Citation
Development of the Voxel Computational Phantoms of Pediatric Patients and Their Application to Organ Dose Assessment

Material Information

Title:
Development of the Voxel Computational Phantoms of Pediatric Patients and Their Application to Organ Dose Assessment
Creator:
LEE, CHOONIK
Copyright Date:
2008

Subjects

Subjects / Keywords:
Bone marrow ( jstor )
Bones ( jstor )
Dosage ( jstor )
Dosimetry ( jstor )
Human organs ( jstor )
Integers ( jstor )
Irradiation ( jstor )
Kidneys ( jstor )
Pediatrics ( jstor )
Photons ( jstor )
City of Gainesville ( local )

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright Choonik Lee. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Embargo Date:
5/31/2008
Resource Identifier:
496599943 ( OCLC )

Downloads

This item is only available as the following downloads:


Full Text

PAGE 1

DEVELOPMENT OF THE VOXEL COMPUTATIONAL PHANTOMS OF PEDIATRIC PATIENTS AND THEIR APPLICATION TO ORGAN DOSE ASSESSMENT By CHOONIK LEE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2006

PAGE 2

Copyright 2006 by Choonik Lee

PAGE 3

To my parents who gave me the freedom and faith to become who I am

PAGE 4

iv ACKNOWLEDGMENTS I would like to thank my dissertation committee members, Dr. Wesley Bolch, Dr. David Hintenlang, Dr. Manuel Arreola, Dr. J onathan Williams, and Dr. Richard Dickson, for their encouragement, tec hnical support, and excellent suggestions. Especially, I cannot thank enough Dr. Bolch, w hose guidance and friendship ha ve been really crucial for the successful completion of my dissertation. I also would like to thank my brother, Dr. Choonsik Lee, for his unselfish support to my research. The adult tomographic imag es from his research made it possible to complete the whole body voxel phantom series of pediatric patients. Many thanks should be given to my spirit ual mentor, Andy Farina, for his insightful guidance during my spiritual journey at the University of Florida. Finally, I want to thank my lovely wi fe, Shinok, for her joyous friendship and patience during the last five years.

PAGE 5

v TABLE OF CONTENTS page ACKNOWLEDGMENTS.................................................................................................ivTABLE OF CONTENTS.....................................................................................................vLIST OF TABLES...........................................................................................................viiiLIST OF FIGURES.........................................................................................................xiiiABSTRACT.....................................................................................................................xviCHAPTER 1 INTRODUCTION........................................................................................................12 THE UF SERIES OF VOXEL COMPUTATIONAL PHANTOMS OF PEDIATRIC PATIENTS..............................................................................................8Introduction...................................................................................................................8Materials and Methods.................................................................................................9Selection of CT Images.........................................................................................9Software and Hardware.......................................................................................11Segmentation of Internal Organs.........................................................................12Results........................................................................................................................ .16Discussion...................................................................................................................18Sitting Height.......................................................................................................18Soft tissue organ masses......................................................................................19Comparative Organ Dosimetry between Stylized and Voxel Phantoms.............21Future Extensions of the UF Pediatric Phantom Series.......................................23Conclusions.................................................................................................................243 THE UF SERIES OF WHOLE BODY COMPUTATIONAL PHANTOMS OF PEDIATRIC PATIENTS............................................................................................39Introduction.................................................................................................................39Materials and Methods...............................................................................................40UF Pediatric Phantom Series A...........................................................................40Korean Adult CT Images.....................................................................................40

PAGE 6

vi Software and Hardware Tools.............................................................................41Anthropometric Data...........................................................................................42Attachment of Arms and Legs.............................................................................43Modification to Match with ICRP 89 Reference Man Data................................44Results........................................................................................................................ .47Discussion...................................................................................................................48Conclusions.................................................................................................................494 BONE MARROW ANS BONE ENDOSTEUM DOSIMETRY METHODOLOGY COMPARISON FOR EXTERNAL PHOTONS........................56Introduction.................................................................................................................56Materials and Methods...............................................................................................60Bone Site Selection..............................................................................................60Bone Site Segmentation......................................................................................61Photon Beam Irradiation Geometry and Dose Normalization............................61Dose Response Function Method (DRF)............................................................62Mass Energy Absorption Coefficient Method (MEAC).....................................63CT Number Method (CTN).................................................................................64Homogeneous Bone Approximation Method (HBA)..........................................65Paired Image Radiation Tr ansport (PIRT) Model...............................................66Result and Discussion.................................................................................................66Bone Site Segmentation......................................................................................66Comparisons of Absorbed Dose Coef ficients for the Red Bone Marrow...........67Comparisons of Absorbed Dose Coef ficients for the Bone Endosteum.............69Conclusions.................................................................................................................705 ORGAN AND EFFECTIVE DOSE CO EFFICIENTS FOR EXTERNAL PHOTONS USING VOXEL PHANTOMS OF PEDIAT RIC INDIVIDUALS........81Introduction.................................................................................................................81Materials and Methods...............................................................................................84Computational Phantoms.....................................................................................84Organ Elemental Composition............................................................................85Effective Dose Evaluation...................................................................................86Monte Carlo Calculation.....................................................................................88Results and Discussions..............................................................................................88Organ Dose Comparison.....................................................................................88Effective Dose.....................................................................................................93Conclusion..................................................................................................................946 ORGAN AND EFFECTIVE DOSES FO R PEDIATRIC PATIENTS IN MULTISLICE CT....................................................................................................100Introduction...............................................................................................................100Materials and Methods.............................................................................................105Anthropomorphic Computational Phantoms.....................................................105

PAGE 7

vii Voxel phantoms UF voxel phantoms of pediatric patients......................105Stylized phantoms – ORNL phantom family.............................................105Monte Carlo Simulation....................................................................................106Selected Technique Factors for CT Scanning...................................................107Organ Dose Calculations...................................................................................108Result and Discussion...............................................................................................109Age-dependent Effective Dose Co mparison for Five CT Exams.....................109Organ Dose Comparison...................................................................................111Conclusion................................................................................................................1137 SPECIFIC ABSORBED FRACTIONS FOR INTERNAL PHOTON AND ELECTRON SOURCES US ING VOXEL PHANTOMS OF CHILDREN............134Introduction...............................................................................................................134Material and Methods...............................................................................................136Anthropomorphic Phantoms..............................................................................136EGSnrc Monte Carlo Code................................................................................137Bone Marrow and Bone Surface Dose Assessment..........................................138Source and Target Organ Pairs..........................................................................139Results and Discussions............................................................................................139Photon Specific Absorbed Fractions.................................................................139Electron Specific Absorbed Fractions...............................................................142Conclusion................................................................................................................1438 CONCLUSION AND FUTURE WORK.................................................................194Conclusion................................................................................................................194Future Work..............................................................................................................196APPENDIX A SELECTED SLICE IMAGES OF TH E UF SERIES B PHANTOMS....................199B MONTE CARLO CODES FOR CHAPTER 4 STUDIES.......................................204C MCNP SOURCE CARDS FOR CHAPTER 5 STUDY...........................................232D DOSE CONVERSION COEFFICIEN TS FOR EXTERNAL PHOTONS..............234E MCNP INPUT DECK FOR CHAPTER 6 STUDY.................................................248F EGSNRC USER CODE FOR CHAPTER 7 STUDY..............................................265LIST OF REFERENCES.................................................................................................283BIOGRAPHICAL SKETCH...........................................................................................292

PAGE 8

viii LIST OF TABLES Table page 2-1 Computed tomography image sources fo r the development of the UF pediatric phantom series..........................................................................................................342-2 Sitting heights of UF phantoms compared to NHANES III survey.........................352-3 Organ and tissue masses for the UF pe diatric computational phantom series.........363-1 Computed tomography image sources fo r the development of the UF pediatric phantom series..........................................................................................................523-2 Organ and tissue masses for the UF pe diatric computational phantom series.........534-1 Skeletal site used in the PIRT model simulations....................................................784-2 Volume fractions of skeletal tissues as a fraction of the CT grey scale...................794-3 Skeletal tissue masses (g) calculated for use in each photon skeletal dosimetry method .....................................................................................................................805-1 The percent difference of absorbed doses per unit air kerma (Gy/Gy)....................996-1 Phantom specifications for the ORNL phantoms (Bodybuilder) and UF Series B phantoms................................................................................................................1276-2 Definitions of anatomical boundaries for CT exam for the ORNL phantoms (Bodybuilder).........................................................................................................1286-3 Definitions of anatomical boundaries for CT exam for the UF phantoms.............1296-4 Comparison of organ dose (mGy) and effective dose (mSv) from the ORNL 1year and the UF 9-month phantoms nor malized per 100 mAs tube current..........1306-5 Comparison of organ dose (mGy) and effective dose (mSv) from the ORNL 5year and the UF 4-year phantoms normalized per 100 mAs tube current..............1316-6 Comparison of organ dose (mGy) and effective dose (mSv) from the ORNL 10year and the UF 11-year phantoms no rmalized per 100 mAs tube current............132

PAGE 9

ix 6-7 Comparison of organ dose (mGy) and effective dose (mSv) from the ORNL 15year and the UF 14-year phantoms no rmalized per 100 mAs tube current............1337-1 List of source and targ et organs in the UF voxel pha ntoms for the calculation of photon and electron SAF calculation.....................................................................1527-2 Specific absorbed fractions from th e UF 9-month male phantom when photon source is in stomach contents (kg-1).......................................................................1537-3 Specific absorbed fractions from th e UF 9-month male phantom when photon source is in right colon contents (kg-1)...................................................................1547-4 Specific absorbed fractions from th e UF 9-month male phantom when photon source is in left colon contents (kg-1).....................................................................1557-5 Specific absorbed fractions from th e UF 9-month male phantom when photon source is in small intestine contents (kg-1).............................................................1567-6 Specific absorbed fractions from th e UF 9-month male phantom when photon source is in right lung (kg-1)...................................................................................1577-7 Specific absorbed fractions from th e UF 9-month male phantom when photon source is in left lung (kg-1).....................................................................................1587-8 Specific absorbed fractions from th e UF 9-month male phantom when photon source is in urinary bladder contents (kg-1)............................................................1597-9 Specific absorbed fractions from th e UF 9-month male phantom when photon source is in liver (kg-1)...........................................................................................1607-10 Specific absorbed fractions from th e UF 9-month male phantom when photon source is in heart contents (kg-1)............................................................................1617-11 Specific absorbed fractions from th e UF 9-month male phantom when photon source is in muscle (kg-1).......................................................................................1627-12 Specific absorbed fractions from th e UF 14-year male phantom when photon source is in stomach contents (kg-1).......................................................................1637-13 Specific absorbed fractions from th e UF 14-year male phantom when photon source is in right colon contents (kg-1)...................................................................1647-14 Specific absorbed fractions from th e UF 14-year male phantom when photon source is in left colon contents (kg-1).....................................................................1657-15 Specific absorbed fractions from th e UF 14-year male phantom when photon source is in small intestine contents (kg-1).............................................................166

PAGE 10

x 7-16 Specific absorbed fractions from th e UF 14-year male phantom when photon source is in right lungs (kg-1)..................................................................................1677-17 Specific absorbed fractions from th e UF 14-year male phantom when photon source is in left lung (kg-1).....................................................................................1687-18 Specific absorbed fractions from th e UF 14-year male phantom when photon source is in urinary bladder contents (kg-1)............................................................1697-19 Specific absorbed fractions from th e UF 14-year male phantom when photon source is in liver (kg-1)...........................................................................................1707-20 Specific absorbed fractions from th e UF 14-year male phantom when photon source is in heart contents (kg-1)............................................................................1717-21 Specific absorbed fractions from th e UF 14-year male phantom when photon source is in muscle (kg-1).......................................................................................1727-22 Target organs receiving 10%, 5%, and 1% of source energy (electron source).....1737-23 Absorbed fractions from the UF 9-m onth male phantom when electron source is in stomach contents................................................................................................1747-24 Absorbed fractions from the UF 9-m onth male phantom when electron source is in right colon contents............................................................................................1757-25 Absorbed fractions from the UF 9-m onth male phantom when electron source is in left colon contents..............................................................................................1767-26 Absorbed fractions from the UF 9-m onth male phantom when electron source is in small intestine contents......................................................................................1777-27 Absorbed fractions from the UF 9-m onth male phantom when electron source is in right lung............................................................................................................1787-28 Absorbed fractions from the UF 9-m onth male phantom when electron source is in left lung..............................................................................................................1797-29 Absorbed fractions from the UF 9-m onth male phantom when electron source is in urinary bladder contents.....................................................................................1807-30 Absorbed fractions from the UF 9-m onth male phantom when electron source is in liver....................................................................................................................1817-31 Absorbed fractions from the UF 9-m onth male phantom when electron source is in heart contents.....................................................................................................1827-32 Absorbed fractions from the UF 9-m onth male phantom when electron source is in muscle................................................................................................................183

PAGE 11

xi 7-33 Absorbed fractions from the UF 14-y ear male phantom when electron source is in stomach contents................................................................................................1847-34 Absorbed fractions from the UF 14-y ear male phantom when electron source is in right colon contents............................................................................................1857-35 Absorbed fractions from the UF 14-y ear male phantom when electron source is in left colon contents..............................................................................................1867-36 Absorbed fractions from the UF 14-y ear male phantom when electron source is in small intestine contents......................................................................................1877-37 Absorbed fractions from the UF 14-y ear male phantom when electron source is in right lungs...........................................................................................................1887-38 Absorbed fractions from the UF 14-y ear male phantom when electron source is in left lung..............................................................................................................1897-39 Absorbed fractions from the UF 14-y ear male phantom when electron source is in urinary bladder contents.....................................................................................1907-40 Absorbed fractions from the UF 14-y ear male phantom when electron source is in liver....................................................................................................................1917-41 Absorbed fractions from the UF 14-y ear male phantom when electron source is in heart contents.....................................................................................................1927-42 Absorbed fractions from the UF 14-y ear male phantom when electron source is in muscle................................................................................................................193D-1 Gonads absorbed dose per unit air ke rma (Gy/Gy) calculate d from UF 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries..............................235D-2 Bone marrow absorbed dose per unit ai r kerma (Gy/Gy) calculated from UF 9month male, 4-year female, 8-year fe male, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, an d ISO irradiation geometries.........................236D-3 Colon absorbed dose per unit air ke rma (Gy/Gy) calculated from UF 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries..............................237D-4 Lung absorbed dose per unit air kerm a (Gy/Gy) calculated from UF 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male voxel

PAGE 12

xii phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries..............................238D-5 Stomach absorbed dose per unit air kerm a (Gy/Gy) calculated from UF 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries..............................239D-6 Urinary bladder absorbed dose per un it air kerma (Gy/Gy) calculated from UF 9-month male, 4-year female, 8-year fe male, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, an d ISO irradiation geometries.........................240D-7 Female breast absorbed dose per unit air kerma (Gy/Gy) calculated from 4-year female and 8-year female voxel phantom s for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries.............................................................................................241D-8 Liver absorbed dose per unit air ke rma (Gy/Gy) calculated from UF 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries..............................242D-9 Esophagus absorbed dose per unit air kerma (Gy/Gy) calculated from UF 9month male, 4-year female, 8-year fe male, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, an d ISO irradiation geometries.........................243D-10 Thyroid absorbed dose per unit air ke rma (Gy/Gy) calculate d from UF 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries..............................244D-11 Skin absorbed dose per unit air ke rma (Gy/Gy) calculated from UF 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries..............................245D-12 Bone surface absorbed dose per unit air kerma (Gy/Gy) calculated from UF 9month male, 4-year female, 8-year fe male, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, an d ISO irradiation geometries.........................246D-13 Effective dose per unit air kerma (Sv/ Gy) calculated from UF 9-month male, 4year female, 8-year female, 11-year ma le, and 14-year male voxel phantoms for external photon with th e energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries........................................................247

PAGE 13

xiii LIST OF FIGURES Figure page 2-1 Transverse image of the UF 11-year male phantom showing the (A) right colon, (B) left colon, (C) small intestine, (D) right kidne y, and (E) left kidney.................262-2 Frontal views of the UF series of pediatric computational phantoms......................272-3 A comparison of corresponding transverse images within the revised ORNL 10year phantom and the UF 11-year male phantom....................................................282-4 Plots of phantom organ masses in co mparison to their ICRP 89 age-dependent reference organ masses.............................................................................................292-5 Plots of phantom organ masses in co mparison to their ICRP 89 age-dependent reference organ masses................................................................................................. 302-6 Dose coefficients (absorbed dose per un it air kerma free-in-air) for organs in the ORNL 10-year and 15-year stylized phantoms and in the UF 11-year male voxel phantom: stomach wall.............................................................................................312-7 Dose coefficients (absorbed dose per un it air kerma free-in-air) for organs in the ORNL 10-year and 15-year stylized phantoms and in the UF 11-year male voxel phantom: thyroid......................................................................................................322-8 Dose coefficients (absorbed dose per un it air kerma free-in-air) for organs in the ORNL 10-year and 15-year stylized phantoms and in the UF 11-year male voxel phantom: urinary bladder.........................................................................................333-1 Transversal view of 14-year-old male phantom of Series A (left) and Series B (right)........................................................................................................................503-2 Frontal views of the UF series B of pediatric computational phantoms..................514-1 Skeletal sites selected for compar ative study of bone marrow and bone surface absorbed dose...........................................................................................................724-2 External photon beam irradia tion geometries for each bone site.............................734-3 Ratios of the mass energy absorption coefficient ratio for RBM to that of homogeneous bone as defined in the ORNL phantom series...................................74

PAGE 14

xiv 4-4 Percent dose enhancements for the parietal bone, 3rd lumbar vertebra, iliac crest, and ribs.....................................................................................................................754-5 Absorbed dose to the red bone marro w (RBM) per unit air kerma for the (A) cranium, (B) lumbar vertebrae, (C) os coxae, and (D) ribs. A marrow cellularity of 100% is assumed.................................................................................764-6 Absorbed dose to the bone surfaces (BS) per unit air kerma for the (A) cranium, (B) lumbar vertebrae, (C) os coxae, and (D) ribs.....................................................775-1 The organ dose conversion coefficients comparison between the ORNL phantoms and the UF voxel phantoms fo r organs with significant tissue weighting factors as defined by the ICRP 60...........................................................975-2 The organ dose conversion coefficients comparison between the ORNL phantoms and the UF voxel phantoms (a) thyroid and (b) urinary..........................986-1 UF voxel phantom Series B – armless...................................................................1166-2 The ORNL pediatric ph antom series generated from the Bodybuilder software...1176-3 Three-dimensional rendering image of the ORNL 10-year phantom under abdomen CT examination. Tracks of he lical CT x-rays are overlaid on the phantom and patient table......................................................................................1186-4 X-ray source spectra used for the Monte Carlo simulation....................................1196-5 Age-dependent effective doses comp arison between the ORNL phantoms and the UF voxel phantoms for head examinations......................................................1206-6 Age-dependent effective doses comp arison between the ORNL phantoms and the UF voxel phantoms for chest examinations.....................................................1216-7 Age-dependent effective doses comp arison between the ORNL phantoms and the UF voxel phantoms for abdomen examinations...............................................1226-8 Age-dependent effective doses comp arison between the ORNL phantoms and the UF voxel phantoms for pelvis examinations....................................................1236-9 Age-dependent effective doses comp arison between the ORNL phantoms and the UF voxel phantoms for CAP examinations......................................................1246-10 The skeletal structures near ovaries from the ORNL 5-year phantom (top) and the UF 4-year phantom (bottom)............................................................................1256-11 The ORNL 1-year phantom (top) an d the UF 9-month phantom (bottom) showing the anatomical regions expo sed to the chest CT examination.................126

PAGE 15

xv 7-1 Comparison of specific absorbed fracti ons obtained from 1-year, 5-year, and 10year ORNL phantoms and 9-month, 4-y ear, and 11-year UF voxel phantoms for source and target in liver........................................................................................1457-2 Comparison of specific absorbed fracti ons obtained from 1-year, 5-year, and 10year ORNL phantoms and 9-month, 4-y ear, and 11-year UF voxel phantoms for source in stomach contents and target in liver.......................................................1467-4 Comparison of specific absorbed frac tions in the symmetric kidneys of the ORNL 10-year phantom and the right a nd left kidneys of the UF 11-year phantom..................................................................................................................1487-5 Comparison of the kidneys and small intestine positions in ORNL 10-year and UF 11-year phantoms. The kidneys and small intestine of the ORNL phantom are symmetric whereas those of UF phantom are not............................................1497-6 Comparison of self absorbed fractions obtained from UF 9-month male phantom when source is in brain, liver, mu scle, pancreas, spleen, and thyroid....................1507-7 Comparison of self absorbed fractions obtained from UF 9-month, UF 4-year, UF 8-year, UF 11-year, and UF 14-year phantoms when source and target is in thyroid....................................................................................................................1518-1 Comparison of the 3D renderings of the major internal organs (lungs, heart, liver, stomach, and kidneys) of the UF 4-year female phantom. Voxel-based (left) and NURBS-based (right)......................................................................................198A-1 Selected slice images of the UF 9-month male voxel phantom.............................199A-2 Selected slice images of the UF 4-year female phantom.......................................200A-3 Selected slice images of the UF 8-year female phantom.......................................201A-4 Selected slice images of the UF 11-year male phantom........................................202A-5 Selected slice images of the UF 14-year male phantom........................................203D-1 External photon irradiation geometries..................................................................234

PAGE 16

xvi Abstract of Dissertation Pres ented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy DEVELOPMENT OF THE VOXEL COMPUTATIONAL PHANTOMS OF PEDIATRIC PATIENTS AND THEIR APPLICATION TO ORGAN DOSE ASSESSMENT By Choonik Lee May 2006 Chair: Wesley E. Bolch Major Department: Nuclear and Radiological Engineering A series of realistic voxel computationa l phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic imag es of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms a nd then extended into whole body phantoms by utilizing computed tomographi c images of a healthy adu lt volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the internati onal commission on radiologi cal protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having referen ce organ masses and total heights. As part of the dosimetry study, the in vestigation on skeletal tissue dosimetry methods was performed for bette r understanding of the radiat ion dose to the active bone

PAGE 17

xvii marrow and bone endosteum. All of the cu rrently available met hodologies were intercompared and benchmarked with the paired -image radiation transport model. The dosimetric characteristics of the pha ntoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pe diatric phantoms of Oak Ri dge National Laboratory. The multi-slice helical computed tomographic exams were simulated using Monte Carlo simulation code for various exams prot ocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pedi atric radiology. The results were very crucial in understanding the radiation risks of the patients undergoing computed tomography. Finally, nuclear medicine simulations were performed by calculating specific absorbed fractions for multiple target-source organ pairs via Monte Carlo simulations. Specific absorbed fractions were calculated for both photon and electron so that they can be used to calculated radionuclide S-values. All of the results were tabulated for future uses and example dose assessment was performe d for selected nuclides administered in nuclear medicine.

PAGE 18

1 CHAPTER 1 INTRODUCTION While children constitute only ~10% of patients receiving radiological examinations and only a few percent of patie nts receiving radiation therapy (Poznanski 1999), they are arguably that segment of the general medical patient population at higher risk from potential radiation effects (BEIR 1990). First, their growing tissues are more susceptible to radiation injury than adult tissues (Brenner et al. 2001). Second, bone marrow, an organ of high radiation sensitivit y, is found more widely distributed and at significantly higher cellularity throughout the pediatric sk eleton (ICRP 1995). Third, the greater post-exposure life expectancy of children increases the possibility for any radiation-induced effects to become manifest. Assessment of patient risk for either acute effects or secondary cancer induction begins with detailed knowledge of the radia tion absorbed dose to in dividual tissues and organs. However, calculation of absorbed dos e to human organs is not an easy task to accomplish, since direct physical measurement via radiation dosimeter is not generally possible in live patients. Even when a physical phantom and dosimetry system are employed, assessment of the average absorbed dose to the organs of interest is difficult to achieve. The dosimeter reading most often represents only a point estimate of the absorbed dose at the dosimeter location. One of the more versatile and powerful ways of estimating the organ absorbed dose is through the use of anthropomorphic co mputational phantoms with Monte Carlo radiation transport algorithms. A comput ational phantom typical ly represents the

PAGE 19

2 human anatomy at a given referen ce age and body size (typically the 50th percentile) with an external body shape and internal organ stru ctures covering all tissues for which the radiation risks are of concern. Two broad cl asses of computational phantoms exist for use in various organ dose reconstruction or estimation efforts: (1) stylized (or mathematical) phantoms and (2) tomographic (or voxel) phantoms. Stylized phantoms define both internal organ structure and outer body contours via combinatorial 3D surface equations. This class of phantom was originally developed for the purpose of assessing organ doses from occupational intakes and nuclear medicine administrations, but out of necessity and lack of alternative mode ls, they have been additionally used for studies of external ra diation exposure. The first heterogeneous anatomic phantom was that of an adult male and was composed of three regions: skeleton (density of 1.5 g/cm3), lungs (density of 0.3 g/cm3), and the remainder soft tissues (density of 1.0 g/cm3). The phantom was published by Snyder et al. at the Oak Ridge National Laboratory (ORNL) in work for the Society of Nuclear Medicine’s the Medical Internal Radiation Dose (MIRD) committee (1969). This single adult phantom was used as the basis for an expansion to a standa rdized pediatric series of phantoms. At the present time, the ORNL series represents the most complete set of stylized phantoms describing both adult and pediatric pa tients (Cristy and Eckerman 1987; Han et al. in press). The ORNL pediatric series has been used in a broad range of dosimetry studies including nuclear medici ne (Stabin 1996; Stabin et al. 2005), projection radiography (Mettler et al. 1993; Rosenstein 1976; Staton et al. 2003), and fluoroscopy (Bolch et al. 2003).

PAGE 20

3 In the late 1980s, the development of anatomically realistic computational phantoms from medical imaging data started as an extension and improvement to these earlier stylized models. These models use to mographic medical image data, such as that taken from magnetic resonance (MRI) or computed tomography (CT) imaging of live or recently deceased persons. Two-dimensiona l pixels in a slice of the tomographic images can be interpreted as a cuboidal vol ume element (voxel) with a certain slice thickness. Thus, a series of two-dimensi onal tomographic images can be used to represent a three-dimensional transport geom etry of the human body. When each organ is segmented from tomographic images and an index is assigned to corresponding voxels, the voxel set can be utilized as a computa tional phantom for organ dose assessment. These phantoms have been called tomogr aphic phantoms or voxel phantoms. The first tomographic model, a representati on of a head and trunk from CT scans of a female cadaver, was created by Gibbs et al. (1984; 1985) to calcu late effective dose from dental radiography. Williams et al. also introduced voxel phantoms (1986) and extended this effort in the construction of phantoms of a baby and a child (Veit et al. 1989; Zankl et al. 1988), as well as a voxelized version of the Alderson-Rando phantom (Veit et al. 1992). Zubal et al. segmented CT and MRI data of a patient who was scanned from head to mid-thigh (1994) to develop the Zuba l phantom. The Zubal phantom has been modified by other authors to make a whole body. Dimbylow introduced the NORMAN comput ational phantom based on MRI data of a healthy volunteer (1995). The voxel dime nsions have been scaled to match the body height and weight of the Reference Man of the International Commission on

PAGE 21

4 Radiological Protection (ICRP). Later, the NORMAN phantom was modified to match revised ICRP reference dimensi on of Reference Man as given in ICRP Publication 89: a body height of 176 cm and total bod y weight of 73 kg (Dimbylow 1997). Caon et al. (1999) developed a partial body phantom, ADELAIDE, from the CT data of a 14 year old girl, while Xu et al. constructed the VIP-man voxel phantom from the Visible Human Project male subject usi ng color photographs of physical sections of the anatomy (2000). Saito et al. (2001) segmented whole-body CT data of a patient to develop the Otoko, whose external dimensions were in good agreement with the Japanese Reference Man (Tanaka et al. 1989). In 2002, another pair of pediatric phantoms was developed by Nipper et al. (2002) after segmenting cadaver s to construct a newborn and a 2-month whole body pediatric tomographic m odels. From the CT data of the same individual studied within th e Visible Human Project, Zankl et al. constructed a corresponding tomographic computational phantom (2002). Fill et al. (2004) added three female voxel models of different stature, Donna, Helga, and Irene, to the GSF voxel family. Kramer et al. (2003) developed the MAX (M ale Adult voXel) phantom by modifying the Zubal Phantom. The preced ent of the MAX was the VOXTISS8. The VOXTISS8 has been constructed from three indi viduals. It has the arms and legs of the male from the Visible Human Project. It also has a head which was scaled down from the MR images of a 35-year-old male volunt eer. The MAX phantom consists of data from the same three individuals as VOXTISS8 but has had the arms and legs scaled to a smaller size so that they can more accurately match the size of the Zubal Phantom body.

PAGE 22

5 Furthermore, the authors modified the orga n masses of the MAX phantom to match the ICRP 89 reference man, which is by far the most recent reference data. Nagaoka et al. developed two male and female Japanese voxel phantoms from MR images of volunteers (2004). Nagaoka phant oms have higher resolution than the Otoko, the first Japanese tomographic model. In 2005, Dimbylow developed a female voxel phantom, NAOMI. The NAOMI phantom was s caled to match the ICRP 89 reference female (2005). Most recently, Lee et al. have completed two Korean voxel phantoms, KTMAN1 and KTMAN2 (2006), from the tomogra phic images of adult volunteers to add their first Korean adult phantom, KORMAN (2004b). Even though these more anatomically real istic phantoms have provided superior dosimetric results in many applications, there has been only a limited number of pediatric phantoms to support extensive investigations on the pediatric organ doses in various radiation exposure scenarios. This dissertation reports the developmen t of five new whole-body pediatric voxel phantoms from CT images and their applica tion to organ dose assessment from various external and internal radiation exposures. The following chapters introduce and discuss this new set of pediatric voxel phantoms de veloped from live computed tomographic images of pediatric patients. In Chapter 2, a new set of five head and torso pediatric voxel phantoms are introduced. Since the co ntiguous head and torso scanning images are rarely available, the techniques of fusing two image sets of different image resolutions, head set and tors o set, are explored and deve loped. Chapter 3 extends the effort of Chapter 2 to develop a series of whole-body pediatric voxel phantoms. This work involves more significant image manipulations during the attempt to attach rescaled

PAGE 23

6 arms and legs from an adult male to the head and torso phantoms developed in Chapter 2. Furthermore, individual organ volumes were adjusted so that the entire UF pediatric series closely matched ICRP 89 reference pediatric data. Chapter 4 investigates th e skeletal dosimetry methods for red bone marrow and bone surface dose assessments. All curre ntly available met hodologies are intercompared and benchmarked against the Paired Image Radiation Transport (PIRT) model developed at the University of Florida by utilizing high-resoluti on microCT images of trabecular spongiosa. The conclusion of Chap ter 4 is adopted for th e skeletal dosimetry throughout the dissertation. Extensive dose conversion coefficients for external photon are calculated in Chapter 5. Ideal broad parallel photon irradi ation conditions are simulated to the whole body voxel phantoms of pediatric patients deve loped in Chapter 3. All irradiation directions of interest in radiological protection are si mulated by using the MCNPX 2.5 general Monte Carlo simulation code, which in cludes anterior-posterior (AP), posterioranterior (PA), left lateral (LLAT), right la teral (RLAT), isotropi c (ISO), and rotational (ROT) directions. The dose coefficients are reported in table format. The dose coefficients are also compared with the conve ntional stylized ORNL pediatric phantoms. Significant anatomical differences are reviewed between th ese two types of computational phantom, which supports the us e of voxel phantoms in realistic radiation dose assessments. The pediatric phantoms are utilized in organ dose assessment for medical CT examinations in Chapter 6. A SOMATON Sensation 16 (Siemens) multi-slice helical CT machine is explicitly modeled using the MCNPX 2.5 by implementing a user-defined

PAGE 24

7 FORTRAN subroutine for simulating the helica l motion of the x-ray tube, which is not possible within the code’s default option. Typical exams, including head, chest, abdomen, pelvis, and chest-abdomen-pelvis, are simulated for the organ and effective dose assessments. The results are also co mpared with conventional ORNL stylized pediatric phantoms. Some significant di fferences are also found, and the causes for these differences are discussed.

PAGE 25

8 CHAPTER 2 THE UF SERIES OF VOXEL COMPUT ATIONAL PHANTOMS OF PEDIATRIC PATIENTS Introduction Some 20 voxel phantoms have been develope d to date representing adult male or female subjects based upon segmented CT or MR images (Dimbylow 1997; Fill et al. 2004; Kramer et al. 2004; Kramer et al. 2003; Lee et al. 2006; Petoussi-Henss et al. 2002; Saito et al. 2001; Xu et al. 2000; Zubal et al. 1994). In contrast, only four voxel phantoms are presently available to repres ent the pediatric medi cal population. These six pediatric models include two from G SF in Germany (BABY and CHILD), one from Flinders University in Australia (ADELAIDE) , and three from the University of Florida (UF Newborn and UF 2-month). The BABY and CHILD models were created in the late 1980s (Zankl et al. 1988) and represent two of the very first tomographic models developed for medical organ dosimetry. BABY was constructed from 142 4-mm CT slices of a 8-week female cadaver, while CHILD was constructed from 144 8-mm CT slices of live 7-year female leukemia patient s scheduled for total body irradiation therapy. Both models have full anatomic coverage including the extremities. ADELAIDE was constructed from 54 10-mm CT slices of a live 14-year female patient with an anatomic coverage of only the patient’s torso (Caon et al. 1999). The UF Newborn (female) and UF 2-mo (male) phantoms we re both created via image segmentation of cadavers, and represent the highest resolution images of pediatric subjects to date (485 1-mm slices and 438 1.25-mm slices, resp ectively) (Nipper et al. 2002). While the UF Newborn

PAGE 26

9 phantom represents an at-term child of nor mal weight (6-days of age), the UF 2-mo model was segmented from a 6-month child born prematurely, and thus it represents an infant that is developmentally equivalent to a 2-month-old. The purpose of this chapter is to introduce five additional phantoms covering a wide range of pediatric ages: the UF 9-month male, the UF 4-year female, the UF 8-year female, the UF 11-year male, and the UF 14year male. The entire new UF pediatric series was constructed from CT image data of live patients usi ng an IDL-based image segmental tool. The study further highlight s dosimetry differences in side-by-side comparisons with the ORNL stylized pediatric phantoms. Steps required to extend the existing UF phantoms to whole-body age-in terpolated reference (50th percentile) dimensions and organ masses are discussed. Materials and Methods Selection of CT Images The five phantoms of this study were c onstructed from CAP (chest – abdomen pelvis) and head CT scans of pediatric patien ts examined at the University of Florida (UF) Shands Children’s Hospital in Gainesville , Florida. Patient inclusion criteria, as monitored by the Chief of Pediatric Radi ology (Jonathan L. Williams, MD), included those patients displaying normal or near-nor mal anatomy at their respective age and gender. Whenever possible, CAP and head CT series were obtained fo r the same patient. When only the CAP scan was available, a co mparable head CT series was sought from patients of equivalent age, gender, and body mass. All patients were scanned in a supine position with the arms raised for the CA P series and arms at their side for the head

PAGE 27

10 series. Once a candidate patien t was identified, HIPAA-compliant1 and de-identified image CDs were created using the PACSCubeTM CD software and taken to the UF Advanced Laboratory for Radiation Do simetry Studies (ALRADS) for image segmentation and phantom construction. For each phantom, head images were re-sampled to yield an in-plane image resolution consistent with that in the corre sponding CAP images. As shown in Table 21, head and CAP image series were utilized fo r the same patient in the phantoms of the 9month male and 4-year female, while they we re taken from different individuals of the same gender and of similar age in the three older phantoms. For the 11-year male phantom, head CT images of a 12-year male patient were adopted following an unsuccessful search for a corresponding 11-year male head CT series. Nevertheless, the differences between the male reference brain masses at ages 11 and 12 years are negligible (<0.3 %), and a fused image was deemed acceptable for phantom construction. For all subjects except the 14-year male, the head and CAP image series were fused at the level of the C3 – C4 vertebrae. In the 14-year ma le, anatomical coverage at C3 to C4 was not included in either of the head or CAP CT series, and thus the missing neck anatomy was manually created using anatomical referen ces and subsequent re view by the pediatric radiologist. With the addition of the UF Newborn model published earlier, phantoms of UF pediatric series cover the full age range of pediatric reference individuals (newborn, 1year, 5-year, 10-year, and 15-year) as given in Publication 89 of the International Commission on Radiological Protection (ICRP) (ICRP 2003). Consequently, 1 HIPAA refers to the Health Insurance Portability and Accountability Act of 1996.

PAGE 28

11 assessments of UF phantom organ masses were made to interpolated ICRP 89 reference data. For example, the organs of the UF 8-year female may be compared to organ masses interpolated between the ICRP 89 5-year-old and 10-year-old child. For those organs in the UF series that displayed suff icient image contrast, their patient-specific volumes were taken directly as segmented, and thus individual variations about the interpolated mean values would be evident fo r these tissues. For those organs that were difficult to segment due to lack of suffic ient image contrast, manual segmentation was performed to directly match volumes consis tent with interpolat ed ICRP 89 reference masses and ICRU Report 46 (ICRU 1992) reference tissue densities. Software and Hardware CT_Contours, an IDL-based image processing software originally developed in the UF ALRADS research group (Nipper et al. 2002), was used throughout the development of the current UF phantom series. The pr ogram directly imports DICOM-formatted CT datasets and allows the user to identify a nd index organs of inte rest on a slice-by-slice basis. The program’s post-image processing features, such as an adaptive histogram equalization filter, greatly assist the user in identifying soft tissue organs that are not easily seen in the original gray-scale images (Nipper et al. 2002). Additional features were added to CT_Contours in the course of this study to allow for convenient organ shape and organ mass modifications by providi ng on-the-fly organ volume tallies during image contouring. A three-dimensional voxel rendering tool facil itates realistically construct of missing anatomical areas, especially for soft tissue regions around mandible and neck where head and torso CT datasets are fused. A WACOM Cintiq 15” touchscreen LCD monitor was employed which allowed direct pen-type input that significantly

PAGE 29

12 enhanced the accuracy and productivity of the time-consuming process of manual segmentation. Segmentation of Internal Organs The primary organs targeted for segmentati on were those listed in the definition of the effective dose in ICRP Publication 60 as either having unique values of the tissue weighting factor wT or being listed explicitly in th e category of remainder tissues. Additional organs or anatomical regions were also identified based upon radiation protection concerns (e.g., lens of eye) or as proposed by the ICRP in forthcoming revisions to the effective dose (e.g., adipose tissue). All organ and tissue segmentation results were verified by Jonathan L. Willia ms, MD, Chief of Pediatric Radiology at the UF Shands Children’s Hospital. Regions of the skeleton were identified uti lizing a CT number threshold technique. Since the bones of the skelet on have relatively high CT numb ers compared to regions of soft tissue, selection of a pr oper grey-level thresh old allowed automatic identification of the skeletal regions. Individual bone sites we re then manually tagged with identification numbers following removal of erroneously iden tified regions such as catheters and organs with high concentrations of inj ected contrast agent. The z-resolution of the original CT images was not high enough to clearly delin eate the inter-vertebral discs from the vertebral bodies, and thus a continuous and homogeneous spinal region was developed for each phantom partitioned into only the cervical, thoracic, lumbar, and sacral series. The spinal cord, however, was segmente d separate from the spinal column. The threshold method was again utilized to segment adipose tissue. A window range of 870 to 1020 was assigned to the original 12-bit grey scale of the CT images to

PAGE 30

13 automatically identify areas of adipose tissue. Manual modification was then employed to clean up erroneously identified area s that fell within that same window. The trachea was segmented as a walled orga n with an air-filled lumen. Because the walls were not clearly distinguishable, the tracheal wall thic kness of each phantom was adjusted so that their total mass would ma tch interpolated reference values within a few percent. The extra-pulmonary portions of the main bronchi were defined in a similar manner. The lungs themselves were segmented as uniform regions of tissue without delineation of their internal bronchial, bronchio lar, or alveolar airways. With an aid of post-processing filters, th e esophagus were also identified from the CT images and defined as ellipsoidal cyli nders extending from th e end of the oropharynx to the stomach. Wall and content separati on was not attempted as the esophagus is closed except during swallowing, and its fold s leave essentially no lumen in its resting state. The major alimentary tract organs (stomach, small intestine, and large intestine) were segmented into three regions: total wall, f ood content, and internal gas as seen in the CT images at the time of scanning. For each organ, the combined wall-content-gas volume was segmented first. Afterwards, the organ wall was defined through an edge detection and dilation algorithm until the wall mass matched its equivalent interpolated reference value (Nipper et al. 2002). The lumen volume was then divided into either gas or food content as given by the CT images. The large intestine was partitioned into the right colon (ascending colon and right half of the transverse colon), the left colon (left half of transverse colon and the descending colon), and the rectosig moid colon (sigmoid colon and rectum) following their definitions in ICRP Publication 89 (ICRP 2003) and

PAGE 31

14 the ICRP Human Alimentary Tract Model (HATM) (ICRP in press). The gaseous regions inside the large intes tine of the 9-month and 4-year patients resulted in the large intestine within these phantoms to cover most of their anterior abdomen. Low CT contrast and the complexity of their anatomi cal structure made it di fficult to distinguish the boundaries of the ascending, transverse , and descending colon in these younger phantoms. Consequently, after segmenting the entire large intestine, the left colon and right colon were manually define d so that both colon segments would have the same wall masses as reported in ICRP Publication 89. The rectum was also defined in a similar manner. In the present phantom series, the gall bl adder and heart were segmented as singleregion organs without delineation of their wall s and contents. Both have low radiation sensitivity as both are listed in the remainde r category of the critical organs in ICRP's definition for effective dose The kidneys were segmented into three re gions: the renal cortex, renal medulla, and pelvis. Image contrast provided some anat omical evidence for their segmentation. Nevertheless, manual adjustments were made so as to achieve volume ratios of 70% : 25% : 5% for the cortex, medulla, and pelvis as given in both ICRP Publication 89 (ICRP 2003) and MIRD Pamphlet No. 19 for the adult (Bouchet et al. 2003). An ageindependence of their relative volumes is th us assumed lacking pediatric data to the contrary. Figure 2-1 shows a transverse image of the 11-y ear male phantom, where right and left colon, and small intestine are labele d. The figure also shows a cross sectional image of left and right kidneys highlighting the renal cortex, renal medulla, and pelvis.

PAGE 32

15 The volume of the urinary bladder as s een on CT varies significantly depending upon the filling and voiding pattern of the patient prior to the CT exam. In the current phantom series, the organ was segmented as a homogeneous region in itially. Next, the edge detection and dilation algorithm was employed so that the mass of total urinary bladder wall would match its in terpolated reference value. The urinary content volume was considered to be full at its residual organ volume. Efforts were made to segment only the major blood vessels of the body as seen within the CT images. These included the s uperior vena cava and the aorta. In the segmentation of the kidneys, portions of the major renal ve ins and arteries were also segmented. The breasts were identified from the CT image for the UF 4-year and 8-year female phantoms, while the male testes were segm ented within the 9-month and 11-year male phantoms. However, since the original CT images of the 14-year male phantom did not fully extended inferiorly to contain the entire scrotum, four additional simulated slices were created and manually appended to the bottom of this phantom to encompass both the scrotum and testes of this individual. The resulting model was again reviewed by the pediatric radiologist. For several organs, the CT images did not provide sufficient image contrast to permit either automatic or manual segmentati on directly. As a re sult, manual techniques were used to place these organs in the phantoms based upon their anatomic positions, shapes, and interpolated reference masses. These organs included the thyroid, thymus, ovaries, prostate gland, sub-maxillary salivary glands, pituitary glands, tonsils, and

PAGE 33

16 adrenal glands. Their final shapes and positions were reviewed by the pediatric radiologist. Finally, skin was added to the phantoms. The reference skin thicknesses given by Cristy and Eckerman (1987) are 0.7, 0.8, 0.9, 1.0, and 1.7 mm for the newborn, 1-year, 5year, 10-year, and 15-year stylized computati onal models, respectively. Considering the voxel dimensions of the UF series as given in Table 2-1, it was decided that two pixels around the outer region of the phantom would be appropriate to represent the epidermis and dermis of the skin. This appro ach yielded skin thicknesses of 0.86, 0.90, 1.16, 0.94, and 1.25 mm for 9-month, 4-year, 8-year, 11-yea r, and 14-year UF pediatric phantoms, respectively. Results A total of five pediatric head-torso tomographic computational phantoms were successfully constructed having the same resolution as given in the original CT image sets. The resolution and matrix sizes are presented in Table 2-1. While computer technology limitations on computer speed and memory in the early 1990s limited one’s ability to construct and then use voxel phantoms at these matrix sizes, such limitations are no longer present with present-day deskt op workstations, and t hus the high-resolution seen in current CT images can be used to their full advantage in phantom construction and organ definition. Figure 2-2 shows a composite view of the completed UF pediatric phantom series exclusive of the UF Newborn model. The top row is exterior views of each phantom, while their internal organ structure is show n in the middle (skeleton) and bottom rows (transparent view of soft tissu e internal organs). Since a por tion of the skeletal cartilage was considered to belong to remainder soft tissue, the separation of the inter-cranial

PAGE 34

17 fissures in the skull of the 9-month male can be observed. The lower image resolution in z-direction (CT slice thic kness) generates a slightly st air-stepped surface of the external features of the older phantoms and their internal organs, with a corresponding overestimate of their surface area (Rajon et al. 2002). Previous studies from both Jones (1998) and Zankl (1993), however, indicate that these voxelized organ surfaces do not significantly influence dosimetry results fo r photon irradiations. The rather unsmooth surfaces near the abdomen of the 9-month pha ntom are thought to be due to breathing artifacts introduced during the CT scan. Howe ver, this motion did not cause significant internal organ discontinuities be tween slices of organs such as the vertebrae and kidneys. Even though the 9-month phantom does not ha ve a distinctive neck region (due to the hunched shoulders of the patient), the full structur e of cervical vertebra e is still present in the model. As noted previously, the large in testine of the 9-month and 4-year phantoms cover the majority of the anterior abdominal cavity. In Figure 2-3, comparable anatomical structures in the transverse plane are shown between a revised version of the ORNL 10-year stylized phantom(Huh et al. submitted) (39.9 cm from the top of the head) and UF 11-year voxel pha ntom (45.6 cm from the top of the head). As noted previously by Zankl et al , in their comparison of adult stylized and tomographic models (2002), the former presents a more elliptical cross-sectional shape of the abdomen than seen in the mo re anatomically realistic voxel phantom. While these differences are not expected to significantly influence values of internal organ dose at higher photon energies in occ upational and therapy exposures, subtle differences in organ depth and shape can potentially lead to significant errors in dosimetry using stylized phant oms for external photons at diagnostic energies. While

PAGE 35

18 the liver in the stylized model appears to be reasonably representative of that seen in the tomographic model, rather large differences in organ shape and position are noted for the remaining organs denoted in Figure 2-3. Th e stomach, for example, is noted to extend much further to the phantom’s interior than given by its ellipsoidal shape and position in the ORNL phantom. In the stylized phantom , the arms and arm bones are inclusive of the torso, and thus cutting planes must be implemented to simulate a patient with the arms raised as during a CT examination. Discussion Sitting Height The sitting heights of the phantoms created in this study were compared to sitting height data of the US Nati onal Health and Nutrition Exam ination (NHANES) survey III (1988-1994) (www.cdc.gov/nchs/nhanes.htm). The examination file for NHANES III contains anthropometric data for some 31,31 1 individuals. Table 2-2 compares mean values of sitting height ( one standard de viation), along with valu es estimated from the UF pediatric phantoms. No survey data are available for ages under 2 years. The sitting heights of the UF phantoms were estim ated as the distance from the top of the head to the bottom of the pubic bone. The 4-year, 8-year, and 11-year phantoms fell within the 57th, 77th, and 40th, percentiles, respectively. Th e 14-year phantom, however, was found to be shorter by a full 10 cm comp ared to ageand gender-matched peers within the NHANES III survey. No attempt has been made at the present time to alter this particular model, as ma ny of the internal organs were already matched to ICRP 89 reference masses (see below).

PAGE 36

19 Soft tissue organ masses The masses of all soft tissue organs in th e UF series were calculated as the product of the number of segmented voxels defini ng the organ, the unit voxel volume, and a reference tissue density. For each organ and phantom, ageand gender-dependent densities from ICRU Report 46 were adopted. For those soft-tissue organs where no age-specific data were available from ICRU Report 46, adult reference soft-tissue densities were alterna tively used (1.03 g/cm3 for male and 1.02 g/cm3 for female). For the lungs, effective densities were assigned so that the total ph antom lung mass would match its interpolated reference mass (inclusi ve of pulmonary blood). Final values used in the UF phantom series were 0.38, 0.34, 0.31, 0.30, and 0.25 g cm-3 for the 9-month, 4year, 8-year, 11-year, and 14-year phantoms , respectively. In comparison, Cristy and Eckerman in their ORNL stylized phantoms adopted an age-independent lung density of 0.295 g cm-3, while ICRU Report 46 suggests an inflated value for the adult of 0.26 g cm-3. In the revised ORNL series of sty lized models (Han 2003), an effective lung density of 0.352 g cm-3 was assumed to provide a reasonable match between the original ORNL lung volumes and the age-dependent reference lung masses given in ICRP Publication 38. For the contents of alimentary tract or gans, non-gaseous residual food content was assigned unit density, while the segmented gas component was assi gned the density of ambient air (0.001205 g cm-3). At this stag e of their development, only a homogeneous representation of the skeleton is given here in which a homogeneous skeletal density of 1.35 g cm-3 is adopted. This density value is derived from data given in Chapter 9 of ICRP Publication 89 (ICRP 2003) and accounts fo r both (1) the increase in cortical and trabecular bone density with age, and (2) the decrease in total marrow mass with

PAGE 37

20 decreasing marrow cellularity with age. Fu rther refinements to the skeletal tissue masses (e.g., active bone marrow) will be pursued following adoption and implementation of arms and legs to the UF pediatric phantom series (discussed below). Organ masses are given in Table 2-3 for each of the five phantoms of this study. When an ICRP 89 interpolated reference mass is available for comparison to a corresponding phantom organ mass (as seen direc tly within the CT imag es of the patient), a percent difference is reported. When no reference mass is available, or when the phantom organ mass was specifically adjusted to match the interpolated reference mass, percent differences are not reported as they within ~1-2%. As discussed previously, wall masses of the alimentary tract organs were directly matched to their reference masses, while the residual food content masses we re allowed to displa y their values seen directly during patient CT scanning. Variat ions range from a -88% underestimate of the stomach contents in the 9-month male to a +519% overestimate of the right colon contents in the 8-year female. Other notable patient-specific variations from reference masses are noted for the liver (-8% for the 11-y ear male to +52% for the 14-year male), pancreas (-55% for the 9-month male to +105% for the 4-year female), the kidneys (+7% for the 8-year female to +60% for the 14-year male), and the spleen (-67% for the 14-year male to +225% for the 9-mo male). Graphical comparisons of UF pediatri c phantom organ masses and the ICRP 89 reference organ masses are shown in Figures 2-4 and 2-5. In Figure 2-4, organs of highest radiosensitivity are shown as given by the proposed values of the ICRP tissue weighting factor wT (0.12 or 0.05).2 Deviations from ICRP 89 reference masses are 2 2005 Recommendations of the ICRP (D raft for Consultation), www.icrp.org.

PAGE 38

21 noted only for the breasts of the 8-year female , and the livers of both the 8-year female and the 14-year male in the UF phantom se ries. In all three cases, however, the deviation is in the direction of too large an organ volume; consequently, adjustments downward are easily accommodated by removing layers of surface voxels and assigning the residual tissues to either adipose or muscle. In Figure 2-5, organs of lesser radiosensitivity are shown as defined by values of wT = 0.01 or through the remainder tissue category of the effective dose. As w ith the breast and splee n, all deviations in kidney masses are on the high side, and thus their downward adjustment in volume/mass is easily accommodated. Interestingly (as well as fortuitously), organs of highest intersubject variation and deviation from interpol ated reference values are those of the lowradiosensitive remainder tissue category (gall bl adder, heart, pancreas, and spleen). In only a few cases (e.g., spleen of the 14-y ear male) are the patient-specific organ volumes/masses smaller than their interpolat ed reference values. While some upward adjustments in volume may be possible, exac t enlargements to reference masses can be problematic due to the need to avoid ove rlap with neighboring organs. Again, the relatively low radiosensitivity of these re mainder tissues allows the UF pediatric phantoms to be employed as is with minimal dosimetric consequence. Comparative Organ Dosimetry between Stylized and Voxel Phantoms Gender-specific voxel phantoms clearly provide improved anatomic realism of internal organ structure, shape, and position than given in their he rmaphroditic stylized counterparts. The issue remains, however , as to what extent does this improved anatomic realism result in corresponding improvements in organ dose accuracy, thus justifying the transition away fr om the older stylized class of patient models. Given the presumption that voxel phantoms do indeed yi eld accurate and individual-specific values

PAGE 39

22 of organ absorbed dose in medical exam simulations, differences in organ doses seen between the two phantom classe s thus indicate the degree to which dosimetry errors are realized in the older stylized phantoms of patient anatomy. In this study, a series of broad-beam monoenergetic photon beams were placed incident upon the ORNL 10-year phantom, the ORNL 15-year phantom, and the UF 11year male phantom as simulated within th e MCNPX 2.4 radiation transport code (Waters 2002). Organ dose coefficients (organ absorbed dose per unit air kerma free-in-air) were then calculated for the stomach wall, th e thyroid, and the urin ary bladder wall under four irradiation directions: an terior-posterior (AP), posterior -anterior (PA), left lateral (LLAT), and right lateral (RLA T) irradiation. To maintain anatomic consistency among phantoms, vertical cutting planes were used to remove the arm bones of ORNL phantoms. Values of organ dose coefficient are shown in Figure 2-6 through Fi gure 2-8 for all three organs and all four irradiation directions. For the stomach wall, Figure 2-6, the dose coefficient for the UF 11-year phantom is lower than its ORNL counterparts under AP irradiation, is slightly higher under PA and LLA T irradiation, and is significantly higher under RLAT irradiation. In the UF 11-year phantom, the stomach is located at a more posterior and less off-centered location than s een in the ORNL phantoms (see Fig. 2-3). A similar observation was made by Chao et al. (2001a) and by Zankl et al. (Zankl et al. 2002; Zankl and Petoussi-Henss 2002), where th ese authors found that the stomach of the stylized adult phantom was too close to the left side of the body in comparison to that seen in VIP-Man. Dose coefficients for the thyroid, Figure 2-7, are significantly lower in the UF 11year phantom, particularly under the lateral irradiation geometries, than seen in his

PAGE 40

23 ORNL counterparts. This dose depression stem s from the fact that the thyroid within ORNL phantom is located within a cylindrical model of the neck and is thus completely above the trunk of the phantom. In contrast, only a portion of the t hyroid in the UF 11year phantom is located above the top of the trunk. More over, a very sharp planar delineation of the trunk is see in the ORNL se ries, a feature not seen within the real patient anatomy. The influence of vertical position on the dosimetry of the thyroid has been described previously in a st udy of adult stylized models (Lee et al. 2004a). Finally, dose coefficients for the urinar y bladder wall are shown in Figure 2-8. While the urinary bladder in the ORNL series of phantoms is located close to the anterior surface of the abdomen, the organ is found to be more centrally located along the AP direction in the UF 11-year phantom. C onsequently, dose coefficients for the AP geometry are lower in the UF 11-year, a nd correspondingly higher under PA irradiation. For LLAT and RLAT irradiations, the urinary bladder dose for the UF 11-year phantom is found to be only slightly lower that that s een in the ORNL 15-year phantom. A more extensive series of dosimetry comparisons be tween the UF and ORNL series of pediatric phantoms is presently underway. Future Extensions of the UF Pediatric Phantom Series The phantoms described in this study are derived from patient-specific segmentations of live pediatric subjects. As would be expected, some deviations from reference values are noted in the both sitt ing heights and in selected individual organ masses. The phantoms as described constitu te Series A of the UF pediatric phantom family. Series B is currently under construc tion to more fully match age-interpolated reference anatomy as defined in ICRP Public ation 89. In Series B, the slice-thickness and in-plane dimensions of the 11-year male and 14-year male phantoms are being

PAGE 41

24 increased to better match CDC median valu es of male sitting heights, while still preserving internal organ volumes, shapes, and positions. Second, arms and legs from an adult male phantom are being rescaled and a ttached to each of th e five UF phantoms. Leg lengths will be adjusted to match ICRP 89 reference values for total body height. Some refinements will thus be needed in the vicinity of the humeral and femoral heads of the existing phantoms. Finally, downward and upward adjustments to selected organ volumes will be made (e.g., kidneys and spleen) to more closely match ICRP 89 interpolated reference values. In addition, the walls and contents of the heart and gall bladder will be delineated as permitted by th e image resolution at each phantom age. The UF pediatric computational phantoms may thus be utilized by the medical community in providing more accurate pedi atric organ dosimetry for both diagnostic exams and therapy procedures as might be needed for dose (and thus risk) tracking for individual patients, or for epidemiologi cal studies of seconda ry cancer risk. Conclusions Five new head-torso tomographic comput ational phantoms of different ages (9month male, 4-year female, 8-year female, 11-year male, and 14-year male) have been constructed from the CT images of live patien ts for subsequent use in radiation dosimetry studies in pediatric radiology. The phantom s were created from fused images taken from head CT and Chest-Abdomen-Pelvis CT exams of the same individuals (9-month and 4-year phantoms) or two different indivi duals of the same sex and approximate age (8-year, 11-year, and 14-year phantoms). Preliminary studies of external photon irradiation of the 11-year phantom indicat e significant departures of organ dose coefficients from that predicted by the exis ting ORNL stylized phantom series. Notable differences include AP and RLAT irradiation of the stomach wall, LLAT and RLAT

PAGE 42

25 irradiation of the thyroid, and AP and PA irradiation of the urinary bladder. While stylized computational phantoms may equa lly represent models of reference organ masses, their more simplistic constructi on does not permit anatomically realistic treatments of organ shape and depth within th e body, features that particularly important to the proper assessment of organ dose at diagnostic photon energies. A physical version of the UF 9-month male phantom is being constructed using the tissue equivalent materials developed by our research group (Jones et al. 2003). Monte Carlo simulations and physical measurements using these phant oms will allow for more realistic patient dose reconstruction than permitted previously using current and anatomically simplistic constructions of patient anatomy.

PAGE 43

26 Figure 2-1. Transverse image of the UF 11 -year male phantom showing the (A) right colon, (B) left colon, (C) small intestine, (D) right kidney, and (E) left kidney.

PAGE 44

27 Figure 2-2. Frontal views of the UF series of pediatric computational phantoms. Each of the three rows gives views of the phan tom exterior, the skeletal system, and the in ternal organ structure, respectively. Image columns correspond to the 9-mo male, the 4-year female, the 8-year female, the 11-year male, and th e 14-year male, respectively. The images are not shown to scale across the phantom ages; only within the three anatomical views at each age.

PAGE 45

28 Figure 2-3. A comparison of corresponding tran sverse images within the revised ORNL 10-year phantom and the UF 11-year male phantom.

PAGE 46

29 Figure 2-4. Plots of phantom organ masses in comparison to their ICRP 89 age-dependent reference organ masses. The organs show n include those with proposed tissue weighting factors (wT) of 0.12 (breasts, colon, lungs, stomach wall) or 0.05 (urinary bladder, esophagus, gonads , liver, and thyroid).

PAGE 47

30 Figure 2-5. Plots of phantom organ masses in comparison to their ICRP 89 age-dependent reference organ masses. The organs show n include those with proposed tissue weighting factors (wT) of 0.01 (brain, kidneys, salivary glands) or are part of the remainder tissues (gall bladder, heart, panc reas, small intestine, spleen, and thymus).

PAGE 48

31 Figure 2-6. Dose coefficients (absorbed dose per unit air kerma free-in-air) for organs in the ORNL 10-year and 15-year stylized phantoms and in the UF 11-year male voxel phantom: stomach wall

PAGE 49

32 Figure 2-7. Dose coefficients (absorbed dose per unit air kerma free-in-air) for organs in the ORNL 10-year and 15-year stylized phantoms and in the UF 11-year male voxel phantom: thyroid

PAGE 50

33 Figure 2-8. Dose coefficients (absorbed dose per unit air kerma free-in-air) for organs in the ORNL 10-year and 15-year stylized phantoms and in the UF 11-year male voxel phantom: urinary bladder

PAGE 51

34 Table 2-1. Computed tomography image sources for th e development of the UF pediatric phantom series. Image Source Fused Body Image Phantom Gender Head Series CAP Series Voxel dimensions (mm) Array size UF 9 month M 9 month male patient 0.43 x 0.43 x 3.00 512 x 512 x 156 UF 4 year F 4 year female patient 0.45 x 0.45 x 5.00 512 x 512 x 120 UF 8 year F 8 year female patient 8 year female patient 0.58 x 0.58 x 6.00 512 x 512 x 121 UF 11 year M 12 year male patient 11 year male patient 0.47 x 0.47 x 6.00 512 x 512 x 125 UF 14 year M 14 year male patient 14 year male patient 0.625 x 0.625 x 6.00 512 x 512 x 133

PAGE 52

35 Table 2-2. Sitting heights of UF ph antoms compared to NHANES III survey. Sitting heights (cm) Phantom Estimated phantom sitting heights NHANES III survey UF 9-month 44.4 n/a UF 4-year 57.5 57.05 2.72 UF 8-year 70.8 68.12 3.60 UF 11-year 73.8 74.95 4.32 UF 14-year 76.2 85.35 4.70

PAGE 53

36Table 2-3. Organ and tissue masses for the UF pediatric computational phantom series. For those organs segmented directly with in the patient CT images, percent differences are given betw een the patient organ mass and the corresponding interpolated ICRP 89 reference organ mass. Percent differences are not shown for those orga ns where the ICRP 89 reference mass was targeted during segmentation (~1-2%), or when no reference mass is available for comparison.

PAGE 54

37Table 2-3. Continued

PAGE 55

38Table 2-3. Continued

PAGE 56

39 CHAPTER 3 THE UF SERIES OF WHOLE BODY COMPUTATIONAL PHANTOMS OF PEDIATRIC PATIENTS Introduction The study summarized in Chapter 2 involved the construction of five new pediatric head and torso phantoms defining the UF Pe diatric Series A phantoms developed from CT images of live patients. Series A consists of five pediatric phantoms of varying ages and includes a 9-month male, 4-year female, 8-year female, 11-year male, and a 14-year male. Even though the partial body – head and torso – phantoms can be used in various medical x-ray dose assessments, there is al so a significant need for the whole body voxel phantoms of pediatric patients for the use of realistic organ dose evaluation where whole body can be exposed either directly or i ndirectly (e.g., photon scatter) to incident radiation fields. These cases include: (1) internally administered radiopharmaceuticals, 2) inhalation exposures of radioactive materi al to members of the general public, and (3) exposure to broad-beam external radiation fiel ds where the extremities may play a role as a region of target tissues and as a shielding medium for organs of the torso. Unlike adults, a non-trivial fraction of total red bone marrow and skeletal endosteum is present in the extremities of children, and thus cannot be ignored when the arms and legs receive direct or scatter radiation (ICRP 1995). The purpose of present study is thus to introduce the UF Series B voxel phantoms wh ich extends the Series A phantoms by (1) inclusion of arms and legs, (2) resizing of total body mass and height to match ICRP

PAGE 57

40 Publication 89 reference values, and (3) resizi ng of some individual organs of the body to better match ICRP Publication 89 reference values. Materials and Methods UF Pediatric Phantom Series A The UF Series B pediatric phantoms repres ent an extension of the UF Series A pediatric phantoms within which patient-spec ific in body dimensions and internal organ masses remained as viewed in the original CT images. The Series A phantoms were developed using head and CAP (chest-abdomen -pelvis) CT images of live patients of normal organ and body anatomy. All patients were scanned in a supine position with the arms raised for the CAP series and the arms at their side for the head scans; consequently, the arms were not available for phantom construction. The legs were similarly not available, as the CAP series te rminated anywhere from the lower pelvic to the mid-thigh region. The study team used head CT images of either the same patients or patients at the same or similar ages to complete the head and torso phantoms. A review of final segmented organ masses across the phantom series indicated that the more radiosensitive organs (e.g., those with highe r tissue weighting factors given in ICRP Publication 60) had masses very close to ag e-interpolated reference masses as given in ICRP Publication 89, and thus no attempt was ma de to modify or adjust organ volumes in this earlier study. The Series A phantoms were believed to be the best resource upon which to construct a full whole-body phantom series of pediatric patients for use in medical and radiation protection dosimetry. Korean Adult CT Images In routine medical studie s of patient patients, wh ole-body coverage of CT examinations are rarely if ever performed, especially in the U.S. Consequently, an

PAGE 58

41 alternative approach was taken in the presen t study in which segmented CT images the extremities of an adult male were re-scaled for manual attachment at the proximal humeri and femora of the UF Series A pediatric pha ntoms. Consideration was briefly given to the use of the arms and legs of Visible Hu man Project (VHP) adult male (Spitzer and Whitlock 1998; Xu et al. 2000). However, this individual was rather large in stature, had disproportionately high muscle mass in th e arms and legs, and was scanned with the arms cross-folded above his chest and abdom en. The study team next considered and subsequently implemented rescaled CT imag es acquired from a healthy average-sized volunteer taken in the Korean Reference Man project funded by the Ko rean Ministry Of Science and Technology. The volunteer was given a total body PET-CT scanning for the use of cancer screening. The resulting highresolution CT image set was acquired at a slice thickness of 1 mm. The CT image set was originally utilized for the construction of Korean Typical Man 2 (K TMAN-2) computational (Lee et al. 2006) and physical phantoms. The original DICOM formatted CT image set was converted to 8-bit JPEG formatted image sets for the development of the UF Series B pediatric phantoms as described below. Software and Hardware Tools CT_Contours , an IDL-based image processing software originally developed in the UF ALRADS research group (Nipper et al. 2002), was used throughout the development of the current UF phantom series. The pr ogram directly imports DICOM-formatted CT datasets and allows the user to identify a nd index organs of inte rest on a slice-by-slice basis. The program’s post-image processing features, such as an adaptive histogram equalization filter, greatly assist the user in identifying soft tissue organs not easily seen in the original gray-scale images. A thre e-dimensional voxel rende ring tool facilitates

PAGE 59

42 realistic construct of missing anatomical areas, especially for the regions where arms and legs are attached to the torso. In addition to CT_Contours , various in-house IDL programs and commercial image manipulation tools were used as needed, including Scion Image (Scion Corporation, USA) and Adobe Photoshop (Adobe Systems, Inc., San Jose, CA, USA) during the process. A WA COM Cintiq 15” touch-screen LCD monitor was employed, which allows direct on-screen input that significantly enhances the accuracy and productivity of the time-cons uming process of manual segmentation and phantom modification. Anthropometric Data Since ICRP Publication 89 reference data do not provide anthr opometric data other than total height and mass, ot her anthropometric resources such as sitting height and arm length had to be utilized for the completion of the whole-body pediatric phantom series. For sitting height, data from the US Na tional Health and Nutrition Examination (NHANES) survey III (1988-1994) (www.cdc.gov/nchs/nhanes.htm) were used. The examination file for NHANES III contains anthropometric data for some 31,311 individuals. For arm length, a study of the U.S. CPSC (Consumer Product Safety Commission) was used (www .cpsc.gov). This 1977 study involved a total of 87 traditional and functional body measurements from 4,127 pediatric subjects age 2 weeks to 18 years throughout the United States. Estimates of sitting height for the Series A phantoms were taken as the distance from the top of the head to the bottom of the pubic bone. As such, sitting heights for the 4-year, 8-year, and 11-year phantoms fell within the 57th, 77th, and 40th percentiles, respectively. The 14-year phantom, however , was found to be shorter by a full 10 cm compared to ageand gender-matched peers within the NHANES III survey. No

PAGE 60

43 NHANES III data were available for the infa nts younger than 2 years. Consequently, head-torso height adjustments were made for only the 14-year male phantom, as the percentile sitting heights of the remaining phantoms were deems to be acceptable for dosimetry purposes. Arm lengths from the USCPSC survey data were used during the rescaling of the KTMAN-2 phantom arms to the correspondi ng UF pediatric phantoms. Arm lengths were estimated as the sum of the acromion-to-radiale distance, the radiale-to-stylion distance, and the total hand length. Attachment of Arms and Legs Prior to the attachment of the arms and le gs, the in-plane resolution of each Series A phantom was reduced to one-half the original resolution in an effort to avoid excessive image matrix sizes for the completed whol e-body phantom. The reduced resolution in each case was seen to remain high enough to sm oothly represent in-plane organ contours. Slice thicknesses were not modified except in the case of the 14-year male phantom for attainment of the 50th percentile age-matched sitting height. The slices of the original 8-bit JPEG fo rmatted CT images of the whole-body adult images covering the arm regions were imported to Adobe Photoshop along with the original CT images of Series A phantoms. The adult CT images were layered over those of each Series A phantom through the use of a free-transformation tool, and in-plane positions and scaling factors were determined for each phantom. Next, the adult CT images were converted to a compatible format to be read by the CT_Contours software. The arm regions of the imported adult CT images were segmented and indexed via CT_Contours and the WACOM Cintiq input device. The segmented contours were overlaid to the existing armless Series A pha ntoms and saved as binary matrices. The

PAGE 61

44 binary matrices were imported into another image manipulation software, Scion image, for further modification especially for t hose regions where arm and shoulder fusion occurred. Various hand drawing tools and inter-slice editing options of the software allowed convenient work environment duri ng image fusion. The scapulae and clavicles of the Series A phantoms were also replaced with those of the a dult after corresponding scaling to realistically re present the arms in a downward position. Figure 3-1 graphically demonstrates these changes in th e upper torso between the Series A 14-year male phantom (arms raised) and its corresponding Series B phantom (arms at side). The legs of the Korean adult were also attached to the Series A phantoms in a similar fashion except for the 9-month old male phantom, wh ere separate skeleton and soft tissue rescaling were necessary to take account of relatively less muscle tissue present at this young age. No further attempt was made to adju st the relative sizes of other anatomical regions of the arms and legs by subject ag e, since they were believed to introduce negligible dosimetric effects compared to th e amount of effort requ ired. Final matrix sizes and voxel resolutions are summarized in Table 3-1 for each pediatric phantom of UF Series B. Modification to Match with ICRP 89 Reference Man Data The organ masses of the Series A phantoms were patient specific and no effort was made to modify the size of the organs for better agreement with those of the ICRP 89 reference data. Exceptions included those or gans that did not have sufficient image contrast or resolution to allow image-base d organ identification or segmentation. For these organs, semi-automated segmentations ha d to be performed so that resulting organ masses would match age-interpolated ICRP 89 reference values. During the completion of the Series B phantoms, more extensive or gan mass modifications were made for every

PAGE 62

45 organ of interest in an attempt to make the phantoms representative of reference individuals to the greatest ex tent possible. By using the dilation and erosion techniques on the boundary of the organs, the organs of inte rest were either incr eased or decreased in volume for better matching with reference organ masses. All of the organs of Series A phantoms that differed by more than 10% in mass with age-interpolated ICRP reference values were volumetrically adjusted. These or gans included the eyes (all ages), spleen (all ages), kidneys (all ages except the 8-year), brain (9-m onth), spleen (14-year), liver (9-month, 8-year, and 14-year), pancreas (9-m onth, 4-year, 11-year), and female breast (4-year, 11-year). Heart and gall bladder were further segmented into the wall and content, and the wall masses were adjusted to the reference masses by contour erosion technique. Additional adipose tissue layers were inserted ov er the abdominal region of the original Series A 11-year phantom to compensate for the smaller amount of abdominal adipose tissues present in the phant om than as given in the ICRP reference data. Skeletal tissues were sub-divided into 20 groups according to their relative red bone marrow (RBM) content and elemental co mposition as outlined in Watchman (2005) and based on data given in ICRP Publica tions 70 (ICRP 1995) and 89 (ICRP 2003). All of the subdivided skeletal tissues were segm ented as homogeneous mixtures of cortical bone, bone endosteum, and bone marrow, since se gmentation of the radiosensitive tissues of RBM and bone endosteum were not achie vable within the voxe l resolution of the phantoms. The piece-wise homogenized bones ar e treated as individua l target regions, which would then allow assessment of w hole-body average absorbed doses to both skeletal tissues for a given irradiation geometry. The volumes of the each bone site

PAGE 63

46 within the phantoms were carefully investig ated and compared with estimated volumes given by Watchman (2005), and were modified so that total skeletal mass would match age-interpolated ICRP 89 reference values . During the total skeletal mass comparison, reasonable estimates had to be made regardi ng the site-specific skeletal distribution the cartilage, since cartilage tissues were partia lly segmented as skeletal tissue during the construction of the Series A phantoms and dur ing the segmentation of the adult arms and legs in the KTMAN-2 phantom. For exampl e, inter-vertebral discs and articular cartilage of joints could not be separated fr om the vertebrae due to the existing CT image resolution, whereas the costal cartilage and cartilage of th e external ear and nose were clearly separated from the adjacent cortical bones due to their di stinctively lower CT numbers. Consequently, while calculati ng the total skeleton masses of the ICRP reference ages for the comparison with the Series B phantoms, we have assumed that only 45% of ICRP reference car tilage masses were included in the homogeneous skeletal regions of the Series B phantoms. This rath er subjective judgment was not believed to cause significant dosimetric impact on the organ dose assessment. Finally, skin was added to the phantoms after modification. The reference skin thicknesses given in the ORNL phantom se ries (Cristy and Eckerman 1987) are 0.7, 0.8, 0.9, 1.0, and 1.7 mm for the newborn, 1-year, 5-year, 10-year, and 15-year stylized computational models, respectively. Considering the voxel dimensions of the Series B as given in Table 1, it was decided that a one pixel definition covering the exterior regions of the phantoms would be appropriate to represent the epid ermis and dermis of the skin. This approach yielded sk in thicknesses of 0.86, 0.90, 1.16, 0.94, and 1.25 mm

PAGE 64

47 for 9-month, 4-year, 8-year, 11-year, and 14-ye ar UF pediatric phantom s, respectively, all reasonably comparable to those used in the ORNL phantom series. Results A total of five pediatric whole-body to mographic computational phantoms were successfully constructed. The resolution and matrix sizes are presented in Table 3-1. The original in-plane voxel resolutions of Series A phantoms were reduced, while the zresolutions were kept as is except for that of the 14-year male which was adjusted for better agreement with average sitting hei ghts for that age. The modified voxel resolution reduced the sizes of final whole body phantom matrices resulting in a significant time saving subsequent Monte Carlo radia tion transport calculations. Even though the voxel resolutions were reduced from those of the original CT images, the phantoms were still deemed to incorporate an atomical realism in the both internal organ position and shape, as well as external body morphology. Figure 3-2 shows a composite view of the completed UF pediatric phantom Series B with the exception of UF newborn pha ntom previously described in Nipper et al . (2002). Transparent views show internal organ structure as well as th e skeletal tissues. The arms and legs from the KTMAN-2 adult phantom were successfu lly attached to the head and torso phantoms of Series A followi ng modifications as de scribed previously. The inter-cranial fissures in the skull of the 9-month male can be observed as the cartilage has not yet fully calcified, a nd these tissues are thus iden tified separately from the homogeneous skeleton of the cranium. The co stal cartilage of the rib cage is similarly identified separately. The lower voxel resolution in the z-direction (CT slice thickness) generates a slightly stair-stepped surface of the external features of the phanto ms and their internal

PAGE 65

48 organs, with a corresponding overestimate of their external surface area (Rajon et al. 2002). Previous studies from both Jones (1998) and Zankl (1993), however, indicate that these voxelized organ surfaces do not si gnificantly influence dosimetry results for photon irradiation. Discussion The same organ mass calculation scheme that was used for the Series A was also applied to the Series B phantoms. Masses of all soft tissues were calculated as the product of the number of segmented voxels defining the organ, the unit voxel volume, and a reference tissue density. For each organ of the phantom, ageand genderdependent densities from ICRU Report 46 were used (ICRU 1992). For those softtissue organs where no age-specific data were available from ICRU Report 46, adult reference soft-tissue densities we re alternatively used (1.03 g cm-3 for the males and 1.02 g cm-3 for the females). For the lungs, effective densities were assigned values so that the total phantom lung mass would match its ag e-interpolated reference mass (inclusive of pulmonary blood). Lung densities assign ed to the UF phantom Series B were 0.37, 0.34, 0.30, 0.30, and 0.25 g cm-3 for the 9-month, 4-year, 8-year, 11-year, and 14-year phantoms, respectively. These values ar e physiologically plausible since the overall lung density should decrease with increasing age as the bronchial air ways become increasingly more developed as an individual ages. In comparison, the ORNL stylized models adopted an age-indepe ndent lung density of 0.295 g cm-3, while ICRU Report 46 suggests a lung inflated valu e for the adult of 0.26 g cm-3. For the contents of alimentary tract organs, non-gaseous resi dual food content was assigned unit density, while the segmented gas component was a ssigned a density of ambient air (0.001205 g cm-3).

PAGE 66

49 Organ masses are given in Table 3-2 for each of the five phantoms of this study. Since all of the organ masses are modified to match age-interpolated ICRP 89 reference masses, percent differences are not reported except for the contents of walled organs, which were not modified. Also, when no reference mass is available, the percent difference is not reported. Conclusions Five whole-body tomographic computational phantoms of different ages (9-month male, 4-year female, 8-year female, 11-year male, and 14-year male) have been constructed from the CT images of live patien ts and provided with arms and legs as rescaled from adult extremities. These Series B phantoms were created from earlier headtorso phantoms of UF Series A by utilizing segmented and rescaled CT images of the extremities of a healthy adult volunteer. Th e whole-body series developed in this study can thus serve as a set of comprehensive dosim etry tools to estimate internal organ doses to the radiosensitive tissues of the body rece ived under both external and internal source irradiation as seen in either medical diagnostic studies or therapy treatments, or in environmental exposures to members of the general public in prospective dose planning or retrospective dose reconstruction. Physical versions of the Series B phantom s are currently being constructed in our research group (Jones et al. 2003). Monte Carlo simulations and physical measurements using these phantoms will allow for realistic patient dose reconstruction which has been done previously only through the use of more anatomically simplistic stylized phantoms of pediatric patient anatomy.

PAGE 67

50 Figure 3-1. Transversal view of 14year-old male phantom of Series A (left) and Se ries B (right). The arms have been attached to Series A phantom and the scapulae were replaced by thos e of scaled adult arm to represent arms-down posture.

PAGE 68

51 Figure 3-2. Frontal views of the UF series B of pediatric computational phantoms. Th e phantoms are 9-mo male, the 4-year femal e, the 8-year female, the 11-year male, and the 14-year male, respectively from the le ft. The phantom images are shown in relative scale across the phantom ages.

PAGE 69

52 Table 3-1. Computed tomography image sources for th e development of the UF pediatric phantom series. Image Sources Fused Body Image Phantom Gender Head Series CAP Series Arms and legs Voxel dimensions (mm) Array size UF 9 month M 9 month male patient 0.86 x 0.86 x 3.00 289 x 180 x 241 UF 4 year F 4 year female patient 0.90 x 0.90 x 5.00 351 x 207 x 211 UF 8 year F 8 year female patient 8 year female patient 1.16 x 1.16 x 6.00 322 x 171 x 220 UF 11 year M 12 year male patient 11 year male patient 0.94 x 0.94 x 6.00 398 x 242 x 252 UF 14 year M 14 year male patient 14 year male patient Adult volunteer 1.18 x 1.18 x 6.72 349 x 193 x 252

PAGE 70

53Table 3-2. Organ and tissue masses for the UF pediatric computational phantom series. Percent differences are given between the patient organ mass and the corresponding interpolated ICRP 89 reference organ mass to the anatomical regions of differences larger than 10 %. Percent differences are not shown for those orga ns where the ICRP 89 reference mass was targeted during construction (< 10 %), or when no reference mass is available for comparison.

PAGE 71

54Table 3-2. Continued

PAGE 72

55Table 3-2. Continued

PAGE 73

56 CHAPTER 4 BONE MARROW ANS BONE ENDOS TEUM DOSIMETRY METHODOLOGY COMPARISON FOR EXTERNAL PHOTONS Introduction Skeletal dosimetry employs computationa l techniques to assess the absorbed dose to two radiosensitive tissues: (1) the hema topoietically active cells of the bone marrow (red bone marrow, RBM), and (2) the osteoprogen itor cells lining all in terior surfaces of mineral bone (bone surfaces, BS). These cells reside within the trabecular spongiosa which is a tissue region composed of plateor rod-like bone trab eculae and the marrow cavities microscopic anatomical structures that cannot be visu alized through in-vivo computed tomography or magnetic resonance imag ing at most sites of dosimetric interest. Consequently, approximate techniques must be applied in photon exposures studies using stylized (equation-based) or tomogra phic (voxel-based) computational whole-body phantoms in which the skeleton is defined as a homogenized tissue region of fixed elemental composition and density. One technique for assessment of RBM ab sorbed dose is to adjust radiation transport estimates of energy deposition to sk eletal regions of the phantom by one or more scaling factors. Snyder et al. assumed in both the MIRD-5 (1969) and MIRD-5Revised (1978) adult styli zed phantoms that bone marrow absorbs photon energy per gram as efficiently as does mineral bone, and thus a single scaling factor – the fractional mass of RBM within the homogeneous skelet al tissue – was applied. These authors

PAGE 74

57 fully acknowledged, however, that this assumption could result in significant overestimates of the marrow dose for photon energies below 100 200 keV. In an attempt to account for enhanced energy absorption in mineral bone at low photon energies, later authors in cluding a second scaling factor to this technique the ratio of the mass-energy absorption coeffici ent in RBM to that in the homogeneous skeletal tissue(Kramer and Dr exler 1982; Rosenstein 1976). While this two-factor technique improves dose estimates at the lower photon energies, the approach still remains approximate in that it presumes th e existence of charge-particle equilibrium within trabecular spongiosa. In reality , electrons originating from photoelectric absorption events in the bone trabeculae provide additional el ectron dose to the tissues in the marrow cavities. To account for this phenomenon, other authors included a third term – the dose enhancement factor – as tabu lated from experimental studies by King and Spiers (1985). This three-factor scaling method of phot on skeletal dosimetry has been applied traditionally to skeletal regions of both styl ized and tomographic computational phantoms considered to be homogeneous in elemental composition and density. This approach can potentially be in error for skeletal sites that have re latively large cortical bone cortices where low-energy photons would suff er fluence depression prior to entering the marrow-containing trabecular spongiosa. To account for composition heterogeneities in phantom skeletal regions, Zankl and Wittma nn (2001) originally pr oposed to apply the three-factor scaling approach, but permit the mass fraction of RMB (first term in the scaling technique) to vary voxel-by-voxel as i ndicated by the correspond ing gray value in the original CT image. This approach ha s been applied to the GSF family of voxel

PAGE 75

58 phantoms, and by Kramer et al. in the MAX and FAX phantoms (2004; 2003). In this approach, two threshold CT numbers effectiv ely divide regions of pure bone marrow and pure cortical bone across the skeletal region. Since the CT numbers can vary depending on the reconstruction algorithm used, the two th reshold values are subj ectively set so that the resulting bone marrow masses approach t hose given in ICRP re ference data (ICRP 1975; ICRP 2003). For example Kramer et al. used threshold values of 65 and 170 for their 8 bit images of the MAX phantom, while Zankl and Wittmann applied thresholds values of 800 and 2040 for the bone marrow se gmentation within their Golem phantom. While the CT number method of photon sk eletal dosimetry represents a major improvement over conventional methods in th at it considers the skeletal site as a heterogeneous mixture of marrow and cortical bone, the method can only be applied to computational phantoms where corresponding CT images are available and consistent reconstruction algorithms are a pplied throughout the entire a rray of skeletal voxels. An alternate approach to photon skeletal dosimetry was originally proposed by Eckerman (1985) and later adopted for both RBM and BS dose assessment in the ORNL series of stylized phantoms (Cristy and Eckerman 1987). In this method, one first determines the energy-dependent photon fluenc e within skeletal re gions of the phantom during radiation transport simulation. Next, fluence-to-absorbed dose response functions (DRF) are then utilized to assign valu es of absorbed dose to either tissue region. The functions are derived in turn through consideration of (1) energy-dependent absorbed fractions of secondary electr ons originating in either th e bone trabeculae or marrow cavities, and (2) the interaction probabilitie s for photoelectric, Compton scattering, or pair production in these two tissues, and (3) the energy spect rum of secondary particles

PAGE 76

59 liberated from these processes. The elec tron absorbed fraction data, in turn, are determined through Monte Carlo sampling of path-length distributions across bone trabeculae and marrow cavities as documented in studies conducted at the University of Leeds (Beddoe 1976; Darley 1972; Whitwe ll 1973). The dose-response functions reported by Eckerman were noted to vary onl y mildly across difference skeletal sites, with the exception of the cranium which displayed comparatively smaller marrow cavities and larger bone trabeculae. For estimating the absorbed dose to th e bone surfaces under photon irradiation, many authors have assigned the BS dose as simply given as the absorbed dose (not kerma) to homogeneous skeletal tissue (i.e., no scaling factors are applied). The method makes the implicit assumption that the absorbed dose to the soft tissues closely adjacent to the bone trabeculae does not greatly exceed the mean absorbed dose to a homogeneous tissue mixture assumed within the computati onal phantom. This method was originally adopted by Drexler (1968) and has been sinc e applied in many past and current studies (Kramer and Drexler 1982; Zankl and Petoussi-Henss 2002; Zankl et al. 1988; Zankl and Wittmann 2001). The only commonly adopted alternative approach is to utilize the DRFs tabulated for BS targets by Cristy and Eckerman (1987), and implemented in studies conducted with the ORNL phantom series. Recently, investigations at the Advanced Laboratory for Radiation Dosimetry Studies at University of Florida have lead to the development of an anatomically realistic radiation transport model of the skeletal micro-architecture to support therapy nuclear medicine applications (Bolch et al. 2002; Shah et al. 2005). The Paired Image Radiation Transport (PIRT) model utilizes two input images for radiation transport. The

PAGE 77

60 first is an ex-vivo (or possibl e in-vivo) CT image of the skeletal site that has been segmented into voxels of cortical bone a nd trabecular spongiosa. The second is a microCT image of a cored sample of spongios a which has been segmented into voxels of bone trabeculae and bone marrow. The marrow voxels are further assigned as either hematopoietically active marrow voxels (RBM ) or inactive marrow voxels (yellow bone marrow – YBM), the proportion of which is give n by a user-defined marrow cellularity. While the ex-vivo CT images serve to define the physical size and shape of the skeletal site, the 3D microCT images are used to acc ount for the microscopic details of particle transport across the individual marrow cavities and bone trabeculae. While the PIRT model was originally designed for the study of internal electron emitters, the model can be easily extended to the study of external pho tons incident upon individual bones of the skeletal system. The purpose of the pres ent study is thus to utilize PIRT model simulations as a local reference standard against which RBM and BS dose estimates obtained by existing and more approximate me thods may be contrasted and compared. Materials and Methods Bone Site Selection Four skeletal sites the cranium, the lumb ar vertebrae, the os coxae, and a single rib (left middle) were selected for compar ison of existing and approximate methods for RBM and BS photon dosimetry. These skeletal sites were taken from a 66-year male cadaver (68 kg, 173 cm, body mass index of 22.7 kg m-2). The bones were excised and later scanned ex-vivo under high-resolution multi-slice CT. Physical sections of trabecular spongiosa were then taken from each bone site and subjected to microCT scanning. The dimensions of the images prep ared for this study are given in Table 4-1.

