Citation

## Material Information

Title:
Some Algebraic Problems From Coding Theory
Creator:
Arslan, Ogul
Place of Publication:
[Gainesville, Fla.]
Publisher:
University of Florida
Publication Date:
Language:
english
Physical Description:
1 online resource (46 p.)

## Thesis/Dissertation Information

Degree:
Doctorate ( Ph.D.)
Degree Grantor:
University of Florida
Degree Disciplines:
Mathematics
Committee Chair:
Sin, Peter
Committee Members:
Drake, David A.
Tiep, Pham H.
Turull, Alexandre
Keating, Kevin
Sitharam, Meera
8/8/2009

## Subjects

Subjects / Keywords:
Binary codes ( jstor )
Eigenfunctions ( jstor )
Geometric lines ( jstor )
Geometry ( jstor )
Integers ( jstor )
Mathematical vectors ( jstor )
Mathematics ( jstor )
Matrices ( jstor )
Polynomials ( jstor )
Vector spaces ( jstor )
Mathematics -- Dissertations, Academic -- UF
coding, finite, generalized, geometry, incidence, ldpc, lumq, matrix, prank, quadrangle, representation, symplectic, theory
Genre:
Electronic Thesis or Dissertation
born-digital ( sobekcm )
Mathematics thesis, Ph.D.

## Notes

Abstract:
SOME ALGEBRAIC PROBLEMS FROM CODING THEORY Let F be a finite field of size q and characteristic p. A low density parity check (LDPC) code is a finite dimensional subspace of a vector space over F. A parity check matrix of an LDPC code is a binary sparse matrix which is orthogonal to the code. In this work, we describe a family of LDPC codes called the LU(3,q) codes over F . Let M (P,L) be the point-line incidence matrix of the symplectic generalized quadrangle. We give a description of a submatrix H of M(P,L) such that, any LU(3,q) code has either H or the transpose of H as its parity check matrix. Previously, Peter Sin and Qing Xiang derived a formula for the dimension of the LU(3,q) codes for the case where F has an odd characteristic. If F has an even characteristic , the field of the geometry and the parity check matrix have the same characteristic, hence the solution requires different techniques. In this research, we give a descriptions of the points and lines of the symplectic generalized quadrangle using characteristic functions and polynomials. Using representation theory of the symplectic group SP(4,q), we find a basis for the column space of M(P,L). We use this result to show that the 2-rank of H is rank_2(M(P,L))-2q. Hence, the dimension of an LU(3,2^t) code is q^3+2q-rank_2(M(P,L)). This completes the dimension problem for the LU(3,q) codes. ( en )
General Note:
In the series University of Florida Digital Collections.
General Note:
Includes vita.
Bibliography:
Includes bibliographical references.
Source of Description:
Description based on online resource; title from PDF title page.
Source of Description:
This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Thesis:
Thesis (Ph.D.)--University of Florida, 2009.
Local:
Statement of Responsibility:
by Ogul Arslan.

## Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright Arslan, Ogul. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
489203769 ( OCLC )
Classification:
LD1780 2009 ( lcc )

Full Text

PAGE 1

1

PAGE 2

2

PAGE 3

3

PAGE 4

PAGE 5

page ACKNOWLEDGMENTS ................................. 4 LISTOFFIGURES .................................... 6 ABSTRACT ........................................ 7 CHAPTER 1FINITEGEOMETRIES ............................... 8 1.1IncidenceStructures .............................. 8 1.2ProjectiveSpaces ................................ 9 1.3FiniteGeneralizedQuadrangles ........................ 11 2LOWDENSITYPARITYCHECK(LDPC)CODES ............... 18 2.1LinearCodes .................................. 18 2.2Low-DensityParityCheckCodes ....................... 19 3LU(m;q)CODES ................................... 21 3.1IncidenceStructure(q) ............................ 21 3.2LU(m,q)Codes ................................. 22 3.2.1LU(2,q)Codes .............................. 23 3.2.2LU(3,q)Codes .............................. 24 3.2.3LU(m,q)Codesform>3 ........................ 25 4DIMENSIONSOFLU(3;q)CODES ........................ 26 4.1AnotherDescriptionforLU(3,q)Codes .................... 26 4.2DimensionsforC(P,L)andaLowerBoundfortheDimensionofLU(3,q) 27 4.3GridsofLines .................................. 31 4.4ApproachbyUsingPolynomials ........................ 36 4.5DigitizablePolynomialsinR 39 4.6OntheKerneloftheProjectionMap ..................... 40 REFERENCES ....................................... 44 BIOGRAPHICALSKETCH ................................ 46 5

