Citation
A study and evaluation of saltwater intrusion in the Floridan aquifer

Material Information

Title:
A study and evaluation of saltwater intrusion in the Floridan aquifer by means of a Hele-Shaw model
Creator:
Evans, Andrew Joseph, 1940-
Publication Date:
Language:
English
Physical Description:
xiv, 213 leaves : ill., diagrs., maps ; 28cm.

Subjects

Subjects / Keywords:
Aquifers ( jstor )
Cradles ( jstor )
Fresh water ( jstor )
Groundwater ( jstor )
Limestones ( jstor )
Modeling ( jstor )
Parametric models ( jstor )
Pumps ( jstor )
Saltwater ( jstor )
Velocity ( jstor )
Civil Engineering thesis Ph. D
Dissertations, Academic -- Civil Engineering -- UF
Saltwater encroachment -- Florida ( lcsh )
City of Tallahassee ( local )
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis--University of Florida.
Bibliography:
Bibliography: leaves 210-212.
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Andrew Joseph Evans, Jr.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
025151803 ( ALEPH )
02609315 ( OCLC )
AAS5126 ( NOTIS )

Downloads

This item has the following downloads:


Full Text










A STUDY AND EVALUATION OF SALTWATER INTRUSION
IN THE FLORIDAN AQUIFER
BY MEANS OF A HELE-SHAW MODEL










By

ANDREW JOSEPH EVANS, JR.


A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE UNIVERSITY OF FLORIDA
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY









UNIVERSITY OF FLORIDA


1975













ACKNOWLEDGEMENTS


To my supervisory committee, I wish to extend my

sincere appreciation for their efforts on my behalf. A

special thanks goes to Dr. B. A. Christensen and Dr. J. H.

Schaub for their continuing support and advice. It's not

an easy task to pull an oar in Hagar's longboat.

The efforts of Mr. C. L. White, Mr. William

Whitehead, and the staff of the Mechanical Engineering

machine shop in the construction of the model are grate-

fully acknowledged, as well as the assistance of Mr. Richard

Sweet and Mr. Tom Costello'in the operation of the model, and

the mathematical advice of Dr. Jonathan Lee. The participa-

tion of Mr. Floyd L. Combs in all aspects of the project was

especially valuable.

Without the financial support of the Office of Water

Resources Research, United States Department of the Interior,

and the administrative assistance of Dr. W. H. Morgan and

the staff of the Florida Water Resources Research Center, this

project would not have been launched.

Finally, to my mother and my many dear friends who

have watched the "ins and outs" of my academic and profes-

sional career, bless you for your interest and encouragement.









I want to leave the reader with this closing thought,

which I believe is paraphrased from Benjamin Franklin:

"Waste not want not, you never miss the water 'till the

well runs dry."


iii













TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...................................... ii

LIST OF TABLES ........................................ vi

LIST OF FIGURES .... ........................... ........ vii

KEY TO SYMBOLS OR ABBREVIATIONS ........................ x

ABSTRACT .............................................. xiii

Chapter

I. INTRODUCTION AND STATEMENT OF PROBLEM ......... 1
Topography ................................. 2
Western Highlands ....................... 3
Marianna Lowlands ........................ 6
Tallahassee Hills ....................... 7
Central Highlands ....................... 7
Coastal Lowlands ........................ 7
Climate .................................... 8
Geology .................................... 12

II. MODELS, NUMERICAL AND PHYSICAL ................ 15
A: NUMERICAL METHODS ............................. 15
Method of Finite Differences ................ 15
Method of Finite Elements ................... 17
Relaxation Methods ......................... 18
B: PHYSICAL MODELS ............................... 19
Sandbox Model .............................. 21
Hele-Shaw Analog ............... ............. 22
Electric Analog .............................. 23
Continuous Electric Analog .............. 23
Discrete Electric Analog ................ 24
Ion Motion Analog ....................... 24
Membrane Analog .............................. 25
Summary .................................... 26








TABLE OF CONTENTS-Continued


Chapter Page

III. THE HELE-SHAW MODEL ........................... 28
Viscous Flow Analog ........................ 29
Scaling .................................... 37
Time .................................... 39
Anisotropy .............................. 40
Leakage ................................. 50
Storativity ............................. 54
Discharge ............................... 55
Accretion ............................... 59
Volume .................................. 59

IV. SITE SELECTION AND PROTOTYPE GEOLOGY
AND HYDROLOGY .............................. 61
Site Selection ............................. 61
Prototype Geology .......................... 67
Prototype Hydrology ......................... 69

V. DESIGN, CONSTRUCTION, AND OPERATION
OF MODEL ................................... 71
Design ..................................... 71
Prototype ............................... 71
Model ................................... 71
Construction ............................... 86
Frame ................................... 86
Plexiglas Plates and Manifolds .......... 105
Saltwater System ........................ 125
Freshwater System, General .............. 125
Freshwater System, Accretion ............ 132
Freshwater System, Wells ................ 132
Freshwater System, Flow Meters .......... 132
Operation ........ .......................... 156

VI. RESULTS, CONCLUSIONS, AND RECOMMENDATIONS ..... 158
Results .............. ....................... 158
Conclusions and Recommendations ............ 191

Appendix

A. UNIFORM FLOW THROUGH A CONDUIT OF
RECTANGULAR CROSS SECTION .................. 193

B. FLOW METER CALIBRATION ........................ 195

BIBLIOGRAPHY .......................................... 210

BIOGRAPHICAL SKETCH ................................... 213














LIST OF TABLES

Table Page

2.1 APPLICABILITY OF MODELS AND ANALOGS .......... 27

5.1 PROTOTYPE PARAMETERS ......................... 72

5.2 MODEL PARAMETERS ............................. 81

5.3 SIMILARITY RATIOS ............................ 82

6.1 DEPTH TO SALTWATER ........................... 186














LIST OF FIGURES


Figure Page

1.1 Topographic divisions of Florida ................ 5

1.2 Mean annual precipitation ...................... 11

3.1 Free body flow diagram for Hele-Shaw model ..... 32

3.2 Section of anisotropic grooved zone in
Hele-Shaw model ............................. 44

3.3 Head loss in grooved anisotropic zone ........... 46

3.4 Section of leaky zone in Hele-Shaw model ....... 53

3.5 Storage manifold for Hele-Shaw model ........... 57

4.1 Regional area of prototype ..................... 64

5.1 Ghyben-Herzberg interface model ................ 75

5.2 Cradle and cradle dolly ........................ 88

5.3 Cradle rotation ................................ 91

5.4 Frame and model setup .......................... 93

5.5 Air hose and valve arrangement ................. 96

5.6 Stub shaft and pillow block arrangement ........ 98

5.7 Back up air supply .............................. 100

5.8 Internal support and sealing system ............ 102

5.9 Model mounting system .......................... 104

5.10 Model back and front plates .................... 107

5.11 Detail of the model front and back plate ....... 109

5.12 Detail of the model back plate ................. 111


vii








LIST OF FIGURES-Continued


Figure Page

5.13 Front plate with accretion manifolds ........... 114

5.14 Accretion manifolds ............................. 116

5.15 Detail of accretion manifolds .................. 118

5.16 Connections between model and fluid
supply system ............................... 120

5.17 Saltwater constant head tank ................... 122

5.18 Back and front plate clamp up .................. 124

5.19 Fluid supply network schematic ................. 127

5.20 Saltwater reservoir and pump ................... 129

5.21 Freshwater supply system ....................... 131

5.22 Freshwater reservoir and accretion pump ........ 134

5.23 Well supply manifold and pump .................. 136

5.24 Well supply manifold and accretion
supply manifold ............................. 138

5.25 Opposite view of Figure 5.24 ................... 141

5.26 Flow meter bank ................................ 143

5.27 Flow meter detail .............................. 145

5.28 Flow meter to model connections ................ 148

5.29 Flow meter pressure sensing lines .............. 150,

5.30 Flow meter switching device and
pressure transducers ........................ 152

5.31 Carrier demodulator and strip chart
recorder .................................... 155

6.1 Interface location, tm = 0 min. ................. 160

6.2 Interface location, tm = 32 min. ............... 162

6.3 Interface location, tm = 48 min. ................ 164


viii









LIST OF FIGURES-Continued


Figure

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13


location,

location,

location,

location,

location,

location,

location,

location,

location,

location,


tm = 62 min.

t = 79 min.

t = 92 min.
m
tm = 102 min

tm = 107 min

t = 117 min

t = 132 min
m
tm = 147 mir

tm = 162 mir

tm = 172 mir


L.

L.

t.

L.


6.14 Wedge location at time zero .....


Page

............... 166

............... 168

............... 170

.............. 172

........ ..... 174

..... ......... 176

.............. 178

.............. 180

.............. 182

.............. 184

............... 188


6.15 Time overlay of wedge location ..


Interface

Interface

Interface

Interface

Interface

Interface

Interface

Interface

Interface

Interface


190














KEY TO SYMBOLS OR ABBREVIATIONS


Symbols

A = area, Fourier coefficient

b = width of model and prototype

B = body force, Fourier coefficient

f = subscript denoting freshwater, Floridan aquifer

g = acceleration due to gravity

h = height of water

j = summation limit

k = intrinsic permeability

.K = hydraulic conductivity

1 = distance between storativity tubes, subscript
denoting leaky layer

L = distance center to center of groove in anisotropic
zone, flow meter tube length

m = subscript denoting model

n = effective porosity

p = pressure, subscript denoting prototype

q = specific discharge

Q = total flow

r = subscript denoting ratio

R = accretion

R = Reynolds number









KEY TO SYMBOLS OR ABBREVIATIONS-Continued


Symbols

S = specific storage

t = time

T = transmissivity

U = volume

V = velocity

x = horizontal direction parallel to test section

y = horizontal direction perpendicular to test section

z = vertical direction

1,2 = subscripts denoting zone 1 and zone 2

a = width adjustment factor

y = unit weight

A = length adjustment factor

p = absolute viscosity

E = geometric parameter in anisotropic zone

p = mass density

v = kinematic viscosity

= potentiometric head

= velocity potential, potential


Abbreviations

D. substantial derivative
Dt
V2 = Laplace operator

A = difference operator

C = Centigrade









KEY TO SYMBOLS OR ABBREVIATIONS-Continued


Abbreviations

cfs = cubic feet per second

*F = Fahrenheit

fps = feet per second

g/cm3 = grams per cubic centimeter

gpd = gallons per day

Hg = Mercury

I.D. = inner diameter

MGD = million gallons per day

msl = mean sea level

O.D. = outer diameter

pcf = pounds per cubic feet

psid = pounds per square inch differential

psig = pounds per square inch gage

RPM = revolutions per minute


xii













Abstract of Dissertation Presented to the Graduate Council
of the University of Florida in Partial Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy

A STUDY AND EVALUATION OF SALTWATER INTRUSION
IN THE FLORIDAN AQUIFER
BY MEANS OF A HELE-SHAW MODEL


By

Andrew Joseph Evans, Jr.


August, 1975

Chairman: B. A. Christensen
Major Department: Civil Engineering

Continuing development of the coastline zone in the

middle Gulf area of Florida is increasing the demand for

groundwater supplies and, in turn, increasing the probability

of saltwater intrusion. Methods must be developed to make

long-range predictions on the effects of increased demands

on the Floridan aquifer.

A Hele-Shaw model is a physical model which fits the

requirements for long-range planning. It is well-suited for

handling anisotropic aquifers, difficult boundary conditions

and can simulate years of field conditions in minutes of

model time.


xiii









The section selected for study lies in a line from

the Gulf coast near Tarpon Springs to a point near Dade City

and passes through the Eldridge-Wilde well field. The

Eldridge-Wilde well field is the major water producer for

Pinellas County. This region has experienced several years

of dry weather, and pumping has lowered the water levels in

the aquifer by a significant amount. This loss of fresh-

water head is certain to induce saltwater intrusion.

A Hele-Shaw model has been built for this area, and

all pertinent geological and hydrological features of the

area are included. Steady state characteristics of the

aquifer system have been considered. In particular, the

long-term effects due to pumping and artificial recharge

were examined.


xiv














CHAPTER I
INTRODUCTION AND STATEMENT OF PROBLEM


Florida, with the possible exception of California,

is the fastest growing state of the United States. The

rapid influx of people since World War II has greatly

increased the demands for land and water. In the past,

there has been an almost total lack of wide range planning

for the uses of these resources. Even fewer investigations

have been made into the consequences of their rapid and

unordered development. Recently, water supplies have had

to be rationed in South Florida. Overall, land and wet-

lands required for fish and wildlife have so diminished

that, in some instances, there has been a marked decrease

in their numbers. It seems reasonable to conclude that in

some areas of the state, land and water resources cannot

support much larger populations with current locally avail-

able supplies without almost irrecoverable damage to the

groundwater system in the form of saltwater encroachment.

With the growing affluence of the American people,

and the availability of economically priced air conditioning

units, it can be expected that even more people will leave

the colder northern climates for the southern and western

states. Florida can expect to receive more than its share








of the migration. Frequently now, environmental protection

groups are making forecasts of impending doom. At worst,

their predictions may come true and people are beginning to

look at all growth with a jaundiced eye.

It is doubtful, however, that growth and development

can be stopped. The history of man indicates a continual

effort to better his life-style, his private environment.

There is little doubt that this has sometimes caused a

degradation of other portions of his world. Unless the

cessation of all growth and development is acceptable, new

ways must be found of forecasting, or predicting, the results

of all growth so as to combat possible undesirable results.

Consequences of all growth must be known, even of those

resulting when pragmatic short-term solutions are used.

Hopefully, the remainder of this study will present

a modeling method which will be useful in forecasting the

results of pumpage and use of groundwater in our coastal

zones so that we may better plan their usage. But first,

a little background on Florida.


Topography

Florida lies between latitudes 24-40' and 31-00'

north, and longitudes 80-00' and 87*-40' west, and is the

most southerly unit of the continental United States. In

its southernmost extension it is less than 10 of latitude

north of the Tropic of Cancer.








Florida is bounded on the east by the Atlantic Ocean;

on the south by the Straits of Florida and the Gulf of Mexico;

on the west by the Gulf of Mexico and the state of Alabama;

and on the north by Alabama and Georgia. The shape of the

state in relation to the remainder of the United States

suggests two distinctive parts: the Floridan panhandle and

the peninsula of Florida. The panhandle is a strip roughly

225 miles long that stretches in an east-west direction.

The peninsula is a south-southeast extension at approximate

bearing S 17 east. From the northern boundary of the state

to the tip, not including the chain of keys, the peninsula

is approximately 415 miles long and includes two-thirds of

the land mass of the entire state. Its coastline, some

1350+ miles long, is the longest with the exception of

Alaska. No place in the interior of Florida is more than

60 miles from either the Gulf or the Atlantic coast.

Cooke (1939) divided the terrain of Florida into

five sections, Figure 1; the Western Highlands, the Marianna

Lowlands, the Tallahassee Hills, and a narrow band of Coastal

Lowlands, which comprise the panhandle, and the Central High-

lands and Coastal Lowlands, which comprise the peninsula.

The topography of each is described briefly.


Western Highlands

Extending eastward from the Perdido River (the

western boundary of Florida) to the Apalachicola River, the

northern part of this region near the Alabama state line






























FIGURE 1.1

Topographic divisions of Florida.








































Western Highlands

Marianna Lowlands
Tallahassee Hills
Central Highlands
Coastal Lowlands


86


0 50 100 150
Scale of Miles


After: Cooke (1939)









is not much higher than 300 feet. It is considered to be

hilly when compared to the broad gently rolling southern

parts of this region which drop to 100 feet elevation as

one approaches the coastal lowlands. The highest elevation

in the state, 345 feet, is found in this region in the north-

west corner of Walton County. The western highlands are

underlain with the sand of the Pliocene Citronelle Formation.

The steepness of the bankslopes at the headwaters of the

many streams is the most unique physiographic characteristic

of this section.


Marianna Lowlands

This roughly triangular-shaped region of Holmes,

Jackson, and Washington counties, with somewhat smaller

contributions from Bay and Calhoun counties, lies between

the Tallahassee Hills and the Western Highlands. It is

difficult to recognize this area of gently rolling hills

as lowlands. Cooke (1945) attributes the lower elevations

to the solubility and consequent degradation of the under-

lying limestone. This area is one of the two in the state

where the Ocala Formation is exposed to the surface and the

only area of the state where the Marianna limestone, the

soft white limestone of the Oligocene Age, is found exposed.

The region is dotted with sinks, sinkhole lakes, and springs.








Tallahassee Hills

From the Apalachicola River east to the Withlacoochee

River, the Tallahassee Hills extends along the Georgia-

Florida border and is only 25 miles in width. The western

section is a nearly level plateau some 300 feet above mean

sea level. The remainder consists of rolling hills carved

out of the Citronelle Formation. In addition to this, a

red clayey sand and Fuller's earth of the Hawthorn Formation

are found in this area. This is a fertile farming region.

Central Highlands

The Central Highlands forms the backbone of the

Floridan peninsula and extends from the Georgia line between

the Withlacoochee and St. Mary's rivers south-southeastward

some 250 miles into Glades County west of Lake Okeechobee.

This region is highly diversified. It includes high swampy

plains, hills, and innumerous lakes. Soils are sandy. Many

of them were derived from Pleistocene (Ice Age) marine ter-

races. However, a distinguishable amount comes from the

Miocene Hawthorn and Pliocene Citronelle Formations. The

lakes and sinks which dot the entire area indicate the

presence of limestone below the surface. Elevations of

this region average just slightly more than 150 feet; however,

they vary from less than 100 feet to approximately 300 feet.

Coastal Lowlands

The Coastal Lowlands, or Coastal Plains as it is

sometimes called, borders the entire 1350 mile Florida









coastline. Flanking on both sides of the Central Highlands,

the Coastal Lowlands is widest just south of Lake Placid and

narrowest between the western border and the Choctawhatchee

Bay just south of the Western Highlands. The elevations

everywhere within this region are less than 100 feet. The

soil for the most part is sandy except in the Everglades and

Big Cypress Swamp locales where Pliocene limestone, muck,

and peat prevail near the surface. The keys, which extend

some 100 miles into the Straits of Florida, are mostly sandy

oolitic limestone like that of the mainland; however, some

limestone with coral heads is found. The islands seldom

reach 15 feet elevation. The entire region is generally

flat, typical of recently deposited material with little or

no erosion.


Climate

The sea surface temperatures east and west of Florida

average, respectively, 780 and 77 Fahrenheit. Water tem-

peratures range from 740 to 83 Fahrenheit in the east and

700 to 84* Fahrenheit in the west. The coldest month in

both cases is February; the warmest month is likewise

August. The relatively homogeneous distribution of sea

temperature, the lack of high relief and the peninsula shape

of Florida contribute to its climate. The temperature is

everywhere subtropical. Mean annual average temperature in

the north is 68 Fahrenheit, and in the southern tip 750

Fahrenheit.









The tradewinds, which shift from northern Florida to

southern Florida and back semiannually, bring a mildly mon-

soon effect to Florida. In November, the tradewinds are at

their southernmost extension and Florida's climate is con-

trolled by frontal, or cyclonic, activity moving in from the

continental United States. Rainfall during this period is

of low intensity and long duration.

Beginning in early May, the tradewinds move north,

again bringing with them the moist warm air of the Atlantic.

The cyclonic activity is greatly reduced over the state and

convectional instability begins to become established. June

through September is known as the rainy season in Florida.

The thunderstorms of this period are intense and very

specially varied. They usually occur during the hottest

part of the day and only on rare occasions last longer than

two hours. About 60 percent of the total average annual

rainfall occurs during this period, Figure 2. The mean

average rainfall of Florida is in the neighborhood of 53

inches. It varies from 38 to 40 inches in the lower keys

to over 65 inches in the southeast corner of the peninsula

and the western portion of the panhandle. Most of the

interior, that is the central highlands, receives approxi-

mately the mean annual average.































FIGURE 1.2

Mean annual precipitation (in inches).





































I Over 66

S62 66

S58 62

I 54 58

50 54

S46 50

LZ Less than 46


0 50 100 150
Scale of Miles


^- <- -






Note: Precipitation normals
compiled from records
published in Climatological
Data: Florida Section,
December, 1971.


_I~_ _


~









Geology

The Floridan peninsula and the offshore submerged

lands above 50 fathoms, which Vaughan (1910) called the

Floridian Plateau, have existed for several million years.

The region has not been subject to violent earth movement

and, consequently, there has been a gentle doing resulting

in the formation of an oval arch above the basement rock.

The rock of the core underlying the plateau is hypothesized

to be pre-Cambrian; however, no drill has penetrated the

core. The oldest rocks penetrated, to date, are quartzites

found at about 4500 feet below the surface in Marion County.

The borehole encountered another 1680 feet of quartzite

before drilling was suspended. This metamorphized rock,

believed to be a continuation of the Piedmont region of

Georgia, was assigned by Cooke (1945) to the Pennsylvanian

period. The arch above the metamorphized basement, composed

of almost pure porous limestone, is known as the Lake City,

Avon Park, and Ocala Formations. Dated in the Eocene period,

the Ocala Formation has an estimated maximum thickness of

360 feet. It is found at, or above, mean sea level through-

out northeast and north central Florida and is this section's

principal aquifer. In southern Florida, in the vicinity of

the Everglades, the Ocala is found at depths approaching

1300 feet. The Lake City and Avon Park limestones found

below the Ocala are the principal aquifer used by









agricultural interests in central and south central Florida

and are known locally as the Floridan aquifer.

Above the Eocene series are the formations of the

Oligocene epoch. These are represented by the Marianna

limestone and the Byran limestones found and mined in the

Marianna Lowlands of the northern part of the state, and

the Suwanneelimestone found over the Ocala Formation as far

south as Hillsborough County.

The next higher formations are those of the Miocene

epoch. These are well represented by the Tampa limestones

of the early Miocene which are found above the Suwannee and

Ocala limestone in south Florida, the Chipola and Shoal

River Formations of the Alum Bluff group found in northwest

and north central Florida, the Hawthorn Formation, and the

Duplin marls. The latter three formations, Alum Bluffs,

Hawthorn, and Duplin, chiefly are sands, clays, and marls

that form a confining layer over the Eocene and Oligocene

limestones.

The Hawthorn, with the possible exception of the

Ocala, is the most extensive formation within the state.

It occurs at, or near, the surface in most of north Florida.

It overlies the Tampa limestone formation in Hillsborough

County, and is, itself, overlain by the Duplin marls and

younger deposits in the south central and southern parts

of the state.






14


The surface material of most of the coastal lowlands

are of the Pliocene, Pleistocene, and Recent periods. The

most widely distributed are the sands formed along the old

shorelines of previous ocean levels. Cooke (1945) defines

seven of these marine terraces. Some small deposits of

coquina, oolite, coral reef limestone, and freshwater marls

are found among these deposits.














CHAPTER II

MODELS, NUMERICAL AND PHYSICAL


The purpose of this chapter is to enumerate some

of the more widely used modeling techniques in groundwater

flow, along with a brief description of each. The reader

is referred to Bear (1972) for additional information and

references.


A: NUMERICAL METHODS


Numerical methods are used in many cases where the

partial differential equations governing flow through porous

media cannot be solved exactly. Various techniques have

been developed for obtaining numerical solutions.


Method of Finite Differences

The method of finite differences is one such

technique. The first step is to replace the differential

equations by algebraic finite difference equations. These

difference equations are relationships among values of the

dependent variable at neighboring points of the applicable

coordinate space.

The resulting series of simultaneous equations

is solved numerically and gives values of the dependent








variables at a predetermined number of discrete or "grid"

points throughout the region of investigation.

If the exact solution of the difference equations

is called D, the exact solution of the differential equation

is called S, and the numerical solution of the difference

equation is called N, two quantities of interest may be

defined. They are the truncation error, IS DI, and the

round-off error, ID NI. In order for the solution to

converge, it is necessary that IS DI 0 everywhere in

the solution domain. The stability requirement is such

that ID NJ ->- 0 everywhere in the solution domain. The

general problem is to find N so that IS NJ is smaller

than some predetermined error. Noting that (S N)

= (S D) + (D N), it is seen that the total error is

composed of the truncation error and the round-off error.

The arbitrary form selected for the finite difference

equation leads to the truncation error. This error is

frequently the major part of the total error.

The actual computation proceeds by one of two

schemes. They are the explicit, or forward-in-time,

scheme and the implicit, or back-in-time, scheme. The

explicit scheme is simpler but more time consuming than

the implicit scheme due to the stability constraint. The

implicit scheme is more efficient but requires a more

complicated program as compared to the explicit scheme.









Method of Finite Elements

The finite element technique employes a functional

associated with the partial differential equation, as

opposed to the finite difference method which is based on

a finite difference analog of the partial differential

equation. A correspondence which assigns a real number

to each function or curve belonging to some class is termed a

functional.

The calculus of variations is employed to minimize

the partial differential equation under consideration. This

is done by satisfying a set of associated equations called

the Euler equations. Thus, one seeks the functional for

which the governing equations are the Euler equations and

proceeds to solve the minimization problem directly, rather

than solving the differential equation.

The procedure is continued by partitioning the flow

field into elements, formulating the variational functional

within each element and taking derivatives with respect to

the dependent variables at all nodes of the elements. The

equations of all the elements are then collected. The

boundary condition is expressed in terms of nodal values

and incorporated into the equations. The equations are

then solved.









Relaxation Methods

This method may be applied to steady state problems

which are adequately described by the Laplace or Poisson

equations. The process involves obtaining steadily improved

approximations of the solution of simultaneous algebraic

difference equations.

The first step of the procedure is to replace the

continuous flow domain under investigation by a square or

rectangular grid system. The governing differential

equation is also replaced by corresponding difference

equations. Next, a residual, say R is defined corre-

sponding to the point o on the grid. Ro represents the

amount by which the equation is in error at that point.

If all values of the equation are correct, R0 will be zero

everywhere. In the initial step, values are assigned at

all grid points and, in general, the initial residuals will

not be zero everywhere. The process now consists in

adjusting values at each point so that eventually all

residuals approach zero, or to at least some required

accuracy.

The reduction of residuals is achieved by a
"relaxation pattern" which is repeated at different grid

points so as to gradually spread the residuals and reduce

their value.








B: PHYSICAL MODELS


As implied in section A, direct analytical solutions

are frequently inadequate or impractical for engineering

application. In many cases, the analytical solutions which

are found are difficult to interpret in a physical context.

In an attempt to circumvent some of the shortcomings of a

purely mathematical approach, model and analog methods are

frequently employed. The analog may be considered as a

single purpose computer which has been designed and built

for a given problem.

Modeling, then, is the technique of reproducing the

behavior of a phenomenon on a different and more convenient

scale. In modeling, two systems are considered: the proto-

type, or system under investigation, and the analog system.

These systems are analogus if the characteristic equations

describing their dynamic and kinematic behavior are similar

in form. This occurs only if there is a one-to-one corre-

spondence between elements of the two systems. A direct

analogy is a relationship between two systems in which

corresponding elements are related to each other in a

similar manner.

A model is an analog which has the same dimensions

as the prototype, and in which every prototype element is

reproduced, differing only in size. An analog is based

on the analogy between systems belonging to entirely

different physical categories. Similarity is recognized








in an analog by two characteristics: (1) for each dependent

variable and its derivatives in the equations describing

one system, there corresponds a variable with corresponding

derivatives in the second system's equations, and (2) inde-

pendent variables and associated derivatives are related to

each other in the same manner in the two sets of equations.

The analogy stems from the fact that the characteristic

equations in both systems represent the same principles of

conservation and transport that govern physical phenomena.

It is possible to develop analogs without referring to the

mathematical formulation; an approach which is particularly

advantageous when the mathematical expressions are exces-

sively complicated or are unknown.

Analogs may be classed as either discrete or

continuous with respect to space variables. In both cases,

time remains a continuous independent variable.

The need for complete information concerning the

flow field of a prototype system is obvious, and no method

of solution can bypass this requirement. However, in many

practical cases involving complicated geology and boundary

conditions, it is usually sufficient to base the initial

construction of the analog on available data and on rough

estimates of missing data. The analog is then calibrated by

reproducing in it the known past history of the prototype.

This is done by adjusting various analog components until a

satisfactory fit is obtained between the analog's response









and the response actually observed in the prototype. Once

the analog reproduces past history reliably, and within a

required range of accuracy, it may be used to predict the

prototype's response to planned future operations.


Sandbox Model

A reduced scale representation of a natural porous

medium domain is known as a sandbox model, or a seepage tank

model. Inasmuch as both prototype and model involve flow

through porous media, it is a true model.

A sandbox model is composed of a rigid, watertight

container, a porous matrix filler (sand, glass beads, or

crushed glass), one or several fluids, a fluid supply system

and measuring devices. The box geometry corresponds to that

of the investigated flow domain, the most common shapes being

rectangular, radial, and columnar. For one-dimensional flow

problems, the sand column is the most common experimental

tool. Transparent material is preferred for the box construc-

tion, especially when more than one liquid may be present and

a dye tracer is to be used. Porosity and permeability

variations in the prototype may be simulated by varying the

corresponding properties of the material used as a porous

matrix in the model according to the appropriate scaling

rules. The porous matrix may be anisotropic. In order to

measure piezometric heads and underpressures, piezometers

and tensiometers may be inserted into the flow domain of

the model.








Wall effects are often eliminated by gluing sand

grains to the walls of the box. This effect can also be

reduced by making the porous matrix sufficiently large in

the direction normal to the wall. Inlets and outlets in the

walls connected to fixed level reservoirs or to pumps are

used to simulate the proper boundary and initial conditions

of the prototype.

Water is usually used in models which simulate ground-

water aquifers, although liquids of a higher viscosity may be

used to achieve a more suitable time scale.

The sandbox model is used extensively because of its

special features which permit studies of phenomena related

to the microscopic structure of the medium such as hydro-

dynamic dispersion, unsaturated flow, miscible and immiscible

displacement, simultaneous flow of two or more liquids at

different relative saturations, fingering, wettability, and

capillary pressure. The capillary fringe in a sandbox model

is disproportionately larger than the corresponding capillary

rise in the prototype and, for this reason, the sandbox model

is usually used to simulate flow under confined rather than

phreatic conditions.


Hele-Shaw Analog

The Hele-Shaw or viscous flow analog is based on the

similarity between the differential equations governing two-

dimensional, saturated flow in a porous medium and those

describing the flow of a viscous liquid in a narrow space








between two parallel planes. In practice, the planes are

transparent plates, and the plates are usually mounted in

a vertical or horizontal orientation.

The vertical Hele-Shaw analog was selected for this

study because it is more appropriate for the prototype system

under investigation. Also, it is not possible to model a

free goundwater table or percolation in a horizontal model.

A detailed description of this analog is presented

in Chapter III of this study.


Electric Analog

Three types of electric analogs are powerful tools

in the study of flow through porous media. They are the

continuous electric analog, the discrete electric analog

and the ion motion analog.


Continuous Electric Analog

This analog takes two forms: the electrolytic tank

and the conducting paper analogs. The analogy rests on the

similarity between the differential equations that govern

the flow of a homogeneous fluid through a porous medium, and

those governing the flow of electricity through conducting

materials.

In particular, Darcy's law for flow in a porous

medium and Ohm's law for the flow of an electric current

in a conductor may be compared. Also, the continuity

equation for an incompressible fluid flowing through a









rigid porous medium may be compared with the equation for

the steady flow of electricity in a conductor. One concludes

from this comparison that any problem of steady flow of an

incompressible fluid having a potential may be simulated by

the flow of electric current in an analog.


Discrete Electric Analog

This analog also takes two forms: the resistance

network analog for steady flow, and the resistance-capacitance

network for unsteady flow.

In this analog, electric circuit elements are

concentrated in the network's node points to simulate the

properties of portions of the continuous prototype field

around them. The unknown potentials are the solution of

the problem, and they can only be obtained for those points

which correspond to the nodes of the analog network. The

discrete electric analog is based on the finite-difference

approximation of the equations to be solved; therefore, the

errors involved in the discrete representation are the same

as those occurring in this approximation.

The electric resistor corresponds to the resistance

of soil to flow through it, and capacitors are used at the

nodes to simulate storage capacity of the prototype.


Ion Motion Analog

This analogy uses the fact that the velocity of ions

in an electrolytic solution under the action of a DC voltage








gradient is analogous to the average velocity of fluid

particles under imposed potential gradients in a porous

medium. In this case, both electric and elastic storativi-

ties are neglected. The primary advantage of the ion motion

analogy is that, in addition to the usual potential distri-

bution, it permits a direct visual observation of the movement

of an interface separating two immiscible fluids. In ground-

water interface problems where gravity is involved, this

analog cannot be used. Scaling for the analog is based on

the similarity between Darcy's law and Ohm's law governing

the ion motion in an electrolytic solution.

Physically the analog consists of an electrolytic

tank having the same geometry as the investigated flow

domain. Inflow and outflow boundaries are simulated by

positive and negative electrodes, and two- and three-

dimensional flow domains may be investigated.


Membrane Analog

The membrane analog consists of a thin rubber sheet,

stretched uniformly in all directions and clamped to a flat

plane frame. The achievement of.equilibrium of various

forces and stresses in the membrane (caused by distorting

the frame or transversal loads) leads to the Laplace equation

and to the Poisson equation. The analogy is based on the

similarity between these two equations and the corresponding

equations that describe the flow in the prototype.








This method is applicable mainly to cases of steady

two-dimensional flow involving complicated boundary geometry

and point sources and sinks within the flow field.


Summary

Following Bear (1972), Table 2.1 is presented as a

summary of the models and analogs discussed in section B of

this chapter. In section A, the numerical methods discussed

are most likely to be carried out on a digital computer. It

is important for the investigator to examine both the cost

and the applicability of these various numerical and physical

methods to his particular case. An analog is usually pre-

ferred to a digital solution when the accuracy and/or amount

of field data is small. In many simple cases, the analog is

likely to be less expensive than a digital computer; whereas,

for large regions or unsteady three-dimensional problems, the

computer may be less expensive.

The Hele-Shaw model also has definite advantages when

demonstration of the saltwater intrusion phenomenon to a

public body, or other laymen involved in political decision

making, is considered. This type of model allows for direct

observation of the phenomenon without the numerical interpre-

tations used in the computer models.






























TABLE 2.1




APPLICABILITY OF MODELS AND ANALOGS


Characteristic


Dimensions of field
Steady or unsteady flow


Sandbox Model Hele-Shaw Analog
Vertical Horizontal


two
both


Simulation of phreatic surface yes'
Simulation of capillary yes
fringe and capillary pressure
Simulation of elastic yes,
storage di
Simulation of anisotropic yes
media'
Simulation of medium yes
inhomogeneity
Simulation of leaky formations yes
Simulation of accretion yes

Flow of two liquids with appr
an abrupt interface
Simultaneous flow of two yes
immiscible fluids
Hydrodynamic dispersion yes
Observation of streamlines yes,
dime
tran
for
sion


or three


two two
both both
yes* no
yes no


Electric Analogs
Electrolytic RC Network Ion Motion


two or
steady
yes1
no


three two or three
both
no'
no


for two yes yes yes, for two yes
mensions dimensions
yes yes yes yes
kx5kz kx ky
yes5 yes5 yes yes


oximately


yes yes yes' yes
yes yes yes, for two yes
dimensions
yes yes no6 no6


no no


r
for two I
nsions, near
parent walls
three dimen-
s


no no
yes no


two(horizontal)
steady
no
no


no

yes
kxk y
yes

no
no

yes

no

no
no


I Subject to restrictions because of the presence of a capillary fringe.
z By trial and error for steady flow.
I By trial and error for steady flow, or, as an approximation, for relatively small phreatic surface fluctuations.
By scale distortion in all cases, except for the RC network and sometimes the Hele-Shaw analog where the hydraulic
conductivity of the analog can be made anisotropic.
s With certain constraints.
6 For a stationary interface by trial and error.


Membrane
Analog

two(horizontal)
steady
no
no


no

yes
kx y
yes

no
yes

no

no

no
no














CHAPTER III

THE HELE-SHAW MODEL

The viscous flow analog, more commonly referred to

as a parallel-plate or Hele-Shaw model, was first used by

H. S. Hele-Shaw (1897, 1898, 1899) to demonstrate two-

dimensional potential flow of fluid around a ship's hull

and other variously shaped objects. The analog is based on

the similarity of the differential equations which describe

two-dimensional laminar flow, or potential flow for that

matter, of a viscous fluid between two closely spaced parallel

plates; and those equations which describe the field of flow

below the phreatic surface of groundwater, namely Darcy's

law:


qx = K (3.la)
x x ax


qz = K (3.1b)


where

qx, qz = Darcy velocity of specific discharge in the
x-direction and z-direction, respectively

K K = hydraulic conductivity in the x-direction
Kx z and z-direction, respectively

x = horizontal direction (major flow direction)








z = vertical direction

= potentiometric head

and, by use of the conservation of mass principle, the

Laplace equation

2 + 822 = 0 (3.2)
ax2 az2

Viscous Flow Analog

To demonstrate the analogy of model and prototype,
the equations of motion and continuity for laminar flow of

a viscous fluid between two closely spaced parallel plates

will be developed and then compared to equations 3.1a,

3.1b, and 3.2.