PAGE 78

61 Bone Site Segmentation The ex-vivo CT images of the skeletal sites were imported to the IDL-based segmentation software CT_Contours. Co mbinations of automatic gray-scale thresholding and manual techniques were used to segment the images for input to various Monte Carlo radiation transpor t codes. The segmentation involved two steps. First, ex-vivo CT images of each skeletal site we re segmented as a homogeneous mixture of cortical bone and trabecular spongiosa (Type 1 model). Second, cortical bone and trabecular spongiosa within the ex-vivo CT images were further identified for use under PIRT (Type 2 model). Voxels outside the skeletal site were assigned as void. The microCT images of trabecular spongiosa we re segmented into bone trabeculae and bone marrow (100% cellularity) via semi-automatic threshold techniques. Figure 4-1 shows the two-dimensional and three-dimensional images of segmented skeletal sites and microCT images of the trabecular microstruc ture. The top row in Figure 1 displays transverse images of Type 2 models where the bone structure is divi ded into cortical bone and trabecular spongiosa. The second row in Fi gure 4-1 displays 3D rendered images of each of the four skeletal sites as given by their Type 1 or homogeneous models. The third row of Figure 4-1 shows 3D rendered im ages and interior planar views of the microCT images revealing the individua l bone trabeculae an d marrow cavities. Photon Beam Irradiation Geometry and Dose Normalization Idealized parallel beams of monoenergetic photons from 10 keV to 10 MeV were simulated using the MCNPX Version 2.5 code (Pelowitz 2005) for each of the approximate dosimetry methods, and using the EGSnrc Monte Carlo code (Kawrakow 2000) for the PIRT method. For comparative purposes, only a single incident direction was considered for each bone taken to be as representative as possible to in-vivo

PAGE 79

62 incidence under either an ante rior-posterior (AP) or posteri or-anterior (PA) irradiation geometry. Photons were started within an XZ planar source along the positive Y direction for the lumber vertebrae and os coxae, whereas the negative Y direction was used for studies of the cranium and rib. Since each bone was placed in vacuum, photon source energies were identical to their energy incident to the skeletal site. Irradiation geometries for each bone are depicted in Figure 4-2. The Monte Carlo results were normalized to tissue absorbed dose per unit air kerma free-i n-air through the use of air kerma conversion coefficients given in Tabl e A1 of ICRP Publication 74 (ICRP 1996). Dose Response Function Method (DRF) In this method, only Type 1 models of each skeletal site were used. The voxel models were ported to an MCNPX 2.5 input d eck using the repeat structure algorithm. Tabulated values of the DRF from Cristy and Eckerman (1987) were implemented into the input deck and the incident photon fluence was scored by using the F4 fluence tally. The absorbed dose to either RBM or BS wa s directly calculated during the simulation runs using the dose energy (DE) and dose func tion (DF) cards of MCNPX. The DE and DF card values of the DRF allow the conve rsion of fluence values at a given photon energy to corresponding dose values via lo g-log interpolation. The homogeneous elemental composition and density of the bones were taken as those given in Cristy and Eckerman (1987). The DRF for the parietal bone was used for the cranium study, while that for the lumbar vertebrae was applied to the three remaining bones. MCNPX 2.5 compiled with Intel FORTAN was used for this calculation and was run under the Windows XP PC environment.

PAGE 80

63 Mass Energy Absorption Coefficient Method (MEAC) The MEAC method (i.e., twoor three-f actor scaling of the homogeneous bone tissue dose) also utilized Type 1 models . The energy absorbed by the bone marrow tissues of the skeletal voxel, ERBM, is estimated as: ()en RBM RBMHBRBM en HBE EErSE E Eq. (4-1) where EHB is the amount of energy deposited in the homogeneous bone voxel, rRBM is the fractional mass of red bone marro w assigned to all voxels defining the homogeneous bone site, E is the energy of the photon undergoing the energy deposition event, en RBME is mass-energy absorption coef ficient of RBM at photon energy of E, en H BE is mass-energy absorption coefficient for the homogenous bone composition at photon energy of E, and () SE is the dose enhancement factor of King and Spiers (1985) at photon energy E. Since the dose enhancement factor has not always been applied in othe r investigations, values of ERBM were also calculated without the use of() SE(e.g., two-factor scaling technique). Values of en RBME were calculated under the Bragg Ru le using the elemental composition of red bone marrow given in ICRU Report 44 (ICRU 1989) and elemental values of the mass energy absorption coefficient from Hubbell and Seltzer (2004). Corresponding values of en H BE were calculated in the same manne r using the homogeneous skeletal composition of the adult ORNL phantoms (C risty and Eckerman 1987). The calculated MEAC ratios used in this st udy are shown in Figure 4-3 as a function of incident photon

PAGE 81

64 energy. Values of the King and Spiers dose enhancement factor for the four skeletal sites of the present study are given in Figure 4-4. We note that by dividing both sides by the mass of RBM in the skeletal site, Eq. (4-1 ) can be rewritten in terms of the absorbed dose to RBM: ()en RBM RBMHB en HBE DDSE E Eq. (4-2) After calculating each term of the equati on as a function of energy, the F6 energy deposition tally of MCNPX 2.5 was utilized al ong with DE and DF cards to assess the dose to RBM under the MEAC method. The F6 tally was preferred to the F8 energy deposition tally, since the orig inal algorithm of the MEAC method is based on the kerma approximation. CT Number Method (CTN) The CTN method determines the absorbed dose in each bone voxel where photon interactions occur using the same algorithm give n in Eq. (1). In th is case, however, the fractional mass of red bone marrow RBMris assigned on a per-voxel basis and is equivalent to 1 M Br , where rMB is the fractional mass of mineral bone in that same skeletal voxel. Regions of pure cortical bone are thus defined by voxels for which rMB = 0. Both these mass fractions are determined from the CT image gray level after which voxel-specific values of en H BE may be calculated as: enenen MBRBM H BMBRBMErErE Eq. (4-3)

PAGE 82

65 In this study, the MEAC for mineral bone was calculated using the elemental composition for cortical bone given in I CRU Report 46 (ICRU 1992) and elemental MEAC data from Hubbell and Seltzer (2004). For this study, the original 12 bit gray scale DICOM images of the ex-vivo CT images were normalized to 8 bit gray scale by setting the maximum gray scale value of the image to 255 for each bone site. Instead of assigning voxel-specific compositions, the bone voxels were categorized into 11 groups of bone mixtures according to their rela tive amounts of RBM and mineral bone. The categorization of the bone voxel and relative vo lume fractions are shown in Table 4-2. The choice of threshold values of 171 a nd 65 for 100% cortical bone and 100% RBM were taken from Kramer et al. (2003) The normalized CT images of each bone site were implemented into an MCNPX 2.5 input de ck along with material cards for the 11 bone mixtures through the use of the repeat structure algorithm. Similar to the MEAC method discussed previously, the F6 tally was applied to the 11 bone mixtures along with DE and DF dose function cards to calculate th e absorbed dose to RBM for each of the 11 bone mixtures. After calculating the RBM dos e for the 11 bone mixtures, the total RBM absorbed dose for the entire skeletal site was calculated as a mass weighted average. Homogeneous Bone Approximation Method (HBA) To calculate the absorbed dose to bone surfaces under the homogeneous bone approximation (HBA), Type 1 models were implemented into the MCNPX 2.5 code and the F8 energy deposition tally was utili zed. The elemental composition and mass density of homogenous skeletal tissue were adopted as defined in the ORNL phantom series (Cristy and Eckerman 1987). The abso rbed dose to homogeneous skeletal tissue is thus used as a surrogate for th e bone endosteum under this approach.

PAGE 83

66 Paired Image Radiation Transport (PIRT) Model The original PIRT model used by Shah et al. (2005) was modified to accommodate an external photon irradiation environment at a marrow cellu larity of 100%. Pairs of Type 2 macrostructural bone models and their accompanying microCT spongiosa images were imported into the EGSnrc radiati on transport code where photons and their secondary electrons were transported throughout the skeletal site. Once a given photon reaches the spongiosa regions of the Type 2 model, subsequent and simultaneous transport is performed within the segm ented microCT images defining the marrow cavities and bone trabeculae. Since even the microCT images do not have an image resolution necessary to depict the thin 10m layer of trabecular endosteum, a virtual endosteal layer was considered whereby en ergy deposition events within first-layer marrow voxels are scored separately if the events occur within 10m from the nearest bone voxel interface. The absorbed dose to RBM was calculated as the average across all marrow voxels of spongiosa. The EGSnrc Version 3 Monte Carlo radiation transport code was used on the Windows PC CYGWIN environment. Result and Discussion Bone Site Segmentation Bone and marrow tissue masses estimate d by the various skeletal dosimetry methods are summarized in Table 3. Cor tical bone and spongiosa regions were identified separately only in the PIRT model, while in the MEAC, DRF, and HBA methods, all bone sites were segmented as a homogeneous mixture of mineral bone and bone marrow. The mass of bone endosteum within the PIRT model was estimated by considering a 10-m thick tissue layers with in all marrow voxels adjacent to those voxels defining the bone trabeculae. Tota l bone masses given by the techniques CTN,

PAGE 84

67 MEAC, DRF, and HBA are shown to be within 10% of the tissue masses given under the PIRT model. The latter model has the advant age of an explicit se gmentation of cortical bone and a bone-site-specific estimate of the bone volume fraction within the spongiosa as given by the segmented microCT image. For the cranium, the CTN method gives a total bone mass that is only 1% larger than the PIRT model estimate, whereas the homogeneous skeletal models used by the MEAC, DRF, and HBA methods underestimate the PIRT model total bone mass by 15%. Comparisons of Absorbed Dose Coefficients for the Red Bone Marrow Sets of tissue absorbed dose per unit air kerma free-in-air (Gy/Gy) were calculated under parallel broad beam geometry across th e photon energy range 10 keV to 10 MeV. Values of the absorbed dose coefficient for red bone marrow as the target tissue are given in Figs. 5A to 5D for each of the four skelet al sites of interest a nd for each of the photon dosimetry techniques considered. For inci dent photon energies below 1 MeV, and for all skeletal sites except the cranium, consid erable agreement is shown in the RBM dose coefficient across the various dosimetric tec hniques. In the cranium, however, greater variability in the RBM dose coefficient is seen. The DRF and MEAC w/ S(E) methods yield RBM dose coefficients considerably hi gher than those given by the PIRT model at energies below 300 keV and 15 keV, respectiv ely. Reasonable agreement with the RBM dose coefficients from PIRT are shown for the MEAC method until the photon energy falls below ~50 keV, after which the abso rbed dose to RBM is predicted to be increasingly larger. These overestimates of RBM absorbed dose in the cranium for lower photon energies may be explained by the fact that cranium ha s a relatively thick cortex of cortical bone in re lation to that found in the thr ee other skeletal sites. The DRF and MEAC methods operate under the as sumption that the cranium has no internal

PAGE 85

68 tissue heterogeneities (i .e., homogeneous tissue region), and thus they fail to consider any fluence depression of incident photons across th e cortical regions of this particular bone region. In reality, lower energy photons expe rience significant fluence depression prior to reaching interior regions of spongiosa wher e RBM is localized. In contrast, the CTN method attempts to account for bone tissue hete rogeneities, and thus excellent agreement is seen in the cranium between the CTN me thod and PIRT model simulations even at very low photon energies. It is of further in terest to note that the King and Spiers dose enhancement factors do not grea tly contribute to the overall RBM dose other than in the case of the cranium as given by their values from Figure 4. In the cranium, however, the enhancement of RBM dose predicted under this method is not realized in the PIRT model simulations, and at energies above 50 keV, are reasonably approximated under the MEAC method without additional scaling by S(E). For photon energies exceeding 1 to 3 MeV, only the PIRT model simulations show a decrease in the dose coefficient to RBM reflecting secondary electron escape from the spongiosa target tissues. This escape is grea test for the ribs, followed by the os coxae, cranium, and lumbar vertebrae in that orde r. In the DRF method, estimates of energy dependent photon fluence are convolved with dose response functions in which secondary electrons traverse an infinite region of spongiosa is expending their kinetic energy. Consequently, the DRF method does not properly account for secondary electron energy loss to cortical bone and tissues outside the skeletal site. Similarly, both the MEAC and CTN methods base thei r dosimetric algorithms on the kerma approximation, where charged particle equilibrium conditions must be satisfied. At high photon energies, the finite volume of the trabecular spongiosa is not able to meet

PAGE 86

69 this condition and these kerma-based methods similarly fail to account for secondary particle escape. The differences highlighted between PIRT and the other techniques at high photon energies are, however, accentuated in the present study where each skeletal site is placed in vacuum, and t hus the abscissa is interprete d as the photon energy incident upon the bone. In reality, high-energy seconda ry electrons may be generated in soft tissue outside the bone and thus may enter and potentially cr oss the cortical bone cortex to add to energy deposition to the spongiosa tissues. Comparisons of Absorbed Dose Coefficients for the Bone Endosteum In Figure 4-6, values of the absorbed dose coefficient to the 10m trabecular endosteum (bone surface cells) are shown as given by PIRT model and the DRF and HBA calculational methods. At photon energies below ~100 keV, both the DRF and HBA methods significantly overestimate values of BS absorbed dose as both operate under the assumption of a uniform and homogeneous sk eletal region. In the PIRT model, low energy photons must first penetrate a layer of cortical bone pr ior to reaching the trabecular spongiosa of the skel etal site. At photon energi es above 100 keV, values of the absorbed dose coeffici ent under the HBA method tend to converge with those provided by PIRT model simulations. Furthe rmore, as the photon energy increases above 1 MeV, the HBA method is able to reasonably account for secondary electron energy escape as seen also under the PIRT model. This agreement between the PIRT and HBA methods is very good for the lumbar ve rtebrae and os coxae, but is less so for the cranium and ribs where the HBA appears to overestimate the amount of energy escape. In contrast, the DRF method app ears to consistently overestimate endosteum dose, relative to PIRT, at all photon energies. Again, the DRF methods explicitly assumes an infinite expanse of trabecular spongiosa for secondar y electron transport.

PAGE 87

70 Conclusions Various methodologies for estimating the absorbed dose to the anatomically complex and radiation-sensitive skeletal tissu es RBM and BS were reviewed and applied to four ex-vivo skeletal sites. The results were inter-compared and benchmarked against Paired-Image Radiation Transport simulations using segmented ex-vivo CT and microCT and images of the skeletal macrostructure and microstructure, respectively. For assessments of RBM absorbed dose, all me thods showed reasonably good agreement for all 4 bone sites in the photon energy range 150 keV to 2 MeV. At lower photon energies, however, distinct differences among the various skeletal dosimetry methods were noted for the cranium – a skeletal site with a relatively large cortic al bone cortex, and a spongiosa region of comparatively thick tr abeculae and small ma rrow cavities. At photon energies below 150 keV, the DRF and MEAC methods failed to consider in influence of fluence depression across cortic al bone resulting in an overestimate of absorbed dose to RBM. Similar trends were also noted for the absorbed dose to the BS under the DRF and HBA methods, with the highes t overestimates seen in the cranium. In the other three skeletal regions, very sim ilar characteristics were seen for both targets and all methods of dose assessment. At photon energies below 50 keV, the HBA method yielded higher estimates of BS abso rbed dose than seen under the DRF method; however, at energies exceeding 100 keV, the HBA closely matched the dose coefficients given by the PIRT model simulations. It was also found that at photon energies exceeding a few MeV, the DRF, MEAC, and CTN methods were not able to consider secondary electron escape which re sulted in an overestimate of the absorbed dose to both skeletal tissues when compared to those given by the PIRT model.

PAGE 88

71 The results of this study further suppor t the approach if ORNL/TM-8381 in which the cranium must be considered separate from all other skeletal sites in terms of skeletal tissue methodology. Nevertheless, no si ngle calculational method was found to be adequate for estimating photon absorbed dose to both the RBM and BS tissues, particularly when consideri ng that the skeletal system is typically modeled as a homogeneous tissue region in most comput ational phantoms. Even though the CTN method showed excellent agreement with PI RT model assessments of RBM absorbed dose, the application of this technique is obviously limite d to computational phantoms that (1) are based on CT image segmentation, an d (2) have not be altered either upward or downward in skeletal stature. The DRF appr oach is believed to be the most physically intuitive and versatile met hod across phantom categories (s tylized, tomographic, hybrid, etc.), since they can in principle be develope d and applied to any skel etal region of either homogeneous or heterogeneous tissue structur e. Future research studies should explore the development of revised dose-response f unctions for the skeletal tissues which explicitly allow fluence depression ac ross cortical bone and permit high-energy secondary electron trans port across all heterogeneous regions of the skeletal site at both the macroscopic and microstructu re levels of its histology.

PAGE 89

72 Figure 4-1. Skeletal sites selected for co mparative study of bone marrow and bone surface absorbed dose. Displayed are segmen ted images (top row), macrostructural images (middle row), and microstructura l images (bottom row) of the cranium (1st column), lumbar vertebrae (2nd colu mn), os coxae (3rd column), and rib (4th column).

PAGE 90

73 Figure 4-2. External photon beam irradiati on geometries for each bone site. Arrows represent the dire ction of incident photon beams.

PAGE 91

74 Figure 4-3. Ratios of the mass energy absorpti on coefficient ratio for RBM to that of homogeneous bone as defined in the ORNL phantom series.

PAGE 92

75 Percent dose enhancements by King and Spiers Photon energy (keV) 20406080100120140 Percent excess dose 0 5 10 15 20 25 30 Parietal bone Lumbar vertebra 3 Iliac crest Rib Figure 4-4. Percent dose enhancem ents for the parietal bone, 3rd lumbar vertebra, iliac crest, and ribs.

PAGE 93

76 Figure 4-5. Absorbed dose to the red bone ma rrow (RBM) per unit air kerma for the (A) cran ium, (B) lumbar vertebrae, (C) os cox ae, and (D) ribs. A marrow cellu larity of 100% is assumed.

PAGE 94

77 Figure 4-6. Absorbed dose to the bone surfac es (BS) per unit air kerma for the (A) cran ium, (B) lumbar vertebrae, (C) os coxae, and (D) ribs.

PAGE 95

78Table 4-1. Skeletal site used in the PIRT model simulations. Macro image Micro image Bone sites Voxel resolution (m) Matrx size Imaged region Voxel resolution (m) Matrix size MVF* (%) Cranium 443.36 x 443.36 x 750 512 x 512 x 183 Left parietal bone 60 x 60 x 60 75 x 185 x 18058.85 Lumbar vertebrae 322.27 x 322.27 x 1000 512 x 512 x 175 L2 60 x 60 x 60 170 x 340 x 15086.70 Os coxae 656.25 x 656.25 x 1000 610 x 145 x 150 Illium 60 x 60 x 60 610 x 145 x 15089.94 Left Mid Rib 234.38 x 234.38 x 1000 512 x 512 x 259Left Mid Rib 60 x 60 x 60 382 x 76 x 10089.02 *Marrow volume fraction – estimated after image segmentation.

PAGE 96

79Table 4-2. Volume fractions of skeletal tis sues as a fraction of the CT grey scale Group number Skeletal tissues CT grey scale Density (g/cc) Cortical bone volume fraction RBM volume fraction 1 Cortical bone 171-255 1.92 1.0 0.0 2 160-170 1.83 0.9 0.1 3 148-159 1.74 0.8 0.2 4 136-147 1.65 0.7 0.3 5 124-135 1.56 0.6 0.4 6 113-123 1.48 0.5 0.5 7 101-112 1.39 0.4 0.6 8 89-100 1.30 0.3 0.7 9 78-88 1.21 0.2 0.8 10 Mixtures of Cortical bone and RBM 66-77 1.12 0.1 0.9 11 RBM 0-65 1.03 0.0 1.0

PAGE 97

80Table 4-3. Skeletal tissue masses (g) calculated for use in each photon sk eletal dosimetry method. Bone sites Cranium Lumbar vertebrae Os Coxae Rib PIRT CTN MEAC/DRF /HBA PIRT CTN MEAC/DRF /HBA PIRT CTN MEAC/DRF /HBA PIRT CTN MEAC/DRF /HBA Hard bone (Cortical + Trabecular) 429.14 444.79n/a 168.58141.55n/a 458.57 625.55n/a 18.46 16.43n/a Bone endosteum 5.13 n/a n/a 6.22n/a n/a 13.10 n/a n/a 0.23 n/a n/a Marrow 71.35 67.68n/a 211.93228.03n/a 517.34 429.04n/a 12.92 13.98n/a Total bone mixture 505.63 512.47428.72* 386.72369.58424.08* 989.01 1054.591068.01* 31.60 30.4131.83* *Nominal density of 1.4g/cc was multiplied to the total volume of the bone (Cristy and Eckerman)

PAGE 98

81 CHAPTER 5 ORGAN AND EFFECTIVE DOSE COEFFI CIENTS FOR EXTERNAL PHOTONS USING VOXEL PHANTOMS OF PEDIATRIC INDIVIDUALS Introduction The effective dose is defined by the In ternational Commissi on on Radiological Protection (ICRP) as the sum of risk-weighted organ equivalent doses to the exposed individual, and is thus a measure of total de triment due to stochastic radiation effects (ICRP 1991). In almost all instances, the mean absorbed dose to organs and tissues of the body cannot be measured directly during external photon irradi ation, and thus one must rely on the use of organ dose coefficients defined as the ratio of the desired quantity (mean organ or effective dose) and an external indicator quantity, such as air kerma or photon fluence, that is much more readily measured or calculated. Organ dose coefficients are established using computa tional phantoms of human anatomy and Monte Carlo radiation transport. Stylized anat omical phantoms, which were originally designed at the Oak Ridge National Laborator y (ORNL) for used in internal nuclear medicine dosimetry (Cristy 1980; Snyder et al. 1969; Snyder et al. 1978), have been widely used for external radiation dose cal culation. These phantoms describe internal organ boundaries and outer body contours using 3D combinatorial surface equations. Over time, various improvements and extensi ons to the ORNL series have been made including (1) separate male a nd female adult phantoms (Kramer et al. 1982), (2) pregnant female phantoms at three stages of gestation (Stabin et al. 1995), and (3) refinements to match revised ICRP Publicati on 89 reference organ masses (Han et al. 2006). A

PAGE 99

82 comprehensive collection of organ dose coef ficients for external photon, neutron, and electron sources provided by several authors we re reported in the ICRP Publication 74 for the adult workers for use in radiation protection (ICRP 1996). The majority of routine dose assessment in radiation protection involves either prospective planning for future exposures or retrospective reconstruction of past exposures to adult members of the population, either as ra diation workers, members of the public or medical patients. However, increasing evidence s uggests that radiation risks are far greater for infants and childre n (BEIR 2005), and thus there is a growing research need to evaluate age-dependent orga n doses from external photon irradiation. To this end, several investigators have co mpiled external photon dose coefficients using the ORNL pediatric phantom series. Yama guchi evaluated age-dependent effective doses for external photons (1994) and neut rons (1993) using the ORNL phantoms. Chou et al. also employed the ORNL pediatric phantoms to evaluate a more complete set of external photon (2001) a nd neutron (2003) dose conversio n coefficients covering an extended energy range and a wider va riety of irradiation geometries. By their very nature, stylized phantoms are very limited in their ability to accurately depict internal organ shape and relative position within the body. These anatomical limitations are further highlighted with the introduction of tomographic or voxel-based phantoms in the late 1980s to ear ly 1990s. Voxel phantoms are constructed from cross-sectional images acquired thr ough computed tomography (CT) and magnetic resonance (MR) of medical patients, healthy volunteers, or cadavers. For the latter, photographic images may be used directly fr om tissue sections. Several investigators have developed voxel phantoms from medical images of adult subjects (Dimbylow 2005;

PAGE 100

83 Fill et al. 2004; Kramer et al. 2004; Kramer et al. 2003; Lee et al. 2006; Nagaoka et al. 2004; Saito et al. 2001; Xu et al. 2000; Zankl and Wittmann 2001) and have demonstrated that the anatomical differen ces between the styli zed and voxel phantoms can lead, under certain conditions, to large di screpancies in organ dosimetry from either external and internal radiation sources (Chao et al. 2001a; Chao et al. 2001b; Jones 1998; Kramer et al. 2005; Petoussi-Henss et al. 2002; Yoriyaz et al. 2000). Although the unrealistic anatomy of adult stylized phantom s has been investigated, the anatomical realism of pediatric stylized phantoms has rarely been studied as only a limited number of whole-body pediatric voxel ph antoms have been available to the research community. Until very recently, only four pediatric voxel phantoms were available. These included two from the GSF national laboratory in Germany BABY and CHILD (Zankl et al. 1988), and two from the Universi ty of Florida UF Newborn and UF 2-month-old (Nipper et al. 2002). Staton et al. (2003) reviewed organ dose estimates in radiographic examinations usi ng both the ORNL stylized phantom and the UF voxel phantom of the newborn patient. The authors concluded that while organ positioning differences do exist between the phantoms, a major factor contributing to differences in organ and effective dose was the exterior trunk shape. In the voxel phantom, a more elliptical shape was seen thus providing for less tissue shielding for internal organs in the AP and PA directions , with corresponding incr eased tissue shielding in the lateral directions. Th is observation is opposite of th at seen in comparisons of stylized and voxel phantoms of the adult. In Chapter 3, a greatly expanded series of whole-body pediatric phantoms were developed and they can be used for dosimetri c studies of external and internal organ

PAGE 101

84 dosimetry in children. The UF Series B phantoms include a 9-month male, 4-year female, 8-year female, 11-year male, and 15year male, and each was constructed from corresponding members of the UF Series A partial-body phant oms described in previous chapters. The current chapter investigates differ ences in external photon organ dosimetry between the ORNL and UF tomographic pe diatric phantoms. Selected pediatric phantoms were used for comparison of the or gan dose coefficient – three from the ORNL phantom series (1-year, 5-year, and 10-year ) and three from the UF Series B phantoms (9-month male, 4-year female, and 11-year male ). Absorbed dose coefficients for major organs having the greatest values of ti ssue weighting factor were calculated and compared among both phantom classes. Prim ary causes for organ dose differences are discussed and the effective dose coefficien ts for the UF voxel phantoms for external photons are reported for six genera lized irradiation geometries. Materials and Methods Computational Phantoms The series of pediatric phantoms from the ORNL series (1-year, 5-year, and 10year) and the UF whole-body pediatric voxel ph antoms were employed in this study. The MCNP inputs of the ORNL phantoms we re generated using the BodyBuilder 1.3 software (White Rock Science, White Rock, NM). The three ORNL phantoms were prepared with the hermaphrodite and no-tors o fat options in effect. However, two parameters of the code were found to be incorrect during the input verification, and were subsequently corrected after personal communication with the program developer. First, the urinary bladder of the 10-year phantom of Bodybuilder 1.3 was mistakenly

PAGE 102

85 positioned posteriorly. The parameters of the organ equation were thus revised. Second, the volumes of thyr oid were incorrect, 1.71 cm3 (1-year), 3.32 cm3 (5-year), and 7.62 cm3 (10-year). The correct thyroid volumes were re-calculated as 2.59 cm3 (1year), 5.05 cm3 (5-year), and 11.54 cm3 (10-year) by the authors and reflected in the corresponding MCNP input file. These errors were confirmed by the program developer noting mistakes during the simplification of the original thyroid models in the ORNL/TM-8381 report (Cristy and Eckerman 1987), which are 4th order equations and are thus not compatible with standard MCNPX code input. A total of three UF pediatric voxel phanto ms (9-month male, 4-year female, and 11year male) were selected for close age agr eement with the selected ORNL phantoms. Dose coefficients from the 9-month male , 4-year female, and 11-year male were compared with those from the 1-year, 5-year , and 10-year ORNL phantoms, respectively. Organ Elemental Composition A total of four elemental compositions so ft tissue, skeleton, lungs, and air were implemented into the ORNL phantoms (Cristy and Eckerman 1987). Soft tissue was assigned to most internal organs and tissues with a mass density of 1.04 g cm-3, except the skeleton and lungs. A homogenous elem ental composition of the skeletal tissues (cortical bone, bone trabeculae, red and yellow bone marrow) wa s assigned to the skeletal regions of the ORNL phantoms, with a mean tissue density of 1.4 g cm-3. The densities of the lungs and air were assigned as 0.296 and 0.00129 g cm-3, with air being included in the upper portion of the esophagus and the surr ounding spaces exterior to the phantoms. The same elemental compositions were assign ed to the corresponding organs and tissues of the 1-year, 5-year, and 10-year OR NL phantoms without age dependency.

PAGE 103

86 Data from ICRU Report 46 (ICRU 1992) and ICRP Publication 89 (ICRP 2003) were used to describe the elemental compos ition and mass densities of organs and tissues in the UF voxel phantoms. A total of 23 compositions were assigned to the corresponding organs and tissues. Skeletal ti ssues were sub-divided into 20 regions and categorized into 8 groups of age-dependent elemental composition according to their relative red bone marrow content and elem ental composition (Watchman 2005). The effort to match elemental composition be tween the ORNL and UF phantoms was not attempted, but it was reported by other inves tigators that the eff ective dose discrepancy caused by the material difference are less th an 8% for the most important exposure conditions, and the anatomical differences ar e mostly responsible for the dosimetric changes observed (Jones 1997; Kramer et al. 2005). Differences in organ and effective doses between the ORNL and UF phantoms in this paper are ascribed in terms of anatomical differences, although it is ac knowledged that elemental composition differences may play a role at very low photon energies. Effective Dose Evaluation To calculate the effective dose as defined by the ICRP, the mean absorbed doses to 22 organs and tissues should be assessed for a given radiation exposure (ICRP 1991). Organ equivalent doses are then calculated through application of radiation weighting factors wR, and then these organ equivalent do ses are further averaged via tissue weighting factors wT to yield the effective dose E. Among the organs and tissues of the effective dose, special consideration shoul d be given to active (red) bone marrow and skeletal endosteum that are distributed throughout the skeleton. There tissues are exceedingly small in histological dimension, and thus are exceedingly difficult to accurately describe in stylized phantoms, and even within voxel phantoms.

PAGE 104

87 The individual marrow cavities of trabecu lar bone in which the hematopoetically active marrow (red bone marrow or RBM) reside s cannot be properly represented within the voxel resolution of existing voxel phantoms, within the ma thematical constructs of stylized anatomical phantoms. As investig ated in Chapter 4, the calculation method reported in ORNL/TM-8381 was adopted for RBM dose calculation and the homogeneous mixture bone approximation met hod was selected for BS dose calculation for both the ORNL stylized and UF voxe l phantoms (Cristy and Eckerman 1987). The effective dose is defined by ICRP according to the following expression: , , , 2TmaleTfemale breastbreastfemaleT TbreastHH EwHw (5-1) where wbreast is the tissue weighting factor for breast, Hbreast, female is the equivalent dose to the breast, wT is the tissue weighting factor for organs other than the breast, and HT, male and HT, female are the equivalent dose for male and female organs other than the breast. Since this study was designed to co mpare effective and organ equivalent doses between the ORNL stylized and UF phantoms, and UF phantoms are gender-specific and thus not hermaphrodites, an alternative met hod was applied to calculate the effective dose for the purposes of this study only. The effective dose for the UF male phantoms did not take into account the breast and uterus dose, while the testes dose replaced the gonadal dose (average of testes dose and ovaries dose). As for the UF female phantoms, the breast and uterus doses were included in the effective dose calculation, but the dose to the ovaries was used in place of the average gonadal dose. Male effective doses were calculated for the 1-year and 10-year ORNL phantoms, and the 9-month and 11-year UF phantoms. Female effective doses were obt ained for the 5-year ORNL and 4-year UF phantoms. Gender-specific effective doses were compared with each other, and then

PAGE 105

88 individual organ doses were compared be tween the two phantoms with the resulting dosimetric differences analyzed and discussed. Monte Carlo Calculation The general purpose radiation transport code MCNPX2.5 (Pelowitz 2005) was used for the calculation of organ dose distributions along with the two phantom sets discussed above. The BodyBuilder-generated ORNL pha ntoms were incorporat ed into the input deck of MCNPX2.5 together with material composition data, tally information, and dose response functions required for RBM dose calcu lation. The 3D binary files composing the UF voxel phantoms were converted to ASCII formatted matrix files. The large matrix file was separated from the input deck and called into the i nput deck by using the MCNP READ card, which reduced the input size significantly. Dose conversion coefficients, absorbed doses per unit air kerm a, for selected organs and tissues were calculated for broad parallel beams of monoenergetic photons ranging from 15 keV to 10 MeV originating from one of six idealized ge ometries defined in ICRP Publication 74 (ICRP 1996): anterior-posterior (AP), posterior -anterior (PA), right lateral (RLAT), left lateral (LLAT), rotational (ROT), and isotropic (ISO). The absorbed dose to an organ or tissue was calculated as the to tal amount of energy deposited in this organ divided by its mass by using track length estimator ta lly. The photon fluence crossing the corresponding organ and tissue volumes was calculated to ob tain RBM dose through the use of the ORNL/TM-8381 dose response function. Results and Discussions Organ Dose Comparison Organ dose conversion coefficients for ma jor 12 organs and tissues (gonads, bone marrow, colon, lung, stomach, urinary bladder, breast, liver, esophagus, thyroid, skin, and

PAGE 106

89 bone surface), as well as remainder tissues defined in ICRP Publication 60, were calculated from the all of the UF whole body pediatric voxel phantoms (9-month male, 4year female, 8-year female, 11-year male, and 14-year male) for external photon in AP, PA, LLAT, RLAT, ROT, ISO irradiation ge ometries, and tabulated in Table D of Appendix D. Absorbed doses for adrenal gl ands, brain, extrathoracic (ET) airways, small intestine, kidneys, muscle, pancreas, spleen, thymus, and uterus were uniformly averaged and included in the remainder tissu e dose estimate. Among those data tabulated, the absorbed doses to five of the more ra diosensitive organs of the body (gonads, red bone marrow, colon, lungs and stomach that ha ve tissue weighting factors exceeding 0.1) were compared between the ORNL styli zed and UF phantoms. Those irradiation geometries that show significant difference s in organ dosimetry between the two phantom classes are shown in Figure 5-1(a) ~ (f), and discussed below. Gonads. Absorbed doses of testes in the ORNL phantoms were compared with those of UF phantoms, whereas ovary dose of the ORNL 5-year phantom was compared with that of the UF 4-year female phantom. As anticipated, no significant differences in testes dose are demonstrated across all irra diation geometries be tween the two phantom sets. However, the ovaries in the ORNL 5year phantom receive an absorbed dose 18% lower than that in the UF 4-year phant om at a photon energy of 100 keV in the AP direction – the energy of a local maximum in the dose coefficient for all phantoms. Figure 5-1(a) shows the comparison of absorbed doses to gonads in AP geometry, and the significant discrepancy of ovary doses between the two female phantoms. This finding suggests that while the testes of the ORNL phantoms are positioned realistically, the same is perhaps not true for the representation of the ovaries in the OR NL 5-year phantom.

PAGE 107

90 One explanation is that the overlaying muscle (i.e., residual soft tissues) of the ORNL phantom is unrealistically thick in the abdominal region as compared to that given in the UF 4-year phantom. As noted previously by Staton et al. (2003), the ORNL stylized phantoms provide for no variation in torso th ickness along the z-axis (caudal cranial direction), which is not the case with the more anatomically realistic voxel phantoms. Red bone marrow. For the AP irradiation geometry, the absorb ed dose per unit air kerma to RBM is 16% (1-year ORNL and 9month UF), 20% (5-year ORNL and 4-year UF), and 18% (10-year ORNL and 11-year UF) higher in UF voxel phantoms compared to the age-matched ORNL phantom at 100 keV. In contrast, very small differences are noted among the two phantom sets for the PA irradiation geometry. These trends are attributed by the larger amount of muscle present w ithin the anterior regions of the ORNL phantoms as compared to the corresponding UF phantoms. Accordingly, the shallower muscle thickness in the UF pediatric pha ntoms resulted in less photon attenuation and resulting higher skeletal tissue doses. Furthe rmore, the exterior tr unk profile of the UF voxel phantoms are more elliptical in cross section compared to their ORNL stylized phantom counterparts causing even less photon shielding eff ect for the AP irradiation geometry. For the lateral irradiation geometries, dose coefficients for the RBM are at most 12% (10-year ORNL) higher than those s een in the UF phantoms. This is caused by the unrealistic arm structure portrayed in the ORNL phantoms as compared to the UF phantoms as demonstrated in Figure 5-1(b). Th e soft tissue thicknesses of the arms within the ORNL phantoms are underestimated and are included within the elliptical trunk region, whereas the arms of the UF phantoms ar e correctly attached to the outer side of the trunk. Under the lateral irradiation geom etries, the simplistic representation of the

PAGE 108

91 arm tissues within the ORNL phantoms corres pondingly result in lower dose coefficients for the lungs, liver, esophagus, and kidneys in these stylized phantoms as compared to their corresponding values in the UF voxel phantoms. A si milar arm shielding effect was observed in a comparative study of th e ORNL stylized and Korean voxel phantoms of the adult (Lee et al. 2006). Colon wall. While no significant discrepa ncies are seen under PA irradiation, the colon wall in the UF voxel phantoms receives at most 11% higher (5-year ORNL and 4year UF) absorbed doses than seen in the corresponding ORNL phantom at 100 keV under AP irradiation (see Figure 5-1(c)). This observation is also attributed to differences in trunk shape betw een the two phantom sets. The thicker muscle mass (e.g., residual tissue) between the colon and anterior surface of the abdomen in the ORNL phantoms provides enhanced photon attenuation yielding lower dose coefficients to this organ than seen in the corresponding UF phantom. Lungs. As mentioned earlier, the lung dos e in the ORNL phantoms are up to 35% higher (5-year ORNL and 4-year UF) than seen in the UF phantom at a photon energy of 100 keV in the LLAT irradiation geometry as shown in Figure 5-1(d). These differences are also the result from the simplistic arm structure within the ORNL phantoms as was the case for the red bone marrow. The discre pancy of lung doses due to arm structure modeling was also discussed in our comparison of lung doses for adult stylized and voxel phantoms (Lee et al. 2006). In contrast, the lung doses of the UF phantoms are at most 6% higher than those in the ORNL phantoms under both AP and PA irradiation. This fact can be explained by the unrealistic shield ing effect of excessive muscle in the chest region of the ORNL phantom. In reality, the lungs of pediatric pati ents are in contact

PAGE 109

92 with the rib cage with an additional small pr esence of anterior chest muscle. Another possible cause is the difference in rib cage st ructure seen in the two phantom sets. The rib cage of the ORNL phantom is modeled as a series of parallel bands between two concentric elliptical cylinders with an adult skeletal mass density of 1.4 g cm-3, whereas the UF phantoms a more anatomically realisti c rib cage with some presence of less dense costal cartilage, and skeletal homogeneous tis sue at an age-dependent density of 1.35 g cm-3. Stomach wall. The stomach of the ORNL phantoms receives up to 26% higher dose (1-year ORNL and 9-month UF) than seen in the UF phantoms at a photon energy of 100 keV in the LLAT geometry (Figure 5-1(e)), whereas that of the ORNL phantoms receives 27% lower doses (10-year ORNL and 11-year UF) than seen in the UF phantom under RLAT irradiation at that same energy (Figur e 5-1(f)). These observations suggest that the stomach in the ORNL phantoms is unrealist ically shifted to the phantom’s left as compared to its age-match UF voxel phantom. Other than the five major organs mentione d above, the thyroid and urinary bladder also showed a significant dose difference between the ORNL and UF phantoms. As shown in Figure 5-2(a), the thyroid dose fr om the ORNL phantoms was at most 115% (10-year ORNL and 11-year UF) higher th an that of the UF phantoms in LLAT irradiation geometry at photon energy of 0.1 MeV. The discrepancy came from the difference of thyroid positi on between the ORNL phantoms and the UF phantoms, which was also observed and discussed in the co mparison study of thyroid dose between adult stylized phantoms and adult voxel phantoms (Lee et al. 2004a). The thyroid glands of the ORNL phantoms are totally included in the distinctively defined neck region of the

PAGE 110

93 phantom, and thus experience less photon shie lding effects from surrounding tissues in the lateral geometries. In contrast, the th yroid glands of the UF phantoms are located anatomically lower within the upper chest re gion, and are shielded by thick regions of muscle and the clavicles in both the left and right lateral directions. Dose discrepancies for the urinary bladder wall in the PA geometry are shown in Figure 5-2(b). The urinary bladder within the UF phantoms receives up to 50% (10year ORNL and 11-year UF) higher doses than seen in the ORNL phantoms. There are two reasons for this observation. First, the overly thick abdominal soft tissues of the ORNL phantoms cause excessive shielding in the PA irradiation geometry. Second, while the urinary bladder in the ORNL phantom s is located close to the anterior surface of the abdomen, this organ is found to be more centrally located along the AP direction in the UF voxel phantoms. However, there are no significant differences seen under left or right lateral irradiation geometries. Effective Dose Although the effective dose as defined by the ICRP is composed of organ doses from both male and female phantoms, male and female effective doses were computed for single gender phantoms in this study to serv e as useful indicators of overall dosimetric characteristics for the UF whole-body voxel pha ntoms under external photon irradiation. The male effective dose coefficients were calculated for the UF male phantoms and the female effective dose coefficients were calc ulated for the UF female phantoms (Table D13). When calculating the male effective dose, the absorbed dose to the ovaries, uterus, and breasts were neglected, wher eas the testes doses were not taken into account for the calculation of the female effective dose. Th e gender-specific effective dose coefficients

PAGE 111

94 for the UF 9-month, 4-year, and 11-year pha ntoms were compared with those of the ORNL 1-year, 5-year, and 10-year phantoms, respectively. The percent differences in the effective dose coefficients of the two pha ntom types are tabulated in Table 5-1 at discrete photon energies and irradiation geometries. In the AP and PA irradiation geometries, there is no significant difference in the male effective dose coefficients, even though individual organ dose coefficients may be significantly higher or lower in specific cases. In contrast, the female effective dose coefficient reflected these anatomical differ ences between the two phantom classes. In particular, the 5-year female ORNL phantom received a much lower effective dose than seen in the 4-year female UF phantom due primarily to the unrealistic abdominal trunk thickness and subsequently high er photon shielding of the ova ries in the stylized ORNL phantom. As for lateral irradiation geometries, th e effective dose of the ORNL phantoms was at most 22% higher than seen in the UF phantoms at photon energy of 100 keV for the two sets of older phantoms. Still, the 1-year ORNL and 9-month UF phantoms did not show considerable effective dose differences. It was understood that as the overall body dimension becomes smaller, differences in overlying tissue shielding and photon attenuation in the arm and torso muscle regions also diminishes. for the lateral irradiation geometries. Conclusion Using the UF pediatric voxel phantoms, th e organ absorbed dose per unit air kerma (Gy/Gy) for 12 major organs and remainder tis sues as needed for the assessment of the ICRP 60 definition of the effective dose were calculated and tabulated for broad parallel monoenergetic photon beams over the energy range 15 keV to 10 MeV and for six

PAGE 112

95 irradiation geometries: AP, PA, RLAT, LLAT, ROT, and ISO. These values were compared to the conventional stylized pediat ric phantoms of the ORNL series in an attempt to compare dosimetry differences caused by the realisti c versus simplified anatomies among the two phantom sets. The 1-year, 5-year, and 10-year ORNL phantoms, and the 9-month male, 4-year fe male, and 11-year male UF voxel phantoms were employed for the absorbed dose conve rsion coefficient calculation by using the MCNPX2.5 radiation transport code. Differen ces in organ dose conversion coefficients for the gonads, RBM, colon, lung, and stomach were reported and analyzed. Some significant discrepancies caused by anatomical differences between the ORNL and UF phantoms were discussed. The analysis is crit ically helpful to understand the causes of difference in the effective dose, which result ed in as much as a 22% difference at 100 keV depending on the irradiation direction. The ICRP is in the process of adoptin g new voxel-based computational phantoms of the reference adult male and female for the calculation of new organ dose conversion coefficients in its broader effort to update the ICRP 1990 radiation protection recommendations (www.icrp.org). The approach has been motivated by the lack of the anatomical realism in existing stylized phant oms that have been revealed through sideby-side comparisons as reported by several authors over the past 10-15 years. The results of this present study suggest that the pediatric series of ORNL phantoms also provide an anatomical description of young children that can, in certain irradiation geometries and for certain organs, lead to significant dosimetric errors under external photon irradiation. In the revision and expansio n of ICRP Publication 74 to members of

PAGE 113

96 the general public, serious consideration should thus be given to the use of tomographic or voxel-based representations of pediatric subjects or patients.

PAGE 114

97 Figure 5-1. The organ dose conversion coef ficients comparison between the ORNL phantoms and the UF voxel phantoms for organs with significant tissue weighting factors as defined by the ICRP 60. (a)gonads in AP, (b) RBM in LLAT, (c) colon in AP, (d) lungs in LLAT, (e) stomach in LLAT, and (f) stomach in RLAT direction

PAGE 115

98 Figure 5-2. The organ dose conversion coef ficients comparison between the ORNL phantoms and the UF voxel phantoms (a) thyroid and (b) urinary

PAGE 116

99Table 5-1. The percent difference* of absorbed doses per unit air kerma (Gy/Gy) of the ORNL phanto ms (1-year, 5-year, and 10-year) from those of the UF phantoms (9-month female, 4-year male, and 11-year male) for external mono-energetic photon in AP, PA, LLAT, RLAT, ROT, and IS O irradiation geometries. ORNL 1-year and UF 9-month male ORNL 5-year and UF 4-year female ORNL 10-year and UF 11-year male Energy AP PA LLAT RLAT ROTISOAP PA LLATRLATROT ISOAP PA LLATRLATROTISO 0.015 52.60 -1.18 -16.06 23.3454.9119.126.95-11.6018. 3369.6614.56 27.82149.9917. 2234.0258.48117.43151.98 0.03 -7.83 -13.63 -9.28 -5.51-4.63-9.38-22.95-27.235. 2715.01-16.77 -17.824.48 -3.7619.4042.845.1612.29 0.04 -7.33 -13.21 0.85 0.52-2.46-8.61-15.95-17.9911.6 615.75-9.02 -9.40-0.60-6.4818.1627.912.065.06 0.05 -5.78 -10.83 4.82 3.95-0.34-3.58-10.12-11.9216. 0618.67-4.76 -6.14-0.24-5.0617.8723.254.114.95 0.06 -4.40 -8.75 7.52 7.412.242.13 -7.14-9.4219.0620.54-6.64 -6.5 30.47-4.6418.3022.035.546.15 0.08 -1.91 -6.18 8.67 7.20-0.800.55-6.75-4.7218. 0919.45-2.56 -6.771.25-2.9221.1119.754.963.80 0.1 -0.94 -4.54 8.21 7.294.521.21 -5.72-4.2418.2221.01-0.37 -2.1 61.61-1.3722.1720.657.736.08 0.2 -0.07 -2.36 6.78 5.985.255.16-6.16-3.6514. 0413.770.82 -5.862.132.4419.3318.277.366.29 0.4 0.64 -0.75 4.78 6.027.324.64-5.52-4.689.57 10.581.69 -5.322.011.8214.5617.649.536.02 0.6 0.79 -0.65 4.25 5.205.692.52-4.56-3.908.12 9.46-1.57 -4.042.362.3412.5813.699.176.38 0.8 0.98 0.19 3.03 4.186.844.70-3.74-3.298.859. 79-4.62 -4.322.713.4912.4812.0810.947.22 2 0.21 0.35 0.52 0.983.378.73-1.78-3.206.216. 91-10.52 -8.731.621.779.2111.8011.555.44 4 0.03 0.45 0.11 0.877.047.61-2.08-1.623.59 5.28-11.38 -6.031.981.927.018.589.000.75 8 -0.21 0.95 0.16 0.077.406.42-1.91-1.712.20 3.45-10.89 -2.781.672.075.826.5910.232.00 10 -0.22 0.58 -0.30 -0.235.595.98-1.87-1.431.353.18-11.59 -0.541.691.905.166.169.721.77 * The percent difference was calculate d from the equation, (ORNL-UF)/UF.

PAGE 117

100 CHAPTER 6 ORGAN AND EFFECTIVE DOSES FOR PE DIATRIC PATIENTS IN MULTISLICE CT Introduction Since its introduction in the 1970s, com puted tomography (CT) has led to a revolution in diagnostic imaging. With the introduction of helical CT in 1990 and multi-detector CT scanners in 1998, a dramatic increase in the use of CT in the diagnosis of a variety of pathologic conditions has emerged. The annual number of CT examinations increased from 3.6 million in 1980 to 33 million in 1998 (Mettler et al. 1993; Nickoloff and Alderson 2001). A ccording to the su rvey by Mettler et al., about 10% of all CT examinations were performed in pediatric patients in the United States, and they deliver about 67% of the overall collective radiation dos e to this population (2000). Medical practices invo lving significant amount of ra diation may be justified by the benefits they provide to the patients. As more and more radiological studies are utilized for patient health care, it becomes of more importance to accurately understand and assess risks that this medical practice imposes on patients, es pecially those of pediatric ages. The effective dose has been widely used to assess relative patient risks as it accounts for the absorbed doses and relative radi osensitivities of the irradiated organs in the patient (ICRP 1991). However, only a limited number of studies have been performed in estimating organ doses and co rresponding effective doses for pediatric patients in CT, since the estimation of orga n absorbed dose to these patients is very

PAGE 118

101 difficult. These studies have applied only simple circular physical phantoms of varying sizes to estimate organ dose as a function of patient age in computed tomography. Shrimpton and Wall (2000) used a 16-cm diameter PMMA phantom to derive reference dose indices such as the computed tomogra phy dose index (CTDIw) for a single-slice scanning and the dose length pr oduct (DLP) for multiple-slice scanning. These dose indices are merely relative referenc e values for users to compare with their own measurements and are far from adequate in the determination of real patient organ doses. These authors extended their efforts to calculate the effective dose using DLP measurement by utilizing normalization factors derived from simulation data taken from an adult anthropomorphic phantom. Boone et al. (2003) evaluated size-de pendent technique factor s, including varying the tube current and voltage, by using phantoms that ranged from 10 to 32 cm in diameter and reported CT techniques that allowed constant image quality and reduced radiation dose in pediatric patients. Nickolofff et al. (2003) analyzed the effect of phantom size, tube voltage, tube current, and scanner type on the CT dose index and found that CT dose index is an exponential function of phantom di ameter and that it increases in phantoms with a smaller diameters. Siegel et al. (2004) performed a similar study by using a wider array of physical phantoms (8, 16, 24, and 32 cm in diameters) for abdominal CT studies. Again, even though these studies suggested the relative ab sorbed dose changes us ing the ion chamber inside of the cylinder physical phantoms, the measurement results cannot address real organ absorbed doses or effective doses to pediatric patients.

PAGE 119

102 For organ dose evaluation, one must us e either physical or computational anthropomorphic phantoms. Physical m easurements using the anthropomorphic physical phantoms were made by a few authors (Axelsson et al. 1996; Chapple et al. 2002). Axelsson et al. used an anthropomorphic physical phantom of one-year old (Varchenya et al. 1993) and multiple thermoluminescent dosimeters (TLDs) to calculate organ doses for head exam with axial CT and lower trunk with spiral CT via General Electric HiSpeed advantage scanner operated at 120 kVp. They pointed out that the measurement can involve significant uncertainti es especially for the organs with partial exposure to the x-ray field. Chapple et al. used the whole series of pediatric phantoms of Varchenya et al. and TLDs to calculate organ dose and effective dose from the Siemens Somatom Plus 4 CT scanner for head, chest, abdomen, and pelvis examinations. They also provided the conversion coefficients to c onvert the DLP measurement into effective dose for different phantom sizes. Even though the use of anthropomorphic physical phantoms allows more accurate assessment of the organ and effective doses, th e anatomical realism of the phantoms used by these authors are generally poor compared to the real patient anatomy and the use of TLDs can pose significant uncertainties in evaluating the average absorbed dose to internal organs. A final method is to use Monte Carl o radiation transport methods with anthropomorphic computational phantoms. This method is one of the more accurate and versatile ones available. Several author s have conducted this type of approach to

PAGE 120

103 assess organ doses under CT examination (Caon et al. 1999; Caon et al. 2000; Khursheed et al. 2002; Zankl et al. 1995). The Monte Carlo simu lation of anthropomorphic phantoms can avoid the problems seen in phys ical phantom measurement, since it can assign correct elemental compositions to each organ and accurately calculate absorbed doses to organs of interest as long as th e phantom itself represents a realistic human anatomy, both internally and externally. A series of pediatric stylized phantoms have been used to estimate effective dose in CT examination (Khursheed et al. 2002). Phantoms of newborn, 1 year, 5 years, 10 years, 15 years, and adult from Cristy a nd Eckerman (Cristy and Eckerman 1987) were used for estimate the effective dose for three different CT machines with one tube voltage from three different manufacturer. However, the use of these stylized phantoms can cause considerable discrepancy in the organ dose because of their unrealistic torso shape and internal organ lo cations (Castellano et al. 2005). In their st udy, the degree of the inaccuracies caused by the rather simple anatomy of the stylized phantoms is only partially addressed where the change of esophagus geometry caused 12 times more dose than the previous study (Jones and Shrimpt on 1993). Only axial scanning was modeled in the study. The other studies using anthropomorphic computational phantoms were performed by using a few of more anatomical ly realistic voxel phantoms (Caon et al. 1999; Caon et al. 2000; Zankl et al. 1995). The voxel phantoms are constructed from the tomographic images of real patients and represent huma n anatomy in far more realistic manner than the stylized phantoms. Excluding the UF pe diatric phantoms, only three pediatric voxel phantoms have been utilized for the CT dosimetry, CHILD, BABY (Zankl et al. 1995),

PAGE 121

104 and ADELAIDE (Caon et al. 1999; Caon et al. 2000). All of the phantoms used for the studies were patient-specific and sometimes did not represent the whole body (Caon et al. 1999; Caon et al. 2000). For the study with CHILD a nd BABY, it is not clear if they adjusted the arm structures fo r CAP studies and the CT techni que factors the authors have used are no longer in use in present time. Furthermore, all of above studies simulated the motion of x-ray source as multiples of axial rotation at varying positions and did not explicitly simulate the helical motion of the x-ray. Jarry et al. have recently published a study on Monte Carlo methods for estimating organ doses for adult patients in axial and helical CT (2003). Dosimetry was performed using both an adult stylized phantom and a si mple partial body voxel phantom. In their study, the movement of the source was modele d explicitly while the CT x-ray source profile was modeled using published informa tion about the x-ray spectra as well as information provided by the manufacturer. Th eir work was the first Monte Carlo study where helical movement of the x-ray sour ce was modeled along with the detailed consideration of beam attenuation thr ough the beam shaping filter. Staton et al. have used both stylized and voxel phantoms of newb orn patient to calculate the absorbed dose to organ and effective dose for multi-slice helical CT scanning. The study has shown the dosimetric differences in both phantoms (Staton 2005). This chapter has extended the research of Staton et al. by utilizing the series of pediatric phantoms developed in the previous chapters to investigate the age-dependent organ doses and effective dose from the heli cal multi-slice CT scanner. The trend of organ dose and effective dose for the pediatric patients are investigated by utilizing both

PAGE 122

105 the UF phantoms and the conventional ORNL phantoms with detailed Monte Carlo simulation of the multi-slice helical CT scanner. Materials and Methods Anthropomorphic Computational Phantoms Two categories of computational phantoms were used in the pr esent study, imagebased voxel and equation-based stylized phantoms. Voxel phantoms UF voxel phant oms of pediatric patients The computational phantoms used in the pr esent study were based on the UF Series B voxel phantoms of pediatric patients (9 mont h male, 4 year female, 8 year female, 11 year male, and 14 year male) developed in the chapter 3. The Series B phantoms have been developed from their predecessor UF Se ries A phantoms which have head and torso and were built from the CT images of live pediatric patients (Lee et al. 2005). For the current study which involves the patient postu re of upwardly stretched-arms for chest, abdomen, and pelvis examinations, the Series B phantoms were further modified so that their postures correctly follow the actual patie nts by removing arm structures out of the field for CAP studies and by m odifying the skeletons and so ft tissues. The skeletons that were modified include clavicles, scapul ae, and humeri, which can potentially affect the absorbed dose to internal organs such as lungs, esophagus, thymus, and heart. Figure 6-1 shows the outer appearance of the modified UF phantom series. Stylized phantoms – ORNL phantom family The ORNL phantoms used in Chapter 5 were also utilized in this chapter. The representative pediatric phant oms newborn, 1 year, 5 years, 10 years, and 15 years -

PAGE 123

106 were used in the present study. Figure 6-2 shows the outer appearance of the ORNL phantom series that were genera ted from the Bodybuilder software. For each type of phantoms, field of view s were carefully selected to match the anatomic regions that were clinically used for head, chest, abdomen, pelvis, and CAP examinations (Table 6-2 and 6-3). Monte Carlo Simulation A SOMATON Sensation 16 helical multi-s lice CT scanner (Siemens Medical Solutions, Erlangen, Germany) was simula ted in the MCNPX Monte Carlo code (Pelowitz 2005). The source subroutine was wr itten to allow the simulation of axial and variable pitch helical scans (Appendix E). The source code generates the starting spatial coordinates and directional vectors for each simulated particle. The CT x-ray source was modeled as a fan beam originating from th e focal spot with a fan beam angle of 52 and a focal spot to axis distance of 57 cm. The helical path of the source was explicitly modeled based on the collimated beam thickness, pitch, and scan length. The spatial coordinates of each particle were sample d randomly over the helical path and the direction of the particle was then randomly sampled within the fan beam. Acquired beam profile data was used to account for the fact that actual collimated beam thickness can be larger than the nominal collimated beam thickness. The CT x-ray energy spectra were obtained from the manufacturer for all peak tube potentials. The energy spectra data were implemented in the Monte Carlo codes as lookup tables at intervals of 1 keV. The ef fects of the additional bowtie filtration were also included in the simulations. Information on the bowtie filter including dimensions, location, and composition were provided by the manufacturer. Radiation transport through the filter was not simulated explic itly. A method used by previous authors

PAGE 124

107 (Jarry et al. 2003) was used to calculat e weighting factors that could be applied to the source. The path length through the bowtie filte r was calculated for all angles within the fan beam using information on the bowtie filter shape. A lo okup table was then generated to correlate angles w ithin the fan beam to a path length through the filter. The path length through the filter is then used along with the linear atte nuation coefficient in the filter material for the energy of the given particle to calculate the exponential attenuation within the filter. The attenuati on value through the filter is then used as a source weighting factor for the gi ven particle during the simulation. For the present study the MCNPX version 2.5.0 was selected for simulations. The MCNPX version 2.5.0 is capable of simula ting both the stylized and voxel phantoms efficiently. The source subroutine was re-c ompiled by using the Compaq Visual Fortran compiler version 6.6B and Microsoft Visual C++. Each phantom was implemented into the MCNPX input deck with the material cards that were specifically prepared fo r each age and tissue according to ICRU 46 elemental compositions and dens ities. Figure 6-3 shows a simulated abdomen CT exam using the ORNL 10-year phantom and MCNPX. The tracks of 500 x-ray photon histories are shown being overlaid on the phantom and patient table geometries. Selected Technique Factors for CT Scanning A variety of scan parameters were simula ted to evaluate their effects on individual organ doses and effective doses in the pediatri c patients. Five different CT scan regions were simulated, head, chest, abdomen, pelvis , and chest-abdomen-pelvis (CAP). The boundary definition for each exam is summarized in Table 6-1. For each scan, three tube potentials commonly used in pedi atric CT scans, 80, 100, and 120 kVp, were simulated at the two most commonly used beam thicknesses, 12 mm (16.75 mm) and

PAGE 125

108 24 mm (16 1.50 mm). For each tube poten tial, two different x-ray spectra were utilized. One was for the head CT exam and the other was for the chest, abdomen, pelvis, and CAP CT exams. Figure 6-4 show s the energy spectrum of the x-ray sources used in this chapter. Only one pitch va lue, a pitch of one, was selected for the simulation since the absorbed doses are inversely proportional to pitch. Organ Dose Calculations When using Monte Carlo transport codes, ta lly outputs for an organ dose are in the units dose (mGy) per launched photon. In orde r to calculate the absolute organ dose values, normalization factors must be create d to relate simulated dose values with experimental dose measurements. The normali zation factors (NF) are calculated using the CTDI in-air simulations and measuremen ts (Staton 2005). Shown in the following equation, the NF is in units of particles per mAs and is calc ulated as a function of both peak tube potential, kVp, and collimated beam thickness, C. , , ,() ()airMkVpC kVpC airSkVpCK NF K Eq. (6-1) Kair-M is the air kerma measured free-in-air with the 10-cm ion chamber for one axial slice at the center of rotation for a given kVp and collimated beam thickness C, and then divided by the mAs used for the measurement, 100 mAs in this case. Kair-M is therefore in units of mGy per mAs. Kair-S is the MC simulated air kerma for the same measurement setup. Kair-S is in units of mGy per pa rticle history. Using the normalization factor NF, the values of organ/tissue absolute absorbed dose, DA , are thus calculated as rotations rotation mAs NF D DC kVp C kVp S C kVp A# ) ( ) (, , , Eq. (6-2)

PAGE 126

109 where DS is the Monte Carlo simulation estim ate of the tissue absorbed dose, NFkVp,C is the normalization factor for a given kVp and collimated beam thickness C, and the total mAs is calculated as the mAs per rotation multiplied by the total number of rotations in the exam. Result and Discussion Age-dependent Effective Dose Co mparison for Five CT Exams The effective doses from the two types of pediatric phantoms, the ORNL and UF Series B computational phantom s, were calculated for head, chest, abdomen, pelvis, and CAP computed tomography examinations. Since the ORNL phantoms are hermaphrodites, having both male and female organs, separate male and female effective doses were calculated for the comparison us ing the gender-specific UF phantoms. The male effective dose was calculated by using onl y the equivalent doses of the male organs, while the female effective dose was evaluate d by using those of the female organs. Figure 6-5 through Figure 6-9 display the eff ective dose results for 80, 100, and 120 kVp tube potentials with 12-mm and 24-mm collimated beam thicknesses for head, chest, abdomen, pelvis, and CAP examinations, respec tively. No significant dose differences were seen between the two collimator setti ngs. The collimator settings change the number of rotations of the x-ray tube requi red to cover a given anatomical region. The change of the tube potential causes significant changes in the effective dose. In general, regardless of the phantom type , it was found that the use of 100 kVp tube setting resulted in an effective dose twice that for 80 kVp at the same tube current, while the use of 120 kVp delivered almost three time s higher effective dose than seen at 80 kVp for the same tube current. These findings are consistent with CTDI values measured by other authors using PMMA phantoms (Siegel et al. 2004).

PAGE 127

110 Except for the head CT exam, there were noticeable differences in the effective dose between male and female phantoms. For chest and abdomen CT exam, where the female breasts are in-field of the x-ray beam, the female r eceived overall hi gher effective doses than the male. For pelvis exam, however, the external gonads of the male phantoms played important role in in creasing the overall effective doses. The head exam result did not show any meaningful effective dose differences between two types of phantoms. However, th e UF phantoms resulted in lower effective doses in the chest exam and higher effective doses in the abdomen exam than those from the ORNL phantoms in both genders. For inst ance, in the chest exam the effective dose of the UF 4-year phantom was 17 % lower than the female effective dose of the ORNL 5year phantom at a tube voltage of 120 kVp. These discrepancies were reversed in the abdomen CT exams, where the UF phantoms received higher effective doses than seen in the ORNL phantoms. The effective dose of the UF 9-month phantom was 29% higher than the male effective dose of the ORNL 1-year phantom. The overor underestimation of the effective dose in the ch est and abdomen CT exams is due to the unrealistic torso thicknesses of the ORNL pha ntoms, which have torsos described by elliptical cylinders of constant thickness. In reality, the chest region is thicker than the abdominal region, especially when patients are stretching their arms upwardly for chest and abdomen CT scanning. Therefore, compar ed to the ORNL phantoms, real patients experience more internal organ shielding in the chest exam and less so in the abdomen exam, both of which are realistically re flected in the UF voxel phantoms. For pelvis and CAP exams, there were no significant differences in the effective dose between two phantoms types, except for the female effective dose in the pelvis exam.

PAGE 128

111 The UF 4-year female received 20% higher fe male effective dose than the ORNL 5-year phantom. The cause of this difference is al so found in her thinne r torso, where tissue shielding of the ovaries was di rectly reflected. Overall, the phantom differences were increased at the higher tube voltages. Organ Dose Comparison Even though the effective dos es provide useful informa tion regarding the relative radiation risks for different technique f actors, it is also important to understand differences in individual organ dose as seen between the two phantom types. Individual organ dose and corresponding effective doses we re tabulated and compared for selected phantoms (Table 6-4 through Table 6-7). Because the UF phantoms and the ORNL phantoms do not exactly match in age, phantom s with similar ages were paired for the side-by-side organ dose comparison, ORNL 1-y ear vs. UF 9-month, ORNL 5-year vs. UF 4-year, ORNL 10-year vs. UF 11-year, and th e ORNL 15-year vs UF 14-year phantoms. Since they are of different ages, the percent differences may not be used for the absolute comparison between the series of phantoms. However, with proper caution, the compassion allows one to understand the diff erence between the two types of phantoms. The gonads are assigned the highest tissue we ighting factors in the effective dose as defined in ICRP Publication 60. The testes of the male phantoms did not show significant differences in the absorbed dose between phantom types when these tissues fell under the scanning area, except for the UF 11-year phantom and the ORNL 10-year phantom. The testes of the UF 11-year pha ntom are located deep er between the legs than other male phantoms and the shielding ef fects from the legs under lateral direction irradiation resulted in relatively less abso rbed dose than seen in the ORNL 10-year phantom. This phenomenon can be understood as the individual vari ability of the voxel

PAGE 129

112 phantom but at the same time it suggests th e importance of organ location besides the organ mass in predicting the magnitude of the organ absorbed dose. The female phantoms showed distinctive difference in the ovary absorbed doses (Table 6-5). The ovary dose of the UF 4-year phantom is 47.6 % lower than the ORNL 5-year phantom under abdomen CT exam, while it is 25.6 % higher in pelvis exam. This indicates the location of the ovaries of the ORNL phantom is more close to the abdomen CT exam x-ray field than that of the UF 4-year phantom. However, for the pelvis exam where the ovaries of both phantom s are in-field of the CT x-ray beam, the reasons for the 25.6 % higher dose in the UF 4year phantom are different. First, the thinner abdominal thickness of the UF 4-year phantom resulted in less shielding from the surrounding muscle and caused higher dose in the ovaries. Second, the unrealistic pelvis structure of the ORNL phantom, wher e the ovaries were si gnificantly surrounded by the skeletal structure, caused more shielding effect that the pelvis of the UF phantom. Figure 6-10 shows the skeletal structures the two phantoms near the ovaries. The curvature of the pelvis of the ORNL phantom produces more shielding effect than that of the UF phantom for x-ray fields incident in the PA direction. The difference of the shielding effect of the pelvis was also f ound in the CAP exam where the issue with the ovary position was avoided since both ovaries were inside the field of view in the CAP exam. The UF phantom received 17.6% more ovary dose in this case. It was difficult to find any consistent differences in the bone marrow dose, except for the chest exam. For younger patients , the bone marrow of the UF phantoms received significantly lower dose than the c ounterparts of the ORNL phantoms (Table 6-4, 6-5, and 6-6). For example, the bone marrow of the UF 9-month phantom received

PAGE 130

113 26.8% lower dose than that of the ORNL 1year phantom in the chest exam. The overestimation of the bone marrow dose in the chest exam by the young ORNL phantoms are due to the unrealistic rib cage description a nd the inclusion of the arm structures. The rib cage of the ORNL phantom is composed of multiple ellipsoidal closed rings, while that of the UF phantom has realistically di sconnected openings (see Figure 6-11). The presence of extra skeletal structures of the rib and arm bones caused more energy absorption to the bone and subsequently to the bone marrow. The colon was another organ that showed the anatomical differences in the two phantom types. As mentioned earlier, b ecause of the torso thickness difference, the colon of the UF phantoms rece ived higher dose as that of the ORNL phantom in abdomen CT examination consistently. Finally, the thyroid dose under the chest CT exam also showed significantly different dosimetric characteristics, especially for the older phantoms. For example, the thyroid of the UF 11-year phantom received 88.0 % higher dose than that of the ORNL 10-year phantom, even though the same organ of the UF 9-month pha ntom received only 0.7 % higher dose than that of the ORNL 1-y ear phantom. As discussed in the earlier chapters, the thyroid within the ORNL phantom is totally excluded from the chest region and located solely within a distinct neck region of the phantom, wh ile the anatomically realistic thyroid position in the voxel phantom is positioned at a height similar to that of the clavicles, and thus is shielded to a gr eater extent in the la tter phantom type. Conclusion Total of ten pediatric anthropomorphic phantoms and Monte Carlo method have been used to investigate the pediatric or gan dose and effective dose under the typical helical multi-detector CT exams with various technique factors. The phantoms include

PAGE 131

114 five ORNL stylized phantoms (newborn, 1-ye ar, 5-year, 10-year, and 15-year) and five UF voxel phantoms (9-month male, 4-year fema le, 8-year female, 11-year male, and 14year male). The influence of the technique f actors, such as tube voltage, field of view, and collimated beam thicknesses, to the organ and effective dose were extensively investigated using the phantoms and user -defined source subroutine of the MCNPX Monte Carlo code. Furthermore, the organ dose differences caused by the anatomical differences of the two types of the phant oms were evaluated and discussed. Even though there were not much influen ces from the collimated beam thickness setting, the increase of the tube voltage resulted in an almo st proportional increase in the effective dose to each phantom at a same tube current settings, rega rdless of whether a stylized or tomographic is ut ilized. The two phantom types showed different dosimetric characteristics especially in the chest and abdomen CT exams. The unrealistically constant torso thicknesses of the ORNL pha ntoms failed to reflect the increased and decreased shielding effects of the torso organs in the respective CT exams, while the UF phantoms faithfully represented those effects in the Monte Carlo simulation results. Selected radiation sensitive organs such as the gonads, bone marrow, colon, and thyroid were also compared for their absorbed dose differences betw een the two types of phantoms. It was shown that the UF voxe l phantoms showed more realistic anatomy and consequently more realistically accurate dose evaluation. It was also shown that the use of the Monte Carlo method along with the realistic voxel phantoms can be used for the optimization of the technique factors in the pediatric CT examinations. However, another important factor for the full dose optimization is the image quality. The UF tomographic computational phantoms along with their physical versi ons which are under

PAGE 132

115 construction at the University of Florida wi ll eventually serve as an improved means to optimize pediatric patient CT examinations with respect to organ dose versus image quality.

PAGE 133

116 Figure 6-1. UF voxel phantom Series B – armless

PAGE 134

117 Figure 6-2. The ORNL pediatri c phantom series generated from the Bodybuilder software

PAGE 135

118 Figure 6-3. Three-dimensional rendering image of the ORNL 10-year phantom under abdomen CT examination. Tracks of helical CT x-rays are overlaid on the phantom and patient table.

PAGE 136

119 Figure 6-4. X-ray source spectra us ed for the Monte Carlo simulation

PAGE 137

120 Figure 6-5. Age-dependent effective doses comparison between the ORNL phantoms and the UF voxel phantoms for head examinations using 80, 100, and 120 kVp tube potentials with 12 mm (top) and 24 mm (bottom) collimator thicknesses

PAGE 138

121 Figure 6-6. Age-dependent effective doses comparison between the ORNL phantoms and the UF voxel phantoms for chest examinations using 80, 100, and 120 kVp tube potentials with 12 mm (top) and 24 mm (bottom) collimator thicknesses

PAGE 139

122 Figure 6-7. Age-dependent effective doses comparison between the ORNL phantoms and the UF voxel phantoms for abdomen examinations using 80, 100, and 120 kVp tube potentials with12 mm (top) and 24 mm (bottom) collimator thicknesses

PAGE 140

123 Figure 6-8. Age-dependent effective doses comparison between the ORNL phantoms and the UF voxel phantoms for pelvis examinations using 80, 100, and 120 kVp tube potentials with12 mm (top) and 24 mm (bottom) collimator thicknesses

PAGE 141

124 Figure 6-9. Age-dependent effective doses comparison between the ORNL phantoms and the UF voxel phantoms for CAP examinations using 80, 100, and 120 kVp tube potentials with 12 mm (top) and 24 mm (bottom) collimator thicknesses

PAGE 142

125 Figure 6-10. The skeletal structures near ovaries from the ORNL 5-year phantom (top) and the UF 4-year phantom (bottom).

PAGE 143

126 Figure 6-11. The ORNL 1-year phantom (top) and the UF 9-month phantom (bottom) showing the anatomical regions exposed to the chest CT examination.

