PAGE 4
Mymostprofoundthanksgotomyparents,NadezhdaandVladimir,fortheirloveandendlesssupport.Iwishtoexpressmysincereappreciationtomyadvisorandsupervisorycommitteechairman,Dr.Y.PeterSheng.Iwouldalsoliketothankthemembersofmysupervisorycommittee,Dr.RobertG.Dean,Dr.UlrichH.Kurzweg,Dr.RobertJ.Thieke,andDr.AndrewB.Kennedy.IwouldalsoliketothankYanfengZhang,VladimirParamygin,JeKing,KijinPark,TaeyunKim,JunLee,JustinDavis,DetongSun,DaveChristian,EnriqueGutierrez,andTatianaLomasko. iv
PAGE 5
page ACKNOWLEDGMENTS ............................. iv LISTOFTABLES ................................. ix LISTOFFIGURES ................................ xii ABSTRACT .................................... xxii CHAPTER 1INTRODUCTION .............................. 1 1.1LiteratureReview ............................ 2 1.1.1WaveEectonSurfaceStress ................. 3 1.1.2WaveEectinWave-CurrentInteractionattheBottom ... 5 1.1.3WaveEectthroughRadiationStress ............. 9 1.1.4Miscellaneous .......................... 12 1.2StormSurgeModelReview ...................... 12 1.2.1SLOSH .............................. 14 1.2.2TAOS .............................. 14 1.2.3SPH/WIFM ........................... 15 1.2.4HAZUS .............................. 15 1.2.5ADCIRC ............................. 16 1.2.6SURGE ............................. 17 1.2.7POMcoupledwithWAVEWATCH-IIwavemodel ...... 18 1.2.8CH3D .............................. 19 2THISSTUDY ................................. 20 2.1CH3D-SSMS:WhatMakesitaBetterModel? ............ 20 2.2GoalsandQuestionstobeAnswered ................. 21 2.3ComponentsofCH3D-SSMS ...................... 22 2.3.1Wind ............................... 22 2.3.2RegionalCirculationModel:ADCIRC ............. 29 2.3.3RegionalWaveModel:WAVEWATCH-III .......... 31 2.3.4LocalCirculationModel:CH3D ................ 32 2.3.4.1Governingequations ................. 33 2.3.4.2ImplementationofWetting-and-DryingAlgorithmintoCH3D ...................... 38 2.3.4.3SurfaceandBottomStresses ............. 44 v
PAGE 6
... 45 2.3.4.5RadiationStress ................... 51 2.3.5LocalWaveModel:SWAN ................... 53 3METHODOLOGY .............................. 58 3.1Introduction ............................... 58 3.2CouplingMechanism .......................... 58 4TESTSIMULATIONS ............................ 64 4.1ValidationofWetting-and-DryingSchemeImplementedinCH3D . 64 4.1.1Description ............................ 64 4.1.2Validation ............................ 65 4.1.2.1TestCase1:Wall ................... 65 4.1.2.2TestCase2:Wind .................. 67 4.1.2.3TestCase3:AnalyticalSolution .......... 68 4.2ValidationofAtmosphericPressureGradientTermsImplementedinCH3D ................................. 73 4.2.1Description ............................ 73 4.2.2Validation ............................ 74 4.3ValidationofNear-BottomWave-CurrentInteraction ........ 76 4.3.1Description ............................ 76 4.3.2Validation ............................ 76 4.3.2.1PureOscillatoryFlow ................ 77 4.3.2.2CurrentSuperimposedonanOscillatoryFlow ... 79 4.4ValidationofWaveSetupCalculatedbasedonSWAN-CH3Dcou-pling ................................... 81 4.4.1Description ............................ 81 4.4.2Validation ............................ 82 4.5ValidationofCrossandLongshoreCurrentsBasedonREF/DIF-CH3DCoupling ............................. 84 4.5.1DescriptionofCross-shoreandLongshoreCurrents ..... 84 4.5.2Validation ............................ 86 4.6ValidationofWaveHeightSimulatedbySWANUnderStormCon-ditions .................................. 91 5VALIDATIONOFTHESTORMSURGEMODELINGSYSTEM .... 94 5.1HurricaneIsabel(2003) ......................... 94 5.1.1DescriptionAccordingtoNHC ................. 94 5.1.2ComputationalDomain ..................... 96 5.1.3FieldData ............................ 97 5.1.4ForcingandBoundaryConditions ............... 100 5.1.5Results:SimulatedWave .................... 108 5.1.6Results:SimulatedWaterLevel ................ 114 5.1.7ErrorAnalysisofCalculatedWaterLevel ........... 122 vi
PAGE 7
................ 136 5.1.9Results:SimulatedCurrents .................. 146 5.2HurricaneCharley(2004) ........................ 150 5.2.1DescriptionAccordingtoNHC ................. 150 5.2.2ComputationalDomain ..................... 152 5.2.3Data ............................... 153 5.2.4Results:SimulatedWaterLevel ................ 156 5.2.5ErrorAnalysisofCalculatedWaterLevel ........... 167 5.2.6Results:SimulatedFloodLevel ................ 175 5.3HurricaneFrances(2004) ........................ 183 5.3.1DescriptionAccordingtoNHC ................. 183 5.3.2ComputationalDomain ..................... 185 5.3.3Data ............................... 186 5.3.4Results:SimulatedWaterLevel ................ 188 5.3.5ErrorAnalysisofCalculatedWaterLevel ........... 192 5.3.6Results:SimulatedFloodLevel ................ 199 6FUTUREENHANCEMENTSANDAPPLICATIONS .......... 201 6.1ModelingofMorphologicalImpactsofExtremeStorms ....... 201 6.2RipCurrentForecasting ........................ 201 7CONCLUSIONS ............................... 203 APPENDIX ASAFFIR-SIMPSONHURRICANESCALE ................. 208 BFORMULAETOCALCULATEERRORS ................. 210 CBESTTRACKSFORISABEL,CHARLEY,ANDFRANCES ...... 211 DWINDSPEEDANDDIRECTIONDURINGHURRICANEISABEL:WNAANDWINDGENVS.MEASURED ................. 216 EOUTERBANKS/CHESAPEAKEBAYCOMPUTATIONALGRIDEX-AMPLEPLOT ................................ 228 FHURRICANEISABEL:SIMULATEDRESULTSVS.MEASUREDDATA 230 F.1Simulatedvs.MeasuredWaterLevel ................. 230 F.2Simulatedvs.MeasuredSurge ..................... 238 GHURRICANECHARLEY:SIMULATEDVS.MEASUREDWATERLEVEL .................................... 242 HHURRICANEFRANCES:SIMULATEDRESULTSVS.MEASUREDDATA ..................................... 247 vii
PAGE 8
................. 247 H.2Simulatedvs.MeasuredSurge ..................... 250 ILOW-PASSFILTER ............................. 252 REFERENCES ................................... 254 BIOGRAPHICALSKETCH ............................ 261 viii
PAGE 9
Table page 1{1Asummaryofstormsurgemodels. ..................... 13 2{1Winddatasummary. ............................. 24 2{2Parametersusedtocreatethe\lookuptable". ............... 51 4{1WaveparametersusedtoimposeHurricaneFloyd(1999)boundarycon-ditions. .................................... 92 4{2ComparisonofcalculatedandmeasuredwaveheightduringHurricaneFloyd(1999). ................................. 92 4{3ComparisonofcalculatedandmeasuredwaveheightduringHurricaneFloyd(1999)withwavesetupbeingaccountedfor. ............ 93 4{4WaveparametersusedtoimposeHurricaneBonnie(1998)boundarycon-ditions. .................................... 93 4{5ComparisonofcalculatedandmeasuredwaveheightduringHurricaneBonnie(1998). ................................ 93 5{1MeasuredstormtidecrestsatseveralsitesinNorthCarolina,Virginia,andMaryland. ................................ 96 5{2Tide,windandwavestationsusedforvalidationofthemodelduringHurricaneIsabel. ............................... 99 5{3ADCIRCtidalconstituentsandtheirperiodsusedintheCH3DmodeltosimulateHurricaneIsabel. ......................... 101 5{4TidalconstituentparametersatDuckPier,NCcalculatedbasedonAD-CIRCtidalconstituentsandIOSprogram. ................. 102 5{5TidalconstituentparametersatBeaufort,NCcalculatedbasedonAD-CIRCtidalconstituentsandIOSprogram. ................. 103 5{6ErrorsofWNAandWINDGENwindspeedanddirectioncomparedwithmeasuredatwindstationsduringHurricaneIsabel. ............ 105 5{7Alistofsimulationswithvariouscombinationsofsixmodelfeatures(psymboldenotesthefeaturewasincludedduringthesimulation). ..... 122 ix
PAGE 10
......... 124 5{9MeasuredpeakwaterelevationsatsevenstationsduringHurricaneIs-abelusingWNAwindandvariouscombinationsofstormsurgemodelfeatures. .................................... 130 5{10Calculatedpeakstormsurge(withtidessubtracted)atsevenstationsduringHurricaneIsabelusingWNAwindandvariouscombinationsofstormsurgemodelfeatures. ......................... 131 5{11Alistofsimulationswithvariouscombinationsofsixmodelfeatures(psymboldenotesthefeaturewasincludedduringthesimulation). ..... 167 5{12ErrorsofwaterelevationattidestationsduringHurricaneCharley. ... 169 5{13MeasuredpeakwaterelevationsatfourstationsduringHurricaneCharleyusingWINDGENwindandvariouscombinationsofstormsurgemodelfeatures. .................................... 173 5{14Calculatedpeakstormsurge(withtidessubtracted)atfourstationsdur-ingHurricaneCharleyusingWINDGENwindandvariouscombinationsofstormsurgemodelfeatures. ........................ 173 5{15Comparisonbetweenreportedhighwatermarkvaluesandoodlevelscalculatedusingtwotechniques ....................... 181 5{16Alistofsimulationswithvariouscombinationsofsixmodelfeatures(psymboldenotesthefeaturewasincludedduringthesimulation). ..... 193 5{17ErrorsofwaterelevationattidestationsduringHurricaneFrances. ... 194 5{18MeasuredpeakwaterelevationsatthreestationsduringHurricaneFrancesusingWNAwindandvariouscombinationsofstormsurgemodelfeatures. 198 5{19Calculatedpeakstormsurge(withtidessubtracted)atthreestationsduringHurricaneFrancesusingWNAwindandvariouscombinationsofstormsurgemodelfeatures. ......................... 198 7{1Summaryofsimulatedhurricanes. ...................... 207 C{1BesttrackforHurricaneIsabel,6-19September2003. ........... 212 C{2BesttrackforHurricaneCharley,9-14August2004. ............ 214 C{3BesttrackforHurricaneFrances,31August-7September2004. ..... 215 F{1Alistofsimulationswithvariouscombinationsofsixmodelfeatures(psymboldenotesthefeaturewasincludedduringthesimulation). ..... 230 x
PAGE 11
..... 242 H{1Alistofsimulationswithvariouscombinationsofsixmodelfeatures(psymboldenotesthefeaturewasincludedduringthesimulation). ..... 247 xi
PAGE 12
Figure page 2{1TheADCIRCcomputationalgrid. ...................... 30 2{2TheWAVEWATCH-IIINorthAtlanticregionalcomputationalgrid. ... 32 3{1Adiagramofvariousphysicalprocesses.Thoseinredareaccountedforinthismethodology. ............................. 59 3{2Adiagramofthecouplingprocess. ..................... 63 4{1Thewalltestcase:computationallayout. .................. 66 4{2Thewalltestcase:calculatedwatersurfaceelevation. ........... 66 4{3Thewindtestcase:computationallayout. ................. 67 4{4Thewindtestcase:calculatedwatersurfaceelevation. .......... 68 4{5Tidalcase:comparisonwithanalyticsolutionatt=0. ........... 70 4{6Tidalcase:comparisonwithanalyticsolutionatt=/6. ......... 70 4{7Tidalcase:comparisonwithanalyticsolutionatt=/3. ......... 71 4{8Tidalcase:comparisonwithanalyticsolutionatt=/2. ......... 71 4{9Tidalcase:comparisonwithanalyticsolutionatt=2/3. ......... 72 4{10Tidalcase:comparisonwithanalyticsolutionatt=5/6. ......... 72 4{11Tidalcase:comparisonwithanalyticsolutionatt=. ........... 73 4{12Analyticalsolutionofwatersurfaceelevationduetoatmosphericpres-suregradientforasimpliedhurricane. ................... 75 4{13Dierenceinwaterelevationbetweentheanalyticalandnumericalsolu-tions. ...................................... 76 4{14Comparisonbetweenmeasured( JonssonandCarlsen , 1979 )[dashedlinewithsquares]andcalculated[solidline]velocityprolesforeightphaseangles. ..................................... 78 4{15Verticalproleofthecalculatedphaselagbetweenhorizontalvelocitiesandfreestreamvelocity. ........................... 78 xii
PAGE 13
JonssonandCarlsen ( 1979 )experiment[dashedlinewithsquares]. ............... 79 4{17Comparisonbetweenmeasured( BakkerandDorn , 1978 )[dashedlinewithsquares]andcalculated[solidline]velocityprolesforeightphaseangles. ..................................... 80 4{18Bottomstressduetowave-currentinteractioncalculatedusingthe1-DBBLmodelbasedonthenumericalsimulationofthe BakkerandDorn ( 1978 )laboratoryexperiment. ........................ 81 4{19LayoutofStiveandWindexperimentalsetup(from StiveandWind ( 1982 )). 82 4{20LayoutofMoryandHammexperimentalsetup(from MoryandHamm ( 1997 )). .................................... 84 4{21Comparisonbetweenmeasuredandcalculatedwavesetup( MoryandHamm ( 1997 )experiment). .......................... 85 4{22Calculatedfreesurfaceelevationandcurrentpatternalongwiththelo-cationswhereverticalvelocityprolesweremeasured(lettersAthroughN). ....................................... 87 4{23Simulated(reddashedline)vs.measured(greensolidline)longshoreve-locities:prolesA,B,C,andN. ....................... 88 4{24Simulated(reddashedline)vs.measured(greensolidline)cross-shorevelocities:prolesA,B,C,andN. ..................... 89 4{25Simulated(reddashedline)vs.measured(greensolidline)longshoreve-locities:prolesD,F,I,andH. ....................... 89 4{26Simulated(reddashedline)vs.measured(greensolidline)cross-shorevelocities:prolesD,F,I,andH. ...................... 90 4{27Simulated(reddashedline)vs.measured(greensolidline)longshoreve-locities:prolesEandG. .......................... 90 4{28Simulated(reddashedline)vs.measured(greensolidline)cross-shorevelocities:prolesEandG. ......................... 90 4{29TheFRFinstrumentsetupatDuck,NC .................. 91 5{1BesttrackofHurricaneIsabel(courtesyofNOAANHC). ......... 95 5{2TheOuterBanksandChesapeakeBaygriddomainforIsabelsimulation. 98 5{3LocationofthenineRiverInputMonitoringsites(courtesyofUSGS). . 100 xiii
PAGE 14
................................... 101 5{5WINDGENandWNAvs.measuredwindspeedanddirectionatCapeLookout,NCduringHurricaneIsabel. ................... 104 5{6WINDGENandWNAvs.measuredwindspeedanddirectionatDuckPier,NCduringHurricaneIsabel. ...................... 104 5{7SignicantwaveheightandpeakwaveperiodobtainedfromWAVEWATCH-IIIcomparedwithmeasuredwaveheightatNDBCstation41001. .... 107 5{8SignicantwaveheightandpeakwaveperiodobtainedfromWAVEWATCH-IIIcomparedwithmeasuredwaveheightatNDBCstation41002. .... 107 5{9LocationoftheVIMSinstrumentpackageatGloucesterPoint,VA. ... 108 5{10Simulatedsignicantwaveheightvs.measuredfromtheFRFWaveriderbuoyduringHurricaneIsabel. ........................ 109 5{11Simulatedpeakwaveperiodvs.measuredfromtheFRFWaveriderbuoyduringHurricaneIsabel. ........................... 110 5{12Simulatedwavedirectionvs.measuredfromtheFRFWaveriderbuoyduringHurricaneIsabel. ........................... 111 5{13Atestcase:wavesetupandcurrentsinducedbywavesapproachingtheshorefromsouth-westtonorth-east(toppanel),andfromnorth-westtosouth-east(bottompanel). .......................... 112 5{14Simulatedsignicantwaveheightandpeakwaveperiodvs.measuredfromtheFRFpierduringHurricaneIsabel. ................ 113 5{15Simulatedsignicantwaveheightandpeakwaveperiodvs.measuredatVIMSduringHurricaneIsabel. ....................... 114 5{16Comparisonofsimulatedvs.measuredwaterelevationatBeaufort,NC.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. ........................... 115 5{17Comparisonofsimulatedvs.measuredwaterelevationatDuck,NC.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. ............................... 115 5{18Comparisonofsimulatedvs.measuredwaterelevationatChesapeakeBayBridge,VA.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. ................... 116 xiv
PAGE 15
........................... 116 5{20Comparisonofsimulatedvs.measuredwaterelevationatMoneyPoint,VA.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. ........................... 117 5{21Comparisonofsimulatedvs.measuredwaterelevationatKiptopeke,VA.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. ........................... 117 5{22Comparisonofsimulatedvs.measuredwaterelevationatLewisetta,VA.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. ........................... 118 5{23MaximumwaterelevationrelativetoNAVD88(includestide,surgeandwavesetup)calculatedduringsimulationofHurricaneIsabelintheOuterBanks/ChesapeakeBayusingWNAwind. ................. 120 5{24MaximumwavesetupelevationrelativetoNAVD88calculatedduringsimulationofHurricaneIsabelinthesouthernpartofOuterBanksus-ingWNAwind. ................................ 121 5{25Simulatedstormsurge(waterlevelminustide)atthesevenstationsthrough-outtheOuterBanks/ChesapeakeBayusingWNAwind. ......... 121 5{26Separatelysimulatedtide,wavesetup,andsurge,andtheirlinearsuper-positionatDuck. ............................... 133 5{27Linearlycoupledwaterelevationvs.waterelevationcalculatedthroughdynamiccouplingatDuck,NC. ....................... 133 5{28Linearlycoupledwaterelevationvs.waterelevationcalculatedthroughdynamiccouplingatDuck,NC. ....................... 134 5{29Linearlycoupledwaterelevationvs.waterelevationcalculatedthroughdynamiccouplingneartheSouthRiver,NC.ThelocationisinitiallydryandgetsoodedduringIsabel.Afterthesurgerecedes,itbecomesdryagain. ..................................... 135 5{30Linearlycoupledwaterelevationvs.waterelevationcalculatedthroughdynamiccouplingononeoftheemergentislandsoftheOuterBanks,NC.ThelocationisinitiallydryandgetsoodedduringIsabel.Afterthesurgerecedes,itbecomesdryagain. .................. 135 5{31Linearlycoupledwaterelevationvs.waterelevationcalculatedthroughdynamiccouplingnearGloucester,VA.ThelocationisinitiallydryandgetsoodedduringIsabel.Afterthesurgerecedes,itbecomesdryagain. 136 xv
PAGE 16
........ 137 5{33MaximumsimulatedinundationintheeasternpartoftheOuterBanksduringHurricaneIsabelusingWNAwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaximumoodoccurred. ........ 138 5{34MaximumsimulatedinundationintheChesapeakeBayduringHurri-caneIsabelusingWNAwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaximumoodoccurred. .............. 139 5{35MaximumsimulatedinundationinthesouthernpartoftheOuterBanksduringHurricaneIsabelusingWINDGENwind(toppanel).Thebot-tompanelshowsthetimeduringwhichthemaximumoodoccurred. .. 140 5{36MaximumsimulatedinundationintheeasternpartoftheOuterBanksduringHurricaneIsabelusingWINDGENwind(toppanel).Thebot-tompanelshowsthetimeduringwhichthemaximumoodoccurred. .. 141 5{37MaximumsimulatedinundationintheChesapeakeBayduringHurri-caneIsabelusingWINDGENwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaximumoodoccurred. ........... 142 5{38Pre-storm(top)andpost-storm(middle)airphotostakeninthesouth-ernOuterBanks. ............................... 144 5{39Pre-storm(top)andpost-storm(middle)airphotostakenintheeasternOuterBanks. ................................. 145 5{40LocationofKittyHawk,NCwherecurrentsweremeasured. ....... 146 5{41LocationofGloucesterPoint,VAwherecurrentsweremeasured. ..... 147 5{42Measured(left)andsimulated(right)\SouthtoNorth"currentatKittyHawk,NCduringHurricaneIsabel. ..................... 148 5{43Measured(left)andsimulated(right)\WesttoEast"currentatKittyHawk,NCduringHurricaneIsabel. ..................... 148 5{44Measured(left)andsimulated(right)\SouthtoNorth"currentatGlouces-terPoint,VAduringHurricaneIsabel. ................... 149 5{45Measured(left)andsimulated(right)\WesttoEast"currentatGlouces-terPoint,VAduringHurricaneIsabel. ................... 149 5{46BesttrackofHurricaneCharley(courtesyofNOAANHC). ........ 150 5{47TheCharlotteHarborgriddomain. ..................... 153 xvi
PAGE 17
...................... 154 5{49Measuredwinddirectionvs.WINDGENandWNAwinddataatFtMy-ers,FLduringHurricaneCharley. ...................... 155 5{50Measuredwindspeedvs.WINDGENandWNAwinddataatNaples,FLduringHurricaneCharley. ........................ 155 5{51Measuredwinddirectionvs.WINDGENandWNAwinddataatNaples,FLduringHurricaneCharley. ........................ 156 5{52Comparisonofsimulatedvs.measuredwaterelevationatBigCarlosPass.Twosimulatedresultsareshown:oneusingWNAwindandanotherus-ingWINDGENwind. ............................. 157 5{53Comparisonofsimulatedvs.measuredwaterelevationatEsteroBay,lo-cation1.Twosimulatedresultsareshown:oneusingWNAwindandanotherusingWINDGENwind. ....................... 157 5{54Comparisonofsimulatedvs.measuredwaterelevationatEsteroBay,lo-cation2.Twosimulatedresultsareshown:oneusingWNAwindandanotherusingWINDGENwind. ....................... 158 5{55Comparisonofsimulatedvs.measuredwaterelevationatFtMyers.Twosimulatedresultsareshown:oneusingWNAwindandanotherusingWINDGENwind. ............................... 158 5{56Simulatedvs.measuredwaterelevationatEsteroBay,location1.Dashedlinesspecifythethreetimeinstantswhenwindsnapshotsweretaken. .. 159 5{57WNAwindeldsnapshot1(Aug-1320:55,JulianDay=226.872)alongwithtotaldepthcontoursintheEsteroBayarea. ............. 160 5{58WINDGENwindeldsnapshot1(Aug-1320:55,JulianDay=226.872)alongwithtotaldepthcontoursintheEsteroBayarea. .......... 160 5{59WNAwindeldsnapshot2(Aug-1320:55,JulianDay=226.872)alongwithtotaldepthcontoursintheEsteroBayarea. ............. 161 5{60WINDGENwindeldsnapshot2(Aug-1320:55,JulianDay=226.872)alongwithtotaldepthcontoursintheEsteroBayarea. .......... 161 5{61WNAwindeldsnapshot3(Aug-1401:20,JulianDay=227.055)alongwithtotaldepthcontoursintheEsteroBayarea. ............. 162 5{62WINDGENwindeldsnapshot3(Aug-1401:20,JulianDay=227.055)alongwithtotaldepthcontoursintheEsteroBayarea. .......... 162 xvii
PAGE 18
....... 163 5{64MaximumwaterelevationrelativetoNAVD88(includestide,surgeandwavesetup)calculatedduringsimulationofHurricaneCharleyinChar-lotteHarborusingWINDGENwind. .................... 165 5{65Simulatedstormsurge(waterlevelminustide)atthefourstationsusingWINDGENwind. ............................... 166 5{66MaximumsimulatedinundationinCharlotteHarborusingWINDGENwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaximumoodoccurred. .......................... 176 5{67MaximumsimulatedinundationinCharlotteHarborusingWNAwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaxi-mumoodoccurred. ............................. 177 5{68Pre-storm(top)andpost-storm(middle)airphotostakennearCaptivaIsland.Aclose-upofourcalculatedoodmap(bottom)veriesthepres-enceofwaterovertheland. ......................... 179 5{69Pre-storm(top)andpost-storm(middle)airphotostakennearSanibelIsland. ..................................... 180 5{70NauticalchartofcoastalareasintheCharlotteHarborareaimpactedbyHurricaneCharley. ............................ 181 5{71ManpointsatahighwatermarkleftbystormsurgecausedbyHurri-caneCharleyonNorthCaptivaIsland. ................... 182 5{72BesttrackofHurricaneFrances(courtesyofNOAANHC). ........ 183 5{73TheTampaBaygriddomain. ........................ 187 5{74Comparisonofsimulatedvs.measuredwaterelevationatClearwater,FL.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. ........................... 188 5{75Comparisonofsimulatedvs.measuredwaterelevationatStPete,FL.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. ........................... 189 5{76Comparisonofsimulatedvs.measuredwaterelevationatPortMana-tee,FL.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. ........................ 189 xviii
PAGE 19
............................ 191 5{78Simulatedstormsurge(waterlevelminustide)atthethreestationsus-ingWNAwind. ................................ 192 5{79MaximumsimulatedinundationinTampaBayusingWNAwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaximumoodoccurred. ................................ 200 D{1WINDGENandWNAvs.measuredwindspeedanddirectionatCapeLookout,NCduringHurricaneIsabel. ................... 217 D{2WINDGENandWNAvs.measuredwindspeedanddirectionatDuck,NCduringHurricaneIsabel. ......................... 218 D{3WINDGENandWNAvs.measuredwindspeedanddirectionatChesa-peakeLight,VAduringHurricaneIsabel. .................. 219 D{4WINDGENandWNAvs.measuredwindspeedanddirectionatChesa-peakeBayBridge,VAduringHurricaneIsabel. .............. 220 D{5WINDGENandWNAvs.measuredwindspeedanddirectionatKip-topeke,VAduringHurricaneIsabel. .................... 221 D{6WINDGENandWNAvs.measuredwindspeedanddirectionatMoneyPoint,VAduringHurricaneIsabel. ..................... 222 D{7WINDGENandWNAvs.measuredwindspeedanddirectionatGlouces-terPoint,VAduringHurricaneIsabel. ................... 223 D{8WINDGENandWNAvs.measuredwindspeedanddirectionatLe-wisetta,VAduringHurricaneIsabel. .................... 224 D{9WINDGENandWNAvs.measuredwindspeedanddirectionatHPLWS,VAduringHurricaneIsabel. ......................... 225 D{10WINDGENandWNAvs.measuredwindspeedanddirectionatChop-tankRiver,VAduringHurricaneIsabel. .................. 226 D{11WINDGENandWNAvs.measuredwindspeedanddirectionatNorthBay,VAduringHurricaneIsabel. ...................... 227 E{1ComputationalgridnearChesapeakeBaymouth. ............. 228 E{2ComputationalgridintheSouthOuterBanksarea. ............ 229 F{1Comparisonofsimulatedvs.measuredwaterelevationatBeaufort,NC. 231 xix
PAGE 20
.. 232 F{3Comparisonofsimulatedvs.measuredwaterelevationatChesapeakeBayBridge,VA. ............................... 233 F{4Comparisonofsimulatedvs.measuredwaterelevationatGloucesterPoint,VA. ...................................... 234 F{5Comparisonofsimulatedvs.measuredwaterelevationatMoneyPoint,VA. ...................................... 235 F{6Comparisonofsimulatedvs.measuredwaterelevationatKiptopeke,VA. 236 F{7Comparisonofsimulatedvs.measuredwaterelevationat,Lewisetta,VA. 237 F{8Comparisonofsimulatedvs.measuredstormsurgeelevationatBeau-fort,NC.CalculatedresultsarebasedonSimulation3usingWNAwind. 238 F{9Comparisonofsimulatedvs.measuredstormsurgeelevationatDuck,NC.CalculatedresultsarebasedonSimulation3usingWNAwind. ... 239 F{10Comparisonofsimulatedvs.measuredstormsurgeelevationatChesa-peakeBayBridge,VA.CalculatedresultsarebasedonSimulation3us-ingWNAwind. ................................ 239 F{11Comparisonofsimulatedvs.measuredstormsurgeelevationatGlouces-terPoint,VA.CalculatedresultsarebasedonSimulation3usingWNAwind. ...................................... 240 F{12Comparisonofsimulatedvs.measuredstormsurgeelevationatMoneyPoint,VA.CalculatedresultsarebasedonSimulation3usingWNAwind. 240 F{13Comparisonofsimulatedvs.measuredstormsurgeelevationatKiptopeke,VA.CalculatedresultsarebasedonSimulation3usingWNAwind. ... 241 F{14Comparisonofsimulatedvs.measuredstormsurgeelevationatLewisetta,VA.CalculatedresultsarebasedonSimulation3usingWNAwind. ... 241 G{1Comparisonofsimulatedvs.measuredwaterelevationatBigCarlosPass,FL. ....................................... 243 G{2Comparisonofsimulatedvs.measuredwaterelevationatEsteroBay#1,FL. .................................... 244 G{3Comparisonofsimulatedvs.measuredwaterelevationatEsteroBay#2,FL. .................................... 245 G{4Comparisonofsimulatedvs.measuredwaterelevationatFtMyers,FL. 246 xx
PAGE 21
. 248 H{2Comparisonofsimulated(usingWNAwind)vs.measuredwatereleva-tionatStPete,FL.Calculatedresultsarebasedonvesimulations. .. 249 H{3Comparisonofsimulated(usingWNAwind)vs.measuredwatereleva-tionatPortManatee,FL.Calculatedresultsarebasedonvesimulations. 249 H{4Comparisonofsimulatedvs.measuredstormsurgeelevationatClear-water,FL.CalculatedresultsarebasedonSimulation3usingWNAwind. 250 H{5Comparisonofsimulatedvs.measuredstormsurgeelevationatStPete,FL.CalculatedresultsarebasedonSimulation3usingWNAwind. ... 251 H{6Comparisonofsimulatedvs.measuredstormsurgeelevationatPortMan-atee,FL.CalculatedresultsarebasedonSimulation3usingWNAwind. 251 xxi
PAGE 22
Astormsurgemodelingsystem,CH3D-SSMS,thatcouplesregionalandlocalscalecirculationandwavemodelswasdeveloped.ThemodelcalculatesstormsurgeelevationduringhurricaneeventsusingeithersimpleanalyticwindeldorwindeldsproducedbysophisticatedwindmodelssuchasNCEPWNAandWINDGEN.TheCH3Dmodelisdynamicallycoupledwithawavemodel,SWAN,accountingforwavesetup,waveenhancedsurfacestress,andwaveenhancedbottomfriction.Themodelalsofeaturesarobustoodinganddryingschemethatallowssimulatingofstorminducedinundation.TheCH3Dmodelisalsocoupledwitharegionalscalecirculationmodel,ADCIRC,thatprovidesstormsurgeelevationconditionsalongopenboundaries.ThemodelwasvalidatedbysimulatingHurricanesIsabel,Charley,andFrances. Theeectsofvariousinteractionsamongstormsurge,tide,windandwaveonsurgewereinvestigated.ForIsabelandFrances,WNAwindwasmoreaccuratethanWINDGENwindandproducedmoreaccuratestormsurge.ForCharley,WINDGENwasmoreaccuratethanWNAandproducedmoreaccuratesurge.WhenIsabel,Charley,andFrancesweresimulatedusingtideandwindonly,the xxii
PAGE 23
Thedynamicallycoupledwaterelevationwascomparedwithlinearlysuperim-posedresultsofindependentlysimulatedtide,wavesetup,andsurge.Theeectistwofold:overopenwater,dynamiccouplingproducesslightlymoreaccuratestormsurge,andoverland,theinundationcalculatedthroughdynamiccouplingoccursearlierandismoresignicant. Theeectofexcludingthewetting-and-dryingfeatureduringstormsurgesimulationswasalsoexaminedandfoundsignicant.DuringCharley,whenthefeaturewasdisabled,thecalculatedwaterelevationatitspeakwassignicantlyoverestimated. xxiii
PAGE 24
HurricanesarethemostdevastatinganddamaginghazardsimpactingtheUnitedStates.Today,hurricanedamagecostsbillionsofdollars.Accordingtothe NationalOceanicandAtmosphericAdministration(NOAA) ( 2005 ),duringthelastcentury,23hurricaneshadeachcauseddamageinexcessof$1billiondollars.DamagefromhurricaneAndrew(1992)alonewasestimatedatmorethan$25billiondollarsinSouthFloridaandLouisiana.Industrydatashowthat65%ofinsuredlossesfromnaturalhazardsintheU.S.overthepast50yearsareduetohurricanes.From1990through1999hurricanescaused140deathsand$50billioninpropertydamageintheU.S.Coastalstormsaccountfor71%ofrecentU.S.disasterlossesannuallywitheacheventcostingroughly$500million.In2004,forthersttimeinhistory,fourmajorhurricanes,Charley,Frances,IvanandJeanne,madelandfallinFlorida.The2004hurricaneseasonwillgodownasthemostcostlyseasononrecordintheU.S.( NOAA , 2005 ),with$42billionestimateddamage,deathstotaling59,anddeathsoutsideoftheU.S.atover3,000.Inaddition,Floridalostmanylivesandpartofthe2,170milesofshorelines.AbridgeandsectionsofI-10weredestroyedandtransportationinterruptedformanydays.Withpopulationanddevelopmentcontinuingtoincreasealongcoastalareas,agreaternumberofpeopleandpropertyarevulnerabletohurricanethreat.Hurricanescannotbecontrolledbutthevulnerabilitycanbereducedthroughaccurateforecasting. Themajordamagecausedbyhurricanesisassociatedwithstormsurgesandcoastalooding.Accordingto NOAA ( 1999 ),astormsurgeisalargedomeofwater,80to160kmwide,thatsweepsacrossthecoastlinenearwhereahurricane 1
PAGE 25
makeslandfall.Itcanbemorethan4.5mdeepatitspeak.Thesurgeofhighwatertoppedbywavescanbedevastating.Alongthecoast,stormsurgeisthegreatestthreattolifeandproperty. Notonlycanhurricanesdamagehousesandbuildingsinhighlypopulatedcoastalresidentialandcommercialareasbutalso,withinjustafewhours,theycancausedrasticchangesinthecoastlineasanoutcomeofmorphologicalresponse.Thismayresultinanecologicalimbalanceofestuarinesystems,especiallythosethatareseparatedfromtheoceanbybarrierislands,whichareacommonfeatureofFlorida'scoastline.Inordertoreducecoastalhazardsassociatedwithhurri-canes,itisnecessarytohaveanaccuratepredictionmodelofstormsurgeandcoastalooding,whichisessentialfordevelopingcosteectivestormmitigationandpreparation. Accuratestormsurgesimulationsarealsoessentialforproducingaccurateoodinsuranceratemaps(FIRMs)forcoastalcounties.Floridacoastalcountiesalonecontributemorethan40%ofthetotalinsurancepremiumscollectedbytheNationalFloodInsuranceProgram(NFIP)administeredbytheFederalEmergencyManagementAgency(FEMA). ShengandAlymov ( 2002 )showedthattheFEMAmethodologyonoodinsuranceratesinPinellascounty,Florida( FEMA , 1988 ),whichisbasedonthe1-DWHAFISmodel,overestimatespossibledamagethatmaybecausedbythe100-yearstormevent.Theuseofamorerobuststormsurgemodelwilllikelyresultinsignicantsavingsininsurancepremiums. BodeandHardy ( 1997 )pointedoutthelackof
PAGE 26
robuststormsurgemodelsfortropicalstorms.Duringthelasttenyears,morehurricaneandstormsurgedatahavebeencollectedinFloridaandelsewhere,providingagoodopportunitytodevelopandvalidatenewstormsurgemodels.Manyexistingstormsurgemodelscontainrathersimplephysicseventhoughphysicallymeasurableattributes,suchaswaterlevel,actuallyincludethecombinedeectsofphysicalprocessessuchaswavesandtides.Theytakeintoaccountonlyafewhurricaneparameterssuchaspressuredecit,sizeofthestorm,itstranslationspeed,anddirection. Janssen ( 1991 )theseasurfacestressdependsnotonlyonwindspeedbutroughnessduetowavesaswell.Thetotalstressneartheseasurfaceisthesumoftheturbulentpartandwave-inducedpart, wheretistheturbulentstresswhichaccordingtothemixing-lengthhypothesiscanbeparameterizedasfollows: @z2(1{2) where=0:4isvonKarmanconstant;U(z)isthewindspeedatheightz;aistheairdensity. Janssen ( 1991 )alsointroducedtheeectiveroughnesslength,ze,asopposedtotheroughnesslength,z0,whenwavesareabsent.Theeectiveroughnesslengthisafunctionofthewave-inducedstress. Inderivationofhiswave-inducedstress, Janssen ( 1991 )usedthefollowingwindprole: whereuisthefrictionvelocity.
