Citation
Development and Implementation of the DIGGS Format to Perform LRFD Resistance Factor Calibration of Driven Concrete Piles in Florida

Material Information

Title:
Development and Implementation of the DIGGS Format to Perform LRFD Resistance Factor Calibration of Driven Concrete Piles in Florida
Creator:
STYLER, MARK ANTHONY ( Author, Primary )
Copyright Date:
2008

Subjects

Subjects / Keywords:
Random variables ( jstor )
R factors ( jstor )
Identifiers ( jstor )

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright Mark Anthony Styler. Permission granted to University of Florida to digitize and display this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Embargo Date:
8/31/2006
Resource Identifier:
649810197 ( OCLC )

Downloads

This item has the following downloads:

styler_m ( .pdf )

styler_m_Page_038.txt

styler_m_Page_227.txt

styler_m_Page_293.txt

styler_m_Page_200.txt

styler_m_Page_318.txt

styler_m_Page_409.txt

styler_m_Page_193.txt

styler_m_Page_231.txt

styler_m_Page_081.txt

styler_m_Page_253.txt

styler_m_Page_051.txt

styler_m_Page_271.txt

styler_m_Page_143.txt

styler_m_Page_262.txt

styler_m_Page_339.txt

styler_m_Page_059.txt

styler_m_Page_012.txt

styler_m_Page_176.txt

styler_m_Page_317.txt

styler_m_Page_383.txt

styler_m_Page_280.txt

styler_m_Page_263.txt

styler_m_Page_374.txt

styler_m_Page_153.txt

styler_m_Page_296.txt

styler_m_Page_138.txt

styler_m_Page_226.txt

styler_m_Page_221.txt

styler_m_Page_283.txt

styler_m_Page_414.txt

styler_m_Page_093.txt

styler_m_Page_150.txt

styler_m_Page_376.txt

styler_m_Page_336.txt

styler_m_Page_039.txt

styler_m_Page_163.txt

styler_m_Page_202.txt

styler_m_Page_399.txt

styler_m_Page_073.txt

styler_m_Page_112.txt

styler_m_Page_281.txt

styler_m_Page_098.txt

styler_m_Page_108.txt

styler_m_Page_233.txt

styler_m_Page_184.txt

styler_m_Page_366.txt

styler_m_Page_304.txt

styler_m_Page_404.txt

styler_m_Page_235.txt

styler_m_Page_060.txt

styler_m_Page_372.txt

styler_m_Page_080.txt

styler_m_Page_245.txt

styler_m_Page_322.txt

styler_m_Page_069.txt

styler_m_Page_083.txt

styler_m_Page_024.txt

styler_m_Page_079.txt

styler_m_Page_259.txt

styler_m_Page_146.txt

styler_m_Page_241.txt

styler_m_Page_064.txt

styler_m_Page_335.txt

styler_m_Page_111.txt

styler_m_Page_340.txt

styler_m_Page_257.txt

styler_m_Page_402.txt

styler_m_Page_136.txt

styler_m_Page_065.txt

styler_m_Page_144.txt

styler_m_Page_297.txt

styler_m_Page_274.txt

styler_m_Page_343.txt

styler_m_Page_115.txt

styler_m_Page_228.txt

styler_m_Page_036.txt

styler_m_Page_018.txt

styler_m_Page_190.txt

styler_m_Page_341.txt

styler_m_Page_015.txt

styler_m_Page_265.txt

styler_m_Page_009.txt

styler_m_Page_040.txt

styler_m_Page_286.txt

styler_m_Page_194.txt

styler_m_Page_411.txt

styler_m_Page_050.txt

styler_m_Page_330.txt

styler_m_Page_086.txt

styler_m_Page_247.txt

styler_m_Page_166.txt

styler_m_Page_290.txt

styler_m_Page_246.txt

styler_m_Page_312.txt

styler_m_Page_188.txt

styler_m_Page_001.txt

styler_m_Page_109.txt

styler_m_Page_048.txt

styler_m_Page_237.txt

styler_m_Page_389.txt

styler_m_Page_131.txt

styler_m_Page_180.txt

styler_m_Page_258.txt

styler_m_Page_323.txt

styler_m_Page_250.txt

styler_m_Page_029.txt

styler_m_Page_360.txt

styler_m_Page_350.txt

styler_m_Page_158.txt

styler_m_Page_031.txt

styler_m_Page_390.txt

styler_m_Page_218.txt

styler_m_Page_053.txt

styler_m_Page_333.txt

styler_m_Page_215.txt

styler_m_Page_056.txt

styler_m_Page_327.txt

styler_m_Page_006.txt

styler_m_Page_164.txt

styler_m_Page_284.txt

styler_m_Page_361.txt

styler_m_Page_342.txt

styler_m_Page_229.txt

styler_m_Page_324.txt

styler_m_Page_066.txt

styler_m_Page_187.txt

styler_m_Page_203.txt

styler_m_Page_173.txt

styler_m_Page_278.txt

styler_m_Page_123.txt

styler_m_Page_362.txt

styler_m_Page_279.txt

styler_m_Page_401.txt

styler_m_Page_211.txt

styler_m_Page_151.txt

styler_m_Page_054.txt

styler_m_Page_090.txt

styler_m_Page_408.txt

styler_m_Page_248.txt

styler_m_Page_328.txt

styler_m_Page_044.txt

styler_m_Page_120.txt

styler_m_Page_300.txt

styler_m_Page_325.txt

styler_m_Page_019.txt

styler_m_Page_061.txt

styler_m_Page_181.txt

styler_m_Page_017.txt

styler_m_Page_303.txt

styler_m_Page_055.txt

styler_m_Page_238.txt

styler_m_Page_117.txt

styler_m_Page_141.txt

styler_m_Page_212.txt

styler_m_Page_251.txt

styler_m_Page_214.txt

styler_m_Page_403.txt

styler_m_Page_196.txt

styler_m_Page_224.txt

styler_m_Page_033.txt

styler_m_Page_310.txt

styler_m_Page_217.txt

styler_m_Page_057.txt

styler_m_Page_294.txt

styler_m_Page_377.txt

styler_m_Page_124.txt

styler_m_Page_379.txt

styler_m_Page_234.txt

styler_m_Page_047.txt

styler_m_Page_232.txt

styler_m_Page_260.txt

styler_m_Page_092.txt

styler_m_Page_415.txt

styler_m_Page_406.txt

styler_m_Page_396.txt

styler_m_Page_074.txt

styler_m_Page_186.txt

styler_m_Page_392.txt

styler_m_Page_346.txt

styler_m_Page_030.txt

styler_m_Page_313.txt

styler_m_Page_416.txt

styler_m_Page_118.txt

styler_m_Page_076.txt

styler_m_Page_058.txt

styler_m_Page_020.txt

styler_m_Page_302.txt

styler_m_Page_154.txt

styler_m_Page_295.txt

styler_m_Page_369.txt

styler_m_Page_119.txt

styler_m_Page_413.txt

styler_m_Page_378.txt

styler_m_Page_097.txt

styler_m_Page_169.txt

styler_m_Page_230.txt

styler_m_Page_002.txt

styler_m_Page_072.txt

styler_m_Page_145.txt

styler_m_Page_189.txt

styler_m_Page_347.txt

styler_m_Page_140.txt

styler_m_Page_208.txt

styler_m_Page_275.txt

styler_m_Page_101.txt

styler_m_Page_273.txt

styler_m_Page_178.txt

styler_m_Page_007.txt

styler_m_Page_216.txt

styler_m_Page_357.txt

styler_m_Page_261.txt

styler_m_Page_025.txt

styler_m_Page_306.txt

styler_m_Page_282.txt

styler_m_Page_352.txt

styler_m_Page_277.txt

styler_m_Page_337.txt

styler_m_Page_298.txt

styler_m_Page_027.txt

styler_m_Page_388.txt

styler_m_Page_285.txt

styler_m_Page_052.txt

styler_m_Page_128.txt

styler_m_Page_088.txt

styler_m_Page_116.txt

styler_m_Page_134.txt

styler_m_Page_165.txt

styler_m_Page_321.txt

styler_m_Page_049.txt

styler_m_Page_348.txt

styler_m_Page_358.txt

styler_m_Page_175.txt

styler_m_Page_349.txt

styler_m_Page_382.txt

styler_m_Page_397.txt

styler_m_Page_082.txt

styler_m_Page_410.txt

styler_m_Page_139.txt

styler_m_Page_152.txt

styler_m_Page_149.txt

styler_m_Page_161.txt

styler_m_Page_316.txt

styler_m_Page_157.txt

styler_m_Page_355.txt

styler_m_Page_026.txt

styler_m_Page_096.txt

styler_m_Page_198.txt

styler_m_Page_104.txt

styler_m_Page_185.txt

styler_m_Page_405.txt

styler_m_Page_287.txt

styler_m_Page_008.txt

styler_m_Page_014.txt

styler_m_Page_177.txt

styler_m_Page_289.txt

styler_m_Page_003.txt

styler_m_Page_197.txt

styler_m_Page_130.txt

styler_m_Page_132.txt

styler_m_Page_127.txt

styler_m_Page_087.txt

styler_m_Page_236.txt

styler_m_Page_243.txt

styler_m_Page_162.txt

styler_m_Page_021.txt

styler_m_Page_106.txt

styler_m_pdf.txt

styler_m_Page_043.txt

styler_m_Page_320.txt

styler_m_Page_207.txt

styler_m_Page_314.txt

styler_m_Page_077.txt

styler_m_Page_386.txt

styler_m_Page_267.txt

styler_m_Page_133.txt

styler_m_Page_156.txt

styler_m_Page_035.txt

styler_m_Page_393.txt

styler_m_Page_089.txt

styler_m_Page_254.txt

styler_m_Page_016.txt

styler_m_Page_256.txt

styler_m_Page_046.txt

styler_m_Page_326.txt

styler_m_Page_359.txt

styler_m_Page_121.txt

styler_m_Page_028.txt

styler_m_Page_213.txt

styler_m_Page_264.txt

styler_m_Page_201.txt

styler_m_Page_308.txt

styler_m_Page_412.txt

styler_m_Page_398.txt

styler_m_Page_371.txt

styler_m_Page_174.txt

styler_m_Page_013.txt

styler_m_Page_171.txt

styler_m_Page_023.txt

styler_m_Page_288.txt

styler_m_Page_391.txt

styler_m_Page_394.txt

styler_m_Page_384.txt

styler_m_Page_105.txt

styler_m_Page_129.txt

styler_m_Page_380.txt

styler_m_Page_095.txt

styler_m_Page_255.txt

styler_m_Page_204.txt

styler_m_Page_387.txt

styler_m_Page_078.txt

styler_m_Page_305.txt

styler_m_Page_338.txt

styler_m_Page_103.txt

styler_m_Page_004.txt

styler_m_Page_219.txt

styler_m_Page_249.txt

styler_m_Page_269.txt

styler_m_Page_113.txt

styler_m_Page_125.txt

styler_m_Page_005.txt

styler_m_Page_075.txt

styler_m_Page_210.txt

styler_m_Page_270.txt

styler_m_Page_045.txt

styler_m_Page_272.txt

styler_m_Page_067.txt

styler_m_Page_329.txt

styler_m_Page_370.txt

styler_m_Page_381.txt

styler_m_Page_291.txt

styler_m_Page_155.txt

styler_m_Page_172.txt

styler_m_Page_268.txt

styler_m_Page_034.txt

styler_m_Page_122.txt

styler_m_Page_252.txt

styler_m_Page_368.txt

styler_m_Page_114.txt

styler_m_Page_276.txt

styler_m_Page_220.txt

styler_m_Page_100.txt

styler_m_Page_344.txt

styler_m_Page_311.txt

styler_m_Page_364.txt

styler_m_Page_222.txt

styler_m_Page_070.txt

styler_m_Page_063.txt

styler_m_Page_223.txt

styler_m_Page_354.txt

styler_m_Page_307.txt

styler_m_Page_345.txt

styler_m_Page_167.txt

styler_m_Page_395.txt

styler_m_Page_206.txt

styler_m_Page_209.txt

styler_m_Page_160.txt

styler_m_Page_351.txt

styler_m_Page_041.txt

styler_m_Page_110.txt

styler_m_Page_032.txt

styler_m_Page_292.txt

styler_m_Page_085.txt

styler_m_Page_319.txt

styler_m_Page_240.txt

styler_m_Page_170.txt

styler_m_Page_126.txt

styler_m_Page_179.txt

styler_m_Page_084.txt

styler_m_Page_299.txt

styler_m_Page_375.txt

styler_m_Page_195.txt

styler_m_Page_242.txt

styler_m_Page_071.txt

styler_m_Page_417.txt

styler_m_Page_042.txt

styler_m_Page_363.txt

styler_m_Page_225.txt

styler_m_Page_400.txt

styler_m_Page_205.txt

styler_m_Page_199.txt

styler_m_Page_102.txt

styler_m_Page_334.txt

styler_m_Page_191.txt

styler_m_Page_373.txt

styler_m_Page_137.txt

styler_m_Page_094.txt

styler_m_Page_135.txt

styler_m_Page_332.txt

styler_m_Page_407.txt

styler_m_Page_365.txt

styler_m_Page_315.txt

styler_m_Page_239.txt

styler_m_Page_022.txt

styler_m_Page_037.txt

styler_m_Page_147.txt

styler_m_Page_062.txt

styler_m_Page_331.txt

styler_m_Page_168.txt

styler_m_Page_099.txt

styler_m_Page_244.txt

styler_m_Page_091.txt

styler_m_Page_353.txt

styler_m_Page_148.txt

styler_m_Page_356.txt

styler_m_Page_068.txt

styler_m_Page_192.txt

styler_m_Page_182.txt

styler_m_Page_159.txt

styler_m_Page_183.txt

styler_m_Page_142.txt

styler_m_Page_367.txt

styler_m_Page_010.txt

styler_m_Page_107.txt

styler_m_Page_385.txt

styler_m_Page_301.txt

styler_m_Page_011.txt

styler_m_Page_266.txt

styler_m_Page_309.txt


Full Text












DEVELOPMENT AND IMPLEMENTATION OF THE DIGGS FORMAT TO
PERFORM LRFD RESISTANCE FACTOR CALIBRATION OF DRIVEN
CONCRETE PILES IN FLORIDA















By

MARK ANTHONY STYLER


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA


2006





























Copyright 2006

by

Mark Anthony Styler

































This document is dedicated to my parents for their support, encouragement, and pushing
me to succeed when I needed direction.















ACKNOWLEDGMENTS

This thesis would not have been possible without the dedicated professors at the

University of Florida as well as the tireless efforts of the first DIGGS committee.

I would like to thank my thesis committee, Dr. Michael McVay, Dr. Marc Hoit, and

Dr. Bjorn Birigsson. I thank Dr. Michael McVay for his previous experience with LRFD

resistance factor calibration and his depth of knowledge of deep foundations. I thank Dr.

Marc Hoit for his management of the DIGGS committee. Finally I thank Dr. Bjorn

Birgisson for introducing me to reliability space in LRFD.

In no particular order, I would also acknowledge the efforts of the first DIGGS

committee, Dr. Marc Hoit, Dr. Michael McVay, Tom Lefchik, Tim Spink, Roger

Chandler, Paul Quinn, Jean Benoit, Salvatore Coronna, Loren Turner, John Bobbit, and

Dan Ponti.
















TABLE OF CONTENTS

page

A C K N O W L E D G M E N T S ................................................................................................. iv

LIST OF TABLES ......................................... ............. .... ....... .............. xi

L IST O F FIG U R E S .... ....... .................... ........................ .... ..... .. ............. xxii

ABSTRACT ............. .................................................................. xxiv

CHAPTER

1 IN TR O D U C T IO N ............................................................. .. ......... ...... .....

Current Geotechnical Archiving Practice .......................................... .................
Reasons to A rchive G eotechnical D ata ........................................ ...................... 2
N ew P roj ects............................................................... ............. .. 2
M ain ten an ce ...................................................... ................ .. 2
R e se a rc h ................................................................................................................ 2
O their D IG G S B enefits............ ............................................................ ......... .. ..
R e d u c e E rro r .......................................................................................................... 2
Interop erability ....................................................... 2

2 X M L B A CK G R O U N D ................................................................ ........................ 4

The Basics of Extensible Mark-Up Language............... ...................................5
X M L Schem a D definition ............................................ .................. ....................6
E le m e n t ...................................... ................................. ................ 6
D ata T y p es .................................................... .................... 7
C om plex T ypes .................................................................................. .. 8
S eq u en ce ...................................... ................................ ................ 9
C h o ice ........................................................ ............... .... 9
A ttrib u te s ...................................... .............................................. 10
Extension .................................... ................................ ......... 10
R restriction .................................... .......................... ................ ........ 11
Inclu de ..................................... .................. ................... ... ......11
N am spaces ................................... ........................... ..... ............. 12
Im port ....................................................................... ...................13
A abstract and Substitution G roups..................................... ......................... 13
A Com plete D IG G S Schem a File...................................................... .... ........... 14


v









3 GEOGRAPHY MARK-UP LANGUAGE .....................................................20

O objects, Properties, and V alues ...................................................................... .. .... 20
xlink N am space ............................................................. .............. .. 22
G M L G eom etry .............................................. .. .. ........... ..... ...... 23
g m l:P o in t ....................................................... 2 3
gml:LineString ................... ... ...... ............................. ....... 23
g m l:P o ly g o n ................................................................2 4
G M L O b je cts ....................................................................................................2 4
F eatu res .......................................................................................................... 2 5
Coordinate Reference System s (CRS)...................................... ............... 25
D ictionaries and D efinitions................................................... ............... ... 30

4 DIGGS (DATA INTERCHANGE FOR GEOTECHNICAL AND
GEOENVIRONMENTAL SPECIALISTS)................ ..................... .........33

D IG G S O object H hierarchy ......... ................. .................................... .......................34
Im plem entation .... .................. .... .... .. .............. ......... 39
Rules for Compliance with the DIGGS Standard....................................39
Available Application Programming Interfaces (APIs) ....................................39
DOM (Document Object Model) .......... ........................ 40
Creating DIGGS DOM................................................ 40
Opening a DIGGS file with a DOM .................................. ............... 41
M odifying D IG G S D OM ........................................ ......... ............... 42
Verifying DIGGS DOM ........................... ................ ............... 43
Saving D IGG S D OM ............................................................................45
M ore inform ation ................... .... .......... ............. .... ........45
SAX (Sim ple API for XM L) ............................. ..... ................................ 46
U nits of M measure A tribute ........... .......................................... ............... 46
U U ID ..............................................................................4 6
G enerating U U ID ............................................... ........ .. ...... ............48
M ore inform ation ................... .... .......... ............. .... ........48

5 MEASURED AND PREDICTED RESISTANCE OF DRIVEN CONCRETE
PILES .... ......................................... .........50

D avisson M measured R esistance........................................................ ............... 50
FB-D eep Predicted Resistance ............................................................................52

6 D A T A SE T ............................................................................ 56

7 LRFD BA CK GROU ND ............................................. ......... ............................. 63

O v erv iew ................................................................................................... .... 6 3
M them atical Background............................................................ ............... 64
R andom V ariables .......................... .. .... .................................. ......... 64
M om ents of a Random V ariable...................................... ........................ 70
C hi-Squared A naly sis.......... ........................................ ...... ........ ... ..... 7 1









Cumulative Distribution Functions ........................................ ............... 72
Calibration M methods ........................... ........ .. ...... ...............73
Fitting to A SD ........................................73
FOSM First Order Second M om ent .............................................................. 75
R liability index ................................................ ........ .......... .. ..78
Solving for the resistance factor............................................................... 79
Correcting FO SM .................. ..................................... .. ........ .... 83
Probability of Failure........................... .................. ... ........... ............. 86
FORM- First Order Reliability Method..........................................................88
D efine the failure equation ................................ ......................... ....... 89
Choose random variable distributions............... ................. ...................90
Choose LRFD factors to analyze ...................................... ............... 91
Partition the design space................................... ............................. ....... 93
Choose representative points for each domain...........................................93
Calculate the initial design point...................... ......................................... 94
Transform into an equivalent normal distribution............................95
Transform original random variables to standard normal random
variables ................................ ...................... ................ 99
Rewrite the failure equation in terms of the standard normal random
v ariab le s ................................................................................. 10 0
Com pute a new trial design point................................... ............... 100
Calculate the reliability index ....................................... ............... 101
FORM iteration .................. ........................ .......... .... ...... .. ............ 101
FORM exam ple ..................................... ........ ...... ................102

8 RESISTANCE FACTOR CALIBRATION ............................................................106

FO SM R resistance Factor C alibration ....................................................................... 107
Corrected FOSM Resistance Factor Calibration ............................................... 108
FORM Resistance Factor Calibration............................. ............... 109

9 C O N C L U SIO N ......... ........................................................................ .. ........... .. 111

Resistance Factor Calibration Comparison ............. .......................... ..................111
Im proving LRFD ......................... .......... .. .. .. ......... .. ..... .. 120
Adopting DIGGS ......... .............. ........................ ............ 121

APPENDIX

A D IG G S O bject T ables....................................................................... ..................122

Com m on D IG G S D ataTypes......................................................... ............... 122
Common DIGGS Objects ........... .. ......... ........................ 136
B usinessA associate ...................................... ................... ........ 136
E quipm ent ............................................. 140
Specification ................................................................ ...................................... 141
Top Level Hierarchal DIGGS Objects ......................................................143









Transm issionInform ation ............................................................................ 144
P ro j e ct ...................1...................4...................5..........
H ierarchal H ole O objects ............................................ ......................................... 149
H o le F e atu re ................................................................................................ 1 5 0
L ay er F eatu re ................................................................................ 16 0
D eta il F e atu re .............................................................................................. 1 6 5
FractureSpacing Feature ............................................................. ............. 168
DiscontinuityData Feature ...... ......................................170
Sam ple F feature ......... ..................................... ........................ ...............172
SchmidtReboundHardness Feature .................................. .................. 176
HoleConstruction Feature ........... ............ .. ..........................179
W aterLevelsnH ole Feature............................. ............... ............... 181
InsituCBR Feature .............................. ........................................... 183
InsituDensity Feature................... ............186
InsituPermeabilityGeneral Feature .................. .. ........................ ............... 188
InsituPermeabilityDetail Object .............................................. ............... 191
RedoxPotential Feature .......................... ........ .....................................192
R esistivity F feature ................................................................. .. .................. 195
DrivenPenetrationTestGeneral Feature ..................................................197
DrivenPenetrationTestDetail Feature ................. ........ ........... ..............202
V aneG general O object ................................. ......................... ............... 205
V aneD detail Feature ........................................... ................ ............... 207
PressuremeterGeneral Object ..........................................................209
PressuremeterDetailTest Feature ................... ........ ..... ............... 210
PressuremeterDetailLoops Object ......... ........................ ............... 214
PressuremeterDetailData Object ............ ............. ......... ..... ............... 216
PocketPenetrom eter Feature ........... ............ ....................... .......... ......217
H andV ane F feature ................. .................. ........... ..................220
StaticConeTestGeneral Object ................................... ...............222
StaticConeTestD detail Feature ................................................... ............... 227
InsituFlam elonizationD etector Feature ............................................................229
InsituPhotolonizationDetector Feature .......................... ..................231
D ilatom eterG general O bject.......................................... ........... ............... 233
D ilatom eterD etail Feature ...........................................................................237
M onitoringPointGeneral Object ............................................... .................. 239
MonitoringPointConstruction Feature ............. ...........................................243
M onitoringPointEvent Object ............... ................ ....... ................. 245
M onitoringPointReading Feature ........................................... ............... 246
InsituC hem icalT ests O bject.................................................................. ...... 249
OtherFieldTests Feature ............................................................................. 252
Hierarchal Specim en Objects ............................................................................254
Specim en Feature ........................................ ................. ..... .... 255
A tterbergLim its O bject............................................. ............................. 265
Shrinkage O object ....................................... ........ ...... .. ........ .... 267
C B R G en eral O bject......................................... ............................................2 69
CBRDetail Object........................ .............. ..... ....... 271



viii









ChalkTests Object .............. .... ....... .. .... .......... ..... ...... .... .. 272
CompactionGeneral Object ................... .. .................. ..... .......... 275
Com pactionD etail Object ...................................................................... 277
ConsolidationGeneral Object ....................................... ............... 278
ConsolidationD etail O bject ........................................ .......................... 282
FrostSusceptibilityGeneral Object................. ............................................... 284
FrostSusceptibilityD etail Object ............................................ ............... 286
ParticleSizeG general O bject.......................................... ........... ............... 287
M C V G general O bject............................................................... .....................290
M C V D detail O bject............................................................................. ....... 293
LaboratoryPerm ability Object ...................................................................... 294
R elativeD ensity O bject............................................. ............................. 297
PointLoadTest Object ......................................................... ............... 300
Porosity O object .................................................................. ............... 302
SlakeD urability O bject ......................................................... .............. 304
ShoreH ardness Object ......................................................... .............. 307
LosA ngelesA brasion O bject........................................ .......................... 309
AggregatelmpactValue Object ........................................ ...............311
AggregateCrushingValue Object......... .................. ......... ..................313
AggregateAbrasionValue Object......... .................. ......... ..................315
PolishedStoneValue Object.................................... ....................... 317
E longationIndex O bject............................................. ............................ 319
FlakinessIndex Object ......................................................... .............. 321
Soundness O object ....................................... ................. ..... .... 323
W aterA bsorption O bject......................................................... ............... 326
LaboratoryVelocity Object ......... ... .... ........................................ 328
ShearBoxGeneral Object ................................................_......................... 330
ShearBoxD etail Object...................................... ........ ..... ........... .... 332
Suction O object ....................................... ............... .............. 334
T enP ercentFines O bject...................................................................................336
Com pressiveStrengthG general Object ............. .................................................338
CompressiveStrengthDetail Object ................. .................................... 341
C hem icalTests O bject............................................... ............................. 344
OtherLaboratoryTests Object ...................................................................... 346
Hierarchal FoundationGroup Objects.................... .. .................. ...............349
AppliedLoad Feature ........................................ ...................... 353
D isplacem ent Feature .............................................. .............................. 354
L oadTransfered Feature............................................. ............. ............... 355
Strain Feature............................................... 356
FoundationG roup Feature....................................................... ............... 356
D rivenPile Object ................................ .. ........... ..... ................ ....359
D rivenPilelnstance Feature ........................................ .......................... 359
DrivenPileCross Section Feature............... ........... ............................ 362
D rivenPileConstruction Feature ............................................. ............... 364
D rivingL og F feature ..................... .. ........................ .. .. ...............367
D rivingA analysis O bject ......................................................... ............. 368









D rivenPileBlow Feature ............................................................................ 369
Capw ap Object ........................... ....................................... ...... 373
C apw apSegm ent Feature .......................................................... ............... 377
CastShaft Object ........................................... ...... ... .................... .. 379
CastShaftInstance Feature ..........................................................................379
CastShaftCrossSection Feature ........................................ ....................... 382
CastShaftConstruction Feature .............................. 384

B FORM CODE .............................................................. .386

L IST O F R E FE R E N C E S .......................................................................... ..................390

B IO G R A PH IC A L SK E T C H ........................................... ...........................................392










































x
















LIST OF TABLES


Table pge

2-1. Sim ple X M L data types.............................................................................. ...... ..7

3-1. URN Com ponents.............................................................. ...............27

5-1. FB -D eep Side Friction Equations........................................ .......................... 52

5-2. FB-Deep Mobilized End Bearing Equations..........................................................53

5-3. Critical D epth R atios in FB -D eep ........................................ ......................... 54

6-1. P ile D ataset T able ...................................................... ................... ......... 56

7-1. L ist of V ariables ............................ ................ ... .... ...... .... ....... 63

7-2. M icrosoft Excel Random Variable Functions ................................. ............... 73

7-3. FOSM Resistance Factor Equation Variables .............................. 81

7-4. Comparison of Probability of Failure Approximations............................................88

7-5. FORM Iterations for Real Space to Equivalent Normal Space Parameters ............103

7-6. FORM Iterations in N orm al Space.............................................. ......... ...... 103

8-1. FO SM R resistance Factor Calibrations ........................................ ..................... 107

8-2. Corrected FOSM Resistance Factor Calibrations........................................108

8-3. Reliability Index with respect to Nominal Resistance ............................................109

8-4. FORM Resistance Factor Calibrations ............................. 109

9-1. FOSM and Corrected FOSM Compared to FORM, qD / qL = 2.............................114

9-2. FOSM and Corrected FOSM Compared to FORM, qD / qL = 2.5 ........................115

9-3. FOSM and Corrected FOSM Compared to FORM, qD / qL = 3 ............................115

9-4. Extended N CH RP 507 Table 16...................................... .......................... 116









A M oistureContentType .......................................................... .............. 22

A -2 P articleD ensityT ype ....................................................................... ..................123

A -3. D ensityType ............................................ 125

A -4 P articleSizeD etailT ype ............................................. ........................................ 127

A -5. Blow sA ndPenetrationType ......................................................... ............. ..128

A -6. C alibrationType .................. .............................. ...................... 128

A -7. CodeListType .......................... ......... .. .......... ....... ..... 129

A -8. LocationType ............... ................. .......................... ........ .. 30

A -9. M easureT ype ........................ .. ........................... .... ..................130

A -10. M easureM ethodType ..................................... ................................................. 131

A -11. R em arkType ............. .......................................... ... ........ .. ............ 131

A -12. R oleT ype......................................................... 132

A -13 A ssociatedF ileSetT ype ........................................................................... ............ 133

A-14. ConePwpType.................................................. .......... .. ............ 134

A -15. SecurityInfoT ype ............................................................................... .......... 134

A -16. A uditT ype ..................................................... 13 4

A-17. EventType .................................................................... ......... 134

A -18. Equipm entPropertyType ......................................................... .............. 135

A-19. SpecificationPropertyType ............................................................................. 35

A-20. BusinessAssociatePropertyType........... ......... ........................... 135

A -21. Sam plePropertyType .................................................. .............................. 136

A -22. Specim enPropertyType ................................................................................. 136

A -23. H oleP ropertyT ype........................................................ ...................................136

A -24 B u sinessA ssociate........................................................................ ...................136

A -25. G eneralA ddressType .................................................. .............................. 138









A -26. Em ailType ............................................... 138

A -27. PhoneN um berType. ...................................................................... ...................139

A-28. A ssociatedW ithPropertyType .................................................................. ...... 139

A -29. E quipm ent O object .......................... ................. ....................... .......................140

A -30. Specification O bject..................................................................... .................. 14 1

A-31. TransmissionInformation Object ..................................................... ...............144

A -32. ProjectPropertyType .............................. ........................................... .. 145

A -33. Project Feature .................. ..................................................... .....145

A-34. GeodeticCoordinateSystem Type....................................................................... 148

A-35. GeodeticVerticalDatum Type ................................................... ............... ... 148

A -36. LocalCoordinateSystem Type .................................. ................................ ....... 148

A -37. LocalV erticalD atum Type ............................................................. ............... 148

A -38. ProjectGeom etryType.................................... ......... .................................. 149

A-39. FoundationGroupPropertyType....................................................... ............... 149

A-40. H ole Feature........... .............. ...................... ....... ............. 50

A -4 1. H oleG eom etryT ype ...................................................................... ..................156

A -42. LayerPropertyType ....... ..................................... ....................... ............... 156

A -43. D etailP ropertyT ype....................................................... ..................................156

A -44. FractureSpacingPropertyType ........................................ ......................... 156

A-45. DiscontinuityDataPropertyType.......................................... ......... ... ............... 156

A-46. SchmidtReboundHardnessPropertyType ............................. .... ...........157

A-47. HoleConstructionPropertyType...................................................................... 157

A-48. WaterLevelsInHolePropertyType...... ...................... ...............157

A -49. InsituC brPropertyType ......... ................. ......................................................... 157

A-50. InsituDensityPropertyType................................. 157



xiii









A-51. InsituPermeabilityGeneralPropertyType....................... ......................158

A-52. RedoxPotentialPropertyType..................................................... 158

A-53. InsituResistivityPropertyType ....... .............................................. ......... 158

A-54. DrivenPenetrationTestGeneralPropertyType .............................................158

A-55. VaneGeneralPropertyType .................................. ........ ................... 158

A-56. Pressurem eterGeneralPropertyType............................................................... 158

A-57. PocketPenetrometerPropertyType ............................ .................... 159

A -58. H andV anePropertyType ............................................... ............................ 159

A-59. StaticConeTestGeneralPropertyType .......... ......................................... 159

A-60. InsituFlameIonisationDetectorPropertyType ......... ............ .................159

A-61. InsituPhotoIonisationDetectorPropertyType ................................... ............... 159

A-62. Dilatom eterGeneralPropertyType.............................................. ............... 160

A -63. OtherFieldTestsPropertyType....................................................... ....................160

A-64. M onitoringPointGeneralPropertyType ........ ................................................160

A -65. Layer Feature .................. .................. .................. ........ .............. .. 160

A -66 D detail F eature.......... ............................................................................... ... .... 165

A-67. FractureSpacing Feature ............................ ................. ............... ............... 168

A -68. D iscontinuityD ata Feature ......... ............ .................................. ............... 170

A -69. Sam ple Feature ...................................... .................................172

A-70. SchmidtReboundHardness Feature.................. ...... .... ................. 176

A -71. H oleConstruction Feature ........................................................ ............... 179

A -72. W aterLevelsInH ole Feature....................................................... ............... 181

A -73. InsituC B R F feature ......... ......... ...... ......... .......................... ......................... 183

A -74 InsituD density F eature................................................ ........................................ 186

A-75. InsituPermeabilityGeneral Feature..................................188



xiv









A-76. InsituPermeabilityDetailPropertyType ............................................ ...............191

A-77. InsituPermeabilityDetail Object .................. .......... ... ................. 191

A -78. R edoxP potential F eature............................................ ....................................... 192

A -79 R esistivity F feature ........................................................................ .................. 195

A-80. DrivenPenetrationTestGeneral Feature ..................................... .................197

A-81. DrivenPenetrationTestDetailPropertyType .................................. ...............202

A-82. DrivenPenetrationTestDetail Feature ....................................... ............... 202

A -83. V aneG general O bject..................................................................... ..................205

A -84. V aneD etailPropertyType ............................................. ............................. 207

A -85. V aneD detail F feature ...................................................................... ...................207

A -86. Pressurem eterG general Object ........................................ .......... ............... 209

A-87. PressuremeterDetailTestPropertyType ...................................... ............... 210

A-88. PressuremeterDetailTest Feature....................................................................... 210

A-89. PressuremeterDetailLoopsPropertyType................................... ...............214

A-90. Pressurem eterDetailLoops Object ............................................. ............... 214

A-91. PressuremeterDetailDataPropertyType ..................................... ...............215

A-92. Pressurem eterD etailD ata Object...................................... ......................... 216

A-93. PocketPenetrometer Feature .......................... ......... ...................... 217

A -94 H andV ane F feature ........................................................................ ..................220

A -95. StaticConeTestG general Object ........... ....................................... ................222

A-96. StaticConeTestDetailPropertyType ............................. .................................227

A-97. StaticConeTestDetail Feature .................................. .......................... 227

A-98. InsituFlameIonizationDetector Feature ..................................... ...............229

A-99. InsituPhotoIonizationDetector Feature ................... ......... ..................... 231

A -100. D ilatom eterG general Object........................................... .......................... 233



xv









A-101. Dilatom eterD etailPropertyType ........................................ ...... ............... 236

A -102. D ilatom eterD etail Feature ............................................................................ 237

A-103. M onitoringPointGeneral Object ........................................ ...... ............... 239

A-104. MonitoringPointConstructionPropertyType ................................................. 242

A-105. MonitoringPointEventPropertyType ...................................... ............... 243

A-106. MonitoringPointReadingPropertyType ................................... .................243

A-107. InsituChemicalTestsPropertyType .........................................................243

A-108. MonitoringPointConstruction Feature .......................................................243

A-109. MonitoringPointEvent Object............................ ........ ................. 245

A -110. M onitoringPointR leading Feature ............................................ .....................246

A-1 11. InsituChem icalTests Obj ect................................................... ..................249

A -112. O therFieldTests Feature............................................. ............................. 252

A -113 Specim en F eature........................................................................ ..................2 55

A-114. AtterbergLimitsPropertyType...............................259

A-115. ShrinkagePropertyType ...............................................................................259

A-116. CBRGeneralPropertyType....................................................... 260

A -117. C halkT estsPropertyType ......................................................... .....................260

A-118. CompactionGeneralPropertyType ........................................... ............... 260

A-119. ConsolidationGeneralPropertyType ..........................................................260

A-120. FrostSusceptibilityGeneralPropertyType ..........................................................260

A-121. ParticleSizeGeneralPropertyType.......... ........ ......................... 260

A -122. M cvGeneralPropertyType ............................................................................ 261

A-123. LaboratoryPermeabilityPropertyType ........................................ ............... 261

A-124. RelativeDensityPropertyType................................................ 261

A -125. PointLoadTestPropertyType..................................... ............................ ........ 261









A -126. P orosityP ropertyT ype .............................................................. .....................26 1

A -127. SlakeD urabilityPropertyType.................................. ..................................... 261

A -128. ShoreH ardnessPropertyType .................................... ............... ...........................261

A-129. LosAngelesAbrasionPropertyType.......... ....... ......................... 262

A-130. AggregatelmpactValuePropertyType ..................... ....................................... 262

A-131. AggregateCrushingValuePropertyType .................................. ...............262

A-132. AggregateAbrasionValuePropertyType .......................................................262

A-133. PolishedStoneValuePropertyType ....................................... ...............262

A-134. ElongationIndexPropertyType............................................... 263

A -135. FlakinessIndexPropertyType ........................................ ......................... 263

A -136. SoundnessPropertyType ............................................. ............................ 263

A-137. W aterAbsorptionPropertyType.................................... ........................... 263

A-138. LaboratoryVelocityPropertyType .............................................. ...............263

A-139. ShearBoxGeneralPropertyType.......................................................................263

A-140. SuctionPropertyType ................................................... ......................... 264

A -141. TenPercentFinesPropertyType ........................................ ........ ............... 264

A-142. CompressiveStrengthGeneralPropertyType ............................ ...................264

A-143. ChemicalTestsPropertyType................................................... 264

A-144. OtherLaboratoryTestsPropertyType....................................... ............... 264

A -145. A tterbergL im its O bject............................................................ .....................265

A -146. Shrnikage O object .............................................................. ........ .................... 267

A -147. C B R G general O bject............................................................................. ..... 269

A -148. CBRD etailPropertyType.......................................................... ............... 271

A -149. C B R D etail O bject...................................................................... ...................27 1

A -150. C halkT ests O bject...................................................................... ...................272



xvii









A -151. Com pactionG general O bject ........................................... ......................... 275

A-152. Com pactionD etailPropertyType ........................................ ...... ............... 277

A-153. Com pactionDetail Object .............................................................................277

A-154. ConsolidationGeneral Object ................................................ 278

A-155. ConsolidationDetailPropertyType ............................. ..................... 282

A -156. ConsolidationD detail Object ........................................... ......................... 282

A-157. FrostSusceptibilityGeneral Object............... ................................ ...............284

A-158. FrostSusceptibilityDetailPropertyType ................................... .................286

A-159. FrostSusceptibilityDetail Object......................................................... .......... 286

A -160. ParticleSizeG general Object...................... .... ............................ ............... 287

A -161. M CV G general O bject................................................. .............................. 290

A-162. M CVDetailPropertyType .............................................................................293

A -163. M C V D etail O bject...................................................................... ..................293

A-164. LaboratoryPerm ability Object ............................................... ............... 294

A -165. R elativeD density O bject............................................................ .....................297

A -166. PointLoadTest Object ....................................................................... 300

A-167. Porosity Object .................. .. ........... ... ............ .. ................ 02

A -168. SlakeD urability Object ......................................................... .............. 304

A -169. ShoreH ardness Object ............................................ ..... ........................ 307

A-170. LosAngelesAbrasion Object......................................................... ........... 309

A-171. AggregatelmpactValue Object ................................ .................311

A-172. AggregateCrushingValue Object........................................... .. ............... 313

A-173. AggregateAbrasionValue Object.................................... .................315

A -174. PolishedStoneV alue Object ........................................... ...................... 317

A -175. ElongationIndex Object ...................................................................... 319


xviii









A-176. FlakinessIndex Object ................................................................. 321

A -177. Soundness O bject...................................................................... ...................323

A -178. W aterA absorption O bject......... ................. ................................ ............... 326

A-179. LaboratoryVelocity Object ................................. ........................... 328

A-180. ShearBoxGeneral Object ................................. ..................................330

A-181. ShearBoxD etailPropertyType....................................................................... 332

A -182. ShearB oxD detail O object ............................................. .. .. ........................ 332

A-183. Suction Object ................................ ........................... ............... 334

A -184. TenPercentFines O bject............................................. ............................. 336

A-185. CompressiveStrengthGeneral Object.............................................................. 338

A-186. CompressiveStrengthDetailPropertyType ........................ ...............341

A-187. CompressiveStrengthDetail Object ............................................... .............. 341

A -188. C hem icalT ests O bject.............................................................. .....................344

A -189. OtherLaboratoryTests Object ........................................ ......................... 346

A -190. C apacityType ............................ .. .......................... ............ ........ 350

A-191. LoadTestType ................................................. .................. ....... ........ 351

A -192 L oadT estD ataT ype ..................................................................... ..................352

A -193. A ppliedL oad Feature ........................................ .......................................353

A -194 D isplacem ent F feature .............................................................. .....................354

A -195. LoadTransfered Feature............................................. ............................. 355

A -196. Strain Feature........ ..... .... .................... ........ ........ .... .......... ............ 56

A-197. FoundationGroup Feature ................... ................................... 56

A -198. D rivenPilePropertyType................................................ ............... 358

A -199. CastShaftPropertyType ......................................................... .............. 358

A-200. FoundationGroupGeometryType........... ................................ 358









A -20 1. D riv enP ile O object ....................................................................... ..................359

A-202. DrivenPileInstancePropertyType.......... ......... ......................... 359

A-203. DrivenPileInstance Feature............ ............................................................359

A-204. PileSectionPropertyType .............................................................................361

A -2 0 5 P ileC R S ..................................................... ...................362

A-206. DrivenPileConstructionPropertyType ..................................... .................362

A-207. DrivenPileCrossSection Feature................................................................... 362

A-208. DrivenPileConstruction Feature ........................................ ..................... 364

A-209. DrivingLogPropertyType ............................................................................366

A-210. DrivingAnalysisPropertyType................................................................. 366

A -2 11. C u shionT ype...................................................... ................... ........... 367

A -212. D rivingLog Feature ................................................. ............................... 367

A -213. D rivingA analysis O bject ............................................. ............................. 368

A-214. DrivenPileBlowPropertyType ........................................ ........................ 369

A -215. D rivenPileB low Feature ............................................. ............................ 369

A-216. TraceType ............... .... .. .................................. .. 370

A-217. TraceDataType ................................. ............... ...............371

A-218. PileDriveAnalysisType PDA table........................................ ...............371

A -2 19. F orceW aveT ype......................................................................... ...................373

A -220. C A P W A P O object ........................................................................ ..................373

A-221. CapwapSegmentPropertyType ........................................ ....................... 377

A -222. CaseM ethodType........................................................................... 377

A-223. CapwapSegment Feature .............................................................................377

A -224 C astShaft O object ........................................................................ ...................379

A-225. CastShaftInstancePropertyType ............................................................. 379









A -226. C astSH aft Feature.......................... ..................................... ............... 379

A-227. CastShaftCrossSectionPropertyType.......... ....... .........................381

A -228. ShaftCR S .................................... .. .... ............ .............. .. 382

A-229. CastShaftConstructionPropertyType...................................... ............... 382

A -230. CastShaftCrossSection Feature................................................. ...... ......... 382

A-231. CastShaftConstructionFeature ................................ ......................... ........ 384

A -232. TotalConcreteV olum eType ........................................ .......................... 385










































xxi
















LIST OF FIGURES

Figure page

4-1. Top Level DIGG S Hierarchy .............................................................................. 35

4-2. Hole Level DIGGS Hierarchy ............................................................................36

4-3. Specim en Level H ierarchy ............................................... ............................. 37

4-4. FoundationGroup Level DIGGS Hierarchy ................................... .................38

5-1. Davisson Failure Limit from a Static Load Test ....................................... .......... 51

7-1. Discrete Random Variable Probability Mass Function................ ............... 65

7-2. Continuous Random Variable PDF ........................................ ........................ 66

7-3. G aussian R andom V ariable PD F ...................... .............................. ...... .......... 68

7-4. Lognormal Random Variable PDF.......................................... ............... 69

7-5. D distribution H istogram .............. ................................................ ................ ..... ...7 1

7-6. Cumulative Distribution Function................ .......................... ... ............ 72

7-7. Lognormal Load and Resistance PDF ............................................. ............... 76

7-8 F ailu re R region ................................................................7 8

7-9. (COV[Q])2 versus dead to live load ratio ............ .............................................85

7-10. FORM Load Factor Calibration Algorithm..................................... ...............90

7-11. Resistance Bias plot with Equivalent Normal and Lognormal Distributions..........91

7-12. Failure and D esign Space .............................................. .............................. 92

7-13. Partitioned Design Space with Representative Points.................... ....................94

7-14. Lognormal Cumulative Distribution Function ................................... ...............97

7-15. Inverse of Standard Cumulative Distribution Function............... ....................97









7-16. Standard Probability Density Function ............. ... ..... ..... .......... .. .............. 97

7-17. Numerator for CRN Equation.............................. .............. 98

7-18. Denominator for CRN Equation, Lognormal Probability Density Function.............98

7-19. Resulting N orm al Random Variable ............................................ ............... 99

7-20. Failure equation in Normal Random Variable Space ................. ... .................100

7-21. FO R M in R eal Space.................................................. ............................... 102

8-1. Predicted Versus Measured Dataset .............. ...............................106

8-2. FOSM Resistance Factor Calibrations ........................................ ............... 107

8-3. Corrected FOSM Resistance Factor Calibrations........................................108

8-4. FO R M R resistance Factors ...................... .... ............... .................... ............... 110

9-1. NCHRP 507 FOSM versus FORM Resistance Factors................................. 111

9-2. Resistance Factor Comparison for PT=2 ........ .......... ............ ............... 112

9-3. Resistance Factor Comparison for PT=2.25 ............... .... .. ................. ........ 112

9-4. Resistance Factor Comparison for 1T=2.5............................................ 113

9-5. Resistance Factor Comparison for 1T=2.75 ............... .... .. ................. ........ 113

9-6. Resistance Factor Comparison for PT=3 ........ .......... ............ ............... 114

9-7. Comparison of FORM Results ......................... ................ .. ....... ............... 118

9-8. FOSM versus NCHRP 507 FOSM-Hasofer-Lind, P = 2.0...............................1.19

9-9. FOSM versus NCHRP 507 FOSM-Hasofer-Lind, P = 2.5........................... 119

9-10. Corrected FOSM versus FORM ................................................................ 120

A -1. Top Level D IG G S H ierarchy....................................................... ............... 143

A -2. D IG G S H ole H hierarchy ................................................ .............................. 149

A -3. D IGG S Specim en H ierarchy ............................................................................ 254

A-4. Hierarchal FoundationGroup Objects.................... ...........................349


xxiii
















Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Master of Science

DEVELOPMENT AND IMPLEMENTATION OF THE DIGGS FORMAT TO
PERFORM LRFD RESISTANCE FACTOR CALIBRATION OF DRIVEN
CONCRETE PILES IN FLORIDA

By

Mark Anthony Styler

August 2006

Chair: Mike McVay
Major Department: Civil and Coastal Engineering

National Cooperative Highway Research Program (NCHRP) Report 507

demonstrates that the difference between FORM and FOSM resistance factor calibrations

can be up to 15%. With some pile caps containing in excess of 25 piles, millions could

be saved if this difference could be accounted for. Currently, the more conservative

FOSM is used instead of designing for a specific probability of failure.

This thesis explored the difference between FOSM and FORM using DIGGS, a

newly developed standard for digitally storing geotechnical data. The DIGGS standard

was developed and documented and a DIGGS file containing 62 prestressed concrete

piles from the State of Florida was created. These piles were also analyzed with the

Bridge Software Institute's FB-Deep program to predict Davission Failure limits.

Resistance factors were then calculated using both FOSM and FORM for the Davission

Limit using FB-Deep.


xxiv









The results found agreed with the NCHRP 507 with FORM resistance factor

calibrations being 8% to 23% greater than FOSM. Following this, a corrected FOSM

equation was derived which agrees with the FORM results. Using the modified FOSM

equation resistance factors can be more accurately predicted. Designers should recognize

that using the larger resistance factors results in a larger probability of failure, but more

importantly it results in a known probability of failure.















CHAPTER 1
INTRODUCTION

A wealth of subsurface data is collected every year all over the world. The source

of this data can be from insitu tests, laboratory tests, geophysical tests, and the

installation of deep foundations. While this data is expensive to obtain, it is necessary to

safely build bridges, roads, and other structures. Every piece of data is initially collected

to serve one purpose, however many additional uses exist. The data can be used for

future projects, maintenance, and even research. Currently it is difficult to reuse data as it

is stored in many different formats. DIGGS (Data Interchange for Geotechnical and

Geoenvironmental Specialists), a format to digitally represent geotechnical data, has

recently been developed. DIGGS does not detail how the information is archived, only

the syntax of the stored or transferred information.

Current Geotechnical Archiving Practice

The project owner pays for subsurface data, laboratory tests, field tests, and an

engineers report. These reports are not disposed of after the project has been completed;

the owner saves them for decades. Millions of dollars are spent every year acquiring the

data for these reports.









Reasons to Archive Geotechnical Data

New Projects

Many new projects overlap old projects. Previous insitu and laboratory work could

reduce the cost of a geotechnical investigation and provide savings to the owner.

Archiving geotechnical data can provide the means to utilize previous work.

Maintenance

Maintenance projects require knowledge of the substructures installed. Being able

to reference the geotechnical engineers report is paramount to successfully maintaining a

bridge.

Research

This thesis demonstrates this reason for archiving geotechnical data. Available pile

load tests were collected and used to perform a FORM and FOSM reliability factor

calibration. Furthermore, deriving accurate and relevant empirical relationships requires

many data elements. DIGGS provides a means to which geotechnical data can be

digitally archived.

Other DIGGS Benefits

Reduce Error

Many times during the design process the same geotechnical data must be

repeatedly entered into various programs. When all of the design programs use the same

file format, the data would only need to be entered once. This results in program

interoperability.

Interoperability

When design programs start using the same open standard file format, consultation

firms are not locked into using a particular software vendor. Geotechnical consultation









firms will have the option of changing software programs to one that better suites their

needs. It might seem like software vendors do not benefit from the adoption of DIGGS,

however this is not the case. As DIGGS gets adopted, the potential audience for a new

piece of software grows. This benefits the software developer by having a large market,

and it benefits the geotechnical consultant by allowing the developer to spend more

resources developing better programs.














CHAPTER 2
XML BACKGROUND

The most common options available to encode digital data are binary files, text

files, and XML files. In this spectrum, binary files have the advantage of being the

smallest in size, however they are the most cryptic. Text files, essentially a subset of

binary files, only includes ASCII characters. They tend to be larger than binary files and

their content may convey a meaning to the data. In order for either of these to be

programmatically used, strict rules would have to be followed to create valid files. This

would add a considerable amount of complexity to developing applications. The final

option is XML files; XML files are a subset of text files. They tend to be the largest of

the file types presented. However, the advantage of using XML is that the rules for valid

XML files can be coded into an XML file. This is called a schema (XSD) file; it helps

remove the complexity of developing an application. Another advantage is that many

APIs (application programming interfaces) exist for dealing with XML files. The most

popular of these APIs include the DOM (Document Object Model) and SAX (Simple

API for XML). With the technological progression of increased bandwidth, hard drive

space, and portable storage including thumb drives and burnable media, the size of a file

is almost no longer a concern. This chapter provides an introduction to some of the XML

concepts used by DIGGS. A full documentation of XML is beyond the scope of this

document. Technical documentation can be found at the following website:

http://www.w3.org/XML/









The Basics of Extensible Mark-Up Language

XML (eXtensible Mark-up Language) is an ASCII text file with a rigid syntax. By

following this special syntax, an XML file can use many APIs (application programming

interface) designed to create and modify XML data. Essentially, an XML file has

elements, attributes, values, and data types.

1. value

An element contains starting and ending tags, which are enclosed by < and >.

Attributes exist within the elements starting tag. A single element can have any number

of attributes, and they can be in any order within the opening tag. A closing tag is

enclosed by . In between the opening and closing tags exists the elements value.

Elements can be nested within other elements, and if an element's opening tag is ended

with /> then the element is opened and closed with one tag.

2. elementt>
3. element2 attribute="valuel"/>
4. value3
5. elementnt>

Line 2 in the above XML snippet shows an element that is opened and closed in

one tag. Line 3 shows element, which is nested with element within element.

Nesting XML tags establishes a hierarchy for the data.

Elements have associated data types. A few simple types include string, integer,

double, and date. These data types specify the syntax that the element's value must

follow for a valid XML file. XML schema files specify the rules an XML file must

follow in order to be considered valid. These rules specify the hierarchy, element and

attribute names, and the data types for the values. These rules are encoded in an XSD

file.









XML Schema Definition

XSD (XML Schema Definition) is an XML file that further specifies the syntax of

an XML file. It is used to specify element and attribute names, as well as data types and

acceptable values; XSD files can also sets up the hierarchy. It can be thought of as a set

of rules that are followed in order to create a specific type of XML file. There are rules

that an XSD file must follow to be a valid XSD file. These rules are documented here:

http://www.w3.org/XML/Schema

Element

An element in XSD defines what constitutes a valid element in XML. For

example, consider the following XSD fragment:

maxOccurs="unbounded"/>

This fragment contains a lot of the XML concepts previously introduced. It is an

XML element that is one tag since it closes with />. It also has 4 attributes, which define

the rules for an XML document. The name attribute specifies the name of the XML

element; the type attribute specifies the syntax of the value. The minOccurs and

maxOccurs attributes set limits to the number of times this element can occur. With this

definition, the Building element may not occur at all, but it may occur any number of

times. If it were desired to have an element that is mandatory to occur exactly once, then

the minOccurs and maxOccurs would both have a value of 1. The following is an

example of a valid XML fragment corresponding to the previous XSD fragment.

1. Weil Hall
2. Ben Hill Griffin Stadium









Data Types

In the previous example a string data type was used to specify the syntax of the

building tag value. The string data type is a series of ASCII characters. The following

table contains some of the more common data types used.

Table 2-1. Simple XML data types
Data Type Usage Example
string The string data type is an Weil Hall
ASCII character string. It Fibonacci
has many uses.
integer The integer is used for non- 2
decimal, positive or 3
negative, values. It is 5
typically used for discrete 8
counted values.
double The double type is for data 1.61803399
with decimal precision.
boolean A boolean value is either true
"true" or "false". false
date The date time is used to 1993-01-20
record a calendar date. It is 1989-06-04
in the format yyyy-mm-dd.
dateTime The dateTime data type is 2006-02-20T10:55:03
used to store the exact date 2036-02-07T06:28:16
and time. It is in the format 1969-07-20T20:17:39
yyyy-mm-ddThh:mm: ss
duration The duration type is used to P25YOM21D
specify a length of time in PT1M30S
XML. It has the format PT34.56S
PnYnMnDTnHnMnS. P is PlY11M25DT23H06M45S
required, and T is required
if the duration specifies
hours, minutes, or seconds.
In this format, n represents
a number while the
subsequent letter designates
what the number stands for.
Y is years, the first M is
months, D is days, H is
hours, the second M is
minutes, and S is for
seconds. If the n is zero,
then the letter is optional.











Table 2-1. Continued
Data Type Usage Example
id The id type is very unique. idl
It is used to specify a value id_1
that can only exist once mark-styler
within a valid XML file. It
is essentially an
alphanumeric string without
any spaces or punctuation
other than the underscore
or -. It may not start with a
numeric digit.

Complex Types

Complex types are encoded in XSD to define more complicated data types to be

used by elements.

1.
2.
3.
4.
5.

6.

7.
8.



The above XSD fragment defines a new data type. This data type is then used by

two new elements. The following XML fragment shows a valid instance of this XSD

fragment.

1.
2. Weil Hal
3. 5
4.
5.
6. College Park Apartments
7. 2
8.











In XSD when the minOccurs or maxOccurs are not specified then the default

values are used. For both of these, the default value is 1. Therefore, if they are not

specified then the element becomes mandatory.

Sequence

The elements contained by the sequence tag occur in XML files in the same order.

In the previous example, the Name tag would always have to occur before the floor tag.

If the Name had its maxOccurs set to unbounded, then every instance of the Name tag

would have to occur before the first instance of the floors tag. When data is entered in

XML it is important that the sequence is maintained. In many cases, the sequence of the

data is as important as the data itself. In other words, if an element can occur any number

of times an index value is inherent in the XML. The first instance will always be the first

instance, maintaining a sequence number for the data is redundant.

Choice

The choice tag is used to specify an optional choice of elements. An example best

demonstrates the capabilities this choice tag.

1.
2.
3.
4.
5.
6.

7.
8.
9.

10.


