PAGE 1
1
PAGE 2
2
PAGE 3
3
PAGE 4
Iwastoldlongtimeagothat\esdebuennacidoseragradecido".Comomimadremeeducomuybien,nopuedoevitarintentarincluiratodosaquellosquemehanayudadoyquesonparteimportantedeestatesis.IamhappytosaythatIcouldnothavedonethiswithoutthehelpofmanygreatpeoplethatIhavehadthepleasureandluckofmeetingduringtheselastsixyears.Ihopemymemorydoesnotfailmehere.Tostart,IwouldliketothankRamonGarcaLopez,becausewithouthisencouragementandhelpIwouldhavenotappliedtotheUFAlumniFellowshipandbecometherstSpanishgraduatestudentintheUF-IACexchangeprogram.OnceIarrived,RafaelGuzmanandwholaterbecamemyadviser,FredHamann,wereanincrediblehelptomakethetransitioneasier.Forallherhelp,foralwaysbeingthere,andforbeingasupermomtoalltheinternationalkids,IwouldliketothankDebraAndersonandeverybodyImetattheUFInternationalCenter.Allofyouareamazing!ThoserstmomentsinGainesvillewerenoteasy...andasthesongsays,Iwouldnothavedoneitwithout(morethan)alittlehelpfrommyfriends,andespeciallyIwouldliketothankAna,Eric,Ily,Katherine,Bruno,Pimol,AlisterandBalsaformakingitmuchmorefun.Margaret:thankyousomuchforyourfriendship,forbeingalways\myrock",forallthedrinksandthelaughs.ThosepartieswerealwayscrazyandSundayswouldnothavebeensobrightwithoutbrunch!IwouldliketothankAshleyforbeingherselfallthetime,forthelaughs,thehelpandthejacket!IamgoingtorandomlyaskpeopleinmyfutureocetostartscreamingwhenImissyou,Sun.ThanksgotoherandAudraforallthosenightoutsandtalks.Iwouldliketothankmypartnersincrime,Leah,DanC.andDanB.forbeinganamazinggroup(andagreatreleasewhenIneededtocomplainaboutmyadviser).Iwouldliketothankmyroommate,oneofmybestfriends,andmypartnerinballgamesat2aminthethirdoorcorridor,Curtis,foralwaysbeingthereandforhisneverendingkindness.IwouldliketothankSuvrathandMarenforalltheadviceandJulianforbeingsuchagoodperson(andnotforcingmetotrymarmiteeveragain!).AmihermanitoMiguelsololepuedodecir 4
PAGE 5
5
PAGE 6
6
PAGE 7
7
PAGE 8
8
PAGE 9
page ACKNOWLEDGMENTS ................................. 4 LISTOFTABLES ..................................... 11 LISTOFFIGURES .................................... 12 ABSTRACT ........................................ 14 CHAPTER 1INTRODUCTION .................................. 16 1.1Quasars ..................................... 16 1.2QuasarOutows ................................ 18 1.3VariabilityofOutows ............................. 22 1.4Goals ....................................... 23 2HIGHVELOCITYOUTFLOWINQUASARPG0935+417 ........... 25 2.1Introduction ................................... 25 2.2Data ....................................... 26 2.3Analysis ..................................... 28 2.3.1LineIdentication ............................ 28 2.3.2ContinuumNormalization ....................... 30 2.3.3LineMeasurementsandPhysicalQuantities ............. 34 2.4Discussion .................................... 39 2.4.1IonizationandTotalColumnDensityoftheOutow ......... 39 2.4.2NatureoftheAbsorber,VariabilityandKinematics ......... 41 2.4.3OriginoftheOutow,TimescalesandCausesforVariability .... 43 2.5Conclusion .................................... 46 3ANINVENTORYOFCIVMINI-BALSANDOUTFLOWLINESINSDSSQUASARS ...................................... 48 3.1Introduction ................................... 48 3.2QuasarSample ................................. 49 3.3IdenticationandMeasurementsofCivAbsorptionLines ......... 50 3.4Mini-BALs .................................... 59 3.5Statistics ..................................... 64 3.5.1StatisticsofMini-BALs ......................... 66 3.5.2RelationbetweenMini-BALsandBALs ................ 71 3.5.3RelationbetweenMini-BALsandAALs ................ 74 3.5.4RelationbetweenCivMini-BALsandMgiiAbsorption ...... 77 3.5.5RelationbetweenCivMini-BALsandRadioProperties ....... 79 9
PAGE 10
.................................... 82 3.7SummaryandConclusions ........................... 91 4VARIABILITYINQUASAROUTFLOWS .................... 93 4.1Introduction ................................... 93 4.2SampleSelectionandObservations ...................... 93 4.3DataReductionandMeasurements ...................... 94 4.4Analysis ..................................... 114 4.4.1CharacterizingtheVariability ..................... 114 4.4.2VariabilityFractionsandTrends .................... 115 4.4.3ComparisonstoPreviousWorkonBALs ............... 123 4.5Discussion .................................... 124 4.5.1SummaryofMainResults ....................... 124 4.5.2PhysicalPropertiesoftheAbsorbersandVariabilityCauses ..... 124 4.5.2.1Changeoftheionizationstate ................ 125 4.5.2.2Motionoftheabsorber .................... 127 5SUMMARYANDCONCLUSIONS ......................... 129 APPENDIX:ADDITIONALOBSERVATIONS ..................... 131 A.1J083104+532500 ................................ 131 A.2J092849+504930 ................................ 131 A.3J093857+412821 ................................ 132 A.4J102907+651024 ................................ 132 A.5J103859+484049 ................................ 132 A.6J144105+045454 ................................ 133 A.7J163651+313147 ................................ 134 REFERENCES ....................................... 135 BIOGRAPHICALSKETCH ................................ 141 10
PAGE 11
Table page 2-1Observationlogs ................................... 27 2-2ResultsoftheprolettingofCiv,Nv,andOvi. ................ 38 2-3Upperlimitsonlinesnotdetected ......................... 39 3-1Listofmini-BALs ................................... 57 3-2ListofBALsfromSDSSthatwerenott ..................... 59 3-3Numberx100ofmini-BALsperquasar. ...................... 69 3-4Fractionsofquasarswithmini-BALs(700
PAGE 12
Figure page 2-1OpticalspectrumobtainedatLickobservatoryin1996 .............. 30 2-2UltravioletspectrumfromtheHSTarchive ..................... 31 2-3HSTnormalizedspectra ............................... 32 2-4NormalizationoftheLick1996spectrum ...................... 33 2-5NormalizationoftheHSTspectrum ......................... 35 2-6LinettingtoCivinthe1996Lickspectrum,OviandNv 36 2-7UpperlimitstoabsorptionlinesforCiii,Niii,andPv 40 2-8VariabilityinthehighvelocityCiv1548,1551featureoveraperiodoftenyears .......................................... 44 3-1DistributionofalltheabsorptionsystemsmeasuredinFWHM-velocityspace .. 53 3-2Examplesofdierenttsandtheircomment-codesinTable 3-1 ......... 55 3-3Examplesofmini-BALsinquasarswithBI=0 ................... 60 3-4Examplesofmini-BALsinquasarswithBI>0kms1 61 3-5DistributionofFWHMvsREW1548ofthepartoftheFWHM{REWspaceoftheCivabsorptionlinesmeasured ......................... 63 3-6DistributioninFWHMoftheCivabsorptionlinesmeasuredwithFWHM700kms1inintervalsof500kms1 64 3-7Numberofmini-BALs(70025000to60000kms1andquasarswithBIsindierentranges ................................... 72 3-11PercentagesofabsorptionlineswithFWHM>3000kms1perquasarper5000kms1bininvelocityspace ............................. 73 3-12Numberofmini-BALsoutowingatv>5000kms1perAALQSOandpernon-AALQSO ..................................... 76 12
PAGE 13
78 3-14FWHM{velocity{(radioproperties)spaceofCivabsorptionlineswith500
PAGE 14
Outowsareafundamentalpartofquasars:theybringrst-handphysicalinformationaboutthequasarenvironments,theyarecommon(andmaybeubiquitous)andtheymightbekeytoconnectingtheAGNwiththeirhostgalaxies. Nonetheless,manyaspectsoftheseoutowsarepoorlyunderstood.Forexample,westilldonotunderstandtheaccelerationmechanismsthatdrivetheowsooftheaccretiondiskstospeedsreaching0.1c{0.2c.Ipresentnewmeasurementsandanalysesofoneofthemostextremecases:thehighvelocityoutow(v51000kms1)observedinthespectraofPG0935+417(zem1.97).Weuseacombinationofground-based(LickobservatoryandSloanDigitalSkySurvey-SDSS)andspace-based(HubbleSpaceTelescope)spectratomeasuretheabsorptioninCiv1549and,forthersttime,Ovi1034andNv1240inthesameoutow.TheabsenceoflowerionizationlinesindicatesthattheowishighlyionizedwithanionizationparameteroflogU-1.1.TheresolvedOviindicatesthatthelinesaremoderetelysaturatedwiththeabsorbercoveringjust80%ofthebackgroundemissionsource.WeestimatethetotalcolumndensitytobeNH>3.0x1019cm2,whichissmallenoughtobecompatiblewithradiationpressuremechanismsacceleratingthisoutow. Ialsocontributetothestudyofoutowsbysurveyingarealmofparameterspacethathasbeensparselystudiedbefore:mini-broadabsorptionlines(mini-BALs)andhighvelocities(v>10000kms1).Mygoalsareto1)quantitativelydenetherangeof 14
PAGE 15
Finally,inordertocharacterizebetterthestructuralandphysicalpropertiesoftheseoutows,Icarriedoutamonitoringprogramoverarangeoft=0.9-3.3yearsinthequasarrestframebyusingfacilitiesattheKittPeakNationalObservatoryandMDMObservatory.Bycomparingournewspectrawitharchivalspectra(SDSS),Indthat50%ofquasarswithmini-BALandBALsathighvelocityvariedbetweenjusttwoobservations.Indthatvariabilitysometimesoccursincomplexways;however,allthevariablelinesvaryinintensityandnotinvelocity.ThusIndnoevidenceforacceleration/decelerationintheoutow.IalsodonotndanycorrelationsbetweenthevariabilityandRestEquivalentWidth(REW),FullWidthHalfMinumum(FWHM)ordepthoftheabsorptionfeature,exceptforthefactthatnoneofthenarrowersystemsvaried.Asignicantfractionofthenon-variablenarrowersystemsareprobablyunrelatedtoquasaroutows. 15
PAGE 16
Hubble 1926 ).BasedonspectroscopicobservationsofmanyspiralnebulaetakenbyVestoSlipher( Slipher 1915 ),whoreportedlargerredshifts(z)thanexpectedformostofthem,Hubbleproposedhisfamouslaw,whichstatesthattheredshiftinthelightcomingfromwhat,nowadays,areagreedtobedistantgalaxiesisproportionaltotheirdistance.Theirrelativelysimilarbrightnesstocloserobjectsisaconsequenceoftheirlargeluminositiesandtheirdistances.Nowadays,someofthemostluminousandmostdistantobjectsintheuniverseareknownas\Quasars". Theterm\Quasar"wasintroducedbyastrophysicistHong-YeeChiuin1964,asashorterversionofthecommonlyusedterm`quasi-stellarradiosources',sincetheywerediscoveredbytheirradiobrightness.ManyofthesesourceswerecompiledinthethirdCambridgeCatalogs3Cand3CR( Edgeetal. 1959 ; Bennett 1962 ),andtheirnaturewasamysteryatthattime.Whilebeingthebrightestradiosourcesinthesky,interferometrystudiesdiscoveredthatthesesources,withcounterpartsofstar-likeappearanceonopticalphotographs,hadverysmallangularsizes(lessthan1arcsec),invokingveryhightemperatures(107K),andthusnon-thermalradiation.Also,theopticalcounterpartswereabnormallyblueintheultravioletandshowedlargevariability(forexample,3C48showedavariationof0.4magover1yearMatthews&Sandage 1963 ).Thespectraofthesesourceswerealsoanomalousrelativetotypicalstars,whosespectraareacombinationofathermal(blackbody)continuumandasuperpositionofmanyabsorptionlines.Instead,quasarspectracontainedanon-thermalcontinuumwith 16
PAGE 17
Schmidt ( 1963 )and Oke ( 1963 ),usingobservationsoftheopticalcounterpartof3C273,whichwereobtainedatthe200-inchHaleTelescopeonMountPalomar( Hazardetal. 1963 ),realizedthatthese"strangeelements"wereactuallyspectrallinesoftheBalmerseriesofhydrogenredshiftedby0.158.Thisredshiftwasamongthelargestmeasuredtodate.Soon,severalgroupsatdierentobservatories(Palomar,KittPeak,Lick,andKeck)discoveredmorecounterpartsoftheseradiosources.Today,weknowthatnotallquasarsarebrightinradiowavelengthsandtheredshiftrangeofquasarshasexpandedtoz6( Fanetal. 2001 ). Quasarsarethebrightestend(atvisiblewavelengths,luminosities1044-1048L)ofamoregeneralclassofobjectscalledActiveGalacticNuclei(AGN),incontrasttonon-activeornormalgalaxies(suchasthetheMilkyWay).Infact,thetermAGNrefersto`theexistenceofenergeticphenomenainthenuclei,orcentralregions,ofgalaxieswhichcannotbeattributedclearlyanddirectlytostar'( Peterson 1997 ).AGNarecompactobjectsthatresideinthecentralregionsofgalaxies.Asitwassoonsuggestedby Zel'Dovich&Novikov ( 1964 ),theonlywaytoreconcilesuchgreatenergyoutputswithsmallangularsizesisbyinvokingtheexistenceofasuper-massiveblackhole(SMBH)locatedinthecenterofthesepowerfulenginesandsurroundedbyanaccretiondiskofmaterialspiralinginwardwhichisfuelingthequasar.Energyisproducedwhenthegravitationalinfallofthismaterialcausesittoheattohightemperaturesinadissipativeaccretiondisk.Thisaccretiondiskisbelievedtogeneratemostofthecontinuumenergy.However,partofthematerialabandonsthediskanditisexpelledoutsideoftheinnerregion,sometimesatveryhighvelocities(upto0.2thespeedoflight).Thismaterialiscommonlyknownas\outows"incontrasttotherelativisticjetsthatareobservedinradioemission. 17
PAGE 18
Crenshawetal. 1999 ; Reichardetal. 2003 ; Hamann&Sabra 2004 ; Trumpetal. 2006 ; Nestoretal. 2008 ; Dunnetal. 2008 ; Ganguly&Brotherton 2008 ).Moreover,theoutowsthemselvesmightbeubiquitousinAGNif,asexpected,theabsorbinggassubtendsonlypartoftheskyasseenfromthecentralcontinuumsource.Therearepossiblephysicalreasonswhyoutowsmight,infact,bealwayspresent.Forexample,thecorrelationbetweentheblackholemasses(MBH)andthemassesofthehostgalaxies(MbulgeGebhardtetal. 2000 ; Merritt&Ferrarese 2001 )impliesaconnectionbetweentheinnerAGNanditssurroundinghostgalaxy.Thisco-evolutionbetweentheSMBHsandtheirhostgalaxiescouldbepartlyexplainedduetothe\cosmologicalfeedback"providedbyoutows.ThisAGN\feedback"couldalsoberesponsibleforotherobservablepropertiesofgalaxyformation( Elvis 2006 ),suchaslimitingtheuppermassofgalaxies( Crotonetal. 2005 )whosegrowthcannotbestuntedbyreducedcoolingandsupernovaefeedback( Thoul&Weinberg 1995 ).TheAGNfeedbackcouldalsoregulatestarformationinthehostgalaxies( Silk&Rees 1998 ; DiMatteoetal. 2005 ),anddistributemetalrichgastotheintergalacticmedium.Also,outowsmightbenecessaryforsuper-massiveblackhole(SMBH)growthbecause,inordertopreservetheconservationofangularmomentum,theaccretionprocessfuelingtheAGNmightrequireacounterpartofexpelledmaterial. Outowsareobservedasabsorptionlinesinquasarspectra,predominantlyduetotheresonancelinesCiv1548,1550,Siiv1394,1403,Nv1239,1243andMgii2796,2803intheUV/opticalwavelengthrange.BroadAbsorptionLines(BALs),whichshowtypicalwidthsofseveralthousandsofkms1,areoneofthemostcommonlystudiedclassesofquasaroutowlines( Weymannetal. 1981 ; Turnshek 1984 ; Weymannetal. 18
PAGE 19
; Reichardetal. 2003 ; Trumpetal. 2006 ).However,noteveryquasarabsorptionlineidentiesejectedmaterial.NarrowAbsorptionLines(NALs;i.e., Foltzetal. 1986 ; Aldcroftetal. 1994 ; Vestergaard 2003 ),withwidthslessthanafewhundredkms1,have,onthecontrary,severalpossibleorigins.Quasarlightcaninterceptintergalacticmaterialnotphysicallyrelatedtothequasars,producingnarrowabsorptionthatisdenoted"intervening".However,someoftheNALsthatliewithin5000kms1oftheemissionredshift(calledAssociatedAbsorptionLines,orAALsWeymannetal. 1979 ; Foltzetal. 1986 ; Andersonetal. 1987 )arelikelytobeinherenttothequasaroritssurroundinghostgalaxy.Thiscanbeinferredfromtheirlargerfrequenciesperunitvelocityasthevelocityosetbetweenthequasarandtheabsorptionsystemdecreases( Weymannetal. 1979 ; Nestoretal. 2008 ).Also,someNALsappearingatredshiftsmuchlowerthanthesystemicemissionredshift(zabszem)havebeenfoundtolieclosetothequasar/hostgalaxyandarethereforeoutowingathighvelocities( Misawaetal. 2007a ).Absorptionlineswithintermediatewidths,called"mini-BALs",havebeenfoundatavarietyofvelocitiesbutonlyinahandfulofquasarstodate(i.e., Turnshek 1988 ; Jannuzietal. 1996 ; Hamannetal. 1997c ; Churchilletal. 1999 ; Yuanetal. 2002 ; Narayananetal. 2004 ; Misawaetal. 2007b ).Mostmini-BALsarebelievedtobeoutowsbecausetheyshowsomeofthetypicaloutowsignatures,suchasvariability( Narayananetal. 2004 ; Misawaetal. 2007b )and\smoot"prolesathighresolution,whichsuggeststhattheyarenotblendsofmanyNALs( Barlow&Sargent 1997 ; Hamannetal. 1997b ).Thestudyofoutowsthusrequiresincludingthethreeabsorptionlinesthatrepresentejectedmaterial:BALs,mini-BALsandoutowingNALs. Whethertheseoutows,whichareobservedasdierenttypesofabsorptionlines,areadierentmanifestationofthesamephysicalprocessoracompletelydierentphenomenonremainsunknown.Asunicationtheoriesdictate,thegeometryandowstructureoftheseoutowsmightbedirectlyrelatedtotheirobservedfrequency.Althoughseveralgeometricalmodelshavebeenproposed(e.g., Elvis 2000 ; Gangulyetal. 2001 ),so 19
PAGE 20
Elvis ( 2000 )model,NALsaretheobservationofthesamestreamsthatproducetheBALsbutviewedatinclinationanglesclosertotheaccretiondiskplane,thusintersectinganarrowerportionoftheoutowingstream.Inthe Gangulyetal. ( 2001 )picture,NALsareclumpsofgasviewedatsmallerinclinationanglesthanBALquasars(nearerthedisk'spolaraxis). Anotheraspectthatremainsunsettlediswhataccelerationmechanism(s)is/aredrivingtheseoutows.Severalmechanismsanddynamicalmodelshavebeenproposedtoexplaintheiroriginandhowtheyareejectedfromtheinnerquasarregion:radiationpressurealone( Aravetal. 1994 ; Murrayetal. 1995 ; Progaetal. 2000 )orcombinedwithmagneticforces( deKool&Begelman 1995 ; Everett 2005 ; Proga&Kallman 2004 ).Summariesofthedynamicalmodelsaregivenby deKool ( 1997 )and Crenshawetal. ( 2003 ).RadiationpressureseemstoplayanimportantroleasitexplainstheobservedrelationbetweentheAGNluminosityandtheterminalvelocityoftheoutow( Laor&Brandt 2002 ).However,outowswithlargemasslossrates,largeionizationparameters,and/orhighvelocitiescanposeproblemsforradiativeacceleration( Hamann&Sabra 2004 ; Crenshaw&Kraemer 2007 ).Inanycase,bettercharacterizationofeveryoutowtypeisneededinordertodevelopacoherentpicture. Broadabsorptionlineshavebeenstudiedinasystematicmanner.Previoussurveysofbroadabsorptioninquasars(e.g., Reichardetal. 2003 ; Trumpetal. 2006 )havefocusedonclassifyingthembasedonintegratedmeasurementsofthetotalbroadabsorptionpresentintheirspectra:i.e.,BalnicityIndex(BIWeymannetal. 1991 )andAbsorptionIndex(AIHalletal. 2002 ; Trumpetal. 2006 ).TheBalnicityIndexisdenedas: 20