Consider a viscous incompressible fluid flowing

ever so slowly between two parallel plates which are spaced

such that the Reynolds' number, R based on the interspace

width is less than 500 (Aravin and Numerov, 1965). In

Cartesian coordinates, the general Navier-Stokes equations,

i.e., the equations of motion, are


DV B + 1 I- + V2Vx (3.3a)



DVy = B + + V2V (3.3b)
Dt y+ y ]


Vz = B + 1 3P + v2V (3 .3c)
Dt z p DZ








where


D = substantial derivative =- + V a
Dt at x ax
+ V a + V z -


V2 = Laplace operator = 2 + y2 +


Vx, V Vz = velocity in the x-, y-, and z-directions,
respectively

B B Bz = body forces in the x-, y-, and
xz z-directions, respectively

p = pressure

p = density of the fluid

p = absolute viscosity of the fluid

y = horizontal direction (minor flow
direction)

t = time

Referring to the free-body diagram of the idealized
flow regime shown in Figure 3.1, if no slip conditions

(adherence to the walls) of the fluid particles are assumed

in the molecules closest to the walls of the parallel plates,

it is easily seen that the velocity gradient in the

y-direction is much larger than the velocity gradient in

either the x- or z-directions. Thus., the first and second

order partial derivatives taken with respect to both x and

z may be neglected when compared to those taken in the

y-direction. Secondly, because of the very low velocities

("creeping" motion) the intertia terms, that is the terms


























FIGURE 3.1

Free body flow diagram for Hele-Shaw model.




































b
m


_~I


_ _II~


_I


__








on the left side of equations 3.3, are very small when

compared to the viscous terms, those on the right side of

equations 3.3, and may be neglected. Thirdly, because of

the restriction to two dimensions, the velocity in the

y-direction is taken to be zero; consequently, all rates

of change of velocity in the y-direction.must be zero.

Finally, the only noncancelable body force acting on the

fluid is gravity which acts only in the vertical. Mathe-

matically, Bx -x (gz) = 0; By = (gz) = 0; and
Dz -~ a (gz) = -g = -32.17 ft./sec.2. Incorporating all

of the above arguments and values into equations 3.3, the

equation of motion becomes:

32V
3+ 0 (3.4a)


2= 0 (3.4b)

82V
pg a- = 0 (3.4c)


Defining the potentiometric head, or potential, i = z + p/y,

where y equals the unit weight of the fluid, and taking the

partial derivative with respect to x, y, and z, the following

results are obtained after multiplying through by the unit

weight of the fluid:


Y M =_ ap (3.5a)
Y ax ax









Y -- = DP (3.5b)
Tay ay

Y (y y 'I


Introducing these relationships into equations 3.4 and

dividing through by the unit weight yields:

32V
3t = P2 x (3.6a)
3x y ay2


D| 0 (3.6b)
ay

32V
S_ 1 2 z (3.6c)
2z y ay2

It is evident from equation 3.6b that the potentiometric head

is constant in the y-direction. It is possible then to inte-

grate the first and third equations of equation 3.6 with

respect to y. After separating variables and integrating
3V
once, using the boundary condition y = 0, -x = 0, and
3V ay
z = 0, the following equations are obtained:
ay


y a 1 x (3.7a)
a x y 8y


y = z (3.7b)
Yz y ay

Integrating, once again, using the second boundary condition

y = b/2, Vx = 0, Vz = 0 (no slip) the above becomes, after

solving for the respective velocities:








Vx y2 ) (3.8a)

Vz 2 (2 ] (3.8b)

Note, where b is the spacing between the plates, that if a
potential = y- b-4 is defined, equations 3.8 can
be written:

V (3.9a)
x ax

V (3.9b)

P, the velocity potential, is dependent only on y. Inte-
grating the velocity profiles established by equations 3.8
between the limits of b/2, and dividing by b, the
directional specific discharges are obtained:

q +b/ 2 y= b/2
qx b _/2 x y b = x N -b/2

=- b2 Y (3.10a)



f+b/2
qz b j-b/2 vz dy 2-i z (3 j-b/2

b2 Y (3.10b)
TZ T az








It is obvious that for a model of constant spacing b, the

quantity b2 does not vary in either the x- or z-direction.

Defining the model hydraulic conductivity as K = K
= b* ~ equations 3.10a and 3.10b become:



qx = Kxm x (3.11a)


qz = Km (3.11b)


which, of course, is analogous to equations 3.1.

Consider, now, the two-dimensional continuity

equation for flow between parallel plates:


aV 3V
_x + z 0 (3.12)
ax az

The specific discharge, or Darcy velocity, is

related to the velocity by the vector equation n q = V,

where ne is the effective porosity of the flow media. In

the model, ne equals 1. From the analogy Vx = q x; Vz = qz'

and substituting the relationship obtained from equation

3.11 into equation 3.12:


x- m a-x x- Kzm = z (3.13)


or dividing by -Km and recalling that for a model Km = Kxm

= Kzm








9 + 2i-- (3.14)
ax2 az2 (3.14)

which is clearly analogous to equation 3.2.

The similarity of equations 3.1 and 3.11 and
equations 3.2 and 3.14 establish the analogy.


Scaling

The two-dimensional equation along the free surface,
or water table, of an anisotropic porous media given by Bear

(1972) is:


K p .2 + K 2 = n (3.15)
xp xp zp z az ep at
Sj p p

where the subscript p denotes the prototype. For a Hele-

Shaw model, using the subscript m, the equation can be

written as:

2 Mjt 2
K Im + K =- n mm (3.16)
xm jx-m- zm azm a m em atm


Introducing the similitude ratios, denoted by the

subscript r, of the corresponding parameter of model and

prototype:

K
Kxr = K (3.17a)
xp
K
Kzr = (3.17b)
zp







x
Xr -x (3.17c)
P
z
zr = z (3.17d)
P

r -I (3.17e)
P
n
ner = n (3.17f)
ep
t
tr = t-- (3.17g)
P
and substituting these relationships into equation 3.15, the

following is obtained:


Kxm [( m ) 2 Kzm [*a(m/r) 2 (m r)
T Tv K+ _zz
Kxr m/x Kzr Zm/Zr) (Zm/Z

nem < tm/tr) (3.18)



The ratios of model to prototype quantities are constant and
can be removed from behind the differential; therefore,
equation 3.18 can be rearranged in the following way:


Kxr r2 xm 2 Z r m 2
K r 2 xm ax m zm K ^ 2 3z


Zr m'I tr m
Kzr r -zmJ nerzr nem tm (3.19)








Comparing the equations 3.16 and 3.19, it is evident that, if

the equations are identical, the following must be true:


x 2 z 2 z t
1 K r r r r (3.20)
xr r zr r zr'r er r

Solving the third equality for zr, the following important

relationship is found:


zr =r (3.21)



The second equality, after cross-multiplying, yields:


S xr K (3.22)
zr Kzr

Recalling the definitions of Kxr and Kzr (equations 3.17a

and 3.17b) and remembering that K = K in an isotropic
xm zm
model, the above equation can be rewritten:


x r 2 K/Kxp K
r xm xp zp (3.23)
r K zm zp Kxp

K
The ratio of zK is called the ratio or degree of anisotropy
xp
of the prototype.


Time

Using the fourth equality of equation 3.20, the time

ratio of the model and prototype is established:








n z
t er r (3.24a)
r K
zr

n x 2
t er r (3.24b)
r K rr


Substituting the vertical ratio, zr, for the potentiometric

head established by equation 3.20 and the similitude ratios

of time, hydraulic conductivity and porosity into equation

3.24b results in



tm nem X r (3.25)
tp nep Kxm z

The effective porosity of an isotropic model, nem, is unity.

The hydraulic conductivity of the model was defined pre-

viously as p?, thus the time scale for the model is finally

written as:

K x 2
t 12 vK xx r t (3.26)
m g ep zr P

Anisotropy

The Hele-Shaw model is normally isotropic. This is

because of the nonvariance of the. spacing of the parallel

plates. There are, however, two methods for simulating

anisotropy in a model. Equation 3.23 gives a clue as to

the first possibility of simulating anisotropy:


r xm x_ zp (3.23)
r zm /Kzp xp








Since Km = Kzm, the x or z ratio can be adjusted so that the

model's hydraulic conductivities are kept equal. This is

usually done by choosing a suitable horizontal ratio. Know-

ing the prototype parameters, a vertical scale for the model

is computed so that the aforementioned conductivities are

kept equal, demonstrating:


zr zm X m (3.27)
p zp p

Solving for zm:


K x
zzm p xm z (3.28)
zp p

Unfortunately, the geometric distortion method is adequate

for modeling only one ratio of anisotropy. If there is a

second aquifer, within the prototype which has a different

vertical or horizontal hydraulic conductivity, the second

aquifer cannot be correctly simulated unless, of course,

the second aquifer's ratio of anisotropy is the same as the

ratio of the first. This restriction would severely limit

the use of the Hele-Shaw analog in modeling of regional

groundwater problems unless another method were available

to correct the ratio of anisotropy.

Polubarinova-Kochina (1962) suggests using a grooved

plate within the model to correct the ratio of anisotropy of

the second flow zone. The plate may be grooved in any one








of several methods. It matters little whether a grooved

plate is sandwiched between the parallel plates, or if

rectangular bars are attached to the front or back plate.

The degree of anisotropy of the second aquifer and the amount

of geometric distortion used to model the first flow zone

determines the directions in which the grooves, or bars,

are placed; however, the grooves are normally placed

horizontally or vertically. Collins and Gelhar (1970) have

developed the conductivity equations for the flow zone in

which Polubarinova-Kochina's grooved plate is used. The

analysis assumes one-dimensional flow and can be used

equally well with either vertical or horizontal orientation

of the grooves.

Following Collins and Gelhar (1970), consider flow
in a grooved portion of a model. For simplicity, assume

Figure 3.2 is a section of the grooved zone. Assuming such,

the horizontal direction then corresponds to the x-direction

and the grooves, which are vertical, lie in the z-direction.

Area 1 is associated with the wider spacing of length ab.

Area 2 is associated with the narrower spacing of length b.

Since flow area 1 is the much larger of the two areas, most

of the frictional head loss occurring through the total

length L is developed in flow area 2 which has length

(1 M)L. Lambda, X, is a length correction factor..

Referring to Figure 3.3, the potentiometric gradient

ax across area 2 is:
































FIGURE 3.2

Section of anisotropic grooved zone in Hele-Shaw model.















Back Plate


Rectangular
Bar


AL Front Plate
L (1 A)L


Plan View


Perspective View

































FIGURE 3.3

Head loss in grooved anisotropic zone.































A 1-)


x or z


XL




1


--- --


__









ax (1 A)L (3.29)

For high values of a:


___ A = 2C(3 .30)
ax L L


but, from equation 3.29, 2 = (1 A) 3 so that:


a = (1 ) ~2 (3.31)
ax ax

Applying Darcy's law to area 2:


q= K (3.32)
qx x2 ax

and, substituting the previous expression for :2-
ax
K
S- x2 1 (3.33)
x (1 A) ax

The effective hydraulic conductivity in the x-direction

then is:


K Kx b2g (3.34)
xm (1 X) 12v 1 ) (334)

Consider vertical flow through the grooved zone

illustrated in Figure 3.2. In particular, consider flow

downward through areas 1 and 2. The total discharge

through these areas can be written as the sum of the dis-

charge through each, that is, Qzm = Q1 + Q2. Applying

Darcy's law for the total discharge, Q:






48


Q, = K (abAL) (3.35)


Q2 = K ( ) Lb (3.36)
z2 az

Adding Qi and Qz:


Qm= K (aX) + K (1 )]bL (3.37)
zm z1 z2z z

For flow area 2 it is not unreasonable to assume that the

frictional forces in the fluid boundary to either side of

area 2 are negligible. Therefore, the vertical conduc-

tivity in this area is the same as defined by the earlier

analysis, that is:


K b2 = b2 (3.38)
Z2 = l- 12

where v is the kinematic viscosity. Furthermore, if b/ab

<< 1, the flow in area 1 can be assumed roughly equivalent

to flow through a rectangular hole. According to Rouse

(1959), the equation of motion through a rectangular

cross section of length XL and width ab is given by:

00
v x(x XL) + X sin JTx
z 2i 3z jl AL


x A. cosh 1J + B. sinh (3.39)
S1AL j AL





49

where


A. 2y(AL) 2 (cos j I) (3.40)

and,


cosh jab 1(
B. = A. (3.41)
sinh jab3
XL


By integrating Vz over the area and dividing by the total
area ALab, the mean velocity is given by:


V= (a b)2 (3.42)
z az

where


S= 192 b j (cos (j ) 1)2 _
= 2 -L j( 4j5 2cab

(3.43)

Since the terms of the infinite series decrease as j5s, only
the first term of the series need be considered and retained,
so that:


1 19 tanh fXL (3.44)

Additional information may be found in Appendix A. From
equation 3.42, the equivalent hydraulic conductivity in
area 1 is given by:









K Y (ab)2 (3.45)
Kz P 12

Finally, introducing the values found for K and K into
zE Z2
equation 3.37:



Qzm =-] (b) (aX) + b (1 U) bL (3.46)

or,



Qzm = (3 + 1 A) bL (3.47)


from which it is seen that the effective vertical hydraulic

conductivity is given by:


Kzm = (a 3X1 + 1 X) (3.48)


after defining Qzm/bL = Vz, where Vz = qz is the effective

vertical specific discharge. Equations 3.34 and 3.48 give

the second method available to correct the hydraulic con-

ductivity of a model so that it can simulate the true

ratios of anisotropy found in the prototype.


Leakage

An aquiclude can be defined as a soil stratification

in which the hydraulic conductivities are zero. In certain

geohydrologic problems, it is convenient to assume such

conditions. However, in reality few soil masses are truly

impervious. The degree of perviousness in a stratum is








referred to as leakance and it is generally assumed that the

direction of flow is only vertical. There is no horizontal

flow, that is,


Kxp = 0 (3.49)

Bear et al. (1968) suggest the use of vertical slots

to model such a semipervious layer. To accomplish this, the

spacing between the parallel plates of the Hele-Shaw analog

is filled with a slotted middle plate. See Figure 3.4.

The analysis to determine the effective vertical

hydraulic conductivity of a model's leaky layer closely

parallels that for an anisotropic grooved zone. Again,

following Collins (1970), Darcy's law for flow through a

vertical slot is:


QZ = ALab (3.50)
z = z 3z

The effective specific discharge through the slot found by

integrating the Rouse equation (equation 3.39) is the same

as equation 3.42 from which is found the hydraulic conduc-

tivity:


Kz (b)2 (3.51)


and, introducing the above into equation 3.50:


Qz = (b)2 Lab (3.52)
z U -2-- aL z

































FIGURE 3.4

Section of leaky zone in Hele-Shaw model.










y



Back Plate
Flowspace
Solid ab
x l b

F-I v
PL (1-X)L t
Front Plate L

Plan View


Perspective View








Again, the effective specific discharge, or mean velocity,

is equal to:

z 3 b (3.53)
Vz bL 12 az 353)


so that the effective hydraulic conductivity of a leaky layer

in the model is:


Kzm a b2 (3.54)


Storativity

While the problem of storage has not been completely

solved, it has, in general, been neglected by most researchers.

Bear (1960) suggests that discrete tubes attached to either

the front or back plate and connected to the aquifer be used

to model the specific storage of a confined aquifer. For a

nonisotropic aquifer, the right hand side of equation 3.13

is not zero, but, in fact, equals the specific storage, S ,

times the rate of change of the potentiometric head. Rewrit-

ing the two-dimensional equation 3.13 for both model and

prototype to include the above gives the following:


K -2 + K --- = S -- (3.55)
xp ax 2 zp aZ 2 op at
p p p


K 2m + K m m (3.56)
xm Dxm2 zm 3Z%2 om atm
m m m









Defining a ratio of storativity:

S
Sor = (3.57)
op

it follows from inspection that,

z K z
K Sr- -- (3.58)
xr x2 zr or t

or that,

K t S
zr r om (359)
or z S (3.59)
r op

Referring to Figure 3.5, the storage represented by

the model in the discrete length 1m is equal to:

A
S om_ m (3.60)
mo m b 1 z
mmm

where A is the cross-sectional area of the storativity tube.

Introducing the above into equation 3.59 and solving for Am

t
A bl z Sop K r (3.61)
m mmm op zr z 2
r
Discharge

The discharge scales are.obtained from Darcy's law.

Written for both prototype and model with the usual sub-

scripting, these are in the x-direction:


Q K -- b z (3.62)
xp = xp ax pp
































FIGURE 3.5

Storage manifold for Hele-Shaw model.



















Area, A
bm m



Front
Plate




Back
Plate






End Section


I I















Elevation









and,


(3.63)


xm -xm 3x mm
m


Dividing equation 3.63 by equation 3.62 and recalling the

definitions for the various parameters' ratios, it follows

that:


z z 2
S K r b r=K b r
xr xr r r x xr rx

Similarly, in the z-direction,

x
Q = K r b r K b x
zr zr r r zr zr r r
r


(3.64)


(3.65)


Solving equation 3.22 for the hydraulic conductivity in the

x-direction:


Kx K
xr zr


S2
Xr

r


(3.66)


and, substituting

that:


Qxr = Kzr


this result into equation 3.64, it follows


r b r K b x
r r


or,


Qxr = Qzr = Q
*xr -zr -r


(3.67)


(3.68)








Accretion

Accretion, R, is the rate at which a net quantity

(precipitation and surface inflow minus evapotranspiration,

runoff, etc.) of liquid is taken into the flow system at

the phreatic surface. It is measured as a volume per unit

horizontal area per unit time, that is:

Q
Rr (3.69)
rr

From equations 3.64 or 3.65, it follows that:

K z 2
R x Kzr (3.70)
r

Volume

On occasion, volume, U, is of some importance. The

volume scale follows directly from continuity, that is:


Ur = Q tr (3.71)


Substituting the values found from equations 3.65 and 3.24a

for Qr and tr, respectively, the above equation becomes:

z
r zr r r er K r er r r (3.72)
zr

As inferred earlier in this section's opening sentence, the

volume scale is usually neglected; however, in the case of

free surface water bodies, lakes, rivers, etc., if the volume

exchange of liquid is of interest and has to be modeled, the






60


volume scale requires an additional restriction. In the

following analysis, the bar above the width dimension

indicates the free water surface of a river, lake, ocean,

or such.

In the portion of the model simulating the body of

water, the spacing of the model is increased to maintain

hydrostatic pressure distributions within the model. The

narrower spacing of the model is, of course, a measure of

the hydraulic conductivity of the aquifer. In the proto-

type, however, the width of the open water and the aquifer

are equal and this leads to the following (Bear, 1960) for

the model and prototype, respectively:


U = n b x z (3.73a)
r er r r r

U = n b x z (3.73b)
r er r r r

The same volume ratio must be applicable to both the narrow

and the enlarged interspace; therefore, Ur Ur. It follows

that:


n er b = ner b (3.74)

but,

n
n em 1 (3.75)
er
n
ep
so,

br = ner br (3.76)

Note that for an anisotropic media, nem does not necessarily

equal one.














CHAPTER IV
SITE SELECTION AND PROTOTYPE GEOLOGY
AND HYDROLOGY


Site Selection

The site selected for this study is the middle Gulf

area of Florida. This region has a rapidly expanding popu-

lation with a corresponding growth in water demand. The

increased pumping to satisfy this demand also increases

the likelihood of saltwater intrusion, and, in fact, a

number of municipal supply wells in the coastal zone have

been shut down in recent and past years due to chloride

contamination.

Black et al. (1953) list eight factors responsible

for saltwater intrusion. They are:

1. Increased water demands by municipalities.

2. Increased water demands by agriculture.

3. Increased water demands by industry.

4. Excessive drainage.

5. Lack of protective works against tidewater in
bayous, canals, and rivers.

6. Improper location of wells.

7. Highly variable annual rainfall with insufficient
surface storage during droughts.

8. Uncapped wells and leakage.








Of these eight factors, numbers 1, 2, 3, 6, and 7 would apply

to this area. The city of St. Petersburg is an outstanding

example of these problems. Their original water supply was

from local artesian wells, but increased demands caused salt-

water intrusion and forced the closing of these wells. In

1929 the present Cosme-Odessa field was located farther

inland to escape this problem.

One of the major water supply systems in this region

is the Pinellas County Water System, and this study is

centered around the Eldridge-Wilde well field of this system.

The location of Eldridge-Wilde in relation to several of the

population centers of this region is shown in Figure 4.1.

It is about 8 miles east of the Gulf of Mexico and encom-

passes an area in the northeast corner of Pinellas County,

at the intersection of the boundaries of Pinellas, Hills-

borough, and Pasco counties.

This system was instituted in 1937 to supply the

towns along the Gulf coast from Belleair Beach to Pass-a-

Grille. Its original form was that of a raw water reservoir,

and the first wells were not drilled until 1946 in the

McKay Creek area. These wells were soon contaminated with

salt water, and investigations were begun in 1951 to locate

the well field at its present site. This well field has

grown over the years, and in 1970 (Black, Crow and Eidsness,

Inc., 1970), the waterworks facilities at Eldridge-Wilde

included: sixty-one water wells, over 11 miles of raw water

































FIGURE 4.1

Regional area of prototype.












il MEXIUI0GQ;:1;:.: ,















iiii -- / ko
V -,^ / 10'
.
..


Dade City


60' /


40'

, \


70'


0


S80'
^ ./ I


K


N "- 50'


S 30'


Eldridge-Wilde Well Field


Lake Tarpon
0O Tampa


:: :1 :i:: Peter .sbug : ::? :::: ::::::l


::.. : : ... .. : :::::: ::::: :




...................i 9









collection piping, water treatment facilities consisting of

aeration and chemical treatment, including chlorination and

fluoridation, and high service pumping units.

All wells are open hole and penetrate the Floridan

aquifer at depths from 140 to 809 feet below ground surface,

averaging 354 feet. The design capacity, of the field at the

present time is 69 million gallons per day, although the

maximum allowable pumpage has been set by the Southwest

Florida Water Management.District at 28 million gallons per

day on the average with a maximum day of 44 million gallons

per day.

In selecting the prototype location within the site

area, two characteristics of the vertical Hele-Shaw analog

must be considered. The first characteristic is that there

can be no general flow normal to the parallel walls of the

model. This means that the flow from one end of the model

to the other is streamline flow. The second characteristic

is that the ends of the model are finite. Therefore, the

prototype must be along a streamline in the flow domain and

have boundary conditions which are "infinite" reservoirs or

water divides.

The prototype selected meets the above requirements

and includes the point of interest, i.e., Eldridge-Wilde

well field. The center line of the prototype is shown in

Figure 4.1 as the unbroken line passing through Eldridge-

Wilde in a southwest to northeast direction. The dotted








contours in the figure define the potentiometric surface of

the Floridan aquifer in feet above mean sea level as of May,

1971. They were obtained from a map publication entitled

"Potentiometric Surface of Floridan Aquifer Southwest Florida

Water Management District, May, 1971" prepared by the U. S.

Geological Survey in cooperation with the Southwest Florida

Water Management District and the Bureau of Geology, Florida

Department of Natural Resources. Now, in a flow field,

streamlines are perpendicular to potentiometric lines. As

can be seen from the figure, the prototype orientation

reasonably satisfies the streamline requirement. The proto-

type is terminated on the southwestern end at the 15 feet

depth contour in the Gulf of Mexico, and it is assumed that

this satisfies the infinite reservoir boundary condition.

The northeastern terminus is located in the center of the

80 feet contour, southwest of Dade City. This location

satisfies the water divide boundary condition. The area in

the vicinity of the 80 feet contour is known as the Pasco

High. The overall length of the prototype is 36 statute

miles. The width of the prototype is taken to be 3.5

statute miles. This dimension is sufficient to include the

cone of depression caused by pumping in Eldridge-Wilde well

field, and is based on the results of a study by Mr. Evans

(employing a numerical model) for Black, Crow and Eidsness,

Inc. The land surface contours of the prototype were

obtained from U. S. Geological Survey topographic maps.









The bottom boundary of the prototype is taken to be the base

of the Lake City Formation, with depths being determined

from available well logs of wells in the prototype vicinity.

The maximum depth from highest land surface to deepest point

is 1340 feet.


Prototype Geology

Stewart (1968) identifies eight formationsas being

of interest in terms of water production in the prototype

area. They are in descending order, the Undifferentiated

Deposits, Tampa Limestone, Suwannee Limestone, Crystal

River Formation, Williston Formation, Inglis Formation,

Avon Park Limestone, and Lake City Limestone. Underlying

the Lake City Limestone is the Oldsmar Limestone which is

not used as a source of water at present.

The Undifferentiated Deposits are interbedded sand,

silt, and clay of Post-Miocene age and range in thickness

from zero near the Pasco High to 60 feet in the Eldridge-

Wilde well field. The thickest deposits are in northeast

Pinellas County around the north end of Lake Tarpon where

sand dunes, as much as 40 feet high, overlie alternating

layers of clay, thin limestone beds, and sand greater

than 70 feet. thick.

The Tampa Limestone is a hard, dense, sandy, white

to light tan, or yellowish-tan fossiliferous limestone of

Miocene age. This limestone is near the surface in the









area of the Pasco High and about 80 feet below land surface

at the Eldridge-Wilde well field. At Eldridge-Wilde, the

thickness varies erractically from about 20 to 240 feet.

The Tampa Limestone is a poor to fair producer of water.

The Suwannee Limestone is a soft to hard, nodular

or grandular, fossiliferous white to tan limestone of

Oligocene age and is about 200 feet thick. The Suwannee

and Tampa Limestones are the major water producers for

wells in the area.

The Crystal River, Williston, and Inglis Formations

comprise the Ocala Group of late Eocene age. The Crystal

River and Williston Formation are lithologically similar

units of white to cream, porous, soft, coquinoid limestone

and are generally poor producers of water. The Inglis

Formation is a hard, cream to brown to gray fossiliferous

limestone and is generally a good producer of water.

The Avon Park and Lake City Limestones are litho-

logically similar units of soft to hard, cream to brown,

fossiliferous limestone with beds of dolomitic limestone

and some gypsum. Both formations are good producers of

poor quality water.

The Oldsmar Limestone is a fragmental dolomitic

limestone with lenses of chert, thin shale beds, and

some gypsum.

In this study, two formations are considered,

the Undifferentiated Deposits and the Floridan aquifer.








The Floridan aquifer is considered to contain all formations

from the Tampa to, and including, the Lake City Limestone.

The transmissivity of the Floridan aquifer ranges

from about 165,000 to 550,000 gallons per day per foot,

and the coefficient of storage ranges from about 0.0005

to 0.0015. The coefficient of leakage is approximately

0.0015 gallons per day per cubic foot.

Based on groundwater discharge and water levels,

the estimated recharge (leakance) to the Floridan aquifer

was computed (Stewart, 1968) to be about 103 million

gallons per day. Based on aquifer test data, the estimated

recharge for a 250 square mile area was 90 million gallons

per day.

The Undifferentiated Deposits act as a confining

layer, and the Floridan aquifer is thus under artesian

conditions.


Prototype Hydrology

The surface waters of the area consist of many

lakes and few streams. Because of the flat topography,

little water runs off into streams, and swampy wetlands

are numerous. Most rainfall evaporates or is transpired

by plants.

The Floridan aquifer is recharged through the

Undifferentiated Deposits by surface and groundwater

derived from local rainfall. Many millions of gallons








of water are also admitted to the aquifer by numerous sink-

holes in the region. Water levels in the Floridan aquifer

respond to rainfall since this is the recharge source.

This response is not immediate, but usually fluctuates with

the wet and dry seasons. Water levels in wells which are

not directly affected by local pumping show yearly lows in

the dry season, April and May, and yearly highs during the

wet season, late summer or early fall (Black, Crow and

Eidsness, Inc., 1970).

The aquifer recharge has been estimated (Black,

Crow and Eidsness, Inc., 1970) from available data and the

use of the following formula:

Aquifer Recharge = P + SWI + GWI ET R GWO

The basin area is 575 square miles, changes in

storage are assumed zero, and evapotranspiration is assumed

to be 75 percent of the precipitation. The applicable

values are listed below in million gallons per day:


P = Precipitation

SWI = Surface Water Inflow

GWI = Groundwater Inflow

ET = Evapotranspiration

R = Runoff

GWO = Groundwater Outflow
Aquifer Recharge

This value is in reasonable

reported values (Stewart, 1968).


= +1492

= + 0

= + 0

= -1119

= 218

= 37
= + 118

agreement with previous














CHAPTER V

DESIGN, CONSTRUCTION, AND OPERATION OF MODEL


Design

Prototype

The selection of the prototype area was discussed

in Chapter IV. Table 5.1 is a summary of the prototype

characteristics. The leaky layer is synonymous with the

undifferentiated deposits. The top and bottom of the

Floridan aquifer were determined by straight-line extrapo-

lation from available well logs.

The hydraulic data are within the reported range

of values and are the result of a trial and error process

to stay within the range and still-produce a reasonable

model.


Model

The purpose of the Hele-Shaw analog in this study

is to model saltwater intrusion." Before discussing the

model design, it seems appropriate at this point to pro-

vide some background about saltwater intrusion. Water,

in general, whether it be surface water or groundwater,

is continually migrating towards the sea, where an

equilibrium, or moving freshwater/saltwater interface,












TABLE 5.1

PROTOTYPE PARAMETERS


Floridan
Parameters Aquifer Leaky Layer


Geometric

x (ft.)

z (ft.)

yp = bp (ft.)

Hydraulic

Txp (gpd/ft.)

Tzp (gpd/ft.)

Kxp /Kzp

Leakance (gpd/ft.3)

Kzp (gpd/ft.2)

Kxp (gpd/ft.2)

S

v @ 77* F (ft.2/sec.)

gp = 32.2 ft./sec.2


190,080

1,340

18,480



225,000

184,426

1.218



161.4

196.7

0.00158

0.965 (10-5)


190,080

55

18,480







0

0.0015

0.09

0


0.965 (10-5)









is established. The two fluids are miscible, but because

of the difference in densities and the very low velocities,

the interface is formed. Across the interface, the salinity

varies from that of the fresh groundwater to that of the

ocean. The transition zone, as it is called, is due to

hydrodynamic dispersion and, although it is anything but

abrupt, it is usually assumed to be. The interface then

is generally selected to occur at some measured electric

conductivity or salt (chloride) concentration.

The earliest investigations of saltwater encroch-

ment were made by Badon-Ghyben (1888) in Holland and

Herzberg (1901) in Germany. Working independently, both

investigated the equilibrium relationships between the

shape and position of the freshwater/saltwater interface.

Figure 5.1 shows a coastal phreatic aquifer and the

Ghyben-Herzberg interface model. Badon-Ghyben and Herz-

berg assumed static equilibrium and a hydrostatic pressure

distribution in the fresh groundwater and stationary saline

groundwater near the interface.

Considering a point P on the interface, and choosing

mean sea level as the datum, the pressure at point P is:


pp = h 5 (5.1)

where

h = vertical distance from mean sea level to
s point P

s = unit weight of sea water

































FIGURE 5.1

Ghyben-Herzberg interface model.






75










Water Table

Vertical






h h


pdcA Interface




Y^ \pdA Y








This pressure may, also, be expressed by:


p = {hf + hs] f (5.2)

in which hf equals the vertical distance from mean sea level

to the phreatic line at the location of p and yf equals the

unit weight of freshwater. Equating the, preceding two

equations:


hSys = hfyf + hsf (5.3)

and, rearranging,


hsYs hf = hff (5.4)

Solving for hs :

yf
hs Y= Yf hf (5.5)

Introducing y = pg, where p is the density, factoring and

canceling out the gravity term, the Ghyben-Herzberg

relation is found:


f
h = -f hf (5.6)
S P-S f

for a saltwater density of 1.981 lb sec.2/ft.4 and a fresh-

water density of 1.933 lb sec.2/ft.4, @ 250 C, the quantity

pf/ps pf) = 40. The implications of equation 5.6 are
rather dramatic. For instance for every foot of freshwater

above the datum, there is 40 feet of freshwater below









the datum. More importantly however, consider the effects

of lowering the phreatic surface. For every one foot drop

of the water table, the interface raises 40 feet. It must

be remembered that the above analysis assumes static

conditions. This, in fact, is not always the case. The

position of the interface is a function of dynamic conditions

rather than static. Even so, in cases where flow is quasi-

horizontal, i.e., the equipotential lines are nearly

vertical, equation 5.6 is valid.

Many investigators have incorporated dynamic forces

into the analysis of the stationary interface. Hubbert

(1940) was able to ascertain a more accurate determination

of the shape of the interface near the coast line. He

assumed that at the interface the tangential velocity was

zero in the saltwater, but increases with horizontal dis-

tance in the freshwater as the coast line is approached.

This then is the cause for the interface to tilt upwards

as the sea is approached and the greater depths found than

those estimated by the Ghyben-Herzberg relationship.

Hubbert showed that the Ghyben-Herzberg equation holds

between points on the water table-and the interface along

an equipotential line, rather than along a vertical plane.

R. E. Glover (1959) modeled an infinitely deep

coastal aquifer by assuming no flow in the saltwater

region, a horizontal water table and a horizontal seepage

face located seaward of the coast line. He found an exact









solution for the shape of the wedge, giving the following

relationship:


z2 2qx + Pf 2 (5.7)
K s f K2 S f-
Pf Pf

where x and z are the horizontal and vertical directions,

respectively, q is the seepage rate per unit width and K

is the hydraulic conductivity. De Wiest (1962) using

complex variables and a velocity potential of D = Kx .

p Pf)/pf derived the same equation.

Bear and Dagan (1964b), using the Dupuit assumptions

and the Ghyben-Herzberg equation, developed the approximate

shape of the interface for a shallow aquifer of constant

depth.

All of the above investigated the equilibrium

position of the saltwater/freshwater interface.

If there is a change in the freshwater flow regime,

a transition period is caused during which the interface

moves to a new point of equilibrium. The nonlinear

boundary conditions along the interface make the solution

for the shape and position of the transient interface all

but impossible except for the simplest geometries. Bear

and Dagan (1964a), as well as other investigators, have

used the Dupuit assumptions to approximate the rate of

movement of an interface in a confined aquifer. Following








Polubarinova-Kochina's (1962) suggestion, they assumed

quasi-steady flow and were able to approximate the inter-

face shape and position for both a receding motion and

landward motion of the interface.

Characteristically, the solutions obtained by

investigators to date have all had simple,geometries and

involved simplifying assumptions, some of which have had

little resemblance to actual conditions. Therein lies the

advantages of a Hele-Shaw analog, complex geometries and

boundary conditions can be modeled with relative ease.

In order to satisfy additional similitude require-

ments for the flow of two liquids with an abrupt interface,

as in this study, and to provide a suitable time ratio,

two liquid silicone fluids were chosen to be used in the

model. Dow Corning Corporation Series 200 silicone fluid

was used to model fresh water. Series 510 silicone fluid

from the same company was used to simulate salt water.

The 200 Series fluid and the 510 Series fluid have densi-

ties of 0.977 gm/cm3 and 1.00 gm/cm3, respectively, at

250 C. Both fluids have kinematic viscosities of 500

centistokes at 250 C. Dow Corning 200 fluid is a clear

dimethyl siloxane which is characterized by oxidation

resistance, a relatively flat viscosity-temperature slope

and low vapor pressure. Dow Corning 510 fluid is a clear

phenylmethyl polysiloxane which also has a relatively flat








viscosity-temperature slope. In order to locate and follow

the interface movement, the denser fluid was dyed blue and

the lighter fluid dyed orange.

The dimensions of the model were selected so that a

unit of reasonable size would be produced. These dimensions

are 11.75 feet long, 0.5 inch wide inside, and 2 feet deep.

The parameters xr, Zr, and br are therefore set, and the

result is a distorted model. This distortion requires the

use of a slatted inner zone as discussed in Chapter III.

Tables 5.2 and 5.3 list the applicable parameters.

The following analysis is shown for the design of

the model Floridan aquifer, leaky layer and storage

coefficient:

A. Slatted Anisotropic Zone for the Floridan Aquifer.

1. Compute k xm/kzm from equation 3.22


x 2 Kxr
r _= xr (3.22)
Sr Kzr

Noting that k = K v (5.8)
g
Then 3.22 becomes,

x '2 k k
zr XM Z kz (5.9)
r ixp zm

and finally,
p [ -6.182 10-0|2
xMm = (1.22) 0 [1 = 0.00209
zm Kzp zr1.493 x 1












TABLE 5.2

MODEL PARAMETERS


Floridan
Parameters Aquifer Leaky Layer


Geometric

x (ft.)

z (ft.)

ym (ft.)

a

A

b (in.)

L (in.)


ab (in.)

XL (in.)

(1 A)L (in.)


