Citation
Application of Trianionic Pincer Ligands to Reactions Involving Group VI Alkylidynes, Metal-Metal Multiple Bonds, and Group IV Amides

Material Information

Title:
Application of Trianionic Pincer Ligands to Reactions Involving Group VI Alkylidynes, Metal-Metal Multiple Bonds, and Group IV Amides
Creator:
Peloquin, Andrew
Place of Publication:
[Gainesville, Fla.]
Florida
Publisher:
University of Florida
Publication Date:
Language:
english
Physical Description:
1 online resource (144 p.)

Thesis/Dissertation Information

Degree:
Master's ( M.S.)
Degree Grantor:
University of Florida
Degree Disciplines:
Chemistry
Committee Chair:
Veige, Adam S.
Committee Members:
Scott, Michael J.
Miller, Stephen Albert
Graduation Date:
8/9/2008

Subjects

Subjects / Keywords:
Atoms ( jstor )
Bond angles ( jstor )
Coordinate systems ( jstor )
Crystals ( jstor )
Hydrogen ( jstor )
Ligands ( jstor )
Molecular structure ( jstor )
Oxygen ( jstor )
Radiocarbon ( jstor )
Tungsten ( jstor )
Chemistry -- Dissertations, Academic -- UF
Genre:
bibliography ( marcgt )
theses ( marcgt )
government publication (state, provincial, terriorial, dependent) ( marcgt )
born-digital ( sobekcm )
Electronic Thesis or Dissertation
Chemistry thesis, M.S.

Notes

Abstract:
In an effort to isolate a pincer-support tungsten alkylidyne, several new tungsten alkylidenes and a ditungsten compound have been isolated, supported by the previously reported OCO pincer ligand [3,3?-di-tert-butyl-2,2?-di-(hydroxy-kappa-O)-1,1?:3?,1?-terphenyl-2?-yl-kappa-C2?] (tBuOCO 1). When the tBuOCO ligand precursor is treated with W(OAr)2(CH2C(CH3)3)(CC(CH3)3) (OAr= 2,6-diisopropylphenoxide) in benzene, the alkylidene complex [tBuOCO]W(=CHC(CH3)3)(O-2,6-iPr2-C6H3) (3) results and was characterized by a combination of one and two dimensional NMR spectroscopy, single-crystal X-ray crystallography, and combustion analysis. To aid in the final ? abstraction, W(CH2C(CH3)3)3(CC(CH3)3) was next combined with 1, but the reaction resulted in a complicated mixture of products. From this mixture, two closely related structural isomers of the form {[tBuOCO](CH3)3CCH=}W(?-tBuOCHO)W{=CHC(CH3)3[tBuOCO]} (4 and 5) were isolated. This bridged, dinuclear complex was analyzed by single-crystal X-ray crystallography. Finally, the reaction of (NMe2)3WW(NMe2)3 with two equivalents of 1 results first in [tBuOCHO](NMe2)WW(NMe2)[tBuOCHO] (7) and after prolonged heating, [tBuOCHO]W(?-NMe2)2(?-O)W[tBuOCHO] (8). These complexes were analyzed by a combination of NMR spectroscopy, single-crystal X-ray crystallography, and combustion analysis. The exact mechanism of formation for 8 is not yet know, but it potentially represents a rare example of the oxidative addition of water to an early transition metal. ( en )
General Note:
In the series University of Florida Digital Collections.
General Note:
Includes vita.
Bibliography:
Includes bibliographical references.
Source of Description:
Description based on online resource; title from PDF title page.
Source of Description:
This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Thesis:
Thesis (M.S.)--University of Florida, 2008.
Local:
Adviser: Veige, Adam S.
Electronic Access:
RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2010-08-31
Statement of Responsibility:
by Andrew Peloquin.

Record Information

Source Institution:
UFRGP
Rights Management:
Copyright Peloquin, Andrew. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Embargo Date:
8/31/2010
Resource Identifier:
664555175 ( OCLC )
Classification:
LD1780 2008 ( lcc )

Downloads

This item has the following downloads:

peloquin_a.pdf

peloquin_a_Page_069.txt

peloquin_a_Page_053.txt

peloquin_a_Page_049.txt

peloquin_a_Page_015.txt

peloquin_a_Page_021.txt

peloquin_a_Page_104.txt

peloquin_a_Page_088.txt

peloquin_a_Page_061.txt

peloquin_a_Page_072.txt

peloquin_a_Page_126.txt

peloquin_a_Page_025.txt

peloquin_a_Page_130.txt

peloquin_a_Page_034.txt

peloquin_a_Page_138.txt

peloquin_a_Page_123.txt

peloquin_a_Page_056.txt

peloquin_a_Page_105.txt

peloquin_a_Page_108.txt

peloquin_a_Page_113.txt

peloquin_a_Page_112.txt

peloquin_a_Page_020.txt

peloquin_a_Page_070.txt

peloquin_a_Page_048.txt

peloquin_a_Page_036.txt

peloquin_a_Page_090.txt

peloquin_a_Page_089.txt

peloquin_a_Page_017.txt

peloquin_a_Page_058.txt

peloquin_a_Page_143.txt

peloquin_a_Page_016.txt

peloquin_a_Page_141.txt

peloquin_a_Page_047.txt

peloquin_a_Page_139.txt

peloquin_a_Page_033.txt

peloquin_a_Page_101.txt

peloquin_a_Page_135.txt

peloquin_a_Page_134.txt

peloquin_a_Page_085.txt

peloquin_a_Page_011.txt

peloquin_a_Page_068.txt

peloquin_a_Page_124.txt

peloquin_a_Page_041.txt

peloquin_a_Page_079.txt

peloquin_a_Page_050.txt

peloquin_a_Page_001.txt

peloquin_a_Page_080.txt

peloquin_a_Page_019.txt

peloquin_a_Page_077.txt

peloquin_a_Page_078.txt

peloquin_a_Page_109.txt

peloquin_a_Page_029.txt

peloquin_a_Page_128.txt

peloquin_a_Page_063.txt

peloquin_a_Page_096.txt

peloquin_a_Page_133.txt

peloquin_a_Page_122.txt

E7AAB5NJG_J4KJ0P_xml.txt

peloquin_a_Page_110.txt

peloquin_a_Page_071.txt

peloquin_a_Page_103.txt

peloquin_a_Page_116.txt

peloquin_a_Page_038.txt

peloquin_a_Page_057.txt

peloquin_a_Page_125.txt

peloquin_a_Page_046.txt

peloquin_a_Page_111.txt

peloquin_a_Page_136.txt

peloquin_a_Page_115.txt

peloquin_a_Page_099.txt

peloquin_a_Page_132.txt

peloquin_a_Page_084.txt

peloquin_a_Page_009.txt

peloquin_a_Page_055.txt

peloquin_a_Page_044.txt

peloquin_a_Page_083.txt

peloquin_a_Page_051.txt

peloquin_a_Page_091.txt

peloquin_a_Page_008.txt

peloquin_a_Page_118.txt

peloquin_a_Page_086.txt

peloquin_a_Page_013.txt

peloquin_a_Page_023.txt

peloquin_a_Page_129.txt

peloquin_a_Page_043.txt

peloquin_a_Page_027.txt

peloquin_a_Page_095.txt

peloquin_a_Page_067.txt

peloquin_a_Page_107.txt

peloquin_a_Page_024.txt

peloquin_a_Page_014.txt

peloquin_a_Page_075.txt

peloquin_a_Page_007.txt

peloquin_a_Page_045.txt

peloquin_a_Page_114.txt

peloquin_a_Page_035.txt

peloquin_a_Page_031.txt

peloquin_a_Page_117.txt

peloquin_a_Page_097.txt

peloquin_a_Page_082.txt

peloquin_a_Page_081.txt

peloquin_a_Page_005.txt

peloquin_a_Page_039.txt

peloquin_a_Page_131.txt

peloquin_a_Page_026.txt

peloquin_a_Page_076.txt

peloquin_a_Page_028.txt

peloquin_a_Page_140.txt

peloquin_a_Page_137.txt

peloquin_a_Page_010.txt

peloquin_a_Page_064.txt

peloquin_a_Page_074.txt

peloquin_a_Page_004.txt

peloquin_a_Page_121.txt

peloquin_a_Page_030.txt

peloquin_a_Page_003.txt

peloquin_a_Page_022.txt

peloquin_a_Page_059.txt

peloquin_a_Page_119.txt

peloquin_a_Page_065.txt

peloquin_a_Page_032.txt

peloquin_a_Page_142.txt

peloquin_a_Page_087.txt

peloquin_a_Page_002.txt

peloquin_a_Page_012.txt

peloquin_a_Page_127.txt

peloquin_a_Page_062.txt

peloquin_a_pdf.txt

peloquin_a_Page_102.txt

peloquin_a_Page_073.txt

peloquin_a_Page_094.txt

peloquin_a_Page_144.txt

peloquin_a_Page_098.txt

peloquin_a_Page_054.txt

peloquin_a_Page_052.txt

peloquin_a_Page_106.txt

peloquin_a_Page_006.txt

peloquin_a_Page_060.txt

peloquin_a_Page_037.txt

peloquin_a_Page_042.txt

peloquin_a_Page_066.txt

peloquin_a_Page_040.txt

peloquin_a_Page_092.txt

peloquin_a_Page_100.txt

peloquin_a_Page_018.txt

peloquin_a_Page_093.txt

peloquin_a_Page_120.txt


Full Text






Table B-16. Continued
Bond Angle Bond Angle


C20-C19-C23
C18-C19-C23
C21-C20-C19
C22-C21-C20
C21-C22-C17
C25-C23-C24
C25-C23-C26
C24-C23-C26
C25-C23-C19
C24-C23-C19
C26-C23-C19
C28-C27-W1
C31-C28-C27
C31-C28-C30
C27-C28-C30
C31-C28-C29
C27-C28-C29
C30-C28-C29
C53-C48-C37
C49-C48-C37
04-C49-C50
04-C49-C48
C50-C49-C48
C51-C50-C49
C51-C50-C54
C49-C50-C54
C52-C51-C50
C51-C52-C53
C48-C53-C52
C55-C54-C57
C55-C54-C50
C57-C54-C50
C55-C54-C56
C57-C54-C56
C50-C54-C56
C63-C58-C59
C63-C58-W2
C59-C58-W2


120.7(6)
125.1(6)
122.8(7)
121.0(7)
120.5(7)
108.6(7)
106.0(6)
107.2(6)
111.8(6)
111.2(6)
111.8(6)
143.5(5)
111.6(6)
111.4(7)
108.2(6)
109.7(7)
107.6(6)
108.3(6)
120.6(7)
122.0(6)
119.7(6)
117.7(6)
122.6(6)
116.0(7)
120.8(7)
123.2(6)
123.4(7)
119.4(7)
121.1(8)
105.7(8)
110.6(7)
113.0(7)
110.7(8)
108.0(7)
108.7(7)
117.0(7)
125.3(6)
117.5(5)


C43-C38-C33
C39-C38-C33
03-C39-C38
03-C39-C40
C38-C39-C40
C41-C40-C39
C41-C40-C44
C39-C40-C44
C40-C41-C42
C43-C42-C41
C42-C43-C38
C45-C44-C46
C45-C44-C47
C46-C44-C47
C45-C44-C40
C46-C44-C40
C47-C44-C40
C53-C48-C49
C65-C64-C69
C65-C64-C59
C69-C64-C59
05-C65-C66
05-C65-C64
C66-C65-C64
C65-C66-C67
C65-C66-C70
C67-C66-C70
C68-C67-C66
C69-C68-C67
C68-C69-C64
C72-C70-C73
C72-C70-C71
C73-C70-C71
C72-C70-C66
C73-C70-C66
C71-C70-C66
C79-C74-C75
C79-C74-C63


119.6(7)
123.9(6)
118.2(6)
119.3(6)
122.5(6)
116.1(7)
122.1(7)
121.8(6)
123.0(7)
119.5(7)
122.3(7)
109.4(7)
107.7(7)
107.1(7)
110.2(6)
110.8(6)
111.5(6)
117.4(7)
116.4(7)
121.3(7)
122.3(7)
120.7(6)
116.3(6)
123.0(7)
115.9(7)
124.0(7)
120.1(7)
122.7(8)
120.0(8)
121.4(7)
108.0(9)
107.1(11)
105.1(8)
110.4(7)
113.7(7)
112.1(7)
115.9(7)
121.3(7)










Table B-8. Continued
Atom X Y Z U(eq)


C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66


3578(9)
4747(6)
5011(7)
1448(4)
1250(4)
1946(4)
2806(4)
3005(4)
2323(4)
303(4)
376(4)
-532(5)
-1507(5)
-1576(5)
-692(5)
-481(6)
-94(6)
282(5)
-1558(6)
2564(4)
2627(4)
2826(4)
2949(5)
2902(5)
2712(5)
2913(6)
3810(6)
3138(6)
1865(6)
1151(5)
1828(5)
1611(6)
738(7)
35(6)
184(5)
2788(6)
3404(6)
4365(6)


1491(3)
1097(2)
1791(2)
1578(2)
1295(2)
984(2)
968(2)
1262(2)
1573(2)
1319(2)
1268(2)
1280(2)
1356(2)
1419(2)
1400(2)
1202(2)
801(2)
1474(2)
1245(3)
1913(2)
1899(2)
2232(2)
2564(2)
2579(2)
2258(2)
2219(2)
1964(2)
2618(2)
2091(2)
620(2)
309(2)
67(2)
135(2)
412(2)
655(2)
207(2)
482(2)
413(2)


-1241(6)
-95(5)
-52(8)
2608(3)
2012(3)
2194(4)
2936(4)
3507(3)
3345(4)
1218(3)
424(4)
-326(4)
-252(4)
521(5)
1238(4)
-1181(4)
-1187(4)
-1393(4)
-1892(5)
3903(4)
4738(4)
5233(4)
4858(4)
4071(4)
3573(4)
6153(4)
6656(4)
6540(5)
6220(5)
3851(4)
3893(4)
3165(5)
2462(5)
2442(5)
3125(4)
4627(5)
5203(5)
5890(5)


172(6)
71(2)
153(6)
32(1)
31(1)
35(1)
35(1)
35(1)
36(1)
33(1)
36(1)
45(2)
51(2)
52(2)
43(2)
57(2)
76(2)
61(2)
97(3)
36(1)
34(1)
44(2)
47(2)
55(2)
44(2)
61(2)
66(2)
87(3)
87(3)
47(2)
53(2)
64(2)
68(2)
58(2)
47(2)
55(2)
54(2)
61(2)
















































Do- 5c ,
co Io o) 0 I W


8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0
Chemical Shift (ppm)


3.5 3.0 2.5 2.0 1.5 1.0 0.5


Figure A-1. 1H NMR spectrum of [BuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) in C6D6


h.,CD 00
do
-(

CD C









CHAPTER 2
PROGRESS TOWARD A TUNGSTEN ALKYLIDYNE SUPPORTED WITH A TRIANIONC
OCO3- PINCER LIGAND

Synthesis and Characterization of [tBuOCO]W(=CHC(CH3)3)(0-2,6-iPr2-C6H3) (3)

The tBuOCO ligand precursor (1) was treated with one equivalent of W(OAr)2-

(CH2C(CH3)3)(-CC(CH3)3) (OAr = 2,6-diisopropylphenoxide) (2) in hot (85 C) benzene for

two hours, resulting in formation of a deep red solution of [tBuOCO]W(=CHC(CH3)3)(O-2,6-

'Pr2-C6H3) (3) (Figure 2-1). The molecular structure of 3 was confirmed by a combination of

single-crystal X-ray crystallography and one- and two-dimensional NMR techniques. The

complex features the tridentate, trianionic pincer ligand as part of the distorted square-pyramidal

geometry around the tungsten center.




OH f/ \ 0 CH'Bu
OH + -HOAr \ c_ w
ArOlIW V -C(CH3)4 ___ IOAr
OH/ 0
OAr=2,6-diisopropylphenoxide
2
1 3

Figure 2-1. Synthesis of [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3)

The coordination sphere is completed by 2,6-diisopropylphenoxide and a neopentylidene

moiety. The 2,6-diisopropylphenol formed during the reaction proved difficult to remove, so all

NMR data is of solutions containing one equivalent of free phenol. The t-butyl groups of the

ligand resonate at 1.44 ppm in the 1H NMR spectrum, their equivalence indicative of overall Cs

symmetry. The 2,6-diisopropylphenoxide is oriented such that the two isopropyl groups are

diastereotopic. The methine protons of the isopropyl groups resonate at 4.09 ppm and 2.39 ppm,

and the methyl protons resonate at 1.42 ppm and 0.69 ppm. A singlet, attributed to the












































Figure B-4. Molecular structure of { [BuOCO](CH3)3CCH=}W(i-tBuOCHO)W{=CHC(CH3)3-
[tBuOCO]} (5). Ellipsoids are shown at the 50% probability level; hydrogens are
omitted for clarity.










Table B-36. Continued
Atoms Angle Atoms Angle


N7-Hf2-N10-C48
N9-Hf2-N10-C48
N8-Hf2-N10-C48
N7-Hf2-N10-C47
N9-Hf2-N10-C47
N8-Hf2-N10-C47
N6-Hf2-N10-C47
C14-C1-C2-C7
C14-C1-C2-C3
C1-C2-C3-C4
C7-C2-C3-C4
C1-C2-C3-C15
C7-C2-C3-C15
C2-C3-C4-C5
C15-C3-C4-C5
C3-C4-C5-C6
C4-C5-C6-C7
C5-C6-C7-C8
C5-C6-C7-C2
Hfl-N1-C16-C21
C15-N1-C16-C17
Hfl-N1-C16-C17
N1-C16-C17-C18
C21-C16-C17-C18
C16-C17-C18-C19
C16-C17-C18-C22
C17-C18-C19-C20
C22-C18-C19-C20
C18-C19-C20-C21
C18-C19-C20-C23
C19-C20-C21-C16
C23-C20-C21-C16
N1-C16-C21-C20
C17-C16-C21-C20
C19-C18-C22-F1
C17-C18-C22-F1
C19-C18-C22-F3
C17-C18-C22-F3


66.0(7)
-51.7(7)
-172.0(8)
-60.6(6)
-178.3(6)
61.4(6)
34(5)
-0.6(11)
178.7(7)
-173.1(7)
6.1(11)
6.4(12)
-174.3(7)
-4.3(12)
176.2(8)
0.4(13)
1.6(13)
178.9(8)
0.5(12)
167.7(6)
-179.2(7)
-14.3(10)
176.6(7)
-5.2(11)
2.9(13)
-174.1(9)
0.0(13)
177.0(9)
-0.3(13)
176.0(9)
-2.5(13)
-178.7(8)
-176.9(7)
5.0(11)
-122.1(12)
55.0(16)
9.7(17)
-173.2(11)


C9-C10-C11-C12
C10-C11-C12-C13
C11-C12-C13-C14
C11-C12-C13-C24
C2-C1-C14-C9
C2-C1-C14-C13
C8-C9-C14-C1
C10-C9-C14-C1
C8-C9-C14-C13
C10-C9-C14-C13
C12-C13-C14-C1
C24-C13-C14-C1
C12-C13-C14-C9
C24-C13-C14-C9
C16-N1-C15-C3
Hfl-N1-C15-C3
C4-C3-C15-N1
C2-C3-C15-N1
C15-N1-C16-C21
C12-C13-C24-N6
C14-C13-C24-N6
C24-N6-C25-C30
Hf2-N6-C25-C30
C24-N6-C25-C26
Hf2-N6-C25-C26
N6-C25-C26-C27
C30-C25-C26-C27
C25-C26-C27-C28
C25-C26-C27-C31
C26-C27-C28-C29
C31-C27-C28-C29
C27-C28-C29-C30
C27-C28-C29-C32
C28-C29-C30-C25
C32-C29-C30-C25
N6-C25-C30-C29
C26-C25-C30-C29
C28-C27-C31-F7


0.2(12)
-1.8(12)
0.3(12)
179.3(7)
4.1(11)
-174.1(7)
-3.5(11)
177.5(7)
174.8(7)
-4.2(11)
-179.1(7)
1.9(11)
2.7(11)
-176.3(7)
-74.8(9)
119.5(6)
7.2(12)
-172.4(7)
2.8(11)
-7.7(11)
171.3(7)
17.9(11)
-168.1(6)
-163.1(7)
10.9(11)
-178.5(7)
0.6(12)
1.9(14)
-178.4(8)
-2.4(14)
177.9(9)
0.5(15)
-177.9(12)
2.0(15)
-179.6(11)
176.6(9)
-2.4(13)
-116.3(12)









The fourth and final way in which high-oxidation state alkylidynes are generated is by a

reductive recycle strategy (Figure 1-4). Furstner reported the reaction ofMo[N(tBu)Ar]3 (III)

with CH2C12, which afforded a mixture of the chloride (IV) and the methylidyne species (V).15

Kraft added magnesium to the system.16 Magnesium present in the reaction mixture reduced the

chloride species back to the starting material which could then re-enter the reaction. The result

was a one-pot synthesis of a molybdenum alkylidyne from a terminal dichloride.

R

tBuO OtBu
\ OtBu R R
,,W=.W 2
tBuO WI
tBuO OtBu tBuO\j OtBu
tBuO
I BO II

Figure 1-3. Metathesis cleavage of W=W to form alkylidyne

R
tBu
tBu C/ l 'Bu tBu
\ 'u .RCHC12 tBu 'Bu u
MouI Mo"" utB + MoUm +* tBu
ArAr THF, rt

Ar Arr TV Ar
T Ar V Ar



Mg

Figure 1-4. Reductive recycle strategy for alkylidyne synthesis

The primary goal of this research is to generate a highly reactive tungsten alkylidyne

catalyst for NACM. NACM involves the conversion of a metal-carbon triple bond (alkylidyne)

to a metal-nitrogen triple bond (nitride), or vice versa (Figure 1-5). A metal-alkylidyne can

undergo a [2+2] cycloaddition with a nitrile to produce an azametallacyclobutadiene

intermediate. This anti-aromatic intermediate can then undergo retro-cycloaddition to yield the










Cl1


Figure B-6. Molecular structure of [tBuOCHO]W(W-NMe2)2(C-O)W[tBuOCHO] (8). Ellipsoids
are shown at the 50% probability level. Hydrogens and benzene are omitted for
clarity.








Table B-35. Continued
Atom U11 U22 U33 U23 U13 U12
C13 46(6) 24(4) 45(6) 1(4) 14(5) 9(4)
C14 34(5) 26(4) 36(5) 2(4) 2(4) 2(4)
C15 21(5) 46(5) 51(6) -1(4) -6(4) 8(4)
C16 24(5) 36(5) 38(5) -3(4) -4(4) 2(4)
C17 36(5) 44(5) 45(6) 8(4) 5(5) 7(5)
C18 42(6) 47(6) 41(6) 4(5) 8(4) 14(5)
C19 36(5) 42(5) 49(6) 6(5) 3(5) 11(5)
C20 34(5) 37(5) 37(5) 8(4) 5(4) 1(4)
C21 29(5) 45(5) 36(5) -7(4) 3(4) 2(4)
C22 55(8) 81(8) 70(9) 30(7) 15(7) 36(7)
C23 58(8) 65(8) 73(9) 5(7) 23(7) 16(6)
C24 36(5) 49(5) 43(6) 3(4) 12(4) 6(4)
C25 44(6) 43(5) 27(5) 12(4) 13(4) 10(5)
C26 31(5) 43(5) 45(6) 9(4) 8(4) 10(5)
C27 37(6) 57(6) 41(6) 13(5) 11(5) 14(5)
C28 64(7) 48(6) 63(7) 16(5) 2(6) -5(6)
C29 56(7) 51(6) 59(7) 16(5) -14(6) -5(5)
C30 45(6) 44(6) 52(6) 16(5) -6(5) -4(5)
C31 55(8) 62(8) 66(8) 22(6) 7(6) 15(6)
C32 109(12) 61(9) 123(13) 41(8) -62(11) -26(9)
C33 54(7) 69(7) 81(8) -7(6) -16(6) -22(6)
C34 33(6) 85(8) 109(9) 16(7) 26(6) 8(6)
C35 87(8) 56(6) 50(7) -10(5) 29(6) 10(6)
C36 44(6) 47(5) 60(7) 1(5) -12(5) -8(5)
C37 42(6) 72(7) 62(7) -9(5) -7(5) 27(5)
C38 83(8) 46(6) 80(8) -34(6) -8(6) 9(6)
C39 49(7) 87(8) 69(8) 28(6) -6(6) -6(6)
C40 91(9) 27(5) 111(10) 5(6) -6(7) -21(6)
C41 96(9) 61(7) 55(7) -11(5) 32(6) 5(6)
C42 131(11) 99(9) 43(7) 22(6) -40(7) -6(8)
C43 57(7) 73(7) 59(7) -14(6) 21(6) 6(6)
C44 33(6) 61(6) 94(8) 24(6) -16(6) 15(5)
C45 67(8) 44(6) 102(9) 9(6) 6(7) 28(6)
C46 71(7) 66(7) 43(6) 18(5) 4(6) 6(6)
C47 71(8) 83(8) 98(10) 32(7) 23(7) -14(7)
C48 95(9) 43(6) 104(10) -16(6) -18(7) 4(6)







































Figure 3-3. Molecular structure of 8. Ellipsoids are shown at 50% probability level; benzene
molecules and hydrogen atoms omitted for clarity.

generating a +4 oxidation state in the metals. A bridging water molecule is a possibility and

could not be ruled out by X-ray crystallography.

Examples of oxidation of metal-metal bonds by molecular oxygen appear in the

literature.28 Several experiments were performed to determine the source of the oxygen atom.

To eliminate molecular oxygen as the oxidant, the reaction mixture was degassed by the freeze-

pump-thaw method. After 72 hours, the same green solution and red crystalline precipitate

resulted. The reaction was then performed in benzene from several different sources to eliminate










Table B-12. Continued
Atoms Angle Atoms Angle


C8-C7-C12-C11
C2-C7-C12-C11
C10-C9-C13-C16
C8-C9-C13-C16
C10-C9-C13-C15
C8-C9-C13-C15
C10-C9-C13-C14
C8-C9-C13-C14
C5-C6-C17-C22
C1-C6-C17-C22
C5-C6-C17-C18
C1-C6-C17-C18
W1-02-C18-C17
W1-02-C18-C19
C22-C17-C18-02
C6-C17-C18-02
C22-C17-C18-C19
C6-C17-C18-C19
02-C18-C19-C20
C33-C32-C37-C48
C35-C36-C37-C32
C35-C36-C37-C48
C32-C33-C38-C43
C34-C33-C38-C43
C32-C33-C38-C39
C34-C33-C38-C39
W1-03-C39-C40
W1-03-C39-C38
C43-C38-C39-03
C33-C38-C39-03
C43-C38-C39-C40
C33-C38-C39-C40
03-C39-C40-C41
C38-C39-C40-C41
03-C39-C40-C44
C38-C39-C40-C44
C39-C40-C41-C42
C44-C40-C41-C42


-1.9(9)
178.5(6)
123.4(6)
-54.6(8)
-115.9(7)
66.1(8)
4.7(9)
-173.3(6)
35.2(7)
-144.0(5)
-142.2(5)
38.7(8)
-43.1(7)
138.5(4)
175.8(5)
-6.8(7)
-5.8(8)
171.5(5)
-176.5(5)
171.7(5)
0.4(8)
-174.0(5)
-48.6(7)
129.4(5)
130.5(5)
-51.5(8)
150.8(5)
-27.0(9)
175.0(5)
-4.2(8)
-2.8(8)
178.0(5)
-176.0(5)
1.8(9)
6.0(9)
-176.2(5)
0.4(9)
178.4(6)


C18-C19-C23-C25
C20-C19-C23-C24
C18-C19-C23-C24
C20-C19-C23-C26
C18-C19-C23-C26
01-W1-C27-C28
02-W1-C27-C28
03-W1-C27-C28
C1-W1-C27-C28
W1-C27-C28-C30
W1-C27-C28-C29
W1-C27-C28-C31
C37-C32-C33-C34
C37-C32-C33-C38
C32-C33-C34-C35
C38-C33-C34-C35
C33-C34-C35-C36
C34-C35-C36-C37
C33-C32-C37-C36
C32-C37-C48-C53
C36-C37-C48-C53
C32-C37-C48-C49
C36-C37-C48-C49
W2-05-C49-C48
W2-05-C49-C50
C53-C48-C49-05
C37-C48-C49-05
C53-C48-C49-C50
C37-C48-C49-C50
05-C49-C50-C51
C48-C49-C50-C51
05-C49-C50-C54
C48-C49-C50-C54
C49-C50-C51-C52
C54-C50-C51-C52
C50-C51-C52-C53
C51-C52-C53-C48
C49-C48-C53-C52


-63.1(7)
-3.4(8)
175.9(5)
-120.5(6)
58.8(7)
-19.5(9)
151.6(8)
-120.2(8)
65.9(9)
2.7(12)
124.2(9)
-118.1(9)
3.3(8)
-178.6(5)
-1.2(7)
-179.3(5)
-1.1(8)
1.5(8)
-2.9(8)
-57.8(7)
116.5(6)
120.9(6)
-64.8(8)
-21.6(9)
154.4(5)
176.6(5)
-2.1(8)
0.6(8)
-178.0(5)
-175.7(5)
0.2(8)
4.9(8)
-179.1(6)
-1.0(9)
178.4(6)
0.8(11)
0.1(10)
-0.8(9)









Table B-27. Continued
Bond Length Bond Length

C46-C47 1.392(5)
C47-C48 1.386(6)
C49-C52 1.526(5)
C49-C51 1.535(5)
C49-C50 1.535(5)
C55-C56 2.006(14)
C57-C59#1 1.303(15)
C57-C58 1.403(15)
Symmetry transformations used to generate equivalent atoms:
#1 -x,-y,-z #2 -x+1,-y+2,-z+1









BIOGRAPHICAL SKETCH

Andrew Peloquin was born in 1985 in Worcester, Massachusetts, but soon moved to

Deltona, Florida. He established himself as a dedicated student starting in his early educational

career. He graduated from the United States Air Force Academy in Colorado Springs in May

2007 with a Bachelor of Science degree in chemistry. He was assigned as a chemist in the Air

Force upon graduation and came directly to the University of Florida in fall 2007 under the Air

Force Institute of Technology's Graduate Scholarship Program. Andrew joined Dr Adam

Veige's group, researching metal complexes supported by trianionic pincer ligands, with a focus

on high oxidation state, group VI alkylidynes. He graduated in August 2008 with a Master of

Science degree in chemistry.









Table B-7. Crystal data, structure solution, and refinement for {[tBuOCO](CH3)3CCH=)W(d-
tBuOCHO)W{=CHC(CH3)3[tBuOCO]} (4)
identification code pelo6t
empirical formula CssH10206W2
formula weight 1623.40
T(K) 173(2)
X (A) 0.71073
crystal system Monoclinic
space group P2(1)/n
a (A) 13.5918(11)
b (A) 35.213(3)
c(A) 17.2146(15)
a (deg) 90
l (deg) 111.897(2)
y (deg) 90
V (A3) 7644.7(11)
Z 4
Pcalcd (g mm-3) 1.411
crystal size (mm) 0.15 x 0.15 x 0.02
abs coeff(mm-) 3.059
F(000) 3304
0 range for data collection 1.16 to 28.06
limiting indicies -17 < h < 17, -32 < k < 46, -19 <1 < 22
no. ofreflns called 53602
no. ofind reflns 18421 [R(int) = 0.08431]
completeness to 0= 28.030 99.3 %
absorption corr Integration
2
refinement method Full-matrix least-squares on F
data / restraints / parameters 18421 / 0 / 865
R1, wR2 [I > 2a] R1 = 0.0458, wR2 = 0.0868
R1, wR2 (all data) R1 = 0.1048, wR2 = 0.0967
2
GOF on F 0.845
largest diff. peak and hole (e.A-3) 1.519 and -1.124
R1 = (||Fol- |Fcl|) / YFol
wR2 = [I[w(Fo2 Fc2)2] / Y[w(Fo2)2]]1/2
S = [[w(Fo2 Fc2)2] / (n-p)]1/2
w= 1/[22(Fo2)+(m*p)2+n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.









(20) Sarkar, S.; Carlson, A. R.; Veige, M. K.; Falkowski, J. M.; Abboud, K. A.; Veige, A. S.
J. Am. Chem. Soc. 2008, 130, 1116.

(21) Choi, S.; Lin, Z. Organometallics 1999, 18, 5488.

(22) Clark, D. N.; Schrock, R. R. J. Am. Chem. Soc. 1978, 100, 6774.

(23) Schrock, R. R.; DePue, R. T.; Feldman, J.; Schaverian, J. C.; Dewan, J. C.; Liu, A. H. J.
Am. Chem. Soc. 1988, 110, 1423.

(24) Rhers, B.; Lucas, C.; Taoufik, M.; Herdtweck, E.; Dablemont, C.; Basset, J.; Lefebvre, F.
Comptes Rendus Chimie. 2006, 9, 1169.

(25) Chisholm, M. H.; Eichhorn, B. W.; Folting, K.; Huffman, J. C.; Ontiveros, C. D.; Streib,
W. E.; Van Der Sluys, W. G. Inorganic Chemistry 1987, 26, 3182.

(26) Ipaktschi, J.; Rooshenas, P.; Klotzbach, T.; Dulmer, A.; Huseynova, E. Organometallics
2005, 24, 1351.

(27) Chisholm, M. H.; Huang, J.; Huffman, J. C. J. Organomet. Chem. 1997, 528, 221.

(28) Stichbury, J. C; Mays, M. J.; Davies, J. E.; Raithby, P. R.; Shields, G. P. J Chem. Soc.,
Dalton Trans. 1997, 13, 2309.

(29) Koller, J.; Sarkar, S.; Abboud, K. A.; Veige, A. S. Organometallics 2007, 26, 5438.









X-ray Experimental for [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) ..........................50
X-ray Experimental for { [tBuOCO](CH3)3CCH=}W(i-tBuOCHO)W{=CHC(CH3)3-
[B u O C O ] } (4) ........... ................... .............. .... .... ....................... ......... 67
X-ray Experimental for { [tBuOCO](CH3)3CCH=}W(i-'BuOCHO)W{=CHC(CH3)3-
[tB u O C O ]} (5 ) .............................................................................................. 8 5
X-ray Experimental for [(tBuOCHO)Mg{ O(CH2CH2)20 } ]n (6)....................................... 103
X-ray Experimental for [tBuOCHO]W(W-NMe2)2(C-O)W[tBuOCHO] (8)...................... 115
X-ray Experimental for [AnthH] [Hf(NMe2)3(NHMe2)]2 (11)....................................... 130

L IST O F R E FE R E N C E S ...................... .. .. ......... .. ............................. .............................142

B IO G R A PH IC A L SK E TCH ...................... .. .. ......... .. ............................ ......................... 144










Table B-34. Continued
Bond Angle Bond Angle


C9-C8-C7
C8-C9-C14
C8-C9-C10
C14-C9-C10
C11-C10-C9
C10-C11-C12
C13-C12-C11
C12-C13-C14
C12-C13-C24
C14-C13-C24
C1-C14-C9
C1-C14-C13
C9-C14-C13
N1-C15-C3
N1-C16-C21
N1-C16-C17
C21-C16-C17
C18-C17-C16
C19-C18-C17
C28-C29-C32
C30-C29-C32
C29-C30-C25
F7-C31-F9
F7-C31-F8
F9-C31-F8
F7-C31-C27
F9-C31-C27
F8-C31-C27
F12-C32-F10
F12-C32-F11
F10-C32-F11
F12-C32-C29
F10-C32-C29
F11-C32-C29
C27-C28-C29
C28-C29-C30


122.7(8)
119.3(8)
122.4(8)
118.3(8)
121.7(8)
120.1(9)
121.1(8)
118.6(8)
120.7(8)
120.7(7)
118.0(7)
122.0(7)
120.0(8)
118.7(6)
125.6(8)
120.5(8)
113.9(7)
122.5(8)
121.3(8)
120.1(9)
118.0(9)
121.2(8)
105.3(10)
107.6(10)
104.1(9)
113.3(9)
114.1(9)
111.7(9)
109.0(12)
103.7(12)
99.8(11)
115.7(11)
114.8(11)
112.2(13)
118.0(9)
121.8(9)


F1-C22-C18
F3-C22-C18
F2-C22-C18
F4-C23-F5
F4-C23-F6
F5-C23-F6
F4-C23-C20
F5-C23-C20
F6-C23-C20
N6-C24-C13
N6-C25-C30
N6-C25-C26
C30-C25-C26
C25-C26-C27
C28-C27-C26
C28-C27-C31
C26-C27-C31


118.4(9)
117.1(10)
112.5(11)
105.5(9)
102.9(10)
104.1(10)
117.1(9)
114.8(10)
111.1(9)
118.2(7)
124.6(7)
118.4(8)
117.0(8)
119.8(8)
122.0(8)
120.8(9)
117.2(9)


































Figure B-8. Molecular structure of [AnthH][Hf(NMe2)3(NHMe2)]2 (11). Ellipsoids shown at
50% probability level; hydrogen atoms omitted for clarity.










Table B-11. Continued
Atom U11 U22 U33 U23 U13 U12


C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66


218(12)
85(6)
112(8)
27(3)
34(3)
47(4)
38(4)
37(3)
35(3)
38(3)
38(3)
50(4)
42(4)
39(4)
53(4)
70(5)
115(7)
92(6)
77(6)
30(3)
32(3)
35(4)
60(4)
62(5)
51(4)
70(5)
85(6)
110(7)
86(6)
73(5)
61(5)
93(6)
97(6)
65(5)
66(5)
73(5)
56(5)
69(5)


258(15)
69(5)
72(7)
36(4)
33(3)
31(4)
29(4)
44(4)
42(4)
24(3)
28(3)
35(4)
48(4)
46(4)
35(4)
44(5)
62(6)
55(5)
148(9)
40(4)
32(4)
52(4)
30(4)
33(4)
38(4)
74(6)
64(5)
90(7)
115(7)
34(4)
47(5)
34(4)
68(6)
55(5)
39(4)
30(4)
57(5)
63(5)


94(8)
85(6)
335(18)
38(4)
35(3)
43(4)
45(4)
29(3)
37(4)
40(3)
46(4)
51(4)
53(4)
71(5)
45(4)
53(5)
66(5)
36(4)
45(5)
36(4)
43(4)
50(4)
49(4)
61(5)
45(4)
49(5)
52(5)
72(6)
84(6)
56(5)
64(5)
88(6)
56(5)
69(5)
47(4)
87(6)
64(5)
72(6)


89(9)
14(4)
36(9)
-5(3)
3(3)
-3(3)
9(3)
-2(3)
-2(3)
-11(3)
-8(3)
-14(3)
-7(3)
-7(3)
-4(3)
-16(3)
-27(4)
-1(3)
-29(5)
-13(3)
-3(3)
-18(3)
-18(3)
0(3)
1(3)
-29(4)
-10(4)
-50(5)
-45(5)
-1(3)
2(4)
-14(4)
-32(4)
-19(4)
-9(3)
8(4)
7(4)
26(4)


122(9)
64(5)
154(10)
17(3)
23(3)
34(3)
22(3)
17(3)
21(3)
21(3)
21(3)
20(3)
7(3)
20(4)
26(3)
18(4)
52(5)
22(4)
-3(4)
11(3)
21(3)
23(3)
19(3)
13(4)
22(3)
34(4)
28(4)
47(5)
61(5)
48(4)
38(4)
61(5)
47(5)
41(4)
32(4)
57(5)
41(4)
49(5)


169(11)
15(4)
-7(6)
-7(3)
-3(3)
-8(3)
0(3)
-17(3)
-6(3)
-3(3)
-1(3)
-7(3)
-4(3)
-7(3)
-4(3)
4(4)
-32(5)
-11(4)
-6(5)
-10(3)
-8(3)
-14(3)
-7(3)
-10(3)
-11(3)
-28(4)
-21(4)
-37(5)
-49(5)
-9(3)
-23(4)
-22(4)
-48(5)
-28(4)
-34(3)
1(4)
-3(4)
13(4)









LIST OF REFERENCES

(1) Schrock, R. R. Chem. Rev. 2002, 102, 145.

(2) Schrock, R. R.; Czekelius, C. Adv. Synth. Catal. 2007, 349, 55.

(3) Schrock, R. R. Ace. Chem. Res. 1986, 19, 342.

(4) Schrock, R. R. Angew. Chem. Int. Ed. 2006, 45, 3748.

(5) North, M. in Comprehensive Organic Functional Group Transformations II, Katritzky,
A. R.; Taylor, R. J. K., Eds. Elservier: Amsterdam, The Netherlands, 2005; Vol 3, 621.

(6) Tyrrell, E. In Comprehensive Organic Functional Group Transformations II; Katritzky,
A. R.; Taylor, R. J. K., Eds. Elservier: Amsterdam, The Netherlands, 2005; Vol 1, 1083.

(7) McLain, S. J.; Wood, C.D.; Messerle, L. W.; Schrock, R. R.; Hollander, F. J.; Youngs,
W. J.; Churchill, M. R. J Am. Chem. Soc. 1978, 100, 5962.

(8) Morton, L. A.; Wang, R.; Yu, X.; Campana, C. F.; Guzei, I. A.; Yap, G. P. A.; Xue, Z.
Organometallics. 2006, 25, 427.

(9) Tsai, Y. C.; Diaconescu P. L.; Cummins, C. C. Organometallics 2000, 19, 5260.

(10) Filippou, A. C.; Fischer, E. O. J. Organomet. Chem. 1990, 382, 143.

(11) Schrock, R. R.; Weinstock, I. A.; Horton, A. D.; Liu, A. H.; Schofield, M. H. J. Am.
Chem. Soc. 1988, 110, 2686.

(12) Schrock, R. R.; Sancho, J.; Pederson, S. F. Inorganic S)ule'e,' 1989, 26, 44.

(13) Tonzetich, Z. J.; Lam, Y. C.; Muller, P.; Schrock, R. R. Organometallics 2007, 26, 475.

(14) Listemann, M. L.; Schrock, R. R. Organometallics 1985, 4, 74.

(15) Furstner, A.; Mathes, C.; Lehmann, C. W. J Am. Chem. Soc. 1999, 121, 9453.

(16) Zhang, W.; Kraft, S.; Moore, J. S. J. Am. Chem. Soc. 2004, 126, 329.

(17) Geyer, A. M.; Gdula, R. L.; Wiedner, E. S.; Johnson, M. J. A. J. Am. Chem. Soc. 2007,
129, 3800.

(18) Bailey, B. C.; Fan, H.; Baum, E. W.; Huffman, J. C.; Baik, M.; Mindiola, D. J. J. Am.
Chem. Soc. 2005, 127, 16016.

(19) Bailey, B. C.; Fout, A. R.; Fan, H.; Tomaszewski, J.; Huffman, J. C.; Gary, J. B.;
Johnson, M. J. A.; Mindiola, D. J. J. Am. Chem. Soc. 2007, 129, 2234.








Table B-8. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x
10 ) for {[IBuOCO](CH3)3CCH=}W(i-'BuOCHO)W{=CHC(CH3)3[BuOCO] } (4).
U(eq) is defined as one third of the trace of the orthogonalized U1i tensor.
Atom X Y Z U(eq)
Wl 2864(1) 1311(1) 883(1) 32(1)
W2 1720(1) 1073(1) 4751(1) 40(1)
01 3232(3) 809(1) 885(2) 37(1)
02 2535(3) 1791(1) 1227(2) 31(1)
03 1339(3) 1219(1) 382(2) 37(1)
04 3049(3) 847(1) 5077(3) 58(1)
05 2431(3) 1568(1) 5061(2) 41(1)
06 453(3) 1293(1) 4124(2) 48(1)
C1 4315(4) 1350(2) 1970(3) 32(1)
C2 4928(4) 1023(2) 2350(4) 36(1)
C3 5632(5) 1049(2) 3184(4) 45(2)
C4 5760(5) 1374(2) 3649(4) 44(2)
C5 5256(4) 1698(2) 3261(4) 39(2)
C6 4576(4) 1698(2) 2432(4) 33(1)
C7 4878(5) 649(2) 1926(4) 40(2)
C8 3997(5) 540(2) 1230(4) 40(2)
C9 3858(5) 173(2) 858(4) 46(2)
C10 4737(6) -65(2) 1173(5) 56(2)
C11 5636(6) 48(2) 1818(5) 57(2)
C12 5716(5) 392(2) 2206(4) 49(2)
C13 2817(6) 48(2) 189(4) 54(2)
C14 2842(6) -384(2) -35(5) 84(3)
C15 2570(5) 281(2) -623(4) 59(2)
C16 1905(5) 100(2) 502(4) 64(2)
C17 4162(4) 2072(2) 2063(3) 33(1)
C18 3127(4) 2116(2) 1499(3) 32(1)
C19 2666(5) 2472(2) 1221(3) 35(1)
C20 3354(5) 2779(2) 1498(4) 44(2)
C21 4401(5) 2740(2) 2016(4) 47(2)
C22 4795(5) 2393(2) 2303(4) 45(2)
C23 1504(5) 2522(2) 666(4) 42(2)
C24 1193(5) 2943(2) 507(4) 60(2)
C25 1220(5) 2336(2) -175(4) 49(2)
C26 810(5) 2355(2) 1118(4) 51(2)
C27 3403(5) 1530(2) 113(4) 45(2)
C28 4187(6) 1468(2) -315(5) 64(2)



































2008 Andrew J. Peloquin









Synthesis and Characterization of {[tBuOCO](CH3)3CCH=}W(pO-BuOCHO)-
W{=CHC(CH3)3[tBuOCO]} (4 and 5)

Addition of 2,6-diisopropylphenol across the alkylidyne bond is a possible route for

formation of 3; thus, W(CH2C(CH3)3)3(-CC(CH3)3) was next chosen as an alkylidyne source.

The neopentane formed during the reaction should be unreactive and so the resulting complex

should retain the alkylidyne moiety. The reaction between tBuOCO and W(CH2C(CH3)3)3-

(-CC(CH3)3) in benzene required prolonged heating (72 hours) at extremely elevated

temperatures (1450C) to obtain appreciable conversion to {[tBuOCO](CH3)3CCH=)W(i-

tBuOCHO)W{=CHC(CH3)3-[BuOCO]} (4 and 5) (Figure 2-4). Single-crystal X-ray

crystallography was used to elucidate the structures of 4 and 5, related structural isomers present

in the product mixture. Both compounds consist of two distorted square-pyramidal tungsten

centers bridged by one tBuOCHO ligand.

'Bu
'Bu


0OH

Benzene
OH Npu"W' Np 1450C,72hrs 0 0
Np 3 C(CH3)4 0 o 0 'Bu 'Bu
Np=CH2C(CH3)3 'Bu

'Bu
Figure 2-4. Synthesis of { [tBuOCO](CH3)3CCH=}W(I-tBuOCHO)W{=CHC(CH3)3tBuOCO]}
(4 and 5)

Owing to the high temperature required for conversion, and since W(CH2C(CH3)3)3-

(=CC(CH3)3) is known to decompose above 140 C, an intractable mixture of products was

obtained, and no single species could be isolated on a significant scale. Despite the complicated

product mixture, the 1H NMR spectrum did indicate the presence of two closely related isomers.

After 16 hours, two sets of four singlets, characteristic of the four inequivalent t-butyl moieties in









ACKNOWLEDGMENTS

As this project draws to a close, I am extremely grateful to many individuals who made

this achievement possible. I would like to first thank my advisor, Dr Adam Veige. His patience

made this research possible, given the numerous constraints my situation provided. I would also

like to thank all the members of the Veige group for making my transition into his lab fairly

effortless. Recognition must also be given to Khalil Abboud, who provided invaluable data

through X-ray diffraction studies. I also thank the other members of my committee, Dr Stephen

Miller and Dr Michael Scott, for their time in reviewing my research.

Many faculty of the Department of Chemistry at the United States Air Force Academy

also deserve much thanks for molding me into the scientist I am today: most importantly, my

undergraduate advisor, Dr Gary Balaich, whose love for science has continued to motivate me

throughout my educational endeavors. Without the extensive practical laboratory experience he

provided, I would have been unable to complete this thesis in such a short period. Lastly, I would

like to thank Lt Col (Ret) Ronald Furstenau; it was his passion for education which inspired my

love of learning, now and for future quests.










Table B-2. Continued

Atom X Y Z U(eq)


C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66


2100(3)
1501(3)
1741(2)
685(2)
573(2)
363(2)
275(2)
374(2)
580(2)
661(2)
347(3)
848(3)
668(2)
442(2)
665(2)
1761(2)
2021(2)
2219(2)
2161(2)
1929(2)
1734(2)
2109(2)
1861(2)
1925(2)
2264(2)
2526(2)
2450(2)
1650(2)
1466(2)
1381(2)
1782(2)
1505(2)
1264(2)
1039(2)
1067(2)
1304(2)
1525(2)
751(2)


-1359(8)
-1601(8)
-2621(7)
1045(6)
1086(6)
1940(7)
2727(7)
2673(6)
1824(7)
207(7)
-452(9)
614(8)
1688(6)
838(7)
2729(7)
4615(6)
5365(6)
5272(7)
4419(7)
3644(7)
3686(6)
6287(6)
6831(6)
7756(6)
8049(7)
7521(7)
6653(7)
8382(7)
7711(7)
8766(7)
9368(7)
2763(6)
2740(6)
1900(6)
1005(7)
981(6)
1826(7)
1977(7)


1212(4)
972(3)
1599(3)
1905(3)
1476(3)
1346(3)
1635(3)
2053(3)
2204(3)
1164(3)
1043(4)
769(3)
2670(3)
2880(3)
2929(3)
3861(2)
3760(2)
3390(3)
3110(3)
3211(3)
3591(3)
4039(2)
4272(2)
4515(2)
4541(3)
4319(3)
4076(3)
4742(3)
5081(3)
4413(3)
4956(3)
3669(2)
4001(3)
4083(3)
3821(3)
3508(3)
3429(3)
4418(3)


80(4)
64(3)
52(3)
33(2)
35(2)
45(2)
45(2)
39(2)
35(2)
41(2)
83(4)
69(3)
34(2)
45(2)
51(3)
30(2)
30(2)
41(2)
45(2)
40(2)
32(2)
29(2)
30(2)
30(2)
40(2)
40(2)
38(2)
38(2)
44(2)
47(2)
57(3)
33(2)
28(2)
35(2)
42(2)
39(2)
40(2)
44(2)











Bond Length Bond Length


Hfl-N4
Hfl-N3
Hfl-N2
Hfl-N1
Hfl-N5
Hf2-N7
Hf2-N9
Hf2-N8
Hf2-N6
Hf2-N10
N1-C16
N1-C15
N2-C33
N2-C34
N3-C36
N3-C35
N4-C38
N4-C37
N5-C39
N5-C40
N6-C25
N6-C24
N7-C46
N7-C45
N8-C43
N8-C44
N9-C42
N9-C41
C11-C12
C12-C13
C13-C14
C13-C24
C16-C21
C16-C17
C17-C18
C18-C19
C18-C22
C19-C20


2.012(7)
2.044(7)
2.053(7)
2.184(7)
2.427(8)
2.020(7)
2.050(7)
2.066(7)
2.189(6)
2.452(8)
1.379(9)
1.444(10)
1.463(11)
1.466(12)
1.463(10)
1.465(11)
1.462(10)
1.470(10)
1.467(11)
1.508(11)
1.373(9)
1.493(9)
1.473(11)
1.495(11)
1.471(11)
1.490(10)
1.488(11)
1.488(12)
1.418(11)
1.369(11)
1.432(10)
1.525(10)
1.412(11)
1.413(11)
1.379(11)
1.371(11)
1.454(13)
1.371(11)


N10-C48
N10-C47
F1-C22
F2-C22
F3-C22
F4-C23
F5-C23
F6-C23
F7-C31
F8-C31
F9-C31
F10-C32
F11-C32
F12-C32
C1-C2
C1-C14
C2-C7
C2-C3
C3-C4
C3-C15
C4-C5
C5-C6
C6-C7
C7-C8
C8-C9
C9-C14
C9-C10
C10-C11
C20-C21
C20-C23
C25-C30
C25-C26
C26-C27
C27-C28
C27-C31
C28-C29
C29-C30
C29-C32


1.480(12)
1.541(14)
1.252(11)
1.327(13)
1.263(11)
1.294(11)
1.295(12)
1.318(11)
1.268(12)
1.335(11)
1.312(11)
1.314(13)
1.396(17)
1.310(13)
1.384(10)
1.406(10)
1.436(10)
1.451(11)
1.349(10)
1.518(10)
1.424(11)
1.319(12)
1.435(11)
1.395(11)
1.394(10)
1.410(10)
1.411(11)
1.338(11)
1.364(10)
1.474(13)
1.406(11)
1.408(10)
1.418(11)
1.363(11)
1.493(12)
1.382(11)
1.385(11)
1.451(14)


Bond lengths (in A


Table B-33.


for [AnthH] [Hf(NMe2)3 (NRMe2)l2 (11)









Table B-20. Continued
Atom X Y Z U(eq)
C32 7643(3) 1291(2) 4981(3) 57(1)
C33 6531(3) 958(2) 5875(3) 55(1)
C34 5205(3) 1029(2) 5733(3) 56(1)
C35 4986(3) 1415(3) 4706(3) 61(1)
C36 6099(4) 1756(2) 3804(3) 59(1)










Table B-36. Continued


Atoms


C19-C18-C22-F2
C17-C18-C22-F2
C21-C20-C23-F4
C19-C20-C23-F4
C21-C20-C23-F5
C19-C20-C23-F5
C21-C20-C23-F6
C19-C20-C23-F6
C25-N6-C24-C13
Hf2-N6-C24-C 13
C30-C29-C32-F12
C28-C29-C32-F10
C30-C29-C32-F10
C28-C29-C32-F11
C26-C27-C31-F7
C28-C27-C31-F9
C26-C27-C31-F9
C28-C27-C31-F8
C26-C27-C31-F8
C28-C29-C32-F12


125.2(10)
-57.7(13)
-161.4(9)
22.2(14)
74.1(12)
-102.3(11)
-43.6(14)
140.0(10)
-80.3(9)
105.1(7)
169.8(12)
-140.1(12)
41.5(19)
106.9(12)
64.0(13)
123.2(10)
-56.5(13)
5.4(14)
-174.3(9)
-12(2)


Angle









Magnesium chloride is a byproduct of the synthesis of W(CH2TMS)3(-CTMS) and 1,4-

dioxane is used to aid in its removal. During the reactions in which 6 is formed, liberation of

free SiMe4 is observed in the 1H NMR spectrum. It can be inferred a reaction of excess Grignard

reagent from the synthesis of W(CH2TMS)3(-CTMS) with 1 results in deprotonation of the

phenolic oxygen atoms, followed by the binding of 1,4-dioxane to the magnesium atoms. The

exact mechanism of formation of 6 was not studied further.

