Citation
Development of a high-speed gallium arsenide and indium gallium arsenide Schottky barrier photodetector for millimeter-wave optical fiber communications

Material Information

Title:
Development of a high-speed gallium arsenide and indium gallium arsenide Schottky barrier photodetector for millimeter-wave optical fiber communications
Added title page title:
Schottky barrier photodetector for millimeter-wave optical fiber communications
Creator:
Kim, Jae-Hoon, 1952- ( Dissertant )
Li, Sheng S. ( Thesis advisor )
Figueroa, Luis ( Reviewer )
Bosman, Gijs ( Reviewer )
Holloway, Paul H. ( Reviewer )
Place of Publication:
Gainesville, Fla.
Publisher:
University of Florida
Publication Date:
Copyright Date:
1987
Language:
English
Physical Description:
ix, 184 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Capacitance ( jstor )
Contact resistance ( jstor )
Electric current ( jstor )
Electrons ( jstor )
Lasers ( jstor )
Photodiodes ( jstor )
Photometers ( jstor )
Quantum efficiency ( jstor )
Semiconductors ( jstor )
Wavelengths ( jstor )
Dissertations, Academic -- Electrical Engineering -- UF
Electrical Engineering thesis Ph. D
Fiber optics ( lcsh )
Gallium arsenide ( lcsh )
Optical communications ( lcsh )
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Abstract:
This dissertation describes the development of high-speed GaAs and InP-based In0.53Ga0.47As Schottky barrier photodetectors operating in near-infrared regime, especially close to the dispersion minimum of optical fibers, i.e., 1.30-1.55 m for millimeter-wave optical fiber communications. Novel high-speed Au/p+-n-In0.53Ga0.47As/n+-InP and Au/p-In0.53Ga0.47As/p+-Inp Schottky barrier photodiodes as well as a GaAs Schottky barrier photodiode have been developed in this study. the results show that the GaAs Schottky barrier photodiode has a responsivity of 0.41 A/W and a quantum efficiency of 62% at 820 nm. The impulse response to the pulse laser with a FWHM of 110ps yields a risetime of 27 ps and a FWHM of 94 ps. The GaAs Schottky barrier photodetector is attractive for the short optical links where the maximum modulation frequency is not limited by optical fiber dispersions but only limited by detectors, lasers, and electronics. the InP-based In0.53Ga0.47As Schottky barrier photodiode using p+-n-In0.53Ga0.47As or p-In0.53Ga0.47As structure was first demonstrated. To develope a p+-In0.53Ga0.47As Schottky barrier photodiode, the barrier height enhancement on n-In0.53Ga0.47As epilayer has been studied. The Au/p-In0.53Ga0.47As/p+-InP Schottky barrier photodiode has a responsivity of 0.43 A/W and a quantum efficiency of 40.8% at 1.3 m without antireflection coating. The impulse response measurements yield a risetime of 85 ps for Au/p-In0.53Ga0.47As/p+-InP photodiode and 180 ps for Au/p+-n-In0.53Ga0.47As/n=_InP photodiode. The results show that the Au/p-In0.53Ga0.47As/p=_InP Schottky barrier photodiode is a very promising candidate for high-speed and multi-frequency detector applications, while the Au/p+-n-In0,53Ga-.47As/+-InP Schottky barrier photodiode needs more study to obtain reproducibility and reliability of the barrier height enhancement on n-In0.53Ga0.47As epitaxial layer inspite of its promising potential.To improve photodetector performance and frequency response, the future efforts should be directed towards the development of the photodetectors on semi-insulating substrates suitable for monolithic integration improving surface dielectric passivation and reducing the undesired packaging parasitics.
Thesis:
Thesis (Ph. D.)--University of Florida, 1987.
Bibliography:
Bibliography: leaves 175-183.
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Jae-Hoon Kim.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright Jae-Hoon Kim. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000947028 ( ALEPH )
16865588 ( OCLC )
AEQ9008 ( NOTIS )

Downloads

This item has the following downloads:


Full Text













DEVELOPMENT OF A HIGH-SPEED GALLIUM ARSENIDE AND
INDIUM GALLIUM ARSENIDE SCHOTTKY BARRIER PHOTODETECTOR
FOR MILLIMETER-WAVE OPTICAL FIBER COMMUNICATIONS

















By

JAE-HOON KIM


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1987



















THIS THESIS IS DEDICATED TO MY LATE PARENTS.

















ACKNOWLEDGMENTS


I wish to express my sincere appreciation to my thesis adviser, Professor Sheng S. Li, for his guidance, encouragement, and support throughout the course of this work and to co-adviser, Professor Luis Figueroa, for his invaluable discussions, encouragement, and help in device characterization. I would also like to thank Professors Arnost Neugroschel, Gijs Bosman, William R. Eisenstadt, and Paul H. Holloway for their participation on my supervisory committee.

I am grateful to Professor P.K. Bhattacharya of the University of Michigan, Dr. E.A. Rezek of TRW/Electro-Optics Research Center, and Dr. G.H. Olsen of Epitaxx Inc., for growing the epitaxial layers,

Mr. R.S. Wagner of Los Alamos National Laboratory for impulse response measurements, Drs. M.L. Timmons and P.K. Chiang of Research Triangle Institute for their assistance in device fabrication, and Mr. Paul Sierak of U.S. Air Force RADC/DCLW and Mr. J.J. Pan of E-Tek Dynamics Inc., for their interests and support. Thanks are extended to my

friends and colleagues, Dr. Kwyro Lee, Dr. Hyung-Kyu Lim, Dr. Tae-Won Jung, Dr. Mike Trippe, Mr. Won-Pyo Hong of the University of Michigan, and Mr. Sang-Sun Lee for their helpful discussions and encouragements.












I would especially like to thank my former professors Heung-Suk Yang, Hyung-Joo Woo, Young-Moon Park, and Hong-Sik Min of the Seoul National University for their unceasing encouragements and guidance throughout my graduate study.

I am greatly indebted to my late parents, my wife and son, and my elder brothers for their endless love, patience and confidence in the successful completion of this work, and support during all the years

of this study. The financial support of the U.S. Air Force RADC/DCLW, E-Tek Dynamics Inc., and Microfabritech of the University of Florida and the fellowship from the Korea Electric Association Scholarship Foundation are gratefully acknowledged.


















TABLE OF CONTENTS



PAGE

ACKNOWLEDGMENTS . ii

ABSTRACT . vi

CHAPTER

ONE INTRODUCTION . 1

1.1. Development of High-Speed Photodetectors:
Motivation and Overview . 1
1.2. Synopsis of Chapters . 8

TWO THEORETICAL ANALYSIS OF PHOTODETECTORS . 10

2.1. General Requirements for A Photodetector . 10 2.2. Spectral Response . 11 2.3. Response Speed. 12
2.3.1. Drift Time . 13 2.3.2. Diffusion Time . 13 2.3.3. RC Time Constant . 14
2.4. Dark Current . 15
2.4.1. Thermionic-Emission . 15 2.4.2. Generation-Recombination . 16 2.4.3. Tunneling . 17
2.5. D.C. Parameters . 17
2.5.1. Junction Capacitance . 18 2.5.2. Overlay Capacitance . 18 2.5.3. Series Resistance . 19 2.5.4. Lead Inductance . 21
2.6. Noise-Equivalent Power (NEP) . 21 2.7. Device Packaging . 25
2.7.1. Transmission Line Structure . 27 2.7.2. Transmission Line Materials . 28 2.7.2. Microstrip Transmission Line Design . 32
2.8. Response Speed Measurement . 35
2.8.1. Impulse Response . 35 2.8.2. Sampling/Correlation . 38 2.8.3. Electro-Optic Sampling . 43 2.8.4. Optical Heterodyning . 46












THREE FABRICATION OF SCHOTTKY BARRIERS AND OHMIC CONTACTS
ON GaAs, InxGal_xAs, AND InP . 48

3.1. Introduction . 48 3.2. Schottky Barrier Contact Formation . 49
3.2.1. Schottky Barrier Height . 49 3.2.2. Barrier Height Enhancement . 52 3.2.3. Barrier Height Measurement . 56
3.3. Ohmic Contact Formation . 62
3.3.1. Ohmic Contact Technology . 62 3.3.2. Specific Contact Resistance Measurement . 65
3.4. Device Fabrication . 74
3.4.1. SchottkyGate Formation . 74 3.4.2. Ohmic Contact Formation . 76
3.5. Experimental Results and Discussion . 85 3.6. Summary and Conclusions . 89

FOUR DEVELOPMENT OF A HIGH-SPEED GaAs SCHOTTKY BARRIER
PHOTODIODE FOR OPTICAL FIBER COMMUNICATIONS . 91

4.1. Introduction . 91 4.2. Theoretical Analysis . 91
4.2.1. Quantum Efficiency . 93 4.2.2. Response Speed . 94
4.3. Device Fabrication . 99 4.4. Experimental Results and Discussion . 102
4.4.1. Current-Voltage Measurement . 102 4.4.2. Capacitance-Voltage Measurement . 102 4.4.3. A.C. Admittance Measurement . 104 4.4.4. Spectral Response Measurement . 107 4.4.5. Response Speed Measurement . 107
4.5. Summary and Conclusions . 111

FIVE DEVELOPMENT OF A HIGH-SPEED Au/p-In0.53Ga0.47As/P+-InP
SCHOTTKYBARRIER PHOTODIODE FOR INFRARED PHOTODETECTION. 113

5.1. Introduction . 113 5.2. Theoretical Analysis . 113
5.2.1. Quantum Efficiency . 113 5.2.2. Response Speed . 114
5.3. Device Fabrication . 116 5.4. Experimental Results and Discussion . 119
5.4.1 Current-Voltage Measurement . 119 5.4.2. Capacitance-Voltage Measurement . 119 5.4.3. A.C. Admittance Measurement . 124 5.4.4. Spectral Response Measurement . 124 5.4.5. Response Speed Measurement . 127
5.5. Summary and Conclusions . 133












SIX DEVELOPMENT OF A HIGH-SPEED Au/p+-n-Ino.53Gao.47As/n+-InP
SCHOTTKY BARRIER PHOTODIODE FOR INFRARED PHOTODETECTION. 135

6.1. Introduction . 135 6.2. Theoretical Analysis . 136
6.2.1. Quantum Efficiency . 136 6.2.2. Response Speed . 139
6.3. Device Fabrication . 139 6.4. Experimental Results and Discussion . 145
6.4.1. Current-Voltage Measurement . 145 6.4.2. Capacitance-Voltage Measurement . 147 6.4.3. A.C. Admittance Measurement . 147 6.4.4. Spectral Response Measurement . 147 6.4.5. Response Speed Measurement . 149
6.5. Summary and Conclusions . 149

SEVEN SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS . 153

7.1. Summary and Conclusions . 153 7.2. Recommendations for Further Study . 155
7.2.1. Packaging Optimization of Photodiodes . 155
7.2.2. A High-Speed In0 53Ga0 47As Schottky Barrier Photodiode on Semi-insulating InP Substrate for Monolithic Integration . 155
7.2.3. A Low Noise and High Gain-Bandwidth Product
Quantum-Well Avalanche Photodiode . 156 7.2.4. Monolithic Optoelectronic Integration . 160

APPENDIX

A General Model for Schottky Barrier Height . 161 B SchottkyBarrier Height Enhancement . .164 C Schottky Barrier and Ohmic Contact Formation. 167 D Lift-Off Photolithography . 170 E Mesa Etch and Metal Etch . .172 F Surface Passivation. . 174

REFERENCES . 175

BIOGRAPHICAL SKETCH . . 184
















Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

DEVELOPMENT OF A HIGH-SPEED GALLIUM ARSENIDE AND
INDIUM GALLIUM ARSENIDE SCHOTTKY BARRIER PHOTODETECTOR
FOR MILLIMETER-WAVE OPTICAL FIBER COMMUNICATIONS



By



JAE-HOON KIM



MAY 1987



Chairman: Sheng S. Li
Major Department: Electrical Engineering

This dissertation describes the development of high-speed GaAs and InP-based In0.53Ga0.47As Schottky barrier photodetectors operating in near-infrared regime, especially close to the dispersion minimum of optical fibers, i.e., 1.30-1.55 m for millimeter-wave optical fiber communications. Novel high-speed Au/p -n-In0.53Ga0.47As/n +-InP and Au/p-In0.53Ga0.47As/p+-InP Schottky barrier photodiodes as well as a GaAs Schottky barrier photodiode have been developed in this study. The results show that the GaAs Schottky barrier photodiode has a responsivity of 0.41 A/W and a quantum efficiency of 62 % at 820 nm.

The impulse response to the pulse laser with a FWHM of 110 ps yields a risetime of 27 ps and a FWHM of 94 ps.


viii












The GaAs Schottky barrier photodetector is attractive for the short optical links where the maximum modulation frequency is not limited by optical fiber dispersion but only limited by detectors,

lasers, and electronics. The InP-based In0.53Ga0.47As Schottky barrier photodiode using p+-n-In0.53GaO.47As or p-In0.53Ga0.4As structure has first demonstrated. To develop a p -n-In0.53Ga0.47As Schottky barrier photodiode, the barrier height enhancement on n-In0.53Ga0.47As epilayer has been studied.

The Au/p-In0.53Gao.47As/p+-InP Schottky barrier photodiode has a responsivity of 0.43 A/W and a quantum efficiency of 40.8 % at 1.3 m without antireflection coating. The impulse response measurements yield a risetime of 85 ps for Au/p-Ino. 53GaO.47As/p+-InP photodiode and 180 ps for Au/p+-n-Ino.53Gao.47As/n+-InP photodiode. The results show that the Au/p-InO.53Gao.47As/p+-InP Schottky barrier photodiode is a very promising candidate for high-speed and high-frequency detector applications, while the Au/p+-n-In0.53Ga0.47As/n+-InP Schottky barrier photodiode needs more study to obtain reproducibility and reliability of the barrier height enhancement on n-In0.53Ga0.47As epitaxial layer inspite of its promising potential.

To improve photodetector performance and frequency response, the future efforts should be directed towards the development of the photodetectors on semi-insulating substrates suitable for monolithic integration improving surface dielectric passivation and reducing the undesired packaging parasitics.

















CHAPTER ONE
INTRODUCTION



1.1. Development of High-Speed Photodetectors-Motivation and Overview

The main motivation of this thesis is to develop a high-speed photodetector capable of demodulating the optical signals up to 20 GHz for millimeter-wave optical fiber links. Lightwave communications require a high-speed and high sensitivity photodetector in order to achieve a high data rate at low signal level. Most of the high-speed photodetectors have been fabricated mainly on GaAs using a Schottky barrier structure for 0.80-0.90 pm and on In0.53Ga0.47As using a p-i-n structure for 1.30-1.65 pm.

With the introduction of femtosecond laser pulse technology and lightwave modulation in the several tens of gigahertz frequency range,

the development of photodetectors with a high-speed and broad bandwidth is necessary for millimeter-wave optical fiber communications operating in the infrared regime, especially close to the dispersion minimum of optical fibers [1-5]. For this purpose a novel high-speed InxGal_xAs (x=0.53) Schottky barrier photodiode for

1.30 - 1.55 pm photodetection has been developed.

Figure 1.1 shows the block diagram of millimeter-wave optical fiber links using an electro-optic modulator (EOM). For these

applications, the photodetectors must satisfy several requirements






















1 Km Single-Mode
Fiber Cable


Low Noise Post-Detector
Amplifier


D.C. Demountable Connector I .Laser Diode and EOM Interface P Single-mode Fiber Pigtail T Waveguide to Microstrip or Fin Line Transition
W Input/Output Wavegulde Interface


Block diagram of millimeter-wave fiber optic link using an electro-optic modulator (EOM).


Output


Signal Input


Figure 1.1.












such as high response speed, high sensitivity, and low noise at the operating wavelength. The design goal of a high-speed photodetector is listed in Table 1.1. The promising candidates are GaAs Schottky barrier [6-11], AlGaAs/GaAs or GaAs p-i-n [12,13], InxGal_xAs p-i-n [14-20], InxGal_xAs Schottky barrier [21-24], avalanche photodiode including quantum-well structure [25-30], and photoconductive detector [31-40]. The major structures for high-speed photodetectors and the

institutions that performed the pioneering work on these structures are listed in Table 1.2. The III-V compound semiconductors have shown a great potential for use as high-speed optoelectronic device materials because of their high electron mobility, high saturation velocity, and good lattice-match to the InP substrate [41-43].


Table 1.1. DESIGN REQUIREMENTS FOR Millimeter-Wave Frequency Modulation Bandwidth Input/Output Power Level Input/Output Impedance Input Signal Type Optical Source Quantum Efficiency Optical Fiber Type


HIGH-SPEED PHOTODETECTORS 20-27 GHz 10 % of Center Frequency

0 dBm

50 ohm Analog Signal Laser Diode 50 %

Single-mode


InxGal_xAS, whose composition is determined by the intersection of two important III-V compound semiconductor alloys (i.e., Inl_xGaxAs and Inl-xGaxASyPl_y : y=2.2x), is one of the most promising materials














DEVELOPMENT OF HIGH-SPEED PHOTODETECTORS. (1980-1986)


Photodetector Structure Institution

GaAs Schottky Barrier Photodiode HP, Hughes GaAs p-i-n Photodiode MIT Lincoln Lab.

AIGaAs/GaAs p-i-n Photodiode CALTEC

Interdigital GaAs Photoconductive Detector HUGHES, TUA InGaAs/InP p-i-n Photodiode Bell Lab, TRW/EORC

lnGaAs/InP Photoconductive Detector TUA (W.Germany) Interdigital InGaAs/GaAs

Photoconductive Detector TRW/EORC

Avalanche Photodiode AT&T Bell Lab.

Quantum-Well Avalanche Photodiode AT&T BellLab. InGaAs/InP Schottky Barrier Photodiode U. Florida, TUA Interdigital lnGaAs Schottky

Barrier Photodiode U. Florida


Table 1.2.












for long wavelength photodetectors because its energy bandgap can be tailored to the wavelength of 0.95-1.65 pm. Figure 1.2 shows a detailed behavior of the energy bandgap vs. lattice parameter of an Inl-xGaxASyPl-y as a function of alloy composition. Figure 1.3 illustrates the energy bandgap vs. lattice constant for several III-V compound semiconductors. To take advantage of these excellent physical properties, the parasitic RC components and the high power consumption in parasitic resistances should be minimized. The low specific contact resistance is required for high performance photodiode applications. Several new types of high-speed Schottky barrier photodiodes capable of demodulating the optical signals at

1.30-1.55 jm will be discussed in this thesis.

To develop a high-speed photodetector for millimeter-wave optical fiber communications, the Schottky barrier structure has been chosen. Schottky barrier photodiode has many advantages such as simplicity of fabrication, reliability, absence of high-temperature diffusion processes which can degrade a carrier lifetime, and high response speed. Unfortunately, Schottky barrier contacts on n-InGaAs yield a low barrier height (5Bn = 0.2-0.3 eV) [44-46], which makes Schottky contacts too leaky to be useful for photodetector applications. Therefore, the effective barrier height needs to be increased to overcome the problem associated with the low Schottky barrier height. The significance of p +-n-InGaAs/n +-InP Schottky barrier lies in its ability to enhance the barrier height and to reduce the dark current for high performance photodetector applications.





















GaAs


1.30 1.20
1.10 1.00
0.90\S
0.80 0.70 0.60 0.50


0.40

InAs




Figure 1.2.


2.10 eV


2.00

1.90 1.80 1.70


1.60

1.50

1.40

z ., inP





Energy bandgap vs. lattice parameter of an InIxGaxAsyP1-y quaternary compound semiconductor as a function of alloy
composition, x and y.


















































0 1 I I i I I I
5.4 5.6 5.8 6.0 6.2 6.4


LATTICE CONSTANT d(A)


Figure 1.3.


Energy bandgap vs. lattice constant for III-V compound semiconductors. Note that the solid lines represent a direct bandgap material while the dotted lines represent an indirect bandgap material.












However, Schottky barrier contacts on a moderately doped p-InGaAs

epilayer are expected to yield a good barrier height (&Bp = 0.5-0.7 eV) for the proposed high-speed photodiode when a suitable metal and good surface preparation are provided [47,48]. The results have shown that Au/p-InGaAs/p+-InP Schottky barrier photodiode is a promising candidate for millimeter-wave optical fiber links.


1.2. Synopsis of Chapters

High-speed and high-sensitivity photodetectors are indispensible for the gigabit rate lightwave communications as well as for the integrated optoelectronic applications. This dissertation deals with high-speed GaAs and InxGal_xAs photodetectors using Schottky barrier structure for millimeter-wave optical fiber links. In chapter two, a theoretical analysis of photodiode parameters relating to the general design requirements for a photodetector is reviewed. For device characterization the microstrip transmission line, on which the photodetector is mounted, has been fabricated on a Cr-Au coated alumina (A1203) substrate.

In chapter three, the formation of Schottky barrier and ohmic contact on III-V compound semiconductors such as GaAs, InxGal1xAs, and InP is discussed. The Schottky barrier height enhancement of n-InGaAs to reduce the dark current associated with the low barrier height is described. The optimum conditions for low resistance ohmic contact and the ohmic contact measurement are discussed. In chapter four, the fabrication of a high-speed GaAs Schottky barrier photodiode has been discussed and the characterization of the photodiode has been












described by the current-voltage (I-V), capacitance-voltage (C-V), a.c. admittance, spectral response, and impulse response measurement.

In chapter five, a picosecond response Au/p-InxGal-xAs/p+-InP Schottky barrier photodiode for the infrared detection is presented. The Schottky barrier contact on p-InxGalxAs epitaxial layer provides the desired barrier height for the proposed photodetector depending on the surface preparation conditions such as sputter etch or chemical etch. In chapter six, a novel Au/p+-n-InxGal_xAs/n+-InP Schottky barrier photodiode operating in the infrared regime is proposed. This modified Schottky barrier structure requires the deposition of a thin surf ace layer of p +-InxGalxAs on n-InxGal-xAs epitaxial layer. The barrier height for such a photodiode can be tailored to its optimum value via the properly selected thickness and the dopant density of the ultra-thin surface layer.

In chapter seven, summary and conclusions are presented and recommendations for further study are discussed, which include:

(1) photodetector packaging optimization, (2) development of an InGaAs Schottky barrier photodiode on a semi-insulating substrate, and (3) development of a photoreceiver module for monolithic optoelectronic integration. In the appendix a general model for Schottky barrier height, barrier-height enhancement, Schottky and ohmic contact formation, lift-off photolithography, chemical etch including mesa etch and metal etch, and surface dielectric passivation procedures are described.

















CHAPTER TWO
THEORETICAL ANALYSIS OF PHOTODETECTOR PARAMETERS


2.1. General Requirements for A Photodetector

The general design requirements for a high-speed photodetector include (1) high quantum efficiency, (2) low dark current, (3) low capacitance and resistance (for high-speed and low noise), and (4) low excess noise (especially for avalanche photodiode). These requirements

for photodetectors are tied to the particular material requirements which include [15]

(1) Energy bandgap with a high absorption coefficient should be

smaller than the photon energy to be detected.

(2) Direct energy bandgap material must be used so that optical

radiation can be absorbed in a short distance in order to

minimize transit time effects (for high response speed).

(3) High-quality low-defect density and high-purity (especially

for long wavelength photodetector) material must be used so

that Zener-tunneling and dark current can be minimized.

(4) The material must be doped properly so that the depletion

layer width, which is determined by a trade-off between high

speed and high quantum efficiency, can be optimized.

(5) The epilayer material should be lattice-matched to the

substrate material for a long wavelength photodetector.












2.2. Spectral Response

For short wavelength (0.50-0.85 pm) detection, photons are absorbed near the semiconductor surface. The photogenerated excess carriers are separated in the depletion region close to the surface of a photodiode. It is advantageous to use a metal-semiconductor Schottky barrier structure with a thin (- 100 R) semi-transparent metal film. In this detection mode an extremely high response speed and high quantum efficiency can be obtained, if the depletion region is small and comparable to the light penetration depth. For long wavelength (0.95-1.65 pm) detection, light penetrates deeply into the material. Therefore, a high quantum efficiency requires the material with a wide depletion layer width. For these photodiodes a trade-off exists between a quantum efficiency and a response speed.

The external quantum efficiency of a Schottky barrier photodiode is determined mainly by the transmission loss in the metal film and the reflection loss at the metal-semiconductor interface as well as the recombination loss in the diode. To reduce the reflection loss an AR coating is usually incorporated in the photodiode fabrication. This can be achieved by depositing a thin dielectric film such as Ta205, SiO2or Si3N4 with its thickness equal to the quarter

wavelength of the incident radiation at the selected wavelength. The thickness of a single layer AR coating film is given by [49]


dI=(Xo/4 nI) tan-1[2n~ks/(n12-ns2-ks2)] (2.1)


where Xo is the wavelength of a selected incident light, n, the index












of refraction of the dielectric film, and ns the complex index of refraction of the semiconductor. In the case of a weakly or

nonabsorbing substrate, Eq. (2.1) can be reduced to the well-known quarter wavelength design formula, i.e., di = Xo/4nI. The minimum reflection loss with a quarter wavelength anti-reflection (AR) coating is given by [50,51]


Rmin = [(nl2-non2)/(nl2+non2)]2 (2.2)

where no, nI, and n2 are the index of refraction of air, AR coating film and semiconductor substrate, respectively.


2.3. Response Speed

The response speed of a photodetector can be determined primarily by three parameters: transit time (ttr) across the depletion region, diffusion time (tdiff) in the quasi-neutral region, and RC time constant (tRC) required to discharge the junction capacitance (Cd) through a combination of internal and external resistances. The total risetime of a photodiode, which is defined as the response time from 10 % to 90 % of a pulse height, is essentially equal to the largest of the three. The total risetime can be expressed by


tr = (ttr2 + tdiff2 + 'tRC2)/2 (2.3)


We can relate the risetime to the 3-dB cutoff frequency (fc) given by


fc 0.35/tr (2.4)


where the 3-dB cutoff frequency, fc is often regarded as the bandwidth












of the photodiode. For high speed operation, the carriers are being excited within the depletion region of the junction or close to the junction so that the diffusion time is shorter than or at least comparable to the drift time and the photogenerated carriers are collected across the junction at scattering limited velocity (Vsat)*

The depletion width is a trade-off between the fast transit time requiring a narrow depletion region and the combination of quantum efficiency and low capacitance which requires a wide depletion region.


2.3.1. Drift Time
S
When the carriers are generated in the depletion region, they should be collected by traversing across the depletion region. The carrier drift (transit) time across the depletion region is given by ttr = W/2.8 vs [52], where v. is the saturation drift velocity of the carriers, and W is the depletion layer width. This expression is strictly true only for a constant junction field and injection of the electrons into the junction, but it remains a reasonable approximation for carriers created in the junction field. For high mobility materials, the transit time is limited by a saturated drift velocity.


2.3.2. Diffusion Time

The carriers which are generated in the quasi-neutral base region will diffuse to the drift region. This carrier diffusion will result in a time delay of the carriers reaching the drift region. The diffusion time is given by tdiff = Wp, 2/(2.43 Dn p) [52], where W pin tp tp, n
is the thickness of the quasi-neutral epilayer.












2.3.3. RC Time Constant

The lumped circuit constant of a photodiode also limits its response speed. Assuming that the drift time and the diffusion time can be greatly reduced by optimizing the device configuration, the response speed is mainly determined by the depletion capacitance (Cd), the series resistance (Rs), and the load resistance (RL). The bandwidth of the photodiode, and hence its response speed depend on the load. For high frequency performance the load should be small. The shunt resistance (Ri) is generally very high, but is included to

account for the relatively low leakage resistance of the photodiode. The RC time constant is given by


+RC = (Rs + RL)Cd (2.5)


The bandwidth of a photodiode is usually characterized by the 3-dB cutoff frequency, which is given by


fc = 1/[27r(Rs+RL)Cd] for (Rs+RL)/Ri << 1 (2.6)


It should be noted that practical detection systems usually have lower cutoff frequency because of the finite load resistance, the parasitic capacitance and the lead inductance of the photodiode. For high speed operation, the series resistance should be small (usually less than 10 ohm for a well-designed diode) and the load resistance should be low (usually 50 ohm). The load resistance may be reduced in a high-speed circuit. However, it should be as high as possible for a low-noise detection circuit. Therefore, the depletion capacitance should be minimized.












2.4. Dark Current


The dark current depends strongly on the barrier height of a Schottky barrier photodiode. The dark current depends also strongly on diode material, geometry, and surface passivation. The use of InxGal_xAs/InP heterostructure and surface passivation could reduce the dark current of a photodiode. The reduction of dark current is important for the improvement of the minimum detectable power.

The dark current of a Schottky barrier photodiode consists of thermionic-emission current, generation-recombination current via traps in the depletion region, tunneling current due to carriers tunneling across the bandgap, and surface leakage current or interface current due to traps at the metal-semiconductor interface. Tunneling current can be neglected for low impurity doping concentration (less than 1017 cm-3). Surface leakage current is not a fundamental device characteristic and in most cases can be eliminated by careful processing and passivation techniques. The total current consists of thermionic-emission current over the Schottky barrier and the generation-recombination current in the depletion region.


2.4.1. Thermionic-Emission Current

The dark current in the forward bias direction of a Schottky barrier diode is determined mainly by thermionic-emission of majority carriers from the semiconductor into the metal for doping levels less than 1017 cm-3 [53,54].


Ith= SA*T2exp[-q(&fBn)/kT][exp(qV/nkT)- 1]


(2.7)












I
The effective barrier height, I Bn = iBn - 6m can be determined from the measured value of the saturation current.


2.4.2. Generation -Recombination Current

At zero bias the depletion region of the Schottky barrier is in thermal equilibrium and the rate of electron-hole pair generation is balanced by the rate of recombination. In the presence of an applied voltage, there will be a net generation or recombination current depending on the polarity of the bias. The generation-recombination current through the midgap traps in the depletion region, which is dominant at low voltage, is given by [53]


Igr = qniAW/teff[exp(qV/2kT) - 1] (2.8)


where teff = (tntp)l/2 is the effective carrier lifetime in the depletion region. This current is added to the thermionic-emission current and may cause deviations from ideal behavior in a Schottky barrier diode. Note that the current is a generation current when the junction is reverse biased and is a recombination current when the junction is forward biased. The total current can be expressed by [53]


Itot = Iths[exp(qV/kT) - 1] + Igrs[exp(qV/2kT) - 1] (2.9)


The ratio of thermionic-emission current to generation-recombination current increases with a bias voltage, energy-gap, effective carrier lifetime, and temperature and decreases with the barrier height. The recombination current is important in high barrier, in low lifetime

material, at low temperature, and at low forward bias voltage [53,54].












2.4.3. Tunneling Current

Tunneling current, either band-to-band or via deep-level traps dominates the dark current at high voltage (and then low capacitance), resulting in the soft breakdown characteristics. For heavily doped semiconductors the dominant process changes from thermionic-field emission to field emission and the contact states to behave like an ohmic contact with a sufficiently small contact resistance. In addition, the exponential dependence of the current changes from qV/kT to qV/Eoo [55].


J = Jsexp{qV/[Eoocoth(Eoo/kT)]} (2.10)


EOO = (qh/2)(ND/m*Gs)I/2 (2.11)


= l.85xl-14 (ND/mr'er)1/2 (2.12)


were m (= mrmo) is the effective mass of electron and Es (= eoer) is permittivity of the semiconductor. Eoo is a very useful parameter in predicting the relative importance of thermionic-emission or tunneling. For Eoo/kT << 1, the thermionic-emission process dominates and the contact behaves as a Schottky barrier. For Eoo/kT >> 1, field emission dominates and the contact exhibits ohmic characteristics. For Eoo/kT = 1, a mixed mode of transport occurs.


2.5. D.C. Parameters

The total capacitance of a packaged Schottky barrier photodiode is given by CT = Cj + CO + Cp, where Cj is the metal-semiconductor junction capacitance, CO is the overlay capacitance across the












dielectric passivation layer, and Cp is the package parasitic capacitance. The overlay and package parasitic capacitance should be minimized.


2.5.1. Junction Capacitance

The junction capacitance is simply given by the one-sided abrupt junction analysis. Measurements of junction capacitance can be used for determining the background shallow impurity profile of a Schottky barrier diode or a one-sided abrupt junction diode. The background dopant density is given by


NB = (2/q-oesA2){d(VR + VD)/dCj-2} (2.13)


where


Cj= A{qeoerND/2(VD - V)}11/2 (2.14)


where NB is the dopant density of the light-doped side. The diffusion potential VD of a Schottky barrier diode is determined from the intercept of Cj2 vs. VR curve, and the barrier height of a Schottky diode can be calculated using the following equation.


&Bn = VD + (kT/q)ln(Nc/ND) (2.15)


2.5.2. Overlay Capacitance

The capacitance due to the metal contact overlaying the passivating dielectric layer in a Schottky barrier diode may be important. Assuming negligible space-charge penetration (a realistic assumption for SiO2 on the semiconductor), the overlay capacitance is












co = GoerA/Wo (2.16)


where Wo is the thickness of the dielectric layer, and A[=2(Ri+ A)A ] is the area of the dielectric layer. This parasitic capacitance must be kept to a minimum particularly at X-band frequency or higher. Overlay contacts are not generally used above 40 GHz frequencies because they degrade the overall performance of a diode [55]. Figure 2.1. shows the different values of the overlay capacitance for different values of Ri, A , and Wo. The thick dielectric layer (e.g., 2 pm) can substantially reduce the overlay capacitance of a Schottky barrier diode.


2.5.3. Series Resistance

The series resistance is composed of the lead resistance, the spreading resistance of the base material, and the sheet resistance of the epilayer and the substrate. The series resistance is due mainly to the sheet resistance of the semiconductor substrate and the undepleted epilayer. This resistance is distributed, depending on the contact geometry, and is frequency dependent. The series resistance of an epilayer is given by


Rsl = 2W/qpnNDA (2.17)


where W is the thickness of the epilayer, and Nd is the donor density of the epitaxial or active layer. The resistance contributed by the substrate may be modeled by using the resistance of a contact dot on a semi-infinite semiconductor substrate.




















1.0








U














.011
.02


Figure 2.1.


Overlay capacitance of the SiO2 passivation layer with a thickness of 0.1 pm.


.04 .06 0.1 0
R, (MILS)


0.4 0.6












Rs2 =2s(A/7T )1/2 (2.18)


where Ps is the substrate resistivity. The total series resistance shown in Fig. 2.2. consists of Rsl due to the epilayer and Rs2 due to the semiconductor substrate.


2.5.4. Lead Inductance

The intrinsic response speed of a photodiode is usually degraded by the extrinsic circuit elements, such as junction and parasitic capacitances, series and load resistances, and inductances. The inductance is due primarily to the bond wire. If the round wire is used as a bond wire, the inductance Lb (nH) can be estimated by [56]


Lb = 5.08xlO-3L[ln(L/d) + 0.386] (2.19)


where d (mil) is the diameter of the bond wire. If the metal ribbon of width W, thickness t, and length L is used, the inductance due to the bond wire can be obtained by [56]


Lb = 5.08xl0-3L[ln(L/W+t) + 1.19 + 0.022(W+t)/L] (2.20)


The inductance due to the round wire and ribbon is practically less than 2 nH. The inductance is 0.14 nH for the bond wire with a diameter of 1 mil and a length of 10 mil.


2.6. Noise-Equivalent Power (NEP)

The minimum detectable optical power of a photodiode is limited by its noise performance. The noise generated in a photodiode operating under reverse bias condition is a combination of shot noise,



















ic Layer 3S SiO2)






Metal Back Contact


RS = RSl + RS2


Figure 2.2.


Structure and equivalent circuit of the
Schottky barrier diode.


WI
of












1/f noise (or flicker noise), and thermal noise (or Johnson noise). The shot noise is due to the photogenerated currents of the signal, background illumination, and the reverse-bias dark current. The

thermal noise arises from a random motion of the carriers within any resistive materials including semiconductors, and is always associated with a dissipative mechanism. The flicker noise (or 1/f noise) has a

current-dependent power spectrum which is inversely proportional to the frequency existing in all devices when a current flows.

At low frequency 1/f noise dominates,' and at intermediate frequency the generation-recombination noise dominates. At high frequency, the infrared photodetectors exhibit a white (frequency independent) noise which include thermal, generation-recombination, and shot noise. The transition points vary with semiconductor material, doping concentration, and processing technology. However, for infrared detectors these transition frequencies are roughly at 1 KHz and 1 MHz, respectively. In the wavelength region of interest for optical communication, the detection is limited either- by thermal or shot noise. The schematic diagram to characterize the photodetector noise is shown in Fig. 2.3. The effect of noise on the signal transmission is measured by the signal-to-noise ratio (SNR) for analog signals. The signal-to-noise ratio (SNR) is the signal power at an output of the detection circuit divided by the average noise power.


SNR = (1/2),s2Rff/n2Reff (2.21)


where is the sum of the square of all noise source currents and 1

































MMW
AMPLIFIER MIXER


DEVICE UNDER TEST


OSCILLATOR


Figure 2.3.


Schematic diagram for millimeter-wave photodetector noise measurement. The detector noise can be measured at both dark and illuminated condition.












is the signal noise current amplitude obtained from a sinusoidally

modulated optical signal,is = (7tqXPL/hp), where PL is the average optical signal power, which is assumed to be 100 % intensity modulated. Therefore, SNR is given by [5]

(1/2) ( 71q XPL/h V) 2
SNR = (2.22)
2q Af(Is+IB+ID)+(4kT Af/Reff)F


The optical power PL which generates a signal amplitude equal to the noise amplitude ( i.e., SNR = 1 ) at the output is called the minimum detectable power Pmin' which is given by


Pmin = (2hc/X77 )(Af)1/2[(Af)1/2+{ Af+(IB+ID)/q+(2kTF/q2Reff)}1/2] (2.23)

The noise-equivalent power is obtained by dividing Pmin by (Af)I/2


NEP = (2hc/X7 )[(Af)1/2+{ Af+(IB+ID)/q+(2kTF/q2Reff)}1/2] (2.24)


The noise due to the background illumination can be neglected because it can be made vanishingly small in optical fiber communication circuits. Figure 2.4 shows the theoretical calculation of NEP vs. effective resistance, Reff, with a parameter of a dark current for the photodetectors.


2.7. Device Packaging

The photodetector should be packaged to protect them from mechanical or other possible damages and to allow their incorporation into electrical and optical circuits. However, packaging introduces additional parasitic effects and may attenuate or distort both

















1610 10


11 10


-12 10

-13 10

-14 10

-15 10


113 10 109 1012

EFFECTIVE RESISTANCE ()


Figure 2.4.


Noise-equivalent power (NEP) vs. effective resistance as a parameter of a dark current.












electrical and optical signals, if not properly designed. The package size determines the parasitic impedance added to the diode impedance, predominantly the lead inductance and package capacitance. For low noise and large bandwidth the capacitance should be extremely small. Therefore, small packages are preferable for low noise-equivalent power and high modulation frequency of photodiodes for optical fiber communications.

In packaging a specially designed photodetector for optical fiber communications, a fiber with a relatively large numerical aperature and diameter is positioned close to the top contact above the illumination window of the diode. This kind of package allows the maximum quantum efficiency at minimum background illumination obtainable for a fiber-diode connection. Electrical contact to a photodiode is most easily achieved by soldering the wireleads or bonds into the electrical circuit. If a microstrip transmission line is used, the parasitic capacitance can be reduced. To allow a

demountable connection to a commercial 50 ohm amplifier, the photodiode should be incorporated into a miniature coaxial cable. The latter approach may limit the system performance because of the low input impedance (thermal noise).


2.7.1. Transmission Line Structure

Microstrip transmission lines have been extensively used for microwave and millimeter-wave hybrid integrated circuits. The passive lumped elements can be fabricated on the same substrate and chip or beam-lead active devices can be bonded directly to the strips.












Microwave integrated circuits (MIC) using microstrip line can be designed for frequencies ranging from a few GHz up to many tens of gigahertz (GHz). At higher frequencies, particularly into the millimeter wavelength ranges, losses increase greatly and higher-order modes become a considerable problem [57]. The frequency limit for -the use of microstrip transmission line is probably around 100 GHz.

Coplanar waveguide (CPW) structure is a good alternative to the microwave device packaging. CPW has an important advantage over microstrip transmission line in that the signal conductor and the ground plane conductor share the same surface of the dielectric substrate. The photodiode can be strapped across the intermetallic gaps without drilling the substrate. This waveguiding structure offers convenient incorporation of the lumped devices and short circuits, which is more difficult in the microstrip line [57]. This means that circuit connections to ground can be made simply with short, low parasitic bond wire connections. A variety of transmission

line structures for MIC applications are shown in Fig. 2.5. Each type of the transmission line structure has potential advantages for various applications and therefore their characteristics are summarized in Table 2.1.


2.7.2. Transmission Line Materials

The substrate materials should have the following characteristics [58]: (1) high dielectric constant, (2) low dissipation factor (or

loss tangent), (3) frequency and temperature independent dielectric constant, (4) high thermal conductivity, (5) high resistivity and























Substrat e
SMetal

(A) MICROSTRIP LINE


Dielectric Metal


(C) FINLINE


(B) SUSPENDED STRIPLINE Substrate






(D) INVERTED MICROSTRIP LINE


Metal


LINE


Substrate
(F) SLOTLINE


Substrate


(G) COPLANAR WAVEGUIDE


Metal Substrate

(H) DIELECTRIC IMAGE GUIDE


MIC transmission line structures for the photodetector package.


Slot













(E)


Figure 2.5.










PROPERTIES OF MIC TRANSMISSION LINE STRUCTURES.


TRANSMISSION CHARACTERISTIC FREQUENCY RANGE DEVICE/COMPONET COMPATIBILITY
LINE STRUCTURES IMPEDANCE (Q) OF OPERATION (GHz) LOSS DISPERSION INTEGRATION LEVEL
IN SERIES IN PARALLEL
Microstrip 25-125 upto 100 Medium Low Easy Difficult
Line

Coplanar 30-150 up to 60 High igh Easy Easy
Waveguide

Slot 60-200 High Non Difficult Easy
Line TEM Mode

Splned 40-150 >100 Low igh Easy Difficult
Stripline

Fine 10-400 30-100 Low Low Easy Easy

Inverted
Microstrip Line 25-130 >100 Low Low Unknown Unknown

Trapped Inverted 30-140 up to 100 Low Low Unknown Unknown
Microstrip, LineLoLoUrnw rrin

Dielectric Image
Waveguide 20-30 >100 High igh Difficult Difficult


Table 2.1.












dielectric strength, (6) high purity and constant thickness, and (7) high surface smoothness. The conductor materials should have the following properties: (1) high conductivity, (2) low temperature coefficient of resistance, (3) good adhesion to the dielectric substrate, (4) good etchability and solderability, and (5) easily deposited or electroplated. The metal conductor stripe is deposited by thin film technology on a dielectric substrate of relative dielectric constant. The properties of dielectric films should have

(1) reproducibility, (2) capability of withstanding high voltages, and

(3) low RF dielectric loss.

Typical substrate materials are alumina, GaAs, Duroid, sapphire, quartz, and fused silica with Gr varying from 2 to 12 and typical conductor materials are gold, silver, aluminum, and copper. Substrate properties show that good electrical conductors have poor substrate adhesion, whereas poor electrical conductors have good substrate adhesion. Aluminum has relatively good conductivity and good adhesion. It is possible to obtain good adhesion with high conductivity materials by using a very thin film of one of the poorer

conductors between the substrate and the good conductor. Some typical combinations are Cr-Au, Cr-Cu, and Ta-Au. The choice of conductors is usually determined by compatibility with other materials required in the processes. For small losses, the conductors should be of the order of 3 to 5 skin depths thick. That is, thick films of the good conductor are required. The commonly used dielectric films are AI203, SiO, SiO2, Si3N4, and Ta205 [58].












2.7.3. Microstrip Transmission Line Design

The parameter analysis of microstrip lines can be obtained by numerical approximations such as conformal mapping method, variational method, or relaxation method if the transverse electro-magnetic (TEM) mode is assumed to be dominant. The electrical parameters are characterized by characteristic impedance, attenuation factor, and wavelength. The most important dimensional parameters are the microstrip width, W, and height, H. The relative permittivity of the dielectric substrate is also important.

The microstrip width can be calculated iteratively for a required line impedance using the substrate dielectric constant and thickness.

The operation frequency is then used to obtain the guide wavelength and phase velocity. The conductor loss and dielectric loss [58,59] can be calculated using the substrate dissipation factor and metallization resistivity and thickness. The microstrip lines are assumed to be propagated in only quasi-TEM mode or can be approximated as such at the operating frequency. Therefore, the operating frequency must be lower than the cutoff frequency fc of the lowest transverse electric surface wave.


fc = 75/H(er-1)l/2 (GHz) (2.25)


where H is the substrate thickness (mm). In transmission lines used for interconnection purposes, the relative magnetic permeability of the substrate is unity to prevent the propagation delay time for a transmission line in a nonmagnetic medium.












The characteristic impedance to determine the width of microstrip lines is given by [58]


Zo= /27T(b/effeo)i/21n(8H/W + W/4H) (2.26)


= 60/(eeff)l/2ln(8H/W + W/4H) for W/H < 1 (2.27)


where/io = 4 xl0-7 H/m and eo = 8.854x10-12 F/m and W,H are the width, thickness of microstrip lines, respectively. The effective relative

dielectric constant Geff for a microstrip line depends on the ratio W/H, the relative dielectric constant er, and the geometrical factors of the boundary between air and dielectric substrate material [56].


eeff = (er+l)/2 + (er-l)/2 [(l+12H/W)-1/2+0.04(1-W/H)2] (2.28) The zero thickness (t=0) formulas given above can be modified to consider the thickness of the microstrip when W is replaced by an effective strip width WI as follows (t

W' = W + (t/ir)[l + ln(47TW/t)] (2.29)


The attenuation constant of the dominant microstrip mode depends on geometrical factors, electrical properties of the substrate and conductor, and the frequency. For a nonmagnetic dielectric substrate, the two sources of dissipative loss in microstrip lines are conductor loss (ohmic loss) in the strip conductor and ground plane and dielectric loss in the substrate. The sum of these losses may be expressed as losses per unit length in terms of an attenuation factor. The conductor loss, ac for W/H < 1 is given by [58,59]












ac = (20Rs/Inl)[l-(W'/4H)2]/27rZH[l+H/W'+H/lrW'{ln(47rW/t)+t/W}I (2.30)

where the surface resistivity R. is given in terms of the free space permeability Ao and the conductivity,a of the strip metal as


Rs =(7Tf/a )l/2 (2.31)


The dielectric loss, ad with loss tangent, tanS is given by [58,59]


ad = (207r/1nl0)(Qr/eeff1/2 ) (eef f-l)/ (er-i) tan 5/ (2.32)


where the loss tangent, tan8 is the substrate dissipation factor.

In addition to the conductor and dielectric losses, the microstrip line has radiation loss. The radiation loss depends on the substrate thickness and dielectric constant as well as the geometry. The radiation loss decreases when the characteristic impedance increases. For lower dielectric constant substrates, radiation is significant at higher impedance levels. For higher dielectric

constant substrates, radiation becomes significant until very low impedance levels are obtained. The wavelength and the phase velocity of the microstrip transmission line can be determined in terms of the effective relative dielectric constant, eeff"


= 29.980/(eeff)1/2f (cm) (2.33)


The Cr-Au coated alumina (A1203) film is used for the microstrip line substrate. The design parameters and the structure of a microstrip line are given in Table 2.2 and Fig. 2.6, respectively.












The microwave test fixture was constructed for the optical response measurenent of the photodiode in this study. The external connections from microstrip line to bias tee were made using commercial OSSM subminiature coaxial connectors as shown in Fig. 2.7.


Table 2.2. DESIGN PARAMETERS FOR MICROWAVE
TRANSMISSION STRIPLINE

Alumina (A1203) Substrate lxlxO.025 Dielectric Constant er = 9.8

Substrate Thickness H = 0.025 "

Gold Film Thickness t = 0.0002 "

Output Impedance Z = 50 ohm

Microstrip Line Width W = 0.02425

W/H Ratio W/H = 0.97

Effective Strip Width W' = 0.02478 "


2.8. Response Speed Measurement

The typical response speed measurement techniques for an impulse response of the photodetector are (1) impulse response technique using a sampling oscilloscope or a microwave spectrum analyzer [60,61], (2) sampling and cross-correlation technique using two photodetectors [62,63], (3) electro-optical sampling technique [64-66], and (4) optical heterodyne technique [8,67].


2.8.1. Impulse Response

This method requires an optical source generating the ultrashort pulses preferrably shorter than the impulse response of the device






































(Not in Scale)


Zo = 50 ohm, W/H = 0.97, Er = 9.8


Figure 2.6.


Structure of the microstrip transmission line fabricated in this study.




















- -~w~r~--~- ~ -, ~. ~--.- - - -


I
.~-.


Figure 2.7. Microstrip microwave test fixture for
characterization of high-speed photodetectors
fabricated in this study.












under test. For broadband characterization either a synchronously pumped mode-locked dye laser or a diode laser driven by a comb generator (or a step-recovery diode) at an operating wavelength are necessary. The schematic diagram for the impulse response measurement is shown in Fig. 2.8. The impulse response is measured by either a sampling scope in a time domain or a microwave spectrum analyzer in a frequency domain.

Note that the measured response is a convolution of the true photodetector impulse response and the measurement system response including the sampling gate width, the laser pulse width, the pulse broadening due to transmission lines and connectors. Since most of these are not known accurately, it is difficult to estimate the true impulse response of the photodetector by deconvolution. A more

accurate estimate can be obtained by an electrical correlation measurement using two identical photodetectors [61].