PAGE 21
Inthesamefashion, Halletal. ( 2002 )denedAItobealessrestrictivemeasurementofanykindofintrinsicabsorption,notonlyBALs,andattemptedtoexcludeinterveningabsorptionlines. Halletal. ( 2002 )proposedadenition,thatwasreviewedin Trumpetal. ( 2006 ): withthesamedenitionforf(v)butwithaC0that,alsoinitiallysetto0,becomes1incontinuoustroughsthatexceedtheminimumdepth(10%)andtheminimumwidth(1000kms1).NotethatBIandAIaredierentintheirintegralrangesandthatzerovelocityinBIandAIisdenedbyusingtheaveragewavelengthsofthedoubletandthelongestwavelengthlineofthedoublet,respectively.Bothparameters,though,losetheinformationregardingvelocity(v),widthandstrengthoftheabsorber(s)thatcanhelptocharacterizebettertheoutows,suchastheenergycontentnecessarytocomputethefeedbacktheyprovide.Moreover,thesestudieshavebeenconnedtovelocitiesupto25000[/29000]kms1duetothepossiblepresenceofSiivabsorptionintertwinedwithCivabsorptionbeyondtheSiivemissionline.Outowsathighervelocitieshaveonlybeenfoundinafewcases( Jannuzietal. 1996 ; Hamannetal. 1997c ; Misawaetal. 2007b )and,becausetheydonotcontributetowardsthevalueofBIandAI,theycouldnotbeincludedinprevioussystematicaccounts.Asystematicaccountisnecessaryinordertocharacterizetheseextremehighvelocityoutowsfurther. 21
PAGE 22
Bregmanetal. 1990 ; Fan&Lin 2000 )andlong-termchanges(tensofyears)couldbecausedbyseveralcauses,suchas,instabilitiesintheaccretiondisk(e.g., Rees 1984 ; Siemiginowska&Elvis 1997 ).Thesechangesinthephoto-ionizingcontinuummightmodifytheoutowionization,changingtheionicpopulationsoftheabsorber.Weobservethisvariabilityinthequasarabsorptionlinesthatarecausedbyoutowingmaterial.However,variabilitycanalsobeexplainedbymotionoftheabsorber(s).Forexample,iftheabsorbinggaspartiallyuncoverstheline-of-sighttothebackgroundsource,partoftheemissionlightpreviouslyabsorbedisabletopassthrough.Thesepossibilitiescanbetestedbasedonthevariabilitytimescales,sinceionizationchangescannothappenontimescalesshorterthantherecombinationtimesandthemotionoftheabsorbersiscontrolledbytheirvelocities.Moreover,theirvariabilitycanhelptounderstandbettertheirevolution,bothstructuralanddynamical,geometry,locationsofabsorbinggas,basicphysicalconditions,cloudstructure,sizes,possibleinstabilities,etc.,whichcouldbeusedtoultimatelytestandconstrainthedevelopingtheoreticalmodels(i.e., Murrayetal. 1995 ; Progaetal. 2000 ). Broadabsorptionlines(BALs)havebeenthesubjectofseveralcomprehensivestudiesofvariability(i.e., Barlow 1993 andreferencestherein;andmorerecently, Lundgrenetal. 2007 ; Gibsonetal. 2008 ; Capellupo&Hamann 2009 ).TheseworkshavefoundthatBALstendtovaryinacomplexmanneronmulti-yeartimescales,andthechangesarehypothesizedtobeduetothevariablephoto-ionizingcontinuumortomotionoftheabsorbers. 22
PAGE 23
Wiseetal. 2004 ; Narayananetal. 2004 ; Misawaetal. 2005 ).InthecaseofNALs,variabilitynotonlyprovidesabettercharacterizationoftheabsorptionasinthecaseofBALs,butitisoneofthecommonlyusedcriteriatodiscriminatebetweenoutowingandinterveningabsorbers( Barlow&Sargent 1997 ; Hamannetal. 1997c ).Mini-BALs,whichareabsorptionlineswithintermediatewidthsbetweenNALsandBALs,alsoclearlyforminoutowsbasedontheirbroadproles. Misawaetal. ( 2005 )andlater Misawaetal. ( 2007b )carriedouttheanalysisofacomplexmini-BALinthequasarHS1603+3820,whichalsovaried.However,thevariabilityofmini-BALshasonlybeenpreviouslystudiedinahandfulofcases( Narayananetal. 2004 ; Misawaetal. 2005 ). InChapter3,IpresentacomprehensivecatalogofCivabsorptionlinesinthe2200brightestSDSSquasarsat1.8z3.5,andselectthosewithFWHM>700kms1tobeoutowlines(unlikelytoformininterveningmaterial).Thegoalsofcompilingacomprehensivecatalogofabsorptionlinesareto1)quantitativelydenetherangeofoutowlinesinquasarspectra,2)examinetheirdetectionfrequenciesanddistributionsinvelocity,strengthandFWHM,3)lookforrelationshipsbetweenthevariousabsorptionlinetypesandbasicquasarproperties,and4)identifyindividualoutowlinecandidates 23
PAGE 24
Finally,inordertocharacterizebetterthestructuralandphysicalpropertiesoftheseoutows,Icarriedoutamonitoringprogramoverarangeoft=0.9-3.3yearsinthequasarrestframe,usingfacilitiesattheKittPeakNationalObservatoryandMDMObservatory.IincludetherstresultsofthismonitoringprograminChapter4. 24
PAGE 25
( 1997a )reportedthepresenceofanintrinsicCiv1548,1551mini-BALsystem(FWHMofthewholeprole1500kms1)atazabs1.50inthespectrumofthenon-BALQSO(zeroBalnicityIndexWeymannetal. 1991 )PG0935+417.Thisbrightquasar(V=16.2)hasanemission-lineredshiftofzem=1.966( Hewitt&Burbidge 1993 );thusthisCivabsorptionfeatureisoutowingatablue-shiftedvelocityof52000kms1(zabs1.50)relativetothequasaremissionlines.Moreover,high-resolutionKeckobservationsofthisquasarconrmedthattheminiBALremained\smooth",anddidnotbreakupinmanynarrowlines,ataresolutionof7kms1( Hamannetal. 1997a ). ThevelocityofthePG0935+417mini-BALwasthesecondhighestowspeedfoundatthatdateinanon-BALQSO. Jannuzietal. ( 1996 )'sdiscoveryofCiv,NvandOvioutowingat56000kms1inanotherluminousquasar,PG2302+029,wasthehighest.Although Jannuzietal. ( 1996 )speculatedthatthebroad-ishabsorptionlinesinPG2302+029,withfullwidthsathalfminimum(FWHMs)between3000and5000kms1,mightbecosmologicallyinterveninginsteadofintrinsictothequasar(forexample,duetowarmintra-clustergas,see Jannuzietal. 1996 ),morerecentobservationshaveshownthatthemini-BALsinthisquasarhavevariablestrengths(overacoupleofyearstimescale,see Jannuzi 2009 ),implyingthattheyforminadenseanddynamicquasaroutow. Variabilityhasalsobeenfoundinthehighvelocitymini-BALinPG0935+417. Narayananetal. ( 2004 )reportedastudyoftheabsorptionfeaturevariabilityoveratimerangeof2yearsinthequasarrest-frame.UsingspectraobtainedattheLickObservatory(seeFigure4in Narayananetal. 2004 ),theyconrmedtheintrinsicnatureofthisoutow,whichseemtovarymostdramaticallyinrest-frametimescalesof1year. 25
PAGE 26
Hamannetal. ( 1997a ),usingHubbleSpaceTelescope(HST)spectraavailableintheirarchives.Weincludeasearchofotherionsinthesameoutowtoplacelimitsonthedegreeofionizationandtotalcolumndensityinthisoutow.Wealsoexpandthevariabilitystudyofthemini-BALinPG0935+417byusingmorerecentarchivalspectrafromtheSloanDigitalSkySurvey(SDSS-2003)andspectraweobtainedattheKittPeakNationalObservatory(KPNO-2007),whichexpandstheoriginalrest-framemeasurementintervalfrom2toalmost5years. TwootherCivnarrowabsorptionsystemsarepresentintheLickspectra:asystemofnarrow\associated"absorptionlines(AALsatv<5000kms1Foltzetal. 1986 )atzabs1.94,andonenon-associatedatzabs1.47.WedeferdiscussionoftheAALsystemtoafuturepaper( Hamann 2009 )thatincludeshigherresolutionspectroscopy. 2-1 summarizesthePG0935+417datausedinthisstudy.Weanalyzedspectrapreviouslyobtainedduringfourobservingruns(from1993to1999)usingtheKASTspectrographatthe3.0mtelescopeattheUniversityofCaliforniaObservatories(UCO)LickObservatory,withthewavelengthcoverageandresolutions(nearthosewavelengthsofinterest)showninTable 2-1 .SeeNarayananetal.(2004)formoreinformationontheseobservationsanddatareductions.WeveriedthewavelengthcalibrationsofthesedatausingspectrawithresolutionR==34000(0.13Aor9kms1)obtainedwithHIRESatthe10.0mtelescopeoftheW.H.KeckobservatoryonJanuary1998( Hamannetal. 2008 ).Comparisontointerveninglines(3964.02A,3997.09Aand4400.50A)intheKeckspectrasuggestedtheshiftoftheLickspectratomatchthesenarrowabsorptionlines.TheKeckspectrawavelengthshadbeenalreadyshiftedtovacuumintheheliocentricframe. TolookforthepresenceofotherlinesatthesameredshiftastheCivmini-BAL,weexaminedarchivalHubbleSpaceTelescopespectraobtainedwiththeFaintObject 26
PAGE 27
Observationlogs ObservatoryDateRange(A)Exposuretime(s)Resolution Lick1993Mar13250-535012008001Lick1996Mar3250-460027001300Lick1997Feb3250-600027001300Lick1999Jan3250-600030001300HST(FOS)1994Oct2270-327020461300HST(FOS)1995Nov2270-327089101300SDSS2003Jan3800-920022502000KPNOJan20073600-620090001300 Spectrograph(FOS)usingtheG270Hgratinganda0.003apertureon1994October7and1995November13.Fourexposuresin1995andonein1994providedtotalexposuretimesof8910and2046s,respectively.ThesespectrahavearesolutionR=1300(230kms1)andwereobtainedfromtheSpaceTelescopeScienceInstitutearchivesalreadyreducedandcalibrated.WeveriedthewavelengthsusingGalacticabsorptionlines(Feii2383andMgii2796,2804),whichweassumedtobeattheirlaboratorywavelengths.WedidnotmakefurthercorrectionsforthemotionofHSTortheEartharoundtheSun,butwenotethattheseadjustmentswouldbesmallcomparedtotheresolutionofthespectraandtheywouldnotaectanyoftheresultsdiscussedinthisstudy.WefoundnodiscernablevariabilityinthelinesofinterestbetweenHSTobservations,andthusweaveragedalloftheHSTspectratogethertoimprovethesignal-to-noiseratio. Finally,weexaminedmorerecentspectratoextendthetimebaselineandmonitorthevariabilityoftheCivmini-BALabsorptionline.ArchivalspectrawereobtainedfromtheSloanDigitalSkySurvey(SDSS)withresolutionR2000(150kms1; Adelman-McCarthyetal. 2008 ).WealsoobtainedmorerecentspectrawiththeGoldCamspectrometeratthe2.1mtelescopeattheKittPeakNationalObservatory(KPNO)withresolutionR1300(150kms1)in2007. 27
PAGE 28
4 TheHSTdatawerenottakensimultaneouslywiththeLickdata(seeTable 2-1 ).TheHSTdatadonotvarysignicantly(beyondthenoise)betweenthe1994and1995observations,thusbothspectrawerecombined.However,theclosestintimeLickspectra(1993and1996)areindeedvariablebetween1993and1996(seex ).Inthischapter,wediscussprimarilymeasurementsoftheCivfeatureintheLick1996spectrumbecauseitistheclosestintimeandbecauseofitsabsorption-lineshapesimilaritieswiththeabsorptioninthe1997and1999spectra. SeeTable 2-1 formoreinformationonthesedataandx forfurtherdiscussiononthevariability. 2.3.1LineIdentication 2-1 showsthe1996opticalspectrumofPG0935+417,wherewehavemarkedseveralabsorptionsystems.TheCivabsorptionfeatureismorecomplexthanwasoriginallyreported.BesidestheCivmini-BALatanobservedwavelengthof3860A(zabs1.50)previouslyreportedin Hamannetal. ( 1997a )and Narayananetal. ( 2004 ),wefoundanotherCivabsorptionsystematanobservedwavelengthof3920A(zabs1.53).WealsofoundtwonarrowCivabsorptionsystemsandalthoughwearenotstudyingthesesystemsinthiswork,welookedforthepresenceofotherlinesatthoseredshiftsthatcouldbeblendedwiththelinesofinterestatzabs1.50(seebelow). 28
PAGE 29
2-2 showsthecombinedHSTspectrumwherewehavemarkedthelocationsoflinestypicallyfoundinBALs( Hamann 1998 ; Aravetal. 2001 ).Thestrongabsorptionfeatureatanobservedwavelengthof2885AisanunrelatedDampedLylineatzabs=1.37.TheLymanlimitat2240A(Figure 2-2 )correspondstothenarrowabsorptionsystematzabs1.47.ThereisnosignicantLymanlimitabsorptionrelatedtothemini-BALoutowsystematzabs1.50. WedetectforthersttimeOvi1032,1038andNv1239,1243mini-BALsintheHSTspectraatsimilarvelocitiesastheCivmini-BALreportedby Hamannetal. ( 1997a ).Wesearchedforotherionsatthesameredshift:Ly1216,Ly1026,Oi989,1302,Ci945,1277,Cii1036,Ciii977,Nii1084,Niii990,Siii1190,1193,1260,Siiii1207,Siiv1394,1403,Siv1063,Pv1118,1128,andSvi933,946.Nootherdetectionsaresurelyconrmed,partlyduetothedicultythattheLyforestimposes,andpartlyduetothecoincidenceinwavelengthwithotherionsoftheothersystemsmentionedabove.WendthatCiiiatzabs1.50islocatedataverysimilarwavelengthcomparedtoNiiiatzabs1.47.Nonetheless,inseveralcases(Ciii,Niii,Pv,SiivLyandLy)weplaceupperlimitsfortheabsorptionmeasurements(seex ). Figure 2-3 showstheCivmini-BAL(Lick1996spectrum-dot-dashedline)over-plottedovertheNvandOviabsorption(HSTspectrum-solidline),onavelocityscalerelativetothequasaremissionredshift.AlthoughthepresenceoftheLyforestcontaminatesboththeOviandNvabsorptionfeatures,therightseparationoftheOvidoubletandthestrongabsorptioninbothionsatthevelocityoftheCivmini-BALsuggeststhecertaintyofthedetection.TheNvdoubletisnotclearlydetected,butthestrengthandoverallappearanceoftheabsorptionatthepredictedlocationsuggeststhatmostofthisfeatureisthemini-BALsystem. 29
PAGE 30
OpticalspectrumobtainedatLickobservatoryin1996.Prominentbroademissionlinesarelabeledacrossthetop.Tickmarksindicatedthelocationoftheeachlineofthedoubletabsorptionlines.TheCivmini-BALslieatanobservedwavelengthof3860A(zabs1.50)and3920A(zabs1.53).WehavemarkedthelocationofSiivandCiiinthesameoutow,althoughwedonotconrmtheirdetection.Besidesthatsystem,wehavelabeledanassociatedsystematzabs=1.94andanothersystematzabs=1.47,whichareusedtostudythecertaintyofdetectionsofotherionsintheabsorptionsystemofinterestthatcouldbeconfusedwithionsinthesesystems. 2-4 weshowthenormalizationoftheLick1996spectrum.First,wetapowerlawtothecontinuum(f/0:8),constrainedinthreenarrowwavelengthbandsfreeofemissionorabsorption(1272-1276A,1434-1443A,and1449-1455A,intherestframeofthequasar).Second,wetsingleGaussianstothe 30
PAGE 31
UltravioletspectrumfromtheHSTarchive(1994and1995spectracombined).Prominentbroademissionlinesarelabeledacrossthetop.Tickmarksindicatethelocationofexpectedlinesinthezabs1.50outow.Thestrongabsorptionfeatureatobservedwavelength2870AisanunrelatedDampedLyatzabs1.37.ThestrongLymanLimit(LL)ataobservedwavelength2250Acorrespondstothealsounrelatedabsorptionsystematzabs1.47 emissionlinesaroundtheCivabsorption(Siii1263A,Oi1305A,Cii1335A,andSiiv+Oiv]1400A).Thelocationofthispseudo-continuumisparticularlyuncertainintheregion1280-1350Aintherestframeduetotheseveralparametersthattakepartinthettingoftheweakeremissionlines(Siii,OiandCii).Weconstrainedourtstotheseemissionlinestoberedshiftedby300kms1withrespecttotheredshiftofthestrongerSiiv+Oiv]feature,forwhichthebestsingle-gaussiantoccursatzem=1.94.Thisredshiftagreeswellwiththevaluezem=1.966reportedbyTytlerandFan(1992),basedonlowerionizationlines(MgiiandLy).WealsoconstrainedtheFullWidth 31
PAGE 32
HSTspectraafternormalization,showingthehigh-velocitymini-BALsforOviandNv(solidlines),withover-plottedCivfromthenormalizedLickspectrum(dotted-dashedlines),showninvelocityscaledrelativetotheemissionredshift.TheHSTspectrumincludesmanylinesunrelatedtothemini-BALs(Lyforest).VerticallinesshowwhereweexpectedtondthelinesintheOviandNvdoublets.InthecaseofNv,althoughstrongabsorptionispresence,thedoubletseemstobeblendedwithLyforestlines. atHalfMaxima(FWHM)ofOiandCiitoberoughly60%oftheSiiv+Oiv]FWHMbasedonspectraofquasarcomposites(CraigWarner,privatecommunication).AnextraGaussianwasusedtottheredwingoftheLy+Nv1240Ablend.ThenalresultisplottedinFigure 2-4 32
PAGE 33
NormalizationoftheLick1996spectrum.Thesolidstraightlineunderthespectrumrepresentsattothecontinuumwithapowerlaw.DashedlinesrepresentourttoGaussiansforthefollowingemissionlines:Ly(rightslope),Siii,Oi,Cii,andSiiv)aroundtheCivmini-BAL,markedwithanhorizontalline.Becausetheabsorptionfeatureatanobserved3920Aisrealabsorptionitwasexcludedintheemissiontting. Figure 2-5 showsourtstothecontinuumandemissionlinesintheHSTspectraaroundtheNv(left)andOvi(right)absorbers.TheLyforestmakesitdiculttodeneacontinuumnormalizationaroundtheOviandNvabsorptionlines.InordertoexcludethenumerousinterveningabsorptionlinesintheLyforest,wetthecontinualocallyaroundtheabsorptionofinterestandconstrainedthetsusingonlyverynarrowrangesinwavelength(indicatedbythesolidlinesabovethespectra).InthecaseofthecontinuumaroundOvi,wettedthelocalcontinuumwithasecondorderpolynomial.Ourapproachisveryconservativeandmightresultinasuppressedcontinuum,whichmightimplythatourmeasurementsoftheOvistrengths(x )areunderestimated. InthecaseofthecontinuumaroundNv(toppanelofFig. 2-5 )becauseofthepresenceofanOvi1032,1038broademissionline,wetastraightlinetothecontinuumandaddedaGaussiantorepresenttheOviinemission.Thelocationand 33
PAGE 34
SimilarlocalcontinuawerenormalizedaroundtheabsorptionofCiii,Niii,Siiv,Pv,Ly,andLy. whereIoistheintensityofthenormalizedcontinuum,Cfistheline-of-sightcoveragefraction(0Cf1),ameasurementofthecoverageoftheemissionsourcebytheabsorber,andvistheopticaldepth( Hamann&Ferland 1999 ).Forsimplicityduetothemediumresolutionofthespectra,wehaveassumedthattheCfhasonlyonevalueoverthewholeprole.WealsohaveassumedthattheopticaldepthsareGaussiansdenedas whereoistheopticaldepthatthecenteroftheline,visthevelocityandbistheDopplerparameter.WhendoubletresonancelinessuchasCiv,NvandOviarenotsaturated,theiroscillatorstrengthsdictatedierentlinestrengthsbecausethetrueopticaldepthratiois2:1forallofthem. Figure 2-6 showsthetsperformedoverCivNv,andOvi.Thicklinesrepresentthenalt,whichisacombinationofthreefeatures(A,B,andC).Wecorrectedfor 34