In this schema example, a valid instance cannot have both the inkColor and

leadNumber tags. It can have either tag, or omit both of them all together. If the choice

maxOccurs was 2, then it could have 2 of the choice elements in any order. If the choice

minOccurs was 1 then it must have at least one of the elements specified by the choice.










Attributes

Attributes can be added to complex type definitions. Attributes must be a basic or

simple data type. Unlike elements, no sequence can be specified for the attributes. The

attributes must also be unique within an element; therefore the same attribute cannot exist

multiple times. Typically, attributes are used to describe the value of the element.

1.
2.
3.
4.

5.

6.

The extension tag is described in the following section. The "use" attribute can be

either required or optional. An example of the previous XSD definition would be:

6.12

Extension

The extension tag is used when a complex type extends a basic type by adding

attributes. This is shown in the previous schema example. More importantly, it is used

when a complex type extends a previously defined complex type. This is similar to

inheritance in object-oriented terminology.

1.
2.
3.
4.
5.

6.

7.
9.
10.
11.

12.
13.











When a complex type extends another complex type, then all of the base type

elements occur before any of the additionally defined elements occur in an XML

fragment. A valid instance of the employeeType would have the name element,

optionally followed by the DOB date, and finally the employer element. Attributes can

still exist in any order, regardless of which complex type they are defined in.

Restriction

The restriction tag is used to add constraints to a previously defined complex type.

It can be used to change the use attribute of an attribute definition to "required".

Restriction can also remove previously defined elements from the complex type. When

creating new types, it is often necessary to first restrict the base type then extend the

newly restricted type. An extension and a restriction of a base complex type cannot occur

in one step. The following is an example of a restriction of the previously defined

personType.

1.
2.
3.
4.
5.

6.

7.


The previous schema example removed the optional DOB element from the

personType definition. The restriction tag cannot be used to add new elements to a

complex type definition.

Include

Include tags are used in an XSD file to combine another XSD file. They allow a

complicated schema to be split into multiple smaller and simpler files. These files are

then included within each other with the include tag. The include tag contains a









schemaLocation attribute which contains either a local path to the XSD file or a web

address to the file. The targetNamespace of the included file and the file using the

include tag must be the same.

Namespaces

Namespaces are used to define the scope of a schema. It is used in order to allow

multiple organizations to define many schemas without fear of creating any conflicts.

For example, DIGGS could create a title element, even though HTML already defines a

title element. The namespace is typically a web address. This web address should be

controlled by the organization developing the schema. For simplicity, the namespace is

typically associated within a schema or XML file by an acronym. This acronym holds

absolutely no significance outside of its scope. An acronym is associated with a

namespace by using the xmlns attribute. xmlns:diggs="http://www.diggsml.org"

associates the diggs acronym with the http://www.diggsml.org namespace. This acronym

can be used anywhere within the start and end tags that this xmlns:diggs attribute exists.

An XSD schema is bound by the start and end of a element. Namespace

acronyms are typically assigned at this level. This schema tag also has the

targetNamespace attribute which defines the namespace of the schema being defined.

DIGGS makes use of both the GML and the XLINK namespaces. DIGGS uses types

defined by XLINK and extends complex types defined by GML. In every DIGGS

schema file an xmlns attribute is used to set the diggs namespace to

http://www.diggsml.org, the targetNamespace is also set to this same value. Since XSD

is an XML file, it uses a namespace of http://www.w3.org/2001/XMLSchema. This

namespace includes all of the XSD elements and attributes used to define an XML









schema, including element, complexType, extension, include, import, schema,

targetNamespace, etc...

Import

The import tag is used to include XSD files from a namespace other than the

targetNamespace. It includes two attributes, a namespace attribute and a schemaLocation

attribute. The namespace attribute must match the targetNamespace of the XSD file

pointed to by the schemaLocation attribute.

Abstract and Substitution Groups

The abstract attribute is used to define portions of the schema that do not appear in

any XML instance files. This can be used to define an abstract super type, such as a

foundationType. This abstract super type cannot be used, except by complex type

extension and restriction. The abstract super type is used to derive non-abstract types that

appear within the schema. It is useful to define abstract super types when many subtypes

exist. It allows the XSD developer to make a change to the super type that automatically

reciprocates to all of the derived types.

A global element can also have its abstract attribute set to true. This abstract

element is then used as the head of a substitution group. For example, an abstract

element called insituTest could be created. All of the insitu tests could then set their

substitutionGroup attributes to equal insituTest. SPT and CPT could both have the

substitutionGroup insituTest. Since _insituTest is abstract it cannot appear in the actual

XML file. However, now every complex type that includes a reference to the abstract

insituTest element can now substitute either SPT or CPT in its place.

This is very useful for schema extensions. A schema extension could create a new

type of insitu test and set its substitutionGroup equal to diggs:_instuTest. Now the new










test is integrated into the existing schema. Knowledge of substitutionGroups and abstract

types and elements is necessary for schema development and application programming.

There are four steps required to correctly extend an element of the DIGGS schema.

1. Create a new XSD file with a new targetNamespace.

2. Create a new complexType that extends an existing DIGGS complexType. Add
new elements and attributes with this extension.

3. Create a new global element that uses this new complexType. A global element is
an element that is a direct child of the schema element.

4. Set the substitutionGroup attribute of the new global element to the correct abstract
substitution group head.

A Complete DIGGS Schema File

The following is an actual DIGGS schema file as of April 11, 2006. XSD concepts

introduced in this chapter will be explained. The GML portions of this schema will be

mentioned, and further explained in the next chapter.

1. xmlns:gml="http://www.opengis.new/gml"
xmlns:diggs="http://www.diggsml.org"
xmlns:xlink="http://www.w3.org/1999/xlink"
targetNamespace="http://www.diggsml.org">

Line 1 starts the schema element. The default namespace (xmlns) is set to the XSD

namespace. Because of this, all elements from XSD do not have acronyms prefixed. An

example of this is the first schema tag, it belongs to the schema namespace. The schema

element also sets up the targetNamespace for this schema file. Everything defined in this

file will belong to the targetNamespace.

2. schemaLocation="http://schemas.opengis.net/gml/3.1.1/base/feature
.xsd"/>
3. schemaLocation="http://schemas.opengis.net/gml/3.1.0/xlink/xlinks
.xsd"/>











The import element is used to add schemas from namespaces other than the

targetNamespace.


4.
5.
6.

The include elements add schemas from the diggs namespace. The library file

contains common complexTypes used throughout the DIGGS schema files.


7. substitutionGroup="diggs: FoundationGroup">
8.
9. A collection of foundation elements.
Collections can contain individual deep elements, test piles, or
pier/bent groups

10.

11.



This defines the global element for the FoundationGroup. It can be substituted

everywhere a reference to the substitutionGroup exists. A FoundationGroup is a logical

grouping of foundation elements. It can be a pier, a bent, or a collection of test piles for a

bridge.


12. abstract="true">
13.
14. A collection of foundation elements.
Collections can contain individual deep elements, test piles, or
pier/bent groups

15.

16.


This is the abstract global element. It can only exist within the schema files. If a

schema extension to the FoundationGroup is created then the extension will use this

abstract element ( FoundationGroup) as its substitutionGroup.











16


19. A collection of foundation elements.
Collections can contain individual deep elements, test piles, or
pier/bent groups

20.


This is the complexType definition for the FoundationGroupType. It is the data


type used by both the global FoundationGroup element and the abstract


FoundationGroup element. When creating a schema extension to the FoundationGroup


this type will be extended.


21.
22.

All GML features are derived directly or indirectly from the AbstractFeatureType.


This is introduced in the next chapter.


23.
24. type="diggs:FoundationGroupGeometryType" minOccurs="0"
maxOccurs="unbounded">
25.
26. Geometry of the foundation
group. This optional geometry can be used to show pile cap
dimensions, etc...

27.

28.


The FoundationGroupGeometryType is defined later in this file. It is used to


contain the geometry of this FoundationGroup.


29. minOccurs="0" maxOccurs="1">
30.
31. Bridge number the foundation
group belongs to.

32.

33.

34. minOccurs="0" maxOccurs="l">
35.
36. Name of the bridge the foundation
group supports.

37.

38.












maxOccurs="1">

Name of the pier containing this
foundation group.



minOccurs="0" maxOccurs="l">

Financial
number.



maxOccurs="1">

Comment concerning this group of
foundations elements




minOccurs=



foundation


minOccurs=



foundation



="0" maxOccurs="unbounded">

Roles associated with this
group



"0" maxOccurs="unbounded">

Descriptive location of this
Sgroup





The RolesType and LocationsType are from the DIGGS library.xsd schema file.



64. type="diggs:DrivenPilePropertyType" minOccurs="0"
maxOccurs="unbounded">
65.
66. A driven pile member of this
foundation group

67.

68.

69. type="diggs:CastShaftPropertyType" minOccurs="0"
maxOccurs="unbounded">
70.
71. A cast in place shaft memebr of
this foundation group.

72.

73.

74.








18


75.

76.

77.

78.
79.
80. Relationship to a DrivenPile
object

81.

82.
83. maxOccurs="1">
84.
85. A reference to the diggs Driven Pile
object

86.

87.


This element references an abstract global element. This global element is


contained within the included drivenPile.xsd file. In the actual XML file abstract


elements do not exist. The element in this location will be replaced by a global element


that has its substitutionGroup set to diggs: DrivenPile.






The gml:AssociateAttributeGroup contains a set of attributes used by relationship


properties in GML. It is introduced in the next chapter.


90.
91.
92.
93.

94.
95.
96.

97.
98.

99.
100.
101.
102.
103.
104.
105.
106.





Relationship to a CastShaft
object



maxOccurs="1">

A reference to the diggs Cast Shaft
object








Contains acceptable foundation geometry
objects








19


107.

108.
109.
110.
111.
112.

113.

114.
115.
116.
117.

118.

119.
120.
121.
122.

123.



These three geometry types can be used to describe the geometry of the


FoundationGroup. GML geometry types are introduced in the next chapter.

124.

125.
126.

127.
















CHAPTER 3
GEOGRAPHY MARK-UP LANGUAGE

GML, Geography Mark-Up Language, utilizes XML to describe geographic

objects. GML provides the language to describe geographic objects, but does not specify

what those objects are. GML application schemas extend the GML language to describe

specific objects. DIGGS (Data Interchange for Geotechnical and Geoenvironmental

Specialists), a GML application schema, is introduced in Chapter 4. This chapter

explains the GML concepts used by the DIGGS schema. Most of the GML specific

information has been derived from the Open GIS Consortium Implementation

Specification, 2004.

Objects, Properties, and Values

Everything in a GML file is an object, a property, or a value. Objects contain

properties, and properties have values. The following XML fragment represents these

simple relationships.

1.
2. value
3. value
4.


Objects can only contain properties. They cannot directly contain other objects.

Lines 2 and 3 show the properties. In GML properties are always encoded as child

elements of the object. The property type specifies what the value can be. A property

value could be a basic type, or it could be another Object. The following demonstrates

using a value that is another object.

1.









2. propertyy>
3.
4. value
5.

6. propertyty>
7.


Object 2 is the value of property. The property in Line 2 is called a relationship

property. This is because it explains the relationship between Objectl and Object2.

GML objects and properties follow a naming convention. GML objects are Upper

Camel Case and GML properties are lower Camel Case. In upper camel case, the first

letter of every word in capitalized, for example, LinearRing, Ploygon, and

FoundationGroup. In lower camel case the first letter of the first word is lower case and

each subsequent word has its first letter capitalized, for example, posList, srsDimension,

and issueNumber. To complete the naming convention discussion, type definitions are

Upper Camel Case and have the word Type appended to them. Abstract types have the

word Abstract prepended to them. Abstract elements have an underscore as the first

character and are upper camel case.

All GML objects are derived from the gml:AbstractGMLType. Because of this, all

GML objects have a few properties in common, gml:id, gml:description, and gml:name.

There are other properties, but DIGGS is primarily concerned with these three. The

gml:id provides a way to reference the object, it must be unique within a GML file. The

gml:name is used to name the object, it does not have to be unique. The gml:description

property is used to describe the object. Referencing the object using the gml:id is an

important concept in GML. Properties that link to other objects are called reference

properties.

1.
2. value
3.










4.
5.
7.


In most cases, relationship properties can contain either an object reference or an

inline object. The property in line 5 above remotely references Objectl. Line 6

demonstrates how reference properties can even reference objects in other XML files.

The gml:id and gml:name properties are both optional, however a gml:id is required to

reference the object. Some gml objects restrict the gml:AbstractGMLType and require a

gml:id as well as one instance of the gml:name.

xlink Namespace

GML uses the xlink schema to handle remote properties. Primarily, the xlink

schema is used to create an attributeGroup, this attribute group is assigned to properties

to allow them to remotely reference other objects. The gml:AssociationAttributeGroup is

assigned to properties that can be used to reference objects. The following attributes

belong to this group:

* xlink:href
* xlink:role
* xlink:arcrole
* xlink:title
* xlink:show
* xlink:actuate
* gml :remoteSchema

All of these attributes are optional. As previously shown, the xlink:href attribute is

used to provide the link. If a property can be used as a reference property, it may contain

all of these attributes.










GML Geometry

GML provides many complex geometry objects that can be used to specify almost

any shape imaginable. DIGGS uses only a few GML geometry objects. These

geometries are all objects; there must be a relationship property when they are used to

describe a feature.

gml:Point

This gml object defines a single point in space. An example relationship property

that could use this is .

1.
2. 2 3 -5
3.


Since this is a gml object, it can have a gml:id that can referenced by other

properties. is a property of the gml:Point object. The gml:coordinates

property (not shown) has been deprecated. The gml:PointPropertyType is used as a quick

way associate a relationship property () with a point. One could also

reference the gml:pointProperty element. This creates the point relationship property, but

only describes the relationship as pointProperty, which may be insufficient. There are

three things to consider, the gml:Point is the geometry object, the gml:PointPropertyType

is the type definition for an objects point property, and the gml:pointProperty is a

property that can be used to reference a gml:Point object. Generally, if a relationship to a

gml:Point is required by an object only one of these will be used.

gml:LineString

The LineString object is used to specify a series of connected line segments.

1.
2. 2 3 -5 7 11 -13
3.

4.










5.
6. 7 11 -13
7.


Line 2 demonstrates the use of the posList property. This property is new to GML

version 3.1.0 and extends the double list type. The number of doubles used is a multiple

of the dimension. Line 5 shows a relationship property that references an object with the

gml:id of point. Line 6 shows the gml:pos property, introduced by the gml:Point object.

Again, there exists the gml:LineString gml object, the gml:LineStringPropertyType, and

the gml:lineStiringProperty.

gml:Polygon

The following XML instance is for a GML:Polygon object:

1.
2.
3.
4. 0 1 1 2 3 5 8 13 21 0 0
l

5.

6.

7.


The object contains the relationship property. This

defines the relationship between the object and the

geometry object. A gml:Polygon can contain two linear rings, specifying an outer

boundary and an inner boundary. If required, the interior boundary is specified with the

gml:interior relationship. This allows doughnut shapes. The object

contains the property. The first and last points of a gml:LinearRing must

be the same. Because of this, a gml:Polygon has a minimum of 4 points.

GML Objects

A few GML geometry objects have already been introduced. This section will

detail some of the other important GML objects utilized by DIGGS.










Features

The GML feature is the most important object type in GML. Prior to GML version

3, every object in GML was a feature. All features in GML are derived from the

gml:AbstractFeatureType. Features can be tangible or intangible objects. Typically,

though not required, a property of a feature will relate to the features geometry. The

following XSD fragment details the gml:AbstractFeatureType type.

1.
2.
3. maxOccurs="unbounded"/>
4.
5.
6.
7.

8.
9.


The gml:name on line 5 has a maxOccurs of unbounded. This allows multiple

names for the same feature to exist. The gml:id property is encoded as an attribute. It is

an xsd:ID type and must be unique within a valid GML file.

Most derivations are done by extension, but some require both restriction and

extension. A new abstract type is first derived by restriction, typically to require the use

of the gml:id, set the minOccurs of the gml:name property to 1, or remove the

gml:boundedBy property. This new type is then extended to create a new DIGGS

feature.

Coordinate Reference Systems (CRS)

Coordinate Reference Systems are a subset of Spatial Reference Systems (SRS).

Currently, GML only supports CRS. However, according to R. Lake 2004, it is likely

that future version of GML will include support for SRS. SRS can reference object

locations by geographic identifiers. CRS reference object locations to a specific location









using a specific coordinate system. They are used to specify the coordinate system

(Cartesian, polar, etc...), the name of and the units of measure on each axis, and a datum

to position the coordinate system in space. The datum can be set a sea level for elevation

measurements, or at the ground surface for depth measurements.

Almost all DIGGS features will reference a CRS definition. The referenced CRS

definition can be defined elsewhere, or within the DIGGS file. A good source for global

coordinate reference systems is the crs portal maintained by Galdos, Inc. It can be found

at: http://crs.opengis.org/crsportal/index.html.

CRS definitions are GML objects that require the gml:id attribute. All geometry

objects and properties have an srsName attribute. This attribute is used to reference the

CRS definition gml:id used by the geometry object or property. The srsName can point

to a global CRS or to a local CRS.

A CRS consists of both a coordinate system (CS) and a datum. The CS will usually

contain axis definitions, and the datum will locate the origin of the CS in space, or

provide a vertical reference datum.

1. srsName="urn:epsg:v6.1:coordinateReferenceSystem:4269">
2. 2 3 -5
3.


The above XML instance uses a URN (Uniform Resource Name) as the identifier

for the coordinate reference system. The srsName attribute is of type anyURI (Uniform

Resource Identifier) this allows it to contain either a URN or a URL (Uniform Resource

Locator). The URN contains 5 distinct parts.











Table 3-1. URN Components
urn Mandatory URN prefix
epsg Namespace of the maintainer of the
resource.
v6.1 Version of the resource
coordinateReferenceSystem The resource container
4269 4269 is a unique identifier corresponding to
a coordinate reference system used in
North America. It uses a coordinate
system with the code 6402 (latitude and
longitude) and a datum with the code 6269.

Unique identifiers for other coordinate reference systems can be found at

http://crs.opengeospatial.org/crsportal/index.html. EngineeringCRS are also used within

the DIGGS files.

1.
2. Engineering CRS Example
3.
4.
5.
6. gml:uom="units.xml#ft">
7. Depth
8.
9.
10.

11.

12.

13.
14.
15.
16.

17.

18.


EngineeringCRS types in GML are currently very ambiguous. It is recognized that

they can be used to create a one dimensional CRS that follows a curved axis. The actual

implementation of this is left to the application schema developers. Recognizing this, the

above xml fragment includes some DIGGS extensions. This shows how DIGGS uses the

EngineeringCRS type. Even a one dimensional CRS requires both a CS and a datum.

The CS is defined by a reference to a LineString object on line 8. This coordinate system











is then mapped to the real world at the specified origin on line 15. Local CRS defined in


DIGGS will be one dimensional, cylindrical, or Cartesian. These local CRS are typically


used to store depths. The datum positions the CS at the ground surface, and the depth


axis follows the geometry of the hole.


Cylindrical CRS are typically used in DIGGS for circular piles and shafts. It is


important to document the location of sensors exactly in order to calculate bending


moments during lateral load tests. The main axis is along the foundation element, it


stores depth. The following is an example of a cylindrical CRS:

1.
2. Engineering CRS Example
3.
4.
5.
6. gml:uom="units.xml#ft">
7. Depth
8.
9.
10.

11.
12. gml:uom="units.xml#in">
13. Radius
14.
15.

16.
17. gml:uom="units.xml#degrees">
18. Degrees
19.
20.

21.

22.

23.
24.
25.
26. 0
27.

28.

29.












Note that the origin of the above CRS is at the template elevation. Multiple CRS


can be set up for each reference used. For example, a single pile can have a CRS for


scour, surface, template, and excavation elevation.


Cartesian CRS are typically used in DIGGS for rectangular piles and shafts.

1.
2. Engineering CRS Example
3.
4.
5.
6. gml:uom="units.xml#ft">
7. Depth
8.
9.
10.

11.
12. gml:uom="units.xml#in">
13. X
14.
15.
16.

17.
18. gml:uom="units.xml#in">
19. Y
20.
21.
22.

23.
24.

25.
26.
27. Top of
Pile
28.

29.

30.



Note that the above CRS has an origin at the top of the pile. This can not be


mapped directly into real space as the top of the pile can move. This is used in cases in


which equipment is measured with respect to the top of the pile in a load test.










Dictionaries and Definitions

Dictionaries can be referenced throughout DIGGS files. They are used to contain

the values for codeTypes, as well as units of measure. Dictionary objects contain

Definition objects. The schema representation of the Definition object is:

1.
2.
3. maxOccurs="unbounded"/>
6.
7. maxOccurs="unbounded"/>
8.
9.
10.

11.

12.


The DefinitionType restricts the gml:AbstractGMLType. This restriction requires

that an instance of the gml:name be used as well as the required use of the gml:id. The

Dictionary object is extended from the definition object as follows:

1.
4.
5.
6.
7.

8.
9.
10.


By extending the DefinitionType the Dictionary requires that the gml:id and

gml:name be used. Note that the sequence tag is not used, so both of the elements can

occur in any order any number of times. The gml:dictionaryEntry is a relationship

property that either contains or references a gml:Definition object. The gml:indirectEntry

property is used to reference a definition elsewhere, its main purpose is to provide a local

name to be used to reference another definition. A gml:dictionary is referenced by a











gml:CodeType property. Properties of gml:CodeType reference both the dictionary

being used and the definition being applied. A gml:CodeType is used as a property type

not an object type.

1.
2.
3.
4. use"optional"/>
5.

6.

7.


The property attribute codeSpace contains the reference to the dictionary being


used. The value of the property contains the definition being referenced. Dictionaries

can contain other dictionaries. This facilitates the specialization of the codespace. For

example, a Soil Classification dictionary can contain a USCS dictionary and an

AASHTO dictionary. Each of these dictionaries can then contain all of their respective


codes in the form of definitions. There are now three dictionaries that a CodeType can

reference, Soil Classification, USCS, and AASHTO.

1.
2. gml:id="diggsSoilClassifications">
3. A sample dictionary for soil classification
codelists

4. diggsSoilClassifications
5.
6.
7. USCS
8. USCS
9.
10.
11. Poorly graded sand
12. SP
13.

14.

15.
16.
17. Well graded sand
18. gml:name>SW
19.

20.

21.











22.
23. silty sand
24. SM
25.

26.

27.
28.
29. clay
30. CL
31.

32.

33.
34.
35. Clayey sand
36. SC
37.

38.

39.
40.
41. Silt
42. ML
43.

44.

45.

46.

47.
48.
49. AASHTO
50. AASHTO
51.
52.
53. Coarse
54. A-3
55.

56.

57.
58.
59. Fine
60. A-7
61.

62.

63.

64.

65.



For example, the CL code would be valid for both the Soil Classification and USCS


dictionaries, but not the AASHTO dictionary. An A-3 code would be valid for Soil


Classification and AASHTO, but not USCS. The code space used holds for every


definition under the dictionary pointed to, and the Soil Classification dictionary has both


the USCS and AASHTO dictionaries under it.










1. gml:codeSpace="diggsSoilClassifications.xml">CL fiction>
2. gml:codeSpace="diggsSoilClassifications.xml">A-
3
3. gml:codeSpace="diggsSoilClassifications.xml#USCS">CL lassification>
4. gml:codeSpace="diggsSoilClassifications.xml#AASHTO">A-
3
5. gml:codeSpace="diggsSoilClassifications.xml#AASHTO">CL lClassification>
6. gml:codeSpace="diggsSoilClassifications.xml">A-
5c

In the above six examples, 1 through 4 are valid. Example 5 is invalid because CL

does not belong to the AASHTO dictionary. Example 6 is invalid because A-5c does not

exist in either dictionary.









CHAPTER 4
DIGGS (DATA INTERCHANGE FOR GEOTECHNICAL AND
GEOENVIRONMENTAL SPECIALISTS)

A number of GML background concepts have already been introduced to aid in the

understanding of the DIGGS schema.

* Feature A feature is a GML concept used by DIGGS. It represents most tangible
objects within the schema. All features are derived from the
gml:AbstractFeatureType. This enables GML aware software to identify the
features within a valid DIGGS instance file. Features use the upper camel case
naming convention. The first letter of every word is uppercase, like
TransmissionInformaiton. All features are objects, not all objects are features.

* Object More general than a feature. Typically not tangible.

* Property Features can only contain properties. And these properties are almost
always child elements. A few exceptions exist, like the gml:id and uom attributes.









Properties use the lower camel case naming convention. They can be identified
because the first letter is lowercase, and each subsequent word is uppercase, like
businessAssociates. The child of an object cannot be another object; however child
properties can contain other objects.

* Relationship Property A relationship property is used to relate an object to
another object.

* Reference Property Reference properties include the
gml:AssociationAttributeGroup. This adds a number of attributes form the xlink
schema. Reference properties can include links to other features within the same
file, or in another files. These links can be either a local reference or to a file on the
Internet.

* Occurrences This is the number of times a property can exist within a valid
feature. 0..* implies that the minimum number of occurrences for the property is
zero, while the maximum is unbounded.

* UUID A UUID is a global unique identifier. It is generated using a specific
algorithm that guarantees its uniqueness. DIGGS requires that any gml:id be a
UUID. The DIGGS compatible software should generate these and the user should
not be aware of their existence.


A complete list of the DIGGS objects and properties can be found in Appendix A.

DIGGS Object Hierarchy

The following figures depict the hierarchy implemented by the DIGGS schema.

The hierarchy provides a logical organization of information without the need for data

repetition. Generally each item in the figure represents a DIGG object and contains

properties that can be found in Appendix A.

The TransmissionInformation object is the root node for a DIGGS file. Every valid

full DIGGS file will be enclosed within the TransmissionInformation object. This

promotes the use of DIGGS as a format for sharing data, not necessarily storing data. A

few significant properties are required. An issueNumber and issueDate can be used to

determine the most up to date data when comparing to existing stored information.









Multiple projects can be children of a TransmissionInformation object. This allows

overlapping data from previous projects to be included for reference in new projects.


Figure 4-1. Top Level DIGGS Hierarchy


























































Figure 4-2. Hole Level DIGGS Hierarchy


























































Figure 4-3. Specimen Level Hierarchy


























































Figure 4-4. FoundationGroup Level DIGGS Hierarchy









Implementation

Rules for Compliance with the DIGGS Standard

The main purpose of creating the DIGGS standard was to create the means by

which independent software developers can create interoperable programs. Most of the

implementation rules have been devised with this goal in mind. The means by which

software can become certified as DIGGS compatible will eventually be available on the

website. In the meantime, the following rules should be followed:


5. Generated DIGGS is verified against the DIGGS schema files. No file should be
passed off as a DIGGS file if it fails any part of the schema.

6. Codelist values are checked against the correct codelists.

7. All ID fields are generated UUIDs. It might not be necessary for a specific
application that all the IDs be unique, however it is for DIGGS compliance.

8. The UUID fields are not editable by hand. To preserve the uniqueness they should
not be modified after they have been generated.

9. UUID fields are preserved. If a DIGGS file is opened the UUID values for all
unique DIGGS objects should not change. This rule can be broken if the same
object ends up with different UUIDs. See the UUID discussion later in this
chapter.

10. Speciality programs cannot lose unrelated DIGGS data. For example, if an SPT
editing program opened up a DIGGS file that contained both SPT and deep
foundation data, then the deep foundation data must still be in the file when it is
saved. No DIGGS data can be lost when a program opens and saves a DIGGS file.

Available Application Programming Interfaces (APIs)

An MSDN (Microsoft Developer Network) article describing the differences

between DOM and SAX can be found here:

http://msdn.microsoft.com/msdnmag/issues/1100/xml/










It is important to choose the XML API that works best with the specific problem

that is being addressed. DOM and SAX are the most popular XML API, however many

others exist.

DOM (Document Object Model)

The DOM (Document Object Model) can be used to create, modify, and verify

DIGGS files programmatically. The World Wide Web Consortium specifies the

capabilities of the DOM. Documentation concerning the Microsoft implementation of

the DOM (Microsoft Developer Network, 2006) aided in the creating of the following

Visual Basic code samples. The DOM stores the entire contents of the XML document in

memory.

Creating DIGGS DOM

The following Visual Basic code demonstrates how to create a DIGGS DOM from

nothing. This does not yet create the file, but it sets up the DOM for modification.

1. Dim DOM As New DOMDocument40
2. Dim schema As New XMLSchemaCache40
3. Dim TransmissionInformation As IXMLDOMElement
4. DOM.async = False
5. DOM.setProperty "SelectionLanguage", "XPath"
6. Set node = DOM.createProcessingInstruction("xml",
"version='1.0'")
7. DOM.appendChild node
8. schema.Add "http://www.opengis.net/gml",
"http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"
9. schema.Add "http://www.diggsml.org",
"http://www.diggsml.org/vl.0/diggs.xsd"
10. schema.Add "http://www.w3.org/1999/xlink",
"http://schemas.opengis.net/gml/3.1.0/xlink/xlinks.xsd"
11. Set DOM.schemas = schema
12. namespace = "xmlns:gml='http://www.opengis.net/gml'
xmlns:diggs='http://www.diggsml.org'
xmlns:xlink='http://www.w3.org/1999/xlink'"
13. DOM.setProperty "SelectionNamespaces", namespace
14. Set TransmissionInformation = DOM.createElement("diggs:
TransmissionInformation ")
15. Set DOM.documentElement = TransmissionInformation







41


The above Visual Basic code fragment creates the DOM (Document Object

Model). Lines 8 though 11 load up the schemas used by this DOM. Lines 12 and 13

associate the namespace prefixes with the correct namespaces. Lines 14 and 15 create

the root element for this DIGGS file and assign it to the documentElement of the DOM.

Opening a DIGGS file with a DOM

Opening a DIGGS file is a little different than creating a DIGGS file. The

document element, also known as the root element, is already set up. The following code

demonstrates how to open a DIGGS file.

1. Dim DOM As New DOMDocument40
2. Dim TransmissionInformation As IXMLDOMElement
3. Dim schema As New XMLSchemaCache40
4. Dim file$
5.
6. DOM.async = False
7. DOM.setProperty "SelectionLanguage", "XPath"
8. namespace = "xmlns:gml='http://www.opengis.net/gml'
xmlns:diggs='http://www.diggsml.org'
xmlns:xlink='http://www.w3.org/1999/xlink'"
9. DOM.setProperty "SelectionNamespaces", namespace
10.
11. schema.Add "http://www.opengis.net/gml",
"http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"
12. schema.Add "http://www.diggsml.org",
"http://www.diggsml.org/vl.0/diggs.xsd"
13. schema.Add "http://www.w3.org/1999/xlink",
"http://schemas.opengis.net/gml/3.1.0/xlink/xlinks.xsd"
14. Set DOM.schemas = schema
15.
16. file = Application.GetOpenFilename("'Open an XML file (*.XML)',
*.XML", "Open an XML File", "Open")
17. If file = "false" Then Exit Sub
18. DOM.Load file
19. If DOM.parseError.errorCode <> 0 Then
20. MsgBox "=" & vbCrLf &
21. "Reason: & DOM.parseError.reason &
22. vbCrLf & "Line: &
23. DOM.parseError.Line & vbCrLf
24. Exit Sub
25. End If
26. Set TransmissionInformation = DOM.documentElement










Much of the code is similar to the code for creating a DIGGS DOM. The DIGGS

file is validated against the schema when it is parsed during loading. If any violations are

found the if-statement on line 19 will be true. These violations are then displayed in a

messagebox and the opening subroutine will end. Line 26 assigns the Diggs element to

the root of this DIGGS file. If the subroutine gets to this step the application knows that

the DIGGS file has been verified against the schema. Since the schema files are online,

the DIGGS file will be invalid if this code is run on a machine not connected to the

Internet. The schema files can be stored on the local machine in order to verify without

connecting to the Internet, this can also help reduce the verification time.

To load an XML string instead of an XML file a different method of the DOM is

used. The Load method, on line 18, is for loading XML files. It should be replaced with

the LoadXML method, which then takes a string argument. Obviously, the user should

not be prompted with an open file control.

Modifying DIGGS DOM

Modifying the DOM is done by individual elements. The following example is for

the Diggs root element if the file is being created from scratch.

1. Dim nameElement As IXMLDOMElement
2. Dim descriptionElement As IXMLDOMElement
3.
4. TransmissionInformation.setAttribute "gml:id", GetGUID
5. Set nameElement = DOM.createElement("gml:name")
6. Set descriptionElement = DOM.createElement("gml:description")
7. nameElement.Text = Range("DiggsName")
8. descriptionElement.Text = Range("DiggsDescription")
9. TransmissionInformation.appendChild descriptionElement
10. TransmissionInformation.appendChild nameElement

As previously mentioned, the above code fragment can only be used after the DOM

and Diggs root element have been already set up. Line 4 assigns a UUID using the

GetGUID function defined in the UUID section in this report. Lines 5 and 6 create the










elements using the previously defined namespace prefixes. The values for the two

elements are assigned in lines 7 and 8. Finally, the two elements are added to the

hierarchy as direct descendants of the Diggs element on lines 9 and 10. This example is

for an Excel macro; as such the actual values for the elements are pulled from Excel cells

using the range function on lines 7 and 8.

The DOM uses XPATH to select nodes within the DOM object. For example, the

following code will loop through all gml:name elements in the Diggs object and display

them as message boxes.

1. For Each nameElement In
TransmissionInformation.selectNodes("gml:name")
2. MsgBox nameElement.Text
3. Next

The following code will select the first description element and assign it to a node.

4. Set descriptionElement =
TransmissionInformation.selectSingleNode("gml:description")

The following code selects the first name if multiple name elements are attached to

the Diggs root element.

5. Set nameElement =
TransmissionInformation.selectNodes("gml:name").Item(0)

The XPATH expression for both of these code fragments is passed as a string for

the method argument. XPATH is an important part of creating DOM code. XPATH

expressions can be used to select nodes based on conditions, to search all descendants,

and much more. All of the details and syntax of working with XPATH is beyond the

scope of this document.

Verifying DIGGS DOM

The following code can be used to verify a DOM against the DIGGS schema files.

1. Dim schema As New XMLSchemaCache40
2. Dim DIGGS As New DOMDocument40







44


3. ns = "xmlns:gml='http://www.opengis.net/gml'
xmlns:diggs='http://www.diggsml.org'"
4. schema.Add "http://www.opengis.net/gml",
"http://schemas.opengis.net/gml/3.1.1/base/feature.xsd"
5. schema.Add "http://www.diggsml.org",
"http://schemas.DIGGS.org/1.0/transmissionInformation.xsd"
6. Set DOM.schemas = schema
7.
8. DIGGS.Load file
9. DIGGS.setProperty "SelectionNamespaces", ns
10. If DIGGS.parseError.errorCode <> 0 Then
11. MsgBox "======= =" & vbCrLf &
12. "Reason: & DIGGS.parseError.reason &
13. vbCrLf & "Line: &
14. DIGGS.parseError.Line & vbCrLf
15. Exit Sub
16. End If
Verifying the codelist values is more difficult. The following code will check all of


the codeTypes in a schema and display a message box whenever one of them contains an


invalid code.

1. Dim codeElement As IXMLDOMElement
2. Dim dictionaryElement As IXMLDOMElement
3. Dim definitionElement As IXMLDOMElement
4. Dim DOMCodeList As New DOMDocument40
5. Dim codeList As String
6. For Each codeElement In
TransmissionInformation.selectNodes("//*[@gml:codeSpace]")
7. DOMCodeList.async = False
8. DOMCodeList.validateOnParse = False
9. DOMCodeList.setProperty "SelectionLanguage", "XPath"
10. namespace = "xmlns:gml='http://www.opengis.net/gml'"
11. DOMCodeList.setProperty "SelectionNamespaces", namespace
12. cl = Split(codeElement.getAttribute("codeSpace"), "#")
13. codeList = cl(0)
14. DOMCodeList.Load codeList
15. If UBounds(cl) = 2 Then
16. dictionaryElement =
DOMCodeList.documentElement.selectSingleNode("//*[@gml:id=" ""&cl(
1)&"""")
17. Else
18. dictionaryElement = DOMCodeList.documentElement
19. Endlf
20. definitionElement =
dictionaryElement.selectSingleNode("//*[gml:name=" &codeElement.
Text&"""")
21. If definitionElement = Nothing Then
22. MsgBox codeElement.Text & Not found in &
codeElement.getAttribute("codeSpace")
23. Else
24. MsgBox codeElement.Text & is &
definitionElement.selectSingleNode("gml:description").Text
25. Endlf









26. Next

The above code fragment search the entire DIGGS document for all of the elements

using the codeSpace attribute. It loops through all of these between lines 6 and 26. Lines

12 and 13 get the address for the dictionary. It needs to be split in case a dictionary is

specified within another dictionary. Line 14 loads the dictionary into the DOMCodeList.

If an internal dictionary is specified in the codeSpace attribute, line 16 selects the correct

dictionary. If no dictionary is specified then it is assumed that the dictionary is the entire

file, and line 18 specifies this. Lines 20 searches the codelist for the provided

codeElement value that is being checked in this loop iteration. Lines 21 through 25

display the result of the codelist check.

Saving DIGGS DOM

Saving the DOM file is easy in Visual Basic. The following code will save the

DOM object. This should be done after all of the validation.

1. Dim file$
2. file = Application.GetSaveAsFilename(Range("fileID") + ".xml",
"XML Files (*.xml), *.xml")
3. If file = "False" Then Exit Sub
4. Open file For Output As #1
5. Print #1, DOM.xml
6. Close #1
More information

The MSDN (Microsoft Developer Network) documentation on the DOM can be

found here:

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/xmlsdk/html/332al 5a2-430b-4c32-960b-d51 cf2699018.asp

The w3 DOM specifications can be found here:

http://www.w3.org/DOM/

XPATH Reference can be found on MSDN here:









http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/xmlsdk/html/332al 5a2-430b-4c32-960b-d51 cf2699018. asp

SAX (Simple API for XML)

The SAX is used for an event based XML programming interface. For example,

when the XML is modified. It uses less memory than the DOM and tends to be more

applicable for Internet based applications. It is mentioned as a possible alternative to the

DOM. The official SAX website is located at http://www.saxproject.org/.

Units of Measure Attribute

Many elements in DIGGS use the "uom" attribute to contain the units of measure

for the elements value. DIGGS suggests that version 2 of the POSC units XML file be

used when using units. For example, consider the following length measurement:

1. uom="http://www.diggsml.org/poscUnits20.xml#m">6.12
The uom attribute of this length property references the unit with the id of m within

the poscUnits20.xml file. This corresponds to the unit of meters. In a software program,

you may want to present a list of all the unit types available for a certain type of

measurement. This can be achieved for length units with the following XPATH

statement:

".//UnitOfMeasure[QuantityType = 'length']"

This is done to the poscUnits20.xml file.

UUID

The universal unique identifier is an integral part of the DIGGS standard. The

advantages and disadvantages of its use are fully understood by the DIGGS committee.









It is important that a developer be aware of the disadvantages in order to work through

them.

The main disadvantage is the assigning of multiple UUIDs to the same DIGGS

object. For example, in many cases a field boring will create a sample. This sample will

end up having a UUID. When the boring log is created in DIGGS a UUID will be

assigned. Now, the laboratory work may be started before or after the boring log is

typed. It is also often done by another organization. From this, it seems extremely likely

that the individual sample will end up having two UUIDs. One generated form the

boring log and one generated from the laboratory. DIGGS will now recognize this as two

different samples, even when they overlap in physical space. The merging of DIGGS

files, either in a program or a database, should take this problem into consideration.

It should be recognized that this problem stems from a disconnected paper trail.

The use of the UUID is meant to encourage and allow the development of using the

Internet to correlate DIGGS objects between organizations. The most desirable

development would be assigning the UUID the moment the DIGGS object is physically

created. In other words, the moment the sample is collected a UUID could be assigned

then used for the lifetime of that sample. The moment a borehole is planned a UUID

could be assigned and used throughout the subsurface investigation and when the

resulting data is archived.

Another advantage of using UUIDs is that a DIGGS object can pass through

multiple organizations, each which unique naming conventions, and still be a unique

object. All of the internal names, state names, and laboratory sample names could be

stored in the gml:name field while the gml:id maintained is the same constant UUID.







48


Generating UUID

A GUID is a globally unique identifier. All GUIDs are UUIDs. The following

visual basic code is from a Microsoft article titled "How To Use CoCreateGUID API to

Generate a GUID with VB" (2006).

1. Public Type GUID
2. Datal As Long
3. Data2 As Integer
4. Data3 As Integer
5. Data4(7) As Byte
6. End Type
7. Private Declare Function CoCreateGuid Lib "OLE32.DLL" (pGuid As
GUID) As Long
8.
9. Public Function GetGUID() As String
10. '(c) 2000 Gus Molina
11.
12. Dim udtGUID As GUID
13. If (CoCreateGuid(udtGUID) = 0) Then


GetGUID =
String(8 Len(Hex$(udtGUID.Datal))
String(4 Len(Hex$(udtGUID.Data2))
String(4 Len(Hex$(udtGUID.Data3))
IIf((udtGUID.Data4(0) < &H10), "0",
IIf((udtGUID.Data4(1) < &H10), "0",
IIf((udtGUID.Data4(2) < &H10), "0",
IIf((udtGUID.Data4(3) < &H10), "0",
IIf((udtGUID.Data4(4) < &H10), "0",
IIf((udtGUID.Data4(5) < &H10), "0",
IIf((udtGUID.Data4(6) < &H10), "0",
IIf((udtGUID.Data4(7) < &H10), "0",
End If


"O")&Hex$(udtGUID.Datal)
"O")&Hex$(udtGUID.Data2)
"O")&Hex$(udtGUID.Data3)
"")&Hex$(udtGUID.Data4(0))
"")&Hex$(udtGUID.Data4(1))
"")&Hex$(udtGUID.Data4(2))
"")&Hex$(udtGUID.Data4(3))
"")&Hex$(udtGUID.Data4(4))
"")&Hex$(udtGUID.Data4(5))
"")&Hex$(udtGUID.Data4(6))
"")&Hex$(udtGUID.Data4(7))


29. End Function

This code uses the CoCreateGuid function to generate the UUID. UUIDs are

typically displayed with dashes; the number generated by this function is in hexadecimal

128-bit form without the dashes.

More information

The following link is for a web-based UUID generator (2006):

http://kruithof.xs4all.nl/uuid/uuidgen


UUID specifications (2005):






49


http://www.ietf.org/rfc/rfc4122.txt

How To Use CoCreateGUID API to Generate a GUID with VB (2006):

http://support.microsoft.com/default.aspx?scid=kb;EN-US;ql76790














CHAPTER 5
MEASURED AND PREDICTED RESISTANCE OF DRIVEN CONCRETE PILES

One of the reasons to digitally archive geotechnical information is to enable

research. An example of implementing DIGGS to accomplish an LRFD resistance factor

calibration is presented later. This chapter provides background material concerning

predicting and measuring Davisson capacities for driven prestressed concrete piles.

Davisson Measured Resistance

The Florida Department of Transportation specifies the Davisson capacity as the

failure criteria for a pile. The Davisson capacity will be used as the measured resistance

in the LRFD calibration. A load test is required to determine the Davisson capacity of a

pile. The Davisson capacity is reached when the axial movement of the top of the pile

equals or exceeds one of the values from Equation 5-la or 5-lb.

PL d
x= +(0.15+ ) (d< 30") Eq. 5-la
AE 120

PL d
x = +(0.15+ ) (d>30") Eq. 5-lb
AE 30

x = Axial displacement at the top of pile

d = Diameter or width of the pile

P = Load applied to the pile

L = Total length of the pile

A = Cross-sectional area of the pile

E = Elastic modulus of the pile








51



There are two components to the Davisson equations. The first component is the


elastic shortening of the pile. The second component is a specified offset associated with


yielding of the pile-soil system.


A load test is required in order to measure the Davisson capacity of a pile. During


the load test, the applied axial loads and total pile deformations at the top are plotted, i.e.


load vs. settlement. Next, the elastic shortening of pile is plotted. It forms a straight line


that initiates at zero and linearly increases with a slope of L/AE. The intersection of the


load settlement curve and line parallel to elastic shortening line offset by 0.15 + D/120 or


D/30 depending one pile size, corresponds to the Davison failure load or the pile


capacity.


ACOSTA NORTH APPROACH
STATIC LOA TEST AT PIER F


1 -L.._. _DAVISSON F, LUR A r 38B T(MS





U --- ---- -






2 .2 __ ---_ ------ ---- ------- ----- ----- ---- ----- --__---- ---- ------ ------- ------_
1.0- ---- ...


1.0
118






2.- 4- -----
1_ ___ .._ __ _
t,---- --- --- --- --- ---- --- --- --- --- ---- ---- ---- ----


0 50 100 150 2W) 250 3U JJ u 44L u 4U 5 3r
LOAD CELL (TONS)

I PLE TOP MVMT [ I PLE BOTOM MVMT
(FROM PILE TOP DIAL GAGES)


Figure 5-1. Davisson Failure Limit from a Static Load Test


n


PW w









Figure 5-1 shows a typical plot of pile deflection versus applied load. The Davisson

Failure occurs at the intersection of the Davisson Failure line with the load-deflection

curve. The Davission Failure limit is found with respect to pile top movement. The top

and bottom displacements differ due to elastic shortening of the pile.

FB-Deep Predicted Resistance

FB-Deep is a computer program developed by the Florida Department of

Transportation and maintained by the Florida Bridge Software Institute. FB-Deep is an

outgrowth of SPT-89, SPT-91 and SPT-97, with the inclusion of drilled shafts and

recently the inclusion of large diameter pipe piles. FB-Deep was used to predict the

Davison capacity of all the prestressed concrete piles in the dataset using SPT (Standard

Penetration Test) boring information.

FB-Deep estimates the Davisson capacity as the total resistance provided by the

skin friction, Table 5.1 (from FB-Deep Help Files, 2002), plus one third of the resistance

of the ultimate end bearing Table 5.2. The skin friction and end bearing are estimated

using blow counts and soil types provided by the SPT boring log.

Table 5-1. FB-Deep Side Friction Equations
Soil Type Description Ultimate Unit Side Friction (TSF)
1 Plastic Clay 2N(110 N)
4006.6
2 Clay-Silt-Sand mixtures, very silty 2N(110 N)
sand, silts and marls f 4583.3
3 Clean Sands f = 0.019N
4 Soft limestone, very shelly sand f = 0.01N
N is the uncorrected SPT blow count from a representative boring log for the pile.

The skin friction along the whole length of the pile is equal to Equation 5-2.

Q( = f, length perimeter Eq. 5-2









For Eq. 5-2, unit skin friction, fN, is calculated for each SPT N value from Table

5.1 for appropriate soil type.

An assumption made by the FB-Deep program is that the end bearing failure is

controlled by the soil 3.5B below and 8B above, with B equal to the pile diameter or

width. An exception to this assumption is when the bearing layer is weaker than the

overlying layer. In this case it is assumed that the upper limit of the end bearing

contributing soil is the boundary between the layers. N values should be interpolated at

the tip, 3.5B below, and 8B.

Table 5-2. FB-Deep Mobilized End Bearing Equations
Soil Type Description Mobilized Unit End Bearing Capacity
(TSF)
1 Plastic clay 0.7N
q=
2 Clay-silt-sand mixtures, very silty 1.6N
sand, silts and marls 3
3 Clean sands 3.2N
q-
4 Soft limestone, very shelly sand 3.6N
q


The end bearing equation is more complicated than the side friction, but the same

definition for layers applies. Layers change at N value elevations, and the average N

values enclosed by the layer controls the layer's capacity. The previous equations divide

the end bearing by 3 in order to approximate the resulting end bearing when the skin

friction has been fully mobilized. Equation 5-3 is used to estimate the mobilized end

bearing:


Z laer enghty + flaye
Q 8= 8B 3 5Bbeowe 5B A Eq. 5-3
2









The end bearing is found by taking the weighted average above and below the tip.

These values are then added together and divided by two. This results in a stress that is

then multiplied by the tip cross-sectional area in order to estimate the mobilized end

bearing resistance force in tons.

Special corrections have been developed to account for the concept of critical

depth. Critical depth is based on the assumption that the pile tip must be embedded a

certain depth within the bearing layer in order for the previously defined end bearing

value to be fully realized. The critical depth ratio for each soil type can be found in Table

5.3.

Table 5-3. Critical Depth Ratios in FB-Deep
Soil Type Description Critical Depth Ratio (D/B)
1 Plastic Clay 2
2 Clay-silt-sand mixtures, very silty 4
sand, silts and marls
3 Clean sands (N<=12) 6
3 Clean sands (12 3 Clean sands (N>=30) 12
4 Soft limestone, very shelly sands 6

The critical depth ratio is multiplied by the pile diameter or width in order to

calculate the critical depth of embedment within the bearing layer.

Equation 5-4 is used to correct the end bearing.

D,
q= qLC + D( qcLC) Eq. 5-4
DC

q = Corrected unit end bearing at the pile tip

qLc = Unit end bearing calculated at the layer change

qT= Unit end bearing calculated at the pile tip

DA= Actual embedment depth in bearing layer

Dc = Critical embedment depth in bearing layer









The skin friction within the bearing layer is also corrected with respect to the

critical depth. Equation 5-5 is used to correct the skin friction within the embedment

layer if the critical depth is not realized and the overlying layer is weaker.


CSFBL = SFB(qL + D (q L)) Eq. 5-5
q, 2Dc

CSFBL = Corrected side friction within the bearing layer

SFBL = Uncorrected side friction within the bearing layer

qLC, qT, DA, Dc as previously defined

The skin fiction within the critical depth of the bearing layer is also reduced when

the overlying layer is weaker and the critical depth is reached. In other words, if the

overlying layer is weaker, the skin friction within the critical depth will always be

reduced. This corrected value must be added to the value calculated using the length of

the pile beyond the critical depth. In this case, the corrected skin friction within the

critical depth is calculated with Equation 5-6.

USFACD
CSFACD =U (qLC + 0.5(qD qL)) Eq. 5-6
qCD

CSFACD = Corrected side friction within the critical depth

USFACD = Uncorrected side friction from the top of the bearing layer to the

critical depth

qcD= Unit end bearing calculated at the critical depth

qLc as previously defined

FB-Deep estimates the Davisson capacity as the sum of the skin friction above the

bearing layer, the corrected skin friction within the bearing layer, and the corrected

mobilized end bearing.















CHAPTER 6
DATASET

The following table represents the results of the Davisson Failure Criteria and

predicted capacity for concrete piles in Florida.

Table 6-1. Pile Dataset Table


Penetration
Length (ft)


Predicted Measured


Capacity
(kips)


Davisson
(kips)


Bias


Acosta 72160-
Bridge 3506 NB-27 44 24 58.08 677.50 776.00 1.145
Acosta 72160-
Bridge 3506 NB-22 95 24 60.05 821.26 1116.00 1.358
Acosta 72160-
Bridge 3506 NB-10 26 24 40.91 526.32 578.00 1.098
Apalachico
la River 49010-
Bridge 3533 12 14 30 57.83 882.00 952.00 1.079
Apalachico
la River 49010-
Bridge 3533 3 3 24 91 519.56 958.00 1.843
Apalachico
la River 49010-
Bridge 3533 19 25 24 55.26 246.16 714.00 2.900
Apalachico
la Bay 49010-
Bridge 3536 9 41 24 52.41 212.74 524.00 2.463
Apalachico
la Bay 49010-
Bridge 3536 20 101 24 76.07 519.76 812.00 1.562
Apalachico
la Bay 49010-
Bridge 3536 23 133 24 106.17 681.02 808.00 1.186
Apalachico
la Bay 49010-
Bridge 3536 27 145 24 103.92 640.08 976.00 1.524
Edison
Bridge SR- 12001-
739 3513 TS1 1A 30 63.49 632.14 1100.00 1.740


Project
Name


Project
Number


Boring
Name


Pile
Name


Pile
Width
(in)









Table 6-1. Continued.
Pile Predicted Measured
Project Project BoringPile Width Penetration Capacity Davisson
Name Number Name Name (in) Length (ft) (kips) (kips) Bias
Edison
Bridge SR- 12001-
739 3513 TS2 2A 24 54.87 592.28 542.00 0.915
Edison
Bridge SR- 12001-
739 3513 TS2 2B 24 51.88 517.40 456.00 0.881
Edison
Bridge SR- 12001-
739 3513 TS2 2C 24 45.08 350.16 208.00 0.594
Edison
Bridge SR- 12001-
739 3513 TS3 3A 24 58.08 545.34 580.00 1.063
Edison
Bridge SR- 12001-
739 3513 TS3 3B 24 53.84 430.20 532.00 1.236
Edison
Bridge SR- 12001-
739 3513 TS3 3C 24 44.3 236.72 196.00 0.827
Edison
Bridge SR- 12001-
739 3513 TS4 4A 30 65.92 779.00 1050.00 1.347
Edison
Bridge SR- 12001-
739 3513 TS4 4B 30 57.94 489.74 540.00 1.102
Edison
Bridge SR- 12001-
739 3513 TS4 4C 30 46.08 196.14 320.00 1.631
Edison
Bridge SR- 12001-
739 3513 TS5 5A 30 66.88 834.34 1120.00 1.342
Choctawhat60040- Boring
chee 3527 4 P5 30 65.86 446.98 1424.00 3.185
Choctawhat60040- Boring
chee 3527 8 P11 30 84.99 669.56 1492.00 2.228
Choctawhat60040- Boring
chee 3527 17 P17 30 76.33 498.30 1616.00 3.243
Choctawhat60040- Boring
chee 3527 17 P23 30 79.45 522.32 792.00 1.516
Choctawhat60040- Boring
chee 3527 23 P29 30 83.6 1107.32 990.00 0.894
Choctawhat60040- Boring
chee 3527 23 P35 30 78.06 1099.94 1484.00 1.349









Table 6-1. Continued
Pile Predicted Measured
Project Project BoringPile Width Penetration Capacity Davisson
Name Number Name Name (in) Length (ft) (kips) (kips) Bias
Choctawhat60040- Boring
chee 3527 25 P41 30 63.86 378.32 1440.00 3.806
Choctawhat60040- Boring
chee 3527 27 FSB26 24 70.84 182.94 960.00 5.247
Choctawhat60040- Boring
chee 3527 1 FSB3 24 81.65 198.80 498.00 2.505
Buckman 72001-
Bridge 3462 B-33 13 30 98.96 932.76 1106.00 1.185
Buckman 72001-
Bridge 3462 B-34 19 30 94.76 1201.10 1312.00 1.092
Buckman 72001-
Bridge 3462 B-35 24 30 86.6 889.16 1148.00 1.291
Buckman 72001-
Bridge 3462 B-36 29 30 81.01 898.06 1264.00 1.407
Apalachico
al River,
Blountstow 47010-
n 3519 TH-77 TS20 30 59.63 1266.96 1650.00 1.302
Apalachico
al River,
Blountstow 47010-
n 3519 TH-99 TS21A30 76.8 1460.94 1100.00 0.752
Apalachico
al River,
Blountstow 47010- TH-
n 3519 117 TS22 30 66.58 1319.74 1200.00 0.909
Blackwater
River
Bridge
Replaceme 58002-
nt 3449 LT-1 LT-1 24 77.5 960.58 600.00 0.624
Blackwater
River
Bridge
Replaceme 58002-
nt 3449 LT-2 TS2-2 24 75.4 974.92 840.00 0.861
Bayou 48050-
Chico 3536 B-2-11 5 24 37.7 389.20 692.00 1.778
Bayou 48050-
Chico 3536 B-3 10 24 37.9 428.70 640.00 1.492
Bayou 48050-
Chico 3536 B-2-25 15 24 27 482.40 690.00 1.430









Table 6-1. Continued
Pile Predicted Measured
Project Project BoringPile Width Penetration Capacity Davisson
Name Number Name Name (in) Length (ft) (kips) (kips) Bias
Blount
Island
Marine
Terminal B-20 B-20 20 46.2 748.60 568.20 0.759
Sunshine 15170- Test
Skyway 3421 P-2 Site 1 24 49.2 725.64 872.00 1.201
Sunshine 15170- Test
Skyway 3421 P-2 Site 1 20 47.3 548.86 590.00 1.074
Sunshine 15170- Test
Skyway 3421 P-6 Site 3 24 48 551.46 1172.00 2.125
Sunshine 15170- Test
Skyway 3421 P-13 Site 10 24 27.9 612.82 1248.00 2.036
Sunshine 15170- Test
Skyway 3421 P-18 Site 13 20 20.63 356.56 644.00 1.806
Sunshine 15170- Test
Skyway 3421 P-18 Site 13 24 26.91 668.10 624.00 0.933
Escambia
River 48140- Boring
Bridge 3509 9 Bent 5 24 86.8 531.38 950.00 1.787
Escambia
River 48140- Boring Bent
Bridge 3509 29 77 24 61.39 373.38 1593.00 4.266
Port of
Miami -
Dodge 87000-
Island 3675 WB-2 LT 30 41.8 1078.70 1240.00 1.149
SR312
Bridge over
the
Matanzas 78002-
River 3509 BLA-9 14 24 97.5 514.60 1077.00 2.092
SR312
Bridge over
the
Matanzas 78002-
River 3509 BLA-9 17 24 103.6 545.40 1782.40 3.268
Port
Orange
Intercoastal
and Relief 79180- Boring
Bridges 3514 1 2 18 27.9 253.16 248.00 0.979
Port 79180- Boring 19 18 30.9 197.16 203.00 1.029















































It has been converted into the following DIGGS file:


1.
2. Mark Styler's Pile Load Test
Data



-473D-9621


Mark Styler's Pile Load Test Data
l
2006-4-23
Mark's Collected Pile
Data

0


Acosta Bridge
72160-3506





Orange 3514
Intercoastal
and Relief
Bridges
Vilano
Bridge
Replaceme 78030-
nt 3546 WB-2 TS1 24 66.58 714.70 1106.00 1.547
Vilano
Bridge
Replaceme 78030-
nt 3546 DOT-4 TS2 24 73.54 583.04 1392.00 2.387
1-275
Howard
Frankland 15190-
Bridge 3446 33W TS1 24 54.8 940.12 970.00 1.031
1-275
Howard
Frankland 15190-
Bridge 3446 3E TS3 30 39.6 1058.62 2000.00 1.889
1-275
Howard
Frankland 15190- TS4-
Bridge 3446 65E Long 30 73.5 1554.50 1020.00 0.656
1-275
Howard
Frankland 15190- TS4-
Bridge 3446 65E shrt 30 24.6 340.26 2000.00 5.877







61


15.
16. 44
17.
18.
19. Constructed
20. l
21.
22.
23.
24. Concrete
25.
26. 24
27. 24
28.

