Citation |

- Permanent Link:
- https://ufdc.ufl.edu/UF00082386/00001
## Material Information- Title:
- A fault tolerant GEQRNS processing element for linear systolic array DSP applications
- Creator:
- Smith, Jeremy C., 1966- (
*Dissertant*) Taylor, Fred J. (*Thesis advisor*) Jullien, Graham A. (*Reviewer*) Law, Mark E. (*Reviewer*) Principe, Jose C. (*Reviewer*) Mair, Bernard A. (*Reviewer*) - Place of Publication:
- Gainesville, Fla.
- Publisher:
- University of Florida
- Publication Date:
- 1994
- Copyright Date:
- 1994
- Language:
- English
- Physical Description:
- x, 120 leaves : ill., photos ; 29 cm.
## Subjects- Subjects / Keywords:
- Delay circuits ( jstor )
Dynamic range ( jstor ) Fault tolerance ( jstor ) Integrated circuits ( jstor ) Latches ( jstor ) Propagation delay ( jstor ) Redundant components ( jstor ) Semiconductor wafers ( jstor ) Shift registers ( jstor ) Signals ( jstor ) Array processors ( lcsh ) Dissertations, Academic -- Electrical Engineering -- UF Electrical Engineering thesis Ph. D Sistolic array circuits ( lcsh ) - Genre:
- bibliography ( marcgt )
theses ( marcgt ) non-fiction ( marcgt )
## Notes- Abstract:
- In this work the design of a Galois Enhanced Quadratic Residue Number System (GEQRNS) processor is presented, which can be used to construct linear systolic arrays. The processor architecture has been optimized to perform multiply-accumulate type operations on complex operands. The properties of finite fields have been exploited to perform this complex multiplication in a manner which results ina greatly reduced hardware complexity. The processor is shown to have a high degree of tolerance to manufacturing defects and faults which can occur during operation. The combination of these two factors makes this an ideal candidate for array signal processing applications, where hgih complex arithmetic data rates are required. A prototype processing element has been fabricated in 1.5 um. CMOS technology, which is shown to operate at 40 MHz.
- Thesis:
- Thesis (Ph. D.)--University of Florida, 1994.
- Bibliography:
- Includes bibliographical references (leaves 117-119).
- General Note:
- Typescript.
- General Note:
- Vita.
- Statement of Responsibility:
- by Jeremy C. Smith.
## Record Information- Source Institution:
- University of Florida
- Holding Location:
- University of Florida
- Rights Management:
- Copyright Jeremy C. Smith. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
- Resource Identifier:
- 002007920 ( ALEPH )
32490064 ( OCLC ) AKJ5193 ( NOTIS )
## UFDC Membership |

Downloads |

## This item has the following downloads: |

Full Text |

A FAULT TOLERANT GEQRNS PROCESSING ELEMENT FOR LINEAR SYSTOLIC ARRAY DSP APPLICATIONS By JEREMY C. SMITH A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1994 .. Copyright 1994 by Jeremy C. Smith .. ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Fred J. Taylor for providing me with the means and the environment necessary for getting this work done, and for allowing me the freedom to pursue the research directions I saw fit. Special thanks also go to Dr. Graham A. Jullien for serving on my Ph.D committee from such a far distance away. I would also like to thank Dr. Mark E. Law, Dr. Jose C. Principe and Dr. Bernard A. Mair for serving on my committee. I would also like to thank my parents, whose early preparation and dedication have made my accomplishments possible. I would, especially, like to thank Diane for her patience, dedication and love, which were all necessary ingredients for the completion of this dissertation. .. TABLE OF CONTENTS ACKNOWLEDGEMENTS iii LIST OF TABLES vi LIST OF FIGURES vii ABSTRACT x CHAPTERS 1 INTRODUCTION 1 2 THEORY . 2.1 The Quadratic Residue Number System (QRNS) . 2.2 The Galois-Enhanced QRNS (GEQRNS) . 2.3 Dynamic Range . 2.4 Exam ple . . . 3 KEY ARRAY PROCESSOR IMPLEMENTATION ISSUES. . 3.1 Synchronization . 3.1.1 Traditional Approaches . 3.1.2 True Single Phase Clocked Systems . 3.2 Synchronous vs. Asynchronous Systems . 3.3 Fundamental Manufacturing Limitations . 3.3.1 Defect Size Distribution . 3.3.2 Defect Spatial Distribution and Yield Models . . 4 SYSTEM ARCHITECTURE . 4.1 Architectural Overview . 4.2 Multiply Accumulate PE Architecture . 4.2.1 Modulo-P Adders . 4.3 Forward Mapping: Integer to GEQRNS . 4.4 Inverse Mapping: QRNS to Residue . 4.5 Chinese Remainder Theorem . 5 VLSI IMPLEMENTATION OF PROCESSING ELEMENT . 4 4 6 7 9 15 15 . 16 . 24 . 29 . 33 . 34 . 38 . 46 . 46 . 46 . 50 . 52 . 54 . 54 . 57 5.1 True Single Phase Clocking Scheme .. 5.1.1 Pipeline Registers. . . . .58 5.1.2 Data Storage Shift Register. . . . .59 5.2 Exponentiation ROM. . . . . .60 5.3 Electronic Reconfiguration Switches . . . .65 5.4 PE Performance. . . . . .67 5.5 Early Versions of the Processing element. . . .73 5.5.1 Version One . . . . .73 5.5.2 Version Two. . . . . .74 6 YIELD ENHANCEMENT AND FAULT TOLERANCE. . .79 6.1 Yield Enhancement via Reconfiguration . . .79 6.1.1 Yield Estimates . . .*82 6.2 A Comparison with Replacing Moduli. . . .87 6.3 Detecting Faults. . . . . .90 7 CONCLUSIONS AND FUTURE WORK . . . .95 APPENDICES A VLSI CELL LAYOUTS. . . . . .100 B OBSERVED CHIP DATA. . . . . .109 C COMPUTER PROGRAMS . . . . .110 REFERENCES. . . . . . . .117 BIOGRAPHICAL SKETCH. . . . . .120 .. LIST OF TABLES 2.1 Table of Maximum Dynamic Ranges for Eight to Four Modulus System. 9 2.2 Table of Maximum Inner Product Lengths 9 2.3 Log-Antilog Table for p, = 5 . 11 2.4 Log-Antilog Table for P2 = 13 11 4.1 Full Adder truth table 51 6.1 Table of System Component Areas 83 6.2 Table of Non-Redundant Chip Yields 83 6.3 Table of Redundant Chip Yields 85 .. LIST OF FIGURES 3.1 Single Phase Latch System.17 3.2 Double-latch non-overlapping pseudo two phase system. . .19 3.3 High performance non-overlapping pseudo two phase system. .20 3.4 Delay transformation model . . . . .21 3.5 Transparency problem introduced by complementary phase of clock. .23 3.6 System model for TSPC edge based clocking. . . .25 3.7 Timing waveforms for TSPC edge based clocking . . .26 3.8 System model for TSPC latch based clocking. . . .27 3.9 Timing waveforms for TSPC latch based clocking. . . .28 3.10 Potential skew hazard with TSPC scheme [44] . . . .30 3.11 Clocking against the data flow to exploit skew [44]. . . .30 3.12 Non-local communication problem solution [44]. . . .31 3.13 SEM photographs of defects from early PE fabrications . .35 3.14 Defect density vs. defect radius. . . . .36 3.15 Critical area for Parallel Conductors . . . .38 4.1 System Architecture. . . . . .47 4.2 Processor Architecture . . . . .49 4.3 Standard Modulo P Architecture . . . .51 4.4 Modulo-P Adder Building Block Primitives . . . .52 4.5 Carry Select Modulo Adder . . . . .53 4.6 Forward-mapping (0) conversion module with GEQRNS log table .54 .. 4.7 Inverse-mapping (0-') conversion module . . . . . . . . 55 4.8 CRT block diagram . . . . . . . . . . . . . . 56 5.1 TSPC Pipeline Register . . . . . . . . . . . . 58 5.2 SPICE simulation of fast transition path for shift register . . . 61 5.3 TSPC Shift Register Cell with Storage . . . . . . . . 62 5.4 Floorplan of Exponentiation ROM . . . . . . . . . . 63 5.5 Key ROM Circuit Elements . . . . . . . . . . . . 63 5.6 SPICE simulation of ROM operation . . . . . . . . . 66 5.7 Die photograph of processor . . . . . . . . . . . . 69 5.8 Oscilloscope photo of clock signal and output bit zero . . . . 70 5.9 Pass-through test . . . . . . . . . . . . . . . 71 5.10 Oscilloscope photo of pass-through test output . . . . . . 72 5.11 SPICE simulation of pass-through test . . . . . . . . . 72 5.12 Processor architecture of first version . . . . . . . . . 75 5.13 Die photograph of first version of PE . . . . . . . . . 76 5.14 Oscilloscope photo of non-overlapping clocks for first chip . . . 77 5.15 Processor architecture of second version . . . . . . . . 77 5.16 Die photograph of second version of PE . . . . . . . . 78 6.1 Yield Curves for Various Length Arrays (Scheme 1) . . . . . 86 6.2 Yield Curves for Various Length Arrays (Scheme 2) . . . . . 91 6.3 System Areas for Scheme I (lower) and Scheme 2 (higher) . . . 91 6.4 Adjusted Yield Curves For Scheme I (Best Case) . . . . . 92 6.5 Adjusted Yield Curves For Scheme 1 (Worst Case) . . . . . 92 6.6 Adjusted Yield Curves For Scheme 2 (Best Case) . . . . . 93 6.7 Adjusted Yield Curves For Scheme 2 (Worst Case) . . . . . 93 A.1 ROM Word-line Decoder Cell . . . . . . . . . . . 101 .. A.2 ROM Sense Amplifier 102 A.3 ROM Programming Matrix 103 A.4 Mod P Building Block (Zero) . 104 A.5 Mod P Building Block (One) 105 A.6 DSSR Cell . . 106 A.7 Pipeline Register with Direction Logic 107 A.8 Reconfigurable Switch Element . 108 .. Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy A FAULT TOLERANT GEQRNS PROCESSING ELEMENT FOR LINEAR SYSTOLIC ARRAY DSP APPLICATIONS By Jeremy C. Smith August 1994 Chairman:, Dr. Fred J. Taylor Major Department: Electrical Engineering In this work the design of a Galois Enhanced Quadratic Residue Number System (GEQRNS) processor is presented, which can be used to construct linear systolic arrays. The processor architecture has been optimized to perform multiplyaccumulate type operations on complex operands. The properties of finite fields have been exploited to perform this complex multiplication in a manner which results in greatly reduced hardware complexity. The processor is also shown to have a high degree of tolerance to manufacturing defects and faults which can occur during operation. The combination of these two factors makes this an ideal candidate for array signal processing applications, where high complex arithmetic data rates are required. A prototype processing element has been fabricated in 1.5 Ptm CMOS technology, which is shown to operate at 40 MHz. .. CHAPTER 1 INTRODUCTION Arithmetic bandwidth continues to remain the principal limitation in high speed Digital Signal Processing (DSP) applications. In the past, systolic arrays have been proposed as a means to achieve high computational throughput for compute bound applications [14]. The highly modular nature of systolic arrays makes them attractive for larger than conventional levels of integration such as Ultra Large Scale Integration (ULSI), and Wafer Scale Integration (WSI). In an array processor, each building-block cell or Processing Element (PE) performs some basic arithmetic operation on data which arrives at its inputs. The data flow is in some predetermined and regular ordering, so that operands arrive at the correct processor at the correct time. The architecture of each PE is highly optimized and is then repeated over a large silicon area. In order to realize large monolithic arrays of processing elements, it is necessa ry to cope with the fact that many of the processors in an arbitrary array will have some fatal defect at the time of manufacture. Additionally, as chip transistor count and scaling density increases, so does the probability of operational failure, due to biasrelated physical phenomena [8]. In this work the design of a Residue Number System (RNS) processor is presented, which is used to construct a linear systolic array. The processor architecture has been optimized to perform multiply-accumulate type operations on complex operands. The properties of finite fields have been exploited to perform this complex multiplication in a manner which results in greatly reduced hardware complexity. .. The processor is also shown to have a high degree of tolerance to manufacturing defects and faults which occur during operation. The combination of these two factors makes this an ideal candidate for signal processing applications, where high complex arithmetic data rates are required. In section two, an introduction to the theory leading up to the processor architecture is presented. It will be shown how complex multiplication can be performed in two non-communicating parallel channels via the Quadratic Residue Number System (QRNS) mapping. Furthermore, the mapping may be taken to one more level, where the actual multiplication is performed as a sum of two number-theoretic exponents. Next, some bounds are given on the maximum length of a complex inner product that can be computed, within the given dynamic range of the system. Finally, the chapter concludes with an illustrative numerical example of the mapping techniques. Some key implementation issues which relate to the design of large area integrated circuits (ICs) are presented in Chapter Three. In a broad sense, these are synchronization and manufacturing yield. The first section of Chapter Three describes the clocking techniques that have been historically used in integrated circuits and some of their limitations. The section concludes with the introduction of the true single phase clocked (TSPC) technique, which represents the latest development in synchronous system design. The second section of Chapter Three presents the key issues of IC manufacturing. A physical notion of manufacturing defects will be developed along with some models used to predict integrated circuit yield. An overview of the proposed system will be presented in Chapter Four, along with the architectural design of the processing element. The design tradeoffs which resulted in the final PE implementation are discussed in detail. Finally, the architecture of the support modules necessary to perform the forward and reverse mappings of the input and output data are presented. It is shown that these conversion elements can be implemented exclusively, with the key modules of the PE. .. The VLSI design of the PE is presented in Chapter Five. The chapter focuses heavily on the transistor-level design of the PE. The internal details of each major module of the PE are presented along with computer simulation of their behavior. Some results of the testing of fabricated chips are then presented. It is shown that the PE is capable of maintaining a very high data rate, which is due, ultimately, to the aggressive design techniques used for its electronics. Finally, a discussion of the earlier versions of the PE is presented, which detail the evolution and optimization of the current architecture. An analysis of the fault-tolerant properties of the proposed system is given in Chapter Six. It is shown that the yield of a large-area sixteen processor array can be significantly increased by the chosen redundancy scheme. This scheme is then compared to one which is traditionally used for RNS systems and is shown to be far more efficient and beneficial. Finally, Chapter Seven summarizes the accomplishments of this dissertation. Some concluding remarks and future directions which this work might take, are also presented. .. CHAPTER 2 THEORY 2.1 The Quadratic Residue Number System (QRNS) The Residue Numbering System (RNS) has long been proposed as a means of achieving high-computational bandwidths in signal processing systems [34, 26]. The RNS gets its speed advantage because computations over a large base ring can be implemented over smaller computation rings, due to an isomorphism between elements in the base ring and the direct sum of the computation rings. An integer X in the RNS is represented by an L-tuple of residues: X = (Xl,.,XL) (2.1) where xi =< X >mi is the ith residue and mi is the ith modulus. The production rule for the ith digit in a RNS computation is zi = < Xi + Yi >m, (2.2) zi = < Xi X Yi >mi which represents modular addition and multiplication, respectively. The importance of Equation 2.2 is that the computation of any digit in the L-tuple is independent of any other digit. This means that there are no carries between the residue channels. If the residue channels are of small wordwidth, then high computation rates can be achieved in physical systems. This is the central theme in RNS implementations. The rule which maps computations over the implementation rings back to the base ring is the Chinese Remainder Theorem (CRT). The CRT is given below: .. X fL X = < rhi x < (ri)-1 Xi >m > M (mod M) (2.3) Where M = ill mi, and for i,j E {1,2,3,.,L}, gcd(mi, mj) = 1 for i 5j, and rhi = M/mi, with rhi x (nrhi)-1 = 1. A historical complaint about RNS systems is that the speed gains obtained by the fast parallel channels are lost in the CRT since it requires a final mod(M) operation across the entire dynamic range. However, this is less of an issue today as large wordwidth fast binary adders are regularly demonstrated in the literature [23, 27]. As we will see shortly, smaller binary adders can be used to make larger modulo adders, with minimal area complexity. Complex operations in the RNS can be performed by simply emulating conventional architectures with RNS elements (Complex Residue Numbering System (CRNS)). However, the QRNS first introduced by Leung [17] and later developed by Krogmeier and Jenkins [12] is a much better way of performing complex operations. In QRNS real and imaginary components are encoded into two independent quantities, whereby complex operations can be performed independently in two parallel channels. This requires that the moduli be restricted to primes of the form 4k + 1. If this is so, the equation x2 + 1 = 0 (mod p) (2.4) has two solutions in the ring Zp, denoted by 3 and 3-1, which are additive and multiplicative inverses of each other. We define a forward mapping 0: Zp[j]/(j 2 + 1) --+ ZP x Zp to be 0(a + jb) = (z,z*) (2.5) Z (2.5) z < a +b >P z*- < a -b >P We will call the z and z* operands the normal and conjugate components, respectively. The inverse mapping 0-': Z, x ZP Zp[j]/(j2 + 1) is given by .. 0-I(z,z*) =< 2-1(z + z*) >p +j < 2-1-1(z z*) >p (2.6) If (z, z*), (w, w*) E Z, x Z,, then addition and multiplication operations in the ring < Zp x Zp,, +,. > are given by (z,z*) + (w, w*) = (z + w, z* + w*) (2.7) (z, z*) (w, w*)= (zw, z*w*) Since the z and z* channels are independent, they can be implemented in two separate channels. Complex arithmetic can thus be performed in two simultaneous operations, executed in one clock cycle. 2.2 The Galois-Enhanced QRNS (GEQRNS) The properties of Galois fields can be used to further simplify complex multiplication in the RNS [25, 24, 18, 35]. It is well known that for any prime modulus p that there exists some a E Zp that generates all non-zero elements of the field GF(p). That is, any non-zero element in Zp can be represented by ak, where k E {0, 1,2,. ,p 2}. Since we can represent all elements of GF(p) {0} by exponents, multiplication can be performed via exponent addition. This is highly desirable from a hardware standpoint since n-bit adders tend to be smaller and faster than n-bit multipliers. A number theoretic logarithm table is used to obtain the power of a for each QRNS operand, and an antilogarithm table is used to recover the summed powers (modulo p-i). Exploitation of this cyclic property also permits the use of moduli which are larger than those typically used for RNS systems (typically less than five bits), since a hardware multiplier is not needed. This translates into increased dynamic range for fewer channels. Eight bit moduli have been used in this implementation, but the technique could easily be extended to 10 or 11 bit moduli. Beyond this, the logarithm and antilogarithm tables become too large and slow to be of beneficial use. .. I -2.3 Dynamic Range The legitimate range of integers in a RNS system is [0, M 1] (where M II1 Ps). All 4k + 1 primes bounded by eight bits belong to the set { 241, 233, 197, 181, 173, 157, 149, 137, 113, 109, 101, 97, 89, 73, 61, 57, 53, 41, 37, 29, 17, 13, 5 }. In theory, a RNS system could be constructed in which the maximum range was the product of all of these primes 7.796643721 x 1042( [2142J). Clearly this would result in an impractical implementation, as a massive CRT would be needed to recover the residues. Systems of practical interest would constitute moduli sets of say the first eight moduli. If a signed representation for integers is desired, we can divide the interval [0, M) up evenly into a positive half and a negative half. Since M will be odd for any product of moduli we have defined, the dynamic range will be [-(M 1)/2, (M 1)/2]. Each integer X is mapped onto the range [0, M 1] according to =X (mod pi) X > 0 x = Ixx2.,L = -~p-X (odp) ~ (2.8) A (X (mod pi)) X< 0 where, X mod(pi) is the least positive residue of X with respect to pi. The negative part of the dynamic range thus maps to the upper part of the legitimate range: PositiveRange : [0, (M 1)/2] (2.9) NegativeRange : [(M + 1)/2, M 1] Table 2.1 depicts the maximum ranges achievable for eight through four modulus systems. We will consider the four modulus case. We are interested in performing inner product computations of the form: N-1 c = 1 a(k)b(k) (2.10) k=O .. where a(k) and b(k) are complex sequences. We will assume that the real and imaginary parts of both sequences are signed numbers where -2' + 1 < a, ai 5 2' 1 (2.11) -20 + 1 < b ,bi < 20 I The real and imaginary components of Equation 2.10 will thus satisfy the bounds 2N(2a 1)(20 1) < c, _< 2N(2' 1)(21' 1) (2.12) We must now contain these limits within our total dynamic range so that overflow will not occur during the computation of Equation 2.10, we thus obtain the following inequality (M- 1) > 2N(2c_ 1)(2# 1) (2.13) 2 which implies that the maximum inner product length NMAX is M-1 NMAX <_ 4(2c 1)(20 1) (2.14) Some tabulated inner product lengths are shown in Table 2.2 for various values of a and /3. We will assume that integers with a,/3 > 7 represent quantities which are known a priori, as it is unlikely that numbers of larger wordwidths would be available from high-speed signal acquisition circuits. Large wordwidth quantities would typically be filter coefficients, which can be reduced modulo pi by a host processor, prior to entering the RNS system. Thus, two random eight-bit data streams, or one random eight-bit and one pre-known data stream of wordwidth greater than eight bits can be input. .. Table 2.1: Table of Maximum Dynamic Ranges for Eight to Four Modulus System. Dynamic Range Modulus Set H- Closest power of 2 241,233,197,181,173,157,149,137 1110121095908704853 [259J 241,233,197,181,173,157,149 8103073692764269 L252] 241,233,197,181,173,157 54383044917881 L245J 241,233,197,181,173 346388821133 [238] 241,233,197,181 2002247521 L2 30 Table 2.2: Table of Maximum Inner Product Lengths Maximum Inner Product Length a # NMAX 7 7 31,034 7 9 7,713 7 11 1,925 7 13 481 7 15 120 2.4 Example We will now consider a sample calculation based on the theory presented so far. For this simple case, the smallest two 4k + 1 primes will be used as moduli. These are pi = 5 and P2 = 13. Some preliminary constants that will be needed by Equation 2.3, Equation 2.5 and Equation 2.6 will be presented first, as well as the contents of the lookup tables needed to compute the number theoretic logarithm and antilogarithm values. For the the CRT (Equation 2.3) we will need to know the values of M, fil, (rl)-, rh2 and (rn2)-1. These are obtained as follows: .. M =Imi = M= 5 x 13 = 65 1 = rhi =13 mi2 513 135 rn2=5 < 7-2 X (772)_ >13 =-- 1 = (rtI2)-1 -- 8 The forward QRNS mapping (Equation 2.5) requires that we find the two constants such that the equation < x2 + 1 0 >P can be solved. These are obtained for the moduli used here as follows: 1=: f12 + 1=3 (2.16) 2 +1 013 = 325 32 -8 We note that <2x3>5 = l and that <2+3>5 = 0, thus 2 and 3 are multiplicative and additive inverses of each other, modulo 5. Similarly,-< 5 x 8 >13 = 1 and <5 + 8 >13 = 0. Thus, two elements always exist in each case, which behave exactly like the imaginary operators (j) which we are familiar with. The inverse QRNS mapping requires that we also find the multiplicative inverse of 2, modulo our prime moduli. These are: < 2-1 >5 3 (2.17) < 2- >13 7 Finally, we need to obtain the logarithm-antilogarithm tables to perform the QRNS to GEQRNS mapping and the GEQRNS to QRNS inverse mapping, respectively. We recall that we can only generate the non-zero elements in GF(p) with some ak (where k is modulo p 1). We must thus consider a zero as a special case, which will be denoted by *. The tables are given below, with the generators for each case. The number theoretic logarithm is obtained from going right-to-left in the tables, and the anti-logarithm, from left-to-right. .. Table 2.3: Log-Antilog Table for pi = 5. Log-Antilog Table for pi = 5, a = 3 Power < a 0 < 3<0>4 >5 1 1 < 3<1>4 >5 3 2 < 3<2>4 >5 4 3 < 3<3>4 >5 2 0 Table 2.4: Log-Antilog Table for p2 = 13. .. Now, suppose we wish to compute the product of two complex numbers 6 +j3 and 4 + j5. The product using standard arithmetic is 9 + j42. Let us now compute the product using RNS. We must first perform the forward QRNS mapping: 0(6 +j3) (z, z*) z (<6+f x3>5,<6+2x3>13) = (2,8) Z* (<6-f J1 x3 ,<6-2 x3>13) = (0,4) 0(4 +j5) (w,w*) (2.18) w (<4+fJX5>5,< 4-+-f2x5>13) = (4,3) w* = (<4-f X5>5,<4-f2x5>13) = (4,5) Thus, our complex numbers map into the set of ordered pairs 6+j3 *- (2,8)(0,4) 4+j5 4-4 (4,3)(4,5) (2.19) At this point we can perform the multiplication as an actual multiplication as in QRNS, or we can use logarithmic addition as in GEQRNS. For now we will use QRNS. Performing component wise multiplication as usual, we obtain (2,8)(0,4) X (4,3)(4,5) 4 (2.20) (< 2 x 4 >5, < 8 x 3 >13)(< 0 x 4 >5, < 4 x 5 >13) (3,11)(0,7) We must now use the inverse QRNS mapping, which yields 0-11(3,0) = < (2-1(3 + 0) +j2-1(J1-(3 -0) >, = <3x3+j3x3x3>5 = 4+j2 (2.21) 0-12(11,7) = < (2-1(11 + 7) + j2-1(f2)-1(11 7) >13 = <7x18+j7x8x4>13 = 9+j3 .. Finally, we must use a real and an imaginary CRT to recover our standard integer representation. The following expressions result R < < rhx< 1- x4 >5 >65 + = <<13x<2x4>5>65+<5x<8X9>3>65>65 = <39+35>65 = 9 a= < < rhx < ril- x 2 >5 >65 + < rA2 < r42- x 3 >13 >65 >65 (2.22) S< <13 x < 2 x 2 >5 >65 +<5x<8x3>3>65>65 = <52+55>65 =42 Thus, we obtain the same product as before. Now, we will perform the multiplication in Equation 2.20 using our GEQRNS logarithm tables. We will simply use Table 2.3 and Table 2.4 to lookup the logarithm and antilogarithms of the operands. Thus, (2, 8)(0,4) x (4,3)(4,5) 4 (3 3, 79) (*, 710) x (32, 7s)(32, 73) (2.23) 4 (3<3+2>4, 7<9+8>12)(*, 7<10+3>12) 4 (31, 7-) (*, 71) 4 (3,11)(0,7) We obtain the same result as we did in Equation 2.20, and thus, if we proceed with the inverse QRNS mapping and CRT, will obtain the same final result. Finally, we point out that the GEQRNS is only defined for multiplication. As we will see later, this encoding is highly desirable from a hardware standpoint. In Chapters Four and Five, the architecture of the multiply-accumulate processor is presented. Operands are input to the multiplier portion of the chip as GEQRNS exponents. Once they .. 14 are multiplied, their product is converted back to QRNS inside the processor and subsequently used in the accumulate sections of the chip. .. CHAPTER KEY ARRAY PROCESSOR IMPLEMENTATION ISSUES 3.1 Synchronization The continual increase in integrated circuit scaling density has permitted the development of chips which simultaneously exhibit increased complexity and operating speed. It is now possible to build entire systems on a single chip which consist of many interacting circuit elements. By far, the largest gains in integration are attained with monolithic (single chip) ICs. This is because the delay times associated with communication between modules in chip can easily be an order of magnitude less than those associated with chip-to-chip communication. Synchronous systems constitute the bulk of chips fabricated today. A synchronous system is one in which data is passed to or from communicating modules in a chip on the active "edges" or "states" of a global clock. This greatly simplifies the design of individual circuit elements as data only needs to be stable at these edges or states, rather than in continuous time. As die areas and clock speeds continue to grow, however, it becomes more and more difficult to guarantee that global clock signals arrive at different locations on a chip at the same time. The differences in the arrival times of global clocking signals are due to differences in the path lengths to individual modules. Even if these path lengths can be physically made the same, there are random unavoidable variations in the delay characteristics of the paths that are intrinsic to the manufacturing process. Additionally, the time delays of the clock paths are influenced by thermal and power supply variations, which can also be random in nature or dependent on operating conditions. The difference between arrival times of the clock signal is known as clock .. skew. Clock synchronization is a nontrivial problem for present-day large area, high performance die [6]. Clock skew is a fundamental limitation to the maximum speed achievable for very fast chips. As the cycle times of these chips decreases, the skew time becomes more and more of a significant fraction of the total cycle time. The problem is particularly aggravated when data must be passed to and from distant modules in a chip. The choice of a clocking strategy is thus of paramount importance for the design of high performance integrated circuits. The general trend with time has been a reduction in the number of clock signals that are generated and routed around a chip. There are associated tradeoffs, however, in circuit complexity, speed and clocking safety. The sections that follow will describe some of the more modern clocking schemes that have been used successfully in integrated circuits in the past and some emerging technologies for very high performance chips. 