|
Citation |
- Permanent Link:
- https://ufdc.ufl.edu/UFE0024739/00001
Material Information
- Title:
- Optical Diagnostic Techniques in Tribological Analysis Applications to Wear Film Characterization, Solid Lubricant Chemical Transition, and Electrical Sliding Contacts
- Creator:
- Windom, Bret
- Place of Publication:
- [Gainesville, Fla.]
Florida
- Publisher:
- University of Florida
- Publication Date:
- 2009
- Language:
- english
- Physical Description:
- 1 online resource (155 p.)
Thesis/Dissertation Information
- Degree:
- Doctorate ( Ph.D.)
- Degree Grantor:
- University of Florida
- Degree Disciplines:
- Mechanical Engineering
Mechanical and Aerospace Engineering
- Committee Chair:
- Hahn, David W.
- Committee Members:
- Sawyer, Wallace G.
Perry, Scott S. Smith, Benjamin W.
- Graduation Date:
- 8/8/2009
Subjects
- Subjects / Keywords:
- Crystals ( jstor )
Electrons ( jstor ) Emission spectra ( jstor ) Laser spectroscopy ( jstor ) Lasers ( jstor ) Oxidation ( jstor ) Raman scattering ( jstor ) Raman spectroscopy ( jstor ) Sliding ( jstor ) Wavelengths ( jstor ) Mechanical and Aerospace Engineering -- Dissertations, Academic -- UF aes, disulphide, molybdenum, mos2, polymer, ptfe, raman, spark, spectroscopy, tribology, wear
- Genre:
- bibliography ( marcgt )
theses ( marcgt ) government publication (state, provincial, terriorial, dependent) ( marcgt ) born-digital ( sobekcm ) Electronic Thesis or Dissertation Mechanical Engineering thesis, Ph.D.
Notes
- Abstract:
- Friction and wear have undisputedly huge macroscopic effects on the cost and lifetime of many mechanical systems. The cost to replace parts and the cost to overcome the energy losses associated with friction, although small in nature, can be enormous over long operating times. The understanding of wear and friction begins with the understanding of the physics and chemistry between the reacting surfaces on a microscopic level. Light as a diagnostic tool is a good candidate to perform the very sensitive microscopic measurements needed to help understand the fundamental science occurring in friction/wear systems. Light?s small length scales provide the capabilities to characterize very local surface phenomena, including thin transfer films and surface chemical transitions. Light-based diagnostic techniques provide nearly instantaneous results, enabling one to make in situ/real time measurements which could be used to track wear events and associated chemical kinetics. In the present study, two optical diagnostic techniques were investigated for the analysis of tribological systems. The first technique employed was Raman spectroscopy. Raman spectroscopy was investigated as a possible means for in situ measurement of thin transfer films in order to track the wear kinetics and structural transitions of bulk polymers. A micro-Raman system was designed, built, and characterized to track fresh wear films created from a pin-on-disk tribometer. The system proved capable of characterizing and tracking wear film thicknesses of ~2 ?m and greater. In addition, the system provided results indicating structural changes in the wear film as compared to the bulk when sliding speeds were increased. The spectral changes due to the altering of molecular vibrations can be attributed to the increase in temperature during high sliding speeds. Raman spectroscopy was also used to characterize the oxidation of molybdenum disulphide, a solid lubricant used in many applications, including high vacuum sliding. Resonance Raman effects were observed when an excitation wavelength of 632.8 nm was used. Raman spectroscopy was carried out on amorphous MoS2 while its temperature was increased to track the thermally induced oxidation of the MoS2 surface. In addition, other forms of MoS2not were investigated through Raman spectroscopy in which key distinctions between spectra were made. The second technique employed was atomic emission spectroscopy (AES) used to measure constituent species present in arcs created during electrical sliding contacts. Spectra indicated the presence of copper and zinc in the arcs created between copper fiber bundled brushes and a copper rotor. Atomic emission was used to measure the arc duration with a photo-multiplier tube (PMT) while the collected spectra were processed to assess arc temperature. The results suggest arcing in high-current electrical sliding contacts may be at least partially responsible for the high asymmetrical wear measured during tribology tests. ( en )
- General Note:
- In the series University of Florida Digital Collections.
- General Note:
- Includes vita.
- Bibliography:
- Includes bibliographical references.
- Source of Description:
- Description based on online resource; title from PDF title page.
- Source of Description:
- This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
- Thesis:
- Thesis (Ph.D.)--University of Florida, 2009.
- Local:
- Adviser: Hahn, David W.
- Statement of Responsibility:
- by Bret Windom.