Further reactions were attempted with purified W(CH2TMS)3(-CTMS), but the 1H NMR

spectrum indicated complicated product mixtures, similar to the mixture seen during the

formation of 4 and 5. No further study was attempted of this reaction.









Table B-6. Continued
Atoms Angle

06-C75-C80-C84 -4.0(12)
C76-C75-C80-C84 172.8(8)
C75-C76-C81-C82 -161.2(8)
C77-C76-C81-C82 22.2(13)
C75-C76-C81-C83 76.6(11)
C77-C76-C81-C83 -00.0(11)









Table B-18. Torsion angles (in deg) for { [BuOCO](CH3)3CCH=
W =CHC(CH3)3[tBuOCO]C (5)


}W(i-tBuOCHO)


Atoms Angle Atoms Angle


02-W1-01-C8
C27-W1-O1-C8
03-W1-01-C8
C1-W1-O1-C8
C27-W1-02-C18
01-W1-02-C18
03-W1-02-C18
C1-W1-02-C18
02-W1-03-C39
C27-W1-03-C39
01-W1-03-C39
C1-W1-03-C39
06-W2-04-C49
C84-W2-04-C49
05-W2-04-C49
C58-W2-04-C49
06-W2-05-C65
C84-W2-05-C65
04-W2-05-C65
C58-W2-05-C65
C84-W2-06-C75
05-W2-06-C75
04-W2-06-C75
C58-W2-06-C75
02-W1-C1-C2
C27-W1-C1-C2
01-W1-C1-C2
C12-C7-C8-C9
C2-C7-C8-C9
01-C8-C9-C10
C7-C8-C9-C10
01-C8-C9-C13
C7-C8-C9-C13
C8-C9-C10-C11
C13-C9-C10-C11
C9-C10-C11-C12
C10-C11-C12-C7


110.8(6)
-37.7(6)
-149.8(5)
58.0(5)
120.3(7)
-27.1(10)
-125.2(7)
25.7(7)
41.0(6)
148.8(6)
-118.1(6)
-44.8(8)
54.1(8)
160.2(8)
-103.6(8)
-30.2(12)
115.8(6)
-35.2(5)
-142.3(5)
59.7(5)
110.4(8)
-39.8(11)
-140.4(8)
16.7(8)
165.8(5)
62.0(5)
-31.0(5)
-9.0(10)
167.3(6)
-173.1(6)
8.3(10)
3.3(10)
-175.3(7)
-1.8(11)
-178.3(7)
-3.7(12)
3.2(12)


03-W1-C1-C2
02-W1-C1-C6
C27-W1-C1-C6
01-W1-C1-C6
03-W1-C1-C6
C6-C1-C2-C3
W1-C1-C2-C3
C6-C1-C2-C7
W1-C1-C2-C7
C1-C2-C3-C4
C7-C2-C3-C4
C2-C3-C4-C5
C3-C4-C5-C6
C4-C5-C6-C1
C4-C5-C6-C17
C2-C1-C6-C5
W1-C1-C6-C5
C2-C1-C6-C17
W1-C1-C6-C17
C3-C2-C7-C12
C1-C2-C7-C12
C3-C2-C7-C8
C1-C2-C7-C8
W1-01-C8-C7
W1-01-C8-C9
C12-C7-C8-01
C2-C7-C8-01
C17-C18-C19-C20
02-C18-C19-C23
C17-C18-C19-C23
C18-C19-C20-C21
C23-C19-C20-C21
C19-C20-C21-C22
C20-C21-C22-C17
C18-C17-C22-C21
C6-C17-C22-C21
C20-C19-C23-C25


-105.3(6)
-18.1(5)
-121.9(5)
145.1(5)
70.8(7)
-1.6(9)
174.6(5)
-179.0(6)
-2.7(8)
0.7(10)
178.2(6)
1.3(11)
-2.2(11)
1.2(10)
178.2(6)
0.8(9)
-175.3(5)
-176.0(6)
7.9(9)
31.8(9)
-150.8(7)
-144.3(7)
33.1(10)
-44.8(8)
136.5(5)
172.4(6)
-11.3(10)
4.1(10)
6.8(10)
-175.8(6)
0.4(10)
-179.7(7)
-2.8(12)
1.0(11)
3.1(10)
-175.0(6)
116.2(7)






































Figure 2-7. Polymeric structure of 6. Ellipsoids are shown at 50% probability level; hydrogen atoms and benzene molecule omitted
for clarity.










Table B-14. Continued
Atom X Y Z U(eq)


C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66


4957(6)
3213(7)
4011(7)
2141(6)
1686(6)
2131(6)
3025(6)
3485(6)
3046(6)
660(5)
492(6)
-518(5)
-1325(6)
-1180(6)
-220(6)
-704(6)
-397(7)
-64(7)
-1867(6)
3520(5)
3095(5)
3488(6)
4339(6)
4783(6)
4379(6)
3044(7)
3169(10)
1884(7)
3606(8)
944(6)
-137(6)
-530(7)
105(8)
1116(7)
1569(6)
-896(6)
-592(6)
-1316(6)


5506(4)
5139(4)
4586(4)
6883(3)
6268(3)
5841(3)
6050(4)
6661(3)
7085(3)
6097(3)
6074(3)
5957(3)
5843(4)
5832(4)
5965(3)
5991(4)
6663(4)
5458(4)
5877(5)
7738(4)
8333(4)
8950(3)
8947(4)
8389(5)
7781(4)
9595(4)
9630(4)
9642(4)
10197(4)
6882(3)
6711(3)
6095(4)
5640(4)
5802(4)
6421(4)
7145(3)
7549(3)
7895(3)


2218(3)
1778(3)
2521(3)
3945(2)
3977(2)
4343(2)
4647(3)
4610(2)
4260(2)
3677(3)
3185(2)
2907(2)
3143(3)
3627(3)
3882(3)
2372(3)
2216(3)
2177(3)
2156(3)
4189(2)
4324(2)
4232(2)
4011(3)
3884(3)
3980(3)
4378(3)
4898(4)
4149(4)
4237(4)
5211(2)
5045(2)
5148(3)
5422(3)
5604(3)
5512(2)
4755(2)
4406(2)
4079(2)


50(2)
53(2)
50(2)
27(2)
25(2)
27(2)
35(2)
30(2)
23(2)
26(2)
23(2)
29(2)
40(2)
38(2)
33(2)
41(2)
56(3)
55(2)
72(3)
25(2)
24(2)
30(2)
43(2)
50(2)
40(2)
45(2)
101(4)
95(4)
79(3)
26(2)
31(2)
39(2)
52(2)
50(2)
34(2)
29(2)
23(2)
29(2)









Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

APPLICATION OF TRIANIONIC PINCER LIGANDS TO REACTIONS INVOLVING
GROUP VI ALKYLIDYNES, METAL-METAL MULTIPLE BONDS, AND GROUP IV
AMIDES

By

Andrew J. Peloquin

August 2008

Chair: Adam S. Veige
Major: Chemistry

In an effort to isolate a pincer-support tungsten alkylidyne, several new tungsten

alkylidenes and a ditungsten compound have been isolated, supported by the previously reported

OCO pincer ligand [3,3"-di-tert-butyl-2,2"-di-(hydroxy-KO)-1,1':3', "-terphenyl-2'-yl-KC2]

(tBuOCO 1). When the tBuOCO ligand precursor is treated with W(OAr)2(CH2(CH3)3)-

(-C(CH3)3) (OAr= 2,6-diisopropylphenoxide) in benzene, the alkylidene complex [tBuOCO]-

W(=CH(CH3)3)(O-2,6-'Pr2-C6H3) (3) results and was characterized by a combination of one and

two dimensional NMR spectroscopy, single-crystal X-ray crystallography, and combustion

analysis. To aid in the final a abstraction, W(CH2(CH3)3)3(-C(CH3)3) was next combined with

1, but the reaction resulted in a complicated mixture of products. From this mixture, two closely

related structural isomers of the form {[tBuOCO](CH3)3CCH=)W(i-tBuOCHO)-

W{=CHC(CH3)3[tBuOCO]} (4 and 5) were isolated. This bridged, dinuclear complex was

analyzed by single-crystal X-ray crystallography. Finally, the reaction of (NMe2)3W-W(NMe2)3

with two equivalents of 1 results first in [tBuOCHO](NMe2)W-W(NMe2)[tBuOCHO] (7) and

after prolonged heating, [tBuOCHO]W(--NMe2)2(d-O)W[tBuOCHO] (8). These complexes

were analyzed by a combination of NMR spectroscopy, single-crystal X-ray crystallography, and









Table B-16. Bond angles (in deg) for { [BuOCO](CH3)3CCH=)W(p-'BuOCHO)
W{=CHC(CH3)3 [BuOCO]} (5)
Bond Angle Bond Angle


02-W1-C27
02-W1-01
C27-W1-01
02-W1-03
C27-W1-03
01-W1-03
02-W1-C1
C27-W1-C1
01-W1-C1
03-W1-C1
06-W2-C84
06-W2-05
C84-W2-05
06-W2-04
C84-W2-04
05-W2-04
06-W2-C58
C84-W2-C58
05-W2-C58
04-W2-C58
C8-01-W1
C18-02-W1
C39-03-W1
C49-04-W2
C65-05-W2
C75-06-W2
C9-C13-C16
C14-C13-C15
C9-C13-C15
C16-C13-C15
C18-C17-C22
C18-C17-C6
C22-C17-C6
02-C18-C17
02-C18-C19
C17-C18-C19
C20-C19-C18


104.3(2)
158.92(19)
93.6(2)
95.21(18)
112.2(2)
88.04(18)
83.4(2)
96.0(3)
83.7(2)
151.1(2)
103.6(3)
157.29(18)
96.3(3)
95.6(2)
107.1(2)
88.90(18)
82.6(2)
95.4(3)
84.6(2)
157.2(2)
125.7(4)
143.9(4)
139.8(4)
147.1(4)
125.0(4)
147.2(5)
114.6(6)
108.5(7)
110.9(7)
104.4(7)
115.9(6)
123.5(6)
120.6(6)
116.0(6)
118.7(6)
125.3(6)
114.3(6)


C2-C1-C6
C2-C1-W1
C6-C1-W1
C3-C2-C1
C3-C2-C7
C1-C2-C7
C4-C3-C2
C5-C4-C3
C4-C5-C6
C5-C6-C1
C5-C6-C17
C1-C6-C17
C12-C7-C8
C12-C7-C2
C8-C7-C2
01-C8-C7
01-C8-C9
C7-C8-C9
C10-C9-C8
C10-C9-C13
C8-C9-C13
C11-C10-C9
C12-C11-C10
C11-C12-C7
C14-C13-C9
C14-C13-C16
C33-C32-C37
C32-C33-C34
C32-C33-C38
C34-C33-C38
C35-C34-C33
C36-C35-C34
C37-C36-C35
C36-C37-C32
C36-C37-C48
C32-C37-C48
C43-C38-C39


118.4(6)
118.3(5)
123.2(5)
120.0(6)
115.8(6)
124.1(6)
121.2(7)
120.2(7)
122.4(7)
117.8(7)
117.2(7)
124.9(6)
117.2(7)
122.2(7)
120.5(6)
118.2(6)
118.3(7)
123.5(6)
113.8(7)
121.4(7)
124.6(7)
123.7(7)
119.2(7)
121.9(8)
107.9(7)
110.4(8)
121.8(7)
118.8(7)
120.7(6)
119.8(6)
118.2(7)
122.8(7)
119.5(7)
118.8(7)
122.4(6)
118.7(6)
116.5(7)










Table B-4. Continued
Bond Angle Bond Angle


C18-C17-C6
C22-C17-C6
02-C18-C17
03-C32-C37
C33-C32-C37
C34-C33-C32
C34-C33-C38
C32-C33-C38
C35-C34-C33
C36-C35-C34
C35-C36-C37
C36-C37-C32
C36-C37-C41
C32-C37-C41
C33-C38-C39
C33-C38-C40
C39-C38-C40
C37-C41-C42
C37-C41-C43
C42-C41-C43
C45-C44-C49
C45-C44-W2
C49-C44-W2
C46-C45-C44
C46-C45-C50
C59-C56-C58
C52-C56-C58
C57-C56-C58
C65-C60-C61
C65-C60-C49
C61-C60-C49
05-C61-C62
05-C61-C60
C62-C61-C60
C61-C62-C63
C61-C62-C66
C63-C62-C66


121.9(8)
121.2(8)
117.5(8)
117.1(7)
121.1(7)
118.8(8)
120.0(8)
121.2(7)
119.8(8)
121.6(8)
121.1(8)
117.5(8)
122.5(8)
119.9(7)
111.9(7)
113.0(8)
111.1(8)
111.4(6)
114.5(7)
110.9(7)
116.8(7)
119.3(5)
123.6(6)
121.8(7)
115.2(7)
105.9(7)
109.0(7)
108.4(7)
115.0(8)
122.0(8)
122.9(7)
118.8(7)
116.1(7)
125.1(7)
116.5(8)
122.6(7)
120.8(8)


C27-C28-C30
C31-C28-C30
03-C32-C33
C44-C45-C50
C47-C46-C45
C48-C47-C46
C47-C48-C49
C48-C49-C44
C48-C49-C60
C44-C49-C60
C51-C50-C55
C51-C50-C45
C55-C50-C45
04-C51-C50
04-C51-C52
C50-C51-C52
C53-C52-C51
C69-C66-C67
C62-C66-C67
C82-C81-C83
C85-C84-C80
C85-C84-C86
C80-C84-C86
C71-C70-W2
C53-C52-C56
C51-C52-C56
C52-C53-C54
C55-C54-C53
C54-C55-C50
C59-C56-C52
C59-C56-C57
C52-C56-C57
C72-C71-C70
C72-C71-C73
C70-C71-C73
C72-C71-C74
C70-C71-C74


107.2(7)
110.6(7)
121.8(7)
123.0(7)
119.7(8)
120.1(8)
121.8(8)
119.1(7)
115.9(7)
124.9(7)
116.9(7)
122.0(7)
121.0(7)
116.6(7)
118.8(7)
124.5(8)
114.7(7)
108.2(8)
111.5(7)
109.3(8)
112.5(8)
109.1(8)
112.3(8)
142.0(6)
121.1(7)
124.2(7)
123.2(8)
119.8(8)
120.6(8)
113.5(7)
107.6(8)
112.2(7)
109.5(7)
109.9(8)
106.8(7)
110.5(8)
110.8(6)









CHAPTER 6
EXPERIMENTAL

General Considerations

Unless specified otherwise, all manipulations were performed under an inert atmosphere

using standard Schlenk or glovebox techniques. Glassware was oven-dried before use. Pentane,

toluene, diethyl ether (Et20), and tetrahydrofuran (THF) were dried using a Glass Contour

drying column. Benzene-d6 (Cambridge Isotopes) and benzene were dried over sodium-

benzophenone ketyl and distilled or vacuum transferred and stored over 4 A molecular sieves.

NMR spectra were obtained on Varian Mercury Broad Band 300 MHz or Varian Mercury 300

MHz spectrometers. Chemical shifts are reported in 6 (ppm). For 1H and 13C{1H} NMR spectra,

the residual protio solvent peak was referenced as an internal reference. Elemental analyses

were performed by Complete Analysis Laboratory Inc., Parsippany, New Jersey.

Synthesis of [tBuOCO]W(=CHC(CH3)3)(0-2,6-C6H3-iPr2) (3)

In a 50 mL Schlenk tube, W(-CC(CH3)3)(CH2c(CH3)3)(O-2,6-C6H3-'Pr2)2 (2) (91 mg,

0.14 mmol) was added to a solution of 1 (50 mg, 0.14 mmol) in benzene (2 mL). The mixture

was heated at 85 C for two hours. The solvent was removed in vacuo from the resulting dark

red solution to yield 3 as a dark red oil (134 mg, 98 %) containing one equivalent of 2,6-

diisopropylphenol. X-ray quality crystals were obtained from the slow evaporation of an Et20

solution. H NMR (300 MHz, C6D6) 6 (ppm): 7.99 (d, J=7.9 Hz, 2H, Ar-H), 7.80 (dd, 3J=7.9

Hz, 4J=1.5 Hz, 2H, Ar-H), 7.38 (t, J=7.9 Hz, 1H, Ar-H), 7.33 (dd, 3J=7.8 Hz, 4j=1.5 Hz, 2H, Ar-

H), 7.03 (d, J=1.1 Hz, 1H, phenol Ar-li), 7.01 (s, 1H, phenol Ar-li), 6.98 (s, 1H, Ar-li), 6.96

(s,1H, Ar-H), 6.91 (m, 1H, phenol Ar-H), 6.89 (s, 1H, Ar-H), 6.88 (d, J=3.8 Hz, 1H, Ar-H), 6.87

(s, 1H, Ar-H), 5.54 (s, JH-w=8.7 Hz, 1H, W=CIC(CH3)3), 4.09 (sept, J=6.8 Hz, 1H, CH(CH3)2),

2.93 (sept, J=6.9 Hz, 2H, phenol CH(CH3)2)2.39 (sept, J=6.7 Hz, 1H, CH(CH3)2), 1.44 (s, 18H,









Table B-13. Crystal data, structure solution, and refinement for {[tBuOCO](CH3)3CCH=)W(i-
tBuOCHO)W{=CHC(CH3)3[tBuOCO]} (5)
identification code pelo7t
empirical formula CssH10206W2
formula weight 1623.40
T(K) 173(2)
S(A) 0.71073
crystal system Monoclinic
Space group P2(1)/c
a(A) 12.8904(8)
b (A) 20.2444(13)
c(A) 29.2372(18)
a (deg) 90
/ (deg) 100.7990(10)
y (deg) 90
V(A3) 7494.6(8)
Z 4
pcalcd(g mm-3) 1.439
crystal size (mm) 0.16 x 0.04 x 0.04
abs coeff(mm-) 3.121
F(000) 3304
0 range for data collection (deg) 1.23 to 27.50
limiting indices -16 < h < 15, -26 < k < 26, -37 < 1 < 27
no. ofreflns called 50772
no. ofind reflns (Rint) 17182 (0.1065)
completeness to 0= 27.500 99.8 %
absorption corr Integration
2
refinement method Full-matrix least-squares on F
data / restraints / parameters 17182 / 0 / 865
R1, wR2 [I > 2a] 0.0485, 0.0919
R1, wR2 (all data) 0.1179, 0.1030
GOF on F2 0.849
largest diff. peak and hole (e.A-3) 1.315 and -0.693
R1 = (||Fol |Fcl|) / |Fol
wR2 = [I[w(Fo2 Fc2)2] / Y[w(Fo2)2]]1/2
S = [I[w(Fo2 Fc2)2] / (n-p)]1/2
w= 1/[c2(Fo2)+(m*p)2+n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.









Table B-30. Continued
Atoms Angle

C37-C27-C47-C46 -120.8(4)
C10-C27-C47-C46 58.0(5)
C37-C27-C47-C56 -1.7(6)
C10-C27-C47-C56 177.1(4)
W2-N1-C49-C51 -134.9(4)
W1-N1-C49-C51 139.5(4)
Symmetry transformations used to generate equivalent atoms:
#1 -x,-y,-z #2 -x+1,-y+2,-z+1









Table B-4. Bond angles (in deg) for [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3)
Bond Angle Bond Angle


01-W1-02
01-W1-C27
02-W1-C27
01-W1-03
02-W1-03
C27-W1-03
01-W1-C1
02-W1-C1
C27-W1-C1
03-W1-C1
05-W2-C70
05-W2-04
C70-W2-04
05-W2-06
C70-W2-06
04-W2-06
05-W2-C44
C70-W2-C44
04-W2-C44
C8-C7-C12
C8-C7-C2
C12-C7-C2
01-C8-C9
01-C8-C7
C9-C8-C7
C8-C9-C10
C8-C9-C13
C10-C9-C13
C9-C10-C11
C12-C11-C10
C11-C12-C7
C16-C13-C15
C16-C13-C14
C15-C13-C14
C16-C13-C9
C15-C13-C9
C14-C13-C9
C18-C17-C22


162.0(2)
101.7(3)
94.3(3)
91.9(2)
86.5(2)
121.6(3)
84.2(3)
85.2(3)
99.7(3)
138.3(3)
103.7(3)
161.0(2)
92.7(3)
92.7(2)
123.2(3)
86.2(2)
83.8(3)
95.6(3)
85.1(3)
114.4(8)
123.0(7)
122.6(8)
119.7(7)
114.5(7)
125.8(8)
115.8(8)
123.3(8)
120.8(8)
120.1(9)
121.3(9)
122.1(9)
110.7(8)
107.7(9)
107.5(9)
109.1(8)
111.9(8)
109.8(8)
116.8(9)


06-W2-C44
C8-01-W1
C18-02-W1
C32-03-W1
C51-04-W2
C61-05-W2
C75-06-W2
C6-C1-C2
C6-C1-W1
C2-CI-W1
C3-C2-C1
C3-C2-C7
C1-C2-C7
C4-C3-C2
C3-C4-C5
C4-C5-C6
C5-C6-C1
C5-C6-C17
C1-C6-C17
02-C18-C19
C17-C18-C19
C20-C19-C18
C20-C19-C23
C18-C19-C23
C19-C20-C21
C22-C21-C20
C21-C22-C17
C26-C23-C19
C26-C23-C24
C19-C23-C24
C26-C23-C25
C19-C23-C25
C24-C23-C25
C28-C27-W1
C29-C28-C27
C29-C28-C31
C27-C28-C31
C29-C28-C30


140.5(2)
148.5(5)
132.3(5)
151.0(5)
125.0(4)
146.9(5)
150.3(5)
117.5(7)
120.6(6)
120.8(5)
119.1(7)
114.4(7)
126.6(7)
121.7(8)
119.5(8)
121.1(8)
120.7(8)
116.1(8)
123.2(7)
120.3(7)
122.2(8)
116.9(8)
121.2(8)
121.9(7)
122.0(8)
119.4(9)
122.5(9)
109.9(8)
107.8(7)
111.8(8)
108.9(8)
112.0(7)
106.2(8)
139.9(7)
109.7(7)
108.1(8)
112.7(8)
108.6(9)









Table B-5. Continued

Atom U11 U22 U33 U23 U13 U12


C66
C67
C68
C69
C70
C71
C72
C73
C74
C75
C76
C77
C78
C79
C80
C81
C82
C83
C84
C85
C86


30(5)
49(7)
28(6)
43(6)
40(5)
34(5)
130(11)
21(5)
53(6)
28(5)
32(5)
34(6)
56(7)
47(7)
28(5)
31(6)
57(8)
79(9)
45(6)
83(9)
83(9)


44(5)
66(7)
64(7)
59(6)
27(5)
44(5)
58(7)
67(7)
43(5)
32(5)
52(6)
63(7)
68(8)
71(7)
59(6)
77(7)
124(10)
130(11)
69(7)
90(9)
86(8)


58(7)
96(9)
75(8)
43(6)
32(5)
32(5)
39(6)
109(10)
63(7)
53(6)
34(5)
63(7)
72(9)
45(6)
33(5)
49(6)
49(7)
41(7)
36(5)
67(8)
71(8)


-11(5)
-20(6)
-11(6)
-2(5)
1(3)
9(4)
8(5)
19(6)
17(5)
-11(4)
-8(4)
1(5)
-22(6)
-16(5)
-10(4)
-8(5)
25(7)
-21(7)
-4(5)
16(7)
16(7)


10(5)
29(6)
4(5)
16(5)
6(4)
-10(4)
-23(7)
-7(6)
-28(5)
2(4)
1(4)
3(5)
12(6)
15(5)
-2(4)
-11(5)
-3(6)
-9(6)
5(4)
-10(7)
-5(7)


-12(4)
-13(5)
-5(5)
0(5)
7(4)
0(4)
28(7)
4(5)
9(5)
8(4)
4(4)
15(5)
15(6)
10(5)
-5(4)
-3(5)
33(7)
-15(8)
2(5)
-30(7)
-29(7)









Table B-35. Anisotropic displacement parameters (A x 10 ) for [AnthH][Hf(NMe2)3(NHMe2)]2
(11). The anisotropic displacement factor exponent takes the form: -272[ h a* U1 +
12
...+2hka*b*U ].
Atom U11 U22 U33 U23 U13 U12


Hfl
Hf2
N1
N2
N3
N4
N5
N6
N7
N8
N9
N10
Fl
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12


33(1)
45(1)
26(4)
43(5)
39(5)
54(5)
41(5)
29(4)
50(5)
44(5)
96(7)
62(6)
116(6)
90(6)
249(10)
150(7)
239(10)
125(7)
180(8)
90(5)
48(4)
191(8)
100(6)
180(8)
49(6)
27(5)
31(5)
30(5)
31(6)
46(6)
44(5)
61(7)
41(5)
57(6)
64(7)
36(5)


32(1)
39(1)
38(4)
40(4)
33(4)
40(4)
51(5)
43(4)
41(4)
48(5)
45(5)
48(5)
250(10)
263(11)
109(6)
43(4)
109(6)
117(6)
270(11)
62(4)
92(4)
111(5)
122(7)
59(4)
25(4)
29(4)
36(5)
35(5)
44(5)
44(6)
28(4)
33(5)
33(5)
34(5)
40(5)
33(5)


47(1)
41(1)
42(4)
67(6)
52(5)
44(5)
61(6)
35(4)
60(6)
64(6)
37(5)
103(8)
58(5)
104(6)
210(9)
98(5)
58(5)
217(10)
52(5)
221(9)
108(5)
112(6)
224(11)
183(8)
30(5)
38(5)
45(6)
70(7)
67(7)
44(6)
36(5)
26(5)
25(5)
32(5)
30(6)
60(7)


1(1) 1(1) 2(1)
2(1) -5(1) 6(1)
-4(3) 5(3) 9(3)
12(4) -1(4) -1(4)
9(3) -3(4) -3(4)
0(3) -8(4) 11(4)
8(4) 3(4) 6(4)
6(3) 4(3) 9(4)
6(4) -5(4) -4(4)
-1(4) 10(4) 1(4)
-4(4) 4(5) -7(5)
-6(5) -47(6) 4(5)
-20(5) 18(4) 106(6)
-57(7) 59(5) -20(7)
92(6) 182(8) 130(7)
16(3) 40(5) -10(4)
24(4) -4(6) -61(6)
100(6) 111(7) 36(5)
48(6) 1(5) 165(8)
57(5) -28(5) 5(4)
28(4) 3(4) 17(4)
46(5) -96(6) -78(6)
44(7) -61(7) -43(6)
27(5) -96(7) -37(5)
0(4) 0(4) 0(4)
12(4) -12(4) -3(4)
-8(4) -5(4) 9(4)
-2(5) -2(5) 11(4)
-12(5) -17(5) 2(5)
-6(4) -21(5) 2(5)
-1(4) -4(4) 2(5)
-6(4) -15(5) -6(5)
-2(4) 6(4) -6(4)
7(4) -4(5) -1(5)
-6(4) 12(5) -8(5)
8(5) 7(5) 4(4)









CHAPTER 5
CONCLUSIONS

This report has established the synthesis new metal complexes supported by trianionic

pincer ligands. All attempts to form a four-coordinate alkylidyne complex supported by a

'BuOCO ligand by direct reaction with a preformed alkylidyne have not been successful,

resulting in five-coordinate alkylidene complexes (3-5). This suggests that while an alkylidyne

may be formed during the progress of the reaction, it is too unsaturated to be stable. Parallel

research by another group member has revealed the addition of the ligand backbone C-H bond

across the alkylidyne is a possible reaction route. A method to remove this proton from the

ligand prior to the reaction has not been determined and therefore may rule out the direct reaction

with a preformed alkylidyne as a feasible reaction route. While attempting to form a complex

containing a W=W unit, a complex containing a bridging oxo functionality was obtained (8).

The source of this oxygen atom has not been conclusively determined to date, but evidence

currently points to the oxidative addition of water as the likely source. This mechanism would

produce hydrogen gas as a byproduct. Research is ongoing to determine the exact mechanism of

formation of this complex.

When using NCN pincer ligands, a dinuclear complex was obtained (10-11). The fact a

dinuclear complex was obtained is not surprising. Other NCN pincer ligands that have been

studied previously by the Veige group have often resulted in dinuclear or dimeric complexes.29

The differences between an N-H and an O-H bond were a major reason for switching to an

oxygen based pincer ligand.









Table B-27. Bond lengths (in A) for [tBuOCHO]W(I-NMe2)2(T-O)W[tBuOCHO] (8)
Bond Length Bond Length


W1-05
Wl-01
W1-02
W1-N1
W1-N2
W1-W2
W2-05
W2-03
W2-04
W2-N1
W2-N2
N1-C54
N1-C53
N2-C56
N2-C55
01-C8
02-C18
03-C34
04-C44
C1-C2
C1-C6
C2-C3
C2-C7
C3-C4
C4-C5
C5-C6
C30-C31
C31-C32
C32-C43
C33-C38
C33-C34
C34-C35
C35-C36
C35-C39
C36-C37
C37-C38
C39-C41
C39-C40


1.942(4)
1.955(2)
1.958(2)
2.053(3)
2.065(3)
2.49726(19)
1.946(3)
1.951(2)
1.954(2)
2.057(3)
2.058(3)
1.377(7)
1.639(8)
1.345(6)
1.649(8)
1.347(4)
1.357(4)
1.351(4)
1.343(4)
1.387(5)
1.403(5)
1.408(5)
1.475(5)
1.376(6)
1.379(6)
1.399(5)
1.385(6)
1.404(5)
1.482(5)
1.390(5)
1.412(5)
1.424(5)
1.395(5)
1.535(5)
1.393(5)
1.380(5)
1.535(5)
1.540(5)


C6-C17
C7-C12
C7-C8
C8-C9
C9-C10
C9-C13
C10-C11
C11-C12
C13-C14
C13-C15
C13-C16
C17-C22
C17-C18
C18-C19
C19-C20
C19-C23
C20-C21
C21-C22
C23-C25
C23-C26
C23-C24
C27-C32
C27-C28
C28-C29
C28-C33
C29-C30
C58-C59
C59-C57#1
C60-C61
C60-C62#2
C61-C62
C62-C60#2
C39-C42
C43-C48
C43-C44
C44-C45
C45-C46
C45-C49


1.473(6)
1.403(5)
1.414(5)
1.407(5)
1.398(5)
1.541(5)
1.390(6)
1.372(6)
1.523(5)
1.531(5)
1.534(5)
1.398(5)
1.411(6)
1.417(5)
1.406(6)
1.535(7)
1.375(8)
1.375(7)
1.524(7)
1.533(7)
1.546(6)
1.386(5)
1.396(5)
1.397(5)
1.484(5)
1.393(5)
1.368(14)
1.303(15)
1.274(17)
1.401(16)
1.305(18)
1.401(16)
1.543(5)
1.391(5)
1.423(5)
1.420(5)
1.392(5)
1.545(5)










Table B-5. Anisotropic displacement parameters (Aix 103) for [tBuOCO]W(=CHC(CH3)3)(O-
2,6-'Pr2-C6H3) (3). The anisotropic displacement factor exponent takes the form:
-272[ h2a*2U11+... + 2 hk a* b* U12 ].
Atom U11 U22 U33 U23 U13 U12


Wl
W2
01
02
03
04
05
06
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28


28(1)
24(1)
31(3)
15(3)
28(3)
31(3)
27(3)
29(3)
27(5)
20(4)
43(6)
47(6)
34(5)
28(5)
28(5)
22(5)
46(6)
49(6)
65(7)
57(7)
41(6)
58(8)
65(8)
28(6)
42(6)
33(5)
35(5)
31(5)
29(5)
19(5)
44(6)
81(8)
65(7)
57(7)
23(5)
40(6)


34(1)
35(1)
35(3)
48(3)
37(3)
33(3)
41(3)
47(3)
40(5)
45(5)
50(6)
66(7)
63(6)
44(5)
49(5)
38(5)
44(5)
48(6)
42(6)
47(6)
44(6)
85(9)
65(7)
108(9)
45(5)
43(5)
50(5)
56(6)
72(7)
76(7)
37(5)
43(6)
41(6)
37(5)
49(5)
41(5)


23(1)
22(1)
33(3)
30(3)
41(3)
30(3)
27(3)
30(3)
28(5)
29(5)
32(5)
26(5)
30(5)
28(4)
32(5)
35(5)
37(5)
57(7)
65(7)
45(6)
60(7)
137(12)
52(7)
74(8)
33(5)
27(5)
25(5)
47(6)
48(6)
46(6)
55(7)
74(8)
53(7)
72(8)
37(5)
42(6)


0(1)
-3(1)
3(3)
4(3)
-2(3)
3(2)
-5(3)
-5(3)
-6(4)
-6(4)
-3(4)
4(5)
-10(4)
-3(4)
7(4)
5(4)
2(4)
7(5)
22(5)
6(5)
6(5)
50(8)
-7(5)
19(7)
-19(4)
-9(4)
-2(4)
-15(5)
-17(5)
-23(5)
0(5)
5(5)
6(5)
-4(5)
1(4)
-11(4)


-2(1)
2(1)
-4(3)
-5(2)
-5(3)
5(3)
3(2)
-4(2)
9(4)
-4(4)
-3(4)
-7(4)
-5(4)
5(3)
4(4)
10(4)
6(4)
5(5)
7(6)
0(5)
-12(5)
-30(8)
-27(6)
-7(6)
11(4)
2(4)
7(4)
18(4)
6(5)
2(4)
18(5)
3(6)
-10(5)
19(6)
-14(4)
5(4)


3(1)
3(1)
6(2)
0(2)
2(2)
2(2)
-5(2)
10(3)
5(4)
3(4)
6(4)
26(5)
17(4)
19(4)
17(4)
4(4)
-1(4)
0(5)
18(5)
5(5)
6(5)
-26(7)
-4(5)
-3(6)
4(4)
10(4)
6(4)
-30(5)
-9(5)
-8(4)
-7(4)
-12(5)
8(5)
6(5)
18(4)
3(4)




























































c -
0

c0

co
T 7 c


260 240 220


CD











J c


200 180 160 140
Chemical Shift (ppm)


120 100 80


60 40 20


Figure A-2. 13C{1H} NMR spectrum of [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) in C6D6


~---- L I~~ ., .,.._I LL.~ --C-~~~C11









desired alkyne and a metal-nitride. A sacrificial alkyne is then employed to convert the metal-

nitride back to a metal-alkylidyne to continue the catalytic cycle. A major roadblock to the

catalytic version of the reaction is the high-energy azametallacyclobutadiene intermediate, which

effectively makes either the alkylidyne or nitride a thermodynamic sink.

R'C N
LnM -N
LnM 'CR LM=N

R R' R C'
RC=CR'

Figure 1-5. Mechanism of nitrile-alkyne cross metathesis (NACM)

In 2007, the first catalytic example of NACM was reported by Johnson et al.17 A

tungsten-nitride of the form (RO)3W=N was found to reversibly convert to the corresponding

ethylidyne upon treatment with 3-hexyne. In the presence ofp-methoxyaniline, the

corresponding alkyne was formed. Unfortunately, the system was rather sluggish and was

limited in substrate scope.




Pr iPr 'Bu P 'Pr

N- Ti 3 CH3tBu N Ti N Ti -- R
\/ -C2HBu Bu N
Pr TPr Pr 'Bu
'Pr ipr 'Pr

VI VII
Figure 1-6. Pincer-type ligand supported alkylidyne

In 2005, the novel titanium alkylidene-alkyl complex (PNP)Ti=CHBu(CH2tBu) (VI) was

reported by Mindiola et al. (Figure 1-6).18 This complex features a tridentate, pincer-type ligand.

In 2007, the same group found the complex to react with bulky nitriles to provide the first

isolated azametallacyclobutadiene (VII). This complex showed promise for NACM but,








































Figure B-2. Packing diagram for 3










CHAPTER 4
SYNTHESIS OF DINUCLEAR ZIRCONIUM AND HAFNIUM COMPLEXES OF A NEW
ANTHRACENE DIAMIDO LIGAND

To explore the chemistry of other pincer ligands, a new NCN3- pincer ligand was

employed. Anthracene diamido ligand 9 was previously synthesized by M. K. Veige. Treatment

of AnthH3 (9) with a group IV metal amide of the form M(NMe2)4 (M= Zr (10) and Hf (11)) in

benzene results in the formation of the dinuclear complexes [AnthH][M(NMe2)3(NHMe2)]2 (M =

Zr, 10 and M = Hf, 11) (Figure 4-1). The reaction is complete within ten minutes at room

temperature. The structures of 10 and 11 were confirmed by a combination of 1H and 13C NMR

spectroscopy, single-crystal X-ray crystallography, and combustion analysis.

Me2HN NMe,
M-NMe2
Me2N
HN-N-Ar


HN-At
+ 2 .iN / \ Ar= 3,5-trifluoromethylphenyl
+ 2-1nNMze. n M= Zr (10) and Hf (11)
Benzene
HN--Ar r.t., 30 mins


N -Ar
Me2N, /
M--NMe,

Mc2HN NMe2

Figure 4-1. Synthesis of [AnthH][M(NMe2)3(NHMe2)2 (10 and 11)

In each complex, each amide donor of the AnthH ligand is bound to a metal center,

resulting in a dinuclear complex. The coordination geometry around each metal atom is trigonal

bipyramidal in nature, with one molecule of dimethylamine occupying the site trans to the ligand

amide, while three dimethylamides occupy the three equatorial sites around the metal atom. 1H

NMR spectroscopy of these complexes indicates the dimethylamide and dimethylamine ligands

do not exchange positions. For example, in the 1H NMR spectrum of 11, the methyl protons of









B-17 Anisotropic displacement parameters for { [tBuOCO](CH3)3CCH=}W(i-
tBuOCHO)W {=CHC(CH3)3[tBuOCO]} (5) ....................... ...... .... .... ....................95

B-18 Torsion angles for {[tBuOCO](CH3)3CCH=}W(i-tBuOCHO) W{=CHC(CH3)3-
[B uO C O ]} (5) .............. .............. ................................ ..................... .......... 98

B-19 Crystal data, structure solution, and refinement for [(tBuOCHO)Mg-
{O (CH 2CH 2)20 }]n (6).................. ........................ ......... ............... 104

B-20 Atomic coordinates and equivalent isotropic displacement parameters for
[('BuOCHO)M g{ O(CH2CH2)20 }]n (6) .................................. ............. ............ 105

B-21 Bond lengths for [(tBuOCHO)Mg{O(CH2CH2)20}]n (6) ........................................... 107

B-22 Bond angles for [(tBuOCHO)Mg{O(CH2CH2)20}]n (6)............................................... 108

B-23 Anisotropic displacement parameters for [(tBuOCHO)Mg-{ O(CH2CH2)20}]n (6) ....... 109

B-24 Torsion angles for [(tBuOCHO)Mg{O(CH2CH2)20}]n (6) .................................... 111

B-25 Crystal data, structure solution, and refinement for [tBuOCHO]W( -NMe2)2( -
O)W [tBuOCHO] (8) .................................... ........................... ........... 116

B-26 Atomic coordinates and equivalent isotropic displacement parameters for
[tBuOCHO]W(i-NMe2)2(i-O)W['BuOCHO] (8)........................................... 117

B-27 Bond lengths for [tBuOCHO]W(W-NMe2)2(C-O)W[tBuOCHO] (8)............................ 119

B-28 Bond angles for [tBuOCHO]W(p-NMe2)2(p-O)W[tBuOCHO] (8)........................... 121

B-29 Anisotropic displacement parameters for [tBuOCHO]W(i-NMe2)2(I-O)-
W ['BuOCHO] (8) ................................................................... ......... 123

B-30 Torsion angles for [tBuOCHO]W(p-NMe2)2(p-O)W[tBuOCHO] (8) ........................... 125

B-31 Crystal data, structure solution, and refinement for [AnthH][Hf(NMe2)3(NHMe2)]2
(1 1)..... . ....................... ............................................. ........... .... 13 1

B-32 Atomic coordinates and equivalent isotropic displacement parameters for
[AnthH] [Hf(NM e2)3(NHM e2)]2 (11) .................................................................... 132

B-33 Bond lengths for [AnthH][Hf(NMe2)3(NHMe2)]2 (11) .............................................. 134

B-34 Bond angles for [AnthH][Hf(NMe2)3(NHMe2)]2 (11)............................................... 135

B-35 Anisotropic displacement parameters for [AnthH][Hf(NMe2)3(NHMe2)]2 (11)............. 137

B-36 Torsion angles for [AnthH][Hf(NMe2)3(NHMe2)]2 (11).............................................. 139



























































(0
ClN
COl
066
oo v

cc ~ ~ 7C I VIwi z-


cD


9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Chemical Shift (ppm)


Figure A-6. H NMR spectrum of [AnthH][Hf(NMe2)3(NHMe2)]2 (11) in C6D6









Table B-22. Bond angles (in deg) for [(tBuOCHO)Mg{O(CH2CH2)20}ln (6)


Bond


01-Mgl-02
01-Mgl-04
02-Mgl-04
01-Mgl-03
02-Mgl-03
04-Mgl-03
01-Mgl-Cl
02-Mgl-C1
04-Mgl-C1
03-Mgl-C1
C18-01-Mgl
C8-02-Mgl
C28-03-C27
C28-03-Mgl
C27-03-Mgl
C29-04-C30
C29-04-Mgl
C30-04-Mgl
C2-C1-C6
C2-C1-Mgl
C6-C1-Mgl
C3-C2-C1
C3-C2-C7
C1-C2-C7
C4-C3-C2
C5-C4-C3
C4-C5-C6
C5-C6-C1
C18-C19-C23
C21-C20-C19
C22-C21-C20
C21-C22-C17
C25-C23-C19
C25-C23-C24
C19-C23-C24
C25-C23-C26
C19-C23-C26
C24-C23-C26


Angle

139.75(8)
109.39(8)
109.60(8)
94.36(8)
94.47(8)
91.16(11)
83.87(8)
84.30(7)
93.34(9)
175.49(10)
138.27(15)
137.33(15)
109.7(2)
123.37(19)
126.87(16)
111.9(2)
121.05(18)
126.99(17)
122.9(2)
99.79(15)
100.38(15)
117.5(2)
122.5(2)
120.0(2)
120.1(2)
121.3(2)
120.5(2)
117.7(2)
121.8(2)
123.1(2)
119.1(2)
120.9(2)
113.0(2)
106.3(2)
110.7(2)
106.6(2)
108.8(2)
111.4(2)


Bond


C5-C6-C17
C1-C6-C17
C12-C7-C8
C12-C7-C2
C8-C7-C2
02-C8-C7
02-C8-C9
C7-C8-C9
C10-C9-C8
C10-C9-C13
C8-C9-C13
C11-C10-C9
C12-C11-C10
C11-C12-C7
C15-C13-C9
C15-C13-C14
C9-C13-C14
C15-C13-C16
C9-C13-C16
C14-C13-C16
C22-C17-C18
C22-C17-C6
C18-C17-C6
01-C18-C17
01-C18-C19
C17-C18-C19
C20-C19-C18
C20-C19-C23
03-C27-C28#1
03-C28-C27#1
C30#2-C29-04
C29#2-C30-04
C36-C31-C32
C31-C32-C33
C34-C33-C32
C35-C34-C33
C34-C35-C36
C31-C36-C35


Angle

122.7(2)
119.7(2)
120.2(2)
119.2(2)
120.6(2)
120.4(2)
120.7(2)
118.9(2)
117.9(2)
120.8(2)
121.3(2)
122.7(2)
119.1(2)
121.0(2)
111.49(19)
110.5(2)
108.75(19)
106.3(2)
112.4(2)
107.26(19)
120.0(2)
119.4(2)
120.6(2)
120.0(2)
121.2(2)
118.8(2)
117.8(2)
120.4(2)
111.0(3)
108.2(3)
120.1(4)
117.5(3)
120.3(3)
120.1(3)
119.9(3)
120.1(3)
120.2(3)
119.4(3)









TABLE OF CONTENTS


page

A CK N O W LED G M EN TS ......... ..... ............ ................................................................... 4

L IST O F T A B L E S ............. ..... ............ ........................ .. ...................................... . 7

L IST O F FIG U R ES ......... .... .............. ............................................................ 9

A B S T R A C T ............. ..... ............ ................. .................................................... 1 1

CHAPTER

1 INTRODUCTION ................................................................. ....... ......... 13

2 PROGRESS TOWARD A TUNGSTEN ALKYLIDYNE SUPPORTED WITH A
TRIANIONC OCO3- PINCER LIGAND ............................ ................. .............. 18

Synthesis and Characterization of [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) .......... 18
Synthesis and Characterization of { [tBuOCO](CH3)3CCH=}W(p-tBuOCHO)-
W {=CH C (CH 3)3 [B uO C O ]} (4 and 5) ............................................................................21

3 PROGRESS TOWARD COMPLEXES WITH M-M MULTIPLE BONDS
SUPPORTED BY A TRIANIONIC OCO3- PINCER LIGAND .................. ..............27

4 SYNTHESIS OF DINUCLEAR ZIRCONIUM AND HAFNIUM COMPLEXES OF A
NEW ANTHRACENE DIAMIDO LIGAND ....... .............. ............. 31

5 C O N CLU SIO N S ....................................................................................................... 34

6 EX PER IM EN TA L ....................................................................................................35

General Considerations ........................................ ....... ..... ......... 35
Synthesis of [tBuOCO]W(=CHC(CH3)3)(O-2,6-C6H3-'Pr2) (3) ...........................................35
Synthesis of { [tBuOCO](CH3)3CCH= }W(I-tBuOCHO)W {=CHC(CH3)3 [tBuOCO] } (4
a n d 5 ) ........................................................ .................. .......................... .............. 3 6
Synthesis of [tBuOCHO](NMe2)W-W(NMe2)[tBuOCHO] (7) ........................................36
Synthesis of [tBuOCO]W(t-NMe2)2(-O)W[tBuOCO] (8) ............................37
Synthesis of [AnthH] [Zr(NMe2)3(NHMe2)]2 (10) .............. ...........................................37
Synthesis of [AnthH] [Hf(NMe2)3(NHMe2)]2 (11) ........ .......................... 37

APPENDIX

A 1H AND 13C{1H) NMR SPECTRA............................................... ..............39

B X-RAY STRUCTURAL DATA AND TABLES ........................................................47









X-ray Experimental for [tBuOCO]W(=CHC(CH3)3)(0-2,6-iPr2-C6H3) (3)

Data were collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD

area detector and a graphite monochromator utilizing MoKa radiation (k = 0.71073 A). Cell

parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was

collected using the co-scan method (0.30frame width). The first 50 frames were re-measured at

the end of data collection to monitor instrument and crystal stability (maximum correction on I

was < 1 %). Absorption corrections by integration were applied based on measured indexed

crystal faces.

The structure was solved by the author using Direct Methods in SHELXTL6, and refined

using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the

hydrogen atoms were calculated in ideal positions and were riding on their respective carbon

atoms. A total of 847 parameters were refined in the final cycle of refinement using 10217

reflections (with I > 2ol) to yield R1 and wR2 of 5.00% and 11.27%, respectively. Refinement

was done using F2








Table B-2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x
103) for [tBuOCO]W(=CHC(CH3)3)(0-2,6-'Pr2-C6H3) (3). U(eq) is defined as one
third of the trace of the orthogonalized U'1 tensor.
Atom X Y Z U(eq)
Wl 1336(1) -376(1) 2115(1) 28(1)
W2 1408(1) 4970(1) 4355(1) 27(1)
01 1148(1) -1694(4) 2209(2) 33(1)
02 1501(1) 1010(4) 2202(2) 31(1)
03 885(1) 271(4) 2046(2) 36(1)
04 1533(1) 6435(4) 4253(2) 31(1)
05 1260(1) 3607(4) 4262(2) 32(1)
06 946(1) 5498(4) 4435(2) 35(1)
C1 1680(2) -812(6) 2627(2) 32(2)
C2 1616(2) -1738(6) 2882(3) 32(2)
C3 1772(2) -1818(7) 3286(3) 42(2)
C4 2002(2) -1066(7) 3429(3) 46(2)
C5 2091(2) -228(7) 3167(3) 42(2)
C6 1934(2) -88(6) 2772(2) 33(2)
C7 1392(2) -2663(7) 2767(3) 37(2)
C8 1145(2) -2620(6) 2444(3) 32(2)
C9 909(2) -3407(7) 2349(3) 42(2)
CIO 942(2) -4350(7) 2580(3) 51(3)
C11 1203(3) -4460(7) 2881(3) 57(3)
C12 1411(3) -3644(7) 2979(3) 50(2)
C13 619(2) -3260(7) 2028(3) 49(3)
C14 389(3) -4242(9) 2027(4) 93(5)
C15 751(3) -3111(8) 1580(3) 61(3)
C16 402(2) -2319(9) 2161(3) 70(3)
C17 2047(2) 849(7) 2523(3) 40(2)
C18 1821(2) 1407(6) 2252(3) 34(2)
C19 1917(2) 2381(7) 2048(3) 37(2)
C20 2255(2) 2730(7) 2108(3) 44(2)
C21 2492(2) 2162(8) 2363(3) 50(3)
C22 2389(2) 1266(8) 2564(3) 47(2)
C23 1662(2) 3025(7) 1779(3) 45(2)
C24 1829(3) 4038(7) 1591(3) 66(3)
C25 1524(2) 2372(7) 1393(3) 53(3)
C26 1363(2) 3371(7) 2049(3) 55(3)
C27 1627(2) -648(7) 1638(3) 36(2)
C28 1743(2) -1561(7) 1364(3) 41(2)










Table B-11. Continued
Atom U11 U22 U33 U23 U13 U12


C67
C68
C69
C70
C71
C72
C73
C74
C75
C76
C77
C78
C79
C80
C81
C82
C83
C84
C85
C86
C87
C88


87(6)
140(9)
91(6)
54(5)
69(6)
68(5)
87(6)
44(4)
46(4)
41(4)
56(5)
39(4)
69(5)
47(4)
77(5)
47(4)
44(4)
119(7)
111(7)
292(16)
204(12)
92(7)


92(7)
52(6)
49(5)
92(7)
143(9)
98(7)
95(7)
56(5)
54(5)
69(5)
92(6)
119(8)
76(6)
69(5)
79(6)
86(6)
71(6)
126(8)
64(6)
83(8)
205(13)
123(9)


79(6)
115(8)
98(7)
61(5)
89(7)
46(5)
76(6)
51(4)
37(4)
51(4)
52(5)
57(5)
50(5)
57(5)
71(6)
107(7)
84(6)
46(5)
84(6)
99(9)
115(9)
127(9)


38(5)
29(6)
16(5)
11(5)
19(6)
11(4)
8(5)
-10(3)
-12(3)
-8(4)
-19(4)
-2(5)
-22(4)
-7(4)
-13(4)
7(5)
-5(4)
-15(5)
-1(5)
25(7)
-48(8)
-23(7)


61(5)
96(8)
62(6)
20(4)
29(5)
23(4)
42(5)
30(3)
26(3)
25(3)
34(4)
29(4)
30(4)
31(4)
48(5)
45(5)
29(4)
55(5)
63(6)
73(10)
125(9)
63(7)


29(6)
18(6)
-2(4)
4(4)
15(6)
-5(4)
-31(5)
-15(3)
-18(3)
-9(4)
-11(4)
-15(5)
-47(5)
-4(4)
1(4)
14(4)
-2(4)
-72(6)
-26(5)
-40(9)
-47(10)
-46(6)









formed by metathesis of an alkyne across a metal-metal triple bond, or by a reductive recycle

strategy.