3.1.1 Traditional Approaches Pseudo Single Phase Latch Based Systems The simplest type of data storage element is a latch. Latches are used toehold data at the inputs and outputs of combinational logic gates. In is simplest form, a latch passes data present at its input to its output when the clock is high (active). This is the transparent phase. If the data changes at the input of the latch when the clock is high, it will also change at the output after the time it takes for the change to propagate through the latch. When the clock goes low, the data that was present at the falling edge of the clock is stored and cannot change. This is the nontransparent phase. Latches exhibit the lowest transistor count, due to their simplicity. This factor motivates their use in VLSI systems. In later sections, we will expand our definitions of transparent and non-transparent latch phases. .. Inputs Output -*Li 0 LICombinational Next Logic Stage T Li (D. Present Next State State (FD Figure 3.1: Single Phase Latch System Signals propagate through combinational logic networks at different rates, depending on their values. This is due to the internal characteristics of the transistor switching paths comprising the gates. It is not uncommon, for example, to find propagation delays for highs to be twice as long as those for lows, or vice versa. This difference in delay is also related to the function being implemented and to combinations of the input variables. Consider the implementation of a state machine shown in Figure 3.1, which employs a pseudo single phase latch clocking scheme. The output to the next stage and the next state information, are computed from the present inputs and present state data. New data is sampled by the logic network just after the rising edge of the clock, is modified by the combinational logic (CL) and should be ready to be passed on the the next stage (and feedback path) just before the next rising edge of the clock. We are interested on placing constraints on the allowable delays in the logic so that the maximum operating frequency can be obtained. The clock period, ro, is given by the sum of the high and low phases as ro= TrH -I-rL. We desire the clocking to be data independent, which requires that the slowest delay in the logic be less than r,6. At the .. same time we require the fastest delay in the logic to be slower than TH, otherwise a potential conflict could occur. If the fast path delay was significantly faster than -rH then the newly generated data from the CL network could race through the feedback path and to the next stage, thereby corrupting the previously generated (valid) data. Non-deterministic behavior of the system results is this phenomenon occurs. This is called a race condition which must be avoided at all costs. The delay of the CL network, TCL, is thus subject to the two-sided constraint: TH < TCL < 7* (3.1) To put it succinctly, we require that the slow path be fast enough and the fast path be slow enough. This two-sided requirement is very difficult to guarantee in VLSI systems, in the context of process parameters which have some statistical distribution. This clocking scheme was used in some early VLSI chips, but was later abandoned due to its implicit hazards. More security can be obtained by using a multiphase scheme. The tradeoff being, that the simplicity of this scheme is forfeited for reduced risk and ease of design. Non-overlapping Pseudo Two Phase Clocking Non-overlapping pseudo two phase clocking (NPTC) has been the mainstay of the semiconductor industry for several years now. Most integrated circuits designed today, still employ a NPTC scheme. Its popularity has been due to its relative safety and immunity to race conditions. This security is achieved by the introduction of a second clock phase. The active phase of the second clock does not overlap with the active phase of the first clock. There is thus no possibility of a race condition occuring. This is shown in Figure 3.2. Here, a double latch scheme is employed. New input data is let in to the Li latch just after the rising edge of 01. On the falling edge of qS1 it is "frozen" and cannot change again. After time TA, q52 becomes active and the new data propagates to the .. Inputs Li .)12 Outputs LI --. L21 Combinational Logic 01 02 01 02 Next Stage L2- L1 4 Present Next State State TT (2 O Figure 3.2: Double-latch non-overlapping pseudo two phase system CL network. We notice that the fast path race condition has been eliminated, as even if the CL network is very fast for a particular input (i.e. would have computed the new output with a delay less than rj), it could not race to the next stage (or through the feedback path) since the L2 latches are non-transparent. A two-sided constraint has now been reduced to a one-sided constraint. Now, the only requirement of the CL network is that it meet the upper bound on the slowest transition path. This is satisfied if the following equation holds true: TCL < 2 -+ TB + T1 (3.2) Or TCL < To TA where we define To = ro, = T2 = rl + TA + T + TB. We notice that the TA time delay is an overhead that must paid in every cycle. This is the price we have paid for timing safety, along with the increased complexity of the double latches and wiring of the second phase. We also notice that we have effectively made an edge-triggered latch from our cascade of Li and L2 latches, as new data enters the system on the rising edge of 2. This idea will be important later, and we will call an edge sensitive latch a Flip-flop (FF). Flip-flops can be both negative and positive .. ID2 (DI Figure 3.3: High performance non-overlapping pseudo two phase system edge sensitive. The time wasted during 7"A can be gained back if the CL network can be partitioned appropriately. This is shown in Figure 3.3. Here, combinational logic has been placed between latches, rather than after a cascade of two latches. The advantage of this scheme can be appreciated by examining the constraint equations, which can be obtained from a similar analysis: 'TCL1 < T1 TA + 72 TCL2 < 72 + TB+T1 (3.3) The sum of the CL network delays must be less than the clock period, or TCLl + TCL2 < rT. Any combination of delay times that satisfies this constraint can be implemented. If one of the CL networks is faster than the other, we can thus trade delay giving the slow one more time and the fast one less time. The total delay, TCL1 + TCL2, now approaches the clock period, which is more efficient than before. The NPTC clocking scheme is safe as long as the "dead-time" between the phases can be maintained. In the presence of clock skew, however, this requirement .. 012 012 >20 I __C > -d 011 CLI Figure 3.4: Delay transformation model may be violated. For example, if two non-local modules are communicating, then the relative differences in path delays may degrade our safety margin enough for to cause timing errors. We can model the effects of skew by introducing a delay transformation that preserves the overall timing scheme presented so far. For a general logic module shown in Figure 3.4, if we add a positive delay to the all inputs and subtract this delay from all outputs, the overall timing remains the same. We can thus model the effects of skew by considering an overall timing ioop. A circuit with known delays through the combinational logic and uncertain clock skew can be transformed into a system with uncertain delays through the combinational network and no clock skew [7]. Delay is thus added to one piece of the combinational network and subtracted from the other. This delay may be positive or negative. Negative delay has no physical significance in a real system. Negative delays have significance in the transformed system, however. We note that if q$1 is delayed more than q$2 such that this delay is greater than of equal to 7-A an overlap of active phases results, which requires twosided constraints as in the case of the single phase latch clocking. The system is likely to fail at this point. Pseudo Single Phase Edge Clocking If edge triggering is used for the system in Figure 3.1 then the drawbacks of using an additional clock phase would be avoided. Data would move to the next .. adjacent stage (and to the feedback path) on the rising edge of the clock and thus, would not be subject to the lower bound on logic delay as before. Of course the system would still be vulnerable to clock skew between communicating non-local modules. Single phase edge based clocking and NPTC schemes have been used successfully in integrated circuits, with the former associated with higher performance. At this point, the reader is probably wondering why the word "pseudo" appears in all of the descriptions. This is because we have purposefully stayed away from the internal details of the latches. In reality, complementary (inverted) phases of the clock signals must be generated to make all of our latches work. This is due to the nature of CMOS logic which employs two different species of transistors to pass the full range of logic values. If we view the transistors as ideal switches, then their operation (in the most elementary form) requires that a high voltage turns the NMOS device on and the PMOS device off. The converse is true, that a low turns the NMOS off and the PMOS on. The NMOS device will pass a strong zero and a weak one, while the PMOS will pass a strong one and a weak zero. The simplest switch that will pass the full logic level range is a parallel combination of an NMOS and PMOS device, called a transmission gate. This is shown in Figure 3.5, where a simple positive edge-triggered latch is shown. The circuit works by letting the new data into the first half of the latch during the low phase of q$ and presenting it to the output during the high phase of q$. The internal states in the latch are stored on the parasitic capacitances at the inputs of the inverters in the latch (dynamic logic). If the switching time of 0 is zero as in the ideal case, then there is no potential race condition. In reality, however, this time cannot be zero and the clock signal must have a finite slope. There is thus a built-in transparency during the interval r. If the propagation delay through the latch is on the order of r then a race condition exists. We must thus keep r as small as possible, which implies that the clock edge-rate must be high. To gain an appreciation of the problem, suppose that we are working with .. (D in out OA B Ideal case (D (D D Finite transition time (D Finite transition time with inversion delay Figure 3.5: Transparency problem introduced by complementary phase of clock. a typical 5V chip, and we require that 7- < 2ns. The clock edge rate must thus be greater than 2.5 billion volts per second! Of course the output of the latch cannot rise in zero time (nor can the inverters in the latch), so this will relax our delay constraint somewhat. Nevertheless, the transition time of the clock and its complement must be very small. The problem is compounded since is typically generated locally from 0. This implies that will always lag behind 0 since it cannot be produced in zero time, which increases r. There are thus built-in problems associated with inverting the clock signal for a complementary phase. If we had a family of latch circuits that could operate with only one clock phase then this problem would be solved. The edge rate sensitivity will be a fundamental limitation, if the logic block that follows the latches can switch in times on the order of the clock transition time. For very high performance chips this is in fact the case, and very careful attention must be paid to the worst case clock edge rate. .. 3.1.2 True Single Phase Clocked Systems The True-Single-Phase-Clocking (TSPC) scheme [43, 44, 1] represents the state of the art in integrated circuit clocking. In TSPC, the clock signal is never inverted to produce a complementary phase, which significantly ameliorates the problems pointed out earlier. TSPC schemes become more attractive as chip die areas grow towards ULSI and WSI dimensions, as only one clock line needs to be routed around the chip and since clock skew between phases is eliminated. It also much easier to guarantee the long term reliability of a single clock interconnect, or distribution network. Reducing the clocking complexity of the storage elements is important for large systems since the clock capacitive load influences the overall system speed. At the heart of the technique is the use of two types of latch circuits which are alternately transparent on either the high or low phases of the clock. The latch which is transparent on the high phase of the clock and is non-transparent on the low phase is called the N-latch. Likewise, the latch transparent on the low phase and non-transparent on the high phase is called the P-latch. The latches permit combinational logic circuits to be placed between N and P latch sections, or actually embedded in the latches themselves. The scheme supports static or dynamic CMOS logic elements, and is thus fully applicable to all types of CMOS systems. We will defer the discussion of specific circuit topologies of the latch elements until Chapter Five. For now, in latch based schemes, we can deal only with the abstraction of N-blocks and P-blocks, where "blocks" consist of only their respective latch elements together with combinational logic. We note that the notion of combinational logic elements contained in or between latch elements is equivalent. The previously defined concepts of edge-based systems still hold. A positive edge flip-flop is made from a cascade of a P-latch followed by a N-latch. Similarly, a negative edge flip-flop is made from a cascade of a N-latch followed by a P-latch. .. 0 att 2 negative skew positive skew Figure 3.6: System model for TSPC edge based clocking. TSPC Edge Based Systems The effects of clock skew in a TSPC scheme can be examined with the system shown in Figure 3.6. Skew is defined as the difference in time between clock signals arriving at the receiving flip-flop relative to the transmitting flip-flop. Skew may take on a negative or positive value as shown, depending on the relative magnitudes of the path delays (A, and A2). We note that negative skew has a positive value for A21 and positive skew has a negative value for A21.- We will also define 7, as the setup-time, which is the minimum amount of time that the data must be stable prior to the active edge of the clock. Likewise, we can define 7-h as the hold-time, which is the minimum amount of time that the data must be held after the active edge of the clock. There are also delay times associated with the propagation times for new data through the flip-flops and combinational logic circuits. We will define the propagation delay through the flip-flops (i.e. after the active edge) by 7Q, and the propagation delay through the CL logic by TCL. All of the quantities defined so far may take on maximum and minimum values, which will be denoted with subscripts M and m, respectively. .. (a) I 'TQM +'tCLM -A21 I (b) M Ai21I 'tOM +tCLM Figure 3.7: Timing waveforms for TSPC edge based clocking. As before, we are interested in deriving a set of constraint equations to characterize our system. We wish to be able to run the system at the maximum allowable clock frequency. We now consider the case with clock skew when non-local flip-flops are communicating. The timing diagram for the situation where A2 > A1 (negative skew) is shown in Case (b) of Figure 3.7 The maximum allowable clock period can be expressed as: To __ TQM + TCLM + Ts A21m (3.4) On the other hand, the minimum delays must be such that the newly generated data does not reach the distant flip-flop before its hold time. This requires that: TCLm . TQm Th + A21M (3.5) The maximum allowable clock skew in the system is given by: A21M TCLm + TQm Th (3.6) .. Figure 3.8: System model for TSPC latch based clocking. Typically 7rh is near zero for this class of circuits, so the maximum allowable clock skew is just given by the minimum flip-flop and logic delays. The situation for positive clock skew is shown in Case (c) of Figure 3.7 (-A21). Substituting in a negative value for A21 in Equation 3.4, will yield an increase in the maximum clock period. Thus, positive skew will tend to slow the system down. Negative skew will allow the system to operate faster, but will place constraints on the minimum speed of the logic, since fast CL networks will tend to have shorter minimum delay times. TSPC Latch Based Systems We can obtain a similar set of equations for non-local communication between modules in latch based TSPC systems. Our prototype system is shown in Figure 3.8, and timing waveforms are shown in Figure 3.9. For simplicity we will assume that the delays in the P and N latches are the same. Data stored in the N-latch (when q$ goes low) must propagate through the CL network and arrive at the P-latch before its setup time. This is shown in Figure 3.9, Case (a). For negative skew (Case(b)) we thus obtain the following expression which is very similar to Equation 3.4: .. (a) I TOM +'CLM c) A21 'rQm + CLM -C)A21 4 (C) I. ';OM +rCLM Figure 3.9: Timing waveforms for TSPC latch based clocking. T9L TQM + TCLM + Ts A21m (3.7) We note that there is also a constraint on the high width of the clock in order to give N1 enough time to obtain data. This is given by the following equation where TrQM is the maximum delay of the P latch 70,, QM + T., (3.8) Again we must consider the minimum allowable delay in the system. Data must not race through the P latch and the CL network before the hold time of the N2 latch. Thus, the requirement below must hold TCLm + TQm Th + A21M (3.9) The maximum allowable clock skew in the system is given by: A21M : TCLm + TQm Th (3.10) .. Again, positive skew has the effect of lengthening the clock period. Design of these systems must strike a balance between Equation 3.7 Equation 3.8 and Equation 3.10. It is interesting to consider situations in which Equation 3.10 cannot be satisfied [44]. This is shown in Figure 3.10. Here the skew has exceeded the gate delay. Non- deterministic behavior of the system results because the evaluate phases of N and P blocks overlap. The system can be made to operate correctly, however, by simply clocking against the data flow. This is shown in Figure 3.11. In this way, the evaluation phase of the next block will be completely contained in the data-stable zone of the last block. It is thus possible to exploit the skew, if its direction can be guaranteed. Another solution is to only latch data on the start transitions of the evaluation phases. This can be accomplished by adding a "re- synchronizing" N-block in front of the P block as shown in Figure 3.12. This illustrates the flexibility of the technique, where we can selectively add edge-triggering where needed. Finally we note that in systems where the data flow must be in two directions, a totally edgebased scheme is best. The maximum skew in this case is nearly up to a half clock cycle [44]. 3.2 Synchronous vs. Asynchronous Systems Since the early days of systolic arrays, it has been realized that clock synchronization over a large silicon area would be a limiting factor. In an attempt to solve this problem, Kung [15] proposed his Wavefront Array, in which data would move between processing elements in a self-timed manner, via a handshaking protocol. More recently, Afghahi and Svensson [2] have conducted a study of synchronous and asynchronous clocking schemes, for layout groundrules ranging from 3 to 0.3 tim. The study was based on physical entities in actual processes, rather than on speculative models. The results of their findings have important consequences for .. Data N-Block I P-BOCK N-BlOc CK -bIOCK Clock Ac Ac C1C2 C C4 Ci E L E L-g Output Data 1 + Output Data2 2 c Eval.4~ Corrupted by data 2 data1 a C2 L E L E Figure 3.10: Potential skew hazard with TSPC scheme [44]. Data N-Block P-Block N-Block P-Block C Ac 0, Cs A CClock Ci E L E L 4Agi Output Data 1 Output Data 2 Ac- c Eval. Eval., datal data 2 02 L E L E Figure 3.11: Clocking against the data flow to exploit skew [44]. .. Data --N-Block P-BI- -- N-Block C Clock 02 - C 04 CFE L L FE _L HAg- ~ Output Data 1 -+ Output Data 2 C E EL L E LL g Output Data 3 Output Data 4 H C4 L E L E t Eval. i Eval. -data 1data 2 &data 3 1& data 4 t1 t2 Figure 3.12: Non-local communication problem solution [44]. the clocking scheme used for a particular implementation, since the optimum choice (in terms of overall system speed) is intimately related to the module grain size. Some of their findings are reproduced below, as they are relevant to our problem. Asynchronous timing schemes have been proposed as a solution to clock skew in VLSI systems. It is generally realized that fully asynchronous logic (i.e. no clock) requires too much handshaking overhead for practical use when the number of inputs and outputs is large. Present day interest in asynchronous systems centers on locally synchronous, globally asynchronous schemes, where each module in a system operates with its own clock, but communicates with other modules asynchronously. Since data arriving at a module must be processed synchronously, a synchronizer circuit is necessary for each input. The synchronizer is vulnerable to error, if the input signal changes during the edge of the local sampling clock. If this occurs, the synchronizer goes into what is known as a metastable state (MSS), where the output is undefined for some period of time. A synchronization failure potentially results in a system failure. In order to avoid this, a time interval must be allowed for the synchronizer to resolve the MSS. This time interval is an extra delay which impacts .. the overall data rate. Obviously, reducing the module communication rate decreases the likelihood of synchronization failure, at the penalty of reduced system bandwidth. A more favorable approach, is to develop some probalistic bounds on the resolution time, t, of the synchronizer circuit. In this work, to estimate t, a synchronization failure rate of 1 per year was considered acceptable. Synchronization time was shown to be the limiting factor for asynchronous systems. The study showed that the time complexity of synchronous systems is (O (log R)0-') while for asynchronous systems it is O(logR) where R is the size of the system. This suggests that for fine-grained systems (where skew is acceptable) that synchronous clocking should be used, while for coarser grained applications, asynchronous schemes should be used. The authors also showed that where a pipelined clocking mode is used (i.e. the global clock is segmented into an optimum number of small sections and each section driven by a repeater), that synchronous systems will always outperform asynchronous systems. This is very different from the general belief that asynchronous systems will be the fastest possible implementation in a scaled technology. They also showed that speeds up to approximately 2 Ghz. can be achieved in single phase synchronous CMOS systems for 0.3 jim technology, although the line repeaters must be spaced 1 millimeter apart to achieve this. .. 3.3 Fundamental Manufacturing Limitations The occurrence of defects is inherent to the semiconductor manufacturing process. These defects arise due to many physical mechanisms such as particle contamination, imperfections in insulating oxide layers, mask misalignment, step-coverage problems, warping of the wafer during high temperature steps, etc. The first two cases tend to produce random defects, which affect local regions of a wafer, while the remaining three tend to produce defects which affect many chips (global regions) on a wafer. Global defects are usually not considered in defect-tolerant analysis, since they represent gross disturbances in the manufacturing process, and are generally not a function of chip area. Additionally, various process monitors (test circuits placed at strategic locations of a wafer to determine the quality of each manufacturing step) are used to reject (or correct) wafers which exhibit such characteristics early in the process. Consequently, the overall quality of the manufacturing process is determined primarily by local defects. Integrated circuit yield is intimately related to manufacturing defects. Yield is defined as the ratio of the number of working chips on a wafer to the number of chips fabricated, and is always less than 1. For conventional VLSI systems, yield studies pertain to manufacturing economics with the goal of maximizing profits. In the context of ULSI and WSI systems, however, yield relates to fundamental feasibility. Yield is further divided into two broad categories: functional yield and parametric yield. Functional yield (sometimes called catastrophic yield) is determined based on the criterion of a chip successfully performing its desired logical functions. Parametric yield is determined based on the chip meeting some predefined operating specification, such as minimum speed or power dissipation. For our purposes, we will not consider parametric yield since it is usually highly correlated to global disturbances on a wafer. .. 3.3.1 Defect Size Distribution Early work on defects occurring in the semiconductor manufacturing process modeled random defects as dimensionless points, where any defect occurring in an integrated circuit was assumed to cause a failure. A more modern view of defects [28] models them as extra or missing disks of material in the conducting and nonconducting layers of an IC, which are characterized by varying radius and spatial distribution on a wafer. These may take the form of shorts or opens in conducting layers used for interconnections, oxide pinholes in insulating layers which can cause a short (or leakage) between conductors, junction leakages or shorts to the substrate in diffusions, etc. The model assumes that defect types are independent, in that a defect of a particular type does not interact with, or cause, another defect of a different type. In practice this has been shown to be a good approximation [39, pp.lA9-l7l]. Examples of actual defect types from early prototype fabrication runs of the PE are shown in Figure 3.13. These defects may cause an immediate fault, as in Case A (left), or may not cause a fault as in Case B (right). Case A shows a short between two power busses, which was caused by a particle on the chip (the particle is the dark spot). Case B is a pinhole in the passivation layer (overglass) layer, which does not cause a short circuit since there is no conductor above it. Clearly, then, we must consider the nature of a defect in order to determine if it will manifest itself as a circuit fault. Random defects (sometimes called spot defects) are typically caused by particle contamination (dirt) on the chip or on photolithographic masks during manufacture. As alluded to in the previous paragraph, defects are of many differing types. The size distribution function for defects of type i is given by: fi (R) = kiR 0< R < Xo (3.11) Sk2/(R)Pi X0, < R .. Figure 3.13: SEM photographs of defects from early PE fabrications. where R is the defect radius and XOj and pi are parameters which are extracted from the fabrication line. Each manufacturing step in a process has associated with it its own characteristic set of defect types. The parameter i in Equation 3.11 can thus be taken on a mask-by-mask basis (i.e. consider polysilicon shorts and opens, first-level metal shorts and opens etc.). Smaller defects tend to be more numerous than larger defects, since it is more difficult to filter small particles from the ambient environment and manufacturing chemicals. We see in Figure 3.14 that the defect density peaks at the value for X0i. This corresponds to the resolution limit of the photolithography in the process. The physical reason for the peak is that defects of a smaller radius simply cannot be resolved by the photolithography, and thus manifest themselves with decreasing frequency. Typically, minimum design rules are set well above this value, so that the only size distribution exhibited in practice is fi(R) = k In the (R)P, above expression, both Xoj and pi may have different values for each defect type i. Typically, a value of pi P 3 is assumed [28]. As mentioned previously, not all defects in a semiconductor process cause faults. For example, Walker has suggested that if XOi = 0.5 pm and the minimum .. f(R) Minimum design rule. Defect Radius (R). Figure 3.14: Defect density vs. defect radius line separation is 3 /m (i.e. minimum design rule in Figure 3.14), then only one-inseventy-two defects are potentially fault producing [39, pp.41]. With this in mind, we must then consider the effective defect density, D0i, which is the defect density as seen by the layout. The defect density variation with respect to defect radius, Di(R), is thus obtained by multiplying D0i and fi(R). Hence, D i(R ) (R)P, = fi ((3.12) (R)Pi The relationship between parameters Ki, pi and the effective defect density is as follows. Suppose that two metal lines in an IC have a minimum spacing s, and we are interested in determining the effective defect density for shorts. All defects with radius less than s/2 will not be able to cause a short in the layout, regardless of where they lie. The effective defect density, Di-effective, as seen by the layout is then D t jo K dR= Ki J/2 (R,---- (p- 1)()- .. i 2P-)S (3.13) Similarly, the effective defect density for opens in lines of minimum width w, is given by: Di.ef fective = (pi 1)(2)P:1l (3.14) We have seen in the case of this simple example, a relationship between effective defect density and the layout geometry. There is thus a finite probability of a particular defect producing a circuit fault. This idea is further extended into the concept of critical area, which is the portion of a layout sensitive to a defect of a particular radius. Critical area A(R) can be defined for a defect of radius R, as that area on a die in which the center of a circular defect has to fall for a fault to occur in a circuit. This is illustrated in Figure 3.15, where we consider again, the case of a chip consisting of wires of width w spaced s units apart. The total chip area is A0. As we have seen before, defects of radius less than s12 will not cause shorts, and thus, A(R) = 0 for defects with radius R < s12. If we consider defects with radius R > -s/2, A(R) increases. The critical area increases linearly until it reaches A0. This occurs at defect radius ft0 = (.5 + w12), where a fault occurring anywhere on the chip would cause a short. The increase in critical area is linear for this simple case, but for a complex layout, we can only state that critical area will increase monotonically with defect radius. In practice very large defects seldom occur, and the distribution given in Figure 3.14 can be truncated at some maximum radius. .. Critical Area. R < S/2 S/2. Defects never Some defects Defects always cause short. produce short. cause short. A A(R) Ao S/2 S + W/2 Defect Radius (R) Figure 3.15: Critical area for Parallel Conductors. 