2.8.2. Sampling/Correlation

The standard technique for measuring the duration of picosecond optical pulses is to make a nonlinear optical auto-correlation of two identical optical pulses by delaying one with respect to the other and then mixing them in a second harmonic generating crystal. This

technique requires two photodetectors, each of which is activated by a picosecond optical pulse. One of the photodetectors has a dc bias, and the output signal from the first photodetector is used to bias the second one. The photodetectors are not necessary identical, in which case the measurement is referred to a cross-correlation [62].



















Short Optical
rnmh Pulse Train


Schematic diagram for impulse response measurement of the photodetector.


Figure 2.8.












The photodetectors are connected in order that the device under test (DUT) launches a waveform onto a transmission line by an incident short optical pulse and the second photodetector is a sampling gate on the transmission line that is probed by the same optical pulse with a variable delay time. The schematic diagrams are shown in Fig. 2.9 and Fig. 2.10. The variable delay is conveniently introduced by varying the relative timing of the optical pulses absorbed at each photodetector. The experimental quantity measured is the total charge (or average current for a repetitive train of pulses) sampled at the output of the second photodetector, as a function of the relative delay between the two optical pulses.

The measurement correlates the arrival of the signal from the first photodetector with the response of the second, which acts as a sampling gate. If the two photodetectors are identical, the measured charge is proportional to the auto-correlation function given by [63]


Q(T ) 1 g1(t)g2(t + r)dt (2.34)


where g(t) is the signal produced by a single photodetector with a dc bias and T is the delay time. The signal output from the second device is given by a correlation of the signal from the first photodetector with the response of the second photodetector with a delay time. Note that each signal is a convolution of the impulse response of the device, the optical pulse width, and the circuit effects such as the transmission line. The time resolution of the measurement is determined by the response of the two photodetectors and the
























11 (t)V (t) 12(t + T:


-/I




bg I Mt 92 (t + r )

+0


. DO


Figure 2.9.


Schematic diagram for sampling/correlation measurement.


















Vb


M t


Photodetector


Sampling Scope Photodetector


Q(tr)


Figure 2.10.


Schematic diagram for sampling/double-gap correlation measurement.












interconnecting circuit, and does not require any high-speed external circuitry. Since each photodetector is used in a linear response region so that the convolution integral can be readily interpreted, the precise response can be obtained by a deconvolution technique.


2.8.3. Electro-Optical Sampling

This technique shown in Fig.2.11 requires the microstrip

transmission line deposited on a linear electro-optic crystal such as LiTaO3 and used as an active element in a lithium tantalate

traveling-wave Pockels cell amplitude light modulator. A train of picosecond pulses from a mode-locked dye laser is split into two beams. One beam strikes the photodiode and launches a signal onto the modulator transmission line. The other beam passes transversely through the crystal and its intensity is modulated by the electric field under the transmission line sampling the signal. By varying the

relative delay between the two beams, the temporal resolution of the photodetector response is obtained [64-66].

The voltage waveform on the transmission line is a convolution of the photodiode response, the laser pulse response, dispersion in the transmission line. The subsequent sampling is a cross-correlation of the laser pulse with the voltage waveform. The operations of

convolution and correlation are associative and the sampler output is therefore equivalent to the convolution of the photodiode impulse response with the auto-correlation of the laser pulse. The output pulse of the photodetector and sampler to the narrow incident light pulses are shown in Fig.2.11. Since the auto-correlation of the laser












































Figure 2.11.


Schematic diagram for electro-optical sampling measurement.























Light Pulses


Figure 2.12.


Typical output pulse of the photodetector and sampler to the narrow incident light pulses.












pulse is independently measured, its contribution can be deconvolved to extract the photodiode impulse response. Then the equivalent time representation of the photodiode response is obtained. The temporal resolution is determined by several factors; the sampling light beam spot size, the optical transit time, and the laser pulse duration.


2.8.4. Optical Heterodyning

This technique can characterize the bandwidth of a photodetector accurately using two CW lasers. The limitation in the accuracy is the bandwidth of the transmission line and the microwave spectrum analyzer. The simple system shown in Fig.2.13 consists of two semiconductor diode lasers whose frequency is temperature tuned and the combined beam is incident on the photodiode. To avoid instabilities in the frequencies of the two lasers, it is necessary to reduce optical feedback by the incorporation of an optical isolator [8]. The outputs of both lasers are coupled into a short length of single mode fiber, the output of which is incident on the photodiode.

Since the photocurrent is proportional to the square of the electric field of the laser, the product of two laser fields at a different frequency will produce a difference or beat frequency detected by a photodiode. The longer wavelength laser is mounted on a thermoelectric cooler. By operating the longer wavelength laser at a heat sink temperature, the frequency of the cooled laser can be tuned through the frequency of the uncooled laser. With thermoelectric cooler/heater and feedback electronic circuit, the temperature of the laser diode can be controlled to within a few tenths of a millidegree.


























Single Mode
Fiber


Figure 2.13.


Schematic diagram for optical heterodyning measurement.


















CHAPTER THREE
FABRICATION OF SCHOTTKY BARRIERS AND
OHMIC CONTACTS ON GaAs, InGaAs, AND InP



3.1. Introduction

The Schottky barrier contacts are used in most high-speed III-V compound semiconductor electronic and optoelectronic devices such as MESFETs, MODFETs, photodetectors, lasers, and LEDs. In0.53Ga0.47As

material is most suitable for optical fiber communications operating in the 1.30-1.55 pm wavelength regime because of its energy bandgap (i.e., Eg = 0.75 eV at 300 K), high electron mobility, high saturation velocity, and lattice-match to the InP substrate [42,43]. However, the technology of InGaAs(P)/InP material and device systems is still in need of considerable development. The main reason for this is due to the difficulty of achieving the Schottky contact with a sufficiently high barrier height necessary for the development of MESFETs and the lack of a suitable dielectric insulating layer with a low interface state density required for the development of MISFETs.

The Schottky barrier height enhancement is a promising compromise between MESFET's and MISFET's technology even though more study is needed to have a good reproducibility. On the other hand, Schottky barrier contacts on a moderate doped p-type InGaAs and InP can yield good barrier heights (i.e., aBp = 0.76 eV for InP and 0.55 eV for In0 .53Ga0 .47As) when a suitable metal and good surface preparation are












provided. For III-V compound semiconductors the electrical properties of Schottky contacts depend strongly on the Fermi level pinning, which results when metal is deposited on the semiconductor surface [68].

The reproducibility and reliability for the ohmic contacts still need to be developed although ohmic contacts with low contact resistance are essential for high performance and reliable operation in most III-V compound semiconductor devices. New studies on the ohmic contacts have been reported recently because of the needs for good ohmic contacts on III-V compound devices and the availability of more sophisticated high vacuum surface analytical instruments required to understand the metallurgical properties of the ohmic contacts.

In this chapter, the optimum conditions for low resistance ohmic contact and Schottky barrier height enhancement on n-InGaAs epilayer are described using p +-n-In0.53Ga0.47As/n+-InP structure. The significance of this structure lies in its ability to increase the barrier height, and hence to reduce the large dark current commonly observed in the n-In0.53Ga0.47As Schottky barrier diodes. In addition, the Au/p-InGaAs/p+-InP as well as Au/p-InP/P +-InP Schottky barrier diode has been fabricated and characterized in this study.


3.2. Schottky Barrier Contact Formation


3.2.1. Schottky Barrier Height

The barrier height of metal-semiconductor system is determined by both the metal work function and the interface traps. The general expression[69,70] ofabarrier height can be obtainedfromthecharge













neutrality condition of a metal-semiconductor system shown in Fig. 3.1 by designating the oxide charge Qox = -qNox in the region of oxide close to the oxide-semiconductor interface,


QM + Qsc + Qit + QOX = 0 (3.1)


QOX = Qf + Qm + Qot (3.2)


where QM is surface charge on metal, Qsc space charge in the depletion layer of semiconductor, Qit interface trap charge, Qox oxide charge, Qf is oxide fixed charge, Qm mobile ionic charge, and Qot oxide trapped charge. Assuming that the energy distribution of the interface trap can be expressed by [70]


Dit(E) = Dit{exp[(E - q~o)/Es] + exp[-(E - q~o)/Es]} (3.3) then the barrier height can be expressed as


6Bn = C2(6m - X) + (l-C2)6fn - (l-C2)Nox/qDit - Ad (3.4)


where do represents the position of the neutral level for interface traps from the top of the valence band and Dit is the density of interface traps per unit area per electron volt. The two limiting cases considered previously can be obtained from Eq.(3.4). The detailed derivation of a general model for the barrier height is given in appendix A. The two limiting cases can be obtained as follows:

(1) Mott Limit (Dit ->0, C2 -> 1, and 6fn -> Vn)


5Bn = ( - X) - (


(3.5)












qA



q X




C +yT
+ 44EC
+s + + qV


El .E s


Work Function of Metal Barrier Height of Metal-Semiconductor Barrier Asymptotic Value of (DBn at Zero Electric Field Energy Level at Surface Energy Difference Between FERMI Level and Valence Band at the Surface Image Force Barrier Lowering Potential Across Interfacial Layer Electron Affinity of Semiconductor Built-In Potential* Permittivity of Semiconductor Permittivity of Interfacial Layer Thickness of Interfacial Layer Space-Charge Density in Semiconductor Interface Trap Density on Semiconductor Surface-Charge Density on Metal


Energy-band diagram of a metal-n semiconductor contact.


q~bM


(D)M
(DBn (DBo (Do (D*


A x
Vbi

C5

Qsc it QM


Figure 3.1.












which is the barrier height for an ideal Schottky barrier contact where surface state effects are neglected.

(2) Bardeen Limit (Dit ->oo, C2 -> 0, and Ifn -> Eg/q - 50)


5Bn = (Eg/q - 5) - (3.6)


The Fermi level at the interface is pinned by the interface traps at the value qdo above the valence band. The barrier height is

independent of the metal work function and determined entirely by the surface properties of the semiconductor.


3.2.2. Barrier Height Enhancement

The barrier height of an ideal Schottky contact is determined primarily by the difference of metal work function and electron affinity of the semiconductor. However, for a practical Schottky diode the property of metal-semiconductor interface such as interface trap density plays an importment role in determining the effective barrier height of the Schottky contact. Since there are only limited numbers of metals which are suitable for good Schottky contact, the control of the Schottky barrier height is essential for specific electronic circuit application. A low barrier height makes the Schottky contact too leaky to be useful for MESFET and photodetector applications. Thus, the effective barrier height need to be increased in order to overcome the problem associated with low barrier height.

The Schottky barrier height enhancement can be achieved by the use of (1) a thin insulating layer (i.e., MIS Schottky diode) [71],

(2) an oppositely doped thin surface layer to that of an active layer












(i.e., Quasi-Schottky diode) [72-75], and (3) a wide-bandgap materials such as InP or AlInAs (i.e., Heterojunction Schottky diode) [76-78]. The effective barrier height for a MIS Schottky barrier structure, which consists of a thin interfacial insulating layer between metal and semiconductor, can be increased and resulted in a

low reverse leakage current. However, high interface state density, oxide breakdown, and charge storage effects are some of the problems need to be overcome in III-V semiconductor Schottky contacts [71].

Schottky barrier enhancement is a promising technique for formation of a Schottky contact on InGaAs/InP material system, which employs a very thin p-In0.53Ga0.47As surface layer grown on the n-InGaAs epitaxial layer. Schottky barrier contacts on n-InGaAs usually yield very low barrier height (tBn = 0.2-0.3 eV), which makes Schottky contacts too leaky to be useful for photodetector applications. The barrier height enhancement can be achieved by depositing a thin p+-In0.53Ga.47As layer on the n-In0 53%.47As epilayer as is shown in Fig. 3.2.

The effective barrier height can be increased by band bending due to the space charge in the p +-In0.53Ga.47As surface layer provided that the dopant density and the thickness of the surface layer are selected to an optimum value and the layer is fully depleted at thermal equilibrium. The thickness and the dopant density of p +-InO.53Ga0.47As layer can be related to the barrier height enhancement, ABn given by [72]


A6Bn = qNAXm2/2(o3r


(3.7)























nGaAs * n - InP Substrate


Figure 3.2.


*wp~4-w" Ev




Energy-band diagram for Schottky barrier height enhancement by energy-band bending due to the space charge in the p+-InGaAs surface layer.


Metal


- - - - - - - - - - - E ,












The enhanced barrier potential will reach a maximum value at X = xm inside the p+-In0.53Ga0.47As surface layer provided that NAWp >> NDWnXm = (I/NA)(NAWp - NDVn) and Em = (q/Wer)(NAIIp - NDWn) (3.8) The effective barrier height 'Bn obtained at x = xm is given by


1'Bn = 5Bn + EmXm - qNAXm2/2eoer (3.9)


By substituting Eq. (3.8) into Eq. (3.9) the effective Schottky barrier height can be obtained.


byBn = 1Bn + (q/2eoerNA)(NAWp - NDWn)2 (3.10)


For NA >> ND and NAWp >> NDWn, the barrier height enhancement of a metal-p-n Schottky barrier diode, AdBn due to the p surface layer may be simplified to


A(Bn = qNAWp2/2eoer (3.11)


It can be shown that Eq. (3.11) holds only for AdBn >> VDND/NANote that NA and ND denote the dopant density of the p - and n-InO.53Ga0.47As layers, respectively. Wp is the thickness of the p+ -In0.53GaO.47As layer, and VD is the built-in potential of the p+-n junction. Therefore, the effective barrier height will increase as the product NAWp increases. The thickness and dopant density of the p +-Ino.53Ga0.47As surface layer should be determined in order to satisfy the condition of AbBn > VDND/NA.












The detailed derivation of Schottky barrier height enhancement is given in appendix B. The depletion layer width of the n-InGaAs epilayer is given by


Wn Wp + [Wp2 + (NA/ND)Wp2 + 2eoer(5m - In - V)/qND]I/2 (3.12)


where in =Xs + (kT/q)ln(Nc/ND) (3.13)


The effective barrier height for the proposed photodetector can be tailored to its optimum value via properly selected thickness and dopant density of the surface layer. Theoretically the effective barrier height equal to the bandgap energy of In0.53Ga0.47As can be achieved by the proposed structure. Figure 3.3 shows the effective barrier height vs. dopant density as a function of the thickness of p +-In0.53Gao.47As surface layer. Figure 3.4 shows the theoretical saturation current density of the Schottky barrier diode on n-InGaAs.


3.2.3. Barrier Height Measurement

The effective barrier height 'Bn of Schottky barrier diode can be determined by the following methods: (1) current-voltage (IF-VF or IF-T), (2) capacitance-voltage (C-VR), (3) photoresponse (Iph-E)

measurement using Eqs.(3.14) through (3.17). The values of the effective barrier height obtained different measurements often do not agree. Therefore, an understanding of the inherent assumptions in each technique as well as the practical limitations of each measurement is very useful in interpretation of the experimental data.


VBnI-V = (kT/q)ln(A*T2/Js)


(3.14)




















Reverse-BI, S _Numbers It
C of p+ - InGi


0.80
0.0.7 0.15 0.1
0.75 I

0.2
0.60 0.
w


m 0.404w
>


w 0.20
LL
LL


3.0xl 016 1017


101 8


1019 3.0x1019


DOPING CONCENTRATION OF p+- InGaAs LAYER (cm3)


Figure 3.3.


Effective barrier height vs. dopant density of p+-In0.53Ga 0.47As surface layer as a parameter of the thickness of the p+-In0.53Ga0.47As layer.

















103


E






LU





z
0

X
M


1 01


10-1 F-


103 105


10- 7
0. '2


Figure 3.4.


T = 300'K A= 4.92 Acre"2 ,K-2 Schottky Barrier on n - InGaAs Layer


K


0


0

S















I I I 0


0.4 0.6 C
EFFECTIVE BARRIER HEIGHTq n(eV)


Theoretical saturation current density vs. effective
barrier height at T = 300 K.












IBn = - (kT/q)in(Js/A* T 2) (3.15)


Bn = VD + (kT/q)ln(Nc/ND) (3.16)


'BnI-E = hv/q - (kT/q)(J/A*T2) (3.17)
*

where A (= 47qm*k2/h3) is the effective Richardson constant for the thermionic-emission neglecting the effects of optical phonon scattering, quantum mechanical reflection, and tunneling of carriers at the metal-semiconductor interface, and is is the saturation current density which is the extrapolated value of the current density at zero voltage.

The current-voltage measurement can be used to determine the barrier height of a Schottky barrier diode by several different methods. The simplest method is to measure the forward current density at a fixed temperature. The barrier height at zero bias can be determined from Eq.(3.14) if A* is known. Note that reliable results can be obtained only if the plot of lnJ vs. V is linear over at least three orders of magnitude and n is low (i.e., n < 1.1). For large values of n, or nonlinear plot of lnJ vs. V, the diode is far from ideal probably due to the presence of a thick interfacial layer or recombination in the depletion region, and the barrier height is not clearly defined [53,54].

An alternative method to determine the barrier height, if A is not known, is to measure the saturation current density as a function of temperature at a fixed forward-biased voltage. The barrier height can be determined from the slope of the Richardson plot (i.e.,












ln(Js/T2) vs. l/T) for a given forward bias. The intercept at l/T = 0 yields the effective Richardson constant, A . The capacitancevoltage measurement can be used to determine the deep impurity levels as well as the barrier height of a Schottky barrier diode. For a uniformly doped semiconductor, the plot of I/C2 vs. VR yields a straight line and its intercept on the voltage axis gives the diffusion potential, VD. Therefore, the barrier height can be

determined from Eq.(3.16).

In practical Schottky barrier diodes for both elemental semiconductors and III-V compound semiconductors, it is not unusual to find that the barrier height obtained from C-V measurement is larger than the barrier height determined by I-V measurement, i.e., 5Bc-V > I BI-V [53. one reason for dBC-V > B I-V is due to a thin compensated layer formed adjacent to, the metal during barrier formation and hence the potential energy barrier is reduced at the interface. Another reason is the lateral nonuniformity of the barrier height across the metal-semiconductor interface. The current

measurement would emphasize the lower value of the barrier height, while the capacitance measurement would provide a value of the barrier height averaged over the interface.

The photoresponse measurement shown in Fig.3.5 is the most accurate and direct method of determining the barrier height. When a monochromatic light is incident on a Schottky barrier diode through a metal contact, the photocurrent will increase sharply for q&Bn < hV< Eg resulting from photoexcitation of electrons from the Fermi level of

























SEMICONDUCTOR

BACK
ILLUMI NATION


OHMIC CONTACT














Ec
---- -- -EF
., -.v,,,-. h V ( 1)


METAL SEMICONDUCTOR


Figure 3.5.


Photoresponse measurement. (a) Schematic diagram; (b) Energy-band diagram for photoexcitation process.


METAL


FRONT





















hVl
(1,2)












the metal to the conduction band of the semiconductor, and for hi > Eg the photocurrent will increase even more rapidly as a result of band-to-band excitation. The resulting photocurrent Iph is given by Fowler's theory for classical photoemission as


Iph = C(hV - qBn)2 (3.18)


which is valid provided that hP - qBn > 3kT and qBn < hv < Eg. Thus, the plot of the square root of the photocurrent as a function of photon energy gives a straight line and the extrapolated value on the energy axis should give directly the barrier height.

In practice, the incident light is chopped to avoid edge effects and other contributions to the diode leakage current, and if the diode is illuminated from the front side, the metal is made thin enough to allow adequate transmission of the light to the metal-semiconductor interface. The photoresponse technique has been used not only to determine the barrier height directly, but also to measure the voltage

dependence of image-force lowering, the temperature dependence of the barrier height, and the direct and indirect bandgap energy in several ternary compound semiconductors.


3.3. Ohmic Contact Formation


3.3.1. Ohmic Contact Technology

A practical way to obtain low resistance ohmic contacts [79-85] is to increase the dopant density near the metal-semiconductor interface (ND > 1019 cm-3) so that the depletion layer caused by












Schottky barrier becomes very thin and the current transport through the barrier is enhanced by tunneling. Nearly all methods of making ohmic contacts depend on depositing a thin layer of metal alloy on a relatively oxide-free clean semiconductor surface and on heat treatment during or after deposition in vacuum or in an indrt atmosphere. Generally, it is preferred that the metal deposited on semiconductor should be heat treated at a temperature higher than the alloying temperature because a heavily doped contact layer is often formed between metal and semiconductor during the cooling cycle.

The selection of metals for ohmic contact to a particular III-V compound semiconductor depends on several factors [55,81]. The

primary factor is that the metal used for contact should be such an element that it can be acted as a dopant to the semiconductor so that a heavily doped surface layer can be formed. For example, the

possible materials are Si, Ge, Sn, Se, or Te for contacts on n-type semiconductors and Zn, Cd, Be, or Mg for contacts on p-type semiconductors. In addition to this factor, there are a number of other factors need to be considered before selecting a particular contact metal: (1) easy deposition, (2) good adhesion, (3) low alloying temperature, (4) minimum interface reaction, (5) minimum thermal mismatch, (6) no surface tension effects during alloying, (7) good electrical and thermal behavior, and (8) adaptability to thermocompression or ultrasonic wire bonding. The most widely used metal for ohmic contact on III-V compound semiconductors are Au, Ag, or In base alloys. The final factor for choosing a particular metal system is the













eutectic temperature of the alloy metal (i.e., Au, Ag, or In) with the semiconductor and its correlation to the temperature for which the semiconductor can be safely heated. After suitable choice of contact metal, an appropriate technique has to be selected for depositing the contact metal on the semiconductor surface. A number of techniques, e.g., evaporation, sputtering, and electrolytic or electroless plating in a chemical solution have been reported for this purpose.

The evaporation technique is by far the most widely used for the deposition of contact metal systems on III-V compound semiconductors. Sputtering technique has rarely been used for depositing the contact metal system on III-V compound semiconductors because of low sputtering rates, surface damage, and difficulty in accurate monitoring of the metal film thickness [55,811. The electroless plating technique has been frequently used for depositing overlayers of Au, Ni, etc., on ohmic contacts as well as Schottky contacts. Such overlayers are required for bonding thin wires with contact metal systems without any change in the properties of the contacts. The

wire bonding is usually carried out by either the thermocompression or the ultrasonic bonding technique.

Finally, the requirement of a buffer layer (e.g., n+-layer on n-type semiconductor) between the contact metal system and semiconductor in order to ensure good ohmic contact can also be satisfied by using epitaxial technique. Recently, the molecular beam epitaxial (MBE) technique has been used for growing such buffer layers. Ion implantation also promises to be a desirable alternative












to the epitaxial technique for obtaining submicron layers without introducing any undesirable interface states. However, thermal

annealing is usually required after ion implantation to remove damages and crystal defects. The annealing can be carried out by using thermal, laser, or electron beam annealing. Therefore, it can be predicted that ion implantation (for producing a buffer layer) followed by evaporation (for depositing the contact metal system) may be a good combination method for making good reproducible ohmic contacts on III-V compound semiconductors.


3.3.2. Specific Contact Resistance Measurement

For III-V compound semiconductors, the specific contact resistance can be determined from the following methods: (1) Cox and Strack [86], (2) four-point [87-89], (3) Shockley extrapolation [90], and (4) transmission line method [91-94]. For a homogeneous contact of area A having uniform current density, the contact resistance Rc is simply given by Rc = rc/A. The measured resistance R will be

approximately equal to Rc for most sample geometries when rc > 10-2 ohmcm2 However, for small values of rc, the spreading resistance of the semiconductor Rb and the series resistance Ro of the semiconductor substrate and the connecting wires should be taken into account, i.e., R = Rc + Rb + Ro.

The Cox and Strack method can be used to determine the specific contact resistance of a circular contact of radius a on epitaxial or bulk layers in the structure of Fig. 3.6. The spreading resistance of the layer is given by








































Figure 3.6.


PRb R







Rc= a2 [R PF(a) -RI

a t 0




Specific contact resistance measurement by the Cox-Strack method. The circular ohmic contact has radius of a.












Rb = (P/a)F(a/t) (3.19)


where F is a function of the ratio a/t and was found experimentally by Cox and Strack to have the approximate form


F(a/t) = (1/7r) tan-1(2t/a) (3.20)


Then with F(a/t) known, the contact resistance can be obtained by


rc = 7Ta2[R - ( P/a)F(a/t) - Ro] (3.21)


In practice, the resistances of an array of contacts with different areas are measured and the spreading resistance is calculated for each contact using Eq.(3.19). The specific contact resistance can be obtained from the slope of the plot of R-Ro vs. 1/a2, where Ro is provided by the intercept on R-Rb axis.

The four-point method requires metallization of only one surface

of the sample as shown in Fig.3.7. The spreading resistance should be first calculated and subtracted from the total measured resistance. The spreading resistance Rb for radial current flow from a circular contact of radius a is given in the form of an infinite series by Fang et al.[88]. In the four-point measurement, the voltage V1 and V2 are measured for a known current I. Assuming that the resistance of the semiconductor film between the contacts is the same everywhere, then


V1 - V2 = I(Rc + Rb) (3.22)


which gives


rc = 7ra2 [(VI/I) - (V2/I) - Rb) (3.23)













































v, V2 in (3s .-)1

I 21n2

if p a2< rc t


Figure 3.7.


Specific contact resistance measurement by the four-point method.


rc =-T a2












Kuphal has recently pointed out that the potential distribution in the plane of the semiconductor layer is logarithmic rather than linear, and the correct expression for the specific contact resistance is given by [89]


rc = 7ra2[(Vl/I) -(V2/I)ln{(3s/2a)-I/2}/21n2] (3.24)


provided that ira2 < rct, a << s, and t << s.

The Shockley extrapolation method can be used to determine the specific contact resistance of the thin semiconductor layers on the non-conducting substrates. As shown in Fig.3.8 this technique consists of measuring the voltage drop V(x) along the surface of the semiconductor film with coplanar ohmic contacts and using the extrapolated voltage Vo appearing across the contacts, then rc can be determined. Assuming that the sheet resistance Rs is laterally uniform and the epilayer is infinitely thin, the potential distribution under the contacts is given by [90]


V(x) Voexp(-x/Lt) (3.25)


where Lt = (rc/Rs)l/2 is the transfer length. By extrapolating the linear voltage drop measured between the two contacts to obtain Lt, the specifie contact resistance can be determined from


rc = RsLt2 (3.26)


Another method to determine the resistance of ohmic contacts to a thin III-V compound semiconductor layer on a non-conducting substrate



















~HHH~L~


T I-


- -1 1 1

Va +
V

n n n rr-


V(x)
A


VO x/LT


4. .1.


V0


L2
r = R 1.T
ST


Figure 3.8.


Specific contact resistance measurement by the Shockley method. The linear voltage distribution between contacts is extrapolated to obtain the transfer length Lt.


Va

I4


i --


L












use the transmission-line model (TLM). In the transmission-line model as shown in Fig. 3.9, the planar contact is treated as a resistive transmission line with an uniform sheet resistance Rs and a specific contact resistance rc. The total resistance Rc of the contact and the epitaxial layer under the contact is given by [91,92]


Rc = [(rcRsc)i/2/W]coth(d/Lt) (3.27)


where Lt = (rc/Rsc)1/2 is the transfer length of the Shockley method. The current in the semiconductor film under the contact decays with distance as exp(-alx), where the attenuation factor a1 is related to the inverse transfer length, i.e., a1 = l/Lt. In order to measure the specific contact resistance using TLM, the total resistance R should

be first measured experimentally. This can be accomplished using the arrangement of Fig. 3.10, where three identical ohmic contacts are spaced at unequal distance L1 and L2 along the surface of the layer. If R, and R2 are the resistance measured, the total resistance is easily given by


Rc = (- R2L1 + RIL2)/2(L2 - LI) (3.28)


The total resistance in Eq.(3.27) can be simplified


Rc = (rcRsc)1/2/W = RscLt/W for Lt << d (3.29)


The specific contact resistance can be determined from Eq.(3.29) with a measured known value of Rc. The TLM has been extended to the transmission line of circular geometry [93] and arbitrary shape [94].







































Rc




rcz R2W2 if d > 2'c
R sc Rsc


Figure 3.9.


Specific contact resistance measurement by the transmission line model (TLM) method. Rc is the total resistance of the metal-semiconductor interface and the epilayer under the contact.








































Figure 3.10.


T
w


\R 2-/


Method of determining the total resistance
(Rc) using a linear array of unequally spaced ohmic contacts. The shaded regions are the ohmic contact areas.


A I.


---, R 1


-+ --Lj --- DJL21D -












This theory can also be used to analyze the source and drain ohmic contacts for field-effect transistors fabricated with GaAs and other III-V compound semiconductors. The use of the TLM avoids the necessity of measuring the potential distribution V(x) of the Shockley method and hence is somewhat simpler to implement. However, both methods assume that the sheet resistance between and under the contacts is identical and that the semiconductor layer is infinitely thin. In the alloyed ohmic contacts, this is not generally true.


3.4. Device Fabrication

3.4.1. Schottky Gate Formation

The Au/p+-n-Ino.53Ga.47As/n+-InP and Au/p-Ino.53GaO.47As/p+-InP Schottky barrier diodes have been fabricated as is shown in Fig.3.11 using a standard lift-off process [95,96]. A lift-off photolithography gives an excellent resolution available with positive photoresist and avoids incompatability problem of many metal etchants with InP in a two-metal system [55]. The p+-n-InO.53Ga0.47As epitaxial layers were grown on n+-InP substrates by MBE technique. The thicknesses of the

p -In0.53Ga0.47As epilayer were chosen to be 0.03 pm - 0.15 pm with corresponding dopant densities of 5.5x1016 - 9.0x1017 cm-3, and the thickness of an n-In0.53Ga0.47As and p-In0.53Ga0.47As epilayer with a

dopant density of 3.0xl15 cm-3 is 1.5 pm. A 100 R gold film was deposited on the p +-In0.53Ga0.47As layer at a deposit rate of 2 R/sec and at a pressure of 5.0x10-7 Torr for the transparent Schottky contact and Cr/Au (60/1,000 R) was deposited for the bonding pad. The Cr provides contact adhesion to the semiconductor and Au reduces the


























Schottky Barrier Contact iBonding Pad (Cr/Au)


p+- In0.53Ga0.47As n - In0.53Ga0.47As


n+- InP


1*


-Passivation (Polyimide)
Depleted Layer
-Active Layer
(Epilayer)

Substrate


Ohmic Contact (Au-Ge)


Figure 3.11.


Structure of the InGaAs Schottky barrier diode using the barrier height enhancement technique.












contact resistance and provides a surface suitable for bonding or probing. Just before evaporation, a wet chemical etching was performed to remove native oxides from surface of the contact area. Wafers are dipped in buffered HF (HF:H20 = 1:5) or etching solution (NH4OH:H202:H20 = 20:7:150).

For p-InP/p+-InP Schottky barrier diode shown in Fig. 3.12, the (100) oriented Zn-doped InP substrates with a dopant density of NA = 5.0x1018 cm-3 were used. The p-InP epitaxial layer with doping concentration of NA = 1.0-2.0x1017 cm-3 was grown on p+-InP substrate by Vapor Phase Epitaxy. Aluminum was used as the gate metal because of low resistivity and low work function. The contact has a circular shape with a diameter of 200-800 um, which gives a contact area of

3.0xl0-4 to 5.0x10-3 cm2.


3.4.2. Ohmic Contact Formation

We investigated the properties of the ohmic contact using several metal alloys at a different alloy temperature and alloy time to obtain the optimum ohmic contact condition. The optimum conditions are summarized in Table 3.1. The ohmic contact pattern was fabricated using the lift-off process as shown in Fig. 3.13. The typical

I-V characteristics are shown in Fig.3.14 and Fig.3.16. The specific contact resistance was calculated for vertical and planar structures as is shown in Fig. 3.15 and Fig. 3.17, respectively. The specific

contact resistance at a different alloy time is shown in Fig. 3.18.

For ohmic contact on n+-InP, Au-Ge (88-12 %) alloy (1,500 R) was deposited and alloyed at 400 �C for 30 sec in H2-N2 (5-95 %) forming





















Transparent Schottky Barrier Contact (Au)


Absorption Layer


'Ohmic Contact


Ohmic Contact: Mn (100 A)/Au (900 A)


Figure 3.12.


Structure of the InP Schottky barrier diode. Mn and Au are deposited sequentially for p-type ohmic contact.

















OPTIMUM CONDITIONS FOR OHMIC CONTACTS.


Metal Alloy Thickness (A) Alloy Time (sec) Special Comment Au-Ge 1,200 30 at 400 �C Good Ohmic
Bonding Problem


Au-Ge/Ni 1,200/350

and/Cr/Au /400/1,000 120 at 450 �C Good Ohmic



Au-Ge/Ni/Au 1,200/500/1,000 90-120 at 450 -C Good Ohmic Au-Zn 1,500 30-45 at 400 �C Contamination
Adhesion Problem


Cr/Au-Zn/Au 50/500/1,500 60-90 at 450 �C Good Ohmic Mn/Au 100/900 30 at 460 �C Good Ohmic


* This condition was done by Research Triangle Institute.


Table


3.1.












































Figure 3.13.


The linear array of unequally spaced ohmic contacts. Contact spacing: 10,20, 30, 40 pm, Contact pad: 1OOx200 pm.






















































Figure 3.14.


Current-voltage characteristics.
(a) Au-Ge/Ni/Au ohmic contact;
(b) System (probe to ground chuck).

































RTt= 2Rc+ Rs= R R 0.27 [Q]
Tet=C s TotalI System =0.7(]


N = ptlWd = (0.0013) (0.038)/(200) (100) (10-4) = 0.248 [.Q] Rc= 1/2 (R Test- Rs) = 1/2 (0.27 - 0.248) = 0.011 [Q] Thus,

rc= RcWd = (0.011) (200) (100) (10-8) 2.2 x 106[ Qcm2


Figure 3.15.


Method of determining the specific contact resistance by the transmission line model method in the vertical structure.
























































Figure 3.16.


Current-voltage characteristics of Au-Ge/Ni/Au ohmic contact (planar structure). (a) Alloy at 450�C for
2 min; (b) Alloy at 450�C for 1.5 min.





























Rc Rs


Rc =Rsc Lt /W= 1/2 (R Total


- RSystem ) = 1.2 [Q]


Rsc = (1.2) (200)/1= 240 [.Q] assuming Lt = 1 [pIm] Thus,


r =Rsc L2
C sc t


= (240) (1)2 = 2.4 x 106 [Qcm 2]


Figure 3.17. Method of determining the specific contact
resistance by the transmission line model
method in the planar structure.



















Ohmic Contact:
1:
2:


Au-Ge/Ni/Cr/Au 380�C 3: 4000C 4:


425�C
450�C


II ! I
1 1.0 1.5 2.0
ALLOY TIME (min.)


Figure 3.18.


Specific contact resistance of alloy temperature.


vs. alloy time as a parameter


8.0 H-


6.0k


4.0 F-


2.0 -


0.0


0












gas ambient. Zn, Be, and Mg are usually incorporated in epitaxial InP layer as acceptors for the ohmic contact on p-InP. After cleaning wafer with TCE, acetone, methanol, and D.I. water followed by blowing dry with N2, an ohmic contact was formed on the back surface of the p+-InP substrate by depositing Au-Zn (84%-16%) metal alloy (1500 R) in E-beam evaporator at a pressure of 7.OxlO-7 Torr. The Au-Zn ohmic contact was annealed at 450 �C for 2 min in H2-N2 (10-90%) forming gas environment in an alloy furnace. The adhesion of Zn is not always good with peeling off occurred during the lift-off process [89].


3.5. Experimental Results and Discussion

The current-voltage characteristics of Au/p+-n-InGaAs/n +-InP Schottky diode with a p+-InGaAs layer of 1,500 R and 500 R thick show a large reverse leakage current as is shown in Fig. 3.19. The reason for the large leakage current may be attributed partially to the surface leakage which stemmed from the poor surface morphology and partially to the existence of the thin neutral region between p-InGaAs Schottky barrier and p-n junction, consisting of a Schottky barrier contact in series with a p-n junction diode due to a thick surface layer. The capacitance-voltage characteristic of the Schottky diode with a p+-InGaAs layer of 1,500 R thick shows a strong possibility of this reason as shown in Fig. 3.20.

However, the leakage current was greatly reduced in Schottky barrier diodes with a p+-InGaAs layer of 300 R as is shown in Fig. 3.21. The leakage current density is given by 1.5x10-3 A/cm2 at VR = 5 V. The effective barrier height of 0.52 eV is obtained by

























































Figure 3.19.


Current-voltage characteristics for Au/p -n-In .53Ga .47As/n -InP Schottky barrier photodiode. (a) 500 A,(b) 300 A.


















































1.0 2.0 3.0 4.0
REVERSE-BIASED VOLTAGE VR(V)


Figure 3.20.


Reverse-biased junction capacitance of the p -n-InGaAs Schottky barrier photodiode with the surface layer of the thickness of 1,500 A.


8.0 7.0


6.0 5.0



4.0 3.0 2.0


0
z



I
0


z


1.0



0.0
0.0










































Figure 3.21.


Current-voltage (I-V) characteristics for Au/p -n-In 0 53 Ga0 47As/n -InP Schottky barrier photodiode with the po-ln0.53Ga 047As layer of the thickness of 300 A.












using A = 4.92 A/cm2/K2 for an electron effective mass of 0.041 mo. The capacitance was found to be 0.3 pF at VR = 5 V for Schottky barrier diode with a contact area of 2.0x10-5 cm2. The effective barrier height, BnI-V = 0.52 eV and d'BnC-V = 0.55 eV is obtained, which indicates the barrier enhancement of 0.32-0.35 eV.

Most of the p-InP/p+-InP Schottky barrier diodes have a

breakdown voltage of 15-20 V. The junction capacitance is C = 0.18 pF at VR = 0 V and C = 0.16 pF at VR = 5 V for an Al/p-InP/p+-InP Schottky barrier diode with a contact area of 5.0x10-3 cm2 as is shown in Fig. 3.22. The background doping concentration determined from the slope of C-2 vs. VR in Fig. 3.23 is 1.4x1017 cm-3. The built-in potential is obtained from the intercept of C-2, i.e., VD = 0.65 eV. Thus, the barrier height for Al/p-InP/p+-InP Schottky barrier diode can be determined by Eq.(3.16), which shows IBP = 0.77 eV.


3.6. Summary and Conclusions

The Au/p+-n-Ino.53Gao.47As/n+-InP Schottky barrier diodes with a different thickness of the p-InGaAs surface layer have been fabricated and characterized. The results show that our modified Schottky barrier diodes have the total capacitance of 0.2-0.3 pF, the series resistance of 11.8 ohm, and the effective barrier height of 0.52-0.55 eV. We have also fabricated Al/p-InP/p+-InP Schottky barrier diode using a lift-off photolithographic process on p-InP epilayer grown by Vapor Phase Epitaxy (VPE). The direct measurement

of the barrier height shows Bp CV = 0.77 eV.















36.0


I I I I


081p NV NA 35.0 - Vo


VD + VT In (NV/NA)
1.28 x 1019 CnTr3
2.0 x 1017 cm-3
0.65 eV


Co

x







LU
0






z o
x


0
z


I
0 L
0








z (,


33.0 32.0


31.0 -


30.0


10.65L4/


I I


II I
0


0


0


/ Au/p-Inp/p+-InP , Schottky Barrier Diode
Area = 5.Ox10"3 cm2









I I I I


0.8 0.4 0 0.4 0.8


REVERSE-BIASED VOLTAGE VR(V)


Figure 3.22.


Method of determining the Schottky barrier height of the p-InP Schottky barrier diode from the capacitance vs. voltage measurement.


34.0 I-

















CHAPTER FOUR
DEVELOPMENT OF A HIGH-SPEED GaAs SCHOTTKY BARRIER
PHOTODETECTOR FOR MILLIMETER-WAVE OPTICAL FIBER LINKS



4.1. Introduction

Lightwave communication systems require a high-speed and high sensitivity photodetector in order to achieve high data rate at low signal level. The GaAs Schottky barrier photodetector is very attractive for short optical links where the maximum data rate is not limited by fiber dispersion and the maximum modulation frequency is only limited by photodetectors, lasers, and electronics. GaAs-related photodetectors need to use ternary and quaternary materials made using GaAs because it is difficult to design the photodetectors at long wavelength. The physical parameters of a GaAs material are summarized in Table 4.1. In this chapter, we describe a high-speed GaAs Schottky barrier photodiode capable of detecting optical signals up to 20 GHz.


4.2. Theoretical Analysis

The main considerations in the design of photodetectors are response speed and responsivity. For high speedoperation the GaAs Schottky barrier photodiode requires a narrow depletion region for short transit time and a wide depletion region and small area for low junction capacitance. Therefore, the geometry and dimension of the photodiode and the dopant density of the epilayer should be optimized.




Full Text

PAGE 1

'(9(/230(17 2) $ +,*+63((' *$//,80 $56(1,'( $1' ,1',80 *$//,80 $56(1,'( 6&+277.< %$55,(5 3+272'(7(&725 )25 0,//,0(7(5:$9( 237,&$/ ),%(5 &20081,&$7,216 %\ -$(+221 .,0 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

7+,6 7+(6,6 ,6 '(',&$7(' 72 0< /$7( 3$5(176

PAGE 3

$&.12:/('*0(176 ZLVK WR H[SUHVV P\ VLQFHUH DSSUHFLDWLRQ WR P\ WKHVLV DGYLVHU 3URIHVVRU 6KHQJ 6 /L IRU KLV JXLGDQFH HQFRXUDJHPHQW DQG VXSSRUW WKURXJKRXW WKH FRXUVH RI WKLV ZRUN DQG WR FRDGYLVHU 3URIHVVRU /XLV )LJXHURD IRU KLV LQYDOXDEOH GLVFXVVLRQV HQFRXUDJHPHQW DQG KHOS LQ GHYLFH FKDUDFWHUL]DWLRQ ZRXOG DOVR OLNH WR WKDQN 3URIHVVRUV $UQRVW 1HXJURVFKHO *LMV %RVPDQ :LOOLDP 5 (LVHQVWDGW DQG 3DXO + +ROORZD\ IRU WKHLU SDUWLFLSDWLRQ RQ P\ VXSHUYLVRU\ FRPPLWWHH DP JUDWHIXO WR 3URIHVVRU 3. %KDWWDFKDU\D RI WKH 8QLYHUVLW\ RI 0LFKLJDQ 'U ($ 5H]HN RI 75:(OHFWUR2SWLFV 5HVHDUFK &HQWHU DQG 'U *+ 2OVHQ RI (SLWD[[ ,QF IRU JURZLQJ WKH HSLWD[LDO OD\HUV 0U 56 :DJQHU RI /RV $ODPRV 1DWLRQDO /DERUDWRU\ IRU LPSXOVH UHVSRQVH PHDVXUHPHQWV 'UV 0/ 7LPPRQV DQG 3. &KLDQJ RI 5HVHDUFK 7ULDQJOH ,QVWLWXWH IRU WKHLU DVVLVWDQFH LQ GHYLFH IDEULFDWLRQ DQG 0U 3DXO 6LHUDN RI 86 $LU )RUFH 5$'&'&/: DQG 0U 3DQ RI (7HN '\QDPLFV ,QF IRU WKHLU LQWHUHVWV DQG VXSSRUW 7KDQNV DUH H[WHQGHG WR P\ IULHQGV DQG FROOHDJXHV 'U .Z\UR /HH 'U +\XQJ.\X /LP 'U 7DH:RQ -XQJ 'U 0LNH 7ULSSH 0U :RQ3\R +RQJ RI WKH 8QLYHUVLW\ RI 0LFKLJDQ DQG 0U 6DQJ6XQ /HH IRU WKHLU KHOSIXO GLVFXVVLRQV DQG HQFRXUDJHPHQWV LLL

PAGE 4

, ZRXOG HVSHFLDOO\ OLNH WR WKDQN P\ IRUPHU SURIHVVRUV +HXQJ6XN
PAGE 5

7$%/( 2) &217(176 3$*( $&.12:/('*0(176 LL $%675$&7 YL &+$37(5 21( ,1752'8&7,21 'HYHORSPHQW RI +LJK6SHHG 3KRWRGHWHFWRUV 0RWLYDWLRQ DQG 2YHUYLHZ 6\QRSVLV RI &KDSWHUV 7:2 7+(25(7,&$/ $1$/<6,6 2) 3+272'(7(&7256 *HQHUDO 5HTXLUHPHQWV IRU $ 3KRWRGHWHFWRU 6SHFWUDO 5HVSRQVH 5HVSRQVH 6SHHG 'ULIW 7LPH 'LIIXVLRQ 7LPH W 5& 7LPH &RQVWDQW 'DUN &XUUHQW 7KHUPLRQLF(PLVVLRQ *HQHUDWLRQ5HFRPELQDWLRQ 7XQQHOLQJ '& 3DUDPHWHUV -XQFWLRQ &DSDFLWDQFH 2YHUOD\ &DSDFLWDQFH 6HULHV 5HVLVWDQFH /HDG ,QGXFWDQFH 1RLVH(TXLYDOHQW 3RZHU 1(3f 'HYLFH 3DFNDJLQJ 7UDQVPLVVLRQ /LQH 6WUXFWXUH 7UDQVPLVVLRQ /LQH 0DWHULDOV 0LFURVWULS 7UDQVPLVVLRQ /LQH 'HVLJQ 5HVSRQVH 6SHHG 0HDVXUHPHQW ,PSXOVH 5HVSRQVH 6DPSOLQJ&RUUHODWLRQ (OHFWUR2SWLF 6DPSOLQJ 2SWLFDO +HWHURG\QLQJ Y

PAGE 6

7+5(( )$%5,&$7,21 2) 6&+277.< %$55,(56 $1' 2+0,& &217$&76 21 *D$V ,UA*DMA$V $1' ,Q3 ,QWURGXFWLRQ 6FKRWWN\ %DUULHU &RQWDFW )RUPDWLRQ 6FKRWWN\ %DUULHU +HLJKW %DUULHU +HLJKW (QKDQFHPHQW %DUULHU +HLJKW 0HDVXUHPHQW 2KPLF &RQWDFW )RUPDWLRQ 2KPLF &RQWDFW 7HFKQRORJ\ 6SHFLILF &RQWDFW 5HVLVWDQFH 0HDVXUHPHQW 'HYLFH )DEULFDWLRQ 6FKRWWN\ *DWH )RUPDWLRQ 2KPLF &RQWDFW )RUPDWLRQ ([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ 6XPPDU\ DQG &RQFOXVLRQV )285 '(9(/230(17 2) $ +,*+63((' *D$V 6&+277.< %$55,(5 3+272',2'( )25 237,&$/ ),%(5 &20081,&$7,216 ,QWURGXFWLRQ 7KHRUHWLFDO $QDO\VLV 4XDQWXP (IILFLHQF\ 5HVSRQVH 6SHHG 'HYLFH )DEULFDWLRQ ([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ &XUUHQW9ROWDJH 0HDVXUHPHQW &DSDFLWDQFH9ROWDJH 0HDVXUHPHQW $& $GPLWWDQFH 0HDVXUHPHQW 6SHFWUDO 5HVSRQVH 0HDVXUHPHQW 5HVSRQVH 6SHHG 0HDVXUHPHQW 6XPPDU\ DQG &RQFOXVLRQV ,OO ),9( '(9(/230(17 2) $ +,*+63((' $XS,Q *D $V3,Q3 6&+277.<%$55,(5 3+272',2'( )25 ,1)5$5(' 3+272'(7(&7,21 ,QWURGXFWLRQ 7KHRUHWLFDO $QDO\VLV 4XDQWXP (IILFLHQF\ 5HVSRQVH 6SHHG 'HYLFH )DEULFDWLRQ ([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ &XUUHQW9ROWDJH 0HDVXUHPHQW &DSDFLWDQFH9ROWDJH 0HDVXUHPHQW $& $GPLWWDQFH 0HDVXUHPHQW 6SHFWUDO 5HVSRQVH 0HDVXUHPHQW 5HVSRQVH 6SHHG 0HDVXUHPHQW 6XPPDU\ DQG &RQFOXVLRQV YL

PAGE 7

6,; '(9(/230(17 2) $ +,*+63((' $XSQ,Q *D $VQ,Q3 6&+277.< %$55,(5 3+272',2'( )25 ,1)5$5('r 3+272'(7(&7,21 ,QWURGXFWLRQ 7KHRUHWLFDO $QDO\VLV 4XDQWXP (IILFLHQF\ 5HVSRQVH 6SHHG 'HYLFH )DEULFDWLRQ ([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ &XUUHQW9ROWDJH 0HDVXUHPHQW &DSDFLWDQFH9ROWDJH 0HDVXUHPHQW $& $GPLWWDQFH 0HDVXUHPHQW 6SHFWUDO 5HVSRQVH 0HDVXUHPHQW 5HVSRQVH 6SHHG 0HDVXUHPHQW 6XPPDU\ DQG &RQFOXVLRQV 6(9(1 6800$5< &21&/86,216 $1' 5(&200(1'$7,216 6XPPDU\ DQG &RQFOXVLRQV 5HFRPPHQGDWLRQV IRU )XUWKHU 6WXG\ 3DFNDJLQJ 2SWLPL]DWLRQ RI 3KRWRGLRGHV $ +LJK6SHHG ,Q F*D $6 6FKRWWN\ %DUULHU 3KRWRGLRGH RQ 6HPLLQVODWLQJ ,Q3 6XEVWUDWH IRU 0RQROLWKLF ,QWHJUDWLRQ $ /RZ 1RLVH DQG +LJK *DLQ%DQGZLGWK 3URGXFW 4XDQWXP:HOO $YDODQFKH 3KRWRGLRGH 0RQROLWKLF 2SWRHOHFWURQLF ,QWHJUDWLRQ $33(1',; $ *HQHUDO 0RGHO IRU 6FKRWWN\ %DUULHU +HLJKW % 6FKRWWN\ %DUULHU +HLJKW (QKDQFHPHQW & 6FKRWWN\ %DUULHU DQG 2KPLF &RQWDFW )RUPDWLRQ /LIW2II 3KRWROLWKRJUDSK\ ( 0HVD (WFK DQG 0HWDO (WFK ) 6XUIDFH 3DVVLYDWLRQ 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ 9OO