PAGE 144

127Table 6-1. Phantom specifications for the ORNL phantoms (Bodybuilder) and UF Series B phantoms ORNL series UF Series B Age Height (cm) Total body mass (kg) Age Height (cm) Total body mass (kg) Voxel resolutions (mm) Array sizes Newborn 51.04 3.53 9-month male69.75 8.87 0.86x0.86x3.00 244x180x241 1-year 74.57 9.42 4-year female 100.75 16.65 0.90x0.90x5.00 266x207x211 5-year 109.29 19.29 8-year female 126.4 28.41 1.16x1.16x6.00 283x171x220 10-year 139.97 32.59 11-year male 143.8 33.59 0.94x0.94x6.00 355x242x252 15-year 168.41 55.74 14-year male 161.2 48.80 1.18x1.18x6.72 270x193x252

PAGE 145

128Table 6-2. Definitions of anat omical boundaries for CT exam for the ORNL phantoms (Bodybuilder) Boundaries (z-axis ranges in cm) per phantom CT exams Definition at the phantom anatomy Newborn 1-year 5-year 10-year 15-year Head From the top of the head to the bottom of the skull 26~35 37~49 48~62 60~74 76~91 Chest From the top of the trunk to just below the 12th rib 10~22 15~31 20~41 25~50 31~63 Abdomen From the bottom of lungs to the top of the pelvis 7~13 9~19 12~25 16~31 20~39 Pelvis From the top of the pelvis to the middle of the testes -0.64~7 -0.72~9 -0.8~12 -0.84~16 -1.69~20 CAP From the top of the trunk to the middle of the testes -0.64~22 -0.72~31 -0.8~41 -0.84~50 -1.69~63

PAGE 146

129Table 6-3. Definitions of anatomical bounda ries for CT exam for the UF phantoms Boundaries (z-axis ranges in slice #) CT exams Definition at the phantom anatomy 9-month 4-year 8-year 11-year 14-year Head From the top of the head to just below the foramen magnum 1~44 1~31 1~24 1~25 1~26 Chest From just above the clavicles to below the lower lobes of the lungs 58~92 44~69 40~66 44~70 43~77 Abdomen From the top of the stomach to just above the iliac crest 84~122 65~92 63~92 65~95 70~95 Pelvis From the tope of the iliac crest to the bottom of the ischial tuberosities 123~149 93~118 93~119 96~126 96~126 CAP From just above the clavicles to the bottom of the ischial tuberosities 58~149 44~118 40~119 44~126 43~126

PAGE 147

130Table 6-4. Comparison of organ dose (mGy) and effective dose (mSv) from the ORNL 1-year and the UF 9-month phantoms normalized per 100 mAs tube current. The tube potential of 120 kVp and the collimated be am thickness of 12 mm were used for the simulation. ORNL1-yearUF 9-mo%diffORNL1-yearUF 9-mo%diffORNL1-yea rUF 9-mo%diffORNL1-yearUF 9-mo%diffORNL1-yearUF 9-mo%diff Testes0.000.01n/a0.070.07-2.80.350 .5042.212.7912.44-2.712.8012.66-1.1 Bone marrow5.755.54-3.54.052.96-26.82 .232.03-9.12.552.03-20.27.356.02-18.1 Colon0.010.06302.01.061.9482.57.0811.1056.87.946.29-20.713.8015.6313.3 Lungs0.260.58122.014.7414.971.62.744. 4161.40.170.12-30.615.2815.954.4 Stomach0.040.16265.49.2010.9919.512. 6513.778.80.910.38-58.614.7815.625.6 Urinary bladder0.010.02205.60.270.19-29.91 .151.9770.612.6314.2813.113.5615.6215.2 Liver0.060.17180.59.737.98-18.012.15 13.6812.60.770.49-35.814.4715.648.1 Eesophagus0.280.81187.112.5212.520.04. 235.5230.50.240.14-43.213.4313.812.8 Thyroid1.283.00135.37.968.020.70.200.68243.20.020.0483.18.427.63-9.4 Skin2.953.9433.53.422.58-24.72.202 .9232.62.042.071.36.406.430.4 Bone surface9.2720.14117.311. 697.61-34.95.785.07-12.45.064.71-6.818.7114.80-20.9 Adrenals0.070.1048.511.583.95-65.910.71 13.4525.50.460.5825.413.6014.798.8 Brain16.7417.705.70.260.2910.90.030.06134.10.010.0133.10.270.3217.8 ET region1.286.99447.77.963.04-61.90.200.42113.10.020.0317.58.423.19-62.2 SI wall0.020.06275.21.301.407.69.2413.0641.37.333.53-51.814.1615.7611.3 Kidney0.040.0758.36.621.49-77.512.52 14.5115.91.051.7062.414.1316.1614.3 Muscle0.153.502275.26.043.30-45.44.633.88-16.35.222.50-52.013.478.20-39.1 Pancreas0.060.1172.511.233.34-70.311. 4814.0622.50.740.68-8.614.0415.4510.0 Spleen0.070.16127.011.25 8.51-24.412.1514.3518.20.6 60.39-39.814.2115.9412.1 Thymus0.391.07172.213.7113.780.60.55 1.0795.80.050.0620.213.9014.212.2 Effective dose(male)1.361.35-0.35.525.45-1 .34.315.5629.14.784.4 1-7.711.9812.413.6 CAP Organs HeadChestAbdomenPelvis %diff = (ORNL – UF)/ORNL 100

PAGE 148

131Table 6-5. Comparison of organ dose (mGy) and effective dose (mSv) from the ORNL 5-year and the UF 4-year phantoms normalized per 100 mAs tube current. The tube potential of 120 kVp and the collimated be am thickness of 12 mm were used for the simulation. ORNL 5-yearUF 4-year%diffORNL 5-yearUF 4-year%diffORNL 5-yearUF 4year%diffORNL 5-yearUF 4-year%diffORNL 5-yearUF 4-year%diff Ovary0.000.00n/a0.360.08-76.32.361 .24-47.610.4913.1725.612.2414.3917.6 Bone marrow3.063.7322.13.522.83-19.42 .141.88-12.02.742.70-1.57.186.64-7.6 Colon0.010.01129.60.770.33-57.06.298.3032.07.258.4015.912.6415.4722.4 Lungs0.190.3269.513.9813.85-0.92.023 .3565.50.090.08-13.014.3414.752.8 Stomach0.020.07174.38.244.92-40.311. 8212.626.70.670.45-32.713.6414.133.6 Urinary bladder0.000.01n/a0.140.07-49. 30.840.929.512.0314.4119.812.7215.0518.3 Breast0.060.18210.712.7110.08-20.70.660 .8325.30.030.037.713.1910.67-19.1 Liver0.030.09179.58.826.41-27.311.27 12.8013.50.550.35-37.013.3714.599.1 Eesophagus0.190.57194.811.6210.48-9.83.5 73.39-4.90.130.08-38.712.3411.40-7.6 Thyroid1.151.4526.76.969.0429.90.110.42287.00.000.02n/a7.537.13-5.3 Skin2.212.6218.52.882.12-26.21.802 .1921.81.722.1122.95.475.724.5 Bone surface8.9913.0044.68.576.68-22.13 .943.87-1.93.596.0067.213.6914.858.5 Adrenals0.040.0669.310.843.97-63.49.90 11.5016.10.280.3940.812.4813.024.4 Brain15.3016.648.80.200.228.60.010.04174.50.000.00n/a0.210.2517.8 ET region1.153.60214.56.962.37-65.90.110.26140.80.000.02n/a7.532.38-68.3 SI wall0.010.02147.60.940.54-42.38.1 112.7457.16.594.54-31.112.9615.6420.6 Kidney0.020.05144.75.641.72-69.511.93 14.1418.60.760.771.613.2315.2915.5 Muscle0.121.771439.05.492.56-53.54.042.95-27.04.773.05-36.112.407.68-38.0 Pancreas0.030.0439.410.111.99-80.310. 4213.0625.40.480.6737.712.7914.2211.2 Spleen0.040.09134.010.25 6.70-34.611.1713.2818.80.4 30.30-31.513.1014.7512.6 Thymus0.260.54110.613.4312.78-4.90.4 40.7368.20.030.0311.113.6513.07-4.3 Uterus0.000.01n/a0.330.08-77.32.211 .24-43.610.9013.0119.412.8113.898.4 Effective dose(female)0.961. 2024.65.704.71-17.44.454.879 .54.204.9718.311.8912.807.7 CAP Organs HeadChestAbdomenPelvis %diff = (ORNL – UF)/ORNL 100

PAGE 149

132Table 6-6. Comparison of organ dose (mGy) and effective dose (mSv) from the ORNL 10-year and the UF 11-year phantoms normalized per 100 mAs tube current. The tube potential of 120 kVp and the collimated be am thickness of 12 mm were used for the simulation. ORNL10-yearUF 11-year%diffORNL10-yearUF 11-year%diffORNL10-year UF 11-year%diffORNL10-yearUF 11-year%diffORNL10-yearUF 11-year%d iff Testes0.000.00n/a0.020.00n/a0.070. 06-11.711.078.23-25.610.798.15-24.5 Bone marrow2.111.88-11.03.382.63-22. 31.822.3327.82.943.157.37.097.333.4 Colon0.000.01n/a0.540.45-17.54.876 .8640.96.976.48-7.111.1413.1618.1 Lungs0.100.1436.112.6312.04-4.71.552 .9691.60.060.03-39.212.9112.74-1.3 Stomach0.010.03289.17.145.92-17.210. 5911.125.00.600.17-72.212.2112.714.1 Urinary bladder0.000.00n/a0.080.02-78.60 .480.30-37.311.2512.168.011.6212.457.1 Liver0.010.04184.27.977.21-9.59.9010.859.60.460.13-70.811.9312.635.9 Eesophagus0.100.21102.110.02 8.99-10.32.893.6927.90.090.04-49.610.5210.01-4.8 Thyroid0.760.50-34.82.785.2288.00.070.37440.10.000.01n/a2.675.40102.5 Skin1.601.727.42.371.58-33.51.431 .7119.61.551.7412.24.624.51-2.5 Bone surface6.458.1125.77.095.01-29.32.983.5920.33.165.4271.511.3912.6711.3 Adrenals0.010.03181.09.834.94-49.88.819 .9012.40.220.17-21.711.0611.160.9 Brain14.6513.94-4.90.130.10-21.40.010 .02153.50.000.00n/a0.130.11-15.2 ET region0.761.96157.82.781.33-52.00.070.18166.60.000.00n/a2.671.38-48.3 SI wall0.000.01n/a0.640.47-26.75.9110.2673.56.804.36-35.811.4513.8921.4 Kidney0.010.02186.34.742.55-46.210.88 12.3013.00.710.33-54.312.0713.249.7 Muscle0.070.811085.14.931.78-63.93.352.02-39.74.442.70-39.211.155.93-46.8 Pancreas0.010.02113.88.862.63-70.49.1 911.3223.20.390.31-20.211.2912.5210.9 Spleen0.020.04142.68.857.53-14.99.94 11.7818.40.360.12-65.111.6513.2113.4 Thymus0.120.2390.712.6810.79-14.90.310 .5992.10.020.01-42.312.8010.96-14.4 Effective dose(male)0.760.74-2.74.423.82 -13.43.364.0520.54.183.55-15.09.789.881.0 CAP Organs HeadChestAbdomenPelvis %diff = (ORNL – UF)/ORNL 100

PAGE 150

133Table 6-7. Comparison of organ dose (mGy) and effective dose (mSv) from the ORNL 15-year and the UF 14-year phantoms normalized per 100 mAs tube current. The tube potential of 120 kVp and the collimated be am thickness of 12 mm were used for the simulation. ORNL15-yearUF 14-year%diffORNL15-yearUF 14-year%diffORNL15-year UF 14-year%diffORNL15-yearUF 14-year%diffORNL15-yearUF 14-year%d iff Testes0.000.00n/a0.010.01-27.30.060 .05-5.77.917.78-1.77.857.83-0.2 Bone marrow1.511.7616.43.193.334.31 .701.816.32.703.2821.76.637.6214.9 Colon0.000.00n/a0.350.6892.63.808.19115.65.703.95-30.69.0411.6929.3 Lungs0.040.09126.310.3312.5921.91.462 .5071.10.030.0578.510.5413.0423.8 Stomach0.000.01n/a5.905.02-14.98.8 29.224.60.390.4822.010.3310.733.9 Urinary bladder0.000.00n/a0.030.0323.70 .280.3522.69.8511.6618.49.9611.9119.6 Liver0.000.01n/a6.775.61-17.28.149 .6618.60.270.3324.89.5211.0416.1 Eesophagus0.040.21433.48.059.9123.12.412.07-13.90.040.056.08.2210.2725.0 Thyroid0.310.4443.14.186.9365.70.010.223924.30.000.01n/a4.196.3351.2 Skin1.151.4829.32.121.80-15.11.211.318.81.321.6223.34.024.194.2 Bone surface4.367.2265.85.994.58-23.62.482.12-14.52.725.0183.79.7410.689.7 Adrenals0.010.03453.88.168.868.77.568.3410.30.120.1633.38.6010.6824.2 Brain13.9014.907.20.080.08-2.80.010.0124.20.000.00n/a0.090.08-3.4 ET region0.311.94534.94.181.59-61.80.0 10.101766.10.000.01n/a4.191.58-62.3 SI wall0.000.00n/a0.410.36-12.24.535.0511.55.518.0045.19.4612.2029.0 Kidney0.000.02n/a3.884.6620.29.37 10.5112.20.480.515.910.1211.8216.8 Muscle0.030.511463.54.242.01-52.62.791.75-37.23.522.38-32.49.245.40-41.6 Pancreas0.000.01n/a7.162.82-60.67.439.4727.50.220.76247.28.8210.6721.0 Spleen0.000.00n/a7.240.84-88.58.2310.5227.80.211.93834.39.2811.9728.9 Thymus0.040.17372.411.1912.138.30. 250.3437.70.000.01na10.9212.1711.5 Effective dose(male)0.610.7219.13.793.954. 42.813.6329.33.243.23-0.48.159.2413.4 CAP Organs HeadChestAbdomenPelvis %diff = (ORNL – UF)/ORNL 100

PAGE 151

134 CHAPTER 7 SPECIFIC ABSORBED FRACTIONS FO R INTERNAL PHOTON AND ELECTRON SOURCES USING VOXEL PH ANTOMS OF CHILDREN Introduction The absorbed fraction, AF, is one of the fundamental quantities used in the calculation of doses from inte rnal radiation emitters and is defined as the fraction of energy emitted as a particular radiation type in a specified source region (Loevinger and Berman 1976). Dividing the AF by the mass of the specified target tissue gives the specific absorbed fraction, SAF. These va lues are central to the calculation of radionuclide S-values and consequently to in ternal dose estimates. The formalism of the Medical Internal Radiation Dose (MIR D) committee of the Society of Nuclear Medicine (SNM) has been served as a standa rd in the calculation of individual organ doses for biologically distribute d radionuclides and for differen t types of radiation. To take the inhomogeneities of human internal organs into account, the AF can only be determined using anthropomorphic computer phantoms and Monte Ca rlo techniques. The MIRD committee has published photon SAFs and radionuclides S-values using its stylized anthropomorphic phantoms and Monte Carlo calculations (Snyder et al. 1969; Snyder et al. 1978). The phantom (so-called ‘MIRD5 phantom’) was the first stylized heterogeneous anthropomorphic computer mode l for the use with internal radiation dose calculation. The SAFs that are currently used by the International Commission on Radiological Protection (ICRP) in the calculation of internal doses are calculated from an age-dependent series of stylized comput ational phantoms developed by Cristy and

PAGE 152

135 Eckerman at the Oak Ridge National Laborator y, and are thus refe rred to as the ORNL phantom series (Cristy and Ecke rman 1987; ICRP 1994; ICRP 1996). However, these stylized phantoms have inhere nt limitations in representing realistic human anatomy, especially closely neighbor ing internal organs. The proximity of closely positioned organs plays a very important role in the magnitude of the absorbed fraction for low-energy photons and electrons due to their relatively short penetration distances inside the body tissues. As more anatomically realistic voxel phant oms have been developed, new sets of SAFs have also been calculated and publis hed using these phanto ms. Petoussi-Henss et al. have calculated the SAFs for mono-e nergetic photons by using three GSF voxel phantoms (BABY, CHILD, and GOLEM) and Voxelman by Zubal et al . (Petoussi-Henss and Zankl 1998; Zubal et al. 1994). The source of the photon emissions was assumed to be distributed uniformly in the source organ and the KERMA approximation was used. They have found that for photon energies belo w 50 keV and small target organs distant from the source organs, the discrepancies in some cases can amount to one or two orders of magnitude. For higher photon energies a nd for large organs, the agreement was much better. Jones used a tomographic model, NOR MAN, to calculate the photon SAFs of all the source-target organ combinations of t hose published by Cristy and Eckerman (Cristy and Eckerman 1987; Jones 1998). Jones has found considerable differences between two phantoms and concluded that differences in model structure were the main cause of the large discrepancies in the SAF values. To illustrate the differences in the organ geometry, he showed that the stomach wall and liver are in cont act with one another within the NORMAN phantom, but that this was not that case for the Cristy and

PAGE 153

136 Eckerman phantom. Yoriyaz et al . used the Zubal phantom to calculate the photon SAFs in several internal organs and compared them with the results of the ORNL adult phantom (2000). They also found consider able discrepancies in some cases and concluded that differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based model were the main causes. Chao and Xu used the VIP-man to calculate SAF values from intern al electron sources for 26 source organs and 28 target organs (2001). They also defined th e thin mucosa layers of the walled organs, which had significantly different doses than the walls themselves. Since the VIP-man model has a larger total body mass than the Reference Man, the authors suggested the use of correction factors for the indi viduals of different body sizes. So far, no research has been conducted on the SAFs for electrons emitters within pediatric voxel phantoms. Even for the phot on SAFs, the only available data from the voxel phantoms are of the Child and Baby pha ntoms of the GSF laboratory in Germany (Petoussi-Henss and Zankl 1998). The present study presents complete sets of photon SAFs for all possible source-target organ pa irs and electron SAFs for selected sourcetarget organ pairs for a series of pediatri c patients represented by the UF Series B pediatric voxel phantoms. The calculated valu es were also compared to those from the pediatric members of the ORNL stylized phantom series. Material and Methods Anthropomorphic Phantoms The phantoms used for the study are voxelbased tomographic phantoms developed in Chapter 3. The UF series B phantoms ar e representing pediatric patients of 9 monthold male, 4 year-old female, 8 year-old female , 11 year-old male, and 14 year-old male. The phantoms are constructed from the CT im ages of live patients and further modified

PAGE 154

137 to have reference anthropometrics accord ing to the reference man data of ICRP Publication 89. The phantoms have been us ed for organ dose calculations for various radiation exposure conditions in previous chapters. Anatom ic realism and relevance of organ locations have been verified thr ough these calculations. The phantoms have shown either superiorities or equivalency to the conven tional stylized phantoms for external photon exposures. EGSnrc Monte Carlo Code The radiation transport in the phantoms was simulated using Monte Carlo methods to follow individual photon and electron histor ies originating in a give organ. The EGSnrc Monte Carlo code was selected fo r photon and electron transportation for the present study. The benefits of using the EGSnrc over othe r available Monte Carlo codes include efficient handling of large matrix of phantom data, versatile source definitions, and user-definable input and output format s. Compared to the popular Monte Carlo code, Monte Carlo N-Particle (MCNP), the computation time of the EGSnrc is much faster when it comes to the voxel geometry a nd multiple input configurations, especially in regard to electron transport simulations. While the MCNP program has to read the large phantom geometry data every time it performs a particle transport for a given source configuration, the EGSnrc code only reads the phantom information once and can run multiple source configurations as many times as needed for the problem at hand. The sources of photon and electron were a ssumed to be distributed uniformly in several individual source organs of the phantoms. The SAF was calculated as the energy absorbed in the target organ, normalized as the fraction of energy emitted from the source organ per unit mass of target organ. Rejection techniques were applied to sample the radiation emissions from within the sour ce organs. To improve sampling efficiency,

PAGE 155

138 the ranges of x, y, and z coordinates of each organ boundaries were determined by using a pre-processor code. The organ boundary info rmation, along with source particle type, particle energy, and list of target organs were inserted into to the i nput configuration file for each of five phantoms. For photon sources , all available organs including the source organ itself were evaluated for energy deposit ion, while for electron sources, only source organ itself and selected neighboring organs were targeted for dose assessment. Bremsstahlung doses to neighboring organs were not assessed, and ar e generally thought to be insignificant exceed for high-activity sources of higher-energy beta-emitters such as 90Y (Stabin et al. 1994). Bone Marrow and Bone Surface Dose Assessment Special considerations were given to calculate the ener gy deposition to the red bone marrow (RBM) and bone surfaces (BS). Since RBM and BS are not explicitly described in the UF phantoms, the dose to thes e tissues had to be determined indirectly. The UF phantoms have only piece-wise homog enized skeletons. Even though a total of 20 bone sites are individually identified and have their own specific material compositions and mass densities, within the bone sites there are no microscopic descriptions of the marrow cavity and bone trabeculae with in spongiosa regions of the skeleton. First, energy deposition to the RBM wa s calculated by using the fluence to dose response functions of Cristy and Eckerman (1987). Two response functions, one for the parietal bone of the cranium and one for a ll other bones of the body including the lumbar vertebra, were applied accordin gly to each of the 20 bone sites. To utilize the response functions, the volume averaged photon fluences were first calculated for each bone site and photon energy bin. The calculated fluenc es were then convolved with the energy-

PAGE 156

139 dependent response functions to give the ab sorbed dose to RBM for each respective bone site. The masses of the bone sites and rela tive RBM portions were then utilized to assess the total energy deposition to total skeletal RBM. For the BS tissues (e.g., cortical and trabecular endosteum), a conservative approximation was made, where the total energy deposition to the BS was assumed to be the same as that to the homogeneous mixtur e bone. This approximation was verified by the research of Chapter 4 . Source and Target Organ Pairs Table 7-1 summarized the lis t of source and target organ pairs for photon and electron sources. For photon sources, all of the organs were considered as the target organs, whereas for electron sources, only the source organ itself a nd closely neighboring organs were considered as the target organs, since the ranges of electrons are considerably shorter than that of the photons. Therefore, it is very difficult to acquire reasonably accurate estimation of the energy deposition of the remotely located target organs unless very large particle histories ar e involved, which in turn takes an extremely long computing time. Results and Discussions Photon Specific Absorbed Fractions The specific absorbed fractions for 52 source and 74 target organs and tissues were calculated for photon sources using the UF voxe l phantoms (9-month, 4-year, 8-year, 11year, and 14-year) and the EGSnrc Monte Ca rlo code. To effectively manipulate the large amount of calculation results, a four dimensional matrix was established with indices of source organs, target organs, phot on energies, and phantoms by using the inhouse MATLAB user code. The red bone ma rrow SAF was automatically calculated

PAGE 157

140 through this code using ORNL response functio ns. The figures and tables were also automatically generated using a user-written MATLAB code. Total of 250 tables were generated for the photon SAFs for all phantom ages and the selected values for UF 9month and 14-year phantoms when radiation s ource is in stomach cont ents, right and left colon contents, small intestine contents, righ t and left lungs, urinary bladder contents, liver, heart contents, and muscle are presente d in Tables 7-2 through 7-11 for the UF 9month male and Tables 7-12 through 7-21 fo r the UF 14-year male voxel phantoms. First, the SAF was analyzed for the case when source and target organs were identical (self absorption). There wa s no significant difference between the two phantoms when source and target organs are identical. Figure 7-1 shows the comparison of the SAF values from the ORNL (1-year, 5-year, and 10-year) and UF (9month, 4-year, and 11-year) ph antoms for photons when the s ource and target organs are both the liver. Although some difference are shown at low-photon energies, these differences were at most 15% at the lowest photon energy of 0.01 MeV for 5-year ORNL and 4-year UF phantoms. Second, when the source and target or gans were not the same, there were significant differences in the SAF values between the stylized and the voxel phantoms depending on the source-target organ pa ir and the photon energy. The major contributing factor for discrepancies betw een phantom classes was the inter-organ distances in each phantom type. The SAF is mainly affected by the inter-organ distance and target organ mass. The SAF decreases when the distance from source to target organs increase, and vice versa. When the distance is similar, the SAF then varies with the target organ mass only. The inter-orga n distances of the neighboring organs are

PAGE 158

141 overall shorter in the voxel phantoms than that of the stylized phantoms, since the boundary of most of internal organs in real human body are generally in close contact, a situation difficult to realize in the fixed geom etrical descriptions of these same organs in the stylized phantoms. The voxel phantoms ba sed on real medical images can represent the true organ boundaries, whereas the stylized phantoms based on the mathematical equations cannot easily permit close organ-to -organ contact in the need to avoid volumetric overlap for the simplified equatio ns used to model the organ boundaries. Therefore, the SAF values are overall highe r in the voxel phantoms than seen in he stylized phantoms. Figure 7-2 shows a comparison of the SAF in the ORNL 1-year, 5year, and 10-year phantoms and in the UF 9month, 4-year, and 11-year phantoms when source photon is in stomach contents and ta rget tissue is the liver. The SAFs are upwards of 67% higher in the voxel phantoms th an seen in the styl ized phantoms (ORNL 5-year versus the UF 4-year phantom) at a photon energy of 0.03 MeV at which the SAF reaches a maximal value. To compare the inter-organ distances of the stomach and liver between the two phantoms, a graphical illu stration was made for the liver and the stomach in both phantom types as shown in Fi gure 7-3. The stomach is in close contact with the liver in the UF 4-year phantom, wh ereas the liver is separated from the stomach in the ORNL 5-year phantom. This phenomen on is also shown in other organ pairs across the stylized phantom series, and is a major limitation of stylized phantoms for use in internal dosimetry calculations for low-energy photon emitters. Another unrealistic organ feature of th e ORNL phantom that causes the SAF differences is the symmetric natures of the organ shape and positioning of left-right organ organs such as the lungs, kidneys, and gastro intestinal tract organs . In case of the

PAGE 159

142 kidneys within the stylized phantoms, there is no distinction between the left and right kidneys and thus the same SAF is assigned to both of them in ORNL/TM-8381 (Cristy and Eckerman 1987). However, the relative di stances from a given source organ to the left and right kidneys can be quite different. For example, the SAF of the right kidney would be different from that of the left ki dney when photon source is in small intestinal contents. This situation is illustrated Figur e 7-4, where the SAF values for the right and left kidneys of the UF 11-year phantom, a nd the combined kidneys of the ORNL 10-year phantom are shown for photons sources in th e small intestine contents. The kidneys of the UF 11-year phantom receive more energy than those in the ORNL 10-year phantom. Moreover, the left kidney of UF phantom receives up to 50% higher energy than the right kidney at a photon energy of 0.03 Me V. This is attributed to the different positioning of the right and left kidneys and as ymmetric shape of the small intestine in the UF phantom as shown in Figure 7-5. Th e position of the left kidney is higher than that of the right kidney in the UF phantom s, and the asymmetric shape of the small intestine results in a larger contact area with the right kidney in that phantom. Electron Specific Absorbed Fractions Values of the SAF were also calculated for electron sources w ithin the energy of 10 keV to 4 MeV from the UF pediatric phantom s of the 9-month male, 4-year female, 8year female, 11-year male, and 14-year male . The selected SAFs for the UF 9-month and 14-year phantoms are presented in Tabl es 7-23 through 7-32 and Table 7-33 through 7-42, respectively. According to the MIRD schema, radiati ons are classified into two categories depending on its penetrating power: penetr ating or non-penetrating radiations. Electrons have been traditionally treated as non-penetrating radiations and all energy

PAGE 160

143 emitted from a source organ is assumed to be abso rbed in target organ itself. Part of the reason for this assumption was the lack of the ability to transport the electrons via the Monte Carlo simulations. It is a fairly good assumption for lower energy electrons emitted in large adult organs or those organs with small surface-to-volume ratios, but for high energy electrons in small pediatric organs, this assumption fails to properly account for local energy deposition to the source organ as shown in Figures 7-6 and 7-7. Figure 7-6 shows the self-absorbed fraction for severa l organs within the UF 9-month phantom. At 4 MeV, the electrons only deposit 20% of th eir initial energy locally within the thyroid gland. The discrepancies were of course hi gher for the smaller organs than the larger organs. As Figure 7-7 shows, they are also age-dependent. The deviations from the 100% absorption assumptions were highest at the youngest phan tom and the lowest at the oldest phantom. Even though the electrons do escape from the source organ, th e penetrating power of them is not as strong as that of photons . It is useful to understand how far the electrons from a given source organ would af fect the neighboring target organs. After analyzing all of the organ and ta rget pairs, the target organs that received at least 10%, 5% and 1% of the source energy are tabulat ed in Table 7-22 for the source electron energy of 4 MeV. The table provides very important information how the electron sources in a source organ would imp act the surrounding target organs. Conclusion The specific absorbed fractions have been calculated for photon and electron sources of various energies by utilizing th e UF whole-body pediatric phantoms and the EGSnrc Monte Carlo code. The UF pediatri c phantoms are the first whole series of pediatric voxel phantoms covering ages of 9month, 4-year, 8-year, 11-year, and 14-year

PAGE 161

144 old. Their superior representations of human anatomy in comparison to conventional stylized phantoms resulted in more anatomica lly realistic SAF values , especially for those organ pairs that are closely located to one a nother. Electron transport simulations within the UF phantoms indicated that the trad itional assumption of 100% local energy absorption within the source organ is increasin gly in error for smaller organs with the younger phantoms of the UF series. The realis tic SAF values given in this study can be used to more accurately assess reference orga n dosimetry for applications in both nuclear medicine administrations and occu pational radionuclide exposures.

PAGE 162

145 0.010.11 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 ORNL 1-year ORNL 5-year ORNL 10-year UF 9-month UF 4-year UF 11-year Liver > LiverPhoton Energy (MeV)Specific absorbed fractions (kg -1 ) Figure 7-1. Comparison of speci fic absorbed fractions obtained from 1-year, 5-year, and 10-year ORNL phantoms and 9-month, 4-year, and 11-year UF voxel phantoms for source and target in liver.

PAGE 163

146 Photon Energy (MeV) 0.010.11 Specific absorbed fractions (kg -1 ) 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 ORNL 1-year ORNL 5-year ORNL 10-year UF 9-month UF 4-year UF 11-year Stomach contents > Liver Figure 7-2. Comparison of speci fic absorbed fractions obtained from 1-year, 5-year, and 10-year ORNL phantoms and 9-month, 4-year, and 11-year UF voxel phantoms for source in stomach c ontents and target in liver.

PAGE 164

147 Figure 7-3. Comparison of the inter-organ distance between th e 3D frontal views of liver and stomach in the ORNL 10-year (top) and UF 11-year phantoms (bottom).

PAGE 165

148 0.010.11 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Kidneys of ORNL 10-year Right kidney of UF 11-year Left kidney of UF 11-year Small intestine contents > KidneysSpecific absorbed fractions (kg -1 )Photon Energy (MeV) Figure 7-4. Comparison of specific absorbed fractions in the symme tric kidneys of the ORNL 10-year phantom and the right a nd left kidneys of the UF 11-year phantom.

PAGE 166

149 Figure 7-5. Comparison of the kidneys and small intestine positions in ORNL 10-year and UF 11-year phantoms. The kidney s and small intestine of the ORNL phantom are symmetric whereas those of UF phantom are not.

PAGE 167

150 Electron Energy (MeV) 0.010.11 Self Absorbed Fraction 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Brain Liver Muscle Pancreas Spleen Thyroid Figure 7-6. Comparison of self absorbed fractions obtained from UF 9-month male phantom when source is in brain, liver, muscle, pancreas, spleen, and thyroid.

PAGE 168

151 Electron Energy (MeV) 0.010.11 Self Absorbed Fractions 0.0 0.2 0.4 0.6 0.8 1.0 1.2 UF 9-month UF 4-yaer UF 8-year UF 11-year UF 14-year Thyroid > Thyroid Figure 7-7. Comparison of self absorbed fract ions obtained from UF 9-month, UF 4-year, UF 8-year, UF 11-year, and UF 14-year phantoms when source and target is in thyroid.

PAGE 169

152 Table 7-1. List of source a nd target organs in the UF voxe l phantoms for the calculation of photon and electron SAF calculation. Source organsTarget organs MuscleMuscle AdiposeAdipose Kidney-Pelvis(L)Kidney-Pelvis(L) Kidney-Pelvis(R)Kidney-Pelvis(R) Kidney-Medular(L)Kidney-Medular(L) Kidney-Medular(R)Kidney-Medular(R) ProstateProstate GonadsGonads BreastBreast Salivary glandsSalivary glands LensesLenses Spinal CordSpinal Cord Stomach(W)Stomach(W) Stomach(C) Pituitary glandPituitary gland TongueTongue TonsilTonsil BrainBrain Right Colon(W)Right Colon(W) Right Colon(C) Left Colon (W)Left Colon(W) Left Colon (C) Rectosigmoid (W)Rectosigmoid(W) Rectosigmoid (C) LarynxLarynx PharynxPharynx TracheaTrachea BronchiBronchi AortaAorta Lung(L)Lung(L) Lung(R)Lung(R) EyesEyes Gall Bladder(C) Gall Bladder(W)Gall Bladder(W) Adrenal(L)Adrenal(L) Adrenal(R)Adrenal(R) SkinSkin Kidney-Cortex(L)Kidney-Cortex(L) Kidney-Cortex(R)Kidney-Cortex(R) ThyroidThyroid Heart(W)Heart(W) Heart(C) LiverLiver SpleenSpleen Bladder(W)Bladder(W) Bladder(C) SI(W)SI(W) SI(C) EsophagusEsophagus PancreasPancreas ThymusThymus Bone surface*Bone surface* Red bone marrow*Red bone marrow* * Bone surface and red bone marrow were not in cluded in source and target tissues for electron calculation.

PAGE 170

153 Table 7-2. Specific absorbed fractions from the UF 9-month male phantom when photon source is in stomach contents (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue3.93E-021.71E-012.62E-012.49E-011.44E -018.54E-028.26E-028.40E-027.89E-027.31E-026.80E-025.43E-02 Adipose1.21E-042.36E-031.15E-023.80E-024.06E-023.29E-023.43E-023.66E-023.54E-023.34E-023.15E-022.59E-02 Pelvis-Kidney (Left)0.00E+001.89E-051.98E-044.66E-043.25E-041.81E-041.64E-041.55E-041.48E-041.38E-041.28E-049.84E-05 Pelvis-Kidney (Right)0.00E+000.00E+005.16E-065.19E-058.48E-056.61E-055.49E-055.62E-055.21E-054.74E-054.71E-053.48E-05 Medular (Left)8.00E-072.88E-041.61E-032.82E-031.77E-039.79E-049.12E-048.96E-048.41E-047.59E-047.08E-045.75E-04 Medular (Right)0.00E+002.00E-072.01E-052.35E-043.46E-042.59E-042.35E-042.33E-042.16E-042.13E-041.84E-041.55E-04 Prostate0.00E+000.00E+000.00E+007.84E-072.48E-064.60E-064.02E-064.48E-065.97E-066.32E-064.77E-064.25E-06 Gonads0.00E+000.00E+000.00E+007.42E-073.50E-064.43E-064.22E-065.47E-065.41E-065.64E-066.42E-064.92E-06 Salivary glands0.00E+000.00E+002.68E-066.64E-051.77E-041.53E-041.42E-041.55E-041.55E-041.51E-041.37E-041.20E-04 Lenses0.00E+000.00E+000.00E+001.71E-072.15E-061.13E-061.34E-061.71E-061.58E-061.95E-061.75E-062.46E-06 Spinal Cord0.00E+007.31E-062.28E-041.61E-032.17E-031.69E-031.67E-031.70E-031.57E-031.45E-031.36E-031.10E-03 Stomach(Wall)1.40E-011.97E-011.59E-017.54E-022.61E-021.44E-021.52E-021.61E-021.49E-021.34E-021.18E-027.39E-03 Pituitary gland0.00E+000.00E+000.00E+001.78E-072.91E-071.97E-073.15E-076.90E-075.62E-078.32E-079.68E-074.11E-07 Tongue0.00E+000.00E+003.89E-072.53E-056.10E-055.59E-055.33E-056.23E-055.77E-055.20E-055.63E-054.72E-05 Tonsil0.00E+000.00E+000.00E+007.65E-072.46E-062.73E-062.30E-061.83E-062.39E-062.12E-061.78E-061.77E-06 Brain0.00E+000.00E+003.25E-063.58E-041.58E-031.80E-031.94E-032.34E-032.53E-032.55E-032.51E-032.26E-03 Right Colon(W)2.32E-051.21E-043.17E-048.09E-047.43E-044.77E-044.55E-044.54E-044.35E-043.94E-043.73E-043.09E-04 Left Colon (W)3.95E-043.00E-035.32E-035.33E-032.83E-031.59E-031.55E-031.58E-031.48E-031.36E-031.26E-039.97E-04 Rectosigmoid (W)0.00E+000.00E+005.74E-061.01E-041.71E-041.26E-041.24E-041.26E-041.21E-041.17E-041.05E-049.27E-05 ET2 (larynx)0.00E+000.00E+005.01E-072.16E-055.67E-054.15E-053.62E-053.42E-053.44E-053.10E-053.38E-052.59E-05 ET2 (pharynx)0.00E+000.00E+000.00E+001.15E-068.59E-068.47E-067.12E-067.26E-068.43E-066.57E-067.23E-066.49E-06 Trachea0.00E+000.00E+001.47E-061.77E-053.13E-052.34E-052.37E-052.32E-052.28E-052.34E-051.95E-051.40E-05 Bronchi0.00E+001.69E-062.24E-051.01E-041.03E-046.77E-056.12E-056.19E-055.39E-055.48E-054.75E-053.89E-05 Blood vessel (aorta)7.56E-052.80E-037.49E-038.80E-034.84E-032.65E-032.46E-032.44E-032.30E-032.12E-031.95E-031.55E-03 L Lung3.87E-062.21E-031.01E-021.39E-027.74E-034.23E-033.99E-033.92E-033.61E-033.33E-033.07E-032.54E-03 R Lung0.00E+002.72E-055.79E-042.60E-032.68E-031.77E-031.63E-031.62E-031.51E-031.36E-031.29E-031.06E-03 Eyes0.00E+000.00E+009.07E-083.79E-061.69E-051.46E-051.64E-052.33E-052.15E-052.36E-051.99E-052.21E-05 Gall Bladder (wall)0.00E+000.00E+008.48E-065.76E-056.77E-054.31E-054.31E-054.00E-054.06E-053.60E-053.55E-052.99E-05 L Adrenal3.38E-042.60E-034.49E-033.55E-031.60E-038.99E-048.93E-049.20E-048.23E-047.68E-047.21E-045.71E-04 R Adrenal0.00E+004.50E-068.15E-052.86E-042.93E-042.05E-041.94E-041.93E-041.74E-041.69E-041.49E-041.22E-04 Skin3.31E-062.19E-041.59E-035.79E-035.84E-034.21E-034.32E-034.62E-034.41E-034.05E-033.76E-033.08E-03 L Kidney (Cortex)2.20E-051.64E-035.86E-038.28E-034.96E-032.75E-032.53E-032.52E-032.32E-032.12E-032.00E-031.62E-03 R Kidney (Cortex)0.00E+001.09E-068.27E-057.81E-041.13E-038.25E-047.37E-047.31E-046.79E-046.56E-045.80E-044.86E-04 Thyroid0.00E+000.00E+004.03E-071.58E-053.42E-052.54E-052.26E-052.29E-052.37E-051.95E-051.93E-051.60E-05 Heart(wall)0.00E+001.90E-042.62E-037.42E-035.59E-033.30E-033.01E-033.01E-032.77E-032.58E-032.38E-031.94E-03 Liver3.92E-055.82E-032.66E-024.86E-023.52E-022.11E-021.94E-021.93E-021.80E-021.63E-021.53E-021.25E-02 Spleen3.92E-041.05E-022.61E-022.70E-021.30E-026.86E-036.61E-036.65E-036.14E-035.62E-035.18E-034.21E-03 Bladder(Wall)0.00E+000.00E+001.05E-072.78E-056.89E-056.68E-056.50E-056.73E-056.85E-056.55E-056.59E-055.47E-05 SI (Wall)1.94E-044.04E-031.16E-021.63E-021.03E-026.00E-035.64E-035.63E-035.22E-034.76E-034.42E-033.58E-03 Esophagus8.19E-064.03E-041.34E-031.70E-039.38E-045.66E-045.32E-045.43E-045.03E-044.78E-044.27E-043.36E-04 Pancreas2.77E-031.96E-023.03E-022.33E-021.01E-025.56E-035.45E-035.54E-035.12E-034.73E-034.35E-033.33E-03 Thymus0.00E+001.97E-075.43E-057.03E-049.84E-047.06E-046.46E-046.54E-046.29E-045.67E-045.30E-044.50E-04 Red bone marrow1.16E-068.05E-047.16E-032.12E-022.40E-022.10E-022.15E-022.09E-021.92E-021.78E-021.65E-021.37E-02 Bone surface9.57E-077.30E-046.70E-031.96E-022.20E-021.92E-021.97E-021.92E-021.77E-021.64E-021.53E-021.27E-02

PAGE 171

154 Table 7-3. Specific absorbed fractions from the UF 9-month male phantom when photon source is in right colon contents (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue9.06E-021.79E-012.06E-011.74E-019.99E -026.02E-025.91E-026.17E-025.84E-025.41E-025.02E-023.98E-02 Adipose1.06E-024.89E-027.75E-028.27E-025.64E-024.18E-024.45E-024.79E-024.61E-024.32E-024.05E-023.30E-02 Pelvis-Kidney (Left)0.00E+001.00E-073.49E-064.98E-056.87E-054.64E-054.46E-054.06E-053.72E-053.84E-053.48E-052.78E-05 Pelvis-Kidney (Right)7.97E-071.17E-044.38E-045.95E-043.66E-041.94E-041.87E-041.81E-041.73E-041.56E-041.44E-041.18E-04 Medular (Left)0.00E+001.00E-071.59E-051.84E-042.76E-042.18E-041.95E-041.95E-041.77E-041.78E-041.52E-041.30E-04 Medular (Right)1.75E-057.85E-042.23E-032.85E-031.62E-038.99E-048.31E-048.48E-047.70E-047.13E-046.70E-045.40E-04 Prostate0.00E+001.00E-072.61E-062.82E-053.28E-052.29E-052.29E-052.29E-051.98E-051.85E-051.78E-051.49E-05 Gonads0.00E+009.97E-084.28E-062.92E-053.74E-052.04E-052.26E-052.35E-052.35E-052.19E-051.85E-051.67E-05 Salivary glands0.00E+000.00E+004.05E-071.42E-053.79E-054.48E-054.76E-056.11E-055.90E-056.78E-055.76E-055.97E-05 Lenses0.00E+000.00E+002.23E-093.89E-071.97E-076.04E-078.54E-076.50E-071.61E-068.14E-076.92E-079.23E-07 Spinal Cord0.00E+000.00E+002.39E-053.82E-047.42E-046.48E-046.37E-046.53E-046.43E-045.83E-045.55E-044.68E-04 Stomach(Wall)1.52E-032.76E-032.63E-031.92E-031.09E-036.76E-046.51E-046.68E-046.27E-045.69E-045.17E-044.01E-04 Pituitary gland0.00E+000.00E+000.00E+000.00E+001.97E-071.90E-071.37E-079.54E-083.87E-073.56E-076.59E-071.24E-07 Tongue0.00E+000.00E+000.00E+007.21E-062.01E-051.90E-052.19E-052.82E-052.90E-052.77E-052.59E-052.48E-05 Tonsil0.00E+000.00E+000.00E+001.83E-071.21E-066.87E-076.59E-078.65E-071.01E-069.89E-078.71E-071.03E-06 Brain0.00E+000.00E+009.76E-077.01E-054.00E-045.38E-046.45E-049.39E-041.12E-031.20E-031.21E-031.15E-03 Right Colon(W)6.72E-026.27E-024.63E-022.26E-028.26E-034.60E-034.78E-035.00E-034.56E-033.99E-033.48E-032.27E-03 Left Colon (W)1.13E-031.93E-032.10E-031.85E-031.12E-036.68E-046.54E-046.55E-046.27E-045.86E-045.41E-044.14E-04 Rectosigmoid (W)6.96E-041.08E-031.37E-031.43E-038.64E-045.10E-044.99E-045.14E-044.55E-044.42E-043.99E-043.11E-04 ET2 (larynx)0.00E+000.00E+000.00E+003.29E-061.28E-051.06E-051.10E-051.26E-051.35E-051.16E-051.43E-051.12E-05 ET2 (pharynx)0.00E+000.00E+000.00E+007.54E-071.71E-062.05E-062.57E-062.95E-062.95E-063.58E-062.11E-062.62E-06 Trachea0.00E+000.00E+001.94E-071.82E-067.30E-066.95E-066.43E-067.11E-067.79E-065.08E-066.12E-064.89E-06 Bronchi0.00E+000.00E+001.00E-075.62E-061.48E-051.24E-051.18E-051.50E-051.40E-051.00E-051.16E-059.89E-06 Blood vessel (aorta)1.00E-079.79E-058.87E-042.26E-031.76E-031.05E-039.45E-049.49E-048.95E-047.84E-047.48E-046.22E-04 L Lung6.00E-071.66E-056.71E-052.86E-044.36E-043.48E-043.38E-043.70E-043.65E-043.51E-043.32E-042.85E-04 R Lung0.00E+002.15E-051.93E-048.53E-041.01E-036.92E-046.65E-046.92E-046.74E-046.22E-046.02E-044.98E-04 Eyes0.00E+000.00E+003.96E-075.89E-066.10E-068.45E-068.89E-061.28E-051.25E-051.34E-051.15E-051.25E-05 Gall Bladder (wall)2.02E-047.62E-041.03E-038.00E-043.50E-042.04E-042.04E-042.05E-041.97E-041.77E-041.73E-041.25E-04 L Adrenal0.00E+002.44E-091.14E-057.57E-059.83E-057.39E-056.75E-057.13E-056.47E-056.13E-056.02E-055.08E-05 R Adrenal0.00E+003.97E-072.57E-051.35E-041.41E-049.55E-058.73E-058.94E-058.37E-057.47E-057.68E-055.66E-05 Skin2.80E-044.62E-039.76E-031.12E-027.08E-034.74E-034.98E-035.38E-035.10E-034.64E-034.31E-033.51E-03 L Kidney (Cortex)0.00E+004.00E-075.08E-055.36E-048.14E-045.78E-045.29E-045.36E-045.02E-044.67E-044.56E-043.64E-04 R Kidney (Cortex)2.42E-043.19E-037.14E-038.32E-034.66E-032.56E-032.46E-032.45E-032.25E-032.09E-031.91E-031.56E-03 Thyroid0.00E+000.00E+006.66E-092.04E-069.48E-068.14E-067.55E-068.44E-068.69E-066.42E-067.04E-066.41E-06 Heart(wall)0.00E+001.84E-051.66E-046.65E-047.88E-045.59E-045.27E-045.55E-045.45E-045.14E-044.74E-044.09E-04 Liver4.41E-032.15E-024.58E-026.04E-023.76E-022.15E-022.04E-022.07E-021.92E-021.78E-021.64E-021.32E-02 Spleen0.00E+000.00E+001.32E-052.39E-044.67E-043.51E-043.35E-043.49E-043.48E-043.16E-043.02E-042.55E-04 Bladder(Wall)7.51E-041.73E-032.22E-032.07E-031.12E-036.27E-046.04E-046.04E-045.66E-045.14E-044.63E-043.66E-04 SI (Wall)1.64E-023.36E-024.12E-023.39E-021.65E-029.28E-039.21E-039.34E-038.67E-037.95E-037.25E-035.57E-03 Esophagus0.00E+002.00E-073.80E-064.67E-057.79E-055.76E-055.77E-055.77E-055.82E-055.40E-054.71E-054.28E-05 Pancreas0.00E+009.50E-057.35E-041.75E-031.35E-038.03E-047.54E-047.43E-047.04E-046.47E-046.00E-045.00E-04 Thymus0.00E+000.00E+006.19E-069.36E-051.94E-041.62E-041.58E-041.77E-041.76E-041.71E-041.75E-041.51E-04 Red bone marrow2.41E-059.07E-044.14E-031.17E-021.44E-021.29E-021.35E-021.35E-021.26E-021.18E-021.11E-029.26E-03 Bone surface1.34E-055.19E-042.64E-038.96E-031.20E-021.11E-021.17E-021.18E-021.11E-021.04E-029.75E-038.22E-03

PAGE 172

155 Table 7-4. Specific absorbed fractions from the UF 9-month male phantom when photon source is in left colon contents (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue6.49E-021.49E-011.93E-011.80E-011.05E -016.32E-026.18E-026.41E-026.07E-025.62E-025.23E-024.18E-02 Adipose9.25E-034.40E-027.78E-028.92E-026.04E-024.44E-024.72E-025.07E-024.88E-024.58E-024.28E-023.47E-02 Pelvis-Kidney (Left)5.00E-074.21E-052.41E-044.30E-042.91E-041.64E-041.50E-041.50E-041.37E-041.22E-041.14E-049.72E-05 Pelvis-Kidney (Right)0.00E+000.00E+002.27E-063.47E-055.55E-054.41E-054.13E-054.01E-053.83E-053.58E-053.64E-052.87E-05 Medular (Left)6.40E-063.52E-041.26E-032.09E-031.33E-037.57E-047.13E-047.07E-046.38E-046.11E-045.56E-044.42E-04 Medular (Right)0.00E+000.00E+009.13E-061.40E-042.49E-041.86E-041.73E-041.74E-041.70E-041.52E-041.51E-041.21E-04 Prostate0.00E+001.95E-076.69E-062.92E-052.82E-052.40E-052.11E-052.24E-052.00E-052.01E-051.77E-051.38E-05 Gonads0.00E+004.00E-079.77E-063.36E-052.95E-052.35E-051.95E-052.33E-052.17E-052.50E-051.91E-051.82E-05 Salivary glands0.00E+000.00E+001.07E-062.21E-056.01E-055.81E-056.12E-056.95E-057.51E-056.63E-056.95E-056.41E-05 Lenses0.00E+000.00E+000.00E+001.16E-082.67E-078.62E-071.03E-061.21E-061.45E-061.19E-061.60E-061.07E-06 Spinal Cord0.00E+009.00E-074.19E-054.78E-048.46E-047.18E-047.18E-047.34E-047.07E-046.39E-046.05E-045.12E-04 Stomach(Wall)1.87E-035.03E-036.96E-036.06E-033.02E-031.70E-031.67E-031.69E-031.59E-031.43E-031.34E-031.03E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+007.97E-086.90E-082.28E-071.91E-072.71E-071.63E-074.54E-073.03E-07 Tongue0.00E+000.00E+000.00E+008.88E-062.75E-052.37E-052.49E-053.06E-053.11E-053.02E-053.00E-052.74E-05 Tonsil0.00E+000.00E+001.00E-073.29E-071.37E-061.17E-061.37E-061.08E-061.72E-061.07E-061.30E-061.05E-06 Brain0.00E+000.00E+001.28E-061.16E-046.24E-047.55E-048.77E-041.20E-031.40E-031.43E-031.44E-031.36E-03 Right Colon(W)7.98E-041.41E-031.75E-031.83E-031.11E-036.69E-046.55E-046.59E-046.11E-045.80E-045.22E-044.28E-04 Left Colon (W)4.42E-024.64E-023.74E-022.00E-027.61E-034.22E-034.40E-034.59E-034.23E-033.74E-033.36E-032.27E-03 Rectosigmoid (W)2.64E-034.10E-034.49E-033.31E-031.57E-038.79E-048.77E-049.00E-048.44E-047.61E-046.92E-045.29E-04 ET2 (larynx)0.00E+000.00E+000.00E+007.09E-061.53E-051.38E-051.35E-051.50E-051.29E-051.41E-051.59E-051.21E-05 ET2 (pharynx)0.00E+000.00E+000.00E+009.87E-072.07E-063.67E-063.16E-063.14E-063.19E-063.03E-064.19E-062.76E-06 Trachea0.00E+000.00E+002.86E-072.73E-061.01E-056.89E-068.23E-068.91E-069.01E-068.58E-069.23E-066.40E-06 Bronchi0.00E+000.00E+001.26E-061.43E-052.34E-052.07E-051.61E-051.82E-051.75E-051.71E-051.42E-051.53E-05 Blood vessel (aorta)1.24E-045.95E-041.26E-032.16E-031.63E-039.99E-049.19E-049.07E-048.56E-047.79E-047.01E-046.03E-04 L Lung7.50E-059.84E-042.50E-033.52E-032.26E-031.32E-031.27E-031.30E-031.20E-031.12E-031.05E-038.72E-04 R Lung0.00E+007.70E-066.87E-054.38E-046.50E-045.09E-044.87E-045.22E-045.01E-044.90E-044.54E-043.93E-04 Eyes0.00E+000.00E+009.71E-082.90E-068.04E-069.60E-061.03E-051.28E-051.37E-051.51E-051.21E-051.60E-05 Gall Bladder (wall)5.00E-073.18E-061.12E-053.40E-053.45E-052.47E-052.57E-052.33E-052.48E-052.17E-052.15E-051.82E-05 L Adrenal0.00E+003.60E-068.13E-052.69E-042.21E-041.46E-041.35E-041.31E-041.30E-041.23E-041.09E-048.82E-05 R Adrenal0.00E+000.00E+003.91E-064.24E-057.76E-055.75E-055.82E-055.73E-055.24E-054.69E-054.39E-053.88E-05 Skin1.03E-043.52E-038.89E-031.14E-027.39E-034.95E-035.21E-035.66E-035.28E-034.86E-034.54E-033.67E-03 L Kidney (Cortex)2.92E-042.16E-034.80E-036.32E-033.83E-032.14E-032.02E-032.02E-031.86E-031.72E-031.56E-031.26E-03 R Kidney (Cortex)0.00E+002.00E-072.86E-054.22E-047.31E-045.70E-045.16E-045.13E-044.84E-044.74E-044.30E-043.77E-04 Thyroid0.00E+000.00E+000.00E+002.88E-069.39E-069.18E-069.12E-061.03E-057.81E-068.44E-066.44E-067.08E-06 Heart(wall)0.00E+004.43E-054.75E-041.60E-031.50E-039.75E-049.26E-049.38E-048.97E-048.30E-047.91E-046.57E-04 Liver5.41E-055.20E-042.30E-038.24E-039.45E-036.58E-036.07E-036.24E-035.87E-035.51E-035.16E-034.33E-03 Spleen1.79E-051.02E-033.91E-036.20E-033.85E-032.15E-032.03E-032.04E-031.89E-031.71E-031.62E-031.31E-03 Bladder(Wall)3.25E-046.80E-049.22E-049.80E-046.16E-043.72E-043.47E-043.51E-043.23E-042.92E-042.78E-042.23E-04 SI (Wall)9.46E-032.04E-022.68E-022.48E-021.30E-027.43E-037.26E-037.42E-036.88E-036.25E-035.75E-034.48E-03 Esophagus0.00E+006.92E-071.97E-051.11E-041.25E-049.64E-058.39E-058.78E-058.41E-057.76E-056.94E-055.86E-05 Pancreas3.97E-058.80E-042.84E-034.12E-032.53E-031.46E-031.42E-031.38E-031.27E-031.20E-031.09E-039.01E-04 Thymus0.00E+001.00E-079.03E-061.53E-042.95E-042.27E-042.18E-042.38E-042.39E-042.20E-042.08E-041.89E-04 Red bone marrow1.78E-043.43E-039.79E-031.73E-021.73E-021.49E-021.55E-021.55E-021.45E-021.35E-021.26E-021.05E-02 Bone surface1.25E-042.32E-036.99E-031.38E-021.48E-021.30E-021.35E-021.36E-021.28E-021.20E-021.12E-029.35E-03

PAGE 173

156 Table 7-5. Specific absorbed fractions from the UF 9-month male phantom when photon source is in small intestine contents (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue4.18E-021.24E-011.77E-011.82E-011.15E -016.99E-026.71E-026.86E-026.47E-026.00E-025.59E-024.52E-02 Adipose5.58E-048.00E-032.41E-024.86E-024.63E-023.66E-023.82E-024.08E-023.96E-023.70E-023.49E-022.90E-02 Pelvis-Kidney (Left)3.00E-071.02E-044.05E-045.97E-043.46E-042.00E-041.91E-041.82E-041.77E-041.59E-041.41E-041.17E-04 Pelvis-Kidney (Right)4.00E-074.96E-052.17E-043.87E-042.64E-041.55E-041.43E-041.39E-041.31E-041.15E-041.15E-048.85E-05 Medular (Left)2.90E-064.65E-041.74E-032.59E-031.58E-038.96E-048.26E-048.19E-047.62E-047.07E-046.41E-045.15E-04 Medular (Right)1.50E-061.80E-048.13E-041.52E-031.07E-036.44E-045.89E-045.87E-045.39E-044.78E-044.41E-043.68E-04 Prostate0.00E+001.00E-073.37E-062.03E-052.89E-052.07E-051.89E-052.00E-051.82E-051.81E-051.99E-051.43E-05 Gonads0.00E+001.00E-072.60E-061.66E-052.20E-051.66E-051.72E-052.00E-051.76E-051.80E-051.31E-051.43E-05 Salivary glands0.00E+000.00E+009.36E-081.78E-055.40E-055.47E-055.61E-057.15E-057.19E-057.19E-056.94E-057.27E-05 Lenses0.00E+000.00E+000.00E+000.00E+002.11E-075.11E-077.97E-079.32E-071.82E-069.28E-078.34E-071.27E-06 Spinal Cord0.00E+001.40E-065.91E-057.74E-041.37E-031.17E-031.15E-031.16E-031.09E-031.02E-039.39E-047.85E-04 Stomach(Wall)4.62E-042.49E-034.98E-035.46E-033.05E-031.73E-031.65E-031.68E-031.53E-031.40E-031.30E-031.02E-03 Pituitary gland0.00E+000.00E+000.00E+001.67E-071.79E-081.86E-073.33E-072.90E-071.58E-072.77E-075.69E-074.15E-07 Tongue0.00E+000.00E+001.94E-075.70E-062.14E-052.40E-052.34E-052.83E-052.88E-053.06E-053.29E-052.69E-05 Tonsil0.00E+000.00E+000.00E+001.62E-075.23E-071.08E-065.54E-071.30E-061.85E-068.07E-072.39E-068.17E-07 Brain0.00E+000.00E+000.00E+005.88E-054.96E-046.69E-047.86E-041.08E-031.26E-031.34E-031.36E-031.28E-03 Right Colon(W)1.95E-036.61E-038.93E-037.34E-033.52E-031.97E-031.94E-031.99E-031.86E-031.71E-031.57E-031.21E-03 Left Colon (W)1.51E-034.95E-037.11E-036.54E-033.34E-031.88E-031.85E-031.87E-031.74E-031.61E-031.47E-031.17E-03 Rectosigmoid (W)7.52E-042.21E-033.12E-032.79E-031.47E-038.39E-048.19E-048.43E-047.77E-047.16E-046.68E-045.22E-04 ET2 (larynx)0.00E+000.00E+009.81E-083.20E-061.50E-051.53E-051.27E-051.55E-051.52E-051.60E-051.73E-051.15E-05 ET2 (pharynx)0.00E+000.00E+000.00E+009.05E-072.93E-062.72E-063.79E-064.26E-063.81E-063.05E-063.14E-063.82E-06 Trachea0.00E+000.00E+008.36E-082.02E-068.86E-068.11E-069.12E-069.40E-069.97E-068.49E-067.04E-067.99E-06 Bronchi0.00E+000.00E+006.96E-071.28E-052.32E-052.10E-051.90E-052.01E-051.82E-051.70E-051.95E-051.44E-05 Blood vessel (aorta)6.78E-044.13E-036.94E-037.05E-033.86E-032.15E-032.04E-032.02E-031.86E-031.72E-031.58E-031.28E-03 L Lung0.00E+008.39E-061.86E-041.06E-031.22E-038.41E-047.69E-047.89E-047.47E-047.15E-046.52E-045.56E-04 R Lung0.00E+002.20E-061.15E-049.54E-041.19E-038.45E-047.87E-047.98E-047.67E-047.07E-046.94E-045.67E-04 Eyes0.00E+000.00E+000.00E+008.23E-077.22E-068.24E-068.89E-061.29E-051.40E-051.22E-051.34E-051.21E-05 Gall Bladder (wall)3.12E-051.69E-043.01E-043.21E-041.85E-041.12E-049.96E-051.04E-049.87E-058.37E-058.75E-056.83E-05 L Adrenal1.24E-052.34E-046.29E-047.72E-044.63E-042.76E-042.68E-042.63E-042.50E-042.26E-042.16E-041.65E-04 R Adrenal0.00E+001.28E-051.26E-043.17E-042.50E-041.54E-041.49E-041.53E-041.41E-041.30E-041.16E-049.49E-05 Skin5.71E-067.60E-043.14E-036.52E-035.77E-034.10E-034.26E-034.61E-034.40E-034.06E-033.74E-033.10E-03 L Kidney (Cortex)8.40E-052.04E-035.46E-037.09E-034.25E-032.42E-032.26E-032.26E-032.07E-031.91E-031.75E-031.40E-03 R Kidney (Cortex)3.55E-059.35E-042.91E-034.68E-033.27E-031.92E-031.78E-031.73E-031.59E-031.46E-031.40E-031.11E-03 Thyroid0.00E+000.00E+000.00E+003.70E-061.26E-058.61E-069.46E-061.05E-059.31E-069.05E-069.68E-067.24E-06 Heart(wall)0.00E+003.39E-061.52E-041.13E-031.37E-039.55E-048.79E-048.88E-048.50E-048.02E-047.46E-046.09E-04 Liver9.52E-046.37E-031.96E-023.84E-022.93E-021.75E-021.61E-021.60E-021.49E-021.37E-021.27E-021.05E-02 Spleen1.00E-079.27E-059.40E-042.72E-032.29E-031.35E-031.23E-031.21E-031.13E-031.04E-039.74E-048.01E-04 Bladder(Wall)1.20E-049.55E-041.58E-031.57E-039.02E-045.15E-044.97E-045.02E-044.63E-044.15E-043.93E-043.08E-04 SI (Wall)1.32E-011.80E-011.63E-019.69E-023.93E-022.18E-022.23E-022.32E-022.14E-021.93E-021.73E-021.22E-02 Esophagus0.00E+001.80E-063.83E-051.63E-041.71E-041.25E-041.15E-041.12E-041.02E-049.55E-051.02E-047.71E-05 Pancreas2.36E-039.73E-031.43E-021.18E-025.62E-033.12E-033.06E-033.09E-032.84E-032.59E-032.44E-031.85E-03 Thymus0.00E+000.00E+003.07E-061.21E-042.74E-042.40E-042.32E-042.47E-042.49E-042.35E-042.31E-041.88E-04 Red bone marrow7.31E-067.09E-044.15E-031.38E-021.81E-021.66E-021.71E-021.68E-021.56E-021.45E-021.35E-021.13E-02 Bone surface5.76E-065.47E-043.31E-031.18E-021.60E-021.48E-021.53E-021.51E-021.41E-021.31E-021.23E-021.03E-02

PAGE 174

157 Table 7-6. Specific absorbed fractions from the UF 9-month male phantom when photon source is in right lung (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue1.24E-012.04E-012.27E-011.87E-011.06E -016.47E-026.36E-026.54E-026.14E-025.64E-025.20E-024.03E-02 Adipose2.28E-033.29E-027.28E-028.38E-025.50E-024.06E-024.33E-024.62E-024.41E-024.09E-023.84E-023.09E-02 Pelvis-Kidney (Left)0.00E+000.00E+001.00E-078.18E-062.57E-052.17E-052.17E-052.24E-051.99E-052.04E-051.70E-051.59E-05 Pelvis-Kidney (Right)0.00E+001.00E-073.58E-063.42E-054.79E-053.10E-052.92E-052.99E-052.86E-052.82E-052.40E-052.18E-05 Medular (Left)0.00E+001.00E-071.48E-064.95E-051.27E-041.06E-041.06E-041.11E-049.94E-059.99E-058.96E-057.83E-05 Medular (Right)0.00E+001.02E-072.07E-051.52E-042.14E-041.41E-041.36E-041.32E-041.25E-041.14E-041.06E-049.64E-05 Prostate0.00E+000.00E+000.00E+000.00E+001.50E-061.49E-062.02E-063.13E-062.84E-063.38E-062.28E-062.65E-06 Gonads0.00E+000.00E+008.73E-081.26E-081.33E-061.57E-062.59E-061.51E-062.88E-063.74E-062.67E-062.27E-06 Salivary glands0.00E+001.56E-052.74E-049.11E-048.07E-045.41E-045.27E-045.46E-045.01E-044.77E-044.29E-043.42E-04 Lenses0.00E+000.00E+001.00E-072.23E-063.44E-063.10E-063.73E-063.89E-063.18E-063.92E-062.87E-063.09E-06 Spinal Cord8.03E-071.32E-049.21E-042.52E-032.36E-031.71E-031.73E-031.75E-031.63E-031.49E-031.37E-031.12E-03 Stomach(Wall)1.00E-061.04E-044.97E-041.18E-031.00E-036.39E-046.03E-045.94E-045.69E-045.21E-044.75E-043.94E-04 Pituitary gland0.00E+000.00E+009.58E-088.47E-071.81E-061.18E-061.84E-061.75E-061.48E-062.07E-061.26E-061.05E-06 Tongue0.00E+007.86E-075.94E-053.19E-043.12E-042.18E-041.89E-042.01E-041.96E-041.79E-041.65E-041.40E-04 Tonsil0.00E+000.00E+001.51E-061.35E-051.57E-051.15E-059.83E-069.60E-061.06E-056.61E-061.04E-055.54E-06 Brain0.00E+001.00E-078.80E-052.46E-035.69E-035.02E-035.09E-035.78E-035.81E-035.66E-035.44E-034.63E-03 Right Colon(W)0.00E+001.86E-051.46E-044.15E-043.74E-042.62E-042.55E-042.54E-042.57E-042.47E-042.21E-041.80E-04 Left Colon (W)1.00E-075.13E-064.43E-051.76E-042.27E-041.81E-041.71E-041.77E-041.83E-041.69E-041.62E-041.33E-04 Rectosigmoid (W)0.00E+000.00E+005.03E-079.70E-063.59E-054.11E-053.81E-054.29E-054.52E-053.85E-053.80E-053.41E-05 ET2 (larynx)0.00E+001.89E-052.01E-044.74E-043.28E-041.83E-041.61E-041.58E-041.40E-041.39E-041.24E-049.51E-05 ET2 (pharynx)0.00E+002.00E-077.20E-064.30E-054.67E-053.23E-052.73E-052.98E-052.72E-052.52E-052.35E-051.71E-05 Trachea5.68E-054.46E-046.76E-045.48E-042.61E-041.51E-041.53E-041.46E-041.38E-041.24E-041.16E-048.98E-05 Bronchi1.29E-031.95E-031.87E-031.10E-034.68E-042.71E-042.84E-042.92E-042.63E-042.30E-042.03E-041.48E-04 Blood vessel (aorta)2.89E-035.30E-035.47E-034.14E-032.22E-031.32E-031.27E-031.27E-031.18E-031.07E-039.70E-047.17E-04 L Lung4.42E-051.34E-048.69E-042.76E-032.60E-031.68E-031.61E-031.62E-031.49E-031.37E-031.29E-031.05E-03 R Lung7.64E-014.78E-012.73E-011.05E-013.35E-021.79E-021.89E-021.93E-021.62E-021.31E-021.05E-025.39E-03 Eyes0.00E+000.00E+001.69E-063.35E-055.56E-054.33E-054.55E-054.98E-055.36E-055.07E-054.48E-053.96E-05 Gall Bladder (wall)0.00E+001.00E-071.35E-057.49E-055.70E-054.21E-053.96E-053.83E-053.49E-053.37E-053.33E-052.53E-05 L Adrenal0.00E+001.97E-078.43E-065.82E-058.88E-057.17E-057.06E-057.25E-056.47E-055.68E-056.05E-054.49E-05 R Adrenal0.00E+002.32E-051.14E-042.31E-041.61E-041.06E-041.03E-041.01E-049.01E-058.31E-057.86E-056.76E-05 Skin2.95E-052.31E-037.21E-039.96E-036.70E-034.60E-034.83E-035.23E-034.92E-034.45E-034.13E-033.36E-03 L Kidney (Cortex)0.00E+000.00E+006.83E-061.37E-043.27E-042.86E-042.82E-042.93E-042.85E-042.71E-042.46E-042.16E-04 R Kidney (Cortex)0.00E+004.30E-069.98E-055.51E-046.42E-044.45E-044.20E-044.20E-043.94E-043.70E-043.42E-042.85E-04 Thyroid2.40E-061.30E-043.83E-044.48E-042.70E-041.46E-041.31E-041.35E-041.16E-041.08E-041.04E-048.78E-05 Heart(wall)1.30E-023.01E-023.35E-022.33E-021.04E-025.71E-035.67E-035.77E-035.35E-034.81E-034.42E-033.25E-03 Liver2.72E-026.73E-029.36E-028.53E-024.47E-022.51E-022.41E-022.42E-022.23E-022.04E-021.87E-021.45E-02 Spleen0.00E+003.00E-072.58E-053.76E-046.61E-045.08E-044.72E-044.93E-044.54E-044.34E-043.91E-043.28E-04 Bladder(Wall)0.00E+000.00E+009.90E-086.20E-062.46E-052.26E-052.67E-053.06E-053.24E-053.33E-053.37E-052.73E-05 SI (Wall)0.00E+004.99E-061.57E-041.14E-031.51E-031.12E-031.07E-031.09E-031.06E-039.68E-049.22E-047.59E-04 Esophagus6.16E-041.70E-032.20E-031.70E-038.58E-045.12E-045.18E-045.00E-044.69E-044.27E-043.87E-042.95E-04 Pancreas0.00E+003.19E-061.21E-046.32E-046.74E-044.57E-044.36E-044.29E-044.01E-043.72E-043.45E-042.75E-04 Thymus4.90E-031.20E-021.50E-021.14E-025.40E-033.17E-033.16E-033.20E-032.94E-032.66E-032.48E-031.84E-03 Red bone marrow3.04E-026.77E-027.46E-026.02E-023.94E-022.97E-023.05E-023.02E-022.77E-022.54E-022.36E-021.92E-02 Bone surface3.34E-027.26E-027.75E-025.97E-023.83E-022.87E-022.94E-022.92E-022.69E-022.47E-022.29E-021.87E-02

PAGE 175

158 Table 7-7. Specific absorbed fractions from the UF 9-month male phantom when photon source is in left lung (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue1.38E-012.37E-012.65E-012.13E-011.16E -016.93E-026.82E-027.03E-026.57E-026.03E-025.56E-024.30E-02 Adipose3.71E-034.09E-028.60E-029.53E-025.99E-024.35E-024.65E-024.94E-024.71E-024.38E-024.08E-023.28E-02 Pelvis-Kidney (Left)0.00E+000.00E+008.43E-065.50E-056.38E-053.97E-053.79E-053.69E-053.47E-053.65E-053.25E-052.27E-05 Pelvis-Kidney (Right)0.00E+000.00E+002.91E-076.28E-061.63E-051.84E-051.68E-051.87E-051.62E-051.53E-051.35E-051.31E-05 Medular (Left)0.00E+002.91E-066.69E-053.40E-043.31E-042.16E-041.99E-042.09E-041.91E-041.78E-041.64E-041.30E-04 Medular (Right)0.00E+000.00E+007.96E-072.85E-057.96E-057.70E-057.49E-057.79E-057.62E-056.59E-056.92E-056.37E-05 Prostate0.00E+000.00E+000.00E+002.17E-081.77E-061.49E-061.57E-061.87E-062.51E-063.17E-063.18E-061.77E-06 Gonads0.00E+000.00E+000.00E+002.00E-071.26E-061.25E-061.55E-062.23E-062.78E-062.38E-062.27E-062.87E-06 Salivary glands0.00E+001.81E-052.92E-048.85E-047.84E-045.15E-045.05E-045.00E-044.80E-044.41E-044.18E-043.14E-04 Lenses0.00E+000.00E+000.00E+002.30E-064.78E-063.00E-063.23E-063.07E-063.96E-064.59E-062.97E-062.65E-06 Spinal Cord5.98E-071.41E-049.36E-042.50E-032.27E-031.67E-031.66E-031.70E-031.56E-031.44E-031.37E-031.09E-03 Stomach(Wall)8.00E-066.97E-042.51E-033.57E-032.09E-031.22E-031.16E-031.17E-031.07E-039.82E-049.11E-047.22E-04 Pituitary gland0.00E+000.00E+000.00E+001.43E-061.97E-061.56E-061.67E-061.83E-062.53E-069.59E-071.25E-061.59E-06 Tongue0.00E+009.90E-074.92E-052.86E-043.06E-041.92E-041.78E-041.86E-041.69E-041.69E-041.46E-041.29E-04 Tonsil0.00E+000.00E+001.27E-061.29E-051.41E-058.34E-069.02E-069.18E-067.45E-068.05E-067.69E-065.47E-06 Brain0.00E+008.89E-071.51E-043.05E-036.30E-035.27E-035.31E-035.91E-035.96E-035.81E-035.53E-034.73E-03 Right Colon(W)0.00E+001.13E-054.24E-051.78E-042.14E-041.60E-041.61E-041.69E-041.63E-041.52E-041.49E-041.24E-04 Left Colon (W)1.08E-045.54E-041.04E-031.21E-037.61E-044.76E-044.61E-044.74E-044.48E-044.19E-043.74E-043.12E-04 Rectosigmoid (W)0.00E+000.00E+006.77E-071.57E-054.19E-053.87E-054.08E-054.56E-054.17E-054.52E-054.19E-053.97E-05 ET2 (larynx)0.00E+004.49E-061.15E-043.24E-042.67E-041.56E-041.34E-041.30E-041.20E-041.13E-041.00E-048.60E-05 ET2 (pharynx)0.00E+001.00E-076.01E-064.46E-054.23E-052.87E-052.50E-052.82E-052.65E-052.68E-052.26E-051.95E-05 Trachea0.00E+002.68E-051.39E-042.07E-041.41E-048.42E-058.68E-058.36E-057.92E-057.34E-056.87E-055.45E-05 Bronchi5.42E-047.42E-048.39E-046.40E-043.16E-041.92E-041.93E-041.96E-041.74E-041.59E-041.51E-041.14E-04 Blood vessel (aorta)4.07E-039.13E-039.21E-035.84E-032.68E-031.49E-031.44E-031.46E-031.34E-031.22E-031.12E-038.18E-04 L Lung7.62E-014.70E-012.65E-011.01E-013.19E-021.72E-021.80E-021.85E-021.54E-021.24E-029.93E-035.01E-03 R Lung5.31E-051.50E-041.01E-033.11E-032.93E-031.90E-031.79E-031.81E-031.69E-031.57E-031.46E-031.20E-03 Eyes0.00E+000.00E+002.37E-063.70E-055.32E-054.41E-054.71E-055.45E-055.44E-055.35E-054.86E-054.00E-05 Gall Bladder (wall)0.00E+009.44E-083.03E-071.40E-052.31E-051.54E-051.56E-051.51E-051.71E-051.61E-051.44E-051.16E-05 L Adrenal8.00E-072.12E-051.43E-042.78E-042.00E-041.24E-041.16E-041.20E-041.05E-049.15E-058.85E-057.09E-05 R Adrenal0.00E+000.00E+001.87E-063.07E-056.96E-055.80E-055.65E-055.41E-055.10E-055.23E-054.99E-053.80E-05 Skin4.10E-052.61E-038.04E-031.10E-027.15E-034.83E-035.08E-035.45E-035.08E-034.63E-034.29E-033.50E-03 L Kidney (Cortex)0.00E+001.23E-052.45E-049.57E-048.86E-045.82E-045.38E-045.44E-045.02E-044.82E-044.34E-043.58E-04 R Kidney (Cortex)0.00E+000.00E+001.90E-069.09E-052.68E-042.44E-042.37E-042.53E-042.37E-042.21E-042.20E-041.88E-04 Thyroid0.00E+001.47E-051.09E-042.18E-041.77E-049.84E-058.79E-058.78E-058.20E-056.79E-056.82E-055.63E-05 Heart(wall)1.55E-023.46E-023.87E-022.68E-021.18E-026.42E-036.38E-036.51E-036.04E-035.44E-035.01E-033.68E-03 Liver5.91E-042.66E-036.95E-031.40E-021.28E-028.36E-037.91E-038.02E-037.47E-036.94E-036.48E-035.33E-03 Spleen2.33E-037.96E-031.19E-021.03E-024.93E-032.67E-032.57E-032.56E-032.33E-032.14E-031.98E-031.55E-03 Bladder(Wall)0.00E+000.00E+000.00E+005.22E-061.83E-052.25E-052.49E-052.96E-053.10E-053.11E-053.16E-052.71E-05 SI (Wall)1.00E-071.33E-052.38E-041.37E-031.68E-031.19E-031.13E-031.16E-031.12E-031.04E-039.86E-048.12E-04 Esophagus1.80E-048.39E-041.60E-031.53E-038.13E-044.88E-044.85E-044.85E-044.44E-044.09E-043.68E-042.97E-04 Pancreas0.00E+001.87E-053.67E-041.21E-031.02E-036.61E-046.10E-046.01E-045.62E-045.17E-044.83E-043.83E-04 Thymus4.72E-031.32E-021.57E-021.15E-025.30E-033.08E-033.05E-033.12E-032.84E-032.64E-032.38E-031.80E-03 Red bone marrow3.47E-027.49E-028.04E-026.24E-023.99E-022.99E-023.07E-023.04E-022.80E-022.57E-022.37E-021.94E-02 Bone surface3.84E-028.15E-028.51E-026.32E-023.94E-022.93E-022.99E-022.98E-022.74E-022.52E-022.33E-021.91E-02

PAGE 176

159 Table 7-8. Specific absorbed fractions from the UF 9-month male phantom when photon source is in urinary bladder contents (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue2.91E-029.72E-021.58E-011.82E-011.18E -017.08E-026.80E-026.98E-026.57E-026.09E-025.69E-024.61E-02 Adipose6.36E-033.69E-027.78E-021.13E-018.62E-026.25E-026.47E-026.80E-026.47E-026.02E-025.63E-024.59E-02 Pelvis-Kidney (Left)0.00E+000.00E+001.05E-071.50E-054.12E-052.90E-052.82E-052.86E-052.82E-052.47E-052.29E-052.16E-05 Pelvis-Kidney (Right)0.00E+000.00E+004.29E-064.82E-056.61E-055.07E-054.32E-054.18E-054.17E-053.87E-053.38E-052.83E-05 Medular (Left)1.00E-071.00E-072.89E-067.69E-051.74E-041.43E-041.36E-041.30E-041.32E-041.16E-041.13E-049.08E-05 Medular (Right)0.00E+002.00E-073.44E-052.62E-043.41E-042.35E-042.11E-042.07E-041.92E-041.91E-041.71E-041.49E-04 Prostate4.95E-057.08E-041.32E-031.18E-035.38E-043.01E-042.92E-042.90E-042.82E-042.43E-042.40E-041.87E-04 Gonads0.00E+005.38E-053.38E-045.63E-043.24E-041.74E-041.73E-041.77E-041.63E-041.56E-041.34E-041.20E-04 Salivary glands0.00E+000.00E+000.00E+004.16E-076.41E-061.09E-051.26E-051.93E-052.47E-052.71E-052.64E-052.41E-05 Lenses0.00E+000.00E+000.00E+001.84E-072.06E-071.01E-072.92E-071.33E-074.83E-074.39E-075.92E-075.96E-07 Spinal Cord0.00E+003.00E-071.26E-052.22E-044.93E-044.78E-044.71E-044.74E-044.56E-044.29E-044.05E-043.48E-04 Stomach(Wall)0.00E+000.00E+003.25E-067.19E-051.44E-041.37E-041.36E-041.39E-041.43E-041.39E-041.27E-041.10E-04 Pituitary gland0.00E+000.00E+000.00E+000.00E+002.11E-080.00E+001.76E-071.17E-086.80E-081.96E-071.01E-079.01E-08 Tongue0.00E+000.00E+000.00E+003.70E-072.04E-063.98E-064.53E-066.19E-061.07E-059.70E-061.10E-058.45E-06 Tonsil0.00E+000.00E+000.00E+000.00E+004.46E-082.54E-071.06E-071.89E-074.74E-071.88E-073.09E-072.86E-07 Brain0.00E+000.00E+000.00E+003.50E-066.56E-051.20E-041.80E-043.32E-044.63E-045.21E-045.83E-046.05E-04 Right Colon(W)1.68E-041.21E-032.74E-033.40E-031.95E-031.13E-031.11E-031.11E-031.04E-039.40E-048.88E-047.12E-04 Left Colon (W)5.06E-041.15E-031.65E-031.98E-031.25E-037.70E-047.43E-047.56E-047.06E-046.57E-046.07E-044.98E-04 Rectosigmoid (W)2.37E-036.71E-039.23E-037.33E-033.37E-031.87E-031.86E-031.87E-031.75E-031.60E-031.49E-031.12E-03 ET2 (larynx)0.00E+000.00E+000.00E+001.50E-081.91E-062.77E-062.17E-063.85E-064.28E-064.84E-064.74E-063.83E-06 ET2 (pharynx)0.00E+000.00E+000.00E+001.92E-071.99E-075.71E-078.80E-079.03E-071.24E-061.21E-061.37E-069.48E-07 Trachea0.00E+000.00E+000.00E+000.00E+001.46E-067.03E-071.11E-062.09E-063.20E-062.10E-062.49E-062.41E-06 Bronchi0.00E+000.00E+000.00E+001.65E-082.04E-062.70E-062.93E-064.18E-064.64E-065.30E-064.75E-063.21E-06 Blood vessel (aorta)1.12E-035.21E-037.66E-036.38E-033.08E-031.70E-031.64E-031.66E-031.51E-031.41E-031.32E-031.01E-03 L Lung0.00E+000.00E+000.00E+001.92E-059.04E-051.08E-041.15E-041.43E-041.53E-041.57E-041.49E-041.36E-04 R Lung0.00E+000.00E+002.96E-073.25E-051.25E-041.40E-041.47E-041.72E-041.88E-041.87E-041.79E-041.62E-04 Eyes0.00E+000.00E+000.00E+000.00E+009.91E-071.85E-062.10E-063.97E-066.21E-064.02E-064.88E-065.07E-06 Gall Bladder (wall)0.00E+000.00E+001.32E-061.47E-051.98E-051.58E-051.43E-051.82E-051.55E-051.57E-051.32E-051.10E-05 L Adrenal0.00E+000.00E+009.56E-088.80E-062.63E-052.57E-052.28E-052.47E-052.54E-052.15E-052.25E-051.80E-05 R Adrenal0.00E+000.00E+009.96E-086.40E-062.44E-052.30E-052.40E-052.42E-052.52E-052.20E-052.32E-052.07E-05 Skin1.25E-051.26E-034.57E-038.42E-036.88E-034.73E-034.90E-035.28E-034.99E-034.58E-034.26E-033.50E-03 L Kidney (Cortex)0.00E+000.00E+001.28E-052.62E-044.99E-044.13E-043.86E-043.91E-043.60E-043.49E-043.26E-042.79E-04 R Kidney (Cortex)0.00E+003.00E-061.21E-048.19E-049.78E-046.85E-046.16E-046.28E-045.76E-045.53E-044.98E-044.16E-04 Thyroid0.00E+000.00E+000.00E+003.45E-071.88E-061.50E-061.67E-061.48E-062.59E-062.50E-062.58E-061.83E-06 Heart(wall)0.00E+000.00E+006.91E-072.67E-059.94E-051.14E-041.25E-041.49E-041.66E-041.62E-041.63E-041.41E-04 Liver0.00E+009.99E-078.34E-051.82E-033.85E-033.18E-033.01E-033.20E-033.14E-033.00E-032.85E-032.46E-03 Spleen0.00E+000.00E+001.00E-075.06E-051.79E-041.67E-041.63E-041.84E-041.86E-041.72E-041.78E-041.42E-04 Bladder(Wall)5.19E-026.94E-025.98E-023.15E-021.12E-025.94E-036.09E-036.37E-035.86E-035.27E-034.72E-033.16E-03 SI (Wall)2.97E-043.68E-038.60E-031.14E-027.38E-034.44E-034.25E-034.24E-033.94E-033.64E-033.39E-032.75E-03 Esophagus0.00E+000.00E+000.00E+001.78E-067.57E-061.35E-051.45E-052.00E-051.88E-051.67E-051.77E-051.59E-05 Pancreas0.00E+009.20E-101.60E-061.08E-042.37E-042.07E-041.99E-041.98E-042.03E-041.87E-041.72E-041.51E-04 Thymus0.00E+000.00E+000.00E+003.32E-062.25E-053.81E-054.04E-055.47E-055.85E-056.57E-056.26E-055.40E-05 Red bone marrow2.79E-032.09E-024.80E-026.25E-024.40E-023.22E-023.26E-023.20E-022.94E-022.70E-022.50E-022.05E-02 Bone surface1.56E-031.19E-022.89E-024.12E-023.14E-022.39E-022.42E-022.39E-022.20E-022.03E-021.88E-021.55E-02

PAGE 177

160 Table 7-9. Specific absorbed fractions from the UF 9-month male phantom when photon source is in liver (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue4.08E-029.10E-021.34E-011.50E-011.00E -016.18E-025.96E-026.13E-025.78E-025.38E-025.01E-024.06E-02 Adipose9.01E-041.10E-023.12E-025.40E-024.57E-023.53E-023.73E-024.01E-023.88E-023.65E-023.43E-022.83E-02 Pelvis-Kidney (Left)0.00E+001.00E-074.37E-063.55E-056.12E-055.21E-054.60E-054.34E-054.39E-053.96E-053.81E-053.29E-05 Pelvis-Kidney (Right)4.00E-078.22E-053.19E-044.77E-042.93E-041.66E-041.54E-041.55E-041.43E-041.39E-041.19E-041.00E-04 Medular (Left)0.00E+006.04E-072.97E-051.97E-043.23E-042.41E-042.22E-042.13E-042.07E-041.97E-041.86E-041.40E-04 Medular (Right)1.05E-054.71E-041.47E-032.12E-031.30E-037.21E-046.84E-046.81E-046.23E-045.70E-045.34E-044.34E-04 Prostate0.00E+000.00E+000.00E+001.83E-065.54E-065.87E-066.89E-067.01E-066.30E-066.40E-066.99E-065.53E-06 Gonads0.00E+000.00E+000.00E+001.01E-064.51E-064.93E-065.01E-066.89E-067.44E-067.19E-068.13E-066.12E-06 Salivary glands0.00E+001.00E-077.24E-061.02E-041.81E-041.52E-041.43E-041.56E-041.57E-041.49E-041.41E-041.20E-04 Lenses0.00E+000.00E+000.00E+001.08E-061.35E-061.86E-061.64E-061.84E-061.63E-061.73E-061.54E-061.03E-06 Spinal Cord0.00E+001.08E-051.58E-041.02E-031.46E-031.18E-031.17E-031.17E-031.12E-031.02E-039.30E-047.69E-04 Stomach(Wall)4.34E-041.63E-032.94E-033.45E-032.13E-031.25E-031.21E-031.20E-031.13E-031.01E-039.89E-047.74E-04 Pituitary gland0.00E+000.00E+000.00E+001.91E-074.09E-075.50E-075.16E-074.16E-075.53E-074.01E-075.83E-075.76E-07 Tongue0.00E+001.00E-072.09E-063.89E-057.72E-056.18E-055.67E-056.67E-056.61E-055.98E-055.83E-054.90E-05 Tonsil0.00E+000.00E+001.00E-074.95E-073.89E-062.71E-062.05E-063.41E-063.32E-062.11E-063.15E-062.71E-06 Brain0.00E+009.74E-084.62E-063.55E-041.50E-031.67E-031.85E-032.26E-032.46E-032.44E-032.40E-032.17E-03 Right Colon(W)4.44E-041.02E-031.88E-032.48E-031.56E-039.35E-048.92E-048.97E-048.48E-047.84E-047.16E-045.79E-04 Left Colon (W)3.89E-066.02E-052.04E-045.24E-045.32E-043.61E-043.49E-043.41E-043.31E-043.21E-042.92E-042.42E-04 Rectosigmoid (W)0.00E+001.00E-076.32E-068.53E-051.44E-041.15E-041.10E-041.14E-041.09E-041.01E-049.34E-058.18E-05 ET2 (larynx)0.00E+000.00E+003.48E-063.79E-056.51E-054.36E-053.64E-054.01E-053.22E-053.63E-053.28E-052.67E-05 ET2 (pharynx)0.00E+000.00E+001.00E-074.76E-061.16E-058.66E-067.85E-068.63E-066.58E-068.74E-067.98E-067.29E-06 Trachea0.00E+004.01E-076.95E-063.08E-054.14E-052.83E-052.59E-052.55E-052.41E-052.06E-052.32E-051.68E-05 Bronchi0.00E+005.60E-064.10E-051.08E-049.67E-056.44E-055.73E-055.61E-054.78E-055.42E-054.67E-053.55E-05 Blood vessel (aorta)2.26E-035.12E-036.77E-036.19E-033.38E-031.92E-031.82E-031.81E-031.70E-031.57E-031.44E-031.12E-03 L Lung8.41E-053.70E-049.77E-041.97E-031.79E-031.17E-031.09E-031.10E-031.01E-039.57E-048.99E-047.61E-04 R Lung4.40E-031.09E-021.50E-021.37E-027.16E-033.94E-033.77E-033.78E-033.51E-033.25E-032.96E-032.37E-03 Eyes0.00E+000.00E+004.88E-078.21E-061.70E-051.72E-051.82E-052.22E-052.32E-051.86E-052.03E-051.81E-05 Gall Bladder (wall)5.10E-053.10E-045.77E-046.15E-043.27E-041.92E-041.86E-041.89E-041.73E-041.63E-041.48E-041.24E-04 L Adrenal1.00E-071.80E-059.80E-052.28E-042.24E-041.55E-041.45E-041.41E-041.35E-041.20E-041.07E-048.88E-05 R Adrenal4.69E-041.08E-031.43E-031.23E-036.34E-043.65E-043.59E-043.69E-043.40E-043.08E-042.87E-042.27E-04 Skin2.30E-051.16E-034.43E-038.32E-036.63E-034.57E-034.73E-035.12E-034.82E-034.49E-034.09E-033.36E-03 L Kidney (Cortex)0.00E+003.38E-068.29E-055.59E-048.46E-046.46E-045.86E-046.02E-045.49E-045.45E-044.91E-043.90E-04 R Kidney (Cortex)4.20E-042.85E-035.91E-037.02E-034.05E-032.30E-032.18E-032.15E-032.01E-031.82E-031.67E-031.37E-03 Thyroid0.00E+002.00E-074.24E-063.04E-054.22E-053.26E-052.74E-052.34E-052.29E-052.18E-051.98E-051.58E-05 Heart(wall)1.32E-034.02E-036.62E-037.65E-034.70E-032.72E-032.60E-032.61E-032.47E-032.23E-032.09E-031.64E-03 Liver9.42E-018.37E-016.84E-013.98E-011.62E-018.87E-028.98E-029.25E-028.41E-027.46E-026.71E-024.75E-02 Spleen0.00E+001.90E-069.04E-056.95E-049.53E-046.72E-046.26E-046.38E-045.98E-045.44E-045.35E-044.36E-04 Bladder(Wall)0.00E+001.00E-073.68E-066.49E-051.08E-049.46E-058.66E-058.96E-058.74E-058.52E-057.67E-056.57E-05 SI (Wall)6.51E-041.99E-034.62E-038.09E-036.27E-033.84E-033.57E-033.56E-033.33E-033.05E-032.84E-032.30E-03 Esophagus2.29E-046.61E-049.67E-049.50E-045.48E-043.42E-043.19E-043.24E-043.07E-042.80E-042.52E-041.97E-04 Pancreas1.34E-033.16E-034.47E-034.54E-032.63E-031.57E-031.48E-031.49E-031.36E-031.24E-031.19E-039.05E-04 Thymus0.00E+001.17E-051.85E-049.09E-049.76E-046.61E-046.26E-046.30E-045.75E-045.45E-045.16E-044.24E-04 Red bone marrow1.15E-035.50E-031.17E-021.97E-022.03E-021.76E-021.81E-021.79E-021.65E-021.54E-021.43E-021.18E-02 Bone surface1.27E-035.98E-031.23E-021.97E-021.96E-021.68E-021.73E-021.71E-021.59E-021.48E-021.38E-021.14E-02

PAGE 178

161 Table 7-10. Specific absorbed fractions from the UF 9-month male phantom when photon source is in heart contents (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue1.57E-033.08E-028.89E-021.39E-019.94E -026.12E-025.85E-025.97E-025.61E-025.20E-024.87E-024.01E-02 Adipose8.59E-063.48E-032.27E-025.41E-024.70E-023.56E-023.72E-023.93E-023.77E-023.53E-023.30E-022.72E-02 Pelvis-Kidney (Left)0.00E+000.00E+005.94E-071.74E-053.56E-052.82E-052.55E-052.34E-052.41E-052.68E-052.31E-051.76E-05 Pelvis-Kidney (Right)0.00E+000.00E+009.62E-081.32E-052.60E-052.15E-052.01E-052.12E-052.02E-052.04E-051.90E-051.54E-05 Medular (Left)0.00E+000.00E+004.77E-061.06E-041.82E-041.44E-041.26E-041.21E-041.24E-041.11E-041.15E-049.21E-05 Medular (Right)0.00E+000.00E+001.50E-065.08E-051.15E-049.58E-058.95E-059.04E-058.71E-058.03E-057.66E-056.41E-05 Prostate0.00E+000.00E+000.00E+002.27E-081.36E-061.35E-061.41E-062.22E-062.93E-062.76E-063.05E-062.21E-06 Gonads0.00E+000.00E+000.00E+001.78E-081.16E-061.80E-061.62E-062.82E-061.91E-062.61E-063.21E-062.01E-06 Salivary glands0.00E+009.93E-077.63E-056.30E-047.59E-045.37E-045.07E-045.12E-044.72E-044.57E-044.21E-043.38E-04 Lenses0.00E+000.00E+009.45E-082.65E-063.58E-063.44E-062.68E-063.21E-065.06E-063.95E-063.53E-063.46E-06 Spinal Cord0.00E+002.07E-074.65E-059.17E-041.68E-031.39E-031.36E-031.42E-031.30E-031.23E-031.14E-039.51E-04 Stomach(Wall)0.00E+005.93E-058.54E-042.55E-031.93E-031.17E-031.10E-031.10E-031.01E-039.19E-048.62E-047.09E-04 Pituitary gland0.00E+000.00E+000.00E+007.92E-071.53E-061.45E-061.52E-061.22E-061.26E-061.43E-061.34E-061.23E-06 Tongue0.00E+000.00E+002.18E-052.42E-043.21E-042.21E-042.00E-042.03E-042.04E-041.95E-041.78E-041.50E-04 Tonsil0.00E+000.00E+004.00E-077.58E-061.29E-059.07E-069.31E-068.82E-068.82E-068.83E-066.94E-065.39E-06 Brain0.00E+009.66E-082.73E-051.64E-035.16E-034.73E-034.72E-035.38E-035.46E-035.38E-035.12E-034.58E-03 Right Colon(W)0.00E+003.00E-066.82E-053.40E-043.72E-042.63E-042.45E-042.57E-042.41E-042.32E-042.21E-041.81E-04 Left Colon (W)0.00E+006.38E-061.28E-045.22E-045.26E-043.35E-043.25E-043.32E-043.15E-042.90E-042.85E-042.33E-04 Rectosigmoid (W)0.00E+000.00E+003.89E-071.22E-053.35E-053.76E-053.67E-054.16E-054.55E-054.13E-053.74E-053.52E-05 ET2 (larynx)0.00E+007.93E-074.49E-052.78E-042.87E-041.69E-041.42E-041.46E-041.31E-041.20E-041.14E-049.25E-05 ET2 (pharynx)0.00E+000.00E+002.45E-062.77E-053.80E-053.09E-052.77E-052.89E-052.65E-052.46E-052.54E-052.05E-05 Trachea7.00E-077.47E-052.84E-043.82E-042.39E-041.44E-041.41E-041.39E-041.33E-041.24E-041.07E-049.07E-05 Bronchi3.42E-058.54E-041.74E-031.56E-037.21E-044.17E-044.24E-044.41E-044.08E-043.63E-043.44E-042.72E-04 Blood vessel (aorta)3.24E-051.08E-033.59E-034.84E-032.89E-031.61E-031.54E-031.52E-031.42E-031.29E-031.21E-031.01E-03 L Lung4.63E-048.65E-032.00E-022.09E-021.05E-025.67E-035.48E-035.51E-035.08E-034.69E-034.38E-033.47E-03 R Lung2.53E-047.28E-031.82E-021.99E-021.03E-025.61E-035.41E-035.45E-035.08E-034.54E-034.27E-033.51E-03 Eyes0.00E+000.00E+001.19E-063.25E-055.88E-054.85E-054.65E-055.94E-055.24E-055.48E-055.49E-054.42E-05 Gall Bladder (wall)0.00E+001.00E-073.13E-062.90E-054.34E-052.88E-052.87E-052.97E-052.75E-052.97E-052.39E-051.80E-05 L Adrenal0.00E+000.00E+001.14E-059.86E-051.27E-048.64E-057.74E-057.68E-057.69E-057.36E-056.75E-054.80E-05 R Adrenal0.00E+000.00E+006.66E-066.87E-059.50E-056.59E-056.51E-056.10E-055.51E-055.69E-055.17E-054.67E-05 Skin0.00E+002.79E-042.50E-036.84E-036.01E-034.23E-034.31E-034.65E-034.37E-034.04E-033.73E-033.04E-03 L Kidney (Cortex)0.00E+001.00E-071.46E-052.89E-045.00E-043.78E-043.55E-043.45E-043.40E-043.07E-043.10E-042.43E-04 R Kidney (Cortex)0.00E+000.00E+006.05E-061.72E-043.53E-042.93E-042.77E-042.76E-042.62E-042.55E-042.31E-042.11E-04 Thyroid0.00E+002.50E-067.18E-052.31E-042.21E-041.25E-041.06E-041.11E-049.78E-059.29E-058.11E-056.66E-05 Heart(wall)6.64E-021.35E-011.49E-019.61E-023.82E-022.07E-022.11E-022.20E-022.04E-021.85E-021.70E-021.24E-02 Liver1.17E-046.96E-032.56E-024.39E-023.05E-021.80E-021.68E-021.69E-021.57E-021.45E-021.35E-021.10E-02 Spleen0.00E+001.42E-053.00E-041.50E-031.51E-039.56E-048.55E-048.32E-047.93E-047.47E-046.93E-045.49E-04 Bladder(Wall)0.00E+000.00E+009.47E-084.68E-062.22E-052.22E-052.29E-053.00E-053.24E-053.48E-052.99E-052.55E-05 SI (Wall)0.00E+001.79E-061.25E-041.24E-031.80E-031.28E-031.19E-031.22E-031.16E-031.09E-031.06E-038.59E-04 Esophagus2.30E-059.43E-042.41E-032.65E-031.40E-038.14E-048.05E-048.23E-047.51E-046.81E-046.58E-045.18E-04 Pancreas0.00E+006.00E-077.90E-057.09E-048.75E-045.80E-045.31E-045.16E-044.91E-044.57E-044.18E-043.43E-04 Thymus5.50E-031.92E-023.00E-022.56E-021.19E-026.77E-036.85E-037.04E-036.61E-035.97E-035.59E-034.36E-03 Red bone marrow1.44E-052.02E-031.14E-022.74E-022.82E-022.32E-022.34E-022.28E-022.10E-021.94E-021.81E-021.49E-02 Bone surface1.42E-051.96E-031.08E-022.58E-022.66E-022.19E-022.19E-022.14E-021.97E-021.83E-021.70E-021.41E-02