PAGE 27
Ifequation 1{3 isdierentiated,squaredandcomparedwithequation 1{2 atz=z0,thefollowingrelationshipbetweenz0andzeisobtained: AssumingthatCharnok-likeexpressionz0=u2/gisvalid,thevalueofistunedinsuchawaythatze=u2/gforoldwindsea.Theoldwindseatermmeansthatwavesarenolongerdevelopingundercurrentwindconditionandthewave-inducedstressforsuchseadiminishes,yieldingze!z0.Foryoungwaves(travelingmuchslowerthatthewind)almosttheentiresurfacestressisduetowaves;therefore,w=approachesone. ZhangandLi ( 1996 )appliedthetheoryofJanssenintheircouplingofathird-generationwavemodelandatwo-dimensionalstormsurgemodel.ComparingtheirresultswithmeasureddataoftwostormeventsthattookplaceinthenorthernSouthChinaSea,theyfoundthattheintroductionofawavedependentdraggivesasignicantimprovementovertheuseofthe SmithandBanke ( 1975 )stressrelationwhichunderestimatedthesurgesby10%. whereCD=(0:066jU10j+0:63)103. Mastenbroeketal. ( 1993 )alsostudiedtheeectofawave-dependentdragcoecientonthegenerationofstormsurgesintheNorthSea.Toestimatetheeectsofwavesontheboundarylayer,thetheoryofJanssenwasused.Theresultswerecomparedtomeasureddataforthreestormperiods.Thecalculationswiththewave-dependentdraggaveasignicantimprovement.InturnthecalculationswiththeSmithandBankestressrelationunderestimatedthesurgesby20%. Donelanetal. ( 1993 )investigatedtheaerodynamicroughnessoftheseasurface,z0,usingdatafromLakeOntario,fromtheNorthSeaneartheDutch
PAGE 28
coast,andfromanexposedsiteintheAtlanticOceanothecoastofNovaScotia.Theyfoundthatnormalizedroughnessdependsstronglyonwaveage(Cp/u)whereCpisthephasespeedofthewavesatthespectralpeak.Theirequationforthewaveenhanceddragcoecientis TheauthorsnormalizedroughnessbytheRMSwaveheightandusingthefrictionvelocity,u,ofthewindstressandconcludedthatinbothcasesyoungwaveswererougherthanmaturewaves. Xieetal. ( 2001 )investigatedtheinuenceofsurfacewavesonoceancurrentsinthecoastalwatersbyusingacoupledwave-currentmodelingsystem.Theytookintoaccountthefactthatthewave-inducedwindstressisnotonlyafunctionofwindspeedbutthewave-modieddragcoecientaswell,whichinturnisafunctionofthespectralpeakfrequencyofwaves.Foryoungwavesthespectralpeakfrequencyislarge,andaccordingly,thewave-inducedsurfacestressislarge.However,forfullydevelopedwindwavesthespectralpeakfrequencyissmall,andaccordingly,theeectofwavesonsurfacestressisrelativelysmall.Theauthorsnotethatthewavespectralpeakfrequencyincreasesasthewaterdepthdecreases.Intheirstudythemagnitudeofthepeakspectralfrequencyincreasesfromabout0.6rads1intherelativelydeeposhorewatertoapproximately0.9-1.0rads1intheshallowcoastalwaters.Asaconsequence,underaconstantwindtheeectofwavesonwindstressislargerintheshallowerwaterthaninthedeeperwater. GraberandMadsen ( 1988 ),theshapeofthewavespectruminnite-depth
PAGE 29
watersissignicantlyinuencedbythebottomfriction.Duringastormeventwhenwavesarelargetheareaofsuchaninuenceextendsfaroshore. GrantandMadsen ( 1979 )developedananalyticaltheorytodescribethecombinedmotionofwavesandcurrentsinthevicinityofaroughbottomandtheassociatedboundaryshearstressbyconsideringacombinedwave-currentfrictionfactor.Themagnitudeofthemaximumboundaryshearstressduetocombinedwaveandcurrentis 2fcwj~ubj2(1{7) wherethecombinedfrictionfactorfcwisafunctionofj~uaj=j~ubj;j~uajisthemagnitudeofthesteadycurrentvelocityvectorataheightaabovethebottom;j~ubjisthemaximumnear-bottomorbitalvelocityfromlinearwavetheory; Schoellhamer ( 1993 )pointedoutweaknessesofthe GrantandMadsen ( 1979 )methodologywhichincludetheintroductionofactitiousreferencevelocityatanunknownlevel,theassumptionofthelogarithmiclayerbeingconstantwhichisnotcorrectwhenwavesarepresent. TangandGrimshaw ( 1996 )adaptedthe GrantandMadsen ( 1979 )bottomboundarylayertheorytostudytheeectofincreasedbottomfrictionduetowind-wavecurrentinteractionusinga2-Dshallowwaternumericalmodel.Theyshowedthatthe GrantandMadsen ( 1979 )theorymaybreakdowninveryshal-lowwaterwherethewaveamplitudesbecomelarge.Toavoidtheproblemtheauthorsintroducedanempiricalwave-breakingcriterionintothebottomfrictionformulation: ifaW
PAGE 30
Basedontheirnumerical(hencenotveried)results, TangandGrimshaw ( 1996 )concludedthatalthoughthewind-waveenhancementofthebottomstressissignicantonlyinthenearshorezoneofshallowwater,thereisadramaticreductionintheseasurfaceelevationandthecurrentsinthisregion. SignellandList ( 1997 )studiedtheeectofwave-enhancedbottomfrictiononstorm-drivencirculationinMassachusettsBaybasedonasimpliedformofthe GrantandMadsen ( 1979 )theorydescribedby Signelletal. ( 1990 ).Theyfoundthatthedragcoecientincreasesdramaticallybyafactorof2-6.Themostsignicantdragcoecientenhancementtookplaceintheshallowregionsneartheshoreline.Inresponsetotheincreasedbottomdrag,however,bottomcurrentswerereducedby30%-70%.Sincethebottomstressisproportionaltobottomdragandtothesquareofthebottomvelocity,themeanbottomshearstressincreasedonlyby10%-60%insteadofafactorof2-6. Wangetal. ( 2000 )analyzedseveralimportantmechanismsforstorm-inducedentrainmentofestuarinesedimentsusingeldmeasurements.Theirstudyshowedthatthebottomshearstress,computedusingawave-currentinteractionmodelbased,again,onthe GrantandMadsen ( 1979 )theory,increasedsignicantlyduringepisodicwindevents.Thecurrentsandwavestendedtoenhanceeachothersothattheshearstressesduringthepeaksofstorms,computedfromthewave-currentinteractionmodel,wereapproximatelythreetimeslargerthanusingthetraditionalquadraticlaw.Alargere-suspensioneventwascausedbyafrontalpassagewhenstrongwind-drivencurrentsaugmentedthetidalcurrents.Itwasalsopointedoutinthisstudythatthetimingofstormwaveswithrespecttotidalphasewasacriticalfactor. LiuandDalrymple ( 1978 )proposedasimpleempiricalmodelwhichwasalsousedby SunandSheng ( 2002 )intheirstudyof3-Dwave-inducedcirculation.The
PAGE 31
bottomshearstressisdenedas whereUwbisthemaximumnear-bedwaveorbitalvelocityestimatedfromlinearwavetheory;~ubisthenear-bedwave-averagedvelocity;Cdisthefrictioncoecientwhichcanbecalculatedaccordingtothelawofthewall Sheng ( 1986 ) whereisvonKarmanconstant,z0=ks=30withksbeingtheNikuradseequivalentsandroughness,andzbistheverticaldistanceofthelowergridpointabovethebottom. Thissimplemodelassumesthatwavesandcurrentsareco-linearwhichisratherunrealistic.Asaresultoftheassumption,thebottomstresswillbeoverestimatedwhenwaveandcurrentdirectionsdeviatefromeachother. Xieetal. ( 2001 )alsoemphasizethatsurfacewavesproducetwooppositeeectsoncirculation:energyinputthroughsurfacestressandenergydissipationthroughbottomstress.Theneteectofwave-inducedsurfaceandbottomstressescanbequitedierentunderdierentwinddirections.Thiseectcaneitherenhanceordampthesurfacecurrent.Theauthorsshowedthattheeectofwave-inducedbottomstressismoresignicantforalongshorewindsthanforcross-shorewinds.Theirresultsindicatedthattheeectofwavesoncurrentsismainlypresentinshallowcoastalwatersandattenuatesrapidlyoshoreaswaterdepthincreases. Xieetal. ( 2001 )alsonotethattheeectsofwave-inducedsurfaceandbottomstressesalsodependonthewindspeed.Intropicalcyclonesituationsthewave-inducedsurfaceshearstressisgenerallymoreimportantthanthatdueto
PAGE 32
wave-inducedbottomstress,andhencetheeectofwindwavesusuallyincreasesthemagnitudeofstormsurge. JohnsonandKofoed-Hansen ( 2000 )studiedtheinuenceofbottomfrictiononseasurfaceroughness.Theirinvestigationsshowthatthebottomdissipationkeepswavesyoung,whichresultsinincreasedwindfriction. Wavesetupgenerallyoccursinthesurfzone.Thebreakingwavesproduceex-cessmomentumuxintheshorewarddirectionwhichisusuallytermed\radiationstress."Asthebrokenwavescontinuetopropagatetowardtheshore,theexcessmomentumuxorradiationstressdiminishes.Inthesteadystate,theshorewarddecreaseinradiationstressisbalancedbyashorewardincreaseinthewaterlevel.Thisraisesthewatersurfaceelevationwithinthesurfzonetohigherthanthestillwaterlevel(SWL)producingsetup.ItalsopushesthewaterleveloutsideofthesurfzonetolowerthantheSWLproducingsetdown. Itisnecessarytoaccountforwavesetupwithinthesurfzoneduringthecalculationofstormsurgeelevation.Thereasonforthatisthatthesetupmaybeverysignicantespeciallyduringastormevent.Accordingto DeanandDalrymple ( 1991 )thewavesetupneartheshoreisabout19%ofthebreakingwaveheight.Thesignicantwaveheightduringthe100-yearstormestimatedby FederalEmergencyManagementAgency(FEMA) ( 1988 )intheGulfofMexicois8.86mwiththeperiodof11.5sec.Thebreakingwaveheightduringthestormaccordingto DeanandDalrymple ( 1991 ,p.116)mayreach8.5massumingaplanebeach,
PAGE 33
and0odeepwaterincidentangle.Therefore,thewavesetupmayreach1.62mattheshore,whichisasignicantvalueasfarasoodingcausedbythewavesetupisconcerned. Itwouldbeincorrecttoaddthecalculatedwavesetupontopofthecalculatedstormsurgeelevationlinearlysincethereisanon-linearinteractionbetweenthetwo.Moreover,itispracticallyimpossibletodistinctlyseparatethewavesetupfromeverythingelsebasedonthesurfaceelevationdatacollectedintheeld.Therefore,wavesetupshouldbeintroducedintheequationsintermsofradiationstresses,sothatthecalculatedsurfaceelevationwouldincludeitinternallyinanon-linearfashion. Longuet-HigginsandStewart ( 1964 )deriveddepth-integratedradiationstressquantitiesthatareusedinmanynumericalmodelsincludingstormsurgemodelsaccountingforwave-inducedsetup. Mastenbroeketal. ( 1993 )and ZhangandLi ( 1996 )incorporatedradiationstresstermsbasedonthe Longuet-HigginsandStewart ( 1964 )formulationintotwo-dimensionaloceancirculationequationsandinvestigatedtheimportanceofradiationstressincalculationofstormsurge. Mastenbroeketal. ( 1993 )reportedthatonlyinoneofthethreecasestheystudiedtheradiationstressincreasedthesurgesome5%.Intheothertwocasestheeectoftheradiationstresswasinsignicant.Similarly, ZhangandLi ( 1996 )concludedthattheinclusionoftheradiationstressimprovestheaccuracyofthecomputedresultsslightlyby2%. Ithastobepointedoutthatthestudyby Mastenbroeketal. ( 1993 )tookplaceintheNorthSeawithstationsalongtheDutchandBritishcoasts.Theauthorsdonotspecifyhowdeepthelocationsoftheirstationsare.Itishardtoestimatetheimportanceoftheradiationstressifitisnotbeingestimatedinrelativelyshallowwaterwherewavesetupisformedundertheinuenceofthebreakingwaves.Also,thesurgemodeltheyuseddoesnotaccountforooding
PAGE 34
anddrying.Thismakesthemodelinadequateinshallowwaterregions.Thesameconclusionisvalidforthemodelusedby ZhangandLi ( 1996 ).TheirgridislocatedinthenorthernSouthChinaSeaandthedepthsoftheirstationlocationsarenotspeciedeither. ShengandAlymov ( 2002 )implementedthe Longuet-HigginsandStewart ( 1964 )radiationstressesintheCH3D( Sheng , 1987 )modelandsimulated2-Dwavesetupeldsduringthe100-yearstormeventfortwostudyareasinPinellasCounty,Florida.Thesetupvaluevariedfromapproximately0.5mto1.0m.Therewassomeeectonwavesetupwhenwaveswereapproachingat40oanglewhich,accordingto Deanetal. ( 1995 ),isthemostlikelyangleofapproachofthe100-yearstormeventinPinellasCounty.Also,thestudyshowedthatthegridresolutionhassomeeectoncalculatedwavesetupespeciallyintheareaswherebathymetryhassteepergradients.Coarsegridsarenotcapableofresolvingthesebathymetricgradientsandasaresultthecalculatedwavesetupistypicallylowerthanthatcalculatedusinganergrid. SunandSheng ( 2002 )coupledCH3DwiththeREF/DIFwavemodel( KirbyandDalrymple ( 1994 ))andshowedsignicanteectsofwavesonwaterlevelandcoastalcurrents.Theycomparedsimulatedwavesetuptomeasuredlaboratorydataandfoundthatthecalculatedwavesetupisusuallyoverestimatedandproposedthattheoriginalwaveforcingshouldbereducedbymultiplyingwaveforcingbyacoecientof0.8.ThisisratheranadhocapproachandthehighradiationstressesmighthavecomefromoverestimatedwavescalculatedbyREF/DIF. Recently,someeortshavebeenmadeinordertoderiveverticallyvaryingradiationstress. Mellor ( 2003 )exploitedthree-dimensionalequationsofmotiondecomposingvelocitiesintothreecomponents:meancurrent,wave,andturbulence.
PAGE 35
Hisradiationstresstermsareverticallydependantand,ifdepthintegrated,appearinamoreconventionalformasin Longuet-HigginsandStewart ( 1964 ). ( 2002 )foundthatthemaximumsurgeheightsdependonthetidalphasewhenthehurricanelandfalloccurs:maximumsurgeheightoccurswhenhurricanelandfalloccursatseveralhoursafterthepeaktide. ShengandAlymov ( 2002 )simulatedthestormsurgeinPinellasCountyusingthePEMmodel( DavisandSheng , 2002 )andfoundthatthemaximumsurgeheightsandoodingpatternsforthecountyaredramaticallydierentwhenthehighresolutionALSMdataareusedasopposedtotheUSGS0.25-degreedata. ShengandAlymov ( 2002 )usedthe2-DversionofCH3DandREF/DIFtosimulatethewavesetup,andusedtheSWAN( Holthuijsenetal. , 2000 )tosimulatethewind-inducedsurgeinPinellasCounty.However,thecalculationsofthesurge,setup,andwave-inducedsurgewereperformedseparatelyandaddedlinearlyforsimplicity.
PAGE 36
Table1{1: Asummaryofstormsurgemodels. AnalyAssimiBoundary WaveWaveWave Rain/ River Tide ValiOperaLocal/ 2-D 3-D ting tical lated Fitted enhanced induced Setup EvapoDisdation tional Regional Model and Wind Wind Grid Surface Bottom ration charge Grid Drying Stress Friction Nesting p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p1 p p p p p p p p p p p2 p p p p p p p p p p p p3 p ( 2004 )-HurricaneGeorges2 ( 2000 )-TyphoonWinnie3Thisstudy-HurricanesIsabel,Charley,andFrances
PAGE 37
Jelesnianskietal. , 1992 ).ThemodelisrunbytheNationalHurricaneCentertoestimatestormsurgeheightsandwindsresultingfromhistorical,hypothetical,orpredictedhurricanesbytakingintoaccountpressuredecit,size,forwardspeed,track,andwinds.Themodeldoesnottakeintoaccounttide,precipitation/evaporation,riverow,wind-drivenwaves. SLOSHisusedbyNOAANWSandtheU.S.ArmyCorpsofEngineerstocreateoodmapsrepresentingtheMaximumoftheMaximum(MOM)stormsurgecompositeofhypotheticalstorms. Comments:SLOSHisanoutdatedmodelwhichneedstoberevisedandimproved.Ittendstoproducelargeuncertaintyinthepredictedoodedareabecauseofitsrelativelycoarseresolution(0.5-7km)andinabilitytotconvolutedshorelines. Watson , 1995 ; WatsonandJohnson , 1999 ).TAOSissimilartoSLOSHandiscapableofcalculatinganestimateofstormsurge,waveheight,maximumwinds,inlandooding,debrisandstructuraldamage.Themodelhasbeenrunonover25signicanthistoricalstormsfromaroundtheworld.Comparingover500peaksurgeobservationswithTAOSmodelestimatesforthesamelocationandtime,themodelgeneratesresultswithin0.3m80%ofthetime,andlessthan0.6m90%ofthetime. Comments:Asfarasthestormsurgepartisconcerned,theTAOSmodeldoesnotdiermuchfromtheSLOSHmodel,sincethestormsurgephysicsarerepresentedinasimilarwayinbothmodelsand,therefore,itdoesnottakeinto
PAGE 38
accountimportantphysicalprocessesassociatedwithstormsurge,e.g.,wave-inducedeects. Schwerdtetal. , 1979 ; Cialone , 1991 )arecomponentsofCoastalEngineeringResearchCenter'sCoastalModelingSystemusedbytheU.S.ArmyCorpsofEngineers. TheSPHisatwo-dimensional,parametricmodeldevelopedinastretchedCartesiancoordinatesystemforrepresentingwindandatmosphericpressureeldsgeneratedbyhurricanes.ItisbasedontheStandardProjectHurricanecriteriadevelopedbyNOAA,andthemodel'sprimaryoutputsareresultingwindvelocityandatmosphericpressureeldswhichcanbeusedinstormsurgemodeling.TheSPHmodelcanberunindependently,oritcanbeinvokedfromwithinmodelWIFM. TheWIFMisatwo-dimensional,time-dependent,long-wavemodelforsolvingtheverticallyintegratedNavier-StokesequationsinastretchedCartesiancoordinatesystem.Themodelsimulatesshallow-water,long-wavehydrodynamicssuchastidalcirculationand,makinguseofwindeldsproducedbySPH,stormsurges.WIFMcontainsmanyfeaturessuchasmovingboundariestosimulatewettinganddryingoflow-lyingareasandsubgridowboundariestosimulatesmallbarrierislands,jetties,dunes,orotherstructuralfeatures.Modeloutputincludesverticallyintegratedwatervelocitiesandwatersurfaceelevations. Comments:WIFMisasimpleandoutdatedmodelwhichdoesnotaccountforwaveeect.
PAGE 39
Ithasthecapabilitytoestimateearthquakelosses,andoodandwindmodelsarebeingdeveloped. TheHurricaneLossEstimationModelwhichisapartoftheHAZUSmodelincorporatesseasurfacetemperatureintheboundarylayeranalysis,andcalculateswindspeedasafunctionofcentralpressure,translationspeed,andsurfaceroughness.Themodeladdresseswindpressure,windbornedebris,surge,waves,atmosphericpressurechange,duration/fatigue,andrain. TheFloodLossEstimationModeliscapableofassessingriverineandcoastalooding.Itestimatespotentialdamagestoallclassesofbuildings,essentialfacilities,transportationandutilitylifelines,andagriculturalareas.Themodelestimatesdebris,shelterandcasualties.Directlossesareestimatedbasedonphysicaldamagetostructure,contents,andbuildinginteriors.Theeectsofoodwarningandvelocityaretakenintoaccount. Theoodmodelusesgeographicinformationsystemsoftwaretomapanddisplayoodhazarddata,andtheresultsofdamageandlossestimatesforbuildingandinfrastructure.Italsoenablesuserstoestimatetheeectsofoodingonpopulations. Luet-tichetal. , 1992 )solvestheequationsofmotionforauidonarotatingearth.TheseequationsarebasedonhydrostaticpressureandBoussinesqapproximationsandhavebeendiscretizedinspaceusingtheniteelementmethodandintimeusingthenitedierencemethod. ADCIRCcanberuneitherasatwo-dimensionaldepthintegrated(2DDI)modelorasathree-dimensional(3D)model.Ineithercase,elevationisobtainedfromthesolutionofthedepth-integratedcontinuityequationinGeneralizedWave-ContinuityEquationform.Velocityisobtainedfromthesolutionofeitherthe
PAGE 40
2DDIor3Dmomentumequations.Allnonlineartermshavebeenretainedintheseequations.ADCIRCcanberunusingeitheraCartesianorasphericalcoordinatesystem. ADCIRCboundaryconditionsinclude:speciedelevation(harmonictidalconstituentsortimeseries),speciednormalow(harmonictidalconstituentsortimeseries),zeronormalowslipornoslipconditionsforvelocity,externalbarrieroverowoutofthedomain,internalbarrieroverowbetweensectionsofthedomain,surfacestress(windand/orwaveradiationstress),atmosphericpressure,outwardradiationofwaves(Sommereldcondition).ADCIRCcanbeforcedwith:elevationboundaryconditions,normalowboundaryconditions,surfacestressboundaryconditions,tidalpotential,andearthload/selfattractiontide. Comments:ADCIRCisawidelyusedmodel.Sincethemodelisbasedonniteelementnumerics,ithastheabilitytoexploitverylargecomputationaldomainswithsparseresolutionindeepwaterareasandsmallgridspacinginshallowwaterareasornearcomplexboundaries. Weaver ( 2004 )implementedaone-waycouplingofa2-DversionofADCIRCwithawavemodel,WAM-3G,toaccountforradiationstress;nootherwaveeectwasconsidered.HeperformedahindcastofthestormsurgeduringHurricaneGeorges(1998)intheNorthGulfofMexicoandconcludedthattheadditionofwaveforcingimprovedtheoverallpredictivecapabilitiesandreducedtheRMSerrorofthecalculatedstormsurgeby20%to50%. BlumbergandMellor ( 1987 ).SURGEsimulatesandpredictsstormsurge,ooding,overwash,waterrecession,andassociatedhorizontalcurrents.ThemodelmakesuseofNOAA/NOS
PAGE 41
bathymetrydataandhightresolutionUSGS/NOAALIDARsurveydata.Hurri-caneAndrew(1992)andHurricaneCarla(1967)wereusedformodelvericationinLouisianaandLavacaBay,TX,respectively. Comments:TheprosoftheSURGEmodelincludeitsthree-dimensionality,theabilitytousedneresolutioncomputationalgrids,thecapabilitytosimulatewetting-and-dryingofthecoastalarea.Themajordeciencyistheabsenceofwaveeects,e.g.,radiationstress,wave-enhancedsurfacestress,andwave-inducedbottomfriction. Moon , 2000 , 2005 ).Analyticwindmodel( Holland , 1980 )isusedtocalculatedhurricanewindeld.ThemodelwasappliedtonumericalexperimentsintheYellowandEastChinaSeasduringTyphoonWinnie(1997). Theoceancirculationmodelcalculatescurrentsandsurfaceelevation(newwa-terdepth)whichisfedbackintothewavemodeltocomputethewavedependentdragcoecienttobeusedinthewavemodelthenexttimestep.Thisprocessisrepeated.Eachmodelhasitsowntimestepduetothereasonthattimescalesofchangeofwaveparametersandtidalcurrentsarequitedierent.Thewavemodelhasa360sectimestepandtheoceanmodelhasa1800sectimestep.Therefore,afterevery5timestepsofrunningthewavemodeltheoceanmodelisrunandthecouplingtakesplace. Comments:ThePOM/WAVEWATCH-IIcouplingwasperhapstherstat-tempttoexploitatwo-waycouplingbetweenanoceancirculationmodelandawavemodel.Thecouplingtakesintoaccounttheeectsofunsteadyandinhomo-geneouscurrents,unsteadydepth,tides,wind,surfaceheatux,riverdischarge.
PAGE 42
Someofthedecienciesincludetheinapplicabilityofthemodelinshallowwa-terregions;bottomfrictiondependsonlyoncurrents,i.e.noeectofwavesisconsidered;wetting-and-dryingisnotconsidered;wavesetupisnottakenintoaccount. Sheng ( 1986 , 1990 ).Themodelcanbeusedtosimulatetheestuarine,coastal,andriverinecirculationdrivenbywind,tide,anddensitygradients.Themodelusesaboundaryttedcurvilineargridinthehorizontaldirectionstoresolvethecomplexshorelineandgeometry,andaterrain-following-gridintheverticaldirection.ThemodelusesaSmagorinskitypehorizontalturbulentdiusioncoecient,andarobustturbulenceclosuremodel( ShengandVillaret , 1989 )fortheverticalturbulentmixing. CH3Dhasbeenappliedtosimulatethe2-Dand3-DcirculationinnumerouswaterbodiesinFlorida(e.g.,TampaBay,SarasotaBay,IndianRiverLagoon,FloridaBay,BiscayneBay,St.JohnsRiver,andLakeOkeechobee)andU.S.(e.g.,ChesapeakeBay).ManyoftheCH3Dapplications,aswellastheCH3Dformulationanddevelopment,aredescribedon In2002,CH3Dwasmodiedtoincludewetting-and-dryingcapability( Shengetal. , 2002 )andcoupledwithawavemodelSWANtosimulatetheoodelevationinPinellasCountyduringthe100-yearstorm( ShengandAlymov , 2002 ).Thewetting-and-dryingversionofCH3DwillbethefoundationoftheCH3D-SSMSforthisstudy.
PAGE 43
ThischapterprovidesadetaileddescriptionoftheCH3D-SSMSintegratedstormsurgemodelingsystemincludingeachofthefourmodelsitisbasedon:tworegionalmodels,ADCIRC(circulation)andWAVEWATCH-III(wave);andtwolocalmodels,CH3D(circulation)andSWAN(wave). Shengetal. ( 2004 ).Themodelingsystemincludessurge-wave-tide-windcouplinginthecoastal-estuarine-overlandregion,aswellascouplingbetweenlocalandregionalscales. ThetableshownatthebeginningofSection 1.2 demonstratesthattheCH3D-SSMSmodelingsystemhasmorefeaturesthananyotherexistingstormsurgemodel.SuchanimportantelementaswaveswhichisincludedinCH3Dthroughcouplingwithawavemodel,SWAN,isunjustlyneglectedbymostoftheothermodels.Dynamiccouplingwithtideisalsogenerallyignoredassumingthatpredictedtidecanbelinearlyaddedontopofthecalculatedstormsurge.Local/Regionalcouplingissomethingthatisbeingexploitedbymanylately.Theusefulnessofthisfeatureistobeabletopredictandforecaststormsurgelocallyusingnegrids,whichincludehighresolutionshorelines,bathymetryandtopography.Theboundaryconditionsforthelocalmodelareprovidedbymeansofnestedcouplingwiththeregionalmodel.DetailsofthemethodologyusedinthisstudycanbefoundinChapter 3 . 20
PAGE 44
G1)Produceanadvancedstormsurgemodelwithrobustphysicsbyincorpo-ratingthenonlinearinteractionbetweensurge,tide,wave,andwindandallowingtheuseofaverynespatialresolution.Themodelwillbecapableofperforminginshallowwaterregionsandsimulatingwetting-and-drying. G2)Producenelyresolvedboundary-ttedcurvilineargridsfortheOuterBanks/ChesapeakeBay,TampaBay,andCharlotteHarborareasbyutilizinghigh-resolutionbathymetryandtopographydata. G3)ValidatethemodelingsystembysimulatingHurricanesIsabel(2003),Frances(2004),andCharley(2004)andcomparingthecalculatedresultswithmeasureddata. G4)ProduceoodmapsbasedonsimulationsofIsabel,Frances,andCharley. G5)Performasensitivityanalysisoftheeectofnonlinearinteractionsamongstormsurge,tide,wind,andwave,aswellastheeectofwetting-and-dryingandtheeectofthedynamiccouplingversusalinearsuperpositionofseparatelysimulatedtide,wavesetup,andsurge. Q1)Howsignicantistheeectofthenonlinearinteractionbetweentheturbulentandwave-inducedstresses? Q2)Howsignicantistheeectofthenonlinearinteractionbetweenbottomstressesduetocurrentsandwaves? Q3)Howdoeswetting-and-dryingaectstormsurgesimulations? Q4)Isdynamiccouplingbetterthanlinearsuperposition?
PAGE 45
2.3.1Wind Severaltypesofwinddataareusedinthisstudy.Thersttypeisassociatedwiththeactualwindmeasuredfrombuoysintheopenoceanorwindtowersonland.TheNationalDataBuoyCenter(NDBC)isanagencywithintheNationalWeatherService(NWS)oftheNationalOceanicandAtmosphericAdministration(NOAA),whichoperatesandmaintainsanetworkofdatacollectingbuoysandcoastalstationsalongtheU.S.coastline( AnothernetworkofstationsdeployedintheGulfofMexicoistheCoastalOceanMonitoringandPredictionSystem(COMPS).COMPS(
PAGE 46
takemeteorologicalmeasurementssuchaswind,airtemperature,humidity,baro-metricpressure,precipitation,radiation,visibility;andmarinemeasurementssuchaswaterlevel,watertemperature,salinity,currentvelocity,andwaveparameters. Theabovetwotypesofwinddatafromeldmeasurementsareusefulforvalidatingwindmodels,butcannotbeusedalonetogeneratethewindeldneededforstormsurgemodeling. Anothertypeofwinddataiswindsnapshotdatawhichareproducedbyvariouswindmodels,rangingfromsimpletohighlysophisticated.Thesedatacoverlargeareasandaremoresuitableforstormsurgemodeling.Thereareafewdierentwindsnapshotdatasets.ThesummaryofthistypeofwinddataispresentedinTable 2{1 .
PAGE 47
Table2{1: Winddatasummary. Source Type Vert. Cycles Cycle Mean Analysis/ AssimiWind Data (BGD/ ResoluLevel Length/ Sea Forecast/ lated Over Set HUR/ tion Snapshot Level Measured Land CMB) Frequency Pressure NCEP BGD 12km 10m 00,06, 84hrs yes FCAST no yes 12,18 6hrs NDAS BGD 12km 10m 00,06, 6hrs yes ANL yes yes 12,18 6hrs GFDL NCEP HUR varies 35m 00,06, 126hrs yes FCAST no yes 12,18 6hrs GDAS HUR varies 35m 00,06, 6hrs yes ANL yes yes 12,18 6hrs HRD NOAA HUR 6km 10m varies no MEAS no no WINDGEN Ocean CMB 22km 10m 00,06, ?hrs yes ANL+FCAST yes yes weather 12,18 1hr WNA NCEP CMB 28km 10m 00,06, 120hrs no ANL+FCAST yes no 12,18 3hrs PBL Ocean HUR any 20m yes no yes weather Analytical Holland ( 1980 ) HUR any sfc yes no yes WRF NCEP BGD 4km 10m 00,06, 36/84hrs yes ANL+FCAST yes yes 12,18 3hrs MM5 NCEP BGD 12km 10m 00,06, 48hrs yes ANL+FCAST yes yes 12,18 3hrs
PAGE 48
WNAandWINDGENwindswereextensivelyutilizedinthisstudy.Twootherwindmodelsthatweretested:acomplexPlanetaryBoundaryLayer(PBL)modelandamuchsimpleranalyticwindmodel( Holland , 1980 )basedonthehypothesisofanexponentialdecayofatmosphericpressurefromthecenterofastorm. ThePBLmodelisbasedon Chow ( 1971 )vortexmodel.ThemodeliscapableofcalculatingverticallyaveragedthroughthedepthofthePBLvelocitiesduringastormevent. Themodel'sgoverningequationofhorizontalmotionwrittenincoordinatesxedtotheearthis( Cardoneetal. , 1992 ) dt+f~K~V~Vg=1 where~V=~Vave~Vcisthehorizontalwindrelativetothecenterofthecyclone; Theinteractionbetweentheboundarylayerandthefreeatmosphereisexpressedintermsofthegeostrophicwindeld(verticalvelocityatthetopoftheboundarylayer)andthesurfacestress(frictionaldissipationofthekineticenergy
PAGE 49
intheboundarylayer).Furtherparameterizationofthemodelincludesverticaluxesofmomentum,heatandmoisture. Thisparameterizationisbasedonmatchingofmeanprolesofwind,tempera-ture,andmoisturebysurfaceandouterlayersimilaritytheories. Thegeneralformoftheparametricrelationsmaybewrittenas u=(ln[z0/h]+Am)v u=Bmsign(f)(V0)/=(ln[z0/h]0+Cm)(qq0)/q=(ln[z0/h]+Dm)(2{2) whereuandvaretheverticallyaveragedhorizontalvelocitycomponents(inthedirectionofthesurfaceshearandperpendiculartoit,respectively);z0istheroughnessparameter;isvonKarman'sconstant;Vandqarethemeanlayervirtualpotentialtemperatureandspecichumidity,respectively(thesubscript0denotesthevalueatz0);isapotentialtemperaturescaleexpressedintermsoftheheatux,H;qisaspecichumidityscaleinvolvingthemoistureux;andAm,Bm,Cm,andDmareuniversalfunctionsofdimensionlesssimilarityparameters. Arya ( 1977 )presentedthefollowingexpressionsforthesimilarityfunctionsinwhichthedepthofthePBL,h,isspeciedasanindependentvariable.Ifh L2(unstable)then ue0:2h/LCm=ln(h/L)+3:7(2{3)
PAGE 50
andifh L+2(stable)then whereL=u3VCP Fornear-neutralconditions,2
PAGE 51
wherePaistherelativeatmosphericpressureand4P0=P0P1isthecentralpressuredropofthestorm. Thecyclostrophicwindvelocity,Uc,is reR/r(2{7) Thegeostrophicwindvelocity,Ug,is r2eR/r(2{8) Thegradientwindvelocity,UG,is where 2Vs andtheresolvedpart,Vs,ofthetranslationalvelocityofthestorm,Vsis whereistheanglefromthedirectionofbearingofthestorm,,toanypointinsidethestorm.Thesurfacewindvelocity,Us,inthexandydirectionsisthenwrittenas
PAGE 52
whereisaninwardrotationangleof18oandKistheratioofsurfacewindvelocitytogradientwindvelocity. ADCIRCcanberuneitherasatwo-dimensionaldepthintegrated(2DDI)modelorasathree-dimensional(3D)model.Ineithercase,elevationisobtainedfromthesolutionofthedepth-integratedcontinuityequationinGeneralizedWave-ContinuityEquationform.Velocityisobtainedfromthesolutionofeitherthe2DDIor3Dmomentumequations.Allnonlineartermshavebeenretainedintheseequations.ADCIRCcanberunusingeitheraCartesianorasphericalcoordinatesystem. ADCIRCboundaryconditionsinclude:speciedelevation(harmonictidalconstituentsortimeseries),speciednormalow(harmonictidalconstituentsortimeseries),zeronormalowslipornoslipconditionsforvelocity,externalbarrieroverowoutofthedomain,internalbarrieroverowbetweensectionsofthedomain,surfacestress(windand/orwaveradiationstress),atmosphericpressure,outwardradiationofwaves(Sommereldcondition).ADCIRCcanbeforcedwith:elevationboundaryconditions,normalowboundaryconditions,surfacestressboundaryconditions,tidalpotential,andearthload/selfattractiontide. TheadvantageofusingADCIRCisthatitscomputationalgrid(showninFigure 2{1 )coversthewesternpartoftheNorthAtlanticincludingtheGulfofMexicoandtheCaribbeanandconsistsofonly58369elementsand31435nodeswithvaryinggridspacingwhichiscoarseoshore(upto100km)butnernearthecoast(5-6kmintheChesapeakeBayandTampaBayareas).Thismakesthe
PAGE 53
modelcomputationallyecientwithoutmuchofaslowdownwhencoupledwiththelocalcirculationmodel,CH3D.Bothmodelscanusethesametimestep. SomeofthedecienciesthatADCIRChasincludeitsinabilitytoexploitboundaryttedgrids.Nearland,shorelineapproximationcanbereachedbyincreasingtheresolutionofthecomputationalgrid.TheADCIRCcomputationalgridthatwasprovidedtoushadrathercoarseresolution(5-6km)alongthecoastlinewhichwouldresultinlosingsomeaccuracyofthecalculatedstormsurgeinthenearshoreregions.Also,theversionofADCIRCwhichwasusedinthisstudydoesnotcalculatewetting-and-drying.Overall,ADCIRCisarobustcirculationmodelwhichcanbeusefulinestimatingtheresponseoftheoceantoamovinghurricaneonalargeregionalscaleandprovidingboundaryconditionstolocalcirculationmodels. Figure2{1: TheADCIRCcomputationalgrid.
