheFiberInterfaceboard.APerleSerialTerminalServermoduleisusedtocontroltheArrayController(MCE-3),asitdoesinitspredecessors.Aberopticcableisusedastheseriallinktomaintainisolationfromtheremainderofthesystemandtelescope.ThesciencedataoutputfromtheMCE-3is 93

PAGE 94

6-1 .Thisboardperformstwomaintasks.TherstmaintaskistogenerateontheanalogsideoftheboardalltheClocklevelsandDClevelsrequiredforthereadoutoftheHAWAII-2array.ThesecondmaintaskofthisboardistoprotectthedetectorfromnoisecausedbytheTTLLevelControlLines.Thistaskisperformedbyopticallyisolatingthedetectorfromthoselines. 6-2 .Thelowerleftsectioncorrespondstotheclockingsection,andthelowerrightsectioncorrespondstotheDCanalogbiassection.DCandclockinggroundsareconnected.Finally,theuppersectioncorrespondstotheentrypointforallthedigitalsignals.Theopto-isolatorsarelocatedbridgingthatgapatthebottomofthedigitalsection. 94

PAGE 95

Left:PreampBoard.Right:BiasBoard.PhotocourtesyofLassoCabrera,NestorM. 95

PAGE 96

BiasBoarddigital/analogisolation.PhotocourtesyofLassoCabrera,NestorM. lines,areremoved.ThoseplugswilleliminateanyESDeventfromdirectcontactwiththeassociatedconnectorpins.Consideringthis,itisnotrecommendedthattheBiasenclosurebeopened,andtheBiasBoardbedisconnectedinanattempttoplaceashortingplugdirectlyonthedewarcaseconnector.Evenwiththesetwotypesofprotectionbuiltinprotectionandexternalprotection(plugs)usersmusttakecaretopracticenormalESDpreventiontechniqueswhenhandlingsensitivepartsoftheinstrument. 6-1 .ThePreampBoardisdesignedtobeatwostagepreampwithDCoffsetavailableforeachamplier.BothstagesaredesignedusingOPA627.DCoffsetsarenormallycontrolledbytheMCE-3rmware,althoughanenhancedcapabilityofthisboardallowscommandoftheDCoffsetsbyhighlevelsoftware.ThePreampBoard'smaintaskistodrive,bymeansoftheampliers,theanalogcablethatwillconnectthedetectorwiththeMCE-3ADCconverters.Thegainofthis 96

PAGE 97

Finger&Beletic ( 2003 ).WehavesuccessfullytestedthiscircuitintheFLAMINGOS-2systemandithasprovidedthenecessaryclockedgetoedgestability.Sinceitsintroduction,wehaveseennoclockinganomaliesthataretraceablebacktotheclock-1/clock-2edges. 97

PAGE 98

6-3 showsadiagramofthearraywiththequadrants,subquadrants,andreadingspeedanddirections.The2048x2048HAWAII-2arraycanbeconguredinanyofitsthreeoutputsmodesdependingontheuser'sneeds.ThosemodesareselectedbymeanofthedigitalcontrolssignalO1andO2. 98

PAGE 99

HAWAII-2readoutorganizationandeffectivereadoutareausingtheFastPhotometrymode. TheinformationrequiredtoreadthedetectoriscontainedinoneofthefunctionsofthermwarecalledCYCLETYPES(CT).Eachoneofthesefunctionsaretextlistsdeningtheactivitiestoperform.ThebasicCTusedtoreadthedetectorcongurestheHAWAII-2detectorintheeightoutputunshufedmode,andproducesthefollowingsequenceofsignals: 1. FSYNC:pulsedonceperframe,synchronizesthereadoutofeachframe(1/frame). 2. LSYNC:pulsedsometimebeforetherstpixelofeachrow,synchronizesthereadoutofeachrow(1/rowand1024/frame). 3. VCLK:pulsedtoincreasetheverticalshiftregister,synchronizesthechangeofrow(1/rowand1024/frame). 4. READ:allowsthereadoutofeachpixeloftherow(128/rowand131072/frame) 99

PAGE 100

6.2 formoredetails. 6-4 showsthebasiccomponentsofthereadoutelectronics.Thecurrentdesignoftheelectronicsoftheinstrumentcompromisesthereadoutspeedinordertoguaranteelowreadnoisewhenthedetectorisintheeightoutputunshufedmode.TherequirementsforthesignaltonoiseratioforCIRCElimitthepixelrateofthe32outputsofthearraytoamaximumof82Kpix/sinthestandardoperationmode.The32outputscomingoutofthedetectoraredriventothePreampBoard,wheretheyarerstmultiplexedto16channelsandthenamplied.Inordertokeepthepixeltransferrateequalattheentranceandtheexitoftheboard,multiplexingfrom32channelsto16channelsrequiresanincrementoftwointhepixeltransferspeedperchannel(164Kpix/s).The16outputsarethendividedinfourgroupsof4channels,eachonecorrespondingtoawholequadrant,andsenttofourdifferentADCBoardsresidingintheMCE-3.TheADCBoardslteranddigitalizetheanalogsignals,andmultiplextoonechanneleachgroupoffour.Thetransferspeedneedstobeincreasedbyfour(0.65Mpix/s).Thepixelsaredigitizedusingaconversionof32bitsperpixelsotheycanbetransmittedthroughthebackplaneoftheMCE-3.ThebackplaneoftheMCE-3transfersthesignalstotheFiberBoardthroughasingle32bitschannel,requiringagainanincrementinthetransferspeedperchanneloffour(2.6Mpix/s).The 100

PAGE 101

Diagramofthearrayreadout.Theredlabelsshowfundamentallimits.Inthestandardreadout,the32channelsofthedetectorarereadat82Kpix/s;multiplexedto16channelsandampliedinthePreampBoard;ltered,digitalized,andmultiplexedto4channelsintheADCBoards;transferredtotheFiberBoardthroughthebackplaneoftheMCE-3;andsenttotheObservatoryNetworkthroughtheFiberBoardanda2Gbber.Standardframerateis0.625Hz.

PAGE 102

6-4 ).Therstoneisimposedbythedetector.Thereadoutofthechannelsinthedetectorislimitedtoamaximumpixelsamplerateof140Kpix/s( Diazetal. 2004 ).Thelimitisimposedbythedetectoritselfandcannotbeexceeded.ThesecondfundamentallimitisimposedbythebackplaneoftheMCE-3.Thebackplaneiscontrolledusinga5MHzclock,with5/4overhead,limitingthepixelratehereto4Mpix/s.ThislimitcouldbeovercomeusingafasterclockbutwouldrequireconsiderablemodicationstothecurrentdesignofCIRCE. 6.2.1FastPhotometryAstronomicalinstrumentsaredesignedtocollectthemaximumamountofinformationinasingleobservation.Therefore,theirdesignsareingeneraloptimizedtoobservethemaximumeldofviewpossible.Tryingtoreachthelimitsforeachinstrument,detectorsarechosenwithmaximumsizepossiblewithoutnecessarilyconsideringthetotaltimeofframecapture.Thistrendinthedesignofinstrumentsisprobablyjustied,butwhenthegoalistoobservehighlyvariableobjects,thedesignchoicesforaninstrumentwillbedifferent.CIRCE,althoughdesignedbasedonthegeneralphilosophy,isgoingtobemodiedtoaccommodatethestudyofhighvariabilityobjects.Inmanycases,theobservedimageiscomposedoftheobjectofinterestplusmostlyuselessbackground.Often,mostofthisbackgroundcanberemovedwithoutcausinganyalterationtothestudyofthetarget.ThisisthephilosophyusedinCIRCEtodeveloptheFastPhotometrymode.Reductionoftheeffectivesizeofthedetector 102

PAGE 103

6.1.7 ,everynewreadingsequence/modeneedstheimplementationofanewCTinthermwareofthesystem.InthecaseoftheFastPhotometrymode,subarrayreadoutareimplementedmakingsimplemodicationsinthermware.AnewCTisrequiredtoperformFastPhotometry.ThisnewCTwillbeamodicationofthebasicCTusedtoperformtheEightOutput,Unshufedstandardmode(Subsection 6.1.7 ).TheREADsignalwillonlybeactivatedintherowstoread,remaininginactivefortheunusedrows,allowingreadoutsofanysubframesizepreviouslyselectedbytheobserver.ThenewCTwillonlyclocktheredundantrowsatafastrate,andwillclockandreadthedesiredpixelsonthedesiredrowsatamuchslowerrate.ThesequenceofsignalsforthecaseofeightoutputunshufedFastPhotometrymodeis: 1. FSYNC:pulsedonceperframe,synchronizesthereadoutofeachframe(1/frame). 2. LSYNC:pulsedsometimebeforetherstpixelofeachrow,synchronizesthereadoutofeachrow(1/rowand1024/frame). 3. VCLK:pulsedtoincreasetheverticalshiftregister,synchronizesthechangeofrow(1/rowand1024/frame). 4. Steps2and3arerepeatedasmanytimesasthenumberofredundantrows. 5. READ:allowsthereadoutofeachpixelofeachrowonlyinthedesiredrows(128/rowand((subframesize/2)*128)/frame).ThedesignoftheHAWAII-2arrayin32independentsubquadrantswithoneparalleloutputforeachone,willproduceaneffectivereadoutareaperquadrantof1024by(subframesize/2)pixels.Fig. 6-3 showstheeffectivesubframereadouts.Post-processingofthereaddatawilleliminateredundantpixels.TheFastPhotometrymodecanbealsoimplementedincombinationwiththeSingleOutputModeofthedetector.ThesequenceofsignalsforthecaseofsingleoutputmodeisthesamethatfortheeightoutputunshufedmodewiththedifferencethattheREADsignalispulsed(subframesize/2)/rowand(subframesize/2)2/frame. 103