Record Information
- Source Institution:
- UFRGP
- Rights Management:
- Copyright Windom, Bret. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
- Resource Identifier:
- 489256528 ( OCLC )
- Classification:
- LD1780 2009 ( lcc )
|
Downloads |
This item has the following downloads:
|
Full Text |
PAGE 4
In Situ In Situ IN SITU
PAGE 5
In Situ
PAGE 12
in situ in situ
PAGE 14
Overview in situ
PAGE 15
in situ Analytical Tribology
PAGE 17
in situ In Situ Raman Tribometer In Situ Raman Studies
PAGE 18
in situ in situ in situ in s itu
PAGE 19
In situ in situ in situ PTFE Raman Studies in situ
PAGE 23
MoS2 Raman Study Introduction
PAGE 25
in situ
PAGE 26
Raman Spectroscopy of MoS2 in situ gE gE gE
PAGE 27
zd xy d gE gE
PAGE 28
in situ in situ
PAGE 29
Stacy & Hodul ( Stacy 1995 ) Chen & Wang ( Chen 1974 ) Frequency (cm -1 ) Order Origin Frequency (cm -1 ) Order Origin 34 First 32 First 177 Second 188 Second 287 First 286 First 383 First 383 First 409 First 408.3 First 466 Second 450.2 Second 529 Second 567.3 Second 572 Second 596 Second 601 Second 750 Second 643 Second 778 Second 780 Second 816.7 Second 820 Second Spark Diagnostic Study Introduction gAMLAM gE gE gE LAM gEMLAM gA gE gEMLAM gAMLAM ggAMEM ggAorAM gAMLAM gE gE gE LAM gA gE gEM gA
PAGE 30
Spark Creation Fundamentals
PAGE 31
v E d
PAGE 32
cH R F ccVIR ccTTVxK
PAGE 33
di/dt di VL dt
PAGE 34
CAdI ULRIUt dt CAAbUUUU Rt It RRL Ab a CACLIUU t UUU
PAGE 35
Spark Induced Wear Mechanisms
PAGE 36
Non -Sparking Electric Induced Wear Mechanisms Previous Work
PAGE 38
eI Ie
PAGE 41
Raman Light Scattering
PAGE 42
E mEEt mE mPEEt
PAGE 43
err r re v emvrrrt rm mvrt r m mm vPEt Er tt r v v
PAGE 44
m mmv m mvE PEtr t r E rt r r
PAGE 46
v
PAGE 47
Raman spectroscopy: v v v A v v v B
PAGE 48
ovibvv ov vibv v vibv vibv ov ov
PAGE 49
vibv
PAGE 50
Emission Spectroscopy
PAGE 51
0 1000 2000 3000 4000 5000 6000 7000 250260270280290300Intensity (a.u.)Wavelength (nm) Mg (II) 279.55 Mg(II) 280.27 Mg(I) 285.21 Si(I) 288.158 Fe(II) Fe(II)
PAGE 52
Boltzmann plot: hcE kTNAg Ie u Ihc Econst AgkT hc kT T
PAGE 53
15 16 17 18 19 20 21 22 3 1063.5 1064 1064.5 1065 1065.5 1066 1066.5 106Cu (I) Boltzmann Plot y = 26.355 1.7747e-06x R= 0.99151 ln(lamda*I/gA)Energy Level (m-1)
PAGE 54
IN SITU Tribo -Raman Setup in situ Tribometer
PAGE 55
Laser Excitation
PAGE 56
Raman Collection
PAGE 59
0 2 1044 1046 1048 1041 105300400500600700Intensity (a.u.)Wavenumber (cm-1) Si 520 cm-1 Ar-ion Laser Residual Frequency 501.7 nm Ar-ion Laser Residual Frequency 496.5 nmNo Filter Filter Micro-Raman Si Spectrum
PAGE 60
Results Micro -Raman System Characterization
PAGE 62
0 5000 1 1041.5 1042 1042.5 1043 1041200125013001350140014501500Intensity (a.u.)Raman Shift (cm-1) Custom Micro-Raman Commercial Micro-Raman (Shifted)
PAGE 63
500 1000 1500 2000 2500 1000110012001300140015001600Intensity (a.u.)Raman Shift (cm-1)C-C CH21174 cm-11067 cm-1C-C 1132 cm-1CH2CH2CH2CH21374 cm-11421 cm-11465 cm-11299 cm-1 CH21445 cm-1Custom Micro-Raman 2000 2500 3000 3500 4000 4500 5000 1000110012001300140015001600Intensity (a.u.)Raman Shift (cm-1)Commercial Micro-Raman
PAGE 64