PAGE 35
NormalizationoftheHSTspectrum(twoepochscombined)aroundtheNv1239,1243absorptionline(1035-1065A,inthequasarrestframe)-top-andaroundtheOvi1032,1038absorptionline(860-890A)-bottom.Solidlinesaboveeachspectrumrepresenttherangechosenforthepolynomialt,whichisrepresentedbydottedlines.ThecontinuumattheleftofNv(top)alsoshowsaOvibroademissionline,representedasasingleGaussianandextactedfromthespectrum. instrumentalbroadeningGaussiandeconvolution.ThishasasmalleectononlythenarrowestsystemA.FeaturesAandBweredetectedintheCivabsorptionandarepresentinOviandNvaswell,whileaCcomponentoftheabsorptionseemstobepresentinOviandNv,butnotinCiv.BecauseCivliesinaregionfreefromcontaminationwithLylines,weused,asarstapproximationforthetsofthefeatures 35
PAGE 36
LinettingtoCivinthe1996Lickspectrum(top),Ovi(middle)andNv(bottom).Thicklinesrepresenttheresultsofthecombinationofthethreecomponentsoftheabsorption(A,B,andC-dottedlines).AcoveragefractionofCf=0.8wasusedforeverycomponentofeveryion.TheCivnarrowabsorptionfeatureatbluerwavelengthsthantheCivLickabsorptionistheunrelatedsystematzabs1.47. 36
PAGE 37
. Figure 2-6 showsthatthetwostrongnarrowcomponentsofOviseemtobepresentina1:1depthratio,characteristicofsaturatedproles,althoughsaturationisnotoccurringatzeroux.Sincetheprolesareresolved(FWHM>150kms1),thisindicatespartialcoverageofthebackgroundemissionsource(i.e.,theemissionsourceisnotcompletelycoveredbytheoutowinourlineofsight, Hamann&Ferland 1999 ).WeobtainavalueofCf'0:8forOvi.SincefeatureAinOviistheonlyfeatureandionwherewecandistinguishbothlinesinthedoublet,weusedthisvalueforalltheotherions,althoughweareawareofotherstudieswhereithasbeenfoundthatCfmayvaryfromiontoion( Hamannetal. 1997c )andthattheCiv,inparticular,couldhaveanyvaluefrom1to0.4sinceitwasnotobservedsimultaneouslywiththeHSTdata.WealsoincludemeasurementsbasedonCf=1inTables 2-2 and 2-3 forcomparison. Table 2-2 includestheresultsforCf(v)=1and0.8.ValuesfortheRestEquivalentWidth(REW)arederivedbyintegratingoverthettedprole,combiningallofthecomponentsthatarepresent(thicksolidlinesinFigure 2-6 ).TheerrorsinREWarederivedbyvaryingthecontinuumtothehighestandlowestpossiblecontinuumbased 37
PAGE 38
2-2 liststhe1errorsbasedonthisscheme.Absorptionredshifts(zabs)andthusvelocitiesarederivedfromthecentroidofthetstotheindividualdoubletcomponents.ValuesofFWHMweremeasuredoverthettotheshorterwavelengthlineineachdoublet.ForthetsofcomponentAweusedierentDopplerparametersbforCivthanforOviandNv,asrequiredbythedata.ForcomponentBweusethevaluesobtainedintheCivtfortheothertwoions,andforcomponentC,apparentlynotpresentinCiv,weusethevalueforOviforNvaswell.Columndensities(Nion)arederivedbyintegratingthettingprolesusingtheloweroscillationstrengthlineineachdoublet;oscillatorstrengthswereobtainedfrom Verneretal. ( 1994 ).BecausetheabsorptioninOviandNvishighlycontaminatedwiththeLyforest,weconsideredthatallthevaluesofNionandofortheseionsshouldbeupperlimits,exceptfortheOviAcomponent,thatseemstobeclearlypresent,anditisindicatedwithasign\>"becauseinthecaseofsaturationanyvalueofgreaterthan2.8wouldbeviable.However,wepointoutthattheseresultsandupperlimitsforOvimightbeunderestimated,becauseofourconservativeapproachtothecontinuumtacrosstheline(cf.Figs 2-2 and 2-5 ).ErrorsincolumndensitieslistedinTable 2-2 werederivedinthesamemannerasfortheREWs. Table2-2. ResultsoftheprolettingofCiv,Nv,andOvi. Cf=0.8ion REW compv (km/s) (km/s)(1015cm2) (km/s)(1015cm2) Civ 11800.547+0:0110:0120.18 11800.719+0:0160:0170.25 B46820 1580a0.090+0:0070:0100.03 1580a0.115+0:0080:0130.04Nv A51320 660b<0.6<0.24 680b<0.8<0.33 B46820 1580a<0.2<0.03 1580a<0.2<0.04 C50860 2500c<1.1<0.11 2540c<1.6<0.16Ovi 720b2.41+0:150:150.7 780b>8.2>2.8 B46820 1600a<2.26<0.16 1600a<0.72<0.08 C50860 2510c<0.630.07 2540c<2.8<0.2 WeperformedexactlythesameprocedurefortheCivabsorptionintheotherLickspectra(1993,1997and1999).Resultsin1997and1999areverysimilarto1996,exceptforthelackofaclearlypresentcomponentB,although,aswementionedbefore,features 38
PAGE 39
. Asnotedabove(seesection 2.3.1 ),wedonotclearlydetectabsorptioninCiii,Niii,Pv,Siiv,LyorLy,attheredshiftoftheCiv,NvandOviabsorbers.AllofthesefeatureslieintheLyforestandineverycasethereissomeabsorptionpresent.Therefore,weoutlinedabsorptionprolesforcomponentAintheblue-shiftedwavelengthsoftheseionstoplaceupperlimitsonthecolumndensitiesandsetlimitsontheabsorberionization.WeusethesamezabsandbparametersasinOvi(forlinesfoundintheHSTspectra)andCiv(forthelinesintheLickspectra)fortheAcomponentandincreasethestrengthoftheline()untilitwasobviouslymuchstrongerthanthedataatthewavelengthsofinterest.Figure 2-7 showsexamplesoftheseupperlimitsandTable 2-3 includestheresults. Table2-3. Upperlimitsonlinesnotdetected Ciii<1.3<0.36Niii<0.4<0.55Pv<0.5<0.09Siiv<1.7<0.17Ly<1.6<0.5Ly<0.8<1.57 2-2 ).ThesmalldeclineofthecontinuumcorrespondstoanopticaldepthLL<0.2. 2.4.1IonizationandTotalColumnDensityoftheOutow 39
PAGE 40
UpperlimitstoabsorptionlinesforCiii(topleft),Niii(topright)andPv(bottom)basedoncomponentAonlyinCivinthe1996Lickspectrum. Hamann&Ferland ( 1999 )presentedresultsoftheoreticalratiosofcolumndensitiesfordierentionscalculatedbyCLOUDYphotoionizationsimulationsinphotoionizedcloudsthatareopticallythinintheLymancontinuum.Weusedtheseresults(asshownintheirFigure10)toestimateUfromthetheoreticalratiosofcolumndensitiesfordierentionsofthesameelement(suchasCiiiandCiv)andfordierentelements(suchasCivandOvi),assumingsolarabundances( Grevesse&Sauval 1998 ). WeestimatedUtobelogU>-1.1forbothcomponentsAorB,fromtheratiobetweenN(Civ)andN(Ovi),usingCf=0.8(whereN(Ovi)isalowerlimit-seesectionx forcommentsoncolumndensities).WealsocalculatedalimitonUfromtheratioofcolumndensitiesofcomponentAinCivandCiii,N(Civ)/N(Ciii)>2,fromwhichweobtainanotherlowerlimitoflogU2:2,whichislessrestrictivethantheprevious 40
PAGE 41
Ifthemetalicity(O/H)issolarandtheionizationmaximizestheamountofOvi,suchthatN(Ovi)/N(O)0.4atlogU=-1.0(seeFigure10from Hamann&Ferland 1999 ),wecanestimateatotalcolumndensity(NH)asfollows: whichyieldsthevalueNH>3.0x1019cm2(usingonlycomponentA).ThisvalueisalowerlimitbothbecauseN(Ovi)isalowerlimit(Table 2-2 )andbecausetheactualratioN(Ovi)/N(O)mightbesmaller.Super-solarmetallicities,asreportedinhighredshiftquasars( Dietrichetal. 2003 ),mightdecreasethisNHlimitbyfactorsofafew. TheupperlimitontheLycolumndensity(seeTable 2-3 )canbeusedtoderivealowerlimitonU:logU>-0.6.TheabsenceofaLymanedgeisconsistentwiththislimit.ThevalueoflogU>-0.6issomewhatlargerthantheOviresultoflogU-1.1.ThishigherionizationinEquation 2{3 wouldalsoleadtoalargerNHlimit,whichcouldbemitigatedsomewhatbyhighermetallicities.However,itappearsoverallthatourestimatesoflogU>-1.1andNH>3.0x1019cm2arermlowerlimitsandareconsistentwiththenon-detectionsofotherlowtomoderateionizationslinessuchasCiiiandSiiv. Narayananetal. 2004 andbelowinthissection)showvariableabsorptionacrossavelocityintervalofatleast45000to54300kms1relativetotheemissionredshiftderivedfromlowionizationlines(zem=1.966).Inthe1996spectrumweidentifydistinctmini-BALsinCivthatwelabeledAandB(Figure 2-6 ).However,thesefeaturesevolveandlosetheiridentitiesaltogetherinsubsequentobservations.Althoughthevelocity 41
PAGE 42
AcomparisonoftheCivandOvilinesin1994/1995(HST){1996(Lick)alsosuggestsfurtherthattheabsorberhasanionizationdependence.Inparticular,theOviabsorptionincludesabroadfeature(componentCwithFWHM2500kms1)thatisnotpresentinCivandthenarrowcomponent(A)isconsiderablynarrowerinOvi(FWHM750kms1)thanitisinCiv(FWHM1200kms1).Thesedierencesmightbeaectedbythelinevariabilitiessincethespectraweretakenatdierentobservationtimes(1.5monthseparationinthequasartimerestframe).However,wenotethattheOviabsorptiondidnotchangesignicantlybetweenthetwoHSTobservationsin1994and1995,andtheCivlinemeasuredfrom1993to1996hadaconsistentlybroadercomponentAandnoverybroadcomponentC. TheCiv(measuredinthe1996spectrum),andmaybetheOviandNvlinesalsohaveabsorptionatlowervelocities(componentBinFigure 2-6 ),bettermatchedbyabsorptionproleswithv47000kms1(zabs1.53).Thelaterevolutionofthisfeature(seeFigure 2-8 )suggeststhatitmightberealabsorption.NoteagainthattheNvabsorptionproleisseverelycontaminatedbyLyforestlines,butitsoverallappearanceisconsistentwiththeOvimini-BALs. OurbestestimatefortheCoverageFractionisCf=0.8.ThisvaluewasderivedfromthemildsaturationofthecomponentAintheOviion,asthedatasuggests.NoneoftheothercomponentsinOviandintheotherionsallowedforadeterminationoftheCfbecausebothcomponentsofthedoubletareblendedtogetherorwithLyforestlines.ThereisstillsomeuncertaintyinthisresultduetopossibleblendingwithLyforestlines.However,thefeaturesweattributetoOvihavethecorrectdoubletseparation,nearlythesameFWHMsandtheyappearatessentiallythesameredshiftascomponentAmeasuredinCiv.TheOviabsorptionoccursatwavelengthsawayfromthebroademissionlinesandthereforetheabsorbermustpartiallycoverthequasarcontinuumsource. 42
PAGE 43
Narayananetal. 2004 ).Morerecentdata(providedbytheSloanDigitalSurveySkySurvey-SDSS-andobservedattheKittPeakNationalObservatory-KPNO)showsthatthevariabilityhascontinued.Figure 2-8 comparestheLickspectrain1996,usedintheanalysisinthiswork,tothenewerSDSSspectrumobtainedin2003andKPNOspectrumobtainedinJan2007.Themostdramaticvariabilityoccursbetween1999and2003.TheSDSS2003spectrumshowsthattheabsorptionproleidentiedasAinthe1996spectruminFigure 2-6 hasalmostcompletelydisappearedandtheabsorptionidentiedasBhasincreasedinstrengthandwidth.Thecomplexityoftheabsorptionprolein2003and2007suggeststhatAandBabsorptionsareintertwinedandthusitdoesnothaveaclearmeaningtousethemtoidentifytheprolesinthespectrabeyond1999.Between2003and2007,theabsorptionremainsquitesimilarinstrength,andwewouldliketonoteonlyachangeinthemaximumdepth,whichshiftsfromv47000kms1inthe2003spectrumtov49000kms1inthe2007one.SimilarshiftsinthecentroidvelocitywerereportedbetweenthepreviousLickobservationsin Narayananetal. ( 2004 ). Hamannetal. 1997c and Hamann&Simon 2009 ).Thevariabilitytimes,inparticular,providedirectconstraintsontheabsorberlocation.Iftheowisphotoionizedandthelinechangesarecausedbychangesintheionizingux,thentherecombinationtimesetsanapproximatelowerlimitontheoutowgasdensity(see Hamannetal. 1995 and Hamannetal. 1997c ).ThesmallestvariabilitytimewemeasureinCiv,1yrinthequasarrestframe,correspondstoaminimumelectrondensitynH>1.1x105cm3.This,inturn,yieldsamaximumdistance 43
PAGE 44
VariabilityinthehighvelocityCiv1548,1551feature(3850-3900Ainobservedwavelengths)overaperiodoftenyears.Emission+continuumaroundhasbeendividedbyalinearttoshowonlyvariationsinabsorption,althoughtheremaybesomeremainingemissionintheregionaroundoftheCivmini-BAL.TheabsorptionfeatureintheSDSSspectrummayseemweakerthantheothertwospectra.However,thecomponentoutowingataslightlylowerv(47000kms1,3920Ainobservedwavelength)seemsstrongerintheSDSSspectrum. betweentheabsorberandthequasaremissionsourcebecausetheionizationparameterscaleslikeU/L nHr2,whereListhequasarluminosity,nHneistheabsorberdensity,andristheradialdistance.WeestimateL67x1046ergs1forPG0935andthusderiver<1.1kpcusinglogU>-1.1andnH>1.1x105cm3inEquation6in Hamann&Simon ( 2009 ).Thisresultclearlyrulesoutabsorptionbyhighvelocitycloudsfarawayfromthequasarorintheouterhostgalaxy. 44
PAGE 45
Hamannetal. 2008 ).Inthatcase,thetransversevelocities(perpendiculartooursightlines)mustbelargeenoughtocrossasignicantportionofthefar-UVemissionsourceinavariabilitytime.Specically,thesmallestobservedvariabilitytime,1yr,andthecontinuumregiondiameter,0.003pcat1550A,requiretransversevelocitiesvtr>2900kms1.ThesevelocitiesaresimilartodiskrotationspeedsbeyondtheradiusoftheCivBELregionRCIV(vtr3000kms1),andthereforethisscenarioisplausible. WecannotestablishwhethertheoutowwaslaunchedinaninnerorouterregioncomparedtotheBroadEmissionLineRegion(BELR).However,duringthese(atleast)4.7years,theoutowhastravelledoveraregionlargerthanthesizeoftheBELR;thuseveniflaunchedinnertoit,theouowshouldbeoutsideofitatthepresenttime.WeestimatetheRCIVtobe5x1017cmfromabolometricluminosityLbol67x1046ergs1)derivedfromtheobserveduxatrestframe1450A(L(1450A)=7x1012ergs1cm2),usingacosmologywithHo=71kms1Mpc,M=0.27,=0.73andastandardbolometriccorrectionfactorofL3.4L(1450A).Becausethevelocityseemstohaveremainedconstant,wecanderiveaowtimetotraveltheRBELRoftfRCIV=v3.5years,shorterthantherestframetimescaleduringwhichthisoutowhasremainedpresent. Theparametersobtainedfortheowareconsistentwithradiativeacceleration.Wecanusetheapproachdescribedin Hamann ( 1998 ),whoderivesthelaunchradiusbyintegratingthemotionequationforaradiativepressuredrivenwindfromaninitial\launch"radiustoinnitywithacertainterminalvelocity.WeobtainalaunchradiusinthiscaseofRlaunch70pcforPG0935+417.Notethattheequationin Hamann ( 1998 )requirestheuseofafractionofthespectralenergydistributionabsorbedorscatteredinthewind.WehaveassumedfL1becauseitisthetypicalvalueforBALows( Hamann 45
PAGE 46
).However,thisparametermaybesmallerforwindswithnarrowerlinessuchasthemini-BALinPG0935+417.Ifinsteadofabsorbing10%oftheradiationtheoutowonlyabsorbs5%,thelaunchradiuswoulddecreaseby50%.Theseresultsareconsistentwithradiationpressurepoweringthisoutow. IsPG0935+417special?Inspiteofitsextremespeed,aslongasfLisnottoosmall,theowcanbelaunchedwithin70pcofthecontinuumsourceandacceleratedbyradiationpressure.However,theactualphysicalprocessesthatcouldproduceaowlikethisarenotunderstood.Observationally,weknowthatowswithspeedsv>50000kms1arerare-muchrarerthanowswithv<25000kms1,forexample(seeChapter 3 ).Asitseems,wedonotneedtoinvokeaverysmallradiustolaunchthisoutow.Then,ifitiseasytolaunchthesehighvelocityoutows,theyshouldbeacommonphenomenoninquasars.However,asreportedinChapter 3 wendoutowsatv>25000kms1in2.5%ofopticallyselectedquasars.TheluminosityinPG0935+417isnotclosetotheEddingtonLuminosity(LEdd).SinceMBH3x1010M,weobtainaL=LEdd0.2.Therefore,morethanaspecialparticularityofthisindividualquasar,weconcludethat,consideringthatthestatisticalsampleinChapter 3 isobservedfromeveryangle,the\angleofsight"ofthesehighvelocityabsorbersmustbenarrowtoonlyappearin2.5%ofthecases. X-rayobservationsareneededtoconstrainbetterthetotalabsorbingcolumnandexaminetherelationshipofthishigh-speedoutowtothestrongerbutgenerallylowervelocityBALs. 46
PAGE 47
Hamannetal. 1997a and Narayananetal. 2004 )and,forthersttimeinthisoutow,inNv1240andOvi1034inthismini-BALsystem.TheabsenceoflowerionizationlinesindicatesthattheowishighlyionizedwithanionizationparameterlogU>-1.1.TheresolvedOviindicatesthatthelinesaremoderatelysaturatedwiththeabsorbercoveringjust80%ofthebackgroundcontinuumsource.WeestimatethetotalcolumndensitytobeNH>3.0x1019cm2,whichissmallenoughtobecompatiblewithradiationpressuremechanismsacceleratingthisoutow. 47
PAGE 48
Nestoretal. ( 2008 ),wepresentedastatisticalstudyontheCivoutowsobservedasnarrowabsorptionlines(FWHM<600kms1)toexcludethemoreobviousoutowlines.In Nestoretal. ( 2008 )weconcludedthatasignicantnumberofnarrowabsorptionlines(43%6%),inthevelocityrange750kms10.3A,arequasaroutows.InthepresentworkwestudytheCivabsorptionlinesdetectedasbroaderabsorption(FWHM600kms1)withthegoalofidentifyingindividualoutowabsorbersandcharacterizingtheirfrequency.DuetotheSDSSresolution,blendsofinterveningnarrowlines,couldappearasbroaderabsorptionlines.Thus,itisnecessarytosetathresholdtodiscardtheseinterveningabsorptionlines.InSection 3.4 weexplainhowweselectahigh-condencezoneoftheFWHMspacewherewehaveexcludedtheinterveningabsorption. Ouranalysisemphasizesthemini-BALsbecausetheyaretheleaststudiedclasstodate.However,thegoalofthischapteristocharacterizeoutowsinamoregeneralway,asweincludeBALsinthisanalysisaswell.Theinformationregardingv,width,andstrengthallowsustostudywhetherdierentclassesofabsorptionlinesaremoreorlessfrequentatdierentvelocities,andwhetherornottheycoexistinthesamelineofsight.Also,westudythefrequencyofoutowsathighvelocities(v>25000kms1),uptoLy, 48
PAGE 49
Thischapterstartsbyintroducingthesampleweused(x )andhowthecatalogofCivoutowswasdeveloped(x ).Inx weintroduceaworkingdenitionformini-BALsandinx wediscusstheirfrequencyofoccuranceinquasarspectraandtheirrelationtothefrequencyofothertypesofabsorptionfeatures(BALs,AALs,Mgii),andthequasarradioproperties.Finally,wesummarizethemainresultsofthisworkanddiscusssomeimplicationsfortheoverallstudyofquasaroutows(x ). Nestoretal. 2008 )weneededaccuratemeasuresofthequasarredshifts.SDSSquasarredshiftsarecalculatedusingautomatedalgorithms.Todeterminemoreaccuratevelocityzero-pointsbyusingtheMgii2796,2803emissionlines,whichrequiredamaximumSDSSquasarredshiftof2.25,weexaminedthe1000brightestquasarspectra(withthehighestmedianS/Ninther-band,17.9)with1.8zem2.25.Wesupplementedthissamplefortwodierentreasons.First,tostudytheincidenceofabsorptionlinesatrelativelylowquasar-framevelocity(resultsreportedin Nestoretal. 2008 ),weadded500quasarspectrawith1.6zem1.8(r-bandS/N18.7).Second,tostudytheincidenceofabsorptionlinesatveryhighvelocity(v30000kms1andupto60000kms1),wesupplementedthesamplewith700quasarspectrawithzem2.14(r-bandS/N17.1).Precisezero-pointvelocitydeterminationsarenotaconcernwhenstudyingthesehigh-velocityabsorptionlines.Althoughaccuratevelocity 49