29.
30. Concrete
31.
32. 24
33. 24
34.

35.

36.
37. Vertical
38. Design
39. FB-Deep
40.
41. gml:uom="#kips">677.5
42.
43. acosta-f6.spc
44. FB-Deep
45.

46.

47.
48. Static-LT
49.
50. Vertical
51. Measured
52. Davisson
53. gml:uom="#kips">776
54.

55.

56.

57.

58.

59.



The above is only a small fragment of the generated DIGGS file. It actually only


covers the first row in the Table 6-1. As well as identifying the pile, it includes the






62


predicted resistance, measured resistance, and a local link to the FB-Deep file. The root

element, TransmissionInformation, also has multiple projects as children. This data was

used in the reliability calculations found in the following chapters.














CHAPTER 7
LRFD BACKGROUND

Overview

Many methods have been developed to calibrate the LRFD resistance factors using

statistical data. FOSM (First Order Second Moment) is popular because it does not

require a computer program to find the results. FORM (First Order Reliability Method)

is more complicated that FOSM and iterates to find a solution. Each of these methods

results in a different set of resistance factors. To understand why the resistance factors

are different it is important to explore the background for each method. One of the most

important concepts is deriving random variables from statistical data.

Table 7-1. List of Variables
Symbol Definition
P3 Reliability index
PT Target reliability index
D2 Result of a Chi-Squared analysis of a dataset
Resistance factor
Cumulative density function (CDF) for a standard normal Gaussian random
(..) variable (mean of zero, standard deviation of 1).
-1 ..) Inverse of standard CDF
FS Factor of Safety
fx(x) Probability density function of Gaussian random variable X
F- (x) Cumulative density function of Gaussian random variable X
fy(y) Probability density function of lognormal random variable Y
Fy(y) Cumulative density function of lognormal random variable Y
y Load factor
G Failure equation in terms of random variables, G = R Q
yQD Dead load factor
YOL Live load factor
q Ductility, redundancy, and operational importance modifier









Table 7-1. Continued.
Symbol Definition
Q9D Lognormal random variable representing the dead load bias
QOiL Lognormal random variable representing the live load bias
aR Lognormal random variable representing the resistance bias
pdf(..) Probability density function for a standard normal Gaussian random variable
pf Probability of failure
Scalar, combination of applied loads. Load component of design point in real
q space.
Q Lognormal random variable representing the load
q* New design load in normal space, part of the normal space design point
qD Scalar, the applied dead load
QD Lognormal random variable representing the dead load
qL Scalar, the applied live load
QL Lognormal random variable representing the live load
QN Normal random variable for the load
QSN Standard normal random variable for the load
rm Scalar, the measured resistance
rn Scalar, the nominal predicted resistance
r* New design resistance in normal space, part of the normal space design point
r Resistance component of design point in real space.
RN Normal random variable for the resistance
RSN Standard normal random variable for the resistance
C>D Standard deviation of the dead load bias, not the lognormal standard deviation
CYL Standard deviation of the live load bias, not the lognormal standard deviation
GCTyR Standard deviation of the resistance bias, not the lognormal standard deviation
CYx Standard deviation of X.
X Generic Gaussian random variable (RV).
_y Lognormal mean of Y
Y Generic lognormal random variable (RV).
_y Lognormal standard deviation of Y

Mathematical Background

Random Variables

A random variable is a variable without an exact value. It pertains to a set of

values, or a range, and the probability of occurrence. A probability density function,

often referred to as a pdf, is a representation of a continuous random variable. Taking the

integral of a pdf between two values yields the probability of the random variable being










within those limits. Consequently, integrating a pdf from negative infinity to positive

infinity is always 1. There are two classes of random variables, discrete and continuous.


Probability Mass Function Discrete RV

1.0000002
0.8333335
0.6666668
0.5000001
0.3333334
0.1666667 ------ 4 4 4 4
0
0 1 2 3 4 5 6 7


Figure 7-1. Discrete Random Variable Probability Mass Function

Discrete random variables have specific values in its domain. An example of a

discrete random variable would be the roll of a die. Discrete random variables are

described with probability mass functions in lieu of probability density function. Figure

7-1 represents a graph of a probability mass function for the random variable example of

the roll of a die. There is a 1/6 chance for each number to occur, 1 through 6. The

3
probability of a roll being less than or equal to 3 is 50% ( Px). There are many types


of discrete random variables, including Bernoulli, Binomial, Geometric, Negative

Binomial, and Poisson (Leon-Garcia, 1994). The example presented would be a uniform

discrete random variable, since each item in the domain has an equal chance of occurring.










PDF Continuous RV


-1.5 -1 -0.5


0 0.5 1 1.5


Figure 7-2. Continuous Random Variable PDF

Continuous random variables deal with ranges of values. An example of a

continuous random variable would be the wind speed at a certain point in space. It

should be recognized that the probability of a single value on a continuous random

variable is always zero. For example, the probability that the wind speed is 5.68745 mph

is zero. This is because there are an infinite number of possible wind speeds. However,

the probability that the wind speed is between 3 and 5 mph can be determined. Many

continuous random variables exist, and the primary difference is the probability

distribution. Some of these types include Uniform, Exponential, Gaussian (Normal),

Lognormal, Gamma, Rayleigh, Cauchy, and Laplacian (Leon-Garcia, 1994).

Equation 7-1 is the equation for the probability density function (pdf) of the

Gaussian random variable.

(x-E[X])2
e 2c
fx(x) =e Eq. 7-1


In Equation 7-1, E[X] is the mean and ox is the standard deviation. E[X] is the

first moment of the random variable X; it is often referred to as the mean or expected









value. The pdf can be completely defined using these two parameters. The mean for a

dataset is found with the following equation.


E[X] = I Eq. 7-2
N

N is the number of elements within the dataset. The standard deviation of this

dataset is found using Equation 7-3.


ax = ] Eq. 7-3
xN -I

The coefficient of variation (COV) of the dataset is in Equation 7-4.


COV[X]= --x Eq. 7-4
E[X]

This is not to be confused with the covariance or the variance. Covariance is the

second central moment of two random variables, the correlation being the first central

moment. If the random variables are independent then the covariance is 0. All of the

random variables so far mentioned, load, resistance, resistance bias, and load bias, are

independent. The variance of a random variable concerns the extent of the variation

about the mean.

VAR[X]= of
A[X] = c Eq. 7-5
VAR[X] = E[X2 ] E[X]2 = E[(X E[X])2 ]

The syntax for representing random variable moments is introduced in the second

equation. The second equation corresponds to the second moment of random variable X

minus the first moment squared. The first moment of a random variable is the mean.

The COV is the coefficient of variation, not the variance or covariance, and the terms are









not interchangeable. Equation 7-6 solves the COV in terms of the moments of random

variable X.

Cx E[X2] -(E[X])2
COV[X] = --
E[X] E[X] Eq. 7-6
(COV[X]2 VAR[X]
(E[X])2 (E[X])2

The following figure represents the pdf of a normal random variable with a mean of

5 and a standard deviation of 0.7, and corresponding COV of 0.14.





















Figure 7-3. Gaussian Random Variable PDF

The lognormal distribution is related to the normal distribution. Unlike a normally

distributed random variable, the lognormal distribution is zero for every negative value.

This makes it an ideal choice for representing phenomena that cannot be negative. The

lognormal distribution Y is defined is defined in Equation 7-7.

Y = ex Eq. 7-7

In Equation 7-7, X is a normally distributed random variable.









Equation 7-8 defines the probability density function of a lognormal random

variable.


(In(y)- )2
e 2"
fy (y)=
-2;T^y y


Eq. 7-8


Figure 7-4. Lognormal Random Variable PDF

The figure represents three separate lognormal probability density functions. As

shown in the pdf equation, they are defined by only their lognormal mean and lognormal

standard deviation. The plotted lognormally distributed probability density functions

correspond to lognormal means 0, 0.5, and 1 with respective lognormal standard

deviations of 0.5, 0.1, and 1.

The lognormal mean (Equation 7-9) and lognormal standard deviation (Equation 7-

10) are required to solve the pdf of a lognormal random variable.










Inl ~ E[Y] 7-9
4=n -I E/1 [ Eq.7-9
+ (co[r])2


r = ln(1 +(COV[Y])2) Eq. 7-10

The coefficient of variation (COV[Y]) and first moment E[Y] are from the normal

random variable X in the lognormal definition equation (Eq. 7-7).

Moments of a Random Variable

The moments of a random variable describe the shape of the probability

distribution curve. The nth moment of a continuous random variable is defined by

Equation 7-11.

E[X"] = fx" fx(x)d Eq. 7-11

X is the random variable, E[Xn] is the nth moment of X, and fx(x) (Eq. 7-1, Eq. 7-

8) is the probability distribution function for X.

The first few moment values are related to well known statistical descriptions. The

first moment is the mean of X. The mean and the second moment can be used to find the

standard deviation of X and variance of X. It is possible for a random variable to be

asymmetric about the mean. This is measured with the skewness, which is derived from

the third moment (Christian, 1999).

E[X3
vx = 3 Eq. 7-12
3
O-x

The following equation can be used to solve for the kth moment of a lognormal

distribution.

k- L k y+k2Y _


E[Y ]=e


Eq. 7-13










y (Eq. 7-9) is the lognormal mean and Cy (Eq. 7-10) is the lognormal standard

deviation. Note that E[Y1] will equal the normal mean, not the lognormal mean (y )

used in the above equation (Goldberg, 1984).

Chi-Squared Analysis

The Chi-Squared analysis measures how well a chosen random variable fits a data

set. As previously mentioned, lognormal distributions are typically used when the

variables cannot be negative. However, as previously shown, lognormal distributions are

positively skewed. The Chi-Squared analysis can be used to determine whether a dataset

is better represented as a normal or lognormal random variable.


Distribution Histogram

16
Dataset Resistance Bias
14
F Normal Distribution




6


2




Average Bin Value


Figure 7-5. Distribution Histogram

The following procedure is used to calculate the Chi-Squared value for a random

variable (X) distribution (Leon-Garcia 1994):

1. Divide the sample space into K bins. This is similar to creating a histogram of the
probabilities. See Figure 7-5.







72


2. Compute the probability of X being in each bin. This is done by integrating the pdf
of X on the bin limits, or by subtracting the maximum value of the cdf of X by the
minimum value. Multiply this probability by the total number of elements in the
dataset to find the expected number of elements (mk) in this bin using X.

3. Perform the following calculation:

K (N_ mk2
D2= k(N, Eq. 7-14
k=1 k

Nk is the actual number of elements from the dataset in bin k, mk is the projected
number of elements using random variable X, and D2 is the chi-squared result.

4. The random variable distribution with the smallest D2 best fits the dataset.

The above histogram was generated using the data presented in Chapter 6. The

Chi-Squared value for a lognormal distribution is 8.89, while the value for a normal

distribution is 48.4. This proves that a lognormal random variable is a better

representation for the resistance bias than a normal random variable.

Cumulative Distribution Functions

Cumulative Distribution Functions (cdf) represent the integration of a probability

density function (pdf) from negative infinity up until the function point. Figure 7-6

represents the cdf for a standard normal probability density function.


Figure 7-6. Cumulative Distribution Function


CDF


1.



I0
------ 0 .6--------

7-- ---^ -9--------
-4 -2 0 2 4
x









This represents the probability that the random number is less than x. It will

approach a value of 1 as x goes to positive infinity. Microsoft Excel has a number of

functions that return cumulative distribution results. The following table of functions are

useful when working with random variables.

Table 7-2. Microsoft Excel Random Variable Functions
=NORMDIST(x, mx, Ox, True/False) This function is for a normal random variable. If
the parameter is True it uses the CDF function.
If False it uses the PDF function.
=NORMINV(probability, mx, Ox) This is the inverse of the CDF function. It
returns the location on the PDF at which an
integration from negative infinity would yield
the given probability.
=NORMSDIST(x) This is the CDF for a normally distributed
variable with a mean of 0 and a standard
deviation of 1.
=NORMSINV(x) This is the inverse of the CDF with a mean of 0
and standard deviation of 1.
=LOGNORMALDIST(x, x, q) This is the CDF for a lognormal distribution with
the given lognormal mean and standard
deviation.
=LOGINV(probability, x, )This is the inverse of the lognormal CDF.


Calibration Methods

Fitting to ASD

ASD, allowable stress design, is the simplest design constraint. It assigns a safety

factor to certain designs, which equals the ratio of predicted resistance to driving forces.

The intention is for ASD safety factors to be modified using engineering judgment.

Equation 7-15 is the principal ASD equation.

FS < Eq. 7-15
q,

FS represents the factor of safety, rn is the nominal resistance, and qi are the driving

loads (live, dead, wind, earthquake, etc...).









Equation 7-16 is the principal LRFD equation.

q'r, > Z q-r Eq. 7-16

4 is the resistance factor, rn is the nominal resistance, ri is the ductility,

redundancy, and operation importance modifier, yi is the load factor, and qi is a driving

load.

The following LRFD calibration is summarized from the NHI (National Highway

Institute, 1998). Rearrange the ASD equation as shown in Equation 7-17.

r >FS-q, Eq. 7-17

Divide the LRFD equation (Eq. 7-16) by the ASD equation (Eq. 7-17) as in

Equation 7-18.


> Eq. 7-18
r FSY-q,

When only considering dead and live loads Equation 7-19 solves the load

summation.

Yq, = qD +q Eq. 7-19

Set ri, the ductility, redundancy, and operation importance modifier, equal to 1 and

substituting in the dead and live loads with their corresponding load factors yields

Equation 7-20.

YQD D + YQL L
_> DqD+ LqL Eq. 7-20
FS(qD+ qL)

Solving for the minimum resistance factor and dividing the numerator and

denominator by qL yields Equation 7-21.










YQD D + YQL
= qL Eq. 7-21
FS(D + 1)
qL

Dividing the numerator and denominator by qL results in an equation in terms of

the ratio of dead to live load. With this equation, an LRFD resistance factor can be

determined that conforms to ASD designs. Load factors and the factor of safety can be

found in design manuals, the dead to live load ratio is problem specific.

FOSM First Order Second Moment

FOSM has been used (NCHRP 507, 2004) to calibrate LRFD factors using a

statistical dataset containing the measured and predicted resistances. It is very important

that the same method of resistance prediction and measured resistance evaluation be used

for each data pair. For example, all of the resistance predictions can be made using the

FB-Deep method and all of the measured resistances can be determined using the

Davidson criteria. Equation 7-21 defines the bias of member i of the.


= Eq. 7-21


ki is the bias, rm is the measured Davission resistance, and rn is the nominal

resistance. Each element in the dataset will have a corresponding bias. The average of

these biases is found with Equation 7-22.


E[AR ]= Eq. 7-22
N

N is the number of elements within the dataset. The standard deviation of the

dataset is calculated with Equation 7-23.




Full Text

PAGE 1

DEVELOPMENT AND IMPLEMENTATION OF THE DIGGS FORMAT TO PERFORM LRFD RESISTANCE FACT OR CALIBRATION OF DRIVEN CONCRETE PILES IN FLORIDA By MARK ANTHONY STYLER A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2006

PAGE 2

Copyright 2006 by Mark Anthony Styler

PAGE 3

This document is dedicated to my parents for their support, enc ouragement, and pushing me to succeed when I needed direction.

PAGE 4

iv ACKNOWLEDGMENTS This thesis would not have been possible without the dedicated professors at the University of Florida as well as the tireles s efforts of the first DIGGS committee. I would like to thank my thesis committee, Dr. Michael McVay, Dr. Marc Hoit, and Dr. Bjorn Birigsson. I thank Dr. Michael McVay for his prev ious experience with LRFD resistance factor calibration and his depth of knowledge of deep foundations. I thank Dr. Marc Hoit for his management of the DIGGS committee. Finally I thank Dr. Bjorn Birgisson for introducing me to reliability space in LRFD. In no particular order, I would also acknowledge the efforts of the first DIGGS committee, Dr. Marc Hoit, Dr. Michael McVay, Tom Lefchik, Tim Spink, Roger Chandler, Paul Quinn, Jean Benoit, Salvat ore Coronna, Loren Turner, John Bobbit, and Dan Ponti.

PAGE 5

v TABLE OF CONTENTS page ACKNOWLEDGMENTS.................................................................................................iv LIST OF TABLES.............................................................................................................xi LIST OF FIGURES........................................................................................................xxii ABSTRACT...................................................................................................................xxiv CHAPTER 1 INTRODUCTION........................................................................................................1 Current Geotechnical Archiving Practice.....................................................................1 Reasons to Archive Geotechnical Data........................................................................2 New Projects..........................................................................................................2 Maintenance..........................................................................................................2 Research................................................................................................................2 Other DIGGS Benefits..................................................................................................2 Reduce Error..........................................................................................................2 Interope rability......................................................................................................2 2 XML BACKGROUND................................................................................................4 The Basics of Extensible Mark-Up Language..............................................................5 XML Schema Definition..............................................................................................6 Element..................................................................................................................6 Data Types.............................................................................................................7 Complex Types......................................................................................................8 Sequence................................................................................................................9 Choice....................................................................................................................9 Attributes.............................................................................................................10 Extension.............................................................................................................10 Restriction............................................................................................................11 Include.................................................................................................................11 Namespaces.........................................................................................................12 Import..................................................................................................................13 Abstract and Substitution Groups........................................................................13 A Complete DIGGS Schema File...............................................................................14

PAGE 6

vi 3 GEOGRAPHY MARK-UP LANGUAGE.................................................................20 Objects, Properties, and Values..................................................................................20 xlink Namespace.........................................................................................................22 GML Geometry..........................................................................................................23 gml:Point.............................................................................................................23 gml:LineString.....................................................................................................23 gml:Polygon........................................................................................................24 GML Objects..............................................................................................................24 Features................................................................................................................25 Coordinate Reference Systems (CRS).................................................................25 Dictionaries and Definitions................................................................................30 4 DIGGS (DATA INTERCHANGE FOR GEOTECHNICAL AND GEOENVIRONMENTAL SPECIALISTS)...............................................................33 DIGGS Object Hierarchy...........................................................................................34 Implementation...........................................................................................................39 Rules for Compliance with the DIGGS Standard................................................39 Available Application Program ming Interfaces (APIs)......................................39 DOM (Document Object Model)........................................................................40 Creating DIGGS DOM.................................................................................40 Opening a DIGGS file with a DOM.............................................................41 Modifying DIGGS DOM.............................................................................42 Verifying DIGGS DOM...............................................................................43 Saving DIGGS DOM...................................................................................45 More information.........................................................................................45 SAX (Simple API for XML)...............................................................................46 Units of Measure Attribute..................................................................................46 UUID...................................................................................................................46 Generating UUID.........................................................................................48 More information.........................................................................................48 5 MEASURED AND PREDICTED RE SISTANCE OF DRIVEN CONCRETE PILES.......................................................................................................................... 50 Davisson Measured Resistance...................................................................................50 FB-Deep Predicted Resistance...................................................................................52 6 DATASET..................................................................................................................56 7 LRFD BACKGROUND.............................................................................................63 Overview.....................................................................................................................63 Mathematical Background..........................................................................................64 Random Variables...............................................................................................64 Moments of a Random Variable..........................................................................70 Chi-Squared Analysis..........................................................................................71

PAGE 7

vii Cumulative Distribution Functions.....................................................................72 Calibration Methods...................................................................................................73 Fitting to ASD.....................................................................................................73 FOSM – First Order Second Moment.................................................................75 Reliability index...........................................................................................78 Solving for the resistance factor...................................................................79 Correcting FOSM................................................................................................83 Probability of Failure...........................................................................................86 FORM – First Order Reliability Method.............................................................88 Define the failure equation...........................................................................89 Choose random variable distributions..........................................................90 Choose LRFD factors to analyze.................................................................91 Partition the design space.............................................................................93 Choose representative points for each domain.............................................93 Calculate the initial design point..................................................................94 Transform into an equivalent normal distribution........................................95 Transform original random vari ables to standard normal random variables....................................................................................................99 Rewrite the failure equation in te rms of the standard normal random variables..................................................................................................100 Compute a new trial design point...............................................................100 Calculate the reliability index....................................................................101 FORM iteration..........................................................................................101 FORM example..........................................................................................102 8 RESISTANCE FACTOR CALIBRATION.............................................................106 FOSM Resistance Factor Calibration.......................................................................107 Corrected FOSM Resistance Factor Calibration......................................................108 FORM Resistance Factor Calibration.......................................................................109 9 CONCLUSION.........................................................................................................111 Resistance Factor Calibration Comparison..............................................................111 Improving LRFD......................................................................................................120 Adopting DIGGS......................................................................................................121 APPENDIX A DIGGS Object Tables...............................................................................................122 Common DIGGS DataTypes....................................................................................122 Common DIGGS Objects.........................................................................................136 BusinessAssociate.............................................................................................136 Equipment..........................................................................................................140 Specification......................................................................................................141 Top Level Hierarchal DIGGS Objects.....................................................................143

PAGE 8

viii TransmissionInformation..................................................................................144 Project................................................................................................................145 Hierarchal Hole Objects...........................................................................................149 Hole Feature......................................................................................................150 Layer Feature.....................................................................................................160 Detail Feature....................................................................................................165 FractureSpacing Feature....................................................................................168 DiscontinuityData Feature.................................................................................170 Sample Feature..................................................................................................172 SchmidtReboundHardness Feature...................................................................176 HoleConstruction Feature..................................................................................179 WaterLevelsInHole Feature...............................................................................181 InsituCBR Feature.............................................................................................183 InsituDensity Feature.........................................................................................186 InsituPermeabilityGeneral Feature....................................................................188 InsituPermeabilityDetail Object........................................................................191 RedoxPotential Feature.....................................................................................192 Resistivity Feature.............................................................................................195 DrivenPenetrationTestGeneral Feature.............................................................197 DrivenPenetrationTestDetail Feature................................................................202 VaneGeneral Object..........................................................................................205 VaneDetail Feature............................................................................................207 PressuremeterGeneral Object............................................................................209 PressuremeterDetailTest Feature.......................................................................210 PressuremeterDetailLoops Object.....................................................................214 PressuremeterDetailData Object.......................................................................216 PocketPenetrometer Feature..............................................................................217 HandVane Feature.............................................................................................220 StaticConeTestGeneral Object..........................................................................222 StaticConeTestDetail Feature............................................................................227 InsituFlameIonizationDetector Feature.............................................................229 InsituPhotoIonizationDetector Feature..............................................................231 DilatometerGeneral Object................................................................................233 DilatometerDetail Feature.................................................................................237 MonitoringPointGeneral Object........................................................................239 MonitoringPointConstruction Feature...............................................................243 MonitoringPointEvent Object...........................................................................245 MonitoringPointReading Feature......................................................................246 InsituChemicalTests Object...............................................................................249 OtherFieldTests Feature....................................................................................252 Hierarchal Specimen Objects...................................................................................254 Specimen Feature..............................................................................................255 AtterbergLimits Object......................................................................................265 Shrinkage Object...............................................................................................267 CBRGeneral Object...........................................................................................269 CBRDetail Object..............................................................................................271

PAGE 9

ix ChalkTests Object.............................................................................................272 CompactionGeneral Object...............................................................................275 CompactionDetail Object..................................................................................277 ConsolidationGeneral Object............................................................................278 ConsolidationDetail Object...............................................................................282 FrostSusceptibilityGeneral Object.....................................................................284 FrostSusceptibilityDetail Object.......................................................................286 ParticleSizeGeneral Object................................................................................287 MCVGeneral Object..........................................................................................290 MCVDetail Object.............................................................................................293 LaboratoryPermeability Object.........................................................................294 RelativeDensity Object......................................................................................297 PointLoadTest Object........................................................................................300 Porosity Object..................................................................................................302 SlakeDurability Object......................................................................................304 ShoreHardness Object.......................................................................................307 LosAngelesAbrasion Object..............................................................................309 AggregateImpactValue Object..........................................................................311 AggregateCrushingValue Object.......................................................................313 AggregateAbrasionValue Object.......................................................................315 PolishedStoneValue Object...............................................................................317 ElongationIndex Object.....................................................................................319 FlakinessIndex Object.......................................................................................321 Soundness Object..............................................................................................323 WaterAbsorption Object....................................................................................326 LaboratoryVelocity Object................................................................................328 ShearBoxGeneral Object...................................................................................330 ShearBoxDetail Object.....................................................................................332 Suction Object...................................................................................................334 TenPercentFines Object.....................................................................................336 CompressiveStrengthGeneral Object................................................................338 CompressiveStrengthDetail Object...................................................................341 ChemicalTests Object........................................................................................344 OtherLaboratoryTests Object............................................................................346 Hierarchal FoundationGroup Objects.......................................................................349 AppliedLoad Feature.........................................................................................353 Displacement Feature........................................................................................354 LoadTransfered Feature.....................................................................................355 Strain Feature.....................................................................................................356 FoundationGroup Feature..................................................................................356 DrivenPile Object..............................................................................................359 DrivenPileInstance Feature...............................................................................359 DrivenPileCrossSection Feature........................................................................362 DrivenPileConstruction Feature........................................................................364 DrivingLog Feature...........................................................................................367 DrivingAnalysis Object.....................................................................................368

PAGE 10

x DrivenPileBlow Feature....................................................................................369 Capwap Object..................................................................................................373 CapwapSegment Feature...................................................................................377 CastShaft Object................................................................................................379 CastShaftInstance Feature.................................................................................379 CastShaftCrossSection Feature.........................................................................382 CastShaftConstruction Feature..........................................................................384 B FORM CODE...........................................................................................................386 LIST OF REFERENCES.................................................................................................390 BIOGRAPHICAL SKETCH...........................................................................................392

PAGE 11

xi LIST OF TABLES Table page 2-1. Simple XML data types...............................................................................................7 3-1. URN Components.......................................................................................................27 5-1. FB-Deep Side Friction Equations..............................................................................52 5-2. FB-Deep Mobilized End Bearing Equations.............................................................53 5-3. Critical Depth Ratios in FB-Deep..............................................................................54 6-1. Pile Dataset Table.......................................................................................................5 6 7-1. List of Variables........................................................................................................ 63 7-2. Microsoft Excel Rando m Variable Functions...........................................................73 7-3. FOSM Resistance Factor Equation Variables...........................................................81 7-4. Comparison of Probability of Failure Approximations..............................................88 7-5. FORM Iterations for Real Space to Equivalent Normal Space Parameters............103 7-6. FORM Iterations in Normal Space..........................................................................103 8-1. FOSM Resistance Factor Calibrations....................................................................107 8-2. Corrected FOSM Resistance Factor Calibrations....................................................108 8-3. Reliability Index with re spect to Nominal Resistance.............................................109 8-4. FORM Resistance Factor Calibrations....................................................................109 9-1. FOSM and Corrected FOSM Compared to FORM, qD / qL = 2..............................114 9-2. FOSM and Corrected FOSM Compared to FORM, qD / qL = 2.5...........................115 9-3. FOSM and Corrected FOSM Compared to FORM, qD / qL = 3..............................115 9-4. Extended NCHRP 507 Table 16..............................................................................116

PAGE 12

xii A-1. MoistureContentType.............................................................................................122 A-2. ParticleDensityType...............................................................................................123 A-3. DensityType............................................................................................................12 5 A-4. ParticleSizeDetailType...........................................................................................127 A-5. BlowsAndPenetrationType.....................................................................................128 A-6. CalibrationType......................................................................................................128 A-7. CodeListType.........................................................................................................129 A-8. LocationType..........................................................................................................130 A-9. MeasureType..........................................................................................................130 A-10. MeasureMethodType............................................................................................131 A-11. RemarkType..........................................................................................................131 A-12. RoleType...............................................................................................................1 32 A-13. AssociatedFileSetType.........................................................................................133 A-14. ConePwpType.......................................................................................................134 A-15. SecurityInfoType..................................................................................................134 A-16. AuditType.............................................................................................................13 4 A-17. EventType.............................................................................................................13 4 A-18. EquipmentPropertyType.......................................................................................135 A-19. SpecificationPropertyType...................................................................................135 A-20. BusinessAssociatePropertyType...........................................................................135 A-21. SamplePropertyType............................................................................................136 A-22. SpecimenPropertyType.........................................................................................136 A-23. HolePropertyType.................................................................................................136 A-24. BusinessAssociate.................................................................................................136 A-25. GeneralAddressType............................................................................................138

PAGE 13

xiii A-26. EmailType.............................................................................................................13 8 A-27. PhoneNumberType...............................................................................................139 A-28. AssociatedWithPropertyType...............................................................................139 A-29. Equipment Object.................................................................................................140 A-30. Specification Object..............................................................................................141 A-31. TransmissionInformation Object..........................................................................144 A-32. ProjectPropertyType.............................................................................................145 A-33. Project Feature......................................................................................................145 A-34. GeodeticCoordinateSystemType..........................................................................148 A-35. GeodeticVerticalDatumType................................................................................148 A-36. LocalCoordinateSystemType...............................................................................148 A-37. LocalVerticalDatumType.....................................................................................148 A-38. ProjectGeometryType...........................................................................................149 A-39. FoundationGroupPropertyType............................................................................149 A-40. Hole Feature..........................................................................................................15 0 A-41. HoleGeometryType..............................................................................................156 A-42. LayerPropertyType...............................................................................................156 A-43. DetailPropertyType...............................................................................................156 A-44. FractureSpacingPropertyType..............................................................................156 A-45. DiscontinuityDataPropertyType...........................................................................156 A-46. SchmidtReboundHardnessPropertyType..............................................................157 A-47. HoleConstructionPropertyType............................................................................157 A-48. WaterLevelsInHolePropertyType.........................................................................157 A-49. InsituCbrPropertyType.........................................................................................157 A-50. InsituDensityPropertyType...................................................................................157

PAGE 14

xiv A-51. InsituPermeabilityGeneralPropertyType..............................................................158 A-52. RedoxPotentialPropertyType................................................................................158 A-53. InsituResistivityPropertyType..............................................................................158 A-54. DrivenPenetrationTestGeneralPropertyType.......................................................158 A-55. VaneGeneralPropertyType...................................................................................158 A-56. PressuremeterGeneralPropertyType.....................................................................158 A-57. PocketPenetrometerPropertyType........................................................................159 A-58. HandVanePropertyType.......................................................................................159 A-59. StaticConeTestGeneralPropertyType...................................................................159 A-60. InsituFlameIonisati onDetectorPropertyType.......................................................159 A-61. InsituPhotoIonisati onDetectorPropertyType........................................................159 A-62. DilatometerGeneralPropertyType.........................................................................160 A-63. OtherFieldTestsPropertyType...............................................................................160 A-64. MonitoringPointGeneralPropertyType.................................................................160 A-65. Layer Feature........................................................................................................160 A-66. Detail Feature........................................................................................................16 5 A-67. FractureSpacing Feature.......................................................................................168 A-68. DiscontinuityData Feature....................................................................................170 A-69. Sample Feature.....................................................................................................172 A-70. SchmidtReboundHardness Feature.......................................................................176 A-71. HoleConstruction Feature.....................................................................................179 A-72. WaterLevelsInHole Feature..................................................................................181 A-73. InsituCBR Feature................................................................................................183 A-74. InsituDensity Feature............................................................................................186 A-75. InsituPermeability General Feature.......................................................................188

PAGE 15

xv A-76. InsituPermeability DetailPropertyType.................................................................191 A-77. InsituPermeabilityDetail Object...........................................................................191 A-78. RedoxPotential Feature.........................................................................................192 A-79. Resistivity Feature................................................................................................195 A-80. DrivenPenetrationTestGeneral Feature................................................................197 A-81. DrivenPenetrationTestDetailPropertyType..........................................................202 A-82. DrivenPenetrationTestDetail Feature...................................................................202 A-83. VaneGeneral Object..............................................................................................205 A-84. VaneDetailPropertyType......................................................................................207 A-85. VaneDetail Feature...............................................................................................207 A-86. PressuremeterGeneral Object...............................................................................209 A-87. PressuremeterDetailTestPropertyType.................................................................210 A-88. PressuremeterDetailTest Feature..........................................................................210 A-89. PressuremeterDetailLoopsPropertyType..............................................................214 A-90. PressuremeterDetailLoops Object........................................................................214 A-91. PressuremeterDetailDataPropertyType................................................................215 A-92. PressuremeterDetailData Object...........................................................................216 A-93. PocketPenetrometer Feature.................................................................................217 A-94. HandVane Feature................................................................................................220 A-95. StaticConeTestGeneral Object..............................................................................222 A-96. StaticConeTest DetailPropertyType......................................................................227 A-97. StaticConeTestDetail Feature...............................................................................227 A-98. InsituFlameIonizationDetector Feature................................................................229 A-99. InsituPhotoIoniza tionDetector Feature.................................................................231 A-100. DilatometerGeneral Object.................................................................................233

PAGE 16

xvi A-101. DilatometerDetailPropertyType.........................................................................236 A-102. DilatometerDetail Feature..................................................................................237 A-103. MonitoringPointGeneral Object.........................................................................239 A-104. MonitoringPointConstructionPropertyType.......................................................242 A-105. MonitoringPointEventPropertyType..................................................................243 A-106. MonitoringPointReadingPropertyType..............................................................243 A-107. InsituChemicalTestsPropertyType.....................................................................243 A-108. MonitoringPointConstruction Feature................................................................243 A-109. MonitoringPointEvent Object.............................................................................245 A-110. MonitoringPointReading Feature.......................................................................246 A-111. InsituChemicalTests Object................................................................................249 A-112. OtherFieldTests Feature......................................................................................252 A-113. Specimen Feature................................................................................................255 A-114. AtterbergLimitsPropertyType.............................................................................259 A-115. ShrinkagePropertyType......................................................................................259 A-116. CBRGeneralPropertyType..................................................................................260 A-117. ChalkTestsPropertyType....................................................................................260 A-118. CompactionGeneralPropertyType......................................................................260 A-119. ConsolidationGeneralPropertyType...................................................................260 A-120. FrostSusceptibilityGeneralPropertyType...........................................................260 A-121. ParticleSizeGen eralPropertyType.......................................................................260 A-122. McvGeneralPropertyType..................................................................................261 A-123. LaboratoryPermeabilityPropertyType................................................................261 A-124. RelativeDensityPropertyType.............................................................................261 A-125. PointLoadTestPropertyType...............................................................................261

PAGE 17

xvii A-126. PorosityPropertyType.........................................................................................261 A-127. SlakeDurabilityPropertyType.............................................................................261 A-128. ShoreHardnessPropertyType..............................................................................261 A-129. LosAngelesAbrasionPropertyType.....................................................................262 A-130. AggregateImpactValuePropertyType.................................................................262 A-131. AggregateCrushingValuePropertyType.............................................................262 A-132. AggregateAbrasionValuePropertyType.............................................................262 A-133. PolishedStoneValuePropertyType......................................................................262 A-134. ElongationIndexPropertyType............................................................................263 A-135. FlakinessIndexPropertyType..............................................................................263 A-136. SoundnessPropertyType.....................................................................................263 A-137. WaterAbsorptionPropertyType...........................................................................263 A-138. LaboratoryVelocityPropertyType.......................................................................263 A-139. ShearBoxGeneralPropertyType..........................................................................263 A-140. SuctionPropertyType..........................................................................................264 A-141. TenPercentFinesPropertyType...........................................................................264 A-142. CompressiveStrengthGeneralPropertyType.......................................................264 A-143. ChemicalTestsPropertyType...............................................................................264 A-144. OtherLaboratoryTestsPropertyType...................................................................264 A-145. AtterbergLimits Object.......................................................................................265 A-146. Shrnikage Object................................................................................................267 A-147. CBRGeneral Object............................................................................................269 A-148. CBRDetailPropertyType.....................................................................................271 A-149. CBRDetail Object...............................................................................................271 A-150. ChalkTests Object...............................................................................................272

PAGE 18

xviii A-151. CompactionGeneral Object................................................................................275 A-152. CompactionDetailPropertyType.........................................................................277 A-153. CompactionDetail Object...................................................................................277 A-154. ConsolidationGeneral Object..............................................................................278 A-155. ConsolidationDetailPropertyType......................................................................282 A-156. ConsolidationDetail Object................................................................................282 A-157. FrostSusceptibilityGeneral Object......................................................................284 A-158. FrostSusceptibilityDetailPropertyType..............................................................286 A-159. FrostSusceptibilityDetail Object.........................................................................286 A-160. ParticleSizeGeneral Object.................................................................................287 A-161. MCVGeneral Object...........................................................................................290 A-162. MCVDetailPropertyType...................................................................................293 A-163. MCVDetail Object..............................................................................................293 A-164. LaboratoryPermeability Object..........................................................................294 A-165. RelativeDensity Object.......................................................................................297 A-166. PointLoadTest Object.........................................................................................300 A-167. Porosity Object...................................................................................................302 A-168. SlakeDurability Object.......................................................................................304 A-169. ShoreHardness Object........................................................................................307 A-170. LosAngelesAbrasion Object...............................................................................309 A-171. AggregateImpactValue Object...........................................................................311 A-172. AggregateCrushingValue Object........................................................................313 A-173. AggregateAbrasionValue Object........................................................................315 A-174. PolishedStoneValue Object................................................................................317 A-175. ElongationIndex Object......................................................................................319

PAGE 19

xix A-176. FlakinessIndex Object........................................................................................321 A-177. Soundness Object................................................................................................323 A-178. WaterAbsorption Object.....................................................................................326 A-179. LaboratoryVelocity Object.................................................................................328 A-180. ShearBoxGeneral Object....................................................................................330 A-181. ShearBoxDetailPropertyType.............................................................................332 A-182. ShearBoxDetail Object.......................................................................................332 A-183. Suction Object....................................................................................................334 A-184. TenPercentFines Object......................................................................................336 A-185. CompressiveStrengthGeneral Object..................................................................338 A-186. CompressiveStrengthDetailPropertyType..........................................................341 A-187. CompressiveStrengthDetail Object....................................................................341 A-188. ChemicalTests Object.........................................................................................344 A-189. OtherLaboratoryTests Object.............................................................................346 A-190. CapacityType......................................................................................................350 A-191. LoadTestType.....................................................................................................351 A-192. LoadTestDataType.............................................................................................352 A-193. AppliedLoad Feature..........................................................................................353 A-194. Displacement Feature.........................................................................................354 A-195. LoadTransfered Feature......................................................................................355 A-196. Strain Feature......................................................................................................356 A-197. FoundationGroup Feature...................................................................................356 A-198. DrivenPilePropertyType.....................................................................................358 A-199. CastShaftPropertyType.......................................................................................358 A-200. FoundationGroupGeometryType........................................................................358

PAGE 20

xx A-201. DrivenPile Object...............................................................................................359 A-202. DrivenPileInstancePropertyType........................................................................359 A-203. DrivenPileInstance Feature.................................................................................359 A-204. PileSectionPropertyType....................................................................................361 A-205. PileCRS...............................................................................................................3 62 A-206. DrivenPileConstructionPropertyType................................................................362 A-207. DrivenPileCrossSection Feature.........................................................................362 A-208. DrivenPileConstruction Feature.........................................................................364 A-209. DrivingLogPropertyType...................................................................................366 A-210. DrivingAnalysisPropertyType............................................................................366 A-211. CushionType.......................................................................................................367 A-212. DrivingLog Feature............................................................................................367 A-213. DrivingAnalysis Object......................................................................................368 A-214. DrivenPileBlowPropertyType............................................................................369 A-215. DrivenPileBlow Feature.....................................................................................369 A-216. TraceType...........................................................................................................370 A-217. TraceDataType...................................................................................................371 A-218. PileDriveAnalysisType PDA table...................................................................371 A-219. ForceWaveType..................................................................................................373 A-220. CAPWAP Object................................................................................................373 A-221. CapwapSegmentPropertyType...........................................................................377 A-222. CaseMethodType................................................................................................377 A-223. CapwapSegment Feature....................................................................................377 A-224. CastShaft Object.................................................................................................379 A-225. CastShaftInstancePropertyType.........................................................................379

PAGE 21

xxi A-226. CastSHaft Feature...............................................................................................379 A-227. CastShaftCrossSectionPropertyType..................................................................381 A-228. ShaftCRS............................................................................................................382 A-229. CastShaftConstructionPropertyType..................................................................382 A-230. CastShaftCrossSection Feature...........................................................................382 A-231. CastShaftConstructionFeature............................................................................384 A-232. TotalConcreteVolumeType................................................................................385

PAGE 22

xxii LIST OF FIGURES Figure page 4-1. Top Level DIGGS Hierarchy....................................................................................35 4-2. Hole Level DIGGS Hierarchy...................................................................................36 4-3. Specimen Level Hierarchy........................................................................................37 4-4. FoundationGroup Level DIGGS Hierarchy..............................................................38 5-1. Davisson Failure Limit from a Static Load Test.......................................................51 7-1. Discrete Random Variable Probability Mass Function..............................................65 7-2. Continuous Random Variable PDF............................................................................66 7-3. Gaussian Random Variable PDF................................................................................68 7-4. Lognormal Random Variable PDF.............................................................................69 7-5. Distribution Histogram...............................................................................................71 7-6. Cumulative Distribution Function.............................................................................72 7-7. Lognormal Load and Resistance PDF........................................................................76 7-8. Failure Region............................................................................................................ 78 7-9. (COV[Q])2 versus dead to live load ratio..................................................................85 7-10. FORM Load Factor Calibration Algorithm.............................................................90 7-11. Resistance Bias plot with Equivale nt Normal and Lognormal Distributions..........91 7-12. Failure and Design Space........................................................................................92 7-13. Partitioned Design Space with Representative Points..............................................94 7-14. Lognormal Cumulative Distribution Function........................................................97 7-15. Inverse of Standard Cu mulative Distribution Function...........................................97

PAGE 23

xxiii 7-16. Standard Probability Density Function....................................................................97 7-17. Numerator for RN Equation....................................................................................98 7-18. Denominator for RN Equation, Lognormal Probability Density Function.............98 7-19. Resulting Normal Random Variable.......................................................................99 7-20. Failure equation in No rmal Random Variable Space............................................100 7-21. FORM in Real Space.............................................................................................102 8-1. Predicted Versus Measured Dataset.........................................................................106 8-2. FOSM Resistance Factor Calibrations.....................................................................107 8-3. Corrected FOSM Resistance Factor Calibrations....................................................108 8-4. FORM Resistance Factors........................................................................................110 9-1. NCHRP 507 FOSM versus FORM Resistance Factors...........................................111 9-2. Resistance Factor Comparison for T=2..................................................................112 9-3. Resistance Factor Comparison for T=2.25.............................................................112 9-4. Resistance Factor Comparison for T=2.5...............................................................113 9-5. Resistance Factor Comparison for T=2.75.............................................................113 9-6. Resistance Factor Comparison for T=3..................................................................114 9-7. Comparison of FORM Results................................................................................118 9-8. FOSM versus NCHRP 507 FOSM-Hasofer-Lind, = 2.0......................................119 9-9. FOSM versus NCHRP 507 FOSM-Hasofer-Lind, = 2.5......................................119 9-10. Corrected FOSM versus FORM............................................................................120 A-1. Top Level DIGGS Hierarchy..................................................................................143 A-2. DIGGS Hole Hierarchy..........................................................................................149 A-3. DIGGS Specimen Hierarchy..................................................................................254 A-4. Hierarchal FoundationGroup Objects.....................................................................349

PAGE 24

xxiv Abstract of Thesis Presen ted to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Master of Science DEVELOPMENT AND IMPLEMENTATION OF THE DIGGS FORMAT TO PERFORM LRFD RESISTANCE FACT OR CALIBRATION OF DRIVEN CONCRETE PILES IN FLORIDA By Mark Anthony Styler August 2006 Chair: Mike McVay Major Department: Civil and Coastal Engineering National Cooperative Highway Res earch Program (NCHRP) Report 507 demonstrates that the difference between FO RM and FOSM resistance factor calibrations can be up to 15%. With some pile caps cont aining in excess of 25 piles, millions could be saved if this difference could be account ed for. Currently, the more conservative FOSM is used instead of designing for a specific probability of failure. This thesis explored the difference between FOSM and FORM using DIGGS, a newly developed standard for digitally stor ing geotechnical data. The DIGGS standard was developed and documented and a DIGGS fi le containing 62 prestressed concrete piles from the State of Florida was created. These piles were also analyzed with the Bridge Software InstituteÂ’s FB-Deep progr am to predict Davission Failure limits. Resistance factors were then calculated us ing both FOSM and FORM for the Davission Limit using FB-Deep.

PAGE 25

xxv The results found agreed with the NCHR P 507 with FORM resistance factor calibrations being 8% to 23% greater than FOSM. Following this, a corrected FOSM equation was derived which agrees with the FORM results. Using the modified FOSM equation resistance factors can be more accura tely predicted. Designers should recognize that using the larger resistance factors results in a larger probability of failure, but more importantly it results in a known probability of failure.

PAGE 26

1 CHAPTER 1 INTRODUCTION A wealth of subsurface data is collected every year all over the world. The source of this data can be from insitu tests, laboratory tests, geophys ical tests, and the installation of deep foundations. While this data is expensiv e to obtain, it is necessary to safely build bridges, roads, a nd other structures. Every piece of data is initially collected to serve one purpose, however many additional uses exist. The data can be used for future projects, maintenance, and even research. Currently it is difficult to reuse data as it is stored in many different formats. DI GGS (Data Interchange for Geotechnical and Geoenvironmental Specialists), a format to digitally represent geotechnical data, has recently been developed. DIGGS does not de tail how the information is archived, only the syntax of the stored or transferred information. Current Geotechnical Archiving Practice The project owner pays for subsurface data, laboratory tests, field tests, and an engineers report. These reports are not dispos ed of after the projec t has been completed; the owner saves them for decades. Millions of dollars are spent every year acquiring the data for these reports.

PAGE 27

2 Reasons to Archive Geotechnical Data New Projects Many new projects overlap old projects. Pr evious insitu and laboratory work could reduce the cost of a geotechni cal investigation and provide savings to the owner. Archiving geotechnical data can provide th e means to utilize previous work. Maintenance Maintenance projects require knowledge of the substructures installed. Being able to reference the geotechnical engineers report is paramount to successfully maintaining a bridge. Research This thesis demonstrates this reason for ar chiving geotechnical data. Available pile load tests were collected and used to perform a FORM and FOSM reliability factor calibration. Furthermore, deriving accurate a nd relevant empirical re lationships requires many data elements. DIGGS provides a means to which geotechnical data can be digitally archived. Other DIGGS Benefits Reduce Error Many times during the design process th e same geotechnical data must be repeatedly entered into various programs. When all of the design programs use the same file format, the data would only need to be entered once. This results in program interoperability. Interoperability When design programs start using the same open standard file format, consultation firms are not locked into using a particular software vendor. Geot echnical consultation

PAGE 28

3 firms will have the option of changing software programs to one that better suites their needs. It might seem like software vendor s do not benefit from the adoption of DIGGS, however this is not the case. As DIGGS ge ts adopted, the potential audience for a new piece of software grows. This benefits th e software developer by having a large market, and it benefits the geotechnical consultant by allowing the developer to spend more resources developing better programs.

PAGE 29

4 CHAPTER 2 XML BACKGROUND The most common options available to encode digital data are bi nary files, text files, and XML files. In this spectrum, bi nary files have the advantage of being the smallest in size, however they are the most cr yptic. Text files, essentially a subset of binary files, only includes ASCII characters. Th ey tend to be larger than binary files and their content may convey a meaning to the data In order for either of these to be programmatically used, strict rules would have to be followed to create valid files. This would add a considerable amount of complexity to developing applications. The final option is XML files; XML files are a subset of text files. They tend to be the largest of the file types presented. Howe ver, the advantage of using XML is that the rules for valid XML files can be coded into an XML file. Th is is called a schema (XSD) file; it helps remove the complexity of developing an a pplication. Another adva ntage is that many APIs (application programming in terfaces) exist for dealing with XML files. The most popular of these APIs include the DOM (D ocument Object Model) and SAX (Simple API for XML). With the technological prog ression of increased bandwidth, hard drive space, and portable storage including thumb drives and burnable media, the size of a file is almost no longer a concern. This chapter provides an introduction to some of the XML concepts used by DIGGS. A full documenta tion of XML is beyond the scope of this document. Technical documentation can be found at the following website: http://www.w3.org/XML/

PAGE 30

5 The Basics of Extensible Mark-Up Language XML (eXtensible Mark-up Language) is an ASC II text file with a rigid syntax. By following this special syntax, an XML file can use many APIs (a pplication programming interface) designed to create and modify XML data. Essentially, an XML file has elements, attributes, values, and data types. 1. value An element contains starting and ending tags, which are enclosed by < and >. Attributes exist within the elements starti ng tag. A single element can have any number of attributes, and they can be in any orde r within the opening ta g. A closing tag is enclosed by . In between the opening an d closing tags exists the elements value. Elements can be nested within other elements and if an elementÂ’s opening tag is ended with /> then the element is ope ned and closed with one tag. 2. 3. 4. value3 5. Line 2 in the above XML snippet shows an element that is opened and closed in one tag. Line 3 shows element3, which is nested with element2 within element1. Nesting XML tags establishes a hierarchy for the data. Elements have associated data types. A few simple types include string, integer, double, and date. These data types specify the syntax that the elementÂ’s value must follow for a valid XML file. XML schema files specify the rules an XML file must follow in order to be considered valid. Th ese rules specify the hierarchy, element and attribute names, and the data types for the values. These rules are encoded in an XSD file.

PAGE 31

6 XML Schema Definition XSD (XML Schema Definition) is an XML file that further specifies the syntax of an XML file. It is used to specify element and attribute names, as well as data types and acceptable values; XSD files can also sets up the hierarchy. It can be thought of as a set of rules that are followed in order to create a specific type of XML file. There are rules that an XSD file must follow to be a valid XSD file. These rules are documented here: http://www.w3.org/XML/Schema Element An element in XSD defines what constitutes a valid element in XML. For example, consider the following XSD fragment: This fragment contains a lot of the XML c oncepts previously introduced. It is an XML element that is one tag since it closes with />. It also has 4 at tributes, which define the rules for an XML document. The name attribute specifies the name of the XML element; the type attribute specifies the s yntax of the value. The minOccurs and maxOccurs attributes set limits to the number of times this element can occur. With this definition, the Building element may not occur at all, but it may occur any number of times. If it were desired to have an element that is mandatory to occur exactly once, then the minOccurs and maxOccurs would both have a value of 1. The following is an example of a valid XML fragment corres ponding to the previous XSD fragment. 1. Weil Hall 2. Ben Hill Griffin Stadium

PAGE 32

7 Data Types In the previous example a string data type was used to specify the syntax of the building tag value. The string data type is a series of ASCII characters. The following table contains some of the more common data types used. Table 2-1. Simple XML data types Data Type Usage Example string The string data type is an ASCII character string. It has many uses. Weil Hall Fibonacci integer The integer is used for nondecimal, positive or negative, values. It is typically used for discrete counted values. 2 3 5 8 double The double type is for data with decimal precision. 1.61803399 boolean A boolean value is either “true” or “false”. true false date The date time is used to record a calendar date. It is in the format yyyy-mm-dd. 1993-01-20 1989-06-04 dateTime The dateTime data type is used to store the exact date and time. It is in the format yyyy-mm-ddThh:mm:ss 2006-02-20T10:55:03 2036-02-07T06:28:16 1969-07-20T20:17:39 duration The duration type is used to specify a length of time in XML. It has the format PnYnMnDTnHnMnS. P is required, and T is required if the duration specifies hours, minutes, or seconds. In this format, n represents a number while the subsequent letter designates what the number stands for. Y is years, the first M is months, D is days, H is hours, the second M is minutes, and S is for seconds. If the n is zero, then the letter is optional. P25Y0M21D PT1M30S PT34.56S P1Y11M25DT23H06M45S

PAGE 33

8 Table 2-1. Continued Data Type Usage Example id The id type is very unique. It is used to specify a value that can only exist once within a valid XML file. It is essentially an alphanumeric string without any spaces or punctuation other than the underscore or -. It may not start with a numeric digit. id1 id_1 mark-styler Complex Types Complex types are encoded in XSD to defi ne more complicated data types to be used by elements. 1. 2. 3. 4. 5. 6. 7. 8. The above XSD fragment define s a new data type. This da ta type is then used by two new elements. The following XML fragme nt shows a valid instance of this XSD fragment. 1. 2. Weil Hal 3. 5 4. 5. 6. College Park Apartments 7. 2 8.

PAGE 34

9 In XSD when the minOccurs or maxOccurs are not specified then the default values are used. For both of these, the default value is 1. Therefore, if they are not specified then the element becomes mandatory. Sequence The elements contained by the sequence tag oc cur in XML files in the same order. In the previous example, the Name tag would always have to occur before the floor tag. If the Name had its maxOccurs set to unbounde d, then every instance of the Name tag would have to occur before the first instance of the floors tag. When data is entered in XML it is important that the sequence is main tained. In many cases, the sequence of the data is as important as the data itself. In other words, if an element can occur any number of times an index value is inherent in the XML. The first instance will always be the first instance, maintaining a sequence number for the data is redundant. Choice The choice tag is used to specify an opti onal choice of elements. An example best demonstrates the capabilities this choice tag. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. In this schema example, a valid inst ance cannot have both the inkColor and leadNumber tags. It can have either tag, or omit both of them all together. If the choice maxOccurs was 2, then it could have 2 of the choice elements in any order. If the choice minOccurs was 1 then it must have at least one of the elements specified by the choice.

PAGE 35

10 Attributes Attributes can be added to complex type defi nitions. Attributes must be a basic or simple data type. Unlike elements, no sequence can be specified for the attributes. The attributes must also be unique within an el ement; therefore the same attribute cannot exist multiple times. Typically, attributes are used to describe the value of the element. 1. 2. 3. 4. 5. 6. The extension tag is described in the follo wing section. The “use” attribute can be either required or optional. An exampl e of the previous XSD definition would be: 6.12 Extension The extension tag is used when a comp lex type extends a basic type by adding attributes. This is shown in the previous sc hema example. More importantly, it is used when a complex type extends a previously de fined complex type. This is similar to inheritance in object-oriented terminology. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.