1000 2000 3000 4000 5000 6000 7000 200400600800 100012001400Intensity (a.u.)Raman Shift (cm-1) 632.8 nm Micro-Raman Shifted 1000 Counts Custom Micro-Raman
PAGE 65
0 1000 2000 3000 4000 5000 250300350400450500550600Intensity (a.u.)Raman Shift (cm-1) Residual Ar-ion Laser Line Located @ 496.5 nm 0 1000 2000 3000 4000 5000 6000 560600640680720760800840Intensity (a.u.)Raman Shift (cm-1) 0 500 1000 1500 2000 2500 3000 3500 4000 115012001250 1300 135014001450Intensity (a.u.)Raman Shift (cm-1)
PAGE 66
1400 1500 1600 1700 1800 1900 2000 2100 2200 710715720725730735740745750 79 mins 2883 mns 8334 minsIntensity (a.u.)Raman Shift (cm-1)
PAGE 67
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 0 20004000 6000 8000 10000PTFE Raman Signal vs Sliding TimeP/BTime (min)
PAGE 68
-2 -1 0 1 2 3 4 5 2000 4000 60008000 1 104PTFE Wear Track ProfileHeight ( m)X-dir ( m) -2 0 2 4 6 8 10 0 200400600800 1000Zoomed PTFE Wear Track ProfileHeight ( m)X-Dir ( m)
PAGE 69
A B C
PAGE 70
8000 9000 1 1041.1 1041.2 104710715720725730735740745750 Image A Image B Image CIntensity (a.u.)Raman Shift (cm-1)
PAGE 71
500 600 700 800 900 1000 1100 1200 710720730740750 210 min 5875 min 14407 minIntensity (a.u.)Raman Shift (cm-1)
PAGE 72
Polymer Plasticization Results 1 1.5 2 2.5 3 3.5 4 4.5 0 5000 1 1041.5 104P/BTime (min)
PAGE 73
7000 7500 8000 8500 9000 9500 1 1041.05 104704712720728736744752760Intensity (a.u.)Raman Shift (cm-1) Bulk PTFE Slow Wear Track Fast Wear Track PTFE Ribbon (Fast Sliding)
PAGE 75
80 160 240 320 400 480 300320340360380Intensity (a.u.)Raman Shift (cm-1) Unworn 270 min 1320 min 18750 min
PAGE 76
0 500 1000 1500 2000 720725730735740745750Intensity (a.u.)Raman Shift (cm-1) Unworn 270 min 1320 min 18750 min 200 300 400 500 600 700 800 900 1375 1380 1385 1390Intensity (a.u.)Wavenumber (cm-1) Unworn 30 min 7095 min 18750 min 23040 min
PAGE 77
100 150 200 250 300 350 400 280285290295300305Intensity (a.u.)Raman Shift (cm-1) Unworn 30 min 90 min 2970 min 4050 min
PAGE 78
100 200 300 400 500 600 370375380385390395Intensity (a.u.)Wavenumber (cm-1) Unworn 30 min 1140 min 2910 min 200 300 400 500 600 700 800 900 137013751380138513901395Intensity (a.u.)Wavenumber Unworn 30 min 90 min 1290 min 4335 min
PAGE 79
520560600640680 Raman Shift (cm-1) Unworn 90 min 1140 min 2970 min 4050 min 4335 min
PAGE 80
3600 3800 4000 4200 4400 4600 4800 250 300 350 400 450Intensity (a.u.)Raman Shift (cm-1) Room Temperature Heated Sample CF2 twist CF2 scissors 4000 4500 5000 5500 6000 6500 7000 7500 8000 700710720730740750760770Intensity (a.u.)Raman Shift (cm-1) Room Temperature Heated Sample
PAGE 81
4000 4100 4200 4300 4400 4500 500550600650700750800850900Intensity (a.u.)Raman Shift (cm-1) Room Temperature Heated Sample CF2 wag CF2 rock 4000 4500 5000 5500 1150120012501300135014001450Intensity (a.u.)Raman Shift (cm-1) Room Temperature Heated sample CF2 asymmetric stretch C-C stretch C-C symmetric stretch
PAGE 82
Discussion in situ
PAGE 83
in situ
PAGE 87
Fundamental MoS2 Raman Study Raman System
PAGE 88
Results
PAGE 89
0 1000 2000 3000 4000 200400600800 1000Intensity (a.u.)Raman Shift (cm-1) 0.6 mW 6.3 mW380 407 451 820 464
PAGE 90
200400600800 1000 Raman Shift (cm-1) 0.6 mW 6.3 mW Intensity (a.u.)