Hydraulic

kxm (in.2)
kzm (in.2)

xm /kzm
S (ft.-1)

vm @ 77* F (ft.2/sec.)

gm = 32.2 ft./sec.2


11.75

2.0

0.0417

16.50

0.8097

0.030

1.235

0.6905

0.495

1.00

0.235



3.94. x 10-4

.1884

.00209

0.0369

5.382 x 10-3


11.75

0.082

0.0417

0.25

0.3846

0.500

1.235

0.8349

0.125

0.475

0.760



0

1.05 x 10-4

0


5.382 x 10-3






82







TABLE 5.3

SIMILARITY RATIOS








This is the value which the slatted zone must

produce.

2. Select dimensions for the slatted zone as shown

in Figure 3.2, as follows:


hold ab = 0.5 inch

select b

find a

select (1 X)L

select XL

find L

find x

3. Compute kxm b2 ( 1 (3.34)


4. Compute kzm = ((3AE + 1 A) (3.48)


5. Compute kxm/kzm and compare to the results of

step (1).

6. Repeat the process until the result of step (5)

equals the result of step (1).

B. Slotted Leaky Layer. Refer to Figure 3.4 for this

section.


kxlm = 0 (5.10)

b2 (3.54)
kzlm = i-Z a (3.54)





84


Also, continuity of flow between the leaky layer and

the Floridan aquifer requires that:


(5.11)


Qlr = Qfr

Also,


Q = Qzr = Qxr = K bzrb x
"r zr "xr zr rr

Therefore,


K b x =K b x
zlr rr zfr rr

so,


Kzlr = Kzfr


or,


kzlr = kzfr


(3.67) & (3.68)


(5.12)


(5.13)


(5.14)


Therefore,


kzlm = kzlp kzfr


Now rewrite equation 3.54 as,


a3 k 12
zlm U_

1. Set b = 0.5 inch.

2. a3A = constant, since b is set and kzlm can be

computed from previous information.


(5.15)









3. Select ab and find a.

4. Select XL and L and find X.

5. Compute E.

6. Compute a3A.

7. Compare the result of step (6) to the result

of step (2).

8. Repeat the process until the result of step (6)

equals the result of step (2).

9. Make sure the physical size of this layer is

compatible to the slatted layer, especially

in terms of slot spacing, i.e., blockage.

C. Storage Coefficient Manifolds. Refer to Figure 3.5

for this section (bm = 0.5").

1. Take average storage coefficient and average

depth in prototype to compute S

2. Select convenient time ratios, in this case

1 minute = 1 year, and compute Sor from

equation 3.59.

3. Compute S om

4. Equation 3.60 is now used to compute A for
m
various 1 's with z averaged over 1 .
m m m

In this case the model was apportioned into five

zones with one manifold per zone.









Construction

Because the Hele-Shaw analog is capable of modeling

complex geometries and boundary conditions, it is desirable

that it be as adaptable to as many different prototype

geometries and hydraulic parameters as possible. This

would facilitate model construction and investigations of

many different areas in the state of Florida where saltwater

intrusion is, or in the future might be, a problem. A

reduction in cost of investigation would also be achieved

if many of the parts were reusable.

A list of general specifications would then be as

follows:

1. The Hele-Shaw model should be housed in a frame
in which it can be easily installed and removed.

2. The front and back plates with interior model
parts should not be permanently sealed together.

3. The front and back plates should be as adaptable
as possible to different situations.

4. The model should have as few opaque parts as
possible.

5. The model should be mobile.


Frame

As shown in Figure 5.2, the frame is composed of

two assemblies; the cradle and the cradle dolly. The

function of the cradle is to support and orient the

Plexiglas plates. It also contains the inflatable neoprene

hose which seals the plates. It is fabricated of 2-1/2"

x 2" x 3/8" steel angles which are welded into a channel




Full Text

PAGE 1

$ 678'< $1' (9$/8$7,21 2) 6$/7:$7(5 ,17586,21 ,1 7+( )/25,'$1 $48,)(5 %< 0($16 2) $ +(/(6+$: 02'(/ %\ $1'5(: -26(3+ (9$16 -5 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( &281&,/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*(0(176 7R P\ VXSHUYLVRU\ FRPPLWWHH ZLVK WR H[WHQG P\ VLQFHUH DSSUHFLDWLRQ IRU WKHLU HIIRUWV RS P\ EHKDOI $ VSHFLDO WKDQNV JRHV WR 'U % $ &KULVWHQVHQ DQG 'U + 6FKDXE IRU WKHLU FRQWLQXLQJ VXSSRUW DQG DGYLFH ,WnV QRW DQ HDV\ WDVN WR SXOO DQ RDU LQ +DJDUnV ORQJERDW 7KH HIIRUWV RI 0U & / :KLWH 0U :LOOLDP :KLWHKHDG DQG WKH VWDII RI WKH 0HFKDQLFDO (QJLQHHULQJ PDFKLQH VKRS LQ WKH FRQVWUXFWLRQ RI WKH PRGHO DUH JUDWHn IXOO\ DFNQRZOHGJHG DV ZHOO DV WKH DVVLVWDQFH RI 0U 5LFKDUG 6ZHHW DQG 0U 7RP &RVWHOORn LQ WKH RSHUDWLRQ RI WKH PRGHO DQG WKH PDWKHPDWLFDO DGYLFH RI 'U -RQDWKDQ /HH 7KH SDUWLFLSDn WLRQ RI 0U )OR\G / &RPEV LQ DOO DVSHFWV RI WKH SURMHFW ZDV HVSHFLDOO\ YDOXDEOH :LWKRXW WKH ILQDQFLDO VXSSRUW RI WKH 2IILFH RI :DWHU 5HVRXUFHV 5HVHDUFK 8QLWHG 6WDWHV 'HSDUWPHQW RI WKH ,QWHULRU DQG WKH DGPLQLVWUDWLYH DVVLVWDQFH RI 'U : + 0RUJDQ DQG WKH VWDII RI WKH )ORULGD :DWHU 5HVRXUFHV 5HVHDUFK &HQWHU WKLV SURMHFW ZRXOG QRW KDYH EHHQ ODXQFKHG )LQDOO\ WR P\ PRWKHU DQG P\ PDQ\ GHDU IULHQGV ZKR KDYH ZDWFKHG WKH LQV DQG RXWV RI P\ DFDGHPLF DQG SURIHVn VLRQDO FDUHHU EOHVV \RX IRU \RXU LQWHUHVW DQG HQFRXUDJHPHQW LI L ? LL

PAGE 3

, ZDQW WR OHDYH WKH UHDGHU ZLWK WKLV FORVLQJ WKRXJKW ZKLFK EHOLHYH LV SDUDSKUDVHG IURP %HQMDPLQ )UDQNOLQ :DVWH QRW ZDQW QRW \RX QHYHU PLVV WKH ZDWHU nWLOO WKH ZHOO UXQV GU\ LLL

PAGE 4

7$%/( 2) &217(176 3DJH $&.12:/('*(0(176 LL /,67 2) 7$%/(6 YL /,67 2) ),*85(6 YLL .(< 72 6<0%2/6 25 $%%5(9,$7,216 [ $%675$&7 [LLL &KDSWHU ,1752'8&7,21 $1' 67$7(0(17 2) 352%/(0 7RSRJUDSK\ :HVWHUQ +LJKODQGV 0DULDQQD /RZODQGV 7DOODKDVVHH +LOOV &HQWUDO +LJKODQGV &RDVWDO /RZODQGV &OLPDWH *HRORJ\ ,, 02'(/6 180(5,&$/ $1' 3+<6,&$/ $ 180(5,&$/ 0(7+2'6 0HWKRG RI )LQLWH 'LIIHUHQFHV 0HWKRG RI )LQLWH (OHPHQWV 5HOD[DWLRQ 0HWKRGV % 3+<6,&$/ 02'(/6 6DQGER[ 0RGHO +HOH6KDZ $QDORJ f (OHFWULF $QDORJ &RQWLQXRXV (OHFWULF $QDORJ 'LVFUHWH (OHFWULF $QDORJ ,RQ 0RWLRQ $QDORJ 0HPEUDQH $QDORJ 6XPPDU\ LY

PAGE 5

7$%/( 2) &217(176f§&RQWLQXHG &KDSWHU 3DJH ,,,7+( +(/(6+$: 02'(/ 9LVFRXV )ORZ $QDORJ 6FDOLQJ 7LPH $QLVRWURS\ /HDNDJH 6WRUDWLYLW\ 'LVFKDUJH $FFUHWLRQ 9ROXPH ,96,7( 6(/(&7,21 $1' 352727<3( *(2/2*< $1' +<'52/2*< 6LWH 6HOHFWLRQ 3URWRW\SH *HRORJ\ 3URWRW\SH +\GURORJ\ 9'(6,*1 &216758&7,21 $1' 23(5$7,21 2) 02'(/ 'HVLJQ 3URWRW\SH 0RGHO &RQVWUXFWLRQ )UDPH 3OH[LJODV 3ODWHV DQG 0DQLIROGV 6DOWZDWHU 6\VWHP )UHVKZDWHU 6\VWHP *HQHUDO )UHVKZDWHU 6\VWHP $FFUHWLRQ )UHVKZDWHU 6\VWHP :HOOV )UHVKZDWHU 6\VWHP )ORZ 0HWHUV 2SHUDWLRQ 9,5(68/76 &21&/86,216 $1' 5(&200(1'$7,216 5HVXOWV B &RQFOXVLRQV DQG 5HFRPPHQGDWLRQV $SSHQGL[ $ 81,)250 )/2: 7+528*+ $ &21'8,7 2) 5(&7$1*8/$5 &5266 6(&7,21 % )/2: 0(7(5 &$/,%5$7,21 %,%/,2*5$3+< %,2*5$3+,&$/ 6.(7&+ Y

PAGE 6

/,67 2) 7$%/(6 7DEOH 3DJH $33/,&$%,/,7< 2) 02'(/6 $1' $1$/2*6 352727<3( 3$5$0(7(56 02'(/ 3$5$0(7(56 6,0,/$5,7< 5$7,26 '(37+ 72 6$/7:$7(5 YL

PAGE 7

/,67 2) ),*85(6 )LJXUH 3DJH 7RSRJUDSKLF GLYLVLRQV RI )ORULGD f 0HDQ DQQXDO SUHFLSLWDWLRQ )UHH ERG\ IORZ GLDJUDP IRU +HOH6KDZ PRGHO 6HFWLRQ RI DQLVRWURSLF JURRYHG ]RQH LQ +HOH6KDZ PRGHO +HDG ORVV LQ JURRYHG DQLVRWURSLF ]RQH 6HFWLRQ RI OHDN\ ]RQH LQ +HOH6KDZ PRGHO 6WRUDJH PDQLIROG IRU +HOH6KDZ PRGHO 5HJLRQDO DUHD RI SURWRW\SH *K\EHQ+HU]EHUJ LQWHUIDFH PRGHO &UDGOH DQG FUDGOH GROO\ &UDGOH URWDWLRQ )UDPH DQG PRGHO VHWXS $LU KRVH DQG YDOYH DUUDQJHPHQW 6WXE VKDIW DQG SLOORZ EORFN DUUDQJHPHQW %DFN XS DLU VXSSO\ ,QWHUQDO VXSSRUW DQG VHDOLQJ V\VWHP 0RGHO PRXQWLQJ V\VWHP 0RGHO EDFN DQG IURQW SODWHV 'HWDLO RI WKH PRGHO IURQW DQG EDFN SODWH 'HWDLO RI WKH PRGHO EDFN SODWH ,OO

PAGE 8

/,67 2) ),*85(6f§&RQWLQXHG )LJXUH 3DJH )URQW SODWH ZLWK DFFUHWLRQ PDQLIROGV $FFUHWLRQ PDQLIROGV 'HWDLO RI DFFUHWLRQ PDQLIROGV &RQQHFWLRQV EHWZHHQ PRGHO DQG IOXLG VXSSO\ V\VWHP 6DOWZDWHU FRQVWDQW KHDG WDQN %DFN DQG IURQW SODWH FODPS XS )OXLG VXSSO\ QHWZRUN VFKHPDWLF 6DOWZDWHU UHVHUYRLU DQG SXPS )UHVKZDWHU VXSSO\ V\VWHP )UHVKZDWHU UHVHUYRLU DQG DFFUHWLRQ SXPS :HOO VXSSO\ PDQLIROG DQG SXPS :HOO VXSSO\ PDQLIROG DQG DFFUHWLRQ VXSSO\ PDQLIROG 2SSRVLWH YLHZ RI )LJXUH )ORZ PHWHU EDQN )ORZ PHWHU GHWDLO )ORZ PHWHU WR PRGHO FRQQHFWLRQV )ORZ PHWHU SUHVVXUH VHQVLQJ OLQHV )ORZ PHWHU VZLWFKLQJ GHYLFH DQG SUHVVXUH WUDQVGXFHUV &DUULHU GHPRGXODWRU DQG VWULS FKDUW UHFRUGHU ,QWHUIDFH ORFDWLRQ W PLQ f P ,QWHUIDFH ORFDWLRQ W PLQ P ,QWHUIDFH ORFDWLRQ WP PLQ YLLL

PAGE 9

/,67 2) ),*85(6f§&RQWLQXHG )LJXUH 3DJH ,QWHUIDFH ORFDWLRQ W PLQ P ,QWHUIDFH ORFDWLRQ W PLQ P ,QWHUIDFH ORFDWLRQ W PLQ P ,QWHUIDFH ORFDWLRQ W PLQ P ,QWHUIDFH ORFDWLRQ W PLQ P ,QWHUIDFH ORFDWLRQ W PLQ n P ,QWHUIDFH ORFDWLRQ W PLQ P ,QWHUIDFH ORFDWLRQ W PLQ P ,QWHUIDFH ORFDWLRQ W PLQ P ,QWHUIDFH ORFDWLRQ W PLQ P :HGJH ORFDWLRQ DW WLPH ]HUR 7LPH RYHUOD\ RI ZHGJH ORFDWLRQ L[

PAGE 10

.(< 72 6<0%2/6 25 $%%5(9,$7,216 6\PEROV $ DUHD )RXULHU FRHIILFLHQW E ZLGWK RI PRGHO DQG SURWRW\SH % ERG\ IRUFH )RXULHU FRHIILFLHQW I VXEVFULSW GHQRWLQJ IUHVKZDWHU )ORULGDQ DTXLIHU J DFFHOHUDWLRQ GXH WR JUDYLW\ K KHLJKW RI ZDWHU M VXPPDWLRQ OLPLW N LQWULQVLF SHUPHDELOLW\ K\GUDXOLF FRQGXFWLYLW\ GLVWDQFH EHWZHHQ VWRUDWLYLW\ WXEHV VXEVFULSW GHQRWLQJ OHDN\ OD\HU / GLVWDQFH FHQWHU WR FHQWHU RI JURRYH LQ DQLVRWURSLF ]RQH IORZ PHWHU WXEH OHQJWK P VXEVFULSW GHQRWLQJ PRGHO Qe HIIHFWLYH SRURVLW\ S SUHVVXUH VXEVFULSW GHQRWLQJ SURWRW\SH T VSHFLILF GLVFKDUJH 4 WRWDO IORZ U VXEVFULSW GHQRWLQJ UDWLR 5 DFFUHWLRQ 5J 5H\QROGV QXPEHU [

PAGE 11

.(< 72 6<0%2/6 25 $%%5(9,$7,216f§&RQWLQXHG 6\PEROV 64 VSHFLILF VWRUDJH W WLPH 7 WUDQVPLVVLYLW\ 8 YROXPH 9 YHORFLW\ [ KRUL]RQWDO GLUHFWLRQ SDUDOOHO WR WHVW VHFWLRQ \ KRUL]RQWDO GLUHFWLRQ SHUSHQGLFXODU WR WHVW VHFWLRQ ] YHUWLFDO GLUHFWLRQ VXEVFULSWV GHQRWLQJ ]RQH DQG ]RQH D ZLGWK DGMXVWPHQW IDFWRU < XQLW ZHLJKW ; OHQJWK DGMXVWPHQW IDFWRU Q DEVROXWH YLVFRVLW\ JHRPHWULF SDUDPHWHU LQ DQLVRWURSLF ]RQH S PDVV GHQVLW\ Y NLQHPDWLF YLVFRVLW\ M! SRWHQWLRPHWULF KHDG YHORFLW\ SRWHQWLDO SRWHQWLDO $EEUHYLDWLRQV MMMU VXEVWDQWLDO GHULYDWLYH 9 /DSODFH RSHUDWRU $ GLIIHUHQFH RSHUDWRU r& &HQWLJUDGH [L

PAGE 12

.(< 72 6<0%2/6 25 $%%5(9,$7,216f§&RQWLQXHG $EEUHYLDWLRQV FIV FXELF IHHW SHU VHFRQG r) )DKUHQKHLW ISV IHHW SHU VHFRQG JFP JUDPV SHU FXELF FHQWLPHWHU JSG JDOORQV SHU GD\ +J 0HUFXU\ ,' LQQHU GLDPHWHU 0*' PLOOLRQ JDOORQV SHU GD\ PVO PHDQ VHD OHYHO 2' RXWHU GLDPHWHU SFI SRXQGV SHU FXELF IHHW SVLG SRXQGV SHU VTXDUH LQFK GLIIHUHQWLDO SVLJ SRXQGV SHU VTXDUH LQFK JDJH 530 UHYROXWLRQV SHU PLQXWH [LL

PAGE 13

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ $ 678'< $1' (9$/8$7,21 2) 6$/7:$7(5 ,17586,21 ,1 7+( )/25,'$1 $48,)(5 %< 0($16 2) $ +(/(6+$: 02'(/ %\ $QGUHZ -RVHSK (YDQV -U $XJXVW &KDLUPDQ % $ &KULVWHQVHQ 0DMRU 'HSDUWPHQW &LYLO (QJLQHHULQJ &RQWLQXLQJ GHYHORSPHQW RI WKH FRDVWOLQH ]RQH LQ WKH PLGGOH *XOI DUHD RI )ORULGD LV LQFUHDVLQJ WKH GHPDQG IRU JURXQGZDWHU VXSSOLHV DQG LQ WXUQ LQFUHDVLQJ WKH SUREDELOLW\ RI VDOWZDWHU LQWUXVLRQ 0HWKRGV PXVW EH GHYHORSHG WR PDNH ORQJUDQJH SUHGLFWLRQV RQ WKH HIIHFWV RI LQFUHDVHG GHPDQGV RQ WKH )ORULGDQ DTXLIHU $ +HOH6KDZ PRGHO LV D SK\VLFDO PRGHO ZKLFK ILWV WKH UHTXLUHPHQWV IRU ORQJUDQJH SODQQLQJ ,W LV ZHOOVXLWHG IRU KDQGOLQJ DQLVRWURSLF DTXLIHUV GLIILFXOW ERXQGDU\ FRQGLWLRQV DQG FDQ VLPXODWH \HDUV RI ILHOG FRQGLWLRQV LQ PLQXWHV RI PRGHO WLPH [LLL

PAGE 14

7KH VHFWLRQ VHOHFWHG IRU VWXG\ OLHV LQ D OLQH IURP WKH *XOI FRDVW QHDU 7DUSRQ 6SULQJV WR D SRLQW QHDU 'DGH &LW\ DQG SDVVHV WKURXJK WKH (OGULGJH:LOGH ZHOO ILHOG 7KH (OGULGJH:LOGH ZHOO ILHOG LV WKH PDMRU ZDWHU SURGXFHU IRU 3LQHOODV &RXQW\ 7KLV UHJLRQ KDV H[SHULHQFHG VHYHUDO \HDUV RI GU\ ZHDWKHU DQG SXPSLQJ KDV ORZHUHG WKH ZDWHU OHYHOV LQ WKH DTXLIHU E\ D VLJQLILFDQW DPRXQW 7KLV ORVV RI IUHVKn ZDWHU KHDG LV FHUWDLQ WR LQGXFH VDOWZDWHU LQWUXVLRQ $ +HOH6KDZ PRGHO KDV EHHQ EXLOW IRU WKLV DUHD DQG DOO SHUWLQHQW JHRORJLFDO DQG K\GURORJLFDO IHDWXUHV RI WKH DUHD DUH LQFOXGHG 6WHDG\ VWDWH FKDUDFWHULVWLFV RI WKH DTXLIHU V\VWHP KDYH EHHQ FRQVLGHUHG ,Q SDUWLFXODU WKH ORQJWHUP HIIHFWV GXH WR SXPSLQJ DQG DUWLILFLDO UHFKDUJH ZHUH H[DPLQHG [LY

PAGE 15

&+$37(5 ,1752'8&7,21 $1' 67$7(0(17 2) 352%/(0 )ORULGD ZLWK WKH SRVVLEOH H[FHSWLRQ RI &DOLIRUQLD LV WKH IDVWHVW JURZLQJ VWDWH RI WKH 8QLWHG 6WDWHV 7KH UDSLG LQIOX[ RI SHRSOH VLQFH :RUOG :DU ,, KDV JUHDWO\ LQFUHDVHG WKH GHPDQGV IRU ODQG DQG ZDWHU ,Q WKH SDVW WKHUH KDV EHHQ DQ DOPRVW WRWDO ODFN RI ZLGH UDQJH SODQQLQJ IRU WKH XVHV RI WKHVH UHVRXUFHV (YHQ IHZHU LQYHVWLJDWLRQV KDYH EHHQ PDGH LQWR WKH FRQVHTXHQFHV RI WKHLU UDSLG DQG XQRUGHUHG GHYHORSPHQW 5HFHQWO\ ZDWHU VXSSOLHV KDYH KDG WR EH UDWLRQHG LQ 6RXWK )ORULGD 2YHUDOO ODQG DQG ZHWn ODQGV UHTXLUHG IRU ILVK DQG ZLOGOLIH KDYH VR GLPLQLVKHG WKDW LQ VRPH LQVWDQFHV WKHUH KDV EHHQ D PDUNHG GHFUHDVH LQ WKHLU QXPEHUV ,W VHHPV UHDVRQDEOH WR FRQFOXGH WKDW LQ VRPH DUHDV RI WKH VWDWH ODQG DQG ZDWHU UHVRXUFHV FDQQRW VXSSRUW PXFK ODUJHU SRSXODWLRQV ZLWK FXUUHQW ORFDOO\ DYDLOn DEOH VXSSOLHV ZLWKRXW DOPRVW LUUHFRYHUDEOH GDPDJH WR WKH JURXQGZDWHU V\VWHP LQ WKH IRUP RI VDOWZDWHU HQFURDFKPHQW :LWK WKH JURZLQJ DIIOXHQFH RI WKH $PHULFDQ SHRSOH DQG WKH DYDLODELOLW\ RI HFRQRPLFDOO\ SULFHG DLU FRQGLWLRQLQJ XQLWV LW FDQ EH H[SHFWHG WKDW HYHQ PRUH SHRSOH ZLOO OHDYH WKH FROGHU QRUWKHUQ FOLPDWHV IRU WKH VRXWKHUQ DQG ZHVWHUQ VWDWHV )ORULGD FDQ H[SHFW WR UHFHLYH PRUH WKDQ LWV VKDUH

PAGE 16

RI WKH PLJUDWLRQ )UHTXHQWO\ QRZ HQYLURQPHQWDO SURWHFWLRQ JURXSV DUH PDNLQJ IRUHFDVWV RI LPSHQGLQJ GRRP $W ZRUVW WKHLU SUHGLFWLRQV PD\ FRPH WUXH DQG SHRSOH DUH EHJLQQLQJ WR ORRN DW DOO JURZWK ZLWK D MDXQGLFHG H\H ,W LV GRXEWIXO KRZHYHU WKDW JURZWK DQG GHYHORSPHQW FDQ EH VWRSSHG 7KH KLVWRU\ RI PDQ LQGLFDWHV D FRQWLQXDO HIIRUW WR EHWWHU KLV OLIHVW\OH KLV SULYDWH HQYLURQPHQW 7KHUH LV OLWWOH GRXEW WKDW WKLV KDV VRPHWLPHV FDXVHG D GHJUDGDWLRQ RI RWKHU SRUWLRQV RI KLV ZRUOG 8QOHVV WKH FHVVDWLRQ RI DOO JURZWK DQG GHYHORSPHQW LV DFFHSWDEOH QHZ ZD\V PXVW EH IRXQG RI IRUHFDVWLQJ RU SUHGLFWLQJ WKH UHVXOWV RI DOO JURZWK VR DV WR FRPEDW SRVVLEOH XQGHVLUDEOH UHVXOWV &RQVHTXHQFHV RI DOO JURZWK PXVW EH NQRZQ HYHQ RI WKRVH UHVXOWLQJ ZKHQ SUDJPDWLF VKRUWWHUP VROXWLRQV DUH XVHG +RSHIXOO\ WKH UHPDLQGHU RI WKLV VWXG\ ZLOO SUHVHQW D PRGHOLQJ PHWKRG ZKLFK ZLOO EH XVHIXO LQ IRUHFDVWLQJ WKH UHVXOWV RI SXPSDJH DQG XVH RI JURXQGZDWHU LQ RXU FRDVWDO ]RQHV VR WKDW ZH PD\ EHWWHU SODQ WKHLU XVDJH %XW ILUVW D OLWWOH EDFNJURXQG RQ )ORULGD 7RSRJUDSK\ )ORULGD OLHV EHWZHHQ ODWLWXGHV rn DQG rr QRUWK DQG ORQJLWXGHV rn DQG rn ZHVW DQG LV WKH PRVW VRXWKHUO\ XQLW RI WKH FRQWLQHQWDO 8QLWHG 6WDWHV ,Q LWV VRXWKHUQPRVW H[WHQVLRQ LW LV OHVV WKDQ ,R RI ODWLWXGH QRUWK RI WKH 7URSLF RI &DQFHU

PAGE 17

)ORULGD LV ERXQGHG RQ WKH HDVW E\ WKH $WODQWLF 2FHDQ RQ WKH VRXWK E\ WKH 6WUDLWV RI )ORULGD DQG WKH *XOI RI 0H[LFR RQ WKH ZHVW E\ WKH *XOI RI 0H[LFR DQG WKH VWDWH RI $ODEDPD DQG RQ WKH QRUWK E\ $ODEDPD DQG *HRUJLD 7KH VKDSH RI WKH VWDWH LQ UHODWLRQ WR WKH UHPDLQGHU RI WKH 8QLWHG 6WDWHV VXJJHVWV WZR GLVWLQFWLYH SDUWV WKH )ORULGDQ SDQKDQGOH DQG WKH SHQLQVXOD RI )ORULGD 7KH SDQKDQGOH LV D VWULS URXJKO\ PLOHV ORQJ WKDW VWUHWFKHV LQ DQ HDVWZHVW GLUHFWLRQ 7KH SHQLQVXOD LV D VRXWKVRXWKHDVW H[WHQVLRQ DW DSSUR[LPDWH EHDULQJ 6 r HDVW )URP WKH QRUWKHUQ ERXQGDU\ RI WKH VWDWH WR WKH WLS QRW LQFOXGLQJ WKH FKDLQ RI NH\V WKH SHQLQVXOD LV DSSUR[LPDWHO\ PLOHV ORQJ DQG LQFOXGHV WZRWKLUGV RI WKH ODQG PDVV RI WKH HQWLUH VWDWH ,WV FRDVWOLQH VRPH PLOHV ORQJ LV WKH ORQJHVW ZLWK WKH H[FHSWLRQ RI $ODVND 1R SODFH LQ WKH LQWHULRU RI )ORULGD LV PRUH WKDQ PLOHV IURP HLWKHU WKH *XOI RU WKH $WODQWLF FRDVW &RRNH f GLYLGHG WKH WHUUDLQ RI )ORULGD LQWR ILYH VHFWLRQV )LJXUH WKH :HVWHUQ +LJKODQGV WKH 0DULDQQD /RZODQGV WKH 7DOODKDVVHH +LOOV DQG D QDUURZ EDQG RI &RDVWDO /RZODQGV ZKLFK FRPSULVH WKH SDQKDQGOH DQG WKH &HQWUDO +LJKn ODQGV DQG &RDVWDO /RZODQGV ZKLFK FRPSULVH WKH SHQLQVXOD 7KH WRSRJUDSK\ RI HDFK LV GHVFULEHG EULHIO\ :HVWHUQ +LJKODQGV ([WHQGLQJ HDVWZDUG IURP WKH 3HUGLGR 5LYHU WKH ZHVWHUQ ERXQGDU\ RI )ORULGDf WR WKH $SDODFKLFROD 5LYHU WKH QRUWKHUQ SDUW RI WKLV UHJLRQ QHDU WKH $ODEDPD VWDWH OLQH

PAGE 18

),*85( 7RSRJUDSKLF GLYLVLRQV RI )ORULGD

PAGE 19

$IWHU &RRNH f

PAGE 20

LV QRW PXFK KLJKHU WKDQ IHHW ,W LV FRQVLGHUHG WR EH KLOO\ ZKHQ FRPSDUHG WR WKH EURDG JHQWO\ UROOLQJ VRXWKHUQ SDUWV RI WKLV UHJLRQ ZKLFK GURS WR IHHW HOHYDWLRQ DV RQH DSSURDFKHV WKH FRDVWDO ORZODQGV 7KH KLJKHVW HOHYDWLRQ LQ WKH VWDWH IHHW LV IRXQG LQ WKLV UHJLRQ LQ WKH QRUWKn ZHVW FRUQHU RI :DOWRQ &RXQW\ 7KH ZHVWHUQ KLJKODQGV DUH XQGHUODLQ ZLWK WKH VDQG RI WKH 3OLRFHQH &LWURQHOOH )RUPDWLRQ 7KH VWHHSQHVV RI WKH EDQNVORSHV DW WKH KHDGZDWHUV RI WKH PDQ\ VWUHDPV LV WKH PRVW XQLTXH SK\VLRJUDSKLF FKDUDFWHULVWLF RI WKLV VHFWLRQ 0DULDQQD /RZODQGV 7KLV URXJKO\ WULDQJXODUVKDSHG UHJLRQ RI +ROPHV -DFNVRQ DQG :DVKLQJWRQ FRXQWLHV ZLWK VRPHZKDW VPDOOHU FRQWULEXWLRQV IURP %D\ DQG &DOKRXQ FRXQWLHV OLHV EHWZHHQ WKH 7DOODKDVVHH +LOOV DQG WKH :HVWHUQ +LJKODQGV ,W LV GLIILFXOW WR UHFRJQL]H WKLV DUHD RI JHQWO\ UROOLQJ KLOOV DV ORZODQGV &RRNH f DWWULEXWHV WKH ORZHU HOHYDWLRQV WR WKH VROXELOLW\ DQG FRQVHTXHQW GHJUDGDWLRQ RI WKH XQGHUn O\LQJ OLPHVWRQH 7KLV DUHD LV RQH RI WKH WZR LQ WKH VWDWH ZKHUH WKH 2FDOD )RUPDWLRQ LV H[SRVHG WR WKH VXUIDFH DQG WKH RQO\ DUHD RI WKH VWDWH ZKHUH WKH 0DULDQQD OLPHVWRQH WKH VRIW ZKLWH OLPHVWRQH RI WKH 2OLJRFHQH $JH LV IRXQG H[SRVHG 7KH UHJLRQ LV GRWWHG ZLWK VLQNV VLQNKROH ODNHV DQG VSULQJV

PAGE 21

7DOODKDVVHH +LOOV )URP WKH $SDODFKLFROD 5LYHU HDVW WR WKH :LWKODFRRFKHH 5LYHU WKH 7DOODKDVVHH +LOOV H[WHQGV DORQJ WKH *HRUJLD )ORULGD ERUGHU DQG LV RQO\ PLOHV LQ ZLGWK 7KH ZHVWHUQ VHFWLRQ LV D QHDUO\ OHYHO SODWHDX VRPH IHHW DERYH PHDQ VHD OHYHO 7KH UHPDLQGHU FRQVLVWV RI UROOLQJ KLOOV FDUYHG RXW RI WKH &LWURQHOOH )RUPDWLRQ ,Q DGGLWLRQ WR WKLV D UHG FOD\H\ VDQG DQG )XOOHUnV HDUWK RI WKH +DZWKRUQ )RUPDWLRQ DUH IRXQG LQ WKLV DUHD 7KLV LV D IHUWLOH IDUPLQJ UHJLRQ &HQWUDO +LJKODQGV 7KH &HQWUDO +LJKODQGV IRUPV WKH EDFNERQH RI WKH )ORULGDQ SHQLQVXOD DQG H[WHQGV IURP WKH *HRUJLD OLQH EHWZHHQ WKH :LWKODFRRFKHH DQG 6W 0DU\nV ULYHUV VRXWKVRXWKHDVWZDUG VRPH PLOHV LQWR *ODGHV &RXQW\ ZHVW RI /DNH 2NHHFKREHH 7KLV UHJLRQ LV KLJKO\ GLYHUVLILHG ,W LQFOXGHV KLJK VZDPS\ SODLQV KLOOV DQG LQQXPHURXV ODNHV 6RLOV DUH VDQG\ 0DQ\ RI WKHP ZHUH GHULYHG IURP 3OHLVWRFHQH ,FH $JHf PDULQH WHUn UDFHV +RZHYHU D GLVWLQJXLVKDEOH DPRXQW FRPHV IURP WKH 0LRFHQH +DZWKRUQ DQG 3OLRFHQH &LWURQHOOH )RUPDWLRQV 7KH ODNHV DQG VLQNV ZKLFK GRW WKH HQWLUH DUHD LQGLFDWH WKH SUHVHQFH RI OLPHVWRQH EHORZ WKH VXUIDFH (OHYDWLRQV RI WKLV UHJLRQ DYHUDJH MXVW VOLJKWO\ PRUH WKDQ IHHW KRZHYHU WKH\ YDU\ IURP OHVV WKDQ IHHW WR DSSUR[LPDWHO\ IHHW &RDVWDO /RZODQGV 7KH &RDVWDO /RZODQGV RU &RDVWDO 3ODLQV DV LW LV VRPHWLPHV FDOOHG ERUGHUV WKH HQWLUH PLOH )ORULGD

PAGE 22

FRDVWOLQH )ODQNLQJ RQ ERWK VLGHV RI WKH &HQWUDO +LJKODQGV WKH &RDVWDO /RZODQGV LV ZLGHVW MXVW VRXWK RI /DNH 3ODFLG DQG QDUURZHVW EHWZHHQ WKH ZHVWHUQ ERUGHU DQG WKH &KRFWDZKDWFKHH %D\ MXVW VRXWK RI WKH :HVWHUQ +LJKODQGV 7KH HOHYDWLRQV HYHU\ZKHUH ZLWKLQ WKLV UHJLRQ DUH OHVV WKDQ IHHW 7KH VRLO IRU WKH PRVW SDUW LV VDQG\ H[FHSW LQ WKH (YHUJODGHV DQG %LJ &\SUHVV 6ZDPS ORFDOHV ZKHUH 3OLRFHQH OLPHVWRQH PXFN DQG SHDW SUHYDLO QHDU WKH VXUIDFH 7KH NH\V ZKLFK H[WHQG VRPH PLOHV LQWR WKH 6WUDLWV RI )ORULGD DUH PRVWO\ VDQG\ RROLWLF OLPHVWRQH OLNH WKDW RI WKH PDLQODQG KRZHYHU VRPH OLPHVWRQH ZLWK FRUDO KHDGV LV IRXQG 7KH LVODQGV VHOGRP UHDFK IHHW HOHYDWLRQ 7KH HQWLUH UHJLRQ LV JHQHUDOO\ IODW W\SLFDO RI UHFHQWO\ GHSRVLWHG PDWHULDO ZLWK OLWWOH RU QR HURVLRQ &OLPDWH 7KH VHD VXUIDFH WHPSHUDWXUHV HDVW DQG ZHVW RI )ORULGD DYHUDJH UHVSHFWLYHO\ r DQG r )DKUHQKHLW :DWHU WHPn SHUDWXUHV UDQJH IURP r WR r )DKUHQKHLW LQ WKH HDVW DQG r WR r )DKUHQKHLW LQ WKH ZHVW 7KH FROGHVW PRQWK LQ ERWK FDVHV LV )HEUXDU\ WKH ZDUPHVW PRQWK LV OLNHZLVH $XJXVW 7KH UHODWLYHO\ KRPRJHQHRXV GLVWULEXWLRQ RI VHD WHPSHUDWXUH WKH ODFN RI KLJK UHOLHI DQG WKH SHQLQVXOD VKDSH RI )ORULGD FRQWULEXWH WR LWV FOLPDWH 7KH WHPSHUDWXUH LV HYHU\ZKHUH VXEWURSLFDO 0HDQ DQQXDO DYHUDJH WHPSHUDWXUH LQ WKH QRUWK LV r )DKUHQKHLW DQG LQ WKH VRXWKHUQ WLS r )DKUHQKHLW