PAGE 50
Nestoretal. ( 2008 )whenavailable. Visualinspectionrevealedthatsomeobjectsweremisidentiedstars;thosewererejected,resultingin2200spectrawithzem1.6thatcomprisedournalsample. Wetpseudo-continuausingacubicsplinefunctionfortheunderlyingcontinuumandoneormoreGaussiansforthebroademissionlinestoeachquasarspectrum,andaggedCivabsorptioncandidatesinamanneridenticaltothatdescribedin Nestoretal. ( 2005 ),butusingupdatedversionsofthesoftware,adjustedtosuittheCivdoublet( Nestoretal. 2008 ).Eachcontinuumtanddetectedcandidatewasvisuallyinspected.Inordertoavoid\tting-out"smoothbroadabsorptionandmissingveryshallowabsorption,andtocheckthatthesoftwarewasidentifyinggoodpowerlawcontinua,weinspectedtheregioncoveredfromLy1216Ato1700A.Weveriedtheproductionofagoodlocalcontinuumaroundabsorptionlines,markedwheneveritwasuncertain,andeliminatedredundantandspuriousdetections;thecontinuumttingsometimesproducedprobablefalse-positivebroadabsorptionlines,andwemarkedasquestionablecasesthosewherethepresenceofabsorptionwasambiguous.TheblendedLy+Nv1239,1243emissionlinessometimespresentedproblemsforthecontinuum-ttingsoftware.Toavoidpotentialerrorsweexcludedtheseregions(v>60000kms1)fromtheanalysis.Inthecaseofnarrowabsorptionlineswherebothcomponentsofthedoubletareresolvedanddistinguishable,thesoftwarerequiresthecorrectdoubletseparationofv500kms1.Inthecaseofbroadabsorptionlines(whereindividuallinesofthedoubletarenotdistinguishable),weletthesoftwareselecteveryabsorptiontroughandveriedthattheCividenticationwascorrect,excludinganyambiguouscases.Forexample,thesometimespresentgapbetween 50
PAGE 51
Inoursamplewefound26BALsthatwerestrongenoughtomakecontinuumdeterminationandabsorptionmeasurementtoocomplicated{weaggedthemasBALsbutdidnotdeterminetheircontinuaortanyabsorptionlines. WethenteverydetectedCivabsorptionlinetomeasuretheirwidth(FWHM),radialvelocitycentroid(v)andREW.Gaussianlineprolesweresatisfactoryforourpurposessincetheyproducegoodmeasurementsofthoseparameters.Therefore,wedesignedIDLsoftwarethattaGaussianlineprolepair,usingaLevenberg-Marquardtleast-squarest,totheCivdoubletabsorptionlines.EachCivdoubletlinewasconstrainedtohavethesameFWHMandv,thecorrectCivdoubletseparation(v500kms1),anda1548.2:1550.77intensityratioconstrainedtotherange1:1to2:1withinthenoise.Inmostcases,theGaussianproleresultedinanexcellentt;wenotedcaseswheretheabsorptionproleshapedeviatedfromtheGaussiantsuchthatthemeasurementsofFWHMandREWwerenotcompletelyaccurate. 51
PAGE 52
Thisprocedureresultedinthemeasurementof5321Civabsorptionlines.Figure 3-1 showsthevelocitydistributionofallCivabsorption.Thelowerplotshowsthenumberofquasarscontributingtoeachvelocity,whichstartstodecreasebeyondv16000kms1.Thelargenumberofnarrowabsorptionlinesismostlyduetointerveningsystems,butthefractionofintrinsicNALsissignicant(e.g., Nestoretal. 2008 ).Thedecitofabsorptionatvelocities30000kms1and40000-50000kms1ispartlyduetothefewerspectraavailableatthosevelocityrangesandtheaforementionedpresenceofthe 52
PAGE 53
Figure3-1. Table 3-1 liststhemeasurementresultsforeveryCivabsorptionlinewithFWHM600kms1.Weperformedthisinitialcutowiththegoalofstudyingoutowsystemsandknowingthatnarroweroneshaveanuncertainorigin.Wecarriedoutastatistical 53
PAGE 54
Nestoretal. ( 2008 ).Table 3-1 includesmeasurementsofREW(forCiv1548andCiv1550doubletlines,calledREW1548andREW1550respectively),FWHM,vandzabsaswellasmagnituder,zem,BIandAI,introducedinChapter 1 andexplainedintheparagraphsbelow.Table 3-1 alsoincludesacolumnwithcommentsforcaseswhere1)theCivabsorptionidenticationisquestionable(\q"),2)thecorrectlocationofthecontinuumtmightbequestionablebuttheCivabsorptionisdenitelypresent(\c"),3)theGaussianttingresultsinapoort(\f")andthereforemeasurementsofFWHMandREWareapproximate,and4)deblendingcouldcausedouble-countingofabsorption(\b").Figure 3-2 includesexamplesofabsorptionmarkedwithsomeofthesecomments. WealsolookedforstrongLyabsorptionlinesatthesameredshiftastheCivlines,whichischaracteristicofDampedLyandLymanlimitsystems,atthesameredshiftofeveryCivabsorptionlineanalyzed.Ourpurposeismerelytoexcludethemfromtheanalysisofthischaptersincetheyarenotlikelytobepartofquasaroutows.The11caseswefoundwere,however,includedinTable 3-1 forfuturereference.Theyarelabeledas\d",whenastrongLyabsorptionlinewaspresent,or\d2"whentheLywaspresentbutnotverystrong,orzabs<2:15sowewerenotabletoinspectthecorrespondingLyabsorptionlineregion,butsomeotherlowionizationionsatthesamezabsasCivwerepresent(Mgii2796,2804andAlii1671,someoralloftheironlinesFeii1608,2344,2374,2383,2587,2600andsometimesSiii1527),whichposesomeriskofbeingaDampedLyorLymanlimitsystem.CaseswhereonlyMgiiorAliiiwerepresentbutnootherlowionizationionsweredetected,andthustheCivabsorptionisunlikelytobepartofaDampedLyorLymanlimitsystem,wereincludedintheanalysisandcommentedinTable 3-1 withthedesignations\Mgii"and/or\Aliii". Besidestheindividualabsorptioncharacteristics,Table 3-1 includesalsosomecharacteristicsoftheoverallquasarspectra:zem,BIandAI.ForzemweincludetheSDSSand Nestoretal. ( 2008 )values,whenavailable.WecomputedmeasurementsfortheBI 54
PAGE 55
Examplesofdierenttsandtheircomment-codesinTable 3-1 .`c'isacandidatewheretheContinuumtisdebatablebuttheCivabsorptionisreal.`f'isapoortthatmightresultinbadmeasurementsofFWHMandREW.`b'isanabsorptionlinethathasbeendeblendedandcouldbeconsideredpartofablendwithabsorptionintheproximity. andAIforeachquasar,usingthedenitionsincludedintheintroductionofthischapter.WeallowedforthreeconsecutiveinstancesofnoisespikesbeforeresettingthevalueofCto0.Whenthespectralvelocitycoveragedidnotreach25000(/29000)kms1,thenthevalueofBI(/AI)isalowerlimit,andthevalueofBI(/AI)isfollowedbya\*"inTable 3-1 .NotethatthezerovelocityinBIisdenedusingtheaveragewavelengthsoftheCivdoublet,whileinAIitisdenedusingthelongestwavelengthlineofthedoublet:1550.77A.WedonotincludeaformalerrortoeitherBIorAIbecausetheuncertaintiesaredominatedbythedeterminationofthecontinuum.ThemeasurementsofBIandAIdependtoalargeextentonthecontinuumplacement,andnormaldierencesareexpected 55
PAGE 56
Table 3-2 liststhe26BALsforwhichcontinuawerenotnormalizedandthereforewedidnotperformanyCivabsorptionlinedetectionandtting.TheywereclassiedasBALQSOswithBIlargerthan2000kms1. 56
PAGE 57
(mag)(Mgii)(kms1)(kms1)(kms1)(kms1)(A)(A) J000103.85-104630.3118.372.082.0707692.05208610722.0892.093 J001710.86+135556.5217.901.811.81001.82-11376430.3170.159q J002127.88+010420.2018.641.821.824549841.79417016984.0304.037 J002342.98+010243.0018.441.641.6454*497*1.57806319582.3771.194 J002710.06-094435.3718.262.072.0882216542.03492715274.8774.886 J003503.76+001641.7017.982.67....0272.57804217151.1140.560 J004613.54+010425.7418.032.15....414276371.971825422752.5442.548c,b J004613.54+010425.7418.032.15....414276372.0113739388810.64710.665c,b J004613.54+010425.7418.032.15....414276372.12302730139.9868.902c,f J005408.46-094638.1517.782.132.1297315122.06605926285.3585.367c J005419.99+002728.0118.312.52....1176152.321770619001.0131.017c J005419.99+002728.0118.312.52....1176152.41913228452.4531.235c J005951.67-084423.8818.222.142.15010112.1319548282.9452.884 J011605.97+133402.1718.322.012.0197228331.812073727244.4964.535 J011605.97+133402.1718.322.012.0197228331.99169918595.4415.450c J012231.91+133940.8418.243.06....466753562.891346039887.0567.395b J012231.91+133940.8418.243.06....466753562.921077820713.7583.764b J012231.91+133940.8418.243.06....466753562.9768207742.0951.294c J012231.91+133940.8418.243.06....466753562.9956747972.2462.250c J014809.65-001017.8417.952.162.17001.694808525291.1321.137c J020022.02-084512.1018.751.94....303637071.868693607214.4317.237c J020608.63-080224.4718.841.871.88001.543819444685.7655.945 J020845.54+002236.0717.081.891.90001.682377415500.6100.434 J021119.13-075722.5117.761.881.884013691.80862518762.4301.217c J021740.97-085447.8218.212.57....5031572.542439336012.5546.337c,f J021818.14-092153.4918.221.881.88137529651.771164021412.4851.245b J021818.14-092153.4918.221.881.88137529651.79942014491.5250.764b
PAGE 58
3-1 .Continued (mag)(Mgii)(kms1)(kms1)(kms1)(kms1)(A)(A) J021818.14-092153.4918.221.881.88137529651.84448131236.9667.107f J022036.27-081242.9018.182.00....179025111.891120830367.6887.701 J022844.09+000217.0818.222.72....146320572.60972538528.4114.213c J024221.87+004912.6818.202.062.0631322721.891741123003.4593.473 J024221.87+004912.6818.202.062.0631322722.04150110553.6863.692d2 J024304.69+000005.4918.412.002.0052511931.95485311433.4893.495 J024933.42-083454.4418.602.49....194382.41700716462.4481.227 J031504.51+001237.3818.421.781.77142071.7254648370.6330.634 J031828.91-001523.1518.091.981.99904871.633850722071.1511.008 J031828.91-001523.1518.091.981.99904871.851432623532.8911.453 J032118.21-010539.9218.382.41....166125322.31946069006.9406.952c J032701.44-002207.1518.932.30....2598712.181113529143.9922.008 J033623.77-064947.9917.781.611.610*583*1.59263228012.1462.182 J073300.91+315823.9918.863.02....305864252.7123948813412.6206.356c,b J073300.91+315823.9918.863.02....305864252.78183719381.1941.196c,b J073300.91+315823.9918.863.02....305864252.89984124557.2013.607d J073300.91+315823.9918.863.02....305864252.95537916936.0553.033 J073346.05+421848.3917.821.711.710944*1.7136916184.8644.873c,f J074014.81+331625.8718.211.87....375044441.711705550566.9116.924b J074014.81+331625.8718.211.87....375044441.741412514841.9541.958b J074014.81+331625.8718.211.87....375044441.761096623034.6682.338b Commentcodes:`*'lowerlimitofBIorAIvaluebecausespectralcoverageendsbefore25000or29000kms1,respectively,`q'questionablecase,`c'continuum,`f'themeasurementsofFWHMandREW1548andREW1550mightbeslightlyo,`b'theabsorptionlinecouldbelongtoablendofabsorptionlines,`d'DampedLysystem,`d2'possibleDampedLysystem.
PAGE 59
ListofBALsfromSDSSthatwerenott Quasarrzem(mag) J004527.69+143816.1917.471.99J020006.31-003709.9118.562.14J031856.62-060037.6717.831.93J081213.94+431715.9918.361.74J083817.01+295526.5618.242.04J093552.98+495314.3117.011.93J100711.82+053208.9216.432.14J101740.32+401722.3218.542.17J102850.32+511053.1118.102.42J114340.96+520303.3517.621.82J120653.40+492919.2918.171.84J122410.61+101031.1218.591.91J123659.93+460018.2718.291.67J125941.54+633239.3418.211.98J131927.57+445656.5517.882.98J133428.06-012349.0117.621.88J135246.37+423923.5917.882.04J140421.16+633540.6018.072.22J141354.36+044653.6117.971.89J145432.62-015641.2217.911.71J150332.18+364118.0518.193.26J151636.78+002940.5117.872.25J164152.30+305851.7218.412.00J164508.65+442440.3117.851.87J172341.09+555340.5718.512.11J234711.46-103742.4317.531.80 3-3 showsexamplesofmini-BALswithawiderangeofFWHMsandvelocitiesinnon-BALQSOs(BI=0)andFigure 3-4 displaysexamplesofmini-BALsinBALQSOs.Figure 3-1 illustratedthatthereisacontinuousdistributionofabsorptionlinesinwidthsandvelocitiesinthestudiedsampleofquasars.Thegoalofthisworkisthestudyofabsorbersthatarepartofquasaroutowsand,todoso,itisnecessarytoseparatetheoutowsfrominterveningsystems.AsmentionedinChapter 1 ,NALscanhaveseveralorigins:outowsorinterveningabsorption,andunfortunately,interveningandoutowingNALscanpresentsimilarappearancesandnosubstantialdierencesappearbetweentheirdistributions( Misawaetal. 2007a ),notbeingabletobedistinguishedwithonetimeobservationattheSDSSresolution.Onlyhighresolution( Misawaetal. 2007a ),variability 59
PAGE 60
Examplesofmini-BALs(underlinedbyhorizontallinestoguidetheeye)inquasarswithBI=0.Thespectraareshiftedtotheirrestframewavelengths.Prominentbroademissionlinesarelabeledaccrossthetopintheupperpanels.ValuesofFWHMandv(inkms1)areincludedattheleftbottomcornerofeverypanel.Asseen,mini-BALsshowabroadrangeofvelocitiesandwidths. 60
PAGE 61
Examplesofmini-BALs(underlinedbyhorizontallinestoguidetheeye)inquasarswithBI>0kms1(leftbottomcornerofeachplot).ValuesofFWHMandv(inkms1)refertotheonlymini-BALinthespectrumortotheonewiththehighestv.Notethatthemini-BALscanbefoundbythemselvesorincombinationwithBALs,AALs,orothermini-BALs.SeeFigure 3-3 61
PAGE 62
Narayananetal. 2004 )orstatisticalapproaches( Richardsetal. 1999 ; Richardsetal. 2001 ; Nestoretal. 2008 )canseparatethem.Duetothislimitation,welimitourstudyofoutowstomini-BALsandBALs,notbeingabletoincludeoutowingNALs.However,gasfromclustersofgalaxiescanproducemultipleNALs,which,attheSDSSresolution,couldbeconfusedforamini-BAL.Therefore,weneedaworkingdenitionformini-BALsthatexcludesthisinterveningabsorptionaswell.InthisSectionwesetanarbitrarythresholdasaworkingdenitionformini-BALs,butinx weshowhowdierentvalueswouldnotaectanyoftheimportantconclusionsofthisstudy. WeplaceaconservativelowerlimitofFWHM>700kms1fortheworkingdenitionofmini-BALs.Studiesofrichclustersofgalaxies(e.g., Girardietal. 1998 forgalaxiesatredshiftz<0:5, Venemansetal. 2007 atlargerredshifts),showvelocitydispersionsupto1000-1200kms1forthemostmassiveclusters(e.g.,ComaandComa-likeclusters).However,clusteringofCivinterveningnarrowsystemsoccursuptovelocitiesof600kms1intherestframeoftheabsorption(Figure11in Sargentetal. 1988 ),presentingasharpedgeatthatvelocityandremainingatbeyondthat.Also,thesesystemswouldbeweak,sinceinterveningabsorptionlinesareverynarrow.AlthoughNALstudiessuchas Vestergaard ( 2003 )setrestrictionsonREWtodistinguishinterveningfromintrinsicsystems,wedecidednottoplaceanycutoinREWbecausethatwilleliminatesomepossiblygoodcandidates.Figure 3-5 showsthedistribution,intheFWHM{REWspace,ofsomeoftheCivabsorptionlineswemeasured.AnyREWtypicalcut-osforNALs(REW>0.3,0.5or1A)removeabsorptionlineswithFWHM1000-2000kms1thatareverylikelytobeoutows.Therefore,weexpectthatsomeinterveningsystemsmightbecontaminatingoursamplebut,duetothereasonsmentionedabove,theeectshouldbeminimal. DampedLyandLymanlimitsystemsshow,whenpresent,Civnarrowproles(FWHM<400kms1Prochaska 1999 ; Wolfe&Prochaska 2000 )andthecaseswefoundwithFWHM600kms1thatmightbelongtothesecategories(markedas\d" 62
PAGE 63
3-1 )areverylikelypartofblendsofnarrowlineswherewecouldnotdistinguishindividualcomponents.Notethat,aspreviouslymentioned,wedidnotincludethemintheanalysis. DistributionofFWHMvsREW1548ofthepartoftheFWHM-REWspaceoftheCivabsorptionlinesmeasured.ThereisapartialcorrelationbetweenFWHMandREW,butanylowerlimitplacedonREW,toeliminatepossibleinterveningabsorption,wouldexcludebroadsystemsthatareverylikelytobeejectedmaterialfromthequasar.Therefore,nolowerlimitforREWwasset. Figure 3-6 showsthedistributionofabsorptionlineswithFWHM>700kms1in500kms1intervals.Theverticallinesinthecenterofeverybarrepresentthe1uncertaintyfromPoissonstatisticsforthenumberofabsorptionlinesatthatparticularFWHMrange. WealsochoseanupperlimitforFWHMtoseparateBALsfrommini-BALswhenstudyingtheirfrequency.BALsaremostcommonlyparameterizedbasedontheirBalnicityIndex(BIWeymannetal. 1991 ,whichwasintroducedinthisthesisinChapter 1 ),andnotonFWHM.However,aswedescribedthere,thisdenitioncannotbecomputedbeyondv>25000kms1andthusitcannotquantifysystemsinthatv
PAGE 64
DistributioninFWHMoftheCivabsorptionlinesmeasuredwithFWHM700kms1inintervalsof500kms1.Errorsareshownasverticallinesinthecenterofeverybarandrepresentthe1uncertaintyfromPoissonstatisticsforthenumberofabsorptionlinesateachparticularFWHMrange. regionrelevanttoourstudy.Weselectedanupperlimitof3000kms1fortheFWHMofmini-BALsandanalyzedthembasedonBIinthefollowingSection. Insummary,weuseaworkingdenitionformini-BALsasabsorptionfeatureswitha700
PAGE 65
3-1 Thepercentagesweincludeinthisstudyareobservedrawfractionsofquasarsandnotthetruefractionsofquasars.Oursampleofquasarsisnotcompletebecauseweselectedonlythebrightestones.AmongthebrightestSDSSquasars,thefractionsofquasarswepresentarelikelyclosetotruefractions.SDSSquasarsareselectedusingani-bandmagnitudelimit,whichdoesnotpresentaproblemforquasarswithzem<3.5,whereallthequasarsinoursamplelie.ThefractionsofBALQSOswouldbethemostaectedsincetheabsorptionaltersthedeterminationof\true"magnitudes. Reichardetal. ( 2003 )presentedananalysisofthecorrectionsthatareapplicableinthecaseofobtainingthetruefractionofBALQSOs.Correctionsforcolor-dependentselectioneectsasafunctionofredshiftmodiedtheirfractionofHighIonizationBALQSOs(HiBALQSOs)fromanuncorrected14.0%1.0%toadustreddeningcorrected13.4%1.2%anddustreddeningandextinctioncorrected15.9%1.4%.Notethattheiranalysisonthedustextinctionisanestimation.Allthesecorrectionsarelikelytobesimilarorsmallerforthefractionsofmini-BALs. WeestimatethatthesampleofCivabsorptionhasadetectionthresholdofREW14580.2AforsystemswithFWHM500kms1,REW14580.3AforsystemswithFWHM900kms1andREW14580.4AforsystemswithFWHM1200kms1,althoughdetectionthresholddependsontheS/Nofthespectruminquestion.Mostofthecandidatesclosetothoselimitsaremarkedasquestionable(\q")inTable 3-1 65