PAGE 54
Tolman ( 1997 )and Tolman ( 1999 ))isathirdgenerationNOAA/NCEPoperationalwavemodel.Itsolvesthespectralactiondensitybalanceequationforwavenumber-directionspectra.Theimplicitassumptionoftheseequationsisthatthemedium(depthandcurrent)aswellasthewaveeldvaryontimeandspacescalesthataremuchlargerthanthecorrespondingscalesofasinglewave.Furthermore,thephysicsincludedinthemodeldonotcoverconditionswherethewavesareseverelydepth-limited.Thisimpliesthatthemodelcangenerallybyappliedonspatialscales(gridincrements)largerthan1to10km,andoutsidethesurfzone. Thegoverningequationsincluderefractionandstrainingofthewaveeldduetotemporalandspatialvariationsofthemeanwaterdepthandthemeancurrent(tides,surgesetc.),andwavegrowthanddecayduetotheactionsofwind,nonlinearresonantinteractions,dissipation(`whitecapping')andbottomfriction.Wavepropagationisconsideredtobelinear.Relevantnonlineareectssuchasresonantinteractionsarethereforeincludedinthesourceterms(physics). TheWAVEWATCH-IIINorthAtlanticcomputationalgrid(showninFigure 2{2 )coversthewesternNorthAtlanticincludingtheGulfofMexicoandCaribbean.Thesizeofthegridis275203withspatialresolutionof0.25degrees(28km). WAVEWATCH-IIIproductsare6-hourhindcastand120-hourforecastwith6-hourintervals.RegionalanalysiswavedataforHurricanesIsabel(2003),Charley(2004),andFrances(2004)wereprovidedbycourtesyofNOAA/NCEP. AswillbeexplainedinChapter 3 ,wedonotactuallyrunWAVEWATCH-IIIwhichprovidesboundaryconditionsforthelocalwavemodel,SWAN.WAVEWATCH-IIIwaveforcingwasobtainedbythecourtesyofNOAA/NCEP.Thisisoneoftheadvantagesofusingthemodel:nocomputationalburdenisinvolvedatallexceptforthepreprocessingphase.Anotherreasonforusing
PAGE 55
WAVEWATCH-IIIisthat,aswillbeshowninSection 5.1.4 ,themodelproducesgoodresultscomparedwithmeasureddataduringhurricaneevents. Figure2{2: TheWAVEWATCH-IIINorthAtlanticregionalcomputationalgrid. Sheng , 1987 , 1990 )isa3-Dcurvilinear-gridhydrodynamicmodel.Themodelsolvesthecontinuityequationandtwomomentumequationsinanon-orthogonalboundaryttedcoordinatesystem.TheequationsarederivedfromtheNavier-Stokesequationsusingfoursimplifyingapproximations.First,itisassumedthatwaterisincompressible,whichresultsinasimpliedcontinuityequation.Second,basedonthefactthatcharacteristicverticallengthscaleis
PAGE 56
muchsmallerthanthehorizontallengthscale,theverticalvelocityissmallandverticalaccelerationmaybeneglected.Thus,theverticalmomentumequationcanbereducedtothehydrostaticpressurerelation.Third,withtheBoussinesqapproximation,anaveragedensitycanbeusedintheequationsexceptinthebuoyancyterm.Finally,theeddy-viscosityconcept,whichassumesthattheturbulentReynoldsstressesaretheproductofthemeanvelocitygradientsandeddyviscosities. @x+@v @y+@w @z=0;(2{14)@u @t+@uu @x+@uv @y+@uw @z+1 @x1 @x2+@2u @y2)+@ @z(AV@u @z); @t+@vu @x+@vv @y+@vw @z+1 @y1 @x2+@2v @y2)+@ @z(AV@v @z); whereu(x;y;z;t),v(x;y;z;t),andw(x;y;z;t)arethevelocityvectorcomponents[LT1]inx-,y-,andz-coordinatedirections,respectively;tistime[T];(x;y;t)isthefreesurfaceelevation[L];gistheaccelerationofgravity[LT2];AHandAVarethehorizontalandverticalturbulenteddycoecients,respectively[L2T1];Sxx,Sxy,Syyareradiationstresses,PaisatmosphericpressureandfistheCorioliscomponent[T1]. Thenecessaryconditionsforthesolutionarethedenitionofthecomputa-tionaldomain,theinitialconditionsonthedomain,andtheboundaryconditions.
PAGE 57
Waterelevationisrstsolvedbyusingapre-conditionedconjugategradi-entmethodforthePoissonequationofwaterelevation.Contravariantvelocitycomponentsarethenobtainedbysolvingthemomentumequations. Athreedimensionaladvection-diusionequationforsalinityissolvedcoin-cidentallywiththeequationsofmotionandcontinuity,whichallowsforvariabledensityandbaroclinicforcing.InCartesiancoordinates,theconservationofsaltandtemperaturecanbewrittenas: @t+@uS @x+@vS @y+@wS @z=@ @x(DH@S @x)+@ @y(DH@S @y)+@ @z(Dv@S @z);(2{17) @t+@uT @x+@vT @y+@wT @z=@ @x(KH@T @x)+@ @y(KH@T @y)+@ @z(Kv@T @z);(2{18) whereSissalinityandTistemperature,DH,KH,DvandKvareturbulenteddydiusivitycoecientsforsalinityandtemperatureinhorizontalandverticaldirection,respectively. Afterdeningdimensionlessvariablesas (x;y;z)=(x;y;zXr/Zr)/Xr(u;v;w)=(u;v;wXr/Zr)/Urt=tf=g/(fUrXr)Sij=Sij/(wU2r)Pa=Pa/(wfUrXr)=(wg#)/(wfUrXr)where#ispressureheadAH=AH/AHrAV=AV/AVr(2{19) equations 2{14 through 2{16 becomedimensionless: @x+@v @y+@w @z=0(2{20)
PAGE 58
@t+R0@uu @x+@uv @y+@uw @z+R0@Sxx @x@# @x+v+EHAH@2u @x2+@2u @y2+EV@ @zAV@u @z @t+R0@vu @x+@vv @y+@vw @z+R0@Syx @y@# @yu+EHAH@2v @x2+@2v @y2+EV@ @zAV@v @z where Inacurvilinearnon-orthogonalboundaryttedgridsystem,thenon-dimensionalformofthecontinuityandxandymomentumequationscanbewrittenas: @t+ @(p @(p @=0;(2{24) 1 @t=(g11@ @+g12@ @)(g11@# @+g12@# @)+(g12 (2{25) @(yp @(yp @(xp @(xp @(yp @(yp @(xp @(xp @g+Ev @(Av@u @+EHAH(HorizontalDiffusionofu)R0 @+g12@ @)d+(g11@H @+g12@H @)(Z0d+)]
PAGE 59
1 @t=(g21@ @+g22@ @)(g21@# @+g22@# @)(g11 (2{26) @(yp @(yp @(xp @(xp @(yp @(yp @(xp @(xp @g+Ev @(Av@v @+EHAH(HorizontalDiffusionofv)R0 @+g22@ @)d+(g21@H @+g22@H @)(Z0d+)] where h+=z Hstretchinginthevertical (2{27) @@x @+@y @@y @Horizontalmeasuresoflengths (2{28) @x @@y @@x @@y @2Jacobianofhorizontaltransformation (2{29) Thesalinitytransportequationcanbewrittenas @t=Ev @Dv@S @R0@H!S @R0 @(p @(p @(p @+p @)]; +Eh @(p @+p @)] ModesplittingtechniqueisappliedinCH3Dtosolvethefullthree-dimensionalequations.First,\externalmode"isusedtosolvetheverticallyintegratedequa-tionsofmotionandcontinuityoverthewholedomain.Thenthethree-dimensional
PAGE 60
equationsofmotion,continuityandtransportforagivencellissolvedinthe\in-ternalmode."InthecurrentversionofCH3D,sweepingmethodisusedintheexternalmode.Thei-sweepcouplesthecontinuityandu-momentumequationsandsolveforintermediateelevationandnewstepvelocityu;Thenj-sweepcombinesthecontinuityandv-momentumequationsandsolvefornewstepelevationandvelocityv. Theboundaryconditionsthatmustbespeciedarethetidalandwindforcing,riverinow,andsalinityprolesalongopenboundaries.Thetide,riverinowcanbespeciedaseitherconstantortimevarying.Theinitialconditionswhichmustbespeciedarethethreedimensionaloweld,salinityeldaswellasthewatersurfaceelevation.Theparameterizationofturbulenceinthemodelhasthreeoptions,aconstanteddycoecient,aRichardson-numberdependenteddycoecient,andasimpliedapplicationofthesecond-orderturbulenceclosuremodel. Slightlymodiedversionofarobustwetting-and-dryingschemeby CasulliandCheng ( 1992 )isincorporatedintotheCH3Dmodelasdescribedin Davis ( 1996 )and Shengetal. ( 2002 ). Duetotheuseofthenon-orthogonalboundaryttedequationsofmotionandcontinuity,themodelcanhandlefairlycomplexgeometrieswithoutexcessivenumberofgridcells.Inaddition,thecodeusesasigma-stretchingintheverticaldirectionwhichallowsforvariationinthebottombathymetry. Themodelsimulatesthestormsurgeandtidesubjectedtoprescribedhur-ricanewindandoshoretideforcing.Themodelhasbeentestedwithanalyticalsolutionaswellasstormsurgedataduringrealstorms( Peeneetal. , 1993 ).Cou-pledwithsomewavemodels(REF/DIFandSWAN),theCH3Dmodelhasalsobeenusedtoestimatewavesetup(e.g., SunandSheng ( 2002 ); ShengandAlymov ( 2002 )).
PAGE 61
Toallowecientsimulations,theCH3Dmodelhasbeenmodiedtoallowparalleloperationonasharedmemorycomputer( DavisandSheng , 2000 )and( DavisandSheng , 2002 ). CasulliandCheng ( 1992 )hasbeenimplementedinCH3D( Shengetal. , 2002 ).First,thealgorithmisim-plementedintotheverticallyaveragedequationsofCH3D.Duringeachtimestep,theverticallyaveragedequationsofCH3Darerstsolved,andanewshorelineiscalculated.Thisnewshorelineisthenimplementedinthecalculationofthethree-dimensionalbaroclinicoweld. Inthecurvilinearcoordinatesystem,thetwo-dimensionalverticallyaveraged,non-dimensionalequationscanbewrittenas @t+ @(p u)+@ @(p v)]=0(2{31) u @t+g11@ @g12 v @t+g22@ @+g11 whereFandFaretheremainingnonlinear,horizontaldiusion,windstress,bottomfriction,radiationstress,atmosphericpressuregradientandsurfaceslopeintheoppositedirectionsterms,and whereH=h+istotalwaterdepth.
PAGE 62
Thenitedierenceformofthesimpliedequations 2{31 , 2{32 ,and 2{33 canbewrittenas (2{36) +(11) (2{37) (2{38) where1and2arethedegreesoftheimplicitnessofthesurfaceslopeandCoriolisterms.Substitutingtheverticallyaveragedvelocitynitedierenceequationsintothecontinuityequationyields: nnw;i;jn+1i1;j+1+nn;i;jn+1i;j+1+nne;i;jn+1i+1;j+nw;i;jn+1i1;j+nc;i;jn+1i;j+ne;i;jn+1i+1;j+1+nsw;i;jn+1i1;j1+ns;i;jn+1i;j1+nse;i;jn+1i+1;j1=(RHS)ni;j where
PAGE 63
nnw;i;j=i;j+1 ns;i;j=nsw;i;jnse;i;jv;i;jnw;i;j=+i;j (RHS)ni;j=ni;jp (p +t(11) (p where
PAGE 64
(2{42) 1+t2g21v;i;j CasulliandCheng ( 1992 ),thenormalizedformoftheequationcanbewrittenas: which,byletting isequivalentto
PAGE 65
where Theconjugategradientalgorithm( CasulliandCheng , 1992 )solvesthesystemasdescribedin Davis ( 1996 ): (1)Guesse(0)i;j (3)Fork=0,1,2,...anduntil(r(k);r(k))<,calculate where
PAGE 66
(p(k);Mp(k))r(k+1)i;j=r(k)i;j(k)(Mp(k))i;jp(k+1)i;j=r(k+1)i;j+(k)p(k)i;j(2{49) where (r(k);r(k))(2{50) Intheequation,Mpissolvedasfollows (Mp(k))i;j=p(k)i;j+anw;i;jp(k)i1;j+1+an;i;jp(k)i;j+1+ane;i;jp(k)i+1;j+1+aw;i;jp(k)i1;j+ae;i;jp(k)i+1;j+asw;i;jp(k)i1;j1+as;i;jp(k)i;j1+ase;i;jp(k)i+1;j1(2{51) Oncethefreesurfacehasbeencomputedthroughthecomputationaldomain,beforeproceedingtothenexttimestepthenewtotaldepthatuandvhorizontallocationshavetobeupdated. AresultingzerovalueofthetotaldepthinthecellcenterHn+1i;j=hi;j+ni;jmeansthecellisdryanditmaybeoodedwhenthetotalwaterdepthbecomespositive.SincetheCH3Dmodelusesthetotaldepthasadenominatorinsomeofitsequations'terms,thezerototaldepthvalueisnotalwaysagoodwayofdistinguishingbetweenwetanddrycells.Also,verysmalltotaldepthmightbringininstability,e.g.,verystrongwindblowingoverextremelyshallowwaterwillresultinahighlyunpredictablebehaviorofhorizontalvelocitieswhichmaygrowunrealisticallyhighandcausethemodeltoblowup.Tosolvetheproblem,a\critical"totaldepthvalueasopposedtothezerototaldepthvaluewasusedtodistinguishbetweenwetanddrycells.Ifthetotaldepthofacellissmallerthanthecriticalvaluethenthecellisdry,otherwiseitiswet.Thevalueof30
PAGE 67
cmperformedwellunderhurricanestrongwindconditions.Underconditionslessextremeasmallervalueofthecriticaltotaldepthmaybemorepractical. whereWs=p Garratt ( 1977 )formulation: Theboundaryconditionatthebottomisexpressedintermsofbottomstressgivenbythequadraticlaw: whereubandvbarebottomvelocitiesandCdisthedragcoecientwhichisdenedusingtheformulationof Sheng ( 1983 ): where=0:4isthevonKarmanconstant. Theformulationstatesthatthecoecientisafunctionofthesizeofthebottomroughness,z0,andtheheightatwhichubismeasured,z1iswithintheconstantuxlayerabovethebottom.ThesizeofthebottomroughnesscanbeexpressedintermsoftheNikuradseequivalentsandgrainsize,ks,usingtherelationz0=ks=30.
PAGE 68
Inthetwo-dimensionalmode,thebottomboundaryconditionsaregivenusingaChezyformulation: @z=gUp @z=gVp whereUandVaredepthaveragedvelocities,andCzistheChezyfrictioncoecientdenedas: 6 whereRisthehydraulicradiuswhichcanbeapproximatedbythetotaldepthgivenincentimeters,andnisManning'sn. Donelanetal. ( 1993 )forsurfaceroughness,z0,anddragcoecient,Cdareusedtocalculatewindstressatthefreesurface.Botharefunctionsofwaveage.Whenwavesareyoungtheroughnessincreasesmakingthewindstresshigherasopposedtowhenwavesarenottakenintoconsideration. whereWsisthewindspeedata10maltitude. Followingtherelationbetweenz0andCd,z0=zexp(=p whereCpiswavephasespeedandWs=Cprepresentstheinversewaveage.
PAGE 69
WaveenhancementofbottomstressisimplementedinCH3Dusingtwomethodologies.Therstmethodologyexploitsthe GrantandMadsen ( 1979 )the-orydescribedinasimpliedformby Signelletal. ( 1990 ).Thesecondmethodologymakesuseofaone-dimensionalwave-currentbottomboundarylayermodel( ShengandVillaret , 1989 )asdescribedin ShengandVillaret ( 1989 )and Sun ( 2001 ). The GrantandMadsen ( 1979 )formulationisgivenbythetypicalquadraticlawwithonedistinction:Cdeisthewaveenhanceddragcoecient. ThemainideausedintheformulationinordertondCdeisthat whereCisthebottomstressduetocurrentandWisthemaximumstressduetowaveswhichcanbedenedas 2fWU2W(2{64) whereUWisthenear-bottomwaveorbitalvelocityandfWisthewavefrictionfactorwhichdependsonthebottomroughness,ksandthenear-bottomexcursionamplitudeAB=UW=!andwhosevaluesareobtainedusingtheempiricalexpressionsfrom GrantandMadsen ( 1982 ):
PAGE 70
WithuBdetermined,aniterationprocedureisusedtodetermineCdeatzr.WithaninitialguessofCde,thesteadyshearstresscomponentuBis Thecombinedwave-currentshearvelocityuCWisdenedby Fromequation 2{63 ,uCWisdeterminedas TheapparentbottomroughnesskBC,whichindicatestheturbulencelevelduetothecombinationofthewaveboundarylayerandthephysicalbottomroughness,isexpressedas wheretheexponentisgivenby Theapparentroughnessisthenusedtodeterminethevelocityproleintheconstantstressregionabovethewaveboundarylayerusingthelaw-of-the-wallrelation kBC/30(2{71) Thenalexpressionforthewaveenhanceddragcoecientis wherezrisareferenceheightchosentolieabovethewaveboundarylayerandkBCistheapparentbottomroughnesswhichaccountsfortheturbulenceinducedby
PAGE 71
boththewaveboundarylayerandphysicalbottomroughness.Accordingto Signelletal. ( 1990 ),thereferenceheightwasspeciedas20cmandks=0.1cmwasselectedtocorrespondtoadragcoecientof1.5103atonemeterabovethebedintheabsenceofwaves. OncetheeectivedragcoecientCdeiscalculated,itisusedinCH3Dtocomputebottomstressasdenedbyequation 2{62 . AswaspointedoutinSection 1.1.2 ,the GrantandMadsen ( 1979 )method-ologyhassomedeciencieswhichincludeactitiousreferencevelocityatanunknownlevelandtheassumptionofthelogarithmiclayerbeingconstantwhichisnotcorrectwhenwavesarepresent. Sun ( 2001 )useda1-Dwave-currentbottomboundarylayermodelbasedon ShengandVillaret ( 1989 )tocalculatebottomshearstressthroughnonlinearinteractionbetweenwavesandcurrents.ThismodelwasadoptedandimplementedinCH3Dinthefollowingparagraphs. Thegoverningequationsforthecombinedwave-currentbottomboundarylayermodelaretheverticalone-dimensionalequationsofmotion: @t=1 @x+@ @zAv@u @z(2{73) @t=1 @y+@ @zAv@v @z(2{74) Boundaryconditionsatthebottomare: @z=Cdu1q @z=Cdv1q whereu1,v1arevelocitycomponentsatthelowestgridpoint,z1,andCdiscomputedby:
PAGE 72
wherez0isthebottomroughness(itwassetto0.1cm)andisthevonKarmanconstant.Thesmallestgridspacingnearthebottomis0.03cm. Boundaryconditionsabovethebottomboundarylayerwhichwassetto30cmare: @z=0(2{78) @z=0(2{79) Todriveanoscillatorymotionduetowaves,apressuregradientfromthelinearwavetheoryisapplied: @xw=1 2gkHcosh(kz) cosh(kh)sin'cos(t)(2{80) @yw=1 2gkHcosh(kz) cosh(kh)cos'cos(t)(2{81) wheregisgravitationalacceleration,kiswavenumber,Hiswaveheight,'iswavedirection,andisangularwavefrequency. Todriveacurrent,aconstantpressuregradientisappliedintheydirection: @yc=const(2{82) TheeddyviscosityAvisdeterminedusingaTKEclosuremodeldevelopedby ShengandVillaret ( 1989 ).Themodelsolvesanequationfortheturbulentkineticenergy,q2: @z2hv0w0i@v @z+0:3@ @zq@q2 Thesecond-ordercorrelationtermsofuctuatingvelocitiesaresolvedusingthefollowingequilibriumcondition: 4(2{84) where
PAGE 73
=q =81q Themacro-scaleisdeterminedbythefollowingintegralconstraints: N(2{87) whereC1isbetween0.1and0.25,Histhetotaldepth,Hpisthedepthofpycnocline,C2rangingbetween0.1and0.25isthefractionalcut-olimitationofturbulentmacro-scalebasedonq2,thespreadoftheturbulencedeterminedfromtheturbulentkineticenergyprole,andNistheBrunt-Vaisalafrequencydenedas: @ @z1=2(2{88) ShengandVillaret ( 1989 )and Sun ( 2001 )validatedthemodelforanoscil-latoryboundarylayerbycomparingthecalculatedvelocityproleswithvelocityprolesobtainedinthe JonssonandCarlsen ( 1979 )experimentontheoscillatoryboundarylayerunderroughturbulentowconditions.Twotestsimulations(refertoSection 4.3.2 )wereperformedtovalidatethemodel:forapureoscillatoryow( JonssonandCarlsen , 1979 )anduniformcurrentsuperimposedonanoscillatoryow( BakkerandDorn , 1978 ).Themodelresultsofbothtestsagreedwellwiththeexperimentaldata. Aseriesofmodelruns(atotalof145200runs)usingvariouscombinationsofwaterdepth,waveheight,waveperiod,wavedirectionandcurrentmagnitude
PAGE 74
(showninTable 2{2 )wasperformedinordertodevelopa\look-uptable"ofbottomstressduetowave-currentinteraction.WhenthetableisusedinCH3D,thebottomstressvalueineachgridcellisdeterminedbasedonthevalueobtainedbyinterpolatingthetablevaluesinave-dimensionalspace(i.e.,waterdepth,waveheight,waveperiod,wavedirection,currentmagnitude).Thecurrentisspeciedatthelowestgridpoint,z1,whereCH3Dcalculatesitsbottomcurrents.Therefore,thewaterdepth(i.e.,watercolumnwithinwhichthe1-Dmodelisapplied)isdenedas1 2(h+) sinhk(h+)(2{89) wherehislocalwaterdepth,iswatersurfaceelevation,KMisthenumberofverticallayersinCH3D,andH(z=)iswaveheightatthesurface. Table2{2:Parametersusedtocreatethe\lookuptable". Parameter Values WaterDepth 0.5mto5.0mwith0.5mincrements WaveHeight 0.0mto2.0mwith0.2mincrements WavePeriod 2sto16swith1sincrements WaveDirection 0degto315degwith45degincrements Current 0.0m/sto1.0m/swith0.1m/sincrements 2{15 and 2{16 ).Twoformulationsareimplementedinthemodel:verticallyuniform( Longuet-HigginsandStewart , 1964 )andverticallyvarying( Mellor , 2003 ).
PAGE 75
Thederivationoftheverticallyuniformradiationstressandtherelationbetweenradiationstressgradientsandwavesetupfollowsinthemannerof DeanandDalrymple ( 1991 ). Ifawaveispropagatingatsomeangletothexaxis(representingonshoredirection),thentheradiationstressinthisdirectionwillbe: 2(2{90) Similarly,theradiationstressinthetransverse(longshore)directionwillbe: 2(2{91) wherenistheratioofgroupvelocitytowavecelerity. Thereisanadditionaltermwhichrepresentstheuxinthexdirectionoftheycomponentofmomentum Inasimple1-Dcase,therelationbetweentheradiationstressandwavesetupcanbeexpressedasfollows: dx(2{93) whereisthemeanwatersurfaceslopeorwavesetup. In2-Dcase,asystemoftwodierentialequationshastobesolved: dx(2{94) dy(2{95) Mellor ( 2003 )derivedequationsforthree-dimensionaloceancirculationmodelsthathandlesurfacewaves.Inhisderivationradiationstressesvaryverticallyand
PAGE 76
areexpressedasfollows: whereHisthetotaldepth;=(z)/H;kisthewavenumberwhosexandycomponentsarekandk,respectively;Eisthetotalwaveenergy;istheKroneckerdelta;and sinhKHFCS=coshKH(1+) sinhKHFSC=sinhKH(1+) coshKHFCC=coshKH(1+) coshKH(2{97) IfMellor'sequationsareintegratedvertically,hisradiationstressesbecomeidenticaltothoseof Longuet-HigginsandStewart ( 1964 ).SinceCH3Dcalculatesthewatersurfaceelevationinthe\externalmode"whereverticallyintegratedequationsareused,thecalculatedwavesetupwillbethesamenomatterwhichradiationstressformulationisused.Thedierencebetweenthetwoformulationswilltakeplaceinthevelocityeld. Booijetal. , 1999 )isathird-generationwavemodelwhichcomputesrandom,short-crestedwind-generatedwavesincoastalregionsandinlandwaters.Itaccountsforwavepropagationintimeandspace,shoaling,refractionduetocurrentanddepth,frequencyshiftingduetocurrentsandnon-stationarydepth,wavegenerationbywind,bottomfriction,depth-inducedbreaking,andtransmissionthroughandreectionfromobstacles.ThemodelwasdevelopedatDelftUniversityofTechnology,theNetherlands.SWANisusedincoastalapplicationsbymanyinstitutionsintheUnitedStatesandEurope.
PAGE 77
SWANiscanbeappliedtoaboundary-ttedcurvilineargridwhichisirreg-ular,quadrangular,andnotnecessarilyorthogonal.Itcalculatesmanyimportantwaveandwaverelatedparameterssuchassignicantwaveheight,swellwaveheight,meanwavedirection,peakwavedirection,directionofenergytransport,meanabsolutewaveperiod,meanrelativewaveperiod,currentvelocity,energydissipationduetobottomfriction,wavebreakingandwhitecapping,fractionofbreakingwavesduetodepth-inducedbreaking,transportofenergy,waveinducedforce,theRMS-valueofthemaximaoftheorbitalvelocitynearthebottom,theRMS-valueoftheorbitalvelocitynearthebottom,averagewavelength,averagewavesteepness,andsomeothers. InSWANthewavesaredescribedwiththetwo-dimensionalwaveactiondensityspectrumN(;)equaltotheenergydensitydividedbytherelativefrequency:N(;)=E(;)=. TheevolutionofthewavespectrumisdescribedbythespectralactionbalanceequationwhichforCartesiancoordinatesis: @tN+@ @xcxN+@ @ycyN+@ @cN+@ @cN=S (2{98) Thersttermintheleft-handsideofthisequationrepresentsthelocalrateofchangeofactiondensityintime,thesecondandthirdtermrepresentpropagationofactioningeographicalspace(withpropagationvelocitiescxandcyinx-andy-space,respectively).Thefourthtermrepresentsshiftingoftherelativefrequencyduetovariationsindepthsandcurrents(withpropagationvelocitycin-space).Thefthtermrepresentsdepth-inducedandcurrent-inducedrefraction(withpropagationvelocitycintheta-space).Theexpressionsforthesepropagationspeedsaretakenfromlinearwavetheory.ThetermS(=S(;))attherighthandsideoftheactionbalanceequationisthesourcetermintermsofenergy
PAGE 78
densityrepresentingtheeectsofgeneration,dissipationandnonlinearwave-waveinteractions. TransferofwindenergytothewavesisdescribedinSWANwitharesonancemechanismandafeed-backmechanism.Thecorrespondingsourcetermforthesemechanismsiscommonlydescribedasthesumoflinearandexponentialgrowth: inwhichAandBdependonwavefrequencyanddirection,andwindspeedanddirection. Thedissipationtermofwaveenergyisrepresentedbythesummationofthreedierentcontributions:whitecappingSds;w(;),bottomfrictionSds;b(;)anddepth-inducedbreakingSds;br(;). Whitecappingisprimarilycontrolledbythesteepnessofthewaves.InSWANthewhitecappingformulationsarebasedonapulse-basedmodel: whereisasteepnessdependentcoecient,kiswavenumberand~and~kdenoteameanfrequencyandameanwavenumber,respectively. Depth-induceddissipationmaybecausedbybottomfrictionwhichcangenerallyberepresentedas: inwhichCbottomisabottomfrictioncoecient.JONSWAPsuggestedtouseanempiricallyobtainedconstant.Itperformswellinmanydierentconditionsaslongasasuitablevalueischosen(typicallydierentforswellandwindsea). Thetotaldissipation(i.e.,integratedoverthespectrum)duetodepth-inducedwavebreakinginshallowwatercanbewellmodeledwiththedissipationofabore
PAGE 79
appliedtothebreakingwavesinarandomeld.TheexpressionusedinSWANis: whereEtotisthetotalwaveenergyandDtot(whichisnegative)istherateofdissipationofthetotalenergyduetowavebreaking. Indeepwater,quadrupletwave-waveinteractionsdominatetheevolutionofthespectrum.Theytransferwaveenergyfromthespectralpeaktolowerfrequencies(thusmovingthepeakfrequencytolowervalues)andtohigherfrequencies(wheretheenergyisdissipatedbywhitecapping).Inveryshallowwater,triadwave-waveinteractionstransferenergyfromlowerfrequenciestohigherfrequenciesoftenresultinginhigherharmonics(low-frequencyenergygenerationbytriadwave-waveinteractionsisnotconsideredhere).InSWANthecomputationsarecarriedoutwiththeDiscreteInteractionApproximationandtheLumpedTriadApproximation. SWANhasbeensuccessfullytestedandappliedtostormconditionsinsimulationof1995HurricaneLuisby Wornometal. ( 2001 ).ThemodeliscurrentlyusedbytheNavalResearchLaboratorywhichcreatedthreesub-regionalscalewaveforecastingsystemsfortheNationalWeatherServicesCoastalStormsProgram( Rogers , 2005 ).Oneoftheirsystems,northeastFloridasystem,wasvalidatedfortheperiodofSeptember2003whenHurricaneIsabeltookplaceandfortheperiodofAugust2004whenHurricaneCharleywentacrosstheFloridapeninsula.TheresultsofthesevalidationsshowthatonecanhavecondenceinapplyingtheSWANmodeltoshallow-waterregionsduringseverestormevenssuchashurricanes. ShengandAlymov ( 2002 )usedanextremelylargeandnegridintheirSWANsimulations.Thesizeofthegridwas1200800gridcellswiththegridspacingof5m.Althoughtorunasimulationonsuchanegridrequiresalotof
PAGE 80
computermemoryandcomputationaltime,itisworthwhiledoingit.Forstormsurgemodelingsuchneresolutionmaynotbenecessary.Increasingthegridspacingto100-400mwillallowtostillhavenelyresolveddomainbutalsoplacetheopenboundarymanytensofkilometersoshore. SomeofthedecienciesoftheSWANmodelincludetheassumptionofthewavespectrumbeingGaussianwhichmaynotbetrueinthebreakerzone( Ochi , 1998 ),andtheincapabilityofreplicatingextremedissipationimpartedbymuddybottom( KaihatuandSheremet , 2004 ).
PAGE 81
3{1 .Thoseinredareaccountedforinthemethodologypresentedherein. Oneofthemajoradvantagesofthismethodologyisthatunlikemanyotherstormsurgemodels,thewaterelevationiscalculateddynamicallyandnotinpartswhichincludestormsurge,tideandwavesetupinthesurfzone.Itisalldoneasawholeduetothereasonthatallthesepartsthatwaterelevationconsistsofinteractbetweeneachotherinanon-linearfashionanditwouldbephysicallyincorrecttoneglectthisinteraction. 58
PAGE 82
Figure3{1: Adiagramofvariousphysicalprocesses.Thoseinredareaccountedforinthismethodology.
PAGE 83
event;andacirculationmodelwhichcalculatessurfacewaterelevationandcurrentsbasedonthemeteorologicalconditionsprovidedbytheatmosphericmodel. Aswasstatedearlier,waveeectscanbecomeasignicantfactorduringstormevents.Wavesbreakinginthesurfzonetransfertheirmomentumtothewatercolumnwhichresultsinwaveset-uporincreaseinwaterelevationfromthebreakerpointtothepointwherethewavescompletelydissipatebyrunningupthebeach.Wavesetupismainlyafunctionofthebreakingwaveheight.Stormyseasgeneratelargewaveswhichbreakfurtheroshoreasopposedtowavesduringregularconditions,thusextendingthesurfzone.Asaresult,alargerareaisaectedbytherisingwaterduetowaveset-upwhichcanbesignicantandhastobeaccountedfor.Therefore,addingawavemodelasanothercomponentofstormsurgecalculationaddsrobustnesstotheentirestormsurgemodelingsystem. Horizontalscaleandgridspacingarealsoimportantaspectsofstormsurgemodeling.Sincehurricanesaectlargeareas,computationaldomainsmustbelargeaswell.Havingsmallgridspacingresultsinmoreaccurateresultsbutitalsomeansmorecomputationalcellsand,asaresult,morecomputationalresourcesandtime. Modelsoftwodierentscalesareusedinstormsurgemodelingingeneralandthisstudyinparticular:(1)Regionalmodelswhichsimulatelargeregions(e.g.,theNorthAtlantic),havearelativelycoarsespatialresolutionandprovideboundaryconditionsforlocalmodels;(2)Localmodelswhichsimulatesmallerareasofparticularinterest(e.g.,TampaBayorChesapeakeBay)andhavenespatialresolution. Themethodologypresentedhereinconsistsoffourmodels.Tworegionalmodels,ADCIRCandWAVEWATCH-III,andtwolocalmodelsCH3DandSWAN.ADCIRCandCH3Darecirculationmodels,andWAVEWATCH-IIIandSWANarewavemodels.
PAGE 84
Asfortheatmosphericmodel,resultsfromtwosophisticatedatmosphericmodels,NCEPWNAandWINDGEN,wereused.VericationofthesemodelresultsforHurricanesIsabel(2003),Charley(2004),andFrances(2004)canbefoundinChapter 5 . Forsimulationofstormsurgeduringaparticularhurricane,thebasiccouplingprocessisasfollows: First,windandatmosphericpressuresnapshotsareinitialized,i.e.,thewindandatmosphericpressuredatafromoneofthewindmodelsareprocessedtomakethemavailableforthecirculationmodels,ADCIRCandCH3D. Second,waveboundaryconditionsforthelocalwavemodel,SWAN,areinitializedbyprocessingthewavedatacalculatedbytheregionalwavemodel,WAVEWATCH-III,byNOAA. Third,tidalconstituentsalongtheopenboundariesofthelocalcirculationmodel,CH3D,areinitialized.TheseconstituentsarebasedontheADCIRCtidaldatabase( CATS/tides/tides.htm Attheconclusionoftheinitializationphase,thesimulationphasestarts.Therearethreemodelsthatareinvolvedintheactualsimulation:ADCIRC,CH3D,andSWAN.Therearetwotypesofcouplingbetweenthesemodels.Therstoneisone-waycouplingmeaningthattheresultsofmodelAarefedtomodelBwhoseresultsarenotfedbacktomodelA.ThistypeofcouplingoccursbetweenADCIRCandCH3D. Theaccuracyofresultscalculatedbythelocalmodel,CH3D,dependsonaccuraterepresentationofphysicalprocessesinsidethecomputationaldomainandCH3Dboundaryconditions.TheopenboundaryconditionscanbeprovidedeitherbyavailableelddataorthroughcouplingwitharegionalscalemodelsuchasADCIRC.TheADCIRCdomaincoverstheEasternNorthAtlantic,theGulfof
PAGE 85
MexicoandtheCaribbeanSea.Therefore,ADCIRCiscapableofprovidingwaterelevationalongopenboundariesofalocalmodel(CH3D)domain(e.g.,NorthCarolinaorFlorida)duringhurricaneeventswhentheactualhurricaneislocatedthousandsofkilometersaway.Bothmodelscanrunconcurrentlyusingthesametimestep.ADCIRCresultsarenotaectedbyresultsofCH3D.Thesameone-waycouplingisusedtocoupleWAVEWATCH-IIIandSWAN. Thesecondtypeofcouplingistwo-waycouplingwhichisalsoknownasdynamiccoupling,wheretheresultscalculatedbymodelAarefedtomodelBwhoseresultsarefedbacktomodelA.Thistypeofcouplingisusedtocouplethelocalcirculationmodel,CH3D,andthelocalwavemodel,SWAN. CH3Dsolvesforwaterelevationandcurrents.Italsoaccountsforsituationswhenlandcellsbecomeoodedandviceversa.SWANcomputeswaveconditionswithinthesamecurvilineargridasusedinCH3D.Sincewaveconditionschangerelativelyslowly,thewavemodelsimulationwasconductedevery30minutestoeasethecomputationalburden.Thismeansthatafterthirty60-secondCH3Dtimesteps,thetwomodelsmutuallyexchangeinformation.CH3Dloadsinwaveinformation(waveheight,waveperiod,andwavedirection)toaccountforwavesetup.SWAN,inreturn,updatesbathymetrythatchangesintimeduetotide,stormsurge,wavesetup,andinundationofpreviouslandareas.ThecurrenteldusedinSWANsimulationgetsupdatedaswell.Also,theupdatedwindeldispassedontothewavemodelviaCH3D. AdiagramoftheentirecouplingprocessfrominitializationtoconcurrentsimulationandcouplingofADCIRC,CH3D,andSWANisshowninFigure 3{2 .