PAGE 104

6-1 showsacomparisonbetweenthereadouttimesusingthisoptionfortheFastPhotometrymodewithdifferentsubframesizesversusthereadouttimeofthe2048x2048HAWAII-232outputsarray.ThesimplestoptionwillallowCIRCEtoreacha512x512pixelframerateof2.5Hz(Fig. 6-6 ),ora256x256pixelframerateof5Hz(Fig. 6-7 ).Thereadouttimeswithsubframesizesof512x512and256x256pixelsdecreaseto23%and13%ofthewholeframereadouttime.ExpectedreadouttimesarealsorepresentedinTable 6-1 .Assumingatypicalreadouttimeof1.5sforthe2048x2048HAWAII-232outputsarray,thereadouttimeofthe512x512and256x256HAWAII-2subarrayswouldbe0.39and0.195srespectively.Theonlymodicationneededisthecreationofanewcycletypeinthermwarethatwillclockthe1024-Nredundantrows,andwillclockandreadtheNdesiredrowsasexplainedinSubsection 6.2.1 .Therestoftheelectronicswillremainthesame.Thiscreatesastaggeredcrosspatternonthearray,includinga2Nx2N-pixelcontiguouscentral 104

PAGE 105

ExpectedreadouttimesusingtheFastPhotometrymodewithdifferentcongurationsoftheHAWAII-2array,comparedwiththereadouttimeoftheHAWAII-2with32outputs. DetectortypeFramesizeReadoutTimevsReadoutTime(pixels)2048HAWAII-2ReadoutTime(sec) HAWAII-2(32outputs)2048x2048100%1.5HAWAII-2(32outputs)1024x102450%0.75HAWAII-2(32outputs)512x51226%0.39HAWAII-2(32outputs)256x25613%0.195 squareeldofview(Fig. 6-3 ).Theredundantpixelsoutsidethecentralsquarewillbeeliminatedinpost-processingofthedata.WewouldliketoremarkherethatthisverysimpleoptionisgoingtobeappliedtotheMCE-4onFLAMINGOS-2becauseofitssimplicity.FLAMINGOS-2isaNear-Infraredwideeldimagerandmulti-objectspectrometerforuseonGemini-SouththathasbeenbuiltbyourteamontheUniversityofFlorida. 6-8 ).Asimplechangeintheelectronicswillreducethepixelrateinthebackplanebelowthefundamentallimit.ThemultiplexinginthePreampBoardcanbeskippedmodifyingthecurrentcodeoftheMotorola68020microprocessorthatcontrolstheMCE-3.Onlyhalfofthesubquadrantswillberead,reducingthepixelratebyhalf,andkeepingthecentralsquareframe.Thetechniquewilllimitourframetoamaximumof256x256pixelswithaframerateof8.5Hz(Fig. 6-9 ).Thisframerateof8.5Hzisthemaximumpossiblefora256x256pixelframewiththeHAWAII-2array.In 105

PAGE 106

HAWAII-2typicalframesizes.Bluesquaresrepresentthefollowingsubframesizes:2048x2048,512x512,256x256,and128x128pixel. additiontothemodicationsontheclockandthecodeofthemicroprocessor,anewCT,similartotheoneusedinoption1,hastobecreated. 106

PAGE 107

Comparisonoftheframerateforthedifferentoptionsandframesizes. DetectorsizeOriginalOption1Option2Option3Option4 2048x20480.625Hz----512x512-2.5Hz-2.13Hz4.3Hz256x256-5Hz8.5Hz8.5Hz8.5Hz inthismodemodifyingthecodeonthemicroprocessor.Thenewcongurationofthedetectorwillrequiresomechangesintheelectronics.ToaccommodatethedetectorinitsnewmodetothecurrentdesignoftheelectronicsofCIRCEthemultiplexingintheADCBoardsneedtobesuppressed.AsinthePreampBoard,themultiplexingintheADCBoardscanbeskippedbymodifyingthecodeofthemicroprocessor.InthiscongurationCIRCEwillbeabletoreacha512x512pixelframerateof2.13Hz(Fig. 6-10 )ora256x256pixelframerateof8.5Hz(Fig. 6-11 ). 6-12 ),anda256x256pixelframerateof8.5Hz(Fig. 6-13 ).ThesetwopixelframesarethemaximumpossibleforthoseframesizesandtheHAWAII-2array. 107

PAGE 108

6-2 showsacomparisonoftheframeratesforallfouroptionandtwodifferentsubframessizes. 108

PAGE 109

DiagramoftheOption1512x512subarrayreadoutusing32outputs.Atadetectorreadoutrateof82Kpix/snoneofthefundamentallimitsaffectsthereadout.512x512subarrayframerateis2.5Hz.

PAGE 110

DiagramoftheOption1256x256subarrayreadoutusing32outputs.Atadetectorreadoutrateof82Kpix/snoneofthefundamentallimitsaffectsthereadout.256x256subarrayframerateis5Hz.

PAGE 111

Diagramofa256x256subarrayreadoutusing32outputs.Atadetectorreadoutrateof140Kpix/s(fundamentallimitforthereadout)thebackplanefundamentallimitimpedesthereadoutofthedetector.

PAGE 112

DiagramoftheOption2256x256subarrayreadoutusing16outputs.Atadetectorreadoutrateof140Kpix/s(fundamentallimitforthereadout)theexceededfundamentallimitinthebackplaneoftheMCE-3(Fig. 6-8 )canbeavoidedwiththesuppressionofthemultiplexorsinthePreampBoard.256x256subarrayframerateis8.5Hz.

PAGE 113

DiagramoftheOption3512x512subarrayreadoutusing4outputs.Atadetectorreadoutrateof140Kpix/s(fundamentallimitforthereadout)theexceededfundamentallimitinthebackplaneoftheMCE-3(Fig. 6-8 )canbeavoidedwiththesuppressionofthemultiplexorsinthePreampBoardandtheADCBoards.512x512subarrayframerateis2.13Hz.

PAGE 114

DiagramoftheOption3256x256subarrayreadoutusing4outputs.Atadetectorreadoutrateof140Kpix/s(fundamentallimitforthereadout)theexceededfundamentallimitinthebackplaneoftheMCE-3(Fig. 6-8 )canbeavoidedwiththesuppressionofthemultiplexorsinthePreampBoardandADCBoards.256x256subarrayframerateis8.5Hz.

PAGE 115

DiagramoftheOption4512x512subarrayreadoutusing16outputs.Atadetectorreadoutrateof140Kpix/s(fundamentallimitforthereadout)theexceededfundamentallimitinthebackplaneoftheMCE-3(Fig. 6-8 )canbeavoidedrewiringthedetectoroutputstomultiplexorsconnections.512x512subarrayframerateis4.3Hz.

PAGE 116

DiagramoftheOption4256x256subarrayreadoutusing16outputs.Atadetectorreadoutrateof140Kpix/s(fundamentallimitforthereadout)theexceededfundamentallimitinthebackplaneoftheMCE-3(Fig. 6-8 )canbeavoidedrewiringthedetectoroutputstomultiplexorsconnections.256x256subarrayframerateis8.5Hz.

PAGE 117

5 ),andwehavedescribedtheinitiallyproposedreadoutelectronicsdesignforCIRCE(Chapter 6 ).Inthischapter,wearegoingtothoroughlydescribetheelectronicsdesignofCIRCE,includingthehousekeepingelectronics,theLogicControlUnit(LCU),andthenalreadoutelectronicsweareplanningtouseinCIRCE.Thedesignofanastronomicalinstrumentisaverycomplextaskthatinvolvescoordinationbetweenseveralengineeringelds:mechanics,optics,andelectronics.Generally,onlymechanicalandopticaldesignsareshownwhendescribinganinstrument,leavingasidetheelectronic.Despitebeingasrelevantfortheoperationoftheinstrumentasthemechanicalandopticaldesigns,electronicsdesignsareonlycommontoinstrumentbuildersandnottotheastronomicalcommunity.Liketheopticalandmechanicaldesigns,theelectronicsdesignofaninstrumenthastobeplannedinadvancetoguaranteeperfectfunctionalityandtointegratethedifferentelectricalpartswiththerestofthecomponentsofthesystem,i.e.,electricalcomponentshavetotwithinthemechanicaldesignwithoutinterferingwiththeopticalsystem.ThedesignofaninstrumentforinfraredobservationsoftheskyisamorecomplextaskthanwhendesigningforthevisibleregimebecauseIRwavelengthsareassociatedwithheatradiation.IRobservationrequireseliminationofanypossiblesourceofheatalongthelightpathtoreducebackgroundnoiseduetotheradiatedheat.Forthatreason,infraredastronomicalinstrumentsneedtobecooleddowntoatemperatureof77K,minimizingtheheatradiationfromtheinstrumentitselfandavoidingtheinteractionoftheinstrumentheatwiththesignalfromtheobservedobject.Asideeffectofsuchalowworkingtemperatureisthatthewatervaporintheaircouldcondenseonthemirrors 117

PAGE 118

118

PAGE 119

7.1 wepresentaglobalviewoftheelectronicdesignofCIRCEthroughthetoplevelanddewarcablemapsoftheinstrument.Inthefollowingsections,wedescribeindetaileachindividualcomponentoftheelectronicdesign.Section 7.2 describesalltheelectroniccomponentsrequiredtomaintaintheinstrumentoperatingattheworkingtemperatureandpressureaswellastheelectronicsofthedifferentmovingmechanismslocatedinsidethedewar.Section 7.3 isdedicatedtothedescriptionoftheLCUandthecommunicationsbetweenthecontrolcomputer(observercomputer)andthedifferentsystemsoftheinstrument.Finally,inSection 7.4 weintroducethenalsolutionweplantousetocontrol/readtheHawaii-2RGinfraredarray. 7.1.1 )andDewar(Subsec. 7.1.2 )cablemaps.Additionally,theremainingsectionsincludecablemapsofthedifferentelectronicsubsystemsofCIRCE.Asimportantastheyare,thecablemapsbythemselvesareinsufcienttobuildorthoroughlyunderstandtheelectronicsofanyinstrument.Moredetaileddocumentationcontainingspecicinformationforeachcomponentofthecablemapsisrequired.Althoughnotshownhere,wehavecreatedindividualdocuments,similartotheoneshowninFig. 7-1 ,foreachoneoftheCI-XXXXlabeledcablesofthecablemaps(Figs. 7-2 7-3 7-4 7-6 7-5 ,& 7-13 ).Thesedocumentscontainthespecications 119