PAGE 66
Halletal. ( 2002 )andmostrecently Trumpetal. ( 2006 )havecomputedAI,amoreinclusivedenitionoftheBI(seeChapter 1 ),overSDSSquasarspectra,howeveritisanintegralmeasurementthatcannotcompletelycharacterizetheabsorption. InFigures 3-3 and 3-4 weshowedthatsometimestherearemorethanonemini-BALperquasar.Consequently,wepresenttheresultsof(a)thenumberofmini-BALsperquasar,whichallowscountingseveralmini-BALsinonequasarspectrum(Figures 3-7 and 3-8 )and(b)thefractionofquasarswithatleastonemini-BALatavelocity
PAGE 67
Figure3-7. Numberofmini-BALs(700
PAGE 68
1 )startscountingwhenabsorptiontroughsbecomewiderthan2000kms1). Figure3-8. Numberofmini-BALswith600
PAGE 69
Numberx100ofmini-BALsperquasar. velocityrange(km/s)sampleBI700-3000600-3000900-3000700-2000 -5000-60000A(1983)all15.50.816.40.914.20.810.90.7\A2(1888)<100010.50.711.80.89.50.77.50.6\A2(1783)05.40.56.40.64.80.54.00.5 -5000-25000A(1983)all12.90.813.60.811.80.79.30.7"A2(1888)<10008.20.79.40.77.40.66.20.6"A2(1783)03.40.44.20.52.80.42.90.4 25000-60000A(1983)all2.50.42.50.42.20.31.40.3"A2(1888)<10002.10.32.20.42.00.31.20.3"A2(1783)01.80.31.90.31.80.31.00.2 thenumberofsystemsinthatvinterval.Forexample,Table 3-3 includesthatthereare15.50.8mini-BALsatanyvperhundredsamplequasars. Figure 3-9 showsthefractionofquasarswithatleastonemini-BAL.Itincludesa)thefractionofquasarsthathaveatleastonemini-BALatvelocity\
PAGE 70
Fractionsofquasarswithatleastonemini-BALoutowingatvelocity"
PAGE 71
. 1 ).Ourstudyndsanobservedfractionof10.7%0.7%BALQSOsoutofthequasarsinsampleB,whereas5.7%0.5%haveBI>1000,and4.2%0.4%haveBI>2000.Weestimatethatallofthe26unanalyzedBALQSOshaveBI>2000.PreviousstudiesalsobasedonSDSSsamplesandBImeasurementsndsimilarpercentages. Reichardetal. ( 2003 )foundanobservedfractionof14.0%1.0%BALQSOsoutofasampleof3814quasarswith1.7zem4.2. Trumpetal. ( 2006 ),improvingthecontinuumttingtechniqueandenlargingthesampleto16883quasarswith1.7zem4.38,reportedaBALQSOobservedfractionof10.4%0.2%.Besidesthedierencesinredshiftcoveragewithoursample,bothworksrelyontheuseoftemplatestoplacethecontinuum,whilewetpseudo-continuawithasplinefunctionfortheunderlyingcontinuumandGaussiansforthebroademissionlines.Nonetheless,thevalueobtainedby Trumpetal. ( 2006 )andourscoincidewithintheerror. AsFigures 3-3 3-4 and 3-7 3-9 illustrate,mini-BALsarepresentinbothBALQSOsandnon-BALQSOs.InFigure 3-7 weshowedthenumberofmini-BALsinallquasars,quasarswithBI<1000andquasarswithBI=0.Becausewendmorethanonemini-BALinsomequasarspectrawealsopresentseparatelythefractionofquasarswith,atleast,amini-BALatvelocity
PAGE 72
derivedfromsampleA2,exceptthepercentageofmini-BALsinallquasars(anyBI),thatisderivedfromsampleA.FortheBALs,allofthesepercentagesarederivedfromsampleB2sinceweneedgoodvaluesofBI.Figure 3-10 showsthepercentageofquasarswithamini-BALsplitintwovelocityranges:atspeedsv<25000kms1andv>25000kms1.Noteagainthat,infaircomparison,theBIdenitiononlyintegratesabsorptionwithvelocitiesupto25000kms1andsowehaveseparatedthemini-BALsintothosewithlowerandhighervelocities. Ourworkingdenitionofmini-BALsdoesnotincludeabsorptionlineswithFWHM>3000kms1becauseatv<25000kms1theyhighlycontributetothevalueofBIandareconsideredBALsiftheabsorptiontroughisdeepenough.However,theBIonly 72
PAGE 73
PercentagesofabsorptionlineswithFWHM>3000kms1perquasarper5000kms1bininvelocityspace.SeeFig. 3-7 forinformationonwhatthedierentsymbolsrepresent.Thearrowsindicatethatthesevaluesarelowerlimitssincewearenotincludingthe26BALQSOsthatwedidnotanalyze. coversupto25000kms1andthusabsorptionlineswithFWHM>3000kms1athighervelocitiesbelongtoan`absorptionlimbo':theydonotcounttowardsBIandarenotincludedinthemini-BALworkingdenition.Figure 3-11 showsthedistributionwithvelocityofabsorptionlineswithFWHM>3000kms1perquasar.Thereare0.80.2%absorptionlineswithFWHM>3000kms1pernon-BALQSOoutowingatv>25000kms1.WeusesampleAforthe`all'casesandsampleA2forthecaseswithBI<1000andBI=0;notethatthenumberofabsorptionlinesinallquasarsdonotincludethenon-measuredBALQSOs,whichissymbolizedbythearrowsinthatresult. Mini-BALsarenotjustpartofBALabsorptiontroughs,andtheyrepresentapartoftheFWHM{velocityspaceofquasaroutowsthathasbarelybeenstudiedbefore.Thereare0.1550.008mini-BALsatanyvelocityperquasarand0.0540.005mini-BALsoutowingatanyvelocitypernonBALQSO.Wendthatthedierencebetweenthenumberofmini-BALsperquasarinallquasarsversusinnon-BALQSOsislargerat 73
PAGE 74
1 ).Figures 3-3 and 3-4 showseveralexamplesofquasarspectrawherebothmini-BALsandAALsarepresent. WenowspecifywhatwewouldconsiderAALQSOs.Firstofall,weexcludeBALQSOsfromconsideration.Thenon-BALQSOs(1783quasarswithBI=0)areselectedfromsampleA2becauseanaccuratelimitonBIisnecessary.Associatedabsorptionsystemsareusuallydenedasthosethathavevelocitiesupto5000kms1relativetothesystemicredshift( Foltzetal. 1986 );weusethisvalueasanupperlimitfortheirvelocity.BecausethestatisticalerrorinthedeterminationofthezerovelocityisbasedontheSDSSsystemicredshift,weincludesystemsdownto-1000kms1.Following Vestergaard ( 2003 ), Nestoretal. ( 2008 )and Foxetal. ( 2008 ),weexcludeweakAALs 74
PAGE 75
OfthequasarsinsampleA2thatarenon-BALQSOs(1783),26.2%1.2%areAALQSOssetbytheabovecriteria:non-BALQSOwithatleastoneabsorptionlineat-10005000kms1inAALQSOsandnon-AALQSOsindierentvelocitybins,inthesamefashionasexplainedforFigure 3-7 inx .ItincludestheresultsforbothvelocitycutostoselectAALQSOs:-100040000kms1inAALQSOsispossiblyreal. InTable 3-5 weincludethenumberofAALQSOsandnon-AALQSOsbasedonthetwosetsofconstraintsdescribedaboveandthenumberofthemthatincludesamini-BAL 75
PAGE 76
Numberofmini-BALsoutowingatv>5000kms1perAALQSO(solidblackline/opensquare)andnon-AALQSO(dashedredline/lleddiamond)whereAALQSOsareselectedasnon-BALQSOsthatincludeabsorptionlineswithREW0.3andleftpanel:velocitiesfrom-1000to5000kms1,andrightpanel:velocitiesfrom1800to4400kms1. outowingatv>5000kms1,asshowninFigure 3-12 .Weincludevaluesforseveralvelocityranges.Theerrorsare1Poissonstatistics. Table3-5. NumbersofAALQSOsandnon-AALQSOs(bothBI=0)thatincludeamini-BAL. velocityrange(km/s)sample%ofquasarswithMini-BALs -10005000kms1and21ofthemareinAALQSOs.Thefractionofquasarswithmini-BALsthatarealsoAALQSOs(32%7%)isslightlylargerthanthepercentageofAALQSOsinthetotalsampleofnon-BALQSOs(26.0%1.2%),butthisdierenceisnotsignicantbecauseitlieswithintheerrors. AsFigure 3-12 andTable 3-5 show,althoughthetotalpercentagesofmini-BALsinAALQSOsandinnon-AALQSOsaresimilar(withintheerrors)whencomputedoverthewholevelocityspace,theirvelocitydistributionsdier.Inparticular,thereare 76
PAGE 77
(343quasars,subsetofsampleA2).Also,outofsampleof271quasarsthatpresentedabsorptionwithFWHM>500kms1,wecreatedanothersubsetthatincludesonlyquasarswithmini-BALs(175quasars).WedidnotperformcontinuumttingacrosstheMgiiwavelengths.AssessingthepresenceofMgiiabsorptionatthesamevelocitiesasCivbecameadiculttaskduetothepresenceofFeiilinesintheshortwardoftheMgiiemissionline,whichmakesitdiculttodecidewhetherthereisabsorptionortherearetwoemissionlinessidebyside,producingafalseabsorptioneect.Notethatwearenotincludingeitherthe\d"or\d2"inTable 3-1 sincetheyareDampedLysystemsorlikelytobethem,respectively. Figure 3-13 showssomeexamplesofcaseswherewendMgiiabsorptionatthesamevasCiv.AlloftheMgiisystemswendinthissearchareeither1)BALs,wheretheMgiiwasbroadbutnarrowerandweakerthanCiv,or2)associatedlines,whereinmostcasestheMgiiabsorptionappearedstrong.InthecaseswhereaCivBALisaccompaniedbyMgii,thisabsorberwassometimesoutowingatlowervelocitiesthantheCivabsorber,whichhasbeenpreviouslyreported(i.e., Weymannetal. 1991 ; Voitetal. 1993 ). WedonotndanyMgiiabsorptionaccompanyingCivmini-BALsinthe175quasarspectraanalyzed.SincewehavenotnormalizedthecontinuumaroundtheMgiiemission 77
PAGE 78
ExamplesofMgii(lowerpanels)outowingwithCiv(upperpanels).VerticaldashedlinesaresituatedapproximatelywheretheleftsideoftheMgiidoubletwouldfalltoguidetheeye.Leftpanels:CivBALwithitscorrespondingMgiimini-BAL.BecauseMgiiabsorptioninoutowsseemtobeweakerthantheirrelativeCivones,onlyinstrongbroadBALsweareabletodetectobviousMgiimini-BALsinthesameoutow.Rightpanels:3dierentsystems(fromlefttoright):a)aCivmini-BALwithnocorrespondentMgiib)averylikelyDampedLsystemwithstrongMgIIabsorption(amongotherlowionizationlines)andweakCiv,andc)strongassociatedCivabsorptionwithveryweakMgii. 78
PAGE 79
3-13 ),whichisalsoreportedin Voitetal. ( 1993 ).Thistendencysuggeststhat,ifpresent,theMgiiabsorptionatthesamevasCivmini-BALsmightbeevenweakeranddiculttodetectwithoutapropercontinuumtting. Wendthat9.0%1.5%ofCivAALswithzem<2.25alsopresentMgii(37outof410).Weobtainedapproximatelythesamepercentage(9%2%,15outof160)selectingonlythosequasarswith1800
PAGE 80
Sramek&Weedman 1980 )thatisarelativemeasurementoftheradiouxat5Ghzversustheopticaluxat2500A: logR=logf(5GHz)logf(2500A):(3{1) Theradiouxat5GHzcanbedenedintermsoftheFIRSTpeakuxS(inmJy/beam),thefrequency(1.4GHz),theradiospectralsloperad,whichweassumedtobe0.3foreveryquasarfollowing Sramek&Weedman ( 1980 ),andtheSDSSsystemicredshiftzem.Weusetheformulaintroducedin Sramek&Weedman ( 1980 ): logf(5GHz)=29:0+log(S)+radlog[5=](1+rad)log(1+zem):(3{2) Inordertodenetheopticaluxat2500A,wedonotconsiderappropriatetheuseofthelter-Bmagnitude(centeredat4361A)foroursample,sincethemajorityofthequasarsinoursamplehavearedshiftzem2.ThisredshiftplacestheCivemissionlineat4650A,contaminatingtheB-magnitudevaluewithabsorptionandemission.Insteadwederivedlogf(2500A)fromtheSDSSr-magnitudes(centeredat6122A): logf(2500A)=22:830:4rc;(3{3) wherercistherSDSSmagnitudecorrectedfromGalacticextinction Stockeetal. ( 1992 )dividedradio-loudandradio-quietQSOsatzem2ashavinglogRlargerorsmallerthanunity,respectively,andweusethesamecriteria.Figure 3-14 showsthedistributionofradiosourcesamongtheabsorberswithFWHM>500kms1 2
PAGE 81
FWHM{velocity{(radioproperties)spaceofCivabsorptionlineswith500
PAGE 82
Figure 3-15 showsradio-loudness(logR)versusquasarBalnicityIndexforthequasarsinthesamesampleasthoseinFigure 3-14 .SymbolshavesamemeaningasinFigure 3-14 exceptforthearrowsthatrepresentupperlimitsforsourcesthatFIRSTcoveredbutwerenotdetected(thetopofthearrowisplacedattheupperlimitofthelogRvalue,derivedfromaS=0.9mJy/beam,alittlebitbelowtheFIRSTdetectionlimitof1mJy).InspectionofFigure 3-15 suggestsgapsofradioloudnessforcertainBalnicityIndexes:noneofthequasarswithBIbetween200and1400areradio-loud(0outof58),while12%(6outof50)ofthequasarswith0
PAGE 83
RadioloudnessversusBalnicityIndexofthequasarswithabsorptioninFigure 3-14 .FIRSTdetectionsareshownascircles.Clearcirclesrepresentabsorptioninradio-loudquasarsandlledcirclesinradio-quietquasars.Theradiusofthecirclesisproportionaltop inoutowfeaturesthatareunderrepresentedinpreviouswork,namely,mini-BALsandhighvelocitysystemswithv>25000kms1.Allthisinformationcanbesupplementedbypreviousresultsbasedonintegratedabsorptionmeasurements,suchasBIandAI. Ourquasarsampleselectsthebrightestobjects,andthereforeitisnotcomplete.Wehaveselectedseveralsubsamplestomaximizethestatisticalresultsofthedierentstudieswehavecarriedout(seex ).Theresultswederiveareobservedrawfractionsofquasarsandnotthetruefractionsofquasars,becausewehavenotperformeddustreddeningorextinctioncorrections. Reichardetal. ( 2003 )analyzestheseeectsforasampleofBALQSOs,whichareexpectedtobethemostaectedbyabsorptionextinction. 83
PAGE 84
Wepresent,forthersttime,thenumberofmini-BALsexpectedperquasarspectrum.Wehaveattemptedtoexcludeinterveningabsorptionthat,attheSDSSresolution,couldappearsimilartomini-BALs.Todoso,weintroduceaworkingdenitionthatselectsmini-BALsasabsorptionlineswithFWHMslargerthan700kms1.ByusingaFWHMcutoof700-3000kms1,wendthatthereare15.50.8mini-BALsperhundredquasars.WehavealsoreportedthefrequencyofabsorptionwithotherpossibleFWHMselections,whichresultedinsimilarresults.Wehavepresentedtheirdistributioninvelocity(Fig. 3-7 and 3-8 )inallquasars,non-BALQSOsandquasarswithBI<1000kms1.Becausesomequasarspectraincludemorethanonemini-BAL,andinordertoavoiddouble-counting,wealsohavecomputedthefractionofquasarswithatleastonemini-BALatanyvelocity,ndingthat11.4%0.9%ofquasarshaveatleastonemini-BALatanyvelocity. Themini-BALphenomenonisstronglyrelatedtoBALQSOs.Approximately7%ofthequasarsinsampleA2areBALQSOsthatalsoincludeamini-BALatv<25000kms1.Ourquasarsampleincludes10.7%0.7%BALQSOs,whicharedenedtohaveBI>0.OtherstudiesbasedalsoonSDSSquasarsamplesndsimilarpercentages: Trumpetal. ( 2006 )nds10.4%0.2%BALQSOs,and Reichardetal. ( 2003 )reportsarawfractionof14.0%1.0%.Previousstudiesinothersamplesofopticallyselectedquasarsalsoreportedfractionssimilartothesevalues;i.e., Hewett&Foltz ( 2003 )reportedanon-correctedfractionof15%3%BALQSOsintheLargeBrightQuasarSurvey(LBQS),howeverthisresultisnotdirectlycomparabletoourssincetheytakeintoaccount,notonlyBI,butalsotheprobabilityofaquasarofbeingaBALQSO(P).UsingtheirnumberofBALQSOswithintherange1.5zem3.0andmagnitudeinterval16.50-18.85,theyobtaina 84
PAGE 85
Mini-BALsarealsopartoftworegionsoftheoutowparameterspacethathavebeensparselysurveyedbefore:non-BALQSOsandhighvelocitysystems.Wehavefoundthatmini-BALsarepresent,atanyvelocity,in5.1%0.7%ofnon-BALQSOs.Ifweselectonlythosethatarefoundatv<25000kms1,westillndmini-BALsin3.4%0.4%ofnon-BALQSOs.Atlargervelocities(25000kms13000kms1.Figure 3-11 showsthedistributioninvelocityoftheseabsorptionlines,whichatv>25000kms1arepresentin0.8%0.2%ofnon-BALQSOs.Mini-BALsarethereforemorecommonatveryhighvelocitiesthanwiderabsorptionlines,butbothmini-BALsandbroaderabsorptionseemtoreachthemaximumterminalvelocitiesofthisstudy(0.2c).Excludingthosethatincludealsomini-BALsintheirspectra,thereare0.4%0.2%non-BALQSOswiththesebroadabsorbers,andtogetherwiththefractionofmini-BALs,weobtainafractionof5.5%non-BALQSOswithoutows.ThisfractioncanbeaddedtothefractionofBALQSOsresultingina 85
PAGE 86
ThefrequencyofAALQSOsinoursampleis26.2%1.2%ofthenon-BALQSOs.In Nestoretal. ( 2008 )wereportedtheAALQSOfrequencywhenincludingonlytheabsorptionlineswithFWHM<600kms1(25%).Thesefractionsarecomparabletoresultsofotherquasarstudiesatsimilarredshifts( Vestergaard 2003 -27%5%, Misawaetal. 2007a -23%),andevenwithquasarsatlowerredshifts( Gangulyetal. 2001 ,found25%6%from59quasarsatzem<1),althoughthesecomparisonsbetweendierentsamplesarenon-trivialbecauseoftheheterogenousdenitionsofwhatAALsare.OuranalysisofAALswasderivedfromthesampleofnon-BALQSOs,andisthusindependentofthefrequencyofBALs.Wehavenotfoundasolidrelationshipbetweenthepresenceofmini-BALsineitherAALQSOsorinnon-AALQSOs.Mini-BALsoutowingatv>5000kms1appearin5%ofAALQSOs,whereastheyarepresentin3%ofnon-AALQSOs.However,thedistributioninvelocityofthemini-BALsinAALQSOsseemstobemoreconcentratedthaninnon-AALQSOs,aswedonotndmini-BALswithv>40000kms1inAALQSOs,althoughmini-BALsoccuratthosevelocitiesinnon-AALQSOs.ThefractionofquasarswithAALsthathavenotbeenincludedinthepreviousfractions(i.e.,thosewhichnotincludeamini-BALorBALatanyvelocity)is25%.AlthoughitisknownthatmostAALsarepartofthehostgalaxy-AGNenvironment,itisunclearwhetherAALsareejectedmaterialoralreadypartofthehostgalaxy.In Nestoretal. ( 2008 )wereportedanexcessofnarrowabsorptionlinesblue-shiftedwithrespecttothequasarsystemicvelocity,andthereforelikelytobeintrinsictothequasaroutowphenomenon. Wiseetal. ( 2004 )reportedthat20%ofasampleof19CivAALsareintrinsictothequasarcentralenginebasedontime-variabilitystudiesand Misawaetal. ( 2007a )obtainedalargerfraction(33%)basedonpartialcoverageofasampleof37quasars.AssumingthatalltheAALQSOsinourstudyincludeoutowingAALs,wecanaddittotheoutowstally,obtaining41%quasarswithoutows. 86
PAGE 87
Richardsetal. ( 1999 )and Richardsetal. ( 2001 )foundlargefractions(36%)ofnon-interveningnarrowabsorptionlinesatv5000-55000kms1basedoncorrelationswithquasarintrinsicradiopropertiesoftheirsample.Bystudyinghigh-velocityNALsonaone-on-onebasis, Misawaetal. ( 2007a )reportedthat10-17%ofnon-associatedCivNALsystemswithv5000-70000kms1showpartialcoverage,characteristicofnon-interveningabsorption.Notethatbothpercentagesarenotinconictsincepartialcoverageisasignaturebutnotarequirementofquasaroutowingnature,andthereforetheresultreportedby Misawaetal. ( 2007a )mightbeincludedinthe Richardsetal. ( 1999 )percentage.Asnoticedin Ganguly&Brotherton ( 2008 ),thisisnotthefractionofquasarshostingtheseoutowsbutthefractionofintrinsicsystemsinthesample.Thetotalfractionofquasarswithoutows,obtainedfromaddingthepercentagesabove,is41-77%,whichweexpressasarangebecauseofthepossibilitythatquasarsinthestudyreportedin Richardsetal. ( 1999 )showmorethanoneCivsystemandalsothepossibilityofoverlappingwithsomeofothertheclasseswedescribedabove. Ganguly&Brotherton ( 2008 )presentedareviewofrecentsurveysofquasarabsorptionlines,andreachedafractionof57%-80%quasarswithoutows.TheyusedacorrectedfractionofquasarswithBALs( Hewett&Foltz 2003 )anddidnotconsiderapossibletotaloverlapbetweenAALQSOsandquasarswithmini-BALsorhighvelocityabsorbers. OuranalysisincludesalsothestudyoflowionizationlinesatthesamezabsastheCivabsorption. Weymannetal. ( 1991 )observedthat10%ofCivBALQSOsareaccompaniedby\obviousMgiiand/orAliiiabsorptiontrough",whichweredeterminedbyvisualinspectionofthespectra.UsinganadaptedversionofBIfortheMgiiemissionlineregion, Trumpetal. ( 2006 )reportedthat0.55%0.04%oftheSDSSquasarsat0.5zem2.15showMgiiabsorption.SelectingonlythoseclassiedasCivBALQSOswhereMgiiiswithinthespectralcoverage,theyobtainthat7.4%0.5%ofBALQSOspresentMgiiabsorption.WehavestudiedthepresenceofMgiibyvisualinspection 87