PAGE 86
Figure3{2: Adiagramofthecouplingprocess.
PAGE 87
4.1.1Description HubbertandMcInnes ( 1999 )showedthattheirstormsurgeheightsatthecoastproducedby'xedcoastline'versionofthemodelwereoverestimatedby17%comparedwiththeinundationversionoftheirmodel.Thisoverestimationcomesasaresultofthewaterbeingpiledupnearthecoastbytheactionofhighwindandthe'xedcoastline'stormsurgemodelnotallowingthewatertopropagateinland. 64
PAGE 88
TheCH3Dmodeliscapableofaccountingforwetting-and-drying.Themethodisbasedonalightlymodiedversionofarobustwetting-and-dryingschemedevelopedby CasulliandCheng ( 1992 ).ThetechnicaldescriptioncanbefoundinSection 2.3.4.2 .Theideais,everytimestepthemodelcalculatesfreesurfaceelevationwhichisthenusedtocalculatetotaldepth.Ifthetotaldepthinacomputationalcellexceedssome\critical"value(i.e.,30cm),thenthecellisconsideredtobewet,otherwisedry. 4{1 below.Thereisaverticalwallinmiddleofthecomputationaldomainwhichextendsfromthebottomtohalfoftheverticalcolumn.Initially,thegridcellstotheleftofthewallarelledwithwaterandtheonestotherightaredry.Therearefouroutputlocationsinthemiddleofeachverticalcolumn.TheresultsofcomputedwatersurfaceelevationineachoutputlocationareshowninFigure 4{2 . Theresultsareinagreementwithwhatonewouldexpect.Thewatersurfaceelevationincolumns1and2dropsquicklyandtendstoreachhalfofthetotalwaterdepthastimeprogresses.Ontheotherhand,watersurfaceelevationincolumns3and4rapidlyincreasesaswaterllsupthepartofthedomaintotherightofthewall.Italsotendstoreachhalfofthetotaldepth.Eventually,the
PAGE 89
Figure4{1: Thewalltestcase:computationallayout. watersurfaceelevationbecomesequaltohalfofthetotaldepththroughouttheentiredomain. Figure4{2: Thewalltestcase:calculatedwatersurfaceelevation.
PAGE 90
makethewaterpileupagainstthebeachandmovethewatermassinlandcausingooding. ThecomputationallayoutofthetestisshowninFigure 4{3 .Thebedismildlysloped(1:100,000)andthewind(0.1dyne/cm2)blowsonshore.Therearefouroutputlocations.Location1isinitiallydryandbecomeswetduringthesimulation.Locations2through4arewetatalltimes.TheresultsofwatersurfaceelevationcalculatedineachlocationareshowninFigure 4{4 . Figure4{3: Thewindtestcase:computationallayout. Theresultsareconsistentwithwhatonewouldexpect.InLocation1,whichisinitiallydry,surfaceelevationdoesnotchangeduringsomeperiodoftimeduetothereasonthatthewaterwhichispilingupagainstthebeachhasnotyetreachedthelocation.ToclarifythebehaviorofthebluelineinFigure 4{4 ,ithastobenotedthatitwasplottedthewaythatwhenacellisdryithasnovalueforwaterelevation.Lateron,whenLocation1getsinundatedbythewaterthatisbeingpushedonshorebytheblowingwind,thewaterelevationstartstogrowfromtheinitialelevationwhichisgroundlevel. Location2isinitiallyunderwaterandwatersurfaceelevationincreasesintimeasexpected.Location3isalittleoshoreandthewatersurfaceelevationincreases
PAGE 91
Figure4{4: Thewindtestcase:calculatedwatersurfaceelevation. morerapidlythanthatofLocation2asaresultofLocation3beingclosertotheopenboundarywherethewindisblowingfromand,therefore,ittakeslesstimeforthewindtoreachLocation3andstarttopileupwaterthere. Location4isfartheroshoreneartheopenboundary.Watersurfaceelevationstartstogrowinthebeginningbutthenitstartstodeclinedueconservationofmass. CarrierandGreenspan ( 1958 )forpropagationofwavesonalinearlyslopingbeachwasapplied.Theone-dimensionalnonlinearshallowwaterequationcanbewrittenas: @t[(+h)u]=0 (4{1) (4{2)
PAGE 92
Theobtainedsolutiontotheequationintheformofapotentialisasfollows: (4{3) whereA0isanarbitraryamplitudeparameterandJ0isazeroBesselfunctionoftherstkind.Thispotentialrepresentsastandingwavesolutionresultingfromaperfectreectionofaunitfrequencywave. Thefollowingcomputationallayoutwassetuptosolvefor(x;t)andu(x;t)forgivenlocation,x,andtime,t.A1615orthogonalgrid62kmlongand10kmwidewithbottomslopingat1:2500.Thedepth,h,variesfrom2mabovethemeansealevelto22.8mbelowthemeansealevelatx=57km.Thegridspacinginthelongshorey-directionisxedandequalto2kmwhereasthegridspacinginthecross-shorex-directionvaries.Fortherst10.5km(goingoshore)thegridspacingisxedat100m,thenfrom10.5kmto15km,thegridspacinglinearlygrowsfrom100mto1kmadding100meverygridcell.From15kmto62km,thegridspacingisxedat1km.Thetidalforcingappliedinthemodelatx=57kmis Tt) (4{4) wheretheamplitude,A,is11.24cmandtheperiod,T,is3600s. Duringthissimulationthenon-lineartermsintheCH3Dmodelwereturnedonsincetheanalyticsolutionwasderivedusingthoseterms.TheresultsofcomparisonofcalculatedsurfaceelevationwithanalyticsolutionatdierenttimesareshowninFigures 4{5 through 4{11 . 4.2.1Description
PAGE 93
Figure4{5: Tidalcase:comparisonwithanalyticsolutionatt=0. Figure4{6: Tidalcase:comparisonwithanalyticsolutionatt=/6.
PAGE 94
Figure4{7: Tidalcase:comparisonwithanalyticsolutionatt=/3. Figure4{8: Tidalcase:comparisonwithanalyticsolutionatt=/2.
PAGE 95
Figure4{9: Tidalcase:comparisonwithanalyticsolutionatt=2/3. Figure4{10: Tidalcase:comparisonwithanalyticsolutionatt=5/6.
PAGE 96
Figure4{11: Tidalcase:comparisonwithanalyticsolutionatt=. atmosphericpressuregradientgivesrisetowatersurfaceelevationintheocean.Thesignicanceoftherisedependsonthemagnitudeofthegradient.InCartesiancoordinatesystem,themomentumequationincludingairpressuretermcanbewrittenas: @t+advection=@Pa @x+diffusion(4{5) @t+advection=@Pa @y+diffusion(4{6) SincetheairpressuretermcanbewrittenaswaterheadPa=wg#,equations 4{5 and 4{6 canberewrittenas: @t+advection=g@# @xg@ @x+diffusion(4{7) @t+advection=g@# @yg@ @y+diffusion(4{8)
PAGE 97
Incurvilinearcoordinatesystemafternon-dimensionalization,theequationstransformintothefollowingform: @t=H(g11@# @+g12@# @)H(g11@ @+g12@ @)+otherterms(4{9) @t=H(g21@# @+g22@# @)H(g21@ @+g22@ @)+otherterms(4{10) whereothertermsincludenonlinearterms,Coriolisterm,diusionterms,surfaceandbottomfrictionterms.Theairpressuretermsinequations 4{9 and 4{10 aretreatedfullyexplicitlywhenthe2Dequationsaresolved. Holland ( 1980 )andsimpliedasin Wilson ( 1957 )(seeSection 2.3.1 ).Thelocalpressureinastormcanbewrittenas: whereP0isthepressureinthecenterofthestorm,P1isthefreestreampressure,risthedistancefromthecenterofthestorm,andRistheradiustomaximumwind. Forsteadystatecondition,thewatersurfaceelevationduetothepressuregradientofthestormcanbewrittenas: whereCisspeciedbyboundaryconditionsorsimplyzeroincaseofsteadystateconditions. Thecomputationaldomainforthetestwasa100km100kmrectangulargrid.Thefollowingparameterswereusedforanalyticalstorm: atmosphericpressureatcenter,P0=960mb;
PAGE 98
freestreampressure,P1=1013mb; radiustomaximumwind,R=30km. TheanalyticalsolutionofwaterlevelisshowninFigure 4{12 andthedier-encebetweentheanalyticalsolutionandnumericalsolutionisshowninFigure 4{13 .Thedierenceisontheorderof0.0001cm,whichvalidatestheaccuracyoftheimplementedintheCH3Dmodelatmosphericpressuregradientterms. Figure4{12: Analyticalsolutionofwatersurfaceelevationduetoatmosphericpressuregradientforasimpliedhurricane. 4.3.1Description 2.3.4.4 ,a1-Dwave-currentbottomboundarylayer(BBL)modelisexploitedinCH3Dtocalculatebottomshearstressthroughnonlinearinteractionbetweenwavesandcurrents.TheeddyviscosityinthemodelisdeterminedusingaTKEclosuremodeldevelopedby Shengand
PAGE 99
Figure4{13: Dierenceinwaterelevationbetweentheanalyticalandnumericalsolutions. Villaret ( 1989 ).TheBBLmodel'sgoverningequationsandintegralconstrainscanalsobefoundinthatsection. ( 1979 )carriedoutalaboratoryexperimentinaU-shapedwatertunnelduringwhichtheymeasuredoscillatoryvelocitiesthroughoutthewatercolumnand,basedonthemeasurements,determinedbottomstresses.Thefollowingparameterswereusedduringtheexperiment: WaterDepth=10m; WaveHeight=5.3m;
PAGE 100
WavePeriod=8.39s; BottomRoughness=0.077cm. Inthenumericalsimulations,theverticalcomputationalgridwassetupinawaythatthegridspacingnearthebottomwasontheorderof0.0001cm;itgrewasthedistancefromthebottomincreased.Thecomputationaltimestepwas0.01s. AscanbeseeninFigure 4{14 ,thecalculatedvelocityprolesareingoodagreementwithmeasuredvelocities.TheRMSerrorsareshownforeachindividualproleandforallprolesaltogether.TherelativeRMSerrorswerecalculatedbasedonthemaximumrangeofmeasuredvelocities(440cm/s).Ithastobenotedthatoneofthesourcesofthecalculatederrormaybeattributedtotheasymmetryofthemeasuredfreestreamvelocityabovetheboundarylayer.Themeasurementsshowedthatthefreestreamvelocityrangedfrom-220cm/sto201cm/swhereastheoscillatoryowimposedthroughboundaryconditionsinthemodelwasimpliedsymmetricallyandrangedfrom-210cm/sto210cm/s. Figure4{14: Comparisonbetweenmeasured( JonssonandCarlsen , 1979 )[dashedlinewithsquares]andcalculated[solidline]velocityprolesforeightphaseangles.
PAGE 101
Figure 4{15 showsthephaselagsofhorizontalvelocitiesatvariouslevels.Thehorizontalvelocitynearthebottomshowsaphaseleadof24o.Theabovemodelresultsareconsistentwiththeresultsof Sheng ( 1982 )and ShengandVillaret ( 1989 ),whichusedaReynoldsstressmodelandaTKEmodel. Figure4{15: Verticalproleofthecalculatedphaselagbetweenhorizontalveloci-tiesandfreestreamvelocity. Figure 4{16 showshowthecalculatedbottomstresscomparesagainstthebot-tomstressdeterminedbasedonthevelocitymeasurementsduringtheexperiment.TherelativeRMSerrorwascalculatedbasedonthemaximumrangeofmeasuredbottomstress(880dyne/cm2).Fromthiscomparison,itcanbeconcludedthatthecalculatedandmeasuredbottomstressesagreewell,whichvalidatestheuseofthe1-DBBLmodelforcomputingvelocitiesandbottomstressesintheoscillatorybottomboundarylayer. BakkerandDorn ( 1978 )laboratoryexperimentwasperformed.Thewaterdepthduringtheexperimentwas0.3m.Theoscillatoryow
PAGE 102
Figure4{16: Comparisonbetweencalculated[solidline]bottomstressandbottomstressdeterminedbasedonmeasurementsduringthe JonssonandCarlsen ( 1979 )experiment[dashedlinewithsquares]. withaperiodT=2swasimposedthoughoscillatorymotionboundaryconditionaccordingto: Tt1+U2sin22 Tt2+U3sin32 Tt3(4{13) wherevelocityamplitudesofthethreeharmonicsweredenedas: andtheircorrespondingphaseanglesweredenedas: Thebottomroughnesswas0.07cmandthecurrentvelocityspeciedatthetopofa6.2cmthickbottomboundarylayerwas22.7cm/s. AcomparisonbetweenmeasuredandcalculatedvelocityprolesshowninFigure 4{17 demonstratesthatthenumericalresultsareingoodagreementwithmeasuredvelocitieswhichvalidatestheuseofthemodelforcomputingvelocityproleswithinturbulentbottomboundarylayerforcombinedwave-currentows.
PAGE 103
TheRMSerrorsareshownforeachindividualproleandforallprolesaltogether.TherelativeRMSerrorswerecalculatedbasedonthemaximumrangeofmeasuredvelocities(55cm/s). Figure4{17: Comparisonbetweenmeasured( BakkerandDorn , 1978 )[dashedlinewithsquares]andcalculated[solidline]velocityprolesforeightphaseangles. BakkerandDorn ( 1978 )didnotdeterminebottomshearstressbasedontheirmeasurements,thusFigure 4{18 showsonlythecalculatedbottomstressoveronewavecyclealongwithitsaveragevalue. 4.4.1Description 1.1.3 ,breakingwavesproduceexcessmomentumuxintheshorewarddirection,radiationstress.Theshorewarddecreaseinradiationstressisbalancedbyashorewardincreaseinthewaterlevel,wavesetup.Wavesetupvariesincross-shoreandlongshoredirectionsasaresultofcomplexbathymetry.Thewidthofthesurfzonedependsonthebeachslopeandincident
PAGE 104
Figure4{18: Bottomstressduetowave-currentinteractioncalculatedusingthe1-DBBLmodelbasedonthenumericalsimulationofthe BakkerandDorn ( 1978 )laboratoryexperiment. waveheight.Forthesamebeachslope,amodestwavebreaksclosertotheshorewhilealargerwavebreaksfurtheroshore. AswaspointedoutinSection 2.3.4.5 ,twoformulationsareimplementedinCH3D:verticallyuniform( Longuet-HigginsandStewart , 1964 )andverticallyvarying( Mellor , 2003 ).WhencoupledwithSWAN,CH3Daccountsforwavesetup,whichisanimportantfactorinstormsurgemodelingandhastobeconsidered.
PAGE 105
Therstexperimentwasby StiveandWind ( 1982 ).Intheexperimenttheauthorsstudiedvariationsofradiationstressandmeanwaterlevelforthetwo-dimensionalshoalingandbreakingofprogressive,periodicwavesonaplane,gentlysloppinglaboratorybeach.Theexperimentwasconductedinawaveumewhichis55mlong,1mwideand1mhigh(seeFigure 4{19 ).Aplaneconcretebeachwitha1:40slopewasinstalled.Theslopeconsistsofthreeparts(i)aslopingzonewhichstartsinawaterdepthof0.85mwherewavesaregenerated,(ii)azonewithaconstantdepthof0.70mtoenabletheinstallationofinstruments,and(iii)anotherslopingbeachzone. Figure4{19: LayoutofStiveandWindexperimentalsetup(from StiveandWind ( 1982 )). Theexperimentwassimulatedusingaslightlydierentcomputationaldomain.Thereasonforthemodicationwasthatthewidthofthewaveumeusedintheexperimentwasonly1manditslengthwasapproximately45m.IntheSWANmodelthereareaectedareaswitherrorsalonglateralboundariesspreadingtotheshoreatanangleofapproximately30o.Therefore,thelateralboundariesshouldbesucientlyfarawayfromtheareaofinteresttoavoidpropagationoftheerrorintothisarea.Thus,thedomaininthetransversedirectionwasexpandedfrom1mto20m.Sincetheproblemisessentiallyone-dimensionalthewidthofthedomainshouldnotmatteraslongastheareaofinterestisnotaectedbythelateralboundaries. Duringtheexperimentthefollowingwaveparameterswereusedbythewavegenerator:waveheightHrms=0.159m,whichwasconvertedtosignicantwaveheightsincetheSWANmodeldoesnotoperatewithmonochromaticwaves,
PAGE 106
Thesecondexperimentwasby MoryandHamm ( 1997 ).Inthisexperimenttheauthorsstudiedtheimpactofadetachedbreakwateroncoastalmorphologyina3-Dwavebasin.Thebasin(seeFigure 4{20 ),30m30mbysize,consistsofthreeparts(i)azone4.4mwidewithaconstantdepthof0.33mwhichistheclosesttothewavemaker,(ii)anunderwaterplanebeachwiththeslopeof1:50,and(iii)anemergedplanebeachwiththeslopeof1:20.Adetachedbreakwater6.66mlongand0.87mwidewasbuiltperpendiculartooneofthelateralwalls. Figure4{20: LayoutofMoryandHammexperimentalsetup(from MoryandHamm ( 1997 )). Oneoftheirtests,whichwasextensivelystudiedexperimentallyandnumeri-cally,wasforaJONSWAPdistributionincidentwavegeneratedbythewavemakerwithHsig=11.5cmandTpeak=1.69s.JONSWAPdistributionisoneoftheoptionsusedinSWAN.TheothertwodistributionsthatthemodeliscapableofsimulatingareGaussianandPierson-Moskowitz.Detailedmeasurementsofwaveheights,
PAGE 107
setupandcurrentsweremadeduringtheexperiment.Wavesetupwasmeasuredat6locationsalongatransectperpendiculartotheshoreline.Theaccuracyofthemeasuredwavesetupvalueswas0.02cm.ComparisonofmeasuredandsimulatedwavesetupisshowninFigure 4{21 . Figure4{21: Comparisonbetweenmeasuredandcalculatedwavesetup( MoryandHamm ( 1997 )experiment). TheresultscompareverywellwiththeaverageRMSerrorbeing0.04cm,whichisontheorderofaccuracyofmeasuredwavesetup,andtheaveragerelativeerrorbetweenallstationsbeing6.25%. 4.5.1DescriptionofCross-shoreandLongshoreCurrents
PAGE 108
SunandSheng ( 2002 )studiedtheimportanceofwave-inducedcurrentsandotherwaverelatedeectsonthegeneralnearshorecirculation.Inordertoaccountfortheseeects,acoupleofwave-relatedfeatureswereincorporatedinCH3D. First,anewsocalledsurfacerollertermwasimplemented. Svendsen ( 1984 )showedthatthesurfacerollerofbreakingwavesplaysanimportantpartinmass,momentumandenergybalanceinthesurfzoneandistheprimarydrivingmechanismfortheundertow.Therollerrepresentsanincreaseinradiationstresswhichaccordingto Svendsen ( 1984 )canbewrittenasfollows: LgH2b(4{14) where,S+xxistheincreaseoftheradiationstressabovethewavetrough,Listhewavelength,hiswaterdepth,andHbisthebreakingwaveheight. Thesecondimplementedtermwasanadditionaltermtotheverticaleddyviscosityinordertoaccountforwaveeects.Following Battjes ( 1975 )and VriendandStive ( 1987 )thewave-enhancedverticaleddyviscosityhasthefollowingform: where,AzcistheeddyviscosityrelatedtothemeancurrentsascomputedbytheequilibriumclosuremodelimplementedintheCH3Dmodel.Dbisthewaveenergydissipationresultedfromwavebreakingandbottomfriction,histhewaterdepthandMisaconstant. Thewaveenergydissipation,Db,wascalculatedaccordingto BattjesandJanssen ( 1978 )asfollows: 4gQbH2m whereQbisthefractionofbreakingwaves,Hmisthemaximumwaveheightthatcanexistatthisdepth,andTisthewaveperiod.Thefractionofbreakingwaveswascalculatedfromthefollowingimplicitrelation:
PAGE 109
1Qb whereEtotisthetotalwaveenergy. MoryandHamm ( 1997 )experimentaldatawereusedforvalidation.Theexperimentstudiedtheimpactofadetachedbreakwateroncoastalmorphology.AdetaileddescriptionoftheexperimentalsetupcanbefoundinSection 4.4.2 .SincediractionisnotmodeledinSWAN,thewaveeldcomputedbySWANmaynotbeaccurateintheimmediatevicinityofobstaclesandwillcertainlynotbeaccurateinharborsorbehindbreakwaters.Therefore,insteadoftheSWANmodeltheREF/DIF,anearshorewavetransformationmodeldevelopedby KirbyandDalrymple ( 1994 )wasused. Oneoftheexperimentswasconductedusingamonochromaticincidentwavegeneratedbythewavemakerwithawaveheightof0.075mandawaveperiodof1.69s.ThemostprominentphenomenonobservedduringtheexperimentwasastrongeddybehindthedetachedbreakwaterwhichcanalsobeseeninFigure 4{22 thatshowscalculatedfreesurfaceelevationalongwithcalculatedcurrentpattern.ThelocationswhereverticalvelocityprolesweremeasuredduringtheexperimentaredepictedbylettersAthroughN.Tosimulatetheexperiment,theREF/DIFmodelwasusedtocalculatewaveparametersandprovideradiationstressestodrivethehydrodynamicmodel. Aftershoalingandapproachingthebreakwater,thewavesdiractedbehindthebreakwaterandeventuallybrokeonthebeach.Maximumcurrentvelocityfortheeddywasmorethan0.3m/swhichagreeswellwithobservations.Thevelocityoflongshorecurrentontheopenbeachwasontheorderof0.1m/sorless,alsoingoodagreementwiththeobservation.Theeddywasalmostuniformoverdepthcomparedwiththedistinctive3-Dstructureofthecurrentsontheopenbeach
PAGE 110
Figure4{22: Calculatedfreesurfaceelevationandcurrentpatternalongwiththelocationswhereverticalvelocityprolesweremeasured(lettersAthroughN).
PAGE 111
duetothepresenceoftheundertow.Overall,thecurrentmodelresultsinthisstudyshowverygoodagreementwithmeasurementsqualitativelyandfairlygoodagreementquantitatively. Manyrunsusingvariouscombinationsofdierentparameterssuchaswavebreakingparameter,,bottomroughness,z0,andverticaleddyviscosityequationconstant,M,wereperformed.Twovaluesforwereused,0.55and0.82.Therangeofz0wasfrom0.0003cmto0.4cm,whereasconstantMvariedform0.001to0.025.ForeachruntherelativeRMSerroroftheverticalvelocityproles(total10proles)wascalculated.TheRMSerrorrangedfrom0.190to0.396.ThelowestrelativeRMSerror(=0.190)wasachievedwhenthefollowingparametervalueswereused:=0.55;z0=0.005cm;M=0.003. Smallervalueofasopposedtomoreconventionalwavebreakingparametervalues(0.8)performedbetterduetothereasonthattheREF/DIFmodeltendedtooverestimatethewaveheightwhichledtooverestimationofcomputedradiationstresses. Comparisonofmeasuredandsimulated(withthelowestRMSerror)long-andcross-shorevelocityprolesisshowninFigures 4{23 through 4{28 . 4{29 showsadiagramoftheinstrumentsetup.Wavesaremeasuredatthreelocations:#630(approximately3900moshore),#625(atthetipofthepier,570moshore),and#641(240moshore). Twohurricaneeventsweretested:HurricaneFloyd(September1999)andHurricaneBonnie(August1998).Thecomputationalgridwassetuptheway
PAGE 112
Figure4{23: Simulated(reddashedline)vs.measured(greensolidline)longshorevelocities:prolesA,B,C,andN. Figure4{24: Simulated(reddashedline)vs.measured(greensolidline)cross-shorevelocities:prolesA,B,C,andN.
PAGE 113
Figure4{25: Simulated(reddashedline)vs.measured(greensolidline)longshorevelocities:prolesD,F,I,andH. Figure4{26: Simulated(reddashedline)vs.measured(greensolidline)cross-shorevelocities:prolesD,F,I,andH.
PAGE 114
Figure4{27: Simulated(reddashedline)vs.measured(greensolidline)longshorevelocities:prolesEandG. Figure4{28: Simulated(reddashedline)vs.measured(greensolidline)cross-shorevelocities:prolesEandG. TheFRFinstrumentsetupatDuck,NC(
PAGE 115
thattheoshoreopenboundarylayparalleltotheshoreatthelocationofwavegage#630.Thiswasdoneforthepurposeofexploitingwaveparameterssuchaswaveheight,periodanddirectionmeasuredatthislocationastheopenboundaryconditionsusedintheSWANmodel.Thus,thegridwentapproximately3900moshoreinthecross-shoredirectionand3400minthealongshoredirection.BottomsurveysatFRFaredoneeverymonth.Inordertousebathymetryasclosetorealityaspossible,bathymetricdatacollectedduringthemonthofSeptember1999wereutilizedtocreatethegrid.Table 4{1 showsHurricaneFloydwave/windinformationusedastheinputforSWANatthetimewhentheoshorestationrecordedthelargestwaveheightduringthehurricaneFloydevent(=4.78m). Table4{1: WaveparametersusedtoimposeHurricaneFloyd(1999)boundaryconditions. Parameter Value JulianDay 257.401 Hsig(#630) 4.78m Tpeak WaveDirection 98o(TrueNorth) WindSpeed 5.3m/s WindDirection 62o(TrueNorth) Tide 0.58m Thetidevaluewasaddedontopofthebathymetryassumingitwasconstantthroughoutthedomain. Table 4{2 showscomparisonbetweencalculatedandmeasuredsignicantwaveheightattwolocationsalongthepier. Table4{2: ComparisonofcalculatedandmeasuredwaveheightduringHurricaneFloyd(1999). Station# MeasuredHsig,m HsigcalculatedbySWAN,m RelativeError,% 641 1.95 1.82 6.6 625 3.16 3.09 2.2 Sincewavesetupduringstormeventscanbeasignicantfactoraectingthemeanwaterlevel,anothersimulationwasmade.First,theCH3Dmodelwasused
PAGE 116
tocalculatewavesetupasafunctionofcrossandlong-shoredirections.ThewavesetupvaluewasthenaddedontopoftheSWLandthewaveeldwasrecalculatedusingtheSWANmodel.ComparisonbetweencalculatedandmeasuredsignicantwaveheightatthetwolocationsalongthepiertakingintoaccountwavesetupisshowninTable 4{3 . Table4{3: ComparisonofcalculatedandmeasuredwaveheightduringHurricaneFloyd(1999)withwavesetupbeingaccountedfor. Station# MeasuredHsig,m HsigcalculatedbySWAN,m RelativeError,% 641 1.95 1.86 4.6 625 3.16 3.10 1.9 Thecomparisonshowsanexcellentagreementbetweenmeasuredandsimu-latedwaveheight.Theinclusionofwavesetuphelpedreducetherelativeerror. Analogously,Tables 4{4 and 4{5 showHurricaneBonniewave/windinforma-tionandcomparisonoftheresults,respectively. Table4{4: WaveparametersusedtoimposeHurricaneBonnie(1998)boundaryconditions. Parameter Value JulianDay 238.635 Hsig(#630) 3.95m Tpeak WaveDirection 98o(TrueNorth) WindSpeed 20.7m/s WindDirection 111o(TrueNorth) Tide 0.28m Table4{5: ComparisonofcalculatedandmeasuredwaveheightduringHurricaneBonnie(1998). Station# MeasuredHsig,m HsigcalculatedbySWAN,m RelativeError,% 641 1.82 1.72 5.5 625 2.96 2.78 6.1 FRFbathymetricsurveyscollectedduringthemonthofAugustof1998wereusedtocreateacomputationalgrid,whichcoveredthesamedomainandhad
PAGE 117
thesamedimensionsastheoneusedincaseofHurricaneFloyd.Wavesetupwasaccountedforinthesamefashionasbefore,whichhelpedslightlyreducetherelativeerror.
PAGE 118
Inthischapterthevalidationofthemodelingsystemisdiscussed.Themaincriterionformodelvalidationishowwellthesimulatedresultscomparewithmeasureddata.Threehurricanesareconsidered:(1)Isabel(2003)intheOuterBanks,NCandChesapeakeBay,VAarea,(2)Charley(2004)inCharlotteHarbor,FL,and(3)Frances(2004)inTampaBay.Athorougherroranalysisofwind,waveandwaterelevationwasperformed.Eachhurricanewassimulatedseveraltimesusingvariouscombinationsofsixmodelfeatures,e.g.,tide,wind,wavesetup,waveenhancedsurfacestress,waveenhancedbottomfriction,andwetting-and-drying.Thegoalofthesesimulationsistoidentifythoseprocessesthataredominantforeachhurricane. 5.1.1DescriptionAccordingtoNHC A fordetaileddescriptionofthescale).ItmadelandfallnearDrumInletontheOuterBanksofNorthCarolinaasaCategory2hurricanearound17:00UTConSeptember18.Ocialreportsstatethat51peoplediedasaresultofthestorm(17directly),withanocialdamageestimateof$3.37billion.ThetrackchartofIsabelisgiveninFigure 5{1 .IsabelbroughthurricaneconditionstoportionsofeasternNorthCarolinaandsoutheasternVirginia.AccordingtoNOAA'sNationalHurricaneCenter,thehighestobservedsustainedwindover 95
PAGE 119
Figure5{1: BesttrackofHurricaneIsabel(courtesyofNOAANHC). landwas35m/swithgustsupto44m/sataninstrumentedtowernearCapeHatteras,NCat16:22UTConSeptember18.AnothertowerinElizabethCity,NCreported33m/ssustainedwindwithagustto43m/sat18:53UTCthatday.TheNationalOceanServicestationatCapeHatterasreported35m/ssustainedwindwithagustto43m/sbeforecontactwaslost.TheCoastalMarineAutomatedStations(C-MAN)atChesapeakeLight,VAandDuck,NCreportedsimilarwinds.GloucesterPoint,VAreported31m/ssustainedwindswithagustto41m/sat22:00UTConSeptember18,whiletheNorfolkNavalAirStationreported26m/ssustainedwindswithagustto37m/sat21:00UTCthatday.Thewindrecordfromthemostseriouslyaectedareasisincomplete,asseveralobservingstationswereeitherdestroyedorlostpowerasIsabelpassed. ThestormsurgeofHurricaneIsabelwas0.3to1.0mhigherthanitwasforecast,especiallyinthenorthernChesapeakeBayandPotomacBasins.Table 5{1
PAGE 120
providesmeasuredstormsurgecrestsatseveralsitesinNorthCarolina,Virginia,andMaryland. Table5{1:MeasuredstormtidecrestsatseveralsitesinNorthCarolina,Virginia,andMaryland. StormTide(m,NAVD88) 0.68 Beaufort,NC 1.23 CapeHatteras,NC 2.04 OregonInletMarina,NC 1.48 Duck,NC 1.83 MoneyPoint,VA 2.06 ChesapeakeBayBridge,VA 1.87 Sewell'sPoint,VA 1.99 Scotland,VA 1.75 King'sMill,VA 1.61 GloucesterPoint,VA 1.46 ColonialBeach,VA 1.66 Kiptopeke,VA 1.54 Wachapreague,VA 1.86 Richmond,VA 2.44 Washington,D.C. 1.98 Baltimore,MD 2.24 Annapolis,MD 1.97 TolchesterBeach,MD 2.16 Cambridge,MD 1.57 OceanCityInlet,MD 0.80 Philadelphia,PA 1.83 ReedyPoint,DE 1.75 Lewes,DE 1.30 CapeMay,NJ 1.18 Burlington,NJ 2.00
PAGE 121
alltheaectedareaswascreated.Thegrid(Figure 5{2 )containstwoopenbound-aries:ThesouthernopenboundarystartsatWilmington,NCandgoes300kmtotheeastwherethecontinentalshelfends,whiletheeasternopenboundaryextends578kmtothenorth.Bothopenboundariesarefarawayfromthecoastlineoftheareasaectedbythehurricane.ThedistancefromtheSouthOuterBankstothesouthernopenboundaryrangesfrom40to80kmwhereasthedistancefromtheEastOuterBankstotheeasternopenboundaryisbetween40and60km.Theareaofthecomputationaldomainis134,385km2withatotalof548,240computationalgridcellsandanaveragegridspacingof500m.192,608(35%)ofthosecomputationalcellsarewatercells.ThegridcoverstheentireChesapeakeBayandallofitsriverbasinsincludinglandcellsforcalculationofwettinganddrying.TheUSGSNationalElevationDataset( E ).Thegridextendsinlandfarenoughtotheheightsoftensofmeterssothatitwouldbeimpossibleforthewatertoreachtheinlandgridboundariesduringhurricaneevents. 5{2 .
PAGE 122
Figure5{2: TheOuterBanksandChesapeakeBaygriddomainforIsabelsimula-tion.
PAGE 123
Table5{2: Tide,windandwavestationsusedforvalidationofthemodelduringHurricaneIsabel. Lat Lon Easting Northing WaterElev.Data WindData WaveData CurrentData (oN) (oW) (UTM18,m) (UTM18,m) Source Source Source Source Vert.Datum AnemometerHeight(m) Depth(m) Depth(m) CapeLookout 34.620 76.520 360653 3831954 C-MAN 9.8 Beaufort 34.720 76.670 347084 3843262 NOAA NAVD88 KittyHawk 36.101 75.710 436065 3995427 FRF 8.5 DuckPier 36.180 75.750 432557 4004174 NOAA C-MAN FRF FRF NAVD88 20.4 8.0 8.0 Duck630 36.168 75.701 436954 4002809 FRF 17.0 ChesapeakeBay 36.960 76.110 400923 4091430 NOAA NOAA Bridge NAVD88 ? ChesapeakeLight 36.910 75.710 436752 4085123 C-MAN 43.3 GloucesterPoint 37.244 76.500 366926 4123035 VIMS VIMS VIMS VIMS NAVD88 ? 8.5 8.5 Kiptopeke 37.170 75.990 412109 4114190 NOAA NOAA NAVD88 ? Lewisetta 38.000 76.470 370934 4206834 NOAA NOAA NAVD88 ? MoneyPoint 36.780 76.300 383996 4071255 NOAA NOAA NAVD88 ? HPLWS 38.590 76.133 401326 4271888 CBOS ? ChoptankRiver 38.634 76.159 399124 4276800 CBOS ? NorthBay 39.375 76.113 404427 4382844 CBOS ?