PAGE 23

7KH WUDGHZLQGV ZKLFK VKLIW IURP QRUWKHUQ )ORULGD WR VRXWKHUQ )ORULGD DQG EDFN VHPLDQQXDOO\ EULQJ D PLOGO\ PRQn VRRQ HIIHFW WR )ORULGD ,Q 1RYHPEHU WKH WUDGHZLQGV DUH DW WKHLU VRXWKHUQPRVW H[WHQVLRQ DQG )ORULGDnV FOLPDWH LV FRQn WUROOHG E\ IURQWDO RU F\FORQLF DFWLYLW\ PRYLQJ LQ IURP WKH FRQWLQHQWDO 8QLWHG 6WDWHV 5DLQIDOO GXULQJ WKLV SHULRG LV RI ORZ LQWHQVLW\ DQG ORQJ GXUDWLRQ %HJLQQLQJ LQ HDUO\ 0D\ WKH WUDGHZLQGV PRYH QRUWK DJDLQ EULQJLQJ ZLWK WKHP WKH PRLVW ZDUP DLU RI WKH $WODQWLF 7KH F\FORQLF DFWLYLW\ LV JUHDWO\ UHGXFHG RYHU WKH VWDWH DQG FRQYHFWLRQDO LQVWDELOLW\ EHJLQV WR EHFRPH HVWDEOLVKHG -XQH WKURXJK 6HSWHPEHU LV NQRZQ DV WKH UDLQ\ VHDVRQ LQ )ORULGD 7KH WKXQGHUVWRUPV RI WKLV SHULRG DUH LQWHQVH DQG YHU\ VSDFLDOO\ YDULHG 7KH\ XVXDOO\ RFFXU GXULQJ WKH KRWWHVW SDUW RI WKH GD\ DQG RQO\ RQ UDUH RFFDVLRQV ODVW ORQJHU WKDQ WZR KRXUV $ERXW SHUFHQW RI WKH WRWDO DYHUDJH DQQXDO UDLQIDOO RFFXUV GXULQJ WKLV SHULRG )LJXUH 7KH PHDQ DYHUDJH UDLQIDOO RI )ORULGD LV LQ WKH QHLJKERUKRRG RI LQFKHV ,W YDULHV IURP WR LQFKHV LQ WKH ORZHU NH\V WR RYHU LQFKHV LQ WKH VRXWKHDVW FRUQHU RI WKH SHQLQVXOD DQG WKH ZHVWHUQ SRUWLRQ RI WKH SDQKDQGOH 0RVW RI WKH LQWHULRU WKDW LV WKH FHQWUDO KLJKODQGV UHFHLYHV DSSUR[Ln PDWHO\ WKH PHDQ DQQXDO DYHUDJH

PAGE 24

),*85( 0HDQ DQQXDO SUHFLSLWDWLRQ LQ LQFKHVf

PAGE 26

*HRORJ\ 7KH )ORULGDQ SHQLQVXOD DQG WKH RIIVKRUH VXEPHUJHG ODQGV DERYH IDWKRPV ZKLFK 9DXJKDQ f FDOOHG WKH )ORULGLDQ 3ODWHDX KDYH H[LVWHG IRU VHYHUDO PLOOLRQ \HDUV 7KH UHJLRQ KDV QRW EHHQ VXEMHFW WR YLROHQW HDUWK PRYHPHQW DQG FRQVHTXHQWO\ WKHUH KDV EHHQ D JHQWOH GRPLQJ UHVXOWLQJ LQ WKH IRUPDWLRQ RI DQ RYDO DUFK DERYH WKH EDVHPHQW URFN 7KH URFN RI WKH FRUH XQGHUO\LQJ WKH SODWHDX LV K\SRWKHVL]HG WR EH SUH&DPEULDQ KRZHYHU QR GULOO KDV SHQHWUDWHG WKH FRUH 7KH ROGHVW URFNV SHQHWUDWHG WR GDWH DUH TXDUW]LWHV IRXQG DW DERXW IHHW EHORZ WKH VXUIDFH LQ 0DULRQ &RXQW\ 7KH ERUHKROH HQFRXQWHUHG DQRWKHU IHHW RI TXDUW]LWH EHIRUH GULOOLQJ ZDV VXVSHQGHG 7KLV PHWDPRUSKL]HG URFN EHOLHYHG WR EH D FRQWLQXDWLRQ RI WKH 3LHGPRQW UHJLRQ RI *HRUJLD ZDV DVVLJQHG E\ &RRNH f WR WKH 3HQQV\OYDQLDQ SHULRG 7KH DUFK DERYH WKH PHWDPRUSKL]HG EDVHPHQW FRPSRVHG RI DOPRVW SXUH SRURXV OLPHVWRQH LV NQRZQ DV WKH /DNH &LW\ $YRQ 3DUN DQG 2FDOD )RUPDWLRQV 'DWHG LQ WKH (RFHQH SHULRG WKH 2FDOD )RUPDWLRQ KDV DQ HVWLPDWHG PD[LPXP WKLFNQHVV RI IHHW ,W LV IRXQG DW RU DERYH PHDQ VHD OHYHO WKURXJKn RXW QRUWKHDVW DQG QRUWK FHQWUDO )ORULGD DQG LV WKLV VHFWLRQnV SULQFLSDO DTXLIHU ,Q VRXWKHUQ )ORULGD LQ WKH YLFLQLW\ RI WKH (YHUJODGHV WKH 2FDOD LV IRXQG DW GHSWKV DSSURDFKLQJ IHHW 7KH /DNH &LW\ DQG $YRQ 3DUN OLPHVWRQHV IRXQG EHORZ WKH 2FDOD DUH WKH SULQFLSDO DTXLIHU XVHG E\

PAGE 27

DJULFXOWXUDO LQWHUHVWV LQ FHQWUDO DQG VRXWK FHQWUDO )ORULGD DQG DUH NQRZQ ORFDOO\ DV WKH )ORULGDQ DTXLIHU $ERYH WKH (RFHQH VHULHV DUH WKH IRUPDWLRQV RI WKH 2OLJRFHQH HSRFK 7KHVH DUH UHSUHVHQWHG E\ WKH 0DULDQQD OLPHVWRQH DQG WKH %\UDQ OLPHVWRQHV IRXQG DQG PLQHG LQ WKH 0DULDQQD /RZODQGV RI WKH QRUWKHUQ SDUW RI WKH VWDWH DQG WKH 6XZDQQHH OLPHVWRQH IRXQG RYHU WKH 2FDOD )RUPDWLRQ DV IDU VRXWK DV +LOOVERURXJK &RXQW\ 7KH QH[W KLJKHU IRUPDWLRQV DUH WKRVH RI WKH 0LRFHQH HSRFK 7KHVH DUH ZHOO UHSUHVHQWHG E\ WKH 7DPSD OLPHVWRQHV RI WKH HDUO\ 0LRFHQH ZKLFK DUH IRXQG DERYH WKH 6XZDQQHH DQG 2FDOD OLPHVWRQH LQ VRXWK )ORULGD WKH &KLSOD DQG 6KRDO 5LYHU )RUPDWLRQV RI WKH $OXP %OXII JURXS IRXQG LQ QRUWKZHVW DQG QRUWK FHQWUDO )ORULGD WKH +DZWKRUQ )RUPDWLRQ DQG WKH 'XSOLQ PDUOV 7KH ODWWHU WKUHH IRUPDWLRQV $OXP %OXIIV +DZWKRUQ DQG 'XSOLQ FKLHIO\ DUH VDQGV FOD\V DQG PDUOV WKDW IRUP D FRQILQLQJ OD\HU RYHU WKH (RFHQH DQG 2OLJRFHQH OLPHVWRQHV 7KH +DZWKRUQ ZLWK WKH SRVVLEOH H[FHSWLRQ RI WKH 2FDOD LV WKH PRVW H[WHQVLYH IRUPDWLRQ ZLWKLQ WKH VWDWH ,W RFFXUV DW RU QHDU WKH VXUIDFH LQ PRVW RI QRUWK )ORULGD ,W RYHUOLHV WKH 7DPSD OLPHVWRQH IRUPDWLRQ LQ +LOOVERURXJK &RXQW\ DQG LV LWVHOI RYHUODLQ E\ WKH 'XSOLQ PDUOV DQG \RXQJHU GHSRVLWV LQ WKH VRXWK FHQWUDO DQG VRXWKHUQ SDUWV RI WKH VWDWH

PAGE 28

7KH VXUIDFH PDWHULDO RI PRVW RI WKH FRDVWDO ORZODQGV DUH RI WKH 3OLRFHQH 3OHLVWRFHQH DQG 5HFHQW SHULRGV 7KH PRVW ZLGHO\ GLVWULEXWHG DUH WKH VDQGV IRUPHG DORQJ WKH ROG VKRUHOLQHV RI SUHYLRXV RFHDQ OHYHOV &RRNH f GHILQHV VHYHQ RI WKHVH PDULQH WHUUDFHV 6RPH VPDOO GHSRVLWV RI FRTXLQD RROLWH FRUDO UHHI OLPHVWRQH DULG IUHVKZDWHU PDUOV DUH IRXQG DPRQJ WKHVH GHSRVLWV

PAGE 29

&+$37(5 ,, 02'(/6 180(5,&$/ $1' 3+<6,&$/ 7KH SXUSRVH RI WKLV FKDSWHU LV WR HQXPHUDWH VRPH RI WKH PRUH ZLGHO\ XVHG PRGHOLQJ WHFKQLTXHV LQ JURXQGZDWHU IORZ DORQJ ZLWK D EULHI GHVFULSWLRQ RI HDFK 7KH UHDGHU LV UHIHUUHG WR %HDU f IRU DGGLWLRQDO LQIRUPDWLRQ DQG UHIHUHQFHV $ 180(5,&$/ 0(7+2'6 1XPHULFDO PHWKRGV DUH XVHG LQ PDQ\ FDVHV ZKHUH WKH SDUWLDO GLIIHUHQWLDO HTXDWLRQV JRYHUQLQJ IORZ WKURXJK SRURXV PHGLD FDQQRW EH VROYHG H[DFWO\ 9DULRXV WHFKQLTXHV KDYH EHHQ GHYHORSHG IRU REWDLQLQJ QXPHULFDO VROXWLRQV 0HWKRG RI )LQLWH 'LIIHUHQFHV 7KH PHWKRG RI ILQLWH GLIIHUHQFHV LV RQH VXFK WHFKQLTXH 7KH ILUVW VWHS LV WR UHSODFH WKH GLIIHUHQWLDO HTXDWLRQV E\ DOJHEUDLF ILQLWH GLIIHUHQFH HTXDWLRQV 7KHVH GLIIHUHQFH HTXDWLRQV DUH UHODWLRQVKLSV DPRQJ YDOXHV RI WKH GHSHQGHQW YDULDEOH DW QHLJKERULQJ SRLQWV RI WKH DSSOLFDEOH FRRUGLQDWH VSDFH 7KH UHVXOWLQJ VHULHV RI VLPXOWDQHRXV HTXDWLRQV LV VROYHG QXPHULFDOO\ DQG JLYHV YDOXHV RI WKH GHSHQGHQW

PAGE 30

YDULDEOHV DW D SUHGHWHUPLQHG QXPEHU RI GLVFUHWH RU JULG SRLQWV WKURXJKRXW WKH UHJLRQ RI LQYHVWLJDWLRQ ,I WKH H[DFW VROXWLRQ RI WKH GLIIHUHQFH HTXDWLRQV LV FDOOHG WKH H[DFW VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ LV FDOOHG 6 DQG WKH QXPHULFDO VROXWLRQ RI WKH GLIIHUHQFH HTXDWLRQ LV FDOOHG 1 WZR TXDQWLWLHV RI LQWHUHVW PD\ EH GHILQHG 7KH\ DUH WKH WUXQFDWLRQ HUURU _6 '_ DQG WKH URXQGRII HUURU _' f§ 1_ ,Q RUGHU IRU WKH VROXWLRQ WR FRQYHUJH LW LV QHFHVVDU\ WKDW c 6 f§ '_ r‘ HYHU\ZKHUH LQ WKH VROXWLRQ GRPDLQ 7KH VWDELOLW\ UHTXLUHPHQW LV VXFK WKDW _' f§ 1_ HYHU\ZKHUH LQ WKH VROXWLRQ GRPDLQ 7KH JHQHUDO SUREOHP LV WR ILQG 1 VR WKDW _6 1_ LV VPDOOHU WKDQ VRPH SUHGHWHUPLQHG HUURU 1RWLQJ WKDW 6 1f 6 'f 1f LW LV VHHQ WKDW WKH WRWDO HUURU LV FRPSRVHG RI WKH WUXQFDWLRQ HUURU DQG WKH URXQGRII HUURU 7KH DUELWUDU\ IRUP VHOHFWHG IRU WKH ILQLWH GLIIHUHQFH HTXDWLRQ OHDGV WR WKH WUXQFDWLRQ HUURU 7KLV HUURU LV IUHTXHQWO\ WKH PDMRU SDUW RI WKH WRWDO HUURU 7KH DFWXDO FRPSXWDWLRQ SURFHHGV E\ RQH RI WZR VFKHPHV 7KH\ DUH WKH H[SOLFLW RU IRUZDUGLQWLPH VFKHPH DQG WKH LPSOLFLW RU EDFNLQWLPH VFKHPH 7KH H[SOLFLW VFKHPH LV VLPSOHU EXW PRUH WLPH FRQVXPLQJ WKDQ WKH LPSOLFLW VFKHPH GXH WR WKH VWDELOLW\ FRQVWUDLQW 7KH LPSOLFLW VFKHPH LV PRUH HIILFLHQW EXW UHTXLUHV D PRUH FRPSOLFDWHG SURJUDP DV FRPSDUHG WR WKH H[SOLFLW VFKHPH

PAGE 31

0HWKRG RI )LQLWH (OHPHQWV 7KH ILQLWH HOHPHQW WHFKQLTXH HPSOR\HV D IXQFWLRQDO DVVRFLDWHG ZLWK WKH SDUWLDO GLIIHUHQWLDO HTXDWLRQ DV RSSRVHG WR WKH ILQLWH GLIIHUHQFH PHWKRG ZKLFK LV EDVHG RQ D ILQLWH GLIIHUHQFH DQDORJ RI WKH SDUWLDO GLIIHUHQWLDO HTXDWLRQ $ FRUUHVSRQGHQFH ZKLFK DVVLJQV D UHDO QXPEHU WR HDFK IXQFWLRQ RU FXUYH EHORQJLQJ WR VRPH FODVV LV WHUPHG D IXQFWLRQDO 7KH FDOFXOXV RI YDULDWLRQV LV HPSOR\HG WR PLQLPL]H WKH SDUWLDO GLIIHUHQWLDO HTXDWLRQ XQGHU FRQVLGHUDWLRQ 7KLV LV GRQH E\ VDWLVI\LQJ D VHW RI DVVRFLDWHG HTXDWLRQV FDOOHG WKH (XOHU HTXDWLRQV 7KXV RQH VHHNV WKH IXQFWLRQDO IRU ZKLFK WKH JRYHUQLQJ HTXDWLRQV DUH WKH (XOHU HTXDWLRQV DQG SURFHHGV WR VROYH WKH PLQLPL]DWLRQ SUREOHP GLUHFWO\ UDWKHU WKDQ VROYLQJ WKH GLIIHUHQWLDO HTXDWLRQ 7KH SURFHGXUH LV FRQWLQXHG E\ SDUWLWLRQLQJ WKH IORZ ILHOG LQWR HOHPHQWV IRUPXODWLQJ WKH YDULDWLRQDO IXQFWLRQDO ZLWKLQ HDFK HOHPHQW DQG WDNLQJ GHULYDWLYHV ZLWK UHVSHFW WR WKH GHSHQGHQW YDULDEOHV DW DOO QRGHV RI WKH HOHPHQWV 7KH HTXDWLRQV RI DOO WKH HOHPHQWV DUH WKHQ FROOHFWHG 7KH ERXQGDU\ FRQGLWLRQ LV H[SUHVVHG LQ WHUPV RI QRGDO YDOXHV DQG LQFRUSRUDWHG LQWR WKH HTXDWLRQV 7KH HTXDWLRQV DUH WKHQ VROYHG

PAGE 32

5HOD[DWLRQ 0HWKRGV 7KLV PHWKRG PD\ EH DSSOLHG WR VWHDG\ VWDWH SUREOHPV ZKLFK DUH DGHTXDWHO\ GHVFULEHG E\ WKH /DSODFH RU 3RLVVRQ HTXDWLRQV 7KH SURFHVV LQYROYHV REWDLQLQJ VWHDGLO\ LPSURYHG DSSUR[LPDWLRQV RI WKH VROXWLRQ RI VLPXOWDQHRXV DOJHEUDLF GLIIHUHQFH HTXDWLRQV 7KH ILUVW VWHS RI WKH SURFHGXUH LV WR UHSODFH WKH FRQWLQXRXV IORZ GRPDLQ XQGHU LQYHVWLJDWLRQ E\ D VTXDUH RU UHFWDQJXODU JULG V\VWHP 7KH JRYHUQLQJ GLIIHUHQWLDO HTXDWLRQ LV DOVR UHSODFHG E\ FRUUHVSRQGLQJ GLIIHUHQFH HTXDWLRQV 1H[W D UHVLGXDO VD\ 5T LV GHILQHG FRUUHn VSRQGLQJ WR WKH SRLQW R RQ WKH JULG 5T UHSUHVHQWV WKH DPRXQW E\ ZKLFK WKH HTXDWLRQ LV LQ HUURU DW WKDW SRLQW ,I DOO YDOXHV RI WKH HTXDWLRQ DUH FRUUHFW 5T ZLOO EH ]HUR HYHU\ZKHUH ,Q WKH LQLWLDO VWHS YDOXHV DUH DVVLJQHG DW DOO JULG SRLQWV DQG LQ JHQHUDO WKH LQLWLDO UHVLGXDOV ZLOO QRW EH ]HUR HYHU\ZKHUH 7KH SURFHVV QRZ FRQVLVWV LQ DGMXVWLQJ YDOXHV DW HDFK SRLQW VR WKDW HYHQWXDOO\ DOO UHVLGXDOV DSSURDFK ]HUR RU WR DW OHDVW VRPH UHTXLUHG DFFXUDF\ 7KH UHGXFWLRQ RI UHVLGXDOV LV DFKLHYHG E\ D UHOD[DWLRQ SDWWHUQ ZKLFK LV UHSHDWHG DW GLIIHUHQW JULG SRLQWV VR DV WR JUDGXDOO\ VSUHDG WKH UHVLGXDOV DQG UHGXFH WKHLU YDOXH

PAGE 33

% 3+<6,&$/ 02'(/6 $V LPSOLHG LQ VHFWLRQ $ GLUHFW DQDO\WLFDO VROXWLRQV DUH IUHTXHQWO\ LQDGHTXDWH RU LPSUDFWLFDO IRU HQJLQHHULQJ DSSOLFDWLRQ ,Q PDQ\ FDVHV WKH DQDO\WLFDO VROXWLRQV ZKLFK DUH IRXQG DUH GLIILFXOW WR LQWHUSUHW LQ D SK\VLFDO FRQWH[W ,Q DQ DWWHPSW WR FLUFXPYHQW VRPH RI WKH VKRUWFRPLQJV RI D SXUHO\ PDWKHPDWLFDO DSSURDFK PRGHO DQG DQDORJ PHWKRGV DUH IUHTXHQWO\ HPSOR\HG 7KH DQDORJ PD\ EH FRQVLGHUHG DV D VLQJOH SXUSRVH FRPSXWHU ZKLFK KDV EHHQ GHVLJQHG DQG EXLOW IRU D JLYHQ SUREOHP 0RGHOLQJ WKHQ LV WKH WHFKQLTXH RI UHSURGXFLQJ WKH EHKDYLRU RI D SKHQRPHQRQ RQ D GLIIHUHQW DQG PRUH FRQYHQLHQW VFDOH ,Q PRGHOLQJ WZR V\VWHPV DUH FRQVLGHUHG WKH SURWRn W\SH RU V\VWHP XQGHU LQYHVWLJDWLRQ DQG WKH DQDORJ V\VWHP 7KHVH V\VWHPV DUH DQDORJXV LI WKH FKDUDFWHULVWLF HTXDWLRQV GHVFULELQJ WKHLU G\QDPLF DQG NLQHPDWLF EHKDYLRU DUH VLPLODU LQ IRUP 7KLV RFFXUV RQO\ LI WKHUH LV D RQHWRRQH FRUUHn VSRQGHQFH EHWZHHQ HOHPHQWV RI WKH WZR V\VWHPV $ GLUHFW DQDORJ\ LV D UHODWLRQVKLS EHWZHHQ WZR V\VWHPV LQ ZKLFK FRUUHVSRQGLQJ HOHPHQWV DUH UHODWHG WR HDFK RWKHU LQ D VLPLODU PDQQHU $ PRGHO LV DQ DQDORJ ZKLFK KDV WKH VDPH GLPHQVLRQV DV WKH SURWRW\SH DQG LQ ZKLFK HYHU\ SURWRW\SH HOHPHQW LV UHSURGXFHG GLIIHULQJ RQO\ LQ VL]H $Q DQDORJ LV EDVHG RQ WKH DQDORJ\ EHWZHHQ V\VWHPV EHORQJLQJ WR HQWLUHO\ GLIIHUHQW SK\VLFDO FDWHJRULHV 6LPLODULW\ LV UHFRJQL]HG

PAGE 34

LQ DQ DQDORJ E\ WZR FKDUDFWHULVWLFV f IRU HDFK GHSHQGHQW YDULDEOH DQG LWV GHULYDWLYHV LQ WKH HTXDWLRQV GHVFULELQJ RQH V\VWHP WKHUH FRUUHVSRQGV D YDULDEOH ZLWK FRUUHVSRQGLQJ GHULYDWLYHV LQ WKH VHFRQG V\VWHPnV HTXDWLRQV DQG f LQGHn SHQGHQW YDULDEOHV DQG DVVRFLDWHG GHULYDWLYHV DUH UHODWHG WR HDFK RWKHU LQ WKH VDPH PDQQHU LQ WKH WZRVHWV RI HTXDWLRQV 7KH DQDORJ\ VWHPV IURP WKH IDFW WKDW WKH FKDUDFWHULVWLF HTXDWLRQV LQ ERWK V\VWHPV UHSUHVHQW WKH VDPH SULQFLSOHV RI FRQVHUYDWLRQ DQG WUDQVSRUW WKDW JRYHUQ SK\VLFDO SKHQRPHQD ,W LV SRVVLEOH WR GHYHORS DQDORJV ZLWKRXW UHIHUULQJ WR WKH PDWKHPDWLFDO IRUPXODWLRQ DQ DSSURDFK ZKLFK LV SDUWLFXODUO\ DGYDQWDJHRXV ZKHQ WKH PDWKHPDWLFDO H[SUHVVLRQV DUH H[FHVn VLYHO\ FRPSOLFDWHG RU DUH XQNQRZQ $QDORJV PD\ EH FODVVHG DV HLWKHU GLVFUHWH RU FRQWLQXRXV ZLWK UHVSHFW WR VSDFH YDULDEOHV ,Q ERWK FDVHV WLPH UHPDLQV D FRQWLQXRXV LQGHSHQGHQW YDULDEOH 7KH QHHG IRU FRPSOHWH LQIRUPDWLRQ FRQFHUQLQJ WKH IORZ ILHOG RI D SURWRW\SH V\VWHP LV REYLRXV DQG QR PHWKRG RI VROXWLRQ FDQ E\SDVV WKLV UHTXLUHPHQW +RZHYHU LQ PDQ\ SUDFWLFDO FDVHV LQYROYLQJ FRPSOLFDWHG JHRORJ\ DQG ERXQGDU\ FRQGLWLRQV LW LV XVXDOO\ VXIILFLHQW WR EDVH WKH LQLWLDO FRQVWUXFWLRQ RI WKH DQDORJ RQ DYDLODEOH GDWD DQG RQ URXJK HVWLPDWHV RI PLVVLQJ GDWD 7KH DQDORJ LV WKHQ FDOLEUDWHG E\ UHSURGXFLQJ LQ LW WKH NQRZQ SDVW KLVWRU\ RI WKH SURWRW\SH 7KLV LV GRQH E\ DGMXVWLQJ YDULRXV DQDORJ FRPSRQHQWV XQWLO D VDWLVIDFWRU\ ILW LV REWDLQHG EHWZHHQ WKH DQDORJnV UHVSRQVH

PAGE 35

DQG WKH UHVSRQVH DFWXDOO\ REVHUYHG LQ WKH SURWRW\SH 2QFH WKH DQDORJ UHSURGXFHV SDVW KLVWRU\ UHOLDEO\ DQG ZLWKLQ D UHTXLUHG UDQJH RI DFFXUDF\ LW PD\ EH XVHG WR SUHGLFW WKH SURWRW\SHnV UHVSRQVH WR SODQQHG IXWXUH RSHUDWLRQV 6DQGER[ 0RGHO $ UHGXFHG VFDOH UHSUHVHQWDWLRQ RI D QDWXUDO SRURXV PHGLXP GRPDLQ LV NQRZQ DV D VDQGER[ PRGHO RU D VHHSDJH WDQN PRGHO ,QDVPXFK DV ERWK SURWRW\SH DQG PRGHO LQYROYH IORZ WKURXJK SRURXV PHGLD LW LV D WUXH PRGHO $ VDQGER[ PRGHO LV FRPSRVHG RI D ULJLG ZDWHUWLJKW FRQWDLQHU D SRURXV PDWUL[ ILOOHU VDQG JODVV EHDGV RU FUXVKHG JODVVf RQH RU VHYHUDO IOXLGV D IOXLG VXSSO\ V\VWHP DQG PHDVXULQJ GHYLFHV 7KH ER[ JHRPHWU\ FRUUHVSRQGV WR WKDW RI WKH LQYHVWLJDWHG IORZ GRPDLQ WKH PRVW FRPPRQ VKDSHV EHLQJ UHFWDQJXODU UDGLDO DQG FROXPQDU )RU RQHGLPHQVLRQDO IORZ SUREOHPV WKH VDQG FROXPQ LV WKH PRVW FRPPRQ H[SHULPHQWDO WRRO 7UDQVSDUHQW PDWHULDO LV SUHIHUUHG IRU WKH ER[ FRQVWUXH WLRQ HVSHFLDOO\ ZKHQ PRUH WKDQ RQH OLTXLG PD\ EH SUHVHQW DQG D G\H WUDFHU LV WR EH XVHG 3RURVLW\ DQG SHUPHDELOLW\ YDULDWLRQV LQ WKH SURWRW\SH PD\ EH VLPXODWHG E\ YDU\LQJ WKH FRUUHVSRQGLQJ SURSHUWLHV RI WKH PDWHULDO XVHG DV D SRURXV PDWUL[ LQ WKH PRGHO DFFRUGLQJ WR WKH DSSURSULDWH VFDOLQJ UXOHV 7KH SRURXV PDWUL[ PD\ EH DQLVRWURSLF ,Q RUGHU WR PHDVXUH SLH]RPHWULF KHDGV DQG XQGHUSUHVVXUHV SLH]RPHWHUV DQG WHQVLRPHWHUV PD\ EH LQVHUWHG LQWR WKH IORZ GRPDLQ RI WKH PRGHO

PAGE 36

:DOO HIIHFWV DUH RIWHQ HOLPLQDWHG E\ JOXLQJ VDQG JUDLQV WR WKH ZDOOV RI WKH ER[ 7KLV HIIHFW FDQ DOVR EH UHGXFHG E\ PDNLQJ WKH SRURXV PDWUL[ VXIILFLHQWO\ ODUJH LQ WKH GLUHFWLRQ QRUPDO WR WKH ZDOO ,QOHWV DQG RXWOHWV LQ WKH ZDOOV FRQQHFWHG WR IL[HG OHYHO UHVHUYRLUV RU WR SXPSV DUH XVHG WR VLPXODWH WKH SURSHU ERXQGDU\ DQG LQLWLDO FRQGLWLRQV RI WKH SURWRW\SH :DWHU LV XVXDOO\ XVHG LQ PRGHOV ZKLFK VLPXODWH JURXQG ZDWHU DTXLIHUV DOWKRXJK OLTXLGV RI D KLJKHU YLVFRVLW\ PD\ EH XVHG WR DFKLHYH D PRUH VXLWDEOH WLPH VFDOH 7KH VDQGER[ PRGHO LV XVHG H[WHQVLYHO\ EHFDXVH RI LWV VSHFLDO IHDWXUHV ZKLFK SHUPLW VWXGLHV RI SKHQRPHQD UHODWHG WR WKH PLVFURVFRSLF VWUXFWXUH RI WKH PHGLXP VXFK DV K\GUR G\QDPLF GLVSHUVLRQ XQVDWXUDWHG IORZ PLVFLEOH DQG LPPLVFLEOH GLVSODFHPHQW VLPXOWDQHRXV IORZ RI WZR RU PRUH OLTXLGV DW GLIIHUHQW UHODWLYH VDWXUDWLRQV ILQJHULQJ ZHWWDELOLW\ DQG FDSLOODU\ SUHVVXUH 7KH FDSLOODU\ IULQJH LQ D VDQGER[ PRGHO LV GLVSURSRUWLRQDWHO\ ODUJHU WKDQ WKH FRUUHVSRQGLQJ FDSLOODU\ ULVH LQ WKH SURWRW\SH DQG IRU WKLV UHDVRQ WKH VDQGER[ PRGHO LV XVXDOO\ XVHG WR VLPXODWH IORZ XQGHU FRQILQHG UDWKHU WKDQ SKUHDWLF FRQGLWLRQV +HOH6KDZ $QDORJ 7KH +HOH6KDZ RU YLVFRXV IORZ DQDORJ LV EDVHG RQ WKH VLPLODULW\ EHWZHHQ WKH GLIIHUHQWLDO HTXDWLRQV JRYHUQLQJ WZR GLPHQVLRQDO VDWXUDWHG IORZ LQ D SRURXV PHGLXP DQG WKRVH GHVFULELQJ WKH IORZ RI D YLVFRXV OLTXLG LQ D QDUURZ VSDFH

PAGE 37

EHWZHHQ WZR SDUDOOHO SODQHV ,Q SUDFWLFH WKH SODQHV DUH WUDQVSDUHQW SODWHV DQG WKH SODWHV DUH XVXDOO\ PRXQWHG LQ D YHUWLFDO RU KRUL]RQWDO RULHQWDWLRQ 7KH YHUWLFDO +HOH6KDZ DQDORJ ZDV VHOHFWHG IRU WKLV VWXG\ EHFDXVH LW LV PRUH DSSURSULDWH IRU WKH SURWRW\SH V\VWHP XQGHU LQYHVWLJDWLRQ $OVR LW LV QRW SRVVLEOH WR PRGHO D IUHH JRXQGZDWHU WDEOH RU SHUFRODWLRQ LQ D KRUL]RQWDO PRGHO $ GHWDLOHG GHVFULSWLRQ RI WKLV DQDORJ LV SUHVHQWHG LQ &KDSWHU ,,, RI WKLV VWXG\ (OHFWULF $QDORJ 7KUHH W\SHV RI HOHFWULF DQDORJV DUH SRZHUIXO WRROV LQ WKH VWXG\ RI IORZ WKURXJK SRURXV PHGLD 7KH\ DUH WKH FRQWLQXRXV HOHFWULF DQDORJ WKH GLVFUHWH HOHFWULF DQDORJ DQG WKH LRQ PRWLRQ DQDORJ &RQWLQXRXV (OHFWULF $QDORJ 7KLV DQDORJ WDNHV WZR IRUPV WKH HOHFWURO\WLF WDQN DQG WKH FRQGXFWLQJ SDSHU DQDORJV 7KH DQDORJ\ UHVWV RQ WKH VLPLODULW\ EHWZHHQ WKH GLIIHUHQWLDO HTXDWLRQV WKDW JRYHUQ WKH IORZ RI D KRPRJHQHRXV IOXLG WKURXJK D SRURXV PHGLXP DQG WKRVH JRYHUQLQJ WKH IORZ RI HOHFWULFLW\ WKURXJK FRQGXFWLQJ PDWHULDOV ,Q SDUWLFXODU 'DUF\nV ODZ IRU IORZ LQ D SRURXV PHGLXP DQG 2KPnV ODZ IRU WKH IORZ RI DQ HOHFWULF FXUUHQW LQ D FRQGXFWRU PD\ EH FRPSDUHG $OVR WKH FRQWLQXLW\ HTXDWLRQ IRU DQ LQFRPSUHVVLEOH IOXLG IORZLQJ WKURXJK D

PAGE 38

ULJLG SRURXV PHGLXP PD\ EH FRPSDUHG ZLWK WKH HTXDWLRQ IRU WKH VWHDG\ IORZ RI HOHFWULFLW\ LQ D FRQGXFWRU 2QH FRQFOXGHV IURP WKLV FRPSDULVRQ WKDW DQ\ SUREOHP RI VWHDG\ IORZ RI DQ LQFRPSUHVVLEOH IOXLG KDYLQJ D SRWHQWLDO PD\ EH VLPXODWHG E\ WKH IORZ RI HOHFWULF FXUUHQW LQ DQ DQDORJ 'LVFUHWH (OHFWULF $QDORJ 7KLV DQDORJ DOVR WDNHV WZR IRUPV WKH UHVLVWDQFH QHWZRUN DQDORJ IRU VWHDG\ IORZ DQG WKH UHVLVWDQFHFDSDFLWDQFH QHWZRUN IRU XQVWHDG\ IORZ ,Q WKLV DQDORJ HOHFWULF FLUFXLW HOHPHQWV DUH FRQFHQWUDWHG LQ WKH QHWZRUNnV QRGH SRLQWV WR VLPXODWH WKH SURSHUWLHV RI SRUWLRQV RI WKH FRQWLQXRXV SURWRW\SH ILHOG DURXQG WKHP 7KH XQNQRZQ SRWHQWLDOV DUH WKH VROXWLRQ RI WKH SUREOHP DQG WKH\ FDQ RQO\ EH REWDLQHG IRU WKRVH SRLQWV ZKLFK FRUUHVSRQG WR WKH QRGHV RI WKH DQDORJ QHWZRUN 7KH GLVFUHWH HOHFWULF DQDORJ LV EDVHG RQ WKH ILQLWHGLIIHUHQFH DSSUR[LPDWLRQ RI WKH HTXDWLRQV WR EH VROYHG WKHUHIRUH WKH HUURUV LQYROYHG LQ WKH GLVFUHWH UHSUHVHQWDWLRQ DUH WKH VDPH DV WKRVH RFFXULQJ LQ WKLV DSSUR[LPDWLRQ 7KH HOHFWULF UHVLVWRU FRUUHVSRQGV WR WKH UHVLVWDQFH RI VRLO WR IORZ WKURXJK LW DQG FDSDFLWRUV DUH XVHG DW WKH QRGHV WR VLPXODWH VWRUDJH FDSDFLW\ RI WKH SURWRW\SH ,RQ 0RWLRQ $QDORJ 7KLV DQDORJ\ XVHV WKH IDFW WKDW WKH YHORFLW\ RI LRQV LQ DQ HOHFWURO\WLF VROXWLRQ XQGHU WKH DFWLRQ RI D '& YROWDJH

PAGE 39

JUDGLHQW LV DQDORJRXV WR WKH DYHUDJH YHORFLW\ RI IOXLG SDUWLFOHV XQGHU LPSRVHG SRWHQWLDO JUDGLHQWV LQ D SRURXV PHGLXP ,Q WKLV FDVH ERWK HOHFWULF DQG HODVWLF VWRUDWLYL WLHV DUH QHJOHFWHG 7KH SULPDU\ DGYDQWDJH RI WKH LRQ PRWLRQ DQDORJ\ LV WKDW LQ DGGLWLRQ WR WKH XVXDO SRWHQWLDO GLVWULn EXWLRQ LW SHUPLWV D GLUHFW YLVXDO REVHU\DWLRQ RI WKH PRYHPHQW RI DQ LQWHUIDFH VHSDUDWLQJ WZR LPPLVFLEOH IOXLGV ,Q JURXQG ZDWHU LQWHUIDFH SUREOHPV ZKHUH JUDYLW\ LV LQYROYHG WKLV DQDORJ FDQQRW EH XVHG 6FDOLQJ IRU WKH DQDORJ LV EDVHG RQ WKH VLPLODULW\ EHWZHHQ 'DUF\nV ODZ DQG 2KPnV ODZ JRYHUQLQJ WKH LRQ PRWLRQ LQ DQ HOHFWURO\WLF VROXWLRQ 3K\VLFDOO\ WKH DQDORJ FRQVLVWV RI DQ HOHFWURO\WLF WDQN KDYLQJ WKH VDPH JHRPHWU\ DV WKH LQYHVWLJDWHG IORZ GRPDLQ ,QIORZ DQG RXWIORZ ERXQGDULHV DUH VLPXODWHG E\ SRVLWLYH DQG QHJDWLYH HOHFWURGHV DQG WZR DQG WKUHH GLPHQVLRQDO IORZ GRPDLQV PD\ EH LQYHVWLJDWHG 0HPEUDQH $QDORJ 7KH PHPEUDQH DQDORJ FRQVLVWV RI D WKLQ UXEEHU VKHHW VWUHWFKHG XQLIRUPO\ LQ DOO GLUHFWLRQV DQG FODPSHG WR D IODW SODQH IUDPH 7KH DFKLHYHPHQW RIHTXLOLEULXP RI YDULRXV IRUFHV DQG VWUHVVHV LQ WKH PHPEUDQH FDXVHG E\ GLVWRUWLQJ WKH IUDPH RU WUDQVYHUVDO ORDGVf OHDGV WR WKH /DSODFH HTXDWLRQ DQG WR WKH 3RLVVRQ HTXDWLRQ 7KH DQDORJ\ LV EDVHG RQ WKH VLPLODULW\ EHWZHHQ WKHVH WZR HTXDWLRQV DQG WKH FRUUHVSRQGLQJ HTXDWLRQV WKDW GHVFULEH WKH IORZ LQ WKH SURWRW\SH