PAGE 6

Figure page 4-1LinesthatareincidentwithXandY. ....................... 30 4-2Lines0and0. .................................... 32 4-3Morelinesinthegrid. ................................ 33 4-4Linesofthegrid ................................... 33 4-5Intersectionofand. ............................... 34 4-6Summinglinesinthegrid. .............................. 34 4-7Gridlinesbetween`and`0. ............................. 35 6

PAGE 7

PAGE 8

8

PAGE 9

PAGE 10

PAGE 11

ThisresultwasalsoprovenbyGrahamandMacWilliams[ 9 ]fortheplane,andbyGoethalsandDelsarte[ 8 ],MacWilliamsandMann[ 17 ],andbySmith[ 23 ]forgeneraln.Moregeneralversionoftheorem 1 isobtainedbyP.Sinin[ 21 ].Theauthorprovedaformulaforthep-rankoftheincidencematrixbetweenthed-dimensionalande-dimensionalsubspacesofVsuchthattheincidencerelationisthenon-trivialintersection. GivenanincidencestructureS=(P;B;I)theincidencegraphofSisdenedasfollows.ThevertexsetoftheincidencegraphisP[B.TheverticesinParepairwisedisconnected,similarlytheverticesinBarepairwisedisconnected.Twoverticesp2Pand`2BareconnectedbyanedgeifandonlyifpI`.Itiseasytoseethattheincidencegraphisabipartitegraph. 11

PAGE 12

PAGE 13

PAGE 14

PAGE 15

PAGE 16

PAGE 17

17

PAGE 18

Denition7. TherankofthedualcodeC?isndim(C)=nk.AgeneratormatrixHofthedualcodeC?iscalledaparitycheckmatrixofthecodeC.Ifh:Fnq!FnkqisthelineartransformationoftheparitycheckmatrixH,thekernelofthistransformationisthecodeC.Wecandenetheparitycheckmatrixmoreformallyasfollows. Theweightofthecodewordxisthenumberofnon-zerocomponentsofx.Itisdenotedbyw(x).Henceitiseasytoseethatd(x;y)=w(yx). 18

PAGE 19

ItispossibletoprovethattheminimumdistanceistheleastnumberofcolumnsofH,theparitycheckmatrixofC,thatsumsupto0. Theminimumdistanceofacodegivesusaninformationabouthowmanyerrorscanbecorrectedaftertransmittingtheinformation.Therelationshipbetweenthenumberoferrorsthatcanbecorrectedandtheminimumdistanceisgiveninthefollowingtheorem. 2cerrors. 6 ],[ 3 ]or[ 18 ]. Therateofan(n;k)codeisthenumberofbitsperchannelusebeingtransmitted.Itistherationk=n.Inordertohavea'good'codeweexpectk=nanddtobelarge.Sogivenalinearcode,wewouldliketoknowisitsdimensionandminimumdistance.Ifthecodeisobtainedsystematicallythenitissomewhateasiertondthese.So,itisnaturaltolookatthecodesthatarisefromnitegeometries. 7 ]in1962.Theirdecodingperformanceisverygoodsotheybecamepopularrecently. 19

PAGE 20

PAGE 21

PAGE 22

Letm2beanintegerconsidertheincidencesystem(m;q)=(P(m);L(m);Im)whereP(m)andL(m)aresetofvectorsobtainedfromprojectingtheelementsofPandLontotherstmcomponents.For(p)2P(m),and[`]2L(m)wesay(p)isincidentwith[`]ifandonlyifrstmequationsincondition( 3{3 )aresatised.WeletD(m;q)denotetheincidencegraphof(m;q). Thefollowingpropositioncanbefoundin[ 15 ]. 15 ], (ii)Ifm2isanevenintegerthenthegirthofD(m;q)isatleastm+4[ 16 ]. 24 ]aretheD(m;q).Itisimmediatethatthesecodeshavelengthqm.Theotherpropertiesliketheminimumdistanceanddimensionvarybythechoiceofmandq.Thesecodeswererstintroducedin[ 13 ].TheauthorsalsoinvestigatedthepropertiesofLU(2;q)andLU(3;q)in[ 13 ].WhileLU(2;q)wascompletelydescribed,thedimensionsofLU(3;q)wereconjecturedforthecasewhereqisanoddprimepowerandtheothercaseremainedunknownforawhile.In2006,P.SinandQ.XiangprovedtheconjectureandgaveaformulaforthedimensionsofLU(3;q)codesforoddqin[ 22 ].Theyalsoobtainedalowerboundforthedimensionwhenqiseven.ThegivenboundistheactualdimensionbythecomputercalculationsofJ.-L.Kimuptoq=16.Weprovethelowerboundistheactual 22

