PAGE 1
AUTOMATEDMATCHINGCONTROLSYSTEMUSINGLOADESTIMATIONANDMICROWAVECHARACTERIZATIONByJAESEOKKIMADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOLOFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOFDOCTOROFPHILOSOPHYUNIVERSITYOFFLORIDA2008 1
PAGE 2
c2008JaeseokKim 2
PAGE 3
Tomyfamily 3
PAGE 4
ACKNOWLEDGMENTS Iwouldliketoexpressmysinceregratitudetomyadvisor,ProfessorWilliamR.Eisenstadt,forhisinvaluableadvice,encouragement,andsupport.Thisdissertationwouldnothavebeenpossiblewithouthisguidanceandsupport.MydeeprecognitiongoestoProfessorKennethO,ProfessorJohnG.Harris,andProfessorGloriaJ.Wiensforservingonmysupervisorycommitteeandfortheirvaluablesuggestions.ManythanksgotoMr.LarryLucefromFreescaleSemiconductorfortheirvaluableinputandgenerousfundingforthisresearch.ThanksalsogotomycolleaguesintheElectronicCircuitsLaboratory(ECL)fortheirdiscussionofideasandyearsoffriendship.Lastbutnotleast,Ioweaspecialdebtofgratitudetomyfamily.Withouttheirselessloveandsupport,IcannotimaginewhatIwouldhaveachieved. 4
PAGE 5
TABLEOFCONTENTS page ACKNOWLEDGMENTS ................................. 4 LISTOFTABLES ..................................... 8 LISTOFFIGURES .................................... 9 ABSTRACT ........................................ 12 CHAPTER 1INTRODUCTION .................................. 13 1.1WhyAutomaticImpedanceMatching? .................... 13 1.2MaximumPowerTransferonImpedanceMatching ............. 14 1.3ChallengesofAutomaticImpedanceMatching ................ 15 1.4ProposedSolution:AutomaticMatchingControlwithLoadEstimation .. 16 2BACKGROUND ................................... 17 2.1ImpedanceMatchingNetworkswithLumpedElements ........... 17 2.1.1L-typeMatchingNetwork ........................ 18 2.1.2-typeMatchingNetwork ....................... 19 2.1.3T-typeMatchingNetwork ....................... 20 2.1.4BandwidthofMatchingNetwork .................... 21 2.2PatternRecognition .............................. 22 2.2.1Thek-NearestNeighborClassier ................... 23 2.2.2ArticialNeuralNetwork(ANN) .................... 24 2.2.3PrincipalComponentAnalysis(PCA) ................. 26 2.3Multi-PortReectometers ........................... 28 2.3.1Six-PortReectometer ......................... 28 2.3.2Four-PortMultistateReectometer .................. 30 3AUTOMATICMATCHINGCONTROL ...................... 34 3.1Overview .................................... 34 3.2SystemOverview ................................ 35 3.2.1ImpedanceMatchingTuner ....................... 36 3.2.2Controller ................................ 36 3.2.3Searchalgorithm ............................ 39 3.3ExperimentalResults .............................. 39 3.3.1CharacterizationofAutomaticTunerSystem ............. 39 3.3.2MeasurementResults .......................... 41 3.4ConclusionandDiscussion ........................... 47 5
PAGE 6
4LOADIMPEDANCEESTIMATION ........................ 52 4.1Overview .................................... 52 4.2SystemOverview ................................ 53 4.2.1AutomaticMatchingControl(AMC) ................. 53 4.2.2LoadEstimationMethod ........................ 54 4.3ExperimentalResults .............................. 57 4.4Conclusion .................................... 58 5COUPLER-FREELOADESTIMATIONUSINGTHREE-PORTEFLECTOMETER .................................. 59 5.1Overview .................................... 59 5.2SystemOverview ................................ 60 5.3HighImpedanceProbe ............................. 63 5.3.1LeastSquareFitting .......................... 64 5.3.2ArticialNeuralNetwork ........................ 65 5.4LoadEstimationMethods ........................... 65 5.4.1RadicalCenter .............................. 66 5.4.2LeastSquareFitting .......................... 67 5.5ExperimentalResults .............................. 68 5.5.1HighImpedanceProbeEstimation ................... 68 5.5.2LoadEstimation ............................. 69 5.5.3ComparisonofCouplerandCoupler-FreeLoadEstimation ..... 73 5.6Conclusion .................................... 79 6THREEPORTANDFOURPORTREFLECTOMETERS ............ 80 6.1Overview .................................... 80 6.2MultistateReectometers ........................... 81 6.3TunableMatchingNetwork .......................... 84 6.4LoadEstimationforMultistateReectometer ................ 87 6.5ExperimentalResults .............................. 88 6.6Conclusion .................................... 90 7AUTOMATICMATCHINGCONTROLUSINGLOADESTIMATION ..... 94 7.1Overview .................................... 94 7.2MatchingControlProcedures ......................... 95 7.3CharacterizationofMatchingNetwork .................... 97 7.4BiasSearchforImpedanceMatching ..................... 100 7.5CharacterizationResults ............................ 101 7.6ImpedanceMatchingResults .......................... 106 7.7Conclusion .................................... 110 8CONCLUSION .................................... 114 APPENDIX 6
PAGE 7
ADERIVATIONOFLOADIMPEDANCECIRCLEEQUATIONUSINGINPUTIMPEDANCEMAGNITUDE ............................ 117 BTHREE-PORTANDFOUR-PORTMULTISTATEREFLECTOMETERS ... 121 CSTANDARDANDMIXED-MODES-PARAMETERTRANSFORMATION .. 124 DDERIVATIONOFDIFFERENTIALINPUTREFLECTIONCOEFFICIENT 126 REFERENCES ....................................... 129 BIOGRAPHICALSKETCH ................................ 133 7
PAGE 8
LISTOFTABLES Table page 3-1Specicationofthematchingtuner ......................... 37 3-2Mismatchedloadspecication ............................ 40 3-3Comparisonofbrute-force,greedy,andsingle-stepalgorithms .......... 46 3-4Percentageofcatastrophiccaseforbrute-force,greedy,andsingle-stepalgorithms 47 3-5Comparisonofbrute-force,greedy,andsingle-stepalgorithmsavoidingcatastrophiccases .......................................... 47 4-1Summaryofmismatchedloadestimationresults .................. 57 5-1Summaryofheavilyandslightlymismatchedloads ................ 73 5-2Comparisonofcouplerandcoupler-freeloadestimationintermofmeansquareerror(MSE) ...................................... 74 6-1Summaryofmismatchedloads ............................ 89 7-1Meansquareerror(MSE)ofneuralnetworkttingmodelsusingtrainingandtestingdata ...................................... 106 7-2Averageerrorofclosed-formmodels ......................... 106 7-3Mappingtablebetweenbiasvoltageandamismatchedloadtobematched ... 107 7-4Inversemappingtablebetweenamismatchedloadtobematchedandbiasvoltage 107 7-5Impedancematchingresultsusingcoupler-freeloadestimationandS-parametermeasurementdata .................................. 109 7-6Impedancematchingresultsusingthree-portreectometerloadestimationandS-parametermeasurementdata ........................... 109 7-7Impedancematchingresultsusingcoupler-freeloadestimationandS-parametersestimatedbyneuralnetworkmodels ........................ 109 7-8Impedancematchingresultsusingthree-portreectometerloadestimationandS-parametersestimatedbyneuralnetworkmodels ................. 110 8
PAGE 9
LISTOFFIGURES Figure page 1-1Networkmatchinganarbitraryloadimpedancetoatransmissionline ...... 14 1-2Maximumpowerdeliveredwhensourceandloadimpedancesarematched. ... 14 1-3Automaticmatchingcontrol(AMC) ........................ 16 2-1TheLsectionmatchingnetworks .......................... 19 2-2Thesectionmatchingnetwork .......................... 20 2-3TheTsectionmatchingnetwork .......................... 20 2-4Typicalpatternrecognitionssystemdiagram .................... 22 2-5Nearest-neighborruleleadstoapartitioningoftheinputspaceintoVoronoicells 23 2-6Multilayerperceptron ................................ 24 2-7Articialneuron ................................... 25 2-8Sigmoidalnonlinearity ................................ 25 2-9Principalcomponentanalysis ............................ 28 2-10Six-portreectometer ................................ 29 2-11Determinationof)]TJ /F4 7.97 Tf 125.44 -1.79 Td[(Lfromtheradicalcenterofthreecircles ............ 31 2-12Four-portreectometer ................................ 31 3-1Automaticmatchingcontrol(AMC)systemdiagram ............... 35 3-2Recongurableve-stubmatchingtuner ...................... 37 3-3Comparisonofsimulationandmeasurementofmatchingtuner.Thematchingtuneristunedwithtypicalbias(2.562.562.56)andmatchedload ........ 38 3-4Mismatchedload1measurement(S11=0.11+j0.09at3.5GHz).Motorpositionsare(16725,2262,5000).ReectioncoecientjS11j=0.14. ............. 40 3-5Mismatchedload2measurement(S11=0.19+j0.40at3.5GHz).Motorpositionsare(17105,1424,5000).ReectioncoecientjS11j=0.45. ............. 41 3-6Mismatchedload3measurement(S11=-0.11+j0.22at3.5GHz).Motorpositionsare(17722,2005,5000).ReectioncoecientjS11j=0.24. ............. 41 3-7Matchingcapabilityofve-stubmatchingtunerat3.5GHz ........... 42 9
PAGE 10
3-8Matchingtunermeasurementwithmatchedload.Typicalandautomatedbiasesare(2.56V2.56V2.56V)and(4.8V3.84V4.64V) ................. 44 3-9Matchingtunermeasurementwithmismatchedload1.Typicalandautomatedbiasesare(2.56V2.56V2.56V)and(3.2V3.86V3.52V) .............. 45 3-10Matchingtunermeasurementwithmismatchedload2.Typicalandautomatedbiasesare(2.56V2.56V2.56V)and(4.8V3.84V4.64V) .............. 49 3-11Matchingtunermeasurementwithmismatchedload3.Typicalandautomatedbiasesare(2.56V2.56V2.56V)and(4.8V3.84V4.64V) .............. 50 3-12Optimizationsurfaceofgreedyalgorithm ...................... 51 4-1Systemdiagramofloadimpedanceestimationforautomaticimpedancematching 53 4-2Radicalcenterofthreecircles,)]TJ /F4 7.97 Tf 193.14 -1.79 Td[(L1,)]TJ /F4 7.97 Tf 14.46 -1.79 Td[(L2,and)]TJ /F4 7.97 Tf 37.22 -1.79 Td[(L3. ................. 56 4-3Impedancematchingprocedureusingestimatedloadimpedance. ......... 56 5-1Automaticmatchingcontrol(AMC) ........................ 60 5-2ThreeportreectometerintegratedwithahighimpedanceprobeA)SystemdiagramwithschematicB)FabricationonFR4board ............... 61 5-3VaractorSMV1405capacitanceversusreversevoltage ............... 62 5-4VaractorSPICEmodel ................................ 62 5-5Radicalcenterofthreecircles,)]TJ /F4 7.97 Tf 193.14 -1.79 Td[(L1,)]TJ /F4 7.97 Tf 14.46 -1.79 Td[(L2,and)]TJ /F4 7.97 Tf 37.22 -1.79 Td[(L3. ................. 67 5-6Leastsquarenonlinearttingofhighimpedanceprobemodel .......... 70 5-7Articialneuralnetworkofhighimpedanceprobemodel ............. 71 5-8Highimpedanceprobeestimationerrordistribution ................ 72 5-9LoadestimationusingestimatedS11fromhighimpedanceprobe ......... 74 5-10Couplerandcoupler-freeloadestimationwithmismatched#1 .......... 75 5-11Couplerandcoupler-freeloadestimationwithmismatched#2 .......... 76 5-12Couplerandcoupler-freeloadestimationwithmismatched#3 .......... 77 5-13Couplerandcoupler-freeloadestimationwithmismatched#4 .......... 78 6-1ReectometersA)Three-portB)Four-port ..................... 81 6-2Schematicofalumpedpowerdivider.Port3isacoupledport,whichcanbeusedasareferenceport. ............................... 83 10
PAGE 11
6-3Recongurablethree-portmatchingnetworkA)SchematicB)ImplementationonFR4board .................................... 85 6-4Tunableelementimpedancewithabiasfrom0Vto10V.Avaractorisinparallelandinserieswithaninductor.anddenoteS11andS21,respectively.A)Inserieswith3.3nHB)Inparallelwith1.8nH .................... 86 6-5Matchingcapabilityofthree-portreectometerat2.4GHz ............ 91 6-6Theq-pointdistributionofthree-portreectometerat2.4GHz .......... 92 6-7MultistatereectometerestimationusingestimatedS11fromhighimpedanceprobeA)Smallmismatch(MSE=0.09)B)Largemismatch(MSE=0.80) .... 93 7-1Automaticmatchingcontrolsupportsloadestimation. .............. 97 7-2Neuralnetworkmodelsfora2-portmatchingnetworkweretrainedbybackpropagation.A)S11B)S21C)S12D)S22 ............................. 103 7-3Neuralnetworkmodelsfora2-portmatchingnetworkweretestedby10%ofmeasurementdata.A)S11B)S21C)S12D)S22 .................. 104 7-4Closedformmodelsfora2-portmatchingnetworkweretrainedbynonlinearleastsquaretting.A)S11B)S21C)S12D)S22 .................. 105 7-5S-parametersfromvectormeasurementandneuralnetworkmodelwerecomparedintermsofcoupler-freeloadestimationassistedmatchingcontrol.A)VectormeasurementbylargemismatchB)NeuralnetworkmodelbylargemismatchC)VectormeasurementbysmallmismatchD)Neuralnetworkmodelbysmallmismatch ....................................... 111 7-6S-parametersfromvectormeasurementandneuralnetworkmodelwerecomparedintermsofreectometerloadestimationassistedmatchingcontrol.A)VectormeasurementbylargemismatchB)NeuralnetworkmodelbylargemismatchC)VectormeasurementbysmallmismatchD)Neuralnetworkmodelbysmallmismatch ....................................... 112 11
PAGE 12
AbstractofDissertationPresentedtotheGraduateSchooloftheUniversityofFloridainPartialFulllmentoftheRequirementsfortheDegreeofDoctorofPhilosophyAUTOMATEDMATCHINGCONTROLSYSTEMUSINGLOADESTIMATIONANDMICROWAVECHARACTERIZATIONByJaeseokKimDecember2008Chair:WilliamR.EisenstadtMajor:ElectricalandComputerEngineering Theautomationoftheimpedancematchingofradiofrequency(RF)portsenablesthetestengineertocompensatetheundesiredeects,whicharenotuncommoninRFsystemsandmaketheimpedancematchingiterative,time-consuming,andanempiricalprocess.Numerousrecongurablematchingnetworkshavebeenpresentedforautomatedmatching.However,theautomationstillreliesonaniterativecontroltoachieveamatchinggoal,becauseitlackstheknowledgeoftheRFtargetandthematchingnetwork.Ourgoalsweretodevelopanautomaticmatchingcontrolsystemthatusesthisknowledgetosettheimpedancematchinginanon-iterativefashionandtodevelopamethodtoextractcircuitparameterssystematicallywhilekeepingtheadditionalnecessarypartstoaminimum.Toachievethisgoal,weusetheprinciplesofareectometertoextractknowledgeoftheRFtargetandvariousmicrowavemodelingmethodstocharacterizethematchingnetwork.Ourresultsdemonstratetheproposedideasandincludeanautomaticmatchingcontrolusingatunablemicrostripbandpasslter,aloadestimationtechniqueusingthemicrostriplter,anewlumpedmatchingnetworkfortheautomaticmatchinginembeddedRFtesting,andanewmatchingcontrolalgorithmusingtheloadestimation. 12
PAGE 13
CHAPTER1INTRODUCTION 1.1WhyAutomaticImpedanceMatching? Thedesignprocessforradiofrequency(RF)systemsoftenstartswiththedenitionoftheinterfacebetweenthesmallercomponents,wheretheimpedancematchingiscriticalforthefollowingreasons. Delivermaximumpowerbetweencomponents Improvethesignal-to-noiseratio(SNR) Reduceamplitudeandphaseerrors Provideisolationbetweencircuitstages However,theactualimplementationoftheimpedancematchingisimpairedeasilybyadeviationfromthetypicalcomponentvalueusedduringthedesignprocess.Itiscriticaltobeabletoevaluatethisdeviationwhensellingacomponentcommercially,sotechniquestocreateandevaluatematchingareimportantfortestingRFproductionICs. Forexample,theimpedanceofradiofrequency(RF)portsinadeviceundertest(DUT)toaloadboardispoorlydenedduetounwantedeects,suchaspogopinconnections,socketparasitics,andmanufacturingvariation.Inaddition,theinputimpedanceofahandhelddeviceantenna,especiallythereactancepartoftheimpedance,isvaryingastheenvironmentaroundthedeviceischanging.TheunwantedeectsandvaryingenvironmentarenotuncommoninRFsystemsandthematchingofapoorlydenedimpedanceisdicult,slow,andexpensive,duringparttest. ArecongurablematchingnetworkcanbeusedtosettheimpedancematchingofRFmatchtargetsagainstthedeviationcausedbytheunwantedeects.Therecongurationisconductedbyaclosed-loopfeedbackcontrol,aso-calledautomaticmatchingcontrol,whichsensestheimpedancemismatchanddeterminespropercomponentvaluesfortheimpedancematching. 13
PAGE 14
Figure1-1. Networkmatchinganarbitraryloadimpedancetoatransmissionline Figure1-2. Maximumpowerdeliveredwhensourceandloadimpedancesarematched. Inthisthesis,wewilldeveloparecongurablematchingnetworkandamatchingcontrolalgorithmforanautomaticmatchingcontrol(AMC)system,whichautomaticallysetstheimpedancematchingofRFmatchtargets. 1.2MaximumPowerTransferonImpedanceMatching ThebasicideaoftheimpedancematchingisillustratedinFigure 1-1 .Atwo-portnetworkisplacedbetweenanarbitraryload(ZL)andatransmissionline(Z0).TheloadimpedanceZLisconvertedtobematchedwiththesourceimpedanceZ0.Impedancematchingenablesthedeliveryofmaximumpowertotheload,althoughtherearemultiplereectionsbetweenthematchingnetworkandtheload. Maximumpowerdeliveryisexplainedasfollows.InFigure 1-2 ,ACpowerisbeingtransferredfromthesource,withphasormagnitudevoltagejVSj(peakvoltage)andxedsourceimpedanceZS,toaloadwithimpedanceZL,resultinginaphasormagnitudecurrentjIj.jIjissimplythesourcevoltagedividedbythetotalcircuitimpedance. jIj=jVSj jZS+ZLj(1{1) TheaveragepowerPLdissipatedintheloadisthesquareofthecurrentmultipliedbytheresistiveportion(therealpart)RLoftheloadimpedance. PL=I2rmsRL=1 2jIj2RL=1 2jVSj jZS+ZLj2RL=1 2jVSj2RL (RS+RL)2+(XS+XL)2(1{2) 14
PAGE 15
Thedenominatorisminimizedbymaking XL=)]TJ /F5 11.955 Tf 9.3 0 Td[(XS(1{3) Thepowerequationisreducedto PL=1 2jVSj2RL (RS+RL)2(1{4) Similarly,thepowerismaximizedbymaking RL=RS(1{5) Therefore,twoconditions,Equation 1{3 and 1{5 ,arecombinedandwrittenascomplexconjugatematchingcondition. ZL=ZS(1{6) where*denotesacomplexconjugate.Thecomplexconjugatematchingisthematchinggoaloftheproposedautomaticmatchingcontrol. 1.3ChallengesofAutomaticImpedanceMatching Recongurablematchingnetworkshavebeenproposedfortheautomaticmatchingcontrol(AMC).Theproposednetworksweredesignedusingvarioustuningelementssuchasvaractors[ 1 ][ 2 ][ 3 ][ 4 ],CMOSswitches[ 5 ],p-i-ndiodes[ 6 ][ 7 ],orMEMSswitches[ 8 ]. Therecongurablematchingnetworkisadaptedbyamatchingcontrolalgorithmwhichdeterminescomponentvaluesbytheiterationofaclosed-loopfeedback.WhenRFmatchtargetsarenotpreciselydened,ndingnecessarymatchingcomponentsbecomeshighlyiterative,timeconsuming,andanempiricalprocess.EveniftheyarefoundforacertainRFmatchtarget,theyseldomprovidetheimpedancematchingtoothertargets. Animprovementontheimpedancematchingcontrolalgorithmhasbeenachievedbyusingheuristicapproaches[ 6 ].Althoughthepresentedalgorithmscanconvergefasterthanabrute-forceapproach,theymaystillgettrappedinalocalminimumwhichisoneoftypicaloptimizationproblems.Further,theiterativenatureofthealgorithmsmakes 15
PAGE 16
Figure1-3. Automaticmatchingcontrol(AMC) convergencetimetoachievetheimpedancematchingincreasingproportionallytothecomplexityofthematchingnetwork. ForembeddedRFtesting,lumpedelementsarepreferredtodistributedelementsduetothecompactsizeatthefrequencyequaltoorlessthan2.4GHz.Mostmatchingcontrolassumesthatadegreeofmismatchismeasuredthroughadirectionalcoupler,whichistoolargetobeembedded. Sofarthechallengingproblemsoftheautomaticmatchingcontrolhavebeendescribed.Nextsectionwewillproposesolutionstothem. 1.4ProposedSolution:AutomaticMatchingControlwithLoadEstimation Aproposedsolutiontothechallengesoftheimpedancematchingisanautomaticmatchingcontrol(AMC)supportedbyaloadimpedanceestimation.AsshowninFigure 1-3 ,theautomaticmatchingcontrolreconguresthematchingnetworkthroughtheclosed-loopfeedbackconsistingofacoupler,areectioncoecientdetector,andamatchdecisioncircuit.Anestimateofaloadreectioncoecienthelpsthematchingcontroltoachieveanimpedancematchwithouttryingdierentbiasesiteratively.ThisthesisfocusesondevelopingrecongurablematchingnetworksandmatchingcontrolalgorithmswithloadestimationespeciallyforembeddedRFtesting. 16
PAGE 17