PAGE 8

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ '(9(/230(17 2) $ +,*+63((' *$//,80 $56(1,'( $1' ,1',80 *$//,80 $56(1,'( 6&+277.< %$55,(5 3+272'(7(&725 )25 0,//,0(7(5:$9( 237,&$/ ),%(5 &20081,&$7,216 %\ -$(+221 .,0 0$< &KDLUPDQ 6KHQJ 6 /L 0DMRU 'HSDUWPHQW (OHFWULFDO (QJLQHHULQJ 7KLV GLVVHUWDWLRQ GHVFULEHV WKH GHYHORSPHQW RI KLJKVSHHG *D$V DQG ,Q3EDVHG ,Q A*D $V 6FKRWWN\ EDUULHU SKRWRGHWHFWRUV RSHUDWLQJ LQ QHDULQIUDUHG UHJLPH HVSHFLDOO\ FORVH WR WKH GLVSHUVLRQ PLQLPXP RI RSWLFDO ILEHUV LH P IRU PLOOLPHWHUZDYH RSWLFDO ILEHU FRPPXQLFDWLRQV 1RYHO KLJKVSHHG $XSQ,Q *D A\$VQ,Q3 DQG $XS,Q *D!\$VSLQ3 6FKRWWN\ EDUULHU SKRWRGLRGHV DV ZHOO DV D *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH KDYH EHHQ GHYHORSHG LQ WKLV VWXG\ 7KH UHVXOWV VKRZ WKDW WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH KDV D UHVSRQVLYLW\ RI $: DQG D TXDQWXP HIILFLHQF\ RI b DW QP 7KH LPSXOVH UHVSRQVH WR WKH SXOVH ODVHU ZLWK D ):+0 RI SV \LHOGV D ULVHWLPH RI SV DQG D ):+0 RI SV YLLL

PAGE 9

7KH *D$V 6FKRWWN\ EDUULHU SKRWRGHWHFWRU LV DWWUDFWLYH IRU WKH VKRUW RSWLFDO OLQNV ZKHUH WKH PD[LPXP PRGXODWLRQ IUHTXHQF\ LV QRW OLPLWHG E\ RSWLFDO ILEHU GLVSHUVLRQ EXW RQO\ OLPLWHG E\ GHWHFWRUV ODVHUV DQG HOHFWURQLFV 7KH ,Q3EDVHG ,Q *D $6 6FKRWWN\ EDUULHU SKRWRGLRGH XVLQJ SQ,Q *D $6 RU S,Q *D $6 VWUXFWXUH KDV ILUVW GHPRQVWUDWHG 7R GHYHORS D SQ,Q *D $6 6FKRWWN\ EDUULHU SKRWRGLRGH WKH EDUULHU KHLJKW HQKDQFHPHQW RQ Q,Q!*D $6 HSLOD\HU KDV EHHQ VWXGLHG 7KH $XS,QA*D!$VSLQ3 6FKRWWN\ EDUULHU SKRWRGLRGH KDV D UHVSRQVLYLW\ RI $: DQG D TXDQWXP HIILFLHQF\ RI b DW P ZLWKRXW DQWLUHIOHFWLRQ FRDWLQJ 7KH LPSXOVH UHVSRQVH PHDVXUHPHQWV \LHOG D ULVHWLPH RI SV IRU $XS,Q *D $VS,Q3 SKRWRGLRGH DQG SV IRU $XSQ,Q *D $VQ,Q3 SKRWRGLRGH 7KH UHVXOWV VKRZ WKDW WKH $XS,Q!*D!$VS,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH LV D YHU\ SURPLVLQJ FDQGLGDWH IRU KLJKVSHHG DQG KLJKIUHTXHQF\ GHWHFWRU DSSOLFDWLRQV ZKLOH WKH $XSQ,Q!*D!$VQ,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH QHHGV PRUH VWXG\ WR REWDLQ UHSURGXFLELOLW\ DQG UHOLDELOLW\ RI WKH EDUULHU KHLJKW HQKDQFHPHQW RQ Q,Q *D $6 HSLWD[LDO OD\HU LQVSLWH RI LWV SURPLVLQJ SRWHQWLDO 7R LPSURYH SKRWRGHWHFWRU SHUIRUPDQFH DQG IUHTXHQF\ UHVSRQVH WKH IXWXUH HIIRUWV VKRXOG EH GLUHFWHG WRZDUGV WKH GHYHORSPHQW RI WKH SKRWRGHWHFWRUV RQ VHPLLQVXODWLQJ VXEVWUDWHV VXLWDEOH IRU PRQROLWKLF LQWHJUDWLRQ LPSURYLQJ VXUIDFH GLHOHFWULF SDVVLYDWLRQ DQG UHGXFLQJ WKH XQGHVLUHG SDFNDJLQJ SDUDVLWLFV

PAGE 10

&+$37(5 21( ,1752'8&7,21 'HYHORSPHQW RI +LJK6SHHG 3KRWRGHWHFWRUV0RWLYDWLRQ DQG 2YHUYLHZ 7KH PDLQ PRWLYDWLRQ RI WKLV WKHVLV LV WR GHYHORS D KLJKVSHHG SKRWRGHWHFWRU FDSDEOH RI GHPRGXODWLQJ WKH RSWLFDO VLJQDOV XS WR *+] IRU PLOOLPHWHUZDYH RSWLFDO ILEHU OLQNV /LJKWZDYH FRPPXQLFDWLRQV UHTXLUH D KLJKVSHHG DQG KLJK VHQVLWLYLW\ SKRWRGHWHFWRU LQ RUGHU WR DFKLHYH D KLJK GDWD UDWH DW ORZ VLJQDO OHYHO 0RVW RI WKH KLJKVSHHG SKRWRGHWHFWRUV KDYH EHHQ IDEULFDWHG PDLQO\ RQ *D$V XVLQJ D 6FKRWWN\ EDUULHU VWUXFWXUH IRU SP DQG RQ ,Q A*D $6 XVLQJ D SLQ VWUXFWXUH IRU SP :LWK WKH LQWURGXFWLRQ RI IHPWRVHFRQG ODVHU SXOVH WHFKQRORJ\ DQG OLJKWZDYH PRGXODWLRQ LQ WKH VHYHUDO WHQV RI JLJDKHUW] IUHTXHQF\ UDQJH WKH GHYHORSPHQW RI SKRWRGHWHFWRUV ZLWK D KLJKVSHHG DQG EURDG EDQGZLGWK LV QHFHVVDU\ IRU PLOOLPHWHUZDYH RSWLFDO ILEHU FRPPXQLFDWLRQV RSHUDWLQJ LQ WKH LQIUDUHG UHJLPH HVSHFLDOO\ FORVH WR WKH GLVSHUVLRQ PLQLPXP RI RSWLFDO ILEHUV >@ )RU WKLV SXUSRVH D QRYHO KLJKVSHHG ,Q[*DB[$V [ f 6FKRWWN\ EDUULHU SKRWRGLRGH IRU SP SKRWRGHWHFWLRQ KDV EHHQ GHYHORSHG )LJXUH VKRZV WKH EORFN GLDJUDP RI PLOOLPHWHUZDYH RSWLFDO ILEHU OLQNV XVLQJ DQ HOHFWURRSWLF PRGXODWRU (20f )RU WKHVH DSSOLFDWLRQV WKH SKRWRGHWHFWRUV PXVW VDWLVI\ VHYHUDO UHTXLUHPHQWV

PAGE 11

U )2 7UDQVPLWWHU L /DVHU 'LRGH c'& f§+ 6WDELOL]DWLRQ f§IU /DVHU f§A (20 DQG &RQWURO 'LRGH SAf§M&LUFXLW L O (20 'ULYHU .P 6LQJOH0RGH )LEHU &DEOH )2 5HFLHYHU L /B fe 7 : 6LJQDO ,QSXW '& 'HPRXQWDEOH &RQQHFWRU /DVHU 'LRGH DQG (20 ,QWHUIDFH 3 6LQJOHPRGH )LEHU 3LJWDLO 7 :DYHJXLGH WR 0LFURVWULS RU )LQ /LQH 7UDQVLWLRQ : ,QSXW2XWSXW :DYHJXLGH ,QWHUIDFH )LJXUH %ORFN GLDJUDP RI PLOOLPHWHUZDYH ILEHU RSWLF OLQN XVLQJ DQ HOHFWURRSWLF PRGXODWRU (20f

PAGE 12

VXFK DV KLJK UHVSRQVH VSHHG KLJK VHQVLWLYLW\ DQG ORZ QRLVH DW WKH RSHUDWLQJ ZDYHOHQJWK 7KH GHVLJQ JRDO RI D KLJKVSHHG SKRWRGHWHFWRU LV OLVWHG LQ 7DEOH 7KH SURPLVLQJ FDQGLGDWHV DUH *D$V 6FKRWWN\ EDUULHU >@ $O*D$V*D$V RU *D$V SLQ >@ ,Q[*DAB[$V SLQ >@ ,Q[*DAB[$V 6FKRWWN\ EDUULHU >@ DYDODQFKH SKRWRGLRGH LQFOXGLQJ TXDQWXPZHOO VWUXFWXUH >@ DQG SKRWRFRQGXFWLYH GHWHFWRU >@ 7KH PDMRU VWUXFWXUHV IRU KLJKVSHHG SKRWRGHWHFWRUV DQG WKH LQVWLWXWLRQV WKDW SHUIRUPHG WKH SLRQHHULQJ ZRUN RQ WKHVH VWUXFWXUHV DUH OLVWHG LQ 7DEOH 7KH ,,,9 FRPSRXQG VHPLFRQGXFWRUV KDYH VKRZQ D JUHDW SRWHQWLDO IRU XVH DV KLJKVSHHG RSWRHOHFWURQLF GHYLFH PDWHULDOV EHFDXVH RI WKHLU KLJK HOHFWURQ PRELOLW\ KLJK VDWXUDWLRQ YHORFLW\ DQG JRRG ODWWLFHPDWFK WR WKH ,Q3 VXEVWUDWH >@ 7DEOH '(6,*1 5(48,5(0(176 )25 +,*+63((' 3+272'(7(&7256 0LOOLPHWHU:DYH )UHTXHQF\ *+] 0RGXODWLRQ %DQGZLGWK b RI &HQWHU )UHTXHQF\ ,QSXW2XWSXW 3RZHU /HYHO G%P ,QSXW2XWSXW ,PSHGDQFH RKP ,QSXW 6LJQDO 7\SH $QDORJ 6LJQDO 2SWLFDO 6RXUFH /DVHU 'LRGH 4XDQWXP (IILFLHQF\ b 2SWLFDO )LEHU 7\SH 6LQJOHPRGH ,Q[*DAB[$V ZKRVH FRPSRVLWLRQ LV GHWHUPLQHG E\ WKH LQWHUVHFWLRQ RI WZR LPSRUWDQW ,,,9 FRPSRXQG VHPLFRQGXFWRU DOOR\V LH ,QAB[*D[$V DQG ,QMB[*D[$6\3B\ \ [f LV RQH RI WKH PRVW SURPLVLQJ PDWHULDOV

PAGE 13

7DEOH '(9(/230(17 2) +,*+63((' 3+272'(7(&7256 f 3KRWRGHWHFWRU 6WUXFWXUH ,QVWLWXWLRQ *D$V 6FKRWWN\ %DUULHU 3KRWRGLRGH +3 +XJKHV *D$V SLQ 3KRWRGLRGH 0,7 /LQFROQ /DE $,*D$V*D$V SLQ 3KRWRGLRGH &$/7(& ,QWHUGLJLWDO *D$V 3KRWRFRQGXFWLYH 'HWHFWRU +8*+(6 78$ ,Q*D$VOQ3 SLQ 3KRWRGLRGH %HOO /DE 75:(25& ,Q*D$VOQ3 3KRWRFRQGXFWLYH 'HWHFWRU 78$ :*HUPDQ\f ,QWHUGLJLWDO ,Q*D$V*D$V 3KRWRFRQGXFWLYH 'HWHFWRU 75:(25& $YDODQFKH 3KRWRGLRGH $7t7 %HOO /DE 4XDQWXP:HOO $YDODQFKH 3KRWRGLRGH $7t7 %HOO/DE ,Q*D$VOQ3 6FKRWWN\ %DUULHU 3KRWRGLRGH 8 )ORULGD 78$ ,QWHUGLJLWDO ,Q*D$V 6FKRWWN\ %DUULHU 3KRWRGLRGH 8 )ORULGD

PAGE 14

IRU ORQJ ZDYHOHQJWK SKRWRGHWHFWRUV EHFDXVH LWV HQHUJ\ EDQGJDS FDQ EH WDLORUHG WR WKH ZDYHOHQJWK RI SLQ )LJXUH VKRZV D GHWDLOHG EHKDYLRU RI WKH HQHUJ\ EDQGJDS YV ODWWLFH SDUDPHWHU RI DQ ,QO[*D[$V\SO\ DV D IXQFWLRQ RI DOOR\ FRPSRVLWLRQ )LJXUH LOOXVWUDWHV WKH HQHUJ\ EDQGJDS YV ODWWLFH FRQVWDQW IRU VHYHUDO ,OL9 FRPSRXQG VHPLFRQGXFWRUV 7R WDNH DGYDQWDJH RI WKHVH H[FHOOHQW SK\VLFDO SURSHUWLHV WKH SDUDVLWLF 5& FRPSRQHQWV DQG WKH KLJK SRZHU FRQVXPSWLRQ LQ SDUDVLWLF UHVLVWDQFHV VKRXOG EH PLQLPL]HG 7KH ORZ VSHFLILF FRQWDFW UHVLVWDQFH LV UHTXLUHG IRU KLJK SHUIRUPDQFH SKRWRGLRGH DSSOLFDWLRQV 6HYHUDO QHZ W\SHV RI KLJKVSHHG 6FKRWWN\ EDUULHU SKRWRGLRGHV FDSDEOH RI GHPRGXODWLQJ WKH RSWLFDO VLJQDOV DW SP ZLOO EH GLVFXVVHG LQ WKLV WKHVLV 7R GHYHORS D KLJKVSHHG SKRWRGHWHFWRU IRU PLOOLPHWHUZDYH RSWLFDO ILEHU FRPPXQLFDWLRQV WKH 6FKRWWN\ EDUULHU VWUXFWXUH KDV EHHQ FKRVHQ 6FKRWWN\ EDUULHU SKRWRGLRGH KDV PDQ\ DGYDQWDJHV VXFK DV VLPSOLFLW\ RI IDEULFDWLRQ UHOLDELOLW\ DEVHQFH RI KLJKWHPSHUDWXUH GLIIXVLRQ SURFHVVHV ZKLFK FDQ GHJUDGH D FDUULHU OLIHWLPH DQG KLJK UHVSRQVH VSHHG 8QIRUWXQDWHO\ 6FKRWWN\ EDUULHU FRQWDFWV RQ Q,Q*D$V \LHOG D ORZ EDUULHU KHLJKW !%Q H9f >@ ZKLFK PDNHV 6FKRWWN\ FRQWDFWV WRR OHDN\ WR EH XVHIXO IRU SKRWRGHWHFWRU DSSOLFDWLRQV 7KHUHIRUH WKH HIIHFWLYH EDUULHU KHLJKW QHHGV WR EH LQFUHDVHG WR RYHUFRPH WKH SUREOHP DVVRFLDWHG ZLWK WKH ORZ 6FKRWWN\ EDUULHU KHLJKW 7KH VLJQLILFDQFH RI SQ,Q*D$VQ,Q3 6FKRWWN\ EDUULHU OLHV LQ LWV DELOLW\ WR HQKDQFH WKH EDUULHU KHLJKW DQG WR UHGXFH WKH GDUN FXUUHQW IRU KLJK SHUIRUPDQFH SKRWRGHWHFWRU DSSOLFDWLRQV

PAGE 15

)LJXUH (QHUJ\ EDQGJDS YV ODWWLFH SDUDPHWHU RI DQ ,QMB[*D[$VA3A TXDWHUQDU\ FRPSRXQG VHPLFRQGXFWRU DV D IXQFWLRQ RI DOOR\ FRPSRVLWLRQ [ DQG \ [

PAGE 16

%$1'*$3 (1(5*< (JH9f /$77,&( &2167$17 G$f )LJXUH (QHUJ\ EDQGJDS YV ODWWLFH FRQVWDQW IRU ,,,9 FRPSRXQG VHPLFRQGXFWRUV 1RWH WKDW WKH VROLG OLQHV UHSUHVHQW D GLUHFW EDQGJDS PDWHULDO ZKLOH WKH GRWWHG OLQHV UHSUHVHQW DQ LQGLUHFW EDQGJDS PDWHULDO

PAGE 17

+RZHYHU 6FKRWWN\ EDUULHU FRQWDFWV RQ D PRGHUDWHO\ GRSHG S,Q*D$V HSLOD\HU DUH H[SHFWHG WR \LHOG D JRRG EDUULHU KHLJKW H9f IRU WKH SURSRVHG KLJKVSHHG SKRWRGLRGH ZKHQ D VXLWDEOH PHWDO DQG JRRG VXUIDFH SUHSDUDWLRQ DUH SURYLGHG >@ 7KH UHVXOWV KDYH VKRZQ WKDW $XS,Q*D$VSOQ3 6FKRWWN\ EDUULHU SKRWRGLRGH LV D SURPLVLQJ FDQGLGDWH IRU PLOOLPHWHUZDYH RSWLFDO ILEHU OLQNV 6\QRSVLV RI &KDSWHUV +LJKVSHHG DQG KLJKVHQVLWLYLW\ SKRWRGHWHFWRUV DUH LQGLVSHQVLEOH IRU WKH JLJDELW UDWH OLJKWZDYH FRPPXQLFDWLRQV DV ZHOO DV IRU WKH LQWHJUDWHG RSWRHOHFWURQLF DSSOLFDWLRQV 7KLV GLVVHUWDWLRQ GHDOV ZLWK KLJKVSHHG *D$V DQG ,Q[*DcB[$V SKRWRGHWHFWRUV XVLQJ 6FKRWWN\ EDUULHU VWUXFWXUH IRU PLOOLPHWHUZDYH RSWLFDO ILEHU OLQNV ,Q FKDSWHU WZR D WKHRUHWLFDO DQDO\VLV RI SKRWRGLRGH SDUDPHWHUV UHODWLQJ WR WKH JHQHUDO GHVLJQ UHTXLUHPHQWV IRU D SKRWRGHWHFWRU LV UHYLHZHG )RU GHYLFH FKDUDFWHUL]DWLRQ WKH PLFURVWULS WUDQVPLVVLRQ OLQH RQ ZKLFK WKH SKRWRGHWHFWRU LV PRXQWHG KDV EHHQ IDEULFDWHG RQ D &U$X FRDWHG DOXPLQD $,2f VXEVWUDWH ,Q FKDSWHU WKUHH WKH IRUPDWLRQ RI 6FKRWWN\ EDUULHU DQG RKPLF FRQWDFW RQ ,,,9 FRPSRXQG VHPLFRQGXFWRUV VXFK DV *D$V ,Q[*DAB[$V DQG ,Q3 LV GLVFXVVHG 7KH 6FKRWWN\ EDUULHU KHLJKW HQKDQFHPHQW RI Q,Q*D$V WR UHGXFH WKH GDUN FXUUHQW DVVRFLDWHG ZLWK WKH ORZ EDUULHU KHLJKW LV GHVFULEHG 7KH RSWLPXP FRQGLWLRQV IRU ORZ UHVLVWDQFH RKPLF FRQWDFW DQG WKH RKPLF FRQWDFW PHDVXUHPHQW DUH GLVFXVVHG ,Q FKDSWHU IRXU WKH IDEULFDWLRQ RI D KLJKVSHHG *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH KDV EHHQ GLVFXVVHG DQG WKH FKDUDFWHUL]DWLRQ RI WKH SKRWRGLRGH KDV EHHQ

PAGE 18

GHVFULEHG E\ WKH FXUUHQWYROWDJH ,9f FDSDFLWDQFHYROWDJH &9f DF DGPLWWDQFH VSHFWUDO UHVSRQVH DQG LPSXOVH UHVSRQVH PHDVXUHPHQW ,Q FKDSWHU ILYH D SLFRVHFRQG UHVSRQVH $XS,Q[*DMB[$VSLQ3 6FKRWWN\ EDUULHU SKRWRGLRGH IRU WKH LQIUDUHG GHWHFWLRQ LV SUHVHQWHG 7KH 6FKRWWN\ EDUULHU FRQWDFW RQ S,Q[*DMB[$V HSLWD[LDO OD\HU SURYLGHV WKH GHVLUHG EDUULHU KHLJKW IRU WKH SURSRVHG SKRWRGHWHFWRU GHSHQGLQJ RQ WKH VXUIDFH SUHSDUDWLRQ FRQGLWLRQV VXFK DV VSXWWHU HWFK RU FKHPLFDO HWFK ,Q FKDSWHU VL[ D QRYHO $XSQ,Q[*DB[$VQ,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH RSHUDWLQJ LQ WKH LQIUDUHG UHJLPH LV SURSRVHG 7KLV PRGLILHG 6FKRWWN\ EDUULHU VWUXFWXUH UHTXLUHV WKH GHSRVLWLRQ RI D WKLQ VXUIDFH OD\HU RI S,Q[*DMB[$V RQ Q,Q[*DMB[$V HSLWD[LDO OD\HU 7KH EDUULHU KHLJKW IRU VXFK D SKRWRGLRGH FDQ EH WDLORUHG WR LWV RSWLPXP YDOXH YLD WKH SURSHUO\ VHOHFWHG WKLFNQHVV DQG WKH GRSDQW GHQVLW\ RI WKH XOWUDWKLQ VXUIDFH OD\HU ,Q FKDSWHU VHYHQ VXPPDU\ DQG FRQFOXVLRQV DUH SUHVHQWHG DQG UHFRPPHQGDWLRQV IRU IXUWKHU VWXG\ DUH GLVFXVVHG ZKLFK LQFOXGH f SKRWRGHWHFWRU SDFNDJLQJ RSWLPL]DWLRQ f GHYHORSPHQW RI DQ ,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH RQ D VHPLLQVXODWLQJ VXEVWUDWH DQG f GHYHORSPHQW RI D SKRWRUHFHLYHU PRGXOH IRU PRQROLWKLF RSWRHOHFWURQLF LQWHJUDWLRQ ,Q WKH DSSHQGL[ D JHQHUDO PRGHO IRU 6FKRWWN\ EDUULHU KHLJKW EDUULHUKHLJKW HQKDQFHPHQW 6FKRWWN\ DQG RKPLF FRQWDFW IRUPDWLRQ OLIWRII SKRWROLWKRJUDSK\ FKHPLFDO HWFK LQFOXGLQJ PHVD HWFK DQG PHWDO HWFK DQG VXUIDFH GLHOHFWULF SDVVLYDWLRQ SURFHGXUHV DUH GHVFULEHG

PAGE 19

&+$37(5 7:2 7+(25(7,&$/ $1$/<6,6 2) 3+272'(7(&725 3$5$0(7(56 *HQHUDO 5HTXLUHPHQWV IRU $ 3KRWRGHWHFWRU 7KH JHQHUDO GHVLJQ UHTXLUHPHQWV IRU D KLJKVSHHG SKRWRGHWHFWRU LQFOXGH f KLJK TXDQWXP HIILFLHQF\ f ORZ GDUN FXUUHQW f ORZ FDSDFLWDQFH DQG UHVLVWDQFH IRU KLJKVSHHG DQG ORZ QRLVHf DQG f ORZ H[FHVV QRLVH HVSHFLDOO\ IRU DYDODQFKH SKRWRGLRGHf 7KHVH UHTXLUHPHQWV IRU SKRWRGHWHFWRUV DUH WLHG WR WKH SDUWLFXODU PDWHULDO UHTXLUHPHQWV ZKLFK LQFOXGH >@ f (QHUJ\ EDQGJDS ZLWK D KLJK DEVRUSWLRQ FRHIILFLHQW VKRXOG EH VPDOOHU WKDQ WKH SKRWRQ HQHUJ\ WR EH GHWHFWHG f 'LUHFW HQHUJ\ EDQGJDS PDWHULDO PXVW EH XVHG VR WKDW RSWLFDO UDGLDWLRQ FDQ EH DEVRUEHG LQ D VKRUW GLVWDQFH LQ RUGHU WR PLQLPL]H WUDQVLW WLPH HIIHFWV IRU KLJK UHVSRQVH VSHHGf f +LJKTXDOLW\ ORZGHIHFW GHQVLW\ DQG KLJKSXULW\ HVSHFLDOO\ IRU ORQJ ZDYHOHQJWK SKRWRGHWHFWRUf PDWHULDO PXVW EH XVHG VR WKDW =HQHUWXQQHOLQJ DQG GDUN FXUUHQW FDQ EH PLQLPL]HG f 7KH PDWHULDO PXVW EH GRSHG SURSHUO\ VR WKDW WKH GHSOHWLRQ OD\HU ZLGWK ZKLFK LV GHWHUPLQHG E\ D WUDGHRII EHWZHHQ KLJK VSHHG DQG KLJK TXDQWXP HIILFLHQF\ FDQ EH RSWLPL]HG f 7KH HSLOD\HU PDWHULDO VKRXOG EH ODWWLFHPDWFKHG WR WKH VXEVWUDWH PDWHULDO IRU D ORQJ ZDYHOHQJWK SKRWRGHWHFWRU

PAGE 20

6SHFWUDO 5HVSRQVH )RU VKRUW ZDYHOHQJWK SPf GHWHFWLRQ SKRWRQV DUH DEVRUEHG QHDU WKH VHPLFRQGXFWRU VXUIDFH 7KH SKRWRJHQHUDWHG H[FHVV FDUULHUV DUH VHSDUDWHG LQ WKH GHSOHWLRQ UHJLRQ FORVH WR WKH VXUIDFH RI D SKRWRGLRGH ,W LV DGYDQWDJHRXV WR XVH D PHWDOVHPLFRQGXFWRU 6FKRWWN\ EDUULHU VWUXFWXUH ZLWK D WKLQ a f VHPLWUDQVSDUHQW PHWDO ILOP ,Q WKLV GHWHFWLRQ PRGH DQ H[WUHPHO\ KLJK UHVSRQVH VSHHG DQG KLJK TXDQWXP HIILFLHQF\ FDQ EH REWDLQHG LI WKH GHSOHWLRQ UHJLRQ LV VPDOO DQG FRPSDUDEOH WR WKH OLJKW SHQHWUDWLRQ GHSWK )RU ORQJ ZDYHOHQJWK SPf GHWHFWLRQ OLJKW SHQHWUDWHV GHHSO\ LQWR WKH PDWHULDO 7KHUHIRUH D KLJK TXDQWXP HIILFLHQF\ UHTXLUHV WKH PDWHULDO ZLWK D ZLGH GHSOHWLRQ OD\HU ZLGWK )RU WKHVH SKRWRGLRGHV D WUDGHRII H[LVWV EHWZHHQ D TXDQWXP HIILFLHQF\ DQG D UHVSRQVH VSHHG 7KH H[WHUQDO TXDQWXP HIILFLHQF\ RI D 6FKRWWN\ EDUULHU SKRWRGLRGH LV GHWHUPLQHG PDLQO\ E\ WKH WUDQVPLVVLRQ ORVV LQ WKH PHWDO ILOP DQG WKH UHIOHFWLRQ ORVV DW WKH PHWDOVHPLFRQGXFWRU LQWHUIDFH DV ZHOO DV WKH UHFRPELQDWLRQ ORVV LQ WKH GLRGH 7R UHGXFH WKH UHIOHFWLRQ ORVV DQ $5 FRDWLQJ LV XVXDOO\ LQFRUSRUDWHG LQ WKH SKRWRGLRGH IDEULFDWLRQ 7KLV FDQ EH DFKLHYHG E\ GHSRVLWLQJ D WKLQ GLHOHFWULF ILOP VXFK DV 7D&! 6L&ARU 61 ZLWK LWV WKLFNQHVV HTXDO WR WKH TXDUWHU ZDYHOHQJWK RI WKH LQFLGHQW UDGLDWLRQ DW WKH VHOHFWHG ZDYHOHQJWK 7KH WKLFNQHVV RI D VLQJOH OD\HU $5 FRDWLQJ ILOP LV JLYHQ E\ >@ GO ;R QOfWDQ/&QLNVQOQVNV A f ZKHUH ?4 LV WKH ZDYHOHQJWK RI D VHOHFWHG LQFLGHQW OLJKW QA WKH LQGH[

PAGE 21

RI UHIUDFWLRQ RI WKH GLHOHFWULF ILOP DQG Qf WKH FRPSOH[ LQGH[ RI UHIUDFWLRQ RI WKH VHPLFRQGXFWRU ,Q WKH FDVH RI D ZHDNO\ RU QRQDEVRUELQJ VXEVWUDWH (T f FDQ EH UHGXFHG WR WKH ZHOONQRZQ TXDUWHU ZDYHOHQJWK GHVLJQ IRUPXOD LH GA ;4Q 7KH PLQLPXP UHIOHFWLRQ ORVV ZLWK D TXDUWHU ZDYHOHQJWK DQWLUHIOHFWLRQ $5f FRDWLQJ LV JLYHQ E\ >@ ALQ WQQQfQQQf@ f ZKHUH Q4 QA DQG Q DUH WKH LQGH[ RI UHIUDFWLRQ RI DLU $5 FRDWLQJ ILOP DQG VHPLFRQGXFWRU VXEVWUDWH UHVSHFWLYHO\ 5HVSRQVH 6SHHG 7KH UHVSRQVH VSHHG RI D SKRWRGHWHFWRU FDQ EH GHWHUPLQHG SULPDULO\ E\ WKUHH SDUDPHWHUV WUDQVLW WLPH WAUf DFURVV WKH GHSOHWLRQ UHJLRQ GLIIXVLRQ WLPH WAIIf LQ WKH TXDVLQHXWUDO UHJLRQ DQG 5& WLPH FRQVWDQW W5&f UHTXLUHG WR GLVFKDUJH WKH MXQFWLRQ FDSDFLWDQFH &Af WKURXJK D FRPELQDWLRQ RI LQWHUQDO DQG H[WHUQDO UHVLVWDQFHV 7KH WRWDO ULVHWLPH RI D SKRWRGLRGH ZKLFK LV GHILQHG DV WKH UHVSRQVH WLPH IURP b WR b RI D SXOVH KHLJKW LV HVVHQWLDOO\ HTXDO WR WKH ODUJHVW RI WKH WKUHH 7KH WRWDO ULVHWLPH FDQ EH H[SUHVVHG E\ f :H FDQ UHODWH WKH ULVHWLPH WR WKH G% FXWRII IUHTXHQF\ IFf JLYHQ E\ IF WU f ZKHUH WKH G% FXWRII IUHTXHQF\ IF LV RIWHQ UHJDUGHG DV WKH EDQGZLGWK

PAGE 22

RI WKH SKRWRGLRGH )RU KLJK VSHHG RSHUDWLRQ WKH FDUULHUV DUH EHLQJ H[FLWHG ZLWKLQ WKH GHSOHWLRQ UHJLRQ RI WKH MXQFWLRQ RU FORVH WR WKH MXQFWLRQ VR WKDW WKH GLIIXVLRQ WLPH LV VKRUWHU WKDQ RU DW OHDVW FRPSDUDEOH WR WKH GULIW WLPH DQG WKH SKRWRJHQHUDWHG FDUULHUV DUH FROOHFWHG DFURVV WKH MXQFWLRQ DW VFDWWHULQJ OLPLWHG YHORFLW\ 9VDMf 7KH GHSOHWLRQ ZLGWK LV D WUDGHRII EHWZHHQ WKH IDVW WUDQVLW WLPH UHTXLULQJ D QDUURZ GHSOHWLRQ UHJLRQ DQG WKH FRPELQDWLRQ RI TXDQWXP HIILFLHQF\ DQG ORZ FDSDFLWDQFH ZKLFK UHTXLUHV D ZLGH GHSOHWLRQ UHJLRQ 'ULIW 7LPH :KHQ WKH FDUULHUV DUH JHQHUDWHG LQ WKH GHSOHWLRQ UHJLRQ WKH\ VKRXOG EH FROOHFWHG E\ WUDYHUVLQJ DFURVV WKH GHSOHWLRQ UHJLRQ 7KH FDUULHU GULIW WUDQVLWf WLPH DFURVV WKH GHSOHWLRQ UHJLRQ LV JLYHQ E\ fWMM : YJ >@ ZKHUH YV LV WKH VDWXUDWLRQ GULIW YHORFLW\ RI WKH FDUULHUV DQG : LV WKH GHSOHWLRQ OD\HU ZLGWK 7KLV H[SUHVVLRQ LV VWULFWO\ WUXH RQO\ IRU D FRQVWDQW MXQFWLRQ ILHOG DQG LQMHFWLRQ RI WKH HOHFWURQV LQWR WKH MXQFWLRQ EXW LW UHPDLQV D UHDVRQDEOH DSSUR[LPDWLRQ IRU FDUULHUV FUHDWHG LQ WKH MXQFWLRQ ILHOG )RU KLJK PRELOLW\ PDWHULDOV WKH WUDQVLW WLPH LV OLPLWHG E\ D VDWXUDWHG GULIW YHORFLW\ 'LIIXVLRQ 7LPH 7KH FDUULHUV ZKLFK DUH JHQHUDWHG LQ WKH TXDVLQHXWUDO EDVH UHJLRQ ZLOO GLIIXVH WR WKH GULIW UHJLRQ 7KLV FDUULHU GLIIXVLRQ ZLOO UHVXOW LQ D WLPH GHOD\ RI WKH FDUULHUV UHDFKLQJ WKH GULIW UHJLRQ 7KH GLIIXVLRQ WLPH LV JLYHQ E\ :SQ 'QSA e@ ZKHUH :SLQ LV WKH WKLFNQHVV RI WKH TXDVLQHXWUDO HSLOD\HU

PAGE 23

5& 7LPH &RQVWDQW 7KH OXPSHG FLUFXLW FRQVWDQW RI D SKRWRGLRGH DOVR OLPLWV LWV UHVSRQVH VSHHG $VVXPLQJ WKDW WKH GULIW WLPH DQG WKH GLIIXVLRQ WLPH FDQ EH JUHDWO\ UHGXFHG E\ RSWLPL]LQJ WKH GHYLFH FRQILJXUDWLRQ WKH UHVSRQVH VSHHG LV PDLQO\ GHWHUPLQHG E\ WKH GHSOHWLRQ FDSDFLWDQFH &Gf WKH VHULHV UHVLVWDQFH 5Vf DQG WKH ORDG UHVLVWDQFH 5Of 7KH EDQGZLGWK RI WKH SKRWRGLRGH DQG KHQFH LWV UHVSRQVH VSHHG GHSHQG RQ WKH ORDG )RU KLJK IUHTXHQF\ SHUIRUPDQFH WKH ORDG VKRXOG EH VPDOO 7KH VKXQW UHVLVWDQFH 5Af LV JHQHUDOO\ YHU\ KLJK EXW LV LQFOXGHG WR DFFRXQW IRU WKH UHODWLYHO\ ORZ OHDNDJH UHVLVWDQFH RI WKH SKRWRGLRGH 7KH 5& WLPH FRQVWDQW LV JLYHQ E\ rUF L(V 5/!FD f! 7KH EDQGZLGWK RI D SKRWRGLRGH LV XVXDOO\ FKDUDFWHUL]HG E\ WKH G% FXWRII IUHTXHQF\ ZKLFK LV JLYHQ E\ IF > 7 5V5/f&G@ IRU 5J5M25MA f ,W VKRXOG EH QRWHG WKDW SUDFWLFDO GHWHFWLRQ V\VWHPV XVXDOO\ KDYH ORZHU FXWRII IUHTXHQF\ EHFDXVH RI WKH ILQLWH ORDG UHVLVWDQFH WKH SDUDVLWLF FDSDFLWDQFH DQG WKH OHDG LQGXFWDQFH RI WKH SKRWRGLRGH )RU KLJK VSHHG RSHUDWLRQ WKH VHULHV UHVLVWDQFH VKRXOG EH VPDOO XVXDOO\ OHVV WKDQ RKP IRU D ZHOOGHVLJQHG GLRGHf DQG WKH ORDG UHVLVWDQFH VKRXOG EH ORZ XVXDOO\ RKPf 7KH ORDG UHVLVWDQFH PD\ EH UHGXFHG LQ D KLJKVSHHG FLUFXLW +RZHYHU LW VKRXOG EH DV KLJK DV SRVVLEOH IRU D ORZQRLVH GHWHFWLRQ FLUFXLW 7KHUHIRUH WKH GHSOHWLRQ FDSDFLWDQFH VKRXOG EH PLQLPL]HG

PAGE 24

'DUN &XUUHQW 7KH GDUN FXUUHQW GHSHQGV VWURQJO\ RQ WKH EDUULHU KHLJKW RI D 6FKRWWN\ EDUULHU SKRWRGLRGH 7KH GDUN FXUUHQW GHSHQGV DOVR VWURQJO\ RQ GLRGH PDWHULDO JHRPHWU\ DQG VXUIDFH SDVVLYDWLRQ 7KH XVHB RI ,Q[*DcB[$V,Q3 KHWHURVWUXFWXUH DQG VXUIDFH SDVVLYDWLRQ FRXOG UHGXFH WKH GDUN FXUUHQW RI D SKRWRGLRGH 7KH UHGXFWLRQ RI GDUN FXUUHQW LV LPSRUWDQW IRU WKH LPSURYHPHQW RI WKH PLQLPXP GHWHFWDEOH SRZHU 7KH GDUN FXUUHQW RI D 6FKRWWN\ EDUULHU SKRWRGLRGH FRQVLVWV RI WKHUPLRQLFHPLVVLRQ FXUUHQW JHQHUDWLRQUHFRPELQDWLRQ FXUUHQW YLD WUDSV LQ WKH GHSOHWLRQ UHJLRQ WXQQHOLQJ FXUUHQW GXH WR FDUULHUV WXQQHOLQJ DFURVV WKH EDQGJDS DQG VXUIDFH OHDNDJH FXUUHQW RU LQWHUIDFH FXUUHQW GXH WR WUDSV DW WKH PHWDOVHPLFRQGXFWRU LQWHUIDFH 7XQQHOLQJ FXUUHQW FDQ EH QHJOHFWHG IRU ORZ LPSXULW\ GRSLQJ FRQFHQWUDWLRQ OHVV f§ WKDQ FP f 6XUIDFH OHDNDJH FXUUHQW LV QRW D IXQGDPHQWDO GHYLFH FKDUDFWHULVWLF DQG LQ PRVW FDVHV FDQ EH HOLPLQDWHG E\ FDUHIXO SURFHVVLQJ DQG SDVVLYDWLRQ WHFKQLTXHV 7KH WRWDO FXUUHQW FRQVLVWV RI WKHUPLRQLFHPLVVLRQ FXUUHQW RYHU WKH 6FKRWWN\ EDUULHU DQG WKH JHQHUDWLRQUHFRPELQDWLRQ FXUUHQW LQ WKH GHSOHWLRQ UHJLRQ 7KHUPLRQLF(PLVVLRQ &XUUHQW 7KH GDUN FXUUHQW LQ WKH IRUZDUG ELDV GLUHFWLRQ RI D 6FKRWWN\ EDUULHU GLRGH LV GHWHUPLQHG PDLQO\ E\ WKHUPLRQLFHPLVVLRQ RI PDMRULW\ FDUULHUV IURP WKH VHPLFRQGXFWRU LQWR WKH PHWDO IRU GRSLQJ OHYHOV OHVV WKDQ A FP >@ ,WK 6$r7H[S>T %QfN7@>H[ST9QN7f @ f

PAGE 25

7KH HIIHFWLYH EDUULHU KHLJKW L% %Q p%Q f FDQ A GHWHUPLQHG IURP WKH PHDVXUHG YDOXH RI WKH VDWXUDWLRQ FXUUHQW *HQHUDWLRQ5HFRPELQDWLRQ &XUUHQW $W ]HUR ELDV WKH GHSOHWLRQ UHJLRQ RI WKH 6FKRWWN\ EDUULHU LV LQ WKHUPDO HTXLOLEULXP DQG WKH UDWH RI HOHFWURQKROH SDLU JHQHUDWLRQ LV EDODQFHG E\ WKH UDWH RI UHFRPELQDWLRQ ,Q WKH SUHVHQFH RI DQ DSSOLHG YROWDJH WKHUH ZLOO EH D QHW JHQHUDWLRQ RU UHFRPELQDWLRQ FXUUHQW GHSHQGLQJ RQ WKH SRODULW\ RI WKH ELDV 7KH JHQHUDWLRQUHFRPELQDWLRQ FXUUHQW WKURXJK WKH PLGJDS WUDSV LQ WKH GHSOHWLRQ UHJLRQ ZKLFK LV GRPLQDQW DW ORZ YROWDJH LV JLYHQ E\ >@ ,JU TA$:WJII >H[ST9N7f @ f ZKHUH rWHII ‘fA LV WKH HIIHFWLYH FDUULHU OLIHWLPH LQ WKH GHSOHWLRQ UHJLRQ 7KLV FXUUHQW LV DGGHG WR WKH WKHUPLRQLFHPLVVLRQ FXUUHQW DQG PD\ FDXVH GHYLDWLRQV IURP LGHDO EHKDYLRU LQ D 6FKRWWN\ EDUULHU GLRGH 1RWH WKDW WKH FXUUHQW LV D JHQHUDWLRQ FXUUHQW ZKHQ WKH MXQFWLRQ LV UHYHUVH ELDVHG DQG LV D UHFRPELQDWLRQ FXUUHQW ZKHQ WKH MXQFWLRQ LV IRUZDUG ELDVHG 7KH WRWDO FXUUHQW FDQ EH H[SUHVVHG E\ >@ ,WRW ,WKV>H[3A9N7f f ,JUV>H[ST9N7f @ f 7KH UDWLR RI WKHUPLRQLFHPLVVLRQ FXUUHQW WR JHQHUDWLRQUHFRPELQDWLRQ FXUUHQW LQFUHDVHV ZLWK D ELDV YROWDJH HQHUJ\JDS HIIHFWLYH FDUULHU OLIHWLPH DQG WHPSHUDWXUH DQG GHFUHDVHV ZLWK WKH EDUULHU KHLJKW 7KH UHFRPELQDWLRQ FXUUHQW LV LPSRUWDQW LQ KLJK EDUULHU LQ ORZ OLIHWLPH PDWHULDO DW ORZ WHPSHUDWXUH DQG DW ORZ IRUZDUG ELDV YROWDJH >@

PAGE 26

7XQQHOLQJ &XUUHQW 7XQQHOLQJ FXUUHQW HLWKHU EDQGWREDQG RU YLD GHHSOHYHO WUDSV GRPLQDWHV WKH GDUN FXUUHQW DW KLJK YROWDJH DQG WKHQ ORZ FDSDFLWDQFHf UHVXOWLQJ LQ WKH VRIW EUHDNGRZQ FKDUDFWHULVWLFV )RU KHDYLO\ GRSHG VHPLFRQGXFWRUV WKH GRPLQDQW SURFHVV FKDQJHV IURP WKHUPLRQLFILHOG HPLVVLRQ WR ILHOG HPLVVLRQ DQG WKH FRQWDFW VWDWHV WR EHKDYH OLNH DQ RKPLF FRQWDFW ZLWK D VXIILFLHQWO\ VPDOO FRQWDFW UHVLVWDQFH ,Q DGGLWLRQ WKH H[SRQHQWLDO GHSHQGHQFH RI WKH FXUUHQW FKDQJHV IURP T9N7 WR T9(A >@ -JH[SLT9&(44&2WK&(44N7f@` f (FR TKfAPrfVf f [O1GPUHUf f nIF ZQHUH P PUPf LV WKH HIIHFWLYH PDVV RI HOHFWURQ DQG fV H4*Uf LV SHUPLWWLYLW\ RI WKH VHPLFRQGXFWRU (42 LV D YHU\ XVHIXO SDUDPHWHU LQ SUHGLFWLQJ WKH UHODWLYH LPSRUWDQFH RI WKHUPLRQLFHPLVVLRQ RU WXQQHOLQJ )RU (42N7 m WKH WKHUPLRQLFHPLVVLRQ SURFHVV GRPLQDWHV DQG WKH FRQWDFW EHKDYHV DV D 6FKRWWN\ EDUULHU )RU (42N7 } ILHOG HPLVVLRQ GRPLQDWHV DQG WKH FRQWDFW H[KLELWV RKPLF FKDUDFWHULVWLFV )RU (24N7 D PL[HG PRGH RI WUDQVSRUW RFFXUV '& 3DUDPHWHUV 7KH WRWDO FDSDFLWDQFH RI D SDFNDJHG 6FKRWWN\ EDUULHU SKRWRGLRGH LV JLYHQ E\ &7 &M &4 &S ZKHUH &M LV WKH PHWDOVHPLFRQGXFWRU MXQFWLRQ FDSDFLWDQFH &4 LV WKH RYHUOD\ FDSDFLWDQFH DFURVV WKH

PAGE 27

GLHOHFWULF SDVVLYDWLRQ OD\HU DQG &S LV WKH SDFNDJH SDUDVLWLF FDSDFLWDQFH 7KH RYHUOD\ DQG SDFNDJH SDUDVLWLF FDSDFLWDQFH VKRXOG EH PLQLPL]HG -XQFWLRQ &DSDFLWDQFH 7KH MXQFWLRQ FDSDFLWDQFH LV VLPSO\ JLYHQ E\ WKH RQHVLGHG DEUXSW MXQFWLRQ DQDO\VLV 0HDVXUHPHQWV RI MXQFWLRQ FDSDFLWDQFH FDQ EH XVHG IRU GHWHUPLQLQJ WKH EDFNJURXQG VKDOORZ LPSXULW\ SURILOH RI D 6FKRWWN\ EDUULHU GLRGH RU D RQHVLGHG DEUXSW MXQFWLRQ GLRGH 7KH EDFNJURXQG GRSDQW GHQVLW\ LV JLYHQ E\ 1E THRV$f^G95 9'fG&M` f ZKHUH &M $LTA4AA 9f` f ZKHUH 15 LV WKH GRSDQW GHQVLW\ RI WKH OLJKWGRSHG VLGH 7KH GLIIXVLRQ SRWHQWLDO 9S RI D 6FKRWWN\ EDUULHU GLRGH LV GHWHUPLQHG IURP WKH f f§ LQWHUFHSW RI &M YV 95 FXUYH DQG WKH EDUULHU KHLJKW RI D 6FKRWWN\ GLRGH FDQ EH FDOFXODWHG XVLQJ WKH IROORZLQJ HTXDWLRQ p%Q 9' N7TfOQ1F1'f f 2YHUOD\ &DSDFLWDQFH 7KH FDSDFLWDQFH GXH WR WKH PHWDO FRQWDFW RYHUOD\LQJ WKH SDVVLYDWLQJ GLHOHFWULF OD\HU LQ D 6FKRWWN\ EDUULHU GLRGH PD\ EH LPSRUWDQW $VVXPLQJ QHJOLJLEOH VSDFHFKDUJH SHQHWUDWLRQ D UHDOLVWLF DVVXPSWLRQ IRU 62 RQ WKH VHPLFRQGXFWRUf WKH RYHUOD\ FDSDFLWDQFH LV

PAGE 28

FR m:AR f ZKHUH :4 LV WKH WKLFNQHVV RI WKH GLHOHFWULF OD\HU DQG $> 5A$f$@ LV WKH DUHD RI WKH GLHOHFWULF OD\HU 7KLV SDUDVLWLF FDSDFLWDQFH PXVW EH NHSW WR D PLQLPXP SDUWLFXODUO\ DW ;EDQG IUHTXHQF\ RU KLJKHU 2YHUOD\ FRQWDFWV DUH QRW JHQHUDOO\ XVHG DERYH *+] IUHTXHQFLHV EHFDXVH WKH\ GHJUDGH WKH RYHUDOO SHUIRUPDQFH RI D GLRGH >@ )LJXUH VKRZV WKH GLIIHUHQW YDOXHV RI WKH RYHUOD\ FDSDFLWDQFH IRU GLIIHUHQW YDOXHV RI 5A $ DQG :4 7KH WKLFN GLHOHFWULF OD\HU HJ SPf FDQ VXEVWDQWLDOO\ UHGXFH WKH RYHUOD\ FDSDFLWDQFH RI D 6FKRWWN\ EDUULHU GLRGH 6HULHV 5HVLVWDQFH 7KH VHULHV UHVLVWDQFH LV FRPSRVHG RI WKH OHDG UHVLVWDQFH WKH VSUHDGLQJ UHVLVWDQFH RI WKH EDVH PDWHULDO DQG WKH VKHHW UHVLVWDQFH RI WKH HSLOD\HU DQG WKH VXEVWUDWH 7KH VHULHV UHVLVWDQFH LV GXH PDLQO\ WR WKH VKHHW UHVLVWDQFH RI WKH VHPLFRQGXFWRU VXEVWUDWH DQG WKH XQGHSOHWHG HSLOD\HU 7KLV UHVLVWDQFH LV GLVWULEXWHG GHSHQGLQJ RQ WKH FRQWDFW JHRPHWU\ DQG LV IUHTXHQF\ GHSHQGHQW 7KH VHULHV UHVLVWDQFH RI DQ HSLOD\HU LV JLYHQ E\ 5VO :TSQ1'$ f ZKHUH : LV WKH WKLFNQHVV RI WKH HSLOD\HU DQG LV WKH GRQRU GHQVLW\ RI WKH HSLWD[LDO RU DFWLYH OD\HU 7KH UHVLVWDQFH FRQWULEXWHG E\ WKH VXEVWUDWH PD\ EH PRGHOHG E\ XVLQJ WKH UHVLVWDQFH RI D FRQWDFW GRW RQ D VHPLLQILQLWH VHPLFRQGXFWRU VXEVWUDWH