PAGE 36

11 When a complex type extends another comp lex type, then all of the base type elements occur before any of the additionally defined elements occur in an XML fragment. A valid instance of the empl oyeeType would have the name element, optionally followed by the DOB date, and finall y the employer element. Attributes can still exist in any order, regardless of which complex type they are defined in. Restriction The restriction tag is used to add constrai nts to a previously defined complex type. It can be used to change the use attribute of an attribute defin ition to “required”. Restriction can also remove pr eviously defined elements from the complex type. When creating new types, it is often necessary to fi rst restrict the base type then extend the newly restricted type. An extension and a re striction of a base complex type cannot occur in one step. The following is an example of a restriction of the previously defined personType. 1. 2. 3. 4. 5. 6. 7. The previous schema example removed the optional DOB element from the personType definition. The restriction tag ca nnot be used to add new elements to a complex type definition. Include Include tags are used in an XSD file to combine another XSD file. They allow a complicated schema to be split into multiple smaller and simpler files. These files are then included within each other with the include tag. The include tag contains a

PAGE 37

12 schemaLocation attribute which contains either a local path to the XSD file or a web address to the file. The targetNamespace of the included file and the file using the include tag must be the same. Namespaces Namespaces are used to define the scope of a schema. It is used in order to allow multiple organizations to define many schema s without fear of creating any conflicts. For example, DIGGS could create a title el ement, even though HTML already defines a title element. The namespace is typically a web address. This web address should be controlled by the organization developing the schema. For simplicity, the namespace is typically associated within a schema or XML file by an acronym. This acronym holds absolutely no significance outside of its sc ope. An acronym is associated with a namespace by using the xmlns attribute. xmlns:diggs=” http://www.diggsml.org ” associates the diggs acronym with the http://www.diggsml.org namespace. This acronym can be used anywhere within the start and end tags that this xmlns:di ggs attribute exists. An XSD schema is bound by the start and end of a element. Namespace acronyms are typically assigned at this le vel. This schema tag also has the targetNamespace attribute which defines the namespace of the schema being defined. DIGGS makes use of both the GML and th e XLINK namespaces. DIGGS uses types defined by XLINK and extends complex t ypes defined by GML. In every DIGGS schema file an xmlns attribute is used to set the diggs namespace to http://www.diggsml.org the targetNamespace is also set to this same value. Since XSD is an XML file, it uses a namespace of http://www.w3.org/2001/XMLSchema This namespace includes all of the XSD elements and attributes used to define an XML

PAGE 38

13 schema, including element, complexType, extension, include, import, schema, targetNamespace, etc... Import The import tag is used to include XSD files from a namespace other than the targetNamespace. It includes two attributes a namespace attribute and a schemaLocation attribute. The namespace attribute must match the targetNamespace of the XSD file pointed to by the schemaLocation attribute. Abstract and Substitution Groups The abstract attribute is used to define por tions of the schema th at do not appear in any XML instance files. This can be used to define an abstract super type, such as a foundationType. This abstract super type cannot be used, except by complex type extension and restriction. The abstract super type is used to derive non-abstract types that appear within the schema. It is useful to define abstract super types when many subtypes exist. It allows the XSD deve loper to make a change to the super type that automatically reciprocates to all of the derived types. A global element can also have its abstract attribute set to true. This abstract element is then used as the head of a s ubstitution group. For example, an abstract element called _insituTest could be created. A ll of the insitu tests could then set their substitutionGroup attributes to equal _ins ituTest. SPT and CPT could both have the substitutionGroup _insituTest. Si nce _insituTest is abstract it cannot appear in the actual XML file. However, now every complex type that includes a reference to the abstract _insituTest element can now substitute either SPT or CPT in its place. This is very useful for schema extensions A schema extension could create a new type of insitu test and set its substitutionGroup equal to di ggs:_instuTest. Now the new

PAGE 39

14 test is integrated into the existing schema. Knowledge of substitutionGroups and abstract types and elements is necessary for schema development and application programming. There are four steps required to correctly extend an element of the DIGGS schema. 1. Create a new XSD file with a new targetNamespace. 2. Create a new complexType that extends an existing DIGGS complexType. Add new elements and attributes with this extension. 3. Create a new global element that uses this new complexType. A global element is an element that is a direct child of the schema element. 4. Set the substitutionGroup attribute of the new global element to the correct abstract substitution group head. A Complete DIGGS Schema File The following is an actual DIGGS schema file as of April 11, 2006. XSD concepts introduced in this chapter will be explained. The GML portions of this schema will be mentioned, and further explained in the next chapter. 1. Line 1 starts the schema element. The default namespace (xmlns) is set to the XSD namespace. Because of this, all elements fr om XSD do not have acronyms prefixed. An example of this is the first schema tag, it be longs to the schema namespace. The schema element also sets up the targetNamespace for this schema file. Everything defined in this file will belong to the targetNamespace. 2. 3.

PAGE 40

15 The import element is used to add schemas from namespaces other than the targetNamespace. 4. 5. 6. The include elements add schemas from the diggs namespace. The library file contains common complexTypes used thr oughout the DIGGS schema files. 7. 8. 9. A collection of foundation elements. Collections can contain individual deep elements, test piles, or pier/bent groups 10. 11. This defines the global element for the FoundationGroup. It can be substituted everywhere a reference to the substitutionG roup exists. A FoundationGroup is a logical grouping of foundation elements. It can be a pier a bent, or a collection of test piles for a bridge. 12. 13. 14. A collection of foundation elements. Collections can contain individual deep elements, test piles, or pier/bent groups 15. 16. This is the abstract global element. It can only exist within the schema files. If a schema extension to the FoundationGroup is created then the extension will use this abstract element (_FoundationGroup) as its substitutionGroup. 17. 18.

PAGE 41

16 19. A collection of foundation elements. Collections can contain individual deep elements, test piles, or pier/bent groups 20.
This is the complexType definition for th e FoundationGroupType. It is the data type used by both the global Founda tionGroup element and the abstract _FoundationGroup element. When creating a schema extension to the FoundationGroup this type will be extended. 21. 22. All GML features are derived directly or indirectly from the AbstractFeatureType. This is introduced in the next chapter. 23. 24. 25. 26. Geometry of the foundation group. This optional geometry can be used to show pile cap dimensions, etcÂ… 27. 28. The FoundationGroupGeometryType is defined la ter in this file. It is used to contain the geometry of this FoundationGroup. 29. 30. 31. Bridge number the foundation group belongs to. 32. 33. 34. 35. 36. Name of the bridge the foudation group supports. 37. 38.

PAGE 42

17 39. 40. 41. Name of the pier containing this foundation group. 42. 43. 44. 45. 46. Financial number. 47. 48. 49. 50. 51. Comment concerning this group of foundations elements 52. 53. 54. 55. 56. Roles associated with this fondation group 57. 58. 59. 60. 61. Descriptive location of this foundation group 62. 63. The RolesType and LocationsType are fr om the DIGGS library.xsd schema file. 64. 65. 66. A driven pile member of this foundation group 67. 68. 69. 70. 71. A cast in place shaft memebr of this foundation group. 72. 73. 74.


PAGE 43

18 75.
76.
77.
78. 79. 80. Relationship to a DrivenPile object 81. 82. 83. 84. 85. A reference to the diggs Driven Pile object 86. 87. This element references an abstract global element. This global element is contained within the included drivenPile.xsd file. In the actual XML file abstract elements do not exist. The element in this location will be replaced by a global element that has its substitutionGroup set to diggs:_DrivenPile. 88. 89. The gml:AssociateAttributeGroup contains a set of attributes used by relationship properties in GML. It is in troduced in the next chapter. 90. 91. 92. 93. Relationship to a CastShaft object 94. 95. 96. 97. 98. A reference to the diggs Cast Shaft object 99. 100. 101. 102. 103. 104. 105. 106. Contains acceptable foundation geometry objects

PAGE 44

19 107.
108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. These three geometry types can be used to describe the geometry of the FoundationGroup. GML geometry types ar e introduced in the next chapter. 124. 125. 126.
127.


PAGE 45

20 CHAPTER 3 GEOGRAPHY MARK-UP LANGUAGE GML, Geography Mark-Up Language, uti lizes XML to describe geographic objects. GML provides the language to descri be geographic objects, but does not specify what those objects are. GML application schemas extend the GML language to describe specific objects. DIGGS (Data Intercha nge for Geotechnical and Geoenvironmental Specialists), a GML application schema, is introduced in Chapter 4. This chapter explains the GML concepts used by the DI GGS schema. Most of the GML specific information has been derived from the Open GIS Consortium Implementation Specification, 2004. Objects, Properties, and Values Everything in a GML file is an object, a property, or a value. Objects contain properties, and properties ha ve values. The following XML fragment represents these simple relationships. 1. 2. value 3. value 4. Objects can only contain propert ies. They cannot directly contain other objects. Lines 2 and 3 show the properties. In GM L properties are always encoded as child elements of the object. The property type specifies what the value can be. A property value could be a basic type, or it could be another Object. The following demonstrates using a value that is another object. 1.

PAGE 46

21 2. 3. 4. value 5. 6. 7.
Object 2 is the value of property1. The pr operty1 in Line 2 is called a relationship property. This is because it explains the relationship between Ob ject1 and Object2. GML objects and properties follow a na ming convention. GML objects are Upper Camel Case and GML properties are lower Camel Case. In upper camel case, the first letter of every word in capitalized, for example, LinearRing, Ploygon, and FoundationGroup. In lower camel case the first le tter of the first wo rd is lower case and each subsequent word has its first letter cap italized, for example, posList, srsDimension, and issueNumber. To complete the naming convention discussion, type definitions are Upper Camel Case and have the word Type a ppended to them. Abstract types have the word Abstract prepended to them. Abstract elements have an underscore as the first character and are upper camel case. All GML objects are derived from the gml:A bstractGMLType. Because of this, all GML objects have a few properties in comm on, gml:id, gml:description, and gml:name. There are other properties, but DIGGS is pr imarily concerned with these three. The gml:id provides a way to reference the object, it must be unique within a GML file. The gml:name is used to name the object, it does no t have to be unique. The gml:description property is used to describe the object. Re ferencing the object using the gml:id is an important concept in GML. Properties that link to other objects are called reference properties. 1. 2. value 3.

PAGE 47

22 4. 5. 6. 7. In most cases, relationship properties can c ontain either an object reference or an inline object. The property in line 5 above remotely re ferences Object1. Line 6 demonstrates how reference properties can even reference objects in other XML files. The gml:id and gml:name properties are both op tional, however a gml:id is required to reference the object. Some gml objects re strict the gml:AbstractGMLType and require a gml:id as well as one instance of the gml:name. xlink Namespace GML uses the xlink schema to handle remote properties. Primarily, the xlink schema is used to create an attributeGroup, th is attribute group is assigned to properties to allow them to remotely reference other objects. The gml:Associ ationAttributeGroup is assigned to properties that can be used to reference objec ts. The following attributes belong to this group: xlink:href xlink:role xlink:arcrole xlink:title xlink:show xlink:actuate gml:remoteSchema All of these attributes are op tional. As previously shown, the xlink:href attribute is used to provide the link. If a property can be used as a reference property, it may contain all of these attributes.

PAGE 48

23 GML Geometry GML provides many complex geometry objects that can be used to specify almost any shape imaginable. DIGGS uses only a few GML geometry objects. These geometries are all objects; there must be a re lationship property when they are used to describe a feature. gml:Point This gml object defines a single point in space. An example relationship property that could use this is . 1. 2. 2 3 -5 3. Since this is a gml object, it can have a gml:id that can referenced by other properties. is a property of the gml:Point object. The gml:coordinates property (not shown) has been deprecated. The gml:PointPrope rtyType is used as a quick way associate a relationship property () with a point. One could also reference the gml:pointProperty element. This creates the point re lationship property, but only describes the relationship as pointPropert y, which may be insufficient. There are three things to consider, the gml:Point is the geometry object, the gml:PointPropertyType is the type definition for an objects poin t property, and the gml:pointProperty is a property that can be used to reference a gml:Poi nt object. Generally, if a relationship to a gml:Point is required by an object only one of these will be used. gml:LineString The LineString object is used to specif y a series of connected line segments. 1. 2. 2 3 –5 7 11 -13 3. 4.

PAGE 49

24 5. 6. 7 11 -13 7.
Line 2 demonstrates the use of the posList property. This property is new to GML version 3.1.0 and extends the double list type. The number of doubles used is a multiple of the dimension. Line 5 shows a relationship property that references an object with the gml:id of point1. Line 6 shows the gml:pos property, introduced by the gml:Point object. Again, there exists the gml:LineString gml object, the gml:LineStringPropertyType, and the gml:lineStiringProperty. gml:Polygon The following XML instance is for a GML:Polygon object: 1. 2. 3. 4. 0 1 1 2 3 5 8 13 21 0 0 1 5. 6. 7. The object contains the relationship property. This defines the relationship between the object and the geometry object. A gml:Polygon can contai n two linear rings, specifying an outer boundary and an inner boundary. If required, th e interior boundary is specified with the gml:interior relationship. This allows doughnut shapes. The object contains the property. The firs t and last points of a gml:LinearRing must be the same. Because of this, a gml:Polygon has a minimum of 4 points. GML Objects A few GML geometry objects have already been introduced. This section will detail some of the other importa nt GML objects utilized by DIGGS.

PAGE 50

25 Features The GML feature is the most important object type in GML. Prior to GML version 3, every object in GML was a feature. A ll features in GML are derived from the gml:AbstractFeatureType. Featur es can be tangible or inta ngible objects. Typically, though not required, a property of a feature will relate to th e features geometry. The following XSD fragment details the gml:AbstractFeatureType type. 1. 2. 3. 4. 5. 6. 7. 8. 9. The gml:name on line 5 has a maxOccurs of unbounded. This allows multiple names for the same feature to exist. The gml:id property is encoded as an attribute. It is an xsd:ID type and must be uni que within a valid GML file. Most derivations are done by extension, but some require both restriction and extension. A new abstract type is first derive d by restriction, typica lly to require the use of the gml:id, set the minOccurs of the gml:name property to 1, or remove the gml:boundedBy property. This new type is then extended to create a new DIGGS feature. Coordinate Reference Systems (CRS) Coordinate Reference Systems are a subset of Spatial Reference Systems (SRS). Currently, GML only supports CRS. However, according to R. Lake 2004, it is likely that future version of GML will include support for SRS. SRS can reference object locations by geographic identifie rs. CRS reference object loca tions to a specific location

PAGE 51

26 using a specific coordinate system. They are used to specify the coordinate system (Cartesian, polar, etcÂ…), the name of and the units of measure on each axis, and a datum to position the coordinate system in space. The datum can be set a sea level for elevation measurements, or at the ground surf ace for depth measurements. Almost all DIGGS features will referen ce a CRS definition. The referenced CRS definition can be defined else where, or within the DIGGS file. A good source for global coordinate reference systems is the crs portal maintained by Galdos, Inc. It can be found at: http://crs.opengis.org/crsportal/index.html CRS definitions are GML objects that requir e the gml:id attribute. All geometry objects and properties have an srsName attribute. This attribute is used to reference the CRS definition gml:id used by the geometry object or property. The srsName can point to a global CRS or to a local CRS. A CRS consists of both a coordinate system (CS) and a datum. The CS will usually contain axis definitions, and the datum will lo cate the origin of the CS in space, or provide a vertical reference datum. 1. 2. 2 3 -5 3. The above XML instance uses a URN (Unifo rm Resource Name) as the identifier for the coordinate reference system. The srsN ame attribute is of type anyURI (Uniform Resource Identifier) this allows it to contai n either a URN or a URL (Uniform Resource Locator). The URN contains 5 distinct parts.

PAGE 52

27 Table 3-1. URN Components urn Mandatory URN prefix epsg Namespace of the maintainer of the resource. v6.1 Version of the resource coordinateReferenceSystem The resource container 4269 4269 is a unique identifier corresponding to a coordinate reference system used in North America. It uses a coordinate system with the code 6402 (latitude and longitude) and a datum with the code 6269. Unique identifiers for other coordina te reference systems can be found at http://crs.opengeospatial.org/crsportal/index.html EngineeringCRS are also used within the DIGGS files. 1. 2. Engineering CRS Example 3. 4. 5. 6. 7. Depth 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. EngineeringCRS types in GML are currently very ambiguous. It is recognized that they can be used to create a one dimensional CRS that follows a curved axis. The actual implementation of this is left to the applica tion schema developers. Recognizing this, the above xml fragment includes some DIGGS exte nsions. This shows how DIGGS uses the EngineeringCRS type. Even a one dimensi onal CRS requires both a CS and a datum. The CS is defined by a reference to a LineSt ring object on line 8. This coordinate system

PAGE 53

28 is then mapped to the real world at the speci fied origin on line 15. Local CRS defined in DIGGS will be one dimensional, cylindrical, or Cartesian. These local CRS are typically used to store depths. The datum positions the CS at the ground surface, and the depth axis follows the geometry of the hole. Cylindrical CRS are typically used in DIGGS for circular piles and shafts. It is important to document the location of sens ors exactly in order to calculate bending moments during lateral load tests. The ma in axis is along the foundation element, it stores depth. The following is an example of a cylindrical CRS: 1. 2. Engineering CRS Example 3. 4. 5. 6. 7. Depth 8. 9. 10. 11. 12. 13. Radius 14. 15. 16. 17. 18. Degrees 19. 20. 21. 22. 23. 24. 25. 26. 0 27. 28. 29.

PAGE 54

29 Note that the origin of the above CRS is at the template elevation. Multiple CRS can be set up for each reference used. For example, a single pile can have a CRS for scour, surface, template, a nd excavation elevation. Cartesian CRS are typically used in DI GGS for rectangular piles and shafts. 1. 2. Engineering CRS Example 3. 4. 5. 6. 7. Depth 8. 9. 10. 11. 12. 13. X 14. 15. 16. 17. 18. 19. Y 20. 21. 22. 23. 24. 25. 26. 27. Top of Pile 28. 29. 30. Note that the above CRS has an origin at the top of the pile. This can not be mapped directly into real space as the top of th e pile can move. This is used in cases in which equipment is measured with respect to the top of the pile in a load test.

PAGE 55

30 Dictionaries and Definitions Dictionaries can be referenced throughout DIGGS files. They are used to contain the values for codeTypes, as well as units of measure. Dictionary objects contain Definition objects. The schema repr esentation of the Definition object is: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. The DefinitionType restricts the gml:Abstr actGMLType. This restriction requires that an instance of the gml:name be used as well as the required use of the gml:id. The Dictionary object is extended from the definition object as follows: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. By extending the DefinitionType the Di ctionary requires that the gml:id and gml:name be used. Note that the sequence ta g is not used, so both of the elements can occur in any order any number of times. The gml:dictionaryEntry is a relationship property that either contains or references a gml:Definition object. The gml:indirectEntry property is used to reference a definition elsewhere, its main purpose is to provide a local name to be used to reference another defi nition. A gml:dictionary is referenced by a

PAGE 56

31 gml:CodeType property. Properties of gml:C odeType reference both the dictionary being used and the definition being applied. A gml:CodeType is used as a property type not an object type. 1. 2. 3. 4. 5. 6. 7. The property attribute codeSpace contains the reference to the dictionary being used. The value of the property contains th e definition being refere nced. Dictionaries can contain other dictionaries. This facilita tes the specialization of the codespace. For example, a Soil Classification dictionary can contain a USCS dictionary and an AASHTO dictionary. Each of these dictionari es can then contain all of their respective codes in the form of definitions. There are now three dictionaries that a CodeType can reference, Soil Classification, USCS, and AASHTO. 1. 2. 3. A sample dictionary for soil classification codelists 4. diggsSoilClassifications 5. 6. 7. USCS 8. USCS 9. 10. 11. Poorly graded sand 12. SP 13. 14. 15. 16. 17. Well graded sand 18. gml:name>SW 19. 20. 21.

PAGE 57

32 22. 23. silty sand 24. SM 25. 26.
27. 28. 29. clay 30. CL 31. 32. 33. 34. 35. Clayey sand 36. SC 37. 38. 39. 40. 41. Silt 42. ML 43. 44. 45.
46.
47. 48. 49. AASHTO 50. AASHTO 51. 52. 53. Coarse 54. A-3 55. 56. 57. 58. 59. Fine 60. A-7 61. 62. 63. 64. 65.
For example, the CL code would be valid for both the Soil Classification and USCS dictionaries, but not the AAS HTO dictionary. An A-3 code would be valid for Soil Classification and AASHTO, but not USCS. The code space used holds for every definition under the dictionary pointed to, a nd the Soil Classification dictionary has both the USCS and AASHTO dictionaries under it.

PAGE 58

33 1. CL 2. A3 3. CL 4. A3 5. CL 6. A5c In the above six examples, 1 through 4 are valid. Example 5 is invalid because CL does not belong to the AASHTO dictionary. Example 6 is invalid because A-5c does not exist in either dictionary. CHAPTER 4 DIGGS (DATA INTERCHANGE FOR GEOTECHNICAL AND GEOENVIRONMENTAL SPECIALISTS) A number of GML background concepts have already been introduced to aid in the understanding of the DIGGS schema. Feature A feature is a GML concept used by DIGGS. It represents most tangible objects within the schema. All features are derived from the gml:AbstractFeatureType. This enable s GML aware software to identify the features within a valid DIGGS instance f ile. Features use the upper camel case naming convention. The first letter of every word is uppercase, like TransmissionInformaiton. All features ar e objects, not all objects are features. Object – More general than a featur e. Typically not tangible. Property Features can only contain propertie s. And these prope rties are almost always child elements. A few exceptions ex ist, like the gml:id and uom attributes.

PAGE 59

34 Properties use the lower camel case nami ng convention. They can be identified because the first letter is lowercase, a nd each subsequent word is uppercase, like businessAssociates. The child of an obj ect cannot be another object; however child properties can contain other objects. Relationship Property A relationship property is us ed to relate an object to another object. Reference Property Reference properties include the gml:AssociationAttributeGroup. This adds a number of attributes form the xlink schema. Reference properties can include links to other features within the same file, or in another files. Th ese links can be either a local reference or to a file on the Internet. Occurrences This is the number of times a property can exist within a valid feature. 0..* implies that the minimum nu mber of occurrences for the property is zero, while the maximum is unbounded. UUID A UUID is a global unique identifier. It is generated using a specific algorithm that guarantees its uniqueness. DIGGS requires that any gml:id be a UUID. The DIGGS compatible software s hould generate these and the user should not be aware of their existence. A complete list of the DIGGS objects and properties can be found in Appendix A. DIGGS Object Hierarchy The following figures depict the hierar chy implemented by the DIGGS schema. The hierarchy provides a logica l organization of information without the need for data repetition. Generally each item in the fi gure represents a DIGG object and contains properties that can be found in Appendix A. The TransmissionInformation object is the root node for a DIGGS file. Every valid full DIGGS file will be enclosed within the TransmissionInformation object. This promotes the use of DIGGS as a format for sh aring data, not necessarily storing data. A few significant properties are required. An i ssueNumber and issueDate can be used to determine the most up to date data when comparing to existing stored information.

PAGE 60

35 Multiple projects can be children of a TransmissionInformation object. This allows overlapping data from previous projects to be included for reference in new projects. Figure 4-1. Top Level DIGGS Hierarchy

PAGE 61

36 Figure 4-2. Hole Le vel DIGGS Hierarchy

PAGE 62

37 Figure 4-3. Specimen Level Hierarchy

PAGE 63

38 FoundationGroup DrivenPile DrivenPileInstance DrivenPileCrossSection DrivenPileConstruction DrivingLog DrivingAnalysis DrivenPileBlow Capwap CapwapSegment PileDriveAnalysis CastShaft CastShaftInstance CastShaftCrossSection CastShaftConstruction Capacity LoadTest Capacity Trace Capacity Capacity Capacity LoadTest Capacity Figure 4-4. FoundationGroup Level DIGGS Hierarchy

PAGE 64

39 Implementation Rules for Compliance with the DIGGS Standard The main purpose of creating the DIGGS standard was to create the means by which independent software developers can cr eate interoperable programs. Most of the implementation rules have been devised w ith this goal in mind. The means by which software can become certified as DIGGS compatible will eventually be available on the website. In the meantime, the following rules should be followed: 5. Generated DIGGS is verified against the DI GGS schema files. No file should be passed off as a DIGGS file if it fails any part of the schema. 6. Codelist values are checked agai nst the correct codelists. 7. All ID fields are generated UUIDs. It might not be necessary for a specific application that all the IDs be unique, however it is for DIGGS compliance. 8. The UUID fields are not edita ble by hand. To preserve the uniqueness they should not be modified after they have been generated. 9. UUID fields are preserved. If a DIGGS file is opened the UUID values for all unique DIGGS objects should not change. Th is rule can be broken if the same object ends up with differe nt UUIDs. See the UUID discussion later in this chapter. 10. Speciality programs cannot lose unrelated DIGGS data. For example, if an SPT editing program opened up a DIGGS file that contained both SPT and deep foundation data, then the deep foundation data must still be in the file when it is saved. No DIGGS data can be lost when a program opens and saves a DIGGS file. Available Application Program ming Interfaces (APIs) An MSDN (Microsoft Developer Network) article describing the differences between DOM and SAX can be found here: http://msdn.microsoft.com/msdnmag/issues/1100/xml/

PAGE 65

40 It is important to choose the XML API th at works best with the specific problem that is being addressed. DOM and SAX are the most popul ar XML API, however many others exist. DOM (Document Object Model) The DOM (Document Object Model) can be used to create, modify, and verify DIGGS files programmatically. The Worl d Wide Web Consortium specifies the capabilities of the DOM. Documentation co ncerning the Microsoft implementation of the DOM (Microsoft Developer Network, 2006) aided in the creating of the following Visual Basic code samples. The DOM stores the entire contents of the XML document in memory. Creating DIGGS DOM The following Visual Basic code demonstrates how to create a DIGGS DOM from nothing. This does not yet cr eate the file, but it sets up the DOM for modification. 1. Dim DOM As New DOMDocument40 2. Dim schema As New XMLSchemaCache40 3. Dim TransmissionInformation As IXMLDOMElement 4. DOM.async = False 5. DOM.setProperty "SelectionLanguage", "XPath" 6. Set node = DOM.createProcessingInstruction("xml", "version='1.0'") 7. DOM.appendChild node 8. schema.Add "http://www.opengis.net/gml", “ http://schemas.opengis.net/gml/3.1.1/base/gml.xsd ” 9. schema.Add "http://www.diggsml.org", “ http://www.diggsml.org/v1.0/diggs.xsd ” 10. schema.Add "http://www.w3.org/1999/xlink", ” http://schemas.opengis.net/gml/3.1.0/ xlink/xlinks.xsd” 11. Set DOM.schemas = schema 12. namespace = "xmlns:gml='http://www.opengis.net/gml' xmlns:diggs='http://www.diggsml.org' xmlns:xlink='http://www.w3.org/1999/xlink'" 13. DOM.setProperty "SelectionNamespaces", namespace 14. Set TransmissionInformation = DOM.createElement("diggs: TransmissionInformation ") 15. Set DOM.documentElement = TransmissionInformation

PAGE 66

41 The above Visual Basic code fragment creates the DOM (Document Object Model). Lines 8 though 11 load up the sche mas used by this DOM. Lines 12 and 13 associate the namespace prefixes with the correct namespaces. Lines 14 and 15 create the root element for this DIGGS file and assi gn it to the documentElement of the DOM. Opening a DIGGS file with a DOM Opening a DIGGS file is a little different than creating a DIGGS file. The document element, also known as the root elem ent, is already set up. The following code demonstrates how to open a DIGGS file. 1. Dim DOM As New DOMDocument40 2. Dim TransmissionInformation As IXMLDOMElement 3. Dim schema As New XMLSchemaCache40 4. Dim file$ 5. 6. DOM.async = False 7. DOM.setProperty "SelectionLanguage", "XPath" 8. namespace = "xmlns:gml='http://www.opengis.net/gml' xmlns:diggs='http://www.diggsml.org' xmlns:xlink='http://www.w3.org/1999/xlink'" 9. DOM.setProperty "SelectionNamespaces", namespace 10. 11. schema.Add "http://www.opengis.net/gml", “ http://schemas.opengis.net/gml/3.1.1/base/gml.xsd ” 12. schema.Add "http://www.diggsml.org", “ http://www.diggsml.org/v1.0/diggs.xsd ” 13. schema.Add "http://www.w3.org/1999/xlink", ” http://schemas.opengis.net/gml/3.1.0/ xlink/xlinks.xsd” 14. Set DOM.schemas = schema 15. 16. file = Application.GetOpenFilename("'Open an XML file (*.XML)', *.XML", "Open an XML File", "Open") 17. If file = "false" Then Exit Sub 18. DOM.Load file 19. If DOM.parseError.errorCode <> 0 Then 20. MsgBox "=====================" & vbCrLf & 21. "Reason: & DOM.parseError.reason & 22. vbCrLf & "Line: & 23. DOM.parseError.Line & vbCrLf 24. Exit Sub 25. End If 26. Set TransmissionInformation = DOM.documentElement

PAGE 67

42 Much of the code is similar to the co de for creating a DIGGS DOM. The DIGGS file is validated against the schema when it is parsed during loading. If any violations are found the if-statement on line 19 will be true. These violations are then displayed in a messagebox and the opening subroutine will end. Line 26 assigns the Diggs element to the root of this DIGGS file. If the subroutin e gets to this step the application knows that the DIGGS file has been verified against the schema. Since the schema files are online, the DIGGS file will be invalid if this code is run on a machine not connected to the Internet. The schema files can be stored on the local machine in order to verify without connecting to the Internet, this can al so help reduce the verification time. To load an XML string instead of an XM L file a different method of the DOM is used. The Load method, on line 18, is for loadin g XML files. It should be replaced with the LoadXML method, which then takes a string argument. Obviously, the user should not be prompted with an open file control. Modifying DIGGS DOM Modifying the DOM is done by individual elements. The following example is for the Diggs root element if the file is being created from scratch. 1. Dim nameElement As IXMLDOMElement 2. Dim descriptionElement As IXMLDOMElement 3. 4. TransmissionInformation.setAttribute "gml:id", GetGUID 5. Set nameElement = DOM.createElement("gml:name") 6. Set descriptionElement = DOM.createElement("gml:description") 7. nameElement.Text = Range(“DiggsName”) 8. descriptionElement.Text = Range(“DiggsDescription”) 9. TransmissionInformation.appendChild descriptionElement 10. TransmissionInformation.appendChild nameElement As previously mentioned, the above code fragment can only be used after the DOM and Diggs root element have been already set up. Line 4 assigns a UUID using the GetGUID function defined in the UUID section in this report. Line s 5 and 6 create the

PAGE 68

43 elements using the previously defined na mespace prefixes. The values for the two elements are assigned in lines 7 and 8. Finally, the two elemen ts are added to the hierarchy as direct de scendants of the Diggs element on lines 9 and 10. This example is for an Excel macro; as such the actual values for the elements are pulled from Excel cells using the range function on lines 7 and 8. The DOM uses XPATH to select nodes within the DOM object. For example, the following code will loop through all gml:name el ements in the Diggs object and display them as message boxes. 1. For Each nameElement In TransmissionInformation.selectNodes("gml:name") 2. MsgBox nameElement.Text 3. Next The following code will select the first de scription element and assign it to a node. 4. Set descriptionElement = TransmissionInformation.selectSingleNode("gml:description") The following code selects the first name if multiple name elements are attached to the Diggs root element. 5. Set nameElement = TransmissionInformation.selectNodes("gml:name").Item(0) The XPATH expression for both of these co de fragments is passed as a string for the method argument. XPATH is an importa nt part of creating DOM code. XPATH expressions can be used to select nodes ba sed on conditions, to sear ch all descendants, and much more. All of the details and syntax of working with XPATH is beyond the scope of this document. Verifying DIGGS DOM The following code can be used to verify a DOM against the DIGGS schema files. 1. Dim schema As New XMLSchemaCache40 2. Dim DIGGS As New DOMDocument40

PAGE 69

44 3. ns = "xmlns:gml='http://www.opengis.net/gml' xmlns:diggs=’http://www.diggsml.org’" 4. schema.Add "http://www.opengis.net/gml", “ http://schemas.opengis.net/gml/3.1.1/base/feature.xsd ” 5. schema.Add "http://www.diggsml.org", “ http://schemas.DIGGS.org/1.0/transmissionInformation.xsd ” 6. Set DOM.schemas = schema 7. 8. DIGGS.Load file 9. DIGGS.setProperty "SelectionNamespaces", ns 10. If DIGGS.parseError.errorCode <> 0 Then 11. MsgBox "=====================" & vbCrLf & 12. "Reason: & DIGGS.parseError.reason & 13. vbCrLf & "Line: & 14. DIGGS.parseError.Line & vbCrLf 15. Exit Sub 16. End If Verifying the codelist values is more diffi cult. The following code will check all of the codeTypes in a schema and display a message box whenever one of them contains an invalid code. 1. Dim codeElement As IXMLDOMElement 2. Dim dictionaryElement As IXMLDOMElement 3. Dim definitionElement As IXMLDOMElement 4. Dim DOMCodeList As New DOMDocument40 5. Dim codeList As String 6. For Each codeElement In TransmissionInformation.selectNodes("//*[@gml:codeSpace]") 7. DOMCodeList.async = False 8. DOMCodeList.validateOnParse = False 9. DOMCodeList.setProperty "SelectionLanguage", "XPath" 10. namespace = "xmlns:gml='http://www.opengis.net/gml'” 11. DOMCodeList.setProperty "SelectionNamespaces", namespace 12. cl = Split(codeElement.getAttribute(“codeSpace”), “#”) 13. codeList = cl(0) 14. DOMCodeList.Load codeList 15. If UBounds(cl) = 2 Then 16. dictionaryElement = DOMCodeList.documentElement.selectSingleNode(“//*[@gml:id=”””&cl( 1)&””””) 17. Else 18. dictionaryElement = DOMCodeList.documentElement 19. EndIf 20. definitionElement = dictionaryElement.selectSingleNode(“//*[gml:name=”””&codeElement. Text&””””) 21. If definitionElement = Nothing Then 22. MsgBox codeElement.Text & “ Not found in “ & codeElement.getAttribute(“codeSpace”) 23. Else 24. MsgBox codeElement.Text & “ is “ & definitionElement.selectSingleNode(“gml:description”).Text 25. EndIf

PAGE 70

45 26. Next The above code fragment search the entire DIGGS document for all of the elements using the codeSpace attribute. It loops thr ough all of these between lines 6 and 26. Lines 12 and 13 get the address for the dictionary. It needs to be split in case a dictionary is specified within another dicti onary. Line 14 loads the dic tionary into the DOMCodeList. If an internal dictionary is specified in the codeSpace attri bute, line 16 selects the correct dictionary. If no dictionary is specified then it is assumed that the dictionary is the entire file, and line 18 specifies this. Lines 20 searches the code list for the provided codeElement value that is being checked in this loop iteration. Lines 21 through 25 display the result of the codelist check. Saving DIGGS DOM Saving the DOM file is easy in Visual Ba sic. The following code will save the DOM object. This should be done after all of the validation. 1. Dim file$ 2. file = Application.GetSaveAsFilename(Range("fileID") + ".xml", "XML Files (*.xml), *.xml") 3. If file = "False" Then Exit Sub 4. Open file For Output As #1 5. Print #1, DOM.xml 6. Close #1 More information The MSDN (Microsoft Developer Networ k) documentation on the DOM can be found here: http://msdn.microsoft.com/library /default.asp?url=/library/enus/xmlsdk/html/332a15a2-430b-4c32-960b-d51cf2699018.asp The w3 DOM specifications can be found here: http://www.w3.org/DOM/ XPATH Reference can be found on MSDN here:

PAGE 71

46 http://msdn.microsoft.com/library /default.asp?url=/library/enus/xmlsdk/html/332a15a2-430b-4c32-960b-d51cf2699018.asp SAX (Simple API for XML) The SAX is used for an event based XML programming interface. For example, when the XML is modified. It uses less memory than the DOM and tends to be more applicable for Internet based applications. It is mentioned as a possible alternative to the DOM. The official SAX website is located at http://www.saxproject.org/ Units of Measure Attribute Many elements in DIGGS use the “uom” attr ibute to contain the units of measure for the elements value. DIGGS suggests that version 2 of the POSC units XML file be used when using units. For example, consider the following length measurement: 1. 6.12 The uom attribute of this length property re ferences the unit with the id of m within the poscUnits20.xml file. This corresponds to th e unit of meters. In a software program, you may want to present a list of all the un it types available for a certain type of measurement. This can be achieved fo r length units with the following XPATH statement: “.//UnitOfMeasure[QuantityType = ‘length’]” This is done to the poscUnits20.xml file. UUID The universal unique identifie r is an integral part of the DIGGS standard. The advantages and disadvantages of its use are fully understood by the DIGGS committee.

PAGE 72

47 It is important that a developer be aware of the disadvantages in order to work through them. The main disadvantage is the assigning of multiple UUIDs to the same DIGGS object. For example, in many cases a field boring will create a sample. This sample will end up having a UUID. When the boring l og is created in DIGGS a UUID will be assigned. Now, the laboratory work may be started before or after the boring log is typed. It is also often done by another orga nization. From this, it seems extremely likely that the individual sample will end up having two UUIDs. One generated form the boring log and one generated from the laborat ory. DIGGS will now recognize this as two different samples, even when they overlap in physical space. The merging of DIGGS files, either in a program or a database, s hould take this problem into consideration. It should be recognized that this problem stems from a disconnected paper trail. The use of the UUID is meant to encourag e and allow the development of using the Internet to correlate DIGGS objects betw een organizations. The most desirable development would be assigning the UUID th e moment the DIGGS object is physically created. In other words, the moment the sa mple is collected a UUID could be assigned then used for the lifetime of that sample The moment a borehole is planned a UUID could be assigned and used throughout the subsurface investigation and when the resulting data is archived. Another advantage of using UUIDs is that a DIGGS object can pass through multiple organizations, each which unique naming conventions, and still be a unique object. All of the inte rnal names, state names, and laboratory sample names could be stored in the gml:name field while the gml:id maintained is the same constant UUID.

PAGE 73

48 Generating UUID A GUID is a globally unique identifier. All GUIDs are UUIDs. The following visual basic code is from a Microsoft article titled “How To Use CoCreateGUID API to Generate a GUID with VB” (2006). 1. Public Type GUID 2. Data1 As Long 3. Data2 As Integer 4. Data3 As Integer 5. Data4(7) As Byte 6. End Type 7. Private Declare Function CoCreateGuid Lib "OLE32.DLL" (pGuid As GUID) As Long 8. 9. Public Function GetGUID() As String 10. '(c) 2000 Gus Molina 11. 12. Dim udtGUID As GUID 13. If (CoCreateGuid(udtGUID) = 0) Then 14. 15. GetGUID = 16. String(8 Len(Hex$(udtGUID.Data1)), "0")&Hex$(udtGUID.Data1) &_ 17. String(4 Len(Hex$(udtGUID.Data2)), "0")&Hex$(udtGUID.Data2) &_ 18. String(4 Len(Hex$(udtGUID.Data3)), "0")&Hex$(udtGUID.Data3) &_ 19. IIf((udtGUID.Data4(0) < &H10), "0", "")&Hex$(udtGUID.Data4(0)) &_ 20. IIf((udtGUID.Data4(1) < &H10), "0", "")&Hex$(udtGUID.Data4(1)) &_ 21. IIf((udtGUID.Data4(2) < &H10), "0", "")&Hex$(udtGUID.Data4(2)) &_ 22. IIf((udtGUID.Data4(3) < &H10), "0", "")&Hex$(udtGUID.Data4(3)) &_ 23. IIf((udtGUID.Data4(4) < &H10), "0", "")&Hex$(udtGUID.Data4(4)) &_ 24. IIf((udtGUID.Data4(5) < &H10), "0", "")&Hex$(udtGUID.Data4(5)) &_ 25. IIf((udtGUID.Data4(6) < &H10), "0", "")&Hex$(udtGUID.Data4(6)) &_ 26. IIf((udtGUID.Data4(7) < &H10), "0", "")&Hex$(udtGUID.Data4(7)) 27. End If 28. 29. End Function This code uses the CoCreateGuid functi on to generate the UUID. UUIDs are typically displayed with dashes; the number generated by this function is in hexadecimal 128-bit form without the dashes. More information The following link is for a webbased UUID generator (2006): http://kruithof.xs4a ll.nl/uuid/uuidgen UUID specifications (2005):

PAGE 74

49 http://www.ietf.org/rfc/rfc4122.txt How To Use CoCreateGUID API to Generate a GUID with VB (2006): http://support.microsoft.com/default.aspx?scid=kb;EN-US;q176790

PAGE 75

50 CHAPTER 5 MEASURED AND PREDICTED RESIST ANCE OF DRIVEN CONCRETE PILES One of the reasons to digitally archive geotechnical information is to enable research. An example of implementing DIGGS to accomplish an LRFD resistance factor calibration is presented later. This chap ter provides background material concerning predicting and measuring Davi sson capacities for driven pres tressed concrete piles. Davisson Measured Resistance The Florida Department of Transportati on specifies the Davisson capacity as the failure criteria for a pile. The Davisson capaci ty will be used as the measured resistance in the LRFD calibration. A load test is requi red to determine the Davisson capacity of a pile. The Davisson capacity is reached when the axial movement of the top of the pile equals or exceeds one of the values from Equation 5-1a or 5-1b. ) 120 15 0 ( d AE PL x (d < 30”) Eq. 5-1a ) 30 15 0 ( d AE PL x (d 30”) Eq. 5-1b x = Axial displacement at the top of pile d = Diameter or width of the pile P = Load applied to the pile L = Total length of the pile A = Cross-sectional area of the pile E = Elastic modulus of the pile

PAGE 76

51 There are two components to the Davisson equations. The first component is the elastic shortening of the pile. The second comp onent is a specified offset associated with yielding of the pile-soil system. A load test is required in order to meas ure the Davisson capacity of a pile. During the load test, the applied axial loads and total pile deformations at the top are plotted, i.e. load vs. settlement. Next, the elastic shortening of pile is plotted. It forms a straight line that initiates at zero and linea rly increases with a slope of L/AE. The intersection of the load settlement curve and line parallel to elastic shorte ning line offset by 0.15 + D/120 or D/30 depending one pile size, corresponds to the Davison failure load or the pile capacity. Figure 5-1. Davisson Failure Li mit from a Static Load Test

PAGE 77

52 Figure 5-1 shows a typical plot of pile de flection versus applied load. The Davisson Failure occurs at the intersection of the Da visson Failure line with the load-deflection curve. The Davission Failure limit is found w ith respect to pile top movement. The top and bottom displacements differ due to elastic shortening of the pile. FB-Deep Predicted Resistance FB-Deep is a computer program deve loped by the Florida Department of Transportation and maintained by the Florida Br idge Software Institute. FB-Deep is an outgrowth of SPT-89, SPT-91 and SPT-97, with the inclusion of drilled shafts and recently the inclusion of large diameter pipe piles. FB-Deep was used to predict the Davison capacity of all the prestressed concre te piles in the dataset using SPT (Standard Penetration Test) boring information. FB-Deep estimates the Davisson capacity as the total resistance provided by the skin friction, Table 5.1 (from FB-Deep Help Files, 2002), plus one third of the resistance of the ultimate end bearing Table 5.2. The skin friction and end bearing are estimated using blow counts and soil types provided by the SPT boring log. Table 5-1. FB-Deep Si de Friction Equations Soil Type Description Ultimate Unit Side Friction (TSF) 1 Plastic Clay 6 4006 ) 110 ( 2 N N f 2 Clay-Silt-Sand mixtures, very silty sand, silts and marls 3 4583 ) 110 ( 2 N N f 3 Clean Sands N f 019 0 4 Soft limestone, very shelly sand N f 01 0 *N is the uncorrected SPT blow count from a representative boring log for the pile. The skin friction along the whole length of the pile is equal to Equation 5-2. perimeter length f QN N s* Eq. 5-2

PAGE 78

53 For Eq. 5-2, unit skin friction, fN, is calculated for each SPT N value from Table 5.1 for appropriate soil type. An assumption made by the FB-Deep program is that the end bearing failure is controlled by the soil 3.5B below and 8B a bove, with B equal to the pile diameter or width. An exception to this assumption is when the bearing layer is weaker than the overlying layer. In this cas e it is assumed that the upper limit of the end bearing contributing soil is the boundary between the la yers. N values should be interpolated at the tip, 3.5B below, and 8B. Table 5-2. FB-Deep Mobilized End Bearing Equations Soil Type Description Mobilized Unit End Bearing Capacity (TSF) 1 Plastic clay 3 7 0 N q 2 Clay-silt-sand mixtures, very silty sand, silts and marls 3 6 1 N q 3 Clean sands 3 2 3 N q 4 Soft limestone, very shelly sand 3 6 3 N q The end bearing equation is more complicated than the side friction, but the same definition for layers applies. Layers change at N value elevations, and the average N values enclosed by the layer c ontrols the layerÂ’s capacity. The previous equations divide the end bearing by 3 in order to approximate the resulting end bearing when the skin friction has been fully mobilized. Equation 53 is used to estimate the mobilized end bearing: A B length f B lenght f QabovebelowBB layer layer layer layer t* 2 5 3 8 *85 3 Eq. 5-3

PAGE 79

54 The end bearing is found by taking the wei ghted average above and below the tip. These values are then added toge ther and divided by two. This results in a stress that is then multiplied by the tip cross-sectional ar ea in order to estimate the mobilized end bearing resistance force in tons. Special corrections have been developed to account for the concept of critical depth. Critical depth is ba sed on the assumption that the pile tip must be embedded a certain depth within the bearing layer in or der for the previously defined end bearing value to be fully realized. The critical dept h ratio for each soil type can be found in Table 5.3. Table 5-3. Critical Depth Ratios in FB-Deep Soil Type Description Critical Depth Ratio (D/B) 1 Plastic Clay 2 2 Clay-silt-sand mixtures, very silty sand, silts and marls 4 3 Clean sands (N<=12) 6 3 Clean sands (12=30) 12 4 Soft limestone, very shelly sands 6 The critical depth ratio is multiplied by th e pile diameter or width in order to calculate the critical depth of embedment within the bearing layer. Equation 5-4 is used to correct the end bearing. ) (LC T C A LCq q D D q q Eq. 5-4 q = Corrected unit end bearing at the pile tip qLC = Unit end bearing calculated at the layer change qT = Unit end bearing calculated at the pile tip DA = Actual embedment depth in bearing layer DC = Critical embedment depth in bearing layer

PAGE 80

55 The skin friction within the bearing layer is also corrected with respect to the critical depth. Equation 5-5 is used to correct the skin friction within the embedment layer if the critical depth is not realized and the overlying layer is weaker. )) ( 2 (LC T C A LC Tq q D D q q SFBL CSFBL Eq. 5-5 CSFBL = Corrected side friction within the bearing layer SFBL = Uncorrected side fricti on within the bearing layer qLC, qT, DA, DC as previously defined The skin fiction within the critical depth of the bearing layer is also reduced when the overlying layer is weaker and the critical depth is reached. In other words, if the overlying layer is weaker, the skin friction within the critical depth will always be reduced. This corrected value must be added to the value calculated using the length of the pile beyond the critical depth. In this case, the corrected sk in friction within the critical depth is calculated with Equation 5-6. )) ( 5 0 (LC CD LC CDq q q q USFACD CSFACD Eq. 5-6 CSFACD = Corrected side friction within the critical depth USFACD = Uncorrected side friction from the top of the bearing layer to the critical depth qCD = Unit end bearing calculated at the critical depth qLC as previously defined FB-Deep estimates the Davisson capacity as the sum of the skin friction above the bearing layer, the corrected skin friction within the bearing layer, and the corrected mobilized end bearing.

PAGE 81

56 CHAPTER 6 DATASET The following table represents the results of the Davisson Failure Criteria and predicted capacity for concrete piles in Florida. Table 6-1. Pile Dataset Table Project Name Project Number Borin g Name Pile Name Pile Width (in) Penetration Length (ft) Predicted Capacity (kips) Measured Davisson (kips) Bias Acosta Bridge 721603506 N B-27 44 24 58.08 677.50 776.00 1.145 Acosta Bridge 721603506 N B-22 95 24 60.05 821.26 1116.00 1.358 Acosta Bridge 721603506 N B-10 26 24 40.91 526.32 578.00 1.098 Apalachico la River Bridge 490103533 12 14 30 57.83 882.00 952.00 1.079 Apalachico la River Bridge 490103533 3 3 24 91 519.56 958.00 1.843 Apalachico la River Bridge 490103533 19 25 24 55.26 246.16 714.00 2.900 Apalachico la Bay Bridge 490103536 9 41 24 52.41 212.74 524.00 2.463 Apalachico la Bay Bridge 490103536 20 101 24 76.07 519.76 812.00 1.562 Apalachico la Bay Bridge 490103536 23 133 24 106.17 681.02 808.00 1.186 Apalachico la Bay Bridge 490103536 27 145 24 103.92 640.08 976.00 1.524 Edison Bridge SR739 120013513 TS1 1A 30 63.49 632.14 1100.00 1.740

PAGE 82

57 Table 6-1. Continued. Project Name Project Number Borin g Name Pile Name Pile Width (in) Penetration Length (ft) Predicted Capacity (kips) Measured Davisson (kips) Bias Edison Bridge SR739 120013513 TS2 2A 24 54.87 592.28 542.00 0.915 Edison Bridge SR739 120013513 TS2 2B 24 51.88 517.40 456.00 0.881 Edison Bridge SR739 120013513 TS2 2C 24 45.08 350.16 208.00 0.594 Edison Bridge SR739 120013513 TS3 3A 24 58.08 545.34 580.00 1.063 Edison Bridge SR739 120013513 TS3 3B 24 53.84 430.20 532.00 1.236 Edison Bridge SR739 120013513 TS3 3C 24 44.3 236.72 196.00 0.827 Edison Bridge SR739 120013513 TS4 4A 30 65.92 779.00 1050.00 1.347 Edison Bridge SR739 120013513 TS4 4B 30 57.94 489.74 540.00 1.102 Edison Bridge SR739 120013513 TS4 4C 30 46.08 196.14 320.00 1.631 Edison Bridge SR739 120013513 TS5 5A 30 66.88 834.34 1120.00 1.342 Choctawhat chee 600403527 Boring 4 P5 30 65.86 446.98 1424.00 3.185 Choctawhat chee 600403527 Boring 8 P11 30 84.99 669.56 1492.00 2.228 Choctawhat chee 600403527 Boring 17 P17 30 76.33 498.30 1616.00 3.243 Choctawhat chee 600403527 Boring 17 P23 30 79.45 522.32 792.00 1.516 Choctawhat chee 600403527 Boring 23 P29 30 83.6 1107.32 990.00 0.894 Choctawhat chee 600403527 Boring 23 P35 30 78.06 1099.94 1484.00 1.349

PAGE 83

58 Table 6-1. Continued Project Name Project Number Borin g Name Pile Name Pile Width (in) Penetration Length (ft) Predicted Capacity (kips) Measured Davisson (kips) Bias Choctawhat chee 600403527 Boring 25 P41 30 63.86 378.32 1440.00 3.806 Choctawhat chee 600403527 Boring 27 FSB2624 70.84 182.94 960.00 5.247 Choctawhat chee 600403527 Boring 1 FSB3 24 81.65 198.80 498.00 2.505 Buckman Bridge 720013462 B-33 13 30 98.96 932.76 1106.00 1.185 Buckman Bridge 720013462 B-34 19 30 94.76 1201.10 1312.00 1.092 Buckman Bridge 720013462 B-35 24 30 86.6 889.16 1148.00 1.291 Buckman Bridge 720013462 B-36 29 30 81.01 898.06 1264.00 1.407 Apalachico al River, Blountstow n 470103519 TH-77 TS20 30 59.63 1266.96 1650.00 1.302 Apalachico al River, Blountstow n 470103519 TH-99 TS21A30 76.8 1460.94 1100.00 0.752 Apalachico al River, Blountstow n 470103519 TH117 TS22 30 66.58 1319.74 1200.00 0.909 Blackwater River Bridge Replaceme nt 580023449 LT-1 LT-1 24 77.5 960.58 600.00 0.624 Blackwater River Bridge Replaceme nt 580023449 LT-2 TS2-224 75.4 974.92 840.00 0.861 Bayou Chico 480503536 B-2-11 5 24 37.7 389.20 692.00 1.778 Bayou Chico 480503536 B-3 10 24 37.9 428.70 640.00 1.492 Bayou Chico 480503536 B-2-25 15 24 27 482.40 690.00 1.430

PAGE 84

59 Table 6-1. Continued Project Name Project Number Borin g Name Pile Name Pile Width (in) Penetration Length (ft) Predicted Capacity (kips) Measured Davisson (kips) Bias Blount Island Marine Terminal B-20 B-20 20 46.2 748.60 568.20 0.759 Sunshine Skyway 151703421 P-2 Test Site 1 24 49.2 725.64 872.00 1.201 Sunshine Skyway 151703421 P-2 Test Site 1 20 47.3 548.86 590.00 1.074 Sunshine Skyway 151703421 P-6 Test Site 3 24 48 551.46 1172.00 2.125 Sunshine Skyway 151703421 P-13 Test Site 1024 27.9 612.82 1248.00 2.036 Sunshine Skyway 151703421 P-18 Test Site 1320 20.63 356.56 644.00 1.806 Sunshine Skyway 151703421 P-18 Test Site 1324 26.91 668.10 624.00 0.933 Escambia River Bridge 481403509 Boring 9 Bent 524 86.8 531.38 950.00 1.787 Escambia River Bridge 481403509 Boring 29 Bent 77 24 61.39 373.38 1593.00 4.266 Port of Miami Dodge Island 870003675 WB-2 LT 30 41.8 1078.70 1240.00 1.149 SR312 Bridge over the Matanzas River 780023509 BLA-9 14 24 97.5 514.60 1077.00 2.092 SR312 Bridge over the Matanzas River 780023509 BLA-9 17 24 103.6 545.40 1782.40 3.268 Port Orange Intercoastal and Relief Bridges 791803514 Boring 1 2 18 27.9 253.16 248.00 0.979 Port 79180-Boring 19 18 30.9 197.16 203.00 1.029

PAGE 85

60 Orange Intercoastal and Relief Bridges 3514 2 Vilano Bridge Replaceme nt 780303546 WB-2 TS1 24 66.58 714.70 1106.00 1.547 Vilano Bridge Replaceme nt 780303546 DOT-4 TS2 24 73.54 583.04 1392.00 2.387 I-275 Howard Frankland Bridge 151903446 33W TS1 24 54.8 940.12 970.00 1.031 I-275 Howard Frankland Bridge 151903446 3E TS3 30 39.6 1058.62 2000.00 1.889 I-275 Howard Frankland Bridge 151903446 65E TS4Long 30 73.5 1554.50 1020.00 0.656 I-275 Howard Frankland Bridge 151903446 65E TS4shrt 30 24.6 340.26 2000.00 5.877 It has been converted into the following DIGGS file: 1. 2. Mark Styler's Pile Load Test Data 3. Mark Styler's Pile Load Test Data 4. 1 5. 2006-4-23 6. Mark's Collected Pile Data 7. 0 8. 9. 10. Acosta Bridge 11. 72160-3506 12. 13. 14.

PAGE 86

61 15. 16. 44 17. 18. 19. Constructed 20. 1 21. 22. 23. 24. Concrete 25. 26. 24 27. 24 28. 29. 30. Concrete 31. 32. 24 33. 24 34. 35. 36. 37. Vertical 38. Design 39. FB-Deep 40. 41. 677.5 42. 43. acosta-f6.spc 44. FB-Deep 45. 46. 47. 48. Static-LT 49. 50. Vertical 51. Measured 52. Davisson 53. 776 54. 55. 56. 57. 58. 59.
The above is only a small fragment of th e generated DIGGS file. It actually only covers the first row in the Table 6-1. As well as identifying the pile, it includes the

PAGE 87

62 predicted resistance, measured resistance, and a local link to the FB-D eep file. The root element, TransmissionInformation, also has mu ltiple projects as children. This data was used in the reliability calculati ons found in the following chapters.

PAGE 88

63 CHAPTER 7 LRFD BACKGROUND Overview Many methods have been developed to calib rate the LRFD resi stance factors using statistical data. FOSM (F irst Order Second Moment) is popular because it does not require a computer program to find the result s. FORM (First Order Reliability Method) is more complicated that FOSM and iterates to find a solution. Each of these methods results in a different set of resistance factors. To understand why the resistance factors are different it is important to explore the background for each method. One of the most important concepts is deriving rando m variables from statistical data. Table 7-1. List of Variables Symbol Definition Reliability index T Target reliability index D2 Result of a Chi-Squared analysis of a dataset Resistance factor Cumulative density function (CDF) for a standard normal Gaussian random variable (mean of zero, standard deviation of 1). Inverse of standard CDF FS Factor of Safety fX(x) Probability density function of Gaussian random variable X FX(x) Cumulative density function of Gaussian random variable X fY(y) Probability density function of lognormal random variable Y FY(y) Cumulative density function of lognormal random variable Y Load factor G Failure equation in terms of random variables, G = R Q QD Dead load factor QL Live load factor Ductility, redundancy, and opera tional importance modifier

PAGE 89

64 Table 7-1. Continued. Symbol Definition QD Lognormal random variable representing the dead load bias QL Lognormal random variable repr esenting the liv e load bias R Lognormal random variable representing the resistance bias pdf(..) Probability density function for a standard normal Gaussian random variable pf Probability of failure q Scalar, combination of applied loads. Load component of de sign point in real space. Q Lognormal random variable representing the load q* New design load in normal space, part of the normal space design point qD Scalar, the applied dead load QD Lognormal random variable representing the dead load qL Scalar, the applied live load QL Lognormal random variable representing th e live load QN Normal random variable for the load QSN Standard normal random variable for the load rm Scalar, the measured resistance rn Scalar, the nominal predicted resistance r* New design resistance in normal space, part of the normal space design point r Resistance component of de sign point in real space. RN Normal random variable for the resistance RSN Standard normal random variable for the resistance D Standard deviation of the dead load bi as, not the lognormal standard deviation L Standard deviation of the live load bi as, not the lognormal standard deviation R Standard deviation of the resistance bias, not the l ognormal standard deviation X Standard deviation of X. X Generic Gaussian random variable (RV). Y Lognormal mean of Y Y Generic lognormal ra ndom variable (RV). Y Lognormal standard deviation of Y Mathematical Background Random Variables A random variable is a variable without an exact value. It pertains to a set of values, or a range, and the pr obability of occurrence. A probability density function, often referred to as a pdf, is a representati on of a continuous random variable. Taking the integral of a pdf between two values yields the probability of the random variable being

PAGE 90

65 within those limits. Consequently, integrati ng a pdf from negative infinity to positive infinity is always 1. There are two classes of random variables, discrete and continuous. Probability Mass Function Discrete RV0 0.1666667 0.3333334 0.5000001 0.6666668 0.8333335 1.0000002 01234567 Figure 7-1. Discrete Random Variable Probability Mass Function Discrete random variables have specific values in its domain. An example of a discrete random variable would be the roll of a die. Discrete random variables are described with probability mass functions in lieu of probabil ity density function. Figure 7-1 represents a graph of a probability mass function for the random variable example of the roll of a die. There is a 1/6 chance fo r each number to occur, 1 through 6. The probability of a roll being less th an or equal to 3 is 50% (3 1 XP). There are many types of discrete random variables, including Bernoulli, Binomial, Geometric, Negative Binomial, and Poisson (Leon-Garcia, 1994). The example presented would be a uniform discrete random variable, since each item in th e domain has an equal chance of occurring.