PAGE 40

7KLV PHWKRG LV DSSOLFDEOH PDLQO\ WR FDVHV RI VWHDG\ WZRGLPHQVLRQDO IORZ LQYROYLQJ FRPSOLFDWHG ERXQGDU\ JHRPHWU\ DQG SRLQW VRXUFHV DQG VLQNV ZLWKLQ WKH IORZ ILHOG 6XPPDU\ )ROORZLQJ %HDU f 7DEOH LV SUHVHQWHG DV D VXPPDU\ RI WKH PRGHOV DQG DQDORJV GLVFXVVHG LQ VHFWLRQ % RI WKLV FKDSWHU ,Q VHFWLRQ $ WKH QXPHULFDO PHWKRGV GLVFXVVHG DUH PRVW OLNHO\ WR EH FDUULHG RXW RQ D GLJLWDO FRPSXWHU ,W LV LPSRUWDQW IRU WKH LQYHVWLJDWRU WR H[DPLQH ERWK WKH FRVW DQG WKH DSSOLFDELOLW\ RI WKHVH YDULRXV QXPHULFDO DQG SK\VLFDO PHWKRGV WR KLV SDUWLFXODU FDVH $Q DQDORJ LV XVXDOO\ SUHn IHUUHG WR D GLJLWDO VROXWLRQ ZKHQ WKH DFFXUDF\ DQGRU DPRXQW RI ILHOG GDWD LV VPDOO ,Q PDQ\ VLPSOH FDVHV WKH DQDORJ LV OLNHO\ WR EH OHVV H[SHQVLYH WKDQ D GLJLWDO FRPSXWHU ZKHUHDV IRU ODUJH UHJLRQV RU XQVWHDG\ WKUHHGLPHQVLRQDO SUREOHPV WKH FRPSXWHU PD\ EH OHVV H[SHQVLYH 7KH +HOH6KDZ PRGHO DOVR KDV GHILQLWH DGYDQWDJHV ZKHQ GHPRQVWUDWLRQ RI WKH VDOWZDWHU LQWUXVLRQ SKHQRPHQRQ WR D SXEOLF ERG\ RU RWKHU OD\PHQ LQYROYHG LQ SROLWLFDO GHFLVLRQ PDNLQJ LV FRQVLGHUHG 7KLV W\SH RI PRGHO DOORZV IRU GLUHFW REVHUYDWLRQ RI WKH SKHQRPHQRQ ZLWKRXW WKH QXPHULFDO LQWHUSUHn WDWLRQV XVHG LQ WKH FRPSXWHU PRGHOV

PAGE 41

7$%/( $33/,&$%,/,7< 2) 02'(/6 $1' $1$/2*6 &KDUDFWHULVWLF 6DQGER[ 0RGHO +HOH 6KDZ $QDORJ (OHFWULF $QDORJV 0HPEUDQH 9HUWLFDO +RUL]RQWDO (OHFWURO\WLF 5& 1HWZRUN ,RQ 0RWLRQ $QDORJ 'LPHQVLRQV RI ILHOG WZR RU WKUHH WZR WZR WZR RU WKUHH WZR RU WKUHH WZRKRUL]RQWDOf WZR KRUL]RQWDOf 6WHDG\ RU XQVWHDG\ IORZ ERWK ERWK ERWK VWHDG\ ERWK VWHDG\ VWHDG\ 6LPXODWLRQ RI SKUHDWLF VXUIDFH \HV \HV QR \HV QR QR QR 6LPXODWLRQ RI FDSLOODU\ \HV \HV QR QR QR QR QR IULQJH DQG FDSLOODU\ SUHVVXUH 6LPXODWLRQ RI HODVWLF VWRUDJH \HV IRU WZR GLPHQVLRQV \HV \HV \HV IRU WZR GLPHQVLRQV \HV QR QR 6LPXODWLRQ RI DQLVRWURSLF PHGLDr \HV \HV 9N] \HV N N [ \ \HV \HV \HV 9N\ \HV N[A\ 6LPXODWLRQ RI PHGLXP \HV \HV \HV \HV \HV \HV \HV LQKRPRJHQHLW\ 6LPXODWLRQ RI OHDN\ IRUPDWLRQV \HV \HV \HV \HV \HV QR QR 6LPXODWLRQ RI DFFUHWLRQ \HV \HV \HV \HV IRU WZR GLPHQVLRQV \HV QR \HV )ORZ RI WZR OLTXLGV ZLWK DQ DEUXSW LQWHUIDFH DSSUR[LPDWHO\ \HV \HV QRV QR \HV QR 6LPXOWDQHRXV IORZ RI WZR \HV QR QR QR QR QR f QR LPPLVFLEOH IOXLGV +\GURG\QDPLF GLVSHUVLRQ \HV QR QR QR QR QR QR 2EVHUYDWLRQ RI VWUHDPOLQHV \HV IRU WZR GLPHQVLRQV QHDU \HV \HV QR QR QR QR WUDQVSDUHQW ZDOOV IRU WKUHH GLPHQn VLRQV W L 6XEMHFW WR UHVWULFWLRQV EHFDXVH RI WKH SUHVHQFH RI D FDSLOODU\ IULQJH c %\ WULDO DQG HUURU IRU VWHDG\ IORZ L M %\ WULDO DQG HUURU IRU VWHDG\ IORZ RU DV DQ DSSUR[LPDWLRQ IRU UHODWLYHO\ VPDOO SKUHDWLF VXUIDFH IOXFWXDWLRQV ‘ rr %\ VFDOH GLVWRUWLRQ LQ DOO FDVHV H[FHSW IRU WKH 5& QHWZRUN DQG VRPHWLPHV WKH +HOH6KDZ DQDORJ ZKHUH WKH K\GUDXOLF FRQGXFWLYLW\ RI WKH DQDORJ FDQ EH PDGH DQLVRWURSLF V :LWK FHUWDLQ FRQVWUDLQWV )RU D VWDWLRQDU\ LQWHUIDFH E\ WULDO DQG HUURU 1!

PAGE 42

&+$37(5 ,,, 7+( +(/(6+$: 02'(/ 7KH YLVFRXV IORZ DQDORJ PRUH FRPPRQO\ UHIHUUHG WR DV D SDUDOOHOSODWH RU +HOH6KDZ PRGHO ZDV ILUVW XVHG E\ + 6 +HOH6KDZ f WR GHPRQVWUDWH WZR GLPHQVLRQDO SRWHQWLDO IORZ RI IOXLG DURXQG D VKLSnV KXOO DQG RWKHU YDULRXVO\ VKDSHG REMHFWV 7KH DQDORJ LV EDVHG RQ WKH VLPLODULW\ RI WKH GLIIHUHQWLDO HTXDWLRQV ZKLFK GHVFULEH WZRGLPHQVLRQDO ODPLQDU IORZ RU SRWHQWLDO IORZ IRU WKDW PDWWHU RI D YLVFRXV IOXLG EHWZHHQ WZR FORVHO\ VSDFHG SDUDOOHO SODWHV DQG WKRVH HTXDWLRQV ZKLFK GHVFULEH WKH ILHOG RI IORZ EHORZ WKH SKUHDWLF VXUIDFH RI JURXQGZDWHU QDPHO\ 'DUF\nV ODZ Df Ef ZKHUH T T 'DUF\ YHORFLW\ RI VSHFLILF GLVFKDUJH LQ WKH [ ] [GLUHFWLRQ DQG ]GLUHFWLRQ UHVSHFWLYHO\ . K\GUDXOLF FRQGXFWLYLW\ LQ WKH [GLUHFWLRQ [ ] DQG ]GLUHFWLRQ UHVSHFWLYHO\ [ KRUL]RQWDO GLUHFWLRQ PDMRU IORZ GLUHFWLRQf

PAGE 43

] YHUWLFDO GLUHFWLRQ W! SRWHQWLRPHWULF KHDG DQG E\ XVH RI WKH FRQVHUYDWLRQ RI PDVV SULQFLSOH WKH /DSODFH HTXDWLRQ f 9LVFRXV )ORZ $QDORJ 7R GHPRQVWUDWH WKH DQDORJ\ RI PRGHO DQG SURWRW\SH WKH HTXDWLRQV RI PRWLRQ DQG FRQWLQXLW\ IRU ODPLQDU IORZ RI D YLVFRXV IOXLG EHWZHHQ WZR FORVHO\ VSDFHG SDUDOOHO SODWHV ZLOO EH GHYHORSHG DQG WKHQ FRPSDUHG WR HTXDWLRQV D E DQG &RQVLGHU D YLVFRXV LQFRPSUHVVLEOH IOXLG IORZLQJ HYHU VR VORZO\ EHWZHHQ WZR SDUDOOHO SODWHV ZKLFK DUH VSDFHG VXFK WKDW WKH 5H\QROGVn QXPEHU 5H EDVHG RQ WKH LQWHUVSDFH ZLGWK LV OHVV WKDQ $UDYLQ DQG 1XPHURY f ,Q &DUWHVLDQ FRRUGLQDWHV WKH JHQHUDO 1DYLHU6WRNHV HTXDWLRQV LH WKH HTXDWLRQV RI PRWLRQ DUH Df Ef Ff

PAGE 44

ZKHUH B'B 'W VXEVWDQWLDO GHULYDWLYH 9 R X ; f R ; 9 f§ K \ V\ Y ] BB ] 9 /DSODFH RSHUDWRU -L [ nU \ £]A 9 9 9 YHORFLW\ LQ WKH [ \ DQG ]GLUHFWLRQV \ UHVSHFWLYHO\ %[! % %] ERG\ IRUFHV LQ WKH [ \ DQG A ]GLUHFWLRQV UHVSHFWLYHO\ S SUHVVXUH S GHQVLW\ RI WKH IOXLG S DEVROXWH YLVFRVLW\ RI WKH IOXLG \ KRUL]RQWDO GLUHFWLRQ PLQRU IORZ GLUHFWLRQf W WLPH 5HIHUULQJ WR WKH IUHHERG\ GLDJUDP RI WKH LGHDOL]HG IORZ UHJLPH VKRZQ LQ )LJXUH LI QR VOLS FRQGLWLRQV DGKHUHQFH WR WKH ZDOOVf RI WKH IOXLG SDUWLFOHV DUH DVVXPHG LQ WKH PROHFXOHV FORVHVW WR WKH ZDOOV RI WKH SDUDOOHO SODWHV LW LV HDVLO\ VHHQ WKDW WKH YHORFLW\ JUDGLHQW LQ WKH \GLUHFWLRQ LV PXFK ODUJHU WKDQ WKH YHORFLW\ JUDGLHQW LQ HLWKHU WKH [ RU ]GLUHFWLRQV 7KXV WKH ILUVW DQG VHFRQG RUGHU SDUWLDO GHULYDWLYHV WDNHQ ZLWK UHVSHFW WR ERWK [ DQG ] PD\ EH QHJOHFWHG ZKHQ FRPSDUHG WR WKRVH WDNHQ LQ WKH \GLUHFWLRQ 6HFRQGO\ EHFDXVH RI WKH YHU\ ORZ YHORFLWLHV FUHHSLQJ PRWLRQf WKH LQWHUWLD WHUPV WKDW LV WKH WHUPV

PAGE 45

),*85( )UHH ERG\ IORZ GLDJUDP IRU +HOH6KDZ PRGHO

PAGE 46

2UR

PAGE 47

RQ WKH OHIW VLGH RI HTXDWLRQV DUH YHU\ VPDOO ZKHQ FRPSDUHG WR WKH YLVFRXV WHUPV WKRVH RQ WKH ULJKW VLGH RI HTXDWLRQV DQG PD\ EH QHJOHFWHG 7KLUGO\ EHFDXVH RI WKH UHVWULFWLRQ WR WZR GLPHQVLRQV WKH YHORFLW\ LQ WKH \GLUHFWLRQ LV WDNHQ WR EH ]HUR FRQVHTXHQWO\ DOO UDWHV RI FKDQJH RI YHORFLW\ LQ WKH \GLUHFWLRQPXVW EH ]HUR )LQDOO\ WKH RQO\ QRQFDQFHODEOH ERG\ IRUFH DFWLQJ RQ WKH IOXLG LV JUDYLW\ ZKLFK DFWV RQO\ LQ WKH YHUWLFDO 0DWKHn PDWLFDOO\ a J]f %\ a J]f DQG J]f J IWVHF ,QFRUSRUDWLQJ DOO RI WKH DERYH DUJXPHQWV DQG YDOXHV LQWR HTXDWLRQV WKH HTXDWLRQ RI PRWLRQ EHFRPHV B Le ; DY Y ; \ Df e \ 3J e = 9 \ Ef Ff 'HILQLQJ WKH SRWHQWLRPHWULF KHDG RU SRWHQWLDO ] S\ ZKHUH \ HTXDOV WKH XQLW ZHLJKW RI WKH IOXLG DQG WDNLQJ WKH SDUWLDO GHULYDWLYH ZLWK UHVSHFW WR [ \ DQG ] WKH IROORZLQJ UHVXOWV DUH REWDLQHG DIWHU PXOWLSO\LQJ WKURXJK E\ WKH XQLW ZHLJKW RI WKH IOXLG < `f B S [ [ Df

PAGE 48

< \ \ Ef < n cf Ff ,QWURGXFLQJ WKHVH UHODWLRQVKLSV LQWR HTXDWLRQV DQG GLYLGLQJ WKURXJK E\ WKH XQLW ZHLJKW \LHOGV L L/ [ \ DY Df M! \ R Ef 0 L/ = \ Ff ,W LV HYLGHQW IURP HTXDWLRQ E WKDW WKH SRWHQWLRPHWULF KHDG LV FRQVWDQW LQ WKH \GLUHFWLRQ ,W LV SRVVLEOH WKHQ WR LQWHn JUDWH WKH ILUVW DQG WKLUG HTXDWLRQV RI HTXDWLRQ ZLWK UHVSHFW WR \ $IWHU VHSDUDWLQJ YDULDEOHV DQG LQWHJUDWLQJ 9 RQFH XVLQJ WKH ERXQGDU\ FRQGLWLRQ \ UA DQG 9 ] \ WKH IROORZLQJ HTXDWLRQV DUH REWDLQHG \ -/L B [ \ Df \ B 3 ] \ Ef ,QWHJUDWLQJ RQFH DJDLQ XVLQJ WKH VHFRQG ERXQGDU\ FRQGLWLRQ \ s E 9 9 QR VOLSf WKH DERYH EHFRPHV DIWHU ;  VROYLQJ IRU WKH UHVSHFWLYH YHORFLWLHV

PAGE 49

9 [ E c! 7[ Df 9 ] Ge = Ef 1RWH ZKHUH E LV WKH VSDFLQJ EHWZHHQ WKH SODWHV WKDW LI D SRWHQWLDO A EH ZULWWHQ \ E@ \ ; LV GHILQHG HTXDWLRQV FDQ 9 [ Gs [ Df 9 ] B = Ef WKH YHORFLW\ SRWHQWLDO LV GHSHQGHQW RQO\ RQ \ ,QWHn JUDWLQJ WKH YHORFLW\ SURILOHV HVWDEOLVKHG E\ HTXDWLRQV EHWZHHQ WKH OLPLWV RI s E DQG GLYLGLQJ E\ E WKH GLUHFWLRQDO VSHFLILF GLVFKDUJHV DUH REWDLQHG T [ E UE E Y[ G\ B\B I]L E YL [ > E E E W! 7= \ [ Df T ] E UE Y] G\ E ] OB B\B B I\ E \ ] EO\O: ME E \B GBs 7= X ] Ef

PAGE 50

,W LV REYLRXV WKDW IRU D PRGHO RI FRQVWDQW VSDFLQJ E WKH E \ TXDQWLW\ A A GRHV QRW YDU\ LQ HLWKHU WKH [ RU ]GLUHFWLRQ 'HILQLQJ WKH PRGHO K\GUDXOLF FRQGXFWLYLW\ DV .[P .]P E \ 7 r f HFOXDWLRQV D DQG E EHFRPH T f +[ [P [ Df TB D ]P 6 Mf = Ef ZKLFK RI FRXUVH LV DQDORJRXV WR HTXDWLRQV &RQVLGHU QRZ WKH WZRGLPHQVLRQDO FRQWLQXLW\ HTXDWLRQ IRU IORZ EHWZHHQ SDUDOOHO SODWHV 9 [ [ f 7KH VSHFLILF GLVFKDUJH RU 'DUF\ YHORFLW\ LV UHODWHG WR WKH YHORFLW\ E\ WKH YHFWRU HTXDWLRQ QJT 9 ZKHUH QH LV WKH HIIHFWLYH SRURVLW\ RI WKH IORZ PHGLD ,Q WKH PRGHO Q HTXDOV )URP WKH DQDORJ\ 9 T 9 T DQG VXEVWLWXWLQJ WKH UHODWLRQVKLS REWDLQHG IURP HTXDWLRQ LQWR HTXDWLRQ [P I If f f§ ? If [ [ ]P ] ] 9 f f RU GLYLGLQJ E\ DQG UHFDOOLQJ WKDW IRU D PRGHO .P P [P ]P

PAGE 51

! Mf [ = f ZKLFK LV FOHDUO\ DQDORJRXV WR HTXDWLRQ 7KH VLPLODULW\ RI HTXDWLRQV DQG DQG HTXDWLRQV DQG HVWDEOLVK WKH DQDORJ\ 6FDOLQJ 7KH WZRGLPHQVLRQDO HTXDWLRQ DORQJ WKH IUHH VXUIDFH RU ZDWHU WDEOH RI DQ DQLVRWURSLF SRURXV PHGLD JLYHQ E\ %HDU f LV [S M! [ 3M .B ]S 3Fc! ] 3Q G! Be HS f ZKHUH WKH VXEVFULSW S GHQRWHV WKH SURWRW\SH )RU D +HOH 6KDZ PRGHO XVLQJ WKH VXEVFULSW P WKH HTXDWLRQ FDQ EH ZULWWHQ DV [P I


PAGE 52

[ U [ P [ 3 ] Ff Q Q HP HU Q HS W Gf Hf If Jf 3 DQG VXEVWLWXWLQJ WKHVH UHODWLRQVKLSV LQWR HTXDWLRQ WKH IROORZLQJ LV .[P REWDLQHG r LGf G! f AP \U. ]P mYnUf .[U O [ [ I Y Pn U} ]U +9]U9 9]Uf Q  M! Mf HP n‘UP U r W f HU Y P U! f 7KH UDWLRV RI PRGHO WR SURWRW\SH TXDQWLWLHV DUH FRQVWDQW DQG FDQ EH UHPRYHG IURP EHKLQG WKH GLIIHUHQWLDO WKHUHIRUH HTXDWLRQ FDQ EH UHDUUDQJHG LQ WKH IROORZLQJ ZD\ ; U < I W!f 7P ]P r = U  L! @ P I! [P [ Mf ] [U\U P V ]U
PAGE 53

&RPSDULQJ WKH HTXDWLRQV DQG LW LV HYLGHQW WKDW LI WKH HTXDWLRQV DUH LGHQWLFDO WKH IROORZLQJ PXVW EH WUXH [ G! [U
PAGE 54

W Q ] HU U ]U W Q [ n HU U M! [U
PAGE 55

6LQFH . WKH [ RU ] UDWLR FDQ EH DGMXVWHG VR WKDW WKH [P ]XL PRGHOnV K\GUDXOLF FRQGXFWLYLWLHV DUH NHSW HTXDO 7KLV LV XVXDOO\ GRQH E\ FKRRVLQJ D VXLWDEOH KRUL]RQWDO UDWLR .QRZn LQJ WKH SURWRW\SH SDUDPHWHUV D YHUWLFDO VFDOH IRU WKH PRGHO LV FRPSXWHG VR WKDW WKH DIRUHPHQWLRQHG FRQGXFWLYLWLHV DUH NHSW HTXDO GHPRQVWUDWLQJ ]U ] P [S ]S [B P [ 6ROYLQJ IRU ] ] P f f 8QIRUWXQDWHO\ WKH JHRPHWULF GLVWRUWLRQ PHWKRG LV DGHTXDWH IRU PRGHOLQJ RQO\ RQH UDWLR RI DQLVRWURS\ ,I WKHUH LV D VHFRQG DTXLIHU ZLWKLQ WKH SURWRW\SH ZKLFK KDV D GLIIHUHQW YHUWLFDO RU KRUL]RQWDO K\GUDXOLF FRQGXFWLYLW\ WKH VHFRQG DTXLIHU FDQQRW EH FRUUHFWO\ VLPXODWHG XQOHVV RI FRXUVH WKH VHFRQG DTXLIHUnV UDWLR RI DQLVRWURS\ LV WKH VDPH DV WKH UDWLR RI WKH ILUVW 7KLV UHVWULFWLRQ ZRXOG VHYHUHO\ OLPLW WKH XVH RI WKH +HOH6KDZ DQDORJ LQ PRGHOLQJ RI UHJLRQDO JURXQGZDWHU SUREOHPV XQOHVV DQRWKHU PHWKRG ZHUH DYDLODEOH WR FRUUHFW WKH UDWLR RI DQLVRWURS\ 3ROXEDULQRYD.RFKLQD f VXJJHVWV XVLQJ D JURRYHG SODWH ZLWKLQ WKH PRGHO WR FRUUHFW WKH UDWLR RI DQLVRWURS\ RI WKH VHFRQG IORZ ]RQH 7KH SODWH PD\ EH JURRYHG LQ DQ\ RQH

PAGE 56

RI VHYHUDO PHWKRGV ,W PDWWHUV OLWWOH ZKHWKHU D JURRYHG SODWH LV VDQGZLFKHG EHWZHHQ WKH SDUDOOHO SODWHV RU LI UHFWDQJXODU EDUV DUH DWWDFKHG WR WKH IURQW RU EDFN SODWH 7KH GHJUHH RI DQLVRWURS\ RI WKH VHFRQG DTXLIHU DQG WKH DPRXQW RI JHRPHWULF GLVWRUWLRQ XVHG WR PRGHO WKH ILUVW IORZ ]RQH GHWHUPLQHV WKH GLUHFWLRQV LQ ZKLFK WKH JURRYHV RU EDUV DUH SODFHG KRZHYHU WKH JURRYHV DUH QRUPDOO\ SODFHG KRUL]RQWDOO\ RU YHUWLFDOO\ &ROOLQV DQG *HOKDU f KDYH GHYHORSHG WKH FRQGXFWLYLW\ HTXDWLRQV IRU WKH IORZ ]RQH LQ ZKLFK 3ROXEDULQRYD.RFKLQDnV JURRYHG SODWH LV XVHG 7KH DQDO\VLV DVVXPHV RQHGLPHQVLRQDO IORZ DQG FDQ EH XVHG HTXDOO\ ZHOO ZLWK HLWKHU YHUWLFDO RU KRUL]RQWDO RULHQWDWLRQ RI WKH JURRYHV )ROORZLQJ &ROOLQV DQG *HOKDU f FRQVLGHU IORZ LQ D JURRYHG SRUWLRQ RI D PRGHO )RU VLPSOLFLW\ DVVXPH )LJXUH LV D VHFWLRQ RI WKH JURRYHG ]RQH $VVXPLQJ VXFK WKH KRUL]RQWDO GLUHFWLRQ WKHQ FRUUHVSRQGV WR WKH [GLUHFWLRQ DQG WKH JURRYHV ZKLFK DUH YHUWLFDO OLH LQ WKH ]GLUHFWLRQ $UHD LV DVVRFLDWHG ZLWK WKH ZLGHU VSDFLQJ RI OHQJWK DE $UHD LV DVVRFLDWHG ZLWK WKH QDUURZHU VSDFLQJ RI OHQJWK E 6LQFH IORZ DUHD LV WKH PXFK ODUJHU RI WKH WZR DUHDV PRVW RI WKH IULFWLRQDO KHDG ORVV RFFXUULQJ WKURXJK WKH WRWDO OHQJWK / LV GHYHORSHG LQ IORZ DUHD ZKLFK KDV OHQJWK ;f/ /DPEGD ; LV D OHQJWK FRUUHFWLRQ IDFWRU 5HIHUULQJ WR )LJXUH WKH SRWHQWLRPHWULF JUDGLHQW EB R DFURVV DUHD LV G;

PAGE 57

),*85( 6HFWLRQ RI DQLVRWURSLF JURRYHG ]RQH LQ +HOH6KDZ PRGHO

PAGE 59

),*85( +HDG ORVV LQ JURRYHG DQLVRWURSLF ]RQH

PAGE 60

3

PAGE 61

! R B $ M! [ $f/ f )RU KLJK YDOXHV RI D M! B $ >f A $W`f" [ / a / f EXW IURP HTXDWLRQ $f VR WKDW /L R; M! [ } D [f A f $SSO\LQJ 'DUF\nV ODZ WR DUHD T [ GW! [ f DQG VXEVWLWXWLQJ WKH SUHYLRXV H[SUHVVLRQ IRU [ A[ n f $f r ; f 7KH HIIHFWLYH K\GUDXOLF FRQGXFWLYLW\ LQ WKH [GLUHFWLRQ WKHQ LV UY R ;" E]J [P $f YO $f f &RQVLGHU YHUWLFDO IORZ WKURXJK WKH JURRYHG ]RQH LOOXVWUDWHG LQ )LJXUH ,Q SDUWLFXODU FRQVLGHU IORZ GRZQZDUG WKURXJK DUHDV DQG 7KH WRWDO GLVFKDUJH WKURXJK WKHVH DUHDV FDQ EH ZULWWHQ DV WKH VXP RI WKH GLVn FKDUJH WKURXJK HDFK WKDW LV 4 4L 4f $SSO\LQJ A! 'DUF\nV ODZ IRU WKH WRWDO GLVFKDUJH 4

PAGE 62

rL .] fE[/! f .] ,I E [! /E f f $GGLQJ 4L DQG 4 O]P D;f ;f ] ] E/ ] f )RU IORZ DUHD LW LV QRW XQUHDVRQDEOH WR DVVXPH WKDW WKH IULFWLRQDO IRUFHV LQ WKH IOXLG ERXQGDU\ WR HLWKHU VLGH RI DUHD DUH QHJOLJLEOH 7KHUHIRUH WKH YHUWLFDO FRQGXFn WLYLW\ LQ WKLV DUHD LV WKH VDPH DV GHILQHG E\ WKH HDUOLHU DQDO\VLV WKDW LV B E B E J ] 7O 7 f ZKHUH Y LV WKH NLQHPDWLF YLVFRVLW\ )XUWKHUPRUH LI EDE WKH IORZ LQ DUHD FDQ EH DVVXPHG URXJKO\ HTXLYDOHQW WR IORZ WKURXJK D UHFWDQJXODU KROH $FFRUGLQJ WR 5RXVH f WKH HTXDWLRQ RI PRWLRQ WKURXJK D UHFWDQJXODU FURVV VHFWLRQ RI OHQJWK ;/ DQG ZLGWK DE LV JLYHQ E\ Y 7L [[ $/! 9 VLQ ] \ ] M O $ FRVK % VLQK ;/ M ;/ ; f

PAGE 63

ZKHUH DQG \ $/f A M! \ M WW ] FRV M ,7 f f $ FRVK  Z f %\ LQWHJUDWLQJ 9 RYHU WKH DUHD DQG GLYLGLQJ E\ WKH WRWDO DUHD $/DE WKH PHDQ YHORFLW\ LV JLYHQ E\ 9 S ; DEf 0 ] 0 a7 = f ZKHUH IREn W7a $/ M Frr &-f f WDQK LLL/ M O M DE f 6LQFH WKH WHUQV RI WKH LQILQLWH VHULHV GHFUHDVH DV M RQO\ WKH ILUVW WHUP RI WKH VHULHV QHHG EH FRQVLGHUHG DQG UHWDLQHG VR WKDW V ‘ : 6U@ WDQK IDU f $GGLWLRQDO LQIRUPDWLRQ PD\ EH IRXQG LQ $SSHQGL[ $ )URP HTXDWLRQ WKH HTXLYDOHQW K\GUDXOLF FRQGXFWLYLW\ LQ DUHD LV JLYHQ E\

PAGE 64

B ; &DW!f cU L \ f )LQDOO\ LQWURGXFLQJ WKH YDOXHV IRXQG IRU DQG LQWR ]L ] HTXDWLRQ 4 ]P ; \ DEf D ; f E ;f 0 ] E/ f RU 4 ]P FW;e f IURP ZKLFK LW LV VHHQ WKDW WKH HIIHFWLYH YHUWLFDO K\GUDXOLF FRQGXFWLYLW\ LV JLYHQ E\ ]P B < \ E 7 D$" ;f f DIWHU GHILQLQJ 4 E/ 9 ZKHUH 9 T LV WKH HIIHFWLYH ]P ] ] ] YHUWLFDO VSHFLILF GLVFKDUJH (TXDWLRQV DQG JLYH WKH VHFRQG PHWKRG DYDLODEOH WR FRUUHFW WKH K\GUDXOLF FRQn GXFWLYLW\ RI D PRGHO VR WKDW LW FDQ VLPXODWH WKH WUXH UDWLRV RI DQLVRWURS\ IRXQG LQ WKH SURWRW\SH /HDNDJH $Q DTXLFOXGH FDQ EH GHILQHG DV D VRLO VWUDWLILFDWLRQ LQ ZKLFK WKH K\GUDXOLF FRQGXFWLYLWLHV DUH ]HUR ,Q FHUWDLQ JHRK\GURORJLF SUREOHPV LW LV FRQYHQLHQW WR DVVXPH VXFK FRQGLWLRQV +RZHYHU LQ UHDOLW\ IHZ VRLO PDVVHV DUH WUXO\ LPSHUYLRXV 7KH GHJUHH RI SHUYLRXVQHVV LQ D VWUDWXP LV

PAGE 65

UHIHUUHG WR DV OHDNDQFH DQG LW LV JHQHUDOO\ DVVXPHG WKDW WKH GLUHFWLRQ RI IORZ LV RQO\ YHUWLFDO 7KHUH LV QR KRUL]RQWDO IORZ WKDW LV .[S f %HDU HW DO f VXJJHVW WKH XVH RI YHUWLFDO VORWV WR PRGHO VXFK D VHPLSHUYLRXV OD\HU 7R DFFRPSOLVK WKLV WKH VSDFLQJ EHWZHHQ WKH SDUDOOHO SODWHV RI WKH +HOH6KDZ DQDORJ LV ILOOHG ZLWK D VORWWHG PLGGOH SODWH 6HH )LJXUH 7KH DQDO\VLV WR GHWHUPLQH WKH HIIHFWLYH YHUWLFDO K\GUDXOLF FRQGXFWLYLW\ RI D PRGHOnV OHDN\ OD\HU FORVHO\ SDUDOOHOV WKDW IRU DQ DQLVRWURSLF JURRYHG ]RQH $JDLQ IROORZLQJ &ROOLQV f 'DUF\nV ODZ IRU IORZ WKURXJK D YHUWLFDO VORW LV 4 ] ] e $/DE f 7KH HIIHFWLYH VSHFLILF GLVFKDUJH WKURXJK WKH VORW IRXQG E\ LQWHJUDWLQJ WKH 5RXVH HTXDWLRQ HTXDWLRQ f LV WKH VDPH DV HTXDWLRQ IURP ZKLFK LV IRXQG WKH K\GUDXOLF FRQGXFn WLYLW\ DEf 7 DQG LQWURGXFLQJ WKH DERYH LQWR HTXDWLRQ f 4] L A t f

PAGE 66

),*85( 6HFWLRQ RI OHDN\ ]RQH LQ +HOH6KDZ PRGHO

PAGE 67

%DFN 3ODWH )ORZVSDFH rf ; 1 6ROLG D E )URQW 3ODWH ;/ O;f/ / 3ODQ 9LHZ

PAGE 68

$JDLQ WKH HIIHFWLYH VSHFLILF GLVFKDUJH RU PHDQ YHORFLW\ LV HTXDO WR 9 ] LN E/ E S ] f VR WKDW WKH HIIHFWLYH K\GUDXOLF FRQGXFWLYLW\ RI D OHDN\ OD\HU LQ WKH PRGHO LV ]P ; D $ e E ,, f 6WRUDWLYLW\ :KLOH WKH SUREOHP RI VWRUDJH KDV QRW EHHQ FRPSOHWHO\ VROYHG LW KDV LQ JHQHUDO EHHQ QHJOHFWHG E\ PRVW UHVHDUFKHUV %HDU f VXJJHVWV WKDW GLVFUHWH WXEHV DWWDFKHG WR HLWKHU WKH IURQW RU EDFN SODWH DQG FRQQHFWHG WR WKH DTXLIHU EH XVHG WR PRGHO WKH VSHFLILF VWRUDJH RI D FRQILQHG DTXLIHU )RU D QRQLVRWURSLF DTXLIHU WKH ULJKW KDQG VLGH RI HTXDWLRQ LV QRW ]HUR EXW LQ IDFW HTXDOV WKH VSHFLILF VWRUDJH 64 WLPHV WKH UDWH RI FKDQJH RI WKH SRWHQWLRPHWULF KHDG 5HZULWn LQJ WKH WZRGLPHQVLRQDO HTXDWLRQ IRU ERWK PRGHO DQG SURWRW\SH WR LQFOXGH WKH DERYH JLYHV WKH IROORZLQJ -! [S [A e 3 ]S =S f 3 fRS M! P M! P [P [ ]P = P P 6 M! P RP P f f

PAGE 69

'HILQLQJ D UDWLR RI VWRUDWLYLW\ RU RP RS f LW IROORZV IURP LQVSHFWLRQ WKDW . ]U [U [U 6 RU W f RU WKDW RU W ]U U RP f U RS 5HIHUULQJ WR )LJXUH WKH VWRUDJH UHSUHVHQWHG E\ WKH PRGHO LQ WKH GLVFUHWH OHQJWK LV HTXDO WR P RP EL] P P P f ZKHUH $P LV WKH FURVVVHFWLRQDO DUHD RI WKH VWRUDWLYLW\ WXEH ,QWURGXFLQJ WKH DERYH LQWR HTXDWLRQ DQG VROYLQJ IRU $A $ E ] 6 P P P P RS ]U ] f 'LVFKDUJH 7KH GLVFKDUJH VFDOHV DUHREWDLQHG IURP 'DUF\fV ODZ :ULWWHQ IRU ERWK SURWRW\SH DQG PRGHO ZLWK WKH XVXDO VXEn VFULSWLQJ WKHVH DUH LQ WKH [GLUHFWLRQ [S [S ;3 E ] 3 3 f

PAGE 70

),*85( 6WRUDJH PDQLIROG IRU +HOH6KDZ PRGHO

PAGE 72

DQG M! 4 ;[P [P [ P P E ] P P f 'LYLGLQJ HTXDWLRQ E\ HTXDWLRQ DQG UHFDOOLQJ WKH GHILQLWLRQV IRU WKH YDULRXV SDUDPHWHUVn UDWLRV LW IROORZV WKDW ] ] r 4 r M! E f§ E [U [U
PAGE 73

$FFUHWLRQ $FFUHWLRQ 5 LV WKH UDWH DW ZKLFK D QHW TXDQWLW\ SUHFLSLWDWLRQ DQG VXUIDFH LQIORZ PLQXV HYDSRWUDQVSLUDWLRQ UXQRII HWFf RI OLTXLG LV WDNHQ LQWR WKH IORZ V\VWHP DW WKH SKUHDWLF VXUIDFH ,W LV PHDVXUHG DV D YROXPH SHU XQLW KRUL]RQWDO DUHD SHU XQLW WLPH WKDW LV 5U 67 U U f )URP HTXDWLRQV RU LW IROORZV WKDW ] 5 f§D f§ U [ ]U f 9ROXPH 2Q RFFDVLRQ YROXPH 8 LV RI VRPH LPSRUWDQFH 7KH YROXPH VFDOH IROORZV GLUHFWO\ IURP FRQWLQXLW\ WKDW LV 8 4 W [U U f 6XEVWLWXWLQJ WKH YDOXHV IRXQG IURP HTXDWLRQV DQG D IRU 4U DQG WU UHVSHFWLYHO\ WKH DERYH HTXDWLRQ EHFRPHV 8 E [ Q A U ]U U U HU ]U n E Q [ ] U HU U U f $V LQIHUUHG HDUOLHU LQ WKLV VHFWLRQnV RSHQLQJ VHQWHQFH WKH YROXPH VFDOH LV XVXDOO\ QHJOHFWHG KRZHYHU LQ WKH FDVH RI IUHH VXUIDFH ZDWHU ERGLHV ODNHV ULYHUV HWF LI WKH YROXPH H[FKDQJH RI OLTXLG LV RI LQWHUHVW DQG KDV WR EH PRGHOHG WKH