PAGE 88
Voitetal. 1993 ). Wealsostudytheradiopropertiesofallthequasarsinoursample(sampleB),andndthat8.9%0.7%oftheonesdetectedbyFIRSTareradio-loud,asdenedtohavelogR1.Quasarswithmini-BALsandBALsshowaslightlysmallerfractionofradio-loudsources(7.4%1.8%and6.8%1.8%,respectively),whichmaynotbeasignicantdierence.Whereaswedonotndanycorrelationsbetweenquasarradio-loudnessandtheFWHMorvoftheabsorption,orwiththeBIofthequasars,wereportthatthestrongestradio-sourcesinoursample(logR>2)areallquasarswithassociatedabsorptionorlowvabsorption(v<7000kms1).Thisresultagreeswith Richardsetal. ( 2001 ),whereitwasreportedthatthepopulationofquasarswithAALstendtoshowlargervaluesofRV(denedsimilarlytoRalthoughusing20cmmeasurementsinsteadof5GHz). Insummary,withthegoalofcomputingthefractionofquasarswithoutows,wehavereachedatotalfractionof16%quasarswithoutowswithFWHM>700kms1,whichistheresultofaddingthefractionofBALQSOs(10.7%0.7%),non-BALQSOswithmini-BALs(5.10.7%),andnon-BALQSOswithoutmini-BALsandwithabsorption 88
PAGE 89
ThereisanalternativeapproachtothecalculationofthefractionofquasarswithoutowsthatconsistsontheuseoftheAImeasurement,whichwealsocomputedforeveryquasar(seeTable 3-1 ).Thereisoneconsiderationtobecarefulwith:becausethecomputationofAIstartsatv=0,itdoesnotexcludeclustersofAALs,DampedLyandsimilarsystemsinthehostgalaxy,andthusitmayrepresentjustanupperlimitoftheoutowcount. Trumpetal. ( 2006 ),usingthisparameter,foundarawfractionof26%quasarswithAI>0.Wendthat28%ofthequasarsinourstudyhaveAI>0.Mini-BALs,BALsandAALsarepresentin23%ofquasarswithAI=0(1393quasars),resultingin<51{87%oftotalquasarspresentingCivoutows.Therangerepresentswithoutandwithnarrowabsorbersathighvelocities(36%Richardsetal. 1999 ),anditisanupperlimitbecausewearenotawareoftheAIofthequasarsinthesampleof Richardsetal. ( 1999 )and,again,thefractionin Richardsetal. ( 1999 )indicatesthenumberofabsorptionlinesthatmightbeintrinsic,notthefractionofquasarswiththisabsorption.However,thedenitionofAI(seex )doesnotincludemostofthenarrowabsorption,sinceaC0of1000waschosentoavoidproblemswiththecontinuumtting,noiseandvariableresolution.ByusingaC0=500,wendthat54%quasarshaveAI>0,resultinginatotalof<70-100%ofquasarswithoutows.Ifweusethelowerlimitforourmini-BALworkingdenitionandimposeC0tobe700,wendthat42%quasarshaveAI>0,obtainingatotalof<61-97%quasarswithoutows.Wewouldliketonoteagainthatwearepresentingobservedfractionsofquasarswithoutowsandthattruefractionsofquasaroutowsareexpectedtobelarger( Reichardetal. 2003 ; Hewett&Foltz 2003 ).Moreworkneedstobedonetondthesefractions. 89
PAGE 90
Crenshawetal. 2003 ).Assumingthatallquasarsejectoutowsandthattheobserveddierencesintheirspectraareonlyviewpointdependent,asunicationtheoriesstate,thefractionsofquasarswitheachtypeofoutowareproportionaltotheopeninganglesoftheoutowsasseenfromthecentralcontinuumsource.Wehavefoundthat41-77%oftheobservedquasarsinoursampleincludeabsorptionintheirspectrathatisverylikelyduetoquasaroutows.ResolutionoftheSDSSspectradoesnotallowforaccuratemeasurementsofthecoveringfactorinthelineofsightandthereforeitisnotpossibletoderiveaglobalcoveringfactorasdescribedin Crenshawetal. ( 2003 ).However,wecancomparetherelativefractionsofdierentabsorbertypes.NALsseemtorepresentthemorefrequentclassofabsorptionlinesinquasars(36%atv>5000kms1;26%atv<5000kms1).QuasarspresentBALsandmini-BALswithsimilarfrequencies(10%forboth),andthereisanoverlapof7%ofBALQSOsthatalsopresentmini-BALsatv<25000kms1.FurtherstudyneedstobecarriedouttounderstandtherelationshipbetweenNALsandmini-BALs. Analternativeexplanationsuggeststhatoutowsoccurduringaphaseofthequasarlifetime. Vestergaard ( 2003 )mentionsthat`atleastforlow-ionizationBALquasars,thereisevidencethattheBALphenomenonmayalsobeatemporaryphaseintheearlyevolutionofthequasar(orsoonafteritsre-ignition;e.g., Canalizo&Stockton 2001 ; Canalizo&Stockton 2002 )'.Radioactivityhasbeensuggestedtobeassociatedwiththerststagesofthequasarlife(assumingthatmoredustyenvironmentsareyounger; Bakeretal. 2002 ).Basedonradiopropertiesofoursample,thelackofcorrelationsbetweenabsorptionpropertiesandtheradioloudnessofthequasarsdiscouragestheinterpretationthatmoremassiveorhighervelocityoutowsareseenattheonsetoftheradioactivity.AALQSOsarethestrongestradioloudnessinoursample,suggestingalinkbetweentheradioactivityandlargepresenceofabsorbinggas,similartotheproductsofmergers( Bakeretal. 2002 ). 90
PAGE 91
Theoutowphenomenonisnotexclusiveofquasars.Todate,SeyfertgalaxieswerebelievedtobetheAGNclassthatpresentoutowsmorefrequentlyandquasaroutowswerepresentinsmallerpercentages.Previousstudies( Crenshawetal. 1999 ; Dunnetal. 2008 )estimatethat50%ofSeyfertGalaxiesshowoutows(mostlyAALs,maybesomemini-BALs,butalmostnoBALs.Wehavefoundapercentageof41-77%.Aswehaveseen,thecomplexityandvarietyofthemmighthavepreviouslyresultedinanunderestimationsincenarrow,mini-BALsandhighvelocityabsorbershavebeenmissedinprevioussystematicstudies. 91
PAGE 92
Mini-BALsposeauniquechallengeforoutowmodelsbecausetheycanhavelargeoutowvelocities,v,withsmallvelocitydispersions,FWHM.BALsandmini-BALsmightrepresentanevolutionarysequence,asingleoutowstructureviewedatdierentangles,orsomecombinationofthesescenarios.Ineithercase,thedetectionfrequenciesreportedhereprovideimportantconstraintsontherelativelifetimesoropeninganglesofthedierentoutowtypes. 92
PAGE 93
3 .Ourprogramoverallexaminesanearlyunexploredpartoftheoutowparameterspace:highowvelocities(upto0:2c)withlowinternalvelocitydispersionsv.ThislargesampleallowsustoselectspectrathatincludesCivabsorptionlineswithawidevarietyofwidthsandvelocityshiftstosearchfortrendsbetweentheabsorberpropertiesandthevariabilitytimescalesandstrengths.Wepresentthesampleselectionandajournaloftheobservationsinx .Section 4.3 discussesthedatareductionandlinemeasurements.Inx weclassifyanddescribethevariablesystems.Finally,inx wesummarizetheresultsanddiscusswhatmightbeproducingthevariabilitybasedonourndings. 3 thathaveeitheri)aCivmini-BALorii)anarrowerCivsystemthatisresolvedintheSDSSspectra(R2000)andthereforemightalsohaveanoutoworigin.WechoseabsorptionsystemstocoverawiderangeinFWHMandvelocityshift.ThesamespectraoftenincludeadditionalCivNALsthatweusetoextendtherangeofFWHMswestudydowntheSDSSresolutionlimit.WedonotincludeanystrongBALsinthepresentstudy. 93
PAGE 94
Table 4-1 describesthejournaloftheobservationsandalsoincludestheemissionredshifts(zem)whicharetakenfromSDSS.Twentysixquasarswereobservedduringthreeobservingruns:twowiththeGoldCamspectrometeratthe2.1mtelescopeatKittPeakNOAOfacilities(hereafterKPNOobservations)duringtheSpringof2006(April28-May3)andFallof2006(January12-17),andonewiththeBollerandChivensCCDspectrograph(CCDS)attheMDM2.4m(hereafterMDMobservations)intheFallof2005(Dec1-Dec2).FortheKPNOobservationsweuseda200slitwidthandthe#26(new)gratingtoprovideresolutionR1300(230km/s)acrossobservedwavelengthsfromroughly3700Ato6100A,tocoverblue-shiftedCivabsorptionforallthequasarsinoursample.TheMDMobservationsweretakenwitha100slitwidthandaresolutionR1200(250km/s)andseveralwavelengthrangeswereusedduetothenarrowercoveragethattheCCDSspectrographprovides(1600A).WewouldliketonotethattheseresolutionsaresucienttoresolvetheCivdoubletwithvelocityseparation500kms1,providinganacceptablematchtotheblueSDSSspectralresolutionofR2000. Allthequasarsarestrictlynon-BALQSOs(asdenedin Weymannetal. 1991 asthosethathaveBalnicityIndexBI=0),exceptforJ021119-075722(BI=40kms1),J083104+532500(BI=327kms1),J090924+000211(BI=277kms1),J142246+352836(BI=29kms1),J151312+451033(BI=349kms1),andJ231324+003444(BI=2kms1).ThesevaluesofBIweremeasuredfromtheSDSSspectrainChapter 3 .Weincludethese\marginal"BALQSOsinourstudybecausetheyallowustothestudytheconnectionbetweenBALsandnarrowerabsorptionfeatures. 94
PAGE 95
Journalofobservations OBSERVATIONDATE(UT) OBJECTzemSDSSNew J020845+0022361.8854420000925KPNO20070115J021119-0757221.8768920010911KPNO20070117J025928-0019592.0012920000930MDM20051201J083104+5325002.0645320001205KPNO20070116J085417+5327352.4182120001222MDM20051201J090152+3344132.0259520031215MDM20051202J090924+0002111.8649820010120KPNO20070116J092849+5049302.3474320011209KPNO20070117J093857+4128211.9354920030131KPNO20070115J094646+3927192.2072220030311KPNO20070116J102907+6510242.1614920010121KPNO20060504J103112+3807171.8930220031229KPNO20070115J103859+4840492.1625520020321KPNO20070117J132801+5731132.0569520030430KPNO20070117J133141+4101581.9317320040327KPNO20060502J133246+5426082.0248620030326KPNO20060430J141644+4415571.9207520040409KPNO20060501J142246+3528362.1049920040519KPNO20060504J144105+0454542.0640520010421KPNO20060429J151312+4510332.0097420030323KPNO20060502J154601+3820092.1902720040611KPNO20060501J161511+3147282.0945920040521KPNO20060430J162746+4633391.9155020020413KPNO20060429J163651+3131471.8381020030525KPNO20060504J171748+2755321.9290520020606KPNO20060430J231324+0034442.0840620000929MDM20051201 Informationsuchasslitwidths,wavelengthcoveragesandresolutioncanbefoundinthetext.EmissionredshiftsaretakenfromSDSS. inIDL).ForthespectraobtainedatKPNO,weusedHeNeArlampsforthewavelengthcalibrationsandquartzlampsfortheat-elds,bothlocatedinsidethespectrograph.WeusedtheoverscantosubstractthebiasleveloftheCCD.Onedimensionresponsefunctionwassucienttocreateanappropriateat.Thedatawereuxcalibratedusingsame-nightobservationsofKPNOstandardstars.Wedidnotperformabsoluteuxcalibrationsduetotimeandweatherconstraints.TheMDMspectrawerereducedandextractedinasimilarmanner,withtheexceptionoftheuseofacombinationofHgNe,NeArand`raregas'lampsforthewavelengthcalibrations.Also,biasframesshowedsomestructureandthereforebothoverscanandbiasweresubstractedfromeveryframe. SDSSspectrawereshiftedwhenevernecessarybyusingskylines(primarily[Oi]5577.338)inordertohavethebestwavelengthcorrespondencebetweenKPNO,MDM 95
PAGE 96
Figure 4-1 includeseveryobservedquasar.SDSSspectra(black)areplottedovertheKPNO/MDMspectra(red).WetransformedthespectratorestwavelengthsusingtheSDSSzem.Someofthespectraareplottedaftertheyunderwenta3-or5-pixelwideboxcarfunctionsmoothingtoimprovethedisplayandfacilitatecomparisonsbetweenthetwospectra. Allofthespectrawerenormalizedtounityinthecontinuumbyaleast-squareslinearttowavelengthregionswhereabsorptionoremissionwerenotpresent.ThissimplenormalizationwassucienttomatchtheSDSS,MDMandKPNOspectrainthemajorityofcasesandthroughoutmostofthespectralcoverageofinterest.However,bluewardsof4000A(observedwavelength),theSDSSspectrasometimesdeviatefromtheKPNOorMDMdataduetopoorsignal-to-noiseorpossibly,pooruxcalibrations(J020845-002236andJ141644+441557).Wedonotconsiderthosedeviationstobeduetovariability,andnofurthercorrectionswerecarriedoutsincethosedeviationsdonotaecttheabsorptionfeaturesofinteresthere. Following Lundgrenetal. ( 2007 ),Figure 4-1 alsoincludesvaluesfortheupperandlowerrestframevelocityboundariesoftheabsorptionprolesintheSDSSspectrum(vminandvmax-dashedverticallinesineachplot).Thesevelocitiesweredeterminedbyvisualinspectionofeachspectrumanddenedasthelocationwheretheuxdensitiesabandonthelevelofthecontinuum. Table 4-2 liststheresultsofourmeasurementsofv,FWHMandREWontheabsorptionlines.InordertoextractnormalizedmeasurementsofRestEquivalentWidth(REW)andFullWidthHalfMinimum(FWHM),wetalocalpseudo-continuum(continuumandemissionlines)aroundtheabsorptionlinesbyusingrstorsecondorder 96
PAGE 97
WettheabsorptionlineswithoneormoreGaussians,asneeded,toobtainanaccuratemeasureoftheREW.The1errorsintheREWlistedinTable 4-2 aredominatedbythecontinuumplacement.Toestimatetheseerrors,wemanuallyshiftedthecontinuunupanddownandre-measuredtheREWinbothsituations.Thesemanualshiftsarebasedonvisualinspectionandmeasurementsoftheroot-mean-square(rms)noiseinthecontinuumadjacenttotheabsorptionfeatures.Theerrorsareourbestestimatesat1.WethenmeasuredtheFWHMandthecentroidvelocities,v,directlyfromtheobservedproles Table 4-2 liststhemeasurementsofFWHMandvfortheSDSSdataonly,exceptforthecaseswheretheSDSSspectradidnotincludeanyabsorptionbutthenewspectradid,forwhichwelistthenewFWHMandvmeasurement.Table 4-2 alsoliststheREWsforboththeSDSS(REWSDSS)andthenewerKPNOorMDMdata(REWnew).InTable 4-2 wealsoincludeameasurementofthefractionalchangeintheequivalentwidths,REREW=,whereREW=jREWnew-REWSDSSjandistheaveragevaluebetweenthetwoepochs.Asnotedin Lundgrenetal. ( 2007 ),thesefractionalchangescanbe\deceptivelysmall".Forexample,featureswhosestrengthschangeddramatically(byfactorsofseveralormore)muststillhaveRE2.Acombinationofthe 3 ,wherewereportedFWHMsbasedontstotheindividualdoubletmembers. 97
PAGE 98
Intwoinstances,absorption,whichwasnotpresentintheSDSSspectra,hasclearlyappearedinthenewobservation(theabsorptionat1395AinJ102907+651024andtheabsorptionat1445AinJ163651+313147,Figure 4-1 ).WehavenotincludedinourlistofabsorptionfeaturesanyotherdierencesbetweentheSDSSandthenewepochspectrabecauseineverycasethesedierencescouldbeattributedtochangesinemissionlines,variationswithinthenoise,ortheylocationattheedgeofthespectrum,wheretheuxcalibrationismoreuncertain. 98
PAGE 99
SDSSspectra(black)plottedoverKPNOorMDMspectra(red).Thespectrahavebeennormalizedbylinearts.Dashedverticallinesindicatevminandvmaxofthemini-BALsandmarginalNALsintheoriginalspectra(SDSS)thatwespecicallytargetedforthisstudy. 99
PAGE 100
4-1 {continued 100
PAGE 101
4-1 {continued 101
PAGE 102
4-1 {continued 102
PAGE 103
4-1 {continued 103
PAGE 104
4-1 {continued 104
PAGE 105
4-1 {continued 105
PAGE 106
4-1 {continued 106
PAGE 107
4-1 {continued 107
PAGE 108
4-1 {continued 108
PAGE 109
4-1 {continued 109
PAGE 110
4-1 {continued 110
PAGE 111
4-1 {continued 111
PAGE 112
OBJECTtobsvFWHMREWSDSSREWnewREW/variab?complex? (yrs)(kms1)(kms1)(A)(A) J020845+0022363.3452228016400.8+0:30:30.6+0:20:30.3+0:30:3nono J021119-0757222.851826017803.5+0:60:64.5+0:70:70.25+0:150:15nono J025928-0019592.583411208200.9+0:20:121.5+0:30:20.50+0:190:19nono J083104+5323002.962922026405.9+0:60:516.3+1:01:00.94+0:070:07yesyes J085417+5327352.0441648033402.2+0:40:40.76+0:170:181.0+0:20:2yes?no J090152+3344130.9701068011801.37+0:180:200.8+0:20:20.52+0:160:16yes?yes J090924+0002113.2112088019805.3+0:70:33.7+0:40:40.36+0:110:11yesno J092849+5049302.1763954021203.2+0:60:4<0.4>1.6yesno 3080018101.1+0:30:3<0.2>1.4yesno J093857+4128212.0444494059403.9+0:40:63.3+0:40:60.17+0:100:10nono J094646+3927191.7453878025405.1+0:50:41.2+0:30:21.24+0:140:13yesno J102907+6510242.4443884011000.87+0:100:100.78+0:040:040.11+0:080:08nono 31440760<0.20.38+0:040:05>0.6yesno J103112+3807171.6092220010200.96+0:180:193.9+0:40:41.21+0:130:13yesyes? J103859+4840492.2323256017203.6+0:41:40.58+0:150:161.4+0:20:3yesyes 2666018004.8+0:40:42.8+0:40:40.53+0:100:10yesyes J132801+5731131.8074176029205.9+0:70:87.2+0:60:70.20+0:090:09nono J133141+4101581.086358809002.75+0:110:122.61+0:110:120.05+0:040:04nono J133246+5426081.529405209001.96+0:180:181.83+0:140:140.07+0:080:08nono J141644+4415571.0732154021201.74+0:140:20<0.5>1.1yesyes? J142246+3528360.9311812029205.0+0:30:33.1+0:20:30.47+0:060:06yesyes? 141409800.31+0:040:05<0.25>0.2yesno J144105+0454542.4335528038605.2+1:00:61.1+0:30:21.3+0:20:2yesyes 4668018801.4+0:40:31.5+0:40:30.07+0:20:2nono 2078010900.70+0:170:120.47+0:120:090.4+0:20:2nono J151312+4510331.5472516018601.4+0:20:23.8+0:20:20.92+0:070:07yesyes 1970037404.8+0:30:36.2+0:40:40.25+0:060:06yesyes
PAGE 113
4-2 .Continued OBJECTtobsvFWHMREWSDSSREWnewREW/variab?complex? (yrs)(kms1)(kms1)(A)(A) J154601+3820090.862550809600.96+0:130:140.68+0:120:090.34+0:140:14nono J161511+3147280.9273314042605.4+0:60:64.8+0:40:40.12+0:090:09nono 2192010402.0+0:20:22.3+0:30:30.14+0:110:11nono 1778010803.0+0:20:23.2+0:20:30.06+0:060:06nono J162746+4633392.111354205600.71+0:110:090.62+0:090:090.14+0:130:13nono J163651+3131471.601208802020<0.11.0+0:30:2>1.6yesno 53008201.59+0:150:131.38+0:120:100.14+0:080:08nono J171748+2755322.021419809203.2+0:20:23.0+0:20:20.06+0:060:06nono J231324+0034442.482427206400.30+0:050:060.30+0:060:070.00+0:160:16nono 2480030004.8+0:30:35.9+0:30:30.21+0:050:05yesyes 1124011803.51+0:130:144.10+0:130:140.16+0:030:03nono 806013001.43+0:100:101.68+0:110:110.16+0:060:06nono AllFWHMandvmeasurementsarefromtheSDSSdata,unlessabsorptionwasnotpresentintheSDSSspectra.ExplanationsforthelasttwocolumnsarefoundinSection 4.4.1 .Weextrapolateoverthewavelengthrange1352-1357Ainthecalculationforbeingunreliable.