PAGE 91

66 PDF Continuous RV0 0.5 1 1.5 2 2.5 -1.5-1-0.500.511.5 Figure 7-2. Continuous Random Variable PDF Continuous random variables deal with ranges of values. An example of a continuous random variable would be the wind speed at a certain point in space. It should be recognized that the probability of a single value on a continuous random variable is always zero. For example, th e probability that the wind speed is 5.68745 mph is zero. This is because there are an infi nite number of possible wind speeds. However, the probability that the wind speed is betw een 3 and 5 mph can be determined. Many continuous random variables exist, and th e primary difference is the probability distribution. Some of thes e types include Uniform, Expone ntial, Gaussian (Normal), Lognormal, Gamma, Rayleigh, Cauchy, and Laplacian (Leon-Garcia, 1994). Equation 7-1 is the equation for the pr obability density function (pdf) of the Gaussian random variable. X X E x XXe x f 2 ) (2 22 ]) [ ( Eq. 7-1 In Equation 7-1, E[X] is the mean and X is the standard deviation. E[X] is the first moment of the random variable X; it is often referred to as the mean or expected

PAGE 92

67 value. The pdf can be completely defined using these two parameters. The mean for a dataset is found with the following equation. N x X Ei ] [ Eq. 7-2 N is the number of elements within the dataset. The standard deviation of this dataset is found using Equation 7-3. 1 ] [2 N X E xi X Eq. 7-3 The coefficient of variation (COV) of the dataset is in Equation 7-4. ] [ ] [X E X COVX Eq. 7-4 This is not to be confused with the cova riance or the variance. Covariance is the second central moment of two random variable s, the correlation being the first central moment. If the random variable s are independent then the co variance is 0. All of the random variables so far mentioned, load, resi stance, resistance bias and load bias, are independent. The variance of a random variab le concerns the extent of the variation about the mean. ] ]) [ [( ] [ ] [ ] [ ] [2 2 2 2X E X E X E X E X VAR X VARX Eq. 7-5 The syntax for representing random variable moments is introduced in the second equation. The second equation corresponds to the second moment of random variable X minus the first moment squared. The first moment of a random variable is the mean. The COV is the coefficient of variation, not the variance or covariance, and the terms are

PAGE 93

68 not interchangeable. Equation 7-6 solves th e COV in terms of the moments of random variable X. 2 2 2 2 2 2]) [ ( ] [ ]) [ ( ]) [ ( ] [ ]) [ ( ] [ ] [ ] [ X E X VAR X E X COV X E X E X E X E X COVX X Eq. 7-6 The following figure represents the pdf of a normal random variable with a mean of 5 and a standard deviation of 0. 7, and corresponding COV of 0.14. Figure 7-3. Gaussian Random Variable PDF The lognormal distribution is related to th e normal distribution. Unlike a normally distributed random variable, the lognormal dist ribution is zero for every negative value. This makes it an ideal choice for representi ng phenomena that cannot be negative. The lognormal distribution Y is define d is defined in Equation 7-7. Xe Y Eq. 7-7 In Equation 7-7, X is a normally distributed random variable.

PAGE 94

69 Equation 7-8 defines the probability density function of a lognormal random variable. y e y fY y YY Y 2 ) (2 22 ) ) (ln( Eq. 7-8 Figure 7-4. Lognormal Random Variable PDF The figure represents three separate lognormal probability density functions. As shown in the pdf equation, they are define d by only their lognormal mean and lognormal standard deviation. The pl otted lognormally distributed probability density functions correspond to lognormal means 0, 0.5, a nd 1 with respective lognormal standard deviations of 0.5, 0.1, and 1. The lognormal mean (Equation 7-9) and l ognormal standard deviation (Equation 710) are required to solve the pdf of a lognormal random variable.

PAGE 95

70 2]) [ ( 1 ] [ ln Y COV Y EY Eq. 7-9 ) ]) [ ( 1 ln(2Y COVY Eq. 7-10 The coefficient of variation (COV[Y]) and first moment E[Y] are from the normal random variable X in the lognorma l definition equation (Eq. 7-7). Moments of a Random Variable The moments of a random variable de scribe the shape of the probability distribution curve. The nth moment of a continuous ra ndom variable is defined by Equation 7-11. dx x f x X EX n n] [ Eq. 7-11 X is the random variable, E[Xn] is the nth moment of X, and fX(x) (Eq. 7-1, Eq. 78) is the probability distribution function for X. The first few moment values are related to well known statistical descriptions. The first moment is the mean of X. The mean and the second moment can be used to find the standard deviation of X and va riance of X. It is possible for a random variable to be asymmetric about the mean. This is measured with the skewness, wh ich is derived from the third moment (Christian, 1999). 3 3] [X xX E v Eq. 7-12 The following equation can be used to solve for the kth moment of a lognormal distribution. 22 2] [Y Yk k ke Y E Eq. 7-13

PAGE 96

71 Y (Eq. 7-9) is the lognormal mean and Y (Eq. 7-10) is the lognormal standard deviation. Note that E[Y1] will equal the normal mean, not the lognormal mean ( Y ) used in the above equation (Goldberg, 1984). Chi-Squared Analysis The Chi-Squared analysis measures how we ll a chosen random variable fits a data set. As previously mentioned, lognormal distributions are typically used when the variables cannot be negative. However, as previously shown, lognormal distributions are positively skewed. The Chi-Squared analysis can be used to determine whether a dataset is better represented as a nor mal or lognormal random variable. Distribution Histogram0 2 4 6 8 10 12 14 160.12 5 0.37 5 0.62 5 0.87 5 1.12 5 1.37 5 1.62 5 1.87 5 2.12 5 2.37 5 2.62 5 2.87 5 3.12 5 3.37 5 3.62 5 3.87 5 4.12 5 4.37 5 4.62 5 4.87 5 5.12 5 5.37 5 5.62 5 5.87 5 6.12 5Average Bin ValueCount Dataset Resistance Bias Normal Distribution Lognormal Distribution Figure 7-5. Distri bution Histogram The following procedure is used to calcu late the Chi-Squared value for a random variable (X) distribut ion (Leon-Garcia 1994): 1. Divide the sample space into K bins. This is similar to creating a histogram of the probabilities. See Figure 7-5.

PAGE 97

72 2. Compute the probability of X being in each bin. This is done by integrating the pdf of X on the bin limits, or by subtracting the maximum value of the cdf of X by the minimum value. Multiply this probability by the total number of elements in the dataset to find the expected number of elements (mk) in this bin using X. 3. Perform the following calculation: K k k k km m N D1 2 2) ( Eq. 7-14 Nk is the actual number of elements from the dataset in bin k, mk is the projected number of elements using random variable X, and D2 is the chi-squared result. 4. The random variable distribution with the smallest D2 best fits the dataset. The above histogram was generated using th e data presented in Chapter 6. The Chi-Squared value for a lognormal distributi on is 8.89, while the value for a normal distribution is 48.4. This proves that a lognormal random variable is a better representation for the re sistance bias than a nor mal random variable. Cumulative Distribution Functions Cumulative Distribution Func tions (cdf) represent the in tegration of a probability density function (pdf) from negative infinity up until the function point. Figure 7-6 represents the cdf for a standard normal probability density function. CDF0 0.2 0.4 0.6 0.8 1 1.2 -4-2024 xProbabilit y Figure 7-6. Cumulativ e Distribution Function

PAGE 98

73 This represents the probability that the random number is less than x. It will approach a value of 1 as x goes to positive infinity. Microsoft Excel has a number of functions that return cumulative distribution re sults. The following table of functions are useful when working with random variables. Table 7-2. Microsoft Excel Random Variable Functions =NORMDIST(x, mx, x, True/False) This function is for a nor mal random variable. If the parameter is True it uses the CDF function. If False it uses the PDF function. =NORMINV(probability, mx, x) This is the inverse of the CDF function. It returns the location on the PDF at which an integration from negative infinity would yield the given probability. =NORMSDIST(x) This is the CDF for a normally distributed variable with a mean of 0 and a standard deviation of 1. =NORMSINV(x) This is the inverse of the CDF with a mean of 0 and standard deviation of 1. =LOGNORMALDIST(x, x, x) This is the CDF for a lognormal distribution with the given lognormal mean and standard deviation. =LOGINV(probability, x, x) This is the inverse of the lognormal CDF. Calibration Methods Fitting to ASD ASD, allowable stress design, is the simplest design constraint. It assigns a safety factor to certain designs, which equals the ratio of predicted resistance to driving forces. The intention is for ASD safety factors to be modified using engineering judgment. Equation 7-15 is the principal ASD equation. i nq r FS Eq. 7-15 FS represents the factor of safety, rn is the nominal resistance, and qi are the driving loads (live, dead, wind, earthquake, etc...).

PAGE 99

74 Equation 7-16 is the principal LRFD equation. i i i nq r Eq. 7-16 is the resistance factor, rn is the nominal resistance, i is the ductility, redundancy, and operation importance modifier, i is the load factor, and qi is a driving load. The following LRFD calibration is summarized from the NHI (National Highway Institute, 1998). Rearrange the ASD equation as shown in Equation 7-17. i nq FS r Eq. 7-17 Divide the LRFD equation (Eq. 7-16) by the ASD equation (Eq. 7-17) as in Equation 7-18. i i i i n nq FS q r r Eq. 7-18 When only considering dead and live loads Equation 7-19 solves the load summation. L D iq q q Eq. 7-19 Set i, the ductility, redundancy, and operati on importance modifier, equal to 1 and substituting in the dead and live loads with their corres ponding load factors yields Equation 7-20. ) (L D L QL D QDq q FS q q Eq. 7-20 Solving for the minimum resistance f actor and dividing the numerator and denominator by qL yields Equation 7-21.

PAGE 100

75 ) 1 ( L D QL L D QDq q FS q q Eq. 7-21 Dividing the numerator and denominator by qL results in an equation in terms of the ratio of dead to live load. With this equation, an LRFD resistance factor can be determined that conforms to ASD designs. Lo ad factors and the factor of safety can be found in design manuals, the dead to liv e load ratio is problem specific. FOSM – First Order Second Moment FOSM has been used (NCHRP 507, 2004) to calibrate LRFD factors using a statistical dataset containing the measured and predicted resistances. It is very important that the same method of resistance predicti on and measured resistance evaluation be used for each data pair. For example, all of the resistance predictions can be made using the FB-Deep method and all of the measured re sistances can be determined using the Davidson criteria. Equation 7-21 define s the bias of member i of the. n m ir r Eq. 7-21 i is the bias, rm is the measured Davission resistance, and rn is the nominal resistance. Each element in the dataset wi ll have a corresponding bias. The average of these biases is found with Equation 7-22. N Ei R ] [ Eq. 7-22 N is the number of elements within the dataset. The standard deviation of the dataset is calculated with Equation 7-23.

PAGE 101

76 1 ] [2 N ER i R Eq. 7-23 The coefficient of variation (COV) of the bias data is solved with Equation 7-24. ] [ ] [R R RE COV Eq. 7-24 FOSM assumes that the load and resi stance are modeled as lognormal random variables. This limits the load and resistance values to only positive numbers. The following figure represents the probability de nsity functions for a case with different means and COV for both the load (Q) and resi stance (R). Both of these are lognormal random variables; as such the lognormal mean and lognormal standard deviation are used as the parameters that determine the shape of the probability density function (Eq. 7-8). Figure 7-7. Lognormal Lo ad and Resistance PDF

PAGE 102

77 The probability of failure equals the probability that the load (Q) is greater than the resistance (R). The shaded region (Figure 7-7) represents the area where, due to uncertainty, the applied load may exceed the provided resistance. Although, probabilities can be determined by integrating PDFs, the ar ea of the shaded region does not equal the probability of failure. In geotechnical engin eering the loads tend to be better known, and thus have less uncertainty. This is reflected by the smaller standard deviation of the load PDF. Both the load and resistance PDF exte nd from 0 to infinity, and it will always be impossible to complete remove the possibility of failure. The reliability index is f ound using a function of the two random variables R and Q. Assuming RN and QN are normally distributed, this combined function becomes Equation 7-25. N N N NQ R Q R g ) ( Eq. 7-25 When QN is larger then RN, g() is negative. Therefore, failure can be defined as when g() is less then or equal to zero. However, FOSM assumes that the load and resistance random variables are lognormal random variables. Equation 7-26 is found by considering the relationshi p between a normally distri buted random variable RN, and a lognormal random variable R (Eq. 7-7) with respect to the definition of a lognormal random variable. N RR R e RN ln Q R Q R Q R g ln ln ln ) ( Eq. 7-26 This equation is equivalent to the first de finition of g(R,Q). When R is less then Q g() will still be negative. The g( R,Q) function is a random variable.

PAGE 103

78 Q R Q R g G ln ) ( Eq. 7-27 Yet, R/Q is a lognormal random variable. Therefore the distribution of ln(R/Q) is normal. This results in the random va riable G having a normal distribution. Figure 7-8. Failure Region Reliability index The following derivation for th e reliability index is based largely on NHI 1998. The reliability index ( ) is defined as the mean value of G (E[G]) divided by the lognormal standard deviation of G ( G). GG E ] [ Eq. 7-27

PAGE 104

79 The expected value of G can be found usi ng the previous defined failure equation. Equation 7-28 is the solution for the expected value of G. 2 2]) [ ( 1 ] [ ln ]) [ ( 1 ] [ ln ] [ )] [ln( )] [ln( ] [N N N NQ COV Q E R COV R E G E Q E R E G E 2 2]) [ ( 1 ] [ ]) [ ( 1 ] [ ln ] [N n N NR COV Q E Q COV R E G E Eq. 7-28 With RN and QN being normally distributed, so that E[RN] and E[QN] are the normal means. The coefficients of variati on are also calculated using the normal means and normal standard deviations. )] ]) [ ( 1 )( ]) [ ( 1 ln[(2 2 N N GQ COV R COV Eq. 7-29 Equation 7-30 is found by substituting Equation 7-28 and Equation 7-29 into Equation 7-27. )] ]) [ ( 1 )( ]) [ ( 1 ln[( ]) [ ( 1 ] [ ]) [ ( 1 ] [ ln2 2 2 2N N N N N NQ COV R COV R COV Q E Q COV R E Eq. 7-30 Solving for the resistance factor The following derivation for the resistance factor is based largely on NHI 1998. Solving for the resistance factor begins with the fundamental LRFD equation (Eq. 7-16). i i nq r In this equation rn stands for the nominal resistan ce. Solving for the resistance factor and plugging in the bi as yields Equation 7-31.

PAGE 105

80 ] [ ] [ ] [ ] [ 1R N n R n N R n N i i nE R E r E r R E r R q r i i N Rq R E E ] [ ] [ Eq. 7-31 E[RN] is the expected value of the normally distributed resistance random variable. The next step involves solvi ng the reliability in dex equation previously derived (Eq. 730) for the E[RN] term. ) ]) [ ( 1 ( ) ]) [ ( 1 ( ] [ ] [2 2 )] ]) [ ( 1 )( ]) [ ( 1 ln[(2 2N N Q COV R COV N NR COV Q COV e Q E R EN N T Eq. 7-32 This is then substituted into the f undamental LRFD equitation (Eq. 7-16). )] ]) [ ( 1 )( ]) [ ( 1 ln[( 2 22 2] [ ) ]) [ ( 1 ( ) ]) [ ( 1 ( ] [N N TQ COV R COV N i i N N Re Q E q R COV Q COV E Eq. 7-33 NHI 1998 represents the coefficient of va riation of the load as Equation 7-34. 2 2 2]) [ ( ]) [ ( ]) [ ( QL COV QD COV Q COV Eq. 7-34 Combining Equations 7-34 and 733 results in Equation 7-35. )] ]) [ ( ]) [ ( 1 )( ]) [ ( 1 ln[( 2 2 22 2 2] [ ) ( ) ]) [ ( 1 ( ) ]) [ ( ]) [ ( 1 ( ] [QL COV QD COV R COV N L QL D QD N RN Te Q E q q R COV QL COV QD COV E Eq. 7-35 L QL D QD Nq E q E Q E ] [ ] [ ] [ Eq. 7-36

PAGE 106

81 Using Equation 7-36, where QD and QL are the dead and live load bias factors respectively, with Equation 735 results in Equation 7-37. )] ]) [ ( ]) [ ( 1 )( ]) [ ( 1 ln[( 2 2 22 2 2]) [ ] [ ( ) ( ) ]) [ ( 1 ( ) ]) [ ( ]) [ ( 1 ( ] [QL COV QD COV R COV QL L D QD QL L D QD N RN Te E q q E q q R COV QL COV QD COV E Eq. 7-37 This equation is used to calibrate the resi stance factor using th e FOSM method. It is dependent on the target re liability index and the ratio of dead to live load. The following table summarize what each term represen ts as well as providing a value if it is specified by a code. Table 7-3. FOSM Resistan ce Factor Equation Variables Variable Name Description E[ R] Mean resistance bias Factor This term corrects the predicted resistance so that it equals the nominal resistance. It is determined from statistical data concerning the method being analyzed. COV[QD] Coefficient of Variation of the dead load The coefficient of variation is the standard deviation over the mean. This accounts for uncertainty in the dead load. It should be between 0.08-0.15 (Scott 2003 referencing Nowak 1994 and Ellingwood and Tekie 1999) COV[QL] Coefficient of Variation of the live load This accounts for uncertainty in the live load. It should be 0.25 (Scott 2003 referencing Ellingwood and Tekie 1999) COV[ R] Coefficient of Variation of the resistance bias factor This represents the uncertainty in the bias factor can is statistically determined.

PAGE 107

82 Table 7-3. Continued. Variable Name Description QD Load factor for the dead load Load factors are dependant on the type of loading and the limit state controlling the design. A value of 1.25 (AASHTO 1998) should be used for the ultimate limit state under gravity loads. L Dq q Dead load to live load ratio This factor is determined by the structure being designed. QL Load factor for the live load A value of 1.75 (AASHTO 1998) should be used for the ultimate limit state under gravity loads. E[ QD] Expected bias factor for the dead load This represents the bias in the measured or predicted value to the actual value. It should be between 1.03 and 1.05 (Scott 2003 referencing Nowak 1994 and Ellingwood and Tekie 1999) E[ QL] Expected Bias factor for the live load This should be 1.0 (Scott 2003 referencing Ellingwood and Tekie 1999) T Target reliability index The target reliability index depends on the importance of the structure being designed. It is typically between 1.5 and 6.0. Equation 7-38 demonstrates that COV[ R] is equivalent to COV[RN]. ] [ ] [ ] [ ] [2R n N R n N R n NVAR r R VAR E r R E r R 2 2 2 2 2 2 2]) [ ( ]) [ ( ] [ ]) [ ( ] [ ]) [ ( ] [ ]) [ (R R R R n R n N N NCOV E VAR E r VAR r R E R VAR R COV Eq. 7-38

PAGE 108

83 Correcting FOSM An error in the published FOSM equation consistently results in lower than actual resistance factors. The FOSM resistance f actor equation can be co rrected to result in values much closer to the FORM results. This is done by solving for the (COV[Q])2 instead of assuming that (COV[Q])2 = (COV[QD])2 + (COV[QL])2. Consider the following de rivation of the (COV[Q])2 using Eq. 7-6. 2 2 2 2]) [ ( ] [ ]) [ ( ]) [ ( Q E Q VAR Q E Q COVQ Eq. 7-39 Using the dead and live load bias factors as random variables and qD and qL as scalar dead and live load values, the square of the expected value of the load becomes Equation 7-40. 2 2 2 2 2] [ ] [ ] [ 2 ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [QL L QL QD L D QD D QL L QD D QL L QD D QL L QD D L DE q E E q q E q Q E E q E q Q E q E q E Q E q q Q Q Q Q 2 2 2 2 2 2] [ ] [ ] [ 2 ] [ ] [QL QL QD L D QD L D LE E E q q E q q q Q E Eq. 7-40 Note that in Equation 7-40 the square of the live load has been pulled out. Now inside the parentheses is in terms of the dead to live load ratio. The variance of Q is equal to Equatio n 7-41. The derivation uses both the definition of Q and the expected value of Q. It begins with the basic definition of the variance given in Equation 7-5.

PAGE 109

84 ] [ ] [ ] [ ] [ 2 ] [ ] [ ] [ ])] [ ])( [ [( 2 ] ]) [ [( ] ]) [ [( ] [ ])] [ ])( [ ( 2 ]) [ ( ]) [ ( [( ] [ ] ])) [ ( ]) [ ( [( ] [ ] ]) [ ] [ [( ] [ ] ]) [ [( ] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 QL L QD D QL QD L D QL L QD D QL QL QD QD L D QL QL L QD QD D QL QL QD QD L D QL QL L QD QD D QL QL L QD QD D QL L QD D QL L QD DVAR q VAR q Q VAR COV q q VAR q VAR q Q VAR E E E q q E E q E E q Q VAR E E q q E q E q E Q VAR E q E q E Q VAR E q E q q q E Q VAR Q E Q E Q VAR ] [ ] [ ] [2 2 2 QL QD L D LVAR VAR q q q Q VAR Eq. 7-41 In the above derivation COV stands for the covariance, not the coefficient of variation. Since the bias fact ors for dead and live load ar e independent random variables the covariance equals zero. Using (E[Q])2 (Eq. 7-40) and VAR[Q] (Eq. 7-41) the square of the coefficient of variation for the load (COV[Q])2 can now be solved. 2 2 2 2 2 2 2 2 2 2 2 2 2] [ ] [ ] [ 2 ] [ ] [ ] [ ]) [ ( ]) [ ( ] [ ]) [ ( ]) [ (QL QL QD L D QD L D L QL QD L D L QE E E q q E q q q VAR VAR q q q Q COV Q E Q VAR Q E Q COV 2 2 2 2 2 2 2] [ ] [ ] [ 2 ] [ ] [ ] [ ]) [ (QL QL QD L D QD L D QL QD L DE E E q q E q q VAR VAR q q Q COV Eq. 7-42

PAGE 110

85 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0246810qD/qL(COV[Q])2 Original New 0.0625 0.0064 Figure 7-9. (COV[Q])2 versus Dead to Live Load Ratio Note that in Figure 7-9 if the dead to live load ratio is zero, then the (COV[Q])2 equals the (COV[QL])2. A ratio of zero means that there is no dead load. Furthermore, there is an asymptote equal to (COV[QD])2 for the (COV[Q])2 as the dead to live load approaches infinity. The variance can be represented in terms of the coefficient of variation as in Equation 7-43. ] [ ] [ ] [ ] [ ] [2 QD QD QD QD QD QD QD QDCOV E E COV VAR

PAGE 111

86 2 2]) [ ( ]) [ ( ] [QD QD QDCOV E VAR Eq. 7-43 Now the resistance factor equation (Eq. 7-33 ) can be rewritten using Eq. 7-42 and Eq, 7-43 as Equation 7-44. )] ]) [ ( ] [ ] [ 2 ]) [ ( ]) [ ( ]) [ ( ]) [ ( ]) [ ( 1 )( ]) [ ( 1 ln[( 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2]) [ ] [ ( ) ( ) ]) [ ( 1 ( ) ]) [ ( ] [ ] [ 2 ]) [ ( ]) [ ( ]) [ ( ]) [ ( ]) [ ( 1 ( ] [ QL QL QD L D QD L D QL QL QD QD L D TE E E q q E q q COV E COV E q q R COV QL L D QD QL L D QD QL QL QD L D QD L D QL QL QD QD L D Re E q q E q q R COV E E E q q E q q COV E COV E q q E Eq. 7-44 The FOSM equation is still in terms of the target reliability index and the dead to live load ratio. Probability of Failure As previously stated, G is a normally distributed random variable. Figure 7-8 shows that the region of failure is from negative infinity to zero. The probability of failure is then equation to Equation 7-45. 0 2 ]) [ (22 2dg e pG G E g fG Eq. 7-45 E[G] is the expected value of the random variable G, and G is the standard deviation. There is no closed form solution to this integral. Rosenbleuth and Esteva (1972) defined E quation 7-46 as an approximation of the probability of failure.

PAGE 112

87 3 4460 e pf Eq. 7-46 The cumulative distribute function of a ga ussian random variable is defined in Equation 7-47. m x Eq. 7-47 Again, this is used to represent the inte gration of the gaussian PDF, but no exact solution equation exists. We are interested in the probability of failure, which is equal to an integration of the pdf from negative infinity to zero. This is equivalent to the CDF value at x=0. Using Eq. 7-47 the probability of failure can then be defined as Equation 748. G fG E p ] [ 0 Eq. 7-48 The Q function (Leon-Garcia 1994) is ofte n used in electric al engineering to estimate the probability of the tail of a gaussian random variable. It is defined as Equation 7-49. 2 2 1 1 1 1 ) ( 1 ) (2 22xe x x x x Q Eq. 7-49 This results in Equation 7-50 representing an estimated probability of failure. Q pf Eq. 7-50 The following table compares the tw o presented probability of failure approximations. It shows that the Q f unction provides a significantly better approximation of the probability of failure.

PAGE 113

88 Table 7-4. Comparison of Probabi lity of Failure Approximations Exact pf Rosenbleuth and Estevas’ pf Percent Error Q() Percent Error 1.00 1.59E-01 6.241537146 3832.916 0.15705 -1.03975 1.25 1.06E-01 2.1302226 171917.256 0.104748 -0.80701 1.50 6.68E-02 0.7270401 98988.3835 0.066339 -0.69063 1.75 4.01E-02 0.248137187 518.796 0.039832 -0.6694 2.00 2.28E-02 0.084688665 272.2579 0.022646 -0.4567 2.25 1.22E-02 0.028904051 136.9185 0.01218 -0.16756 2.50 6.21E-03 0.0098648 8858.85488 0.006191 -0.30097 2.75 3.00E-03 0.0033668 6412.2288 0.002973 -0.91154 3.00 1.35E-03 0.001149103 -14.8812 0.001347 -0.20098 3.50 2.30E-04 0.0001338 52-41.8033 0.000232 1.012373 4.00 3.20E-05 1.55917E-0551.276 3.16E-05 -1.11483 4.50 3.40E-06 1.81618E-06-46.5829 3.4E-06 -0.13025 5.00 2.87E-07 2.11557E-0726.2869 2.87E-07 -0.16563 5.50 1.90E-08 2.4643E-08 29.69993 1.9E-08 -0.08728 6.00 9.87E-10 2.87052E-09 190.8326 9.86E-10 -0.06587 This table is an extension of the comp arison of exact versus Rosenbleuth and Estevas’ approximations of pr obability of failures in NCHR P 507. The Microsoft Excel function =NORMSDIST() can be used to find the exact probability of failure. There is a direct relationshi p between the target reliabil ity index and the probability of failure. Typically, the target reliabili ty index is provided specified by codes for specific substructure and superstructure combinat ions. The resistance factor is typically a function of the target reliability index and the dead to live load ratio. FORM – First Order Reliability Method According to NCHRP 507, structure de sign codes have been calibrated using FORM. The NCHRP 507 report then states that it is important for geotechnical resistance factors to be calibrated by FORM in order to be applicab le to the developed load factors. Finally, the NCHRP report also shows that the resistance factors developed by FORM tend to be 10 to 15% greater than the factors developed using the FOSM

PAGE 114

89 method. This means that the FOSM resist ance factors are conservative. Since the purpose of LRFD is to design based off of the pr obability of failure, it is more beneficial to have accurate resistance factors. Furt hermore, it is recognized that the FORM resistance factors are more accurate. The following method for calibrating the resi stance factor is based off of a paper from Phoon, Kulhawy, and Grigoriu 2003. It ha s been modified to be more complete and specific to the problem being analyzed. Langley, 2000, presents the same FORM algorithm in a more general manner. The La ngley algorithm is structurally similar; however it is more abstract and can handle an an alysis in a reliability space of 3 or more dimensions. The algorithm used by the FORM analysis peformed for this thesis is presented in Figure 7-10. Define the failure equation The failure equation is used to describe a specific limit state of a system. Failure occurs when the failure equation is less than or equal to zero. The failure equation is typically the difference of the resi stance and load random variables. Q R G R is a random variable repres enting the actual provided resistance. Q represents the actual applied load. No loading factors are us ed in this equation. Failure is when the system actually fails. The R and Q random va riables are functions of the bias factor random variables. QL L QD D R nq q Q r R The bias factors are lognormal random variables.

PAGE 115

90 Define Failure Equation Choose RV Distributions Acceptable Distribution? Pick LRFD Factors to Analyze Select Point Compute Initial Design Point Compute Equivalent Normal Distributions Transform all RV into Standard Normal RV Rewrite the Failure Equation in terms of Standard RV Revise the Design Point Calculate the Reliability Index Next Point Yes No Next Finished Check Another LRFD Factor Yes Finished No Stable? Yes Transform Design Point to Real Space No Figure 7-10. FORM Load Fa ctor Calibration Algorithm Choose random variable distributions The distribution of the random variables will typically be either normal or lognormal. The distribution should be c hosen based on properties of the random variable. If statistical data has been collected a Chi-Squared check can be used to justify a chosen random variable distribution. Prev iously in this chapter it was shown that the resistance bias is best modele d with a lognormal random variable.

PAGE 116

91 Distributions0 0.05 0.1 0.15 0.2 0.25 0123456 BiasProbability Bias Data Normal Lognormal Figure 7-11. Resistance Bias plot with Equivalent Normal and Lognormal Distributions Choose LRFD factors to analyze The probability of failure for a design is based on the factors used to develop the design. Load factors are typically specified by organizations. In FOSM the resistance factor is solved for a specific reliability index and dead to live load ratio. In FORM the resistance factor is chosen and the correspondi ng reliability index is solved. Due to this difference, multiple resistance factors will need to be checked in order to target certain reliability indexes. Target reliability i ndexes are achieved by repeatedly modifying the selected resistance factor. In order to prom ote convergence on a target reliability index, the resistance factor should be increased or decreased in a simi lar magnitude to the difference in the reliability index and target reliability index.

PAGE 117

92 0 100 200 300 400 500 600 700 800 900 1000 02004006008001000 ResistanceLoad Failure Design SpaceFigure 7-12. Failure and Design Space Figure 7-12 depicts both the fa ilure and acceptable design space. Failure occurs whenever the actual load and resistance combin ation plots a point in the failure space. The limit of the failure space is when the resistance equals the load. The design space is separated from the failure space due to the load and resistance factors. A design point is based on the LRFD design equation (e.g. 600, 350), but the exact resistance and load values are unknown. This is due to the random ness attributed to the bias factors. FORM will determine the probability th at the actual resistance and lo ad occurs within the failure space for a design that occurs on the limit of the acceptable design space. In reality a design will probably not be exact ly on the limit of the LRFD design equation. The LRFD inequality will be satisfied; however the desi gn will be modified to reduce possible error sin construction. The slope of the design space line is a function of the dead to live load

PAGE 118

93 ratio and the load and resistance factors. It can be show n through the following derivation. QL QD n L D QL QD n L QL QD L n L QL L QD n L D L QL D QD nX r X q X q X r q X q r q q X r X q q q q r 1 X X r X r X r X r q q r q SlopeQL QD n QL QD n QL QD n n L D Eq. 7-51 Partition the design space This step recognizes that the probability of failure may be different along the design line. To analyze the chosen resistance factor the design space will be partitioned into separate domains. The domains will be defined as a range of design resistances (rn) versus a range of design dead to live load ratios ( L Dq q ) with the load factors (QL QD ) held constant. Choose representative points for each domain Representative points are chosen to define each domain. Unless some compelling reason exists, these points should be equally distri buted within the domain.

PAGE 119

94 Figure 7-13. Partitione d Design Space with Representative Points Figure 7-13 shows the partitioned design space with representative points chosen. Note that all of the chosen points occur on th e design line (Eq. 7-51). Again, this line is derived from the LRFD factors being analyzed. Even though all of the points are on the line, there are still two independent variable s to define each point. These will be the design resistance and the ratio of the dead to live load. Calculate the initial design point On this step the FORM analysis begins. Each point within each domain is checked individually. Starting with th e given nominal resistance and d ead to live load ratio, the dead and live loads can be calcula ted with equations 7-52a and 7-52b. X q q q q rL D L QL D QD n L Dq X q Eq. 7-52a ) (QL QD L nX q r

PAGE 120

95 QL QD n LX r q Eq. 7-52b The resistance and load random variable s are functions of the lognormal bias random variables. QL L QD D R nq q Q r R The expected values for the R and Q ra ndom variables are found with equations 753a and 7-53b. ] [ ] [R nE r R E Eq. 7-53a ] [ ] [ ] [QL L QD DE q E q Q E Eq. 7-53b The normal standard deviation for the resi stance and load can be calculated with equations 7-54a and 7-54b. R n Rr Eq. 7-54a 2 2 2 2 L L D D Qq q Eq. 7-54b Transform into an equival ent normal distribution In this an equivalent normal distribution is determined for both the resistance and the load. The design point (r, q) is used to transform an equivalent normal distribution. In the first iteration the design point is equal to the expected values of the resistance and load random variables (E[R], E[Q]). Equa tions 7-55 determine the mean and standard deviation for this equivalent normal distribution (NCHRP-507 2004 and Phoon 2003). ) ( ))) ( ( (1r f r F pdfR R RN Eq. 7-55a RN R Nr F r R E)) ( ( ] [1 Eq. 7-55b

PAGE 121

96 ) ( ))) ( ( (1q f q F pdfQ Q QN Eq. 7-55c QN Q Nq F q Q E)) ( ( ] [1 Eq. 7-55d The pdf() function is the standard normal dens ity function. It re presents the PDF of a normal distribution with a mean of 0 and a stan dard deviation of 1. It will typically be represented in literature as To avoid confusion with the resistance factor it will be the pdf() function. -1() is the inverse of the standard cu mulative distributio n function. It takes in a probability and return s the point at which an integr ation of the standard normal distribution function from negative infinity to that point will result in the given probability. FR(r) is the cumulative distribution functi on for random variable R. It is based on the chosen distribution. It returns the probability of a resistance being less than r. The pdf of R is fR(r). The following parameters were used to gene rate plots for each function used in the transformation from lognormal to normal distributions. 0.4487 ) ]) [ ( 1 ln( 6.7123 ]) [ ( 1 ] [ ln 6 429 6 909 ] [ ] [ 716 0 516 1 ] [ 6002 2 R COV R COV R E r E r R E E rR R R n R R n R R n Figures 7-14 through 7-19 show various co mponents and steps involved in solving Equations 7-55a through 7-55d. In the FORM c ode this is done in one step. Note how the lognormal random variable is positively biased, and the mean of the resulting normal random variable is lower.

PAGE 122

97 0 0.2 0.4 0.6 0.8 1 1.2 050010001500200025003000 rFR(r) Figure 7-14. Lognormal Cumu lative Distribution Function FR(909.6) = 0.58876 -6 -5 -4 -3 -2 -1 0 1 2 3 4 00.20.40.60.811.2 FR(r)(FR(r)) Figure 7-15. Inverse of Standard Cumulative Distribution Function -1(FR(909.6)) = 0.22436 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 -6-4-2024 -1(FR(r))pdf( -1(FR(r))) Figure 7-16. Standard Probability Density Function

PAGE 123

98 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 050010001500200025003000 rpdf( -1(FR(r))) Figure 7-17. Numerator for RN Equation pdf( -1(FR(909.6))) = 0.38902 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 050010001500200025003000 rfR(r) Figure 7-18. Denominator for RN Equation, Lognormal Proba bility Density Function fR(909.6) = 0.000953 The normal standard deviation can be found using Eq. 7-55a. 164 408 ) ( ))) ( ( (1 r f r F pdfR R RN And the expected normal va lue is found with Eq. 7-55b. 0219 818 )) ( ( ] [1 RN R Nr F r R E

PAGE 124

99 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 -50005001000150020002500 rfRN(r) Figure 7-19. Resulting No rmal Random Variable For the above example the design point resist ance used was 909.6. This point will be different for each iteration until th e reliability index stabilizes. Transform original random variables to standard normal random variables The transformation is done with the following Equations 7-56a and 7-56b. RN N SNR E R R] [ Eq. 7-56a QN N SNQ E Q Q] [ Eq. 7-56b R and Q are the original lognormal random variables. RSN and QSN are the standard normal random variables. Standard normal random variables have a mean of 0 and a standard deviation of 1. The design point mu st also be transformed from real space to standard normal random variable space. On the first iteration the real space design point is the most probable values of the resist ance and load lognormal random variables. Equations 7-57 calculate the standard nor mal space design point using Equations 7-56 with the real space design point.

PAGE 125

100 RN NR E R E r] [ ] [ Eq. 7-57a QN NQ E Q E q] [ ] [ Eq. 7-57b Rewrite the failure equation in terms of the standard norm al random variables The transformation of the failure equati on is found by solving equations 7-56 for R and Q and substituting the results in. ]) [ ( ]) [ ( 'N QN SN N RN SNQ E Q R E R G Q R G Figure 7-20 shows the resulti ng plot of GÂ’ in standa rd normal random variable space. Figure 7-20. Failure equation in Normal Random Variable Space Compute a new trial design point A new trial design point (r*, q*) is now calculated using th e existing design point (r, q) and the standard failure equation GÂ’.

PAGE 126

101 2 2 *' ' ' SN SN SN SN SNQ G R G R G q r G Q G q R G r r Eq. 7-58a 2 2 *] [ ] [QN RN RN N NQ E R E r Eq. 7-58b 2 2 *' ' ' SN SN SN SN SNQ G R G Q G q r G Q G q R G r q Eq. 7-58c 2 2 *] [ ] [QN RN QN N NQ E R E q Eq. 7-58d This point represents the clos est distance from the origin to this failure line. The failure line changes slig htly with each iteration. Calculate the reliability index The reliability index is the closest distance fr om the origin to the failure line. It is calculated with Equation 7-59. 2 2 *q r Eq. 7-59 FORM iteration Now the new design point must be translated back to real space using equations 760a and 7-70b (also derived from Equations 7-57). ] [* N RNR E r r Eq. 7-60a ] [* N QNQ E q q Eq. 7-60b Use this new point (r, q) and recalculate the equivalent normal distributions (Eq. 755). Repeat the procedure until the reliability index, (Eq. 7-59), becomes stable.

PAGE 127

102 FORM example The following FORM example is for a resist ance factor of 0.66, a dead to live load ratio of 3, and an initial nominal resistance of 630 kips. Figure 7-21 shows the resistan ce and load combinations for the FORM iteration in real space. The failure line has a slope of 1. The goal of FORM is to find the point on the failure line with the highe st probability. Using Equati on 7-51, the slope of the design line is equal to 0.48. 48 0 75 1 25 1 3 ) 1 3 ( 66 0 ) 1 ( QL QD L D L Dq q q q slope Real Space200 220 240 260 280 300 320 340 360 380 400 01002003004005006007008009001000 R (kips) Failure Line Desi g n Line InitialDesignPoint Most Probable Value MostProbableFailurePoint Figure 7-21. FORM in Real Space So with a nominal resistance of 630 ki ps, the maximum acceptable load is 302.4 kips. Using the dead to live load ratio of 3 this equals a dead load of 226.8 kips and a

PAGE 128

103 live load of 75.6 kips. The fundamental LRFD equation (Eq. 7-16) limits acceptable designs. 8 415 8 415 6 75 75 1 8 226 25 1 630 66 0 Q Rn Thus, the initial design poin t is (630 kips, 302.4 kips). The most probable point is found by taking into account the bias factors for the dead and live load. The expected resistance is 630 kips times 1.51627 which is 955.2504 kips (Eq. 7-53a). The expected load is 1.03 ( QD=1.03) times the dead load plus the live load ( QL=1.0), which is 309.204 kips (Eq. 7-53b). Therefore, the most probable load and resistance combination is (955.2501 kips, 309.204 kips). In the first iteration in table 7-5 these values are used to calculate the equivalent norma l random variable parameters. Table 7-5. FORM Iterations for Real Sp ace to Equivalent Normal Space Parameters Real Space Normal Random Variable Parameters Iteration r q E[RN] RNE[QN] QN 630 302.4 1 955.2504 309.2040859.1333 428.5229 307.7508 29.9780 2 310.4361 310.4361628.1245 139.2585 307.7425 30.0975 3 322.0399 322.0399639.7929 144.4681 307.4276 31.2225 4 322.2590 322.2590640.0055 144.5644 307.4176 31.2437 5 322.2593 322.2593640.0047 144.5640 307.4176 31.2437 6 322.2594 322.2594640.0045 144.5638 307.4176 31.2438 Table 7-6. FORM Iterations in Normal Space Normal Space Iteration r q r* q* 1 0.2243 0.0485 -1.2804 0.0896 1.2836 2 -2.2813 0.0895 -2.1980 0.4750 2.2487 3 -2.1995 0.4680 -2.1980 0.4750 2.2487 4 -2.1980 0.4750 -2.1980 0.4750 2.2487 5 -2.1980 0.4750 -2.1980 0.4750 2.2487 6 -2.1980 0.4750 -2.1980 0.4750 2.2487

PAGE 129

104 Table 7-5 and Table 7-6 have been split to f it the page; the iterations are equivalent. The reliability index for the first iteration is much lower than all of the others. It is not a real reliability index since in real space the resistance and load valu es are not equal, and therefore not on the failure line. The new design point in normal space (-1.2804, 0.0896) is transformed back to real space (3 10.4361, 310.4361) (Eq. 7-60) to begin the next iteration. Note that this point is now on the failure line. The most probable point does not coincide w ith the origin of standard normal space because of the positive bias of lognormal distributions. The failure envelope changes slightly with each iteration. The final failu re envelope is shown in Figure 7-22. The reliability index is the closest distance from th e origin to the failure surface. The negative resistance in standard normal space does not correspond to a negative resistance in real space. If the expected resistance is zero, a negative resistance means a lower then expected value. The most likely failure will occur when the resistance is lower then predicted and the load is slightly larger. Note that the change in resistance is much larger than the change in load. This is due to more uncertainty in the value of the resistance. FORM focuses on the most probable failure poin t. It is possible, yet improbable, that failure could occur with a slightly larger than predicted resistance and grossly under predicted load value. This will occur at the point in normal space where the failure surface crosses the y-axis. This results in a single reliability index for the set of LRFD parameters initially chosen. To target a specific reliability i ndex the entire FORM process needs to be repeated with a modified resistance factor.

PAGE 130

105 Standard Normal Space-0.5 0 0.5 1 1.5 2 2.5 -2.5-2-1.5-1-0.500.5 RQMost Probable Point Initial Desi g n Point Iterated Desi g n Point Iterated Failure Enevelo pe Reliabilit y Inde x Figure 7-22. FORM in Standard Normal Space

PAGE 131

106 CHAPTER 8 RESISTANCE FACTOR CALIBRATION Figure 8-1 was generated usi ng the dataset presented in Chapter 6. It shows that FB-Deep tends to be conservative. The data set results in a mean bias of 1.691159 with a standard deviation of 1.058846. This results in a coefficient of variation for the bias to be 0.62587. When Choctawhatchee FSB-26 (Bias = 5.248), Escambia Bent 77 (Bias = 4.267) and Howard Frankland TS4-Short (Bias 5.878) are removed from the dataset then the mean bias becomes 1.516 with a standard deviation of 0.716. The COV for the dead load will be 0.08 and the COV for the live lo ad will be 0.25. The dead and live load factors will be 1.25 and 1.75 respectively. The bias of the dead load will be 1.03 and the bias of the live load will be 1.0. See Tabl e 7-3 for the sources of these values. 0 500 1000 1500 2000 2500 050010001500 Predicted (kips)Measured (kips) Figure 8-1. Predicted Versus Measured Dataset

PAGE 132

107 FOSM Resistance Factor Calibration The derivation of the following resistance fact or equation has alrea dy been covered. )] ]) [ ( ]) [ ( 1 )( ]) [ ( 1 ln[( 2 2 22 2 2]) [ ] [ ( ) ( ) ]) [ ( 1 ( ) ]) [ ( ]) [ ( 1 ( ] [QL COV QD COV R COV QL L D QD QL L D QD N RN Te E q q E q q R COV QL COV QD COV E Eq. 8-1 As shown in Table 8-1 the effect of the load ratio is significantly less than that of the target reliability index. The probability of failure shown in the first column is not a percentage. Table 8-1. FOSM Resist ance Factor Calibrations pf TqD / qL 2 2.53 3.54 4.5 5 5.56 2.275E-02 2 0.740.720.700.690.680.670.660.66 0.65 0.650.65 1.222E-02 2.25 0.650.630.610.600.590.590.580.58 0.58 0.570.57 6.210E-03 2.5 0.570.550.540.530.520.520.510.51 0.51 0.500.50 2.980E-03 2.75 0.500.490.470.470.460.450.450.45 0.44 0.440.44 1.350E-03 3 0.440.430.420.410.400.400.400.39 0.39 0.390.39 2.327E-04 3.5 0.340.330.320.320.310.310.310.30 0.30 0.300.30 3.169E-05 4 0.260.250.250.240.240.240.240.23 0.23 0.230.23 3.401E-06 4.5 0.200.200.190.190.190.180.180.18 0.18 0.180.18 2.871E-07 5 0.160.150.150.150.140.140.140.14 0.14 0.140.14 FOSM0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 012345678910Ratio of Dead to Live Load, qD/qLResistance Factor 2 2.25 2.5 2.75 3 Figure 8-2. FOSM Resistan ce Factor Calibrations

PAGE 133

108 Corrected FOSM Resistance Factor Calibration Table 8-2 and Figure 8-3 were created using Equation 7-44. )] ]) [ ( ] [ ] [ 2 ]) [ ( ]) [ ( ]) [ ( ]) [ ( ]) [ ( 1 )( ]) [ ( 1 ln[( 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2]) [ ] [ ( ) ( ) ]) [ ( 1 ( ) ]) [ ( ] [ ] [ 2 ]) [ ( ]) [ ( ]) [ ( ]) [ ( ]) [ ( 1 ( ] [ QL QL QD L D QD L D QL QL QD QD L D TE E E q q E q q COV E COV E q q R COV QL L D QD QL L D QD QL QL QD L D QD L D QL QL QD QD L D Re E q q E q q R COV E E E q q E q q COV E COV E q q E Table 8-2. Corrected FOSM Re sistance Factor Calibrations qD / qL pf T 2 2.5 3 3.5 4 4.5 5 5.5 6 2.28E-02 2 0.80 0.780.760.750.740.730.730.72 0.72 0.720.71 1.22E-02 2.25 0.71 0.700.680.670.660.660.650.65 0.64 0.640.64 6.21E-03 2.5 0.64 0.620.610.600.590.590.580.58 0.57 0.570.57 2.98E-03 2.75 0.57 0.550.540.530.530.520.520.51 0.51 0.510.51 1.35E-03 3 0.50 0.490.480.480.470.470.460.46 0.46 0.450.45 3.17E-05 4 0.32 0.310.300.300.300.300.290.29 0.29 0.290.29 3.40E-06 4.5 0.25 0.250.240.240.240.230.230.23 0.23 0.230.23 2.87E-07 5 0.20 0.200.190.190.190.190.190.18 0.18 0.180.18 Corrected FOSM0.30 0.40 0.50 0.60 0.70 0.80 0.90 012345678910qD/qLR e sis ta n ce F ac to r 2 2.25 2.5 2.75 3 Figure 8-3. Corrected FOSM Re sistance Factor Calibrations

PAGE 134

109 FORM Resistance Factor Calibration The FORM algorithm was executed for re sistance factors between 0.3 and 0.9, nominal resistances from 150 to 1050, and dead to live ratios from 1 to 9. The resistance factors were separated by 0.04, the nominal re sistance was in increments of 60 kips, and the dead to live ratio was by 0.4. In tota l the reliability inde x was calculated at 5376 distinct points. The results show that the chosen nominal resistance did not infl uence the resulting reliability index. Table 8-3. Reliability Index with respect to Nominal Resistance rn qD/qL 0.38 270 3 3.466367 0.38 450 3 3.466367 0.38 570 3 3.466367 0.38 930 3 3.466367 Similar to FOSM, the resulting reliability index is only dependant on the resistance factor and the dead to live load ratio. FOSM uses the reliabi lity index and dead to live load ratio to solve the resistan ce factor. FORM uses the resistance factor and dead to live load ratio to solve the reliability index. Table 8-4. FORM Resist ance Factor Calibrations pf TqD / qL 2 2.5 3 3.5 4 4.5 5 5.5 6 2.28E-02 2 0.80 0.780.760.750.740.730.730.72 0.72 0.720.71 1.22E-02 2.25 0.72 0.700.680.670.660.660.650.65 0.64 0.640.64 6.21E-03 2.5 0.64 0.620.610.600.590.590.580.58 0.57 0.570.57 2.98E-03 2.75 0.57 0.550.540.530.530.520.520.51 0.51 0.510.51 1.35E-03 3 0.50 0.490.480.480.470.470.460.46 0.46 0.450.45 2.33E-04 3.5 0.40 0.390.380.380.370.370.370.37 0.36 0.360.36 3.17E-05 4 0.32 0.310.300.300.300.290.290.29 0.29 0.290.28 3.40E-06 4.5 0.25 0.250.240.240.240.230.230.23 0.23 0.230.23 2.87E-07 5 0.20 0.200.190.190.190.190.190.18 0.18 0.180.18

PAGE 135

110 FORM0.3 0.4 0.5 0.6 0.7 0.8 0.9 012345678910qD/qLResistance Factor 2 2.25 2.5 2.75 3 Figure 8-4. FORM Resistance Factor Figure 8-4 shows the resistance factors calculated for target reliability indexes. They were solved for each dead to live ratio by iterating the resi stance factor until the target reliability index was achieved.

PAGE 136

111 CHAPTER 9 CONCLUSION Resistance Factor Calibration Comparison Chapter 8 calibrated LRFD resistance factors with three methods, FOSM, corrected FOSM, and FORM. NCHRP 507 has found that FORM resistance factors tend to be 10 to 15% larger than FOSM resistance factors. Figure 9-1. NCHRP 507 FOSM ve rsus FORM Resistance Factors As shown in Figures 9-2 through 9-6 And Tables 9-1 through 9-3, the calibrations performed in Chapter 8 agree with the NCHR P assessment of FOSM versus FORM. It was found that they tend to be 8% to 23% larger than FOSM factors.

PAGE 137

112 Beta=20.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 012345678910qD/qLResistance Factor FORM FOSM New FOSM Figure 9-2. Resistance Factor Comparison for T=2 Beta=2.250.5 0.55 0.6 0.65 0.7 0.75 012345678910qD/qLResistance Factor FORM FOSM New FOSM Figure 9-3. Resistance Factor Comparison for T=2.25

PAGE 138

113 Beta=2.50.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 012345678910qD/qLResistance Factor FORM FOSM New FOSM Figure 9-4. Resistance Factor Comparison for T=2.5 Beta=2.750.3 0.35 0.4 0.45 0.5 0.55 0.6 012345678910qD/qLResistance Factor FORM FOSM New FOSM Figure 9-5. Resistance Factor Comparison for T=2.75

PAGE 139

114 Beta=30.3 0.35 0.4 0.45 0.5 0.55 012345678910qD/qLResistance Factor FORM FOSM New FOSM Figure 9-6. Resistance Factor Comparison for T=3 Table 9-1. FOSM and Corrected FOSM Compared to FORM, qD / qL = 2 qD / qL 2 TFORM FOSM % Difference New FOSM % Difference 2 0.76 0.699 8.451 0.764 -0.008 2.25 0.68 0.614 9.815 0.681 0.031 2.5 0.61 0.540 11.120 0.607 0.027 2.75 0.54 0.474 12.390 0.541 0.005 3 0.48 0.417 13.657 0.483 0.000 3.5 0.38 0.322 16.145 0.384 0.000 4 0.30 0.248 18.354 0.305 -0.253 4.5 0.24 0.192 20.844 0.242 -0.080 5 0.19 0.148 23.148 0.193 -0.048

PAGE 140

115 Table 9-2. FOSM and Corrected FOSM Compared to FORM, qD / qL = 2.5 qD / qL 2.5 TFORM FOSM % Difference New FOSM % Difference 2 0.752 0.687 8.661 0.752 -0.007 2.25 0.671 0.603 10.048 0.670 0.025 2.5 0.598 0.530 11.382 0.598 0.021 2.75 0.533 0.466 12.685 0.533 0.003 3 0.476 0.409 13.981 0.476 0.000 3.5 0.378 0.316 16.520 0.378 0.000 4 0.300 0.244 18.712 0.301 -0.338 4.5 0.239 0.188 21.290 0.239 -0.111 5 0.190 0.145 23.659 0.190 -0.052 Table 9-3. FOSM and Corrected FOSM Compared to FORM, qD / qL = 3 qD / qL 3 TFORM FOSM % Difference New FOSM % Difference 2 0.742 0.677 8.787 0.742 -0.006 2.25 0.662 0.595 10.188 0.662 0.022 2.5 0.591 0.523 11.540 0.591 0.017 2.75 0.527 0.459 12.862 0.527 0.002 3 0.470 0.404 14.175 0.470 0.000 3.5 0.374 0.312 16.746 0.374 -0.001 4 0.297 0.240 18.902 0.298 -0.419 4.5 0.237 0.186 21.549 0.237 -0.141 5 0.188 0.143 23.965 0.189 -0.055 The difference between FORM and current FO SM resistance factors is not trivial. The modified FOSM equation results in resistan ce factor calibrations that are essentially equivalent to a complete FORM analysis in th e cases studies. Table 9-4 is a continuation of Table 16 from NCHRP 507. It adds resi stance factor calibrations for the FORM algorithm used in this study, the published FOSM equations, and the corrected FOSM equation presented in this study. It s hould be recognized that the NCHRP report performed a FOSM-Hasofer-L ind calibration and not an actual FORM calibration.