PAGE 91
0 5000 1 1041.5 104200400600800 1000Intensity (a.u.)Raman Shift (cm-1)
PAGE 92
MoO3 High Power Low Power High Power Low Power Wavenumber (cm-1) Wavenumber (cm-1) Wavenumber (cm-1) Wavenumber (cm-1) Wavenumber (cm-1) 148 177 145 146 158 282 380* 179 179 198 377 407* 383* 384* 217 403* 451 409* 409* 245 447 464 419 424 283 622 526 453 465 338 818 565 465 529 365 992 595 528 573 379 639 570 600 471 820 599 644 666 643 723 819 765 738 996 778 767 820 780 806 821 Amorphous MoS2 Crystal MoS2
PAGE 93
3650 3700 3750 3800 3850 3900 3950 4000 4050 350400450500550600650Intensity (a.u.)Raman Shift (cm-1)377 cm-1402 cm-1 3800 4000 4200 4400 4600 4800 400440480520560600640Intensity (a.u.)Raman Shift (cm-1)383 cm-1408 cm-1453 cm-1 Laser line
PAGE 94
Discussion
PAGE 96
uE
PAGE 97
Temperature/Environment Raman Study Experimental Methods
PAGE 98
Results/Discussion
PAGE 101
0 1000 2000 3000 4000 5000 6000 200400600800 1000Intensity (a.u.)Raman Shift (cm-1) 293 K 573 K MoO3 Peak 820 cm-1 400 500 600 700 800 900 1000 250300350400450500550600Relative Intensity of 820 cm-1 band (Baseline Normalized)Temperature (K)
PAGE 103
200400600800 1000 1000 2000 3000 4000 5000 6000 7000 Raman Shift (cm-1) 6.3 mW 0.6 mWIntensity (a.u.)
PAGE 104
200400600800 1000 0 400 800 1200 1600 2000 2400 2800 3200 Raman Shift (cm-1) 6.3 mW 0.6 mWIntensity (a.u.)
PAGE 105
0 1000 2000 3000 4000 5000 6000 7000 8000 200400600800 1000Intensity (a.u.)Raman Shift (cm-1) 6.3 mW 0.6 mW
PAGE 107
riseqazza Tz ka q
PAGE 108
200400600800 1000 Wavenumber (cm-1) 002 Low Intensity 100 Low Intensity 100 High Intensity (Perpendicular) 002 High Intensity (Parallel) MoO3MoO3MoS2MoO3 MoS2 q k q k
PAGE 109
Conclusion
PAGE 113
Experimental Setup
PAGE 116
in situ Zinc (I) Wavelength E upper Ag Wavelength (nm)(m^-1) (s^-1) (nm) 510.5530784002.00E+06 4 328.2 515.3249935006.00E+07 4 330.26 521.8249942007.50E+07 6 330.29 529.2562403001.09E+05 8 334.5 578.230535001.65E+06 2 334.56 334.59 Copper (I) e e e e
PAGE 117
Results Initial Prototype Emission Measurements 0 500 1000 1500 2000 2500 500525550575600625650675 CO2 at 90% RH Ambient AirIntensity (a.u.)Wavelength (nm) Cu I 510.6 515.3 521.8 Cu I 529.3 Cu I 578.2 Zn II 589.4 Zn II 602.1 610.2 Zn I 636.2 Cu & Zn 2x Ambient Air CO2 @ 90% RH
PAGE 118
0 500 1000 1500 2000 2500 325 330 335 340 345 CO2 at 90% RH Ambient AirIntensity (a.u.)Wavelength (nm) Cu I 327.4 Zn I 328.2 Zn I 330.26 330.29 Zn I 334.50 334.56 334.59 CO2 @ 90% RH Ambient Air
PAGE 119
Boltzman Plot y = -1.160E-06x + 2.199E+01 R2 = 9.622E-01 y = -1.193E-06x + 2.291E+01 R2 = 9.647E-01 10 11 12 13 14 15 16 17 18 19 20 2.0E+062.5E+063.0E+063.5E+064.0E+064.5E+065.0E+065.5E+066.0E+066.5E+06 Energy Level (1/m) ln(lamda*I/(Ag)) CO2 Air 12400 K 12100 K Simple Static Spark Generated Mea surements Spark Lifetime Static Spark Generator
PAGE 120
-0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 -1 10-60 1 10-62 10-63 10-64 10-65 10-66 10-6Spark Lifetime (Negative Brush)Amp (V)Time (s) -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 -1 10-60 1 10-62 10-63 10-64 10-65 10-66 10-6Spark Lifetime (Positive Brush)Amp (V)Time (s)
PAGE 121