PAGE 179

162 Table 7-11. Specific absorbed fractions from the UF 9-month male phantom when photon source is in muscle (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue8.34E-016.49E-014.87E-012.84E-011.30E -017.65E-027.82E-028.21E-027.58E-026.83E-026.18E-024.59E-02 Adipose7.05E-021.28E-011.45E-011.19E-016.76E-024.83E-025.22E-025.63E-025.39E-025.00E-024.66E-023.67E-02 Pelvis-Kidney (Left)3.60E-065.34E-051.17E-041.36E-048.30E-054.96E-054.82E-054.91E-054.72E-054.20E-054.17E-053.55E-05 Pelvis-Kidney (Right)6.59E-066.08E-051.13E-041.22E-047.10E-054.44E-054.59E-054.59E-054.35E-053.68E-053.49E-052.84E-05 Medular (Left)3.33E-053.24E-046.11E-046.24E-043.77E-042.26E-042.17E-042.36E-042.11E-042.06E-041.88E-041.56E-04 Medular (Right)2.47E-053.02E-045.48E-045.45E-043.31E-042.09E-042.01E-041.98E-041.89E-041.79E-041.68E-041.30E-04 Prostate4.72E-056.68E-058.28E-057.80E-054.95E-053.30E-052.96E-053.01E-052.49E-052.75E-052.63E-052.13E-05 Gonads6.30E-059.11E-059.95E-058.07E-055.07E-052.83E-053.07E-053.19E-053.01E-052.85E-052.83E-051.83E-05 Salivary glands8.40E-041.67E-031.96E-031.63E-038.81E-045.26E-045.24E-045.39E-045.20E-044.70E-044.34E-043.58E-04 Lenses1.85E-054.24E-054.16E-052.97E-051.41E-058.58E-069.91E-069.01E-068.67E-069.50E-069.09E-066.41E-06 Spinal Cord9.76E-041.35E-031.45E-031.65E-031.31E-039.76E-049.92E-041.04E-039.49E-049.08E-048.34E-046.53E-04 Stomach(Wall)1.27E-031.94E-031.94E-031.47E-037.68E-044.80E-044.94E-044.99E-044.50E-044.35E-043.83E-043.07E-04 Pituitary gland1.71E-052.26E-051.95E-051.24E-055.38E-063.77E-063.75E-063.85E-064.17E-064.43E-063.80E-062.16E-06 Tongue5.03E-041.07E-031.26E-039.72E-044.83E-042.69E-042.62E-042.77E-042.50E-042.34E-042.24E-041.65E-04 Tonsil3.38E-055.67E-056.16E-054.34E-052.15E-051.42E-051.35E-051.32E-051.44E-051.11E-051.08E-059.26E-06 Brain1.15E-022.50E-023.48E-023.61E-022.22E-021.32E-021.27E-021.33E-021.26E-021.18E-021.10E-028.89E-03 Right Colon(W)1.50E-031.68E-031.52E-031.06E-035.76E-043.66E-043.58E-043.80E-043.61E-043.38E-043.02E-042.34E-04 Left Colon (W)1.46E-031.62E-031.50E-031.11E-036.18E-043.86E-043.87E-044.10E-043.82E-043.53E-043.11E-042.48E-04 Rectosigmoid (W)4.81E-046.03E-046.43E-045.61E-043.36E-042.14E-042.11E-042.20E-042.04E-041.92E-041.78E-041.38E-04 ET2 (larynx)1.97E-044.44E-045.81E-044.92E-042.51E-041.34E-041.22E-041.31E-041.20E-041.05E-041.01E-047.84E-05 ET2 (pharynx)1.34E-041.94E-042.10E-041.40E-047.59E-054.24E-054.11E-054.35E-053.82E-053.99E-053.30E-052.86E-05 Trachea1.20E-041.60E-041.52E-041.14E-047.03E-054.43E-054.44E-054.69E-054.50E-053.72E-053.45E-052.85E-05 Bronchi1.01E-041.24E-041.17E-049.00E-055.92E-054.19E-054.08E-054.52E-053.76E-053.62E-053.57E-052.59E-05 Blood vessel (aorta)1.42E-032.20E-032.24E-031.82E-031.06E-036.60E-046.27E-046.50E-045.97E-045.52E-045.20E-043.91E-04 L Lung2.21E-033.78E-034.23E-033.45E-031.82E-031.09E-031.07E-031.11E-031.04E-039.52E-048.92E-047.17E-04 R Lung2.26E-033.71E-034.12E-033.39E-031.92E-031.17E-031.13E-031.16E-031.10E-031.02E-039.43E-047.56E-04 Eyes4.09E-047.10E-047.09E-044.66E-042.27E-041.31E-041.41E-041.46E-041.38E-041.23E-041.22E-048.79E-05 Gall Bladder (wall)1.20E-041.60E-041.50E-049.68E-054.80E-053.14E-053.09E-053.26E-053.27E-052.70E-052.79E-051.94E-05 L Adrenal1.74E-042.50E-042.45E-041.93E-041.20E-047.67E-057.33E-057.63E-057.64E-057.04E-057.07E-054.86E-05 R Adrenal1.44E-042.11E-041.99E-041.47E-049.44E-056.14E-056.32E-055.97E-056.51E-055.39E-055.00E-053.85E-05 Skin2.57E-031.06E-021.53E-021.40E-027.95E-035.21E-035.56E-036.03E-035.65E-035.15E-034.78E-033.80E-03 L Kidney (Cortex)9.78E-041.90E-032.26E-031.87E-031.06E-036.31E-046.32E-046.43E-046.25E-045.61E-045.37E-043.98E-04 R Kidney (Cortex)1.02E-031.94E-032.16E-031.75E-031.02E-036.43E-046.00E-046.41E-045.87E-045.49E-045.25E-043.94E-04 Thyroid1.56E-042.68E-042.91E-042.15E-041.23E-047.01E-056.62E-056.42E-056.18E-055.74E-054.68E-054.16E-05 Heart(wall)1.25E-032.38E-032.95E-032.87E-031.75E-031.05E-031.06E-031.09E-031.01E-039.19E-048.37E-046.75E-04 Liver4.76E-031.05E-021.52E-021.72E-021.15E-027.16E-036.89E-037.06E-036.68E-036.23E-035.79E-034.66E-03 Spleen9.50E-042.08E-032.65E-032.33E-031.31E-037.61E-047.41E-047.75E-047.34E-046.73E-046.13E-044.88E-04 Bladder(Wall)4.01E-045.83E-046.39E-045.93E-043.80E-042.18E-042.11E-042.24E-041.96E-041.80E-041.68E-041.37E-04 SI (Wall)3.84E-035.28E-035.70E-035.03E-033.07E-031.90E-031.87E-031.91E-031.80E-031.64E-031.53E-031.21E-03 Esophagus2.79E-043.96E-043.83E-043.27E-041.95E-041.29E-041.25E-041.38E-041.24E-041.15E-041.09E-048.35E-05 Pancreas5.27E-049.67E-041.19E-031.20E-037.29E-044.54E-044.44E-044.46E-044.18E-043.97E-043.59E-042.99E-04 Thymus5.21E-041.13E-031.57E-031.61E-031.05E-036.68E-046.67E-046.77E-046.37E-045.71E-045.59E-044.35E-04 Red bone marrow3.45E-025.26E-025.85E-025.12E-023.38E-022.50E-022.56E-022.59E-022.41E-022.23E-022.07E-021.71E-02 Bone surface4.06E-025.89E-026.27E-025.28E-023.41E-022.48E-022.52E-022.55E-022.38E-022.20E-022.05E-021.69E-02

PAGE 180

163 Table 7-12. Specific absorbed fractions from the UF 14-year male phantom when photon source is in stomach contents (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue8.35E-035.10E-021.24E-012.19E-012.00E -011.41E-011.30E-011.29E-011.21E-011.14E-011.08E-019.04E-02 Adipose1.25E-041.18E-036.25E-032.18E-022.81E-022.57E-022.68E-022.86E-022.80E-022.67E-022.55E-022.16E-02 Pelvis-Kidney (Left)0.00E+001.80E-068.03E-054.32E-044.88E-043.13E-042.61E-042.53E-042.16E-042.08E-041.88E-041.58E-04 Pelvis-Kidney (Right)0.00E+000.00E+009.28E-081.83E-056.56E-057.43E-056.62E-056.75E-055.81E-055.62E-055.61E-054.39E-05 Medular (Left)1.00E-076.98E-058.08E-042.79E-032.68E-031.67E-031.45E-031.36E-031.25E-031.13E-031.07E-038.65E-04 Medular (Right)0.00E+000.00E+006.95E-075.84E-052.51E-043.00E-042.77E-042.61E-042.49E-042.27E-042.21E-041.91E-04 Prostate0.00E+000.00E+000.00E+000.00E+003.15E-071.76E-061.92E-063.69E-064.34E-063.17E-063.49E-064.03E-06 Gonads0.00E+000.00E+000.00E+000.00E+001.55E-062.48E-064.33E-065.64E-067.64E-069.01E-061.04E-051.24E-05 Salivary glands0.00E+000.00E+000.00E+006.85E-062.42E-053.99E-054.21E-055.72E-055.56E-055.83E-056.06E-055.21E-05 Lenses0.00E+000.00E+000.00E+000.00E+003.72E-078.39E-082.35E-073.53E-074.09E-074.06E-071.00E-064.31E-07 Spinal Cord0.00E+009.61E-082.78E-061.08E-045.96E-048.29E-048.67E-048.82E-048.11E-047.77E-047.22E-046.43E-04 Stomach(Wall)3.60E-026.51E-027.26E-025.67E-022.81E-021.60E-021.52E-021.52E-021.40E-021.28E-021.16E-028.81E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+002.23E-082.88E-071.70E-071.33E-073.46E-074.01E-073.29E-071.76E-07 Tongue0.00E+000.00E+000.00E+005.10E-063.12E-053.74E-054.09E-054.97E-055.47E-056.17E-055.63E-055.02E-05 Tonsil0.00E+000.00E+000.00E+002.10E-075.97E-071.91E-062.11E-062.02E-061.93E-062.45E-062.60E-062.33E-06 Brain0.00E+000.00E+000.00E+005.52E-069.24E-052.07E-042.76E-044.21E-045.45E-046.03E-046.29E-046.34E-04 Right Colon(W)0.00E+001.30E-066.27E-057.56E-041.56E-031.41E-031.26E-031.18E-031.09E-031.04E-039.64E-048.29E-04 Left Colon (W)4.99E-042.84E-036.59E-031.03E-027.86E-034.90E-034.43E-034.28E-033.92E-033.57E-033.36E-032.68E-03 Rectosigmoid (W)0.00E+000.00E+002.69E-069.10E-052.50E-042.55E-042.45E-042.47E-042.41E-042.34E-042.10E-041.90E-04 ET2 (larynx)0.00E+000.00E+009.51E-084.73E-062.00E-052.47E-052.42E-052.76E-052.83E-052.61E-052.96E-052.65E-05 ET2 (pharynx)0.00E+000.00E+000.00E+005.76E-072.19E-063.07E-063.57E-064.90E-065.78E-063.37E-065.58E-063.64E-06 Trachea0.00E+000.00E+000.00E+004.87E-061.42E-051.60E-051.63E-051.78E-051.71E-051.86E-051.42E-051.21E-05 Bronchi0.00E+000.00E+002.10E-061.94E-054.15E-054.09E-053.52E-053.46E-053.48E-053.60E-053.09E-052.62E-05 Blood vessel (aorta)2.00E-076.22E-058.76E-044.40E-035.90E-034.45E-033.85E-033.57E-033.28E-033.06E-032.81E-032.36E-03 L Lung8.28E-045.35E-031.38E-022.13E-021.59E-029.86E-038.85E-038.46E-037.85E-037.19E-036.53E-035.42E-03 R Lung0.00E+003.50E-061.04E-041.21E-032.87E-032.80E-032.62E-032.54E-032.44E-032.26E-032.16E-031.81E-03 Eyes0.00E+000.00E+000.00E+001.90E-071.22E-063.42E-064.37E-066.10E-069.26E-068.15E-067.62E-067.00E-06 Gall Bladder (wall)0.00E+001.00E-073.91E-065.69E-051.25E-041.06E-049.71E-058.96E-058.31E-057.86E-056.97E-055.80E-05 L Adrenal1.25E-052.73E-047.18E-049.70E-046.54E-043.94E-043.71E-043.63E-043.25E-043.03E-042.92E-042.23E-04 R Adrenal0.00E+000.00E+001.68E-063.25E-057.47E-057.33E-056.80E-055.89E-055.82E-056.14E-055.19E-054.47E-05 Skin0.00E+005.70E-059.60E-044.83E-036.45E-035.39E-035.46E-035.90E-035.76E-035.39E-035.13E-034.32E-03 L Kidney (Cortex)2.00E-063.74E-042.82E-038.37E-037.59E-034.74E-034.16E-033.89E-033.58E-033.28E-033.08E-032.47E-03 R Kidney (Cortex)0.00E+000.00E+002.56E-061.84E-047.17E-048.20E-047.71E-047.54E-047.02E-046.77E-046.25E-045.43E-04 Thyroid0.00E+000.00E+002.91E-075.80E-062.20E-052.64E-052.38E-052.08E-052.21E-052.18E-052.01E-051.89E-05 Heart(wall)9.94E-085.77E-057.34E-043.46E-034.65E-033.47E-033.02E-032.85E-032.66E-032.48E-032.33E-031.93E-03 Liver3.60E-044.35E-031.54E-023.87E-024.22E-022.99E-022.60E-022.46E-022.26E-022.09E-021.96E-021.62E-02 Spleen3.74E-042.32E-036.34E-031.19E-029.93E-036.10E-035.33E-035.04E-034.62E-034.28E-033.94E-033.20E-03 Bladder(Wall)0.00E+000.00E+000.00E+004.70E-063.49E-055.51E-055.90E-056.57E-057.19E-057.22E-057.06E-056.39E-05 SI (Wall)9.87E-059.90E-042.70E-036.76E-038.47E-036.61E-035.91E-035.70E-035.30E-034.87E-034.66E-033.87E-03 Esophagus1.97E-051.18E-043.23E-046.78E-046.38E-044.59E-044.20E-044.03E-043.84E-043.35E-043.22E-042.71E-04 Pancreas6.56E-047.19E-031.79E-022.45E-021.61E-029.56E-038.69E-038.41E-037.67E-037.04E-036.52E-035.22E-03 Thymus0.00E+000.00E+004.13E-072.81E-051.02E-041.12E-041.04E-041.03E-041.06E-049.71E-059.73E-059.90E-05 Red bone marrow5.38E-079.46E-056.63E-042.51E-034.68E-035.92E-036.53E-036.37E-035.86E-035.49E-035.15E-034.34E-03 Bone surface2.97E-075.17E-053.56E-041.29E-032.32E-032.87E-033.16E-033.15E-032.95E-032.79E-032.63E-032.25E-03

PAGE 181

164 Table 7-13. Specific absorbed fractions from the UF 14-year male phantom when photon source is in right colon contents (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue1.69E-027.73E-021.48E-012.24E-012.01E -011.45E-011.34E-011.32E-011.25E-011.18E-011.12E-019.39E-02 Adipose2.60E-045.40E-031.88E-023.90E-023.87E-023.33E-023.46E-023.68E-023.58E-023.41E-023.23E-022.75E-02 Pelvis-Kidney (Left)0.00E+000.00E+002.62E-099.62E-064.33E-055.46E-055.35E-055.07E-054.84E-054.44E-054.10E-053.87E-05 Pelvis-Kidney (Right)0.00E+004.05E-053.16E-047.62E-046.61E-044.08E-043.55E-043.35E-042.89E-042.75E-042.53E-042.11E-04 Medular (Left)0.00E+000.00E+009.39E-083.27E-051.91E-042.38E-042.36E-042.19E-042.11E-041.97E-041.94E-041.67E-04 Medular (Right)1.82E-063.28E-041.55E-033.00E-032.49E-031.57E-031.38E-031.33E-031.18E-031.09E-031.03E-038.33E-04 Prostate0.00E+000.00E+000.00E+007.91E-092.47E-065.84E-067.22E-067.92E-069.38E-067.76E-068.06E-068.04E-06 Gonads0.00E+000.00E+000.00E+009.74E-074.86E-061.10E-051.19E-051.43E-051.70E-051.80E-051.76E-051.68E-05 Salivary glands0.00E+000.00E+000.00E+003.98E-074.35E-061.14E-051.61E-052.39E-052.95E-053.21E-053.07E-053.28E-05 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+002.62E-081.93E-072.91E-071.49E-072.38E-072.80E-071.95E-07 Spinal Cord0.00E+000.00E+002.29E-061.31E-045.15E-047.06E-047.45E-047.48E-047.09E-046.80E-046.24E-045.30E-04 Stomach(Wall)0.00E+001.89E-061.27E-041.17E-032.01E-031.68E-031.50E-031.41E-031.28E-031.21E-031.13E-039.49E-04 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+006.62E-094.63E-071.09E-072.42E-076.95E-09 Tongue0.00E+000.00E+000.00E+003.66E-075.66E-061.34E-051.75E-052.35E-052.63E-052.71E-052.93E-053.10E-05 Tonsil0.00E+000.00E+000.00E+000.00E+002.00E-073.80E-071.12E-065.96E-071.27E-068.00E-071.22E-061.26E-06 Brain0.00E+000.00E+000.00E+002.00E-071.42E-055.92E-058.90E-051.67E-042.61E-043.18E-043.58E-043.90E-04 Right Colon(W)1.14E-011.89E-011.85E-011.18E-015.10E-022.85E-022.80E-022.83E-022.61E-022.36E-022.14E-021.54E-02 Left Colon (W)1.82E-041.21E-032.53E-034.03E-033.61E-032.55E-032.31E-032.23E-032.08E-031.94E-031.82E-031.47E-03 Rectosigmoid (W)0.00E+006.00E-073.60E-053.83E-047.06E-046.11E-045.54E-045.28E-044.85E-044.63E-044.33E-043.59E-04 ET2 (larynx)0.00E+000.00E+000.00E+001.47E-085.67E-068.78E-069.95E-061.25E-051.05E-051.05E-051.97E-051.45E-05 ET2 (pharynx)0.00E+000.00E+000.00E+000.00E+001.99E-071.05E-061.02E-062.34E-062.47E-061.61E-062.41E-062.27E-06 Trachea0.00E+000.00E+000.00E+002.05E-074.41E-066.64E-066.51E-067.84E-068.90E-061.01E-058.03E-066.85E-06 Bronchi0.00E+000.00E+000.00E+001.20E-068.24E-061.32E-051.34E-051.40E-051.42E-051.17E-051.46E-051.30E-05 Blood vessel (aorta)4.19E-057.28E-043.48E-039.77E-031.01E-026.85E-035.92E-035.48E-035.00E-034.62E-034.29E-033.54E-03 L Lung0.00E+000.00E+003.97E-079.21E-056.51E-049.62E-049.74E-041.05E-031.07E-031.07E-031.02E-038.83E-04 R Lung0.00E+000.00E+001.17E-057.00E-042.28E-032.27E-032.12E-032.16E-032.09E-032.01E-031.92E-031.65E-03 Eyes0.00E+000.00E+000.00E+000.00E+003.18E-071.33E-061.56E-062.36E-062.53E-064.29E-064.21E-064.75E-06 Gall Bladder (wall)2.25E-046.79E-041.18E-031.55E-031.04E-036.43E-045.85E-045.58E-045.04E-044.77E-044.33E-043.34E-04 L Adrenal0.00E+000.00E+000.00E+005.51E-063.53E-053.88E-054.06E-053.88E-053.96E-053.57E-053.40E-052.67E-05 R Adrenal0.00E+000.00E+009.93E-073.67E-058.99E-058.02E-057.57E-057.34E-056.17E-055.78E-055.45E-054.52E-05 Skin1.00E-071.68E-041.51E-035.28E-036.46E-035.38E-035.52E-035.99E-035.86E-035.58E-035.22E-034.46E-03 L Kidney (Cortex)0.00E+000.00E+001.00E-061.03E-045.43E-046.77E-046.33E-046.19E-045.92E-045.56E-045.48E-044.56E-04 R Kidney (Cortex)4.03E-051.78E-036.07E-031.01E-027.86E-034.83E-034.30E-034.08E-033.68E-033.40E-033.16E-032.57E-03 Thyroid0.00E+000.00E+000.00E+002.20E-075.96E-069.24E-068.33E-069.80E-061.15E-051.35E-059.67E-061.26E-05 Heart(wall)0.00E+000.00E+006.02E-071.11E-046.33E-047.63E-047.41E-047.59E-047.68E-047.21E-047.02E-046.38E-04 Liver2.23E-031.65E-024.77E-029.34E-028.33E-025.35E-024.71E-024.46E-024.09E-023.78E-023.48E-022.85E-02 Spleen0.00E+000.00E+007.04E-064.16E-041.27E-031.33E-031.18E-031.10E-031.04E-039.68E-049.13E-048.04E-04 Bladder(Wall)0.00E+000.00E+004.02E-073.39E-051.53E-041.83E-041.74E-041.81E-041.83E-041.66E-041.61E-041.43E-04 SI (Wall)5.41E-032.29E-024.30E-025.49E-023.84E-022.39E-022.18E-022.10E-021.92E-021.75E-021.63E-021.32E-02 Esophagus0.00E+000.00E+003.00E-071.83E-058.96E-059.92E-059.85E-051.01E-049.92E-059.57E-058.86E-057.83E-05 Pancreas6.52E-044.06E-038.00E-039.56E-036.63E-034.34E-033.95E-033.77E-033.45E-033.16E-032.90E-032.41E-03 Thymus0.00E+000.00E+000.00E+002.60E-062.22E-053.89E-053.89E-054.81E-055.20E-055.10E-054.50E-054.38E-05 Red bone marrow1.27E-071.19E-051.51E-041.41E-034.12E-035.94E-036.64E-036.52E-036.04E-035.66E-035.32E-034.50E-03 Bone surface5.79E-085.75E-066.95E-056.30E-041.84E-032.67E-033.02E-033.05E-032.89E-032.75E-032.61E-032.25E-03

PAGE 182

165 Table 7-14. Specific absorbed fractions from the UF 14-year male phantom when photon source is in left colon contents (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue1.89E-028.35E-021.43E-011.87E-011.60E -011.16E-011.09E-011.11E-011.06E-011.01E-019.53E-028.05E-02 Adipose1.56E-031.85E-024.53E-026.19E-024.67E-023.71E-023.92E-024.18E-024.08E-023.86E-023.66E-023.05E-02 Pelvis-Kidney (Left)0.00E+004.50E-067.24E-052.55E-042.62E-041.70E-041.62E-041.41E-041.31E-041.31E-041.24E-041.03E-04 Pelvis-Kidney (Right)0.00E+000.00E+004.31E-099.93E-064.87E-055.70E-055.14E-054.90E-054.44E-055.08E-054.56E-053.60E-05 Medular (Left)0.00E+005.15E-053.94E-041.07E-031.11E-037.48E-046.64E-046.37E-045.76E-045.48E-044.94E-044.19E-04 Medular (Right)0.00E+000.00E+003.97E-073.84E-051.86E-042.09E-041.94E-041.89E-041.86E-041.75E-041.69E-041.39E-04 Prostate0.00E+000.00E+000.00E+001.64E-073.68E-066.71E-067.74E-068.96E-067.73E-068.83E-061.05E-059.54E-06 Gonads0.00E+000.00E+001.93E-072.40E-069.88E-061.34E-051.51E-051.75E-052.07E-052.36E-052.46E-052.28E-05 Salivary glands0.00E+000.00E+000.00E+001.81E-083.29E-068.43E-061.23E-051.77E-052.42E-052.76E-052.72E-052.60E-05 Lenses0.00E+000.00E+000.00E+000.00E+001.66E-081.48E-071.37E-088.90E-082.14E-071.20E-073.64E-081.91E-07 Spinal Cord0.00E+000.00E+001.00E-072.02E-052.32E-044.12E-044.58E-044.83E-044.55E-044.48E-044.30E-043.70E-04 Stomach(Wall)4.83E-043.52E-038.43E-031.23E-028.68E-035.35E-034.85E-034.69E-034.31E-033.90E-033.70E-032.97E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+001.87E-083.73E-081.41E-071.06E-072.07E-070.00E+003.55E-07 Tongue0.00E+000.00E+000.00E+002.71E-083.47E-067.38E-061.07E-051.71E-052.21E-052.60E-052.72E-052.47E-05 Tonsil0.00E+000.00E+000.00E+000.00E+001.74E-072.57E-073.95E-075.41E-071.16E-061.20E-061.40E-061.62E-06 Brain0.00E+000.00E+000.00E+003.69E-071.32E-054.41E-057.44E-051.38E-042.18E-042.69E-042.98E-043.25E-04 Right Colon(W)1.19E-034.18E-036.69E-038.28E-036.18E-033.99E-033.69E-033.56E-033.28E-033.04E-032.80E-032.26E-03 Left Colon (W)1.17E-011.79E-011.64E-019.46E-023.84E-022.14E-022.16E-022.22E-022.05E-021.85E-021.67E-021.17E-02 Rectosigmoid (W)8.21E-053.17E-046.49E-041.39E-031.42E-031.02E-039.07E-048.88E-048.06E-047.62E-047.23E-045.87E-04 ET2 (larynx)0.00E+000.00E+000.00E+000.00E+002.23E-064.99E-065.82E-068.11E-069.96E-061.27E-051.17E-051.00E-05 ET2 (pharynx)0.00E+000.00E+000.00E+000.00E+001.53E-074.95E-077.90E-071.42E-062.46E-062.51E-061.74E-061.85E-06 Trachea0.00E+000.00E+000.00E+001.31E-082.72E-062.68E-064.43E-064.44E-065.79E-066.38E-065.93E-066.48E-06 Bronchi0.00E+000.00E+000.00E+005.54E-075.20E-067.85E-068.87E-061.01E-051.06E-051.21E-051.13E-059.75E-06 Blood vessel (aorta)0.00E+001.29E-062.10E-042.65E-034.63E-033.68E-033.18E-032.99E-032.76E-032.52E-032.37E-032.00E-03 L Lung0.00E+001.00E-071.69E-054.83E-041.47E-031.47E-031.42E-031.48E-031.47E-031.40E-031.36E-031.15E-03 R Lung0.00E+000.00E+007.96E-071.17E-047.37E-049.63E-049.81E-041.10E-031.10E-031.09E-031.07E-039.67E-04 Eyes0.00E+000.00E+000.00E+000.00E+008.55E-085.47E-071.24E-062.07E-062.75E-064.11E-063.78E-063.22E-06 Gall Bladder (wall)0.00E+000.00E+008.19E-069.36E-051.78E-041.44E-041.28E-041.18E-041.06E-041.09E-049.32E-057.53E-05 L Adrenal0.00E+000.00E+007.88E-072.32E-055.62E-055.67E-055.34E-054.76E-054.90E-054.62E-054.29E-053.47E-05 R Adrenal0.00E+000.00E+001.00E-073.15E-061.85E-052.80E-052.85E-052.83E-052.59E-052.75E-052.90E-052.43E-05 Skin5.70E-069.32E-044.38E-038.54E-037.41E-035.67E-035.89E-036.45E-036.30E-035.89E-035.54E-034.69E-03 L Kidney (Cortex)5.00E-071.95E-041.14E-032.91E-032.98E-032.02E-031.80E-031.71E-031.58E-031.50E-031.38E-031.13E-03 R Kidney (Cortex)0.00E+000.00E+008.83E-071.28E-045.21E-046.35E-045.86E-045.65E-045.41E-045.12E-044.99E-044.16E-04 Thyroid0.00E+000.00E+000.00E+001.88E-072.19E-064.83E-066.63E-066.42E-067.90E-068.17E-067.37E-068.17E-06 Heart(wall)0.00E+000.00E+001.78E-061.41E-046.72E-047.54E-047.21E-047.59E-047.78E-047.47E-047.12E-046.63E-04 Liver7.15E-045.64E-031.63E-023.48E-023.61E-022.55E-022.29E-022.22E-022.07E-021.93E-021.81E-021.50E-02 Spleen2.00E-031.33E-022.50E-022.74E-021.63E-029.22E-038.42E-038.15E-037.52E-036.89E-036.36E-035.07E-03 Bladder(Wall)0.00E+000.00E+001.78E-066.52E-052.01E-042.09E-041.98E-042.04E-042.02E-041.92E-041.81E-041.55E-04 SI (Wall)5.12E-032.46E-024.51E-025.66E-023.85E-022.36E-022.18E-022.14E-021.97E-021.80E-021.68E-021.35E-02 Esophagus0.00E+000.00E+000.00E+001.19E-056.68E-058.36E-058.01E-058.35E-058.10E-058.01E-057.43E-057.37E-05 Pancreas5.90E-062.84E-041.83E-035.71E-035.83E-033.93E-033.45E-033.26E-032.98E-032.74E-032.56E-032.08E-03 Thymus0.00E+000.00E+000.00E+007.80E-071.25E-052.35E-052.65E-053.32E-053.52E-053.68E-053.85E-054.03E-05 Red bone marrow4.68E-084.68E-052.88E-041.18E-033.11E-034.60E-035.26E-035.29E-034.96E-034.68E-034.43E-033.76E-03 Bone surface2.47E-082.36E-051.42E-045.61E-041.43E-032.11E-032.44E-032.52E-032.43E-032.33E-032.23E-031.93E-03

PAGE 183

166 Table 7-15. Specific absorbed fractions from the UF 14-year male phantom when photon source is in small intestine contents (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue1.95E-029.55E-021.72E-012.31E-011.97E -011.45E-011.36E-011.36E-011.29E-011.22E-011.15E-019.67E-02 Adipose3.06E-046.22E-031.89E-023.51E-023.60E-023.24E-023.45E-023.70E-023.63E-023.48E-023.31E-022.81E-02 Pelvis-Kidney (Left)0.00E+007.02E-074.55E-064.29E-058.95E-057.63E-056.86E-056.25E-055.85E-055.09E-055.01E-054.07E-05 Pelvis-Kidney (Right)0.00E+000.00E+001.78E-063.33E-057.46E-057.83E-056.74E-056.11E-055.75E-055.75E-055.00E-054.07E-05 Medular (Left)0.00E+005.22E-063.00E-051.68E-043.28E-042.96E-042.71E-042.58E-042.41E-042.29E-042.14E-041.82E-04 Medular (Right)0.00E+002.00E-078.15E-061.33E-043.08E-042.89E-042.54E-042.47E-042.32E-042.18E-042.13E-041.74E-04 Prostate0.00E+000.00E+001.96E-071.29E-053.36E-053.43E-053.19E-053.06E-052.85E-052.65E-052.52E-052.05E-05 Gonads0.00E+000.00E+007.09E-072.18E-054.85E-054.72E-055.07E-055.74E-056.07E-055.65E-055.30E-055.28E-05 Salivary glands0.00E+000.00E+000.00E+001.98E-071.95E-064.47E-066.48E-061.20E-051.63E-051.76E-052.18E-051.97E-05 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.52E-081.22E-072.63E-071.49E-071.21E-073.13E-07 Spinal Cord0.00E+000.00E+009.86E-083.04E-052.73E-044.76E-045.05E-045.22E-045.07E-044.60E-044.58E-043.76E-04 Stomach(Wall)3.01E-041.22E-032.34E-033.47E-033.07E-032.12E-031.94E-031.86E-031.72E-031.58E-031.50E-031.23E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+006.21E-102.23E-080.00E+004.55E-095.36E-081.67E-072.35E-07 Tongue0.00E+000.00E+000.00E+000.00E+001.12E-065.25E-066.28E-069.07E-061.24E-051.66E-051.74E-051.92E-05 Tonsil0.00E+000.00E+000.00E+000.00E+001.25E-071.06E-074.60E-071.00E-067.74E-074.65E-071.32E-066.51E-07 Brain0.00E+000.00E+000.00E+000.00E+005.19E-062.43E-053.88E-058.02E-051.35E-041.76E-042.06E-042.39E-04 Right Colon(W)1.71E-036.80E-031.15E-021.33E-028.92E-035.55E-035.09E-034.92E-034.51E-034.11E-033.75E-033.06E-03 Left Colon (W)1.30E-036.79E-031.22E-021.37E-028.85E-035.46E-035.08E-034.97E-034.58E-034.17E-033.90E-033.13E-03 Rectosigmoid (W)5.37E-042.92E-035.77E-037.03E-034.53E-032.85E-032.59E-032.51E-032.30E-032.12E-031.90E-031.57E-03 ET2 (larynx)0.00E+000.00E+000.00E+004.21E-097.65E-071.99E-064.37E-064.89E-066.52E-067.01E-067.43E-068.45E-06 ET2 (pharynx)0.00E+000.00E+000.00E+000.00E+001.56E-074.80E-074.98E-078.10E-076.93E-071.61E-067.26E-071.60E-06 Trachea0.00E+000.00E+000.00E+000.00E+001.16E-062.05E-063.24E-063.39E-063.91E-064.14E-064.75E-065.67E-06 Bronchi0.00E+000.00E+000.00E+001.71E-072.30E-065.43E-064.93E-067.21E-067.50E-066.23E-069.37E-066.39E-06 Blood vessel (aorta)2.66E-042.31E-035.80E-031.06E-029.40E-036.25E-035.52E-035.20E-034.68E-034.34E-034.06E-033.34E-03 L Lung0.00E+000.00E+008.86E-078.74E-054.91E-046.62E-046.85E-047.46E-047.79E-047.70E-047.53E-046.82E-04 R Lung0.00E+000.00E+009.11E-071.28E-046.32E-048.13E-048.06E-048.83E-049.23E-049.08E-048.83E-048.11E-04 Eyes0.00E+000.00E+000.00E+000.00E+002.43E-073.84E-077.96E-071.09E-061.74E-062.90E-063.09E-063.61E-06 Gall Bladder (wall)6.40E-064.79E-051.43E-042.85E-042.62E-041.85E-041.61E-041.61E-041.49E-041.36E-041.30E-041.01E-04 L Adrenal0.00E+000.00E+001.00E-075.95E-062.16E-052.88E-052.79E-052.63E-052.64E-052.36E-052.36E-052.13E-05 R Adrenal0.00E+000.00E+009.20E-085.86E-062.20E-052.49E-052.54E-052.64E-052.55E-052.59E-052.15E-051.70E-05 Skin1.38E-057.78E-042.92E-036.05E-036.24E-035.25E-035.47E-036.02E-035.95E-035.62E-035.34E-034.54E-03 L Kidney (Cortex)2.14E-063.16E-051.01E-044.76E-048.95E-048.29E-047.48E-047.18E-046.67E-046.43E-046.04E-045.05E-04 R Kidney (Cortex)0.00E+001.50E-063.86E-054.42E-049.30E-048.70E-047.77E-047.41E-046.93E-046.47E-046.03E-045.09E-04 Thyroid0.00E+000.00E+000.00E+001.96E-071.32E-063.21E-063.95E-064.54E-064.29E-065.02E-064.28E-069.48E-06 Heart(wall)0.00E+000.00E+002.92E-075.31E-052.93E-044.12E-044.14E-044.42E-044.65E-044.67E-044.45E-044.14E-04 Liver4.11E-043.48E-039.64E-032.24E-022.57E-021.91E-021.69E-021.63E-021.52E-021.43E-021.34E-021.11E-02 Spleen7.58E-042.81E-035.27E-037.20E-035.73E-033.74E-033.32E-033.20E-032.92E-032.73E-032.53E-032.05E-03 Bladder(Wall)9.07E-042.57E-033.49E-033.36E-032.17E-031.35E-031.23E-031.22E-031.15E-031.03E-039.67E-047.70E-04 SI (Wall)1.28E-012.15E-012.22E-011.61E-018.15E-024.76E-024.57E-024.59E-024.21E-023.83E-023.50E-022.62E-02 Esophagus0.00E+000.00E+000.00E+006.39E-063.62E-054.90E-054.95E-055.38E-055.41E-055.22E-055.36E-054.45E-05 Pancreas3.79E-041.27E-032.39E-033.93E-033.61E-032.59E-032.31E-032.19E-032.01E-031.83E-031.74E-031.41E-03 Thymus0.00E+000.00E+000.00E+008.79E-076.74E-061.66E-051.87E-052.21E-052.72E-052.78E-052.38E-052.98E-05 Red bone marrow6.60E-076.44E-056.04E-043.27E-036.78E-038.45E-039.14E-038.76E-037.98E-037.42E-036.92E-035.80E-03 Bone surface2.78E-072.80E-052.62E-041.41E-033.00E-033.79E-034.14E-034.06E-033.77E-033.55E-033.34E-032.85E-03

PAGE 184

167 Table 7-16. Specific absorbed fractions from the UF 14-year male phantom when photon source is in right lungs (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue7.66E-021.63E-012.27E-012.42E-011.73E -011.20E-011.16E-011.17E-011.10E-011.02E-019.56E-027.81E-02 Adipose1.75E-044.99E-031.88E-023.30E-022.87E-022.46E-022.65E-022.85E-022.75E-022.60E-022.46E-022.04E-02 Pelvis-Kidney (Left)0.00E+000.00E+001.00E-073.61E-061.66E-052.14E-052.34E-052.24E-052.26E-052.63E-052.00E-051.96E-05 Pelvis-Kidney (Right)0.00E+005.80E-065.91E-051.90E-041.98E-041.30E-041.21E-041.13E-041.02E-048.97E-058.65E-056.98E-05 Medular (Left)0.00E+000.00E+001.58E-062.76E-051.13E-041.38E-041.37E-041.41E-041.31E-041.28E-041.18E-041.04E-04 Medular (Right)5.16E-053.40E-049.49E-041.52E-031.16E-037.33E-046.74E-046.33E-045.78E-045.44E-044.86E-043.95E-04 Prostate0.00E+000.00E+000.00E+000.00E+001.34E-072.99E-075.20E-071.01E-061.45E-068.98E-071.88E-062.36E-06 Gonads0.00E+000.00E+000.00E+000.00E+001.60E-075.13E-074.77E-071.72E-062.87E-063.14E-063.34E-064.72E-06 Salivary glands0.00E+009.90E-084.54E-061.11E-042.22E-042.11E-042.23E-042.52E-042.48E-042.36E-042.22E-041.93E-04 Lenses0.00E+000.00E+000.00E+003.81E-079.50E-075.43E-071.06E-069.28E-077.86E-079.75E-071.31E-069.14E-07 Spinal Cord1.00E-072.26E-052.44E-041.19E-031.67E-031.60E-031.65E-031.68E-031.54E-031.42E-031.33E-031.09E-03 Stomach(Wall)0.00E+002.80E-065.96E-053.91E-047.58E-047.48E-046.94E-046.86E-046.41E-046.03E-045.66E-044.76E-04 Pituitary gland0.00E+000.00E+000.00E+002.11E-075.11E-076.38E-074.64E-078.43E-071.23E-063.36E-071.04E-063.91E-07 Tongue0.00E+001.00E-074.15E-061.01E-042.35E-042.14E-042.12E-042.29E-042.23E-042.19E-041.83E-041.64E-04 Tonsil0.00E+000.00E+000.00E+002.17E-069.52E-061.21E-051.31E-051.19E-051.21E-051.48E-059.61E-067.81E-06 Brain0.00E+000.00E+007.65E-079.16E-056.65E-049.84E-041.13E-031.49E-031.73E-031.81E-031.83E-031.68E-03 Right Colon(W)0.00E+000.00E+003.68E-062.13E-046.35E-046.45E-046.16E-046.06E-045.81E-045.55E-045.07E-044.38E-04 Left Colon (W)0.00E+000.00E+003.00E-072.33E-051.59E-042.16E-042.33E-042.61E-042.77E-042.66E-042.58E-042.28E-04 Rectosigmoid (W)0.00E+000.00E+000.00E+001.18E-061.61E-053.06E-053.56E-054.71E-054.82E-055.57E-055.53E-054.74E-05 ET2 (larynx)0.00E+003.99E-064.30E-052.24E-042.71E-041.96E-041.78E-041.85E-041.73E-041.59E-041.43E-041.19E-04 ET2 (pharynx)0.00E+009.74E-083.03E-078.59E-062.06E-052.13E-052.09E-052.18E-052.24E-052.05E-051.75E-051.40E-05 Trachea2.91E-047.30E-049.54E-047.41E-043.71E-042.30E-042.32E-042.30E-042.01E-041.79E-041.73E-041.34E-04 Bronchi7.83E-041.49E-031.70E-031.26E-036.04E-043.54E-043.48E-043.52E-043.13E-042.88E-042.65E-041.86E-04 Blood vessel (aorta)7.72E-043.84E-037.71E-039.20E-036.12E-033.89E-033.55E-033.41E-033.12E-032.90E-032.71E-032.12E-03 L Lung6.90E-063.03E-042.10E-036.26E-037.17E-035.45E-035.16E-035.05E-034.67E-034.31E-033.98E-033.29E-03 R Lung8.87E-016.88E-014.68E-012.11E-017.60E-024.15E-024.16E-024.19E-023.67E-023.12E-022.71E-021.66E-02 Eyes0.00E+000.00E+009.95E-082.59E-061.21E-051.33E-051.47E-051.99E-052.27E-052.24E-052.06E-051.97E-05 Gall Bladder (wall)0.00E+000.00E+002.18E-065.39E-059.70E-058.16E-057.76E-057.51E-057.17E-056.63E-055.41E-054.79E-05 L Adrenal0.00E+001.17E-108.69E-063.57E-056.09E-055.88E-055.99E-055.41E-055.09E-054.73E-054.05E-053.62E-05 R Adrenal2.53E-047.48E-041.01E-038.48E-044.15E-042.59E-042.44E-042.40E-042.11E-041.89E-041.76E-041.41E-04 Skin2.80E-066.67E-043.84E-038.41E-037.43E-035.79E-036.05E-036.55E-036.29E-035.80E-035.40E-034.45E-03 L Kidney (Cortex)0.00E+001.99E-075.25E-069.95E-053.33E-043.96E-044.00E-044.03E-043.88E-043.57E-043.35E-042.90E-04 R Kidney (Cortex)3.92E-041.54E-033.05E-034.18E-033.05E-031.98E-031.78E-031.71E-031.57E-031.45E-031.34E-031.04E-03 Thyroid6.66E-052.86E-045.72E-046.56E-044.37E-042.73E-042.50E-042.39E-042.17E-041.92E-041.87E-041.51E-04 Heart(wall)7.36E-032.06E-022.73E-022.41E-021.35E-028.01E-037.50E-037.37E-036.78E-036.18E-035.71E-034.37E-03 Liver3.72E-031.29E-022.65E-024.26E-023.62E-022.40E-022.17E-022.09E-021.92E-021.76E-021.64E-021.33E-02 Spleen0.00E+000.00E+000.00E+001.84E-051.49E-042.44E-042.55E-042.71E-042.80E-042.74E-042.69E-042.21E-04 Bladder(Wall)0.00E+000.00E+000.00E+002.73E-082.14E-068.38E-061.02E-051.76E-052.17E-052.47E-052.41E-052.56E-05 SI (Wall)0.00E+000.00E+001.19E-061.29E-046.81E-048.78E-049.13E-041.00E-031.03E-031.03E-039.92E-048.70E-04 Esophagus9.10E-042.85E-033.99E-033.35E-031.80E-031.13E-031.08E-031.05E-039.58E-048.68E-048.08E-046.34E-04 Pancreas0.00E+000.00E+006.25E-062.09E-045.88E-046.37E-045.92E-045.94E-045.66E-045.07E-044.81E-044.32E-04 Thymus1.28E-033.51E-035.03E-034.41E-032.33E-031.45E-031.38E-031.39E-031.26E-031.13E-031.05E-037.93E-04 Red bone marrow2.08E-038.26E-031.37E-021.51E-021.24E-021.10E-021.16E-021.12E-021.02E-029.35E-038.65E-037.10E-03 Bone surface1.12E-034.40E-037.24E-037.96E-036.57E-035.85E-036.13E-035.98E-035.48E-035.06E-034.70E-033.89E-03

PAGE 185

168 Table 7-17. Specific absorbed fractions from the UF 14-year male phantom when photon source is in left lung (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue8.71E-021.75E-012.36E-012.50E-011.77E -011.22E-011.18E-011.19E-011.12E-011.04E-019.73E-027.93E-02 Adipose3.73E-046.74E-032.30E-023.83E-023.17E-022.65E-022.85E-023.05E-022.94E-022.76E-022.61E-022.18E-02 Pelvis-Kidney (Left)0.00E+004.95E-071.06E-056.33E-059.29E-057.20E-056.39E-055.71E-055.76E-055.17E-055.46E-053.96E-05 Pelvis-Kidney (Right)0.00E+000.00E+009.80E-086.63E-063.39E-054.01E-053.71E-053.90E-053.98E-053.27E-053.81E-052.54E-05 Medular (Left)2.50E-061.34E-044.63E-048.68E-047.67E-045.02E-044.59E-044.54E-044.05E-043.94E-043.52E-042.84E-04 Medular (Right)0.00E+000.00E+001.86E-064.44E-051.65E-041.84E-041.88E-041.74E-041.72E-041.67E-041.51E-041.33E-04 Prostate0.00E+000.00E+000.00E+000.00E+001.25E-084.16E-077.42E-076.55E-071.19E-061.59E-069.48E-071.51E-06 Gonads0.00E+000.00E+000.00E+000.00E+004.86E-085.11E-076.95E-071.73E-062.98E-063.81E-063.15E-065.14E-06 Salivary glands0.00E+002.00E-071.36E-051.56E-042.39E-042.26E-042.34E-042.55E-042.53E-042.55E-042.34E-041.99E-04 Lenses0.00E+000.00E+000.00E+003.85E-076.68E-076.95E-078.08E-079.25E-071.13E-061.32E-061.33E-061.64E-06 Spinal Cord0.00E+002.12E-052.55E-041.23E-031.74E-031.65E-031.67E-031.69E-031.53E-031.42E-031.33E-031.08E-03 Stomach(Wall)2.15E-035.54E-037.32E-036.84E-034.30E-032.74E-032.53E-032.49E-032.26E-032.08E-031.91E-031.51E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+004.85E-074.83E-076.00E-076.97E-071.17E-061.24E-068.43E-071.57E-06 Tongue0.00E+000.00E+006.39E-061.25E-042.59E-042.27E-042.26E-042.33E-042.20E-042.12E-042.09E-041.65E-04 Tonsil0.00E+000.00E+000.00E+003.91E-061.16E-051.07E-051.41E-051.24E-051.10E-059.84E-061.43E-051.04E-05 Brain0.00E+000.00E+001.17E-061.38E-047.70E-041.09E-031.24E-031.60E-031.83E-031.90E-031.88E-031.77E-03 Right Colon(W)0.00E+000.00E+009.64E-082.83E-052.15E-042.99E-043.06E-043.19E-043.26E-043.13E-043.02E-042.53E-04 Left Colon (W)0.00E+000.00E+009.78E-062.01E-044.87E-044.81E-044.57E-044.84E-044.71E-044.45E-044.29E-043.73E-04 Rectosigmoid (W)0.00E+000.00E+000.00E+001.91E-061.79E-053.51E-054.12E-055.10E-055.65E-055.95E-055.53E-055.15E-05 ET2 (larynx)0.00E+004.00E-072.34E-051.95E-042.73E-041.92E-041.75E-041.75E-041.60E-041.50E-041.43E-041.16E-04 ET2 (pharynx)0.00E+000.00E+001.84E-077.10E-062.30E-052.10E-052.11E-052.46E-052.17E-052.46E-051.93E-051.65E-05 Trachea8.99E-079.32E-053.12E-044.33E-042.79E-041.80E-041.71E-041.71E-041.54E-041.41E-041.35E-041.08E-04 Bronchi3.26E-047.02E-049.65E-048.72E-044.71E-042.92E-042.90E-042.73E-042.59E-042.45E-042.12E-041.67E-04 Blood vessel (aorta)1.46E-036.37E-039.43E-038.18E-034.88E-033.17E-033.00E-032.91E-032.69E-032.47E-032.27E-031.80E-03 L Lung8.71E-016.60E-014.40E-011.96E-017.04E-023.84E-023.86E-023.88E-023.38E-022.89E-022.46E-021.50E-02 R Lung8.30E-063.38E-042.30E-036.90E-037.80E-036.03E-035.70E-035.56E-035.13E-034.73E-034.45E-033.65E-03 Eyes0.00E+000.00E+009.32E-083.85E-061.63E-051.41E-051.75E-051.97E-052.28E-052.02E-052.36E-052.16E-05 Gall Bladder (wall)0.00E+000.00E+000.00E+004.59E-062.54E-053.05E-052.81E-052.96E-052.93E-052.78E-052.71E-052.17E-05 L Adrenal2.21E-046.50E-048.17E-046.90E-043.44E-042.13E-042.10E-041.93E-041.83E-041.67E-041.50E-041.12E-04 R Adrenal0.00E+005.88E-079.55E-064.61E-057.29E-056.51E-056.42E-056.10E-055.65E-055.03E-054.45E-054.32E-05 Skin1.40E-067.69E-044.32E-039.01E-037.71E-035.91E-036.20E-036.74E-036.38E-035.99E-035.47E-034.56E-03 L Kidney (Cortex)1.19E-049.03E-041.95E-032.87E-032.28E-031.49E-031.37E-031.33E-031.23E-031.12E-031.04E-038.28E-04 R Kidney (Cortex)0.00E+000.00E+006.91E-061.21E-044.25E-044.97E-044.93E-045.09E-044.66E-044.62E-044.09E-043.58E-04 Thyroid2.20E-069.35E-053.39E-045.23E-043.93E-042.47E-042.22E-042.13E-041.97E-041.68E-041.69E-041.39E-04 Heart(wall)1.17E-023.14E-024.04E-023.34E-021.76E-021.02E-029.57E-039.51E-038.75E-038.01E-037.35E-035.59E-03 Liver0.00E+001.03E-055.18E-045.43E-031.06E-029.43E-038.58E-038.36E-038.01E-037.55E-037.13E-036.03E-03 Spleen0.00E+009.97E-085.19E-062.38E-046.63E-046.40E-045.78E-046.02E-045.72E-045.33E-045.07E-044.26E-04 Bladder(Wall)0.00E+000.00E+000.00E+000.00E+004.08E-067.96E-061.17E-051.58E-052.12E-052.34E-052.52E-052.35E-05 SI (Wall)0.00E+000.00E+004.99E-079.97E-055.93E-048.16E-048.39E-049.24E-049.66E-049.59E-049.33E-048.32E-04 Esophagus2.85E-041.47E-032.80E-032.85E-031.70E-031.09E-031.06E-031.03E-039.38E-048.74E-047.89E-046.31E-04 Pancreas6.00E-072.34E-052.51E-041.24E-031.59E-031.27E-031.12E-031.08E-039.91E-049.51E-048.71E-047.39E-04 Thymus7.82E-042.44E-033.81E-033.60E-032.04E-031.26E-031.22E-031.21E-031.10E-031.03E-039.22E-047.29E-04 Red bone marrow2.47E-039.10E-031.44E-021.53E-021.23E-021.10E-021.15E-021.12E-021.02E-029.34E-038.67E-037.08E-03 Bone surface1.34E-034.90E-037.70E-038.11E-036.55E-035.82E-036.11E-035.98E-035.47E-035.05E-034.70E-033.88E-03

PAGE 186

169 Table 7-18. Specific absorbed fractions from the UF 14-year male phantom when photon source is in urinary bladder contents (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue1.29E-025.37E-021.10E-011.97E-012.15E -011.70E-011.57E-011.55E-011.46E-011.37E-011.30E-011.09E-01 Adipose4.49E-043.51E-031.20E-023.04E-023.94E-023.83E-024.02E-024.25E-024.14E-023.93E-023.74E-023.17E-02 Pelvis-Kidney (Left)0.00E+000.00E+000.00E+001.96E-076.03E-069.67E-061.35E-051.45E-051.44E-051.62E-051.37E-051.23E-05 Pelvis-Kidney (Right)0.00E+000.00E+000.00E+002.30E-096.54E-061.19E-051.19E-051.32E-051.49E-051.59E-051.69E-051.18E-05 Medular (Left)0.00E+000.00E+000.00E+001.49E-062.31E-054.44E-055.24E-055.81E-055.94E-056.20E-056.55E-055.95E-05 Medular (Right)0.00E+000.00E+000.00E+001.94E-061.91E-054.07E-054.88E-055.60E-056.04E-056.01E-055.97E-055.36E-05 Prostate6.19E-062.66E-047.96E-041.04E-036.90E-044.27E-043.84E-043.63E-043.44E-043.02E-042.91E-042.35E-04 Gonads0.00E+002.00E-071.23E-052.04E-043.52E-042.73E-042.51E-042.46E-042.25E-042.15E-042.08E-041.63E-04 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+004.18E-071.93E-063.20E-066.80E-066.89E-067.95E-061.14E-05 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0 00.00E+000.00E+002.06E-083.34E-080.00E+000.00E+00 Spinal Cord0.00E+000.00E+003.77E-091.15E-051.01E-041.82E-042.13E-042.31E-042.24E-042.13E-042.06E-041.96E-04 Stomach(Wall)0.00E+000.00E+000.00E+001.44E-051.27E-041.90E-042.09E-042.36E-042.44E-042.47E-042.41E-042.28E-04 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.95E-089.30E-080.00E+009.33E-092.35E-09 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+004.06E-071.11E-062.76E-063.57E-065.42E-066.51E-068.85E-06 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+001.93E-087.07E-084.69E-083.44E-073.47E-072.40E-071.64E-07 Brain0.00E+000.00E+000.00E+000.00E+002.78E-083.02E-067.68E-062.21E-055.02E-057.16E-058.66E-051.21E-04 Right Colon(W)0.00E+000.00E+002.97E-077.85E-054.20E-045.43E-045.23E-045.41E-045.28E-045.20E-045.00E-044.33E-04 Left Colon (W)0.00E+002.00E-079.67E-062.47E-047.05E-047.22E-047.02E-047.09E-046.81E-046.37E-046.39E-045.26E-04 Rectosigmoid (W)1.44E-034.84E-037.84E-038.90E-035.91E-033.67E-033.38E-033.22E-032.97E-032.74E-032.52E-031.99E-03 ET2 (larynx)0.00E+000.00E+000.00E+000.00E+000.00E+005.66E-075.25E-071.10E-062.38E-062.37E-064.49E-064.49E-06 ET2 (pharynx)0.00E+000.00E+000.00E+000.00E+000.00E+004.02E-083.86E-083.17E-074.90E-072.93E-077.14E-077.97E-07 Trachea0.00E+000.00E+000.00E+000.00E+002.68E-084.67E-075.76E-079.37E-071.74E-061.96E-062.13E-062.30E-06 Bronchi0.00E+000.00E+000.00E+000.00E+003.32E-074.79E-071.33E-061.44E-062.63E-062.89E-063.76E-062.72E-06 Blood vessel (aorta)3.65E-043.20E-037.64E-031.13E-028.23E-035.26E-034.73E-034.53E-034.15E-033.83E-033.59E-032.89E-03 L Lung0.00E+000.00E+000.00E+005.63E-072.73E-057.81E-051.11E-041.65E-042.15E-042.36E-042.48E-042.57E-04 R Lung0.00E+000.00E+000.00E+001.22E-062.71E-059.38E-051.31E-041.90E-042.50E-042.77E-042.94E-042.92E-04 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+004.64E-081.06E-073.90E-071.13E-061.30E-061.32E-061.41E-06 Gall Bladder (wall)0.00E+000.00E+000.00E+007.73E-077.07E-061.28E-051.33E-051.85E-051.64E-051.73E-051.63E-051.49E-05 L Adrenal0.00E+000.00E+000.00E+001.07E-081.11E-063.86E-064.40E-064.78E-066.59E-067.77E-067.01E-067.06E-06 R Adrenal0.00E+000.00E+000.00E+000.00E+008.27E-073.09E-064.25E-065.72E-065.40E-066.97E-066.79E-066.48E-06 Skin1.10E-061.94E-041.09E-033.58E-035.32E-035.15E-035.35E-035.92E-035.87E-035.57E-035.33E-034.49E-03 L Kidney (Cortex)0.00E+000.00E+000.00E+004.04E-066.85E-051.25E-041.39E-041.59E-041.73E-041.76E-041.73E-041.55E-04 R Kidney (Cortex)0.00E+000.00E+000.00E+004.04E-066.81E-051.34E-041.47E-041.67E-041.82E-041.86E-041.77E-041.53E-04 Thyroid0.00E+000.00E+000.00E+000.00E+008.48E-095.62E-078.01E-071.95E-061.83E-062.34E-061.99E-062.42E-06 Heart(wall)0.00E+000.00E+000.00E+000.00E+001.47E-054.34E-056.23E-059.02E-051.24E-041.25E-041.34E-041.34E-04 Liver0.00E+000.00E+000.00E+008.73E-059.42E-041.70E-031.85E-032.15E-032.38E-032.42E-032.40E-032.20E-03 Spleen0.00E+000.00E+001.98E-075.87E-053.88E-045.11E-045.03E-045.06E-045.15E-045.02E-044.63E-044.13E-04 Bladder(Wall)2.13E-023.16E-023.32E-022.46E-021.20E-026.64E-036.27E-036.25E-035.72E-035.19E-034.69E-033.55E-03 SI (Wall)1.99E-037.61E-031.54E-022.42E-022.04E-021.40E-021.29E-021.24E-021.14E-021.06E-029.88E-038.01E-03 Esophagus0.00E+000.00E+000.00E+000.00E+001.51E-065.87E-068.35E-061.25E-051.37E-051.45E-051.21E-051.71E-05 Pancreas0.00E+000.00E+002.96E-072.04E-051.60E-042.51E-042.73E-042.91E-042.97E-042.91E-042.91E-042.64E-04 Thymus0.00E+000.00E+000.00E+000.00E+003.23E-071.35E-062.90E-065.81E-066.37E-068.33E-061.18E-051.28E-05 Red bone marrow1.41E-041.29E-034.88E-031.33E-021.72E-021.69E-021.73E-021.61E-021.45E-021.32E-021.23E-021.01E-02 Bone surface6.43E-055.81E-042.20E-036.18E-038.35E-038.45E-038.69E-038.17E-037.39E-036.81E-036.35E-035.28E-03

PAGE 187

170 Table 7-19. Specific absorbed fractions from the UF 14-year male phantom when photon source is in liver (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue2.71E-027.01E-021.17E-011.72E-011.59E -011.17E-011.09E-011.10E-011.05E-019.84E-029.34E-027.84E-02 Adipose9.96E-045.16E-031.25E-022.43E-022.65E-022.42E-022.57E-022.81E-022.77E-022.67E-022.54E-022.15E-02 Pelvis-Kidney (Left)0.00E+000.00E+001.00E-071.26E-054.58E-054.84E-054.38E-054.40E-054.17E-054.31E-053.39E-053.22E-05 Pelvis-Kidney (Right)0.00E+003.84E-067.84E-053.08E-043.42E-042.42E-042.13E-042.01E-041.80E-041.68E-041.55E-041.33E-04 Medular (Left)0.00E+000.00E+001.29E-067.21E-052.38E-042.49E-042.28E-042.22E-042.11E-042.00E-041.84E-041.76E-04 Medular (Right)3.00E-077.87E-055.00E-041.51E-031.57E-031.08E-039.40E-048.94E-048.23E-047.45E-047.10E-045.81E-04 Prostate0.00E+000.00E+000.00E+000.00E+002.76E-071.13E-061.78E-063.27E-063.74E-064.21E-064.68E-064.99E-06 Gonads0.00E+000.00E+000.00E+001.32E-082.07E-063.25E-063.99E-066.12E-068.43E-068.77E-068.02E-061.07E-05 Salivary glands0.00E+000.00E+002.00E-072.97E-062.30E-053.56E-053.87E-055.08E-056.24E-056.21E-055.63E-055.77E-05 Lenses0.00E+000.00E+000.00E+000.00E+007.34E-091.56E-072.18E-071.39E-072.76E-072.33E-073.23E-074.69E-07 Spinal Cord0.00E+000.00E+000.00E+004.62E-053.30E-045.25E-045.75E-045.94E-045.69E-045.36E-045.10E-044.40E-04 Stomach(Wall)7.77E-042.09E-033.53E-035.09E-034.41E-033.04E-032.76E-032.67E-032.44E-032.26E-032.09E-031.76E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+003.97E-081.25E-081.49E-073.15E-073.14E-075.79E-074.70E-081.38E-07 Tongue0.00E+000.00E+000.00E+004.35E-062.87E-053.96E-054.27E-055.03E-055.97E-056.05E-055.76E-054.90E-05 Tonsil0.00E+000.00E+000.00E+002.00E-078.71E-071.58E-062.03E-063.23E-063.20E-062.13E-062.18E-062.24E-06 Brain0.00E+000.00E+000.00E+005.66E-068.14E-051.77E-042.40E-043.81E-045.03E-045.81E-046.06E-046.05E-04 Right Colon(W)1.06E-033.10E-035.94E-039.22E-037.63E-034.96E-034.45E-034.29E-033.90E-033.59E-033.31E-032.68E-03 Left Colon (W)2.20E-045.69E-041.09E-031.99E-032.08E-031.59E-031.47E-031.45E-031.36E-031.26E-031.18E-039.75E-04 Rectosigmoid (W)0.00E+000.00E+006.83E-073.15E-051.43E-041.71E-041.71E-041.81E-041.70E-041.69E-041.52E-041.44E-04 ET2 (larynx)0.00E+000.00E+000.00E+003.03E-061.99E-052.61E-052.16E-052.65E-052.89E-052.81E-052.67E-052.82E-05 ET2 (pharynx)0.00E+000.00E+000.00E+002.69E-081.43E-062.80E-063.77E-064.77E-064.39E-064.79E-063.98E-063.93E-06 Trachea0.00E+000.00E+002.96E-076.88E-061.81E-051.80E-051.82E-051.88E-051.77E-051.52E-051.70E-051.51E-05 Bronchi0.00E+002.00E-072.69E-061.72E-054.34E-053.96E-053.59E-053.52E-053.62E-053.42E-053.64E-052.71E-05 Blood vessel (aorta)1.26E-055.69E-042.60E-036.95E-037.52E-035.23E-034.56E-034.31E-033.90E-033.66E-033.39E-032.76E-03 L Lung0.00E+004.10E-061.47E-041.62E-033.14E-032.78E-032.56E-032.50E-032.41E-032.25E-032.14E-031.84E-03 R Lung1.23E-034.36E-038.95E-031.43E-021.20E-027.94E-037.17E-036.89E-036.36E-035.85E-035.45E-034.48E-03 Eyes0.00E+000.00E+000.00E+004.88E-072.45E-064.44E-063.83E-066.34E-069.56E-069.55E-067.95E-066.94E-06 Gall Bladder (wall)1.02E-031.73E-032.26E-032.23E-031.35E-038.07E-047.53E-047.40E-046.80E-046.24E-045.81E-044.45E-04 L Adrenal0.00E+000.00E+001.60E-063.30E-056.97E-056.99E-056.30E-056.55E-055.78E-054.99E-055.58E-054.18E-05 R Adrenal0.00E+002.39E-064.14E-051.83E-042.15E-041.55E-041.45E-041.34E-041.28E-041.19E-041.13E-048.20E-05 Skin2.70E-057.86E-042.87E-036.37E-036.71E-035.44E-035.61E-036.08E-035.96E-035.64E-035.27E-034.42E-03 L Kidney (Cortex)0.00E+000.00E+005.04E-061.99E-046.69E-047.07E-046.37E-046.34E-045.91E-045.57E-045.48E-044.66E-04 R Kidney (Cortex)7.49E-063.63E-041.69E-034.37E-034.44E-032.99E-032.63E-032.50E-032.28E-032.12E-031.97E-031.61E-03 Thyroid0.00E+000.00E+001.00E-076.23E-062.18E-052.36E-052.52E-052.29E-052.28E-052.17E-052.17E-051.87E-05 Heart(wall)5.34E-053.60E-041.38E-034.04E-034.75E-033.47E-033.11E-033.02E-032.82E-032.64E-032.49E-032.07E-03 Liver9.65E-018.96E-017.86E-015.39E-012.68E-011.52E-011.45E-011.45E-011.33E-011.19E-011.08E-018.05E-02 Spleen0.00E+009.74E-081.46E-053.41E-049.66E-049.66E-048.70E-048.33E-047.70E-047.39E-046.96E-045.92E-04 Bladder(Wall)0.00E+000.00E+000.00E+001.18E-062.30E-054.81E-055.04E-056.05E-056.94E-056.59E-056.54E-056.11E-05 SI (Wall)6.75E-041.73E-033.16E-036.56E-038.11E-036.34E-035.75E-035.55E-035.26E-034.91E-034.58E-033.86E-03 Esophagus0.00E+002.58E-064.46E-052.86E-043.97E-043.20E-042.90E-042.75E-042.58E-042.39E-042.19E-041.89E-04 Pancreas9.70E-061.25E-046.56E-042.53E-033.27E-032.46E-032.17E-032.00E-031.83E-031.68E-031.58E-031.30E-03 Thymus0.00E+000.00E+003.88E-064.97E-051.31E-041.35E-041.24E-041.27E-041.22E-041.23E-041.09E-049.72E-05 Red bone marrow2.45E-052.29E-046.87E-041.76E-033.31E-034.38E-034.90E-034.91E-034.59E-034.34E-034.09E-033.49E-03 Bone surface1.35E-051.26E-043.77E-049.56E-041.74E-032.23E-032.50E-032.55E-032.43E-032.32E-032.21E-031.91E-03

PAGE 188

171 Table 7-20. Specific absorbed fractions from the UF 14-year male phantom when photon source is in heart contents (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue9.76E-041.55E-025.69E-021.34E-011.40E -011.03E-019.58E-029.55E-029.07E-028.55E-028.06E-026.80E-02 Adipose6.98E-073.29E-044.34E-031.90E-022.44E-022.21E-022.33E-022.48E-022.42E-022.29E-022.19E-021.85E-02 Pelvis-Kidney (Left)0.00E+000.00E+001.00E-077.58E-063.03E-053.32E-053.08E-053.09E-053.03E-052.69E-053.03E-052.56E-05 Pelvis-Kidney (Right)0.00E+000.00E+008.90E-072.13E-055.14E-055.61E-054.96E-054.81E-054.87E-054.07E-053.93E-053.20E-05 Medular (Left)0.00E+000.00E+003.29E-067.94E-052.35E-042.13E-041.97E-041.92E-041.84E-041.76E-041.68E-041.36E-04 Medular (Right)0.00E+001.00E-071.16E-051.40E-043.06E-042.75E-042.45E-042.38E-042.16E-042.06E-041.89E-041.64E-04 Prostate0.00E+000.00E+000.00E+000.00E+001.47E-071.43E-076.96E-077.00E-071.01E-061.44E-061.46E-062.65E-06 Gonads0.00E+000.00E+000.00E+000.00E+003.40E-075.28E-079.77E-071.25E-062.46E-063.54E-063.64E-064.40E-06 Salivary glands0.00E+000.00E+004.99E-073.77E-051.31E-041.45E-041.49E-041.67E-041.77E-041.69E-041.56E-041.55E-04 Lenses0.00E+000.00E+000.00E+000.00E+003.55E-073.85E-079.56E-078.73E-071.09E-061.22E-061.92E-061.33E-06 Spinal Cord0.00E+000.00E+001.07E-069.00E-056.15E-048.37E-048.71E-048.96E-048.70E-048.30E-047.80E-046.77E-04 Stomach(Wall)0.00E+002.02E-052.70E-041.43E-032.14E-031.68E-031.50E-031.43E-031.32E-031.24E-031.18E-039.60E-04 Pituitary gland0.00E+000.00E+000.00E+000.00E+009.90E-083.83E-075.65E-074.44E-075.60E-071.21E-066.64E-074.58E-07 Tongue0.00E+000.00E+007.88E-075.37E-051.80E-041.85E-041.80E-041.88E-041.93E-041.71E-041.69E-041.53E-04 Tonsil0.00E+000.00E+000.00E+006.21E-075.77E-068.17E-068.14E-069.02E-068.54E-067.39E-061.02E-057.79E-06 Brain0.00E+000.00E+000.00E+003.17E-053.74E-046.64E-047.66E-041.03E-031.24E-031.31E-031.37E-031.33E-03 Right Colon(W)0.00E+000.00E+001.04E-074.68E-053.25E-044.31E-044.19E-044.14E-044.21E-044.12E-043.94E-043.48E-04 Left Colon (W)0.00E+000.00E+002.95E-076.23E-052.96E-043.64E-043.50E-043.81E-043.89E-043.69E-043.69E-043.18E-04 Rectosigmoid (W)0.00E+000.00E+000.00E+005.45E-071.34E-053.03E-053.88E-054.19E-054.87E-054.99E-055.40E-055.14E-05 ET2 (larynx)0.00E+000.00E+006.71E-073.92E-051.27E-041.15E-041.07E-041.04E-041.01E-041.07E-049.69E-059.10E-05 ET2 (pharynx)0.00E+000.00E+000.00E+002.71E-061.13E-051.33E-051.35E-051.47E-051.42E-051.27E-051.28E-051.21E-05 Trachea1.00E-071.68E-058.91E-052.05E-042.02E-041.38E-041.30E-041.30E-041.21E-041.12E-041.05E-049.44E-05 Bronchi4.10E-062.63E-048.19E-041.16E-037.27E-044.47E-044.41E-044.36E-044.12E-043.76E-043.59E-042.80E-04 Blood vessel (aorta)3.28E-041.15E-033.22E-036.52E-035.78E-033.83E-033.48E-033.36E-033.16E-032.93E-032.71E-032.24E-03 L Lung2.19E-046.15E-032.24E-023.78E-022.68E-021.59E-021.45E-021.42E-021.30E-021.20E-021.12E-029.12E-03 R Lung1.47E-045.82E-032.04E-023.45E-022.48E-021.50E-021.37E-021.33E-021.21E-021.12E-021.04E-028.62E-03 Eyes0.00E+000.00E+000.00E+001.81E-069.91E-061.32E-051.40E-051.91E-051.97E-052.24E-051.90E-051.76E-05 Gall Bladder (wall)0.00E+000.00E+003.06E-071.50E-055.82E-055.67E-055.51E-055.31E-054.99E-054.50E-054.28E-053.96E-05 L Adrenal0.00E+006.91E-079.80E-067.52E-051.08E-048.98E-058.10E-057.77E-057.00E-056.16E-055.67E-055.29E-05 R Adrenal0.00E+001.30E-062.29E-051.12E-041.34E-041.03E-049.63E-058.25E-058.11E-056.62E-056.37E-055.09E-05 Skin0.00E+004.71E-058.85E-044.61E-036.10E-035.09E-035.13E-035.59E-035.37E-035.07E-034.75E-033.97E-03 L Kidney (Cortex)0.00E+001.00E-071.37E-052.70E-046.59E-046.23E-045.68E-045.56E-045.09E-044.96E-044.70E-044.09E-04 R Kidney (Cortex)0.00E+008.00E-073.39E-054.03E-048.02E-047.41E-046.61E-046.29E-046.02E-045.44E-045.31E-044.39E-04 Thyroid0.00E+001.00E-075.62E-068.45E-051.54E-041.26E-041.14E-041.13E-041.07E-041.02E-049.27E-058.51E-05 Heart(wall)4.09E-029.45E-021.24E-011.08E-015.56E-023.11E-023.03E-023.09E-022.86E-022.62E-022.42E-021.88E-02 Liver4.00E-064.16E-043.87E-031.97E-022.83E-022.13E-021.87E-021.81E-021.69E-021.58E-021.49E-021.25E-02 Spleen0.00E+000.00E+001.00E-074.33E-053.15E-043.95E-043.77E-043.82E-043.80E-043.90E-043.50E-043.17E-04 Bladder(Wall)0.00E+000.00E+000.00E+001.91E-071.68E-066.88E-069.06E-061.42E-051.78E-052.35E-052.42E-052.41E-05 SI (Wall)0.00E+000.00E+008.84E-077.22E-055.93E-048.62E-048.69E-049.63E-041.00E-031.01E-039.91E-048.93E-04 Esophagus4.60E-064.23E-041.70E-032.99E-032.22E-031.42E-031.34E-031.34E-031.24E-031.13E-031.06E-038.75E-04 Pancreas0.00E+000.00E+004.58E-062.60E-048.61E-048.66E-047.68E-047.31E-047.01E-046.78E-046.36E-045.38E-04 Thymus1.02E-054.97E-041.65E-032.81E-032.12E-031.39E-031.34E-031.35E-031.25E-031.19E-031.09E-039.16E-04 Red bone marrow1.40E-061.97E-041.48E-035.31E-037.41E-037.62E-038.01E-037.72E-037.09E-036.59E-036.18E-035.18E-03 Bone surface4.37E-077.00E-055.97E-042.39E-033.60E-033.77E-033.95E-033.83E-033.55E-033.31E-033.12E-032.65E-03

PAGE 189

172 Table 7-21. Specific absorbed fractions from the UF 14-year male phantom when photon source is in muscle (kg-1) Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle+connective tissue9.26E-018.19E-016.93E-014.78E-012.69E -011.74E-011.72E-011.77E-011.66E-011.53E-011.42E-011.12E-01 Adipose2.94E-025.38E-026.52E-026.18E-024.38E-023.55E-023.81E-024.10E-023.98E-023.75E-023.53E-022.90E-02 Pelvis-Kidney (Left)1.90E-061.30E-053.90E-056.69E-055.68E-054.18E-053.58E-053.89E-053.29E-053.04E-052.93E-052.48E-05 Pelvis-Kidney (Right)6.20E-062.03E-055.74E-058.73E-056.96E-054.95E-054.97E-054.68E-054.25E-054.00E-053.98E-053.35E-05 Medular (Left)1.06E-051.05E-042.35E-043.36E-042.63E-041.88E-041.77E-041.77E-041.71E-041.53E-041.40E-041.32E-04 Medular (Right)1.31E-051.26E-042.79E-043.87E-043.17E-042.19E-042.01E-041.94E-041.92E-041.83E-041.70E-041.39E-04 Prostate2.09E-054.19E-055.83E-055.78E-054.86E-053.39E-053.63E-053.27E-053.16E-052.70E-052.53E-052.18E-05 Gonads9.21E-051.92E-042.33E-042.11E-041.50E-049.82E-059.01E-059.27E-059.05E-058.75E-058.63E-056.42E-05 Salivary glands2.87E-046.26E-048.31E-047.53E-044.46E-042.81E-042.90E-042.96E-042.88E-042.70E-042.52E-042.06E-04 Lenses1.70E-065.31E-067.86E-064.63E-062.57E-061.93E-062.32E-062.19E-061.96E-061.88E-061.32E-061.42E-06 Spinal Cord2.44E-043.10E-043.13E-044.62E-045.50E-045.47E-045.79E-046.03E-045.78E-045.18E-045.04E-044.11E-04 Stomach(Wall)5.50E-041.01E-031.26E-031.29E-039.79E-046.91E-046.60E-046.52E-046.13E-045.70E-045.37E-044.41E-04 Pituitary gland2.50E-062.60E-064.11E-063.28E-062.07E-061.04E-061.56E-061.16E-061.22E-067.22E-071.72E-067.21E-07 Tongue1.30E-043.56E-046.00E-047.12E-044.63E-042.70E-042.59E-042.65E-042.51E-042.22E-042.11E-041.70E-04 Tonsil1.72E-053.43E-054.55E-054.29E-052.84E-051.60E-051.82E-051.65E-051.67E-051.52E-051.37E-051.18E-05 Brain6.85E-041.92E-033.38E-034.63E-033.71E-032.53E-032.42E-032.50E-032.48E-032.33E-032.23E-031.90E-03 Right Colon(W)4.17E-047.15E-049.22E-041.11E-039.41E-047.08E-046.63E-046.57E-046.14E-045.78E-045.42E-044.63E-04 Left Colon (W)5.33E-049.42E-041.12E-031.11E-038.66E-046.27E-045.91E-046.10E-045.86E-045.43E-044.99E-044.20E-04 Rectosigmoid (W)3.82E-046.14E-046.81E-046.39E-045.08E-043.79E-043.71E-043.70E-043.41E-043.26E-043.11E-042.59E-04 ET2 (larynx)8.03E-052.21E-043.46E-043.78E-042.22E-041.31E-041.21E-041.23E-041.16E-041.04E-041.04E-049.22E-05 ET2 (pharynx)4.86E-057.86E-059.08E-057.75E-054.64E-053.06E-053.03E-053.08E-052.62E-052.13E-052.42E-051.47E-05 Trachea5.62E-057.83E-058.30E-057.05E-055.07E-053.62E-053.84E-053.82E-053.53E-053.36E-053.14E-052.55E-05 Bronchi3.88E-055.59E-055.28E-055.31E-054.34E-053.05E-052.96E-052.97E-052.68E-052.21E-052.72E-052.31E-05 Blood vessel (aorta)1.06E-032.30E-033.02E-033.06E-032.34E-031.69E-031.57E-031.55E-031.46E-031.35E-031.27E-031.02E-03 L Lung1.42E-032.88E-033.88E-034.05E-032.90E-031.98E-031.93E-031.95E-031.83E-031.72E-031.60E-031.28E-03 R Lung1.38E-032.96E-034.08E-034.34E-033.13E-032.15E-032.08E-032.09E-031.95E-031.84E-031.72E-031.44E-03 Eyes7.31E-051.51E-041.75E-041.23E-045.73E-054.11E-054.18E-054.27E-054.27E-053.59E-053.28E-052.68E-05 Gall Bladder (wall)1.01E-051.74E-052.38E-053.90E-053.84E-053.40E-053.11E-052.83E-052.87E-053.07E-052.74E-052.42E-05 L Adrenal3.04E-055.59E-056.46E-056.10E-054.01E-053.11E-053.23E-053.01E-053.12E-052.92E-052.38E-052.35E-05 R Adrenal4.01E-056.90E-056.98E-056.63E-054.17E-053.34E-053.36E-052.94E-053.23E-052.89E-052.90E-052.27E-05 Skin4.10E-031.16E-021.62E-021.58E-021.03E-027.49E-037.89E-038.57E-038.20E-037.58E-036.99E-035.76E-03 L Kidney (Cortex)2.65E-046.18E-048.94E-041.03E-037.73E-045.32E-045.12E-045.18E-044.83E-044.70E-044.11E-043.58E-04 R Kidney (Cortex)3.22E-047.39E-041.08E-031.22E-039.01E-046.40E-045.90E-045.86E-045.49E-045.20E-044.96E-043.93E-04 Thyroid8.14E-051.56E-041.92E-041.55E-041.13E-046.87E-056.79E-056.81E-056.09E-056.02E-055.39E-054.42E-05 Heart(wall)4.73E-049.77E-041.40E-031.68E-031.40E-039.97E-049.26E-049.44E-048.84E-048.61E-047.77E-046.53E-04 Liver1.51E-033.88E-036.38E-039.38E-038.69E-036.42E-035.99E-035.93E-035.68E-035.35E-035.08E-034.25E-03 Spleen1.44E-043.95E-047.60E-041.16E-031.02E-037.13E-046.68E-046.76E-046.24E-045.93E-045.56E-044.63E-04 Bladder(Wall)2.79E-043.90E-044.16E-044.27E-043.79E-042.83E-042.62E-042.55E-042.48E-042.24E-042.12E-041.76E-04 SI (Wall)2.29E-033.89E-034.81E-035.26E-034.13E-033.09E-032.90E-032.90E-032.80E-032.60E-032.43E-032.02E-03 Esophagus1.52E-042.64E-042.97E-042.89E-042.07E-041.58E-041.54E-041.59E-041.45E-041.35E-041.30E-041.08E-04 Pancreas3.46E-047.70E-041.07E-031.22E-031.00E-037.22E-046.76E-046.66E-046.33E-046.12E-045.56E-044.52E-04 Thymus7.08E-051.55E-042.16E-042.78E-042.24E-041.61E-041.59E-041.65E-041.56E-041.37E-041.36E-041.18E-04 Red bone marrow1.79E-033.67E-035.26E-036.73E-036.67E-036.49E-036.95E-036.88E-036.36E-035.93E-035.54E-034.63E-03 Bone surface1.84E-033.59E-034.94E-036.10E-035.74E-035.35E-035.72E-035.73E-035.35E-034.99E-034.67E-033.92E-03

PAGE 190

173Table 7-22. Target organs r eceiving 10%, 5%, and 1% of s ource energy (electron source).. AF>10%AF>5%AF>1% MuscleMuscleMuscle, AdiposeMuscle, Adipose, Skin AdiposeMuscle, AdiposeMuscle, AdiposeMuscle, Adipose, Skin Kidney-Pelvis(L)Kidney-Pelvis(L), Kidney-Medular(L), Kidney-Cor tex(L)Muscle, Kidney-Pelvis(L), Kidney-Medular(L), Kidney-Cortex (L)Muscle, Kidney-Pelvis(L), Kidney-Medular(L), Kidney-Cortex(L) Kidney-Pelvis(R)Kidney-Pelvis(R), Kidney-Medular(R), Kidney-Cortex (R)Muscle, Kidney-Pelvis(R), Ki dney-Medular(R), Kidney-Cortex (R)Muscle, Kidney-Pelvis(R), Kidn ey-Medular(R), Kidney-Cortex(R) Kidney-Medular(L)Muscle, Kidney-Medular(L), Kidney-Cortex(L)Mu scle, Kidney-Medular(L), Kidney-Cortex(L)Muscle, Kidney-Pelvis(L) , Kidney-Medular(L), Kidney-Cortex(L) Kidney-Medular(R)Muscle, Kidney-Medular(R), Kidney-Cortex(R)Mu scle, Kidney-Medular(R), Kidney-Cortex(R)Muscle, Kidney-Pelvis(R) , Kidney-Medular(R), Kidney-Cortex(R) ProstateProstateMuscle, ProstateMuscle, Prostate, Rectosigmoid(W), Bladder(W) GonadsMuscle, GonadsMuscle, GonadsMuscle, Gonads Salivary glandsMuscle, SalivaryglandsMuscle, Saliv aryglandsMuscle, Adipose, Salivaryglands, Skin LensesMuscle, Lenses, EyesMuscle, Lenses, EyesMuscle, Lenses, Eyes, Skin Spinal CordMuscle, SpinalCordMuscle, SpinalCordMuscle, SpinalCord Stomach(W)Muscle, Stomach(W)Muscle, Stomac h(W)Muscle, Stomach(W), Liver, Pancreas ST(C) Muscle, Stomach(W)Muscle, Stomach(W) Pituitary glandMuscle, Pituitarygland, BrainMuscle, Pituitarygland, BrainMuscle, Pituitarygland, Brain TongueMuscle, TongueMuscle, TongueMuscle, Tongue TonsilMuscle, TonsilMuscle, Tongue, TonsilMuscle, Tongue, Tonsil, Pharynx BrainBrainBrainMuscle, Brain Right Colon(W)Muscle, RightColon(W)Muscle, RightColon(W), SI(W)Muscle, Adipose, RightColon(W), Liver, SI(W) Right Colon(C)MuscleMuscle, RightCol on(W)Muscle, RightColon(W), SI(W) Left Colon(W)MuscleMuscle, LeftColon(W)Muscle, Adipose, Stomach(W), LeftColon(W), SI(W) Left Colon(C)MuscleMuscleMuscle, Adipose, LeftColon(W), SI(W) Rectosigmoid(W)Muscle, Rectosigmoid(W)Muscle, Rectosigmoid(W)Muscle, Adipose, Rectosigmoid(W) Rectosigmoid(C)MuscleMuscle, Rectosigmoid(W)Muscle, Rectosigmoid(W) LarynxMuscle, LarynxMuscle, LarynxMuscle, Larynx, Pharynx PharynxMuscle, PharynxMuscle, PharynxM uscle, Tongue, Tonsil, Larynx, Pharynx TracheaMuscle, TracheaMuscle, Trachea, ThyroidMuscle, Adipose, Larynx, Trachea, Lung(R), Thyroid, Esophagus BronchiMuscle, BronchiMuscle, Bronchi, Lung(R), Heart( W)Muscle, Bronchi, Aorta, Lung(R), Heart(W), Esophagus AortaMuscle, AortaMuscle, AortaMuscle, Adipose, Aorta, Lung(L), SI(W) Lung(L)Muscle, Lung(L)Muscle, Lung(L)Muscle, Adipose, Lung(L), Heart(W) Lung(R)Muscle, Lung(R)Muscle, Lung(R)Muscle, Adipose, Lung(R), Heart(W), Liver EyesMuscle, EyesMuscle, EyesMuscle, Lenses, Eyes, Skin Gall Bladder(C)LiverGallBladder(W), LiverMuscle, GallBladder(W), Liver Gall Bladder(W)LiverGallBladder(W), LiverMuscle, GallBladder(W), Liver Adrenal(L)Muscle, Adrenal(L)Muscle, Adrenal(L)Mu scle, Stomach(W), Adrenal(L), Kidney-Cortex(L) Adrenal(R)Muscle, Adrenal(R)Muscle, Adrenal(R), Kidney -Cortex(R)Muscle, Aorta, Adrenal(R), Kidney-Cortex(R) SkinAdipose, SkinMuscle, Adipose, SkinMuscle, Adipose, Skin Kidney-Cortex(L)Muscle, Kidney-Medular(L), Kidney-Cortex(L)Muscl e, Kidney-Medular(L), Kidney-Cortex(L)Muscle, Kidney-Pelvis(L), Kidney-Medular(L), Kidney-Cortex(L) Kidney-Cortex(R)Muscle, Kidney-Medular(R), Kidney-Cortex(R)Muscl e, Kidney-Medular(R), Kidney-Cortex(R)Muscle, Kidney-Pelvis(R), Kidney-Medular(R), Kidney-Cortex(R) ThyroidMuscle, ThyroidMuscle, ThyroidMuscle, Adipose, Trachea, Thyroid, Esophagus Heart(W)Muscle, Heart(W)Muscle, Lung(L), Heart(W)Muscle, Lung(L), Lung(R), Heart(W) Heart(C)Heart(W)Hear t(W)Muscle, Heart(W) LiverLiverMuscle, LiverMuscle, Liver SpleenMuscle, SpleenMuscle, SpleenMuscle, Stomach(W), Spleen Bladder(W)Muscle, Bladder(W)Muscle, Bladder(W)M uscle, Adipose, Rectosigmoid(W), Bladder(W) Bladder(C) MuscleMuscle, Bladder(W) SI(W)Muscle, SI(W)Muscle, SI(W)Muscle, Adipose, RightColon(W), SI(W) SI(C)SI(W)Muscle, SI(W)Muscle, SI(W) EsophagusMuscle, EsophagusMuscle, EsophagusMuscl e, Trachea, Aorta, Lung( R), Heart(W), Esophagus PancreasMuscle, PancreasMuscle, PancreasMuscle, Stomach(W), SI(W), Pancreas ThymusMuscle, ThymusMuscle, ThymusMuscle, Lung(L), Lung(R), Heart(W), Thymus Source organs Target organs