PAGE 141

116Table 9-4. Extended NCHRP 507 Table 16 Resistance Factors for a Given Reliability Index FORM MAS FOSM FOSM-Corrected Soil Type Pile Type N Design Method Mean Stdev COV 2 2.5 3 2 2.5 3 2 2.5 3 2 2.5 3 4 -Method 0.61 0.37 0.61 0.23 0.18 0.13 0.2186 0.1643 0.1235 0.2084 0.1541 0.1139 0.2186 0.1643 0.1235 16 -Method 0.74 0.29 0.39 0.43 0.35 0.29 0.4166 0.3431 0.2826 0.3860 0.3104 0.2495 0.4166 0.3431 0.2826 17 -Tomlinson 0.82 0.33 0.4 0.46 0.38 0.31 0.4522 0.3708 0.3040 0.4197 0.3361 0.2692 0.4522 0.3708 0.3040 16 -API 0.9 0.37 0.41 0.5 0.41 0.33 0.4861 0.3969 0.3240 0.4520 0.3606 0.2877 0.4861 0.3968 0.3240 H-Piles 8 SPT-97 mob 1.04 0.43 0.41 0.57 0.47 0.38 0.5617 0.4587 0.3744 0.5223 0.4167 0.3324 0.5617 0.4586 0.3744 18 -Method 0.76 0.22 0.29 0.53 0.45 0.38 0.5264 0.4532 0.3901 0.4762 0.3977 0.3322 0.5264 0.4532 0.3901 17 -API 0.81 0.21 0.26 0.6 0.52 0.44 0.5965 0.5204 0.4540 0.5344 0.4513 0.3811 0.5965 0.5204 0.4540 8 -Method 0.81 0.41 0.51 0.37 0.3 0.23 0.3556 0.2783 0.2178 0.3356 0.2576 0.1977 0.3556 0.2783 0.2178 Concre te Piles 18 -Tomlinson 0.87 0.42 0.48 0.42 0.34 0.26 0.4063 0.3220 0.2551 0.3820 0.2966 0.2303 0.4063 0.3220 0.2551 18 -Tomlinson 0.64 0.32 0.5 0.3 0.24 0.19 0.2868 0.2254 0.1771 0.2703 0.2083 0.1605 0.2868 0.2254 0.1771 19 -API 0.79 0.43 0.54 0.34 0.27 0.2 0.3261 0.2521 0.1949 0.3088 0.2344 0.1778 0.3261 0.2521 0.1949 12 -Method 0.45 0.27 0.6 0.17 0.13 0.1 0.1645 0.1242 0.0937 0.1567 0.1163 0.0863 0.1645 0.1242 0.0937 19 -Method 0.67 0.37 0.55 0.28 0.22 0.17 0.2710 0.2087 0.1607 0.2569 0.1942 0.1468 0.2710 0.2087 0.1607 Clay Pipe Piles 12 SPT-97 mob 0.39 0.24 0.62 0.15 0.11 0.08 0.1370 0.1033 0.0768 0.1307 0.0963 0.0709 0.1370 0.1026 0.0768 19 Nordlund 0.94 0.38 0.4 0.53 0.43 0.35 0.5183 0.4250 0.3485 0.4811 0.3853 0.3086 0.5183 0.4250 0.3485 18 Meyerhof 0.81 0.31 0.38 0.47 0.39 0.32 0.4656 0.3852 0.3186 0.4306 0.3475 0.2805 0.4656 0.3852 0.3186 19 -Method 0.78 0.4 0.51 0.36 0.28 0.22 0.3424 0.2680 0.2097 0.3231 0.2480 0.1904 0.3424 0.2680 0.2097 H-Piles 18 SPT-97 mob 1.35 0.58 0.43 0.72 0.59 0.47 0.6994 0.5671 0.4583 0.6526 0.5166 0.4089 0.6994 0.5661 0.4582 36 Nordlund 1.02 0.49 0.48 0.5 0.4 0.31 0.4764 0.3776 0.2991 0.4478 0.3477 0.2700 0.4764 0.3775 0.2991 35 -Method 1.1 0.48 0.44 0.58 0.47 0.38 0.5581 0.4501 0.3626 0.5216 0.4113 0.3243 0.5581 0.4498 0.3626 36 Meyerhof 0.61 0.37 0.61 0.23 0.18 0.13 0.2177 0.1643 0.1235 0.2084 0.1541 0.1139 0.2186 0.1643 0.1235 Concre te Piles 36 SPT-97 mob 1.21 0.57 0.47 0.6 0.48 0.38 0.5769 0.4595 0.3654 0.5416 0.4221 0.3290 0.5769 0.4591 0.3653 19 Nordlund 1.48 0.77 0.52 0.67 0.52 0.41 0.6368 0.4972 0.3868 0.6014 0.4598 0.3516 0.6365 0.4961 0.3867 20 -Method 1.18 0.73 0.62 0.44 0.33 0.25 0.4144 0.3105 0.2324 0.3955 0.2913 0.2145 0.4144 0.3104 0.2324 20 Meyerhof 0.94 0.55 0.59 0.37 0.29 0.22 0.3506 0.2657 0.2013 0.3337 0.2485 0.1851 0.3506 0.2657 0.2013 Sand Pipe Piles 19 SPT-97 mob 1.58 0.82 0.52 0.71 0.56 0.44 0.6799 0.5314 0.4131 0.6420 0.4909 0.3754 0.6795 0.5296 0.4128

PAGE 142

117Table 9-4. Continued Resistance Factors for a Given Reliability Index FORM MAS FOSM FOSM-Corrected Soil Type Pile Type N Design Method Mean Stdev COV 2 2.5 3 2 2.5 3 2 2.5 3 2 2.5 3 20 -Tomlinson/Nordlund/Thurman 0.59 0.23 0.39 0.34 0.28 0.23 0.3318 0.2736 0.2253 0.3078 0.2474 0.1989 0.3322 0.2736 0.2253 34 -API/Nordlund/Thurman 0.79 0.35 0.44 0.41 0.33 0.27 0.4008 0.3231 0.2604 0.3746 0.2954 0.2329 0.4008 0.3231 0.2604 32 -Method/Thurman 0.48 0.23 0.48 0.23 0.19 0.15 0.2205 0.1776 0.1407 0.2107 0.1636 0.1270 0.2242 0.1776 0.1408 H-Piles Concrete Piles 40 SPT-97 1.23 0.55 0.45 0.64 0.51 0.41 0.6113 0.4910 0.3937 0.5722 0.4494 0.3530 0.6113 0.4906 0.3937 33 -Tomlinson/Nordlund/Thurman 0.96 0.48 0.49 0.46 0.36 0.29 0.4392 0.3466 0.2735 0.4134 0.3197 0.2473 0.4392 0.3466 0.2735 80 -API/Nordlund/Thurman 0.87 0.42 0.48 0.42 0.34 0.26 0.4063 0.3220 0.2552 0.3820 0.2966 0.2303 0.4063 0.3220 0.2551 80 -Method/Thurman 0.81 0.31 0.38 0.47 0.39 0.32 0.4656 0.3852 0.3186 0.4306 0.3475 0.2805 0.4656 0.3852 0.3186 71 SPT-97 mob 1.81 0.91 0.5 0.84 0.67 0.52 0.8120 0.6406 0.5014 0.7645 0.5890 0.4538 0.8111 0.6374 0.5009 Concrete Piles 30 FHWA CPT 0.84 0.26 0.31 0.57 0.48 0.4 0.5584 0.4764 0.4064 0.5080 0.4211 0.3491 0.5584 0.4764 0.4064 13 -Tomlinson/Nordlund/Thurman 0.74 0.44 0.59 0.29 0.22 0.17 0.2760 0.2092 0.1585 0.2627 0.1956 0.1457 0.2760 0.2092 0.1585 32 -API/Nordlund/Thurman 0.8 0.36 0.45 0.41 0.33 0.26 0.3976 0.3191 0.2561 0.3721 0.2923 0.2296 0.3976 0.3191 0.2561 29 -Method/Thurman 0.54 0.26 0.48 0.26 0.21 0.16 0.2509 0.1998 0.1584 0.2371 0.1841 0.1429 0.2522 0.1998 0.1584 Mixed Soils Mixed Soils Pipe Piles H-Piles 33 SPT-97 mob 0.76 0.29 0.38 0.45 0.37 0.3 0.4369 0.3614 0.2989 0.4040 0.3261 0.2632 0.4369 0.3614 0.2989

PAGE 143

118 All of the calibration calculations in Table 9-4 were performed with a dead to live load ratio of 2. The dead load bias us ed was 1.08 with a COV of 0.128, while the live load bias used was 1.15 with a COV of 0.18. Th is conforms with what was used in the NCHRP FOSM-Hasofer-Lind calibrations. y = 0.9471x y = 0.9431x y = 0.9508x 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.10.20.30.40.50.60.70.8NCHRO FOSM-Hasofer-LindFORM Mark 2 2.5 3 Figure 9-7. Comparison of FORM Results Figure 9-7 shows the relationship betw een the FORM and FOSM-Hasofer-Lind results. It shows that FORM results in sli ghtly lower resistance fact or values. Figure 9-8 and 9-9 compare the corrected FOSM results to the original FOSM results with respect to values from the NCHRP report FOSM-Hasofer-Lind results. Figure 9-10 shows the result of running th e FORM algorithm from Chapter 7 with resistance factors generated from the co rrected FOSM. The NCHRP 507 dataset was

PAGE 144

119 used. This shows that the corrected FOSM and FORM results in almost the exact same resistance factor calibrati ons for the cases studied. FOSM versus FOSM-Hasofer-Lind, Beta = 2.0y = 1.125x y = 1.0556x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.10000.20000.30000.40000. 50000.60000.70000.8000 Resistance Factors Using FOSMResistance Factors NCHRP-FOSM-Hasofer-Lind FOSM FOSM-Corrected Linear (FOSM) Linear (FOSM-Corrected) Figure 9-8. FOSM versus NCHRP 507 FOSM-Hasofer-Lind, = 2.0 FOSM Versus FOSM-Hasof er-Lind, Beta = 2.5y = 1.1554x y = 1.0608x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.10000.20000.30000.4000 0.50000.60000.7000FOSMNCHRP FOSM-Hasofer-Lind FOSM FOSM-Corrected Figure 9-9. FOSM versus NCHRP 507 FOSM-Hasofer-Lind, = 2.5

PAGE 145

120 y = x y = 0.9991x y = x 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 0.00000.10000.20000.30000.400 00.50000.60000.70000.80000.9000FORMFOSM Correctet 2 2.5 3 Linear (3) Linear (2.5) Linear (2) Figure 9-10. Corrected FOSM versus FORM The corrected FOSM equation accounts fo r most of the difference between FOSM and FORM resistance factor calibrations. Improving LRFD The new FOSM equations provide a more accurate estimate of LRFD resistance factors. It has been shown that the resu lts of the new FOSM e quation are almost the same as the corresponding FORM analysis. The best way to improve a method is by reducing the coefficient of variation for the resistance bias. Solving this problem will require a significant amount of data. A few possible areas of futu re studies include: 5. Spatial variability between the location of the load test and the boring test.

PAGE 146

121 6. Attempting to reduce the influence of the human interpretation of the Davission failure limit by calibrating with resp ect to the ultimate failure load. 7. Reducing the influence of pile length by calibrating multiple resistance factors for side and tip combinations. 8. Calibrating resistance factors with re spect to soil types and origins. The developed DIGGS format contains the capabilities to store the necessary data to perform the above studies. Improving LR FD design codes hinges on the adaptation of an open international standard. Adopting DIGGS Getting the DIGGS standard inte rnationally adopted will be a difficult task. It must be usable before consultants can generate da ta files. Software must be developed or modified to output DIGGS data files. Stat e agencies must see the benefit of a common standard and encourage its use. Once state agencies have adopted it mo re software developers should take advantage of the market for DIGGS software. The geotechnical consulting industry will benefit from new software and program interoperability. State agencies will gain a searchable digital archive. Finally, academ ic researchers will have an invaluable resource to improve the quality of geotechnical engineering.

PAGE 147

122 APPENDIX A DIGGS OBJECT TABLES Common DIGGS DataTypes The first set of tables bel ongs to the library.xsd file. These tables are complex dataType definitions that are used throughout the DIGGS schema. Table A-1. MoistureContentType Property Definition Type Example Occurrences moistureContent Natural moisture content float 23 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 148

123 Table A-1. Continued Property Definition Type Example Occurrences roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-2. ParticleDensityType Property Definition Type Example Occurrences particleDensity Particle density (also referred to as specific gravity) gml:MeasureTyp e uom= datatype= value=2.65 0.. 1 isAssumedPartic leDensity Particle density measured (False) or assumed (True) boolean True 0.. 1

PAGE 149

124 Table A-2. Continued Property Definition Type Example Occurrences preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0..

PAGE 150

125 Table A-2. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-3. DensityType Property Definition Type Example Occurrences bulkDensity Bulk density gml:MeasureTyp e uom= datatype= value=1.66 0.. 1 dryDensity Dry density gml:MeasureTyp e uom= datatype= value=1.06 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1

PAGE 151

126 Table A-3. Continued Property Definition Type Example Occurrences equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 152

127 Table A-4. ParticleSizeDetailType Property Definition Type Example Occurrences percentagePassi ng The percentage of soil passing or finer by weight (or mass) for each sieve or size of soil particle float 25 1.. 1 gradingTestType Grading analysis test type gml:CodeType WS 0.. 1 particleSize The sieve opening or the size of the soil particles gml:MeasureTyp e 3.35 1.. 1 sieveNumber Sieve size number. The numbering system used is defined in Equipment in ParticleSizeGene ral integer 20 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 153

128 Table A-5. BlowsAndPenetrationType Property Definition Type Example Occurrences incrementNumber The sequence number of the increment, counting from 1 at the start (top) of the test. integer 1 1.. 1 blows The number of blows for this increment of the test integer 12 1.. 1 penetration The penetration measured in the given units for this increment of the test gml:MeasureType penetration = 75 uom = mm 1.. 1 remarks Remarks relevant to this item diggs:RemarkType remark=Photograph taken author=John Smith 0.. Table A-6. CalibrationType Property Definition Type Example Occurrences calibrationDate The date on which the calibration was completed date 2004-06-22 0.. 1 calibrationDescr iption Description of what was calibrated string 0..

PAGE 154

129 Table A-6. Continued Property Definition Type Example Occurrences remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-7. CodeListType Property Definition Type Example Occurrences category The codelist category provides the link to where the code is used in the data dictionary string Soil classification 1.. 1

PAGE 155

130 Table A-7. Continued Property Definition Type Example Occurrences class The source of the definition stringUSCS 0.. 1 code The value of the code to be used in the data tables stringSW 1.. 1 definition The definition of the code stringWell-graded sands, gravelly sands, < 5% fines 1.. 1 aGSCategory The legacy category of codes derived from the AGS string 0.. 1 Table A-8. LocationType Property Definition Type Example Occurrences locationType The type of location that locationValue refers to. This is selected from a codeList. gml:CodeType system = DIGGS value = USGS Quadrangle 1.. 1 locationValue The value for the location. string Palo Alto 1.. 1 remarks Remarks relevant to this item diggs:RemarkT ype remark=Photog raph taken author=John Smith 0.. Table A-9. MeasureType Property Definition Type Example Occurrences value The measured or calculated parameter value gml:MeasureType 0.. 1

PAGE 156

131 Table A-9. Continued Property Definition Type ExampleOccurrences unitsOfMeasurement Units of measurement taken from a units codeList gml:CodeType 0.. 1 dataType The data type of the item chosen from a codeList gml:CodeType 0.. 1 Table A-10. MeasureMethodType Property Definition Type Example Occurrences result The measured or calculated parameter result, with its units of measure and data type gml:MeasureType 0.. 1 Method Method of test or calculation where there are several standard options available, chosen from a CodeList gml:CodeType 0.. 1 Table A-11. RemarkType Property Definition Type Example Occurrences remark A comment or note relevant to this data item string 1.. 1 dateTime The time and date at which the remark was recorded dateTime 0.. 1 roles The author of the remark diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 157

132 Table A-11. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-12. RoleType Property Definition Type Example Occurrences role The assigned role that the organisation or individual fulfills. This is a selected from a CodeList. gml:CodeType system = DIGGS value = laboratory technician 1.. 1 businessAssociat eID The organisation or individual that performed the role. This links, via the gml:id, to the Business Associates table that is external to the structure, which gives the name, address and contact details of this person or organisation diggs:BusinessA ssociateProperty Type 1.. 1

PAGE 158

133 Table A-12. Continued Property Definition Type Example Occurrences startDateTime Date and time of the start of the activity. dateTime 2005-10-25 10:00:00 0.. 1 endDateTime Date and time of the end of the activity. If role is ongoing or extended through the entire activity, this value should be null dateTime 2005-10-26 10:00:00 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. Table A-13. AssociatedFileSetType Property Definition Type Example Occurrences fileSetReference File set reference number string FS128 0.. 1 parentProgram Parent program and version number string Paintshop Pro v 5.0 0.. 1 fileName File name string BH1COR08.JPG 0.. 1 fileDate File date date 2005-10-25 0.. 1 fileType File type string JPG 0.. 1 fileDocumentType Document Type string PH 0.. 1 fileDescription Description of content string BH1 Core photo box 8 0.. 1 remarks Remarks relevant to this item diggs:RemarkType remark=Photograph taken author=John Smith 0..

PAGE 159

134 Table A-14. ConePwpType Property Definition Type Example Occurrences pwpCellNumber The pwp cell number integer 0.. 1 porewaterPressure The measured pore water pressure gml:MeasureType 0.. 1 Table A-15. SecurityInfoType Security information type for a DIGGS dada transmission Property Definition Type Example Occurrences class The security class in which this document is classified. Examples would be confidential, partner confidential, tight. The meaning of the class is determined by the System in which it is defined. string 0.. 1 system The security classification system. This gives context to the meaning of the Class value. string 0.. 1 endDate The date on which this security class is no longer applicable. string 0.. 1 remarks Remarks relevant to this item string 0.. 1 Table A-16. AuditType Contains events of importantce to the DIGGS data contained by this file. Property Definition Type Example Occurrences event Event container diggs:EventType 0.. Table A-17. EventType An individual event Property Definition Type Example Occurrences dateTime Date and time of the event dateTime 1.. 1

PAGE 160

135 Table A-17. Continued Property Definition Type ExampleOccurrences roles Roles associated with the event diggs:RoleType 0.. remarks Remarks addressing the event diggs:RemarkType 1.. Table A-18. EquipmentPropertyType Relationship to equipment object Property Definition Type Example Occurrences diggs:_Equipme nt Relationship to equipment object diggs:_Equipme nt 0.. 1 attributeGroup gml:Association AttributeGroup Table A-19. SpecificationPropertyType Relationship to spec ification object Property Definition Type Example Occurrences diggs:_Specifica tion Relationship to specification object diggs:_Specifica tion 0.. 1 attributeGroup gml:Association AttributeGroup Table A-20. BusinessAssociatePropertyType Relationship to BusinessAssociate object Property Definition Type Example Occurrences diggs:_Business Associate Relationship to BusinessAssocia te object diggs:_Business Associate 0.. 1 attributeGroup gml:Association AttributeGroup

PAGE 161

136 Table A-21. SamplePropertyType Relationship to sample object Property Definition Type Example Occurrences diggs:_Sample Relationship to sample object diggs:_Sample 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-22. SpecimenPropertyType Relationship to specimen object Property Definition Type Example Occurrences diggs:_Specimen Relationship to specimen object diggs:_Specimen 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-23. HolePropertyType Relationship to a hole feature Property Definition Type Example Occurrences diggs:_Hole Relationship to a hole feature diggs:_Hole 0.. 1 attributeGroup gml:Associ ationAttributeGroup Common DIGGS Objects The following objects occur in various places throughout the schema. BusinessAssociate The DIGGS BusinessAssociate object cont ains the contact information for a business or person. The gml:name will hold the na me of the business or person this object describes. Table A-24. BusinessAssociate Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1

PAGE 162

137 Table A-24. Continued Property Definition Type Example Occurrences gml:description Object description string 0..1 gml:name Object name. string 0..* address Mailing address diggs:GeneralAd dressType Civil and Coastal Engineering 365 Weil Hall PO BOX 116580 Gainesville, FL 32611-6580 0.. phoneNumber Telephone number diggs:PhoneNu mberType 1-352-392-9537 0.. email Email address diggs:EmailType styler@ufl.edu 0.. associatedWith Relation to another BusinessAssocia te object, could point to an employer diggs:Associated WithPropertyTy pe relation=Employ er xlink:href=#abcd ef-1234-23423 0.. contact Relation to a BusinessAssocia te object that is the contact for the business or person described by this object diggs:BusinessA ssociateProperty Type xlink:href=#abcd ef-1234-23423 0.. remarks Remarks concerning this BusinessAssocia te diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 163

138 Table A-24. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. Table A-25. GeneralAddressType Property Definition Type Example Occurrences name name stringCivil and Coastal Engineering 0.. 1 street street string365 Weil Hall PO BOX 116580 0.. 4 city city stringGainesville 0.. 1 state state stringFL 0.. 1 province province string 0.. 1 county county string 0.. 1 country country stringUnited States 0.. 1 postalCode postalCode string32611-6580 0.. 1 Table A-26. EmailType Extends a string type adds the qualifier at tribute. The string value is the email address. Property Definition Type Example Occurrences attribute:qualifier personal, work, permanent diggs:ExtQualifierEnum Typework optional

PAGE 164

139 OtherNameType A simple type. Defines the pattern for valid additions to enumerated lists. ExtPhoneEnumType This is the union of the OtherNameType with the PhoneEnumType. Allows an extenable-enumerated list. PhoneEnumType Enumerated list. Restricts a string value to be voice, fax, mobile, voice/fax, or voicemail. ExtQualifierEnumType This is the union of the OtherNameType with the QualifierEnumType. Allows an extendable enumerated list. QualifierEnumType Enumerated list. Restricts a string value to be personal, work, or permanent. Table A-27. PhoneNumberType Extends a st ring type by adding attributes. The string value is a phone number. Property Definition Type Example Occurrences attribute:ExtPhoneEnumTypeVoice, fax, mobile, voice/fax, voicemail, other Voice required attribute:qualifier personal, work, permanent diggs:ExtQualifierEnumT ype work optional attribute:extension Phone number extension string 730 optional Table A-28. AssociatedWithPropertyType This contains business associates associated with this business associate. It can only be used as a remote property. Property Definition Type Example Occurrences attribute:relation Describe the relationship string Employer optional attributeGroup gml:Associ ationAttributeGroup

PAGE 165

140 Equipment Table A-29. Equipment Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* modelNumber The equipment manufacturers model number string DTS-LR 0.. 1 serialNumber The equipment serial number either as issued by the manufacturer, or the asset serial number used by the operator. string 233A-1ZPQ 0.. 1 equipmentName A name assigned to the piece of equipment. string Laser Joe 0.. 1 equipmentClass A generic classification for the equipment type, taken from a codeList. gml:CodeType Drilling rig 0.. 1 calibrationAudit Trail Provides an audit trail of the equipment calibration and includes pre-use, in-use and postuse calibrations. diggs:Calibratio nType 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 166

141 Table A-29. Continued Property Definition Type Example Occurrences roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Specification Table A-30. Specification Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* shortMethodNa me A short description of the method used for reference elsewhere string Sieve 0.. 1

PAGE 167

142 Table A-30. Continued Property Definition Type Example Occurrences standardReferen ceNumber The standard or specification reference number string 1377 1.. 1 standardTitle The title of the standard or specification string Methods of test for soils for civil engineering purposes 0.. 1 version The version number or date of the standard or specification string 1990 0.. 1 part The part, volume or subsection of the specification document string 3 0.. 1 clause The specific method number or clause number string 9.2 0.. 1 fullMethodNam e The full name of the method string Wet sieving method 0.. 1 methodDescripti on A brief description of the method, not the full specification string This test method covers the quantitative determination of the distribution of particle sizes in soils. 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John 0.. roles Details of the organisation or individual that produced and/or issued the standard diggs:RoleType role=Standards publisher organisationOrIn dividual=ASTM 0..

PAGE 168

143 Table A-30. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Top Level Hierarchal DIGGS Objects Figure A-1. Top Leve l DIGGS Hierarchy

PAGE 169

144 TransmissionInformation Table A-31. TransmissionInformation Object Contains information pertaining to a specific DIGGS transmission or file Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* issueNumber Issue sequence number of the data within the project integer 2 1.. 1 issueDate Date of issue of data date 2005-10-25 1.. 1 transmissionID A unique reference number for this data transmission string Geotechnical data file issue 2 1.. 1 securityInformat ion From POSC. Information about the security to be applied to this file. More than one classification can be given. diggs:SecurityIn foType class = confidential system = USGS endDate = 200810-31 comment = Only for internal use 0.. disclaimer From POSC. A free-form string that allows a disclaimer to accompany the information. string Data contained in this file are valid for the dates taken. Information may change with time. 0.. 1 auditTrail From POSC. diggs:AuditType 0..

PAGE 170

145 Table A-31. Continued Property Definition Type Example Occurrences status Status of data within submission string Draft 0.. 1 diggsVersion DIGGS Edition Number double 1.0 1.. 1 project diggs:ProjectPro pertyType 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. Table A-32. ProjectPropertyType Property Definition Type Example Occurrences diggs:_Project diggs:_Project 0.. 1 attributeGroup gml:Associ ationAttributeGroup Project Table A-33. Project Feature Extends gml:AbstractFeatureType Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..*

PAGE 171

146 Table A-33. Continued Property Definition Type Example Occurrences startDate Date of the start of the project date 2005-10-25 or 2005-10 or 2005 0.. 1 endDate Date of the end of the project date 2005-10-25 or 2005-10 or 2005 0.. 1 projectName A common name for the project. This name does not need to be unique within the naming system. string Acme Gas Works 0.. geodeticCoordin ateSystem Reference to the geographic or projected coordinate system for all geographic features in the entire project diggs:GeodeticC oordinateSystem Type srsName="urn:o gc:def:crs:espg:6 .9:4326 0.. 1 geodeticVertical Datum Reference to the geographic or projected vertical datum for all geographic features in the entire project diggs:GeodeticV erticalDatumTyp e srsName="urn:o gc:def:crs:espg:6 .9:4326 0.. 1 localCoordinate System Reference to the local coordinate system for all geographic features in the entire project diggs:LocalCoor dinateSystemTy pe srsName="urn:o gc:def:crs:espg:6 .9:4326 0.. 1 localVerticalDat um Reference to the local vertical datum for all geographic features in the entire project diggs:LocalVerti calDatumType srsName="urn:o gc:def:crs:espg:6 .9:4326 0.. 1

PAGE 172

147 Table A-33. Continued Property Definition Type Example Occurrences geometry The geometry of the project. Could be point, line, line string or polygon or collection of these. A 2D object in a 3D system. Includes method of measurement, coordinate system and accuracy diggs:ProjectGe ometryType 165 72 190 32 190 72 165 72 0.. purpose The purposes of data collection at this project gml:CodeType Geotechnical Geoenvironment al 0.. hole Contains diggs Hole features diggs:HolePrope rtyType 0.. foundationGrou p Contains diggs FoundationGrou p features diggs:Foundatio nGroupProperty Type 0.. locations Descriptions of locations associated with this item of data diggs:LocationT ype locationType=H ole cluster locationValue=P owerhouse 2 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 173

148 Table A-33. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-34. GeodeticCoordinateSystemType Reference to the geographic or projected coordinate system for all geographic features in the entire project Property Definition Type Example Occurrences gml:_CoordinateSystem gm l:_CoordinateSystem 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-35. GeodeticVerticalDatumType Re ference to the geographic or projected vertical datum for all geographic fe atures in the entire project Property Definition Type Example Occurrences gml:_Datum gml:_Datum 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-36. LocalCoordinateSyst emType Reference to the local coordinate system for all geographic features in the entire project Property Definition Type Example Occurrences gml:_CoordinateSystem gm l:_CoordinateSystem 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-37. LocalVerticalDatumType Refere nce to the local ver tical datum for all geographic features in the entire project Property Definition Type Example Occurrences gml:_Datum gml:_Datum 0.. 1 attributeGroup gml:Associ ationAttributeGroup

PAGE 174

149 Table A-38. ProjectGeometryType The geomet ry of the project. Could be point, line, line string or polygon or collection of th ese. A 2D object in a 3D system. Includes method of measurement, coordinate system and accuracy Property Definition Type Example Occurrences gml:_Geometry gml:_Geometry 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-39. FoundationGroupPropertyType Contains diggs FoundationGroup features Property Definition Type Example Occurrences diggs:_FoundationGroup diggs:_FoundationGroup 0.. 1 attributeGroup gml:Associ ationAttributeGroup Hierarchal Hole Objects Figure A-2. DIGGS Hole Hierarchy

PAGE 175

150 Hole Feature Table A-40. Hole Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* holeGeometry The geometry of the hole in the geographic and/or local coordinate systems defined in project. Could be a point or line or line string. A 1D object in a 3D system. Includes method of measurement, coordinate system and accuracy diggs:HoleGeom etryType 170 90 34 170 90 20 1.. 1 referenceDatum Description A description of the reference datum at the zero measured depth for the hole string 100.1 23 150.233 0.. 1 groundLevelGeo deticCoordinates Coordinates of the ground level in the geodetic coordinate systems defined in project. gml:PointPropert yType 40741 5 268653 23.45 0..

PAGE 176

151 Table A-40. Continued Property Definition Type Example Occurrences groundLevelLoc alCoordinates Coordinates of the ground level in the local coordinate systems defined in project. gml:PointPropert yType 150.2 75.8 3.45 0.. groundLevelGeo deticElevation Elevation of the ground level in the geodetic datum defined in project. gml:PointPropert yType 40741 5 268653 23.45 0.. groundLevelLoc alElevation Elevation of the ground level in the local datum defined in project. gml:PointPropert yType 150.2 75.8 3.45 0.. referenceLocatio nGeodeticCoord inates Coordinates of the reference point at zero depth (may or may not be the same as ground level) in the geodetic coordinate systems defined in project. gml:PointPropert yType 40741 5 268653 23.45 0.. referenceLocatio nLocalCoordinat es Coordinates of the reference point at zero depth (may or may not be the same as ground level) in the local coordinate systems defined in project. gml:PointPropert yType 150.2 75.8 3.45 0..

PAGE 177

152 Table A-40. Continued Property Definition Type Example Occurrences referenceLocatio nGeodeticElevat ion Elevation of the reference point at zero depth (may or may not be the same as ground level) in the geodetic datum defined in project. gml:PointPropert yType 40741 5 268653 23.45 0.. referenceLocatio nLocalElevation Elevation of the reference point at zero depth (may or may not be the same as ground level) in the local datum defined in project. gml:PointPropert yType 150.2 75.8 3.45 0.. status Freeform description of the status of Hole and Hole Related Information string Preliminary 0.. 1 type Primary exploratory hole advancement method (details given in HoleConstructio n) gml:CodeType Rotary cored 0.. 1 purpose Freeform description of primary purpose of the hole string Geophysics and sampling 0.. 1 trialPitLength Trial pit length gml:MeasureTyp e 27.56 0.. 1 trialPitWidth Trial pit or logged traverse width gml:MeasureTyp e 1.35 0.. 1

PAGE 178

153 Table A-40. Continued Property Definition Type Example Occurrences depthSurfaceWa ter Depth of water for an overwater hole gml:PointPropert yType 0.. 1 layer diggs:LayerProp ertyType 0.. detail diggs:DetailProp ertyType 0.. fractureSpacing diggs:FractureSp acingPropertyTy pe 0.. discontinuityDat a diggs:Discontinu ityDataProperty Type 0.. sample diggs:SamplePro pertyType 0.. schmidtRebound Hardness diggs:SchmidtRe boundHardnessP ropertyType 0.. holeConstructio n diggs:HoleConst ructionPropertyT ype 0.. waterLevelsInH ole diggs:WaterLeve lsInHoleProperty Type 0.. insituCbr diggs:InsituCbrP ropertyType 0.. insituDensity diggs:InsituDens ityPropertyType 0.. insituPermeabilit yGeneral diggs:InsituPerm eabilityGeneralP ropertyType 0.. redoxPotential diggs:RedoxPote ntialPropertyTyp e 0.. insituResistivity diggs:InsituResis tivityPropertyTy pe 0..

PAGE 179

154 Table A-40. Continued Property Definition Type Example Occurrences drivenPenetratio nTestGeneral diggs:DrivenPen etrationTestGene ralPropertyType 0.. vaneGeneral diggs:VaneGene ralPropertyType 0.. pressuremeterGe neral diggs:Pressurem eterGeneralProp ertyType 0.. pocketPenetrom eter diggs:PocketPen etrometerPropert yType 0.. handVane diggs:HandVane PropertyType 0.. staticConeTestG eneral diggs:StaticCone TestGeneralProp ertyType 0.. insituFlameIonis ationDetector diggs:InsituFlam eIonisationDetec torPropertyType 0.. insituPhotoIonis ationDetector diggs:InsituPhot oIonisationDetec torPropertyType 0.. dilatometerGene ral diggs:Dilatomete rGeneralPropert yType 0.. otherFieldTests diggs:OtherField TestsPropertyTy pe 0.. monitoringPoint General diggs:Monitorin gPointGeneralPr opertyType 0.. equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0..

PAGE 180

155 Table A-40. Continued Property Definition Type Example Occurrences locations Descriptions of locations associated with this item of data diggs:LocationT ype locationType=H ole cluster locationValue=P owerhouse 2 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 181

156 Table A-41. HoleGeometryType The geomet ry of the hole in the geographic and/or local coordinate systems defined in proj ect. Could be a point or line or line string. A 1D object in a 3D system Includes method of measurement, coordinate system and accuracy Property Definition Type Example Occurrences gml:_Geometry gml:_Geometry 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-42. LayerPropertyType Property Definition Type Example Occurrences diggs:_Layer diggs:_Layer 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-43. DetailPropertyType Property Definition Type Example Occurrences diggs:_Detail diggs:_Detail 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-44. FractureSpacingPropertyType Property Definition Type Example Occurrences diggs:_FractureSpacing diggs:_FractureSpacing 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-45. DiscontinuityDataPropertyType Property Definition Type Example Occurrences diggs:_Discontin uityData diggs:_Discontin uityData 0.. 1 attributeGroup gml:Association AttributeGroup

PAGE 182

157 Table A-46. SchmidtReboundHardnessPropertyType Property Definition Type Example Occurrences diggs:_Schmidt ReboundHardne ss diggs:_Schmidt ReboundHardne ss 0.. 1 attributeGroup gml:Association AttributeGroup Table A-47. HoleConstructionPropertyType Property Definition Type Example Occurrences diggs:_HoleCon struction diggs:_HoleCon struction 0.. 1 attributeGroup gml:Association AttributeGroup Table A-48. WaterLevelsInHolePropertyType Property Definition Type Example Occurrences diggs:_WaterLe velsInHole diggs:_WaterLe velsInHole 0.. 1 attributeGroup gml:Association AttributeGroup Table A-49. InsituCbrPropertyType Property Definition Type Example Occurrences diggs:_InsituCBR diggs:_InsituCBR 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-50. InsituDensityPropertyType Property Definition Type Example Occurrences diggs:_InsituDensity diggs:_InsituDensity 0.. 1 attributeGroup gml:Associ ationAttributeGroup

PAGE 183

158 Table A-51. InsituPermeabilityGeneralPropertyType Property Definition Type Example Occurrences diggs:_InsituPer meabilityGenera l diggs:_InsituPer meabilityGenera l 0.. 1 attributeGroup gml:Association AttributeGroup Table A-52. RedoxPotentialPropertyType Property Definition Type Example Occurrences diggs:_RedoxPotential diggs:_RedoxPotential 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-53. InsituResistivityPropertyType Property Definition Type Example Occurrences diggs:_Resistivity diggs:_Resistivity 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-54. DrivenPenetra tionTestGeneralPropertyType Property Definition Type Example Occurrences diggs:_DrivenPe netrationTestGe neral diggs:_DrivenPe netrationTestGe neral 0.. 1 attributeGroup gml:Association AttributeGroup Table A-55. VaneGeneralPropertyType Property Definition Type Example Occurrences diggs:_VaneGeneral diggs:_VaneGeneral 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-56. PressuremeterGeneralPropertyType Property Definition Type Example Occurrences diggs:_Pressure meterGeneral diggs:_Pressure meterGeneral 0.. 1 attributeGroup gml:Association AttributeGroup

PAGE 184

159 Table A-57. PocketPenetrometerPropertyType Property Definition Type Example Occurrences diggs:_PocketPe netrometer diggs:_PocketPe netrometer 0.. 1 attributeGroup gml:Association AttributeGroup Table A-58. HandVanePropertyType Property Definition Type Example Occurrences diggs:_HandVane diggs:_HandVane 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-59. StaticConeTe stGeneralPropertyType Property Definition Type Example Occurrences diggs:_StaticCo neTestGeneral diggs:_StaticCon eTestGeneral 0.. 1 attributeGroup gml:Association AttributeGroup Table A-60. InsituFlameIoni sationDetectorPropertyType Property Definition Type Example Occurrences diggs:_InsituFla meIonisationDet ector diggs:_InsituFla meIonisationDet ector 0.. 1 attributeGroup gml:Association AttributeGroup Table A-61. InsituPhotoIoni sationDetectorPropertyType Property Definition Type Example Occurrences diggs:_InsituPho toIonisationDete ctor diggs:_InsituPho toIonisationDete ctor 0.. 1 attributeGroup gml:Association AttributeGroup

PAGE 185

160 Table A-62. DilatometerGeneralPropertyType Property Definition Type Example Occurrences diggs:_Dilatome terGeneral diggs:_Dilatome terGeneral 0.. 1 attributeGroup gml:Association AttributeGroup Table A-63. OtherFie ldTestsPropertyType Property Definition Type Example Occurrences diggs:_OtherFiel dTests diggs:_OtherFiel dTests 0.. 1 attributeGroup gml:Association AttributeGroup Table A-64. MonitoringPo intGeneralPropertyType Property Definition Type Example Occurrences diggs:_Monitori ngPointGeneral diggs:_Monitori ngPointGeneral 0.. 1 attributeGroup gml:Association AttributeGroup Layer Feature Table A-65. Layer Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* depthTop Measured depth or distance to the top of layer as measured along the hole path. gml:PointPropert yType 16.21 1.. 1

PAGE 186

161 Table A-65. Continued Property Definition Type Example Occurrences depthBase Measured depth or distance to the base of layer as measured along the hole path. If the depth to the base of the layer is unknown because it occurs below the depth of investigation, use the total depth of the hole gml:PointPropert yType 17.25 1.. 1 classification A classification code for either the lithological material or the geological stratum within the context of the descriptive system. The code and the specification or standard that defines it are taken from a codelist. gml:CodeType category = Soil Classification class = USCS code = SC 0.. 1 description A description of the layer within the context of the descriptive system string Firm brown slightly sandy CLAY with rare shell fragments 0.. 1

PAGE 187

162 Table A-65. Continued Property Definition Type Example Occurrences legend The value of the legend code for the pictorial representation of the material within the context of the descriptive system. The code and the specification or standard that defines it are taken from a codelist. gml:CodeType category = Geology Legend Code class = AGS code = 207 0.. 1 stratumReferenc e Layer reference shown on trial pit or traverse sketch. This is a legacy data element from AGS 3.0 that will be deprecated in a future version of DIGGS. string 1 0.. 1 layerSystem The system used to describe the layer. This is derived from a codelist of category Layer System. gml:CodeType category = Layer System class = DIGGS code = Engineering geology 1.. 1 basisOfLayer A string identifying the source of information or kind of observation used to describe the layer and define its boundaries. string Drill cutting supplement by geophysical log 0.. 1

PAGE 188

163 Table A-65. Continued Property Definition Type Example Occurrences baseBoundaryDi stinctness A code value that defines how distinctly the boundary b etween layers is defined, as governed by both the contrast b etween adjacent layers and by the width of the boundary. This is a complex type, gml:CodeType classSystem = USDA value = gradual 0.. 1 baseBoundaryTo pography A code value that defines the shape of the boundarysurface between layers. This is a complex type gml:CodeType classSystem = USDA value = wavy 0.. 1 baseBoundaryOr igin A code value that defines the specific nature or origin of the boundary. This is a complex type. gml:CodeType classSystem = AGI value = erosional 0.. 1 baseBoundaryM ethodOfDetermi nation A string identifying the means by which the boundary was observed string observed in core 0.. 1 baseBoundaryDi pAngle The inclinaton angle of the boundary surface, as measured downward from the horizontal. gml:MeasureTyp e 35 0.. 1

PAGE 189

164 Table A-65. Continued Property Definition Type Example Occurrences baseBoundaryDi pDirection The direction of the true dip of the boundary surface, as measured clockwise with respect to true north. gml:MeasureTyp e 155 0.. 1 baseBoundaryD escription Freeform description of the nature of the boundary string gradual boundary over 10 mm 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 190

165 Detail Feature Table A-66. Detail Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* depthTop Measured depth or distance to the top of detail as measured along the hole path. gml:PointPropert yType 16.21 1.. 1 depthBase Measured depth or distance to the base of detail. If the depth is unknown because it occurs below the depth of investigation, set to the base of the hole. If detail is a point depthBase should be set equal to depthTop, or depthBase may be left blank. gml:PointPropert yType 17.25 0.. 1

PAGE 191

166 Table A-66. Continued Property Definition Type Example Occurrences classification A classification code for either the lithological material or the geological detail within the context of the descriptive system. The code and the specification or standard that defines it are taken from a codelist. gml:CodeType category = Soil Classification class = USCS code = SC 0.. 1 description A description of the detail within the context of the descriptive system string Very shelly 0.. 1 legend The value of the legend code for the pictorial representation of the material within the context of the descriptive system. The code and the specification or standard that defines it are taken from a codelist. gml:CodeType category = Geology Legend Code class = AGS code = 207 0.. 1 abundanceDescr iption A description of the abundance or intensity of this detail. Refers to the definition of a descriptive term in a CodeList gml:CodeType category = Abundance class = BS5930 code = Trace 0.. 1

PAGE 192

167 Table A-66. Continued Property Definition Type Example Occurrences abundancePerce ntage An estimated percentage abundance or intensity of this detail double 25 0.. 1 detailSystem The system used to describe the details. gml:CodeType Smell 0.. 1 basisOfDetail A string identifying the source of information or kind of observation used to describe the detail and define its boundaries. string Drill cuttings 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 193

168 Table A-66. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 FractureSpacing Feature Table A-67. FractureSpacing Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* depthBase Depth to base in hole, or distance to end on traverse, of the zone gml:PointPropert yType 33.65 1.. 1 fractureSetNum ber Fracture set reference number string J3 0.. 1 depthTop Depth to top in hole, or distance to start on traverse, of the zone gml:PointPropert yType 31.20 1.. 1

PAGE 194

169 Table A-67. Continued Property Definition Type Example Occurrences maxFractureSpa cing Maximum Fracture Spacing (mm) over zone gml:MeasureTyp e 350 0.. 1 fracturesPerMetr e Fracture Index over zone (fractures per metre) string 15 0.. 1 averageFracture Spacing Average Fracture Spacing (mm) over zone gml:MeasureTyp e 220 0.. 1 minFractureSpac ing Minimum Fracture Spacing (mm) over zone gml:MeasureTyp e NI 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 195

170 DiscontinuityData Feature Table A-68. DiscontinuityData Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* seepageRating Seepage rating (ISRM 1978) string VI 0.. 1 infillMaterial Infilling material string Soft clay 0.. 1 surfaceAppearan ce Surface appearance string Slightly polished 0.. 1 apertureMeasure ment Discontinuity aperture measurement gml:MeasureTyp e 2 0.. 1 dipAngle Dip of discontinuity gml:MeasureTyp e 08 0.. 1 apertureObserva tion Discontinuity aperture observation string Infilled 0.. 1 fractureSetNum ber Discontinuity set reference number string J3 1.. 1 depthTop Depth to top in hole, or distance to start on traverse, of discontinuity zone, or discontinuity gml:PointPropert yType 10.26 1.. 1 dipDirection Dip direction of discontinuity gml:MeasureTyp e 247 0.. 1

PAGE 196

171 Table A-68. Continued Property Definition Type Example Occurrences depthBase Depth to base in hole, or distance to end on traverse, of discontinuity zone gml:PointPropert yType 12.67 1.. 1 waterFlow Water flow estimate gml:MeasureTyp e 2 0.. 1 wallWeathering Discontinuity wall weathering string Slightly weathered 0.. 1 wavinessWavele ngth Large scale waviness, wavelength (ISRM 1978) double 15 0.. 1 discontinuityTyp e Type of discontinuity string Joint 0.. 1 wavinessAmplit ude Large scale waviness, amplitude (ISRM 1978) double 0.5 0.. 1 discontinuityNu mber Discontinuity number integer 57 0.. 1 termination Discontinuity termination (lower, upper) (ISRM 1978) string XR (See Appendix 1) 0.. 1 jointRoughness Coefficient Joint Roughness Coefficient double 10 0.. 1 planarity Intermediate scale planarity (ISRM 1978) string Planar 0.. 1 roughness Small scale roughness (ISRM 1978) string Smooth 0.. 1 wallStrength Discontinuity wall strength gml:MeasureTyp e 50 0.. 1 persistence Persistence measurement double 10.5 0.. 1

PAGE 197

172 Table A-68. Continued Property Definition Type Example Occurrences remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Sample Feature Table A-69. Sample Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..*

PAGE 198

173 Table A-69. Continued Property Definition Type Example Occurrences samplingDateTi me Date and optionally time sample taken dateTime 2004-10-25 or 2004-1025T12:30:00 0.. 1 temperature Sample temperature at time of sampling gml:MeasureTyp e uom= datatype= value=8 0.. 1 gasFlow Gas flow gml:MeasureTyp e uom= datatype= value=0.2 0.. 1 classification A classification code for the lithological material. The code and the specification or standard that defines it are taken from a codelist. gml:CodeType category = Soil Classification class = USCS code = SC 0.. 1 description A description of the sample material string Firm brown slightly sandy CLAY with rare shell fragments 0.. 1 condition A description of the sample condition string Slight disturbance at margins 0.. 1 sampleType Type of sample and/or sampler gml:CodeType Piston sample 0.. 1 depthBase Base depth of the sampled interval gml:PointPropert yType 25.00 0.. 1 barometricPress ure Barometric Pressure at time of sampling gml:MeasureTyp e uom= datatype= value=99.1 0.. 1 stratumReferenc e Stratum reference shown on trial pit or traverse sketch string 1 0.. 1 diameter Nominal sample diameter gml:MeasureTyp e 100 0.. 1

PAGE 199

174 Table A-69. Continued Property Definition Type Example Occurrences numberOfBlows Number of blows required to drive sampler integer 35 0.. 1 depthTop Top depth of the sampled interval gml:PointPropert yType 24.55 1.. 1 depthTopAssum ed Inferred depth of the top of the recovered sample, having assumed where sample loss or gain may have occurred. gml:PointPropert yType 0.. 1 depthBaseAssu med Inferred depth of the base of the recovered sample, having assumed where sample loss or gain may have occurred. gml:PointPropert yType 0.. 1 recoveredLength Measured length of core or sample recovered in the sampled interval gml:MeasureTyp e 0.. 1 gasPressure Gas pressure (above barometric) gml:MeasureTyp e uom= datatype= value=0.2 0.. 1 depthWater 0.. 1 (CHOICE)gml:P oint gml:Point 1.. 1 (CHOICE)code gml:CodeType 1.. 1 rockQualityDesi gnation Rock Quality Designation for core run (RQD) double 20 0.. 1 solidCoreRecov ery Percentage of solid core recovered in core run (SCR) double 23 0.. 1

PAGE 200

175 Table A-69. Continued Property Definition Type Example Occurrences totalRecovery Percentage of core or sample in the sampled interval. May include an allowance for corrected recoveries such as "expanded or compressed" sample, and dropped core. Therefore may be different from the recovered sample length. double 32 0.. 1 specimen diggs:Specimen PropertyType 0.. equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 201

176 Table A-69. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 SchmidtReboundHardness Feature Table A-70. SchmidtReboundHardness Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* schmidtHardnes sValue Schmidt hardness value float 29.7 0.. 1 hammerAxisAn gle Orientation of the hammer axis in the test. gml:MeasureTyp e 90 0.. 1

PAGE 202

177 Table A-70. Continued Property Definition Type Example Occurrences specimenClampi ngMethod Method of clamping sample string V-block 0.. 1 resultNumber Result number, if it is required to carry out multiple tests at the same location and date, each of which will have the same hole reference information integer 2 0.. 1 depth Depth of the test measured from the hole datum, whether carried out insitu, on a sample or on a specimen. This is the test depth, rather than the top sample or specimen depth. gml:PointPropert yType 1.. 1 stratumReferenc e Stratum reference shown on trial pit or traverse sketch string 0.. 1 specimenID Where this test is carried out on a specimen, rather than insitu, this provides a link to the specimen details in the Specimen table diggs:Specimen PropertyType ertret97897 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1

PAGE 203

178 Table A-70. Continued Property Definition Type Example Occurrences isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0..

PAGE 204

179 Table A-70. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 HoleConstruction Feature Table A-71. HoleConstruction Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* depthTop Depth to top of section gml:PointPropert yType 1.4 1.. 1 dateTimeStart Date and time of start of section dateTime 2005-1024T14:15:00 0.. 1 depthBase Depth to base of section gml:PointPropert yType 3.4 0.. 1 dateTimeEnd Date and time of end of section dateTime 2005-1024T14:15:00 0.. 1

PAGE 205

180 Table A-71. Continued Property Definition Type Example Occurrences constructionSyst em A code identifying the system used to describe the construction type or event. Codelist of category Construction System. gml:CodeType Casing 1.. 1 holeConstructio nDescription 0.. 1 (CHOICE)value gml:MeasureTyp e 1.. 1 (CHOICE)string string 1.. 1 (CHOICE)code gml:CodeType 1.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 206

181 Table A-71. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 WaterLevelsInHole Feature Table A-72. WaterLevelsInHole Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* depth Depth to water level gml:PointPropert yType 17.20 1.. 1 depthCasing Casing depth at time of water level observation gml:PointPropert yType 15.70 0.. 1

PAGE 207

182 Table A-72. Continued Property Definition Type Example Occurrences dateTime Date and time of water level observation in hole dateTime 2005-1024T14:15:00 0.. 1 flowRate Flow rate remarks string Steady flow of water into hole 0.. 1 depthSealed Depth at which water strike sealed by casing gml:PointPropert yType 19.10 0.. 1 waterLevelEvent The event during or after hole construction to which the water level observation is related gml:CodeType 0.. 1 timeAfterEvent The time after the event that the water level observation was actually made time WS 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 208

183 Table A-72. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 InsituCBR Feature Table A-73. InsituCBR Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* cbrValue CBR value float 1.2 0.. 1 penetration The penetration at the quoted CBR value gml:MeasureTyp e 0.. 1

PAGE 209

184 Table A-73. Continued Property Definition Type Example Occurrences resultNumber Result number, if it is necessary to report multiple CBR values and penetrations for a given test, or to carry out multiple tests at the same location and date integer 2 0.. 1 moistureContent Moisture content relating to test diggs:MoistureC ontentType 25 0.. 1 surchargePressur e Surcharge pressure gml:MeasureTyp e 15 0.. 1 depth Depth to top of CBR test gml:PointPropert yType 0.50 1.. 1 stratumReferenc e Stratum reference shown on trial pit or traverse sketch string 1 0.. 1 sampleID This provides a link to the sample which was created as part of this insitu test diggs:SamplePro pertyType 123456hfytiu 0.. 1 seatingForce Seating force gml:MeasureTyp e 10 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0..

PAGE 210

185 Table A-73. Continued Property Definition Type Example Occurrences remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 211

186 InsituDensity Feature Table A-74. InsituDensity Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* stratumReferenc e Stratum reference shown on trial pit or traverse sketch string 1 0.. 1 depth Depth of in situ density test gml:PointPropert yType 1.25 1.. 1 resultNumber Result number, if it is required to carry out multiple tests at the same location and date, each of which will have the same hole reference information integer 2 0.. 1 moistureContent Moisture content relating to in situ test diggs:MoistureC ontentType 18 0.. 1 bulkDensity In situ bulk density diggs:DensityTy pe 1.86 0.. 1 sampleID This provides a link to the sample which was created as part of this insitu test diggs:SamplePro pertyType 123456hfytiu 0.. 1

PAGE 212

187 Table A-74. Continued Property Definition Type Example Occurrences dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0..

PAGE 213

188 Table A-74. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 InsituPermeabilityGeneral Feature Table A-75. InsituPermeabilityGeneral Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* depthWaterPrior Depth to water in borehole or piezometer immediately prior to test gml:MeasureTyp e 10.60 0.. 1 depthWaterStart Depth to water at start of test gml:MeasureTyp e 5.40 0.. 1 insituPermeabilit yTestType Type of test string Rising, Falling, Constant Head 0.. 1 permeability Permeability gml:MeasureTyp e 5E-9 0.. 1 transmissivity Transmissivity gml:MeasureTyp e 0.. 1

PAGE 214

189 Table A-75. Continued Property Definition Type Example Occurrences totalWaterHead Applied Applied total head of water during test stage at centre of packer test zone gml:MeasureTyp e 20.5 0.. 1 resultNumber Result number, if it is required to carry out multiple tests at the same location and date, each of which will have the same hole reference information integer 2 0.. 1 diameterCasing Diameter of standpipe or casing gml:MeasureTyp e 0.019 0.. 1 diameterTestZon e Diameter of test zone gml:MeasureTyp e 0.150 0.. 1 averageFlow Average flow during test stage gml:MeasureTyp e 2.3 0.. 1 depthBase Depth to base of test zone gml:PointPropert yType 12.95 0.. 1 stageNumber Stage number of multistage packer test integer 1 0.. 1 depthTop Depth to top of test zone gml:PointPropert yType 12.20 1.. 1 depthWaterAssu med Depth to assumed standing water level gml:MeasureTyp e 10.0 0.. 1 insituPermeabilit yDetail diggs:InsituPerm eabilityDetailPro pertyType 0.. 1

PAGE 215

190 Table A-75. Continued Property Definition Type Example Occurrences dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0..

PAGE 216

191 Table A-75. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-76. InsituPermeab ilityDetailPropertyType Property Definition Type Example Occurrences diggs:_InsituPer meabilityDetail diggs:_InsituPer meabilityDetail 0.. 1 attributeGroup gml:Association AttributeGroup InsituPermeabilityDetail Object Table A-77. InsituPerm eabilityDetail Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* dateTime Date and time of reading dateTime 2005-1024T14:15:00 0.. 1 flowRate Pumping rate from hole gml:MeasureTyp e 0.8 0.. 1

PAGE 217

192 Table A-77. Continued Property Definition Type Example Occurrences depthWater Depth to water below ground gml:MeasureTyp e 12.5 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 RedoxPotential Feature Table A-78. RedoxPotential Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* depth Depth of redox test gml:PointPropert yType 1.0 1.. 1 stratumReferenc e Stratum reference shown on trial pit or traverse sketch string 1 0.. 1 pH pH float 7.0 0.. 1

PAGE 218

193 Table A-78. Continued Property Definition Type Example Occurrences resultNumber Result number, if it is required to carry out multiple tests at the same location and date, each of which will have the same hole reference information integer 2 0.. 1 redoxPotential Redox pot ential gml:MeasureTyp e 400 0.. 1 sampleID This provides a link to the sample which was created as part of this insitu test diggs:SamplePro pertyType 123456hfytiu 0.. 1 specimenID Where this test is carried out on a specimen, rather than insitu, this provides a link to the specimen details in the Specimen table diggs:Specimen PropertyType ertret97897 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0..

PAGE 219

194 Table A-78. Continued Property Definition Type Example Occurrences remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 220

195 Resistivity Feature Table A-79. Resistivity Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* resultNumber Result number, if it is necessary to report multiple resistivity values for different probe spacings and hence different depth ranges, or to carry out multiple tests at the same location and date integer 2 0.. 1 stratumReferenc e Stratum reference shown on trial pit or traverse sketch string 1 0.. 1 resistivity Result gml:MeasureTyp e 2000 0.. 1 depthTop Depth of the top of the range to which in situ resistivity test relates gml:PointPropert yType 0.. 1 depthBase Depth of the base of the range to which in situ resistivity test relates gml:PointPropert yType 0.. 1

PAGE 221

196 Table A-79. Continued Property Definition Type Example Occurrences specimenID Where this test is carried out on a specimen, rather than insitu, this provides a link to the specimen details in the Specimen table diggs:Specimen PropertyType ertret97897 0.. 1 sampleID This provides a link to the sample which was created as part of this insitu test diggs:SamplePro pertyType 123456hfytiu 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 222

197 Table A-79. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 DrivenPenetrationTestGeneral Feature Table A-80. DrivenPenetra tionTestGeneral Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..*

PAGE 223

198 Table A-80. Continued Property Definition Type Example Occurrences samplerLength The length of the split-spoon sampler barrel. Standard lengths are 18 inches (450 mm) and 24 inches (600 mm). gml:MeasureTyp e 0.. 1 samplerInternal Diameter The inside diameter of the split-spoon sampler. gml:MeasureTyp e 0.. 1 hammerMass The hammer mass used to drive the splitspoon sampler. The standard mass is 140 lb (63.5 kg). gml:MeasureTyp e 0.. 1 hammerType The type of hammer or drive-weight assembly used for the sampling and penetration. Typical hammer types include the following: a) donut, b) safety, or c) other. gml:CodeType donut, safety 0.. 1

PAGE 224

199 Table A-80. Continued Property Definition Type Example Occurrences hammerRelease The mechanism used to lift and drop the hammer or drive-weight assembly. Typical hammer release mechanisms include the following: a) rope and cathead, b) trip, c) semiautomatic, d) automatic, or e) other. gml:CodeType rope and cathead'|'trip'|'se miautomatic'|'auto matic' 0.. 1 dropHeight The hammer drop height for SPT penetration. The standard procedure requires a drop of 30 inches (0.76 m). gml:MeasureTyp e 0.. 1 rodType The type of sampling rods used for SPT penetration. Standard nomenclature can be used such as A-rod or Nrod. string 0.. 1 rodExternalDia meter The external diameter of the sampling rods used for SPT penetration. gml:MeasureTyp e 0.. 1

PAGE 225

200 Table A-80. Continued Property Definition Type Example Occurrences rodWeight The drive rod weight per unit length typically given per meter ('/m') or per foot('/ft'). gml:MeasureTyp e 0.. 1 catheadDiameter The diameter of the cathead used to pull the rope attached to the hammer. Typical diameters range from 6 to 10 inches (150 to 250 mm). gml:MeasureTyp e 0.. 1 ropeNumberTur ns The number of rope turns on the cathead for performing the SPT. Maximum allowed number of turns is 2 1/4. float 0.. 1 energy A description of the equipment used to measure energy during the SPT penetration. string 0.. 1 drivenPenetratio nTestEquipment Type Type of driven test equipment gml:CodeType SPT 0.. 1 coneAngle Cone angle gml:MeasureTyp e 90 0.. 1 depthTip Depth of cone if left in ground gml:PointPropert yType 8 0.. 1 anvilDamperTyp e Type of anvil damper string None 0.. 1 coneBaseDiamet er Cone base diameter gml:MeasureTyp e 43 0.. 1

PAGE 226

201 Table A-80. Continued Property Definition Type Example Occurrences drivenPenetratio nTestDetail diggs:DrivenPen etrationTestDeta ilPropertyType 0.. equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0..