CHAPTER2BACKGROUND 2.1ImpedanceMatchingNetworkswithLumpedElements Whencircuitdimensionsarenotsmallrelativetothewavelength,thephasechangefromonepointtoanotherinthecircuitisnotnegligible.Inthiscase,theequivalentvoltageandcurrentwavesalongatransmissionlineareexpressedasthesumoftheincidentandreectivewaves,givenby V(z)=V+e)]TJ /F4 7.97 Tf 6.58 0 Td[(|z+V)]TJ /F5 11.955 Tf 7.09 -4.94 Td[(e+|z(2{1) I(z)=V+ Z0e)]TJ /F4 7.97 Tf 6.59 0 Td[(|z)]TJ /F5 11.955 Tf 13.15 8.09 Td[(V)]TJ ET q 0.478 w 260.59 -215.19 m 277.1 -215.19 l S Q BT /F5 11.955 Tf 262.47 -226.38 Td[(Z0e+|z(2{2) whereZ0andarethecharacteristicimpedanceandthepropagationconstantofthetransmissionline,respectively. IfthetransmissionlineisterminatedwithotherthanitscharacteristicimpedanceZ0,thereectionhappensasaresultofdiscontinuities.Thereectioncoecient)-327(isdenedastheratiooftheincidenttothereectedwavealongatransmissionline,givenby \(z)=V)]TJ /F5 11.955 Tf 7.09 -4.34 Td[(e+|z V+e)]TJ /F4 7.97 Tf 6.59 0 Td[(|z=V)]TJ ET q 0.478 w 259.64 -377.07 m 276.15 -377.07 l S Q BT /F5 11.955 Tf 259.64 -388.26 Td[(V+e+|2z(2{3) IfthetransmissionlineisterminatedwithaloadimpedanceZL,theloadreectioncoecientandtheloadimpedancearewrittenas )]TJ /F4 7.97 Tf 7.31 -1.8 Td[(L=\(z)z=0=V)]TJ ET q 0.478 w 268.89 -472.7 m 285.4 -472.7 l S Q BT /F5 11.955 Tf 268.89 -483.89 Td[(V+(2{4) ZL=V(z) I(z)z=0=Z0V++V)]TJ ET q 0.478 w 229.84 -514.85 m 277.47 -514.85 l S Q BT /F5 11.955 Tf 229.84 -526.04 Td[(V+)]TJ /F5 11.955 Tf 11.96 0 Td[(V)]TJ /F1 11.955 Tf 11.6 4.75 Td[(=Z01+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(L 1)]TJ /F1 11.955 Tf 11.96 0 Td[()]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L(2{5) TheloadreectioncoecientcanbealsoexpressedintermsofZLandZ0as )]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L=ZL)]TJ /F5 11.955 Tf 11.95 0 Td[(Z0 ZL+Z0(2{6) 17
PAGE 18
Thereectioncoecient)-326(isacomplexnumberthatdescribesboththemagnitudeandthephaseshiftofthereection.Thesimplestcases,whentheimaginarypartof)-326(iszero,are )-326(=)]TJ /F1 11.955 Tf 9.3 0 Td[(1Maximumnegativereection,whenshort-circuited. )-326(=0Noreection,whenperfectlymatched. )-326(=+1Maximumpositivereection,whenopen-circuited. Thevoltagestandingwaveratio(VSWR),whichrepresentsthedegreeofreectioninanotherway,isdenedastheratioofthemaximumtotheminimummagnitudeofthevoltagewave.Thevoltagestandingwaveratiocanbeexpressedintermsofthereectioncoecientgivenby VSWR=jV(z)jmax jV(z)jmin=jV+jje)]TJ /F4 7.97 Tf 6.59 0 Td[(|z+)]TJ /F4 7.97 Tf 19.07 -1.8 Td[(Le+|zjmax jV+jje)]TJ /F4 7.97 Tf 6.59 0 Td[(|z+)]TJ /F4 7.97 Tf 19.08 -1.79 Td[(Le+|zjmin=1+j)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(Lj 1)-222(j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(Lj(2{7) Conversely,thereectioncoecientcanbeobtainedfromthemeasurementofvoltagestandingwaveratioalongthetransmissionline. j)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(Lj=VSWR)]TJ /F1 11.955 Tf 11.95 0 Td[(1 VSWR+1(2{8) Inatraditionalvectornetworkanalyzer,acomplexreectioncoecientiscalculatedfromthemeasurementofincidentandreectedwavepowers.Ifthephaseofareectioncoecientisnotnecessary,e.g.,thedegreeofmismatch,themagnitudeofareectioncoecientcanbemeasuredbyaVSWRdetector. 2.1.1L-typeMatchingNetwork ThesimplestmatchingnetworkisaL-typenetworkwithtwolumpedelements.Thevaluesofthelumpedelementscanbefoundthroughtheanalyticsolutionasfollows.TheimpedanceseenlookingintothematchingnetworkshowninFigure 2-1A shouldbeequaltoZ0forimpedancematching: Z0=|X+1 |B+1=(RL+|XL)(2{9) 18
PAGE 19
A B Figure2-1. TheLsectionmatchingnetworks wheretheloadimpedanceZL=RL+|XL.Rearrangingandseparatingintorealandimaginarypartsgivestwoequationsgivenby B(XRL)]TJ /F5 11.955 Tf 11.96 0 Td[(XLZ0)=RL)]TJ /F5 11.955 Tf 11.95 0 Td[(Z0(2{10) X(1)]TJ /F5 11.955 Tf 11.95 0 Td[(BXL)=BZ0RL)]TJ /F5 11.955 Tf 11.96 0 Td[(XL(2{11) ThesolutionforBandXaregivenby B=XLp RL=Z0p R2L+X2L)]TJ /F5 11.955 Tf 11.96 0 Td[(Z0RL R2L+X2L(2{12) X=1 B+XLZ0 RL)]TJ /F5 11.955 Tf 19.11 8.09 Td[(Z0 BRL(2{13) NotethatthesolutionsexistonlywhenRL>Z0. Similarly,thesolutionforFigure 2-1B isgivenby B=p (Z0)]TJ /F5 11.955 Tf 11.96 0 Td[(RL)=RL Z0(2{14) X=p RL(Z0)]TJ /F5 11.955 Tf 11.96 0 Td[(RL))]TJ /F5 11.955 Tf 11.96 0 Td[(XL(2{15) NotethatthesolutionsexistonlywhenRL
PAGE 20
Figure2-2. Thesectionmatchingnetwork Figure2-3. TheTsectionmatchingnetwork TheimpedanceseenlookingintothematchingnetworkshowninFigure 2-2 shouldbeZ0. 1 Z0=|B1+1 |X+1 |B2+1=(RL+|XL)(2{16) Rearrangingandseparatingintorealandimaginarypartsgivestwoequationsgivenby B1Z0(X+XL))]TJ /F5 11.955 Tf 11.96 0 Td[(B1Z0B2XXL)]TJ /F5 11.955 Tf 11.95 0 Td[(B2(XRL)]TJ /F5 11.955 Tf 11.95 0 Td[(XLZ0)=Z0)]TJ /F5 11.955 Tf 11.96 0 Td[(RL(2{17) X(1)]TJ /F5 11.955 Tf 11.95 0 Td[(B2XL)=(B1+B2)Z0RL)]TJ /F5 11.955 Tf 11.96 0 Td[(XL)]TJ /F5 11.955 Tf 11.96 0 Td[(B1B2XZ0RL(2{18) Therearethreevariables,X,B1,andB2,denedbytwoequations.Hence,thereexistmultiplesolutionssatisfyingtheimpedancematching.Forauniquelydeterminedsolution,thequalityfactor,whichdeterminesthebandwidthofmatchingnetworks,canbeusedasoneofdesignspecications. 2.1.3T-typeMatchingNetwork Similartothe-typenetwork,aT-typenetworkisanalyzedasfollows.TheimpedanceseenlookingintothematchingnetworkshowninFigure 2-3 shouldbeZ0. Z0=|X1+1 |B+1=(RL+|(X2+XL))(2{19) 20
PAGE 21
Rearrangingandseparatingintorealandimaginarypartsgivestwoequationsgivenby BZ0(X2+XL))]TJ /F5 11.955 Tf 11.95 0 Td[(BX1RL=Z0)]TJ /F5 11.955 Tf 11.95 0 Td[(RL(2{20) X1(1)]TJ /F5 11.955 Tf 11.96 0 Td[(B(X2+XL))=BZ0RL)]TJ /F1 11.955 Tf 11.95 0 Td[((X2+XL)(2{21) 2.1.4BandwidthofMatchingNetwork Inaresonantcircuit,theratioofitsresonantfrequencyf0toitsbandwidthisknownastheloadedQofthecircuit. QL=!0 Bandwidthinradian=f0 BandwidthinHertz(2{22) Thematchingnetworksareusedforanimpedancematchatacertainfrequency.Thefrequencyresponseofthenetworkscanbeclassiedaseitheralow-passorahigh-passlter.Ateachnodeofthenetworks,thereisanequivalentseriesinputimpedance,denotedbyRs+|Xs.Hence,acircuitnodeQ,denotedbyQn,canbedenedateachnodeas Qn=jXsj Rs(2{23) IftheequivalentparallelinputadmittanceatthenodeisGp+|Bp,thecircuitnodeQcanbeexpressedintheform Qn=jBpj Gp(2{24) Foranarrowbandrangeoffrequenciesaroundf0,amatchingnetworkcanbeviewedasabandpasslter.Hence,theloadedQofthebandpasslterisgivenby QL=!0 BW=!0RTCT=jBTj GT=RT jXTj(2{25) Ifthematchingnetworkholdsthecomplexconjugatematchingateachnode,Rs1=Rs2andXs1=)]TJ /F5 11.955 Tf 9.3 0 Td[(Xs2.Rs1andRs2aretheresistanceseenlookingintoasourceandaloadatthenode.Xs1andXs2arethereactanceseenlookingintoasourceandaloadatthe 21
PAGE 22
node.TheloadedQcanbewrittenastheratiooftheresistancetothereactance. QL=Rs1jjRs2 jXs1j=Rs1jjRs2 jXs2j=Qn 2(2{26) IfmultipleinternalnodesexistsuchasTornetworks,theQLofthematchingcircuitsisthehalfvalueofthehighestQninthecircuits.Ingeneral,highervaluesofQLcanbeobtainedusingmatchingcircuitswithmoreelements.Forexample,addingoneelementtoaLnetworkresultsineitheraTnetworkoranetwork,whichhashighervaluesofQLthanaLnetwork. Whenabandwidthofmatchingnetworksisadesignconsideration,LnetworksarenotsuitablebecausetheQLofthenetworksisxedwiththecomplexconjugatematchingcondition.Instead,thehigherorderladdernetworkscanhaveeitherhigherorlowerQLdependingonthehighestQnofthenetworks. 2.2PatternRecognition Mostpatternrecognitionsystemsarepartitionedintofourcomponentssuchaspreprocessing,featureextraction,classication,andpostprocessing,asshowninFigure 2-4 .Preprocessingsimpliessubsequentoperationswithoutlosingrelevantinformation,featureextractionmeasuresusefulpropertiesforclassication,classicationassignstheextractfeatureintoacategory,andpostprocessingusestheclassicationresultstodecideontherecommendedaction. Figure2-4. Typicalpatternrecognitionssystemdiagram 22
PAGE 23
Figure2-5. Nearest-neighborruleleadstoapartitioningoftheinputspaceintoVoronoicells Themicrowavecomponentshavebeensuccessfullymodeledbythepatternrecognitiontechniquesthankstotheiradaptabilitytocomplexphenomena[ 9 ].ApplyingthepatternrecognitiontechniquestotheproposedmatchingcontrolbecomesanewresearchopportunityfortheadvancementoftheautomatedRFsystem.Inthissection,twoclassiers,anearestneighborclassierandaneuralnetwork,andprincipalcomponentanalysis(PCA),oneofpopularpreprocessingmethods,areintroducedanddescribed. 2.2.1Thek-NearestNeighborClassier Thetaskoftheclassieristousethefeaturevectorprovidedbythefeatureextractortoassigntheobjecttoacategory.Thenearest-neighborruleforclassifyingatestpointxistoassignitthelabelassociatedwiththetrainingpointx0nearesttoit.Thisruleallowsustopartitionthefeaturespaceintocellsconsistingofallpointsclosertoagiventrainingpointx0{aso-calledVoronoitessellationofthespace,asshowninFigure 2-5 Anobviousextensiontoofthenearest-neighborruleisthek-nearest-neighborrule.Adecisionismadebyexaminingthelabelsontheknearestneighborsandtakingavote. 23
PAGE 24
Figure2-6. Multilayerperceptron 2.2.2ArticialNeuralNetwork(ANN) Articialneuralnetworks(ANNs)aredistributed,adaptive,generallynonlinearlearningmachinesbuiltfrommanydierentprocessingelements(PEs)[ 10 ].Asanonlinearstatisticaldatamodelingtool,neuralnetworksareusedtomodelcomplexrelationshipsbetweeninputsandoutputsortondpatternsindata. Oneofthemostpopularandpowerfulneuralnetworkdesignsisknownasamulti-layerperceptron.Amultilayerperceptronconsistsofasetofneuronsinterconnectedbyweightedconnections,asillustratedinFigure 2-6 .Thereareaninputlayer,oneormorehiddenlayers,andanoutputlayer.AsshowninFigure 2-7 ,eachneuronhasweightedcoecientswl;j;mthatareadjustedtotrainthealgorithm,whicharelinearlycombined,thenpassedthroughanonlinearactivationfunctionf.Themultilayerperceptroncanberepresentedas yk=f Xjw2;j;kf Xiw1;i;jxi!!(2{27) 24
PAGE 25
Figure2-7. Articialneuron Figure2-8. Sigmoidalnonlinearity wherefistheactivationfunction(typically,nonlinearsigmoidalfunction),wl;j;kisaweightfromthekthnodeofthe(l-1)thlayertothejthnodeofthelthlayer,xiandykdenotetheithinputandthekthoutputnode,respectively. Theactivationfunctionf()providesthenonlinearitynecessaryfortheneuralnetwork.Ingeneral,anymonotonicallyincreasingfunctioncanbeused.Onecommonlyusedfunctionisthesigmoidalnonlinearity,denedby f(x)=1 1+e)]TJ /F4 7.97 Tf 6.59 0 Td[(x(2{28) 25
PAGE 26
andplottedinFigure 2-8 .Thisfunctionhasthepropertythatthederivativeiseasytocompute. f0(x)=f(x)(1)]TJ /F5 11.955 Tf 11.96 0 Td[(f(x))(2{29) Intrainingthemultilayerperceptron,asupervisedtrainingalgorithmisused,inwhichasetofknowninput/outputdatacombinationsarepresentedtothenetwork.Usingabackpropagationalgorithm,thenetworkistrainedsothatthenetworkoutputmatchesascloselyaspossiblethedesiredoutput,foreachinputdatapoint. 2.2.3PrincipalComponentAnalysis(PCA) Tightcorrelationamongfeaturesmakesdicultthetrainingofneuralnetworks.Principalcomponentanalysisisusedtodecorrelatefeaturesbyrepresentingdataalongthedirectionwiththelargestvarianceandisoftenusedtogetherwithneuralnetworks.Howfeaturevectorscanberepresentedintermsofprincipalcomponentsisdescribedinthissection. Theproblembeginswithaideaofhowasinglevectorx0representsallvectorsinasetofnd-dimensionalsamplesx1;x2;;xn.Oneofsolutionsistondavectorx0suchthatthesumofthesquareddistancesbetweenx0andthevariousxkisassmallaspossible.Thesquared-errorcriterionfunctionJ0(x0)isdenedas J0(x0)=nXk=1jjx0)]TJ /F7 11.955 Tf 11.95 0 Td[(xkjj2(2{30) andisusedtoseekthevalueofx0tominimizeJ0.Thesolutionisthesamplemeanm,denedas m=1 nnXk=1xk(2{31) However,thesamplemeaniszero-dimensionalrepresentationofthedataset.Itismoreinterestingtogetone-dimensionalrepresentationbyprojectingthedataontoalinerunningthroughthesamplemean.Thelineequationiswrittenas x=m+ae(2{32) 26
PAGE 27
whereeisaunitvectorinthedirectionoflineandthescalaracantakeanyrealvalue.Ifxkisrepresentedbym+ake,thenanoptimalsetofcoecientakcanbeobtainedbyminimizingthesquared-errorcriterionfunction. Thesquared-errorcriterionfunctioniswrittenas J1(x)=J1(a1;a2;;an;e)=nXk=1jj(m+ake))]TJ /F7 11.955 Tf 11.95 0 Td[(xkjj2 =nXk=1a2kjjejj2)]TJ /F1 11.955 Tf 11.96 0 Td[(2nXk=1akeT(xk)]TJ /F7 11.955 Tf 11.95 0 Td[(m)+nXk=1jjxk)]TJ /F7 11.955 Tf 11.95 0 Td[(mjj2(2{33) ThederivativeofJ1withrespecttoakissettozeroandtheoptimalsetofcoecientakisgivenby @J1 @ak=2nXk=1(akjjejj2)]TJ /F7 11.955 Tf 11.96 0 Td[(eT(xk)]TJ /F7 11.955 Tf 11.95 0 Td[(m))=0(2{34) ak=eT(xk)]TJ /F7 11.955 Tf 11.95 0 Td[(m)(2{35) wheretheunityvectorjjejj2=1. BysubstitutingthesolutionakintoJ1,J1iswrittenas J1(x)=J1(e)=)]TJ /F4 7.97 Tf 17.36 14.95 Td[(nXk=1[eT(xk)]TJ /F7 11.955 Tf 11.95 0 Td[(m)]2+nXk=1jjxk)]TJ /F7 11.955 Tf 11.96 0 Td[(mjj2(2{36) =)]TJ /F4 7.97 Tf 17.36 14.94 Td[(nXk=1eT(xk)]TJ /F7 11.955 Tf 11.96 0 Td[(m)(xk)]TJ /F7 11.955 Tf 11.96 0 Td[(m)Te+nXk=1jjxk)]TJ /F7 11.955 Tf 11.95 0 Td[(mjj2(2{37) =)]TJ /F7 11.955 Tf 9.29 0 Td[(eTSe+nXk=1jjxk)]TJ /F7 11.955 Tf 11.96 0 Td[(mjj2| {z }independentofe(2{38) wherethescattermatrixisdenedas S=nXk=1(xk)]TJ /F7 11.955 Tf 11.95 0 Td[(m)(xk)]TJ /F7 11.955 Tf 11.96 0 Td[(m)T(2{39) UsingthemethodofLagrangemultipliers,thevectoreminimizingJ1becomesaneigenvectorofthescattermatrixasfollows. Se=e(2{40) 27
PAGE 28
Figure2-9. Principalcomponentanalysis )]TJ /F7 11.955 Tf 11.95 0 Td[(eTSe=)]TJ /F5 11.955 Tf 9.3 0 Td[(eeT=)]TJ /F5 11.955 Tf 9.3 0 Td[((2{41) Insummary,ndingthebestone-dimensionalprojectionofthedata(bestinleast-sum-of-squared-errorsense)isequivalenttoprojectingthedataontoalinethroughthesamplemeaninthedirectionoftheeigenvectorofthescattermatrixhavingthelargesteigenvalue.Thecoecientsakarecalledtheprincipalcomponents.Principalcomponentanalysisreducesthedimensionalityoffeaturespacebylimitingdirectionsalongwhichthescattering(variance)isthegreatest.ThosedirectionsaregeometricallyillustratedinFigure 2-9 2.3Multi-PortReectometers 2.3.1Six-PortReectometer Asix-portreectometerwasproposedasanalternativenetworkanalyzer[ 11 ].Thebasicstructureofthesix-portreectometerisillustratedinFigure 2-10 .Theport1(P1)isconnectedtoasignalsource,theport2(P2)isterminatedwithadeviceundertest 28
PAGE 29
Figure2-10. Six-portreectometer (DUT)havinganimpedanceZL,andtheport3,4,5,and6(P3,P4,P5,andP6)areconnectedtopowerdetectors.Thesix-portjunctionischaracterizedby12complexwavesaiandbi,i=1;;6andthescatteringequationsdenedas 0BBBBBBB@b1b2...b61CCCCCCCA=266666664S11S12S16S21S22S26............S61S62S663777777750BBBBBBB@a1a2...a61CCCCCCCA(2{42) or bi=6Xj=1Sijaj;i=1;;6(2{43) Moreover,thedetectorsareterminatedwithdenedloads.Theterminationsaredescribedbyadditionalequationsgivenby ai=bi)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(ii=3;;6(2{44) where)]TJ /F4 7.97 Tf 41.13 -1.8 Td[(iistheinputreectioncoecientoftheithpowerdetector.Equation 2{43 and 2{44 canbesolvedintermsofa2andb2.Then,theincidentwavesonthedetectorsarewrittenas bi=Aia2+Bib2=b2Aia2 b2+Bi Ai=b2Ai()]TJ /F6 7.97 Tf 11.87 -1.8 Td[(2)]TJ /F5 11.955 Tf 11.95 0 Td[(qi)i=3;;6(2{45) 29
PAGE 30
whereAiandBiarefunctionsofSijand)]TJ /F4 7.97 Tf 30.07 -1.79 Td[(j Thepowerdetectoryieldsonlyamplitudeorpowerresponse,thereforetheoutputoftheithdetectoriswrittenas Pi=jbij2=jb2j2jAij2j)]TJ /F6 7.97 Tf 7.32 -1.8 Td[(2)]TJ /F5 11.955 Tf 11.95 0 Td[(qij2(2{46) Withananalogywithasix-portreectometeranalysis,oneofportisareferenceport(P4),whereA4isideallyzero.Thepowerdetectedinthereferenceport4iswrittenas P4=jb4j2=jA4a2+B4b2j2=jB4j2jb2j2(2{47) Thenormalizedpowerbythereferenceportiswrittenas Pi P4=jAij2 jB4j2j)]TJ /F6 7.97 Tf 7.31 -1.8 Td[(2)]TJ /F5 11.955 Tf 11.95 0 Td[(qij2i=3;5;6(2{48) ThereectioncoecientoftheDUTcanbeexpressedintermsofthedetectorpoweras j)]TJ /F6 7.97 Tf 7.31 -1.79 Td[(2)]TJ /F5 11.955 Tf 11.96 0 Td[(qij2=jB4j2 jAij2Pi P4i=3;5;6(2{49) TheequationrepresentscirclesontheSmithchartandthereectioncoecientofaDUT)]TJ /F6 7.97 Tf 7.31 -1.79 Td[(2isthecrosspointofthecircles. Althoughthesecirclesshouldbeintersectedinasinglepointideally,itmaynothappeninrealityduetomeasurementerrors.Inthiscase,thereectioncoecientcanbedeterminedbytheradicalcenterofthreecircles,asshowninFigure 2-11 2.3.2Four-PortMultistateReectometer Asix-portreectometerhasbeenpaidattentionbymanyresearcherduetoitssimplestructure.Thefundamentalsofthesix-portreectometerwereextendedtothedesignofamultistatereectometerandafour-portmultistatereectometerwithonlytwodetectorswasproposed[ 12 ][ 13 ][ 14 ].ThediagramofthemultistatereectometerisillustratedinFigure 2-12 30
PAGE 31
Figure2-11. Determinationof)]TJ /F4 7.97 Tf 98.52 -1.79 Td[(Lfromtheradicalcenterofthreecircles Figure2-12. Four-portreectometer 31
PAGE 32
Withananalogywiththesix-portreectometer,theoperationofafour-portreectometerisdescribedbythefollowingequations, bi=Aia2+Bib2=b2Aia2 b2+Bi Ai=b2Ai()]TJ /F4 7.97 Tf 11.86 -1.79 Td[(L)]TJ /F5 11.955 Tf 11.95 0 Td[(qi)i=3;4(2{50) )]TJ /F6 7.97 Tf 7.31 -1.8 Td[(2)]TJ /F5 11.955 Tf 11.96 0 Td[(q3 )]TJ /F6 7.97 Tf 7.31 -1.8 Td[(2)]TJ /F5 11.955 Tf 11.96 0 Td[(q42=A4 A32P3 P4(2{51) wherethesystemparametersA3andA4aregiven(RefertoAppendix B forderivation)by A3=S21S32)]TJ /F5 11.955 Tf 11.95 0 Td[(S22S31 S21q3=S31 S22S31)]TJ /F5 11.955 Tf 11.95 0 Td[(S21S32(2{52) and A4=S21S42)]TJ /F5 11.955 Tf 11.95 0 Td[(S22S41 S21q4=S41 S22S41)]TJ /F5 11.955 Tf 11.95 0 Td[(S21S42(2{53) Themultistatereectometerisequippedwiththefacilitytooperateindierentstatesk(k=1,2,3)inordertoprovideenoughinformationforthedeterminationofboththemagnitudeandthephaseofthereectioncoecientofadevice-under-test(DUT). Theequationsarewrittenwithsuperscriptk,whichdenotesastate. )]TJ /F6 7.97 Tf 7.32 -1.79 Td[(2)]TJ /F5 11.955 Tf 11.96 0 Td[(q(k)3 )]TJ /F6 7.97 Tf 7.32 -1.79 Td[(2)]TJ /F5 11.955 Tf 11.96 0 Td[(q(k)42=A(k)4 A(k)32P(k)3 P(k)4(2{54) Theoptimum-performancecriteriaforthemultistatereectometerareasfollows. Thecentersq(k)shouldbeequallyspacedaroundtheorigin(i.e.,120angularseparation). Thecentersq(k)shouldbeequidistantfromtheorigin(i.e.,equalmagnitudes). ThesystemparametersB(k)shouldhavezeromagnitudes. Similartothesix-portreectometer,thereferenceport,whichdependsonlyonb2tosetA4tozero,isassignedtoport4.Theequationcanbewrittenas )]TJ /F6 7.97 Tf 7.31 -1.8 Td[(2)]TJ /F5 11.955 Tf 11.96 0 Td[(q(k)32=B(k)4 A(k)32P(k)3 P(k)4(2{55) 32
PAGE 33
Thepowermeasurementwiththreedierentnetworkstatesresultsinthreecirclesdenedbytheequation.Thecomplexreectioncoecientofadevice-under-test(DUT)canbedeterminedinthesamewayasthesix-portreectometer. 33
PAGE 34
CHAPTER3AUTOMATICMATCHINGCONTROL 3.1Overview TheabilitytotestRFdevicesontheloadboardrequiresagoodbroadbandmatch.Moreover,thebandwidthofmanywirelessdevicesisgovernedbytheinputimpedanceofanantenna.However,theinputimpedanceisoneoftheparametersthatvariesmostindierentenvironmentsontheloadboardandnexttoanantennaandtheinputreactancevarieswithfrequencymorethandoestheinputresistanceoftheantenna[ 15 ][ 16 ]. Variousautomaticmatchingtunersandcontrolalgorithmshavebeenproposed.Aphasedetectorwasusedtocorrectthereactivepartoftheantennamismatchin[ 17 ].Generalmatchingnetworkdesignandtuningstrategieswerestudiedin[ 18 ].Agenericalgorithmhasbeenwidelyusedasatuningalgorithm[ 18 ][ 19 ][ 20 ]andheuristicsearchalgorithmswerestudiedin[ 6 ].Inaddition,variousnarrowbandtechniquesatdierentfrequencieshavebeenstudiedforCMOSswitchedcapacitorsat2.4GHz[ 5 ]andap-i-ndiodeswitchedcapacitorsat390MHz[ 6 ]. Priortothiswork,abroadbandrecongurablematchingnetworkwasproposed,butasupportingmatchingcontrolsystemandalgorithmswerenotdeveloped[ 1 ].Inthiswork,anovelautomaticbroadbandmatchingcontrolwasdevelopedforabroadbandrecongurablematchingnetworkfrom2.5to4.5GHz.Thematchingnetworkconsistsofave-stubmicrostriplterandthreevaractors.Amatchingalgorithmwasdevelopedusingagreedysearchalgorithmtodeterminethevaractorbiasforimpedancematchoverthelargefractionalbandwidth(>50%).Theworkdemonstratesthefeasibilityoftheautomaticmatchingcontrolcircuitover2.5GHzto4.5GHz. Therestofthischapterisorganizedasfollows:Section 3.2 givesanoverviewoftheproposedsystem.Section 3.3 presentstheexperimentalresults.Section 3.4 concludesanddescribesthefuturedirection. 34
PAGE 35