PAGE 74

YROXPH VFDOH UHTXLUHV DQ DGGLWLRQDO UHVWULFWLRQ ,Q WKH IROORZLQJ DQDO\VLV WKH EDU DERYH WKH ZLGWK GLPHQVLRQ LQGLFDWHV WKH IUHH ZDWHU VXUIDFH RI D ULYHU ODNH RFHDQ RU VXFK ,Q WKH SRUWLRQ RI WKH PRGHO VLPXODWLQJ WKH ERG\ RI ZDWHU WKH VSDFLQJ RI WKH PRGHO LV LQFUHDVHG WR PDLQWDLQ K\GURVWDWLF SUHVVXUH GLVWULEXWLRQV ZLWKLQ WKH PRGHO 7KH QDUURZHU VSDFLQJ RI WKH PRGHO LV RI FRXUVH D PHDVXUH RI WKH K\GUDXOLF FRQGXFWLYLW\ RI WKH DTXLIHU ,Q WKH SURWRn W\SH KRZHYHU WKH ZLGWK RI WKH RSHQ ZDWHU DQG WKH DTXLIHU DUH HTXDO DQG WKLV OHDGV WR WKH IROORZLQJ %HDU f IRU WKH PRGHO DQG SURWRW\SH UHVSHFWLYHO\ 8 Q E [ ] U HU U U U Df 8 Q E [ ] U HU U U U Ef 7KH VDPH YROXPH UDWLR PXVW EH DSSOLFDEOH WR ERWK WKH QDUURZ DQG WKH HQODUJHG LQWHUVSDFH WKHUHIRUH 8U 8Um ,W IROORZV WKDW Q B E Q E HU U HU U f EXW VR Q Q HP HU f HS AU QHU AU f 1RWH WKDW IRU DQ DQLVRWURSLF PHGLD QJP GRHV QRW QHFHVVDULO\ HTXDO RQH

PAGE 75

&+$37(5 ,9 6,7( 6(/(&7,21 $1' 352727<3( *(2/2*< $1' +<'52/2*< 6LWH 6HOHFWLRQ 7KH VLWH VHOHFWHG IRU WKLV VWXG\ LV WKH PLGGOH *XOI DUHD RI )ORULGD 7KLV UHJLRQ KDV D UDSLGO\ H[SDQGLQJ SRSXn ODWLRQ ZLWK D FRUUHVSRQGLQJ JURZWK LQ ZDWHU GHPDQG 7KH LQFUHDVHG SXPSLQJ WR VDWLVI\ WKLV GHPDQG DOVR LQFUHDVHV WKH OLNHOLKRRG RI VDOWZDWHU LQWUXVLRQ DQG LQ IDFW D QXPEHU RI PXQLFLSDO VXSSO\ ZHOOV LQ WKH FRDVWDO ]RQH KDYH EHHQ VKXW GRZQ LQ UHFHQW DQG SDVW \HDUV GXH WR FKORULGH FRQWDPLQDWLRQ %ODFN HW DO f OLVW HLJKW IDFWRUV UHVSRQVLEOH IRU VDOWZDWHU LQWUXVLRQ 7KH\ DUH ,QFUHDVHG ZDWHU GHPDQGV E\ PXQLFLSDOLWLHV ,QFUHDVHG ZDWHU GHPDQGV E\ DJULFXOWXUH ,QFUHDVHG ZDWHU GHPDQGV E\ LQGXVWU\ ([FHVVLYH GUDLQDJH /DFN RI SURWHFWLYH ZRUNV DJDLQVW WLGHZDWHU LQ ED\RXV FDQDOV DQG ULYHUV ,PSURSHU ORFDWLRQ RI ZHOOV +LJKO\ YDULDEOH DQQXDO UDLQIDOO ZLWK LQVXIILFLHQW VXUIDFH VWRUDJH GXULQJ GURXJKWV 8QFDSSHG ZHOOV DQG OHDNDJH

PAGE 76

2I WKHVH HLJKW IDFWRUV QXPEHUV DQG ZRXOG DSSO\ WR WKLV DUHD 7KH FLW\ RI 6W 3HWHUVEXUJ LV DQ RXWVWDQGLQJ H[DPSOH RI WKHVH SUREOHPV 7KHLU RULJLQDO ZDWHU VXSSO\ ZDV IURP ORFDO DUWHVLDQ ZHOOV EXW LQFUHDVHG GHPDQGV FDXVHG VDOWn ZDWHU LQWUXVLRQ DQG IRUFHG WKH FORVLQJ RI WKHVH ZHOOV ,Q WKH SUHVHQW &RVPH2GHVVD ILHOG ZDV ORFDWHG IDUWKHU LQODQG WR HVFDSH WKLV SUREOHP 2QH RI WKH PDMRU ZDWHU VXSSO\ V\VWHPV LQ WKLV UHJLRQ LV WKH 3LQHOODV &RXQW\ :DWHU 6\VWHP DQG WKLV VWXG\ LV FHQWHUHG DURXQG WKH (OGULGJH:LOGH ZHOO ILHOG RI WKLV V\VWHP 7KH ORFDWLRQ RI (OGULGJH:LOGH LQ UHODWLRQ WR VHYHUDO RI WKH SRSXODWLRQ FHQWHUV RI WKLV UHJLRQ LV VKRZQ LQ )LJXUH ,W LV DERXW PLOHV HDVW RI WKH *XOI RI 0H[LFR DQG HQFRPn SDVVHV DQ DUHD LQ WKH QRUWKHDVW FRUQHU RI 3LQHOODV &RXQW\ DW WKH LQWHUVHFWLRQ RI WKH ERXQGDULHV RI 3LQHOODV +LOOVn ERURXJK DQG 3DVFR FRXQWLHV 7KLV V\VWHP ZDV LQVWLWXWHG LQ WR VXSSO\ WKH WRZQV DORQJ WKH *XOI FRDVW IURP %HOOHDLU %HDFK WR 3DVVD *ULOOH ,WV RULJLQDO IRUP ZDV WKDW RI D UDZ ZDWHU UHVHUYRLU DQG WKH ILUVW ZHOOV ZHUH QRW GULOOHG XQWLO LQ WKH 0F.D\ &UHHN DUHD 7KHVH ZHOOV ZHUH VRRQ FRQWDPLQDWHG ZLWK VDOW ZDWHU DQG LQYHVWLJDWLRQV ZHUH EHJXQ LQ WR ORFDWH WKH ZHOO ILHOG DW LWV SUHVHQW VLWH 7KLV ZHOO ILHOG KDV JURZQ RYHU WKH \HDUV DQG LQ %ODFN &URZ DQG (LGVQHVV ,QF f WKH ZDWHUZRUNV IDFLOLWLHV DW (OGULGJH:LOGH LQFOXGHG VL[W\RQH ZDWHU ZHOOV RYHU PLOHV RI UDZ ZDWHU

PAGE 77

),*85( 5HJLRQDO DUHD RI SURWRW\SH

PAGE 79

FROOHFWLRQ SLSLQJ ZDWHU WUHDWPHQW IDFLOLWLHV FRQVLVWLQJ RI DHUDWLRQ DQG FKHPLFDO WUHDWPHQW LQFOXGLQJ FKORULQDWLRQ DQG IOXRULGDWLRQ DQG KLJK VHUYLFH SXPSLQJ XQLWV $OO ZHOOV DUH RSHQ KROH DQG SHQHWUDWH WKH )ORULGDQ DTXLIHU DW GHSWKV IURP WR IHHW EHORZ JURXQG VXUIDFH DYHUDJLQJ IHHW 7KH GHVLJQ FDSDFLW\ RI WKH ILHOG DW WKH SUHVHQW WLPH LV PLOOLRQ JDOORQV SHU GD\ DOWKRXJK WKH PD[LPXP DOORZDEOH SXPSDJH KDV EHHQ VHW E\ WKH 6RXWKZHVW )ORULGD :DWHU 0DQDJHPHQW'LVWULFW DW PLOOLRQ JDOORQV SHU GD\ RQ WKH DYHUDJH ZLWK D PD[LPXP GD\ RI PLOOLRQ JDOORQV SHU GD\ ,Q VHOHFWLQJ WKH SURWRW\SH ORFDWLRQ ZLWKLQ WKH VLWH DUHD WZR FKDUDFWHULVWLFV RI WKH YHUWLFDO +HOH6KDZ DQDORJ PXVW EH FRQVLGHUHG 7KH ILUVW FKDUDFWHULVWLF LV WKDW WKHUH FDQ EH QR JHQHUDO IORZ QRUPDO WR WKH SDUDOOHO ZDOOV RI WKH PRGHO 7KLV PHDQV WKDW WKH IORZ IURP RQH HQG RI WKH PRGHO WR WKH RWKHU LV VWUHDPOLQH IORZ 7KH VHFRQG FKDUDFWHULVWLF LV WKDW WKH HQGV RI WKH PRGHO DUH ILQLWH 7KHUHIRUH WKH SURWRW\SH PXVW EH DORQJ D VWUHDPOLQH LQ WKH IORZ GRPDLQ DQG KDYH ERXQGDU\ FRQGLWLRQV ZKLFK DUH LQILQLWH UHVHUYRLUV RU ZDWHU GLYLGHV 7KH SURWRW\SH VHOHFWHG PHHWV WKH DERYH UHTXLUHPHQWV DQG LQFOXGHV WKH SRLQW RI LQWHUHVW LH (OGULGJH:LOGH ZHOO ILHOG 7KH FHQWHU OLQH RI WKH SURWRW\SH LV VKRZQ LQ )LJXUH DV WKH XQEURNHQ OLQH SDVVLQJ WKURXJK (OGULGJH :LOGH LQ D VRXWKZHVW WR QRUWKHDVW GLUHFWLRQ 7KH GRWWHG

PAGE 80

FRQWRXUV LQ WKH ILJXUH GHILQH WKH SRWHQWLRPHWULF VXUIDFH RI WKH )ORULGDQ DTXLIHU LQ IHHW DERYH PHDQ VHD OHYHO DV RI 0D\ 7KH\ ZHUH REWDLQHG IURP D PDS SXEOLFDWLRQ HQWLWOHG 3RWHQWLRPHWULF 6XUIDFH RI )ORULGDQ $TXLIHU 6RXWKZHVW )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW 0D\ SUHSDUHG E\ WKH 8 6 *HRORJLFDO 6XUYH\ LQ FRRSHUDWLRQ ZLWK WKH 6RXWKZHVW )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW DQG WKH %XUHDX RI *HRORJ\ )ORULGD 'HSDUWPHQW RI 1DWXUDO 5HVRXUFHV 1RZ LQ D IORZ ILHOG VWUHDPOLQHV DUH SHUSHQGLFXODU WR SRWHQWLRPHWULF OLQHV $V FDQ EH VHHQ IURP WKH ILJXUH WKH SURWRW\SH RULHQWDWLRQ UHDVRQDEO\ VDWLVILHV WKH VWUHDPOLQH UHTXLUHPHQW 7KH SURWRn W\SH LV WHUPLQDWHG RQ WKH VRXWKZHVWHUQ HQG DW WKH IHHW GHSWK FRQWRXU LQ WKH *XOI RI 0H[LFR DQG LW LV DVVXPHG WKDW WKLV VDWLVILHV WKH LQILQLWH UHVHUYRLU ERXQGDU\ FRQGLWLRQ 7KH QRUWKHDVWHUQ WHUPLQXV LV ORFDWHG LQ WKH FHQWHU RI WKH IHHW FRQWRXU VRXWKZHVW RI 'DGH &LW\ 7KLV ORFDWLRQ VDWLVILHV WKH ZDWHU GLYLGH ERXQGDU\ FRQGLWLRQ 7KH DUHD LQ WKH YLFLQLW\ RI WKH IHHW FRQWRXU LV NQRZQ DV WKH 3DVFR +LJK 7KH RYHUDOO OHQJWK RI WKH SURWRW\SH LV VWDWXWH PLOHV 7KH ZLGWK RI WKH SURWRW\SH LV WDNHQ WR EH VWDWXWH PLOHV 7KLV GLPHQVLRQ LV VXIILFLHQW WR LQFOXGH WKH FRQH RI GHSUHVVLRQ FDXVHG E\ SXPSLQJ LQ (OGULGJH:LOGH ZHOO ILHOG DQG LV EDVHG RQ WKH UHVXOWV RI D VWXG\ E\ 0U (YDQV HPSOR\LQJ D QXPHULFDO PRGHOf IRU %ODFN &URZ DQG (LGVQHVV ,QF 7KH ODQG VXUIDFH FRQWRXUV RI WKH SURWRW\SH ZHUH REWDLQHG IURP 8 6 *HRORJLFDO 6XUYH\ WRSRJUDSKLF PDSV

PAGE 81

7KH ERWWRP ERXQGDU\ RI WKH SURWRW\SH LV WDNHQ WR EH WKH EDVH RI WKH /DNH &LW\ )RUPDWLRQ ZLWK GHSWKV EHLQJ GHWHUPLQHG IURP DYDLODEOH ZHOO ORJV RI ZHOOV LQ WKH SURWRW\SH YLFLQLW\ 7KH PD[LPXP GHSWK IURP KLJKHVW ODQG VXUIDFH WR GHHSHVW SRLQW LV IHHW 3URWRW\SH *HRORJ\ 6WHZDUW f LGHQWLILHV HLJKW IRUPDWLRQV DV EHLQJ RI LQWHUHVW LQ WHUPV RI ZDWHU SURGXFWLRQ LQ WKH SURWRW\SH DUHD 7KH\ DUH LQ GHVFHQGLQJ RUGHU WKH 8QGLIIHUHQWLDWHG 'HSRVLWV 7DPSD /LPHVWRQH 6XZDQQHH /LPHVWRQH &U\VWDO 5LYHU )RUPDWLRQ :LOOLVWRQ )RUPDWLRQ ,QJOLV )RUPDWLRQ $YRQ 3DUN /LPHVWRQH DQG /DNH &LW\ /LPHVWRQH 8QGHUO\LQJ WKH /DNH &LW\ /LPHVWRQH LV WKH 2OGVPDU /LPHVWRQH ZKLFK LV QRW XVHG DV D VRXUFH RI ZDWHU DW SUHVHQW 7KH 8QGLIIHUHQWLDWHG 'HSRVLWV DUH LQWHUEHGGHG VDQG VLOW DQG FOD\ RI 3RVW0LRFHQH DJH DQG UDQJH LQ WKLFNQHVV IURP ]HUR QHDU WKH 3DVFR +LJK WR IHHW LQ WKH (OGULGJH :LOGH ZHOO ILHOG 7KH WKLFNHVW GHSRVLWV DUH LQ QRUWKHDVW 3LQHOODV &RXQW\ DURXQG WKH QRUWK HQG RI /DNH 7DUSRQ ZKHUH VDQG GXQHV DV PXFK DV IHHW KLJK RYHUOLH DOWHUQDWLQJ OD\HUV RI FOD\ WKLQ OLPHVWRQH EHGV DQG VDQG JUHDWHU WKDQ IHHW WKLFN 7KH 7DPSD /LPHVWRQH LV D KDUG GHQVH VDQG\ ZKLWH WR OLJKW WDQ RU \HOORZLVKWDQ IRVVLOLIHURXV OLPHVWRQH RI 0LRFHQH DJH 7KLV OLPHVWRQH LV QHDU WKH VXUIDFH LQ WKH

PAGE 82

DUHD RI WKH 3DVFR +LJK DQG DERXW IHHW EHORZ ODQG VXUIDFH DW WKH (OGULGJH:LOGH ZHOO ILHOG $W (OGULGJH:LOGH WKH WKLFNQHVV YDULHV HUUDFWLFDOO\ IURP DERXW WR IHHW 7KH 7DPSD /LPHVWRQH LV D SRRU WR IDLU SURGXFHU RI ZDWHU 7KH 6XZDQQHH /LPHVWRQH LV D VRIW WR KDUG QRGXODU RU JUDQGXODU IRVVLOLIHURXV ZKLWH WR WDQ OLPHVWRQH RI 2OLJRFHQH DJH DQG LV DERXW IHHW WKLFN 7KH 6XZDQQHH DQG 7DPSD /LPHVWRQHV DUH WKH PDMRU ZDWHU SURGXFHUV IRU ZHOOV LQ WKH DUHD 7KH &U\VWDO 5LYHU :LOOLVWRQ DQG ,QJOLV )RUPDWLRQV FRPSULVH WKH 2FDOD *URXS RI ODWH (RFHQH DJH 7KH &U\VWDO 5LYHU DQG :LOOLVWRQ )RUPDWLRQ DUH OLWKRORJLFDOO\ VLPLODU XQLWV RI ZKLWH WR FUHDP SRURXV VRIW FRTXLQRLG OLPHVWRQH DQG DUH JHQHUDOO\ SRRU SURGXFHUV RI ZDWHU 7KH ,QJOLV )RUPDWLRQ LV D KDUG FUHDP WR EURZQ WR JUD\ IRVVLOLIHURXV OLPHVWRQH DQG LV JHQHUDOO\ D JRRG SURGXFHU RI ZDWHU 7KH $YRQ 3DUN DQG /DNH &LW\ /LPHVWRQHV DUH OLWKRn ORJLFDOO\ VLPLODU XQLWV RI VRIW WR KDUG FUHDP WR EURZQ IRVVLOLIHURXV OLPHVWRQH ZLWK EHGV RI GRORPLWLF OLPHVWRQH DQG VRPH J\SVXP %RWK IRUPDWLRQV DUH JRRG SURGXFHUV RI SRRU TXDOLW\ ZDWHU 7KH 2OGVPDU /LPHVWRQH LV D IUDJPHQWDO GRORPLWLF OLPHVWRQH ZLWK OHQVHV RI FKHUW WKLQ VKDOH EHGV DQG VRPH J\SVXP ,Q WKLV VWXG\ WZR IRUPDWLRQV DUH FRQVLGHUHG WKH 8QGLIIHUHQWLDWHG 'HSRVLWV DQG WKH )ORULGDQ DTXLIHU

PAGE 83

7KH )ORULGDQ DTXLIHU LV FRQVLGHUHG WR FRQWDLQ DOO IRUPDWLRQV IURP WKH 7DPSD WR DQG LQFOXGLQJ WKH /DNH &LW\ /LPHVWRQH 7KH WUDQVPLVVLYLW\ RI WKH )ORULGDQ DTXLIHU UDQJHV IURP DERXW WR JDOORQV SHU GD\ SHU IRRW DQG WKH FRHIILFLHQW RI VWRUDJH UDQJHV IURP DERXW WR 7KH FRHIILFLHQW RI OHDNDJH LV DSSUR[LPDWHO\ JDOORQV SHU GD\ SHU FXELF IRRW %DVHG RQ JURXQGZDWHU GLVFKDUJH DQG ZDWHU OHYHOV WKH HVWLPDWHG UHFKDUJH OHDNDQFHf WR WKH )ORULGDQ DTXLIHU ZDV FRPSXWHG 6WHZDUW f WR EH DERXW PLOOLRQ JDOORQV SHU GD\ %DVHG RQ DTXLIHU WHVW GDWD WKH HVWLPDWHG UHFKDUJH IRU D VTXDUH PLOH DUHD ZDV PLOOLRQ JDOORQV SHU GD\ 7KH 8QGLIIHUHQWLDWHG 'HSRVLWV DFW DV D FRQILQLQJ OD\HU DQG WKH )ORULGDQ DTXLIHU LV WKXV XQGHU DUWHVLDQ FRQGLWLRQV 3URWRW\SH +\GURORJ\ 7KH VXUIDFH ZDWHUV RI WKH DUHD FRQVLVW RI PDQ\ ODNHV DQG IHZ VWUHDPV %HFDXVH RI WKH IODW WRSRJUDSK\ OLWWOH ZDWHU UXQV RII LQWR VWUHDPV DQG VZDPS\ ZHWODQGV DUH QXPHURXV 0RVW UDLQIDOO HYDSRUDWHV RU LV WUDQVSLUHG E\ SODQWV 7KH )ORULGDQ DTXLIHU LV UHFKDUJHG WKURXJK WKH 8QGLIIHUHQWLDWHG 'HSRVLWV E\ VXUIDFH DQG JURXQGZDWHU GHULYHG IURP ORFDO UDLQIDOO 0DQ\ PLOOLRQV RI JDOORQV

PAGE 84

RI ZDWHU DUH DOVR DGPLWWHG WR WKH DTXLIHU E\ QXPHURXV VLQNn KROHV LQ WKH UHJLRQ :DWHU OHYHOV LQ WKH )ORULGDQ DTXLIHU UHVSRQG WR UDLQIDOO VLQFH WKLV LV WKH UHFKDUJH VRXUFH 7KLV UHVSRQVH LV QRW LPPHGLDWH EXW XVXDOO\ IOXFWXDWHV ZLWK WKH ZHW DQG GU\ VHDVRQV :DWHU OHYHOV LQ ZHOOV ZKLFK DUH QRW GLUHFWO\ DIIHFWHG E\ ORFDO SXPSLQJ VKRZ \HDUO\ ORZV LQ WKH GU\ VHDVRQ $SULO DQG 0D\ DQG \HDUO\ KLJKV GXULQJ WKH ZHW VHDVRQ ODWH VXPPHU RU HDUO\ IDOO %ODFN &URZ DQG (LGVQHVV ,QF f 7KH DTXLIHU UHFKDUJH KDV EHHQ HVWLPDWHG %ODFN &URZ DQG (LGVQHVV ,QF f IURP DYDLODEOH GDWD DQG WKH XVH RI WKH IROORZLQJ IRUPXOD $TXLIHU 5HFKDUJH 3 6:, *:, (7 5 *:2 7KH EDVLQ DUHD LV VTXDUH PLOHV FKDQJHV LQ VWRUDJH DUH DVVXPHG ]HUR DQG HYDSRWUDQVSLUDWLRQ LV DVVXPHG WR EH SHUFHQW RI WKH SUHFLSLWDWLRQ 7KH DSSOLFDEOH YDOXHV DUH OLVWHG EHORZ LQ PLOOLRQ JDOORQV SHU GD\ 3 3UHFLSLWDWLRQ 6:, 6XUIDFH :DWHU ,QIORZ *:, *URXQGZDWHU ,QIORZ (7 (YDSRWUDQVSLUDWLRQ 5 5XQRII *:2 *URXQGZDWHU 2XWIORZ $TXLIHU 5HFKDUJH 7KLV YDOXH LV LQ UHDVRQDEOH DJUHHPHQW ZLWK SUHYLRXV UHSRUWHG YDOXHV 6WHZDUW f

PAGE 85

&+$37(5 9 '(6,*1 &216758&7,21 $1' 23(5$7,21 2) 02'(/ 'HVLJQ 3URWRW\SH 7KH VHOHFWLRQ RI WKH SURWRW\SH DUHD ZDV GLVFXVVHG LQ &KDSWHU ,9 7DEOH LV D VXPPDU\ RI WKH SURWRW\SH FKDUDFWHULVWLFV 7KH OHDN\ OD\HU LV V\QRQ\PRXV ZLWK WKH XQGLIIHUHQWLDWHG GHSRVLWV 7KH WRS DQG ERWWRP RI WKH )ORULGDQ DTXLIHU ZHUH GHWHUPLQHG E\ VWUDLJKWOLQH H[WUDSRn ODWLRQ IURP DYDLODEOH ZHOO ORJV 7KH K\GUDXOLF GDWD DUH ZLWKLQ WKH UHSRUWHG UDQJH RI YDOXHV DQG DUH WKH UHVXOW RI D WULDO DQG HUURU SURFHVV WR VWD\ ZLWKLQ WKH UDQJH DQG VWLOO SURGXFH D UHDVRQDEOH PRGHO 0RGHO 7KH SXUSRVH RI WKH +HOH6KDZ DQDORJ LQ WKLV VWXG\ LV WR PRGHO VDOWZDWHU LQWUXVLRQn %HIRUH GLVFXVVLQJ WKH PRGHO GHVLJQ LW VHHPV DSSURSULDWH DW WKLV SRLQW WR SURn YLGH VRPH EDFNJURXQG DERXW VDOWZDWHU LQWUXVLRQ :DWHU LQ JHQHUDO ZKHWKHU LW EH VXUIDFH ZDWHU RU JURXQGZDWHU LV FRQWLQXDOO\ PLJUDWLQJ WRZDUGV WKH VHD ZKHUH DQ HTXLOLEULXP RU PRYLQJ IUHVKZDWHUVDOWZDWHU LQWHUIDFH

PAGE 86

7$%/( 352727<3( 3$5$0(7(56 3DUDPHWHUV )ORULGDQ $TXLIHU /HDN\ /D\HU *HRPHWULF [S IWf ]S IWf \S E3 eW! +\GUDXOLF 7[S 63GIWf 7]S JSGIWf . [S ]S /HDNDQFH JSGIWf .]S JSGIWf .[S J3GIWf 6 YS # r ) IWVHFf JS IWVHF ff ff

PAGE 87

LV HVWDEOLVKHG 7KH WZR IOXLGV DUH PLVFLEOH EXW EHFDXVH RI WKH GLIIHUHQFH LQ GHQVLWLHV DQG WKH YHU\ ORZ YHORFLWLHV WKH LQWHUIDFH LV IRUPHG $FURVV WKH LQWHUIDFH WKH VDOLQLW\ YDULHV IURP WKDW RI WKH IUHVK JURXQGZDWHU WR WKDW RI WKH RFHDQ 7KH WUDQVLWLRQ ]RQH DV LW LV FDOOHG LV GXH WR K\GURG\QDPLF GLVSHUVLRQ DQG DOWKRXJK LW LV DQ\WKLQJ EXW DEUXSW LW LV XVXDOO\ DVVXPHG WR EH 7KH LQWHUIDFH WKHQ LV JHQHUDOO\ VHOHFWHG WR RFFXU DW VRPH PHDVXUHG HOHFWULF FRQGXFWLYLW\ RU VDOW FKORULGHf FRQFHQWUDWLRQ 7KH HDUOLHVW LQYHVWLJDWLRQV RI VDOWZDWHU HQFURFK PHQW ZHUH PDGH E\ %DGRQ*K\EHQ f LQ +ROODQG DQG +HU]EHUJ f LQ *HUPDQ\ :RUNLQJ LQGHSHQGHQWO\ ERWK LQYHVWLJDWHG WKH HTXLOLEULXP UHODWLRQVKLSV EHWZHHQ WKH VKDSH DQG SRVLWLRQ RI WKH IUHVKZDWHUVDOWZDWHU LQWHUIDFH )LJXUH VKRZV D FRDVWDO SKUHDWLF DTXLIHU DQG WKH *K\EHQ+HU]EHUJ LQWHUIDFH PRGHO %DGRQ*K\EHQ DQG +HU]n EHUJ DVVXPHG VWDWLF HTXLOLEULXP DQG D K\GURVWDWLF SUHVVXUH GLVWULEXWLRQ LQ WKH IUHVK JURXQGZDWHU DQG VWDWLRQDU\ VDOLQH JURXQGZDWHU QHDU WKH LQWHUIDFH &RQVLGHULQJ D SRLQW 3 RQ WKH LQWHUIDFH DQG FKRRVLQJ PHDQ VHD OHYHO DV WKH GDWXP WKH SUHVVXUH DW SRLQW 3 LV 3S 9V /! ZKHUH K YHUWLFDO GLVWDQFH IURP PHDQ VHD OHYHO WR SRLQW 3 \ XQLW ZHLJKW RI VHD ZDWHU 2

PAGE 88

),*85( *K\EHQ+HU]EHUJ LQWHUIDFH PRGHO

PAGE 90

7KLV SUHVVXUH PD\ DOVR EH H[SUHVVHG E\ SS KM K I V f LQ ZKLFK KI HTXDOV WKH YHUWLFDO GLVWDQFH IURP PHDQ VHD OHYHO WR WKH SKUHDWLF OLQH DW WKH ORFDWLRQ RI S DQG
PAGE 91

WKH GDWXP 0RUH LPSRUWDQWO\ KRZHYHU FRQVLGHU WKH HIIHFWV RI ORZHULQJ WKH SKUHDWLF VXUIDFH )RU HYHU\ RQH IRRW GURS RI WKH ZDWHU WDEOH WKH LQWHUIDFH UDLVHV IHHW ,W PXVW EH UHPHPEHUHG WKDW WKH DERYH DQDO\VLV DVVXPHV VWDWLF FRQGLWLRQV 7KLV LQ IDFW LV QRW DOZD\V WKH FDVH 7KH SRVLWLRQ RI WKH LQWHUIDFH LV D IXQFWLRQ RI G\QDPLF FRQGLWLRQV UDWKHU WKDQ VWDWLF (YHQ VR LQ FDVHV ZKHUH IORZ LV TXDVLn KRUL]RQWDO LH WKH HTXLSRWHQWLDO OLQHV DUH QHDUO\ YHUWLFDO HTXDWLRQ LV YDOLG 0DQ\ LQYHVWLJDWRUV KDYH LQFRUSRUDWHG G\QDPLF IRUFHV LQWR WKH DQDO\VLV RI WKH VWDWLRQDU\ LQWHUIDFH +XEEHUW f ZDV DEOH WR DVFHUWDLQ D PRUH DFFXUDWH GHWHUPLQDWLRQ RI WKH VKDSH RI WKH LQWHUIDFH QHDU WKH FRDVW OLQH +H DVVXPHG WKDW DW WKH LQWHUIDFH WKH WDQJHQWLDO YHORFLW\ ZDV ]HUR LQ WKH VDOWZDWHU EXW LQFUHDVHV ZLWK KRUL]RQWDO GLVn WDQFH LQ WKH IUHVKZDWHU DV WKH FRDVW OLQH LV DSSURDFKHG 7KLV WKHQ LV WKH FDXVH IRU WKH LQWHUIDFH WR WLOW XSZDUGV DV WKH VHD LV DSSURDFKHG DQG WKH JUHDWHU GHSWKV IRXQG WKDQ WKRVH HVWLPDWHG E\ WKH *K\EHQ+HU]EHUJ UHODWLRQVKLS +XEEHUW VKRZHG WKDW WKH *K\EHQ+HU]EHUJ HTXDWLRQ KROGV EHWZHHQ SRLQWV RQ WKH ZDWHU WDEOHDQG WKH LQWHUIDFH DORQJ DQ HTXLSRWHQWLDO OLQH UDWKHU WKDQ DORQJ D YHUWLFDO SODQH 5 ( *ORYHU f PRGHOHG DQ LQILQLWHO\ GHHS FRDVWDO DTXLIHU E\ DVVXPLQJ QR IORZ LQ WKH VDOWZDWHU UHJLRQ D KRUL]RQWDO ZDWHU WDEOH DQG D KRUL]RQWDO VHHSDJH IDFH ORFDWHG VHDZDUG RI WKH FRDVW OLQH +H IRXQG DQ H[DFW

PAGE 92

VROXWLRQ IRU WKH VKDSH RI WKH ZHGJH JLYLQJ WKH IROORZLQJ UHODWLRQVKLS ] T[ D T SV SI SV SI@ SI SI f ZKHUH [ DQG ] DUH WKH KRUL]RQWDO DQG YHUWLFDO GLUHFWLRQV UHVSHFWLYHO\ T LV WKH VHHSDJH UDWH SHU XQLW ZLGWK DQG LV WKH K\GUDXOLF FRQGXFWLYLW\ 'H :LHVW f XVLQJ FRPSOH[ YDULDEOHV DQG D YHORFLW\ SRWHQWLDO RI M! ; SV SI@SI GHULYHG WKH VDPH HTXDWLRQ Z r %HDU DQG 'DJDQ Ef XVLQJ WKH 'XSXLW DVVXPSWLRQV DQG WKH *K\EHQ+HU]EHUJ HTXDWLRQ GHYHORSHG WKH DSSUR[LPDWH VKDSH RI WKH LQWHUIDFH IRU D VKDOORZ DTXLIHU RI FRQVWDQW GHSWK $OO RI WKH DERYH LQYHVWLJDWHG WKH HTXLOLEULXP SRVLWLRQ RI WKH VDOWZDWHUIUHVKZDWHU LQWHUIDFH ,I WKHUH LV D FKDQJH LQ WKH IUHVKZDWHU IORZ UHJLPH D WUDQVLWLRQ SHULRG LV FDXVHG GXULQJ ZKLFK WKH LQWHUIDFH PRYHV WR D QHZ SRLQW RI HTXLOLEULXP 7KH QRQOLQHDU ERXQGDU\ FRQGLWLRQV DORQJ WKH LQWHUIDFH PDNH WKH VROXWLRQ IRU WKH VKDSH DQG SRVLWLRQ RI WKH WUDQVLHQW LQWHUIDFH DOO EXW LPSRVVLEOH H[FHSW IRU WKH VLPSOHVW JHRPHWULHV %HDU DQG 'DJDQ Df DV ZHOO DV RWKHU LQYHVWLJDWRUV KDYH XVHG WKH 'XSXLW DVVXPSWLRQV WR DSSUR[LPDWH WKH UDWH RI PRYHPHQW RI DQ LQWHUIDFH LQ D FRQILQHG DTXLIHU )ROORZLQJ

PAGE 93

3ROXEDULQRYD.RFKLQDnV f VXJJHVWLRQ WKH\ DVVXPHG TXDVLVWHDG\ IORZ DQG ZHUH DEOH WR DSSUR[LPDWH WKH LQWHUn IDFH VKDSH DQG SRVLWLRQ IRU ERWK D UHFHGLQJ PRWLRQ DQG ODQGZDUG PRWLRQ RI WKH LQWHUIDFH &KDUDFWHULVWLFDOO\ WKH VROXWLRQV REWDLQHG E\ LQYHVWLJDWRUV WR GDWH KDYH DOO KDG VLPSOH JHRPHWULHV DQG LQYROYHG VLPSOLI\LQJ DVVXPSWLRQV VRPH RI ZKLFK KDYH KDG OLWWOH UHVHPEODQFH WR DFWXDO FRQGLWLRQV 7KHUHLQ OLHV WKH DGYDQWDJHV RI D +HOH6KDZ DQDORJ FRPSOH[ JHRPHWULHV DQG ERXQGDU\ FRQGLWLRQV FDQ EH PRGHOHG ZLWK UHODWLYH HDVH ,Q RUGHU WR VDWLVI\ DGGLWLRQDO VLPLOLWXGH UHTXLUHn PHQWV IRU WKH IORZ RI WZR OLTXLGV ZLWK DQ DEUXSW LQWHUIDFH DV LQ WKLV VWXG\ DQG WR SURYLGH D VXLWDEOH WLPH UDWLR WZR OLTXLG VLOLFRQH IOXLGV ZHUH FKRVHQ WR EH XVHG LQ WKH PRGHO 'RZ &RUQLQJ &RUSRUDWLRQ 6HULHV VLOLFRQH IOXLG ZDV XVHG WR PRGHO IUHVK ZDWHU 6HULHV VLOLFRQH IOXLG IURP WKH VDPH FRPSDQ\ ZDV XVHG WR VLPXODWH VDOW ZDWHU 7KH 6HULHV IOXLG DQG WKH 6HULHV IOXLG KDYH GHQVLn WLHV RI JPFP DQG JPFP UHVSHFWLYHO\ DW r & %RWK IOXLGV KDYH NLQHPDWLF YLVFRVLWLHV RI FHQWLVWRNHV DW r & 'RZ &RUQLQJ IOXLG LV D FOHDU GLPHWK\O VLOR[DQH ZKLFK LV FKDUDFWHUL]HG E\ R[LGDWLRQ UHVLVWDQFH D UHODWLYHO\ IODW YLVFRVLW\WHPSHUDWXUH VORSH DQG ORZ YDSRU SUHVVXUH 'RZ &RUQLQJ IOXLG LV D FOHDU SKHQ\OPHWK\O SRO\VLOR[DQH ZKLFK DOVR KDV D UHODWLYHO\ IODW

PAGE 94

YLVFRVLW\WHPSHUDWXUH VORSH ,Q RUGHU WR ORFDWH DQG IROORZ WKH LQWHUIDFH PRYHPHQW WKH GHQVHU IOXLG ZDV G\HG EOXH DQG WKH OLJKWHU IOXLG G\HG RUDQJH 7KH GLPHQVLRQV RI WKH PRGHO ZHUH VHOHFWHG VR WKDW D XQLW RI UHDVRQDEOH VL]H ZRXOG EH SURGXFHG 7KHVH GLPHQVLRQV DUH IHHW ORQJ LQFK ZLGH LQVLGH DQG IHHW GHHS 7KH SDUDPHWHUV [U! ] DQG EU DUH WKHUHIRUH VHW DQG WKH UHVXOW LV D GLVWRUWHG PRGHO 7KLV GLVWRUWLRQ UHTXLUHV WKH XVH RI D VODWWHG LQQHU ]RQH DV GLVFXVVHG LQ &KDSWHU ,,, 7DEOHV DQG OLVW WKH DSSOLFDEOH SDUDPHWHUV 7KH IROORZLQJ DQDO\VLV LV VKRZQ IRU WKH GHVLJQ RI WKH PRGHO )ORULGDQ DTXLIHU OHDN\ OD\HU DQG VWRUDJH FRHIILFLHQW $ 6ODWWHG $QLVRWURSLF =RQH IRU WKH )ORULGDQ $TXLIHU &RPSXWH N N IURP HTXDWLRQ [U ]U f 1RWLQJ WKDW N A f 7KHQ EHFRPHV N N [ f UM [S ]P DQG ILQDOO\