3.3.2 Defect Spatial Distribution and Yield Models Poisson Statistics The spatial distribution of defects must also be considered when determining circuit yield. Early yield models assumed that defects followed a Poisson distribution, and were considered as point defects. Poisson processes are modeled by the expression: prob{X = x} = (3.15) The three underlying assumptions of a Poisson spatial process are [16]: (1) that the number of events occurring in one segment of space is independent of the number of events in any nonoverlapping segment; (2) that the mean process rate A must remain constant for the span of space considered; (3) the smaller the segment of space, the less likely it is for more than one event to occur in that segment. For yield purposes, we are concerned with the case where X = 0, as this is the condition .. for zero circuit failures. The mean process rate, A, is number of circuit faults. We can define this per process step by Ai, which is given by Ai = D0iAi, with Doi and Aias defined previously (i.e. the defect density and critical area, respectively). The yield of a particular step in a semiconductor process is thus: The total yield of the chip is then the product of the individual yields, or simply: n = fi Yi (3.17) where there are n total defect types. The formal methodology in Equation 3.16 and equation 3.17 of considering defect mechanisms on a mask-by-mask basis with regard to layout dependent critical areas is best left to CAD tools. For analytical purposes, we usually consider overall average defect densities only. For this reason we will drop the i subscript in subsequent discussions, and define the quantity Do to be the average fatal defect density. Critical areas are usually taken to be the area of the entire chip, or the areas of major subsections of the chip. The yield for Poisson distributed defects, thus becomes: Y =CA =e-DOA (3.18) It is still possible to calculate the individual yields of particular sections of a chip with this simplified view, from the area and defect density of that particular section. Equation 3.17 suggests that areas on an integrated circuit which are the most complex (i.e. require more manufacturing steps), will exhibit the lowest yield. This is the case for logic, which usually makes use of all design layers (typically greater than 12 masks). Conversely, interconnection busses which consist of one layer, say second level metal, with no other layers beneath them, only require a few processing .. steps (three or so). The corresponding yields of such sections will be higher than that of same area logic circuits. The statistical independence of failures modeled by the Poisson distribution permits the total yield of a chip to be computed from the product of its individual component parts. This is the most useful property of Poisson based yield models. Modified Poisson Statistics It is now well known that for large chips, the Poisson model gives pessimistic predictions for yield when compared to actual fabrication line data. This is because of a phenomenon known as defect clustering. Defects tend to cluster between lots of wafers, between wafers in the same lot and across individual wafers [11]. Clustering of defects between lots is perhaps the easiest behavior to appreciate, due to the batch oriented nature of the semiconductor process. Manufacturing parameters will certainly change over a period of weeks or months, due to equipment and operatingenvironment variations. Thus, it is reasonable to expect some statistical differences in the yields of identical chips from different batches. It is interesting to consider the physical mechanisms relating to the other types of defect clustering exhibited. Clustering within wafers is due to minute differences in environmental conditions at different locations on the surface of a wafer. Snapper has suggested that the defect clusters are generated when vibration or other environmental changes (i.e. irregular gas flow or pressure changes) cause a cloud of particles to break loose from the manufacturing equipment [32]. When these clouds land on the surface of a wafer, the resulting defects produced will be clustered. Other very subtle mechanisms also influence the spatial characteristics defect patterns. For example, it was observed for many years in the semiconductor industry that defects tended to be random within the center of a wafer, and correlated towards the perimeter. This caused many researchers to divide wafers into concentric zones, where the yield in each zone was modeled by a Poisson distribution with its own defect density. This .. behavior arose because wafers were carried in plastic boxes called "boats", between process steps [32]. The inside of a "boat" is similar in construction to the inside of a slide projector, where grooves permit wafers to be stacked vertically (in parallel). A boat is open on one side only, and dust particles can only approach the wafers within from this side. Suppose a dust cloud is present near a group of wafers in a boat. Even if the particles are uniformly suspended, they are electrostatically attracted to the nearest edge of the wafers due to the electrostatic potential created when the wafer is slid into the boat. This leads to the observed edge clustering. These defect patterns are less seen today, due to improved wafer handling techniques. We also note that the dust cloud would only affect wafers closest to it in the boat, and may not affect other wafers in the same boat. This explains clustering from wafer-to-wafer in the same lot. The mechanisms previously described, suggest that if there is a defect present at some position on a wafer, that it is highly likely that there is another one near by. This directly violates the spatial independence assumption of a Poisson process, which assumes that a defect at a particular location is not correlated with an adjacent defect. Thus, defect locations on a wafer are statistically dependent, rather than independent. This is why purely Poisson expressions do not accurately model integrated circuit yield. Clustering improves yield since it is better to have defects clumped together affecting fewer chips, than randomly distributed, potentially affecting more chips. The yield formula of Equation 3.18 can be modified to account for defect clustering by assuming that defects are still Poisson distributed, but considering A to be a random variable. The mere fact that A is a random variable suggests defect clustering, regardless of the distribution used [11). This technique was first described in the literature by Murphy [19]. If F(A) is a cumulative distribution function for the average number of faults per chip, then associated with F(A) is the probability density function f (A) given by: .. f(A) =dF(A) fdA= A (3.19) where f(A)dA is the probability of having an average number of faults per chip between A and A + dA. The overall yield thus becomes: Y = e-'f(A)dA (3.20) The function f(A) is known as a compounder or mixing function. Murphy reasoned that a bell shaped Gaussian distribution would be appropriate for f(A), although he could not integrate the resulting expression. He approximated the Gaussian distribution with a triangular distribution. The yield expression he obtained matched his manufacturing data more accurately than a Poisson distribution. Many distributions for f(A) have been suggested in the past, but none have gained more acceptance that that first used by Stapper, the Gamma distribution [32, 30]. The Gamma distribution is given below as: f(A) -r-1 Aale# (3.21) where a and P are parameters. The mean and variance of the Gamma distribution is E(A) = ap3 and V(A) = a/. If Equation 3.21 is substituted into Equation 3.20 and solved, the following expression results: prob(X = x) x!(a)(1 + )+ (3.22) This distribution is known as the Negative Binomial distribution. The average number of faults per chip (the grand average) is normally taken to be A where A E(X) = af, so that/3 = Equation 3.22 can thus be expressed as: prob(X = x) = + (3.23) xw!(a)(1 + -),+3. .. The mean and variance of Equation 3.23 are given by: E (X) A -(.4 V(X) =A(1 + )(.4 we note that the variance of this distribution (U2) is greater than the mean, which is different from the Poisson distribution where the variance equals the mean. The parameter a is determined from data on the distribution of defects, and can be calculated from the expression: ce (3.25) U2- A We see from this equation, that as the variance of the defect distribution approaches the mean, the value of a approaches oo. This corresponds to the Poisson case. Small values of a correspond to increased clustering. We can thus account for the Poisson distribution by choosing an appropriate value of a. This suggests that Negative Binomial statistics are more fundamental to IC manufacturing than Poisson statistics. For all practical purposes, a > 10 adequately models the Poisson case. As before, we are interested in the case where X == 0 for yield and Equation 3.23 becomes: Y = prob(X = 0) 1 ( + c'= (I+ D0Ay (3.26) This expression is known as the Negative Binomial Model (NBM), and has been widely used in the industry to forecast integrated circuit yields. The NBM formally contains an additional gross yield term, YO, which multiplies Equation 3.26. This term models the effects of large scale process disturbances, but as before, is generally not considered for preliminary yield analysis, since it is not a function of chip area. Conservative values for Do are between 1 and 2 fatal defects per cm2 and a < 1. An average defect density of 1 per cm2 has remained the defect standard for some time (although probably now less than 0.5 per cm 2 is more appropriate for .. some fabrication lines). It was recently reported that a facility could be considered "world-class" if it was able to maintain an average fatal defect density of 0.3 per cm 2 (in 1992) [41]. In the past, defect densities have kept commercial IC die areas below 2 1 cm Clustering has been shown to apply to large areas of a wafer, which typically exceeds the area of a chip. This is known as large area clustering. If large area clustering is assumed, it is common in analysis to assume that defects are uniformly distributed within the cluster (i.e. within a chip). We note that this was the assumption implicitly made in Equation 3.26, in that the same value of a was applied to the entire chip. To determine if large area clustering holds for a chip of a particular size, it is necessary to examine particle distributions on actual wafers. This is accomplished by first dividing the wafers into square regions called qaudrats. The number of particles which occur per quadrat is then counted so that a frequency distribution for the number of particles per quadrat can be obtained [29]. The parameters of the Negative Binomial distribution can then be determined from a maximum likelihood estimation technique and checked for goodness of fit with a chi-square test. The quadrat area is varied and the process repeated. The variability in the estimates of a can be obtained. The validation of the large-area clustering assumption is based on the overlap of the standard deviations (u,) of the estimated values of a for increasing quadrat areas. For quadrat areas up to a critical value, the ranges will overlap indicating that a can be considered constant. Beyond this point the ranges will no longer overlap, and the value of alpha will begin to increase. Equation 3.26 will no longer be valid beyond this point. The large area clustering assumption has proven to be valid for well over a decade and a half. Equation 3.26 has been used successfully in the industry for many years and for many products. In our yield analysis, we will assume large area clustering. As chip sizes approach wafer scale dimensions, however, it is very much .. 45 a open question as to what yield model is most appropriate. For very large chips the relationships between clusters is critical, as it impacts the amount and type of redundancy needed for fault-tolerance. What essentially happens for very large chip areas is that there is clustering of clusters. There have been several models proposed [31, 22, 38] to evaluate WSJ or near-WSI yields, but there are no standards as of yet. .. CHAPTER 4 SYSTEM ARCHITECTURE 4.1 Architectural Overview Linear systolic arrays can be used to implement a variety of DSP algorithms such as convolution, FIR filtering, Fourier Transforms and polynomial operations [33]. Linear arrays can also be used to perform linear algebraic operations such as matrix-matrix and matrix-vector multiplication [13]. Linear arrays have reduced input output requirements compared to two-dimensional arrays and vector arrays, which remain constant as more processors are added. This is a key point, as large-area chips are typically I/O constrained. Figure 4.1 depicts the architecture of our proposed system. It consists of sixteen multiply-accumulate processing elements (PEs) connected to form a fault tolerant linear array. Here, a PE which has failed is bypassed completely, and replaced by a spare. There is one spare PE per modulus for both normal and conjugate channels. If more than one PE has failed per modulus, then the system can still operate with a reduced number of PEs. We note that it is possible to obtain full utilization of all good processors in a linear array, which, in general, is not the case in a two-dimensional array. 4.2 Multiply Accumulate PE Architecture Figure 4.2 depicts the architectural details of the GEQRNS processing element, and a die photograph is shown in Figure 5.7. The PE has been optimized to perform complex multiply-accumulate type operations on both in-place or partial result data. Two eight-bit operands to be multiplied, x and y, are the exponents of elements ax,ay E GF(p) 10}. The y operand bus (Y-bus) supplies data to the .. CRT-' R Xr6 PE PE PE PE z (z+z xr-jxi o PE PE CONJUGATE PE PE y X CHANNEL Xz .iIi 2(z z) Xi PE PE NA CNOARP z 21(z+z) Jyr+jyi loHo . A i PE PE CONJUGATE PE PE PEP yr-ji CHANNEL z' 2t(zz) yr-jyi log Hf local storage at each PE in the array, since there are some algorithms for which the Xi -0 CHANNEL EP j 2z flow (whether in the same or opposing directions). An example of this is matrix log PE PE CONJUGATE PE PE P CHANNEL lzyr-jyi log Figure 4.1: System Architecture multiplier directly. The x operand bus (X-bus) supplies data to the multiplier and to the input of the data-storage shift register (DSSR). It is desirable to incorporate local storage at each PE in the array, since there are some algorithms for which the data dependency does not permit operands to arrive at each PE via a purely linear flow (whether in the same or opposing directions). An example of this is matrix multiplication, which typically employs a 2-D, or vector array. For signal processing, however, matrix multiplication is normally restricted to the case where at least one matrix is pre-known (usually filter coefficients), or even further to matrix-vector multiplication (i.e. signal vector). We can thus pre-store the columns of the known .. matrix for matrix multiplication (or block multiplication, for large matrices), and linearly propagate the rows of the input matrix or signal along the array. This results in greatly reduced 1/O requirements. In this implementation, the DSSR can be used to store up to sixteen operands which are known a priori. A shift register was chosen over a SRAM since it requires less area than a sixteen by eight-bit SRAM (i.e. no decoders or read/write circuitry) and requires minimal control logic. As it stands, the DSSR is approximately 60% of the size of the multiply- accumulate portion of the PE, which illustrates how area-expensive programmable storage is. If more storage is desired for a particular application, then at some point a SRAM will become more area-efficient, even with the associated increase in overhead. Once data has been loaded into the DSSR, it can be circulated continuously via an internal feedback path. The X-Bus can be freed for other global data-move operations when local prestored data is used. Data shifting in the DSSR can also be halted (which is a significant feature since we are using dynamic latches). This will greatly simplify array data-flow timing, as processors further along the linear chain can wait for operands /partial results from previous processors, with their prestored internal operands "lined up in place" and ready for processing. Just prior to multiplication, it is necessary to check for a zero operand, since zero must be handled as an exception in GEQRNS. An unused binary code word is chosen as the GEQRNS zero (i.e. some value between pi and 28 1). In this case, 255D was chosen, since zero detection will simply be the logical AND of all data bits. If a zero is detected for either operand, a flag is raised, which will set the input of the exponentiation table's pipeline register to zero after the next clock cycle. The output of the modular adder provides the address input to the exponentiation table. We note that we could have used a standard binary adder here, and performed the modular reduction in the ROM. It is much more area efficient, however, to perform .. Figure 4.2: Processor Architecture the modular reduction first, since the size of the ROM is halved. This is evident from a comparison of the relative size of the modular adders and ROM in Figure 5.7. A doubling in ROM area would represent a substantial increase in PE area, whereas our modular adders are only about 50% larger than a similar word-width binary adder. The ROM table has the value of a"'fX+Y i-i programmed at each corresponding address location. The QRNS product is thus obtained at the output of the ROM. The computed product is then fed to one input of another modulo adder, which reduces the computed sum mod(pi). If the second input of this modulo adder is connected in feedback to its output, an accumulator is formed. This mode is used for algorithms requiring results to be computed in place. For algorithms requiring .. partial results to flow from PE to PE, the second input. of the mod(pi) adder is connected to an adjacent processor. A dedicated bi-directional systolic output bus is used to transfer computed QRNS results (in place or partial) to the next adjacent processor in the array, in the natural ordering predicated by the algorithm being implemented. 4.2.1 Modulo-P Adders Figure 4.3 depicts the basic construction of the modulo adders used for the multiplier and accumulator portions of the PE. This is a standard biased-addition scheme [9], where an offset of value 2n~ p, is added to a 2n bit adder to make a mod(pi) adder (i.e. any n-bit binary adder is intrinsically mod(2')). Operation of this scheme requires that the input words be E f{O. (pi 1)} which is accomplished during input conversion. The magnitude of pi is also required to be less than 2' 1. Two binary adders are cascaded such that the output of the first adder is input to the second adder which has an appropriate offset added. Here, eight bit ripple carry adders are used, and the offset added to the second adder is the value (28 pi). The correct mod(p2) sum is selected from the outputs of either the first or second adder via a multiplexer controlled by the logical OR of the carry bits of the first and second adders. In most implementations, standard cell adder modules are used, and the offset programmed by hardwiring inputs to low or high as needed. This is somewhat wasteful as the offset is known a priori, and thus half of the logic of the second adder need not be included. In this implementation, the offset has been bit programmed by only implementing the logic corresponding to an added zero or one at each bit position of the second adder. Basic mod(p) adder primitive cells are then constructed from a FA and the logic corresponding to offset-zero and offset-one (see Figure 4.4). The transmission gate adder presented in [42, pp.317-320] was used to implement the FA circuit, since pass-gate implementations were found to be faster than standard .. Iott4- M .oI- o x V Figure 4.3: Standard Modulo P Architecture Table 4.1: Full Adder truth table. FA Truth Table Inputs Outputs Ci Ai Bi Sj+j Cj+j 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 CMOS realizations. These blocks can then be used to construct a mod(p) adder of arbitrary value. Since the datapath width is only eight bits, a ripple carry scheme can be used here without speed penalty. For larger wordwidths, such as needed in the CRT, a carry select scheme can be used with these same small width ripple carry modulo adders (Figure 4.5). Here, the larger dynamic range is partitioned into m, k bit sections. The offset value of corresponding to 2mk M, where M is the desired modulus is programmed as before by selecting and arranging the appropriate primitive cells. We can think of these zero and one primitives as having two input and output carry bits, and a multiplexer select input. The four possibilities for the input carries can be preprogrammed and selected by the output carries from the previous k bit section. The total modulo add time is thus: .. C24, ONE I PRIMITIVE 01i Q uN Cl 02 uHli Figure 4.4: Modulo-P Adder Building Block Primitives. T,,odM = T kiple + (m 1)Tmux4 + TOR + Tmux2 + 7mux4 (4.1) where, Tmux4, TOR, Tmux2 are the propagation delays of the four-input carry multiplexer, the final OR-gate and the two-input multiplexer (in the primitive cells), respectively. For typical technologies, these times will be all < 1 ns (including wiring delays over the distances involved), and the delay for a single primitive cell is ins. The area required for an eight bit modulo section is 708 A x 140 A (283 ftm x 56 /im in 0.8 jzm technology). Thus, replicating the k bit sections 4(m 1) times will consume minimal area. 4.3 Forward Mapping: Integer to GEQRNS Equation 2.5 and Equation 2.6 describe mappings necessary to convert input data to and from QRNS, respectively. These equations are implemented as shown in Figure 4.6 and Figure 4.7, respectively. For the forward mapping, it is necessary to reduce the real and imaginary components of the input eight-bit data streams C161 A .. Y(mk-I).(m-I)k -S> C1CO C1CO CICO C1CO o0 0 1 10 1 1 *+t C1 CO M C1 CO M C1 CO M C1 CO X(2k-1),k Y(2k-1),k -+ -C01 CO C01 CO C1 CO 01C 00 01 10 1 1 C1 CO M X(k-1),O Y(k-1),O -) C1 CO 00 Figure 4.5: Carry Select Modulo Adder. mod(pi), since the correct operation of the mod(pi) adders requires that the input operands be E {0. pi -1}. This is accomplished by two 256 by eight-bit ROMs. For the imaginary part of the input words, multiplication by +3 and modular reduction is also accomplished in the same ROM. We note that +3 is used for the normal channel and that -3 is used for the conjugate channel. The ROM outputs are then input to a modular adder to complete the QRNS mapping. The QRNS operand is then converted to GEQRNS via a final logarithm table, which has the zero encoding present address zero. Again, it is more area-efficient to reduce the sum modulo Pi first, rather than perform this operation in the ROM, as the size of the ROM would .. Figure 4.6: Forward-mapping (0) conversion module with GEQRNS log table approximately double. We note that four of the modules shown in Figure 4.6 are needed per modulus (see Figure 4.1). 4.4 Inverse Mapping: QRNS to Residue The architecture of the inverse QI{NS mapping is shown in Figure 4.7. Input data arrives from the output of the last PE in the array. Equation 2.6 requires that we perform a z z* operation for the imaginary part of the output. This is accomplished by looking-up the modular complement of z* (i.e. -z + pi) before adding to the z term. This keeps the inputs to the modular adder in the desired range for correct operation (i.e. E {0o. pi I}). The result of the modular addition is used to look-up the value of 2-131 times the input to the ROM, with a final mod pi reduction. The operation of the real part of the inverse mapping is likewise analogous, except that normal and conjugate operands can be added modulo pi directly, and that 2-1 is looked-up times the input to the ROM, with a final mod pi reduction. 4.5 Chinese Remainder Theorem The architecture of the CRT is shown in Figure 4.8. Here the real and imaginary outputs of each of the modules in Figure 4.7 are grouped and fed to real and imaginary CRT modules (see Figure 4.1). This is denoted by the xi inputs in .. regfsters" P -g-A ., to -e <2-1(Z+Z*)>pi (REAL) Z -, / 8 ROM (265 x 8) d+ to <2 (IMAG.) ROM (265 x 8) _A+<_Z,>pi (complement) Figure 4.7: Inverse-mapping (0-1) conversion module. Figure 4.8, and likewise in Equation 2.3. We note that the xi terms are the only "unknowns" in the CRT, as rihi and rhy' are pre-known constants. We can thus use xi to look-up the corresponding expansion terms in the CRT, and perform the desired mod(M) reduction at the same time in four ROMs. We could have used 256 by 31-bit ROMs here (the dynamic range is 30.9 bits), but they would be significantly slower than their narrower counterparts due to increased internal capacitive loads (i.e. higher word-line capacitance). It is imperative to keep the delays in the CRT the same as those in the rest of the system, so as not to degrade overall performance. The final modular summation is accomplished by mod(M) adder tree of carry-select modular adders of the type described in Figure 4.5. Thus, all of the input and output conversion hardware can be implemented with the same basic ROM and modular adder cells developed for the PE. The computational throughput is thus the same for all elements in the system. .. A A -1 -ROM (265x7) ROM ROM 31 (265x) u8) ROM (265x8) < <(M2 2)'*X2>P2>M 31 8 -ROM 3 (265x7) ROM .(265x8) " (-x) ROM 31 (265x8) ' ROM (265x8) <>M 8 (A 31 ROM out < <( O4) x4P>M (265x8) ROM (265x8) 8ROM (265x8) (265x8) ' Figure 4.8: CRT block diagram. .. CHAPTER 5 VLSI IMPLEMENTATION OF PROCESSING ELEMENT 5.1 True Single Phase Clocking Scheme A TSPC edge-based clocking scheme was selected for the implementation of the processing element. Edge-based clocking was selected over a latch based scheme for several reasons, the most significant of which is the requirement that the data should be able to flow in two directions. Bi-directional data flow offers the most flexibility from an algori thm- mapping standpoint, which is critical for the linear array. Another reason for the use of an edge based scheme is that the circuitry of the PE is very heterogeneous from a VLSI perspective. The modular adders are combinational circuits and the ROM is a CMOS domino-logic circuit. Furthermore, the accumulator portion of the PE is either a state machine (i.e. new data gets added to the running sum which is fed-back), or a combinational circuit if partial sums arrive from other adjacent PEs. We thus have a combinational multiplier (mod-P adder) which drives a CMOS domino ROM which in-turn drives a state machine or another CL block. Also, the data storage shift register introduces its own set of timing requirements as we will see subsequently. The clocking scheme of the PE was the dominant design issue, which required extreme care to implement successfully. The timing requirements ultimately determined the types of circuits selected. All of the synchronization issues introduced in Chapter Three came into play for the design. The move from NPTC to TSPC clocking was the most significant feature which distinguished this version of the PE from its earlier predecessors. The associated increase in performance was greater than a factor of two. .. v i . MO M2 M SXP SYP DD HM5 (D -cJM3 nD SXN SYN 4M4 M7 M Figure 5.1: TSPC Pipeline Register 5.1.1 Pipeline Registers The split-output latch circuit [44] shown in Figure 5.1 was used to implement all pipeline registers and DSSR cells in this chip. This particular cell exhibits minimal clock loading in that only two transistor gate loads are seen per stage. This is ultimately why this particular variant was selected over others in its family, which have four gate loads per stage [44]. This fact is very important since there are many gates connected to the clock line in a highly pipelined architecture such as this. The DSSR contributes the highest portion of capacitance per PE to the clock line, so halving the clock load per latch is an excellent tradeoff. The split-output latch is more difficult to implement than its counterparts, and must be designed very carefully. This will become apparent shortly. The pipeline registers (flip-flops) are of the negative edge triggered kind. Negative-edge triggering was chosen because it was most compatible with the timing requirements of the ROM. A single large inverter can also be used as a clock buffer, since most external system level clocks are positive-edge triggered. .. 5.1.2 Data Storage Shift Register The data storage shift register imposes the strictest timing constraints on the clock signal. A shift register can be built with the un-buffered (inverting) form of the split-output latch, if there are an even number of stages. This results in a minimal transistor-count implementation. As we are interested in building a shift register which is sixteen levels deep, then the use of this configuration is a possible choice here. There are implicit subtleties, however, in such a scheme. This is because a potential fast-transition race condition exists for the case where the output of a register directly drives the input of another register. If the clock-edge transition time is slower than (or even on the order of) the transition time of the register output, then timing errors may result. This is demonstrated in Figure 5.2 from SPICE simulations on the extracted layout of the un-buffered shift-register cell. The simulation represents the output for a cascade of two cells. The first cell in the chain is driven from a "stable" data source (bitO), which changes well before the negative-edge of the clock. The output of the first cell (bit1), drives the second cell whose output is shown in the third curve (bit2). The clock-edge transition time is swept from 1.75 ns to 3.75 ns, in 0.25 ns increments. At about an input clock-edge transition time of 2.75 ns, a gradual negative slope can be observed at the output of the second latch, during the high portion of the clock. The exact failure mechanism is is complex, and can best be understood by an examination of the fourth and fifth curves. A fast low-to-high transition will cause transistor M7 to turn-off too early (i.e. before M3 fully turns off). This may cause excess charge from node SYP to be deposited on node SYN (which should have been fully discharged), thereby causing its potential to rise. If this potential exceeds the threshold voltage of M6 then an unwanted discharging of the output node will result. The potential of node SYN is augmented by clock-feedthrough when the clock transitions from low-to-high, which exacerbates the problem. We note that this .. behavior is a function of the clock edge-rate only, and cannot be solved by slowing the system down. The clock-edge rate will thus have to be kept relatively fast for the unbuffered case. The total parasitic capacitance on node SYN should be kept as large as is practical, so that the magnitude of the "hop" induced by clock-feedthrough is minimized. For this reason, oversized diffusion islands were used on the drains of transistors M7 and M3 (see Appendix A). The situation can be ameliorated, however, by introducing some delay between latches. The most obvious solution is to use "weak" inverters to buffer the outputs. This was used here, but was taken a step further which yielded a double gain for the tradeoff in area. A feedback path was added to the DSSR cells, which permits the data contained in the DSSR to be "frozen" (note the latches are dynamic). From a data-flow standpoint this is desirable, as we can stop the shift registers in adjacent processors with operands in the correct "place". This means that we do not have to zero-pad the stored data for alignment in the shift register. The DSSR is costly enough in area, and including extra cells just so that they can be zero-padded is an unacceptable waste. The tradeoff, of-course, is more transistors per cell (and another control signal). However, this was deemed viable during the design phase, as the area of the DSSR is still smaller than an SRAM based implementation. The final shift register cell implementation is shown in Figure 5.3. The maximum transition time of the clock is now approximately 4.25 ns. 5.2 Exponentiation ROM Semiconductor memories provide the key computational elements of most RNS systems and usually determine maximum obtainable operating speed. A ROM was chosen over a RAM for the Exponentiation table of the PE, since a ROM of a particular size is a factor of four to six times smaller than a RAM of the same size. There is also no need for programmability here, as the moduli are fixed. A block diagram .. 61 FAILURE MODE IN SHIFT REGISTER FOR EARLY LOW-TO-HIGH INPUT SRP2A.TRO V L 9.0 I.- PHI 0 1 L N 2.0 . B. . . ITO T LO -J ., I m 0. : , SRP2A.TRO V L 9.0 BITt 0 1 L N 2.0. T i i , 0 . . V . . . . . i S 0. I .i. iii i ii ii[i. . . . . .5. SRP2A.TRO V L BIT2SN 0I A L N 2.50 T 0 . i : 1 r2 SRP2A.TRO V L .0 X2.SXN 0 1 L N 2.0 ? X2.SXP T .-O IRP2A.TRO 0 I: L.L. .J .J. . .J. I.l. .L 0T 25.0N 50.0N 75.0N 100.ON 0. TIME (LIN) 125.ON Figure 5.2: SPICE simulation of fast transition path for shift register .. D D D STT ST Figure 5.3: TSPC Shift Register Cell with Storage of the logical organization of the Exponentiation ROM is shown in Figure 5.4, and the key circuit elements are shown in Figure 5.5. The ROM is masked programmed based on the modulus choice, by including a contact to connect a programming (discharge) transistor to the bit line. Connecting a programming transistor in the ROM array, results in a logical zero at the output of the ROM, for the accessed bit location. There are eight parallel bit locations accessed per address, thereby producing a byte of data per address input. There are a total of 256-bytes stored in the ROM. Since the programming transistors are of minimal width, they will limit operational speed due to the discharge delay of the bit-line. The ROM logic is partitioned so that the bit line height can be kept relatively short (which results in reduced parasitic capacitance). Differential sensing techniques were also used, so that a logical zero could be determined well before the bit line has fully discharged. Figure 5.5 reveals that the ROM is precharged during the low clock level, which is just after new data has arrived at the address inputs. The data is stable during the evaluation (high clock) stage, when the word-line decoders become active. .. 