PAGE 23

3{1 )weget and Theincidencerelationisthesatisfactionofthersttwoconditionsof( 3{3 ).Henceapoint(p1;p1:1)isincidentwithaline[`1;`1:1]ifandonlyif and aresatised.Notethat,withtheequationsin( 3{2 )thesetwoconditionsarethesame.Hence,wecandescribetheLU(2;q)codesasfollows. Suppose(P;L;I)isanincidencestructurewhere .Apoint(a;b)isincidentwithaline[x;y]ifandonlyify=ax+b.TheincidencematrixofthisstructureisdenotedbyH.ThebinaryLU(2;q)codesarethecodesobtainedbytheparitycheckmatricesHandHT. 13 ]. 23

PAGE 24

14 ]. 3{1 )weget and Wesaythatapoint(p1;p1:1;p1:2)isincidentwithaline[`1;`1:1;`1:2]ifandonlyiftherstthreeoftheconditions( 3{3 )aresatised.Thatis, Onceagainbecauseoftheequationsin( 3{2 )thersttwooftheseequationsareequivalent.HencewecandescribetheLU(3;q)codesasfollows. Let(P;L;I)beanincidencestructuresuchthat 24

PAGE 25

3{11 ),( 3{12 ),and( 3{13 )weobtainthatapoint(a;b;c)2Pisincidentwithaline[x;y;z]2Lifandonlyif LetHbetheincidencematrixofthisstructure.ThebinaryLU(3;q)codesarethelinearcodesobtainedfromtheparitycheckmatricesHandHT. Thethemoredetailedexplanationsaboutthefollowingpropertiescanbefoundin[ 13 ]. 3{3 )givesamorecomplicatedstructurefortheincidencerelation.However,sincethesegraphshavegirthsbiggerthan2dm=2e+4,wehavethefollowingtheoremaboutthelowerboundontheminimumdistance.

PAGE 26

InthischapterwegiveformulasforthedimensionsofLU(3;q)codes.Thisproblemissolvedintwocases,qoddandqeven. (v;v0)=x0y3x3y0+x1y2x2y1:(4{1) ConsidertheprojectivespaceP(V),thespaceofonedimensionalsubspacesofV.LetPbethesetofpointsofP(V),thatisthesetofonedimensionalsubspacesofV.WesometimesdenotetheelementsofPusingthehomogeneouscoordinates.So, AsubspaceofViscalledtotallyisotropic,if(v;v0)=0whenevervandv0arebothinthesubspace.WeletLbethesetoftotallyisotropic2-dimensionalsubspacesofV.Hence, Thetriple(P;L;I)withthenaturalrelationofincidencebetweenthepointsandlinesisanincidencestructure.FromnowonalltheincidencesystemshavetherelationofinclusionsowewilldroptheletterIfromthenotations. Notethateverylineof(P;L)hasq+1pointsinitandeverypointiscontainedinq+1linesfromL.Moreover,onecanseethatgivenanyline`andapointpnotonthatlinethereisauniquelinethatpassesthroughpandintersects`.Hencethisincidence 26

PAGE 27

19 ]. Fixapointp0=he0i2Pandaline`0=he0;e1i2L.Forapointp2P,wedenep?tobethesetofpointsonallthelinesthatpassthroughp.Thus, LetP1bethesetofpointsnotinp?0andL1bethesetoflineswhichdonotintersect`0.Henceotherincidencesystemsofinterestare(P1;L1),(P;L1)and(P1;L).LetM(P;L)betheincidencematrixwhoserowsareindexedbyP,andthecolumnsbyL.Similarly,wegettheincidencematrixM(P1;L1),whichcanbethoughtasasubmatrixofM(P;L).WecanreordertherowsandcolumnsofM(P;L)sothatthepointsinp?0comeontopandthelinesinLnL1comerst.So,wecanvisualizethetwoincidencematricesasfollows 3{14 )and(P1;L1)fromaboveareisomorphic. Proof. 22 ]. Hence,M(P1;L1)anditstransposeareparitycheckmatricesforLU(3;q)codes.SincetheLU(3;q)codeisbinary,wewanttoknowthe2-rankofthematrixM(P1;L1). 22 ],P.SinandQ.Xiangobtainedtheformulaforthecaseofoddq.Weusedierentmethodstoobtaintheformulaforthecaseofevenq.Wegivedetailedproofsfortheevencaseandstatethecorrespondingresultsoftheoddcasewheneverpossible. 27