The a-abstraction and a-elimination represent the most commonly encountered methods

for the synthesis of most high-oxidation state alkylidynes. In a-elimination method, the a-C-H

bond oxidatively adds to the metal, forming an alkylidyne from an alkylidene. More common in

recent systems is a-abstraction. In Figure 1-2, the Grignard reagent acts as a base, deprotonating

the a-carbon, forming an alkylidene from an alkyl and an alkylidyne from the alkylidene.12,13

The exact order in which the alkylation and abstraction steps occur in these systems is not

currently known.

tBu

OMe
Cl ,, \OMe
+W + 6 CMgCH2C(CH3)3 Et2O Np." W
ClI OMe Et20 Np Np
C1 16 hrs Np
Cl Np

tBu
Cl
ArO,, I \,,Cl
AO//W, + 4 C1MgCH2C(CH3)3
ArO IC1 Et20
ArO I Cl 16hrs ArOil'-W. tBu
OAr 4 Ar
ArO
OAr- 2,6-diisopropylphenoxy

Figure 1-2. Two examples of a-abstraction to produce tungsten-alkylidynes

The third, and one of the less frequently encountered methods for alkylidyne formation,

is metathesis involving a W-W moiety. 14 The scission of ditungsten hexa-tert-butoxide

((tBuO)3W=W(OtBu)3) (I) by an alkyne yields an alkylidyne of the form (tBuO)3W=CR (II)

(Figure 1-3). The R group is determined by the nature of the alkyne used in the reaction.









unfortunately, required an external electrophile, namely ClSi(CH3)3 or AlMe3, to liberate the

alkyne.

The following research aims to marry the ideas of Johnson and Mindiola. A high-

oxidation state, group VI alkylidyne will be used, as these have been shown to successfully

complete the NACM cycle. The extreme reactivity of a highly strained, pincer-type geometry

will also be exploited. By using these two approaches in the same system, the resulting

complex should be highly reactive and successfully complete the NACM cycle. The trianionic

pincer ligands designed previously by the Veige group, in particular, the previously reported

OCO pincer ligand [3,3"-di-tert-butyl-2,2"-di-(hydroxy-KO)-1,1':3', "-terphenyl-2'-yl-KC2]

(tBuOCO 1), are ideal for use in an NACM system (Figure 1-7).20

There are three major reasons why these ligands are well-suited for application to a

NACM catalyst. First, the trianionic nature of the pincer ligand allows access to the +6 oxidation

state required for the alkylidyne. Second, the rigid planarity of the ligand backbone imposes

geometry restraints around the metal center which should help increase its reactivity. Finally, the

strong M-C bond present should distort the alkylidyne out of the plane of the ligand, further

increasing the reactivity of the resulting complex.






ure1-. t Bu









Figure 1-7. Target molecule









stopped and the reaction mixture was allowed to stand at room temperature for one hour, during

which time a precipitate formed. The solvent was decanted and the solid product dried in vacuo

to yield 11 as a pale yellow solid (90.9 mg, 87 %). 1H NMR (300 MHz, C6D6) 6 (ppm): 9.00 (s,

1H, Ar-H), 8.08 (s, 1H, Ar-H), 7.53 (d, J=8.8 Hz, 2H, Ar-H), 7.45 (d, J=6.6 Hz, 2H, Ar-H), 7.26

(s, 4H, Ar-H), 7.08 (m, 2H, Ar-H), 7.04 (s, 1H, Ar-H), 6.96 (s, 1H, Ar-H), 5.42 (s, 4, Ar-CH2N),

2.57 (s, 32 H, Hf-N(CH3)2), 1.45 (d, J=6.3 Hz, 12 H, Hf-NH(CH3)2), 0.79 (sept, J=6.3 Hz, 2 H,

Hf-NH(CH3)2). 13C NMR (75.36 Hz, C6D6) 6 (ppm): 159.5 (s, C aromatic), 136.7 (s, C

aromatic), 133.1 (s, C aromatic), 132.5 (s, C aromatic), 132.1 (s, C aromatic), 130.9 (s, C

aromatic), 129.8 (s, C aromatic), 128.2 (s, C aromatic), 126.0 (s, C aromatic), 124.5 (s, C

aromatic), 116.6 (s, C aromatic), 115.3 (s, C aromatic), 107.8 (s, Ar-CF3), 52.4 (s, Ar-CH2N),

42.3 (s, Hf-N(CH3)2), 39.3 (s, Hf-NH(CH3)2).









X-ray Experimental for {['BuOCO](CH3)3CCH=}W(tH-'BuOCHO)W{=CHC(CH3)3-
['BuOCO]} (5)

Data were collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD

area detector and a graphite monochromator utilizing MoKa radiation (k = 0.71073 A). Cell

parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was

collected using the co-scan method (0.30frame width). The first 50 frames were re-measured at

the end of data collection to monitor instrument and crystal stability (maximum correction on I

was < 1 %). Absorption corrections by integration were applied based on measured indexed

crystal faces.

The structure was solved by the author using Direct Methods in SHELXTL6, and refined

using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the

hydrogen atoms were calculated in ideal positions and were riding on their respective carbon

atoms. A total of 865 parameters were refined in the final cycle of refinement using 8981

reflections (with I > 2ol) to yield R1 and wR2 of 4.85% and 9.19%, respectively. Refinement

was done using F2
































APPENDIX B
X-RAY STRUCTURAL DATA AND TABLES









Table B-23. Continued
Atom U11 U22 U33 U23 U13 U12
C32 46(2) 46(2) 79(2) -16(2) -18(2) -9(2)
C33 57(2) 41(2) 64(2) -16(2) -16(2) -3(2)
C34 52(2) 47(2) 67(2) -27(2) 6(2) -15(2)
C35 44(2) 64(2) 81(3) -39(2) -12(2) -6(2)
C36 66(2) 49(2) 65(2) -25(2) -18(2) -3(2)









Table B-25. Crystal data, structure solution, and refinement for [tBuOCHO]W(j-NMe2)2( -
O)W[tBuOCHO] (8)


identification code
empirical formula
formula weight
T(K)
X (A)
crystal system
space group
a (A)
b(A)
c(A)
a (deg)
/f (deg)
y (deg)
S(A3)


pelo9a
C62H74N205W2
1294.93
173(2)
0.71073
Triclinic
P-1
12.6445(7)
12.6890(7)
18.1788(10)
102.7360(10)
96.9490(10)
105.3440(10)
2693.2(3)


Z 2
Pcalcd (g mm-3) 1.597
crystal size (mm) 0.19 x 0.18 x 0.09
abs coeff(mm-1) 4.319
F(000) 1296
0 range for data collection 1.17 to 27.50
limiting indicies -16 < h < 16, -9 < k < 16, -23 < 1 < 23
no. ofreflns called 18368
no. ofind reflns 12501 [R(int) = 0.0372]
completeness to 0= 28.030 97.3 %
absorption corr Integration
2
refinement method Full-matrix least-squares on F
data / restraints / parameters 12501 / 0 / 640
R1, wR2 [I > 20] R1 = 0.0268, wR2 = 0.0724
R1, wR2 (all data) R1 = 0.0328, wR2 = 0.0766
2
GOF on F 0.684
largest diff. peak and hole (e.A-3) 2.014 and -1.299
R1 = (||Fo| -IFcl|) / |Fol
wR2 = [I[w(Fo2 Fc2)2] / Y[w(Fo2)2]]1/2
S = [[w(Fo2 Fc2)2] / (n-p)]/2
w= 1/[22(Fo2)+(m*p)2+n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.










Table B-10. Continued
Bond Angle Bond Angle


C18-C19-C23
C21-C20-C19
C22-C21-C20
C21-C22-C17
C25-C23-C19
C25-C23-C24
C19-C23-C24
C25-C23-C26
C19-C23-C26
C24-C23-C26
C28-C27-W1
C30-C28-C29
C30-C28-C27
C29-C28-C27
C30-C28-C31
C29-C28-C31
C27-C28-C31
C37-C32-C33
C32-C33-C34
05-C49-C48
05-C49-C50
C48-C49-C50
C51-C50-C49
C51-C50-C54
C49-C50-C54
C52-C51-C50
C51-C52-C53
C52-C53-C48
C55-C54-C56
C55-C54-C57
C56-C54-C57
C55-C54-C50
C56-C54-C50
C57-C54-C50
C59-C58-C63
C59-C58-W2
C63-C58-W2
C58-C59-C60


123.0(5)
123.0(6)
120.1(6)
120.7(6)
112.9(5)
107.1(5)
112.0(5)
109.5(5)
109.0(5)
106.1(5)
143.4(5)
110.2(7)
112.7(5)
107.4(6)
109.1(7)
109.1(8)
108.4(7)
122.4(5)
117.9(5)
120.0(5)
119.1(6)
120.7(5)
116.8(6)
121.9(6)
121.3(6)
122.8(6)
121.7(6)
118.9(6)
108.0(6)
110.9(7)
106.0(6)
110.1(6)
110.3(6)
111.5(6)
118.4(6)
118.9(5)
121.8(5)
119.4(7)


C39-C38-C33
03-C39-C40
03-C39-C38
C40-C39-C38
C41-C40-C39
C41-C40-C44
C39-C40-C44
C42-C41-C40
C43-C42-C41
C42-C43-C38
C45-C44-C47
C45-C44-C40
C47-C44-C40
C45-C44-C46
C47-C44-C46
C40-C44-C46
C53-C48-C49
C53-C48-C37
C49-C48-C37
C65-C64-C59
04-C65-C64
04-C65-C66
C64-C65-C66
C65-C66-C67
C65-C66-C70
C67-C66-C70
C68-C67-C66
C69-C68-C67
C68-C69-C64
C66-C70-C71
C66-C70-C73
C71-C70-C73
C66-C70-C72
C71-C70-C72
C73-C70-C72
C75-C74-C79
C75-C74-C63
C79-C74-C63


122.0(5)
119.2(5)
119.1(5)
121.6(5)
117.1(6)
120.4(6)
122.5(6)
121.4(6)
120.5(6)
121.4(6)
108.6(6)
108.5(6)
112.4(6)
108.2(6)
106.1(6)
113.0(5)
119.0(5)
117.9(6)
123.0(5)
122.2(6)
116.9(7)
117.2(7)
125.9(7)
113.0(8)
124.2(7)
122.8(8)
123.8(8)
120.2(8)
120.7(8)
112.6(7)
111.0(6)
108.7(6)
111.0(6)
105.8(6)
107.4(7)
116.2(6)
122.4(6)
121.4(6)










Table B-6. Continued
Atoms Angle Atoms Angle


05-W2-C44-C49
C70-W2-C44-C49
04-W2-C44-C49
06-W2-C44-C49
C49-C44-C45-C46
W2-C44-C45-C46
C49-C44-C45-C50
W2-C44-C45-C50
C44-C45-C46-C47
C50-C45-C46-C47
C51-C52-C56-C59
C53-C52-C56-C57
C51-C52-C56-C57
C53-C52-C56-C58
C51-C52-C56-C58
C48-C49-C60-C65
C44-C49-C60-C65
C48-C49-C60-C61
C44-C49-C60-C61
W2-05-C61-C62
W2-05-C61-C60
C65-C60-C61-05
C49-C60-C61-05
C65-C60-C61-C62
C49-C60-C61-C62
05-C61-C62-C63
C60-C61-C62-C63
05-C61-C62-C66
C60-C61-C62-C66
C61-C62-C63-C64
C66-C62-C63-C64
C62-C63-C64-C65
C63-C64-C65-C60
C76-C77-C78-C79
C77-C78-C79-C80
C78-C79-C80-C75
C78-C79-C80-C84
06-C75-C80-C79


12.1(6)
115.3(6)
-152.5(6)
-74.7(7)
6.7(11)
-167.8(6)
-172.0(7)
13.6(10)
-0.1(12)
178.6(7)
-176.6(8)
-117.2(8)
61.2(10)
122.8(8)
-58.9(10)
11.5(11)
-171.0(7)
-171.9(7)
5.7(12)
-170.1(6)
11.1(12)
174.5(6)
-2.4(11)
-4.3(11)
178.9(7)
-176.3(7)
2.4(12)
8.8(11)
-172.4(8)
0.1(12)
175.1(8)
-0.5(13)
-1.5(13)
-1.3(16)
2.0(16)
0.9(14)
-176.4(9)
178.8(8)


C50-C51-C52-C53
04-C51-C52-C56
C50-C51-C52-C56
C51-C52-C53-C54
C56-C52-C53-C54
C52-C53-C54-C55
C61-C60-C65-C64
C49-C60-C65-C64
C61-C62-C66-C68
C63-C62-C66-C68
C61-C62-C66-C69
C63-C62-C66-C69
C53-C54-C55-C50
C51-C50--55-C54
C45-C505C55-C54
C53-C52-C56-C59
C61-C62-C66-C67
C63-C62-C66-C67
05-W2-C70-C71
04-W2-C70-C71
06-W2-C70-C71
C44-W2-C70-C71
W2-C70-C71-C72
W2-C70-C71-C73
W2-C70-C71-C74
W2-06-C75-C76
W2-06-C75-C80
06-C75-C76-C77
C80-C75-C76-C77
06-C75-C76-C81
C80-C75-C76-C81
C75-C76-C77-C78
C81-C76-C77-C78
C76-C75-C80-C79
C79-C80-C84-C85
C75-C80-C84-C85
C79-C80-C84-C86
C75-C80-C84-C86


-5.9(12)
-2.9(11)
175.7(7)
4.5(12)
-177.0(8)
-2.2(13)
3.7(11)
-179.4(7)
56.6(10)
-118.0(8)
-65.1(10)
120.3(8)
0.8(12)
-1.9(11)
177.5(7)
5.0(11)
174.2(8)
-0.4(12)
21.1(10)
-49.2(10)
123.7(9)
-63.9(10)
-138.9(9)
102.1(10)
-16.7(13)
95.7(12)
-87.4(13)
-178.2(8)
5.0(13)
5.1(12)
-171.7(8)
-2.1(14)
174.6(9)
-4.4(13)
-63.6(12)
119.2(10)
60.0(11)
-17.2(10)










CHAPTER 3
PROGRESS TOWARDS COMPLEXES WITH M-M MULTIPLE BONDS SUPPORTED BY
A TRIANIONIC OCO3- PINCER LIGAND

Since direct reaction of 1 with alkylidyne-containing complexes did not provide the

desired result, a new method was sought. Alkylidynes can be formed by metathesis reactions of

W=W containing compounds with alkynes, so an attempt was made to synthesize a compound

containing 1 and such a W=W unit. (NMe2)3W=W(NMe2)3 was chosen, as it is easily prepared

on an appreciable scale.25 Treatment of (NMe2)3W=W(NMe2)3 with two equivalents of 1 in hot

benzene for two hours yields a dark red solution with an H NMR which spectrum indicates

complete conversion to 7 (Figure 3-1). Prolonged heating at 85 C results in the formation of a

green solution and precipitation of 8 as red crystals in nearly quantitative yield. Since 8 had no

appreciable solubility in common NMR solvents, analysis was limited to single-crystal X-ray

crystallography and combustion analysis.



LBu

OH Me,N NMe ,

MN Benzene
OH N8W
.MeN NMe2 85C. 1.5 hrs 0 N



7
1

85'C, 72 hrs


Me2
N







8
Figure 3-1. Synthesis of [BuOCHO](NMe2)W W(NMe2)[BuOCHO] (7) and ['BuOCHO]W-
(L-NMe2)2(G-O)W['BuOCHO] (8)









Table B-10. Bond angles (in deg) for { [BuOCO](CH3)3CCH-
W =CHC(CH3)3[tBuOCO1 (4)


}W(i-tBu0CHO)


Bond


01-W1-02
01-W1-C27
02-W1-C27
01-W1-03
02-W1-03
C27-W1-03
01-W1-C1
02-W1-C1
C27-W1-C1
03-W1-C1
06-W2-04
06-W2-C84
04-W2-C84
06-W2-05
04-W2-05
C84-W2-05
06-W2-C58
04-W2-C58
C84-W2-C58
05-W2-C58
C8-01-W1
C18-02-W1
C39-03-W1
C65-04-W2
C49-05-W2
C75-06-W2
C2-C1-C6
C16-C13-C14
C15-C13-C14
C22-C17-C18
C22-C17-C6
C18-C17-C6
02-C18-C17
02-C18-C19
C17-C18-C19
C20-C19-C18
C20-C19-C23


Angle

162.07(16)
102.5(2)
93.1(2)
94.85(15)
87.16(14)
112.4(2)
84.19(19)
85.33(18)
96.5(2)
150.42(17)
162.78(18)
100.0(3)
95.5(3)
92.42(17)
88.53(18)
112.7(3)
83.3(2)
87.1(2)
98.1(3)
149.19(18)
146.1(4)
132.1(3)
147.9(3)
134.4(4)
143.1(4)
147.5(4)
117.0(5)
107.1(6)
108.0(6)
118.2(5)
120.2(5)
121.5(5)
117.1(5)
119.8(5)
123.1(5)
114.8(6)
122.2(5)


Bond


C2-C1-W1
C6-C1-W1
C3-C2-C1
C3-C2-C7
C1-C2-C7
C4-C3-C2
C3-C4-C5
C4-C5-C6
C5-C6-C1
C5-C6-C17
C1-C6-C17
C12-C7-C8
C12-C7-C2
C8-C7-C2
01-C8-C7
01-C8-C9
C7-C8-C9
C10-C9-C8
C10-C9-C13
C8-C9-C13
C11-C10-C9
C12-C11-C10
C11-C12-C7
C9-C13-C16
C9-C13-C15
C16-C13-C15
C9-C13-C14
C32-C33-C38
C34-C33-C38
C35-C34-C33
C34-C35-C36
C35-C36-C37
C32-C37-C36
C32-C37-C48
C36-C37-C48
C43-C38-C39
C43-C38-C33


Angle

122.3(4)
119.5(4)
118.3(5)
116.6(5)
125.1(5)
123.0(6)
118.6(6)
121.6(6)
120.4(5)
116.3(5)
123.3(5)
116.6(6)
121.4(6)
122.0(5)
116.8(5)
118.8(6)
124.3(6)
114.9(6)
122.8(6)
122.3(6)
121.0(6)
122.6(6)
120.1(7)
110.2(5)
111.1(6)
108.9(6)
111.5(6)
120.1(5)
122.0(5)
120.6(5)
120.1(5)
120.4(5)
118.4(5)
119.4(5)
122.0(5)
117.8(5)
120.2(5)









the three dimethylamides appear as a sharp singlet at 2.57 ppm and the methyl protons of the

dimethylamine appear as a doublet at 1.45 ppm.


Figure 4-2. Molecular structure of 11. Ellipsoids are shown at 50% probability level; hydrogen
atoms are omitted for clarity.

A single crystal of 11 was obtained by pentane diffusion into a solution of 11 in diethyl

ether and analyzed by X-ray diffraction studies (Figure 4-2). The structure exhibits trigonal

bipyramidal geometry around each metal atom. The average Hf-N bond length for the

dimethylamides and ligand amides is 2.041(17) A and 2.187(10) A, respectively, with the Hf-

NHMe2 bond length being longer as expected, at 2.440(11) A. The bond angles around the

hafnium atom deviate only slightly from the ideal trigonal bipyramidal values, with the average

N-Hf-N angle for the equatorial dimethylamides being 119.25(7), and the average N-Hf-N angle

between the AnthH ligand amide and the dimethylamine being 178.0(4). The structure of 11








Table B-14. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2 x
103) for [tBuOCO](CH3)3CCH=}W(i-'BuOCHO)W{=CHC(CH3)3[BuOCO] } (5).
U(eq) is defined as one third of the trace of the orthogonalized U1i tensor.
Atom X Y Z U(eq)
W1 2846(1) 5902(1) 3082(1) 23(1)
W2 1520(1) 7759(1) 4941(1) 25(1)
01 3158(3) 6825(2) 3077(2) 27(1)
02 2665(3) 5061(2) 3320(2) 24(1)
03 1352(4) 6134(2) 2974(2) 26(1)
04 2271(4) 8291(2) 4554(2) 29(1)
05 462(4) 7588(2) 4407(2) 26(1)
06 2685(4) 7592(2) 5399(2) 30(1)
C1 4361(5) 5841(3) 3525(2) 23(2)
C2 5149(5) 6305(3) 3458(2) 24(2)
C3 6111(6) 6317(3) 3763(2) 28(2)
C4 6329(5) 5883(4) 4128(2) 31(2)
C5 5606(6) 5423(4) 4193(2) 33(2)
C6 4603(6) 5382(3) 3904(2) 26(2)
C7 5002(6) 6810(3) 3089(2) 25(2)
C8 4009(6) 7100(3) 2937(2) 28(2)
C9 3849(6) 7671(4) 2653(2) 31(2)
C10 4751(6) 7872(4) 2484(3) 36(2)
C11 5719(6) 7557(4) 2592(3) 41(2)
C12 5838(6) 7049(3) 2897(2) 34(2)
C13 2798(6) 8024(4) 2512(3) 37(2)
C14 2196(8) 7689(5) 2083(4) 91(4)
C15 2967(7) 8762(4) 2393(3) 68(3)
C16 2128(7) 8053(4) 2892(3) 61(3)
C17 3891(5) 4840(3) 4002(2) 23(2)
C18 2982(5) 4651(3) 3694(2) 23(2)
C19 2358(5) 4096(3) 3748(2) 25(2)
C20 2677(6) 3756(3) 4159(3) 33(2)
C21 3528(6) 3946(3) 4489(3) 35(2)
C22 4134(6) 4472(4) 4416(2) 28(2)
C23 1402(6) 3866(3) 3393(2) 29(2)
C24 1695(8) 3729(5) 2928(3) 69(3)
C25 525(6) 4367(4) 3328(3) 53(2)
C26 934(6) 3233(4) 3548(3) 48(2)
C27 3327(5) 5737(3) 2521(2) 29(2)
C28 3869(6) 5225(4) 2265(3) 32(2)









Table B-21. Bond lengths (in A) for [(tBuOCHO)Mg{O(CH2CH2)20}]n (6)
Bond Length Bond Length
Mgl-01 1.8857(17) C11-C12 1.375(3)
Mgl-02 1.8915(17) C13-C15 1.532(3)
Mgl-04 2.044(2) C13-C14 1.539(3)
Mgl-03 2.050(2) C13-C16 1.539(3)
Mgl-C1 2.464(2) C17-C22 1.394(3)
01-C18 1.340(3) C17-C18 1.422(3)
02-C8 1.338(3) C18-C19 1.422(3)
03-C28 1.445(3) C19-C20 1.394(3)
03-C27 1.461(3) C19-C23 1.538(3)
04-C29 1.432(4) C20-C21 1.379(3)
04-C30 1.445(3) C21-C22 1.372(3)
C1-C2 1.399(3) C23-C25 1.530(3)
C1-C6 1.401(3) C23-C24 1.541(3)
C2-C3 1.396(3) C23-C26 1.542(3)
C2-C7 1.485(3) C27-C28#1 1.480(5)
C3-C4 1.393(3) C28-C27#1 1.480(5)
C4-C5 1.375(4) C29-C30#2 1.254(5)
C5-C6 1.392(3) C30-C29#2 1.254(5)
C6-C17 1.487(3) C31-C36 1.368(4)
C7-C12 1.391(3) C31-C32 1.371(4)
C7-C8 1.414(3) C32-C33 1.381(4)
C8-C9 1.430(3) C33-C34 1.368(4)
C9-C10 1.393(3) C34-C35 1.368(4)
C9-C13 1.535(3) C35-C36 1.390(4)
C10-C11 1.384(3)
Symmetry transformations used to generate equivalent atoms:
#1 -x+2,-y+1,-z+1 #2 -x+1,-y+1,-z+1









Table B-32. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2 x
3
10 ) for [AnthH][Hf(NMe2)3(NHMe2)]2 (11). U(eq) is defined as one third of the
trace of the orthogonalized U1i tensor.
Atom X Y Z U(eq)
Hfl 1317(1) 3962(1) 3298(1) 37(1)
Hf2 6275(1) 3516(1) 1872(1) 42(1)
N1 1480(4) 4589(3) 2214(4) 36(2)
N2 162(4) 3822(3) 3001(5) 50(2)
N3 1641(4) 4658(3) 4174(4) 42(2)
N4 2084(4) 3289(3) 2962(4) 46(2)
N5 1117(4) 3277(4) 4509(5) 51(2)
N6 5265(4) 2927(3) 1471(4) 36(2)
N7 5971(4) 4295(3) 1141(5) 51(2)
N8 7068(4) 2839(3) 1498(5) 52(2)
N9 6056(5) 3572(3) 3117(4) 59(2)
N10 7444(5) 4147(4) 2266(6) 73(3)
Fl 123(4) 6255(4) 4048(4) 141(3)
F2 -735(5) 5974(5) 3294(5) 150(4)
F3 -374(6) 6896(4) 3200(6) 182(5)
F4 1323(4) 7384(3) 985(4) 96(2)
F5 1054(5) 6655(3) 121(4) 136(3)
F6 2132(5) 6698(4) 737(6) 149(4)
F7 6291(5) 1010(5) 3368(4) 168(4)
F8 6216(4) 209(3) 2538(5) 126(3)
F9 6997(3) 971(3) 2390(4) 83(2)
F10 3701(5) 1115(3) -12(5) 143(4)
F11 3218(5) 978(4) 1128(7) 152(4)
F12 3967(5) 244(3) 694(5) 145(4)
C1 3070(5) 3822(3) 449(5) 35(2)
C2 2336(4) 4021(4) 172(5) 32(2)
C3 1778(5) 4282(4) 721(5) 38(2)
C4 1053(5) 4396(4) 402(6) 45(2)
C5 836(5) 4309(4) -467(6) 48(3)
C6 1332(5) 4110(4) -1002(6) 46(2)
C7 2109(5) 3958(4) -707(5) 36(2)
C8 2653(5) 3735(4) -1243(5) 41(2)
C9 3389(5) 3532(4) -953(5) 33(2)
C10 3931(5) 3292(4) -1497(5) 42(2)
C11 4619(5) 3065(4) -1207(5) 45(2)
C12 4822(5) 3060(4) -331(6) 43(2)










Table B-29. Continued
Atom U11 U22 U33 U23 U13 U12


C28
C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62


26(2)
35(2)
33(2)
28(2)
28(2)
25(2)
21(2)
26(2)
34(2)
42(2)
36(2)
29(2)
29(2)
43(2)
35(2)
22(2)
20(2)
21(2)
30(2)
36(2)
33(2)
30(2)
55(3)
24(2)
39(2)
110(6)
178(8)
88(5)
31(3)
166(10)
190(12)
111(8)
169(12)
99(9)
59(5)


26(2)
31(2)
40(2)
36(2)
27(2)
22(2)
16(2)
24(2)
23(2)
19(2)
27(2)
27(2)
46(2)
33(2)
41(2)
23(2)
23(2)
23(2)
25(2)
31(2)
30(2)
24(2)
46(3)
41(2)
27(2)
69(4)
154(7)
89(5)
289(13)
53(4)
136(9)
143(10)
115(9)
140(11)
163(12)


24(2)
29(2)
30(2)
26(2)
19(2)
25(2)
23(2)
22(2)
30(2)
32(2)
29(2)
22(2)
32(2)
24(2)
39(2)
23(2)
15(1)
18(2)
21(2)
17(2)
20(2)
19(2)
30(2)
32(2)
25(2)
88(5)
242(11)
69(5)
36(3)
130(9)
95(6)
125(9)
84(7)
110(9)
124(10)


8(1)
8(2)
12(2)
8(2)
7(1)
6(1)
6(1)
5(1)
6(2)
7(2)
10(2)
6(1)
12(2)
11(2)
13(2)
7(1)
2(1)
5(1)
1(1)
0(1)
6(1)
2(1)
8(2)
7(2)
11(2)
20(4)
174(8)
-6(4)
67(5)
35(5)
42(6)
16(8)
-9(6)
-7(8)
-68(8)


3(1)
0(2)
-3(2)
-4(1)
3(1)
5(1)
6(1)
4(1)
2(2)
3(2)
7(2)
-3(1)
5(2)
6(2)
-9(2)
1(1)
4(1)
5(1)
6(1)
1(1)
-3(1)
5(1)
10(2)
2(2)
8(2)
43(5)
186(9)
24(4)
-12(2)
102(8)
50(8)
62(7)
4(8)
55(8)
-9(6)


9(1)
16(2)
16(2)
8(2)
9(1)
8(1)
6(1)
6(1)
2(2)
7(2)
13(2)
5(2)
17(2)
10(2)
0(2)
5(1)
3(1)
4(1)
7(2)
5(2)
6(2)
12(1)
31(2)
12(2)
12(2)
29(4)
151(7)
0(4)
-39(5)
46(5)
123(9)
39(7)
19(9)
-20(8)
19(7)









combustion analysis. The exact mechanism of formation for 8 is not yet know, but it potentially

represents a rare example of the oxidative addition of water to an early transition metal.









LIST OF TABLES


Table page

B-1 Crystal data, structure solution, and refinement for [tBuOCO]W(=CHC(CH3)3)(O-
2 ,6 -'P r2-C 6H 3) (3 )....................................................... .............. 5 1

B-2 Atomic coordinates and equivalent isotropic displacement parameters for
['BuOCO]W (=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) .............................. ..................... 52

B-3 Bond lengths for ['BuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3)..............................55

B-4 Bond angles for [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3).............................56

B-5 Anisotropic displacement parameters for [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-
C 6H 3) (3) ......................................................................... ......... 59

B-6 Torsion angles for [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) ...........................62

B-7 Crystal data, structure solution, and refinement for { [tBuOCO](CH3)3CCH=}W(p-
tBuOCHO)W{=CHC(CH3)3[tBuOCO]} (4) ...................................................68

B-8 Atomic coordinates and equivalent isotropic displacement parameters for
{ [BuOCO](CH3)3CCH=}W(I-tBuOCHO)W{=CHC(CH3)3[tBuOCO] } (4)................... 69

B-9 Bond lengths for { [BuOCO](CH3)3CCH=}W(i-tBuOCHO) W{=CHC(CH3)3-
[B uO C O ]} (4) .............. .............. ............................... ..................... .......... 72

B-10 Bond angles for { [BuOCO](CH3)3CCH=}W(i-tBuOCHO) W{=CHC(CH3)3-
[B uO C O ]} (4) .............. .............. ............................... ..................... .......... 74

B-11 Anisotropic displacement parameters for {[tBuOCO](CH3)3CCH=}W( -pBuOCHO)
W {=CHC(CH3)3 [BuOCO]} (4)..... ................................................... ............ 77

B-12 Torsion angles for {[tBuOCO](CH3)3CCH=}W(i-tBuOCHO) W-
{=CH C(CH 3)3[tBuO CO ]} (4) .......................... ......... ........................ .............. 80

B-13 Crystal data, structure solution, and refinement for { [BuOCO](CH3)3CCH=}W(i-
tBuOCHO)W{=CHC(CH3)3[tBuOCO]} (5) ...................................................86

B-14 Atomic coordinates and equivalent isotropic displacement parameters for
{ [tBuOCO](CH3)3CCH=}W(I-'BuOCHO)W{=CHC(CH3)3[tBuOCO] } (5)................... 87

B-15 Bond lengths for { [BuOCO](CH3)3CCH=}W(i-tBuOCHO) W{=CHC(CH3)3-
[tBuOCO] } (5) ....................................... ....................... ..............90

B-16 Bond angles for { [BuOCO](CH3)3CCH=}W(i-tBuOCHO) W{=CHC(CH3)3-
[tB u O C O ]} (5 ) ....................... ..... .................. ............... ................ 9 2









X-ray Experimental for [AnthH] [Hf(NMe2)3(NHMe2)]2 (11)

Data were collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD

area detector and a graphite monochromator utilizing MoKa radiation (k = 0.71073 A). Cell

parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was

collected using the co-scan method (0.30frame width). The first 50 frames were re-measured at

the end of data collection to monitor instrument and crystal stability (maximum correction on I

was < 1 %). Absorption corrections by integration were applied based on measured indexed

crystal faces.

The structure was solved by the author using Direct Methods in SHELXTL6, and refined

using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the

hydrogen atoms were calculated in ideal positions and were riding on their respective carbon

atoms. A total of 655 parameters were refined in the final cycle of refinement using 5926

reflections (with I > 2ol) to yield R1 and wR2 of 5.11% and 9.26%, respectively. Refinement

was done using F2










Table B-32. Continued
Atom X Y Z U(eq)


C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28
C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48


4331(5)
3601(4)
2045(4)
1213(4)
666(5)
412(5)
656(5)
1161(5)
1421(4)
-94(7)
1393(7)
4550(5)
5181(5)
5746(5)
5686(5)
5106(6)
4549(6)
4573(5)
6292(6)
3905(9)
-105(6)
-466(5)
1237(6)
2336(5)
2911(5)
1923(6)
1803(6)
756(6)
5268(7)
6596(7)
6987(5)
7733(5)
5478(6)
6134(6)
7899(6)
7297(6)


3301(4)
3558(4)
4408(4)
5225(4)
5463(4)
6104(4)
6541(4)
6316(4)
5685(4)
6327(6)
6761(5)
3286(4)
2259(4)
1901(4)
1208(4)
869(5)
1221(4)
1899(4)
860(5)
884(6)
3650(5)
3969(5)
4887(4)
5043(4)
3317(4)
2767(4)
3195(5)
2624(4)
3737(5)
3406(5)
2497(5)
2573(4)
4850(4)
4343(4)
4294(5)
4751(5)


230(5)
-85(5)
1633(5)
2140(5)
2681(5)
2659(5)
2079(5)
1521(5)
1534(5)
3290(8)
855(8)
1172(5)
1526(5)
2006(5)
2059(5)
1639(6)
1174(6)
1124(5)
2597(7)
739(10)
2140(7)
3541(7)
4896(6)
4057(6)
3214(6)
2346(7)
5085(6)
4272(7)
3363(6)
3849(6)
685(6)
2030(6)
1400(7)
249(6)
1491(8)
2744(7)


38(2)
32(2)
40(2)
33(2)
41(2)
43(2)
42(2)
36(2)
37(2)
68(3)
65(3)
42(2)
37(2)
40(2)
44(2)
59(3)
56(3)
47(2)
61(3)
101(5)
69(3)
75(3)
63(3)
51(3)
59(3)
70(3)
69(3)
77(4)
70(3)
93(4)
63(3)
64(3)
71(3)
60(3)
83(4)
82(4)










Table B-6. Continued
Atoms Angle Atoms Angle


C8-C9-C13-C16
C10-C9-C13-C16
C8-C9-C13-C15
C10-C9-C13-C15
C8-C9-C13-C14
C10-C9-C13-C14
C5-C6-C17-C18
C1-C6-C17-C18
C5-C6-C17-C22
C1-C6-C17-C22
W1-02-C18-C17
W1-02-C18-C19
C22-C17-C18-02
C6-C17-C18-02
C22-C17-C18-C19
C6-C17-C18-C19
02-C18-C19-C20
C17-C18-C19-C20
02-C18-C19-C23
C34-C35-C36-C37
C35-C36-C37-C32
C35-C36-C37-C41
03-C32-C37-C36
C33-C32-C37-C36
03-C32-C37-C41
C33-C32-C37-C41
C34-C33-C38-C39
C32-C33-C38-C39
C34-C33-C38-C40
C32-C33-C38-C40
C36-C37-C41-C42
C32-C37-C41-C42
C36-C37-C41-C43
C32-C37-C41-C43
05-W2-C44-C45
C70-W2-C44-C45
04-W2-C44-C45
06-W2-C44-C45


-57.4(12)
119.6(10)
65.5(11)
-17.5(10)
-175.2(9)
1.8(14)
-147.1(8)
32.5(12)
29.5(11)
-150.9(8)
-44.0(10)
138.6(6)
178.6(7)
-4.7(11)
-4.1(12)
172.7(7)
-178.8(7)
4.0(12)
1.6(12)
1.8(14)
1.5(12)
-174.6(8)
178.1(7)
-3.5(11)
-5.7(11)
172.7(7)
-67.2(11)
110.0(9)
59.2(10)
-123.6(9)
100.8(9)
-75.2(9)
-26.0(11)
158.0(7)
-173.9(6)
-70.6(6)
21.6(6)
99.4(6)


C18-C19-C23-C24
C20-C19-C23-C25
C18-C19-C23-C25
01-W1-C27-C28
02-W1-C27-C28
03-W1-C27-C28
C1-W1-C27-C28
W1-C27-C28-C29
W1-C27-C28-C31
W1-C27-C28-C30
W1-03-C32-C33
W1-03-C32-C37
03-C32-C33-C34
C37-C32-C33-C34
03-C32-C33-C38
C37-C32-C33-C38
C32-C33-C34-C35
C38-C33-C34-C35
C33-C34-C35-C36
C45-C46-C47-C48
C46-C47-C48-C49
C47-C48-C49-C44
C47-C48-C49-C60
C45-C44-C49-C48
W2-C44-C49-C48
C45-C44-C49-C60
W2-C44-C49-C60
C46-C45-C50-C51
C44-C45-C50-C51
C46-C45-C50-C55
C44-C45-C50-C55
W2-04-C51-C50
W2-04-C51-C52
C55-C50-C51-04
C45-C50-C51-04
C55-C50-C51-C52
C45-C50-C51-C52
04-C51-C52-C53


-179.5(8)
120.0(9)
-60.4(11)
-3.6(9)
168.3(8)
-103.2(8)
82.4(9)
-148.6(8)
-28.2(12)
93.7(10)
81.1(12)
-00.5(12)
-179.3(7)
2.4(12)
3.5(12)
-174.8(7)
0.9(13)
178.2(8)
-3.1(14)
-4.3(12)
1.6(13)
5.2(13)
-177.1(8)
-9.1(11)
165.1(6)
173.5(7)
-12.3(11)
145.9(8)
-35.3(11)
-33.5(10)
145.2(8)
51.1(9)
-130.2(6)
-176.6(6)
3.9(11)
4.7(11)
-174.8(7)
175.5(7)
































Figure 2-6. Molecular structure of 4 (left) and 5 (right) showing orientation of bridging ligand

The related reaction involving W(CH2TMS)3(-CTMS) has been attempted. During one

trial with slightly impure W(CH2TMS)3(-CTMS), small, colorless crystals deposited in the

NMR tube after approximately 48 hours of heating. Single-crystal X-ray analysis of one of these

crystals revealed the polymeric structure [(tBuOCHO)Mg{O(CH2CH2)20}]n (6).

The molecular structure of 6 consists of a bidentate tBuOCHO ligand and two molecules

of 1,4-dioxane, creating a highly distorted tetrahedral geometry around a magnesium center

(Figure 2-7). The two oxygen atoms of the tBuOCHO ligand and one 1,4-dioxane oxygen lie

nearly in the same plane, with an average deviation of only 0.2034(5) A from the best-fit plane

defined by those three oxygen atoms and the magnesium atom. The remaining 1,4-dioxane

oxygen is nearly perpendicular to that plane, with an average bond Oin-plane-Mg-Oout-of-pl ane gle

of 93.33(16). The chain extends along the crystallographic a axis.




















































P: c3 C
-1^-




S Co-.

K T Ltt ALA -










160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32
Chemical Shift (ppm)


Figure A-7. 13C{1H} NMR spectrum of [AnthH][Hf(NMe2)3(NHMe2)]2 (11) in C6D6









Table B-28. Bond angles (in deg) for [tBuOCHO]W(I-NMe2)2(T-O)W[tBuOCHO] (8)
Bond Angle Bond Angle


05-W1-01
05-W1-02
01-W1-02
05-W1-N1
01-W1-N1
02-W1-N1
05-W1-N2
01-W1-N2
02-W1-N2
N1-W1-N2
05-W1-W2
01-W1-W2
02-W1-W2
N1-W1-W2
N2-W1-W2
05-W2-03
05-W2-04
03-W2-04
05-W2-N1
03-W2-N1
04-W2-N1
05-W2-N2
03-W2-N2
04-W2-N2
N1-W2-N2
05-W2-W1
C3-C4-C5
C4-C5-C6
C5-C6-C1
C5-C6-C17
C1-C6-C17
C12-C7-C8
C12-C7-C2
C8-C7-C2
01-C8-C9
01-C8-C7
C9-C8-C7
C10-C9-C8


101.84(13)
103.16(13)
98.21(10)
90.02(14)
91.98(12)
161.22(12)
89.79(14)
163.12(11)
90.89(12)
75.65(14)
50.09(10)
127.71(7)
127.88(7)
52.66(9)
52.60(9)
106.30(13)
105.94(13)
96.54(10)
89.80(14)
90.92(12)
159.79(11)
89.89(14)
159.10(11)
91.43(12)
75.71(14)
49.97(10)
122.0(4)
120.1(4)
117.2(4)
124.3(4)
118.5(3)
118.5(3)
122.0(3)
119.4(3)
119.5(3)
119.5(3)
121.1(3)
117.0(3)


03-W2-W1
04-W2-W1
N1-W2-Wi
N2-W2-W1
C54-N1-C53
C54-N1-W1
C53-N1-W1
C54-N1-W2
C53-N1-W2
W1-N1-W2
C56-N2-C55
C56-N2-W2
C55-N2-W2
C56-N2-W1
C55-N2-W1
W2-N2-W1
C8-01-W1
C18-02-W1
C34-03-W2
C44-04-W2
W1-05-W2
C2-C1-C6
C1-C2-C3
C1-C2-C7
C3-C2-C7
C4-C3-C2
C20-C19-C18
C20-C19-C23
C18-C19-C23
C21-C20-C19
C20-C21-C22
C21-C22-C17
C25-C23-C26
C25-C23-C19
C26-C23-C19
C25-C23-C24
C26-C23-C24
C19-C23-C24


129.66(7)
130.19(7)
52.51(9)
52.85(9)
85.0(6)
135.3(4)
116.6(3)
130.4(4)
119.2(3)
74.83(12)
83.5(6)
132.8(4)
117.1(3)
136.7(4)
116.3(3)
74.55(12)
146.2(2)
140.8(2)
147.0(2)
148.8(2)
79.94(13)
123.0(3)
117.7(4)
118.3(3)
123.9(4)
119.5(4)
116.0(4)
122.3(4)
121.6(4)
122.7(4)
120.3(4)
120.2(5)
110.8(4)
111.2(4)
109.6(4)
106.3(4)
107.5(4)
111.3(4)









X-ray Experimental for ['BuOCHO]W(p-NMe2)2(P-O)W[tBuOCHO] (8)

Data were collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD

area detector and a graphite monochromator utilizing MoKa radiation (k = 0.71073 A). Cell

parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was

collected using the co-scan method (0.30frame width). The first 50 frames were re-measured at

the end of data collection to monitor instrument and crystal stability (maximum correction on I

was < 1 %). Absorption corrections by integration were applied based on measured indexed

crystal faces.

The structure was solved by the author using the Patterson Method in SHELXTL6, and

refined using full-matrix least squares. The non-H atoms were treated anisotropically, whereas

the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon

atoms. A total of 865 parameters were refined in the final cycle of refinement using 10618

reflections (with I > 2ol) to yield R1 and wR2 of 2.68% and 7.24%, respectively. Refinement

was done using F2










Table B-17. Continued
Atom U11 U22 U33 U23 U13 U12


C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66


42(6)
68(7)
66(7)
25(4)
29(4)
38(5)
37(5)
33(5)
26(4)
26(4)
32(4)
22(4)
32(5)
32(5)
37(5)
31(5)
64(7)
51(6)
36(6)
24(4)
18(4)
32(5)
36(5)
26(5)
30(5)
50(6)
179(13)
53(7)
91(9)
44(5)
49(5)
58(6)
73(7)
63(7)
54(6)
37(5)
33(5)
24(4)


53(6)
47(6)
39(5)
26(4)
27(4)
24(4)
42(5)
26(4)
25(4)
14(4)
13(4)
28(4)
45(5)
34(5)
29(5)
53(6)
66(7)
68(7)
127(9)
30(4)
37(5)
26(5)
34(5)
67(7)
46(5)
14(4)
32(6)
33(6)
23(5)
20(4)
29(4)
34(5)
30(5)
44(6)
26(4)
30(5)
20(4)
32(5)


60(6)
45(6)
51(6)
29(5)
21(4)
20(4)
24(5)
29(5)
18(4)
37(5)
24(4)
36(5)
43(6)
55(6)
34(5)
37(5)
33(5)
43(6)
46(6)
18(4)
16(4)
31(5)
60(6)
62(6)
41(5)
74(7)
103(10)
194(13)
123(10)
17(4)
17(4)
28(5)
53(6)
42(6)
27(5)
18(4)
16(4)
28(5)


-5(5)
-14(4)
2(4)
-3(3)
-4(3)
3(3)
3(4)
-11(4)
-9(3)
4(3)
1(3)
2(4)
13(4)
12(4)
2(4)
-1(4)
30(5)
-14(5)
16(6)
-9(3)
1(3)
2(3)
6(4)
5(5)
-10(4)
7(4)
-29(6)
23(7)
15(5)
1(3)
-3(3)
2(4)
5(4)
17(4)
8(4)
-3(3)
-4(3)
-7(3)


22(5)
13(5)
22(5)
0(4)
10(3)
7(4)
0(4)
0(4)
1(3)
6(4)
8(3)
4(3)
5(4)
22(4)
12(4)
1(4)
0(5)
6(5)
-9(4)
-1(3)
-1(3)
3(4)
11(4)
18(4)
1(4)
16(5)
56(9)
12(8)
19(7)
10(4)
13(4)
12(4)
11(5)
4(5)
21(4)
3(3)
5(3)
-6(4)


-1(5)
-5(5)
17(5)
11(3)
1(3)
10(4)
13(4)
2(4)
4(3)
3(3)
1(3)
2(4)
2(4)
5(4)
7(4)
0(4)
4(5)
-3(5)
-1(6)
2(4)
3(3)
-6(4)
-6(4)
-12(5)
4(4)
-7(4)
-15(7)
19(5)
-12(5)
14(4)
-6(4)
-18(4)
-13(5)
-2(5)
3(4)
-8(4)
1(3)
0(4)










Table B-29. Anisotropic displacement parameters (A x 10 ) for [tBuOCHO]W(W-NMe2)2( -
O)W[tBuOCHO] (8). The anisotropic displacement factor exponent takes the form:
-27T2[ h a*2 + ... + 2 hk a* b* U 12].
Atom U11 U22 U33 U23 U13 U12


Wl
W2
N1
N2
01
02
03
04
05
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27


18(1)
18(1)
25(2)
30(2)
25(1)
24(1)
21(1)
22(1)
52(2)
23(2)
25(2)
34(2)
28(2)
22(2)
19(2)
31(2)
28(2)
30(2)
38(2)
46(2)
38(2)
31(2)
46(2)
30(2)
51(3)
29(2)
30(2)
42(2)
53(3)
39(3)
27(2)
55(3)
92(5)
55(3)
78(4)
24(2)


17(1)
16(1)
49(2)
50(2)
26(1)
18(1)
20(1)
23(1)
66(2)
31(2)
36(2)
43(2)
61(3)
51(3)
35(2)
27(2)
21(2)
20(2)
25(2)
24(2)
30(2)
30(2)
37(2)
41(2)
63(3)
34(2)
21(2)
24(2)
23(2)
40(3)
48(3)
23(2)
29(3)
41(3)
49(3)
24(2)


15(1)
14(1)
33(2)
28(2)
19(1)
26(1)
25(1)
16(1)
49(2)
27(2)
25(2)
38(2)
36(2)
31(2)
27(2)
24(2)
20(2)
19(2)
24(2)
35(2)
36(2)
15(2)
35(2)
27(2)
18(2)
21(2)
26(2)
34(2)
53(3)
56(3)
37(2)
47(3)
97(5)
65(3)
43(3)
24(2)


3(1)
3(1)
23(2)
19(2)
5(1)
5(1)
8(1)
4(1)
19(2)
10(2)
10(2)
17(2)
21(2)
12(2)
7(2)
8(1)
6(1)
5(1)
2(1)
3(2)
10(2)
2(1)
16(2)
7(2)
-1(2)
1(2)
3(1)
2(2)
-3(2)
-12(2)
-5(2)
10(2)
23(3)
19(2)
18(2)
9(1)


3(1)
3(1)
11(1)
13(1)
6(1)
2(1)
2(1)
5(1)
13(2)
6(1)
8(1)
8(2)
6(2)
1(2)
5(1)
8(1)
10(1)
9(1)
10(2)
20(2)
16(2)
3(1)
5(2)
5(2)
-1(2)
3(1)
8(1)
16(2)
21(2)
7(2)
4(2)
18(2)
29(4)
22(3)
8(3)
5(1)


5(1)
6(1)
17(2)
20(2)
11(1)
1(1)
6(1)
9(1)
21(2)
8(1)
16(2)
22(2)
23(2)
9(2)
3(1)
14(2)
10(1)
5(1)
5(2)
14(2)
18(2)
8(2)
18(2)
9(2)
24(2)
0(2)
0(1)
3(2)
-3(2)
-11(2)
-6(2)
11(2)
23(3)
22(2)
32(3)
8(1)









Table B-9. Bond lengths (in A) for
['BuOCO] (4)


f IBuOCO](CH3)3CCH=}W(i-tBu0CHO) W{ CHC(CH3)3-


Bond Length Bond Length


W1-01
W1-02
W1-C27
W1-03
W1-C1
W2-06
W2-04
W2-C84
W2-05
W2-C58
01-C8
02-C18
03-C39
04-C65
05-C49
06-C75
C1-C2
C1-C6
C2-C3
C2-C7
C3-C4
C4-C5
C5-C6
C6-C17
C7-C12
C7-C8
C34-C35
C35-C36
C36-C37
C37-C48
C38-C43
C38-C39
C39-C40
C40-C41
C40-C44
C41-C42
C42-C43


1.838(4)
1.897(3)
1.900(6)
1.952(4)
2.158(6)
1.830(4)
1.859(4)
1.876(6)
1.969(4)
2.155(6)
1.368(6)
1.378(6)
1.348(6)
1.360(8)
1.358(6)
1.351(7)
1.429(7)
1.430(7)
1.401(8)
1.495(8)
1.368(8)
1.370(8)
1.382(7)
1.481(7)
1.392(8)
1.396(8)
1.375(7)
1.385(7)
1.394(8)
1.492(8)
1.395(7)
1.418(7)
1.416(8)
1.403(8)
1.526(9)
1.386(9)
1.367(8)


C8-C9
C9-C10
C9-C13
C10-C11
C11-C12
C13-C16
C13-C15
C13-C14
C17-C22
C17-C18
C18-C19
C19-C20
C19-C23
C20-C21
C21-C22
C23-C25
C23-C24
C23-C26
C27-C28
C28-C30
C28-C29
C28-C31
C32-C37
C32-C33
C33-C34
C33-C38
C61-C62
C62-C63
C63-C74
C64-C69
C64-C65
C65-C66
C66-C67
C66-C70
C67-C68
C68-C69
C70-C71


1.422(8)
1.394(8)
1.519(9)
1.369(9)
1.365(8)
1.536(8)
1.546(9)
1.573(8)
1.385(7)
1.387(7)
1.403(7)
1.392(7)
1.521(8)
1.376(8)
1.352(8)
1.503(8)
1.539(7)
1.546(8)
1.520(8)
1.489(8)
1.499(11)
1.539(11)
1.377(7)
1.382(7)
1.403(7)
1.490(7)
1.357(10)
1.406(9)
1.469(9)
1.410(9)
1.417(9)
1.418(9)
1.412(10)
1.529(10)
1.399(11)
1.380(11)
1.533(9)









Table B-10. Continued


Bond Angle

C58-C59-C64 125.5(6)
C60-C59-C64 115.1(7)
C61-C60-C59 119.6(7)
C62-C61-C60 121.3(7)
C61-C62-C63 122.3(7)
C62-C63-C58 118.3(7)
C62-C63-C74 116.3(6)
C58-C63-C74 125.4(6)
C69-C64-C65 116.4(8)
C69-C64-C59 121.3(7)
C76-C80-C83 110.6(5)
C81-C80-C83 111.1(6)
C76-C80-C82 111.6(6)
C81-C80-C82 105.9(5)
C83-C80-C82 106.4(6)
C85-C84-W2 151.3(7)
C86-C85-C84 112.1(8)
C86-C85-C87 112.5(8)
C84-C85-C87 108.3(7)
C86-C85-C88 110.2(8)
C84-C85-C88 106.3(7)
C87-C85-C88 107.0(8)
C78-C77-C76 122.0(7)
C77-C78-C79 122.5(7)
C78-C79-C74 119.6(7)
C76-C80-C81 111.1(6)
06-C75-C74 116.3(6)
06-C75-C76 119.6(5)
C74-C75-C76 124.0(6)
C77-C76-C75 115.4(6)
C77-C76-C80 123.0(6)
C75-C76-C80 121.6(6)









2
Table B-11. Anisotropic displacement parameters (A x
'BuOCHO) W{=CHC(CH3)3 [BuOCO]} (4).
2r 2 11
exnonent takesthe form -22r[rh a* IT +


103) for [tBuOCO](CH3)3CCH=}W(t-
The anisotropic displacement factor
12
+2hka*b*IU 1


Atom U11 U22 U33 U23 U13 U12


Wl
W2
01
02
03
04
05
06
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28


41(1)
48(1)
48(2)
35(2)
48(2)
67(3)
49(3)
46(3)
36(3)
42(4)
44(4)
44(4)
39(4)
34(3)
50(4)
56(4)
69(5)
78(5)
64(5)
62(5)
85(5)
121(7)
77(5)
76(5)
37(4)
44(4)
51(4)
69(5)
59(5)
44(4)
52(4)
78(5)
61(4)
48(4)
54(4)
78(5)


25(1)
41(1)
29(2)
21(2)
29(2)
43(3)
42(3)
53(3)
30(3)
35(4)
47(4)
51(5)
28(4)
30(3)
35(4)
31(4)
33(4)
33(4)
45(5)
40(4)
27(4)
34(5)
51(5)
48(5)
33(4)
28(3)
23(3)
23(4)
30(4)
40(4)
25(3)
36(4)
35(4)
45(4)
35(4)
62(5)


36(1)
40(1)
38(2)
42(2)
38(2)
61(3)
38(2)
46(3)
43(4)
40(4)
50(4)
35(4)
51(4)
39(4)
48(4)
45(4)
46(4)
69(5)
73(5)
55(4)
61(5)
91(6)
55(5)
69(5)
32(3)
35(3)
36(4)
42(4)
47(4)
51(4)
52(4)
61(5)
47(4)
69(5)
55(4)
74(6)


-1(1)
-5(1)
-1(2)
-4(2)
-8(2)
-4(2)
-9(2)
-18(2)
9(3)
-2(3)
18(3)
-5(3)
3(3)
-6(3)
17(3)
6(3)
3(3)
9(4)
16(4)
7(3)
-4(3)
-24(4)
-4(4)
-3(4)
-2(3)
-3(3)
3(3)
3(3)
-6(3)
-3(3)
5(3)
6(3)
0(3)
12(3)
11(3)
35(4)


21(1)
25(1)
22(2)
19(2)
22(2)
22(3)
21(2)
19(2)
29(3)
24(3)
26(3)
13(3)
19(3)
20(3)
32(3)
34(3)
33(4)
41(4)
39(4)
33(4)
39(4)
34(5)
32(4)
28(4)
18(3)
26(3)
22(3)
24(4)
16(4)
19(3)
23(3)
20(4)
15(3)
31(4)
29(3)
54(5)


0(1)
-14(1)
3(2)
-2(2)
-2(2)
-3(2)
-13(2)
-10(2)
4(3)
-5(3)
6(3)
-5(3)
3(3)
-6(3)
7(3)
7(3)
4(3)
23(4)
18(4)
11(3)
5(4)
-3(4)
7(4)
-16(4)
3(3)
-2(3)
4(3)
2(3)
-12(3)
-10(3)
11(3)
16(4)
3(3)
15(3)
10(3)
40(4)









Ar-C(CH3)3), 1.42 (d, J=6.9Hz, 6H, CH(CH3)2), 0.84 (s, 9H, W=CHC(CH3)3), 0.69 (d, J=6.7 Hz,

6H, -CH(CH3)2). 13C NMR (75.36 Hz, C6D6) 6 (ppm): 272.2 (s, W= HC(CH3)3), 182.7 (s, C

aromatic), 160.3 (s, C aromatic), 158.5 (s, C aromatic), 150.8 (s, phenol C aromatic), 140.9 (s, C

aromatic), 138.2 (s, C aromatic), 137.2 (s, C aromatic), 137.1 (s, C aromatic), 134.2 (s, phenol C

aromatic), 133.0 (s, C aromatic), 130.0 (s, C aromatic), 126.7 (s, C aromatic), 126.4 (s, C

aromatic), 124.4 (s, C aromatic), 124.2 (s, phenol C aromatic), 123.9 (s, C aromatic), 123.6 (s, C

aromatic), 122.3 (s, C aromatic), 121.5 (s, phenol C aromatic), 47.9 (s, W=CHC(CH3)3), 35.6 (s,

Ar-C(CH3)3), 33.3 (s, CH(C03)2), 32.0 (s, W=CHC(CH3)3), 30.9 (s, Ar-C(CH3)3), 27.7 (s, phenol

CH(CH3)2), 27.5 (s, CH(CH3)2), 23.9 (s, CH(CH3)2), 23.6 (s, (H(CH3)2), 23.3 (s, phenol Ar-

CH(CH3)2). Anal. Calcd. for C43H5403W: C, 64.34; H, 6.78. Found: C, 64.42; H, 6.94.