PAGE 191

Table 7-23. Absorbed fractions from the UF 9-month male phantom when electron source is in stomach contents. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle1.22E-052.91E-055.31E-051.16E-042.79E-049.28E-0 42.77E-031.08E-023.10E-026.60E-021.12E-012.68E-01 Adipose0.00E+008.29E-082.59E-073.85E-073.02E-061.03E -052.46E-055.90E-051.23E-042.67E-046.69E-044.87E-03 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+001.12E-075. 52E-081.39E-074.82E-078.95E-078.38E-071.58E-062.71E-06 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+001.18E-081.17E-072.29E-073.43E-072.75E-075.96E-07 Kidney-Medular(L)0.00E+000.00E+000.00E+001.52E-073.19E-077. 47E-071.36E-062.24E-063.97E-065.84E-067.26E-061.32E-04 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+001.30E-072. 82E-084.32E-083.13E-079.57E-079.66E-071.26E-063.24E-06 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.88E-090.00E+000.00E+001.60E-081.46E-083.82E-08 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.29E-086.30E-081.60E-085.75E-08 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+008.83E-082.72E-075.82E-078.28E-078.29E-072.54E-06 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.80E-109.34E-100.00E+001.47E-08 Spinal Cord0.00E+000.00E+000.00E+000.00E+001.10E-083. 96E-071.10E-063.13E-065.54E-068.58E-061.14E-052.37E-05 Stomach(W)1.38E-043.00E-045.01E-041.01E-032.51E-038.17E -032.45E-028.21E-021.65E-012.15E-012.40E-012.18E-01 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.63E-081.43E-09 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+004.96E-081.34E-071.85E-074.88E-074.40E-076.32E-07 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.26E-085.28E-093.07E-081.64E-08 Brain0.00E+000.00E+000.00E+000.00E+000.00E+002.93E-0 71.16E-062.88E-065.60E-069.26E-061.37E-053.24E-05 Right Colon(W)0.00E+000.00E+000.00E+000.00E+000.00E+004. 62E-072.64E-069.00E-062.51E-054.88E-058.27E-051.96E-04 Left Colon(W)0.00E+000.00E+007.02E-081.27E-071.44E-063. 56E-066.90E-063.24E-051.58E-046.32E-041.57E-035.22E-03 Rectosigmoid(W)0.00E+000.00E+000.00E+000.00E+000.00E+009 .58E-101.09E-072.13E-073.85E-075.61E-075.77E-071.99E-06 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.82E-086.67E-081.51E-072.30E-071.16E-077.87E-07 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.34E-084.23E-086.69E-119.49E-085.40E-08 Trachea0.00E+000.00E+000.00E+000.00E+000.00E+006.52E-0 80.00E+009.42E-097.84E-081.27E-071.26E-073.68E-07 Bronchi0.00E+000.00E+000.00E+000.00E+000.00E+001.19E -071.11E-071.10E-071.67E-076.32E-074.46E-077.88E-07 Aorta0.00E+009.49E-086.14E-085.48E-079.60E-071.92E-0 63.87E-066.81E-061.12E-052.38E-052.09E-044.60E-03 Lung(L)0.00E+000.00E+000.00E+007.72E-071.88E-064.08E-0 65.51E-061.03E-051.84E-052.54E-053.27E-051.01E-03 Lung(R)0.00E+000.00E+000.00E+000.00E+003.89E-077.22E-0 71.58E-062.88E-066.33E-068.26E-061.14E-052.57E-05 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+006.28E-092.99E-095.35E-082.53E-078.99E-083.03E-07 Gall Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+005. 65E-095.16E-081.51E-071.92E-072.26E-072.17E-071.49E-06 Adrenal(L)0.00E+000.00E+006.71E-084.51E-076.56E-071.08E -062.06E-061.52E-051.36E-045.94E-041.34E-034.33E-03 Adrenal(R)0.00E+000.00E+000.00E+000.00E+000.00E+001.63E -071.66E-074.52E-075.41E-071.08E-061.65E-062.98E-06 Skin0.00E+000.00E+009.38E-080.00E+006.21E-071.60E-0 63.69E-067.57E-061.50E-052.35E-053.20E-052.56E-04 Kidney-Cortex(L)0.00E+000.00E+001.37E-075.04E-077.15E-072. 72E-062.97E-066.71E-061.17E-051.65E-055.23E-051.89E-03 Kidney-Cortex(R)0.00E+000.00E+000.00E+000.00E+000.00E+006. 36E-085.70E-071.62E-062.61E-063.25E-064.86E-061.10E-05 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.23E-082.33E-087.29E-086.91E-082.04E-073.05E-07 Heart(W)0.00E+000.00E+000.00E+003.35E-075.52E-071.61E -063.34E-066.56E-061.26E-051.69E-052.14E-054.65E-05 Liver0.00E+000.00E+001.47E-076.69E-074.31E-061.46E-0 52.44E-054.81E-058.38E-051.24E-042.11E-044.94E-03 Spleen0.00E+000.00E+003.98E-071.52E-064.90E-065.79E-0 61.15E-051.94E-054.43E-053.33E-041.45E-031.69E-02 Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +007.92E-099.10E-081.14E-072.38E-074.04E-071.02E-06 SI(W)0.00E+000.00E+008.76E-084.16E-072.00E-064.07E-0 69.48E-062.19E-057.36E-052.87E-047.31E-045.98E-03 Esophagus0.00E+000.00E+000.00E+002.66E-072.03E-083.16E-0 77.16E-071.35E-062.07E-066.02E-062.72E-055.42E-04 Pancreas5.30E-071.62E-063.54E-068.26E-061.99E-055.85E -051.50E-045.75E-041.47E-034.12E-039.09E-033.58E-02 Thymus0.00E+000.00E+000.00E+000.00E+000.00E+002.76E-0 78.37E-071.16E-062.45E-063.37E-065.46E-068.84E-06

PAGE 192

175 Table 7-24. Absorbed fractions from the UF 9-month male phantom when electron source is in right colon contents. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle4.71E-051.00E-041.78E-043.60E-049.01E-043.04E-0 39.37E-033.84E-021.04E-011.49E-011.76E-012.16E-01 Adipose2.44E-064.11E-067.52E-062.06E-055.11E-051.66E -045.14E-042.03E-038.13E-032.01E-023.64E-029.09E-02 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+004.35E-081.44E-071.23E-071.57E-073.52E-076.97E-07 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+001.04E-072. 53E-072.59E-075.24E-077.62E-071.27E-061.67E-061.40E-04 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+000.00E+008. 72E-081.21E-073.07E-076.26E-071.20E-061.21E-063.29E-06 Kidney-Medular(R)0.00E+000.00E+000.00E+005.50E-073.97E-078. 57E-071.28E-062.48E-063.90E-066.59E-064.06E-051.27E-03 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+009.32E -090.00E+002.19E-084.31E-082.48E-071.56E-073.20E-07 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+009.23E-081.19E-088.70E-088.20E-082.69E-07 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+006.33E-099.99E-081.61E-071.41E-074.19E-076.83E-07 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+005.32E-091.14E-080.00E+00 Spinal Cord0.00E+000.00E+000.00E+000.00E+000.00E+008. 94E-084.96E-071.07E-062.19E-063.20E-064.53E-069.35E-06 Stomach(W)6.56E-077.20E-072.29E-067.04E-061.57E-056.13E -051.96E-047.57E-041.69E-032.56E-033.14E-033.37E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+005.08E-091.98E-081.05E-072.69E-082.33E-075.39E-07 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+009.40E-08 Brain0.00E+000.00E+000.00E+000.00E+001.18E-076.63E-0 82.88E-077.82E-072.47E-064.34E-066.73E-061.54E-05 Right Colon(W)1.23E-042.56E-044.30E-048.88E-042.32E-037. 87E-032.34E-026.63E-028.09E-027.82E-027.33E-025.65E-02 Left Colon(W)8.07E-082.31E-081.75E-073.80E-073.23E-063. 89E-051.72E-047.16E-041.48E-031.92E-032.18E-032.46E-03 Rectosigmoid(W)1.57E-061.78E-063.35E-065.33E-061.66E-056 .30E-051.70E-045.43E-047.94E-049.57E-041.07E-031.30E-03 Larynx0.00E+000.00E+000.00E+000.00E+001.30E-070.00E+001.09E-082.51E-086.15E-085.84E-083.41E-071.83E-07 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+005.22E-098.28E-095.34E-083.07E-09 Trachea0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0 00.00E+002.40E-095.26E-094.37E-089.77E-084.74E-08 Bronchi0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.73E-086.53E-094.14E-087.15E-081.27E-07 Aorta0.00E+000.00E+000.00E+000.00E+003.51E-077.26E-0 78.55E-072.40E-063.73E-065.05E-066.94E-062.59E-05 Lung(L)0.00E+000.00E+000.00E+000.00E+008.45E-084.22E-0 81.40E-075.75E-071.46E-061.87E-062.82E-062.23E-05 Lung(R)0.00E+000.00E+000.00E+000.00E+002.31E-072.23E-0 76.05E-071.50E-062.31E-063.65E-065.01E-061.59E-05 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.69E-087.94E-093.67E-086.36E-091.66E-07 Gall Bladder(W)9.15E-080.00E+009.76E-088.77E-081.85E-071. 67E-065.26E-064.22E-051.77E-043.62E-046.08E-041.29E-03 Adrenal(L)0.00E+000.00E+000.00E+000.00E+000.00E+005.94E -087.89E-081.15E-073.43E-072.90E-074.63E-079.13E-07 Adrenal(R)0.00E+000.00E+000.00E+000.00E+001.07E-084.37E -081.27E-072.54E-072.67E-075.06E-076.44E-071.48E-06 Skin6.67E-089.04E-083.11E-078.94E-072.37E-066.64E-0 61.74E-054.55E-059.69E-051.81E-043.91E-046.27E-03 Kidney-Cortex(L)0.00E+000.00E+000.00E+000.00E+001.47E-071. 71E-085.59E-071.03E-061.95E-062.70E-064.15E-067.95E-06 Kidney-Cortex(R)0.00E+000.00E+001.56E-078.84E-081.27E-062. 17E-063.61E-068.20E-064.76E-053.47E-041.11E-035.27E-03 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+005.06E-095.23E-081.26E-081.52E-089.38E-08 Heart(W)0.00E+000.00E+009.81E-080.00E+001.28E-071.06E -076.08E-078.68E-071.69E-062.74E-064.29E-061.29E-05 Liver1.41E-063.08E-066.94E-061.10E-053.49E-051.00E-0 42.69E-041.16E-033.97E-037.77E-031.18E-023.10E-02 Spleen0.00E+000.00E+000.00E+000.00E+001.99E-079.89E-0 82.51E-076.62E-071.32E-061.56E-062.53E-065.15E-06 Bladder(W)2.67E-079.82E-071.49E-063.43E-068.67E-062.60E -058.42E-053.20E-047.89E-041.22E-031.56E-032.19E-03 SI(W)7.78E-061.59E-052.96E-056.28E-051.66E-045.54E-0 41.74E-037.03E-031.93E-022.76E-023.24E-024.20E-02 Esophagus0.00E+000.00E+000.00E+000.00E+000.00E+001.88E-0 93.76E-081.52E-072.42E-072.56E-073.14E-076.44E-07 Pancreas0.00E+000.00E+000.00E+001.25E-077.95E-083.12E -076.78E-071.66E-063.21E-064.15E-066.05E-062.67E-05 Thymus0.00E+000.00E+000.00E+000.00E+000.00E+001.42E-0 77.23E-083.32E-075.41E-078.52E-079.52E-072.37E-06

PAGE 193

176 Table 7-25. Absorbed fractions from the UF 9-month male phantom when electron source is in left colon contents. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle3.11E-057.19E-051.19E-042.51E-046.34E-042.05E-0 36.30E-032.58E-027.16E-021.07E-011.33E-011.91E-01 Adipose2.96E-065.51E-061.06E-052.27E-056.56E-051.91E -045.60E-042.22E-038.05E-031.75E-022.98E-028.03E-02 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+007. 90E-082.90E-073.19E-076.62E-079.96E-071.15E-063.46E-05 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+001.28E-094.66E-089.52E-081.55E-073.36E-076.89E-07 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+001.82E-073. 37E-079.08E-072.09E-062.89E-065.81E-061.78E-055.28E-04 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+000.00E+008. 45E-099.50E-082.56E-075.39E-079.79E-078.47E-072.02E-06 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+008.64E -091.16E-085.70E-089.08E-081.15E-071.19E-072.02E-07 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.90E-083.58E-088.50E-088.22E-081.51E-074.24E-07 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.25E-085.64E-083.26E-072.75E-073.63E-071.14E-06 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.56E-084.64E-09 Spinal Cord0.00E+000.00E+000.00E+000.00E+000.00E+002. 94E-074.32E-071.09E-062.22E-063.49E-065.11E-061.04E-05 Stomach(W)4.57E-071.53E-062.44E-066.84E-061.56E-056.33E -052.18E-047.94E-041.98E-033.04E-034.20E-037.03E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.70E-090.00E+000.00E+00 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.56E-086.39E-083.20E-081.26E-071.94E-076.44E-07 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.36E-103.31E-093.15E-085.61E-09 Brain0.00E+000.00E+000.00E+000.00E+000.00E+001.17E-0 82.16E-071.37E-063.08E-064.85E-066.25E-061.90E-05 Right Colon(W)3.84E-074.76E-078.06E-072.15E-065.76E-063. 94E-051.48E-045.71E-041.07E-031.32E-031.51E-031.81E-03 Left Colon(W)7.79E-051.69E-042.83E-045.99E-041.50E-034. 90E-031.46E-024.13E-025.30E-025.36E-025.25E-024.54E-02 Rectosigmoid(W)3.36E-067.63E-061.03E-051.98E-056.04E-051 .98E-045.96E-041.88E-033.12E-033.69E-034.08E-034.81E-03 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+001.86E-0 80.00E+004.65E-081.26E-073.59E-088.45E-082.17E-07 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.06E-080.00E+003.41E-101.03E-082.43E-085.56E-08 Trachea0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0 00.00E+003.67E-082.16E-081.29E-073.81E-086.07E-08 Bronchi0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.99E-081.98E-088.07E-086.43E-081.45E-072.23E-07 Aorta0.00E+008.18E-088.09E-083.13E-074.33E-072.16E-0 65.87E-062.44E-051.09E-042.27E-043.68E-048.42E-04 Lung(L)0.00E+000.00E+001.58E-070.00E+004.56E-079.31E-0 71.69E-065.69E-063.09E-051.19E-042.93E-041.52E-03 Lung(R)0.00E+000.00E+000.00E+000.00E+000.00E+002.34E-0 75.07E-078.31E-071.79E-062.78E-063.58E-061.25E-05 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+009.28E-102.08E-091.31E-084.90E-087.22E-082.07E-07 Gall Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+000.00E+003.55E-081.88E-071.11E-062.28E-067.20E-06 Adrenal(L)0.00E+000.00E+000.00E+000.00E+000.00E+001.46E -075.39E-083.24E-075.28E-077.65E-078.26E-072.06E-06 Adrenal(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +009.77E-082.75E-081.62E-072.83E-074.54E-071.01E-06 Skin0.00E+000.00E+001.47E-076.12E-078.28E-073.57E-0 65.91E-061.19E-052.16E-053.12E-058.74E-054.38E-03 Kidney-Cortex(L)9.93E-086.49E-082.64E-074.69E-072.17E-064. 38E-061.45E-054.73E-051.87E-045.04E-041.02E-033.34E-03 Kidney-Cortex(R)0.00E+000.00E+000.00E+000.00E+000.00E+001. 07E-074.37E-079.33E-071.41E-062.59E-062.98E-068.10E-06 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+007.35E-092.57E-082.27E-087.70E-083.24E-081.34E-07 Heart(W)0.00E+000.00E+000.00E+000.00E+007.11E-084.03E -078.87E-071.78E-063.72E-065.46E-067.47E-062.28E-05 Liver0.00E+000.00E+000.00E+001.08E-079.05E-072.89E-0 67.96E-062.60E-056.17E-051.24E-042.33E-047.86E-04 Spleen0.00E+000.00E+001.59E-071.52E-071.09E-062.11E-0 62.17E-064.69E-068.58E-061.67E-055.05E-051.30E-03 Bladder(W)1.81E-096.70E-077.24E-071.24E-061.92E-061.05E -053.57E-051.28E-043.60E-045.22E-046.29E-048.14E-04 SI(W)5.85E-061.09E-051.95E-054.05E-059.56E-053.04E-0 49.56E-043.87E-031.09E-021.60E-021.92E-022.62E-02 Esophagus0.00E+000.00E+000.00E+000.00E+000.00E+007.15E-0 86.95E-081.35E-073.22E-073.47E-076.43E-071.50E-06 Pancreas0.00E+000.00E+001.19E-079.79E-088.77E-079.87E -071.82E-063.54E-061.38E-056.28E-051.51E-041.15E-03 Thymus0.00E+000.00E+000.00E+000.00E+001.29E-072.26E-0 83.68E-072.69E-076.57E-071.13E-061.54E-063.10E-06

PAGE 194

177 Table 7-26. Absorbed fractions from the UF 9-month male phantom when electron source is in small intestine contents. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle2.09E-053.82E-056.75E-051.31E-043.39E-041.10E-0 33.30E-031.27E-023.87E-027.46E-021.04E-011.68E-01 Adipose0.00E+003.20E-076.58E-071.18E-064.49E-061.82E -054.30E-051.12E-043.76E-041.04E-032.20E-031.47E-02 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+006.83E-092. 93E-074.02E-075.75E-071.01E-061.49E-061.45E-068.08E-05 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+003. 23E-072.04E-073.08E-077.17E-078.03E-071.02E-064.52E-05 Kidney-Medular(L)0.00E+000.00E+000.00E+001.12E-072.88E-074. 63E-071.12E-061.94E-063.87E-065.22E-067.01E-065.28E-04 Kidney-Medular(R)0.00E+000.00E+006.59E-080.00E+001.86E-082. 91E-077.91E-071.37E-062.27E-063.61E-064.73E-061.62E-04 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.54E-084.98E-082.06E-088.26E-081.87E-072.54E-07 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.14E-083.52E-082.57E-086.30E-081.81E-072.51E-07 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.21E-084.14E-081.18E-073.06E-075.25E-079.28E-07 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+004.32E-09 Spinal Cord0.00E+000.00E+000.00E+000.00E+001.72E-085. 43E-077.79E-071.98E-064.05E-065.72E-068.10E-061.57E-05 Stomach(W)6.38E-082.70E-076.97E-072.17E-065.15E-061.45E -054.04E-051.72E-044.05E-046.98E-041.17E-033.74E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+008.57E-10 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+004.04E-081.19E-071.51E-077.81E-083.26E-07 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+009.71E-106.31E-091.45E-09 Brain0.00E+000.00E+000.00E+000.00E+001.04E-081.23E-0 72.00E-077.37E-072.25E-064.69E-066.17E-061.59E-05 Right Colon(W)4.75E-078.51E-071.71E-063.95E-069.69E-063. 21E-059.57E-053.78E-041.62E-033.82E-035.74E-039.62E-03 Left Colon(W)3.35E-078.42E-071.92E-062.82E-066.49E-063. 00E-058.22E-053.41E-041.34E-032.92E-034.24E-037.04E-03 Rectosigmoid(W)3.67E-075.48E-071.56E-061.33E-067.09E-062 .18E-056.29E-052.37E-047.13E-041.39E-031.97E-033.08E-03 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.53E-089.49E-089.83E-081.60E-07 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.55E-081.37E-091.68E-082.27E-092.20E-08 Trachea0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0 00.00E+001.30E-081.65E-082.95E-082.08E-089.99E-08 Bronchi0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+008.40E-095.75E-085.20E-081.37E-072.60E-07 Aorta0.00E+002.08E-071.34E-071.20E-062.17E-067.08E-0 61.58E-056.94E-053.39E-041.19E-032.50E-036.25E-03 Lung(L)0.00E+000.00E+000.00E+000.00E+002.49E-073.06E-0 75.72E-071.58E-062.81E-064.66E-065.61E-061.48E-05 Lung(R)0.00E+000.00E+000.00E+000.00E+000.00E+001.67E-0 74.59E-071.45E-063.19E-064.29E-066.26E-061.12E-05 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+009.89E-090.00E+006.54E-091.13E-071.32E-071.00E-07 Gall Bladder(W)0.00E+000.00E+006.63E-080.00E+006.79E-088. 36E-091.85E-072.18E-078.18E-065.29E-051.23E-042.86E-04 Adrenal(L)0.00E+000.00E+000.00E+000.00E+001.92E-072.37E -074.39E-077.25E-071.89E-061.71E-055.01E-053.60E-04 Adrenal(R)0.00E+000.00E+000.00E+000.00E+000.00E+006.92E -082.26E-072.16E-075.05E-079.35E-078.17E-076.75E-06 Skin0.00E+000.00E+000.00E+001.46E-073.64E-071.51E-064.12E-068.44E-061.51E-052.46E-053.17E-055.67E-04 Kidney-Cortex(L)0.00E+000.00E+000.00E+002.67E-079.80E-071. 85E-063.39E-065.95E-061.05E-055.13E-053.06E-043.31E-03 Kidney-Cortex(R)0.00E+000.00E+000.00E+001.31E-071.64E-071. 36E-062.64E-064.10E-069.92E-063.19E-051.15E-041.41E-03 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.45E-083.27E-085.20E-095.77E-081.86E-07 Heart(W)0.00E+000.00E+000.00E+000.00E+000.00E+003.48E -075.67E-071.87E-063.43E-065.75E-066.09E-061.29E-05 Liver2.37E-071.08E-061.36E-064.63E-061.14E-053.00E-0 58.78E-053.13E-048.08E-041.64E-032.74E-038.49E-03 Spleen0.00E+000.00E+000.00E+002.99E-071.54E-079.84E-0 71.08E-062.65E-064.56E-067.73E-069.11E-062.40E-05 Bladder(W)0.00E+000.00E+000.00E+000.00E+004.27E-074.09E -076.91E-071.41E-061.27E-052.10E-045.77E-041.52E-03 SI(W)1.61E-043.24E-045.47E-041.12E-032.73E-038.76E-0 32.61E-028.63E-021.61E-011.91E-012.02E-011.96E-01 Esophagus0.00E+000.00E+000.00E+000.00E+000.00E+005.83E-0 88.50E-082.06E-072.95E-075.86E-077.27E-071.40E-06 Pancreas1.42E-062.63E-063.18E-068.15E-061.98E-056.22E -051.77E-046.97E-041.93E-034.06E-036.71E-031.53E-02 Thymus0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.72E-075.25E-077.23E-071.31E-061.55E-063.31E-06

PAGE 195

178 Table 7-27. Absorbed fractions from the UF 9-month male phantom when electron source is in right lung. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle1.83E-043.74E-046.14E-041.27E-033.08E-039.84E-0 32.77E-028.20E-021.47E-011.91E-012.25E-012.85E-01 Adipose5.89E-086.85E-071.06E-063.69E-061.40E-053.11E -056.31E-051.71E-046.84E-043.74E-031.27E-028.55E-02 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+000.00E+004.59E-095.77E-085.92E-089.99E-082.91E-07 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+001.93E-080.0 0E+002.52E-107.51E-085.42E-081.86E-071.58E-073.34E-07 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+005.65E-081.25E-072.47E-075.54E-079.38E-071.10E-06 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+000.00E+002. 16E-081.57E-072.67E-075.35E-077.20E-078.24E-071.73E-06 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.60E-096.02E-094.37E-08 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.08E-081.10E-092.16E-08 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+009.56E-083. 42E-084.86E-078.81E-071.97E-062.65E-063.88E-068.80E-06 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0 00.00E+000.00E+001.12E-082.34E-082.15E-081.17E-08 Spinal Cord0.00E+000.00E+000.00E+003.62E-103.08E-078. 34E-071.37E-063.07E-065.69E-069.02E-061.29E-051.09E-03 Stomach(W)0.00E+000.00E+004.91E-090.00E+001.41E-073.64E -075.08E-071.28E-062.67E-063.22E-064.45E-061.28E-04 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+001.38E-100.00E+000.00E+003.76E-097.36E-090.00E+002.18E-08 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+001.06E-0 71.93E-075.85E-076.31E-071.06E-061.36E-063.05E-06 Tonsil0.00E+000.00E+000.00E+000.00E+004.48E-090.00E+007.04E-094.45E-095.41E-081.70E-086.21E-081.58E-07 Brain0.00E+000.00E+000.00E+000.00E+002.72E-071.32E-0 63.27E-067.80E-061.78E-052.60E-053.59E-058.09E-05 Right Colon(W)0.00E+000.00E+000.00E+000.00E+002.68E-071. 72E-076.89E-085.07E-078.46E-071.51E-061.67E-067.33E-06 Left Colon(W)0.00E+000.00E+000.00E+000.00E+000.00E+001. 16E-084.72E-082.23E-075.87E-077.83E-071.53E-064.57E-06 Rectosigmoid(W)0.00E+000.00E+000.00E+000.00E+000.00E+000 .00E+004.08E-081.46E-071.75E-071.45E-072.81E-076.10E-07 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+002.05E-0 73.28E-073.10E-077.18E-077.69E-071.24E-065.56E-06 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.72E-087.25E-087.64E-082.07E-072.73E-076.50E-07 Trachea0.00E+000.00E+000.00E+000.00E+000.00E+008.55E-0 83.05E-071.03E-061.57E-051.06E-042.73E-048.04E-04 Bronchi1.79E-064.46E-067.30E-061.08E-052.83E-059.83E -052.85E-048.89E-041.56E-031.93E-032.22E-032.53E-03 Aorta2.88E-064.67E-069.64E-061.98E-054.53E-051.45E-0 44.24E-041.50E-033.27E-034.69E-035.60E-036.27E-03 Lung(L)2.16E-076.59E-071.08E-061.82E-065.29E-061.41E-0 53.39E-054.88E-054.72E-054.40E-054.89E-059.96E-05 Lung(R)1.00E+009.99E-019.99E-019.98E-019.95E-019.85E-0 19.59E-018.70E-017.36E-016.26E-015.35E-013.08E-01 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+007.69E-083.03E-081.76E-071.83E-072.03E-078.05E-07 Gall Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+008. 36E-083.16E-089.32E-081.38E-074.84E-073.56E-074.71E-07 Adrenal(L)0.00E+000.00E+000.00E+000.00E+000.00E+007.83E -091.64E-081.18E-072.69E-072.23E-074.80E-079.46E-07 Adrenal(R)0.00E+000.00E+000.00E+000.00E+000.00E+005.86E -081.08E-071.56E-072.67E-075.66E-076.07E-072.47E-05 Skin0.00E+000.00E+006.48E-087.08E-073.99E-072.56E-0 64.93E-061.01E-051.84E-052.85E-054.00E-052.78E-03 Kidney-Cortex(L)0.00E+000.00E+000.00E+000.00E+000.00E+008. 22E-081.01E-074.35E-078.43E-071.56E-061.90E-063.89E-06 Kidney-Cortex(R)0.00E+000.00E+000.00E+000.00E+001.12E-071. 85E-076.53E-077.89E-071.37E-062.23E-062.87E-066.62E-06 Thyroid0.00E+000.00E+000.00E+000.00E+002.16E-073.50E -071.54E-073.30E-076.90E-079.54E-075.54E-061.95E-04 Heart(W)1.12E-052.24E-053.70E-058.01E-052.05E-045.98E -041.74E-035.81E-031.38E-022.19E-022.92E-024.14E-02 Liver2.29E-054.88E-058.27E-051.71E-043.94E-041.28E-0 33.88E-031.35E-022.94E-024.43E-025.71E-029.24E-02 Spleen0.00E+000.00E+000.00E+000.00E+000.00E+001.20E-0 74.40E-077.45E-071.85E-061.87E-063.32E-067.39E-06 Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +000.00E+001.03E-071.19E-071.45E-071.92E-075.34E-07 SI(W)0.00E+000.00E+000.00E+000.00E+002.38E-073.20E-0 75.39E-071.89E-063.70E-065.97E-067.53E-061.63E-05 Esophagus3.76E-079.89E-071.39E-063.09E-067.18E-062.31E-0 55.93E-052.09E-046.35E-041.14E-031.51E-032.69E-03 Pancreas0.00E+000.00E+000.00E+000.00E+000.00E+005.70E -081.94E-078.11E-071.87E-062.36E-063.26E-065.99E-06 Thymus3.34E-066.09E-061.14E-052.12E-055.65E-051.85E-0 44.86E-041.81E-035.32E-038.76E-031.16E-021.68E-02

PAGE 196

179 Table 7-28. Absorbed fractions from the UF 9-month male phantom when electron source is in left lung. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle1.92E-044.03E-046.62E-041.37E-033.30E-031.06E-0 22.99E-028.94E-021.62E-012.14E-012.55E-013.27E-01 Adipose5.32E-071.03E-062.31E-067.48E-061.93E-054.14E -059.30E-052.83E-041.67E-038.15E-032.19E-021.08E-01 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+005. 27E-096.32E-086.73E-081.08E-072.74E-073.95E-076.67E-07 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+000.00E+002.17E-081.20E-076.10E-081.96E-071.51E-07 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+001.34E-092. 53E-079.64E-084.70E-077.23E-071.03E-061.07E-062.72E-06 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+000.00E+006. 87E-112.36E-089.06E-082.76E-072.43E-073.83E-071.06E-06 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+004.46E-095.45E-103.66E-081.48E-08 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.85E-092.33E-080.00E+007.53E-092.07E-08 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+001.17E-071.24E-071.78E-074.66E-071.10E-061.86E-062.50E-063.35E-067.78E-06 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0 00.00E+000.00E+005.59E-091.04E-083.67E-087.16E-08 Spinal Cord0.00E+000.00E+009.41E-081.40E-072.62E-077. 89E-071.52E-062.84E-066.51E-068.91E-061.23E-058.90E-04 Stomach(W)0.00E+000.00E+001.60E-071.27E-076.26E-078.90E -072.10E-062.85E-065.19E-061.13E-052.91E-058.71E-04 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.07E-091.59E-092.20E-094.50E-08 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+005.70E-0 81.36E-074.15E-075.05E-079.56E-071.28E-062.78E-06 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+007.07E-088.42E-091.24E-083.05E-085.13E-081.75E-07 Brain0.00E+000.00E+000.00E+001.39E-070.00E+001.32E-0 63.01E-068.15E-061.84E-052.79E-053.81E-058.43E-05 Right Colon(W)0.00E+000.00E+000.00E+000.00E+000.00E+001. 19E-078.19E-083.62E-075.50E-078.88E-071.29E-061.30E-05 Left Colon(W)1.96E-077.17E-083.41E-074.34E-075.87E-075. 04E-061.06E-053.24E-059.75E-051.96E-043.20E-049.40E-04 Rectosigmoid(W)0.00E+000.00E+000.00E+000.00E+000.00E+000 .00E+008.25E-093.11E-081.57E-072.48E-073.03E-075.42E-07 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+006.90E-0 89.88E-083.58E-075.89E-071.07E-061.39E-061.97E-06 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.21E-085.46E-081.10E-071.60E-071.81E-074.83E-07 Trachea0.00E+000.00E+000.00E+000.00E+000.00E+006.17E-0 86.84E-081.72E-073.42E-074.00E-071.01E-062.26E-06 Bronchi8.38E-071.55E-064.34E-067.89E-061.31E-054.49E -051.48E-044.46E-046.81E-047.41E-047.70E-048.91E-04 Aorta3.32E-066.82E-061.15E-052.37E-055.33E-051.78E-0 45.12E-041.73E-034.28E-036.97E-039.30E-031.22E-02 Lung(L)1.00E+009.99E-019.99E-019.98E-019.95E-019.85E-0 19.59E-018.71E-017.36E-016.22E-015.26E-012.95E-01 Lung(R)5.61E-071.01E-061.90E-061.86E-065.76E-061.69E-0 53.97E-056.04E-055.87E-055.86E-055.77E-051.14E-04 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.99E-095.88E-088.06E-082.50E-071.05E-078.29E-07 Gall Bladder(W)0.00E+000.00E+000.00E+000.00E+007.71E-090.0 0E+000.00E+003.84E-084.89E-082.64E-081.32E-072.33E-07 Adrenal(L)0.00E+000.00E+000.00E+000.00E+007.53E-089.08E -082.23E-072.11E-076.00E-071.26E-062.81E-061.80E-05 Adrenal(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +006.75E-082.99E-081.96E-073.19E-074.00E-078.50E-07 Skin0.00E+000.00E+008.93E-081.24E-081.33E-063.05E-0 65.26E-061.19E-052.01E-052.92E-054.33E-053.44E-03 Kidney-Cortex(L)0.00E+000.00E+000.00E+000.00E+001.34E-082. 94E-083.62E-071.06E-062.04E-063.16E-064.06E-061.03E-05 Kidney-Cortex(R)0.00E+000.00E+000.00E+000.00E+001.27E-071. 69E-071.16E-072.44E-071.14E-061.14E-061.56E-063.67E-06 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+001.32E -071.74E-071.95E-073.06E-074.86E-071.02E-061.12E-06 Heart(W)1.44E-052.80E-054.87E-051.03E-042.45E-047.81E -042.25E-037.48E-031.68E-022.57E-023.34E-024.71E-02 Liver3.83E-071.02E-062.01E-062.42E-067.54E-062.54E-0 56.61E-052.20E-045.98E-041.02E-031.47E-033.71E-03 Spleen1.21E-062.80E-064.26E-061.23E-052.60E-058.67E-0 52.50E-049.44E-042.23E-033.83E-035.67E-031.18E-02 Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +001.54E-084.29E-081.17E-072.28E-078.55E-083.33E-07 SI(W)0.00E+000.00E+000.00E+000.00E+000.00E+005.00E-0 77.96E-072.07E-063.87E-066.43E-068.20E-062.93E-05 Esophagus1.29E-074.44E-074.49E-072.21E-072.41E-065.15E-0 62.26E-055.77E-051.83E-043.06E-044.32E-041.28E-03 Pancreas0.00E+000.00E+000.00E+000.00E+001.26E-077.42E -077.83E-071.33E-062.35E-063.24E-064.52E-069.23E-06 Thymus2.23E-063.42E-065.25E-061.34E-052.82E-058.35E-0 52.58E-041.16E-034.81E-039.12E-031.27E-021.93E-02

PAGE 197

180 Table 7-29. Absorbed fractions from the UF 9-month male phantom when electron source is in urinary bladder contents. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle1.12E-052.18E-054.21E-058.94E-052.18E-046.75E-0 42.03E-038.36E-032.92E-025.23E-027.33E-021.37E-01 Adipose1.42E-062.91E-066.69E-061.82E-054.01E-051.18E -043.15E-041.30E-035.64E-031.28E-022.18E-026.64E-02 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+005.20E-083.21E-089.05E-081.97E-071.72E-073.03E-07 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+002.46E-081.05E-072.31E-072.73E-073.17E-077.18E-07 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+000.00E+001. 15E-075.52E-082.84E-073.52E-078.88E-078.27E-072.07E-06 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+001.73E-071. 43E-071.30E-073.12E-078.11E-078.73E-071.17E-063.16E-06 Prostate0.00E+000.00E+000.00E+001.57E-071.01E-071.13E -075.78E-078.60E-074.55E-065.97E-052.34E-041.36E-03 Gonads0.00E+000.00E+000.00E+000.00E+006.84E-081.19E-0 72.80E-074.06E-075.65E-071.01E-062.10E-063.08E-06 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+007.52E-082.71E-085.88E-084.97E-07 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.62E-08 Spinal Cord0.00E+000.00E+000.00E+000.00E+001.30E-071. 73E-074.36E-076.93E-071.30E-062.53E-062.92E-066.23E-06 Stomach(W)0.00E+000.00E+000.00E+000.00E+000.00E+009.33E -091.99E-081.49E-074.17E-077.97E-077.52E-072.01E-06 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+006.80E-100.00E+000.00E+00 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+005.90E-086.24E-085.95E-081.00E-081.25E-07 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.23E-09 Brain0.00E+000.00E+000.00E+000.00E+000.00E+001.30E-0 96.68E-091.21E-075.78E-071.23E-061.97E-065.12E-06 Right Colon(W)7.37E-080.00E+002.29E-070.00E+001.01E-062. 66E-066.30E-062.95E-051.16E-043.13E-045.50E-041.81E-03 Left Colon(W)1.60E-077.00E-071.09E-062.33E-066.52E-061. 96E-055.66E-052.13E-046.04E-048.84E-041.08E-031.45E-03 Rectosigmoid(W)9.40E-071.82E-063.78E-069.13E-061.83E-055 .99E-051.88E-047.65E-042.64E-034.34E-035.72E-039.47E-03 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.26E-089.80E-091.04E-097.95E-081.13E-08 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.93E-080.00E+006.82E-095.12E-101.03E-08 Trachea0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0 00.00E+000.00E+003.16E-105.02E-093.61E-096.48E-08 Bronchi0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+005.56E-081.58E-086.09E-083.37E-08 Aorta2.42E-078.64E-083.03E-074.79E-073.09E-066.83E-0 62.42E-051.04E-048.02E-042.25E-033.84E-037.68E-03 Lung(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.81E-081.54E-074.45E-076.95E-071.06E-062.05E-06 Lung(R)0.00E+000.00E+000.00E+000.00E+000.00E+008.88E-0 89.24E-081.94E-073.43E-078.52E-071.11E-062.44E-06 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+004.98E-101.97E-089.66E-08 Gall Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+002.66E-084.36E-081.49E-084.21E-086.85E-083.66E-07 Adrenal(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +003.26E-081.16E-075.42E-089.35E-081.13E-073.39E-07 Adrenal(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +000.00E+007.40E-086.97E-085.75E-087.64E-083.50E-07 Skin0.00E+000.00E+000.00E+002.81E-076.87E-072.63E-064.33E-069.79E-061.78E-052.72E-053.69E-059.55E-04 Kidney-Cortex(L)0.00E+000.00E+000.00E+000.00E+001.39E-071. 77E-073.36E-076.82E-071.27E-062.31E-062.52E-066.13E-06 Kidney-Cortex(R)0.00E+000.00E+000.00E+000.00E+001.22E-073. 43E-076.54E-071.11E-062.45E-063.70E-063.91E-069.24E-06 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.33E-081.96E-081.37E-081.89E-08 Heart(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +001.51E-072.12E-075.47E-076.18E-078.85E-072.43E-06 Liver0.00E+000.00E+000.00E+000.00E+003.11E-099.11E-0 71.95E-064.92E-061.03E-051.47E-051.97E-054.52E-05 Spleen0.00E+000.00E+000.00E+000.00E+000.00E+007.28E-0 81.52E-071.99E-076.29E-079.08E-071.05E-062.55E-06 Bladder(W)6.48E-051.46E-042.32E-044.71E-041.17E-033.73E -031.12E-023.59E-025.98E-026.94E-027.33E-027.07E-02 SI(W)0.00E+006.86E-082.24E-072.83E-071.26E-063.68E-0 64.97E-061.06E-053.74E-055.15E-041.45E-036.09E-03 Esophagus0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.06E-073.19E-081.36E-077.27E-081.29E-07 Pancreas0.00E+000.00E+000.00E+000.00E+000.00E+001.29E -081.21E-073.74E-077.97E-078.83E-071.29E-063.38E-06 Thymus0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.21E-071.07E-078.37E-081.55E-072.28E-079.60E-07

PAGE 198

181 Table 7-30. Absorbed fractions from the UF 9-month male phantom when electron source is in liver. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle3.49E-057.94E-051.30E-042.74E-047.02E-042.21E-0 36.59E-032.21E-024.55E-026.37E-027.85E-021.19E-01 Adipose1.96E-071.71E-071.14E-061.81E-069.10E-062.45E -055.96E-051.82E-045.89E-041.64E-033.85E-032.28E-02 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+001.35E-086.46E-081.10E-072.49E-072.28E-077.07E-07 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+001.19E-071. 02E-071.53E-074.56E-077.30E-079.34E-071.18E-069.05E-05 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+000.00E+003. 38E-098.98E-084.01E-078.54E-071.22E-061.50E-062.96E-06 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+003.27E-075. 80E-071.30E-061.79E-062.90E-064.06E-062.44E-057.14E-04 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.89E-091.19E-082.49E-081.77E-084.78E-081.15E-07 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.80E-081.34E-081.50E-074.57E-081.09E-07 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+001.67E-072.10E-082.42E-075.18E-076.12E-071.16E-062.73E-06 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0 00.00E+004.84E-104.19E-091.52E-081.72E-098.24E-09 Spinal Cord0.00E+000.00E+000.00E+000.00E+004.32E-091. 90E-077.03E-072.26E-063.83E-065.26E-067.62E-062.70E-05 Stomach(W)7.87E-084.33E-071.17E-062.68E-064.68E-061.42E -053.98E-051.69E-044.11E-047.81E-041.13E-032.44E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+009.26E-10 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+006.20E-088.78E-083.43E-071.65E-073.80E-079.68E-07 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.35E-093.11E-081.33E-081.76E-081.04E-08 Brain0.00E+000.00E+000.00E+000.00E+000.00E+001.92E-0 71.08E-062.40E-066.11E-069.21E-061.48E-053.15E-05 Right Colon(W)8.05E-071.33E-061.81E-064.01E-069.44E-063. 39E-051.04E-042.90E-044.95E-046.42E-047.60E-041.35E-03 Left Colon(W)0.00E+000.00E+000.00E+000.00E+000.00E+003. 31E-074.19E-071.18E-064.68E-069.40E-061.97E-059.24E-05 Rectosigmoid(W)0.00E+000.00E+000.00E+000.00E+001.34E-086 .50E-094.82E-082.22E-072.33E-075.67E-078.00E-071.56E-06 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.38E-083.06E-081.15E-072.30E-071.64E-074.46E-07 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+004.40E-104.01E-081.02E-074.84E-086.47E-08 Trachea0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0 08.64E-095.10E-081.02E-071.27E-076.83E-085.43E-07 Bronchi0.00E+000.00E+000.00E+000.00E+000.00E+001.23E -076.07E-089.40E-082.55E-072.38E-075.23E-077.90E-06 Aorta1.87E-064.07E-066.93E-061.38E-053.49E-051.13E-0 43.42E-041.17E-032.44E-033.56E-034.49E-036.63E-03 Lung(L)0.00E+007.30E-086.32E-088.50E-071.45E-063.82E-0 68.29E-063.15E-057.71E-051.41E-042.00E-045.10E-04 Lung(R)3.86E-066.82E-061.29E-052.52E-056.21E-052.03E-0 46.02E-042.11E-034.62E-036.99E-039.09E-031.50E-02 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+005.04E-082.63E-081.63E-071.95E-072.38E-07 Gall Bladder(W)0.00E+001.26E-079.56E-080.00E+004.57E-071. 13E-062.53E-061.32E-053.80E-059.35E-051.82E-045.17E-04 Adrenal(L)0.00E+000.00E+000.00E+000.00E+000.00E+005.76E -081.46E-072.80E-074.56E-076.52E-071.10E-069.62E-06 Adrenal(R)4.89E-076.84E-071.47E-061.46E-067.33E-062.01E -056.09E-052.13E-045.07E-048.18E-041.03E-031.56E-03 Skin0.00E+000.00E+000.00E+007.90E-073.53E-072.17E-064.55E-068.28E-061.73E-052.85E-055.91E-051.28E-03 Kidney-Cortex(L)0.00E+000.00E+000.00E+000.00E+000.00E+001. 09E-073.58E-071.01E-062.04E-063.65E-063.65E-068.90E-06 Kidney-Cortex(R)8.15E-089.38E-083.55E-072.25E-071.91E-066. 00E-061.45E-056.04E-052.51E-047.39E-041.46E-034.57E-03 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.22E-092.05E-081.05E-071.33E-071.83E-072.63E-07 Heart(W)1.06E-061.20E-063.35E-065.79E-061.30E-054.63E -051.46E-045.42E-041.34E-032.19E-033.01E-035.74E-03 Liver1.00E+001.00E+001.00E+001.00E+009.99E-019.97E-0 19.91E-019.70E-019.36E-019.05E-018.76E-017.69E-01 Spleen0.00E+000.00E+000.00E+000.00E+000.00E+007.48E-0 88.11E-071.35E-062.14E-062.73E-064.32E-061.01E-05 Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +002.17E-077.56E-083.51E-072.83E-075.89E-071.15E-06 SI(W)4.07E-071.20E-068.11E-073.26E-069.35E-062.64E-0 59.00E-053.10E-047.25E-041.08E-031.37E-032.66E-03 Esophagus2.05E-072.90E-072.40E-073.51E-073.30E-067.77E-0 62.34E-058.56E-052.44E-044.06E-045.71E-041.01E-03 Pancreas1.29E-062.26E-064.02E-066.26E-061.98E-055.39E -051.70E-046.22E-041.47E-032.21E-032.84E-034.37E-03 Thymus0.00E+000.00E+000.00E+000.00E+002.38E-072.51E-0 75.60E-071.13E-062.35E-063.28E-064.26E-061.39E-05

PAGE 199

182 Table 7-31. Absorbed fractions from the UF 9-month male phantom when electron source is in heart contents. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle0.00E+001.51E-071.18E-064.90E-061.74E-054.14E-0 57.67E-051.72E-045.46E-041.99E-036.45E-035.17E-02 Adipose0.00E+000.00E+008.26E-089.76E-074.99E-061.67E -052.93E-056.69E-051.34E-042.01E-042.70E-042.70E-03 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+001. 19E-107.12E-086.69E-086.97E-084.79E-082.70E-072.84E-07 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+003.94E-082.98E-086.07E-087.29E-081.95E-073.99E-07 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+001.25E-081.21E-074.33E-077.29E-071.07E-062.32E-06 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+000.00E+003. 61E-101.17E-076.22E-082.21E-076.18E-075.15E-071.56E-06 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.07E-094.80E-09 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+005.21E-109.56E-091.62E-081.47E-09 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+001.58E-070.00E+001.35E-073.69E-078.86E-071.98E-062.76E-063.91E-067.71E-06 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0 01.78E-090.00E+002.96E-094.14E-081.53E-081.38E-07 Spinal Cord0.00E+000.00E+000.00E+000.00E+000.00E+002. 88E-079.68E-072.16E-064.65E-066.70E-069.59E-061.95E-05 Stomach(W)0.00E+000.00E+000.00E+000.00E+004.17E-075.13E -079.86E-072.55E-064.09E-065.94E-068.98E-061.66E-05 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.07E-084.26E-093.61E-08 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+007.57E-0 81.95E-072.65E-079.03E-071.10E-061.11E-062.67E-06 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.41E-080.00E+002.28E-086.78E-091.79E-091.99E-07 Brain0.00E+000.00E+000.00E+000.00E+001.55E-071.24E-0 62.52E-067.84E-061.58E-052.58E-053.47E-057.92E-05 Right Colon(W)0.00E+000.00E+000.00E+000.00E+002.19E-077. 29E-091.86E-073.91E-079.86E-071.25E-061.77E-064.38E-06 Left Colon(W)0.00E+000.00E+000.00E+000.00E+000.00E+003. 70E-103.37E-075.64E-071.22E-061.54E-062.39E-064.44E-06 Rectosigmoid(W)0.00E+000.00E+000.00E+000.00E+000.00E+002 .57E-080.00E+002.76E-081.27E-071.89E-072.46E-076.31E-07 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+007.37E-0 85.80E-083.30E-076.77E-071.01E-061.09E-062.37E-06 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.51E-083.17E-085.01E-089.82E-081.25E-073.49E-07 Trachea0.00E+000.00E+000.00E+002.77E-091.12E-072.26E-0 78.58E-083.30E-073.98E-071.15E-061.94E-061.07E-04 Bronchi0.00E+000.00E+000.00E+002.16E-073.22E-074.32E -075.76E-071.00E-062.07E-061.06E-051.14E-041.81E-03 Aorta0.00E+000.00E+000.00E+002.02E-082.27E-071.24E-0 62.38E-064.00E-068.42E-064.84E-051.48E-041.50E-03 Lung(L)0.00E+000.00E+001.32E-071.03E-063.56E-065.54E-0 68.51E-061.58E-055.87E-055.19E-041.99E-031.45E-02 Lung(R)0.00E+009.08E-082.03E-071.09E-062.10E-065.26E-0 69.23E-062.00E-054.36E-051.27E-048.62E-041.26E-02 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.45E-071.18E-071.64E-071.29E-073.50E-078.73E-07 Gall Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+003.81E-084.26E-081.16E-072.93E-072.38E-074.54E-07 Adrenal(L)0.00E+000.00E+000.00E+000.00E+000.00E+004.26E -085.84E-081.83E-071.77E-074.70E-075.58E-071.15E-06 Adrenal(R)0.00E+000.00E+000.00E+000.00E+001.29E-070.00E +002.43E-098.25E-083.57E-072.93E-074.14E-079.32E-07 Skin0.00E+000.00E+000.00E+001.08E-076.48E-071.45E-064.12E-067.54E-061.62E-052.43E-053.23E-057.27E-05 Kidney-Cortex(L)0.00E+000.00E+000.00E+000.00E+000.00E+008. 90E-113.44E-077.15E-071.42E-062.12E-062.23E-065.56E-06 Kidney-Cortex(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+001.01E-075.97E-079.11E-071.34E-062.33E-064.50E-06 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+006.06E -087.41E-082.60E-074.37E-076.20E-079.29E-071.85E-06 Heart(W)6.80E-051.26E-042.26E-044.52E-041.12E-033.53E -031.05E-023.52E-027.43E-021.09E-011.38E-011.83E-01 Liver0.00E+000.00E+003.62E-071.20E-064.68E-061.18E-0 52.12E-053.97E-056.97E-051.01E-044.07E-041.04E-02 Spleen0.00E+000.00E+000.00E+000.00E+002.70E-072.40E-0 76.05E-071.73E-062.86E-064.80E-066.43E-061.19E-05 Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +007.03E-091.48E-084.17E-081.30E-073.80E-084.14E-07 SI(W)0.00E+000.00E+000.00E+000.00E+007.65E-091.91E-0 79.56E-072.36E-063.71E-066.16E-069.37E-061.78E-05 Esophagus0.00E+000.00E+000.00E+001.22E-078.95E-084.39E-0 71.33E-062.01E-063.58E-067.13E-066.83E-051.84E-03 Pancreas0.00E+000.00E+000.00E+000.00E+000.00E+001.85E -073.44E-078.68E-071.81E-063.43E-064.07E-066.64E-06 Thymus3.06E-066.98E-061.22E-052.69E-056.53E-052.06E-0 46.02E-042.28E-035.51E-039.40E-031.39E-023.06E-02

PAGE 200

183 Table 7-32. Absorbed fractions from the UF 9-month male phantom when electron source is in muscle. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle1.00E+001.00E+009.99E-019.99E-019.97E-019.90E-0 19.70E-019.03E-018.09E-017.38E-016.81E-015.36E-01 Adipose7.40E-051.54E-042.63E-045.32E-041.31E-034.28E -031.27E-024.17E-028.36E-021.17E-011.43E-011.93E-01 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+002. 72E-075.05E-074.95E-073.31E-067.45E-068.74E-069.77E-05 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+006. 51E-086.83E-071.58E-064.87E-069.58E-061.87E-051.18E-04 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+001.16E-073. 72E-071.10E-063.44E-061.06E-054.22E-051.21E-046.05E-04 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+001.82E-073. 48E-072.90E-076.23E-074.48E-063.16E-051.14E-045.88E-04 Prostate0.00E+000.00E+001.83E-073.82E-071.43E-064.03E -068.78E-062.47E-055.14E-057.04E-058.12E-057.47E-05 Gonads2.81E-087.71E-082.53E-073.16E-076.49E-074.30E-0 61.36E-053.66E-056.85E-058.86E-059.20E-058.32E-05 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.48E-110.00E+00 Salivary glands7.12E-071.62E-063.20E-066.75E-061.28E-054. 78E-051.41E-044.86E-049.50E-041.30E-031.53E-032.10E-03 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+001.53E-0 88.11E-074.12E-061.86E-053.82E-054.59E-055.50E-05 Spinal Cord1.47E-062.56E-067.08E-061.39E-052.41E-058. 62E-052.39E-047.27E-041.21E-031.49E-031.71E-032.90E-03 Stomach(W)1.20E-063.03E-064.92E-069.93E-062.48E-057.60E -052.31E-048.02E-041.54E-031.96E-032.18E-032.28E-03 Pituitary gland0.00E+000.00E+001.58E-071.35E-076.91E-078. 85E-073.28E-069.64E-062.44E-053.09E-052.48E-052.07E-05 Tongue8.08E-089.06E-071.69E-062.73E-067.70E-062.26E-0 57.26E-052.48E-045.46E-048.16E-041.04E-031.37E-03 Tonsil0.00E+001.41E-071.68E-073.52E-078.15E-072.50E-0 66.52E-062.24E-053.90E-054.87E-056.09E-057.82E-05 Brain1.03E-052.16E-053.90E-057.98E-051.96E-046.18E-0 41.85E-036.22E-031.27E-021.78E-022.18E-023.21E-02 Right Colon(W)2.91E-065.95E-061.18E-051.95E-054.92E-051. 68E-044.68E-041.35E-031.77E-031.87E-031.87E-031.72E-03 Left Colon(W)2.51E-066.12E-068.22E-062.00E-054.79E-051. 58E-044.61E-041.33E-031.74E-031.78E-031.79E-031.63E-03 Rectosigmoid(W)8.95E-072.00E-063.21E-065.51E-061.56E-054 .49E-051.34E-044.07E-045.90E-046.16E-046.31E-046.55E-04 Larynx1.64E-078.22E-087.26E-071.22E-062.54E-069.28E-0 62.81E-058.48E-051.87E-042.83E-043.60E-045.64E-04 Pharynx1.96E-071.01E-084.79E-071.27E-062.81E-068.15E -062.82E-058.35E-051.62E-042.13E-042.32E-042.50E-04 Trachea8.45E-083.43E-074.54E-079.34E-072.99E-069.14E-0 62.66E-058.32E-051.50E-041.71E-041.74E-042.01E-04 Bronchi1.45E-077.22E-081.40E-076.42E-072.32E-067.02E -061.86E-056.82E-051.34E-041.57E-041.60E-041.32E-04 Aorta1.24E-063.31E-065.15E-068.62E-062.71E-058.71E-0 52.65E-048.57E-041.64E-032.17E-032.41E-032.48E-03 Lung(L)3.09E-067.21E-061.04E-052.31E-055.05E-051.66E-0 44.71E-041.42E-032.58E-033.41E-034.12E-035.34E-03 Lung(R)3.47E-068.33E-061.06E-052.39E-055.53E-051.74E-0 44.84E-041.47E-032.63E-033.48E-034.06E-035.26E-03 Eyes3.58E-078.41E-071.55E-063.29E-064.90E-062.45E-0 57.40E-052.23E-044.58E-046.41E-047.84E-049.19E-04 Gall Bladder(W)2.41E-072.81E-085.72E-071.60E-062.42E-061. 02E-052.59E-059.18E-051.56E-041.86E-041.90E-041.92E-04 Adrenal(L)4.26E-073.35E-079.23E-071.11E-064.24E-061.03E -053.19E-051.13E-042.07E-042.76E-042.92E-043.03E-04 Adrenal(R)3.94E-075.37E-074.81E-071.41E-063.56E-061.16E -053.29E-059.76E-051.82E-042.26E-042.48E-042.60E-04 Skin1.14E-062.05E-063.13E-066.11E-061.98E-056.63E-0 51.94E-046.59E-041.47E-032.76E-035.01E-031.35E-02 Kidney-Cortex(L)7.83E-071.84E-063.70E-066.59E-061.56E-055. 26E-051.62E-045.29E-041.09E-031.55E-031.89E-032.39E-03 Kidney-Cortex(R)5.88E-072.25E-063.77E-066.16E-061.81E-055. 56E-051.68E-045.56E-041.14E-031.60E-031.92E-032.42E-03 Thyroid1.48E-073.45E-075.00E-078.69E-073.95E-065.31E -062.60E-058.51E-051.61E-042.35E-042.82E-043.53E-04 Heart(W)1.31E-061.66E-063.30E-061.01E-051.92E-057.84E -052.05E-047.05E-041.44E-032.01E-032.38E-032.98E-03 Liver4.14E-069.83E-061.54E-053.54E-057.84E-052.54E-0 47.70E-042.63E-035.42E-037.45E-039.21E-031.39E-02 Spleen1.02E-061.78E-063.45E-068.79E-061.41E-054.96E-0 51.45E-044.85E-041.05E-031.51E-031.88E-032.73E-03 Bladder(W)7.21E-071.08E-062.71E-063.38E-067.65E-063.28E -051.00E-043.10E-044.69E-045.13E-045.44E-046.18E-04 SI(W)5.04E-061.18E-051.71E-053.80E-059.07E-052.84E-0 48.60E-042.68E-034.71E-035.36E-035.57E-035.95E-03 Esophagus4.34E-071.09E-061.19E-062.65E-065.53E-062.08E-0 56.07E-051.92E-043.57E-044.50E-044.70E-044.65E-04 Pancreas5.49E-071.28E-061.42E-064.14E-061.04E-053.73E -059.90E-053.29E-046.29E-048.12E-049.52E-041.18E-03 Thymus5.03E-075.73E-071.89E-065.28E-061.01E-053.13E-0 51.11E-043.32E-046.20E-047.93E-049.98E-041.61E-03

PAGE 201

184 Table 7-33. Absorbed fractions from the UF 14-year male phantom when electron source is in stomach contents. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle3.02E-066.43E-061.11E-052.68E-057.45E-052.45E-0 46.61E-042.40E-036.42E-031.42E-022.51E-027.46E-02 Adipose1.48E-072.41E-088.40E-081.05E-063.35E-061.02E -052.42E-056.79E-051.71E-044.10E-047.18E-041.96E-03 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+009.84E-081. 54E-072.27E-075.74E-071.00E-061.18E-061.52E-063.61E-06 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+008. 30E-081.89E-088.96E-081.24E-074.24E-075.20E-071.02E-06 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+004.58E-081. 06E-061.77E-063.27E-065.32E-068.13E-061.13E-053.12E-05 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+000.00E+001. 17E-071.11E-076.25E-076.62E-071.20E-061.72E-063.64E-06 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+004.45E-093.81E-092.49E-081.71E-07 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.37E-091.18E-081.57E-088.56E-091.20E-07 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+001.05E-082.62E-091.48E-082.73E-071.90E-075.19E-075.12E-07 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.29E-08 Spinal Cord0.00E+000.00E+000.00E+000.00E+000.00E+005. 96E-083.38E-071.06E-062.30E-063.48E-065.95E-061.29E-05 Stomach(W)3.02E-056.38E-051.01E-042.04E-045.42E-041.85E -035.62E-031.97E-024.19E-025.73E-026.67E-028.06E-02 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.69E-090.00E+000.00E+000.00E+00 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+004.08E-098.40E-081.48E-071.32E-072.43E-074.70E-07 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.32E-093.54E-092.29E-081.32E-085.59E-09 Brain0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.43E-072.04E-071.02E-061.44E-061.90E-067.70E-06 Right Colon(W)0.00E+000.00E+000.00E+000.00E+000.00E+005. 12E-078.19E-072.23E-064.68E-066.02E-068.31E-061.69E-05 Left Colon(W)9.51E-083.44E-077.45E-072.41E-065.66E-061. 63E-054.29E-051.78E-044.23E-048.38E-041.38E-034.22E-03 Rectosigmoid(W)0.00E+000.00E+000.00E+000.00E+000.00E+001 .57E-071.68E-073.05E-077.36E-071.13E-061.58E-063.67E-06 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.50E-084.38E-092.04E-071.46E-071.50E-075.46E-07 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.22E-098.44E-082.86E-083.96E-08 Trachea0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0 06.47E-086.47E-097.58E-085.10E-081.46E-071.07E-07 Bronchi0.00E+000.00E+000.00E+000.00E+002.93E-097.91E -098.29E-086.53E-082.03E-072.16E-072.19E-074.32E-07 Aorta0.00E+000.00E+000.00E+000.00E+004.89E-071.72E-0 63.38E-066.84E-061.44E-052.03E-052.47E-057.07E-05 Lung(L)4.81E-079.20E-072.36E-063.94E-069.54E-063.44E-0 59.60E-053.36E-047.78E-041.35E-032.05E-037.70E-03 Lung(R)0.00E+000.00E+000.00E+000.00E+000.00E+003.78E-0 71.58E-064.43E-069.09E-061.34E-051.78E-053.64E-05 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+007.56E-084.83E-101.33E-087.30E-092.00E-089.53E-08 Gall Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+001.11E-071.90E-073.89E-073.43E-075.13E-071.04E-06 Adrenal(L)0.00E+000.00E+000.00E+000.00E+001.91E-071.17E -075.32E-078.59E-071.63E-063.98E-063.42E-054.61E-04 Adrenal(R)0.00E+000.00E+000.00E+000.00E+000.00E+008.56E -092.47E-088.54E-081.62E-072.14E-073.36E-071.20E-06 Skin0.00E+000.00E+000.00E+000.00E+001.90E-071.45E-0 63.84E-069.63E-061.80E-053.00E-054.07E-058.21E-05 Kidney-Cortex(L)0.00E+000.00E+000.00E+002.81E-075.53E-071. 93E-065.00E-069.35E-061.60E-052.15E-053.06E-052.80E-04 Kidney-Cortex(R)0.00E+000.00E+000.00E+000.00E+000.00E+002. 54E-075.10E-071.55E-062.54E-063.20E-065.35E-069.70E-06 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.65E-107.27E-088.26E-081.38E-071.90E-07 Heart(W)0.00E+000.00E+000.00E+001.48E-071.10E-088.50E -072.39E-066.04E-061.08E-051.58E-052.01E-054.80E-05 Liver9.12E-083.36E-071.72E-071.31E-064.95E-061.75E-0 54.16E-051.23E-042.99E-046.61E-041.30E-036.01E-03 Spleen2.05E-072.28E-075.71E-071.66E-063.65E-061.35E-0 53.27E-051.17E-043.06E-046.49E-041.06E-033.19E-03 Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +003.81E-089.81E-081.88E-072.06E-073.28E-079.76E-07 SI(W)0.00E+000.00E+001.61E-095.68E-086.94E-072.87E-0 65.23E-061.52E-055.29E-051.87E-044.40E-041.61E-03 Esophagus4.11E-080.00E+000.00E+001.53E-072.24E-073.59E-0 72.07E-065.29E-061.76E-053.46E-056.19E-051.79E-04 Pancreas3.67E-081.65E-073.43E-071.10E-064.21E-061.27E -053.11E-051.06E-043.26E-049.61E-042.23E-031.11E-02 Thymus0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+008.16E-081.89E-073.36E-073.15E-074.89E-071.37E-06

PAGE 202

185 Table 7-34. Absorbed fractions from the UF 14-year male phantom when electron source is in right colon contents. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle5.08E-061.38E-052.53E-056.13E-051.48E-044.68E-0 41.35E-035.00E-031.35E-022.91E-024.85E-021.15E-01 Adipose8.04E-083.03E-072.78E-071.77E-065.14E-061.84E -053.63E-051.00E-042.31E-045.15E-041.16E-038.19E-03 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+001. 94E-096.88E-091.07E-071.59E-072.70E-071.86E-076.45E-07 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+001.88E-092. 17E-073.43E-078.42E-071.27E-061.85E-062.38E-068.31E-06 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+000.00E+001. 50E-072.53E-073.10E-078.47E-079.61E-071.27E-063.18E-06 Kidney-Medular(R)0.00E+000.00E+000.00E+008.86E-083.07E-076. 42E-071.93E-063.60E-065.58E-068.78E-061.03E-052.91E-04 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.58E-091.61E-082.11E-083.02E-082.65E-07 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.77E-102.77E-081.08E-084.83E-099.31E-083.40E-07 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.09E-083.05E-088.78E-081.89E-075.06E-07 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Spinal Cord0.00E+000.00E+000.00E+000.00E+000.00E+001. 82E-072.56E-079.06E-072.05E-063.66E-064.96E-061.06E-05 Stomach(W)0.00E+000.00E+000.00E+000.00E+001.78E-079.97E -071.53E-062.88E-064.99E-067.15E-069.91E-062.02E-05 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.57E-081.22E-077.48E-081.13E-073.35E-07 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.25E-07 Brain0.00E+000.00E+000.00E+000.00E+000.00E+001.44E-0 91.60E-081.20E-075.17E-076.48E-071.03E-063.26E-06 Right Colon(W)1.10E-042.14E-043.62E-047.39E-041.87E-036. 15E-031.87E-026.42E-021.32E-011.78E-012.05E-012.26E-01 Left Colon(W)0.00E+000.00E+000.00E+001.95E-075.43E-079. 51E-072.56E-066.23E-069.68E-053.74E-047.26E-041.88E-03 Rectosigmoid(W)0.00E+000.00E+000.00E+000.00E+000.00E+001 .18E-073.16E-071.05E-062.12E-062.54E-063.79E-067.59E-06 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+009.35E-101.29E-086.03E-086.15E-081.28E-07 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.09E-090.00E+003.80E-081.40E-08 Trachea0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0 00.00E+001.79E-081.35E-081.28E-082.42E-081.90E-07 Bronchi0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+006.54E-093.24E-085.52E-086.20E-082.32E-07 Aorta0.00E+000.00E+008.63E-085.18E-076.57E-073.66E-0 65.65E-061.50E-053.73E-058.55E-051.91E-049.18E-04 Lung(L)0.00E+000.00E+000.00E+000.00E+000.00E+001.42E-0 74.76E-071.60E-063.02E-064.67E-066.82E-061.40E-05 Lung(R)0.00E+000.00E+000.00E+000.00E+000.00E+003.23E-0 71.58E-063.33E-066.60E-061.06E-051.44E-053.13E-05 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.22E-092.50E-081.99E-096.02E-08 Gall Bladder(W)1.63E-072.39E-071.72E-074.15E-072.38E-066. 28E-062.13E-057.93E-052.35E-044.06E-045.61E-049.86E-04 Adrenal(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +003.52E-083.03E-089.21E-089.27E-082.92E-073.42E-07 Adrenal(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +005.81E-081.14E-072.23E-073.84E-075.66E-079.95E-07 Skin0.00E+000.00E+000.00E+000.00E+007.63E-071.59E-0 64.17E-069.66E-061.93E-052.87E-053.97E-058.60E-05 Kidney-Cortex(L)0.00E+000.00E+000.00E+000.00E+000.00E+004. 83E-076.86E-077.46E-071.87E-063.20E-063.73E-068.71E-06 Kidney-Cortex(R)0.00E+000.00E+000.00E+001.29E-071.77E-062. 67E-064.88E-061.01E-051.98E-054.41E-051.13E-042.65E-03 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.13E-084.19E-081.39E-075.47E-081.24E-07 Heart(W)0.00E+000.00E+000.00E+000.00E+000.00E+002.28E -076.08E-071.06E-061.99E-063.89E-064.50E-061.04E-05 Liver9.41E-072.28E-063.49E-069.11E-062.84E-057.73E-0 52.00E-047.16E-041.88E-033.70E-036.40E-032.28E-02 Spleen0.00E+000.00E+000.00E+000.00E+000.00E+001.89E-0 71.07E-061.72E-063.82E-065.75E-067.24E-061.56E-05 Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+001.08E -072.35E-072.75E-075.05E-079.11E-071.43E-062.42E-06 SI(W)2.42E-064.49E-069.03E-061.83E-054.94E-051.72E-0 44.98E-041.96E-034.81E-038.98E-031.44E-023.40E-02 Esophagus0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.44E-071.93E-073.07E-076.48E-076.88E-071.30E-06 Pancreas3.55E-074.51E-071.21E-062.55E-064.50E-061.48E -054.53E-051.63E-044.52E-041.06E-031.98E-036.29E-03 Thymus0.00E+000.00E+000.00E+000.00E+000.00E+001.75E-0 86.86E-087.84E-081.47E-072.04E-074.39E-075.73E-07

PAGE 203

186 Table 7-35. Absorbed fractions from the UF 14-year male phantom when electron source is in left colon contents. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle5.38E-061.16E-052.08E-054.77E-051.21E-044.17E-0 41.29E-035.05E-031.52E-023.37E-025.54E-021.24E-01 Adipose0.00E+001.50E-073.56E-073.04E-069.15E-062.48E -055.71E-052.01E-047.84E-042.58E-036.04E-033.16E-02 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+001. 24E-071.19E-075.43E-074.11E-077.07E-071.36E-062.21E-06 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+004.08E-081.00E-071.28E-071.53E-071.69E-075.73E-07 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+008.10E-082. 28E-075.08E-071.22E-062.50E-063.61E-064.61E-061.99E-05 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+000.00E+006. 45E-088.49E-081.92E-075.46E-078.11E-071.23E-062.94E-06 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.73E-081.61E-083.20E-086.93E-08 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+004.24E-088.33E-084.52E-088.24E-083.88E-07 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.67E-087.24E-092.30E-077.96E-082.16E-07 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Spinal Cord0.00E+000.00E+000.00E+000.00E+000.00E+008. 76E-101.50E-074.95E-071.37E-061.67E-062.95E-067.17E-06 Stomach(W)6.44E-080.00E+001.08E-072.79E-073.31E-061.15E -053.76E-051.37E-043.99E-048.56E-041.51E-035.30E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.27E-096.30E-087.94E-087.42E-083.16E-07 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.85E-090.00E+000.00E+00 Brain0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.09E-072.75E-071.94E-076.23E-072.33E-06 Right Colon(W)4.19E-075.77E-071.32E-062.25E-067.45E-062. 22E-056.36E-052.70E-041.09E-032.25E-033.30E-036.11E-03 Left Colon(W)9.63E-052.10E-043.51E-047.28E-041.89E-036. 44E-031.99E-026.95E-021.39E-011.82E-012.03E-012.08E-01 Rectosigmoid(W)0.00E+000.00E+000.00E+000.00E+001.33E-072 .89E-069.32E-063.47E-059.74E-051.49E-042.09E-045.06E-04 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.55E-094.39E-088.63E-099.67E-08 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.58E-09 Trachea0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+004.19E-091.39E-071.05E-07 Bronchi0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.46E-091.52E-081.66E-084.69E-081.03E-071.64E-07 Aorta0.00E+000.00E+000.00E+000.00E+003.37E-078.55E-0 72.39E-066.21E-061.11E-051.62E-051.98E-054.28E-05 Lung(L)0.00E+000.00E+000.00E+000.00E+002.79E-074.38E-0 78.18E-072.35E-064.70E-066.90E-069.86E-062.08E-05 Lung(R)0.00E+000.00E+000.00E+000.00E+000.00E+004.52E-0 96.85E-071.41E-062.89E-064.82E-067.07E-061.58E-05 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.08E-080.00E+002.08E-094.34E-08 Gall Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+005. 02E-082.06E-071.85E-076.29E-076.71E-079.26E-071.37E-06 Adrenal(L)0.00E+000.00E+000.00E+000.00E+000.00E+008.21E -082.56E-081.23E-071.73E-079.63E-081.78E-078.36E-07 Adrenal(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +004.82E-093.83E-083.89E-081.60E-071.44E-075.19E-07 Skin0.00E+000.00E+000.00E+001.78E-078.85E-072.71E-064.84E-061.11E-052.12E-053.28E-054.18E-053.15E-04 Kidney-Cortex(L)0.00E+000.00E+000.00E+000.00E+003.20E-071. 14E-061.61E-063.43E-066.72E-069.68E-061.38E-051.76E-04 Kidney-Cortex(R)0.00E+000.00E+000.00E+000.00E+000.00E+001. 53E-071.56E-079.05E-071.85E-062.58E-063.33E-069.15E-06 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.01E-097.59E-091.76E-084.66E-085.42E-08 Heart(W)0.00E+000.00E+000.00E+000.00E+000.00E+001.01E -072.77E-071.17E-062.26E-063.94E-065.28E-061.13E-05 Liver8.46E-076.43E-078.57E-073.25E-061.10E-052.85E-0 57.08E-052.48E-045.95E-041.17E-032.12E-038.28E-03 Spleen2.90E-075.72E-071.23E-063.34E-067.92E-062.99E-0 58.14E-053.26E-041.20E-033.37E-036.59E-032.06E-02 Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+008.42E -081.02E-073.81E-076.24E-079.72E-071.25E-063.19E-06 SI(W)1.96E-063.43E-065.43E-061.39E-053.80E-051.25E-0 43.71E-041.39E-033.93E-038.73E-031.54E-023.74E-02 Esophagus0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.60E-071.02E-071.79E-074.48E-073.30E-071.17E-06 Pancreas0.00E+000.00E+006.53E-081.58E-074.08E-071.69E -063.27E-068.46E-061.75E-053.18E-054.64E-052.75E-04 Thymus0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.53E-083.53E-086.94E-089.35E-082.28E-076.91E-07

PAGE 204

187 Table 7-36. Absorbed fractions from the UF 14-year male phantom when electron source is in small intestine contents. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle5.89E-061.61E-052.67E-056.49E-051.53E-045.12E-0 41.45E-035.39E-031.44E-023.18E-025.73E-021.44E-01 Adipose5.86E-080.00E+001.94E-071.19E-063.80E-061.27E -052.68E-057.25E-051.87E-045.30E-041.36E-031.10E-02 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+003. 25E-093.98E-087.36E-081.95E-073.64E-075.69E-078.71E-07 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+001.26E-071. 52E-080.00E+007.94E-082.64E-075.92E-075.02E-078.39E-07 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+000.00E+001. 94E-073.15E-074.14E-071.13E-061.28E-061.92E-069.58E-06 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+006.47E-093. 20E-079.20E-083.91E-075.80E-071.25E-061.57E-063.38E-06 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.62E-085.48E-086.73E-082.28E-072.28E-073.75E-07 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+008.21E-081.46E-073.64E-072.23E-079.32E-07 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+005.97E-084.70E-098.27E-087.77E-091.17E-07 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Spinal Cord0.00E+000.00E+000.00E+000.00E+000.00E+004. 67E-082.42E-077.06E-071.45E-062.30E-063.40E-067.53E-06 Stomach(W)1.68E-074.23E-072.21E-071.56E-063.45E-061.25E -053.04E-051.17E-042.82E-044.83E-047.61E-041.86E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.82E-091.06E-083.30E-081.08E-084.02E-07 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.65E-090.00E+003.09E-093.06E-09 Brain0.00E+000.00E+000.00E+000.00E+000.00E+008.69E-0 85.44E-081.61E-081.09E-073.51E-076.84E-072.27E-06 Right Colon(W)1.49E-061.73E-063.13E-066.40E-061.84E-055. 57E-051.63E-046.50E-041.57E-032.75E-034.39E-031.02E-02 Left Colon(W)4.92E-077.27E-071.98E-064.00E-068.79E-063. 19E-059.24E-053.44E-049.46E-042.03E-033.74E-031.06E-02 Rectosigmoid(W)3.56E-082.42E-071.00E-061.63E-064.15E-061 .60E-054.98E-051.84E-044.62E-048.32E-041.48E-034.43E-03 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.79E-081.52E-081.97E-081.04E-081.46E-07 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+005.60E-083.36E-08 Trachea0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.09E-080.00E+008.41E-095.96E-09 Bronchi0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.22E-092.21E-081.30E-081.26E-07 Aorta7.31E-081.09E-072.73E-076.91E-072.73E-066.81E-0 61.64E-055.05E-051.53E-044.38E-049.39E-043.60E-03 Lung(L)0.00E+000.00E+000.00E+000.00E+001.69E-079.32E-0 84.63E-079.16E-072.50E-063.71E-065.00E-061.08E-05 Lung(R)0.00E+000.00E+000.00E+000.00E+000.00E+001.26E-0 75.01E-071.23E-063.16E-064.17E-065.97E-061.39E-05 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+008.74E-091.50E-083.06E-09 Gall Bladder(W)0.00E+000.00E+000.00E+000.00E+009.15E-086. 33E-081.42E-078.19E-074.19E-061.18E-052.01E-056.90E-05 Adrenal(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +003.38E-084.46E-081.20E-078.92E-082.02E-074.26E-07 Adrenal(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +003.09E-091.34E-095.49E-086.89E-081.58E-074.22E-07 Skin0.00E+000.00E+000.00E+005.96E-075.20E-071.77E-064.19E-069.65E-061.94E-052.84E-054.73E-057.72E-04 Kidney-Cortex(L)0.00E+000.00E+000.00E+000.00E+000.00E+002. 55E-073.53E-071.67E-063.64E-067.28E-061.24E-055.46E-05 Kidney-Cortex(R)0.00E+000.00E+000.00E+000.00E+001.09E-072. 67E-074.56E-071.36E-062.52E-064.05E-064.91E-061.05E-05 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.45E-081.90E-097.92E-093.46E-083.51E-08 Heart(W)0.00E+000.00E+000.00E+000.00E+002.21E-092.87E -081.97E-077.17E-071.18E-062.27E-062.63E-066.76E-06 Liver0.00E+004.24E-072.84E-071.27E-064.97E-061.82E-0 54.11E-051.33E-043.47E-047.17E-041.34E-035.28E-03 Spleen4.26E-071.38E-061.92E-064.39E-061.14E-052.70E-0 58.00E-053.07E-047.11E-041.22E-031.82E-034.03E-03 Bladder(W)4.17E-079.83E-072.12E-062.58E-066.76E-062.56E -057.73E-052.92E-048.30E-041.49E-032.16E-033.45E-03 SI(W)1.17E-042.43E-044.15E-048.47E-042.09E-036.80E-0 32.06E-027.08E-021.47E-012.00E-012.31E-012.59E-01 Esophagus0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+008.42E-091.01E-071.81E-073.73E-074.26E-079.86E-07 Pancreas1.16E-075.13E-071.22E-061.54E-065.51E-061.40E -053.96E-051.52E-043.74E-046.08E-048.87E-041.77E-03 Thymus0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+006.27E-086.53E-088.38E-081.06E-072.88E-07

PAGE 205

188 Table 7-37. Absorbed fractions from the UF 14-year male phantom when electron source is in right lungs. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle8.81E-051.76E-043.03E-046.11E-041.49E-034.68E-0 31.38E-024.43E-028.72E-021.21E-011.49E-012.37E-01 Adipose7.83E-080.00E+004.06E-071.54E-064.22E-061.45E -053.18E-059.30E-052.06E-043.80E-047.27E-041.12E-02 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+000.00E+005.60E-087.32E-081.62E-071.74E-072.87E-07 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+005. 15E-082.50E-081.54E-074.08E-075.61E-079.89E-071.29E-06 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+002.34E-081.84E-072.58E-077.51E-078.93E-071.73E-06 Kidney-Medular(R)3.83E-082.03E-079.52E-080.00E+001.33E-062. 02E-066.71E-062.60E-055.82E-059.51E-051.39E-045.00E-04 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.28E-092.98E-08 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.20E-090.00E+002.06E-10 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+009.30E-083.60E-083.08E-076.94E-071.19E-061.74E-063.59E-06 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.83E-091.03E-08 Spinal Cord0.00E+000.00E+000.00E+000.00E+007.33E-095. 16E-071.16E-062.96E-065.92E-067.84E-061.16E-057.11E-05 Stomach(W)0.00E+000.00E+000.00E+000.00E+000.00E+008.03E -084.38E-071.14E-062.24E-063.42E-065.15E-069.29E-06 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+005.75E-100.00E+001.79E-093.25E-10 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+006.19E-083.68E-077.00E-079.10E-071.12E-062.76E-06 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.48E-093.82E-088.81E-089.96E-081.71E-07 Brain0.00E+000.00E+000.00E+000.00E+000.00E+003.32E-0 75.90E-071.89E-063.41E-065.69E-067.65E-062.16E-05 Right Colon(W)0.00E+000.00E+000.00E+001.67E-070.00E+002. 63E-081.68E-077.90E-071.74E-063.35E-064.14E-068.87E-06 Left Colon(W)0.00E+000.00E+000.00E+000.00E+000.00E+009. 19E-097.60E-083.19E-076.60E-071.06E-061.43E-063.42E-06 Rectosigmoid(W)0.00E+000.00E+000.00E+000.00E+000.00E+000 .00E+000.00E+001.11E-079.54E-087.81E-083.09E-074.79E-07 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+001.71E-0 71.82E-073.09E-077.64E-071.77E-061.85E-066.60E-06 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+005.18E-085.02E-085.50E-082.91E-075.73E-082.22E-07 Trachea2.15E-077.24E-077.55E-071.16E-063.71E-061.11E-0 53.44E-051.08E-043.16E-045.21E-046.62E-041.08E-03 Bronchi1.90E-071.56E-062.30E-064.07E-061.45E-054.65E -051.35E-044.54E-049.08E-041.27E-031.54E-032.10E-03 Aorta7.63E-071.11E-061.46E-063.51E-068.83E-062.30E-0 56.88E-052.56E-046.97E-041.32E-032.06E-035.71E-03 Lung(L)0.00E+000.00E+008.48E-081.83E-077.08E-071.26E-0 64.22E-069.60E-062.17E-053.74E-055.60E-052.69E-04 Lung(R)1.00E+001.00E+001.00E+009.99E-019.98E-019.94E-0 19.82E-019.43E-018.77E-018.15E-017.59E-015.68E-01 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+006.26E-088.87E-095.44E-085.58E-082.08E-072.83E-07 Gall Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+003. 46E-081.03E-072.72E-071.58E-072.26E-076.44E-078.85E-07 Adrenal(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +006.50E-086.04E-081.65E-075.08E-075.92E-075.24E-07 Adrenal(R)1.54E-073.04E-077.54E-073.51E-072.38E-061.20E -052.94E-059.47E-052.42E-043.91E-046.29E-041.17E-03 Skin0.00E+000.00E+005.57E-082.76E-094.83E-071.94E-0 65.36E-061.06E-052.14E-053.33E-054.39E-054.16E-04 Kidney-Cortex(L)0.00E+000.00E+000.00E+000.00E+001.11E-071. 91E-081.49E-076.37E-071.29E-062.16E-062.69E-065.33E-06 Kidney-Cortex(R)1.99E-073.47E-077.01E-078.75E-073.90E-061. 39E-054.90E-051.80E-044.10E-046.49E-049.37E-042.27E-03 Thyroid0.00E+008.33E-083.05E-074.52E-078.61E-074.30E -066.39E-062.58E-056.52E-051.03E-041.51E-044.26E-04 Heart(W)4.70E-061.23E-051.72E-053.60E-059.17E-053.08E -048.79E-042.94E-037.52E-031.27E-021.75E-022.91E-02 Liver1.76E-065.38E-069.21E-061.89E-054.86E-051.48E-0 44.71E-041.68E-033.90E-036.09E-038.21E-031.81E-02 Spleen0.00E+000.00E+000.00E+000.00E+000.00E+006.89E-0 97.00E-082.39E-078.60E-071.39E-061.48E-063.68E-06 Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.91E-090.00E+003.51E-085.77E-086.12E-083.08E-07 SI(W)0.00E+000.00E+000.00E+000.00E+000.00E+001.17E-0 85.46E-071.15E-062.81E-064.48E-066.10E-061.25E-05 Esophagus5.66E-071.81E-062.19E-063.29E-061.13E-053.52E-0 51.11E-043.53E-049.09E-041.55E-032.22E-034.36E-03 Pancreas0.00E+000.00E+000.00E+000.00E+001.20E-082.54E -072.66E-079.56E-071.75E-062.62E-064.05E-067.94E-06 Thymus1.40E-062.66E-063.17E-067.65E-061.79E-056.49E-0 51.91E-046.15E-041.38E-032.11E-032.76E-035.05E-03