1-2 BLOCK DEC. SENSE AMPLIFIERS 2:4l COLMN DEC: 12 BLOCK DEC. SENSE AMPLIFIERS 2:4 COLUIMN DEC 5:32 128 X 8 bit WORD 128 X 8 bfit STORAGE LINE STORAGE ARRAY DECODER ARRAY Figure 5.4: Floorplan of Exponentiation ROM. SENSE AMPLIFIER BLOCK I I I I DECODER BLy+3 BLy+2 BLy+I BLy < c4~ Figure 5.5: Key ROM Circuit Elements. WLX Vdd .. A precharge PMOS transistor which is controlled by the clock and a "weak" PMOS device connected in a positive feedback configuration have been included at the sense amplifier bit-line-voltage-input. The precharge transistor was included so that this point may quickly charge to Vdd. If there were no PMOS devices here, then the potential at this node would slowly charge to approximately 4V through two series NMOS devices of the column decoder (since at one-of-four paths is always active). The PMOS device in the feedback loop also helps with precharging once the sense amplifier has "tripped", but was primarily included to maintain a high potential at this node (for a programmed high), in case of any charge loss caused by leakage paths. The low cycle duration of the clock can thus be shortened during precharge, so that more time can be given to the high cycle (where bit-line pull down occurs) without adding to the total clock period. This is consistent with the notion of "trading delay", introduced in Chapter Three. Figure 5.6 shows a SPICE simulation of the operation of the ROM, for the case of a programmed low. This represents the worst case delay, as a logical high value is obtained by default from the action of precharging the bit-line. The simulation was done on an extracted layout of a bit-line programmed with all zeros, as this is the worst case for parasitic diffusion capacitance. A sense amplifier and the full word-line decoder were also included, and the parasitic (gate) capacitance of the maximum possible number of programming transistors per word-line (64) was also taken into account. The first graph shows the clock input and address line zero, which becomes active shortly after the clock goes low. We note that even though a valid address is present, all word-lines are low due to the action of dynamic NAND gate and inverter combination of the word-line decoders (see Figure 5.5). The output of the sense amplifier is shown in the second graph. This goes high as expected during precharge. The potential of the sense amplifier input as well as the bit line is shown in the third graph. These two points charge at essentially the same rate. .. The potential of word-line-one is shown in the fourth graph, which becomes active after some delay during the evaluate phase of the clock. When the clock becomes high, the bit line begins to fall. We note the input of the sense amp begins to transition slightly after the bit line, due to the action of the "weak" PMOS device. This point soon "catches-up" to the bit line once the sense amp has had time to turn the feedback device off. The bit-line potential falls as expected. The rise time of the bit-line is approximately 2.4 ns during precharge and the fall time is approximately 3.0 us during discharge. The propagation delay taken from the mid-point of the rising clock edge to the mid-point of the sense-amp output is approximately 5.6 us. The simulation was conducted with clock rise and fall times of 2 ns, and with a clock period of 15 us. The simulation output suggests that the cycle time could be possibly shortened, however, to approximately 12 us. 5.3 Electronic Reconfiguration Switches In an effort to improve the survivability and manufacturability of large linear chains of PEs, electronic reconfiguration switches were incorporated into the PE architecture. These elements are the outermost transmission gates in Figure 4.2. The layout ground rule used for these elements was less aggressive than that of other circuits in the chip, since it is desirable that a very high switch yield be exhibited. For example, a six-lambda minimum metal thickness and spacing was used (minimum is three-lambda), in order to reduce the likelihood of shorts and opens, and double contacts and vias were used between all layers. One author has suggested that extra or missing material defects greater than two line spacings or widths, respectively, are considered so rare that they almost never occur in practice [10]. Indeed, it has been verified consistently for several years, that the defect frequency falls-off with the cube of the radius [28], thus small changes in line spacings or widths can greatly impact survivability. Bypass interconnection lines were also run in metal two, with minimal .. TIMING WAVEFORMS FOR ROM (PROGRAMMED ZERO) 2 . . . O 1. . I. . r L 0 **-BU L !/ A I 2. ROM2.TRO L I.0- :OUT I BLO N 2.0 593 .921U ROM2.TRO L A I N 2.0 .10 : i :. : :. . . 0 i' . .JJ . I . . -ROM2.TRO . . . . . . .; ,\ . . . . . .U. . . V OI N I BLO 2.0 5.ON 10.ON 15.ON 20.ON 25.0N 0. TIME ELIN) 25.ON Figure 5.6: SPICE simulation of ROM operation. .. logic placed underneath these channels, in order to reduce the probability of interlayer shorts due to oxide pinholes. In order to truly determine the fault vulnerability of the reconfiguration switches, it is necessary to have detailed knowledge of the process defect statistics. For example, it has been suggested [40] that due to the use of positive photoresist in most high resolution processes [3], that extra material defects are a factor of ten times more likely than missing material defects. This means that wider spaced, thinner interconnection wires would actually have a higher yield than thicker, closer spaced wires in this process. Thus, the accurate modeling of the interconnection yield within the context of the process defect characteristics crucial. There are advantages and disadvantages to electronic switches verses physical restructuring techniques [36]. Physical switches, such as laser programmed links, have lower on state resistance compared to electronic switches, and typically exhibit smaller area since no other logic is needed (i.e. latches) to store configuration information. The main drawback with physical switches is that they must be programmed at the time of manufacture, and thus, cannot correct for faults which occur in the field. Conversely, electronic switches can correct for run-time failures and can also compensate for manufacturing defects. In a fully pipeline architecture such as this, the added switch propagation delay is contained in the pipeline delay, and, therefore, is less of a design issue. Only one configuration latch is needed for all reconfiguration switches in the PE, since all busses are switched out simultaneously. It is important to note that the operation of the reconfiguration circuitry, only depends on twenty-four transistors (i.e., 12 transmission gates (Figure 4.2)), and twenty-four wire segments per PE. 5.4 PE Performance The processing element shown in Figure 5.7 was fabricated in a 1.5 ym CMOS process (ORBIT Semiconductor [21]) and occupies a total die area of 2.4 mrn x 2.4 .. mm. The chip represents a full-custom design with the exception of the 1/0 pad drivers which were supplied by MOSIS [37]. Data was fed to the chip from an eightbit binary counter circuit. Because of the 40 pin limitation on the package, it was not possible to bring out all 24 input signals (8 x 3) in addition to the power, ground, control inputs and the 8 outputs needed. Instead, both multiplier inputs were brought out and the external accumulator input was fed internally from one of the multiplier inputs (the Y input). It is thus not possible to test the multiplier and accumulator portions of the chip independently. The tests consisted of holding the Y-multiplier input constant, while incrementing the X-input. In this way the contents of the exponentiation ROM could be examined. The Y-input was held at a value of zero (decimal zero), which gets added to the output of the ROM by the accumulator. Both the input signals and output data were simultaneously examined with a Hewlett-Packard 16500A logic analyzer, which sampled data at each rising clock transition. The chip clock is produced internally from a buffered and inverted version of the external clock, so a positive-edge externally is a negative-edge internally (of-course phases are flipped also). Recall that the chip is negative-edge triggered internally. It was possible to verify the programmed contents of the ROM (see Appendix B). It should be pointed out that this is the strictest test, that could be conducted, as the ROM could fail due to insufficient precharge or discharge time. Also, since the ROM is addressed by a modulo adder, the test verifies that the mod adder can sustain the data rate. The observed data was compared to a mask of the programmed data by the logic analyzer, which was setup to stop if there was any difference between observed and mask data. This test was run for approximately three weeks. The chip was run at a clock frequency of 40 MHz. during this test without the logic analyzer stopping. The test was discontinued after three weeks. A bit-line compare voltage of approximately 4.6V was needed to obtain this data rate. This suggests that the bit-lines were not fully discharging at this .. Figure 5.7: Die photograph of processor. .. Figure 5.S: Oscilloscope photo of clock signal and output bit zero. speed, which further supports the use of differential sensing techniques for flexibility. The second test involved holding the X-input at zero (which we recall is is coded as 255D), while sequencing the the (shared) Y-input. In this way, the operation of the modular accumulator could be verified. A photograph of the clock signal and the least significant data output line is shown in Figure .5.8. The least significant data bit is -statistically" the output that changes the most, and timing problems will usually be seen here first. Figure 5.S shows that the output data transitions some several nanoseconds after the rising edge of the clock. This is observed because of the sum total of I/O delay times. That is. the total delay before the new data can be presented externally, relative to our fixed reference of the external rising edge, is the input buffer time 71,B plus the output buffer time TOB. There are also other delays such as latch propagation delay times as well, in addition to the clock internal buffer delay. The output seems to lag the rising clock-edge by a time on the order of 10 to 11ns. In order to oain a better estimate of the I/O delay times involved, a simple pass-through test was implemented. This is just an input buffer which directly drives .. INPUT OUTPUT 'CB+ rOB IOUTPUTL INPUT F Figure 5.9: Pass-through test. an output buffer (the output buffers are inverting). This is depicted in Figure 5.9 and the actual output is shown in Figure 5.10. The time between the peak of the input and the low of the output is approximately 5-6 ns. It is interesting to compare the observed delay time with the simulated delay time. The output of a SPICE simulation of the pass-through test is shown in Figure 5.11. For the simulation, a load capacitance of 10 picofarads was used to model the capacitance seen at the output of the chip. It was not possible to actually measure this capacitance, but 10 PF is a reasonable estimate (the scope probe is 7 pF). The simulated delay time for a high-in to a low-out is approximately 3.1 nS and for a low-in to high-out, approximately 4.4 nS. This suggests that the measured vs. simulated delays are on the order of 25-40 % higher. Although this cannot be generalized for the rest of the circuits in the chip, it still provides a crude measure of the variability between actual and simulated performance. .. 72 Figure 5.10: Oscilloscope photo of pass-through test output. SPICE SIMULATION OF PASS-THRDUGU TEST S .O L T .T O IN L T . L I 5 0 DELAY-T-TRO OUT . I 1 .0 . . . . . . . 6. N 0. N 15-ON 20 ON 2 ON TIME ILINI 2S ON Figure 5.11: SPICE simulation of pass-through test. .. 5.5 Early Versions of the Processing element 5.5.1 Version One Figure 5.12 details the architecture of the first version of the PE and a die photograph is shown in Figure 5.13. This chip did not use the modular adder structure described earlier, but rather, computed the modular reduction of output operands in ROMs. The two input operands were "multiplied" in a standard binary adder and fed to the exponentiation ROM where they were reduced modulo p- I and the generator, a, raised to the corresponding power (all done as a single lookup). A modular adder was made for the accumulator portion of the PE from a standard adder and a final ROM table to perform the modulo p reduction. The PE could only be programmed for seven-bit moduli since, as described in Section 4.2, the result of performing the modular reduction in a ROM table after an addition, is an effective doubling of the ROM size (i.e. the sum of two k-bit numbers is a k + 1 bit number). The modular adders produced from a binary adder and a look-up table were two pipeline stages deep (see Figure 5.12). For the accumulator there is an implicit subtlety here. If this structure is used, then odd and even indexed terms in a summation will be accumulated independently. That is, two partial sums will be formed, one for the even terms and one for the odd terms, which cannot directly be summed. This requires a final summation externally to the PE to complete the accumulation. This fact forced the development of cells that would support the implementation of a single-cycle modulo adder, without compromising speed. At the time, the only cells available [20] to build the modular adders were four-bit carry-lookahead adders which would not have operated fast enough to support an un-pipelined cascade. The bit-programmed modular adder cells described earlier, thus significantly impacted the design. The first version of the PE also employed non-overlapping pseudo two phase clocking. A photograph of the clocking waveforms is shown in Figure 5.14. In this .. figure, the vertical axis is 10x, the lower trace is 01 and the upper trace is 02. The pipeline registers were composed of a cascade of two transparent latches (just as described in Chapter Three). Data was input to the first latch during the high phase of 01 and was presented to the logic circuits on the rising edge of 02. The ROM was precharged during the high phase of 02 (i.e. PMOS precharge devices were controlled by 1-2) and was evaluated on the low phase of 02. Output data was then latched on the falling edge of 01. It was actually necessary to make a third clock signal to avoid a race condition in the ROM word-line decoder, by delaying 42 slightly. The early ROM employed a dynamic NOR-gate decoding structure rather than the dynamic NAND-gate used in the final version. The NOR gate was gated (ANDed) with the delayed version of 72, so that the word-lines would be low during precharge. The gating clock signal had to be delayed so that a momentary glitch would not occur on the word-lines just after precharge, before all but one NOR gates discharged. This complication was eliminated with the NAND structure (although the dynamic -NOR is intrinsically a faster gate). The first PE was fabricated in a 2 /m CMOS technology [37] and was shown to operate at a clock frequency of 16 MHz. 5.5.2 Version Two The second revision of the PE, was the first to use the modular adder scheme in its accumulator. Its architecture is given in Figure 5.15, and a die photograph is shown in Figure 5.16. The removal of the second ROM resulted in a significant decrease in area. A modulo adder was not used as the "multiplier" portion of the chip, due to vertical space limitations in the MOSIS Tiny-Chip [37] pad-frame. This PE thus also used seven-bit moduli. The second chip was also a NPTC macnine, which employed the same ROM and pipeline latches as its predecessor. This chip was also fabricated in the MOSIS 2 lim CMOS technology and was shown to operate at 16 MHz. .. Figure 5.12: Processor architecture of first version. .. Figure 3.13: Die photograph of first version of PE. .. Figure 5.14: Oscilloscope photo of non-overlapping clocks for first chip. EXTERNAL ZERO DETECT Figure 5.15: Processor architecture of second version. .. ~Ij ~ ~3 ~. i:~~ ~' Figure 5.16: Die photograph of second version of PE. L3,712 .. CHAPTER 6 YIELD ENHANCEMENT AND FAULT TOLERANCE 6.1 Yield Enhancement via Reconfiguration It is evident from Chapter Three, that large area integrated circuits must have some measure of fault tolerance. For highly structured architectures, which have identical replicated cells, it is sometimes possible to include redundant modules of which m out of n must function in order for the chip to be considered usable. In the past, many authors have considered the reconfiguration yield to be unity and that all failures could be corrected for by the reconfiguration scheme. Assuming that the reconfiguration yield is 1 is increasingly being shown to be a bad assumption, particularly if the system area is large. What is really assumed, is that m out of n cells are free from defects which affect reconfigurable nets and that all n cells are free from defects that affect non-reconfigurable nets. Actually, we must also consider defects that affect global signals such as power and ground, as they cannot directly be reconfigured for. This requires a very detailed consideration (layout extraction) of susceptible areas on a net by net basis, however, which is more suitable for CAD tools. For our purposes we can consider our FE area as being composed of two components: APE =-,: APE-. + APE-n (6.1) where APE-n is the area of the bypass and interconnection busses and APE-T is the area of the remaining computational-logic portions of the PE. As mentioned previously, the layout ground rule used for the bypass elements was less aggressive than that of other circuits in the chip. Since the complexity .. of these elements is greatly reduced over that of other portions of the circuit, an argument could be made that the effective fatal defect density of the switches is reduced over that of the rest of the circuit (i.e. fewer applicable defect mechanisms). However, in order to truly quantitatively determine the relative fault vulnerability of reconfiguration switches, it is necessary to have detailed knowledge of mask-by-mask process defect statistics. Since we do not have such statistics, we will not speculate, and will consider all areas of the PEs at the same defect density. Our estimates will thus be slightly conservative. Since we are assuming large area clustering, the faults in adjacent modules are dependent (uniformly distributed), and we cannot use simple Binomial expressions for determining if M out of N modules are functioning (this assumes faults are independently distributed). Systolic arrays in which R spare PEs have been added, where at least MN R out of N must function, have been proposed before. The independent, parallel nature of RNS channels, however, provides further unique opportunities for enhancing fault and defect tolerance of systolic arrays. For our proposed four modulus system, each processing node in the array is effectively broken up (algorithmically and physically) into four smaller PEs via the RNS mapping. This would suggest that the inclusion of an extra PE per modulus would permit up to four faults to be tolerated per channel, rather than just one, when compared to a similar system (i.e. in dynamic range and arithmetic functionality), in which the computations are carried out over one physically contiguous PE. The requirement, here, is that no more than one fault occurs per modulus. If there is more than one fault per modulus, then the number of usable PEs will be less than M. Koren and Stapper [11] have presented a yield model for chips with redundancy consisting of multiple module types, in which the failures in adjacent modules are dependent. We can consider our proposed linear array chip as fitting this category, where there are eight different module types (two x four moduli), where M out .. of N PEs must function, and there are R spares for each module type. The following expression describes the total yield: NI N2 N8 Ni-MI N2-M2 Ns-Ms Y= E E E E E .E Ml=N,-RM M2=N2-R2 MM=N8-R8 kl=O k2=O ks=O (l)k k2 k8 ( N1 1- M Ns N- -M8s x I1+ ((Mr + ki)At +. + (Ms + ks),s + ACK) x CM1 ,M2 ,M,MM s,M6,M ,M8 (6.2) where the Ai terms represent the number of faults in each PE and ACK is the number of faults in the "chip-kill" area. The "coverage factor" term in the above expression, CM,m2,M3,M4,M5s,m,M7,M = 1, if the chip is acceptable with M and M2 Ms fault-free modules of types 1. 8. Otherwise, CM,M2,M3,M,,Ms,M6,M,7M8 = 0. This term provides the means of counting those terms in Equation 6.2 which are fixable. We note that all combinations are fixable since the moduli are physically discrete and the system is operable if there are at least M PEs surviving in each modulus. The number of faults in each module Ai is related to the number of faults in the total chip, A, by the following: Ao= (6.3) Atotal For our proposed system, the corresponding parameters are: N = 17 R; = 1 Ai = APEr .. ACK = AIopads + AotCon + ACRT + AICo,,. + 8 x 17 x APEn (6.4) and CM,M,M3,M4,MS,MG,M7,M, = 1 for Mi E {16,17}, since all of these combinations are fixable. We note that the chip kill area contains the area of all input and output conversion circuits, the CRT and I/O pads as well as the area of the reconfiguration elements in the PE. 6.1.1 Yield Estimates We will consider the case of no redundancy first, and then compare this to the reconfigured yield. For simplicity, assume average fatal defect densities of 1, 1.5 and 2.0 per cm2. Area values are based on a 0.8 fim CMOS technology (where A = 0.4 tim). The areas of the input and output conversion modules are based on floorplans consisting of cells developed and fabricated in the PE, and are A scalable to the 0.8 yum process. Thus, the area estimates presented are realistic, as they are based on existing cells. Table 6.1 depicts the areas of the major system components. It can be seen that the PE area dominates the bulk of the total system area (78.1%); therefore, this is the most logical place to apply fault tolerance. The yields for no redundancy are presented in Table 6.2, for various values of the clustering parameter a. Equation 3.26 has been used to obtain the values in Table 6.2. Let us now consider the case for the redundant sixteen processor array. The total area of each processing element is 0.008464 cm2, and the area of the switching elements in the PE is 0.002208 cm2 (ApE-n). The difference between these two areas (0.006256 cm2) represents the area of the PE which can tolerate a circuit fault (ApE-r). We have considered the case for one added redundant PE since this is the minimum amount of redundancy that can be added to the array, and since the switching out of more than one defective PE adds to the critical path delay as, each bypassed PE adds the delay of two series transmission gates plus interconnect delay .. Table 6.1: Table of System Component Areas. Areas of System Components Module Area Area Number Total Area [A x A] [cm2] [cm2] Input (Projected) Conversion: X, +x JX 1500 x 1500 0.0036 8 0.0288 y, -3y 1500 x 1500 0.0036 8 0.0288 Log 1150 x 750 0.0014 16 0.0224 Output (Projected) Conversion: 2-l(z + z*) 1550 x 800 0.0020 4 0.0080 2-1)-1(z z*) 2700 x 850 0.0037 4 0.0148 CRT 6800 x 5600 0.0609 2 0.1218 PE: (Actual) Normal 2300 x 2300 0.0085 64 0.544 Conjugate 2300 x 2300 0.0085 64 0.544 I/0 Non-Scalable Drivers (Actual) 0.0004 200 0.08 Chip II I 1.393 Table 6.2: Table of Non-Redundant Chip Yields. Projected Non-Redundant Chip Yields a Average Fatal Defect Densities per [cm2] 1.0 1.5 2.0 0.25 0.6246 0.5717 0.5357 0.50 0.5139 0.4394 0.3901 0.75 0.4550 0.3684 0.3125 1.00 0.4179 0.3237 0.2641 2.00 0.3474 0.2392 0.1746 .. (see Figure 4.2). As we will show shortly, just one extra processor will significantly improve the system yield. Equation 6.2 thus becomes: 17 17 17 17-MI 17-M2 17-Mg Y= E E E .E M=16M2=16 M8=16 k1=O k2=0 k8=0 (_l)kl(_l)k2 (_l)k8. 1 (17 )( 17M Ms 17 s [lI ((Mi + k1); + (M. + k8)K8 + AK) ] xl (6.5) Equation 6.5 was used in a computer program (see Appendix C) along with the previous values of defect densities and a, to produce Table 6.3. We see that the yield of the array changes from 62.46% to 72.53% in the best case (with Do = 1 per cm2 and a = 0.25), which is a 16.1% improvement. For the worst case (with Do = 2 per cm2 and a = 2), the yield changes from 17.46% to 35.87%, which is a 105.4% improvement. The added area overhead associated with the redundancy is _ 5%. Thus, this is a worthwhile tradeoff in both cases, and in particular for the worst case, in which the yield is doubled for a 5% increase in area. Equation 6.5 was extended to arrays of up to 32 processors. For the best case above, the yield of non-redundant vs. redundant is 55.04% and 67.33% respectively, which is a 22.32% increase. For the worst case, the results become 8.34% and 23.38%, a 180.3% increase. The area overhead for one redundant processor for the 32 PE case is P 2.7%, again, a worthwhile tradeoff. Any redundancy not used for yield enhancement at the time of manufacture, can be used for fault tolerance in the field, if a failure occurs in a PE. Since the PEs consist of 78% of the active area of our system, this will most often be the type of failure that occurs. .. Table 6.3: Table of Redundant Chip Yields. Projected Redundant Chip Yields a Average Fatal Defect Densities per [CM 2] 1.0 1.5 2.0 0.25 0.7253 0.6706 0.6318 0.50 0.6588 0.5798 0.5236 0.75 0.6259 0.5323 0.4657 1.00 0.6060 0.5028 0.4290 2.00 0.5703 0.4472 0.3587 Yield curves for the best and worst case manufacturing parameters have been plotted in Figure 6. L The top two curves represent the redundant and non-redundant best case, respectively. The bottom two curves represent the redundant and nonredundant worst case, respectively. At this point, some cautions are in order. We must be very careful when interpreting the increase in yield of redundant vs. non-redundant chips. Ultimately, all that really matters from a manufacturing standpoint is the number of good chips that leave the foundry. By including extra circuitry for redundancy, we have at the same time diminished the number of chips that are made. That is, the area of a redundant chip is larger than that of a non-redundant one, which translates into less chips per wafer. Since only good chips can be sold, we must be very careful to guarantee that the added redundancy does not cause too much product loss. If we are not careful, we could actually wind-up loosing money with redundant chips. In the following equations, we will represent the yield of non-redundant chips by YNR, and the yield of redundant chips by YR. The actual number of good chips for the non-redundant case will be denoted by KNR and for the redundant case, KR. The total number of chips fabricated for non-redundant and redundant cases is NNR and NR, respectively. Finally, the percentage of product loss, due to redundancy, will be denoted by PL. Consider the following: .. Yield Curves for Various Length Arrays 0.8 1 I 1 X . -. . .N X. .X. .X .N X. X X X . .'X X X. 0.7- --X x .x-.x.xxx.-. x -x -x.-x . 0.6- -. .- --.-. -OG . 0.5 0.4X . 0.3- x 0.2 0 0 . x . . x . . 0 . . 0 . . 0x . . x . . G . > . . . . . . . 0.1- .0 0. 0. 0 o. . .o.-. 0 0 .0.1 0 I I I I I I 16 18 20 22 24 26 28 30 32 Number of PEs Figure 6.1: Yield Curves for Various Length Arrays (Scheme 1). YNR = NNR YR = tA NR NR = (1- PL)NNR ? (6.6) KR > KNR 7 YR x NR > YNR X NNR YR x (1 PL) > YNR Equation 6.6 must always be satisfied to determine if the chosen redundancy scheme actually produced more working chips. We will assume that the percentage increase in area for redundant chips, translates into the same percentage of product loss. The degree of accuracy of this assumption ultimately depends on how many rectangular chips can fit into a round wafer. For the most part, though, this is a good .. assumption since a few hundred chips will typically fit into a commercially sized wafer (6-8 inch diameter). For our 16 processor example, there is thus a 5 % product loss. For the best and worst cases, we get (0.95) x best,, > YNRbest (0.95) x (0.7253) > 0.6246 0.6890 > 0.6246 (6.7) (0.95) X YR.o.,, > YNRwOTst (0.95) x (0.3587) > 0.1746 0.3407 > 0.1746 Thus, we obtain more working chips in each case, which supports the chosen redundancy scheme for the linear array. 6.2 A Comparison with Replacing Moduli An alternative redundancy scheme will be considered in this section. Suppose that fault tolerance was introduced into the system by including an additional modulus in the array, rather than an extra PE per modulus. This would have the effect of partitioning the system differently with respect to fault tolerance. The new "modules" would consist of a set of both normal and conjugate channels (for each modulus), together with the input and output conversion modules. This is depicted in Figure 4.1 by the dotted lines around each modulus. The CRT would now have to be reconfigurable, as the dynamic range of the system would change when a defective module is switched out and a spare switched in. If the system were configured in this way, then faults could be tolerated in the input and output conversion modules, as well as in the PEs. The only "chip-kill" area, is that composed of the CRT (which now is larger) and the 1/0 pads. The system would now consist of a single .. "module-type", of which there are four total for the non-redundant case and five for the redundant. There are now five fixable combinations, compared to eight as before. Since there is only a single module type, Equation 6.2 reduces to: N1 N, -M, M1=N1 -RI kl=0 )k N 1 N1 M1 )X[l ((MI + kj)AX + ACK) (-1) M x 1 + X CM (6.8) For this scheme, the corresponding parameters are: N, = 5 R1 =1 A1 = 2 x (APEr + APE-) 16 + 4 x (Ajconl + ALogl) + Aoutconvl ACK = AIOpads + ACRTN, (6.9) with CM = 1 for M E {4, 5}. We have divided the area of the PE interconnections by two since we do not bypass PEs in this scheme, and thus, only need half of the wires. A,Co,v,, is the area of one forward QRNS mapping module and ALog1 is the area of a single log table. There are four of each of these per reconfigurable module. There is one inverse QRNS block per reconfigurable module, the area of which is denoted by Aoutco,n,. We will assume the I/O overhead is the same as before. Finally, we need to obtain a value for the area of the reconfigurable CRT. Approximately 2 of the CRT is composed of ROMs. Since the new CRT will have to be re-programmable (i.e. to change the overall M), this section will need to be .. RAM based. RAMs occupy about four to six times the area of ROMs (as stated earlier). We will use a value of four as a multiplication factor, to estimate the area of a RAM based implementation. The carry-select mod(M) adders used in the CRT will also have to be reconfigurable. We will not be able to use the bit-programming scheme described in Chapter Four, and thus, will increase the complexity by a factor of 25 %. The new variable offsets will have to be stored in registers also. We will again be very generous and assume that the total complexity of the modulo adder portion of the CRT increases by 50 %. The overall area multiplication factor for the reconfigurable CRT is 3.166. If we substitute the redundancy parameters defined above in Equation 6.8 the following expression results: 5 5-M, r= E E M1=4 k,=O (1)ki ( ) Mi) X[1 ((M + &kl)xl+ACK CM, (6.10) The area values for the new system were substituted in Equation 6.10, which was evaluated with a computer program (see Appendix C). For our sixteen processor example, the best case non-redundant vs. redundant yield is 60.80 % vs. 69.27 %. For the worst case manufacturing parameters, the yields are 15.04 % vs. 26.18 %. How do these values now favor with product loss accounted for? The overhead associated with this redundancy scheme is approximately 41 %. Thus, after scaling the redundant yields by unity minus this amount we get- (1 0.41) x 69.27 = 40.87 < 60.80 and for the worst case (1 -0.41) x 26.18 = 15.44 > 15.04. For the best case of manufacturing parameters we have actually lost money by including redundancy. That is we would have obtained more working chips if we had done nothing! For the worst case, the gains are questionable since the margins are so low. The yield curves for best and .. worst cases are plotted in Figure 6.2 for 16 to 32 processor systems. The areas of chips using the first and second redundancy schemes are plotted in Figure 6.3. We point out that the areas of chips using the first scheme are less than those using the second, thus the first scheme always wins. Finally the product loss adjusted yields are plotted for both schemes for best and worst cases. Figure 6.4 and Figure 6.5 are plots for the best and worst cases, respectively for the first scheme. These curves illustrate that we always benefit for this scheme, for these manufacturing parameters. Figures 6.6 and Figure 6.7 show the curves for the second scheme. Figure 6.6 shows that we always loose money for this case, while Figure 6.7 shows that as the array size grows, we gain more for the implemented redundancy. This is because the percentarea-overhead associated with the redundancy decreases as the array grows (in both schemes). The results of this analysis suggests that it is better to implement redundancy within the moduli, rather than between the moduli. Thus, the redundancy scheme used in the proposed system is justifiable. In reconfigurable systems, the amount of redundancy must be kept as small as possible to obtain the most benefit. In much of the RNS literature, the point is commonly made that fault tolerance can be achieved by including extra moduli. However, in the context of this analysis, this point is questionable. Finally, it should be pointed out that if the moduli are very small, such that the inclusion of extra channels will not significantly increase the chip area, then the analysis may be more favorable. 6.3 Detecting Faults The detection of failed processors in the chosen scheme must be done off-line. The test procedure combines the bypassing of failed PEs to isolate columns in which failed PEs lie in and then suppling specific test vectors to determine which row of the column has failed. For example, all columns in the array can be bypassed except .. |