Synthesis of {['BuOCO](CH3)3CCH=}W(t-'BuOCHO)W{=CHC(CH3)3[tBuOCO]} (4 and 5)

In a 50 mL Schlenk tube, W(CH2C(CH3)3)3(-CC(CH3)3) (200 mg, 0.534 mmol) was

added to a solution of 1 (151 mg, 0.356 mmol) in benzene (2 mL). The solution was degassed.

The reaction mixture was heated to 145 C for 72 hours. Removal of solvent yielded a dark red

oil. Crystalline material for X-ray analysis was obtained by slow evaporation of Et20.

Synthesis of [tBuOCHO](NMe2)W=W(NMe2)[tBuOCHO] (7)

In a J. Young NMR tube, (NMe2)3W-W(NMe2)3 (34 mg, 0.055 mmol) and 1 (40 mg, 0.11

mmol) were combined in benzene (0.5 mL). The solution was warmed to 85 C for 1.5 hours.

The dark red solution was allowed to cool to room temperature and the solvent was removed in

vacuo to yield 7 as a dark red solid (64 mg, 97 %). 1H NMR (300 MHz, C6D6) 6 (ppm): 8.81 (s,

1H, Ar-H), 7.69 (s, 1H, Ar-H), 7.38-7.29 (m, 12H, Ar-H), 7.23 (s, 2H, Ar-H), 7.09-7.06 (m, 1H,

Ar-H), 6.94-6.88 (m, 3H, Ar-H), 4.09 (s, 6H, N(CH3)2), 2.34 (s, 6H, N(CH3)2), 1.95 (s, 18H, Ar-

C(CH3)3), 1.62 (s, 18H, Ar-C(CH3)3).










Table B-17. Continued
Atom U11 U22 U33 U23 U13 U12


C67
C68
C69
C70
C71
C72
C73
C74
C75
C76
C77
C78
C79
C80
C81
C82
C83
C84
C85
C86
C87
C88


40(6)
30(5)
53(6)
47(5)
244(18)
350(20)
67(8)
40(5)
48(5)
42(5)
50(6)
56(7)
65(7)
37(5)
57(7)
56(6)
58(6)
37(5)
45(5)
65(6)
80(7)
56(6)


61(6)
67(6)
55(6)
37(5)
223(16)
128(12)
149(11)
27(4)
21(4)
39(5)
51(6)
76(7)
30(5)
42(5)
73(7)
40(5)
43(6)
20(4)
22(4)
56(6)
41(5)
59(6)


31(5)
40(6)
35(5)
25(5)
119(11)
53(8)
54(7)
22(4)
24(4)
30(5)
30(5)
25(5)
42(6)
33(5)
49(6)
48(6)
67(7)
27(5)
28(5)
28(5)
48(6)
42(6)


-2(4)
-1(5)
-4(5)
9(4)
131(11)
47(8)
45(7)
-3(3)
-3(3)
-3(4)
-8(4)
3(5)
4(4)
-5(4)
-11(5)
-5(4)
-31(5)
3(3)
0(4)
-9(4)
-14(4)
0(5)


-9(4)
1(4)
16(5)
3(4)
144(12)
-57(10)
5(6)
12(4)
11(4)
2(4)
2(4)
2(5)
11(5)
-1(4)
-14(5)
10(5)
16(5)
7(4)
10(4)
13(4)
20(5)
22(5)


5(5)
-4(5)
-24(5)
10(4)
199(15)
-179(14)
12(8)
12(4)
12(4)
11(4)
10(5)
36(6)
12(5)
-6(4)
-12(5)
-7(4)
-2(5)
4(3)
6(4)
14(5)
0(5)
11(5)









APPLICATION OF TRIANIONIC PINCER LIGANDS TO REACTIONS INVOLVING
GROUP VI ALKYLIDYNES, METAL-METAL MULTIPLE BONDS, AND GROUP IV
AMIDES




















By

ANDREW J. PELOQUIN


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2008









Table B-12. Torsion angles (in deg) for { [BuOCO](CH3)3CCH=
{=CHC(CH3)3[tBuOCO] (4)


}W(i-'BuOCHO) W-


Atoms Angle Atoms Angle


02-W1-01-C8
C27-W1-01-C8
03-W1-01-C8
C1-W1-01-C8
01-W1-02-C18
C27-W1-02-C 18
03-W1-02-C18
C1-W1-02-C18
01-W1-03-C39
02-W1-03-C39
C27-W1-03-C39
C1-W1-03-C39
06-W2-04-C65
C84-W2-04-C65
05-W2-04-C65
C58-W2-04-C65
06-W2-05-C49
04-W2-05-C49
C84-W2-05-C49
C58-W2-05-C49
04-W2-06-C75
C84-W2-06-C75
05-W2-06-C75
C58-W2-06-C75
01-W1-C1-C2
02-W1-C1-C2
C27-W1-C1-C2
C12-C7-C8-C9
C2-C7-C8-C9
01-C8-C9-C10
C7-C8-C9-C10
01-C8-C9-C13
C7-C8-C9-C13
C8-C9-C10-C11
C13-C9-C10-C11
C9-C10-C11-C12
C10-C11-C12-C7


-62.5(9)
87.4(6)
-158.3(6)
-8.0(6)
99.5(6)
-51.2(5)
-163.5(5)
45.2(4)
127.2(7)
-35.0(7)
-127.2(7)
40.4(8)
-97.3(8)
56.7(6)
169.3(6)
-41.2(6)
-53.9(6)
108.9(6)
-155.8(6)
27.1(8)
66.2(10)
-87.4(7)
159.1(7)
9.7(7)
-7.1(4)
158.4(4)
-109.0(4)
7.4(9)
-173.0(5)
171.3(5)
-7.8(9)
-10.5(8)
170.3(6)
2.9(9)
-175.2(6)
2.1(11)
-2.7(10)


03-W1-C1-C2
01-W1-C1-C6
02-W1-C1-C6
C27-W1-C1-C6
03-W1-C1-C6
C6-C1-C2-C3
W1-C1-C2-C3
C6-C1-C2-C7
W1-C1-C2-C7
C1-C2-C3-C4
C7-C2-C3-C4
C2-C3-C4-C5
C3-C4-C5-C6
C4-C5-C6-C1
C4-C5-C6-C17
C2-C1-C6-C5
W1-C1-C6-C5
C2-C1-C6-C17
W1-C1-C6-C17
C3-C2-C7-C12
C1-C2-C7-C12
C3-C2-C7-C8
C1-C2-C7-C8
W1-01-C8-C7
W1-Ol-C8-C9
C12-C7-C8-01
C2-C7-C8-01
C17-C18-C19-C20
02-C18-C19-C23
C17-C18-C19-C23
C18-C19-C20-C21
C23-C19-C20-C21
C19-C20-C21-C22
C20-C21-C22-C17
C18-C17-C22-C21
C6-C17-C22-C21
C20-C19-C23-C25


82.5(5)
-174.4(4)
-9.0(4)
83.7(4)
-84.8(5)
8.9(7)
-158.8(4)
-171.5(5)
20.9(7)
-0.3(8)
-180.0(5)
-6.4(9)
4.0(9)
4.9(8)
-174.3(5)
-11.2(8)
156.7(4)
167.9(5)
-24.1(7)
-22.9(8)
157.4(5)
157.5(5)
-22.1(8)
8.3(9)
-170.9(4)
-171.7(5)
7.9(8)
5.1(8)
4.0(8)
-174.3(5)
-1.0(8)
178.4(6)
-2.4(10)
1.8(9)
2.2(9)
-175.3(5)
117.5(6)









X-ray Experimental for [('BuOCHO)Mg{O(CH2CH2)20}]n (6)

Data were collected at 173 K on a Siemens SMART PLATFORM equipped with A CCD

area detector and a graphite monochromator utilizing MoKa radiation (k = 0.71073 A). Cell

parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was

collected using the co-scan method (0.30frame width). The first 50 frames were re-measured at

the end of data collection to monitor instrument and crystal stability (maximum correction on I

was < 1 %). Absorption corrections by integration were applied based on measured indexed

crystal faces.

The structure was solved by the author using Direct Methods in SHELXTL6, and refined

using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the

hydrogen atoms were calculated in ideal positions and were riding on their respective carbon

atoms. A total of 865 parameters were refined in the final cycle of refinement using 8981

reflections (with I > 2ol) to yield R1 and wR2 of 4.85% and 9.19%, respectively. Refinement

was done using F2









Table B-24. Torsion angles (in deg) for [(rBuOCHO
)Mg(O(CH2CH2)2011n (6)


Atoms Angle Atoms


02-Mgl-01-C18
04-Mgl-01-C18
03-Mgl-01-C18
C1-Mgl-01-C18
01-Mgl-02-C8
04-Mgl-02-C8
03-Mgl-02-C8
C1-Mgl-02-C8
01-Mgl-03-C28
02-Mgl-03-C28
04-Mgl-03-C28
01-Mgl-03-C27
02-Mgl-03-C27
04-Mgl-03-C27
01-Mgl-04-C29
02-Mgl-04-C29
03-Mgl-04-C29
C1-Mgl-04-C29
01-Mgl-04-C30
02-Mgl-04-C30
03-Mgl-04-C30
C1-Mgl-04-C30
01-Mgl-C1-C2
02-Mgl-Cl-C2
04-Mgl-Cl-C2
01-Mgl-C1-C6
02-Mgl-Cl-C6
04-Mgl-Cl-C6
C8-C9-C10-C11
C13-C9-C10-C11
C9-C10-C11-C12
C10-C11-C12-C7
C8-C7-C12-C11
C2-C7-C12-C11
C10-C9-C13-C15
C8-C9-C13-C15
C10-C9-C13-C14
C8-C9-C13-C14


-83.1(2)
81.9(2)
174.7(2)
-9.5(2)
82.9(2)
-82.2(2)
-175.0(2)
9.4(2)
177.9(3)
37.2(3)
-72.5(3)
0.9(3)
-139.8(3)
110.4(3)
10.4(4)
-179.8(3)
-84.6(3)
95.1(3)
-173.4(3)
-3.6(3)
91.5(3)
-88.8(3)
172.43(16)
-46.12(15)
63.27(16)
46.14(16)
-172.41(16)
-63.02(16)
0.0(4)
-178.0(2)
-3.0(4)
1.4(4)
3.2(4)
-174.8(2)
-129.7(2)
52.4(3)
108.2(2)
-69.8(3)


C6-C1-C2-C3
Mgl-C1-C2-C3
C6-C1-C2-C7
Mgl-C1-C2-C7
C1-C2-C3-C4
C7-C2-C3-C4
C2-C3-C4-C5
C3-C4-C5-C6
C4-C5-C6-C1
C4-C5-C6-C17
C2-C1-C6-C5
Mgl-Cl-C6-C5
C2-C1-C6-C17
Mgl-Cl-C6-C17
C3-C2-C7-C12
C1-C2-C7-C12
C3-C2-C7-C8
C1-C2-C7-C8
Mgl-02-C8-C7
Mgl-02-C8-C9
C12-C7-C8-02
C2-C7-C8-02
C12-C7-C8-C9
C2-C7-C8-C9
02-C8-C9-C10
C7-C8-C9-C10
02-C8-C9-C13
C7-C8-C9-C13
C18-C19-C20-C21
C23-C19-C20-C21
C19-C20-C21-C22
C20-C21-C22-C17
C18-C17-C22-C21
C6-C17-C22-C21
C20-C19-C23-C25
C18-C19-C23-C25
C20-C19-C23-C24
C18-C19-C23-C24


Angle

-2.0(4)
-111.2(2)
179.6(2)
70.4(2)
-0.7(4)
177.7(3)
3.1(5)
-2.9(5)
0.3(4)
-178.3(3)
2.2(4)
111.1(2)
-179.2(2)
-70.3(2)
-46.9(3)
131.4(2)
135.1(3)
-46.6(3)
17.9(3)
-164.09(16)
171.9(2)
-10.1(3)
-6.1(3)
171.9(2)
-173.5(2)
4.5(3)
4.5(3)
-177.5(2)
1.4(3)
179.4(2)
2.2(4)
-1.6(4)
-2.5(4)
176.1(2)
11.0(3)
-171.1(2)
130.1(2)
-52.1(3)









Synthesis of [tBuOCO]W(p-NMe2)2(p-O)W[tBuOCO] (8)

In a J. Young NMR tube, (NMe2)3W-W(NMe2)3 (34 mg, 0.055 mmol) and 1 (40 mg,

0.11 mmol) were combined in benzene (0.5 mL). The solution was warmed to 85 C for 72

hours. The dark green solution was decanted from a red, crystalline precipitate. The resulting

solid was dried in vacuoto yield 7 as a green powder (50 mg, 76 %). Solid 5 had no appreciable

solubility in C6D6, CDC13, or THF-ds, making NMR study impossible. Anal. Calcd. for

C56H68N205W2: C, 55.27; H, 5.63; N, 2.30. Found: C, 55.49; H, 5.84; N, 2.44.

Synthesis of [AnthH] [Zr(NMe2)3(NHMe2)12 (10)

Zr(NMe2)4 (40.4 mg, 0.151 mmol) was added to a solution of AnthH3 (9) (50.0 mg,

0.076 mmol) in benzene (1 mL), and the resulting mixture was stirred for ten minutes. Stirring

was then ceased and the reaction mixture was allowed to stand at room temperature for one hour,

during which time a precipitate formed. The solvent was decanted and the product dried in

vacuo to yield 10 as a pale yellow solid (80.8 mg, 89 %). 1H NMR (300 MHz, C6D6) 6 (ppm):

9.11 (s, 1H, Ar-H), 8.21 (s, 1H, Ar-H), 7.66 (d, J=8.2 Hz, 2 H, Ar-H), 7.53 (d, J=6.9 Hz, 2 H,

Ar-H), 7.30 (s, 4 H, Ar-H), 7.21 (m, 2 H, Ar-H), 7.07 (s, 2 H, Ar-H), 5.46 (s, 4 H, Ar-CH2N),

2.66 (s, 32 H, Zr-N(CH3)2), 1.51 (d, J=6.3 Hz, 12 H, Zr-NH(CH3)2), 0.78 (sept, J=6.4 Hz, 2 H,

Zr-NH(CH3)2). 13C NMR (75.36 Hz, C6D6) 6 (ppm): 159.5 (s, C aromatic), 136.6 (s, C

aromatic), 132.8 (s, C aromatic), 132.3 (s, C aromatic), 131.8 (s, C aromatic), 130.6 (s, C

aromatic), 129.4 (s, C aromatic), 127.8 (s, C aromatic), 125.8 (s, C aromatic), 125.7 (s, C

aromatic), 124.1 (s, C aromatic), 116.4 (s, C aromatic), 114.6 (s, C aromatic), 106.7 (s, Ar-CF3),

52.4 (s, Ar-CH2N), 42.2 (s, Zr-N(CH3)2), 39.1 (s, Zr-NH(CH3)2).

Synthesis of [AnthH] [Hf(NMe2)3(NHMe2)12 (11)

Hf(NMe2)4 (53.6 mg, 0.151 mmol) was added to a solution of 9 (50.0 mg, 0.076 mmol)

in benzene (1 mL), and the resulting mixture was stirred for ten minutes. Stirring was then





























APPENDIX A
H AND 13C{1H} NMR SPECTRA

















































Figure B-3. Molecular structure of { [tBuOCO](CH3)3CCH=}W(i-tBuOCHO)W{=CHC(CH3)3-
[tBuOCO]} (4). Ellipsoids are shown at the 50% probability level; hydrogens are
omitted for clarity.





66









Table B-34. Bond angles (in deg) for [AnthH][Hf(NMe2)3(NHMe2)]2 (11)
Bond Angle Bond Angle


N4-Hfl-N3
N4-Hfl-N2
N3-Hfl-N2
N4-Hfl-N1
N3-Hfl-N1
N2-Hfl-N1
N4-Hfl-N5
N3-Hfl-N5
N2-Hfl-N5
N1-Hfl-N5
N7-Hf2-N9
N7-Hf2-N8
N9-Hf2-N8
N7-Hf2-N6
N9-Hf2-N6
N8-Hf2-N6
N7-Hf2-N10
N9-Hf2-N10
N8-Hf2-N10
N6-Hf2-N10
C16-N1-C15
C16-N1-Hfl
C15-N1-Hfl
C33-N2-C34
C33-N2-Hfl
C34-N2-Hfl
C36-N3-C35
C36-N3-Hfl
C7-C2-C3
C4-C3-C2
C4-C3-C15
C2-C3-C15
C3-C4-C5
C6-C5-C4
C5-C6-C7
C8-C7-C6
C8-C7-C2
C6-C7-C2


119.8(3)
120.1(3)
118.4(3)
93.7(3)
95.2(2)
94.3(3)
87.3(3)
84.4(3)
85.1(3)
179.0(3)
117.2(3)
120.8(3)
119.2(3)
95.0(2)
96.7(3)
95.1(3)
85.2(3)
85.8(3)
82.3(3)
177.0(3)
115.2(7)
123.8(5)
119.2(5)
113.5(8)
119.6(6)
126.3(6)
111.9(7)
118.5(6)
118.1(7)
118.8(8)
123.4(8)
117.8(7)
121.8(9)
121.7(8)
119.8(8)
122.1(8)
118.3(7)
119.5(8)


C35-N3-Hfl
C38-N4-C37
C38-N4-Hfl
C37-N4-Hfl
C39-N5-C40
C39-N5-Hfl
C40-N5-Hfl
C39-N5-H5
C40-N5-H5
Hfl-N5-H5
C25-N6-C24
C25-N6-Hf2
C24-N6-Hf2
C46-N7-C45
C46-N7-Hf2
C45-N7-Hf2
C43-N8-C44
C43-N8-Hf2
C44-N8-Hf2
C42-N9-C41
C42-N9-Hf2
C41-N9-Hf2
C48-N10-C47
C48-N10-Hf2
C47-N10-Hf2
C2-C1-C14
C1-C2-C7
C1-C2-C3
C19-C18-C22
C17-C18-C22
C20-C19-C18
C21-C20-C19
C21-C20-C23
C19-C20-C23
C20-C21-C16
F1-C22-F3
F1-C22-F2
F3-C22-F2


129.2(6)
110.7(7)
125.0(6)
123.7(5)
111.4(7)
114.2(6)
112.8(6)
119(8)
104(8)
94(8)
114.7(6)
127.7(5)
117.4(5)
111.6(7)
123.4(6)
124.7(6)
110.7(7)
123.0(6)
125.9(6)
112.9(8)
126.8(7)
120.1(6)
111.5(9)
113.6(7)
111.0(6)
123.3(8)
118.2(8)
123.7(7)
119.5(8)
119.1(9)
117.5(8)
122.2(8)
119.0(8)
118.7(8)
122.4(8)
107.8(11)
97.5(10)
100.4(10)










Table B-15.
Bond


Continued
Length


C44-C45
C44-C46
C44-C47
C48-C53
C48-C49
C49-C50
C50-C51
C50-C54
C51-C52
C52-C53
C54-C55
C54-C57
C54-C56
C58-C63
C58-C59
C59-C60
C59-C64
C70-C72
C70-C73
C70-C71
C74-C79
C74-C75
C75-C76
C76-C77
C76-C80
C77-C78
C78-C79
C80-C82
C80-C83
C80-C81
C84-C85
C85-C87
C85-C88
C85-C86


1.511(10)
1.531(10)
1.531(10)
1.364(9)
1.410(9)
1.392(9)
1.373(10)
1.519(10)
1.350(10)
1.386(10)
1.501(12)
1.514(10)
1.523(12)
1.424(9)
1.429(10)
1.400(9)
1.463(10)
1.458(12)
1.479(11)
1.484(11)
1.401(10)
1.420(10)
1.396(10)
1.373(10)
1.530(11)
1.401(11)
1.365(11)
1.502(10)
1.525(10)
1.532(11)
1.517(9)
1.517(10)
1.520(10)
1.547(10)










Table B-14. Continued
Atom X Y Z U(eq)


C67
C68
C69
C70
C71
C72
C73
C74
C75
C76
C77
C78
C79
C80
C81
C82
C83
C84
C85
C86
C87
C88


-2365(6)
-2680(7)
-1978(7)
-1033(6)
-354(12)
-449(13)
-1956(8)
2683(6)
3228(6)
4250(6)
4745(7)
4244(7)
3243(7)
4807(6)
5885(7)
4987(7)
4151(7)
705(6)
486(6)
1161(7)
781(7)
-678(6)


7895(4)
7555(4)
7174(4)
8257(4)
7854(7)
8858(6)
8442(6)
6545(3)
7142(3)
7289(4)
6809(4)
6207(5)
6073(4)
7943(4)
7982(4)
8016(4)
8518(4)
8342(3)
8599(3)
8210(4)
9324(4)
8504(4)


4150(3)
4509(3)
4797(3)
3671(3)
3421(4)
3826(4)
3313(3)
5755(2)
5705(2)
5937(3)
6231(3)
6283(3)
6054(3)
5880(3)
6206(3)
5389(3)
6006(3)
5232(2)
5692(2)
6097(3)
5740(3)
5703(3)


46(2)
47(2)
47(2)
37(2)
181(9)
188(9)
91(4)
29(2)
31(2)
38(2)
44(2)
53(3)
46(2)
38(2)
63(3)
48(2)
55(3)
28(2)
32(2)
49(2)
55(3)
51(2)












C29


C12 C3
C C 02 C39 C23
Cli

C C15 01 C38
C101 C4n C26
C13
03
C33

C14 C32
C16 C34
C37
C41
C42 41 C35

C43 C36

Figure B-1. Molecular structure of [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3). Ellipsoids
shown at the 50% probability level; hydrogens are omitted for clarity.




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E7AAB5NJG_J4KJ0P INGEST_TIME 2011-04-22T19:26:53Z PACKAGE UFE0022726_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

1 APPLICATION OF TRIANIONIC PINCER LIGANDS TO REACTIONS INVOLVING GROUP VI ALKYLIDYNES, METAL METAL MULTIPLE BONDS, AND GROUP IV AMIDES By ANDREW J PELOQUIN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2008

PAGE 2

2 2008 Andrew J Peloquin

PAGE 3

3 The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government

PAGE 4

4 ACKNOWLEDGMENTS As this project draws to a close, I am extremely grateful to many individuals who made this achievement possible. I would like to first thank my advisor, Dr Adam Veige. His patience made this research possible, given the numerous constraints my situation provided. I would also like to thank all the members of the Veige group for mak ing my transition into his lab fairly effortless. Recognition must also be given to Khalil Abboud, who provided inva luable data through X ray diffraction studies. I also thank the other members of my committee, Dr Steph en Miller and Dr Michael Scott for their time in reviewing my research. Many faculty of the Department of Chemistry at the United States Air Force Academy also deserve much thanks for molding m e into the scientist I am today: m ost importantly, my undergraduate advisor, Dr Gary Balaich, whose love for science has continued to motivate me throughout my educational endeavors. Without the extensive practical laboratory experience he provided, I would have been unable to complete this thesis in such a short period. Lastly, I would like to thank Lt Col (Ret) Ronald Furstenau; it was his passion for education which inspired my love o f learning, now and for fut ure quests.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS ........................................................................................................... 4 LIST OF TABLES ...................................................................................................................... 7 LIST OF FIGURES .................................................................................................................... 9 ABSTRACT ............................................................................................................................. 11 CHAPTER 1 INTRODUCTION ............................................................................................................. 13 2 PROGRESS TOWARD A TUNGSTEN ALKYLIDYNE SUPPORTED WITH A TRIANIONC OCO3 PINCER LIGAND ............................................................................ 18 Synthesis and Characterization of [tBuOCO]W(=CHC(CH3)3)(O 2,6 -iPr2C6H3) (3) .......... 18 Synthesis and Characterization of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 4 and 5) ............................................................................ 21 3 PROGRESS TOWARD COMPLEXES WITH M M MULTIPLE BONDS SUPPORTED BY A TRIANIONIC OCO3 PINCER LIGAND .......................................... 27 4 SYNTHESIS OF DINUCLEAR ZIRCONIUM AND HAFNIUM COMPLEXES OF A NEW ANTHRACENE DIAMIDO LIGAND ..................................................................... 31 5 CONCLUSIONS ................................................................................................................ 34 6 EXPERIMENTAL ............................................................................................................. 35 General Considerations ...................................................................................................... 35 Synthesis of [tBuOCO]W(=CHC(CH3)3)(O 2,6 C6H3-iPr2) (3 ) ........................................... 35 Synthesis of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4 and 5) ............................................................................................................................. 36 Synthesis of [tBuOCHO](NMe2)W 2)[tBuOCHO] ( 7) ........................................... 36 Synthesis of [tBuOCO]W( NMe2)2( O)W[tBuOCO] ( 8) ................................................. 37 Synthesis of [AnthH][Zr(NMe2)3(NHMe2)]2 ( 10) ................................................................ 37 Synthesis of [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) ............................................................... 37 APPENDIX A 1H AND 13C{1H} NMR SPECTRA .................................................................................... 39 B X RAY STRUCTURAL DATA AND TABLES ................................................................ 47

PAGE 6

6 X ray Experimental for [tBuOCO]W(=CHC(CH3)3)(O 2,6 -iPr2C6H3) ( 3 ) .......................... 50 X ray Experimental for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4) ................................................................................................................ 67 X ray Experimental for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5) ................................................................................................................ 85 X ray Experimental for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6 ) ........................................ 103 X ray Experimental for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) ........................ 115 X ray Experimental for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ) ............................................ 130 LIST OF REFERENCES ........................................................................................................ 142 BIOGRAPHICAL SKETCH ................................................................................................... 144

PAGE 7

7 LIST OF TABLES Table page B 1 Crystal data, structure solution, and refinement for [tBuOCO]W(=CHC(CH3)3)(O 2,6-iPr2C6H3) ( 3 ) ........................................................................................................... 51 B 2 Atomic coordinates and equivalent isotropic displacement parameters for [tBuOCO]W(=CHC(CH3)3)(O 2,6-iPr2C6H3) ( 3) ........................................................... 52 B 3 Bond lengths for [tBuOCO]W(=CHC(CH3)3)(O 2,6 -iPr2C6H3) (3) ................................ 55 B 4 Bond angles for [tBuOCO]W(=CHC(CH3)3)(O 2,6 -iPr2C6H3) (3) ................................. 56 B 5 Anisotropic displacement parameters for [tBuOCO]W(=CHC(CH3)3)(O 2,6 -iPr2C6H3) (3 ) ....................................................................................................................... 59 B 6 Torsion angles for [tBuOCO]W(=CHC(CH3)3)(O 2,6-iPr2C6H3) ( 3 ) ............................. 62 B 7 Crystal data, structure solution, and refinement for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4) ................................................................... 68 B 8 Atomic coordinates and equivalent isotropic displacement parameters for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4) ................... 69 B 9 Bond lengths for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 4) ............................................................................................................... 72 B 10 Bond angles for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 4) ............................................................................................................... 74 B 11 Anisotropic displacement parameters for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 4) ................................................................................... 77 B 12 Torsion angles for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W {=CHC(CH3)3[tBuOCO]} ( 4) ........................................................................................ 80 B 13 Crystal data, structure solution, and refinement for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5) ................................ ................................... 86 B 14 Atomic coordinates and equivalent isotropic displacement parameters for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5) ................... 87 B 15 Bond lengths for {[tBuOCO](CH3)3CCH=}W( -tBu OCHO) W{=CHC(CH3)3[tBuOCO]} ( 5) ............................................................................................................... 90 B 16 Bond angles for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 5) ............................................................................................................... 92

PAGE 8

8 B 17 Anisotropic displacement parameters for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5) ................................................................... 95 B 18 Torsion angles for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 5) ............................................................................................................... 98 B 19 Crystal data, structure solution, and refinement for [(tBuOCHO)Mg {O(CH2CH2)2O}]n ( 6 ) .................................................................................................. 104 B 20 Atomic coordinates and equivalent isotropic displacement parameters for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) ........................................................................ 105 B 21 Bond lengths for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) ............................................. 107 B 22 Bond angles for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) ............................................... 108 B 23 Anisotropic displacement parameters for [(tBuOCHO)Mg {O(CH2CH2)2O}]n ( 6 ) ....... 109 B 24 Torsion angles for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) ........................................... 111 B 25 Crystal data, structure solution, and refinement for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) .................................................................................................... 116 B 26 Atomic coordinates and equivalent isotropic displacement parameters for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) ......................................................... 117 B 27 Bond lengths for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) .............................. 119 B 28 Bond angles for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) ............................... 121 B 29 Anisotropic displacement parameters for [tBuOCHO]W( NMe2)2( O) W[tBuOCHO] ( 8) ........................................................................................................ 123 B 30 Torsion angles for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) ........................... 125 B 31 Crystal data, structure solution, and refinement for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) .............................................................................................................................. 131 B 32 Ato mic coordinates and equivalent isotropic displacement parameters for [AnthH][Hf(NMe2)3(NHMe 2)]2 ( 11) ............................................................................ 132 B 33 Bond lengths for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) .................................................. 134 B 34 Bond angles for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ) ................................................... 135 B 35 Anisotropic displacement parameters for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) ............. 137 B 36 Torsion angles fo r [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) ............................................... 139

PAGE 9

9 LIST OF FIGURES Figure page 11 Examples of high oxidation state metal alkylidynes ....................................................... 13 12 abstraction to produce tungsten alkylidynes .................................... 14 13 Metathesis cleavage of W ........................................................... 15 14 Reductive recycle strategy for alkylidyne synthesis ....................................................... 15 15 Mechanism of nitrile alkyne cross metathesis (NACM) ................................................. 16 16 Pincer type ligand supported alkylidyne ........................................................................ 16 17 Target molecule ............................................................................................................. 17 21 Synthesis of [tBuOCO]W(=CHC(CH3)3)(O 2,6 -iPr2C6H3) ( 3) ....................................... 18 22 Molecular structure of 3 ................................................................................................. 19 23 Two molecules of asymmetric unit of 3 demonstrating mirror symmetry ....................... 20 24 Synthesis of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4 and 5) ........................................................................................................................ 21 25 Molecular structure of 4 (left) and 5 (right) .................................................................... 23 26 Molecular structure of 4 (left) and 5 (right) showing orientation of bridging ligand ....... 24 27 Polymeric structure of 6 ................................................................................................. 26 31 Synthesis of [tBuOCHO](NMe2)W 2)[tBuOCHO] ( 7) and [tBuOCHO]W ( NMe2)2( O)W[tBuOCHO] ( 8) ...................................................................................... 27 32 Newman projection of 7 illustrating inequivalence of t ert butyls and amides ................. 28 33 Molecular structure of 8 ................................................................................................. 29 41 Synthesis of [AnthH][M(NMe2)3(NHMe2)]2 ( 10 and 11) ................................................ 31 42 Molecular structure of 11 ............................................................................................... 32 43 Molecular structure of 11 viewed along C2 axis ............................................................. 33 A 1 1H NMR spectrum of [tBuOCO]W(=CHC(CH3)3)(O 2,6-iPr2C6H3) (3) in C6D6 ............ 40 A 2 13C{1 H} NMR spectrum of [tBuOCO]W(=CHC(CH3)3)(O 2,6 -iPr2C6H3) ( 3 ) in C6D6 ... 41

PAGE 10

10 A 3 1H NMR spectrum of [tBuOCHO](NMe2)W 2)[tBuOCHO] ( 7) in C6D6 ........... 42 A 4 1H NMR spectrum of [AnthH][Zr(NMe2)3(NHMe2)]2 ( 10) in C6D6 ................................ 43 A 5 13C{1H} NMR spectrum of [AnthH][Zr(NMe2)3(NHMe2)]2 ( 10) in C6D6 ....................... 44 A 6 1H NMR spectrum of [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) in C6D6 ................................ 45 A 7 13C{1H} NMR spectrum of [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) in C6D6 ....................... 46 B 1 Molecular structure of [tBuOCO]W(=CHC(CH3)3)(O 2,6-iPr2C6H3) ( 3) ....................... 48 B 2 Packing diagram for 3 .................................................................................................... 49 B 3 Molecular structure of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4) ............................................................................................................... 66 B 4 Molecular structure of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5) ............................................................................................................... 84 B 5 Asymetric unit of [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) ............................................ 102 B 6 Molecular structure of [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) ..................... 113 B 7 Packing diagram for 8 .................................................................................................. 114 B 8 Molecular structure of [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ) ......................................... 129

PAGE 11

11 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science APPLICATION OF TRIANIONIC PINCER LIGANDS TO REACTIONS INVOLVING GROUP VI ALKYLIDYNES, METAL METAL MULTIPLE BONDS, AND GROUP IV AMIDES By Andrew J Peloquin August 2008 Chair: Adam S Veige Major: Ch emistry In an effort to isolate a pincer support tungsten alkylidyne, several new tungsten alkylidenes and a ditungsten compound have been isolated, supported by the previously reported OCO pincer ligand [3,3 di tert butyl 2,2 di (hydroxy O) 1,1:3,1 terphenyl 2 yl C2] (tBuOCO 1). When the tBuOCO ligand precursor is treated with W(OAr)2(CH2(CH3)3) ( 3)3) (OAr= 2,6 diisopropylphenoxide) in benzene, the alkylidene complex [tBuOCO] W(=CH(CH3)3)(O 2,6 -iPr2C6H3) (3) results and was characterized by a combination of one and two dimensional NMR spectroscopy, single crystal X ray crystallography, and combustion 2(CH3)3)3( 3)3) was next combined with 1, but the reaction resulted in a complicated mi xture of products. From this mixture, two closely related structural isomers of the form {[tBuOCO](CH3)3CCH=}W( -tBuOCHO ) W {=CHC(CH3)3[tBuOCO]} ( 4 and 5) were isolated. This bridged, dinuclear complex was analyzed by single crystal X ray crystallography. Finally, the reaction of (NMe2)3W 2)3 with two equivalents of 1 results first in [tBuOCHO](NMe2)W 2)[tBuOCHO] ( 7) and after prolonged heating, [tBuOCHO]W ( NMe2)2( O)W[tBuOCHO] ( 8). These complexes were analyzed by a combination of NMR spectroscopy, singlecrystal X ray crystallography, and

PAGE 12

12 combustion analysis. The exact mechanism of formation for 8 is not yet know, but it potentially represents a rare example of the oxidative ad dition of water to an early transition metal

PAGE 13

13 CHAPTER 1 INTRODUCTION Interest in high oxidation state alkylidene and alkylidyne complexes for application to alkene and alkyne metathesis has grown steadily since the discovery of metal carbon multiple bonds approximately thirty years ago.1,2,3, 4 Alkylidyne species have received comparatively less attention than their alkylidene analogues despite their application to nitrile alkyne cross metathesis (NACM). NACM has t he potential to become increasingly important as it represents a method to prepare novel alkynes from relatively accessible nitriles.5,6 Figure 11. Examples of high oxidation state metal alkylidynes A metal alkylidyne contains a metal carbon triple bond. The research described herein focuses on Schrock type alkylidynes, which are alkylidyne complexes in which the metal is in its highest oxidation state. These types of compounds were first prepared from tantalum7, but are now commonly prepared from tun gsten8 and molybdenum9 and, to a lesser extent, chromium10 and rhenium (Figure 11).11 In highoxidation state alkylidynes, the alkylidyne carbon donation to the metal center and is considered a 6 electron donor. Despite suc donation, most high oxidation state alkylidynes are electron deficient. donation from the remaining ligands. Schrock type alkylidynes are generally formed by one of four methods, the most common being deprotona elimination. Rarely, these complexes can be

PAGE 14

14 formed by metathesis of an alkyne across a metal metal triple bond, or by a reductive recycle strategy. The elimination represent the most commonly encountered method s for the synthesis of most highC H bond oxidatively adds to the metal, forming an alkylidyne from an alkylidene. More common in abstraction. In F igure 12, the Grignard re agent acts as a base, deprotonating carbon, forming an alkylidene from an alkyl and an alkylidyne from the alkylidene.12,13 The exact order in which the alkylation and abstraction steps occur in these systems is not currently known. Figure 12. abstraction to produce tungsten alkylidynes The third, and one of the less frequently encountered methods for alkylidyne formation, is metathesis involving a W 14 The scission of ditungsten hexa tert butoxide ((tBuO)3W tBu)3) (I ) by an alkyne yields an alkylidyne of the form (tBuO)3W II ) (Figure 13). The R group is determined by the nature of the alkyne used in the reaction.

PAGE 15

15 The fourth and final way in which high oxidation state alkylidynes are generated is by a redu ctive recycle strategy (Figure 1 4). Frstner reported the reaction of Mo[N(tBu)Ar]3 ( III) with CH2Cl2, which afforded a mixture of the chloride ( IV ) and the methylidyne species ( V ).1 5 Kraft added magnesium to the system.16 Magnesium present in the reaction mixture reduced the chloride species back to the starting material which could then reenter the reaction. The result was a onepot synthesis of a molybdenum alkylidyne from a terminal dichloride. Figure 13. Metathesis cleavage of W Figure 14. Reductive recycle strategy for alkylidyne synthesis The primary goal of this research is to generate a highly reactive tungsten alkylidyne catalyst for NACM. NACM involves the conversion of a metal carbon triple bond (alkylidyne) to a metal nitrogen triple bond (nitride) or vice versa (Figure 1 5). A metalalkylidyne can undergo a [2+2] cycloaddition with a nitrile to produce an azametallacyclobutadiene inter mediate. This anti aromatic intermediate can then undergo retro cycloaddition to yield the

PAGE 16

16 desire d alkyne and a metal nitride. A sacrificial alkyne is then employed to convert the metal nitride back to a metal alkylidyne to continue the catalytic cycle. A major roadblock to the catalytic version of the reaction is the high energy azametallacyclobutadiene intermediate, which effectively makes either the alkylidyne or nitride a thermodynamic sink. Figure 15. Mechanism of nitrile alkyne cross metathesis (NACM) In 2007, the first catalytic example of NACM was reported by Johnson et al.17 A tungsten nitride of the form (RO)3W ethylidyne upon treatment with 3 hexyne. In the presence of pmethoxyanilin e, the corresponding alkyne was formed. Unfortunately, the system was rather sluggish and was limited in substrate scope. Figure 16. Pincer type ligand supported alkylidyne In 2005, the novel titanium alkylidene alkyl complex (PNP)Ti=CHtBu(CH2 tBu) ( VI ) was reporte d by Mindiola et al. (Figure 16).18 This complex features a tridentate, pincer type ligand. In 2007, the same group found the complex to react with bulky nitriles to provide the first isolated azametallacyclobutadiene ( VII). This complex showed promise for NACM but,

PAGE 17

17 unfortunately, required an external electrophile, namely ClSi(CH3)3 or AlMe3, to liberate the alkyne. The following research aims to marry the ideas of Johnson and Mindiola. A high oxidation state, group VI alkyl idyne will be used, as these have been shown to successfully complete the NACM cycle. The extreme reactivity of a highly strained, pincer type geometry will also be exploited. By using these two approaches in the same system, the resulting complex should be highly reactive and successfully complete the NACM cycle. The trianionic pincer ligands designed previously by the Veige group, in particular, the previously reported OCO pincer ligand [3,3 di tert butyl 2,2 di (hydroxy O) 1,1:3,1 terphenyl 2 yl C2] (tBuOCO 1), are ideal for u se in an NACM system (Figure 1 7).20 There are three major reasons why these ligands are well suited for application to a NACM catalyst. First, the trianionic nature of the pincer ligand allows access to the +6 oxidation state required for the alkylidyne. Second, the rigid planarity of the ligand backbone imposes geometry restraints around the metal center which should help increase its reactivity. Finally, the strong M C bond present should distort the alkylidyne out o f the plane of the ligand, further increasing the reactivity of the resulting complex. Figure 17. Target molecule

PAGE 18

18 CHAPTER 2 PROGRESS TOWARD A TUNGSTEN ALKYLIDYNE SUPPORTED WITH A TRIANIONC OCO3 PINCER LIGAND Synthesis and Characterization of [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) (3) The tBuOCO ligand precursor ( 1) was treated with one equivalent of W(OAr)2(CH2C (CH3)3)( C (CH3)3) (OAr = 2,6 diisopropylphenoxide) ( 2) in hot (85 C) benzene for two hours, resulting in formation of a deep red solution of [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) (3 ) (Figure 2 1). The molecular structure of 3 was confirmed by a combination of single crystal X ray crystallography and one and two dimensional NMR techniques. The complex fe atures the tridentate, trianionic pincer ligand as part of the distorted squarepyramidal geometry around the tungsten center. Figure 21. Synthesis of [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) ( 3) The coordination sphere is completed by 2,6 diisopropylphenoxide and a neopentylidene moiety. The 2,6 diisopropylphenol formed during the reaction proved difficult to remove, so all NMR data is of solutions containing one equivalent of free phenol. The t butyl groups of the ligand resonate at 1.44 ppm in the 1H NMR spectrum, their equivalence indicative of overall Cs symmetry. The 2,6 diisopropylphenoxide is oriented such that the two isopropyl groups are diastereotopic. The methine protons of the isopr opyl groups resonate at 4.09 ppm and 2.39 ppm, and the methyl protons resonate at 1.42 ppm and 0.69 ppm. A singlet, attributed to the

PAGE 19

19 alkylidene proton, is observed at 5.54 ppm. The identity of this peak was confirmed by HMQC NMR. The crosspeak correlated with the signal at 5.54 ppm in the 1H NMR also correlated with the resonance at 272.2 ppm in the 13C{1H} spectrum, associated with the alkylidene carbon. Figure 22. Molecular structure of 3. Ellipsoids shown at 5 0% probability level; hydrogen atoms are omitted for clarity. Only one molecule of the asymmetric unit is shown. A single crystal was obtained by slow evaporation of a diethyl ether solution and analyzed t o confirm the structure of 3 (Figure 22). The molecule possesses C1 symmetry in the solid state. The t butyl of the neopentylidene moiety rests above an oxygen atom of the pincer ligand, with a Ct butylCalkylideneW O1 torsion angle of only 3.6(9). T he alkylidene moiety occupies the apical position, with the tBuOCO ligand and the 2,6diisopropylphenoxide occupying the basal positions. The positioning of the mirror plane in the CipsoW Calkylidene plane can be seen by comparing the two molecules of th e asymmetric unit (Figure 2 3). The two conformations must interconvert readily in solution, with free rotation around the W Calkylidene W O2 C t butyl C alkylidene O3 O1 C ipso

PAGE 20

20 bond. The 2,6 diisopropylphenoxide is positioned with one isopropyl group above the basal plane and one below the pla ne. This supports the nonequivalence of the isopropyl groups in the 1H NMR spectrum. The W Calkylidene distance of 1.917(8) and t he W CalkylideneC angle of 139.9(7) are not atypical.21,22,23,24 The ligand backbone is slightly twisted to relieve ster ic congestion, with the rings of the ligands arms rotated 22.74(10) with respect to each other, which is also not unusual for this ligand system.20 Figure 23. Two molecules of asymmetric unit of 3 demonstrating mirror symmetry There are two possible routes by which 1 could form. In one method, the first step in the reaction is addition of the OH group from 1 across the triple bond of the alkylidyne in 2. The reaction proceeds by alcoholysis of the remaining hydroxyl group of 1 by one 2,6 diisopropylphenoxide, and C H activation and alkyl elimination of neopentane to bind the backbone of the ligand to the tungsten center. This would leave one 2,6 diisopropylphenoxide bound the tungsten atom as seen in 3. Another possibility i s for alcoholysis and C H activation to bind all three donor sites of the ligand to the tungsten atom. The alkylidyne is left intact, but then one equivalent of the 2,6 diisopropylphenol formed adds across the tungsten carbon triple bond, leaving the alkylidene and phenoxide as observed.

PAGE 21

21 Synthesis and Characterization of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} (4 and 5) Addition of 2,6 diisopropylphenol across the alkylidyne bond is a possible route for formation of 3 ; thus, W(CH2C (CH3)3)3( C C (CH3)3) was next chosen as an alkylidyne source. The neopentane formed during the reaction should be unreactive and so the resulting complex should retain the alkylidyne moiety. The reaction between tBuOCO and W(CH2C (CH3)3)3( C (CH3)3) in benzene requ ired prolonged heating (72 hours) at extremely elevated temperatures (145C) to o btain appreciable conversion to {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4 and 5) (Figure 2 4). Single crystal X ray crystallography was used to elucidate the structures of 4 and 5, related structural isomers present in the product mixture. Both compounds consist of two distorted square pyramidal tungsten centers bridged by one tBuO CHO ligand. Figure 24. Synthesis of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4 and 5) Owing to the high temperature required for conversion, and since W(CH2C (CH3)3)3( C (CH3)3) is known to decompose above 140 C, an intractable mixtu re of products was obtained, and no single species could be isolated on a significant scale. Despite the complicated product mixture, the 1H NMR spectrum did indicate the presence of two closely related isomers. After 16 hours, two sets of four singlets, characteristic of the four inequivalent t butyl moieties in

PAGE 22

22 each compound, are observed between 0.5 ppm and 2.0 ppm, in a 70:30 ratio ( 4 : 5). Compound 4 is slowly converted to 5 over 96 hours until a 90:10 ratio is reached. This corresponds to a value of G145=1.8 kcal/mol for the equilibrium. The reaction was stopped after 12 hours to enable study of the kinetically favored isomer. X ray analysis of a single crystal obtained by a slow evaporation of an Et2O solution of th e product mixture revealed the dinuclear structure 4. The molecular structure of 5 was obtained from X ray analysis of a single crystal obtained by the same method after 72 hours of heating (Figure 2 5). Each compound contains two tungsten alkylidene mo ieties bridged by a tBuOCHO ligand. An additional tridentate tBuOCO ligand completes the distorted square pyramidal coordination sphere around each tungsten center. The differences between the two structures are subtle. In 4, the bridging ligand is rota ted such that the oxygen atoms of the bridging ligand are proximal to the center backbone ring of the ligand. In 5, the arrangement is reversed, with the oxygen atoms of the bridging ligand distal to the center ring of the ligand (Figure 26). The twis t angles of the tridentate tBuOCO ligands differ significantly between 4 and 5. The rings of the pendant arms are approximately coplanar in 4, while in 5, the pendant arms are twisted 42.43(13) with respect to one another. This twist relieves steric con gestion around the tungsten center and is likely the cause for the thermodynamic preference of 5 over 4 The W Calkylidene bond lengths and the W CalkylideneC bond angles in 4 are 1.900(6) 1.876(6) 143.4(5), and 151.3(7) respectively, and the cor responding values for 5 are 1.887(7) 1.885(6) 143.5(5), and 145.7(6) respectively. The variation in W Calkylidene bond lengths and the W CalkylideneC bond angles between the two alkylidene moieties in each compound as well as the variation in W Calkylidene bond lengths and the W CalkylideneC bond angles between 4 and 5 is not chemically significant.

PAGE 23

23 Figure 25. Molecular structure of 4 (left) and 5 (right). Ellipsoids are shown at 50% probability level; hydrogen atoms are omitted for clarity. C alkylidene W W C alkylidene C alkylidene W W C alkylidene

PAGE 24

24 Figure 26. Molecular structure of 4 (left) and 5 (right) showing orientation of bridging ligand The related reaction involving W(CH2TMS)3( trial with slightly impure W(CH2TMS)3( NMR tube after approximately 48 h ours of heating. Single crystal X ray analysis of one of these crystals revealed the polymeric structure [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6). The molecular structure of 6 consists of a bidentate tBuOCHO ligand and two molecules of 1,4 dioxane, creating a highly di storted tetrahedral geometry around a m agnesium center (Figure 27). The two oxygen atoms of the tBuOCHO ligand and one 1,4dioxane oxygen lie nearly in the same plane, with an average deviation of only 0.2034(5) from the best fit plane defined by those three oxygen atoms and the magnesium atom. The remaining 1,4dioxane oxygen is nearly perpendicular to that plane, with an average bond Oin -planeMg Oout -of plane angle of 93.33(16). The chain extends along the crystallographic a axis.

PAGE 25

25 Magnesium chlori de is a byproduct of the synthesis of W(CH2TMS)3( dioxane is used to aid in its removal. During the reactions in which 6 is formed, liberation of free SiMe4 is observed in the 1H NMR spectrum. It can be inferred a reaction of excess Grignar d reagent from the synthesis of W(CH2TMS)3( with 1 results in deprotonation of the phenolic oxygen atoms, followed by the binding of 1,4dioxane to the magnesium atoms The exact mechanism of formation of 6 was not studied further. Further reactions were attempted with purified W(CH2TMS)3( 1H NMR spectrum indicated complicated product mixtures, similar to the mixture seen during the formation of 4 and 5. No further study was attempted of this reaction.