Figure3-1. Automaticmatchingcontrol(AMC)systemdiagram 3.2SystemOverview AsshowninFigure 3-1 ,theproposedautomaticmatchingcontrolsystemconsistsofarecongurabletuner,anetworkanalyzer,ahostcomputer,andamicrocontroller.Inthecurrentimplementation,thetunerisdirectlyconnectedtothenetworkanalyzer.Variousantennamismatchesweresimulatedbyanautomaticload-pullsystem. Theautomaticmatchingisperformedbyaclosed-loopfeedbackoperationasfollows.First,thenetworkanalyzermeasuresthereectedwavepower(S11parameter).Second,thehostcomputercalculatestheavailablebandwidth.Last,thealgorithmsearchesforthevaractorbiasforbroadbandimpedancematchandthemicrocontrollersetsthevaractorbias.Theaboveproceduresarerepeateduntilthealgorithmsearchconvergestotheoptimalbias,whichminimizestheimpedancemismatch.Thistechniquecanbeappliedtoanindustrialautomatictestequipment(ATE)systemandaloadboardforconductingRFparttest. 35
PAGE 36
3.2.1ImpedanceMatchingTuner AsshowninFigure 3-2 ,thetuner,manufacturedonRogersCorporationDuroid6006boardbytheUniversityofArizona,hasvestubsalongamicrostripline.Threestubsareconnectedtoareverse-biasedvaractordiodeMPV1965,whereastwostubshavenotuningelements.Theeectivelengthofthetunablestubiscontrolledbythecapacitanceofthevaractor.Thevaractorreversebiasandcapacitancerangefrom0to5.12Vand4.5to1pF,respectively. Thetunerisdesignedtoprovidewidebandwidth(upto2.5GHz)atthefrequencyof3.5GHz,asshowninFigure 3-3 .Thefractionalbandwidthis71%=2.5/3.5.AgilentE8358APNAnetworkanalyzerwasusedtomeasureS-parametersandthebandwidthwasmeasuredbelow10dBforthereturnloss.Theinsertionlossisaslowas2dB.ThedimensionsofthetunerareshowninTable 3-1 Thematchingcapabilityofthematchingtunercanberepresentedbytheloadreectioncoecient)]TJ /F4 7.97 Tf 112.67 -1.79 Td[(Ltobematchedbythetuner.Theinputreectioncoecient)]TJ /F4 7.97 Tf 317.52 -1.79 Td[(iniswrittenas )]TJ /F4 7.97 Tf 7.31 -1.79 Td[(in=S11+S12S21)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L 1)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L(3{1) Thematchingcapabilityisderivedfromtheloadreectioncoecientbysettingtheinputreectioncoecienttozero. )]TJ /F4 7.97 Tf 7.32 -1.79 Td[(L)]TJ /F13 5.978 Tf 5.29 -1.22 Td[(in=0=S11 S11S22)]TJ /F5 11.955 Tf 11.96 0 Td[(S12S21(3{2) Thedistributionofthematchingcapabilitywiththefullrangeofvaractorbiasvoltageillustratesthecoverageofmismatchedloadsthatcanbecompensatedbythematchingtuner. 3.2.2Controller Thecontrollerconsistsofahostcomputer,amicrocontroller,andadigital-to-analogconverter(DAC).Thecomputerprovidesinterfaceswithmeasurementinstrumentsandexecutessearchalgorithm.Themicrocontrollerconsistsofa12-channel12-bit 36
PAGE 37
Figure3-2. Recongurableve-stubmatchingtuner Table3-1. Specicationofthematchingtuner Stub/InterconnectWidth(mils)Length(mils) Stub#1 Between#1and#239342 Stub#2 Between#2and#336481 Stub#334384 analog-to-digitalconverter(ADC),a4-channel12-bitDAC,auniversalasynchronousreceiver/transmitter(UART),anddigitalinput/outputs.Toprovideasucientnumberofvoltagebiases,anadditionaloctal12-bitDAC(AD5328)wassolderedonthemicrocontrollerevaluationboard.Microcontrollerrmwarewasdevelopedintheembedded-Clanguageandstoredintheinternalashmemory.Thermwaresupportsthecontroller'scommunicationwithboththehostcomputerandtheDACthroughRS-232CandI2C.ItcaninterpretandexecuteGPIB-likecommands,suchas*IDN?,fromthehostcomputer. 37
PAGE 38
ASimulation BMeasurement Figure3-3. Comparisonofsimulationandmeasurementofmatchingtuner.Thematchingtuneristunedwithtypicalbias(2.562.562.56)andmatchedload 38
PAGE 39
ThehostcomputerandotherinstrumentswerelogicallyconnectedthroughtheNI-VISAstandardprovidedbyMATLAB.Adedicatedinterfaceprogramwasdevelopedtoautomatethecontroloftheautomaticload-pullsystem.Theprogramsupportsthecommunicationbetweenthehostandtheload-pullsystemandisnormallycalledbyMATLAB. 3.2.3Searchalgorithm Agreedyalgorithmwasusedtondthevaractorbiasforimpedancematch.Thealgorithmsearchesforthelocallyoptimalbiaspersinglevaractoratatimeandcanbeexpressedas ^vi=argmaxviBW(vi);i=1;;d;vi=0;vmax 2r)]TJ /F1 11.955 Tf 11.96 0 Td[(1;;vmax| {z }2r;(3{3) whereBW()isthemeasuredbandwidth,vmaxisthemaximumreversebiasvoltageappliedtovaractors,disthenumberofvaractors,risthenumberofDACbits. ThealgorithmhasacomputationalcomplexityofO(n),comparedwithO(n3)ofbrute-forceapproach(dimension=#ofvaractors=3).Althoughitmayfailtoconvergetothegloballyoptimalbias,itcanreducethesearchingtimesignicantly.Forexample,supposethataDACresolutionis6bits.Twoalgorithms'searchingtimearedimensionresolution=326=192andresolutiondimension=263=262144,respectively.Thegreedyalgorithmisfasterbythefactorof2rd)]TJ /F16 5.978 Tf 5.75 0 Td[(1=d=263)]TJ /F16 5.978 Tf 5.75 0 Td[(1=3'1365. 3.3ExperimentalResults AcontrolprogramwasdevelopedusingMATLABtoperformalltestingproceduresincludinginstrumentinitialization,mismatchloadsetup,S-parametermeasurement,andsearchforthevaractorbias. 3.3.1CharacterizationofAutomaticTunerSystem WeusedMauryMicrowave'sautomatictunersystem(ATS)andmechanicalload-pulltunersforvariousmismatchedloads.TheS-parametersoftheload-pulltunerare 39
PAGE 40
Table3-2. Mismatchedloadspecication TypeS11jS11jMotorposition Matched0+j00(100,5000,5000) Mismatched10:11+|0:090.14(16725,2262,5000) Mismatched20:19+|0:400.45(17105,1424,5000) Mismatched3)]TJ /F1 11.955 Tf 9.3 0 Td[(0:11+|0:220.24(17722,2005,5000) Mismatched40:14)]TJ /F5 11.955 Tf 11.96 0 Td[(|0:010.14(20464,2228,5000) Mismatched50:35+|00.35Simulated Mismatched60:55+|00.55Simulated Mismatched70:65+|00.65Simulated Mismatched80:75+|00.75Simulated Figure3-4. Mismatchedload1measurement(S11=0.11+j0.09at3.5GHz).Motorpositionsare(16725,2262,5000).ReectioncoecientjS11j=0.14. determinedbythreemotorsandhavetobemeasuredoverthefrequencyrangeofinterestbecausetheyareunknownandfrequency-dependent. ThecharacterizationwasperformedbyMauryMicrowave'sATSsoftwareMT993andthemappingle,so-calledtunerle,wascreated.Eachlineofthetunerlecontainsmotorpositions,S-parameters,andoperatingfrequency. Fromthetunerle,onematchedloadandthreemismatchedloadswereselected.ThemeasurementsofthreemismatchedloadsareshowninFigure 3-4 to 3-6 .TheS11at3.5GHzandmotorpositionsaresummarizedinTable 3-2 40
PAGE 41
Figure3-5. Mismatchedload2measurement(S11=0.19+j0.40at3.5GHz).Motorpositionsare(17105,1424,5000).ReectioncoecientjS11j=0.45. Figure3-6. Mismatchedload3measurement(S11=-0.11+j0.22at3.5GHz).Motorpositionsare(17722,2005,5000).ReectioncoecientjS11j=0.24. Threemismatchedloadsusedinthisworkshowthealmost-constantreturnandinsertionlossfrom2.5to4.5GHz.AsdescribedinTable 3-2 ,threemismatchedloadshavejS11jat3.5GHz=0.14,0.45,and0.24,respectively. 3.3.2MeasurementResults ThematchingcapabilityS11=(S11S22)]TJ /F5 11.955 Tf 11.97 0 Td[(S12S21)atthecenterfrequencyof3.5GHzwascalculatedfromtheS-parametermeasurementresults,wherethevaractorbiasrangesfrom0Vto5.12Vby0.16Vstepin32voltagelevels.AsshowninFigure 3-7 ,thematchingcapabilitycancoverasmallportionontheSmithchart,becausethetunerwasdesigned 41
PAGE 42
Figure3-7. Matchingcapabilityofve-stubmatchingtunerat3.5GHz forbroadbandmatching.Generally,theoverallperformanceofthebroadbandmatchingcanbeevaluatedbytheavailablebandwidth,whichhasbeenusedastheperformancemetricthroughthiswork. TheS-parametersofthematchingtunerweremeasuredwithtypicalandoptimalbias.2.56Vwassetasthetypicalbiasforthevaractor.Theoptimalbiaswasfoundbythesearchalgorithmasdescribedbefore. Thesearchalgorithmfoundtheoptimalbiasforthe50matchedloadandthemismatchedload1,whereasitfailedtondforthemoreseverelymismatchedload2and3.Forthemismatchedload2and3,theoptimalbiasfoundforthe50casewasused. 42
PAGE 43
AsshowninFigure 3-8 andFigure 3-9 ,theoptimalbiasforthe50matchedloadincreasedtheavailablebandwidthfrom1GHzto2GHz.However,theoptimalbiasdoesnotincreasethebandwidthforothermismatchedloads,becausethematchingtunertogetherwiththelargermismatch()-327(=0.24,0.45)didnotrespondtothechangeinvaractorcapacitance. Thecomparisonofbrute-force,single-stepproposedin[ 6 ],andthegreedyalgorithmsispresentedinTable 3-3 ,wheretheperformancemetricforthecostfunctionofthreealgorithmsisthe10dBavailablebandwidthandthenumberoftrialsrepresentshowmanybiaseseachalgorithmhasevaluateduntilitconverges.100dierentinitialstateswererandomlygeneratedandusedforeachexperimentandtheresultswereaveragedover100experiments.ThemismatchedloadsusedinthisexperimentaresummarizedinTable 3-2 .Thedegreeofmismatchcoversfrom0to0.75.AsshowninTable 3-3 ,thegreedyalgorithmoutperformsbrute-forceandsingle-stepalgorithmsintermsofthenumberoftrialsandtheavailablebandwidth. Forseverelymismatchedloads,thesingle-stepalgorithmoftenfailedtohaveavailablebandwidth.Inthiscatastrophiccase,itisnotfairtocomparetheperformancebytakingtheaverageofexperimentalresults.Instead,thecatastrophiccasewasanalyzedandexcludedfromtheresult.First,wedene10%ofthecenterfrequency(0.35GHz)asthebandwidthlimitforthecatastrophiccase.Duringtheexperiment,thenumberofthecatastrophiccaseswerecountedtoshowhowoftenthecatastrophiccasehappensforeachalgorithm.AssummarizedinTable 3-4 ,thesingle-stepalgorithmsueredfromthecatastrophiccaseevenformodestlymismatchedloads,e.g.)]TJ /F4 7.97 Tf 334.11 -1.79 Td[(L=0:24andallthreealgorithmsfailedtooptimizefortheseverelymismatchedload,e.g.)]TJ /F4 7.97 Tf 356.74 -1.79 Td[(L=0:75.Thisresultshowedthesimilartrendasthebroadbandmatchingbandwidthfordierentloadimpedancepresentedby[ 1 ],whichlimitedtherealandimaginarypartofmismatchedloadimpedanceto25to100and)]TJ /F1 11.955 Tf 9.29 0 Td[(50to50,respectively.Second,thecatastrophiccasewasexcludedfromTable 3-3 .Theexperimentalresultavoidingthecatastrophiccaseis 43
PAGE 44
ATypicalbias BAutomatedbias Figure3-8. Matchingtunermeasurementwithmatchedload.Typicalandautomatedbiasesare(2.56V2.56V2.56V)and(4.8V3.84V4.64V) 44
PAGE 45
ATypicalbias BAutomatedbias Figure3-9. Matchingtunermeasurementwithmismatchedload1.Typicalandautomatedbiasesare(2.56V2.56V2.56V)and(3.2V3.86V3.52V) 45
PAGE 46
Table3-3. Comparisonofbrute-force,greedy,andsingle-stepalgorithms Type#ofTrialsAvailableBW(GHz) brutegreedysinglebrutegreedysingle Matched(Measured)32768273.60358.291.281.221.17 Mismatched1(Measured)32768272.64414.991.241.211.09 Mismatched2(Measured)32768340.80454.950.760.680.25 Mismatched3(Measured)32768332.16420.391.241.160.63 Mismatched4(Measured)32768281.28353.701.241.201.04 Mismatched5(Simulated)32768323.52473.851.161.100.40 Mismatched6(Simulated)32768312.00550.530.720.510.06 Mismatched7(Simulated)32768281.28642.870.360.360.00 Mismatched8(Simulated)32768284.16642.870.320.320.00 Average32768300.16479.160.920.860.52 summarizedinTable 3-5 .Providedthatthecatastrophiccasecanbealwaysavoidedbysometechnique,theperformancedierencebetweenthegreedyandothertwoalgorithmsisnotaslargeaswhenthecatastrophiccasehappens.However,thetechniquetoavoidthecatastrophiccasecanbeadditionaloverheadaddedtomatchingcontrolalgorithms. Therearetworeasonstomakethegreedyalgorithmoutperformotheralgorithms.First,thegreedyalgorithmislessdependentonaninitialstatecomparedwiththesingle-step,becausethegreedyalgorithmsearchesforthesuboptimalsolutionforeachvaractor.Second,thesuboptimalsolutionofthegreedyalgorithmturnedouttobeclosetotheglobaloptimalsolutionofthebrute-force.Intheotherword,thegreedyalgorithmmanagedtoreachclosetotheglobaloptimalsolution,whereasthesingle-stepmaygettrappedinlocalminima. TheoptimizationsurfaceduringanexperimentonthegreedyalgorithmisillustratedinFigure 3-12 .Thez-axisrepresentstheavailablebandwidthinGHzandthex-andy-axesrepresentthe32varactorvoltagelevelsfrom0Vto5.12Vby0.16Vstep.Theothervaractorbiasissetto16thvoltagelevel.Thesurfaceshowedthesteepthreshold,whichcanbemodeledbyeithersigmoidorroundfunctions.Theatsurfaceabovethe 46
PAGE 47
Table3-4. Percentageofcatastrophiccaseforbrute-force,greedy,andsingle-stepalgorithms Typej)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(LjPercentageofcatastrophiccases(%) brute-forcegreedysingle-step Matched(Measured)0.01000 Mismatched1(Measured)0.14003 Mismatched2(Measured)0.450065 Mismatched3(Measured)0.240040 Mismatched4(Measured)0.14001 Mismatched5(Simulated)0.350057 Mismatched6(Simulated)0.5503993 Mismatched7(Simulated)0.6500100 Mismatched8(Simulated)0.75100100100 Table3-5. Comparisonofbrute-force,greedy,andsingle-stepalgorithmsavoidingcatastrophiccases Type#ofTrialsAvailableBW(GHz) brutegreedysinglebrutegreedysingle Matched(Measured)32768273.60358.291.281.221.17 Mismatched1(Measured)32768272.64424.481.241.211.12 Mismatched2(Measured)32768340.80348.690.760.680.59 Mismatched3(Measured)32768332.16287.551.241.161.05 Mismatched4(Measured)32768281.28356.451.241.201.05 Mismatched5(Simulated)32768323.52345.981.161.100.91 Mismatched6(Simulated)32768388.72366.430.720.720.48 Mismatched7(Simulated)32768281.28N/A0.360.36N/A Mismatched8(Simulated)N/AN/AN/AN/AN/AN/A Average32768311.75355.411.000.960.91 thresholdexplainswhythesuboptimalsolutionofgreedyalgorithmisprettyclosetotheglobaloptimalsolution. 3.4ConclusionandDiscussion Thenovelautomaticbroadbandmatchingcontrolwasdevelopedforthebroadbandmicrostripmatchingtuner,whichwasprovidedbytheUniversityofArizona.Theproposedmatchingcontroldemonstratedthefeasibilityoftheautomaticbroadbandmatchingcontrolusingtheclosed-loopfeedbackandthegreedysearchalgorithm.The 47
PAGE 48
measurementresultsshowedthatthegreedysearchalgorithmcouldndtheoptimalbiasforthematchingtuner,butthematchingtunerdidnotshowthegoodtunabilityagainstthelargemismatches,j)]TJ /F2 11.955 Tf 7.32 0 Td[(j>0:14.Currentlyweareworkingonimprovingthetuner'stunabilityagainstthelargemismatch. 48
PAGE 49
ATypicalbias BAutomatedbias Figure3-10. Matchingtunermeasurementwithmismatchedload2.Typicalandautomatedbiasesare(2.56V2.56V2.56V)and(4.8V3.84V4.64V) 49
PAGE 50
ATypicalbias BAutomatedbias Figure3-11. Matchingtunermeasurementwithmismatchedload3.Typicalandautomatedbiasesare(2.56V2.56V2.56V)and(4.8V3.84V4.64V) 50
PAGE 51
Figure3-12. Optimizationsurfaceofgreedyalgorithm 51
PAGE 52
CHAPTER4LOADIMPEDANCEESTIMATION 4.1Overview Theoverallgoaloftheproposedresearchistodevelopacompactautomaticmatchingcontrol(AMC)circuitthatsetstheimpedancematchforradiofrequency(RF)portsofasocketeddeviceundertest(DUT)underautomatictestequipment(ATE)test[ 21 ].AnAMCprovidesmatchsettingandexaminationcapabilityforRFtestfrequenciestoassistinavarietyofRFtestprotocols.Inthischapter,anewloadimpedanceestimationtechniqueispresentedthatfacilitatestheAMCsystem.AloadimpedancewasnotabletobedeterminedinanAMCsystempriortothiswork. Varioussearchmethodsfortheoptimalstateofatunablematchingnetworkhavebeenproposed[ 6 ][ 17 ][ 22 ].However,theexhaustivesearchmethodsrequiremillionsofmeasurementsdependingonthenumberofthematchingnetworkstatesandbecomealimitingfactortothedesignofthematchingnetwork. Inpriorwork,mostsearchmethodstrytoreducesearchingtimeusingheuristicapproachbasedonexhaustivesearch,buttheirsearchingtimeincreasesproportionallytothematchingnetworkcomplexity.IftheloadimpedanceZLisknowntotheAMCsystem,thenthesearchisnolongernecessary.Instead,theAMCsystemcansetamatchingnetworktopologyandcomponentvaluesthroughdirectanalysis.Thus,theAMCsystemneedstosearchonlyafewtimestoachievetheimpedancematch. Theproposedimpedanceestimationtechniqueisbasedontheprincipleofamulti-statereectometer.Asanalternativenetworkanalyzer,measurementmethodsbasedonamulti-statereectometerwerepresentedusingvariousapproaches,suchasascalarnetworkanalyzer[ 23 ],afour-portjunction[ 13 ][ 14 ],andatunablemicrostriplter[ 24 ].Similartothepriorwork,theproposedmethodmeasuresasingleportmultipletimesinsteadofthemeasurementofmultipleportsinasix-portreectometer[ 11 ],thenacomplexreectioncoecientisdeterminedbysomemathematicalmanipulation.The 52
PAGE 53
Figure4-1. Systemdiagramofloadimpedanceestimationforautomaticimpedancematching measuredpowerrepresentsthemagnitudeofareectioncoecientandisdepictedasacircleontheSmithchart.Becausethemeasuredpowerreadingresultsfromthedierentnetworksandthesameload,theintersectpointofthesecirclesbecomestheloadreectioncoecient.Inthiswork,wedemonstratethatthetunablematchingnetworkdesignedforimpedancematchcanperformloadestimation. Therestofthischapterisorganizedasfollows:Section 4.2 givesanoverviewoftheAMCandtheproposedmethod.Section 4.3 presentstheexperimentalresults.Section 4.4 concludesanddescribesthefuturedirection. 4.2SystemOverview 4.2.1AutomaticMatchingControl(AMC) AsshowninFigure 4-1 ,anautomaticmatchingcontrolsystemconsistsofatunablematchingnetwork,apowerdetector,andacontroller.Theautomaticmatchingisperformedbyaclosed-loopfeedbackoperationasfollows.First,thepowerdetector 53
PAGE 54
measuresthereectedwavepower.Second,thecontrollercalculatesthedegreeofmismatch(S11parameter).Last,thecontrolalgorithmsearchesforthevaractorbiasforimpedancematchandthecontrollersetsthevaractorbias.Theaboveproceduresarerepeateduntilthecontrolalgorithmachievesaspeciedmatchinggoal.Thematchingcontrolsystempresentedin[ 25 ],whichwasnotabletoestimateaload,wasusedinthiswork. 4.2.2LoadEstimationMethod Aninputreectioncoecientisexpressedintermsofaloadreectioncoecientandtwo-portS-parametersas )]TJ /F4 7.97 Tf 7.31 -1.79 Td[(in=S11+S12S21)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(L 1)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L(4{1) Acomplexreectioncoecient,suchas)]TJ /F4 7.97 Tf 215.22 -1.8 Td[(inand)]TJ /F4 7.97 Tf 30.08 -1.8 Td[(L,isdeterminedbybothmagnitudeandphaseofareectedwave.However,aphasedetectorisnotascompactandaccurateasapowerdetector.Forthisreason,anembeddedtestcircuitoftenmeasuresonlywavemagnitudeusingpowerdetectorsandthephaseinformationofthereectioncoecientbecomesunavailable.Inthiscase,acomplexinputreectioncoecientsisalsomeasuredonlyinmagnitudeandEquation 4{1 canbewrittenas j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj=S11+S12S21)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(L 1)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(L(4{2) TheloadreectioncoecientderivedfromthemagnitudeoftheinputreectioncoecientisdepictedasacircleontheSmithchart.BymanipulatingEquation 4{2 inthesamewayasstabilitycircleequationderivation[ 26 ],thecircleequationisgivenby )]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L)]TJ /F1 11.955 Tf 13.15 6.7 Td[((S22j)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(inj2)]TJ /F1 11.955 Tf 11.96 0 Td[(S11) jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)-222(jj2=S12S21 jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)-222(jj2j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj (4{3) where=S11S22)]TJ /F5 11.955 Tf 11.95 0 Td[(S12S21and*denotesacomplexconjugate. 54
PAGE 55
Theloadreectioncoecient)]TJ /F4 7.97 Tf 162.1 -1.79 Td[(Lisexpressedasacirclewhosecenterandradiusare CL=(S22j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 11.95 0 Td[(S11) jS22j2j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj2)-221(jj2(center) (4{4) RL=S12S21 jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)-222(jj2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj(radius) (4{5) (RefertoAppendix A forthederivation.)Therelationshipbetweeninputandloadreectioncoecientswasalsoanalyzedasacircleequationin[ 8 ].Theirresultlooksdierentbutismerelyaspecialcaseofthegeneralequationpresentedinthiswork. Basedonthederivedequations,anestimationmethodmeasuresareectedwavepowerj)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(injofaninputportmultipletimes.ThemeasuredpowerrepresentsonlythemagnitudeofareectioncoecientandisdepictedasacircleontheSmithchart.Becausethemeasuredpowerreadingresultsfromthedierentnetworkandthesameload,theintersectpointofthesecirclesbecomestheloadreectioncoecient.Weperformedtheloadimpedanceestimationasfollows. 1. Measurepowerintheinputportofamatchingnetworkwiththreedierentsetsofbiases 2. Calculatethecenterandradiusofthecircleoftheloadreectioncoecient 3. Calculatetheradicalcenterofthreecircles Theradicalcenteristheapproximationofthecenterofthreecircles'overlappedregion,asillustratedinFigure 4-2 .Thecoordinatesoftheradicalcenteraregivenby x=R2L1)]TJ /F5 11.955 Tf 11.96 0 Td[(R2L2+x22 2x2 (4{6) y=R2L1)]TJ /F5 11.955 Tf 11.96 0 Td[(R2L3+x23+y23)]TJ /F1 11.955 Tf 11.96 0 Td[(2xx3 2y3 (4{7) Notethattheleast-squaresmethoddevelopedforthesix-portmeasurementcanbeusedforhigheraccuracy[ 27 ]. Assumingtheloadisfoundthroughtheproposedestimationmethod,thecontrolalgorithmcansetimpedancematchingusingS-parametersofthematchingnetworkand 55