PAGE 124
RiverdischargedatawereobtainedfromUSGSChesapeakeBayRiverInputMonitoringProgram( 5{3 showsthelocationofthenineriverinputmonitoringsites.RiverdischargevaluesatthesestationsduringthemonthofSeptember,2003areshowninFigure 5{4 .Ascanbeseeninthegure,afterHurricaneIsabelmadelandfall(aroundJulianDay261),therewasasignicantincrease(upto40times)inriverdischarge. Figure5{3: LocationofthenineRiverInputMonitoringsites(courtesyofUSGS). Luettichetal. , 1992 )fortheWesternNorthAtlantic,Caribbean
PAGE 125
Figure5{4: RiverdischargeintoChesapeakeBaydataduringthemonthofSep-tember,2003. andGulfofMexico(allwaterswestofthe60oWMeridianandeastoftheNorthAmericancontinent).M2,S2,N2,K2,O1,K1,Q1,M4,M6andSTEADYtidalconstituentsareincluded. SevenconstituentsareusedintheCH3DmodelduringsimulationofHurricaneIsabel.TheconstituentsandtheircorrespondingperiodsarelistedinTable 5{3 . Table5{3: ADCIRCtidalconstituentsandtheirperiodsusedintheCH3DmodeltosimulateHurricaneIsabel. Constituent Period,hours K1 23.93446966 O1 25.81934167 Q1 26.86835668 M2 12.42060122 N2 12.65834826 S2 12.00000000 K2 11.96723479 Itshouldbenotedthatalthoughthetidaldatabasewaspartiallyvalidated(exceptnonlinearlygeneratedconstituentsM4,M6,andSTEADY)by Mukaietal. ( 2001 ),therearestillerrorsassociatedwiththeconstituents.Inordertoimprove
PAGE 126
tidalsimulationbyreducingerrorsassociatedwiththeADCIRCconstituentsintheOuterBanks/ChesapeakeBayarea,ananalysisoftidalconstituentsbasedonacomparisonbetweensimulatedandmeasuredwaterelevationwasperformed.TheanalysiswasdoneusingtheIOSprogram( Foreman , 1977 )forcalculatingtidalconstituentsbasedonmeasuredorsimulatedtimeseriesofwaterelevation.Atwo-monthperiod,Sep-15,2003throughNov-15,2003,waschosenwithtwotimeseriesofmeasuredwaterelevationsavailableduringthatperiodoftimeattwotidalstations:DuckPier,NCandBeaufort,NC.TheDuckPieranalysiscorrespondstotheeasternopenboundaryandtheBeaufortanalysiscorrespondstothesouthernopenboundary.Tables 5{4 and 5{5 belowshowhowconstituentparameters(amplitudeandphase)comparewitheachother. Table5{4: TidalconstituentparametersatDuckPier,NCcalculatedbasedonADCIRCtidalconstituentsandIOSprogram. Simulated(ADCIRC) Measured(IOS) Dierence(ADCIRC-IOS) Constituent Amplitude 9.1 191.2 8.4 176.4 0.7 14.8 O1 6.5 201.3 6.1 207.5 0.4 -6.2 Q1 1.1 195.8 1.2 240.3 -0.1 -44.5 M2 47.0 24.4 47.0 29.1 0.0 -4.7 N2 10.1 9.2 12.1 20.6 -2.0 -11.2 S2 10.3 41.9 10.4 41.7 -0.1 0.2 K2 1.9 29.0 N/A N/A N/A N/A TheseresultsshowthattherearesomediscrepanciesbetweenconstituentsbasedonmeasuredwaterelevationandADCIRCconstituents.ThesediscrepanciesaremorepronouncedattheBeaufortlocation.Thatisconsistentwithourprelimi-narysimulationsofHurricaneIsabelwhensimulatedwaterelevationwasnoticeablyoutofphaseatBeaufort. InordertoimproveHurricaneIsabelsimulationresults,theADCIRCtidalconstituentsusedintheCH3Dmodelalongtheopenboundarieswereadjustedaccordingtotheamplitudeandphasedierencesshownabove.TheDuckPier
PAGE 127
Table5{5: TidalconstituentparametersatBeaufort,NCcalculatedbasedonAD-CIRCtidalconstituentsandIOSprogram. Simulated(ADCIRC) Measured(IOS) Dierence(ADCIRC-IOS) Constituent Amplitude 9.4 193.4 6.7 210.7 2.7 -17.3 O1 7.0 205.5 6.6 221.5 0.4 -16.0 Q1 1.2 197.2 1.0 216.4 0.2 -19.2 M2 43.9 17.2 45.3 37.2 -1.4 -20.0 N2 10.3 2.0 10.8 28.5 -0.5 -26.5 S2 9.3 32.0 8.9 48.3 0.4 -16.3 K2 1.7 17.3 N/A N/A N/A N/A adjustmentwasappliedtotheentireeasternopenboundaryandtheBeaufortadjustmentwasappliedtothesouthernopenboundary.Asaresult,thesimulatedtidewasinmuchbetteragreementwithmeasuredtide,whichwasveryimportant. Windisamajorforcedrivingastormsurge.Sowhenitcomestousingwindinastormsurgemodel,itisveryimportanttovalidatethewindbecauseitsaccuracywillbeasignicantfactorintheoverallaccuracyofmodel'soutput.Twoanalysiswindeldswereusedtodrivethemodel:WINDGENandWNA(refertoTable 2{1 )formoreinformationonthesewindelds). Figures 5{5 through 5{6 showcomparisonbetweenmeasuredwindspeedanddirectionattheCapeLookoutandDuckPierstations,andwindspeedanddirectionobtainedfromWINDGENandWNAwindelddatasetsduringHurricaneIsabel.Thecomparisonforallwindstationswithinthecomputationaldomain,listedinTable 5{2 ,isshowninAppendix D . AthorougherroranalysisofWNAandWINDGENwindspeedandwinddirectionisshowninTable 5{6 .FormulasusedtocalculatetheerrorscanbefoundinAppendix B .
PAGE 128
Figure5{5: WINDGENandWNAvs.measuredwindspeedanddirectionatCapeLookout,NCduringHurricaneIsabel. Figure5{6: WINDGENandWNAvs.measuredwindspeedanddirectionatDuckPier,NCduringHurricaneIsabel.
PAGE 129
Table5{6:ErrorsofWNAandWINDGENwindspeedanddirectioncomparedwithmeasuredatwindstationsduringHurricaneIsabel. WNA WNA WINDGEN WINDGEN speed(m/s) dir(deg) speed(m/s) dir(deg) CapeLookout RMSerror 2.20 18.25 2.48 20.09 Meanabsoluteerror 1.56 8.95 1.96 13.79 Maxabsoluteerror 8.14 128.72 8.08 129.38 onJulianDay 261.860 261.740 261.650 261.740 Duck RMSerror 2.00 6.28 2.56 13.22 Meanabsoluteerror 1.50 4.95 2.15 11.34 Maxabsoluteerror 6.18 13.71 5.74 28.30 onJulianDay 261.890 261.110 260.330 260.750 ChesapeakeLight RMSerror 3.45 8.98 6.02 15.90 Meanabsoluteerror 2.80 8.16 5.34 14.33 Maxabsoluteerror 10.36 16.39 13.65 31.24 onJulianDay 262.220 261.860 261.950 260.780 ChesapeakeBayBridge RMSerror 3.27 7.64 4.33 8.88 Meanabsoluteerror 2.00 5.72 3.72 7.07 Maxabsoluteerror 12.52 20.88 11.98 25.32 onJulianDay 261.980 261.860 262.040 260.150 Kiptopeke RMSerror 6.70 11.11 3.86 14.32 Meanabsoluteerror 5.72 9.62 3.06 11.05 Maxabsoluteerror 14.34 25.80 9.10 33.10 onJulianDay 261.830 262.580 261.710 262.580 GloucesterPoint RMSerror 6.20 69.18 4.09 71.21 Meanabsoluteerror 5.58 56.46 3.29 56.10 Maxabsoluteerror 12.51 173.00 10.97 174.20 onJulianDay 261.620 260.390 262.160 260.390 MoneyPoint RMSerror 9.08 17.65 6.41 17.64 Meanabsoluteerror 8.26 14.72 5.60 13.98 Maxabsoluteerror 19.23 70.77 14.36 76.06 onJulianDay 261.860 260.180 261.830 260.180 HPLWS RMSerror 6.17 31.23 4.93 31.24 Continuedonnextpage
PAGE 130
WNA WINDGEN WINDGEN speed(m/s) dir(deg) speed(m/s) dir(deg) Meanabsoluteerror 5.90 29.17 4.42 28.92 Maxabsoluteerror 10.91 63.70 8.89 57.60 onJulianDay 261.650 260.000 262.130 260.00 ChoptankRiver RMSerror 2.63 28.60 2.54 30.90 Meanabsoluteerror 2.25 24.28 2.00 25.96 Maxabsoluteerror 5.77 90.62 7.64 112.02 onJulianDay 261.890 262.550 262.130 262.550 Lewisetta RMSerror 6.03 14.38 3.35 12.69 Meanabsoluteerror 5.34 12.23 2.77 9.46 Maxabsoluteerror 12.64 44.60 6.46 45.50 onJulianDay 261.620 262.730 261.530 260.000 NorthBay RMSerror 8.64 45.90 5.91 49.02 Meanabsoluteerror 7.81 34.27 5.15 34.80 Maxabsoluteerror 15.89 118.14 12.79 134.64 onJulianDay 261.770 262.070 261.770 262.070 BothwinddatasetscomparewellwiththedataovertheOuterBanksandnearthemouthoftheChesapeakeBay,withtheWNAwindbeingslightlymoreaccurate.InsidetheChesapeakeBay,theWINDGENwindismoreaccuratethanWNAbuttheoverallaccuracyismuchworsewhencomparedtothewinddataovertheOuterBanks.Evidently,boththeWNAandWINDGENwindmodelsdonotperformwelloverthelandandtheChesapeakeBayareaastheydoovertheopenwater.ThisisdisappointingbecausesomeofthewaterelevationstationsliewithintheareawheretheWNAandWINDGENwindswerenotadequate,andthusitwouldbehardtojudgethequalityoftheperformanceofthestormsurgemodelbasedonthepoorwindaccuracy. Waveboundaryconditionswereobtainedfromtheregionalwavemodel,WAVEWATCH-III.Figures 5{7 and 5{8 showacomparisonbetweensignicantwaveheightandpeakwaveperiodobtainedfromtheWAVEWATCH-IIImodel
PAGE 131
Figure5{7: SignicantwaveheightandpeakwaveperiodobtainedfromWAVEWATCH-IIIcomparedwithmeasuredwaveheightatNDBCstation41001. Figure5{8: SignicantwaveheightandpeakwaveperiodobtainedfromWAVEWATCH-IIIcomparedwithmeasuredwaveheightatNDBCstation41002. andmeasuredatNDBCstations41001and41002,acouplehundredkilometersothecoastofNorthCarolinaduringthemonthofSeptember,2003.ItisinterestingtonotethattheHurricaneIsabeltrackpassedrightbetweenthetwowavebuoys.Theseguresshowthatthesimulatedandmeasuredwaveparametersareingoodagreement.Though,asshowninFigure 5{8 ,the41002signicantwaveheightisunderestimatedrightbeforethewaveheightpeakassociatedwithHurricaneIsabelnearJulianDay260.ThiswillhavesomeeectonwaveheightcalculatedbytheSWANmodelinsideourlocalcomputationaldomain.TheeectisdiscussedinSection 5.1.5 ofthischapter.
PAGE 132
4.4 forwavesetupvalidation).Thus,inordertoobtainaccurateestimateonwavesetup,itisessentialtohaveaccuratesimulationofnearshorewaveelds.TheSWANwavemodel(seeSection 2.3.5 )wasusedtosimulatewaveeldsduringHurricaneIsabel. Threesetsofwavedatawereavailableforcomparisonwithsimulatedwaveresults.TwodatasetscamefromtheFieldResearchFacilities(FRF)atDuck,NC(seeFigure 4{29 fortheentireFRFinstrumentsetup);andthethirdsetwasprovidedbyVirginiaInstituteofMarineScience(VIMS)whichmeasuredwavesatGloucesterPoint,VA(seeFigure 5{9 forthelocationoftheVIMSinstrumentpackage).First,letuscomparethesimulatedandmeasuredwaveparametersatthe Figure5{9: LocationoftheVIMSinstrumentpackageatGloucesterPoint,VA.
PAGE 133
FRFWaveriderapproximately4kmoshore(thesedatawillbefurtherreferredtoastheDuck630data).Thedepthatthelocationis17m.ThemaximumsignicantwaveheightmeasuredattheFRFWaveriderbuoyduringHurricaneIsabelwas8.1m,whilethelargestwave(cresttotrough)recordedonSeptember18at19:11UTC,was12.1m.Theratioofthelargestwavetolocalwaterdepth,12:1=17=0:71,isclosetotherangewhenwavesmightstarttobreak.The\simulatedvs.measured"signicantwaveheight,peakwaveperiodandwavedirectionareshowninFigures 5{10 , 5{11 ,and 5{12 ,respectively.ItshouldbepointedoutthatallsimulatedresultspresentedinthissectionwereobtainedusingtheWNAwind,sincetheWINDGENwindforHurricaneIsabelwasslightlylessaccurate.Thesimulatedwaveheightmatcheswellwiththemeasureddatawith Figure5{10: Simulatedsignicantwaveheightvs.measuredfromtheFRFWa-veriderbuoyduringHurricaneIsabel. slightunderestimationatthepeak.ThereisalsoaphaselagrightbeforethepeakwhichmightbeduetoswellwavesgeneratedoutsideofthecomputationaldomainwhichcouldnotbeproperlysimulatedbytheSWANmodelbecause,aswasdiscussedinSection 5.1.4 ,thewaveheightboundaryconditionsobtainedfrom
PAGE 134
theregionalWAVEWATCH-IIImodelwereslightlyunderestimatedrightbeforeHurricaneIsabelpassedoverthearea. Theconsequenceofsuchwaveheightunderestimationwillmostlikelyresultinlowerthanexpectedwavesetuprightbeforethepeakofthestorm.Despitethat,however,thepeakwaveheightvaluesmatchwell,whichshouldresultinanaccuratecalculatedwavesetupcontributiontotheoverallpeakstormsurgelevel.Thecalculatedpeakwaveperiodmatchesthemeasuredpeakperiodverywell,so Figure5{11: Simulatedpeakwaveperiodvs.measuredfromtheFRFWaveriderbuoyduringHurricaneIsabel. doesthecalculatedwavedirection,especiallyduringthepeakofthestormwhenthedierencewaslessthan5degrees,anexcellentagreement. Wavedirectionisanimportantfactorincalculationofwavesetup.Waveraysapproachingtheshoreperpendicularlywillcausehigherwavesetupasopposedtothecasewhentheyapproachtheshoreinanobliquemanner( ShengandAlymov , 2002 ).Wavedirectioncanalsoinuencetheestimationofcross-shoreandlongshorecurrents.Figure 5{13 showsresultsobtainedfromatestcasesimulationofthe StiveandWind ( 1982 )laboratoryexperiment,withashorelineonthe
PAGE 135
rightandincidentwavesontheleftsidewhereHsig=0.226mandT=1.79sec.Thetoppanelplotshowsthecalculatedwavesetupandcurrentscausedbywavesapproachingtheshoreata45oangle(fromsouth-westtonorth-east).Thecalculatedwavesetupandcurrentscausedbywavesapproachingtheshoreat-45o(fromnorth-westtosouth-east)areshowninthebottompanelplot.Northerlyandsoutherlylongshorecurrentsareformedinbothplots.Sincenootherforcingmechanism(windortide)wasconsideredinthissimulation,currentsaregeneratedbywaveactiononlythroughradiationstressesandwavesetup. Figure5{12: Simulatedwavedirectionvs.measuredfromtheFRFWaveriderbuoyduringHurricaneIsabel. Now,letuscomparesimulatedandmeasuredwaveparametersattheendoftheFRFpierapproximately600moshore(thesedatawillbereferredtoastheDuck625data).Thedepthatthislocationis8.4mandthemaximummeasuredsignicantwaveheightduringHurricaneIsabelwas3.7m.The\simulatedvs.measured"signicantwaveheightandpeakwaveperiodcomparisonsareshowninFigure 5{14 .Therewasnorecordofwavedirectionatthatlocation.ThetrendinsimulatedsignicantwaveheightattheFRFpierissimilartothatattheDuck
PAGE 136
Figure5{13: Atestcase:wavesetupandcurrentsinducedbywavesapproach-ingtheshorefromsouth-westtonorth-east(toppanel),andfromnorth-westtosouth-east(bottompanel).
PAGE 137
Figure5{14: Simulatedsignicantwaveheightandpeakwaveperiodvs.measuredfromtheFRFpierduringHurricaneIsabel. 630location.Thepeakvaluesmatchwellbutthesimulatedwaveheightdidnotcapturetheincreaseofthemeasureddatawaveheightapproximatelyonedaybeforetheactualstormcamein.ThisismorelikelyduetotheinabilityoftheSWANmodeltoaccountforlargeswellwavesthatarecomingfromoutsideofthecomputationaldomain. Aswaspointedoutearlierinthissection,theunderestimationofwaveheightbeforethepeakofthestormwillresultinlowerthanexpectedwavesetupduringthattime.Butduetothefactthatthepeakwaveheightvaluesmatchwell,thecontributionofthecalculatedwavesetuptotheoverallstormsurgeduringitspeakattheendoftheFRFpiershouldbeaccurate.Thecalculatedpeakwaveperiodisagainingoodagreementwiththeobservedone. Now,letuscomparesimulatedandmeasuredwaveparametersatGloucesterPoint,VA(thesedatawillbereferredtoastheVIMSdata).Thedepthatthelocationisaround8.5m,whilethemaximummeasuredsignicantwaveheightduringHurricaneIsabelwas1.7m.The\simulatedvs.measured"signicantwaveheightandpeakwaveperiodcomparisonsareshowninFigure 5{15 .Therewasnorecordofwavedirectionatthatlocation.Thecalculatedsignicantwaveheightisslightlyoverestimatedbasedoncomparisonwithmeasuredwaveheight,although
PAGE 138
Figure5{15: Simulatedsignicantwaveheightandpeakwaveperiodvs.measuredatVIMSduringHurricaneIsabel. thepeaksagreewell.ThemainreasonbehindthisisthestrongWNAwindwhichinrealitywasslightlyweaker(seeFigure D{7 inAppendix D ).TheresultoftheslightwaveheightoverestimationatVIMSwillbeaslightlyhigherthanexpectedwavesetupinthatlocation.Thecalculatedpeakwaveperiodagreeswellwithobserved. 5{16 through 5{22 .AlltheothersimulatedversusmeasuredwaterelevationresultsduringHurricaneIsabelareshowninAppendix F . ItcanbenotedthatthepeakvaluesofthecalculatedwatersurfaceelevationmatchthemeasuredwaterelevationwellatDuck,ChesapeakeBayBridge,andGloucesterPoint.ThesimulatedwindattheOuterBanksandlowerChesapeakeBayagreewellwithdataand,asaresult,thesimulatedwaterelevationsagreewell
PAGE 139
Figure5{16: Comparisonofsimulatedvs.measuredwaterelevationatBeaufort,NC.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. Figure5{17: Comparisonofsimulatedvs.measuredwaterelevationatDuck,NC.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind.
PAGE 140
Figure5{18: Comparisonofsimulatedvs.measuredwaterelevationatChesapeakeBayBridge,VA.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. Figure5{19: Comparisonofsimulatedvs.measuredwaterelevationatGloucesterPoint,VA.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind.
PAGE 141
Figure5{20: Comparisonofsimulatedvs.measuredwaterelevationatMoneyPoint,VA.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. Figure5{21: Comparisonofsimulatedvs.measuredwaterelevationatKiptopeke,VA.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind.
PAGE 142
Figure5{22: Comparisonofsimulatedvs.measuredwaterelevationatLewisetta,VA.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. withmeasureddata.Rightbeforethepeak,aslightunderestimationcanbeob-servedatallthestations.Aswaspointedoutintheprevioussection,thecomputedwaveheightbeforethepeakwasunderestimatedduetotheunderestimatedwaveboundaryconditionsprovidedtoSWANbytheregionalWAVEWATCH-IIImodel.Thisunderestimationresultedinlowerthanexpectedwavesetuprightbeforethepeakofthestorm.Thewaveheightatthepeakofthestormwasaccuratelysimulated,whichresultedinadequatecontributionofcalculatedwavesetuptothesimulatedwaterlevelatthattime. Maximumsimulatedwaterelevations(includingtide,surgeandwavesetup,andrelativetoNAVD88)intheOuterBanksandChesapeakeBayduringIsabel,calculatedusingWNAwind,areshowninFigure 5{23 .HighwaterelevationscanbeseennotonlyintheareawhereIsabelmadelandfallbutalsothroughouttheentireOuterBanksandlowerChesapeakeBay.Thehighestvaluereached4.0matthetipoftheOuterBanksnearBuxton,NC.Thecomputedwaterlevelreached3.2
PAGE 143
mjustsouthofPamlicoSoundneartheupperSouthRiver,NC.InVirginia,thehighestcalculatedwaterlevelof3.5mcanbeobservedinCobbBaynearCheritonandButlerCreeknearBraysLanding.ThemaximumwaterlevelintheupperJamesRiver,VAreached3.0m. Figure 5{24 showsthemaximumwavesetupelevationcalculatedduringIsabelusingWNAwind.Ascanbeseeninthisgure,wavesetupreached1.2mandoodedpartsofthechainofemergentbarrierislandsinthesouthernOuterBanks.Thisdemonstratesthatwavesetupcanbeasignicantfactorandcontributortostormsurgelevelandinundation. Figure 5{25 showsthestormsurgeatallsevenstationswithtidessubtractedfromthesimulatedwaterlevelwhichincludesallforcingmechanisms(tide,wind,wavesetup,waveenhancedsurfaceandbottomfriction). Thecalculatedstormsurgeatthesevenstationsshowsawiderange:from1.3mnearDuck,NCto2.0mnearGloucesterPoint,VA. Itshouldbenotedthatduringthepeakofthesurge,thetidewasatitshighstage.Infact,atDuck,NCthetidewasatitshighestlevelof0.45m.BythetimeIsabelapproachedChesapeakeBay,thetidehadalreadypasseditspeakandstartedtorecede. PlotsshowingcomparisonbetweenthesimulatedstormsurgeelevationandmeasuredstormsurgeelevationcanbefoundinAppendix F . Throughoutthemodeldomain,ittook19to26hoursfromthepointwhenthesurgelevelstartedtorisetothepointwhenthesurgeretreated,withshorterperiodsoccurredovertheOuterBanksandlongeronesinthelowerChesapeakeBay.Forexample,althoughDuck,NCandGloucesterPoint,VAstartedtoexperiencetheincomingstormsurgeatapproximatelythesametime,evenafterithadrisentoitsmaximumlevelatDuck,thesurgekeptonrisingatGloucesterPoint.
PAGE 144
Figure5{23: MaximumwaterelevationrelativetoNAVD88(includestide,surgeandwavesetup)calculatedduringsimulationofHurricaneIsabelintheOuterBanks/ChesapeakeBayusingWNAwind.
PAGE 145
MaximumwavesetupelevationrelativetoNAVD88calculatedduringsimulationofHurricaneIsabelinthesouthernpartofOuterBanksusingWNAwind. Figure5{25: Simulatedstormsurge(waterlevelminustide)atthesevenstationsthroughouttheOuterBanks/ChesapeakeBayusingWNAwind.
PAGE 146
Ithastobepointedoutthatmeasuredwaterelevationconsistsoftwoparts:tideandstormsurgeitself.Theoretically,thestormsurgepartcanalsobesplitintotwoconstituents,oneduetowindactionandtheotherduetowavesetup.Butpracticallyitisimpossibletolteroutthewavesetupfromthestormsurgeandthereforeitwouldbereasonableifweleftthestormsurgeelevationintact.Tide,ontheotherhand,canbelteredoutusingthe DoodsonandWarburg ( 1941 )39-hourlyaveragetidallterasdescribedby Groves ( 1955 ). Anerrorbetweenmeasuredandcalculatedwaterelevationcanbeattributedtoeithertideorstormsurgeortheircombination.Inordertoestimatethecontributionofeachsourceoferror,a\pure"tidesimulationwasperformedanditsresultswerecomparedwithtidalelevationwhichwaslteredoutfrommeasuredwaterelevationusing DoodsonandWarburg ( 1941 )39-hourlyaveragetidallter.\Pure"tidesimulationmeansthattheonlyboundaryforceimposedduringthatsimulationwastideandallotherforcingmechanismssuchaswindandwavewerenotconsidered. Inordertoweightheeectofeachcomponentinvolvedinthenon-linearinteractionbetweenthesurge,tide,wind,andwave,severalsimulationsweremadebyincludingdierentcomponentcombinations.Turningthewetting-and-dryingfeatureonandowasanoptionaswell.Table 5{7 speciesthesixspecicfeaturesincludedinvesimulations.
PAGE 147
Table5{7:Alistofsimulationswithvariouscombi-nationsofsixmodelfeatures(psymboldenotesthefeaturewasincludedduringthesimulation). Factors Sim1 Sim2 Sim3 Sim4a Tide p p p p p p p p p p p p p p p p p p p p p Table 5{8 showstheRMS,MeanAbsolute,andMaximumAbsoluteerrors(seeAppendix B fordenitions)ofcalculatedwaterelevationduringHurricaneIsabel.Errorsofpeakvalues(measuredpeakelevationminussimulatedpeakelevation)and\timing"errors(thetimewhenmeasuredpeakelevationoccurredminusthetimewhensimulatedpeakelevationoccurred)arealsoshown.Aseparatecolumninthetabledisplaystheerrorsattributedto\pure"tide.Tidalrangeisalsoshownforeachstation. ( 1993 )formulationwasused2 ( 1979 )formulationwasused3 ( 1989 )formulationwasused
PAGE 148
Table5{8:ErrorsofwaterelevationattidestationsduringHurricaneIsabel.Themodelresultsaredatawerecomparedevery15minutes. WNAwind WINDGENwind Tide Sim1 Sim2 Sim3 Sim4a Sim1 Sim2 Sim3 Sim4a Station:Beaufort(depth=4.0m;tidalrange=115cm) RMSError(cm) 3.8 24.8 18.0 18.3 19.4 19.3 19.0 26.2 20.1 20.8 21.8 21.9 20.4 MeanAbsError(cm) 3.1 15.1 11.1 11.4 13.5 12.4 12.4 16.4 12.4 12.9 14.8 13.9 13.3 MaxAbsError(cm) 8.9 72.0 61.9 61.5 66.1 66.5 68.3 77.9 64.6 61.8 62.4 62.4 66.7 Meas.SurgePeak(cm) 107 ErroratPeak(cm) 55 37 35 41 40 26 54 42 35 41 47 38 TimingatPeak(min) 1 0 16 -14 7 19 -30 -26 -32 -42 -32 5 Station:Duck(depth=5.8m;tidalrange=140cm) RMSError(cm) 3.6 13.1 10.5 10.0 10.1 10.0 10.2 15.8 11.1 9.9 10.0 9.5 11.0 MeanAbsError(cm) 2.8 9.5 7.8 7.5 7.6 7.5 7.5 10.8 8.4 7.6 7.7 7.3 8.5 MaxAbsError(cm) 11.0 42.7 36.4 34.6 34.3 34.5 35.6 51.7 32.4 27.3 27.5 27.1 30.6 Meas.SurgePeak(cm) 171 ErroratPeak(cm) 27 10 -1 0 0 1 36 19 11 11 9 15 TimingatPeak(min) 66 46 -16 -16 -16 71 59 45 45 45 45 43 Station:ChesapeakeBayBridge(depth=10.6m;tidalrange=110cm) RMSError(cm) 4.1 13.1 11.2 8.9 9.8 9.1 9.7 18.1 14.6 12.9 13.7 13.1 13.0 MeanAbsError(cm) 3.4 9.1 7.7 6.7 7.2 6.8 7.1 11.9 9.8 8.9 9.6 9.0 8.5 MaxAbsError(cm) 9.4 45.0 38.3 27.5 32.9 28.3 32.0 51.5 49.0 42.3 45.2 42.5 30.6 Meas.SurgePeak(cm) 168 ErroratPeak(cm) 34 33 20 27 21 19 35 35 24 31 29 27 TimingatPeak(min) 9 1 0 0 0 6 14 10 16 10 10 12 Continuedonnextpage
PAGE 149
WINDGENwind Tide Sim1 Sim2 Sim3 Sim4a Sim1 Sim2 Sim3 Sim4a Station:GloucesterPoint(depth=8.5m;tidalrange=80) RMSError(cm) 5.7 13.1 11.2 10.5 11.0 10.2 10.0 22.3 19.3 15.1 18.4 16.3 15.3 MeanAbsError(cm) 4.5 9.9 8.5 7.9 8.2 7.9 7.3 14.6 13.1 11.1 13.1 11.9 10.5 MaxAbsError(cm) 16.1 42.2 40.7 32.7 35.3 28.9 41.3 71.5 63.4 45.0 57.2 50.8 52.1 Meas.SurgePeak(cm) 199 ErroratPeak(cm) 30 25 -10 13 -6 -23 58 60 42 57 46 44 TimingatPeak(min) -118 -104 -143 -120 -115 -131 39 16 24 -6 3 36 Station:MoneyPoint(depth=13.1m;tidalrange=100cm) RMSError(cm) 9.8 22.2 20.7 26.1 24.8 25.2 16.3 31.7 25.5 31.5 27.5 29.4 23.7 MeanAbsError(cm) 8.0 14.1 13.5 16.1 14.8 16.3 10.3 19.3 16.7 17.8 17.5 17.4 15.4 MaxAbsError(cm) 21.4 115.1 106.7 145.0 131.7 136.3 93.1 127.4 108.8 151.9 115.3 133.0 101.7 Meas.SurgePeak(cm) 192 ErroratPeak(cm) 23 31 20 32 24 14 46 36 25 36 29 32 TimingatPeak(min) 92 53 42 56 45 78 33 26 26 26 10 36 Station:Lewisetta(depth=3.0m;tidalrange=45cm) RMSError(cm) 5.6 19.8 16.9 14.7 19.7 15.5 16.1 19.6 18.3 16.6 21.3 17.8 15.5 MeanAbsError(cm) 4.7 14.2 12.3 10.7 14.0 11.4 11.9 14.2 13.3 12.3 15.3 13.3 11.2 MaxAbsError(cm) 13.3 65.2 56.1 50.6 64.6 52.6 43.7 69.1 67.7 64.5 73.5 65.2 55.7 Meas.SurgePeak(cm) 131 ErroratPeak(cm) 55 48 43 60 46 13 53 47 38 52 42 33 TimingatPeak(min) -154 -198 -198 -142 -168 -259 -60 -115 -100 -118 -122 -113 Station:Kiptopeke(depth=2.4m;tidalrange=95cm) RMSError(cm) 5.4 17.7 15.4 16.7 19.4 17.5 12.4 16.9 13.4 13.0 15.4 14.0 12.1 MeanAbsError(cm) 4.8 11.5 9.8 10.2 12.4 10.8 9.6 11.7 9.5 9.3 11.2 10.2 9.6 Continuedonnextpage
PAGE 150
WINDGENwind Tide Sim1 Sim2 Sim3 Sim4a Sim1 Sim2 Sim3 Sim4a MaxAbsError(cm) 11.6 64.5 57.8 64.1 74.0 67.1 40.0 56.7 50.0 48.7 56.2 50.9 41.6 Meas.SurgePeak(cm) 138 ErroratPeak(cm) 58 54 55 66 58 31 46 44 42 52 45 32 TimingatPeak(min) 60 60 60 60 60 -185 72 72 72 58 71 69 AvgRMSError(cm) 5.4 17.7 14.8 15.0 16.3 15.3 13.4 21.5 17.5 17.1 18.3 17.4 15.9 AvgErr.atPeak(cm) 40 34 26 34 28 19 47 40 31 40 35 32 AvgTimingError(min) 71 66 72 58 59 107 44 44 45 44 42 45
PAGE 151
Basedonthiserroranalysis,especiallyontheaverageRMSerrorsandaverageabsoluteerrorsatthepeakwaterelevation,itcanbeconcludedthattheWNAwindproducedslightlybettersurgesimulationresultsthantheWINDGENwind.ThisisconsistentwiththeoverallanalysisofwinddatashowninTable 5{6 ,whichjustiestheimportanceofwindaccuracy:moreaccuratewindproducesmoreaccuratewaterelevationresults. TheaccuracyofthesimulatedwaterelevationdependedontheaccuratesimulationoftidewhichwasaccurateacrosstheOuterBanksuptothemouthoftheChesapeakeBay,withtheaverageRMSerrorofapproximately4cm.Insidethebay,theaccuracyofthecalculatedtideworsened,withtheaverageRMSerrorincreasingto6cm.Sodidtheaccuracyofthesimulatedwaterelevation,whichwasalsoaccompaniedwiththeworseaccuracyoftheWNAwindinsidetheChesapeakeBayasopposedtothatovertheOuterBanks. Overall,Simulation3producedbetterresultsintermsofsmallerRMSerrorsandbettercomparisonwithmeasuredwatersurfaceelevationatitspeak.Waterlevelcalculatedusingwaveenhancedbottomfrictionbasedonthe ShengandVillaret ( 1989 )formulation(Simulation4b)wasslightlyworse.Simulation4awhichaccountedforwaveenhancedbottomfriction( GrantandMadsen ( 1979 )formulation)wasevenworseduetooverestimatedbottomfriction.Simulation5whichdidnotaccountforwetting-and-dryingimprovedtheresultsinsideChesapeakeBay,buttheonlyreasonforthisimprovementwasthatthecalculatedwaterelevationwassignicantlyunderestimatedthere,sowhentheoodingwasturnedo,thewaterelevationwasabletogain20-30cmmore,thusmakingitlookbetter. The\timing"errorsareverysmall(basedonSimulation4busingWNAwind,0to16min)forthethreeOuterBankstations(Beaufort,Duck,andChesapeakeBayBridge).FortheotherfourstationsinsideChesapeakeBaytheerrorsaremuch
PAGE 152
larger(45mintoalmost3hours).ThisisconsistentwiththefactthattheWNAwindwasmoreaccurateintheOuterBanksareacomparedwiththewindintheChesapeakeBayarea.Also,moreaccurateovertheOuterBanksareaWNAwindproducedsmaller\timing"errorscomparedwithlessaccurateWINDGENwindinthatarea.AndmoreaccurateovertheChesapeakeBayWINDGENwindproducedsmaller\timing"errorscomparedwithlessaccurateWNAwindinthatarea. Table 5{9 showspeakwaterelevationvaluescalculatedduringthesesimu-lationsalongwiththemeasuredvalue.Thetablealsodisplayspercentincreaseordecreaserelativetothesimulationintheprevioussimulationcolumn(e.g.,atGloucesterPoint,theSimulation2value"3%relativetotheSimulation1value,andtheSimulation4aand4bvalues#12%and#2%relativetotheSimulation3value,respectively).Percentvalueforeachstationwasnormalizedbythemeasuredvalueatthisstation. Includingwaveandradiationstressterms(Simulation2)increasedthecalculatedwaterlevelby1-17%.MoresignicantwavesetupeectwasobservedalongtheOuterBanksandlesssignicantinsideChesapeakeBay.Thisisinaccordancewiththewaveheightdistributionoverthearea:largerbreakingwavesresultedinhigherwavesetup.IntheChesapeakeBay,waveswerenotashighasneartheOuterBanks,thusthewavesetupwaslower. Addingwaveenhancedsurfacestresshelpedfurtherincrease(inmostcases)thecomputedwaterelevationby5-18%.AtBeaufort,theincreasewasnotverysignicant(2%),andatKiptopeke,a1%decreasewasobserved.Thishappenedbecauseduringthepeakofthestorm,thewindwasblowingprimarilyoshore.Wavesincreasedthestressthuspushingmorewateroshoreandcreatingaslightset-down.Accountingforwaveenhancedbottomfrictionusingthe GrantandMadsen ( 1979 )modeldecreasedthecalculatedwaterelevationby1-14%.Theimportanceofthewaveenhancedbottomfrictionwasmoresignicantinside
PAGE 153
shallowerChesapeakeBay.Itisknownthatthe GrantandMadsen ( 1979 )modeltendstooverestimatethewaveenhancedbottomstress( Sheng , 1982 ),althoughtherewasinsucientdataduringHurricaneIsabeltoconrmthis.Toimprovetheuncertaintyofthewave-enhancedbottomstress,aone-dimensionalturbulentboundarylayermodelwithTKEclosure( ShengandVillaret , 1989 )wasusedtodevelopa\look-uptable"(seeSection 2.3.4.3 )forcalculatingwaveenhancedbottomstressinawiderangeofcombinedwave-currentboundarylayerows. Whenwetting-and-dryingschemewasnotactivatedduringthecalculation,thepeakwaterlevelvalue,ingeneral,grewanextra2-20%,althoughtheelevationactuallydroppednearDuck.AfteranalyzingtheoodmapobtainedduringSimulation4bwhenwetting-and-dryingwasactivated,itturnedoutthatthispartofthegridhadhighenoughtopographicelevationsoitdidnotgetoodedduringIsabel.Therefore,whenwetting-and-dryingwasdisabled,thecalculatedwaterelevationwouldnotbeaectedmuchanyway.Whydidtheelevationactuallydrop?IthappenedbecausewhentheCH3Dmodelrunsin\nowetting-and-drying"mode,aminimumdepthhastobespecied.DuringSimulation5,thisdepthwassetto10m,meaningthatanygridcellwhosedepthwaslessthan10mwasforcedtobe10m.Normally,theminimumdepthshouldbesetaslowaspossibletoreducethenumberofcellstobeaectedbythecut-odepth.Pickingasmallvaluemightcausethemodeltobecomeunstable,especiallyunderseverewindconditions,andblow-upwhichdidhappenwhentheminimumdepthwassettolessthan10m.TheactualdepthatDuckislessthan6m,soduringSimulation5,itwassetto10m.Suchdeepeningofthebathymetrycausedaslightdecreaseinthecalculatedwatersurfaceelevation.Thiscasebringsoutaproblemrelatedtostormsurgemodelswithoutwetting-and-drying.Mostsuchmodels,includingADCIRC,haveacut-odepth.Thismayresultininaccuratestormsurgesimulations.