PAGE 26

26 Figure 27. Polymeric structure of 6. Ellipsoids are shown at 5 0% probability level; hydrogen atoms and benzene molecule omitted for clarity.

PAGE 27

27 CHAPTER 3 PROGRESS TOWARDS COM PLEXES WITH M M MULTIPLE BONDS SUPPORTED BY A TRIANIONIC OCO3 PINCER LIGAND Since direct reaction of 1 with alkylidyne containing complexes did not provide the desired result, a new method was sought. Alkylidynes can be formed by metathesis reactions of W W containing c ompounds with alkynes, so an attempt was made to synthesize a compound containing 1 and such a W W unit. (NMe2)3W W(NMe2)3 was chosen, as it is easily prepared on an appreciable scale.25 Treatment of (NMe2)3W W(NMe2)3 with two equivalents of 1 in hot benzene for two hours yields a dark red solution with an 1H NMR which spectrum indicates complete conversion to 7 (Figure 31). Prolonged heating at 85 C results in the formation of a green solution and precipitation of 8 as red crystals in near ly quantitative yield. Since 8 had no appreciable solubility in common NMR solvents, analysis was limited to single crystal X ray crystallography and combustion analysis. F igure 31. Synthesis of [tBuOCHO](NMe2)W 2)[tBuOCHO] ( 7) and [tBuOCHO]W ( NMe2)2( O)W[tBuOCHO] ( 8)

PAGE 28

28 1H NMR was used to elucidate the structure of 7. The spectrum shows no paramagnetic peak broadening, indicating the tungsten tungsten triple bond is intact. Two singlets at 4.09 ppm and 2.34 ppm were each assigned to two different methyl group environments for the dimethyl amides. The t butyl resona nce was also split into two peaks at 1.95 ppm and 1.62 ppm. The inequivalence of these peaks indicates a staggered arrangement of the ligands bound to each tungsten center with respect to the tungsten tungsten triple bond (Figure 32). The offset of the ligands creates two different chemical environments for the amide methyl groups as well as the ligand t butyl groups. Figure 32. Newman projection of 7 illustrating inequivalence of t ert butyls and amides The molecular structure of 8 consists of two tungsten atoms bridged by two dimethylamides and an oxygen atom (Figure 33). The geometry around each tungsten center is distorted square pyramidal, with a bidentate tBuOCHO moiety and the bridging amides occupying the basal positions, a nd the O atom occupying the apical position. The average W ( O) bond distance is 1.944(5) similar to other reported bridging oxo compounds.26 The 2.49726(19) distance between tungsten atoms is indicative of a double bond between the tungsten cent ers.27 The two possible sources of the oxygen atom are molecular oxygen and water. Both sources could oxidize one tungsten tungsten bond, leaving the double bond observed in 8 and

PAGE 29

29 Figure 33. Molecular structure of 8. Ellipsoids are shown at 5 0% probability level; benzene molecules and hydrogen atoms omitted for clarity. generating a +4 oxidation state in the metals. A bridging water molecule is a possibility and could not be ruled out by X ray crystallography. Examples of oxidation of metal metal bonds by molecular oxygen appear in the literature.28 Several experiments were performed to determine the source of the oxygen atom. To eliminate molecular oxygen as the oxidant, the reaction m ixture was degassed by the freezepum pthaw method. After 72 hours, the same green solution and red crystalline precipitate resulted. The reaction was then performed in benzene from several different sources to eliminate W1 N1 O5 W2 O3 O4 N2 O2 O1

PAGE 30

30 the possibility of solvent contam ination. Each reaction resulted in the same reaction product. These experiments suggest molecular oxygen is not responsible for the oxidation. To elucidate the role of water, water and toluene (as a reference) were added to C6D6 and the solution degass ed. Combination of the two starting reagents in wet benzene yielded the same oxo bridged complex after ten minutes. If water is not intentionally added, an additional source of water is that bound to the surface of the glass used for the reaction. The d rastic increase in rate when water was added could be attributed to the relative difficulty of removing surfacebound water versus the free water present in the reaction. If the oxygen source is water and a bridging water molecule is not present, hydrogen gas must be a byproduct. There is a small peak in the 1H NMR spectrum at 4.31 ppm, which could be attributed to a small amount of dissolved hydrogen gas. If the reaction vessel is thoroughly washed with D2O and dried prior to the reaction, the p eak at 4 .31 ppm is not visible, which supports this hypothesis. The concentration of D2 was too low to gain any useful information from 2H NMR spectroscopy. If the NMR tube is flame dried under vacuum prior to the reaction, a black precipitate forms within 24 ho urs. This suggests the compound may decompose upon extended heating if water is not present for reaction. Unfortunately, all attempts to deliberately add hydrogen to the system to confirm the identity of the peak at 4.31 ppm resulted in ligand hydrolysis Since all three sources of the oxygen atom have apparently been ruled out, work is continuing to attempt to determine its source.

PAGE 31

31 CHAPTER 4 SYNTHESIS OF DINUCLE AR ZIRCONIUM AND HAF NIUM COMPLEXES OF A NEW ANTHRACENE DIAMIDO LIGAND To explore the chemistry of other pincer ligands, a new NCN3 pincer ligand was employed. Anthracene diamido ligand 9 was previous ly synthesized by M. K. Veige. Treatment of AnthH3 ( 9) with a group IV metal amide of the form M(NMe2)4 (M= Zr ( 10) and Hf ( 11)) in benzene results in the formation of the dinuclear complexes [AnthH] [M(NMe2)3(NHMe2)]2 (M = Zr, 10 and M = Hf, 11) (Figure 4 1). The reaction is complete within ten min utes at room temperature. The structures of 10 and 11 were conf irmed by a combination of 1H and 13C NMR spectroscopy, singlecrystal X ray crystallography, and combustion analysis. Figure 41. Synthesis of [AnthH][M(NMe2)3(NHMe2)]2 ( 10 and 11) In each complex, each amide donor of the AnthH ligand is bound to a meta l center, resulting in a dinuclear complex. The coordination geometry around each metal atom is trigonal bipyramidal in nature, with one molecule of dimethylamine occupying the site trans to the ligand amide, while three dimethylamides occupy the three equatorial sites around the metal atom. 1H NMR spectroscopy of these complexes indicates the dimethylamide and dimethylamine ligands do not exchange positions. For example, in the 1H NMR s pectrum of 11, the methyl protons of

PAGE 32

32 the three dimethylamides appear as a sharp singlet at 2.57 ppm and the methyl protons of the dimethylamine appear as a doublet at 1.45 ppm. Figure 42. Molecular structure of 11. Ellipsoids are shown at 50% probability level; hydrogen atoms are omitted for clarity. A single crystal of 11 was obtained by pentane diffusion into a solution of 11 in diethyl ether and analyzed by X ray diffractio n studies (Figure 42). The structure exhibits trigonal bipyramidal geometry around each metal atom. The average Hf N bond length for the dimethylamides and ligand amides is 2.041(17) and 2.187(10) respectively, with the Hf NHMe2 bond length being l onger as expected, at 2.440(11) The bond angles around the hafnium atom deviate only slightly from the ideal trigonal bipyramidal values, with the average N Hf N angle for the equatorial dimethylamides being 119.25(7), and the average N Hf N angle bet ween the AnthH ligand amide and the dimethylamine being 178.0(4). The structure of 11 Hf1 N3 N2 N5 N4 N1 N6 N9 N8 N10 Hf2 N7

PAGE 33

33 illustrates its C2 symmetry (Figure 4 3). By viewing along the C2 axis, the ligand arms are clearly shown as lying roughly in the plane of the anthracene backbone. Figure 43. Molecular structure of 11 viewed along C2 axis

PAGE 34

34 CHAPTER 5 CONCLUSIONS This report has established the synthesis new metal complexes supported by trianionic pincer ligands. All attempts to form a four coordinate alkylidyne complex supported by a tBuOCO ligand by direct reaction with a preformed alkylidyne have not been successful, resulting in five coordinate alkylidene complexes ( 35) This suggests that while an alkylidyne may be forme d during the progress of the reaction, it is too unsaturated to be stable. Parallel research by another group member has revealed the addition of the ligand backbone C H bond across the alkylidyne is a possible reaction route. A method to remove this proton from the ligand prior to the reaction has not been determined and therefore may rule out the direct reaction with a preformed alkylidyne as a feasible reaction route. While attempting to form a complex containing a W dging oxo functionality was obtained ( 8) The source of this oxygen atom has not been conclusively determined to date, but evidence currently points to the oxidative addition of water as the likely source. This mechanism would produce hydrogen gas as a byproduct. Research is ongoing to determine the exact mechanism of formation of this complex. When using NCN pincer ligands, a dinuclear complex was obtained ( 1011). The fact a dinuclear complex was obtained is not surprising. Other NCN pincer ligands that have been studied previously by the Veige group have often resulted in dinuclear or dimeric complexes.29 The differences between an N H and an O H bond were a major reason for switching to an oxygen based pincer ligand.

PAGE 35

35 CHAPTER 6 EXPERIMENTAL Gener al Considerations Unless specified otherwise, all manipulations were performed under an inert atmosphere using standard Schlenk or glovebox techniques. Glassware was oven dried before use. Pentane, toluene, diethyl ether (Et2O), and tetrahydrofuran (THF ) were dried using a Glass Contour drying column. Benzene d6 (Cambridge Isotopes) and benzene were dried over sodium benzophenone ketyl and distilled or vacuum transferred and stored over 4 molecular sieves. NMR spectra were obtained on Varian Mercury B road Band 300 MHz or Varian Mercury 300 1H and 13C{1H} NMR spectra, the residual protio solvent peak was referenced as an internal reference. Elemental analyses were performed by Complete A nalysis Laboratory Inc., Parsippany, New Jersey. Synthesis of [tBuOCO]W(=CH C (CH3)3)(O 2,6 C6H3-iPr2) (3) In a 50 mL Schlenk tube, W( C C (CH3)3)(CH2 C(CH3)3)(O 2,6 C6H3-iPr2)2 ( 2 ) (91 mg, 0.14 mmol) was added to a solution of 1 (50 mg, 0.14 mmol) in benzene (2 mL). The mixture was heated at 85 C for two hours. The solvent was removed in vacuo from the resulting dark red solution to yield 3 as a dark red oil (134 mg, 98 %) containing one equivalent of 2,6diisopropylphenol. X ray quality crystals were obtained from the slow evaporation of an Et2O solution. 1H NMR (300 MHz, C6D6 7.99 (d, J=7.9 Hz, 2H, Ar -H), 7.80 (dd, 3J=7.9 Hz, 4J=1.5 Hz, 2H, Ar -H), 7.38 (t, J=7.9 Hz, 1H, Ar -H), 7.33 (dd, 3J=7.8 Hz, 4J=1.5 Hz, 2H, A r -H), 7.03 (d, J=1.1 Hz, 1H, phenol Ar -H), 7.01 (s, 1H, phenol Ar -H), 6.98 (s, 1H, Ar -H), 6.96 (s,1H, Ar -H), 6.91 (m, 1H, phenol Ar -H), 6.89 (s, 1H, Ar -H), 6.88 (d, J=3.8 Hz, 1H, Ar -H), 6.87 (s, 1H, Ar -H), 5.54 (s, JH W=8.7 Hz, 1H, W=CHC(CH3)3), 4.09 (sept, J=6.8 Hz, 1H, CH(CH3)2), 2.93 (sept, J=6.9 Hz, 2H, phenol CH(CH3)2) 2.39 (sept, J=6.7 Hz, 1H, CH(CH3)2), 1.44 (s, 18H,

PAGE 36

36 Ar C(CH3)3), 1.42 (d, J=6.9Hz, 6H, CH(CH3)2), 0.84 (s, 9H, W=CHC(CH3)3), 0.69 (d, J=6.7 Hz, 6H, CH(CH3)2). 13C NMR (75.3 6 Hz, C6D6CHC(CH3)3), 182.7 (s, C aromatic), 160.3 (s, C aromatic), 158.5 (s, C aromatic), 150.8 (s, phenol C aromatic), 140.9 (s, C aromatic), 138.2 (s, C aromatic), 137.2 (s, C aromatic), 137.1 (s, C aromatic), 134.2 (s, phenol C a romatic), 133.0 (s, C aromatic), 130.0 (s, C aromatic), 126.7 (s, C aromatic), 126.4 (s, C aromatic), 124.4 (s, C aromatic), 124.2 (s, phenol C aromatic), 123.9 (s, C aromatic), 123.6 (s, C aromatic), 122.3 (s, C aromatic), 121.5 (s, phenol C aromatic), 47 .9 (s, W=CHC(CH3)3), 35.6 (s, Ar -C(CH3)3), 33.3 (s, CH(CH3)2), 32.0 (s, W=CHC(CH3)3), 30.9 (s, Ar C(CH3)3), 27.7 (s, phenol CH(CH3)2), 27.5 (s, CH(CH3)2), 23.9 (s, CH(CH3)2), 23.6 (s, CH(CH3)2), 23.3 (s, phenol Ar CH(CH3)2). Anal. Calcd for C43H54O3W: C, 64.34; H, 6.78. Found: C, 64.42; H, 6.94. Synthesis of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} (4 and 5) In a 50 mL Schlenk tube, W(CH2C(CH3)3)3( C (CH3)3) (200 mg, 0.534 mmol) was added to a solution of 1 (151 mg, 0.356 mmol) in benzene (2 mL). The solution was degassed. The reaction mixture was heated to 145 C for 72 hours. Removal of solvent yielded a dark red oil. Crystalline material for X ray analysis was obtained by slow evaporation of Et2O. Sy nthesis of [tBuOCHO](NMe2)W 2)[tBuOCHO] (7) In a J. Young NMR tube, (NMe2)3W 2)3 (34 mg, 0.055 mmol) and 1 (40 mg, 0.11 mmol) were combined in benzene (0.5 mL). The solution was warmed to 85 C for 1.5 hours. The dark red solution was allowed to cool to room temperature and the solvent was removed in vacuo to yield 7 as a dark red solid (64 mg, 97 %). 1H NMR (300 MHz, C6D6 8.81 (s, 1H, Ar H ), 7.69 (s, 1H, Ar H ), 7.38 7.29 (m, 12H, Ar H ), 7.23 (s, 2H, Ar H ), 7.097.06 (m, 1H, Ar H ), 6.94 6.88 (m, 3H, Ar H ), 4.09 (s, 6H, N ( C H3)2), 2.34 (s, 6H, N ( C H3)2), 1.95 (s, 18H, Ar C(CH3)3), 1.62 (s, 18H, Ar C(CH3)3).

PAGE 37

37 Synthesis of [tBuOCO]W( NMe2)2( O)W[tBuOCO] (8) In a J. Young NMR tube, (NMe2)3W 2)3 (34 mg, 0.055 mmol) and 1 (40 mg, 0.11 mmol) were combined in benzene (0.5 mL). The solution was warmed to 85 C for 72 hours. The dark green solution was decanted from a red, crystalline precipitate. The resulting solid was dried in vacuo to yield 7 as a green powder (50 mg, 76 %). Solid 5 had no appreciable solubility in C6D6, CDCl3, or THF d8, making NMR study impossible. Anal. Calcd for C56H68N2O5W2: C, 55.27; H, 5.63; N, 2.30. Found: C, 55.49; H, 5.84; N, 2.44. Synthesis of [AnthH][Zr(NMe2)3(NHMe2)]2 (10) Zr(NMe2)4 (40. 4 mg, 0.151 mmol) was added to a solution of AnthH3 ( 9) (50.0 mg, 0.076 mmol) in benzene (1 mL), and the resulting mixture was stirred for ten minutes. Stirring was then ceased and the reaction mixture was allowed to stand at room temperature for one hour during which time a precipitate formed. The solvent was decanted and the product dried in vacuo to yield 10 as a pale yellow solid (80.8 mg, 89 %). 1H NMR (300 MHz, C6D6 9.11 (s, 1H, Ar H ), 8.21 (s, 1H, Ar H ), 7.66 (d, J =8.2 Hz, 2 H, Ar H ), 7.53 (d, J =6.9 Hz, 2 H, Ar H ), 7.30 (s, 4 H, Ar H ), 7.21 (m, 2 H, Ar H ), 7.07 (s, 2 H, Ar H ), 5.46 (s, 4 H, Ar C H2N), 2.66 (s, 32 H, Zr N(C H3)2), 1.51 (d, J =6.3 Hz, 12 H, Zr NH(C H3)2), 0.78 (sept, J =6.4 Hz, 2 H, Zr N H (CH3)2). 13C NMR (75.36 Hz, C6D6 (ppm): 159.5 (s, C aromatic), 136.6 (s, C aromatic), 132.8 (s, C aromatic), 132.3 (s, C aromatic), 131.8 (s, C aromatic), 130.6 (s, C aromatic), 129.4 (s, C aromatic), 127.8 (s, C aromatic), 125.8 (s, C aromatic), 125.7 (s, C aromatic), 124.1 (s, C aromat ic), 116.4 (s, C aromatic), 114.6 (s, C aromatic), 106.7 (s, Ar C F3), 52.4 (s, Ar C H2N), 42.2 (s, Zr N( C H3)2), 39.1 (s, Zr NH( C H3)2). Synthesis of [AnthH][Hf(NMe2)3(NHMe2)]2 (11) Hf(NMe2)4 (53.6 mg, 0.151 mmol) was added to a solution of 9 (50.0 mg, 0.076 mmol) in benzene (1 mL), and the resulting mixture was stirred for ten minutes. Stirring was then

PAGE 38

38 stopped and the reaction mixture was allowed to stand at room temperature for one hour, during which time a precipitate formed. The solvent was decanted and the solid product dried in vacuo to yield 11 as a pale yellow solid (90.9 mg, 87 %). 1H NMR (300 MHz, C6D6 9.00 (s, 1H, Ar H ), 8.08 (s, 1H, Ar H ), 7.53 (d, J =8.8 Hz, 2H, Ar H ), 7.45 (d, J =6.6 Hz, 2H, Ar H ), 7.26 (s, 4H, Ar H ), 7.08 (m, 2H, Ar H ), 7.04 (s, 1H, Ar H ), 6.96 (s, 1H, Ar H ), 5.42 (s, 4, Ar C H2N), 2.57 (s, 32 H, Hf N(C H3)2), 1.45 (d, J =6.3 Hz, 12 H, Hf NH(C H3)2), 0.79 (sept, J =6.3 Hz, 2 H, Hf N H (CH3)2). 13C NMR (75.36 Hz, C6D6 159.5 (s, C aromatic), 136.7 (s C aromatic), 133.1 (s, C aromatic), 132.5 (s, C aromatic), 132.1 (s, C aromatic), 130.9 (s, C aromatic), 129.8 (s, C aromatic), 128.2 (s, C aromatic), 126.0 (s, C aromatic), 124.5 (s, C aromatic), 116.6 (s, C aromatic), 115.3 (s, C aromatic), 107.8 (s, A r C F3), 52.4 (s, Ar C H2N), 42.3 (s, Hf N( C H3)2), 39.3 (s, Hf NH( C H3)2).

PAGE 39

39 APPENDIX A 1H AND 13C{1H} NMR SPECTRA

PAGE 40

40 Figure A 1. 1H NMR spectrum of [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) (3 ) in C6D6

PAGE 41

41 Figure A 2. 13C {1H} NMR spectrum of [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) ( 3 ) in C6D6

PAGE 42

42 Figure A 3. 1H NMR spectrum of [tBuOCHO](NMe2)W 2)[tBuOCHO] ( 7) in C6D6

PAGE 43

43 Figure A 4. 1H NMR spectrum of [AnthH][Zr(NMe2)3(NHMe2)]2 ( 10 ) in C6D6

PAGE 44

44 Figure A 5. 13C {1H} NMR spectrum of [AnthH][Zr(NMe2)3(NHMe2)]2 ( 10 ) in C6D6

PAGE 45

45 Figure A 6. 1H NMR spectrum of [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ) in C6D6

PAGE 46

46 Figure A 7. 13C{1H} NMR spectrum of [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) in C6D6

PAGE 47

47 APPENDIX B X RAY STRUCTURAL DATA AND TABLES

PAGE 48

48 Figure B 1. Molecular structure of [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) (3 ). Ellipsoids shown at the 5 0% probability level; hydrogens are omitted for clarity. C1 C6 C5 C4 C3 C1 7 C1 8 C1 9 C 22 C21 C20 O2 W1 O1 C25 C24 C23 C26 C 7 C1 2 C1 1 C1 0 C 9 C 8 C1 5 C1 3 C1 6 C1 4 C27 C 28 C 31 C 30 C 29 O3 C40 C38 C39 C42 C41 C 32 C43 C 36 C 35 C34 C33 C37

PAGE 49

49 Figure B 2. Packing diagram for 3

PAGE 50

50 X ray E xperimental for [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) (3) Data were collected at 173 K on a Siemen s SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was scan method ( 0.3frame width). The first 50 frames were re measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure was solved by the author using Direct Methods in SHELXTL6, and refined using full matrix least squares. The nonH atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. A total of 847 parameters were refined in the final cycle of refinement using 10217 1 and wR2 of 5.00% and 11.27%, respectively. Refinement was done using F2.

PAGE 51

51 Table B 1. Crystal data, structure solution, and refinement for [tBuOCO]W(=CH C (CH3)3)(O 2,6-iPr2C6H3) ( 3 ) identification code pelo5 empirical formula C43H54O3W formula weight 802.71 T (K) 173(2) ) 0.71073 crystal system Monoclinic space group C(2)/c a () 39.001(2) b () 12.5405(8) c () 31.4372(19) (deg) 90 (deg) 90.2150(10) (deg) 90 V (3) 15375.5(16) Z 8 calcd (g mm3) 1.387 crystal size (mm) 0.12 x 0.04 x 0.04 abs coeff (mm1) 3.041 F (000) 6560 range for data collection 1.04 to 28.03 limiting indicies 34 h 51, 16 k 16, 41 l 39 no. of reflns collcd 53157 no. of ind reflns 18457 [ R (int) = 0.0842] completeness to = 28.03 99.1 % absorption corr Integration refinement method Full matrix least squares on F2 data / restraints / parameters 18457 / 0 / 847 R 1, wR R1 = 0.0500, wR2 = 0.1127 R 1, wR 2 (all data) R1 = 0.1139, wR2 = 0.1343 GOF on F2 1.003 largest diff. peak and hole (e.3) 1.022 and 0.886 o c o o 2 F c 2 ) 2 ] / o 2 ) 2 ]] 1/2 o 2 F c 2 ) 2 ] / (n p)] 1/2 2 (F o 2 )+(m*p)2+n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 52

52 Table B 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) (3 ). U (eq) is defined as one third of the trace of the orthogonalized Uij tensor. Atom X Y Z U(eq) W1 1336(1) 376(1) 2115(1) 28(1) W2 1408(1) 4970(1) 4355(1) 27(1) O1 1148(1) 1694(4) 2209(2) 33(1) O2 1501(1) 1010(4) 2202(2) 31(1) O3 885(1) 271(4) 2046(2) 36(1) O4 1533(1) 6435(4) 4253(2) 31(1) O5 1260(1) 3607(4) 4262(2) 32(1) O6 946(1) 5498(4) 4435(2) 35(1) C1 1680(2) 812(6) 2627(2) 32(2) C2 1616(2) 1738(6) 2882(3) 32(2) C3 1772(2) 1818(7) 3286(3) 42(2) C4 2002(2) 1066(7) 3429(3) 46(2) C5 2091(2) 228(7) 3167(3) 42(2) C6 1934(2) 88(6) 2772(2) 33(2) C7 1392(2) 2663(7) 2767(3) 37(2) C8 1145(2) 2620(6) 2444(3) 32(2) C9 909(2) 3407(7) 2349(3) 42(2) C10 942(2) 4350(7) 2580(3) 51(3) C11 1203(3) 4460(7) 2881(3) 57(3) C12 1411(3) 3644(7) 2979(3) 50(2) C13 619(2) 3260(7) 2028(3) 49(3) C14 389(3) 4242(9) 2027(4) 93(5) C15 751(3) 3111(8) 1580(3) 61(3) C16 402(2) 2319(9) 2161(3) 70(3) C17 2047(2) 849(7) 2523(3) 40(2) C18 1821(2) 1407(6) 2252(3) 34(2) C19 1917(2) 2381(7) 2048(3) 37(2) C20 2255(2) 2730(7) 2108(3) 44(2) C21 2492(2) 2162(8) 2363(3) 50(3) C22 2389(2) 1266(8) 2564(3) 47(2) C23 1662(2) 3025(7) 1779(3) 45(2) C24 1829(3) 4038(7) 1591(3) 66(3) C25 1524(2) 2372(7) 1393(3) 53(3) C26 1363(2) 3371(7) 2049(3) 55(3) C27 1627(2) 648(7) 1638(3) 36(2) C28 1743(2) 1561(7) 1364(3) 41(2)

PAGE 53

53 Table B 2. Continued Atom X Y Z U(eq) C29 2100(3) 1359(8) 1212(4) 80(4) C30 1501(3) 1601(8) 972(3) 64(3) C31 1741(2) 2621(7) 1599(3) 52(3) C32 685(2) 1045(6) 1905(3) 33(2) C33 573(2) 1086(6) 1476(3) 35(2) C34 363(2) 1940(7) 1346(3) 45(2) C35 275(2) 2727(7) 1635(3) 45(2) C36 374(2) 2673(6) 2053(3) 39(2) C37 580(2) 1824(7) 2204(3) 35(2) C38 661(2) 207(7) 1164(3) 41(2) C39 347(3) 452(9) 1043(4) 83(4) C40 848(3) 614(8) 769(3) 69(3) C41 668(2) 1688(6) 2670(3) 34(2) C42 442(2) 838(7) 2880(3) 45(2) C43 665(2) 2729(7) 2929(3) 51(3) C44 1761(2) 4615(6) 3861(2) 30(2) C45 2021(2) 5365(6) 3760(2) 30(2) C46 2219(2) 5272(7) 3390(3) 41(2) C47 2161(2) 4419(7) 3110(3) 45(2) C48 1929(2) 3644(7) 3211(3) 40(2) C49 1734(2) 3686(6) 3591(3) 32(2) C50 2109(2) 6287(6) 4039(2) 29(2) C51 1861(2) 6831(6) 4272(2) 30(2) C52 1925(2) 7756(6) 4515(2) 30(2) C53 2264(2) 8049(7) 4541(3) 40(2) C54 2526(2) 7521(7) 4319(3) 40(2) C55 2450(2) 6653(7) 4076(3) 38(2) C56 1650(2) 8382(7) 4742(3) 38(2) C57 1466(2) 7711(7) 5081(3) 44(2) C58 1381(2) 8766(7) 4413(3) 47(2) C59 1782(2) 9368(7) 4956(3) 57(3) C60 1505(2) 2763(6) 3669(2) 33(2) C61 1264(2) 2740(6) 4001(3) 28(2) C62 1039(2) 1900(6) 4083(3) 35(2) C63 1067(2) 1005(7) 3821(3) 42(2) C64 1304(2) 981(6) 3508(3) 39(2) C65 1525(2) 1826(7) 3429(3) 40(2) C66 751(2) 1977(7) 4418(3) 44(2)

PAGE 54

54 Table B 2. Continued Atom X Y Z U(eq) C67 518(2) 979(8) 4410(4) 70(3) C68 519(2) 2930(7) 4317(3) 56(3) C69 901(2) 2093(7) 4867(3) 48(2) C70 1729(2) 4827(6) 4805(2) 33(2) C71 1956(2) 4021(6) 5021(3) 37(2) C72 1942(3) 4181(8) 5494(3) 76(4) C73 2323(2) 4220(8) 4860(4) 66(3) C74 1847(2) 2870(6) 4903(3) 53(3) C75 729(2) 6254(6) 4575(3) 38(2) C76 607(2) 7021(7) 4292(3) 40(2) C77 391(2) 7817(8) 4446(3) 54(3) C78 296(3) 7808(9) 4863(4) 65(3) C79 402(2) 7019(8) 5138(3) 54(3) C80 620(2) 6214(7) 4999(3) 40(2) C81 695(2) 6940(8) 3828(3) 53(3) C82 653(3) 7952(9) 3573(3) 77(4) C83 463(3) 6054(10) 3635(3) 83(4) C84 719(2) 5313(8) 5295(3) 50(2) C85 920(3) 5694(9) 5675(3) 80(4) C86 410(3) 4683(9) 5446(4) 80(4)

PAGE 55

55 Table B 3. Bond lengths (in ) for [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) (3 ) Bond Length Bond Length W1 O1 1.832(5) C 5C6 1.395(10) W1 O2 1.872(5) C 6C17 1.480(12) W1 C27 1.917(8) C7 C 8 1.399(10) W1 O3 1.946(5) C7 C12 1.401(11) W1 C1 2.160(8) C8 C9 1.381(11) W2 O5 1.827(5) C9 C10 1.393(12) W2 C70 1.895(8) C9 C13 1.525(12) W2 O4 1.928(5) C10 C11 1.395(12) W2 O6 1.938(5) C11 C12 1.340(12) W2 C44 2.124(8) C13 C16 1.511(13) O1 C8 1.376(9) C13 C15 1.515(13) O2 C18 1.356(9) C13 C14 1.522(13) O3 C32 1.322(9) C17 C18 1.408(11) O4 C51 1.373(9) C17 C22 1.438(11) O5 C61 1.363(9) C18 C19 1.429(11) O6 C75 1.345(9) C19 C20 1.403(11) C1 C6 1.419(11) C19 C 23 1.533(12) C1 C2 1.434(11) C20 C21 1.411(12) C2 C3 1.412(10) C21 C 22 1.351(12) C2 C7 1.495(11) C23 C26 1.509(12) C3 C4 1.375(12) C23 C24 1.546(12) C4 C5 1.382(12) C23 C25 1.558(12)

PAGE 56

56 Table B 4. Bond angles (in deg) for [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) ( 3 ) Bond Angle Bond Angle O1 W1 O2 162.0(2) O6 W2 C44 140.5(2) O1 W1 C27 101.7(3) C8 O1 W1 148.5(5) O2 W1 C27 94.3(3) C18 O2 W1 132.3(5) O1 W1 O3 91.9(2) C32 O3 W1 151.0(5) O2 W1 O3 86.5(2) C51 O4 W2 125.0(4) C27 W1 O3 121.6(3) C61 O5 W2 146.9(5) O1 W1 C1 84.2(3) C75 O6 W2 150.3(5) O2 W1 C1 85.2(3) C6 C1 C2 117.5(7) C27 W1 C1 99.7(3) C6 C1 W1 120.6(6) O3 W1 C1 138.3(3) C2 C1 W1 120.8(5) O5 W2 C70 103.7(3) C3 C2 C1 119.1(7) O5 W2 O4 161.0(2) C3 C2 C7 114.4(7) C70 W2 O4 92.7(3) C1 C2 C7 126.6(7) O5 W2 O6 92.7(2) C4 C3 C2 121.7(8) C70 W2 O6 123.2(3) C3 C4 C5 119.5(8) O4 W2 O6 86.2(2) C4 C5 C6 121.1(8) O5 W2 C44 83.8(3) C5 C6 C1 120.7(8) C70 W2 C44 95.6(3) C5 C6 C17 116.1(8) O4 W2 C44 85.1(3) C1 C6 C17 123.2(7) C8 C7 C12 114.4(8) O2 C18 C19 120.3(7) C8 C7 C2 123.0(7) C17 C18 C19 122.2(8) C12 C7 C2 122.6(8) C20 C19 C18 116.9(8) O1 C8 C9 119.7(7) C20 C19 C23 121.2(8) O1 C8 C7 114.5(7) C18 C19 C23 121.9(7) C9 C8 C7 125.8(8) C19 C20 C21 122.0(8) C8 C9 C10 115.8(8) C22 C21 C20 119.4(9) C8 C9 C13 123.3(8) C21 C22 C17 122.5(9) C10 C9 C13 120.8(8) C26 C23 C19 109.9(8) C9 C10 C11 120.1(9) C26 C23 C24 107.8(7) C12 C11 C10 121.3(9) C19 C23 C24 111.8(8) C11 C12 C7 122.1(9) C26 C23 C25 108.9(8) C16 C13 C15 110.7(8) C19 C23 C25 112.0(7) C16 C13 C14 107.7(9) C24 C23 C25 106.2(8) C15 C13 C14 107.5(9) C28 C27 W1 139.9(7) C16 C13 C9 109.1(8) C29 C28 C27 109.7(7) C15 C13 C9 111.9(8) C29 C28 C31 108.1(8) C14 C13 C9 109.8(8) C27 C28 C31 112.7(8) C18 C17 C22 116.8(9) C29 C28 C30 108.6(9)

PAGE 57

57 Table B 4. Continued Bond Angle Bond Angle C18 C17 C6 121.9(8) C27 C28 C30 107.2(7) C22 C17 C6 121.2(8) C31 C28 C30 110.6(7) O2 C18 C17 117.5(8) O3 C32 C33 121.8(7) O3 C32 C37 117.1(7) C44 C45 C50 123.0(7) C33 C32 C37 121.1(7) C47 C46 C45 119.7(8) C34 C33 C32 118.8(8) C48 C47 C46 120.1(8) C34 C33 C38 120.0(8) C47 C48 C49 121.8(8) C32 C33 C38 121.2(7) C48 C49 C44 119.1(7) C35 C34 C33 119.8(8) C48 C49 C60 115.9(7) C36 C35 C34 121.6(8) C44 C49 C60 124.9(7) C35 C36 C37 121.1(8) C51 C50 C55 116.9(7) C36 C37 C32 117.5(8) C51 C50 C45 122.0(7) C36 C37 C41 122.5(8) C55 C50 C45 121.0(7) C32 C37 C41 119.9(7) O4 C51 C50 116.6(7) C33 C38 C39 111.9(7) O4 C51 C52 118.8(7) C33 C38 C40 113.0(8) C50 C51 C52 124.5(8) C39 C38 C40 111.1(8) C53 C52 C51 114.7(7) C37 C41 C42 111.4(6) C69 C66 C67 108.2(8) C37 C41 C43 114.5(7) C62 C66 C67 111.5(7) C42 C41 C43 110.9(7) C82 C81 C83 109.3(8) C45 C44 C49 116.8(7) C85 C84 C80 112.5(8) C45 C44 W2 119.3(5) C85 C84 C86 109.1(8) C49 C44 W2 123.6(6) C80 C84 C86 112.3(8) C46 C45 C44 121.8(7) C71 C70 W2 142.0(6) C46 C45 C50 115.2(7) C53 C52 C56 121.1(7) C59 C56 C58 105.9(7) C51 C52 C56 124.2(7) C52 C56 C58 109.0(7) C52 C53 C54 123.2(8) C57 C56 C58 108.4(7) C55 C54 C53 119.8(8) C65 C60 C61 115.0(8) C54 C55 C50 120.6(8) C65 C60 C49 122.0(8) C59 C56 C52 113.5(7) C61 C60 C49 122.9(7) C59 C56 C57 107.6(8) O5 C61 C62 118.8(7) C52 C56 C57 112.2(7) O5 C61 C60 116.1(7) C72 C71 C70 109.5(7) C62 C61 C60 125.1(7) C72 C71 C73 109.9(8) C61 C62 C63 116.5(8) C70 C71 C73 106.8(7) C61 C62 C66 122.6(7) C72 C71 C74 110.5(8) C63 C62 C66 120.8(8) C70 C71 C74 110.8(6)

PAGE 58

58 Table B 4. Continued Bond Angle C64 C63 C62 120.2(9) C63 C64 C65 122.5(8) C64 C65 C60 120.6(8) C68 C66 C69 109.9(8) C68 C66 C62 109.7(8) C69 C66 C62 111.0(7) C68 C66 C67 106.4(8) C78 C77 C76 119.7(9) C77 C78 C79 121.8(10) C78 C79 C80 120.4(10) C79 C80 C75 117.5(8) C79 C80 C84 120.1(9) C75 C80 C84 122.3(8) C76 C81 C82 115.7(9) C76 C81 C83 107.1(8) C73 C71 C74 109.2(8) O6 C75 C76 119.3(8) O6 C75 C80 118.7(8) C76 C75 C80 121.9(8) C75 C76 C77 118.5(9) C75 C76 C81 119.7(8) C77 C76 C81 121.8(8)

PAGE 59

59 Table B 5. Aniso tropic displacement parameters (2x 103) for [tBuOCO]W(=CH C (CH3)3)(O 2,6-iPr2C6H3) ( 3 ). The anisotropic displacement factor exponent takes the form: 2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. Atom U11 U22 U33 U23 U13 U12 W1 28(1) 34(1) 23(1) 0(1) 2(1) 3(1) W2 24(1) 35(1) 22(1) 3(1) 2(1) 3(1) O1 31(3) 35(3) 33(3) 3(3) 4(3) 6(2) O2 15(3) 48(3) 30(3) 4(3) 5(2) 0(2) O3 28(3) 37(3) 41(3) 2(3) 5(3) 2(2) O4 31(3) 33(3) 30(3) 3(2) 5(3) 2(2) O5 27(3) 41(3) 27(3) 5(3) 3(2) 5(2) O6 29(3) 47(3) 30(3) 5(3) 4(2) 10(3) C1 27(5) 40(5) 28(5) 6(4) 9(4) 5(4) C2 20(4) 45(5) 29(5) 6(4) 4(4) 3(4) C3 43(6) 50(6) 32(5) 3(4) 3(4) 6(4) C4 47(6) 66(7) 26(5) 4(5) 7(4) 26(5) C5 34(5) 63(6) 30(5) 10(4) 5(4) 17(4) C6 28(5) 44(5) 28(4) 3(4) 5(3) 19(4) C7 28(5) 49(5) 32(5) 7(4) 4(4) 17(4) C8 22(5) 38(5) 35(5) 5(4) 10(4) 4(4) C9 46(6) 44(5) 37(5) 2(4) 6(4) 1(4) C10 49(6) 48(6) 57(7) 7(5) 5(5) 0(5) C11 65(7) 42(6) 65(7) 22(5) 7(6) 18(5) C12 57(7) 47(6) 45(6) 6(5) 0(5) 5(5) C13 41(6) 44(6) 60(7) 6(5) 12(5) 6(5) C14 58(8) 85(9) 137(12) 50(8) 30(8) 26(7) C15 65(8) 65(7) 52(7) 7(5) 27(6) 4(5) C16 28(6) 108(9) 74(8) 19(7) 7(6) 3(6) C17 42(6) 45(5) 33(5) 19(4) 11(4) 4(4) C18 33(5) 43(5) 27(5) 9(4) 2(4) 10(4) C19 35(5) 50(5) 25(5) 2(4) 7(4) 6(4) C20 31(5) 56(6) 47(6) 15(5) 18(4) 30(5) C21 29(5) 72(7) 48(6) 17(5) 6(5) 9(5) C22 19(5) 76(7) 46(6) 23(5) 2(4) 8(4) C23 44(6) 37(5) 55(7) 0(5) 18(5) 7(4) C24 81(8) 43(6) 74(8) 5(5) 3(6) 12(5) C25 65(7) 41(6) 53(7) 6(5) 10(5) 8(5) C26 57(7) 37(5) 72(8) 4(5) 19(6) 6(5) C27 23(5) 49(5) 37(5) 1(4) 14(4) 18(4) C28 40(6) 41(5) 42(6) 11(4) 5(4) 3(4)

PAGE 60

60 Table B 5. Continued Atom U11 U22 U33 U23 U13 U12 C29 64(8) 70(8) 107(10) 39(7) 44(7) 15(6) C30 96(9) 63(7) 34(6) 20(5) 5(6) 1(6) C31 64(7) 46(6) 46(6) 10(5) 9(5) 16(5) C32 21(5) 34(5) 44(5) 2(4) 11(4) 5(4) C33 15(4) 47(5) 41(5) 4(4) 8(4) 8(4) C34 26(5) 63(6) 46(6) 14(5) 4(4) 16(4) C35 45(6) 37(5) 52(6) 17(5) 10(5) 10(4) C36 37(6) 35(5) 46(6) 3(4) 6(4) 7(4) C37 10(4) 54(6) 42(5) 14(4) 0(4) 3(4) C38 20(4) 63(6) 39(5) 2(4) 15(4) 4(4) C39 94(10) 69(8) 85(9) 12(7) 6(7) 16(7) C40 82(8) 75(8) 50(7) 10(6) 24(6) 7(6) C41 19(4) 42(5) 42(5) 1(4) 10(4) 9(4) C42 47(6) 45(5) 42(6) 1(4) 1(4) 11(4) C43 52(7) 51(6) 51(6) 4(5) 8(5) 4(5) C44 37(5) 32(4) 22(4) 0(4) 3(3) 4(4) C45 28(5) 41(5) 22(4) 5(4) 3(3) 5(4) C46 38(5) 56(6) 29(5) 3(4) 1(4) 2(4) C47 35(5) 77(7) 24(5) 1(5) 3(4) 9(5) C48 41(6) 40(5) 39(5) 15(4) 7(4) 12(4) C49 23(5) 47(5) 27(5) 8(4) 2(4) 6(4) C50 25(5) 38(5) 24(4) 5(4) 5(4) 1(4) C51 30(5) 31(5) 29(5) 6(4) 5(4) 3(4) C52 27(5) 36(5) 28(5) 3(4) 0(4) 6(4) C53 42(6) 41(5) 35(5) 3(4) 5(4) 1(4) C54 20(5) 58(6) 42(6) 11(5) 9(4) 5(4) C55 41(6) 43(5) 31(5) 2(4) 10(4) 7(4) C56 28(5) 46(5) 39(5) 8(4) 11(4) 8(4) C57 35(6) 60(6) 35(5) 5(4) 0(4) 1(4) C58 38(6) 45(5) 57(7) 1(5) 3(5) 17(4) C59 41(6) 58(6) 72(7) 22(5) 2(5) 9(5) C60 36(5) 41(5) 23(5) 4(4) 3(4) 10(4) C61 15(4) 34(5) 37(5) 3(4) 14(4) 6(3) C62 31(5) 44(5) 31(5) 0(4) 5(4) 16(4) C63 35(5) 56(6) 34(5) 4(4) 4(4) 2(4) C64 43(6) 26(5) 47(6) 2(4) 9(5) 8(4) C65 36(5) 48(6) 37(5) 4(4) 6(4) 16(4)

PAGE 61

61 Table B 5. Continued Atom U11 U22 U33 U23 U13 U12 C66 30(5) 44(5) 58(7) 11(5) 10(5) 12(4) C67 49(7) 66(7) 96(9) 20(6) 29(6) 13(5) C68 28(6) 64(7) 75(8) 11(6) 4(5) 5(5) C69 43(6) 59(6) 43(6) 2(5) 16(5) 0(5) C70 40(5) 27(5) 32(5) 1(3) 6(4) 7(4) C71 34(5) 44(5) 32(5) 9(4) 10(4) 0(4) C72 130(11) 58(7) 39(6) 8(5) 23(7) 28(7) C73 21(5) 67(7) 109(10) 19(6) 7(6) 4(5) C74 53(6) 43(5) 63(7) 17(5) 28(5) 9(5) C75 28(5) 32(5) 53(6) 11(4) 2(4) 8(4) C76 32(5) 52(6) 34(5) 8(4) 1(4) 4(4) C77 34(6) 63(7) 63(7) 1(5) 3(5) 15(5) C78 56(7) 68(8) 72(9) 22(6) 12(6) 15(6) C79 47(7) 71(7) 45(6) 16(5) 15(5) 10(5) C80 28(5) 59(6) 33(5) 10(4) 2(4) 5(4) C81 31(6) 77(7) 49(6) 8(5) 11(5) 3(5) C82 57(8) 124(10) 49(7) 25(7) 3(6) 33(7) C83 79(9) 130(11) 41(7) 21(7) 9(6) 15(8) C84 45(6) 69(7) 36(5) 4(5) 5(4) 2(5) C85 83(9) 90(9) 67(8) 16(7) 10(7) 30(7) C86 83(9) 86(8) 71(8) 16(7) 5(7) 29(7)

PAGE 62

62 Table B 6. Torsion angles (in deg) for [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) ( 3 ) Atoms Angle Atoms Angle O2 W1 O1 C8 51.0(13) O1 W1 C1 C2 10.8(6) C27 W1 O1 C8 101.7(10) O2 W1 C1 C2 154.8(6) O3 W1 O1 C8 35.5(10) C27 W1 C1 C2 111.7(6) C1 W1 O1 C8 2.9(10) O3 W1 C1 C2 75.6(7) O1 W1 O2 C18 100.3(9) C6 C1 C2 C3 8.1(11) C27 W1 O2 C18 52.9(7) W1 C1 C2 C3 159.8(6) O3 W1 O2 C18 174.4(7) C6 C1 C2 C7 172.1(7) C1 W1 O2 C18 46.5(7) W1 C1 C2 C7 20.0(11) O1 W1 O3 C32 59.3(11) C1 C2 C3 C4 4.2(12) O2 W1 O3 C32 38.6(11) C7 C2 C3 C4 176.0(8) C27 W1 O3 C32 54.3(12) C2 C3 C4 C5 2.3(13) C1 W1 O3 C32 117.3(11) C3 C4 C5 C6 4.9(13) O5 W2 O4 C51 110.9(8) C4 C5 C6 C1 0.7(12) C70 W2 O4 C51 38.8(6) C4 C5 C6 C17 178.9(7) O6 W2 O4 C51 161.9(6) C2 C1 C6 C5 5.8(11) C44 W2 O4 C51 56.6(6) W1 C1 C6 C5 162.2(6) C70 W2 O5 C61 108.4(9) C2 C1 C6 C17 174.7(7) O4 W2 O5 C61 40.3(13) W1 C1 C6 C17 17.4(10) O6 W2 O5 C61 126.4(8) C3 C2 C7 C8 162.0(8) C44 W2 O5 C61 14.1(8) C1 C2 C7 C8 17.8(13) O5 W2 O6 C75 162.9(11) C3 C2 C7 C12 17.0(12) C70 W2 O6 C75 54.5(12) C1 C2 C7 C12 163.2(8) O4 W2 O6 C75 36.1(11) W1 O1 C8 C9 178.8(7) C44 W2 O6 C75 13.6(11) W1 O1 C8 C7 1.3(14) O1 W1 C1 C6 178.3(6) C12 C7 C8 O1 174.2(7) O2 W1 C1 C6 12.8(6) C2 C7 C8 O1 6.7(11) C27 W1 C1 C6 80.8(7) C12 C7 C8 C9 5.7(13) O3 W1 C1 C6 92.0(7) C2 C7 C8 C9 173.4(8) O1 C8 C9 C10 175.1(8) C17 C18 C19 C23 175.6(8) C7 C8 C9 C10 4.8(14) C18 C19 C20 C21 1.1(12) O1 C8 C9 C13 7.8(13) C23 C19 C20 C21 178.5(8) C7 C8 C9 C13 172.4(9) C19 C20 C21 C22 1.5(14) C8 C9 C10 C11 0.8(14) C20 C21 C22 C17 1.3(14) C13 C9 C10 C11 178.0(9) C18 C17 C22 C21 1.3(12) C9 C10 C11 C12 5.2(16) C6 C17 C22 C21 175.4(8) C10 C11 C12 C7 4.2(16) C20 C19 C23 C26 118.8(9) C8 C7 C12 C11 1.0(14) C18 C19 C23 C26 60.8(10) C2 C7 C12 C11 178.1(9) C20 C19 C23 C24 0.9(12)

PAGE 63

63 Table B 6. Continued Atoms Angle Atoms Angle C8 C9 C13 C16 57.4(12) C18 C19 C23 C24 179.5(8) C10 C9 C13 C16 119.6(10) C20 C19 C23 C25 120.0(9) C8 C9 C13 C15 65.5(11) C18 C19 C23 C25 60.4(11) C10 C9 C13 C15 17.5(10) O1 W1 C27 C28 3.6(9) C8 C9 C13 C14 175.2(9) O2 W1 C27 C28 168.3(8) C10 C9 C13 C14 1.8(14) O3 W1 C27 C28 103.2(8) C5 C6 C17 C18 147.1(8) C1 W1 C27 C28 82.4(9) C1 C6 C17 C18 32.5(12) W1 C27 C28 C29 148.6(8) C5 C6 C17 C22 29.5(11) W1 C27 C28 C31 28.2(12) C1 C6 C17 C22 150.9(8) W1 C27 C28 C30 93.7(10) W1 O2 C18 C17 44.0(10) W1 O3 C32 C33 81.1(12) W1 O2 C18 C19 138.6(6) W1 O3 C32 C37 00.5(12) C22 C17 C18 O2 178.6(7) O3 C32 C33 C34 179.3(7) C6 C17 C18 O2 4.7(11) C37 C32 C33 C34 2.4(12) C22 C17 C18 C19 4.1(12) O3 C32 C33 C38 3.5(12) C6 C17 C18 C19 172.7(7) C37 C32 C33 C38 174.8(7) O2 C18 C19 C20 178.8(7) C32 C33 C34 C35 0.9(13) C17 C18 C19 C20 4.0(12) C38 C33 C34 C35 178.2(8) O2 C18 C19 C23 1.6(12) C33 C34 C35 C36 3.1(14) C34 C35 C36 C37 1.8(14) C45 C46 C47 C48 4.3(12) C35 C36 C37 C32 1.5(12) C46 C47 C48 C49 1.6(13) C35 C36 C37 C41 174.6(8) C47 C48 C49 C44 5.2(13) O3 C32 C37 C36 178.1(7) C47 C48 C49 C60 177.1(8) C33 C32 C37 C36 3.5(11) C45 C44 C49 C48 9.1(11) O3 C32 C37 C41 5.7(11) W2 C44 C49 C48 165.1(6) C33 C32 C37 C41 172.7(7) C45 C44 C49 C60 173.5(7) C34 C33 C38 C39 67.2(11) W2 C44 C49 C60 12.3(11) C32 C33 C38 C39 110.0(9) C46 C45 C50 C51 145.9(8) C34 C33 C38 C40 59.2(10) C44 C45 C50 C51 35.3(11) C32 C33 C38 C40 123.6(9) C46 C45 C50 C55 33.5(10) C36 C37 C41 C42 100.8(9) C44 C45 C50 C55 145.2(8) C32 C37 C41 C42 75.2(9) W2 O4 C51 C50 51.1(9) C36 C37 C41 C43 26.0(11) W2 O4 C51 C52 130.2(6) C32 C37 C41 C43 158.0(7) C55 C50 C51 O4 176.6(6) O5 W2 C44 C45 173.9(6) C45 C50 C51 O4 3.9(11) C70 W2 C44 C45 70.6(6) C55 C50 C51 C52 4.7(11) O4 W2 C44 C45 21.6(6) C45 C50 C51 C52 174.8(7) O6 W2 C44 C45 99.4(6) O4 C51 C52 C53 175.5(7)

PAGE 64

64 Table B 6. Continued Atoms Angle Atoms Angle O5 W2 C44 C49 12.1(6) C50 C51 C52 C53 5.9(12) C70 W2 C44 C49 115.3(6) O4 C51 C52 C56 2.9(11) O4 W2 C44 C49 152.5(6) C50 C51 C52 C56 175.7(7) O6 W2 C44 C49 74.7(7) C51 C52 C53 C54 4.5(12) C49 C44 C45 C46 6.7(11) C56 C52 C53 C54 177.0(8) W2 C44 C45 C46 167.8(6) C52 C53 C54 C55 2.2(13) C49 C44 C45 C50 172.0(7) C61 C60 C65 C64 3.7(11) W2 C44 C45 C50 13.6(10) C49 C60 C65 C64 179.4(7) C44 C45 C46 C47 0.1(12) C61 C62 C66 C68 56.6(10) C50 C45 C46 C47 178.6(7) C63 C62 C66 C68 118.0(8) C51 C52 C56 C59 176.6(8) C61 C62 C66 C69 65.1(10) C53 C52 C56 C57 117.2(8) C63 C62 C66 C69 120.3(8) C51 C52 C56 C57 61.2(10) C53 C54 C55 C50 0.8(12) C53 C52 C56 C58 122.8(8) C51 C50 C55 C54 1.9(11) C51 C52 C56 C58 58.9(10) C45 C50 C55 C54 177.5(7) C48 C49 C60 C65 11.5(11) C53 C52 C56 C59 5.0(11) C44 C49 C60 C65 171.0(7) C61 C62 C66 C67 174.2(8) C48 C49 C60 C61 171.9(7) C63 C62 C66 C67 0.4(12) C44 C49 C60 C61 5.7(12) O5 W2 C70 C71 21.1(10) W2 O5 C61 C62 170.1(6) O4 W2 C70 C71 49.2(10) W2 O5 C61 C60 11.1(12) O6 W2 C70 C71 123.7(9) C65 C60 C61 O5 174.5(6) C44 W2 C70 C71 63.9(10) C49 C60 C61 O5 2.4(11) W2 C70 C71 C72 138.9(9) C65 C60 C61 C62 4.3(11) W2 C70 C71 C73 102.1(10) C49 C60 C61 C62 178.9(7) W2 C70 C71 C74 16.7(13) O5 C61 C62 C63 176.3(7) W2 O6 C75 C76 95.7(12) C60 C61 C62 C63 2.4(12) W2 O6 C75 C80 87.4(13) O5 C61 C62 C66 8.8(11) O6 C75 C76 C77 178.2(8) C60 C61 C62 C66 172.4(8) C80 C75 C76 C77 5.0(13) C61 C62 C63 C64 0.1(12) O6 C75 C76 C81 5.1(12) C66 C62 C63 C64 175.1(8) C80 C75 C76 C81 171.7(8) C62 C63 C64 C65 0.5(13) C75 C76 C77 C78 2.1(14) C63 C64 C65 C60 1.5(13) C81 C76 C77 C78 174.6(9) C76 C77 C78 C79 1.3(16) C76 C75 C80 C79 4.4(13) C77 C78 C79 C80 2.0(16) C79 C80 C84 C85 63.6(12) C78 C79 C80 C75 0.9(14) C75 C80 C84 C85 119.2(10) C78 C79 C80 C84 176.4(9) C79 C80 C84 C86 60.0(11) O6 C75 C80 C79 178.8(8) C75 C80 C84 C86 17.2(10)

PAGE 65

65 Table B 6. Continued Atoms Angle O6 C75 C80 C84 4.0(12) C76 C75 C80 C84 172.8(8) C75 C76 C81 C82 161.2(8) C77 C76 C81 C82 22.2(13) C75 C76 C81 C83 76.6(11) C77 C76 C81 C83 00.0(11)

PAGE 66

66 Figure B 3. Molecular structure of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4). Ellipsoids are shown at the 50% probability level; hydrogens are omitted for clarity. C84 C85 W2 O4 O5 O6 C58 C49 C48 C37 C33 C38 C39 O3 O1 W1 C1 O2 C27 C28

PAGE 67

67 X ray E xperimental for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO )W{=CHC(CH3)3[tBuOCO]} (4) Data were collected at 173 K on a Siemen s SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was scan method (0.3frame width). The first 50 frames were re measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure was solved by the author using Direct Methods in SHELXTL6, and refined using full matrix least squares. The non H atoms were treated anisotropical ly, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. A total of 865 parameters were refined in the final cycle of refinement using 9733 1 and wR2 of 4.58% and 8.68%, respectively. Refinement was done using F2.