PAGE 120

ExampleCIRCECableDocument. concerningeachindividualcable:cablenumber;functionality;numberofcontacts,typeofconnector,andtypeofmatingconnectorforeachsideofthecable;specialassemblynotes;anddetaileddescriptionsofeachcontactanditsfunctionality.Thesedocumentsareanessentialtoolforbuildingandguaranteeingproperfunctioningofthedifferentsystemsoftheinstrument. 7-2 )representsaglobalviewoftheinstrument,showingallthemaincomponentsoftheinstrumentaswellastheinterconnectionsbetweenthecomponents,andthecomponentsandthetelescopefacilities.Thecenter 120

PAGE 121

7-2 representthenaldesignsforthedewarandtheLCUrack,respectively,withtheleftsiderepresentingtheAnalogSignalProcessor(ASP)theoriginalreadoutelectronicsdescribedinChapter 6 .SincethenaldecisionabouttheintegrationoftheSIDECARASIC-IUCAAcardwithinourinstrumentispendingonthecryogenictestofthissystem(Sec. 7.4 ),nofurtherimprovementhasbeenmadetothetoplevelcablemaponthereadoutelectronicsside.Onceanaldecisionisreached,theASPrackwillbeeliminatedfromtheTopLevelCableMapbecausethereducedsizeoftheIUCAAcardwillfacilitateitsintegrationonthebackofthedewar,eliminatingtheneedfortheASPrack.Thetoplevelcablemaponlyshowstheelementsexternallyattachedtothedewar.Startingfromthetopandgoingcounterclockwise,thedewarhasthefollowingelementsattachedtoit:thewindowcover,whichprotectstheentrancewindowwhenevertheinstrumentisnotonthetelescope(Subsec. 7.2.2 );thePfeifferTPG261pressuregauge,whichmonitorsthedewarinternalpressure(Subsec. 7.2.1 );thebiasandpreampboards,whicharepartoftheoriginalreadoutelectronicsandwillberemovedinthenalcablemap;the15footlongCI-4201,CI-4202,CI-4203,andCI-9101cables,whichdriveallthehousekeepingsignalsinandoutthedewarthroughtheconnectorvacuumplate(Subsec. 7.2.3 );andthewarmupheaterbox,whichprovidesthepowertooperatetheheatersinsidethedewar,reducingthewarmuptimebeforetheinstrumentcanbeopenedifneeded(Subsec. 7.2 ).TherightsideofthetoplevelcablemapshowsalltheinterconnectionsbetweenthedifferentcomponentsoftheLCU.ThoseconnectionsareexplainedinmoredetailinSec. 7.3 .Theconnectionsbetweenthetelescopefacilitiesandtheinstrument(LCUrack)arelocatedinthebottomofthedrawingarea.Theinstrumentisalmostself-sufcient,onlyrequiringasourceofpowerandasourceofcoolingliquidusedtorefrigeratetheLCUrack.TwoindependentlynetworkconnectionsbetweentheLCUrackandthe 121

PAGE 122

CIRCECableMapTopLevel.

PAGE 123

7-3 )showsalltheelectroniccomponentsthatareplacedinsidethedewar.Allsignalsarrivethroughtheconnectorvacuumplate(Subsec. 7.2.3 )usinghermeticSeries-IIIandD-subconnectorstopassthroughthedewarandcoldshield,respectively.Hereagain,thelowerleftsidecablescomingintothedewartothedetectorbelongtotheoriginalreadoutelectronicsandwillbereplacedonceanaldecisionismadeonthenewreadoutelectronics.Insidethedewarthereareatotalof10temperaturesensors(Subsec. 7.2.1 ),6warmupheaters(Subsec. 7.2.1 ),and7motors(Subsec. 7.2.2 )externallymonitoredand/orcontrolledthroughtheLCUrack.Spreadthroughouttheopticalbench,8temperaturesensorsmonitorthetemperatureoftheinstrumentatalltimes.Theremainingtwotemperaturesensorsandoneoftheheatersarededicatedtothetemperaturecontrolofthemostdelicatecomponentoftheinstrument,theHawaii-2RGarray,becauseitsdesignrequiresaccuratecontroloverthewarmupprocessofthiscomponent.Theremainderoftheheatersareuniformlydistributedaroundthebenchtofacilitatetheprocessofwarmup.The7motorslocatedinsidethedewararedividedbetweenthelterbox(Subsecs. 5.1.2.1 & 7.2.2 )andthefocalplanemechanism(Subsecs. 5.1.2.2 & 7.2.2 ).Thelterboxcontains5motors,oneperwheel,whilethefocalplanemechanismcontainsonetranslationalandonerotationalmotor.Eachelementofthecablemapmotors,heaters,ortemperaturesensorscanbedisconnectedindependentlyoringroupstofacilitatethetestingofthesystem'sfunctionality. 123

PAGE 124

CIRCEDewarCableMap. 124

PAGE 125

7.2.1 )andthemovingmechanismssystem(Subsec. 7.2.2 ). 7-2 ).ThevacuumgaugeisdirectlyconnectedtoaPfeifferPressureMonitorTPG-261locatedinsidethetemperatureandpressurechassisthatsitsinsidetheLCU 125

PAGE 126

7.3 ).ThepumpdowntimeinCIRCEis5hours,afterwhichthecoolingdownprocesscanstart.UnlikethepumpdownprocessinCIRCE,thecooldownprocessisanon-controlledprocess.Oncenitrogenisintroducedinsidethetankbeamsattachedtotheopticalbench,theentirecooldownprocessonlydependsontheheattransferrateofthedifferentcomponentsoftheinstrument.MostofthecomponentsofCIRCEopticalbench,tankbeams,mirrorsandbrackets,focalplanemechanism,andlterboxarefabricatedwiththesamematerialAl-6061guaranteeingsameheattransferrateandphysicalcontraction.Allthosecomponentsreachuniformcryogenictemperaturesinsidethedewarin24hours.However,componentsmadeofadifferentmaterialthanaluminummotors,opticalelements,Hawaii-2arrayhavelowerheattransferrates,therebyincreasingthecoolingdowntimetoatotalof36hours.Thehousekeepingelectronicscontinuouslymonitorsthetemperatureoftheopticalbenchthrough8on-housemade2N2222diodetemperaturesensors(Fig. 7-3 ).ThesetemperaturesensorsaredistributedaroundtheopticalbenchanddirectlyconnectedtotheLakeshoreTemperatureMonitorLS-218locatedinsidethetemperatureandpressurechassisthatsitsinsidetheLCUrack(Sec. 7.3 ).Thetemperaturesensorsaretheonlysystemthatnotiestheuserwhentheinstrumentisreadyforproperoperation,i.e.,thattheinstrumentisundercryogenicconditions.Thehousekeepingelectronicsisalsoresponsibleforathirdprocess:thewarmupprocess.Thewarmupsystemacceleratesthewarmupprocessbyintroducingheatinthedewar,thusreducingsignicantlythetimenecessaryforopeningtheinstrumentafteranobservation.AlthoughCIRCEisdesignedtochangeobservationmodesduringanobservationwithoutrequiringtheopeningofthedewar,CIRCEisnotexemptfromthatinsomecases,suchasamaintenanceorspecialneedsoftheobserver,theinstrumentneedstobeopenedbetweenobservations.Withoutthewarmupsystem,theonlysourceofheatforincreasingthetemperatureofthedewarafteroperationisthe 126

PAGE 127

7-3 ).Eachheaterconsistsof3in-series155Ohmscartridges,providing104Wattsperheaterforatotalof520Watts.Withtheheatcapacityfortheinstrumentequaling45MJoules,thewarmuptimeisreducedfrom72hoursto24hourswhenintroducingasourceofheatof520Wattsinsideofthedewar.Thewarmupprocessiscontrolledthroughthewarmupbox(Fig. 7-4 ),whichisexternallyattachedtothedewarandprovidesthepowertofeedupthewarmupheaters.AOmegaCN8551-RTD-DC1TemperatureControllerandanOhmitrolSolid-StatePowerControlSwitchallowformanualcontrolofthetotalpowertransferredtothedewarthroughtheCI-9101cable.ThewarmupprocessisprotectedwithaSELCOmodulelocatedinsidethedewar.TheSELCOmoduleautomaticallydisconnectsthewarmupheaterswhenthetemperatureinsidethedewarrisesabove300Kavoidingoverheatingoftheinstrument.Besidesbeingresponsibleformonitoringandcontrollingthepumpdown,cooldown,andwarmupprocessesoftheinstrument,thehousekeepingelectronicsisalsoresponsibleformonitoringandcontrollingthetemperatureofthemostdelicatepartoftheinstrument,theHawaii-2sciencearray.Thesciencearrayhasthelowestheattransferrateofallthecomponentsoftheinstrument,whichmeansthatitisthelastcomponenttoreachtheworkingtemperatureduringthecooldownprocessaswellasthelastcomponenttowarmup.Forthatreason,thehousekeepingelectronicshas 127

PAGE 128

WarmupBoxCableMap.