Ab a CACLIUU t UUU I0 UC L UA Ub Number of Average MaxMin Std. Dev. Sparks ( s) ( s) ( s) ( s) 486.6916.340.834.35 Number of Average MaxMin Std. Dev. Sparks ( s) ( s) ( s) ( s) 605.0312.371.113.45 Number of Average MaxMin Std. Dev. Sparks ( s) ( s) ( s) ( s) 1085.7716.340.833.94 Positive Brush Negative Brush Combined Polarities
PAGE 122
0 5 10 15 20 25 0 4 8 12 16Negative Brush Spark Lifetime DistributionNumberLifetime Bin ( s) 0 2 4 6 8 10 12 14 048 1216 20Positive Brush Spark Lifetime DistributionNumberLifetime Bin ( s) 0 5 10 15 20 25 30 35 -2 02468 1012141618 20Combined Lifetime DistributionNumberLifetime Bin ( s)
PAGE 123
Atomic Spectroscopy Static Spark Generator 0 2000 4000 6000 8000 1 1041.2 1041.4 104505510515520525530535Copper (I) Atomic SpectrumIntensity (a.u.)Wavelength (nm)
PAGE 124
Aki gk
PAGE 125
0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 490500510520530540550560Theoretical Tungsten Lamp ResponseW/cm2/nmWavelength (nm) Y = M0 + M1*x + ... M8*x8 + M9*x9 1.6512 M0 -0.0076816 M1 9.3824e-06 M2 1 R
PAGE 126
0 5000 1 1041.5 1042 1042.5 104505510515520525530535Theoretical and Measured Lamp Output Theoretical Irradiance (x100,000) Measured IntensityIntensity (a.u.)Wavelength (nm) 0 0.5 1 1.5 2 505510515520525530535Correction FactorWavelength (nm)
PAGE 127
Polarities Negative Positive Combined Average 110201111011050 Std Dev 590 740 630 Min 979097509750 Max 127001391013910 Spark Temperature Statistics (K) Brush Polarity 0 5 10 15 20 25 30 35 409250 9500 9750 10000 10250 10500 10750 11000 11250 11500 11750 12000 12250 12500 12750 13000 13250Number of SparksTemperature (K)
PAGE 128
Prototype Arc Measurements Arc Duration Measurements
PAGE 130
-0.04 -0.02 0 0.02 0.04 0.06 0.08 -5 10-70 5 10-71 10-61.5 10-6VoltageTime (sec) Negative Brush Positive Brush
PAGE 131
Number AverageMax Min Std. Dev. Sparks 45 0.712.140.140.48 Number AverageMax Min Std. Dev. Sparks 64 1.093.640.091.05 Number AverageMax Min Std. Dev. Sparks 109 0.933.640.090.88 Negative Brush Positive Brush Combined Polarities
PAGE 132
0 5 10 15 20 0 0.71.42.12.83.5Positve BrushNumberLifetime Bin ( s) 0 5 10 15 0 0.35 0.71.051.41.752.12.45NumberLifetime Bin ( s)Negative Brush 0 5 10 15 20 25 30 35 0 0.71.42.12.83.5NumberLifetime Bin ( s)Combined Polarities Atomic Emission Measurements
PAGE 134
-2 1050 2 1054 1056 105322324326328330332334336Intensity (a.u.)Wavelength (nm)Negative Brush Positive Brush Cu (I) 324.8 nm Cu (I) 327.4 nm Zn (I) 328.2 nm Zn (I) 330.3 nm Zn (I) 334.5 nm
PAGE 135
4 1048 1041.2 1051.6 105508512516520524528532Intensity (a.u.)Wavelength (nm)Neagative Brush Positive Brush Cu (I) 510.6 nm Cu (I) 515.3 nm Cu (I) 521.8 nm Zn (II) x 2 255.8 nm 528.5529529.5530530.5 Cu (I) 529.3 nm
PAGE 136
Be/Cu Brushes
PAGE 137
0 1 1042 1043 1044 1045 104200250300350400450500550600Intensity (a.u.)Wavelength (nm) Be (I) 313.04 nm Cu (I) 324.75 nm 327.40 nm 329.05 nm Cu (I) 510.55 nm 515.32 nm 521.82 nm 529.25 nm Conclusion
PAGE 140
Previous Research In Situ Tribo -Raman Study In situ in situ
PAGE 141
MoS2 Raman Study
PAGE 143
Arc Atomic Emission Study
PAGE 144
Future Research In situ in situ
PAGE 145
in situ in stiu
|
|