PAGE 95

7$%/( 02'(/ 3$5$0(7(56 3DUDPHWHUV )ORULGDQ $TXLIHU /HDN\ /D\HU *HRPHWULF [ IWf P ] IWf P 1  9 !" D $ E LQf / LQf L DE LQf $/ LQf $f/ LQf +\GUDXOLF N LQf [P Y n [ N LQf ]P [ O2 N N [Pn ]P 6QP IWf RP YP # r ) IWVHFf IWVHF [ [ O2

PAGE 96

7$%/( 6,0,/$5,7< 5$7,26 3DUDPHWHUV )ORULGDQ $TXLIHU /HDN\ /D\HU *HRPHWULF [U [ [ ] U [ [ O2 [ [ E U [ +\GUDXOLF N [ [U N ]U [ [ N N ]U [U 6RU [ YU # r ) 5 U [ [ [ f W U [ [ f JU

PAGE 97

7KLV LV WKH YDOXH ZKLFK WKH VODWWHG ]RQH PXVW SURGXFH 6HOHFW GLPHQVLRQV IRU WKH VODWWHG ]RQH DV VKRZQ LQ )LJXUH DV IROORZV f KROG DE LQFK f VHOHFW E f ILQG D f VHOHFW $ f/ f VHOHFW $/ f ILQG / f ILQG $ &RPSXWH A @ [f &RPSXWH N]P
PAGE 98

$OVR FRQWLQXLW\ RI IORZ EHWZHHQ WKH OHDN\ OD\HU DQG WKH )ORULGDQ DTXLIHU UHTXLUHV WKDW 4OU 4IU f $OVR a 9$ n n! t n! 7KHUHIRUH E [ MU E [ ]OU U U ]IU U U VR ]OU ]IU RU N L N U ]OU ]IU 7KHUHIRUH N N N ]OP ]LS ]IU 1RZ UHZULWH HTXDWLRQ DV N]OP (7 6HW E LQFK f f f f D e $ FRQVWDQW VLQFH E LV VHW DQG N FRPSXWHG IURP SUHYLRXV LQIRUPDWLRQ FDQ EH

PAGE 99

6HOHFW DE DQG ILQG D 6HOHFW ;/ DQG / DQG ILQG ; &RPSXWH e &RPSXWH De; &RPSDUH WKH UHVXOW RI VWHS f WR WKH UHVXOW RI VWHS f 5HSHDW WKH SURFHVV XQWLO WKH UHVXOW RI VWHS f HTXDOV WKH UHVXOW RI VWHS f 0DNH VXUH WKH SK\VLFDO VL]H RI WKLV OD\HU LV FRPSDWLEOH WR WKH VODWWHG OD\HU HVSHFLDOO\ LQ WHUPV RI VORW VSDFLQJ LH EORFNDJH & 6WRUDJH &RHIILFLHQW 0DQLIROGV 5HIHU WR )LJXUH IRU WKLV VHFWLRQ E f P 7DNH DYHUDJH VWRUDJH FRHIILFLHQW DQG DYHUDJH GHSWK LQ SURWRW\SH WR FRPSXWH 64S 6HOHFW FRQYHQLHQW WLPH UDWLRV LQ WKLV FDVH PLQXWH \HDU DQG FRPSXWH 64U IURP HTXDWLRQ &RPSXWH 6 (TXDWLRQ LV QRZ XVHG WR FRPSXWH $P IRU YDULRXV n V ZLWK ] DYHUDJHG RYHU P P P ,Q WKLV FDVH WKH PRGHO ZDV DSSRUWLRQHG LQWR ILYH ]RQHV ZLWK RQH PDQLIROG SHU ]RQH

PAGE 100

&RQVWUXFWLRQ %HFDXVH WKH +HOH6KDZ DQDORJ LV FDSDEOH RI PRGHOLQJ FRPSOH[ JHRPHWULHV DQG ERXQGDU\ FRQGLWLRQV LW LV GHVLUDEOH WKDW LW EH DV DGDSWDEOH WR DV PDQ\ GLIIHUHQW SURWRW\SH JHRPHWULHV DQG K\GUDXOLF SDUDPHWHUV DV SRVVLEOH 7KLV ZRXOG IDFLOLWDWH PRGHO FRQVWUXFWLRQ DQG LQYHVWLJDWLRQV RI PDQ\ GLIIHUHQW DUHDV LQ WKH VWDWH RI )ORULGD ZKHUH VDOWZDWHU LQWUXVLRQ LV RU LQ WKH IXWXUH PLJKW EH D SUREOHP $ UHGXFWLRQ LQ FRVW RI LQYHVWLJDWLRQ ZRXOG DOVR EH DFKLHYHG LI PDQ\ RI WKH SDUWV ZHUH UHXVDEOH $ OLVW RI JHQHUDO VSHFLILFDWLRQV ZRXOG WKHQ EH DV IROORZV 7KH +HOH6KDZ PRGHO VKRXOG EH KRXVHG LQ D IUDPH LQ ZKLFK LW FDQ EH HDVLO\ LQVWDOOHG DQG UHPRYHG 7KH IURQW DQG EDFN SODWHV ZLWK LQWHULRU PRGHO SDUWV VKRXOG QRW EH SHUPDQHQWO\ VHDOHG WRJHWKHU 7KH IURQW DQG EDFN SODWHV VKRXOG EH DV DGDSWDEOH DV SRVVLEOH WR GLIIHUHQW VLWXDWLRQV 7KH PRGHO VKRXOG KDYH DV IHZ RSDTXH SDUWV DV SRVVLEOH 7KH PRGHO VKRXOG EH PRELOH )UDPH $V VKRZQ LQ )LJXUH WKH IUDPH LV FRPSRVHG RI WZR DVVHPEOLHV WKH FUDGOH DQG WKH FUDGOH GROO\ 7KH IXQFWLRQ RI WKH FUDGOH LV WR VXSSRUW DQG RULHQW WKH 3OH[LJODV SODWHV ,W DOVR FRQWDLQV WKH LQIODWDEOH QHRSUHQH KRVH ZKLFK VHDOV WKH SODWHV ,W LV IDEULFDWHG RI [ VWHHO DQJOHV ZKLFK DUH ZHOGHG LQWR D FKDQQHO ;

PAGE 101

),*85( &UDGOH DQG FUDGOH GROO\

PAGE 103

KLJK [ ZLGH 7KH FKDQQHO KDV WKH VKDSH RI DQ HORQJDWHG UHFWDQJXODU 8 ZKLFK LV KLJK DQG ORQJ 7KH IXQFWLRQ RI WKH FUDGOH GROO\ LV WR VXSSRUW WKH FUDGOH DQG SURYLGH PRELOLW\ 7KH FUDGOH GROO\ LV FRQVWUXFWHG RI [ [ VWHHO WXELQJ 7KH OHQJWK RI WKH FHQWHU WXEH LV IHHW WKH VKRUW FURVVSLHFHV DW WKH HQGV DUH IHHW ORQJ 7KH FUDGOH ORDG LV WUDQVPLWWHG WR WKH FUDGOH GROO\ WKURXJK WZR VWXE VKDIWV DQG SLOORZ EORFNV ZKLFK DUH PRXQWHG RQ SHGHVWDOV DW HDFK HQG RI WKH FHQWHU WXEH 7KH FHQWHU OLQH RI WKH VWXE VKDIWV LV DOLJQHG RQ WKH FUDGOH VR WKDW WKH FUDGOH PD\ EH HDVLO\ URWDWHG DV VKRZQ LQ )LJXUH 7KLV URWDWLRQDO DELOLW\ DOORZV HDV\ LQVHUWLRQ RU UHPRYDO RI WKH PRGHO LQWR RU RXW RI WKH FUDGOH ,W DOVR DOORZV D FRQYHQLHQW RULHQWDWLRQ WR EH VHOHFWHG IRU ZRUNLQJ RQ WKH PRGHO 7KH KHLJKW RI WKH VWXE VKDIW FHQWHU OLQH IURP WKH IORRU LV :KHQ WKH FUDGOH LV URWDWHG LQWR D KRUL]RQWDO SRVLWLRQ LWV LQWHUQDO VXSSRUWV FRUUHVSRQG WR WKH KHLJKW RI WKH WDEOH XSRQ ZKLFK WKH PRGHO LV EXLOW DQG DVVHPEOHG 7KLV DOORZV WKH PRGHO WR EH VOLG IURP WKH WDEOH DQG LQWR WKH FUDGOH 7KH FUDGOH LV WKHQ URWDWHG LQWR WKH YHUWLFDO SRVLWLRQ DQG WKH ZKROH DVVHPEO\ UROOHG LQWR WKH ODERUDWRU\ IRU WHVWLQJ )LJXUH VKRZV WKH IUDPH DQG PRGHO LQ D FRPSOHWHG VHWXS

PAGE 104

),*85( &UDGOH URWDWLRQ

PAGE 106

),*85( )UDPH DQG PRGHO VHWXS

PAGE 107

e

PAGE 108

)LJXUH VKRZV WKH DLU KRVH DQG YDOYH DUUDQJHPHQW IRU SUHVVXUL]LQJ WKH KRVH VHDO DURXQG WKH PRGHO )LJXUH VKRZV WKH VWXE VKDIW DQG SLOORZ EORFN PRXQWLQJ DUUDQJHPHQW (DFK SLOORZ EORFN KDV D MDP VFUHZ ZKLFK LV WLJKWHQHG DJDLQVW WKH VWXE VKDIW WR KROG WKH GHVLJQHG RULHQWDWLRQ RI WKH FUDGOH 6SUHDGHU DUPV DUH DGGHG WR WKH FURVV PHPEHU DW WKH ERWWRP RI WKH FUDGOH GROO\ WR SURYLGH VWDELOLW\ DQFKRULQJ DQG OHYHOLQJ FDSDn ELOLWLHV 7KH VSUHDGHU DUPV LQFUHDVH WKH FURVV PHPEHU OHQJWK WR )LJXUH VKRZV WKH EDFN XS SUHVVXUL]LQJ V\VWHP FRQVLVWLQJ RI 6&8%$ ERWWOH UHJXODWRU DQG DLU KRVH )LJXUH VKRZV D W\SLFDO FURVV VHFWLRQ RI WKH LQWHUQDO VXSSRUW DQG VHDOLQJ V\VWHP 7KH 3OH[LJODV SODWHV DUH VXSSRUWHG RQ SDLUV RI DQJOH EUDFNHWV DQG IDVWHQHG LQWR WKH FUDGOH ZLWK FDS VFUHZV DQG EROWV 7KHUH DUH QLQH SDLUV RI DQJOHV LQ WKH ERWWRP RI WKH FUDGOH DQG WZR SDLUV LQ HDFK HQG 7KH VLGHV RI WKH FUDGOH DUH GULOOHG VOLJKWO\ RYHUVL]H WR SHUPLW DGMXVWPHQW LQ WKH DQJOH EUDFNHWV DQG 3OH[LJODV SODWHV 7KH QHRSUHQH VHDOLQJ KRVH LV 2' ZLWK ZDOOV ,W LV FRQWDLQHG LQ DQ DOXPLQXP FKDQQHO ZKLFK SURYLGHV ODWHUDO VXSSRUW DQG SURSHU DOLJQPHQW ZLWK WKH 3OH[LJODV SODWHV $ SUHVVXUH RI SVLJ ZDV IRXQG VXIn ILFLHQW WR VZHOO WKH KRVH DJDLQVW WKH LQQHU HGJHV RI WKH SODWHV DQG SURYLGH SRVLWLYH VHDOLQJ )LJXUH VKRZV D SRUWLRQ RI WKH IURQW SODWH RI WKH PRGHO ZLWK VXSSRUW DQJOHV DQG EROWV ORFDWHG LQ WKH FUDGOH FKDQQHO

PAGE 109

),*85( $LU KRVH DQG YDOYH DUUDQJHPHQW

PAGE 111

),*85( 6WXE VKDIW DQG SLOORZ EORFN DUUDQJHPHQW

PAGE 113

),*85( %DFN XS DLU VXSSO\

PAGE 115

),*85( ,QWHUQDO VXSSRUW DQG VHDOLQJ V\VWHP

PAGE 117

),*85( 0RGHO PRXQWLQJ V\VWHP

PAGE 119

3OH[LJODV 3ODWHV DQG 0DQLIROGV 7KH IURQW DQG EDFN SODWHV RI WKH PRGHO ZHUH IDEULn FDWHG IURP n [ n [ VKHHWV RI JUDGH 3OH[LJODV 7KH VKHHWV ZHUH VDZQ LQ KDOI WR REWDLQ WZR SLHFHV n [ n [ 7KHVH SLHFHV ZHUH WKHQ JOXHG WRJHWKHU WR IRUP D VLQJOH SODWH n [ n [ 7KH ERWWRP FRUQHUV RI HDFK VXFK SODWH ZHUH FXW WR D UDGLXV WR DFFRPPRGDWH WKH VHDOLQJ KRVH )LJXUH VKRZV IURP OHIW WR ULJKW WKH EDFN SODWH ZLWK LQWHUQDO VWULSV DQG WKH IURQW SODWH 7KH\ DUH RQ WKH FRQVWUXFWLRQ WDEOH PHQWLRQHG SUHYLRXVO\ 7KH SODWHV DUH UHLQIRUFHG DURXQG WKHLU HGJHV ZLWK D 3OH[LJODV VWULS DQG D SODWH RYHU WKH FHQWHU EXWW MRLQW )LJXUH DQG )LJXUH VKRZ WKH GHWDLO RI WKH PRGHO OHDN\ OD\HU DQG )ORULGDQ DTXLIHU 7KH JDS LQ WKH )ORULGDQ DTXLIHU LV PDLQWDLQHG E\ VHYHQW\QLQH VWDLQn OHVV VWHHO WDEV ZKLFK DUH JOXHG WR WKH VWULSV DW UHJXODU LQWHUYDOV ,Q )LJXUH WKH EDVH RI WKH DTXLIHU LV VKRZQ DV WKH WDSHUHG 3OH[LJODV ZHGJH DW WKH ULJKW RU ERWWRP VLGH RI WKH EDFN SODWH 7KH OHDN\ OD\HU LV WKH QDUURZ VWULS DW WKH OHIW RU WRS VLGH RI WKH EDFN SODWH 7KH SODWH IURP WKH ERWWRP RI WKH ILJXUH WR WKH WRS ORQJ D[LVf UHSUHVHQWV WKH SURWRW\SH IURP WKH 3DVFR +LJK WR WKH *XOI RI 0H[LFR )LJXUH LV D FORVHU ORRN DW WKH LQWHULRU JHRPHWU\

PAGE 120

),*85( 0RGHO EDFN DQG IURQW SODWHV

PAGE 122

),*85( 'HWDLO RI WKH PRGHO IURQW DQG EDFN SODWH

PAGE 123

PPPP 6LL6LL L6LOWO ::AL0 :t:0 PPPPPP L_OLLLO Ap‹i£}6 A::0An OL6SOL mLSOOOOLL PPPPPP LLOO‹p  }IAf§! OO‹,66, 9! rA B b "‹c‹ OO_%pOL LO L,rr_ LOLLL+, fAAA6"Y£c mOLOL 6LL6L LLLLOOOLLOO !nUL-!mY!IWcc AOL‹,LO 7!cLfnbf"Ub\!cOn;n!Y6 cLLOLOOOOL ,SOIOMOSO n ! n n IW6[Z:L6\ 6IOO6LLO OL‹OSOO !£ n ?n9L OLOLO ‘,MOL%,) cLO,OLOOLLOOO tIHU[n IW\.Lnrr OLLLOWp OLO ‘fL%A)L%LO)nn n!A!rn£n9nnO \n nn nI A n\:WnA\$$A Ir r nnn Z !V Anna\IU $ nf n QZ f‘ rr\r b nn rn f 6LS 9rnA L !! Y !II nn U!I BB 9"\ !n! A:n n+ nerf A!! r! rr r A !fY !? f nKr \ + StLL OLOLO

PAGE 124

),*85( 'HWDLO RI WKH PRGHO EDFN SODWH

PAGE 126

)LJXUHV DQG VKRZ VRPH RI WKH DFFUHWLRQ PDQLIROGV ZKLFK DUH PRXQWHG QHDU WKH WRS RI WKH IURQW SODWH 7KHUH DUH WHQ LQGLYLGXDO PDQLIROGV ZKLFK DUH DYDLODEOH WRJHWKHU RU LQ DQ\ RUGHU WR VXSSO\ UHFKDUJH WR WKH DTXLIHU 7KHVH PDQLIROGV DUH EXLOW IURP KDOI VHFWLRQV RI D 2' 3OH[LJODV WXEH ZDOOf 7KH\ DUH PRXQWHG DW D VOLJKW DQJOH WR WKH KRUL]RQWDO DQG SURYLGHG ZLWK DQ DLU EOHHG DW WKH KLJK HQG (DFK PDQLIROG LV IHG IURP D IORZ PHWHU WKURXJK D VLQJOH ,' WXEH 7KH IOXLG LV GHOLYHUHG WR WKH PRGHO WKURXJK KROHV GULOOHG WKURXJK WKH IURQW SODWH 7KHUH DUH WZHQW\ KROHV SHU PDQLn IROG DQG WKH IOXLG UXQV GRZQ WKH LQVLGH VXUIDFH RI WKH IURQW SODWH )LJXUH VKRZV WKH ILYH VWRUDJH FRHIILFLHQW PDQLIROGV PRXQWHG RQ WKH EDFN SODWH RI WKH PRGHO )LJXUH VKRZV D GHWDLOHG YLHZ RI RQH PDQLIROG 7KH PDQLIROGV DUH FRQVWUXFWHG RI 3OH[LJODV DQG KDYH D VTXDUH FURVV VHFWLRQ 7KH\ DUH VXSSRUWHG IURP WKH WRS RI WKH EDFN SODWH DQG DUH SURYLGHG ZLWK VKRUW WXEH FRQQHFWLRQV WR WKH PRGHO DV ZHOO DV D GUDLQ YDOYH )LJXUH VKRZV WKH IURQW DQG EDFN SODWH EHLQJ IDVWHQHG WRJHWKHU %HVLGHV WKH VXSSRUWLQJ EROWV ORFDWHG LQ WKH FUDGOH WKHUH DUH WKLUW\VL[ [ PDFKLQH VFUHZV UHJXODUO\ VSDFHG WKURXJKRXW WKH PRGHO WR SXOO LW WRJHWKHU 7KHVH VFUHZV DUH VHDOHG ZLWK 2ULQJV 7KHUH DUH DOVR EROWV DQG VSDFHUV DORQJ WKH WRS RI WKH PRGHO 7KHUH DUH WKUHH

PAGE 127

),*85( )URQW SODWH ZLWK DFFUHWLRQ PDQLIROGV

PAGE 128

‘S}

PAGE 129

),*85( $FFUHWLRQ PDQLIROGV

PAGE 131

),*85( 'HWDLO RI DFFUHWLRQ PDQLIROGV

PAGE 133

),*85( &RQQHFWLRQV EHWZHHQ PRGHO DQG IOXLG VXSSO\ V\VWHP

PAGE 135

),*85( 6DOWZDWHU FRQVWDQW KHDG WDQN

PAGE 137

),*85( %DFN DQG IURQW SODWH FODPS XS

PAGE 139

YDOYHV LQ WKH EDVH RI WKH DTXLIHU IRU GUDLQDJH $ JULG V\VWHP D SRUWLRQ RI ZKLFK FDQ EH VHHQ LQ )LJXUH LV IDVWHQHG WR WKH EDFN SODWH DQG GHQRWHV PLOH LQFUHPHQWV KRUL]RQWDOO\ DQG IHHW LQFUHPHQWV YHUWLFDOO\ )LJXUH LV D IORZ VFKHPDWLF IRU WKH IOXLG VXSSO\ QHWZRUN RI WKH PRGHO 7KHUH DUH WZR PDLQ V\VWHPV WKH VDOWZDWHU V\VWHP DQG WKH IUHVKZDWHU V\VWHP 7KH IUHVKZDWHU V\VWHP LV FRPSRVHG RI WKUHH VXEV\VWHPV WKH DFFUHWLRQ V\VWHP WKH ZHOO V\VWHP DQG WKH IORZ PHWHU V\VWHP )LJXUH LV DQ RYHUYLHZ RI WKH FRQQHFWLRQV EHWZHHQ WKH PRGHO DQG WKH IOXLG VXSSO\ V\VWHP 6DOWZDWHU 6\VWHP )LJXUH VKRZV WKH VDOWZDWHU UHVHUYRLU DQG VXSSRUW VWDQG 8QGHUQHDWK WKH UHVHUYRLU LV D VPDOO JHDU SXPS GULYHQ E\ D YDULDEOH VSHHG UHYHUVLEOH PRWRU WUDQVPLVVLRQ VHW 7KH JHDU SXPS WUDQVIHUV IOXLG IURP WKH UHVHUYRLU LQWR D FRQVWDQW KHDG WDQN )LJXUH VKRZV WKLV WDQN )OXLG RYHUIORZLQJ WKH FHQWHU WXEH RI WKH WDQN UHWXUQV WR WKH UHVHUYRLU 7KH WDQN LV FRQQHFWHG WR WKH *XOI RI 0H[LFR HQG RI WKH PRGHO E\ WKUHH WXEHV DQG YDOYHV DV VKRZQ LQ )LJXUH 7KH WDQNnV HOHYDWLRQ PD\ EH UDLVHG RU ORZHUHG LQ RUGHU WR VHW WKH SURSHU VHD OHYHO LQ WKH PRGHO )UHVKZDWHU 6\VWHP *HQHUDO )LJXUH VKRZV WKH WKUHH VXEV\VWHPV RI WKH IUHVKZDWHU V\VWHP $W WKH ULJKW WRS RI WKH ILJXUH LV

PAGE 140

),*85( )OXLG VXSSO\ QHWZRUN VFKHPDWLF

PAGE 141

&RQVWDQW +HDG

PAGE 142

),*85( 6DOWZDWHU UHVHUYRLU DQG SXPS

PAGE 144

),*85( )UHVKZDWHU VXSSO\ V\VWHP

PAGE 145

HQ

PAGE 146

WKH IUHVKZDWHU UHVHUYRLU 7KH DFFUHWLRQ SXPS LV DW WKH ORZHU ULJKW RI WKH ILJXUH 7KH ZHOO SXPS LV DW WKH ORZHU OHIW DQG WKH IORZ PHWHUV DUH PRXQWHG RQ WKH SHJERDUG DW WKH XSSHU OHIW RI WKH ILJXUH )UHVKZDWHU 6\VWHP $FFUHWLRQ )LJXUH VKRZV WKH IUHVKZDWHU UHVHUYRLU DQG WKH DFFUHWLRQ SXPS XQLW 7KLV XQLW FRQVLVWV RI D JHDU SXPS D YDULDEOH VSHHG UHYHUVLEOH PRWRU DQG DQ DGMXVWDEOH SUHVn VXUH E\SDVV YDOYH 7KH XQLW VXSSOLHV IOXLG DW D SUHVHOHFWHG SUHVVXUH WR D PDQLIROG PRXQWHG RQ WKH IORZ PHWHU ERDUG 7KLV PDQLIROG FDQ EH VHHQ LQ )LJXUH LQ WKH WRS FHQWHU RI WKH ILJXUH )UHVKZDWHU 6\VWHP :HOOV )LJXUH VKRZV WKH ZHOO SXPS XQLW DQG LWV VXSSO\ PDQLIROG 7KH SXPS XQLW FRQVLVWV RI D JHDU SXPS D YDULn DEOH VSHHG UHYHUVLEOH PRWRU DQG D VHQVLWLYH FRPSRXQG JDJH 7KLV XQLW SXOOV D VOLJKW YDFXXP RQ WKH PDQLIROG LQ RUGHU WR UHPRYH IOXLG IURP WKH PRGHO DW ZHOO ORFDWLRQV )OXLG UHPRYHG IURP WKH PRGHO LV UHWXUQHG WR WKH IUHVKZDWHU UHVHUYRLU ,Q DGGLWLRQ D OLQH IURP WKH UHVHUYRLU GLVn FKDUJH LV NHSW RSHQ WR WKH SXPS WR SUHYHQW RSHUDWLQJ LQ D VWDUYHG FRQGLWLRQ )UHVKZDWHU 6\VWHP )ORZ 0HWHUV )LJXUH VKRZV IURP OHIW WR ULJKW WKH ZHOO VXSSO\ PDQLIROG DQG WKH DFFUHWLRQ VXSSO\ PDQLIROG ZLWK

PAGE 147

),*85( )UHVKZDWHU UHVHUYRLU DQG DFFUHWLRQ SXPS

PAGE 149

),*85( :HOO VXSSO\ PDQLIROG DQG SXPS

PAGE 151

),*85( :HOO VXSSO\ PDQLIROG DQG DFFUHWLRQ VXSSO\ PDQLIROG

PAGE 152

‘]P

PAGE 153

WKHLU FRQQHFWLRQV WR WKH ERWWRPV RI WKH IORZ PHWHUV 7KHUH DUH WZHOYH IORZ PHWHUV IRU HDFK PDQLIROG )LJXUH LV WKH RSSRVLWH YLHZ 7KH WZR PDQLIROGV DUH FRQQHFWHG E\ D WXEH ZKLFK LV RQO\ XVHG GXULQJ VWDUWXS RU VKXWGRZQ RSHUn DWLRQV WKH WXEH LV PRVW FOHDUO\ VHHQ LQ )LJXUH )LJXUH LV DQ RYHUDOO YLHZ RI WKH WZHQW\IRXU IORZ PHWHU EDQN 0HWHUV RQH WKURXJK WZHOYH VXSSO\ DFFUHWLRQ PDQLIROGV DQG UHFKDUJH ZHOOV PHWHUV WKLUWHHQ WKURXJK WZHQW\IRXU KDQGOH ZHOO SXPSLQJ )LJXUH LV D GHWDLO YLHZ RI VHYHUDO IORZ PHWHUV 7KH RSHUDWLRQ RI WKH PHWHUV LV EDVHG RQ 3RLVHXLOOHfV UHODWLRQVKLS IRU ODPLQDU IORZ LQ D WXEH $ XGAJ $K ,6/ 9 f ZKHUH G HTXDOV WXEH GLDPHWHU DQG $K HTXDOV KHDG ORVV )RU D JLYHQ WXEH DQG IOXLG WKH IORZ UDWH DQG SUHVVXUH GURS LQ WKH WXEH DUH SURSRUWLRQDO 7KHUHIRUH LI WKH SUHVVXUH GURS LQ D WXEH LV PHDVXUHG WKH IORZ UDWH PD\ EH GHWHUPLQHG 7KH IORZ PHWHU FRQVLVWV RI D OHQJWK RI EUDVV SLSH ZLWK D QRPLQDO ,' RI 7KH SLSH LV WKUHDGHG WR DFFHSW D KRVH EDUE DW WKH ERWWRP HQG DQG D UHJXODWLQJ QHHGOH YDOYH DW WKH WRS HQG 3UHVVXUH WDSV DUH LQVWDOOHG LQ WKH SLSH DQG DUH DSDUW 7KLV VSDFLQJ LV FRQVLVWHQW ZLWK WKH PD[LPXP IORZ UDWH UHTXLUHG RI WKH PHWHU DQG WKH SUHVVXUH VHQVLQJ FDSDELOLW\ RI WKH WUDQVGXFHUV 7KH SLSH LV PRXQWHG WR WKH SHJERDUG ZLWK WZR 3OH[LJODV EORFNV $

PAGE 154

),*85( 2SSRVLWH YLHZ RI )LJXUH

PAGE 156

),*85( )ORZ PHWHU EDQN

PAGE 157

ZLZZ3PO OAPP PPPP LLALLSOLLS r:pf b Z A!

PAGE 158

),*85( )ORZ PHWHU GHWDLO

PAGE 159

,

PAGE 160

EUDVV WHH IURP WKH QHHGOH YDOYH FDUULHV DQ DLU EOHHG DW WKH WRS DQG D KRVH EDUE IRU KRRNXS WR WKH PRGHO )LJXUH VKRZV VRPH RI WKH FRQQHFWLRQV WR WKH PRGHO 7KH FOXVWHU RI WXEHV LQ WKH FHQWHU RI WKH PRGHO LV FRQQHFWHG WR SRUWV VLPXn ODWLQJ (OGULGJH:LOGH ZHOO ILHOG 7KH ORQJHU WXEHV JRLQJ RYHU WKH WRS RI WKH PRGHO DUH FRQQHFWHG WR DFFUHWLRQ PDQLn IROGV 7KH WZR WXEHV H[WHQGLQJ RXW RI WKH ILJXUH WR WKH OHIW DUH IRU UHFKDUJH ZHOOV QHDU /DNH 7DUSRQ 7KHUH LV DQ DGGLWLRQDO ZHOO ILHOG QHDU WKH 3DVFR +LJK ZKLFK LV QRW VKRZQ DQG ZKLFK ZDV QRW KRRNHG XS 7KH GLUHFWLRQ RI IORZ IRU DFFUHWLRQ IORZ PHWHUV LV IURP ERWWRP WR WRS 7KH GLUHFWLRQ IRU ZHOO SXPSLQJ IORZ PHWHUV LV IURP WRS WR ERWWRP )LJXUH VKRZV WKH EDFN RI WKH IORZ PHWHU PRXQWLQJ ERDUG DQG WKH SUHVVXUH VHQVLQJ OLQHV IURP HDFK PHWHU 7KHVH OLQHV RULJLQDWH DW WKH SUHVVXUH WDSV RQ WKH PHWHUV DV VKRZQ LQ )LJXUH DQG WHUPLQDWH DW D URWDU\ YDOYH VZLWFKLQJ GHYLFH VHHQ LQ WKH FHQWHU RI )LJXUH $ PRUH GHWDLOHG ORRN DW WKLV GHYLFH DQG WKH WZR SUHVVXUH WUDQVGXFHUV WKDW DUH FRQQHFWHG WR LW LV VKRZQ LQ )LJXUH 7KH VZLWFKLQJ GHYLFH FRQVLVWV RI IRXU IOXLG VZLWFK ZDIHUV FRD[LDOO\ PRXQWHG LQ D FRQWURO XQLW (DFK ZDIHU 6FDQLYDOYH ,QF 0RGHO )OXLG 6ZLWFK :DIHU 6FDQ &R :37f KDV WZHOYH LQSXW SRUWV DQG RQH RXWSXW SRUW 7KHUHIRUH WZR ZDIHUV FDQ VZLWFK WZHOYH SDLUV RI LQSXW OLQHV IURP WZHOYH IORZ PHWHUV LQWR RQH GLIIHUHQWLDO SUHVVXUH WUDQVGXFHU )RXU ZDIHUV DQG WZR

PAGE 161

),*85( )ORZ PHWHU WR PRGHO FRQQHFWLRQV

PAGE 163

),*85( )ORZ PHWHU SUHVVXUH VHQVLQJ OLQHV

PAGE 165

),*85( )ORZ PHWHU VZLWFKLQJ GHYLFH DQG SUHVVXUH WUDQVGXFHUV

PAGE 167

WUDQVGXFHUV DUH UHTXLUHG IRU WZHQW\IRXU IORZ PHWHUV 7KH FRQWURO XQLW KDV WZHOYH FOLFNVWRS SRVLWLRQV DQG HDFK SRVLWLRQ FRQQHFWV WZR IORZ PHWHUV DQG WZR WUDQVGXFHUV 7KH SUHVVXUH WUDQVGXFHUV XVHG DUH &HOHVFR 3' 'LIIHUHQWLDO 3UHVVXUH 7UDQVGXFHU s SVLG 7KH RXWSXW RI WKH SUHVVXUH WUDQVGXFHUV LV VHQVHG DQG FRQGLWLRQHG E\ D FDUULHU GHPRGXODWRU XQLW &HOHVFR 0RGHO &' ZKLFK VHQGV DQ RXWSXW VLJQDO WR D +HZOHWW3DFNDUG GXDO FKDQQHO VWULS FKDUW UHFRUGHU )LJXUH VKRZV WKH FDUULHU GHPRGXn ODWRU SRVLWLRQHG DERYH WKH UHFRUGHU 5DWKHU WKDQ PHDVXUH SUHVVXUH GURS DFURVV WKH IORZ PHWHUV DQG WKHQ FRPSXWLQJ WKH IORZ UDWH WKH PHWHUV ZHUH GLUHFWO\ FDOLEUDWHG IRU GHIOHFWLRQ LQ LQFKHV RQ WKH VWULS FKDUW UHFRUGHU DV D IXQFWLRQ RI PHDVXUHG IORZ UDWH 7KH FDUULHU GHPRGXODWRU DQG UHFRUGHU ZHUH VHW WR SURYLGH ]HUR UHDGLQJ DW ]HUR IORZ UDWH DQG QHDU PD[LPXP UHDGLQJ DW PD[LPXP IORZ UDWH (DFK IORZ PHWHU ZDV RSHUDWHG DW YDULRXV IORZ UDWHV DV GHWHUPLQHG E\ PHDVXUHPHQW ZLWK D VWRSZDWFK DQG JUDGXDWHG F\OLQGHU 7KH UHFRUGHU UHDGLQJ DQG IOXLG WHPSHUDWXUH ZHUH QRWHG DW HDFK SRLQW $OO GDWD ZHUH FRUUHFWHG WR r & DQG ILWWHG WR D VWUDLJKW OLQH E\ WKH PHWKRG RI OHDVW VTXDUHV 7KH FRUUHODWLRQ FRHIILFLHQW IRU HDFK RI WKH WZHQW\IRXU PHWHUV LQGLFDWHG H[FHOOHQW DJUHHPHQW EHWZHHQ WKH GDWD DQG WKH ILWWLQJ IXQFWLRQ DV FDQ EH VHHQ LQ $SSHQGL[ %

PAGE 168

),*85( &DUULHU GHPRGXODWRU DQG VWULS FKDUW UHFRUGHU

PAGE 170

2SHUDWLRQ 7KH DFFUHWLRQ SXPS LV XVHG WR ILOO WKH DFFUHWLRQ VXSSO\ PDQLIROG ZHOO VXSSO\ PDQLIROG WKURXJK FURVVRYHU WXEHf IORZ PHWHUV DQG SUHVVXUH VHQVLQJ OLQHV $LU EOHHGV DUH ORFDWHG WKURXJKRXW WKH V\VWHP WR UHPRYH WUDSSHG DLU 7R ILOO WKH PRGHO WKH VDOWZDWHU SXPS LV VWDUWHG DQG WKH FRQVWDQW KHDG WDQN ILOOHG DQG DGMXVWHG 7KH YDOYHV RQ WKH DFFUHWLRQ IORZ PHWHUV DUH RSHQHG DQG WKH YDOYHV IRU WKH VDOWZDWHU RSHQHG VOLJKWO\f 7KH LQIORZ UDWHV DUH DGMXVWHG WR EULQJ WKH VDOW DQG IUHVKZDWHU OHYHOV XS WRJHWKHU 2QFH WKH PRGHO LV QHDUO\ IXOO DQG WKH LQWHUIDFH IRUPHG WKH SUHVVXUH E\SDVV YDOYH RQ WKH DFFUHWLRQ SXPS SXPS 530 DQG WKH DFFUHWLRQ IORZ PHWHUV DUH VHW WR SURYLGH WKH IORZ UDWHV UHTXLUHG IRU WKH WHVW XQGHU FRQVLGHUDWLRQ 7KH VDOWn ZDWHU YDOYHV DUH IXOO\ RSHQHG 7KH ZHOO SXPS LV DGMXVWHG E\ VHHLQJ WKDW WKH ZHOO VXSSO\ PDQLIROG LV FORVHG WR WKH SXPS DQG WKDW WKH SXPS 530 LV VXIILFLHQW WR PDLQWDLQ D YDFXXP RI +J ZKHQ UHFLUFXODWLQJ IOXLG IURP WKH IUHVKn ZDWHU UHVHUYRLU 7KH YDOYH WR WKH ZHOO VXSSO\ PDQLIROG LV WKHQ RSHQHG DQG WKH ZHOO IORZ PHWHUV DGMXVWHG 7KH IOXLG WHPSHUDWXUH LV PRQLWRUHG WKURXJKRXW WKH WHVW VR WKDW IORZ UDWHV PD\ EH FRUUHFWHG ([FHVV DFFUHWLRQ LV UHPRYHG IURP WKH PRGHO WKURXJK YDULRXV GUDLQ SRUWV :KHQ WKH PRGHO LV VKXW GRZQ EHWZHHQ WHVWV LW PD\ EH GUDLQHG E\ JUDYLW\ RU UHYHUVLQJ WKH SXPSV RU WKH WZR

PAGE 171

IOXLGV PD\ EH OHIW LQ WKH PRGHO ZKHUH WKH\ EHFRPH KRUL]RQWDOO\ VWUDWLILHG 6WDUWLQJ XS DJDLQ DIWHU HLWKHU SURFHGXUH LV D WHGLRXV SURFHVV DQG WKH VHOHFWLRQ RI VKXW GRZQ LV OHIW WR WKH VXEMHFWLYH HYDOXDWLRQ RI WKH RSHUDWRU

PAGE 172

&+$37(5 9, 5(68/76 &21&/86,216 $1' 5(&200(1'$7,216 5HVXOWV 7KH REMHFWLYHV RI WKLV VWXG\ ZHUH WR f GHYHORS f FRQVWUXFW DQG f FDOLEUDWH D +HOH6KDZ PRGHO IRU D VHFWLRQ RI 3LQHOODV &RXQW\ )ORULGD $OO WKUHH REMHFWLYHV ZHUH PHW )LJXUHV WKURXJK VKRZ WKH IUHVKZDWHUVDOWn ZDWHU LQWHUIDFH DV LW SURFHHGV IURP DQ HTXLOLEULXP SRVLWLRQ WKURXJK VXFFHVVLYH VWDJHV RI SHQHWUDWLRQ DQG XSFRQLQJ GXH WR SXPSLQJ LQ (OGULGJH:LOGH ZHOO ILHOG DQG WKHQ WKURXJK IXUWKHU VWDWHV DV IUHVKZDWHU UHFKDUJLQJ LQ WKH FRDVWDO ]RQH LV FDUULHG RXW )LJXUH VKRZV WKH SRVLWLRQ RI WKH ZHGJH DW D VWHDG\ VWDWH FRQGLWLRQ 7KH ZHGJH LV FRUUHFWO\ ORFDWHG DW WKH FRDVW DQG LQ WKH DSSUR[LPDWH SUHVHQW ORFDWLRQ (OGULGJH:LOGH LV WKH FOXVWHU RI GRWV LQ WKH FHQWHU RI WKH SLFWXUH LW LV GLUHFWO\ DERYH WKH ODQGZDUG WRH RI WKH ZHGJH 7KH ZHGJH DQG WKH *XOI RI 0H[LFR DUH WKH GDUN UHJLRQ DW WKH ULJKW HQG RI WKH PRGHO 7KH IUHVKZDWHU LV WKH OLJKW UHJLRQ 7KH WLPH UDWLR LV DSSUR[LPDWHO\ PLQXWH RI PRGHO WLPH \HDU RI SURWRW\SH WLPH 7KH VHTXHQFH EHJLQQLQJ

PAGE 173

),*85( ,QWHUIDFH ORFDWLRQ W P PLQ

PAGE 175

),*85( ,QWHUIDFH ORFDWLRQ W PLQ P

PAGE 176

21 1!