PAGE 129

7.3 ).ConnectedtotheLakeshoreLS-331,twotemperaturesensorsalongasmallin-housemadeheaterarededicatedtothecontrolofthetemperatureinthesciencearray.Asmentionedabove,thetemperatureandpressureinsidethedewararemonitoredandcontrolledthroughthetemperature&pressurechassis(Fig. 7-5 & 7-7 ).Fourdifferentcomponentssitinsidethischassis:LakeshoreCryogenicTemperatureControllerLS-331,LakeshoreTemperatureMonitorLS-218,PfeifferPressureMonitorTPG-261,andaFibertoSerialCommandInterface.ThetemperaturecontrollerLS-331hastwochannelsfortemperaturesensorinputs,andonechannelforwarmupheaterpoweroutput,andisdedicatedtotemperaturestabilizationofthesciencearray.ThetemperaturemonitorLS-218isan8temperaturesensorinputsusedtomonitorthetemperatureinthedewarinterior.ThepressuremonitorTPG-261communicateswiththepressuregaugeconnectedtothedewartomonitorthepressureinsidethedewar.Thelastcomponentofthetemperatureandpressurechassisisthebertoserialcommandinterface,whichispartoftheoriginalreadoutelectronicsandwillberemovedinthenalcablemaps.Eachoneofthosecomponentshasanindependentcircuitbreakerforprotection,andanon/offstateLEDlights.Thetemperature&pressurechassisisconnectedtothedewarthroughcablesCI-4103,CI-4105,andCI-4113. 7-2 ),themovingmechanismsfocalplanemechanism(Subsec. 5.1.2.2 )andlterboxmechanism(Subsec. 5.1.2.1 )allowswitchingbetweenthedifferentobservingmodes.AllmotorsusedinCIRCEarestepperPortescapP532 129

PAGE 130

LCU:Temperature&PressureChassisCableMap.

PAGE 131

LCU:MotorChassisCableMap.

PAGE 132

7.3 ),andcanbedisconnectedindividuallyorbyblockstofacilitatethetestingofthedifferentsystems.Thefocalplanemechanismisanin-outtranslationmechanismthatallowstheintroductionofthedifferentspectroscopicslitsand/orthepolarimetrichalfwaveplate(HWP)infrontofthelightbeam.Thefocalplanemechanismincorporatesonemotortolinearlytranslatethestageinandoutofthelightpath,andonemotortorotatetheHWP.Twolimitsswitchesindicatewhenthestageistotallyinandtotallyout,andonehomeswitchindicatesareferencepositionfortherotationoftheHWP.Meanwhile,thelterboxisarotarymechanismthatincludes3lterswheels,onegrismwheel,andoneLyotwheel.Eachwheelismovedbyamotor,andreferencedbyahomeswitch.Finally,thethirdcomponentofthemovingmechanismsystemisthewindowcovermechanism.Thewindowcoversystemisamechanismthatmovesaprotectioncoverplateinfrontoftheentrancewindowwhentheinstrumentisnotoperational.Thecoverplateismovedbyasinglemotorwithtwolimitswitchesinandoutandonehomeswitchforreference.Thefocalplaneandlterboxmechanismshavebeenalreadybuiltinourshopandhaspassedrecentlytherstsetofwarmtesting.Thefocalplanemechanismhasalsogoneundercryogenictestingwithexcellentresults,withthelterboxmechanismnextinourqueuetoundergocryogenictesting.Differently,thewindowcoverisstillintheinitialphaseofdesignalthoughprevisionfortheelectronicshasbeendonebasedtheexperienceacquiredfrompreviousinstrumentssuchasFlamingos-2.Asseenabove,allmotorsareconnectedtothemotordrivechassis(Fig. 7-6 & 7-8 )locatedwithintheLCUrack.Themotordrivechassiscontainsalltheelectronic 132

PAGE 133

TopviewoftheTemperature&PressureChassis.PhotocourtesyofLassoCabrera,NestorM. TopviewoftheMotorChassis.PhotocourtesyofLassoCabrera,NestorM. 133

PAGE 134

134

PAGE 135

7-9 showsadiagramoftheconnectorvacuumandcoldplatesaswellastheirlocationinthevacuumandcoldshields.ThehermeticD-subconnectorsmountedontheconnectorscoldplatefacilitatetheconnectionofthecablesbyusingthestandardmateD-subconnectors,howevertheSeries-IIIconnectorsmountedontheconnectorvacuumplatecanonlybeconnectedtothemateconnectorsintheexternalsideoftheplate.TheinternalsideoftheSeries-IIIconnectorspresentslongpinstoconnectthecables,i.e.,non-standardconnectors.Tosolvethelackofstandardconnectorsinthissideoftheplate,afanoutboard(Fig. 7-10 )isattachedtoallthepinsoftheSeries-IIIconnectors.ThefanoutboardredirectsallthesignalsfromthepinstostandardD-subconnectorsmountedonthesamefanoutboard.Thissolutionallowstheuseofstandardconnectorsatthesametimethatincreasethestiffnessoftheentiresystem.Theconnectorvacuumandcoldplateswillbealsousedtointroduceinsidethedewarthesignalsfromthereadoutelectronicsonceanaldecisionabouttheintegrationofthissystemisreached.Thereadoutelectronicswilluseforthatpurposethefreelowerhalfoftheplates. 7-2 7-11 ,& 7-12 )isanelectronicracklocatedbesidethedewarandthatcontainsalltheelectronicssystemsnecessaryforconnecting,monitoring,orcontrollingthedifferentcomponentsoftheinstrumentfromtheobservercomputer.AllthefunctionsoftheLCUarecontrolledbytheinternalSPARCModuleSUNFIREV210computer.Thiscomputercontainsthesoftwarethatrunsthemotors,controlsthetemperatureofthesciencearray,andmonitorsthetemperatureandpressureofthedewarinterior.TheSUNFIREcomputerisremotelycommandedfromtheobservercomputerthroughtheobservatoryprimarynetwork.Forsafetypurposes,anobservatorysecondarynetworkisdirectlyconnectedtoaMOC100BTNetworkSwitchwhichisarequirementoftheGTCandthatwillbeprovidedbytheGTC. 135

PAGE 136

ConnectorVacuumPlate.

PAGE 137

FanoutBoardSchematics. TheSUNFIREcomputerisalsodirectlyconnectedtoanEthernetSwitchthatallowsthecreationofaninternalprivatenetworkonlyaccessibletotheCIRCEteam,andwhichisolatesthedifferentcomponentsoftheLCUfromexternalcommands.ConnectedtotheEthernetSwitchaBayTechRPC3A-16ACPowerControlModuleallowsremotecontroloverthepowerofthecomponentsdirectlyconnectedtoit:motorindexers,Lakeshoretemperaturecontrollerandmonitor,Pfeifferpressuremonitor,SerialCommandInterface,andThermalEnclosureTemperatureControlModule.AlsoconnectedtotheEthernetSwitch,aPERLECS9000SerialPortTerminalServerallowscommandsofthecomponentsdirectlyconnectedtoitthroughserialportconnections:TRIPPLiteUPSModule,motorindexers,Lakeshoretemperaturecontrollerandmonitor,Pfeifferpressuremonitor,andSerialCommandInterface.TheTRIPPLiteUPSModuleofferscompletepowerprotectionoftheLCUcomponentsincaseofgeneralpowerfailure.TheLCUrackispoweredbydirectconnectiontotheobservatorypower 137

PAGE 138

7.2 .TheLCUrackisenclosedinathermalenclosurethatthermallyisolatestheLCUelectronicsrack(Fig. 7-13 ),reducingtoaminimumtheheatradiationfromtheelectroniccomponentstowardthedewar.Asideeffectofthethermalenclosureisthattheinternaltemperatureincreasesbeyondspecications(15C).Inordertomeetspecicationsoftheinternaltemperatureoftherack2Thermatron721SLM2and1Thermatron723SLP2airtowaterheatexchangersareplacedatthebaseoftheLCUrack.Theheatexchangersarecooleddownwith7Cand1GPMcoolingliquidcomingfromthetelescopefacilitiesandregulatedusingaSitzowatervalveexternallyactivatedatthesametimethattheheatexchangers.Thiscombinationofheatexchangersdissipatesatotalof2150Wcompensatingtheheatradiationinsidetherack.Tobeinthesafeside,thetotalheatradiationoftheelectroniccomponentsoftheLCUisconsideredtobethesumofthepowerconsumptionofeachindividualcomponent,whichisequivalentto2015W.Hence,thecombinationofheatexchangerschosenisenoughtocompensatetheheatradiationoftheLCUcomponents,andthereforetocooldowntherackinteriortotheworkingtemperatureof15C.TheLCUthermalenclosurealsoincorporatesa1Amp.circuitbreakerprotection,anon/offstateLEDlight,andamanualpowerswitch.AllthecomponentsoftheLCUracksitprovisionallyinatemporaryelectronicrack(Figs. 7-11 & 7-12 )untilthenalthermalencloseisbuilt.Fig. 7-14 showsthelocationofthedifferentcomponentsinthenalthermalenclosureaswellasdimensionsoftherack.Theblankpanelatthetopoftherackisanemptyspaceleftinprevisionoffutureneedsofthenalreadoutelectronics(Sec 7.4 ). 138

PAGE 139

LCURackFrontView.PhotocourtesyofLassoCabrera,NestorM. 139

PAGE 140

LCURackRearView.PhotocourtesyofLassoCabrera,NestorM. 140

PAGE 141

LCU:ThermalEnclosureTemperatureControlCableMap.

PAGE 142

LCURackDesign.