PAGE 28

PAGE 29

1 ]],andthesecondwasprovenin[Theorem1,[ 20 ]]. 2.Ifqiseven,the2-rankofM(P;L)is1+1+p 2!2t+1p 2!2t: 22 ]. 2(4{6) 2(4{7) Hereweprovethecorrespondingtheoremandcorollaryfortheevencase. 2!2t+1p 2!2t2t+1(4{8) 2!2t1p 2!2t(4{9) Forsimplicity,mostofthetimewewillnotmakeadistinctionbetweenthelinesandthecharacteristicfunctionsofthelines.Forexample,wesayasubspacespannedbylinesinsteadofcharacteristicfunctionsoflines. 29

PAGE 30

LinesthatareincidentwithXandY. LetC(P;L1)bethesubspaceofF2[P]spannedbythelinesofL1,C(P1;L1)denotethecodeof(P1;L1)viewedasasubspaceofF2[P1];andletC(P1;L)bethelargersubspaceofF2[P1]spannedbytherestrictionstoP1ofthecharacteristicfunctionsofalllinesofL.Thatis,ifM(P;L)isthematrixasin( 4{5 )wheretheblocksnamedasfollows B C D ThenC(P;L1)isthecolumnspaceof[BD],C(P1;L1)isthecolumnspaceof[D],andC(P1;L)isthecolumnspaceof[CD]. Weconsiderthenaturalprojectionmap givenbytherestrictionoffunctionstoP1.WedenoteitskernelbykerP1. LetXbethesetofcharacteristicfunctionsoftheq+1linespassingthroughp0,andletX0=Xn`0:Wealsopickqlinesthatintersect`0atqdistinctpointsexceptp0,andcallthesetoftheselinesasY.Inthegure 4-1 thesolidlinesrepresentthesetXwhilethedashedlinesrepresentachoiceofY. 30

PAGE 31

ItisimmediatethatthesetsX;Y,andZaredisjoint.Ifaline`isinX,allofitspointsareinp?0.Thus,itsimageunderP1isallzerovector.So,XkerP1:AlsowenotethatjX0[Yj=2q,whilejZj=dimF2C(P1;L1). Thefollowinglemmaandcorollarywereprovenin[ 22 ]. Proof. dimF2LU(3;q)=q3dimF2C(P1;L1)(4{13) BytheabovelemmaandthefactthatjX0[Y[Zj=2q+dimF2C(P1;L1),wehave dimF2C(P;L)2q+dimF2C(P1;L1)(4{14) Combiningthetwoinequalitieswegettheresult.

PAGE 32

Pickapointp2Pwhichisnotin`,`0,or`0.Byquadranglepropertiesthereisauniqueline0,throughpthatintersects`.Similarly,thereisauniqueline0,throughpthatintersects`0.Letp1denote0\`,andp2denote0\`0.Wecanseethisinthegure 4-2 Figure4-2. Lines0and0. Leta;b;c;e2Vbethegeneratorsofthepointsp1,p2,p,andprespectively.Thatis,thatp1=hai,p2=hbi,p=hciandp=hei.Withoutlossofgeneralitywecanassumethat(a;b)=(e;c)=1.Wecanwritethelines0and0intermsoftheirgeneratorsas0=ha;ciand0=hb;ci.Thus,thepointsof0otherthanp1areoftheformhc+aiwhere2Fq.Similarlythepointsof0otherthanp2areoftheformhc+biforsome2Fq. Througheverypointof0,thereisauniquelineintersecting`0.Beingin`0thesepointsareoftheformhb+eiforsome2Fqasingure 4-3 32

PAGE 33

Morelinesinthegrid. Sincetheform(;)isanalternatingbilinearform,andhc+ai,andhb+3iareonthesameline, 0=(c+a;b+e) (4{15) =(c;b)+(c;e)+(a;b)+(a;e) (4{16) =(c;e)+(a;b) (4{17) =+ (4{19) Thus=inFq.Thenfor2Fq,thelinethroughhc+aithatintersect`0is=hc+a;b+ei:(gure 4-4 )Similarly,wecanshowthatfor2Fq,thelinethrough Figure4-4. Linesofthegrid 33