PAGE 114
4.4.1CharacterizingtheVariability 4-2 giveourclassicationsregardingthevariabilityoftheabsorptionsystemsbetweenthetwoobservations(SDSSandKPNO/MDM).Wedetectvariabilitymainlybyvisualinspectionbycomparingspectrafromthetwoepochs,e.g.,Figure 4-1 .Inordertoquantifythisvariabilityandprovideanothertooltodiscriminatevariablefromnon-variableabsorption,wealsorefertothefractionalchangeintheintegratedlinestrengths:REW/,orRE.Inmostcases,strongvariabilitycorrespondstolargechangesinRE(Table 4-2 ).NotethatREaloneisnotareliablemeasureofthevariabilityingeneralbecauseoutowlinescanvaryincomplicatedwaysthatarenotmeasuredbyRE.Forexample,thelinesmightshiftinvelocity,varyoveronlypartoftheprole,orstrengthenandweakensimultaneouslyindierentpartsoftheprole,resultinginRE0.Table 4-2 listsournalassessmentsofthevariabilityineachsystem.Theclassication\yes"meansthissystemwasclearlyvariable;\no"meansitisnotvariablebeyondourmeasurementuncertainties,and\yes?"meansthesystemsappearstobeweaklyvariablebutbetterdataareneededtoconrmthisresult.MostoftheclearlyvariablecaseshaveRE0.5,whiletheclearlynon-variableoneshaveRE0.2.Intheanalysisofthevariabilitybelow,wewillconsideronlytheclearlyvariablesystems(markedwitha\yes"inTable 4-2 ). ThelastcolumninTable 4-2 providesanindicatorofcomplexvariability,whichwedeneassignicantchangesintheabsorptionproleorcentroidvelocity.Simple(non-complex)systemschangedstrengthwithoutmodifyingtheirabsorptionshape.AtypicalcaseofsimplevariabilityistheabsorptionpresentinJ090924+000211(Figure 4-1 ).Althoughthestrengthofthelinehasdecreasedfromoneobservationtotheother,theshapeoftheprolehasbarelychangedandthecentroidvelocityremainsalmostconstant.AnexampleofcomplexvariabilitycanbeseeninJ083104+532500(Figure 4-1 ).Thecomplexevolutionoftheseabsorptionprolesresultsindierentcentroidsandvelocities 114
PAGE 115
4.4.2 ,thevelocitychangesareneverlargerthan500kms1.ThelastcolumninTable 4-2 tabulatesourclassicationofcomplexsystems. Table 4-2 listsallthemini-BALsandmarginalNALsinitiallytargetedforthisstudy,plustwonewmini-BALs(inJ102907+651024andJ163651+313147)thatappearedbetweenthetwoobservations.Inthesespectra,wealsovisuallyinspectednarrowerNALsnotspecicallytargetedandnotincludedinTable 4-2 .TheseNALsaredistributedacrossthefullrangeofvelocityshifts.Noneofthesenarrowfeaturesvaried. Wendthatmini-BALsandnarrowabsorptionlinesvaryatanytoverthetimescaleswestudy.Wearestudyinglong-termvariability(trangesfrom0.8to3.4years).Figure 4-2 displaysthefractionalchangeofREWversustimevariabilityforallofthestudiedcases.Wedonotndanysignicantpatternswithtimewithinthetimescalescoveredandatanygiventitisequallylikelytondvariableaswellasnon-variablesystems.OurstudycomplementsthepreviousworkonBALsbyemphasizingmini-BALsandNALs. Becausethequasarshavebeenobservedatdierenttimeintervals,andbecausedierentquasarsmighthavedierenttimescalestoproduceobservableabsorptionchanges,thesepercentagesarelowerlimits,andmoreabsorptionfeaturesareexpectedtochangeinlongertimes. 115
PAGE 116
FractionalchangeofREWasafunctionoft(inthequasars'restframe)ofthemini-BALsandmarginalNALstargetedinthisstudy(Table 4-2 ). DistributionofabsorptionfeaturesinFWHM(black)andthenumberofthemthatvaried(red/lled)in250kms1bins. 116
PAGE 117
4-3 to 4-5 showthenumberofsystemsthatvariedversustheirFWHM,depthandvoftheabsorption.Figure 4-3 displaysthedistributioninFWHM,astabulatedinTable 4-2 ,ofthenumberofcasesthatvaried(red/lled)versusthetotalnumberofabsorptionfeaturesincludedinourstudyin500kms1bins.Aswementionedearlier,ourgoalistwo-fold;oneobjectiveistoconrm,throughvariability,theintrinsicnatureofthenarrowestsystemsinoursamplewhichmightormightnotbeoutows.AsFigure 4-3 shows,themajorityofsystemswith5001500kms1.TheKolmogorov-Smirnov(KS)testprobabilitythattheFWHMinbothdistributions(allcasesandonlyvariablecases)aredrawnfromthesamepopulationis0.17.However,ifweselectonlythosesystemswithFWHM>1500kms1,theKSprobabilityis0.9993,whichimpliesconsistencybetweenthetwopopulations.ForthesystemswithFWHM<1500kms1,thedierencebetweenthetwopopulations(allcasesandonlyvariablecases)islargerthan3,whichsuggeststhattheyaredrawnfromdierentpopulations.Wehaveconrmedtheoutownatureoftwocaseswith5001000kms1andthosenarrowerabsorptionlines 117
PAGE 118
Distributionofabsorptionfeaturesindepth(black)andthenumberofthemthatvaried(red/lled)in0.05bins. Distributionofabsorptionfeaturesinvelocity(black)andthenumberofthemthatvaried(red/lled)in5000kms1bins. 118
PAGE 119
3 FractionalchangeofREWversusaverageREWofalltheabsorptionlinesinoursample InFigure 4-6 werepresenttheabsolutefractionalchangeofREWversusaveragedREWforcomparisonwith Lundgrenetal. ( 2007 ).Wendthatonlyfeatureswith<4A(approx.900kms1)showabsolutefractionalchangesinREWlargerthan1,valueswhicharewithintheerrors. 3 weusedalowerlimitofFWHM700kms1forthehigheroscillationstrengthindividuallineoftheCivdoubletwhileinthisworkweareusingacharacteristicFWHMforthewholedoubletprole 119
PAGE 120
FractionalchangeofREWversusdepthofalltheabsorptionlinesinoursample Figure 4-7 issimilartoFigure 4-6 ,butweplotdepthinsteadof.AswendinFigure 4-6 ,therearenotabsorptionfeatureswithREW/largerthan1foracertainvalueofdepth(depth>0.5). Thelargevarietyofvelocitiesoftheabsorptionfeaturesinoursampleallowsustosearchfortrendsofthispropertywithvariability.Figure 4-8 displaysthefractionalchangeofREWversusvelocity.Thisgureshowsthatbothvariableandnon-variableabsorptionfeaturesareobservedateveryvelocity.ThereisnotanarrowrangeofvelocitywherethelargestEW/occur. Figures 4-9 and 4-10 displayvelocityandvelocitywidth(denedasvmaxvmin)versusdepthforthecaseswehavefoundtovary.InFigure 4-9 ,thearrowsconnectvwidthanddepthintheSDSSdatatothevaluesofthosequantitiesinthesecondobservation.Figure 4-9 showsthatinthelargemajorityofvariablecases,changesindepthandinvelocitywidthoccurinthesamedirection,i.e.,wheneverthedepthincreases/decreases,thevwidthincreases/decreasesaswell,respectively.AbsorptionfeaturesinquasarsJ103112+380717 120
PAGE 121
FractionalchangeofREWdistributionwithvelocity. Changeinthe(depth)-(velocitywidthatthecontinuumlevel)spaceoftheabsorption. andJ094646+392719inFigure 4-1 areexamplesofthisphenomenon.Inthesecases,as 121
PAGE 122
Changein(depth)-(velocity)spaceoftheabsorption. Wedonotndsignicantchangesinthevelocityoftheabsorptioninanyofthevariablecases.Ineverystudiedcase,variabilityoccursprimarlyinstrength.Therearenocasesshowingcleardisplacementoftheabsorptionfeatureas`awhole',asreportedin Gabeletal. ( 2003 )(shownintheirFigure2),whereafeatureseemstodecelerateby100kms1in1.8years.Figure 4-10 showshowthevisverysteadyinvariablecases.Slightvariationsinvelocityaremostlycausedbythecomplexityofsomeabsorptionproles,whichcomplicatesthedeterminationofthecentroidandthusthecentralvelocity,aswedescribedinx Ifseveralabsorptionfeatureswerepresentinonequasarspectrumandoneofthesefeaturesvaried,thentheotherseitherdidnotvaryortheyvariedinthesamedirection(increase/decreaseiftheoriginalincrease/decrease).Forexample,inthecaseofJ151312+451033(Figure 4-1 ),theabsorptionat1415Aincreasessignicantlywhiletheabsorptioncenteredat1500Adidnotsuersuchadramaticchange. 122
PAGE 123
Hamannetal. 2008 ).However,sometimesnewabsorptionlinesappearinthespectraofquasarswhichwereincludedinthesamplebecauseofotherabsorptionfeatures.ThatisthecaseofabsorptionfeaturesinthespectraofJ102907+651024andJ163651+313147(Figure 4-1 ). Lundgrenetal. ( 2007 ),andpreviously Barlow ( 1993 ),reportedthatthelargestvariabilityoccursintheabsorptionfeatureswithrelativelysmallequivalentwidths.Figure2of Lundgrenetal. ( 2007 )demonstratedthatonlyfeatureswithsmallerthan1000kms1showvaluesoftheEW/largerthan1.Wendsimilarresults,obtainingthatonlyfeatureswith<4A(approx.900kms1)showabsolutefractionalchangesinREWlargerthan1,withintheerrors.NoticethatFigure2in Lundgrenetal. ( 2007 )showsalargerrangeinEWbecausetheirstudyfocusesonBALs. Thelargevarietyofvelocitiesoftheabsorptionfeaturesinoursampleallowustosearchfortrendsofthispropertywithvariability.Figure 4-8 displaysthefractionalchangeofREWversusvelocity.Thisgureshowsthatbothvariableandnon-variableabsorptionfeaturesareobservedateveryvelocity,asweshowedinFigure 4-5 foronlyoutows.ThereisnotanarrowrangeofvelocitywherethelargestEW/occur. Lundgrenetal. ( 2007 )reportthatlargechangesinREWoccuronlyforvelocitiesexceeding12000kms1.However,theydonotcovervelocitiesabove25000kms1andtheyhaveastrongemphasisonBALs.Inoursampleofmini-BALsuptov60000kms1,wendthatthedistributionisveryhomogenousinvelocity,butthelargestfractionalchangesinREWoccuratv>20000kms1. 123
PAGE 124
Barlow 1993 ; Lundgrenetal. 2007 ; Gibsonetal. 2008 ). 124
PAGE 125
Misawaetal. ( 2005 )and Narayananetal. ( 2004 ),describethepossiblecausesofmini-BALvariability. WearenotabletodeterminewhethervariationsinthelevelofthecontinuumionizationarethecauseoftheCivabsorptionvariabilitymainlybecauseofthreeissues.First,wecannotmeasurethecontinuumuxbecausewedonothaveabsoluteuxcalibrationsfortheKPNOandMDMspectra.Moreover,thisinformationwouldstillnotmeasuretheionizinguxintheUV/softX-raycontinuum.Second,weonlyhaveinformationregardingoneionicspecies(Civ)andwecannotdeterminetheionizationoftheoutows.Third,theremightbeadelaybetweenthetimethecontinuumreachestheabsorberandtheabsorbervariations(recombinationtime).WehavecarriedoutsuchastudyforJ093857+412821,whichhasbeendescribedinChapter 2 Barlow ( 1993 ), Lundgrenetal. ( 2007 )and Gibsonetal. ( 2008 )foundnocorrelationsbetweenthecontinuumuxlevelandtheabsorptionchanges. Ifweassumethatthevariabilityiscausedbytheionizationchanges,thenwecanplacelimitsontheminimumelectrondensity(ne)andthemaximumdistancefromthecontinuumsource.Todoso,weneedtoresorttosomeassumptions:thechangesinthecontinuumaresmall,thegasisinionizationequilibrium,CivisthedominantionizationspeciesofC,andthatthetemperatureofthegasisT20000K( Hamannetal. 1997a ; Narayananetal. 2004 ). UsingEq.(1)in Narayananetal. ( 2004 ),ourobservedvariabilitytimesprovideupperlimitsontherecombinationtimes.WehavefoundthattheCivabsorptionvariesinawiderangeofvariabilitytimes.Mostimportantly,wehavenotfoundanobservedtime 125
PAGE 126
4-2 andhavebeendiscussedfurtherinx .Assumingatypicalvariabilitytimescaleof2.0years,wecanderiveaminimumelectrondensityne>5700cm3.Theshortestobservedvariabilitytimescale(0.97yrs)willresultinne>11600cm3. Theseelectrondensitiesallowustoderivethemaximumdistancebetweentheabsorbingcloudsandthecontinuumsourcebyassumingthegasisinphotoionizationequilibriumwithanionizationparameterandcontinuumshape( Narayananetal. ( 2004 )eq.[2]).Forthis,wealsoneedtoassumethattheabsorbingcloudsarenot\shielded"fromthecontinuumemissionsource.Thus,thegasisreceivingthewholeuxofionizingphotonsscaledby1=R2.Byusingatypicalluminosityforthequasarsinoursample(Lbol5x1046ergs1),andanionizingparameterU0.02(optimalforCiv),weobtainamaximumdistancebetweentheabsorbersandthesourceoftheionizationcontinuumof2kpc. Wendthatsometimesinthesamespectrumabsorptionatsomevelocityvariessignicantlywhileabsorptioninthesamespectrumatanothervelocityremainsalmostconstant(descriptioninx ).Ifvariabilityisduetochangesintheionizingcontinuum,bothabsorbersshouldbeaectedbytheionizationchangesinthesamemanner,unlesstheyareeither1)atdierentdistances(e.g.,theinvariableabsorptionisproducedbyanabsorber(s)thatmustbelocatedatadistancer>2kpcfromthecontinuum,whilethevariableisrelatedtoanabsorberwhichmustbecloser),or2)theinvariableabsorptionissaturated.Noneofthemini-BALornarrowlinesinspectraofourquasarsamplegoesblack,whichmeansthatiftheyaresaturated,theabsorbersmustbeonlypartiallycoveringtheemissionsource. Wehavefoundabsorptionthatremainsconstantoverlongtimescales(>3years)inthequasarrestframe.Iftheionizingcontinuumhasvariedduringthistime,andassumingwehavenotrandomlycaughtitatthesamestageatbothobservations,thelackof 126
PAGE 127
ThebackgroundsourcescouldbetheBroadEmissionLineRegion(BELR)and/orthecontinuumsource( Gangulyetal. 1999 ).TypicalsizesfortheBELRofthequasarsinoursamplearederivedfromtheempiricalrelationbetweenthemandthequasarluminosity( Vestergaard 2002 ),obtaining3pc.Thecontinuumsourcesizethatisproducingmostofthecontinuumcanbeestimatedtobe5RS=10GMBH=c2( Misawaetal. 2005 ),whereRSandMBHaretheSchwarzschildradiusandtheblackholemass,respectively.WederiveMBHfromtherelationbetweenFWHMoftheCivemissionlineandtheluminosityat1450A,( Warneretal. 2003 ).TypicalvaluesforMBHinthequasarsofoursampleare109-1010M.Therefore,weobtaintypicalradialsizesofthecontinuumsourcetobe0.0005-0.005pc. Byassumingasimplegeometry,wecanobtainlowerlimitsforthetransversevelocityvtroftheabsorberinthecaseswheretheabsorptionhasappeared/disappeared.Imagineahomogenousbackgroundsourceasasquareofside2r,andanothersquareoutowpassingacrossit.Inordertoshowvariabilityintheabsorption,theabsorbershouldtravelatransversedistanceCf2r,whereCfisthecoveringfactor.Forexample,inthecaseoftheabsorptionatarestwavelengthof1440AinthespectrumofJ141644+441557(Figure 4-1 ),theabsorptionispresentintheSDSSspectrumbutithasdisappearedintheKPNOone.Wehaveanupperlimitforthevariabilitytime,givenbythetimedierencebetweenthetwoobservations:1yr.BecausethedepthofthenormalizedabsorptionindicatesthatCfis0.15(15%oftheemittingsource),thedistancethattheabsorber(assumingsharpedges)needstotravelinordertoabandonthelineofsightis51012
PAGE 128
Misawaetal. ( 2005 ).Therefore,weconcludethattheabsorbercoversprimarilytheUVcontinuumsourceand,maybe,onlyasmallpartoftheBLR( Misawaetal. 2005 ). 128