PAGE 143

Looseetal. 2003a ).ThereductioninthepowerconsumptionoftheH2RGisachievedusingCMOStechnology,whichonlyrequires3.3voltsinputsinsteadofthe5voltsinputsrequiredbytheoldHawaii-2.ThischangeinthetechnologyofthesciencearraypreventstheuseoftheinitialreadoutelectronicsdesignedforCIRCEtheMCE-3(Ch. 6 )tocontrolthereadoutprocessoftheH2RG.InreplacementoftheMCE-3,theCIRCEteamiscurrentlytestinganewreadoutelectronicsdevelopedbytheInter-UniversityCenterforAstronomyandAstrophysics(IUCAA)inPune,India,whichisbasedonamodicationoftheSIDECARTMASICFocalPlaneElectronicsdevelopedbyTeledyne.BoththeH2RGandtheSIDECARASICsystem,aswellastheIUCAAsystemusedinCIRCE,areprotectedundertheInternationalTrafcinArmsRegulations(ITAR),limitingourcapacitytodescribethosesystems.Thus,toavoidanypossibleITARconict,wehavedecidednottoincludeanyspecicdescriptionofthosesystemsinthisdocument,andweencouragethereaderto

PAGE 144

Looseetal. ( 2003a b 2006 2007 ),& Ramaprakashetal. ( 2010 ).CIRCEwillincorporateareadoutelectronicsbasedonthecommercialSIDECARASICsystemprovidedbyTeledyne.TheSIDECARASICisaFocalPlaneArray(FPA)controller,fullycompatiblewiththeH2RGandotherimagearrays( Looseetal. 2003b 2006 2007 ),thatisbecomingthestandardcontrollerinastronomicalinstrumentationbecauseisdesignedtooperateinawiderangeoftemperatures,from30Ktoroomtemperature,withlowpowerconsumptionandhighnoiseimmunity,thusfacilitatingitsintegrationinsidecryogenicdewars.ThecommercialSIDECARASICsystemprovidedbyTeledyneconnectsononesidedirectlywiththeH2RGandontheothersidewithaJADE2cardwhichisreplacedbytheIUCAAsysteminCIRCEthatactsasaUSB-2interfacebetweentheSIDECARASICandtheacquisitioncomputer.TheJADE2cardisdesignedtoworkatroomtemperatureandisconnectedtothecryogenicSIDECARASICthroughasingle15inchexcablealsoprovidedbyTeledyne.ThismeansthattheconnectionbetweentheSIDECARASIC,whichisdirectlyconnectedtothesciencearrayatcryogenictemperature,andtheJADE2card,whichislocatedoutsidethedewaratroomtemperature,hastobedonewithasingle15inchexcablenointermediateconnectorstoguaranteeproperoperation.TheuseofasinglecabletoconnecttheSIDECARASICandJADE2cardhindersitsintegrationoncryogenicsystem,suchasCIRCE,wherealltheelectronicsignalsenteringorleavingthedewarpassthroughthecoldandvacuumshieldbymeansofhermeticconnectors.However,TeledynehasproposedtheCIRCEteamasolutionforthisproblembasedontheirexperienceintegratingtheSIDECARASICsysteminotherastronomicalinstruments,e.g.,theMulti-ObjectSpectrometerforInfra-RedExploration(MOSFIRE)beingbuiltbyUCLAfortheKeckItelescope.Teledyneproposesthecreationofacustomconnectorconsistingofanaluminumplatethatwillbesealedagainstthedewarwithano-ring,andwithagrooveinthecenterforpassingthe15inchexcablethrough.Oncethe 144

PAGE 145

Ramaprakashetal. 2010 ).TheISDECboardiscurrentlyalsobeingintegratedintootherastronomicalinstrument,theRobertStobieSpectrograph(RSS-NIR)beingbuiltattheUniversityofWisconsinfortheSouthernAfricanLargeTelescope(SALT).TheISDECboardconnectstotheSIDECARASIC,allowingtheentiresystemtoworkundertheLinuxoperatingsystem,whichisthestandardoperatingsysteminastronomicalobservatories,andinthenearfuturewillallowthecaptureofhighratesubframes,thusovercomingsomeofthelimitationsfoundwhenusingtheJADE2card.Nevertheless,theISDECboardstillpresentsthelimitationoftheconnectiontotheSIDECARASICthroughasingle15inchexcable.TheCIRCEteamiscurrentlyworkingwithTeledynetoimplementthecustomconnectorsolutionforthisproblem.AspartofthiscollaborationwithIUCAAtoobtaintheISDECboard,IservedastheleadingengineerontheUFside.Tofacilitatethephysicalandscienticintegration 145

PAGE 146

7.5 ,whilecryogenictestingwillstartassoonasthecustomconnectorproposedbyTeledyneisnished.TheSIDECARASIC-ISDECboardsystemhasanominalpixelrateof100Kpix/s,withaframereadouttimeof1.3s,slightlyfasterthantheMCE-3nominalpixelrateof82Kpix/sandframereadouttimeof1.6s(Ch. 6 ).TheIUCAAsystemalsoallowspixelratesupto500Kpix/swiththecorrespondentincreaseonthereadnoise.DuringmystayinIndia,wealsostartedaprojecttoincorporateintheIUCAAsystemafastphotometrymodesimilartotheoneincorporatedbytheMCE-3(Ch. 6 ).IUCAAengineersarecurrentlyworkingonthedevelopmentofthefastphotometrymode,whichisexpectedtobeincorporatedtothesysteminthecomingmonths.ThefastphotometrymodewillacquireimagesatahigherratethanthestandardoperationmodebymeansofreadingsubframesofthesciencearrayinasimilarwaythantheMCE-3fastphotometrymodeandwillalsobenetfromtheISDECboardoptionthatallowshigherpixelrates.Toguaranteealowreadnoise,thefastphotometrymodewillbelimitedtoamaximumpixelrateof200Kpix/s.ThefastphotometrymodeoftheSIDECARASIC-ISDECboardwillallow256x256pixelsubframeratesof12Hz,i.e.,16timesfasterthanthestandardimageacquisitionmode.A12HzframeratewillenableustouseCIRCEtostudytheinfraredemissionofGRS1915+105withatimeresolutionneverachievedbefore,thusallowing 146

PAGE 147

ComparisonoftheMCE-3options3and4framerates(Tab. 6-2 )versustheISDECboardframerateswithpixelratesof100Kpix/sand200Kpix/s. DetectorsizeMCE-3MCE-3MCE-3ISDECISDECOriginalOption3Option4100Kpix/s200Kpix/s 2048x20480.625Hz-0.76Hz1.53Hz512x512-2.13Hz4.3Hz3.05Hz6.10Hz256x256-8.5Hz8.5Hz6.10Hz12.21Hz ustocompletethestudyoftheickeringinfraredjetinitiatedinChapter 4 .Table 7-1 showsacomparisonoftheexpectedsubframeratesfortheMCE-3options3and4seeninChapter 6 versustheexpectedsubframeratesfortheSIDECARASIC-ISDECboardsystem. 147

PAGE 148

Looseetal. 2003a )inthatmode,leavinganupperlimitof5ADUfortheIUCAAsystem.ToquantifytheperformanceoftheISDECboardsystemtwosetsoftestshavebeenrun:readnoisevs.pixelrate,andreadnoisevs.exposuretime.Thereadnoisevs.pixelratetest(Fig. 7-15 )showsthattheISDECboardsystempresentsvaluesofreadnoiseforthenominal100Kpix/spixelrateof<4ADU,i.e.,withinspecications,andwiththeexpectedincreaseofthereadnoisewithpixelrate.Above300Kpix/sthereadnoisepresentsadroponthevaluesindicatingamalfunctionofthesystem,notrelevantforitsincorporationintoCIRCEbecauseCIRCEwillneverusesuchhighpixelrates;thismalfunctionwillbefurtherinvestigatedbytheIUCAAteam.Asexpected,thereadnoisevs.exposuretimetest(Fig. 7-16 )showsnovariationofthereadnoisewithexposuretime.ThesetwotestsconrmthattheIUCAAsystemmeetstheacceptablereadnoiselevelsimposedbytheCIRCEteamwhentheSIDECARASICisatroomtemperature.ThisisapromisingrststepbeforetestingthesystemwiththeSIDECARASICattheworkingtemperatureof77K.Finally,anothersetoftestshasbeenrunontheIUCAAsystem.ThistestquantiestheperformanceofthedevicewhenconnectingtheSIDECARASICtotheISDECboardwithtwoin-series15inchexcablesinsteadofone.AlthoughTeledyneandIUCAAonlyguaranteeproperoperationoftheirdeviceswhenusingasinglecable,instrumentssuchasMOSFIREareusingtwoexcables.TheincorporationofasecondcablewillgivetheIUCAAsystemtheadequatelengthtoplacetheSIDECARASICinsidetheCIRCE'sdewarwiththeISDECboardexternallyattachedtoconnectorvacuumplate,thusnotrequiringanymajormodicationonthedesignofCIRCEaswouldbethecaseifusingasinglecable.Thetwocablesroomtemperaturetest(Fig. 7-17 )showsaminimalincreaseofthereadnoiseof<0.02%atthenominalpixelrateof100Kpix/s,andof<1 148

PAGE 149

149

PAGE 150

4 .TheIUCAAsystemiscurrentlybeingtested,withinitialverypromisingroomtemperaturetestsshowingreadnoiselevelwithinspecications.ThenaldecisionabouttheintegrationofthissystemintoCIRCEwillbetakenbasedontheresultsofthecryogenictestsofthesystemthatwillbeperformedinthecomingmonths. 150

PAGE 151

Readnoisevs.pixelrateforasinglecableand32outputs.Readnoiseincreaseswithpixelratesupto300Kpix/s.Thelowreadnoiselevelsobtainedforpixelratesabove300Kpix/sindicatesomekindofmalfunctionatthoserates. Readnoisevs.exposuretimeforasinglecableand32outputs.Readnoiseisconstantwithexposuretime. Readnoisevs.pixelrateforsingleanddoublecableand32outputs.Thetestislimitedtothenominalpixelratesof100Kpix/sand200Kpix/sforstandardreadmodeandfastphotometrymode,respectively. 151