PAGE 56
Figure4-2. Radicalcenterofthreecircles,)]TJ /F4 7.97 Tf 166.22 -1.79 Td[(L1,)]TJ /F4 7.97 Tf 14.47 -1.79 Td[(L2,and)]TJ /F4 7.97 Tf 37.23 -1.79 Td[(L3. Figure4-3. Impedancematchingprocedureusingestimatedloadimpedance. 56
PAGE 57
Table4-1. Summaryofmismatchedloadestimationresults TypejS11jMeansquarederror(MSE)MSEexcludingjc)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(Lj>1 Mismatched#10.140.5963000.011048 Mismatched#20.457.9827290.080232 Mismatched#30.240.0663340.066334 Mismatched#40.140.1483510.031391 allowquickmatchingcontroloftheAMC.TherevisedmatchingcontrolprocedureisillustratedinFigure 4-3 4.3ExperimentalResults Inourexperiments,fourdierentloadswereusedtoevaluatetheproposedestimationmethods.MauryMicrowave'sAutomaticTunerSystem(ATS)generatedthespeciedloadspreciselyeverymeasurementandAgilentE8538PNAnetworkanalyzermeasuredtheinputreectioncoecientj)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj.Thereectioncoecientmagnitudeoftheloadsarej)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(L1j0:14,j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(L2j0:45,j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L3j0:24,j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L4j0:14overtherangeoffrequencyfrom2.5GHzto4.5GHz.Threesetsofvaractorbiaseswerearbitrarilyselectedtosetthematchingnetworktodierentstates.Thesevaluesare(2.564.84.8),(4.83.844.64),and(4.84.82.56). ThecenterandradiusoftheloadreectioncoecientwerecalculatedusingEquation 4{4 and 4{5 andtheloadreectioncoecientc)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(LwasestimatedusingtheradicalcenterequationsEquation 4{6 and 4{7 Whenthecentersoftwoormoreofthreecirclesareclosetoeachother,theestimationisnotaccuratebecausetheradicalcenterisoftennotinsidetheoverlappedareaofthreecircles.Sometimes,theestimatedloadreectioncoecientgoesoutofaunitcircleontheSmithchart,whichisdenitelyincorrectforapassiveload.Theincorrectestimateswereexcludedfromtheaccuracystatistics. Theestimationaccuracyisevaluatedbythemeansquarederror(MSE)betweenmeasuredandestimatedloadreectioncoecients,Efj)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L)]TJ /F8 11.955 Tf 12.89 3.02 Td[(c)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(Lj2g.Theproposedmethod 57
PAGE 58
achievedthemeansquarederrors(MSE),0.011,0.080,0.066,and0.031,respectively.TheexperimentalresultissummarizedinTable 4-1 4.4Conclusion Theautomaticmatchingcontrol(AMC)systemprovidesimpedancematchandexaminationcapabilityforradiofrequency(RF)portsbytheclosed-loopfeedback.However,theAMCsystempriortothisworkwasnotabletoestimatealoadimpedance.Inthiswork,wedemonstratedthatthemeasuredpowerprovidesnotonlythedegreeofmismatchbutalsotheestimateofanunknownloadthroughthemultistatereectometermeasurement.TheproposedloadestimationallowsthequickcontroloftheAMCsystembyachievingamatchinggoalwithoutanexhaustiveiteration. Althoughthevaractorbiasesforestimationwerearbitrarilyselected,selectingvaractorbiasesshouldbebasedonthecarefularrangementofq-pointsaccordingtothesix-portreectometertheory.Theidealarrangementofq-pointsisknownasthesamemagnitudeand120phasedierence[ 11 ].Asfuturework,weareworkingonnewmatchingnetworkdesignandbiasselectiontoaccountfortheeectofq-points. 58
PAGE 59
CHAPTER5COUPLER-FREELOADESTIMATIONUSINGTHREE-PORTEFLECTOMETER 5.1Overview Mobiledevicesequippedwithradiofrequency(RF)subsystemsarewidelyusedanddriveemergingtechnologiesforthebetterperformanceatlowpowerconsumption.ImpedancematchingbetweentheRFsubsystemsplaysacriticalroleinimprovingthelow-powersystemeciencybymaximizingpowertransferandsignal-to-noiseratio(SNR).However,RFimpedancematchingisoftenhighlyiterativeandtime-consuming,whentheRFportbetweensubsystemsispoorlydened. AsaneorttoautomatetheRFimpedancematching,anautomaticmatchingcontrol(AMC)circuithasbeendevelopedforcellularphoneantenna[ 6 ]andloadboardtesting[ 21 ].Thepriorresearchworkdemonstratedthatanunknownimpedancemismatchcanberesolvedbyatunablematchingnetworkandaniterativesearchmethod. Thedisadvantageoftheautomaticmatchingcontrolisthattheiterativesearchmayslowdowntheautomationprocessandmakeimpedancematchinginreal-timeverychallenging.Toimproveslowresponsetime,aloadimpedanceestimationmethodwasdevelopedtodiscoveranunknownloadandtoenableimmediateimpedancematching[ 25 ].However,theloadestimationmethod,aswellastheautomaticmatchingcontrol,measuresthedegreeofmismatchthroughadistributeddirectionalcoupler.Whenthesystemareaorvolumematters,forexample,on-chipembeddedRFtestingorcompactloadboardtesting,thecouplerispreferredtoberemovedorreplacedwithotherequivalentparts.Asalternativestothedirectionalcoupler,alumped-elementcoupler[ 28 ][ 29 ]andanactivecoupler[ 30 ]havebeenproposed. Weproposeanovelcoupler-freeloadestimationmethodforanautomaticmatchingcontrol(AMC)circuitusingalumped-elementthree-portreectometer.Theproposedthree-portreectometerconsistsofatwo-portlumped-element-typematchingnetworkandahighimpedanceprobingportattachedtotheinputportofthematchingnetwork. 59
PAGE 60
Figure5-1. Automaticmatchingcontrol(AMC) Thereectometercanbereconguredbythreevaractor-basedtunablecapacitorsandusedtosetimpedancematchingwithintheunitcircleontheSmithchartat2.4GHz. Thecoupler-freeloadestimationcanestimateanunknownloadfromthecombinedpowerofincidentandreectedwavesthroughahigh-impedanceprobe.Theuseofthehigh-impedanceprobeandcoupler-freeestimationcaneliminatetheneedofthedirectionalcouplerandmakecompactfabricationofimpedancemeasurementonachipfeasible. Therestofthischapterisorganizedasfollows:Section 5.2 givesanoverviewoftheautomaticmatchingcontrolandthecoupler-freereectometer.Section 5.3 showsthehighimpedanceprobemodelandttingmethods.Section 5.4 describesradicalcenterandleast-squareloadestimationmethods.Section 5.5 presentstheexperimentalresults.Section 5.6 concludesanddescribesthefuturedirection. 5.2SystemOverview Figure 5-1 illustratesthesystemdiagramofanautomaticmatchingcontrol(AMC).Theautomaticmatchingcontrolreconguresthematchingnetworkthroughtheclosed-loopfeedbackconsistingofacoupler,areectioncoecientdetector,andamatchdecisioncircuit.Theclosed-loopfeedbackenablesthematchdecisioncircuittosearchforvaractorbiasesforminimizingtheRFsignalreectioninatrial-and-errorprocess.Inthiswork,thecouplerhasbeenreplacedwithahighimpedanceprobe,whichenablestheautomaticmatchingcontroltoperformthecoupler-freeloadestimation. 60
PAGE 61
A B Figure5-2. ThreeportreectometerintegratedwithahighimpedanceprobeA)SystemdiagramwithschematicB)FabricationonFR4board 61
PAGE 62
Figure5-3. VaractorSMV1405capacitanceversusreversevoltage Figure5-4. VaractorSPICEmodel Theproposedtunablematchingnetworkisbasedonthebandpasstopology,whichisknowntoprovideimpedancematchingwithanypointontheSmithchart[ 3 ][ 31 ].AsshowninFigure 5-2 ,thematchingnetworkisa-typeband-passlterwithlumpedinductorsandtunablecapacitorsandwasfabricatedon6:34:8mmFR4printedcircuitboard(PCB).Thenetworkwasdesignedtosetimpedancematchingat2.4GHzandhasthreeportsforinput,output,andprobe. SkyworksSMV1405-074LFwasusedasthetunablecapacitor.Itcontainstwohyper-junctionvaractordiodesinasinglepackage,wheretwovaractorsareconnectedincommoncathode.Thecapacitanceofasinglevaractorrangesfrom1pF(bias=-8V)to2.7pF(bias=0V),asshowninFigure 5-3 .Thecommoncathodepinisconnected 62
PAGE 63
toabiasvoltagesupplythroughaDCblockingchokeinductor.TheSPICEmodelofSMV1405,asshowninFigure 5-4 ,wasusedforpreliminarysimulation. Ahighimpedanceprobewasimplementedwitha250(=5Z0)chipresistorandatransmissionline.Thehighimpedanceprobewasusedtomeasuretheinputreectioncoecientofthematchingnetwork.TherelationshipmodelbetweenthehighimpedanceprobeandtheinputreectioncoecientwillbepresentedinnextSection. 5.3HighImpedanceProbe AsshowninFigure 5-2 ,ahighimpedanceprobeconsistsofa250chipresistoratthemeasurementnodeandatransmissionlineterminatedwithamatchedport,whichisconnectedtoanetworkanalyzer.Foranembeddedtestsystem,thehighimpedanceprobeandthenetworkanalyzercanbereplacedbyanon-chipbipolarpowerdetectorpresentedin[ 32 ]. ThefollowingareworthytonoteinthisdemonstrationasshowninFigure 5-2 1. Serieschipresistor(250)isattachedtoavectornetworkanalyzerthroughatransmissionlinetoemulatetheoperationofahigh-impedanceprobe. 2. UsedavectornetworkanalyzertomeasureandmanipulatefullS-parameterdata 3. Derivedj)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(injfromS-parametersmeasuredbyavectornetworkanalyzertoemulatetheoperationofapowerdetector. 4. Usedj1+)]TJ /F4 7.97 Tf 29.02 -1.79 Td[(injfromavectornetworkanalyzertoseethesystemresponsewithapowerdetectorandtoverifyEquation 5{1 Thehighimpedanceprobehasnodirectivityandmeasuresthesummationofbothincidentandreectedwaves.Themeasurementatthehighimpedanceprobecanbewrittenas an+bn=an+)]TJ /F4 7.97 Tf 19.07 -1.8 Td[(nan=an(1+)]TJ /F4 7.97 Tf 32.14 -1.8 Td[(n)(5{1) wherean,bn,)]TJ /F4 7.97 Tf 14.46 -1.79 Td[(narenormalizedincidentandreectedwavesandareectioncoecientofportn.ThenetworkanalyzerportismatchedwithimpedanceZ0andconnectedinserieswiththechipresistor5Z0.ThenetworkanalyzermeasuresZ0=(Z0+5Z0)ofa 63
PAGE 64
probenodeandactsasavoltagedivider.Inotherwords,theoutputresponseofthehighimpedanceprobeisscaleddownbyavoltagedividerratioZ0=(Z0+5Z0)andfollowedbythephase-delay(e|)ofatransmissionline.Assumingthattheinputportofthematchingnetworkisport1andthehighimpedanceprobeisport3,themeasuredpowerinthehighimpedanceprobeiswrittenas P3=jb3j2=jS31a1j2=Z0 5Z0+Z0e|S11a1(1+)]TJ /F4 7.97 Tf 32.14 -1.79 Td[(in)2;(5{2) whereanandbnarenormalizedincidentandreectedwavesofportn.TheidealrelationshipdescribedbyEquation 5{2 doesnotexactlytthemeasurementresultduetonon-idealcircuiteects,suchasniteimpedanceoftheprobeandtransmissionlineloss.Insteadoftheidealmodel,arelationshipmodelwithparasiticsandaneuralnetworkapproximationmodelwereusedtotakethenon-idealeectsintoaccount. Thenodemeasuredbythehighimpedanceprobeisconnectedtotheport1throughatransmissionline.Themeasurementofthenodeisdeterioratedduetothenon-idealeects,whichareincludedinamodiedrelationshipmodel.TherelationshipbetweenthemeasuredS-parametersfromtheinputport1andthehighimpedanceprobeismodiedandwrittenas S11=(S31r1e|1)]TJ /F1 11.955 Tf 11.95 0 Td[(1)r2e|2(5{3) wherer1;r2;1;2aremagnitudeandphasettingparameters.Therelationshipmodelcanbetrainedbyaleastsquarenonlineartting.Anarticialneuralnetwork,awell-knownnonlinearapproximationmodel,wasalsousedtorepresenttherelationship.Thetrainingprocedurefortwomodelswillbedescribedinmoredetail. 5.3.1LeastSquareFitting Leastsquarenonlinearttingwasappliedtotraintherelationshipmodel.Thettingparameters,r1;r2;1;2,areobtainedbyminimizingtheleastsquareequationwrittenas ^r1;^r2;^1;^2=argminXVS11(V))]TJ /F1 11.955 Tf 11.96 0 Td[((S31(V)r1e|1)]TJ /F1 11.955 Tf 11.96 0 Td[(1)r2e|22(5{4) 64
PAGE 65
whereV=(V1;V2;V3)Tisabiasvoltagevectorforthreevaractors.Thettingalgorithmisthelarge-scalealgorithm,asubspacetrustregionmethodbasedontheinterior-reectiveNewtonmethoddescribedin[ 33 ][ 34 ]. 5.3.2ArticialNeuralNetwork Anarticialneuralnetworkiswellknownfortheapproximationofanonlinearmodel.ThenonlinearrelationshipbetweenS11andthehighimpedanceprobe,describedbyEquation 5{3 ,isapproximatedbyanarticialneuralnetwork.TheinputandoutputoftheneuralnetworkarethemeasuredS31andtheestimateofS11.Theusedneuralnetworkhas15perceptronsinthehiddenlayerandwastrainedbytraditionalbackpropagationalgorithm. 5.4LoadEstimationMethods Theequationforcoupler-freeloadestimationisbasedonthestabilitycirclederivationaspresentedin[ 26 ,Chapter11]and[ 25 ].Accordingtothestabilitycirclederivation,thecenterandradiusofthecircleweregivenas CL=(S22j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 11.95 0 Td[(S11) jS22j2j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj2)-221(jj2(center) (5{5) RL=S12S21 jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)-222(jj2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj(radius) (5{6) Whentheincidentandreectedwavesarecombinedundertheabsenceofacoupler,themeasuredpoweroftheinputportisexpressedas pin=ja1+b1j2=ja1j2j1+)]TJ /F4 7.97 Tf 27.59 -1.8 Td[(inj2(5{7) Therefore,j1+)]TJ /F4 7.97 Tf 29.79 -1.79 Td[(injinsteadofj)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(injcanbeusedtoestimatealoadimpedance.ThemanipulatedS-parameterdatafromanetworkanalyzer,j1+)]TJ /F4 7.97 Tf 28.02 -1.8 Td[(inj,wereusedtoverifythepowerdetectorequationrewrittenas j1+)]TJ /F4 7.97 Tf 27.58 -1.8 Td[(inj=1+S11+S12S21)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(L 1)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(L(5{8) 65
PAGE 66
j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj=1+S11)]TJ /F1 11.955 Tf 11.95 0 Td[((1+S11)S22)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L+S12S21)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L 1)]TJ /F5 11.955 Tf 11.95 0 Td[(S22)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L(5{9) Bytakingthesquareofbothsides,theequationiswrittenas j1)]TJ /F5 11.955 Tf 11.95 0 Td[(S22)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(Lj2j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2=j1+S11)]TJ /F1 11.955 Tf 11.96 0 Td[((S22+))]TJ /F4 7.97 Tf 33.38 -1.79 Td[(Lj2(5{10) where =S11S22)]TJ /F5 11.955 Tf 11.95 0 Td[(S12S21(5{11) Thenextderivationfollowsthestabilitycirclederivationpresentedin[ 25 ].Then,thecenterandradiusofthecircleforcoupler-freeloadestimationaregivenas CL=(S22j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 11.96 0 Td[((S22+)(1+S11)) jS22j2j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)-222(jS22+j2(center) (5{12) RL=S12S21 jS22j2j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2)-222(jS22+j2j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj(radius) (5{13) where=S11S22)]TJ /F5 11.955 Tf 12.04 0 Td[(S12S21and*denotesacomplexconjugate.ThedetailinderivationisgiveninAppendix A Thecenterandradiusofthreecircleswereusedtoestimateanunknownload.Theestimationisbasedonradicalcenterandleastsquarettingwidelyusedforasix-portreectometer.Theradicalcenterofthreecirclesisthesimplestgeometricmethodandtheleastsquarettingismoreaccurateandastatisticalapproachbyminimizingthesumofsquareddistancefromthreecircles. 5.4.1RadicalCenter Theradicalcenteristheapproximationofthecenterofthreecircles'overlappedregion,asillustratedinFigure 5-5 .Thecoordinatesoftheradicalcenteraregivenas x=R2L1)]TJ /F5 11.955 Tf 11.96 0 Td[(R2L2+x22 2x2 (5{14) y=R2L1)]TJ /F5 11.955 Tf 11.96 0 Td[(R2L3+x23+y23)]TJ /F1 11.955 Tf 11.96 0 Td[(2xx3 2y3 (5{15) Notethatallmismatchedloadsarepassiveandshouldbewithinaunitcircle.Ifthemagnitudeoftheestimatedreectioncoecientislargerthanone,thelargeerrorcan 66
PAGE 67
Figure5-5. Radicalcenterofthreecircles,)]TJ /F4 7.97 Tf 166.22 -1.8 Td[(L1,)]TJ /F4 7.97 Tf 14.47 -1.8 Td[(L2,and)]TJ /F4 7.97 Tf 37.23 -1.8 Td[(L3. dominatetheoverallmeansquareerrortoleadtowrongperformancestatistics.Inthiscase,themagnitudeissettoone(ontheunitcircle)whilekeepingthephaseinformation. 5.4.2LeastSquareFitting Leastsquarenonlinearttingwasappliedtoestimatealoadandtheradicalcenterwasusedasaninitialparameter,asdescribedin[ 27 ].Theleastsquarettingcanprovidemoreaccurateresultsinsacriceofhighcomputationcost.Thesamettingalgorithmusedinthehighimpedanceprobewasusedhere.Thettingparameteristhereectioncoecientoftheunknownload,acomplexnumberontheSmithchart,andisobtainedbyminimizingtheleastsquareequationwrittenas ^)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(L=argminXVjCircle(V))]TJ /F1 11.955 Tf 11.96 0 Td[()]TJ /F4 7.97 Tf 7.31 -1.79 Td[(Lj2(5{16) 67
PAGE 68
whereV=(V1;V2;V3)Tisabiasvoltagevectorforthreevaractors.NotethatCircle(V)isdescribedbyEquation 5{12 and 5{13 andthedistancebetweenacircleandapointisdenedasadistancebetweenatangentiallinetothecircleandthepoint. 5.5ExperimentalResults Avectornetworkanalyzerwasusedtomeasurethethree-portS-parametersofthenetworkat2.4GHz.Thevaractorbiasvoltagerangesfrom0to5.12Vby0.32Vstep,16voltagelevelsandthenumberofstatesofthethree-varactormatchingnetworkis163=4096.Therefore,thetotalnumberofthree-portS-parameteris16332=36;864.Thefollowingexperimentalresultscomefromthe36,864S-parameterdataof4096statesofthematchingnetwork. First,ttingthemeasurementdatafromthehighimpedanceprobetotheinputportS-parameterwillbepresented.Thettingwereperformedbytheleastsquarettingoftherelationshipmodelwithparasiticsandthebackpropagationtrainingoftheneuralnetworkapproximationmodel.Theerrordistributionofbothmethodsisalsopresented. Second,acoupler-freeloadestimationisperformedbyradicalcenterandleastsquareandtheresultsusingtwomethodsarecomparedintermsofmeansquareerror(MSE).Theinputdatatotheloadestimationistheestimateddatafromthehighimpedanceprobe. Last,forafaircomparisonofcouplerandcoupler-freeloadestimationmethods,theestimationperformanceisevaluatedwiththesamemeasurementdatausedin[ 25 ]. 5.5.1HighImpedanceProbeEstimation Twomodelsbasedonleastsquarettingandarticialneuralnetworkwereusedforthehighimpedanceprobeestimation.Thettingparametersofleastsquarearer1;r2;1,and2,magnitudeandphaseoftwocomplexnumbersrepresentingnon-idealeects.Leastsquarettingwastrainedbyalarge-scalealgorithm,asubspacetrustregionmethodbasedontheinterior-reectiveNewtonmethod.ThehighimpedanceprobeS-parameters 68
PAGE 69
S31wereconvertedbytherelationshipmodelandfourtrainedttingparametersandcomparedwiththeinputreectioncoecientS11. TheneuralnetworkusedinthisworkhastwoinputnodesrepresentingtherealandimaginarypartsofthehighimpedanceprobeS-parameterS31,15perceptronsinthehiddenlayer,andtwooutputnodesrepresentingtherealandimaginarypartsoftheinputreectioncoecientS11.Thetraditionalbackpropagationalgorithmwasusedtotraintheneuralnetwork. Figure 5-6 and 5-7 showestimationresultsoftheinputreectioncoecientS11fromthehighimpedanceprobeS-parameterS31usingleastsquarettingandarticialneuralnetwork,respectively.AsexplainedinSection 5.3 ,thedistributionofthehighimpedanceprobeS-parametersisthedownscaleoftheinputreectioncoecientthroughvoltagedivider.Theexperimentresultsshowedthattheinputreectioncoecientcanbesuccessfullyestimatedthroughthehighimpedanceprobewithoutdisturbingthematchingnetwork. Meansquareerror(MSE)forleastsquarettingandthetrainedneuralnetworkare0.000732and0.000366.Althoughtheneuralnetworkachievedlowerestimationerror,leastsquarettingalsohasadvantageoffastertrainingandsimplermodelrepresentationovertheneuralnetwork.ThemagnitudeoferrordistributionofbothmethodsareshowninFigure 5-8 .Asexpected,theneuralnetworkshoweditspeakoferrordistributionclosertozerothanleastsquaretting. 5.5.2LoadEstimation Theinputreectioncoecientsestimatedfromthehighimpedanceprobewereusedtoestimateanunknownloadusingthecoupler-freeloadestimation.Onematchedload,threeslightlymismatchedloads,andthreeheavilymismatchedloadswereusedasmismatchedloadsfortheexperiments.Theywereclassiedintotwogroups,slightly-mismatchedandheavily-mismatchedloadsandbothgroupsincludethematchedloadas 69
PAGE 70
AInputreectioncoecientS11 BHighimpedanceprobeS-parameterS31 CFittingS31toS11 Figure5-6. Leastsquarenonlinearttingofhighimpedanceprobemodel 70
PAGE 71
AInputreectioncoecientS11 BHighimpedanceprobeS-parameterS31 CFittingS31toS11 Figure5-7. Articialneuralnetworkofhighimpedanceprobemodel 71
PAGE 72
ALeastsquare BNeuralnetwork Figure5-8. Highimpedanceprobeestimationerrordistribution 72
PAGE 73