PAGE 34

=fj2Fq;=hc+b;a+eig(4{20) =fj2Fq;=hc+a;b+eig(4{21) Notethatthelinesin(respectivelyin)donotintersecteachother. Nowwepicktwolinesandforsome;2Fq:Then,=hc+b;a+eiand=hc+a;b+ei.Wewanttoshowthatthesetwolineshaveanon-zerointersection(gure 4-5 ). Figure4-5. Intersectionofand. Hence,andintersectats,andbyquadranglepropertiesthisistheonlypointofintersection.Hence,everylineinintersectseverylinein.Thus,thereisagridoflinesbetween`and`0.Moreover,thelinesin[areinL1(gure 4-6 ). Figure4-6. Summinglinesinthegrid. 34

PAGE 35

PAGE 36

Thusanyline`2LisinthespanofX0[Y[L1.ItremainstoshowthespanofX0[Y[L1isthesameasthespanofX0[Y[Z: LetR=k[x0;x1;x2;x3],betheringofpolynomialsinfourindeterminatesoverk.WecanthinkofanypolynomialinRasafunctionink[V]:Inordertondthevalueoff(x0;x1;x2;x3)2Ratv=(a0;a1;a2;a3)2Vwejustsubstitutexiwithaiforalli.Thus,thereisanhomomorphismfromRtok[V]thatmapseverypolynomialtoafunction.OnecanprovethatthishomomorphismisinfactanisomorphismbetweenR=Iandk[V],whereIistheidealgeneratedbyf(xq0x0);(xq1x1);(xq2x2);(xq3x3)g. 36

PAGE 37

Thus,foreachp=hvi2Pthevalueoffonpnf0gwillbeconstant.HencefcanbethoughtasafunctiononP.WecandothisbyprojectingfontotherepresentativesofpointsinP.Ontheotherhand,anyfunctionf2k[P]canbeextendedtoafunctionf2k[Vnf0g]kbydeningthevalueoff(v)tobethesameasf(p),wherepisthepointsothatv2p.Thus,thereisaonetoonecorrespondencebetweenk[P]andk[Vnf0g]k,andk[P]canbeembeddedintok[V]k. Sincek[V]'R=I,thereisaspaceRPwhichisisomorphictok[P],andthatcanbeembeddedinto(R=I)k.ElementsofRPareclassesofpolynomialsthatmaptok[V]kundertheisomorphismbetweenR=Iandk[V].LetRPRbethesetofrepresentativesofelementsofRP.Itisnotdiculttoseethatforanyelementg+IofRPtheuniquerepresentativeginRPwillbeahomogeneouspolynomialwhosetermshavedegreeswhicharemultiplesof(q1).Inthiscase,thesetofmonomialsoftheformxm00xm11xm22xm33in 37

PAGE 38

Foraline`2L,let`bethepolynomialinRPthatcorrespondstothecharacteristicfunction`of`ink[P].So, (1+(3Xi=0aixi)q1)(1+(3Xi=0bixi)q1)+I;(4{27) whereai;bi2ksuchthatthe2-dimensionalsubspaceofVgivenby 38

PAGE 39

4 ]. Proof. 4 ]withm=2andr=2. 39

PAGE 40

InthissectionwewillndthedimensionofC(P;L)\kerP1,whereP1:RP!RP1istheprojectionmap.ElementsofkerP1aretheclassesofpolynomialswhosevaluesatthepointsofP1arezero.Weknowthat Thus,anyelementoftheform(1+xq13)f+IinRPisinthekernel.Ontheotherhand,f+I=(xq13+1)f+Iforanyclassf+I2kerP1.Thisisbecauseforanypointp2P,thevalueof(xq13+1)fiszeroifp2P1,andf(p)otherwise. Proof. Fortherestofthesectionwexanelementr+IofkerP1\C(P;L).LetrbeitsuniquerepresentativeinRP.Sincer+Iisinthekernel,r=(1+xq13)h(x0;x1;x2)forsomeh2RP.Sincer+IisalsoinC(P;L),andC(P;L)isspannedbythecharacteristicfunctionsofthelines,thetermsofr+Ihavedegrees0;q1or2(q1).Wealsoknowbythelemma 18 thatr+Iisinthespanof.