PAGE 154
Table5{9:MeasuredpeakwaterelevationsatsevenstationsduringHurricaneIsabelusingWNAwindandvariouscombinationsofstormsurgemodelfeatures. Sim1 Sim2 Sim3 Sim4a Meas. cm cm cm cm cm cm cm Beaufort 52 70"17% 72"2% 66#6% 67#5% 81"13% 107 Duck 144 161"10% 172"6% 171#1% 171#1% 166#3% 171 Ches.BayBr. 134 135"1% 148"8% 141#4% 147#1% 149"1% 168 GloucesterPt. 169 174"3% 209"18% 186#12% 205#2% 208"10% 199 MoneyPoint 169 161#4% 172"6% 160#6% 168#2% 178"5% 192 Kiptopeke 80 84"3% 83#1% 72#8% 80#2% 99"14% 138 Lewisetta 76 83"5% 89"5% 71#14% 85#3% 96"8% 131
PAGE 155
Table5{10:Calculatedpeakstormsurge(withtidessubtracted)atsevenstationsduringHurricaneIsabelusingWNAwindandvariouscombinationsofstormsurgemodelfeatures. Sim1 Sim2 Sim3 Sim4a Meas. cm cm cm cm cm cm cm Beaufort 19 34"18% 38"5% 39"1% 39"1% 38#1% 83 Duck 103 120"13% 131"8% 1310% 1310% 126#4% 131 Ches.BayBr. 97 111"10% 118"5% 115#2% 117#1% 126"6% 142 GloucesterPt. 165 176"6% 203"16% 183#12% 195#5% 200"3% 170 MoneyPoint 127 132"3% 133"1% 127#4% 130#2% 146"9% 171 Kiptopeke 81 96"14% 98"2% 88#9% 94#4% 109"14% 108 Lewisetta 80 89"8% 95"5% 76#16% 91#3% 105"12% 118
PAGE 156
Table 5{10 showspeakstormsurgevalues(tidewassubtractedfromwaterelevation)computedduringthesesimulations.Percentincreaseordecreasewascalculatedthesamewayitwascalculatedintheprevioustable. Theresultsdemonstratethatincludingwavesetupincreasedandimprovedthecalculatedsurge,especiallyatBeaufortandDuck.Itseectrangedbetween3-18%.Wave-enhancedwindalsomadethecomputedsurgelookbetterbyincreasingthevaluesby1-16%.Thewave-enhancedbottomstresscalculatedusingthe GrantandMadsen ( 1979 )model,mostlymadethesurgelookworsebydecreasingthepeaksurgevaluesby0-16%.Waveenhancedbottomstresscalculatedusingthe ShengandVillaret ( 1989 )formulation(Simulation4b)decreasedthesurgelessdramatically,by0-5%.Whenthewetting-and-dryingfeaturewasinactive,thesurgelevelinsideChesapeakeBaygrewby3-14%. Anotherinterestingfactcanbededucedfromcomparingwaterelevationcal-culatedbylinearsuperpositionofseparatelysimulatedtide,wavesetup,andsurgewithwaterelevationcalculatedthroughthedynamiccoupling.Figure 5{26 showstheindividuallycalculatedtide,wavesetup,andsurge,andtheirlinearsuperposi-tionatDuck.Figure 5{27 showshowthelinearlycoupledwaterelevationatDuckstacksupagainstthewaterelevationwhichwascalculatedthroughdynamiccou-plingofthecirculationandwavemodels.Themeasuredwaterelevationisshownaswell.Similarly,Figure 5{28 showshowlinearlyanddynamicallycoupledresultscompareatGloucesterPoint. Ascanbeseenfromthesegures,atthepeakthelinearlycoupledwaterelevationisonlyslightlyhigherthanthedynamicallycoupledone.Doesthismeanthatthedynamiccouplinginstormsurgemodelingdoesnotbringinasignicantimprovement?Notnecessarily.Thismightbethecasewhenoneisnotconcernedaboutooding,otherwisethemajordierencebetweenlinearanddynamiccouplingcanbeobservedoverinundatedareas.Indeed,Figures 5{29 through 5{31 show
PAGE 157
Figure5{26: Separatelysimulatedtide,wavesetup,andsurge,andtheirlinearsuperpositionatDuck. Figure5{27: Linearlycoupledwaterelevationvs.waterelevationcalculatedthroughdynamiccouplingatDuck,NC.
PAGE 158
Figure5{28: Linearlycoupledwaterelevationvs.waterelevationcalculatedthroughdynamiccouplingatDuck,NC. waterelevationcalculatedlinearlyanddynamicallyatthreeinlandlocationsthatwereoodedduringIsabel:1)southofPamlicoSoundneartheSouthRiver,2)ononeoftheemergentislandsoftheOuterBanks,and3)nearGloucesterinChesapeakeBay.Thetopographicelevations(relativetoNAVD88)atthethreelocationsare1.23m,0.77m,and0.87m,respectively. Ascanbeseenfromthegures,atthebeginningallthreelocationsaredry.Then,inthemiddleofthestorm,theygetinundatedandafterthestormpassestheygetdryagain.Thedierencebetweenwaterelevationscalculatedlinearlyanddynamicallyissignicantduringthepeakofthestorm.Thereasonbehindthatisthatwhentideandwavesetupwerecalculatedseparately,theirelevationwasnothighenoughtooodthoselocations.Thus,onlyseparatelycalculatedsurgewasabletooodthoseareasbutitwassignicantlylowerthantheonecalculatedthroughthedynamiccoupling.Also,whencoupledlinearly,thelocationnearSouthRiverwasooded10hoursaftertheareawasoodedusingthedynamiccoupling.
PAGE 159
Figure5{29: Linearlycoupledwaterelevationvs.waterelevationcalculatedthroughdynamiccouplingneartheSouthRiver,NC.ThelocationisinitiallydryandgetsoodedduringIsabel.Afterthesurgerecedes,itbecomesdryagain. Figure5{30: Linearlycoupledwaterelevationvs.waterelevationcalculatedthroughdynamiccouplingononeoftheemergentislandsoftheOuterBanks,NC.ThelocationisinitiallydryandgetsoodedduringIsabel.Afterthesurgerecedes,itbecomesdryagain.
PAGE 160
Figure5{31: Linearlycoupledwaterelevationvs.waterelevationcalculatedthroughdynamiccouplingnearGloucester,VA.ThelocationisinitiallydryandgetsoodedduringIsabel.Afterthesurgerecedes,itbecomesdryagain. 5{32 through 5{37 showthehighestsimulatedinundationcausedbyHurricaneIsabelduringitspassageovertheOuterBanksandChesapeakeBayusingWNAwind.Theplotsalsoidentifythetimewhenthehighestoodleveloccurred.Similarly,Figures 5{35 through 5{37 showthemaximumsimulatedinundationusingWINDGENwind. Simulation3(seeTable 5{7 )usingWNAwindproducedthebestcomparisonbetweenmeasuredandsimulatedwaterelevationsatallthewaterelevationdatastationsthroughoutthecomputationaldomain.Therefore,thissimulationwasconsideredasthebasesimulationforestimatingtheamountofinundationcausedbyIsabel.Theoodedareaaected7675km2ofland,mostlythesurroundingsoftheCroatan-Albemarle-PamlicoEstuarySystem.
PAGE 161
Figure5{32: MaximumsimulatedinundationinthesouthernpartoftheOuterBanksduringHurricaneIsabelusingWNAwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaximumoodoccurred.
PAGE 162
Figure5{33: MaximumsimulatedinundationintheeasternpartoftheOuterBanksduringHurricaneIsabelusingWNAwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaximumoodoccurred.
PAGE 163
Figure5{34: MaximumsimulatedinundationintheChesapeakeBayduringHurri-caneIsabelusingWNAwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaximumoodoccurred.
PAGE 164
Figure5{35: MaximumsimulatedinundationinthesouthernpartoftheOuterBanksduringHurricaneIsabelusingWINDGENwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaximumoodoccurred.
PAGE 165
Figure5{36: MaximumsimulatedinundationintheeasternpartoftheOuterBanksduringHurricaneIsabelusingWINDGENwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaximumoodoccurred.
PAGE 166
Figure5{37: MaximumsimulatedinundationintheChesapeakeBayduringHurri-caneIsabelusingWINDGENwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaximumoodoccurred.
PAGE 167
Therewasnodirectinundationdataavailableagainstwhichtocompareouroodmaps.TheonlydatathatcouldbefoundtocomparethecalculatedinundatedareasareairphotostakenbeforeandafterIsabelpassedoverthedomain.Figures 5{38 and 5{39 showpre-stormandpost-stormairphotostakenattwolocations,inthesouthernandeasternOuterBanks,respectively(seeFigure 5{2 forlocationinformation).Byexaminingthepre-stormandpost-stormphotos,itcanbeseenthattheseareasweresubjecttoextensiveinundationduringIsabel.Thebottompanelsintheguresdemonstrateclose-upsofourcomputedinundationmapswhichalsodisplaythepresenceofwaterovertheland.Thisvalidationcannotbeconsideredcompleteandisratherqualitativebecausetheactualmeasuredoodlevelisunknownbut,despitethat,itshowsagoodpotentialofthestormsurgemodelingsystemforpredictinginundation.
PAGE 168
Figure5{38: Pre-storm(top)andpost-storm(middle)airphotostakeninthesouthernOuterBanks(courtesyofUSGS,
PAGE 169
Figure5{39: Pre-storm(top)andpost-storm(middle)airphotostakenintheeast-ernOuterBanks(courtesyofUSGS,
PAGE 170
DuringthepassageofHurricaneIsabel,currentprolesweremeasuredattwolocations.TherstlocationisnearKittyHawk,NC(seeFigure 5{40 )approximately3kmoshorein8.8mdepth.Thislocationisawayfrominletsandanyotherfreshwatersources.Therefore,currentstherearemostlydrivenbytide,windandwave.ThesecondlocationisinsideChesapeakeBaynearGloucesterPoint,VA(seeFigure 5{41 )wherecurrentsareaectednotonlybytheactionoftidebutsalinitystraticationaswell.Thedepthatthelocationis8.5m. Figure5{40: LocationofKittyHawk,NCwherecurrentsweremeasured. ItisofinteresttocomparemeasuredcurrentstothosecalculatedbyourstormsurgemodelingsystemingeneralandtheCH3Dmodelinparticular,primarily
PAGE 171
Figure5{41: LocationofGloucesterPoint,VAwherecurrentsweremeasured. toexaminehowrobustthecurrent-wavecouplingalgorithmsinCH3Dare.Thecouplingaccountsforwavesetupthrougheitherdepthuniform( Longuet-HigginsandStewart , 1964 )orverticallyvarying( Mellor , 2003 )radiationstresses,wave-enhancedsurfacestressandwave-inducedbottomfriction. Thecurrentswereclassiedasthe\SouthtoNorth"currentand\WesttoEast"current.Thelattercanbelookedatasthealong-channelcurrentatGloucesterPointandasthecross-shorecurrentnearKittyHawk(althoughnotexactlyduetotheshorelineorientationinthatarea)andtheformercanbeconsidered,againtosomedegree,asthelongshorecurrentnearKittyHawk.EightverticallayerswereusedintheCH3DmodeltosimulatecurrentsduringIsabel.Comparisonbetweenmeasuredandcalculated\SouthtoNorth"and\WesttoEast"currentsatKittyHawkisshowninFigures 5{42 and 5{43 .TheGloucesterPointcomparisonisshowninFigures 5{44 and 5{45 . SimulatedcurrentsatKittyHawkagreewellwithmeasureddata,althoughatthepeakofthestormthe\WesttoEast"simulatedcurrentisoverestimated.SimulatedcurrentsatGloucesterPointareinworseagreementwithmeasured
PAGE 172
Measured(left)andsimulated(right)\SouthtoNorth"currentatKittyHawk,NCduringHurricaneIsabel. Measured(left)andsimulated(right)\WesttoEast"currentatKittyHawk,NCduringHurricaneIsabel. data,especiallyintheWest-Eastdirection.Thisispartiallyduetothecloseproximityofthecurrentmetertotheshoreline.Neartheshoreline,owsimulatedbythemodelcloselyfollowstheshorelineorientation.Inordertoeectivelyaccountforhorizontaldiusion,therehastobeenoughgridcellsbetweentheinstrumentlocationandtheshoreline.ReningthegridintheareahelpedincreasetheaccuracyofsimulatedcurrentsbutitwasnotenoughtoachieveasaccurateagreementwithmeasureddataasitwasachievedatKittyHawk.
PAGE 173
Measured(left)andsimulated(right)\SouthtoNorth"currentatGloucesterPoint,VAduringHurricaneIsabel. Measured(left)andsimulated(right)\WesttoEast"currentatGloucesterPoint,VAduringHurricaneIsabel.
PAGE 174
5.2.1DescriptionAccordingtoNHC 5{46 .ThestormmovedrapidlyacrosstheCaribbean, Figure5{46: BesttrackofHurricaneCharley(courtesyofNOAANHC). andreachedhurricanestrengthonAugust11,150kmsouthofKingston,Jamaica.HurricaneCharleythenpassedjustsouthofJamaica,andthenextmorningpassedbetweenGrandCaymanandLittleCayman.OnthenightofAugust12,
PAGE 175
CharleypassedjusteastoftheIsleofYouth,thenovermainlandCuba,justwestofdowntownHavana. AfterpassingoverCuba,CharleycrossedtheStraitsofFlorida.Around13:00UTC,CharleypassedovertheDryTortugas.Tropicalstormforcewindsof41mph(65km/h)wererecordedatKeyWestInternationalAirport,115kmeast. ThecourseCharleytookatthistimecaughtmanybysurprise.InsteadoffollowingthepredictedtrackthroughtheTampa-St.Petersburgarea,Charleymadeanabruptturntothenortheast,headingforFortMyersandSanibelIsland.Nevertheless,thistrackwaswellwithintheocialforecast'smarginoferror. Atthesametimeasitturned,Charleyrapidlystrengthened,goingfromaCategory2stormat110mph(170km/h)toaCategory4stormat145mph(235km/h)inonlythreehours.Thisrapidintensicationwasoutsidetheocialforecast,whichcalledforonlyaslightstrengtheningbeforelandfall.ThechangeinstrengthwassodrasticthattheNHCissuedaspecialhurricaneadvisoryoutsideofitsnormalschedule.Itispossiblethatthewindswereevenstrongeratlandfall,possiblyatornearCategory5strength(155mphor250km/h),basedonlaterimagesandassessments. CharleybecamethesecondtropicalstormtostrikeFloridain24hourswhenTropicalStormBonniestrucktheFloridapanhandleinApalachicolaat14:00UTConAugust12,22hoursbeforeCharleywentovertheDryTortugas.Thismade2004therstyeartwonamedstormshavestruckthesamestateinthesame24-hourperiodsince1906.Mainlandlandfalloccurredonly29hoursapart. OnAugust13at19:45UTC,CharleymadelandfallatCayoCosta,northofFortMyers.CharleymovedinlandnearCharlotteHarborshortlyafterwards. Nearmidnightlocaltime(August14,04:00UTC),Charleybeganmovingbackoverwater,exitingFloridanearDaytonaBeach.Itreturnedtolandaround15:00UTCnearNorthMyrtleBeach,SCstillretaininghurricanestrength.Charley
PAGE 176
continuedtorunoandonlanduptheEastCoastoftheUnitedStates,anddissipatednearCapeCodaroundmid-dayonAugust15.Charley'sstrongestgustsweremeasuredat180mph(290km/h)atPuntaGorda. OnedeathinJamaica,fourdeathsinCuba,and10deathsintheUnitedStatesweredirectlyattributedtoCharley.PropertydamagefromCharleywasestimatedbytheNHCat$14billion.ThismakesCharleythesecondmostcostlyhurricaneinAmericanhistory,behindHurricaneAndrew's$26billionin1992,andaboveHurricaneHugo's$7billion($9.4billionin2000dollars)in1989. 5{47 )containsthreeopenboundaries.ThesouthernopenboundarystartsjustnorthofNaples,FLandextends60kmoshore.ThenorthernopenboundarystartsnearVenice,FLandstretches50kmoshore.Thelengthofthewesternopenboundaryis107km.Theareaofthecomputationaldomainisapproximately10,350km2withthetotalnumberofcomputationalgridcellsof22,419.10,127(45%)ofthosecomputationalcellsarewatercells.Gridspacingvariesfrom2kmneartheoshoreopenboundaryto200mwithinSanCarlosBayandEsteroBay.ThegridcoverstheentireCharlotteHarborwithallofitsriverbasinssuchasCaloosahatchee,Peace,andMyakkarivers.Thegridcontainslandcellstoaccountforwetting-and-drying.TheUSGSNationalElevationDataset(
PAGE 177
islands.Thegridextendsfarinlandsothatitwouldbepracticallyimpossibleforthewatertoreachtheinlandgridboundariesduringcoastalinundation. TheCharlotteHarborgriddomain. Both,windspeedanddirectionweremeasuredattwostations:onestationatFtMyersandanotheronelocatedatNaples.TheNaplesstationislocatedapproximately10kmsouthofourmodeldomain'ssouthernopenboundary.Such
PAGE 178
proximityallowedustomakeuseofthewinddataforcomparisonwithWNAandWINDGENwind.Figures 5{48 through 5{51 demonstrateacomparisonanalysisbetweenmeasuredwindspeedanddirectionatthetwowindstationsvs.thoseobtainedusingWNAandWINDGENwinddata.TheFtMyersstationwasinoperativefor2.5hoursduringthetimewhenCharleywaspassingoverthearea.ThewinddirectionmeasuredatFtMyerswasalmostconstantallthetimewhichwasalittlestrange.Thesametrendwasobservedafteranalyzingthedataovera3-monthperiodpriortoCharley.SincewinddirectionmeasuredatNapleswasingoodagreementwithWNAandWINDGENwinddirection,winddirectiondataatFtMyerswereconsiderederroneousandwerenotused. TheWINDGENwindatthetwostationswasstrongerthantheWNAwind,thoughitwashardtojudgewhichoneofthetwowasbetterbecausethestationatFtMyersbrokedownbeforethewindreacheditsmaximumandtheNaplesstationwasalittletoofarfromthecenterofthehurricane. Figure5{48: WMeasuredwindspeedvs.WINDGENandWNAwinddataatFtMyers,FLduringHurricaneCharley.
PAGE 179
Figure5{49: Measuredwinddirectionvs.WINDGENandWNAwinddataatFtMyers,FLduringHurricaneCharley. Figure5{50: Measuredwindspeedvs.WINDGENandWNAwinddataatNaples,FLduringHurricaneCharley.
PAGE 180
Figure5{51: Measuredwinddirectionvs.WINDGENandWNAwinddataatNaples,FLduringHurricaneCharley. 5{52 through 5{55 .AlltheothersimulatedversusmeasuredwaterelevationresultsduringHurricaneCharleyareshowninAppendix G . Ascanbeseeninthegures,simulatedwaterelevationusingWNAwindwassignicantlyunderestimatedatallfourlocations.Incontrasttotheseresults,simulatedwaterelevationusingWINDGENwindlookedmuchbetter,matchingthesurgepeakverywellatBigCarlosPass,slightlyoverestimatingthesurgepeakatbothlocationsinEsteroBay,andunderestimatingthepeaksurgevalueatFtMyers.SuchdiscrepancyinthesimulatedwaterelevationsusingthetwowindsisaresultoflargedierencebetweenWNAandWINDGENwindeldsduringthe
PAGE 181
Figure5{52: Comparisonofsimulatedvs.measuredwaterelevationatBigCarlosPass.Twosimulatedresultsareshown:oneusingWNAwindandanotherusingWINDGENwind. Figure5{53: Comparisonofsimulatedvs.measuredwaterelevationatEsteroBay,location1.Twosimulatedresultsareshown:oneusingWNAwindandanotherusingWINDGENwind.
PAGE 182
Figure5{54: Comparisonofsimulatedvs.measuredwaterelevationatEsteroBay,location2.Twosimulatedresultsareshown:oneusingWNAwindandanotherusingWINDGENwind. Figure5{55: Comparisonofsimulatedvs.measuredwaterelevationatFtMyers.Twosimulatedresultsareshown:oneusingWNAwindandanotherusingWIND-GENwind.
PAGE 183
timewhenthestrongestwindswereexperiencedinthearea.Inordertoinvestigatethisproblem,windsnapshotsintheEsteroBayareaweretakenatthreeinstantsshowninFigure 5{56 :(1)beforethestormpeak(Aug-1316:50UTC,JulianDay=226.701),(2)rightatthepeak(Aug-1320:40UTC,JulianDay=226.862),and(3)afterthestormpeak(Aug-1401:20UTC,JulianDay=227.055).Figure 5{56 showsthemeasuredandsimulated(usingWNAandWINDGENwind)watersurfaceelevationatEsteroBaylocation1.Italsospeciesthetimeswhenthewindsnapshotsweretaken.FromFigures 5{57 through 5{62 thatdepictwindspeedand Figure5{56: Simulatedvs.measuredwaterelevationatEsteroBay,location1.Dashedlinesspecifythethreetimeinstantswhenwindsnapshotsweretaken. directionalongwithtotalwaterdepthcontoursintheEsteroBayarea,themostsignicantdierencebetweenWNAandWINDGENwindeldscanbefoundinsnapshot2,whichwastakenatthepeakofthestormsurgeinEsteroBay.Thereisanevidentdiscrepancyinwinddirectionwhichisresponsibleforthesignicantdierenceinwaterelevation. Nowthequestionis:HowcondentareweinpickingWINDGENwindoverWNAwindeventhoughwaterelevationsimulatedusingWINDGENwind
PAGE 184
Figure5{57: WNAwindeldsnapshot1(Aug-1320:55,JulianDay=226.872)alongwithtotaldepthcontoursintheEsteroBayarea. Figure5{58: WINDGENwindeldsnapshot1(Aug-1320:55,JulianDay=226.872)alongwithtotaldepthcontoursintheEsteroBayarea.
PAGE 185
Figure5{59: WNAwindeldsnapshot2(Aug-1320:55,JulianDay=226.872)alongwithtotaldepthcontoursintheEsteroBayarea. Figure5{60: WINDGENwindeldsnapshot2(Aug-1320:55,JulianDay=226.872)alongwithtotaldepthcontoursintheEsteroBayarea.
PAGE 186
Figure5{61: WNAwindeldsnapshot3(Aug-1401:20,JulianDay=227.055)alongwithtotaldepthcontoursintheEsteroBayarea. Figure5{62: WINDGENwindeldsnapshot3(Aug-1401:20,JulianDay=227.055)alongwithtotaldepthcontoursintheEsteroBayarea.
PAGE 187
compareswithmeasuredwaterelevationmuchbetterthanthatcalculatedusingWNAwind.Figure 5{63 showsacomparisonbetweenWNAandWINDGENwinddirectionvs.actualwinddirectionmeasuredatNaples,FLwhichisapproximately30kmsouthofEsteroBay.Ascanbeseenfromthegure,atthetimeofhighsurge(whensnapshot2wastaken),WINDGENwinddirectioncomparesverywellwiththemeasuredwinddirectionandtheWNAwinddirectionisobyapproximately30degrees.ThisleadstotheconclusionthatWINDGENwindeldismorereliablewhenitmatteredmost(i.e.whenthestormwasatitspeak)andthesignicantunderestimationofstormsurgecalculatedusingWNAwindisduetotheincorrectwindinformationprovidedtothemodelingsystembytheWNAwind.ThisshouldnotbeasurprisebecauseWNAwindisnotknowntoresolvethehurricanewindeldaccurately.MaximumwaterelevationrelativetoNAVD88 Figure5{63: WNAandWINDGENwinddirectionvs.measuredwinddirectionatNaples,FL.Atthepeakofthestorm(denotedbynumber2),WINDGENwinddirectionmatchesverywellwiththemeasuredwinddirectionandWNAwinddirectionisobyapproximately30degrees. (includestide,surgeandwavesetup)calculatedduringsimulationofHurricaneCharleyinCharlotteHarborusingWINDGENwindisshowninFigure 5{64 .As
PAGE 188
canbeseeninthegure,themaximumvaluesreached1.9mnearEsteroBaycausingextensiveinundationinthatarea.Figure 5{65 showssimulatedstormsurgeatallfourstationswhichwasobtainedbysubtractingsimulatedtide(nootherforcingmechanismwasincluded)fromsimulatedwaterlevelswhichincludeallforcingmechanisms(tide,wind,wavesetup,waveenhancedsurfaceandbottomfriction).TheresultsshowthatthecalculatedstormsurgewithinEsteroBaywasaround1.2m.Itisworthnotingthatduringthepeakofthestorm,thetidewasinitsoutgoingstageatalevelofapproximately-0.1m.Therefore,ifthestormweretohaveoccurredathightidethesurgelevelwouldhavebeen0.5to0.6mhigher. Ittookapproximately11hoursfromthepointwhenthesurgelevelstartedtorisetothepointwhenthesurgereceded.Forcomparison,ittooknearly30hoursforstormsurgecausedbyHurricaneFrancesintheTampaBayareatorecede.CharleywasafastmovinghurricanewhereasFranceswasmovingveryslowly.
PAGE 189
Figure5{64: MaximumwaterelevationrelativetoNAVD88(includestide,surgeandwavesetup)calculatedduringsimulationofHurricaneCharleyinCharlotteHarborusingWINDGENwind.
PAGE 190
Figure5{65: Simulatedstormsurge(waterlevelminustide)atthefourstationsusingWINDGENwind.
PAGE 191
5.1.7 ,erroranalysisisagoodwayofcomparingcalculatedwaterelevationtomeasuredwaterlevel.Inthatsectionitwasalsopointedoutthatanerrorbetweenmeasuredandcalculatedwaterelevationcanbeattributedtoeithertideorstormsurgeortheircombination.Anestimationofthecontributionoftidetothetotalerrorwasdonebyperforminga\pure"tidesimulationandcomparingitsresultswithtidalelevationwhichwaslteredoutfrommeasuredwaterelevationusing DoodsonandWarburg ( 1941 )39-hourlyaveragetidallter. Inordertoweightheeectofeachcomponentinvolvedinthenon-linearinteractionbetweenthesurge,tide,wind,andwave,severalsimulationsweremadebyincludingdierentcomponentcombinations.Turningthewetting-and-dryingfeatureonandowasanoptionaswell.Table 5{11 specieswhichsimulationhadwhatfeatures. Table5{11:Alistofsimulationswithvariouscombi-nationsofsixmodelfeatures(psymboldenotesthefeaturewasincludedduringthesimulation). Factors Sim1 Sim2 Sim3 Sim4a Tide p p p p p p p p p p p p p p p p p p p p p ( 1993 )formulationwasused2 ( 1979 )formulationwasused3 ( 1989 )formulationwasused
PAGE 192
Table 5{12 showstheRMS,MeanAbsolute,andMaximumAbsoluteerrorsofcalculatedwaterelevationduringHurricaneCharley(seeAppendix B forformulasusedtocalculatetheerrors).Errorsofpeakvalues(measuredpeakelevationminussimulatedpeakelevation)andtimingerrors(timewhenmeasuredpeakelevationoccurredminustimewhensimulatedpeakelevationoccurred)arealsoshown.Aseparatecolumninthetabledisplaystheerrorsattributedto\pure"tide.Tidalrangeisalsoshownforeachstation.
PAGE 193
Table5{12:ErrorsofwaterelevationattidestationsduringHurricaneCharley. WNAwind WINDGENwind Tide Sim1 Sim2 Sim3 Sim4a Sim1 Sim2 Sim3 Sim4a FtMyears(depth=3.2m;tidalrange=50cm) RMSError(cm) 5.9 20.7 20.4 21.3 21.4 20.6 17.2 13.7 13.3 11.5 13.2 13.6 11.5 MeanAbsError(cm) 5.0 11.9 11.8 12.2 12.3 12.1 11.3 10.0 9.8 8.9 9.7 10.0 9.4 MaxAbsError(cm) 13.4 76.1 75.2 79.8 80.4 77.6 53.5 43.8 41.9 34.6 43.2 46.8 32.0 Meas.SurgePeak(cm) 99 ErroratPeak 43 42 36 47 44 -5 TimingatPeak(min) 32 26 5 -13 7 -66 BigCarlosPass(depth=3.8m;tidalrange=90cm) RMSError(cm) 10.3 23.7 23.3 22.2 21.5 22.6 21.6 17.1 16.4 14.8 14.3 13.1 19.3 MeanAbsError(cm) 8.5 16.0 15.8 15.4 15.2 14.3 14.4 12.1 11.8 10.9 10.7 10.0 13.1 MaxAbsError(cm) 27.2 97.7 95.6 93.1 90.6 106.0 95.9 59.5 57.3 53.1 48.2 42.6 71.7 Meas.SurgePeak(cm) 119 ErroratPeak 35 32 19 21 21 -1 TimingatPeak(min) 45 45 45 17 45 45 EsteroBay1(depth=2.8m;tidalrange=105cm) RMSError(cm) 9.1 24.5 23.7 22.5 21.8 22.5 22.1 17.7 17.2 16.3 15.9 14.6 21.1 MeanAbsError(cm) 7.4 14.9 14.5 14.2 13.8 14.0 13.3 13.6 13.0 12.7 12.1 11.3 14.3 MaxAbsError(cm) 26.0 109.8 107.6 109.5 106.1 98.5 111.0 55.4 53.6 52.2 47.1 40.2 69.8 Meas.SurgePeak(cm) 112 ErroratPeak 17 12 -4 0 -2 -25 TimingatPeak(min) -10 -10 -10 -10 -10 -12 EsteroBay2(depth=2.2m;tidalrange=110) Continuedonnextpage
PAGE 194
WINDGENwind Tide Sim1 Sim2 Sim3 Sim4a Sim1 Sim2 Sim3 Sim4a RMSError(cm) 9.2 21.6 21.1 19.7 18.9 20.9 19.0 17.9 16.1 15.9 15.6 14.8 19.1 MeanAbsError(cm) 7.5 14.4 14.2 13.7 13.5 14.4 12.7 13.3 12.3 12.2 12.1 11.5 12.8 MaxAbsError(cm) 25.5 86.9 84.5 79.1 78.5 81.0 79.1 57.6 50.9 47.9 46.5 41.3 70.3 Meas.SurgePeak(cm) 102 ErroratthePeak 18 14 -1 0 0 -18 TimingatPeak(min) 25 25 25 24 24 AvgRMSError(cm) 8.6 22.6 22.1 21.4 20.9 21.6 20.0 16.6 15.8 14.6 14.8 14.0 17.7 AvgErr.atPeak(cm) 28 25 15 17 16 12 AvgTimingError(min) 28 27 21 16 21 37
PAGE 195
BasedonRMSerrorsandaverageabsoluteerrorsshowninthetableabove,itcanbeconcludedthattheWINDGENwindgavesignicantlymoreaccuratesurgeelevationsthantheWNAwind.ThepeakwaterelevationscalculatedusingWNAwindwerenotverywellpronounced,thereforeerrorsatthepeakand\timing"errorsatthepeakwerenotcalculatedandarenotshowninTable 5{12 .Theaccuracyofthesimulatedtidewasnotverygood,withtheaverageRMSerrorof9to10cm,whichmightbeduetoasignicantcontributionofnon-lineartidalconstituentswhichwerenotincludedintheboundaryconditionofthismodelsimulation. ThesimulatedwaterelevationatFtMyerswassignicantlyunderestimated,whereasattheotherthreestationstheresultslookedverygood.ItishardtosaywhatcausedtheFtMyerselevationtobesolow.ThestationislocatedontheCaloosahatcheeRiver,approximately25kminland.Thewindstationlocatedtherebrokedownbeforethestormreacheditsmaximumstrengthinthearea,thustheaccuracyofthewinddatausedinthemodelnearFtMyersisuncertain. Overall,excludingtheFtMyersstation,Simulation4bproducedbetterresultsintermsofsmallerRMSerrorsandbettercomparisonwithmeasuredwatersurfaceelevationatitspeak.Simulation5,whenthewetting-and-dryingfeaturewasdisabled,signicantlyworsentheresultsforthethreestationswithinEsteroBay.Ontheotherhand,Simulation5signicantlyimprovedthecomputedwaterlevelatFtMyers.ThishappenedbecausewithoutwettingmorewaterwaspusheduptheCaloosahatcheeRiversignicantlyincreasingthewaterelevationthere. The\timing"errorsareinexcellentagreementwithmeasureddataforallfourstations(5to45min,withtheaverageerroraround20min). Table 5{13 showsthepeakwaterelevationvaluescalculatedduringthesesimulationsalongwiththemeasuredones.Bynormalizingthedierencebetweenconsecutivesimulationsbythepeakmeasuredwaterlevel,wecancalculatepercent
PAGE 196
increaseordecreasethateachcomponentintroducedatthetimewhenthepeakwaterelevationwasobserved(e.g.,atBigCarlosPass,theSimulation2value"3%relativetotheSimulation1value,andtheSimulation4aand4bvalues#7%and#2%relativetotheSimulation3value,respectively). Includingradiationstresstermsincreasedthecalculatedwaterlevelby1-5%.Addingwaveenhancedsurfacestresshelpedfurtherincreasethecomputedwaterelevationby6-15%.Accountingforwaveenhancedbottomfrictiondecreasedthecalculatedwaterelevationby7-16%and1-8%using GrantandMadsen ( 1979 )and ShengandVillaret ( 1989 )formulations,respectively.Whenwetting-and-dryingschemewasnotengagedduringthecalculationthepeakwaterlevelvaluegrewanextra18-49%. Table 5{14 showspeakstormsurgevalues(tidewassubtractedfromwaterelevation)calculatedduringthesesimulations.Percentincreaseordecreasewascalculatedthesamewayitwascalculatedintheprevioustable.
PAGE 197
Table5{13:MeasuredpeakwaterelevationsatfourstationsduringHurricaneCharleyusingWINDGENwindandvariouscombinationsofstormsurgemodelfeatures. Sim1 Sim2 Sim3 Sim4a Meas. cm cm cm cm cm cm cm FtMyers 56 57"1% 63"6% 53#16% 55#8% 104"49% 99 BigCarlosPass 84 87"3% 100"11% 105#7% 98#2% 120"18% 119 EsteroBay#1 95 100"5% 116"14% 114#13% 112#4% 137"22% 112 EsteroBay#2 84 88"4% 103"15% 110#9% 102#1% 120"18% 102 Table5{14:Calculatedpeakstormsurge(withtidessubtracted)atfourstationsduringHurricaneCharleyusingWINDGENwindandvariouscombinationsofstormsurgemodelfeatures. Sim1 Sim2 Sim3 Sim4a cm cm cm cm cm cm FtMyers 43 45"2% 54"9% 48#12% 46#8% 88"42% BigCarlosPass 86 90"3% 105"13% 113#7% 103#2% 118"13% EsteroBay#1 104 109"4% 124"13% 126#11% 120#4% 139"17% EsteroBay#2 86 91"5% 106"13% 118#5% 104#2% 122"18%
PAGE 198
Theresultsrevealthatincludingwavesetupincreasedandimprovedthecalculatedsurgeby2-5%.ThisincreasewasnotassignicantasitwasobservedduringHurricaneIsabel(3-18%)duethereasonthatwaveswerenotashighduringCharleyastheywereduringIsabelandallfourstationswerelocatedinestuaries(EsteroBayandCaloosahatcheeRiver),andthusweresheltered,whereassomeoftheIsabelstationssuchasBeaufort,Duck,andChespeakeBayBridgewerelocatedontheopenoceanfront. Thewave-enhancedwindwasasignicantfactorinincreasingandimprovingthecalculatedstormsurge.Itseectrangedwithin9-13%.Suchsignicancecanbeexplainedbythefactthatthewavesenteringthecomputationaldomainwerenotveryhigh,around4minheightwithapproximately9secperiod(forcomparison,duringIsabelwaveswereashighas15mwith14secwaveperiod).Withstrongwindblowingonshore,thesmall,shortperiodwaveswerenotfullydeveloped,inotherwords,theywerestillyoungandenergetic.Youngseasincreaseseasurfaceroughnessand,asaresult,surfacestressalsoincreases. Wave-enhancedbottomstressbasedonthe ShengandVillaret ( 1989 )formula-tion(Simulation4b)decreasedthepeaksurgevaluesby2-4%nearEsteroBayandby8%atFtMyersstationwherethemoresignicanteectcanbeexplainedbytheremotenessofthestationandshallowdepthsinthearea,2to4m. Whenthewetting-and-dryingfeaturewasinactive,thewaterlevelgrewsignicantlyby13-42%.ThissignicantincreasecanbeexplainedbythefactthatmostofthecalculatedoodingwouldhaveoccurredinthevicinityofEsteroBay,sowhentheoodingfeaturewasinactive,thewatercouldnotpropagateinlandthuspilingupneartheshoreandsignicantlyoverestimatingthecalculatedstormsurge.