PAGE 29

r &S)f 5 0,/6f )LJXUH 2YHUOD\ FDSDFLWDQFH RI WKH 6LA SDVVLYDWLRQ OD\HU ZLWK D WKLFNQHVV RI SP

PAGE 30

5V SV 9WWf f ZKHUH 3V LV WKH VXEVWUDWH UHVLVWLYLW\ 7KH WRWDO VHULHV UHVLVWDQFH VKRZQ LQ )LJ FRQVLVWV RI GXH WR WKH HSLOD\HU DQG 5V GXH WR WKH VHPLFRQGXFWRU VXEVWUDWH /HDG ,QGXFWDQFH 7KH LQWULQVLF UHVSRQVH VSHHG RI D SKRWRGLRGH LV XVXDOO\ GHJUDGHG E\ WKH H[WULQVLF FLUFXLW HOHPHQWV VXFK DV MXQFWLRQ DQG SDUDVLWLF FDSDFLWDQFHV VHULHV DQG ORDG UHVLVWDQFHV DQG LQGXFWDQFHV 7KH LQGXFWDQFH LV GXH SULPDULO\ WR WKH ERQG ZLUH ,I WKH URXQG ZLUH LV XVHG DV D ERQG ZLUH WKH LQGXFWDQFH /E Q+f FDQ EH HVWLPDWHG E\ >@ /E [a/>,Q/Gf @ f ZKHUH G PLOf LV WKH GLDPHWHU RI WKH ERQG ZLUH ,I WKH PHWDO ULEERQ RI ZLGWK : WKLFNQHVV W DQG OHQJWK / LV XVHG WKH LQGXFWDQFH GXH WR WKH ERQG ZLUH FDQ EH REWDLQHG E\ >@ /K [/>,Q/:Wf :Wf/@ f 7KH LQGXFWDQFH GXH WR WKH URXQG ZLUH DQG ULEERQ LV SUDFWLFDOO\ OHVV WKDQ Q+ 7KH LQGXFWDQFH LV Q+ IRU WKH ERQG ZLUH ZLWK D GLDPHWHU RI PLO DQG D OHQJWK RI PLO 1RLVH(TXLYDOHQW 3RZHU 1(3f 7KH PLQLPXP GHWHFWDEOH RSWLFDO SRZHU RI D SKRWRGLRGH LV OLPLWHG E\ LWV QRLVH SHUIRUPDQFH 7KH QRLVH JHQHUDWHG LQ D SKRWRGLRGH RSHUDWLQJ XQGHU UHYHUVH ELDV FRQGLWLRQ LV D FRPELQDWLRQ RI VKRW QRLVH

PAGE 31

)LJXUH 6WUXFWXUH DQG HTXLYDOHQW FLUFXLW RI WKH 6FKRWWN\ EDUULHU GLRGH

PAGE 32

I QRLVH RU IOLFNHU QRLVHf DQG WKHUPDO QRLVH RU -RKQVRQ QRLVHf 7KH VKRW QRLVH LV GXH WR WKH SKRWRJHQHUDWHG FXUUHQWV RI WKH VLJQDO EDFNJURXQG LOOXPLQDWLRQ DQG WKH UHYHUVHELDV GDUN FXUUHQW 7KH WKHUPDO QRLVH DULVHV IURP D UDQGRP PRWLRQ RI WKH FDUULHUV ZLWKLQ DQ\ UHVLVWLYH PDWHULDOV LQFOXGLQJ VHPLFRQGXFWRUV DQG LV DOZD\V DVVRFLDWHG ZLWK D GLVVLSDWLYH PHFKDQLVP 7KH IOLFNHU QRLVH RU I QRLVHf KDV D FXUUHQWGHSHQGHQW SRZHU VSHFWUXP ZKLFK LV LQYHUVHO\ SURSRUWLRQDO WR WKH IUHTXHQF\ H[LVWLQJ LQ DOO GHYLFHV ZKHQ D FXUUHQW IORZV $W ORZ IUHTXHQF\ I QRLVH GRPLQDWHV DQG DW LQWHUPHGLDWH IUHTXHQF\ WKH JHQHUDWLRQUHFRPELQDWLRQ QRLVH GRPLQDWHV $W KLJK IUHTXHQF\ WKH LQIUDUHG SKRWRGHWHFWRUV H[KLELW D ZKLWH IUHTXHQF\ LQGHSHQGHQWf QRLVH ZKLFK LQFOXGH WKHUPDO JHQHUDWLRQUHFRPELQDWLRQ DQG VKRW QRLVH 7KH WUDQVLWLRQ SRLQWV YDU\ ZLWK VHPLFRQGXFWRU PDWHULDO GRSLQJ FRQFHQWUDWLRQ DQG SURFHVVLQJ WHFKQRORJ\ +RZHYHU IRU LQIUDUHG GHWHFWRUV WKHVH WUDQVLWLRQ IUHTXHQFLHV DUH URXJKO\ DW .+] DQG 0+] UHVSHFWLYHO\ ,Q WKH ZDYHOHQJWK UHJLRQ RI LQWHUHVW IRU RSWLFDO FRPPXQLFDWLRQ WKH GHWHFWLRQ LV OLPLWHG HLWKHU E\ WKHUPDO RU VKRW QRLVH 7KH VFKHPDWLF GLDJUDP WR FKDUDFWHUL]H WKH SKRWRGHWHFWRU QRLVH LV VKRZQ LQ )LJ 7KH HIIHFW RI QRLVH RQ WKH VLJQDO WUDQVPLVVLRQ LV PHDVXUHG E\ WKH VLJQDOWRQRLVH UDWLR 615f IRU DQDORJ VLJQDOV 7KH VLJQDOWRQRLVH UDWLR 615f LV WKH VLJQDO SRZHU DW DQ RXWSXW RI WKH GHWHFWLRQ FLUFXLW GLYLGHG E\ WKH DYHUDJH QRLVH SRZHU 615 Of,V5HII,Q5HII f ZKHUH LQA LV WKH VXP RI WKH VTXDUH RI DOO QRLVH VRXUFH FXUUHQWV DQG 7V

PAGE 33

9 )LJXUH 6FKHPDWLF GLDJUDP IRU PLOOLPHWHUZDYH SKRWRGHWHFWRU 7KH GHWHFWRU QRLVH FDQ EH PHDVXUHG DW ERWK GDUN DQG QRLVH PHDVXUHPHQW LOOXPLQDWHG FRQGLWLRQ

PAGE 34

LV WKH VLJQDO QRLVH FXUUHQW DPSOLWXGH REWDLQHG IURP D VLQXVRLGDOO\ PRGXODWHG RSWLFDO VLJQDOLV UMT;3/K\f ZKHUH 3/ LV WKH DYHUDJH RSWLFDO VLJQDO SRZHU ZKLFK LV DVVXPHG WR EH b LQWHQVLW\ PRGXODWHG 7KHUHIRUH 615 LV JLYHQ E\ >@ f U"T;3/KYf 615 f T $I OV,%,'fN7 $I5HIIf) 7KH RSWLFDO SRZHU 3/ ZKLFK JHQHUDWHV D VLJQDO DPSOLWXGH HTXDO WR WKH QRLVH DPSOLWXGH LH 615 f DW WKH RXWSXW LV FDOOHG WKH PLQLPXP GHWHFWDEOH SRZHU 3PQ ZKLFK LV JLYHQ E\ 3PLQ KF;7" f$If>$If^ $IO%,'fTN7)T5HIIf`@ f 7KH QRLVHHTXLYDOHQW SRZHU LV REWDLQHG E\ GLYLGLQJ 3PQ E\ $IfA 1(3 KF;U" -&W$Ifr $I,%,'fTN7)T5HIIf`@ f 7KH QRLVH GXH WR WKH EDFNJURXQG LOOXPLQDWLRQ FDQ EH QHJOHFWHG EHFDXVH LW FDQ EH PDGH YDQLVKLQJO\ VPDOO LQ RSWLFDO ILEHU FRPPXQLFDWLRQ FLUFXLWV )LJXUH VKRZV WKH WKHRUHWLFDO FDOFXODWLRQ RI 1(3 YV HIIHFWLYH UHVLVWDQFH 5HII ZLWK D SDUDPHWHU RI D GDUN FXUUHQW IRU WKH SKRWRGHWHFWRUV 'HYLFH 3DFNDJLQJ 7KH SKRWRGHWHFWRU VKRXOG EH SDFNDJHG WR SURWHFW WKHP IURP PHFKDQLFDO RU RWKHU SRVVLEOH GDPDJHV DQG WR DOORZ WKHLU LQFRUSRUDWLRQ LQWR HOHFWULFDO DQG RSWLFDO FLUFXLWV +RZHYHU SDFNDJLQJ LQWURGXFHV DGGLWLRQDO SDUDVLWLF HIIHFWV DQG PD\ DWWHQXDWH RU GLVWRUW ERWK

PAGE 35

4 ,G WF ,G e R = ,G D ,G ,G f • = ())(&7,9( 5(6,67$1&( f )LJXUH 1RLVHHTXLYDOHQW SRZHU 1(3f YV HIIHFWLYH UHVLVWDQFH DV D SDUDPHWHU RI D GDUN FXUUHQW

PAGE 36

HOHFWULFDO DQG RSWLFDO VLJQDOVI LI QRW SURSHUO\ GHVLJQHG 7KH SDFNDJH VL]H GHWHUPLQHV WKH SDUDVLWLF LPSHGDQFH DGGHG WR WKH GLRGH LPSHGDQFH SUHGRPLQDQWO\ WKH OHDG LQGXFWDQFH DQG SDFNDJH FDSDFLWDQFH )RU ORZ QRLVH DQG ODUJH EDQGZLGWK WKH FDSDFLWDQFH VKRXOG EH H[WUHPHO\ VPDOO 7KHUHIRUH VPDOO SDFNDJHV DUH SUHIHUDEOH IRU ORZ QRLVHHTXLYDOHQW SRZHU DQG KLJK PRGXODWLRQ IUHTXHQF\ RI SKRWRGLRGHV IRU RSWLFDO ILEHU FRPPXQLFDWLRQV ,Q SDFNDJLQJ D VSHFLDOO\ GHVLJQHG SKRWRGHWHFWRU IRU RSWLFDO ILEHU FRPPXQLFDWLRQV D ILEHU ZLWK D UHODWLYHO\ ODUJH QXPHULFDO DSHUDWXUH DQG GLDPHWHU LV SRVLWLRQHG FORVH WR WKH WRS FRQWDFW DERYH WKH LOOXPLQDWLRQ ZLQGRZ RI WKH GLRGH 7KLV NLQG RI SDFNDJH DOORZV WKH PD[LPXP TXDQWXP HIILFLHQF\ DW PLQLPXP EDFNJURXQG LOOXPLQDWLRQ REWDLQDEOH IRU D ILEHUGLRGH FRQQHFWLRQ (OHFWULFDO FRQWDFW WR D SKRWRGLRGH LV PRVW HDVLO\ DFKLHYHG E\ VROGHULQJ WKH ZLUHOHDGV RU ERQGV LQWR WKH HOHFWULFDO FLUFXLW ,I D PLFURVWULS WUDQVPLVVLRQ OLQH LV XVHG WKH SDUDVLWLF FDSDFLWDQFH FDQ EH UHGXFHG 7R DOORZ D GHPRXQWDEOH FRQQHFWLRQ WR D FRPPHUFLDO RKP DPSOLILHU WKH SKRWRGLRGH VKRXOG EH LQFRUSRUDWHG LQWR D PLQLDWXUH FRD[LDO FDEOH 7KH ODWWHU DSSURDFK PD\ OLPLW WKH V\VWHP SHUIRUPDQFH EHFDXVH RI WKH ORZ LQSXW LPSHGDQFH WKHUPDO QRLVHf 7UDQVPLVVLRQ /LQH 6WUXFWXUH 0LFURVWULS WUDQVPLVVLRQ OLQHV KDYH EHHQ H[WHQVLYHO\ XVHG IRU PLFURZDYH DQG PLOOLPHWHUZDYH K\EULG LQWHJUDWHG FLUFXLWV 7KH SDVVLYH OXPSHG HOHPHQWV FDQ EH IDEULFDWHG RQ WKH VDPH VXEVWUDWH DQG FKLS RU EHDPOHDG DFWLYH GHYLFHV FDQ EH ERQGHG GLUHFWO\ WR WKH VWULSV

PAGE 37

0LFURZDYH LQWHJUDWHG FLUFXLWV 0,&f XVLQJ PLFURVWULS OLQH FDQ EH GHVLJQHG IRU IUHTXHQFLHV UDQJLQJ IURP D IHZ *+] XS WR PDQ\ WHQV RI JLJDKHUW] *+]f $W KLJKHU IUHTXHQFLHV SDUWLFXODUO\ LQWR WKH PLOOLPHWHU ZDYHOHQJWK UDQJHV ORVVHV LQFUHDVH JUHDWO\ DQG KLJKHURUGHU PRGHV EHFRPH D FRQVLGHUDEOH SUREOHP >@ 7KH IUHTXHQF\ OLPLW IRU nWKH XVH RI PLFURVWULS WUDQVPLVVLRQ OLQH LV SUREDEO\ DURXQG *+] &RSODQDU ZDYHJXLGH &3:f VWUXFWXUH LV D JRRG DOWHUQDWLYH WR WKH PLFURZDYH GHYLFH SDFNDJLQJ &3: KDV DQ LPSRUWDQW DGYDQWDJH RYHU PLFURVWULS WUDQVPLVVLRQ OLQH LQ WKDW WKH VLJQDO FRQGXFWRU DQG WKH JURXQG SODQH FRQGXFWRU VKDUH WKH VDPH VXUIDFH RI WKH GLHOHFWULF VXEVWUDWH 7KH SKRWRGLRGH FDQ EH VWUDSSHG DFURVV WKH LQWHUPHWDOOLF JDSV ZLWKRXW GULOOLQJ WKH VXEVWUDWH 7KLV ZDYHJXLGLQJ VWUXFWXUH RIIHUV FRQYHQLHQW LQFRUSRUDWLRQ RI WKH OXPSHG GHYLFHV DQG VKRUW FLUFXLWV ZKLFK LV PRUH GLIILFXOW LQ WKH PLFURVWULS OLQH >@ 7KLV PHDQV WKDW FLUFXLW FRQQHFWLRQV WR JURXQG FDQ EH PDGH VLPSO\ ZLWK VKRUW ORZ SDUDVLWLF ERQG ZLUH FRQQHFWLRQV $ YDULHW\ RI WUDQVPLVVLRQ OLQH VWUXFWXUHV IRU 0,& DSSOLFDWLRQV DUH VKRZQ LQ )LJ (DFK W\SH RI WKH WUDQVPLVVLRQ OLQH VWUXFWXUH KDV SRWHQWLDO DGYDQWDJHV IRU YDULRXV DSSOLFDWLRQV DQG WKHUHIRUH WKHLU FKDUDFWHULVWLFV DUH VXPPDUL]HG LQ 7DEOH 7UDQVPLVVLRQ /LQH 0DWHULDOV 7KH VXEVWUDWH PDWHULDOV VKRXOG KDYH WKH IROORZLQJ FKDUDFWHULVWLFV >@ f KLJK GLHOHFWULF FRQVWDQW f ORZ GLVVLSDWLRQ IDFWRU RU ORVV WDQJHQWf f IUHTXHQF\ DQG WHPSHUDWXUH LQGHSHQGHQW GLHOHFWULF FRQVWDQW f KLJK WKHUPDO FRQGXFWLYLW\ f KLJK UHVLVWLYLW\ DQG

PAGE 38

6XEVWUDWH n 0HWDO $f 0,&52675,3 /,1( 0HWDO 6ORW 6XEVWUDWH f %f 6863(1'(' 675,3/,1( n6XEVWUDWH 'LHOHFWULF 0HWDO 'f ,19(57(' 0L&52675,3 /,1( 0HWDO 6ORW (f 75$33(' ,19(57(' 0,&52675,3 /,1( 6XEVWUDWH 6XEVWUDWH )f 6/27/,1( 0HWDO 6XEVWUDWH *f &23/$1$5 :$9(*8,'( +f ',(/(&75,& ,0$*( *8,'( )LJXUH 0,& WUDQVPLVVLRQ OLQH VWUXFWXUHV IRU WKH SKRWRGHWHFWRU SDFNDJH

PAGE 39

7DEOH 3523(57,(6 2) 0,& 75$160,66,21 /,1( 6758&785(6 75$160,66,21 /,1( 6758&785(6 &+$5$&7(5,67,& ,03('$1&(4f )5(48(1&< 5$1*( 2) 23(5$7,21 *+=f /266 ',63(56,21 '(9,&(&20321(7 &203$7$%,/,7< ,17(*5$7,21 /(9(/ ,1 6(5,(6 ,1 3$5$//(/ 0LFURVWULS /LQH XS WR 0HGLXP /RZ (DV\ 'LIILFXOW &RSODQDU :DYHJXLGH XS WR +LJK +LJK (DV\ (DV\ 6ORW /LQH f§ +LJK 1RQ 7(0 0RGH 'LIILFXOW (DV\ 6XVSHQGHG 6WULSOLQH /RZ +LJK (DV\ 'LIILFXOW )LQOKH /RZ /RZ (DV\ (DV\ ,QYHUWHG 0LFURVWULS /LQH /RZ /RZ 8QNQRZQ 8QNQRZQ 7UDSSHG ,QYHUWHG 0LFURVWULS /LQH XS WR /RZ /RZ 8QNQRZQ 8QNQRZQ 'LHOHFWULF ,PDJH :DYHJXLGH +LJK +LJK 'LIILFXOW 'LIILFXOW

PAGE 40

GLHOHFWULF VWUHQJWK f KLJK SXULW\ DQG FRQVWDQW WKLFNQHVV DQG f KLJK VXUIDFH VPRRWKQHVV 7KH FRQGXFWRU PDWHULDOV VKRXOG KDYH WKH IROORZLQJ SURSHUWLHV f KLJK FRQGXFWLYLW\ f ORZ WHPSHUDWXUH FRHIILFLHQW RI UHVLVWDQFH f JRRG DGKHVLRQ WR WKH GLHOHFWULF VXEVWUDWH f JRRG HWFKDELOLW\ DQG VROGHUDELOLW\ DQG f HDVLO\ GHSRVLWHG RU HOHFWURSODWHG 7KH PHWDO FRQGXFWRU VWULSH LV GHSRVLWHG E\ WKLQ ILOP WHFKQRORJ\ RQ D GLHOHFWULF VXEVWUDWH RI UHODWLYH GLHOHFWULF FRQVWDQW 7KH SURSHUWLHV RI GLHOHFWULF ILOPV VKRXOG KDYH f UHSURGXFLELOLW\ f FDSDELOLW\ RI ZLWKVWDQGLQJ KLJK YROWDJHV DQG f ORZ 5) GLHOHFWULF ORVV 7\SLFDO VXEVWUDWH PDWHULDOV DUH DOXPLQD *D$V 'XURLG VDSSKLUH TXDUW] DQG IXVHG VLOLFD ZLWK 6U YDU\LQJ IURP WR DQG W\SLFDO FRQGXFWRU PDWHULDOV DUH JROG VLOYHU DOXPLQXP DQG FRSSHU 6XEVWUDWH SURSHUWLHV VKRZ WKDW JRRG HOHFWULFDO FRQGXFWRUV KDYH SRRU VXEVWUDWH DGKHVLRQ ZKHUHDV SRRU HOHFWULFDO FRQGXFWRUV KDYH JRRG VXEVWUDWH DGKHVLRQ $OXPLQXP KDV UHODWLYHO\ JRRG FRQGXFWLYLW\ DQG JRRG DGKHVLRQ ,W LV SRVVLEOH WR REWDLQ JRRG DGKHVLRQ ZLWK KLJK FRQGXFWLYLW\ PDWHULDOV E\ XVLQJ D YHU\ WKLQ ILOP RI RQH RI WKH SRRUHU FRQGXFWRUV EHWZHHQ WKH VXEVWUDWH DQG WKH JRRG FRQGXFWRU 6RPH W\SLFDO FRPELQDWLRQV DUH &U$X &U&X DQG 7D$X 7KH FKRLFH RI FRQGXFWRUV LV XVXDOO\ GHWHUPLQHG E\ FRPSDWLELOLW\ ZLWK RWKHU PDWHULDOV UHTXLUHG LQ WKH SURFHVVHV )RU VPDOO ORVVHV WKH FRQGXFWRUV VKRXOG EH RI WKH RUGHU RI WR VNLQ GHSWKV WKLFN 7KDW LV WKLFN ILOPV RI WKH JRRG FRQGXFWRU DUH UHTXLUHG 7KH FRPPRQO\ XVHG GLHOHFWULF ILOPV DUH $,2 6L2 6L&! 6A1A DQG 7DA >@

PAGE 41

0LFURVWULS 7UDQVPLVVLRQ /LQH 'HVLJQ 7KH SDUDPHWHU DQDO\VLV RI PLFURVWULS OLQHV FDQ EH REWDLQHG E\ QXPHULFDO DSSUR[LPDWLRQV VXFK DV FRQIRUPDO PDSSLQJ PHWKRG YDULDWLRQDO PHWKRG RU UHOD[DWLRQ PHWKRG LI WKH WUDQVYHUVH HOHFWURPDJQHWLF 7(0f PRGH LV DVVXPHG WR EH GRPLQDQW 7KH HOHFWULFDO SDUDPHWHUV DUH FKDUDFWHUL]HG E\ FKDUDFWHULVWLF LPSHGDQFH DWWHQXDWLRQ IDFWRU DQG ZDYHOHQJWK 7KH PRVW LPSRUWDQW GLPHQVLRQDO SDUDPHWHUV DUH WKH PLFURVWULS ZLGWK : DQG KHLJKW + 7KH UHODWLYH SHUPLWWLYLW\ RI WKH GLHOHFWULF VXEVWUDWH LV DOVR LPSRUWDQW 7KH PLFURVWULS ZLGWK FDQ EH FDOFXODWHG LWHUDWLYHO\ IRU D UHTXLUHG OLQH LPSHGDQFH XVLQJ WKH VXEVWUDWH GLHOHFWULF FRQVWDQW DQG WKLFNQHVV 7KH RSHUDWLRQ IUHTXHQF\ LV WKHQ XVHG WR REWDLQ WKH JXLGH ZDYHOHQJWK DQG SKDVH YHORFLW\ 7KH FRQGXFWRU ORVV DQG GLHOHFWULF ORVV >@ FDQ EH FDOFXODWHG XVLQJ WKH VXEVWUDWH GLVVLSDWLRQ IDFWRU DQG PHWDOOL]DWLRQ UHVLVWLYLW\ DQG WKLFNQHVV 7KH PLFURVWULS OLQHV DUH DVVXPHG WR EH SURSDJDWHG LQ RQO\ TXDVL7(0 PRGH RU FDQ EH DSSUR[LPDWHG DV VXFK DW WKH RSHUDWLQJ IUHTXHQF\ 7KHUHIRUH WKH RSHUDWLQJ IUHTXHQF\ PXVW EH ORZHU WKDQ WKH FXWRII IUHTXHQF\ IF RI WKH ORZHVW WUDQVYHUVH HOHFWULF VXUIDFH ZDYH IF +fUOf *+]f f ZKHUH + LV WKH VXEVWUDWH WKLFNQHVV PPf ,Q WUDQVPLVVLRQ OLQHV XVHG IRU LQWHUFRQQHFWLRQ SXUSRVHV WKH UHODWLYH PDJQHWLF SHUPHDELOLW\ RI WKH VXEVWUDWH LV XQLW\ WR SUHYHQW WKH SURSDJDWLRQ GHOD\ WLPH IRU D WUDQVPLVVLRQ OLQH LQ D QRQPDJQHWLF PHGLXP

PAGE 42

7KH FKDUDFWHULVWLF LPSHGDQFH WR GHWHUPLQH WKH ZLGWK RI PLFURVWULS OLQHV LV JLYHQ E\ >@ =4 WW0HHIIHRfOQ+: :+f f HIIfOQ+: :+f IRU :+ f ZKHUH [OA +P DQG H4 [OA )P DQG :+ DUH WKH ZLGWK WKLFNQHVV RI PLFURVWULS OLQHV UHVSHFWLYHO\ 7KH HIIHFWLYH UHODWLYH GLHOHFWULF FRQVWDQW tHIe IRU D PLFURVWULS OLQH GHSHQGV RQ WKH UDWLR :+ WKH UHODWLYH GLHOHFWULF FRQVWDQW fU DQG WKH JHRPHWULFDO IDFWRUV RI WKH ERXQGDU\ EHWZHHQ DLU DQG GLHOHFWULF VXEVWUDWH PDWHULDO >@ fHII fUf fUOf >O+:ffO:+f@ f 7KH ]HUR WKLFNQHVV W f IRUPXODV JLYHQ DERYH FDQ EH PRGLILHG WR FRQVLGHU WKH WKLFNQHVV RI WKH PLFURVWULS ZKHQ : LV UHSODFHG E\ DQ HIIHFWLYH VWULS ZLGWK :f DV IROORZV W+ DQG W:f )RU :+ 7 :n : WUf>O OQ Q :Wf @ f 7KH DWWHQXDWLRQ FRQVWDQW RI WKH GRPLQDQW PLFURVWULS PRGH GHSHQGV RQ JHRPHWULFDO IDFWRUV HOHFWULFDO SURSHUWLHV RI WKH VXEVWUDWH DQG FRQGXFWRU DQG WKH IUHTXHQF\ )RU D QRQPDJQHWLF GLHOHFWULF VXEVWUDWH WKH WZR VRXUFHV RI GLVVLSDWLYH ORVV LQ PLFURVWULS OLQHV DUH FRQGXFWRU ORVV RKPLF ORVVf LQ WKH VWULS FRQGXFWRU DQG JURXQG SODQH DQG GLHOHFWULF ORVV LQ WKH VXEVWUDWH 7KH VXP RI WKHVH ORVVHV PD\ EH H[SUHVVHG DV ORVVHV SHU XQLW OHQJWK LQ WHUPV RI DQ DWWHQXDWLRQ IDFWRU 7KH FRQGXFWRU ORVV DF IRU :+ LV JLYHQ E\ >@

PAGE 43

DF 5VOQOf>:n+f@7 =+>+:n +7:n ^,Q7 :fW:_@ f ZKHUH WKH VXUIDFH UHVLVWLYLW\ 5B LV JLYHQ LQ WHUPV RI WKH IUHH VSDFH SHUPHDELOLW\ IL4 DQG WKH FRQGXFWLYLW\T RI WKH VWULS PHWDO DV 5V f f 7KH GLHOHFWULF ORVV DG ZLWK ORVV WDQJHQW WDQ6 LV JLYHQ E\ >@ DG UOQOffUHHIIfHHIIOfHUOfWDQ; f ZKHUH WKH ORVV WDQJHQW WDQ LV WKH VXEVWUDWH GLVVLSDWLRQ IDFWRU ,Q DGGLWLRQ WR WKH FRQGXFWRU DQG GLHOHFWULF ORVVHV WKH PLFURVWULS OLQH KDV UDGLDWLRQ ORVV 7KH UDGLDWLRQ ORVV GHSHQGV RQ WKH VXEVWUDWH WKLFNQHVV DQG GLHOHFWULF FRQVWDQW DV ZHOO DV WKH JHRPHWU\ 7KH UDGLDWLRQ ORVV GHFUHDVHV ZKHQ WKH FKDUDFWHULVWLF LPSHGDQFH LQFUHDVHV )RU ORZHU GLHOHFWULF FRQVWDQW VXEVWUDWHV UDGLDWLRQ LV VLJQLILFDQW DW KLJKHU LPSHGDQFH OHYHOV )RU KLJKHU GLHOHFWULF FRQVWDQW VXEVWUDWHV UDGLDWLRQ EHFRPHV VLJQLILFDQW XQWLO YHU\ ORZ LPSHGDQFH OHYHOV DUH REWDLQHG 7KH ZDYHOHQJWK DQG WKH SKDVH YHORFLW\ RI WKH PLFURVWULS WUDQVPLVVLRQ OLQH FDQ EH GHWHUPLQHG LQ WHUPV RI WKH HIIHFWLYH UHODWLYH GLHOHFWULF FRQVWDQW fHII 9S HIIfI FPf f 7KH &U$X FRDWHG DOXPLQD $,2f ILOP LV XVHG IRU WKH PLFURVWULS OLQH VXEVWUDWH 7KH GHVLJQ SDUDPHWHUV DQG WKH VWUXFWXUH RI D PLFURVWULS OLQH DUH JLYHQ LQ 7DEOH DQG )LJ UHVSHFWLYHO\

PAGE 44

7KH PLFURZDYH WHVW IL[WXUH ZDV FRQVWUXFWHG IRU WKH RSWLFDO UHVSRQVH PHDVXUHQHQW RI WKH SKRWRGLRGH LQ WKLV VWXG\ 7KH H[WHUQDO FRQQHFWLRQV IURP PLFURVWULS OLQH WR ELDV WHH ZHUH PDGH XVLQJ FRPPHUFLDO 2660 VXEPLQLDWXUH FRD[LDO FRQQHFWRUV DV VKRZQ LQ )LJ 7DEOH '(6,*1 3$5$0(7(56 )25 0,&52:$9( 75$160,66,21 675,3/,1( $OXPLQD $A2Af 6XEVWUDWH [[ 'LHOHFWULF &RQVWDQW HU 6XEVWUDWH 7KLFNQHVV + *ROG )LOP 7KLFNQHVV W 2XWSXW ,PSHGDQFH = RKP 0LFURVWULS /LQH :LGWK : :+ 5DWLR :+ (IIHFWLYH 6WULS :LGWK :n r 5HVSRQVH 6SHHG 0HDVXUHPHQW 7KH W\SLFDO UHVSRQVH VSHHG PHDVXUHPHQW WHFKQLTXHV IRU DQ LPSXOVH UHVSRQVH RI WKH SKRWRGHWHFWRU DUH f LPSXOVH UHVSRQVH WHFKQLTXH XVLQJ D VDPSOLQJ RVFLOORVFRSH RU D PLFURZDYH VSHFWUXP DQDO\]HU >@ f VDPSOLQJ DQG FURVVFRUUHODWLRQ WHFKQLTXH XVLQJ WZR SKRWRGHWHFWRUV >@ f HOHFWURRSWLFDO VDPSOLQJ WHFKQLTXH >@ DQG f RSWLFDO KHWHURG\QH WHFKQLTXH >@ ,PSXOVH 5HVSRQVH 7KLV PHWKRG UHTXLUHV DQ RSWLFDO VRXUFH JHQHUDWLQJ WKH XOWUDVKRUW SXOVHV SUHIHUUDEO\ VKRUWHU WKDQ WKH LPSXOVH UHVSRQVH RI WKH GHYLFH

PAGE 45

0LFURVWULS 8QH] 3KRWRGLRGH $OXPLQD $,2f *ROG )LOP 1RW LQ 6FDOHf = RKP :+ U )LJXUH 6WUXFWXUH RI WKH PLFURVWULS WUDQVPLVVLRQ OLQH IDEULFDWHG LQ WKLV VWXG\

PAGE 46

)LJXUH 0LFURVWULS PLFURZDYH WHVW IL[WXUH IRU FKDUDFWHUL]DWLRQ RI KLJKVSHHG SKRWRGHWHFWRUV IDEULFDWHG LQ WKLV VWXG\

PAGE 47

XQGHU WHVW )RU EURDGEDQG FKDUDFWHUL]DWLRQ HLWKHU D V\QFKURQRXVO\ SXPSHG PRGHORFNHG G\H ODVHU RU D GLRGH ODVHU GULYHQ E\ D FRPE JHQHUDWRU RU D VWHSUHFRYHU\ GLRGHf DW DQ RSHUDWLQJ ZDYHOHQJWK DUH QHFHVVDU\ 7KH VFKHPDWLF GLDJUDP IRU WKH LPSXOVH UHVSRQVH PHDVXUHPHQW LV VKRZQ LQ )LJ 7KH LPSXOVH UHVSRQVH LV PHDVXUHG E\ HLWKHU D VDPSOLQJ VFRSH LQ D WLPH GRPDLQ RU D PLFURZDYH VSHFWUXP DQDO\]HU LQ D IUHTXHQF\ GRPDLQ 1RWH WKDW WKH PHDVXUHG UHVSRQVH LV D FRQYROXWLRQ RI WKH WUXH SKRWRGHWHFWRU LPSXOVH UHVSRQVH DQG WKH PHDVXUHPHQW V\VWHP UHVSRQVH LQFOXGLQJ WKH VDPSOLQJ JDWH ZLGWK WKH ODVHU SXOVH ZLGWK WKH SXOVH EURDGHQLQJ GXH WR WUDQVPLVVLRQ OLQHV DQG FRQQHFWRUV 6LQFH PRVW RI WKHVH DUH QRW NQRZQ DFFXUDWHO\ LW LV GLIILFXOW WR HVWLPDWH WKH WUXH LPSXOVH UHVSRQVH RI WKH SKRWRGHWHFWRU E\ GHFRQYROXWLRQ $ PRUH DFFXUDWH HVWLPDWH FDQ EH REWDLQHG E\ DQ HOHFWULFDO FRUUHODWLRQ PHDVXUHPHQW XVLQJ WZR LGHQWLFDO SKRWRGHWHFWRUV >@ 6DPSOLQJ&RUUHODWLRQ 7KH VWDQGDUG WHFKQLTXH IRU PHDVXULQJ WKH GXUDWLRQ RI SLFRVHFRQG RSWLFDO SXOVHV LV WR PDNH D QRQOLQHDU RSWLFDO DXWRFRUUHODWLRQ RI WZR LGHQWLFDO RSWLFDO SXOVHV E\ GHOD\LQJ RQH ZLWK UHVSHFW WR WKH RWKHU DQG WKHQ PL[LQJ WKHP LQ D VHFRQG KDUPRQLF JHQHUDWLQJ FU\VWDO 7KLV WHFKQLTXH UHTXLUHV WZR SKRWRGHWHFWRUV HDFK RI ZKLFK LV DFWLYDWHG E\ D SLFRVHFRQG RSWLFDO SXOVH 2QH RI WKH SKRWRGHWHFWRUV KDV D GF ELDV DQG WKH RXWSXW VLJQDO IURP WKH ILUVW SKRWRGHWHFWRU LV XVHG WR ELDV WKH VHFRQG RQH 7KH SKRWRGHWHFWRUV DUH QRW QHFHVVDU\ LGHQWLFDO LQ ZKLFK FDVH WKH PHDVXUHPHQW LV UHIHUUHG WR D FURVVFRUUHODWLRQ >@

PAGE 48

U )LJXUH 6FKHPDWLF GLDJUDP IRU LPSXOVH UHVSRQVH PHDVXUHPHQW RI WKH SKRWRGHWHFWRU

PAGE 49

7KH SKRWRGHWHFWRUV DUH FRQQHFWHG LQ RUGHU WKDW WKH GHYLFH XQGHU WHVW '87f ODXQFKHV D ZDYHIRUP RQWR D WUDQVPLVVLRQ OLQH E\ DQ LQFLGHQW VKRUW RSWLFDO SXOVH DQG WKH VHFRQG SKRWRGHWHFWRU LV D VDPSOLQJ JDWH RQ WKH WUDQVPLVVLRQ OLQH WKDW LV SUREHG E\ WKH VDPH RSWLFDO SXOVH ZLWK D YDULDEOH GHOD\ WLPH 7KH VFKHPDWLF GLDJUDPV DUH VKRZQ LQ )LJ DQG )LJ 7KH YDULDEOH GHOD\ LV FRQYHQLHQWO\ LQWURGXFHG E\ YDU\LQJ WKH UHODWLYH WLPLQJ RI WKH RSWLFDO SXOVHV DEVRUEHG DW HDFK SKRWRGHWHFWRU 7KH H[SHULPHQWDO TXDQWLW\ PHDVXUHG LV WKH WRWDO FKDUJH RU DYHUDJH FXUUHQW IRU D UHSHWLWLYH WUDLQ RI SXOVHVf VDPSOHG DW WKH RXWSXW RI WKH VHFRQG SKRWRGHWHFWRU DV D IXQFWLRQ RI WKH UHODWLYH GHOD\ EHWZHHQ WKH WZR RSWLFDO SXOVHV 7KH PHDVXUHPHQW FRUUHODWHV WKH DUULYDO RI WKH VLJQDO IURP WKH ILUVW SKRWRGHWHFWRU ZLWK WKH UHVSRQVH RI WKH VHFRQG ZKLFK DFWV DV D VDPSOLQJ JDWH ,I WKH WZR SKRWRGHWHFWRUV DUH LGHQWLFDO WKH PHDVXUHG FKDUJH LV SURSRUWLRQDO WR WKH DXWRFRUUHODWLRQ IXQFWLRQ JLYHQ E\ >@ U RR 4 U f JLWfJW WfGW f RR ZKHUH JWf LV WKH VLJQDO SURGXFHG E\ D VLQJOH SKRWRGHWHFWRU ZLWK D GF ELDV DQG LV WKH GHOD\ WLPH 7KH VLJQDO RXWSXW IURP WKH VHFRQG GHYLFH LV JLYHQ E\ D FRUUHODWLRQ RI WKH VLJQDO IURP WKH ILUVW SKRWRGHWHFWRU ZLWK WKH UHVSRQVH RI WKH VHFRQG SKRWRGHWHFWRU ZLWK D GHOD\ WLPH 1RWH WKDW HDFK VLJQDO LV D FRQYROXWLRQ RI WKH LPSXOVH UHVSRQVH RI WKH GHYLFH WKH RSWLFDO SXOVH ZLGWK DQG WKH FLUFXLW HIIHFWV VXFK DV WKH WUDQVPLVVLRQ OLQH 7KH WLPH UHVROXWLRQ RI WKH PHDVXUHPHQW LV GHWHUPLQHG E\ WKH UHVSRQVH RI WKH WZR SKRWRGHWHFWRUV DQG WKH

PAGE 50

! Wf 9 Wf OW7f RR 4 7fa 9E=RL Wf J W [f GW 4 7f )LJXUH 6FKHPDWLF GLDJUDP IRU VDPSOLQJFRUUHODWLRQ PHDVXUHPHQW

PAGE 51

9E 4[f r )LJXUH 6FKHPDWLF GLDJUDP IRU VDPSOLQJGRXEOHJDS FRUUHODWLRQ PHDVXUHPHQW

PAGE 52

LQWHUFRQQHFWLQJ FLUFXLW DQG GRHV QRW UHTXLUH DQ\ KLJKVSHHG H[WHUQDO FLUFXLWU\ 6LQFH HDFK SKRWRGHWHFWRU LV XVHG LQ D OLQHDU UHVSRQVH UHJLRQ VR WKDW WKH FRQYROXWLRQ LQWHJUDO FDQ EH UHDGLO\ LQWHUSUHWHG WKH SUHFLVH UHVSRQVH FDQ EH REWDLQHG E\ D GHFRQYROXWLRQ WHFKQLTXH (OHFWUR2SWLFDO 6DPSOLQJ 7KLV WHFKQLTXH VKRZQ LQ )LJ UHTXLUHV WKH PLFURVWULS WUDQVPLVVLRQ OLQH GHSRVLWHG RQ D OLQHDU HOHFWURRSWLF FU\VWDO VXFK DV /L7D2A DQG XVHG DV DQ DFWLYH HOHPHQW LQ D OLWKLXP WDQWDODWH WUDYHOLQJZDYH 3RFNHOV FHOO DPSOLWXGH OLJKW PRGXODWRU $ WUDLQ RI SLFRVHFRQG SXOVHV IURP D PRGHORFNHG G\H ODVHU LV VSOLW LQWR WZR EHDPV 2QH EHDP VWULNHV WKH SKRWRGLRGH DQG ODXQFKHV D VLJQDO RQWR WKH PRGXODWRU WUDQVPLVVLRQ OLQH 7KH RWKHU EHDP SDVVHV WUDQVYHUVHO\ WKURXJK WKH FU\VWDO DQG LWV LQWHQVLW\ LV PRGXODWHG E\ WKH HOHFWULF ILHOG XQGHU WKH WUDQVPLVVLRQ OLQH VDPSOLQJ WKH VLJQDO %\ YDU\LQJ WKH UHODWLYH GHOD\ EHWZHHQ WKH WZR EHDPV WKH WHPSRUDO UHVROXWLRQ RI WKH SKRWRGHWHFWRU UHVSRQVH LV REWDLQHG >@ 7KH YROWDJH ZDYHIRUP RQ WKH WUDQVPLVVLRQ OLQH LV D FRQYROXWLRQ RI WKH SKRWRGLRGH UHVSRQVH WKH ODVHU SXOVH UHVSRQVH GLVSHUVLRQ LQ WKH WUDQVPLVVLRQ OLQH 7KH VXEVHTXHQW VDPSOLQJ LV D FURVVFRUUHODWLRQ RI WKH ODVHU SXOVH ZLWK WKH YROWDJH ZDYHIRUP 7KH RSHUDWLRQV RI FRQYROXWLRQ DQG FRUUHODWLRQ DUH DVVRFLDWLYH DQG WKH VDPSOHU RXWSXW LV WKHUHIRUH HTXLYDOHQW WR WKH FRQYROXWLRQ RI WKH SKRWRGLRGH LPSXOVH UHVSRQVH ZLWK WKH DXWRFRUUHODWLRQ RI WKH ODVHU SXOVH 7KH RXWSXW SXOVH RI WKH SKRWRGHWHFWRU DQG VDPSOHU WR WKH QDUURZ LQFLGHQW OLJKW SXOVHV DUH VKRZQ LQ )LJ 6LQFH WKH DXWRFRUUHODWLRQ RI WKH ODVHU

PAGE 53

)LJXUH 6FKHPDWLF GLDJUDP IRU HOHFWURRSWLFDO VDPSOLQJ PHDVXUHPHQW

PAGE 54

/LJKW 3XOVHV )LJXUH 7\SLFDO RXWSXW SXOVH RI WKH SKRWRGHWHFWRU DQG VDPSOHU WR WKH QDUURZ LQFLGHQW OLJKW SXOVHV

PAGE 55

SXOVH LV LQGHSHQGHQWO\ PHDVXUHG LWV FRQWULEXWLRQ FDQ EH GHFRQYROYHG WR H[WUDFW WKH SKRWRGLRGH LPSXOVH UHVSRQVH 7KHQ WKH HTXLYDOHQW WLPH UHSUHVHQWDWLRQ RI WKH SKRWRGLRGH UHVSRQVH LV REWDLQHG 7KH WHPSRUDO UHVROXWLRQ LV GHWHUPLQHG E\ VHYHUDO IDFWRUV WKH VDPSOLQJ OLJKW EHDP VSRW VL]H WKH RSWLFDO WUDQVLW WLPH DQG WKH ODVHU SXOVH GXUDWLRQ 2SWLFDO +HWHURG\QLQJ 7KLV WHFKQLTXH FDQ FKDUDFWHUL]H WKH EDQGZLGWK RI D SKRWRGHWHFWRU DFFXUDWHO\ XVLQJ WZR &: ODVHUV 7KH OLPLWDWLRQ LQ WKH DFFXUDF\ LV WKH EDQGZLGWK RI WKH WUDQVPLVVLRQ OLQH DQG WKH PLFURZDYH VSHFWUXP DQDO\]HU 7KH VLPSOH V\VWHP VKRZQ LQ )LJ FRQVLVWV RI WZR VHPLFRQGXFWRU GLRGH ODVHUV ZKRVH IUHTXHQF\ LV WHPSHUDWXUH WXQHG DQG WKH FRPELQHG EHDP LV LQFLGHQW RQ WKH SKRWRGLRGH 7R DYRLG LQVWDELOLWLHV LQ WKH IUHTXHQFLHV RI WKH WZR ODVHUV LW LV QHFHVVDU\ WR UHGXFH RSWLFDO IHHGEDFN E\ WKH LQFRUSRUDWLRQ RI DQ RSWLFDO LVRODWRU >@ 7KH RXWSXWV RI ERWK ODVHUV DUH FRXSOHG LQWR D VKRUW OHQJWK RI VLQJOH PRGH ILEHU WKH RXWSXW RI ZKLFK LV LQFLGHQW RQ WKH SKRWRGLRGH 6LQFH WKH SKRWRFXUUHQW LV SURSRUWLRQDO WR WKH VTXDUH RI WKH HOHFWULF ILHOG RI WKH ODVHU WKH SURGXFW RI WZR ODVHU ILHOGV DW D GLIIHUHQW IUHTXHQF\ ZLOO SURGXFH D GLIIHUHQFH RU EHDW IUHTXHQF\ GHWHFWHG E\ D SKRWRGLRGH 7KH ORQJHU ZDYHOHQJWK ODVHU LV PRXQWHG RQ D WKHUPRHOHFWULF FRROHU %\ RSHUDWLQJ WKH ORQJHU ZDYHOHQJWK ODVHU DW D KHDW VLQN WHPSHUDWXUH WKH IUHTXHQF\ RI WKH FRROHG ODVHU FDQ EH WXQHG WKURXJK WKH IUHTXHQF\ RI WKH XQFRROHG ODVHU :LWK WKHUPRHOHFWULF FRROHUKHDWHU DQG IHHGEDFN HOHFWURQLF FLUFXLW WKH WHPSHUDWXUH RI WKH ODVHU GLRGH FDQ EH FRQWUROOHG WR ZLWKLQ D IHZ WHQWKV RI D PLOOLGHJUHH

PAGE 56

f§Zf§PAr f§YV 6FDQQLQJ ,QWHUIHURPHWHU 'ULYHU ;< 'LVSOD\ 1HXWUDO 'HQVLW\ )LOWHU )DEUD\3HURW 6LQJOH 0RGH )LEHU 7HPSHUDWXUH KU ,QWHUIHURPHWHU &RQWUROOHU M 'HWHFWRU 8QGHU 7HVW $PSOLILHU 6SHFWUXP $QDO\]HU )LJXUH 6FKHPDWLF GLDJUDP IRU RSWLFDO KHWHURG\QLQJ PHDVXUHPHQW

PAGE 57

&+$37(5 7+5(( )$%5,&$7,21 2) 6&+277.< %$55,(56 $1' 2+0,& &217$&76 21 *D$V ,Q*D$V $1' ,Q3 ,QWURGXFWLRQ 7KH 6FKRWWN\ EDUULHU FRQWDFWV DUH XVHG LQ PRVW KLJKVSHHG ,,,9 FRPSRXQG VHPLFRQGXFWRU HOHFWURQLF DQG RSWRHOHFWURQLF GHYLFHV VXFK DV 0(6)(7V 02')(7V SKRWRGHWHFWRUV ODVHUV DQG /('V ,QJ J*D $6 PDWHULDO LV PRVW VXLWDEOH IRU RSWLFDO ILEHU FRPPXQLFDWLRQV RSHUDWLQJ LQ WKH SP ZDYHOHQJWK UHJLPH EHFDXVH RI LWV HQHUJ\ EDQGJDS LH ( H9 DW .f KLJK HOHFWURQ PRELOLW\ KLJK VDWXUDWLRQ \ YHORFLW\ DQG ODWWLFHPDWFK WR WKH ,Q3 VXEVWUDWH >@ +RZHYHU WKH WHFKQRORJ\ RI ,Q*D$V3fOQ3 PDWHULDO DQG GHYLFH V\VWHPV LV VWLOO LQ QHHG RI FRQVLGHUDEOH GHYHORSPHQW 7KH PDLQ UHDVRQ IRU WKLV LV GXH WR IW WKH GLIILFXOW\ RI DFKLHYLQJ WKH 6FKRWWN\ FRQWDFW ZLWK D VXIILFLHQWO\ KLJK EDUULHU KHLJKW QHFHVVDU\ IRU WKH GHYHORSPHQW RI 0(6)(7V DQG WKH ODFN RI D VXLWDEOH GLHOHFWULF LQVXODWLQJ OD\HU ZLWK D ORZ LQWHUIDFH VWDWH GHQVLW\ UHTXLUHG IRU WKH GHYHORSPHQW RI 0,6)(7V 7KH 6FKRWWN\ EDUULHU KHLJKW HQKDQFHPHQW LV D SURPLVLQJ FRPSURPLVH EHWZHHQ 0(6)(7nV DQG 0,6)(7nV WHFKQRORJ\ HYHQ WKRXJK PRUH VWXG\ LV QHHGHG WR KDYH D JRRG UHSURGXFLELOLW\ 2Q WKH RWKHU KDQG 6FKRWWN\ EDUULHU FRQWDFWV RQ D PRGHUDWH GRSHG SW\SH ,Q*D$V DQG ,Q3 FDQ \LHOG JRRG EDUULHU KHLJKWV LH G%S H9 IRU ,Q3 DQG H9 IRU ,Q AD $Vf ZAHQ D VXLWDEOH PHWDO DQG JRRG VXUIDFH SUHSDUDWLRQ DUH