Table5-1. Summaryofheavilyandslightlymismatchedloads MismatchedloadjS11jat2.4GHzTunermotorposition Matched0.01(100,5000,5000) Slightlymismatched#10.13(16725,2262,5000) Slightlymismatched#20.38(17105,1424,5000) Slightlymismatched#30.20(20464,2228,5000) Heavilymismatched#10.78(15781,526,5000) Heavilymismatched#20.76(17835,624,5000) Heavilymismatched#30.69(20572,804,5000) areference.AllusedloadsarecarefullygeneratedbyMauryMicrowave'sload-pullsystem(MT986AandMT982B01)andtheirspecicationissummarizedinTable 5-1 Theloadestimationwasperformedseparatelyforslightlymismatchedandheavilymismatchedgroups.Duringtheexperiment,adierentsetofthreestatesofmatchingnetworkweremanuallychosentogivebetterestimationresults.Thechosenvoltagebiasesforthreedierentstatesforslightlymismatchedandheavilymismatchedgroupsare((0.32,2.56,4.48),(4.48,0,2.88),(4.8,0,0))and((0.32,4.16,3.52),(1.92,0,3.84),(3.2,0.32,0)),respectively. AsshowninFigure 5-9 ,theestimationonslightlymismatchedloadsshowedsmallererrorthanheavilymismatchedloads.Althoughtheaccuracyisnotgoodenoughtoreplaceanhigh-precisioninstrument,theroughestimateofmagnitudeandphaseoftheloadreectioncoecientisveryusefulfortheautomaticmatchingcontroltosetimmediateimpedancematching. 5.5.3ComparisonofCouplerandCoupler-FreeLoadEstimation Forthecomparisonofcouplerandcoupler-freeloadestimationmethods,themeasurementdatausedinthepriorresearchwork[ 25 ]wereusedtoevaluatetheestimationperformance. TwoloadestimationmethodswereevaluatedwithradicalcenterandleastsquarettingdescribedinSection 5.4 .Thefourmismatchedloadsusedinthepriorresearch 73
PAGE 74
ASmallmismatch(MSE=0.21) BLargemismatch(MSE=0.86) Figure5-9. LoadestimationusingestimatedS11fromhighimpedanceprobe Table5-2. Comparisonofcouplerandcoupler-freeloadestimationintermofmeansquareerror(MSE) MismatchedjS11jRadicalcenterLeastsquare loadCouplerCoupler-freeCouplerCoupler-free Mismatched#10.140.0568400.0508650.0135760.003665 Mismatched#20.450.1209090.1345960.0349830.061899 Mismatched#30.240.0356070.0692650.0099300.009934 Mismatched#40.140.0540440.0563330.0181380.035334 workwerealsousedforfaircomparison.TheexperimentalresultsaresummarizedinTable 5-2 intermsofmeansquareerror(MSE). Althoughmeansquareerror(MSE)ofthecoupler-freeloadestimationisslightlyhigherthanMSEofcouplerloadestimation,theestimationaccuracyoftwomethodsarecomparableforbothradicalcenterandleastsquarettingalgorithms,asshowninFigure 5-10 to 5-13 .Whenthecoupler-freeestimationisemployedtoanautomaticmatchingcontrolsystem,thesystemdimensionwillbedramaticallyreducedwithoutcompromisingthesystemperformance. 74
PAGE 75
ARadicalcenterwithcoupler BRadicalcenterwithoutcoupler CLeastsquarewithcoupler DLeastsquarewithoutcoupler Figure5-10. Couplerandcoupler-freeloadestimationwithmismatched#1 75
PAGE 76
ARadicalcenterwithcoupler BRadicalcenterwithoutcoupler CLeastsquarewithcoupler DLeastsquarewithoutcoupler Figure5-11. Couplerandcoupler-freeloadestimationwithmismatched#2 76
PAGE 77
ARadicalcenterwithcoupler BRadicalcenterwithoutcoupler CLeastsquarewithcoupler DLeastsquarewithoutcoupler Figure5-12. Couplerandcoupler-freeloadestimationwithmismatched#3 77
PAGE 78
ARadicalcenterwithcoupler BRadicalcenterwithoutcoupler CLeastsquarewithcoupler DLeastsquarewithoutcoupler Figure5-13. Couplerandcoupler-freeloadestimationwithmismatched#4 78
PAGE 79
5.6Conclusion Wepresentedanovelcoupler-freeloadestimationandalumped-elementreectometerintegratedwithahighimpedanceprobe.Theestimateofanunknownmismatchedloadcanhelpanautomaticmatchingcontrol(AMC)tosetimpedancematchingontheloadwithoutiterativesearch. Ahighimpedanceprobewaspresentedfortheintegratedon-chipRFtesting.Tworelationshipmodelstogetherwithestimationmethods,leastsquareandarticialneuralnetwork,achievedmeansquareerror0.000732and0.000366,respectively.Theleasesquarettinghasonlyfourttingparameterscomparedwithabout20parametersoftheneuralnetworkmodelandenablesfastertrainingwithoutcompromisingtheaccuracy.Theestimatedresultswerealsousedasaninputtothecoupler-freeloadestimation,whichdiscoveredanunknownloadfortheautomaticmatchingcontrol. Anovelcoupler-freeloadestimationwasproposedwithalumped-elementreectometer.Theproposedmethoddemonstratedthatitcoulddiscoveranunknownmismatchedloadandprovidewiththehighaccuracyenoughforanautomaticmatchingcontroltoexploit.Thecoupler-freeloadestimationremovedtheneedofanydistributedcomponentsandachievedcompactsystemdimensionwithoutcompromisingtheestimationaccuracy.Theexperimentalresultsshowedthattheproposedcoupler-freeestimationachievedthecomparableaccuracyasthepriorresearchworkadoptingacoupler.Theproposedloadestimationcanbeintegratedwithanon-iterativeautomaticmatchingcontrolsystemwithoutextracomponentsorperformancedegradation. 79
PAGE 80
CHAPTER6THREEPORTANDFOURPORTREFLECTOMETERS 6.1Overview Automaticorself-recongurableradiofrequency(RF)systemshavereceivedattentionduetotheirpotentialtoovercometheuncertaintyofRFsystemssuchasparasiticsandmanufacturingvariation.Recently,anautomaticmatchingcontrol(AMC)wasproposedtoprovidetheimpedancematchingoftheradiofrequency(RF)portsofadeviceundertest(DUT)oracellularphoneantenna[ 21 ][ 6 ].Also,loadestimationwasproposedtoovercometheiterativenatureoftheautomaticmatchingcontrolsystem[ 25 ]. Recongurablematchingnetworksinthepriorworkwerenotdesignedfortheloadestimation[ 1 ][ 5 ][ 6 ].Eventheloadestimationproposedin[ 25 ]usedthearbitrarilyreconguredmatchingnetworks,whosedesignwasnottargetedforloadestimationpurpose.Inthiswork,three-portandfour-portreectometersweredesignedtosupportboththeautomaticmatchingcontrolandtheloadestimationusinglumpedelementsandcompactpowerdetectorsforsizereductionandembeddedRFtesting. Inthenetworkanalyzerresearchcommunity,anewmethodusingdetectorpowerreadingsandsomemathematicalmanipulationwasintroducedtomeasureacomplexreectioncoecientofadeviceundertest(DUT).Thenewmethod,so-calledasix-portreectometer,wasrstproposedasanalternativeofaconventionalnetworkanalyzer[ 11 ].Later,four-portmultistatereectometerswerepresentedtoreducetherequirednumberofportsandparts[ 12 ][ 13 ][ 14 ].Recently,alumped-elementstructurewasalsopresentedfortheintegrationonachip[ 35 ]. Weproposethree-portandfour-portlumped-elementmultistatereectometersforbotharecongurablematchingnetworkandloadestimation.Carefullychosenq-pointscanimprovetheaccuracyoftheloadestimationanditcanstillrecongureamatchingnetworkfortheautomaticmatchingcontrol. 80
PAGE 81
A B Figure6-1. ReectometersA)Three-portB)Four-port 6.2MultistateReectometers AsshowninFigure 6-1 ,port1isfedwithasignalsourcewithimpedanceZ0,port2isconnectedwithadeviceundertest(DUT)havingacomplexreectioncoecient)]TJ /F6 7.97 Tf 449.18 -1.79 Td[(2(sometimesloadreectioncoecientdenotedby)]TJ /F4 7.97 Tf 259.77 -1.79 Td[(L)tobemeasured,andport3and4arepowerdetectorports. Similartoasix-portreectometeranalysis,powerreadingscanbeexpressedintermsofincidentandreectedwavepowersofport2.Thepowerreadingsofann-portreectometeriswrittenas bi=Aia2+Bib2;i=3;4;;n(6{1) 81
PAGE 82
Pi=jbij2=jb2j2jAij2j)]TJ /F6 7.97 Tf 7.31 -1.79 Td[(2)]TJ /F5 11.955 Tf 11.96 0 Td[(qij2;i=3;4;;n(6{2) where )]TJ /F6 7.97 Tf 7.32 -1.79 Td[(2=a2 b2;qi=)]TJ /F5 11.955 Tf 10.49 8.09 Td[(Bi Ai(6{3) ThecomplexreectioncoecientofaDUTcanbecalculatedbypowerdetectorreadingsandsomemathematicalmanipulation,whichisexplainedinmoredetailin[ 11 ]. Byaddinganetworkstatek,theoperationofmultistatereectometerscanbedescribedbythefollowingequation, j)]TJ /F6 7.97 Tf 7.32 -1.79 Td[(2)]TJ /F5 11.955 Tf 11.95 0 Td[(q(k)ij2=P(k)i jb(k)2j2jA(k)ij2;i=3;4;;n;k=1;2;3(6{4) wherekisanetworkstate(typically,setbydierentbiases)andthreenetworkstatesareneededinordertodeterminethecomplexreectioncoecientofaDUT. Especiallyforafour-portcase,port3isassignedasareferenceportwhichdependsonlyonb2(inotherwords,b3=B3b2orA3=0).Theequationcanbewrittenas j)]TJ /F6 7.97 Tf 7.32 -1.79 Td[(2)]TJ /F5 11.955 Tf 11.95 0 Td[(q(k)4j2=B(k)3 A(k)42P(k)4 P(k)3;k=1;2;3(6{5) IfallpowerdetectorsareperfectlymatchedtoZ0,thenthecalibrationconstants,Ai,Bi,andqi,areexpressedintermsofS-parametersandgivenby(refertoAppendix B forthederivation) A(k)i=S(k)21S(k)i2)]TJ /F5 11.955 Tf 11.95 0 Td[(S(k)22S(k)i1 S(k)21;B(k)i=S(k)i1 S(k)21;q(k)i=S(k)i1 S(k)22S(k)i1)]TJ /F5 11.955 Tf 11.96 0 Td[(S(k)21S(k)i2(6{6) Theabovecalibrationconstantscanbeobtainedbyeitheradirectmeasurementormodeling. Thereferenceportcanberealizedbyalumpedpowerdivider,whichwaspresentedfortheintegrationonachipin[ 35 ],asshowninFigure 6-2 .Inpriorwork,adirectionalcouplerwaswidelyusedforareferenceport,butthecompactlumpedpowerdividerispreferredforsizereductioninembeddedtest.Thescatteringmatrixofthedividerwith 82
PAGE 83
Figure6-2. Schematicofalumpedpowerdivider.Port3isacoupledport,whichcanbeusedasareferenceport. respecttoZ0isgivenby 0BBBB@b1b2b31CCCCA=26666666401 1+Za Z01 1+Zc Z01 1+Za Z0001 1+Zc Z0003777777750BBBB@a1a2b31CCCCA(6{7) Athree-portreectometerhasthesamebasicstructureasafour-portoneexceptthatareferenceportandapowerdividerdonotexist.Becauseareferenceportdoesnotexist,aninputsignalpowerhastobeknowntoareectometerforthenormalizationofwavepowers.Inotherwords,areferenceportcanbereplacedbyapredenedinputsignalpowerinsomecases,e.g.,testingRFpartsunderanautomatictestequipment(ATE).Hence,thewavepowerjb2jcanbeestimatedthroughtherelationshipbetweenjb2jandja1jifaninputpowerja1jispreciselydened.Therelationshipisdescribedbytheequationgivenby b2=S21a1+S22a2=S21a1+S22)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(Lb2(6{8) b2=S21 1)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(La1(6{9) Insummary,thethree-portreectometercanbeusedifthesignalsourceispreciselydenedandthefour-portreectometerisapplicabletoothergeneralcases. 83
PAGE 84
6.3TunableMatchingNetwork Thesimplestlumped-elementmatchingnetworkisL-type,butcannotsetimpedancematchingofallpointsontheSmithchart.T-and-typesareknownformatchingcapabilitywithanypointonaSmithchart[ 31 ].AlthoughT-and-typetopologiesareequivalentintermsofmatchingcapability,the-typeispreferredforimpedancematchingpurposebecauseithasasmallernumberoftunableelementsalongwithasignalpath,whichresultinlowerinsertionlossthanT-type. Eachbranchofthematchingnetworkhasaninductorconnectedwithavaractoreitherinparallelorseries.AsshowninFigure 6-3 ,thebasicstructureis-typebandpassltertunedatthecenterfrequencyof2.4GHz,wherecapacitorsarereplacedwithtunablevaractors. ThetunablecapacitorusedinthematchingnetworkisSkyworksSMV1405-074LF,whichcontainstwocommoncathodediodevaractorsinasinglepackage.Thecommoncathodeportisconnectedtoabiasvoltagesupplythroughachokecoil.Thetypicalcapacitanceofeachvaractorwithabias1Vis1.21(min)to1.45(max)pFandthecapacitancerangesfrom2.1pF(0.5V)to0.95pF(10V).ThecapacitanceversusreversevoltageisshowninFigure 5-3 .TheSPICEmodelusedinsimulationsisshowninFigure 5-4 AgilentADSwasusedtoperformS-parametersimulations.Accordingtothesimulationresults,thevaractorinserieswithaninductance3.3nHandinparallelwith1.8nHshowsthelargesttuningrangeat2.4GHzasshowninFigure 6-4 .Theinductancevalueof3.3nHand1.8nHwasusedforthedesignofthematchingnetwork. Anoninvasivemeasurementismandatorynottodisturbtheoriginaldesignofamatchingnetwork.Similartothepriorwork[ 35 ],ahighimpedancepowerdetectormeasuresaninternalnode.Thenoninvasivepowerdetectorisemulatedbyinsertinghighresistanceinserieswithameasurementportanddeembeddingtheeectoftheresistance.Asexplainedearlier,thefour-portreectometerneedsapowerreadingthatdependsonly 84
PAGE 85
A B Figure6-3. Recongurablethree-portmatchingnetworkA)SchematicB)ImplementationonFR4board 85
PAGE 86
A B Figure6-4. Tunableelementimpedancewithabiasfrom0Vto10V.Avaractorisinparallelandinserieswithaninductor.anddenoteS11andS21,respectively.A)Inserieswith3.3nHB)Inparallelwith1.8nH 86
PAGE 87
onthereectedwavepowerfromaDUT.Thereferenceportcanbeeasilyrealizedusingalumpedpowerdivider. 6.4LoadEstimationforMultistateReectometer Thematchingcapabilityofatunablematchingnetworkcanberepresentedbytheloadreectioncoecient)]TJ /F4 7.97 Tf 138.03 -1.79 Td[(Ltobematchedbythematchingnetwork.Thematchingcapabilityisderivedasfollows.Theinputreectioncoecient)]TJ /F4 7.97 Tf 332.03 -1.79 Td[(iniswrittenas )]TJ /F4 7.97 Tf 7.31 -1.8 Td[(in=S11+S12S21)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(L 1)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(L(6{10) Theequationcanberewrittenintermsoftheloadreectioncoecientas )]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L=S11)]TJ /F1 11.955 Tf 11.95 0 Td[()]TJ /F4 7.97 Tf 7.32 -1.79 Td[(in S11S22)]TJ /F5 11.955 Tf 11.95 0 Td[(S12S21)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(in(6{11) Thematchingcapabilityisderivedfromtheloadreectioncoecientbysettingtheinputreectioncoecienttozero. )]TJ /F4 7.97 Tf 7.32 -1.8 Td[(L)]TJ /F13 5.978 Tf 5.29 -1.22 Td[(in=0=S11 S11S22)]TJ /F5 11.955 Tf 11.96 0 Td[(S12S21(6{12) ThecoverageontheSmithchartspeciedthematchingcapabilityillustratesthedistributionoftheloadreectioncoecienttobematched. Accordingtothesix-portreectometerprinciple,anunknownloadisthesameasthepointintersectedbythreecircles,speciedbyacenter,so-calledq-point,andaradius.ThecircleisrepresentedbycalibrationconstantsdenedbyEquation 6{6 .Notethattheq-pointdoesnotchangeevenifamismatchedloadvaries,whereastheloadestimationmethodproposedin[ 25 ]haschangedthecirclecenterasamismatchedloadvaries.Theconstantq-pointenablestokeeptheoptimum-performancecriteriaforthemultistatereectometerovervariousmismatchedloads. Inreality,thethreecirclesrepresentedbycalibrationconstantsseldomintersectatapointduetothenon-idealeects.Thegeometriccenteroftheoverlapofthecirclesis 87
PAGE 88
estimatedbytheradicalcenterandleastsquareestimationmethodswidelyusedforthesix-portreectometer[ 27 ]. Theradicalcenteristheapproximationofthecenterofthreecircles'overlappedregion.Thecoordinatesoftheradicalcenteraregivenas x=R2L1)]TJ /F5 11.955 Tf 11.96 0 Td[(R2L2+x22 2x2 (6{13) y=R2L1)]TJ /F5 11.955 Tf 11.96 0 Td[(R2L3+x23+y23)]TJ /F1 11.955 Tf 11.96 0 Td[(2xx3 2y3 (6{14) Leastsquarettingcanenhancetheaccuracyofloadestimationespeciallywhenthreecirclesfailedtomeettheoptimum-performancecriteria.Theloadreectioncoecientcanbeobtainedbytheleastsquareequationas ^)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(L=argminXVjCircle(V))]TJ /F1 11.955 Tf 11.96 0 Td[()]TJ /F4 7.97 Tf 7.31 -1.8 Td[(Lj2(6{15) whereV=(V1;V2;V3)Tisabiasvoltagevectorforthreevaractors.NotethatCircle(V)isrepresentedbycalibrationconstantsdenedbyEquation 6{6 andthedistancebetweenacircleandapointisdenedasadistancebetweenatangentiallinetothecircleandthepoint. 6.5ExperimentalResults Thematchingcapabilityoftheproposedthree-portreectometer,denedasS11=(S11S22)]TJ /F5 11.955 Tf 12.28 0 Td[(S12S21),isshowninFigure 6-5 .Thematchingcapabilitywasmeasuredbychangingeachvaractorbiasfrom0Vto5.12Vin16levelsby0.32Vstep.ThematchingcapabilitycoversaunitcircleontheSmithchartcompletely,showingitscapabilityonanypassivemismatchedload. Oneofimportantcalibrationconstantsisq-pointgivenbytheequation qi=Si1 S22Si1)]TJ /F5 11.955 Tf 11.96 0 Td[(S21Si2(6{16) Theq-pointsweremeasuredwithrespecttothesamebiasrangeasusedforthematchingcapability.Themeasuredq-pointsaredistributedalongtheunitcircleasshowninFigure 88
PAGE 89
Table6-1. Summaryofmismatchedloads MismatchedloadjS11jat2.4GHzTunermotorposition Matched0.01(100,5000,5000) Slightlymismatched#10.13(16725,2262,5000) Slightlymismatched#20.38(17105,1424,5000) Slightlymismatched#30.20(20464,2228,5000) Heavilymismatched#10.78(15781,526,5000) Heavilymismatched#20.76(17835,624,5000) Heavilymismatched#30.69(20572,804,5000) 6-6 .Somesetofq-pointscanbeselectedfromthedistributioninordertosatisfytheoptimum-performancecriteriaforthemultistatereectometer.Asetofq-pointswascarefullyselectedforbetterestimationperformance. Theloadestimationusingthree-portreectometerwasperformedseparatelyonslightlyandheavilymismatchedloads.ThespecicationofmismatchedloadsisgiveninTable 6-1 .First,theS-parameteroftheinputportwasconvertedfromthehighimpedanceportemulatinghighimpedancepowerdetector.ThecalibrationconstantswereobtainedfromtheS-parametersthroughdirectmeasurementofthethree-portreectometerandconversionusingthehighimpedancepowerdetector.Theq-pointswerechosentoachievehigherestimationaccuracyfortwoseparateexperiments.Then,radicalcenterestimationwasappliedtoestimateanunknownloadreectioncoecient.Whenthemagnitudeoftheestimatedreectioncoecientislargerthanone,itisincorrectforpassivemismatchedloads.Inthiscase,themagnitudewassettoonewithkeepingthephase. AsshowninFigure 6-7 ,estimationofslightlymismatchedloadsshowedmuchsmallerestimationerrorthanheavilymismatchedloads.Themeansquareerrorforslightlyandheavilymismatchedloadsare0.09and0.80,respectively.Duetothelargerestimationerror,theestimatedloadreectioncoecientoftheheavilymismatchedloadsoftengobeyondaunitcircle.Asdescribed,themagnitudewassetto1andonlythephasewaskeptforimpedancematching.However,theestimatedphaseisstillquiteusefulbecause 89
PAGE 90
theestimatedmagnitudelargerthanoneoftenresultsfromheavilymismatchedload,whosemagnitudeisclosetoone.Thenextchapterwilldemonstratethatanautomaticmatchingcontrolcanachieveimpedancematchingusingtheestimatedphaseinformation. 6.6Conclusion Weproposedathree-portlumped-elementreectometerforbothloadestimationandimpedancematching.Theproposedreectometercanbeeasilyextendedtoafour-portreectometerbyaddingthesuggestedpowerdivider.Theloadestimationmethoddemonstratedthatthetunablemultistatereectometercanhelptheautomaticmatchingcontrol(AMC)toestimatealoadreectioncoecientaswellastosetimpedancematching.Thehighimpedancepowerdetectorreplacedthedistributedcouplerandrealizedthedramaticsizereductionofanautomaticmatchingcontrolsystemwithoutcompromisingtheloadestimationandmatchingcapability.ThematchingcapabilitycoveredcompletelytheunitcircleontheSmithchart.Althoughtheloadestimationresultisnotaccuratetobeusedasanhigh-precisioninstrument,theestimatedphaseinformationcanstillenabletheautomaticmatchingcontroltoachievefasterimpedancematchingonheavilymismatchedloads.Weareworkingtowardtheintegrationoftheproposedloadestimationandanovelautomaticmatchingcontrolsystemcapableofanimmediateimpedancematching. 90
PAGE 91
Figure6-5. Matchingcapabilityofthree-portreectometerat2.4GHz 91
PAGE 92
Figure6-6. Theq-pointdistributionofthree-portreectometerat2.4GHz 92
PAGE 93
A B Figure6-7. MultistatereectometerestimationusingestimatedS11fromhighimpedanceprobeA)Smallmismatch(MSE=0.09)B)Largemismatch(MSE=0.80) 93
PAGE 94
CHAPTER7AUTOMATICMATCHINGCONTROLUSINGLOADESTIMATION 7.1Overview Anautomaticmatchingcontrol(AMC)systemhasbeendevelopedtoautomatetime-consumingimpedancematchingprocedure[ 5 ][ 6 ][ 21 ].Theimpedancematchingoftheautomaticmatchingcontrolwasperformedbyreconguringatunablematchingnetworkuntilthelowestmismatchisachieved.Therecongurationwascontrolledbyheuristiciterativemethods,whichshowedagoodtrade-obetweensystemresponseandimpedancematchingaccuracy.Also,loadestimationreusingtheexistingtunablematchingnetworkoftheautomaticmatchingcontrolsystemwasproposedtofacilitatetheautomationofimpedancematching[ 25 ].Inthiswork,theloadestimationtechniquewasintegratedwiththeexistingautomaticmatchingcontrolsystemtoachieveimmediateimpedancematchingwithoutcompromisingmatchingaccuracy. Traditionalautomaticmatchingcontrolsystemsachievedimpedancematchingofunknownorevenvaryingmismatchedloadsbythefeedbackloopofatunablematchingnetwork,amismatchdetector,andmatchcontrolcircuit[ 21 ].Thefeedbackloopiscontrolledbyiterativemethodsofamatchcontrolcircuit,whichsearchesforthevalueoftuningelementsinatrial-and-errorprocess.However,thetrial-and-errorapproachsloweddownthesystemresponseandvariousheuristicapproacheshavebeendevelopedtoimprovethesystemresponsewithoutcompromisingmatchingcapability.Nevertheless,thesystemresponseoftheheuristicapproachesisstillproportionaltothecomplexityofthematchingnetworkandgetsslowerasmoretuningelementsandlevelsareadded. Wewilldemonstratethatanestimatedloadcanbeusedforamatchingcontrolcircuittoachieveimmediateimpedancematchingwithoutusingheuristicapproaches.Theproposedmatchingcontrolcanndthevalueoftuningelementsbyexaminingthecharacterizationtableofamatchingnetwork.Therefore,theprecisecharacterizationas 94