PAGE 152

Edwardsetal. 2008 ; Charcos-Llorensetal. 2008 ; LassoCabreraetal. 2008 2010 ).TheuniquecombinationofthelargecollectionareaoftheGTCandthehighthroughputopticsofCIRCEwillproducenear-IRastronomicalobservationswithanimagequalityneverseenbeforefromground-basedobservatorieswithoutadaptiveoptics.ThehighthroughputdesignoftheopticalsystemofCIRCEisoneofthemostcriticalcomponentsoftheinstrument.Toensurehighimagequality,andtoconservethehighsignal-to-noise(S/N)levelsprovidedbytheGTC,veryrestrictivespecicationshavebeenplacedonthedesignandalignmentoftheopticalsystemofCIRCE.TheCIRCEopticalsystemhasbeenguredandalignedusinganinnovativesolutiondevelopedjointlybytheCIRCEteamandthemanufacturingcompanyJanosTechnology.Thisnewtechniquetestsandadjuststheopticalsystemasaunitoncealltheelementshavebeenmountedonthebench.Insteadofproducing8individually-testeddiamond-turnedmirrors,thissolutionproducesatestedintegratedsystemfulllingthespecicationsforthewholeopticalsystem,eveniftheindividualmirrorsareslightlyoutoftheirspecications.Thetechniquerequiresallopticalelements,bench,andbracketstobemadeofthesamematerialtoensurehomologouscontractionofthesystem,reducingtoaminimumthedeviationscreatedbycontractionswhenthesystemiscooleddowntocryogenictemperatures.Thistechniqueguaranteesconservationoftheopticalaberrationsofthesystematdifferenttemperatures,allowingtestingoftheimagequalityatroomtemperatureandvisiblewavelengths. 152

PAGE 153

8-1 showsthediffractionpatternsofthe8mirrors.WeestimatedthesurfaceroughnessusingMarechal'sapproximation( Ross 2009 ).TheMarechalapproximationusesvaluesoftheStrehlratiotoobtainthesurfaceroughnessRMSinwaveswith10% 153

PAGE 154

Measuredsurfaceroughnessversusspecicationforeachindividualmirrors. MirrorMeas.RMS(A)Spec.RMS(A)Result Fold112075Outofspec.Fold220075Outofspec.Coll140100AcceptableColl2108100AcceptableImag1125100MarginalImag240100AcceptableImag336100AcceptableImag440100Acceptable Notes.SomeregionsofFold1hadsurfaceroughness>200ARMS. error,Eq. 8 .TheStrehlratioisameasurementoftheopticalqualityofasystem.TheStrehlratioiscalculatedastheratiooftheamountoflightcontainedintheAirydiskofthediffractedimagevs.atheoreticalperfectmaximum.Table 8-1 showsthevaluesofthesurfaceroughnessmeasurementsinAngstroms.Theexpectednominalsurfaceroughnessforeachindividualmirrorisbetween75and100ARMS,withatotalsurfaceroughnessfortheopticalsystemof<265ARMSorlower.OurcalculationsconrmedthatthemirrorsCollimator1and2,andImager2,3,and4meetspecications;Imager1ismarginallyabovespecications;andthetwoFoldmirrorsarewellabovetheexpectedvalues.Thecombinedsurfaceroughnessofallmirrorsis29530ARMS,slightlyabovethenominalspecicationsforthecompletesystem.WeconrmedourresultsofthesurfaceroughnessofthetwofoldmirrorsusingaprolometerlocatedatthelaboratoriesoftheDepartmentofMechanicalandAerospaceEngineeringattheUniversityofFlorida.Theprolometershowedsurfaceroughnessvaluesintherange150to250ARMSforbothfoldmirrors.Althoughthosetwomirrorsdonotmeetspecications,thesurfaceroughnesstestisinconclusivebecausethecombinedsurfaceroughnessofthewholesystem29530ARMSisonlyslightly(10%)abovespecications. 154

PAGE 155

Diffractionpatternsofthereectedimagesofeachindividualmirror.Fromtoptobottom,andlefttoright:Fold1,Fold2,Collimator1,Collimator2,Imager1,Imager2,Imager3,andImager4.Sidelobesareseeninthemirrorswiththehighervaluesofsurfaceroughness. 155

PAGE 156

PinholemaskusedfortestingtheimagequalityofCIRCE. cameraonatwo-dimensionalcomputerizedtranslationstagelateraltranslationandfocustranslationandmanuallymovedthecameraintheverticaldirection.Thetestswerecarriedoutusingapinholemasklocatedatthetelescopefocalplane.Themaskcontains37pinholesspatially-distributedovertheentire3.4x3.4arcminFOV.Eachpinholehasadiameterof170m,simulating0.2arcsec(2pixelsoftheIRarray)stars.Fig. 8-2 showsthepinholemaskusedfortheimagequalitytest. 8-3 showsthethrough-focusimagesofthecentralpinhole.Asexpectedfromthesimulations,astigmatismisthedominantsourceofaberrations.Theelongationofthespotchangesdirectionsastheimagespassthroughthefocalplane,andisminimumandnegligibleatthebest-focuslocation. 156

PAGE 157

Opticalaberrationsofthecentralpinhole.Theimagescoverarangeof200malongtheopticalaxis,centeredonthebest-focusimage,withincrementsof20m.Fromlefttorightandfromtoptobottom,imagesstartwiththefarthestfromlastmirrorpositionandnishwiththeclosestfromlastmirrorposition.Astigmatismisthedominantsourceofaberrationsastheimagesmoveperpendiculartothefocalplane. 157

PAGE 158

Measurementsoftheeldcurvatureatthefocalsurfacelocation.Weobtainedthebest-focuslocationofallpinholesinrows9,10,11,13,and15.Theexpectedeldcurvatureof250misobservedatthecenteroftheeld. cameramountedonthetranslationstagestoobtainthebest-focuspositionofalltheimagesofthepinholesin5differentrowsofpinholes.Fromtoptobottom,wemeasuredrows9,10,11,13,and15,whichcoverapproximatelyhalfofthefocalsurface.Fig. 8-4 showsthemeasurementsofthebest-focuslocationfortheimagesofthepinholes.OurresultsareconsistentwiththeZEMAXsimulations.Theyshowtheexpectedcurvatureofthefocalplane,withamaximuminthecenterof250m.Thus,ourresultsconrmthatCIRCEwillcompensateforthepositivecurvatureintroducedintheimagebytheRitchey-ChretiendesignoftheGTC. 158

PAGE 159

Imagequalityresults.Measurementofthe0.2arcsecpinholeimagesFWHM.Rightcolumnshowstheresulttranslatedto0.3arcsecimages. FieldFWHM(arcsec)FWHM(arcsec)LocationRaw/Instrumental0.3arcsecseeing Center0.220/0.0920.31Center-LeftEdge0.225/0.1040.32Center-RightEdge0.250/0.1500.34TopEdge0.238/0.1390.33Top-LeftCorner0.203/0.0320.30Top-RightCorner0.217/0.0830.31BottomEdge0.232/0.1170.32Bottom-LeftCorner0.334/0.2670.40Bottom-RightCorner0.207/0.0530.31 inthequalityoftheimageslowerthanthebest-seeingattheGTCsite,i.e.,CIRCE'simagequalityisalwaysseeing-limited.ThemostimportanttestperformedontheopticalsystemquantiestheFWHMof0.2arcsecsimulatedstarsinordertoanalyzethequalityoftheimagestakenbyourinstrument.WemeasuredtheFWHMofseveralofthe0.2arcsecpinholesimagesdistributedaroundtheentireFOV.WefoundthattheFWHMvaluesoftheimagesrangefrom0.2to0.25arcsecacrossmostofthedetector,withaslightincrement(0.334arcsec)inthebottom-leftcorner.Thecenterandtopimageshaveexcellentquality.Assumingabestseeingof0.3arcsecFWHM,wewouldexpectdeliveredimagequalityof0.33arcsecover90%ofthearray.Thatisonlya10%degradationoftheimage.Table 8-2 showsthevaluesoftheFWHMofthe0.2arcsecpinholeimagesat9differentpositionsspreadovertheFOV.Italsoshowstheexpectedvaluesforabestseeingof0.3arcsec.Fig. 8-5 showsthe0.2arcsecpinholeimagesusedtomeasuretheimagequality.FromtheFWHMtest,weconcludethattheimagequalityofCIRCEisverygood,ifnotquitetothenominalCIRCEgoals,especiallyintheBottom-LeftCorner.Thebelow-expectedresultsofthisnaltestledustofurtheranalysisofthemirrorswithhighersurfaceroughness.WefoundthattheFoldmirror1presentsasurfaceroughnessof250AmintheBottom-LeftCorner,higherthantheaveragesurface 159

PAGE 160

Representative0.2arcsecpinholeimagesat9differentpositionsacrosstheFOV.Fromtoptobottomandlefttoright:Top-LeftCorner,TopEdge,Top-RightCorner,Center-LeftEdge,Center,Center-RightEdge,Bottom-LeftCorner,BottomEdge,Bottom-RightCorner.Allimageshave<0.25arcsecFWHM,exceptBottom-LeftCorner. roughnessforthatmirrorof120Am.WeconcludethatthisvalueofsurfaceroughnessintheBottom-LeftCorneroftheFoldmirror1explainsthedegradationintheimagequalityofthatportionofthenalimage.Basedonalltheresultsofthetestpresentedhere,theCIRCEteamhasdecidedtoredothediamond-turningofthelowerqualityFoldmirrors.Weexpectthatoncethosetwomirrorsarewithinspecicationsthequalityofthewholesystemwillimprovebeyondthe0.3arcsecFWHMspecications. 160