PAGE 58

SURYLGHG )RU ,,,9 FRPSRXQG VHPLFRQGXFWRUV WKH HOHFWULFDO SURSHUWLHV RI 6FKRWWN\ FRQWDFWV GHSHQG VWURQJO\ RQ WKH )HUPL OHYHO SLQQLQJ ZKLFK UHVXOWV ZKHQ PHWDO LV GHSRVLWHG RQ WKH VHPLFRQGXFWRU VXUIDFH >@ 7KH UHSURGXFLELOLW\ DQG UHOLDELOLW\ IRU WKH RKPLF FRQWDFWV VWLOO QHHG WR EH GHYHORSHG DOWKRXJK RKPLF FRQWDFWV ZLWK ORZ FRQWDFW UHVLVWDQFH DUH HVVHQWLDO IRU KLJK SHUIRUPDQFH DQG UHOLDEOH RSHUDWLRQ LQ PRVW ,,,9 FRPSRXQG VHPLFRQGXFWRU GHYLFHV 1HZ VWXGLHV RQ WKH RKPLF FRQWDFWV KDYH EHHQ UHSRUWHG UHFHQWO\ EHFDXVH RI WKH QHHGV IRU JRRG RKPLF FRQWDFWV RQ ,,,9 FRPSRXQG GHYLFHV DQG WKH DYDLODELOLW\ RI PRUH VRSKLVWLFDWHG KLJK YDFXXP VXUIDFH DQDO\WLFDO LQVWUXPHQWV UHTXLUHG WR XQGHUVWDQG WKH PHWDOOXUJLFDO SURSHUWLHV RI WKH RKPLF FRQWDFWV ,Q WKLV FKDSWHU WKH RSWLPXP FRQGLWLRQV IRU ORZ UHVLVWDQFH RKPLF FRQWDFW DQG 6FKRWWN\ EDUULHU KHLJKW HQKDQFHPHQW RQ Q,Q*D$V HSLOD\HU DUH GHVFULEHG XVLQJ SQ,QB*D $VQ,Q3 VWUXFWXUH 7KH VLJQLILFDQFH RI WKLV VWUXFWXUH OLHV LQ LWV DELOLW\ WR LQFUHDVH WKH EDUULHU KHLJKW DQG KHQFH WR UHGXFH WKH ODUJH GDUN FXUUHQW FRPPRQO\ REVHUYHG LQ WKH QOQJ *D4 $V 6FKRWWN\ EDUULHU GLRGHV ,Q DGGLWLRQ WKH $XS,Q*D$VS,Q3 DV ZHOO DV $XS,Q33,Q3 6FKRWWN\ EDUULHU GLRGH KDV EHHQ IDEULFDWHG DQG FKDUDFWHUL]HG LQ WKLV VWXG\ 6FKRWWN\ %DUULHU &RQWDFW )RUPDWLRQ 6FKRWWN\ %DUULHU +HLJKW 7KH EDUULHU KHLJKW RI PHWDOVHPLFRQGXFWRU V\VWHP LV GHWHUPLQHG E\ ERWK WKH PHWDO ZRUN IXQFWLRQ DQG WKH LQWHUIDFH WUDSV 7KH JHQHUDO H[SUHVVLRQ>@ RIDEDUULHU KHLJKW FDQ EH REWDLQHGIURPWKHFKDUJH

PAGE 59

QHXWUDOLW\ FRQGLWLRQ RI D PHWDOVHPLFRQGXFWRU V\VWHP VKRZQ LQ )LJ E\ GHVLJQDWLQJ WKH R[LGH FKDUJH 4R[ T1R[ LQ WKH UHJLRQ RI R[LGH FORVH WR WKH R[LGHVHPLFRQGXFWRU LQWHUIDFH AVF ALW AR[ p AR[ 4I 4P 4W f f ZKHUH 40 LV VXUIDFH FKDUJH RQ PHWDO 4VF VSDFH FKDUJH LQ WKH GHSOHWLRQ OD\HU RI VHPLFRQGXFWRU 4AW LQWHUIDFH WUDS FKDUJH 4R[ R[LGH FKDUJH 4I LV R[LGH IL[HG FKDUJH 4P PRELOH LRQLF FKDUJH DQG 4RW R[LGH WUDSSHG FKDUJH $VVXPLQJ WKDW WKH HQHUJ\ GLVWULEXWLRQ RI WKH LQWHUIDFH WUDS FDQ EH H[SUHVVHG E\ >@ 'LW(f 'LW^H[S>( T4f(V@ H[S>( Tpf(V@` f WKHQ WKH EDUULHU KHLJKW FDQ EH H[SUHVVHG DV r%Q &AP f [! 8AIQ a a&f1R[T'LW f ZKHUH UHSUHVHQWV WKH SRVLWLRQ RI WKH QHXWUDO OHYHO IRU LQWHUIDFH WUDSV IURP WKH WRS RI WKH YDOHQFH EDQG DQG 'AW LV WKH GHQVLW\ RI LQWHUIDFH WUDSV SHU XQLW DUHD SHU HOHFWURQ YROW 7KH WZR OLPLWLQJ FDVHV FRQVLGHUHG SUHYLRXVO\ FDQ EH REWDLQHG IURP (Tf 7KH GHWDLOHG GHULYDWLRQ RI D JHQHUDO PRGHO IRU WKH EDUULHU KHLJKW LV JLYHQ LQ DSSHQGL[ $ 7KH WZR OLPLWLQJ FDVHV FDQ EH REWDLQHG DV IROORZV f 0RWW /LPLW 'LW F DQG 6IQ 9Qf p%Q n [! LV f

PAGE 60

:RUN )XQFWLRQ RI 0HWDO %DUULHU +HLJKW RI 0HWDO6HPLFRQGXFWRU %DUULHU $V\PSWRWLF 9DOXH RI W!%Q DW =HUR (OHFWULF )LHOG (QHUJ\ /HYHO DW 6XUIDFH (QHUJ\ 'LIIHUHQFH %HWZHHQ )(50, /HYHO DQG 9DOHQFH %DQG DW WKH 6XUIDFH ,PDJH )RUFH %DUULHU /RZHULQJ 3RWHQWLDO $FURVV ,QWHUIDFLDO /D\HU (OHFWURQ $IILQLW\ RI 6HPLFRQGXFWRU %XLOW,Q 3RWHQWLDOr 3HUPLWWLYLW\ RI 6HPLFRQGXFWRU 3HUPLWWLYLW\ RI ,QWHUIDFLDO /D\HU 7KLFNQHVV RI ,QWHUIDFLDO /D\HU 6SDFH&KDUJH 'HQVLW\ LQ 6HPLFRQGXFWRU ,QWHUIDFH 7UDS 'HQVLW\ RQ 6HPLFRQGXFWRU 6XUIDFH&KDUJH 'HQVLW\ RQ 0HWDO A%Q A%R 2T Rr $ ; 9EL eV H 4 VF a 4LW TP )LJXUH (QHUJ\EDQG GLDJUDP RI D PHWDOQ VHPLFRQGXFWRU FRQWDFW

PAGE 61

ZKLFK LV WKH EDUULHU KHLJKW IRU DQ LGHDO 6FKRWWN\ EDUULHU FRQWDFW ZKHUH VXUIDFH VWDWH HIIHFWV DUH QHJOHFWHG f %DUGHHQ /LPLW 'LW RR & DQG IQ (JT 4f %Q (JT !f $p f 7KH )HUPL OHYHO DW WKH LQWHUIDFH LV SLQQHG E\ WKH LQWHUIDFH WUDSV DW WKH YDOXH T DERYH WKH YDOHQFH EDQG 7KH EDUULHU KHLJKW LV LQGHSHQGHQW RI WKH PHWDO ZRUN IXQFWLRQ DQG GHWHUPLQHG HQWLUHO\ E\ WKH VXUIDFH SURSHUWLHV RI WKH VHPLFRQGXFWRU %DUULHU +HLJKW (QKDQFHPHQW 7KH EDUULHU KHLJKW RI DQ LGHDO 6FKRWWN\ FRQWDFW LV GHWHUPLQHG SULPDULO\ E\ WKH GLIIHUHQFH RI PHWDO ZRUN IXQFWLRQ DQG HOHFWURQ DIILQLW\ RI WKH VHPLFRQGXFWRU +RZHYHU IRU D SUDFWLFDO 6FKRWWN\ GLRGH WKH SURSHUW\ RI PHWDOVHPLFRQGXFWRU LQWHUIDFH VXFK DV LQWHUIDFH WUDS GHQVLW\ SOD\V DQ LPSRUWPHQW UROH LQ GHWHUPLQLQJ WKH HIIHFWLYH EDUULHU KHLJKW RI WKH 6FKRWWN\ FRQWDFW 6LQFH WKHUH DUH RQO\ OLPLWHG QXPEHUV RI PHWDOV ZKLFK DUH VXLWDEOH IRU JRRG 6FKRWWN\ FRQWDFW WKH FRQWURO RI WKH 6FKRWWN\ EDUULHU KHLJKW LV HVVHQWLDO IRU VSHFLILF HOHFWURQLF FLUFXLW DSSOLFDWLRQ $ ORZ EDUULHU KHLJKW PDNHV WKH 6FKRWWN\ FRQWDFW WRR OHDN\ WR EH XVHIXO IRU 0(6)(7 DQG SKRWRGHWHFWRU DSSOLFDWLRQV 7KXV WKH HIIHFWLYH EDUULHU KHLJKW QHHG WR EH LQFUHDVHG LQ RUGHU WR RYHUFRPH WKH SUREOHP DVVRFLDWHG ZLWK ORZ EDUULHU KHLJKW 7KH 6FKRWWN\ EDUULHU KHLJKW HQKDQFHPHQW FDQ EH DFKLHYHG E\ WKH XVH RI f D WKLQ LQVXODWLQJ OD\HU LH 0,6 6FKRWWN\ GLRGHf >@ f DQ RSSRVLWHO\ GRSHG WKLQ VXUIDFH OD\HU WR WKDW RI DQ DFWLYH OD\HU

PAGE 62

LH 4XDVL6FKRWWN\ GLRGHf >@ DQG f D ZLGHEDQGJDS PDWHULDOV VXFK DV ,Q3 RU $O,Q$V LH +HWHURMXQFWLRQ 6FKRWWN\ GLRGHf >@ 7KH HIIHFWLYH EDUULHU KHLJKW IRU D 0,6 6FKRWWN\ EDUULHU VWUXFWXUH ZKLFK FRQVLVWV RI D WKLQ LQWHUIDFLDO LQVXODWLQJ OD\HU EHWZHHQ PHWDO DQG VHPLFRQGXFWRU FDQ EH LQFUHDVHG DQG UHVXOWHG LQ D ORZ UHYHUVH OHDNDJH FXUUHQW +RZHYHU KLJK LQWHUIDFH VWDWH GHQVLW\ R[LGH EUHDNGRZQ DQG FKDUJH VWRUDJH HIIHFWV DUH VRPH RI WKH SUREOHPV QHHG WR EH RYHUFRPH LQ ,,,9 VHPLFRQGXFWRU 6FKRWWN\ FRQWDFWV >@ 6FKRWWN\ EDUULHU HQKDQFHPHQW LV D SURPLVLQJ WHFKQLTXH IRU IRUPDWLRQ RI D 6FKRWWN\ FRQWDFW RQ ,Q*D$VOQ3 PDWHULDO V\VWHP ZKLFK HPSOR\V D YHU\ WKLQ S,QJ *DJ $6 VXUIDFH OD\HU JURZQ RQ WKH Q,Q*D$V HSLWD[LDO OD\HU 6FKRWWN\ EDUULHU FRQWDFWV RQ Q,Q*D$V XVXDOO\ \LHOG YHU\ ORZ EDUULHU KHLJKW p%Q H9f ZKLFK PDNHV 6FKRWWN\ FRQWDFWV WRR OHDN\ WR EH XVHIXO IRU SKRWRGHWHFWRU DSSOLFDWLRQV 7KH EDUULHU KHLJKW HQKDQFHPHQW FDQ EH DFKLHYHG E\ GHSRVLWLQJ D WKLQ SOQ *DJ $6 OD\HU RQ WKH Q,QJ *DJ $6 HSLOD\HU DV LV VKRZQ LQ )LJ 7KH HIIHFWLYH EDUULHU KHLJKW FDQ EH LQFUHDVHG E\ EDQG EHQGLQJ GXH WR WKH VSDFH FKDUJH LQ WKH SOQ FA*DJ $6 VXUIDFH OD\HU SURYLGHG WKDW WKH GRSDQW GHQVLW\ DQG WKH WKLFNQHVV RI WKH VXUIDFH OD\HU DUH VHOHFWHG WR DQ RSWLPXP YDOXH DQG WKH OD\HU LV IXOO\ GHSOHWHG DW WKHUPDO HTXLOLEULXP 7KH WKLFNQHVV DQG WKH GRSDQW GHQVLW\ RI SOQ *D $6 OD\HU FDQ EH UHODWHG WR WKH EDUULHU KHLJKW HQKDQFHPHQW $(%Q JLYHQ E\ >@ $pEf O9PHRHU f

PAGE 63

)LJXUH (QHUJ\EDQG GLDJUDP IRU 6FKRWWN\ EDUULHU KHLJKW HQKDQFHPHQW E\ HQHUJ\EDQG EHQGLQJ GXH WR WKH VSDFH FKDUJH LQ WKH S,Q*D$V VXUIDFH OD\HU P P

PAGE 64

7KH HQKDQFHG EDUULHU SRWHQWLDO ZLOO UHDFK D PD[LPXP YDOXH DW [ [P LQVLGH WKH SOQ *DJ $6 VXUIDFH OD\HU SURYLGHG WKDW 1$:S } 1':Q ;MQ 1Df1D: 1':Qf DQG (P THA0OA: 1':Qf f 7KH HIIHFWLYH EDUULHU KHLJKW %n%Q REWDLQHG DW [ [P LV JLYHQ E\ P %Q f 6%Q (P[P F1$[P HRfU f %\ VXEVWLWXWLQJ (T f LQWR (T f WKH HIIHFWLYH 6FKRWWN\ EDUULHU KHLJKW FDQ EH REWDLQHG p%Q r p%Q f-f:D!QDZS 1'ZQ! f )RU 1D !! 1G DQG 1$:S !! 1':Q WKH EDUULHU KHLJKW HQKDQFHPHQW RI D PHWDOSQ 6FKRWWN\ EDUULHU GLRGH $%Q GXH WR WKH S VXUIDFH OD\HU PD\ EH VLPSOLILHG WR $V%Q 1$ZS HRfU f ,W FDQ EH VKRZQ WKDW (T f KROGV RQO\ IRU $L%Q !! YGQ'A1$f 1RWH WKDW 1$ DQG 1' GHQRWH WKH GRSDQW GHQVLW\ RI WKH S DQG Q,Q*D$V OD
PAGE 65

7KH GHWDLOHG GHULYDWLRQ RI 6FKRWWN\ EDUULHU KHLJKW HQKDQFHPHQW LV JLYHQ LQ DSSHQGL[ % 7KH GHSOHWLRQ OD\HU ZLGWK RI WKH Q,Q*D$V HSLOD\HU LV JLYHQ E\ :Q ZS >ZS 1$1'fZS HfUD!P DVQ YMTA@ f ZKHUH Q ;V N7T8Q2A1Sf f 7KH HIIHFWLYH EDUULHU KHLJKW IRU WKH SURSRVHG SKRWRGHWHFWRU FDQ EH WDLORUHG WR LWV RSWLPXP YDOXH YLD SURSHUO\ VHOHFWHG WKLFNQHVV DQG GRSDQW GHQVLW\ RI WKH VXUIDFH OD\HU 7KHRUHWLFDOO\ WKH HIIHFWLYH EDUULHU KHLJKW HTXDO WR WKH EDQGJDS HQHUJ\ RI ,QJ A*DJ $6 FDQ EH DFKLHYHG E\ WKH SURSRVHG VWUXFWXUH )LJXUH VKRZV WKH HIIHFWLYH EDUULHU KHLJKW YV GRSDQW GHQVLW\ DV D IXQFWLRQ RI WKH WKLFNQHVV RI SOQ *D $6 VXUIDFH OD\HU )LJXUH VKRZV WKH WKHRUHWLFDO VDWXUDWLRQ FXUUHQW GHQVLW\ RI WKH 6FKRWWN\ EDUULHU GLRGH RQ Q,Q*D$V %DUULHU +HLJKW 0HDVXUHPHQW 7KH HIIHFWLYH EDUULHU KHLJKW n%Q RI 6FKRWWN\ EDUULHU GLRGH FDQ EH GHWHUPLQHG E\ WKH IROORZLQJ PHWKRGV f FXUUHQWYROWDJH ,S9S RU ,S7f f FDSDFLWDQFHYROWDJH &95f f SKRWRUHVSRQVH ,A(f PHDVXUHPHQW XVLQJ (TVf WKURXJK f 7KH YDOXHV RI WKH HIIHFWLYH EDUULHU KHLJKW REWDLQHG GLIIHUHQW PHDVXUHPHQWV RIWHQ GR QRW DJUHH 7KHUHIRUH DQ XQGHUVWDQGLQJ RI WKH LQKHUHQW DVVXPSWLRQV LQ HDFK WHFKQLTXH DV ZHOO DV WKH SUDFWLFDO OLPLWDWLRQV RI HDFK PHDVXUHPHQW LV YHU\ XVHIXO LQ LQWHUSUHWDWLRQ RI WKH H[SHULPHQWDO GDWD IFn%Q,9 N7TfOQ$r7-Vf f

PAGE 66

())(&7,9( %$55,(5 +(,*+7 tn%Q H9f '23,1* &21&(175$7,21 2) S ,Q*D$V /$<(5 FPnf )LJXUH (IIHFWLYH EDUULHU KHLJKW YV GRSDQW GHQVLW\ RI S,Q ADJ A$V VXUIDFH OD\HU DV D SDUDPHWHU RI WKH WKLFNQHVV RI WKH S,Q4 A*DJ A$V OD\HU

PAGE 67

6$785$7,21 &855(17 '(16,7< -V $FPf ())(&7,9( %$55,(5 +(,*+7n%Q H9f )LJXUH 7KHRUHWLFDO VDWXUDWLRQ FXUUHQW GHQVLW\ YV HIIHFWLYH EDUULHU KHLJKW DW 7 .

PAGE 68

en%Q,7 N7TfOQ-V$r7f f ILn%Q&9 9' N7TfOQ1F1'f f pn%Q,B( KYT N7TfM$r7f f LF 2 2 ZKHUH $ UTP N K f LV WKH HIIHFWLYH 5LFKDUGVRQ FRQVWDQW IRU WKH WKHUPLRQLFHPLVVLRQ QHJOHFWLQJ WKH HIIHFWV RI RSWLFDO SKRQRQ VFDWWHULQJ TXDQWXP PHFKDQLFDO UHIOHFWLRQ DQG WXQQHOLQJ RI FDUULHUV DW WKH PHWDOVHPLFRQGXFWRU LQWHUIDFH DQG -B LV WKH VDWXUDWLRQ FXUUHQW GHQVLW\ ZKLFK LV WKH H[WUDSRODWHG YDOXH RI WKH FXUUHQW GHQVLW\ DW ]HUR YROWDJH 7KH FXUUHQWYROWDJH PHDVXUHPHQW FDQ EH XVHG WR GHWHUPLQH WKH EDUULHU KHLJKW RI D 6FKRWWN\ EDUULHU GLRGH E\ VHYHUDO GLIIHUHQW PHWKRGV 7KH VLPSOHVW PHWKRG LV WR PHDVXUH WKH IRUZDUG FXUUHQW GHQVLW\ DW D IL[HG WHPSHUDWXUH 7KH EDUULHU KHLJKW DW ]HUR ELDV FDQ EH GHWHUPLQHG IURP (Tf LI $ LV NQRZQ 1RWH WKDW UHOLDEOH UHVXOWV FDQ EH REWDLQHG RQO\ LI WKH SORW RI ,QYV 9 LV OLQHDU RYHU DW OHDVW WKUHH RUGHUV RI PDJQLWXGH DQG Q LV ORZ LH Q f )RU ODUJH YDOXHV RI Q RU QRQOLQHDU SORW RI ,QYV 9 WKH GLRGH LV IDU IURP LGHDO SUREDEO\ GXH WR WKH SUHVHQFH RI D WKLFN LQWHUIDFLDO OD\HU RU UHFRPELQDWLRQ LQ WKH GHSOHWLRQ UHJLRQ DQG WKH EDUULHU KHLJKW LV QRW FOHDUO\ GHILQHG >@ $Q DOWHUQDWLYH PHWKRG WR GHWHUPLQH WKH EDUULHU KHLJKW LI $ LV QRW NQRZQ LV WR PHDVXUH WKH VDWXUDWLRQ FXUUHQW GHQVLW\ DV D IXQFWLRQ RI WHPSHUDWXUH DW D IL[HG IRUZDUGELDVHG YROWDJH 7KH EDUULHU KHLJKW FDQ EH GHWHUPLQHG IURP WKH VORSH RI WKH 5LFKDUGVRQ SORW LH

PAGE 69

OQ-V7 f YV 7f IRU D JLYHQ IRUZDUG ELDV 7KH LQWHUFHSW DW 7 \LHOGV WKH HIIHFWLYH 5LFKDUGVRQ FRQVWDQW $ 7KH FDSDFLWDQFH YROWDJH PHDVXUHPHQW FDQ EH XVHG WR GHWHUPLQH WKH GHHS LPSXULW\ OHYHOV DV ZHOO DV WKH EDUULHU KHLJKW RI D 6FKRWWN\ EDUULHU GLRGH )RU D XQLIRUPO\ GRSHG VHPLFRQGXFWRU WKH SORW RI & YV 95 \LHOGV D VWUDLJKW OLQH DQG LWV LQWHUFHSW RQ WKH YROWDJH D[LV JLYHV WKH GLIIXVLRQ SRWHQWLDO 9' 7KHUHIRUH WKH EDUULHU KHLJKW FDQ EH GHWHUPLQHG IURP (Tf ,Q SUDFWLFDO 6FKRWWN\ EDUULHU GLRGHV IRU ERWK HOHPHQWDO VHPLFRQGXFWRUV DQG ,,,9 FRPSRXQG VHPLFRQGXFWRUV LW LV QRW XQXVXDO WR ILQG WKDW WKH EDUULHU KHLJKW REWDLQHG IURP &9 PHDVXUHPHQW LV ODUJHU WKDQ WKH EDUULHU KHLJKW GHWHUPLQHG E\ ,9 PHDVXUHPHQW LH nE&B9 %,9 >@ 2QH UHDVRQ IRU A%&B9 %,9 LV GXH WR D WKLQ FRPSHQVDWHG OD\HU IRUPHG DGMDFHQW WR WKH PHWDO GXULQJ EDUULHU IRUPDWLRQ DQG KHQFH WKH SRWHQWLDO HQHUJ\ EDUULHU LV UHGXFHG DW WKH LQWHUIDFH $QRWKHU UHDVRQ LV WKH ODWHUDO QRQXQLIRUPLW\ RI WKH EDUULHU KHLJKW DFURVV WKH PHWDOVHPLFRQGXFWRU LQWHUIDFH 7KH FXUUHQW PHDVXUHPHQW ZRXOG HPSKDVL]H WKH ORZHU YDOXH RI WKH EDUULHU KHLJKW ZKLOH WKH FDSDFLWDQFH PHDVXUHPHQW ZRXOG SURYLGH D YDOXH RI WKH EDUULHU KHLJKW DYHUDJHG RYHU WKH LQWHUIDFH 7KH SKRWRUHVSRQVH PHDVXUHPHQW VKRZQ LQ )LJ LV WKH PRVW DFFXUDWH DQG GLUHFW PHWKRG RI GHWHUPLQLQJ WKH EDUULHU KHLJKW :KHQ D PRQRFKURPDWLF OLJKW LV LQFLGHQW RQ D 6FKRWWN\ EDUULHU GLRGH WKURXJK D PHWDO FRQWDFW WKH SKRWRFXUUHQW ZLOO LQFUHDVH VKDUSO\ IRU T%Q K 9 (J UHVXOWLQJ IURP SKRWRH[FLWDWLRQ RI HOHFWURQV IURP WKH )HUPL OHYHO RI

PAGE 70

0(7$/ IURQW r! 6(0, &2 1'8&725 %$&. ,//80,1$7,21 2+0,& &217$&7 Df Ef )LJXUH 3KRWRUHVSRQVH PHDVXUHPHQW Df 6FKHPDWL GLDJUDP Ef (QHUJ\EDQG GLDJUDP IRU SKRWRH[FLWDWLRQ SURFHVV

PAGE 71

WKH PHWDO WR WKH FRQGXFWLRQ EDQG RI WKH VHPLFRQGXFWRU DQG IRU KL!! (J WKH SKRWRFXUUHQW ZLOO LQFUHDVH HYHQ PRUH UDSLGO\ DV D UHVXOW RI EDQGWREDQG H[FLWDWLRQ 7KH UHVXOWLQJ SKRWRFXUUHQW A LV JLYHQ E\ )RZOHUnV WKHRU\ IRU FODVVLFDO SKRWRHPLVVLRQ DV ,SK &K9 TF6%Qf f ZKLFK LV YDOLG SURYLGHG WKDW K9 T6%Q N7 DQG T%Q K9 (J 7KXV WKH SORW RI WKH VTXDUH URRW RI WKH SKRWRFXUUHQW DV D IXQFWLRQ RI SKRWRQ HQHUJ\ JLYHV D VWUDLJKW OLQH DQG WKH H[WUDSRODWHG YDOXH RQ WKH HQHUJ\ D[LV VKRXOG JLYH GLUHFWO\ WKH EDUULHU KHLJKW ,Q SUDFWLFH WKH LQFLGHQW OLJKW LV FKRSSHG WR DYRLG HGJH HIIHFWV DQG RWKHU FRQWULEXWLRQV WR WKH GLRGH OHDNDJH FXUUHQW DQG LI WKH GLRGH LV LOOXPLQDWHG IURP WKH IURQW VLGH WKH PHWDO LV PDGH WKLQ HQRXJK WR DOORZ DGHTXDWH WUDQVPLVVLRQ RI WKH OLJKW WR WKH PHWDOVHPLFRQGXFWRU LQWHUIDFH 7KH SKRWRUHVSRQVH WHFKQLTXH KDV EHHQ XVHG QRW RQO\ WR GHWHUPLQH WKH EDUULHU KHLJKW GLUHFWO\ EXW DOVR WR PHDVXUH WKH YROWDJH GHSHQGHQFH RI LPDJHIRUFH ORZHULQJ WKH WHPSHUDWXUH GHSHQGHQFH RI WKH EDUULHU KHLJKW DQG WKH GLUHFW DQG LQGLUHFW EDQGJDS HQHUJ\ LQ VHYHUDO WHUQDU\ FRPSRXQG VHPLFRQGXFWRUV 2KPLF &RQWDFW )RUPDWLRQ 2KPLF &RQWDFW 7HFKQRORJ\ $ SUDFWLFDO ZD\ WR REWDLQ ORZ UHVLVWDQFH RKPLF FRQWDFWV >@ LV WR LQFUHDVH WKH GRSDQW GHQVLW\ QHDU WKH PHWDOVHPLFRQGXFWRU LQWHUIDFH 1G FP f VR WKDW WKH GHSOHWLRQ OD\HU FDXVHG E\

PAGE 72

6FKRWWN\ EDUULHU EHFRPHV YHU\ WKLQ DQG WKH FXUUHQW WUDQVSRUW WKURXJK WKH EDUULHU LV HQKDQFHG E\ WXQQHOLQJ 1HDUO\ DOO PHWKRGV RI PDNLQJ RKPLF FRQWDFWV GHSHQG RQ GHSRVLWLQJ D WKLQ OD\HU RI PHWDO DOOR\ RQ D UHODWLYHO\ R[LGHIUHH FOHDQ VHPLFRQGXFWRU VXUIDFH DQG RQ KHDW WUHDWPHQW GXULQJ RU DIWHU GHSRVLWLRQ LQ YDFXXP RU LQ DQ LQHUW DWPRVSKHUH *HQHUDOO\ LW LV SUHIHUUHG WKDW WKH PHWDO GHSRVLWHG RQ VHPLFRQGXFWRU VKRXOG EH KHDW WUHDWHG DW D WHPSHUDWXUH KLJKHU WKDQ WKH DOOR\LQJ WHPSHUDWXUH EHFDXVH D KHDYLO\ GRSHG FRQWDFW OD\HU LV RIWHQ IRUPHG EHWZHHQ PHWDO DQG VHPLFRQGXFWRU GXULQJ WKH FRROLQJ F\FOH 7KH VHOHFWLRQ RI PHWDOV IRU RKPLF FRQWDFW WR D SDUWLFXODU ,,,9 FRPSRXQG VHPLFRQGXFWRU GHSHQGV RQ VHYHUDO IDFWRUV >@ 7KH SULPDU\ IDFWRU LV WKDW WKH PHWDO XVHG IRU FRQWDFW VKRXOG EH VXFK DQ HOHPHQW WKDW LW FDQ EH DFWHG DV D GRSDQW WR WKH VHPLFRQGXFWRU VR WKDW D KHDYLO\ GRSHG VXUIDFH OD\HU FDQ EH IRUPHG )RU H[DPSOH WKH SRVVLEOH PDWHULDOV DUH 6L *H 6Q 6H RU 7H IRU FRQWDFWV RQ QW\SH VHPLFRQGXFWRUV DQG =Q &G %H RU 0J IRU FRQWDFWV RQ SW\SH VHPLFRQGXFWRUV ,Q DGGLWLRQ WR WKLV IDFWRU WKHUH DUH D QXPEHU RI RWKHU IDFWRUV QHHG WR EH FRQVLGHUHG EHIRUH VHOHFWLQJ D SDUWLFXODU FRQWDFW PHWDO f HDV\ GHSRVLWLRQ f JRRG DGKHVLRQ f ORZ DOOR\LQJ WHPSHUDWXUH f PLQLPXP LQWHUIDFH UHDFWLRQ f PLQLPXP WKHUPDO PLVPDWFK f QR VXUIDFH WHQVLRQ HIIHFWV GXULQJ DOOR\LQJ f JRRG HOHFWULFDO DQG WKHUPDO EHKDYLRU DQG f DGDSWDELOLW\ WR WKHUPRn FRPSUHVVLRQ RU XOWUDVRQLF ZLUH ERQGLQJ 7KH PRVW ZLGHO\ XVHG PHWDO IRU RKPLF FRQWDFW RQ ,,,9 FRPSRXQG VHPLFRQGXFWRUV DUH $X $J RU ,Q EDVH DOOR\V 7KH ILQDO IDFWRU IRU FKRRVLQJ D SDUWLFXODU PHWDO V\VWHP LV WKH

PAGE 73

HXWHFWLF WHPSHUDWXUH RI WKH DOOR\ PHWDO LH $X $J RU ,Qf ZLWK WKH VHPLFRQGXFWRU DQG LWV FRUUHODWLRQ WR WKH WHPSHUDWXUH IRU ZKLFK WKH VHPLFRQGXFWRU FDQ EH VDIHO\ KHDWHG $IWHU VXLWDEOH FKRLFH RI FRQWDFW PHWDO DQ DSSURSULDWH WHFKQLTXH KDV WR EH VHOHFWHG IRU GHSRVLWLQJ WKH FRQWDFW PHWDO RQ WKH VHPLFRQGXFWRU VXUIDFH $ QXPEHU RI WHFKQLTXHV HJ HYDSRUDWLRQ VSXWWHULQJ DQG HOHFWURO\WLF RU HOHFWUROHVV SODWLQJ LQ D FKHPLFDO VROXWLRQ KDYH EHHQ UHSRUWHG IRU WKLV SXUSRVH 7KH HYDSRUDWLRQ WHFKQLTXH LV E\ IDU WKH PRVW ZLGHO\ XVHG IRU WKH GHSRVLWLRQ RI FRQWDFW PHWDO V\VWHPV RQ ,,,9 FRPSRXQG VHPLFRQGXFWRUV 6SXWWHULQJ WHFKQLTXH KDV UDUHO\ EHHQ XVHG IRU GHSRVLWLQJ WKH FRQWDFW PHWDO V\VWHP RQ ,,,9 FRPSRXQG VHPLFRQGXFWRUV EHFDXVH RI ORZ VSXWWHULQJ UDWHV VXUIDFH GDPDJH DQG GLIILFXOW\ LQ DFFXUDWH PRQLWRULQJ RI WKH PHWDO ILOP WKLFNQHVV >@ 7KH HOHFWUROHVV SODWLQJ WHFKQLTXH KDV EHHQ IUHTXHQWO\ XVHG IRU GHSRVLWLQJ RYHUOD\HUV RI $X 1L HWF RQ RKPLF FRQWDFWV DV ZHOO DV 6FKRWWN\ FRQWDFWV 6XFK RYHUOD\HUV DUH UHTXLUHG IRU ERQGLQJ WKLQ ZLUHV ZLWK FRQWDFW PHWDO V\VWHPV ZLWKRXW DQ\ FKDQJH LQ WKH SURSHUWLHV RI WKH FRQWDFWV 7KH ZLUH ERQGLQJ LV XVXDOO\ FDUULHG RXW E\ HLWKHU WKH WKHUPRFRPSUHVVLRQ RU WKH XOWUDVRQLF ERQGLQJ WHFKQLTXH )LQDOO\ WKH UHTXLUHPHQW RI D EXIIHU OD\HU HJ QOD\HU RQ QW\SH VHPLFRQGXFWRUf EHWZHHQ WKH FRQWDFW PHWDO V\VWHP DQG VHPLFRQGXFWRU LQ RUGHU WR HQVXUH JRRG RKPLF FRQWDFW FDQ DOVR EH VDWLVILHG E\ XVLQJ HSLWD[LDO WHFKQLTXH 5HFHQWO\ WKH PROHFXODU EHDP HSLWD[LDO 0%(f WHFKQLTXH KDV EHHQ XVHG IRU JURZLQJ VXFK EXIIHU OD\HUV ,RQ LPSODQWDWLRQ DOVR SURPLVHV WR EH D GHVLUDEOH DOWHUQDWLYH

PAGE 74

WR WKH HSLWD[LDO WHFKQLTXH IRU REWDLQLQJ VXEPLFURQ OD\HUV ZLWKRXW LQWURGXFLQJ DQ\ XQGHVLUDEOH LQWHUIDFH VWDWHV +RZHYHU WKHUPDO DQQHDOLQJ LV XVXDOO\ UHTXLUHG DIWHU LRQ LPSODQWDWLRQ WR UHPRYH GDPDJHV DQG FU\VWDO GHIHFWV 7KH DQQHDOLQJ FDQ EH FDUULHG RXW E\ XVLQJ WKHUPDO ODVHU RU HOHFWURQ EHDP DQQHDOLQJ 7KHUHIRUH LW FDQ EH SUHGLFWHG WKDW LRQ LPSODQWDWLRQ IRU SURGXFLQJ D EXIIHU OD\HUf IROORZHG E\ HYDSRUDWLRQ IRU GHSRVLWLQJ WKH FRQWDFW PHWDO V\VWHPf PD\ EH D JRRG FRPELQDWLRQ PHWKRG IRU PDNLQJ JRRG UHSURGXFLEOH RKPLF FRQWDFWV RQ ,,,9 FRPSRXQG VHPLFRQGXFWRUV 6SHFLILF &RQWDFW 5HVLVWDQFH 0HDVXUHPHQW )RU ,,,9 FRPSRXQG VHPLFRQGXFWRUV WKH VSHFLILF FRQWDFW UHVLVWDQFH FDQ EH GHWHUPLQHG IURP WKH IROORZLQJ PHWKRGV f &R[ DQG 6WUDFN >@ f IRXUSRLQW >@ f 6KRFNOH\ H[WUDSRODWLRQ >@ DQG f WUDQVPLVVLRQ OLQH PHWKRG >@ )RU D KRPRJHQHRXV FRQWDFW RI DUHD $ KDYLQJ XQLIRUP FXUUHQW GHQVLW\ WKH FRQWDFW UHVLVWDQFH 5F LV r VLPSO\ JLYHQ E\ 5F UF$ 7KH PHDVXUHG UHVLVWDQFH 5 ZLOO EH DSSUR[LPDWHO\ HTXDO WR 5F IRU PRVW VDPSOH JHRPHWULHV ZKHQ UF A RKPFP +RZHYHU IRU VPDOO YDOXHV RI UF WKH VSUHDGLQJ UHVLVWDQFH RI WKH VHPLFRQGXFWRU 5A DQG WKH VHULHV UHVLVWDQFH 54 RI WKH VHPLFRQGXFWRU VXEVWUDWH DQG WKH FRQQHFWLQJ ZLUHV VKRXOG EH WDNHQ LQWR DFFRXQW LH 5 5F 5E 5Rr 7KH &R[ DQG 6WUDFN PHWKRG FDQ EH XVHG WR GHWHUPLQH WKH VSHFLILF FRQWDFW UHVLVWDQFH RI D FLUFXODU FRQWDFW RI UDGLXV D RQ HSLWD[LDO RU EXON OD\HUV LQ WKH VWUXFWXUH RI )LJ 7KH VSUHDGLQJ UHVLVWDQFH RI WKH OD\HU LV JLYHQ E\

PAGE 75

)LJXUH 6SHFLILF FRQWDFW UHVLVWDQFH PHDVXUHPHQW E\ WKH &R[6WUDFN PHWKRG 7KH FLUFXODU RKPLF FRQWDFW KDV UDGLXV RI D

PAGE 76

5E 3Df)DWf f ZKHUH ) LV D IXQFWLRQ RI WKH UDWLR DW DQG ZDV IRXQG H[SHULPHQWDOO\ E\ &R[ DQG 6WUDFN WR KDYH WKH DSSUR[LPDWH IRUP )DWf 7 f WDQrWDf f 7KHQ ZLWK )DWf NQRZQ WKH FRQWDFW UHVLVWDQFH FDQ EH REWDLQHG E\ UF 7D>5 SDf)DWf 54@ f ,Q SUDFWLFH WKH UHVLVWDQFHV RI DQ DUUD\ RI FRQWDFWV ZLWK GLIIHUHQW DUHDV DUH PHDVXUHG DQG WKH VSUHDGLQJ UHVLVWDQFH LV FDOFXODWHG IRU HDFK FRQWDFW XVLQJ (Tf 7KH VSHFLILF FRQWDFW UHVLVWDQFH FDQ EH REWDLQHG IURP WKH VORSH RI WKH SORW RI 554 YV D ZKHUH 54 LV SURYLGHG E\ WKH LQWHUFHSW RQ 55E D[LV 7KH IRXUSRLQW PHWKRG UHTXLUHV PHWDOOL]DWLRQ RI RQO\ RQH VXUIDFH RI WKH VDPSOH DV VKRZQ LQ )LJ 7KH VSUHDGLQJ UHVLVWDQFH VKRXOG EH ILUVW FDOFXODWHG DQG VXEWUDFWHG IURP WKH WRWDO PHDVXUHG UHVLVWDQFH 7KH VSUHDGLQJ UHVLVWDQFH 5E IRU UDGLDO FXUUHQW IORZ IURP D FLUFXODU FRQWDFW RI UDGLXV D LV JLYHQ LQ WKH IRUP RI DQ LQILQLWH VHULHV E\ )DQJ HW DO>@ ,Q WKH IRXUSRLQW PHDVXUHPHQW WKH YROWDJH 9A DQG 9 DUH PHDVXUHG IRU D NQRZQ FXUUHQW $VVXPLQJ WKDW WKH UHVLVWDQFH RI WKH VHPLFRQGXFWRU ILOP EHWZHHQ WKH FRQWDFWV LV WKH VDPH HYHU\ZKHUH WKHQ 9[ 9 ,5& 5Ef f ZKLFK JLYHV UF 7D> 9AO f 9Lf 5Ef f

PAGE 77

)LJXUH 6SHFLILF FRQWDFW UHVLVWDQFH PHDVXUHPHQW E\ WKH IRXUSRLQW PHWKRG

PAGE 78

.XSKDO KDV UHFHQWO\ SRLQWHG RXW WKDW WKH SRWHQWLDO GLVWULEXWLRQ LQ WKH SODQH RI WKH VHPLFRQGXFWRU OD\HU LV ORJDULWKPLF UDWKHU WKDQ OLQHDU DQG WKH FRUUHFW H[SUHVVLRQ IRU WKH VSHFLILF FRQWDFW UHVLVWDQFH LV JLYHQ E\ >@ UF 7D>9Of 9,fOQ^VDfO`Q@ f SURYLGHG WKDW 7D UFW D m V DQG W m V 7KH 6KRFNOH\ H[WUDSRODWLRQ PHWKRG FDQ EH XVHG WR GHWHUPLQH WKH VSHFLILF FRQWDFW UHVLVWDQFH RI WKH WKLQ VHPLFRQGXFWRU OD\HUV RQ WKH QRQFRQGXFWLQJ VXEVWUDWHV $V VKRZQ LQ )LJ WKLV WHFKQLTXH FRQVLVWV RI PHDVXULQJ WKH YROWDJH GURS 9[f DORQJ WKH VXUIDFH RI WKH VHPLFRQGXFWRU ILOP ZLWK FRSODQDU RKPLF FRQWDFWV DQG XVLQJ WKH H[WUDSRODWHG YROWDJH 94 DSSHDULQJ DFURVV WKH FRQWDFWV WKHQ UF FDQ EH GHWHUPLQHG $VVXPLQJ WKDW WKH VKHHW UHVLVWDQFH 5V LV ODWHUDOO\ XQLIRUP DQG WKH HSLOD\HU LV LQILQLWHO\ WKLQ WKH SRWHQWLDO GLVWULEXWLRQ XQGHU WKH FRQWDFWV LV JLYHQ E\ >@ 9[f 9H[S[/Wf f ZKHUH /W UF5Vfn,fA LV WKH WUDQVIHU OHQJWK %\ H[WUDSRODWLQJ WKH OLQHDU YROWDJH GURS PHDVXUHG EHWZHHQ WKH WZR FRQWDFWV WR REWDLQ /W WKH VSHFLILH FRQWDFW UHVLVWDQFH FDQ EH GHWHUPLQHG IURP UF 5V/W f $QRWKHU PHWKRG WR GHWHUPLQH WKH UHVLVWDQFH RI RKPLF FRQWDFWV WR D WKLQ ,,,f§9 FRPSRXQG VHPLFRQGXFWRU OD\HU RQ D QRQFRQGXFWLQJ VXEVWUDWH

PAGE 79

)LJXUH 6SHFLILF FRQWDFW UHVLVWDQFH PHDVXUHPHQW E\ WKH 6KRFNOH\ PHWKRG 7KH OLQHDU YROWDJH GLVWULEXWLRQ EHWZHHQ FRQWDFWV LV H[WUDSRODWHG WR REWDLQ WKH WUDQVIHU OHQJWK OBW

PAGE 80

XVH WKH WUDQVPLVVLRQOLQH PRGHO 7/0f ,Q WKH WUDQVPLVVLRQOLQH PRGHO DV VKRZQ LQ )LJ WKH SODQDU FRQWDFW LV WUHDWHG DV D UHVLVWLYH WUDQVPLVVLRQ OLQH ZLWK DQ XQLIRUP VKHHW UHVLVWDQFH 5J DQG D VSHFLILF FRQWDFW UHVLVWDQFH UF 7KH WRWDO UHVLVWDQFH 5F RI WKH FRQWDFW DQG WKH HSLWD[LDO OD\HU XQGHU WKH FRQWDFW LV JLYHQ E\ >@ 5F >UF5VFf:@FRWKG/Wf f ZKHUH /W U 5 LV WKH WUDQVIHU OHQJWK RI WKH 6KRFNOH\ PHWKRG 7KH FXUUHQW LQ WKH VHPLFRQGXFWRU ILOP XQGHU WKH FRQWDFW GHFD\V ZLWK GLVWDQFH DV H[SDA[f ZKHUH WKH DWWHQXDWLRQ IDFWRU DA LV UHODWHG WR WKH LQYHUVH WUDQVIHU OHQJWK LH DA /W ,Q RUGHU WR PHDVXUH WKH VSHFLILF FRQWDFW UHVLVWDQFH XVLQJ 7/0 WKH WRWDO UHVLVWDQFH 5 VKRXOG EH ILUVW PHDVXUHG H[SHULPHQWDOO\ 7KLV FDQ EH DFFRPSOLVKHG XVLQJ WKH DUUDQJHPHQW RI )LJ ZKHUH WKUHH LGHQWLFDO RKPLF FRQWDFWV DUH VSDFHG DW XQHTXDO GLVWDQFH /A DQG / DORQJ WKH VXUIDFH RI WKH OD\HU ,I 5M DQG 5 DUH WKH UHVLVWDQFH PHDVXUHG WKH WRWDO UHVLVWDQFH LV HDVLO\ JLYHQ E\ 5F 5/A 5/f/ /[f f 7KH WRWDO UHVLVWDQFH LQ (Tf FDQ EH VLPSOLILHG 5F UF5VFfZ 5VF/WZ IRU /W m G f 7KH VSHFLILF FRQWDFW UHVLVWDQFH FDQ EH GHWHUPLQHG IURP (Tf ZLWK D PHDVXUHG NQRZQ YDOXH RI 5F 7KH 7/0 KDV EHHQ H[WHQGHG WR WKH WUDQVPLVVLRQ OLQH RI FLUFXODU JHRPHWU\ >@ DQG DUELWUDU\ VKDSH >@

PAGE 81

, U F 5 : 5 VF LI G )LJXUH 6SHFLILF FRQWDFW UHVLVWDQFH PHDVXUHPHQW E\ WKH WUDQVPLVVLRQ OLQH PRGHO 7/0f PHWKRG 5F LV WKH WRWDO UHVLVWDQFH RI WKH PHWDOVHPLFRQGXFWRU LQWHUIDFH DQG WKH HSLOD\HU XQGHU WKH FRQWDFW

PAGE 82

)LJXUH 0HWKRG RI GHWHUPLQLQJ WKH WRWDO UHVLVWDQFH 5Ff XVLQJ D OLQHDU DUUD\ RI XQHTXDOO\ VSDFHG RKPLF FRQWDFWV 7KH VKDGHG UHJLRQV DUH WKH RKPLF FRQWDFW DUHDV

PAGE 83

7KLV WKHRU\ FDQ DOVR EH XVHG WR DQDO\]H WKH VRXUFH DQG GUDLQ RKPLF FRQWDFWV IRU ILHOGHIIHFW WUDQVLVWRUV IDEULFDWHG ZLWK *D$V DQG RWKHU ,,,f§9 FRPSRXQG VHPLFRQGXFWRUV 7KH XVH RI WKH 7/0 DYRLGV WKH QHFHVVLW\ RI PHDVXULQJ WKH SRWHQWLDO GLVWULEXWLRQ 9[f RI WKH 6KRFNOH\ PHWKRG DQG KHQFH LV VRPHZKDW VLPSOHU WR LPSOHPHQW +RZHYHU ERWK PHWKRGV DVVXPH WKDW WKH VKHHW UHVLVWDQFH EHWZHHQ DQG XQGHU WKH FRQWDFWV LV LGHQWLFDO DQG WKDW WKH VHPLFRQGXFWRU OD\HU LV LQILQLWHO\ WKLQ ,Q WKH DOOR\HG RKPLF FRQWDFWV WKLV LV QRW JHQHUDOO\ WUXH 'HYLFH )DEULFDWLRQ 6FKRWWN\ *DWH )RUPDWLRQ 7KH $XSQ,Q!*D!$VQ,Q3 DQG $XS,Q!*DB$VS,Q3 6FKRWWN\ EDUULHU GLRGHV KDYH EHHQ IDEULFDWHG DV LV VKRZQ LQ )LJ XVLQJ D VWDQGDUG OLIWRII SURFHVV >@ $ OLIWRII SKRWROLWKRJUDSK\ JLYHV DQ H[FHOOHQW UHVROXWLRQ DYDLODEOH ZLWK SRVLWLYH SKRWRUHVLVW DQG DYRLGV LQFRPSDWDELOLW\ SUREOHP RI PDQ\ PHWDO HWFKDQWV ZLWK ,Q3 LQ D WZRPHWDO V\VWHP >@ 7KH SQOQ *D $6 HSLWD[LDO OD\HUV ZHUH JURZQ RQ Q,Q3 VXEVWUDWHV E\ 0%( WHFKQLTXH 7KH WKLFNQHVVHV RI WKH S,Q!*D $6 HSLOD\HU ZHUH FKRVHQ WR EH SP SP ZLWK FRUUHVSRQGLQJ GRSDQW GHQVLWLHV RI [A [O FP DQG WKH WKLFNQHVV RI DQ Q,QJ *D $6 DQG S,QJ A*DJ $6 HSLOD\HU ZLWK D GRSDQW GHQVLW\ RI [O FP LV SP $ 5 JROG ILOP ZDV GHSRVLWHG RQ WKH S,QA*D $6 OD\HU DW D GHSRVLW UDWH RI VHF B DQG DW D SUHVVXUH RI [ 7RUU IRU WKH WUDQVSDUHQW 6FKRWWN\ FRQWDFW DQG &U$X f ZDV GHSRVLWHG IRU WKH ERQGLQJ SDG 7KH &U SURYLGHV FRQWDFW DGKHVLRQ WR WKH VHPLFRQGXFWRU DQG $X UHGXFHV WKH

PAGE 84

6FKRWWN\ %DUULHU &RQWDFW %RQGLQJ 3DG &U$Xf 3DVVLYDWLRQ 3RL\LPLGHf 'HSOHWHG /D\HU $FWLYH /D\HU (SLOD\HUf 6XEVWUDWH 2KPLF &RQWDFW $X*Hf )LJXUH 6WUXFWXUH RI WKH ,Q*D$V 6FKRWWN\ EDUULHU GLRGH XVLQJ WKH EDUULHU KHLJKW HQKDQFHPHQW WHFKQLTXH