Full Text |

xml record header identifier oai:www.uflib.ufl.edu.ufdc:UF0008238600001datestamp 2009-02-16setSpec [UFDC_OAI_SET]metadata oai_dc:dc xmlns:oai_dc http:www.openarchives.orgOAI2.0oai_dc xmlns:dc http:purl.orgdcelements1.1 xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.openarchives.orgOAI2.0oai_dc.xsd dc:title A fault tolerant GEQRNS processing element for linear systolic array DSP applicationsdc:creator Smith, Jeremy C.,dc:publisher Jeremy C. Smithdc:date 1994dc:type Bookdc:identifier http://www.uflib.ufl.edu/ufdc/?b=UF00082386&v=0000132490064 (oclc)002007920 (alephbibnum)dc:source University of Floridadc:language English
PAGE 1 $ )$8/7 72/(5$17 *(4516 352&(66,1* (/(0(17 )25 /,1($5 6<672/,& $55$< '63 $33/,&$7,216 %\ -(5(0< & 60,7+ $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$ PAGE 2 &RS\ULJKW E\ -HUHP\ & 6PLWK PAGE 3 $&.12:/('*(0(176 ZRXOG OLNH WR WKDQN P\ DGYLVRU 'U )UHG 7D\ORU IRU SURYLGLQJ PH ZLWK WKH PHDQV DQG WKH HQYLURQPHQW QHFHVVDU\ IRU JHWWLQJ WKLV ZRUN GRQH DQG IRU DOORZLQJ PH WKH IUHHGRP WR SXUVXH WKH UHVHDUFK GLUHFWLRQV VDZ ILW 6SHFLDO WKDQNV DOVR JR WR 'U *UDKDP $ -XOOLHQ IRU VHUYLQJ RQ P\ 3K' FRPPLWWHH IURP VXFK D IDU GLVWDQFH DZD\ ZRXOG DOVR OLNH WR WKDQN 'U 0DUN ( /DZ 'U -RVH & 3ULQFLSH DQG 'U %HUQDUG $ 0DLU IRU VHUYLQJ RQ P\ FRPPLWWHH ZRXOG DOVR OLNH WR WKDQN P\ SDUHQWV ZKRVH HDUO\ SUHSDUDWLRQ DQG GHGLFDWLRQ KDYH PDGH P\ DFFRPSOLVKPHQWV SRVVLEOH ZRXOG HVSHFLDOO\ OLNH WR WKDQN 'LDQH IRU KHU SDWLHQFH GHGLFDWLRQ DQG ORYH ZKLFK ZHUH DOO QHFHVVDU\ LQJUHGLHQWV IRU WKH FRPSOHWLRQ RI WKLV GLVVHUWDWLRQ LQ PAGE 4 7$%/( 2) &217(176 $&.12:/('*(0(176 LLL /,67 2) 7$%/(6 YL /,67 2) ),*85(6 YLL $%675$&7 [ &+$37(56 ,1752'8&7,21 7+(25< 7KH 4XDGUDWLF 5HVLGXH 1XPEHU 6\VWHP 4516f 7KH *DORLV(QKDQFHG 4516 *(4516f '\QDPLF 5DQJH ([DPSOH .(< $55$< 352&(6625 ,03/(0(17$7,21 ,668(6 6\QFKURQL]DWLRQ 7UDGLWLRQDO $SSURDFKHV 7UXH 6LQJOH 3KDVH &ORFNHG 6\VWHPV 6\QFKURQRXV YV $V\QFKURQRXV 6\VWHPV )XQGDPHQWDO 0DQXIDFWXULQJ /LPLWDWLRQV 'HIHFW 6L]H 'LVWULEXWLRQ 'HIHFW 6SDWLDO 'LVWULEXWLRQ DQG PAGE 5 3LSHOLQH 5HJLVWHUV 'DWD 6WRUDJH 6KLIW 5HJLVWHU ([SRQHQWLDWLRQ 520 (OHFWURQLF 5HFRQILJXUDWLRQ 6ZLWFKHV 3( 3HUIRUPDQFH (DUO\ 9HUVLRQV RI WKH 3URFHVVLQJ HOHPHQW 9HUVLRQ 2QH 9HUVLRQ 7ZR <,(/' (1+$1&(0(17 $1' )$8/7 72/(5$1&( PAGE 6 /,67 2) 7$%/(6 7DEOH RI 0D[LPXP '\QDPLF 5DQJHV IRU (LJKW WR )RXU 0RGXOXV 6\VWHP 7DEOH RI 0D[LPXP ,QQHU 3URGXFW /HQJWKV /RJ$QWLORJ 7DEOH IRU S? /RJ$QWLORJ 7DEOH IRU S )XOO $GGHU WUXWK WDEOH 7DEOH RI 6\VWHP &RPSRQHQW $UHDV 7DEOH RI 1RQ5HGXQGDQW &KLS PAGE 7 /,67 2) ),*85(6 6LQJOH 3KDVH /DWFK 6\VWHP 'RXEOHODWFK QRQRYHUODSSLQJ SVHXGR WZR SKDVH V\VWHP +LJK SHUIRUPDQFH QRQRYHUODSSLQJ SVHXGR WZR SKDVH V\VWHP 'HOD\ WUDQVIRUPDWLRQ PRGHO 7UDQVSDUHQF\ SUREOHP LQWURGXFHG E\ FRPSOHPHQWDU\ SKDVH RI FORFN 6\VWHP PRGHO IRU 763& HGJH EDVHG FORFNLQJ 7LPLQJ ZDYHIRUPV IRU 763& HGJH EDVHG FORFNLQJ 6\VWHP PRGHO IRU 763& ODWFK EDVHG FORFNLQJ 7LPLQJ ZDYHIRUPV IRU 763& ODWFK EDVHG FORFNLQJ 3RWHQWLDO VNHZ KD]DUG ZLWK 763& VFKHPH >@ &ORFNLQJ DJDLQVW WKH GDWD IORZ WR H[SORLW VNHZ >@ 1RQORFDO FRPPXQLFDWLRQ SUREOHP VROXWLRQ >@ 6(0 SKRWRJUDSKV RI GHIHFWV IURP HDUO\ 3( IDEULFDWLRQV 'HIHFW GHQVLW\ YV GHIHFW UDGLXV &ULWLFDO DUHD IRU 3DUDOOHO &RQGXFWRUV 6\VWHP $UFKLWHFWXUH 3URFHVVRU $UFKLWHFWXUH 6WDQGDUG 0RGXOR 3 $UFKLWHFWXUH 0RGXOR3 $GGHU %XLOGLQJ %ORFN 3ULPLWLYHV &DUU\ 6HOHFW 0RGXOR $GGHU )RUZDUGPDSSLQJ f FRQYHUVLRQ PRGXOH ZLWK *(4516 ORJ WDEOH YLL PAGE 8 ,QYHUVHPDSSLQJ rf FRQYHUVLRQ PRGXOH &57 EORFN GLDJUDP 763& 3LSHOLQH 5HJLVWHU 63,&( VLPXODWLRQ RI IDVW WUDQVLWLRQ SDWK IRU VKLIW UHJLVWHU 763& 6KLIW 5HJLVWHU &HOO ZLWK 6WRUDJH )ORRUSODQ RI ([SRQHQWLDWLRQ 520 .H\ 520 &LUFXLW (OHPHQWV 63,&( VLPXODWLRQ RI 520 RSHUDWLRQ 'LH SKRWRJUDSK RI SURFHVVRU 2VFLOORVFRSH SKRWR RI FORFN VLJQDO DQG RXWSXW ELW ]HUR 3DVVWKURXJK WHVW 2VFLOORVFRSH SKRWR RI SDVVWKURXJK WHVW RXWSXW 63,&( VLPXODWLRQ RI SDVVWKURXJK WHVW 3URFHVVRU DUFKLWHFWXUH RI ILUVW YHUVLRQ 'LH SKRWRJUDSK RI ILUVW YHUVLRQ RI 3( 2VFLOORVFRSH SKRWR RI QRQRYHUODSSLQJ FORFNV IRU ILUVW FKLS 3URFHVVRU DUFKLWHFWXUH RI VHFRQG YHUVLRQ 'LH SKRWRJUDSK RI VHFRQG YHUVLRQ RI 3( PAGE 9 $ 520 6HQVH $PSOLILHU $ 520 3URJUDPPLQJ 0DWUL[ $ 0RG 3 %XLOGLQJ %ORFN =HURf $ 0RG 3 %XLOGLQJ %ORFN 2QHf $ '665 &HOO $ 3LSHOLQH 5HJLVWHU ZLWK 'LUHFWLRQ /RJLF $ 5HFRQILJXUDEOH 6ZLWFK (OHPHQW ,; PAGE 10 $EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ $ )$8/7 72/(5$17 *(4516 352&(66,1* (/(0(17 )25 /,1($5 6<672/,& $55$< '63 $33/,&$7,216 %\ -HUHP\ & 6PLWK $XJXVW &KDLUPDQ 'U )UHG 7D\ORU 0DMRU 'HSDUWPHQW (OHFWULFDO (QJLQHHULQJ ,Q WKLV ZRUN WKH GHVLJQ RI D *DORLV (QKDQFHG 4XDGUDWLF 5HVLGXH 1XPEHU 6\VWHP *(4516f SURFHVVRU LV SUHVHQWHG ZKLFK FDQ EH XVHG WR FRQVWUXFW OLQHDU V\VWROLF DUUD\V 7KH SURFHVVRU DUFKLWHFWXUH KDV EHHQ RSWLPL]HG WR SHUIRUP PXOWLSO\ DFFXPXODWH W\SH RSHUDWLRQV RQ FRPSOH[ RSHUDQGV 7KH SURSHUWLHV RI ILQLWH ILHOGV KDYH EHHQ H[SORLWHG WR SHUIRUP WKLV FRPSOH[ PXOWLSOLFDWLRQ LQ D PDQQHU ZKLFK UHVXOWV LQ JUHDWO\ UHGXFHG KDUGZDUH FRPSOH[LW\ 7KH SURFHVVRU LV DOVR VKRZQ WR KDYH D KLJK GHJUHH RI WROHUDQFH WR PDQXIDFWXULQJ GHIHFWV DQG IDXOWV ZKLFK FDQ RFFXU GXULQJ RSHUDWLRQ 7KH FRPELQDWLRQ RI WKHVH WZR IDFWRUV PDNHV WKLV DQ LGHDO FDQGLGDWH IRU DUUD\ VLJQDO SURFHVVLQJ DSSOLFDWLRQV ZKHUH KLJK FRPSOH[ DULWKPHWLF GDWD UDWHV DUH UHTXLUHG $ SURWRW\SH SURFHVVLQJ HOHPHQW KDV EHHQ IDEULFDWHG LQ ILP &026 WHFKQRORJ\ ZKLFK LV VKRZQ WR RSHUDWH DW 0+] [ PAGE 11 &+$37(5 ,1752'8&7,21 $ULWKPHWLF EDQGZLGWK FRQWLQXHV WR UHPDLQ WKH SULQFLSDO OLPLWDWLRQ LQ KLJK VSHHG 'LJLWDO 6LJQDO 3URFHVVLQJ '63f DSSOLFDWLRQV ,Q WKH SDVW V\VWROLF DUUD\V KDYH EHHQ SURSRVHG DV D PHDQV WR DFKLHYH KLJK FRPSXWDWLRQDO WKURXJKSXW IRU FRPSXWH ERXQG DSSOLFDWLRQV >@ 7KH KLJKO\ PRGXODU QDWXUH RI V\VWROLF DUUD\V PDNHV WKHP DWWUDFWLYH IRU ODUJHU WKDQ FRQYHQWLRQDO OHYHOV RI LQWHJUDWLRQ VXFK DV 8OWUD /DUJH 6FDOH ,QWHJUDWLRQ 8/6,f DQG :DIHU 6FDOH ,QWHJUDWLRQ :6,f ,Q DQ DUUD\ SURFHVVRU HDFK EXLOGLQJEORFN FHOO RU 3URFHVVLQJ (OHPHQW 3(f SHUIRUPV VRPH EDVLF DULWKPHWLF RSn HUDWLRQ RQ GDWD ZKLFK DUULYHV DW LWV LQSXWV 7KH GDWD IORZ LV LQ VRPH SUHGHWHUPLQHG DQG UHJXODU RUGHULQJ VR WKDW RSHUDQGV DUULYH DW WKH FRUUHFW SURFHVVRU DW WKH FRUUHFW WLPH 7KH DUFKLWHFWXUH RI HDFK 3( LV KLJKO\ RSWLPL]HG DQG LV WKHQ UHSHDWHG RYHU D ODUJH VLOLFRQ DUHD ,Q RUGHU WR UHDOL]H ODUJH PRQROLWKLF DUUD\V RI SURFHVVLQJ HOHPHQWV LW LV QHFHVVDU\ WR FRSH ZLWK WKH IDFW WKDW PDQ\ RI WKH SURFHVVRUV LQ DQ DUELWUDU\ DUUD\ ZLOO KDYH VRPH IDWDO GHIHFW DW WKH WLPH RI PDQXIDFWXUH $GGLWLRQDOO\ DV FKLS WUDQVLVWRU FRXQW DQG VFDOLQJ GHQVLW\ LQFUHDVHV VR GRHV WKH SUREDELOLW\ RI RSHUDWLRQDO IDLOXUH GXH WR ELDV UHODWHG SK\VLFDO SKHQRPHQD >@ ,Q WKLV ZRUN WKH GHVLJQ RI D 5HVLGXH 1XPEHU 6\VWHP 516f SURFHVVRU LV SUHn VHQWHG ZKLFK LV XVHG WR FRQVWUXFW D OLQHDU V\VWROLF DUUD\ 7KH SURFHVVRU DUFKLWHFn WXUH KDV EHHQ RSWLPL]HG WR SHUIRUP PXOWLSO\DFFXPXODWH W\SH RSHUDWLRQV RQ FRPSOH[ RSHUDQGV 7KH SURSHUWLHV RI ILQLWH ILHOGV KDYH EHHQ H[SORLWHG WR SHUIRUP WKLV FRPSOH[ PXOWLSOLFDWLRQ LQ D PDQQHU ZKLFK UHVXOWV LQ JUHDWO\ UHGXFHG KDUGZDUH FRPSOH[LW\ PAGE 12 7KH SURFHVVRU LV DOVR VKRZQ WR KDYH D KLJK GHJUHH RI WROHUDQFH WR PDQXIDFWXULQJ GHn IHFWV DQG IDXOWV ZKLFK RFFXU GXULQJ RSHUDWLRQ 7KH FRPELQDWLRQ RI WKHVH WZR IDFWRUV PDNHV WKLV DQ LGHDO FDQGLGDWH IRU VLJQDO SURFHVVLQJ DSSOLFDWLRQV ZKHUH KLJK FRPSOH[ DULWKPHWLF GDWD UDWHV DUH UHTXLUHG ,Q VHFWLRQ WZR DQ LQWURGXFWLRQ WR WKH WKHRU\ OHDGLQJ XS WR WKH SURFHVVRU DUFKLn WHFWXUH LV SUHVHQWHG ,W ZLOO EH VKRZQ KRZ FRPSOH[ PXOWLSOLFDWLRQ FDQ EH SHUIRUPHG LQ WZR QRQFRPPXQLFDWLQJ SDUDOOHO FKDQQHOV YLD WKH 4XDGUDWLF 5HVLGXH 1XPEHU 6\VWHP 4516f PDSSLQJ )XUWKHUPRUH WKH PDSSLQJ PD\ EH WDNHQ WR RQH PRUH OHYHO ZKHUH WKH DFWXDO PXOWLSOLFDWLRQ LV SHUIRUPHG DV D VXP RI WZR QXPEHUWKHRUHWLF H[SRQHQWV 1H[W VRPH ERXQGV DUH JLYHQ RQ WKH PD[LPXP OHQJWK RI D FRPSOH[ LQQHU SURGXFW WKDW FDQ EH FRPSXWHG ZLWKLQ WKH JLYHQ G\QDPLF UDQJH RI WKH V\VWHP )LQDOO\ WKH FKDSWHU FRQFOXGHV ZLWK DQ LOOXVWUDWLYH QXPHULFDO H[DPSOH RI WKH PDSSLQJ WHFKQLTXHV 6RPH NH\ LPSOHPHQWDWLRQ LVVXHV ZKLFK UHODWH WR WKH GHVLJQ RI ODUJH DUHD LQn WHJUDWHG FLUFXLWV ,&Vf DUH SUHVHQWHG LQ &KDSWHU 7KUHH ,Q D EURDG VHQVH WKHVH DUH V\QFKURQL]DWLRQ DQG PDQXIDFWXULQJ \LHOG 7KH ILUVW VHFWLRQ RI &KDSWHU 7KUHH GHn VFULEHV WKH FORFNLQJ WHFKQLTXHV WKDW KDYH EHHQ KLVWRULFDOO\ XVHG LQ LQWHJUDWHG FLUFXLWV DQG VRPH RI WKHLU OLPLWDWLRQV 7KH VHFWLRQ FRQFOXGHV ZLWK WKH LQWURGXFWLRQ RI WKH WUXH VLQJOH SKDVH FORFNHG 763&f WHFKQLTXH ZKLFK UHSUHVHQWV WKH ODWHVW GHYHORSPHQW LQ V\QFKURQRXV V\VWHP GHVLJQ 7KH VHFRQG VHFWLRQ RI &KDSWHU 7KUHH SUHVHQWV WKH NH\ LVVXHV RI ,& PDQXIDFWXULQJ $ SK\VLFDO QRWLRQ RI PDQXIDFWXULQJ GHIHFWV ZLOO EH GHYHORSHG DORQJ ZLWK VRPH PRGHOV XVHG WR SUHGLFW LQWHJUDWHG FLUFXLW \LHOG $Q RYHUYLHZ RI WKH SURSRVHG V\VWHP ZLOO EH SUHVHQWHG LQ &KDSWHU )RXU DORQJ ZLWK WKH DUFKLWHFWXUDO GHVLJQ RI WKH SURFHVVLQJ HOHPHQW 7KH GHVLJQ WUDGHRIIV ZKLFK UHVXOWHG LQ WKH ILQDO 3( LPSOHPHQWDWLRQ DUH GLVFXVVHG LQ GHWDLO )LQDOO\ WKH DUFKLWHFn WXUH RI WKH VXSSRUW PRGXOHV QHFHVVDU\ WR SHUIRUP WKH IRUZDUG DQG UHYHUVH PDSSLQJV RI WKH LQSXW DQG RXWSXW GDWD DUH SUHVHQWHG ,W LV VKRZQ WKDW WKHVH FRQYHUVLRQ HOHPHQWV FDQ EH LPSOHPHQWHG H[FOXVLYHO\ ZLWK WKH NH\ PRGXOHV RI WKH 3( PAGE 13 7KH 9/6, GHVLJQ RI WKH 3( LV SUHVHQWHG LQ &KDSWHU )LYH 7KH FKDSWHU IRFXVHV KHDYLO\ RQ WKH WUDQVLVWRUOHYHO GHVLJQ RI WKH 3( 7KH LQWHUQDO GHWDLOV RI HDFK PDMRU PRGXOH RI WKH 3( DUH SUHVHQWHG DORQJ ZLWK FRPSXWHU VLPXODWLRQ RI WKHLU EHKDYLRU 6RPH UHVXOWV RI WKH WHVWLQJ RI IDEULFDWHG FKLSV DUH WKHQ SUHVHQWHG ,W LV VKRZQ WKDW WKH 3( LV FDSDEOH RI PDLQWDLQLQJ D YHU\ KLJK GDWD UDWH ZKLFK LV GXH XOWLPDWHO\ WR WKH DJJUHVVLYH GHVLJQ WHFKQLTXHV XVHG IRU LWV HOHFWURQLFV )LQDOO\ D GLVFXVVLRQ RI WKH HDUOLHU YHUVLRQV RI WKH 3( LV SUHVHQWHG ZKLFK GHWDLO WKH HYROXWLRQ DQG RSWLPL]DWLRQ RI WKH FXUUHQW DUFKLWHFWXUH $Q DQDO\VLV RI WKH IDXOWWROHUDQW SURSHUWLHV RI WKH SURSRVHG V\VWHP LV JLYHQ LQ &KDSWHU 6L[ ,W LV VKRZQ WKDW WKH \LHOG RI D ODUJHDUHD VL[WHHQ SURFHVVRU DUUD\ FDQ EH VLJQLILFDQWO\ LQFUHDVHG E\ WKH FKRVHQ UHGXQGDQF\ VFKHPH 7KLV VFKHPH LV WKHQ FRPSDUHG WR RQH ZKLFK LV WUDGLWLRQDOO\ XVHG IRU 516 V\VWHPV DQG LV VKRZQ WR EH IDU PRUH HIILFLHQW DQG EHQHILFLDO )LQDOO\ &KDSWHU 6HYHQ VXPPDUL]HV WKH DFFRPSOLVKPHQWV RI WKLV GLVVHUWDWLRQ 6RPH FRQFOXGLQJ UHPDUNV DQG IXWXUH GLUHFWLRQV ZKLFK WKLV ZRUN PLJKW WDNH DUH DOVR SUHVHQWHG PAGE 14 &+$37(5 7+(25< 7KH 4XDGUDWLF 5HVLGXH 1XPEHU 6\VWHP I4516f 7KH 5HVLGXH 1XPEHULQJ 6\VWHP 516f KDV ORQJ EHHQ SURSRVHG DV D PHDQV RI DFKLHYLQJ KLJKFRPSXWDWLRQDO EDQGZLGWKV LQ VLJQDO SURFHVVLQJ V\VWHPV > @ 7KH 516 JHWV LWV VSHHG DGYDQWDJH EHFDXVH FRPSXWDWLRQV RYHU D ODUJH EDVH ULQJ FDQ EH LPSOHPHQWHG RYHU VPDOOHU FRPSXWDWLRQ ULQJV GXH WR DQ LVRPRUSKLVP EHWZHHQ HOHPHQWV LQ WKH EDVH ULQJ DQG WKH GLUHFW VXP RI WKH FRPSXWDWLRQ ULQJV $Q LQWHJHU ; LQ WKH 516 LV UHSUHVHQWHG E\ DQ /WXSOH RI UHVLGXHV ; ^[[ef f ZKHUH [Â ; !PL LV WKH ÂWK UHVLGXH DQG PÂ LV WKH ÂWK PRGXOXV 7KH SURGXFWLRQ UXOH IRU WKH ]WK GLJLW LQ D 516 FRPSXWDWLRQ LV =L ;^ 9L !PL f =L ;b ; 9L !PL n n ZKLFK UHSUHVHQWV PRGXODU DGGLWLRQ DQG PXOWLSOLFDWLRQ UHVSHFWLYHO\ 7KH LPn SRUWDQFH RI (TXDWLRQ LV WKDW WKH FRPSXWDWLRQ RI DQ\ GLJLW LQ WKH /WXSOH LV LQn GHSHQGHQW RI DQ\ RWKHU GLJLW 7KLV PHDQV WKDW WKHUH DUH QR FDUULHV EHWZHHQ WKH UHVLGXH FKDQQHOV ,I WKH UHVLGXH FKDQQHOV DUH RI VPDOO ZRUGZLGWK WKHQ KLJK FRPSXn WDWLRQ UDWHV FDQ EH DFKLHYHG LQ SK\VLFDO V\VWHPV 7KLV LV WKH FHQWUDO WKHPH LQ 516 LPSOHPHQWDWLRQV 7KH UXOH ZKLFK PDSV FRPSXWDWLRQV RYHU WKH LPSOHPHQWDWLRQ ULQJV EDFN WR WKH EDVH ULQJ LV WKH &KLQHVH 5HPDLQGHU 7KHRUHP &57f 7KH &57 LV JLYHQ EHORZ PAGE 15 ; MO@ P [ Pf [ ;L !P !0 PRG 0f f :KHUH 0 fÂ§ QAL P DQG IRU LM f ^ /` JFGPL UULMf IRU L A M DQG Pn 0P ZLWK P [ PfB $ KLVWRULFDO FRPSODLQW DERXW 516 V\VWHPV LV WKDW WKH VSHHG JDLQV REWDLQHG E\ WKH IDVW SDUDOOHO FKDQQHOV DUH ORVW LQ WKH &57 VLQFH LW UHTXLUHV D ILQDO PRG0f RSHUDWLRQ DFURVV WKH HQWLUH G\QDPLF UDQJH +RZHYHU WKLV LV OHVV RI DQ LVVXH WRGD\ DV ODUJH ZRUGZLGWK IDVW ELQDU\ DGGHUV DUH UHJXODUO\ GHPRQVWUDWHG LQ WKH OLWHUDWXUH > @ $V ZH ZLOO VHH VKRUWO\ VPDOOHU ELQDU\ DGGHUV FDQ EH XVHG WR PDNH ODUJHU PRGXOR DGGHUV ZLWK PLQLPDO DUHD FRPSOH[LW\ &RPSOH[ RSHUDWLRQV LQ WKH 516 FDQ EH SHUIRUPHG E\ VLPSO\ HPXODWLQJ FRQn YHQWLRQDO DUFKLWHFWXUHV ZLWK 516 HOHPHQWV &RPSOH[ 5HVLGXH 1XPEHULQJ 6\VWHP &516ff +RZHYHU WKH 4516 ILUVW LQWURGXFHG E\ /HXQJ >@ DQG ODWHU GHYHORSHG E\ .URJPHLHU DQG -HQNLQV >@ LV D PXFK EHWWHU ZD\ RI SHUIRUPLQJ FRPSOH[ RSHUDWLRQV ,Q 4516 UHDO DQG LPDJLQDU\ FRPSRQHQWV DUH HQFRGHG LQWR WZR LQGHSHQGHQW TXDQn WLWLHV ZKHUHE\ FRPSOH[ RSHUDWLRQV FDQ EH SHUIRUPHG LQGHSHQGHQWO\ LQ WZR SDUDOOHO FKDQQHOV 7KLV UHTXLUHV WKDW WKH PRGXOL EH UHVWULFWHG WR SULPHV RI WKH IRUP$N ,I WKLV LV VR WKH HTXDWLRQ [ PRG Sf f KDV WZR VROXWLRQV LQ WKH ULQJ =S GHQRWHG E\ M DQG M ZKLFK DUH DGGLWLYH DQG PXOWLSOLFDWLYH LQYHUVHV RI HDFK RWKHU :H GHILQH D IRUZDUG PDSSLQJ =S>M@M f fÂ§! =S [ =S WR EH f DMEf ]]rf ] DME!S ]r D ME!S :H ZLOO FDOO WKH ] DQG r RSHUDQGV WKH QRUPDO DQG FRQMXJDWH FRPSRQHQWV UHVSHFWLYHO\ 7KH LQYHUVH PDSSLQJ =S [ =S fÂ§! =S>M@M f LV JLYHQ E\ PAGE 16 HnID]rf ?] ]rf !SM aU]]rf !S f ,I ] ]rf Z Zrf f =S [ =S WKHQ DGGLWLRQ DQG PXOWLSOLFDWLRQ RSHUDWLRQV LQ WKH ULQJ =S [ =S f DUH JLYHQ E\ ]]rf ZZrf ] Z]r Zrf ]]rf f ZZrf ]Z]rZrf A n n 6LQFH WKH ] DQG ]r FKDQQHOV DUH LQGHSHQGHQW WKH\ FDQ EH LPSOHPHQWHG LQ WZR VHSDUDWH FKDQQHOV &RPSOH[ DULWKPHWLF FDQ WKXV EH SHUIRUPHG LQ WZR VLPXOWDQHRXV RSHUDWLRQV H[HFXWHG LQ RQH FORFN F\FOH 7KH *DORLV(QKDQFHG 4516 Â*(4516f 7KH SURSHUWLHV RI *DORLV ILHOGV FDQ EH XVHG WR IXUWKHU VLPSOLI\ FRPSOH[ PXOn WLSOLFDWLRQ LQ WKH 516 > @ ,W LV ZHOO NQRZQ WKDW IRU DQ\ SULPH PRGn XOXV S WKDW WKHUH H[LVWV VRPH D e =S WKDW JHQHUDWHV DOO QRQ]HUR HOHPHQWV RI WKH ILHOG *)Sf 7KDW LV DQ\ QRQ]HUR HOHPHQW LQ =S FDQ EH UHSUHVHQWHG E\ DN ZKHUH N f ^ S fÂ§ ` 6LQFH ZH FDQ UHSUHVHQW DOO HOHPHQWV RI *)Sf fÂ§ ^` E\ H[SRQHQWV PXOWLSOLFDWLRQ FDQ EH SHUIRUPHG YLD H[SRQHQW DGGLWLRQ 7KLV LV KLJKO\ GHVLUDEOH IURP D KDUGZDUH VWDQGSRLQW VLQFH QELW DGGHUV WHQG WR EH VPDOOHU DQG IDVWHU WKDQ QELW PXOWLSOLHUV $ QXPEHU WKHRUHWLF ORJDULWKP WDEOH LV XVHG WR REWDLQ WKH SRZHU RI D IRU HDFK 4516 RSHUDQG DQG DQ DQWLORJDULWKP WDEOH LV XVHG WR UHFRYHU WKH VXPPHG SRZHUV PRGXOR SOf ([SORLWDWLRQ RI WKLV F\FOLF SURSHUW\ DOVR SHUPLWV WKH XVH RI PRGXOL ZKLFK DUH ODUJHU WKDQ WKRVH W\SLFDOO\ XVHG IRU 516 V\VWHPV W\SLFDOO\ OHVV WKDQ ILYH ELWVf VLQFH D KDUGZDUH PXOWLSOLHU LV QRW QHHGHG 7KLV WUDQVODWHV LQWR LQFUHDVHG G\QDPLF UDQJH IRU IHZHU FKDQQHOV (LJKW ELW PRGXOL KDYH EHHQ XVHG LQ WKLV LPSOHPHQWDWLRQ EXW WKH WHFKQLTXH FRXOG HDVLO\ EH H[WHQGHG WR RU ELW PRGXOL %H\RQG WKLV WKH ORJDULWKP DQG DQWLORJDULWKP WDEOHV EHFRPH WRR ODUJH DQG VORZ WR EH RI EHQHILFLDO XVH PAGE 17 r '\QDPLF 5DQJH 7KH OHJLWLPDWH UDQJH RI LQWHJHUV LQ D 516 V\VWHP LV > 0 fÂ§ @ ZKHUH 0 UL/L 3Lf $OO N SULPHV ERXQGHG E\ HLJKW ELWV EHORQJ WR WKH VHW ^ ` ,Q WKHRU\ D 516 V\VWHP FRXOG EH FRQVWUXFWHG LQ ZKLFK WKH PD[LPXP UDQJH ZDV WKH SURGXFW RI DOO RI WKHVH SULPHV [ _B-f &OHDUO\ WKLV ZRXOG UHVXOW LQ DQ LPSUDFWLFDO LPSOHPHQWDWLRQ DV D PDVVLYH &57 ZRXOG EH QHHGHG WR UHFRYHU WKH UHVLGXHV 6\VWHPV RI SUDFWLFDO LQWHUHVW ZRXOG FRQVWLWXWH PRGXOL VHWV RI VD\ WKH ILUVW HLJKW PRGXOL ,I D VLJQHG UHSUHVHQWDWLRQ IRU LQWHJHUV LV GHVLUHG ZH FDQ GLYLGH WKH LQWHUYDO > 0f XS HYHQO\ LQWR D SRVLWLYH KDOI DQG D QHJDWLYH KDOI 6LQFH 0 ZLOO EH RGG IRU DQ\ SURGXFW RI PRGXOL ZH KDYH GHILQHG WKH G\QDPLF UDQJH ZLOO EH >fÂ§0 fÂ§ f0 fÂ§ Of@ (DFK LQWHJHU ; LV PDSSHG RQWR WKH UDQJH >0 fÂ§ @ DFFRUGLQJ WR ; [[[/f [^ ; PRG SLf ; 3L fÂ§ ; PRG SLff ; f ZKHUH ; PRGSf LV WKH OHDVW SRVLWLYH UHVLGXH RI ; ZLWK UHVSHFW WR SÂ 7KH QHJDWLYH SDUW RI WKH G\QDPLF UDQJH WKXV PDSV WR WKH XSSHU SDUW RI WKH OHJLWLPDWH UDQJH 3RVLWLYH5DQJH > 0 fÂ§ Of@ 1HJDWLYH5DQJH >0 Of0 fÂ§ @ f 7DEOH GHSLFWV WKH PD[LPXP UDQJHV DFKLHYDEOH IRU HLJKW WKURXJK IRXU PRGXn OXV V\VWHPV :H ZLOO FRQVLGHU WKH IRXU PRGXOXV FDVH :H DUH LQWHUHVWHG LQ SHUIRUPLQJ LQQHU SURGXFW FRPSXWDWLRQV RI WKH IRUP 1 F A DNfENf N f PAGE 18 ZKHUH DNf DQG ENf DUH FRPSOH[ VHTXHQFHV :H ZLOO DVVXPH WKDW WKH UHDO DQG LPDJLQDU\ SDUWV RI ERWK VHTXHQFHV DUH VLJQHG QXPEHUV ZKHUH 7 D7D^ f A EU KL A f 7KH UHDO DQG LPDJLQDU\ FRPSRQHQWV RI (TXDWLRQ ZLOO WKXV VDWLVI\ WKH ERXQGV 1D f f F7 D 1D f f f :H PXVW QRZ FRQWDLQ WKHVH OLPLWV ZLWKLQ RXU WRWDO G\QDPLF UDQJH VR WKDW RYHUIORZ ZLOO QRW RFFXU GXULQJ WKH FRPSXWDWLRQ RI (TXDWLRQ ZH WKXV REWDLQ WKH IROORZLQJ LQHTXDOLW\ A 1D f f ZKLFK LPSOLHV WKDW WKH PD[LPXP LQQHU SURGXFW OHQJWK 1PD[ LV f 1PD[ 0 f f f f 6RPH WDEXODWHG LQQHU SURGXFW OHQJWKV DUH VKRZQ LQ 7DEOH IRU YDULRXV YDOn XHV RI D DQG c :H ZLOO DVVXPH WKDW LQWHJHUV ZLWK D UHSUHVHQW TXDQWLWLHV ZKLFK DUH NQRZQ D SULRUL DV LW LV XQOLNHO\ WKDW QXPEHUV RI ODUJHU ZRUGZLGWKV ZRXOG EH DYDLODEOH IURP KLJKVSHHG VLJQDO DFTXLVLWLRQ FLUFXLWV /DUJH ZRUGZLGWK TXDQWLWLHV ZRXOG W\SLFDOO\ EH ILOWHU FRHIILFLHQWV ZKLFK FDQ EH UHGXFHG PRGXOR S nE\ D KRVW SURn FHVVRU SULRU WR HQWHULQJ WKH 516 V\VWHP 7KXV WZR UDQGRP HLJKWELW GDWD VWUHDPV RU RQH UDQGRP HLJKWELW DQG RQH SUHNQRZQ GDWD VWUHDP RI ZRUGZLGWK JUHDWHU WKDQ HLJKW ELWV FDQ EH LQSXW PAGE 19 7DEOH 7DEOH RI 0D[LPXP '\QDPLF 5DQJHV IRU (LJKW WR )RXU 0RGXOXV 6\VWHP '\QDPLF 5DQJH 0RGXOXV 6HW Q &ORVHVW SRZHU RI _B>>__7DEOH 7DEOH RI 0D[LPXP ,QQHU 3URGXFW /HQJWKV 0D[LPXP ,QQHU 3URGXFW /HQJWK D 3 1PD[ ([DPSOH :H ZLOO QRZ FRQVLGHU D VDPSOH FDOFXODWLRQ EDVHG RQ WKH WKHRU\ SUHVHQWHG VR IDU )RU WKLV VLPSOH FDVH WKH VPDOOHVW WZR $N SULPHV ZLOO EH XVHG DV PRGXOL 7KHVH DUH S? DQG S fÂ§ 6RPH SUHOLPLQDU\ FRQVWDQWV WKDW ZLOO EH QHHGHG E\ (TXDWLRQ (TXDWLRQ DQG (TXDWLRQ ZLOO EH SUHVHQWHG ILUVW DV ZHOO DV WKH FRQWHQWV RI WKH ORRNXS WDEOHV QHHGHG WR FRPSXWH WKH QXPEHU WKHRUHWLF ORJDULWKP DQG DQWLORJDULWKP YDOXHV )RU WKH WKH &57 (TXDWLRQ f ZH ZLOO QHHG WR NQRZ WKH YDOXHV RI 0 PL PLf P DQG Pf 7KHVH DUH REWDLQHG DV IROORZV PAGE 20 0 [ UK? PLf f P Pf 7KH IRUZDUG 4516 PDSSLQJ (TXDWLRQ f UHTXLUHV WKDW ZH ILQG WKH WZR FRQVWDQWV VXFK WKDW WKH HTXDWLRQ [ !S FDQ EH VROYHG 7KHVH DUH REWDLQHG IRU WKH PRGXOL XVHG KHUH DV IROORZV [ ! ML ML f [ M M :H QRWH WKDW [ DQG WKDW WKXV DQG DUH PXOWLSOLFDWLYH DQG DGGLWLYH LQYHUVHV RI HDFK RWKHU PRGXOR 6LPLODUO\ [ DQG 7KXV WZR HOHPHQWV DOZD\V H[LVW LQ HDFK FDVH ZKLFK EHKDYH H[DFWO\ OLNH WKH LPDJLQDU\ RSHUDWRUV sMf ZKLFK ZH DUH IDPLOLDU ZLWK 7KH LQYHUVH 4516 PDSSLQJ UHTXLUHV WKDW ZH DOVR ILQG WKH PXOWLSOLFDWLYH LQn YHUVH RI PRGXOR RXU SULPH PRGXOL 7KHVH DUH 0 8/ PL QLL PL [ QLLff P P [ PfB ! f !LV )LQDOO\ ZH QHHG WR REWDLQ WKH ORJDULWKPDQWLORJDULWKP WDEOHV WR SHUIRUP WKH 4516 WR *(4516 PDSSLQJ DQG WKH *(4516 WR 4516 LQYHUVH PDSSLQJ UHVSHFn WLYHO\ :H UHFDOO WKDW ZH FDQ RQO\ JHQHUDWH WKH QRQ]HUR HOHPHQWV LQ *)Sf ZLWK VRPH DN ZKHUH N LV PRGXOR S fÂ§ f :H PXVW WKXV FRQVLGHU D ]HUR DV D VSHFLDO FDVH ZKLFK ZLOO EH GHQRWHG E\ r 7KH WDEOHV DUH JLYHQ EHORZ ZLWK WKH JHQHUDWRUV IRU HDFK FDVH 7KH QXPEHU WKHRUHWLF ORJDULWKP LV REWDLQHG IURP JRLQJ ULJKWWROHIW LQ WKH WDEOHV DQG WKH DQWLORJDULWKP IURP OHIWWRULJKW PAGE 21 7DEOH /RJ$QWLORJ 7DEOH IRU SL /RJ$QWLORJ 7DEOH IRU SL D fÂ§ 3RZHU DN!Sa !S (OHPHQW r! ! ! ! r nN 7DEOH /RJ$QWLORJ 7DEOH IRU S /RJ$QWLORJ 7DEOH IRU S D 3RZHU DIH!3BL !S (OHPHQW r! ! ! ! ! ! !L ! ! ! ! ! r PAGE 22 1RZ VXSSRVH ZH ZLVK WR FRPSXWH WKH SURGXFW RI WZR FRPSOH[ QXPEHUV M DQG M 7KH SURGXFW XVLQJ VWDQGDUG DULWKPHWLF LV M /HW XV QRZ FRPSXWH WKH SURGXFW XVLQJ 516 :H PXVW ILUVW SHUIRUP WKH IRUZDUG 4516 PDSSLQJ ff r!rrf = M? ; !} K ; !f f ]r L ; !L ; !f f Âf fÂ§Â‘! ZZrf Z L ; K ; !f f Zr fÂ§ L ; ; !f f f 7KXV RXU FRPSOH[ QXPEHUV PDS LQWR WKH VHW RI RUGHUHG SDLUV m ff M ff n $W WKLV SRLQW ZH FDQ SHUIRUP WKH PXOWLSOLFDWLRQ DV DQ DFWXDO PXOWLSOLFDWLRQ DV LQ 4516 RU ZH FDQ XVH ORJDULWKPLF DGGLWLRQ DV LQ *(4516 )RU QRZ ZH ZLOO XVH 4516 3HUIRUPLQJ FRPSRQHQW ZLVH PXOWLSOLFDWLRQ DV XVXDO ZH REWDLQ ff ; ff f [ [ !Lf [ [ !Lf ff :H PXVW QRZ XVH WKH LQYHUVH 4516 PDSSLQJ ZKLFK \LHOGV f MnLf ?Vf! [ M[[! M Dn&LL f f [ M [ [ Â Af f PAGE 23 )LQDOO\ ZH PXVW XVH D UHDO DQG DQ LPDJLQDU\ &57 WR UHFRYHU RXU VWDQGDUG LQWHJHU UHSUHVHQWDWLRQ 7KH IROORZLQJ H[SUHVVLRQV UHVXOW PL [ PL [ ! P [ P [ !L ! ; ; ! ; ; ! ! r f 4 PL [ PI [ ! P [ P [ ! Y n f ; ; ! ; ; ! ! 7KXV ZH REWDLQ WKH VDPH SURGXFW DV EHIRUH 1RZ ZH ZLOO SHUIRUP WKH PXOWLn SOLFDWLRQ LQ (TXDWLRQ XVLQJ RXU *(4516 ORJDULWKP WDEOHV :H ZLOO VLPSO\ XVH 7DEOH DQG 7DEOH WR ORRNXS WKH ORJDULWKP DQG DQWLORJDULWKPV RI WKH RSHUDQGV 7KXV ff [ ff frf ff A! \!LAA \!LA ,/ f ff :H REWDLQ WKH VDPH UHVXOW DV ZH GLG LQ (TXDWLRQ DQG WKXV LI ZH SURFHHG ZLWK WKH LQYHUVH 4516 PDSSLQJ DQG &57 ZLOO REWDLQ WKH VDPH ILQDO UHVXOW )LQDOO\ ZH SRLQW RXW WKDW WKH *(4516 LV RQO\ GHILQHG IRU PXOWLSOLFDWLRQ $V ZH ZLOO VHH ODWHU WKLV HQFRGLQJ LV KLJKO\ GHVLUDEOH IURP D KDUGZDUH VWDQGSRLQW ,Q &KDSWHUV )RXU DQG )LYH WKH DUFKLWHFWXUH RI WKH PXOWLSO\DFFXPXODWH SURFHVVRU LV SUHVHQWHG 2SHUDQGV DUH LQSXW WR WKH PXOWLSOLHU SRUWLRQ RI WKH FKLS DV *(4516 H[SRQHQWV 2QFH WKH\ PAGE 24 DUH PXOWLSOLHG WKHLU SURGXFW LV FRQYHUWHG EDFN WR 4516 LQVLGH WKH SURFHVVRU DQG VXEVHTXHQWO\ XVHG LQ WKH DFFXPXODWH VHFWLRQV RI WKH FKLS PAGE 25 &+$37(5 .(< $55$< 352&(6625 ,03/(0(17$7,21 ,668(6 6\QFKURQL]DWLRQ 7KH FRQWLQXDO LQFUHDVH LQ LQWHJUDWHG FLUFXLW VFDOLQJ GHQVLW\ KDV SHUPLWWHG WKH GHYHORSPHQW RI FKLSV ZKLFK VLPXOWDQHRXVO\ H[KLELW LQFUHDVHG FRPSOH[LW\ DQG RSHUDWn LQJ VSHHG ,W LV QRZ SRVVLEOH WR EXLOG HQWLUH V\VWHPV RQ D VLQJOH FKLS ZKLFK FRQVLVW RI PDQ\ LQWHUDFWLQJ FLUFXLW HOHPHQWV %\ IDU WKH ODUJHVW JDLQV LQ LQWHJUDWLRQ DUH DWn WDLQHG ZLWK PRQROLWKLF VLQJOH FKLSf ,&V 7KLV LV EHFDXVH WKH GHOD\ WLPHV DVVRFLDWHG ZLWK FRPPXQLFDWLRQ EHWZHHQ PRGXOHV LQ FKLS FDQ HDVLO\ EH DQ RUGHU RI PDJQLWXGH OHVV WKDQ WKRVH DVVRFLDWHG ZLWK FKLSWRFKLS FRPPXQLFDWLRQ 6\QFKURQRXV V\VWHPV FRQVWLWXWH WKH EXON RI FKLSV IDEULFDWHG WRGD\ $ V\QFKURQRXV V\VWHP LV RQH LQ ZKLFK GDWD LV SDVVHG WR RU IURP FRPPXQLFDWLQJ PRGXOHV LQ D FKLS RQ WKH DFWLYH fHGJHVf RU fVWDWHVf RI D JOREDO FORFN 7KLV JUHDWO\ VLPSOLILHV WKH GHVLJQ RI LQGLYLGXDO FLUFXLW HOHPHQWV DV GDWD RQO\ QHHGV WR EH VWDEOH DW WKHVH HGJHV RU VWDWHV UDWKHU WKDQ LQ FRQWLQXRXV WLPH $V GLH DUHDV DQG FORFN VSHHGV FRQWLQXH WR JURZ KRZHYHU LW EHFRPHV PRUH DQG PRUH GLIILFXOW WR JXDUDQWHH WKDW JOREDO FORFN VLJQDOV DUULYH DW GLIIHUHQW ORFDWLRQV RQ D FKLS DW WKH VDPH WLPH 7KH GLIIHUHQFHV LQ WKH DUULYDO WLPHV RI JOREDO FORFNLQJ VLJQDOV DUH GXH WR GLIIHUHQFHV LQ WKH SDWK OHQJWKV WR LQGLYLGXDO PRGXOHV (YHQ LI WKHVH SDWK OHQJWKV FDQ EH SK\VLFDOO\ PDGH WKH VDPH WKHUH DUH UDQGRP XQDYRLGDEOH YDULDWLRQV LQ WKH GHOD\ FKDUDFWHULVWLFV RI WKH SDWKV WKDW DUH LQWULQVLF WR WKH PDQXIDFWXULQJ SURFHVV $GGLWLRQDOO\ WKH WLPH GHOD\V RI WKH FORFN SDWKV DUH LQIOXHQFHG E\ WKHUPDO DQG SRZHU VXSSO\ YDULDWLRQV ZKLFK FDQ DOVR EH UDQGRP LQ QDWXUH RU GHSHQGHQW RQ RSHUDWLQJ FRQGLWLRQV 7KH GLIIHUHQFH EHWZHHQ DUULYDO WLPHV RI WKH FORFN VLJQDO LV NQRZQ DV FORFN PAGE 26 VNHZ &ORFN V\QFKURQL]DWLRQ LV D QRQWULYLDO SUREOHP IRU SUHVHQWGD\ ODUJH DUHD KLJK SHUIRUPDQFH GLH >@ &ORFN VNHZ LV D IXQGDPHQWDO OLPLWDWLRQ WR WKH PD[LPXP VSHHG DFKLHYDEOH IRU YHU\ IDVW FKLSV $V WKH F\FOH WLPHV RI WKHVH FKLSV GHFUHDVHV WKH VNHZ WLPH EHFRPHV PRUH DQG PRUH RI D VLJQLILFDQW IUDFWLRQ RI WKH WRWDO F\FOH WLPH 7KH SUREOHP LV SDUWLFXODUO\ DJJUDYDWHG ZKHQ GDWD PXVW EH SDVVHG WR DQG IURP GLVWDQW PRGXOHV LQ D FKLS 7KH FKRLFH RI D FORFNLQJ VWUDWHJ\ LV WKXV RI SDUDPRXQW LPSRUWDQFH IRU WKH GHVLJQ RI KLJK SHUIRUPDQFH LQWHJUDWHG FLUFXLWV 7KH JHQHUDO WUHQG ZLWK WLPH KDV EHHQ D UHGXFWLRQ LQ WKH QXPEHU RI FORFN VLJQDOV WKDW DUH JHQHUDWHG DQG URXWHG DURXQG D FKLS 7KHUH DUH DVVRFLDWHG WUDGHRIIV KRZHYHU LQ FLUFXLW FRPSOH[LW\ VSHHG DQG FORFNLQJ VDIHW\ 7KH VHFWLRQV WKDW IROORZ ZLOO GHVFULEH VRPH RI WKH PRUH PRGHUQ FORFNLQJ VFKHPHV WKDW KDYH EHHQ XVHG VXFFHVVIXOO\ LQ LQWHJUDWHG FLUFXLWV LQ WKH SDVW DQG VRPH HPHUJLQJ WHFKQRORJLHV IRU YHU\ KLJK SHUIRUPDQFH FKLSV 7UDGLWLRQDO $SSURDFKHV 3VHXGR 6LQJOH 3KDVH /DWFK %DVHG 6\VWHPV 7KH VLPSOHVW W\SH RI GDWD VWRUDJH HOHPHQW LV D ODWFK /DWFKHV DUH XVHG WR KROG GDWD DW WKH LQSXWV DQG RXWSXWV RI FRPELQDWLRQDO ORJLF JDWHV ,Q LV VLPSOHVW IRUP D ODWFK SDVVHV GDWD SUHVHQW DW LWV LQSXW WR LWV RXWSXW ZKHQ WKH FORFN LV KLJK DFWLYHf 7KLV LV WKH WUDQVSDUHQW SKDVH ,I WKH GDWD FKDQJHV DW WKH LQSXW RI WKH ODWFK ZKHQ WKH FORFN LV KLJK LW ZLOO DOVR FKDQJH DW WKH RXWSXW DIWHU WKH WLPH LW WDNHV IRU WKH FKDQJH WR SURSDJDWH WKURXJK WKH ODWFK :KHQ WKH FORFN JRHV ORZ WKH GDWD WKDW ZDV SUHVHQW DW WKH IDOOLQJ HGJH RI WKH FORFN LV VWRUHG DQG FDQQRW FKDQJH 7KLV LV WKH QRQWUDQVSDUHQW SKDVH /DWFKHV H[KLELW WKH ORZHVW WUDQVLVWRU FRXQW GXH WR WKHLU VLPSOLFLW\ 7KLV IDFWRU PRWLYDWHV WKHLU XVH LQ 9/6, V\VWHPV ,Q ODWHU VHFWLRQV ZH ZLOO H[SDQG RXU GHILQLWLRQV RI WUDQVSDUHQW DQG QRQWUDQVSDUHQW ODWFK SKDVHV PAGE 27 W! Lp )LJXUH 6LQJOH 3KDVH /DWFK 6\VWHP 6LJQDOV SURSDJDWH WKURXJK FRPELQDWLRQDO ORJLF QHWZRUNV DW GLIIHUHQW UDWHV GHSHQGLQJ RQ WKHLU YDOXHV 7KLV LV GXH WR WKH LQWHUQDO FKDUDFWHULVWLFV RI WKH WUDQVLVWRU VZLWFKLQJ SDWKV FRPSULVLQJ WKH JDWHV ,W LV QRW XQFRPPRQ IRU H[DPSOH WR ILQG SURSDJDWLRQ GHOD\V IRU KLJKV WR EH WZLFH DV ORQJ DV WKRVH IRU ORZV RU YLFH YHUVD 7KLV GLIIHUHQFH LQ GHOD\ LV DOVR UHODWHG WR WKH IXQFWLRQ EHLQJ LPSOHPHQWHG DQG WR FRPELQDWLRQV RI WKH LQSXW YDULDEOHV &RQVLGHU WKH LPSOHPHQWDWLRQ RI D VWDWH PDFKLQH VKRZQ LQ )LJXUH ZKLFK HPSOR\V D SVHXGR VLQJOH SKDVH ODWFK FORFNLQJ VFKHPH 7KH RXWSXW WR WKH QH[W VWDJH DQG WKH QH[W VWDWH LQIRUPDWLRQ DUH FRPSXWHG IURP WKH SUHVHQW LQSXWV DQG SUHVHQW VWDWH GDWD 1HZ GDWD LV VDPSOHG E\ WKH ORJLF QHWZRUN MXVW DIWHU WKH ULVLQJ HGJH RI WKH FORFN LV PRGLILHG E\ WKH FRPELQDWLRQDO ORJLF &/f DQG VKRXOG EH UHDG\ WR EH SDVVHG RQ WKH WKH QH[W VWDJH DQG IHHGEDFN SDWKf MXVW EHIRUH WKH QH[W ULVLQJ HGJH RI WKH FORFN :H DUH LQWHUHVWHG RQ SODFLQJ FRQVWUDLQWV RQ WKH DOORZDEOH GHOD\V LQ WKH ORJLF VR WKDW WKH PD[LPXP RSHUDWLQJ IUHTXHQF\ FDQ EH REWDLQHG 7KH FORFN SHULRG UÂ LV JLYHQ E\ WKH VXP RI WKH KLJK DQG ORZ SKDVHV DV U UÂ :H GHVLUH WKH FORFNLQJ WR EH GDWD LQGHSHQGHQW ZKLFK UHTXLUHV WKDW WKH VORZHVW GHOD\ LQ WKH ORJLF EH OHVV WKDQ W $W WKH PAGE 28 VDPH WLPH ZH UHTXLUH WKH IDVWHVW GHOD\ LQ WKH ORJLF WR EH VORZHU WKDQ WK RWKHUZLVH D SRWHQWLDO FRQIOLFW FRXOG RFFXU ,I WKH IDVW SDWK GHOD\ ZDV VLJQLILFDQWO\ IDVWHU WKDQ WK WKHQ WKH QHZO\ JHQHUDWHG GDWD IURP WKH &/ QHWZRUN FRXOG UDFH WKURXJK WKH IHHGEDFN SDWK DQG WR WKH QH[W VWDJH WKHUHE\ FRUUXSWLQJ WKH SUHYLRXVO\ JHQHUDWHG YDOLGf GDWD 1RQGHWHUPLQLVWLF EHKDYLRU RI WKH V\VWHP UHVXOWV LV WKLV SKHQRPHQRQ RFFXUV 7KLV LV FDOOHG D UDFH FRQGLWLRQ ZKLFK PXVW EH DYRLGHG DW DOO FRVWV 7KH GHOD\ RI WKH &/ QHWZRUN WFO LV WKXV VXEMHFW WR WKH WZRVLGHG FRQVWUDLQW WK WFO 7W f 7R SXW LW VXFFLQFWO\ ZH UHTXLUH WKDW WKH VORZ SDWK EH IDVW HQRXJK DQG WKH IDVW SDWK EH VORZ HQRXJK 7KLV WZRVLGHG UHTXLUHPHQW LV YHU\ GLIILFXOW WR JXDUDQWHH LQ 9/6, V\VWHPV LQ WKH FRQWH[W RI SURFHVV SDUDPHWHUV ZKLFK KDYH VRPH VWDWLVWLFDO GLVWULEXWLRQ 7KLV FORFNLQJ VFKHPH ZDV XVHG LQ VRPH HDUO\ 9/6, FKLSV EXW ZDV ODWHU DEDQGRQHG GXH WR LWV LPSOLFLW KD]DUGV 0RUH VHFXULW\ FDQ EH REWDLQHG E\ XVLQJ D PXOWLSKDVH VFKHPH 7KH WUDGHRII EHLQJ WKDW WKH VLPSOLFLW\ RI WKLV VFKHPH LV IRUIHLWHG IRU UHGXFHG ULVN DQG HDVH RI GHVLJQ 1RQRYHUODSSLQJ 3VHXGR 7ZR 3KDVH &ORFNLQJ 1RQRYHUODSSLQJ SVHXGR WZR SKDVH FORFNLQJ 137&f KDV EHHQ WKH PDLQVWD\ RI WKH VHPLFRQGXFWRU LQGXVWU\ IRU VHYHUDO \HDUV QRZ 0RVW LQWHJUDWHG FLUFXLWV GHVLJQHG WRGD\ VWLOO HPSOR\ D 137& VFKHPH ,WV SRSXODULW\ KDV EHHQ GXH WR LWV UHODWLYH VDIHW\ DQG LPPXQLW\ WR UDFH FRQGLWLRQV 7KLV VHFXULW\ LV DFKLHYHG E\ WKH LQWURGXFWLRQ RI D VHFRQG FORFN SKDVH 7KH DFWLYH SKDVH RI WKH VHFRQG FORFN GRHV QRW RYHUODS ZLWK WKH DFWLYH SKDVH RI WKH ILUVW FORFN 7KHUH LV WKXV QR SRVVLELOLW\ RI D UDFH FRQGLWLRQ RFFXULQJ 7KLV LV VKRZQ LQ )LJXUH +HUH D GRXEOH ODWFK VFKHPH LV HPSOR\HG 1HZ LQSXW GDWD LV OHW LQ WR WKH /, ODWFK MXVW DIWHU WKH ULVLQJ HGJH RI I!2Q WKH IDOOLQJ HGJH RI SL LW LV fIUR]HQf DQG FDQQRW FKDQJH DJDLQ $IWHU WLPH UÂ M! EHFRPHV DFWLYH DQG WKH QHZ GDWD SURSDJDWHV WR WKH PAGE 29 p p OQ A rfÂ§ )LJXUH 'RXEOHODWFK QRQRYHUODSSLQJ SVHXGR WZR SKDVH V\VWHP &/ QHWZRUN :H QRWLFH WKDW WKH IDVW SDWK UDFH FRQGLWLRQ KDV EHHQ HOLPLQDWHG DV HYHQ LI WKH &/ QHWZRUN LV YHU\ IDVW IRU D SDUWLFXODU LQSXW LH ZRXOG KDYH FRPSXWHG WKH QHZ RXWSXW ZLWK D GHOD\ OHVV WKDQ ULf LW FRXOG QRW UDFH WR WKH QH[W VWDJH RU WKURXJK WKH IHHGEDFN SDWKf VLQFH WKH / ODWFKHV DUH QRQWUDQVSDUHQW $ WZRVLGHG FRQVWUDLQW KDV QRZ EHHQ UHGXFHG WR D RQHVLGHG FRQVWUDLQW 1RZ WKH RQO\ UHTXLUHPHQW RI WKH &/ QHWZRUN LV WKDW LW PHHW WKH XSSHU ERXQG RQ WKH VORZHVW WUDQVLWLRQ SDWK 7KLV LV VDWLVILHG LI WKH IROORZLQJ HTXDWLRQ KROGV WUXH 7&/ 77% 7? f RU 7&/ UM! fÂ§ ZKHUH ZH GHILQH UÂ 7L WD U WE :H QRWLFH WKDW WKH WD WLPH GHOD\ LV DQ RYHUKHDG WKDW PXVW SDLG LQ HYHU\ F\FOH 7KLV LV WKH SULFH ZH KDYH SDLG IRU WLPLQJ VDIHW\ DORQJ ZLWK WKH LQFUHDVHG FRPSOH[LW\ RI WKH GRXEOH ODWFKHV DQG ZLULQJ RI WKH VHFRQG SKDVH :H DOVR QRWLFH WKDW ZH KDYH HIIHFWLYHO\ PDGH DQ HGJHWULJJHUHG ODWFK IURP RXU FDVFDGH RI /, DQG / ODWFKHV DV QHZ GDWD HQWHUV WKH V\VWHP RQ WKH ULVLQJ HGJH RI I! 7KLV LGHD ZLOO EH LPSRUWDQW ODWHU DQG ZH ZLOO FDOO DQ HGJH VHQVLWLYH ODWFK D )OLSIORS ))f )OLSIORSV FDQ EH ERWK QHJDWLYH DQG SRVLWLYH PAGE 30 / 7 2 / 7\SH &RPELQDWLRQDO /RJLF / ; / / 7 7\SH &RPELQDWLRQDO /RJLF / 7 )LJXUH +LJK SHUIRUPDQFH QRQRYHUODSSLQJ SVHXGR WZR SKDVH V\VWHP HGJH VHQVLWLYH 7KH WLPH ZDVWHG GXULQJ WD FDQ EH JDLQHG EDFN LI WKH &/ QHWZRUN FDQ EH SDUWLWLRQHG DSSURSULDWHO\ 7KLV LV VKRZQ LQ )LJXUH +HUH FRPELQDWLRQDO ORJLF KDV EHHQ SODFHG EHWZHHQ ODWFKHV UDWKHU WKDQ DIWHU D FDVFDGH RI WZR ODWFKHV 7KH DGYDQWDJH RI WKLV VFKHPH FDQ EH DSSUHFLDWHG E\ H[DPLQLQJ WKH FRQVWUDLQW HTXDWLRQV ZKLFK FDQ EH REWDLQHG IURP D VLPLODU DQDO\VLV 7&/O 77$7 A f f 7KH VXP RI WKH &/ QHWZRUN GHOD\V PXVW EH OHVV WKDQ WKH FORFN SHULRG RU WFOL WFO 7W! $Q\ FRPELQDWLRQ RI GHOD\ WLPHV WKDW VDWLVILHV WKLV FRQVWUDLQW FDQ EH LPSOHPHQWHG ,I RQH RI WKH &/ QHWZRUNV LV IDVWHU WKDQ WKH RWKHU ZH FDQ WKXV WUDGH GHOD\ JLYLQJ WKH VORZ RQH PRUH WLPH DQG WKH IDVW RQH OHVV WLPH 7KH WRWDO GHOD\ WFOL 7&/L QRZ DSSURDFKHV WKH FORFN SHULRG ZKLFK LV PRUH HIILFLHQW WKDQ EHIRUH 7KH 137& FORFNLQJ VFKHPH LV VDIH DV ORQJ DV WKH fGHDGWLPHf EHWZHHQ WKH SKDVHV FDQ EH PDLQWDLQHG ,Q WKH SUHVHQFH RI FORFN VNHZ KRZHYHU WKLV UHTXLUHPHQW PAGE 31 )LJXUH 'HOD\ WUDQVIRUPDWLRQ PRGHO PD\ EH YLRODWHG )RU H[DPSOH LI WZR QRQORFDO PRGXOHV DUH FRPPXQLFDWLQJ WKHQ WKH UHODWLYH GLIIHUHQFHV LQ SDWK GHOD\V PD\ GHJUDGH RXU VDIHW\ PDUJLQ HQRXJK IRU WR FDXVH WLPLQJ HUURUV :H FDQ PRGHO WKH HIIHFWV RI VNHZ E\ LQWURGXFLQJ D GHOD\ WUDQVIRUPDWLRQ WKDW SUHVHUYHV WKH RYHUDOO WLPLQJ VFKHPH SUHVHQWHG VR IDU )RU D JHQHUDO ORJLF PRGXOH VKRZQ LQ )LJXUH LI ZH DGG D SRVLWLYH GHOD\ WR WKH DOO LQSXWV DQG VXEWUDFW WKLV GHOD\ IURP DOO RXWSXWV WKH RYHUDOO WLPLQJ UHPDLQV WKH VDPH :H FDQ WKXV PRGHO WKH HIIHFWV RI VNHZ E\ FRQVLGHULQJ DQ RYHUDOO WLPLQJ ORRS $ FLUFXLW ZLWK NQRZQ GHOD\V WKURXJK WKH FRPELQDWLRQDO ORJLF DQG XQFHUWDLQ FORFN VNHZ FDQ EH WUDQVIRUPHG LQWR D V\VWHP ZLWK XQFHUWDLQ GHOD\V WKURXJK WKH FRPELQDWLRQDO QHWZRUN DQG QR FORFN VNHZ >@ 'HOD\ LV WKXV DGGHG WR RQH SLHFH RI WKH FRPELQDWLRQDO QHWZRUN DQG VXEWUDFWHG IURP WKH RWKHU 7KLV GHOD\ PD\ EH SRVLWLYH RU QHJDWLYH 1HJDWLYH GHOD\ KDV QR SK\VLFDO VLJQLILFDQFH LQ D UHDO V\VWHP 1HJDWLYH GHOD\V KDYH VLJQLILFDQFH LQ WKH WUDQVIRUPHG V\VWHP KRZHYHU :H QRWH WKDW LI !L LV GHOD\HG PRUH WKDQ VXFK WKDW WKLV GHOD\ LV JUHDWHU WKDQ RI HTXDO WR WD DQ RYHUODS RI DFWLYH SKDVHV UHVXOWV ZKLFK UHTXLUHV WZR VLGHG FRQVWUDLQWV DV LQ WKH FDVH RI WKH VLQJOH SKDVH ODWFK FORFNLQJ 7KH V\VWHP LV OLNHO\ WR IDLO DW WKLV SRLQW 3VHXGR 6LQJOH 3KDVH (GJH &ORFNLQJ ,I HGJH WULJJHULQJ LV XVHG IRU WKH V\VWHP LQ )LJXUH WKHQ WKH GUDZEDFNV RI XVLQJ DQ DGGLWLRQDO FORFN SKDVH ZRXOG EH DYRLGHG 'DWD ZRXOG PRYH WR WKH QH[W PAGE 32 DGMDFHQW VWDJH DQG WR WKH IHHGEDFN SDWKf RQ WKH ULVLQJ HGJH RI WKH FORFN DQG WKXV ZRXOG QRW EH VXEMHFW WR WKH ORZHU ERXQG RQ ORJLF GHOD\ DV EHIRUH 2I FRXUVH WKH V\VWHP ZRXOG VWLOO EH YXOQHUDEOH WR FORFN VNHZ EHWZHHQ FRPPXQLFDWLQJ QRQORFDO PRGXOHV 6LQJOH SKDVH HGJH EDVHG FORFNLQJ DQG 137& VFKHPHV KDYH EHHQ XVHG VXFFHVVIXOO\ LQ LQWHJUDWHG FLUFXLWV ZLWK WKH IRUPHU DVVRFLDWHG ZLWK KLJKHU SHUIRUPDQFH $W WKLV SRLQW WKH UHDGHU LV SUREDEO\ ZRQGHULQJ ZK\ WKH ZRUG fSVHXGRf DSn SHDUV LQ DOO RI WKH GHVFULSWLRQV 7KLV LV EHFDXVH ZH KDYH SXUSRVHIXOO\ VWD\HG DZD\ IURP WKH LQWHUQDO GHWDLOV RI WKH ODWFKHV ,Q UHDOLW\ FRPSOHPHQWDU\ LQYHUWHGf SKDVHV RI WKH FORFN VLJQDOV PXVW EH JHQHUDWHG WR PDNH DOO RI RXU ODWFKHV ZRUN 7KLV LV GXH WR WKH QDWXUH RI &026 ORJLF ZKLFK HPSOR\V WZR GLIIHUHQW VSHFLHV RI WUDQVLVWRUV WR SDVV WKH IXOO UDQJH RI ORJLF YDOXHV ,I ZH YLHZ WKH WUDQVLVWRUV DV LGHDO VZLWFKHV WKHQ WKHLU RSHUDWLRQ LQ WKH PRVW HOHPHQWDU\ IRUPf UHTXLUHV WKDW D KLJK YROWDJH WXUQV WKH 1026 GHYLFH RQ DQG WKH 3026 GHYLFH RII 7KH FRQYHUVH LV WUXH WKDW D ORZ WXUQV WKH 1026 RII DQG WKH 3026 RQ 7KH 1026 GHYLFH ZLOO SDVV D VWURQJ ]HUR DQG D ZHDN RQH ZKLOH WKH 3026 ZLOO SDVV D VWURQJ RQH DQG D ZHDN ]HUR 7KH VLPSOHVW VZLWFK WKDW ZLOO SDVV WKH IXOO ORJLF OHYHO UDQJH LV D SDUDOOHO FRPELQDWLRQ RI DQ 1026 DQG 3026 GHYLFH FDOOHG D WUDQVPLVVLRQ JDWH 7KLV LV VKRZQ LQ )LJXUH ZKHUH D VLPSOH SRVLWLYH HGJHWULJJHUHG ODWFK LV VKRZQ 7KH FLUFXLW ZRUNV E\ OHWWLQJ WKH QHZ GDWD LQWR WKH ILUVW KDOI RI WKH ODWFK GXULQJ WKH ORZ SKDVH RI M! DQG SUHVHQWLQJ LW WR WKH RXWSXW GXULQJ WKH KLJK SKDVH RI I! 7KH LQWHUQDO VWDWHV LQ WKH ODWFK DUH VWRUHG RQ WKH SDUDVLWLF FDSDFLWDQFHV DW WKH LQSXWV RI WKH LQYHUWHUV LQ WKH ODWFK G\QDPLF ORJLFf ,I WKH VZLWFKLQJ WLPH RI FIf LV ]HUR DV LQ WKH LGHDO FDVH WKHQ WKHUH LV QR SRWHQWLDO UDFH FRQGLWLRQ ,Q UHDOLW\ KRZHYHU WKLV WLPH FDQQRW EH ]HUR DQG WKH FORFN VLJQDO PXVW KDYH D ILQLWH VORSH 7KHUH LV WKXV D EXLOWLQ WUDQVSDUHQF\ GXULQJ WKH LQWHUYDO U ,I WKH SURSDJDWLRQ GHOD\ WKURXJK WKH ODWFK LV RQ WKH RUGHU RI U WKHQ D UDFH FRQGLWLRQ H[LVWV :H PXVW WKXV NHHS U DV VPDOO DV SRVVLEOH ZKLFK LPSOLHV WKDW WKH FORFN HGJHUDWH PXVW EH KLJK 7R JDLQ DQ DSSUHFLDWLRQ RI WKH SUREOHP VXSSRVH WKDW ZH DUH ZRUNLQJ ZLWK PAGE 33 ! 