PAGE 95
wellastheloadestimationplayanimportantroleinthisimmediateimpedancematchingapproach. Variouscharacterizationmethodsforamicrowavedevicehavebeenreportedtoreducethemicrowavedesigncomplexity.Aneuralnetworkhasbeenwidelyusedtocharacterizemicrowavedevices,suchastheapproximationofS-parametersofBJTs[ 36 ]andmodelingparametersofmicrowavecomponents[ 9 ].Also,closedformequationwasalsopresentedforS-parametersofBJTs[ 37 ].Inthiswork,neuralnetworkmodelsandtheclosedformequationwereusedtoapproximatemeasuredS-parametersandtheaccuracyofthecharacterizationmethodswasevaluatedintermsofmeansquarederror(MSE)betweentrueandestimatedvalues. Theproposedmatchingcontrolconsistsoftwotasks.First,acharacterizationtableintermsoftuningelementswasbuiltfromthedirectmeasurementofthematchingnetworkorapproximationmodelssuchasaneuralnetworkandclosedformequations.Next,thevalueofthetuningelementswasfoundbyminimizingthedegreeofmismatch.Thedegreeofmismatchwascalculatedfromthemagnitudeoftheinputreectioncoecient.Theexperimentalresultsoftheimmediateimpedancematchingapproachwillbepresented. 7.2MatchingControlProcedures Thesamelumped-elementtunablematchingnetworkthatisusedforloadestimationwasusedtodevelopmatchingcontrolproceduressupportingloadestimationpresentedinChapter 5 and 6 .Thematchingnetworkhasa-typebandpassltertopologyandthreevaractordiodesastuningelements.Therecongurationofthematchingnetworkwasperformedbychangingthevaractorbiasvoltages.ItsmatchingcapabilitycoversallreectioncoecientswithintheunitcircleontheSmithchartat2.4GHz. Theloadreectioncoecient)]TJ /F4 7.97 Tf 162.1 -1.79 Td[(Lofadeviceundertest(DUT)isassumedtobeestimatedbyloadestimationtechniquespresentedinChapter 5 and 6 .WhentheDUTisconnectedtotheport2ofatunablematchingnetwork,theinputreectioncoecient)]TJ /F4 7.97 Tf 452.79 -1.79 Td[(in 95
PAGE 96
lookingintotheport1ofthematchingnetworkiswrittenasfollows. )]TJ /F4 7.97 Tf 7.31 -1.79 Td[(in=S11+S12S21)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L 1)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L(7{1) whereSijistheS-parameterfromportjtoportiofthematchingnetwork.NotethattheS-parametersarethefunctionofabiasvoltagevector,denotedbyv.Therefore,theinputreectioncoecientcanbeexplicitlywrittenasthefunctionofv. )]TJ /F4 7.97 Tf 7.31 -1.79 Td[(in(v)=S11(v)+S12(v)S21(v))]TJ /F4 7.97 Tf 11.87 -1.8 Td[(L 1)]TJ /F5 11.955 Tf 11.95 0 Td[(S22(v))]TJ /F4 7.97 Tf 11.86 -1.79 Td[(L;v=(v1;v2;;vn)T(7{2) whereTdenotesatransposeandvnisthenthbiasvoltage.TheloadreectioncoecientoftheDUTcanbederivedfromtheinputreectioncoecient. )]TJ /F4 7.97 Tf 7.31 -1.8 Td[(L=S11(v))]TJ /F1 11.955 Tf 11.95 0 Td[()]TJ /F4 7.97 Tf 7.32 -1.79 Td[(in(v) S11(v)S22(v))]TJ /F5 11.955 Tf 11.95 0 Td[(S12(v)S21(v))]TJ /F5 11.955 Tf 11.96 0 Td[(S22(v))]TJ /F4 7.97 Tf 11.87 -1.8 Td[(in(v)(7{3) Themismatchedloadtobematchedbythematchingnetworksetbyabiasvoltagev,denotedby)]TJ /F4 7.97 Tf 67.8 -1.8 Td[(M,istheloadreectioncoecientthatmakestheinputreectioncoecientzero. )]TJ /F4 7.97 Tf 7.31 -1.79 Td[(M(v)=)]TJ /F4 7.97 Tf 27.61 -1.79 Td[(L)]TJ /F13 5.978 Tf 5.28 -1.21 Td[(in=0=S11(v) S11(v)S22(v))]TJ /F5 11.955 Tf 11.95 0 Td[(S12(v)S21(v)(7{4) Now,letusdeneanoptimalbiasvoltagevector,denotedbybv,asabiasvoltagevectorthatminimizesthemagnitudeoftheinputreectioncoecient)]TJ /F4 7.97 Tf 370.59 -1.79 Td[(in,thedegreeofmismatch. bv=argminvj)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(in(v)j(7{5) Ifthebiasvoltage,thatminimizestheinputreectioncoecienttozero,canbefoundforallpossibleloadreectioncoecients,theoptimalbiasvoltagevectorbvcanbeexpressedusing)]TJ /F4 7.97 Tf 37.94 -1.79 Td[(Masfollows. bv=nv)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(in(v)=0o=nv)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(M(v)=)]TJ /F4 7.97 Tf 27.61 -1.8 Td[(Lo(7{6) Findingtheoptimalbiasvoltagecanbeexpressedasndingabiasvoltagewhose)]TJ /F4 7.97 Tf 430.26 -1.79 Td[(Misequalto)]TJ /F4 7.97 Tf 64.28 -1.79 Td[(L.Therefore,themappingtablebetween)]TJ /F4 7.97 Tf 214.77 -1.79 Td[(Mandvshouldbecalculated 96
PAGE 97
Figure7-1. Automaticmatchingcontrolsupportsloadestimation. toperformthebiassearchandthemappingtablecanbeconvertedfromthematchingnetworkcharacterizedbytheS-parameters.ThisprocedureisbasedonEquation 7{4 .TheS-parameterscanbeobtainedfromdirectmeasurementusingavectornetworkanalyzeroraneuralnetworkttingmodel.ThecharacterizationmethodswillbeintroducedinthenextSection. 7.3CharacterizationofMatchingNetwork ThecharacterizationofamatchingnetworkisaproceduretodiscovertheS-para-meterfunctionstobeusedtocalculateaninputreectioncoecientoramismatchedloadtobematched.TheS-parametersofthematchingnetworkweremeasuredusingavectornetworkanalyzerwhilechangingthebiasvoltage.Themeasurementpointsweredeterminedbythenumberofvaractorsandbiasvoltagelevels.Althoughthemorevoltagelevelscanproducemoreaccuratecharacterizationresults,16voltagelevelswerechosenasgoodtrade-obetweenmeasurementtimeandcharacterizationaccuracy.The 97
PAGE 98
characterizationresultswereconvertedtoaformofamappingtable,)]TJ /F4 7.97 Tf 365.45 -1.79 Td[(M(v),foreasyaccessandsearches. UnknownS-parametersbetweenmeasurementpointswereapproximatedbyamultivariatelinearinterpolation.Themultivariatelinearinterpolationisinterpolatingafunctionofmultiplevariablesonaregulargrid,asanextensionofalinearinterpolation.Itperformslinearinterpolationrstononedirection,thenagainintheotherdirection.Supposewewanttointerpolateavalueofanunknownfunctionfatthepoint(x;y).Thevalueofthefunctionfatfourneighborpointsonaregulargrid,f(x1;y1),f(x1;y2),f(x2;y1),andf(x2;y2),areassumedtobeknown,thentheinterpolationofthefunctionfatthepoint(x;y)canbewrittenasfollows. f(x;y)f(x1;y1) (x2)]TJ /F5 11.955 Tf 11.95 0 Td[(x1)(y2)]TJ /F5 11.955 Tf 11.95 0 Td[(y1)(x2)]TJ /F5 11.955 Tf 11.96 0 Td[(x)(y2)]TJ /F5 11.955 Tf 11.96 0 Td[(y)+f(x2;y1) (x2)]TJ /F5 11.955 Tf 11.95 0 Td[(x1)(y2)]TJ /F5 11.955 Tf 11.95 0 Td[(y1)(x)]TJ /F5 11.955 Tf 11.96 0 Td[(x1)(y2)]TJ /F5 11.955 Tf 11.96 0 Td[(y)+f(x1;y2) (x2)]TJ /F5 11.955 Tf 11.95 0 Td[(x1)(y2)]TJ /F5 11.955 Tf 11.95 0 Td[(y1)(x2)]TJ /F5 11.955 Tf 11.96 0 Td[(x)(y)]TJ /F5 11.955 Tf 11.95 0 Td[(y1)+f(x2;y2) (x2)]TJ /F5 11.955 Tf 11.95 0 Td[(x1)(y2)]TJ /F5 11.955 Tf 11.95 0 Td[(y1)(x)]TJ /F5 11.955 Tf 11.96 0 Td[(x1)(y)]TJ /F5 11.955 Tf 11.95 0 Td[(y1) (7{7) Iftheunknownfunctiontointerpolatehasasmoothsurfaceoverneighborpoints,thelinearinterpolationreducesthenumberofmeasurementpointssignicantlywithoutthelossofthecharacterizationdetail. TheothermethodtoestimateunknownS-parametersbetweenmeasurementpointsisanapproximationttingfunctiontothemeasuredS-parameters.Asdescribed,themeasuredS-parametersarethefunctionsofthebiasvoltagevectorv,givenasfollows. S(v)=264S11(v)S12(v)S21(v)S22(v)375(7{8) TheS-parameterfunctionswereapproximatedbyacurvettingmodel,suchasaclosedformandaneuralnetwork.First,anarticialneuralnetworkwasusedtoapproximate 98
PAGE 99
theS-parameterfunctions.Fourindependentneuralnetworkmodelsapproximatetwo-portS-parameterfunctions,S11(v),S12(v),S21(v),andS22(v).TheinputandoutputoftheneuralnetworkarebiasvoltagevectorandrealandimaginarypartsoftheS-parameter,respectively.Thefeed-forwardtopologywasusedwith15perceptronsinthehiddenlayer.Thewell-knownbackpropagationalgorithmwasusedtotraintheneuralnetworks. ThecascadednetworkiseasilyrepresentedbyABCD-parametersandthematchingnetworkwasdecomposedintobasiccomponents,suchasatransmissionline,seriesimpedance,andshuntadmittance.TherepresentationoftheABCD-parameterswasusedasclosed-formequations.TheABCD-parametersforthebasiccomponentsaregivenasfollows. 264cos(2)|Z0sin(2)|Y0sin(2)cos(2)375(transmissionline) (7{9) 2641Z01375(seriesimpedance) (7{10) 26410Y1375(shuntadmittance) (7{11) Theclosed-formABCD-parameterswerederivedfromthecascadednetworkofatransmissionline(1),anetwork(Y1;Z3;andY2),andatransmissionline(2).ThevaractorcapacitancewascalculatedfromthevaractorSPICEmodelusedinChapter 5 and 6 ABCD11=(cos(21)(1+Y2Z3)+|Z0sin(21)(Y1+Y2+Y1Y2Z3))cos(22)+|(cos(21)Z3+|Z0sin(21)(1+Y1Z3))Y0sin(22) (7{12) ABCD12=|(cos(21)(1+Y2Z3)+|Z0sin(21)(Y1+Y2+Y1Y2Z3))Z0sin(22)+(cos(21)Z3+|Z0sin(21)(1+Y1Z3))cos(22) (7{13) 99
PAGE 100
ABCD21=(|Y0sin(21)(1+Y2Z3)+cos(21)(Y1+Y2+Y1Y2Z3))cos(22)+|(|Y0sin(21)Z3+cos(21)(1+Y1Z3))Y0sin(22) (7{14) ABCD22=|(|Y0sin(21)(1+Y2Z3)+cos(21)(Y1+Y2+Y1Y2Z3))Z0sin(22)+(|Y0sin(21)Z3+cos(21)(1+Y1Z3))cos(22) (7{15) TheadmittanceY1;Y2andimpedanceZ3arethefunctionofbiasvoltagewhichdeterminesthevaractorcapacitance.Thetransmissionlinedelay1;2,parasiticparameters,ttingparametersofthevaractorSPICEmodelaretrainedbyanonlinearleastsquarettingalgorithm.TheABCD-parametersbasedttingmodelwasconvertedtoS-parametersforfaircomparisonwithdirectmeasurementandneuralnetworkmodel. 7.4BiasSearchforImpedanceMatching Thegoalofbiassearchistondtheoptimalbiasvoltagevectorgivenby bv=nv)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(in(v)=0o=nv)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(M(v)=)]TJ /F4 7.97 Tf 27.61 -1.8 Td[(Lo(7{16) Duetothediscretemeasurementdataofamappingtable)]TJ /F4 7.97 Tf 307.73 -1.79 Td[(M(v),itisnotalwayspossibletondtheoptimalbiasvoltagevector.Instead,wechoosethebiasvoltagevectorclosesttotheoptimalbiasvoltagevectorandthisprocedurecanbewrittenasfollows. bv=argminvj)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(M(v))]TJ /F1 11.955 Tf 11.96 0 Td[()]TJ /F4 7.97 Tf 7.31 -1.79 Td[(Lj(7{17) Fromnowon,theoptimalbiasvoltagevectorisredenedasthebiasminimizingthemagnitudebetween)]TJ /F4 7.97 Tf 110.39 -1.79 Td[(Mand)]TJ /F4 7.97 Tf 30.08 -1.79 Td[(L. Thebiassearchconsistsoftwosteps,coarseandnesearch.ThecoarsesearchwasperformedonthemappingtableconvertedfromthedirectmeasurementofS-parameters. 100
PAGE 101
Then,thenesearchwasperformedagainonthelinearinterpolationofavoxel 1 ofthebiasvoltagevectorfoundinthecoarsesearch. Thecostfunctionforbothcoarseandnesearchismeansquareerror(MSE)ofmagnitudebetween)]TJ /F4 7.97 Tf 110.39 -1.79 Td[(Mofeightbiasvoltagevectorsofavoxelandanestimatedload)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L.Notethatavoxelfor3Ddatahaseightvertexes,similartoacubic.Forexample,aunitvoxelconsistsofeightpoints,(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),and(1,1,1).Eightpointsofthevoxelforthecoarsesearchwereselectedfromthevoltagebiasusedforthedirectmeasurement.Oncethevoxelisfoundbythecoarsesearch,themappingtableofthevoxelisinterpolatedbymultivariatelinearinterpolationwithhigherresolution.Then,thenesearchisperformedontheinterpolateddata.Theproposedtwo-stepsearchreducestherequirednumberofmeasurementpointsandthememoryusagebythepartialinterpolation.Inaddition,thebiassearchcanbemadefasterusingbinarysearchalgorithmonsorteddata. 7.5CharacterizationResults TheS-parametersofatunablematchingnetworkarethefunctionofbiasvoltage.TheS-parametersandthecorrespondingbiasvoltagesshouldbemeasuredtogether.Duringthemeasurement,thebiasvoltageofeachvaractorwassetbya12bitdigital-to-analogconverter(DAC)from0to5Vby0.32Vstepin16levels.TheS-parametersweremeasuredusingavectornetworkanalyzerat2.4GHz.AllmeasurementprocedureswereautomatedbyaninstrumentcontrolprogramwritteninMATLAB.TheprogramrunninginahostcomputercommunicatedwithamicrocontrollerandaDACtosetbiasvoltage,thensentaGPIBcommandforthenetworkanalyzertomeasureS-parameters.Notethatthemicrocontrollerwilleventuallyreplacethehostcomputerandimplementallcontrolprograms.Duetotheslowresponseofthenetworkanalyzer,thenetworkanalyzerfailedtomeasurecorrectS-parametersimmediatelyafterchangingbiasvoltage. 1 Avoxelisabasicunitcellfor3Ddata,similartoapixelfor2Dpicture. 101
PAGE 102
ThecontrolprogrampausedforafewsecondsafterbiassettingsuchthatthenetworkanalyzercouldgetintosteadystateandmeasurecorrectS-parameters.Thebiasvoltageofthreevaractorswaschangedin16levels,thereforethetotalnumberofmeasurementsis161616=4096. FourneuralnetworkmodelsapproximatedS11,S12,S21,andS22,respectivelyandweretrainedbybackpropagationalgorithm.Theinput,hidden,andoutputlayersconsistof3biasvoltages,15hiddenperceptrons,and2(realandimaginary)partsofS-parameters,respectively.Becausethematchingnetworkisareciprocalpassivenetwork,theneuralnetworkmodelsforS12andS21shouldgeneratesimilaroutputsandcanbemergedintoasinglemodel.Duringtrainingtheneuralnetworks,10%oftheS-parameterdatawereusedforvalidationand10%fortestingpurposes. Theestimationresultsusingthetrainedneuralnetworkshowedgoodagreementwiththemeasurementdata,asshowninFigure 7-2 .Asexpected,theresultsforS12andS21werecloseenoughtomergeintoasinglemodel.Tochecktheoverttingproblemofneuralnetworks,thetrainednetworkswerecomparedusingtrainingandtestingdata.Thecomparedestimationresults,asshowninFigure 7-3 ,demonstratedthecomparableerrorforbothdata,thereforethetrainednetworkshavenooverttingproblemandcanapproximateunknownS-parameterdata. Fourclosed-formmodelsrepresentingS11,S12,S21,andS22,weretrainedbyanonlinearleastsquarealgorithm.Theestimationresultsusingthetrainedclosed-formmodelswerecomparedwiththeS-parametermeasurementdata.Theestimationerrorwashigherthantheneuralnetworkmodelsbyafewordersofmagnitude,asshowninFigure 7-4 .Toimprovetheclosed-formmodels,moreparasiticeectsandttingparameterscanbeadded,butmoreparametersmaycauseoptimizationproblemssuchasinitialparametersettingandlocalminima.Inthiswork,onlytheneuralnetworkmodelswereusedtoevaluatetheautomaticmatchingcontrol.Theestimationstatisticsofneuralnetworkandclosed-formmodelsaresummarizedinTable 7-1 and 7-2 102
PAGE 103
A B C D Figure7-2. Neuralnetworkmodelsfora2-portmatchingnetworkweretrainedbybackpropagation.A)S11B)S21C)S12D)S22 103
PAGE 104
A B C D Figure7-3. Neuralnetworkmodelsfora2-portmatchingnetworkweretestedby10%ofmeasurementdata.A)S11B)S21C)S12D)S22 104
PAGE 105
A B C D Figure7-4. Closedformmodelsfora2-portmatchingnetworkweretrainedbynonlinearleastsquaretting.A)S11B)S21C)S12D)S22 105
PAGE 106
Table7-1. Meansquareerror(MSE)ofneuralnetworkttingmodelsusingtrainingandtestingdata TypeTrainingdataTestingdata S111:9010)]TJ /F6 7.97 Tf 6.59 0 Td[(42:2510)]TJ /F6 7.97 Tf 6.59 0 Td[(4 S211:5010)]TJ /F6 7.97 Tf 6.59 0 Td[(41:6910)]TJ /F6 7.97 Tf 6.59 0 Td[(4 S121:7910)]TJ /F6 7.97 Tf 6.59 0 Td[(42:0610)]TJ /F6 7.97 Tf 6.59 0 Td[(4 S222:4910)]TJ /F6 7.97 Tf 6.59 0 Td[(42:8010)]TJ /F6 7.97 Tf 6.59 0 Td[(4 Table7-2. Averageerrorofclosed-formmodels TypeMeansquareerrorAverageerror S111:2010)]TJ /F6 7.97 Tf 6.59 0 Td[(21:1010)]TJ /F6 7.97 Tf 6.59 0 Td[(1 S215:9910)]TJ /F6 7.97 Tf 6.59 0 Td[(37:7410)]TJ /F6 7.97 Tf 6.59 0 Td[(2 S126:0010)]TJ /F6 7.97 Tf 6.59 0 Td[(37:7510)]TJ /F6 7.97 Tf 6.59 0 Td[(2 S227:9510)]TJ /F6 7.97 Tf 6.59 0 Td[(38:9210)]TJ /F6 7.97 Tf 6.59 0 Td[(2 TheS-parameterswereconvertedtoamappingtable,whichisusedforbiassearchandmatchingcontrol,andtheconversionprocedureisdescribedasfollows.Twodierentformsofthemappingtablewereusedinthiswork.Therstformofthemappingtable,asshowninTable 7-3 ,consistsofabiasvoltagevectorandthecorrespondingmismatchedloadtobematchedbyamatchingnetwork.ThemappingtablewasobtainedbyEquation 7{4 andS-parameterdata.However,themagnitudeofthemismatchedloadtobematchedmaybeoutoftheunitcircleontheSmithchartandthevalueisincorrectforapassivenetwork.Inthiscase,thecorrespondingbiasvoltagecannotbechosenforimpedancematchingofanymismatchedloadandcanberemovedfromthemappingtable.Thesecondformofthemappingtable,asshowninTable 7-4 ,isaninversemappingtable,wheremismatchedloadstobematchedareevenlydistributedontheSmithchartandthecorrespondingoptimalbiasvoltagevectorswerecalculatedthroughthetwo-stepsearch. 7.6ImpedanceMatchingResults Impedancematchingwasperformedbymatchingcontrolusingbiassearchonthemappingtable.Mismatchedloadswasestimatedbycoupler-freeandreectometerload 106
PAGE 107
Table7-3. Mappingtablebetweenbiasvoltageandamismatchedloadtobematched Biasvoltage(V)Mismatchedloadreectioncoecienttobematchedbymatchingnetwork 0.00,0.00,0.00+0:54)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:99 0.00,0.00,0.31+0:36)]TJ /F5 11.955 Tf 11.95 0 Td[(|1:08 0.00,0.00,0.63+0:13)]TJ /F5 11.955 Tf 11.95 0 Td[(|1:16 0.00,0.00,0.94)]TJ /F1 11.955 Tf 9.3 0 Td[(0:18)]TJ /F5 11.955 Tf 11.95 0 Td[(|1:22 0.00,0.00,1.26)]TJ /F1 11.955 Tf 9.3 0 Td[(0:60)]TJ /F5 11.955 Tf 11.95 0 Td[(|1:18 0.00,0.00,1.57)]TJ /F1 11.955 Tf 9.3 0 Td[(1:11)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:91 0.00,0.00,1.89)]TJ /F1 11.955 Tf 9.3 0 Td[(1:54)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:32 0.00,0.00,2.20)]TJ /F1 11.955 Tf 9.3 0 Td[(1:58+|0:55 0.00,0.00,2.52)]TJ /F1 11.955 Tf 9.3 0 Td[(1:13+|1:24 0.00,0.00,2.83)]TJ /F1 11.955 Tf 9.3 0 Td[(0:50+|1:53 ...... Table7-4. Inversemappingtablebetweenamismatchedloadtobematchedandbiasvoltage Mismatchedloadreectioncoecient tobematchedbymatchingnetworkBiasvoltage(V) +0:00(4.22,4.12,2.83) +0:50(2.61,2.01,4.72) +0:25+|0:43(4.72,3.46,2.99) )]TJ /F1 11.955 Tf 9.3 0 Td[(0:25+|0:43(2.30,2.20,2.01) )]TJ /F1 11.955 Tf 9.3 0 Td[(0:50+|0:00(1.89,1.67,1.64) )]TJ /F1 11.955 Tf 9.3 0 Td[(0:25)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:43(1.57,0.00,0.31) +0:25)]TJ /F5 11.955 Tf 11.96 0 Td[(|0:43(0.31,0.85,4.63) +1:00(1.35,0.13,0.06) +0:87+|0:50(0.00,0.00,4.72) +0:50+|0:87(2.64,1.98,0.82) +0:00+|1:00(0.50,0.09,0.35) )]TJ /F1 11.955 Tf 9.3 0 Td[(0:50+|0:87(0.09,0.09,0.00) )]TJ /F1 11.955 Tf 9.3 0 Td[(0:87+|0:50(3.15,3.78,4.60) )]TJ /F1 11.955 Tf 9.3 0 Td[(1:00(4.38,3.18,4.12) )]TJ /F1 11.955 Tf 9.3 0 Td[(0:87)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:50(2.36,4.72,3.15) )]TJ /F1 11.955 Tf 9.3 0 Td[(0:50)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:87(3.59,2.86,3.49) )]TJ /F1 11.955 Tf 9.3 0 Td[(0:00)]TJ /F5 11.955 Tf 11.95 0 Td[(|1:00(4.72,3.27,2.99) +0:50)]TJ /F5 11.955 Tf 11.96 0 Td[(|0:87(2.30,2.11,1.79) +0:87)]TJ /F5 11.955 Tf 11.96 0 Td[(|0:50(0.72,0.00,4.72) 107
PAGE 108
estimationmethods.Themappingtablewasconvertedfromthecharacterizationresultsandexaminedbythetwo-stepsearchforanoptimalbiasvoltage.Theoptimalbiasvoltagewasappliedtothematchingnetworkandthedegreeofmismatch,themagnitudeoftheinputreectioncoecient,wasmeasuredtoevaluatethecapabilityofimpedancematching.TheslightlyandheavilymismatchedloadsusedforloadestimationwereconguredasthesamewayusedinChapter 5 and 6 Theexperimentalresultsdemonstratedthatthematchingcontrolcouldachieveimmediateimpedancematchingthroughtheloadestimationandthemappingtable.TheoptimalbiasvoltageandthedegreeofmismatchweresummarizedinTable 7-5 7-6 7-7 ,and 7-8 Becausethereectometerloadestimationmethodachievedlowerestimationerrorthanthecoupler-freeloadestimation,theimpedancematchingbythereectometerresultedinthelowerdegreeofmismatch.Inaddition,S-parameterdataestimatedbytheneuralnetworkmodelsweresoclosetomeasurementdatathatthebiassearchandthecorrespondingimpedancematchingwerealmostidenticalconsideringthemeasurementerror. Theimpedancematchingresultsdemonstratedthattheneuralnetworkmodelcanbeusedfortheautomaticmatchingcontrol.Thenumberofcoecientsofeachneuralnetworkmodelsisaslowas20,becausetheinput,hidden,andoutputlayershave3,15,and2nodes.ComparedwiththelargesizeofS-parametermeasurementdata,163=4096,theneuralnetworkmodelismoreappropriateforcompactmicrocontrollersystemwithlimitedavailablememory. TheestimateofthemismatchedloadsandtheloadreectioncoecientmatchedbythematchingnetworkwereplottedinFigure 7-5 and 7-6 ,respectively.Duetothesmallestimationerror,afewhundredth,ofneuralnetworkmodels,themappingtableconvertedfromtheneuralnetworkmodelswasalmostidenticaltothatofmeasurement 108