PAGE 85

FRQWDFW UHVLVWDQFH DQG SURYLGHV D VXUIDFH VXLWDEOH IRU ERQGLQJ RU SURELQJ -XVW EHIRUH HYDSRUDWLRQ D ZHW FKHPLFDO HWFKLQJ ZDV SHUIRUPHG WR UHPRYH QDWLYH R[LGHV IURP VXUIDFH RI WKH FRQWDFW DUHD :DIHUV DUH GLSSHG LQ EXIIHUHG +) +)+ f RU HWFKLQJ VROXWLRQ 1++++ f )RU S,Q3S,Q3 6FKRWWN\ EDUULHU GLRGH VKRZQ LQ )LJ WKH f RULHQWHG =QGRSHG ,Q3 VXEVWUDWHV ZLWK D GRSDQW GHQVLW\ RI f§ 1D [ FP ZHUH XVHG 7KH S,Q3 HSLWD[LDO OD\HU ZLWK GRSLQJ f§ FRQFHQWUDWLRQ RI 1$ [ FP ZDV JURZQ RQ S ,Q3 VXEVWUDWH E\ 9DSRU 3KDVH (SLWD[\ $OXPLQXP ZDV XVHG DV WKH JDWH PHWDO EHFDXVH RI ORZ UHVLVWLYLW\ DQG ORZ ZRUN IXQFWLRQ 7KH FRQWDFW KDV D FLUFXODU VKDSH ZLWK D GLDPHWHU RI XP ZKLFK JLYHV D FRQWDFW DUHD RI [fA WR [A FPA 2KPLF &RQWDFW )RUPDWLRQ :H LQYHVWLJDWHG WKH SURSHUWLHV RI WKH RKPLF FRQWDFW XVLQJ VHYHUDO PHWDO DOOR\V DW D GLIIHUHQW DOOR\ WHPSHUDWXUH DQG DOOR\ WLPH WR REWDLQ WKH RSWLPXP RKPLF FRQWDFW FRQGLWLRQ 7KH RSWLPXP FRQGLWLRQV DUH VXPPDUL]HG LQ 7DEOH 7KH RKPLF FRQWDFW SDWWHUQ ZDV IDEULFDWHG XVLQJ WKH OLIWRII SURFHVV DV VKRZQ LQ )LJ 7KH W\SLFDO ,f§9 FKDUDFWHULVWLFV DUH VKRZQ LQ )LJ DQG )LJ 7KH VSHFLILF FRQWDFW UHVLVWDQFH ZDV FDOFXODWHG IRU YHUWLFDO DQG SODQDU VWUXFWXUHV DV LV VKRZQ LQ )LJ DQG )LJ UHVSHFWLYHO\ 7KH VSHFLILF FRQWDFW UHVLVWDQFH DW D GLIIHUHQW DOOR\ WLPH LV VKRZQ LQ )LJ )RU RKPLF FRQWDFW RQ Q,Q3 $X*H bf DOOR\ f ZDV GHSRVLWHG DQG DOOR\HG DW r& IRU VHF LQ +a1 bf IRUPLQJ

PAGE 86

7UDQVSDUHQW 6FKRWWN\ %DUULHU &RQWDFW $Xf ‘r %RQGLQJ 3DG &U$Xf S ,Q3(3LOD\HU 9rf§$EVRUSWLRQ /D\HU 2KPLF &RQWDFW :ZWS.+I383 ULnOL UUUWLQ SL LQ LL\L L 0: 2KPLF &RQWDFW 0Q ƒf$X ƒf )LJXUH 6WUXFWXUH RI WKH ,Q3 6FKRWWN\ EDUULHU GLRGH 0Q DQG $X DUH GHSRVLWHG VHTXHQWLDOO\ IRU SW\SH RKPLF FRQWDFW

PAGE 87

7DEOH 237,080 &21',7,216 )25 2+0,& &217$&76 0HWDO $OOR\ 7KLFNQHVV ƒf $OOR\ 7LPH VHFf 6SHFLDO &RPPHQW $X*Hr DW r& *RRG 2KPLF %RQGLQJ 3UREOHP $X*H1L DQG&U$X DW r& *RRG 2KPLF $X*H1L$X DW r& *RRG 2KPLF $X=Q DW r& &RQWDPLQDWLRQ $GKHVLRQ 3UREOHP &U$X=Q$X DW r& *RRG 2KPLF N 0Q$X DW r& *RRG 2KPLF N 7KLV FRQGLWLRQ ZDV GRQH E\ 5HVHDUFK 7ULDQJOH ,QVWLWXWH

PAGE 88

)LJXUH 7KH OLQHDU DUUD\ RI XQHTXDOO\ VSDFHG RKPLF FRQWDFWV &RQWDFW VSDFLQJ SP &RQWDFW SDG [ SP

PAGE 89

Df )LJXUH &XUUHQWYROWDJH FKDUDFWHULVWLFV Df $X*H1L$X RKPLF FRQWDFW Ef 6\VWHP SUREH WR JURXQG FKXFNf

PAGE 90

5B 5 5 5 B 5 B A >6,@ 7HVW F 6 7RWDO 6\VWHP 5J SW:G f ff f nf >4@ 5F 57HVW 5Jf f >4@ 7KXV UF 5F:G f f f nf [ n>2FP@ )LJXUH 0HWKRG RI GHWHUPLQLQJ WKH VSHFLILF FRQWDFW UHVLVWDQFH E\ WKH WUDQVPLVVLRQ OLQH PRGHO PHWKRG LQ WKH YHUWLFDO VWUXFWXUH

PAGE 91

Df Ef )LJXUH &XUUHQWYROWDJH FKDUDFWHULVWLFV RI $X*H1L$X RKPLF FRQWDFW SODQDU VWUXFWXUHf Df $OOR\ DW r& IRU PLQ Ef $OOR\ DW r& IRU PLQ

PAGE 92

5 5 / : 5 7 W f§ 5f f >4@ & 6& W Y 7RWDO 6\VWHP n 5VF f f >4@ DVVXPLQJ /W >MLP@ r 7KXV UF 5VF/W f f [ f>4FP@ )LJXUH 0HWKRG RI GHWHUPLQLQJ WKH VSHFLILF FRQWDFW UHVLVWDQFH E\ WKH WUDQVPLVVLRQ OLQH PRGHO PHWKRG LQ WKH SODQDU VWUXFWXUH

PAGE 93

&217$&7 5(6,67$1&( RKPf $//2< 7,0( PLQf )LJXUH 6SHFLILF FRQWDFW UHVLVWDQFH YV DOOR\ WLPH DV D SDUDPHWHU RI DOOR\ WHPSHUDWXUH

PAGE 94

JDV DPELHQW =Q %H DQG 0J DUH XVXDOO\ LQFRUSRUDWHG LQ HSLWD[LDO ,Q3 OD\HU DV DFFHSWRUV IRU WKH RKPLF FRQWDFW RQ S,Q3 $IWHU FOHDQLQJ ZDIHU ZLWK 7&( DFHWRQH PHWKDQRO DQG ', ZDWHU IROORZHG E\ EORZLQJ GU\ ZLWK 1 DQ RKPLF FRQWDFW ZDV IRUPHG RQ WKH EDFN VXUIDFH RI WKH S,Q3 VXEVWUDWH E\ GHSRVLWLQJ $X=Q bbf PHWDO DOOR\ f LQ (EHDP HYDSRUDWRU DW D SUHVVXUH RI [ 7RUU 7KH $X=Q RKPLF FRQWDFW ZDV DQQHDOHG DW r& IRU PLQ LQ +1 bf IRUPLQJ JDV HQYLURQPHQW LQ DQ DOOR\ IXUQDFH 7KH DGKHVLRQ RI =Q LV QRW DOZD\V JRRG ZLWK SHHOLQJ RII RFFXUUHG GXULQJ WKH OLIWRII SURFHVV >@ ([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ 7KH FXUUHQWYROWDJH FKDUDFWHULVWLFV RI $XSQ,Q*D$VQ,Q3 6FKRWWN\ GLRGH ZLWK D S,Q*D$V OD\HU RI DQG WKLFN VKRZ D ODUJH UHYHUVH OHDNDJH FXUUHQW DV LV VKRZQ LQ )LJ 7KH UHDVRQ IRU WKH ODUJH OHDNDJH FXUUHQW PD\ EH DWWULEXWHG SDUWLDOO\ WR WKH VXUIDFH OHDNDJH ZKLFK VWHPPHG IURP WKH SRRU VXUIDFH PRUSKRORJ\ DQG SDUWLDOO\ WR WKH H[LVWHQFH RI WKH WKLQ QHXWUDO UHJLRQ EHWZHHQ S,Q*D$V 6FKRWWN\ EDUULHU DQG SQ MXQFWLRQ FRQVLVWLQJ RI D 6FKRWWN\ EDUULHU FRQWDFW LQ VHULHV ZLWK D SQ MXQFWLRQ GLRGH GXH WR D WKLFN VXUIDFH OD\HU 7KH FDSDFLWDQFHYROWDJH FKDUDFWHULVWLF RI WKH 6FKRWWN\ GLRGH ZLWK D S,Q*D$V OD\HU RI WKLFN VKRZV D VWURQJ SRVVLELOLW\ RI WKLV UHDVRQ DV VKRZQ LQ )LJ +RZHYHU WKH OHDNDJH FXUUHQW ZDV JUHDWO\ UHGXFHG LQ 6FKRWWN\ EDUULHU GLRGHV ZLWK D S,Q*D$V OD\HU RI DV LV VKRZQ LQ )LJ 7KH OHDNDJH FXUUHQW GHQVLW\ LV JLYHQ E\ [O $FP DW 95 9 7KH HIIHFWLYH EDUULHU KHLJKW RI H9 LV REWDLQHG E\

PAGE 95

Df Ef )LJXUH &XUUHQWYROWDJH FKDUDFWHULVWLFV IRU $XSQ,Q4 JM*DJ A$VQ,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH Df $Ef ƒ

PAGE 96

-81&7,21 &$3$&,7$1&( &c S)f 5(9(56(%,$6(' 92/7$*( 959f )LJXUH 5HYHUVHELDVHG MXQFWLRQ FDSDFLWDQFH RI WKH SQ,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH ZLWK WKH VXUIDFH OD\HU RI WKH WKLFNQHVV RI .

PAGE 97

)LJXUH &XUUHQWYROWDJH ,9f FKDUDFWHULVWLFV IRU $XS QQT A*DA A$VQ,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH ZLWK WKH Sr,QQ *DQ $V OD\HU RI WKH WKLFNQHVV RI $ XfA X

PAGE 98

A 2 2 XVLQJ $ $FP9.A IRU DQ HOHFWURQ HIIHFWLYH PDVV RI P4 7KH FDSDFLWDQFH ZDV IRXQG WR EH S) DW 95 9 IRU 6FKRWWN\ EDUULHU GLRGH ZLWK D FRQWDFW DUHD RI [O FP 7KH HIIHFWLYH EDUULHU KHLJKW H9 DQG 6n%QFfY H9 LV REWDLQHG ZKLFK LQGLFDWHV WKH EDUULHU HQKDQFHPHQW RI H9 0RVW RI WKH S,Q3SOQ3 6FKRWWN\ EDUULHU GLRGHV KDYH D EUHDNGRZQ YROWDJH RI 9 7KH MXQFWLRQ FDSDFLWDQFH LV & S) DW 95 9 DQG & S) DW 95 9 IRU DQ $OS,Q3SOQ3 6FKRWWN\ EDUULHU GLRGH ZLWK D FRQWDFW DUHD RI [ FP DV LV VKRZQ LQ )LJ 7KH EDFNJURXQG GRSLQJ FRQFHQWUDWLRQ GHWHUPLQHG IURP WKH VORSH RI &f YV 95 LQ )LJ LV [O FPn 7KH EXLOWLQ SRWHQWLDO LV REWDLQHG IURP WKH LQWHUFHSW RI &f LH 9' H9 7KXV WKH EDUULHU KHLJKW IRU $OS,Q3S,Q3 6FKRWWN\ EDUULHU GLRGH FDQ EH GHWHUPLQHG E\ (Tf ZKLFK VKRZV (5S H9 6XPPDU\ DQG &RQFOXVLRQV 7KH $XSQ,Q!*D A\$VQ,Q3 6FKRWWN\ EDUULHU GLRGHV ZLWK D GLIIHUHQW WKLFNQHVV RI WKH S,Q*D$V VXUIDFH OD\HU KDYH EHHQ IDEULFDWHG DQG FKDUDFWHUL]HG 7KH UHVXOWV VKRZ WKDW RXU PRGLILHG 6FKRWWN\ EDUULHU GLRGHV KDYH WKH WRWDO FDSDFLWDQFH RI S) WKH VHULHV UHVLVWDQFH RI RKP DQG WKH HIIHFWLYH EDUULHU KHLJKW RI H9 :H KDYH DOVR IDEULFDWHG $OS,Q3S,Q3 6FKRWWN\ EDUULHU GLRGH XVLQJ D OLIWRII SKRWROLWKRJUDSKLF SURFHVV RQ SOQ3 HSLOD\HU JURZQ E\ 9DSRU 3KDVH (SLWD[\ 93(f 7KH GLUHFW PHDVXUHPHQW RI WKH EDUULHU KHLJKW VKRZV '5S FBY H9

PAGE 99

,19(56( 648$5( 2) -81&7,21 &$3$&,7$1&( &f [ )LJXUH 0HWKRG RI GHWHUPLQLQJ WKH 6FKRWWN\ EDUULHU KHLJKW RI WKH S,Q3 6FKRWWN\ EDUULHU GLRGH IURP WKH FDSDFLWDQFH YV YROWDJH PHDVXUHPHQW

PAGE 100

&+$37(5 3285 '(9(/230(17 2) $ +,*+63((' *D$V 6&+277.< %$55,(5 3+272'(7(&725 )25 0,//,0(7(5:$9( 237,&$/ ),%(5 /,1.6 ,QWURGXFWLRQ /LJKWZDYH FRPPXQLFDWLRQ V\VWHPV UHTXLUH D KLJKVSHHG DQG KLJK VHQVLWLYLW\ SKRWRGHWHFWRU LQ RUGHU WR DFKLHYH KLJK GDWD UDWH DW ORZ VLJQDO OHYHO 7KH *D$V 6FKRWWN\ EDUULHU SKRWRGHWHFWRU LV YHU\ DWWUDFWLYH IRU VKRUW RSWLFDO OLQNV ZKHUH WKH PD[LPXP GDWD UDWH LV QRW OLPLWHG E\ ILEHU GLVSHUVLRQ DQG WKH PD[LPXP PRGXODWLRQ IUHTXHQF\ LV RQO\ OLPLWHG E\ SKRWRGHWHFWRUV ODVHUV DQG HOHFWURQLFV *D$VUHODWHG SKRWRGHWHFWRUV QHHG WR XVH WHUQDU\ DQG TXDWHUQDU\ PDWHULDOV PDGH XVLQJ *D$V EHFDXVH LW LV GLIILFXOW WR GHVLJQ WKH SKRWRGHWHFWRUV DW ORQJ ZDYHOHQJWK 7KH SK\VLFDO SDUDPHWHUV RI D *D$V PDWHULDO DUH VXPPDUL]HG LQ 7DEOH ,Q WKLV FKDSWHU ZH GHVFULEH D KLJKVSHHG *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH FDSDEOH RI GHWHFWLQJ RSWLFDO VLJQDOV XS WR *+] 7KHRUHWLFDO $QDO\VLV 7KH PDLQ FRQVLGHUDWLRQV LQ WKH GHVLJQ RI SKRWRGHWHFWRUV DUH UHVSRQVH VSHHG DQG UHVSRQVLYLW\ )RU KLJK VSHHGRSHUDWLRQ WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH UHTXLUHV D QDUURZ GHSOHWLRQ UHJLRQ IRU VKRUW WUDQVLW WLPH DQG D ZLGH GHSOHWLRQ UHJLRQ DQG VPDOO DUHD IRU ORZ MXQFWLRQ FDSDFLWDQFH 7KHUHIRUH WKH JHRPHWU\ DQG GLPHQVLRQ RI WKH SKRWRGLRGH DQG WKH GRSDQW GHQVLW\ RI WKH HSLOD\HU VKRXOG EH RSWLPL]HG

PAGE 101

7DEOH 3+<6,&$/ 3$5$0(7(56 )25 *D$V 0$7(5,$/ (QHUJ\*DS (J H9 DW r 'LHOHFWULF &RQVWDQW HV 0RELOLW\ 8Q FP9VHF 3S FP9VHF 'LIIXVLRQ &RVWDQW 'Q FPVHF 'S FPVHF 'LIIXVLRQ /HQJWK /Q SP S*D$Vf /S SP Q*D$Vf (IIHFWLYH 0DVV QAr PSAr P4 PSKr P4 PSr P4 ,QWULQVLF &DUULHU &RQFHQWUDWLRQ Q [O FP (IIHFWLYH 'HQVLW\ RI 6WDWHV 1F [A FPf 1\ ; FP (IIHFWLYH 5LFKDUGVRQ &RQVWDQW $r $FP.a

PAGE 102

4XDQWXP (IILFLHQF\ 7KH WRWDO SKRWRFXUUHQW GHQVLW\ FRQVLVWV RI WZR PDLQ FRPSRQHQWV FRPLQJ IURP WKH GHSOHWLRQ UHJLRQ DQG WKH TXDVLQHXWUDO EDVH UHJLRQ 7KH SKRWRFXUUHQW GHQVLW\ GXH WR WKH SKRWRJHQHUDWHG H[FHVV FDUULHUV LQ WKH GHSOHWLRQ UHJLRQ IRU DQ LQFLGHQW PRQRFKURPDWLF OLJKW LV JLYHQ E\ -G TD7 ^OH[SD:f` f 7KH SKRWRFXUUHQW GHQVLW\ GXH WR KROHV FROOHFWHG LQ WKH TXDVLQHXWUDO EDVH UHJLRQ LV JLYHQ E\ >@ -S >TD7/SD/SOf@HBD:^D/S >FRVK+n/Sf HfD+n@VLQK+n/Sf` f 7KH WRWDO SKRWRFXUUHQW GHQVLW\ LV REWDLQHG IURP (Tf DQG f -SK T67>O HfD:@ >TDW(7/SD/SOf @HBD:^D/S >FRVK+n/Sf HfD+n@VLQK+n/Sf` f ZKHUH D LV WKH DEVRUSWLRQ FRHIILFLHQW LV WKH LQFLGHQW SKRWRQ IOX[ GHQVLW\ 7 LV WKH WUDQVPLVVLRQ FRHIILFLHQW LQ WKH PHWDO ILOP + +n :f LV WKH WKLFNQHVV RI WKH HSLOD\HU DQG : LV WKH GHSOHWLRQ OD\HU ZLGWK 7KH TXDQWXP HIILFLHQF\ RI D 6FKRWWN\ EDUULHU SKRWRGLRGH FDQ EH REWDLQHG IURP (Tf ZKLFK LV JLYHQ E\ 7^ HfD:D/SOf>OD/SFRVK+n/Sf HD+fVLQK+n/Sf@` f

PAGE 103

1RWH WKDW (Tf FDQ EH UHGXFHG WR *DUWQHUnV H[SUHVVLRQ >@ RI WKH TXDQWXP HIILFLHQF\ ZKHQ WKH GHYLFH WKLFNQHVV ODUJHU WKDQ WKH GLIIXVLRQ OHQJWK LH +n } / 7KH WKHRUHWLFDO TXDQWXP HIILFLHQF\ Wn LV VKRZQ LQ )LJ DQG )LJ DV D SDUDPHWHU RI WKH GRSDQW GHQVLW\ RI WKH DEVRUSWLRQ OD\HU DQG WKH ELDV YROWDJH UHVSHFWLYHO\ 7KH WKLFNQHVV RI D VLQJOH DQWLUHIOHFWLRQ $5f FRDWLQJ OD\HU FDQ EH FDOFXODWHG IURP (Tf IRU H[DPSOH IRU 61 DQG IRU 6L&! DW SP 7KH PLQLPXP UHIOHFWLRQ ORVV ZLWK D TXDUWHU ZDYHOHQJWK DQWLUHIOHFWLRQ FRDWLQJ OD\HU LV JLYHQ E\ (Tf )RU $5 FRDWLQJ RI 62 RQ *D$V HSLOD\HU WKH PLQLPXP UHIOHFWLRQ ORVV LV DW SP 5HVSRQVH 6SHHG 7KH UHVSRQVH VSHHG RI D SKRWRGHWHFWRU LV GHWHUPLQHG E\ WKH WRWDO ULVHWLPH JLYHQ E\ (Tf 7KH ULVHWLUDH WU LV UHODWHG WR WKH G% FXWRII IUHTXHQF\ DQG KHQFH WKH EDQGZLGWK RI WKH SKRWRGLRGH 7KH G% FXWRII IUHTXHQF\ LV GHWHUPLQHG E\ FLUFXLW VLPXODWLRQ RI WKH SKRWRGLRGH XVLQJ 6/,&( SURJUDP UHVXOWLQJ LQ *+] 7KH HTXLYDOHQW FLUFXLW PRGHO RI WKH 6FKRWWN\ EDUULHU SKRWRGLRGH LV VKRZQ LQ )LJ 7KH UHVXOWLQJ IUHTXHQF\ UHVSRQVH DQG WKH PHDVXUHG FLUFXLW SDUDPHWHUV RI *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH LV VKRZQ LQ )LJ 7KH LQWULQVLF UHVSRQVH VSHHG RI WKH SKRWRGLRGH LV XVXDOO\ GHJUDGHG E\ WKH H[WULQVLF FLUFXLW HOHPHQWV VXFK DV MXQFWLRQ FDSDFLWDQFH DQG SDUDVLWLF FDSDFLWDQFH VHULHV DQG ORDG UHVLVWDQFH DQG LQGXFWDQFH 1RWH WKDW WKH FDSDFLWDQFH LV GXH SULPDULO\ WR WKH

PAGE 104

! X X ,f§, X Wf§O /O X f§ &( f % :$9(/(1*7+ MXPf ‘ )LJXUH 7KHRUHWLFDO TXDQWXP HIILFLHQF\ RI WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH DV D SDUDPHWHU RI WKH GRSDQW GHQVLW\ RI WKH DEVRUSWLRQ OD\HU 9

PAGE 105

R :59(/(1*7+XPf 7KHRUHWLFDO TXDQWXP HIILFLHQF\ RI WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH DV D SDUDPHWHU RI WKH ELDV YROWDJH

PAGE 106

5/ Q 5V f§ &O /E Q+ &M R 3) &S 3) 5M .IO )LJXUH (TXLYDOHQW FLUFXLW PRGHO RI WKH 6FKRWWN\ EDUULHU SKRWRGLRGH WR GHWHUPLQH WKH G% FXWRII IUHTXHQF\ E\ 6/,&( VLPXODWLRQ

PAGE 107

4r/2**9f!3 &( 4 )LJXUH < 222&&2U&2 &(&4 *(& D ‘ D D (& f f D D & f ‘ D D &(& f f D D &(& f f f D (& f f D D f f D (& f f D D (& f ‘ D D f D D D (& f f D (& f ‘ D D f f D (& f f D nD f D (& f f D & ‘ D D &(& ‘ D D 7KH G% FXWRII IUHTXHQF\ RI WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH

PAGE 108

GHSOHWLRQ FDSDFLWDQFH 7KH LQGXFWDQFH LV GXH PDLQO\ WR WKH ERQGLQJ ZLUH DQG WKH VHULHV UHVLVWDQFH LV GXH PDLQO\ WR WKH VKHHW UHVLVWDQFH RI WKH 6FKRWWN\ EDUULHU SKRWRGLRGH 'HYLFH )DEULFDWLRQ $ KLJKVSHHG *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH KDV EHHQ IDEULFDWHG RQ Q*D$V HSLWD[LDO OD\HU JURZQ RQ Q*D$V VXEVWUDWH ZLWK f RULHQWDWLRQ E\ PHWDORUJDQLF FKHPLFDO YDSRU GHSRVLWLRQ 02&9'f 7KH *D$V HSLOD\HU ZLWK D WKLFNQHVV RI SP KDV D GRSDQW GHQVLW\ RI f§ [ FP )LJXUH VKRZV WKH VWUXFWXUH RI D *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH ZLWK DQ DFWLYH DUHD RI [Of WR [fA FP 7KH 6FKRWWN\ EDUULHU FRQWDFWV DUH IDEULFDWHG XVLQJ D VWDQGDUG OLIWRII SURFHVV >@ 7KLV WHFKQLTXH FDQ PLQLPL]H WKH LQFRPSDWDELOLW\ SUREOHP RI PDQ\ PHWDO HOHPHQWV ZLWK *D$V LQ D WZRPHWDO V\VWHP $ 5 JROG ILOP ZDV GHSRVLWHG RQ *D$V HSLOD\HU XVLQJ HEHDP HYDSRUDWLRQ SURFHVV DQG LV SURWHFWHG ZLWK D 62 OD\HU RI 6 IRU DQWLUHIOHFWLRQ $5f FRDWLQJ 3ULRU WR PHWDO GHSRVLWLRQ WKH ZDIHU ZDV FKHPLFDOO\ HWFKHG LQ GLOXWH +) WR UHPRYH D QDWLYH R[LGH IURP WKH VXUIDFH RI WKH FRQWDFW DUHD 7KH RKPLF FRQWDFW ZDV IRUPHG RQ WKH EDFN VXUIDFH RI WKH Q*D$V VXEVWUDWH E\ GHSRVLWLQJ $X*H1L PHWDO DOOR\ 7KH SKRWRGLRGH LV PRXQWHG RQ WKH PLFURVWULS WUDQVPLVVLRQ OLQH ZKLFK LV IDEULFDWHG RQ WKH FKURPLXPJROG PHWDOL]HG DOXPLQD $A2Af VXEVWUDWH 7KLV DOORZV D GHPRXQWDEOH FRQQHFWLRQ WR D FRPPHUFLDO RKP DPSOLILHU 7KH GHVLJQ SDUDPHWHUV RI WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH DUH VXPPDUL]HG LQ 7DEOH

PAGE 109

7UDQVSDUHQW 6FKRWWN\ %DUULHU &RQWDFW $Xf $QWL5HIOHFWLRQ &RDWLQJ 6c f %RQGLQJ 3DG $EVRUSWLRQ /D\HU 6XEVWUDWH $X*H1L )LJXUH 6WUXFWXUH RI WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH ZLWK WKH DQWL UHIOHFWLRQ FRDWLQJ OD\HU RI 6L&A

PAGE 110

7DEOH '(6,*1 3$5$0(7(56 2) *D$V 6&+277.< %$55,(5 3+272',2'( 'HYLFH 6WUXFWXUH Q*D$VQ*D$V 6FKRWWN\ &RQWDFW $X ƒf 3KRWRGLRGH $FWLYH $UHD [ FP (SLWD[LDO /D\HU Q*D$V [ FP LP $QWL5HIOHFWLRQ &RDWLQJ 6L $f 2KPLF &RQWDFW WR QJD$V $X*H1L 0LFURVWULS /LQH 2XWSXW ,PSHGHQFH ] RKP 6XEVWUDWH 7KLFNQHVV + *ROG )LOP 7KLFNQHVV W 6WULSOLQH :LGWK : (IIHFWLYH 6WULSOLQH :LGWK :n

PAGE 111

([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ &XUUHQW9ROWDJH ,9f 0HDVXUHPHQW 7KH FXUUHQWYROWDJH FKDUDFWHULVWLF KDV EHHQ REWDLQHG E\ XVLQJ 7HNWURQL[ 0 FXUYH WUDFHU WR GHWHUPLQH WKH UHYHUVH EUHDNGRZQ YROWDJH RI WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGHV 7KH UHVXOWV VKRZ WKDW WKH EUHDNGRZQ YROWDJHV IRU RXU GHYLFHV DUH PRVWO\ DURXQG 9 7KH GDUN FXUUHQW ZDV PHDVXUHG E\ XVLQJ D +3 % S$ PHWHU FRQWUROOHG E\ +3 % FRPSXWHU )LJXUH VKRZV WKDW WKH UHYHUVH GDUN FXUUHQW IRU *D$V 6FKRWWN\ EDUULHU SKRWRGLRGHV ZLWK DFWLYH DUHDV UDQJLQJ IURP [fA WR [OA $FPA DW 95 9 7KH LGHDOLW\ IDFWRU Q FDQ EH GHWHUPLQHG H[SHULPHQWDOO\ IURP WKH VORSH RI IRUZDUG FXUUHQWYROWDJH FKDUDFWHULVWLFV Q TN7f>G9GOQ -f@ IRU 9 N7T f 7KH LGHDOLW\ IDFWRU LV YHU\ FORVH WR XQLW\ DW ORZ GRSDQW GHQVLW\ W DQG KLJK WHPSHUDWXUH +RZHYHU LW FDQ GHSDUW VXEVWDQWLDOO\ IURP XQLW\ ZKHQ WKH GRSLQJ FRQFHQWUDWLRQ LV LQFUHDVHG RU WKH WHPSHUDWXUH LV ORZHUHG 7KH UHFRPELQDWLRQ FXUUHQW FDXVHV GHYLDWLRQ RI WKH LGHDOLW\ IDFWRU IURP XQLW\ DQG WKH SUHH[SRQHQWLDO WHUP IURP WKH LGHDO YDOXH )RU RXU GHYLFHV Q YDULHV EHWZHHQ DQG IRU YROWDJHV UDQJLQJ IURP WR 9 &DSDFLWDQFH9ROWDJH &9f 0HDVXUHPHQW 7KH MXQFWLRQ FDSDFLWDQFH RI WKH SKRWRGLRGH ZDV PHDVXUHG E\ XVLQJ +3 $ &0HWHU&9 3ORWWHU 7KH UHVXOW VKRZV WKDW WKH WRWDO

PAGE 112

5(9(56(%,$6(' '$5. &855(17 O' $f 5(9(56(%,$6(' 92/7$*( 95 9f )LJXUH 5HYHUVHELDVHG GDUN FXUUHQW RI WKH *D$V 6FKRWWN\ EDUULHUnSKRWRGLRGH

PAGE 113

FDSDFLWDQFH LV &M S) DW 95 9 DQG & S) DW 95 9 IRU *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH ZLWK DQ DUHD RI [ FLUU DV VKRZQ LQ )LJ 7KLV VKRZV WKDW RXU SKRWRGLRGHV ZHUH ZHOO GHVLJQHG IRU KLJKVSHHG RSHUDWLRQ $& $GPLWWDQFH 0HDVXUHPHQW 7KH IUHTXHQF\GHSHQGHQW DF DGPLWWDQFH PHDVXUHPHQW >@ LV FRPPRQO\ XVHG WR GHWHUPLQH WKH FLUFXLW HOHPHQWV RI D 6FKRWWN\ EDUULHU GLRGH VHULHV UHVLVWDQFH 5Vf VKXQW UHVLVWDQFH 5SfI DQG MXQFWLRQ FDSDFLWDQFH &Mf 7KLV FLUFXLW HOHPHQWV PD\ EH IUHTXHQF\ DQG YROWDJH GHSHQGHQW )RU VLPSOLFLW\ 5V DQG 5S DUH DVVXPHG WR EH YROWDJH GHSHQGHQW EXW QRW IUHTXHQF\ GHSHQGHQW LH 5f 5f9f 5B 5B9f R W' S DQG &G &9Zf 7KH IUHTXHQF\ GHSHQGHQW DGPLWWDQFH RI D 6FKRWWN\ EDUULHU GLRGH LV JLYHQ E\ IZf *Zf M%Zf =ML= =f M== =f f r ZKHUH =[ 5V 5S&OWZ5S&Mf@ f = Z5S& M > O Z5S& Mf @ f ,Q WKH ORZ IUHTXHQF\ OLPLW Z!f 5H^
PAGE 114

-81&7,21 &$3$&,7$1&( &S)f )LJXUH 5HYHUVHELDVHG MXQFWLRQ FDSDFLWDQFH RI WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH AR

PAGE 115

686&(37$1&( 0KRf )LJXUH )UHTXHQF\GHSHQGHQW DF DGPLWWDQFH RI WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH

PAGE 116

RKP 7KH MXQFWLRQ FDSDFLWDQFH FDQ EH FDOFXODWHG IURP WKH PHDVXUHG YDOXHV *Zf DQG %Zf XVLQJ (Tf DQG (Tf IRU D JLYHQ IUHTXHQF\ 7KLV DOORZV DFFXUDWH GHWHUPLQDWLRQ RI 5V 5 DQG RYHU D ZLGH UDQJH RI IUHTXHQF\ 6SHFWUDO 5HVSRQVH 0HDVXUHPHQW 7KH VSHFWUDO UHVSRQVH RI WKH SKRWRGLRGH ZDV PHDVXUHG E\ XVLQJ D -DUUHOO$VK 4XDUWHUPHWHU 0RQRFKURPDWRU 7KH UDGLDWLRQ IURP 0.,, ILEHU RSWLF OLJKWVRXUFH ZDV IRFXVHG RQ WKH HQWUDQFH VOLW RI WKH PRQRFKURPDWRU 5DGLDWLRQ IURP WKH H[LW VOLW ZDV IRFXVHG RQ WKH SKRWRGLRGH WKURXJK D IRFXVLQJ OHQV 7KH RSWLFDO SRZHU ZDV PHDVXUHG XVLQJ 2SWLFV 7HFKQRORJ\ 0 RSWLFDO SRZHU PHWHU DQG QRUPDOL]HG E\ WKH DUHD RI WKH OLJKW VSRW WR REWDLQ WKH HTXLYDOHQW RSWLFDO SRZHU IRFXVHG RQ WKH DFWLYH DUHD RI WKH SKRWRGLRGH 7KH SKRWRFXUUHQW ZDV PHDVXUHG E\ .HLWKOH\ S$ PHWHU 7KH TXDQWXP HIILFLHQF\ DQG UHVSRQVLYLW\ RI WKH SKRWRGLRGH DUH FDOLEUDWHG E\ XVLQJ WKH OLJKW VRXUFH RI D 6SHFWUD 3K\VLFV 0RGHO +H1H ODVHU 7KH UHVSRQVLYLW\ RI WKH SKRWRGHWHFWRU LV GHWHUPLQHG E\ WKH DYHUDJH SKRWRFXUUHQW GLYLGHG E\ WKH DYHUDJH LQFLGHQW RSWLFDO SRZHU 7KH SKRWRGLRGH KDV DQ H[WHUQDO TXDQWXP HIILFLHQF\ RI b DW SP b DW SP DQG b DW XUQ DQG D UHVSRQVLYLW\ RI $: DW SP $: DW SP DQG $: DW SP UHVSHFWLYHO\ 7KH TXDQWXP HIILFLHQF\ DQG UHVSRQVLYLW\ DUH VKRZQ LQ )LJ DQG )LJ UHVSHFWLYHO\ 5HVSRQVH 6SHHG 0HDVXUHPHQW 7KH UHVSRQVH VSHHG ZDV GLUHFWO\ PHDVXUHG LQ WLPH GRPDLQ E\ LPSXOVH UHVSRQVH WHFKQLTXH XVLQJ D VDPSOLQJ VFRSH 7KLV PHWKRG

PAGE 117

48$1780 ()),&,(1&< W@ 5 O?f )LJXUH 4XDQWXP HIILFLHQF\ RI WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH

PAGE 118

5(63216,9,7< 5 OSK3f $:f :$9(/(1*7+ ;LAPf )LJXUH 5HVSRQVLYLW\ RI WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH

PAGE 119

)LJXUH ,PSXOVH UHVSRQVH RI WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH WR SV ODVHU SXOVH ZLWK .+] UHSHWLWLRQ UDWH DW D ZDYHOHQJWK RI QP

PAGE 120

,OO UHTXLUHV DQ RSWLFDO VRXUFH JHQHUDWLQJ XOWUDVKRUW SXOVHV SUHIHUUDEO\ VKRUWHU WKDQ WKH LPSXOVH UHVSRQVH RI WKH SKRWRGLRGH 7KH LPSXOVH UHVSRQVH RI D SKRWRGLRGH WR D ODVHU SXOVH RI SV ):+0 SV ULVHWLPHf ZLWK D .+]SXOVH UHSHWLWLRQ UDWH DW D ZDYHOHQJWK RI QP ZDV PHDVXUHG E\ D 7HNWURQL[ VDPSOLQJ VFRSH 6 VDPSOLQJ XQLW ZLWK DQ 6 VDPSOLQJ KHDGf RI ULVHWLPH RI SV SV ):+0f $ ULVHWLPH RI SV DQG DQ ):+0 RI SV KDYH EHHQ PHDVXUHG 7KH UHVSRQVH LV PDLQO\ OLPLWHG E\ WKH ILQLWH ZLGWK RI WKH ODVHU SXOVH DQG WKH ULVH WLPH RI WKH VDPSOLQJ VFRSH 7KH VDPSOLQJ VFRSH LQWURGXFHV FRQVLGHUDEOH LQVWUXPHQWDO EURDGHQLQJ WR SURGXFH D SXOVH RI D ULVHWLPH RI SV SV ):+0f 7KHUHIRUH WKH WUXH LPSXOVH UHVSRQVH LV IRXQG WR EH SV ULVHWLPHf DQG SV ):+0f 7KH LPSXOVH UHVSRQVH RI WKH SKRWRGLRGH LV VKRZQ LQ )LJ :H HVWLPDWH WKDW WKH SKRWRGLRGH RI SP LQ GLDPHWHU FDQ JLYH D G% EDQGZLGWK RI *+] EDVHG RQ WKH PHDVXUHG 5& WLPH FRQVWDQW & S) DQG 5V RKPf 7DEOH VXPPDUL]HV WKH H[SHULPHQWDO UHVXOWV IRU WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH 6XPPDU\ DQG &RQFOXVLRQV :H KDYH IDEULFDWHG D *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH FDSDEOH RI GHWHFWLQJ RSWLFDO VLJQDOV XS WR *+] 7KH LPSXOVH UHVSRQVH VKRZV WKDW WKH SKRWRGLRGH ZLWK DQ DFWLYH DUHD RI SP LQ GLDPHWHU KDV D ULVHWLPH RI SV 7KH VSHFWUDO UHVSRQVH PHDVXUHPHQW \LHOGV D UHVSRQVLYLW\ RI $: DQG TXDQWXP HIILFLHQF\ RI b DW QP %DVHG RQ WKH PHDVXUHG 5& WLPH & S) DQG 5V RKPf WKH SKRWRGLRGH RI SP LQ GLDPHWHU KDV D G% EDQGZLGWK RI *+]

PAGE 121

7DEOH (;3(5,0(17$/ 5(68/76 2) *D$V 6&+277.< %$55,(5 3+272',2'( 'HYLFH 6WUXFWXUH Q*D$VQ*D$V 3KRWRGLRGH $UHD FPf [ n [ n 'DUN &XUUHQW 'HQVLW\ $FPf DW 95 9f [ f [ f ,GHDOLW\ )DFWRU &DSDFLWDQFH S)f DW 95 9f 4XDQWXP (IILFLHQF\ bf DW QP DW QP 5HVSRQVLYLW\ $:f DW QP DW QP %DQGZLGWK *+]f ,PSXOVH 5HVSRQVH SVf DW QP DQG 95 9 5LVHWLPHf ):+0f

PAGE 122

&+$37(5 ),9( '(9(/230(17 2) $ +,*+63((' $XS,Q *D $VS,Q3 6&+277.< %$55,(5 3+272',2'( )25 ,1)5$5(' 3+272'(7(&7,21 ,QWURGXFWLRQ $ KLJKVSHHG SKRWRGHWHFWRU RSHUDWLQJ LQ WKH LQIUDUHG UHJLPH HVSHFLDOO\ FORVH WR WKH GLVSHUVLRQ PLQLPXP RI RSWLFDO ILEHUV DUH RI JUHDW LQWHUHVW IRU OLJKWZDYH FRPPXQLFDWLRQV 0RVW RI WKH KLJKVSHHG SKRWRGHWHFWRUV KDYH EHHQ IDEULFDWHG PDLQO\ RQ *D$V XVLQJ D 6FKRWWN\ EDUULHU VWUXFWXUH IRU SP DQG RQ ,Q*D$V XVLQJ D SLQ VWUXFWXUH IRU SP 6FKRWWN\ EDUULHU FRQWDFW RQ D PRGHUDWHO\ GRSHG S,Q*D$V HSLOD\HU SURGXFHV D JRRG EDUULHU KHLJKW ZKHQ VXLWDEOH PHWDOV DQG VXUIDFH SUHSDUDWLRQ DUH SURYLGHG 6FKRWWN\ EDUULHU VWUXFWXUH RQ SOQ*D$V KDV EHHQ GHPRQVWUDWHG E\ (PHLV HW DO >@ ‘ ,Q WKLV FKDSWHU ZH UHSRUW D KLJKVSHHG $XS,Q*D$VS LQ3 6FKRWWN\ EDUULHU SKRWRGLRGH XVLQJ PHVD VWUXFWXUH IRU SP LQIUDUHG GHWHFWLRQ 7KH HSLOD\HU KDV EHHQ JURZQ RQ S,Q3 VXEVWUDWH E\ /3( 7KHRUHWLFDO $QDO\VLV 4XDQWXP (IILFLHQF\ 7KH WRWDO SKRWRFXUUHQW GHQVLW\ FRQVLVWV RI WZR PDLQ FRPSRQHQWV FRPLQJ IURP WKH GHSOHWLRQ UHJLRQ DQG WKH TXDVLQHXWUDO EDVH UHJLRQ 7KH SKRWRFXUUHQW GHQVLW\ GXH WR WKH SKRWRJHQHUDWHG H[FHVV FDUULHUV LQ WKH GHSOHWLRQ OD\HU IRU DQ LQFLGHQW PRQRFKURPDWLF OLJKW LV JLYHQ E\

PAGE 123

-c TD7F% ^H[S D:f` f 7KH SKRWRFXUUHQW GHQVLW\ GXH WR WKH HOHFWURQV FROOHFWHG LQ WKH TXDVLQHXWUDO EDVH UHJLRQ LV JLYHQ E\ >@ -Q >TDF7/QD/QOf@HfD:^D/Q >FRVK+n/Qf HD+n@VLQK+9/Qf! f 7KH WRWDO SKRWRFXUUHQW GHQVLW\ LV REWDLQHG IURP (TV f DQG f -SK TDt7>O HD:@ >TD7/QD/QOf@HfD:^D/Q >FRVK+n/Qf HBD+n@VLQK+n/Qf` f ZKHUH D LV WKH DEVRUSWLRQ FRHIILFLHQW LV WKH LQFLGHQW SKRWRQ IOX[ GHQVLW\ 7 LV WKH WUDQVPLVVLRQ FRHIILFLHQW LQ WKH PHWDO ILOP + +n :f LV WKH WKLFNQHVV RI WKH HSLOD\HU DQG : LV WKH GHSOHWLRQ OD\HU ZLGWK 7KH TXDQWXP HIILFLHQF\ FDQ EH REWDLQHG IURP (Tf 7^OHD:D/QOf>OD/QFRVK+n/QfHD+nfVLQK+n/Qf@` f 1RWH WKDW (Tf FDQ EH UHGXFHG WR *DUWQHUnV H[SUHVVLRQ >@ ZKHQ +n !! /Q 7KH SK\VLFDO SDUDPHWHUV RI WKH LQ*D$V PDWHULDO DUH VXPPDUL]HG LQ 7DEOH 5HVSRQVH 6SHHG 7KH UHVSRQVH VSHHG RI $XS,QJA*DJA$VSnAOQ3 6FKRWWN\ EDUULHU SKRWRGLRGH LV GHWHUPLQHG E\ WKH WUDQVLW WLPH LQ WKH GHSOHWLRQ UHJLRQ WKH GLIIXVLRQ WLPH LQ WKH ,Q*D$V TXDVLQHXWUDO EDVH UHJLRQ DQG WKH 5&

PAGE 124

7DEOH 3+<6,&$/ 3$5$0(7(56 )25 ,Q!*D!$V (QHUJ\*DS ( H9 DW r 'LHOHFWULF &RQVWDQW fB R 0RELOLW\ 3K [O FP9VHF 3S [O FP9VHF 'LIIXVLRQ &RVWDQW 'Q FPVHF 'S FP VHF 'LIIXVLRQ /HQJWK /Q SP S,Q*D$Vf /S SP Q,Q*D$Vf (IIHFWLYH 0DVV PAr P4 PSMr L+T PSKr P QLSr ,QWULQVLF &DUULHU &RQFHQWUDWLRQ QL ; FP (IIHFWLYH 'HQVLW\ 1& [A FP ; FP RI 6WDWHV 19 (IIHFWLYH r $r $FP.a Q,Q*D$Vf 5LFKDUGVRQ &RQVWDQ $ $FPa.a S,Q*D$Vf

PAGE 125

WLPH FRQVWDQW UHTXLUHG WR GLVFKDUJH WKH MXQFWLRQ FDSDFLWDQFH WKURXJK D FRPELQDWLRQ RI LQWHUQDO DQG H[WHUQDO UHVLVWDQFHV 7KH EDQGZLGWK RI WKH ,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH FDQ EH HVWLPDWHG E\ WKH WRWDO ULVHWLPH WU JLYHQ E\ (T f 7KH 6/,&( VLPXODWLRQ RI D $XS,Q*D$VS,Q3 SKRWRGLRGH \LHOGV WKH G% FXWRII IUHTXHQF\ RI *+] 7KH UHVXOWLQJ G% FXWRII IUHTXHQF\ UHVSRQVH RI WKH ,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH LV VKRZQ LQ )LJ 7KH VKXQW UHVLVWDQFH 5Af LV JHQHUDOO\ YHU\ KLJK EXW LV LQFOXGHG WR DFFRXQW IRU WKH UHODWLYHO\ ORZ OHDNDJH UHVLVWDQFH RI WKH SKRWRGLRGH 7KH VHULHV UHVLVWDQFH 5Vf LV FRPSRVHG RI WKH OHDG UHVLVWDQFH WKH VSUHDGLQJ UHVLVWDQFH LQ WKH EDVH PDWHULDO DQG WKH VKHHW UHVLVWDQFH RI WKH WKLQ HSLOD\HU 7KH VKHHW UHVLVWDQFH WHUP LV WKH PRVW LPSRUWDQW 7KLV UHVLVWDQFH LV GLVWULEXWHG GHSHQGLQJ RQ WKH FRQWDFW JHRPHWU\ DQG LV IUHTXHQF\ GHSHQGHQW 'HYLFH )DEULFDWLRQ $ KLJKVSHHG $XS,QJ *D A\$VS,Q3 PHVD 6FKRWWN\ EDUULHU SKRWRGLRGH KDV EHHQ IDEULFDWHG XVLQJ D OLIWRII SKRWROLWKRJUDSK\ 7KH OLIWRII WHFKQLTXH SURYLGHV WKH OLQH UHVROXWLRQ DQG XQLIRUPLW\ QHHGHG IRU IDEULFDWLRQ RI WKH SURSRVHG GHYLFH 7KH SKRWRGLRGH VWUXFWXUH LV VKRZQ LQ )LJ 7KH S,QJ *D $6 HSLOD\HU ZDV JURZQ RQ S,Q3 VXEVWUDWH E\ OLTXLG SKDVH HSLWD[\ /3(f WHFKQLTXH 7KH WKLFNQHVV RI 3fLQ*D$V HSLOD\HU LV XP ZLWK D GRSDQW GHQVLW\ RI [A FP $ 5 JROG ILOP ZDV GHSRVLWHG RQ WKH S,Q *D$V HSLOD\HU ZLWK D GHSRVLWLRQ UDWH RI 6VHF DW D Q SUHVVXUH RI [ 7RUU IRU D WUDQVSDUHQW 6FKRWWN\ FRQWDFW DQG &U$X

PAGE 126

r/2* 9 ff 3 < 2& & ( ( & ( ( & ( & ( ( & ( ( & = ( & ( & ( 2& ( ( & (* ( & ( ( & ( f(& ( & 2424*4 &2 )LJXUH 7KH G% FXWRII IUHTXHQF\ RI WKH S *&(* 2*4(** ,UL*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH

PAGE 127

7UDQVSDUHQW 6FKRWWN\ %DUULHU &RQWDFW $Xf %RQGLQJ 3DG &U$Xf $EVRUSWLRQ /D\HU S ,Q3 6XEVWUDWH 2KPLF &RQWDFW 2KPLF &RQWDFW 0Q ƒf$X ƒf )LJXUH 6WUXFWXUH RI WKH S,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH

PAGE 128

f ZDV GHSRVLWHG IRU WKH ERQGLQJ SDG )RU RKPLF FRQWDFW WR S,Q3 0Q$X 5f ZDV GHSRVLWHG VHTXHQWLDOO\ DQG DOOR\HG DW r& IRU VHF LQ +1 bf IRUPLQJ JDV DPELHQW )RU PHVD HWFK +6++ f ZDV XVHG IRU WKH OQ *D $6 ZLWK DQ HWFK UDWH RI SPVHF DW 7 7KH GHVLJQ SDUDPHWHUV RI WKH SURSRVHG SKRWRGLRGH DUH VXPPDUL]HG LQ 7DEOH )RU GHYLFH FKDUDFWHUL]DWLRQ WKH SKRWRGLRGH LV PRXQWHG RQ D RKP PLFURVWULS WUDQVPLVVLRQ OLQH IDEULFDWHG RQ WKH &U$X PHWDOOL]HG DOXPLQD $A2Jf DQG FRQQHFWHG WR ELDV WHH WKURXJK D FRPPHUFLDO 2660 VXEPLQLDWXUH FRD[LDO FRQQHFWRU ([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ &XUUHQW9ROWDJH ,9f 0HDVXUHPHQW 7KH W\SLFDO FXUUHQWYROWDJH FKDUDFWHULVWLFV LQ )LJ VKRZ WKDW WKH EUHDNGRZQ YROWDJHV IRU RXU GHYLFHV DUH PRVWO\ DURXQG 9 7KH GDUN FXUUHQW ZDV PHDVXUHG E\ XVLQJ +3 % S$ PHWHU FRQWUROOHG E\ +3 % FRPSXWHU )LJXUH DQG )LJ VKRZ IRUZDUG DQG UHYHUVH FXUUHQWYROWDJH FKDUDFWHULVWLFV RI WKH $XS,Q *D $VSOQ3 6FKRWWN\ EDUULHU SKRWRGLRGH UHVSHFWLYHO\ 7KH GDUN FXUUHQW GHQVLW\ LV ;f $FPA DW 95 9 &DSDFLWDQFH9ROWDJH &9f 0HDVXUHPHQW 7KH MXQFWLRQ FDSDFLWDQFH RI WKH SKRWRGLRGH ZDV PHDVXUHG E\ XVLQJ +3 $ &0HWHU&9 3ORWWHU 7KH UHVXOW VKRZV WKDW WKH WRWDO FDSDFLWDQFH LV &M S) DW 95 9 IRU WKH $XS,Q *D \$VS,Q3 6FKRWWN\ GLRGH ZLWK WKH FRQWDFW DUHD RI