PAGE 227

202 Table A-80. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-81. DrivenPenetra tionTestDetailPropertyType Property Definition Type Example Occurrences diggs:_DrivenPe netrationTestDet ail diggs:_DrivenPe netrationTestDet ail 0.. 1 attributeGroup gml:Association AttributeGroup DrivenPenetrationTestDetail Feature Table A-82. DrivenPenetr ationTestDetail Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* depthCasing Casing depth at time of test gml:PointPropert yType 12.00 0.. 1

PAGE 228

203 Table A-82. Continued Property Definition Type Example Occurrences blowsAndPenetr ation A complex type giving the number of blows and penetration for each penetration increment diggs:BlowsAnd PenetrationType 0.. blowsForTestDri ve Number of blows for main test drive integer 35 0.. 1 totalPenetration Total penetration for seating drive and test drive gml:MeasureTyp e 450 0.. 1 sptNValue SPT 'N' value integer 35 0.. 1 reportedTestRes ult Reported result string 6,8/8,9,9,9 N=35 0.. 1 blowsForSeating Drive Number of blows for seating drive integer 14 0.. 1 selfWeightPenet ration Amount of penetration of the tool under its own weight gml:MeasureTyp e 25 0.. 1 depthTop Depth to top of test gml:PointPropert yType 13.50 1.. 1 depthBase Depth to base of test gml:PointPropert yType 13.95 0.. 1 depthWater 0.. 1 (CHOICE)gml:P oint gml:Point 1.. 1 (CHOICE)code gml:CodeType 1.. 1 linerWasUsed The use of a liner to produce a constant inside diameter is permitted and should be noted. Values would be 'true' or 'false'. boolean 0.. 1

PAGE 229

204 Table A-82. Continued Property Definition Type Example Occurrences basketWasUsed The use of a basket retainer is permitted and should be noted. Values would be 'true' or 'false'. boolean 0.. 1 sampleID This provides a link to the sample which was created as part of this insitu test diggs:SamplePro pertyType 123456hfytiu 0.. drivenPenetratio nTestType Type of test gml:CodeType S 0.. 1 delay Duration of delay before increment started time 0000 0.. 1 torque Maximum torque required to rotate rods gml:MeasureTyp e 75 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 230

205 VaneGeneral Object Table A-83. VaneGeneral Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* type The type of field vane used for testing. For example, Vane Borer, miniature, etc. string vane borer 0.. 1 shape The shape of the four-bladed vane used for testing. Available vane shapes include: a) rectangular, b) single tapered, c) double tapered, or d) other. string rectangular 0.. 1 height The height of the four-bladed vane. gml:MeasureTyp e 60 mm 0.. 1 diameter The diameter of the four-bladed vane. gml:MeasureTyp e 30 mm 0.. 1 torqueDevice The device used to apply torque to the vane. For example, geared drive, torque wrench, etc. string geared drive 0.. 1 vaneDetail diggs:VaneDetai lPropertyType 0.. 1

PAGE 231

206 Table A-83. Continued Property Definition Type Example Occurrences equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 232

207 Table A-84. VaneDetailPropertyType Property Definition Type Example Occurrences diggs:_VaneDetail diggs:_VaneDetail 0.. 1 attributeGroup gml:Associ ationAttributeGroup VaneDetail Feature Table A-85. VaneDetail Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* resultNumber Result number, if it is required to carry out multiple tests at the same location and date, each of which will have the same hole reference information integer 1 0.. 1 depth Depth of vane test gml:PointPropert yType 13.50 1.. 1 remouldedShear Strength Vane test remoulded shear strength result gml:MeasureTyp e 45 0.. 1 peakShearStreng th Vane test peak shear strength result gml:MeasureTyp e 0.. 1

PAGE 233

208 Table A-85. Continued Property Definition Type Example Occurrences rotationRate The rate at which the vane is rotated during shear testing. The standard rate is 0.1 degree per second with an acceptable range of 0.05 to 0.2 degree/second. gml:MeasureTyp e 0.2 degree/second 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 234

209 PressuremeterGeneral Object Table A-86. PressuremeterGeneral Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* diameterUninflat ed Uninflated diameter of pressuremeter gml:MeasureTyp e 82.9 0.. 1 type Pressuremeter type gml:CodeType SBP 0.. 1 pressuremeterDe tailTests diggs:Pressurem eterDetailTestPr opertyType 0.. equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 235

210 Table A-86. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-87. PressuremeterDetailTestPropertyType Property Definition Type Example Occurrences diggs:_Pressure meterDetailTest diggs:_Pressure meterDetailTest 0.. 1 attributeGroup gml:Association AttributeGroup PressuremeterDetailTest Feature Table A-88. PressuremeterDetailTest Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1

PAGE 236

211 Table A-88. Continued Property Definition Type Example Occurrences gml:name Object name. string 0..* testNumber Reference number of test. To be used for linking to this test from the pressuremeterDe tailLoops table string 1 0.. 1 depthTop Depth of test gml:PointPropert yType 2.70 1.. 1 depthBase gml:PointPropert yType 0.. 1 estimatedHorizo ntalStressAxis1 Estimated horizontal stress, axis 1 or volumetric gml:MeasureTyp e 700 0.. 1 estimatedHorizo ntalStressAxis2 Estimated horizontal stress, axis 2 gml:MeasureTyp e 700 0.. 1 estimatedHorizo ntalStressAxis3 Estimated horizontal stress, axis 3 gml:MeasureTyp e 700 0.. 1 estimatedHorizo ntalStressAxisA verage Estimated horizontal stress, average gml:MeasureTyp e 700 0.. 1 initialModulusA xis1 Initial shear modulus axis 1 or volumetric pressuremeter modulus gml:MeasureTyp e 70 0.. 1 initialModulusA xis2 Initial shear modulus, axis 2 gml:MeasureTyp e 70 0.. 1 initialModulusA xis3 Initial shear modulus, axis 3 gml:MeasureTyp e 70 0.. 1 initialModulusA xisAverage Initial shear modulus, average gml:MeasureTyp e 70 0.. 1

PAGE 237

212 Table A-88. Continued Property Definition Type Example Occurrences undrainedStreng thAxis1 Undrained shear strength, axis 1 or volumetric gml:MeasureTyp e 420 0.. 1 undrainedStreng thAxis2 Undrained shear strength, axis 2 gml:MeasureTyp e 420 0.. 1 undrainedStreng thAxis3 Undrained shear strength, axis 3 gml:MeasureTyp e 420 0.. 1 undrainedStreng thAxisAverage Undrained shear strength, average gml:MeasureTyp e 420 0.. 1 limitPressureAxi s1 Limit pressure, axis 1 or volumetric gml:MeasureTyp e 3400 0.. 1 limitPressureAxi s2 Limit pressure, axis 2 gml:MeasureTyp e 3400 0.. 1 limitPressureAxi s3 Limit pressure, axis 3 gml:MeasureTyp e 3400 0.. 1 limitPressureAxi sAverage Limit pressure, average gml:MeasureTyp e 3400 0.. 1 frictionAngleAx is1 Angle of friction, axis1 or volumetric gml:MeasureTyp e 39 0.. 1 frictionAngleAx is2 Angle of friction, axis 2 gml:MeasureTyp e 39 0.. 1 frictionAngleAx is3 Angle of friction, axis 3 gml:MeasureTyp e 39 0.. 1 frictionAngleAx isAverage Angle of friction, average gml:MeasureTyp e 39 0.. 1 dilationAngleAx is1 Angle of dilation, axis 1 or volumetric gml:MeasureTyp e 10 0.. 1 dilationAngleAx is2 Angle of dilation, axis 2 gml:MeasureTyp e 10 0.. 1 dilationAngleAx is3 Angle of dilation, axis 3 gml:MeasureTyp e 10 0.. 1 dilationAngleAx isAverage Angle of dilation, average gml:MeasureTyp e 10 0.. 1

PAGE 238

213 Table A-88. Continued Property Definition Type Example Occurrences frictionAngleCo nstantVolume Angle of friction at constant volume (*cv) used gml:MeasureTyp e 35 0.. 1 isMeasuredFricti onAngleConstan tVolume Angle of friction at constant volume measures (True) or assumed (False) boolean 0.. 1 coefficientConso lidation Horizontal coefficient of consolidation from holding gml:MeasureTyp e 0.. pressuremeterDe tailLoops diggs:Pressurem eterDetailLoops PropertyType 0.. dateCompleted The date this activity was completed date 2005-10-25 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 239

214 Table A-89. PressuremeterDetailLoopsPropertyType Property Definition Type Example Occurrences diggs:_Pressure meterDetailLoop s diggs:_Pressure meterDetailLoop s 0.. 1 attributeGroup gml:Association AttributeGroup PressuremeterDetailLoops Object Table A-90. PressuremeterDetailLoops Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* loopNumber Unload/Reload loop number integer 1 0.. 1 stressBottomLoo p Stress level at the b ottom of the unload/reload loop gml:MeasureTyp e 0.. 1 stressClosureLo op Stress level at the top closure of the unload/reload loop gml:MeasureTyp e 0.. 1 unloadReloadM odulusAxis1 Unload/reload shear modulus, axis 1 or omnidirectional gml:MeasureTyp e 70 0.. 1 unloadReloadM odulusAxis2 Unload/reload shear modulus, axis 2 gml:MeasureTyp e 70 0.. 1 unloadReloadM odulusAxis3 Unload/reload shear modulus, axis 3 gml:MeasureTyp e 70 0.. 1

PAGE 240

215 Table A-90. Continued Property Definition Type Example Occurrences unloadReloadM odulusAxisAver age Unload/reload shear modulus, average gml:MeasureTyp e 70 0.. 1 pressuremeterDe tailData diggs:Pressurem eterDetailDataPr opertyType 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-91. PressuremeterDetailDataPropertyType Property Definition Type Example Occurrences diggs:_Pressure meterDetailData diggs:_Pressure meterDetailData 0.. 1 attributeGroup gml:Association AttributeGroup

PAGE 241

216 PressuremeterDetailData Object Table A-92. PressuremeterDetailData Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* displacementAxi s2 Arm (pair) 2 displacement gml:MeasureTyp e 1.0 0.. 1 volumeChange Volume change in test cell gml:MeasureTyp e 2.6 0.. 1 totalPressureAxi s1 Total pressure/arm (pair) 1 gml:MeasureTyp e 54.40 0.. 1 displacementAxi s1 Arm (pair) 1 displacement gml:MeasureTyp e 1.0 0.. 1 totalPressureAxi s3 Total pressure/arm (pair) 3 gml:MeasureTyp e 54.40 0.. 1 sequenceNumbe r Sequence number of the data point within this unload/reload loop integer 1 0.. 1 porePressureA Pore pressure cell A gml:MeasureTyp e 2.90 0.. 1 totalPressureAxi s2 Total pressure/arm (pair) 2 gml:MeasureTyp e 54.40 0.. 1 displacementAxi s3 Arm (pair) 3 displacement gml:MeasureTyp e 1.0 0.. 1 totalPressure Total pressure in test cell gml:MeasureTyp e 60.1 0.. 1

PAGE 242

217 Table A-92. Continued Property Definition Type Example Occurrences porePressureB Pore pressure cell B gml:MeasureTyp e 2.90 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 PocketPenetrometer Feature Table A-93. PocketPenetrometer Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* pocketPenetrom eter 0.. 1

PAGE 243

218 Table A-93. Continued Property Definition Type Example Occurrences resultNumber Result number, if it is required to carry out multiple tests at the same location and date, each of which will have the same hole reference information integer 2 0.. 1 depth Depth of the test measured from the hole datum, whether carried out insitu, on a sample or on a specimen. This is the test depth, rather than the top sample or specimen depth. gml:PointPropert yType 1.. 1 stratumReferenc e Stratum reference shown on trial pit or traverse sketch string 0.. 1 specimenID Where this test is carried out on a specimen, rather than insitu, this provides a link to the specimen details in the Specimen table diggs:Specimen PropertyType ertret97897 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1

PAGE 244

219 Table A-93. Continued Property Definition Type Example Occurrences equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 245

220 PocketPenetrometerPattern – A special data type that allows “>” to precede the value of the result. HandVane Feature Table A-94. HandVane Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* peakShearStreng th Hand vane undrained shear strength (peak) gml:MeasureTyp e 40 0.. 1 remouldedShear Strength Hand vane undrained shear strength (remoulded) gml:MeasureTyp e 15 0.. 1 resultNumber Result number, if it is required to carry out multiple tests at the same location and date, each of which will have the same hole reference information integer 2 0.. 1

PAGE 246

221 Table A-94. Continued Property Definition Type Example Occurrences depth Depth of the test measured from the hole datum, whether carried out insitu, on a sample or on a specimen. This is the test depth, rather than the sample or specimen depth. gml:PointPropert yType 1.. 1 stratumReferenc e Stratum reference shown on trial pit or traverse sketch string 0.. 1 specimenID Where this test is carried out on a specimen, rather than insitu, this provides a link to the specimen details in the Specimen table diggs:Specimen PropertyType ertret97897 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 247

222 Table A-94. Continued Property Definition Type Example Occurrences roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 StaticConeTestGeneral Object Table A-95. StaticC oneTestGeneral Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1

PAGE 248

223 Table A-95. Continued Property Definition Type Example Occurrences gml:name Object name. string 0..* coneSerialNumb er Cone identification reference string PQ47 0.. 1 staticConeTestT ype The type of static cone penetrometer used for testing. gml:CodeType 0.. 1 tipArea The conical base area of the penetrometer tip. Typical values are 10 cm2 and 15 cm2 (cm2 = square centimetres). gml:MeasureTyp e 0.. 1 tipApexAngle The apex angle of the conical point of the penetrometer tip. The standard value is 60 degrees. (uom="deg"). gml:MeasureTyp e 0.. 1 frictionSleeveAr ea The surface area of the friction sleeve located immediately behind the penetrometer tip. Typical values are 150 cm2 for the 10 cm2 and 200 cm2 for the 15 cm2 (cm2 = square centimetres). gml:MeasureTyp e 0.. 1

PAGE 249

224 Table A-95. Continued Property Definition Type Example Occurrences distanceTipToSl eeve The distance between the tip and the center of the friction sleeve. A unit of measure is required in the uom attribute. gml:MeasureTyp e 0.. 1 piezoconeType The type of Piezocone is defined in part by the position of the filter element. gml:CodeType 0.. 1 porousElementT ype The type of material used as porous filter element. The following materials are typically used: a) plastic, b) sintered bronze, c) sintered steel, d) ceramic, or e) other. This value is extendable using Other: xx. gml:CodeType 0.. saturationFluid The fluid used to saturate the porous filter element. The following deaired fluids are typically used: a) water, b) glycerin, c) silicon oil, or d) other This value is extendable using Other: xx. gml:CodeType 0..

PAGE 250

225 Table A-95. Continued Property Definition Type Example Occurrences saturationMetho d A description of the procedure used to saturate the porous filter element. string 0.. netAreaRatioCor rection The correction necessary to adjust the penetration cone resistance due to penetration water pressures acting behind the cone tip. float 0.. 1 pushRodType The type of pushing rods used for CPT penetration. Standard nomenclature can be used such as A-rod or Nrod string 0.. 1 frictionReducer A description of the type, size and location of the friction reducer behind the base of the cone should be reported if used string 0.. 1 penetrationRate The rate of advance of the penetrometer. Rate should be between 20 +/5 mm/second (uom="mm/s"). gml:MeasureTyp e 0.. 1 tipCapacity The capacity of the tip load cell. gml:MeasureTyp e 0.. 1

PAGE 251

226 Table A-95. Continued Property Definition Type Example Occurrences sleeveCapacity The capacity of the sleeve load cell. gml:MeasureTyp e 0.. 1 surfaceCapacity The capacity of the surface load cell. gml:MeasureTyp e 0.. 1 poreCapacity The capacity of the pore pressure load cell. gml:MeasureTyp e 0.. staticConeTestD etail diggs:StaticCone TestDetailProper tyType 0.. dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 252

227 Table A-95. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-96. StaticCone TestDetailPropertyType Property Definition Type Example Occurrences diggs:_StaticCo neTestDetail diggs:_StaticCon eTestDetail 0.. 1 attributeGroup gml:Association AttributeGroup StaticConeTestDetail Feature Table A-97. StaticConeTestDetail Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1

PAGE 253

228 Table A-97. Continued Property Definition Type Example Occurrences gml:name Object name. string 0..* sampleID This provides a link to the sample which was created as part of this insitu test diggs:SamplePro pertyType 123456hfytiu 0.. temperature Temperature gml:MeasureTyp e 10 0.. 1 pidReading Photo ionization detector reading gml:MeasureTyp e 3650 0.. 1 phReading pH reading float 7.2 0.. 1 slopeIndicator1 Slope Indicator no. 1 gml:MeasureTyp e 4.1 0.. 1 photomultiplier Reading Photo-multiplier tube reading gml:MeasureTyp e 26 0.. 1 coneResistance Cone resistance gml:MeasureTyp e 20 0.. 1 depth Depth of result for static cone test gml:PointPropert yType 12.10 1.. 1 conductivity Conductivity gml:MeasureTyp e 0.01 0.. 1 fluorescenceInte nsity Fluorescence intensity float 96.3 0.. 1 fidReading Flame ionization detector reading gml:MeasureTyp e 151260 0.. 1 slopeIndicator2 Slope Indicator no. 2 gml:MeasureTyp e 6.3 0.. 1 redoxPotentialR eading Redox potential reading gml:MeasureTyp e 13.3 0.. 1 localSideFrictio nResistance Local unit side friction resistance gml:MeasureTyp e 1000 0.. 1 cvDissipationTe st cv derived from dissipation test gml:MeasureTyp e 1.2E-03 0.. 1

PAGE 254

229 Table A-97. Continued Property Definition Type Example Occurrences remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 InsituFlameIonizationDetector Feature Table A-98. InsituFlameIonizationDetector Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* depth Depth of headspace test sample gml:PointPropert yType 1.0 1.. 1

PAGE 255

230 Table A-98. Continued Property Definition Type Example Occurrences resultNumber Result number, if it is required to carry out multiple tests at the same location, depth and date, each of which will have the same hole reference information integer 2 0.. 1 stratumReferenc e Stratum reference shown on trial pit or traverse sketch string 1 0.. 1 fidReading Results of FID analysis gml:MeasureTyp e 10 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 256

231 Table A-98. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 InsituPhotoIonizationDetector Feature Table A-99. InsituPhotoI onizationDetector Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* pidReading Result of PID analysis gml:MeasureTyp e 10 0.. 1 depth Depth of headspace test sample gml:PointPropert yType 1.0 1.. 1

PAGE 257

232 Table A-99. Continued Property Definition Type Example Occurrences resultNumber Result number, if it is required to carry out multiple tests at the same location, depth and date, each of which will have the same hole reference information integer 3 0.. 1 stratumReferenc e Stratum reference shown on trial pit or traverse sketch string 1 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 258

233 Table A-99. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 DilatometerGeneral Object Table A-100. DilatometerGeneral Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:descriptionObject description string 0..1 gml:name Object name. string 0..*

PAGE 259

234 Table A-100. Continued Property Definition Type Example Occurrences membraneTypeThe thickness or type of thin flat dilatometer circular steel membrane used for testing. Typical types include soft, standard or hard and very hard. Typical thickness for the standard membranes is 0.20 mm and 0.25 mm for the very hard membranes. string 0.. 1 frictionReducer Diameter The diameter of the friction reducer. gml:MeasureTyp e 48 mm 0.. 1 frictionReducer Location The location of the friction reducer relative to the center of the dilatometer membrane. gml:MeasureTyp e mm 0.. 1 thrustLoadCell Range The range of the load cell used to measure the penetration thrust applied during blade insertion. gml:MeasureTyp e kN 0.. 1 pushRodType The type of pushing rods used for dilatometer penetration. Standard nomenclature can be used such as A-rod or N-rod string 0.. 1

PAGE 260

235 Table A-100. Continued Property Definition Type Example Occurrences penetrationType The method used to advance the dilatometer to test depth. Methods include quasi-static thrust using drill rig or cone penetrometer truck, driven using an SPT hammer or, other methods of penetration. string 0.. 1 rateOfPenetrati on The rate of penetration used to advance the flat dilatometer to test depth. gml:MeasureTyp e 20 mm/sec 0.. 1 bladeMembrane Orientation The orientation of the blade membrane during the sounding. string facing retaining wall 0.. 1 dilatometerDeta il diggs:Dilatomete rDetailPropertyT ype 0.. equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 261

236 Table A-100. Continued Property Definition Type Example Occurrences roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileS et Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-101. DilatometerDetailPropertyType Property Definition Type Example Occurrences diggs:_DilatometerDetail diggs:_DilatometerDetail 0.. 1 attributeGroup gml:Associ ationAttributeGroup

PAGE 262

237 DilatometerDetail Feature Table A-102. DilatometerDetail Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* depth Depth of measurement measured from the center of the dilatometer membrane. gml:PointPropert yType 1.. 1 thrust Thrust force required to advance the dilatometer and measured at the test depth. In accordance to ASTM, this force is exclusive of soil or other friction along the push rods. This thrust is referred to as qd. gml:MeasureTyp e 0.. 1

PAGE 263

238 Table A-102. Continued Property Definition Type Example Occurrences p0Reading A-Reading corrected for the DA membrane stiffness at 0.05 mm expansion, the 0.05 mm expansion itself and the gauge pressure deviation from zero. This corrected pressure is referred to as p0. gml:MeasureTyp e 0.. 1 p1Reading B-Reading corrected for the DB membrane stiffness at 1.10 mm expansion and the gauge pressure deviation from zero. This corrected pressure is referred to as p1. gml:MeasureTyp e 0.. 1 p2Reading C-Reading corrected for the DA membrane stiffness at 0.05 mm expansion and the gauge pressure deviation from zero. This corrected pressure is referred to as p2. gml:MeasureTyp e 0.. 1

PAGE 264

239 Table A-102. Continued Property Definition Type Example Occurrences horizontalCoeffi cientOfConsolid ation The horizontal coefficient of consolidation derived from the dissipation test data. gml:MeasureTyp e 1.2E-03 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 MonitoringPointGeneral Object Table A-103. MonitoringPointGeneral Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..*

PAGE 265

240 Table A-103. Continued Property Definition Type Example Occurrences inclinationAxisB Inclination of instrument axis B (measured positively down from horizontal) gml:MeasureTyp e 0.. 1 inclinationAxis A Inclination of instrument axis A (measured positively down from horizontal) gml:MeasureTyp e 0.. 1 bearingAxisB Bearing of monitoring axis B (degrees from North) gml:MeasureTyp e 180 0.. 1 signConvention AxisC Reading sign convention in direction C string Displacement up +ve 0.. 1 monitoringPoint Distance Distance of monitoring point from the Reference Point as defined in hole.referenceDa tumDescription gml:MeasureTyp e 2.30 0.. 1 monitoringPoint ID Monitoring Point ID (optional) string ZT102 0.. 1 instrumentType Instrument type gml:CodeType TS (See Appendix 1) 0.. 1 bearingAxisA Bearing of monitoring axis A (degrees from North) gml:MeasureTyp e 090 0.. 1 signConvention AxisB Reading sign convention in direction B string Displacement to South +ve 0.. 1 bearingAxisC Bearing of monitoring axis C (degrees from North) gml:MeasureTyp e NA 0.. 1

PAGE 266

241 Table A-103. Continued Property Definition Type Example Occurrences signConvention AxisA Reading sign convention in direction A string Displacement to East +ve 0.. 1 inclinationAxisC Inclination of instrument axis C (measured positively down from horizontal) gml:MeasureTyp e 0.. 1 monitoringPoint Construction diggs:Monitorin gPointConstructi onPropertyType 0.. monitoringPoint Event diggs:Monitorin gPointEventProp ertyType 0.. monitoringPoint Reading diggs:Monitorin gPointReadingPr opertyType 0.. insituChemicalT ests diggs:InsituChe micalTestsPrope rtyType 0.. dateCompleted Date installation completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 267

242 Table A-103. Continued Property Definition Type Example Occurrences roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-104. MonitoringPointConstructionPropertyType Property Definition Type Example Occurrences diggs:_Monitori ngPointConstruc tion diggs:_Monitori ngPointConstruc tion 0.. 1 attributeGroup gml:Association AttributeGroup

PAGE 268

243 Table A-105. MonitoringPointEventPropertyType Property Definition Type Example Occurrences diggs:_Monitori ngPointEvent diggs:_Monitori ngPointEvent 0.. 1 attributeGroup gml:Association AttributeGroup Table A-106. MonitoringPointReadingPropertyType Property Definition Type Example Occurrences diggs:_Monitori ngPointReading diggs:_Monitori ngPointReading 0.. 1 attributeGroup gml:Association AttributeGroup Table A-107. InsituChemicalTestsPropertyType Property Definition Type Example Occurrences diggs:_InsituChemicalTests diggs:_InsituChemicalTests 0.. 1 attributeGroup gml:Associ ationAttributeGroup MonitoringPointConstruction Feature Table A-108. MonitoringPointConstruction Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* dateTimeStart Date and time of start of construction interval dateTime 2005-1024T14:15:00 0.. 1 depthTop Depth to top of section gml:PointPropert yType uom=m datatype=float value=5 1.. 1

PAGE 269

244 Table A-108. Continued Property Definition Type Example Occurrences dateTimeEnd Date and time of end of construction interval dateTime 2005-1024T14:15:00 0.. 1 depthBase Depth to base of section gml:PointPropert yType uom=m datatype=float value=10 0.. 1 constructionSyst em A code identifying the system used to describe the construction type or event. Codelist of category MP Construction System. gml:CodeType Casing 1.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 270

245 Table A-108. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 MonitoringPointEvent Object Table A-109. MonitoringPointEvent Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* dateTimeStart Date and time of the start of the event, or the date and time when the event has no significant duration dateTime 2005-1024T14:15:00 0.. 1 dateTimeEnd Date and time of the end of the event dateTime 2005-1024T14:15:00 0.. 1

PAGE 271

246 Table A-109. Continued Property Definition Type Example Occurrences eventSystem A code identifying the system used to describe the event. gml:CodeType Well development 1.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 MonitoringPointReading Feature Table A-110. MonitoringPointReading Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1

PAGE 272

247 Table A-110. Continued Property Definition Type Example Occurrences gml:description Object description string 0..1 gml:name Object name. string 0..* dateTime Date and time of reading dateTime 2005-1024T14:15:00 0.. 1 slipIndicatorBott omDistance Distance B from Reference Point (slip indicator bottom rod) gml:MeasureTyp e 11.56 0.. 1 slipIndicatorTop Distance Distance A from Reference Point (slip indicator top rod) gml:MeasureTyp e 2.73 0.. 1 temperature Temperature gml:MeasureTyp e 21.2 0.. 1 absolutePosition Level Absolute position (Level) gml:MeasureTyp e 10.2 0.. 1 displacementDir ectionA Displacement in direction A gml:MeasureTyp e 24 0.. 1 depthWater 0.. 1 gml:Point gml:Point 1.. 1 code gml:CodeType 1.. 1 absolutePosition Easting Absolute position (Easting) gml:MeasureTyp e 523145 0.. 1 rotationTiltDirec tionC Rotation/Tilt in direction C gml:MeasureTyp e 2.42 0.. 1 absolutePosition Northing Absolute position (Northing) gml:MeasureTyp e 178456 0.. 1 flow Flow gml:MeasureTyp e 20.1 0.. 1 rotationTiltDirec tionA Rotation/Tilt in direction A gml:MeasureTyp e 0.023 0.. 1 strainDirectionB Strain in direction B float 1.09 0.. 1

PAGE 273

248 Table A-110. Continued Property Definition Type Example Occurrences gaugeLength Gauge length gml:MeasureTyp e 0.50 0.. 1 displacementDir ectionB Displacement in direction B gml:MeasureTyp e 12.7 0.. 1 pressure Pressure gml:MeasureTyp e 20.64 0.. 1 rotationTiltDirec tionB Rotation/Tilt in direction B gml:MeasureTyp e -0.284 0.. 1 strainDirectionA Strain in direction A float -1.87 0.. 1 strainDirectionC Strain in direction C float 1.23 0.. 1 force Force gml:MeasureTyp e 62.8 0.. 1 waterHead Head of water above tip gml:MeasureTyp e 2.1 0.. 1 displacementDir ectionC Displacement in direction C gml:MeasureTyp e -10.842 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 274

249 Table A-110. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 InsituChemicalTests Object Table A-111. InsituChemicalTests Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* dateTime Date and time of reading dateTime 2005-1024T14:15:00 0.. 1 detectionLimitU pper Method/instrume ntation upper detection limit string 0.. 1

PAGE 275

250 Table A-111. Continued Property Definition Type Example Occurrences casNumber Chemical Abstract Service registry number (where appropriate) string 0.. 1 testResult 0.. 1 (CHOICE)value gml:MeasureTyp e 1.. 1 (CHOICE)code gml:CodeType 1.. 1 determinand Determinand gml:CodeType GMETH 0.. 1 labDeterminand Name Client/laboratory preferred name of determinand string Methane Gas 0.. 1 detectionLimitL ower Method/instrume nt detection limit string 0.. 1 chemicalTestTy pe Test type gml:CodeType GAS 0.. 1 sampleID This provides a link to the sample which was created as part of this insitu test diggs:SamplePro pertyType 123456hfytiu 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1

PAGE 276

251 Table A-111. Continued Property Definition Type Example Occurrences equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 277

252 OtherFieldTests Feature Table A-112. OtherFieldTests Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* stratumReferenc e Stratum reference shown on trial pit or traverse sketch string 1 0.. 1 depth Depth of in situ test gml:PointPropert yType 1.25 1.. 1 resultNumber Result number, if it is required to carry out multiple tests at the same location, depth and date, each of which will have the same hole reference information integer 2 0.. 1 testType The parameter being reported, selected from a codeList 1.. 1 testResult The test result 1.. 1 sampleID This provides a link to the sample which was created as part of this insitu test gml:id 123456hfytiu 0.. 1

PAGE 278

253 Table A-112. Continued Property Definition Type Example Occurrences specimenID Where this test is carried out on a specimen, rather than insitu, this provides a link to the specimen details in the Specimen table gml:id ertret97897 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0..

PAGE 279

254 Table A-112. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Hierarchal Specimen Objects Figure A-3. DIGGS Specimen Hierarchy

PAGE 280

255 Specimen Feature Table A-113. Specimen Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* reference Specimen reference number string 2 0.. 1 depthTop Depth of the top of the specimen gml:PointPropert yType 6.50 1.. 1 depthBase Depth of the base of the specimen gml:PointPropert yType gml:Point gml:pos=7.55 0.. 1 subsamplingMet hod The method used to produce the specimen from the sample gml:CodeType Quatered 0.. 1 classification A classification code for the lithological material. The code and the specification or standard that defines it are taken from a codelist. gml:CodeType category = Soil Classification class = USCS code = SC 0.. 1 description A description of the specimen material string Firm brown slightly sandy CLAY with rare shell fragments 0.. 1 condition A description of the specimen condition string Slight disturbance at margins 0.. 1

PAGE 281

256 Table A-113. Continued Property Definition Type Example Occurrences sampleID This is only required for amalgamated samples, it references the sampleIDs of all the samples used to create the sample diggs:SamplePro pertyType dgsfdg2353254, fdgfdg657657, dsdg4567546 0.. atterbergLimits diggs:AtterbergL imitsPropertyTy pe 0.. shrinkage diggs:Shrinkage PropertyType 0.. CBRGeneral diggs:CBRGener alPropertyType 0.. chalkTests diggs:ChalkTest sPropertyType 0.. compactionGene ral diggs:Compactio nGeneralPropert yType 0.. consolidationGe neral diggs:Consolidat ionGeneralPrope rtyType 0.. frostSusceptibilit yGeneral diggs:FrostSusce ptibilityGeneralP ropertyType 0.. particleSizeGene ral diggs:ParticleSiz eGeneralPropert yType 0.. mcvGeneral diggs:McvGener alPropertyType 0.. laboratoryPerme ability diggs:Laboratory PermeabilityPro pertyType 0.. relativeDensity diggs:RelativeD ensityPropertyT ype 0..

PAGE 282

257 Table A-113. Continued Property Definition Type Example Occurrences pointLoadTest diggs:PointLoad TestPropertyTyp e 0.. porosity diggs:PorosityPr opertyType 0.. slakeDurability diggs:SlakeDura bilityPropertyTy pe 0.. shoreHardness diggs:ShoreHard nessPropertyTyp e 0.. losAngelesAbras ion diggs:LosAngele sAbrasionProper tyType 0.. aggregateImpact Value diggs:Aggregate ImpactValuePro pertyType 0.. aggregateCrushi ngValue diggs:Aggregate CrushingValueP ropertyType 0.. aggregateAbrasi onValue diggs:Aggregate AbrasionValueP ropertyType 0.. polishedStoneVa lue diggs:PolishedSt oneValuePropert yType 0.. elongationIndex diggs:Elongation IndexPropertyTy pe 0.. flakinessIndex diggs:FlakinessI ndexPropertyTy pe 0.. soundness diggs:Soundness PropertyType 0.. waterAbsorption diggs:WaterAbs orptionProperty Type 0..

PAGE 283

258 Table A-113. Continued Property Definition Type Example Occurrences laboratoryVeloci ty diggs:Laboratory VelocityProperty Type 0.. shearBoxGenera l diggs:ShearBox GeneralProperty Type 0.. suction diggs:SuctionPro pertyType 0.. tenPercentFines diggs:TenPercen tFinesPropertyT ype 0.. compressiveStre ngthGeneral diggs:Compressi veStrengthGener alPropertyType 0.. chemicalTests diggs:ChemicalT estsPropertyTyp e 0.. otherLaboratory Tests diggs:OtherLabo ratoryTestsPrope rtyType 0.. dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 284

259 Table A-113. Continued Property Definition Type Example Occurrences roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-114. AtterbergLimitsPropertyType Property Definition Type Example Occurrences diggs:_AtterbergLimits diggs:_AtterbergLimits 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-115. ShrinkagePropertyType Property Definition Type Example Occurrences diggs:_Shrinkage diggs:_Shrinkage 0.. 1 attributeGroup gml:Associ ationAttributeGroup

PAGE 285

260 Table A-116. CBRGeneralPropertyType Property Definition Type Example Occurrences diggs:_CBRGeneral diggs:_CBRGeneral 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-117. ChalkTestsPropertyType Property Definition Type Example Occurrences diggs:_ChalkTests diggs:_ChalkTests 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-118. CompactionGeneralPropertyType Property Definition Type Example Occurrences diggs:_Compacti onGeneral diggs:_Compacti onGeneral 0.. 1 attributeGroup gml:Association AttributeGroup Table A-119. ConsolidationGeneralPropertyType Property Definition Type Example Occurrences diggs:_Consolid ationGeneral diggs:_Consolid ationGeneral 0.. 1 attributeGroup gml:Association AttributeGroup Table A-120. FrostSuscep tibilityGeneralPropertyType Property Definition Type Example Occurrences diggs:_FrostSus ceptibilityGener al diggs:_FrostSusc eptibilityGeneral 0.. 1 attributeGroup gml:Association AttributeGroup Table A-121. ParticleSizeGeneralPropertyType Property Definition Type Example Occurrences diggs:_ParticleSizeGeneral diggs:_ParticleSizeGeneral 0.. 1 attributeGroup gml:Associ ationAttributeGroup

PAGE 286

261 Table A-122. McvGeneralPropertyType Property Definition Type Example Occurrences diggs:_MCVGeneral diggs:_MCVGeneral 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-123. LaboratoryPermeabilityPropertyType Property Definition Type Example Occurrences diggs:_LaboratoryPermeability diggs:_LaboratoryPermeability 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-124. Relativ eDensityPropertyType Property Definition Type Example Occurrences diggs:_RelativeDensity diggs:_RelativeDensity 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-125. PointLoadTestPropertyType Property Definition Type Example Occurrences diggs:_PointLoadTest diggs:_PointLoadTest 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-126. PorosityPropertyType Property Definition Type Example Occurrences diggs:_Porosity diggs:_Porosity 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-127. SlakeDurabilityPropertyType Property Definition Type Example Occurrences diggs:_SlakeDurability diggs:_SlakeDurability 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-128. ShoreHardnessPropertyType Property Definition Type Example Occurrences diggs:_ShoreHardness diggs:_ShoreHardness 0.. 1 attributeGroup gml:Associ ationAttributeGroup

PAGE 287

262 Table A-129. LosAngelesAbrasionPropertyType Property Definition Type Example Occurrences diggs:_LosAnge lesAbrasion diggs:_LosAngel esAbrasion 0.. 1 attributeGroup gml:Association AttributeGroup Table A-130. AggregateImpactValuePropertyType Property Definition Type Example Occurrences diggs:_Aggregat eImpactValue diggs:_Aggregat eImpactValue 0.. 1 attributeGroup gml:Association AttributeGroup Table A-131. AggregateCrushingValuePropertyType Property Definition Type Example Occurrences diggs:_Aggregat eCrushingValue diggs:_Aggregat eCrushingValue 0.. 1 attributeGroup gml:Association AttributeGroup Table A-132. AggregateAbrasionValuePropertyType Property Definition Type Example Occurrences diggs:_Aggregat eAbrasionValue diggs:_Aggregat eAbrasionValue 0.. 1 attributeGroup gml:Association AttributeGroup Table A-133. PolishedStoneValuePropertyType Property Definition Type Example Occurrences diggs:_Polished StoneValue diggs:_Polished StoneValue 0.. 1 attributeGroup gml:Association AttributeGroup

PAGE 288

263 Table A-134. ElongationIndexPropertyType Property Definition Type Example Occurrences diggs:_ElongationIndex diggs:_ElongationIndex 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-135. FlakinessIndexPropertyType Property Definition Type Example Occurrences diggs:_FlakinessIndex diggs:_FlakinessIndex 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-136. SoundnessPropertyType Property Definition Type Example Occurrences diggs:_Soundness diggs:_Soundness 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-137. WaterAbsorptionPropertyType Property Definition Type Example Occurrences diggs:_WaterAb sorption diggs:_WaterAb sorption 0.. 1 attributeGroup gml:Association AttributeGroup Table A-138. LaboratoryVelocityPropertyType Property Definition Type Example Occurrences diggs:_Laborato ryVelocity diggs:_Laborator yVelocity 0.. 1 attributeGroup gml:Association AttributeGroup Table A-139. ShearBoxGeneralPropertyType Property Definition Type Example Occurrences diggs:_ShearBo xGeneral diggs:_ShearBox General 0.. 1 attributeGroup gml:Association AttributeGroup

PAGE 289

264 Table A-140. SuctionPropertyType Property Definition Type Example Occurrences diggs:_Suction diggs:_Suction 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-141. TenPercentFinesPropertyType Property Definition Type Example Occurrences diggs:_TenPerce ntFines diggs:_TenPerce ntFines 0.. 1 attributeGroup gml:Association AttributeGroup Table A-142. CompressiveSt rengthGeneralPropertyType Property Definition Type Example Occurrences diggs:_Compres siveStrengthGen eral diggs:_Compres siveStrengthGen eral 0.. 1 attributeGroup gml:Association AttributeGroup Table A-143. ChemicalTestsPropertyType Property Definition Type Example Occurrences diggs:_Chemical Tests diggs:_Chemical Tests 0.. 1 attributeGroup gml:Association AttributeGroup Table A-144. OtherLaboratoryTestsPropertyType Property Definition Type Example Occurrences diggs:_OtherLab oratoryTests diggs:_OtherLab oratoryTests 0.. 1 attributeGroup gml:Association AttributeGroup

PAGE 290

265 AtterbergLimits Object Table A-145. AtterbergLimits Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* plasticLimit Plastic limit double 23 0.. 1 liquidLimit Liquid limit double 62 0.. 1 percentPassing4 25 Percentage passing 425 micron sieve. Can also be used for reporting the percentage retained on the 425 micron sieve, by calculation. double 12 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1

PAGE 291

266 Table A-145. Continued Property Definition Type Example Occurrences equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 292

267 Shrinkage Object Table A-146. Shrnikage Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* linearShinkage Linear shrinkage double 11 0.. 1 percentPassing4 25 Percentage passing 425 micron sieve. Can also be used for reporting the percentage retained on the 425 micron sieve, by calculation. double 12 0.. 1 shrinkageLimit Shrinkage limit double 17 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1

PAGE 293

268 Table A-146. Continued Property Definition Type Example Occurrences equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 294

269 CBRGeneral Object Table A-147. CBRGeneral Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* totalSwell Amount of total swell recorded gml:MeasureTyp e 3.0 0.. 1 retainedSizeFrac tions Weight percentage of material retained on a given sieve size or sizes, converted to a percentage passing the given sieve size. diggs:ParticleSiz eDetailType percentPassing= 25 uom=% sieveSize=20 uom=mm 0.. 1 moistureContent Initial Initial moisture content double 21 0.. 1 moistureContent Natural moisture content double 20 0.. 1 cbrDetail diggs:CBRDetail PropertyType 0.. preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1

PAGE 295

270 Table A-147. Continued Property Definition Type Example Occurrences dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0..

PAGE 296

271 Table A-147. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-148. CBRDe tailPropertyType Property Definition Type Example Occurrences diggs:_CBRDetail diggs:_CBRDetail 0.. 1 attributeGroup gml:Associ ationAttributeGroup CBRDetail Object Table A-149. CBRDetail Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* bulkDensity Bulk density diggs:DensityTy pe 1.84 0.. 1 moistureContent Top Moisture content at top double 15 0.. 1 cbrBase CBR at base double 5.2 0.. 1 cbrTop CBR at top double 6.4 0.. 1

PAGE 297

272 Table A-149. Continued Property Definition Type Example Occurrences cbrTestNumber CBR test number integer 1 0.. 1 dryDensity Dry density diggs:DensityTy pe 1.60 0.. 1 moistureContent Base Moisture content at base double 14 0.. 1 swell Amount of swell recorded gml:MeasureTyp e 3.0 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 ChalkTests Object Table A-150. ChalkTests Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..*

PAGE 298

273 Table A-150. Continued Property Definition Type Example Occurrences calciumCarbonat eContent Chalk calcium carbonate content float 42 0.. 1 chalkCrushingV alue Chalk crushing value as BS 1377 Part 4 Cl 6 float 3.5 0.. 1 retainedSizeFrac tions Weight percentage of material retained on a given sieve size or sizes, converted to a percentage passing the given sieve size. diggs:ParticleSiz eDetailType percentPassing= 25 uom=% sieveSize=10 uom=mm 0.. 1 resultNumber Chalk crushing test number integer 1 0.. 1 saturatedMoistur eContent Chalk saturated moisture content float 25 0.. 1 moistureContent Chalk natural moisture content float 20 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1

PAGE 299

274 Table A-150. Continued Property Definition Type Example Occurrences equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 300

275 CompactionGeneral Object Table A-151. CompactionGeneral Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* compactionTest Type Compaction test type gml:CodeType category = Compaction Test Type class = AGS code = 2.5kg 0.. 1 compactionMoul dType Compaction mould type gml:CodeType category = Compaction Mould Type class = AGS code = Standard 0.. 1 moistureContent AtMaxDryDensi ty Moisture content at maximum dry density float 14 0.. 1 dryDensityMax Maximum dry density gml:MeasureTyp e 2.06 0.. 1 retainedSizeFrac tions Weight percentage of material retained on a given sieve size or sizes, converted to a percentage passing the given sieve size. diggs:ParticleSiz eDetailType percentPassing= 25 uom=% sieveSize=20 uom=mm 0.. 1 compactionDetai l diggs:Compactio nDetailProperty Type 0.. 1

PAGE 301

276 Table A-151. Continued Property Definition Type Example Occurrences preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 302

277 Table A-151. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-152. CompactionDetailPropertyType Property Definition Type Example Occurrences diggs:_Compacti onDetail diggs:_Compacti onDetail 0.. 1 attributeGroup gml:Association AttributeGroup CompactionDetail Object Table A-153. CompactionDetail Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1

PAGE 303

278 Table A-153. Continued Property Definition Type Example Occurrences gml:name Object name. string 0..* pointNumber Compaction point number integer 1 0.. 1 moistureContent Moisture content float 7.8 0.. 1 dryDensity Dry density at CMPT_MC moisture content float 1.85 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 ConsolidationGeneral Object Table A-154. ConsolidationGeneral Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..*

PAGE 304

279 Table A-154. Continued Property Definition Type Example Occurrences consolidationTes tType Oedometer or Rowe, primary or secondary consolidation gml:CodeType category = Consolidation Test Type class = AGS code = Oed 0.. 1 initialVoidsRati o Initial voids ratio float 0.80 0.. 1 finalVoidsRatio Final voids ratio float 0.79 0.. 1 dryDensityInitial Initial dry density diggs:DensityTy pe 1.75 0.. 1 dryDensityFinal Final dry density diggs:DensityTy pe 1.74 0.. 1 diameter Test specimen diameter gml:MeasureTyp e 75 0.. 1 height Test specimen height gml:MeasureTyp e 19 0.. 1 coefficientVolu meCompressibili ty Coefficient of volume compressibility (mv) over mvStressRange gml:MeasureTyp e 0.36 0.. 1 moistureContent Final Final moisture content diggs:MoistureC ontentType 18 0.. 1 moistureContent Initial Initial moisture content diggs:MoistureC ontentType 21 0.. 1 saturationHeight Change Height change of specimen on saturation as percentage of original height float +1.1 0.. 1 initialDegreeOfS aturation Initial degree of saturation float 98 0.. 1 finalDegreeOfSa turation Final degree of saturation float 99 0.. 1 swellingPressure Swelling pressure gml:MeasureTyp e 100 0.. 1

PAGE 305

280 Table A-154. Continued Property Definition Type Example Occurrences mvStressRange Min Minimum value of defined stress range over which coeff of volume compressibility has been determined (mv) gml:MeasureTyp e 100 0.. 1 mvStressRange Max Maximum value of defined stress range over which coeff of volume compressibility has been determined (mv) gml:MeasureTyp e 200 0.. 1 assessedInsituStr ess Assessed insitu vertical effective stress at depth of test specimen gml:MeasureTyp e 230 0.. 1 preconsolidation Pressure Assessed preconsolidation pressure gml:MeasureTyp e 0.. 1 compressionInde x Compression index gml:MeasureTyp e 0.. 1 recompressionIn dex Recompression index gml:MeasureTyp e 0.. 1 swellingIndex Swelling index gml:MeasureTyp e 0.. 1 bulkDensityIniti al Initial bulk density diggs:DensityTy pe 2.12 0.. 1 particleDensity Particle density diggs:ParticleDe nsityType 2.65 0.. 1 consolidationDet ail diggs:Consolidat ionDetailPropert yType 0.. 1

PAGE 306

281 Table A-154. Continued Property Definition Type Example Occurrences preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 307

282 Table A-154. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-155. Consolid ationDetailPropertyType Property Definition Type Example Occurrences diggs:_ConsolidationDetail diggs:_ConsolidationDetail 0.. 1 attributeGroup gml:Associ ationAttributeGroup ConsolidationDetail Object Table A-156. ConsolidationDetail Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..*

PAGE 308

283 Table A-156. Continued Property Definition Type Example Occurrences stressIncrement Number Oedometer stress increment number integer 3 0.. 1 stressIncrement End Stress at end of stress increment/decre ment gml:MeasureTyp e 400 0.. 1 voidsRatioIncre mentStart Voids ratio at start of increment float 0.80 0.. 1 coefficientVolu meCompressibili tyIncrement Reported coefficient of volume compressibility over stress increment diggs:MeasureM ethodType 0.32 0.. coefficientConso lidationIncremen t Reported coefficient of consolidation over stress increment diggs:MeasureM ethodType 4.12 0.. coefficientSecon daryCompressio nIncrement Coefficient of secondary compression over stress increment gml:MeasureTyp e 0.12 0.. 1 coefficientTertia ryCompressionI ncrement Coefficient of tertiary compression over stress increment gml:MeasureTyp e 0.. 1 voidsRatioPrima ryEnd Voids ratio at the end of primary consolidation for that increment gml:MeasureTyp e 0.64 0.. 1 voidsRatioIncre mentEnd Voids ratio at end of stress increment float 0.62 0.. 1

PAGE 309

284 Table A-156. Continued Property Definition Type Example Occurrences remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 FrostSusceptibilityGeneral Object Table A-157. FrostSusce ptibilityGeneral Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* dryDensity Dry density diggs:DensityTy pe 1.96 0.. 1 heaveMean Mean heave gml:MeasureTyp e 13.2 0.. 1 moistureContent Moisture content diggs:MoistureC ontentType 24 0.. 1 frostSusceptibilit yDetail diggs:FrostSusce ptibilityDetailPr opertyType 0.. 1

PAGE 310

285 Table A-157. Continued Property Definition Type Example Occurrences preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 311

286 Table A-157. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-158. FrostSusceptibilityDetailPropertyType Property Definition Type Example Occurrences diggs:_FrostSus ceptibilityDetail diggs:_FrostSusc eptibilityDetail 0.. 1 attributeGroup gml:Association AttributeGroup FrostSusceptibilityDetail Object Table A-159. FrostSusceptibilityDetail Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1

PAGE 312

287 Table A-159. Continued Property Definition Type Example Occurrences gml:name Object name. string 0..* resultNumber Result number to report each of the results on the multiple subspecimens that constitute a single test integer 1 0.. 1 heave Frost heave gml:MeasureTyp e 12.5 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 ParticleSizeGeneral Object Table A-160. ParticleSizeGeneral Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1

PAGE 313

288 Table A-160. Continued Property Definition Type Example Occurrences gml:description Object description string 0..1 gml:name Object name. string 0..* ParticleSizeDeta il A complex type that defines a series of particle size and percentage passing data pairs diggs:ParticleSiz eDetailType 1.. d10 Grain diameter corresponding to 10 percent passing gml:MeasureTyp e 2.34 0.. 1 d30 Grain diameter corresponding to 30 percent passing gml:MeasureTyp e 4.76 0.. 1 d50 Grain diameter corresponding to 50 percent passing gml:MeasureTyp e 10.32 0.. 1 d60 Grain diameter corresponding to 60 percent passing gml:MeasureTyp e 23.65 0.. 1 coefficientOfUni formity The coefficient of uniformity float 0.. 1 coefficientOfCur vature A coefficient describing the degree of curvature of the grain size distribution. float 0.. 1 clayFraction The percentage of clay by weight float 12.3 0.. 1

PAGE 314

289 Table A-160. Continued Property Definition Type Example Occurrences preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 315

290 Table A-160. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 MCVGeneral Object Table A-161. MCVGeneral Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..*

PAGE 316

291 Table A-161. Continued Property Definition Type Example Occurrences retainedSizeFrac tions Weight percentage of material retained on a given sieve size or sizes, converted to a percentage passing the given sieve size. diggs:ParticleSiz eDetailType percentPassing= 25 uom=% sieveSize=20 uom=mm 0.. 1 precalibratedMo istureCondition Value MCV precalibrated value as BS 1377 Part 4 string 10 0.. 1 calibrationLineI ntercept MCV-moisture content relationship test calibration line intercept float 0.. 1 calibrationLineS lope MCV-moisture content relationship test calibration line slope float 0.. 1 calibrationLineS ensitivity MCV-moisture content relationship test calibration line sensitivity float 0.. 1 moistureContent Natural moisture content diggs:MoistureC ontentType 21 0.. 1 mcvDetail diggs:MCVDetai lPropertyType 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1

PAGE 317

292 Table A-161. Continued Property Definition Type Example Occurrences equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 318

293 Table A-162. MCVDetailPropertyType Property Definition Type Example Occurrences diggs:_MCVDetail diggs:_MCVDetail 0.. 1 attributeGroup gml:Associ ationAttributeGroup MCVDetail Object Table A-163. MCVDetail Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* resultNumber MCV result number when multiple MCVs are determined at different moisture contents for a relationship test integer 1 0.. 1 moistureContent Moisture content diggs:MoistureC ontentType 17 0.. 1 moistureConditi onValue MCV value at MCVT_MC moisture content float 12.3 0.. 1 bulkDensity Bulk density related to the MCVT_RELK MCV diggs:DensityTy pe 2.0 0.. 1 strongerThanPre calibrated If the measured MCV is stronger than the precalibrated value this field is true. boolean true 0.. 1

PAGE 319

294 Table A-163. Continued Property Definition Type Example Occurrences moistureConditi onValueSaturate d MCV value for saturated material float 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 LaboratoryPermeability Object Table A-164. LaboratoryPermeability Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1

PAGE 320

295 Table A-64. Continued Property Definition Type Example Occurrences gml:name Object name. string 0..* degreeOfSaturati onFinal Final degree of saturation float 98 0.. 1 permeability Coefficient of permeability gml:MeasureTyp e 4E-6 0.. 1 voidsRatio Voids ratio of test sample float 0.37 0.. 1 retainedSizeFrac tions Weight percentage of material too coarse for testing retained on a given sieve size or sizes, converted to a percentage passing the given sieve size. diggs:ParticleSiz eDetailType percentPassing= 25 uom=% sieveSize=20 uom=mm 0.. 1 meanEffectiveSt ress Mean effective stress at which permeability measured (when measured in triaxial cell). gml:MeasureTyp e 112 0.. 1 moistureContent Initial Initial moisture content of test sample diggs:MoistureC ontentType 20 0.. 1 height Length of test sample gml:MeasureTyp e 200 0.. 1 bulkDensityIniti al Initial bulk density of test sample diggs:DensityTy pe 2.24 0.. 1 degreeOfSaturati onInitial Initial degree of saturation float 72 0.. 1

PAGE 321

296 Table A-164. Continued Property Definition Type Example Occurrences resultNumber Permeability result number if it is necessary to report multiple results for the same test integer 2 0.. 1 dryDensity Dry density of test sample diggs:DensityTy pe 1.87 0.. 1 diameter Diameter of test sample gml:MeasureTyp e 102 0.. 1 particleDensity Particle density, measured or (#) assumed diggs:ParticleDe nsityType 2.65 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 322

297 Table A-164. Continued Property Definition Type Example Occurrences roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 RelativeDensity Object Table A-165. RelativeDensity Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1

PAGE 323

298 Table A-165. Continued Property Definition Type Example Occurrences gml:description Object description string 0..1 gml:name Object name. string 0..* retainedSizeFrac tions Weight percentage of material retained on a given sieve size or sizes, converted to a percentage passing the given sieve size. diggs:ParticleSiz eDetailType percentPassing= 25 uom=% sieveSize=2 uom=mm 0.. 1 dryDensityMax Maximum dry density as BS 1377 part 4 cl 4 diggs:DensityTy pe 2.15 0.. 1 dryDensityMin Minimum dry density as BS 1377 part 4 cl 4 diggs:DensityTy pe 1.65 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1

PAGE 324

299 Table A-165. Continued Property Definition Type Example Occurrences equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 325

300 PointLoadTest Object Table A-166. PointLoadTest Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* pointLoadTestT ype Point load test type (A, D, L or P) gml:CodeType A+L (see Appendix 1) 0.. 1 pointLoadUncor rected Uncorrected point load (Is) gml:MeasureTyp e 2.3 0.. 1 pointLoadSizeC orrected Size corrected point load index (Is 50) gml:MeasureTyp e 2.5 0.. 1 resultNumber Result number, if it is required to carry out multiple tests at the same location, depth and date, each of which will have the same hole reference information integer 0.. 1 moistureContent Moisture content of the tested specimen diggs:MoistureC ontentType 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1

PAGE 326

301 Table A-166. Continued Property Definition Type Example Occurrences isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0..

PAGE 327

302 Table A-166. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Porosity Object Table A-167. Porosity Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* porosity Rock porosity float 17 0.. 1 bulkDensity Density diggs:DensityTy pe 0.. 1

PAGE 328

303 Table A-167. Continued Property Definition Type Example Occurrences resultNumber Result number, if it is required to carry out multiple tests at the same location, depth and date, each of which will have the same hole reference information integer 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 329

304 Table A-167. Continued Property Definition Type Example Occurrences roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 SlakeDurability Object Table A-168. SlakeDurability Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1

PAGE 330

305 Table A-168. Continued Property Definition Type Example Occurrences gml:name Object name. string 0..* slakeDurabilityI ndexSecondCycl e Slake durability Index (second cycle) float 23.2 0.. 1 slakeDurabilityI ndexFirstCycle Slake durability Index (first cycle) float 50.5 0.. 1 slakingFluid Nature and temperature of slaking fluid. string Tap water at 20degC 0.. 1 fragmentDescrip tionRetained Appearance of fragments retained in the drum string All fragments showing partial disintegration 0.. 1 fragmentDescrip tionPassing Appearance of fragments passing through the drum string Fine particles in suspension with thin layer of larger particles in base of trough. 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1

PAGE 331

306 Table A-168. Continued Property Definition Type Example Occurrences equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 332

307 ShoreHardness Object Table A-169. ShoreHardness Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* shoreHardnessV alue Average Shore hardness value float 29.7 0.. 1 orientationToBe dding Orientation of the test surface relative to bedding. gml:MeasureTyp e 90 0.. 1 numberOfTests Number of tests conducted integer 20 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1

PAGE 333

308 Table A-169. Continued Property Definition Type Example Occurrences equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 334

309 LosAngelesAbrasion Object Table A-170. LosAngelesAbrasion Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* losAngelesAbras ionPercentageW ear Los Angeles abrasion percentage of wear float 0.. 1 losAngelesAbras ionCoefficient Los Angeles abrasion coefficient float 15 0.. 1 losAngelesAbras ionUniformityOf WearRatio Los Angeles abrasion uniformity of wear ratio float 0.. 1 ParticleSizeDeta il Particle size distribution of the tested specimen diggs:ParticleSiz eDetailType 0.. 1 abrasiveCharge Grading Grading of the abrasive charge diggs:ParticleSiz eDetailType 0.. preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1

PAGE 335

310 Table A-170. Continued Property Definition Type Example Occurrences dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0..