PAGE 68

68 Table B 7. Crystal data, structure solution, and refinement for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4) identification code pelo6t empirical formula C88H102O6W2 formula weight 1623.40 T (K) 173(2) ) 0.71073 crystal system Monoclinic space group P2(1)/n a () 13.5918(11) b () 35.213(3) c () 17.2146(15) (deg) 90 (deg) 111.897(2) (deg) 90 V (3) 7644.7(11) Z 4 calcd (g mm3) 1.411 crystal size (mm) 0.15 x 0.15 x 0.02 abs coeff (mm1) 3.059 F (000) 3304 range for data collection 1.16 to 28.06 limiting indicies 17 32 19 no. of reflns collcd 53602 no. of ind reflns 18421 [R(int) = 0.08431] completeness to = 28.03 99.3 % absorption corr Integration refinement method Full matrix least squares on F2 data / restraints / parameters 18421 / 0 / 865 R 1, wR R1 = 0.0458, wR2 = 0.0868 R 1, wR 2 (all data) R1 = 0.1048, wR2 = 0.0967 GOF on F2 0.845 largest diff. peak and hole (e.3) 1.519 and 1.124 o c o o 2 F c 2 ) 2 o 2 ) 2 ]] 1/2 o 2 F c 2 ) 2 ] / (n p)] 1/2 2 (F o 2 )+(m*p)2+n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 69

69 Table B 8. Atomic coordinates ( x 104) and equ ivalent isotropic displacement parameters (2x 103) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4). U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) W1 2864(1) 1311(1) 883(1) 32(1) W2 1720(1) 1073(1) 4751(1) 40(1) O1 3232(3) 809(1) 885(2) 37(1) O2 2535(3) 1791(1) 1227(2) 31(1) O3 1339(3) 1219(1) 382(2) 37(1) O4 3049(3) 847(1) 5077(3) 58(1) O5 2431(3) 1568(1) 5061(2) 41(1) O6 453(3) 1293(1) 4124(2) 48(1) C1 4315(4) 1350(2) 1970(3) 32(1) C2 4928(4) 1023(2) 2350(4) 36(1) C3 5632(5) 1049(2) 3184(4) 45(2) C4 5760(5) 1374(2) 3649(4) 44(2) C5 5256(4) 1698(2) 3261(4) 39(2) C6 4576(4) 1698(2) 2432(4) 33(1) C7 4878(5) 649(2) 1926(4) 40(2) C8 3997(5) 540(2) 1230(4) 40(2) C9 3858(5) 173(2) 858(4) 46(2) C10 4737(6) 65(2) 1173(5) 56(2) C11 5636(6) 48(2) 1818(5) 57(2) C12 5716(5) 392(2) 2206(4) 49(2) C13 2817(6) 48(2) 189(4) 54(2) C14 2842(6) 384(2) 35(5) 84(3) C15 2570(5) 281(2) 623(4) 59(2) C16 1905(5) 100(2) 502(4) 64(2) C17 4162(4) 2072(2) 2063(3) 33(1) C18 3127(4) 2116(2) 1499(3) 32(1) C19 2666(5) 2472(2) 1221(3) 35(1) C20 3354(5) 2779(2) 1498(4) 44(2) C21 4401(5) 2740(2) 2016(4) 47(2) C22 4795(5) 2393(2) 2303(4) 45(2) C23 1504(5) 2522(2) 666(4) 42(2) C24 1193(5) 2943(2) 507(4) 60(2) C25 1220(5) 2336(2) 175(4) 49(2) C26 810(5) 2355(2) 1118(4) 51(2) C27 3403(5) 1530(2) 113(4) 45(2) C28 4187(6) 1468(2) 315(5) 64(2)

PAGE 70

70 Table B 8. Continued Atom X Y Z U(eq) C29 3578(9) 1491(3) 1241(6) 172(6) C30 4747(6) 1097(2) 95(5) 71(2) C31 5011(7) 1791(2) 52(8) 153(6) C32 1448(4) 1578(2) 2608(3) 32(1) C33 1250(4) 1295(2) 2012(3) 31(1) C34 1946(4) 984(2) 2194(4) 35(1) C35 2806(4) 968(2) 2936(4) 35(1) C36 3005(4) 1262(2) 3507(3) 35(1) C37 2323(4) 1573(2) 3345(4) 36(1) C38 303(4) 1319(2) 1218(3) 33(1) C39 376(4) 1268(2) 424(4) 36(1) C40 532(5) 1280(2) 326(4) 45(2) C41 1507(5) 1356(2) 252(4) 51(2) C42 1576(5) 1419(2) 521(5) 52(2) C43 692(5) 1400(2) 1238(4) 43(2) C44 481(6) 1202(2) 1181(4) 57(2) C45 94(6) 801(2) 1187(4) 76(2) C46 282(5) 1474(2) 1393(4) 61(2) C47 1558(6) 1245(3) 1892(5) 97(3) C48 2564(4) 1913(2) 3903(4) 36(1) C49 2627(4) 1899(2) 4738(4) 34(1) C50 2826(4) 2232(2) 5233(4) 44(2) C51 2949(5) 2564(2) 4858(4) 47(2) C52 2902(5) 2579(2) 4071(4) 55(2) C53 2712(5) 2258(2) 3573(4) 44(2) C54 2913(6) 2219(2) 6153(4) 61(2) C55 3810(6) 1964(2) 6656(4) 66(2) C56 3138(6) 2618(2) 6540(5) 87(3) C57 1865(6) 2091(2) 6220(5) 87(3) C58 1151(5) 620(2) 3851(4) 47(2) C59 1828(5) 309(2) 3893(4) 53(2) C60 1611(6) 67(2) 3165(5) 64(2) C61 738(7) 135(2) 2462(5) 68(2) C62 35(6) 412(2) 2442(5) 58(2) C63 184(5) 655(2) 3125(4) 47(2) C64 2788(6) 207(2) 4627(5) 55(2) C65 3404(6) 482(2) 5203(5) 54(2) C66 4365(6) 413(2) 5890(5) 61(2)

PAGE 71

71 Table B 8. Continued Atom X Y Z U(eq) C67 4669(7) 27(3) 5969(5) 77(3) C68 4087(8) 259(2) 5426(7) 89(3) C69 3156(7) 171(2) 4770(6) 72(2) C70 5017(6) 721(2) 6487(5) 69(2) C71 6039(6) 565(3) 7151(5) 101(3) C72 4384(5) 902(2) 6979(4) 70(2) C73 5308(6) 1043(2) 6003(5) 83(3) C74 669(5) 928(2) 3028(4) 47(2) C75 510(5) 1254(2) 3506(4) 43(2) C76 1297(5) 1538(2) 3394(4) 52(2) C77 2269(6) 1466(2) 2766(4) 63(2) C78 2463(6) 1145(3) 2316(5) 68(2) C79 1712(6) 870(2) 2433(4) 63(2) C80 1074(5) 1891(2) 3942(4) 55(2) C81 829(5) 1788(2) 4860(4) 70(2) C82 2057(5) 2161(2) 3682(5) 75(2) C83 169(5) 2123(2) 3849(5) 65(2) C84 1367(7) 859(2) 5611(5) 90(3) C85 605(7) 681(2) 5914(5) 79(3) C86 882(10) 285(3) 6169(6) 158(5) C87 522(9) 927(3) 6628(7) 156(5) C88 520(6) 701(3) 5158(6) 108(3)

PAGE 72

72 Table B 9. Bond lengths (in ) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 4) Bond Length Bond Length W1 O1 1.838(4) C8 C9 1.422(8) W1 O2 1.897(3) C9 C10 1.394(8) W1 C27 1.900(6) C9 C13 1.519(9) W1 O3 1.952(4) C10 C11 1.369(9) W1 C1 2.158(6) C11 C12 1.365(8) W2 O6 1.830(4) C13 C16 1.536(8) W2 O4 1.859(4) C13 C15 1.546(9) W2 C84 1.876(6) C13 C14 1.573(8) W2 O5 1.969(4) C17 C22 1.385(7) W2 C58 2.155(6) C17 C18 1.387(7) O1 C8 1.368(6) C18 C19 1.403(7) O2 C18 1.378(6) C19 C20 1.392(7) O3 C39 1.348(6) C19 C23 1.521(8) O4 C65 1.360(8) C20 C21 1.376(8) O5 C49 1.358(6) C21 C22 1.352(8) O6 C75 1.351(7) C23 C25 1.503(8) C1 C2 1.429(7) C23 C24 1.539(7) C1 C6 1.430(7) C23 C26 1.546(8) C2 C3 1.401(8) C27 C28 1.520(8) C2 C7 1.495(8) C28 C30 1.489(8) C3 C4 1.368(8) C28 C29 1.499(11) C4 C5 1.370(8) C28 C31 1.539(11) C5 C6 1.382(7) C32 C37 1.377(7) C6 C17 1.481(7) C32 C33 1.382(7) C7 C12 1.392(8) C33 C34 1.403(7) C7 C8 1.396(8) C33 C38 1.490(7) C34 C35 1.375(7) C61 C62 1.357(10) C35 C36 1.385(7) C62 C63 1.406(9) C36 C37 1.394(8) C63 C74 1.469(9) C37 C48 1.492(8) C64 C69 1.410(9) C38 C43 1.395(7) C64 C65 1.417(9) C38 C39 1.418(7) C65 C66 1.418(9) C39 C40 1.416(8) C66 C67 1.412(10) C40 C41 1.403(8) C66 C70 1.529(10) C40 C44 1.526(9) C67 C68 1.399(11) C41 C42 1.386(9) C68 C69 1.380(11) C42 C43 1.367(8) C70 C71 1.533(9)

PAGE 73

73 Table B 9. Continued Bond Length Bond Length C44 C45 1.510(9) C70 C73 1.543(9) C44 C47 1.526(9) C70 C72 1.552(9) C44 C46 1.551(9) C74 C75 1.382(8) C48 C53 1.388(8) C74 C79 1.420(8) C48 C49 1.409(8) C75 C76 1.421(9) C49 C50 1.414(8) C76 C77 1.383(8) C50 C51 1.378(8) C76 C80 1.524(9) C50 C54 1.544(9) C77 C78 1.339(10) C51 C52 1.332(8) C78 C79 1.366(9) C52 C53 1.383(8) C80 C81 1.533(9) C54 C55 1.503(9) C80 C83 1.533(8) C54 C56 1.534(9) C80 C82 1.562(8) C54 C57 1.539(8) C84 C85 1.465(9) C58 C59 1.415(9) C85 C86 1.468(11) C58 C63 1.442(9) C85 C87 1.543(11) C59 C60 1.451(9) C85 C88 1.598(11) C59 C64 1.483(9) C60 C61 1.363(10)

PAGE 74

74 Table B 10. Bond angles (in deg) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 4) Bond Angle Bond Angle O1 W1 O2 162.07(16) C2 C1 W1 122.3(4) O1 W1 C27 102.5(2) C6 C1 W1 119.5(4) O2 W1 C27 93.1(2) C3 C2 C1 118.3(5) O1 W1 O3 94.85(15) C3 C2 C7 116.6(5) O2 W1 O3 87.16(14) C1 C2 C7 125.1(5) C27 W1 O3 112.4(2) C4 C3 C2 123.0(6) O1 W1 C1 84.19(19) C3 C4 C5 118.6(6) O2 W1 C1 85.33(18) C4 C5 C6 121.6(6) C27 W1 C1 96.5(2) C5 C6 C1 120.4(5) O3 W1 C1 150.42(17) C5 C6 C17 116.3(5) O6 W2 O4 162.78(18) C1 C6 C17 123.3(5) O6 W2 C84 100.0(3) C12 C7 C8 116.6(6) O4 W2 C84 95.5(3) C12 C7 C2 121.4(6) O6 W2 O5 92.42(17) C8 C7 C2 122.0(5) O4 W2 O5 88.53(18) O1 C8 C7 116.8(5) C84 W2 O5 112.7(3) O1 C8 C9 118.8(6) O6 W2 C58 83.3(2) C7 C8 C9 124.3(6) O4 W2 C58 87.1(2) C10 C9 C8 114.9(6) C84 W2 C58 98.1(3) C10 C9 C13 122.8(6) O5 W2 C58 149.19(18) C8 C9 C13 122.3(6) C8 O1 W1 146.1(4) C11 C10 C9 121.0(6) C18 O2 W1 132.1(3) C12 C11 C10 122.6(6) C39 O3 W1 147.9(3) C11 C12 C7 120.1(7) C65 O4 W2 134.4(4) C9 C13 C16 110.2(5) C49 O5 W2 143.1(4) C9 C13 C15 111.1(6) C75 O6 W2 147.5(4) C16 C13 C15 108.9(6) C2 C1 C6 117.0(5) C9 C13 C14 111.5(6) C16 C13 C14 107.1(6) C32 C33 C38 120.1(5) C15 C13 C14 108.0(6) C34 C33 C38 122.0(5) C22 C17 C18 118.2(5) C35 C34 C33 120.6(5) C22 C17 C6 120.2(5) C34 C35 C36 120.1(5) C18 C17 C6 121.5(5) C35 C36 C37 120.4(5) O2 C18 C17 117.1(5) C32 C37 C36 118.4(5) O2 C18 C19 119.8(5) C32 C37 C48 119.4(5) C17 C18 C19 123.1(5) C36 C37 C48 122.0(5) C20 C19 C18 114.8(6) C43 C38 C39 117.8(5) C20 C19 C23 122.2(5) C43 C38 C33 120.2(5)

PAGE 75

75 Table B 10. Continued Bond Angle Bond Angle C18 C19 C23 123.0(5) C39 C38 C33 122.0(5) C21 C20 C19 123.0(6) O3 C39 C40 119.2(5) C22 C21 C20 120.1(6) O3 C39 C38 119.1(5) C21 C22 C17 120.7(6) C40 C39 C38 121.6(5) C25 C23 C19 112.9(5) C41 C40 C39 117.1(6) C25 C23 C24 107.1(5) C41 C40 C44 120.4(6) C19 C23 C24 112.0(5) C39 C40 C44 122.5(6) C25 C23 C26 109.5(5) C42 C41 C40 121.4(6) C19 C23 C26 109.0(5) C43 C42 C41 120.5(6) C24 C23 C26 106.1(5) C42 C43 C38 121.4(6) C28 C27 W1 143.4(5) C45 C44 C47 108.6(6) C30 C28 C29 110.2(7) C45 C44 C40 108.5(6) C30 C28 C27 112.7(5) C47 C44 C40 112.4(6) C29 C28 C27 107.4(6) C45 C44 C46 108.2(6) C30 C28 C31 109.1(7) C47 C44 C46 106.1(6) C29 C28 C31 109.1(8) C40 C44 C46 113.0(5) C27 C28 C31 108.4(7) C53 C48 C49 119.0(5) C37 C32 C33 122.4(5) C53 C48 C37 117.9(6) C32 C33 C34 117.9(5) C49 C48 C37 123.0(5) O5 C49 C48 120.0(5) C65 C64 C59 122.2(6) O5 C49 C50 119.1(6) O4 C65 C64 116.9(7) C48 C49 C50 120.7(5) O4 C65 C66 117.2(7) C51 C50 C49 116.8(6) C64 C65 C66 125.9(7) C51 C50 C54 121.9(6) C65 C66 C67 113.0(8) C49 C50 C54 121.3(6) C65 C66 C70 124.2(7) C52 C51 C50 122.8(6) C67 C66 C70 122.8(8) C51 C52 C53 121.7(6) C68 C67 C66 123.8(8) C52 C53 C48 118.9(6) C69 C68 C67 120.2(8) C55 C54 C56 108.0(6) C68 C69 C64 120.7(8) C55 C54 C57 110.9(7) C66 C70 C71 112.6(7) C56 C54 C57 106.0(6) C66 C70 C73 111.0(6) C55 C54 C50 110.1(6) C71 C70 C73 108.7(6) C56 C54 C50 110.3(6) C66 C70 C72 111.0(6) C57 C54 C50 111.5(6) C71 C70 C72 105.8(6) C59 C58 C63 118.4(6) C73 C70 C72 107.4(7) C59 C58 W2 118.9(5) C75 C74 C79 116.2(6) C63 C58 W2 121.8(5) C75 C74 C63 122.4(6) C58 C59 C60 119.4(7) C79 C74 C63 121.4(6)

PAGE 76

76 Table B 10. Continued Bond Angle C58 C59 C64 125.5(6) C60 C59 C64 115.1(7) C61 C60 C59 119.6(7) C62 C61 C60 121.3(7) C61 C62 C63 122.3(7) C62 C63 C58 118.3(7) C62 C63 C74 116.3(6) C58 C63 C74 125.4(6) C69 C64 C65 116.4(8) C69 C64 C59 121.3(7) C76 C80 C83 110.6(5) C81 C80 C83 111.1(6) C76 C80 C82 111.6(6) C81 C80 C82 105.9(5) C83 C80 C82 106.4(6) C85 C84 W2 151.3(7) C86 C85 C84 112.1(8) C86 C85 C87 112.5(8) C84 C85 C87 108.3(7) C86 C85 C88 110.2(8) C84 C85 C88 106.3(7) C87 C85 C88 107.0(8) C78 C77 C76 122.0(7) C77 C78 C79 122.5(7) C78 C79 C74 119.6(7) C76 C80 C81 111.1(6) O6 C75 C74 116.3(6) O6 C75 C76 119.6(5) C74 C75 C76 124.0(6) C77 C76 C75 115.4(6) C77 C76 C80 123.0(6) C75 C76 C80 121.6(6)

PAGE 77

77 Table B 11. Aniso tropic displacement parameters (2x 103) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 4). The anisotropic displacement factor exponent takes the form: 2 [ h2a*2U11 + ... + 2 h k a* b* U12 ] Atom U11 U22 U33 U23 U13 U12 W1 41(1) 25(1) 36(1) 1(1) 21(1) 0(1) W2 48(1) 41(1) 40(1) 5(1) 25(1) 14(1) O1 48(2) 29(2) 38(2) 1(2) 22(2) 3(2) O2 35(2) 21(2) 42(2) 4(2) 19(2) 2(2) O3 48(2) 29(2) 38(2) 8(2) 22(2) 2(2) O4 67(3) 43(3) 61(3) 4(2) 22(3) 3(2) O5 49(3) 42(3) 38(2) 9(2) 21(2) 13(2) O6 46(3) 53(3) 46(3) 18(2) 19(2) 10(2) C1 36(3) 30(3) 43(4) 9(3) 29(3) 4(3) C2 42(4) 35(4) 40(4) 2(3) 24(3) 5(3) C3 44(4) 47(4) 50(4) 18(3) 26(3) 6(3) C4 44(4) 51(5) 35(4) 5(3) 13(3) 5(3) C5 39(4) 28(4) 51(4) 3(3) 19(3) 3(3) C6 34(3) 30(3) 39(4) 6(3) 20(3) 6(3) C7 50(4) 35(4) 48(4) 17(3) 32(3) 7(3) C8 56(4) 31(4) 45(4) 6(3) 34(3) 7(3) C9 69(5) 33(4) 46(4) 3(3) 33(4) 4(3) C10 78(5) 33(4) 69(5) 9(4) 41(4) 23(4) C11 64(5) 45(5) 73(5) 16(4) 39(4) 18(4) C12 62(5) 40(4) 55(4) 7(3) 33(4) 11(3) C13 85(5) 27(4) 61(5) 4(3) 39(4) 5(4) C14 121(7) 34(5) 91(6) 24(4) 34(5) 3(4) C15 77(5) 51(5) 55(5) 4(4) 32(4) 7(4) C16 76(5) 48(5) 69(5) 3(4) 28(4) 16(4) C17 37(4) 33(4) 32(3) 2(3) 18(3) 3(3) C18 44(4) 28(3) 35(3) 3(3) 26(3) 2(3) C19 51(4) 23(3) 36(4) 3(3) 22(3) 4(3) C20 69(5) 23(4) 42(4) 3(3) 24(4) 2(3) C21 59(5) 30(4) 47(4) 6(3) 16(4) 12(3) C22 44(4) 40(4) 51(4) 3(3) 19(3) 10(3) C23 52(4) 25(3) 52(4) 5(3) 23(3) 11(3) C24 78(5) 36(4) 61(5) 6(3) 20(4) 16(4) C25 61(4) 35(4) 47(4) 0(3) 15(3) 3(3) C26 48(4) 45(4) 69(5) 12(3) 31(4) 15(3) C27 54(4) 35(4) 55(4) 11(3) 29(3) 10(3) C28 78(5) 62(5) 74(6) 35(4) 54(5) 40(4)

PAGE 78

78 Table B 11. Continued Atom U11 U22 U33 U23 U13 U12 C29 218(12) 258(15) 94(8) 89(9) 122(9) 169(11) C30 85(6) 69(5) 85(6) 14(4) 64(5) 15(4) C31 112(8) 72(7) 335(18) 36(9) 154(10) 7(6) C32 27(3) 36(4) 38(4) 5(3) 17(3) 7(3) C33 34(3) 33(3) 35(3) 3(3) 23(3) 3(3) C34 47(4) 31(4) 43(4) 3(3) 34(3) 8(3) C35 38(4) 29(4) 45(4) 9(3) 22(3) 0(3) C36 37(3) 44(4) 29(3) 2(3) 17(3) 17(3) C37 35(3) 42(4) 37(4) 2(3) 21(3) 6(3) C38 38(3) 24(3) 40(3) 11(3) 21(3) 3(3) C39 38(3) 28(3) 46(4) 8(3) 21(3) 1(3) C40 50(4) 35(4) 51(4) 14(3) 20(3) 7(3) C41 42(4) 48(4) 53(4) 7(3) 7(3) 4(3) C42 39(4) 46(4) 71(5) 7(3) 20(4) 7(3) C43 53(4) 35(4) 45(4) 4(3) 26(3) 4(3) C44 70(5) 44(5) 53(5) 16(3) 18(4) 4(4) C45 115(7) 62(6) 66(5) 27(4) 52(5) 32(5) C46 92(6) 55(5) 36(4) 1(3) 22(4) 11(4) C47 77(6) 148(9) 45(5) 29(5) 3(4) 6(5) C48 30(3) 40(4) 36(4) 13(3) 11(3) 10(3) C49 32(3) 32(4) 43(4) 3(3) 21(3) 8(3) C50 35(4) 52(4) 50(4) 18(3) 23(3) 14(3) C51 60(4) 30(4) 49(4) 18(3) 19(3) 7(3) C52 62(5) 33(4) 61(5) 0(3) 13(4) 10(3) C53 51(4) 38(4) 45(4) 1(3) 22(3) 11(3) C54 70(5) 74(6) 49(5) 29(4) 34(4) 28(4) C55 85(6) 64(5) 52(5) 10(4) 28(4) 21(4) C56 110(7) 90(7) 72(6) 50(5) 47(5) 37(5) C57 86(6) 115(7) 84(6) 45(5) 61(5) 49(5) C58 73(5) 34(4) 56(5) 1(3) 48(4) 9(3) C59 61(5) 47(5) 64(5) 2(4) 38(4) 23(4) C60 93(6) 34(4) 88(6) 14(4) 61(5) 22(4) C61 97(6) 68(6) 56(5) 32(4) 47(5) 48(5) C62 65(5) 55(5) 69(5) 19(4) 41(4) 28(4) C63 66(5) 39(4) 47(4) 9(3) 32(4) 34(3) C64 73(5) 30(4) 87(6) 8(4) 57(5) 1(4) C65 56(5) 57(5) 64(5) 7(4) 41(4) 3(4) C66 69(5) 63(5) 72(6) 26(4) 49(5) 13(4)

PAGE 79

79 Table B 11. Continued Atom U11 U22 U33 U23 U13 U12 C67 87(6) 92(7) 79(6) 38(5) 61(5) 29(6) C68 140(9) 52(6) 115(8) 29(6) 96(8) 18(6) C69 91(6) 49(5) 98(7) 16(5) 62(6) 2(4) C70 54(5) 92(7) 61(5) 11(5) 20(4) 4(4) C71 69(6) 143(9) 89(7) 19(6) 29(5) 15(6) C72 68(5) 98(7) 46(5) 11(4) 23(4) 5(4) C73 87(6) 95(7) 76(6) 8(5) 42(5) 31(5) C74 44(4) 56(5) 51(4) 10(3) 30(3) 15(3) C75 46(4) 54(5) 37(4) 12(3) 26(3) 18(3) C76 41(4) 69(5) 51(4) 8(4) 25(3) 9(4) C77 56(5) 92(6) 52(5) 19(4) 34(4) 11(4) C78 39(4) 119(8) 57(5) 2(5) 29(4) 15(5) C79 69(5) 76(6) 50(5) 22(4) 30(4) 47(5) C80 47(4) 69(5) 57(5) 7(4) 31(4) 4(4) C81 77(5) 79(6) 71(6) 13(4) 48(5) 1(4) C82 47(4) 86(6) 107(7) 7(5) 45(5) 14(4) C83 44(4) 71(6) 84(6) 5(4) 29(4) 2(4) C84 119(7) 126(8) 46(5) 15(5) 55(5) 72(6) C85 111(7) 64(6) 84(6) 1(5) 63(6) 26(5) C86 292(16) 83(8) 99(9) 25(7) 73(10) 40(9) C87 204(12) 205(13) 115(9) 48(8) 125(9) 47(10) C88 92(7) 123(9) 127(9) 23(7) 63(7) 46(6)

PAGE 80

80 Table B 12. Torsion angles (in deg) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W {=CHC(CH3)3[tBuOCO]} ( 4) Atoms Angle Atoms Angle O2 W1 O1 C8 62.5(9) O3 W1 C1 C2 82.5(5) C27 W1 O1 C8 87.4(6) O1 W1 C1 C6 174.4(4) O3 W1 O1 C8 158.3(6) O2 W1 C1 C6 9.0(4) C1 W1 O1 C8 8.0(6) C27 W1 C1 C6 83.7(4) O1 W1 O2 C18 99.5(6) O3 W1 C1 C6 84.8(5) C27 W1 O2 C18 51.2(5) C6 C1 C2 C3 8.9(7) O3 W1 O2 C18 163.5(5) W1 C1 C2 C3 158.8(4) C1 W1 O2 C18 45.2(4) C6 C1 C2 C7 171.5(5) O1 W1 O3 C39 127.2(7) W1 C1 C2 C7 20.9(7) O2 W1 O3 C39 35.0(7) C1 C2 C3 C4 0.3(8) C27 W1 O3 C39 127.2(7) C7 C2 C3 C4 180.0(5) C1 W1 O3 C39 40.4(8) C2 C3 C4 C5 6.4(9) O6 W2 O4 C65 97.3(8) C3 C4 C5 C6 4.0(9) C84 W2 O4 C65 56.7(6) C4 C5 C6 C1 4.9(8) O5 W2 O4 C65 169.3(6) C4 C5 C6 C17 174.3(5) C58 W2 O4 C65 41.2(6) C2 C1 C6 C5 11.2(8) O6 W2 O5 C49 53.9(6) W1 C1 C6 C5 156.7(4) O4 W2 O5 C49 108.9(6) C2 C1 C6 C17 167.9(5) C84 W2 O5 C49 155.8(6) W1 C1 C6 C17 24.1(7) C58 W2 O5 C49 27.1(8) C3 C2 C7 C12 22.9(8) O4 W2 O6 C75 66.2(10) C1 C2 C7 C12 157.4(5) C84 W2 O6 C75 87.4(7) C3 C2 C7 C8 157.5(5) O5 W2 O6 C75 159.1(7) C1 C2 C7 C8 22.1(8) C58 W2 O6 C75 9.7(7) W1 O1 C8 C7 8.3(9) O1 W1 C1 C2 7.1(4) W1 O1 C8 C9 170.9(4) O2 W1 C1 C2 158.4(4) C12 C7 C8 O1 171.7(5) C27 W1 C1 C2 109.0(4) C2 C7 C8 O1 7.9(8) C12 C7 C8 C9 7.4(9) C17 C18 C19 C20 5.1(8) C2 C7 C8 C9 173.0(5) O2 C18 C19 C23 4.0(8) O1 C8 C9 C10 171.3(5) C17 C18 C19 C23 174.3(5) C7 C8 C9 C10 7.8(9) C18 C19 C20 C21 1.0(8) O1 C8 C9 C13 10.5(8) C23 C19 C20 C21 178.4(6) C7 C8 C9 C13 170.3(6) C19 C20 C21 C22 2.4(10) C8 C9 C10 C11 2.9(9) C20 C21 C22 C17 1.8(9) C13 C9 C10 C11 175.2(6) C18 C17 C22 C21 2.2(9) C9 C10 C11 C12 2.1(11) C6 C17 C22 C21 175.3(5) C10 C11 C12 C7 2.7(10) C20 C19 C23 C25 117.5(6)

PAGE 81

81 Table B 12. Continued Atoms Angle Atoms Angle C8 C7 C12 C11 1.9(9) C18 C19 C23 C25 63.1(7) C2 C7 C12 C11 178.5(6) C20 C19 C23 C24 3.4(8) C10 C9 C13 C16 123.4(6) C18 C19 C23 C24 175.9(5) C8 C9 C13 C16 54.6(8) C20 C19 C23 C26 120.5(6) C10 C9 C13 C15 115.9(7) C18 C19 C23 C26 58.8(7) C8 C9 C13 C15 66.1(8) O1 W1 C27 C28 19.5(9) C10 C9 C13 C14 4.7(9) O2 W1 C27 C28 151.6(8) C8 C9 C13 C14 173.3(6) O3 W1 C27 C28 120.2(8) C5 C6 C17 C22 35.2(7) C1 W1 C27 C28 65.9(9) C1 C6 C17 C22 144.0(5) W1 C27 C28 C30 2.7(12) C5 C6 C17 C18 142.2(5) W1 C27 C28 C29 124.2(9) C1 C6 C17 C18 38.7(8) W1 C27 C28 C31 118.1(9) W1 O2 C18 C17 43.1(7) C37 C32 C33 C34 3.3(8) W1 O2 C18 C19 138.5(4) C37 C32 C33 C38 178.6(5) C22 C17 C18 O2 175.8(5) C32 C33 C34 C35 1.2(7) C6 C17 C18 O2 6.8(7) C38 C33 C34 C35 179.3(5) C22 C17 C18 C19 5.8(8) C33 C34 C35 C36 1.1(8) C6 C17 C18 C19 171.5(5) C34 C35 C36 C37 1.5(8) O2 C18 C19 C20 176.5(5) C33 C32 C37 C36 2.9(8) C33 C32 C37 C48 171.7(5) C32 C37 C48 C53 57.8(7) C35 C36 C37 C32 0.4(8) C36 C37 C48 C53 116.5(6) C35 C36 C37 C48 174.0(5) C32 C37 C48 C49 120.9(6) C32 C33 C38 C43 48.6(7) C36 C37 C48 C49 64.8(8) C34 C33 C38 C43 129.4(5) W2 O5 C49 C48 21.6(9) C32 C33 C38 C39 130.5(5) W2 O5 C49 C50 154.4(5) C34 C33 C38 C39 51.5(8) C53 C48 C49 O5 176.6(5) W1 O3 C39 C40 150.8(5) C37 C48 C49 O5 2.1(8) W1 O3 C39 C38 27.0(9) C53 C48 C49 C50 0.6(8) C43 C38 C39 O3 175.0(5) C37 C48 C49 C50 178.0(5) C33 C38 C39 O3 4.2(8) O5 C49 C50 C51 175.7(5) C43 C38 C39 C40 2.8(8) C48 C49 C50 C51 0.2(8) C33 C38 C39 C40 178.0(5) O5 C49 C50 C54 4.9(8) O3 C39 C40 C41 176.0(5) C48 C49 C50 C54 179.1(6) C38 C39 C40 C41 1.8(9) C49 C50 C51 C52 1.0(9) O3 C39 C40 C44 6.0(9) C54 C50 C51 C52 178.4(6) C38 C39 C40 C44 176.2(5) C50 C51 C52 C53 0.8(11) C39 C40 C41 C42 0.4(9) C51 C52 C53 C48 0.1(10) C44 C40 C41 C42 178.4(6) C49 C48 C53 C52 0.8(9)

PAGE 82

82 Table B 12. Continued Atoms Angle Atoms Angle C40 C41 C42 C43 1.5(9) C37 C48 C53 C52 177.9(5) C41 C42 C43 C38 0.5(9) C51 C50 C54 C55 118.7(7) C39 C38 C43 C42 1.7(8) C49 C50 C54 C55 60.6(8) C33 C38 C43 C42 179.2(5) C51 C50 C54 C56 0.3(9) C41 C40 C44 C45 116.3(7) C49 C50 C54 C56 179.6(6) C39 C40 C44 C45 61.7(8) C51 C50 C54 C57 117.8(7) C41 C40 C44 C47 3.8(9) C49 C50 C54 C57 62.9(9) C39 C40 C44 C47 178.3(6) O6 W2 C58 C59 175.2(5) C41 C40 C44 C46 123.8(7) O4 W2 C58 C59 9.5(5) C39 C40 C44 C46 58.2(8) C84 W2 C58 C59 85.6(5) O5 W2 C58 C59 91.7(6) O4 C65 C66 C67 180.0(5) O6 W2 C58 C63 6.3(4) C64 C65 C66 C67 1.1(9) O4 W2 C58 C63 159.3(5) O4 C65 C66 C70 0.1(9) C84 W2 C58 C63 105.5(5) C64 C65 C66 C70 178.8(6) O5 W2 C58 C63 77.2(6) C65 C66 C67 C68 0.3(10) C63 C58 C59 C60 8.6(8) C70 C66 C67 C68 179.6(7) W2 C58 C59 C60 160.6(4) C66 C67 C68 C69 0.4(12) C63 C58 C59 C64 173.1(5) C67 C68 C69 C64 1.2(11) W2 C58 C59 C64 17.6(8) C65 C64 C69 C68 1.9(10) C58 C59 C60 C61 2.4(9) C59 C64 C69 C68 175.9(7) C64 C59 C60 C61 179.2(6) C65 C66 C70 C71 177.9(6) C59 C60 C61 C62 3.4(10) C67 C66 C70 C71 2.0(10) C60 C61 C62 C63 2.8(11) C65 C66 C70 C73 55.8(9) C61 C62 C63 C58 3.7(9) C67 C66 C70 C73 124.1(7) C61 C62 C63 C74 177.0(6) C65 C66 C70 C72 63.6(9) C59 C58 C63 C62 9.2(8) C67 C66 C70 C72 116.5(7) W2 C58 C63 C62 159.7(4) C62 C63 C74 C75 159.2(6) C59 C58 C63 C74 171.5(5) C58 C63 C74 C75 20.2(9) W2 C58 C63 C74 19.6(8) C62 C63 C74 C79 20.9(9) C58 C59 C64 C69 152.9(6) C58 C63 C74 C79 159.8(6) C60 C59 C64 C69 28.8(8) W2 O6 C75 C74 10.9(10) C58 C59 C64 C65 29.4(9) W2 O6 C75 C76 167.6(5) C60 C59 C64 C65 148.9(6) C79 C74 C75 O6 174.1(5) W2 O4 C65 C64 39.8(8) C63 C74 C75 O6 5.8(9) W2 O4 C65 C66 141.2(5) C79 C74 C75 C76 4.4(9) C69 C64 C65 O4 179.2(5) C63 C74 C75 C76 175.7(6) C59 C64 C65 O4 3.0(9) O6 C75 C76 C77 177.7(5) C69 C64 C65 C66 1.9(10) C74 C75 C76 C77 0.7(9)

PAGE 83

83 Table B 12. Continued Atoms Angle C59 C64 C65 C66 175.9(6) C74 C75 C76 C80 179.9(6) C75 C76 C77 C78 2.3(10) C80 C76 C77 C78 176.9(7) C76 C77 C78 C79 1.4(11) C77 C78 C79 C74 2.6(11) C75 C74 C79 C78 5.2(9) C63 C74 C79 C78 174.9(6) C77 C76 C80 C81 116.0(7) C75 C76 C80 C81 63.1(8) C77 C76 C80 C83 120.1(7) C75 C76 C80 C83 60.8(8) C77 C76 C80 C82 1.9(9) C75 C76 C80 C82 179.0(6) O6 W2 C84 C85 33.2(15) O4 W2 C84 C85 139.2(14) O5 W2 C84 C85 130.1(14) C58 W2 C84 C85 51.4(15) W2 C84 C85 C86 113.0(15) W2 C84 C85 C87 122.2(14) W2 C84 C85 C88 7.5(17) O6 C75 C76 C80 1.5(9)

PAGE 84

84 Figure B 4. Molecular structure of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5). Ellipsoids are shown at the 50% probability level; hydrogens are omitted for clarity. C28 C27 w1 O2 O1 O3 C39 C38 C 33 C 37 C 48 C 49 O4 O6 W2 O7 C84 C 85

PAGE 85

85 X ray E xperimental for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} (5) Data were collected at 173 K on a Siemen s SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was scan method (0.3frame width). The first 5 0 frames were re measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure was solved by the author using Direct Methods in SHELXTL6, and refined using full matrix least squares. The nonH atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. A t otal of 865 parameters were refined in the final cycle of refinement using 8981 1 and wR2 of 4.85% and 9.19%, respectively. Refinement was done using F2.

PAGE 86

86 Table B 13. Crystal data, structure solution, and refinement f or {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5) identification code pelo7t empirical formula C88H102O6W2 formula weight 1623.40 T (K) 173(2) ) 0.71073 crystal system Monoclinic Space group P2(1)/c a () 12.8904(8) b () 20.2444(13) c () 29.2372(18) (deg) 90 (deg) 100.7990(10) (deg) 90 V (3) 7494.6(8) Z 4 calcd(g mm-3) 1.439 crystal size (mm) 0.16 x 0.04 x 0.04 abs coeff (mm1) 3.121 F (000) 3304 range for data collection (deg) 1.23 to 27.50 limiting indices 16 26 37 no. of reflns collcd 50772 no. of ind reflns ( Rint) 17182 (0.1065) completeness to = 27.50 99.8 % absorption corr Integration refinement method Full matrix least squares on F2 data / restraints / parameters 17182 / 0 / 865 R 1, wR 0.0485, 0.0919 R 1, wR 2 (all data) 0.1179, 0.1030 GOF on F2 0.849 largest diff. peak and hole (e.3) 1.315 and 0.693 o c o o 2 F c 2 ) 2 o 2 ) 2 ]] 1/2 o 2 F c 2 ) 2 ] / (n p)] 1/2 2 (F o 2 )+(m*p)2+n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 87

87 Table B 14. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5). U(eq) is defined as on e third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) W1 2846(1) 5902(1) 3082(1) 23(1) W2 1520(1) 7759(1) 4941(1) 25(1) O1 3158(3) 6825(2) 3077(2) 27(1) O2 2665(3) 5061(2) 3320(2) 24(1) O3 1352(4) 6134(2) 2974(2) 26(1) O4 2271(4) 8291(2) 4554(2) 29(1) O5 462(4) 7588(2) 4407(2) 26(1) O6 2685(4) 7592(2) 5399(2) 30(1) C1 4361(5) 5841(3) 3525(2) 23(2) C2 5149(5) 6305(3) 3458(2) 24(2) C3 6111(6) 6317(3) 3763(2) 28(2) C4 6329(5) 5883(4) 4128(2) 31(2) C5 5606(6) 5423(4) 4193(2) 33(2) C6 4603(6) 5382(3) 3904(2) 26(2) C7 5002(6) 6810(3) 3089(2) 25(2) C8 4009(6) 7100(3) 2937(2) 28(2) C9 3849(6) 7671(4) 2653(2) 31(2) C10 4751(6) 7872(4) 2484(3) 36(2) C11 5719(6) 7557(4) 2592(3) 41(2) C12 5838(6) 7049(3) 2897(2) 34(2) C13 2798(6) 8024(4) 2512(3) 37(2) C14 2196(8) 7689(5) 2083(4) 91(4) C15 2967(7) 8762(4) 2393(3) 68(3) C16 2128(7) 8053(4) 2892(3) 61(3) C17 3891(5) 4840(3) 4002(2) 23(2) C18 2982(5) 4651(3) 3694(2) 23(2) C19 2358(5) 4096(3) 3748(2) 25(2) C20 2677(6) 3756(3) 4159(3) 33(2) C21 3528(6) 3946(3) 4489(3) 35(2) C22 4134(6) 4472(4) 4416(2) 28(2) C23 1402(6) 3866(3) 3393(2) 29(2) C24 1695(8) 3729(5) 2928(3) 69(3) C25 525(6) 4367(4) 3328(3) 53(2) C26 934(6) 3233(4) 3548(3) 48(2) C27 3327(5) 5737(3) 2521(2) 29(2) C28 3869(6) 5225(4) 2265(3) 32(2)

PAGE 88

88 Table B 14 Continued Atom X Y Z U(eq) C29 4957(6) 5506(4) 2218(3) 50(2) C30 3213(7) 5139(4) 1778(3) 53(2) C31 4011(7) 4586(4) 2521(3) 50(2) C32 2141(6) 6883(3) 3945(2) 27(2) C33 1686(6) 6268(3) 3977(2) 25(2) C34 2131(6) 5841(3) 4343(2) 27(2) C35 3025(6) 6050(4) 4647(3) 35(2) C36 3485(6) 6661(3) 4610(2) 30(2) C37 3046(6) 7085(3) 4260(2) 23(2) C38 660(5) 6097(3) 3677(3) 26(2) C39 492(6) 6074(3) 3185(2) 23(2) C40 518(5) 5957(3) 2907(2) 29(2) C41 1325(6) 5843(4) 3143(3) 40(2) C42 1180(6) 5832(4) 3627(3) 38(2) C43 220(6) 5965(3) 3882(3) 33(2) C44 704(6) 5991(4) 2372(3) 41(2) C45 397(7) 6663(4) 2216(3) 56(3) C46 64(7) 5458(4) 2177(3) 55(2) C47 1867(6) 5877(5) 2156(3) 72(3) C48 3520(5) 7738(4) 4189(2) 25(2) C49 3095(5) 8333(4) 4324(2) 24(2) C50 3488(6) 8950(3) 4232(2) 30(2) C51 4339(6) 8947(4) 4011(3) 43(2) C52 4783(6) 8389(5) 3884(3) 50(2) C53 4379(6) 7781(4) 3980(3) 40(2) C54 3044(7) 9595(4) 4378(3) 45(2) C55 3169(10) 9630(4) 4898(4) 101(4) C56 1884(7) 9642(4) 4149(4) 95(4) C57 3606(8) 10197(4) 4237(4) 79(3) C58 944(6) 6882(3) 5211(2) 26(2) C59 137(6) 6711(3) 5045(2) 31(2) C60 530(7) 6095(4) 5148(3) 39(2) C61 105(8) 5640(4) 5422(3) 52(2) C62 1116(7) 5802(4) 5604(3) 50(2) C63 1569(6) 6421(4) 5512(2) 34(2) C64 896(6) 7145(3) 4755(2) 29(2) C65 592(6) 7549(3) 4406(2) 23(2) C66 1316(6) 7895(3) 4079(2) 29(2)

PAGE 89

89 Table B 14 Continued Atom X Y Z U(eq) C67 2365(6) 7895(4) 4150(3) 46(2) C68 2680(7) 7555(4) 4509(3) 47(2) C69 1978(7) 7174(4) 4797(3) 47(2) C70 1033(6) 8257(4) 3671(3) 37(2) C71 354(12) 7854(7) 3421(4) 181(9) C72 449(13) 8858(6) 3826(4) 188(9) C73 1956(8) 8442(6) 3313(3) 91(4) C74 2683(6) 6545(3) 5755(2) 29(2) C75 3228(6) 7142(3) 5705(2) 31(2) C76 4250(6) 7289(4) 5937(3) 38(2) C77 4745(7) 6809(4) 6231(3) 44(2) C78 4244(7) 6207(5) 6283(3) 53(3) C79 3243(7) 6073(4) 6054(3) 46(2) C80 4807(6) 7943(4) 5880(3) 38(2) C81 5885(7) 7982(4) 6206(3) 63(3) C82 4987(7) 8016(4) 5389(3) 48(2) C83 4151(7) 8518(4) 6006(3) 55(3) C84 705(6) 8342(3) 5232(2) 28(2) C85 486(6) 8599(3) 5692(2) 32(2) C86 1161(7) 8210(4) 6097(3) 49(2) C87 781(7) 9324(4) 5740(3) 55(3) C88 678(6) 8504(4) 5703(3) 51(2)

PAGE 90

90 Table B 15. Bond lengths (in ) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 5) Bond Length Bond Length W1 O2 1.870(4) C8 C9 1.414(9) W1 C27 1.887(7) C9 C10 1.407(9) W1 O1 1.914(4) C9 C13 1.519(10) W1 O3 1.950(5) C10 C11 1.384(10) W1 C1 2.135(7) C11 C12 1.351(9) W2 O6 1.846(5) C13 C14 1.508(11) W2 C84 1.885(6) C13 C16 1.531(10) W2 O5 1.903(5) C13 C15 1.558(10) W2 O4 1.948(4) C17 C18 1.391(9) W2 C58 2.131(7) C17 C22 1.403(9) O1 C8 1.360(7) C18 C19 1.406(9) O2 C18 1.374(7) C19 C20 1.380(9) O3 C39 1.371(7) C19 C23 1.526(10) O4 C49 1.363(7) C20 C21 1.372(10) O5 C65 1.361(8) C21 C22 1.363(9) O6 C75 1.373(8) C23 C25 1.504(10) C1 C2 1.424(9) C23 C24 1.505(10) C1 C6 1.437(9) C23 C26 1.519(9) C2 C3 1.385(9) C27 C28 1.522(9) C2 C7 1.473(9) C28 C31 1.489(9) C3 C4 1.372(9) C28 C30 1.522(10) C4 C5 1.356(9) C28 C29 1.544(10) C5 C6 1.408(9) C32 C33 1.388(9) C6 C17 1.493(9) C32 C37 1.403(9) C7 C12 1.393(9) C33 C34 1.411(9) C7 C8 1.402(10) C33 C38 1.484(10) C34 C35 1.382(10) C61 C62 1.352(11) C35 C36 1.383(9) C60 C61 1.383(11) C36 C37 1.375(9) C62 C63 1.430(10) C37 C48 1.487(9) C63 C74 1.498(10) C38 C43 1.404(9) C64 C65 1.417(9) C38 C39 1.414(9) C64 C69 1.425(10) C39 C40 1.420(9) C65 C66 1.395(9) C40 C41 1.373(9) C66 C67 1.405(10) C40 C44 1.539(10) C66 C70 1.501(10) C41 C42 1.392(10) C67 C68 1.378(10) C42 C43 1.345(10) C68 C69 1.356(11)

PAGE 91

91 Table B 15. Continued Bond Length C44 C45 1.511(10) C44 C46 1.531(10) C44 C47 1.531(10) C48 C53 1.364(9) C48 C49 1.410(9) C49 C50 1.392(9) C50 C51 1.373(10) C50 C54 1.519(10) C51 C52 1.350(10) C52 C53 1.386(10) C54 C55 1.501(12) C54 C57 1.514(10) C54 C56 1.523(12) C58 C63 1.424(9) C58 C59 1.429(10) C59 C60 1.400(9) C59 C64 1.463(10) C70 C72 1.458(12) C70 C73 1.479(11) C70 C71 1.484(11) C74 C79 1.401(10) C74 C75 1.420(10) C75 C76 1.396(10) C76 C77 1.373(10) C76 C80 1.530(11) C77 C78 1.401(11) C78 C79 1.365(11) C80 C82 1.502(10) C80 C83 1.525(10) C80 C81 1.532(11) C84 C85 1.517(9) C85 C87 1.517(10) C85 C88 1.520(10) C85 C86 1.547(10)

PAGE 92

92 Table B 16. Bond angles (in deg) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3 [tBuOCO]} ( 5) Bond Angle Bond Angle O2 W1 C27 104.3(2) C2 C1 C6 118.4(6) O2 W1 O1 158.92(19) C2 C1 W1 118.3(5) C27 W1 O1 93.6(2) C6 C1 W1 123.2(5) O2 W1 O3 95.21(18) C3 C2 C1 120.0(6) C27 W1 O3 112.2(2) C3 C2 C7 115.8(6) O1 W1 O3 88.04(18) C1 C2 C7 124.1(6) O2 W1 C1 83.4(2) C4 C3 C2 121.2(7) C27 W1 C1 96.0(3) C5 C4 C3 120.2(7) O1 W1 C1 83.7(2) C4 C5 C6 122.4(7) O3 W1 C1 151.1(2) C5 C6 C1 117.8(7) O6 W2 C84 103.6(3) C5 C6 C17 117.2(7) O6 W2 O5 157.29(18) C1 C6 C17 124.9(6) C84 W2 O5 96.3(3) C12 C7 C8 117.2(7) O6 W2 O4 95.6(2) C12 C7 C2 122.2(7) C84 W2 O4 107.1(2) C8 C7 C2 120.5(6) O5 W2 O4 88.90(18) O1 C8 C7 118.2(6) O6 W2 C58 82.6(2) O1 C8 C9 118.3(7) C84 W2 C58 95.4(3) C7 C8 C9 123.5(6) O5 W2 C58 84.6(2) C10 C9 C8 113.8(7) O4 W2 C58 157.2(2) C10 C9 C13 121.4(7) C8 O1 W1 125.7(4) C8 C9 C13 124.6(7) C18 O2 W1 143.9(4) C11 C10 C9 123.7(7) C39 O3 W1 139.8(4) C12 C11 C10 119.2(7) C49 O4 W2 147.1(4) C11 C12 C7 121.9(8) C65 O5 W2 125.0(4) C14 C13 C9 107.9(7) C75 O6 W2 147.2(5) C14 C13 C16 110.4(8) C9 C13 C16 114.6(6) C33 C32 C37 121.8(7) C14 C13 C15 108.5(7) C32 C33 C34 118.8(7) C9 C13 C15 110.9(7) C32 C33 C38 120.7(6) C16 C13 C15 104.4(7) C34 C33 C38 119.8(6) C18 C17 C22 115.9(6) C35 C34 C33 118.2(7) C18 C17 C6 123.5(6) C36 C35 C34 122.8(7) C22 C17 C6 120.6(6) C37 C36 C35 119.5(7) O2 C18 C17 116.0(6) C36 C37 C32 118.8(7) O2 C18 C19 118.7(6) C36 C37 C48 122.4(6) C17 C18 C19 125.3(6) C32 C37 C48 118.7(6) C20 C19 C18 114.3(6) C43 C38 C39 116.5(7)