PAGE 129

7DEOH '(6,*1 3$5$0(7(56 2) S,Q*D$V 6&+277.< 3+272',2'( 'HYLFH 6WUXFWXUH SOQ*D$VSQ3 6FKRWWN\ &RQWDFW $X ƒf %RQGLQJ 3DG &U$X ƒf (SLWD[LDO /D\HU 3fOQAD$V LP [ *URZWK 7HFKQLTXH /3( 6XEVWUDWH =Q GRSHG SLQ3 [ FP 2KPLF &RQWDFW 0Q$X $f $OOR\ r& IRU VHF

PAGE 130

)LJXUH 7\SLFDO FXUUHQWYROWDJH FKDUDFWHULVWLFV IRU $XS,Q4 *D4 $VS,Q3 6FKRWWN\ EDUULHU SKRWRGLRGHV

PAGE 131

)25:$5'%,$6(' '$5. &855(17 $f )LJXUH )RUZDUGELDVHG GDUN FXUUHQW RI WKH S,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH

PAGE 132

5(9(56( %,$6(' '$5. &855(17 O'$f

PAGE 133

f§ [ FP 7KH 6FKRWWN\ EDUULHU KHLJKW ZDV IRXQGHG WR EH H9 IURP WKH SORW RI &Af YV 95 VKRZQ LQ )LJ $& $GPLWWDQFH 0HDVXUHPHQW )URP WKH SORW RI ,P^\:f` YV 5H^<:f` WKH VHULHV UHVLVWDQFH RI WKH SKRWRGLRGH FDQ EH GHWHUPLQHG ,Q WKH ORZ IUHTXHQF\ OLPLW Z!f 5H^
PAGE 134

,19(56( 648$5( 2) -81&7,21 &$3$&,7$1&( &f ; 5(9(56(%,$6(' 92/7$*( 959f )LJXUH 0HWKRG RI GHWHUPLQLQJ WKH EDUULHU KHLJKW RI WKH S,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH IURP WKH FDSDFLWDQFH YV YROWDJH PHDVXUHPHQW

PAGE 135

6863(37$1&( 0KRf &21'8&7$1&( 0KRf )LJXUH )UHTXHQF\GHSHQGHQW DF DGPLWWDQFH RI WKH S,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH

PAGE 136

SRZHU PHWHU UHVSRQGV RQO\ WR WKDW UDGLDWLRQ ZKLFK LV LQWHUUXSWHG E\ WKH FKRSSHU DQG KHQFH WKH HIIHFWV RI EDFNJURXQG VLJQDOV DQG DPELHQW WHPSHUDWXUH YDULDWLRQV FDQ EH HOLPLQDWHG 7KH VFKHPDWLF GLDJUDP IRU WKH VSHFWUDO UHVSRQVH PHDVXUHPHQW LV VKRZQ LQ )LJ 7KH RSWLFDO SRZHU ZDV QRUPDOL]HG E\ WKH DUHD RI WKH OLJKW VSRWnWR REWDLQ WKH HTXLYDOHQW RSWLFDO SRZHU IRFXVHG RQ WKH DFWLYH DUHD RI WKH SKRWRGLRGH 7KH UHVSRQVLYLW\ LV GHWHUPLQHG E\ WKH DYHUDJH SKWRFXUUHQW GLYLGHG E\ WKH DYHUDJH LQFLGHQW RSWLFDO SRZHU :LWKRXW DQWLn UHIOHFWLRQ FRDWLQJ WKH SKRWRGLRGH KDV D UHVSRQVLYLW\ RI $: DQG D TXDQWXP HIILFLHQF\ RI b DW SP 7KH TXDQWXP HIILFLHQF\ DQG WKH UHVSRQVLYLW\ IRU $XS,Q*D$VS,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH DUH VKRZQ LQ )LJ DQG )LJ UHVSHFWLYHO\ 5HVSRQVH 6SHHG 0HDVXUHPHQW 7KH UHVSRQVH VSHHG ZDV GLUHFWO\ PHDVXUHG E\ LPSXOVH UHVSRQVH WHFKQLTXH XVLQJ D VDPSOLQJ VFRSH LQ WLPH GRPDLQ 7KLV PHWKRG UHTXLUHV A WKH RSWLFDO VRXUFH JHQHUDWLQJ XOWUDVKRUW SXOVHV SUHIHUUDEO\ VKRUWHU WKDQ WKH LPSXOVH UHVSRQVH RI WKH SKRWRGLRGH 7KH LPSXOVH UHVSRQVH RI D SKRWRGLRGH WR D ODVHU SXOVH RI SV ):+0 ZLWK D .+]SXOVH UHSHWLWLRQ UDWH DW D ZDYHOHQJWK RI QP ZDV PHDVXUHG E\ D 7HNWURQL[ VDPSOLQJ VFRSH 6 VDPSOLQJ XQLW ZLWK DQ 6 VDPSOLQJ KHDGf RI ULVHWLPH RI SV 7KH VFKHPDWLF GLDJUDP IRU WKH UHVSRQVH VSHHG PHDVXUHPHQW DQG WKH LPSXOVH UHVSRQVH DUH VKRZQ LQ )LJ DQG )LJ UHVSHFWLYHO\ 7KH VDPSOLQJ VFRSH LQWURGXFHV DQ LQVWUXPHQWDO SXOVH EURDGHQLQJ 'HWDLOHG PHDVXUHPHQW V\VWHP LV VKRZQ LQ )LJ

PAGE 137

)LJXUH 6FKHPDWLF GLDJUDP IRU WKH VSHFWUDO UHVSRQVH PHDVXUHPHQW

PAGE 138

)LJXUH 4XDQWXP HIILFLHQF\ RI WKH S,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH

PAGE 139

5(63216,9,7< 5 $:f )LJXUH 5HVSRQVLYLW\ RI WKH S,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH

PAGE 140

%LDV 95 / 3LFRVHFRQG 3XOVH /DE 0RGHO $ %LDV 7HH 7HNWURQL[ 6DPSOLQJ 6FRSH SV 5LVHWLPH SV ):+0f ? 'HYLFH 8QGHU 7HVW 3KRWRGHWHFWRUf 3XOVH /DVHU ZLWK SV SV Z ULVHWLPHf SXOVH DQG .+] SXOVH UHSHWLWLRQ UDWH DW D ZDYHOHQJWK RI QP )LJXUH 6FKHPDWLF GLDJUDP IRU WKH UHVSRQVH VSHHG PHDVXUHPHQW@

PAGE 141

)LJXUH ,PSXOVH UHVSRQVH RI WKH S,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH WR SV ODVHU SXOVH ZLWK .+] UHSHWLWLRQ UDWH DW D ZDYHOHQJWK RI QP

PAGE 142

7KH UHVSRQVH LV PDLQO\ OLPLWHG E\ WKH ILQLWH ZLGWK RI WKH ODVHU SXOVH DQG WKH ULVH WLPH RI WKH VDPSOLQJ VFRSH 7KH LPSXOVH UHVSRQVH IRU WKH $XS,QJ *D$VS,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH LV WKXV JLYHQ E\ WKH ULVH WLPH RI SV DQG ):+0 RI SV 7KLV ORQJ WDLO PLJKW EH GXH WR f D WLPH GHOD\ UHVXOWLQJ IURP WKH FDUULHU GLIIXVLRQ LQ WKH XQGHSOHWHG HSLOD\HU f D ORQJ SXOVH LH SVf RI ODVHU DV DQ RSWLFDO VRXUFH f WKH XVH RI D SXOVH ODVHU ZLWK D ZDYHOHQJWK RI SP LQVWHDG RI SP DQG f WKH XQGHVLUHG SDFNDJH SDUDVLWLFV VXFK DV ODUJH OHDG LQGXFWDQFH GXH WR D ERQGLQJ ZLUH DQG SDUDVLWLF FDSDFLWDQFH +RZHYHU WKH PHDVXUHG 5& WLPH FRQVWDQW IRU D SKRWRGLRGH LV SV ZKLFK FRUUHVSRQGV WR WKH FXWRII IUHTXHQF\ RI *+] 7KHUHIRUH WKH LPSXOVH UHVSRQVH PHDVXUHPHQW ZLWK D VKRUWHUSXOVH ODVHU DQG IXUWKHU LPSURYHPHQW LQ WKH SDFNDJH RI WKH SKRWRGHWHFWRU DUH QHFHVVDU\ WR REWDLQ D WUXH UHVSRQVH VSHHG IRU RXU SKRWRGLRGHV 7KH H[SHULPHQWDO UHVXOWV LRI WKH SKRWRGHWHFWRUV DUH VXPPDUL]HG LQ 7DEOH 6XPPDU\ DQG &RQFOXVLRQV $ QHZ KLJKVSHHG ORQJ ZDYHOHQJWK $XSOQ *D A\$VS,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH KDV EHHQ IDEULFDWHG DQG FKDUDFWHUL]HG LQ WKLV VWXG\ 7KH SKRWRGLRGH KDV D UHSRQVLYLW\ RI $: DW SP DQG D ULVHWLPH RI SV 7KH PHDVXUHG 5& WLPH FRQVWDQW RI WKH SKRWRGLRGH LV IRXQG WR EH SV 7KH UHVXOWV VKRZ WKDW WKH LQWULQVLF UHVSRQVH VSHHG IRU RXU SKRWRGHWHFWRUV ZLWK DQ DFWLYH DUHD RI ]U S [ FP ZDV HVWLPDWHG WR EH *+] EDVHG RQ WKH PHDVXUHG 5& WLPH FRQVWDQW & S) DQG 5J RKPf

PAGE 143

7DEOH (;3(5,0(17$/ 5(68/76 2) S,Q*D$V 6&+277.< 3+272',2'(6 'HYLFH 6WUXFWXUH SOQ*D$VSOQ3 'LDPHWHU _LPf 3KRWRGLRGH $UHD FPf [ r (SLOD\HU 'RSLQJ FPf 7KLFNQHVV MLPf [ _LP 'DUN &XUUHQW 'HQVLW\ $FPf DW 95 9f [ r &DSDFLWDQFH S)f 95 9f 6HULHV 5HVLVWDQFH 4f 4XDQWXP (IILFLHQF\ bf DW 5HVSRQVLYLW\ $:f DW ?[P %DQGZLGWK *+]f 5LVHWLPH SVf

PAGE 144

&+$37(5 6,; '(9(/230(17 2) $ +,*+63((' $XSQ,Q *D \$VQ,Q3 6&+277.< %$55,(5 3+272',2'( )25 ,1)5$5(' 3+272'(7(&7,21 ,QWURGXFWLRQ 7KH KLJK ELWUDWH ILEHU RSWLF V\VWHPV IRU ORQJ GLVWDQFH OLJKWZDYH FRPPXQLFDWLRQ UHTXLUH WKH GHYHORSPHQW RI KLJKVSHHG KLJK VHQVLWLYLW\ DQG ORZ QRLVH SKRWRGHWHFWRUV RSHUDWLQJ LQ WKH LQIUDUHG UHJLPH HVSHFLDOO\ FORVH WR WKH GLVSHUVLRQ PLQLPXP RI WKH RSWLFDO ILEHUV 5HFHQWO\ ZH KDYH UHSRUWHG WKH $XS,Q *D \$VSOQ3 6FKRWWN\ EDUULHU SKRWRGLRGH >@ ZKLFK LV FDSDEOH RI GHPRGXODWLQJ WKH PRGXODWHG RSWLFDO VLJQDOV DW SP 8QIRUWXQDWHO\ 6FKRWWN\ EDUULHU FRQWDFWV RQ Q,Q *D $6 \LHOG YHU\ ORZ EDUULHU KHLJKW JQ H9f ZKLFK PDNHV 6FKRWWN\ FRQWDFWV WRR OHDN\ WR EH XVHIXO IRU SKRWRGHWHFWRU DSSOLFDWLRQV ,Q WKLV FKDSWHU ZH KDYH GHYHORSHG D QRYHO $XSQ,Q*D$VQ,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH RSHUDWLQJ LQ WKH SP LQIUDUHG UHJLPH 7KH SURSRVHG PHWDOSQ,Q *D \$VQOQ3 6FKRWWN\ EDUULHU SKRWRGLRGH VWUXFWXUH UHTXLUHV WKH GHSRVLWLRQ RI D YHU\ WKLQ VXUIDFH OD\HU RI S,Q *D $V RQ WKH 0%(JURZQ QOQ *D $6 HSLOD\HU LQ RUGHU WR HQKDQFH WKH HIIHFWLYH EDUULHU KHLJKW 7KH VLJQLILFDQFH RI WKLV QHZ VWUXFWXUH OLHV LQ LWV DELOLW\ WR LQFUHDVH WKH HIIHFWLYH EDUULHU KHLJKW DQG KHQFH WR RYHUFRPH WKH SUREOHP RI ODUJH

PAGE 145

GDUN FXUUHQW HQFRXQWHUHG LQ VXFK D SKRWRGHWHFWRU 7KLV DSSURDFK IRU EDUULHU KHLJKW HQKDQFHPHQW KDV EHHQ GHPRQVWUDWHG SUHYLRXVO\ LQ *D$V >@ DQG ,Q*D$V 6FKRWWN\ GLRGHV >@ DQG LV XVHG LQ RXU $X,QJ *D A\$V,Q3 SKRWRGHWHFWRU DSSOLFDWLRQV 7KHRUHWLFDO $QDO\VLV )RU D PHWDOSQ ,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH WKHUH H[LVWV WKH UHJLRQ EHWZHHQ [ DQG [ [P ZKHUH D UHWDUGLQJ ILHOG WHQGV WR RSSRVH WKH FROOHFWLRQ RI WKH SKRWRJHQHUDWHG FDUULHUV )RU VLPSOLFLW\ WKLV UHJLRQ LV DVVXPHG DV D GHDG OD\HU IRU SKRWRJHQHUDWHG FDUULHUV 4XDQWXP (IILFLHQF\ 7KH WZR PDLQ FRPSRQHQWV RI WKH SKRWRFXUUHQW FRPH IURP WKH GHSOHWLRQ UHJLRQ DQG WKH DFWLYH UHJLRQ 7KH SKRWRJHQHUDWHG H[FHVV FDUULHUV LQ WKH GHSOHWLRQ UHJLRQ DUH VZHSW RXW E\ WKH EXLOWLQ HOHFWULF ILHOG UHVXOWLQJ LQ D SKRWRFXUUHQW IRU DQ LQFLGHQW PRQRFKURPDWLF OLJKW -G TO5fp>H[SD;PfH[SD:f@ f ZKHUH D LV WKH DEVRUSWLRQ FRHIILFLHQW LV WKH LQFLGHQW SKRWRQ IOX[ GHQVLW\ 5 LV UHIOHFWLRQ FRHIILFLHQW LQ WKH PHWDO ILOP DQG : :S :Q ;Pf LV GHSOHWLRQ UHJLRQ ZLGWK UHVSHFWLYHO\ :S LV WKH WKLFNQHVV RI S UHJLRQ LQ ZKLFK LV IXOO\ GHSOHWHG DW WKHUPDO HTXLOLEULXP DQG :Q LV WKH GHSOHWLRQ OD\HU ZLGWK LQ WKH Q UHJLRQ 1RWH WKDW WKH UHIOHFWLRQ ORVV RI WKH LQFLGHQW SKRWRQV IURP PHWDO VXUIDFH LV DFFRXQWHG IRU E\ WKH UHIOHFWLRQ FRHIILFLHQW 5

PAGE 146

7KH SKRWRFXUUHQW GXH WR KROHV FROOHFWHG IURP WKH QW\SH EDVH UHJLRQ LV JLYHQ E\ -S >TD5f/SD/SOf@HfD:>D/S ^FRVK+n/Sf HfD+n`VLQK+n/Sf@ f ZKHUH + +n :f LV WKH HSLOD\HU WKLFNQHVV DQG : LV WKH GHSOHWLRQ OD\HU ZLGWK 7KH WRWDO SKRWRFXUUHQW GHQVLW\ LV REWDLQHG IURP (T f DQG (T f ZKLFK LV JLYHQ E\ -SK TF%O5f >HD[P HaD:@ >TDF%5/SD/SOf@ HfD:>D/S ^FRVK+n/Sf HfD+n`VLQK+n/Sf@ f 7KH TXDQWXP HIILFLHQF\ RI D 6FKRWWN\ EDUULHU SKRWRGLRGH LV JLYHQ E\ O5f>HD[P HfD:D/ Of ‘ ^OD/SFRVK+n/Sf HaD+fVLQK+n/Sf`@ f (T f ZLOO EH UHGXFHG WR *DUWQHUnV H[SUHVVLRQ >@ LI WKH GHYLFH WKLFNQHVV LV PXFK JUHDWHU WKDQ WKH GLIIXVLRQ OHQJWK LH +n}/S O5f>HD[P HD:D/S f@ f 7KH TXDQWXP HIILFLHQF\ IRU $XSQ,Q*D$VQ,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH LV VKRZQ LQ )LJ 7KH PLQLPXP UHIOHFWLRQ ORVV ZLWK D TXDUWHU ZDYHOHQJWK DQWLUHIOHFWLRQ $5f FRDWLQJ OD\HU DW SP IRU Q4 DLUf QA 6Lf DQG Q LQ*D$Vf

PAGE 147

48$1781 ()),&,(1&< )LJXUH 7KHRUHWLFDO TXDQWXP HIILFLHQF\ RI SQ,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH DV D SDUDPHWHU RI WKH WKLFNQHVV RI S,Q*D$V VXUIDFH OD\HU

PAGE 148

5HVSRQVH 6SHHG $VVXPLQJ WKDW WKH WUDQVLW WLPH DQG WKH GLIIXVLRQ WLPH FDQ EH JUHDWO\ UHGXFHG E\ RSWLPL]LQJ WKH GHYLFH FRQILJXUDWLRQ WKH UHVSRQVH VSHHG LV PDLQO\ GHWHUPLQHG E\ MXQFWLRQ FDSDFLWDQFH VHULHV UHVLVWDQFH DQG ORDG UHVLVWDQFH 7KH 6/,&( VLPXODWLRQ RI WKH SKRWRGLRGH HTXLYDOHQW FLUFXLW PRGHO \LHOGV WKH IUHTXHQF\ UHVSRQVH IRU WKH ,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH 7KH G% IUHTXHQF\ RI WKH SURSRVHG SKRWRGLRGHV LV IRXQG WR EH DW *+] IRU D $XSQ,Q*D$VQ,Q3 VWUXFWXUH LQ )LJ 7KXV WKH SURSRVHG ,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGHV DUH FDSDEOH RI GHWHFWLQJ WKH RSWLFDO VLJQDOV XS WR DURXQG *+] UDQJH 'HYLFH )DEULFDWLRQ $ KLJKVSHHG $XSQ,Q!*D!\$VQ,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH KDV EHHQ IDEULFDWHG XVLQJ D OLIWRII SKRWROLWKRJUDSK\ SURFHVV 7KH VWUXFWXUH RI WKH SURSRVHG ,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH LV VKRZQ LQ )LJ 7KH GHWDLOHG IDEULFDWLRQ SURFHGXUHV RI WKH SURSRVHG SKRWRGLRGH DUH JLYHQ LQ 7DEOH 7KH SQ,Q*D$V HSLWD[LDO OD\HUV ZHUH JURZQ RQ Q,Q3 VXEVWUDWHV E\ 0%( 7KH WKLFNQHVV RI WKH S,Q *D $6 HSLOD\HU LV SP ZLWK D FRUUHVSRQGLQJ GRSDQW GHQVLW\ RI [OA [O FPfA DQG WKH WKLFNQHVV RI Q,QA*D $6 HSLOD\HU LV SP ZLWK D GRSDQW GHQVLW\ RI [A FP $ JROG ILOP ZDV GHSRVLWHG RQ WKH SOQ *D $6 OD\HU DW D GHSRVLW UDWH RI VHF DQG DW D SUHVVXUH RI [Oa 7RUU IRU D WUDQVSDUHQW 6FKRWWN\ FRQWDFW DQG &U$X f ZDV GHSRVLWHG IRU

PAGE 149

r/*&9ff3 < 222&2 (&2 4&(& Q A Q m Q } fmB & n YM 9 9 &(& 4 fI ‘" W L I ? (&& f f ‘ D f f f f ‘ f f f f f D f D f D D D D D ‘ D f f f f f f D ‘ D f f )LJXUH 7KH G% FXWRII IUHTXHQF\ RI WKH S Q,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH

PAGE 150

7UDQVSDUHQW 6FKRWWN\ %DUULHU &RQWDFW $Xf QOQ3 %RQGLQJ 3DG &U$Xf 6XUIDFH /D\HU $EVRUSWLRQ /D\HU 6XEVWUDWH f2KPLF &RQWDFW $X*H bf 2KPLF &RQWDFW )LJXUH 6WUXFWXUH RI WKH SQ,Q4 *D4 "$V 6FKRWWN\ EDUULHU SKRWRGLRGH

PAGE 151

7DEOH )$%5,&$7,21 352&('85(6 2) SQ,Q*D$V 6&+277.< 3+272',2'( 67(3 352*5(66 '(7$,/(' '(6&5,37,21 &OHDQ DQG GHJUHDVH r 7&( IRU PLQ ZLWK XOWUDVRQLF DJLWDWLRQ ZDIHU r $&(721( IRU PLQ ZLWK XOWUDVRQLF DJLWDWLRQ r 0(7+$12/ IRU PLQ ZLWK XOWUDVRQLF DJLWDWLRQ r 'HSRVLW $X*H bf PHWDO DOOR\ IRU FRQWDFW WR QOQ3 VXEVWUDWH DW D GHSRVLW UDWH RI $VHF DQG D SUHVVXUH RI [ 2n 7RUU r 'HSRVLW $X=Q bf PHWDO DOOR\ RU 0Q$X VHTXHQWLDOO\ ƒ $f IRU RKPLF FRQWDFW WR SOQ3 VXEVWUDWH DW D UDWH RI $VHF DQG D SUHVVXUH RI [ 2n 7RUU r $OOR\ $X*H RKPLF FRQWDFW DW f& IRU VHF DQG 0Q$X RKPLF FRQWDFW DW f& IRU VHF 0HWDOOL]DWLRQ IRU 2KPLF &RQWDFW RQ 6XEVWUDWH S LQ*D$V Q,Q*D$V Q ,Q3 7===== 'HSRVLW SKRWRUHVLVW SKRWRUHVLVW S ,Q*D$V Q,Q*D$V Q ,Q3 \ r 3UHEDNH DW r& IRU PLQ FRRO GRZQ PLQ r 6SLQ RQ SRVLWLYH 35 DW USP IRU VHF 6KLSOH\ $= SRVLWLYH 35f r 6RIWEDNH DW f& IRU PLQ DOLJQ DQG H[SRVH IRU VHF IRU SRVLWLYH 35 r 'HYHORS ZLWK 6KLSOH\ GHYHORSHU IRU SRVLWLYH 35 0)', :DWHU f 2SHQ :LQGRZ IRU 6FKRWWN\ %DUULHU &RQWDFW SU O 35 S ,Q*D$V Q,Q*D$V Q ,Q3 ?\\U$ 'HYHORS ZLWK 6KLSOH\ GHYHORSHU IRU SRVLWLYH 35 0) ', :DWHU f WKHQ SDWWHUQ VXFK WKDW WKH DUHDV LQ ZKLFK PHWDO LV GHVLUHG DUH QRW FRYHUHG ZLWK SKRWRUHVLVW 0HWDOOL]DWLRQ H]]]]Y (-%/ A\\\\\; Q ‘ ,QAR$H Sr ,Q*D$V Q,Q*D$V Q ,Q3 ?\\\\\\\\\\\\ &OHDQ ZDIHU ZLWK 7&( $FHWRQH 0HWKDQRO XQGHU XOWUDVRQLF DJLWDWLRQ ULQVH ZLWK ', :DWHU DQG HWFK MXVW SULRU WR PHWDOOL]DWLRQ 'HSRVLW PHWDO ZLWK (EHDP HYDSRUDWLRQ DW D SUHVVXUH RI OHVV WKDQ ,II 7RUU

PAGE 152

/LIW2II r /LIWRII WKH XQZDQWHG PHWDO ZLWK SKRWRUHVLVW KDYLQJ WKH PHWDO FRQWDFW LQ WKH GHVLUHG DUHD QRW DWWDFN WKH PHWDO ILOP ZLWK XOWUDVRQLF DJLWDWLRQ 7KHQ WKH XQZDQWHG PHWDO FRPHV RII ZLWK WKH SKRWRUHVLVW KDYLQJ WKH PHWDO FRQWDFW LQ WKH GHVLUHG DUHD 'HSRVLW SKRWRUHVLVW U SU -<=D Sm ,Q*D$V Q,Q*D$V Q ,Q3 f========P r 3UHEDNH DW f& IRU PLQ FRRO GRZQ PLQ r 6SLQ RQ SRVLWLYH 35 DW USP IRU VHF 6KLSOH\ $= SRVLWLYH 35f r 6RIWEDNH DW r& IRU PLQ DOLJQ DQG H[SRVH IRU VHF IRU SRVLWLYH 35 r 'HYHORS ZLWK 6KLSOH\ GHYHORSHU IRU SRVLWLYH 35 0) ', :DWHU f 2SHQ :LQGRZ IRU %RQGSDG 35 35 nN 35 3r ,Q*D$V Q,Q*D$V Q ,Q3 'HYHORS ZLWK 6KLSOH\ GHYHORSHU IRU SRVLWLYH 35 0) ', :DWHU f WKHQ SDWWHUQ VXFK WKDW WKH DUHDV LQ ZKLFK PHWDO LV GHVLUHG DUH QRW FRYHUHG ZLWK SKRWRUHVLVW

PAGE 153

0HWDOOL]DWLRQ A" 35 S ,Q*D$V Q,Q*D$V Q ,Q3 ?D &OHDQ ZDIHU ZLWK 7&( $FHWRQ 0HWKDQRO XQGHU XOWUDVRQLF DJLWDWLRQ ULQVH ZLWK ', ZDWHU DQG HWFK MXVW SULRU WR PHWDOOL]DWLRQ 'HSRVLW PHWDO ZLWK (EHDP HYDSRUDWLRQ DW D SUHVVXUH RI OHVV WKDQ f7RUU /LIW2II r /LIWRII WKH XQZDQWHG PHWDO ZLWK SKRWRUHVLVW KDYLQJ WKH PHWDO FRQWDFW LQ WKH GHVLUHG DUHD DWWDFN WKH PHWDO ILOP ZLWK XOWUDVRQLF DJLWDWLRQ 7KHQ WKH XQZDQWHG PHWDO FRPHV RII ZLWK WKH SKRWRUHVLVW KDYLQJ WKH PHWDO FRQWDFW LQ WKH GHVLUHG DUHD 0HVD (WFK r +6+A ZLWK D HWFK UDWH RI `LP VHF DW 7 f.

PAGE 154

WKH ERQGLQJ SDG 7KH &U SURYLGHV FRQWDFW DGKHVLRQ WR WKH VHPLFRQGXFWRU DQG $X UHGXFHV WKH FRQWDFW UHVLVWDQFH DV ZHOO DV SURYLGLQJ FRQWDFW DUHD IRU ERQGLQJ RU SURELQJ -XVW SULRU WR HYDSRUDWLRQ D ZHW FKHPLFDO HWFKLQJ ZDV SHUIRUPHG WR UHPRYH QDWLYH R[LGH IURP VXUIDFH RI WKH FRQWDFW DUHD :DIHUV £UH GLSSHG LQ EXIIHUHG +) +)UOA2 f RU HWFKLQJ VROXWLRQ 1+2+++ f )RU RKPLF FRQWDFW RQ Q,Q3 $X*H bf DOOR\ 5f ZDV GHSRVLWHG DQG DOOR\HG DW r& IRU VHF LQ +B1 bf IRUPLQJ JDV )RU PHVD HWFK +6A++ f ZDV XVHG IRU WKH OQ $V H3LOD@ 7DEOH VXPPDUL]HV WKH GHVLJQ SDUDPHWHUV RI WKH SKRWRGLRGH ([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ &XUUHQW9ROWDJH ,9f 0HDVXUHPHQW 7KH FXUUHQWYROWDJH ,9f FKDUDFWHULVWLFV VKRZ WKDW WKH EUHDNGRZQ YROWDJHV IRU RXU GHYLFHV DUH PRVWO\ DURXQG 9 7KH GDUN FXUUHQW ZDV PHDVXUHG E\ XVLQJ +3 % S$ PHWHU FRQWUROOHG E\ +3 % FRPSXWHU 7KH FXUUHQWYROWDJH FKDUDFWHULVWLFV RI WKH $XSQ,Q A*DJ A$VQ ,Q3 6FKRWWN\ GLRGH ZLWK D S,Q*D$V OD\HU RI WKLFN VKRZ D ODUJH UHYHUVH OHDNDJH FXUUHQW +RZHYHU WKH OHDNDJH FXUUHQW LV JUHDWO\ UHGXFHG LQ D 6FKRWWN\ GLRGH ZLWK D S,Q*D$V OD\HU RI 5 DV ZDV VKRZQ LQ )LJ 7KH UHVXOWV VKRZ WKDW WKH UHYHUVH OHDNDJH FXUUHQW

PAGE 155

7DEOH '(6,*1 3$5$0(7(56 2) SQ,Q*D$V 6&+277.< 3+272',2'( 'HYLFH 6WUXFWXUH SQOQ*D$VQOQ3 6FKRWWN\ &RQWDFW $X ƒf %RQGLQJ 3DG &U$X ƒf SOQ*D$V 6XUIDFH /D\HU SP [ [ FPn (SLWD[LDO /D\HU Q,QR*DR$V LP [ *URZWK 7HFKQLTXH 0%( 6XEVWUDWH 6Q GRSHG QOQ3 [ FPn 2KPLF &RQWDFW $X*H bf ƒ $OOR\ r& IRU VHF

PAGE 156

GHSHQGV VWURQJO\ RQ WKH WKLFNQHVV RI WKH S,Q*D$V VXUIDFH OD\HU 7KH OHDNDJH FXUUHQW GHQVLW\ LV JLYHQ E\ [O $FP DW 95 9 &DSDFLWDQFH9ROWDJH &9f 0HDVXUHPHQW 7KH MXQFWLRQ FDSDFLWDQFH RI WKH SKRWRGLRGH ZDV PHDVXUHG DFFXUDWHO\ E\ XVLQJ +3 $ &0HWHU&9 3ORWWHU 7KH UHVXOW VKRZV WKDW WKH WRWDO FDSDFLWDQFH LV &M S) DW 95 9 IRU WKH $XSQ,Q *D \$VQ,Q3 6FKRWWN\ GLRGH ZLWK WKH FRQWDFW DUHD RI [f FP 7KLV VKRZV WKDW RXU SKRWRGLRGHV ZHUH ZHOO GHVLJQHG IRU KLJK VSHHG RSHUDWLRQ $& $GPLWWDQFH 0HDVXUHPHQW %\ PHDVXULQJ WKH IUHTXHQF\ GHSHQGHQW FRQGXFWDQFH DQG VXVFHSWDQFH FRPSRQHQW RI D 6FKRWWN\ EDUULHU GLRGH LQ WKH IUHTXHQF\ UDQJH RI WR 0+] XVLQJ D +3 $ 5) LPSHGDQFH DQDO\]HU WKH VHULHV UHVLVWDQFH DQG VKXQW UHVLVWDQFH RI WKH GLRGH FDQ EH GHWHUPLQHG 7KLV DOORZV DFFXUDWH GHWHUPLQDWLRQ RI 5J DQG 5S RYHU D ZLGH UDQJH RI IUHTXHQF\ )URP WKH SORW RI ,P^<:f` YV 5H^<:f` LQ )LJ WKH VHULHV M UHVLVWDQFH ZDV IRXQG WR EH RKP IRU WKH $XS Q,Q *D $6 6FKRWWN\ EDUULHU SKRWRGLRGH 6SHFWUDO 5HVSRQVH 0HDVXUHPHQW 7KH VSHFWUDO UHVSRQVH ZDV PHDVXUHG E\ XVLQJ D -DUUHOO$VK TXDUWHUPHWHU 0RQRFKURPDWRU 7KH LQSXW RSWLFDO SRZHU ZDV PHDVXUHG E\ XVLQJ D /DVHU 3UHFLVLRQ 5/ SRZHU PHWHU ZLWK &7; &KRSSHU DQG 5.3 GHWHFWRU SUREH 7KH SRZHU PHWHU UHVSRQGV RQO\ WR WKDW

PAGE 157

686&(37$1&( 0KRf )LJXUH )UHTXHQF\GHSHQGHQW DF DGPLWWDQFH RI WKH SQ,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH

PAGE 158

UDGLDWLRQ ZKLFK LV LQWHUUXSWHG E\ WKH FKRSSHU 7KHUHIRUH WKH HIIHFWV RI EDFNJURXQG VLJQDOV DQG DPELHQW WHPSHUDWXUH YDULDWLRQV FDQ EH HOLPLQDWHG 7KH UHVSRQVLYLW\ RI WKH SKRWRGHWHFWRU LV GHWHUPLQHG E\ WKH DYHUDJH SKWRFXUUHQW GLYLGHG E\ WKH DYHUDJH LQFLGHQW RSWLFDO SRZHU :LWKRXW DQWLUHIOHFWLRQ FRDWLQJ UHVSRQVLYLW\ LV DW D ZDYHOHQJWK RI SP IRU WKH $XSQ,Q*D$VQ,Q3 6FKRWWN\ SKRWRGLRGH 5HVSRQVH 6SHHG 0HDVXUHPHQW 7KH UHVSRQVH VSHHG ZDV GLUHFWO\ PHDVXUHG E\ LPSXOVH UHVSRQVH WHFKQLTXH XVLQJ D VDPSOLQJ VFRSH LQ WLPH GRPDLQ 7KH LPSXOVH UHVSRQVH RI D SKRWRGLRGH WR D ODVHU SXOVH RI SV ):+0 SV ULVHWLPHf ZLWK D .+]SXOVH UHSHWLWLRQ UDWH DW D ZDYHOHQJWK RI QP ZDV PHDVXUHG E\ D 7HNWURQL[ VDPSOLQJ VFRSH 7KH VDPSOLQJ VFRSH LQWURGXFHV FRQVLGHUDEOH LQVWUXPHQWDO EURDGHQLQJ WR SURGXFH D SXOVH RI D ULVHWLPH RI SV SV ):+0f 7KH UHVSRQVH LV PDLQO\ OLPLWHG E\ WKH ILQLWH ZLGWK RI WKH ODVHU SXOVH DQG WKH ULVH WLPH RI WKH VDPSOLQJ VFRSH 7KH UHVXOW VKRZV WKDW RXU SKRWRGHWHFWRU KDV D ULVHWLPH RI SV DQG QV ):+0 DV LV VKRZQ LQ )LJ 7KH PHDVXUHG 5& WLPH FRQVWDQW LV DURXQG SV 7KHUHIRUH IXUWKHU LPSURYHPHQW LQ WKH SDFNDJLQJ RI WKH GHWHFWRU LV QHHGHG LQ RUGHU WR REWDLQ D WUXH UHVSRQVH VSHHG 6XPPDU\ DQG &RQFOXVLRQV :H UHSRUW D QRYHO $XSQ,Q*D$VQ,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH FDSDEOH RI GHWHFWLQJ WKH PRGXODWLQJ RSWLFDO VLJQDOV DW SP LQIUDUHG UHJLPH 7KH UHVXOWV VKRZ WKDW WKH LQWULQVLF UHVSRQVH VSHHG IRU RXU SKRWRGLRGHV ZLWK DQ DFWLYH DUHD RI [fA FPA

PAGE 159

)LJXUH ,PSXOVH UHVSRQVH RI WKH S Q,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH WR SV ODVHU SXOVH ZLWK .+] UHSHWLWLRQ UDWH DW D ZDYHOHQJWK RI QP

PAGE 160

LV HVWLPDWHG WR EH *+] IRU D $XSQ,UL $VQ,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH EDVHG RQ WKH 5& WLPH FDOFXODWHG IURP WKH PHDVXUHG YDOXHV RI WKH WRWDO FDSDFLWDQFH S)f DQG VHULHV UHVLVWDQFH RKPf 7KH WUXH UHVSRQVH VSHHG FDQ EH IXUWKHU LPSURYHG E\ UHGXFLQJ WKH VWUD\ FDSDFLWDQFH WKURXJK LPSURYLQJ RXU SDFNJLQJ WHFKQLTXH 7DEOH VXPPDUL]HV WKH H[SHULPHQWDO UHVXOWV RI WKH $XSQ,Q*D$VQ,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH

PAGE 161

7DEOH (;3(5,0(17$/ 5(68/76 2) SQ,Q*D$V 6&+277.< 3+272',2'(6 'HYLFH 6WUXFWXUH S QQ*D$VQOQ3 'LDPHWHU MLPf 3KRWRGLRGH $UHD FPf [ n (SLOD\HU 'RSLQJ FPnf 7KLFNQHVV SPf [ _LP 'DUN &XUUHQW 'HQVLW\ $FPf DW 9f [ f &DSDFLWDQFH S)f 95 9f 6HULHV 5HVLVWDQFH 4f 4XDQWXP (IILFLHQF\ bf DW MLP 5HVSRQVLYLW\ $:f DW ALP %DQGZLGWK *+]f 5LVHWLPH SVf

PAGE 162

&+$37(5 6(9(1 6800$5< &21&/86,216 $1' 5(&200(1'$7,216 6XPPDU\ DQG &RQFOXVLRQV 7KH REMHFWLYH RI WKLV GLVVHUWDWLRQ LV WR GHYHORS D KLJKVSHHG SKRWRGHWHFWRU FDSDEOH RI GHPRGXODWLQJ RSWLFDO VLJQDOV XS WR *+] IRU RSWLFDO ILEHU FRPPXQLFDWLRQV )RU WKLV SXUSRVH WKH QRYHO KLJKVSHHG ,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH XVLQJ $XSQ,Q*D$VQ,Q3 DQG $XS,Q*D$VS,Q3 VWUXFWXUH DQG *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH KDYH EHHQ GHYHORSHG 7KH PDLQ UHVXOWV DUH VXPPDUL]HG DV IROORZV f )RU VKRUW ZDYHOHQJWK XVH WKH *D$V 6FKRWWN\ EDUULHU SKRWRGLRGH FDSDEOH RI GHWHFWLQJ RSWLFDO VLJQDOV XS WR *+] KDV EHHQ IDEULFDWHG 7KH LPSXOVH UHVSRQVH VKRZV WKDW WKH SKRWRGLRGH ZLWK DQ DFWLYH DUHD RI SP LQ GLDPHWHU KDV D ULVHWLPH RI SV ZKLFK FRUUHVSRQGV WR D EDQGZLGWK RI *+] 7KH VSHFWUDO UHVSRQVH PHDVXUHPHQW \LHOGV D UHVSRQVLYLW\ RI $: DQG TXDQWXP HIILFLHQF\ RI b DW QP 7KH 6/,&( FLUFXLW VLPXODWLRQ RI WKH SKRWRGLRGH \LHOGV D EDQGZLGWK RI *+] LQFOXGLQJ WKH HIIHFWV RI OHDG LQGXFWDQFH DQG SDUDVLWLF LPSHGDQFH f 7KH LPSURYHG 6FKRWWN\ FRQWDFW RQ Q,Q*D$V HSLOD\HU KDV EHHQ REWDLQHG UHVXOWLQJ LQ D EDUULHU KHLJKW RI H9 ZKLFK LPSOLHV D EDUULHU KHLJKW HQKDQFHPHQW RI H9 6FKRWWN\ EDUULHU FRQWDFW RQ D PRGHUDWHG GRSHG S,Q*D$V HSLOD\HU HDVLO\

PAGE 163

SURGXFH D EDUULHU KHLJKW RI H9 ZKHQ VXLWDEOH PHWDO DQG JRRG VXUIDFH SUHSDUDWLRQ DUH SURYLGHG 7KH RSWLPXP FRQGLWLRQ IRU ORZ UHVLVWDQFH RKPLF FRQWDFW WR ,,,9 FRPSRXQG VHPLFRQGXFWRUV VXFK DV *D$V ,Q*D$V DQG ,Q3 KDV EHHQ REWDLQHG f )RU ORQJ ZDYHOHQJWK XVH WKH ,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH XVLQJ S,Q*D$VS,Q3 DQG SQ,Q*D$VQ,Q3 VWUXFWXUH KDV EHHQ SURSRVHG IRU KLJKVSHHG SKRWRGHWHFWRU DSSOLFDWLRQV :LWKRXW DQWLUHIOHFWLRQ FRDWLQJ $XS,Q*D$VS,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH KDV D UHVSRQVLYLW\ RI $: DQG D TXDQWXP HIILFLHQF\ RI b DW SP 7KH LPSXOVH UHVSRQVH RI WKH SKRWRGLRGH VKRZV D ULVHWLPH RI SV IRU S,Q*D$VS,Q3 DQG SV IRU SQ,Q*D$VQ,Q3 VWUXFWXUH 7KH 6/,&( FLUFXLW VLPXODWLRQ VKRZV WKDW WKH EDQGZLGWK RI WKH SKRWRGHWHFWRU LV *+] IRU S,Q*D$VS,Q3 DQG *+] IRU SQ,Q*D$VQ,Q3 VWUXFWXUH f 7KH UHVXOW f DQG f VKRZ WKDW WKH $XS,Q*D$VS,Q3 6FKRWWN\ EDUULHU SKRWRGLRGH LV YHU\ SURPLVLQJ IRU KLJKIUHTXHQF\ DQG KLJKVSHHG DSSOLFDWLRQV ZKLOH WKH $XSQ,Q*D$V 6FKRWWN\ EDUULHU SKRWRGLRGH QHHGV PRUH VWXG\ WR REWDLQ JRRG UHSURGXFLELOLW\ RI 6FKRWWN\ EDUULHU KHLJKW HQKDQFHPHQW f 7KH UHVSRQVH VSHHG RI RXU SKRWRGHWHFWRUV FDQ EH IXUWKHU LPSURYHG E\ PRGLI\LQJ WKH GHYLFH VWUXFWXUH DQG RSWLPL]LQJ WKH GHVLJQ SDUDPHWHUV 7R LPSURYH GHWHFWRU SHUIRUPDQFH LW LV VXJJHVWHG WR GHVLJQ WKH SKRWRGHWHFWRU RQ VHPLLQVXODWLQJ VXEVWUDWH LPSURYLQJ VXUIDFH SDVVLYDWLRQ DQG UHGXFLQJ WKH SDFNDJLQJ SDUDVLWLFV

PAGE 164

5HFRPPHQGDWLRQV IRU )XUWKHU 6WXG\ 3DFNDJLQJ 2SWLPL]DWLRQ RI 3KRWRGLRGHV 3DFNDJLQJ RSWLPL]DWLRQ DQG LQWHUFRQQHFWLRQV DUH PRVW LPSRUWDQW WDVNV IRU KLJK IUHTXHQF\ GHYLFHV EHFDXVH PRVW UHOLDELOLW\ FRQVWUDLQWV DUH UHODWHG WR WKHVH SUREOHPV 7KH LQWHUFRQQHFWLRQ FDSDFLWDQFH EHWZHHQ D GLVFUHWH SKRWRGHWHFWRU DQG DPSOLILHU FRQWULEXWHV WR DQ LPSRUWDQW IUDFWLRQ RI WKH WRWDO UHFHLYHU FDSDFLWDQFH 7R LPSURYH KLJKVSHHG SDFNDJLQJ WHFKQLTXH WKH PLFURZDYH SDFNDJLQJ XVLQJ FRSODQDU ZDYHJXLGH &3:f WUDQVPLVVLRQ OLQH QHHG WR EH GHYHORSHG ZKLFK LV H[SHFWHG WR JUHDWO\ UHGXFH GHJUDGDWLRQ RI UHVSRQVH VSHHG GXH WR WKH SDFNDJLQJ SDUDVLWLFV &3: KDV DQ LPSRUWDQW DGYDQWDJH RYHU PLFURVWULS WUDQVPLVVLRQ OLQH LQ WKDW WKH VLJQDO FRQGXFWRUV DQG WKH JURXQG SODQH FRQGXFWRU VKDUH WKH VDPH VXUIDFH RI WKH GLHOHFWULF VXEVWUDWH >@ 7KLV ZDYHJXLGLQJ V\VWHP RIIHUV FRQYHQLHQW LQFRUSRUDWLRQ RI OXPSHG GHYLFHV DQG VKRUW FLUFXLWV ZKLFK LV PRUH GLIILFXOW LQ PLFURVWULS OLQH 7KLV PHDQV FLUFXLW FRQQHFWLRQV WR JURXQG FDQ EH PDGH VLPSO\ ZLWK VKRUW ORZ SDUDVLWLF ERQG ZLUH FRQQHFWLRQV $ +LJKVSHHG ,Q*D$V 6FKRWWN\ %DUULHU 3KRWRGLRGH RQ 6HPLLQVXODWLQJ ,Q3 6XEVWUDWH IRU 0RQROLWKLF ,QWHJUDWLRQ 7KH XVH RI WKH VHPLLQVXODWLQJ VXEVWUDWH LV LPSRUWDQW IRU KLJK IUHTXHQF\ DSSOLFDWLRQV EHFDXVH WKH SDUDVLWLF FDSDFLWDQFHV DVVRFLDWHG ZLWK GLVFUHWH GHYLFHV DQG GHYLFHV WR JURXQG SODQH FDQ EH PLQLPL]HG 7KH SKRWRGHWHFWRUV RQ WKH VHPLLQVXODWLQJ VXEVWUDWH DUH VXLWDEOH IRU WKH PRQROLWKLF RSWRHOHFWURQLF LQWHJUDWLRQ >@ ZKLFK PD\ KDYH DGYDQWDJH RI D UHGXFWLRQ LQ FRVW DQ LQFUHDVH LQ IXQFWLRQDOLW\ DQG DQ

PAGE 165

LPSURYHPHQW LQ SHUIRUPDQFH DQG UHOLDELOLW\ 6LJQLILFDQW LPSURYHPHQWV LQ VSHHG VHQVLWLYLW\ DQG QRLVH FDQ EH REWDLQHG YLD PRQROLWKLF LQWHJUDWLRQ E\ UHGXFLQJ WKH SDFNDJH SDUDVLWLFV DVVRFLDWHG ZLWK GLVFUHWH GHYLFHV DQG WHVW IL[WXUH 7KLV PLJKW EH GXH WR WKH HOLPLQDWLRQ RI ERQG ZLUH FRQQHFWLRQV WKH XVH RI VHPLLQVXODWLQJ VXEVWUDWHV ZKHUH WKH ERQG SDG LV ORFDWHG RQ DQG WKH LPSURYHG SDFNDJH U R Q DQG WHVW IL[WXUH ,Q RUGHU WR UHGXFH D VXUIDFH OHDNDJH FXUUHQW WKH PHVD VWUXFWXUH RI ZKLFK WKH VXUIDFH LV FRYHUHG ZLWK D GLHOHFWULF SDVVLYDWLRQ OD\HU LV QHFHVVDU\ IRU WKH SURSRVHG SKRWRGLRGH >@ 7KH LQWHUGLJLWDWHG 6FKRWWN\ EDUULHU FRQWDFW ZLOO EH GHVLDEOH WR LQFUHDVH D TXDQWXP HIILFLHQF\ 7KH LQWHUGLJLWDWHG VWUXFWXUH ZLWK ILQJHU ZLGWK RI XP DQG ILQJHU VSDFLQJ RI XP LV VKRZQ LQ )LJ )RU KLJKVSHHG RSHUDWLRQ WKH LQWHUGLJLWDWHG 6FKRWWN\ FRQWDFW ILQJHUV ZLWK D VXEPLFURQ ZLGWK DUH QHFHVVDU\ ZKLFK FDQ EH IDEULFDWHG E\ WKH OLIWRII SURFHVV XVLQJ 300$ DQG HOHFWURQEHDP OLWKRJUDSK\ 7KLV LQWHUGLJLWDWHG 6FKRWWN\ EDUULHU FRQWDFW ZDV WHVWHG LQ D *D$V SKRWRFRQGXFWRU IDEULFDWHG RQ D &UGRSHG VHPLLQVXODWLQJ VXEVWUDWH DQG WKH W\SLFDO SKRWRFXUUHQW WR D OLJKW VRXUFH RI +H1H ODVHU LV VKRZQ LQ )LJ $ /RZ 1RLVH DQG +LJK *DLQ%DQGZLGWK 3URGXFW 4XDQWXP:HOO $YDODQFKH 3 KRWRGHWHFWRU 4:$3'f 7R LQFUHDVH VHQVLWLYLW\ DW KLJK GDWD UDWHV FRQVLGHUDEOH UHVHDUFK KDV EHHQ GRQH WR GHYHORS WKH SKRWRGHWHFWRUV ZLWK WKH LQWHUQDO JDLQ 2QH RI WKH PRVW SURPLVLQJ FDQGLGDWHV FXUUHQWO\ LQ ZLGHVSUHDG XVH IRU SKRWRGHWHFWLRQ LV DQ DYDODQFKH SKRWRGLRGH $3'f ,WV DGYDQWDJH FRPHV

PAGE 166

)LJXUH 7KH LQWHUGLJLWDWHG 6FKRWWN\ EDUULHU FRQWDFW SDWWHUQ EHLQJ XVHG LQ WKH FRQWLQXLQJ VWXG\ )LQJHU ZLGWK SP )LQJHU VSDFLQJ SP )LQJHU OHQJWK SP &RQWDFW SDG [ SP

PAGE 167

)LJXUH 3KRWRFXUUHQW RI WKH *D$V SKRWRFRQGXFWLYH GHWHFWRU IDEULFDWHG RQ D VHPLLQVXODWLQJ VXEVWUDWH WR D OLJKW VRXUFH RI +H1H ODVHU