2 ! A! ,GHDO FDVH Â‘ +[Lm 5QLWH WUDQVLWLRQ WLPH fÂ§rL 7 fffÂ§ )LQLWH WUDQVLWLRQ WLPH ZLWK LQYHUVLRQ GHOD\ )LJXUH 7UDQVSDUHQF\ SUREOHP LQWURGXFHG E\ FRPSOHPHQWDU\ SKDVH RI FORFN D W\SLFDO 9 FKLS DQG ZH UHTXLUH WKDW U QV 7KH FORFN HGJH UDWH PXVW WKXV EH JUHDWHU WKDQ ELOOLRQ YROWV SHU VHFRQG 2I FRXUVH WKH RXWSXW RI WKH ODWFK FDQQRW ULVH LQ ]HUR WLPH QRU FDQ WKH LQYHUWHUV LQ WKH ODWFKf VR WKLV ZLOO UHOD[ RXU GHOD\ FRQVWUDLQW VRPHZKDW 1HYHUWKHOHVV WKH WUDQVLWLRQ WLPH RI WKH FORFN DQG LWV FRPSOHPHQW PXVW EH YHU\ VPDOO 7KH SUREOHP LV FRPSRXQGHG VLQFH Mf LV W\SLFDOO\ JHQHUDWHG ORFDOO\ IURP 7KLV LPSOLHV WKDW M! ZLOO DOZD\V ODJ EHKLQG I! VLQFH LW FDQQRW EH SURGXFHG LQ ]HUR WLPH ZKLFK LQFUHDVHV W 7KHUH DUH WKXV EXLOWLQ SUREOHPV DVVRFLDWHG ZLWK LQYHUWLQJ WKH FORFN VLJQDO IRU D FRPSOHPHQWDU\ SKDVH ,I ZH KDG D IDPLO\ RI ODWFK FLUFXLWV WKDW FRXOG RSHUDWH ZLWK RQO\ RQH FORFN SKDVH WKHQ WKLV SUREOHP ZRXOG EH VROYHG 7KH HGJH UDWH VHQVLWLYLW\ ZLOO EH D IXQGDPHQWDO OLPLWDWLRQ LI WKH ORJLF EORFN WKDW IROORZV WKH ODWFKHV FDQ VZLWFK LQ WLPHV RQ WKH RUGHU RI WKH FORFN WUDQVLWLRQ WLPH )RU YHU\ KLJK SHUIRUPDQFH FKLSV WKLV LV LQ IDFW WKH FDVH DQG YHU\ FDUHIXO DWWHQWLRQ PXVW EH SDLG WR WKH ZRUVW FDVH FORFN HGJH UDWH PAGE 34 7UXH 6LQJOH 3KDVH &ORFNHG 6\VWHPV 7KH 7UXH6LQJOH3KDVH&ORFNLQJ 763&f VFKHPH > @ UHSUHVHQWV WKH VWDWH RI WKH DUW LQ LQWHJUDWHG FLUFXLW FORFNLQJ ,Q 763& WKH FORFN VLJQDO LV QHYHU LQYHUWHG WR SURGXFH D FRPSOHPHQWDU\ SKDVH ZKLFK VLJQLILFDQWO\ DPHOLRUDWHV WKH SUREn OHPV SRLQWHG RXW HDUOLHU 763& VFKHPHV EHFRPH PRUH DWWUDFWLYH DV FKLS GLH DUHDV JURZ WRZDUGV 8/6, DQG :6, GLPHQVLRQV DV RQO\ RQH FORFN OLQH QHHGV WR EH URXWHG DURXQG WKH FKLS DQG VLQFH FORFN VNHZ EHWZHHQ SKDVHV LV HOLPLQDWHG ,W DOVR PXFK HDVn LHU WR JXDUDQWHH WKH ORQJ WHUP UHOLDELOLW\ RI D VLQJOH FORFN LQWHUFRQQHFW RU GLVWULEXWLRQ QHWZRUN 5HGXFLQJ WKH FORFNLQJ FRPSOH[LW\ RI WKH VWRUDJH HOHPHQWV LV LPSRUWDQW IRU ODUJH V\VWHPV VLQFH WKH FORFN FDSDFLWLYH ORDG LQIOXHQFHV WKH RYHUDOO V\VWHP VSHHG $W WKH KHDUW RI WKH WHFKQLTXH LV WKH XVH RI WZR W\SHV RI ODWFK FLUFXLWV ZKLFK DUH DOWHUQDWHO\ WUDQVSDUHQW RQ HLWKHU WKH KLJK RU ORZ SKDVHV RI WKH FORFN 7KH ODWFK ZKLFK LV WUDQVSDUHQW RQ WKH KLJK SKDVH RI WKH FORFN DQG LV QRQWUDQVSDUHQW RQ WKH ORZ SKDVH LV FDOOHG WKH 1ODWFK /LNHZLVH WKH ODWFK WUDQVSDUHQW RQ WKH ORZ SKDVH DQG QRQWUDQVSDUHQW RQ WKH KLJK SKDVH LV FDOOHG WKH 3ODWFK 7KH ODWFKHV SHUPLW FRPELQDWLRQDO ORJLF FLUFXLWV WR EH SODFHG EHWZHHQ 1 DQG 3 ODWFK VHFWLRQV RU DFWXDOO\ HPEHGGHG LQ WKH ODWFKHV WKHPVHOYHV 7KH VFKHPH VXSSRUWV VWDWLF RU G\QDPLF &026 ORJLF HOHPHQWV DQG LV WKXV IXOO\ DSSOLFDEOH WR DOO W\SHV RI &026 V\VWHPV :H ZLOO GHIHU WKH GLVFXVVLRQ RI VSHFLILF FLUFXLW WRSRORJLHV RI WKH ODWFK HOHPHQWV XQWLO &KDSWHU )LYH )RU QRZ LQ ODWFK EDVHG VFKHPHV ZH FDQ GHDO RQO\ ZLWK WKH DEVWUDFWLRQ RI 1EORFNV DQG 3EORFNV ZKHUH fEORFNVf FRQVLVW RI RQO\ WKHLU UHVSHFWLYH ODWFK HOHPHQWV WRJHWKHU ZLWK FRPELQDWLRQDO ORJLF :H QRWH WKDW WKH QRWLRQ RI FRPELQDWLRQDO ORJLF HOHPHQWV FRQWDLQHG LQ RU EHWZHHQ ODWFK HOHPHQWV LV HTXLYDOHQW 7KH SUHYLRXVO\ GHILQHG FRQFHSWV RI HGJHEDVHG V\VWHPV VWLOO KROG $ SRVLWLYH HGJH IOLSIORS LV PDGH IURP D FDVFDGH RI D 3ODWFK IROORZHG E\ D 1ODWFK 6LPLODUO\ D QHJDWLYH HGJH IOLSIORS LV PDGH IURP D FDVFDGH RI D 1ODWFK IROORZHG E\ D 3ODWFK PAGE 35 ' W! DW , K W! DWB W! DW +rrÂ‘ DW QHJDWLYH VNHZ SRVLWLYH VNHZ )LJXUH 6\VWHP PRGHO IRU 763& HGJH EDVHG FORFNLQJ 763& (GJH %DVHG 6\VWHPV 7KH HIIHFWV RI FORFN VNHZ LQ D 763& VFKHPH FDQ EH H[DPLQHG ZLWK WKH V\VWHP VKRZQ LQ )LJXUH 6NHZ LV GHILQHG DV WKH GLIIHUHQFH LQ WLPH EHWZHHQ FORFN VLJQDOV DUULYLQJ DW WKH UHFHLYLQJ IOLSIORS UHODWLYH WR WKH WUDQVPLWWLQJ IOLSIORS 6NHZ PD\ WDNH RQ D QHJDWLYH RU SRVLWLYH YDOXH DV VKRZQ GHSHQGLQJ RQ WKH UHODWLYH PDJQLWXGHV RI WKH SDWK GHOD\V $L DQG $f :H QRWH WKDW QHJDWLYH VNHZ KDV D SRVLWLYH YDOXH IRU $L DQG SRVLWLYH VNHZ KDV D QHJDWLYH YDOXH IRU $ :H ZLOO DOVR GHILQH UV DV WKH VHWXSWLPH ZKLFK LV WKH PLQLPXP DPRXQW RI WLPH WKDW WKH GDWD PXVW EH VWDEOH SULRU WR WKH DFWLYH HGJH RI WKH FORFN /LNHZLVH ZH FDQ GHILQH 7K DV WKH KROGWLPH ZKLFK LV WKH PLQLPXP DPRXQW RI WLPH WKDW WKH GDWD PXVW EH KHOG DIWHU WKH DFWLYH HGJH RI WKH FORFN 7KHUH DUH DOVR GHOD\ WLPHV DVVRFLDWHG ZLWK WKH SURSDJDWLRQ WLPHV IRU QHZ GDWD WKURXJK WKH IOLSIORSV DQG FRPELQDWLRQDO ORJLF FLUFXLWV :H ZLOO GHILQH WKH SURSDJDWLRQ GHOD\ WKURXJK WKH IOLSIORSV LH DIWHU WKH DFWLYH HGJHf E\ WT DQG WKH SURSDJDWLRQ GHOD\ WKURXJK WKH &/ ORJLF E\ WFOf $OO RI WKH TXDQWLWLHV GHILQHG VR IDU PD\ WDNH RQ PD[LPXP DQG PLQLPXP YDOXHV ZKLFK ZLOO EH GHQRWHG ZLWK VXEVFULSWV 0 DQG P UHVSHFWLYHO\ PAGE 36 Df Ef Ff $ 7T0 W&/0 F4P A&/P !c7V ,r 7K8 fÂ§! $ L nW40 AFOP )LJXUH 7LPLQJ ZDYHIRUPV IRU 763& HGJH EDVHG FORFNLQJ $V EHIRUH ZH DUH LQWHUHVWHG LQ GHULYLQJ D VHW RI FRQVWUDLQW HTXDWLRQV WR FKDUn DFWHUL]H RXU V\VWHP :H ZLVK WR EH DEOH WR UXQ WKH V\VWHP DW WKH PD[LPXP DOORZDEOH FORFN IUHTXHQF\ :H QRZ FRQVLGHU WKH FDVH ZLWK FORFN VNHZ ZKHQ QRQORFDO IOLSIORSV DUH FRPPXQLFDWLQJ 7KH WLPLQJ GLDJUDP IRU WKH VLWXDWLRQ ZKHUH $ $[ QHJDWLYH VNHZf LV VKRZQ LQ &DVH Ef RI )LJXUH 7KH PD[LPXP DOORZDEOH FORFN SHULRG FDQ EH H[SUHVVHG DV 7W! 740 7&/0 7V fÂ§ $P f 2Q WKH RWKHU KDQG WKH PLQLPXP GHOD\V PXVW EH VXFK WKDW WKH QHZO\ JHQHUDWHG GDWD GRHV QRW UHDFK WKH GLVWDQW IOLSIORS EHIRUH LWV KROG WLPH 7KLV UHTXLUHV WKDW 7&/UQ 7 74P A W $0 f 7KH PD[LPXP DOORZDEOH FORFN VNHZ LQ WKH V\VWHP LV JLYHQ E\ $0 7F/P 74P a 7K f PAGE 37 )LJXUH 6\VWHP PRGHO IRU 763& ODWFK EDVHG FORFNLQJ 7\SLFDOO\ LV QHDU ]HUR IRU WKLV FODVV RI FLUFXLWV VR WKH PD[LPXP DOORZDEOH FORFN VNHZ LV MXVW JLYHQ E\ WKH PLQLPXP IOLSIORS DQG ORJLF GHOD\V 7KH VLWXDWLRQ IRU SRVLWLYH FORFN VNHZ LV VKRZQ LQ &DVH Ff RI )LJXUH fÂ§$f 6XEVWLWXWLQJ LQ D QHJDWLYH YDOXH IRU $L LQ (TXDWLRQ ZLOO \LHOG DQ LQFUHDVH LQ WKH PD[LPXP FORFN SHULRG 7KXV SRVLWLYH VNHZ ZLOO WHQG WR VORZ WKH V\VWHP GRZQ 1HJDWLYH VNHZ ZLOO DOORZ WKH V\VWHP WR RSHUDWH IDVWHU EXW ZLOO SODFH FRQVWUDLQWV RQ WKH PLQLPXP VSHHG RI WKH ORJLF VLQFH IDVW &/ QHWZRUNV ZLOO WHQG WR KDYH VKRUWHU PLQLPXP GHOD\ WLPHV 763& /DWFK %DVHG 6\VWHPV :H FDQ REWDLQ D VLPLODU VHW RI HTXDWLRQV IRU QRQORFDO FRPPXQLFDWLRQ EHWZHHQ PRGXOHV LQ ODWFK EDVHG 763& V\VWHPV 2XU SURWRW\SH V\VWHP LV VKRZQ LQ )LJXUH DQG WLPLQJ ZDYHIRUPV DUH VKRZQ LQ )LJXUH )RU VLPSOLFLW\ ZH ZLOO DVVXPH WKDW WKH GHOD\V LQ WKH 3 DQG 1 ODWFKHV DUH WKH VDPH 'DWD VWRUHG LQ WKH 1ODWFK ZKHQ JRHV ORZf PXVW SURSDJDWH WKURXJK WKH &/ QHWZRUN DQG DUULYH DW WKH 3ODWFK EHIRUH LWV VHWXS WLPH 7KLV LV VKRZQ LQ )LJXUH &DVH Df )RU QHJDWLYH VNHZ &DVHEff ZH WKXV REWDLQ WKH IROORZLQJ H[SUHVVLRQ ZKLFK LV YHU\ VLPLODU WR (TXDWLRQ PAGE 38 Df Ef Ff $ $ K 7V nn20 W&/0 fÂ§} bnI nF4PnW&/P NM0 ,&/0 )LJXUH 7LPLQJ ZDYHIRUPV IRU 763& ODWFK EDVHG FORFNLQJ 7W!/ 7TP 7&/0 7V fÂ§ $LP f :H QRWH WKDW WKHUH LV DOVR D FRQVWUDLQW RQ WKH KLJK ZLGWK RI WKH FORFN LQ RUGHU WR JLYH 1 HQRXJK WLPH WR REWDLQ GDWD 7KLV LV JLYHQ E\ WKH IROORZLQJ HTXDWLRQ ZKHUH WTP LV WKH PD[LPXP GHOD\ RI WKH 3 ODWFK 7r+ 7TP 7V f $JDLQ ZH PXVW FRQVLGHU WKH PLQLPXP DOORZDEOH GHOD\ LQ WKH V\VWHP 'DWD PXVW QRW UDFH WKURXJK WKH 3 ODWFK DQG WKH &/ QHWZRUN EHIRUH WKH KROG WLPH RI WKH 1 ODWFK 7KXV WKH UHTXLUHPHQW EHORZ PXVW KROG 7&/P U4P !7K $0 f 7KH PD[LPXP DOORZDEOH FORFN VNHZ LQ WKH V\VWHP LV JLYHQ E\ A0 Â 7&/P 7 74P 7IU f PAGE 39 $JDLQ SRVLWLYH VNHZ KDV WKH HIIHFW RI OHQJWKHQLQJ WKH FORFN SHULRG 'HVLJQ RI WKHVH V\VWHPV PXVW VWULNH D EDODQFH EHWZHHQ (TXDWLRQ (TXDWLRQ DQG (TXDn WLRQ ,W LV LQWHUHVWLQJ WR FRQVLGHU VLWXDWLRQV LQ ZKLFK (TXDWLRQ FDQQRW EH VDWn LVILHG >@ 7KLV LV VKRZQ LQ )LJXUH +HUH WKH VNHZ KDV H[FHHGHG WKH JDWH GHOD\ 1RQGHWHUPLQLVWLF EHKDYLRU RI WKH V\VWHP UHVXOWV EHFDXVH WKH HYDOXDWH SKDVHV RI 1 DQG 3 EORFNV RYHUODS 7KH V\VWHP FDQ EH PDGH WR RSHUDWH FRUUHFWO\ KRZHYHU E\ VLPSO\ FORFNLQJ DJDLQVW WKH GDWD IORZ 7KLV LV VKRZQ LQ )LJXUH ,Q WKLV ZD\ WKH HYDOXDWLRQ SKDVH RI WKH QH[W EORFN ZLOO EH FRPSOHWHO\ FRQWDLQHG LQ WKH GDWDVWDEOH ]RQH RI WKH ODVW EORFN ,W LV WKXV SRVVLEOH WR H[SORLW WKH VNHZ LI LWV GLUHFWLRQ FDQ EH JXDUDQWHHG $QRWKHU VROXWLRQ LV WR RQO\ ODWFK GDWD RQ WKH VWDUW WUDQVLWLRQV RI WKH HYDOXDWLRQ SKDVHV 7KLV FDQ EH DFFRPSOLVKHG E\ DGGLQJ D fUHV\QFKURQL]LQJf 1EORFN LQ IURQW RI WKH 3 EORFN DV VKRZQ LQ )LJXUH 7KLV LOOXVWUDWHV WKH IOH[LELOLW\ RI WKH WHFKQLTXH ZKHUH ZH FDQ VHOHFWLYHO\ DGG HGJHWULJJHULQJ ZKHUH QHHGHG )LQDOO\ ZH QRWH WKDW LQ V\VWHPV ZKHUH WKH GDWD IORZ PXVW EH LQ WZR GLUHFWLRQV D WRWDOO\ HGJH EDVHG VFKHPH LV EHVW 7KH PD[LPXP VNHZ LQ WKLV FDVH LV QHDUO\ XS WR D KDOI FORFN F\FOH >@ 6\QFKURQRXV YV $V\QFKURQRXV 6\VWHPV 6LQFH WKH HDUO\ GD\V RI V\VWROLF DUUD\V LW KDV EHHQ UHDOL]HG WKDW FORFN V\QFKURn QL]DWLRQ RYHU D ODUJH VLOLFRQ DUHD ZRXOG EH D OLPLWLQJ IDFWRU ,Q DQ DWWHPSW WR VROYH WKLV SUREOHP .XQJ >@ SURSRVHG KLV :DYHIURQW $UUD\ LQ ZKLFK GDWD ZRXOG PRYH EHWZHHQ SURFHVVLQJ HOHPHQWV LQ D VHOIWLPHG PDQQHU YLD D KDQGVKDNLQJ SURWRFRO 0RUH UHFHQWO\ $IJKDKL DQG 6YHQVVRQ >@ KDYH FRQGXFWHG D VWXG\ RI V\Qn FKURQRXV DQG DV\QFKURQRXV FORFNLQJ VFKHPHV IRU OD\RXW JURXQGUXOHV UDQJLQJ IURP WR cLP 7KH VWXG\ ZDV EDVHG RQ SK\VLFDO HQWLWLHV LQ DFWXDO SURFHVVHV UDWKHU WKDQ RQ VSHFXODWLYH PRGHOV 7KH UHVXOWV RI WKHLU ILQGLQJV KDYH LPSRUWDQW FRQVHTXHQFHV IRU PAGE 40 'DWD &ORFN &L & ( / ( / $JK 2XWSXW 'DWD a7 2XWSXW 'DWD ,A(YDO McXfÂ§ &RUUXSWHG E\ GDWD n GDWD / ( / ( )LJXUH 3RWHQWLDO VNHZ KD]DUG ZLWK 763& VFKHPH >@ 'DWD &ORFN ( / ( / aL$Jm 2XWSXW 'DWD 2XWSXW 'DWD L A$Frf (YD (YDO B GDWD GDWD / ( / ( )LJXUH &ORFNLQJ DJDLQVW WKH GDWD IORZ WR H[SORLW VNHZ >@ PAGE 41 } 1%ORFN W & 'DWD &ORFN 3%ORFN X&K LW $F F F &W ( fÂ§2XWSXW 'DWD BU U F 2XWSXW 'DWD ar_ M8a fÂ§r_$J_r 2XWSXW 'DWD arI 2XWSXW 'DWD + & ( / ( Â (YDO (YDO fGDWD r fGDWD + t GDWD t GDWD U )LJXUH 1RQORFDO FRPPXQLFDWLRQ SUREOHP VROXWLRQ >@ WKH FORFNLQJ VFKHPH XVHG IRU D SDUWLFXODU LPSOHPHQWDWLRQ VLQFH WKH RSWLPXP FKRLFH LQ WHUPV RI RYHUDOO V\VWHP VSHHGf LV LQWLPDWHO\ UHODWHG WR WKH PRGXOH JUDLQ VL]H 6RPH RI WKHLU ILQGLQJV DUH UHSURGXFHG EHORZ DV WKH\ DUH UHOHYDQW WR RXU SUREOHP $V\QFKURQRXV WLPLQJ VFKHPHV KDYH EHHQ SURSRVHG DV D VROXWLRQ WR FORFN VNHZ LQ 9/6, V\VWHPV ,W LV JHQHUDOO\ UHDOL]HG WKDW IXOO\ DV\QFKURQRXV ORJLF LH QR FORFNf UHTXLUHV WRR PXFK KDQGVKDNLQJ RYHUKHDG IRU SUDFWLFDO XVH ZKHQ WKH QXPEHU RI LQSXWV DQG RXWSXWV LV ODUJH 3UHVHQW GD\ LQWHUHVW LQ DV\QFKURQRXV V\VWHPV FHQWHUV RQ ORFDOO\ V\QFKURQRXV JOREDOO\ DV\QFKURQRXV VFKHPHV ZKHUH HDFK PRGXOH LQ D V\VWHP RSHUDWHV ZLWK LWV RZQ FORFN EXW FRPPXQLFDWHV ZLWK RWKHU PRGXOHV DV\QFKURQRXVO\ 6LQFH GDWD DUULYLQJ DW D PRGXOH PXVW EH SURFHVVHG V\QFKURQRXVO\ D V\QFKURQL]HU FLUFXLW LV QHFHVVDU\ IRU HDFK LQSXW 7KH V\QFKURQL]HU LV YXOQHUDEOH WR HUURU LI WKH LQSXW VLJQDO FKDQJHV GXULQJ WKH HGJH RI WKH ORFDO VDPSOLQJ FORFN ,I WKLV RFFXUV WKH V\QFKURQL]HU JRHV LQWR ZKDW LV NQRZQ DV D PHWDVWDEOH VWDWH 066f ZKHUH WKH RXWSXW LV XQGHILQHG IRU VRPH SHULRG RI WLPH $ V\QFKURQL]DWLRQ IDLOXUH SRWHQWLDOO\ UHVXOWV LQ D V\VWHP IDLOXUH ,Q RUGHU WR DYRLG WKLV D WLPH LQWHUYDO PXVW EH DOORZHG IRU WKH V\QFKURQL]HU WR UHVROYH WKH 066 7KLV WLPH LQWHUYDO LV DQ H[WUD GHOD\ ZKLFK LPSDFWV PAGE 42 WKH RYHUDOO GDWD UDWH 2EYLRXVO\ UHGXFLQJ WKH PRGXOH FRPPXQLFDWLRQ UDWH GHFUHDVHV WKH OLNHOLKRRG RI V\QFKURQL]DWLRQ IDLOXUH DW WKH SHQDOW\ RI UHGXFHG V\VWHP EDQGZLGWK $ PRUH IDYRUDEOH DSSURDFK LV WR GHYHORS VRPH SUREDOLVWLF ERXQGV RQ WKH UHVROXWLRQ WLPH L RI WKH V\QFKURQL]HU FLUFXLW ,Q WKLV ZRUN WR HVWLPDWH W D V\QFKURQL]DWLRQ IDLOXUH UDWH RI SHU \HDU ZDV FRQVLGHUHG DFFHSWDEOH 6\QFKURQL]DWLRQ WLPH ZDV VKRZQ WR EH WKH OLPLWLQJ IDFWRU IRU DV\QFKURQRXV V\VWHPV 7KH VWXG\ VKRZHG WKDW WKH WLPH FRPSOH[LW\ RI V\QFKURQRXV V\VWHPV LV 2ORJ 5fnf ZKLOH IRU DV\QFKURQRXV V\VWHPV LW LV ^ORJ5f ZKHUH 5 LV WKH VL]H RI WKH V\VWHP 7KLV VXJJHVWV WKDW IRU ILQHJUDLQHG V\VWHPV ZKHUH VNHZ LV DFFHSWDEOHf WKDW V\QFKURQRXV FORFNLQJ VKRXOG EH XVHG ZKLOH IRU FRDUVHU JUDLQHG DSSOLFDWLRQV DV\QFKURQRXV VFKHPHV VKRXOG EH XVHG 7KH DXWKRUV DOVR VKRZHG WKDW ZKHUH D SLSHOLQHG FORFNLQJ PRGH LV XVHG KH WKH JOREDO FORFN LV VHJPHQWHG LQWR DQ RSWLPXP QXPEHU RI VPDOO VHFWLRQV DQG HDFK VHFWLRQ GULYHQ E\ D UHSHDWHUf WKDW V\QFKURQRXV V\VWHPV ZLOO DOZD\V RXWSHUIRUP DV\QFKURQRXV V\VWHPV 7KLV LV YHU\ GLIIHUHQW IURP WKH JHQHUDO EHOLHI WKDW DV\QFKURQRXV V\VWHPV ZLOO EH WKH IDVWHVW SRVVLEOH LPSOHPHQWDWLRQ LQ D VFDOHG WHFKQRORJ\ 7KH\ DOVR VKRZHG WKDW VSHHGV XS WR DSSUR[LPDWHO\ *K] FDQ EH DFKLHYHG LQ VLQJOH SKDVH V\QFKURQRXV &026 V\VWHPV IRU ILP WHFKQRORJ\ DOWKRXJK WKH OLQH UHSHDWHUV PXVW EH VSDFHG PLOOLPHWHU DSDUW WR DFKLHYH WKLV PAGE 43 )XQGDPHQWDO 0DQXIDFWXULQJ /LPLWDWLRQV 7KH RFFXUUHQFH RI GHIHFWV LV LQKHUHQW WR WKH VHPLFRQGXFWRU PDQXIDFWXULQJ SURn FHVV 7KHVH GHIHFWV DULVH GXH WR PDQ\ SK\VLFDO PHFKDQLVPV VXFK DV SDUWLFOH FRQWDPn LQDWLRQ LPSHUIHFWLRQV LQ LQVXODWLQJ R[LGH OD\HUV PDVN PLVDOLJQPHQW VWHSFRYHUDJH SUREOHPV ZDUSLQJ RI WKH ZDIHU GXULQJ KLJK WHPSHUDWXUH VWHSV HWF 7KH ILUVW WZR FDVHV WHQG WR SURGXFH UDQGRP GHIHFWV ZKLFK DIIHFW ORFDO UHJLRQV RI D ZDIHU ZKLOH WKH UHPDLQLQJ WKUHH WHQG WR SURGXFH GHIHFWV ZKLFK DIIHFW PDQ\ FKLSV JOREDO UHJLRQVf RQ D ZDIHU *OREDO GHIHFWV DUH XVXDOO\ QRW FRQVLGHUHG LQ GHIHFWWROHUDQW DQDO\VLV VLQFH WKH\ UHSUHVHQW JURVV GLVWXUEDQFHV LQ WKH PDQXIDFWXULQJ SURFHVV DQG DUH JHQHUDOO\ QRW D IXQFWLRQ RI FKLS DUHD $GGLWLRQDOO\ YDULRXV SURFHVV PRQLWRUV WHVW FLUFXLWV SODFHG DW VWUDWHJLF ORFDWLRQV RI D ZDIHU WR GHWHUPLQH WKH TXDOLW\ RI HDFK PDQXIDFWXULQJ VWHSf DUH XVHG WR UHMHFW RU FRUUHFWf ZDIHUV ZKLFK H[KLELW VXFK FKDUDFWHULVWLFV HDUO\ LQ WKH SURFHVV &RQVHTXHQWO\ WKH RYHUDOO TXDOLW\ RI WKH PDQXIDFWXULQJ SURFHVV LV GHWHUPLQHG SULPDULO\ E\ ORFDO GHIHFWV ,QWHJUDWHG FLUFXLW \LHOG LV LQWLPDWHO\ UHODWHG WR PDQXIDFWXULQJ GHIHFWV PAGE 44 'HIHFW 6L]H 'LVWULEXWLRQ (DUO\ ZRUN RQ GHIHFWV RFFXUULQJ LQ WKH VHPLFRQGXFWRU PDQXIDFWXULQJ SURFHVV PRGHOHG UDQGRP GHIHFWV DV GLPHQVLRQOHVV SRLQWV ZKHUH DQ\ GHIHFW RFFXUULQJ LQ DQ LQWHJUDWHG FLUFXLW ZDV DVVXPHG WR FDXVH D IDLOXUH $ PRUH PRGHUQ YLHZ RI GHIHFWV >@ PRGHOV WKHP DV H[WUD RU PLVVLQJ GLVNV RI PDWHULDO LQ WKH FRQGXFWLQJ DQG QRQn FRQGXFWLQJ OD\HUV RI DQ ,& ZKLFK DUH FKDUDFWHUL]HG E\ YDU\LQJ UDGLXV DQG VSDWLDO GLVWULEXWLRQ RQ D ZDIHU 7KHVH PD\ WDNH WKH IRUP RI VKRUWV RU RSHQV LQ FRQGXFWLQJ OD\HUV XVHG IRU LQWHUFRQQHFWLRQV R[LGH SLQKROHV LQ LQVXODWLQJ OD\HUV ZKLFK FDQ FDXVH D VKRUW RU OHDNDJHf EHWZHHQ FRQGXFWRUV MXQFWLRQ OHDNDJHV RU VKRUWV WR WKH VXEVWUDWH LQ GLIIXVLRQV HWF 7KH PRGHO DVVXPHV WKDW GHIHFW W\SHV DUH LQGHSHQGHQW LQ WKDW D GHn IHFW RI D SDUWLFXODU W\SH GRHV QRW LQWHUDFW ZLWK RU FDXVH DQRWKHU GHIHFW RI D GLIIHUHQW W\SH ,Q SUDFWLFH WKLV KDV EHHQ VKRZQ WR EH D JRRG DSSUR[LPDWLRQ > SS@ ([DPSOHV RI DFWXDO GHIHFW W\SHV IURP HDUO\ SURWRW\SH IDEULFDWLRQ UXQV RI WKH 3( DUH VKRZQ LQ )LJXUH 7KHVH GHIHFWV PD\ FDXVH DQ LPPHGLDWH IDXOW DV LQ &DVH $ OHIWf RU PD\ QRW FDXVH D IDXOW DV LQ &DVH % ULJKWf &DVH $ VKRZV D VKRUW EHWZHHQ WZR SRZHU EXVVHV ZKLFK ZDV FDXVHG E\ D SDUWLFOH RQ WKH FKLS WKH SDUWLFOH LV WKH GDUN VSRWf &DVH % LV D SLQKROH LQ WKH SDVVLYDWLRQ OD\HU RYHUJODVVf OD\HU ZKLFK GRHV QRW FDXVH D VKRUW FLUFXLW VLQFH WKHUH LV QR FRQGXFWRU DERYH LW &OHDUO\ WKHQ ZH PXVW FRQVLGHU WKH QDWXUH RI D GHIHFW LQ RUGHU WR GHWHUPLQH LI LW ZLOO PDQLIHVW LWVHOI DV D FLUFXLW IDXOW 5DQGRP GHIHFWV VRPHWLPHV FDOOHG VSRW GHIHFWVf DUH W\SLFDOO\ FDXVHG E\ SDUWLFOH FRQWDPLQDWLRQ GLUWf RQ WKH FKLS RU RQ SKRWROLWKRJUDSKLF PDVNV GXULQJ PDQXIDFWXUH $V DOOXGHG WR LQ WKH SUHYLRXV SDUDJUDSK GHIHFWV DUH RI PDQ\ GLIIHULQJ W\SHV 7KH VL]H GLVWULEXWLRQ IXQFWLRQ IRU GHIHFWV RI W\SH L LV JLYHQ E\ 05f N?5 L" $R N5f3L ;RL 5 f PAGE 45 )LJXUH 6(0 SKRWRJUDSKV RI GHIHFWV IURP HDUO\ 3( IDEULFDWLRQV ZKHUH 5 LV WKH GHIHFW UDGLXV DQG ;RÂ DQG SL DUH SDUDPHWHUV ZKLFK DUH H[WUDFWHG IURP WKH IDEULFDWLRQ OLQH (DFK PDQXIDFWXULQJ VWHS LQ D SURFHVV KDV DVVRFLDWHG ZLWK LW LWV RZQ FKDUDFWHULVWLF VHW RI GHIHFW W\SHV 7KH SDUDPHWHU L LQ (TXDWLRQ FDQ WKXV EH WDNHQ RQ D PDVNE\PDVN EDVLV LH FRQVLGHU SRO\VLOLFRQ VKRUWV DQG RSHQV ILUVWOHYHO PHWDO VKRUWV DQG RSHQV HWFf 6PDOOHU GHIHFWV WHQG WR EH PRUH QXPHURXV WKDQ ODUJHU GHIHFWV VLQFH LW LV PRUH GLIILFXOW WR ILOWHU VPDOO SDUWLFOHV IURP WKH DPELHQW HQYLURQPHQW DQG PDQXIDFWXULQJ FKHPLFDOV :H VHH LQ )LJXUH WKDW WKH GHIHFW GHQVLW\ SHDNV DW WKH YDOXH IRU ;R7KLV FRUUHVSRQGV WR WKH UHVROXWLRQ OLPLW RI WKH SKRWROLWKRJUDSK\ LQ WKH SURFHVV 7KH SK\VLFDO UHDVRQ IRU WKH SHDN LV WKDW GHIHFWV RI D VPDOOHU UDGLXV VLPSO\ FDQQRW EH UHVROYHG E\ WKH SKRWROLWKRJUDSK\ DQG WKXV PDQLIHVW WKHPVHOYHV ZLWK GHFUHDVLQJ IUHTXHQF\ 7\SLFDOO\ PLQLPXP GHVLJQ UXOHV DUH VHW ZHOO DERYH WKLV YDOXH VR WKDW WKH RQO\ VL]H GLVWULEXWLRQ H[KLELWHG LQ SUDFWLFH LV IL5f A3_ ,Q WKH DERYH H[SUHVVLRQ ERWK ;^ DQG PD\ KDYH GLIIHUHQW YDOXHV IRU HDFK GHIHFW W\SH L 7\SLFDOO\ D YDOXH RI S m LV DVVXPHG >@ $V PHQWLRQHG SUHYLRXVO\ QRW DOO GHIHFWV LQ D VHPLFRQGXFWRU SURFHVV FDXVH IDXOWV )RU H[DPSOH :DONHU KDV VXJJHVWHG WKDW LI ;L SP DQG WKH PLQLPXP PAGE 46 )LJXUH 'HIHFW GHQVLW\ YV GHIHFW UDGLXV OLQH VHSDUDWLRQ LV SP LH PLQLPXP GHVLJQ UXOH LQ )LJXUH f WKHQ RQO\ RQHLQ VHYHQW\WZR GHIHFWV DUH SRWHQWLDOO\ IDXOW SURGXFLQJ > SS@ :LWK WKLV LQ PLQG ZH PXVW WKHQ FRQVLGHU WKH HIIHFWLYH GHIHFW GHQVLW\ 'R ZKLFK LV WKH GHIHFW GHQVLW\ DV VHHQ E\ WKH OD\RXW 7KH GHIHFW GHQVLW\ YDULDWLRQ ZLWK UHVSHFW WR GHIHFW UDGLXV 'Lf LV WKXV REWDLQHG E\ PXOWLSO\LQJ 'T DQG IL5f +HQFH 'L^5f $GLnt Â‘5fS .L 5f 3L f 7KH UHODWLRQVKLS EHWZHHQ SDUDPHWHUV LWn S DQG WKH HIIHFWLYH GHIHFW GHQVLW\ LV DV IROORZV 6XSSRVH WKDW WZR PHWDO OLQHV LQ DQ ,& KDYH D PLQLPXP VSDFLQJ V DQG ZH DUH LQWHUHVWHG LQ GHWHUPLQLQJ WKH HIIHFWLYH GHIHFW GHQVLW\ IRU VKRUWV $OO GHIHFWV ZLWK UDGLXV OHVV WKDQ V ZLOO QRW EH DEOH WR FDXVH D VKRUW LQ WKH OD\RXW UHJDUGOHVV RI ZKHUH WKH\ OLH 7KH HIIHFWLYH GHIHFW GHQVLW\ 'BHHFLYH DV VHHQ E\ WKH OD\RXW LV WKHQ URR 5LfÂ§HIIHFWLYH MMAG5 .L ^5f3L 3L a f If 3L PAGE 47 .L >?3La f 3L f?V6LPLODUO\ WKH HIIHFWLYH GHIHFW GHQVLW\ IRU RSHQV LQ OLQHV RI PLQLPXP ZLGWK Z LV JLYHQ E\ .Â‘ I?3La HIIHFWLYH AILf ff f :H KDYH VHHQ LQ WKH FDVH RI WKLV VLPSOH H[DPSOH D UHODWLRQVKLS EHWZHHQ HIn IHFWLYH GHIHFW GHQVLW\ DQG WKH OD\RXW JHRPHWU\ 7KHUH LV WKXV D ILQLWH SUREDELOLW\ RI D SDUWLFXODU GHIHFW SURGXFLQJ D FLUFXLW IDXOW 7KLV LGHD LV IXUWKHU H[WHQGHG LQWR WKH FRQFHSW RI FULWLFDO DUHD ZKLFK LV WKH SRUWLRQ RI D OD\RXW VHQVLWLYH WR D GHIHFW RI D SDUWLFXODU UDGLXV &ULWLFDO DUHD $5f FDQ EH GHILQHG IRU D GHIHFW RI UDGLXV 5 DV WKDW DUHD RQ D GLH LQ ZKLFK WKH FHQWHU RI D FLUFXODU GHIHFW KDV WR IDOO IRU D IDXOW WR RFFXU LQ D FLUFXLW 7KLV LV LOOXVWUDWHG LQ )LJXUH ZKHUH ZH FRQVLGHU DJDLQ WKH FDVH RI D FKLS FRQVLVWLQJ RI ZLUHV RI ZLGWK Z VSDFHG V XQLWV DSDUW 7KH WRWDO FKLS DUHD LV $T $V ZH KDYH VHHQ EHIRUH GHIHFWV RI UDGLXV OHVV WKDQ V ZLOO QRW FDXVH VKRUWV DQG WKXV $5f IRU GHIHFWV ZLWK UDGLXV 5 V ,I ZH FRQVLGHU GHIHFWV ZLWK UDGLXV 5 V $5f LQFUHDVHV 7KH FULWLFDO DUHD LQFUHDVHV OLQHDUO\ XQWLO LW UHDFKHV $R 7KLV RFFXUV DW GHIHFW UDGLXV 5R V Zf ZKHUH D IDXOW RFFXUULQJ DQ\ZKHUH RQ WKH FKLS ZRXOG FDXVH D VKRUW 7KH LQFUHDVH LQ FULWLFDO DUHD LV OLQHDU IRU WKLV VLPSOH FDVH EXW IRU D FRPSOH[ OD\RXW ZH FDQ RQO\ VWDWH WKDW FULWLFDO DUHD ZLOO LQFUHDVH PRQRWRQLFDOO\ ZLWK GHIHFW UDGLXV ,Q SUDFWLFH YHU\ ODUJH GHIHFWV VHOGRP RFFXU DQG WKH GLVWULEXWLRQ JLYHQ LQ )LJXUH FDQ EH WUXQFDWHG DW VRPH PD[LPXP UDGLXV PAGE 48 Z A V p F U XfÂ§NMfÂ§L ? r1 L ? L 9W r , ; A ttt Vt : Â W ^ ? 5 6 'HIHFWV QHYHU FDXVH VKRUW $5f &ULWLFDO $UHD 6 5 : 6 6RPH GHIHFWV SURGXFH VKRUW 5 : 6 'HIHFWV DOZD\V FDXVH VKRUW $ 6 6 : 'HIHFW 5DGLXV 5f )LJXUH &ULWLFDO DUHD IRU 3DUDOOHO &RQGXFWRUV 'HIHFW 6SDWLDO 'LVWULEXWLRQ DQG PAGE 49 IRU ]HUR FLUFXLW IDLOXUHV 7KH PHDQ SURFHVV UDWH $ LV QXPEHU RI FLUFXLW IDXOWV :H FDQ GHILQH WKLV SHU SURFHVV VWHS E\ $ ZKLFK LV JLYHQ E\ $ 'T$ ZLWK =fO DQG $L DV GHILQHG SUHYLRXVO\ LH WKH GHIHFW GHQVLW\ DQG FULWLFDO DUHD UHVSHFWLYHO\f 7KH \LHOG RI D SDUWLFXODU VWHS LQ D VHPLFRQGXFWRU SURFHVV LV WKXV PAGE 50 VWHSV WKUHH RU VRf 7KH FRUUHVSRQGLQJ \LHOGV RI VXFK VHFWLRQV ZLOO EH KLJKHU WKDQ WKDW RI VDPH DUHD ORJLF FLUFXLWV 7KH VWDWLVWLFDO LQGHSHQGHQFH RI IDLOXUHV PRGHOHG E\ WKH 3RLVVRQ GLVWULEXWLRQ SHUPLWV WKH WRWDO \LHOG RI D FKLS WR EH FRPSXWHG IURP WKH SURGXFW RI LWV LQGLYLGXDO FRPSRQHQW SDUWV 7KLV LV WKH PRVW XVHIXO SURSHUW\ RI 3RLVVRQ EDVHG \LHOG PRGHOV 0RGLILHG 3RLVVRQ 6WDWLVWLFV ,W LV QRZ ZHOO NQRZQ WKDW IRU ODUJH FKLSV WKH 3RLVVRQ PRGHO JLYHV SHVVLPLVWLF SUHGLFWLRQV IRU \LHOG ZKHQ FRPSDUHG WR DFWXDO IDEULFDWLRQ OLQH GDWD 7KLV LV EHFDXVH RI D SKHQRPHQRQ NQRZQ DV GHIHFW FOXVWHULQJ 'HIHFWV WHQG WR FOXVWHU EHWZHHQ ORWV RI ZDIHUV EHWZHHQ ZDIHUV LQ WKH VDPH ORW DQG DFURVV LQGLYLGXDO ZDIHUV >@ &OXVWHULQJ RI GHIHFWV EHWZHHQ ORWV LV SHUKDSV WKH HDVLHVW EHKDYLRU WR DSSUHFLDWH GXH WR WKH EDWFK RULHQWHG QDWXUH RI WKH VHPLFRQGXFWRU SURFHVV 0DQXIDFWXULQJ SDUDPHWHUV ZLOO FHUWDLQO\ FKDQJH RYHU D SHULRG RI ZHHNV RU PRQWKV GXH WR HTXLSPHQW DQG RSHUDWLQJ HQYLURQPHQW YDULDWLRQV 7KXV LW LV UHDVRQDEOH WR H[SHFW VRPH VWDWLVWLFDO GLIIHUHQFHV LQ WKH \LHOGV RI LGHQWLFDO FKLSV IURP GLIIHUHQW EDWFKHV ,W LV LQWHUHVWLQJ WR FRQVLGHU WKH SK\VLFDO PHFKDQLVPV UHODWLQJ WR WKH RWKHU W\SHV RI GHIHFW FOXVWHULQJ H[KLELWHG &OXVWHULQJ ZLWKLQ ZDIHUV LV GXH WR PLQXWH GLIIHUHQFHV LQ HQYLURQPHQWDO FRQGLWLRQV DW GLIIHUHQW ORFDWLRQV RQ WKH VXUIDFH RI D ZDIHU 6WDSSHU KDV VXJJHVWHG WKDW WKH GHIHFW FOXVWHUV DUH JHQHUDWHG ZKHQ YLEUDWLRQ RU RWKHU HQYLURQPHQn WDO FKDQJHV LH LUUHJXODU JDV IORZ RU SUHVVXUH FKDQJHVf FDXVH D FORXG RI SDUWLFOHV WR EUHDN ORRVH IURP WKH PDQXIDFWXULQJ HTXLSPHQW >@ :KHQ WKHVH FORXGV ODQG RQ WKH VXUIDFH RI D ZDIHU WKH UHVXOWLQJ GHIHFWV SURGXFHG ZLOO EH FOXVWHUHG 2WKHU YHU\ VXEWOH PHFKDQLVPV DOVR LQIOXHQFH WKH VSDWLDO FKDUDFWHULVWLFV GHIHFW SDWWHUQV )RU H[DPSOH LW ZDV REVHUYHG IRU PDQ\ \HDUV LQ WKH VHPLFRQGXFWRU LQGXVWU\ WKDW GHIHFWV WHQGHG WR EH UDQGRP ZLWKLQ WKH FHQWHU RI D ZDIHU DQG FRUUHODWHG WRZDUGV WKH SHULPHWHU 7KLV FDXVHG PDQ\ UHVHDUFKHUV WR GLYLGH ZDIHUV LQWR FRQFHQWULF ]RQHV ZKHUH WKH \LHOG LQ HDFK ]RQH ZDV PRGHOHG E\ D 3RLVVRQ GLVWULEXWLRQ ZLWK LWV RZQ GHIHFW GHQVLW\ 7KLV PAGE 51 EHKDYLRU DURVH EHFDXVH ZDIHUV ZHUH FDUULHG LQ SODVWLF ER[HV FDOOHG fERDWVf EHWZHHQ SURFHVV VWHSV >@ 7KH LQVLGH RI D fERDWf LV VLPLODU LQ FRQVWUXFWLRQ WR WKH LQVLGH RI D VOLGH SURMHFWRU ZKHUH JURRYHV SHUPLW ZDIHUV WR EH VWDFNHG YHUWLFDOO\ LQ SDUDOOHOf $ ERDW LV RSHQ RQ RQH VLGH RQO\ DQG GXVW SDUWLFOHV FDQ RQO\ DSSURDFK WKH ZDIHUV ZLWKLQ IURP WKLV VLGH 6XSSRVH D GXVW FORXG LV SUHVHQW QHDU D JURXS RI ZDIHUV LQ D ERDW (YHQ LI WKH SDUWLFOHV DUH XQLIRUPO\ VXVSHQGHG WKH\ DUH HOHFWURVWDWLFDOO\ DWWUDFWHG WR WKH QHDUHVW HGJH RI WKH ZDIHUV GXH WR WKH HOHFWURVWDWLF SRWHQWLDO FUHDWHG ZKHQ WKH ZDIHU LV VOLG LQWR WKH ERDW 7KLV OHDGV WR WKH REVHUYHG HGJH FOXVWHULQJ 7KHVH GHIHFW SDWWHUQV DUH OHVV VHHQ WRGD\ GXH WR LPSURYHG ZDIHU KDQGOLQJ WHFKQLTXHV :H DOVR QRWH WKDW WKH GXVW FORXG ZRXOG RQO\ DIIHFW ZDIHUV FORVHVW WR LW LQ WKH ERDW DQG PD\ QRW DIIHFW RWKHU ZDIHUV LQ WKH VDPH ERDW 7KLV H[SODLQV FOXVWHULQJ IURP ZDIHUWRZDIHU LQ WKH VDPH ORW 7KH PHFKDQLVPV SUHYLRXVO\ GHVFULEHG VXJJHVW WKDW LI WKHUH LV D GHIHFW SUHVHQW DW VRPH SRVLWLRQ RQ D ZDIHU WKDW LW LV KLJKO\ OLNHO\ WKDW WKHUH LV DQRWKHU RQH QHDU E\ 7KLV GLUHFWO\ YLRODWHV WKH VSDWLDO LQGHSHQGHQFH DVVXPSWLRQ RI D 3RLVVRQ SURFHVV ZKLFK DVVXPHV WKDW D GHIHFW DW D SDUWLFXODU ORFDWLRQ LV QRW FRUUHODWHG ZLWK DQ DGMDFHQW GHIHFW 7KXV GHIHFW ORFDWLRQV RQ D ZDIHU DUH VWDWLVWLFDOO\ GHSHQGHQW UDWKHU WKDQ LQGHSHQGHQW 7KLV LV ZK\ SXUHO\ 3RLVVRQ H[SUHVVLRQV GR QRW DFFXUDWHO\ PRGHO LQWHJUDWHG FLUFXLW \LHOG &OXVWHULQJ LPSURYHV \LHOG VLQFH LW LV EHWWHU WR KDYH GHIHFWV FOXPSHG WRJHWKHU DIIHFWLQJ IHZHU FKLSV WKDQ UDQGRPO\ GLVWULEXWHG SRWHQWLDOO\ DIIHFWLQJ PRUH FKLSV 7KH \LHOG IRUPXOD RI (TXDWLRQ FDQ EH PRGLILHG WR DFFRXQW IRU GHIHFW FOXVWHULQJ E\ DVVXPLQJ WKDW GHIHFWV DUH VWLOO 3RLVVRQ GLVWULEXWHG EXW FRQVLGHULQJ $ WR EH D UDQGRP YDULDEOH 7KH PHUH IDFW WKDW $ LV D UDQGRP YDULDEOH VXJJHVWV GHIHFW FOXVWHULQJ UHJDUGOHVV RI WKH GLVWULEXWLRQ XVHG >@ 7KLV WHFKQLTXH ZDV ILUVW GHVFULEHG LQ WKH OLWHUDWXUH E\ 0XUSK\ >@ ,I )$f LV D FXPXODWLYH GLVWULEXWLRQ IXQFWLRQ IRU WKH DYHUDJH QXPEHU RI IDXOWV SHU FKLS WKHQ DVVRFLDWHG ZLWK )$f LV WKH SUREDELOLW\ GHQVLW\ IXQFWLRQ $f JLYHQ E\ PAGE 52 P G) $f G; f ZKHUH I;fG; LV WKH SUREDELOLW\ RI KDYLQJ DQ DYHUDJH QXPEHU RI IDXOWV SHU FKLS EHn WZHHQ $ DQG $ G; 7KH RYHUDOO \LHOG WKXV EHFRPHV < U Ha[I;fG; f -R 7KH IXQFWLRQ $f LV NQRZQ DV D FRPSRXQGHU RU PL[LQJ IXQFWLRQ 0XUSK\ UHDVRQHG WKDW D EHOO VKDSHG *DXVVLDQ GLVWULEXWLRQ ZRXOG EH DSSURSULDWH IRU $f DOWKRXJK KH FRXOG QRW LQWHJUDWH WKH UHVXOWLQJ H[SUHVVLRQ +H DSSUR[LPDWHG WKH *DXVn VLDQ GLVWULEXWLRQ ZLWK D WULDQJXODU GLVWULEXWLRQ 7KH \LHOG H[SUHVVLRQ KH REWDLQHG PDWFKHG KLV PDQXIDFWXULQJ GDWD PRUH DFFXUDWHO\ WKDQ D 3RLVVRQ GLVWULEXWLRQ 0DQ\ GLVWULEXWLRQV IRU $f KDYH EHHQ VXJJHVWHG LQ WKH SDVW EXW QRQH KDYH JDLQHG PRUH DFFHSWDQFH WKDW WKDW ILUVW XVHG E\ 6WDSSHU WKH *DPPD GLVWULEXWLRQ > @ 7KH *DPPD GLVWULEXWLRQ LV JLYHQ EHORZ DV L N DfÂ§ $ H f 3rU Df ZKHUH D DQG DUH SDUDPHWHUV 7KH PHDQ DQG YDULDQFH RI WKH *DPPD GLVWULEXn WLRQ LV (^;f fÂ§ D DQG 9$f D ,I (TXDWLRQ LV VXEVWLWXWHG LQWR (TXDWLRQ DQG VROYHG WKH IROORZLQJ H[SUHVVLRQ UHVXOWV SURE; [f UD I [f3[ f DUURfO cfD[ 7KLV GLVWULEXWLRQ LV NQRZQ DV WKH 1HJDWLYH %LQRPLDO GLVWULEXWLRQ 7KH DYHUDJH QXPEHU RI IDXOWV SHU FKLS WKH JUDQG DYHUDJHf LV QRUPDOO\ WDNHQ WR EH ; ZKHUH $ (;f fÂ§ D VR WKDW c (TXDWLRQ FDQ WKXV EH H[SUHVVHG DV SURE; Df UT rfff GUDfO Âf $ A" f PAGE 53 7KH PHDQ DQG YDULDQFH RI (TXDWLRQ DUH JLYHQ E\ f (;f O 9;f ;O _f ZH QRWH WKDW WKH YDULDQFH RI WKLV GLVWULEXWLRQ f LV JUHDWHU WKDQ WKH PHDQ ZKLFK LV GLIIHUHQW IURP WKH 3RLVVRQ GLVWULEXWLRQ ZKHUH WKH YDULDQFH HTXDOV WKH PHDQ 7KH SDUDPHWHU D LV GHWHUPLQHG IURP GDWD RQ WKH GLVWULEXWLRQ RI GHIHFWV DQG FDQ EH FDOFXODWHG IURP WKH H[SUHVVLRQ $ D a7a DÂ :H VHH IURP WKLV HTXDWLRQ WKDW DV WKH YDULDQFH RI WKH GHIHFW GLVWULEXWLRQ DSSURDFKHV WKH PHDQ WKH YDOXH RI D DSSURDFKHV RR 7KLV FRUUHVSRQGV WR WKH 3RLVVRQ FDVH 6PDOO YDOXHV RI D FRUUHVSRQG WR LQFUHDVHG FOXVWHULQJ :H FDQ WKXV DFFRXQW IRU WKH 3RLVVRQ GLVWULEXWLRQ E\ FKRRVLQJ DQ DSSURSULDWH YDOXH RI D 7KLV VXJJHVWV WKDW 1HJDWLYH %LQRPLDO VWDWLVWLFV DUH PRUH IXQGDPHQWDO WR ,& PDQXIDFWXULQJ WKDQ 3RLVVRQ VWDWLVWLFV )RU DOO SUDFWLFDO SXUSRVHV D DGHTXDWHO\ PRGHOV WKH 3RLVVRQ FDVH $V EHIRUH ZH DUH LQWHUHVWHG LQ WKH FDVH ZKHUH ; IRU \LHOG DQG (TXDWLRQ EHFRPHV < SURE; f A A O r f 7KLV H[SUHVVLRQ LV NQRZQ DV WKH 1HJDWLYH %LQRPLDO 0RGHO 1%0f DQG KDV EHHQ ZLGHO\ XVHG LQ WKH LQGXVWU\ WR IRUHFDVW LQWHJUDWHG FLUFXLW \LHOGV 7KH 1%0 IRUPDOO\ FRQWDLQV DQ DGGLWLRQDO JURVV \LHOG WHUP PAGE 54 VRPH IDEULFDWLRQ OLQHVf ,W ZDV UHFHQWO\ UHSRUWHG WKDW D IDFLOLW\ FRXOG EH FRQVLGHUHG fZRUOGFODVVf LI LW ZDV DEOH WR PDLQWDLQ DQ DYHUDJH IDWDO GHIHFW GHQVLW\ RI SHU FP LQ f >@ ,Q WKH SDVW GHIHFW GHQVLWLHV KDYH NHSW FRPPHUFLDO ,& GLH DUHDV EHORZ FP &OXVWHULQJ KDV EHHQ VKRZQ WR DSSO\ WR ODUJH DUHDV RI D ZDIHU ZKLFK W\SLFDOO\ H[FHHGV WKH DUHD RI D FKLS 7KLV LV NQRZQ DV ODUJH DUHD FOXVWHULQJ ,I ODUJH DUHD FOXVWHULQJ LV DVVXPHG LW LV FRPPRQ LQ DQDO\VLV WR DVVXPH WKDW GHIHFWV DUH XQLIRUPO\ GLVWULEXWHG ZLWKLQ WKH FOXVWHU LH ZLWKLQ D FKLSf :H QRWH WKDW WKLV ZDV WKH DVVXPSn WLRQ LPSOLFLWO\ PDGH LQ (TXDWLRQ LQ WKDW WKH VDPH YDOXH RI D ZDV DSSOLHG WR WKH HQWLUH FKLS 7R GHWHUPLQH LI ODUJH DUHD FOXVWHULQJ KROGV IRU D FKLS RI D SDUWLFXODU VL]H LW LV QHFHVVDU\ WR H[DPLQH SDUWLFOH GLVWULEXWLRQV RQ DFWXDO ZDIHUV 7KLV LV DFFRPn SOLVKHG E\ ILUVW GLYLGLQJ WKH ZDIHUV LQWR VTXDUH UHJLRQV FDOOHG TDXGUDWV 7KH QXPEHU RI SDUWLFOHV ZKLFK RFFXU SHU TXDGUDW LV WKHQ FRXQWHG VR WKDW D IUHTXHQF\ GLVWULEXWLRQ IRU WKH QXPEHU RI SDUWLFOHV SHU TXDGUDW FDQ EH REWDLQHG >@ 7KH SDUDPHWHUV RI WKH 1HJDWLYH %LQRPLDO GLVWULEXWLRQ FDQ WKHQ EH GHWHUPLQHG IURP D PD[LPXP OLNHOLKRRG HVWLPDWLRQ WHFKQLTXH DQG FKHFNHG IRU JRRGQHVV RI ILW ZLWK D FKLVTXDUH WHVW 7KH TXDGUDW DUHD LV YDULHG DQG WKH SURFHVV UHSHDWHG 7KH YDULDELOLW\ LQ WKH HVWLPDWHV RI D FDQ EH REWDLQHG 7KH YDOLGDWLRQ RI WKH ODUJHDUHD FOXVWHULQJ DVVXPSWLRQ LV EDVHG RQ WKH RYHUODS RI WKH VWDQGDUG GHYLDWLRQV sUDf RI WKH HVWLPDWHG YDOXHV RI D IRU LQFUHDVLQJ TXDGUDW DUHDV )RU TXDGUDW DUHDV XS WR D FULWLFDO YDOXH WKH UDQJHV ZLOO RYHUODS LQGLFDWLQJ WKDW D FDQ EH FRQVLGHUHG FRQVWDQW %H\RQG WKLV SRLQW WKH UDQJHV ZLOO QR ORQJHU RYHUODS DQG WKH YDOXH RI DOSKD ZLOO EHJLQ WR LQFUHDVH (TXDWLRQ ZLOO QR ORQJHU EH YDOLG EH\RQG WKLV SRLQW 7KH ODUJH DUHD FOXVWHULQJ DVVXPSWLRQ KDV SURYHQ WR EH YDOLG IRU ZHOO RYHU D GHFDGH DQG D KDOI (TXDWLRQ KDV EHHQ XVHG VXFFHVVIXOO\ LQ WKH LQGXVWU\ IRU PDQ\ \HDUV DQG IRU PDQ\ SURGXFWV ,Q RXU \LHOG DQDO\VLV ZH ZLOO DVVXPH ODUJH DUHD FOXVWHULQJ $V FKLS VL]HV DSSURDFK ZDIHU VFDOH GLPHQVLRQV KRZHYHU LW LV YHU\ PXFK PAGE 55 D RSHQ TXHVWLRQ DV WR ZKDW \LHOG PRGHO LV PRVW DSSURSULDWH )RU YHU\ ODUJH FKLSV WKH UHODWLRQVKLSV EHWZHHQ FOXVWHUV LV FULWLFDO DV LW LPSDFWV WKH DPRXQW DQG W\SH RI UHGXQGDQF\ QHHGHG IRU IDXOWWROHUDQFH :KDW HVVHQWLDOO\ KDSSHQV IRU YHU\ ODUJH FKLS DUHDV