PAGE 206

189 Table 7-38. Absorbed fractions from the UF 14-year male phantom when electron source is in left lung. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle9.66E-052.11E-043.45E-047.19E-041.76E-035.57E-0 31.62E-025.21E-021.01E-011.36E-011.66E-012.55E-01 Adipose2.35E-079.34E-071.34E-063.11E-068.25E-061.96E -056.82E-051.89E-044.06E-046.96E-041.29E-031.49E-02 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+001.00E-076. 40E-091.11E-071.31E-072.01E-073.34E-073.81E-079.64E-07 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+001. 90E-081.74E-096.93E-081.45E-071.80E-073.33E-076.92E-07 Kidney-Medular(L)0.00E+000.00E+000.00E+001.77E-072.12E-071. 91E-073.08E-079.25E-071.86E-063.86E-067.42E-062.07E-04 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+001.01E-072.85E-075.46E-078.48E-071.41E-062.11E-06 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+006.07E-098.47E-09 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.52E-104.03E-090.00E+007.49E-08 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+001.61E-073.14E-073.94E-079.65E-071.04E-061.88E-063.14E-06 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.85E-085.60E-091.84E-09 Spinal Cord0.00E+000.00E+000.00E+000.00E+002.39E-086. 65E-079.06E-072.48E-065.34E-067.67E-061.17E-057.55E-05 Stomach(W)1.81E-063.07E-064.86E-061.23E-052.74E-058.62E -052.64E-049.47E-042.29E-033.62E-034.94E-038.06E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.26E-101.37E-08 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+001.82E-0 81.72E-073.24E-078.65E-079.06E-071.25E-063.61E-06 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+009.96E-080.00E+000.00E+008.77E-081.77E-081.26E-071.69E-07 Brain0.00E+000.00E+000.00E+001.85E-070.00E+001.56E-1 03.75E-071.68E-063.46E-066.06E-068.84E-062.03E-05 Right Colon(W)0.00E+000.00E+000.00E+000.00E+000.00E+004. 88E-083.79E-083.24E-071.01E-061.58E-062.20E-064.36E-06 Left Colon(W)0.00E+000.00E+000.00E+000.00E+000.00E+009. 87E-103.42E-079.23E-071.22E-061.97E-063.35E-067.07E-06 Rectosigmoid(W)0.00E+000.00E+000.00E+000.00E+000.00E+000 .00E+001.66E-086.92E-081.65E-071.22E-071.61E-077.56E-07 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.10E-072.96E-077.21E-071.24E-067.99E-072.66E-06 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+005.82E-093.50E-086.61E-089.14E-081.91E-073.71E-07 Trachea0.00E+000.00E+000.00E+000.00E+001.02E-078.09E-0 81.78E-073.19E-073.96E-071.20E-061.84E-068.89E-05 Bronchi5.81E-078.60E-071.15E-061.94E-065.36E-061.57E -055.30E-051.69E-043.69E-045.27E-046.44E-049.88E-04 Aorta2.04E-071.03E-061.50E-063.42E-066.02E-062.22E-0 56.34E-052.73E-041.28E-032.78E-034.34E-039.95E-03 Lung(L)1.00E+001.00E+001.00E+009.99E-019.98E-019.93E-0 19.79E-019.33E-018.58E-017.90E-017.28E-015.28E-01 Lung(R)0.00E+000.00E+000.00E+001.76E-076.24E-071.85E-0 64.91E-061.09E-052.37E-054.27E-056.27E-052.84E-04 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+001.50E-0 90.00E+003.50E-089.43E-087.81E-082.28E-073.00E-07 Gall Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+005.03E-091.89E-086.24E-089.29E-082.02E-073.41E-07 Adrenal(L)3.14E-072.19E-076.79E-081.02E-061.67E-067.30E -062.14E-058.05E-052.15E-043.99E-046.02E-041.00E-03 Adrenal(R)0.00E+000.00E+000.00E+000.00E+000.00E+008.56E -091.14E-087.45E-081.46E-074.52E-072.54E-077.94E-07 Skin0.00E+000.00E+000.00E+002.52E-071.50E-062.09E-065.40E-061.15E-052.20E-053.25E-054.40E-053.83E-04 Kidney-Cortex(L)2.60E-072.43E-073.09E-070.00E+008.27E-074. 08E-068.21E-062.47E-057.80E-051.91E-044.08E-041.45E-03 Kidney-Cortex(R)0.00E+000.00E+000.00E+000.00E+000.00E+001. 11E-075.15E-078.14E-071.62E-062.26E-063.27E-066.84E-06 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+001.90E -073.50E-076.39E-079.61E-071.76E-066.90E-061.42E-04 Heart(W)7.97E-061.90E-053.38E-056.30E-051.66E-045.06E -041.48E-035.01E-031.21E-021.98E-022.73E-024.51E-02 Liver0.00E+000.00E+000.00E+000.00E+008.31E-072.66E-0 66.39E-061.33E-052.90E-054.55E-055.72E-051.19E-04 Spleen0.00E+000.00E+000.00E+000.00E+000.00E+002.13E-0 75.26E-071.06E-061.85E-063.19E-063.90E-067.86E-06 Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +000.00E+001.44E-084.92E-096.62E-087.88E-082.19E-07 SI(W)0.00E+000.00E+000.00E+000.00E+001.10E-071.08E-0 73.54E-071.31E-062.55E-064.17E-065.44E-061.19E-05 Esophagus0.00E+001.52E-072.87E-077.24E-072.55E-067.01E-0 61.80E-056.71E-052.20E-045.08E-048.43E-042.37E-03 Pancreas0.00E+000.00E+000.00E+001.36E-071.13E-071.88E -071.09E-062.45E-063.85E-066.76E-067.41E-063.67E-05 Thymus9.28E-077.63E-072.32E-063.84E-061.18E-053.14E-0 59.20E-053.16E-047.86E-041.35E-031.85E-033.59E-03

PAGE 207

190 Table 7-39. Absorbed fractions from the UF 14-year male phantom when electron source is in urinary bladder contents. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle4.31E-069.86E-061.96E-053.94E-051.06E-043.24E-0 49.49E-043.57E-031.25E-022.44E-023.61E-027.79E-02 Adipose1.85E-079.06E-078.19E-072.37E-066.95E-062.31E -055.97E-051.93E-045.54E-041.04E-031.61E-035.92E-03 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+009.63E-092.55E-091.02E-081.35E-089.77E-082.59E-07 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+006.60E-081.25E-084.06E-085.38E-081.37E-071.01E-07 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+003.14E-081.57E-071.93E-071.46E-073.90E-077.66E-07 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+004.31E-086.58E-081.43E-072.26E-072.71E-078.86E-07 Prostate0.00E+000.00E+000.00E+000.00E+001.55E-081.60E -076.89E-071.01E-061.68E-062.56E-061.13E-054.26E-04 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+002.11E-0 71.41E-073.87E-078.64E-071.21E-061.95E-063.62E-06 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.29E-092.17E-084.30E-098.60E-08 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Spinal Cord0.00E+000.00E+000.00E+000.00E+000.00E+009. 76E-091.03E-072.53E-077.66E-071.06E-061.59E-063.19E-06 Stomach(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +002.17E-082.36E-076.15E-071.04E-061.73E-062.95E-06 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.64E-095.72E-095.90E-084.55E-08 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.71E-100.00E+009.09E-09 Brain0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.93E-071.58E-077.36E-07 Right Colon(W)0.00E+000.00E+000.00E+000.00E+000.00E+002. 90E-073.22E-076.09E-071.87E-062.66E-063.03E-067.52E-06 Left Colon(W)0.00E+000.00E+000.00E+000.00E+000.00E+001. 99E-073.55E-071.05E-061.96E-063.36E-065.16E-061.00E-05 Rectosigmoid(W)7.78E-071.70E-062.00E-066.08E-061.19E-053 .90E-051.23E-044.62E-041.43E-032.65E-033.70E-036.99E-03 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.08E-081.49E-081.96E-08 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.63E-092.48E-10 Trachea0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+004.60E-101.32E-091.99E-08 Bronchi0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.89E-108.51E-090.00E+002.66E-08 Aorta2.45E-071.83E-071.88E-079.54E-072.73E-066.00E-0 61.74E-055.79E-052.10E-046.58E-041.34E-034.86E-03 Lung(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+007.32E-088.35E-083.11E-077.73E-078.78E-072.04E-06 Lung(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.04E-081.15E-076.04E-077.00E-071.14E-062.74E-06 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Gall Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+000.00E+001.73E-086.08E-081.41E-071.86E-071.86E-07 Adrenal(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +000.00E+002.59E-092.25E-081.42E-083.73E-081.01E-08 Adrenal(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +000.00E+001.07E-086.33E-094.58E-092.79E-088.47E-08 Skin0.00E+000.00E+000.00E+000.00E+001.51E-071.49E-0 63.92E-068.39E-061.77E-052.77E-053.79E-052.07E-04 Kidney-Cortex(L)0.00E+000.00E+000.00E+000.00E+000.00E+001. 20E-081.06E-071.49E-074.29E-075.98E-071.03E-061.77E-06 Kidney-Cortex(R)0.00E+000.00E+000.00E+000.00E+000.00E+004. 36E-095.11E-081.25E-074.88E-076.53E-078.03E-072.43E-06 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.88E-081.24E-085.11E-08 Heart(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +008.43E-081.45E-071.45E-072.30E-072.91E-071.16E-06 Liver0.00E+000.00E+000.00E+000.00E+000.00E+001.35E-0 79.05E-072.24E-065.37E-061.08E-051.33E-053.15E-05 Spleen0.00E+000.00E+000.00E+000.00E+000.00E+002.77E-0 84.34E-077.74E-071.27E-062.58E-063.36E-067.57E-06 Bladder(W)2.32E-055.18E-058.45E-051.68E-044.28E-041.36E -034.06E-031.40E-022.46E-022.90E-023.14E-023.38E-02 SI(W)7.38E-071.74E-062.67E-067.98E-061.73E-056.09E-0 51.73E-046.41E-041.96E-033.63E-035.17E-031.08E-02 Esophagus0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+006.54E-091.96E-081.72E-076.56E-081.95E-07 Pancreas0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.24E-072.60E-071.08E-061.45E-061.87E-063.89E-06 Thymus0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+004.05E-081.27E-084.21E-092.13E-07

PAGE 208

191 Table 7-40. Absorbed fractions from the UF 14-year male phantom when electron source is in liver. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle1.99E-054.72E-057.97E-051.68E-044.24E-041.33E-0 33.97E-031.39E-022.97E-024.42E-025.68E-029.66E-02 Adipose2.67E-071.32E-062.33E-064.10E-061.20E-053.75E -051.02E-043.74E-041.01E-032.02E-033.25E-039.68E-03 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+008.43E-107.45E-081.05E-072.80E-073.55E-076.85E-07 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+002. 90E-093.06E-074.58E-078.85E-071.44E-061.41E-062.54E-06 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+000.00E+007. 64E-081.14E-073.65E-079.97E-079.38E-071.49E-062.62E-06 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+003.63E-074. 41E-079.15E-071.83E-063.14E-065.23E-067.12E-066.40E-05 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+008.10E-096.35E-092.49E-082.97E-08 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.68E-082.83E-092.02E-071.32E-081.50E-07 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+007.78E-089.61E-086.83E-082.34E-071.01E-06 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.58E-090.00E+000.00E+001.59E-08 Spinal Cord0.00E+000.00E+000.00E+000.00E+000.00E+009. 95E-082.52E-076.70E-071.67E-062.16E-063.05E-068.51E-06 Stomach(W)9.30E-071.48E-062.40E-065.72E-061.11E-053.66E -051.15E-043.91E-048.53E-041.29E-031.65E-032.95E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+004.77E-100.00E+000.00E+003.38E-090.00E+00 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.20E-081.50E-071.52E-074.90E-077.48E-07 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+009.16E-102.85E-098.88E-091.29E-094.01E-08 Brain0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+005.68E-083.61E-077.96E-071.43E-062.23E-065.31E-06 Right Colon(W)9.07E-071.48E-062.73E-067.09E-061.57E-054. 93E-051.40E-045.02E-041.16E-031.81E-032.34E-034.34E-03 Left Colon(W)2.39E-071.57E-072.58E-071.64E-062.34E-061. 10E-053.13E-051.01E-042.45E-043.53E-044.78E-048.17E-04 Rectosigmoid(W)0.00E+000.00E+000.00E+000.00E+000.00E+000 .00E+001.82E-071.19E-075.98E-076.08E-078.75E-072.36E-06 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+004.21E-085.61E-086.82E-088.21E-083.03E-072.50E-07 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+009.54E-092.01E-095.58E-102.84E-081.89E-08 Trachea0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0 00.00E+000.00E+001.23E-078.88E-087.21E-082.56E-07 Bronchi0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+007.17E-087.75E-084.42E-071.86E-075.53E-07 Aorta0.00E+000.00E+000.00E+003.07E-079.48E-072.34E-0 64.47E-069.36E-061.93E-053.43E-057.30E-057.72E-04 Lung(L)0.00E+000.00E+000.00E+000.00E+001.21E-071.10E-0 61.68E-064.06E-067.96E-061.24E-051.90E-053.53E-05 Lung(R)4.75E-072.03E-062.90E-065.36E-061.47E-055.29E-0 51.46E-045.72E-041.30E-032.03E-032.78E-036.20E-03 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.72E-093.75E-082.43E-098.63E-091.68E-07 Gall Bladder(W)1.83E-062.19E-064.69E-068.33E-062.09E-057. 13E-051.98E-046.50E-041.25E-031.58E-031.81E-032.23E-03 Adrenal(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +005.71E-081.12E-072.25E-073.98E-075.65E-074.75E-07 Adrenal(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +009.43E-081.31E-074.67E-078.78E-079.73E-073.14E-06 Skin0.00E+000.00E+000.00E+002.91E-075.03E-072.37E-064.72E-069.36E-061.97E-053.89E-051.10E-049.00E-04 Kidney-Cortex(L)0.00E+000.00E+000.00E+000.00E+000.00E+001. 51E-074.39E-071.15E-062.22E-063.13E-064.10E-069.28E-06 Kidney-Cortex(R)0.00E+000.00E+000.00E+000.00E+002.22E-071. 30E-063.04E-065.96E-061.06E-051.78E-054.84E-054.78E-04 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+006.68E -090.00E+006.85E-084.24E-083.57E-088.51E-081.94E-07 Heart(W)1.21E-077.93E-081.36E-073.06E-071.58E-064.16E -068.88E-063.23E-056.69E-051.03E-041.38E-044.82E-04 Liver1.00E+001.00E+001.00E+001.00E+009.99E-019.98E-0 19.95E-019.82E-019.61E-019.40E-019.21E-018.47E-01 Spleen0.00E+000.00E+000.00E+000.00E+000.00E+001.44E-0 74.97E-071.31E-062.51E-064.08E-065.76E-061.25E-05 Bladder(W)0.00E+000.00E+000.00E+000.00E+001.08E-081.46E -080.00E+003.19E-082.35E-072.37E-073.30E-077.64E-07 SI(W)1.24E-077.27E-071.48E-063.58E-068.58E-063.21E-0 59.38E-053.30E-047.74E-041.20E-031.49E-032.42E-03 Esophagus0.00E+000.00E+000.00E+000.00E+006.04E-096.41E-0 82.74E-077.02E-078.41E-071.32E-062.30E-063.85E-06 Pancreas0.00E+000.00E+000.00E+001.52E-074.90E-071.05E -064.02E-067.67E-061.68E-053.01E-054.42E-051.84E-04 Thymus0.00E+000.00E+000.00E+000.00E+000.00E+001.47E-0 76.82E-095.79E-083.49E-079.19E-077.75E-071.55E-06

PAGE 209

192 Table 7-41. Absorbed fractions from the UF 14-year male phantom when electron source is in heart contents. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle2.71E-074.55E-071.63E-064.36E-062.07E-055.90E-0 51.46E-044.12E-049.85E-041.87E-033.63E-032.41E-02 Adipose0.00E+000.00E+000.00E+002.94E-071.22E-066.45E -061.47E-053.77E-057.59E-051.22E-041.63E-044.14E-04 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+000.00E+001.02E-087.78E-081.11E-071.02E-073.55E-07 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+006.05E-091.08E-071.62E-071.44E-072.95E-074.40E-07 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+000.00E+002. 10E-072.07E-074.65E-076.97E-079.03E-071.53E-062.77E-06 Kidney-Medular(R)0.00E+000.00E+000.00E+000.00E+002.25E-091. 03E-072.05E-072.53E-078.36E-079.61E-071.89E-063.08E-06 Prostate0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+007.55E-11 Gonads0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.90E-100.00E+009.17E-104.62E-09 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands0.00E+000.00E+000.00E+000.00E+000.00E+003.08E-082.67E-082.05E-076.81E-077.98E-079.66E-072.67E-06 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0 00.00E+003.46E-091.62E-081.47E-108.59E-099.69E-10 Spinal Cord0.00E+000.00E+000.00E+000.00E+000.00E+004. 03E-084.33E-071.09E-062.55E-064.16E-065.50E-061.33E-05 Stomach(W)0.00E+000.00E+000.00E+000.00E+000.00E+004.57E -071.17E-062.50E-065.35E-067.88E-061.01E-052.27E-05 Pituitary gland0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+002.82E-095.90E-090.00E+004.97E-10 Tongue0.00E+000.00E+000.00E+000.00E+000.00E+006.68E-0 91.70E-072.24E-078.76E-077.12E-078.94E-072.62E-06 Tonsil0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+006.27E-108.16E-082.51E-081.47E-072.95E-081.30E-07 Brain0.00E+000.00E+000.00E+000.00E+000.00E+009.10E-0 81.52E-078.06E-072.36E-064.07E-066.08E-061.48E-05 Right Colon(W)0.00E+000.00E+000.00E+000.00E+001.12E-071. 35E-081.59E-077.13E-071.46E-062.01E-062.59E-065.72E-06 Left Colon(W)0.00E+000.00E+000.00E+000.00E+000.00E+009. 46E-092.05E-086.09E-078.81E-071.73E-062.61E-064.95E-06 Rectosigmoid(W)0.00E+000.00E+000.00E+000.00E+000.00E+000 .00E+001.89E-086.33E-081.58E-071.79E-071.47E-075.56E-07 Larynx0.00E+000.00E+000.00E+000.00E+000.00E+002.12E-0 87.85E-082.37E-072.87E-073.80E-076.43E-071.42E-06 Pharynx0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.88E-099.73E-084.83E-081.04E-071.74E-07 Trachea0.00E+000.00E+000.00E+000.00E+001.53E-099.93E-0 81.86E-071.56E-074.36E-076.71E-078.52E-072.28E-05 Bronchi0.00E+000.00E+007.58E-080.00E+005.87E-094.02E -075.97E-079.83E-071.93E-064.10E-061.59E-054.54E-04 Aorta3.01E-073.73E-077.16E-073.13E-064.35E-061.50E-0 54.19E-051.43E-043.40E-045.67E-047.46E-041.45E-03 Lung(L)0.00E+003.62E-071.73E-071.35E-064.56E-061.23E-0 52.69E-057.30E-051.62E-043.14E-047.16E-048.74E-03 Lung(R)0.00E+000.00E+000.00E+005.20E-074.14E-068.99E-0 61.71E-053.34E-057.18E-051.77E-045.28E-048.56E-03 Eyes0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+003.07E-084.79E-086.64E-088.89E-082.32E-07 Gall Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.0 0E+001.28E-088.53E-081.27E-072.55E-074.72E-076.65E-07 Adrenal(L)0.00E+000.00E+000.00E+000.00E+000.00E+001.09E -097.44E-081.19E-072.80E-075.61E-076.20E-071.09E-06 Adrenal(R)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +001.30E-087.64E-083.18E-074.28E-074.14E-071.13E-06 Skin0.00E+000.00E+000.00E+000.00E+001.37E-071.66E-0 63.63E-068.55E-061.79E-052.74E-053.71E-057.77E-05 Kidney-Cortex(L)0.00E+000.00E+000.00E+000.00E+000.00E+004. 06E-074.95E-079.05E-071.87E-062.55E-064.39E-068.04E-06 Kidney-Cortex(R)0.00E+000.00E+000.00E+000.00E+001.38E-075. 92E-083.84E-071.26E-062.42E-063.65E-065.10E-068.69E-06 Thyroid0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+001.06E-081.35E-074.29E-075.66E-076.87E-071.45E-06 Heart(W)3.43E-057.31E-051.18E-042.56E-046.27E-042.03E -036.03E-032.09E-024.51E-026.75E-028.71E-021.32E-01 Liver0.00E+000.00E+000.00E+001.20E-071.51E-067.52E-0 61.48E-053.39E-056.77E-059.70E-051.38E-046.36E-04 Spleen0.00E+000.00E+000.00E+000.00E+000.00E+005.90E-0 82.93E-075.70E-079.34E-071.70E-062.11E-065.22E-06 Bladder(W)0.00E+000.00E+000.00E+000.00E+000.00E+000.00E +000.00E+005.41E-081.70E-082.32E-089.54E-083.11E-07 SI(W)0.00E+000.00E+000.00E+000.00E+000.00E+006.06E-0 82.95E-071.32E-062.17E-063.93E-066.00E-061.32E-05 Esophagus0.00E+000.00E+000.00E+001.12E-071.99E-076.47E-0 71.83E-062.93E-065.68E-068.19E-061.79E-055.94E-04 Pancreas0.00E+000.00E+000.00E+000.00E+003.15E-081.22E -077.75E-071.17E-062.58E-063.87E-065.49E-069.94E-06 Thymus0.00E+000.00E+000.00E+000.00E+008.73E-086.42E-0 71.95E-063.39E-065.21E-067.91E-062.41E-058.27E-04

PAGE 210

193 Table 7-42. Absorbed fractions from the UF 14-year male phantom when electron source is in muscle. Energy (MeV)0.010.0150.020.030.050.10.20.511.524 Muscle1.00E+001.00E+001.00E+001.00E+009.99E-019.96E-019.88E-019.59E-019.16E-018.80E-018.49E-017.52E-01 Adipose3.33E-056.59E-051.04E-042.28E-045.40E-041.76E -035.34E-031.82E-023.65E-025.04E-026.12E-028.41E-02 Kidney-Pelvis(L)0.00E+000.00E+000.00E+000.00E+000.00E+002. 18E-085.98E-071.12E-062.59E-064.02E-064.95E-061.42E-05 Kidney-Pelvis(R)0.00E+000.00E+000.00E+000.00E+000.00E+005. 08E-071.40E-062.92E-066.01E-068.29E-061.17E-052.97E-05 Kidney-Medular(L)0.00E+000.00E+000.00E+000.00E+002.80E-084. 04E-073.77E-071.17E-064.68E-061.54E-053.84E-051.78E-04 Kidney-Medular(R)0.00E+000.00E+000.00E+006.01E-083.65E-083. 58E-081.39E-061.94E-065.32E-061.82E-054.63E-052.18E-04 Prostate8.72E-080.00E+009.82E-082.04E-079.26E-079.21E -071.85E-061.05E-052.19E-052.80E-053.72E-056.68E-05 Gonads1.62E-072.32E-076.12E-082.34E-072.07E-065.24E-0 61.28E-054.83E-051.03E-041.51E-041.92E-042.48E-04 Breast0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 Salivary glands1.55E-076.17E-076.63E-072.18E-064.62E-061. 61E-054.36E-051.57E-043.22E-044.62E-045.80E-048.56E-04 Lenses0.00E+000.00E+000.00E+000.00E+000.00E+001.53E-0 82.88E-078.18E-072.27E-063.26E-065.05E-065.70E-06 Spinal Cord3.47E-074.56E-071.58E-061.69E-065.26E-061. 70E-054.99E-051.77E-042.96E-043.68E-043.87E-045.37E-04 Stomach(W)6.49E-071.17E-062.46E-064.94E-068.57E-063.11E -059.15E-053.17E-046.40E-048.90E-041.02E-031.28E-03 Pituitary gland0.00E+000.00E+000.00E+000.00E+004.69E-070.00E+002.72E-079.88E-072.36E-062.31E-064.67E-063.60E-06 Tongue0.00E+003.19E-074.42E-074.25E-073.01E-067.59E-0 61.67E-056.85E-051.44E-042.18E-042.68E-044.25E-04 Tonsil0.00E+007.10E-081.32E-070.00E+001.60E-071.02E-0 62.41E-061.22E-051.87E-052.41E-053.18E-054.60E-05 Brain7.34E-071.49E-062.00E-063.88E-061.30E-054.30E-0 51.12E-043.98E-047.04E-049.09E-041.12E-032.14E-03 Right Colon(W)7.90E-077.13E-071.51E-062.98E-068.03E-062. 28E-057.17E-052.42E-044.70E-046.47E-047.31E-048.85E-04 Left Colon(W)6.43E-071.23E-061.50E-062.50E-069.82E-063. 12E-051.02E-043.27E-046.25E-048.04E-049.68E-041.14E-03 Rectosigmoid(W)2.16E-079.38E-071.47E-063.26E-065.45E-062 .22E-056.75E-052.37E-044.58E-045.73E-046.49E-047.24E-04 Larynx0.00E+009.87E-081.27E-074.25E-071.20E-063.07E-0 61.08E-054.03E-058.67E-051.28E-041.71E-043.00E-04 Pharynx5.88E-080.00E+001.62E-072.54E-073.83E-072.22E -068.19E-062.79E-055.41E-058.72E-059.20E-051.03E-04 Trachea2.01E-071.18E-071.28E-073.45E-071.32E-063.34E-0 69.64E-063.57E-056.24E-057.77E-058.48E-058.66E-05 Bronchi1.15E-070.00E+002.62E-073.06E-074.66E-073.08E -068.42E-062.42E-054.66E-056.40E-056.84E-055.72E-05 Aorta7.34E-072.45E-063.16E-066.21E-061.55E-055.44E-0 51.65E-045.70E-041.19E-031.67E-032.10E-033.02E-03 Lung(L)1.68E-064.07E-065.83E-061.20E-052.42E-058.53E-0 52.65E-048.35E-041.64E-032.18E-032.77E-034.25E-03 Lung(R)1.62E-063.59E-065.67E-061.28E-052.87E-058.74E-0 52.50E-047.97E-041.58E-032.18E-032.66E-034.36E-03 Eyes3.37E-081.92E-077.85E-089.04E-075.71E-074.83E-0 61.27E-053.51E-058.15E-051.21E-041.45E-042.04E-04 Gall Bladder(W)0.00E+000.00E+000.00E+000.00E+003.19E-071. 31E-071.77E-067.59E-061.38E-051.59E-051.84E-052.21E-05 Adrenal(L)0.00E+001.42E-089.35E-092.70E-074.04E-072.73E -064.80E-061.76E-054.10E-055.11E-055.43E-057.82E-05 Adrenal(R)0.00E+003.64E-088.68E-086.26E-076.28E-071.57E -064.77E-062.39E-054.67E-055.94E-057.10E-058.87E-05 Skin2.42E-066.03E-068.32E-061.98E-055.63E-051.59E-0 44.95E-041.66E-033.35E-035.40E-037.67E-031.41E-02 Kidney-Cortex(L)4.57E-072.32E-075.79E-071.77E-065.30E-061. 23E-053.71E-051.37E-043.07E-044.39E-045.27E-048.30E-04 Kidney-Cortex(R)6.77E-083.66E-071.10E-061.13E-064.34E-061. 51E-054.74E-051.63E-043.47E-045.14E-046.52E-041.01E-03 Thyroid0.00E+006.67E-083.55E-071.03E-061.52E-062.98E -061.16E-053.72E-058.87E-051.22E-041.59E-042.10E-04 Heart(W)7.11E-076.00E-071.35E-063.19E-067.29E-062.79E -057.57E-052.67E-045.35E-047.34E-048.91E-041.28E-03 Liver1.22E-062.85E-063.58E-061.04E-052.56E-057.47E-0 52.23E-047.59E-041.64E-032.45E-033.11E-035.23E-03 Spleen9.90E-083.76E-085.99E-075.78E-071.02E-065.68E-0 62.23E-057.35E-051.60E-042.20E-042.90E-045.29E-04 Bladder(W)4.26E-075.71E-071.23E-061.88E-066.13E-061.84E -055.50E-052.06E-043.31E-043.80E-043.94E-044.19E-04 SI(W)1.95E-064.86E-067.87E-061.54E-053.94E-051.31E-0 44.05E-041.36E-032.67E-033.59E-033.92E-034.72E-03 Esophagus1.62E-073.41E-073.74E-071.37E-063.31E-066.67E-0 62.64E-058.94E-051.76E-042.38E-043.03E-043.65E-04 Pancreas2.02E-074.95E-071.21E-062.31E-065.75E-061.92E -055.13E-051.79E-043.91E-045.40E-046.95E-041.09E-03 Thymus1.04E-078.27E-082.59E-075.38E-072.36E-074.71E-0 61.19E-053.82E-057.53E-051.13E-041.37E-042.10E-04

PAGE 211

194 CHAPTER 8 CONCLUSION AND FUTURE WORK Conclusion Even though pediatric indivi duals have unique radiation dosimetric characteristics, computational phantoms to support accurate a nd extensive assessment of the organ dose have been available only at limited ages a nd numbers. This disse rtation presents the development of realistic voxel phantoms of pe diatric patients for the use with Monte Carlo simulation to calculate the organ and effective dose. The five phantoms include 9-month male, 4-year female, 8-year female , 11-year male, and 14-year male. Each phantom represents the reference anthropomor phic and anthropometric data from the ICRP Publication 89. Chapter 2 and Chapter 3 described the de tailed procedures em ployed during their development. In Chapter 2, image fusion techniques for head and torso were explained along with example dosimetry calculations to show the advantages of the voxel phantoms over conventional equation-based stylized pedi atric phantoms. In Chapter 3 the arms and legs of a healthy adult volunteer were successfully adopted into the head and torso phantoms of Chapter 2. Furthermore, the internal organs of the whole body phantoms were modified to have reference organ masses. Chapter 4 investigated the presently available dosimetry methods for the red bone marrow and bone endosteum. After benchm arking studies were conducted with highresolution image-based PIRT model results, it was concluded that the use of dose response functions and the homogeneous appr oximation for the red bone marrow and the

PAGE 212

195 bone surface were recommended, respectively. It was also suggested that a new set of dose response functions be developed for mo re accurate and diverse dose estimation for those skeletal tissues. Chapter 5 reported the dose conversion coef ficients of the UF pediatric phantoms for external photons. Idealized broad para llel photon beam from AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries were simulated by using the MCNPX Monte Carlo transport code. The dose coefficients were compared to those calculated from the stylized phantoms. Some distinctive dosim etric differences were found between the two types of the phantoms and the causes of these differences were discussed. In Chapter 6, the UF pediatric phantoms were utilized for the organ dose assessment for the pediatric patients under he lical CT exams. Head, chest, abdomen, pelvis, and chest-abdomen-pelvis exams were simulated by using different technique factor combinations to give age-depende nt organ and effective doses. The UF phantoms showed more realistic dose result s than the conventional ORNL stylized phantoms, especially for absorbed dose asse ssments to individual organs and tissues. Differences in effective doses were not as dramatic as selected overestimates and underestimates of individual organ doses tend to cancel one another in the calculation of the effective dose. Finally, in Chapter 7, the UF pediatri c phantoms were adopted to the EGSnrc Monte Carlo code to calculate the organ doses from the internal radiation emitters. Both photon and electron SAFs were calculated for multiple source-target organ pairs. The results were reported in the tabular form.

PAGE 213

196 Future Work Even though the UF voxel phantoms develope d in this dissertation have doubled the number of pediatric voxel phantoms curren tly available, they only represent the reference pediatric patient of specific gende rs at given ages. The phantoms are very useful for the reference dosimetry studies, but they cannot be di rectly used for the patient-specific dosimetry. One way of avoiding this issue is to develop more phantoms to cover various ages and gende rs. More phantoms are currently under construction at the University of Florida to complete the pediatric phantom series with opposite genders of the present study. The comp lete sets of pediatric phantoms of both genders will provide a great res ource to the investigation of the radiation risks to the pediatric population. The other way of pr oviding more patient-specific phantoms is to pick the most similar phantom to a patient a nd deform it to match that individual patient’s anatomy. However, current techniques ut ilized in the dissertation prohibit easy deformation of the phantoms, since the phant oms are composed of multiple voxels of the same dimensions. Existing methods only al low for proportional increases or decreases along the x-, y-, or z-axes. A new technique called non-uniform rati onal B-spline (NURBS) is believed to potentially solve this problem. Instead of using voxel-by-voxel representation of organs, the NURBS technique utilizes Bspline equations to represen t arbitrary shaped internal organs. The technique is similar to that fo r the conventional styli zed phantom in that it utilizes mathematical equations to represent organs, but it is very versatile in expressing the complex shape of each internal organ. Another unique advantage of the NURBS technique is its deformability. User can eas ily modify the surface of the organs in a three dimensional space to match any desired organ anatomy. Figure 8-1 shows two

PAGE 214

197 different representations of the same anat omy, voxel-based (left) and NURBS-based (right). The NURBS-based phantom will have more applicability in the medical fields where the patient-specific phantoms are requi red to reconstruct patient organ doses. One good example of them is dose reconstruc tion of the patient under radiation therapy treatment. In the radiation therapy applica tion, the specifically tailored phantoms can be used to assess secondary radiation cancer ri sk for the specific patients. The NURBS technique will be implemented to the new series of the UF pediatric phantoms.

PAGE 215

198 Figure 8-1. Comparison of the 3D renderings of the major internal organs (lungs, heart, liver, stomach, and kidneys) of the UF 4-year female phantom. Voxel-based (left) and NURBS-based (right).

PAGE 216

199 APPENDIX A SELECTED SLICE IMAGES OF TH E UF SERIES B PHANTOMS Figure A-1.Selected slice images of the UF 9-month male voxel phantom

PAGE 217

200 Figure A-2. Selected slice images of the UF 4-year female phantom

PAGE 218

201 Figure A-3. Selected slice images of the UF 8-year female phantom

PAGE 219

202 Figure A-4. Selected slice images of the UF 11-year male phantom

PAGE 220

203 Figure A-5. Selected slice images of the UF 14-year male phantom

PAGE 221

204 APPENDIX B MONTE CARLO CODES FOR CHAPTER 4 STUDIES This appendix contains the EGSnrc MORTRA N user code and MCNP code that have been developed to transport photon and el ectrons within the skeleton structures, especially lumbar vertebra. EGSnrc MORTAN user code !INDENT M 4; "INDENT EACH MORTRAN NESTING LEVEL BY 4" !INDENT F 2; "INDENT EACH FORTRAN NESTING LEVEL BY 2" "This line is 80 characters long, use it to set up the screen width" "23456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789" "******************************************************************************" " " " *********************** " " * * " " * PIRT_LV.mortran * " " * * " " *********************** " " This program is a modified version of the original PIRT.mortran which was " " developed by Amish Shah. " " This program calculates the absorbed fraction of energy within the bone " " trabeculae, marrow, endosteum, and the surrounding cortical bone of a given " " bone site. " " The geometry is defined by two images. " " A MicroCT image is used to simulate an infinite field of trabecular bone. " " A CT image (lower resolution) is place over the trabecular bone region to " " define the limits of the trabecular bone region via a cortical bone shell " " with surrounding soft tissue. " " " "******************************************************************************" "----------------------------------------" " Step 1: To override the EGSnrc macros " "----------------------------------------" " 1) so that all real variables are in double precision " REPLACE {$REAL} WITH {DOUBLE PRECISION} " 2) the size of the arrays used by EGSnrc. " REPLACE {$MXMED} WITH {3} "3 medium in the problem (default 10)" REPLACE {$MXREG} WITH {6} "6 geometric regions (default 2000)" REPLACE {$MXSTACK} WITH {100} "less than 100 particles on stack at once" REPLACE {$MXMDSH} WITH {200} "max. nb of shells per medium for " "incoherent scattering" REPLACE {0.,} WITH {0.0D0,} " 3) for compatibility with the old EGS4. " REPLACE {$CALL-HOWNEAR(#);} WITH {CALL HOWNEAR({P1},X(NP),Y(NP),Z(NP),IRL);} "-------------------------------------------" " Step 1.a. To define user constant values " "-------------------------------------------" REPLACE {$REG_TRAB} WITH {1} " region within the bone trabeculae " REPLACE {$REG_MARR} WITH {2} " region within the marrow cavities " REPLACE {$REG_CORT} WITH {3} " region within the cortical bone " REPLACE {$REG_TISSUE} WITH {4} " region within the soft tissue" REPLACE {$REG_OUTSIDE} WITH {5} " outside of ROI" REPLACE {$REG_LOST} WITH {6} " region for lost particles "

PAGE 222

205 REPLACE {$MED_BONE} WITH {0} " to represent bone in NMR image " REPLACE {$MED_MARR} WITH {255} " to represent marrow in NMR image " REPLACE {$MED_SPONG} WITH {5} " to represent spongiosa in CT image " REPLACE {$MED_CORT} WITH {45} " to represent cort. bone in CT image " REPLACE {$MED_TISS} WITH {25} " to represent soft tissue in CT image " REPLACE {$IMAGE_FILE_NMR} WITH {23} " file to read the image " REPLACE {$IMAGE_FILE_CT} WITH {23} " file to read the image " REPLACE {$INPUT_FILE} WITH {25} " file to get the parameters " REPLACE {$OUTPUT_FILE} WITH {26} " file to record the results " REPLACE {$N_RUN} WITH {100} " number of run for each configuration" REPLACE {$INFINITY} WITH {1.0D99} " to simulate infinity long distance " REPLACE {$PI} WITH {3.1415926535897932D+00} " need Pi in Source " " this is to solve the boundary crossing problem. The particle is " " transported a little farther than the exact boundary " REPLACE {$BOUNDARY_THICKNESS} WITH {1.0D-06} " that's 0.1 Angstrom " " for the geometrical model " "****************Change These Parameters as needed*****************************" " 1) the Micro CT image " REPLACE {$NMR_VOXEL_SIZE_X} WITH {0.00600D+00} "microimage voxel res (cm) " REPLACE {$NMR_VOXEL_SIZE_Y} WITH {0.00600D+00} " in cm " REPLACE {$NMR_VOXEL_SIZE_Z} WITH {0.00600D+00} " in cm " REPLACE {$NMR_IMAGE_NX} WITH {206} " # of voxels along (O,x)" REPLACE {$NMR_IMAGE_NY} WITH {353} " # of voxels along (O,y)" REPLACE {$NMR_IMAGE_NZ} WITH {187} " # of voxels along (O,z)" " 2) the CT image " REPLACE {$CT_VOXEL_SIZE_X} WITH {0.0322266D+00} "macroimage voxel res (cm) " REPLACE {$CT_VOXEL_SIZE_Y} WITH {0.0322266D+00} " in cm " REPLACE {$CT_VOXEL_SIZE_Z} WITH {0.1000000D+00} " in cm " REPLACE {$CT_IMAGE_NX} WITH {512} " # of voxels along (O,x)" REPLACE {$CT_IMAGE_NY} WITH {512} " # of voxels along (O,y)" REPLACE {$CT_IMAGE_NZ} WITH {175} " # of voxels along (O,z)" "**************************Change the Above Parameters****************" "The parameter for lumbar vertebra is shown" "-------------------------------------------------" " Step 1.b. To define the user common variables " "-------------------------------------------------" " a) for scoring the results " REPLACE {COMIN/SCOR/;} WITH {COMMON/SCOR/ CumulEnergyTrabeculae,CumulEnergyMarrow,CumulEnergyCortical, CumulEnergyTissue,CumulEnergyOutside,CumulEnergyLost, CumulEnergyEndo; $REAL CumulEnergyTrabeculae; $REAL CumulEnergyMarrow; $REAL CumulEnergyCortical; $REAL CumulEnergyTissue; $REAL CumulEnergyEndo; $REAL CumulEnergyOutside; $REAL CumulEnergyLost;} " b) for the geometry " REPLACE {COMIN/GEOM/;} WITH {COMMON/GEOM/NMRBoneImage2, CTBoneImage; CHARACTER NMRBoneImage2($NMR_IMAGE_NX,$NMR_IMAGE_NY,$NMR_IMAGE_NZ); BYTE CTBoneImage($CT_IMAGE_NZ * $CT_IMAGE_NY * $CT_IMAGE_NX);} "--------------------------------------------------------" " Step 1.c. To define the variables of the main program " "--------------------------------------------------------" $IMPLICIT-NONE; " to make sure that all variables are declared " " 1) all the common that you need in the main programm " COMIN/BOUNDS,MEDIA,MISC,USEFUL,RANDOM,GEOM,SCOR/; " The above expands into COMMON statements " " BOUNDS contains ECUT and PCUT " " MEDIA contains NMED and the array concerning media " " MISC contains the medium per region and Rayleigh parameters " " USEFUL contains electron rest mass " " RANDOM contains the RANMAR parameters " " GEOM passes info to HOWFAR and HOWNEAR routines " " SCOR passes info to AUSGAB routine "

PAGE 223

206 " 2) local variables of the main program " $REAL XIN, YIN, ZIN; " particle location (to give to SHOWER) " $REAL UIN, VIN, WIN; " particle direction (to give to SHOWER) " $REAL EIN; " particle energy (to give to SHOWER) " $REAL WTIN; " particle weight (to give to SHOWER) " $INTEGER IQIN; " particle type (to give to SHOWER) " $INTEGER IRIN; " particle region (to give to SHOWER) " $INTEGER PartNo; " particle # to loop for each particle " $INTEGER RunNo; " run number to loop for each run " $INTEGER ConfigNo; " configuration number to loop for each one " LOGICAL NoMoreConfig; " to test the end of the input file " $INTEGER ParticleType; " particle type got from the input file " $REAL KineticEnergy; " kinetic energy got from the input file " $INTEGER NumberOfHistories; " number of histories got from the input file " $INTEGER ParticlePerRun; " number of particles per run " " for statistical results: mean, standard deviation, standard deviation " " of the mean, 95% confidence interval, and 95% confidence error " $REAL AFTrabeculae; $REAL MeanAFTrabeculae; $REAL StdDevAFTrabeculae; $REAL StdDevOfMeanAFTrabeculae; $REAL ConfIntOfMeanAFTrabeculae; $REAL ConfErrOfMeanAFTrabeculae; $REAL AFMarrow; $REAL MeanAFMarrow; $REAL StdDevAFMarrow; $REAL StdDevOfMeanAFMarrow; $REAL ConfIntOfMeanAFMarrow; $REAL ConfErrOfMeanAFMarrow; $REAL AFEndo; $REAL MeanAFEndo; $REAL StdDevAFEndo; $REAL StdDevOfMeanAFEndo; $REAL ConfIntOfMeanAFEndo; $REAL ConfErrOfMeanAFEndo; $REAL AFCortical; $REAL MeanAFCortical; $REAL StdDevAFCortical; $REAL StdDevOfMeanAFCortical; $REAL ConfIntOfMeanAFCortical; $REAL ConfErrOfMeanAFCortical; $REAL AFTissue; $REAL MeanAFTissue; $REAL StdDevAFTissue; $REAL StdDevOfMeanAFTissue; $REAL ConfIntOfMeanAFTissue; $REAL ConfErrOfMeanAFTissue; $REAL AFOutside; $REAL MeanAFOutside; $REAL StdDevAFOutside; $REAL StdDevOfMeanAFOutside; $REAL ConfIntOfMeanAFOutside; $REAL ConfErrOfMeanAFOutside; $REAL AFLost; $REAL MeanAFLost; $REAL StdDevAFLost; $REAL StdDevOfMeanAFLost; $REAL ConfIntOfMeanAFLost; $REAL ConfErrOfMeanAFLost; $INTEGER NumByte, NumX, NumY, NumZ; CHARACTER tmp; " 3) system functions invoked in the main program " $REAL DSQRT;

PAGE 224

207 INTRINSIC DSQRT; "----------------------------------------" " Step 2. To initialize the EGSnrc data " "----------------------------------------" " 1) to place medium names in an array. " " $S is a MORTRAN macro to expand strings " CHARACTER*4 MEDARR(24,$MXMED); $INTEGER I, J; DATA MEDARR /$S'Bone',20*' ',$S'Marrow',18*' ',$S'Tissue',18*' '/; NMED = $MXMED; "Set number of media." DO J = 1,$MXMED [ DO I=1,24 [ MEDIA(I,J) = MEDARR(I,J); ] " this is to avoid a DATA STATEMENT for a variable in COMMON" " NMED and DUNIT default to 1, i.e. one medium and we work in cm " ] " 2) to initialize the medium in each region " MED($REG_TRAB) = 1; "cortical bone in the bone trabeculae" MED($REG_MARR) = 2; "bone marrow in the marrow cavities" MED($REG_CORT) = 1; "cortical bone in the cortical shell" MED($REG_TISSUE) = 0; "Tissue the study region " MED($REG_OUTSIDE) = 0; "vacuum outside ROI" MED($REG_LOST) = 0; "vacuum if particles are lost (does not matter)" " 3) to initialize the cutoff energy for both electrons and " " photons in each region " ECUT($REG_TRAB) = 0.005 + PRM; " 5 keV + rest mass for electrons " PCUT($REG_TRAB) = 0.001; " 1 keV for photons " ECUT($REG_MARR) = 0.005 + PRM; PCUT($REG_MARR) = 0.001; ECUT($REG_CORT) = 0.005 + PRM; PCUT($REG_CORT) = 0.001; ECUT($REG_TISSUE) = 0.005 + PRM; PCUT($REG_TISSUE) = 0.001; ECUT($REG_OUTSIDE) = 0.005 + PRM; PCUT($REG_OUTSIDE) = 0.001; ECUT($REG_LOST) = 0.005 + PRM; PCUT($REG_LOST) = 0.001; " 4) to ask EGSnrc to treat the Rayleigh scattering in each region " IRAYLR($REG_TRAB) = 1; IRAYLR($REG_MARR) = 1; IRAYLR($REG_CORT) = 1; IRAYLR($REG_TISSUE) = 1; IRAYLR($REG_OUTSIDE) = 1; IRAYLR($REG_LOST) = 1; " 5) to initialize the random number generator " IXX = 1; JXX = 1; " seed # to initialize the random number series " $RNG-INITIALIZATION; "---------------------------------------------------------------" " Step 3. To pick up the cross sections precalculated by pegs4 " "---------------------------------------------------------------" CALL HATCH; " data file must be assigned to unit 12 " PRINT *, 'End of HATCH'; "------------------------------------------" " Step 3.a. To initialize the output file " "------------------------------------------" OPEN ( UNIT=$OUTPUT_FILE, FILE='/c/users/egsnrc/PIRT_LV/Output.dat', STATUS='unknown' ); WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation ', 'from various sources.'; WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation ', 'from external photon irradiation.'; " 'from active bone marrow.'; " " 'from trabecular bone surface.'; " " 'from cortical bone.'; "

PAGE 225

208 "---------------------------------------------" " Step 3.b. To open and read the image files " "---------------------------------------------" "Read in the MicroCT image" OPEN(25, FILE='/c/users/egsnrc/PIRT_LV/LV2_MicroCT(187x353x206).raw', ACCESS='DIRECT',ERR=95,FORM='FORMATTED',RECL=1); GOTO 101; 95 PRINT *, 'error opening'; 101 PRINT *, 'ok opening MicroCT image file'; NumByte = 1; DO NumX=1, $NMR_IMAGE_NX [ DO NumY=1, $NMR_IMAGE_NY [ DO NumZ=1, $NMR_IMAGE_NZ [ READ(25, '(A1)', REC=NumByte) tmp; NMRBoneImage2(NumX,NumY,NumZ)=tmp; NumByte = NumByte + 1; ] ] ] CLOSE (25); PRINT *, 'ok reading MicroCT image file'; "Read in the macro CT image" OPEN($IMAGE_FILE_CT, FILE='/c/users/egsnrc/PIRT_LV/LumbarVert.con', ACCESS='DIRECT', FORM='UNFORMATTED', RECL=$CT_IMAGE_NZ*$CT_IMAGE_NY*$CT_IMAGE_NX); PRINT *, 'ok opening CT image file'; READ($IMAGE_FILE_CT, REC=1) CTBoneImage; CLOSE ( $IMAGE_FILE_CT ); "-----------------------------------------------------" " Step 3.c. For each configuration in the input file " "-----------------------------------------------------" " One execution is performed for each line of the input file " OPEN ( UNIT=$INPUT_FILE, FILE='/c/users/egsnrc/PIRT_LV/Input.dat', STATUS='old' ); READ ( $INPUT_FILE, * ); " to skip the first line " NoMoreConfig = .FALSE.; ConfigNo = 0; LOOP [" until no more line in the file " "-------------------------------------------------" " Step 3.d. To read a new line in the input file " "-------------------------------------------------" READ ( $INPUT_FILE, *, END = :EndInput: ) ParticleType, KineticEnergy, NumberOfHistories; GO TO :NextInput:; :EndInput: NoMoreConfig = .TRUE.; :NextInput: CONTINUE; "-----------------------------------------------------------------------" " Step 3.e. If a new line exists, initialize the data for this config. " "-----------------------------------------------------------------------" IF (~NoMoreConfig) [ " 1) to display the new configuration " ConfigNo = ConfigNo + 1; PRINT *, 'Configuration no:', ConfigNo; " 2) how many particles per run? " ParticlePerRun = NumberOfHistories / $N_RUN; print *,ParticlePerRun; " 3) to output the parameters of the configuration " WRITE($OUTPUT_FILE, '(A)') ' '; WRITE($OUTPUT_FILE, '(A,I3)') 'Configuration No:', ConfigNo; WRITE($OUTPUT_FILE, '(A)') 'The calculation is performed for:';

PAGE 226

209 WRITE($OUTPUT_FILE, '(A,I5,A)') ' ', $N_RUN, ' runs'; IF (ParticleType = 0) [ WRITE($OUTPUT_FILE, '(A,I6,A)') ' ', ParticlePerRun, ' photons per run'; ] ELSE [ WRITE($OUTPUT_FILE, '(A,I6,A)') ' ', ParticlePerRun, ' electrons per run'; ] WRITE($OUTPUT_FILE, '(A,I8,A)') ' Total: ', ParticlePerRun*$N_RUN, ' histories.'; WRITE($OUTPUT_FILE, '(A,F7.3,A)') ' Initial kinetic energy: ', KineticEnergy, ' MeV.'; " 4) to initialize the statistical data " MeanAFTrabeculae = 0.0; MeanAFMarrow = 0.0; MeanAFEndo = 0.0; MeanAFCortical = 0.0; MeanAFTissue = 0.0; MeanAFOutside = 0.0; MeanAFLost = 0.0; StdDevAFTrabeculae = 0.0; StdDevAFMarrow = 0.0; StdDevAFEndo = 0.0; StdDevAFCortical = 0.0; StdDevAFTissue = 0.0; StdDevAFOutside = 0.0; StdDevAFLost = 0.0; "-------------------------" " Step 3.f. For each run " "-------------------------" DO RunNo=1,$N_RUN [ PRINT *, ' Run no:', RunNo; "------------------------------------------------------------" " Step 4. To initialize the geometry for HOWFAR and HOWNEAR " "------------------------------------------------------------" " done when reading the input file " "---------------------------------------------------------" " Step 5. To initialize the scoring variables for AUSGAB " "---------------------------------------------------------" CumulEnergyTrabeculae = 0.0; CumulEnergyMarrow = 0.0; CumulEnergyEndo = 0.0; CumulEnergyCortical = 0.0; CumulEnergyTissue = 0.0; CumulEnergyOutside = 0.0; CumulEnergyLost = 0.0; "------------------------------" " Step 5.a. For each particle " "------------------------------" DO PartNo=1, ParticlePerRun [ " to have a display of the progression of the code " IF (MOD(PartNo,100) = 0) [ PRINT *, ' Particle: ', PartNo; ] "--------------------------------------------" " Step 6. To define the particle parameters " "--------------------------------------------" IF (ParticleType = 0) [ EIN = KineticEnergy; " initial kinetic energy" ] ELSE [ EIN = KineticEnergy + PRM; " initial kinetic + rest mass energy" ] IQIN=ParticleType; WTIN=1.0; " weight = 1 since no variance reduction used" " to get the initial location and direction of the particle. " CALL SourcePlane(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); "------------------------------------"

PAGE 227

210 " Step 7. To transport the particle " "------------------------------------" CALL SHOWER(IQIN,EIN,XIN,YIN,ZIN,UIN,VIN,WIN,IRIN,WTIN); ] "-------------------------------------------------------------" " Step 7.a. To calculate and display the result for this run " "-------------------------------------------------------------" AFTrabeculae = CumulEnergyTrabeculae / (ParticlePerRun * KineticEnergy); AFMarrow = CumulEnergyMarrow / (ParticlePerRun * KineticEnergy); AFEndo = CumulEnergyEndo / (ParticlePerRun * KineticEnergy); AFCortical = CumulEnergyCortical / (ParticlePerRun * KineticEnergy); AFTissue = CumulEnergyTissue / (ParticlePerRun * KineticEnergy); AFOutside = CumulEnergyOutside / (ParticlePerRun * KineticEnergy); AFLost = CumulEnergyLost / (ParticlePerRun * KineticEnergy); PRINT *, ' Data for this run:'; PRINT *, ' AF in bone trabeculae: ',AFTrabeculae; PRINT *, ' AF in MARROW: ',AFMarrow; PRINT *, ' AF in endo: ',AFEndo; PRINT *, ' AF in cortical: ',AFCortical; PRINT *, ' AF in tissue: ',AFTissue; PRINT *, ' AF in outside: ',AFOutside; PRINT *, ' AF in lost: ',AFLost; PRINT *, ' Total in AF: ',AFTrabeculae + AFMarrow + AFEndo + AFCortical + AFTissue + AFOutside + AFLost; "---------------------------------------------" " Step 7.b. To cumulate the statistical data " "---------------------------------------------" MeanAFTrabeculae = MeanAFTrabeculae + AFTrabeculae; MeanAFMarrow = MeanAFMarrow + AFMarrow; MeanAFEndo = MeanAFEndo + AFEndo; MeanAFCortical = MeanAFCortical + AFCortical; MeanAFTissue = MeanAFTissue + AFTissue; MeanAFOutside = MeanAFOutside + AFOutside; MeanAFLost = MeanAFLost + AFLost; StdDevAFTrabeculae = StdDevAFTrabeculae + AFTrabeculae*AFTrabeculae; StdDevAFMarrow = StdDevAFMarrow + AFMarrow*AFMarrow; StdDevAFEndo = StdDevAFEndo + AFEndo*AFEndo; StdDevAFCortical = StdDevAFCortical + AFCortical*AFCortical; StdDevAFTissue = StdDevAFTissue + AFTissue*AFTissue; StdDevAFOutside = StdDevAFOutside + AFOutside*AFOutside; StdDevAFLost = StdDevAFLost + AFLost*AFLost; ] " End of this run " "----------------------------------------------" " Step 7.c. To calculate the statistical data " "----------------------------------------------" " a) the mean " MeanAFTrabeculae = MeanAFTrabeculae / $N_RUN; MeanAFMarrow = MeanAFMarrow / $N_RUN; MeanAFEndo = MeanAFEndo / $N_RUN; MeanAFCortical = MeanAFCortical / $N_RUN; MeanAFTissue = MeanAFTissue / $N_RUN; MeanAFOutside = MeanAFOutside / $N_RUN; MeanAFLost = MeanAFLost / $N_RUN; " b) the standard deviation of the sample " StdDevAFTrabeculae = StdDevAFTrabeculae $N_RUN*MeanAFTrabeculae*MeanAFTrabeculae; StdDevAFMarrow = StdDevAFMarrow $N_RUN*MeanAFMarrow*MeanAFMarrow; StdDevAFEndo = StdDevAFEndo $N_RUN*MeanAFEndo*MeanAFEndo; StdDevAFCortical = StdDevAFCortical $N_RUN*MeanAFCortical*MeanAFCortical; StdDevAFTissue = StdDevAFTissue $N_RUN*MeanAFTissue*MeanAFTissue; StdDevAFOutside = StdDevAFOutside $N_RUN*MeanAFOutside*MeanAFOutside;

PAGE 228

211 StdDevAFLost = StdDevAFLost $N_RUN*MeanAFLost*MeanAFLost; StdDevAFTrabeculae = StdDevAFTrabeculae / ($N_RUN 1); StdDevAFMarrow = StdDevAFMarrow / ($N_RUN 1); StdDevAFEndo = StdDevAFEndo / ($N_RUN 1); StdDevAFCortical = StdDevAFCortical / ($N_RUN 1); StdDevAFTissue = StdDevAFTissue / ($N_RUN 1); StdDevAFOutside = StdDevAFOutside / ($N_RUN 1); StdDevAFLost = StdDevAFLost / ($N_RUN 1); StdDevAFTrabeculae = DSQRT(StdDevAFTrabeculae); StdDevAFMarrow = DSQRT(StdDevAFMarrow); StdDevAFEndo = DSQRT(StdDevAFEndo); StdDevAFCortical = DSQRT(StdDevAFCortical); StdDevAFTissue = DSQRT(StdDevAFTissue); StdDevAFOutside = DSQRT(StdDevAFOutside); StdDevAFLost = DSQRT(StdDevAFLost); " c) the standard deviation of the mean */ StdDevOfMeanAFTrabeculae = StdDevAFTrabeculae / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFMarrow = StdDevAFMarrow / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFEndo = StdDevAFEndo / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFCortical = StdDevAFCortical / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFTissue = StdDevAFTissue / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFOutside = StdDevOfMeanAFOutside / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFLost = StdDevAFLost / DSQRT(DBLE($N_RUN)); " d) the 95% confidence interval of the mean */ ConfIntOfMeanAFTrabeculae = 1.96*StdDevOfMeanAFTrabeculae; ConfIntOfMeanAFMarrow = 1.96*StdDevOfMeanAFMarrow; ConfIntOfMeanAFEndo = 1.96*StdDevOfMeanAFEndo; ConfIntOfMeanAFCortical = 1.96*StdDevOfMeanAFCortical; ConfIntOfMeanAFTissue = 1.96*StdDevOfMeanAFTissue; ConfIntOfMeanAFOutside = 1.96*StdDevOfMeanAFOutside; ConfIntOfMeanAFLost = 1.96*StdDevOfMeanAFLost; " e) the 95% confidence error of the mean */ ConfErrOfMeanAFTrabeculae = 100.0 * ConfIntOfMeanAFTrabeculae / MeanAFTrabeculae; ConfErrOfMeanAFMarrow = 100.0 * ConfIntOfMeanAFMarrow / MeanAFMarrow; ConfErrOfMeanAFEndo = 100.0 * ConfIntOfMeanAFEndo / MeanAFEndo; ConfErrOfMeanAFCortical = 100.0 * ConfIntOfMeanAFCortical / MeanAFCortical; ConfErrOfMeanAFTissue = 100.0 * ConfIntOfMeanAFTissue / MeanAFTissue; ConfErrOfMeanAFOutside = 100.0 * ConfIntOfMeanAFOutside / MeanAFOutside; ConfErrOfMeanAFLost = 100.0 * ConfIntOfMeanAFLost / MeanAFLost; "------------------------------------------------------" " Step 8. To print out the results to the output file " "------------------------------------------------------" WRITE($OUTPUT_FILE, '(A,A)') ' Absorbed fractions with 95%', ' confidence intervals:'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') ' AF in Trabeculae: ', MeanAFTrabeculae, ' +/', ConfIntOfMeanAFTrabeculae,' (', ConfErrOfMeanAFTrabeculae, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') ' AF in Endo: ', MeanAFEndo, ' +/', ConfIntOfMeanAFEndo,' (', ConfErrOfMeanAFEndo, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') ' AF in MARROW: ', MeanAFMarrow, ' +/', ConfIntOfMeanAFMarrow,' (', ConfErrOfMeanAFMarrow, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') ' AF in corticalshell: ', MeanAFCortical, ' +/', ConfIntOfMeanAFCortical,' (', ConfErrOfMeanAFCortical, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') ' AF in tissue: ', MeanAFTissue, ' +/', ConfIntOfMeanAFTissue,' (', ConfErrOfMeanAFTissue, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') ' AF in outside: ', MeanAFOutside, ' +/', ConfIntOfMeanAFOutside,' (', ConfErrOfMeanAFOutside, '%)';

PAGE 229

212 WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') ' AF lost: ', MeanAFLost, ' +/', ConfIntOfMeanAFLost,' (', ConfErrOfMeanAFLost, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14)') ' Total AF: ', MeanAFTrabeculae + MeanAFMarrow + MeanAFCortical+ MeanAFEndo + MeanAFTissue + MeanAFOutside + MeanAFLost; ] ] " End of this configuration " UNTIL (NoMoreConfig); "--------------------------------------------" " Step 8.a. Don't forget to close the files " "--------------------------------------------" CLOSE($INPUT_FILE); CLOSE($OUTPUT_FILE); END; " End of main program " "******************************************************************************" " SourcePlane " "******************************************************************************" " " " The SourceCorticalBone subroutine returns particles starting within the " " marrow regions of the NMR image. The source is isotropic and uniform within" " the Cortical Bone of the CT Image. " " The direction is equiprobable, that means that: " " Phi is equiprobable within the [0, 2Pi] interval, " " Theta is not equiprobable within [0, Pi], but cos(Theta) is " " equiprobable within the [-1, 1] interval. " " Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) " " Phi = 2*Pi*Rn1 " " Theta = arcos(1 2*Pi) " " " "******************************************************************************" SUBROUTINE SourcePlane(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; " COMMON variables " COMIN/RANDOM,GEOM/; " The above expands into COMMON statements " " GEOM contains the image " " local variables " $REAL Random1, Random2, Random3; $REAL Theta, Phi; " system functions invoked in subroutine " $REAL DACOS, DCOS, DSIN; INTRINSIC DACOS, DCOS, DSIN; " user functions invoked in the subroutine " "-------------------------------------" " 1) to return the starting position " "-------------------------------------" $RANDOMSET Random1; $RANDOMSET Random2; $RANDOMSET Random3; XSrc = $CT_VOXEL_SIZE_X * $CT_IMAGE_NX * Random1; YSrc = $CT_VOXEL_SIZE_Y * $CT_IMAGE_NY 0.001; ZSrc = $CT_VOXEL_SIZE_Z * $CT_IMAGE_NZ * Random2; "----------------------------" " 2) to return the direction " "----------------------------" USrc = 0.0; VSrc = -1.0; WSrc = 0.0; "--------------------------------" " 3) to return the region number "

PAGE 230

213 "--------------------------------" RegSrc = $REG_TISSUE; END; " End of subroutine SourceCorticalBone " "******************************************************************************" " HOWFAR " "******************************************************************************" " " " The HOWFAR subroutine measures the distance between the location of the " " particle (X0, Y0, Z0) and the next boundary crossed by the particle when " " traveling to the direction (Up, Vp, Wp). " " The returned values are: " " IDISC is set to 1 if we need to discard the particle " " USTEP is shortened if the boundary is reached by the particle " " IRNEW is set with the region number that lies beyond the boundary " " " "******************************************************************************" SUBROUTINE HOWFAR; $IMPLICIT-NONE; " to make sure that all variables are declared " " COMMON variables " COMIN/STACK,EPCONT/; " The above expands into COMMON statements " " STACK contains IR(NP), X,Y,Z(NP), and U,V,W(NP) " " EPCONT contains USTEP: the distance EGSnrc is to transport the part. " " local variables " $REAL X0, Y0, Z0; " the position of the particle " $REAL Up, Vp, Wp; " the direction of the particle " $INTEGER IReg; " the region number" $REAL Distance; " the distance to the boundary " $REAL XNew, YNew, ZNew; " location of particle after current step " " user functions invoked in the subroutine " LOGICAL InsideBoneVolume; LOGICAL InsideBoneEndosteum; LOGICAL InsideActiveMarrow; LOGICAL InsideFatMarrow; LOGICAL InsideCorticalBone; LOGICAL InsideCT; LOGICAL InsideTissue; $REAL BoundaryDistance; "--------------------------------" " 1) To get the data from EGSnrc " "--------------------------------" X0 = X(NP); Y0 = Y(NP); Z0 = Z(NP); Up = U(NP); Vp = V(NP); Wp = W(NP); IReg = IR(NP); "-----------------------------------------" " 2) To check the data returned by EGSnrc " "-----------------------------------------" " if a mismatch is detected, the particle is discarded (IDISC=1) " " IR(NP) is set to the region $REG_LOST so that AUSGAB can detect the " " problem (IRNEW is not used by EGS since it does not transport the " " particle before it calls AUSGAB) " " a) to check the region numbers " IF ( (IReg ~= $REG_TRAB) & (IReg ~= $REG_MARR) & (IReg ~= $REG_CORT) & (IReg ~= $REG_TISSUE) & (IReg ~= $REG_OUTSIDE) ) [ PRINT *, 'Error in HOWFAR: wrong region number: ', IReg; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] " b) to check if the region number matches the location " IF (IReg = $REG_TRAB) [ IF (~InsideBoneVolume(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particle is not in bone.';

PAGE 231

214 Print *, 'U=',Up,' V=',Vp,' W=',Wp; Print *, 'X=',X0,' Y=',Y0,' Z=',Z0; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ELSEIF (IReg = $REG_MARR) [ IF (~InsideActiveMarrow(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particle is not in marrow.'; Print *, 'U=',Up,'V=',Vp,'W=',Wp; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ELSEIF (IReg = $REG_CORT) [ IF (~InsideCorticalBone(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particle is not in cortical.'; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ELSEIF (IReg = $REG_TISSUE) [ IF (~InsideTissue(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particla is not in tissue.'; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ELSE [ IF (InsideCT(X0, Y0, Z0)& (InsideBoneVolume(X0, Y0, Z0) | InsideActiveMarrow(X0, Y0, Z0) | InsideCorticalBone(X0, Y0, Z0) | InsideTissue(X0,Y0,Z0))) [ PRINT *, 'Error in HOWFAR: particle is not outside.'; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] "----------------------------------------------------------------" " 3) To discard the particle if it goes outside the study region " "----------------------------------------------------------------" IF (IReg = $REG_OUTSIDE) [ IDISC = 1; ] ELSE [ "----------------------------------------------" " 4) To calculate the distance to the boundary " "----------------------------------------------" Distance = BoundaryDistance(X0, Y0, Z0, Up, Vp, Wp, IReg); "----------------------------------------------------------------------" " 5) To make sure the particle jumps on the other side of the boundary " "----------------------------------------------------------------------" Distance = Distance + $BOUNDARY_THICKNESS; "print *,'BoundaryDistance+ROFF=',Distance;" "---------------------------------------------------" " 6) To check if the distance is shorter than USTEP " "---------------------------------------------------" "print *,'USTEP = ',Distance;" IF ( Distance < USTEP ) [

PAGE 232

215 USTEP = Distance; ] "------------------------------------------------" " 7) To calculate the region beyond the boundary " "------------------------------------------------" " a) to calculate the new position " XNew = X0 + USTEP*Up; YNew = Y0 + USTEP*Vp; ZNew = Z0 + USTEP*Wp; " b) to calculate the new region " IF (InsideCT(XNew, YNew, ZNew)) [ IF (InsideTissue(XNew, YNew, ZNew)) [ IRNEW = $REG_TISSUE; ] ELSEIF (InsideCorticalBone(XNew, YNew, ZNew)) [ IRNEW = $REG_CORT; ] ELSEIF (InsideActiveMarrow(XNew, YNew, ZNew)) [ IRNEW = $REG_MARR; ] ELSEIF (InsideBoneVolume(XNew, YNew, ZNew))[ IRNEW = $REG_TRAB; ] ] ELSE [ IRNEW = $REG_OUTSIDE; ] ] "Print *,'USTEP=',USTEP;" "Print *,'X= Y= Z= IReg=',XNew,YNew,ZNew,IRNEW;" END; " End of subroutine HOWFAR " "******************************************************************************" " HOWNEAR " "******************************************************************************" " " " The HOWNEAR subroutine measures the shortest distance between the location " " of the particle (X0, Y0, Z0) and the boundary of the actual region IReg. " " The returned values are: " " TPerp is the shortest distance from the particle location to " " the boundary of the region IReg " " " "******************************************************************************" SUBROUTINE HOWNEAR(TPerp, X0, Y0, Z0, IReg); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL TPerp; " the shortest distance to return " $REAL X0, Y0, Z0; " the current location of the particle " $INTEGER IReg; " the current region of the particle " " user functions invoked in the subroutine " $REAL ClosestBoundary; "-----------------------------------------------------" " 1) To check if the particle has become out of study " "-----------------------------------------------------" IF (IReg = $REG_OUTSIDE) [ TPerp = 0.0; " so that HOWFAR is called and discard the particle " ] ELSE [ "---------------------------------------" " 2) To calculate the shortest distance " "---------------------------------------" TPerp = ClosestBoundary(X0, Y0, Z0); "--------------------------------------------------------------------"

PAGE 233

216 " 3) To make sure the particle will not be too close to the boundary " "--------------------------------------------------------------------" TPerp = TPerp $BOUNDARY_THICKNESS; IF (TPerp < 0.0) [ TPerp = 0.0; ] ] END; " End of subroutine HOWNEAR " "******************************************************************************" " AUSGAB " "******************************************************************************" " " " The AUSGAB subroutine cumulates the energy deposited within the regions. " " The energy is stored in the 'CumulEnergy' variables. " " " " Input: " " . IARG : A flag (see EGSnrc documentation) which is set to 3 if the " " particle is discarded by the HOWFAR subroutine, in our " " situation, that means that the particle is going outside " " the study region or that it has been lost. " " " "******************************************************************************" SUBROUTINE AUSGAB(IARG); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $INTEGER IARG; $REAL X0, Y0, Z0; " COMMON variables " COMIN/STACK,EPCONT,SCOR/; " The above expands into COMMON statements " " STACK contains IR(NP) " " EPCONT contains EDEP: the energy deposited now " " SCOR contains the variables to cumulate the energy deposited " " local variables " $INTEGER IReg; " to store the region number" LOGICAL InsideBoneEndosteum; "--------------------------------" " 1) To get the data from EGSnrc " "--------------------------------" IReg = IR(NP); X0 = X(NP); Y0 = Y(NP); Z0 = Z(NP); "---------------------------------------------------------" " 2) To test if the particle has been discarded by HOWFAR " "---------------------------------------------------------" IF (IARG = 3) [ " test why it has been discarded " IF (IReg = $REG_OUTSIDE) [ CumulEnergyOutside = CumulEnergyOutside + EDEP; ] ELSEIF (IReg = $REG_LOST) [ CumulEnergyLost = CumulEnergyLost + EDEP; ] ELSE [ PRINT *, 'Error in AUSGAB: wrong region number after discard.'; RETURN; ] ] ELSE [ "-----------------------------------------------" " 3) To cumulate the energy in the right region " "-----------------------------------------------" IF (IReg = $REG_TRAB) [ CumulEnergyTrabeculae = CumulEnergyTrabeculae + EDEP; ]

PAGE 234

217 ELSEIF (IReg = $REG_MARR) [ IF (InsideBoneEndosteum(X0, Y0, Z0)) [ CumulEnergyEndo = CumulEnergyEndo + EDEP; ] ELSE [ CumulEnergyMarrow = CumulEnergyMarrow + EDEP; ] ] ELSEIF (IReg = $REG_CORT) [ CumulEnergyCortical = CumulEnergyCortical + EDEP; ] ELSEIF (IReg = $REG_TISSUE) [ CumulEnergyTissue = CumulEnergyTissue + EDEP; ] ELSE [ PRINT *, 'Error in AUSGAB: wrong region number after transport.'; RETURN; ] ] END; " End of subroutine AUSGAB " "******************************************************************************" " Function InsideBoneVolume " "******************************************************************************" " " " Test if a given position (X, Y, Z) is inside the trabeculae voxels of the " " duplicated NMR image and in the spongiosa region of the CT image. " " " " Input: " " . X, Y, Z: the position to be tested. " " " " Return: " " .TRUE. if the position is inside the region. " " .FALSE. if the position is not inside the region. " " " "******************************************************************************" LOGICAL FUNCTION InsideBoneVolume(X, Y, Z); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL X, Y, Z; " COMMON variables " COMIN/GEOM/; " The above expands into COMMON statements " " GEOM contains the image " " local variables " $INTEGER I, J, K; " to store the position of the voxel " $INTEGER VoxelNo; " the voxel number within the image " $INTEGER VoxelValue; " the voxel itself " CHARACTER VoxelValue2; " the voxel itself " " system functions invoked in the main program " $INTEGER MOD; INTRINSIC MOD; " user functions invoked in the subroutine " LOGICAL InsideCT; "--------------------------------------------" " 1) to check if (X, Y, Z) is inside the ROI " "--------------------------------------------" "--------------------------------------------------" " 2) to calculate the voxel number in the CT image " "--------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; "--------------------------------" " 3) to get and test the medium " "--------------------------------" VoxelValue = CTBoneImage(VoxelNo);

PAGE 235

218 IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CORT) [ InsideBoneVolume = .FALSE.; ] ELSEIF (VoxelValue = $MED_TISS) [ InsideBoneVolume = .FALSE.; ] ELSE [ "---------------------------------------------------" " 4) to calculate the voxel number in the NMR image " "---------------------------------------------------" I = (X / $NMR_VOXEL_SIZE_X); I = MOD(I, $NMR_IMAGE_NX)+1; " to shift to the copy of the image " J = (Y / $NMR_VOXEL_SIZE_Y); J = MOD(J, $NMR_IMAGE_NY)+1; " to shift to the copy of the image " K = (Z / $NMR_VOXEL_SIZE_Z); K = MOD(K, $NMR_IMAGE_NZ)+1; " to shift to the copy of the image " "--------------------------------" " 5) to get and test the medium " "--------------------------------" VoxelValue2 = NMRBoneImage2(I,J,K); IF (VoxelValue2 = CHAR(0)) [ InsideBoneVolume = .TRUE.; ] ELSE [ InsideBoneVolume = .FALSE.; ] ] END; " End of function InsideBoneVolume " "******************************************************************************" " Function InsideActiveMarrow " "******************************************************************************" " " " Test if a given position (X, Y, Z) is inside the active marrow voxels of " " the duplicated NMR image and in the spongiosa region of the CT image. " " " " Input: " " . X, Y, Z: the position to be tested. " " " " Return: " " .TRUE. if the position is inside the region. " " .FALSE. if the position is not inside the region. " " " "******************************************************************************" LOGICAL FUNCTION InsideActiveMarrow(X, Y, Z); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL X, Y, Z; " COMMON variables " COMIN/GEOM/; " The above expands into COMMON statements " " GEOM contains the image " " local variables " $INTEGER I, J, K; " to store the position of the voxel " $INTEGER VoxelNo; " the voxel number within the image " CHARACTER VoxelValue2; " the voxel itself " $INTEGER VoxelValue; " the voxel itself " " system functions invoked in the main program " $INTEGER MOD; INTRINSIC MOD; " user functions invoked in the subroutine " LOGICAL InsideCT; LOGICAL InsideBoneEndosteum; "--------------------------------------------" " 1) to check if (X, Y, Z) is inside the ROI "

PAGE 236

219 "--------------------------------------------" "--------------------------------------------------" " 2) to calculate the voxel number in the CT image " "--------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; "--------------------------------" " 3) to get and test the medium " "--------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CORT) [ InsideActiveMarrow = .FALSE.; ] ELSEIF (VoxelValue = $MED_TISS) [ InsideActiveMarrow = .FALSE.; ] ELSE [ "---------------------------------------------------" " 4) to calculate the voxel number in the NMR image " "---------------------------------------------------" I = (X / $NMR_VOXEL_SIZE_X); I = MOD(I, $NMR_IMAGE_NX)+1; " to shift to the copy of the image " J = (Y / $NMR_VOXEL_SIZE_Y); J = MOD(J, $NMR_IMAGE_NY)+1; " to shift to the copy of the image " K = (Z / $NMR_VOXEL_SIZE_Z); K = MOD(K, $NMR_IMAGE_NZ)+1; " to shift to the copy of the image " "--------------------------------" " 5) to get and test the medium " "--------------------------------" VoxelValue2 = NMRBoneImage2(I,J,K); IF (VoxelValue2 = CHAR(255)) [ InsideActiveMarrow = .TRUE.; ] ELSE [ InsideActiveMarrow = .FALSE.; ] ] END; " End of function InsideActiveMarrow " "******************************************************************************" " Function InsideBoneEndosteum " "******************************************************************************" " " " Test if a given position (X, Y, Z) is inside the bone endosteum of the " " marrow cavity voxels of the duplicated NMR image and in the spongiosa " " region of the CT image. " " " " Input: " " . X, Y, Z: the position to be tested. " " " " Return: " " .TRUE. if the position is inside the region. " " .FALSE. if the position is not inside the region. " " " "******************************************************************************" LOGICAL FUNCTION InsideBoneEndosteum(X, Y, Z); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL X, Y, Z; " COMMON variables " COMIN/GEOM/; " The above expands into COMMON statements " " GEOM contains the image " " local variables "

PAGE 237

220 $INTEGER I, J, K; " to store the position of the voxel " $INTEGER I2, J2, K2; " to store the position of the voxel " $INTEGER VoxelNo; " the voxel number within the image " $INTEGER VoxelValue; " the voxel itself " CHARACTER VoxelValue2; " the voxel itself " " system functions invoked in the main program " $INTEGER MOD; CHARACTER EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG; $REAL P1, P2, P3, P4, P5, P6, PDIST; $REAL XMax, XMin, YMax, YMin, ZMax, ZMin; INTRINSIC MOD; " user functions invoked in the subroutine " LOGICAL InsideCT; "--------------------------------------------" " 1) to check if (X, Y, Z) is inside the ROI " "--------------------------------------------" "--------------------------------------------------" " 2) to calculate the voxel number in the CT image " "--------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; "--------------------------------" " 3) to get and test the medium " "--------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CORT) [ InsideBoneEndosteum = .FALSE.; ] ELSEIF (VoxelValue = $MED_TISS) [ InsideBoneEndosteum = .FALSE.; ] ELSE [ "---------------------------------------------------" " 4) to calculate the voxel number in the NMR image " "---------------------------------------------------" I = (X / $NMR_VOXEL_SIZE_X); I = MOD(I, $NMR_IMAGE_NX)+1; " to shift to the copy of the image " J = (Y / $NMR_VOXEL_SIZE_Y); J = MOD(J, $NMR_IMAGE_NY)+1; " to shift to the copy of the image " K = (Z / $NMR_VOXEL_SIZE_Z); K = MOD(K, $NMR_IMAGE_NZ)+1; " to shift to the copy of the image " VoxelNo = (K*$NMR_IMAGE_NY + J)*$NMR_IMAGE_NX + I + 1; "--------------------------------" " 5) to get and test the medium " "--------------------------------" VoxelValue2 = NMRBoneImage2(I,J,K); IF (VoxelValue2 = CHAR($MED_MARR))[ P1 = 1.0; P2 = 1.0; P3 = 1.0; P4 = 1.0; P5 = 1.0; P6 = 1.0; EDGEIPOS = CHAR(255); EDGEINEG = CHAR(255); EDGEJPOS = CHAR(255); EDGEJNEG = CHAR(255); EDGEKPOS = CHAR(255); EDGEKNEG = CHAR(255); "CHECK FOR BONE VOXEL NEIGHBORS"

PAGE 238

221 "DETERMINE WHERE BONE SURFACES ARE(IF THEY ARE)" IF (I .EQ. ($NMR_IMAGE_NX)) [ EDGEIPOS = NMRBoneImage2(1,J,K) ; ] ELSE [ EDGEIPOS = NMRBoneImage2(I+1,J,K); ] IF (I .EQ. (1)) [ EDGEINEG = NMRBoneImage2($NMR_IMAGE_NX,J,K) ; ] ELSE [ EDGEINEG = NMRBoneImage2(I-1,J,K) ; ] IF (J .EQ. ($NMR_IMAGE_NY)) [ EDGEJPOS = NMRBoneImage2(I,1,K) ; ] ELSE [ EDGEJPOS = NMRBoneImage2(I,J+1,K) ; ] IF (J .EQ. (1)) [ EDGEJNEG = NMRBoneImage2(I,$NMR_IMAGE_NY,K) ; ] ELSE [ EDGEJNEG = NMRBoneImage2(I,J-1,K) ; ] IF (K .EQ. ($NMR_IMAGE_NZ)) [ EDGEKPOS = NMRBoneImage2(I,J,1) ; ] ELSE [ EDGEKPOS = NMRBoneImage2(I,J,K+1) ; ] IF (K .EQ. (1)) [ EDGEKNEG = NMRBoneImage2(I,J,$NMR_IMAGE_NZ) ; ] ELSE [ EDGEKNEG = NMRBoneImage2(I,J,K-1) ; ] I2 = (X / $NMR_VOXEL_SIZE_X); J2 = (Y / $NMR_VOXEL_SIZE_Y); K2 = (Z / $NMR_VOXEL_SIZE_Z); XMin = (I2) * $NMR_VOXEL_SIZE_X; XMax = XMin + $NMR_VOXEL_SIZE_X; YMin = (J2) * $NMR_VOXEL_SIZE_Y; YMax = YMin + $NMR_VOXEL_SIZE_Y; ZMin = (K2) * $NMR_VOXEL_SIZE_Z; ZMax = ZMin + $NMR_VOXEL_SIZE_Z; IF(EDGEIPOS .EQ. CHAR(0)) [ P1= XMax X; ] IF(EDGEINEG .EQ. CHAR(0)) [ P2= X XMin; ] IF(EDGEJPOS .EQ. CHAR(0)) [ P3= YMax Y; ] IF(EDGEJNEG .EQ. CHAR(0)) [ P4= Y YMin; ] IF(EDGEKPOS .EQ. CHAR(0)) [ P5= ZMax Z; ] IF(EDGEKNEG .EQ. CHAR(0)) [ P6 = Z ZMin; ] PDIST=10.0;

PAGE 239

222 IF (P1 .LE. PDIST) [ PDIST = P1; ] IF (P2 .LE. PDIST) [ PDIST = P2; ] IF (P3 .LE. PDIST) [ PDIST = P3; ] IF (P4 .LE. PDIST) [ PDIST = P4; ] IF (P5 .LE. PDIST) [ PDIST = P5; ] IF (P6 .LE. PDIST) [ PDIST = P6; ] IF (PDIST .LT. 0.0) [ "PRINT *, ' ERROR IN PDIST'; "PRINT *, ' PDIST ', PDIST; ] InsideBoneEndosteum = .FALSE.; IF (PDIST .LE. 0.0010) [ InsideBoneEndosteum = .TRUE.; ] ] ELSE [ InsideBoneEndosteum = .FALSE.; ] ] END; " End of function InsideBoneEndosteum " "******************************************************************************" " Function InsideCorticalBone " "******************************************************************************" " " " Test if a given position (X, Y, Z) is inside the cortical region of the " " image. " " " " Input: " " . X, Y, Z: the position to be tested. " " " " Return: " " .TRUE. if the position is inside the region. " " .FALSE. if the position is not inside the region. " " " "******************************************************************************" LOGICAL FUNCTION InsideCorticalBone(X, Y, Z); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL X, Y, Z; " COMMON variables " COMIN/GEOM/; " The above expands into COMMON statements " " GEOM contains the image " " local variables " $INTEGER I, J, K; " to store the position of the voxel " $INTEGER VoxelNo; " the voxel number within the image " $INTEGER VoxelValue; " the voxel itself " CHARACTER VoxelValue2; " the voxel itself " " user functions invoked in the subroutine " LOGICAL InsideCT; "--------------------------------------------"

PAGE 240

223 " 1) to check if (X, Y, Z) is inside the ROI " "--------------------------------------------" "--------------------------------------------------" " 2) to calculate the voxel number in the CT image " "--------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; "--------------------------------" " 3) to get and test the medium " "--------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CORT) [ InsideCorticalBone = .TRUE.; ] ELSE [ InsideCorticalBone = .FALSE.; ] END; " End of function InsideCorticalBone " "******************************************************************************" " Function InsideTissue " "******************************************************************************" " " " Test if a given position (X, Y, Z) is inside the cortical region of the " " image. " " " " Input: " " . X, Y, Z: the position to be tested. " " " " Return: " " .TRUE. if the position is inside the region. " " .FALSE. if the position is not inside the region. " " " "******************************************************************************" LOGICAL FUNCTION InsideTissue(X, Y, Z); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL X, Y, Z; " COMMON variables " COMIN/GEOM/; " The above expands into COMMON statements " " GEOM contains the image " " local variables " $INTEGER I, J, K; " to store the position of the voxel " $INTEGER VoxelNo; " the voxel number within the image " $INTEGER VoxelValue; " the voxel itself " CHARACTER VoxelValue2; " the voxel itself " " user functions invoked in the subroutine " LOGICAL InsideCT; "--------------------------------------------" " 1) to check if (X, Y, Z) is inside the ROI " "--------------------------------------------" "--------------------------------------------------" " 2) to calculate the voxel number in the tissue " "--------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; "--------------------------------" " 3) to get and test the medium "

PAGE 241

224 "--------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_TISS) [ InsideTissue = .TRUE.; "Print *,'I, J, K',I,J,K,'VoxelNo=Tissue=',VoxelValue;" ] ELSE [ InsideTissue = .FALSE.; ] END; " End of function InsideTissue " "******************************************************************************" " Function InsideCT " "******************************************************************************" " " " Test if a given position (X, Y, Z) is inside the limits of the CT image " " The outer limit of the CT image is 512 x 512 " " Also, test if the given position is in the ROI within the CT image " " ROI defined by everything within outside edge of CorticalBone (not tissue) " " " " Input: " " . X, Y, Z: the position to be tested. " " " " Return: " " .TRUE. if the position is inside the CT image. " " .FALSE. if the position is not inside the CT image. " " " "******************************************************************************" LOGICAL FUNCTION InsideCT(X, Y, Z); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL X, Y, Z; " COMMON variables " COMIN/GEOM/; " The above expands into COMMON statements " " GEOM contains the image " " local variables " $INTEGER I, J, K; " to store the position of the voxel " $INTEGER VoxelNo; " the voxel number within the image " $INTEGER VoxelValue; " the voxel itself " "-------------------------------------" " 1) to check if outside the CT image " "-------------------------------------" IF ( (X < 0.0) | (X >= $CT_IMAGE_NX * $CT_VOXEL_SIZE_X) | (Y < 0.0) | (Y >= $CT_IMAGE_NY * $CT_VOXEL_SIZE_Y) | (Z < 0.0) | (Z >= $CT_IMAGE_NZ * $CT_VOXEL_SIZE_Z) ) [ InsideCT = .FALSE.; ] ELSE [ InsideCT = .TRUE.; ] END; " End of function InsideCT " "******************************************************************************" " Function BoundaryDistance " "******************************************************************************" " " " Returns the distance from the position (X, Y, Z) to the nearest boundary " " of the voxel when following the direction (U, V, W) " " The two images are tested and the closest voxel limit is returned. " " "

PAGE 242

225 " Input: " " . X, Y, Z: the position to be tested. " " . U, V, W: the direction to follow. " " " " Return: " " . the distance to the boundary. " " " "******************************************************************************" $REAL FUNCTION BoundaryDistance(X, Y, Z, U, V, W, IReg); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL X, Y, Z; $REAL U, V, W; " local variables " $REAL Distance; $REAL ShortestDistance; $INTEGER IReg; "Current Region Number" $INTEGER I, J, K; " to store the position of the voxel " $REAL XMin, YMin, ZMin; " for the boundary of the voxel " $REAL XMax, YMax, ZMax; " for the boundary of the voxel " IF (IReg = $REG_TISSUE | IReg=$REG_CORT) [ "-------------------------------------------------------------------" " 1) to calculate the boundary of the current voxel in the CT image " "-------------------------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); XMin = I * $CT_VOXEL_SIZE_X; XMax = XMin + $CT_VOXEL_SIZE_X; YMin = J * $CT_VOXEL_SIZE_Y; YMax = YMin + $CT_VOXEL_SIZE_Y; ZMin = K * $CT_VOXEL_SIZE_Z; ZMax = ZMin + $CT_VOXEL_SIZE_Z; "---------------------------------------------------------" " 2) to measure the distance to the boundary of the voxel " "---------------------------------------------------------" ShortestDistance = $INFINITY; " a) along the X axis " IF ( U > 0.0 ) [ Distance = (XMax X) / U; ] ELSEIF ( U < 0.0 ) [ Distance = (XMin X) / U; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] " b) along the Y axis " IF ( V > 0.0 ) [ Distance = (YMax Y) / V; ] ELSEIF ( V < 0.0 ) [ Distance = (YMin Y) / V; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] " c) along the Z axis " IF ( W > 0.0 ) [ Distance = (ZMax Z) / W; ] ELSEIF ( W < 0.0 ) [