PAGE 168

IURP LQWHUQDO JDLQ REWDLQHG YLD LPSDFW LRQL]DWLRQ ZKLFK FDQ SURYLGH DQ HQKDQFHG VLJQDOWRQRLVH UDWLR 7KH ODUJH GLIIHUHQFH EHWZHHQ WKH LRQL]DWLRQ UDWHV IRU HOHFWURQV DQG KROHV LV DQ HVVHQWLDO UHTXLUHPHQW IRU WKH ORZQRLVH KLJK JDLQEDQGZLGWK SURGXFW DYDODQFKH SKRWRGLRGH +RZHYHU LQ PRVW ,,,9 FRPSRXQG VHPLFRQGXFWRUV WKH LRQL]DWLRQ UDWHV IRU HOHFWURQV DQG KROHV QHDUO\ HTXDO 8VLQJ WKH UXOHV RI EDQGJDS HQJLQHHULQJ QHZ EDQG GLDJUDPV ZLWK QHDUO\ DUELWUDU\ DQG FRQWLQXRXV EDQGJDS YDULDWLRQV FDQ EH REWDLQHG >@ 7KLV KDV OHG WR QHZ HOHFWURQLF DQG RSWRHOHFWURQLF GHYLFHV DQG VXSHUODWWLFH PDWHULDOV VXFK DV VXSHUODWWLFH DYDODQFKH SKRWRGLRGH >@ DQG JUDGHGJDS RU VWDLUFDVH DYDODQFKH SKRWRGLRGH >@ 7KH VXSHUODWWLFH DYDODQFKH SKRWRGLRGH FRQFHSW LV EDVHG RQ WKH ODUJH DV\PPHWU\ EHWZHHQ WKH FRQGXFWLRQ DQG YDOHQFH EDQG GLVFRQWLQXLWLHV LQ WKH ,,,9 KHWHURMXQFWLRQV 2QH LPSRUWDQW FRQVLGHUDWLRQ LQ WKH GHVLJQ RI D VXSHUODWWLFH $3' LV WKH HIIHFW RI WKH EDUULHU RI KHLJKW $HF ZKLFK KDV WR EH VXUPRXQWHG E\ DQ HOHFWURQ OHDYLQJ WKH ZHOO )RU WKLV WR RFFXU LW LV LPSRUWDQW QRW RQO\ WKDW WKH YROWDJH GURS DFURVV D JLYHQ ZHOO EH JUHDWHU WKDQ WKH EDUULHU EXW DOVR WKDWWKH DYHUDJH NLQHWLF HQHUJ\ RI WKH HOHFWURQV LQ WKH ZHOOV EH HTXDO RU JUHDWHU WKDQ $HF 7KH UHVSRQVH VSHHG RI WKH DYDODQFKH SKRWRGLRGH FDQ EH GHWHUPLQHG E\ HIIHFWLYH WUDQVLW WLPH 5& WLPH FRQVWDQW DQG ODVHU SXOVH ZLGWK 7KH HIIHFWLYH WUDQVLW WLPH LQFOXGHV f DYDODQFKH EXLOGXS WLPH f WKH WUDQVLW WLPH RI HOHFWURQV DFURVV D GULIW UHJLRQ DQG f WKH WUDQVLW WLPH RI KROHV JHQHUDWHG LQ WKH DYDODQFKH EDFN DFURVV D GULIW UHJLRQ

PAGE 169

7R DFKLHYH D PLQLPXP H[FHVV QRLVH WKH DYDODQFKH VKRXOG DOZD\V EH LQLWLDWHG RQO\ E\ WKH FDUULHUV ZLWK WKH KLJKHVW LRQL]DWLRQ FRHIILFLHQW )RU WKH ORZ QRLVH DQG KLJK JDLQEDQGZLGWK SURGXFW DYDODQFKH SKRWRGLRGH WKH VXLWDEOH PDWHULDO VKRXOG EH VHOHFWHG DQG WKH SKRWRGLRGH VWUXFWXUH ZLWK RSWLPXP HOHFWURQ DQG KROH LRQL]DWLRQ UDWHV VKRXOG EH GHYHORSHG 0RQROLWKLF 2SWRHOHFWURQLF ,QWHJUDWLRQ :LWK WKH DGYHQW RI RSWLFDO ILEHU FRPPXQLFDWLRQV WKH PRQROLWKLF LQWHJUDWLRQ RI RSWRHOHFWURQLF GHYLFHV DQG FRPSOH[ FLUFXLWV RQ D VLQJOH VXEVWUDWH SURYLGHV WKH SURPLVH RI LPSURYHG SHUIRUPDQFH DQG UHOLDELOLW\ LQFUHDVHG IXQFWLRQDOLW\ HFRQRP\ RI VL]H DQG VFDOH DQG WKH UHVXOWLQJ SUROLIHUDWLRQ RI WKH FRPSXWHU LQGXVWU\ 7KH LPSURYHPHQW LQ VHQVLWLYLW\ REWDLQHG E\ WKH LQWHJUDWHG SLQ)(7 EHFRPHV PRUH VLJQLILFDQW IRU KLJK ELW UDWHV DQG WKH SLQ)(7 PD\ EH DQ DOWHUQDWLYH WR DQ DYDODQFKH SKRWRGLRGH $3'f DV D PHDQV RI LQFUHDVLQJ UHFHLYHU SHUIRUPDQFH DW YHU\ KLJK ELW UDWHV 7KH RSWLFDO UHFHLYHU PRGXOHV >@ KDYH D SRWHQWLDO RI LPSURYLQJ UHFHLYHU SHUIRUPDQFH RYHU WKDW ZKLFK FDQ EH REWDLQHG XVLQJ D K\EULG SKRWRGHWHFWRUSUHDPSOLILHU 7KHUHIRUH D PRQROLWKLFDOO\ LQWHJUDWHG RSWLFDO UHFHLYHU ZKLFK W\SLFDOO\ FRQVLVWV RI SKRWRGHWHFWRU GHWHFWRU ELDVLQJ FLUFXLW DQG DW OHDVW RQH VWDJH RI YROWDJH JDLQ LV D SURPLVLQJ GHWHFWRU FDQGLGDWH IRU RSWLFDO ILEHU FRPPXQLFDWLRQV

PAGE 170

$33(1',; $ *HQHUDO 0RGHO IRU 6FKRWWN\ %DUULHU +HLJKW 7KH JHQHUDO H[SUHVVLRQ RI 6FKRWWN\ EDUULHU KHLJKW FDQ EH REWDLQHG RQ WKH EDVLV RI WKH IROORZLQJ DVVXPSWLRQV f 7KH PHWDO DQG WKH VHPLFRQGXFWRU DUH DVVXPHG WR EH VHSDUDWHG E\ D WKLQ LQVXODWLQJ LQWHUIDFLDO OD\HU RI DWRPLF GLPHQVLRQV ZKLFK LV WUDQVSDUHQW WR HOHFWURQV DQG FDQ ZLWKVWDQG SRWHQWLDO DFURVV LW f WKH LQWHUIDFH WUDSV SHU XQLW DUHD SHU HOHFWURQ YROW DW WKH LQWHUIDFH DUH SURSHUWLHV RI WKH VHPLFRQGXFWRU VXUIDFH DQG DUH LQGHSHQGHQW RI WKH PHWDO 'HVLJQDWLQJ WKH R[LGH FKDUJH 4R[ T14; LQ WKH UHJLRQ RI R[LGH FORVH WR WKH R[LGHVHPLFRQGXFWRU LQWHUIDFH WKH FKDUJH QHXWUDOLW\ FRQGLWLRQ RI WKH V\VWHP FDQ EH ZULWWHQ DV $ f $f AR[ 4I pP pRW ZKHUH 40 LV VXUIDFH FKDUJH RQ PHWDO 4VF VSDFH FKDUJH LQ WKH GHSOHWLRQ OD\HU RI VHPLFRQGXFWRU 4AW LQWHUIDFH WUDS FKDUJH 4R[ R[LGH FKDUJH 4e LV R[LGH IL[HG FKDUJH 4P PRELOH LRQLF FKDUJH DQG 4RW R[LGH WUDSSHG FKDUJH $VVXPLQJ WKDW WKH HQHUJ\ GLVWULEXWLRQ RI WKH LQWHUIDFH WUDSV FDQ EH H[SUHVVHG E\ (T$f >@ 'LW(f 'LW^H[S>( Tf(V@ H[S>( Tp4f(V@` $f

PAGE 171

4VF ^T&V1'6%Q 9Q IIL N7Tf` $f 4LW T'LW^H[S(JT6TF%%Qf(VfH[S(JTDTF%IQf(Vf` $f 40 >T&V1'%Q 9Qf` T'LW(V^H[S(J TDc4 TG%Qf(Vf H[S(J T TIILIQf(Vf` T1I@ $f 7KH SRWHQWLDO GURS DFURVV WKH LQWHUIDFLDO OD\HU FDQ EH REWDLQHG E\ WKH DSSOLFDWLRQ RI *DXVVnV ODZ $ G4MA6Lf $f ZKHUH LV WKH SHUPLWWLYLW\ RI WKH LQWHUIDFLDO OD\HU DQG G LV LWV WKLFNQHVV $JDLQ (T$f FDQ EH H[SUHVVHG DV ,QWURGXFLQJ WKH TXDQWLWLHV &O T&V1'GfL & %LHL TG'LWf $f $f $f WKHQ WKH EDUULHU KHLJKW FDQ EH H[SUHVVHG DV >@ bQ >FDQ 9 r L& f1R[$O'LW $p@ OFIFA &^&OpP ;f O&fpeQ&& O&f1R[&OT'W& N7Tff& &&f@ $f

PAGE 172

f§ )RU 1G FP WKH WHUPV ZLWKLQ WKH VHFRQG EUDFNHW FDQ EH QHJOHFWHG DQG (T$OOf FDQ EH UHGXFHG WR WKH IROORZLQJ H[SUHVVLRQ p%Q FrP [! 8AIK n $! ZKHUH 64 UHSUHVHQWV WKH SRVLWLRQ RI WKH QHXWUDO OHYHO IRU WKH LQWHUIDFH WUDSV IURP WKH WRS RI WKH YDOHQFH EDQG +HUH A LV WKH SHUPLWWLYLW\ HRfUf DQG G LV WKH WKLFNQHVV RI WKH LQWHUIDFLDO OD\HU 'AW LV WKH GHQVLW\ RI LQWHUIDFH WUDSV SHU XQLW DUHD SHU HOHFWURQ YROW 7KH WZR OLPLWLQJ FDVHV FDQ EH REWDLQHG IURP (T$f DV IROORZV f 0RWW /LPLW 'MM & DQG 9Qf p%Q IILP ;f $ f ZKLFK LV WKH EDUULHU KHLJKW IRU DQ LGHDO 6FKRWWN\ EDUULHU FRQWDFW ZKHUH VXUIDFH VWDWH HIIHFWV DUH QHJOHFWHG 1RWH WKDW WKLV H[SUHVVLRQ LV LGHQWLFDO WR WKH LGHDO 6FKRWWN\ EDUULHU H[FHSW IRU WKH EDUULHU ORZHULQJ WHUP f %DUGHHQ /LPLW 'AW & DQG IQ (JT 64f p%Q (J^ pR` $D $rf 7KH )HUPL OHYHO DW WKH LQWHUIDFH LV SLQQHG E\ WKH LQWHUIDFH WUDSV DW WKH YDOXH T64 DERYH WKH YDOHQFH EDQG 7KH EDUULHU KHLJKW LV LQGHSHQGHQW RI WKH PHWDO ZRUN IXQFWLRQ DQG GHWHUPLQHG HQWLUHO\ E\ WKH VXUIDFH SURSHUWLHV RI WKH VHPLFRQGXFWRU

PAGE 173

$33(1',; % 6&+277.< %$55,(5 +(,*+7 (1+$1&(0(17 7KH 6FKRWWN\ EDUULHU KHLJKW HQKDQFHPHQW FDQ EH REWDLQHG E\ GHSRVLWLQJ D YHU\ WKLQ S,Q*D$V VXUIDFH OD\HU RQ DQ Q,Q*D$V HSLOD\HU 7KH HIIHFWLYH EDUULHU KHLJKW LV LQFUHDVHG E\ EDQG EHQGLQJ GXH WR WKH VSDFH FKDUJH LQ WKH S,Q*D$V VXUIDFH OD\HU SURYLGHG WKH GRSDQW GHQVLW\ DQG WKH WKLFNQHVV RI WKH VXUIDFH OD\HU DUH VHOHFWHG WR DQ RSWLPXP YDOXH DQG WKH VXUIDFH OD\HU LV IXOO\ GHSOHWHG DW WKHUPDO HTXLOLEULXP :H FRQVLGHU DQ DEUXSW SQ VWUXFWXUH ZLWK D SUHJLRQ ZLGWK RI : ZKLFK LV FRQVLGHUHG YDULDEOH DV ORQJ DV WKH SUHJLRQ LV QRW WRR ODUJH WKLV UHJLRQ ZLOO EH WRWDOO\ GHSOHWHG DW WKHUPDO HTXLOLEULXP ,W VKRXOG EH QRWHG WKDW LI WKH SUHJLRQ EHFRPHV VXIILFLHQWO\ ODUJH WKH VWUXFWXUH EHFRPHV D SW\SH 6FKRWWN\ EDUULHU ZLWK D SQ MXQFWLRQ LQ VHULHV DQG WKHQ WKH SUHJLRQ LV DSSUR[LPDWHO\ QHXWUDO /HW :Q EH WKH ZLGWK RYHU WKH GHSOHWLRQ UHJLRQ H[WHQGV LQWR WKH Q,Q*D$V HSLOD\HU DQG OHW [ DW WKH PHWDO FRQWDFW ,Q WKH GHSOHWLRQ DSSUR[LPDWLRQ WKH 3RVVLRQnV HTXDWLRQV DUH JLYHQ E\ GIILG[ T1$H4fU IRU [ :S %f GIFG[ T1'HRfU IRU :S [ :S :Q %f 7KH ERXQGDU\ FRQGLWLRQV DUH JLYHQ E\

PAGE 174

pf DQG %:S :Qf Q 9 %f %[f DQG G[fG[ DUH FRQWLQXRXV DW [ : %f Wrr G([fG[ T1':Q 1$:SfffU DW [ DQG G[fG[ DW [ :S :Q %f 7KH VROXWLRQV IRU t[f DUH JLYHQ E\ k[f T1$fHUf>Of[[:S@T1$ffUf[:Q IRU [ :S %f IIL[f T1'f*Uf>Of[[:S:Qf@ T1$1'f:SffU IRU :S [ :S:Q %f 7KH ZLGWK RI WKH Q UHJLRQ IROORZV IURP WKH ERXQGDU\ FRQGLWLRQ (T%f pP 6Q 9 T1':S:Qf*RHU T1$ 1'f:SfRHU %f ,I 1':Q 1$:SI WKH SRWHQWLDO HQHUJ\ PD[LPXP LV ORFDWHG LQVLGH WKH S UHJLRQ 7KH SRWHQWLDO HQHUJ\ ZLOO EH T%Q DW [ DQG UHDFK D PD[LPXP YDOXH DW [ [P ZKLFK FDQ EH REWDLQHG IURP WKH FRQGLWLRQ GIIL[fG[ DW [ [P %f ZKLFK JLYHV [P G1$f1$ZS 1':Qf DQG (P Tf4fUf1$:S 1':Qf %f 7KH HQKDQFHPHQW RI WKH EDUULHU KHLJKW IRU D PHWDOSQ TXDVL6FKRWWN\

PAGE 175

EDUULHU GLRGH $%Q GXH WR WKH S VXUIDFH OD\HU LV REWDLQHG E\ VXEVWLWXWLQJ [P LQWR (T%f m%Q THRfU+$f1$:S .'+Qf %OOf m9PA %,f 7KH HIIHFWLYH EDUULHU KHLJKW RFFXUV DW [ [P DQG LV JLYHQ E\ p%Q bQ 9P a n69QHRHU %f )RU 1D } 1G DQG 1$:S } 1':Q (T%f ZLOO EH VLPSOLILHG Vn%Q p%Q L$ZSHRHU ,W FDQ EH VKRZQ WKDW (T%f KROGV RQO\ IRU $%Q !! 9G1G1D 1RWH WKDW 1$ DQG 1' GHQRWH WKH GRSDQW GHQVLW\ RI WKH S DQG Q,Q*D$V OD\HU UHVSHFWLYHO\ :S LV WKH WKLFNQHVV RI WKH SOD\HU DQG 94 LV WKH EXLOWLQ SRWHQWLDO RI WKH SQ MXQFWLRQ 7KH WKLFNQHVV DQG GRSDQW GHQVLW\ RI WKH ,Q*D$V OD\HUV DUH GHWHUPLQHG VXEMHFW WR WKH FRQGLWLRQ JLYHQ DERYH 7KH HIIHFWLYH EDUULHU KHLJKW ZLOO LQFUHDVH DV WKH SURGXFW 1$:S LQFUHDVHV 7KH EDUULHU KHLJKW IRU VXFK D SKRWRGHWHFWRU FDQ EH WDLORUHG WR LWV RSWLPXP YDOXH YLD SURSHUO\ VHOHFWHG WKLFNQHVV DQG GRSDQW GHQVLW\ RI WKH VXUIDFH OD\HU 7KH GHSOHWLRQ OD\HU ZLGWK LQ WKH QHSLOD\HU FDQ EH FDOFXODWHG IURP (T%f DQG LV JLYHQ E\ ZQ :S>:S1D1Gf:SHRHUfT1'@ %f IILQ ;V N7Tf ,Q 1M91T f %f

PAGE 176

$33(1',; & 6&+277.< %$55,(5 $1' 2+0,& &217$&7 )250$7,21 7KH VWDUWLQJ PDWHULDO LV 3f,Q*D$V RU Q,Q*D$V PDWHULDO JURZQ RQ ,Q3 VXEVWUDWH &OHDQ DQG GHJUHDVH ZDIHU ZLWK 7&( DFHWRQ PHWKDQRO DQG ', ZDWHU IROORZHG E\ EORZLQJ GU\ ZLWK 1m 'HSRVLW PHWDO E\ HEHDP HYDSRUDWLRQ DW D SUHVVXUH RI OHVV WKDQ !SRUU 7KH $X*H RU $X*H1L DOOR\ FDQ EH XVHG IRU RKPLF FRQWDFW WR QW\SH ,,,9 FRPSRXQG VHPLFRQGXFWRUV 7KH $X*H RKPLF FRQWDFW LV XVXDOO\ IRUPHG E\ HYDSRUDWLQJ DQ HXWHFWLF FRPSRVLWLRQ RI $X*H bf DOOR\ f IROORZHG E\ D WKLQ OD\HU RI 1L f )RU SW\SH RKPLF FRQWDFW D $X0J RU $X=Q bf DOOR\ f FRUUHVSRQGLQJ WR WKH VWRLFKLRPHWULF FRPSRVLWLRQ RI $A=Q FDQ EH XVHG 7KH DGKHVLRQ WR ,Q3 ZLWK $X=Q DOOR\ LV PXFK EHWWHU WKDQ ZLWK =Q DQG $X VHTXHQWLDOO\ GHSRVLWHG )RU $X=Q DOOR\ LW LV EHWWHU WR HYDSRUDWH PLFURIRLO &U f ILUVW IRU JRRG DGKHVLRQ DQG WKHQ HYDSRUDWH $X=Q f DQG $X f VHTXHQWLDOO\ $OOR\ WKH FRQWDFW LQ +1 IRUPLQJ JDV DPELHQW DW r& IRU PLQ SW\SHf DQG r& IRU PLQ QW\SHf )RU KHDWWUHDWPHQW DERYH WKH $X*H HXWHFWLF WHPSHUDWXUH 7HX r&f RKPLF FRQWDFW

PAGE 177

EHKDYLRU LV REVHUYHG DQG XQLIRUP DOOR\HG FRQWDFW VXUIDFH LV IRUPHG GXH WR WKH SUHVHQFH RI 1L DW WKH VHPLFRQGXFWRU LQWHUIDFH 7KH PRVW FRPPRQO\ XVHG PHWKRG RI KHDW WUHDWPHQW RI PHWDO VHPLFRQGXFWRU V\VWHPV LV DOOR\LQJ IXUQDFH LQ +1 IRUPLQJ JDV 1RWH WKDW GXULQJ WKH SURFHVV RI FRQWDFW DOOR\LQJ WKH GRSDQW GLIIXVHV LQWR WKH VHPLFRQGXFWRU DQG SURGXFHV D PRGLILHG UHJLRQ RI KLJK GRSLQJ FRQFHQWUDWLRQ DW WKH PHWDOVHPLFRQGXFWRU LQWHUIDFH UHVXOWLQJ LQ ORZ UHVLVWDQFH FRQWDFW IRUPDWLRQ &OHDQ DQG GHJUHDVH ZDIHU ZLWK 7&( DFHWRQ PHWKDQRO DQG ', ZDWHU IROORZHG E\ EORZLQJ GU\ ZLWK 1 3UHEDNH ZDIHU DW r& IRU PLQ FRRO LW GRZQ IRU PLQ DQG VSLQ RQ SRVLWLYH SKRWRUHVLVW 6KLSOH\ $=f DW USP IRU VHF 7KH ZDIHUV VKRXOG DOZD\V EH EORZQ GU\ ZLWK 1 MXVW EHIRUH VSLQQLQJ RQ WKH SKRWRUHVLVW WR UHPRYH DQ\ GXVW SDUWLFOHV WKDW PD\ EH RQ WKH VXUIDFH $IWHU VSLQQLQJ DQ\ H[FHVV SKRWRUHVLVW RQ WKH EDFN RI WKH ZDIHU PXVW EH FOHDQHG RII ZLWK D VWRSSHU 7KH 6KLSOH\ $] VHULHV SKRWRUHVLVWV $=DQG $=f DUH IXQFWLRQDOO\ HTXLYDOHQW WR WKH $= VHULHV SKRWRUHVLVWV ZLWK LPSURYHG FRDWLQJ XQLIRUPLW\ 6RIWEDNH ZDIHU DW r& IRU PLQ DOLJQ DQG H[SRVH ZLWK 89 OLJKW IRU VHF WR D FRQWDFW PDVN 7KHQ GHYHORS ZLWK D 6KLSOH\ GHYHORSHU 0) ', ZDWHU f IRU VHF

PAGE 178

3HUIRUP VSXWWHUHWFKLQJ RU FKHPLFDO HWFKLQJ EHIRUH PHWDO GHSRVLWLRQ &KHPLFDO HWFKLQJ FDQ EH GRQH E\ GLSSLQJ WKH ZDIHU LQ 1+2+++ f ZLWK DQ HWFK UDWH RI 6VHF WR UHPRYH QDWLYH R[LGHV IURP WKH VXUIDFH RI WKH FRQWDFW DUHD 1RWH WKDW WKH HWFK VROXWLRQ QHHGV D VHWWOLQJ WLPH RI PLQ 7KH VXUIDFH VKRXOG EH SUHSDUHG ZLWK WKH PLQLPXP DPRXQW RI R[LGH DQG FRQWDPLQDWLRQ WR OHDYH LW VPRRWK DQG VWRLFKLRPHWULF $OWHUQDWLYHO\ WKH ZDIHU FDQ EH HWFKHG LQ DQ HWFK VROXWLRQ 1+2++&!+&! f DQG D VWRS VROXWLRQ 1+2++ f RU %+) +)+ f VROXWLRQ IRU VHF WR UHPRYH WKH VXUIDFH R[LGHV 'HSRVLW D 6FKRWWN\ PHWDO HJ $O $X RU 7Lf E\ HEHDP HYDSRUDWLRQ DW D SUHVVXUH RI OHVV WKDQ 7RUU DQG DQQHDO ZDIHU DW r& LQ D 1 IRUPLQJ JDV DPELHQW IRU PLQ

PAGE 179

$33(1',; /,)72)) 3+272/,7+2*5$3+< &OHDQ DQG GHJUHDVH ZDIHU ZLWK 7&( DFHWRQ PHWKDQRO DQG ', ZDWHU IROORZHG E\ EORZLQJ GU\ ZLWK 1 3UHEDNH ZDIHU DW r& IRU PLQ FRRO LW GRZQ IRU PLQ DQG VSLQ RQ D SRVLWLYH SKRWRUHVLVW 6KLSOH\ $=f DW USP IRU VHF 6RIWEDNH ZDIHU DW r& IRU PLQ DOLJQ DQG H[SRVH ZLWK 89 OLJKW WR D FRQWDFW PDVN IRU VHF 7KHQ GHYHORS ZLWK D 6KLSOH\ GHYHORSHU 0)', ZDWHU f IRU D SRVLWLYH SKRWRUHVLVW $IWHU GHYHORSLQJ WKH SDWWHUQ D KDUGEDNH LV QRW QHFHVVDU\ IRU WKH OLIWRII SURFHVV 7R REWDLQ ILQH UHVROXWLRQ WKH FKORUREHQ]HQH VRDNLQJ WHFKQLTXH LV QHFHVVDU\ $IWHU H[SRVXUH WKH ZDIHU LV VRDNHG LQ FKORUREHQ]HQH &J+A&Of IRU PLQ DQG WKHQ WKH SDWWHUQ LV GHYHORSHG LQ D $=GHYHORSHU IRU DERXW PLQ XQWLO WKH SDWWHUQ LV IXOO\ GHYHORSHG )RU D VXEPLFURQ UHVROXWLRQ WKH OLIWRII SURFHVV PD\ UHTXLUH WKH XVH RI 300$ DQG HOHFWURQ EHDP OLWKRJUDSK\ 6SLQ RQ D SRVLWLYH SKRWRUHVLVW EHIRUH PHWDOL]DWLRQ SDWWHUQ VXFK WKDW WKH DUHDV LQ ZKLFK PHWDO LV GHVLUHG DUH QRW FRYHUHG ZLWK SKRWRUHVLVW DQG GHSRVLW 6FKRWWN\ PHWDO E\ HEHDP HYDSRUDWLRQ

PAGE 180

6WULS WKH SKRWRUHVLVW LQ DFHWRQH ZKLFK GRHV QRW DWWDFN WKH PHWDO ILOP ZLWK XOWUDVRQLF DJLWDWLRQ 7KHQ WKH XQZDQWHG PHWDO FRPHV RII ZLWK WKH SKRWRUHVLVW KDYLQJ WKH PHWDO FRQWDFW LQ WKH GHVLUHG DUHD 7KH VXFFHVV RI WKH OLIWRII WHFKQLTXH UHTXLUHV WKH XVH RI D UHODWLYHO\ WKLFN SKRWRUHVLVW ILOP VR WKDW WKH GHSRVLWHG PHWDO ILOP LV YHU\ WKLQ RU HYHQ GLVFRQWLQXRXV DW WKH VLGHV RI WKH VWHS 7KH WKLFNQHVV RI WKH PHWDO OD\HU LV OLPLWHG WR EHFDXVH RI WKH ILQLWH VORSH DW WKH HGJH RI WKH SKRWRUHVLVW SDWWHUQ 7KH PD[LPXP WKLFNQHVV RI WKH SKRWRUHVLVW WKDW FDQ SURYLGH D FOHDQ OLIWRII UHSURGXFLEO\ LV UHSRUWHG WR EH SP

PAGE 181

$33(1',; ( 0(6$ (7&+ $1' 0(7$/ (7&+ 0HVD (WFK )RU *D$V PDWHULDO WKH PHVD HWFK FDQ EH GRQH E\ 1+A2+++ f ZLWK DQ HWFK UDWH RI SPPLQ RU +)++ f ZLWK DQ HWFK UDWH RI SPPLQ )RU ,Q*D$V PDWHULDO WKH IROORZLQJ PHVD HWFK VROXWLRQ FDQ EH XVHG f f ZLWK DQ HWFK UDWH SPPLQ DW 7 r. f b %URPLQH0HWKDQRO %U&+A2+f ZLWK DQ HWFK UDWH RI SPPLQ f +3A++ f ZLWK DQ HWFK UDWH RI SPPLQ 7KH PHVD HWFK VKRXOG EH HWFKHG FRPSOHWHO\ WKURXJK WKH DFWLYH OD\HU )RU LQ3 PDWHULDO +&O FDQ EH XVHG IRU WKH PHVD HWFK ZLWK DQ HWFK UDWH RI SPPLQ $IWHU HWFKLQJ WKH ZDIHU VKRXOG EH ULQVHG LQ +2 IRU DW OHDVW VHF WR UHPRYH DQ\ UHVLGXDO HWFK 5HPRYH H[FHVV SKRWRUHVLVW LQ DFHWRQH DQG FOHDQ ZLWK PHWKDQRO DQG ', ZDWHU

PAGE 182

*ROG (WFK 'LS LQWR .,,+2 DW r& 5LQVH ZLWK ', ZDWHU IRU PLQXWHV &KURPLXP (WFK 'LS LQWR SRWDVVLXP IHUULF\DQLGH +f DW r& 5LQVH ZLWK ', ZDWHU IRU PLQXWHV 1RWH &KURPLXP HWFK FRQWDLQV F\DQLGH DQG VKRXOG QRW EH PL[HG ZLWK DFLGV

PAGE 183

$33(1',; ) 685)$&( 3$66,9$7,21 7KH VXUIDFH SDVVLYDWLRQ FDQ EH REWDLQHG XVLQJ 'XSRQW 3, VHPLFRQGXFWRU JUDGHf SRO\LPLGH GLOXWHG ZLWK 103 10HWK\O 3\UUROLGRQHf VROYHQW 3UHEDNH ZDIHU DW r& IRU PLQ LQ 1 IRUPLQJ JDV DQG LPPHGLDWHO\ VSLQ RQ WKH SRO\LPLGH DW USP IRU VHF 3UHEDNH ZDIHU DW r& IRU PLQ FRRO LW GRZQ IRU PLQ DQG VSLQ RQ SRVLWLYH 3KRWRUHVLVW HJ 6KLSOH\ $] RU f DW USP IRU VHF WR SDWWHUQ WKH SRO\LPLGH 6RIWEDNH ZDIHU DW r& IRU PLQ DOLJQ DQG H[SRVH IRU VHF 3RO\LPLGH LV VROXEOH LQ DONDOLQH VROXWLRQ VXFK DV SRVLWLYH SKRWRUHVLVW GHYHORSHU DQG WKXV WKH SRO\LPLGH FDQ EH SDWWHUQHG DW WKH VDPH WLPH WKH SKRWRUHVLVW LV GHYHORSHG 3ODVPD HWFK WKH ZDIHU LQ DQ SODVPD IRU PLQ XVLQJ DQ 5) SRZHU RI : EHIRUH WKH SKRWRUHVLVW LV UHPRYHG 7KLV UHPRYHV RUJDQLF UHVLGXH DQG SURGXFH D VKDUSHU SURILOH LQ WKH SRO\LPLGH $IWHU SODVPD HWFKLQJ VWULS WKH SKRWRUHVLVW XVLQJ $FHWRQH DQG FXUH WKH SRO\LPLGH DW r& IRU KRXU

PAGE 184

5()(5(1&(6 &+ /HH 3LFRVHFRQG 2SWRHOHFWURQLF 'HYLFHV $FDGHPLF 3UHVV 1HZ
PAGE 185

1 %DU&KDLP .< /DX 8U\ DQG $
PAGE 186

-+ .LP 66 /L / )LJXHURD ( 5H]HN DQG 5 :DJQHU $ +LJK 6SHHG S,QA*D \$VS,Q3 6FKRWWN\ %DUULHU 3KRWRGLRGH IRU ,QIUDUHG 3KrRWRGHWHFWLRQ 3URFHHGLQJ RI 2SWLFV DQG 4XDQWXP (OHFWURQLFV ,QWHUQDWLRQDO &RQIHUHQFH RQ /$6(5 n 2UODQGR )ORULGD 1RY -+ .LP DQG 66 /L 'HYHORSPHQW RI $ +LJK6SHHG ,Q*D$VOQ3 6FKRWWN\ %DUULHU 3KRWRGHWHFWRU IRU 0LOOLPHWHUZDYH 2SWLFDO )LEHU /LQNV )LQDO 7HFKQLFDO 5HSRUW 86 $LU )RUFH 5$'&'&/: &RQWUDFW 1R )& 73 3HDUVDOO DQG 0 3DSXFKRQ 7KH *D A $6 +RPRMXQFWLRQ 3KRWRGLRGH $ 1HZ $YDODQFKH 3KRWRGHWHFWRU LQ WKH 1HDU ,QIUDUHG EHWZHHQ DQG XUQf $SSO 3K\V /HWW 9RO 1R S 65 )RUUHVW DQG 2. .LP $QDO\VLV RI WKH 'DUN &XUUHQW DQG 3KRWRUHVSRQVH RI ,Q MA*DJ A$VOQ3 $YDODQFKH 3KRWRGLRGHV 6ROLG6WDWH (OHF 9RU 1• S ) &DSDVVR 0XOWLOD\HU $YDODQFKH 3KRWRGLRGHV DQG 6ROLG6WDWH 3KRWRPXOWLSOLHUV /DVHU )RFXV(OHFWUR2SWLFV 9RO 1R ) &DSDVVR :7 7VDQJ $/ +XWFKLQVRQ DQG *) :LOOLDPV (QKDQFHPHQW RI (OHFWURQ ,PSDFW ,RQL]DWLRQ LQ D 6XSHUODWWLFH $ 1HZ $YDODQFKH 3KRWRGLRGH ZLWK D /DUJH ,RQL]DWLRQ 5DWH 5DWLR $SSO 3K\V /HWW 9RO 1RO S ) &DSDVVR :7 7VDQJ DQG *) :LOOLDPV 6WDLUFDVH 6ROLG6WDWH 3KRWRPXOWLSOLHUV DQG $YDODQFKH 3KRWRGLRGHV ZLWK (QKDQFHG ,RQL]DWLRQ 5DWHV 5DWLR ,((( (OHFWURQ 'HYLFHV 9RO 1R S 0RKDPPHG ) &DSDVVR $OODP $< &KR DQG $/ +XWFKLQVRQ 1HZ +LJK6SHHG /RQJ :DYHOHQJWK $O JOQ J$V*D ,Q $V 0XOWLTXDQWXP :HOO $YDODQFKH 3KRWRGLRGHVn $SSO SK\V /rHWW 9RO 1R S &: 6OD\PDQ DQG / )LJXHURD )UHTXHQF\ DQG 3XOVH 5HVSRQVH RI D 1RYHO +LJK 6SHHG ,QWHUGLJLWDO 6XUIDFH 3KRWRFRQGXFWRU ,'3&f ,((( (OHFWURQ 'HYLFH /HWWHUV 9RO ('/ 1R / )LJXHURD DQG &: 6OD\PDQ $ 1RYHO +HWHURVWUXFWXUH ,QWHUGLJLWDO 3KRWRGHWHFWRU ZLWK 3LFRVHFRQG 2SWLFDO 5HVSRQVH ,((( (OHFWURQ 'HYLFH /HWWHUV 9RO ('/ 1 -& *DPPHO + 2KQR DQG -0 %DOODQW\QH +LJK6SHHG 3KRWRFRQGXFWLYH 'HWHFWRUV XVLQJ *DOQ$V ,((( 4XDQ (OHF 9RO 1R S

PAGE 187

+ %HQHNLQJ *DLQ DQG %DQGZLGWK RI )DVW 1HDU,QIUDUHG 3KRWRGHWHFWRUV $ &RPSDULVRQ RI 'LRGHV 3KRWRWUDQVLVWRUV DQG 3KRWRFRQGXFWLYH 'HYLFHV ,((( (OHF 'HY 9RO 1R S + %HQHNLQJ 2Q WKH 5HVSRQVH %HKDYLRU RI )DVW 3KRWRFRQGXFWLYH 2SWLFDO 3ODQDU DQG &RD[LDO 6HPLFRQGXFWRU 'HWHFWRUV,((( (OHF 'HY 9RO 1R S ** 6KDKLGL (3 ,SSHQ DQG 0HOQJDLOLV 6XEPLFURQJDS +LJK 0RELOLW\ 6LOLFRQ 3LFRVHFRQG 3KRWRGHWHFWRUV $SSO 3K\V /HWW 9RO 1R S +.OHLQ 5 .DXPDQQV DQG + %HQHNLQJ +LJK6SHHG *DOQ$V 3KRWRFRQGXFWLYH 'HWHFWRU IRU 3LFRVHFRQG /LJKW 3XOVHV (OHF /HWW 9RO 1R S &< &KHQ DQG *& &KL /RZQRLVH *DJ $6 3KRWRFRQGXFWLYH 'HWHFWRUV XVLQJ )H &RPSHQVDWLRQnr $SSO 3K\V /HWW 9RO 1R S 09 5DR DQG 3. %KDWWDFKDU\D+LJK*DLQ ,UWJ A A\$VU)H 3KRWRFRQGXFWLYH 'HWHFWRUV (OHF /HWW 9ROr 1Rr S 30 'RZQH\ DQG 50DUWLQ +LJK6SHHG ,RQ %RPEDUGHG ,Q*D$V 3KRWRFRQGXFWRUV $SSO 3K\V /HWW 9RO 1R S 7 + :LQGKRUQ / : &RRN DQG ( 6WLOOPDQ (OHFWURQ 'ULIW 9HORFLWLHV LQ ,Q*D$V DW 9HU\ +LJK (OHFWULF )LHOGV ,((( ,('0 S 73 3HDUVDOO *DOQ$V3 $OOR\ 6HPLFRQGXFWRU :LOH\ 1HZ
PAGE 188

6HOGHUV 1 (PHLV DQG + %HQHNLQJ 6FKRWWN\ %DUULHUV RQ S7\SH *DOQ$V ,((( 7UDQV (OHFWURQ 'HYLFHV 9RO 1R S + .UDXOWH ( :RHON 6HOGHUV DQG + %HQHNLQJ &RQWDFWV RQ *DOQ$V ,((( (OHFWURQ 'HYLFH 9RO 1R S 1'$URUD DQG -5+DXVHU$QWLUHIOHFWLRQ /D\HUV IRU *D$V 6RODU &HOOV $SSO 3K\V 9RO 1R S 66 /L 2SWRHOHFWURQLFV 6HPLFRQGXFWRU 3K\VLFDO (OHFWURQLFV /HFWXUH 1RWH LQ 7KH 8QLYHUVLW\ RI )ORULGD ZKLFK ZLOO EH SXEOLVKHG LQ 3OHQXP 3UHVV 1HZ
PAGE 189

'+ $XVWRQ LPSXOVH 5HVSRQVH RI 3KRWRFRQGXFWRUV LQ 7UDQVPLVVLRQ /LQHV ,((( 4XDQ (OHFWURQ 9RO 1R S '+ $XVWRQ $0 -RKQVRQ 35 6PLWK DQG -& %HDQ 3LFRVHFRQG 2SWRHOHFWURQLF 'HWHFWLRQ 6DPSOLQJ DQG &RUUHODWLRQ 0HDVXUHPHQWV LQ $PRUSKRXV 6HPLFRQGXFWRUV $SSO 3K\V /HWW 9RO 1R S 6< :DQJ '0 %ORRP DQG 36 &URVV (OHFWUR2SWLF 6DPSOLQJ :LWK 3LFRVHFRQG 5HVROXWLRQ (OHFWURQ /HWW 9RO 1R S -$ 9DOGPDQLV 0RXURQ DQG &: *DEHO 6XESLFRVHFRQG (OHFWULFDO 6DPSOLQJ ,((( 4XDQ (OHFWURQ 9RO 1R S %+ .ROQHU '0 %ORRP DQG 36 &URVV (OHFWUR2SWLF 6DPSOLQJ ZLWK 3LFRVHFRQG 5HVROXWLRQ (OHFWURQ /HWW 9RO 1R S $
PAGE 190

-+ .LP 66 /L / )LJXHURD :3 +RQJ DQG 3. %KDWWDFKDU\D %DUULHU +HLJKW (QKDQFHPHQW RQ WKH 0%( *URZQ ,QJ $V 6FKRWWN\ %DUULHU 'LRGHV VXEPLWWHG WR ,((( (OHF 'HY /HWW -+ .LP 66 /L / )LJXHURD 3. %KDWWDFKDU\D DQG ($ 5H]HN 'HYHORSPHQW RI +LJK6SHHG /RQJ :DYHOHQJWK SQ,Q*D$V,Q3 6FKRWWN\ %DUULHU 3KRWRGLRGH VXEPLWWHG WR ,((( (OHF 'HY /HWW 30 &DSDQL /RZ 5HVLVWDQFH $OOR\HG 2KPLF &RQWDFWV WR $OS @4,Q" AS$VQ*D A\OQA JJ$V (OHFWURQ /HWW 9RO 1ROO S .+ +VLHK DQG /) (DVWPDQ *DOQ$V $O,Q$V 6FKRWWN\ %DUULHU 'LRGHV DQG *DOQ$V$O,Q$V +HWHURMXQFWLRQ 'LRGH DV ,QWHUQDO 3KRWRHPLVVLRQ 'HWHFWRUV ,((( ,('0 S + 0RUNRF 7'UXPPRQG DQG &0 6WDQFKDN 6FKRWWN\ %DUULHUV DQG 2KPLF &RQWDFWV RQ Q7\SH ,Q3 %DVHG &RPSRXQG 6HPLFRQGXFWRUV IRU 0LFURZDYH )(7nV ,((( (OHFWURQ 'HYLFHV 9RO 1RO SO *< 5RELQVRQ 6FKRWWN\ 'LRGHV DQG 2KPLF &RQWDFWV IRU WKH ,,,9 6HPLFRQGXFWRUV 3K\VLFV DQG &KHPLVWU\ RI ,,,9 &RPSRXQG 6HPLFRQGXFWRU ,QWHUIDFHV HGLWHG E\ &: :LOPVHQ 3OHQXP 3UHVV 1HZ
PAGE 191

5+ &R[ DQG + 6WUDFN 2KPLF &RQWDFWV IRU *D$V 'HYLFHV 6ROLG 6WDWH (OHFWURQ 9RO S &( 7HUU\ DQG 5: :LOVRQ 0HWDOL]DWLRQ 6\VWHP IRU 6L ,QWHJUDWHG &LUFXLWV 3URF ,((( 9RO S <. )DQJ &< &KDQJ DQG <. 6X &RQWDFW 5HVLVWDQFH LQ 0HWDO 6HPLFRQGXFWRU 6\VWHPV 6ROLG6WDWH (OHFWURQ 9RO S ( .XSKDO /RZ 5HVLVWDQFH 2KPLF &RQWDFWV WR Q DQG S,Q3 6ROLG6WDWH (OHF 9RO 1RO S 3/ +RZHU :: +RRSHU %5 &DLUQV 5' )DLU PHQ DQG '$ 7UHPHUH 7KH *D$V )LHOG(IIHFW 7UDQVLVWRU 6HPLFRQGXFWRUV DQG 6HPLPHWDOV 9RO 3DUW$ S $FDGHPLF 3UHVV 1HZ
PAGE 192

0 &DXOWRQ )LOP 7HFKQRORJ\ LQ 0LFURZDYH ,QWHJUDWHG &LUFXLWV 0LFURZDYH ,QWHJUDWHG &LUFXLWV HGLWHG E\ )UH\ DQG .% %KDVLQ SS $UWHFK +RXVH 'HGKDP 1 %DU&KDLP 6 0DUJDOLW $
PAGE 193

%,2*5$3+,&$/ 6.(7&+ -DH+RRQ .LP ZDV ERUQ LQ 6HRXO .RUHD RQ -DQXDU\ +H UHFHLYHG WKH %6 DQG 06 GHJUHH LQ HOHFWULFDO HQJLQHHULQJ IURP WKH 6HRXO 1DWLRQDO 8QLYHUVLW\ LQ DQG UHVSHFWLYHO\ 6LQFH -DQXDU\ KH KDV EHHQ ZRUNLQJ IRU WKH 3K' GHJUHH DW WKH 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH ,Q 0DUFK KH MRLQHG WKH &RPSRXQG 6HPLFRQGXFWRU 'HYLFHV JURXS DW -HW 3URSXOVLRQ /DERUDWRU\ RI &DOLIRUQLD ,QVWLWXWH RI 7HFKQRORJ\ )URP WR KH ZDV ZLWK )DFXOW\ RI .RUHD 1DYDO $FDGHP\ ZKHUH KH ZDV HQJDJHG LQ WHDFKLQJ VHPLFRQGXFWRU GHYLFH SK\VLFV ,Q $SULO KH ZDV DZDUGHG WKH IHOORZVKLS IRU WKH 3K' GHJUHH IURP .RUHD (OHFWULF $VVRFLDWLRQ 6FKRODUVKLS )RXQGDWLRQ )URP WR KH ZDV ZLWK HOHFWULFDO HQJLQHHULQJ RI WKH 8QLYHUVLW\ RI 0LQQHVRWD 0LQQHDSROLV ZKHUH KH ZDV D WHDFKLQJ DVVLVWDQW +LV DUHD RI UHVHDUFK LQWHUHVW LQFOXGHV ,,,9 FRPSRXQG KLJKVSHHG HOHFWURQLF DQG RSWRHOHFWURQLF GHYLFH SK\VLFV SLFRVHFRQG HOHFWURQLFV DQG PDWHULDO JURZWK +H LV D PHPEHU RI ,QVWLWXWH RI (OHFWULFDO DQG (OHFWURQLFV (QJLQHHUV ,(((f $PHULFDQ 3K\VLFDO 6RFLHW\ $36f 6RFLHW\ RI 3KRWR2SWLFDO ,QVWUXPHQWDWLRQ (QJLQHHUV 63,(f DQG .RUHD ,QVWLWXWH RI (OHFWULFDO (QJLQHHUV .,((f

PAGE 194

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRS\ 7 6KHQJ 6 /L &KDLUPDQ 3URIHVVRU RI (OHFWULFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRS\ /XLV )LJXHURD $VVRFLDWH 3URIHVVRU RI (OHFWULFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRS\ *LMV %RVPDQ $VVRFLDWH 3URIHVVRU RI (OHFWULFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRS\ :LOOLDP 5 (LVHQVWDGW $VVLVWDQW 3URIHVVRU RI (OHFWULFDO (QJLQHHULQJ

PAGE 195

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRS\ 3DXO + +ROORZD\ 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRS\ 0D\ 'HDQ *UDGXDWH 6FKRRO

PAGE 196

,QWHUQHW 'LVWULEXWLRQ &RQVHQW $JUHHPHQW ,Q UHIHUHQFH WR WKH IROORZLQJ GLVVHUWDWLRQ $87+25 .LP -DH + f 7,7/( 'HYHORSPHQW RI D KLJK6SHHG *DOOLXP $UVHQLGH DQG ,QGLXP *DOOLXP UHFRUG QXPEHU f 38%/,&$7,21 '$7( -_e +RRWV NO0 DV FRS\ULJKW KROGHU IRU WKH DIRUHPHQWLRQHG GLVVHUWDWLRQ KHUHE\ JUDQW VSHFLILF DQG OLPLWHG DUFKLYH DQG GLVWULEXWLRQ ULJKWV WR WKH %RDUG RI 7UXVWHHV RI WKH 8QLYHUVLW\ RI )ORULGD DQG LWV DJHQWV DXWKRUL]H WKH 8QLYHUVLW\ RI )ORULGD WR GLJLWL]H DQG GLVWULEXWH WKH GLVVHUWDWLRQ GHVFULEHG DERYH IRU QRQSURILW HGXFDWLRQDO SXUSRVHV YLD WKH ,QWHUQHW RU VXFFHVVLYH WHFKQRORJLHV 7KLV LV D QRQH[FOXVLYH JUDQW RI SHUPLVVLRQV IRU VSHFLILF RIIOLQH DQG RQOLQH XVHV IRU DQ LQGHILQLWH WHUP 2IIOLQH XVHV VKDOO EH OLPLWHG WR WKRVH VSHFLILFDOO\ DOORZHG E\ )DLU 8VH DV SUHVFULEHG E\ WKH WHUPV RI 8QLWHG 6WDWHV FRS\ULJKW OHJLVODWLRQ FI 7LWOH 86 &RGHf DV ZHOO DV WR WKH PDLQWHQDQFH DQG SUHVHUYDWLRQ RI D GLJLWDO DUFKLYH FRS\ 'LJLWL]DWLRQ DOORZV WKH 8QLYHUVLW\ RI )ORULGD WR JHQHUDWH LPDJH DQG WH[WEDVHG YHUVLRQV DV DSSURSULDWH DQG WR SURYLGH DQG HQKDQFH DFFHVV XVLQJ VHDUFK VRIWZDUH 7KLV JUDQW RI SHUPLVVLRQV SURKLELWV XVH RI WKH GLJLWL]HG YHUVLRQV IRU FRPPHUFLDO XVH RU SURILW 6LJQDWXUH RI &RS\ULJKW +ROGHU =7ce :n .O0 f 3ULQWHG RU 7YQHG 1DPH RI &QQYULLUKW +QOGH7I8LUHQVHH B 3HUVRQDO LQIRUPDWLRQ EOXUUHG -XQH  O\SWI 'DWH RI 6LJQDWXUH 3OHDVH SULQW VLJQ DQG UHWXUQ WR &DWKOHHQ 0DUW\QLDN 8) 'LVVHUWDWLRQ 3URMHFW 3UHVHUYDWLRQ 'HSDUWPHQW 8QLYHUVLW\ RI )ORULGD /LEUDULHV 32 %R[ *DLQHVYLOOH )/


xml record header identifier oai:www.uflib.ufl.edu.ufdc:UF0008241400001datestamp 2009-02-16setSpec [UFDC_OAI_SET]metadata oai_dc:dc xmlns:oai_dc http:www.openarchives.orgOAI2.0oai_dc xmlns:dc http:purl.orgdcelements1.1 xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.openarchives.orgOAI2.0oai_dc.xsd dc:title Development of a high-speed gallium arsenide and indium gallium arsenide Schottky barrier photodetector for millimeter-wave optical fiber communicationsdc:creator Kim, Jae-Hoondc:publisher Jae-Hoon Kimdc:date 1987dc:type Bookdc:identifier http://www.uflib.ufl.edu/ufdc/?b=UF00082414&v=0000116865588 (oclc)000947028 (alephbibnum)dc:source University of Floridadc:language English