PAGE 93

93 Table B 16. Continued Bond Angle Bond Angle C20 C19 C23 120.7(6) C43 C38 C33 119.6(7) C18 C19 C23 125.1(6) C39 C38 C33 123.9(6) C21 C20 C19 122.8(7) O3 C39 C38 118.2(6) C22 C21 C20 121.0(7) O3 C39 C40 119.3(6) C21 C22 C17 120.5(7) C38 C39 C40 122.5(6) C25 C23 C24 108.6(7) C41 C40 C39 116.1(7) C25 C23 C26 106.0(6) C41 C40 C44 122.1(7) C24 C23 C26 107.2(6) C39 C40 C44 121.8(6) C25 C23 C19 111.8(6) C40 C41 C42 123.0(7) C24 C23 C19 111.2(6) C43 C42 C41 119.5(7) C26 C23 C19 111.8(6) C42 C43 C38 122.3(7) C28 C27 W1 143.5(5) C45 C44 C46 109.4(7) C31 C28 C27 111.6(6) C45 C44 C47 107.7(7) C31 C28 C30 111.4(7) C46 C44 C47 107.1(7) C27 C28 C30 108.2(6) C45 C44 C40 110.2(6) C31 C28 C29 109.7(7) C46 C44 C40 110.8(6) C27 C28 C29 107.6(6) C47 C44 C40 111.5(6) C30 C28 C29 108.3(6) C53 C48 C49 117.4(7) C53 C48 C37 120.6(7) C65 C64 C69 116.4(7) C49 C48 C37 122.0(6) C65 C64 C59 121.3(7) O4 C49 C50 119.7(6) C69 C64 C59 122.3(7) O4 C49 C48 117.7(6) O5 C65 C66 120.7(6) C50 C49 C48 122.6(6) O5 C65 C64 116.3(6) C51 C50 C49 116.0(7) C66 C65 C64 123.0(7) C51 C50 C54 120.8(7) C65 C66 C67 115.9(7) C49 C50 C54 123.2(6) C65 C66 C70 124.0(7) C52 C51 C50 123.4(7) C67 C66 C70 120.1(7) C51 C52 C53 119.4(7) C68 C67 C66 122.7(8) C48 C53 C52 121.1(8) C69 C68 C67 120.0(8) C55 C54 C57 105.7(8) C68 C69 C64 121.4(7) C55 C54 C50 110.6(7) C72 C70 C73 108.0(9) C57 C54 C50 113.0(7) C72 C70 C71 107.1(11) C55 C54 C56 110.7(8) C73 C70 C71 105.1(8) C57 C54 C56 108.0(7) C72 C70 C66 110.4(7) C50 C54 C56 108.7(7) C73 C70 C66 113.7(7) C63 C58 C59 117.0(7) C71 C70 C66 112.1(7) C63 C58 W2 125.3(6) C79 C74 C75 115.9(7) C59 C58 W2 117.5(5) C79 C74 C63 121.3(7)

PAGE 94

94 Table B 16. Continued Bond Angle C60 C59 C58 120.8(7) C60 C59 C64 115.5(7) C58 C59 C64 123.7(6) C61 C60 C59 121.2(8) C62 C61 C60 119.3(8) C61 C62 C63 122.4(8) C58 C63 C62 119.1(8) C58 C63 C74 124.4(7) C62 C63 C74 116.5(7) C78 C79 C74 120.1(8) C82 C80 C83 110.4(7) C82 C80 C76 110.4(6) C83 C80 C76 109.9(6) C82 C80 C81 107.8(7) C83 C80 C81 106.8(7) C76 C80 C81 111.5(7) C85 C84 W2 145.7(6) C87 C85 C84 109.1(6) C87 C85 C88 110.6(7) C84 C85 C88 108.9(6) C87 C85 C86 109.1(7) C84 C85 C86 109.5(6) C88 C85 C86 109.6(6) C75 C76 C80 123.4(7) C76 C77 C78 121.0(8) C79 C78 C77 122.1(8) C75 C74 C63 122.8(7) O6 C75 C76 119.6(7) O6 C75 C74 115.4(7) C76 C75 C74 124.9(7) C77 C76 C75 116.0(8) C77 C76 C80 120.6(8)

PAGE 95

95 Table B 17. Anisotropic displacement parameters (2x 103) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5). The anisotropic displacement f actor exponent takes the form: 2 [ h2a*2U11 + ... + 2 h k a* b* U12 ]. Atom U11 U22 U33 U23 U13 U12 W1 23(1) 23(1) 23(1) 2(1) 4(1) 2(1) W2 34(1) 18(1) 23(1) 0(1) 7(1) 1(1) O1 24(3) 22(3) 37(3) 5(2) 7(2) 1(2) O2 31(3) 22(3) 18(3) 2(2) 2(2) 1(2) O3 26(3) 30(3) 22(3) 1(2) 5(2) 6(2) O4 37(3) 21(3) 30(3) 1(2) 9(2) 4(2) O5 35(3) 21(3) 23(3) 5(2) 11(2) 1(2) O6 40(3) 19(3) 32(3) 2(2) 5(2) 1(2) C1 27(4) 19(4) 25(4) 7(3) 10(3) 2(3) C2 24(4) 24(4) 24(4) 6(3) 6(3) 1(3) C3 27(5) 26(4) 33(5) 2(4) 8(4) 0(3) C4 23(4) 40(5) 27(5) 3(4) 4(3) 5(4) C5 36(5) 40(5) 22(4) 0(4) 3(4) 7(4) C6 31(5) 23(4) 24(4) 8(3) 7(4) 6(4) C7 30(5) 20(4) 29(5) 2(3) 11(4) 7(3) C8 36(5) 17(4) 33(5) 1(3) 12(4) 10(3) C9 33(5) 31(5) 28(5) 1(4) 0(4) 7(4) C10 43(5) 26(5) 36(5) 1(4) 1(4) 7(4) C11 33(5) 47(5) 44(6) 12(4) 12(4) 10(4) C12 36(5) 32(5) 34(5) 2(4) 6(4) 3(4) C13 33(5) 39(5) 37(5) 6(4) 0(4) 3(4) C14 67(8) 93(9) 91(9) 20(7) 41(6) 26(7) C15 69(7) 37(6) 103(8) 39(5) 27(6) 14(5) C16 58(7) 62(6) 69(7) 32(5) 26(5) 33(5) C17 25(4) 19(4) 26(4) 1(3) 4(3) 8(3) C18 25(4) 24(4) 19(4) 1(3) 7(3) 5(3) C19 26(4) 21(4) 26(4) 1(4) 4(3) 3(4) C20 34(5) 25(4) 41(5) 12(4) 12(4) 10(4) C21 48(5) 31(5) 23(5) 12(3) 2(4) 3(4) C22 28(4) 36(5) 17(4) 3(3) 3(3) 0(4) C23 34(5) 25(4) 27(5) 2(3) 2(4) 7(4) C24 87(8) 82(7) 42(6) 31(5) 23(6) 40(6) C25 45(6) 47(6) 60(7) 1(5) 9(5) 15(5) C26 52(6) 36(5) 53(6) 6(4) 0(5) 13(4) C27 31(4) 21(4) 31(5) 5(3) 1(3) 7(3) C28 40(5) 31(5) 25(5) 3(4) 8(4) 2(4)

PAGE 96

96 Table B 17. Continued Atom U11 U22 U33 U23 U13 U12 C29 42(6) 53(6) 60(6) 5(5) 22(5) 1(5) C30 68(7) 47(6) 45(6) 14(4) 13(5) 5(5) C31 66(7) 39(5) 51(6) 2(4) 22(5) 17(5) C32 25(4) 26(4) 29(5) 3(3) 0(4) 11(3) C33 29(4) 27(4) 21(4) 4(3) 10(3) 1(3) C34 38(5) 24(4) 20(4) 3(3) 7(4) 10(4) C35 37(5) 42(5) 24(5) 3(4) 0(4) 13(4) C36 33(5) 26(4) 29(5) 11(4) 0(4) 2(4) C37 26(4) 25(4) 18(4) 9(3) 1(3) 4(3) C38 26(4) 14(4) 37(5) 4(3) 6(4) 3(3) C39 32(4) 13(4) 24(4) 1(3) 8(3) 1(3) C40 22(4) 28(4) 36(5) 2(4) 4(3) 2(4) C41 32(5) 45(5) 43(6) 13(4) 5(4) 2(4) C42 32(5) 34(5) 55(6) 12(4) 22(4) 5(4) C43 37(5) 29(5) 34(5) 2(4) 12(4) 7(4) C44 31(5) 53(6) 37(5) 1(4) 1(4) 0(4) C45 64(7) 66(7) 33(5) 30(5) 0(5) 4(5) C46 51(6) 68(7) 43(6) 14(5) 6(5) 3(5) C47 36(6) 127(9) 46(6) 16(6) 9(4) 1(6) C48 24(4) 30(4) 18(4) 9(3) 1(3) 2(4) C49 18(4) 37(5) 16(4) 1(3) 1(3) 3(3) C50 32(5) 26(5) 31(5) 2(3) 3(4) 6(4) C51 36(5) 34(5) 60(6) 6(4) 11(4) 6(4) C52 26(5) 67(7) 62(6) 5(5) 18(4) 12(5) C53 30(5) 46(5) 41(5) 10(4) 1(4) 4(4) C54 50(6) 14(4) 74(7) 7(4) 16(5) 7(4) C55 179(13) 32(6) 103(10) 29(6) 56(9) 15(7) C56 53(7) 33(6) 194(13) 23(7) 12(8) 19(5) C57 91(9) 23(5) 123(10) 15(5) 19(7) 12(5) C58 44(5) 20(4) 17(4) 1(3) 10(4) 14(4) C59 49(5) 29(4) 17(4) 3(3) 13(4) 6(4) C60 58(6) 34(5) 28(5) 2(4) 12(4) 18(4) C61 73(7) 30(5) 53(6) 5(4) 11(5) 13(5) C62 63(7) 44(6) 42(6) 17(4) 4(5) 2(5) C63 54(6) 26(4) 27(5) 8(4) 21(4) 3(4) C64 37(5) 30(5) 18(4) 3(3) 3(3) 8(4) C65 33(5) 20(4) 16(4) 4(3) 5(3) 1(3) C66 24(4) 32(5) 28(5) 7(3) 6(4) 0(4)

PAGE 97

97 Table B 17. Continued Atom U11 U22 U33 U23 U13 U12 C67 40(6) 61(6) 31(5) 2(4) 9(4) 5(5) C68 30(5) 67(6) 40(6) 1(5) 1(4) 4(5) C69 53(6) 55(6) 35(5) 4(5) 16(5) 24(5) C70 47(5) 37(5) 25(5) 9(4) 3(4) 10(4) C71 244(18) 223(16) 119(11) 131(11) 144(12) 199(15) C72 350(20) 128(12) 53(8) 47(8) 57(10) 179(14) C73 67(8) 149(11) 54(7) 45(7) 5(6) 12(8) C74 40(5) 27(4) 22(4) 3(3) 12(4) 12(4) C75 48(5) 21(4) 24(4) 3(3) 11(4) 12(4) C76 42(5) 39(5) 30(5) 3(4) 2(4) 11(4) C77 50(6) 51(6) 30(5) 8(4) 2(4) 10(5) C78 56(7) 76(7) 25(5) 3(5) 2(5) 36(6) C79 65(7) 30(5) 42(6) 4(4) 11(5) 12(5) C80 37(5) 42(5) 33(5) 5(4) 1(4) 6(4) C81 57(7) 73(7) 49(6) 11(5) 14(5) 12(5) C82 56(6) 40(5) 48(6) 5(4) 10(5) 7(4) C83 58(6) 43(6) 67(7) 31(5) 16(5) 2(5) C84 37(5) 20(4) 27(5) 3(3) 7(4) 4(3) C85 45(5) 22(4) 28(5) 0(4) 10(4) 6(4) C86 65(6) 56(6) 28(5) 9(4) 13(4) 14(5) C87 80(7) 41(5) 48(6) 14(4) 20(5) 0(5) C88 56(6) 59(6) 42(6) 0(5) 22(5) 11(5)

PAGE 98

98 Table B 18. Torsion angles (in deg) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 5) Atoms Angle Atoms Angle O2 W1 O1 C8 110.8(6) O3 W1 C1 C2 105.3(6) C27 W1 O1 C8 37.7(6) O2 W1 C1 C6 18.1(5) O3 W1 O1 C8 149.8(5) C27 W1 C1 C6 121.9(5) C1 W1 O1 C8 58.0(5) O1 W1 C1 C6 145.1(5) C27 W1 O2 C18 120.3(7) O3 W1 C1 C6 70.8(7) O1 W1 O2 C18 27.1(10) C6 C1 C2 C3 1.6(9) O3 W1 O2 C18 125.2(7) W1 C1 C2 C3 174.6(5) C1 W1 O2 C18 25.7(7) C6 C1 C2 C7 179.0(6) O2 W1 O3 C39 41.0(6) W1 C1 C2 C7 2.7(8) C27 W1 O3 C39 148.8(6) C1 C2 C3 C4 0.7(10) O1 W1 O3 C39 118.1(6) C7 C2 C3 C4 178.2(6) C1 W1 O3 C39 44.8(8) C2 C3 C4 C5 1.3(11) O6 W2 O4 C49 54.1(8) C3 C4 C5 C6 2.2(11) C84 W2 O4 C49 160.2(8) C4 C5 C6 C1 1.2(10) O5 W2 O4 C49 103.6(8) C4 C5 C6 C17 178.2(6) C58 W2 O4 C49 30.2(12) C2 C1 C6 C5 0.8(9) O6 W2 O5 C65 115.8(6) W1 C1 C6 C5 175.3(5) C84 W2 O5 C65 35.2(5) C2 C1 C6 C17 176.0(6) O4 W2 O5 C65 142.3(5) W1 C1 C6 C17 7.9(9) C58 W2 O5 C65 59.7(5) C3 C2 C7 C12 31.8(9) C84 W2 O6 C75 110.4(8) C1 C2 C7 C12 150.8(7) O5 W2 O6 C75 39.8(11) C3 C2 C7 C8 144.3(7) O4 W2 O6 C75 140.4(8) C1 C2 C7 C8 33.1(10) C58 W2 O6 C75 16.7(8) W1 O1 C8 C7 44.8(8) O2 W1 C1 C2 165.8(5) W1 O1 C8 C9 136.5(5) C27 W1 C1 C2 62.0(5) C12 C7 C8 O1 172.4(6) O1 W1 C1 C2 31.0(5) C2 C7 C8 O1 11.3(10) C12 C7 C8 C9 9.0(10) C17 C18 C19 C20 4.1(10) C2 C7 C8 C9 167.3(6) O2 C18 C19 C23 6.8(10) O1 C8 C9 C10 173.1(6) C17 C18 C19 C23 175.8(6) C7 C8 C9 C10 8.3(10) C18 C19 C20 C21 0.4(10) O1 C8 C9 C13 3.3(10) C23 C19 C20 C21 179.7(7) C7 C8 C9 C13 175.3(7) C19 C20 C21 C22 2.8(12) C8 C9 C10 C11 1.8(11) C20 C21 C22 C17 1.0(11) C13 C9 C10 C11 178.3(7) C18 C17 C22 C21 3.1(10) C9 C10 C11 C12 3.7(12) C6 C17 C22 C21 175.0(6) C10 C11 C12 C7 3.2(12) C20 C19 C23 C25 116.2(7)

PAGE 99

99 Table B 18. Continued Atoms Angle Atoms Angle C8 C7 C12 C11 2.9(11) C18 C19 C23 C25 63.9(9) C2 C7 C12 C11 173.3(7) C20 C19 C23 C24 122.2(8) C10 C9 C13 C14 90.4(9) C18 C19 C23 C24 57.7(9) C8 C9 C13 C14 85.7(9) C20 C19 C23 C26 2.5(9) C10 C9 C13 C16 146.1(7) C18 C19 C23 C26 177.4(6) C8 C9 C13 C16 37.8(11) O2 W1 C27 C28 22.5(9) C10 C9 C13 C15 28.3(10) O1 W1 C27 C28 146.3(9) C8 C9 C13 C15 155.6(7) O3 W1 C27 C28 124.3(8) C5 C6 C17 C18 166.0(6) C1 W1 C27 C28 62.2(9) C1 C6 C17 C18 10.8(10) W1 C27 C28 C31 7.3(12) C5 C6 C17 C22 11.9(9) W1 C27 C28 C30 130.2(8) C1 C6 C17 C22 171.4(6) W1 C27 C28 C29 113.0(8) W1 O2 C18 C17 14.9(10) C37 C32 C33 C34 1.8(10) W1 O2 C18 C19 162.7(5) C37 C32 C33 C38 172.6(6) C22 C17 C18 O2 171.7(5) C32 C33 C34 C35 2.0(10) C6 C17 C18 O2 10.4(9) C38 C33 C34 C35 172.9(6) C22 C17 C18 C19 5.8(10) C33 C34 C35 C36 1.1(10) C6 C17 C18 C19 172.2(6) C34 C35 C36 C37 0.1(11) O2 C18 C19 C20 173.3(6) C35 C36 C37 C32 0.4(10) C35 C36 C37 C48 177.7(6) C36 C37 C48 C53 77.8(9) C33 C32 C37 C36 0.6(10) C32 C37 C48 C53 99.6(8) C33 C32 C37 C48 176.9(6) C36 C37 C48 C49 103.6(8) C32 C33 C38 C43 116.4(7) C32 C37 C48 C49 79.0(8) C34 C33 C38 C43 54.4(9) W2 O4 C49 C50 156.0(6) C32 C33 C38 C39 61.9(9) W2 O4 C49 C48 23.8(11) C34 C33 C38 C39 127.4(7) C53 C48 C49 O4 176.8(6) W1 O3 C39 C38 33.5(9) C37 C48 C49 O4 4.6(9) W1 O3 C39 C40 143.2(6) C53 C48 C49 C50 3.0(10) C43 C38 C39 O3 173.5(6) C37 C48 C49 C50 175.6(7) C33 C38 C39 O3 8.2(9) O4 C49 C50 C51 178.1(7) C43 C38 C39 C40 3.2(9) C48 C49 C50 C51 1.6(11) C33 C38 C39 C40 175.2(6) O4 C49 C50 C54 0.3(11) O3 C39 C40 C41 174.2(6) C48 C49 C50 C54 179.5(7) C38 C39 C40 C41 2.4(10) C49 C50 C51 C52 0.3(12) O3 C39 C40 C44 8.6(10) C54 C50 C51 C52 178.2(8) C38 C39 C40 C44 174.8(6) C50 C51 C52 C53 0.5(13) C39 C40 C41 C42 0.7(11) C49 C48 C53 C52 3.1(11) C44 C40 C41 C42 177.9(7) C37 C48 C53 C52 175.5(7)

PAGE 100

100 Table B 18. Continued Atoms Angle Atoms Angle C40 C41 C42 C43 2.8(12) C51 C52 C53 C48 1.9(12) C41 C42 C43 C38 2.0(12) C51 C50 C54 C55 116.1(9) C39 C38 C43 C42 0.9(10) C49 C50 C54 C55 61.7(10) C33 C38 C43 C42 177.5(7) C51 C50 C54 C57 2.3(11) C41 C40 C44 C45 119.1(8) C49 C50 C54 C57 180.0(8) C39 C40 C44 C45 58.0(9) C51 C50 C54 C56 122.2(9) C41 C40 C44 C46 119.7(8) C49 C50 C54 C56 60.0(10) C39 C40 C44 C46 63.3(9) O6 W2 C58 C63 14.6(6) C41 C40 C44 C47 0.5(11) C84 W2 C58 C63 117.6(6) C39 C40 C44 C47 177.5(7) O5 W2 C58 C63 146.6(6) O4 W2 C58 C63 72.4(9) O5 C65 C66 C67 171.3(6) O6 W2 C58 C59 171.3(5) C64 C65 C66 C67 8.2(10) C84 W2 C58 C59 68.2(5) O5 C65 C66 C70 8.5(10) O5 W2 C58 C59 27.6(5) C64 C65 C66 C70 172.0(7) O4 W2 C58 C59 101.8(7) C65 C66 C67 C68 2.3(11) C63 C58 C59 C60 4.6(10) C70 C66 C67 C68 177.9(7) W2 C58 C59 C60 170.1(5) C66 C67 C68 C69 3.5(13) C63 C58 C59 C64 176.5(6) C67 C68 C69 C64 3.7(13) W2 C58 C59 C64 8.8(9) C65 C64 C69 C68 1.8(11) C58 C59 C60 C61 1.4(11) C59 C64 C69 C68 176.6(7) C64 C59 C60 C61 179.6(7) C65 C66 C70 C72 72.9(11) C59 C60 C61 C62 2.0(12) C67 C66 C70 C72 106.8(11) C60 C61 C62 C63 2.1(13) C65 C66 C70 C73 165.5(8) C59 C58 C63 C62 4.4(10) C67 C66 C70 C73 14.7(11) W2 C58 C63 C62 169.8(5) C65 C66 C70 C71 46.4(12) C59 C58 C63 C74 173.9(6) C67 C66 C70 C71 133.8(10) W2 C58 C63 C74 11.9(10) C58 C63 C74 C79 178.7(7) C61 C62 C63 C58 1.2(12) C62 C63 C74 C79 0.3(10) C61 C62 C63 C74 177.2(8) C58 C63 C74 C75 0.3(10) C60 C59 C64 C65 141.7(7) C62 C63 C74 C75 178.7(6) C58 C59 C64 C65 37.2(10) W2 O6 C75 C76 169.2(6) C60 C59 C64 C69 36.6(10) W2 O6 C75 C74 10.2(11) C58 C59 C64 C69 144.4(7) C79 C74 C75 O6 177.9(6) W2 O5 C65 C66 131.2(5) C63 C74 C75 O6 3.1(9) W2 O5 C65 C64 48.4(7) C79 C74 C75 C76 1.4(10) C69 C64 C65 O5 171.5(6) C63 C74 C75 C76 177.6(7) C59 C64 C65 O5 10.0(9) O6 C75 C76 C77 179.1(6) C69 C64 C65 C66 8.0(10) C74 C75 C76 C77 0.2(11)

PAGE 101

101 Table B 18. Continued Atoms Angle C59 C64 C65 C66 170.4(6) C74 C75 C76 C80 179.1(6) C75 C76 C77 C78 1.1(11) C80 C76 C77 C78 179.5(7) C76 C77 C78 C79 1.3(12) C77 C78 C79 C74 0.0(12) C75 C74 C79 C78 1.2(11) C63 C74 C79 C78 177.8(7) C77 C76 C80 C82 116.0(8) C75 C76 C80 C82 64.7(9) C77 C76 C80 C83 121.9(8) C75 C76 C80 C83 57.4(10) C77 C76 C80 C81 3.7(10) C75 C76 C80 C81 175.6(7) O6 W2 C84 C85 20.8(9) O5 W2 C84 C85 148.1(9) O4 W2 C84 C85 121.1(9) C58 W2 C84 C85 62.9(9) W2 C84 C85 C87 115.2(9) W2 C84 C85 C88 124.0(9) W2 C84 C85 C86 4.2(12) C63 C74 C75 O6 3.1(9) O6 C75 C76 C80 1.6(11)

PAGE 102

102 Figure B 5. Asymetric unit of [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6 ). Ellipsoids are shown at 50% probability level. Benzene and hydrogens omitted for clarity. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 O2 Mg1 O4 C30 C31 O3 C27 C28 O1 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26

PAGE 103

103 X ray E xperimental for [(tBuOCHO)Mg{O(CH2CH2)2O}]n (6) Data were collected at 173 K on a Siemens SMART PLATFORM equipped with A CCD area detector and a graphite monochromator utilizing MoK ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was col scan method (0.3frame width). The first 50 frames were re measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure was solved by the author using Direct Methods in SHELXTL6, and refined using full matrix least squares. The nonH atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal po sitions and were riding on their respective carbon atoms. A total of 865 parameters were refined in the final cycle of refinement using 8981 1 and wR2 of 4.85% and 9.19%, respectively. Refinement was done using F2.

PAGE 104

104 T able B 19. Crystal data, structure solution, and refinement for [(tBuOCHO)Mg {O(CH2CH2)2O}]n ( 6 ) identification code pelo11 empirical formula C35H43O5Mg formula weight 568.00 T (K) 173(2) ) 0.71073 crystal system Triclinic Space group P 1 a () 9.9603(13) b () 13.3947(16) c () 13.4559(13) (deg) 69.908(2) (deg) 70.504(2) (deg) 72.835(2) V (3) 1555.9(3) Z 2 calcd(g mm-3) 1.212 crystal size (mm) 0.34 x 0.09 x 0.05 abs coeff (mm1) 0.097 F (000) 610 range for data collection (deg) 1.67 to 27.50 limiting indices 12 14 17 no. of reflns collcd 10652 no. of ind reflns ( Rint) 6970 (0.0470) completeness to = 27.50 97.7 % absorption corr Integration refinement method Full matrix least squares on F2 data / restraints / parameters 6970 / 0 / 370 R 1, wR 0.0578, 0.1432 R 1, wR 2 (all data) 0.1128, 0.1642 GOF on F2 0.933 largest diff. peak and hole (e.3) 0.628 and 0.620 o c o o 2 F c 2 ) 2 o 2 ) 2 ]] 1/2 o 2 F c 2 ) 2 ] / (n p)] 1/2 2 (F o 2 )+(m*p)2+n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 105

105 Table B 20. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6). U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) Mg1 8144(1) 5557(1) 3134(1) 33(1) O1 9182(2) 4320(1) 2634(1) 32(1) O2 8222(2) 7031(1) 2822(1) 30(1) O3 8968(3) 5057(2) 4474(2) 73(1) O4 6137(2) 5303(1) 4111(2) 62(1) C1 7349(3) 6171(2) 1434(2) 28(1) C2 6313(3) 7104(2) 1605(2) 31(1) C3 4855(3) 7085(2) 1785(2) 43(1) C4 4479(3) 6164(2) 1780(3) 51(1) C5 5512(3) 5244(2) 1650(2) 44(1) C6 6978(3) 5226(2) 1470(2) 32(1) C7 6783(2) 8076(2) 1561(2) 28(1) C8 7816(2) 7974(2) 2118(2) 25(1) C9 8382(2) 8903(2) 1940(2) 28(1) C10 7806(3) 9888(2) 1284(2) 34(1) C11 6721(3) 9995(2) 804(2) 39(1) C12 6229(3) 9089(2) 936(2) 34(1) C13 9551(3) 8832(2) 2485(2) 32(1) C14 8865(3) 8666(2) 3723(2) 38(1) C15 10855(3) 7909(2) 2270(2) 38(1) C16 10160(3) 9876(2) 2051(2) 47(1) C17 8143(3) 4263(2) 1294(2) 29(1) C18 9269(3) 3895(2) 1842(2) 28(1) C19 10454(3) 3054(2) 1553(2) 30(1) C20 10385(3) 2568(2) 811(2) 34(1) C21 9244(3) 2881(2) 334(2) 37(1) C22 8140(3) 3733(2) 566(2) 36(1) C23 11753(3) 2658(2) 2065(2) 34(1) C24 12389(3) 3620(2) 1955(2) 44(1) C25 13006(3) 1878(2) 1514(2) 48(1) C26 11246(3) 2026(2) 3274(2) 40(1) C27 10015(5) 4060(2) 4786(3) 73(1) C28 8620(5) 5695(2) 5234(3) 74(1) C29 5789(5) 4249(3) 4473(4) 156(3) C30 4957(4) 6083(2) 4570(3) 107(2) C31 7419(3) 1690(2) 3952(3) 55(1)

PAGE 106

106 Table B 20. Continued Atom X Y Z U(eq) C32 7643(3) 1291(2) 4981(3) 57(1) C33 6531(3) 958(2) 5875(3) 55(1) C34 5205(3) 1029(2) 5733(3) 56(1) C35 4986(3) 1415(3) 4706(3) 61(1) C36 6099(4) 1756(2) 3804(3) 59(1)

PAGE 107

107 Table B 21. Bond lengths (in ) for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) Bond Length Bond Length Mg1 O1 1.8857(17) C11 C12 1.375(3) Mg1 O2 1.8915(17) C13 C15 1.532(3) Mg1 O4 2.044(2) C13 C14 1.539(3) Mg1 O3 2.050(2) C13 C16 1.539(3) Mg1 C1 2.464(2) C17 C22 1.394(3) O1 C18 1.340(3) C17 C18 1.422(3) O2 C8 1.338(3) C18 C19 1.422(3) O3 C28 1.445(3) C19 C20 1.394(3) O3 C27 1.461(3) C19 C23 1.538(3) O4 C29 1.432(4) C20 C21 1.379(3) O4 C30 1.445(3) C21 C22 1.372(3) C1 C2 1.399(3) C23 C25 1.530(3) C1 C6 1.401(3) C23 C24 1.541(3) C2 C3 1.396(3) C23 C26 1.542(3) C2 C7 1.485(3) C27 C28#1 1.480(5) C3 C4 1.393(3) C28 C27#1 1.480(5) C4 C5 1.375(4) C29 C30#2 1.254(5) C5 C6 1.392(3) C30 C29#2 1.254(5) C6 C17 1.487(3) C31 C36 1.368(4) C7 C12 1.391(3) C31 C32 1.371(4) C7 C8 1.414(3) C32 C33 1.381(4) C8 C9 1.430(3) C33 C34 1.368(4) C9 C10 1.393(3) C34 C35 1.368(4) C9 C13 1.535(3) C35 C36 1.390(4) C10 C11 1.384(3) Symmetry transformations used to generate equivalent atoms: #1 x+2, y+1, z+1 #2 x+1, y+1, z+1

PAGE 108

108 Table B 22. Bond angles (in deg) for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) Bond Angle Bond Angle O1 Mg1 O2 139.75(8) C5 C6 C17 122.7(2) O1 Mg1 O4 109.39(8) C1 C6 C17 119.7(2) O2 Mg1 O4 109.60(8) C12 C7 C8 120.2(2) O1 Mg1 O3 94.36(8) C12 C7 C2 119.2(2) O2 Mg1 O3 94.47(8) C8 C7 C2 120.6(2) O4 Mg1 O3 91.16(11) O2 C8 C7 120.4(2) O1 Mg1 C1 83.87(8) O2 C8 C9 120.7(2) O2 Mg1 C1 84.30(7) C7 C8 C9 118.9(2) O4 Mg1 C1 93.34(9) C10 C9 C8 117.9(2) O3 Mg1 C1 175.49(10) C10 C9 C13 120.8(2) C18 O1 Mg1 138.27(15) C8 C9 C13 121.3(2) C8 O2 Mg1 137.33(15) C11 C10 C9 122.7(2) C28 O3 C27 109.7(2) C12 C11 C10 119.1(2) C28 O3 Mg1 123.37(19) C11 C12 C7 121.0(2) C27 O3 Mg1 126.87(16) C15 C13 C9 111.49(19) C29 O4 C30 111.9(2) C15 C13 C14 110.5(2) C29 O4 Mg1 121.05(18) C9 C13 C14 108.75(19) C30 O4 Mg1 126.99(17) C15 C13 C16 106.3(2) C2 C1 C6 122.9(2) C9 C13 C16 112.4(2) C2 C1 Mg1 99.79(15) C14 C13 C16 107.26(19) C6 C1 Mg1 100.38(15) C22 C17 C18 120.0(2) C3 C2 C1 117.5(2) C22 C17 C6 119.4(2) C3 C2 C7 122.5(2) C18 C17 C6 120.6(2) C1 C2 C7 120.0(2) O1 C18 C17 120.0(2) C4 C3 C2 120.1(2) O1 C18 C19 121.2(2) C5 C4 C3 121.3(2) C17 C18 C19 118.8(2) C4 C5 C6 120.5(2) C20 C19 C18 117.8(2) C5 C6 C1 117.7(2) C20 C19 C23 120.4(2) C18 C19 C23 121.8(2) O3 C27 C28#1 111.0(3) C21 C20 C19 123.1(2) O3 C28 C27#1 108.2(3) C22 C21 C20 119.1(2) C30#2C29 O4 120.1(4) C21 C22 C17 120.9(2) C29#2 C30 O4 117.5(3) C25 C23 C19 113.0(2) C36 C31 C32 120.3(3) C25 C23 C24 106.3(2) C31 C32 C33 120.1(3) C19 C23 C24 110.7(2) C34 C33 C32 119.9(3) C25 C23 C26 106.6(2) C35 C34 C33 120.1(3) C19 C23 C26 108.8(2) C34 C35 C36 120.2(3) C24 C23 C26 111.4(2) C31 C36 C35 119.4(3)

PAGE 109

109 Table B 23. Anisotropic displacement parameters (2x 103) for [(tBuOCHO)Mg {O(CH2CH2)2O}]n ( 6 ). The anisotropic displacement factor exponent takes the form: 2 [ h2a*2U11 + ... + 2 h k a* b* U12 ]. Atom U11 U22 U33 U23 U13 U12 Mg1 48(1) 24(1) 25(1) 5(1) 8(1) 6(1) O1 39(1) 28(1) 27(1) 8(1) 10(1) 4(1) O2 38(1) 22(1) 28(1) 3(1) 14(1) 3(1) O3 150(2) 28(1) 48(1) 13(1) 60(1) 12(1) O4 73(1) 25(1) 59(1) 18(1) 30(1) 17(1) C1 30(1) 30(1) 23(1) 4(1) 8(1) 7(1) C2 28(1) 32(1) 32(1) 8(1) 11(1) 3(1) C3 29(2) 40(2) 63(2) 21(1) 14(1) 0(1) C4 29(2) 50(2) 83(2) 26(2) 17(2) 8(1) C5 33(2) 39(2) 66(2) 20(1) 12(1) 11(1) C6 32(1) 33(1) 33(1) 7(1) 11(1) 8(1) C7 26(1) 25(1) 30(1) 7(1) 5(1) 3(1) C8 25(1) 24(1) 24(1) 7(1) 5(1) 2(1) C9 29(1) 26(1) 26(1) 7(1) 5(1) 4(1) C10 42(2) 23(1) 34(1) 5(1) 9(1) 7(1) C11 49(2) 23(1) 41(2) 4(1) 22(1) 4(1) C12 35(1) 32(1) 38(2) 11(1) 18(1) 3(1) C13 33(1) 29(1) 35(1) 10(1) 8(1) 8(1) C14 43(2) 39(2) 36(2) 13(1) 13(1) 6(1) C15 30(1) 44(2) 43(2) 16(1) 12(1) 4(1) C16 49(2) 47(2) 51(2) 13(1) 13(1) 21(1) C17 31(1) 25(1) 31(1) 6(1) 7(1) 9(1) C18 34(1) 24(1) 24(1) 6(1) 3(1) 11(1) C19 35(1) 24(1) 25(1) 2(1) 4(1) 9(1) C20 39(2) 25(1) 30(1) 7(1) 1(1) 6(1) C21 48(2) 32(1) 35(2) 11(1) 11(1) 12(1) C22 41(2) 33(1) 39(2) 7(1) 17(1) 10(1) C23 33(1) 31(1) 33(1) 8(1) 7(1) 2(1) C24 40(2) 46(2) 48(2) 10(1) 13(1) 12(1) C25 41(2) 51(2) 44(2) 16(1) 12(1) 6(1) C26 43(2) 34(2) 36(2) 4(1) 14(1) 3(1) C27 146(4) 22(2) 61(2) 13(1) 60(2) 11(2) C28 139(4) 41(2) 49(2) 19(2) 47(2) 3(2) C29 155(4) 34(2) 181(5) 48(3) 123(4) 47(2) C30 114(3) 30(2) 112(3) 30(2) 71(3) 23(2) C31 51(2) 35(2) 70(2) 19(2) 1(2) 10(1)

PAGE 110

110 Table B 23. Continued Atom U11 U22 U33 U23 U13 U12 C32 46(2) 46(2) 79(2) 16(2) 18(2) 9(2) C33 57(2) 41(2) 64(2) 16(2) 16(2) 3(2) C34 52(2) 47(2) 67(2) 27(2) 6(2) 15(2) C35 44(2) 64(2) 81(3) 39(2) 12(2) 6(2) C36 66(2) 49(2) 65(2) 25(2) 18(2) 3(2)

PAGE 111

111 Table B 24. Torsion angles (in deg) for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) Atoms Angle Atoms Angle O2 Mg1 O1 C18 83.1(2) C6 C1 C2 C3 2.0(4) O4 Mg1 O1 C18 81.9(2) Mg1 C1 C2 C3 111.2(2) O3 Mg1 O1 C18 174.7(2) C6 C1 C2 C7 179.6(2) C1 Mg1 O1 C18 9.5(2) Mg1 C1 C2 C7 70.4(2) O1 Mg1 O2 C8 82.9(2) C1 C2 C3 C4 0.7(4) O4 Mg1 O2 C8 82.2(2) C7 C2 C3 C4 177.7(3) O3 Mg1 O2 C8 175.0(2) C2 C3 C4 C5 3.1(5) C1 Mg1 O2 C8 9.4(2) C3 C4 C5 C6 2.9(5) O1 Mg1 O3 C28 177.9(3) C4 C5 C6 C1 0.3(4) O2 Mg1 O3 C28 37.2(3) C4 C5 C6 C17 178.3(3) O4 Mg1 O3 C28 72.5(3) C2 C1 C6 C5 2.2(4) O1 Mg1 O3 C27 0.9(3) Mg1 C1 C6 C5 111.1(2) O2 Mg1 O3 C27 139.8(3) C2 C1 C6 C17 179.2(2) O4 Mg1 O3 C27 110.4(3) Mg1 C1 C6 C17 70.3(2) O1 Mg1 O4 C29 10.4(4) C3 C2 C7 C12 46.9(3) O2 Mg1 O4 C29 179.8(3) C1 C2 C7 C12 131.4(2) O3 Mg1 O4 C29 84.6(3) C3 C2 C7 C8 135.1(3) C1 Mg1 O4 C29 95.1(3) C1 C2 C7 C8 46.6(3) O1 Mg1 O4 C30 173.4(3) Mg1 O2 C8 C7 17.9(3) O2 Mg1 O4 C30 3.6(3) Mg1 O2 C8 C9 164.09(16) O3 Mg1 O4 C30 91.5(3) C12 C7 C8 O2 171.9(2) C1 Mg1 O4 C30 88.8(3) C2 C7 C8 O2 10.1(3) O1 Mg1 C1 C2 172.43(16) C12 C7 C8 C9 6.1(3) O2 Mg1 C1 C2 46.12(15) C2 C7 C8 C9 171.9(2) O4 Mg1 C1 C2 63.27(16) O2 C8 C9 C10 173.5(2) O1 Mg1 C1 C6 46.14(16) C7 C8 C9 C10 4.5(3) O2 Mg1 C1 C6 172.41(16) O2 C8 C9 C13 4.5(3) O4 Mg1 C1 C6 63.02(16) C7 C8 C9 C13 177.5(2) C8 C9 C10 C11 0.0(4) C18 C19 C20 C21 1.4(3) C13 C9 C10 C11 178.0(2) C23 C19 C20 C21 179.4(2) C9 C10 C11 C12 3.0(4) C19 C20 C21 C22 2.2(4) C10 C11 C12 C7 1.4(4) C20 C21 C22 C17 1.6(4) C8 C7 C12 C11 3.2(4) C18 C17 C22 C21 2.5(4) C2 C7 C12 C11 174.8(2) C6 C17 C22 C21 176.1(2) C10 C9 C13 C15 129.7(2) C20 C19 C23 C25 11.0(3) C8 C9 C13 C15 52.4(3) C18 C19 C23 C25 171.1(2) C10 C9 C13 C14 108.2(2) C20 C19 C23 C24 130.1(2) C8 C9 C13 C14 69.8(3) C18 C19 C23 C24 52.1(3)

PAGE 112

112 Table B 24. Continued Atoms Angle Atoms Angle C10 C9 C13 C16 10.4(3) C20 C19 C23 C26 107.2(2) C8 C9 C13 C16 171.6(2) C18 C19 C23 C26 70.7(3) C5 C6 C17 C22 46.5(4) C28 O3 C27 C28#1 60.5(4) C1 C6 C17 C22 132.0(2) Mg1 O3 C27 C28#1 116.9(3) C5 C6 C17 C18 134.8(3) C27 O3 C28 C27#1 58.8(4) C1 C6 C17 C18 46.6(3) Mg1 O3 C28 C27#1 118.7(3) Mg1 O1 C18 C17 17.3(3) C30 O4 C29 C30#2 36.1(8) Mg1 O1 C18 C19 164.52(17) Mg1 O4 C29 C30#2 140.6(5) C22 C17 C18 O1 172.2(2) C29 O4 C30 C29#2 35.1(8) C6 C17 C18 O1 9.2(3) Mg1 O4 C30 C29#2 141.4(5) C22 C17 C18 C19 6.1(3) C36 C31 C32 C33 0.4(4) C6 C17 C18 C19 172.6(2) C31 C32 C33 C34 0.1(4) O1 C18 C19 C20 172.8(2) C32 C33 C34 C35 0.9(4) C17 C18 C19 C20 5.4(3) C33 C34 C35 C36 1.2(4) O1 C18 C19 C23 5.2(3) C32 C31 C36 C35 0.0(4) C17 C18 C19 C23 176.6(2) C34 C35 C36 C31 0.8(4) Symmetry transformations used to generate equivalent atoms: #1 x+2, y+1, z+1 #2 x+1, y+1, z+1

PAGE 113

113 Figure B 6. Molecular structure of [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8). Ellipsoids are s hown at the 5 0% probability level. Hydrogens and benzene are omitted for clarity. C1 C6 C2 C4 C5 C3 O 1 O2 C1 7 C1 8 C26 C23 C25 C24 C20 C 21 C22 C1 9 C7 C8 C1 4 C1 2 C1 1 C1 0 C1 6 C1 3 C1 5 W 1 O5 N 1 C54 C53 C56 N2 C55 C37 O4 O3 C30 C 3 1 C29 C27 C28 C32 C44 C49 C 52 C50 C 5 1 C46 C47 C48 C34 C33 C 4 1 C 42 C40 C38 W2 C36 C39 C43 C45 C9

PAGE 114

114 Figure B 7. Packing diagram for 8

PAGE 115

115 X ray E xperimental for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] (8) Data were collected at 173 K on a Siemen s SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was scan method (0.3frame width). The first 50 frames were re measured at the end of data collection to mon itor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure was solved by the author using the Patterson Method in SHELXTL6, and refi ned using full matrix least squares. The nonH atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. A total of 865 parameters were refined in the final cycle o f refinement using 10618 1 and wR2 of 2.68% and 7.24%, respectively. Refinement was done using F2.

PAGE 116

116 Table B 25. Crystal data, structure solution, and refinement for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) identificati on code pelo9a empirical formula C62H74N2O5W2 formula weight 1294.93 T (K) 173(2) ) 0.71073 crystal system Triclinic space group P 1 a () 12.6445(7) b () 12.6890(7) c () 18.1788(10) (deg) 102.7360(10) (deg) 96.9490(10) (deg) 105.3440(10) V (3) 2693.2(3) Z 2 calcd (g mm3) 1.597 crystal size (mm) 0.19 x 0.18 x 0.09 abs coeff (mm1) 4.319 F (000) 1296 range for data collection 1.17 to 27.50 limiting indicies 16 9 23 no. of reflns collcd 18368 no. of ind reflns 12501 [R(int) = 0.0372] completeness to = 28.03 97.3 % absorption corr Integration refinement method Full matrix least squares on F2 data / restraints / parameters 12501 / 0 / 640 R 1, wR R1 = 0.0268, wR2 = 0.0724 R 1, wR 2 (all data) R1 = 0.0328, wR2 = 0.0766 GOF on F2 0.684 largest diff. peak and hole (e.3) 2.014 and 1.299 o c o o 2 F c 2 ) 2 o 2 ) 2 ]] 1/2 o 2 F c 2 ) 2 ] / (n p)] 1/2 2 (F o 2 )+(m*p)2+n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 117

117 Table B 26. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8). U (eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) W1 2069(1) 4567(1) 3039(1) 17(1) W2 3372(1) 5187(1) 2182(1) 16(1) N1 2440(3) 6082(3) 2751(2) 32(1) N2 1763(3) 4111(3) 1853(2) 32(1) O1 2127(2) 5316(2) 4111(1) 23(1) O2 1292(2) 3017(2) 3049(1) 24(1) O3 4615(2) 6568(2) 2371(1) 22(1) O4 3850(2) 4292(2) 1340(1) 20(1) O5 3604(3) 4555(3) 3049(2) 54(1) C1 75(3) 4392(3) 3394(2) 26(1) C2 27(3) 5539(3) 3603(2) 27(1) C3 577(3) 5963(4) 3097(2) 35(1) C4 1208(3) 5245(4) 2412(2) 39(1) C5 1230(3) 4128(4) 2184(2) 36(1) C6 654(3) 3671(3) 2675(2) 29(1) C7 736(3) 6236(3) 4347(2) 26(1) C8 1743(3) 6024(3) 4600(2) 22(1) C9 2347(3) 6534(3) 5355(2) 23(1) C10 1977(3) 7352(3) 5812(2) 30(1) C11 1048(4) 7650(3) 5548(2) 34(1) C12 421(3) 7076(3) 4831(2) 32(1) C13 3327(3) 6151(3) 5674(2) 26(1) C14 2918(4) 4891(4) 5622(2) 37(1) C15 4292(3) 6386(4) 5239(2) 33(1) C16 3794(4) 6771(4) 6524(2) 45(1) C17 652(3) 2481(3) 2495(2) 31(1) C18 306(3) 2191(3) 2747(2) 27(1) C19 267(4) 1048(3) 2687(2) 35(1) C20 743(4) 226(4) 2293(3) 47(1) C21 1651(4) 500(4) 1988(3) 54(1) C22 1626(4) 1616(4) 2106(3) 44(1) C23 1265(4) 735(3) 3047(3) 41(1) C24 982(6) 559(4) 2939(4) 70(2) C25 2266(4) 1072(4) 2666(3) 51(1) C26 1568(5) 1302(4) 3913(3) 54(1) C27 3676(3) 6153(3) 831(2) 24(1)

PAGE 118

118 Table B 26. Continued Atom X Y Z U(eq) C28 3492(3) 7179(3) 1155(2) 25(1) C29 2507(3) 7360(3) 852(2) 31(1) C30 1735(3) 6522(3) 258(2) 34(1) C31 1897(3) 5479(3) 13(2) 31(1) C32 2880(3) 5275(3) 284(2) 25(1) C33 4367(3) 8023(3) 1782(2) 24(1) C34 4951(3) 7658(3) 2340(2) 20(1) C35 5912(3) 8422(3) 2871(2) 25(1) C36 6181(3) 9552(3) 2850(2) 31(1) C37 5560(3) 9934(3) 2339(2) 32(1) C38 4665(3) 9167(3) 1804(2) 29(1) C39 6627(3) 8028(3) 3435(2) 28(1) C40 7062(3) 7099(4) 2994(2) 34(1) C41 5947(4) 7580(3) 4006(2) 33(1) C42 7665(4) 9002(4) 3902(3) 42(1) C43 3141(3) 4195(3) 34(2) 24(1) C44 3682(3) 3776(3) 588(2) 20(1) C45 4076(3) 2831(3) 348(2) 21(1) C46 3810(3) 2274(3) 432(2) 26(1) C47 3212(3) 2627(3) 974(2) 31(1) C48 2907(3) 3601(3) 736(2) 29(1) C49 4786(3) 2447(3) 929(2) 24(1) C50 5164(4) 1452(4) 525(2) 41(1) C51 5839(3) 3435(3) 1331(2) 33(1) C52 4111(3) 2060(3) 1514(2) 29(1) C53 3079(7) 7221(6) 3451(5) 87(2) C54 1829(8) 6733(7) 2506(6) 138(5) C55 1603(7) 2773(6) 1432(4) 91(2) C56 916(5) 3985(10) 1284(3) 134(5) C57 5546(11) 598(7) 4548(7) 106(4) C58 4417(12) 40(10) 4308(6) 122(4) C59 3918(10) 627(10) 4785(8) 126(4) C60 162(17) 797(10) 9677(6) 135(4) C61 812(12) 682(13) 9769(8) 131(5) C62 1025(8) 92(15) 10080(8) 138(5)

PAGE 119

119 Table B 27. Bond lengths (in ) for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) Bond Length Bond Length W1 O5 1.942(4) C6 C17 1.473(6) W1 O1 1.955(2) C7 C12 1.403(5) W1 O2 1.958(2) C7 C8 1.414(5) W1 N1 2.053(3) C8 C9 1.407(5) W1 N2 2.065(3) C9 C10 1.398(5) W1 W2 2.49726(19) C9 C13 1.541(5) W2 O5 1.946(3) C10 C11 1.390(6) W2 O3 1.951(2) C11 C12 1.372(6) W2 O4 1.954(2) C13 C14 1.523(5) W2 N1 2.057(3) C13 C15 1.531(5) W2 N2 2.058(3) C13 C16 1.534(5) N1 C54 1.377(7) C17 C22 1.398(5) N1 C53 1.639(8) C17 C18 1.411(6) N2 C56 1.345(6) C18 C19 1.417(5) N2 C55 1.649(8) C19 C20 1.406(6) O1 C8 1.347(4) C19 C23 1.535(7) O2 C18 1.357(4) C20 C21 1.375(8) O3 C34 1.351(4) C21 C22 1.375(7) O4 C44 1.343(4) C23 C25 1.524(7) C1 C2 1.387(5) C23 C26 1.533(7) C1 C6 1.403(5) C23 C24 1.546(6) C2 C3 1.408(5) C27 C32 1.386(5) C2 C7 1.475(5) C27 C28 1.396(5) C3 C4 1.376(6) C28 C29 1.397(5) C4 C5 1.379(6) C28 C33 1.484(5) C5 C6 1.399(5) C29 C30 1.393(5) C30 C31 1.385(6) C58 C59 1.368(14) C31 C32 1.404(5) C59 C57#1 1.303(15) C32 C43 1.482(5) C60 C61 1.274(17) C33 C38 1.390(5) C60 C62#2 1.401(16) C33 C34 1.412(5) C61 C62 1.305(18) C34 C35 1.424(5) C62 C60#2 1.401(16) C35 C36 1.395(5) C39 C42 1.543(5) C35 C39 1.535(5) C43 C48 1.391(5) C36 C37 1.393(5) C43 C44 1.423(5) C37 C38 1.380(5) C44 C45 1.420(5) C39 C41 1.535(5) C45 C46 1.392(5) C39 C40 1.540(5) C45 C49 1.545(5)

PAGE 120

120 Table B 27 Continued Bond Length Bond Length C46 C47 1.392(5) C47 C48 1.386(6) C49 C52 1.526(5) C49 C51 1.535(5) C49 C50 1.535(5) C55 C56 2.006(14) C57 C59#1 1.303(15) C57 C58 1.403(15) Symmetry transformations used to generate equivalent atoms: #1 x, y, z #2 x+1, y+2, z+1

PAGE 121

121 Table B 28. Bond angles (in deg) for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) Bond Angle Bond Angle O5 W1 O1 101.84(13) O3 W2 W1 129.66(7) O5 W1 O2 103.16(13) O4 W2 W1 130.19(7) O1 W1 O2 98.21(10) N1 W2 W1 52.51(9) O5 W1 N1 90.02(14) N2 W2 W1 52.85(9) O1 W1 N1 91.98(12) C54 N1 C53 85.0(6) O2 W1 N1 161.22(12) C54 N1 W1 135.3(4) O5 W1 N2 89.79(14) C53 N1 W1 116.6(3) O1 W1 N2 163.12(11) C54 N1 W2 130.4(4) O2 W1 N2 90.89(12) C53 N1 W2 119.2(3) N1 W1 N2 75.65(14) W1 N1 W2 74.83(12) O5 W1 W2 50.09(10) C56 N2 C55 83.5(6) O1 W1 W2 127.71(7) C56 N2 W2 132.8(4) O2 W1 W2 127.88(7) C55 N2 W2 117.1(3) N1 W1 W2 52.66(9) C56 N2 W1 136.7(4) N2 W1 W2 52.60(9) C55 N2 W1 116.3(3) O5 W2 O3 106.30(13) W2 N2 W1 74.55(12) O5 W2 O4 105.94(13) C8 O1 W1 146.2(2) O3 W2 O4 96.54(10) C18 O2 W1 140.8(2) O5 W2 N1 89.80(14) C34 O3 W2 147.0(2) O3 W2 N1 90.92(12) C44 O4 W2 148.8(2) O4 W2 N1 159.79(11) W1 O5 W2 79.94(13) O5 W2 N2 89.89(14) C2 C1 C6 123.0(3) O3 W2 N2 159.10(11) C1 C2 C3 117.7(4) O4 W2 N2 91.43(12) C1 C2 C7 118.3(3) N1 W2 N2 75.71(14) C3 C2 C7 123.9(4) O5 W2 W1 49.97(10) C4 C3 C2 119.5(4) C3 C4 C5 122.0(4) C20 C19 C18 116.0(4) C4 C5 C6 120.1(4) C20 C19 C23 122.3(4) C5 C6 C1 117.2(4) C18 C19 C23 121.6(4) C5 C6 C17 124.3(4) C21 C20 C19 122.7(4) C1 C6 C17 118.5(3) C20 C21 C22 120.3(4) C12 C7 C8 118.5(3) C21 C22 C17 120.2(5) C12 C7 C2 122.0(3) C25 C23 C26 110.8(4) C8 C7 C2 119.4(3) C25 C23 C19 111.2(4) O1 C8 C9 119.5(3) C26 C23 C19 109.6(4) O1 C8 C7 119.5(3) C25 C23 C24 106.3(4) C9 C8 C7 121.1(3) C26 C23 C24 107.5(4) C10 C9 C8 117.0(3) C19 C23 C24 111.3(4)