PAGE 243

226 Distance = (ZMin Z) / W; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] ] ELSE[ "--------------------------------------------------------------------" " 3) to calculate the boundary of the current voxel in the NMR image " "--------------------------------------------------------------------" I = (X / $NMR_VOXEL_SIZE_X); J = (Y / $NMR_VOXEL_SIZE_Y); K = (Z / $NMR_VOXEL_SIZE_Z); XMin = I * $NMR_VOXEL_SIZE_X; XMax = XMin + $NMR_VOXEL_SIZE_X; YMin = J * $NMR_VOXEL_SIZE_Y; YMax = YMin + $NMR_VOXEL_SIZE_Y; ZMin = K * $NMR_VOXEL_SIZE_Z; ZMax = ZMin + $NMR_VOXEL_SIZE_Z; "---------------------------------------------------------" " 4) to measure the distance to the boundary of the voxel " "---------------------------------------------------------" ShortestDistance = $INFINITY; " a) along the X axis " IF ( U > 0.0 ) [ Distance = (XMax X) / U; ] ELSEIF ( U < 0.0 ) [ Distance = (XMin X) / U; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] " b) along the Y axis " IF ( V > 0.0 ) [ Distance = (YMax Y) / V; ] ELSEIF ( V < 0.0 ) [ Distance = (YMin Y) / V; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] " c) along the Z axis " IF ( W > 0.0 ) [ Distance = (ZMax Z) / W; ] ELSEIF ( W < 0.0 ) [ Distance = (ZMin Z) / W; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] ]

PAGE 244

227 "---------------------------" " 5) to return the distance " "---------------------------" BoundaryDistance = ShortestDistance; END; " End of function BoundaryDistance " "******************************************************************************" " Function ClosestBoundary " "******************************************************************************" " " " Returns the shortest distance from the position (X, Y, Z) to the nearest " " boundary of the voxel. " " The two images are tested and the closest voxel limit is returned. " " " " Input: " " . X, Y, Z: the position to be tested. " " " " Return: " " . the shortest distance to the boundary. " " " "******************************************************************************" $REAL FUNCTION ClosestBoundary(X, Y, Z); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL X, Y, Z; " COMMON variables " " local variables " $REAL Distance; $REAL ShortestDistance; $INTEGER I, J, K; " to store the position of the voxel " $REAL XMin, YMin, ZMin; " for the boundary of the voxel " $REAL XMax, YMax, ZMax; " for the boundary of the voxel " "-------------------------------------------------------------------" " 1) to calculate the boundary of the current voxel in the CT image " "-------------------------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); XMin = I * $CT_VOXEL_SIZE_X; XMax = XMin + $CT_VOXEL_SIZE_X; YMin = J * $CT_VOXEL_SIZE_Y; YMax = YMin + $CT_VOXEL_SIZE_Y; ZMin = K * $CT_VOXEL_SIZE_Z; ZMax = ZMin + $CT_VOXEL_SIZE_Z; "---------------------------------------------------------" " 2) to measure the distance to the boundary of the voxel " "---------------------------------------------------------" ShortestDistance = $INFINITY; Distance = X XMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = XMax X; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = Y YMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = YMax Y; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = Z ZMin;

PAGE 245

228 IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = ZMax Z; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] "--------------------------------------------------------------------" " 3) to calculate the boundary of the current voxel in the NMR image " "--------------------------------------------------------------------" I = (X / $NMR_VOXEL_SIZE_X); J = (Y / $NMR_VOXEL_SIZE_Y); K = (Z / $NMR_VOXEL_SIZE_Z); XMin = I * $NMR_VOXEL_SIZE_X; XMax = XMin + $NMR_VOXEL_SIZE_X; YMin = J * $NMR_VOXEL_SIZE_Y; YMax = YMin + $NMR_VOXEL_SIZE_Y; ZMin = K * $NMR_VOXEL_SIZE_Z; ZMax = ZMin + $NMR_VOXEL_SIZE_Z; "---------------------------------------------------------" " 4) to measure the distance to the boundary of the voxel " "---------------------------------------------------------" Distance = X XMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = XMax X; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = Y YMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = YMax Y; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = Z ZMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = ZMax Z; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] "---------------------------" " 5) to return the distance " "---------------------------" ClosestBoundary = ShortestDistance; END; " End of function ClosestBoundary "

PAGE 246

229 MCNP input deck c LV Whole homogeneous bone with surrounding tissue [256,256,175] c Low resolution c Use Cristy & Eckerman's DRF to get RBM and BS dose C Tally sequence C 1.DRF(AM) 2.DRF(BS) 3.HBA 4.MEAC 5.MEAC_S(E) c 2005-10-28 c Choonik Lee c The University of Florida read file=lv_lat noecho 1001 0 -100 fill=999 imp:p=1 $ surrounding box c 1=soft tissue / 2=homogeneous bone c ---------------------------c Body composition and density c ---------------------------1 0 -70 u=1 imp:p=1 vol=4461.47 $ SoftTissue 2 2 -1.4 -70 u=2 imp:p=1 vol=302.9143 $ Bone c ---------------------------c window and outside of the window c ---------------------------1002 0 100 imp:p=0 $ outer space (vacuum) c ---------------------------c surface card c ---------------------------100 rpp 0 16.5 0 16.5 0 17.5 $[256,256,175] 200 rpp 0 0.064453125 0 0.064453125 0 0.1 1000 so 500 70 so 200 mode p sdef x=d1 y=16.4999 z=d2 erg 0.01 vec 0 -1 0 dir 1 si1 h 0 16.5 sp1 d 0 1 si2 h 0 17.5 sp2 d 0 1 F14:p 2 $Dose to Bone Marrow Using LV(AM) DRF of Cristy and Eckerman FC14 Dose to Bone Surface # DE14 DF14 0.010 6.14E-16 0.015 2.61E-16 0.020 1.43E-16 0.030 6.44E-17 0.040 4.11E-17 0.050 3.31E-17 0.060 3.11E-17 0.080 3.45E-17 0.10 4.22E-17 0.15 6.74E-17 0.20 9.57E-17 0.30 1.54E-16 0.40 2.10E-16 0.50 2.66E-16 0.60 3.19E-16 0.80 4.15E-16 1.0 5.03E-16 1.5 6.91E-16 2.0 8.50E-16 3.0 1.12E-15 4.0 1.37E-15 5.0 1.59E-15 6.0 1.80E-15 8.0 2.23E-15 10.0 2.66E-15 F24:p 2 $Dose to Bone Surface Using LV(BS) DRF of Cristy and Eckerman FC24 Dose to Bone Surface # DE24 DF24 0.010 9.43E-16 0.015 4.98E-16

PAGE 247

230 0.020 3.39E-16 0.030 2.12E-16 0.040 1.51E-16 0.050 1.10E-16 0.060 8.69E-17 0.080 7.03E-17 0.10 6.76E-17 0.15 8.90E-17 0.20 1.22E-16 0.30 1.98E-16 0.40 2.65E-16 0.50 3.30E-16 0.60 3.94E-16 0.80 5.09E-16 1.0 6.12E-16 1.5 8.37E-16 2.0 1.03E-15 3.0 1.36E-15 4.0 1.65E-15 5.0 1.93E-15 6.0 2.20E-15 8.0 2.74E-15 10.0 3.28E-15 F36:p 2 $ Dose to the homogenouse bone F46:p 2 $Dose to RBM using MEAC method FC46 Dose to RBM # DE46 DF46 1.000000E-03 8.838E-01 1.500000E-03 8.606E-01 2.000000E-03 8.501E-01 2.145499E-03 8.473E-01 2.145500E-03 6.873E-01 2.471999E-03 6.721E-01 2.472000E-03 6.760E-01 2.822399E-03 6.619E-01 2.822400E-03 6.622E-01 3.000000E-03 6.557E-01 3.607399E-03 6.413E-01 3.607400E-03 6.485E-01 4.000000E-03 6.407E-01 4.038099E-03 6.401E-01 4.038100E-03 3.505E-01 5.000000E-03 3.226E-01 6.000000E-03 3.044E-01 8.000000E-03 2.860E-01 1.00000E-02 2.706E-01 1.50000E-02 2.480E-01 2.00000E-02 2.365E-01 3.00000E-02 2.321E-01 4.00000E-02 2.511E-01 5.00000E-02 2.967E-01 6.00000E-02 3.683E-01 8.00000E-02 5.538E-01 1.00000E-01 7.220E-01 1.50000E-01 9.301E-01 2.00000E-01 9.903E-01 3.00000E-01 1.020E+00 4.00000E-01 1.026E+00 5.00000E-01 1.029E+00 6.00000E-01 1.030E+00 8.00000E-01 1.031E+00 1.00000E+00 1.031E+00 1.25000E+00 1.032E+00 1.50000E+00 1.032E+00 2.00000E+00 1.030E+00 3.00000E+00 1.023E+00 4.00000E+00 1.014E+00 5.00000E+00 1.004E+00 6.00000E+00 9.944E-01 8.00000E+00 9.769E-01 1.00000E+01 9.621E-01

PAGE 248

231 F56:p 2 $Dose to RBM FC56 Dose to RBM using MEAC method w/ S(E)Enhancement factor # DE56 DF56 1.000000E-03 8.838E-01 1.500000E-03 8.606E-01 2.000000E-03 8.501E-01 2.145499E-03 8.473E-01 2.145500E-03 6.873E-01 2.471999E-03 6.721E-01 2.472000E-03 6.760E-01 2.822399E-03 6.619E-01 2.822400E-03 6.622E-01 3.000000E-03 6.557E-01 3.607399E-03 6.413E-01 3.607400E-03 6.485E-01 4.000000E-03 6.407E-01 4.038099E-03 6.401E-01 4.038100E-03 3.505E-01 5.000000E-03 3.226E-01 6.000000E-03 3.044E-01 8.000000E-03 2.860E-01 1.00000E-02 2.706E-01 1.50000E-02 2.480E-01 2.00000E-02 2.365E-01 3.00000E-02 2.386E-01 4.00000E-02 2.687E-01 5.00000E-02 3.249E-01 6.00000E-02 3.978E-01 8.00000E-02 5.839E-01 1.00000E-01 7.487E-01 1.50000E-01 9.301E-01 2.00000E-01 9.903E-01 3.00000E-01 1.020E+00 4.00000E-01 1.026E+00 5.00000E-01 1.029E+00 6.00000E-01 1.030E+00 8.00000E-01 1.031E+00 1.00000E+00 1.031E+00 1.25000E+00 1.032E+00 1.50000E+00 1.032E+00 2.00000E+00 1.030E+00 3.00000E+00 1.023E+00 4.00000E+00 1.014E+00 5.00000E+00 1.004E+00 6.00000E+00 9.944E-01 8.00000E+00 9.769E-01 1.00000E+01 9.621E-01 C Material Cards C Skeleton (Cristy & Eckerman TableA-1) M2 1000 -7.33700E-02 6000 -2.54750E-01 7000 -3.05700E-02 8000 -4.78930E-01 9000 -2.50000E-04 11000 -3.26000E-03 12000 -1.12000E-03 14000 -2.00000E-05 15000 -5.09500E-02 16000 -1.73000E-03 17000 -1.43000E-03 19000 -1.53000E-03 20000 -1.01900E-01 26000 -8.00000E-05 30000 -5.00000E-05 37000 -2.00000E-05 38000 -3.00000E-05 82000 -1.00000E-05 NPS 400000

PAGE 249

232 APPENDIX C MCNP SOURCE CARDS FOR CHAPTER 5 STUDY This appendix includes the MCNP input deck used in Chapter 5 study. Since the surface card, cell card, materi al card are the same as th e input deck introduced in Appendix B, only the source cards are shown fo r all of the six irra diation geometries. Anterior-posterior direction (AP) SDEF par=2 x=d1 y=-100 z=d2 vec 0 1 0 dir 1 erg= .015 SI1 -10 10 SP1 0 1 SI2 -20 40 SP2 0 1 Posterior-anterior direction (PA) SDEF par=2 x=d1 y=100 z=d2 vec 0 -1 0 dir 1 erg= .015 SI1 -10 10 SP1 0 1 SI2 -20 40 SP2 0 1 Left lateral (LLAT) SDEF par=2 x=100 y=d1 z=d2 vec -1 0 0 dir 1 erg= .015 SI1 -10 10 SP1 0 1 SI2 -20 40 SP2 0 1 Right lateral (RLAT) SDEF par=2 x=-100 y=d1 z=d2 vec 1 0 0 dir 1 erg= .015 SI1 -10 10

PAGE 250

233 SP1 0 1 SI2 -20 40 SP2 0 1 Rotational (ROT) sdef par=2 pos faxs d4 vec faxs d3 axs d2 ext 0 rad d1 dir 1 erg .015 si1 0 100 sp1 -21 1 si2 l 0 1 0 1 1 0 1 0 0 1 -1 0 0 1 0 1 1 0 1 0 0 1 -1 0 sp2 1 7r ds3 l 0 1 0 1 1 0 1 0 0 1 -1 0 0 -1 0 -1 -1 0 -1 0 0 -1 1 0 ds4 l 0 -100 0 -100 -100 0 -100 0 0 -100 100 0 0 100 0 100 100 0 100 0 0 100 -100 0 Isotropic (ISO) sdef par=2 pos faxs d4 vec faxs d3 axs d2 ext 0 rad d1 dir 1 erg .015 si1 0 100 sp1 -21 1 si2 l 0 1 0 1 1 0 1 0 0 1 -1 0 0 1 0 1 1 0 1 0 0 1 -1 0 0 0 1 -1 0 -1 -1 0 1 0 0 1 1 0 1 1 0 -1 0 -1 -1 0 -1 1 0 1 1 0 1 -1 sp2 1 17r ds3 l 0 1 0 1 1 0 1 0 0 1 -1 0 0 -1 0 -1 -1 0 -1 0 0 -1 1 0 0 0 -1 -1 0 -1 -1 0 1 0 0 1 1 0 1 1 0 -1 0 -1 -1 0 -1 1 0 1 1 0 1 -1 ds4 l 0 -100 0 -100 -100 0 -100 0 0 -100 100 0 0 100 0 100 100 0 100 0 0 100 -100 0 0 0 100 100 0 100 100 0 -100 0 0 -100 -100 0 -100 -100 0 100 0 100 100 0 100 -100 0 -100 -100 0 -100 100

PAGE 251

234 APPENDIX D DOSE CONVERSION COEFFICIENTS FOR EXTERNAL PHOTONS In this appendix the organ dose conversi on coefficients for external photons are tabulated. The tabulated values include a ll of the six typical external irradiation geometries, anterior-posterior (AP), posterio r-anterior (PA), left lateral (LLAT), right lateral (RLAT), rotati onal (ROT), and isotropic (ISO). The UF voxel phantoms of pediatric phantoms Series B were utilized for the calculation. Figure D-1. External phot on irradiation geometries

PAGE 252

235Table D-1. Gonads absorbed dose per unit ai r kerma (Gy/Gy) calculated from UF 9-month male, 4-year female, 8-year female, 11-ye ar male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries. 9-month(M) 4-year(F) 8-year(F) 11-year(M) 14-year(M) Energy AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO 0.015 0.210 0.000 0.017 0.003 0.058 0.056 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.104 0.000 0.000 0.000 0.034 0.021 0.071 0.000 0.001 0.003 0.023 0.017 0.03 1.132 0.168 0.448 0.268 0.498 0.467 0.439 0.255 0.037 0.034 0.202 0.151 0.317 0.193 0.029 0.030 0.146 0.088 1.038 0.078 0.108 0.060 0.432 0.325 0.930 0.032 0.236 0.117 0.398 0.309 0.04 1.466 0.424 0.712 0.513 0.844 0.746 0.882 0.636 0.188 0.168 0.522 0.336 0.714 0.557 0.160 0.178 0.432 0.262 1.496 0.282 0.285 0.199 0.680 0.551 1.396 0.141 0.464 0.267 0.627 0.510 0.05 1.659 0.615 0.885 0.688 0.901 0.777 1.216 0.976 0.353 0.329 0.828 0.558 1.068 0.915 0.338 0.360 0.707 0.478 1.776 0.478 0.434 0.333 0.884 0.717 1.706 0.311 0.626 0.400 0.827 0.656 0.06 1.707 0.738 0.946 0.759 1.134 0.888 1.393 1.197 0.475 0.455 1.026 0.707 1.267 1.088 0.482 0.517 0.896 0.664 1.875 0.614 0.537 0.439 1.048 0.764 1.825 0.437 0.730 0.495 0.940 0.744 0.08 1.635 0.791 0.992 0.828 1.189 0.990 1.504 1.290 0.598 0.547 1.003 0.768 1.396 1.247 0.596 0.632 0.981 0.700 1.899 0.725 0.599 0.514 1.145 0.841 1.815 0.543 0.802 0.541 0.966 0.796 0.1 1.547 0.791 1.004 0.817 1.054 0.978 1.446 1.261 0.590 0.528 0.959 0.760 1.377 1.213 0.624 0.636 1.030 0.726 1.779 0.717 0.630 0.540 1.053 0.791 1.697 0.573 0.801 0.568 0.963 0.770 0.2 1.293 0.750 0.957 0.814 1.023 0.913 1.235 1.111 0.588 0.569 0.901 0.672 1.182 1.077 0.605 0.623 0.915 0.641 1.440 0.698 0.634 0.553 0.956 0.724 1.387 0.568 0.808 0.585 0.834 0.695 0.4 1.145 0.766 0.958 0.803 1.011 0.954 1.155 1.077 0.648 0.609 0.880 0.679 1.042 0.980 0.670 0.708 0.856 0.636 1.317 0.739 0.684 0.594 0.889 0.780 1.208 0.606 0.854 0.664 0.818 0.696 0.6 1.101 0.790 0.965 0.843 0.969 0.912 1.110 1.032 0.651 0.632 0.906 0.659 1.025 0.959 0.697 0.748 0.835 0.567 1.235 0.733 0.734 0.648 0.856 0.800 1.141 0.650 0.891 0.703 0.846 0.703 0.8 1.087 0.824 0.989 0.862 0.989 0.879 1.094 1.040 0.656 0.633 0.966 0.691 1.005 0.946 0.707 0.765 0.865 0.621 1.184 0.760 0.757 0.699 0.865 0.779 1.107 0.667 0.928 0.748 0.844 0.730 2 1.045 0.882 1.031 0.931 1.005 0.928 1.081 1.059 0.729 0.722 0.958 0.746 0.977 0.925 0.819 0.824 0.969 0.699 1.136 0.889 0.870 0.800 0.924 0.818 1.060 0.807 0.978 0.842 0.907 0.853 4 1.038 0.921 1.037 0.958 0.861 0.882 1.100 1.044 0.812 0.765 0.982 0.739 0.988 0.941 0.862 0.857 1.121 0.662 1.116 0.925 0.916 0.860 0.911 0.994 1.044 0.858 0.986 0.902 0.916 0.875 8 1.025 0.917 1.009 0.961 0.823 0.874 1.068 1.045 0.833 0.808 1.013 0.702 0.975 0.957 0.864 0.878 1.098 0.796 1.089 0.937 0.924 0.894 0.924 0.937 1.029 0.872 0.977 0.915 0.914 0.869 10 1.021 0.927 1.011 0.962 0.866 0.873 1.071 1.038 0.839 0.805 0.996 0.665 0.969 0.958 0.881 0.900 1.079 0.770 1.080 0.939 0.935 0.896 0.936 0.931 1.025 0.871 0.983 0.920 0.926 0.862

PAGE 253

236Table D-2. Bone marrow absorbed dose per uni t air kerma (Gy/Gy) calculated from UF 9-m onth male, 4-year female, 8-year female, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and IS O irradiation geometries. 9-month(M) 4-year(F) 8-year(F) 11-year(M) 14-year(M) Energy AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO 0.015 0.062 0.079 0.064 0.059 0.067 0.056 0.046 0.042 0.042 0.040 0.044 0.035 0.039 0.033 0.038 0.034 0.036 0.031 0.028 0.022 0.023 0.023 0.024 0.020 0.020 0.015 0.016 0.017 0.017 0.014 0.03 1.363 1.460 0.957 0.954 1.254 1.027 1.262 1.229 0.811 0.815 1.118 0.886 1.044 0.975 0.688 0.675 0.894 0.721 0.913 0.906 0.598 0.592 0.804 0.635 0.787 0.774 0.518 0.524 0.694 0.536 0.04 2.502 2.588 1.782 1.790 2.303 1.899 2.466 2.396 1.595 1.601 2.180 1.764 2.157 2.050 1.387 1.366 1.852 1.504 1.951 1.957 1.265 1.254 1.717 1.379 1.791 1.783 1.140 1.146 1.564 1.223 0.05 3.097 3.165 2.263 2.276 2.851 2.377 3.153 3.069 2.091 2.097 2.803 2.300 2.877 2.760 1.868 1.846 2.493 2.031 2.664 2.678 1.755 1.739 2.357 1.904 2.533 2.535 1.622 1.628 2.224 1.755 0.06 3.125 3.179 2.318 2.337 2.891 2.414 3.241 3.160 2.188 2.196 2.901 2.391 3.043 2.940 2.002 1.976 2.655 2.163 2.866 2.889 1.915 1.899 2.558 2.071 2.794 2.803 1.805 1.808 2.459 1.951 0.08 2.500 2.545 1.896 1.908 2.328 1.956 2.639 2.586 1.815 1.824 2.372 1.969 2.577 2.505 1.710 1.693 2.278 1.852 2.468 2.503 1.674 1.664 2.217 1.811 2.473 2.502 1.619 1.618 2.185 1.750 0.1 1.942 1.978 1.487 1.499 1.804 1.528 2.050 2.021 1.427 1.432 1.858 1.540 2.040 1.995 1.369 1.354 1.810 1.479 1.974 2.008 1.350 1.345 1.784 1.465 1.999 2.027 1.322 1.319 1.782 1.426 0.2 1.133 1.155 0.895 0.901 1.067 0.909 1.170 1.159 0.847 0.854 1.079 0.903 1.181 1.162 0.824 0.814 1.057 0.879 1.147 1.172 0.818 0.814 1.048 0.870 1.162 1.182 0.794 0.794 1.047 0.850 0.4 0.983 0.998 0.809 0.816 0.936 0.811 0.996 0.990 0.761 0.767 0.935 0.802 1.000 0.987 0.738 0.732 0.910 0.770 0.966 0.986 0.728 0.728 0.900 0.765 0.971 0.984 0.702 0.704 0.889 0.734 0.6 0.962 0.972 0.812 0.817 0.920 0.809 0.968 0.961 0.766 0.771 0.918 0.797 0.968 0.957 0.740 0.737 0.892 0.769 0.938 0.953 0.732 0.731 0.881 0.757 0.940 0.950 0.704 0.705 0.870 0.728 0.8 0.959 0.967 0.824 0.828 0.924 0.817 0.963 0.957 0.780 0.784 0.919 0.806 0.961 0.951 0.755 0.751 0.892 0.778 0.934 0.947 0.747 0.745 0.882 0.766 0.933 0.941 0.717 0.719 0.872 0.738 2 0.967 0.972 0.876 0.880 0.947 0.862 0.968 0.963 0.841 0.844 0.943 0.854 0.966 0.958 0.820 0.817 0.918 0.824 0.943 0.952 0.810 0.812 0.909 0.814 0.940 0.945 0.785 0.787 0.901 0.790 4 0.992 0.996 0.925 0.928 0.975 0.907 0.992 0.988 0.897 0.899 0.978 0.905 0.988 0.983 0.880 0.877 0.957 0.878 0.971 0.975 0.868 0.871 0.948 0.868 0.966 0.970 0.848 0.849 0.944 0.850 8 1.018 1.022 0.967 0.968 1.006 0.948 1.019 1.016 0.944 0.946 1.014 0.954 1.012 1.008 0.925 0.923 0.989 0.920 0.997 1.001 0.916 0.917 0.982 0.910 0.992 0.995 0.899 0.899 0.977 0.894 10 1.032 1.036 0.983 0.985 1.020 0.966 1.033 1.030 0.962 0.964 1.028 0.970 1.024 1.020 0.942 0.940 1.002 0.935 1.010 1.014 0.932 0.934 0.996 0.926 1.005 1.007 0.915 0.916 0.990 0.909

PAGE 254

237Table D-3. Colon absorbed dose per unit air kerma (Gy/Gy) calculated from UF 9-month ma le, 4-year female, 8-year female, 11-yea r male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries. 9-month(M) 4-year(F) 8-year(F) 11-year(M) 14-year(M) Energy AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO 0.015 0.087 0.000 0.024 0.016 0.031 0.021 0.090 0.003 0.008 0.008 0.028 0.019 0.031 0.001 0.004 0.004 0.011 0.007 0.017 0.001 0.001 0.001 0.005 0.003 0.009 0.000 0.002 0.000 0.003 0.002 0.03 0.828 0.177 0.470 0.363 0.445 0.362 0.783 0.229 0.251 0.270 0.402 0.298 0.604 0.209 0.206 0.197 0.308 0.224 0.495 0.190 0.116 0.129 0.248 0.177 0.388 0.133 0.202 0.093 0.201 0.145 0.04 1.215 0.466 0.764 0.619 0.752 0.622 1.178 0.535 0.463 0.495 0.701 0.526 1.017 0.513 0.424 0.407 0.594 0.443 0.903 0.487 0.290 0.314 0.528 0.383 0.788 0.391 0.424 0.259 0.457 0.343 0.05 1.451 0.704 0.957 0.796 0.972 0.792 1.441 0.797 0.628 0.666 0.931 0.702 1.315 0.790 0.608 0.584 0.836 0.632 1.218 0.771 0.460 0.488 0.775 0.570 1.118 0.665 0.616 0.428 0.701 0.527 0.06 1.557 0.837 1.060 0.893 1.069 0.892 1.571 0.955 0.727 0.769 1.054 0.808 1.478 0.961 0.724 0.698 0.974 0.746 1.400 0.963 0.577 0.610 0.931 0.693 1.317 0.862 0.740 0.551 0.857 0.660 0.08 1.544 0.909 1.096 0.939 1.115 0.933 1.586 1.047 0.791 0.833 1.111 0.865 1.528 1.074 0.801 0.773 1.058 0.824 1.480 1.090 0.665 0.695 1.032 0.787 1.419 1.006 0.821 0.639 0.965 0.751 0.1 1.466 0.898 1.070 0.923 1.076 0.921 1.510 1.031 0.786 0.824 1.077 0.843 1.468 1.066 0.795 0.772 1.039 0.819 1.425 1.077 0.668 0.696 1.013 0.773 1.376 1.009 0.821 0.647 0.960 0.740 0.2 1.258 0.845 0.994 0.878 0.973 0.831 1.284 0.933 0.764 0.795 0.974 0.782 1.249 0.960 0.761 0.744 0.934 0.747 1.215 0.958 0.645 0.663 0.903 0.703 1.156 0.897 0.750 0.611 0.851 0.672 0.4 1.149 0.852 0.987 0.895 0.927 0.824 1.160 0.910 0.794 0.821 0.959 0.781 1.131 0.925 0.783 0.768 0.914 0.747 1.106 0.917 0.672 0.681 0.865 0.690 1.044 0.853 0.751 0.634 0.822 0.659 0.6 1.113 0.868 0.988 0.905 0.941 0.849 1.118 0.909 0.815 0.838 0.948 0.792 1.090 0.923 0.808 0.797 0.911 0.771 1.070 0.912 0.702 0.710 0.872 0.713 1.014 0.858 0.769 0.663 0.832 0.681 0.8 1.100 0.886 0.995 0.920 0.952 0.867 1.099 0.918 0.839 0.856 0.961 0.822 1.076 0.932 0.832 0.817 0.919 0.796 1.057 0.916 0.729 0.733 0.879 0.726 1.002 0.867 0.785 0.694 0.846 0.702 2 1.070 0.932 1.014 0.963 0.975 0.914 1.065 0.949 0.903 0.917 0.978 0.869 1.048 0.954 0.900 0.884 0.949 0.843 1.031 0.938 0.820 0.823 0.913 0.787 0.990 0.901 0.852 0.790 0.882 0.768 4 1.063 0.961 1.026 0.987 0.980 0.951 1.055 0.968 0.940 0.950 1.016 0.920 1.041 0.971 0.936 0.926 0.975 0.900 1.031 0.957 0.875 0.875 0.945 0.847 0.995 0.926 0.898 0.849 0.925 0.825 8 1.044 0.959 1.015 0.984 0.976 0.963 1.034 0.962 0.946 0.952 1.013 0.931 1.022 0.961 0.943 0.937 0.968 0.914 1.014 0.955 0.893 0.892 0.944 0.860 0.983 0.923 0.908 0.871 0.936 0.851 10 1.039 0.958 1.012 0.984 0.977 0.962 1.029 0.960 0.946 0.953 1.011 0.930 1.018 0.958 0.944 0.938 0.963 0.915 1.010 0.954 0.896 0.897 0.946 0.863 0.979 0.922 0.910 0.876 0.934 0.855

PAGE 255

238Table D-4. Lung absorbed dose per unit air kerma (Gy/Gy) calculated from UF 9-month ma le, 4-year female, 8-year female, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries. 9-month(M) 4-year(F) 8-year(F) 11-year(M) 14-year(M) Energy AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO 0.015 0.020 0.009 0.002 0.002 0.008 0.005 0.020 0.006 0.002 0.001 0.007 0.005 0.013 0.003 0.001 0.001 0.004 0.003 0.005 0.003 0.001 0.001 0.002 0.001 0.005 0.002 0.001 0.001 0.002 0.001 0.03 0.560 0.524 0.170 0.165 0.374 0.276 0.529 0.459 0.115 0.112 0.322 0.245 0.500 0.376 0.088 0.108 0.287 0.219 0.378 0.354 0.080 0.083 0.233 0.177 0.397 0.361 0.113 0.105 0.253 0.187 0.04 0.965 0.962 0.406 0.399 0.731 0.563 0.927 0.885 0.300 0.293 0.646 0.507 0.906 0.785 0.238 0.270 0.598 0.474 0.757 0.762 0.232 0.240 0.530 0.417 0.770 0.769 0.276 0.263 0.555 0.424 0.05 1.231 1.250 0.602 0.592 0.974 0.778 1.201 1.187 0.468 0.458 0.887 0.711 1.197 1.094 0.384 0.419 0.840 0.682 1.050 1.085 0.387 0.401 0.779 0.626 1.059 1.091 0.433 0.416 0.801 0.623 0.06 1.358 1.388 0.710 0.700 1.097 0.881 1.339 1.341 0.573 0.562 1.022 0.835 1.350 1.264 0.481 0.515 0.990 0.797 1.218 1.272 0.499 0.512 0.937 0.755 1.224 1.279 0.542 0.524 0.954 0.752 0.08 1.374 1.418 0.766 0.758 1.130 0.898 1.376 1.392 0.639 0.633 1.072 0.894 1.401 1.337 0.550 0.584 1.057 0.867 1.297 1.367 0.574 0.593 1.023 0.840 1.300 1.376 0.616 0.601 1.037 0.828 0.1 1.319 1.360 0.761 0.750 1.095 0.878 1.324 1.344 0.640 0.633 1.057 0.867 1.352 1.300 0.558 0.591 1.030 0.845 1.263 1.334 0.586 0.603 1.015 0.828 1.261 1.343 0.621 0.605 1.025 0.823 0.2 1.154 1.185 0.716 0.709 0.983 0.804 1.161 1.179 0.617 0.610 0.946 0.795 1.173 1.145 0.548 0.573 0.924 0.779 1.105 1.170 0.567 0.585 0.911 0.758 1.099 1.179 0.597 0.584 0.920 0.750 0.4 1.085 1.109 0.736 0.732 0.936 0.800 1.085 1.102 0.648 0.647 0.915 0.791 1.093 1.077 0.589 0.608 0.903 0.772 1.039 1.092 0.602 0.621 0.884 0.755 1.036 1.102 0.627 0.614 0.890 0.741 0.6 1.063 1.084 0.762 0.758 0.935 0.810 1.062 1.076 0.684 0.679 0.920 0.804 1.066 1.057 0.629 0.644 0.902 0.787 1.021 1.068 0.638 0.655 0.891 0.763 1.016 1.077 0.662 0.650 0.894 0.757 0.8 1.054 1.075 0.791 0.785 0.940 0.825 1.054 1.067 0.715 0.710 0.926 0.818 1.057 1.050 0.665 0.675 0.913 0.806 1.016 1.057 0.669 0.685 0.899 0.784 1.014 1.067 0.694 0.680 0.902 0.777 2 1.043 1.055 0.866 0.866 0.966 0.882 1.039 1.046 0.814 0.811 0.960 0.882 1.039 1.035 0.783 0.785 0.943 0.859 1.012 1.040 0.779 0.792 0.939 0.848 1.010 1.043 0.797 0.785 0.935 0.841 4 1.042 1.052 0.913 0.911 0.989 0.940 1.038 1.043 0.876 0.871 0.984 0.910 1.038 1.035 0.853 0.855 0.989 0.911 1.017 1.037 0.848 0.858 0.969 0.891 1.014 1.039 0.860 0.850 0.966 0.884 8 1.027 1.033 0.928 0.926 0.998 0.951 1.020 1.024 0.900 0.896 0.978 0.919 1.022 1.016 0.880 0.883 0.991 0.926 1.004 1.019 0.875 0.883 0.968 0.903 1.002 1.019 0.885 0.878 0.968 0.898 10 1.023 1.030 0.930 0.930 0.995 0.950 1.017 1.020 0.904 0.901 0.981 0.925 1.019 1.013 0.885 0.888 0.991 0.932 1.002 1.015 0.880 0.887 0.971 0.907 0.999 1.016 0.889 0.883 0.969 0.903

PAGE 256

239Table D-5. Stomach absorbed dose per unit ai r kerma (Gy/Gy) calculated fr om UF 9-month male, 4-year female, 8-year female, 11year male, and 14-year male voxel phantoms for external ph oton with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries. 9-month(M) 4-year(F) 8-year(F) 11-year(M) 14-year(M) Energy AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO 0.015 0.052 0.000 0.004 0.001 0.015 0.010 0.038 0.000 0.008 0.000 0.013 0.008 0.076 0.000 0.009 0.003 0.023 0.016 0.012 0.000 0.003 0.000 0.004 0.002 0.002 0.000 0.001 0.000 0.001 0.001 0.03 0.677 0.231 0.322 0.155 0.355 0.271 0.634 0.198 0.346 0.064 0.320 0.260 0.715 0.136 0.375 0.186 0.356 0.282 0.449 0.100 0.259 0.044 0.214 0.163 0.289 0.126 0.283 0.008 0.164 0.128 0.04 1.092 0.582 0.640 0.344 0.698 0.531 1.051 0.506 0.652 0.180 0.613 0.511 1.116 0.404 0.667 0.369 0.635 0.508 0.869 0.343 0.558 0.157 0.494 0.377 0.675 0.387 0.630 0.058 0.430 0.335 0.05 1.358 0.863 0.865 0.505 0.950 0.737 1.338 0.767 0.879 0.298 0.851 0.694 1.392 0.651 0.875 0.519 0.861 0.694 1.204 0.604 0.807 0.288 0.740 0.571 1.006 0.668 0.918 0.140 0.665 0.530 0.06 1.498 1.006 0.983 0.600 1.053 0.846 1.483 0.927 1.002 0.380 0.986 0.822 1.537 0.810 0.987 0.611 0.994 0.808 1.385 0.787 0.961 0.389 0.904 0.704 1.216 0.862 1.094 0.216 0.841 0.663 0.08 1.501 1.083 1.031 0.663 1.113 0.888 1.505 1.013 1.053 0.444 1.044 0.871 1.561 0.917 1.050 0.674 1.059 0.882 1.473 0.909 1.039 0.471 0.988 0.783 1.326 1.005 1.179 0.293 0.947 0.758 0.1 1.421 1.040 1.016 0.674 1.044 0.869 1.435 0.994 1.034 0.454 1.021 0.850 1.491 0.908 1.043 0.686 1.039 0.864 1.410 0.915 1.025 0.478 0.977 0.779 1.283 0.998 1.153 0.317 0.932 0.750 0.2 1.211 0.939 0.933 0.659 0.964 0.788 1.220 0.899 0.942 0.471 0.921 0.791 1.258 0.847 0.967 0.681 0.943 0.797 1.185 0.824 0.922 0.485 0.868 0.702 1.072 0.891 1.013 0.331 0.822 0.678 0.4 1.129 0.931 0.931 0.698 0.900 0.761 1.113 0.888 0.917 0.514 0.880 0.785 1.143 0.852 0.964 0.711 0.935 0.802 1.063 0.807 0.907 0.529 0.823 0.682 0.980 0.860 0.951 0.379 0.809 0.653 0.6 1.093 0.930 0.926 0.724 0.896 0.801 1.083 0.899 0.920 0.562 0.869 0.793 1.099 0.861 0.971 0.741 0.934 0.817 1.029 0.818 0.906 0.565 0.820 0.702 0.960 0.860 0.948 0.423 0.824 0.684 0.8 1.079 0.944 0.935 0.756 0.908 0.814 1.068 0.906 0.927 0.595 0.875 0.830 1.083 0.880 0.978 0.773 0.945 0.838 1.019 0.834 0.916 0.604 0.833 0.720 0.957 0.868 0.947 0.466 0.845 0.706 2 1.058 0.962 0.974 0.850 0.934 0.853 1.050 0.945 0.960 0.728 0.920 0.892 1.060 0.920 1.003 0.852 0.968 0.884 1.007 0.879 0.953 0.727 0.890 0.798 0.961 0.906 0.965 0.617 0.876 0.774 4 1.057 0.981 0.997 0.902 0.986 0.932 1.054 0.965 0.980 0.805 0.921 0.951 1.057 0.955 1.023 0.902 0.992 0.949 1.007 0.919 0.972 0.801 0.942 0.892 0.980 0.936 0.981 0.711 0.926 0.830 8 1.037 0.976 0.990 0.918 0.995 0.953 1.035 0.968 0.980 0.844 0.929 0.957 1.038 0.952 1.011 0.916 0.998 0.955 0.998 0.922 0.972 0.838 0.942 0.910 0.975 0.937 0.975 0.763 0.937 0.851 10 1.034 0.976 0.990 0.920 1.008 0.950 1.032 0.965 0.980 0.852 0.930 0.969 1.035 0.952 1.007 0.917 0.999 0.952 0.995 0.923 0.968 0.843 0.947 0.919 0.972 0.936 0.972 0.773 0.937 0.861

PAGE 257

240Table D-6. Urinary bladder absorbed dose pe r unit air kerma (Gy/Gy) calculated from UF 9-month male, 4-year female, 8-year fema le, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and IS O irradiation geometries. 9-month(M) 4-year(F) 8-year(F) 11-year(M) 14-year(M) Energy AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO 0.015 0.037 0.000 0.000 0.005 0.010 0.008 0.056 0.000 0.001 0.000 0.014 0.010 0.002 0.000 0.000 0.000 0.001 0.001 0.004 0.000 0.000 0.000 0.001 0.000 0.016 0.000 0.000 0.000 0.004 0.002 0.03 0.751 0.189 0.176 0.351 0.381 0.275 0.781 0.188 0.173 0.106 0.337 0.237 0.430 0.214 0.038 0.038 0.186 0.131 0.417 0.185 0.024 0.026 0.168 0.117 0.405 0.166 0.029 0.029 0.171 0.116 0.04 1.216 0.545 0.435 0.678 0.754 0.574 1.251 0.515 0.393 0.288 0.669 0.466 0.911 0.563 0.169 0.191 0.468 0.352 0.853 0.524 0.130 0.133 0.442 0.306 0.814 0.466 0.132 0.127 0.419 0.290 0.05 1.510 0.843 0.647 0.911 1.021 0.793 1.561 0.806 0.591 0.467 0.882 0.668 1.291 0.882 0.339 0.373 0.741 0.551 1.215 0.852 0.282 0.291 0.717 0.507 1.157 0.781 0.266 0.260 0.664 0.479 0.06 1.640 1.006 0.757 1.035 1.118 0.898 1.697 0.964 0.712 0.587 1.055 0.783 1.496 1.086 0.472 0.505 0.909 0.712 1.437 1.068 0.403 0.419 0.901 0.636 1.382 1.010 0.385 0.371 0.844 0.602 0.08 1.604 1.087 0.818 1.071 1.139 0.946 1.714 1.067 0.783 0.672 1.128 0.818 1.576 1.210 0.581 0.619 1.060 0.779 1.533 1.200 0.514 0.525 1.037 0.756 1.498 1.171 0.494 0.479 0.979 0.698 0.1 1.504 1.042 0.802 1.025 1.085 0.921 1.621 1.053 0.779 0.672 1.054 0.814 1.492 1.182 0.598 0.652 1.038 0.796 1.490 1.193 0.526 0.540 1.022 0.761 1.431 1.163 0.519 0.508 0.974 0.710 0.2 1.264 0.948 0.759 0.939 0.983 0.832 1.342 0.934 0.751 0.673 0.941 0.765 1.218 1.041 0.587 0.633 0.898 0.718 1.246 1.020 0.534 0.542 0.908 0.710 1.208 1.012 0.514 0.499 0.858 0.638 0.4 1.150 0.926 0.790 0.921 0.915 0.801 1.198 0.913 0.786 0.710 0.899 0.766 1.077 0.987 0.602 0.676 0.885 0.730 1.131 0.971 0.578 0.591 0.848 0.697 1.094 0.948 0.554 0.544 0.846 0.659 0.6 1.111 0.930 0.821 0.930 0.875 0.796 1.140 0.918 0.812 0.747 0.896 0.804 1.048 0.976 0.649 0.717 0.869 0.718 1.091 0.958 0.611 0.627 0.878 0.710 1.057 0.928 0.591 0.588 0.841 0.671 0.8 1.091 0.935 0.838 0.935 0.896 0.794 1.119 0.921 0.838 0.771 0.923 0.816 1.040 0.966 0.694 0.746 0.872 0.773 1.075 0.957 0.645 0.651 0.865 0.716 1.043 0.929 0.626 0.617 0.848 0.681 2 1.074 0.961 0.903 0.970 0.939 0.870 1.082 0.964 0.899 0.849 0.947 0.856 1.018 0.987 0.809 0.841 0.948 0.799 1.054 0.971 0.767 0.761 0.888 0.787 1.020 0.945 0.739 0.738 0.892 0.760 4 1.067 0.983 0.936 0.986 0.951 1.025 1.077 0.983 0.936 0.910 0.931 0.887 1.023 1.002 0.882 0.902 0.948 0.849 1.052 0.988 0.828 0.841 0.940 0.836 1.012 0.959 0.809 0.806 0.962 0.824 8 1.047 0.981 0.948 0.986 0.941 1.021 1.053 0.977 0.948 0.921 0.912 0.905 1.013 0.992 0.902 0.917 0.941 0.863 1.033 0.978 0.868 0.862 0.947 0.861 0.998 0.957 0.842 0.835 0.953 0.831 10 1.045 0.987 0.947 0.984 0.937 1.021 1.051 0.978 0.947 0.923 0.916 0.893 1.015 0.990 0.910 0.924 0.961 0.864 1.028 0.976 0.874 0.864 0.937 0.866 0.997 0.955 0.849 0.842 0.951 0.840

PAGE 258

241Table D-7. Female breast absorbed dose pe r unit air kerma (Gy/Gy) calculated from 4-year female and 8-year female voxel phantom s for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries. Gonads 4-year(F) 8-year(F) Energy AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO 0.015 0.302 0.000 0.183 0.110 0.130 0.103 0.378 0.001 0.113 0.162 0.168 0.159 0.03 0.772 0.086 0.470 0.288 0.375 0.324 0.788 0.063 0.293 0.423 0.404 0.404 0.04 0.974 0.256 0.616 0.398 0.487 0.468 0.962 0.187 0.388 0.525 0.542 0.528 0.05 1.160 0.435 0.744 0.501 0.673 0.617 1.134 0.321 0.475 0.629 0.643 0.642 0.06 1.302 0.588 0.870 0.600 0.763 0.705 1.278 0.450 0.561 0.735 0.764 0.731 0.08 1.435 0.720 0.994 0.713 0.905 0.875 1.406 0.580 0.649 0.841 0.880 0.818 0.1 1.431 0.779 1.043 0.734 0.960 0.889 1.395 0.646 0.679 0.863 0.868 0.901 0.2 1.333 0.868 1.038 0.796 0.892 0.904 1.304 0.745 0.701 0.864 0.902 0.882 0.4 1.267 0.925 1.055 0.827 0.927 0.904 1.225 0.768 0.742 0.859 0.860 0.797 0.6 1.216 0.922 1.035 0.857 1.018 0.910 1.169 0.848 0.780 0.840 0.867 0.790 0.8 1.202 0.954 1.021 0.870 1.015 0.885 1.160 0.876 0.785 0.845 0.906 0.830 2 1.139 1.019 1.058 0.976 1.060 0.958 1.104 0.939 0.824 0.888 1.011 0.905 4 1.115 0.998 1.053 0.992 1.267 0.929 1.081 0.960 0.875 0.904 1.027 0.888 8 1.070 0.976 1.020 0.979 1.281 0.925 1.040 0.936 0.862 0.902 1.038 0.848 10 1.056 0.967 1.003 0.972 1.273 0.936 1.029 0.919 0.866 0.901 1.035 0.851

PAGE 259

242Table D-8. Liver absorbed dose per unit air kerma (Gy/Gy) calculated from UF 9-m onth male, 4-year female, 8-year female, 11-yea r male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries. 9-month(M) 4-year(F) 8-year(F) 11-year(M) 14-year(M) Energy AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO 0.015 0.006 0.005 0.000 0.007 0.005 0.003 0.015 0.003 0.000 0.003 0.006 0.004 0.007 0.002 0.001 0.004 0.004 0.002 0.005 0.001 0.000 0.002 0.002 0.001 0.013 0.000 0.000 0.002 0.003 0.002 0.03 0.440 0.408 0.061 0.325 0.322 0.241 0.483 0.261 0.061 0.235 0.284 0.207 0.380 0.240 0.100 0.240 0.253 0.188 0.349 0.174 0.053 0.184 0.200 0.145 0.442 0.065 0.042 0.226 0.195 0.152 0.04 0.868 0.844 0.205 0.678 0.687 0.518 0.926 0.620 0.186 0.535 0.605 0.466 0.800 0.586 0.247 0.541 0.568 0.439 0.762 0.483 0.172 0.465 0.495 0.370 0.894 0.253 0.151 0.533 0.462 0.363 0.05 1.166 1.154 0.348 0.934 0.951 0.750 1.245 0.921 0.318 0.777 0.872 0.687 1.130 0.892 0.380 0.792 0.834 0.658 1.104 0.784 0.306 0.718 0.762 0.589 1.260 0.480 0.277 0.798 0.705 0.569 0.06 1.303 1.308 0.442 1.063 1.087 0.858 1.404 1.090 0.405 0.916 1.024 0.809 1.306 1.074 0.473 0.930 0.999 0.778 1.297 0.978 0.407 0.876 0.924 0.717 1.471 0.656 0.375 0.963 0.868 0.703 0.08 1.323 1.340 0.503 1.096 1.112 0.898 1.438 1.168 0.470 0.978 1.071 0.874 1.362 1.166 0.538 0.998 1.060 0.859 1.376 1.095 0.484 0.959 1.033 0.807 1.547 0.787 0.456 1.047 0.969 0.790 0.1 1.255 1.277 0.504 1.046 1.059 0.865 1.365 1.128 0.479 0.950 1.045 0.831 1.295 1.133 0.544 0.976 1.029 0.829 1.320 1.068 0.495 0.941 1.002 0.781 1.477 0.793 0.467 1.022 0.943 0.771 0.2 1.071 1.097 0.495 0.928 0.929 0.779 1.140 0.972 0.474 0.855 0.903 0.743 1.080 0.976 0.535 0.872 0.895 0.735 1.096 0.924 0.478 0.837 0.866 0.700 1.197 0.709 0.462 0.901 0.818 0.681 0.4 0.998 1.026 0.544 0.898 0.887 0.787 1.038 0.919 0.522 0.832 0.868 0.718 0.992 0.918 0.569 0.850 0.877 0.732 1.002 0.872 0.521 0.819 0.824 0.693 1.068 0.705 0.501 0.867 0.775 0.665 0.6 0.979 1.007 0.582 0.896 0.890 0.806 1.011 0.912 0.566 0.850 0.869 0.739 0.967 0.911 0.612 0.861 0.865 0.747 0.975 0.867 0.560 0.826 0.831 0.706 1.030 0.721 0.539 0.869 0.785 0.685 0.8 0.978 1.003 0.622 0.904 0.901 0.821 1.003 0.917 0.601 0.862 0.883 0.746 0.963 0.914 0.640 0.873 0.882 0.764 0.971 0.873 0.594 0.840 0.838 0.725 1.014 0.743 0.575 0.879 0.798 0.702 2 0.986 1.001 0.744 0.942 0.923 0.874 0.998 0.943 0.728 0.913 0.917 0.826 0.970 0.940 0.754 0.920 0.907 0.829 0.972 0.910 0.712 0.897 0.878 0.804 0.999 0.812 0.698 0.918 0.855 0.780 4 0.996 1.006 0.817 0.968 0.982 0.915 1.005 0.960 0.803 0.947 0.956 0.868 0.986 0.959 0.825 0.952 0.935 0.867 0.987 0.940 0.788 0.934 0.916 0.877 1.005 0.864 0.772 0.941 0.892 0.847 8 0.990 0.996 0.850 0.967 0.973 0.920 0.994 0.957 0.837 0.952 0.974 0.885 0.980 0.955 0.848 0.951 0.937 0.884 0.980 0.940 0.820 0.939 0.932 0.895 0.992 0.877 0.809 0.942 0.909 0.874 10 0.988 0.993 0.856 0.967 0.973 0.921 0.992 0.957 0.844 0.954 0.970 0.891 0.978 0.953 0.853 0.952 0.939 0.889 0.977 0.939 0.828 0.940 0.934 0.902 0.990 0.878 0.815 0.940 0.912 0.881

PAGE 260

243Table D-9. Esophagus absorbed dose per unit air kerma (Gy/Gy) calcu lated from UF 9-month male, 4year female, 8-year female, 11 year male, and 14-year male voxel phantoms for external ph oton with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries. 9-month(M) 4-year(F) 8-year(F) 11-year(M) 14-year(M) Energy AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.001 0.001 0.003 0.000 0.000 0.000 0.001 0.000 0.005 0.000 0.000 0.000 0.001 0.001 0.03 0.272 0.307 0.092 0.086 0.232 0.137 0.261 0.192 0.094 0.085 0.186 0.127 0.300 0.115 0.084 0.066 0.159 0.118 0.223 0.107 0.064 0.042 0.135 0.085 0.215 0.111 0.076 0.063 0.143 0.089 0.04 0.644 0.740 0.311 0.293 0.564 0.406 0.610 0.559 0.260 0.263 0.478 0.356 0.650 0.422 0.240 0.195 0.416 0.313 0.538 0.422 0.208 0.166 0.415 0.271 0.529 0.425 0.241 0.203 0.395 0.296 0.05 0.951 1.076 0.517 0.488 0.832 0.639 0.896 0.878 0.422 0.438 0.755 0.565 0.955 0.740 0.415 0.331 0.657 0.526 0.845 0.740 0.371 0.312 0.659 0.470 0.819 0.748 0.410 0.358 0.677 0.485 0.06 1.120 1.255 0.650 0.606 0.993 0.770 1.064 1.071 0.549 0.559 0.926 0.728 1.149 0.936 0.529 0.438 0.829 0.653 1.050 0.966 0.496 0.433 0.818 0.609 1.012 0.959 0.540 0.490 0.859 0.635 0.08 1.192 1.339 0.741 0.708 1.092 0.770 1.158 1.196 0.638 0.657 1.025 0.810 1.262 1.077 0.633 0.530 0.964 0.743 1.154 1.126 0.590 0.533 0.954 0.731 1.141 1.111 0.640 0.582 0.963 0.737 0.1 1.189 1.303 0.760 0.719 1.075 0.757 1.164 1.180 0.657 0.672 1.039 0.772 1.237 1.076 0.656 0.551 0.951 0.780 1.133 1.110 0.597 0.549 0.943 0.722 1.124 1.106 0.679 0.596 0.965 0.736 0.2 1.015 1.116 0.710 0.690 0.935 0.726 1.024 1.050 0.630 0.659 0.922 0.685 1.080 0.977 0.637 0.556 0.899 0.723 0.990 0.975 0.583 0.532 0.884 0.663 0.980 0.970 0.634 0.594 0.900 0.678 0.4 0.956 1.020 0.724 0.691 0.851 0.679 0.964 0.988 0.638 0.676 0.932 0.668 1.020 0.936 0.660 0.571 0.905 0.751 0.910 0.906 0.601 0.571 0.839 0.686 0.912 0.919 0.658 0.628 0.858 0.668 0.6 0.946 1.003 0.731 0.722 0.883 0.702 0.950 0.964 0.670 0.691 0.946 0.681 0.995 0.938 0.684 0.596 0.887 0.759 0.893 0.897 0.643 0.600 0.852 0.680 0.907 0.908 0.694 0.651 0.876 0.698 0.8 0.939 0.990 0.765 0.752 0.868 0.709 0.947 0.970 0.699 0.720 0.967 0.707 0.985 0.941 0.714 0.630 0.887 0.783 0.906 0.905 0.665 0.628 0.860 0.713 0.914 0.896 0.724 0.682 0.861 0.714 2 0.958 0.976 0.841 0.834 0.881 0.798 0.961 0.983 0.778 0.808 1.024 0.799 0.995 0.960 0.794 0.735 0.916 0.843 0.928 0.917 0.766 0.741 0.932 0.818 0.942 0.926 0.804 0.779 0.901 0.788 4 0.961 0.982 0.887 0.874 1.012 0.843 0.973 0.991 0.837 0.839 1.070 0.792 1.001 0.968 0.847 0.803 0.910 0.897 0.942 0.946 0.831 0.810 0.948 0.930 0.962 0.948 0.861 0.845 0.955 0.849 8 0.950 0.964 0.896 0.888 1.018 0.894 0.967 0.972 0.852 0.857 1.069 0.796 0.980 0.952 0.856 0.821 0.893 0.893 0.944 0.941 0.849 0.837 0.948 0.924 0.958 0.950 0.884 0.865 0.972 0.865 10 0.947 0.957 0.897 0.891 1.001 0.883 0.964 0.965 0.852 0.856 1.086 0.787 0.973 0.948 0.859 0.823 0.892 0.904 0.942 0.935 0.851 0.839 0.951 0.933 0.953 0.947 0.882 0.868 0.976 0.883

PAGE 261

244Table D-10. Thyroid absorbed dose per unit air kerma (Gy/Gy) calculated from UF 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and IS O irradiation geometries. 9-month(M) 4-year(F) 8-year(F) 11-year(M) 14-year(M) Energy AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO 0.015 0.007 0.000 0.000 0.001 0.001 0.002 0.086 0.000 0.002 0.005 0.020 0.009 0.198 0.000 0.012 0.030 0.063 0.036 0.063 0.000 0.000 0.000 0.016 0.008 0.087 0.000 0.001 0.006 0.026 0.013 0.03 0.541 0.289 0.143 0.257 0.364 0.221 0.956 0.164 0.317 0.375 0.470 0.275 1.100 0.103 0.513 0.616 0.589 0.356 0.870 0.104 0.103 0.087 0.328 0.195 0.910 0.109 0.138 0.206 0.374 0.210 0.04 1.056 0.772 0.431 0.614 0.785 0.497 1.455 0.522 0.651 0.722 0.835 0.536 1.557 0.385 0.900 1.015 0.936 0.593 1.429 0.436 0.272 0.243 0.704 0.471 1.434 0.421 0.326 0.427 0.727 0.452 0.05 1.408 1.146 0.687 0.923 1.063 0.797 1.790 0.872 0.902 0.997 1.168 0.753 1.868 0.665 1.140 1.252 1.213 0.836 1.778 0.771 0.447 0.416 0.979 0.695 1.777 0.748 0.502 0.611 1.003 0.666 0.06 1.596 1.338 0.845 1.091 1.347 0.955 1.922 1.048 1.050 1.138 1.347 0.859 1.974 0.840 1.248 1.360 1.380 0.934 1.955 0.998 0.556 0.525 1.139 0.835 1.950 0.939 0.637 0.733 1.155 0.813 0.08 1.625 1.393 0.928 1.139 1.327 0.951 1.896 1.134 1.095 1.184 1.368 0.892 1.920 0.946 1.280 1.366 1.422 0.969 1.920 1.113 0.636 0.601 1.220 0.880 1.937 1.063 0.698 0.809 1.256 0.875 0.1 1.532 1.302 0.883 1.064 1.283 0.920 1.751 1.077 1.068 1.126 1.270 0.859 1.740 0.902 1.222 1.325 1.327 0.926 1.778 1.046 0.638 0.607 1.129 0.855 1.820 1.075 0.683 0.772 1.182 0.849 0.2 1.281 1.109 0.776 0.912 1.065 0.818 1.428 0.928 0.940 1.006 1.111 0.715 1.404 0.837 1.094 1.167 1.142 0.800 1.420 0.923 0.550 0.531 0.990 0.774 1.477 0.888 0.616 0.674 0.974 0.710 0.4 1.121 1.033 0.735 0.839 1.151 0.827 1.269 0.900 0.890 0.958 1.066 0.851 1.264 0.871 1.099 1.114 1.035 0.807 1.262 0.873 0.577 0.531 0.940 0.731 1.307 0.872 0.651 0.676 0.904 0.681 0.6 1.079 1.007 0.758 0.856 1.152 0.921 1.219 0.904 0.913 0.941 1.028 0.861 1.198 0.850 1.084 1.118 1.041 0.809 1.207 0.877 0.598 0.558 0.967 0.734 1.238 0.864 0.639 0.684 0.899 0.686 0.8 1.056 0.991 0.762 0.852 1.092 0.924 1.206 0.921 0.929 0.939 1.056 0.862 1.176 0.853 1.078 1.118 1.048 0.817 1.173 0.872 0.623 0.602 0.971 0.753 1.212 0.868 0.659 0.687 0.930 0.710 2 1.043 0.973 0.828 0.901 1.127 0.995 1.140 0.975 0.998 1.013 1.047 0.899 1.116 0.915 1.086 1.106 1.051 0.873 1.111 0.924 0.714 0.729 0.972 0.835 1.116 0.904 0.782 0.804 0.920 0.805 4 1.046 0.995 0.868 0.930 1.047 0.971 1.096 1.006 1.035 1.049 1.138 1.015 1.094 0.940 1.068 1.076 0.976 0.883 1.081 0.946 0.803 0.808 1.029 0.951 1.089 0.951 0.833 0.864 0.853 0.856 8 1.021 0.979 0.884 0.935 1.117 0.939 1.074 0.991 1.018 1.050 1.120 1.025 1.053 0.930 1.034 1.052 0.907 0.877 1.052 0.946 0.868 0.850 1.052 0.959 1.055 0.936 0.858 0.889 0.904 0.839 10 1.017 0.970 0.886 0.940 1.145 0.951 1.070 0.988 1.018 1.051 1.118 1.036 1.049 0.932 1.029 1.045 0.916 0.872 1.044 0.939 0.879 0.871 1.051 0.980 1.048 0.938 0.859 0.895 0.901 0.832

PAGE 262

245Table D-11. Skin absorbed dose per unit ai r kerma (Gy/Gy) calculated from UF 9-month male, 4-year female, 8-year female, 11year male, and 14-year male voxel phantoms for external ph oton with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries. 9-month(M) 4-year(F) 8-year(F) 11-year(M) 14-year(M) Energy AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO 0.015 0.384 0.364 0.272 0.259 0.318 0.275 0.370 0.369 0.244 0.231 0.307 0.263 0.359 0.351 0.220 0.204 0.290 0.245 0.359 0.366 0.234 0.218 0.298 0.253 0.344 0.345 0.217 0.204 0.282 0.238 0.03 0.756 0.714 0.571 0.559 0.655 0.588 0.741 0.724 0.514 0.507 0.636 0.565 0.717 0.692 0.463 0.454 0.603 0.528 0.712 0.702 0.479 0.469 0.604 0.530 0.691 0.675 0.450 0.447 0.582 0.511 0.04 0.939 0.898 0.719 0.705 0.827 0.736 0.927 0.910 0.654 0.647 0.807 0.712 0.903 0.879 0.599 0.592 0.772 0.672 0.893 0.881 0.610 0.601 0.768 0.667 0.871 0.857 0.578 0.577 0.744 0.648 0.05 1.065 1.025 0.824 0.809 0.944 0.841 1.061 1.044 0.757 0.749 0.933 0.820 1.045 1.021 0.703 0.696 0.899 0.781 1.031 1.019 0.711 0.703 0.892 0.772 1.012 1.001 0.680 0.679 0.870 0.753 0.06 1.133 1.094 0.884 0.869 1.007 0.899 1.137 1.119 0.819 0.810 1.004 0.881 1.129 1.104 0.768 0.762 0.975 0.846 1.115 1.101 0.775 0.768 0.968 0.837 1.100 1.087 0.746 0.745 0.949 0.819 0.08 1.163 1.126 0.921 0.907 1.043 0.934 1.174 1.156 0.861 0.853 1.043 0.919 1.174 1.147 0.814 0.809 1.021 0.889 1.161 1.147 0.823 0.816 1.016 0.880 1.152 1.137 0.796 0.795 1.000 0.864 0.1 1.149 1.114 0.923 0.909 1.034 0.933 1.161 1.143 0.864 0.857 1.036 0.917 1.161 1.134 0.820 0.814 1.017 0.887 1.153 1.138 0.829 0.821 1.013 0.881 1.142 1.127 0.803 0.802 0.999 0.865 0.2 1.084 1.054 0.902 0.887 0.985 0.903 1.089 1.073 0.846 0.840 0.983 0.883 1.085 1.060 0.804 0.801 0.963 0.854 1.079 1.065 0.815 0.806 0.960 0.847 1.066 1.048 0.786 0.786 0.944 0.828 0.4 1.050 1.026 0.904 0.892 0.972 0.899 1.052 1.038 0.852 0.848 0.965 0.877 1.046 1.024 0.815 0.814 0.944 0.849 1.039 1.027 0.823 0.814 0.940 0.846 1.026 1.008 0.793 0.795 0.925 0.825 0.6 1.041 1.020 0.915 0.904 0.975 0.905 1.041 1.028 0.866 0.863 0.964 0.883 1.034 1.015 0.831 0.830 0.944 0.857 1.028 1.017 0.838 0.829 0.940 0.852 1.015 0.999 0.809 0.811 0.926 0.833 0.8 1.041 1.022 0.929 0.918 0.980 0.917 1.040 1.029 0.881 0.878 0.970 0.895 1.034 1.015 0.849 0.848 0.951 0.870 1.028 1.017 0.854 0.845 0.946 0.862 1.015 1.000 0.826 0.828 0.934 0.843 2 1.040 1.028 0.967 0.959 0.997 0.947 1.038 1.031 0.929 0.926 0.988 0.930 1.032 1.020 0.903 0.903 0.975 0.908 1.027 1.020 0.905 0.898 0.969 0.900 1.017 1.006 0.883 0.884 0.959 0.884 4 1.040 1.032 0.989 0.982 1.014 0.977 1.039 1.034 0.957 0.955 1.006 0.957 1.033 1.025 0.938 0.938 1.001 0.938 1.030 1.025 0.938 0.932 0.986 0.926 1.022 1.014 0.920 0.922 0.981 0.912 8 1.022 1.017 0.984 0.980 1.001 0.973 1.022 1.018 0.959 0.957 0.997 0.959 1.016 1.010 0.944 0.944 0.992 0.939 1.013 1.009 0.942 0.938 0.977 0.927 1.006 1.000 0.929 0.929 0.975 0.917 10 1.019 1.013 0.983 0.978 0.999 0.971 1.017 1.014 0.958 0.956 0.994 0.958 1.012 1.006 0.944 0.944 0.989 0.939 1.009 1.006 0.942 0.938 0.975 0.927 1.002 0.997 0.930 0.930 0.972 0.917

PAGE 263

246Table D-12. Bone surface absorbed dose pe r unit air kerma (Gy/Gy) calculated from UF 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male voxel phantoms fo r external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, an d ISO irradiation geometries. 9-month(M) 4-year(F) 8-year(F) 11-year(M) 14-year(M) Energy AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO 0.015 0.062 0.079 0.064 0.059 0.067 0.056 0.046 0.042 0.042 0.040 0.044 0.035 0.039 0.033 0.038 0.034 0.036 0.031 0.028 0.022 0.023 0.023 0.024 0.020 0.020 0.015 0.016 0.017 0.017 0.014 0.03 1.363 1.460 0.957 0.954 1.254 1.027 1.262 1.229 0.811 0.815 1.118 0.886 1.044 0.975 0.688 0.675 0.894 0.721 0.913 0.906 0.598 0.592 0.804 0.635 0.787 0.774 0.518 0.524 0.694 0.536 0.04 2.502 2.588 1.782 1.790 2.303 1.899 2.466 2.396 1.595 1.601 2.180 1.764 2.157 2.050 1.387 1.366 1.852 1.504 1.951 1.957 1.265 1.254 1.717 1.379 1.791 1.783 1.140 1.146 1.564 1.223 0.05 3.097 3.165 2.263 2.276 2.851 2.377 3.153 3.069 2.091 2.097 2.803 2.300 2.877 2.760 1.868 1.846 2.493 2.031 2.664 2.678 1.755 1.739 2.357 1.904 2.533 2.535 1.622 1.628 2.224 1.755 0.06 3.125 3.179 2.318 2.337 2.891 2.414 3.241 3.160 2.188 2.196 2.901 2.391 3.043 2.940 2.002 1.976 2.655 2.163 2.866 2.889 1.915 1.899 2.558 2.071 2.794 2.803 1.805 1.808 2.459 1.951 0.08 2.500 2.545 1.896 1.908 2.328 1.956 2.639 2.586 1.815 1.824 2.372 1.969 2.577 2.505 1.710 1.693 2.278 1.852 2.468 2.503 1.674 1.664 2.217 1.811 2.473 2.502 1.619 1.618 2.185 1.750 0.1 1.942 1.978 1.487 1.499 1.804 1.528 2.050 2.021 1.427 1.432 1.858 1.540 2.040 1.995 1.369 1.354 1.810 1.479 1.974 2.008 1.350 1.345 1.784 1.465 1.999 2.027 1.322 1.319 1.782 1.426 0.2 1.133 1.155 0.895 0.901 1.067 0.909 1.170 1.159 0.847 0.854 1.079 0.903 1.181 1.162 0.824 0.814 1.057 0.879 1.147 1.172 0.818 0.814 1.048 0.870 1.162 1.182 0.794 0.794 1.047 0.850 0.4 0.983 0.998 0.809 0.816 0.936 0.811 0.996 0.990 0.761 0.767 0.935 0.802 1.000 0.987 0.738 0.732 0.910 0.770 0.966 0.986 0.728 0.728 0.900 0.765 0.971 0.984 0.702 0.704 0.889 0.734 0.6 0.962 0.972 0.812 0.817 0.920 0.809 0.968 0.961 0.766 0.771 0.918 0.797 0.968 0.957 0.740 0.737 0.892 0.769 0.938 0.953 0.732 0.731 0.881 0.757 0.940 0.950 0.704 0.705 0.870 0.728 0.8 0.959 0.967 0.824 0.828 0.924 0.817 0.963 0.957 0.780 0.784 0.919 0.806 0.961 0.951 0.755 0.751 0.892 0.778 0.934 0.947 0.747 0.745 0.882 0.766 0.933 0.941 0.717 0.719 0.872 0.738 2 0.967 0.972 0.876 0.880 0.947 0.862 0.968 0.963 0.841 0.844 0.943 0.854 0.966 0.958 0.820 0.817 0.918 0.824 0.943 0.952 0.810 0.812 0.909 0.814 0.940 0.945 0.785 0.787 0.901 0.790 4 0.992 0.996 0.925 0.928 0.975 0.907 0.992 0.988 0.897 0.899 0.978 0.905 0.988 0.983 0.880 0.877 0.957 0.878 0.971 0.975 0.868 0.871 0.948 0.868 0.966 0.970 0.848 0.849 0.944 0.850 8 1.018 1.022 0.967 0.968 1.006 0.948 1.019 1.016 0.944 0.946 1.014 0.954 1.012 1.008 0.925 0.923 0.989 0.920 0.997 1.001 0.916 0.917 0.982 0.910 0.992 0.995 0.899 0.899 0.977 0.894 10 1.032 1.036 0.983 0.985 1.020 0.966 1.033 1.030 0.962 0.964 1.028 0.970 1.024 1.020 0.942 0.940 1.002 0.935 1.010 1.014 0.932 0.934 0.996 0.926 1.005 1.007 0.915 0.916 0.990 0.909

PAGE 264

247Table D-13. Effective dose per unit air kerm a (Sv/Gy) calculated from UF 9-month male , 4-year female, 8-year female, 11-year male, and 14-year male voxel phantoms for external photon with the energy from 0.015 MeV to 10 MeV in AP, PA, LLAT, RLAT, ROT, and ISO irradiation geometries. 9-month(M) 4-year(F) 8-year(F) 11-year(M) 14-year(M) Energy AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO AP PA LLAT RLAT ROT ISO 0.015 0.070 0.008 0.012 0.008 0.025 0.021 0.047 0.007 0.015 0.011 0.019 0.014 0.050 0.005 0.011 0.014 0.021 0.017 0.033 0.005 0.004 0.003 0.013 0.009 0.027 0.005 0.004 0.004 0.011 0.008 0.03 0.649 0.286 0.276 0.232 0.371 0.299 0.550 0.269 0.185 0.150 0.304 0.229 0.493 0.216 0.169 0.162 0.269 0.201 0.504 0.172 0.114 0.083 0.250 0.184 0.452 0.152 0.155 0.095 0.232 0.172 0.04 1.019 0.623 0.525 0.472 0.699 0.559 0.951 0.619 0.391 0.335 0.609 0.459 0.878 0.542 0.359 0.348 0.553 0.414 0.883 0.454 0.284 0.230 0.513 0.391 0.820 0.404 0.347 0.235 0.479 0.366 0.05 1.265 0.878 0.715 0.660 0.899 0.727 1.245 0.916 0.574 0.508 0.870 0.663 1.186 0.840 0.536 0.521 0.801 0.617 1.174 0.720 0.449 0.381 0.744 0.575 1.114 0.663 0.518 0.377 0.705 0.541 0.06 1.380 1.016 0.815 0.761 1.046 0.835 1.400 1.093 0.692 0.623 1.026 0.791 1.358 1.016 0.656 0.642 0.961 0.751 1.333 0.897 0.562 0.492 0.900 0.684 1.283 0.839 0.635 0.481 0.852 0.660 0.08 1.380 1.070 0.867 0.817 1.091 0.882 1.459 1.181 0.772 0.700 1.076 0.856 1.436 1.134 0.740 0.725 1.051 0.820 1.402 1.010 0.639 0.572 0.997 0.768 1.356 0.962 0.713 0.555 0.938 0.738 0.1 1.314 1.034 0.857 0.801 1.028 0.862 1.400 1.153 0.767 0.691 1.046 0.836 1.386 1.113 0.744 0.728 1.040 0.821 1.343 0.994 0.647 0.580 0.964 0.750 1.301 0.960 0.715 0.564 0.927 0.728 0.2 1.119 0.919 0.794 0.751 0.930 0.783 1.199 1.022 0.726 0.673 0.940 0.758 1.185 0.997 0.706 0.695 0.931 0.743 1.128 0.883 0.613 0.558 0.861 0.681 1.093 0.850 0.671 0.542 0.816 0.654 0.4 1.026 0.887 0.797 0.752 0.896 0.780 1.107 0.984 0.746 0.695 0.914 0.760 1.080 0.948 0.733 0.723 0.897 0.737 1.034 0.850 0.636 0.583 0.817 0.683 0.991 0.816 0.684 0.574 0.789 0.644 0.6 1.000 0.886 0.810 0.774 0.889 0.789 1.075 0.970 0.763 0.721 0.920 0.767 1.050 0.942 0.758 0.751 0.891 0.733 0.999 0.842 0.665 0.616 0.816 0.697 0.962 0.818 0.708 0.604 0.799 0.659 0.8 0.990 0.893 0.828 0.792 0.896 0.792 1.064 0.975 0.780 0.739 0.941 0.787 1.038 0.943 0.777 0.772 0.905 0.762 0.984 0.848 0.688 0.647 0.823 0.705 0.951 0.821 0.731 0.633 0.808 0.679 2 0.977 0.912 0.880 0.855 0.920 0.843 1.048 0.997 0.851 0.827 0.966 0.846 1.020 0.957 0.858 0.845 0.955 0.819 0.971 0.887 0.777 0.742 0.865 0.766 0.941 0.863 0.802 0.731 0.847 0.756 4 0.979 0.931 0.910 0.889 0.912 0.875 1.052 1.004 0.904 0.876 1.002 0.878 1.024 0.975 0.904 0.891 1.003 0.851 0.973 0.910 0.829 0.803 0.892 0.854 0.947 0.889 0.845 0.794 0.877 0.803 8 0.966 0.924 0.911 0.897 0.910 0.883 1.033 0.998 0.916 0.898 1.009 0.881 1.008 0.970 0.912 0.907 0.996 0.885 0.960 0.908 0.849 0.829 0.898 0.853 0.938 0.888 0.858 0.819 0.886 0.816 10 0.964 0.926 0.913 0.900 0.921 0.884 1.031 0.995 0.919 0.900 1.007 0.877 1.005 0.969 0.918 0.914 0.994 0.882 0.957 0.908 0.854 0.835 0.902 0.858 0.936 0.888 0.862 0.825 0.889 0.819

PAGE 265

248 APPENDIX E MCNP INPUT DECK FOR CHAPTER 6 STUDY MCNPX FORTRAN source subroutine: Source.F90 A user defined source subroutine was developed to replace a dummy source subroutine of MCNPX. The MCNPX modul es were compiled by using Microsoft Visual C++ 6.0 and Compaq Visual Fortran 6.6b. subroutine source ! dummy subroutine. aborts job if source subroutine is missing. ! if nsr=0, subroutine source must be furnished by the user. ! at entrance, a random set of uuu,vvv,www has been defined. the ! following variables must be defined within the subroutine: ! xxx,yyy,zzz,icl,jsu,erg,wgt,tme and possibly ipt,uuu,vvv,www. ! subroutine srcdx may also be needed. use mcnp_global use mcnp_debug use mcnp_random use x_ray_spectrum use beam_shaping_filter implicit real(dknd) (a-h,o-z) integer Iebin, Dbin, FilterBin, Source_cell_number real, DIMENSION(146) :: Spectrum ScanStart=RDUM(1) ScanLength=RDUM(2) CollimWidth=RDUM(3) Pitch=RDUM(4) SID=RDUM(5) !Source to axis (iso-center) Distance Xcenter=RDUM(6) Ycenter=RDUM(7) FanBeamAngle=RDUM(8) Spectrum=x_ray(1:146,RDUM(9)) Source_cell_number=RDUM(10) ! Considering half-rotation before and after FOV (added 8/16/2005) ScanStart = ScanStart 0.5 * CollimWidth * Pitch ScanLength = ScanLength + CollimWidth * Pitch !Sample starting position [xxx, yyy,zzz] !Once zzz is determined following xxx, yyy are determined zzz=rang()*ScanLength + ScanStart IF (Pitch==0) then ThetaZ=rang() * 2* pie zzz=ScanStart Else ThetaZ=((zzz-ScanStart)*2*pie)/(CollimWidth*Pitch) ENDIF

PAGE 266

249 xxx=SID*sin(ThetaZ)+Xcenter yyy=SID*cos(ThetaZ)+Ycenter Thetamin=(FanBeamAngle * pie /180.)/2. !half of fan beam angle !================================================== !Sample within Collimator width !================================================== !Consider over-beaming IF (CollimWidth==0.2) then FWHM = 0.24 ELSEIF (CollimWidth==0.9) then FWHM = 1.16 ELSEIF (CollimWidth==1.0) then FWHM = 1.02 ELSEIF (CollimWidth==1.2) then FWHM = 1.47 ELSEIF (CollimWidth==1.8) then FWHM = 2.04 ELSEIF (CollimWidth==2.4) then FWHM = 2.68 ELSE FWHM = CollimWidth ENDIF Inslice=0 Do 10 while (Inslice==0) Theta=acos(rang()*(cos(pie-Thetamin)+1)-1) Phi=2.*pie*rang() u=sin(Theta)*sin(Phi) v=cos(Theta) w=sin(Theta)*cos(Phi) Dpl=SID/v Zpl=Dpl*w if ((Zpl > (-FWHM/2)) .and. (Zpl < FWHM/2)) then Inslice=1 endif 10 Continue !================================================== !End of Sample withing Collimator width !================================================== !Assign directional cosine relative to ThetaZ uuu=u*cos(ThetaZ) + v*sin(ThetaZ) vvv=-u*sin(ThetaZ) + v*cos(ThetaZ) www=w !Assign "icl" source cell # is 10 icl=namchg(1,Source_cell_number) jsu=0 ! the surface where the particle started, zero if the starting point is not on any surface tme=0 !================================================ !X_ray beam energy sampling !================================================ Isample=0 Do 20 While (Isample==0) erg=rang()*145. + 5. !"Sample Randomly from Energy 5 150 keV" Prob=rang()*0.06 !Sample Randomly from Prob from 0 0.06"

PAGE 267

250 Iebin = erg 0.5 Iebin = Iebin 3 IF (Prob < Spectrum(Iebin)) then Isample = 1 Endif 20 Continue erg=erg*0.001 !Convert keV to MeV !================================================ ! End of X_ray beam energy sampling !================================================ !=========================================================================== ! Calculate beam weighting based on the pass through the beam shaping filter !=========================================================================== Dbin=(((v+1)-0.001)/0.002)+2 if (Dbin >= 90) then Dbin=90 end if FilterDistance=FilterData(Dbin) FilterBin = (erg*1000) -4 wgt=exp(-FilterDistance* FilterAtten(FilterBin)) ipt=2 !particle type 2-> photon return end subroutine source MCNPX input deck This example shows a MCNPX input deck for the use with the UF pediatric voxel phantoms. This input deck simulates the he ad examinations of the UF 9-month male phantom with the technique factors of 80 kVp tube voltage and 12 mm collimator width. c UF_9month voxel MCNP model whole body Armless c Matrix size [244,180,241] C Voxel resolution=0.0859376*0.0859376*0.3 c 2005-11 c Choonik Lee c The University of Florida c-----------------------------------------------------------------------c cell card c-----------------------------------------------------------------------read file=lat_uf08_CT noecho 1001 0 -100 fill=999 imp:p=1 $ surrounding box c ---------------------------c Body composition and density c ---------------------------1 5 -0.001205 -70 u=1 imp:p=1 vol=1.563E+04 $Air 70 9 -1.05 -70 u=70 imp:p=1 vol=2.201E+03 $Muscle+connective tissue 2 2 -0.97 -70 u=2 imp:p=1 vol=2.277E+03 $Adipose 5 14 -1.04 -70 u=5 imp:p=1 vol=1.504E+00 $Pelvis-Kidney (Left) 6 14 -1.04 -70 u=6 imp:p=1 vol=1.480E+00 $Pelvis-Kidney (Right) 7 14 -1.04 -70 u=7 imp:p=1 vol=7.123E+00 $Medular (Left) 8 14 -1.04 -70 u=8 imp:p=1 vol=6.631E+00 $Medular (Right) 9 1 -1.03 -70 u=9 imp:p=1 vol=9.616E-01 $Prostate 10 20 -1.04 -70 u=10 imp:p=1 vol=1.287E+00 $Testes 22 1 -1.03 -70 u=22 imp:p=1 vol=1.900E+01 $Salivary glands

PAGE 268

251 23 8 -1.07 -70 u=23 imp:p=1 vol=4.741E-01 $Lenses 24 1 -1.03 -70 u=24 imp:p=1 vol=3.177E+01 $Spinal Cord 25 18 -1.03 -70 u=25 imp:p=1 vol=1.626E+01 $Stomach(Wall) 26 6 -1 -70 u=26 imp:p=1 vol=6.968E+00 $ST(Content) 30 1 -1.03 -70 u=30 imp:p=1 vol=1.329E-01 $Pituitary gland 31 9 -1.05 -70 u=31 imp:p=1 vol=8.149E+00 $Tongue 32 1 -1.03 -70 u=32 imp:p=1 vol=3.744E-01 $Tonsil 41 7 -1.03 -70 u=41 imp:p=1 vol=8.380E+02 $Brain 43 18 -1.03 -70 u=43 imp:p=1 vol=1.625E+01 $Right Colon(W) 53 6 -1 -70 u=53 imp:p=1 vol=6.463E+01 $Right Colon (Content) 44 18 -1.03 -70 u=44 imp:p=1 vol=1.627E+01 $Left Colon (W) 54 6 -1 -70 u=54 imp:p=1 vol=1.086E+02 $Left Colon (Content) 163 18 -1.03 -70 u=163 imp:p=1 vol=7.429E+00 $Rectosigmoid (W) 164 6 -1 -70 u=164 imp:p=1 vol=3.399E+01 $Rectosigmoid (Content) 46 22 -1.10 -70 u=46 imp:p=1 vol=3.024E+00 $ET2 (larynx) 47 1 -1.03 -70 u=47 imp:p=1 vol=1.081E+00 $ET2 (pharynx) 48 1 -1.03 -70 u=48 imp:p=1 vol=1.241E+00 $Trachea 49 1 -1.03 -70 u=49 imp:p=1 vol=1.458E+00 $Bronchi 50 10 -1.06 -70 u=50 imp:p=1 vol=1.901E+01 $Blood vessel (aorta) 61 3 -0.3711 -70 u=61 imp:p=1 vol=1.610E+02 $L Lung 62 3 -0.3711 -70 u=62 imp:p=1 vol=1.826E+02 $R Lung 63 8 -1.07 -70 u=63 imp:p=1 vol=5.862E+00 $Eyes 64 6 -1 -70 u=64 imp:p=1 vol=2.805E+00 $Gall Bladder(content) 65 1 -1.03 -70 u=65 imp:p=1 vol=1.157E+00 $Gall Bladder (wall) 66 1 -1.03 -70 u=66 imp:p=1 vol=2.185E+00 $L Adrenal 67 1 -1.03 -70 u=67 imp:p=1 vol=2.054E+00 $R Adrenal 15 12 -1.09 -70 u=15 imp:p=1 vol=3.288E+02 $Skin 79 5 -0.001205 -70 u=79 imp:p=1 vol=1.557E+02 $Gas(LI+SI) 80 5 -0.001205 -70 u=80 imp:p=1 vol=2.738E+01 $Gas(ST) 81 14 -1.04 -70 u=81 imp:p=1 vol=1.946E+01 $L Kidney (Cortex) 82 14 -1.04 -70 u=82 imp:p=1 vol=1.975E+01 $R Kidney (Cortex) 83 11 -1.05 -70 u=83 imp:p=1 vol=1.595E+00 $Thyroid 84 13 -1.04 -70 u=84 imp:p=1 vol=4.144E+01 $Heart(wall) 85 10 -1.06 -70 u=85 imp:p=1 vol=4.627E+01 $Heart(content) 101 15 -1.05 -70 u=101 imp:p=1 vol=2.937E+02 $Liver 121 17 -1.06 -70 u=121 imp:p=1 vol=2.374E+01 $Spleen 123 19 -1.04 -70 u=123 imp:p=1 vol=7.593E+00 $Bladder(Wall) 124 6 -1 -70 u=124 imp:p=1 vol=3.096E+01 $Bladder(Contents) 130 18 -1.03 -70 u=130 imp:p=1 vol=6.882E+01 $SI (Wall) 131 6 -1 -70 u=131 imp:p=1 vol=1.044E+02 $SI (Content) 150 1 -1.03 -70 u=150 imp:p=1 vol=4.103E+00 $Esophagus 162 16 -1.04 -70 u=162 imp:p=1 vol=1.459E+01 $Pancreas 181 1 -1.03 -70 u=181 imp:p=1 vol=2.499E+01 $Thymus 201 101 -1.490 -70 u=201 imp:p=1 vol=2.024E+02 $cranium 202 103 -1.366 -70 u=202 imp:p=1 vol=2.625E+01 $Femur(upper) 203 106 -1.324 -70 u=203 imp:p=1 vol=3.314E+01 $Tibiae, patellae 204 105 -1.324 -70 u=204 imp:p=1 vol=2.299E+01 $ankle and feet 205 107 -1.445 -70 u=205 imp:p=1 vol=5.488E+00 $fibula 208 103 -1.366 -70 u=208 imp:p=1 vol=8.331E-01 $Humerus (upper) C 209 106 -1.324 -70 u=209 imp:p=1 vol=0.000E+00 $Radii + Ulnae C 210 105 -1.324 -70 u=210 imp:p=1 vol=0.000E+00 $hand 211 104 -1.402 -70 u=211 imp:p=1 vol=1.384E+01 $Scapulae 215 103 -1.366 -70 u=215 imp:p=1 vol=3.801E+01 $Os coxae 219 103 -1.366 -70 u=219 imp:p=1 vol=1.706E+00 $Clavicles 220 104 -1.402 -70 u=220 imp:p=1 vol=2.663E+01 $Femur(lower) C 221 104 -1.402 -70 u=221 imp:p=1 vol=0.000E+00 $Humerus (lower) 229 103 -1.366 -70 u=229 imp:p=1 vol=6.404E+01 $Ribs 230 101 -1.490 -70 u=230 imp:p=1 vol=1.510E+01 $Mandible 231 102 -1.170 -70 u=231 imp:p=1 vol=1.597E+01 $Vertebrae (C-) 232 102 -1.170 -70 u=232 imp:p=1 vol=4.681E+01 $Vertebrae (T-) 233 102 -1.170 -70 u=233 imp:p=1 vol=2.762E+01 $Vertebrae (L-) 234 108 -1.374 -70 u=234 imp:p=1 vol=2.898E+00 $Sternum 235 108 -1.374 -70 u=235 imp:p=1 vol=1.737E+01 $Sacrum c ---------------------------c window and outside of the window c ---------------------------1002 5 -0.001205 100 -1000 #4000 imp:p=1 $Out of Voxel inside medium 1003 0 1000 imp:p=0 $Out of ROI c ----------------------------c Patient bed c -----------------------------