PAGE 41

Sincer+IisinC(P;L),andxq13misamonomialofr,thedegreeofxq13misq1or2(q1).Sincemisnon-constant,deg(m)=q1:Hence, Since2t1isanoddnumber,k0=1.Thenweget andsok1=1.Werepeatthisprocessuntilwegetki=1foralli. Supposeoneofthemonomials,say[g0;:::;gt1],ofhhasx0init.Sogi=x0forsomei.Then, isamonomialinr.Weknowthatrisalinearcombinationoftheelementsof,so,rshouldalsocontainthemonomial [g0x3;g1x3;:::;gi1x3;x1x2;:::;gt1x3]:(4{35) Notethatthedegreeofx3inthismonomialisdierentfrom0orq1.Howeverthisisimpossiblesincer=xq13h+h,thedegreeofx3inanymonomialofrmustbeeither0 41

PAGE 42

4{35 ).Hence,hdoesnotcontaintheindeterminatex0. 22 ],theproofworksthesamefortheevencasealso. Proof. 15 appliedtop0,weseethatif`and`0areanytwolinesthroughp0otherthan`0,thefunction``0liesinC(P;L1).ItisalsoinkerP1.Thus,wecanndq1linearlyindependentfunctionsofthiskindasdescribedinthestatement.ThenthedimensionofkerP1\C(P;L1)isgreaterthanorequaltoq1.Ontheotherhand,sincenoneofthelinesinL1hasacommonpointwith`0,C(P;L1)isinthekerneloftherestrictionmapto`0,whiletheimageoftherestrictionofkerP1\C(P;L)to`0hasdimension2,spannedbytheimagesof`0andp0.Thus,kerP1\C(P;L1)hascodimensionatleast2inkerP1\C(P;L),whichhasdimensionq+1,byCorollary12.Hence, dim(kerP1\C(P;L1))q1:(4{36)

PAGE 43

Therefore,Z[X0[YspansC(P;L)asavectorspace.So, dim(C(P;L))dim(C(P1;L1))+2q(4{37) andthisimplies dimLU(3;q)=q3dim(C(P;L))+2q:(4{38) 43

PAGE 44

[1] B.Bagchi,A.Brouwer,H.Wilbrink,Notesonbinarycodesrelatedtotheo(5,q)generalizedquadrangleforoddq,GemonetriaeDedicata39(1991)339{355. [2] F.Buekenhout(ed.),HandbookofIncidenceGeometry,ElsevierScienceB.V.,TheNetherlands,1995. [3] P.Cameron,J.V.Lint,Graphs,CodesandDesigns,CambridgeUniversityPress,Cambridge,1980. [4] D.Chandler,P.Sin,Q.Xiang,Incidencemodulesforsymplecticspacesincharacteristictwo,arXiv:math/0801.439201(2008). [5] P.Dembowski,FiniteGeometries,Springer-Verlag,NewYork,1968. [6] J.E.F.Assmus,J.Key,DesignsandTheirCodes,CambridgeUniversityPress,Cambridge,1992. [7] R.Gallager,Low-densityparity-checkcodes,IRETrans.InformationTheoryIT-8(1962)21{28. [8] J.Goethals,P.Delsarte,Onaclassofmajority-logicdecodablecycliccodes,IEEETrans.InformationTheory14(1968)182{188. [9] R.Graham,F.MacWilliams,Onthenumberofinformationsymbolsindierence-setcycliccodes,BellSystemTech.J.45(1966)1057{1070. [10] N.Hamada,Therankoftheincidencematrixofpointsandd-atsinnitegeometries,J.Sci.HiroshimaUniv.Ser.A-I32(1968)381{396. [11] N.Hamada,Onthep-rankoftheincidencematrixofabalancedorpartiallybalancedincompleteblockdesignanditsapplicationstoerrorcorrectingcodes,HiroshimaMath.J.3(1973)153{226. [12] J.Hirschfeld,ProjectiveGeometriesOverFiniteFields,OxfordUniversityPress,NewYork,1979. [13] J.-L.Kim,U.Peled,I.Pereplitsa,V.Pless,S.Friedland,Explicitconstructionofldpccodeswithno4-cycles,IEEETrans.InformationTheory50(2004)2378{2388. [14] Y.Kuo,S.Lin,M.Fossorier,Low-densityparity-checkcodesbasedonnitegeometries:arediscoveryandnewresults,IEEETrans.InformationTheory47(2001)2711{2736. [15] F.Lazebnik,V.Ustimenko,Explicitconstructionofgraphswitharbitrarilylargegirthandofsize,DiscreteAppliedMath.60(1997)275{284. [16] F.Lazebnik,A.Woldar,Generalpropertiesofsomefamiliesofgraphsdenedbysystemsofequations,J.GraphTheory38(2001)65{86. 44

PAGE 45