PAGE 122

122 Table B 28. Continued Bond Angle Bond Angle C10 C9 C13 121.9(3) C32 C27 C28 122.9(3) C8 C9 C13 121.0(3) C27 C28 C29 117.8(3) C11 C10 C9 122.5(4) C27 C28 C33 118.2(3) C12 C11 C10 119.3(3) C29 C28 C33 124.0(3) C11 C12 C7 121.0(4) C30 C29 C28 120.0(4) C14 C13 C15 109.6(3) C31 C30 C29 120.9(3) C14 C13 C16 107.1(3) C30 C31 C32 120.0(4) C15 C13 C16 107.4(3) C27 C32 C31 117.9(3) C14 C13 C9 109.5(3) C27 C32 C43 117.6(3) C15 C13 C9 111.9(3) C31 C32 C43 124.5(3) C16 C13 C9 111.2(3) C38 C33 C34 119.3(3) C22 C17 C18 119.0(4) C38 C33 C28 120.7(3) C22 C17 C6 120.1(4) C34 C33 C28 119.9(3) C18 C17 C6 120.9(3) O3 C34 C33 120.3(3) O2 C18 C17 119.8(3) O3 C34 C35 118.7(3) O2 C18 C19 118.9(3) C33 C34 C35 120.9(3) C17 C18 C19 121.4(3) C36 C35 C34 116.5(3) C36 C35 C39 121.3(3) C52 C49 C50 107.7(3) C34 C35 C39 122.2(3) C51 C49 C50 107.6(3) C37 C36 C35 122.7(4) C52 C49 C45 110.5(3) C38 C37 C36 119.5(3) C51 C49 C45 108.9(3) C37 C38 C33 120.6(3) C50 C49 C45 111.4(3) C41 C39 C35 110.6(3) N2 C55 C56 41.8(3) C41 C39 C40 109.8(3) N2 C56 C55 54.8(5) C35 C39 C40 110.3(3) C59#1 C57 C58 119.6(9) C41 C39 C42 107.8(3) C59 C58 C57 118.3(10) C35 C39 C42 111.7(3) C57#1 C59 C58 122.1(11) C40 C39 C42 106.5(3) C61 C60 C62#2 119.8(13) C48 C43 C44 119.1(3) C60 C61 C62 121.4(12) C48 C43 C32 121.3(3) C61 C62 C60#2 118.9(12) C44 C43 C32 119.5(3) C48 C47 C46 118.8(3) O4 C44 C45 119.6(3) C47 C48 C43 121.3(3) O4 C44 C43 120.2(3) C52 C49 C51 110.7(3) C45 C44 C43 120.2(3) C46 C45 C49 121.4(3) C46 C45 C44 117.4(3) C44 C45 C49 121.2(3) C47 C46 C45 122.8(3) Symmetry transformations used to generate equivalent atoms: #1 x, y, z #2 x+1, y+2, z+1

PAGE 123

123 Table B 29. Anisotropic displacement parameters (2x 103) for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8). The anisotropic displacement factor exponent takes the form: 2 [ h2a*2U11 + ... + 2 h k a* b* U12 ]. Atom U11 U22 U33 U23 U13 U12 W1 18(1) 17(1) 15(1) 3(1) 3(1) 5(1) W2 18(1) 16(1) 14(1) 3(1) 3(1) 6(1) N1 25(2) 49(2) 33(2) 23(2) 11(1) 17(2) N2 30(2) 50(2) 28(2) 19(2) 13(1) 20(2) O1 25(1) 26(1) 19(1) 5(1) 6(1) 11(1) O2 24(1) 18(1) 26(1) 5(1) 2(1) 1(1) O3 21(1) 20(1) 25(1) 8(1) 2(1) 6(1) O4 22(1) 23(1) 16(1) 4(1) 5(1) 9(1) O5 52(2) 66(2) 49(2) 19(2) 13(2) 21(2) C1 23(2) 31(2) 27(2) 10(2) 6(1) 8(1) C2 25(2) 36(2) 25(2) 10(2) 8(1) 16(2) C3 34(2) 43(2) 38(2) 17(2) 8(2) 22(2) C4 28(2) 61(3) 36(2) 21(2) 6(2) 23(2) C5 22(2) 51(3) 31(2) 12(2) 1(2) 9(2) C6 19(2) 35(2) 27(2) 7(2) 5(1) 3(1) C7 31(2) 27(2) 24(2) 8(1) 8(1) 14(2) C8 28(2) 21(2) 20(2) 6(1) 10(1) 10(1) C9 30(2) 20(2) 19(2) 5(1) 9(1) 5(1) C10 38(2) 25(2) 24(2) 2(1) 10(2) 5(2) C11 46(2) 24(2) 35(2) 3(2) 20(2) 14(2) C12 38(2) 30(2) 36(2) 10(2) 16(2) 18(2) C13 31(2) 30(2) 15(2) 2(1) 3(1) 8(2) C14 46(2) 37(2) 35(2) 16(2) 5(2) 18(2) C15 30(2) 41(2) 27(2) 7(2) 5(2) 9(2) C16 51(3) 63(3) 18(2) 1(2) 1(2) 24(2) C17 29(2) 34(2) 21(2) 1(2) 3(1) 0(2) C18 30(2) 21(2) 26(2) 3(1) 8(1) 0(1) C19 42(2) 24(2) 34(2) 2(2) 16(2) 3(2) C20 53(3) 23(2) 53(3) 3(2) 21(2) 3(2) C21 39(3) 40(3) 56(3) 12(2) 7(2) 11(2) C22 27(2) 48(3) 37(2) 5(2) 4(2) 6(2) C23 55(3) 23(2) 47(3) 10(2) 18(2) 11(2) C24 92(5) 29(3) 97(5) 23(3) 29(4) 23(3) C25 55(3) 41(3) 65(3) 19(2) 22(3) 22(2) C26 78(4) 49(3) 43(3) 18(2) 8(3) 32(3) C27 24(2) 24(2) 24(2) 9(1) 5(1) 8(1)

PAGE 124

124 Table B 29. Continued Atom U11 U22 U33 U23 U13 U12 C28 26(2) 26(2) 24(2) 8(1) 3(1) 9(1) C29 35(2) 31(2) 29(2) 8(2) 0(2) 16(2) C30 33(2) 40(2) 30(2) 12(2) 3(2) 16(2) C31 28(2) 36(2) 26(2) 8(2) 4(1) 8(2) C32 28(2) 27(2) 19(2) 7(1) 3(1) 9(1) C33 25(2) 22(2) 25(2) 6(1) 5(1) 8(1) C34 21(2) 16(2) 23(2) 6(1) 6(1) 6(1) C35 26(2) 24(2) 22(2) 5(1) 4(1) 6(1) C36 34(2) 23(2) 30(2) 6(2) 2(2) 2(2) C37 42(2) 19(2) 32(2) 7(2) 3(2) 7(2) C38 36(2) 27(2) 29(2) 10(2) 7(2) 13(2) C39 29(2) 27(2) 22(2) 6(1) 3(1) 5(2) C40 29(2) 46(2) 32(2) 12(2) 5(2) 17(2) C41 43(2) 33(2) 24(2) 11(2) 6(2) 10(2) C42 35(2) 41(2) 39(2) 13(2) 9(2) 0(2) C43 22(2) 23(2) 23(2) 7(1) 1(1) 5(1) C44 20(2) 23(2) 15(1) 2(1) 4(1) 3(1) C45 21(2) 23(2) 18(2) 5(1) 5(1) 4(1) C46 30(2) 25(2) 21(2) 1(1) 6(1) 7(2) C47 36(2) 31(2) 17(2) 0(1) 1(1) 5(2) C48 33(2) 30(2) 20(2) 6(1) 3(1) 6(2) C49 30(2) 24(2) 19(2) 2(1) 5(1) 12(1) C50 55(3) 46(3) 30(2) 8(2) 10(2) 31(2) C51 24(2) 41(2) 32(2) 7(2) 2(2) 12(2) C52 39(2) 27(2) 25(2) 11(2) 8(2) 12(2) C53 110(6) 69(4) 88(5) 20(4) 43(5) 29(4) C54 178(8) 154(7) 242(11) 174(8) 186(9) 151(7) C55 88(5) 89(5) 69(5) 6(4) 24(4) 0(4) C56 31(3) 289(13) 36(3) 67(5) 12(2) 39(5) C57 166(10) 53(4) 130(9) 35(5) 102(8) 46(5) C58 190(12) 136(9) 95(6) 42(6) 50(8) 123(9) C59 111(8) 143(10) 125(9) 16(8) 62(7) 39(7) C60 169(12) 115(9) 84(7) 9(6) 4(8) 19(9) C61 99(9) 140(11) 110(9) 7(8) 55(8) 20(8) C62 59(5) 163(12) 124(10) 68(8) 9(6) 19(7)

PAGE 125

125 Table B 30. Torsion angles (in deg) for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) Atoms Angle Atoms Angle O5 W1 O1 C10 141.9(4) C51 N1 W2 N2 87.4(7) O2 W1 O1 C10 113.7(4) C49 N1 W2 N2 166.3(4) N2 W1 O1 C10 9.2(6) W1 N1 W2 N2 53.64(10) N1 W1 O1 C10 52.1(4) C51 N1 W2 W1 141.0(7) W2 W1 O1 C10 92.7(4) C49 N1 W2 W1 112.6(4) O5 W1 N1 C51 174.0(7) O2 W1 W2 O5 72.22(17) O2 W1 N1 C51 40.0(9) O1 W1 W2 O5 73.98(17) O1 W1 N1 C51 82.8(7) N2 W1 W2 O5 130.15(19) N2 W1 N1 C51 83.9(7) N1 W1 W2 O5 129.12(19) W2 W1 N1 C51 137.6(7) O5 W1 W2 O4 77.50(17) O5 W1 N1 C49 76.8(4) O2 W1 W2 O4 5.28(12) O2 W1 N1 C49 149.3(5) O1 W1 W2 O4 151.47(13) O1 W1 N1 C49 26.4(4) N2 W1 W2 O4 52.65(15) N2 W1 N1 C49 166.9(4) N1 W1 W2 O4 153.38(15) W2 W1 N1 C49 113.2(4) O5 W1 W2 O3 75.96(17) O5 W1 N1 W2 36.45(13) O2 W1 W2 O3 148.18(13) O2 W1 N1 W2 97.5(4) O1 W1 W2 O3 1.99(12) O1 W1 N1 W2 139.60(10) N2 W1 W2 O3 153.88(15) N2 W1 N1 W2 53.67(11) N1 W1 W2 O3 53.16(14) C51 N1 W2 O5 177.5(7) O5 W1 W2 N2 130.15(19) C49 N1 W2 O5 76.2(4) O2 W1 W2 N2 57.93(15) W1 N1 W2 O5 36.45(13) O1 W1 W2 N2 155.87(15) C51 N1 W2 O4 35.7(8) N1 W1 W2 N2 100.72(17) C49 N1 W2 O4 142.0(4) O5 W1 W2 N1 129.12(19) W1 N1 W2 O4 105.3(3) O2 W1 W2 N1 158.66(15) C51 N1 W2 O3 76.7(7) O1 W1 W2 N1 55.15(15) C49 N1 W2 O3 29.7(4) N2 W1 W2 N1 100.72(17) W1 N1 W2 O3 142.29(9) O5 W1 O2 C3 144.5(4) O1 W1 O2 C3 110.1(4) O2 W1 N2 W2 137.85(10) N2 W1 O2 C3 54.0(4) O1 W1 N2 W2 98.5(3) N1 W1 O2 C3 11.9(7) N1 W1 N2 W2 53.77(11) W2 W1 O2 C3 96.3(4) C9 C2 O3 W2 152.9(3) O5 W2 N2 C52 171.9(6) C5 C2 O3 W2 28.8(6) O4 W2 N2 C52 81.7(6) O5 W2 O3 C2 140.1(4) O3 W2 N2 C52 30.3(8) O4 W2 O3 C2 110.7(4) N1 W2 N2 C52 82.0(6) N2 W2 O3 C2 0.3(6) W1 W2 N2 C52 136.0(6) N1 W2 O3 C2 49.8(4) O5 W2 N2 C50 76.7(4) W1 W2 O3 C2 89.5(4)

PAGE 126

126 Table B 30. Continued Atoms Angle Atoms Angle O4 W2 N2 C50 29.8(4) W1 O2 C3 C14 161.2(3) O3 W2 N2 C50 141.7(4) W1 O2 C3 C16 19.6(6) N1 W2 N2 C50 166.5(4) C6 C1 O4 W2 28.8(6) W1 W2 N2 C50 112.5(4) C19 C1 O4 W2 152.4(3) O5 W2 N2 W1 35.82(13) O5 W2 O4 C1 139.4(4) O4 W2 N2 W1 142.25(10) O3 W2 O4 C1 111.9(4) O3 W2 N2 W1 105.8(3) N2 W2 O4 C1 49.1(4) N1 W2 N2 W1 54.06(11) N1 W2 O4 C1 0.4(6) O5 W1 N2 C52 167.1(6) W1 W2 O4 C1 88.2(4) O2 W1 N2 C52 90.9(6) C62#1C60 C61 C62 1(2) O1 W1 N2 C52 32.8(8) O3 C2 C5 C12 175.5(3) N1 W1 N2 C52 77.5(6) C9 C2 C5 C12 6.2(5) W2 W1 N2 C52 131.3(7) O3 C2 C5 C22 7.0(5) O5 W1 N2 C50 80.0(4) C9 C2 C5 C22 171.3(3) O2 W1 N2 C50 22.1(4) O4 W2 O5 W1 128.40(11) O1 W1 N2 C50 145.7(4) O3 W2 O5 W1 129.59(11) N1 W1 N2 C50 169.5(4) N2 W2 O5 W1 37.36(14) W2 W1 N2 C50 115.8(4) N1 W2 O5 W1 38.26(14) O5 W1 N2 W2 35.83(13) O2 W1 O5 W2 129.62(11) O1 W1 O5 W2 128.79(11) C14 C3 C16 C21 7.9(5) N2 W1 O5 W2 37.33(14) O2 C3 C16 C26 10.3(5) N1 W1 O5 W2 38.04(14) C14 C3 C16 C26 168.9(3) O4 C1 C6 C20 174.2(3) C19 C8 C17 C20 2.6(6) C19 C1 C6 C20 7.0(5) C22 C4 C18 C38 7.1(5) O4 C1 C6 C18 9.3(5) C22 C4 C18 C6 174.8(3) C19 C1 C6 C18 169.5(3) C20 C6 C18 C38 40.2(5) C60 C61 C62 C60#1 1(2) C1 C6 C18 C38 143.3(4) O3 C2 C9 C15 175.3(3) C20 C6 C18 C4 137.8(4) C5 C2 C9 C15 6.4(5) C1 C6 C18 C4 38.7(5) O3 C2 C9 C30 5.7(5) C17 C8 C19 C1 0.8(6) C5 C2 C9 C30 172.7(3) C17 C8 C19 C23 179.1(4) W1 O1 C10 C11 23.4(6) O4 C1 C19 C8 175.7(3) W1 O1 C10 C27 156.0(3) C6 C1 C19 C8 5.5(5) O1 C10 C11 C40 173.0(3) O4 C1 C19 C23 4.5(5) C27 C10 C11 C40 6.4(6) C6 C1 C19 C23 174.3(3) O1 C10 C11 C29 11.1(6) C8 C17 C20 C6 1.2(6) C27 C10 C11 C29 169.6(4) C1 C6 C20 C17 3.5(6) C2 C5 C12 C53 1.4(6) C18 C6 C20 C17 173.0(4)

PAGE 127

127 Table B 30. Continued Atoms Angle Atoms Angle C54 C13 C14 C45 175.6(3) C18 C4 C22 C25 7.3(5) O2 C3 C14 C13 173.7(3) C18 C4 C22 C5 174.8(3) C16 C3 C14 C13 7.1(5) C12 C5 C22 C4 136.6(4) O2 C3 C14 C45 9.8(5) C2 C5 C22 C4 40.9(5) C16 C3 C14 C45 169.4(3) C12 C5 C22 C25 41.1(5) C2 C9 C15 C53 1.9(5) C2 C5 C22 C25 141.5(4) C30 C9 C15 C53 177.1(3) C8 C19 C23 C36 116.3(4) O2 C3 C16 C21 172.8(3) C1 C19 C23 C36 63.9(5) C8 C19 C23 C33 122.2(4) C11 C29 C32 C34 178.2(4) C1 C19 C23 C33 57.6(5) C29 C32 C34 C39 4.4(6) C8 C19 C23 C42 4.1(5) C22 C25 C35 C38 3.5(6) C1 C19 C23 C42 175.8(4) C10 C27 C37 C44 0.5(7) C4 C22 C25 C35 1.9(6) C47 C27 C37 C44 178.3(5) C5 C22 C25 C35 179.6(3) C25 C35 C38 C18 3.7(6) C29 C7 C26 C39 6.2(6) C4 C18 C38 C35 1.4(6) C29 C7 C26 C16 174.7(3) C6 C18 C38 C35 179.4(3) C21 C16 C26 C7 139.0(4) C32 C34 C39 C26 3.6(6) C3 C16 C26 C7 37.8(5) C7 C26 C39 C34 1.6(6) C21 C16 C26 C39 40.1(6) C16 C26 C39 C34 179.4(4) C3 C16 C26 C39 143.2(4) C10 C11 C40 C44 0.8(6) O1 C10 C27 C37 173.2(4) C29 C11 C40 C44 175.2(4) C11 C10 C27 C37 6.2(6) C27 C37 C44 C40 4.9(8) O1 C10 C27 C47 8.0(6) C11 C40 C44 C37 4.8(7) C11 C10 C27 C47 172.6(4) C13 C14 C45 C41 118.5(4) C26 C7 C29 C32 5.5(6) C3 C14 C45 C41 57.8(4) C26 C7 C29 C11 176.3(3) C13 C14 C45 C28 119.9(4) C40 C11 C29 C7 139.5(4) C3 C14 C45 C28 63.8(4) C10 C11 C29 C7 36.5(5) C13 C14 C45 C55 0.4(5) C40 C11 C29 C32 38.6(6) C3 C14 C45 C55 175.9(3) C10 C11 C29 C32 145.4(4) C37 C27 C47 C48 116.1(5) C15 C9 C30 C24 117.1(4) C10 C27 C47 C48 65.1(5) C2 C9 C30 C24 63.8(4) W1 N1 C51 C49 121.9(6) C15 C9 C30 C31 120.7(4) C5 C12 C53 C15 3.1(6) C2 C9 C30 C31 58.3(4) C9 C15 C53 C12 2.8(6) C15 C9 C30 C43 2.2(5) C16 C21 C54 C13 3.4(6) C2 C9 C30 C43 176.8(3) C14 C13 C54 C21 4.3(6) C7 C29 C32 C34 0.1(6) C59#2C57 C58 C59 0.5(16) W2 N1 C51 C49 120.7(6) C57 C58 C59 C57#2 0.6(17)

PAGE 128

128 Table B 30. Continued Atoms Angle C37 C27 C47 C46 120.8(4) C10 C27 C47 C46 58.0(5) C37 C27 C47 C56 1.7(6) C10 C27 C47 C56 177.1(4) W2 N1 C49 C51 134.9(4) W1 N1 C49 C51 139.5(4) Symmetry transformations used to generate equivalent atoms: #1 x, y, z #2 x+1, y+2, z+1

PAGE 129

129 Figure B 8. Molecular structure of [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ). Ellipsoids shown at 50% probability level; hydrogen atoms omitted for clarity. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 N1 C17 C18 C19 C20 C21 C22 C23 F1 F3 F2 F5 F4 F3 C35 C36 N3 N2 C34 C33 N5 C40 C39 Hf1 C38 C37 N4 N10 C47 C48 C46 C45 N7 Hf2 C41 N9 C42 N8 C44 C43 C26 C25 N6 C24 C30 C29 C28 C27 C31 C32 F11 F12 F10 F8 F7 F9

PAGE 130

130 X ray E xperimental for [AnthH][Hf(NMe2)3(NHMe2)]2 (11) Data were collected at 173 K on a Sieme ns SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was scan metho d (0.3frame width). The first 50 frames were re measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure was solved by the author using Direct Methods in SHELXTL6, and refined using full matrix least squares. The nonH atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on th eir respective carbon atoms. A total of 655 parameters were refined in the final cycle of refinement using 5926 1 and wR2 of 5.11% and 9.26%, respectively. Refinement was done using F2.

PAGE 131

131 Table B 31. Crystal data, structure solution, and refinement for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) identification code pelo3 empirical formula C48H56F12N10Hf2 formula weight 1623.40 T (K) 173(2) ) 0.71073 crystal system Monoclinic space group P2(1)/n a () 17.3997(11) b () 20.3795(12) c () 15.9524(10) (deg) 90 (deg) 93.8290 (deg) 90 V (3) 5644.0(6) Z 4 calcd (g mm3) 1.598 crystal size (mm) 0.17 x 0.04 x 0.04 abs coeff (mm1) 3.759 F (000) 2664 range for data collection 1.17 to 28.05 limiting indicies 22 24 20 no. of reflns collcd 37974 no. of ind reflns 13605 [R(int) = 0.0990] completeness to = 28.03 99.4 % absorption corr Integration refinement method Full matrix least squares on F2 data / restraints / parameters 13605 / 0 / 655 R 1, wR R1 = 0.0511, wR2 = 0.0926 R 1, wR 2 (all data) R1 = 0.1526, wR2 = 0.1142 GOF on F2 0.875 largest diff. peak and hole (e.3) 1.064 and 0.893 o c o o 2 F c 2 ) 2 o 2 ) 2 ]] 1/2 o 2 F c 2 ) 2 ] / (n p)] 1/2 2 (F o 2 )+(m*p)2+n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 132

132 Table B 32. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ). U( eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) Hf1 1317(1) 3962(1) 3298(1) 37(1) Hf2 6275(1) 3516(1) 1872(1) 42(1) N1 1480(4) 4589(3) 2214(4) 36(2) N2 162(4) 3822(3) 3001(5) 50(2) N3 1641(4) 4658(3) 4174(4) 42(2) N4 2084(4) 3289(3) 2962(4) 46(2) N5 1117(4) 3277(4) 4509(5) 51(2) N6 5265(4) 2927(3) 1471(4) 36(2) N7 5971(4) 4295(3) 1141(5) 51(2) N8 7068(4) 2839(3) 1498(5) 52(2) N9 6056(5) 3572(3) 3117(4) 59(2) N10 7444(5) 4147(4) 2266(6) 73(3) F1 123(4) 6255(4) 4048(4) 141(3) F2 735(5) 5974(5) 3294(5) 150(4) F3 374(6) 6896(4) 3200(6) 182(5) F4 1323(4) 7384(3) 985(4) 96(2) F5 1054(5) 6655(3) 121(4) 136(3) F6 2132(5) 6698(4) 737(6) 149(4) F7 6291(5) 1010(5) 3368(4) 168(4) F8 6216(4) 209(3) 2538(5) 126(3) F9 6997(3) 971(3) 2390(4) 83(2) F10 3701(5) 1115(3) 12(5) 143(4) F11 3218(5) 978(4) 1128(7) 152(4) F12 3967(5) 244(3) 694(5) 145(4) C1 3070(5) 3822(3) 449(5) 35(2) C2 2336(4) 4021(4) 172(5) 32(2) C3 1778(5) 4282(4) 721(5) 38(2) C4 1053(5) 4396(4) 402(6) 45(2) C5 836(5) 4309(4) 467(6) 48(3) C6 1332(5) 4110(4) 1002(6) 46(2) C7 2109(5) 3958(4) 707(5) 36(2) C8 2653(5) 3735(4) 1243(5) 41(2) C9 3389(5) 3532(4) 953(5) 33(2) C10 3931(5) 3292(4) 1497(5) 42(2) C11 4619(5) 3065(4) 1207(5) 45(2) C12 4822(5) 3060(4) 331(6) 43(2)

PAGE 133

133 Table B 32. Continued Atom X Y Z U(eq) C13 4331(5) 3301(4) 230(5) 38(2) C14 3601(4) 3558(4) 85(5) 32(2) C15 2045(4) 4408(4) 1633(5) 40(2) C16 1213(4) 5225(4) 2140(5) 33(2) C17 666(5) 5463(4) 2681(5) 41(2) C18 412(5) 6104(4) 2659(5) 43(2) C19 656(5) 6541(4) 2079(5) 42(2) C20 1161(5) 6316(4) 1521(5) 36(2) C21 1421(4) 5685(4) 1534(5) 37(2) C22 94(7) 6327(6) 3290(8) 68(3) C23 1393(7) 6761(5) 855(8) 65(3) C24 4550(5) 3286(4) 1172(5) 42(2) C25 5181(5) 2259(4) 1526(5) 37(2) C26 5746(5) 1901(4) 2006(5) 40(2) C27 5686(5) 1208(4) 2059(5) 44(2) C28 5106(6) 869(5) 1639(6) 59(3) C29 4549(6) 1221(4) 1174(6) 56(3) C30 4573(5) 1899(4) 1124(5) 47(2) C31 6292(6) 860(5) 2597(7) 61(3) C32 3905(9) 884(6) 739(10) 101(5) C33 105(6) 3650(5) 2140(7) 69(3) C34 466(5) 3969(5) 3541(7) 75(3) C35 1237(6) 4887(4) 4896(6) 63(3) C36 2336(5) 5043(4) 4057(6) 51(3) C37 2911(5) 3317(4) 3214(6) 59(3) C38 1923(6) 2767(4) 2346(7) 70(3) C39 1803(6) 3195(5) 5085(6) 69(3) C40 756(6) 2624(4) 4272(7) 77(4) C41 5268(7) 3737(5) 3363(6) 70(3) C42 6596(7) 3406(5) 3849(6) 93(4) C43 6987(5) 2497(5) 685(6) 63(3) C44 7733(5) 2573(4) 2030(6) 64(3) C45 5478(6) 4850(4) 1400(7) 71(3) C46 6134(6) 4343(4) 249(6) 60(3) C47 7899(6) 4294(5) 1491(8) 83(4) C48 7297(6) 4751(5) 2744(7) 82(4)

PAGE 134

134 Table B 33. Bond lengths (in ) for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ) Bond Length Bond Length Hf1 N4 2.012(7) N10 C48 1.480(12) Hf1 N3 2.044(7) N10 C47 1.541(14) Hf1 N2 2.053(7) F1 C22 1.252(11) Hf1 N1 2.184(7) F2 C22 1.327(13) Hf1 N5 2.427(8) F3 C22 1.263(11) Hf2 N7 2.020(7) F4 C23 1.294(11) Hf2 N9 2.050(7) F5 C23 1.295(12) Hf2 N8 2.066(7) F6 C23 1.318(11) Hf2 N6 2.189(6) F7 C31 1.268(12) Hf2 N10 2.452(8) F8 C31 1.335(11) N1 C16 1.379(9) F9 C31 1.312(11) N1 C15 1.444(10) F10 C32 1.314(13) N2 C33 1.463(11) F11 C32 1.396(17) N2 C34 1.466(12) F12 C32 1.310(13) N3 C36 1.463(10) C1 C2 1.384(10) N3 C35 1.465(11) C1 C14 1.406(10) N4 C38 1.462(10) C2 C7 1.436(10) N4 C37 1.470(10) C2 C3 1.451(11) N5 C39 1.467(11) C3 C4 1.349(10) N5 C40 1.508(11) C3 C15 1.518(10) N6 C25 1.373(9) C4 C5 1.424(11) N6 C24 1.493(9) C5 C6 1.319(12) N7 C46 1.473(11) C6 C7 1.435(11) N7 C45 1.495(11) C7 C8 1.395(11) N8 C43 1.471(11) C8 C9 1.394(10) N8 C44 1.490(10) C9 C14 1.410(10) N9 C42 1.488(11) C9 C10 1.411(11) N9 C41 1.488(12) C10 C11 1.338(11) C11 C12 1.418(11) C20 C21 1.364(10) C12 C13 1.369(11) C20 C23 1.474(13) C13 C14 1.432(10) C25 C30 1.406(11) C13 C24 1.525(10) C25 C26 1.408(10) C16 C21 1.412(11) C26 C27 1.418(11) C16 C17 1.413(11) C27 C28 1.363(11) C17 C18 1.379(11) C27 C31 1.493(12) C18 C19 1.371(11) C28 C29 1.382(11) C18 C22 1.454(13) C29 C30 1.385(11) C19 C20 1.371(11) C29 C32 1.451(14)

PAGE 135

135 Table B 34. Bond angles (in deg) for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ) Bond Angle Bond Angle N4 Hf1 N3 119.8(3) C35 N3 Hf1 129.2(6) N4 Hf1 N2 120.1(3) C38 N4 C37 110.7(7) N3 Hf1 N2 118.4(3) C38 N4 Hf1 125.0(6) N4 Hf1 N1 93.7(3) C37 N4 Hf1 123.7(5) N3 Hf1 N1 95.2(2) C39 N5 C40 111.4(7) N2 Hf1 N1 94.3(3) C39 N5 Hf1 114.2(6) N4 Hf1 N5 87.3(3) C40 N5 Hf1 112.8(6) N3 Hf1 N5 84.4(3) C39 N5 H5 119(8) N2 Hf1 N5 85.1(3) C40 N5 H5 104(8) N1 Hf1 N5 179.0(3) Hf1 N5 H5 94(8) N7 Hf2 N9 117.2(3) C25 N6 C24 114.7(6) N7 Hf2 N8 120.8(3) C25 N6 Hf2 127.7(5) N9 Hf2 N8 119.2(3) C24 N6 Hf2 117.4(5) N7 Hf2 N6 95.0(2) C46 N7 C45 111.6(7) N9 Hf2 N6 96.7(3) C46 N7 Hf2 123.4(6) N8 Hf2 N6 95.1(3) C45 N7 Hf2 124.7(6) N7 Hf2 N10 85.2(3) C43 N8 C44 110.7(7) N9 Hf2 N10 85.8(3) C43 N8 Hf2 123.0(6) N8 Hf2 N10 82.3(3) C44 N8 Hf2 125.9(6) N6 Hf2 N10 177.0(3) C42 N9 C41 112.9(8) C16 N1 C15 115.2(7) C42 N9 Hf2 126.8(7) C16 N1 Hf1 123.8(5) C41 N9 Hf2 120.1(6) C15 N1 Hf1 119.2(5) C48 N10 C47 111.5(9) C33 N2 C34 113.5(8) C48 N10 Hf2 113.6(7) C33 N2 Hf1 119.6(6) C47 N10 Hf2 111.0(6) C34 N2 Hf1 126.3(6) C2 C1 C14 123.3(8) C36 N3 C35 111.9(7) C1 C2 C7 118.2(8) C36 N3 Hf1 118.5(6) C1 C2 C3 123.7(7) C7 C2 C3 118.1(7) C19 C18 C22 119.5(8) C4 C3 C2 118.8(8) C17 C18 C22 119.1(9) C4 C3 C15 123.4(8) C20 C19 C18 117.5(8) C2 C3 C15 117.8(7) C21 C20 C19 122.2(8) C3 C4 C5 121.8(9) C21 C20 C23 119.0(8) C6 C5 C4 121.7(8) C19 C20 C23 118.7(8) C5 C6 C7 119.8(8) C20 C21 C16 122.4(8) C8 C7 C6 122.1(8) F1 C22 F3 107.8(11) C8 C7 C2 118.3(7) F1 C22 F2 97.5(10) C6 C7 C2 119.5(8) F3 C22 F2 100.4(10)

PAGE 136

136 Table B 34. Continued Bond Angle Bond Angle C9 C8 C7 122.7(8) F1 C22 C18 118.4(9) C8 C9 C14 119.3(8) F3 C22 C18 117.1(10) C8 C9 C10 122.4(8) F2 C22 C18 112.5(11) C14 C9 C10 118.3(8) F4 C23 F5 105.5(9) C11 C10 C9 121.7(8) F4 C23 F6 102.9(10) C10 C11 C12 120.1(9) F5 C23 F6 104.1(10) C13 C12 C11 121.1(8) F4 C23 C20 117.1(9) C12 C13 C14 118.6(8) F5 C23 C20 114.8(10) C12 C13 C24 120.7(8) F6 C23 C20 111.1(9) C14 C13 C24 120.7(7) N6 C24 C13 118.2(7) C1 C14 C9 118.0(7) N6 C25 C30 124.6(7) C1 C14 C13 122.0(7) N6 C25 C26 118.4(8) C9 C14 C13 120.0(8) C30 C25 C26 117.0(8) N1 C15 C3 118.7(6) C25 C26 C27 119.8(8) N1 C16 C21 125.6(8) C28 C27 C26 122.0(8) N1 C16 C17 120.5(8) C28 C27 C31 120.8(9) C21 C16 C17 113.9(7) C26 C27 C31 117.2(9) C18 C17 C16 122.5(8) C19 C18 C17 121.3(8) C28 C29 C32 120.1(9) C30 C29 C32 118.0(9) C29 C30 C25 121.2(8) F7 C31 F9 105.3(10) F7 C31 F8 107.6(10) F9 C31 F8 104.1(9) F7 C31 C27 113.3(9) F9 C31 C27 114.1(9) F8 C31 C27 111.7(9) F12 C32 F10 109.0(12) F12 C32 F11 103.7(12) F10 C32 F11 99.8(11) F12 C32 C29 115.7(11) F10 C32 C29 114.8(11) F11 C32 C29 112.2(13) C27 C28 C29 118.0(9) C28 C29 C30 121.8(9)

PAGE 137

137 Table B 35. Anisotropic displacement parameters (2x 103) for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11). The anisotropic displacement factor exponent takes the form: 2 [ h2a*2U11 + ... + 2 h k a* b* U12 ]. Atom U11 U22 U33 U23 U13 U12 Hf1 33(1) 32(1) 47(1) 1(1) 1(1) 2(1) Hf2 45(1) 39(1) 41(1) 2(1) 5(1) 6(1) N1 26(4) 38(4) 42(4) 4(3) 5(3) 9(3) N2 43(5) 40(4) 67(6) 12(4) 1(4) 1(4) N3 39(5) 33(4) 52(5) 9(3) 3(4) 3(4) N4 54(5) 40(4) 44(5) 0(3) 8(4) 11(4) N5 41(5) 51(5) 61(6) 8(4) 3(4) 6(4) N6 29(4) 43(4) 35(4) 6(3) 4(3) 9(4) N7 50(5) 41(4) 60(6) 6(4) 5(4) 4(4) N8 44(5) 48(5) 64(6) 1(4) 10(4) 1(4) N9 96(7) 45(5) 37(5) 4(4) 4(5) 7(5) N10 62(6) 48(5) 103(8) 6(5) 47(6) 4(5) F1 116(6) 250(10) 58(5) 20(5) 18(4) 106(6) F2 90(6) 263(11) 104(6) 57(7) 59(5) 20(7) F3 249(10) 109(6) 210(9) 92(6) 182(8) 130(7) F4 150(7) 43(4) 98(5) 16(3) 40(5) 10(4) F5 239(10) 109(6) 58(5) 24(4) 4(6) 61(6) F6 125(7) 117(6) 217(10) 100(6) 111(7) 36(5) F7 180(8) 270(11) 52(5) 48(6) 1(5) 165(8) F8 90(5) 62(4) 221(9) 57(5) 28(5) 5(4) F9 48(4) 92(4) 108(5) 28(4) 3(4) 17(4) F10 191(8) 111(5) 112(6) 46(5) 96(6) 78(6) F11 100(6) 122(7) 224(11) 44(7) 61(7) 43(6) F12 180(8) 59(4) 183(8) 27(5) 96(7) 37(5) C1 49(6) 25(4) 30(5) 0(4) 0(4) 0(4) C2 27(5) 29(4) 38(5) 12(4) 12(4) 3(4) C3 31(5) 36(5) 45(6) 8(4) 5(4) 9(4) C4 30(5) 35(5) 70(7) 2(5) 2(5) 11(4) C5 31(6) 44(5) 67(7) 12(5) 17(5) 2(5) C6 46(6) 44(6) 44(6) 6(4) 21(5) 2(5) C7 44(5) 28(4) 36(5) 1(4) 4(4) 2(5) C8 61(7) 33(5) 26(5) 6(4) 15(5) 6(5) C9 41(5) 33(5) 25(5) 2(4) 6(4) 6(4) C10 57(6) 34(5) 32(5) 7(4) 4(5) 1(5) C11 64(7) 40(5) 30(6) 6(4) 12(5) 8(5) C12 36(5) 33(5) 60(7) 8(5) 7(5) 4(4)

PAGE 138

138 Table B 35. Continued Atom U11 U22 U33 U23 U13 U12 C13 46(6) 24(4) 45(6) 1(4) 14(5) 9(4) C14 34(5) 26(4) 36(5) 2(4) 2(4) 2(4) C15 21(5) 46(5) 51(6) 1(4) 6(4) 8(4) C16 24(5) 36(5) 38(5) 3(4) 4(4) 2(4) C17 36(5) 44(5) 45(6) 8(4) 5(5) 7(5) C18 42(6) 47(6) 41(6) 4(5) 8(4) 14(5) C19 36(5) 42(5) 49(6) 6(5) 3(5) 11(5) C20 34(5) 37(5) 37(5) 8(4) 5(4) 1(4) C21 29(5) 45(5) 36(5) 7(4) 3(4) 2(4) C22 55(8) 81(8) 70(9) 30(7) 15(7) 36(7) C23 58(8) 65(8) 73(9) 5(7) 23(7) 16(6) C24 36(5) 49(5) 43(6) 3(4) 12(4) 6(4) C25 44(6) 43(5) 27(5) 12(4) 13(4) 10(5) C26 31(5) 43(5) 45(6) 9(4) 8(4) 10(5) C27 37(6) 57(6) 41(6) 13(5) 11(5) 14(5) C28 64(7) 48(6) 63(7) 16(5) 2(6) 5(6) C29 56(7) 51(6) 59(7) 16(5) 14(6) 5(5) C30 45(6) 44(6) 52(6) 16(5) 6(5) 4(5) C31 55(8) 62(8) 66(8) 22(6) 7(6) 15(6) C32 109(12) 61(9) 123(13) 41(8) 62(11) 26(9) C33 54(7) 69(7) 81(8) 7(6) 16(6) 22(6) C34 33(6) 85(8) 109(9) 16(7) 26(6) 8(6) C35 87(8) 56(6) 50(7) 10(5) 29(6) 10(6) C36 44(6) 47(5) 60(7) 1(5) 12(5) 8(5) C37 42(6) 72(7) 62(7) 9(5) 7(5) 27(5) C38 83(8) 46(6) 80(8) 34(6) 8(6) 9(6) C39 49(7) 87(8) 69(8) 28(6) 6(6) 6(6) C40 91(9) 27(5) 111(10) 5(6) 6(7) 21(6) C41 96(9) 61(7) 55(7) 11(5) 32(6) 5(6) C42 131(11) 99(9) 43(7) 22(6) 40(7) 6(8) C43 57(7) 73(7) 59(7) 14(6) 21(6) 6(6) C44 33(6) 61(6) 94(8) 24(6) 16(6) 15(5) C45 67(8) 44(6) 102(9) 9(6) 6(7) 28(6) C46 71(7) 66(7) 43(6) 18(5) 4(6) 6(6) C47 71(8) 83(8) 98(10) 32(7) 23(7) 14(7) C48 95(9) 43(6) 104(10) 16(6) 18(7) 4(6)

PAGE 139

139 Table B 36. Torsion angles (in deg) for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) Atoms Angle Atoms Angle N4 Hf1 N1 C16 167.1(6) N1 Hf1 N4 C37 88.7(7) N3 Hf1 N1 C16 46.7(6) N5 Hf1 N4 C37 91.4(7) N2 Hf1 N1 C16 72.4(6) N4 Hf1 N5 C39 62.7(7) N4 Hf1 N1 C15 2.8(6) N3 Hf1 N5 C39 57.6(7) N3 Hf1 N1 C15 117.7(5) N2 Hf1 N5 C39 176.8(7) N2 Hf1 N1 C15 123.3(6) N4 Hf1 N5 C40 65.8(6) N4 Hf1 N2 C33 49.7(7) N3 Hf1 N5 C40 173.9(7) N3 Hf1 N2 C33 145.4(6) N2 Hf1 N5 C40 54.7(6) N1 Hf1 N2 C33 47.1(6) N7 Hf2 N6 C25 159.5(7) N5 Hf1 N2 C33 133.7(6) N9 Hf2 N6 C25 82.3(7) N4 Hf1 N2 C34 139.8(7) N8 Hf2 N6 C25 37.9(7) N3 Hf1 N2 C34 25.1(8) N7 Hf2 N6 C24 26.6(6) N1 Hf1 N2 C34 123.4(7) N9 Hf2 N6 C24 91.5(6) N5 Hf1 N2 C34 55.8(7) N8 Hf2 N6 C24 148.2(5) N4 Hf1 N3 C36 51.6(6) N9 Hf2 N7 C46 176.2(6) N2 Hf1 N3 C36 143.5(5) N8 Hf2 N7 C46 15.3(8) N1 Hf1 N3 C36 45.7(6) N6 Hf2 N7 C46 83.6(7) N5 Hf1 N3 C36 135.2(6) N10 Hf2 N7 C46 93.4(7) N4 Hf1 N3 C35 134.8(7) N9 Hf2 N7 C45 11.5(8) N2 Hf1 N3 C35 30.1(8) N8 Hf2 N7 C45 172.4(6) N1 Hf1 N3 C35 127.9(7) N6 Hf2 N7 C45 88.6(7) N5 Hf1 N3 C35 51.2(7) N10 Hf2 N7 C45 94.3(7) N3 Hf1 N4 C38 179.9(7) N7 Hf2 N8 C43 54.2(7) N2 Hf1 N4 C38 15.3(8) N9 Hf2 N8 C43 145.3(6) N1 Hf1 N4 C38 81.9(7) N6 Hf2 N8 C43 44.7(7) N5 Hf1 N4 C38 98.0(8) N10 Hf2 N8 C43 133.9(7) N3 Hf1 N4 C37 9.5(8) N7 Hf2 N8 C44 133.4(6) N2 Hf1 N4 C37 174.2(6) N9 Hf2 N8 C44 27.1(8) N6 Hf2 N8 C44 127.7(7) C1 C2 C7 C8 3.4(11) N10 Hf2 N8 C44 53.7(7) C3 C2 C7 C8 177.2(7) N7 Hf2 N9 C42 133.0(7) C1 C2 C7 C6 175.0(7) N8 Hf2 N9 C42 28.2(8) C3 C2 C7 C6 4.3(11) N6 Hf2 N9 C42 127.8(7) C6 C7 C8 C9 174.3(7) N10 Hf2 N9 C42 50.6(7) C2 C7 C8 C9 4.1(12) N7 Hf2 N9 C41 52.9(7) C7 C8 C9 C14 0.5(12) N8 Hf2 N9 C41 145.9(6) C7 C8 C9 C10 178.4(7) N6 Hf2 N9 C41 46.3(7) C8 C9 C10 C11 176.2(7) N10 Hf2 N9 C41 135.3(7) C14 C9 C10 C11 2.8(12)

PAGE 140

140 Table B 36. Continued Atoms Angle Atoms Angle N7 Hf2 N10 C48 66.0(7) C9 C10 C11 C12 0.2(12) N9 Hf2 N10 C48 51.7(7) C10 C11 C12 C13 1.8(12) N8 Hf2 N10 C48 172.0(8) C11 C12 C13 C14 0.3(12) N7 Hf2 N10 C47 60.6(6) C11 C12 C13 C24 179.3(7) N9 Hf2 N10 C47 178.3(6) C2 C1 C14 C9 4.1(11) N8 Hf2 N10 C47 61.4(6) C2 C1 C14 C13 174.1(7) N6 Hf2 N10 C47 34(5) C8 C9 C14 C1 3.5(11) C14 C1 C2 C7 0.6(11) C10 C9 C14 C1 177.5(7) C14 C1 C2 C3 178.7(7) C8 C9 C14 C13 174.8(7) C1 C2 C3 C4 173.1(7) C10 C9 C14 C13 4.2(11) C7 C2 C3 C4 6.1(11) C12 C13 C14 C1 179.1(7) C1 C2 C3 C15 6.4(12) C24 C13 C14 C1 1.9(11) C7 C2 C3 C15 174.3(7) C12 C13 C14 C9 2.7(11) C2 C3 C4 C5 4.3(12) C24 C13 C14 C9 176.3(7) C15 C3 C4 C5 176.2(8) C16 N1 C15 C3 74.8(9) C3 C4 C5 C6 0.4(13) Hf1 N1 C15 C3 119.5(6) C4 C5 C6 C7 1.6(13) C4 C3 C15 N1 7.2(12) C5 C6 C7 C8 178.9(8) C2 C3 C15 N1 172.4(7) C5 C6 C7 C2 0.5(12) C15 N1 C16 C21 2.8(11) Hf1 N1 C16 C21 167.7(6) C12 C13 C24 N6 7.7(11) C15 N1 C16 C17 179.2(7) C14 C13 C24 N6 171.3(7) Hf1 N1 C16 C17 14.3(10) C24 N6 C25 C30 17.9(11) N1 C16 C17 C18 176.6(7) Hf2 N6 C25 C30 168.1(6) C21 C16 C17 C18 5.2(11) C24 N6 C25 C26 163.1(7) C16 C17 C18 C19 2.9(13) Hf2 N6 C25 C26 10.9(11) C16 C17 C18 C22 174.1(9) N6 C25 C26 C27 178.5(7) C17 C18 C19 C20 0.0(13) C30 C25 C26 C27 0.6(12) C22 C18 C19 C20 177.0(9) C25 C26 C27 C28 1.9(14) C18 C19 C20 C21 0.3(13) C25 C26 C27 C31 178.4(8) C18 C19 C20 C23 176.0(9) C26 C27 C28 C29 2.4(14) C19 C20 C21 C16 2.5(13) C31 C27 C28 C29 177.9(9) C23 C20 C21 C16 178.7(8) C27 C28 C29 C30 0.5(15) N1 C16 C21 C20 176.9(7) C27 C28 C29 C32 177.9(12) C17 C16 C21 C20 5.0(11) C28 C29 C30 C25 2.0(15) C19 C18 C22 F1 122.1(12) C32 C29 C30 C25 179.6(11) C17 C18 C22 F1 55.0(16) N6 C25 C30 C29 176.6(9) C19 C18 C22 F3 9.7(17) C26 C25 C30 C29 2.4(13) C17 C18 C22 F3 173.2(11) C28 C27 C31 F7 116.3(12)

PAGE 141

141 Table B 36. Continued Atoms Angle C19 C18 C22 F2 125.2(10) C17 C18 C22 F2 57.7(13) C21 C20 C23 F4 161.4(9) C19 C20 C23 F4 22.2(14) C21 C20 C23 F5 74.1(12) C19 C20 C23 F5 102.3(11) C21 C20 C23 F6 43.6(14) C19 C20 C23 F6 140.0(10) C25 N6 C24 C13 80.3(9) Hf2 N6 C24 C13 105.1(7) C30 C29 C32 F12 169.8(12) C28 C29 C32 F10 140.1(12) C30 C29 C32 F10 41.5(19) C28 C29 C32 F11 106.9(12) C26 C27 C31 F7 64.0(13) C28 C27 C31 F9 123.2(10) C26 C27 C31 F9 56.5(13) C28 C27 C31 F8 5.4(14) C26 C27 C31 F8 174.3(9) C28 C29 C32 F12 12(2)

PAGE 142

142 LIST OF REFERENCES (1) Schrock, R. R. Chem. Rev. 2002, 102, 145. (2) Schrock, R. R.; Czekelius, C. Adv. Synth. Catal 2007, 349 55. (3) Schrock, R. R. Acc. Chem. Res 1986, 19, 342. (4) Schrock, R. R. Angew. Chem. Int. Ed. 2006, 45, 3748. (5) North, M. in Comprehensive Organic Functional Group Transformations II Katritzky, A. R.; Taylor, R. J. K., Eds. Elservier: Amsterdam, The Netherl ands, 2005; Vol 3, 621. (6) Tyrrell, E. In Comprehensive Organic Functional Group Transformations II ; Katritzky, A. R.; Taylor, R. J. K., Eds. Elservier: Amsterdam, The Netherlands, 2005; Vol 1, 1083. (7) McLain, S. J.; Wood, C.D.; Messerle, L. W.; Sc hrock, R. R.; Hollander, F. J.; Youngs, W. J.; Churchill, M. R. J. Am. Chem. Soc 1978 100, 5962. (8) Morton, L. A.; Wang, R.; Yu, X.; Campana, C. F.; Guzei, I. A.; Yap, G. P. A.; Xue, Z. Organometallics 2006, 25 427. (9) Tsai, Y. C.; Diaconescu P. L.; Cummins, C. C. Organometallics 2000, 19, 5260. (10) Filippou, A. C.; Fischer, E. O. J. Organomet. Chem 1990 382 143. (11) Schrock, R. R.; Weinstock, I. A.; Horton, A. D.; Liu, A. H.; Schofield, M. H. J. Am. Chem. Soc 1988, 110, 2686. ( 12) Schrock, R. R.; Sancho, J.; Pederson, S. F. Inorganic Syntheses 1989, 26 44. (13) Tonzetich, Z. J.; Lam, Y. C.; Mller, P.; Schrock, R. R. Organometallics 2007, 26, 475. (14) Listemann, M. L.; Schrock, R. R. Organometallics 1985, 4, 74. (15) Frstner, A.; Mathes, C.; Lehmann, C. W. J. Am. Chem. Soc 1999, 121, 9453. (16) Zhang, W.; Kraft, S.; Moore, J. S. J. Am. Chem. Soc 2004 126 329. (17) Geyer, A. M.; Gdula, R. L.; Wiedner, E. S.; Johnson, M. J. A. J. Am. Chem. Soc 2007 129, 3800. (18) Bailey, B. C.; Fan, H.; Baum, E. W.; Huffman, J. C.; Baik, M.; Mindiola, D. J. J. Am. Chem. Soc 2005, 127, 16016. (19) Bailey, B. C.; Fout, A. R.; Fan, H.; Tomaszewski, J.; Huffman, J. C.; Gary, J. B.; Johnson, M. J. A.; Mindiola, D. J. J. Am. Chem. Soc 2007 129 2234.

PAGE 143

143 (20) Sarkar, S.; Carlson, A. R.; Veige, M. K.; Falkowski, J. M.; Abboud, K. A.; Veige, A. S. J. Am. Chem. Soc 2008, 130, 1116. (21) Choi, S.; Lin, Z. Organometallics 1999, 18, 5488. (22) Clark, D. N.; Schrock, R. R. J. Am. Chem. Soc 1978, 100 6774. (23) Schrock, R. R.; DePue, R. T.; Feldman, J.; Schaverian, J. C.; Dewan, J. C.; Liu, A. H. J. Am. Chem. Soc 1988 110 1423. (24) Rhers, B.; Lucas, C.; Taoufik, M.; Herdtweck, E.; Dabl emont, C.; Basset, J.; Lefebvre, F. Comptes Rendus Chimie 2006, 9, 1169. (25) Chisholm, M. H.; Eichhorn, B. W.; Folting, K.; Huffman, J. C.; Ontiveros, C. D.; Streib, W. E.; Van Der Sluys, W. G. Inorganic Chemistry 1987 26 3182. (26) Ipaktschi, J.; Rooshenas, P.; Klotzbach, T.; Dlmer, A.; Hseynova, E. Organometallics 2005, 24 1351. (27) Chisholm, M. H.; Huang, J.; Huffman, J. C. J. Organomet. Chem 1997, 528, 221. (28) Stichbury, J. C; Mays, M. J.; Davies, J. E.; Raithby, P. R .; Shields, G. P. J. Chem. Soc., Dalton Trans. 1997 13 2309. (29) Koller, J.; Sarkar, S.; Abboud, K. A.; Veige, A. S. Organometallics 2007, 26 5438.

PAGE 144

144 BIOGRAPHICAL SKETCH Andrew Peloquin was born in 1985 in Worceste r, Massachusetts, but soon moved to Deltona, Florida. He established himself as a dedicated student starting in his early educational career. He graduated from the United States Air Force Academy in Colorado Springs in May 2007 with a Bachelor of Science degree in c hemistry. He was assigned as a chemist in the Air Force upon graduation and came directly to the University of Florida in fall 2007 under the Air Force Institute of Technologys Graduate Scholarship Program. Andrew joined Dr Adam Veiges group, researching metal complexes supported by trianionic pincer ligands, with a focus on high oxidation state, group VI alkylidynes. He graduate d in August 2008 with a Master of Science degree in c hemistry.