PAGE 336

311 Table A-170. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 AggregateImpactValue Object Table A-171. AggregateImpactValue Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* aggregateImpact ValueDry Aggregate Impact Value (dry sample) float 15 0.. 1 aggregateImpact ValueSoaked Aggregate Impact Value (soaked sample) float 0.. 1 ParticleSizeDeta il Particle size distribution of the tested specimen diggs:ParticleSiz eDetailType 0.. 1 particleDensity Particle density diggs:ParticleDe nsityType 0.. 1

PAGE 337

312 Table A-171. Continued Property Definition Type Example Occurrences numberOfBlows Number of hammer blows integer 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 338

313 Table A-171. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 AggregateCrushingValue Object Table A-172. AggregateCrushingValue Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* aggregateCrushi ngValue Aggregate Crushing Value float 16.5 0.. 1 ParticleSizeDeta il Particle size distribution of the tested specimen diggs:ParticleSiz eDetailType 0.. 1

PAGE 339

314 Table A-172. Continued Property Definition Type Example Occurrences preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 340

315 Table A-172. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 AggregateAbrasionValue Object Table A-173. AggregateAbrasionValue Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* aggregateAbrasi onValue Aggregate Abrasion Value float 8.32 0.. 1

PAGE 341

316 Table A-173. Continued Property Definition Type Example Occurrences preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 342

317 Table A-173. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 PolishedStoneValue Object Table A-174. PolishedStoneValue Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* polishedStoneVa lue Aggregate Polished Stone Value float 67 0.. 1

PAGE 343

318 Table A-174. Continued Property Definition Type Example Occurrences preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 344

319 Table A-174. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 ElongationIndex Object Table A-175. ElongationIndex Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* elongationIndex Aggregate Elongation Index float 12 0.. 1 ParticleSizeDeta il Particle size distribution of the tested specimen diggs:ParticleSiz eDetailType 0.. 1

PAGE 345

320 Table A-175. Continued Property Definition Type Example Occurrences preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 346

321 Table A-175. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 FlakinessIndex Object Table A-176. FlakinessIndex Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* flakinessIndex Aggregate Flakiness Index float 9 0.. 1

PAGE 347

322 Table A-176. Continued Property Definition Type Example Occurrences resultNumber Result number, if it is required to carry out multiple tests on different size fractions of the same specimen integer 0.. 1 ParticleSizeDeta il Particle size distribution of the tested specimen diggs:ParticleSiz eDetailType 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 348

323 Table A-176. Continued Property Definition Type Example Occurrences roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Soundness Object Table A-177. Soundness Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1

PAGE 349

324 Table A-177. Continued Property Definition Type Example Occurrences gml:name Object name. string 0..* soundnessValue Soundness value float 95 0.. 1 resultNumber Result number, if it is required to carry out multiple tests on different size fractions of the same specimen integer 1 0.. 1 ParticleSizeDeta il Particle size distribution of the tested specimen diggs:ParticleSiz eDetailType 0.. 1 testSolution The saturated solution used for the test string Magnesium Sulphate 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0..

PAGE 350

325 Table A-177. Continued Property Definition Type Example Occurrences remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 351

326 WaterAbsorption Object Table A-178. WaterAbsorption Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* waterAbsorption Aggregate water absorption float 2.6 0.. 1 voidIndex Void index float 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0..

PAGE 352

327 Table A-178. Continued Property Definition Type Example Occurrences remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 353

328 LaboratoryVelocity Object Table A-179. LaboratoryVelocity Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* dynamicElastic Modulus Dynamic Elastic Modulus gml:MeasureTyp e 20 0.. 1 sWaveVelocity S-wave velocity gml:MeasureTyp e 1800 0.. 1 pWaveVelocity P-wave velocity gml:MeasureTyp e 3000 0.. 1 shearModulus Shear modulus derived from ROCK_SWAV gml:MeasureTyp e 8 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1

PAGE 354

329 Table A-179. Continued Property Definition Type Example Occurrences equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 355

330 ShearBoxGeneral Object Table A-180. ShearBoxGeneral Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* peakCohesion Peak cohesion intercept gml:MeasureTyp e 5 0.. 1 peakFrictionAng le Peak angle of friction gml:MeasureTyp e 26.5 0.. 1 residualCohesio n Residual cohesion intercept gml:MeasureTyp e 1 0.. 1 residualFriction Angle Residual angle of friction gml:MeasureTyp e 13.0 0.. 1 shearBoxTestTy pe Test type e.g. small shear box, large shear box, ring shear gml:CodeType Small shear box 0.. 1 shearBoxDetail diggs:ShearBox DetailPropertyT ype 0.. preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1

PAGE 356

331 Table A-180. Continued Property Definition Type Example Occurrences dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0..

PAGE 357

332 Table A-180. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-181. ShearBoxDetailPropertyType Property Definition Type Example Occurrences diggs:_ShearBoxDetail diggs:_ShearBoxDetail 0.. 1 attributeGroup gml:Associ ationAttributeGroup ShearBoxDetail Object Table A-182. ShearBoxDetail Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* dryDensity Dry density diggs:DensityTy pe 1.63 0.. 1 normalStress Shear box normal stress gml:MeasureTyp e 100 0.. 1 stageNumber Shear box stage number integer 1 0.. 1

PAGE 358

333 Table A-182. Continued Property Definition Type Example Occurrences peakShearStress Shear box peak shear stress gml:MeasureTyp e 65.5 0.. 1 residualDisplace ment Displacement at residual shear strength gml:MeasureTyp e 12.41 0.. 1 peakDisplaceme nt Displacement at peak shear strength gml:MeasureTyp e 2.35 0.. 1 bulkDensity Bulk density diggs:DensityTy pe 1.96 0.. 1 voidsRatioInitial Initial vo ids ratio float 0.5 0.. 1 moistureContent Initial Initial moisture content diggs:MoistureC ontentType 20 0.. 1 moistureContent Final Final moisture content diggs:MoistureC ontentType 18 0.. 1 residualShearStr ess Shear box residual shear stress gml:MeasureTyp e 47.2 0.. 1 displacementRat e Displacement rate gml:MeasureTyp e 0.1 0.. 1 particleDensity Particle density. measured or, (#) assumed diggs:ParticleDe nsityType 2.65 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 359

334 Table A-182. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Suction Object Table A-183. Suction Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* suctionValue Suction value gml:MeasureTyp e 50 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1

PAGE 360

335 Table A-183. Continued Property Definition Type Example Occurrences isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0..

PAGE 361

336 Table A-183. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 TenPercentFines Object Table A-184. TenPercentFines Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* tenPercentFines Wet 10% fines value on wet aggregate gml:MeasureTyp e 60 0.. 1 tenPercentFines Dry 10% fines values on dry aggregate gml:MeasureTyp e 70 0.. 1 resultNumber Result number, if it is required to carry out multiple tests on different size fractions of the same specimen integer 1 0.. 1

PAGE 362

337 Table A-184. Continued Property Definition Type Example Occurrences ParticleSizeDeta il Particle size distribution of the tested specimen diggs:ParticleSiz eDetailType 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0..

PAGE 363

338 Table A-184. Continued Property Definition Type Example Occurrences specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 CompressiveStrengthGeneral Object Table A-185. CompressiveStrengthGeneral Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* triaxialTestType Test type gml:CodeType category = Compressive Strength Test Type class = AGS code = UU 0.. 1

PAGE 364

339 Table A-185. Continued Property Definition Type Example Occurrences phiEffectiveStre ss Angle of friction for effective shear strength triaxial test gml:MeasureTyp e 32 0.. 1 cohesionEffectiv eStress Cohesion intercept associated with phiEffectiveStre ss gml:MeasureTyp e 2 0.. 1 phiTotalStress Angle of friction for total shear strength triaxial test gml:MeasureTyp e 32 0.. 1 cohesionTotalStr ess Cohesion intercept associated with phiTotalStress gml:MeasureTyp e 2 0.. 1 undrainedShearS trength Value of undrained shear strength gml:MeasureTyp e 75 0.. 1 uniaxialCompres siveStrength Uniaxial compressive strength gml:MeasureTyp e 16.8 0.. 1 uniaxialTensileS trength Uniaxial tensile strength (by Brazilian method etc) gml:MeasureTyp e 50.1 0.. 1 compressiveStre ngthDetail diggs:Compressi veStrengthDetail PropertyType 0.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1

PAGE 365

340 Table A-185. Continued Property Definition Type Example Occurrences isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0.. roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0..

PAGE 366

341 Table A-185. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-186. Compressive StrengthDetailPropertyType Property Definition Type Example Occurrences diggs:_Compres siveStrengthDet ail diggs:_Compres siveStrengthDeta il 0.. 1 attributeGroup gml:Association AttributeGroup CompressiveStrengthDetail Object Table A-187. Compressive StrengthDetail Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* diameter Specimen diameter gml:MeasureTyp e 38 0.. 1 deviatorStressAt Failure Deviator stress at failure gml:MeasureTyp e 360 0.. 1

PAGE 367

342 Table A-187. Continued Property Definition Type Example Occurrences dryDensityInitial Initial dry density diggs:DensityTy pe 1.84 0.. 1 dryDensityEndC onsolidation Calculated dry density at end of consolidation stage diggs:DensityTy pe 0.. 1 dryDensityFinal diggs:DensityTy pe 0.. 1 moistureContent Initial Specimen initial moisture content diggs:MoistureC ontentType 15 0.. 1 moistureContent EndConsolidatio n Calculated moisture content at end of consolidation stage diggs:MoistureC ontentType 0.. 1 moistureContent Final diggs:MoistureC ontentType 0.. 1 BValue Pore pressure parameter B at end of saturation stage float 0.. 1 failureMode Mode of failure string Brittle, plastic 0.. 1 stageUndrainedS hearStrength Value of Undrained Shear Strength for the specimen or stage gml:MeasureTyp e 180 0.. 1 porewaterPressu reAtFailure Porewater pressure at failure gml:MeasureTyp e 60 0.. 1 porewaterPressu reAtStartShearin g Porewater pressure at start of shear stage gml:MeasureTyp e 50 0.. 1 height Initial specimen height gml:MeasureTyp e 76 0.. 1 bulkDensityIniti al Initial bulk density diggs:DensityTy pe 2.12 0.. 1 strainAtFailure Strain at failure float 9 0.. 1

PAGE 368

343 Table A-187. Continued Property Definition Type Example Occurrences totalCellPressure AtFailure Total cell pressure at failure gml:MeasureTyp e 100 0.. 1 testStageNumbe r Triaxial test or stage number integer 1 0.. 1 modulus Modulus and method of calculation diggs:MeasureM ethodType 0.. 1 degreeSaturation Degree of saturation at start of shearing float 0.. 1 timeToFailure Duration of shearing stage to failure duration 0.. 1 strainRate Rate of strain during shearing float 0.. 1 stressRate Rate of stress increase during shearing float 0.. 1 poissonsRatio Poisson's ratio float 0.316 0.. 1 tensileStrength Uniaxial tensile strength float 0.. 1 remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 369

344 Table A-187. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 ChemicalTests Object Table A-188. ChemicalTests Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* detectionLimitL ower Method lower detection limit string 0.. 1 labDeterminand Name Client/laboratory preferred name of determinand string Dry weight Chloride 0.. 1 casNumber Chemical Abstract Service registry number (where appropriate) string 0.. 1 detectionLimitU pper Method upper detection limit string 0.. 1

PAGE 370

345 Table A-188. Continued Property Definition Type Example Occurrences chemicalTestTy pe Test type gml:CodeType SOLID_WAT 0.. 1 determinand Determinand gml:CodeType CL 0.. 1 testResult 0.. 1 (CHOICE)value gml:MeasureTyp e 1.. 1 (CHOICE)string string 1.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 371

346 Table A-188. Continued Property Definition Type Example Occurrences roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 OtherLaboratoryTests Object Table A-189. OtherLab oratoryTests Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1

PAGE 372

347 Table A-189. Continued Property Definition Type Example Occurrences gml:name Object name. string 0..* testType The parameter being reported, selected from a codeList gml:CodeType 1.. 1 testResult The test result gml:MeasureTyp e 1.. 1 preparation Method of preparation if there are several alternative methods in the specification. string Tested in natural condition, as received 0.. 1 isNatural Flag to indicate if the initial specimen condition was at natural moisture content and density boolean true 0.. 1 dateCompleted The date this activity was completed date 2005-10-25 0.. 1 equipmentID A link to additional information on the equipment used for this activity not given elsewhere in this item diggs:Equipment PropertyType kjhsdhsdf863278 0.. remarks Remarks relevant to this item diggs:RemarkTy pe remark=Photogr aph taken author=John Smith 0..

PAGE 373

348 Table A-189. Continued Property Definition Type Example Occurrences roles Business associates (companies or individuals) who have a role in the activity described in this item diggs:RoleType role=Contractor organisationOrIn dividual=AB Investigations Ltd 0.. specificationID A link to the specification that provides definitions of the procedure(s) used for this test or activity diggs:Specificati onPropertyType 1234abcdef 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1

PAGE 374

349 Hierarchal FoundationGroup Objects FoundationGroup DrivenPile DrivenPileInstance DrivenPileCrossSection DrivenPileConstruction DrivingLog DrivingAnalysis DrivenPileBlow Capwap CapwapSegment PileDriveAnalysis CastShaft CastShaftInstance CastShaftCrossSection CastShaftConstruction Capacity LoadTest Capacity Trace Capacity Capacity Capacity LoadTest Capacity Figure A-4. Hierarchal FoundationGroup Objects

PAGE 375

350 The first sets of tables are comp lex dataTypes used throughout the FoundationGroup hierarchy. Table A-190. CapacityType Property Definition Type Example Occurrences orientation vertical, lateral gml:CodeType Vertical 1.. 1 type design, ultimate, tested gml:CodeType Ultimate 1.. 1 method Prediction/interp retation method gml:CodeType Schmertman 1.. 1 insitu reference to an insitu test used to predict, may want to extend this insitu in order to hold the FB-Deep data diggs:HolePrope rtyType #CPT-2 0.. 1 tipResistance measureTypes are doubles with a UOM gml:MeasureTyp e 233 kip 0.. 1 sideResistance Resistance provided by side surface area gml:MeasureTyp e 413 kip 0.. 1 totalResistance Total resistance provided gml:MeasureTyp e 646 kip 0.. 1 roles persons predicting, and or company load testing, etc. diggs:RoleType 0..

PAGE 376

351 Table A-190. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-191. LoadTestType Property Definition Type Example Occurrences testType code list is used so that data can be compiled based on the test performed gml:CodeType 1.. 1 dataRow Data resulting from the load test diggs:LoadTest DataType 0.. roles Roles associates with performing the load test diggs:RoleType 0.. testDate Date of the load test date 2005-10-25 0.. 1 reportDate Date of the report concerning the load test date 2005-10-25 0.. 1 comment Comment about the load test string 0.. 1 capacity capacity measured form this load test diggs:CapacityT ype 1..

PAGE 377

352 Table A-191. Continued Property Definition Type Example Occurrences equipment all gauges/equipme nts and install locations used for this load test diggs:Equipment PropertyType 0.. remarks comment about this instance diggs:RemarkTy pe 0.. specifications Test specifications diggs:Specificati onPropertyType 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-192. LoadTestDataType Contains data resulting from the load test Property Definition Type Example Occurrences elapsedTime The time elapsed from the start of this load test. The actual starting time is arbitrary, as long as every elapsed time data for this load test has the same origin. Duration is an XSD basic type in the format PnYnMnDTnHnMnS. Where n stands for a number and the preceeding letter identifies it as Y for years, M for months, D for days, H for hours, the second M for minutes, and S for seconds. P is always the first character and T must be used is hours minutes or seconds are used. durationP1DT2H3 0M0.45S 0.. 1

PAGE 378

353 Table A-192. Continued Property Definition Type Example Occurrences appliedLoad Load applied with location applied. Multiple loads can be applied at the same time in order to handle multiple osterberg cells. diggs:A ppliedL oadTyp e 1.. displacement Displacement and time after applied load. Can be used to save displacements along any location of the deep foundation member diggs:D isplace mentTy pe 0.. loadTransfere d Derived from raw strain gage data diggs:L oadTran sferedT ype 0.. strain Strain gage results diggs:St rainTyp e 0.. AppliedLoad Feature Table A-193. AppliedLoad Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a308dc4-11daa72b0800200c9a66 0..1 gml:descriptionObject description string 0..1 gml:name Object name. string 0..* value Includes units and value. Can be acceleration, velocity, load, force, or pressure. gml:MeasureType 1..

PAGE 379

354 Table A-193. Continued Property Definition Type Example Occurrences depth Depth load is applied (osterberg cells can be installed within the shaft). If ommitted, assumed to be at top. gml:PointPropertyType 1.. 1 Displacement Feature Table A-194. Displacement Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a308dc4-11daa72b0800200c9a66 0..1 gml:descriptionObject description string 0..1 gml:name Object name. string 0..* value gml:MeasureType 0.1 1.. 1 elapsedTime Time elapsed from the application of the load for this data row. Displacemnt can be repeated in order to represent creep information. gml:MeasureType 2 0.. 1

PAGE 380

355 Table A-194. Continued Property Definition Type Example Occurrences depth The location this measurement is made gml:PointPropertyType10 1.. 1 LoadTransfered Feature Table A-195. LoadTransfered Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a308dc4-11daa72b0800200c9a66 0..1 gml:descriptionObject description string 0..1 gml:name Object name.string 0..* value Calculated load transferred. gml:MeasureType 100 1.. 1 elapsedTime Time elapsed from the application of the load for this data row. Displacemnt can be repeated in order to represent creep information. gml:MeasureType 2 0.. 1 depth The location this measurement is made gml:PointPropertyType10 1.. 1

PAGE 381

356 Strain Feature Table A-196. Strain Feature Property Definition Type Example Occurrences value gml:MeasureType 0.1 1.. 1 depth The location of this strain measurement. For lateral load tests it is important the the pile/shaft CRS be able to locate the strain measurement to the exact location it is made. This is necessary in order to derive the bending moments that occur within the deep foundation element. gml:PointPropertyType 0.. 1 FoundationGroup Feature Table A-197. FoundationGroup Feature A collection of foundation elements. Collections can contain individual deep elements, test piles, or pier/bent groups. Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..*

PAGE 382

357 Table A-197. Continued Property Definition Type Example Occurrences geometry Geometry of the foundation group. This optional geometry can be used to show pile cap dimensions, etc. diggs:Foundatio nGroupGeometr yType 0.. bridgeNumber Bridge number the foundation group belongs to. string 12345 0.. 1 bridgeName Name of the bridge the foudation group supports. string Apalachicola Bay Bridge 0.. 1 pierName Name of the pier containing this foundation group. string Pier 3 0.. 1 financialNumber Financial number. string 12345 0.. 1 comment Comment concerning this gorup of foundations elements string Excessive clay 0.. 1 roles Roles associated with this fondation group diggs:RoleType Contractor, XYZ. Designer E 0.. remarks Remarks associated with this foundation group diggs:RemarkTy pe 0.. location Descriptive location of this foundation group diggs:LocationT ype State=Florida 0.. drivenPile A driven pile member of this foudation group diggs:DrivenPile PropertyType NA 0..

PAGE 383

358 Table A-197. Continued Property Definition Type Example Occurrences castShaft A cast in place shaft memebr of this foundation group. diggs:CastShaftP ropertyType NA 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 Table A-198. DrivenPilePropertyType A driv en pile member of this foudation group Property Definition Type Example Occurrences diggs:_DrivenPile diggs:_DrivenPile 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-199. CastShaftPropertyType A cas t in place shaft memebr of this foundation group. Property Definition Type Example Occurrences diggs:_CastShaft diggs:_CastShaft 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-200. FoundationGroupGeometryType Contains accetable foundation geometry objects Property Definition Type Example Occurrences gml:Point gml:Point 0.. 1 gml:LineString gm l:LineString 0.. 1 gml:Polygon gml:Polygon 0.. 1 attributeGroup gml:Associ ationAttributeGroup

PAGE 384

359 DrivenPile Object Table A-201. DrivenPile Object Data concerning an individual driven pile Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* instance An instance of this pile, either design or constructed diggs:DrivenPile InstanceProperty Type 0.. Table A-202. DrivenPileInstance PropertyType An instance of this pile, either design or constructed Property Definition Type Example Occurrences diggs:_DrivenPil eInstance diggs:_DrivenPil eInstance 0.. 1 attributeGroup gml:Association AttributeGroup DrivenPileInstance Feature Table A-203. DrivenPileInstance Feature Data concerning a sp ecific instance of a driven pile Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..*

PAGE 385

360 Table A-203. Continued Property Definition Type Example Occurrences type This is the state of the foundation element being described. Constructed, Design, etc. gml:CodeType Constructed 1.. 1 roles People or businesses associated with this instance diggs:RoleType 0.. sequenceNumbe r If multiple instance of the same type exist, this distinguishes them chronologically integer 2 1.. 1 sequenceDate DateTime of the start of the existance of this instance dateTime 2005-1024T14:15:00 0.. 1 section A slice of the pile foundation, requires 2 minimum (one at top, one at tip) diggs:PileSectio nPropertyType 2.. CRS A coordinate reference system that can be used by this instance diggs:PileCRS 0.. 1 geometry Geometry of the installed pile gml:LineStringP ropertyType 0.. 1 embeddedLengt h Embedded length of the pile gml:PointPropert yType 65 0.. 1 scourElevation Elevation of the scour depth gml:PointPropert yType 12.5 0.. 1 excavationEleva tion Elevation of the botom of the excavation prior to driving gml:PointPropert yType 15 0.. 1

PAGE 386

361 Table A-203. Continued Property Definition Type Example Occurrences templateElevatio n Template elevation gml:PointPropert yType 15 0.. 1 remarks comment about this instance diggs:RemarkTy pe Installed pile 0.. associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 construction Contains properties related to the construction of this instance, if it is constructed diggs:DrivenPile ConstructionPro pertyType 0.. 1 capacity results of load tests or predictions diggs:CapacityT ype 0.. loadTest Load tests performed on this pile diggs:LoadTestT ype 0.. Table A-204. PileSectionPropertyType A slice of the pile foundation, requires 2 minimum (one at top, one at tip) Property Definition Type Example Occurrences diggs:_DrivenPil eCrossSection diggs:_DrivenPil eCrossSection 0.. 1 attributeGroup gml:Association AttributeGroup

PAGE 387

362 Table A-205. PileCRS A coordinate reference system that can be used by this instance Property Definition Type Example Occurrences gml:_Coordinate ReferenceSyste m gml:_Coordinate ReferenceSyste m 0.. 1 attributeGroup gml:Association AttributeGroup Table A-206. DrivenPileConstr uctionPropertyType Contains properties related to the construction of this instance, if it is constructed Property Definition Type Example Occurrences diggs:_DrivenPil eConstruction diggs:_DrivenPil eConstruction 0.. 1 attributeGroup gml:Association AttributeGroup DrivenPileCrossSection Feature Table A-207. DrivenPileCrossSection Feature Contains all of the details about an individual cross section of a pile Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a308dc4-11daa72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* material Type of material string concrete 0.. 1 pileShape Shape of the pile gml:CodeType square 0.. 1 materialModulus Modulus of the material gml:MeasureType 0.. 1

PAGE 388

363 Table A-207. Continued Property Definition Type Example Occurrences depth Depth along the pile of this slice gml:PointPropertyType 1.. 1 totalArea area gml:MeasureType 324 in2 0.. 1 materialArea area gml:MeasureType 324 in2 0.. 1 voidArea area gml:MeasureType 324 in2 0.. 1 base length gml:MeasureType 24 in 0.. 1 width length gml:MeasureType 24 in 0.. 1 void area gml:MeasureType 0.. 1 webThickness Steel piles gml:MeasureType 0.. 1 webHeight Steel piles gml:MeasureType 0.. 1 flangeThickness Steel piles gml:MeasureType 0.. 1 flangeWidth Steel piles gml:MeasureType 0.. 1 outerDiameter Used for circular piles gml:MeasureType 0.. 1 innerDiameter Used for circular piles gml:MeasureType 0.. 1 concreteStrength Strength of concrete, if concrete is used gml:MeasureType 5 ksi 0.. 1 unitWeight Unit weight of the pile gml:MeasureType 165 pcf 0.. 1 numberStrands Number of prestressing strands in the pile integer 16 0.. 1 barArea Cross section area of 1 prestress bar gml:MeasureType 0.75 in^3 0.. 1 prestress Prestress force after losses gml:MeasureType 4.2 ksi 0.. 1

PAGE 389

364 DrivenPileConstruction Feature Table A-208. DrivenPileConstruction F eature Data concerning the construction parameters of a driven pile Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* topDepth The top depth for this section of pile construction gml:PointPropert yType 0.. 1 bottomDepth The bottom depth for this section of pile construction gml:PointPropert yType 0.. 1 equipment Contains the hammer and other equipment used to drive the pile diggs:Equipment PropertyType 0.. contractNumber constract number for pile driving string 0.. 1 jettingDepth Depth je tted gml:PointPropert yType 24 0.. 1 preboredHoleDe pth depth of prebored hole gml:PointPropert yType 13 0.. 1 augerDiameter diameter of auger used in preboring gml:MeasureTyp e 3 0.. 1 roles Associates involved in the construction, piling company, inspector, etc. diggs:RoleType 0..

PAGE 390

365 Table A-208. Continued Property Definition Type Example Occurrences authorizedLengt h Authorized drive length gml:MeasureTyp e 60 0.. 1 pileFurnished Length of pile provided gml:MeasureTyp e 70 0.. 1 pileDriven Length of pile driven gml:MeasureTyp e 55 0.. 1 manufacturerWo rkOrder A string used to store the work order number of the pile manufacturer string Job 2005-06 0.. 1 manufacturerDat eCast Date the manufacturer cast the pile dateTime 2005-1024T14:15:00 0.. 1 manufacturerPil eNumber The number asigned to the pile by the manufacturer string 12345 0.. 1 drivingStartTim e Time that driving began dateTime 2005-1024T14:15:00 0.. 1 drivingEndTime Time that driving ended dateTime 2005-1024T14:15:00 0.. 1 weather Clear string 0.. 1 temperature Temperature during driving gml:MeasureTyp e 72 0.. 1 ratedEnergy Rated hammer energy gml:MeasureTyp e 0.. 1 effectiveEnergy Effective hammer energy gml:MeasureTyp e 0.. 1 hammerWeight Weight of the driving hammer gml:MeasureTyp e 0.. 1 hammerCushion hammer cushion diggs:CushionTy pe 0.. pileCushion pile cushion diggs:CushionTy pe 0.. drivingLog Log of the driving diggs:DrivingLo gPropertyType 0..

PAGE 391

366 Table A-208. Continued Property Definition Type Example Occurrences drivingAnalysis Analysis of the driving diggs:DrivingAn alysisPropertyTy pe 0.. 1 drivingCriteria string describing the driving criteria string 0.. 1 payItemNumber Pay item string string 0.. 1 templateElevatio n Elevation of the template gml:PointPropert yType 20 0.. 1 cutOffElevation Cut off elevation gml:PointPropert yType 11 0.. 1 minimumTipEle vation The minimum tip elevation gml:MeasureTyp e -55 0.. 1 pileTopElevatio n Top elevation gml:PointPropert yType 11 0.. 1 splices number of splices along the pile, if required integer 1 0.. 1 spliceLengthAut horized autorized length of each splice gml:MeasureTyp e 5 0.. 1 spliceLengthAct ual constructed splice length gml:MeasureTyp e 4.5 0.. 1 numberRedrives number of redrives integer 0 0.. 1 Table A-209. DrivingLogPropertyType Log of the driving Property Definition Type Example Occurrences diggs:_DrivingLog diggs:_DrivingLog 0.. 1 attributeGroup gml:Associ ationAttributeGroup Table A-210. DrivingAnalysisPropert yType Analysis of the driving Property Definition Type Example Occurrences diggs:_DrivingA nalysis diggs:_DrivingA nalysis 0.. 1 attributeGroup gml:Association AttributeGroup

PAGE 392

367 Table A-211. CushionType Property Definition Type Example Occurrences material Material used for cushion string Plywood 1.. 1 thickness Thickness of maerial gml:MeasureType6 0.. 1 modulus Modulus of material double 110000 0.. 1 coefficientRestitution Coefficient of Restitution double 0.3 0.. 1 DrivingLog Feature Table A-212. DrivingLog Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a308dc4-11daa72b0800200c9a66 0..1 gml:descriptionObject description string 0..1 gml:name Object name. string 0..* tipDepth Current tip depth gml:PointPropertyType-10.1 1.. 1 lengthDriven Length driven gml:MeasureType 0.5 1.. 1 blows Blows to drive the length driven integer 23 1.. 1 blowsPerLength Blows per unit length float 46 0.. 1 ramStroke Ram stroke float 13 0.. 1

PAGE 393

368 Table A-212. Continued Property Definition Type Example Occurrences hammerEnergy Energy delivered by hammer gml:MeasureType10000 0.. 1 remarks Any remarks string Paused for 30 mins 0.. DrivingAnalysis Object Table A-213. DrivingAnalysis Object Table contains data analyzing blows Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* blow Specific blow diggs:DrivenPile BlowPropertyTy pe 0.. roles Roles associated with analysis diggs:RoleType 0.. testDate Analysis date date 2005-10-25 0.. 1 reportDate Report date date 2005-10-25 0.. 1 equipment gages used diggs:Equipment PropertyType Accelerometer 0.. remarks Comments concerning this analysis string 0..

PAGE 394

369 Table A-213. Continued Property Definition Type Example Occurrences associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 specifications Test specifications diggs:Specificati onPropertyType 0.. Table A-214. DrivenPileBlow PropertyType Specific blow Property Definition Type Example Occurrences diggs:_DrivenPileBlow diggs:_DrivenPileBlow 0.. 1 attributeGroup gml:Associ ationAttributeGroup DrivenPileBlow Feature Table A-215. DrivenPileBlow Feature If ga ges are set up to analyze blows, this is where the data for each analysis is stored Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a308dc4-11daa72b0800200c9a66 0..1 gml:descriptionObject description string 0..1 gml:name Object name. string 0..*

PAGE 395

370 Table A-215. Continued Property Definition Type Example Occurrences tipElevation Elevation of the pile tip for this blow gml:PointPropertyType-35 1.. 1 type End of Drive or Beginning of redrive gml:CodeType EOD 0.. 1 time dateTime 2005-1024T14:15:00 0.. 1 capacity side, total, and tip after this blow diggs:CapacityType 0.. 1 trace wave trace data for this blow diggs:TraceType 0.. remarks Comment concerning this blow analysis diggs:RemarkType 0.. Table A-216. TraceType Property Definition Type Example Occurrences data Trace data diggs:TraceDataType 0.. capwap CAPWAP data diggs:CapwapType 0.. 1 pileDriveAnalysis Pile drive analysis type container diggs:PileDriveAnalysisType 0.. 1 traceReportDate Date of trace report date 200510-25 0.. 1 roles operator diggs:RoleType 0.. sideUnloadQuake percent double 0.. 1 sideReloadLevel percent double 0.. 1 sideUnloadLevel percent double 0.. 1 sideRadiationDamping double 0.. 1 sideSoilPlug weight gml:MeasureType 0.. 1

PAGE 396

371 Table A-216. Continued Property Definition Type Example Occurrences tipUnloadQuake percent double 0.. 1 tipReloadQuake percent double 0.. 1 tipResistanceGap gml:MeasureType 0.. 1 tipRadiationDamping double 0.. 1 topImpedance gml:MeasureType 0.. 1 topSegementLength gml:MeasureType 0.. 1 pileDamping percent double 0.. 1 waveSpeed gml:MeasureType 0.. 1 Table A-217. TraceDataType Property Definition Type Example Occurrences elapsedTime Time elapsed from start of trace analysis duration PT0.04S 1.. 1 forceDown wave down force gml:MeasureType1000 0.. 1 velocity Velocity measured gml:MeasureType0.1 0.. 1 displacement Displacement measured gml:MeasureType0.01 0.. 1 forceUp wave up force gml:MeasureType1000 0.. 1 Table A-218. PileDriveA nalysisType PDA table Property Definition Type Example Occurrences remarks Remarks concerning this blow PDA diggs:RemarkType 0.. type Test type gml:CodeType AV/10 0.. 1 assumedModulus The assumed modulus used to construct the force waves gml:MeasureType 0.. 1

PAGE 397

372 Table A-218. Continued Property Definition Type ExampleOccurrences assumedArea The assumed cross section area used to construct the force waves. gml:MeasureType 0.. 1 CSX Maximum measured compression stress gml:MeasureType 0.. 1 CSI Maximum F1 or F2 compression stress gml:MeasureType 0.. 1 TSX Maximum tension stress gml:MeasureType 0.. 1 EMX Maximum transferred energy gml:MeasureType 0.. 1 BPM Blows per minute double 0.. 1 BTA Beta integretity factor double 0.. 1 JC1 JC1 double 0.. 1 JC2 JC2 double 0.. 1 JC3 JC3 double 0.. 1 RX1 RX corresponding to JC1 gml:MeasureType 0.. 1 RX2 RX corresponding to JC2 gml:MeasureType 0.. 1 RX3 RX corresponding to JC3 gml:MeasureType 0.. 1 RA2 RA2 gml:MeasureType 0.. 1 forceWave Upward and downward forces and the time elapsed diggs:ForceWaveType 0..

PAGE 398

373 Table A-219. ForceWaveType Property Definition Type Example Occurrences elapsedTime Time elapsed from start of PDA test duration 1.. 1 forceUp Upward force value gml:MeasureType 0.. 1 forceDown Downward force value gml:MeasureType 0.. 1 Capwap Object Table A-220. CAPWAP Object Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* capacity The capacity resulting from the CAPWAP analysis of this blow. diggs:CapacityT ype 0.. topImpedance Top impedance gml:MeasureTyp e 0.. 1 topSegementLen gth Top segment length gml:MeasureTyp e 0.. 1 smithDampingSi de Smith damping side gml:MeasureTyp e 0.. 1 smithDapingTip Smith damping tip gml:MeasureTyp e 0.. 1 sideQuake Side quake gml:MeasureTyp e 0.. 1

PAGE 399

374 Table A-220. Continued Property Definition Type Example Occurrences tipQuake Tip quake gml:MeasureTyp e 0.. 1 sideUnloadQuak e Side unload quake percent double 0.. 1 tipUnloadQuake Tip unload quake percent double 0.. 1 sideReloadQuak e Side reload quake percent double 0.. 1 tipReloadQuake Tip reload quake percent double 0.. 1 gap gap gml:MeasureTyp e 0.. 1 tipResistanceGa p Tip resistance gap gml:MeasureTyp e 0.. 1 caseDampingSid e Case damping side percent double 0.. 1 caseDampingTip Case damping tip percent double 0.. 1 pileDamping Pile damping percent double 0.. 1 sideRadiationDa mping Side radiation damping percent double 0.. 1 tipRadiationDa mping Tip radiation damping percent double 0.. 1 sideQuakeRatio Side quake ratio double 0.. 1 tipQuakeRatio Tip quake ratio double 0.. 1 sideUnloadLevel Side unload level percent double 0.. 1 sideReloadLevel Side reload level percent double 0.. 1 soilPlugWeight Soil plug weight gml:MeasureTyp e 0.. 1 sideSoilPlugWei ght Side soil plug weight gml:MeasureTyp e 0.. 1 observedBlowC ount Blows per unit length double 0.. 1

PAGE 400

375 Table A-220. Continued Property Definition Type Example Occurrences segment Data for each CAPWAP segment diggs:CapwapSe gmentPropertyT ype 0.. computedBlowC ount Computed blows per unit length double 0.. 1 matchQuality Quality of the match double 0.. 1 maximumCompr essiveForce Maximum compressive force gml:MeasureTyp e 0.. 1 maximumEnerg y Maximum energy gml:MeasureTyp e 0.. 1 MQN gml:MeasureTyp e 0.. 1 FCLP gml:MeasureTyp e 0.. 1 AA12 gml:MeasureTyp e 0.. 1 ACAS gml:MeasureTyp e 0.. 1 RAU gml:MeasureTyp e 0.. 1 RA2 gml:MeasureTyp e 0.. 1 JRs gml:MeasureTyp e 0.. 1 JRx gml:MeasureTyp e 0.. 1 VMAX gml:MeasureTyp e 0.. 1 VFIN gml:MeasureTyp e 0.. 1 VT1Z gml:MeasureTyp e 0.. 1 FT1 gml:MeasureTyp e 0.. 1 FMAX gml:MeasureTyp e 0.. 1

PAGE 401

376 Table A-220. Continued Property Definition Type Example Occurrences DMAX gml:MeasureTyp e 0.. 1 DFIN gml:MeasureTyp e 0.. 1 EMAX gml:MeasureTyp e 0.. 1 RLT gml:MeasureTyp e 0.. 1 caseRS1 diggs:CaseMeth odType 0.. caseRMX diggs:CaseMeth odType 0.. caseRSU diggs:CaseMeth odType 0.. maximumCompr essionStress Maximum compression stress gml:MeasureTyp e 0.. 1 maximumCompr essionStressGag eDistance Th distance from the CAPWAP gages to the maximum compression stress location gml:MeasureTyp e 0.. 1 maximumCompr essionStressTim e The elapsed time from the start of the CAPWAP analysis to when the maximum compression stress occurs duration 0.. 1 maximumTensio nStress The maximum tension stress gml:MeasureTyp e 0.. 1 maximumTensio nStressGageDist ance Th distance from the CAPWAP gages to the maximum tension stress location gml:MeasureTyp e 0.. 1

PAGE 402

377 Table A-220. Continued Property Definition Type Example Occurrences maximumTensio nStressTime The elapsed time from the start of the CAPWAP analysis to when the maximum tension stress occurs duration 0.. 1 Table A-221. CapwapSegmentPropertyT ype Data for each CAPWAP segment Property Definition Type Example Occurrences diggs:_CapwapS egment diggs:_CapwapS egment 0.. 1 attributeGroup gml:Association AttributeGroup Table A-222. CaseMethodType Property Definition Type Example Occurrences J 0, 0.1, 0.9 double 1.. 1 value gml:MeasureType 1.. 1 CapwapSegment Feature Table A-223. CapwapSegment Feature Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..*

PAGE 403

378 Table A-223. Continued Property Definition Type Example Occurrences actualGageDista nce The actual measured distance below the gages that this data represents gml:PointPropert yType 0.. 1 assumedGageDi stance Used for string descriptions of the distance below the gages. Average, side, tip etc. string 0.. 1 sideResistance Side resistance, Ru, at this point gml:MeasureTyp e 0.. 1 pileForceTip Force in the pile tip gml:MeasureTyp e 0.. 1 smithDampingF actor Smith damping factor gml:MeasureTyp e 0.. 1 quake Quake gml:MeasureTyp e 0.. 1 impedance Impedance gml:MeasureTyp e 0.. 1 crossSectionAre a Cross sectioanl area gml:MeasureTyp e 0.. 1 dynamicModulu s Dynamic modulus gml:MeasureTyp e 0.. 1 waveSpeed wave speed gml:MeasureTyp e 0.. 1 maximumForce maximum force gml:MeasureTyp e 0.. 1 minimumForce minimum force gml:MeasureTyp e 0.. 1 maximumTransf eredEnergy maximum transferred energy gml:MeasureTyp e 0.. 1 maximumVeloci ty Maximum velocity gml:MeasureTyp e 0.. 1 maximumDispla cement Maximum displacement gml:MeasureTyp e 0.. 1

PAGE 404

379 CastShaft Object Table A-224. CastShaft Object Data concerning an individual cast shaft Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* instance An instance of this shaft, either design or constructed diggs:CastShaftI nstanceProperty Type 0.. Table A-225. CastShaftInstanceP ropertyType An instance of th is shaft, either design or constructed Property Definition Type Example Occurrences diggs:_CastShaft Instance diggs:_CastShaft Instance 0.. 1 attributeGroup gml:Association AttributeGroup CastShaftInstance Feature Table A-226. CastSHaft Featur e Data concerning a speci fic instance of a cast shaft Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..*

PAGE 405

380 Table A-226 Continued Property Definition Type Example Occurrences type This is the state of the foundation element being described. Constructed, Design, etc. gml:CodeType Constructed 1.. 1 roles People or businesses associated with this instance diggs:RoleType 0.. sequenceNumbe r If multiple instance of the same type exist, this distinguishes them chronologically integer 2 1.. 1 sequenceDate DateTime of the start of the existance of this instance dateTime 2005-1024T14:15:00 0.. 1 section A slice of the shaft foundation, requires 2 minimum (one at top, one at tip) diggs:CastShaft CrossSectionPro pertyType 2.. CRS A coordinate reference system that can be used by this instance diggs:ShaftCRS 0.. 1 geometry Geometry of the installed shaft gml:LineStringP ropertyType 0.. 1 embeddedLengt h Embedded length of the shaft gml:PointPropert yType 65 0.. 1 scourElevation Elevation of the scour depth gml:PointPropert yType 12.5 0.. 1 excavationEleva tion Elevation of the botom of the excavation prior to installing gml:PointPropert yType 15 0.. 1

PAGE 406

381 Table A-226. Continued Property Definition Type Example Occurrences templateElevatio n Elevation of the template gml:PointPropert yType 15 0.. 1 remarks comment about this instance diggs:RemarkTy pe 0.. 1 rockSocketLengt h Rock socket thickness gml:MeasureTyp e 2 0.. 1 associatedFileSe t Reference to a set of files associated with this particular item of data diggs:Associated FileSetType fileSetReference =FS128 parentProgram= Paintshop Pro v 5.0 fileName=BH1C OR08.JPG fileDate=200607-29 fileType=jpg fileDocumentTy pe=PH fileDescription= Photograph 0.. 1 construction shaft construction information diggs:CastShaft ConstructionPro pertyType 0.. 1 loadTest Load tests performed on this pile diggs:LoadTestT ype 0.. capacity results of load tests or predictions diggs:CapacityT ype 0.. Table A-227. CastShaftCrossSectionPropert yType A slice of the shaft foundation, requires 2 minimum (one at top, one at tip) Property Definition Type Example Occurrences diggs:_CastShaft CrossSection diggs:_CastShaft CrossSection 0.. 1 attributeGroup gml:Association AttributeGroup

PAGE 407

382 Table A-228. ShaftCRS A coor dinate reference system that can be used by this instance Property Definition Type Example Occurrences gml:_Coordinate ReferenceSyste m gml:_Coordinate ReferenceSyste m 0.. 1 attributeGroup gml:Association AttributeGroup Table A-229. CastShaftConstructionPropert yType Shaft constr uction information Property Definition Type Example Occurrences diggs:_CastShaft Construction diggs:_CastShaft Construction 0.. 1 attributeGroup gml:Association AttributeGroup CastShaftCrossSection Feature Table A-230. CastShaftCrossSec tion Feature A cross section of a cast shaft. This is used to describe the sh aft properties at a point. Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a308dc4-11daa72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name.string 0..* depth Location along the shaft of this cross section gml:PointPropertyType 1.. 1 material Type of material used, usualy concrete gml:CodeType concrete 1.. 1 materialModulus Top down; modulus of the material double 0.. 1

PAGE 408

383 Table A-230. Continued Property Definition Type Example Occurrences area Cross sectional area at this point gml:MeasureType324 in2 1.. 1 base Base of rectangular shafts gml:MeasureType24 in 0.. 1 width Width of rectangular shafts gml:MeasureType24 in 0.. 1 void Void area gml:MeasureType 0.. 1 outerDiameter The diameter of a circular shaft. gml:MeasureType 0.. 1 innerDiameter Used for circular shafts with voids gml:MeasureType 0.. 1 concreteStrength Top down; Strenght of concrete, if concrete is used gml:MeasureType5 ksi 0.. 1 concreteSlump Slump of concrete at this location gml:MeasureType8 in 0.. 1 unitWeight Unit weight at this location boolean True 0.. 1 steelBarArea The total area of one reinforced steel bar. Bundeled steel bars count as a single steel bar and the total area of the bundel should be given here. gml:MeasureType4 in^2 0.. 1 numberOfBars Total number of steel bars or bundels used at this location gml:MeasureType 0.. 1 cageDiameter Diameter of the reinforcement steel bar cage gml:MeasureType 0.. 1 casingThickness Thickness of steel casing at this cross section gml:MeasureType 0.. 1 casingModulus Modulus of the casing at this location gml:MeasureType 0.. 1 casingStrength Strength of the casing gml:MeasureType 0.. 1

PAGE 409

384 CastShaftConstruction Feature Table A-231. CastShaftConstructionFeature A portion of the construction of a cast shaft. Can be repeated along a shaft when ever the method of construction changes. Property Definition Type Example Occurrences gml:id A globally unique identifier. Generated with an algorithm, do not generate by hand. UUID f0164a30-8dc411da-a72b0800200c9a66 0..1 gml:description Object description string 0..1 gml:name Object name. string 0..* roles Roles associated with creating this cast shaft diggs:RoleType 0.. hole hole created during shaft construction. See hole type definitition in full data dictionary diggs:HolePrope rtyType 0.. 1 topDepth Top depth for this section of shaft construction gml:PointPropert yType 0.. 1 bottomDepth Bottom depth for this portion of shaft construction gml:PointPropert yType 0.. 1 totalConcreteVo lume A table that contains total pumped concrete volume versus depth. diggs:TotalConc reteVolumeType 0.. drillingMethod Dry, slurry, casing, slurry and casing, continuous flight auger gml:CodeType 0.. 1

PAGE 410

385 Table A-231. Continued Property Definition Type Example Occurrences contractNumber Construction contract number string 0.. 1 payItemNumber Pay item number string 0.. 1 weather Weather during construction string 0.. 1 temperature Air temperature during construction gml:MeasureTyp e 0.. 1 equipment Equipment used during construction diggs:Equipment PropertyType 0.. remarks Remarks concerning this construction diggs:RemarkTy pe 0.. Table A-232. TotalConcreteVolumeType Property Definition Type Example Occurrences value The total concrete volume pumped from the bottom of the shaft to this depth gml:MeasureType 1.. 1 depth The depth along the shaft that corresponds to this total concrete volume. gml:PointPropertyType 1.. 1

PAGE 411

386 APPENDIX B FORM CODE The FORM algorithm was implemented w ithin a Microsoft Excel macro. The FORM algorithm was developed based off of Phoon 2003. This code solves for the reliability index for a given set of resistance fa ctors, load factors, and dead to live load combination. 1. Private Sub DesignPointButton_Click() 2. Dim row% 3. Dim rc As Double, qc As Double, mr As Double, mq As Double 4. Dim sr As Double, sq As Double, s As Double, rInitial As Double 5. Dim qInitial As Double, srn As Double, sqn As Double 6. Dim mrn As Double, mqn As Double, m As Double 7. Dim rNew As Double, qNew As Double 8. Dim rlnd As Double, qlnd As Double 9. Dim lmr As Double, lmq As Double 10. Dim lsr As Double, lsq As Double 11. Dim A As Double, B As Double 12. Dim x As Double, y As Double 13. row = 1 14. 15. Do While (Range("phi").Cells(row, 1) <> "") This code solves for the reliability index for a range of inputs. Each set of input values (resistance factor, dead to live load ratio, nominal resistance, etc...) is on its own row. This code loops down the rows until it finds a missing resistance factor. 16. Range("iterations").Cells(row, 1) = "" 17. 18. 'initial Points 19. rInitial = Range("rBias") Range("Rn").Cells(row, 1) 20. qInitial = Range("dBias") Range("Qd").Cells(row, 1) + 21. Range("lBias") Range("Ql").Cells(row, 1) Line 20 calculates the most probably point by multiplying the predicted values by the bias values.

PAGE 412

387 22. 23. 'Statistical Distribution of R and Q 24. mr = rInitial 25. mq = qInitial 26. sr = mr Range("rCOV") 27. sq = (Range("Qd").Cells(row, 1) ^ 2 Range("dStdev") ^ 2 + Range("Ql").Cells(row, 1) ^ 2 Range("lStdev") ^ 2) ^ 0.5 28. COVr = sr / mr 29. COVq = sq / mq The above code fragment calculates the st atistical parameters for the resistance and load. 30. 31. 'Lognormal Distributions 32. lmr = Log(mr / (1 + COVr ^ 2) ^ 0.5) 33. lsr = (Log(1 + COVr ^ 2)) ^ 0.5 34. lmq = Log(mq / (1 + COVq ^ 2) ^ 0.5) 35. lsq = (Log(1 + COVq ^ 2)) ^ 0.5 36. The above code calculates th e lognormal mean and standard deviations for the resistance and load using the statis tical values previously calculated. 37. 'First iteration design points 38. rc = rInitial 39. qc = qInitial 40. 41. s = 0 42. i = 0 43. 'Loops until iteration limit met 44. Do While (i < Range("iteration")) The FORM algorithm calls for an iteration until the reliability index stabilizes. It was found that the stabilization typically occurs by 3 iterati ons. The sheet allows the number of iterations to be speci fied. To assure stability 10 iterations were performed for each point. 45. '3. Equivalent normal Stdeviation and mean for r and q 46. Range("stability").Cells(row, 12 i + 1) = i 47. Range("stability").Cells(row, 12 i + 2) = rc 48. Range("stability").Cells(row, 12 i + 3) = qc

PAGE 413

388 For the purpose of analyzing the FORM al gorithm many parameters were output to the Excel sheet during each iteration. 49. 50. srn = normPDF(WorksheetFunction.NormSInv(WorksheetFunction.LogNormDist( rc, lmr, lsr))) / logPDF(rc, lmr, lsr) 51. mrn = rc WorksheetFunction.NormSInv(WorksheetFunction.LogNormDist(rc, lmr, lsr)) srn 52. sqn = normPDF(WorksheetFunction.NormSInv(WorksheetFunction.LogNormDist( qc, lmq, lsq))) / logPDF(qc, lmq, lsq) 53. mqn = qc WorksheetFunction.NormSInv(WorksheetFunction.LogNormDist(qc, lmq, lsq)) sqn The above uses the cumulative distributi on functions defined by Excel as well as probability density functions defined at the end of this macro. 54. 55. Range("stability").Cells(row, 12 i + 4) = mrn 56. Range("stability").Cells(row, 12 i + 5) = srn 57. Range("stability").Cells(row, 12 i + 6) = mqn 58. Range("stability").Cells(row, 12 i + 7) = sqn 59. 'Compute new design point in normal space 60. 'We are looking to get this design point on the failure line 61. rc = (rc mrn) / srn 62. qc = (qc mqn) / sqn 63. Range("stability").Cells(row, 12 i + 8) = rc 64. Range("stability").Cells(row, 12 i + 9) = qc 65. m = (mqn mrn) / (srn ^ 2 + sqn ^ 2) 66. rNew = m srn 67. qNew = m (-1 sqn) The above code calculates the new resistan ce and load along the failure line. The purpose of the FORM algorithm is to find th e most probable point on the failure line. 68. 69. Range("stability").Cells(row, 12 i + 10) = rNew 70. Range("stability").Cells(row, 12 i + 11) = qNew 71. stable = ((rc rNew) ^ 2 + (qc qNew) ^ 2) ^ 0.5 72. A = (mrn mqn) / sqn 73. B = (mqn mrn) / srn 74. x = A ^ 2 / (B + A ^ 2 / B) 75. y = (B x) A / B 76. s = (x ^ 2 + y ^ 2) ^ 0.5 77. Range("stability").Cells(row, 12 i + 12) = s 78. 'Range("stability").Cells(row, i + 1) = s

PAGE 414

389 79. 80. 'Convert rc,qc back to real space 81. rc = rNew srn + mrn 82. qc = qNew sqn + mqn 83. 84. i = i + 1 85. Loop 86. Range("iterations").Cells(row, 1) = i 87. Range("rDesign").Cells(row, 1) = rNew 88. Range("qDesign").Cells(row, 1) = qNew 89. Range("stable").Cells(row, 1) = stable 90. Range("status") = row 91. 'Range("beta").Cells(row, 1) = (rNew ^ 2 + qNew ^ 2) ^ 0.5 92. Range("beta").Cells(row, 1).Select 93. 94. row = row + 1 95. Loop 96. 97. 98. End Sub 99. 100. Private Function logPDF(x As Double, u As Double, stdev As Double) As Double 101. 'This functions returns the pdf value for a lognormal distribution at point x 102. Dim pi As Double 103. pi = 4 Atn(1) 104. 105. f = Exp(-1 (Log(x) u) ^ 2 / (2 stdev ^ 2)) / ((2 pi) ^ 0.5 stdev x) 106. logPDF = f 107. 108. End Function 109. 110. Private Function normPDF(x As Double) As Double 111. 'This functions returns the pdf value for a normal distribution at point x 112. Dim pi As Double 113. pi = 4 Atn(1) 114. f = Exp(-0.5 x ^ 2) / ((2 pi) ^ 0.5) 115. normPDF = f 116. End Function

PAGE 415

390 LIST OF REFERENCES Birgisson, B., McVay, M., Nguyen, T., Kuo, C., Baecher, G., Ayyub, B., Stenersen, K., O’Malley, K., Chernauskas, L., and O’Ne ill, M. (2004). “L oad and Resistance Factor Design (LRFD) for Deep Foundations.” Transportation Research Board, NCHRP Report 507 National Cooperative Highway Research Program, Washington D.C. Bridge Software Institute. (2002). FB-Deep Help Files Gainesville, Florida. Christian, J. T., and Baecher, G. B. ( 1999). “Point-Estimate Method as Numerical Quadrature.” Journal of Geotechnical and Ge oenvironmental Engineering 125(9), 779-786. Cox, S., Daisey, P., Lake, R., Portele, C., and Whiteside, A. (2004). “Open GIS Geography Markup Language Implementation Specification.” Open GIS Consortium Ellingwood, B. R., and Tekie, P.B. (1999). “W ind load statistics for probability-based structural design.” Journal of Structural Engineering 125(4), 453-463. Glados. (n.d.). “Glaodos CRS Client.” April 2006. http://crs.opengis.or g/crsportal/index.html Goldberg, M. A. (1984). An Introduction to Probability Theory with Statistical Applications, Plenum Press, New York, NY. Lake, R., Burggraf, D., Trninic, M., and Rae, L. (2004). Geography Mark-Up Language: Foundation for the Geo-Web John Wiley & Sons, West Sussex, England. Langley, R. S. (2000). “Unified Approach to Probablistic and Possibilistic Analysis of Uncertain Systems.” Journal of Engineering Mechanics ., 126(11), 1163-1172. Leach, P., Mealling, M., and Salz, R. (2005). “A Universally Unique Identifier (UUID) URN Namespaces ” Network Working Group April 2006. http://www.ietf.org/rfc/rfc4122.txt Leon-Garcia, A. (1994). Probability and Random Processes for Electrical Engineering, Second Edition., Addison Wesley Longman, Reading, Massachusetts.

PAGE 416

391 Microsoft Developer Network. (2006) “How Do I Use DOM?” April 2006. http://msdn.microsoft.com/library /default.asp?url=/library/enus/xmlsdk/html/332a15a2-430b-4c32-960b-d51cf2699018.asp Microsoft Help and Support. (2004). “How to Use CoCr eateGUID API to Generate a GUID with VB.” April 2006. http://support.microsoft.com/default.aspx?scid=kb;EN-US;q176790 National Highway Institute. (1998). “Load a nd Resistance Factor Design (LRFD) for Highway Bridge Substructures.” NHI Course No. 13068, Volume 2. Arlington, VA. Nowak, A. S. (1994). “Load mode l for bridge design code.” Canadian Journal of Civil Engineering 21, 36-49. Phoon, K. K., Kulhawy, F. H., and Gri goriu, M. D. (2003). “Development of a Reliability-Based Design Framewor k for Transmission Line Structure Foundations.” Journal of Geotechnical and Geoenvironmental Engineering 129(9), 798-806. Rosenblueth, E., and Esteva, L. (1972). “Rel iability Basis for Some Mexican Codes.” ACI Publication SP-31 American Concrete In stitute, Detroit MI. SAX (Simple API for XML). (n.d.). “The Official SAX Website.” April 2006. http://www.saxproject.org/ Scott, B., Kim, B. J.., and Salgado, R. ( 2003). “Assessment of Current Load Factors for Use in Geotechnical Load and Resistance Factor Design.” Journal of Geotechnical and Geoenvironmental Engineering 129(4), 287-295. Skonnard, A., (2000), “SAX, the Simple API for XML.” Microsoft Developer Network Magazine April 2006. http://msdn.microsoft.com/msdnmag/issues/1100/xml/ UUID (GUID) Generator on the Web. (n.d.). April 2006. http://kruithof.xs4a ll.nl/uuid/uuidgen World Wide Web Consortium. (2006). “Ext ensible Markup Language (XML).” April 2006. http://www.w3.org/XML/ World Wide Web Consortium. (2005). “W3C Document Object Model.” April 2006. http://www.w3.org/DOM/ World Wide Web Consortium. (2004). “XML Schema.” April 2006. http://www.w3.org/XML/Schema

PAGE 417

392 BIOGRAPHICAL SKETCH I received my bachelorÂ’s degree in comput er engineering from Purdue University in May 2003. Prior to graduating I had wo rked as a boring inspector for American Geotechincal and Environmental Engineering, Inc. After graduating from Purdue I continued to work at A.G.E.S. while taki ng a few civil engineering courses at the University of Pittsburgh and applying for Geot echnical Master Programs. In the fall of 2004 I began my studies under Dr Michael McVay at the Univ ersity of Florida. I continued Thai NguyenÂ’s work on the Excel interface to the FDOT database. In the fall of 2005 I began to work on the DIGGS proj ect with Dr. Marc Hoit and Dr. Michael McVay. Unfortunately, my time at the Univers ity of Florida will come to an end before the projected competition of the first version of the DIGGS format in September 2006. I intend to continue helping de velop DIGGS because of the great benefit of digitally storing, searching, and sharing geotechnical data In the fall of 2006 I will begin my PhD studies at the University of British Columbia.