PAGE 129
Outowsareafundamentalpartofquasars:theybringrst-handphysicalinformationaboutthequasarenvironments,theyarecommon(andmaybeubiquitous)andtheymightbekeytoconnecttheAGNwiththeirhostgalaxies.However,manyaspectsoftheseoutows(e.g.,accelerationmechanisms,geometry,evolution)arepoorlyunderstood. IpresentnewmeasurementsandanalysesoftheseabsorptionlinesinthespectraofthequasarPG0935+417(zem1:966).ThisquasarshowsahighvelocityCivmini-BroadAbsorptionLine(mini-BAL)outowingat51000kms1.Wedetect,usingLickobservatory,HubbleSpaceTelescope,andSloanDigitalSkySurveyspectra,absorptioninCiv1548,1551(alreadyreportedin Hamannetal. 1997a and Narayananetal. 2004 )and,forthersttimeinthisoutow,absorptioninNv1240andOvi1034inthismini-BALsystem.TheabsenceoflowerionizationlinesindicatesthattheowishighlyionizedwithanionizationparameterlogU>-1.1.TheresolvedOviindicatesthatthelinesaremoderatelysaturatedwiththeabsorber,coveringjust80%ofthebackgroundcontinuumsource.WeestimatethetotalcolumndensitytobeNH>3.0x1019cm2,whichissmallenoughtobecompatiblewithradiationpressuremechanismsacceleratingthisoutow. Ialsohavecontributedtothestudyofoutowsbyfocusinginarealmoftheparameterspacethathasbeensparselysurveyedbefore:mini-broadabsorptionlines(mini-BALs)andhighvelocitiesoutows(v>10000kms1).Mygoalsareto1)quantitativelydenetherangeofoutowlinesinquasarspectra,2)examinetheirdetectionfrequenciesanddistributionsinvelocity,strengthandFWHM,3)lookforrelationshipsbetweenthevariousabsorptionlinetypesandbasicquasarproperties,and4)identifyindividualoutowlinecandidatesforfollow-upstudies.Todoso,IcompileacomprehensivecatalogofCivabsorptionlinesinthe2000brightestSDSSquasarsat1.8z3.5,andselectthosewithFWHM>700kms1tobeunlikelyduetointervening 129
PAGE 130
Finally,tocharacterizebetterthestructuralandphysicalpropertiesoftheseoutows,Icarriedoutamonitoringprogramoverarangeoft=0.9-3.3yearsinthequasarrestframe,usingfacilitiesattheKittPeakNationalObservatoryandMDMObservatory.Bycomparingournewspectrawitharchivalspectra(SDSS)Indthat50%ofquasarswithmini-BALandBALsathighvelocityvariedbetweenjusttwoobservations.Indthatvariabilitysometimesoccursincomplexways.Alltheobservedvariationsoccurinintensityandnotinvelocity.ThusIndnoevidenceforacceleration/decelerationintheoutow.IalsodonotndanycorrelationsbetweenthevariabilityandRestEquivalentWidth(REW),FullWidthHalfMinimum(FWHM)ordepthoftheabsorptionfeature,exceptforthefactthatmostofthenarrowestsystemsdidnotvary.Asignicantfractionofthenon-variablenarrowersystemsareprobablyunrelatedtoquasaroutows. 130
PAGE 131
Hamannetal. 1997c ; Hamann&Ferland 1999 ; Hamannetal. 2008 ).PartialcoverageiscommonlyfoundinNALs(i.e., Hamannetal. 1997c ; Gangulyetal. 1999 ; Aravetal. 2001 ; Hamann&Sabra 2004 ),andinBALs( Aravetal. 1999 ). 3 becauseofthepossibilityofbeingattributedtotheseparationbetweentheSiivandtheOivemissionlinesandnotto`real'absorption.However,weincludeitinthisworkbecauseitsvariationbetweenthetwoepochs(Figure 4-1 )seemsnottobeduetochangesintheemissionlines,especiallysincetheCivemissionlineandtherestoftheSiiv+Oivdonotvary. 131
PAGE 132
2 Siivabsorptionlinesarepresentinthesameoutow.Visualinspectionofthatregionsuggeststhatatleasttheabsorberatzabs1.89(Civat1415A)isaccompaniedbySiivabsorptionat1275A.ThestrengthoftheSiivdoublet,whichshouldbeatleast5timesweakerthanCiviftheSi/CabundanceisroughlysolarandtheoptimalionsareSiivandCiv,suggeststhatCivmustbesaturatedbecauseofaneect 132
PAGE 133
Hamannetal. 2008 ). NormalizedSDSSspectra(black)andKPNOspectra(red/grey) Thisquasarisanexampleofwhatwedeneascomplexabsorptionvariability.Theabsorptionispresentinthespectralregion1270-1335A.ThepresenceofSiii1260andOi1302emissionlinesintertwinedwiththeabsorptionforcedustotGaussianstotheseemissionfeaturesbeforemeasuring.WetoneGaussianperemissionlineoftheKPNOspectrum,wheretheOiemissionlineismorenoticeable.WeusedthisttonormalizebothSDSSandKPNOspectra,assumingthattheemissionlinehasnotvariedbetweenbothobservations.Figure A-1 showsbothnormalizedspectra.Assumingthattherearetwodistinctiveabsorptiontroughs(oneat1270-1305Aandotherat1305-1330A),bothabsorptionfeaturesmighthaveredshifteditscentrod(producedbyacceleration).However,furtherstudyisnecessarybecauseofthecomplexityofthevariabilityofthisabsorptionprole. 133
PAGE 134
134
PAGE 135
Adelman-McCarthy,J.K.andAgueros,M.A.andAllam,S.S.andAllendePrieto,C.andAnderson,K.S.J.andAnderson,S.F.andAnnis,J.andBahcall,N.A.andBailer-Jones,C.A.L.andBaldry,I.K.,etal.2008,ApJS,175,297 Aldcroft,T.L.,Bechtold,J.,&Elvis,M.1994,ApJS,93,1 Anderson,S.F.,Weymann,R.J.,Foltz,C.B.,&Chaee,F.H.,Jr.1987,AJ,94,278 Arav,N.,Becker,R.H.,Laurent-Muehleisen,S.A.,Gregg,M.D.,White,R.L.,Brotherton,M.S.,&deKool,M.1999,ApJ,524,566 Arav,N.,deKool,M.,Korista,K.T.,Crenshaw,D.M.,vanBreugel,W.,Brotherton,M.,Green,R.F.,Pettini,M.,Wills,B.,deVries,W.,Becker,B.,Brandt,W.N.,Green,P.,Junkkarinen,V.T.,Koratkar,A.,Laor,A.,Laurent-Muehleisen,S.A.,Mathur,S.,&Murray,N.2001,ApJ,561,118 Arav,N.,Li,Z.-Y.,&Begelman,M.C.1994,ApJ,432,62 Baker,J.C.,Hunstead,R.W.,Athreya,R.M.,Barthel,P.D.,deSilva,E.,Lehnert,M.D.,&Saunders,R.D.E.2002,ApJ,568,592 Barlow,T.A.1993,Ph.D.thesis,AA(CaliforniaUniv.) Barlow,T.A.,&Sargent,W.L.W.1997,AJ,113,136 Becker,R.H.,Gregg,M.D.,Hook,I.M.,McMahon,R.G.,White,R.L.,&Helfand,D.J.1997,ApJ,479,L93 Becker,R.H.,White,R.L.,Gregg,M.D.,Brotherton,M.S.,Laurent-Muehleisen,S.A.,&Arav,N.2000,ApJ,538,72 Becker,R.H.,White,R.L.,&Helfand,D.J.1995,ApJ,450,559 Bennett,A.S.1962,MmRAS,68,163 Bregman,J.N.,Glassgold,A.E.,Huggins,P.J.,Neugebauer,G.,Soifer,B.T.,Matthews,K.,Elias,J.H.,Webb,J.R.,Pollock,J.T.,Leacock,R.J.,Smith,A.G.,Aller,H.D.,Aller,M.F.,Hughes,P.A.,Maccagni,D.,Garilli,B.,Giommi,P.,Miller,J.S.,Stephens,S.,Balonek,T.J.,Dent,W.A.,Kinsel,W.,Wisniewski,W.Z.,Williams,P.M.,Brand,P.W.J.L.,&Ku,W.H.-M.1990,ApJ,352,574 Brotherton,M.S.,Laurent-Muehleisen,S.A.,Becker,R.H.,Gregg,M.D.,Telis,G.,White,R.L.,&Shang,Z.2005,AJ,130,2006 Brotherton,M.S.,vanBreugel,W.,Smith,R.J.,Boyle,B.J.,Shanks,T.,Croom,S.M.,Miller,L.,&Becker,R.H.1998,ApJ,505,L7 Canalizo,G.,&Stockton,A.2001,ApJ,555,719 135
PAGE 136
Capellupo,D.,&Hamann,F.2009,ApJ(inprep.) Churchill,C.W.,Schneider,D.P.,Schmidt,M.,&Gunn,J.E.1999,AJ,117,2573 Crenshaw,D.M.,&Kraemer,S.B.2007,ApJ,659,250 Crenshaw,D.M.,Kraemer,S.B.,Boggess,A.,Maran,S.P.,Mushotzky,R.F.,&Wu,C.-C.1999,ApJ,516,750 Crenshaw,D.M.,Kraemer,S.B.,&George,I.M.2003,ARA&A,41,117 Croton,D.J.,Farrar,G.R.,Norberg,P.,Colless,M.,Peacock,J.A.,Baldry,I.K.,Baugh,C.M.,Bland-Hawthorn,J.,Bridges,T.,Cannon,R.,Cole,S.,Collins,C.,Couch,W.,Dalton,G.,DePropris,R.,Driver,S.P.,Efstathiou,G.,Ellis,R.S.,Frenk,C.S.,Glazebrook,K.,Jackson,C.,Lahav,O.,Lewis,I.,Lumsden,S.,Maddox,S.,Madgwick,D.,Peterson,B.A.,Sutherland,W.,&Taylor,K.2005,MNRAS,356,1155 deKool,M.1993,MNRAS,265,L17 deKool,M.1997,inAstronomicalSocietyofthePacicConferenceSeries,128,MassEjectionfromActiveGalacticNuclei,ed.N.Arav,I.Shlosman,&R.J.Weymann,233 deKool,M.,&Begelman,M.C.1995,ApJ,455,448 DiMatteo,T.,Springel,V.,&Hernquist,L.2005,Nature,433,604 Dietrich,M.,Hamann,F.,Shields,J.C.,Constantin,A.,Heidt,J.,Jager,K.,Vestergaard,M.,&Wagner,S.J.2003,ApJ,589,722 Dunn,J.P.,Crenshaw,D.M.,Kraemer,S.B.,&Trippe,M.L.2008,AJ,136,1201 Edge,D.O.,Shakeshaft,J.R.,McAdam,W.B.,Baldwin,J.E.,&Archer,S.1959,MmRAS,68,37 Elvis,M.2000,ApJ,545,63 Elvis,M.2006,MemoriedellaSocietaAstronomicaItaliana,77,573 Everett,J.E.2005,ApJ,631,689 Fan,J.H.,&Lin,R.G.2000,ApJ,537,101 136
PAGE 137
Foltz,C.B.,Weymann,R.J.,Peterson,B.M.,Sun,L.,Malkan,M.A.,&Chaee,F.H.,Jr.1986,ApJ,307,504 Fox,A.J.,Bergeron,J.,&Petitjean,P.2008,ArXive-prints,806 Gabel,J.R.,Crenshaw,D.M.,Kraemer,S.B.,Brandt,W.N.,George,I.M.,Hamann,F.W.,Kaiser,M.E.,Kaspi,S.,Kriss,G.A.,Mathur,S.,Mushotzky,R.F.,Nandra,K.,Netzer,H.,Peterson,B.M.,Shields,J.C.,Turner,T.J.,&Zheng,W.2003,ApJ,583,178 Ganguly,R.,Bond,N.A.,Charlton,J.C.,Eracleous,M.,Brandt,W.N.,&Churchill,C.W.2001,ApJ,549,133 Ganguly,R.,&Brotherton,M.S.2008,ApJ,672,102 Ganguly,R.,Eracleous,M.,Charlton,J.C.,&Churchill,C.W.1999,AJ,117,2594 Gebhardt,K.,Bender,R.,Bower,G.,Dressler,A.,Faber,S.M.,Filippenko,A.V.,Green,R.,Grillmair,C.,Ho,L.C.,Kormendy,J.,Lauer,T.R.,Magorrian,J.,Pinkney,J.,Richstone,D.,&Tremaine,S.2000,ApJ,539,L13 Gibson,R.R.,Brandt,W.N.,Schneider,D.P.,&Gallagher,S.C.2008,ApJ,675,985 Girardi,M.,Borgani,S.,Giuricin,G.,Mardirossian,F.,&Mezzetti,M.1998,ApJ,506,45 Grevesse,N.,&Sauval,A.J.1998,SpaceScienceReviews,85,161 Hall,P.B.,Anderson,S.F.,Strauss,M.A.,York,D.G.,Richards,G.T.,Fan,X.,Knapp,G.R.,Schneider,D.P.,VandenBerk,D.E.,Geballe,T.R.,Bauer,A.E.,Becker,R.H.,Davis,M.,Rix,H.-W.,Nichol,R.C.,Bahcall,N.A.,Brinkmann,J.,Brunner,R.,Connolly,A.J.,Csabai,I.,Doi,M.,Fukugita,M.,Gunn,J.E.,Haiman,Z.,Harvanek,M.,Heckman,T.M.,Hennessy,G.S.,Inada,N.,Ivezic,Z.,Johnston,D.,Kleinman,S.,Krolik,J.H.,Krzesinski,J.,Kunszt,P.Z.,Lamb,D.Q.,Long,D.C.,Lupton,R.H.,Miknaitis,G.,Munn,J.A.,Narayanan,V.K.,Neilsen,E.,Newman,P.R.,Nitta,A.,Okamura,S.,Pentericci,L.,Pier,J.R.,Schlegel,D.J.,Snedden,S.,Szalay,A.S.,Thakar,A.R.,Tsvetanov,Z.,White,R.L.,&Zheng,W.2002,ApJS,141,267 Hamann,F.1998,ApJ,500,798 Hamann,F.2009,ApJ(inprep.) 137
PAGE 138
Hamann,F.,Barlow,T.A.,Beaver,E.A.,Burbidge,E.M.,Cohen,R.D.,Junkkarinen,V.,&Lyons,R.1995,ApJ,443,606 Hamann,F.,Barlow,T.A.,Cohen,R.D.,Junkkarinen,V.,&Burbidge,E.M.1997b,inAstronomicalSocietyofthePacicConferenceSeries,128,MassEjectionfromActiveGalacticNuclei,ed.N.Arav,I.Shlosman,&R.J.Weymann,187 Hamann,F.,Barlow,T.A.,Junkkarinen,V.,&Burbidge,E.M.1997c,ApJ,478,80 Hamann,F.,&Ferland,G.1999,ARA&A,37,487 Hamann,F.,Kaplan,K.F.,Hidalgo,P.R.,Prochaska,J.X.,&Herbert-Fort,S.2008,MNRAS,391,L39 Hamann,F.,&Sabra,B.2004,inAstronomicalSocietyofthePacicConferenceSeries,311,AGNPhysicswiththeSloanDigitalSkySurvey,ed.G.T.Richards&P.B.Hall,203 Hamann,F.,&Simon,l.2009,ApJ(inprep.) Hazard,C.,Mackey,M.B.,&Shimmins,A.J.1963,Nature,197,1037 Hewett,P.C.,&Foltz,C.B.2003,AJ,125,1784 Hewitt,A.,&Burbidge,G.1993,ApJS,87,451 Hubble,E.P.1926,ApJ,64,321 Jannuzi,B.T.2009,ApJ(inprep.) Jannuzi,B.T.,Hartig,G.F.,Kirhakos,S.,Sargent,W.L.W.,Turnshek,D.A.,Weymann,R.J.,Bahcall,J.N.,Bergeron,J.,Boksenberg,A.,Savage,B.D.,Schneider,D.P.,&Wolfe,A.M.1996,ApJ,470,L11 Laor,A.,&Brandt,W.N.2002,ApJ,569,641 Lundgren,B.F.,Wilhite,B.C.,Brunner,R.J.,Hall,P.B.,Schneider,D.P.,York,D.G.,VandenBerk,D.E.,&Brinkmann,J.2007,ApJ,656,73 Matthews,T.A.,&Sandage,A.R.1963,ApJ,138,30 McGreer,I.D.,Becker,R.H.,Helfand,D.J.,&White,R.L.2006,ApJ,652,157 138
PAGE 139
Merritt,D.,&Ferrarese,L.2001,ApJ,547,140 Misawa,T.,Charlton,J.C.,Eracleous,M.,Ganguly,R.,Tytler,D.,Kirkman,D.,Suzuki,N.,&Lubin,D.2007a,ApJS,171,1 Misawa,T.,Eracleous,M.,Charlton,J.C.,&Kashikawa,N.2007b,ApJ,660,152 Misawa,T.,Eracleous,M.,Charlton,J.C.,&Tajitsu,A.2005,ApJ,629,115 Murray,N.,Chiang,J.,Grossman,S.A.,&Voit,G.M.1995,ApJ,451,498 Narayanan,D.,Hamann,F.,Barlow,T.,Burbidge,E.M.,Cohen,R.D.,Junkkarinen,V.,&Lyons,R.2004,ApJ,601,715 Nestor,D.,Hamann,F.,&Hidalgo,P.R.2008,MNRAS,386,2055 Nestor,D.B.,Turnshek,D.A.,&Rao,S.M.2005,ApJ,628,637 Oke,J.B.1963,Nature,197,1040 Peterson,B.M.1997,AnIntroductiontoActiveGalacticNuclei(Anintroductiontoactivegalacticnuclei,Publisher:Cambridge,NewYorkCambridgeUniversityPress,1997Physicaldescriptionxvi,238p.ISBN0521473489) Prochaska,J.X.1999,ApJ,511,L71 Proga,D.,&Kallman,T.R.2004,ApJ,616,688 Proga,D.,Stone,J.M.,&Kallman,T.R.2000,ApJ,543,686 Rees,M.J.1984,ARA&A,22,471 Reichard,T.A.,Richards,G.T.,Hall,P.B.,Schneider,D.P.,VandenBerk,D.E.,Fan,X.,York,D.G.,Knapp,G.R.,&Brinkmann,J.2003,AJ,126,2594 Richards,G.T.,Laurent-Muehleisen,S.A.,Becker,R.H.,&York,D.G.2001,ApJ,547,635 Richards,G.T.,York,D.G.,Yanny,B.,Kollgaard,R.I.,Laurent-Muehleisen,S.A.,&vandenBerk,D.E.1999,ApJ,513,576 Sargent,W.L.W.,Boksenberg,A.,&Steidel,C.C.1988,ApJS,68,539 Schmidt,M.1963,Nature,197,1040 139
PAGE 140
Silk,J.,&Rees,M.J.1998,A&A,331,L1 Slipher,V.M.1915,PopularAstronomy,23,21 Sramek,R.A.,&Weedman,D.W.1980,ApJ,238,435 Stocke,J.T.,Morris,S.L.,Weymann,R.J.,&Foltz,C.B.1992,ApJ,396,487 Thoul,A.A.,&Weinberg,D.H.1995,ApJ,442,480 Trump,J.R.,Hall,P.B.,Reichard,T.A.,Richards,G.T.,Schneider,D.P.,VandenBerk,D.E.,Knapp,G.R.,Anderson,S.F.,Fan,X.,Brinkman,J.,Kleinman,S.J.,&Nitta,A.2006,ApJS,165,1 Turnshek,D.A.1984,ApJ,280,51 Turnshek,D.A.1988,inProceedingsoftheQSOAbsorptionLineMeeting,ed.J.C.Blades,D.A.Turnshek,&C.A.Norman,17 Venemans,B.P.,Rottgering,H.J.A.,Miley,G.K.,vanBreugel,W.J.M.,deBreuck,C.,Kurk,J.D.,Pentericci,L.,Stanford,S.A.,Overzier,R.A.,Croft,S.,&Ford,H.2007,A&A,461,823 Verner,D.A.,Barthel,P.D.,&Tytler,D.1994,A&AS,108,287 Vestergaard,M.2002,ApJ,571,733 Vestergaard,M.2003,ApJ,599,116 Voit,G.M.,Weymann,R.J.,&Korista,K.T.1993,ApJ,413,95 Warner,C.,Hamann,F.,&Dietrich,M.2003,ApJ,596,72 Weymann,R.J.,Carswell,R.F.,&Smith,M.G.1981,ARA&A,19,41 Weymann,R.J.,Morris,S.L.,Foltz,C.B.,&Hewett,P.C.1991,ApJ,373,23 Weymann,R.J.,Williams,R.E.,Peterson,B.M.,&Turnshek,D.A.1979,ApJ,234,33 Wise,J.H.,Eracleous,M.,Charlton,J.C.,&Ganguly,R.2004,ApJ,613,129 Wolfe,A.M.,&Prochaska,J.X.2000,ApJ,545,591 Yuan,Q.,Green,R.F.,Brotherton,M.,Tripp,T.M.,Kaiser,M.E.,&Kriss,G.A.2002,ApJ,575,687 Zel'Dovich,Y.B.,&Novikov,I.D.1964,SovietPhysicsDoklady,9,246 140
PAGE 141
BorninBogota(Colombia)in1978,PaolaRodrguezHidalgolivedinSpainallherlifeuntilmovingtoFloridain2002.ShereceivedheraPh.D.inastronomyfromtheUniversityofFloridainMay2009. 141
|