PAGE 199
5{66 and 5{67 showmaximumsimulatedinun-dationcausedbyCharleyduringSimulation4(seeTable 5{11 )usingWINDGENandWNAwinds,respectively.Thebottomplotsintheguresidentifythetimewhenthehighestoodleveloccurred.SincetheWNAwindwasweakerthanWINDGEN,itproducedlessinundation.Simulation4usingWINDGENwindproducedthebestcomparisonbetweenmeasuredandsimulatedwaterelevationatthreestationswithinEsteroBaywheremostoftheoodingoccurred.Thus,thissimulationwastakenasthebasesimulationforestimatingtheamountofinundationcausedbyCharley.Theoodedareaaected530km2ofland,mostlythesurroundingsofEsteroBay,SanCarlosBay,SanibelIsland,andPineIsland.
PAGE 200
Figure5{66: MaximumsimulatedinundationinCharlotteHarborusingWIND-GENwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaxi-mumoodoccurred.
PAGE 201
Figure5{67: MaximumsimulatedinundationinCharlotteHarborusingWNAwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaximumoodoccurred.
PAGE 202
Inordertovalidatethecalculatedinundation,airphotostakenbeforeandafterCharleypassedoverthedomainwerecomparedwithourcalculatedoodmaps.Figures 5{68 and 5{69 showpre-stormandpost-stormairphotostakenattwolocations,CaptivaIslandandSanibelIsland,respectively(seeFigure 5{47 forlocationinformation).Ascanbeseenfromthesegures,bothislandsweresubjecttoextensiveinundationduringCharley.Thebottompanelsineachguredisplayclose-upsofourcomputedinundationmapswhichalsoverifythepresenceofwaterovertheislands.Thisvalidationisratherqualitativebutnonethelessimportant. Amorequantitativeoodanalysiswasdonebasedonsomeevidencesobtainedfrom\HurricaneCharleyPost-StormConditionsandImpact"report( ClarkandLaGrone , 2004 ).Inthisreport,fourlocationswereexaminedonpresenceofhighwatermarksleftbytheoodcausedbyHurricaneCharley.Thelocationsare:GasparillaIsland,NorthCaptivaIsland,CaptivaIsland,andEsteroIsland(seeFigure 5{70 forlocations).Inordertoseehowourmodelresultsstackupagainstthereportedstormsurgevalues,twotechniquesofevaluatingwatermarkswereapplied:Technique1usesthestormsurgelevelcomputedfromtheintegratedstormsurgemodelingsystem,andTechnique2addsawaveheighttothestormsurgelevelcalculatedbyTechnique1.Thewaveheightwascalculatedaccordingtothemethodologyof FederalEmergencyManagementAgency(FEMA) ( 1988 )forestimatingoodzones: FloodLevel=Surge+0:7Hcontrolling(5{1) SinceHcontrolling=1:6Hsig Table 5{15 belowshowscomparisonbetweenreportedhighwatermarkvaluesandthosecalculatedbythetwotechniques.
PAGE 203
Figure5{68: Pre-storm(top)andpost-storm(middle)airphotostakenbyCaptivaIsland(courtesyofUSGS,
PAGE 204
Figure5{69: Pre-storm(top)andpost-storm(middle)airphotostakenbySanibelIsland(courtesyofUSGS,
PAGE 205
NauticalchartofcoastalareasintheCharlotteHarborareaimpactedbyHurricaneCharley(from ClarkandLaGrone ( 2004 )). Table5{15: Comparisonbetweenreportedhighwatermarkvaluesandoodlevelscalculatedusingtwotechniques HighWaterMarkValue,ft Location Reported SimulatedbyTechnique1 SimulatedbyTechnique2 GasparillaIsland 4-5 2.1 3.7 N.CaptivaIsland 9 3.3 8.8 CaptivaIsland 7-8 4.8 11.7 EsteroIsland 6-7 4.8 7.0
PAGE 206
Technique2givesresultsclosertothereportedvaluesbutsinceitisnotveryclearhowaccuratelythewatermarksweremeasuredandwhatverticaldatumwasusedtomeasurethewatermarks(seeFigure 5{71 ),thisanalysisanditsresultsaresomewhatuncertain.Despitetheuncertaintiesintheaccuracyofmeasuredhighwatermarks,theresultscalculatedbyTechnique2wouldbeamorefaircomparisonbecausethehighwatermarksweremostlikelyleftbywavecrests,notjuststormsurge. ManpointsatahighwatermarkleftbystormsurgecausedbyHurri-caneCharleyonNorthCaptivaIsland(from ClarkandLaGrone ( 2004 )).
PAGE 207
5.3.1DescriptionAccordingtoNHC 5{72 . Figure5{72: BesttrackofHurricaneFrances(courtesyofNOAANHC). AstrongtropicalwavedevelopedintoatropicaldepressionlateonAugust24,2004.Itwasthen1,400kmwest-southwestofCapeVerde,andabout2,700kmeastoftheWindwardIslands.ThenextdayitwasupgradedandnamedTropicalStormFrances.ThestormwasupgradedtoahurricaneonAugust26.
PAGE 208
Francesstrengthenedrapidly,reachingCategory3intensity24hourslateronthe27thandCategory4thenextday.InitiallyforecasttoturnnorthandpotentiallythreatenBermuda,conditionschangedandFrances'spredictedtrackshiftedwestwardtowardtheBahamas.Frances'sintensityuctuatedasittravelledwestoverthenextseveraldays,droppingbacktoaCategory3stormbeforerestrengthening.Thisdropandsubsequentrestrengtheningwaslikelycausedbyaneyewallreplacementcycle,accordingtotheNationalHurricaneCenter. Overthenextseveraldays,FrancespassedjustnorthoftheAntilles,withonlyitsouterrainbandsaectingtheBritishVirginIslandsandtheDominicanRepublic.OntheeveningofSeptember1,FrancespassedtothenorthofGrandTurkintheTurksandCaicosIslands.AlthoughFrancesdidnotstriketheislanddirectly,hurricaneforcewindswerereportedthere. OnSeptember2,FrancesstrucktheBahamasdirectly,passingdirectlyoverSanSalvadorIslandandveryneartoCatIsland,andpassingoverEleutheraonSeptember3.ReportsfromLongIslandsaidthatpartsoftheislandremainedunderwaterafterthestormhadpassed,withnumeroushomesandotherstructuresdamaged.OnSaturday,September4,theairportatFreeport,GrandBahamawasreportedtobeunder6to8feetofwater.OnedrowningdeathwasreportedinFreeport,GrandBahama. OnSeptember3,FrancesweakenedslightlyasitpassedintothevicinityofAbacoIslandanddirectlyoverGrandBahama.ThestormweakenedfromaCategory3to2priortopassingoverGrandBahamaandalsolessenedinforwardspeed.PartsofSouthFloridabegantobeaectedbysquallsandtheouterrainbandsofthehurricaneatthistime.Gustsaslowas40mph(60km/h)toashighas87mph(140km/h)werereportedfromJupiterInlettoMiami. Francesmovedextremelyslowly,from5to10mph(8to16km/h),asitcrossedthewarmGulfStreambetweentheBahamasandFlorida,leadingto
PAGE 209
fearsitcouldrapidlyrestrengthen.ItremainedstableatCategory2hurricaneandbatteredtheeastcoastofFlorida,especiallybetweenFortPierceandWestPalmBeach,formostofSeptember4.At03:00UTConSeptember5,thewesternedgeofFrances'seyewallbeganmovingonshore.BecauseofFrances'slargeeyeofroughly130kmacrossandslowmotion,thecenterofcirculationremainedoshoreforseveralmorehours.At05:00UTC,thecenterofthebroadeyeofFrancesnallywasoverFlorida,nearSewall'sPoint,Stuart,JensenBeachandPortSalerno. LateonSeptember5,itpickedupspeedandcrossedtheFloridaPeninsula,emergingovertheGulfofMexiconearTampaasatropicalstorm.Afterashorttripoverwater,FrancesagainstrucklandnearSt.Marks,Florida.Francesheadedinland,weakeningtoatropicaldepressionandcausingheavyrainfalloverthesouthernUS.TropicalDepressionFrancescontinuednorth,maintainingitscirculationlongerthanexpected.USforecastersattheHydrometeorologicalPredictionCentercontinuedissuingadvisoriesontheremnantsofFrancesuntilthesystemcrossedtheCanadianborderintoQuebec,whereupto8inches(200mm)ofrainfell,causingsignicantooding. TwodeathshavebeenreportedintheBahamas.32deathsareblamedonthestorminFlorida,twoinGeorgiaandoneinSouthCarolina. TheinsuredclaimsofFranceshavebeendeterminedtobeabout$4billion.SomeareasofFloridareceivedover13inchesofrain.Francesalsospawned117tornadosfromFloridatoasfarnorthasVirginia.Thisamountbeatstherecordnumberoftornadosforahurricane,whichwas115forHurricaneBeulahin1967. 5{73 )containsthreeopenboundaries.ThesouthernopenboundarystartsatVenice,FLandextends28kmoshore.ThenorthernopenboundarystartsnearCrystalBeach,FLandstretches36kmoshore.The
PAGE 210
lengthofthewesternopenboundaryis120km.Theareaofthecomputationaldomainisapproximately7,000km2withthetotalnumberofcomputationalgridcellsof54,476andtheaveragegridspacingofapproximately350m.28,317(52%)ofthosecomputationalcellsarewatercells.ThegridcoverstheentireTampaBaywithallofitsriverbasinsandSarasotaBayaswell.Thegridcontainslandcellsinordertouseitforwetting-and-drying.TheUSGSNationalElevationDataset(
PAGE 211
TheTampaBaygriddomain.
PAGE 212
bayfor20hours,thewaterlevelrosesteadilygainingupto165cm(atStPetestation)fromthepointwhenthelevelreacheditslowestvalue. 5{74 through 5{76 .AlltheothersimulatedversusmeasuredwaterelevationresultsduringFrancesareshowninAppendix H . Figure5{74: Comparisonofsimulatedvs.measuredwaterelevationatClearwater,FL.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. MaximumwaterelevationrelativetoNAVD88(includestide,surgeandwavesetup)calculatedduringsimulationofHurricaneFrancesinTampaBayusingWNAwindisshowninFigure 5{77 .Ascanbeseeninthegure,themaximum
PAGE 213
Figure5{75: Comparisonofsimulatedvs.measuredwaterelevationatStPete,FL.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind. Figure5{76: Comparisonofsimulatedvs.measuredwaterelevationatPortMan-atee,FL.Twosimulatedresultsareshown:oneusingWNAwindandtheotherusingWINDGENwind.
PAGE 214
valuesreached2.0minthenortheasternpartofthebay,nearMcKayBayandUpperTampaBayPark,oodingsomeofthelandinthoseareas. Figure 5{78 showssimulatedstormsurgeatallfourstationswhichwasobtainedbysubtractingsimulatedtide(nootherforcingmechanismwasincluded)fromsimulatedwaterlevelswhichincludedallforcingmechanisms(tide,wind,wavesetup,waveenhancedsurfaceandbottomfriction). Theresultsshowthatthecalculatedstormsurgerangedfrom0.6to0.8m.Itshouldbenotedthatduringthepeakofthesurge,thetidewasatitslowstageatanapproximatelevelof-0.3m.Therefore,ifthepeakofthestormweretocoincidewithahightidethesurgelevelwouldhavebeen0.6to0.7mhigher.Aninterestingfactisrevealedbylookingatthedierencebetweenthetimeswhenthewaterelevationandstormsurgelevelreachedtheirpeakvalues:Thesurgereacheditsmaximumapproximately4hoursafterthewaterelevationmaximumoccurred.AnotherinterestingfactisfoundbyobservingthesimulatedstormsurgeatStPeteandPortManateeduringJuliandays249-250:DuringthattimeFranceswascrossingtheFloridapeninsulaapproachingtheTampaBayareawithitswindsblowingprimarilyfromnorthtosouth.Asaresult,thesurgeleveldecreasedatStPetewhichisonthenorthernsideofthebaycausingset-down,andincreasedatPortManateewhichisacrossthebayfromStPete.AfterthehurricaneapproachedthenortheasternpartofTampaBaycomingfromtheeast,thewinddirectionstartedtochangefromnorth-to-southtowest-to-eastcausingthewaterlevelatPortManateetoslightlydecreaseforsometimeuntilthepointwhentheeyeofHurricaneFrancesmovedclosertotheGulfofMexicoslightlyincreasingitsstrengthandstartedpushingthewaterintoTampaBaycausingthemajorstormsurgetoincrease. Despitethefactthatthestormsurgelevelwasnottoohigh(thankstolowtideduringthepeak),ittookapproximately30hoursfromthepointwhenthe
PAGE 215
Figure5{77: MaximumwaterelevationrelativetoNAVD88(includestide,surgeandwavesetup)calculatedduringsimulationofHurricaneFrancesinTampaBayusingWNAwind.
PAGE 216
surgelevelstartedtorisetothepointwhenthesurgereceded.ThemainreasonforthatistheslowmovingHurricaneFrances(5-10mph).Forcomparison,ittookonly11hoursforthestormsurgecausedbyHurricaneCharleytorecedewhenitmadelandfallandwentovertheCharlotteHarborarea. Figure5{78: Simulatedstormsurge(waterlevelminustide)atthethreestationsusingWNAwind. 5.1.7 ,erroranalysisisagoodwayofcomparingcalculatedwaterelevationtomeasuredwaterlevel.Inthatsectionitwasalsopointedoutthatanerrorbetweenmeasuredandcalculatedwaterelevationcanbeattributedtoeithertideorstormsurgeortheircombination.Anestimationofthecontributionoftidetothetotalerrorwasdonebyperforminga\pure"tidesimulationandcomparingitsresultswithtidalelevationwhichwaslteredoutfrommeasuredwaterelevationusing DoodsonandWarburg ( 1941 )39-hourlyaveragetidallter. Inordertoweightheeectofeachcomponentinvolvedinthenon-linearinteractionbetweenthesurge,tide,wind,andwave,severalsimulationsweremade
PAGE 217
byincludingdierentcomponentcombinations.Turningthewetting-and-dryingfeatureonandowasanoptionaswell.Table 5{16 specieswhichsimulationhadwhatfeatures. Table5{16:Alistofsimulationswithvariouscombi-nationsofsixmodelfeatures(psymboldenotesthefeaturewasincludedduringthesimulation). Factors Sim1 Sim2 Sim3 Sim4a Tide p p p p p p p p p p p p p p p p p p p p p Table 5{17 showstheRMS,MeanAbsolute,andMaximumAbsoluteerrorsofcalculatedwaterelevationduringHurricaneFrances(seeAppendix B forformulasusedtocalculatetheerrors).Errorsofpeakvalues(measuredpeakelevationminussimulatedpeakelevation)andtimingerrors(timewhenmeasuredpeakelevationoccurredminustimewhensimulatedpeakelevationoccurred)arealsoshown.Aseparatecolumninthetabledisplaystheerrorsattributedto\pure"tide.Tidalrangeisalsoshownforeachstation. ( 1993 )formulationwasused2 ( 1979 )formulationwasused3 ( 1989 )formulationwasused
PAGE 218
Table5{17:ErrorsofwaterelevationattidestationsduringHurricaneFrances. WNAwind WINDGENwind Tide Sim1 Sim2 Sim3 Sim4a Sim1 Sim2 Sim3 Sim4a ClearwaterBeach(depth=3.5m;tidalrange=110cm) RMSError(cm) 6.0 17.7 16.4 15.6 15.7 15.7 16.1 19.8 18.6 18.3 18.5 18.4 18.4 MeanAbsError(cm) 5.0 14.1 13.2 12.7 12.8 12.8 13.3 15.2 19.2 13.9 14.0 14.0 14.2 MaxAbsError(cm) 15.7 47.1 45.1 41.5 41.6 41.3 43.4 56.9 57.2 50.5 56.8 57.1 54.8 Meas.SurgePeak(cm) 86 ErroratPeak 26 25 23 23 23 21 30 32 33 33 32 30 TimingatPeak(min) 88 72 72 72 73 78 82 78 78 78 75 79 StPete(depth=7.3m;tidalrange=95cm) RMSError(cm) 5.0 19.5 17.6 17.3 19.6 19.0 19.2 25.9 25.4 25.6 25.9 25.6 27.6 MeanAbsError(cm) 4.0 13.7 12.2 12.5 13.5 13.4 14.7 15.9 15.5 16.9 17.1 16.9 18.2 MaxAbsError(cm) 12.8 45.5 44.0 41.4 55.3 47.7 53.9 88.3 84.4 84.1 79.5 81.5 99.0 Meas.SurgePeak(cm) 116 ErroratPeak 33 32 24 39 31 11 55 60 59 64 60 42 TimingatPeak(min) 71 71 58 29 45 117 116 105 85 85 99 163 PortManatee(depth=0.7m;tidalrange=90cm) RMSError(cm) 5.1 16.5 14.3 11.9 13.7 13.0 16.0 22.9 21.8 21.4 22.0 21.8 23.2 MeanAbsError(cm) 4.2 11.7 10.2 9.0 9.7 9.5 12.0 14.9 14.0 14.3 14.8 14.3 15.5 MaxAbsError(cm) 12.8 42.4 42.1 31.9 37.0 34.3 47.1 78.4 75.4 76.8 69.6 73.6 86.7 Meas.SurgePeak(cm) 105 ErroratPeak 32 30 24 36 29 13 49 53 51 56 52 46 TimingatPeak(min) 84 79 65 60 60 107 118 109 90 72 99 151 AvgRMSError(cm) 5.4 17.9 16.1 14.9 16.3 15.9 17.1 22.9 21.9 21.8 22.1 21.9 22.2 Continuedonnextpage
PAGE 219
WINDGENwind Tide Sim1 Sim2 Sim3 Sim4a Sim1 Sim2 Sim3 Sim4a AvgErr.atPeak(cm) 30 29 24 33 28 15 45 48 48 51 48 39 AvgTimingError(min) 81 74 65 54 59 101 105 97 84 78 91 131
PAGE 220
BasedonRMSerrorsandaverageabsoluteerrorsshowninthetableabove,aconclusioncanbedrawnthattheWNAwindgavesignicantlybettersimulatedstormsurgevaluesthantheWINDGENwind.Theaccuracyofthesimulatedtidewasgood,withtheaverageRMSofapproximately5cm. Thesimulatedwaterelevationatallthreestationswasunderestimated,whichmighthavecomeasaresultsoftheunderestimatedWNAwindspeed.Again,evensophisticatedhurricanewindmodelsdonotdoaverygoodjobnearlandoroverestuaries,suchasTampaBay,whichresultsinanunderestimatedstormsurge.Thisseemstobetheweakestlinkingettingveryaccuratestormsurgesimulationresults. Overall,Simulation3producedbetterresultsintermsofsmallerRMSerrorsandbettercomparisonwithmeasuredwatersurfaceelevationatitspeak.Waterlevelcalculatedusingwaveenhancedbottomfrictionbasedonthe ShengandVillaret ( 1989 )formulation(Simulation4b)wasslightlyworse.Waveenhancedbottomfrictionbasedonthe GrantandMadsen ( 1979 )theory(Simulation4a)furtherreducedalreadyunderestimatedsurgewithinTampaBay:atStPeteandPortManateestations,duetoitsrelativeshallowness. The\timing"errorsareacceptable(basedonSimulation4busingWNAwind,45to73min)forallthreestations.MoreaccurateWNAwindproducedsmaller\timing"errorscomparedwithlessaccurateWINDGENwind. Table 5{18 showsthepeakwaterelevationvaluescalculatedduringthesesimulationsalongwiththemeasuredvalues.Bynormalizingthedierencebetweenconsecutivesimulationsbythepeakmeasuredwaterlevel,thepercenterroroftheeectofeachcomponentincludedinthenon-linearinteractionwascalculatedatthetimewhenthepeakwaterelevationwasobserved(e.g.,atStPete,theSimulation2value"1%relativetotheSimulation1value,andtheSimulation4aand4bvalues#13%and#6%relativetotheSimulation3value,respectively).
PAGE 221
Includingradiationstresstermsincreasedthecalculatedwaterlevelby1-2%.Itwassomewhatsurprisingtoseesuchaweakwaveeect,especiallyatClearwaterBeachwhichopenlyfacestheapproachingwaves.Forexample,theanalogouseectduringIsabelwas3-18%.Thismightbereasonedbythefactthatthemaximumwaveheightof1.4moccurredonSep-5at23:00UTCwhilethemaximumwaterelevationvaluewasobservedonSep-6at13:00UTC.Similarly,themaximumcalculatedwaveheightatStPeteandPortManateewas0.65mand0.55m,respectively,andoccurredaroundSep-5,18:00UTCwhilethecalculatedwaterelevationreacheditspeak18hourslater.ThewaveeldswerecalculatedusingtheSWANmodel.Theboundaryconditionswereobtainedfromtheregionalwavemodel,WAVEWATCH-III.Sincetherewasnowavestationinthevicinityofthecomputationaldomain,theaccuracyofthecomputedwavescouldnotbeveried. Addingwaveenhancedsurfacestresshelpedfurtherincreasethecomputedwaterelevationby2-7%.Accountingforwaveenhancedbottomfrictiondecreasedthecalculatedwaterelevationby0-13%and0-6%forSimulations4aand4b,respectively.Whenwetting-and-dryingschemewasnotengagedduringthecalculation,thepeakwaterlevelvaluegrewanextra5-7%. Table 5{19 showspeakstormsurgevalues(tidewassubtractedfromwaterelevation)calculatedduringthesesimulations.Percentincreaseordecreasewascalculatedthesamewayitwascalculatedintheprevioustable.
PAGE 222
Table5{18:MeasuredpeakwaterelevationsatthreestationsduringHurricaneFrancesusingWNAwindandvariouscombinationsofstormsurgemodelfea-tures. Sim1 Sim2 Sim3 Sim4a Meas. cm cm cm cm cm cm cm ClearwaterBch. 60 61"1% 63"2% 630% 630% 67"5% 86 StPete 83 84"1% 92"7% 77#13% 85#6% 85"7% 116 PortManatee 73 75"2% 81"6% 69#11% 76#5% 76"7% 105 Table5{19:Calculatedpeakstormsurge(withtidessubtracted)atthreestationsduringHurricaneFrancesusingWNAwindandvariouscombinationsofstormsurgemodelfeatures. Sim1 Sim2 Sim3 Sim4a Meas. cm cm cm cm cm cm cm ClearwaterBch. 53 56"4% 60"6% 600% 600% 62"3% 69 StPete 73 730% 85"13% 84#1% 84#1% 85"1% 96 PortManatee 62 620% 71"12% 70#1% 70#1% 71"1% 77
PAGE 223
UnlikeHurricanesIsabelandFranceswhenthemaximumsurgeandmaximumwaterelevationwereobservedatapproximatelythesametime,duringFrances,thesurgereacheditsmaximumapproximately4hoursafterthewaterelevationmaximumoccurred.Therefore,wave,wind,andoodconditionswereslightlydierentfromtheconditionsreectedinTable 5{18 .Wavesetup,again,hadaninsignicanteectonstormsurgeatitpeak,0-4%.Waveenhancedsurfacestressimprovedthecalculatedsurgeincreasingitby6-13%.Waveenhancedbottomstresseect(bothformulations)wasveryinsignicantdecreasingthesurgeby1%.Turningothewetting-and-dryingfeatureincreasedthesurgebyonly1-3%,whichcanbeexplainedbythefactthatmostoftheoodingoccurredafewhoursearlierduringthehightidewhenthewetting-and-dryingeectappearedtobemoresignicant,5-7%. 5{79 showsmaximumsimulatedinundationcausedbyFrancescalculatedduringSimulation3(seeTable 5{16 )usingWNAwind.Thebottomplotidentiesthetimewhenthehighestoodleveloccurred.BasedonTable 5{17 ,theWNAwindproducedbettercomparisonbetweenmeasuredandsimulatedwaterelevationatClearwaterBeach,StPete,andPortManateestations.Simulation4hadtoomuchdissipationduetowaveenhancedbottomfrictionwhichsignicantlyreducedthecalculatedwatersurfaceelevationincomparisonwithmeasuredwaterelevation.Thus,Simulation3wastakenasthebasesimulationforestimatingtheamountofinundationcausedbyFrances.Theoodedareaaected187km2ofland,mostlyalongtheeasternshoresofthebay.
PAGE 224
Figure5{79: MaximumsimulatedinundationinTampaBayusingWNAwind(toppanel).Thebottompanelshowsthetimeduringwhichthemaximumoodoccurred.
PAGE 225
FloridaDepartmentofEnvironmentalProtection(FDEP) ( 2003 ),322.3milesofstatewideshorelinearesubjecttocriticalerosionwherenaturalprocessesorhumanactivityhavecausedorcontributedtoerosionandrecessionofthebeachordunesystemtosuchadegreethatuplanddevelopment,recreationalinterests,wildlifehabitat,orimportantculturalresourcesarethreatenedorlost;and111.5milesaresubjecttonon-criticalerosionwheresignicanterosionconditionsprevail,yettheerosionprocessesdonotcurrentlythreatenpublicorprivateinterests.Stormscanonlyworsenthissituation.Accordingto MortonandSallenger ( 2003 ),extremestormsthatstrikecoastalregionscausemorphologicalresponse.Poststormerosionalresponsesincludedunescarps,channelincision,andwashouts,whereasdepositionalresponsesincludeperchedfans,washoverterraces,andsheetwashlineations.Washoverpenetrationinlandcanbeontheorderofafewhundredmetersdependingonstormintensity,stormduration,tide,waveaction,andvariationsinnearshorebathymetry. Thecurrentintegratedstormsurgemodelingsystemcanbefurtherenhancedthroughitscouplingwitharobusterosionmodel(e.g.SBEACH)topredictthepoststormmorphologicalresponses. 202
PAGE 226
theNWSemploysriskfactorsforwaveheight,wind,waveperiodandpreviousripcurrents.AteamofresearchesfromtheUniversityofFloridaconductedastudyinVolusiaCountyandanalyzedripcurrentrescuestatisticsoverasix-monthperiodandfoundthatripcurrentsweremoststronglylinkedwiththewavedirection.Accordingtotheirconclusions,thegreatestthreatassociatedwithripcurrentsoccurswhenwavesapproachatananglenearzero.Wavesapproachingina25-degreebandoneithersideofzero,althoughoccurringonlyabout30%ofthetimeduringthestudyperiod,accountedfornearly60%ofalloftheripcurrentrescuesrecordedduringthestudy.Addingawavedirectionfactortothepredictiveindexresultedinmoreaccurateripcurrentforecastswithfewerfalsealarms.Tidecanbeanimportantfactorinestimatingtheriskofoccurrenceofripcurrents.Aloworoutgoingtidecangreatlyincreasetheripcurrentrisk.Accordingto Engleetal. ( 2002 ),thefrequencyofripcurrentrescuesincreasedmarkedlyduring(1)shore-normalwaveincidence,(2)mid-lowtidalstages,(3)deepwaterwaveheightsof0.5to1.0metersand(4)waveperiodsfrom8to10seconds. OurmethodologywhichcouplesCH3D-SSMSwithawavemodel,SWAN,usinghighresolutioncurvilinear/boundary-ttedgridswillbeabletocapturetheangleatwhichwavesapproachtheshore.Neitherrectilinearnorniteelementmodelsarecapableofdoingthat.Everyshorelinesegment(350m)willcontainthefollowinginformation:waveanglewithrespecttoshorelineorientation(e.g.zeroanglemeansthewaveraysareapproachingperpendiculartotheshore),waveheight,waveperiod,andtidalstage(e.g.low,mean,high).Basedonthisinformationapredictiveripcurrentriskindexcanbecalculatedandassignedtoeachshorelinesegment.Thiswillresultinmoreaccurateripcurrentforecastswithfewerfalsealarms.
PAGE 227
Thegoalofthisstudywastodevelopastormsurgemodelingsystem,CH3D-SSMS,whichaccountsforwaveeects(e.g.,wavesetup,waveenhancedsurfacestress,waveenhancedbottomfriction)andwettinganddrying,andvalidatethemodelusingwaterelevation,wind,andwavedatacollectedduringrecenthurricaneevents(HurricaneIsabel(2003)intheOuterBanks,NCandChesapeakeBay,VA;HurricaneCharley(2004)inCharlotteHarbor,FL;andHurricaneFrances(2004)inTampaBay,FL).ThedevelopedmodelingsystemmakesuseofthewinddataproducedbyWINDGENandWNAatmosphericmodelstosimulatestormsurge.Itdynamicallycoupleslocalscalecirculation(CH3D)andwave(SWAN)models.Openboundaryconditionsforthelocalmodelsareprovidedbycouplingthelocalmodelswithregionalscalecirculation(ADCIRC)andwave(WAVEWATCH-III)models. CH3D'scomponentssuchaspressuregradientterms,radiationstressterms,andwetting-and-dryingschemewerevalidatedbycomparingmodelresultswitheitherlaboratorydata(wavesetup)oranalyticalsolutions(pressuregradientandwetting-and-dryingscheme). Inordertovalidatethemodelingsystem,threeboundary-ttedcurvilineargridsweregeneratedusinghighresolutionGEODASbathymetryandUSGSNEDtopographydata:intheOuterBanksandChesapeakeBayarea,intheTampaBayare,andtheCharlotteHarborarea. AthoroughanalysisoftheWNAandWINDGENwindwasperformedforHurricaneIsabel.TheanalysisrevealedthatresultsfrombothatmosphericmodelscomparedwellwithmeasuredwindspeedanddirectionovertheOuter 204
PAGE 228
BanksandneartheChesapeakeBaymouth,withtheWNAwindbeingslightlybetter.However,insideChesapeakeBay,theaccuracyofbothmodelssignicantlydecreased.ThisissupposedlyduetotheeectoflandsurroundingtheChesapeakeBayand/orthecoarseresolutionoftheatmosphericmodels(22-28km).Similarbutnotascomprehensive,duetothelackofavailablewinddata,analysiswasperformedforHurricanesCharleyandFrances.TheWINDGENwindofCharleywasstrongerinmagnitudeandmoreaccuratethanWNA.UsingtheWINDGENwind,theCH3Dmodelproducedmoreaccuratewaterelevationduringthestorm.ForHurricaneFrances,theWINDGENwindwasmuchweakerandlessaccuratethanWNA.UsingtheWINDGENwind,thesimulatedwatersurfaceelevationwasunderestimated. WaveparameterscalculatedbytheregionalWAVEWATCH-IIIwavemodel,whichwereusedasboundaryconditionsinthelocalwavemodel,SWAN,werevalidatedbycomparingthecalculatedwaveheightandwaveperiodwiththewaveheightandwaveperiodmeasuredfromNDBCmooredbuoysduringHurricaneIsabel.TheSWANmodel,whichprovidedthewaveinformation(waveheight,period,direction)tothelocalcirculationmodel,CH3D,wasalsoveriedusingwavetimeseriesmeasuredatFRFandVIMSfacilitiesduringIsabel. Theeectoflinearandnon-linearinteractionsbetweenstormsurge,tide,windandwavewasinvestigatedinthisstudy.Foreachhurricane,aseriesofsimulationswasconductedbyconsideringvariouscombinationsofthelinearandnon-linearstormsurgeinteractions:(1)windandtide,(2)wind,tide,andwavesetup,(3)wind,tide,wavesetup,andwaveenhancedsurfacestress,(4)wind,tide,wavesetup,waveenhancedsurfacestress,andwaveenhancedbottomstress.WhenIsabel,Charley,andFrancesweresimulatedusingtideandwindonly,thecalculatedpeakwaterelevationwasalwaysunderestimated.
PAGE 229
Theinclusionofwavesetupimprovedthecomputedstormsurgebyupto18%duringIsabel.ThemostsignicantimprovementwasobservedatBeaufortandDuckwherehighbreakingwavescausedasignicantwaterlevelsetup.Forotherhurricanes,CharleyandFrances,thewavesetupeectwaspositivebutnotverysignicant,upto5%and4%,respectively. Accountingforwaveenhancedsurfacestresshadasignicantpositiveeectduringallthreehurricanes.Theinclusionofthisfeatureincreasedthecalculatedstormsurgeby5-16%duringIsabel,9-13%duringCharley,and6-13%duringFrances. Accountingforwaveinducedbottomfrictionhad:(1)moderateeect,upto5%reductionofthestormsurgelevelatthepeak,whenthe ShengandVillaret ( 1989 )formulationwasusedand(2)signicanteect,up16%reductionofthestormsurgelevelatthepeak,duetooverestimatedbottomfrictionwhenthe GrantandMadsen ( 1979 )formulationwasused. Theeectofdynamiccouplingversuslinearlysuperimposedresultsofin-dependentlysimulatedtide,wavesetup,andsurgeistwofold:overopenwater,dynamiccouplingproducesslightlymoreaccuratestormsurge,andoverland,theinundationcalculatedthroughdynamiccouplingoccursearlierandismuchmoresignicant,however,duetothelackofdata,thiswasnotveried. Theeectofexcludingthewetting-and-dryingfeatureduringstormsurgesimulationswasalsoexamined.Thiseectmostlydependsontheextentofinundation.Forinstance,duringCharley,therewassignicantoodingcalculatedinthevicinityofEsteroBay.Whenwetting-and-dryingwasdisabled,waterelevationincreasedby18-22%inthearea,therebysignicantlyoverestimatingthecalculatedwaterlevelatthepeakofthestorm.Ontheotherhand,thecalculatedinundationduringFranceswasnotveryextensiveresultinginonly5-7%increase
PAGE 230
inwaterelevationwhenthewettinganddryingfeatureoftheCH3Dmodelwasinactivated. AninterestingphenomenonwasobservedduringthesimulationofHurricaneFrances.Themaximumstormsurgeoccurredapproximately4hoursafterthepeakwaterlevelwasobservedintheTampaBayarea.Thiswasaresultofslowly(5-10mph)movingFranceswhichcausedthesurgetolastupto30hours.Thehighestwaterleveloccurredduringhightideandwhenthetidewasalreadyreceding,themaximumsurgecamein.ThecalculatedstormsurgeduringFrancesrangedfrom0.6to0.8mbutifthepeakofthestormweretocoincidewithhightidethesurgelevelwouldhavebeen0.6to0.7mhigher. HurricaneCharleyalsomadelandfallduringoutgoingtide.ThecalculatedstormsurgewithinEsteroBaywasaround1.2m.Ifthestormweretooccurduringhightidethesurgelevelwouldhavebeen0.5to0.6mhigher.UnlikeCharleyandFrances,stormsurgeduringHurricaneIsabelhappenedduringhightide,whichonlymadethesituationworse.Thecalculatedstormsurgereached1.8minsideChesapeakeBay. StormsurgeduringIsabellasted19(overtheOuterBanks)to26hours(overtheChesapeakeBay).DuringCharley,whichstrucktheCharlotteHarborarearapidly,thesurgelastedonly11hours. Theextentofthecalculatedoodcausedbythethreehurricanesrangedwidely,from7675km2duringIsabelintheOuterBanksandChesapeakeBayto530km2duringCharleyinCharlotteHarborto183km2duringFrancesinTampaBay.EventhoughCharleywasthestrongestamongthethree,itwasthesmallesttherebyaectinglessterritorycomparedwithIsabelwhoseimpactintermsofinundationwasmoresignicant. Table 7{1 belowsummarizesthethreehurricanessimulatedinthisstudy.