PAGE 161

161

PAGE 162

162

PAGE 163

163

PAGE 164

164

PAGE 165

165

PAGE 166

166

PAGE 167

167

PAGE 168

StartingfromthefractionalRMSequation: 2 2 168

PAGE 169

169

PAGE 170

Arai,A.,Uemura,M.,Sasada,M.,Trushkin,S.A.,Ueda,Y.,Takahashi,H.,Kawabata,K.S.,Yamanaka,M.,Nagae,O.,Ikejiri,Y.,Sakimoto,K.,Matsui,R.,Ohsugi,T.,Yamashita,T.,Isogai,M.,Fukazawa,Y.,Mizuno,T.,Katagiri,H.,Okita,K.,Yoshida,M.,Yanagisawa,K.,Sato,S.,Kino,M.,&Sadakane,K.2009,PASJ,61,L1 Asai,K.,Dotani,T.,Hoshi,R.,Tanaka,Y.,Robinson,C.R.,&Terada,K.1998,PASJ,50,611 Bandyopadhyay,R.,Martini,P.,Gerard,E.,Charles,P.A.,Wagner,R.M.,Shrader,C.,Shahbaz,T.,Mirabel,I.F.,&Mirabel,I.F.1998,MNRAS,295,623 Belloni,T.,Klein-Wolt,M.,Mendez,M.,vanderKlis,M.,&vanParadijs,J.2000,A&A,355,271 Belloni,T.,Mendez,M.,King,A.R.,vanderKlis,M.,&vanParadijs,J.1997,ApJL,479,L145 Boeer,M.,Greiner,J.,&Motch,C.1996,A&A,305,835 Bottcher,M.,&Liang,E.P.1998,ApJ,506,281 Casares,J.2010,inHighlightsofSpanishAstrophysicsV,ed.J.M.Diego,L.J.Goicoechea,J.I.Gonzalez-Serrano,&J.Gorgas,3 Casella,P.,Maccarone,T.J.,O'Brien,K.,Fender,R.P.,Russell,D.M.,vanderKlis,M.,Pe'Er,A.,Maitra,D.,Altamirano,D.,Belloni,T.,Kanbach,G.,Klein-Wolt,M.,Mason,E.,Soleri,P.,Stefanescu,A.,Wiersema,K.,&Wijnands,R.2010,MNRAS,404,L21 Castro-Tirado,A.J.,Brandt,S.,Lund,N.,Lapshov,I.,Sunyaev,R.A.,Shlyapnikov,A.A.,Guziy,S.,&Pavlenko,E.P.1994,ApJS,92,469 Castro-Tirado,A.J.,Geballe,T.R.,&Lund,N.1996,ApJL,461,L99 Charcos-Llorens,M.V.,Eikenberry,S.S.,Edwards,M.L.,Lasso,N.M.,Marin-Franch,A.,&Packham,C.C.2008,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.7014,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries Chaty,S.,Mirabel,I.F.,Duc,P.A.,Wink,J.E.,&Rodriguez,L.F.1996,A&A,310,825 Dhawan,V.,Mirabel,I.F.,&Rodrguez,L.F.2000,ApJ,543,373 Diaz,J.J.,Gago,F.,Beigbeder,F.,Garzon,F.,&Patron,J.2004,inAstrophysicsandSpaceScienceLibrary,Vol.300,ScienticDetectorsforAstronomy,TheBeginningofaNewEra,ed.P.Amico,J.W.Beletic,&J.E.Belectic,493 Durant,M.,Gandhi,P.,Shahbaz,T.,Fabian,A.P.,Miller,J.,Dhillon,V.S.,&Marsh,T.R.2008,ApJL,682,L45 170

PAGE 171

Edwards,M.L.,Eikenberry,S.S.,Charcos-Llorens,M.,Marin-Franch,A.,Lasso,N.,Raines,S.N.,Julian,J.,Hanna,K.,Packham,C.,Rodgers,M.,&Bandyopadhyay,R.M.2008,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.7014,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries Edwards,M.L.,Eikenberry,S.S.,Marin-Franch,A.,Charcos-Llorens,M.,Rodgers,M.,Julian,J.,Raines,N.,&Packham,C.2006,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.6269,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries Edwards,M.L.,Marin-Franch,A.,Eikenberry,S.S.,Rodgers,M.,Julian,J.,Hanna,K.,&Packham,C.2004,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.5492,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,ed.A.F.M.Moorwood&M.Iye,1710 Eikenberry,S.S.2001,AstrophysicsandSpaceScienceSupplement,276,101 Eikenberry,S.S.,Elston,R.,Raines,S.N.,Julian,J.,Corley,R.J.,Hanna,K.,Hon,D.,Julian,R.,Rashkin,D.,Leckie,B.,Gardhouse,W.R.,Fletcher,M.,Dunn,J.,&Wooff,R.2004,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.5492,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,ed.A.F.M.Moorwood&M.Iye,1196 Eikenberry,S.S.,Matthews,K.,Morgan,E.H.,Remillard,R.,&Nelson,R.W.1997,inBulletinoftheAmericanAstronomicalSociety,Vol.29,AmericanAstronomicalSocietyMeetingAbstracts,100.08 Eikenberry,S.S.,Matthews,K.,Morgan,E.H.,Remillard,R.A.,&Nelson,R.W.1998a,ApJL,494,L61 Eikenberry,S.S.,Matthews,K.,Muno,M.,Blanco,P.R.,Morgan,E.H.,&Remillard,R.A.2000,ApJL,532,L33 Eikenberry,S.S.,Matthews,K.,Murphy,Jr.,T.W.,Nelson,R.W.,Morgan,E.H.,Remillard,R.A.,&Muno,M.1998b,ApJL,506,L31 Eikenberry,S.S.,Patel,S.G.,Rothstein,D.M.,Remillard,R.,Pooley,G.G.,&Morgan,E.H.2008,ApJ,678,369 Elston,R.1998,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.3354,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,ed.A.M.Fowler,404 171

PAGE 172

Evans,I.N.,Primini,F.A.,Glotfelty,K.J.,Anderson,C.S.,Bonaventura,N.R.,Chen,J.C.,Davis,J.E.,Doe,S.M.,Evans,J.D.,Fabbiano,G.,Galle,E.C.,Gibbs,II,D.G.,Grier,J.D.,Hain,R.M.,Hall,D.M.,Harbo,P.N.,(HelenHe,X.,Houck,J.C.,Karovska,M.,Kashyap,V.L.,Lauer,J.,McCollough,M.L.,McDowell,J.C.,Miller,J.B.,Mitschang,A.W.,Morgan,D.L.,Mossman,A.E.,Nichols,J.S.,Nowak,M.A.,Plummer,D.A.,Refsdal,B.L.,Rots,A.H.,Siemiginowska,A.,Sundheim,B.A.,Tibbetts,M.S.,VanStone,D.W.,Winkelman,S.L.,&Zografou,P.2010,ApJS,189,37 Fabbiano,G.2006,ARA&A,44,323 Fender,R.,&Belloni,T.2004,ARA&A,42,317 Fender,R.P.,Belloni,T.M.,&Gallo,E.2004,MNRAS,355,1105 Fender,R.P.,Garrington,S.T.,McKay,D.J.,Muxlow,T.W.B.,Pooley,G.G.,Spencer,R.E.,Stirling,A.M.,&Waltman,E.B.1998,NewAR,42,593 .1999,MNRAS,304,865 Fender,R.P.,&Pooley,G.G.1998a,MNRAS,300,573 .1998b,MNRAS,300,573 Fender,R.P.,Pooley,G.G.,Brocksopp,C.,&Newell,S.J.1997,MNRAS,290,L65 Finger,G.,&Beletic,J.W.2003,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.4841,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,ed.M.Iye&A.F.M.Moorwood,839 Fuchs,Y.,Rodriguez,J.,Mirabel,I.F.,Chaty,S.,Ribo,M.,Dhawan,V.,Goldoni,P.,Sizun,P.,Pooley,G.G.,Zdziarski,A.A.,Hannikainen,D.C.,Kretschmar,P.,Cordier,B.,&Lund,N.2003,A&A,409,L35 Gandhi,P.,Dhillon,V.S.,Durant,M.,Fabian,A.C.,Kubota,A.,Makishima,K.,Malzac,J.,Marsh,T.R.,Miller,J.M.,Shahbaz,T.,Spruit,H.C.,&Casella,P.2010,MNRAS,407,2166 Gandhi,P.,Makishima,K.,Durant,M.,Fabian,A.C.,Dhillon,V.S.,Marsh,T.R.,Miller,J.M.,Shahbaz,T.,&Spruit,H.C.2008,MNRAS,390,L29 Giacconi,R.,Gursky,H.,Paolini,F.R.,&Rossi,B.B.1962,PhysicalReviewLetters,9,439 172