LV WKDW WKHUH LV FOXVWHULQJ RI FOXVWHUV 7KHUH KDYH EHHQ VHYHUDO PRGHOV SURSRVHG > @ WR HYDOXDWH :6, RU QHDU:6, \LHOGV EXW WKHUH DUH QR VWDQGDUGV DV RI \HW PAGE 56 &+$37(5 6<67(0 $5&+,7(&785( $UFKLWHFWXUDO 2YHUYLHZ /LQHDU V\VWROLF DUUD\V FDQ EH XVHG WR LPSOHPHQW D YDULHW\ RI '63 DOJRULWKPV VXFK DV FRQYROXWLRQ ),5 ILOWHULQJ )RXULHU 7UDQVIRUPV DQG SRO\QRPLDO RSHUDWLRQV >@ /LQHDU DUUD\V FDQ DOVR EH XVHG WR SHUIRUP OLQHDU DOJHEUDLF RSHUDWLRQV VXFK DV PDWUL[PDWUL[ DQG PDWUL[YHFWRU PXOWLSOLFDWLRQ >@ /LQHDU DUUD\V KDYH UHGXFHG LQSXW RXWSXW UHTXLUHPHQWV FRPSDUHG WR WZRGLPHQVLRQDO DUUD\V DQG YHFWRU DUUD\V ZKLFK UHPDLQ FRQVWDQW DV PRUH SURFHVVRUV DUH DGGHG 7KLV LV D NH\ SRLQW DV ODUJHDUHD FKLSV DUH W\SLFDOO\ ,2 FRQVWUDLQHG )LJXUH GHSLFWV WKH DUFKLWHFWXUH RI RXU SURn SRVHG V\VWHP ,W FRQVLVWV RI VL[WHHQ PXOWLSO\DFFXPXODWH SURFHVVLQJ HOHPHQWV 3(Vf FRQQHFWHG WR IRUP D IDXOW WROHUDQW OLQHDU DUUD\ +HUH D 3( ZKLFK KDV IDLOHG LV E\n SDVVHG FRPSOHWHO\ DQG UHSODFHG E\ D VSDUH 7KHUH LV RQH VSDUH 3( SHU PRGXOXV IRU ERWK QRUPDO DQG FRQMXJDWH FKDQQHOV ,I PRUH WKDQ RQH 3( KDV IDLOHG SHU PRGXOXV WKHQ WKH V\VWHP FDQ VWLOO RSHUDWH ZLWK D UHGXFHG QXPEHU RI 3(V :H QRWH WKDW LW LV SRVVLEOH WR REWDLQ IXOO XWLOL]DWLRQ RI DOO JRRG SURFHVVRUV LQ D OLQHDU DUUD\ ZKLFK LQ JHQHUDO LV QRW WKH FDVH LQ D WZRGLPHQVLRQDO DUUD\ 0XOWLSO\ $FFXPXODWH 3( $UFKLWHFWXUH )LJXUH GHSLFWV WKH DUFKLWHFWXUDO GHWDLOV RI WKH *(4516 SURFHVVLQJ HOHn PHQW DQG D GLH SKRWRJUDSK LV VKRZQ LQ )LJXUH 7KH 3( KDV EHHQ RSWLPL]HG WR SHUIRUP FRPSOH[ PXOWLSO\DFFXPXODWH W\SH RSHUDWLRQV RQ ERWK LQSODFH RU SDUWLDO UHVXOW GDWD 7ZR HLJKWELW RSHUDQGV WR EH PXOWLSOLHG [ DQG \ DUH WKH H[SRQHQWV RI HOHPHQWV D[D\ *)Sf fÂ§ ^` 7KH \ RSHUDQG EXV PAGE 57 PXOWLSOLHU GLUHFWO\ 7KH [ RSHUDQG EXV ;EXVf VXSSOLHV GDWD WR WKH PXOWLSOLHU DQG WR WKH LQSXW RI WKH GDWDVWRUDJH VKLIW UHJLVWHU '665f ,W LV GHVLUDEOH WR LQFRUSRUDWH ORFDO VWRUDJH DW HDFK 3( LQ WKH DUUD\ VLQFH WKHUH DUH VRPH DOJRULWKPV IRU ZKLFK WKH GDWD GHSHQGHQF\ GRHV QRW SHUPLW RSHUDQGV WR DUULYH DW HDFK 3( YLD D SXUHO\ OLQHDU IORZ ZKHWKHU LQ WKH VDPH RU RSSRVLQJ GLUHFWLRQVf $Q H[DPSOH RI WKLV LV PDWUL[ PXOWLSOLFDWLRQ ZKLFK W\SLFDOO\ HPSOR\V D RU YHFWRU DUUD\ )RU VLJQDO SURFHVVn LQJ KRZHYHU PDWUL[ PXOWLSOLFDWLRQ LV QRUPDOO\ UHVWULFWHG WR WKH FDVH ZKHUH DW OHDVW RQH PDWUL[ LV SUHNQRZQ XVXDOO\ ILOWHU FRHIILFLHQWVf RU HYHQ IXUWKHU WR PDWUL[YHFWRU PXOWLSOLFDWLRQ LH VLJQDO YHFWRUf :H FDQ WKXV SUHVWRUH WKH FROXPQV RI WKH NQRZQ PAGE 58 PDWUL[ IRU PDWUL[ PXOWLSOLFDWLRQ RU EORFN PXOWLSOLFDWLRQ IRU ODUJH PDWULFHVf DQG OLQn HDUO\ SURSDJDWH WKH URZV RI WKH LQSXW PDWUL[ RU VLJQDO DORQJ WKH DUUD\ 7KLV UHVXOWV LQ JUHDWO\ UHGXFHG ,2 UHTXLUHPHQWV ,Q WKLV LPSOHPHQWDWLRQ WKH '665 FDQ EH XVHG WR VWRUH XS WR VL[WHHQ RSHUDQGV ZKLFK DUH NQRZQ D SULRUL $ VKLIW UHJLVWHU ZDV FKRVHQ RYHU D 65$0 VLQFH LW UHTXLUHV OHVV DUHD WKDQ D VL[WHHQ E\ HLJKWELW 65$0 LH QR GHFRGHUV RU UHDGZULWH FLUn FXLWU\f DQG UHTXLUHV PLQLPDO FRQWURO ORJLF $V LW VWDQGV WKH '665 LV DSSUR[LPDWHO\ b RI WKH VL]H RI WKH PXOWLSO\DFFXPXODWH SRUWLRQ RI WKH 3( ZKLFK LOOXVWUDWHV KRZ DUHDH[SHQVLYH SURJUDPPDEOH VWRUDJH LV ,I PRUH VWRUDJH LV GHVLUHG IRU D SDUWLFXODU DSSOLFDWLRQ WKHQ DW VRPH SRLQW D 65$0 ZLOO EHFRPH PRUH DUHDHIILFLHQW HYHQ ZLWK WKH DVVRFLDWHG LQFUHDVH LQ RYHUKHDG 2QFH GDWD KDV EHHQ ORDGHG LQWR WKH '665 LW FDQ EH FLUFXODWHG FRQWLQXRXVO\ YLD DQ LQWHUQDO IHHGEDFN SDWK 7KH ;%XV FDQ EH IUHHG IRU RWKHU JOREDO GDWDPRYH RSHUDWLRQV ZKHQ ORFDO SUHVWRUHG GDWD LV XVHG 'DWD VKLIWLQJ LQ WKH '665 FDQ DOVR EH KDOWHG ZKLFK LV D VLJQLILFDQW IHDWXUH VLQFH ZH DUH XVLQJ G\QDPLF ODWFKHVf 7KLV ZLOO JUHDWO\ VLPSOLI\ DUUD\ GDWDIORZ WLPLQJ DV SURFHVVRUV IXUWKHU DORQJ WKH OLQHDU FKDLQ FDQ ZDLW IRU RSHUDQGVSDUWLDO UHVXOWV IURP SUHYLRXV SURFHVVRUV ZLWK WKHLU SUHVWRUHG LQWHUQDO RSHUDQGV fOLQHG XS LQ SODFHf DQG UHDG\ IRU SURFHVVLQJ -XVW SULRU WR PXOWLSOLFDWLRQ LW LV QHFHVVDU\ WR FKHFN IRU D ]HUR RSHUDQG VLQFH ]HUR PXVW EH KDQGOHG DV DQ H[FHSWLRQ LQ *(4516 $Q XQXVHG ELQDU\ FRGH ZRUG LV FKRVHQ DV WKH *(4516 ]HUR LH VRPH YDOXH EHWZHHQ Sc DQG V fÂ§ f ,Q WKLV FDVH G ZDV FKRVHQ VLQFH ]HUR GHWHFWLRQ ZLOO VLPSO\ EH WKH ORJLFDO $1' RI DOO GDWD ELWV ,I D ]HUR LV GHWHFWHG IRU HLWKHU RSHUDQG D IODJ LV UDLVHG ZKLFK ZLOO VHW WKH LQSXW RI WKH H[SRQHQWLDWLRQ WDEOHfV SLSHOLQH UHJLVWHU WR ]HUR DIWHU WKH QH[W FORFN F\FOH 7KH RXWSXW RI WKH PRGXODU DGGHU SURYLGHV WKH DGGUHVV LQSXW WR WKH H[SRQHQWLDWLRQ WDEOH :H QRWH WKDW ZH FRXOG KDYH XVHG D VWDQGDUG ELQDU\ DGGHU KHUH DQG SHUIRUPHG WKH PRGXODU UHGXFWLRQ LQ WKH 520 ,W LV PXFK PRUH DUHD HIILFLHQW KRZHYHU WR SHUIRUP PAGE 59 )LJXUH 3URFHVVRU $UFKLWHFWXUH WKH PRGXODU UHGXFWLRQ ILUVW VLQFH WKH VL]H RI WKH 520 LV KDOYHG 7KLV LV HYLGHQW IURP D FRPSDULVRQ RI WKH UHODWLYH VL]H RI WKH PRGXODU DGGHUV DQG 520 LQ )LJXUH $ GRXEOLQJ LQ 520 DUHD ZRXOG UHSUHVHQW D VXEVWDQWLDO LQFUHDVH LQ 3( DUHD ZKHUHDV RXU PRGXODU DGGHUV DUH RQO\ DERXW b ODUJHU WKDQ D VLPLODU ZRUGZLGWK ELQDU\ DGGHU 7KH 520 WDEOH KDV WKH YDOXH RI D\
PAGE 60 SDUWLDO UHVXOWV WR IORZ IURP 3( WR 3( WKH VHFRQG LQSXW RI WKH PRGSWf DGGHU LV FRQQHFWHG WR DQ DGMDFHQW SURFHVVRU $ GHGLFDWHG ELGLUHFWLRQDO V\VWROLF RXWSXW EXV LV XVHG WR WUDQVIHU FRPSXWHG 4516 UHVXOWV LQ SODFH RU SDUWLDOf WR WKH QH[W DGMDFHQW SURFHVVRU LQ WKH DUUD\ LQ WKH QDWXUDO RUGHULQJ SUHGLFDWHG E\ WKH DOJRULWKP EHLQJ LPSOHPHQWHG 0RGXOR3 $GGHUV )LJXUH GHSLFWV WKH EDVLF FRQVWUXFWLRQ RI WKH PRGXOR DGGHUV XVHG IRU WKH PXOWLSOLHU DQG DFFXPXODWRU SRUWLRQV RI WKH 3( 7KLV LV D VWDQGDUG ELDVHGDGGLWLRQ VFKHPH >@ ZKHUH DQ RIIVHW RI YDOXH Q fÂ§ S LV DGGHG WR D Q ELW DGGHU WR PDNH D PRGSÂf DGGHU LH DQ\ QELW ELQDU\ DGGHU LV LQWULQVLFDOO\ PRGQff 2SHUDWLRQ RI WKLV VFKHPH UHTXLUHV WKDW WKH LQSXW ZRUGV EH e ^ SÂ fÂ§ f` ZKLFK LV DFFRPSOLVKHG GXULQJ LQSXW FRQYHUVLRQ 7KH PDJQLWXGH RI S LV DOVR UHTXLUHG WR EH OHVV WKDQ fÂ§ 7ZR ELQDU\ DGGHUV DUH FDVFDGHG VXFK WKDW WKH RXWSXW RI WKH ILUVW DGGHU LV LQSXW WR WKH VHFRQG DGGHU ZKLFK KDV DQ DSSURSULDWH RIIVHW DGGHG +HUH HLJKW ELW ULSSOH FDUU\ DGGHUV DUH XVHG DQG WKH RIIVHW DGGHG WR WKH VHFRQG DGGHU LV WKH YDOXH fÂ§ SÂf 7KH FRUUHFW PRGSÂf VXP LV VHOHFWHG IURP WKH RXWSXWV RI HLWKHU WKH ILUVW RU VHFRQG DGGHU YLD D PXOWLSOH[HU FRQWUROOHG E\ WKH ORJLFDO 25 RI WKH FDUU\ ELWV RI WKH ILUVW DQG VHFRQG DGGHUV ,Q PRVW LPSOHPHQWDWLRQV VWDQGDUG FHOO DGGHU PRGXOHV DUH XVHG DQG WKH RIIn VHW SURJUDPPHG E\ KDUGZLULQJ LQSXWV WR ORZ RU KLJK DV QHHGHG 7KLV LV VRPHZKDW ZDVWHIXO DV WKH RIIVHW LV NQRZQ D SULRUL DQG WKXV KDOI RI WKH ORJLF RI WKH VHFRQG DGGHU QHHG QRW EH LQFOXGHG ,Q WKLV LPSOHPHQWDWLRQ WKH RIIVHW KDV EHHQ ELW SURJUDPPHG E\ RQO\ LPSOHPHQWLQJ WKH ORJLF FRUUHVSRQGLQJ WR DQ DGGHG ]HUR RU RQH DW HDFK ELW SRVLWLRQ RI WKH VHFRQG DGGHU %DVLF PRGSf DGGHU SULPLWLYH FHOOV DUH WKHQ FRQVWUXFWHG IURP D )$ DQG WKH ORJLF FRUUHVSRQGLQJ WR RIIVHW]HUR DQG RIIVHWRQH VHH )LJXUH f 7KH WUDQVPLVVLRQ JDWH DGGHU SUHVHQWHG LQ > SS@ ZDV XVHG WR LPSOHPHQW WKH )$ FLUFXLW VLQFH SDVVJDWH LPSOHPHQWDWLRQV ZHUH IRXQG WR EH IDVWHU WKDQ VWDQGDUG PAGE 61 )LJXUH 6WDQGDUG 0RGXOR 3 $UFKLWHFWXUH 7DEOH )XOO $GGHU WUXWK WDEOH )$ 7UXWK 7DEOH ,QSXWV 2XWSXWV &L $W %L 6L &L &026 UHDOL]DWLRQV 7KHVH EORFNV FDQ WKHQ EH XVHG WR FRQVWUXFW D PRGSf DGGHU RI DUELWUDU\ YDOXH 6LQFH WKH GDWDSDWK ZLGWK LV RQO\ HLJKW ELWV D ULSSOH FDUU\ VFKHPH FDQ EH XVHG KHUH ZLWKRXW VSHHG SHQDOW\ )RU ODUJHU ZRUGZLGWKV VXFK DV QHHGHG LQ WKH &57 D FDUU\ VHOHFW VFKHPH FDQ EH XVHG ZLWK WKHVH VDPH VPDOO ZLGWK ULSSOH FDUU\ PRGXOR DGGHUV )LJXUH f +HUH WKH ODUJHU G\QDPLF UDQJH LV SDUWLWLRQHG LQWR P N fÂ§ ELW VHFWLRQV 7KH RIIVHW YDOXH RI FRUUHVSRQGLQJ WR PN fÂ§ 0 ZKHUH 0 LV WKH GHVLUHG PRGXOXV LV SURJUDPPHG DV EHIRUH E\ VHOHFWLQJ DQG DUUDQJLQJ WKH DSSURSULDWH SULPLWLYH FHOOV :H FDQ WKLQN RI WKHVH ]HUR DQG RQH SULPLWLYHV DV KDYLQJ WZR LQSXW DQG RXWSXW FDUU\ ELWV DQG D PXOWLSOH[HU VHOHFW LQSXW 7KH IRXU SRVVLELOLWLHV IRU WKH LQSXW FDUULHV FDQ EH SUHSURJUDPPHG DQG VHOHFWHG E\ WKH RXWSXW FDUULHV IURP WKH SUHYLRXV N ELW VHFWLRQ 7KH WRWDO PRGXOR DGG WLPH LV WKXV PAGE 62 )LJXUH 0RGXOR3 $GGHU %XLOGLQJ %ORFN 3ULPLWLYHV 7PRG0 fÂ§ AIFULSSOf G fAPX[ Ga 7a25 Gf 7aPX[ Gr 7PX[ f ZKHUH UPX[ URQ UPf[ DUH WKH SURSDJDWLRQ GHOD\V RI WKH IRXULQSXW FDUU\ PXOWLSOH[HU WKH ILQDO 25JDWH DQG WKH WZRLQSXW PXOWLSOH[HU LQ WKH SULPLWLYH FHOOVf UHVSHFWLYHO\ )RU W\SLFDO WHFKQRORJLHV WKHVH WLPHV ZLOO EH DOO QV LQFOXGLQJ ZLULQJ GHOD\V RYHU WKH GLVWDQFHV LQYROYHGf DQG WKH GHOD\ IRU D VLQJOH SULPLWLYH FHOO LV m ,QV 7KH DUHD UHTXLUHG IRU DQ HLJKW ELW PRGXOR VHFWLRQ LV $ [ $ ILP [ P LQ ILP WHFKQRORJ\f 7KXV UHSOLFDWLQJ WKH N ELW VHFWLRQV P fÂ§ f WLPHV ZLOO FRQVXPH PLQLPDO DUHD )RUZDUG 0DSSLQJ ,QWHJHU WR *(4516 (TXDWLRQ DQG (TXDWLRQ GHVFULEH PDSSLQJV QHFHVVDU\ WR FRQYHUW LQSXW GDWD WR DQG IURP 4516 UHVSHFWLYHO\ 7KHVH HTXDWLRQV DUH LPSOHPHQWHG DV VKRZQ LQ )LJXUH DQG )LJXUH UHVSHFWLYHO\ )RU WKH IRUZDUG PDSSLQJ LW LV QHFHVVDU\ WR UHGXFH WKH UHDO DQG LPDJLQDU\ FRPSRQHQWV RI WKH LQSXW HLJKWELW GDWD VWUHDPV PAGE 63 )LJXUH &DUU\ 6HOHFW 0RGXOR $GGHU PRGSf VLQFH WKH FRUUHFW RSHUDWLRQ RI WKH PRGSÂf DGGHUV UHTXLUHV WKDW WKH LQSXW RSHUDQGV EH ^ fÂ§ ` 7KLV LV DFFRPSOLVKHG E\ WZR E\ HLJKWELW 520V )RU WKH LPDJLQDU\ SDUW RI WKH LQSXW ZRUGV PXOWLSOLFDWLRQ E\ sM DQG PRGXODU UHGXFWLRQ LV DOVR DFFRPSOLVKHG LQ WKH VDPH 520 :H QRWH WKDW M LV XVHG IRU WKH QRUPDO FKDQQHO DQG WKDW fÂ§M LV XVHG IRU WKH FRQMXJDWH FKDQQHO 7KH 520 RXWSXWV DUH WKHQ LQSXW WR D PRGXODU DGGHU WR FRPSOHWH WKH 4516 PDSSLQJ 7KH 4516 RSHUDQG LV WKHQ FRQYHUWHG WR *(4516 YLD D ILQDO ORJDULWKP WDEOH ZKLFK KDV WKH ]HUR HQFRGLQJ SUHVHQW DGGUHVV ]HUR $JDLQ LW LV PRUH DUHDHIILFLHQW WR UHGXFH WKH VXP PRGXOR Sc ILUVW UDWKHU WKDQ SHUIRUP WKLV RSHUDWLRQ LQ WKH 520 DV WKH VL]H RI WKH 520 ZRXOG PAGE 64 )LJXUH )RUZDUGPDSSLQJ f FRQYHUVLRQ PRGXOH ZLWK *(4516 ORJ WDEOH DSSUR[LPDWHO\ GRXEOH :H QRWH WKDW IRXU RI WKH PRGXOHV VKRZQ LQ )LJXUH DUH QHHGHG SHU PRGXOXV VHH )LJXUH f ,QYHUVH 0DSSLQJ 4516 WR 5HVLGXH 7KH DUFKLWHFWXUH RI WKH LQYHUVH 4516 PDSSLQJ LV VKRZQ LQ )LJXUH ,QSXW GDWD DUULYHV IURP WKH RXWSXW RI WKH ODVW 3( LQ WKH DUUD\ (TXDWLRQ UHTXLUHV WKDW ZH SHUIRUP D ] fÂ§ ]r RSHUDWLRQ IRU WKH LPDJLQDU\ SDUW RI WKH RXWSXW 7KLV LV DFFRPSOLVKHG E\ ORRNLQJXS WKH PRGXODU FRPSOHPHQW RI r LH fÂ§]r SLf EHIRUH DGGLQJ WR WKH ] WHUP 7KLV NHHSV WKH LQSXWV WR WKH PRGXODU DGGHU LQ WKH GHVLUHG UDQJH IRU FRUUHFW RSHUDWLRQ LH ^ Sc fÂ§ `f 7KH UHVXOW RI WKH PRGXODU DGGLWLRQ LV XVHG WR ORRNXS WKH YDOXH RI Ma WLPHV WKH LQSXW WR WKH 520 ZLWK D ILQDO PRG UHGXFWLRQ 7KH RSHUDWLRQ RI WKH UHDO SDUW RI WKH LQYHUVH PDSSLQJ LV OLNHZLVH DQDORJRXV H[FHSW WKDW QRUPDO DQG FRQMXJDWH RSHUDQGV FDQ EH DGGHG PRGXOR 3L GLUHFWO\ DQG WKDW LV ORRNHGXS WLPHV WKH LQSXW WR WKH 520 ZLWK D ILQDO PRG SL UHGXFWLRQ &KLQHVH 5HPDLQGHU 7KHRUHP 7KH DUFKLWHFWXUH RI WKH &57 LV VKRZQ LQ )LJXUH +HUH WKH UHDO DQG LPDJn LQDU\ RXWSXWV RI HDFK RI WKH PRGXOHV LQ )LJXUH DUH JURXSHG DQG IHG WR UHDO DQG LPDJLQDU\ &57 PRGXOHV VHH )LJXUH f 7KLV LV GHQRWHG E\ WKH D LQSXWV LQ PAGE 65 )LJXUH ,QYHUVHPDSSLQJ rf FRQYHUVLRQ PRGXOH )LJXUH DQG OLNHZLVH LQ (TXDWLRQ :H QRWH WKDW WKH [ WHUPV DUH WKH RQO\ fXQNQRZQVf LQ WKH &57 DV Pc DQG PM DUH SUHNQRZQ FRQVWDQWV :H FDQ WKXV XVH ;L WR ORRNXS WKH FRUUHVSRQGLQJ H[SDQVLRQ WHUPV LQ WKH &57 DQG SHUIRUP WKH GHn VLUHG PRG0f UHGXFWLRQ DW WKH VDPH WLPH LQ IRXU 520V :H FRXOG KDYH XVHG E\ ELW 520V KHUH WKH G\QDPLF UDQJH LV m ELWVf EXW WKH\ ZRXOG EH VLJQLILFDQWO\ VORZHU WKDQ WKHLU QDUURZHU FRXQWHUSDUWV GXH WR LQFUHDVHG LQWHUQDO FDSDFLWLYH ORDGV LH KLJKHU ZRUGOLQH FDSDFLWDQFHf ,W LV LPSHUDWLYH WR NHHS WKH GHOD\V LQ WKH &57 WKH VDPH DV WKRVH LQ WKH UHVW RI WKH V\VWHP VR DV QRW WR GHJUDGH RYHUDOO SHUIRUPDQFH 7KH ILQDO PRGXODU VXPPDWLRQ LV DFFRPSOLVKHG E\ PRG0f DGGHU WUHH RI FDUU\VHOHFW PRGXODU DGGHUV RI WKH W\SH GHVFULEHG LQ )LJXUH 7KXV DOO RI WKH LQSXW DQG RXWn SXW FRQYHUVLRQ KDUGZDUH FDQ EH LPSOHPHQWHG ZLWK WKH VDPH EDVLF 520 DQG PRGXODU DGGHU FHOOV GHYHORSHG IRU WKH 3( 7KH FRPSXWDWLRQDO WKURXJKSXW LV WKXV WKH VDPH IRU DOO HOHPHQWV LQ WKH V\VWHP PAGE 66 r PLfr;L!3O!0 520 [f [W! 520 [f 520 [f Z 520 [f UUÂr UULfnr;!S!0 6!0 rr U! 520 [f ;Wr 520 [f 520 [f 520 [f $ $ PrPf r [ !S!P 520 [f ;W! 520 [f 520 [f : 520 [f P rPff r [!S!0 !P A 520 [f [A 520 [f Z 520 [f 520 [f )LJXUH &57 EORFN GLDJUDP PAGE 67 &+$37(5 9/6, ,03/(0(17$7,21 2) 352&(66,1* (/(0(17 7UXH 6LQJOH 3KDVH &ORFNLQJ 6FKHPH $ 763& HGJHEDVHG FORFNLQJ VFKHPH ZDV VHOHFWHG IRU WKH LPSOHPHQWDWLRQ RI WKH SURFHVVLQJ HOHPHQW (GJHEDVHG FORFNLQJ ZDV VHOHFWHG RYHU D ODWFK EDVHG VFKHPH IRU VHYHUDO UHDVRQV WKH PRVW VLJQLILFDQW RI ZKLFK LV WKH UHTXLUHPHQW WKDW WKH GDWD VKRXOG EH DEOH WR IORZ LQ WZR GLUHFWLRQV %LGLUHFWLRQDO GDWD IORZ RIIHUV WKH PRVW IOH[LELOLW\ IURP DQ DOJRULWKPPDSSLQJ VWDQGSRLQW ZKLFK LV FULWLFDO IRU WKH OLQHDU DUUD\ $QRWKHU UHDVRQ IRU WKH XVH RI DQ HGJH EDVHG VFKHPH LV WKDW WKH FLUFXLWU\ RI WKH 3( LV YHU\ KHWHURJHQHRXV IURP D 9/6, SHUVSHFWLYH 7KH PRGXODU DGGHUV DUH FRPELQDWLRQDO FLUFXLWV DQG WKH 520 LV D &026 GRPLQRORJLF FLUFXLW )XUWKHUPRUH WKH DFFXPXODWRU SRUWLRQ RI WKH 3( LV HLWKHU D VWDWH PDFKLQH ÂH QHZ GDWD JHWV DGGHG WR WKH UXQQLQJ VXP ZKLFK LV IHGEDFNf RU D FRPELQDWLRQDO FLUFXLW LI SDUWLDO VXPV DUULYH IURP RWKHU DGMDFHQW 3(V :H WKXV KDYH D FRPELQDWLRQDO PXOWLSOLHU PRG3 DGGHUf ZKLFK GULYHV D &026 GRPLQR 520 ZKLFK LQWXUQ GULYHV D VWDWH PDFKLQH RU DQRWKHU &/ EORFN $OVR WKH GDWD VWRUDJH VKLIW UHJLVWHU LQWURGXFHV LWV RZQ VHW RI WLPLQJ UHTXLUHPHQWV DV ZH ZLOO VHH VXEVHTXHQWO\ 7KH FORFNLQJ VFKHPH RI WKH 3( ZDV WKH GRPLQDQW GHVLJQ LVVXH ZKLFK UHTXLUHG H[WUHPH FDUH WR LPSOHPHQW VXFFHVVIXOO\ 7KH WLPLQJ UHTXLUHPHQWV XOWLPDWHO\ GHWHUPLQHG WKH W\SHV RI FLUFXLWV VHOHFWHG $OO RI WKH V\QFKURQL]DWLRQ LVVXHV LQWURGXFHG LQ &KDSWHU 7KUHH FDPH LQWR SOD\ IRU WKH GHVLJQ 7KH PRYH IURP 137& WR 763& FORFNLQJ ZDV WKH PRVW VLJQLILFDQW IHDWXUH ZKLFK GLVWLQJXLVKHG WKLV YHUVLRQ RI WKH 3( IURP LWV HDUOLHU SUHGHFHVVRUV 7KH DVVRFLDWHG LQFUHDVH LQ SHUIRUPDQFH ZDV JUHDWHU WKDQ D IDFWRU RI WZR PAGE 68 3LSHOLQH 5HJLVWHUV 7KH VSOLWRXWSXW ODWFK FLUFXLW >@ VKRZQ LQ )LJXUH ZDV XVHG WR LPSOHPHQW DOO SLSHOLQH UHJLVWHUV DQG '665 FHOOV LQ WKLV FKLS 7KLV SDUWLFXODU FHOO H[KLELWV PLQLPDO FORFN ORDGLQJ LQ WKDW RQO\ WZR WUDQVLVWRU JDWH ORDGV DUH VHHQ SHU VWDJH 7KLV LV XOWLPDWHO\ ZK\ WKLV SDUWLFXODU YDULDQW ZDV VHOHFWHG RYHU RWKHUV LQ LWV IDPLO\ ZKLFK KDYH IRXU JDWH ORDGV SHU VWDJH >@ 7KLV IDFW LV YHU\ LPSRUWDQW VLQFH WKHUH DUH PDQ\ JDWHV FRQQHFWHG WR WKH FORFN OLQH LQ D KLJKO\ SLSHOLQHG DUFKLWHFWXUH VXFK DV WKLV 7KH '665 FRQWULEXWHV WKH KLJKHVW SRUWLRQ RI FDSDFLWDQFH SHU 3( WR WKH FORFN OLQH VR KDOYLQJ WKH FORFN ORDG SHU ODWFK LV DQ H[FHOOHQW WUDGHRII 7KH VSOLWRXWSXW ODWFK LV PRUH GLIILFXOW WR LPSOHPHQW WKDQ LWV FRXQWHUSDUWV DQG PXVW EH GHVLJQHG YHU\ FDUHIXOO\ 7KLV ZLOO EHFRPH DSSDUHQW VKRUWO\ 7KH SLSHOLQH UHJLVWHUV IOLSIORSVf DUH RI WKH QHJDWLYH HGJH WULJJHUHG NLQG 1HJDWLYHHGJH WULJJHULQJ ZDV FKRVHQ EHFDXVH LW ZDV PRVW FRPSDWLEOH ZLWK WKH WLPLQJ UHTXLUHPHQWV RI WKH 520 $ VLQJOH ODUJH LQYHUWHU FDQ DOVR EH XVHG DV D FORFN EXIIHU VLQFH PRVW H[WHUQDO V\VWHP OHYHO FORFNV DUH SRVLWLYHHGJH WULJJHUHG PAGE 69 'DWD 6WRUDJH 6KLIW 5HJLVWHU 7KH GDWD VWRUDJH VKLIW UHJLVWHU LPSRVHV WKH VWULFWHVW WLPLQJ FRQVWUDLQWV RQ WKH FORFN VLJQDO $ VKLIW UHJLVWHU FDQ EH EXLOW ZLWK WKH XQEXIIHUHG LQYHUWLQJf IRUP RI WKH VSOLWRXWSXW ODWFK LI WKHUH DUH DQ HYHQ QXPEHU RI VWDJHV 7KLV UHVXOWV LQ D PLQLPDO WUDQVLVWRUFRXQW LPSOHPHQWDWLRQ $V ZH DUH LQWHUHVWHG LQ EXLOGLQJ D VKLIW UHJLVWHU ZKLFK LV VL[WHHQ OHYHOV GHHS WKHQ WKH XVH RI WKLV FRQILJXUDWLRQ LV D SRVVLEOH FKRLFH KHUH 7KHUH DUH LPSOLFLW VXEWOHWLHV KRZHYHU LQ VXFK D VFKHPH 7KLV LV EHFDXVH D SRWHQWLDO IDVWWUDQVLWLRQ UDFH FRQGLWLRQ H[LVWV IRU WKH FDVH ZKHUH WKH RXWSXW RI D UHJLVWHU GLUHFWO\ GULYHV WKH LQSXW RI DQRWKHU UHJLVWHU ,I WKH FORFNHGJH WUDQVLWLRQ WLPH LV VORZHU WKDQ RU HYHQ RQ WKH RUGHU RIf WKH WUDQVLWLRQ WLPH RI WKH UHJLVWHU RXWSXW WKHQ WLPLQJ HUURUV PD\ UHVXOW 7KLV LV GHPRQVWUDWHG LQ )LJXUH IURP 63,&( VLPXODWLRQV RQ WKH H[WUDFWHG OD\RXW RI WKH XQEXIIHUHG VKLIWUHJLVWHU FHOO 7KH VLPXODWLRQ UHSUHVHQWV WKH RXWSXW IRU D FDVFDGH RI WZR FHOOV 7KH ILUVW FHOO LQ WKH FKDLQ LV GULYHQ IURP D fVWDEOHf GDWD VRXUFH ELW2f ZKLFK FKDQJHV ZHOO EHIRUH WKH QHJDWLYHHGJH RI WKH FORFN 7KH RXWSXW RI WKH ILUVW FHOO ELW f GULYHV WKH VHFRQG FHOO ZKRVH RXWSXW LV VKRZQ LQ WKH WKLUG FXUYH ELWf 7KH FORFNHGJH WUDQVLWLRQ WLPH LV VZHSW IURP QV WR QV LQ QV LQFUHPHQWV $W DERXW DQ LQSXW FORFNHGJH WUDQVLWLRQ WLPH RI QV D JUDGXDO QHJDWLYH VORSH FDQ EH REVHUYHG DW WKH RXWSXW RI WKH VHFRQG ODWFK GXULQJ WKH KLJK SRUWLRQ RI WKH FORFN 7KH H[DFW IDLOXUH PHFKDQLVP LV LV FRPSOH[ DQG FDQ EHVW EH XQGHUVWRRG E\ DQ H[DPLQDWLRQ RI WKH IRXUWK DQG ILIWK FXUYHV $ IDVW ORZWRKLJK WUDQVLWLRQ ZLOO FDXVH WUDQVLVWRU 0 WR WXUQRII WRR HDUO\ LH EHIRUH 0 IXOO\ WXUQV RIIf 7KLV PD\ FDXVH H[FHVV FKDUJH IURP QRGH 6<3 WR EH GHSRVLWHG RQ QRGH 6<1 ZKLFK VKRXOG KDYH EHHQ IXOO\ GLVFKDUJHGf WKHUHE\ FDXVLQJ LWV SRWHQWLDO WR ULVH ,I WKLV SRWHQWLDO H[FHHGV WKH WKUHVKROG YROWDJH RI 0 WKHQ DQ XQZDQWHG GLVFKDUJLQJ RI WKH RXWSXW QRGH ZLOO UHVXOW 7KH SRWHQWLDO RI QRGH 6<1 LV DXJPHQWHG E\ FORFNIHHGWKURXJK ZKHQ WKH FORFN WUDQVLWLRQV IURP ORZWRKLJK ZKLFK H[DFHUEDWHV WKH SUREOHP :H QRWH WKDW WKLV PAGE 70 EHKDYLRU LV D IXQFWLRQ RI WKH FORFN HGJHUDWH RQO\ DQG FDQQRW EH VROYHG E\ VORZLQJ WKH V\VWHP GRZQ 7KH FORFNHGJH UDWH ZLOO WKXV KDYH WR EH NHSW UHODWLYHO\ IDVW IRU WKH XQEXIIHUHG FDVH 7KH WRWDO SDUDVLWLF FDSDFLWDQFH RQ QRGH 6<1 VKRXOG EH NHSW DV ODUJH DV LV SUDFWLFDO VR WKDW WKH PDJQLWXGH RI WKH fKRSf LQGXFHG E\ FORFNIHHGWKURXJK LV PLQLPL]HG )RU WKLV UHDVRQ RYHUVL]HG GLIIXVLRQ LVODQGV ZHUH XVHG RQ WKH GUDLQV RI WUDQVLVWRUV 0 DQG 0 VHH $SSHQGL[ $f 7KH VLWXDWLRQ FDQ EH DPHOLRUDWHG KRZHYHU E\ LQWURGXFLQJ VRPH GHOD\ EHWZHHQ ODWFKHV 7KH PRVW REYLRXV VROXWLRQ LV WR XVH fZHDNf LQYHUWHUV WR EXIIHU WKH RXWSXWV 7KLV ZDV XVHG KHUH EXW ZDV WDNHQ D VWHS IXUWKHU ZKLFK \LHOGHG D GRXEOH JDLQ IRU WKH WUDGHRII LQ DUHD $ IHHGEDFN SDWK ZDV DGGHG WR WKH '665 FHOOV ZKLFK SHUPLWV WKH GDWD FRQWDLQHG LQ WKH '665 WR EH fIUR]HQf QRWH WKH ODWFKHV DUH G\QDPLFf )URP D GDWDIORZ VWDQGSRLQW WKLV LV GHVLUDEOH DV ZH FDQ VWRS WKH VKLIW UHJLVWHUV LQ DGMDFHQW SURFHVVRUV ZLWK RSHUDQGV LQ WKH FRUUHFW fSODFHf 7KLV PHDQV WKDW ZH GR QRW KDYH WR ]HURSDG WKH VWRUHG GDWD IRU DOLJQPHQW LQ WKH VKLIW UHJLVWHU 7KH '665 LV FRVWO\ HQRXJK LQ DUHD DQG LQFOXGLQJ H[WUD FHOOV MXVW VR WKDW WKH\ FDQ EH ]HURSDGGHG LV DQ XQDFFHSWDEOH ZDVWH 7KH WUDGHRII RIFRXUVH LV PRUH WUDQVLVWRUV SHU FHOO DQG DQRWKHU FRQWURO VLJQDOf +RZHYHU WKLV ZDV GHHPHG YLDEOH GXULQJ WKH GHVLJQ SKDVH DV WKH DUHD RI WKH '665 LV VWLOO VPDOOHU WKDQ DQ 65$0 EDVHG LPSOHPHQWDWLRQ 7KH ILQDO VKLIW UHJLVWHU FHOO LPSOHPHQWDWLRQ LV VKRZQ LQ )LJXUH 7KH PD[LPXP WUDQVLWLRQ WLPH RI WKH FORFN LV QRZ DSSUR[LPDWHO\ QV ([SRQHQWLDWLRQ 520 6HPLFRQGXFWRU PHPRULHV SURYLGH WKH NH\ FRPSXWDWLRQDO HOHPHQWV RI PRVW 516 V\VWHPV DQG XVXDOO\ GHWHUPLQH PD[LPXP REWDLQDEOH RSHUDWLQJ VSHHG $ 520 ZDV FKRVHQ RYHU D 5$0 IRU WKH ([SRQHQWLDWLRQ WDEOH RI WKH 3( VLQFH D 520 RI D SDUWLFn XODU VL]H LV D IDFWRU RI IRXU WR VL[ WLPHV VPDOOHU WKDQ D 5$0 RI WKH VDPH VL]H 7KHUH LV DOVR QR QHHG IRU SURJUDPPDELOLW\ KHUH DV WKH PRGXOL DUH IL[HG $ EORFN GLDJUDP PAGE 71 )$,/85( 02'( ,1 6+,)7 5(*,67(5 )25 ($5/< /2:72+,*+ ,1387 )LJXUH 63,&( VLPXODWLRQ RI IDVW WUDQVLWLRQ SDWK IRU VKLIW UHJLVWHU PAGE 72 < 67 )LJXUH 763& 6KLIW 5HJLVWHU &HOO ZLWK 6WRUDJH RI WKH ORJLFDO RUJDQL]DWLRQ RI WKH ([SRQHQWLDWLRQ 520 LV VKRZQ LQ )LJXUH DQG WKH NH\ FLUFXLW HOHPHQWV DUH VKRZQ LQ )LJXUH 7KH 520 LV PDVNHG SURJUDPPHG EDVHG RQ WKH PRGXOXV FKRLFH E\ LQFOXGLQJ D FRQWDFW WR FRQQHFW D SURJUDPPLQJ GLVn FKDUJHf WUDQVLVWRU WR WKH ELW OLQH &RQQHFWLQJ D SURJUDPPLQJ WUDQVLVWRU LQ WKH 520 DUUD\ UHVXOWV LQ D ORJLFDO ]HUR DW WKH RXWSXW RI WKH 520 IRU WKH DFFHVVHG ELW ORFDWLRQ 7KHUH DUH HLJKW SDUDOOHO ELW ORFDWLRQV DFFHVVHG SHU DGGUHVV WKHUHE\ SURGXFLQJ D E\WH RI GDWD SHU DGGUHVV LQSXW 7KHUH DUH D WRWDO RI E\WHV VWRUHG LQ WKH 520 6LQFH WKH SURJUDPPLQJ WUDQVLVWRUV DUH RI PLQLPDO ZLGWK WKH\ ZLOO OLPLW RSHUDWLRQDO VSHHG GXH WR WKH GLVFKDUJH GHOD\ RI WKH ELWOLQH 7KH 520 ORJLF LV SDUWLWLRQHG VR WKDW WKH ELW OLQH KHLJKW FDQ EH NHSW UHODWLYHO\ VKRUW ZKLFK UHVXOWV LQ UHGXFHG SDUDVLWLF FDSDFn LWDQFHf 'LIIHUHQWLDO VHQVLQJ WHFKQLTXHV ZHUH DOVR XVHG VR WKDW D ORJLFDO ]HUR FRXOG EH GHWHUPLQHG ZHOO EHIRUH WKH ELW OLQH KDV IXOO\ GLVFKDUJHG )LJXUH UHYHDOV WKDW WKH 520 LV SUHFKDUJHG GXULQJ WKH ORZ FORFN OHYHO ZKLFK LV MXVW DIWHU QHZ GDWD KDV DUULYHG DW WKH DGGUHVV LQSXWV 7KH GDWD LV VWDEOH GXULQJ WKH HYDOXDWLRQ KLJK FORFNf VWDJH ZKHQ WKH ZRUGOLQH GHFRGHUV EHFRPH DFWLYH PAGE 73 %/2&. '(& &21752/ %/2&. '(& 6(16( $03/,),(56 6(16( $03/,),(56 &2/801 '(& &2/801 '(& G ; ELW 6725$*( $55$< :25' /,1( '(&2'(5 ; ELW 6725$*( $55$< )LJXUH )ORRUSODQ RI ([SRQHQWLDWLRQ 520 )LJXUH .H\ 520 &LUFXLW (OHPHQWV PAGE 74 $ SUHFKDUJH 3026 WUDQVLVWRU ZKLFK LV FRQWUROOHG E\ WKH FORFN DQG D fZHDNf 3026 GHYLFH FRQQHFWHG LQ D SRVLWLYH IHHGEDFN FRQILJXUDWLRQ KDYH EHHQ LQFOXGHG DW WKH VHQVH DPSOLILHU ELWOLQHYROWDJHLQSXW 7KH SUHFKDUJH WUDQVLVWRU ZDV LQFOXGHG VR WKDW WKLV SRLQW PD\ TXLFNO\ FKDUJH WR ,I WKHUH ZHUH QR 3026 GHYLFHV KHUH WKHQ WKH SRWHQWLDO DW WKLV QRGH ZRXOG VORZO\ FKDUJH WR DSSUR[LPDWHO\ $9 WKURXJK WZR VHULHV 1026 GHYLFHV RI WKH FROXPQ GHFRGHU VLQFH DW RQHRIIRXU SDWKV LV DOZD\V DFWLYHf 7KH 3026 GHYLFH LQ WKH IHHGEDFN ORRS DOVR KHOSV ZLWK SUHFKDUJLQJ RQFH WKH VHQVH DPSOLILHU KDV fWULSSHGf EXW ZDV SULPDULO\ LQFOXGHG WR PDLQWDLQ D KLJK SRWHQWLDO DW WKLV QRGH IRU D SURJUDPPHG KLJKf LQ FDVH RI DQ\ FKDUJH ORVV FDXVHG E\ OHDNDJH SDWKV 7KH ORZ F\FOH GXUDWLRQ RI WKH FORFN FDQ WKXV EH VKRUWHQHG GXULQJ SUHFKDUJH VR WKDW PRUH WLPH FDQ EH JLYHQ WR WKH KLJK F\FOH ZKHUH ELWOLQH SXOO GRZQ RFFXUVf ZLWKRXW DGGLQJ WR WKH WRWDO FORFN SHULRG 7KLV LV FRQVLVWHQW ZLWK WKH QRWLRQ RI fWUDGLQJ GHOD\f LQWURGXFHG LQ &KDSWHU 7KUHH )LJXUH VKRZV D 63,&( VLPXODWLRQ RI WKH RSHUDWLRQ RI WKH 520 IRU WKH FDVH RI D SURJUDPPHG ORZ 7KLV UHSUHVHQWV WKH ZRUVW FDVH GHOD\ DV D ORJLFDO KLJK YDOXH LV REWDLQHG E\ GHIDXOW IURP WKH DFWLRQ RI SUHFKDUJLQJ WKH ELWOLQH 7KH VLPXODWLRQ ZDV GRQH RQ DQ H[WUDFWHG OD\RXW RI D ELWOLQH SURJUDPPHG ZLWK DOO ]HURV DV WKLV LV WKH ZRUVW FDVH IRU SDUDVLWLF GLIIXVLRQ FDSDFLWDQFH $ VHQVH DPSOLILHU DQG WKH IXOO ZRUGOLQH GHFRGHU ZHUH DOVR LQFOXGHG DQG WKH SDUDVLWLF JDWHf FDSDFLWDQFH RI WKH PD[LPXP SRVVLEOH QXPEHU RI SURJUDPPLQJ WUDQVLVWRUV SHU ZRUGOLQH f ZDV DOVR WDNHQ LQWR DFFRXQW 7KH ILUVW JUDSK VKRZV WKH FORFN LQSXW DQG DGGUHVV OLQH ]HUR ZKLFK EHFRPHV DFWLYH VKRUWO\ DIWHU WKH FORFN JRHV ORZ :H QRWH WKDW HYHQ WKRXJK D YDOLG DGGUHVV LV SUHVHQW DOO ZRUGOLQHV DUH ORZ GXH WR WKH DFWLRQ RI G\QDPLF 1$1' JDWH DQG LQYHUWHU FRPELQDWLRQ RI WKH ZRUGOLQH GHFRGHUV VHH )LJXUH f 7KH RXWSXW RI WKH VHQVH DPSOLILHU LV VKRZQ LQ WKH VHFRQG JUDSK 7KLV JRHV KLJK DV H[SHFWHG GXULQJ SUHFKDUJH 7KH SRWHQWLDO RI WKH VHQVH DPSOLILHU LQSXW DV ZHOO DV WKH ELW OLQH LV VKRZQ LQ WKH WKLUG JUDSK 7KHVH WZR SRLQWV FKDUJH DW HVVHQWLDOO\ WKH VDPH UDWH PAGE 75 7KH SRWHQWLDO RI ZRUGOLQHRQH LV VKRZQ LQ WKH IRXUWK JUDSK ZKLFK EHFRPHV DFWLYH DIWHU VRPH GHOD\ GXULQJ WKH HYDOXDWH SKDVH RI WKH FORFN :KHQ WKH FORFN EHFRPHV KLJK WKH ELW OLQH EHJLQV WR IDOO :H QRWH WKH LQSXW RI WKH VHQVH DPS EHJLQV WR WUDQVLWLRQ VOLJKWO\ DIWHU WKH ELW OLQH GXH WR WKH DFWLRQ RI WKH fZHDNf 3026 GHYLFH 7KLV SRLQW VRRQ fFDWFKHVXSf WR WKH ELW OLQH RQFH WKH VHQVH DPS KDV KDG WLPH WR WXUQ WKH IHHGEDFN GHYLFH RII 7KH ELWOLQH SRWHQWLDO IDOOV DV H[SHFWHG 7KH ULVH WLPH RI WKH ELWOLQH LV DSSUR[LPDWHO\ QV GXULQJ SUHFKDUJH DQG WKH IDOO WLPH LV DSSUR[LPDWHO\ QV GXULQJ GLVFKDUJH 7KH SURSDJDWLRQ GHOD\ WDNHQ IURP WKH PLGSRLQW RI WKH ULVLQJ FORFN HGJH WR WKH PLGSRLQW RI WKH VHQVHDPS RXWSXW LV DSSUR[LPDWHO\ QV 7KH VLPXODWLRQ ZDV FRQGXFWHG ZLWK FORFN ULVH DQG IDOO WLPHV RI QV DQG ZLWK D FORFN SHULRG RI QV 7KH VLPXODWLRQ RXWSXW VXJJHVWV WKDW WKH F\FOH WLPH FRXOG EH SRVVLEO\ VKRUWHQHG KRZHYHU WR DSSUR[LPDWHO\ QV (OHFWURQLF 5HFRQILJXUDWLRQ 6ZLWFKHV ,Q DQ HIIRUW WR LPSURYH WKH VXUYLYDELOLW\ DQG PDQXIDFWXUDELOLW\ RI ODUJH OLQHDU FKDLQV RI 3(V HOHFWURQLF UHFRQILJXUDWLRQ VZLWFKHV ZHUH LQFRUSRUDWHG LQWR WKH 3( DUFKLWHFWXUH 7KHVH HOHPHQWV DUH WKH RXWHUPRVW WUDQVPLVVLRQ JDWHV LQ )LJXUH 7KH OD\RXW JURXQG UXOH XVHG IRU WKHVH HOHPHQWV ZDV OHVV DJJUHVVLYH WKDQ WKDW RI RWKHU FLUFXLWV LQ WKH FKLS VLQFH LW LV GHVLUDEOH WKDW D YHU\ KLJK VZLWFK \LHOG EH H[KLELWHG )RU H[DPSOH D VL[ODPEGD PLQLPXP PHWDO WKLFNQHVV DQG VSDFLQJ ZDV XVHG PLQLPXP LV WKUHHODPEGDf LQ RUGHU WR UHGXFH WKH OLNHOLKRRG RI VKRUWV DQG RSHQV DQG GRXEOH FRQWDFWV DQG YLDV ZHUH XVHG EHWZHHQ DOO OD\HUV 2QH DXWKRU KDV VXJJHVWHG WKDW H[WUD RU PLVVLQJ PDWHULDO GHIHFWV JUHDWHU WKDQ WZR OLQH VSDFLQJV RU ZLGWKV UHVSHFWLYHO\ DUH FRQVLGHUHG VR UDUH WKDW WKH\ DOPRVW QHYHU RFFXU LQ SUDFWLFH >@ ,QGHHG LW KDV EHHQ YHULILHG FRQVLVWHQWO\ IRU VHYHUDO \HDUV WKDW WKH GHIHFW IUHTXHQF\ IDOOVRII ZLWK WKH FXEH RI WKH UDGLXV >@ WKXV VPDOO FKDQJHV LQ OLQH VSDFLQJV RU ZLGWKV FDQ JUHDWO\ LPSDFW VXUYLYDELOLW\ %\SDVV LQWHUFRQQHFWLRQ OLQHV ZHUH DOVR UXQ LQ PHWDO WZR ZLWK PLQLPDO PAGE 76 7,0,1* :$9()2506 )25 520 &352*5$00(' =(52@ )LJXUH 63,&( VLPXODWLRQ RI 520 RSHUDWLRQ PAGE 77 ORJLF SODFHG XQGHUQHDWK WKHVH FKDQQHOV LQ RUGHU WR UHGXFH WKH SUREDELOLW\ RI LQWHUn OD\HU VKRUWV GXH WR R[LGH SLQKROHV ,Q RUGHU WR WUXO\ GHWHUPLQH WKH IDXOW YXOQHUDELOLW\ RI WKH UHFRQILJXUDWLRQ VZLWFKHV LW LV QHFHVVDU\ WR KDYH GHWDLOHG NQRZOHGJH RI WKH SURFHVV GHIHFW VWDWLVWLFV )RU H[DPSOH LW KDV EHHQ VXJJHVWHG >@ WKDW GXH WR WKH XVH RI SRVLWLYH SKRWRUHVLVW LQ PRVW KLJK UHVROXWLRQ SURFHVVHV >@ WKDW H[WUD PDWHULDO GHIHFWV DUH D IDFWRU RI WHQ WLPHV PRUH OLNHO\ WKDQ PLVVLQJ PDWHULDO GHIHFWV 7KLV PHDQV WKDW ZLGHU VSDFHG WKLQQHU LQWHUFRQQHFWLRQ ZLUHV ZRXOG DFWXDOO\ KDYH D KLJKHU \LHOG WKDQ WKLFNHU FORVHU VSDFHG ZLUHV LQ WKLV SURFHVV 7KXV WKH DFFXUDWH PRGHOLQJ RI WKH LQWHUFRQQHFWLRQ \LHOG ZLWKLQ WKH FRQWH[W RI WKH SURFHVV GHIHFW FKDUDFWHULVWLFV FUXFLDO 7KHUH DUH DGYDQWDJHV DQG GLVDGYDQWDJHV WR HOHFWURQLF VZLWFKHV YHUVHV SK\VLn FDO UHVWUXFWXULQJ WHFKQLTXHV >@ 3K\VLFDO VZLWFKHV VXFK DV ODVHU SURJUDPPHG OLQNV KDYH ORZHU RQ VWDWH UHVLVWDQFH FRPSDUHG WR HOHFWURQLF VZLWFKHV DQG W\SLFDOO\ H[KLELW VPDOOHU DUHD VLQFH QR RWKHU ORJLF LV QHHGHG LH ODWFKHVf WR VWRUH FRQILJXUDWLRQ LQIRUn PDWLRQ 7KH PDLQ GUDZEDFN ZLWK SK\VLFDO VZLWFKHV LV WKDW WKH\ PXVW EH SURJUDPPHG DW WKH WLPH RI PDQXIDFWXUH DQG WKXV FDQQRW FRUUHFW IRU IDXOWV ZKLFK RFFXU LQ WKH ILHOG &RQYHUVHO\ HOHFWURQLF VZLWFKHV FDQ FRUUHFW IRU UXQWLPH IDLOXUHV DQG FDQ DOVR FRPSHQVDWH IRU PDQXIDFWXULQJ GHIHFWV ,Q D IXOO\ SLSHOLQHG DUFKLWHFWXUH VXFK DV WKLV WKH DGGHG VZLWFK SURSDJDWLRQ GHOD\ LV FRQWDLQHG LQ WKH SLSHOLQH GHOD\ DQG WKHUHIRUH LV OHVV RI D GHVLJQ LVVXH 2QO\ RQH FRQILJXUDWLRQ ODWFK LV QHHGHG IRU DOO UHFRQILJXUDWLRQ VZLWFKHV LQ WKH 3( VLQFH DOO EXVVHV DUH VZLWFKHG RXW VLPXOWDQHRXVO\ ,W LV LPSRUWDQW WR QRWH WKDW WKH RSHUDWLRQ RI WKH UHFRQILJXUDWLRQ FLUFXLWU\ RQO\ GHSHQGV RQ WZHQW\IRXU WUDQVLVWRUV LH WUDQVPLVVLRQ JDWHV )LJXUH ff DQG WZHQW\IRXU ZLUH VHJPHQWV SHU 3( 3( 3HUIRUPDQFH 7KH SURFHVVLQJ HOHPHQW VKRZQ LQ )LJXUH ZDV IDEULFDWHG LQ D >LP &026 SURFHVV 25%,7 6HPLFRQGXFWRU >@f DQG RFFXSLHV D WRWDO GLH DUHD RI PP [ PAGE 78 PP 7KH FKLS UHSUHVHQWV D IXOOFXVWRP GHVLJQ ZLWK WKH H[FHSWLRQ RI WKH ,2 SDG GULYHUV ZKLFK ZHUH VXSSOLHG E\ 026,6 >@ 'DWD ZDV IHG WR WKH FKLS IURP DQ HLJKW ELW ELQDU\ FRXQWHU FLUFXLW %HFDXVH RI WKH SLQ OLPLWDWLRQ RQ WKH SDFNDJH LW ZDV QRW SRVVLEOH WR EULQJ RXW DOO LQSXW VLJQDOV [ f LQ DGGLWLRQ WR WKH SRZHU JURXQG FRQWURO LQSXWV DQG WKH RXWSXWV QHHGHG ,QVWHDG ERWK PXOWLSOLHU LQSXWV ZHUH EURXJKW RXW DQG WKH H[WHUQDO DFFXPXODWRU LQSXW ZDV IHG LQWHUQDOO\ IURP RQH RI WKH PXOWLSOLHU LQSXWV WKH < LQSXWf ,W LV WKXV QRW SRVVLEOH WR WHVW WKH PXOWLSOLHU DQG DFFXPXODWRU SRUWLRQV RI WKH FKLS LQGHSHQGHQWO\ 7KH WHVWV FRQVLVWHG RI KROGLQJ WKH PAGE 79 PP L IM_-L_LFLY9 L 0P++LOOOOOL Â‘ PP LLL LM UWWnO+n n, ,,, LfLUULULPLWPLL 66L6L6ccLLJ ,%N+ )LJXUH 'LH SKRWRJUDSK RI SURFHVVRU PAGE 80 )LJXUH 2VFLOORVFRSH SKRWR RI FORFN VLJQDO DQG RXWSXW ELW ]HUR VSHHG ZKLFK IXUWKHU VXSSRUWV WKH XVH RI GLIIHUHQWLDO VHQVLQJ WHFKQLTXHV IRU IOH[LELOLW\ 7KH VHFRQG WHVW LQYROYHG KROGLQJ WKH ;LQSXW DW ]HUR ZKLFK ZH UHFDOO LV LV FRGHG DV e!f ZKLOH VHTXHQFLQJ WKH WKH VKDUHGf PAGE 81 A,% [2% fÂ§ 287387 ,1387 BB )LJXUH 3DVVWKURXJK WHVW DQ RXWSXW EXIIHU WKH RXWSXW EXIIHUV DUH LQYHUWLQJf 7KLV LV GHSLFWHG LQ )LJXUH DQG WKH DFWXDO RXWSXW LV VKRZQ LQ )LJXUH 7KH WLPH EHWZHHQ WKH SHDN RI WKH LQSXW DQG WKH ORZ RI WKH RXWSXW LV DSSUR[LPDWHO\ QV ,W LV LQWHUHVWLQJ WR FRPSDUH WKH REVHUYHG GHOD\ WLPH ZLWK WKH VLPXODWHG GHOD\ WLPH 7KH RXWSXW RI D 63,&( VLPXODWLRQ RI WKH SDVVWKURXJK WHVW LV VKRZQ LQ )LJXUH )RU WKH VLPXODWLRQ D ORDG FDSDFLWDQFH RI SLFRIDUDGV ZDV XVHG WR PRGHO WKH FDSDFLWDQFH VHHQ DW WKH RXWSXW RI WKH FKLS ,W ZDV QRW SRVVLEOH WR DFWXDOO\ PHDVXUH WKLV FDSDFLWDQFH EXW S) LV D UHDVRQDEOH HVWLPDWH WKH VFRSH SUREH LV S)f 7KH VLPXODWHG GHOD\ WLPH IRU D KLJKLQ WR D ORZRXW LV DSSUR[LPDWHO\ Q6 DQG IRU D ORZLQ WR KLJKRXW DSSUR[LPDWHO\ Q6 7KLV VXJJHVWV WKDW WKH PHDVXUHG YV VLPXODWHG GHOD\V DUH RQ WKH RUGHU RI b KLJKHU $OWKRXJK WKLV FDQQRW EH JHQHUDOL]HG IRU WKH UHVW RI WKH FLUFXLWV LQ WKH FKLS LW VWLOO SURYLGHV D FUXGH PHDVXUH RI WKH YDULDELOLW\ EHWZHHQ DFWXDO DQG VLPXODWHG SHUIRUPDQFH PAGE 82 )LJXUH 2VFLOORVFRSH SKRWR RI SDVVWKURXJK WHVW RXWSXW 63,&( 6,08/$7,21 2) 3$667+528*+ 7(67 )LJXUH 63,&( VLPXODWLRQ RI SDVVWKURXJK WHVW PAGE 83 (DUO\ 9HUVLRQV RI WKH 3URFHVVLQJ HOHPHQW 9HUVLRQ 2QH )LJXUH GHWDLOV WKH DUFKLWHFWXUH RI WKH ILUVW YHUVLRQ RI WKH 3( DQG D GLH SKRn WRJUDSK LV VKRZQ LQ )LJXUH 7KLV FKLS GLG QRW XVH WKH PRGXODU DGGHU VWUXFWXUH GHVFULEHG HDUOLHU EXW UDWKHU FRPSXWHG WKH PRGXODU UHGXFWLRQ RI RXWSXW RSHUDQGV LQ 520V 7KH WZR LQSXW RSHUDQGV ZHUH fPXOWLSOLHGf LQ D VWDQGDUG ELQDU\ DGGHU DQG IHG WR WKH H[SRQHQWLDWLRQ 520 ZKHUH WKH\ ZHUH UHGXFHG PRGXOR S fÂ§ DQG WKH JHQHUDWRU D UDLVHG WR WKH FRUUHVSRQGLQJ SRZHU DOO GRQH DV D VLQJOH ORRNXSf $ PRGXODU DGGHU ZDV PDGH IRU WKH DFFXPXODWRU SRUWLRQ RI WKH 3( IURP D VWDQGDUG DGGHU DQG D ILQDO 520 WDEOH WR SHUIRUDQ WKH PRGXOR S UHGXFWLRQ 7KH 3( FRXOG RQO\ EH SURJUDPPHG IRU VHYHQELW PRGXOL VLQFH DV GHVFULEHG LQ 6HFWLRQ WKH UHVXOW RI SHUIRUPLQJ WKH PRGXODU UHGXFWLRQ LQ D 520 WDEOH DIWHU DQ DGGLWLRQ LV DQ HIIHFWLYH GRXEOLQJ RI WKH 520 VL]H ]H WKH VXP RI WZR NELW QXPEHUV LV D N I ELW QXPEHUf 7KH PRGXODU DGGHUV SURGXFHG IURP D ELQDU\ DGGHU DQG D ORRNXS WDEOH ZHUH WZR SLSHOLQH VWDJHV GHHS VHH )LJXUH f )RU WKH DFFXPXODWRU WKHUH LV DQ LPSOLFLW VXEWOHW\ KHUH ,I WKLV VWUXFWXUH LV XVHG WKHQ RGG DQG HYHQ LQGH[HG WHUPV LQ D VXPn PDWLRQ ZLOO EH DFFXPXODWHG LQGHSHQGHQWO\ 7KDW LV WZR SDUWLDO VXPV ZLOO EH IRUPHG RQH IRU WKH HYHQ WHUPV DQG RQH IRU WKH RGG WHUPV ZKLFK FDQQRW GLUHFWO\ EH VXPPHG 7KLV UHTXLUHV D ILQDO VXPPDWLRQ H[WHUQDOO\ WR WKH 3( WR FRPSOHWH WKH DFFXPXODWLRQ 7KLV IDFW IRUFHG WKH GHYHORSPHQW RI FHOOV WKDW ZRXOG VXSSRUW WKH LPSOHPHQWDWLRQ RI D VLQJOHF\FOH PRGXOR DGGHU ZLWKRXW FRPSURPLVLQJ VSHHG $W WKH WLPH WKH RQO\ FHOOV DYDLODEOH >@ WR EXLOG WKH PRGXODU DGGHUV ZHUH IRXUELW FDUU\ORRNDKHDG DGGHUV ZKLFK ZRXOG QRW KDYH RSHUDWHG IDVW HQRXJK WR VXSSRUW DQ XQSLSHOLQHG FDVFDGH 7KH ELWSURJUDPPHG PRGXODU DGGHU FHOOV GHVFULEHG HDUOLHU WKXV VLJQLILFDQWO\ LPSDFWHG WKH GHVLJQ 7KH ILUVW YHUVLRQ RI WKH 3( DOVR HPSOR\HG QRQRYHUODSSLQJ SVHXGR WZR SKDVH FORFNLQJ $ SKRWRJUDSK RI WKH FORFNLQJ ZDYHIRUPV LV VKRZQ LQ )LJXUH ,Q WKLV PAGE 84 ILJXUH WKH YHUWLFDO D[LV LV [ WKH ORZHU WUDFH LV M!L DQG WKH XSSHU WUDFH LV 7KH SLSHOLQH UHJLVWHUV ZHUH FRPSRVHG RI D FDVFDGH RI WZR WUDQVSDUHQW ODWFKHV MXVW DV GHVFULEHG LQ &KDSWHU 7KUHHf 'DWD ZDV LQSXW WR WKH ILUVW ODWFK GXULQJ WKH KLJK SKDVH RI ID DQG ZDV SUHVHQWHG WR WKH ORJLF FLUFXLWV RQ WKH ULVLQJ HGJH RI I! 7KH 520 ZDV SUHFKDUJHG GXULQJ WKH KLJK SKDVH RI ID KH 3026 SUHFKDUJH GHYLFHV ZHUH FRQWUROOHG E\ IDf DQG ZDV HYDOXDWHG RQ WKH ORZ SKDVH RI ID 2XWSXW GDWD ZDV WKHQ ODWFKHG RQ WKH IDOOLQJ HGJH RI ID ,W ZDV DFWXDOO\ QHFHVVDU\ WR PDNH D WKLUG FORFN VLJQDO WR DYRLG D UDFH FRQGLWLRQ LQ WKH 520 ZRUGOLQH GHFRGHU E\ GHOD\LQJ ID VOLJKWO\ 7KH HDUO\ 520 HPSOR\HG D G\QDPLF 125JDWH GHFRGLQJ VWUXFWXUH UDWKHU WKDQ WKH G\QDPLF 1$1'JDWH XVHG LQ WKH ILQDO YHUVLRQ 7KH 125 JDWH ZDV JDWHG $1'HGf ZLWK WKH GHOD\HG YHUVLRQ RI ID VR WKDW WKH ZRUGOLQHV ZRXOG EH ORZ GXULQJ SUHFKDUJH 7KH JDWLQJ FORFN VLJQDO KDG WR EH GHOD\HG VR WKDW D PRPHQWDU\ JOLWFK ZRXOG QRW RFFXU RQ WKH ZRUGOLQHV MXVW DIWHU SUHFKDUJH EHIRUH DOO EXW RQH 125 JDWHV GLVFKDUJHG 7KLV FRPSOLFDWLRQ ZDV HOLPLQDWHG ZLWK WKH 1$1' VWUXFWXUH DOWKRXJK WKH G\QDPLF 125 LV LQWULQVLFDOO\ D IDVWHU JDWHf 7KH ILUVW 3( ZDV IDEULFDWHG LQ D ILP &026 WHFKQRORJ\ >@ DQG ZDV VKRZQ WR RSHUDWH DW D FORFN IUHTXHQF\ RI 0+] 9HUVLRQ 7ZR 7KH VHFRQG UHYLVLRQ RI WKH 3( ZDV WKH ILUVW WR XVH WKH PRGXODU DGGHU VFKHPH LQ LWV DFFXPXODWRU ,WV DUFKLWHFWXUH LV JLYHQ LQ )LJXUH DQG D GLH SKRWRJUDSK LV VKRZQ LQ )LJXUH 7KH UHPRYDO RI WKH VHFRQG 520 UHVXOWHG LQ D VLJQLILFDQW GHFUHDVH LQ DUHD $ PRGXOR DGGHU ZDV QRW XVHG DV WKH fPXOWLSOLHUf SRUWLRQ RI WKH FKLS GXH WR YHUWLFDO VSDFH OLPLWDWLRQV LQ WKH 026,6 7LQ\&KLS >@ SDGIUDPH 7KLV 3( WKXV DOVR XVHG VHYHQELW PRGXOL 7KH VHFRQG FKLS ZDV DOVR D 137& PDFKLQH ZKLFK HPSOR\HG WKH VDPH 520 DQG SLSHOLQH ODWFKHV DV LWV SUHGHFHVVRU 7KLV FKLS ZDV DOVR IDEULFDWHG LQ WKH 026,6 I[P &026 WHFKQRORJ\ DQG ZDV VKRZQ WR RSHUDWH DW 0+] PAGE 85 )LJXUH 3URFHVVRU DUFKLWHFWXUH RI ILUVW YHUVLRQ PAGE 86 )LJXUH 'LH SKRWRJUDSK RI ILUVW YHUVLRQ RI 3( PAGE 87 )LJXUH 2VFLOORVFRSH SKRWR RI QRQRYHUODSSLQJ FORFNV IRU ILUVW FKLS )LJXUH 3URFHVVRU DUFKLWHFWXUH RI VHFRQG YHUVLRQ PAGE 88 )LJXUH 'LH SKRWRJUDSK RI VHFRQG YHUVLRQ RI 3( PAGE 89 &+$37(5 <,(/' (1+$1&(0(17 $1' )$8/7 72/(5$1&( PAGE 90 RI WKHVH HOHPHQWV LV JUHDWO\ UHGXFHG RYHU WKDW RI RWKHU SRUWLRQV RI WKH FLUFXLW DQ DUJXPHQW FRXOG EH PDGH WKDW WKH HIIHFWLYH IDWDO GHIHFW GHQVLW\ RI WKH VZLWFKHV LV UHGXFHG RYHU WKDW RI WKH UHVW RI WKH FLUFXLW LH IHZHU DSSOLFDEOH GHIHFW PHFKDQLVPVf +RZHYHU LQ RUGHU WR WUXO\ TXDQWLWDWLYHO\ GHWHUPLQH WKH UHODWLYH IDXOW YXOQHUDELOLW\ RI UHFRQILJXUDWLRQ VZLWFKHV LW LV QHFHVVDU\ WR KDYH GHWDLOHG NQRZOHGJH RI PDVNE\PDVN SURFHVV GHIHFW VWDWLVWLFV 6LQFH ZH GR QRW KDYH VXFK VWDWLVWLFV ZH ZLOO QRW VSHFXODWH DQG ZLOO FRQVLGHU DOO DUHDV RI WKH 3(V DW WKH VDPH GHIHFW GHQVLW\ 2XU HVWLPDWHV ZLOO WKXV EH VOLJKWO\ FRQVHUYDWLYH 6LQFH ZH DUH DVVXPLQJ ODUJH DUHD FOXVWHULQJ WKH IDXOWV LQ DGMDFHQW PRGXOHV DUH GHSHQGHQW XQLIRUPO\ GLVWULEXWHGf DQG ZH FDQQRW XVH VLPSOH %LQRPLDO H[SUHVVLRQV IRU GHWHUPLQLQJ LI 0 RXW RI 1 PRGXOHV DUH IXQFWLRQLQJ WKLV DVVXPHV IDXOWV DUH LQGHSHQGHQWO\ GLVWULEXWHGf 6\VWROLF DUUD\V LQ ZKLFK 5 VSDUH 3(V KDYH EHHQ DGGHG ZKHUH DW OHDVW 0 1 fÂ§ 5 RXW RI 1 PXVW IXQFWLRQ KDYH EHHQ SURSRVHG EHIRUH 7KH LQGHSHQGHQW SDUDOOHO QDWXUH RI 516 FKDQQHOV KRZHYHU SURYLGHV IXUWKHU XQLTXH RSSRUWXQLWLHV IRU HQKDQFn LQJ IDXOW DQG GHIHFW WROHUDQFH RI V\VWROLF DUUD\V )RU RXU SURSRVHG IRXU PRGXOXV V\VWHP HDFK SURFHVVLQJ QRGH LQ WKH DUUD\ LV HIIHFWLYHO\ EURNHQ XS DOJRULWKPLFDOO\ DQG SK\VLFDOO\f LQWR IRXU VPDOOHU 3(V YLD WKH 516 PDSSLQJ 7KLV ZRXOG VXJJHVW WKDW WKH LQFOXVLRQ RI DQ H[WUD 3( SHU PRGXOXV ZRXOG SHUPLW XS WR IRXU IDXOWV WR EH WROn HUDWHG SHU FKDQQHO UDWKHU WKDQ MXVW RQH ZKHQ FRPSDUHG WR D VLPLODU V\VWHP LH LQ G\QDPLF UDQJH DQG DULWKPHWLF IXQFWLRQDOLW\f LQ ZKLFK WKH FRPSXWDWLRQV DUH FDUULHG RXW RYHU RQH SK\VLFDOO\ FRQWLJXRXV 3( 7KH UHTXLUHPHQW KHUH LV WKDW QR PRUH WKDQ RQH IDXOW RFFXUV SHU PRGXOXV ,I WKHUH LV PRUH WKDQ RQH IDXOW SHU PRGXOXV WKHQ WKH QXPEHU RI XVDEOH 3(V ZLOO EH OHVV WKDQ 0 .RUHQ DQG 6WDSSHU >@ KDYH SUHVHQWHG D \LHOG PRGHO IRU FKLSV ZLWK UHGXQn GDQF\ FRQVLVWLQJ RI PXOWLSOH PRGXOH W\SHV LQ ZKLFK WKH IDLOXUHV LQ DGMDFHQW PRGXOHV DUH GHSHQGHQW :H FDQ FRQVLGHU RXU SURSRVHG OLQHDU DUUD\ FKLS DV ILWWLQJ WKLV FDWHn JRU\ ZKHUH WKHUH DUH HLJKW GLIIHUHQW PRGXOH W\SHV WZR [ IRXU PRGXOLf ZKHUH 0 RXW PAGE 91 RI 1 3(V PXVW IXQFWLRQ DQG WKHUH DUH 5 VSDUHV IRU HDFK PRGXOH W\SH 7KH IROORZLQJ H[SUHVVLRQ GHVFULEHV WKH WRWDO \LHOG < 1? 