PAGE 109
Table7-5. Impedancematchingresultsusingcoupler-freeloadestimationandS-parametermeasurementdata Mismatchedload)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(LOptimalbiasvoltage(V) Inputreectioncoecient)]TJ /F4 7.97 Tf 61.95 -1.79 Td[(inDegreeofmismatchj)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj +0:14)]TJ /F5 11.955 Tf 11.96 0 Td[(|0:77(2.03,0.17,4.39)+0:04+|0:160.16 +0:64+|0:40(4.71,0.02,4.71)+0:22+|0:090.24 )]TJ /F1 11.955 Tf 9.3 0 Td[(0:69+|0:04(0.02,4.71,2.38)+0:05)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:060.08 )]TJ /F1 11.955 Tf 9.3 0 Td[(0:01+|0:01(4.49,4.64,4.45)+0:03+|0:030.04 +0:12)]TJ /F5 11.955 Tf 11.96 0 Td[(|0:01(4.05,1.05,1.59)+0:02)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:010.02 +0:38+|0:06(3.70,0.08,4.45)+0:03+|0:010.03 )]TJ /F1 11.955 Tf 9.3 0 Td[(0:20)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:01(4.45,4.30,4.64)+0:01+|0:030.03 Average0.09 Table7-6. Impedancematchingresultsusingthree-portreectometerloadestimationandS-parametermeasurementdata Mismatchedload)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(LOptimalbiasvoltage(V) Inputreectioncoecient)]TJ /F4 7.97 Tf 61.95 -1.79 Td[(inDegreeofmismatchj)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj +0:14)]TJ /F5 11.955 Tf 11.96 0 Td[(|0:77(1.68,0.87,4.42)+0:05+|0:170.18 +0:64+|0:40(2.44,0.14,4.68))]TJ /F1 11.955 Tf 9.3 0 Td[(0:05)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:050.07 )]TJ /F1 11.955 Tf 9.3 0 Td[(0:69+|0:04(0.02,4.01,2.28))]TJ /F1 11.955 Tf 9.3 0 Td[(0:13+|0:030.13 )]TJ /F1 11.955 Tf 9.3 0 Td[(0:01+|0:01(4.23,4.30,4.20)+0:01+|0:000.01 +0:12)]TJ /F5 11.955 Tf 11.96 0 Td[(|0:01(4.11,0.87,1.68))]TJ /F1 11.955 Tf 9.3 0 Td[(0:02)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:010.02 +0:38+|0:06(3.20,0.02,4.64)+0:01)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:010.01 )]TJ /F1 11.955 Tf 9.3 0 Td[(0:20)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:01(4.49,4.20,4.71)+0:01+|0:020.02 Average0.06 Table7-7. Impedancematchingresultsusingcoupler-freeloadestimationandS-parametersestimatedbyneuralnetworkmodels Mismatchedload)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(LOptimalbiasvoltage(V) Inputreectioncoecient)]TJ /F4 7.97 Tf 61.95 -1.79 Td[(inDegreeofmismatchj)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj +0:14)]TJ /F5 11.955 Tf 11.96 0 Td[(|0:77(1.28,4.30,0.02)+0:01+|0:150.15 +0:64+|0:40(4.71,4.71,4.14)+0:21+|0:080.22 )]TJ /F1 11.955 Tf 9.3 0 Td[(0:69+|0:04(1.94,0.11,2.28)+0:01)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:060.06 )]TJ /F1 11.955 Tf 9.3 0 Td[(0:01+|0:01(4.61,1.34,4.49)+0:02+|0:050.05 +0:12)]TJ /F5 11.955 Tf 11.96 0 Td[(|0:01(4.61,1.46,4.23)+0:02)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:000.02 +0:38+|0:06(4.52,3.60,4.23)+0:03+|0:010.03 )]TJ /F1 11.955 Tf 9.3 0 Td[(0:20)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:01(4.11,0.08,4.71)+0:01+|0:030.03 Average0.08 109
PAGE 110
Table7-8. Impedancematchingresultsusingthree-portreectometerloadestimationandS-parametersestimatedbyneuralnetworkmodels Mismatchedload)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(LOptimalbiasvoltage(V) Inputreectioncoecient)]TJ /F4 7.97 Tf 61.95 -1.8 Td[(inDegreeofmismatchj)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(inj +0:14)]TJ /F5 11.955 Tf 11.96 0 Td[(|0:77(1.28,4.42,0.02)+0:05+|0:170.18 +0:64+|0:40(2.69,2.41,3.89))]TJ /F1 11.955 Tf 9.3 0 Td[(0:04)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:050.06 )]TJ /F1 11.955 Tf 9.3 0 Td[(0:69+|0:04(1.68,0.05,2.35))]TJ /F1 11.955 Tf 9.3 0 Td[(0:15+|0:030.15 )]TJ /F1 11.955 Tf 9.3 0 Td[(0:01+|0:01(4.20,0.74,4.45)+0:01+|0:000.01 +0:12)]TJ /F5 11.955 Tf 11.96 0 Td[(|0:01(4.42,1.90,4.55))]TJ /F1 11.955 Tf 9.3 0 Td[(0:01)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:000.01 +0:38+|0:06(4.33,3.07,4.11)+0:02)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:020.03 )]TJ /F1 11.955 Tf 9.3 0 Td[(0:20)]TJ /F5 11.955 Tf 11.95 0 Td[(|0:01(4.17,0.02,4.71)+0:02+|0:020.03 Average0.07 data.Therefore,theimpedancematchingresultsfrombothmappingtableswerealsoalmostidentical. Thematchingcontrolachievedthelowdegreeofmismatch,-26dBorless,fortheslightlymismatchedloads.Thelargerestimationerrorfortheheavilymismatchedloadsresultsinthelargerdegreeofmismatch,around-12dBorless,dependingontheaccuracyofloadestimation.Thematchingcontrolcanbeintegratedwithoneoftheloadestimationmethods.Thecoupler-freeloadestimationcanbeimplementedinacompactsize,whereasthereectometerloadestimationcanachievebetterimpedancematchingforheavilymismatchedloads. 7.7Conclusion Wedemonstratedthatanautomaticmatchingcontrolsystemcouldachieveanimmediateimpedancematchingbyutilizingloadestimationtechniquesandthecharacterizationofamatchingnetwork.Thematchingnetworkwascharacterizedbyneuralnetworkmodelsandclosed-formequationsaswellasS-parametermeasurementdata.Theneuralnetworkmodelsachievedthecomparablecharacterizationaccuracywithmuchfewercoecientsthanmeasurementdata.Thesmallernumberofcoecientscanbeeasilystoredandimplementedbyacompactmicrocontrollerwithbuilt-inmemory. 110
PAGE 111
A B C D Figure7-5. S-parametersfromvectormeasurementandneuralnetworkmodelwerecomparedintermsofcoupler-freeloadestimationassistedmatchingcontrol.A)VectormeasurementbylargemismatchB)NeuralnetworkmodelbylargemismatchC)VectormeasurementbysmallmismatchD)Neuralnetworkmodelbysmallmismatch 111
PAGE 112
A B C D Figure7-6. S-parametersfromvectormeasurementandneuralnetworkmodelwerecomparedintermsofreectometerloadestimationassistedmatchingcontrol.A)VectormeasurementbylargemismatchB)NeuralnetworkmodelbylargemismatchC)VectormeasurementbysmallmismatchD)Neuralnetworkmodelbysmallmismatch 112
PAGE 113
Thebiassearchwasperformedonamappingtablebetweenthemismatchedloadandbiasvoltage,whichapproximatedtheinversefunctionofthemismatchedloadtobematched.Thetwo-stepcoarseandnesearchalgorithmcouldachievethesamedegreeofmismatchwithafewernumberofmeasurementdatapointsthanone-stepfullsearch.Theexperimentalresultsshowedthatthedegreeofmismatchcouldbeaslowas-12dBforheavilymismatchedloadsand-26dBforslightlymismatchedloads.Notethatthebiassearchcanbemadefasterbyusingbinarysearchandthesortedmappingtable. Althoughthematchingcontrolandmatchingnetworkinthisworkweredevelopedforon-chipembeddedtestsystems,theycanbeappliedtodierentmatchingnetworks,suchasdistributedorbroadband.Inaddition,loadestimationandmicrowavecharacterizationwillgetmoreattentionwithariseofautomatedRFsystems,becausetheautomaticmatchingcontrolsystemutilizingloadestimationneedstoknowthecharacteristicsofamatchingnetwork. 113
PAGE 114
CHAPTER8CONCLUSION Theimpedancematchingofradiofrequency(RF)portsofasocketeddeviceundertest(DUT),whichusuallysuersfromapogopinconnection,poorlydenedRFtolerance,andmanufacturingvariation,isdicult,time-consuming,andempiricalprocess.Inthiswork,arecongurablematchingnetworkworkswithadaptivematchingcontroltoachievetheimpedancematchingandtoreducetheundesiredeects.Inaddition,thematchingcontrolisassistedbythecharacterizationandmicrowavemodelingofthematchingnetwork. BackgroundtheorypresentedinChapter 2 providesthebasicofalumpedimpedancematching,variousnonlinearmicrowavemodelingtechniques,andthefundamentalsofsix-portandfour-portreectometers. Anautomaticmatchingcontrol(AMC)presentedinChapter 3 facilitatestheimpedancematchingoverabroadbandfrequencyusingamicrostripbandpasslter.Themicrostriplterconsistsofvestubsandthreevaractorsconnectedtotheendofthestub.Thecenterfrequencyandthebandwidthare3.5GHzand2GHz,respectivelyandtheinsertionlossoverthepassbandisaslowas2dB.Theproposedsystememploysagreedysearchalgorithmtodeterminethevaractorbiasesforimpedancematchoveralargefractionalbandwidth71%=2.5/3.5.Thegreedyalgorithmoutperformsbrute-forceandsingle-stepalgorithmsintermsofthenumberoftrialsandtheavailablebandwidth,respectively.Theworkdemonstratesthefeasibilityoftheautomaticmatchingcontrolcircuitoverthebroadbandfrequencies. LoadestimationtechniquespresentedinChapter 4 exploitstheprincipleofasix-portreectometertocalculatethecomplexreectioncoecientofaDUTfromthreewavepowerreadings.Threewavepowerdetectorsarerealizedbychangingvaractorbiasesandmeasuringreectedwavepowerusingascalarnetworkanalyzer.Theperformanceoftheestimationisevaluatedbythemeansquareerror(MSE)betweentrueandestimated 114
PAGE 115
reectioncoecients.ItdemonstratesthattunablematchingnetworksandcompactpowerdetectorscanbeusedtoestimatetheloadreectioncoecientofaDUTfortheautomaticmatchingcontrol(AMC)system. Acoupler-freeloadestimationpresentedinChapter 5 demonstratesthedramaticreductionoftheautomaticmatchingcontrolsystemsizebyreplacingadistributedcouplerwithahighimpedanceprobe.Thecoupler-freeloadestimationdiscoversanunknownloadfromthepowerofthecombinedincidentandreectedwavesmeasuredbyahighimpedanceprobe.Theexperimentalresultsshowthatthecouplerandcoupler-freeloadestimationmethodsarecomparableintermsofestimationperformance. Thelumped-elementreectometerpresentedinChapter 6 isdesignednotonlyforanautomaticmatchingcontrol,butalsousedasamultistatereectometerforloadestimation.Alosslesssectionnetworkisusedasanetworktopologyfortheproposedthree-port.Thefour-portreectometercanbeextendedbyaddingareferenceporttothethree-portreectometerandthereferenceportcanberealizedwitharesistivepowerdivider.Thethree-portmatchingnetworkwasfabricatedonaFR4printedcircuitboard(PCB)usinglumpedchipinductorsandvaractors.ThereectometeranalysisandexperimentalresultshowedthatthematchingcapabilitycouldcoveraunitcircleontheSmithchartandprovidetheoptimumperformancecriteriaofthematchingnetwork. ThenovelmatchingcontrolandcharacterizationmethodspresentedinChapter 7 aredevelopedtosupportloadestimationtechniques.AtunablematchingnetworkischaracterizedbyvectormeasurementorneuralnetworkmodelsofS-parameters.TheS-parameterdataareconvertedtoamappingtableofaloadreectiontobematchedbythematchingcontrol.Theequationofthemappingtableisderivedfromtheanalysisofabiasvoltagevector,aninputreectioncoecient,andaloadreectioncoecient.Theoptimalbiasminimizingthedegreeofmismatchisdiscoveredbytwo-stepbiassearch.Thetwo-stepsearchperformscoarsesearchonthemappingtablefollowedbynesearchonthemultivariatelinearinterpolationofthemappingtable.Theexperimentalresults 115
PAGE 116
showthattheneuralnetworkttingmodelachievescomparableaccuracyasvectormeasurementandthattheimpedancematchingbytheproposedmatchingcontrolisaslowas-12and-26dBforheavilyandslightlymismatchedloads,respectively. Oneofthemostchallengingtasksinimplementingtheautomaticmatchingcontrolsystemwithloadestimationisthefullvectormeasurementofthematchingnetwork.IncaseoftheembeddedRFtestsystemwheretheembeddedmatchingnetworkhasnoexternalnode,itisoftenverydicult,evenifnotimpossible,tomeasureusingaregularvectornetworkanalyzer.Thedevelopmentofameasurementprocedureusingonlyexistingpowerdetectorswillbevaluable.Someresearchershaveproposedacalibrationmethodusingonlypowerdetectors[ 38 ]andthecalibrationofmultistateperturbation-two-port(PTP)[ 39 ].Themeasurementoftheembeddedmatchingnetworkcanbeimplementedinsimilarway.Inaddition,althoughsingle-endedRFsystemwasassumedinthiswork,theproposedworkcanbeextendedtoadierentialRFsystem.ThepreliminaryanalysisofaninputreectioncoecientofdierentialRFsystemisprovided(Appendix C and D ). 116
PAGE 117
APPENDIXADERIVATIONOFLOADIMPEDANCECIRCLEEQUATIONUSINGINPUTIMPEDANCEMAGNITUDE Acomplexinputreectioncoecientiswrittenintermsoftwo-portS-parametersSijandaloadreectioncoecient)]TJ /F4 7.97 Tf 170.55 -1.8 Td[(Las )]TJ /F4 7.97 Tf 7.31 -1.79 Td[(in=S11+S12S21)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L 1)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L(A{1) Themagnitudeoftheinputreectioncoecientbecomes j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj=S11+S12S21)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(L 1)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(L(A{2) j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj=S11)]TJ /F5 11.955 Tf 11.96 0 Td[(S11S22)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L+S12S21)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L 1)]TJ /F5 11.955 Tf 11.95 0 Td[(S22)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L(A{3) Bytakingthesquareofbothsides,theequationiswrittenas j1)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(Lj2j)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(inj2=jS11)]TJ /F1 11.955 Tf 11.96 0 Td[()]TJ /F4 7.97 Tf 17.07 -1.8 Td[(Lj2(A{4) where =S11S22)]TJ /F5 11.955 Tf 11.95 0 Td[(S12S21(A{5) Theequationismanipulatedasfollows. j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2+jS22j2j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(Lj2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(Lj)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F9 7.97 Tf 7.32 4.34 Td[(Lj)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj2=jS11j2+jj2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(Lj2)]TJ /F1 11.955 Tf 11.95 0 Td[()]TJ /F4 7.97 Tf 17.07 -1.79 Td[(LS11)]TJ /F1 11.955 Tf 11.96 0 Td[()]TJ /F9 7.97 Tf 7.31 4.34 Td[(LS11 (A{6) where*denotesacomplexconjugate. (jS22j2j)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(inj2)-221(jj2))]TJ /F4 7.97 Tf 11.87 -1.8 Td[(L)]TJ /F9 7.97 Tf 7.32 4.34 Td[(L)]TJ /F1 11.955 Tf 11.96 0 Td[((S22j)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(inj2)]TJ /F1 11.955 Tf 11.95 0 Td[(S11))]TJ /F4 7.97 Tf 11.86 -1.8 Td[(L)]TJ /F1 11.955 Tf 9.3 0 Td[((S22j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 11.95 0 Td[(S11))]TJ /F9 7.97 Tf 11.87 4.34 Td[(L=jS11j2)-222(j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2 (A{7) )]TJ /F4 7.97 Tf 7.32 -1.79 Td[(L)]TJ /F9 7.97 Tf 7.31 4.34 Td[(L)]TJ /F1 11.955 Tf 13.15 8.09 Td[((S22j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 11.95 0 Td[(S11))]TJ /F4 7.97 Tf 11.87 -1.79 Td[(L+(S22j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 11.95 0 Td[(S11))]TJ /F9 7.97 Tf 11.87 4.34 Td[(L jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)-222(jj2=jS11j2)-222(j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2 jS22j2j)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(inj2)-221(jj2 (A{8) 117
PAGE 118
)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(L)]TJ /F1 11.955 Tf 13.15 8.08 Td[((S22j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 11.96 0 Td[(S11) jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(inj2)-222(jj22=jS11j2)-222(j)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(inj2 jS22j2j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj2)-221(jj2+S22j)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(inj2)]TJ /F1 11.955 Tf 11.95 0 Td[(S11 jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)-222(jj22 (A{9) =jS11j2jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)-222(jj2jS11j2)-222(jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj4+jj2j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj2 jjS22j2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)-222(jj2j2+jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj4+jj2jS11j2)]TJ /F1 11.955 Tf 11.95 0 Td[(S11S22j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 11.95 0 Td[(S11S22j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2 jjS22j2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)-222(jj2j2 (A{10) =jS11j2jS22j2+jj2)]TJ /F1 11.955 Tf 11.95 0 Td[(S11S22)]TJ /F1 11.955 Tf 11.95 0 Td[(S11S22 jjS22j2j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj2)-221(jj2j2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2 (A{11) =S11S22)]TJ /F1 11.955 Tf 11.95 0 Td[( jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(inj2)-222(jj22j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj2 (A{12) =S12S21 jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(inj2)-222(jj22j)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(inj2 (A{13) Now,theequationrepresentsacircleontheSmithchart. )]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L)]TJ /F1 11.955 Tf 13.15 8.09 Td[((S22j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 11.96 0 Td[(S11) jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)-222(jj2=S12S21 jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj2)-222(jj2j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(inj (A{14) Thecenterandradiusofthecirclearegivenby CL=(S22j)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(inj2)]TJ /F1 11.955 Tf 11.95 0 Td[(S11) jS22j2j)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(inj2)-221(jj2(center) (A{15) RL=S12S21 jS22j2j)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(inj2)-222(jj2j)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(inj(radius) (A{16) Whentheincidentandreectedwavesarecombinedundertheabsenceofacoupler,themeasuredpoweroftheinputport(P1)isexpressedas pin=ja1+b1j2=ja1j2j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2(A{17) 118
PAGE 119
Therefore,j1+)]TJ /F4 7.97 Tf 29.79 -1.79 Td[(injinsteadofj)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(injcanbeusedtoestimatealoadimpedance.Thecomplexinputreectioncoecientisrewrittenas 1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(in=1+S11+S12S21)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L 1)]TJ /F5 11.955 Tf 11.95 0 Td[(S22)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L(A{18) Themagnitudeoftheinputreectioncoecientbecomes j1+)]TJ /F4 7.97 Tf 27.58 -1.8 Td[(inj=1+S11+S12S21)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(L 1)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.32 -1.8 Td[(L(A{19) j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj=1+S11)]TJ /F1 11.955 Tf 11.95 0 Td[((1+S11)S22)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L+S12S21)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L 1)]TJ /F5 11.955 Tf 11.95 0 Td[(S22)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L(A{20) Bytakingthesquareofbothsides,theequationiswrittenas j1)]TJ /F5 11.955 Tf 11.95 0 Td[(S22)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(Lj2j1+)]TJ /F4 7.97 Tf 27.59 -1.8 Td[(inj2=j1+S11)]TJ /F1 11.955 Tf 11.96 0 Td[((S22+))]TJ /F4 7.97 Tf 33.38 -1.8 Td[(Lj2(A{21) where =S11S22)]TJ /F5 11.955 Tf 11.95 0 Td[(S12S21(A{22) Theequationismanipulatedasfollows. j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2+jS22j2j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(Lj2j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(Lj1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F9 7.97 Tf 7.32 4.34 Td[(Lj1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2=j1+S11j2+jS22+j2j)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(Lj2)]TJ /F1 11.955 Tf 11.96 0 Td[((S22+))]TJ /F4 7.97 Tf 33.39 -1.79 Td[(L(1+S11))]TJ /F1 11.955 Tf 11.96 0 Td[((S22+))]TJ /F9 7.97 Tf 11.87 4.34 Td[(L(1+S11) (A{23) where*denotesacomplexconjugate. (jS22j2j1+)]TJ /F4 7.97 Tf 27.58 -1.8 Td[(inj2)-222(jS22+j2))]TJ /F4 7.97 Tf 11.87 -1.8 Td[(L)]TJ /F9 7.97 Tf 7.32 4.34 Td[(L)]TJ /F1 11.955 Tf 11.96 0 Td[((S22j1+)]TJ /F4 7.97 Tf 27.58 -1.8 Td[(inj2)]TJ /F1 11.955 Tf 11.96 0 Td[((S22+)(1+S11)))]TJ /F4 7.97 Tf 16.42 -1.8 Td[(L)]TJ /F1 11.955 Tf 9.29 0 Td[((S22j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 11.95 0 Td[((S22+)(1+S11)))]TJ /F9 7.97 Tf 16.42 4.34 Td[(L=j1+S11j2)-222(j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2 (A{24) )]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L)]TJ /F9 7.97 Tf 7.31 4.34 Td[(L)]TJ /F1 11.955 Tf 13.15 8.09 Td[((S22j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 11.96 0 Td[((S22+)(1+S11)))]TJ /F4 7.97 Tf 16.42 -1.79 Td[(L+(S22j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 11.95 0 Td[((S22+)(1+S11)))]TJ /F9 7.97 Tf 16.42 4.34 Td[(L jS22j2j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2)-222(jS22+j2=j1+S11j2)-222(j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2 jS22j2j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)-222(jS22+j2 (A{25) 119