PAGE 177

),*85( ,QWHUIDFH ORFDWLRQ W PLQ P

PAGE 179

),*85( ,QWHUIDFH ORFDWLRQ W P PLQ

PAGE 180

:r

PAGE 181

),*85( ,QWHUIDFH ORFDWLRQ W P PLQ

PAGE 183

),*85( ,QWHUIDFH ORFDWLRQ W P PLQ

PAGE 184

,

PAGE 185

),*85( ,QWHUIDFH ORFDWLRQ W PLQ P

PAGE 187

),*85( ,QWHUIDFH ORFDWLRQ W P PLQ

PAGE 189

),*85( ,QWHUIDFH ORFDWLRQ W P PLQ

PAGE 191

),*85( ,QWHUIDFH ORFDWLRQ W f P PLQ

PAGE 193

),*85( ,QWHUIDFH ORFDWLRQ W P PLQ

PAGE 194

$0

PAGE 195

),*85( ,QWHUIDFH ORFDWLRQ W f P PLQ

PAGE 196

‘n DL IO nZ AVZ%%%IIDJDDVLQ72 [r

PAGE 197

),*85( ,QWHUIDFH ORFDWLRQ W f P PLQ

PAGE 198

0 ‘\t !t r LO"A

PAGE 199

ZLWK )LJXUH DQG SURFHHGLQJ WKURXJK )LJXUH UHSUHVHQWV DERXW \HDUV RI SXPSLQJ DW D UDWH RI DERXW 0*' ZLWK DQ DFFUHWLRQ UDWH RI DERXW 0*' 7KHVH ILJXUHV VKRZ WKH SURJUHVVLYH SHQHWUDWLRQ RI WKH ZHGJH DQG XSFRQLQJ XQGHU WKH ZHOO ILHOG )LJXUH LV WKH EHJLQQLQJ RI IUHVKZDWHU UHFKDUJH LQ WKH FRDVWDO ]RQH 7KH LQLWLDO ORFDWLRQ RI WKH XSSHU HQG RI WKH ZHGJH LQ WKLV ]RQH LV DFFHQWXDWHG E\ WKH GDUN OLQH RQ WKH LQWHUIDFH DV VKRZQ LQ )LJXUH 7KH UHFKDUJH SRLQWV DUH WKH WZR GRWV ORFDWHG DERYH WKLV OLQH $ UHFKDUJH SHULRG RI DERXW \HDUV LV VKRZQ LQ )LJXUHV WKURXJK 7KH UHFKDUJH UDWH LV DERXW 0*' 7KH XOWLPDWH HIIHFW RI WKH UHFKDUJLQJ LV VKRZQ LQ )LJXUH LQ ZKLFK WKH ZHGJH KDV EHHQ GHSUHVVHG DQG PRYHG VHDZDUG LQ WKH DUHD XQGHU WKH UHFKDUJH ZHOOV DQG LQ WKH DUHD XQGHU /DNH 7DUSRQ WKH ZHGJH KDV EHHQ IRUFHG XSZDUG 7KH GDUN OLQHV RQ WKH PRGHO ZHUH DGGHG WR EULQJ RXW WKH ZHGJH ORFDWLRQ DW WKH EHJLQQLQJ DQG HQG RI WKH UHFKDUJH SHULRG 7DEOH LV D VXPPDU\ RI WKH GHSWKV WR VDOWZDWHU DV D IXQFWLRQ RI LWHP DW VHOHFWHGnORFDWLRQV )LJXUH VKRZV WKH FRUUHODWLRQ EHWZHHQ WKH PRGHO ZHGJH ORFDWLRQ DW WKH EHJLQQLQJ RI SXPSLQJ DQG UHFHQW ILHOG GDWD DV UHSRUWHG E\ %ODFN &URZ DQG (LGVQHVV ,QF )LJXUH LV D WLPH RYHUOD\ RI WKH PRGHO ZHGJH ORFDWLRQ DW WKUHH GLIIHUHQW WLPHV DQG VKRZV WKH HIIHFW RI SXPSLQJ DQG UHFKDUJLQJ

PAGE 200

7$%/( '(37+ 72 6$/7:$7(5 PVOf 6LWH
PAGE 201

),*85( :HGJH ORFDWLRQ DW WLPH ]HUR

PAGE 203

),*85( 7LPH RYHUOD\ RI ZHGJH ORFDWLRQ

PAGE 204

0LOHV IURP &RDVWOLQH

PAGE 205

&RQFOXVLRQV DQG 5HFRPPHQGDWLRQV $V FDQ EH VHHQ IURP WKH SUHFHGLQJ ILJXUHV WKH PRGHO LV LQ JRRG FDOLEUDWLRQ ZLWK UHSRUWHG ILHOG LQIRUPDWLRQ DQG RSHUDWHV VPRRWKO\ DQG VDWLVIDFWRULO\ ,W LV IHOW WKDW WKH FKDQJH LQ ZHGJH VKDSH GXH WR UHFKDUJLQJ LV D OLNHO\ UHVXOW DQG WKDW UHFKDUJH ZHOOV ZRXOG EH EHWWHU ORFDWHG DW SRLQWV IDUWKHU LQODQG 7KH\ PLJKW EH ORFDWHG LQ /DNH 7DUSRQ RU MXVW WR WKH HDVW RI WKH ODNH ,I WKH UHFKDUJH ZDWHU LV WR EH WUHDWHG ZDVWHZDWHU WKH SUR[LPLW\ RI WKH UHFKDUJH ZHOOV WR WKH (OGULGJH:LOGH ZHOO ILHOG ZRXOG EH RI JUHDW LPSRUWDQFH 3RVVLEOH LWHPV IRU IXWXUH VWXG\ ZRXOG LQFOXGH LQYHVWLJDWLQJ WKH PRVW DGYDQWDJHRXV ORFDWLRQ RI UHFKDUJH ZHOOV DQG WKH HIIHFW RI D QHZ ZHOO ILHOG LQ WKH 3DVFR +LJK DUHD 7KH XVH RI D WUDFHU G\H LQ WKH UHFKDUJH ZHOOV ZRXOG IDFLOLWDWH WKH HYDOXDWLRQ RI WKHLU HIIHFW RQ WKH ZHGJH DQG RQ (OGULGJH :LOGH ZHOO ILHOG 2EMHFWLYHV f DQG f DUH PHW LQ WKDW WKH PRGHO LV GHVLJQHG IRU HDVH RI RSHUDWLRQ TXLFN FKDQJH DGMXVWPHQWV DELOLW\ WR KDQGOH VLOLFRQH RLO DQG RWKHU VXFK IHDWXUHV DV GLVFXVVHG LQ &KDSWHU 9

PAGE 206

$33(1',;(6

PAGE 207

$33(1',; $ 81,)250 )/2: 7+528*+ $ &21'8,7 2) 5(&7$1*8/$5 &5266 6(&7,21 7KH LQWHQW RI WKLV DSSHQGL[ LV WR SURYLGH D JXLGH WR REWDLQLQJ HTXDWLRQV DQG $V VWDQGDUG PDWKHPDWLFDO WHFKQLTXHV DUH HPSOR\HG WKURXJKn RXW QR XVHIXO SXUSRVH ZRXOG EH VHUYHG E\ ILOOLQJ SDJH DIWHU SDJH ZLWK WKH QXPHURXV LQWHUPHGLDWH VWHSV DQG PDQLSXODWLRQV 2QH EHJLQVnZLWK WKH 1DYLHU6WRNHV HTXDWLRQV LQ &DUWHVLDQ FRRUGLQDWHV IRU XQLIRUP IORZ LQ WKH ]GLUHFWLRQ 9 ( ; 9 ] B \ + \ \ ] 7KLV LV 3RLVVRQnV HTXDWLRQ ZLWK ]HUR ERXQGDU\ FRQGLWLRQV 7KH VROXWLRQ SURFHHGV E\ FRQYHUWLQJ WR /DSODFHnV HTXDWLRQ ZLWK QRQ]HUR ERXQGDU\ FRQGLWLRQV 7KLV LV GRQH E\ ILQGLQJ D SDUWLFXODU VROXWLRQ WR WKH QRQKRPRJHQHRXV 3RLVVRQf SUREOHP LH E\ VROYLQJ 9 = B BM!B [ \ ] 7KH SDUWLFXODU VROXWLRQ LV WKHQ WKH ILUVW WHUP RI HTXDWLRQ 7KH KRPRJHQHRXV /DSODFHf SUREOHP LV WKHQ VROYHG E\

PAGE 208

VHSDUDWLRQ RI YDULDEOHV ZLWK ERXQGDU\ FRQGLWLRQV GHWHUPLQHG IURP WKH SDUWLFXODU VROXWLRQ 7KH KRPRJHQHRXV VROXWLRQ LV WKH VHFRQG WHUP LQ HTXDWLRQ 7KH VXP RI WKH SDUWLFXODU DQG KRPRJHQHRXV VROXWLRQV LV WKH GHVLUHG UHVXOW (TXDWLRQV DQG DUH IRXQG E\ DSSO\LQJ WKH DSSOLFDEOH ERXQGDU\ FRQGLWLRQV DQG )RXULHU WHFKQLTXHV WR HTXDWLRQ (TXDWLRQV DQG DUH REWDLQHG E\ VWUDLJKW IRUZDUG LI VRPHZKDW ODERULRXV LQWHJUDWLRQ

PAGE 209

$33(1',; % )/2: 0(7(5 &$/,%5$7,21 7ZR UHFRUGHUV ZHUH XVHG DW GLIIHUHQW WLPHV ZLWK WKH IORZ PHWHUV 7KH\ DUH +HZOHWW3DFNDUG % DQG +HZOHWW3DFNDUG $ 7KH IROORZLQJ WDEOH LV D VXPPDU\ RI WKH YDULRXV VHWWLQJV 7$%/( % 5(&25'(5 $1' &$55,(5 '(02'8/$725 6(77,1*6 5HFRUGHU &DUULHU 'HPRGXODWRU 8QLW 6HWWLQJ 1DPH &KDQQHO 2GG 0HWHUV &KDQQHO (YHQ 0HWHUV &KDQQHO 2GG 0HWHUV &KDQQHO (YHQ 0HWHUV % 6SDQ 9ROWV 9ROWV =HUR $V 5HTXLUHG $V 5HTXLUHG $ 6SDQ 9ROWV 9ROWV =HUR $V 5HTXLUHG $V 5HTXLUHG $V FDQ EH VHHQ IURP HTXDWLRQ IORZ UDWH LV D OLQHDU IXQFWLRQ RI WKH KHDG ORVV ,W LV WKHUHIRUH DSSURSULn DWH WR ILW D OLQHDU IXQFWLRQ LH 4 %[ WR WKH GDWD E\ WKH PHWKRG RI OHDVW VTXDUHV 7KLV LV GRQH E\ PLQLPL]LQJ

PAGE 210

Q L O %[ L !%f WKHUHIRUH M! %% Q L O [ L %[ L RU Q L O [ L %[s VR L O [4 Q L O %[ L WKHQ % Q [L4s Lf§ Q [ L O 7KH FRUUHODWLRQ FRHIILFLHQW LV ZKHUH 4J LV WKH FDOFXODWHG YDOXH DQG 4 LV WKH DYHUDJH YDOXH RI WKH GDWD

PAGE 211

7KH IROORZLQJ WZR FRPSXWHU SULQWRXWV WDEXODWH WKH UHVXOWV RI WKLV GDWD ILWWLQJ

PAGE 212

FU ‘Q 222&222&222222&2&&22&2&22 2&222&22&&2&2&&22222&22 R &&&&2*&2&2&222&*2&22222&& 222222&2222*&*22222222& ; A A FWF FM FM t /L KLLn0X++.+0&+LLI U RFRRFFRR F DVM&nXLIHn&-0WRWFWHnMDWQAI'IYARY'Dn-&nISIF XZLRYQFn1LH RLLFXZAFYFQVARL2LLnW-LYfA WV &f U P L /O LMX }r }f r 2 r 22 2 r‘ X rr 1m Wf§ r0 r} R R }f§} 2 R R 2 R r X WR rr R U D L ,7 U P P 7 V O fQ F } + UQZQnQL!I2nQ\fQV%Z20Q[ZZ20:RQ5PWQPL7ffQrrQQLL7frPLMU67VQR ]KFRVR[FR[LRVLL FRFIIO]RFRRUPR LOFFRFFRQ[fFF[ [La 2&=-L}n 9 aL I! = ,, 9 ,, ,, a 9f !;!OO! '!;;,! 0 7f++œr6+'&A&:OOO'LD&'}!&;!nn;;2M& &n6&66+' 87L UU K U7n!PR P !UU [ R rf HUR R L7&r U f§ 0 P Frr ZFrf} AWL !r! !! !A = + f§ +nn2 + f§ + + OO 2 OL 9 ;f OL 22 OL OL 2 ; 4 ,, 2 & OO L ff rr!f + :: f§ F! R & rf} 9 R[ 2 9f &&2 ,I ,, 2 f m}} N&nnr}Z ? rfr Q&Kr m&+ f r }f ;&&f&L f§ V}f§2n f r'&2 ; *-8L2,, ; f f OORW r ,, 2; ,, &,, f 2 rrQ r‘m! f,, Sr Sa & r 1 r 7L2A m ; & r f§ Fr & ;rf 2 }}} }f r S}r Z 1L2+RUP f r^-Or f ; R WQ D f } A!m;} 2 Z2!}nrn=& FU f§Rn= [RF a] [WU f§f m 7 r Z IM A ; r 7O; fr 6nr 9 r7O [ ZFR[ FR[ L} P 2m‘} f‘}f r‘r r (8 '& 2 $ f§ a rrr + + & f m ; r /I ; raL &B + + +P 22 ; f ; Z V Z Z Z rf Z+&7 R f§ LO & f ‘3 ; ; OL n2n IUHQr f§ ; + F m f 2 } 7 & ‘} r‘! f 2 = f§ r a Q r f f f 2 f P M r m \ f 0 m .r : f mf F Y U f§ O F r r 0 Z\ }f} r a OL ,, r rL r r WR !f§ f Q W W F f QU F Z f U F ; A! rrYr} F WPrr If R m f r rf§f ,, f F OO f§ U 3r [ f IW + LY WRH F 2Z R Z R OL f &' + ; r + ; U ; UQ ; Z 7f & F Z + ,, LQ FU ;, [ + YR &R &-

PAGE 213

f§) (/(6)$}f§** )74) /($67 6*8$5(6 ),7 72 &a%; +(/(6+$: )/2r 0( 7(: &$/,%5$7,21 +) )(&&58(5 WI( 0(7(5 12 ; *( 5 f 0(7(5 12 ; 4( %f§ 5 0(7(5 1* ; & & 2 *( ( 5 f§ 0(7(5 18 ; f & 2& *( Ea 5 0(7(5 18

PAGE 214

; *( H 0(7(1 1& 5 ; & *( & (f§ 0(7(1 18 5 ; & 4( e % 5 0(7(5 0; & *( & % 5f§ 0(7 e6 12 ; & *( 2& E 5 0(7(6 12

PAGE 215

; & 2K 2& H 5 0(7(5 12 ; 4( &œ 2& 0(7(1 12 ; &( ( 0(7(5 12 ; & 8( K 0(7(5 12 ; & 4( % RXR R 0(7(5 12

PAGE 216

29I 8;: I2 R 6 UQ WR + + UU UQ 2 WR 2n 9 U & WRWR& Q r f f r f f r m WU! 2 0 WR ; ,7 2 r!r 2 ; U LW f UF WV & ,, WR &W WWn F R RR f RRR r Y2WR 0 Y&WR e 2 WR & } X 2 WRWR mrf f m f f 2 YUW f f f f f Q QR Z 2 WR 2Vf Y2 RrLXF R 222 M RRR 2n RRR }r RRR ;, &'WR R YF ; ? & WR}f Q f f f f R ,, f f f f F R D r P WR WR R ( WU IO R R f m e ? Y& m YO Y 5 • ‘LW UU WR fL P UU R WR WRYQ 7L RMWRY& ; 2 eMWR Y2 m r r f r r f r f R WR WR L [ UU 2Lf§ WR VL ; WU R R R Y & f!! & 0 L WR & OL mF WR rf R RF r FRR P F RF ‘IW RWR Wr WR $WULWR R FV WR RU f FQ 2 *& r f f f 2 Qf r f f R R f f f R 2 WRR 2 2 WR }f WR 2 WR2YWR R &2 X RRR 222 222 WQ RRR 0 222 Wr }r }r 2WR Y2 WR F VL WR D ; } & ; R VMWRWR f f r F ,, r f f f 2 ,, f f f F R WR WR 9& UU R R Z WR P R }f R}f UQ LIO YM RF D DU F m WRYF ‘f! YF WR WRWRYR 0 R f f F Y& R Y2 R VL

PAGE 217

R D! R 2n R 2n f f A R rf 2 79 A 2 8&2 2 f f } f + &; Y2m 06 82&2Y-2 R f } } r Q r rfm R R ML R /8&? R 2 R f r f f 1I2 2 -fW R &; P R P R UR 2n f+ PR P FR R R R 1 RRR A 222 R R R LQ RFR LIf 222 fL R F?MR R ‘L}.,2 R 2 R 2 X } f f f r R } f r r r &0 R f } } } Y R R P F?M PRQR &Y‘ Z 2 Q 2n + QR ‘ 9r Q 2nWI L! f RRR f 222 f RRR 62K 0 D &9m R X D W R R [GPPR 8 m; ; m++2 8[ ; A L n0 2 f f f } f r f } f r f f 2 Le! QR ; R RQ R -OIOOnLR ;, ;, 9 ;, 0(7(. R R R D R R R F" R f f r R r‘f P P1 Q RRM R PR RXQ DO R R FP R ‘;, 1 1 2 Q R } f f } ,, f f r f WO D nc8O+2 H[ Q RFYM R D Q FG Q FR Ufr Wr RFR RRR UV &2 RRR R & 22 &2 r WR S R Q VR R R } U! R } r } r f R } } r } m Q DL L1UL2 ‘ &0 3 122 Q HJ U P FT 8D RRR A A .IOXDnR f r f } fR R UM R O 84 e D 8R RR 2 I ; ;, Q m 2 } m } f 0-A2 &4 8V

PAGE 218

6$18< )257 6<35,17 )2575$1 ,9 /)9(/ 5$,1 '$7( &, 0(16 ,21 f;fe&f A7,7/(f & ',0(16,21 13f :5,7( f )250$7r /($67 648$5(6 ),7 7& ;rf 5($' f 7,7/(&,f f & :5,7( f 7,7/( 8 f IRUPDW $ f )250$7 +$f 5($' f16( 76 )250$7f '2 16(76 )($'f13-f )250$7f 13 13-f 5($'f ; ff 15f )250$7)f 5($'f 4 f 13f 680;4 e80;68 '2 13 680;* 680;*8,fr;,f 680 ;64 680;6*3 ;,frr ( 680;8680;64 '2 13 *( f 8r; f 6804( 64 &2 13 680*( f§6804(4,L4( f frr 6 6* 4 f ;13 13 *2 64;13 6808% &2 13 e804% 680*8*,f4(frr 5 6X57 6808(680&O%f :5,7( f )250$7 n 0(7(5 1& ff :5,7( f )250$7;r ; };m 4 r;r 4( ff '2 13 :5,7(6f ; f} f4( f )250$7 )f :5,7(f %5 )250$7}2;r % f ) f ; f 5 r)L &217,18( 6723 (1'

PAGE 219

6$1&< * )7) /($67 688$5(6 ),7 7* & %; +(/( f§6+$ : )/2: 0(7(5 &$/L5$7,81 +3 5(&&.//5 $ 0(7(5 18 ; 2 4( % 5 0(7(5 1& ; 2& 2 4( 0(7(5 18 0(7(5 18 0(7(5 12 ; 4( 5 ; & 2& & *( H 5 ; & *(

PAGE 220

6F UU UU + + P ,7 7 R UR F Dr RWDQWH f f f f } f f f f WW L ; \ FU & L W[ & ; P 2 2L & ; F R ,, FM H 2 WL 0Y&9& R } R RF f RRR ,; LW 2f Lf§ IR ‘e‘ P RL R f§ WQ R + WQ D 2n f§ f R R b } f f r Q Y2 f f f f f 2 IW f R 2 2O 2 O? R D LQ QR R Y' 02 f§ WL f§ F R 222 RRR WW f§ I2 0 R ; &0 ef &F ; & 01L! ; m R RLP WQ ,, f f f f 2 R f§ P P 2O 0LV 9& ,9n ,, m f f r F R F XL 2f P 2n&2 ,, R R 2 f f f 9& }& 6 Y !& ? Y& & FF 0(7() V U ,7 + UQ I3 R ,2 LV &' 7L F A UU 7 & 1fW f f f } f r f f f f f &8L8n; WW WQ R WRR f§ ‘t 2 ,, R e UR D OL FV! & &2 f RF F r &2 f§ LV W UR R f§ 0 2 -YO r D & LV & R 0L! f f f f e YO IW f f f f R R f R R P UR VL RR!LR &Y R -! LV mM LV R R 2Y& RRR R RRR f§ &2 rf 0 L! UR RL f§0 FRFD ; 2rr6 ;, &0L! f f f f F LW f f f f R O m f m R WP R !L RL P R DRL 2-2-2 RWU r 0n2 D LV F &F rf§ IV VOYI R IW} f f Y 2 & F

PAGE 221

2 ‘2n 2 2n R 2n f f f§ R WI&0 FR Q RQ Q ‘n IU f§ R A Q ‘[L [! R 8,2! R &0 R /AA12 IW IW IW D } f f f &' f f f f f f§ 2 D ;f r‘ 0 2 ; Y?n &0 f§ VI &0 f§ OLf &0 Ur RR R R R R RR R QR 2n IIO &2 f 1 R P FP PH R R Q FQ Rn R P f§ LQ XR f f f f f§ & f f } IW f FP D } f f f W2&?2 &?O LQ L Q R R I FP f§ LQ f§ PP RR LQ FP f§ '2 m R R R f 2 2 R UVFr L 1 &0 2n ,, D f§ ML LQ QR R 2-&1LI f DM ;1Q XnR f L m IW IW IW IW f f f f UR R D n0 2 ‘[ m f§2 XO P + /8 XO 0( 7( 2n 2 } 2n 2 &r 2n f R IW f f R A 2 cQ11 f§ LQ fR RQ OX 2n R FQ R 8O 0 3} 2 82n LL 6 r f f r ,, 2 f f } f ,, f D &0 0 f§2 ; A ‘[ 2n ‘c &0 f§ &0 f§ ‘U 1 R RR &0 2 2 R 3 R 1 nQ ‘R c'21 0 R X 7 f 32 f f f f f f f f f f LQ R f R f§ UQ R P f§ FU ‘ QR F2 f§ 2n A &0 &0 A R RR f 2 2 f 2 Q 1 + D } 8 ,, ’ 2n 3f &0 2n 2 X ; 8 f§ 2 ; ;8 f f r f f f m IW U} R f§ R LL 1 LW &0 2 ; 8L 8, + K 8O 8I

PAGE 222

5 0(7(5 18 ; r f & 4( ( 5cf§ 0(7(5 12 ; D 8( e U 0(7(5 1 ; e *( ( +f§ 0(7(5 18 ; 4( 5 0(7(5 18 ; 8(

PAGE 223

r r r r ; r O \ 9; r f§ r r r r 26 r 9; 7 r r 292r r 9 9 r e r 9 f ; 9 r '0 +-/: + r J r r r 9 r 9 7 r 6 ; 9 r ?/; r r 299 9 r9 r 9 r ; f2n fD r r r r r ; ; /r ; r ; 292r r R[Ur Y r r ; r = ; r '0 \: : 96r r r r 9 ; r r ; ; r r r r 9 r=9 r9 r ; ; r '0 +: WI 99r r r r r9 r 9 ; r ; r 99r r 9

PAGE 224

%,%/,2*5$3+< $UDYLQ 9 DQG 6 1 1XPHURY 7KHRU\ RI 0RWLRQ RI /LTXLGV DQG *DVHV LQ 8QGHIRUPDEOH 3RURXV 0HGLD 7UDQV $ 0RVFRQD -HUXVDOHP ,VUDHO 3URJUDP IRU 6FLHQWLILF 7UDQVODWLRQ %DGRQ*K\EHQ : 1RWD LQ 9HUEDQ PHW GH 9RRUJHQRPHQ 3XWERULQJ QDELM $PHUVWHUGDP 7LMGVFKULIW YDQ QHW .RQLQNOLMN ,QVWLWX\W YDQ ,QJHQLHXUV 7KH +DJXH %HDU 6FDOHV RI 9LVFRXV $QDORJ\ 0RGHOV IRU *URXQG :DWHU 6WXGLHV -RXUQDO RI WKH +\GUDXOLFV 'LYLVLRQ $6&( 9R ((a 1R +< )HEUXDU\ fn %HDU '\QDPLFV RI )OXLGV LQ 3RURXV 0HGLD 1HZ
PAGE 225

&ROOLQV 0 $ DQG / : *HOKDU *URXQG :DWHU +\GURORJ\ RI WKH /RQJ ,VODQG $TXLIHUn6\VWHP +\GURG\QDPLFV /DERUDWRU\A 5HSRUW 1R 0 7 &DPEULGJH 0DVVDFKXVHWWV &RRNH & : 6FHQHU\ RI )ORULGD ,QWHUSUHWHG E\ D *HRORJLVW 6WDWH *HRORJLFDO 6XUYH\ %XOOHWLQ 1R 7DOODKDVVHH &RRNH & : *HRORJ\ RI )ORULGD )ORULGD *HRORJLFDO 6XUYH\ %XOOHWLQ 1R 7DOODKDVVHH 'H :LHVW 5 0 )UHH 6XUIDFH )ORZ LQ D +RPRJHQHRXV 3RURXV 0HGLXP $6&( 7UDQVDFWLRQV 9RO f *ORYHU 5 ( 7KH 3DWWHUQ RI )UHVK:DWHU )ORZ LQ D &RDVWDO $TXLIHU -RXUQDO RI *HRSK\VLFDO 5HVHDUFK 9RO 1R +HOH6KDZ + 6 ([SHULPHQWV RQ WKH 1DWXUH RI 6XUIDFH 5HVLVWDQFH LQ 3LSHV DQG RQ 6KLSV 7UDQVDFWLRQV ,QVWLWXWH 1DYDO $UFKLWHFWV 9RO f A +HOH6KDZ + 6 ([SHULPHQWV RQ WKH 1DWXUH RI 6XUIDFH 5HVLVWDQFH RI :DWHU DQG 6WUHDPOLQH 0RWLRQ XQGHU &HUWDLQ ([SHULPHQWDO &RQGLWLRQV 7UDQVDFWLRQV ,QVWLWXWH 1DYDO $UFKLWHFWV 9RO f 7 +HOH6KDZ + 6 6WUHDPOLQH 0RWLRQ RI D 9LVFRXV )LOP 5HS RI WKH %ULWLVK $VVRFLDWLRQ IRU WKH $GYDQFHPHQW RI 6FLHQFH WK 0HHWLQJ 9RO f +HU]EHUJ $ 'LH :DVVHUYHUVRUJXQJ HLQLJHU 1RUGVHH EDGHU -RXUQDO *DVEHOHXFKWXQJ DQG :DVVHUYHUVRUJXQJ 9RO 0XQLFK f +XEEHUW 0 7KH 7KHRU\ RI *URXQG :DWHU 0RWLRQ -RXUQDO RI *HRORJ\ 9RO 1R f 3ROXEDULQRYD.RFKLQD 7KHRU\ RI *URXQG :DWHU 0RYHPHQW 7UDQV 5 0 'H :LHVW 3ULQFHWRQ 3ULQFHWRQ 8QLYHUVLW\ 3UHVV 5RXVH + $GYDQFHG 0HFKDQLFV RI )OXLGV 1HZ
PAGE 226

6WHZDUW : +\GURORJLF (IIHFWV RI 3XPSLQJ IURP WKH )ORULGDQ $TXLIHU LQ 1RUWKZHVW +LOOVERURXJK 1RUWKn HDVW 3LQHOODV DQG 6RXWKZHVW 3DVFR &RXQWLHV )ORULGD 8 6 *HRORJLFDO 6XUYH\ 2SHQ )LOH 5HSRUW 7DOODKDVVHH )ORULGD 8 6 :HDWKHU %XUHDX &OLPDWRORJLFDO 'DWD IRU WKH 8QLWHG 6WDWHV E\ 6HFWLRQ )ORULGD 6HFWLRQA :DVKLQJWRQ & 8 6 *RYHUQPHQW 3ULQWLQJ 2IILFH 9DXJKDQ 7 : $ &RQWULEXWLRQ WR WKH *HRORJLF +LVWRU\ RI WKH )ORULGDQ 3ODWHDX 3DSHUV IURP WKH 7RUWXJDV /DERUDWRU\ 1R &DUQHJLH ,QVWLWXWH 3XEOLFDWLRQ f

PAGE 227

%,2*5$3+,&$/ 6.(7&+ $QGUHZ -RVHSK (YDQV -U ZDV ERUQ -XO\ LQ *DLQHVYLOOH )ORULGD 0U (YDQV DWWHQGHG SXEOLF VFKRRO LQ *DLQHVYLOOH DQG JUDGXDWHG IURP *DLQHVYLOOH +LJK 6FKRRO LQ +H DOVR KROGV WKH IROORZLQJ GHJUHHV IURP WKH 8QLYHUVLW\ RI )ORULGD %DFKHORU RI $HURVSDFH (QJLQHHULQJ f 0DVWHU RI 6FLHQFH LQ (QJLQHHULQJ $HURG\QDPLFV f DQG 0DVWHU RI (QJLQHHULQJ &RDVWDO DQG 2FHDQRJUDSKLF f )URP WR 0U (YDQV ZDV HPSOR\HG E\ 3UDWW t :KLWQH\ $LUFUDIW :HVW 3DOP %HDFK )ORULGD WR GR DHURG\QDPLF GHVLJQ ZRUN RQ MHW DQG URFNHW HQJLQHV )URP WR 0U (YDQV ZDV HPSOR\HG E\ 0DUWLQ 0DULHWWD &RUS 2UODQGR )ORULGD WR FDUU\ RXW DHURG\QDPLF GHVLJQ DQG SUH DQG SRVWIOLJKW WHVW DQDO\VLV RI WKH 635,17 DQWLEDOOLVWLF PLVVLOH 6LQFH 0U (YDQV KDV GLUHFWHG KLV SURIHVVLRQDO HIIRUWV WRZDUG WKH DUHD RI +\GUDXOLFV DQG :DWHU 5HVRXUFHV (QJLQHHULQJ 0U (YDQV LV D 5HJLVWHUHG 3URIHVVLRQDO (QJLQHHU f LQ WKH VWDWH RI )ORULGD DQG LV D PHPEHU RI WKH $PHULFDQ 6RFLHW\ RI &LYLO (QJLQHHUV DQG 7DX %HWD 3L 1DWLRQDO (QJLQHHULQJ +RQRU 6RFLHW\

PAGE 228

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ % $ &KULVWHQVHQ 3URIHVVRU RI &LYLO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ M )7 6FKDXE 3URIHVVRU RI &LYLO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ WK(DGHV N-R= $VVRFLDWH 3URIHVVRU RI *HRORJ\ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH &RXQFLO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW 'HDQ *UDGXDWH 6FKRRO

PAGE 229

8) /LEUDULHV 'LJLWDO 'LVVHUWDWLRQ 3URMHFW DROULFK ,QWHUQHW 'LVWULEXWLRQ &RQVHQW $JUHHPHQW ,Q UHIHUHQFH WR WKH IROORZLQJ GLVVHUWDWLRQ $87+25 7,7/( (YDQV $QGUHZ a f $ VWXG\ DQG HYDOXDWLRQ RI VDOWZDWHU LQWUXVLRQ LQ WKH )ORULGDQ DTXLIHU UHFRUG QXPEHU f 38%/,&$7,21 '$7( GLVVHUWDWLRQ KHUHE\ JUDQW VSHFLILF DQG OLPLWHG DUFKLYH DQG GLVWULEXWLRQ ULJKWV WR WKH %RDUG RI 7UXVWHHV RI WKH 8QLYHUVLW\ RI )ORULGD DQG LWV DJHQWV DXWKRUL]H WKH 8QLYHUVLW\ RI )ORULGD WR GLJLWL]H DQG GLVWULEXWH WKH GLVVHUWDWLRQ GHVFULEHG DERYH IRU QRQSURILW HGXFDWLRQDO SXUSRVHV YLD WKH ,QWHUQHW RU VXFFHVVLYH WHFKQRORJLHV 7KLV LV D QRQH[FOXVLYH JUDQW RI SHUPLVVLRQV IRU VSHFLILF RIIOLQH DQG RQOLQH XVHV IRU DQ LQGHILQLWH WHUP 2IIOLQH XVHV VKDOO EH OLPLWHG WR WKRVH VSHFLILFDOO\ DOORZHG E\ )DLU 8VH DV SUHVFULEHG E\ WKH WHUPV RI 8QLWHG 6WDWHV FRS\ULJKW OHJLVODWLRQ FI 7LWOH 86 &RGHf DV ZHOO DV WR WKH PDLQWHQDQFH DQG SUHVHUYDWLRQ RI D GLJLWDO DUFKLYH FRS\ 'LJLWL]DWLRQ DOORZV WKH 8QLYHUVLW\ RI )ORULGD WR JHQHUDWH LPDJH DQG WH[WEDVHG YHUVLRQV DV DSSURSULDWH DQG WR SURYLGH DQG HQKDQFH DFFHVV XVLQJ VHDUFK VRIWZDUH 7KLV JUDQW RI SHUPLVVLRQV SURKLELWV XVH RI WKH GLJLWL]HG YHUVLRQV IRU FRPPHUFLDO XVH RU SURILW A 6LJQDWXU&WII &RS\ULJKW +ROGHU I4QGIUHrnWR ( UDQV 3ULQWHG RU 7\SHG 1DPH RI &RS\ULJKW +ROGHU/LFHQVHH %OXUUHG IRU 3ULYDF\ 3ULQWHG RU W \SHG 3QRQH 0XPEHU DQG EPDLO $GGUHVV RW XRS\QJQW QRLGHU/LFHQVHH 'DWH RI 6LJQDWXUH 3OHDVH SULQW VLJQ DQG UHWXUQ WR RI $0