PAGE 231
Table7{1:Summaryofsimulatedhurricanes. Hurricane Isabel Charley Frances Time 9/6-19,2003 8/9-14,2004 8/25-9/8,2004 Aectedarea OuterBanks, Charlotte FLEastCoast, Chesap.Bay Harbor TampaBay Category Max 5 4 4 Atlandfall 2 4 2 Wind(mph) Max 165 150 145 Atlandfall 105 145 105 Rad.ofmax Max 100 20 50 wind(km) Atlandfall 85 9 50 Atm. Min 915 941 935 pres.(mb) Atlandfall 957 942 960 Tidalstage high mean low Surgeduration(hr) 19-26 11 30 Maximumsurge(m) 4.0 1.9 2.0 Maximumwave(m) 19 3.5 4.5 Inundationarea(km2) 7,675 530 183 Damagecost$(rank $3.37B(9) $15B(2) $8.9B(4) Dominantprocesses wavesetup, waveenhanced waveenhanced waveenhanced surf.stress, surf.stress surf.stress wavesetup
PAGE 232
TheSar-SimpsonHurricaneScale TropicalStormWinds39-73mph Category1Hurricanewinds74-95mph:Norealdamagetobuildings.Damagetounanchoredmobilehomes.Somedamagetopoorlyconstructedsigns.Also,somecoastaloodingandminorpierdamage. -Examples:Irene1999andAllison1995 Category2Hurricanewinds96-110mph:Somedamagetobuildingroofs,doorsandwindows.Considerabledamagetomobilehomes.Floodingdamagespiersandsmallcraftinunprotectedmooringsmaybreaktheirmoorings.Sometreesblowndown. -Examples:Bonnie1998,Georges(FL&LA)1998andGloria1985 209
PAGE 233
Category3Hurricanewinds111-130mph:Somestructuraldamagetosmallresidencesandutilitybuildings.Largetreesblowndown.Mobilehomesandpoorlybuiltsignsdestroyed.Floodingnearthecoastdestroyssmallerstructureswithlargerstructuresdamagedbyoatingdebris.Terrainmaybeoodedwellinland. -Examples:Keith2000,Fran1996,Opal1995,Alicia1983andBetsy1965 Category4Hurricanewinds131-155mph:Moreextensivecurtainwallfailureswithsomecompleteroofstructurefailureonsmallresidences.Majorerosionofbeachareas.Terrainmaybeoodedwellinland. -Examples:Hugo1989andDonna1960 Category5Hurricanewinds156mphandup:Completerooffailureonmanyresidencesandindustrialbuildings.Somecompletebuildingfailureswithsmallutilitybuildingsblownoveroraway.Floodingcausesmajordamagetoloweroorsofallstructuresneartheshoreline.Massiveevacuationofresidentialareasmayberequired. -Examples:Andrew(FL)1992,Camille1969andLaborDay1935
PAGE 234
RMSError=s whereSandMaresimulatedandmeasuredvalues,respectively. 211
PAGE 235
ThefollowingtablesshowbesttracksforHurricanesIsabel,Charley,andFrances.TheinformationwasobtainedfromNOAAandcontainstime,lati-tude/longitudeposition,pressureinthemiddleofthestorm,maximumwindspeed,andstormstageaccordingtotheSar-SimpsonHurricaneScale. 212
PAGE 236
TableC{1:BesttrackforHurricaneIsabel,6-19Sep-tember2003. LAT LON Pressure WindSpeed Stage UTC mb mph 13.8 31.4 1009 35 tropicaldepression 06/0600 13.9 32.7 1005 40 tropicalstorm 06/1200 13.6 33.9 1003 45 " 06/1800 13.4 34.9 1000 50 " 07/0000 13.5 35.8 994 60 " 07/0600 13.9 36.5 991 70 " 07/1200 14.4 37.3 987 75 hurricane 07/1800 15.2 38.5 984 80 " 08/0000 15.8 39.7 976 90 " 08/0600 16.5 40.9 966 110 " 08/1200 17.1 42.0 952 130 " 08/1800 17.6 43.1 952 130 " 09/0000 18.2 44.1 948 135 " 09/0600 18.9 45.2 948 135 " 09/1200 19.4 46.3 948 135 " 09/1800 20.0 47.3 948 135 " 10/0000 20.5 48.3 952 130 " 10/0600 20.9 49.4 952 130 " 10/1200 21.1 50.4 948 135 " 10/1800 21.1 51.4 942 140 " 11/0000 21.2 52.3 935 145 " 11/0600 21.3 53.2 935 145 " 11/1200 21.4 54.0 925 155 " 11/1800 21.5 54.8 915 165 " 12/0000 21.6 55.7 920 160 " 12/0600 21.7 56.6 920 160 " 12/1200 21.6 57.4 920 160 " 12/1800 21.7 58.2 920 160 " 13/0000 21.8 59.1 925 155 " 13/0600 21.9 60.1 935 150 " 13/1200 22.1 61.0 935 155 " 13/1800 22.5 62.1 932 160 " 14/0000 22.9 63.3 935 155 " 14/0600 23.2 64.6 939 155 " 14/1200 23.5 65.8 935 155 " 14/1800 23.9 67.0 933 160 " 15/0000 24.3 67.9 937 150 " 15/0600 24.5 68.8 940 145 " 15/1200 24.8 69.4 946 140 " Continuedonnextpage
PAGE 237
Date/Time LAT LON Pressure WindSpeed Stage UTC mb mph 25.3 69.8 949 135 " 16/0000 25.7 70.2 952 120 " 16/0600 26.3 70.5 955 115 " 16/1200 26.8 70.9 959 110 " 16/1800 27.4 71.2 959 110 " 17/0000 28.1 71.5 957 110 " 17/0600 28.9 71.9 957 110 " 17/1200 29.7 72.5 957 105 " 17/1800 30.6 73.0 955 105 " 18/0000 31.5 73.5 953 105 " 18/0600 32.5 74.3 956 105 " 18/1200 33.7 75.2 956 105 " 18/1800 35.1 76.4 958 100 " 19/0000 36.7 77.7 969 75 " 19/0600 38.6 78.9 988 60 tropicalstorm 19/1200 40.9 80.3 997 40 extratropical 19/1800 43.9 80.9 1000 35 " 20/0000 48.0 81.0 1000 30 " 11/1800 21.5 54.8 915 165 minimumpressure 18/1700 34.9 76.2 957 105 landfallatDrumInlet,NC
PAGE 238
TableC{2:BesttrackforHurricaneCharley,9-14August2004. LAT LON Pressure WindSpeed Stage UTC mb mph 11.4 59.2 1010 35 tropicaldepression 09/1800 11.7 61.1 1009 35 " 10/0000 12.2 63.2 1009 35 " 10/0600 12.9 65.3 1007 40 tropicalstorm 10/1200 13.8 67.6 1004 45 " 10/1800 14.9 69.8 1000 50 " 11/0000 15.6 71.8 999 60 " 11/0600 16.0 73.7 999 60 " 11/1200 16.3 75.4 995 70 " 11/1800 16.7 76.8 993 75 hurricane 12/0000 17.4 78.1 992 75 " 12/0600 18.2 79.3 988 85 " 12/1200 19.2 80.7 984 90 " 12/1800 20.5 81.6 980 105 " 13/0000 21.7 82.2 976 105 " 13/0600 23.0 82.6 966 120 " 13/1200 24.4 82.9 969 110 " 13/1400 24.9 82.8 965 125 " 13/1700 25.7 82.5 954 145 " 13/1800 26.1 82.4 947 145 " 14/0000 28.1 81.6 970 85 " 14/0600 30.1 80.8 993 85 " 14/1200 32.3 79.7 988 75 " 14/1800 34.5 78.1 1000 70 tropicalstorm 15/0000 36.9 75.9 1012 45 extratropical 15/0600 39.3 73.8 1014 40 " 15/1200 41.2 71.1 1018 35 " 13/1945 26.6 82.2 941 150 minimumpressure 13/2045 26.9 82.1 942 145 landfallatPuntaGorda,FL
PAGE 239
TableC{3:BesttrackforHurricaneFrances,31August-7September2004. LAT LON Pressure WindSpeed Stage UTC mb mph 20.0 63.4 949 140 hurricane 31/1800 20.3 65.0 942 145 " 01/0000 20.6 66.3 941 140 " 01/0600 21.0 67.9 939 140 " 01/1200 21.4 69.1 937 140 " 01/1800 21.8 70.4 941 140 " 02/0000 22.3 71.4 939 140 " 02/0600 22.7 72.5 937 145 " 02/1200 23.1 73.5 939 140 " 02/1800 23.8 74.4 948 130 " 03/0000 24.2 75.1 948 120 " 03/0600 24.6 75.7 954 115 " 03/1200 25.2 76.4 958 110 " 03/1800 25.7 77.2 960 105 " 04/0000 25.9 77.5 960 100 " 04/0600 26.4 78.0 960 100 " 04/1200 26.7 78.4 962 105 " 04/1800 26.9 79.0 962 105 " 05/0000 27.0 79.4 958 110 " 05/0600 27.2 80.5 960 105 " 05/1100 27.3 80.7 967 100 " 05/1300 27.5 80.9 969 90 " 05/1500 27.7 81.2 973 80 " 05/1800 27.9 81.7 975 70 tropicalstorm 05/2100 28.0 82.2 977 70 " 06/0000 28.1 82.3 978 65 " 06/0600 28.6 83.8 981 65 " 06/1200 29.1 83.6 982 65 " 06/1800 30.1 84.1 982 65 " 07/0000 31.1 84.5 984 40 " 01/0700 21.1 68.1 935 140 minimumpressure 31/1800 20.3 65.0 942 145 maximumwind 05/0430 27.2 80.2 960 105 landfallatPortStLucie,FL 06/1800 30.1 84.0 982 60 landfallnearAucillaRiver,FL
PAGE 240
217
PAGE 241
FigureD{1: WINDGENandWNAvs.measuredwindspeed(top)anddirection(bottom)atCapeLookout,NCduringHurricaneIsabel.
PAGE 242
FigureD{2: WINDGENandWNAvs.measuredwindspeed(top)anddirection(bottom)atDuck,NCduringHurricaneIsabel.
PAGE 243
FigureD{3: WINDGENandWNAvs.measuredwindspeed(top)anddirection(bottom)atChesapeakeLight,VAduringHurricaneIsabel.
PAGE 244
FigureD{4: WINDGENandWNAvs.measuredwindspeed(top)anddirection(bottom)atChesapeakeBayBridge,VAduringHurricaneIsabel.
PAGE 245
FigureD{5: WINDGENandWNAvs.measuredwindspeed(top)anddirection(bottom)atKiptopeke,VAduringHurricaneIsabel.
PAGE 246
FigureD{6: WINDGENandWNAvs.measuredwindspeed(top)anddirection(bottom)atMoneyPoint,VAduringHurricaneIsabel.
PAGE 247
FigureD{7: WINDGENandWNAvs.measuredwindspeed(top)anddirection(bottom)atGloucesterPoint,VAduringHurricaneIsabel.
PAGE 248
FigureD{8: WINDGENandWNAvs.measuredwindspeed(top)anddirection(bottom)atLewisetta,VAduringHurricaneIsabel.
PAGE 249
FigureD{9: WINDGENandWNAvs.measuredwindspeed(top)anddirection(bottom)atHPLWS,VAduringHurricaneIsabel.
PAGE 250
FigureD{10: WINDGENandWNAvs.measuredwindspeed(top)anddirection(bottom)atChoptankRiver,VAduringHurricaneIsabel.
PAGE 251
FigureD{11: WINDGENandWNAvs.measuredwindspeed(top)anddirection(bottom)atNorthBay,VAduringHurricaneIsabel.
PAGE 252
FigureE{1: ComputationalgridnearChesapeakeBaymouth. 229
PAGE 253
FigureE{2: ComputationalgridintheSouthOuterBanksarea.
PAGE 254
TableF{1:Alistofsimulationswithvariouscombi-nationsofsixmodelfeatures(psymboldenotesthefeaturewasincludedduringthesimulation). Factors Sim1 Sim2 Sim3 Sim4a Tide p p p p p p p p p p p p p p p p p p p p p ( 1993 )formulationwasused2 ( 1979 )formulationwasused3 ( 1989 )formulationwasused 231
PAGE 255
FigureF{1: Comparisonofsimulated(top-usingWNAwind,bottom-usingWINDGENwind)vs.measuredwaterelevationatBeaufort,NC.
PAGE 256
FigureF{2: Comparisonofsimulated(top-usingWNAwind,bottom-usingWINDGENwind)vs.measuredwaterelevationatDuck,NC.
PAGE 257
FigureF{3: Comparisonofsimulated(top-usingWNAwind,bottom-usingWINDGENwind)vs.measuredwaterelevationatChesapeakeBayBridge,VA.
PAGE 258
FigureF{4: Comparisonofsimulated(top-usingWNAwind,bottom-usingWINDGENwind)vs.measuredwaterelevationatGloucesterPoint,VA.
PAGE 259
FigureF{5: Comparisonofsimulated(top-usingWNAwind,bottom-usingWINDGENwind)vs.measuredwaterelevationatMoneyPoint,VA.
PAGE 260
FigureF{6: Comparisonofsimulated(top-usingWNAwind,bottom-usingWINDGENwind)vs.measuredwaterelevationatKiptopeke,VA.
PAGE 261
FigureF{7: Comparisonofsimulated(top-usingWNAwind,bottom-usingWINDGENwind)vs.measuredwaterelevationatLewisetta,VA.
PAGE 262
I )comparedwiththesimulatedsurge(simulated"pure"tidewassubtractedformsimulatedwaterelevation)atsevenlocationsintheOuterBanksandChesapeakeBayareasduringHurricaneIsabel.ThesimulatedresultsarebasedonSimulation3usingWNAwind. FigureF{8: Comparisonofsimulatedvs.measuredstormsurgeelevationatBeau-fort,NC.CalculatedresultsarebasedonSimulation3usingWNAwind.
PAGE 263
FigureF{9: Comparisonofsimulatedvs.measuredstormsurgeelevationatDuck,NC.CalculatedresultsarebasedonSimulation3usingWNAwind. FigureF{10: Comparisonofsimulatedvs.measuredstormsurgeelevationatChesapeakeBayBridge,VA.CalculatedresultsarebasedonSimulation3usingWNAwind.
PAGE 264
FigureF{11: Comparisonofsimulatedvs.measuredstormsurgeelevationatGloucesterPoint,VA.CalculatedresultsarebasedonSimulation3usingWNAwind. FigureF{12: Comparisonofsimulatedvs.measuredstormsurgeelevationatMoneyPoint,VA.CalculatedresultsarebasedonSimulation3usingWNAwind.
PAGE 265
FigureF{13: Comparisonofsimulatedvs.measuredstormsurgeelevationatKip-topeke,VA.CalculatedresultsarebasedonSimulation3usingWNAwind. FigureF{14: Comparisonofsimulatedvs.measuredstormsurgeelevationatLe-wisetta,VA.CalculatedresultsarebasedonSimulation3usingWNAwind.
PAGE 266
InthissectionmeasuredwaterelevationrecordedatfourlocationsintheCharlotteHarborareaduringHurricaneCharleyisshownversuswatersurfaceelevationcalculatedbasedonWNAorWINDGENwindandvariousforcingmechanismslistedinthetablebelow. TableG{1:Alistofsimulationswithvariouscombi-nationsofsixmodelfeatures(psymboldenotesthefeaturewasincludedduringthesimulation). Factors Sim1 Sim2 Sim3 Sim4a Tide p p p p p p p p p p p p p p p p p p p p p ( 1993 )formulationwasused2 ( 1979 )formulationwasused3 ( 1989 )formulationwasused 243
PAGE 267
FigureG{1: Comparisonofsimulated(top-usingWNAwind,bottom-usingWINDGENwind)vs.measuredwaterelevationatBigCarlosPass,FL.
PAGE 268
FigureG{2: Comparisonofsimulated(top-usingWNAwind,bottom-usingWINDGENwind)vs.measuredwaterelevationatEsteroBay#1,FL.
PAGE 269
FigureG{3: Comparisonofsimulated(top-usingWNAwind,bottom-usingWINDGENwind)vs.measuredwaterelevationatEsteroBay#2,FL.
PAGE 270
FigureG{4: Comparisonofsimulated(top-usingWNAwind,bottom-usingWINDGENwind)vs.measuredwaterelevationatFtMyers,FL.
PAGE 271
TableH{1:Alistofsimulationswithvariouscombi-nationsofsixmodelfeatures(psymboldenotesthefeaturewasincludedduringthesimulation). Factors Sim1 Sim2 Sim3 Sim4a Tide p p p p p p p p p p p p p p p p p p p p p ( 1993 )formulationwasused2 ( 1979 )formulationwasused3 ( 1989 )formulationwasused 248
PAGE 272
FigureH{1: Comparisonofsimulated(usingWNAwind)vs.measuredwaterele-vationatClearwater,FL.Calculatedresultsarebasedonvesimulations.
PAGE 273
FigureH{2: Comparisonofsimulated(usingWNAwind)vs.measuredwaterele-vationatStPete,FL.Calculatedresultsarebasedonvesimulations. FigureH{3: Comparisonofsimulated(usingWNAwind)vs.measuredwaterele-vationatPortManatee,FL.Calculatedresultsarebasedonvesimulations.
PAGE 274
I )comparedwiththesimulatedsurge(simulated"pure"tidewassubtractedformsimulatedwaterelevation)atthreelocationsintheTampaBayareaduringHurricaneFrances.ThesimulatedresultsarebasedonSimulation3usingWNAwind. FigureH{4: Comparisonofsimulatedvs.measuredstormsurgeelevationatClear-water,FL.CalculatedresultsarebasedonSimulation3usingWNAwind.
PAGE 275
FigureH{5: Comparisonofsimulatedvs.measuredstormsurgeelevationatStPete,FL.CalculatedresultsarebasedonSimulation3usingWNAwind. FigureH{6: Comparisonofsimulatedvs.measuredstormsurgeelevationatPortManatee,FL.CalculatedresultsarebasedonSimulation3usingWNAwind.
PAGE 276
ThislowpassltercodewritteninMatlabwasusedtolteroutnon-tidalcontributiontowatersurfaceelevation,e.g.stormsurge. functionfdata=lplt(measured data,cuto f) %Peformslow-passlterbymultiplicationinfrequencydomain.Usesthree-pointtaper(infrequencyspace)betweenpass-bandandstopband. %CoecientssuggestedbyD.Coats,Battelle,Ventura.Evenbettercoef-cientsforthetapercanbefoundin:Rabiner,L.R.,Gold,B.,andMcGonegal,C.A.(1980).AnApproachtotheapproximationproblemfornonrecursivedigitallters.IEEETran.vol.AU-18(2):83-106.WrittenbyChrisSherwood,BattellePNLModiedbyVadimAlymov:6/8/2005 closeall %dataleconsistsoftwocolumns:rstistimeinjuliandays,secondiswaterelevation time=measured data(:,1); data=measured data(:,2); delta t=(time(2)-time(1))*24.0*60.*60.%juliandayconvertedtosec. n=length(data) mn=mean(data);data=data-mn;P=t(data);N=length(P);lt=ones(N,1);k=oor(cuto f*N*delta t);lt(1:k)=lt(1:k)*1;lt(k+1)=.715;lt(k+2)=.24;lt(k+3)=.024;lt(k+4:N-(k+4))=lt(k+4:N-(k+4))*0.; lt(N-(k+3))=.024;lt(N-(k+2))=.24;lt(N-(k+1))=.715; P=P.*lt; 253
PAGE 277
fdata=real(it(P)); surge=fdata(1:n)+mn; tide=data-surge; gure(1);plot(time,tide,'g-') gure(2);plot(time,surge,'r-') measured surge(:,:)=[time,surge]; measured tide(:,:)=[time,tide]; savemeasured surge.datmeasured surge-ASCII savemeasured tide.datmeasured tide-ASCII
PAGE 278
Arya,S.P.S.(1977).Suggestedrevisionstocertainboundary-layerparameter-izationschemesusedinatmosphericcirculationmodels.Mon.WeatherRev.,105:215{227. Bakker,W.T.andDorn,T.V.(1978).Near-bottomvelocitiesinwaveswithacurrent.Proc.16thInt.Conf.CoastalEng.,ASCE,2:1394{1413. Battjes,J.A.(1975).Modelingofturbulenceinthesurf-zone.SymposiumonmodelingTechniques.AmericanSocietyofCivilEng.,11:1050{1061. Battjes,J.A.andJanssen,J.P.F.M.(1978).Energylossandset-upduetobreakingofrandomwaves.Proc.16thInt.Conf.CoastalEng.,ASCE,1:569{587. Blumberg,A.F.andMellor,G.L.(1987).Adescriptionofathree-dimensionalcoastaloceancirculationmodel.Three-DimensionalCoastalOceanModels,editedbyN.Heaps,AmericanGeophysicalUnion. Bode,L.andHardy,T.A.(1997).Progressandrecentdevelopmentsinstormsurgemodeling.J.ofHydraulicEng.,123/4:315{331. Booij,N.,Ris,R.C.,andHolthuijsen,L.H.(1999).Athird-generationwavemodelforcoastalregions-1.modeldescriptionandvalidation.J.ofGeophys.Res.-Oceans,104:7649{7666. Cardone,V.J.,Greenwood,C.V.,andGreenwood,J.A.(1992).Unitedprogramforthesecicationofhurricaneboundarylayerwindsoversurfacesofspeciedroughness,ContractReportCERC-92-1,CorpsofEngineers,Vicksburg,MS. Carrier,J.R.andGreenspan,H.P.(1958).Waterwavesofniteamplitudeonaslopingbeach.JournalofFluidMechanics,4:97{109. Casulli,V.andCheng,R.T.(1992).Semi-implicitnitedierencemethodsforthree-dimensionalshallowwaterow.Int.J.forNumericalMethodsinFluids,15:629{648. Chow,S.(1971).Astudyofthewindeldintheplanetoryboundarylayerofamovingtropicalcyclone.Master'sThesis,NewYorkUniversity,NewYork. Cialone,M.A.(1991).CoastalModelingSystem(CMS)user'smanual.CERC-91-1,CERC/WES,CorpsofEngineers,Vicksburg,MS. 255
PAGE 279
Clark,R.R.andLaGrone,J.W.(2004).Hurricanecharley,august2004:Post-stormbeachconditions&coastalimpactandrecommendationsforrecovery&modicationsofbeachmanagementstrategies.FloridaDepartmentofEnviron-mentalProtectionBureauofBeachesandCoastalSystems,Report. Davis,J.R.(1996).Hydrodynamicmodelinginshallowwaterwithwettinganddrying.Master'sThesis,CoastalandOceaonographicEngineeringDepartment,UniversityofFlorida,Gainesville. Davis,J.R.(2001).HighperformancemodelingofcirculationandtransportintheIndianRiverLagoon,orida.Dissertation,CoastalandOceaonographicEngineeringDepartment,UniversityofFlorida,Gainesville. Davis,J.R.andSheng,Y.P.(2000).Highperformanceestuarineandcoastalenvironmentalmodeling:TheCH3Dexample.EstuarineandCoastalModeling,6:470{484. Davis,J.R.andSheng,Y.P.(2002).Highperformanceestuarineandcoastalenvironmentalmodeling:PartII.EstuarineandCoastalModeling,7:479{490. Dean,R.G.,Chiu,T.Y.,andWang,S.Y.(1995).CombinedtotalstormtidefrequencyanalysisforPinellasCountyFlorida.Tallahassee,FL:BeachesandShoresResourceCenterInstituteofScienceandPublicAairs. Dean,R.G.andDalrymple,R.A.(1991).Waterwavemechanicsforengineersandscientists.AdvancedSeriesonOceanEng.,Vol.2SO. Donelan,M.A.,Dobson,F.W.,Smith,S.D.,andAnderson,R.J.(1993).Onthedependenceofsea-surfaceroughnessonwavedevelopment.J.ofPhys.Oceanogr.,23:2143{2149. Doodson,A.T.andWarburg,H.D.(1941).Admiraltymanualoftides.Hydrogra-phyDepartment,HerMajesty'sStationaryOce,London. Engle,J.,MacMahan,J.,Thieke,R.J.,Hanes,D.M.,andDean,R.G.(2002).Formulationofaripcurrentpredictiveindexusingrescuedata.Proc.NationalConf.onBeachPreservationTechnology,FSBPA,Biloxi,MS. FederalEmergencyManagementAgency(FEMA)(1988).Waveheightanalysisforoodinsurancestudies.TechnicalDocumentationforWHAFISProgramVersion3.0. FloridaDepartmentofEnvironmentalProtection(FDEP)(2003).Criticalbeacherosionareasinorida.BureauofBeachesandWetlandResources,ReportNO.BCS-99-02. Foreman,M.G.G.(1977).Manualfortidalheightsanalysisandprediction.PacicMarineScienceReport77-10,InstituteofOceanSciences,PatriciaBay,Sidney,B.C.
PAGE 280
Garratt,J.R.(1977).Reviewofdragcoecientsoveroceansandcontinents.MonthlyWeatherReview,105:915{929. Graber,H.C.andMadsen,O.S.(1988).Anite-depthwind-wavemodel.1.modeldescription.J.ofPhys.Oceanogr.,18:1465{1483. Grant,W.D.andMadsen,O.S.(1979).Combinedwaveandcurrentinteractionwitharoughbottom.J.ofGeophys.Res.,84:1797{1808. Grant,W.D.andMadsen,O.S.(1982).Movablebedroughnessinunsteadyocillatoryow.J.ofGeophys.Res.,87:469{481. Groves,G.W.(1955).Numericalltersfordiscriminationagainsttidalperiodici-ties.Transactions,AmericanGeophisicalUnion,36(6):1073{1084. Holland,G.J.(1980).Ananalyticmodelofthewindandpressureprolesinhurricanes.MonthlyWeatherReview,108:1212{1218. Holthuijsen,L.H.,Booij,R.,Haagsma,I.G.,Kieftenburg,A.T.M.M.,andKriezi,E.E.(2000).SWANCycle3version40.11:UserManual.DepartmentofCivilEngineeringDelftUniversityofTechnology. Hubbert,G.D.andMcInnes,K.L.(1999).Astormsurgeinundationmodelforcoastalplanningandimpactstudies.J.ofCoastalRes.,15-1:168. Janssen,P.A.E.M.(1991).Quasi-lineartheoryofwind-wavegenerationappliedtowaveforecasting.J.ofPhys.Oceanogr.,21:1631{1642. Jelesnianski,C.P.,Chen,J.,andShaer,A.W.(1992).SLOSH:Sea,Lake,andOverlandSurgesfromHurricanes.TechnicalReportofNationalWeatherService,SilverSpring,MD,48:71. Johnson,H.K.andKofoed-Hansen,H.(2000).Inuenceofbottomfrictiononseasurfaceroughnessanditsimpactonshallowwaterwindwavemodeling.J.ofPhys.Oceanogr.,30(7):1743{1756. Jonsson,I.G.andCarlsen,N.A.(1979).Experimentalandtheoreticalinvestiga-tionsinanoscillatoryturbulentboundarylayer.J.ofHydraulicRes.,14:45{60. Kaihatu,J.M.andSheremet,A.(2004).Dissipationofwaveenergybycohesivesediments.CoastalEng.2004,Proc.29thInt.Conf.,Lisbon,Portugal,1:498{507. Kirby,J.T.andDalrymple,R.A.(1994).REF/DIF1version:DocumentationandUser'sManual.DepartmentofCivilEngineering.UniversityofDelaware,Newark. Liu,P.L.F.andDalrymple,R.A.(1978).Bottomfrictionalstressesandlongshorecurrentsduetowaveswithlargeanglesofincidence.J.ofMarineRes.,36:357{375.
PAGE 281
Longuet-Higgins,M.S.andStewart,R.W.(1964).Radiationstressesinwaterwaves;aphysicaldiscussion,withapplications.Deep-SeaResearch,11:529{562. Luettich,R.,Westerink,J.J.,andSchener,N.W.(1992).ADCIRC:anadvancedthree-dimensionalcirculationmodelforshelvescoastsandestuaries,report1:theoryandmethodologyofADCIRC-2DDIandADCIRC-3DL.DredgingResearchProgramTechnicalReportDRP-92-6,U.S.ArmyEngineersWaterwaysExperimentStation,Vicksburg,MS,page137. Mastenbroek,C.,Burgers,G.,andJanssen,P.A.E.M.(1993).Thedynamicalcouplingofawavemodelandastorm-surgemodelthroughtheatmosphericboundary-layer.J.ofPhys.Oceanogr.,23:1856{1866. Mellor,G.(2003).Thethree-dimensionalcurrentandsurfacewaveequation.J.ofPhys.Oceanogr.,33:1978{1989. Moon,I.(2000).Develpmentofacoupledoceanwave-circulationmodelanditsapplicationstonumericalexperimentsforwindwaves,stormsurgesandoceancirculationoftheYellowandEastChinaSeas.Ph.D.Dissertation,DepartmentofOceanography,SeoulNationalUniversity. Moon,I.(2005).Impactofacoupledoceanwave-tide-circulationsystemonocastalmodeling.OceanModelling,8:203{236. Morton,R.A.andSallenger,A.H.(2003).Morphologicalimpactsofextremestormsonsandybeachesandbarriers.J.ofCoastalRes.,19:560{573. Mory,M.andHamm,L.(1997).Waveheight,setupandcurrentsaroundadetachedbreakwatersubmittedtoregularorrandomwaveforcing.CoastalEng.,31:77{96. Mukai,A.Y.,Westerink,J.J.,andLuettich,R.A.(2001).Guidelinesforusingtheeastcoast2001databaseoftidalconstituentswithintheWesternNorthAtlanticOcean,GulfofMexicoandCaribbeanSea.CoastalandHydraulicEng.TechnicalNote(IV-XX). NationalOceanicandAtmosphericAdministration(NOAA)(1999).HurricaneBasics,Brochure. NationalOceanicandAtmosphericAdministration(NOAA)(2005).EconomicstatisticsforNOAA.Report,U.S.DepartmentofCommerce. Ochi,M.K.(1998).Probabilitydistributionofheightinnitewaterdepth.CoastalEng.1998,Proc.26thInt.Conf.,Copenhagen,Denmark. Peene,S.,Sheng,Y.P.,andHouston,S.(1993).ModelingtidalandwinddrivencirculationinSarasotaandTampaBay.EstuarineandCoastalModeling,2:357{369.
PAGE 282
Rogers,W.E.(2005).Validationofthreesub-regional-scale,wave-forecastingsystemscreatedbytheNavalResearchLaboratoryfortheNationalWeatherSer-viceCoastalStormsProgram.Report,OceanographyDivision,NavalResearchLaboratory,StennisSpaceCenter,MS. Schoellhamer,D.H.(1993).SimulationandanalysisofsedimentresuspensionobservedinOldTampaBay,Florida.Dissertation,CoastalandOceanographicEngineeringDepartment,UniversityofFlorida,Gainesville. Schwerdt,R.W.,Ho,F.P.,andWatkins,R.R.(1979).Meteorologicalcriteriaforstandardprojecthurricaneandprobablemaximumhurricanewindelds,GulfandEastCoastsoftheUnitedStates.NOAATechnicalReportNWS23,SilverSpring,MD. Sheng,Y.P.(1982).Hydraulicapplicationsofasecond-orderclosuremodelofturbulenttransport.Proc.Conf.ApplyingResearchtoHydraulicPracticeASCE,Jackson,MS. Sheng,Y.P.(1983).Mathematicalmodelingofthree-dimensionalcoastalcurrentsandsedimentdispersion:Modeldevelopmentandapplication.TechnicalReportCERC-83-2,AeronauticalResearchAssociatesofPrinceton,Princeton,NJ. Sheng,Y.P.(1986).Athree-dimensionalnumericalmodelofcoastalandestuarinecirculationandtransportingeneralizedcurvilineargrids.TechnicalReportNo.587. Sheng,Y.P.(1987).Onmodelingthree-dimensionalestuarineandmarinehydrodynamics.Three-dimensionalmodelsofmarineandestuarinedynamics,pages35{54. Sheng,Y.P.(1990).Evolutionofathree-dimensionalcurvilinear-gridhydro-dynamicmodelforestuaries,lakesandcoastalwaters:CH3D.EstuarineandCoastalModeling,pages40{49. Sheng,Y.P.andAlymov,V.(2002).CoastaloodinganalysisofpinellascountyusingALSMdata:AcomparisonbetweenUFs2-Dmethodandresultsvs.FEMAsmethodandresults.DepartmentofCivilandCoastalEngineeringUniversityofFlorida,Gainesville. Sheng,Y.P.,Alymov,V.,Paramygin,V.,andDavis,J.R.(2004).Anintegratedstormsurgemodelingsystem:CH3D-SSMS.DepartmentofCivilandCoastalEngineering,UniversityofFlorida,Gainesville. Sheng,Y.P.andVillaret,C.(1989).Modelingtheeectofsuspendedsedimentstraticationonbottomexchangeprocess.J.ofGeophys.Res.,pages14229{14444.
PAGE 283
Sheng,Y.P.,Zhang,Y.,Alymov,V.,andLee,J.(2002).Implementationofwetting-and-dryingalgorithmtoCH3D.TechnicalReport,DepartmentofCoastalandOceanographicEngineering,UniversityofFlorida,Gainesville. Signell,R.P.,Beardsley,R.C.,Graber,H.C.,andCapotondi,A.(1990).Eectofwave-currentinteractiononsteadywind-drivencirculationinnarrow,shallowembayments.J.ofGeophys.Res.,95:9671{9678. Signell,R.P.andList,J.H.(1997).Eectofwave-enhancedbottomfrictiononstorm-drivencirculationinMassachusettsBay.J.ofWaterway,Port,Coastal,andOceanEng.,123:233{239. Smith,S.D.andBanke,E.G.(1975).Variationofsea-surfacedragcoecientwithwindspeed.Q.J.R.Meteorol.Soc.,101:665{673. Stive,M.J.F.andWind,H.G.(1982).Astudyofradiationstressandset-upinthenearshoreregion.CoastalEng.,6:1{25. Sun,D.(2001).ModelingsuspendedsedimenttransportundercombinedwavecurrentactionsinIndianRiverLagoon.Dissertation,CoastalandOceangraphicEngineeringDepartment,UniversityofFlorida,Gainesville. Sun,D.andSheng,Y.P.(2002).Modelingthree-dimensionalwind-inducedcirculation.J.ofWaterway,Port,Coastal,andOceanEng. Tang,Y.M.andGrimshaw,R.(1996).Theeectofwind-waveenhancementofbottomstressonthecirculationinducedbytropicalcyclonesoncontinentalshelves.J.ofGeophys.Res.-Oceans,101:22705{22714. Tolman,H.L.(1997).UsermanualandsystemdocumentationofWAVEWATCH-IIIversion1.15.NOAA/NWS/NCEP/OMBTechnicalNote151,page97. Tolman,H.L.(1999).UsermanualandsystemdocumentationofWAVEWATCH-IIIversion1.18.NOAA/NWS/NCEP/OMBTechnicalNote166,page110. Vriend,D.andStive,M.J.F.(1987).Quasi-3dmodelingofnear-shorecurrents.CoastalEng.,11:565{601. Wang,Y.H.,Bohlen,W.F.,andO'Donnel,J.(2000).Stormenhancedbottomshearstressandassociatedsedimententrainmentinamoderateenergeticestuary.J.ofOceanogr.,56:311{317. Watson,C.C.(1995).Thearbiterofstorms:ahighresolution,GISbasedstormhazardmodel.NationalWeatherDigests,20:2{9.
PAGE 284
Watson,C.C.andJohnson,M.E.(1999).Design,implementationandoperationofamodularintegratedtropicalcyclonehazardmodel.Proc.23rdConf.onHurricanesandTropicalMeteorology,Dallas,TX. Weaver,R.J.(2004).Eectofwaveforcesonstormsurge.Master'sThesis,DepartmentofCivilandCoastalEngineering,UniversityofFlorida,Gainesville. Wilson,B.W.(1957).HurricanewavestatisticsfortheGulfofMexico.Depart-mentofArmyCorpsofEngineers.TechnicalMemorandum98. Wornom,S.F.,Welsh,D.J.S.,andBedford,K.W.(2001).OncouplingtheSWANandWAMwavemodelsforaccuratenearshorewavepredictions.CoastEng.,43:161{201. Xie,L.,Wu,K.,Pietrafesa,L.,andZhang,C.(2001).Anumericalstudyofwave-currentinteractionthroughsurfaceandbottomstresses:Wind-drivencirculationintheSouthAtlanticBightunderUniformWinds.J.ofGeophys.Res.,106:16,841{16,855. Zhang,M.Y.andLi,Y.S.(1996).Thesynchronouscouplingofathird-generationwavemodelandatwo-dimensionalstormsurgemodel.OceanEng.,23:533{543.
PAGE 285
VadimAlymovwasbornonMarch25th,1974,inAndijan,Uzbekistan.Attheageof11,hemovedwithhisparentstoBarnaul,Russia,wherehenishedhighschoolandenteredtheDepartmentofMathematicsattheAltaiStateUniversity.AfterreceivingaM.S.degreeinappliedmathematicsin1996,hestartedtoworkattheInstituteforWaterandEnvironmentalProblemsoftheRussianAcademyofSciences,inBarnaul.In1997,hejoinedtheDepartmentofCoastalandOceanographicEngineeringattheUniversityofFloridawhereheearnedhisM.S.andPh.D.incoastalengineering,in1999and2005,respectively. 262
|