PAGE 173

Greiner,J.,Morgan,E.H.,&Remillard,R.A.1996,ApJL,473,L107 Harlaftis,E.T.,&Greiner,J.2004,A&A,414,L13 Jahoda,K.,Swank,J.H.,Giles,A.B.,Stark,M.J.,Strohmayer,T.,Zhang,W.,&Morgan,E.H.1996,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.2808,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,ed.O.H.Siegmund&M.A.Gummin,59 Klein-Wolt,M.,Fender,R.P.,Pooley,G.G.,Belloni,T.,Migliari,S.,Morgan,E.H.,&vanderKlis,M.2002,MNRAS,331,745 LassoCabrera,N.M.,Hanna,K.T.,Eikenberry,S.S.,Charcos-Llorens,M.V.,Edwards,M.L.,&Marin-Franch,A.2010,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.7735,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries LassoCabrera,N.M.,Hanna,K.T.,Eikenberry,S.S.,Edwards,M.L.,Charcos-Llorens,M.V.,Marin-Franch,A.,&Cenarro,J.2008,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.7014,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries Leahy,D.A.,Darbro,W.,Elsner,R.F.,Weisskopf,M.C.,Kahn,S.,Sutherland,P.G.,&Grindlay,J.E.1983,ApJ,266,160 Levine,A.M.,Bradt,H.,Cui,W.,Jernigan,J.G.,Morgan,E.H.,Remillard,R.,Shirey,R.E.,&Smith,D.A.1996,ApJL,469,L33 Liu,Q.Z.,vanParadijs,J.,&vandenHeuvel,E.P.J.2007,A&A,469,807 Loose,M.,Beletic,J.,Garnett,J.,&Muradian,N.2006,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.6265,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries Loose,M.,Beletic,J.,Garnett,J.,&Xu,M.2007,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.6690,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries Loose,M.,Farris,M.C.,Garnett,J.D.,Hall,D.N.B.,&Kozlowski,L.J.2003a,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.4850,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,ed.J.C.Mather,867 Loose,M.,Lewyn,L.,Durmus,H.,Garnett,J.D.,Hall,D.N.B.,Joshi,A.B.,Kozlowski,L.J.,&Ovsiannikov,I.2003b,inSocietyofPhoto-OpticalInstrumentationEngineers 173

PAGE 174

Mahoney,W.A.,Corbel,S.,Durouchoux,P.,Gautier,T.N.,Higdon,J.C.,&Wallyn,P.1997,inAmericanInstituteofPhysicsConferenceSeries,Vol.410,ProceedingsoftheFourthComptonSymposium,ed.C.D.Dermer,M.S.Strickman,&J.D.Kurfess,912 Marn-Franch,A.,Eikenberry,S.S.,Charcos-Llorens,M.V.,Edwards,M.L.,Varosi,F.,Hon,D.B.,Raines,S.N.,Warner,C.D.,&Rashkin,D.2006,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.6269,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries Markoff,S.,Nowak,M.A.,&Wilms,J.2005,ApJ,635,1203 Markwardt,C.B.,Swank,J.H.,&Taam,R.E.1999,ApJL,513,L37 Mikles,V.J.,Eikenberry,S.S.,&Rothstein,D.M.2006,ApJ,637,978 Mikles,V.J.,Varniere,P.,Eikenberry,S.S.,Rodriguez,J.,&Rothstein,D.2009,ApJL,694,L132 Miller,J.M.,&Homan,J.2004,inBulletinoftheAmericanAstronomicalSociety,Vol.205,BulletinoftheAmericanAstronomicalSociety,17202 Mirabel,I.F.,Dhawan,V.,Chaty,S.,Rodriguez,L.F.,Marti,J.,Robinson,C.R.,Swank,J.,&Geballe,T.1998,A&A,330,L9 Mirabel,I.F.,&Rodriguez,L.F.1994,Nature,371,46 Mirabel,I.F.,&Rodrguez,L.F.1996,inRoentgenstrahlungfromtheUniverse,ed.H.U.Zimmermann,J.Trumper,&H.Yorke,111 Mirabel,I.F.,&Rodrguez,L.F.1999,ARA&A,37,409 Morgan,E.H.,Remillard,R.A.,&Greiner,J.1997,ApJ,482,993 Muno,M.P.,Morgan,E.H.,&Remillard,R.A.1999,ApJ,527,321 Narayan,R.,McClintock,J.E.,&Shafee,R.2008,inAmericanInstituteofPhysicsConferenceSeries,Vol.968,AstrophysicsofCompactObjects,ed.Y.-F.Yuan,X.-D.Li,&D.Lai,265 Neil,E.T.,Bailyn,C.D.,&Cobb,B.E.2007,ApJ,657,409 Nowak,M.A.,&Wagoner,R.V.1993,ApJ,418,187 Paul,B.,Agrawal,P.C.,Rao,A.R.,Vahia,M.N.,Yadav,J.S.,Marar,T.M.K.,Seetha,S.,&Kasturirangan,K.1997,A&A,320,L37 Pooley,G.1995,IAUCirc.,6269,1 174

PAGE 175

Ramaprakash,A.,Burse,M.,Chordia,P.,Chillal,K.,Kohok,A.,Mestry,V.,Punnadi,S.,&Sinha,S.2010,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.7742,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries Rau,A.,Greiner,J.,&McCollough,M.L.2003,ApJL,590,L37 Remillard,R.A.,&McClintock,J.E.2006,ARA&A,44,49 Rodriguez,J.,Shaw,S.E.,Hannikainen,D.C.,Belloni,T.,Corbel,S.,CadolleBel,M.,Chenevez,J.,Prat,L.,Kretschmar,P.,Lehto,H.J.,Mirabel,I.F.,Paizis,A.,Pooley,G.,Tagger,M.,Varniere,P.,Cabanac,C.,&Vilhu,O.2008,ApJ,675,1449 Rodriguez,L.F.,&Mirabel,I.F.1998,A&A,340,L47 Ross,T.S.2009,Appl.Opt.,48,1812 Rothschild,R.E.,Blanco,P.R.,Gruber,D.E.,Heindl,W.A.,MacDonald,D.R.,Marsden,D.C.,Pelling,M.R.,Wayne,L.R.,&Hink,P.L.1998,ApJ,496,538 Rothstein,D.M.,Eikenberry,S.S.,&Matthews,K.2005,ApJ,626,991 Sams,B.J.,Eckart,A.,&Sunyaev,R.1996,Nature,382,47 Shahbaz,T.,Fender,R.P.,Watson,C.A.,&O'Brien,K.2008,ApJ,672,510 Shakura,N.I.,&Sunyaev,R.A.1973,A&A,24,337 Sobczak,G.J.,McClintock,J.E.,Remillard,R.A.,Cui,W.,Levine,A.M.,Morgan,E.H.,Orosz,J.A.,&Bailyn,C.D.2000,ApJ,544,993 Sobolewska,M.A.,&Zycki,P.T.2006,MNRAS,370,405 Tagger,M.,&Pellat,R.1999,A&A,349,1003 Tagger,M.,&Varniere,P.2006,ApJ,652,1457 Tanaka,Y.,&Shibazaki,N.1996,ARA&A,34,607 Titarchuk,L.,&Fiorito,R.2004,ApJ,612,988 Titarchuk,L.,&Osherovich,V.2000,ApJL,542,L111 Trudolyubov,S.,Churazov,E.,&Gilfanov,M.1999,A&A,351,L15 Ueda,Y.,Ishioka,R.,Sekiguchi,K.,Ribo,M.,Rodriguez,J.,Chaty,S.,Greiner,J.,Sala,G.,Fuchs,Y.,Goldoni,P.,Covino,S.,Pooley,G.G.,Edwards,P.,Tzioumis,A.,Lehto,H.,Gerard,E.,Colom,P.,Martin,J.,Trushkin,S.A.,Castro-Tirado,A.J.,Hannikainen,D.,Sudo,H.,Honma,M.,Iwamuro,F.,Kubuta,K.,Yamaoka,K.,Done, 175

PAGE 176

vanderKlis,M.2004,ArXivAstrophysicse-prints Varniere,P.,Rodriguez,J.,&Tagger,M.2002,A&A,387,497 Varniere,P.,Tagger,M.,Rodriguez,J.,&CadolleBel,M.2007,inSF2A-2007:ProceedingsoftheAnnualmeetingoftheFrenchSocietyofAstronomyandAstrophysicsheldinGrenoble,France,July2-6,2007,Eds.:J.Bouvier,A.Chalabaev,andC.Charbonnel,p.221,ed.J.Bouvier,A.Chalabaev,&C.Charbonnel,221 Vignarca,F.,Migliari,S.,Belloni,T.,Psaltis,D.,&vanderKlis,M.2003,A&A,397,729 Vilhu,O.,Poutanen,J.,Nikula,P.,&Nevalainen,J.2001,ApJL,553,L51 Wilms,J.,Nowak,M.A.,Dove,J.B.,Fender,R.P.,&DiMatteo,T.1999,ApJ,522,460 Zdziarski,A.A.,Gierlinski,M.,Rao,A.R.,Vadawale,S.V.,&Mikoajewska,J.2005,MNRAS,360,825 176

PAGE 177

NestorLassoCabrerawasbornandgrewupformostofhislifeinLanzarote,CanaryIslands,Spain.HeattendedtheUniversidaddelaLaguna,CanaryIslands,Spain,wherehegraduatedasanElectronicEngineer.DespitelivingundertheexcellentskiesofCanaryIslandsandsharinghislifewithanastronomymajor,hewasalwaysmoreinterestedintakingapartelectronicdevicesthanhewasinlookingtotheskies.Thischangedin2006whenhiswifebegangraduateschoolattheUniversityofFlorida.There,heknewabouttheastronomicalinstrumentationprogramandtheinstrumentstheywerebuildingforsomeofthelargesttelescopesintheworld.Ayearlater,NestoralsobegangraduateschoolattheUniversityofFlorida.HestartedworkingwithDr.StephenEikenberryonthedevelopmentoftheCanariasInfraRedCameraExperiment(CIRCE),anearinfraredinstrumentforwhatiscurrentlytheworld'slargesttelescope,theGranTelescopioCanarias(GTC).HealsostartedhisresearchonthestudyoftheX-rayandIRvariabilityofstellarmassblackholes.AfterreceivinghisPh.D.fromtheUniversityofFloridainthesummerof2012,hewillmoveontoUniversidaddeConcepcion,Chile,tocollaboratewithDr.NeilNagarinthedevelopmentofabeamformerfortheAtacamaLargeMillimeter/submillimeterArray(ALMA). 177