PAGE 120
)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(L)]TJ /F1 11.955 Tf 13.15 8.08 Td[((S22j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 11.95 0 Td[((S22+)(1+S11)) jS22j2j1+)]TJ /F4 7.97 Tf 27.59 -1.8 Td[(inj2)-221(jS22+j22=j1+S11j2)-221(j1+)]TJ /F4 7.97 Tf 27.59 -1.8 Td[(inj2 jS22j2j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)-222(jS22+j2+S22j1+)]TJ /F4 7.97 Tf 27.59 -1.8 Td[(inj2)]TJ /F1 11.955 Tf 11.95 0 Td[((S22+)(1+S11) jS22j2j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)-222(jS22+j22 (A{26) =j1+S11j2jS22j2j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)-222(jS22+j2j1+S11j2)-221(jS22j2j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj4+jS22+j2j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2 jjS22j2j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)-222(jS22+j2j2+jS22j2j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj4+jS22+j2j1+S11j2 jjS22j2j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)-222(jS22+j2j2)]TJ /F1 11.955 Tf 10.5 8.09 Td[((S22+)(1+S11)S22j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2+(S22+)(1+S11)S22j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2 jjS22j2j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)-222(jS22+j2j2 (A{27) =j1+S11j2jS22j2+jS22+j2 jjS22j2j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2)-222(jS22+j2j2j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 10.5 8.09 Td[((S22+)(1+S11)S22+(S22+)(1+S11)S22 jjS22j2j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)-222(jS22+j2j2j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2 (A{28) =(1+S11)S22)]TJ /F1 11.955 Tf 11.95 0 Td[((S22+) jS22j2j1+)]TJ /F4 7.97 Tf 27.59 -1.8 Td[(inj2)-222(jS22+j22j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj2 (A{29) =S12S21 jS22j2j1+)]TJ /F4 7.97 Tf 27.59 -1.8 Td[(inj2)-222(jS22+j22j1+)]TJ /F4 7.97 Tf 27.59 -1.8 Td[(inj2 (A{30) Now,theequationrepresentsacircleontheSmithchart. )]TJ /F4 7.97 Tf 7.32 -1.79 Td[(L)]TJ /F1 11.955 Tf 13.15 8.09 Td[((S22j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)]TJ /F1 11.955 Tf 11.96 0 Td[((S22+)(1+S11)) jS22j2j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)-222(jS22+j2=S12S21 jS22j2j1+)]TJ /F4 7.97 Tf 27.58 -1.79 Td[(inj2)-222(jS22+j2j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj (A{31) Thecenterandradiusofthecirclearegivenby CL=(S22j1+)]TJ /F4 7.97 Tf 27.58 -1.8 Td[(inj2)]TJ /F1 11.955 Tf 11.96 0 Td[((S22+)(1+S11)) jS22j2j1+)]TJ /F4 7.97 Tf 27.58 -1.8 Td[(inj2)-222(jS22+j2(center) (A{32) RL=S12S21 jS22j2j1+)]TJ /F4 7.97 Tf 27.59 -1.8 Td[(inj2)-222(jS22+j2j1+)]TJ /F4 7.97 Tf 27.59 -1.79 Td[(inj(radius) (A{33) 120
PAGE 121
APPENDIXBTHREE-PORTANDFOUR-PORTMULTISTATEREFLECTOMETERS Port3isterminatedwithadetectorwhoseloadreectioncoecientis)]TJ /F6 7.97 Tf 374.13 -1.79 Td[(3.Theincidentwavepowera1iswrittenas a3=)]TJ /F6 7.97 Tf 19.74 -1.8 Td[(3b3(B{1) Therefore,three-portS-parameterequationscanbeexpressedinamatrixformas 0BBBB@b1b2b31CCCCA=266664S11S12S13)]TJ /F6 7.97 Tf 7.31 -1.8 Td[(3S21S22S23)]TJ /F6 7.97 Tf 7.31 -1.79 Td[(3S31S32S33)]TJ /F6 7.97 Tf 7.31 -1.79 Td[(33777750BBBB@a1a2b31CCCCA(B{2) Theincidentpowerwaveintoaloadterminatingtheport3,b3iswrittenas b3=S31a1+S32a2+S33)]TJ /F6 7.97 Tf 7.31 -1.8 Td[(3b3(B{3) b3=1 1)]TJ /F5 11.955 Tf 11.96 0 Td[(S33)]TJ /F6 7.97 Tf 7.32 -1.79 Td[(3(S31a1+S32a2)(B{4) Also,theincidentpowerwaveintotheport1isgivenby a1=1 S21()]TJ /F5 11.955 Tf 9.3 0 Td[(S22a2+b2)]TJ /F5 11.955 Tf 11.96 0 Td[(S23)]TJ /F6 7.97 Tf 7.31 -1.8 Td[(3b3)(B{5) BypluggingEquation B{5 intoEquation B{4 ,theequationbecomes b3=1 1)]TJ /F5 11.955 Tf 11.95 0 Td[(S33)]TJ /F6 7.97 Tf 7.31 -1.79 Td[(3S31)]TJ /F5 11.955 Tf 10.49 8.09 Td[(S22 S21a2+1 S21b2)]TJ /F5 11.955 Tf 13.15 8.09 Td[(S23)]TJ /F6 7.97 Tf 7.31 -1.79 Td[(3 S21b3+S32a2 (B{6) 1+S23S31)]TJ /F6 7.97 Tf 7.31 -1.79 Td[(3 S21(1)]TJ /F5 11.955 Tf 11.96 0 Td[(S33)]TJ /F6 7.97 Tf 7.32 -1.79 Td[(3)b3=1 1)]TJ /F5 11.955 Tf 11.96 0 Td[(S33)]TJ /F6 7.97 Tf 7.32 -1.79 Td[(3S32)]TJ /F5 11.955 Tf 13.15 8.09 Td[(S22S31 S21a2+S31 S21b2 (B{7) Now,thereectedpowerwaveb3iswrittenas b3=S21(1)]TJ /F5 11.955 Tf 11.95 0 Td[(S33)]TJ /F6 7.97 Tf 7.31 -1.79 Td[(3) S21(1)]TJ /F5 11.955 Tf 11.96 0 Td[(S33)]TJ /F6 7.97 Tf 7.32 -1.8 Td[(3)+S23S31)]TJ /F6 7.97 Tf 7.31 -1.8 Td[(3S21S32)]TJ /F5 11.955 Tf 11.95 0 Td[(S22S31 S21(1)]TJ /F5 11.955 Tf 11.96 0 Td[(S33)]TJ /F6 7.97 Tf 7.31 -1.8 Td[(3)b2a2 b2)]TJ /F5 11.955 Tf 44.7 8.08 Td[(S31 S22S31)]TJ /F5 11.955 Tf 11.96 0 Td[(S21S32=S21S32)]TJ /F5 11.955 Tf 11.96 0 Td[(S22S31 S21(1)]TJ /F5 11.955 Tf 11.96 0 Td[(S33)]TJ /F6 7.97 Tf 7.32 -1.8 Td[(3)+S23S31)]TJ /F6 7.97 Tf 7.32 -1.8 Td[(3b2()]TJ /F4 7.97 Tf 11.86 -1.8 Td[(L)]TJ /F5 11.955 Tf 11.95 0 Td[(q3) (B{8) 121
PAGE 122
where )]TJ /F4 7.97 Tf 7.31 -1.8 Td[(L=a2 b2q3=S31 S22S31)]TJ /F5 11.955 Tf 11.95 0 Td[(S21S32(B{9) Tosimplifytheaboveequations,supposethatthedetectorportismatched()]TJ /F6 7.97 Tf 402.07 -1.79 Td[(3=0).Theequationsissimpliedas b3)]TJ /F16 5.978 Tf 5.29 -1.1 Td[(3=0=S21S32)]TJ /F5 11.955 Tf 11.95 0 Td[(S22S31 S21b2()]TJ /F4 7.97 Tf 11.87 -1.79 Td[(L)]TJ /F5 11.955 Tf 11.96 0 Td[(q3)(B{10) andalsoexpressedintermsofA3andB3as b3=A3a2+B3b2(B{11) where A3=S21S32)]TJ /F5 11.955 Tf 11.96 0 Td[(S22S31 S21B3=S31 S21(B{12) Also,thereectedwavepowerb2issimpliedas b2)]TJ /F16 5.978 Tf 5.29 -1.11 Td[(3=0=S21a1+S22)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(Lb2(B{13) b2=S21 1)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(La1(B{14) BypluggingEquation B{14 intoEquation B{10 ,b3canbesimpliedas b3=S21S32)]TJ /F5 11.955 Tf 11.96 0 Td[(S22S31 S21b2()]TJ /F4 7.97 Tf 11.87 -1.8 Td[(L)]TJ /F5 11.955 Tf 11.96 0 Td[(q3)=S21S32)]TJ /F5 11.955 Tf 11.96 0 Td[(S22S31 S21S21 1)]TJ /F5 11.955 Tf 11.96 0 Td[(S22)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(La1()]TJ /F4 7.97 Tf 11.87 -1.79 Td[(L)]TJ /F5 11.955 Tf 11.96 0 Td[(q3)=S21S32)]TJ /F5 11.955 Tf 11.95 0 Td[(S22S31 1)]TJ /F5 11.955 Tf 11.95 0 Td[(S22)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(La1()]TJ /F4 7.97 Tf 11.87 -1.8 Td[(L)]TJ /F5 11.955 Tf 11.95 0 Td[(q3) (B{15) Similartothethree-portreectometer,afour-portreectometerwithmatcheddetectorports()]TJ /F6 7.97 Tf 87.7 -1.8 Td[(3=)]TJ /F6 7.97 Tf 19.74 -1.8 Td[(4=0)isgovernedbythefollowingequationas b4=S21S42)]TJ /F5 11.955 Tf 11.96 0 Td[(S22S41 S21b2()]TJ /F4 7.97 Tf 11.87 -1.79 Td[(L)]TJ /F5 11.955 Tf 11.96 0 Td[(q4)=S21S42)]TJ /F5 11.955 Tf 11.95 0 Td[(S22S41 1)]TJ /F5 11.955 Tf 11.95 0 Td[(S22)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(La1()]TJ /F4 7.97 Tf 11.87 -1.8 Td[(L)]TJ /F5 11.955 Tf 11.95 0 Td[(q4) (B{16) 122
PAGE 123
where q4=S41 S22S41)]TJ /F5 11.955 Tf 11.95 0 Td[(S21S42(B{17) Theequationisalsoexpressedintermsofa2andb2as b4=A4a2+B4b2(B{18) where A4=S21S42)]TJ /F5 11.955 Tf 11.96 0 Td[(S22S41 S21B4=S41 S21(B{19) 123
PAGE 124
APPENDIXCSTANDARDANDMIXED-MODES-PARAMETERTRANSFORMATION Common-anddierential-modenormalizedpowerwavesaredenedby ac1=1 p 2(a1+a2)ad1=1 p 2(a1)]TJ /F5 11.955 Tf 11.96 0 Td[(a2)(C{1) bc1=1 p 2(b1+b2)bd1=1 p 2(b1)]TJ /F5 11.955 Tf 11.96 0 Td[(b2)(C{2) Thecommon-anddierential-modepowerwavesarewritteninacompactmatrixformas bmm=0B@~b1~b21CA=0BBBBBBB@bc1bd1bc2bd21CCCCCCCA=1 p 226666666411001)]TJ /F1 11.955 Tf 9.3 0 Td[(1000011001)]TJ /F1 11.955 Tf 9.3 0 Td[(13777777750BBBBBBB@b1b2b3b41CCCCCCCA=Mbstd(C{3) Themixed-andstandard-modenormalizedpowerwavesareconvertedtoeachotherbyusingthefollowingrelationshipas bmm=Mbstd(C{4) M=M)]TJ /F6 7.97 Tf 6.58 0 Td[(1=1 p 226666666411001)]TJ /F1 11.955 Tf 9.3 0 Td[(1000011001)]TJ /F1 11.955 Tf 9.3 0 Td[(1377777775(C{5) Now,mixed-modeS-parameterequationsarewritteninamatrixformas bmm=0BBBBBBB@bc1bd1bc2bd21CCCCCCCA=266666664Scc11Scd11 Scc12Scd12Sdc11Sdd11 Sdc12Sdd12 Scc21Scd21 Scc22Scd22Sdc21Sdd21 Sdc22Sdd223777777750BBBBBBB@ac1ad1ac2ad21CCCCCCCA=264S11S12S21S223750B@~a1~a21CA=Smmamm(C{6) 124
PAGE 125
Theequationismanipulatedasfollows. bmm=Smmamm(C{7) Mbstd=SmmMastd(C{8) bstd=M)]TJ /F6 7.97 Tf 6.59 0 Td[(1SmmMastd(C{9) Therefore,thetransformationbetweenmixed-andstandard-modeS-parametersaregivenby Sstd=M)]TJ /F6 7.97 Tf 6.59 0 Td[(1SmmM(C{10) and Smm=MSstdM)]TJ /F6 7.97 Tf 6.59 0 Td[(1(C{11) 125
PAGE 126
APPENDIXDDERIVATIONOFDIFFERENTIALINPUTREFLECTIONCOEFFICIENT Anetworkwithonedierentialportcanbewrittenas ~b1=Smm11~a1(D{1) wheremmdenotesmixed-modeand ~a1=0B@ac1ad11CA;~b1=0B@bc1bd11CA;Smm11=264Scc11Scd11Sdc11Sdd11375(D{2) Itcanbeeasilyextendedtotwodierentialportnetworkasfollows. 0B@~b1~b21CA=264Smm11Smm12Smm21Smm223750B@~a1~a21CA(D{3) Supposethatadierentialloadisconnectedtothedierentialport2.Then,thereisthefollowingrelationshipbetweenincidentandreectedwaves. ~a2=)]TJ /F4 7.97 Tf 8.08 4.93 Td[(mmL~b2(D{4) where )]TJ /F4 7.97 Tf 8.08 4.94 Td[(mmL=264)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(Lcc)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(Lcd)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(Ldc)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(Ldd375(D{5) Therefore,thes-parameterequationcanbewrittenas 0B@~b1~b21CA=264Smm11Smm12Smm21Smm223750B@~a1)]TJ /F4 7.97 Tf 8.08 4.34 Td[(mmL~b21CA(D{6) ~b2canbewrittenas ~b2=Smm21~a1+Smm22)]TJ /F4 7.97 Tf 8.08 4.93 Td[(mmL~b2(D{7) Itcanbesolvedas (I)]TJ /F7 11.955 Tf 11.96 0 Td[(Smm22)]TJ /F4 7.97 Tf 8.08 4.94 Td[(mmL)~b2=Smm21~a1(D{8) 126
PAGE 127
~b2=(I)]TJ /F7 11.955 Tf 11.95 0 Td[(Smm22)]TJ /F4 7.97 Tf 8.08 4.93 Td[(mmL))]TJ /F6 7.97 Tf 6.58 0 Td[(1Smm21~a1(D{9) FromtheS-parameterequationandtheaboveequation,~b1canbewrittenas ~b1=Smm11~a1+Smm12)]TJ /F4 7.97 Tf 8.08 4.94 Td[(mmL~b2=Smm11~a1+Smm12)]TJ /F4 7.97 Tf 8.08 4.94 Td[(mmL(I)]TJ /F7 11.955 Tf 11.96 0 Td[(Smm22)]TJ /F4 7.97 Tf 8.08 4.94 Td[(mmL))]TJ /F6 7.97 Tf 6.59 0 Td[(1Smm21~a1(D{10) Theinputreectionmatrixisdenedas ~b1=)]TJ /F4 7.97 Tf 8.08 4.94 Td[(mmin~a1(D{11) where )]TJ /F4 7.97 Tf 8.08 4.94 Td[(mmin=264)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(incc)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(incd)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(indc)]TJ /F4 7.97 Tf 7.32 -1.79 Td[(indd375(D{12) BythecomparisonofEquation D{10 and D{11 ,theinputreectionmatrixis )]TJ /F4 7.97 Tf 8.08 4.93 Td[(mmin=Smm11+Smm12)]TJ /F4 7.97 Tf 8.08 4.93 Td[(mmL(I)]TJ /F7 11.955 Tf 11.96 0 Td[(Smm22)]TJ /F4 7.97 Tf 8.08 4.93 Td[(mmL))]TJ /F6 7.97 Tf 6.59 0 Td[(1Smm21(D{13) Themixed-modereectionmatrixcanbeconvertedtostandard-modeasfollows. )]TJ /F4 7.97 Tf 8.08 4.94 Td[(stdin=M)]TJ /F6 7.97 Tf 6.59 0 Td[(1)]TJ /F4 7.97 Tf 8.08 4.94 Td[(mminM(D{14) =M)]TJ /F6 7.97 Tf 6.59 0 Td[(1Smm11M+M)]TJ /F6 7.97 Tf 6.58 0 Td[(1Smm12MM)]TJ /F6 7.97 Tf 6.59 0 Td[(1)]TJ /F4 7.97 Tf 8.08 4.93 Td[(mmLMM)]TJ /F6 7.97 Tf 6.58 0 Td[(1(I)]TJ /F7 11.955 Tf 11.96 0 Td[(Smm22)]TJ /F4 7.97 Tf 8.08 4.93 Td[(mmL))]TJ /F6 7.97 Tf 6.59 0 Td[(1MM)]TJ /F6 7.97 Tf 6.58 0 Td[(1Smm21M(D{15) Thestandard-modeinputreectioncoecientmatrixiswrittenas )]TJ /F4 7.97 Tf 8.08 4.94 Td[(stdin=Sstd11+Sstd12)]TJ /F4 7.97 Tf 8.08 4.94 Td[(stdL(I)]TJ /F7 11.955 Tf 11.95 0 Td[(Sstd22)]TJ /F4 7.97 Tf 8.08 4.94 Td[(stdL))]TJ /F6 7.97 Tf 6.58 0 Td[(1Sstd21(D{16) where )]TJ /F4 7.97 Tf 8.08 4.93 Td[(stdin=264)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(in11)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(in12)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(in21)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(in22375;)]TJ /F4 7.97 Tf 8.08 4.93 Td[(stdL=264)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(L55)]TJ /F4 7.97 Tf 7.31 -1.8 Td[(L56)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L65)]TJ /F4 7.97 Tf 7.31 -1.79 Td[(L66375(D{17) Sstd11=264S11S12S21S22375;Sstd22=264S33S34S43S44375(D{18) 127
PAGE 128
Sstd12=264S13S14S23S24375;Sstd21=264S31S32S41S42375(D{19) 128
PAGE 129
REFERENCES [1] R.B.Whatley,Z.Zhou,andK.L.Melde,\RecongurableRFimpedancetunerformatchcontrolinbroadbandwirelessdevices,"IEEETrans.AntennasPropag.,vol.54,no.2,pp.470{478,Feb.2006. [2] W.C.E.Neo,Y.Lin,X.D.Liu,L.C.N.d.Vreede,L.E.Larson,M.Spirito,M.J.Pelk,K.Buisman,A.Akhnoukh,A.d.Graauw,andL.K.Nanver,\Adaptivemulti-bandmulti-modepoweramplierusingintegratedvaractor-basedtunablematchingnetworks,"IEEEJ.Solid-StateCircuits,vol.41,no.9,pp.2166{2176,Sep.2006. [3] C.Hoarau,P.E.Bailly,J.D.Arnould,P.Ferrari,andP.Xavier,\ARFtunableimpedancematchingnetworkwithacompletedesignandmeasurementmethodology,"inMicrowaveConference,2007.European,Oct.9{12,2007,pp.751{754. [4] J.H.SinskyandC.R.Westgate,\Designofanelectronicallytunablemicrowaveimpedancetransformer,"inMicrowaveSymposiumDigest,1997.,IEEEMTT-SInternational,vol.2,Jun.8{13,1997,pp.647{650. [5] P.SjoblomandH.Sjoland,\AnadaptiveimpedancetuningCMOScircuitforISM2.4-GHzband,"CircuitsandSystemsI:RegularPapers,IEEETransactionson,vol.52,no.6,pp.1115{1124,Jun.2005. [6] J.d.Mingo,A.Valdovinos,A.Crespo,D.Navarro,andP.Garca,\AnRFelectronicallycontrolledimpedancetuningnetworkdesignanditsapplicationtoanantennainputimpedanceautomaticmatchingsystem,"IEEETrans.Microw.TheoryTech.,vol.52,no.2,pp.489{497,Feb.2004. [7] H.Zhang,H.Gao,andG.-P.Li,\Broad-bandpoweramplierwithanoveltunableoutputmatchingnetwork,"IEEETrans.Microw.TheoryTech.,vol.53,no.11,pp.3606{3614,Nov.2005. [8] K.BritoandR.N.d.Lima,\Tunableimpedancematchingnetwork,"inMicrowaveandOptoelectronicsConference,2007.IMOC2007.SBMO/IEEEMTT-SInterna-tional,Brazil,Oct.29{Nov.2007,2007,pp.117{121. [9] F.Wang,V.K.Devabhaktuni,andQ.-J.Zhang,\Ahierarchicalneuralnetworkapproachtothedevelopmentofalibraryofneuralmodelsformicrowavedesign,"IEEETrans.Microw.TheoryTech.,vol.46,no.12,pp.2391{2403,Dec.1998. [10] J.C.Principe,N.R.Euliano,andW.C.Lefebvre,NeuralandAdaptiveSystems:FundamentalsthroughSimulationswithCD-ROM.NewYork,NY,USA:JohnWiley&Sons,Inc.,1999. [11] G.F.Engen,\Thesix-portreectometer:Analternativenetworkanalyzer,"IEEETrans.Microw.TheoryTech.,vol.25,no.12,pp.1075{1080,Dec.1977. 129
PAGE 130
[12] L.C.Oldeld,J.P.Ide,andE.J.Grin,\Amultistatereectometer,"IEEETrans.Instrum.Meas.,vol.34,no.2,pp.198{201,Jun.1985. [13] S.P.YeoandM.Cheng,\Improvedfour-portinstrumentusingtwopowerdetectorstomeasurecomplexreectioncoecientsofmicrowavedevices,"ElectronicsLetters,vol.32,pp.565{566,Mar.14,1996. [14] S.P.YeoandS.T.Tay,\Improveddesignformultistatereectometer(withtwopowerdetectors)formeasuringreectioncoecientsofmicrowavedevices,"IEEETrans.Instrum.Meas.,vol.49,no.1,pp.61{65,Feb.2000. [15] K.R.Boyle,\TheperformanceofGSM900antennasinthepresenceofpeopleandphantoms,"inAntennasandPropagation,2003.(ICAP2003).TwelfthInternationalConferenceon(Conf.Publ.No.491),vol.1,Mar.31{Apr.3,2003,pp.35{38. [16] K.L.VirgaandY.Rahmat-Samii,\Low-proleenhanced-bandwidthPIFAantennasforwirelesscommunicationspackaging,"IEEETrans.Microw.TheoryTech.,vol.45,no.10,pp.1879{1888,Oct.1997. [17] F.Meng,A.vanBezooijen,andR.Mahmoudi,\Amismatchdetectorforadaptiveantennaimpedancematching,"inMicrowaveConference,2006.36thEuropean,Sep.2006,pp.1457{1460. [18] Y.SunandJ.K.Fidler,\High-speedautomaticantennatuningunits,"inAntennasandPropagation,1995.ICAP'95.NinthInternationalConferenceon(Conf.Publ.No.407),Eindhoven,Apr.4{7,1995,pp.218{222. [19] D.Qiao,R.Molno,S.M.Lardizabal,B.Pillans,P.M.Asbeck,andG.Jerinic,\AnintelligentlycontrolledRFpoweramplierwitharecongurableMEMS-varactortuner,"IEEETrans.Microw.TheoryTech.,vol.53,no.3,pp.1089{1095,Mar.2005. [20] F.PourmohammadiandM.Hakkak,\Adaptivematchingofantennainputimpedance,"inAntennaTechnologySmallAntennasandNovelMetamaterials,2006IEEEInternationalWorkshopon,Mar.6{8,2006,pp.373{376. [21] J.Kim,W.Eisenstadt,H.-H.Yeh,andK.Melde,\Automaticmatchingcontrolsystemforloadboardtest,"inTestofWirelessCircuitsandSystems,2008.WTW2008.7thWorkshopon,Apr.27,2008. [22] I.Ida,J.Takada,T.Toda,andY.Oishi,\Anadaptiveimpedancematchingsystemandconsiderationsforabetterperformance,"inCommunications,2004andthe5thInternationalSymposiumonMulti-DimensionalMobileCommunicationsProceedings.The2004JointConferenceofthe10thAsia-PacicConferenceon,vol.2,Aug.29{Sep.1,2004,pp.563{567. [23] K.HomannandZ.Skvor,\Anovelvectornetworkanalyzer,"IEEETrans.Microw.TheoryTech.,vol.46,no.12,pp.2520{2523,Dec.1998. 130
PAGE 131
[24] J.Vian,\Double-stubimpedancematchingalgorithm,"inAntennasandPropagationInternationalSymposium,2007IEEE,Jun.9{15,2007,pp.4477{4480. [25] J.KimandW.Eisenstadt,\Loadimpedanceestimationforautomaticimpedancematchcontrolcircuits,"inTechnologyandTalentforthe21stCentury,2008.TECHCON2008.10thTechnicalConferenceon,Sep.15{16,2008. [26] D.M.Pozar,Microwaveengineering,2nded.NewYork,NY:JohnWiley&Sons,Inc.,1998. [27] G.F.Engen,\Aleastsquaressolutionforuseinthesix-portmeasurementtechnique,"IEEETrans.Microw.TheoryTech.,vol.28,no.12,pp.1473{1477,Dec.1980. [28] Y.-C.ChiangandC.-Y.Chen,\Designofawide-bandlumped-element3-dbquadraturecoupler,"IEEETrans.Microw.TheoryTech.,vol.49,no.3,pp.476{479,Mar.2001. [29] T.-Y.Song,J.-H.Kim,S.-H.Kim,J.-B.Lim,andJ.-S.Park,\Designofanovellumpedelementbackwarddirectionalcouplerbasedonparallelcoupled-linetheory,"inMicrowaveSymposiumDigest,2002IEEEMTT-SInternational,vol.1,Jun.2{7,2002,pp.213{216. [30] K.Jung,\Broadbandbalunembeddedmeasurementfordierentialcircuits,"Ph.D.dissertation,UniversityofFlorida,Dec.2007. [31] C.Hoarau,P.E.Bailly,J.D.Arnould,P.Ferrari,andP.Xavier,\AccuratemeasurementmethodforcharacterisationofRFimpedancetuners,"ElectronicsLetters,vol.43,pp.1434{1436,Dec.6,2007. [32] T.Zhang,W.R.Eisenstadt,R.M.Fox,andQ.Yin,\BipolarmicrowaveRMSpowerdetectors,"IEEEJ.Solid-StateCircuits,vol.41,no.9,pp.2188{2192,Sep.2006. [33] T.F.ColemanandY.Li,\Aninteriortrustregionapproachfornonlinearminimizationsubjecttobounds,"SIAMJournalonOptimization,vol.6,no.2,pp.418{445,May1996. [34] ||,\Ontheconvergenceofreectivenewtonmethodsforlarge-scalenonlinearminimizationsubjecttobounds,"MathematicalProgramming,vol.67,no.2,pp.189{224,1994. [35] F.Wiedmann,B.Huyart,E.Bergeault,andL.Jallet,\Newstructureforasix-portreectometerinmonolithicmicrowaveintegrated-circuittechnology,"IEEETrans.Instrum.Meas.,vol.46,no.2,pp.527{530,Apr.1997. [36] I.Majid,A.E.Nadeem,andF.eAzam,\Smallsignals-parameterestimationofBJTsusingarticialneuralnetworks,"inMultitopicConference,2004.ProceedingsofINMIC2004.8thInternational,Dec.24{26,2004,pp.669{673. 131
PAGE 132
[37] A.E.NadeemandW.R.Eisenstadt,\Improvedclosed-formexpressionsfors-parametersofBJTsusingmodiedgummel-poonmodel,"inMultiTopicCon-ference,2003.INMIC2003.7thInternational,Dec.8{9,2003,pp.202{207. [38] G.Koers,J.Stiens,andR.Vounckx,\Scalarcalibrationofquasi-opticalreectionmeasurements,"IEEETrans.Microw.TheoryTech.,vol.54,no.7,pp.3121{3126,Jul.2006. [39] K.HomannandZ.Skvor,\CalibrationofthePTPvectornetworkanalyzer,"inMicrowavesandRadar,1998.MIKON'98.,12thInternationalConferenceon,vol.3,May20{22,1998,pp.710{714. 132
PAGE 133
BIOGRAPHICALSKETCH JaeseokKimwasborninSeoul,Korea.HereceivedtheB.S.degreein1994,fromInhaUniversity,majoringinelectronicengineering.HereceivedtheM.S.degreein2002fromtheUniversityofFlorida,majoringinelectricalandcomputerengineering.Since2006,hehasbeenwiththeElectronicCircuitLaboratory(ECL)attheUniversityofFlorida,pursuinghisPh.D.degree.HisresearchinterestsincludeRFimpedancematchingcontrolalgorithmandsystem,machineintelligenceofRFsystems,andembeddedRFon-chiptesting. 133
|