PAGE 269

252 4000 50 -1.4 4001 -4002 2 4003 -4004 4005 -4006 imp:p=1 c-----------------------------------------------------------------------c surface card c-----------------------------------------------------------------------c Matrix size [244,180,241] C Voxel resolution=0.0859376*0.0859376*0.3 100 rpp 0 20.9687744 0 15.468768 0 72.3 $[244,180,241] 200 rpp 0 0.0859376 0 0.0859376 0 0.3 1000 sz 35 200 70 sz 35 200 C Planes for patient bed 2 py 0 4001 c/z 10.5 -28.25 45 $Inner of patient bed 4002 c/z 10.5 -28.25 45.3 $Outer of patient bed 4003 pz -10 4004 pz 80 4005 px -10.5 $Side End of patient bed 4006 px 30.5 $Side End of patient bed $40cm width c-----------------------------------------------------------------------c Data card c-----------------------------------------------------------------------C Patient bed (rho=1.4) M50 6000 1 mode p C Material Cards C Soft tissue (rho=1.03) M1 1000 -0.105 6000 -0.256 7000 -0.027 8000 -0.602 11000 -0.001 15000 -0.002 16000 -0.003 17000 -0.002 19000 -0.002 C Adipose Tissue (rho=0.97 ICRU46 Infant (2days-10months)#2) M2 1000 -0.112 6000 -0.392 7000 -0.009 8000 -0.484 11000 -0.001 16000 -0.001 17000 -0.001 C Lung (rho=0.260) M3 1000 -0.103 6000 -0.105 7000 -0.031 8000 -0.749 11000 -0.002 15000 -0.002 16000 -0.003 17000 -0.003 19000 -0.002 C Bone tissue (rho=1.4g/cc) M4 1000 -0.07337 6000 -0.25475 7000 -0.03057 8000 -0.47893 9000 -0.00025 11000 -0.00326 12000 -0.00112 14000 -0.00002 15000 -0.05095 16000 -0.00173 17000 -0.00143 19000 -0.00153 20000 -0.10190 26000 -0.00008

PAGE 270

253 30000 -0.00005 37000 -0.00002 38000 -0.00003 82000 -0.00001 C Air (rho = 0.001205) M5 6000 -0.000124 7000 -0.755267 8000 -0.231781 18000 -0.012827 C Water (rho=1) M6 1000 2 8000 1 C Brain (rho=1.03) ICRU46 Infant 18 months M7 1000 -0.107 6000 -0.091 7000 -0.016 8000 -0.776 11000 -0.002 15000 -0.003 16000 -0.001 17000 -0.002 19000 -0.002 C Eye lens (rho=1.07) M8 1000 -0.096 6000 -0.195 7000 -0.057 8000 -0.646 11000 -0.001 15000 -0.001 16000 -0.003 17000 -0.001 C Muscle (skeletal) (rho=1.05) M9 1000 -0.102 6000 -0.143 7000 -0.034 8000 -0.71 11000 -0.001 15000 -0.002 16000 -0.003 17000 -0.001 19000 -0.004 C Blood (rho=1.06) M10 1000 -0.102 6000 -0.110 7000 -0.033 8000 -0.745 11000 -0.001 15000 -0.001 16000 -0.002 17000 -0.003 19000 -0.002 26000 -0.001 C Thyroid(rho=1.05) M11 1000 -0.104 6000 -0.119 7000 -0.024 8000 -0.745 11000 -0.002 15000 -0.001 16000 -0.001 17000 -0.002 19000 -0.001 53000 -0.001 C Skin (rho=1.09) M12 1000 -0.1 6000 -0.204 7000 -0.042 8000 -0.645 11000 -0.002 15000 -0.001 16000 -0.002

PAGE 271

254 17000 -0.003 19000 -0.001 C Heart wall (ICRU46 2year) (rho=1.04) M13 1000 -0.105 6000 -0.088 7000 -0.022 8000 -0.777 11000 -0.001 15000 -0.002 16000 -0.001 17000 -0.002 19000 -0.002 C Kidney (rho=1.04)ICRU46 Child (2year) M14 1000 -0.106 6000 -0.094 7000 -0.021 8000 -0.770 11000 -0.002 15000 -0.002 16000 -0.001 17000 -0.002 19000 -0.002 C Liver (rho=1.04) ICRU46 Liver (Child (1year)) M15 1000 -0.103 6000 -0.126 7000 -0.027 8000 -0.733 11000 -0.001 15000 -0.003 16000 -0.002 17000 -0.002 19000 -0.003 C Pancreas (rho=1.04) M16 1000 -0.106 6000 -0.169 7000 -0.022 8000 -0.694 11000 -0.002 15000 -0.002 16000 -0.001 17000 -0.002 19000 -0.002 C Spleen (rho=1.06) M17 1000 -0.103 6000 -0.113 7000 -0.032 8000 -0.741 11000 -0.001 15000 -0.003 16000 -0.002 17000 -0.002 19000 -0.003 C GI Track (rho=1.03) M18 1000 -0.106 6000 -0.115 7000 -0.022 8000 -0.751 11000 -0.001 15000 -0.001 16000 -0.001 17000 -0.002 19000 -0.001 C UB (rho=1.04) M19 1000 -0.105 6000 -0.096 7000 -0.026 8000 -0.761 11000 -0.002 15000 -0.002 16000 -0.002 17000 -0.003

PAGE 272

255 19000 -0.003 C C Testes (rho=1.04) M20 1000 -0.106 6000 -0.099 7000 -0.02 8000 -0.766 11000 -0.002 15000 -0.001 16000 -0.002 17000 -0.002 19000 -0.002 C C Ovary(rho=1.05) M21 1000 -0.105 6000 -0.093 7000 -0.024 8000 -0.768 11000 -0.002 15000 -0.002 16000 -0.002 17000 -0.002 19000 -0.002 C C Larynx (rho=1.1) M22 1000 -0.096 6000 -0.099 7000 -0.022 8000 -0.744 11000 -0.005 15000 -0.022 16000 -0.009 17000 -0.003 C ICRP 1year old Skeleton C Group1 (density=1.49 g/cc) Cranium, Mandible M101 1000 -5.272 6000 -19.154 7000 -4.280 8000 -49.850 20000 -13.852 11000 -0.025 12000 -0.268 15000 -6.969 16000 -0.287 17000 -0.012 19000 -0.019 26000 -0.012 C Group2 (density=1.17 g/cc) Vertebrae (C,T,L) M102 1000 -8.580 6000 -16.635 7000 -2.891 8000 -63.764 20000 -3.665 11000 -0.322 12000 -0.096 15000 -3.198 16000 -0.645 17000 -0.184 19000 -0.005 26000 -0.016 C Group3 (density=1.366 g/cc) Upper humeri,Femora, Ribs, Clavicles, Os Coxae M103 1000 -6.335 6000 -23.855 7000 -4.077 8000 -48.451 20000 -11.063 11000 -0.040 12000 -0.252 15000 -5.605 16000 -0.269 17000 -0.010

PAGE 273

256 19000 -0.015 26000 -0.029 C Group4 (density=1.402 g/cc) Lower Humeri, Femora, Scapulae M104 1000 -6.016 6000 -22.706 7000 -4.103 8000 -48.596 20000 -11.937 11000 -0.035 12000 -0.254 15000 -6.031 16000 -0.273 17000 -0.011 19000 -0.016 26000 -0.022 C Group5 (density=1.324 g/cc)Wrist and Hands, Ankles and Feet M105 1000 -6.779 6000 -23.773 7000 -3.550 8000 -50.080 20000 -9.821 11000 -0.103 12000 -0.197 15000 -5.270 16000 -0.349 17000 -0.051 19000 -0.013 26000 -0.012 C Group6 (density=1.324 g/cc) Ulna, Radii, Tibia, Patella M106 1000 -6.777 6000 -20.374 7000 -3.713 8000 -53.665 20000 -9.436 11000 -0.128 12000 -0.203 15000 -5.207 16000 -0.397 17000 -0.068 19000 -0.013 26000 -0.018 C Group7 (density=1.445 g/cc) Fibula M107 1000 -5.643 6000 -20.990 7000 -4.183 8000 -49.156 20000 -12.907 11000 -0.030 12000 -0.260 15000 -6.506 16000 -0.280 17000 -0.012 19000 -0.017 26000 -0.016 C Group8 (density=1.374 g/cc) Sternum, Sacrum M108 1000 -6.263 6000 -23.540 7000 -4.091 8000 -48.545 20000 -11.250 11000 -0.039 12000 -0.253 15000 -5.696 16000 -0.270 17000 -0.010 19000 -0.015 26000 -0.027 c-------------------------------------------------------------------c Tally c-------------------------------------------------------------------fc6 Breast (N/A)

PAGE 274

257 *f6:p 61 $Dummy fm6 0.0 $Dummy fc16 colon (left + right + rectosigmoid) *f16:p (44 43 163) fc26 lung (left + right) *f26:p (61 62) fc36 stomach (wall) *f36:p 25 fc46 bladder (wall) *f46:p 123 fc56 liver *f56:p 101 fc66 esophagus *f66:p 150 fc76 thyroid *f76:p 83 fc86 gonads *f86:p 10 fc96 skin *f96:p 15 fc116 brain *f116:p 41 fc126 kidney (left + right) (pelvis + medular + cortex) *f126:p (5 6 7 8 81 82) fc136 salivary gland *f136:p 22 fc146 adipose tissue *f146:p 2 fc156 adrenals (left right) *f156:p (66 67) fc166 ET region (larynx + pharynx) *f166:p (46 47) fc176 gall bladder (wall + content) *f176:p (65 64) fc186 heart (wall + content) *f186:p (84 85) fc196 muscle *f196:p 70 fc206 pancreas *f206:p 162 fc216 prostate *f216:p 9 fc226 SI wall *f226:p 130 fc236 spleen *f236:p 121 fc246 thymus *f246:p 181 fc256 uterus (n/a) *f256:p 181 $dummy fm256 0.0 $dummy c Bone dose tally (20 bones except lower humerus, radii+ulnae, hand) *f316:p 201 $ cranium *f326:p 202 $ Femur(upper) *f336:p 203 $ Tibiae, patellae *f346:p 204 $ ankle and feet *f356:p 205 $ Fibulae *f366:p 208 $ Humerus (upper) *f376:p 211 $ Scapulae *f386:p 215 $ Os coxae *f396:p 219 $ Clavicles *f406:p 220 $ Femur(lower) *f416:p 229 $ Ribs *f426:p 230 $ Mandible *f436:p 231 $ Vertebrae (C-) *f446:p 232 $ Vertebrae (T-) *f456:p 233 $ Vertebrae (L-) *f466:p 234 $ Sternum *f476:p 235 $ Sacrum c Bone flux tally for red bone marrow dose calculation FC514 Cranium

PAGE 275

258 F514:P 201 # DE514 DF514 0.010 6.30E-16 0.015 2.71E-16 0.020 1.53E-16 0.030 7.49E-17 0.040 5.04E-17 0.050 4.18E-17 0.060 3.93E-17 0.080 4.15E-17 0.10 4.79E-17 0.15 7.16E-17 0.20 9.88E-17 0.30 1.57E-16 0.40 2.15E-16 0.50 2.72E-16 0.60 3.28E-16 0.80 4.28E-16 1.0 5.19E-16 1.5 7.13E-16 2.0 8.79E-16 3.0 1.17E-15 4.0 1.43E-15 5.0 1.67E-15 6.0 1.92E-15 8.0 2.41E-15 10.0 2.92E-15 FC524 mandible F524:P 230 # DE524 DF524 0.010 6.30E-16 0.015 2.71E-16 0.020 1.53E-16 0.030 7.49E-17 0.040 5.04E-17 0.050 4.18E-17 0.060 3.93E-17 0.080 4.15E-17 0.10 4.79E-17 0.15 7.16E-17 0.20 9.88E-17 0.30 1.57E-16 0.40 2.15E-16 0.50 2.72E-16 0.60 3.28E-16 0.80 4.28E-16 1.0 5.19E-16 1.5 7.13E-16 2.0 8.79E-16 3.0 1.17E-15 4.0 1.43E-15 5.0 1.67E-15 6.0 1.92E-15 8.0 2.41E-15 10.0 2.92E-15 FC534 scapulae F534:P 211 # DE534 DF534 0.010 6.14e-16 0.015 2.61e-16 0.020 1.43e-16 0.030 6.44e-17 0.040 4.11e-17 0.050 3.31e-17 0.060 3.11e-17 0.080 3.45e-17 0.10 4.22e-17 0.15 6.74e-17 0.20 9.57e-17 0.30 1.54e-16 0.40 2.10e-16

PAGE 276

259 0.50 2.66e-16 0.60 3.19e-16 0.80 4.15e-16 1.0 5.03e-16 1.5 6.91e-16 2.0 8.50e-16 3.0 1.12e-15 4.0 1.37e-15 5.0 1.59e-15 6.0 1.80e-15 8.0 2.23e-15 10.0 2.66e-15 FC544 clavicle F544:P 219 # DE544 DF544 0.010 6.14e-16 0.015 2.61e-16 0.020 1.43e-16 0.030 6.44e-17 0.040 4.11e-17 0.050 3.31e-17 0.060 3.11e-17 0.080 3.45e-17 0.10 4.22e-17 0.15 6.74e-17 0.20 9.57e-17 0.30 1.54e-16 0.40 2.10e-16 0.50 2.66e-16 0.60 3.19e-16 0.80 4.15e-16 1.0 5.03e-16 1.5 6.91e-16 2.0 8.50e-16 3.0 1.12e-15 4.0 1.37e-15 5.0 1.59e-15 6.0 1.80e-15 8.0 2.23e-15 10.0 2.66e-15 FC554 sternum F554:P 234 # DE554 DF554 0.010 6.14e-16 0.015 2.61e-16 0.020 1.43e-16 0.030 6.44e-17 0.040 4.11e-17 0.050 3.31e-17 0.060 3.11e-17 0.080 3.45e-17 0.10 4.22e-17 0.15 6.74e-17 0.20 9.57e-17 0.30 1.54e-16 0.40 2.10e-16 0.50 2.66e-16 0.60 3.19e-16 0.80 4.15e-16 1.0 5.03e-16 1.5 6.91e-16 2.0 8.50e-16 3.0 1.12e-15 4.0 1.37e-15 5.0 1.59e-15 6.0 1.80e-15 8.0 2.23e-15 10.0 2.66e-15 FC564 ribs F564:P 229 # DE564 DF564

PAGE 277

260 0.010 6.14e-16 0.015 2.61e-16 0.020 1.43e-16 0.030 6.44e-17 0.040 4.11e-17 0.050 3.31e-17 0.060 3.11e-17 0.080 3.45e-17 0.10 4.22e-17 0.15 6.74e-17 0.20 9.57e-17 0.30 1.54e-16 0.40 2.10e-16 0.50 2.66e-16 0.60 3.19e-16 0.80 4.15e-16 1.0 5.03e-16 1.5 6.91e-16 2.0 8.50e-16 3.0 1.12e-15 4.0 1.37e-15 5.0 1.59e-15 6.0 1.80e-15 8.0 2.23e-15 10.0 2.66e-15 FC574 cervical vertebrae F574:P 231 # DE574 DF574 0.010 6.14e-16 0.015 2.61e-16 0.020 1.43e-16 0.030 6.44e-17 0.040 4.11e-17 0.050 3.31e-17 0.060 3.11e-17 0.080 3.45e-17 0.10 4.22e-17 0.15 6.74e-17 0.20 9.57e-17 0.30 1.54e-16 0.40 2.10e-16 0.50 2.66e-16 0.60 3.19e-16 0.80 4.15e-16 1.0 5.03e-16 1.5 6.91e-16 2.0 8.50e-16 3.0 1.12e-15 4.0 1.37e-15 5.0 1.59e-15 6.0 1.80e-15 8.0 2.23e-15 10.0 2.66e-15 FC584 thoracic vertebrae F584:P 232 # DE584 DF584 0.010 6.14e-16 0.015 2.61e-16 0.020 1.43e-16 0.030 6.44e-17 0.040 4.11e-17 0.050 3.31e-17 0.060 3.11e-17 0.080 3.45e-17 0.10 4.22e-17 0.15 6.74e-17 0.20 9.57e-17 0.30 1.54e-16 0.40 2.10e-16 0.50 2.66e-16 0.60 3.19e-16

PAGE 278

261 0.80 4.15e-16 1.0 5.03e-16 1.5 6.91e-16 2.0 8.50e-16 3.0 1.12e-15 4.0 1.37e-15 5.0 1.59e-15 6.0 1.80e-15 8.0 2.23e-15 10.0 2.66e-15 FC594 lumbar vertebrae F594:P 233 # DE594 DF594 0.010 6.14e-16 0.015 2.61e-16 0.020 1.43e-16 0.030 6.44e-17 0.040 4.11e-17 0.050 3.31e-17 0.060 3.11e-17 0.080 3.45e-17 0.10 4.22e-17 0.15 6.74e-17 0.20 9.57e-17 0.30 1.54e-16 0.40 2.10e-16 0.50 2.66e-16 0.60 3.19e-16 0.80 4.15e-16 1.0 5.03e-16 1.5 6.91e-16 2.0 8.50e-16 3.0 1.12e-15 4.0 1.37e-15 5.0 1.59e-15 6.0 1.80e-15 8.0 2.23e-15 10.0 2.66e-15 FC604 sacrum F604:P 235 # DE604 DF604 0.010 6.14e-16 0.015 2.61e-16 0.020 1.43e-16 0.030 6.44e-17 0.040 4.11e-17 0.050 3.31e-17 0.060 3.11e-17 0.080 3.45e-17 0.10 4.22e-17 0.15 6.74e-17 0.20 9.57e-17 0.30 1.54e-16 0.40 2.10e-16 0.50 2.66e-16 0.60 3.19e-16 0.80 4.15e-16 1.0 5.03e-16 1.5 6.91e-16 2.0 8.50e-16 3.0 1.12e-15 4.0 1.37e-15 5.0 1.59e-15 6.0 1.80e-15 8.0 2.23e-15 10.0 2.66e-15 FC614 os coxae F614:P 215 # DE614 DF614 0.010 6.14e-16 0.015 2.61e-16

PAGE 279

262 0.020 1.43e-16 0.030 6.44e-17 0.040 4.11e-17 0.050 3.31e-17 0.060 3.11e-17 0.080 3.45e-17 0.10 4.22e-17 0.15 6.74e-17 0.20 9.57e-17 0.30 1.54e-16 0.40 2.10e-16 0.50 2.66e-16 0.60 3.19e-16 0.80 4.15e-16 1.0 5.03e-16 1.5 6.91e-16 2.0 8.50e-16 3.0 1.12e-15 4.0 1.37e-15 5.0 1.59e-15 6.0 1.80e-15 8.0 2.23e-15 10.0 2.66e-15 FC624 femora upper half F624:P 202 # DE624 DF624 0.010 6.14e-16 0.015 2.61e-16 0.020 1.43e-16 0.030 6.44e-17 0.040 4.11e-17 0.050 3.31e-17 0.060 3.11e-17 0.080 3.45e-17 0.10 4.22e-17 0.15 6.74e-17 0.20 9.57e-17 0.30 1.54e-16 0.40 2.10e-16 0.50 2.66e-16 0.60 3.19e-16 0.80 4.15e-16 1.0 5.03e-16 1.5 6.91e-16 2.0 8.50e-16 3.0 1.12e-15 4.0 1.37e-15 5.0 1.59e-15 6.0 1.80e-15 8.0 2.23e-15 10.0 2.66e-15 FC634 femora lower half F634:P 220 # DE634 DF634 0.010 6.14e-16 0.015 2.61e-16 0.020 1.43e-16 0.030 6.44e-17 0.040 4.11e-17 0.050 3.31e-17 0.060 3.11e-17 0.080 3.45e-17 0.10 4.22e-17 0.15 6.74e-17 0.20 9.57e-17 0.30 1.54e-16 0.40 2.10e-16 0.50 2.66e-16 0.60 3.19e-16 0.80 4.15e-16 1.0 5.03e-16

PAGE 280

263 1.5 6.91e-16 2.0 8.50e-16 3.0 1.12e-15 4.0 1.37e-15 5.0 1.59e-15 6.0 1.80e-15 8.0 2.23e-15 10.0 2.66e-15 FC644 tibiae, fibulae, patellae F644:P (203 205) # DE644 DF644 0.010 6.14e-16 0.015 2.61e-16 0.020 1.43e-16 0.030 6.44e-17 0.040 4.11e-17 0.050 3.31e-17 0.060 3.11e-17 0.080 3.45e-17 0.10 4.22e-17 0.15 6.74e-17 0.20 9.57e-17 0.30 1.54e-16 0.40 2.10e-16 0.50 2.66e-16 0.60 3.19e-16 0.80 4.15e-16 1.0 5.03e-16 1.5 6.91e-16 2.0 8.50e-16 3.0 1.12e-15 4.0 1.37e-15 5.0 1.59e-15 6.0 1.80e-15 8.0 2.23e-15 10.0 2.66e-15 FC654 ankle and foot F654:P 204 # DE654 DF654 0.010 6.14e-16 0.015 2.61e-16 0.020 1.43e-16 0.030 6.44e-17 0.040 4.11e-17 0.050 3.31e-17 0.060 3.11e-17 0.080 3.45e-17 0.10 4.22e-17 0.15 6.74e-17 0.20 9.57e-17 0.30 1.54e-16 0.40 2.10e-16 0.50 2.66e-16 0.60 3.19e-16 0.80 4.15e-16 1.0 5.03e-16 1.5 6.91e-16 2.0 8.50e-16 3.0 1.12e-15 4.0 1.37e-15 5.0 1.59e-15 6.0 1.80e-15 8.0 2.23e-15 10.0 2.66e-15 FC664 humeri upper half F664:P 208 # DE664 DF664 0.010 6.14e-16 0.015 2.61e-16 0.020 1.43e-16 0.030 6.44e-17

PAGE 281

264 0.040 4.11e-17 0.050 3.31e-17 0.060 3.11e-17 0.080 3.45e-17 0.10 4.22e-17 0.15 6.74e-17 0.20 9.57e-17 0.30 1.54e-16 0.40 2.10e-16 0.50 2.66e-16 0.60 3.19e-16 0.80 4.15e-16 1.0 5.03e-16 1.5 6.91e-16 2.0 8.50e-16 3.0 1.12e-15 4.0 1.37e-15 5.0 1.59e-15 6.0 1.80e-15 8.0 2.23e-15 10.0 2.66e-15 c Parameters for CT simulation RDUM 59.1 13.2 1.2 1 57 10.5 9 26 2 1002 NPS 10000000

PAGE 282

265 APPENDIX F EGSNRC USER CODE FO R CHAPTER 7 STUDY This appendix contains an EGSnrc MORT RAN user code that was developed for specific absorbed fraction calculation in chapter 7. The example user code was to calculate the absorbed fraction for the UF 9-month male phant om. A separate input file is needed to provide the parameters such as SourceOrgan, x_min, x_max, y_min, y_max, z_min, z_max, SourceParticleType, Ki neticEnergy, and NumberOfHistories. !INDENT M 4; "INDENT EACH MORTRAN NESTING LEVEL BY 4" !INDENT F 2; "INDENT EACH FORTRAN NESTING LEVEL BY 2" "This line is 80 characters long, use it to set up the screen width" "23456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789" "******************************************************************************" " " " ************************** " " * * " " * ufwmodel08.mortran * " " * * " " ************************** " " " " This program calculates the absorbed fraction of energy within the organs " " " " The PEGS file is: " " the type of particle: -1 for electrons, 0 for photons " " the initial energy of the particles " " the number of histries per configuration. " " The results are in the file Output.dat. " " " "******************************************************************************" "----------------------------------------" " Step 1: To override the EGSnrc macros " "----------------------------------------" " 1) so that all real variables are in double precision " REPLACE {$REAL} WITH {DOUBLE PRECISION} " 2) the size of the arrays used by EGSnrc. " REPLACE {$MXMED} WITH {30} "30medium in the problem (22+8bones)" REPLACE {$MXORGAN} WITH {74} "74 anatomical regions" REPLACE {$MXREG} WITH {1002} "76 geometric regions (default 2000)" REPLACE {$MXSTACK} WITH {100} "less than 100 particles on stack at once" REPLACE {$MXMDSH} WITH {300} "max. nb of shells per medium for " "incoherent scattering" REPLACE {0.,} WITH {0.0D0,} " 3) for compatibility with the old EGS4. " REPLACE {$CALL-HOWNEAR(#);} WITH {CALL HOWNEAR({P1},X(NP),Y(NP),Z(NP),IRL);} "-------------------------------------------"

PAGE 283

266 " Step 1.a. To define user constant values " "-------------------------------------------" REPLACE {$REG_OUTSIDE} WITH {1000} " outside of ROI" REPLACE {$REG_LOST} WITH {1001} " region for lost particles " REPLACE {$IMAGE_FILE_CT} WITH {22} " file to read the image " REPLACE {$INPUT_FILE} WITH {25} " file to get the parameters " REPLACE {$OUTPUT_FILE} WITH {26} " file to record the results " REPLACE {$N_RUN} WITH {100} " number of run for each configuration" REPLACE {$INFINITY} WITH {1.0D99} " to simulate infinity long distance " REPLACE {$PI} WITH {3.1415926535897932D+00} " need Pi in Source " " this is to solve the boundary crossing problem. The particle is " " transported a little farther than the exact boundary " REPLACE {$BOUNDARY_THICKNESS} WITH {1.0D-06} " that's 0.1 Angstrom " " for the geometrical model " "****************Change These Parameters*******************************" " 2) the Contour image " "macroimage voxel res (cm) " REPLACE {$CT_VOXEL_SIZE_X} WITH {0.0859376D+00} REPLACE {$CT_VOXEL_SIZE_Y} WITH {0.0859376D+00} " in cm " REPLACE {$CT_VOXEL_SIZE_Z} WITH {0.3D+00} " in cm " REPLACE {$CT_IMAGE_NX} WITH {289} " # of voxels along (O,x)" REPLACE {$CT_IMAGE_NY} WITH {180} " # of voxels along (O,y)" REPLACE {$CT_IMAGE_NZ} WITH {241} " # of voxels along (O,z)" "**************************Change the Above Parameters****************" "-------------------------------------------------" " Step 1.b. To define the user common variables " "-------------------------------------------------" " a) for scoring the results " REPLACE {COMIN/SCOR/;} WITH {COMMON/SCOR/ CumulOrgan_AE,CumulOutsideAE,CumulLostAE, CumulFluence; $REAL CumulOrgan_AE(100); $REAL CumulOutsideAE; $REAL CumulLostAE; $REAL CumulFluence($MXORGAN, 25);} " b) for the geometry " REPLACE {COMIN/GEOM/;} WITH {COMMON/GEOM/PhantomData, SourceOrgan,x_min,x_max,y_min,y_max,z_min,z_max, SourceParticleType; BYTE PhantomData($CT_IMAGE_NZ * $CT_IMAGE_NY * $CT_IMAGE_NX); $INTEGER SourceOrgan; $INTEGER x_min; $INTEGER x_max; $INTEGER y_min; $INTEGER y_max; $INTEGER z_min; $INTEGER z_max; $INTEGER SourceParticleType;} "--------------------------------------------------------" " Step 1.c. To define the variables of the main program " "--------------------------------------------------------" $IMPLICIT-NONE; " to make sure that all variables are declared " " 1) all the common that you need in the main programm " COMIN/BOUNDS,MEDIA,MISC,USEFUL,RANDOM,GEOM,SCOR,EPCONT/; " The above expands into COMMON statements " " BOUNDS contains ECUT and PCUT " " MEDIA contains NMED and the array concerning media " " MISC contains the medium per region and Rayleigh parameters " " USEFUL contains electron rest mass " " RANDOM contains the RANMAR parameters " " GEOM passes info to HOWFAR and HOWNEAR routines " " SCOR passes info to AUSGAB routine " " 2) local variables of the main program " $REAL XIN, YIN, ZIN; " particle location (to give to SHOWER) " $REAL UIN, VIN, WIN; " particle direction (to give to SHOWER) " $REAL EIN; " particle energy (to give to SHOWER) "

PAGE 284

267 $REAL WTIN; " particle weight (to give to SHOWER) " $INTEGER IQIN; " particle type (to give to SHOWER) " $INTEGER IRIN; " particle region (to give to SHOWER) " $INTEGER PartNo; " particle # to loop for each particle " $INTEGER RunNo; " run number to loop for each run " $INTEGER ConfigNo; " configuration number to loop for each one " LOGICAL NoMoreConfig; " to test the end of the input file " $INTEGER ParticleType; " particle type got from the input file " $REAL KineticEnergy; " kinetic energy got from the input file " $INTEGER NumberOfHistories; " number of histories got from the input file " $INTEGER ParticlePerRun; " number of particles per run " " for statistical results: mean, standard deviation, standard deviation " " of the mean, 95% confidence interval, and 95% confidence error " $INTEGER I; $INTEGER J; $REAL SubTotalOrganAE; $REAL ORGAN_AE($MXORGAN); $REAL MeanORGAN_AE($MXORGAN); $REAL StdDevORGAN_AE($MXORGAN); $REAL StdDevOfMeanORGAN_AE($MXORGAN); $REAL ConfIntOfMeanORGAN_AE($MXORGAN); $REAL ConfErrOfMeanORGAN_AE($MXORGAN); $REAL Outside_AE; $REAL MeanOutside_AE; $REAL StdDevOutside_AE; $REAL StdDevOfMeanOutside_AE; $REAL ConfIntOfMeanOutside_AE; $REAL ConfErrOfMeanOutside_AE; $REAL Lost_AE; $REAL MeanLost_AE; $REAL StdDevLost_AE; $REAL StdDevOfMeanLost_AE; $REAL ConfIntOfMeanLost_AE; $REAL ConfErrOfMeanLost_AE; $REAL Fluence($MXORGAN,25); $REAL MeanFluence($MXORGAN, 25); "Total of 10 bone regions & 25 energy bins" $REAL StdDevFluence($MXORGAN, 25); $REAL StdDevOfMeanFluence($MXORGAN, 25); $REAL ConfIntOfMeanFluence($MXORGAN, 25); $REAL ConfErrOfMeanFluence($MXORGAN, 25); $INTEGER NumByte, NumX, NumY, NumZ; "Specific to 9month model only" $INTEGER REG_vs_MED($MXORGAN)/5,9,2,14,14,14,14,1,20,1, 1,8,1,18,6,1,9,1,7,18, 6,18,6,18,6,22,1,1,1,10, 3,3,8,6,1,1,1,12,5,5, 14,14,11,13,10,15,17,19,6,18, 6,1,16,1,23,25,28,27,29,25, 28,27,26,25,25,26,26,25,23,24, 24,24,30,30/; " 3) system functions invoked in the main program " $REAL DSQRT; INTRINSIC DSQRT; "----------------------------------------" " Step 2. To initialize the EGSnrc data " "----------------------------------------" " 1) to place medium names in an array. " " $S is a MORTRAN macro to expand strings " CHARACTER*4 MEDARR(24,$MXMED); DATA MEDARR /$S'softt',19*' ', $S'adipo',19*' ',

PAGE 285

268 $S'lungs',19*' ', $S'bones',19*' ', $S'inair',19*' ', $S'water',19*' ', $S'brain',19*' ', $S'eyels',19*' ', $S'muscl',19*' ', $S'blood',19*' ', $S'thyro',19*' ', $S'skint',19*' ', $S'heart',19*' ', $S'kidne',19*' ', $S'liver',19*' ', $S'pancr',19*' ', $S'splee',19*' ', $S'track',19*' ', $S'urbla',19*' ', $S'teste',19*' ', $S'ovary',19*' ', $S'laryn',19*' ', $S'bonegroup1',14*' ', $S'bonegroup2',14*' ', $S'bonegroup3',14*' ', $S'bonegroup4',14*' ', $S'bonegroup5',14*' ', $S'bonegroup6',14*' ', $S'bonegroup7',14*' ', $S'bonegroup8',14*' '/; NMED = $MXMED; "Set number of media." DO J = 1,$MXMED [ DO I=1,24 [ MEDIA(I,J) = MEDARR(I,J); ] " this is to avoid a DATA STATEMENT for a variable in COMMON" ] " 2) to initialize the medium in each region " DO I=1,$MXREG-2 [MED(I)=REG_vs_MED(I);] "SET EGS-REGION=MEDIUM" MED($REG_OUTSIDE) = 0; "vacuum outside ROI" MED($REG_LOST) = 0; "vacuum if particles are lost (does not matter)" " 3) to initialize the cutoff energy for both electrons and " " photons in each region " DO I=1,$MXMED[ ECUT(I)=0.100 + PRM;"TERMINATE ELECTRON IN MEV Kinetic energy of 100keV" PCUT(I)=0.001; "TERMINATE PHOTON IN MEV" IRAYLR(I)=1;] "TURN ON RAYLEIGH SCATTERING" " 5) to initialize the random number generator " IXX = 1; JXX = 1; " seed # to initialize the random number series " $RNG-INITIALIZATION; "---------------------------------------------------------------" " Step 3. To pick up the cross sections precalculated by pegs4 " "---------------------------------------------------------------" CALL HATCH; " data file must be assigned to unit 12 " PRINT *, 'End of HATCH'; "------------------------------------------" " Step 3.a. To initialize the output file " "------------------------------------------" OPEN (UNIT=$OUTPUT_FILE, FILE='/c/users/egsnrc/ufwmodel08/ufwmodel08_output.dat', STATUS='unknown' ); "---------------------------------------------" " Step 3.b. To open and read the image files " "---------------------------------------------" "********************OPEN CONTOUR DATA **************************************"

PAGE 286

269 OPEN($IMAGE_FILE_CT, FILE='/c/users/egsnrc/ufwmodel08/ufwmodel08(289x180x241).dat', ACCESS='DIRECT', FORM='UNFORMATTED', RECL=$CT_IMAGE_NZ*$CT_IMAGE_NY*$CT_IMAGE_NX); PRINT *, 'ok opening Contour image file'; READ($IMAGE_FILE_CT, REC=1) PhantomData; CLOSE ( $IMAGE_FILE_CT ); "********************READ INPUT.DAT *****************************************" "-----------------------------------------------------" " Step 3.c. For each configuration in the input file " "-----------------------------------------------------" " One execution is performed for each line of the input file " OPEN ( UNIT=$INPUT_FILE, FILE='/c/users/egsnrc/ufwmodel08/ufwmodel08_input.dat', STATUS='old' ); READ ( $INPUT_FILE, * ); " to skip the first line " NoMoreConfig = .FALSE.; ConfigNo = 0; LOOP [" until no more line in the file " "-------------------------------------------------" " Step 3.d. To read a new line in the input file " "-------------------------------------------------" READ ( $INPUT_FILE, *, END = :EndInput: ) SourceOrgan, x_min, x_max, y_min, y_max, z_min, z_max, SourceParticleType, KineticEnergy, NumberOfHistories; GO TO :NextInput:; :EndInput: NoMoreConfig = .TRUE.; :NextInput: CONTINUE; "-----------------------------------------------------------------------" " Step 3.e. If a new line exists, initialize the data for this config. " "-----------------------------------------------------------------------" IF (~NoMoreConfig) [ " 1) to display the new configuration " ConfigNo = ConfigNo + 1; PRINT *, 'Configuration no:', ConfigNo; " 2) how many particles per run? " ParticlePerRun = NumberOfHistories / $N_RUN; " 3) to output the parameters of the configuration " WRITE($OUTPUT_FILE, '(A)') ' '; WRITE($OUTPUT_FILE, '(A,I3)') 'Configuration No:', ConfigNo; WRITE($OUTPUT_FILE, '(A)') 'The calculation is performed for:'; WRITE($OUTPUT_FILE, '(A,I5,A)') ' ', $N_RUN, ' runs'; IF (SourceParticleType = 0) [ WRITE($OUTPUT_FILE, '(A,I6,A)') ' ', ParticlePerRun, ' photons per run'; ] ELSE [ WRITE($OUTPUT_FILE, '(A,I6,A)') ' ', ParticlePerRun, ' electrons per run'; ] WRITE($OUTPUT_FILE, '(A,I8,A)') ' Total: ', ParticlePerRun*$N_RUN, ' histories.'; WRITE($OUTPUT_FILE, '(A,F7.3,A)') ' Initial kinetic energy: ', KineticEnergy, ' MeV.'; " 4) to initialize the statistical data " DO I=1,$MXORGAN [MeanORGAN_AE(I) = 0.0]; MeanOutside_AE = 0.0; MeanLost_AE = 0.0; DO I=1,$MXORGAN [StdDevORGAN_AE(I) = 0.0]; StdDevOutside_AE = 0.0; StdDevLost_AE = 0.0; "Initialize Fluence for bone region (I=55~74)" IF (SourceParticleType = 0) [ DO I=55, $MXORGAN [ DO J=1, 25 [

PAGE 287

270 MeanFluence(I,J) = 0.0; StdDevFluence(I,J) = 0.0; ]]] "-------------------------" " Step 3.f. For each run " "-------------------------" DO RunNo=1,$N_RUN [ PRINT *, ' Run no:', RunNo; "------------------------------------------------------------" " Step 4. To initialize the geometry for HOWFAR and HOWNEAR " "------------------------------------------------------------" " done when reading the input file " "---------------------------------------------------------" " Step 5. To initialize the scoring variables for AUSGAB " "---------------------------------------------------------" DO I=1,$MXORGAN [CumulORGAN_AE(I) = 0.0]; CumulOutsideAE = 0.0; CumulLostAE = 0.0; IF (SourceParticleType = 0)[ DO I=55, $MXORGAN [ DO J=1, 25 [ CumulFluence(I,J) = 0.0; ] ] ] "------------------------------" " Step 5.a. For each particle " "------------------------------" DO PartNo=1, ParticlePerRun [ " to have a display of the progression of the code " "--------------------------------------------" " Step 6. To define the particle parameters " "--------------------------------------------" IF (SourceParticleType = 0) [ EIN = KineticEnergy; " initial kinetic energy" ] ELSE [ EIN = KineticEnergy + PRM; " initial kinetic + rest mass energy" ] IQIN=SourceParticleType; WTIN=1.0; " weight = 1 since no variance reduction used" " to get the initial location and direction of the particle. " CALL SourcePlane(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); "------------------------------------" " Step 7. To transport the particle " "------------------------------------" CALL SHOWER(IQIN,EIN,XIN,YIN,ZIN,UIN,VIN,WIN,IRIN,WTIN); ] "-------------------------------------------------------------" " Step 7.a. To calculate and display the result for this run " "-------------------------------------------------------------" SubTotalOrganAE=0.0; DO I=1,$MXORGAN[ ORGAN_AE(I) = CumulORGAN_AE(I) / (ParticlePerRun); SubTotalOrganAE=SubTotalOrganAE+ORGAN_AE(I); ] Outside_AE = CumulOutsideAE / (ParticlePerRun); Lost_AE = CumulLostAE / (ParticlePerRun); "Statistic for Fluence in only calculated for Photon only===================="

PAGE 288

271 IF (SourceParticleType = 0)[ DO I=55, $MXORGAN [ DO J=1, 25 [ Fluence(I,J) = CumulFluence(I,J)/(ParticlePerRun); MeanFluence(I,J) = MeanFluence(I,J)+ Fluence(I,J); StdDevFluence(I,J)=StdDevFluence(I,J)+ Fluence(I,J)* Fluence(I,J); ]]] "Statistic for Fluence in only calculated for Photon only====================" "---------------------------------------------" " Step 7.b. To cumulate the statistical data " "---------------------------------------------" DO I=1, $MXORGAN[ MeanORGAN_AE(I) = MeanORGAN_AE(I) + ORGAN_AE(I); ] MeanOutside_AE = MeanOutside_AE + Outside_AE; MeanLost_AE = MeanLost_AE + Lost_AE; "print *,'MeanOutside_AE=', MeanOutside_AE;" DO I=1, $MXORGAN[ StdDevORGAN_AE(I) = StdDevORGAN_AE(I) + ORGAN_AE(I)*ORGAN_AE(I); ] StdDevOutside_AE = StdDevOutside_AE + Outside_AE*Outside_AE; StdDevLost_AE = StdDevLost_AE + Lost_AE*Lost_AE; ] " End of this run " "----------------------------------------------" " Step 7.c. To calculate the statistical data " "----------------------------------------------" " a) the mean =========================================================" DO I=1, $MXORGAN[ MeanORGAN_AE(I) = MeanORGAN_AE(I) / $N_RUN; ] MeanOutside_AE = MeanOutside_AE / $N_RUN; MeanLost_AE = MeanLost_AE / $N_RUN; "only if SourceParticleType = 0-------------------------" IF (SourceParticleType = 0)[ DO I=55, $MXORGAN [ DO J=1, 25 [ MeanFluence(I,J) = MeanFluence(I,J) / $N_RUN; StdDevFluence(I,J)=StdDevFluence(I,J) $N_RUN*MeanFluence(I,J)*MeanFluence(I,J); StdDevFluence(I,J)=StdDevFluence(I,J) /($N_RUN -1); StdDevFluence(I,J)=DSQRT(StdDevFluence(I,J)); StdDevOfMeanFluence(I,J)=StdDevFluence(I,J) / DSQRT(DBLE($N_RUN)); ConfIntOfMeanFluence(I,J)=1.96*StdDevOfMeanFluence(I,J); ConfErrOfMeanFluence(I,J)=100.0 * ConfIntOfMeanFluence(I,J) /MeanFluence(I,J); ]]] "End of only if SourceParticleType = 0-------------------------" " b) the standard deviation of the sample =============================" DO I=1, $MXORGAN[ StdDevORGAN_AE(I) = StdDevORGAN_AE(I) $N_RUN*MeanORGAN_AE(I)*MeanORGAN_AE(I); StdDevORGAN_AE(I) = StdDevORGAN_AE(I) / ($N_RUN 1); StdDevORGAN_AE(I) = DSQRT(StdDevORGAN_AE(I)); StdDevOfMeanORGAN_AE(I) = StdDevORGAN_AE(I) / DSQRT(DBLE($N_RUN)); ConfIntOfMeanORGAN_AE(I) = 1.96*StdDevOfMeanORGAN_AE(I); ConfErrOfMeanORGAN_AE(I) = 100.0 * ConfIntOfMeanORGAN_AE(I) / MeanORGAN_AE(I); ] StdDevOutside_AE = StdDevOutside_AE

PAGE 289

272 $N_RUN*MeanOutside_AE*MeanOutside_AE; StdDevOutside_AE = StdDevOutside_AE / ($N_RUN 1); StdDevLost_AE = StdDevLost_AE $N_RUN*MeanLost_AE*MeanLost_AE; StdDevLost_AE = StdDevLost_AE / ($N_RUN 1); " c) the standard deviation of the mean ============================" StdDevOutside_AE = DSQRT(StdDevOutside_AE); StdDevLost_AE = DSQRT(StdDevLost_AE); StdDevOfMeanOutside_AE = StdDevOutside_AE / DSQRT(DBLE($N_RUN)); StdDevOfMeanLost_AE = StdDevLost_AE / DSQRT(DBLE($N_RUN)); " d) the 95% confidence interval of the mean ========================*/ ConfIntOfMeanOutside_AE = 1.96*StdDevOfMeanOutside_AE; ConfIntOfMeanLost_AE = 1.96*StdDevOfMeanLost_AE; " e) the 95% confidence error of the mean */ ConfErrOfMeanOutside_AE = 100.0 * ConfIntOfMeanOutside_AE / MeanOutside_AE; ConfErrOfMeanLost_AE = 100.0 * ConfIntOfMeanLost_AE / MeanLost_AE; "------------------------------------------------------" " Step 8. To print out the results to the output file " "------------------------------------------------------" WRITE($OUTPUT_FILE, '(A,A)') ' Absorbed fractions with 95%', ' confidence intervals:'; SubTotalOrganAE=0.0; DO I=1,$MXORGAN[ WRITE($OUTPUT_FILE,'(A,I3,A,F16.14,A,F16.14,A,F6.2,A)') ' AE in ORGAN number',I,': ', MeanORGAN_AE(I), ' +/', ConfIntOfMeanORGAN_AE(I),' (', ConfErrOfMeanORGAN_AE(I), '%)'; SubTotalOrganAE=SubTotalOrganAE + MeanORGAN_AE(I) ] WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') ' AE in outside: ', MeanOutside_AE, ' +/', ConfIntOfMeanOutside_AE,' (', ConfErrOfMeanOutside_AE, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') ' AE lost: ', MeanLost_AE, ' +/', ConfIntOfMeanLost_AE,' (', ConfErrOfMeanLost_AE, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14)') ' Total AE: ', SubTotalOrganAE + MeanOutside_AE + MeanLost_AE; IF (SourceParticleType = 0) [ DO I=55, $MXORGAN [ DO J=1, 25 [ WRITE($OUTPUT_FILE,'(A,I3,A,I3,A,F16.14,A,F16.14,A,F6.2,A)') ' Fluence in ORGAN number',I,'Energy bin#',J,': ', MeanFluence(I,J), ' +/', ConfIntOfMeanFluence(I,J),' (', ConfErrOfMeanFluence(I,J), '%)'; ]]] "If SourceParticleType =0" ] ] " End of this configuration " UNTIL (NoMoreConfig); "--------------------------------------------" " Step 8.a. Don't forget to close the files " "--------------------------------------------" CLOSE($INPUT_FILE); CLOSE($OUTPUT_FILE); END; " End of main program "

PAGE 290

273 "******************************************************************************" " Source sampling " "******************************************************************************" " " " The SourceCorticalBone subroutine returns particles starting within the " " marrow regions of the NMR image. The source is isotropic and uniform within" " the Cortical Bone of the CT Image. " " The direction is equiprobable, that means that: " " Phi is equiprobable within the [0, 2Pi] interval, " " Theta is not equiprobable within [0, Pi], but cos(Theta) is " " equiprobable within the [-1, 1] interval. " " Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) " " Phi = 2*Pi*Rn1 " " Theta = arcos(1 2*Pi) " " " "******************************************************************************" SUBROUTINE SourcePlane(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; " COMMON variables " COMIN/RANDOM,GEOM/; " The above expands into COMMON statements " " GEOM contains the image " " local variables " $REAL Random1, Random2, Random3; $INTEGER I, J, K; " to store the position of the voxel " $INTEGER VoxelNo; " the voxel number within the image " $INTEGER VoxelCTnumber; " the voxel itself " $REAL Theta, Phi; " system functions invoked in subroutine " $REAL DACOS, DCOS, DSIN; INTRINSIC DACOS, DCOS, DSIN; " user functions invoked in the subroutine " "-------------------------------------" " 1) to return the starting position " "-------------------------------------" LOOP [ $RANDOMSET Random1; $RANDOMSET Random2; $RANDOMSET Random3; XSrc = (x_min + (x_max x_min)* Random1) * $CT_VOXEL_SIZE_X; YSrc = (y_min + (y_max y_min)* Random2) * $CT_VOXEL_SIZE_Y; ZSrc = (z_min + (z_max z_min)* Random3) * $CT_VOXEL_SIZE_Z; I = (XSrc / $CT_VOXEL_SIZE_X); J = (YSrc / $CT_VOXEL_SIZE_Y); K = (ZSrc / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; VoxelCTnumber = PhantomData(VoxelNo); IF (VoxelCTnumber < 0) [ VoxelCTnumber = 256 + VoxelCTnumber;] ] UNTIL (VoxelCTnumber = SourceOrgan); "----------------------------" " 2) to return the direction " "----------------------------" $RANDOMSET Random1; $RANDOMSET Random2; Theta = DACOS(1-2.0*Random1);

PAGE 291

274 Phi=2.0* $PI *Random2; USrc =DSIN(Theta)*DCOS(Phi); VSrc =DSIN(Theta)*DSIN(Phi); WSrc =DCOS(Theta); "--------------------------------" " 3) to return the region number " "--------------------------------" RegSrc = SourceOrgan; END; " End of subroutine SourceCorticalBone " "******************************************************************************" " HOWFAR " "******************************************************************************" " " " The HOWFAR subroutine measures the distance between the location of the " " particle (X0, Y0, Z0) and the next boundary crossed by the particle when " " traveling to the direction (Up, Vp, Wp). " " The returned values are: " " IDISC is set to 1 if we need to discard the particle " " USTEP is shortened if the boundary is reached by the particle " " IRNEW is set with the region number that lies beyond the boundary " " " "******************************************************************************" SUBROUTINE HOWFAR; $IMPLICIT-NONE; " to make sure that all variables are declared " " COMMON variables " COMIN/STACK,GEOM,EPCONT,SCOR/; " The above expands into COMMON statements " " STACK contains IR(NP), X,Y,Z(NP), and U,V,W(NP) " " EPCONT contains USTEP: the distance EGSnrc is to transport the part. " " local variables " $REAL X0, Y0, Z0; " the position of the particle " $REAL Up, Vp, Wp; " the direction of the particle " $INTEGER WHICH_ORGAN; $INTEGER IReg; " the region number" $REAL Distance; " the distance to the boundary " $REAL XNew, YNew, ZNew; " location of particle after current step " " user functions invoked in the subroutine " $INTEGER I, J, K; " to store the position of the voxel " $INTEGER VoxelNo; " the voxel number within the image " $INTEGER VoxelCTnumber; " the voxel itself " $INTEGER ParticleType; LOGICAL InsidePhantom; $REAL BoundaryDistance; $REAL PhotonEnergy; PhotonEnergy = E(NP); ParticleType = IQ(NP); "--------------------------------" " 1) To get the data from EGSnrc " "--------------------------------" X0 = X(NP); Y0 = Y(NP); Z0 = Z(NP); Up = U(NP); Vp = V(NP); Wp = W(NP); IReg = IR(NP); "-----------------------------------------" " 2) To check the data returned by EGSnrc " "-----------------------------------------" " if a mismatch is detected, the particle is discarded (IDISC=1) " " IR(NP) is set to the region $REG_LOST so that AUSGAB can detect the " " problem (IRNEW is not used by EGS since it does not transport the " " particle before it calls AUSGAB) "

PAGE 292

275 " a) to check the region numbers " IF ((IReg .LT. 1) .or. (IREG .GT. $MXREG))[ PRINT *, 'Error in HOWFAR: wrong region number: ', IReg; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] " b) to check if the region number matches the location " IF (IReg .GE.1 .and. IReg.LE.$MXORGAN) [ IF (~InsidePhantom(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particle is not in the phantom.'; PRINT *, 'IReg=',IReg; Print *, 'U=',Up,' V=',Vp,' W=',Wp; Print *, 'X=',X0,' Y=',Y0,' Z=',Z0; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] I = (X0 / $CT_VOXEL_SIZE_X); J = (Y0 / $CT_VOXEL_SIZE_Y); K = (Z0 / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; VoxelCTnumber = PhantomData(VoxelNo); IF (VoxelCTnumber < 0) [ VoxelCTnumber = 256 + VoxelCTnumber;] IF ((IReg~=$REG_OUTSIDE) .and. (IReg ~= VoxelCTnumber)) [ PRINT *, 'Error in HOWFAR: particle is not in the organ', VoxelCTnumber; PRINT *,'IReg=',IReg,'VoxelCTnumber=',VoxelCTnumber; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] "----------------------------------------------------------------" " 3) To discard the particle if it goes outside the study region " "----------------------------------------------------------------" IF (IReg = $REG_OUTSIDE) [ IDISC = 1; ] ELSE [ "----------------------------------------------" " 4) To calculate the distance to the boundary " "----------------------------------------------" Distance = BoundaryDistance(X0, Y0, Z0, Up, Vp, Wp, IReg); "----------------------------------------------------------------------" " 5) To make sure the particle jumps on the other side of the boundary " "----------------------------------------------------------------------" Distance = Distance + $BOUNDARY_THICKNESS; "print *,'BoundaryDistance+ROFF=',Distance;" "---------------------------------------------------" " 6) To check if the distance is shorter than USTEP " "---------------------------------------------------" "print *,'USTEP = ',Distance;" IF ( Distance < USTEP ) [ USTEP = Distance; ] " Calculate Fluence for Bone Regions " IF ((SourceParticleType .EQ. 0) .AND. (ParticleType .EQ. 0) .AND. ((IReg .GE. 55) .AND. (IReg .LE. 74)))

PAGE 293

276 [ IF(PhotonEnergy .LT. 1D-02)[ CumulFluence(IReg,1)=CumulFluence(IReg,1)+USTEP; ] ELSEIF (PhotonEnergy .LT. 1.5D-02)[ CumulFluence(IReg,2)=CumulFluence(IReg,2)+USTEP; ] ELSEIF (PhotonEnergy .LT. 2D-02)[ CumulFluence(IReg,3)=CumulFluence(IReg,3)+USTEP; ] ELSEIF (PhotonEnergy .LT. 3D-02)[ CumulFluence(IReg,4)=CumulFluence(IReg,4)+USTEP; ] ELSEIF (PhotonEnergy .LT. 4D-02)[ CumulFluence(IReg,5)=CumulFluence(IReg,5)+USTEP; ] ELSEIF (PhotonEnergy .LT. 5D-02)[ CumulFluence(IReg,6)=CumulFluence(IReg,6)+USTEP; ] ELSEIF (PhotonEnergy .LT. 6D-02)[ CumulFluence(IReg,7)=CumulFluence(IReg,7)+USTEP; ] ELSEIF (PhotonEnergy .LT. 8D-02)[ CumulFluence(IReg,8)=CumulFluence(IReg,8)+USTEP; ] ELSEIF (PhotonEnergy .LT. 1D-01)[ CumulFluence(IReg,9)=CumulFluence(IReg,9)+USTEP; ] ELSEIF (PhotonEnergy .LT. 1.5D-01)[ CumulFluence(IReg,10)=CumulFluence(IReg,10)+USTEP; ] ELSEIF (PhotonEnergy .LT. 2.0D-01)[ CumulFluence(IReg,11)=CumulFluence(IReg,11)+USTEP; ] ELSEIF (PhotonEnergy .LT. 3D-01)[ CumulFluence(IReg,12)=CumulFluence(IReg,12)+USTEP; ] ELSEIF (PhotonEnergy .LT. 4D-01)[ CumulFluence(IReg,13)=CumulFluence(IReg,13)+USTEP; ] ELSEIF (PhotonEnergy .LT. 5D-01)[ CumulFluence(IReg,14)=CumulFluence(IReg,14)+USTEP; ] ELSEIF (PhotonEnergy .LT. 6D-01)[ CumulFluence(IReg,15)=CumulFluence(IReg,15)+USTEP; ] ELSEIF (PhotonEnergy .LT. 8D-01)[ CumulFluence(IReg,16)=CumulFluence(IReg,16)+USTEP; ] ELSEIF (PhotonEnergy .LT. 1.0)[ CumulFluence(IReg,17)=CumulFluence(IReg,17)+USTEP; ] ELSEIF (PhotonEnergy .LT. 1.5)[ CumulFluence(IReg,18)=CumulFluence(IReg,18)+USTEP; ] ELSEIF (PhotonEnergy .LT. 2.0)[ CumulFluence(IReg,19)=CumulFluence(IReg,19)+USTEP; ] ELSEIF (PhotonEnergy .LT. 3.0)[ CumulFluence(IReg,20)=CumulFluence(IReg,20)+USTEP; ] ELSEIF (PhotonEnergy .LT. 4.0)[ CumulFluence(IReg,21)=CumulFluence(IReg,21)+USTEP; ] ELSEIF (PhotonEnergy .LT. 5.0)[ CumulFluence(IReg,22)=CumulFluence(IReg,22)+USTEP; ] ELSEIF (PhotonEnergy .LT. 6.0)[ CumulFluence(IReg,23)=CumulFluence(IReg,23)+USTEP; ]

PAGE 294

277 ELSEIF (PhotonEnergy .LT. 8.0)[ CumulFluence(IReg,24)=CumulFluence(IReg,24)+USTEP; ] ELSEIF (PhotonEnergy .LT. 10.0)[ CumulFluence(IReg,25)=CumulFluence(IReg,25)+USTEP; ] ] "------------------------------------------------" " 7) To calculate the region beyond the boundary " "------------------------------------------------" " a) to calculate the new position " XNew = X0 + USTEP*Up; YNew = Y0 + USTEP*Vp; ZNew = Z0 + USTEP*Wp; " b) to calculate the new region " IF (InsidePhantom(XNew, YNew, ZNew)) [ " to calculate the voxel number in the CT image " "--------------------------------------------------" I = (XNew / $CT_VOXEL_SIZE_X); J = (YNew / $CT_VOXEL_SIZE_Y); K = (ZNew / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; VoxelCTnumber = PhantomData(VoxelNo); IF (VoxelCTnumber < 0) [ VoxelCTnumber = 256 + VoxelCTnumber; ] IRNEW = VoxelCTnumber; ] ELSE [ IRNEW = $REG_OUTSIDE; ] ] END; " End of subroutine HOWFAR " "******************************************************************************" " HOWNEAR " "******************************************************************************" " " " The HOWNEAR subroutine measures the shortest distance between the location " " of the particle (X0, Y0, Z0) and the boundary of the actual region IReg. " " The returned values are: " " TPerp is the shortest distance from the particle location to " " the boundary of the region IReg " " " "******************************************************************************" SUBROUTINE HOWNEAR(TPerp, X0, Y0, Z0, IReg); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL TPerp; " the shortest distance to return " $REAL X0, Y0, Z0; " the current location of the particle " $INTEGER IReg; " the current region of the particle " " user functions invoked in the subroutine " $REAL ClosestBoundary; "-----------------------------------------------------" " 1) To check if the particle has become out of study " "-----------------------------------------------------" IF (IReg = $REG_OUTSIDE) [ TPerp = 0.0; " so that HOWFAR is called and discard the particle " ] ELSE [

PAGE 295

278 "---------------------------------------" " 2) To calculate the shortest distance " "---------------------------------------" TPerp = ClosestBoundary(X0, Y0, Z0); "--------------------------------------------------------------------" " 3) To make sure the particle will not be too close to the boundary " "--------------------------------------------------------------------" TPerp = TPerp $BOUNDARY_THICKNESS; IF (TPerp < 0.0) [ TPerp = 0.0; ] ] END; " End of subroutine HOWNEAR " "******************************************************************************" " AUSGAB " "******************************************************************************" " " " The AUSGAB subroutine cumulates the energy deposited within the regions. " " The energy is stored in the 'CumulEnergy' variables. " " " " Input: " " . IARG : A flag (see EGSnrc documentation) which is set to 3 if the " " particle is discarded by the HOWFAR subroutine, in our " " situation, that means that the particle is going outside " " the study region or that it has been lost. " " " "******************************************************************************" SUBROUTINE AUSGAB(IARG); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $INTEGER IARG; $REAL X0, Y0, Z0; " COMMON variables " COMIN/BOUNDS,STACK,EPCONT,SCOR,GEOM/; " The above expands into COMMON statements " " BOUNDS contains ECUT, PCUT" " STACK contains IR(NP) " " EPCONT contains EDEP: the energy deposited now " " SCOR contains the variables to cumulate the energy deposited " " local variables " $INTEGER IReg; " to store the region number" LOGICAL InsideBoneEndosteum; " local variables " $INTEGER I, J, K; " to store the position of the voxel " $INTEGER VoxelNo; " the voxel number within the image " $INTEGER VoxelValue; " the voxel itself " " system functions invoked in the main program " $INTEGER MOD; INTRINSIC MOD; IF((EDEP.GT.0.).AND.(IARG.LE.4))[ "--------------------------------" " 1) To get the data from EGSnrc " "--------------------------------" IReg = IR(NP); X0 = X(NP); Y0 = Y(NP); Z0 = Z(NP); "---------------------------------------------------------" " 2) To test if the particle has been discarded by HOWFAR " "---------------------------------------------------------" IF (IARG = 3) [ " test why it has been discarded " IF (IReg = $REG_OUTSIDE) [ CumulOutsideAE = CumulOutsideAE + EDEP; ] ELSEIF (IReg = $REG_LOST) [

PAGE 296

279 CumulLostAE = CumulLostAE + EDEP; ] ELSE [ PRINT *, 'Error in AUSGAB: wrong region number after discard.'; RETURN; ] ] "Start of BIG ELSE" ELSE [ "-----------------------------------------------" " 3) To cumulate the energy in the right region " "-----------------------------------------------" IF (IReg.GE.1 .and. IReg.LE. $MXORGAN) [ "--------------------------------------------------" " to calculate the voxel number in the CT image " "--------------------------------------------------" I = (X0 / $CT_VOXEL_SIZE_X); J = (Y0 / $CT_VOXEL_SIZE_Y); K = (Z0 / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; VoxelValue = PhantomData(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] CumulOrgan_AE(VoxelValue)=CumulOrgan_AE(VoxelValue) + EDEP; ] ]" END BIG ELSE" ] "END of EDEP" END; "End of subroutine AUSGAB" "******************************************************************************" " Function InsidePhantom " "******************************************************************************" " " " Test if a given position (X, Y, Z) is inside the limits of the CT image " " The outer limit of the CT image is 512 x 512 " " Also, test if the given position is in the ROI within the CT image " " ROI defined by everything within outside edge of CorticalBone (not tissue) " " " " Input: " " . X, Y, Z: the position to be tested. " " " " Return: " " .TRUE. if the position is inside the CT image. " " .FALSE. if the position is not inside the CT image. " " " "******************************************************************************" LOGICAL FUNCTION InsidePhantom(X, Y, Z); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL X, Y, Z; " COMMON variables " COMIN/GEOM/; " The above expands into COMMON statements " " GEOM contains the image " " local variables " $INTEGER I, J, K; " to store the position of the voxel " $INTEGER VoxelNo; " the voxel number within the image " $INTEGER VoxelValue; " the voxel itself " "-------------------------------------"

PAGE 297

280 " 1) to check if outside the CT image " "-------------------------------------" IF ( (X < 0.0) | (X >= $CT_IMAGE_NX * $CT_VOXEL_SIZE_X) | (Y < 0.0) | (Y >= $CT_IMAGE_NY * $CT_VOXEL_SIZE_Y) | (Z < 0.0) | (Z >= $CT_IMAGE_NZ * $CT_VOXEL_SIZE_Z) ) [ InsidePhantom = .FALSE.; ] ELSE [ InsidePhantom = .TRUE.; ] END; " End of function InsidePhantom" "******************************************************************************" " Function BoundaryDistance " "******************************************************************************" " " " Returns the distance from the position (X, Y, Z) to the nearest boundary " " of the voxel when following the direction (U, V, W) " " The two images are tested and the closest voxel limit is returned. " " " " Input: " " . X, Y, Z: the position to be tested. " " . U, V, W: the direction to follow. " " " " Return: " " . the distance to the boundary. " " " "******************************************************************************" $REAL FUNCTION BoundaryDistance(X, Y, Z, U, V, W, IReg); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL X, Y, Z; $REAL U, V, W; " local variables " $REAL Distance; $REAL ShortestDistance; $INTEGER IReg; "Current Region Number" $INTEGER I, J, K; " to store the position of the voxel " $REAL XMin, YMin, ZMin; " for the boundary of the voxel " $REAL XMax, YMax, ZMax; " for the boundary of the voxel " "-------------------------------------------------------------------" " 1) to calculate the boundary of the current voxel in the CT image " "-------------------------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); XMin = I * $CT_VOXEL_SIZE_X; XMax = XMin + $CT_VOXEL_SIZE_X; YMin = J * $CT_VOXEL_SIZE_Y; YMax = YMin + $CT_VOXEL_SIZE_Y; ZMin = K * $CT_VOXEL_SIZE_Z; ZMax = ZMin + $CT_VOXEL_SIZE_Z; "---------------------------------------------------------" " 2) to measure the distance to the boundary of the voxel " "---------------------------------------------------------" ShortestDistance = $INFINITY; " a) along the X axis " IF ( U > 0.0 ) [ Distance = (XMax X) / U; ] ELSEIF ( U < 0.0 ) [ Distance = (XMin X) / U; ] ELSE [ Distance = $INFINITY; ]

PAGE 298

281 IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] " b) along the Y axis " IF ( V > 0.0 ) [ Distance = (YMax Y) / V; ] ELSEIF ( V < 0.0 ) [ Distance = (YMin Y) / V; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] " c) along the Z axis " IF ( W > 0.0 ) [ Distance = (ZMax Z) / W; ] ELSEIF ( W < 0.0 ) [ Distance = (ZMin Z) / W; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] BoundaryDistance = ShortestDistance; END; " End of function BoundaryDistance " "******************************************************************************" " Function ClosestBoundary " "******************************************************************************" " " " Returns the shortest distance from the position (X, Y, Z) to the nearest " " boundary of the voxel. " " The two images are tested and the closest voxel limit is returned. " " " " Input: " " . X, Y, Z: the position to be tested. " " " " Return: " " . the shortest distance to the boundary. " " " "******************************************************************************" $REAL FUNCTION ClosestBoundary(X, Y, Z); $IMPLICIT-NONE; " to make sure that all variables are declared " " parameters of the routine " $REAL X, Y, Z; " COMMON variables " " local variables " $REAL Distance; $REAL ShortestDistance; $INTEGER I, J, K; " to store the position of the voxel " $REAL XMin, YMin, ZMin; " for the boundary of the voxel " $REAL XMax, YMax, ZMax; " for the boundary of the voxel " "-------------------------------------------------------------------" " 1) to calculate the boundary of the current voxel in the CT image " "-------------------------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y);

PAGE 299

282 K = (Z / $CT_VOXEL_SIZE_Z); XMin = I * $CT_VOXEL_SIZE_X; XMax = XMin + $CT_VOXEL_SIZE_X; YMin = J * $CT_VOXEL_SIZE_Y; YMax = YMin + $CT_VOXEL_SIZE_Y; ZMin = K * $CT_VOXEL_SIZE_Z; ZMax = ZMin + $CT_VOXEL_SIZE_Z; "---------------------------------------------------------" " 2) to measure the distance to the boundary of the voxel " "---------------------------------------------------------" ShortestDistance = $INFINITY; Distance = X XMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = XMax X; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = Y YMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = YMax Y; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = Z ZMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = ZMax Z; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] "---------------------------" " 5) to return the distance " "---------------------------" ClosestBoundary = ShortestDistance; END; " End of function ClosestBoundary "

PAGE 300

283 LIST OF REFERENCES Axelsson B, Persliden J, and Schuwert P 1996 Dosimetry for computed tomography examination of children. Radiation Protection Dosimetry 64(3) 221-226 Beddoe AH 1976 A quantitative study of th e structure of mammalian bone. J Anat 122 190 Biological Effects of Ionizing Radiation (BEI R) 1990 Health effects of exposure to low levels of ionizing radiation. Washington, DC: National Research Council. BEIR V. Biological Effects of Ionizing Radiation (BEI R) 2005 Health risks from exposure to low levels of ionizing radiat ion: BEIR VII Phase 2. Washington, DC: National Research Council. BEIR VII. Bolch W, Pomije B, Sessions J, Arreola M, and Williams J 2003 A video analysis technique for organ dose assessment in pe diatric fluoroscopy: applications to voiding cystourethrograms (VCUG). Med Phys 30(4) 667-680 Bolch WE, Patton PW, Rajon DA, Shah AP, Jokisch DW, and Inglis B 2002 Considerations of marrow cellularity in 3D dosimetric models of the trabecular skeleton. J Nucl Med 43(1) 97-108 Boone JM, Geraghty EM, Seibert JA, and W ootton-Gorges SL 2003 Dose reduction in pediatric CT: A rational approach. Radiology 228(2) 352-360 Bouchet L, Bolch W, Blanco P, Wessels B, Si egel J, Rajon D, Clai rand I, and Sgouros G 2003 MIRD Pamphlet No. 19: Absorbed fractions and radionuclide S values for six age-dependent multi-region models of the kidney. J Nucl Med 44(7) 11131147 Brenner D, Elliston C, Hall E, and Berdon W 2001 Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176(2) 289-296 Caon M, Bibbo G, and Pattison J 1999 An EG S4-ready tomographic computational model of a 14-year-old female torso for calculating organ doses from CT examinations. Physics in Medicine and Biology 44(9) 2213-2225 Caon M, Bibbo G, and Pattison J 2000 Monte Ca rlo calculated effective dose to teenage girls from computed tomography examin ations. Radiation Protection Dosimetry 90(4) 445-448

PAGE 301

284 Castellano IA, Dance DR, and Evans PM 2005 CT dosimetry: Getting the best from the adult cristy phantom. Radi ation Protection Dosimetry 114(1-3) 321-325 Chao TC, Bozkurt A, and Xu XG 2001a Conve rsion coefficients based on the VIP-MAN anatomical model and EGS4-VLSI code fo r external monoenergetic photons from 10 keV to 10 MeV. Health Physics 81(2) 163-183 Chao TC, Bozkurt A, and Xu XG 2001b Organ dose conversion coefficients for 0.1-10 MeV electrons calculated for the VIP-M AN tomographic model. Health Physics 81(2) 203-214 Chao TC, and Xu XG 2001 Specific absorbed fractions from the image-based VIP-Man body model and EGS4-VLSI Monte Carlo code: internal electron emitters. Physics in Medicine and Biology 46(4) 901-927 Chapple CL, Willis S, and Frame J 2002 Ef fective dose in paediatric computed tomography. Physics in Medicine and Biology 47(1) 107-115 Chou DP, Wang JN, Chen IA, and Chang BJ 2003 Age-dependent protection quantities for external neutron irradi ation. Radiat Prot Dosim 104(1) 5-16 Chou DP, Wang JN, and Chen IJ 2001 Age-dependent protection quantities for external photon irradiation. Radiat Prot Dosim 95(3) 215-223 Cristy M 1980 Mathematical phantoms represen ting children of various ages for use in estimates of internal dose. Oak Ridge , TN: Oak Ridge National Laboratory. ORNL/NUREG/TM-367. Cristy M, and Eckerman KF 1987 Specific abso rbed fractions of energy at various ages from internal photon sources. Oak Ridge , TN: Oak Ridge National Laboratory. ORNL/TM-8381 vol 1-7. Darley PJ 1972 An investigation of the stru cture of trabecular bone in relation to the radiation dosimetry of bone -seeking radionuclides. Leeds, UK: University of Leeds. 231 p Dimbylow PJ 1995 The development of real istic voxel phantoms for electromagnetic field dosimetry; Int. Workshop on Voxel Phantom Development, Chilton, UK. NRPB. Dimbylow PJ 1997 FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz. Physics in Medicine and Biology 42(3) 479-490 Dimbylow PJ 2005 Development of the female voxel phantom, NAOMI, and its application to calculations of induced cu rrent densities and electric fields from

PAGE 302

285 applied low frequency magnetic and electr ic fields. Physics in Medicine and Biology 50(6) 1047-1070 Drexler G 1968 Verlauf der Ionendosis an Grenzschichten, In Microdosimetry. EIR3747 d-f-e; Symp. Microdosimetry, Brussels. European Communities. Eckerman KF 1985 Aspects of the dosimetry of radionuclides within the skeleton with particular emphasis on the active marrow. In: Schlafke-Stelson AT, Watson EE, editors; Proceedings of the Fourth In ternational Radiopharmaceutical Dosimetry Symposium, Oak Ridge, Tennessee. Oa k Ridge Associated Universities. Fill UA, Zankl M, Petoussi-Henss N, Siebert M, and Regulla D 2004 Adult female voxel models of different stature and photon conversion coefficients for radiation protection. Health Physics 86(3) 253-272 Gibbs SJ, Pujol A, Chen TS, Malcolm AW , and James AE 1984 Patient Risk from Interproximal Radiography. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics 58(3) 347-354 Gibbs SJ, Pujol A, Chen TS, Malcolm AW, and James AE 1985 Monte-Carlo Computation of Patient Risk from Dent al Radiography. Investigative Radiology 20(6) S23-S23 Han E 2003 Revisions to the ORNL series of st ylized mathematical models of the human body [Abstract]. Health Phys 84(6) S198 Han E, Bolch W, and Eckerman K 2006 Revisions to the ORNL series of adult and pediatric computational pha ntoms for use with the MI RD schema. Health Phys 90(4) 337-356 Han E, Bolch W, and Eckerman K in press Re visions to the ORNL series of adult and pediatric computational phant oms for use with the MIRD schema. Health Phys Hubbell JH, and Seltzer SM 2004 Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (v ersion 1.4). Gaithersburg, MD: National Institute of Standards and Technology. Huh C, Han E, Farfan E, and Bolch W submitted An individual-specific stochastic model for determining radionuclide decays in organs of the human alimentary tract. Health Phys International Commission on Radiological Protection (ICRP) 1975 Reference man: anatomical, physiological and metabolic characteristics. Pergamon, Oxford: International Commission on Radiologi cal Protection. Publication 23.

PAGE 303

286 International Commission on Radi ological Protection (ICRP) 1991 1990 Recommendations of the International Commission on Radiological Protection. Pergamon, Oxford: International Co mmission on Radiological Protection. Publication 60. International Commission on Radiological Protection (I CRP) 1994 Human respiratory tract model for radiological protection : a report of a Task Group of the International Commission on Radiologi cal Protection. Pergamon, Oxford: International Commission on Radiologi cal Protection. Publication 66. International Commission on Radiological Protection (ICRP ) 1995 Basic anatomical and physiological data for use in radiologi cal protection: the skeleton. Pergamon, Oxford: International Commission on Radi ological Protection. Publication 70. International Commission on Radiologi cal Protection (ICRP) 1996 Conversion coefficients for use in radiological prot ection. Pergamon, Ox ford: International Commission on Radiological Pr otection. Publication 74. International Commission on Radiological Protection (ICRP ) 2002 Basic anatomical and physiological data for use in radiological protection: reference values. New York, New York: International Commission on Radi ological Protection. Publication 89. International Commission on Radiological Protection (ICRP ) 2003 Basic anatomical and physiological data for use in radiological protection: reference values. Pergamon, Oxford: International Commission on Radi ological Protection. Publication 89. International Commission on Ra diological Protection (ICRP) in press Human alimentary tract model for radiological protection. Oxford; Pergamon Press: International Commission on Radiological Prot ection. ICRP Publication 99. International Commission on Radiation Units and Measurements (ICRU) 1989 Tissue substitutes in radiation dosimetry and measurement. Bethesda, MD: International Commission on Radiation Units and Measurements. Report 44. International Commission on Radiation Units and Measurements (ICRU) 1992 Photon, electron, proton and neutron interacti on data for body tissue. Bethesda, MD: International Commission on Radiation Units and Measurements. Report 46. Jarry G, DeMarco JJ, Beifuss U, Cagnon CH, and McNitt-Gray MF 2003 A Monte Carlobased method to estimate radiation dose fr om spiral CT: from phantom testing to patient-specific models. Phys ics in Medicine and Biology 48(16) 2645-2663 Jones AK, Hintenlang DE, and Bolch WE 2003 Tissue-equivalent materials for construction of tomographic dosimetry pha ntoms in pediatric radiology. Medical Physics 30(8) 2072-2081

PAGE 304

287 Jones DG 1997 A realistic anthropomorphic pha ntom for calculating organ doses arising from external photon irradiation. Radiation Protection Dosimetry 72(1) 21-29 Jones DG 1998 A realistic anthropomorphic pha ntom for calculating specific absorbed fractions of energy deposited from internal gamma emitters. Radiation Protection Dosimetry 79(1-4) 411-414 Jones DG, and Shrimpton PC 1993 Normali zed organ doses for X-ray computed tomography using Monte Carlo techniques. Chilton, UK: National Radiological Protection Board. NRPB-SR250. Kawrakow I 2000 Accurate condensed hist ory Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Medical Physics 27(3) 485-498 Khursheed A, Hillier MC, Shrimpton PC, and Wall BF 2002 Influence of patient age on normalized effective doses calculated for CT examinations. British Journal of Radiology 75(898) 819-830 King SD, and Spiers FW 1985 Photoelectron Enhancement of the Absorbed Dose from X-Rays to Human-Bone Marrow Experi mental and Theoretical-Studies. British Journal of Radiology 58(688) 345-356 Kramer R, and Drexler G 1982 On the calculati on of effective dose equivalent. Radiation Protection Dosimetry 3(1-2) 13-24 Kramer R, Khoury HJ, and Vieira JW 2005 Comparison between effective doses for voxel-based and stylized exposure models from photon and electron irradiation. Physics in Medicine and Biology 50(21) 5105-5126 Kramer R, Khoury HJ, Vieira JW, Loureiro ECM, Lima VJM, Lima FRA, and Hoff G 2004 All about FAX: a female adult voxel pha ntom for Monte Carlo calculation in radiation protection dosimetry. P hysics in Medicine and Biology 49(23) 52035216 Kramer R, Vieira JW, Khoury HJ, Lima FRA, and Fuelle D 2003 All about MAX: a male adult voxel phantom for Monte Carlo cal culations in radiation protection dosimetry. Physics in Medicine and Biology 48(10) 1239-1262 Kramer R, Zankl M, Williams G, and Drexler G 1982 The calculation of dose from external photon exposures using refe rence human phantoms and Monte Carlo methods. Part I: The male (ADAM) and female (EVA) adult mathematical phantoms. Munich: Gesellschaft fr St rahlenund Umweltfor schung. GSF-BerichtS-885.

PAGE 305

288 Lee C, Lee C, Park SH, and Lee J 2006 Development of the two Korean adult tomographic computational phantoms for organ dosimetry. Medical Physics 32(2) 380-390 Lee C, Lee J, and Lee C 2004a The effect of unrealistic thyroid vertical position on thyroid dose in the MIRD phantom. Medical Physics 31(7) 2038-2041 Lee C, Lee J, and Lee C 2004b Korean adult male voxel model KORMAN segmented from magnetic resonance images. Medical Physics 31(5) 1017-1022 Lee C, Williams JL, Lee C, and Bolch WE 2005 The UF series of tomographic computational phantoms of pediat ric patients. Medical Physics 32(12) 3537-3548 Loevinger R, and Berman S 1976 A revised schema for calculating the absorbed dose from biologically distributted radionuclid es (MIRD Pamphlet No. 1, revised). New York: The Society of Nuclear Medicine. Mettler FA, Briggs JE, Carchman R, Altobe lli KK, Hart BL, and Kelsey CA 1993 Use of radiology in United States general shor t-term hospitals 1980-1990. Radiology 189(2) 377-380 Mettler FA, Wiest PW, Locken JA, and Kelsey CA 2000 CT scanning: patterns of use and dose. Journal of Radiological Protection 20(4) 353-359 Nagaoka T, Watanabe S, Sakurai K, Kunieda E, Watanabe S, Taki M, and Yamanaka Y 2004 Development of realistic high-re solution whole-body voxel models of Japanese adult males and females of aver age height and weight, and application of models to radio-frequency electr omagnetic-field dosimetry. Physics in Medicine and Biology 49(1) 1-15 Nickoloff EL, and Alderson PO 2001 Radiation exposures to patients from CT: Reality, public perception, and policy. American Journal of Roentgenology 177(2) 285287 Nickoloff EL, Dutta AK, and Lu ZF 2003 Influence of phantom diameter, kVp and scan mode upon computed tomography dose index. Medical Physics 30(3) 395-402 Nipper JC, Williams JL, and Bolch WE 2002 Creation of two tomographic voxel models of paediatric patients in the first year of life. Physics in Medicine and Biology 47(17) 3143-3164 Pelowitz DB 2005 MCNPX user's manual Version 2.5.0. Los Alamos National Laboratory. LA-CP-05-0369. Petoussi-Henss N, and Zankl M 1998 Voxel anthropomorphic models as a tool for internal dosimetry. Radiation Protection Dosimetry 79(1-4) 415-418

PAGE 306

289 Petoussi-Henss N, Zankl M, Fill U, a nd Regulla D 2002 The GSF family of voxel phantoms. Physics in Medicine and Biology 47(1) 89-106 Poznanski AK 1999 Radiation protection issues in imaging infants and children. In: Henry Royal PC, editor. Proceedings of the Thirty-Fifth A nnual Meeting of the NCRP; Radiation Protection in Medicine : Contemporary Issues, Arlington, VA. National Council on Radiation Pr otection and Measurements. Rajon DA, Patton PW, Shah AP, Watchm an CJ, and Bolch WE 2002 Surface area overestimation within three-dimensional digital images and its consequence for skeletal dosimetry. Med Phys 29(5) 682-693 Rosenstein M 1976 Organ Doses in Dia gnostic Radiology. Rockville, MD: U.S. Department of Health, Education and Welf are, Public Health Service, Food and Drug Administration, Bureau of Radiological Health. FDA 76-8030. Saito K, Wittmann A, Koga S, Ida Y, Kamei T, Funabiki J, and Zankl M 2001 Construction of a computed tomographic phantom for a Japanese male adult and dose calculation system. Radiati on and Environmental Biophysics 40(1) 69-75 Shah AP, Bolch WE, Rajon DA, Patton PW, and Jokisch DW 2005 A paired-image radiation transport model for skeletal dosimetry. Journal of Nuclear Medicine 46(2) 344-353 Shrimpton PC, and Wall BF 2000 Reference doses for paediatric computed tomography. Radiation Protection Dosimetry 90(1-2) 249-252 Siegel MJ, Schmidt B, Bradley D, Suess C, and Hildebolt C 2004 Radiation dose and image quality in pediatric CT: Effect of technical factors and phantom size and shape. Radiology 233(2) 515-522 Snyder WS, Fisher HL, Ford MR, and Warner GG 1969 Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniforml y Distributed in Various Organs of a Heterogeneous Phantom (MIRD Pamphlet No 5, Supplement No 3). Journal of Nuclear Medicine 10(3S) Snyder WS, Fisher HL, Ford MR, and Warner GG 1978 Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniforml y Distributed in Various Organs of a Heterogeneous Phantom (MIRD Pamphlet no 5, revised). New York: The Society of Nuclear Medicine. Spitzer VM, and Whitlock DG 1998 The visible human dataset: The anatomical platform for human simulation. Anatomical Record 253(2) 49-57

PAGE 307

290 Stabin M, Watson E, Cristy M, Ryman J, Ecke rman K, Davis J, Marshall D, and Gehlen M 1995 Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the e nd of each trimester of pregnancy. Oak Ridge, TN: Oak Ridge National Laboratory. ORNL/TM-12907. Stabin MG 1996 MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 37 538-546 Stabin MG, Eckerman KF, Ryman JC, and Williams LE 1994 Bremsstrahlung RadiationDose in Y-90 Therapy Applicati ons. Journal of Nuclear Medicine 35(8) 13771380 Stabin MG, Sparks RB, and Crowe E 2005 OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46(6) 1023-7 Staton RJ 2005 Organ dose assessment in pediatric fluoroscopy and CT via a tomographic computational phantoms of the newborn patient. Gainesville, FL: University of Florida Staton RJ, Pazik FD, Nipper JC, Williams JL, and Bolch WE 2003 A comparison of newborn stylized and tom ographic models for dose assessment in paediatric radiology. Physics in Medicine and Biology 48(7) 805-820 Tanaka G, Nakahara Y, and Nakazima Y 1989 Japanese reference man 1988-IV. Studies on the weight and size of internal or gans of Normal Japanese. Nippon Igaku Hoshasen Gakkai Zasshi 49(3) 344-64 Varchenya V, Gubatova D, Sidorin V, a nd Kalnitsky S 1993 Childrens Heterogeneous Phantoms and Their Application in Roentgenology. Radiation Protection Dosimetry 49(1-3) 77-78 Veit R, Panzer W, Zankl M, and Scheurer C 1992 Vergleich berechneter und gemessener Dosen an einem anthropomorphen Phantom. Z. Med. Phys. 2 123-126 Veit R, Zankl M, Petoussi N, Mannweile r E, Williams G, and Drexler G 1989 Tomographic anthropomorphic models, Pa rt I: Construction technique and description of models of an 8-week-old baby and a 7-year-old child. Neuherberg, Germany: GSF-National Research Ce nter for Environment and Health. Watchman CJ 2005 Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy. Gainesville, FL: University of Florida Waters LS 2002 MCNPX user's manual, vers ion 2.4.0. Los Alamos, NM: Los Alamos National Laboratory.

PAGE 308

291 Whitwell JR 1973 Theoretical investigations of energy loss by ionizing particles in bone. Leeds, UK: University of Leeds Williams G, Zankl M, Abmayr W, Veit R, and Drexler G 1986 The calculation of dose from external photon exposur es using reference and re alistic human phantoms and Monte-Carlo methods. Physic s in Medicine and Biology 31(4) 449-452 Xu XG, Chao TC, and Bozkurt A 2000 VIP-ma n: An image-based whole-body adult male model constructed from color photographs of the visible human project for multiparticle Monte Carlo calcu lations. Health Physics 78(5) 476-486 Yamaguchi Y 1993 Effective dose for exte rnal neutron exposure. Radioisotopes 42 35-36 Yamaguchi Y 1994 Age-dependent effective dos es for external photons. Radiat Prot Dosim 55(2) 123-129 Yoriyaz H, dos Santos A, Stabin MG, and Cabezas R 2000 Absorbed fractions in a voxelbased phantom calculated with th e MCNP-4B code. Medical Physics 27(7) 15551562 Zankl M 1993 Computational Models Empl oyed for Dose Assessment in DiagnosticRadiology. Radiation Protection Dosimetry 49(1-3) 339-344 Zankl M, Fill U, Petoussi-Henss N, and Regulla D 2002 Organ dose conversion coefficients for external photon irradiat ion of male and female voxel models. Physics in Medicine and Biology 47(14) 2367-2385 Zankl M, Panzer W, Petoussihenss N, and Drexler G 1995 Organ Doses for Children from Computed Tomographic Examina tions. Radiation Protection Dosimetry 57(1-4) 393-396 Zankl M, and Petoussi-Henss N 2002 Conversi on coefficients based on the VIP-MAN anatomical model for photons. Health Physics 82(2) 254-255 Zankl M, Veit R, Williams G, Schneider K, Fendel H, Petoussi N, and Drexler G 1988 The Construction of Computer Tomographi c Phantoms and Their Application in Radiology and Radiation Protection. Ra diation and Environmental Biophysics 27(2) 153-164 Zankl M, and Wittmann A 2001 The adult male voxel model "Golem" segmented from whole-body CT patient data. Radia tion and Environmental Biophysics 40(2) 153162 Zubal IG, Harrell CR, Smith EO, Rattner Z, Gi ndi G, and Hoffer PB 1994 Computerized 3-Dimensional Segmented Human Anatomy. Medical Physics 21(2) 299-302

PAGE 309

292 BIOGRAPHICAL SKETCH Choonik Lee was born in Busan, Korea, in 1973. He moved to Seoul, Korea, for his college education and earned his BS degree in nuclear engineering at Hanyang Univeristy in 1999 with the highest GPA in th e department. After getting his MS degree in health physics at the same institution, he came to Gainesville, FL, to pursue a doctoral degree at the University of Florida. He married a pianist, Shinok Lee, in May 2003 and has one daughter, Sarah G. Lee. This disserta tion is part of the requirement for his PhD degree in medical physics. Upon completion of his studies he will be joining the MD Anderson Cancer Center in Orlando, FL, as a medical physicist fellow.