1 L9J 1?fÂ§ 0? 1afÂ§0 1T fÂ§0J ( ( ( (( ( 0A1L5L 0 15 0V 1E5V NL N IF ; ^0L tLf$L 0 NJf;V $FNf G [ &0L 0 00L0V0H 0 0V 1V 0V ? NV f f ZKHUH WKH $Â WHUPV UHSUHVHQW WKH QXPEHU RI IDXOWV LQ HDFK 3( DQG $ FN LV WKH QXPEHU RI IDXOWV LQ WKH fFKLSNLOOf DUHD 7KH fFRYHUDJH IDFWRUf WHUP LQ WKH DERYH H[SUHVVLRQ &P DWPDWPPPP LI WKH FKLS LV DFFHSWDEOH ZLWK 0? DQG 0 0V IDXOWIUHH PRGXOHV RI W\SHV 2WKHUZLVH &DW P P P D 0H 0U 0V fÂ§ 7KLV WHUP SURYLGHV WKH PHDQV RI FRXQWLQJ WKRVH WHUPV LQ (TXDWLRQ ZKLFK DUH IL[DEOH :H QRWH WKDW DOO FRPELQDWLRQV DUH IL[DEOH VLQFH WKH PRGXOL DUH SK\VLFDOO\ GLVFUHWH DQG WKH V\VWHP LV RSHUDEOH LI WKHUH DUH DW OHDVW 0 3(V VXUYLYLQJ LQ HDFK PRGXOXV 7KH QXPEHU RI IDXOWV LQ HDFK PRGXOH $ LV UHODWHG WR WKH QXPEHU RI IDXOWV LQ WKH WRWDO FKLS $ E\ WKH IROORZLQJ $Â $ $ $WRWDO )RU RXU SURSRVHG V\VWHP WKH FRUUHVSRQGLQJ SDUDPHWHUV DUH f 1L 5L $L $SHW PAGE 92 $F. $M2SDGV $RXW&RQY $F57 $OQ&RQY ; ; $S(Q f DQG &PLD0L0V0HP0J IRU 0L f ^` VLQFH DOO RI WKHVH FRPn ELQDWLRQV DUH IL[DEOH :H QRWH WKDW WKH FKLS NLOO DUHD FRQWDLQV WKH DUHD RI DOO LQSXW DQG RXWSXW FRQYHUVLRQ FLUFXLWV WKH &57 DQG ,2 SDGV DV ZHOO DV WKH DUHD RI WKH UHFRQILJXUDWLRQ HOHPHQWV LQ WKH 3( PAGE 93 7DEOH 7DEOH RI 6\VWHP &RPSRQHQW $UHDV $UHDV RI 6\VWHP &RPSRQHQWV 0RGXOH $UHD $UHD 1XPEHU 7RWDO $UHD >$ [ $@ >FP? >FP@ ,QSXW &RQYHUVLRQ 3URMHFWHGf ;UsM;L [ 9UsM\L [ /RJ [ 2XWSXW &RQYHUVLRQ 3URMHFWHGf n] ]rf [ anM?]]rf [ &57 [ 3( 1RUPDO $FWXDOf [ &RQMXJDWH [ ,2 1RQ6FDODEOH 'ULYHUV $FWXDOf &KLS 7DEOH 7DEOH RI 1RQ5HGXQGDQW &KLS PAGE 94 VHH )LJXUH f $V ZH ZLOO VKRZ VKRUWO\ MXVW RQH H[WUD SURFHVVRU ZLOO VLJQLILFDQWO\ LPSURYH WKH V\VWHP \LHOG (TXDWLRQ WKXV EHFRPHV < fÂ§0L fÂ§0 0V e e e e e e $rO 0 0J Â Â Â fÂ§frfÂ§Ofr fÂ§frr 0 fÂ§ 0L N[ 0 [ A 0L IFLf$L 0V NVfA $FWFf fÂ§ ? fÂ§RU D ; 0V ? NV f f (TXDWLRQ ZDV XVHG LQ D FRPSXWHU SURJUDP VHH $SSHQGL[ &f DORQJ ZLWK WKH SUHYLRXV YDOXHV RI GHIHFW GHQVLWLHV DQG D WR SURGXFH 7DEOH :H VHH WKDW WKH \LHOG RI WKH DUUD\ FKDQJHV IURP b WR b LQ WKH EHVW FDVH ZLWK 'T SHU FP DQG D f ZKLFK LV D b LPSURYHPHQW )RU WKH ZRUVW FDVH ZLWK 'T SHU FP DQG D f WKH \LHOG FKDQJHV IURP b WR b ZKLFK LV D b LPSURYHPHQW 7KH DGGHG DUHD RYHUKHDG DVVRFLDWHG ZLWK WKH UHGXQGDQF\ LV a b 7KXV WKLV LV D ZRUWKZKLOH WUDGHRII LQ ERWK FDVHV DQG LQ SDUWLFXODU IRU WKH ZRUVW FDVH LQ ZKLFK WKH \LHOG LV GRXEOHG IRU D b LQFUHDVH LQ DUHD (TXDWLRQ ZDV H[WHQGHG WR DUUD\V RI XS WR SURFHVVRUV )RU WKH EHVW FDVH DERYH WKH \LHOG RI QRQUHGXQGDQW YV UHGXQGDQW LV b DQG b UHVSHFWLYHO\ ZKLFK LV D b LQFUHDVH )RU WKH ZRUVW FDVH WKH UHVXOWV EHFRPH b DQG b D b LQFUHDVH 7KH DUHD RYHUKHDG IRU RQH UHGXQGDQW SURFHVVRU IRU WKH 3( FDVH LV m b DJDLQ D ZRUWKZKLOH WUDGHRII $Q\ UHGXQGDQF\ QRW XVHG IRU \LHOG HQKDQFHPHQW DW WKH WLPH RI PDQXIDFWXUH FDQ EH XVHG IRU IDXOW WROHUDQFH LQ WKH ILHOG LI D IDLOXUH RFFXUV LQ D 3( 6LQFH WKH 3(V FRQVLVW RI b RI WKH DFWLYH DUHD RI RXU V\VWHP WKLV ZLOO PRVW RIWHQ EH WKH W\SH RI IDLOXUH WKDW RFFXUV PAGE 95 7DEOH 7DEOH RI 5HGXQGDQW &KLS PAGE 96 R R R e 1XPEHU RI 3(V )LJXUH PAGE 97 DVVXPSWLRQ VLQFH D IHZ KXQGUHG FKLSV ZLOO W\SLFDOO\ ILW LQWR D FRPPHUFLDOO\ VL]HG ZDIHU LQFK GLDPHWHUf )RU RXU SURFHVVRU H[DPSOH WKHUH LV WKXV D b SURGXFW ORVV )RU WKH EHVW DQG ZRUVW FDVHV ZH JHW f [ <5EHW <15EHVW f [ f 9 f [ " 5Z276W f [ f 9 7KXV ZH REWDLQ PRUH ZRUNLQJ FKLSV LQ HDFK FDVH ZKLFK VXSSRUWV WKH FKRVHQ UHGXQGDQF\ VFKHPH IRU WKH OLQHDU DUUD\ $ &RPSDULVRQ ZLWK 5HSODFLQJ 0RGXOL $Q DOWHUQDWLYH UHGXQGDQF\ VFKHPH ZLOO EH FRQVLGHUHG LQ WKLV VHFWLRQ 6XSn SRVH WKDW IDXOW WROHUDQFH ZDV LQWURGXFHG LQWR WKH V\VWHP E\ LQFOXGLQJ DQ DGGLWLRQDO PRGXOXV LQ WKH DUUD\ UDWKHU WKDQ DQ H[WUD 3( SHU PRGXOXV 7KLV ZRXOG KDYH WKH HIIHFW RI SDUWLWLRQLQJ WKH V\VWHP GLIIHUHQWO\ ZLWK UHVSHFW WR IDXOW WROHUDQFH 7KH QHZ fPRGXOHVf ZRXOG FRQVLVW RI D VHW RI ERWK QRUPDO DQG FRQMXJDWH FKDQQHOV IRU HDFK PRGXOXVf WRJHWKHU ZLWK WKH LQSXW DQG RXWSXW FRQYHUVLRQ PRGXOHV 7KLV LV GHSLFWHG LQ )LJXUH E\ WKH GRWWHG OLQHV DURXQG HDFK PRGXOXV 7KH &57 ZRXOG QRZ KDYH WR EH UHFRQILJXUDEOH DV WKH G\QDPLF UDQJH RI WKH V\VWHP ZRXOG FKDQJH ZKHQ D GHIHFWLYH PRGXOH LV VZLWFKHG RXW DQG D VSDUH VZLWFKHG LQ ,I WKH V\VWHP ZHUH FRQILJXUHG LQ WKLV ZD\ WKHQ IDXOWV FRXOG EH WROHUDWHG LQ WKH LQSXW DQG RXWSXW FRQYHUVLRQ PRGn XOHV DV ZHOO DV LQ WKH 3(V 7KH RQO\ fFKLSNLOOf DUHD LV WKDW FRPSRVHG RI WKH &57 ZKLFK QRZ LV ODUJHUf DQG WKH ,2 SDGV 7KH V\VWHP ZRXOG QRZ FRQVLVW RI D VLQJOH PAGE 98 fPRGXOHW\SHf RI ZKLFK WKHUH DUH IRXU WRWDO IRU WKH QRQUHGXQGDQW FDVH DQG ILYH IRU WKH UHGXQGDQW 7KHUH DUH QRZ ILYH IL[DEOH FRPELQDWLRQV FRPSDUHG WR HLJKW DV EHIRUH 6LQFH WKHUH LV RQO\ D VLQJOH PRGXOH W\SH (TXDWLRQ UHGXFHV WR 1M 1L 0L \ e e 0? 1? fÂ§5L N? Lf [&PL 1[ ? 1L 0L 0L K [ M A AfA rK D f )RU WKLV VFKHPH WKH FRUUHVSRQGLQJ SDUDPHWHUV DUH 1L 5L SM $L ; $S(U G A-Lf ; ; $OQ&RQY $OMRJOf 7 $RXW&RQYO $F. $U2SDGV $F571HZ f ZLWK &PL IRU 0L f ^` :H KDYH GLYLGHG WKH DUHD RI WKH 3( LQWHUFRQn QHFWLRQV E\ WZR VLQFH ZH GR QRW E\SDVV 3(V LQ WKLV VFKHPH DQG WKXV RQO\ QHHG KDOI RI WKH ZLUHV $cQFQYL LV WKH DUHD RI RQH IRUZDUG 4516 PDSSLQJ PRGXOH DQG $OL LV WKH DUHD RI D VLQJOH ORJ WDEOH 7KHUH DUH IRXU RI HDFK RI WKHVH SHU UHFRQILJXUDEOH PRGXOH 7KHUH LV RQH LQYHUVH 4516 EORFN SHU UHFRQILJXUDEOH PRGXOH WKH DUHD RI ZKLFK LV GHQRWHG E\ $RXW&RQYO :H ZLOO DVVXPH WKH ,2 RYHUKHDG LV WKH VDPH DV EHIRUH )LQDOO\ ZH QHHG WR REWDLQ D YDOXH IRU WKH DUHD RI WKH UHFRQILJXUDEOH &57 $SSUR[LPDWHO\ RI WKH &57 LV FRPSRVHG RI 520V 6LQFH WKH QHZ &57 ZLOO KDYH WR EH UHSURJUDPPDEOH LH WR FKDQJH WKH RYHUDOO 0f WKLV VHFWLRQ ZLOO QHHG WR EH PAGE 99 5$0 EDVHG 5$0V RFFXS\ DERXW IRXU WR VL[ WLPHV WKH DUHD RI 520V DV VWDWHG HDUOLHUf :H ZLOO XVH D YDOXH RI IRXU DV D PXOWLSOLFDWLRQ IDFWRU WR HVWLPDWH WKH DUHD RI D 5$0 EDVHG LPSOHPHQWDWLRQ 7KH FDUU\VHOHFW PRG0f DGGHUV XVHG LQ WKH &57 ZLOO DOVR KDYH WR EH UHFRQILJXUDEOH :H ZLOO QRW EH DEOH WR XVH WKH ELWSURJUDPPLQJ VFKHPH GHVFULEHG LQ &KDSWHU )RXU DQG WKXV ZLOO LQFUHDVH WKH FRPSOH[LW\ E\ D IDFWRU RI b 7KH QHZ YDULDEOH RIIVHWV ZLOO KDYH WR EH VWRUHG LQ UHJLVWHUV DOVR :H ZLOO DJDLQ EH YHU\ JHQHURXV DQG DVVXPH WKDW WKH WRWDO FRPSOH[LW\ RI WKH PRGXOR DGGHU SRUWLRQ RI WKH &57 LQFUHDVHV E\ b 7KH RYHUDOO DUHD PXOWLSOLFDWLRQ IDFWRU IRU WKH UHFRQILJXUDEOH &57 LV ,I ZH VXEVWLWXWH WKH UHGXQGDQF\ SDUDPHWHUV GHILQHG DERYH LQ (TXDWLRQ WKH IROORZLQJ H[SUHVVLRQ UHVXOWV < fÂ§0L e e 0L N? f K 0[ 0L K [ 0L tLf$L ?FNf D [D 0O f 7KH DUHD YDOXHV IRU WKH QHZ V\VWHP ZHUH VXEVWLWXWHG LQ (TXDWLRQ ZKLFK ZDV HYDOXDWHG ZLWK D FRPSXWHU SURJUDP VHH $SSHQGL[ &f )RU RXU VL[WHHQ SURFHVVRU H[DPSOH WKH EHVW FDVH QRQUHGXQGDQW YV UHGXQGDQW \LHOG LV b YV b )RU WKH ZRUVW FDVH PDQXIDFWXULQJ SDUDPHWHUV WKH \LHOGV DUH b YV b +RZ GR WKHVH YDOXHV QRZ IDYRU ZLWK SURGXFW ORVV DFFRXQWHG IRU" 7KH RYHUKHDG DVVRFLDWHG ZLWK WKLV UHGXQGDQF\ VFKHPH LV DSSUR[LPDWHO\ b 7KXV DIWHU VFDOLQJ WKH UHGXQGDQW \LHOGV E\ XQLW\ PLQXV WKLV DPRXQW ZH JHW fÂ§ f [ DQG IRU WKH ZRUVW FDVH fÂ§ f [ )RU WKH EHVW FDVH RI PDQXIDFWXULQJ SDUDPHWHUV ZH KDYH DFWXDOO\ ORVW PRQH\ E\ LQFOXGLQJ UHGXQGDQF\ 7KDW LV ZH ZRXOG KDYH REWDLQHG PRUH ZRUNLQJ FKLSV LI ZH KDG GRQH QRWKLQJ )RU WKH ZRUVW FDVH WKH JDLQV DUH TXHVWLRQDEOH VLQFH WKH PDUJLQV DUH VR ORZ 7KH \LHOG FXUYHV IRU EHVW DQG PAGE 100 ZRUVW FDVHV DUH SORWWHG LQ )LJXUH IRU WR SURFHVVRU V\VWHPV 7KH DUHDV RI FKLSV XVLQJ WKH ILUVW DQG VHFRQG UHGXQGDQF\ VFKHPHV DUH SORWWHG LQ )LJXUH :H SRLQW RXW WKDW WKH DUHDV RI FKLSV XVLQJ WKH ILUVW VFKHPH DUH OHVV WKDQ WKRVH XVLQJ WKH VHFRQG WKXV WKH ILUVW VFKHPH DOZD\V ZLQV )LQDOO\ WKH SURGXFW ORVV DGMXVWHG \LHOGV DUH SORWWHG IRU ERWK VFKHPHV IRU EHVW DQG ZRUVW FDVHV )LJXUH DQG )LJXUH DUH SORWV IRU WKH EHVW DQG ZRUVW FDVHV UHVSHFWLYHO\ IRU WKH ILUVW VFKHPH 7KHVH FXUYHV LOOXVWUDWH WKDW ZH DOZD\V EHQHILW IRU WKLV VFKHPH IRU WKHVH PDQXIDFWXULQJ SDUDPHWHUV )LJXUHV DQG )LJXUH VKRZ WKH FXUYHV IRU WKH VHFRQG VFKHPH )LJXUH VKRZV WKDW ZH DOZD\V ORRVH PRQH\ IRU WKLV FDVH ZKLOH )LJXUH VKRZV WKDW DV WKH DUUD\ VL]H JURZV ZH JDLQ PRUH IRU WKH LPSOHPHQWHG UHGXQGDQF\ 7KLV LV EHFDXVH WKH SHUFHQW DUHDRYHUKHDG DVVRFLDWHG ZLWK WKH UHGXQGDQF\ GHFUHDVHV DV WKH DUUD\ JURZV LQ ERWK VFKHPHVf 7KH UHVXOWV RI WKLV DQDO\VLV VXJJHVWV WKDW LW LV EHWWHU WR LPSOHPHQW UHGXQGDQF\ ZLWKLQ WKH PRGXOL UDWKHU WKDQ EHWZHHQ WKH PRGXOL 7KXV WKH UHGXQGDQF\ VFKHPH XVHG LQ WKH SURSRVHG V\VWHP LV MXVWLILDEOH ,Q UHFRQILJXUDEOH V\VWHPV WKH DPRXQW RI UHGXQGDQF\ PXVW EH NHSW DV VPDOO DV SRVVLEOH WR REWDLQ WKH PRVW EHQHILW ,Q PXFK RI WKH 516 OLWHUDWXUH WKH SRLQW LV FRPPRQO\ PDGH WKDW IDXOW WROHUDQFH FDQ EH DFKLHYHG E\ LQFOXGLQJ H[WUD PRGXOL +RZHYHU LQ WKH FRQWH[W RI WKLV DQDO\VLV WKLV SRLQW LV TXHVWLRQDEOH )LQDOO\ LW VKRXOG EH SRLQWHG RXW WKDW LI WKH PRGXOL DUH YHU\ VPDOO VXFK WKDW WKH LQFOXVLRQ RI H[WUD FKDQQHOV ZLOO QRW VLJQLILFDQWO\ LQFUHDVH WKH FKLS DUHD WKHQ WKH DQDO\VLV PD\ EH PRUH IDYRUDEOH 'HWHFWLQJ )DXOWV 7KH GHWHFWLRQ RI IDLOHG SURFHVVRUV LQ WKH FKRVHQ VFKHPH PXVW EH GRQH RIIOLQH 7KH WHVW SURFHGXUH FRPELQHV WKH E\SDVVLQJ RI IDLOHG 3(V WR LVRODWH FROXPQV LQ ZKLFK IDLOHG 3(V OLH LQ DQG WKHQ VXSSOLQJ VSHFLILF WHVW YHFWRUV WR GHWHUPLQH ZKLFK URZ RI WKH FROXPQ KDV IDLOHG )RU H[DPSOH DOO FROXPQV LQ WKH DUUD\ FDQ EH E\SDVVHG H[FHSW PAGE 101 $UHD FP$ PAGE 102 $GMXVWHG PAGE 103 $GMXVWHG PAGE 104 RQH DQG WHVW LQSXWV IHG LQ WR GHWHUPLQH LI WKDW FROXPQ IXQFWLRQV ,I D IDLOXUH LV GHWHFWHG WKHQ VSHFLILF WHVW YHFWRUV FDQ EH IHG WR WKH WKH V\VWHP WKDW ]HUR DOO EXW RQH PRGXOXV DW D WLPH LH WKH DOO RWKHU PRGXOL PDS WR ]HUR PRGXOR WKHLU UHVSHFWLYH 3LVf ,Q WKLV ZD\ D VSHFLILF 3( FDQ EH LVRODWHG $ IDLOHG 3( LV WKXV LGHQWLILHG E\ WKH LQWHUVHFWLRQ RI D IDLOLQJ URZ DQG FROXPQ DQG VXEVHTXHQWO\ VZLWFKHG RXW DQG D VSDUH LQ WKH FRUUHVSRQGLQJ PRGXOXV VZLWFKHG LQ WKH FRQILJXUDWLRQ LQIRUPDWLRQ LV VWRUHG LQ DQ ODWFK ZKLFK GULYHV WKH FRQWURO VLJQDO ODEHOHG f)f LQ )LJXUH ,W LV LPSRUWDQW WR QRWH WKDW WKH FROXPQ LVRODWLRQ SURFHGXUH FDQ XVH D GLYLGHDQGFRQTXHU DSSURDFK WKDW LV DQ HQWLUH KDOI RI WKH DUUD\ FDQ EH E\SDVVHG WKHQ D TXDUWHU DQG VR RQ ,W PD\ DOVR EH SRVVLEOH WR GHWHFW IDLOHG SURFHVVRUV GLUHFWO\ IURP WKH LQSXW VLJQDO LI WKH V\VWHP LV XVHG WR LPSOHPHQW DQ ),5 ILOWHU IRU H[DPSOH WKHQ D XQLW LPSXOVH DW WKH LQSXW ZRXOG DXWRPDWLFDOO\ REWDLQ WKH ILOWHU WUDQVIHU IXQFWLRQ DW WKH RXWSXW RI WKH DUUD\ LPPHGLDWHO\ LGHQWLI\LQJ WKH IDLOHG WDS ,GHQWLILFDWLRQ RI IDLOXUHV LQ WKH LQSXW FRQYHUVLRQ RXWSXW FRQYHUVLRQ RU E\SDVV LQWHUFRQQHFWLRQ HOHPHQWV LV HDVLO\ DFFRPSOLVKHG E\ E\SDVVLQJ DOO RI WKH 3(V ,I WHVW LQSXWV IHG LQWR WKH V\VWHP FDQQRW EH REVHUYHG DW WKH RXWSXW WKHQ D IDXOW PXVW KDYH RFFXUHG LQ RQH RI WKHVH VXEV\VWHPV ,W LV DOVR LPSRUWDQW WR QRWH WKDW WKLV VFKHPH ZLOO RQO\ UHDGLO\ GHWHFW VWXFNDW IDXOWV UDWKHU WKDQ LQWHUPLWWHQW IDXOWV ,W LV WKH YLHZ RI WKH DXWKRU KRZHYHU WKDW WKH LQWHUPLWWHQW FDVH LV QRW DV FDWDVWURSKLF IRU VLJQDO SURFHVVLQJ DSSOLFDWLRQV DV PLJKW ILUVW EH LPDJLQHG $ WUDQVLHQW DQRPDO\ LQ RQH RU WZR RI WKH ILOWHU ZHLJKWV PD\ QRW DIIHFW WKH ILQDO RXWSXW FDWDVWURSKLFDOO\ DV LW LV WKH RYHUDOO HIIHFW RI DOO WKH ZHLJKWV WKDW GHWHUPLQHV ZKDW WKH V\VWHP GRHV &HUWDLQO\ PRPHQWDU\ GLVWXUEDQFHV LQ PXVLF RU VSHHFK VLJQDOV GR QRW UHQGHU WKHP WRWDOO\ XQLQWHOOLJLEOH QRU GR VPDOO OHYHOV RI UDQGRP QRLVH ,Q DQ\ FDVH UHSHDWHG DSSOLFDWLRQ RI WHVW LQSXWV GXULQJ RIIOLQH WHVWLQJ ZLOO LGHQWLI\ LQWHUPLWWHQW IDXOWV LQ 3(V DV ORQJ DV WKH WHVW LV DSSOLHG ORQJ HQRXJK WR VWDWLVWLFDOO\ SURGXFH D IDXOW PAGE 105 &+$37(5 &21&/86,216 $1' )8785( :25. ,Q WKLV GLVVHUWDWLRQ WKH GHVLJQ RI D KLJK WKURXJKSXW FRPSOH[ PXOWLSO\ DFn FXPXODWH SURFHVVRU ZDV SUHVHQWHG 7KH DUFKLWHFWXUH RI WKH 3( KDV EHHQ RSWLPL]HG WR FRPSXWH FRPSOH[ LQQHU SURGXFWV XVLQJ LQSODFH RU SDUWLDOVXPPDWLRQ DOJRULWKPV &RPSOH[ PXOWLSOLFDWLRQ LV SHUIRUPHG LQ D PDQQHU ZKLFK UHVXOWV LQ YHU\ GHVLUDEOH FKDUDFWHULVWLFV DW WKH VLOLFRQ OHYHO 6SHFLILFDOO\ PXOWLSOLFDWLRQ LV UHSODFHG E\ H[SRn QHQW DGGLWLRQ 7KLV LV DFFRPSOLVKHG YLD WKH *(4516 PDSSLQJ ZKLFK DOVR VHJPHQWV WKH FRPSXWDWLRQV LQWR VPDOO SDUDOOHO IDVW FKDQQHOV ZKLFK GR QRW VKDUH FDUU\ LQIRUn PDWLRQ 7KH FRQVHTXHQFH RI WKLV LV WKDW VPDOO ELQDU\ DGGHUV FDQ EH XVHG LQ SODFH RI ELQDU\ PXOWLSOLHUV ZKLFK UHSUHVHQWV D VLJQLILFDQW VDYLQJV LQ DUHD DQG DQ LQFUHDVH LQ WKURXJKSXW 7KH LPSOHPHQWDWLRQV ZKLFK UHVXOW IURP WKLV VFKHPH KDYH WKH SRWHQWLDO WR H[KLELW YHU\ KLJK GDWD UDWHV 7KH 3( FDQ EH XVHG WR FRQVWUXFW OLQHDU V\VWROLF DUn UD\V ZKLFK DUH VXLWDEOH IRU VLJQDO SURFHVVLQJ DOJRULWKPV VXFK DV FRQYROXWLRQ )RXULHU WUDQVIRUPV DV ZHOO DV PRUH JHQHUDO PDWUL[ PXOWLSOLFDWLRQ RSHUDWLRQV 7KHVH DOJRn ULWKPV DUH DOO FRPSXWH ERXQG ZKLFK LV WKH W\SH RI DOJRULWKP WKDW PRVW EHQHILWV IURP V\VWROLF DUUD\ LPSOHPHQWDWLRQV $ SURWRW\SH SURFHVVLQJ HOHPHQW KDV DOVR EHHQ IDEULFDWHG LQ D cLP &026 WHFKQRORJ\ DQG LV VKRZQ WR RSHUDWH DW 0+] 7KLV LV D YHU\ KLJK VSHHG IRU WKH JLYHQ IDEULFDWLRQ WHFKQRORJ\ 7KH DUFKLWHFWXUH LV IXOO\ SLSHOLQHG DQG WKXV PLOOLRQ FRPSOH[ PXOWLSOLFDWLRQV SHU VHFRQG FDQ EH SHUIRUPHG 7KH GDWD UDWH UHIOHFWV WKH XVH RI DJJUHVVLYH HOHFWURQLF FLUFXLW GHVLJQ RI WKH 3( 7KH XVH RI WUXH VLQJOH SKDVH FORFNLQJ KDV PRVW QRWDEO\ FRQWULEXWHG WR WKH SHUIRUPDQFH RI WKH SURWRW\SH DORQJ ZLWK FDUHIXO GHVLJQ RI WKH 9/6, PRGXOHV 7KH FKLS LV D IXOOFXVWRP GHVLJQ ZKLFK LQFRUSRUDWHV PAGE 106 G\QDPLF DQG SDVVWUDQVLVWRU FLUFXLW WHFKQLTXHV 7KH ILQDO GHVLJQ UHSUHVHQWV WKH WKLUG LQ D VHULHV RI FKLSV (DFK QHZ YHUVLRQ UHIOHFWHG WKH H[SHULHQFHV JDLQHG IURP LWV SUHGHn FHVVRU 7KLV LV IXOO\ FRQVLVWHQW ZLWK WKH GHVLJQ SKLORVRSK\ RI V\VWROLF DUUD\ HOHPHQWV ZKHUH WKH DUFKLWHFWXUH LV KLJKO\ RSWLPL]HG SULRU WR ILQDO ODUJH VFDOH LQWHJUDWLRQ 7KH ILQDO YHUVLRQ RI WKH 3( RSHUDWHG DW ZHOO RYHU WZLFH WKH VSHHG RI WKH ILUVW YHUVLRQ DQG RFFXSLHV KDOI WKH DUHD ,W ZDV GHWHUPLQHG GXULQJ WKH GHVLJQ SKDVH WKDW WKH DUHD UHn JDLQHG VKRXOG EH XVHG IRU RSHUDQG VWRUDJH ,Q WKLV ZD\ WKH OLQHDU DUUD\ WKDW UHVXOWV FDQ EH XVHG IRU DOJRULWKPV ZKLFK H[KLELW GDWD GHSHQGHQFLHV RWKHU WKDQ SXUHO\ OLQHDU IORZ $ IDXOW WROHUDQW OLQHDU DUUD\ ZKLFK FRQVLVWV RI VL[WHHQ SURFHVVRUV ZDV DOVR SURSRVHG )DXOW WROHUDQFH ZDV SURYLGHG E\ PHDQV RI WKH UHFRQILJXUDWLRQ RI GHIHFn WLYH SURFHVVRUV 7KH UHFRQILJXUDWLRQ VFKHPH UHOLHV RQ HOHFWURQLF VZLWFKHV DQG E\SDVV OLQHV 7KH OD\RXW RI WKHVH HOHPHQWV KDV EHHQ JUHDWO\ UHOD[HG VR WKDW WKHLU YXOQHUDn ELOLW\ WR SURFHVV GHIHFWV LV VLJQLILFDQWO\ UHGXFHG 5HGXQGDQF\ QRW XVHG DW WKH WLPH RI PDQXIDFWXUH FDQ EH XVHG IRU UHOLDELOLW\ LQ WKH ILHOG 7KH IDXOW WROHUDQFH ZDV LQn WURGXFHG E\ LQFOXGLQJ DQ H[WUD 3( ZLWKLQ HDFK PRGXOXV FKDQQHO $W WKH KHDUW RI WKLV VFKHPH LV WKH UHDOL]DWLRQ WKDW WKH 516 SURGXFHV PRUH IL[DEOH FRPELQDWLRQV IRU WKH VDPH DPRXQW RI UHGXQGDQF\ ZKHQ FRPSDUHG WR VLPLODU DUUD\ SURFHVVRU V\VWHPV 7KLV UHVXOWV DV D GLUHFW FRQVHTXHQFH RI WKH 516 PDSSLQJ ZKLFK VHJPHQWV WKH FRPn SXWDWLRQDO HOHPHQWV DOJRULWKPLFDOO\ DQG SK\VLFDOO\ LQWR GLVFUHWH XQLWV 7KH QXPEHU RI GLVFUHWH XQLWV HTXDOV WKH QXPEHU RI PRGXOL ZKLFK LV GHQRWHG E\ f/f LQ WKLV ZRUN 7KXV WKHUH LV D /IROG PXOWLSOLFDWLRQ IDFWRU LQ WKH QXPEHU RI IL[DEOH FRPELQDWLRQV IRU HDFK FRPSRVLWHf UHGXQGDQW 3( LQWURGXFHG LQWR WKH DUUD\ 7KH OLQHDU DUUD\ SURn SRVHG LQ WKLV ZRUN FRQVLVWHG RI ERWK D QRUPDO DQG D FRQMXJDWH FKDQQHO IRU FRPSOH[ PXOWLSOLFDWLRQ 7KXV IRU WKLV FDVH WKHUH LV D /WLPHV PXOWLSOLFDWLRQ IDFWRU LQ WKH QXPEHU RI IL[DEOH FRPELQDWLRQV IRU WKH SURSRVHG FKLS PAGE 107 ,Q WKLV ZRUN RQH UHGXQGDQW FRPSRVLWHf 3( ZDV LQWURGXFHG LQ WKH QRUPDO DQG FRQMXJDWH FKDQQHOV IRU DUUD\ OHQJWKV YDU\LQJ IURP VL[WHHQ WR WKLUW\WZR 3(V )RU WKH VL[WHHQ 3( FDVH WKH DUHD RYHUKHDG LV DSSUR[LPDWHO\ b DQG IRU WKH WKLUW\WZR 3( FDVH DSSUR[LPDWHO\ b &RQVHUYDWLYH PDQXIDFWXULQJ SDUDPHWHUV ZHUH FRQVLGHUHG IRU WKH DQDO\VLV )RU WKH EHVW FDVH PDQXIDFWXULQJ D IDWDO GHIHFW GHQVLW\ RI SHU FP DQG D FOXVWHULQJ SDUDPHWHU RI ZDV FRQVLGHUHG )RU WKH ZRUVW FDVH D IDWDO GHIHFW GHQVLW\ RI SHU FP DQG WKH FOXVWHULQJ SDUDPHWHU RI ZDV FRQVLGHUHG 7KH \LHOG RI WKH UHFRQILJXUHG FKLSV ZDV DGMXVWHG E\ D VFDOLQJ IDFWRU ZKLFK DFFRXQWHG IRU WKH ORVV RI SURGXFW GXH WKH WKH DGGHG UHGXQGDQF\ )RU WKH VL[WHHQ SURFHVVRU EHVW FDVH WKH QRQUHFRQILJXUHG YV UHFRQILJXUHG DGMXVWHGf \LHOG ZDV b YV b UHVSHFWLYHO\ )RU WKH ZRUVW FDVH WKH DQDO\VLV \LHOGHG b YV b 7KH JDLQV LQ \LHOG DUH HYHQ PRUH SURQRXQFHG IRU WKH WKLUW\WZR 3( FDVH 7KH EHVW FDVH SURGXFHG QRQUHGXQGDQW XV DGMXVWHGf UHGXQGDQW \LHOGV RI b YV b UHVSHFWLYHO\ 7KH ZRUVW FDVH SURGXFHG b YV b ,Q DOO WKH FDVHV FRQVLGHUHG WKH FKRVHQ UHGXQGDQF\ VFKHPH DOZD\V UHVXOWHG LQ SURGXFLQJ PRUH ZRUNLQJ FKLSV ZKLFK LV QRW DOZD\V WKH FDVH LI WRR PXFK UHGXQGDQF\ LV LQWURGXFHG LQWR WKH FKLS )RU FRPSDULVRQ SXUSRVHV DQ DOWHUQDWLYH UHFRQILJXUDWLRQ VFKHPH ZDV FRQVLGn HUHG 7KLV LQYROYHG LQWURGXFLQJ DQ H[WUD PRGXOXV LQ ERWK WKH QRUPDO DQG WKH FRQMXn JDWH FKDQQHOV RI WKH V\VWHP ZLWK WKH QHFHVVDU\ LQSXW DQG RXWSXW FRQYHUVLRQ XQLWVf 7KLV UHIOHFWV WKH DSSURDFK QRUPDOO\ SURSRVHG IRU 516 V\VWHPV ,I WKLV VFKHPH LV XVHG WKH &57 ZLOO QHHG WR EH UHFRQILJXUDEOH DV WKH G\QDPLF UDQJH RI WKH V\VWHP ZLOO FKDQJH ZKHQ D GHIHFWLYH PRGXOXV LV VZLWFKHG RXW DQG D VSDUH VZLWFKHG LQ 6XFK D V\VWHP LV SDUWLWLRQHG GLIIHUHQWO\ ZLWK UHJDUG WR IDXOW WROHUDQFH LQ WKDW IDLOXUHV LQ WKH LQSXW DQG RXWSXW PRGXOHV QRZ FDQ EH WROHUDWHG 7KHUH DUH QRZ /O IL[DEOH FRPELQDWLRQV LQ WKH V\VWHP $ VLPLODU \LHOG DQDO\VLV ZDV FRQGXFWHG ZLWK DUHD HVWLn PDWHV GHULYHG IURP FHOOV LQ WKH 3( 7KH DUHD RYHUKHDG DVVRFLDWHG ZLWK LQWURGXFLQJ DQ H[WUD PRGXOXV ZLWK LQSXW DQG RXWSXW FRQYHUVLRQ XQLWVf WRJHWKHU ZLWK WKH PLQLPXP PAGE 108 DUHD QHFHVVDU\ WR PDNH WKH &57 UHFRQILJXUDEOH ZDV DSSUR[LPDWHO\ b $ VLPLODU \LHOG DQDO\VLV ZDV FRQGXFWHG )RU WKH EHVW FDVH PDQXIDFWXULQJ LW ZDV VKRZQ IRU WKH VL[WHHQ SURFHVVRU V\VWHP WKDW WKH QRQUHFRQILJXUHG YV DGMXVWHGf UHFRQILJXUHG \LHOG ZDV b YV b 7KLV LV D QHJDWLYH JDLQ 0RUH ZRUNLQJ FKLSV ZRXOG KDYH EHHQ REWDLQHG LI QR UHGXQGDQF\ ZDV LQWURGXFHG LQ WKH V\VWHP )RU WKH ZRUVW FDVH PDQXIDFWXULQJ WKH QRQUHFRQILJXUHG YV DGMXVWHGf UHFRQILJXUHG \LHOG LV b YV b ZKLFK LV D PDUJLQDO JDLQ 7KH \LHOG SURMHFWLRQV LPSURYH IRU WKH WKLUW\WZR 3( ZRUVW FDVH DSSUR[LPDWHO\ b UHFRQILJXUHG \LHOGf EXW IRU WKH EHVW FDVH WKLV VFKHPH LV DOZD\V D QHJDWLYH JDLQ 7KH DERYH DQDO\VLV VXJJHVWV WKDW WKH LQWURGXFWLRQ RI H[WUD PRGXOL LQWR 516 V\VWHPV WR LPSURYH PDQXIDFWXULQJ \LHOG LV D TXHVWLRQDEOH SUDFWLFH ,W LV IDU PRUH HIILFLHQW WR LQWURGXFH UHGXQGDQF\ ZLWKLQ WKH PRGXOXV FKDQQHOV UDWKHU WKDQ EHWZHHQ WKH FKDQQHOV ,QWURGXFLQJ H[WUD PRGXOL LPSRVHV WRR PXFK DUHD RYHUKHDG IRU PRQRn OLWKLF V\VWHPV DQG FDQ DFWXDOO\ SURGXFH OHVV ZRUNLQJ FKLSV WKDQ LI QR UHGXQGDQF\ ZDV LQWURGXFHG (YHQ IRU WKH VFKHPH SUHVHQWHG LQ WKLV ZRUN WKH LQFOXVLRQ RI DQ H[WUD 3( SHU PRGXOXV ZDV fVRPHZKDW ZRUWK LWf IRU WKH VL[WHHQ 3( EHVW FDVH PDQXIDFWXULQJ SDUDPHWHUV 7KH PDQXIDFWXULQJ SDUDPHWHUV XVHG KHUH ZHUH YHU\ FRQVHUYDWLYH $W D FRPSHWLWLYH IDFLOLW\ WKH b DUHD RYHUKHDG ORVW WR UHGXQGDQF\ PD\ QRW EH fZRUWK LWf IRU WKH VL[WHHQ SURFHVVRU FDVH 7KXV WKH OHDVW DPRXQW RI UHGXQGDQF\ WKDW FDQ EH LQWURGXFHG WKH EHWWHU 7KH PLQLPXP DPRXQW RI UHGXQGDQF\ ZKLFK FDQ EH LQWURn GXFHG E\ DGGLQJ DQ H[WUD PRGXOXV QHJOHFWLQJ &57 UHFRQILJXUDWLRQf LV M SHUFHQW RI WKH WRWDO V\VWHP DUHD &OHDUO\ WKLV LV DOUHDG\ WRR PXFK UHGXQGDQF\ LQ WKH FRQWH[W RI UHDOLVWLF PDQXIDFWXULQJ SDUDPHWHUV ,W VKRXOG EH SRLQWHG RXW WKDW VFKHPHV ZKLFK UHO\ RI H[WUD PRGXOL IRU IDXOW WROHUDQFH VXFK DV WKH UHGXQGDQW UHVLGXH QXPEHULQJ V\VWHP 5516f > @ FDQ XVH WKHVH H[WUD PRGXOL WR DOJHEUDLFDOO\ FRUUHFW IRU WUDQVLHQW IDLOXUHV RI WKH V\VWHP LQ UHDO WLPH 7KH IDXOW WROHUDQW VFKHPH SUHVHQWHG KHUH FDQ RQO\ FRUUHFW IRU IDXOWV LQFXUUHG GXULQJ PAGE 109 PDQXIDFWXULQJ RU WKRVH GHWHFWHG GXULQJ RIIOLQH WHVWLQJ ,W LV FOHDUO\ LPSUDFWLFDO DQG SUREDEO\ D QHJDWLYH JDLQf WR XVH WKH KLJK DUHD RYHUKHDG DVVRFLDWHG ZLWK 5516 WR FRUUHFW IRU PDQXIDFWXULQJ IDXOWV 7KLV VXJJHVWV WKDW LQLWLDOO\ SHUIHFW 5516 FKLSV DUH EHWWHU XVHG IRU FRUUHFWLQJ WUDQVLHQW RU SHUPDQHQWf UXQWLPH IDXOWV ZLWK DOEHLW JUHDWO\ GLPLQLVKHG \LHOG DQG YHU\ KLJK PDQXIDFWXULQJ FRVW ,W PD\ EH PRUH SUDFWLFDO KRZHYHU WR XVH WKH UHGXQGDQF\ VFKHPH SUHVHQWHG KHUH WR LPSOHPHQW FKLSV XVHG LQ KLJKOHYHO EHWZHHQ FKLSf WULPRGXODU UHGXQGDQW 705f V\VWHPV ,Q WKLV ZD\ WKH V\VWHP RXWSXW LV SURWHFWHG IURP WUDQVLHQW DV ZHOO DV SHUPDQHQW UXQWLPH IDLOXUHV ,W f ZRXOG DOVR EH SRVVLEOH WR IL[ D IDLOHG 705 FKDQQHO GXULQJ V\VWHP WHVW ,Q WKLV ZD\ WKH RYHUDOO ORQJWHUP UHOLDELOLW\ RI D 705 V\VWHP ZRXOG EH JUHDWO\ HQKDQFHG 6LQFH WKH \LHOG RI FKLSV SURGXFHG ZLWK WKH ORZRYHUKHDG UHGXQGDQF\ VFKHPH SUHVHQWHG KHUH ZLOO EH VLJQLILFDQWO\ LPSURYHG WKH UHVXOWLQJ FRVW RI D WULSOLFDWHG V\VWHP PD\ DFWXDOO\ EH OHVV WKDQ WKDW FRQVLVWLQJ RI ORZ\LHOG 5516 FKLSV ,Q ERWK RI WKH UHGXQGDQF\ VFKHPHV WKH DUHD RI WKH FKLSV WKDW FRXOG QRW WROHUDWH FLUFXLW IDXOWV ZDV WKH &57 )RU WKH VHFRQG UHGXQGDQF\ VFKHPH WKH DUHD RI WKH &57 KDG WR EH LQFUHDVHG E\ RYHU D IDFWRU RI WKUHH WR DFFRPPRGDWH IRU WKH IDXOW WROHUDQW VFKHPH $Q DUHD RI IXWXUH UHVHDUFK VKRXOG WKXV EH VHDUFKLQJ IRU D ZD\ WR PDNH WKH &57 WROHUDQW WR FLUFXLW IDXOWV ZLWKRXW VXFK D ODUJH LQFUHDVH LQ DUHD %RWK VFKHPHV ZRXOG EHQHILW IURP VXFK DQ LPSOHPHQWDWLRQ 7KH UHGXQGDQF\ VFKHPH XVHG LQ WKLV ZRUN ZRXOG H[KLELW WKH PRVW JDLQV DV LW LV LPSOLFLWO\ D VPDOOHUDUHD WHFKQLTXH 7KH DUHD RI WKH LQSXW FRQYHUVLRQ PRGXOHV LV FRPSDUDWLYHO\ VPDOO DQG WKXV WKHUH DUH RQO\ OLPLWHG JDLQV WR EH DFKLHYHG E\ PDNLQJ WKLV SRUWLRQ RI WKH V\VWHP IDXOW WROHUDQW )LQDOO\ LW LV SRLQWHG RXW WKDW D 520 EDVHG &57 FRXOG EH PDGH PRUH WROHUDQW WR PDQXIDFWXULQJ GHIHFWV E\ LQWURGXFLQJ D VPDOO QXPEHU RI H[WUD URZV DQG FROXPQV LQ WKH 520V ,Q WKLV ZD\ WZRWKLUGV RI WKH &57 ZRXOG EH WROHUDQW WR PDQXIDFWXULQJ GHIHFWV ZLWK D VPDOO LQFUHDVH LQ DUHD PAGE 110 $33(1',; $ 9/6, &(// /$<2876 PAGE 111 )LJXUH $O 520 :RUGOLQH 'HFRGHU &HOO PAGE 112 )LJXUH $ 520 6HQVH $PSOLILHU PAGE 113 )LJXUH $ 520 3URJUDPPLQJ 0DWUL[ +7+,O8UDO0 PAGE 114 )LJXUH $ 0RG 3 %XLOGLQJ %ORFN =HURf PAGE 115 )LJXUH $ 0RG 3 %XLOGLQJ %ORFN 2QHf PAGE 117 )LJXUH $ 3LSHOLQH 5HJLVWHU ZLWK 'LUHFWLRQ /RJLF PAGE 118 )LJXUH $ 5HFRQILJXUDEOH 6ZLWFK (OHPHQW PAGE 119 $33(1',; % 2%6(59(' &+,3 '$7$ 6WDWH /LVWLQJ /2*;,1 287387 'HFLPDO 'HFLPDO *$866-0$&+ 6WDWH /LVWLQJ /DEHO /2*;,1 287387 r nH 'HFLPDO 'HFLPDO 2LO 2LO Â‘ PAGE 120 $33(1',; & &20387(5 352*5$06 LQFOXGH PDOORFK! LQFOXGH VWGLRK! LQFOXGH PDWKK! LQFOXGH VWGOLEK! r 5RXWLQH LRU ,Q R *DPPD IXQFWLRQ r r LXOO DFFXUDF\ LV UHWDLQHG IRU [[ )RU [[ WKH UHIOHFWLRQ r r IRUPXOD FDQ EH XVHG r GRXEOH JDPPOQ[[f GRXEOH [[ GRXEOH [WPSVHU VWDWLF GRXEOH FRI>@ ^ HH` LQWMf [ [[ WPS [ WPS [frORJWPSf VHU O IRU M M M. [ VHU FRI>M@[ UHWXUQ WPSORJrVHUf r 5RXWLQH IRU OQQf r GRXEOH IDFWOQQf LQW Q ^ VWDWLF GRXEOH D>@ GRXEOH JDPPOQ2 YRLG QUHUURUf LI Q f QUHUURU1HJDWLYH IDFWRULDO LQ URXWLQH )$&7/1f LI Q f UHWXUQ LI Q f UHWXUQ D>Q@ D>Q@ D>Q@ JDPPOQQff HOVH UHWXUQ JDPPOQQf r 5RXWLQH IRU %LQRPLDO &RHIILFLHQW r GRXEOH ELFRQNf LQW QN GRXEOH IDFWOQ2 UHWXUQ IORRUH[SIDFWOQQfIDFWOQNfIDFWOQQNfff r 1XPHULFDO 5HFLSHV VWDQGDUG HUURU KDQGOHU r YRLG QUHUURUHUURUBWH[Wf FKDU HUURUBWH[W Â’ YRLG H[LWf LSULQWI VWGHUU1XLQHULFDO 5HFLSHV UXQWLPH HUURU $Qf ISULQWI VWGHUU0nV?Q HUURUBWH[Wf ISULQWIVWGHUUQRZ H[LWLQJ WR V\VWHP$Qf H[LWOf PAGE 121 ,OO r &RPSDUH 5RXWLQH r LQW WFRPSDUHGRXEOH rYOGRXEOH rYf Â‘& LIDEVrYOf IDEVrYffUHWXUQ HOVH LIIDEVrYOf IDEVrYffUHWXUQ UHWXUQ r 5RXWLQH IRU FDOFXODWLQJ DUUD\ \LHOG r GRXEOH $BWRWRYHUBKHDG GRXEOH \LHOG1PRG5PRG'2DOSKDf LQW 1PRG 5PRG GRXEOH '2DOSKD Â‘& r GHILQH YDULDEOH W\SHV r LQW 11111111 LQW 55555555 LQW 0O00+0+00 LQW NONNNNNNN LQW L DUUD\BVL]H r GRXEOH $BWRW RYHUBKHDG r GRXEOH $3(BU$3(BQ$BLF$BFUW$BLR$BFN1 PAGE 122 $O $3(BU $ $3(BU $ $3(BU $ $3(BU $ $3(BU $ $3(BU $ $3(BU $ $3(BU DUUD\BVL]H LQWfSRZ5PRGOff S GRXEOH rfPDOORFDUUD\BVL]HrVL]HRIGRXEOHff 1 GRXEOHf1PRG $BFN $BLF $BFUW $BLR r1r$3(BQ $BWRW 1r$ $ $ $ $ $ $ $f $BFN GHOWDBO $r1f$BWRW GHOWDB $r1f$BWRW GHOWDB $r1f$BWRW GHOWDB $r1f$BWRW GHOWDB $r1f$BWRW GHOWDB $r1f$BWRW GHOWDB $r1f$BWRW GHOWDB $r1f$BWRW GHOWDBFN $BFN$BWRW EODPEGD 1r$O 1r$ 1r$ 1r$ 1r$ 1r$ 1r$ 1r$fr' $BFNr' EODPEGDBO EODPEGDrGHOWDBLf1 EODPEGDB EODPEGDrGHOWDBf1 EODPEGDB EODPEGDrGHOWDBf1 EODPEGDB EODPEGDrGHOWDBf1 EODPEGDB( EODPEGDrGHOWDBf1 EODPEGDB EODPEGDrGHOWDBf1 EODPEGDB EODPEGDrGHOWDBf1 EODPEGDB EODPEGDrGHOWDBf1 EODPEGDBFN EODPEGDrGHOWDBFNf WHPS IRU 0O 1O5Of 0O 1O 0f ^ IRU 0 15f 0 1 0f ^ IRU 0 15f 0 1 0f ^ IRU 0 15f 0 1 0f ^ IRU 0 15f 0 1 0f ^ IRU 0 15f 0 1 0f ^ IRU 0 15f 0 1 0f ^ IRU 0 15f 0 1 0f ^ IRU NO NO 1O0Lf NOf ^ IRU N N 10fO Nf ^ IRU N N 10fO Nf ^ IRU N N 10fO Nf ^ IRU N N 10fO Nf ^ IRU N N 10fO Nf ^ IRU N N 10fO Nf ^ IRU N N 10fO Nf ^ WHPS WHPS ORQJ GRXEOHf NONNNNNNNftO"Of rELFR1O0ONOfrELFR10Nf AELFR10NfrELFR10Nf rELFR10NfrELFR10Nf rELFR10NfrELFR10Nff rSRZO GRXEOHf0ONOfrEODPEGDBO GRXEOHf0NfrEODPEGDB GRXEOHf0NfrEODPEGDB GRXEOHf0NfrEODPEGDB GRXEOHf0NfrEODPEGDB GRXEOHf0NfrEODPEGDB GRXEOHf0NfrEODPEGDB GRXEOHf0NfrEODPEGDB EODPEGDBFNfDOSKDfDOSKD ff f ! PAGE 123 ` ` ` ! S>L@ WHPSr ELFR1O0OfrELFR10frELFR10frELFR10fr ELFR10frELFR10frELFR10frELFR10ff WHPS ! ! ` ` ! r SULQW?Q$UUD\ VL]H LV nL XVHG rL DUUD\BVL]HLf r TVRUWSVL]HBWfDUUD\BVL]HVL]HRIGRXEOHfWFRPSDUHf VXP IRUL L DUUD\BVL]H Lf VXP S>L@ RYHUBKHDG GRXEOHf5PRGf r r$3(BU $3(BQf f GRXEOHf1PRG5PRGfr$O$$$$$$$f $BFNf UHWXUQ VXP PDLQf L LQW QQPD[ GRXEOH \O\\\ FKDU ILOHQDPH>@ ),/( rIS SULQWI?Q (QWHU RXWSXW ILOHQDPH !f VFDQInV ILOHQDPHf LIIS IRSHQ ILOHQDPH Zff 18//fL SULQWI;Q&$1127 23(1 ),/( ?Q?Uf H[LWOf SULQWI?Q (QWHU WKH PD[LPXP OHQJWK DUUD\ WR EH FRQVLGHUHG f VFDQI &nL IWQPD[f IRUQ Q QPD[f Qf ^ \O \LHOGQf \ \LHOGQOOf \ \LHOGQf \ \LHOGQLf SULQWI L?WOH?WnOH?WOH?WrOH?WnOH?WnOH?W ?Q Q\O\\\$BWRW RYHUBKHDGf ISULQWI IS L?WnOH?WOH?WOH?WnOH?WnOH?WnOH?W ?Q Q\O \\\$BWRW RYHUBKHDGf ` ! PAGE 124 LQFOXGH PDOORFK! LQFOXGH VWGLRK! LQFOXGH PDWKK! LQFOXGH VWGOLEK! r 5RXWLQH IRU ,Q RI *DPPD IXQFWLRQ r r IXOO DFFXUDF\ LV UHWDLQHG IRU [[ )RU [[ WKH UHIOHFWLRQ r r IRUPXOD FDQ EH XVHG r GRXEOH JDPPOQ[[f GRXEOH [[ ^ GRXEOH [WPSVHU VWDWLF GRXEOH FRI>@ ^ HH! LQWMf [ [[ WPS [ WPS [frORJWPSf VHU IRU M M Mf^ [ VHU FRI>M@[ UHWXUQ WPSORJrVHUf r 5RXWLQH IRU OQQf r GRXEOH IDFWOQQf LQW Q ^ VWDWLF GRXEOH D>@ GRXEOH JDPPOQ2 YRLG QUHUURU4 LI Q f QUHUURU1HJDWLYH IDFWRULDO LQ URXWLQH )$&7/1f LI Q f UHWXUQ LI Q f UHWXUQ D>Q@ D>Q@ D>Q@ JDPPOQQff HOVH UHWXUQ JDPPOQQOf r 5RXWLQH IRU %LQRPLDO &RHIILFLHQW r GRXEOH ELFRQNf LQW QN ^ GRXEOH IDFWOQ2 UHWXUQ IORRUH[SIDFWOQQfIDFWOQNfIDFWOQQNfff r 1XPHULFDO 5HFLSHV VWDQGDUG HUURU KDQGOHU r YRLG QUHUURUHUURUBWH[Wf FKDU HUURUBWH[W>@ ^ YRLG H[LW4 ISULQWIVWGHUU1XPHULFDO 5HFLSHV UXQWLPH HUURU?Qf ISULQWI VWGHUU nV?Q HUURUBWH[Wf ISULQWIVWGHUUQRZ H[LWLQJ WR V\VWHP$Qf H[LWOf r &RPSDUH 5RXWLQH r LQW WFRPSDUHGRXEOH rYOGRXEOH rYf ^ LIIDEVrYOf IDEVrYffUHWXUQ HOVH LIIDEVrYOf IDEVrYffUHWXP UHWXUQ r 5RXWLQH IRU FDOFXODWLQJ DUUD\ \LHOG r PAGE 125 GRXEOH $BWRWRYHUKHDG GRXEOH \LHOG1OHQ5PRG'2DOSKDf LXW 1OHQ 5PRG GRXEOH '2DOSKD f& r GHILQH YDULDEOH W\SHV r LQW 1O LQW 5 LQW 0O LQW NO LQW L DUUD\BVL]H r GRXEOH $BWRW RYHUBKHDG r GRXEOH $3(BU$3(BQ$BLF$BORJ$BRFO$BFUW$BLR$BFN1 GRXEOH $O$BFUWBROG GRXEOH GHWDOGHOWDBFN GRXEOH EODPEGDO GRXEOH EODPEGDBFNEODPEGD GRXEOH < ORQJ GRXEOH WHPS GRXEOH VXP rS r GHILQH DUHD YDOXHV r r $UHD YDOXHV IRU EDVLF PRGXOH r $3(BU $3(BQ $BLFO $BORJ $BRFO r &KLS NLOO DAUHD r $BFUWBROG $BFUW $BFUWBROGr $BLR r GHILQH QXPEHU RI 3(V SHU PRGXOXV UHGXQGDQF\ DQG UHF DUHD r 1O 5PRG 1 GRXEOHf1OHQ 5O 5PRG $O r$3(BU $3(BQffr1 r$BLFO r$BORJ $BRFOf r 6RUW URXWLQH SDUDPHWHUV r DUUD\BVL]H LQWf5PRGf S GRXEOH rfPDOORFDUUD\BVL]HrVL]HRIGRXEOHff r 'HILQH FKLS NLOO DLUHD r $BFN $BFUW $BLR r &DOFXODWH WRWDO FKLS DLUHD r $BWRW $OfrGRXEOHf 5PRGf $BFN r &DOFXODWH DUHD IUDFWLRQV r GHOWDBO $Of$BWRW GHOWDFN $BFN$BWRW r &DOFXODWH WRWDO QXPEHU RI IDXOWV r EODPEGD $OfrGRXEOHf5PRGf fr' $BFNr' r 6SOLWXS IDXOWV EDVHG RQ DUHD IUDFWLRQ r EODPEGDBO EODPEGDrGHOWDBOf EODPEGDBFN EODPEGDrGHOWDBFNf r &RPSXWH \LHOG r WHPS L IRU 0O 1O5Of 0O 1O 0f ^ IRU NO NO ,LO0Of NOf ^ PAGE 126 WHPS WHPS ORQJ GRXEOHf NOftO"Of r ELFR1O0ONOf rSRZ GRXEOHf0ONOfrEODPEGDBO EODPEGDBFNfDOSKDfDOSKD ff ff S>L@ WHPSrELFR1O0f WHPS r SULQWI?Q$UUD\ VL]H LV nLL XVHG nLDUUD\BVL]HLf r TVRUWSVL]HBWfDUUD\BVL]HVL]HRIGRXEOHfWFRPSDUHf VXP IRUL L DUUD\BVL]H Lf VXP S>L@ RYHUBKHDG $O $BFUW $BFUWBROGff $OfrGRXEOHff $BFUWBROG $BLRf UHWXUQ VXP ` PDLQf ^ LQW QQPD[ GRXEOH \O\\\ FKDU ILOHQDPH>@ ),/( rIS SULQWI?Q (QWHU RXWSXW ILOHQDPH !f VFDQI nV ILOHQDPHf LIIS IRSHQ ILOHQDPH Zff 18//f^ SULQWI0?Q&$117 23(1 ),/( ?Q?Uf H[LWOf SULQWI?Q (QWHU WKH PD[LPXP OHQJWK DUUD\ WR EH FRQVLGHUHG f VFDQI Q\L tQPD[f IRUQ Q QPD[f Qf L \O \LHOGQf \ \LHOGQf \ \LHOGQf \ \LHOGQf SULQWI fnL?WOH?WnOH?WnOH?WnOH?WOH?WnOH?W ?Q Q\ \ \ \ $BWRW RYHUBKHDGf ISULQWI IS \L?WnOH?W\OH?W\OH?WnOH?WrOH?WnOH?W ?Q Q\ \ \\ $BWRW RYHUBKHDGf ` PAGE 127 5()(5(1&(6 >@ 0 $IJKDKL DQG & 6YHQVVRQ $ XQLILHG VLQJOHSKDVH FORFNLQJ VFKHPH IRU 9/6, V\VWHPV ,((( -RXUQDO RI 6ROLG 6WDWH &LUFXLWV f )HEUXDU\ >@ 0 $IJKDKL DQG & 6YHQVVRQ 3HUIRUPDQFH RI V\QFKURQRXV DQG DV\QFKURQRXV VFKHPHV IRU 9/6, V\VWHPV ,((( 7UDQVDFWLRQV RQ &RPSXWHUV f >@ -RKQ < &KHQ &026 'HYLFHV DQG 7HFKQRORJ\ IRU 9/6, 'HVLJQ 3UHQWLFH +DOO (QJOHZRRG &OLIIV 1>@ 5 &RVHQWLQR )DXOW WROHUDQFH LQ D V\VWROLF UHVLGXH DULWKPHWLF SURFHVVRU DUUD\ ,((( 7UDQVDFWLRQV RQ &RPSXWHUV f >@ 5 &RVHQWLQR %/ -RKQVRQ DQG 9DFFDUR &RPELQLQJ DUFKLWHFWXUH DQG DOJRULWKP IRU \LHOG HQKDQFHPHQW DQG IDXOW WROHUDQFH ,Q 'HIHFW DQG )DXOW 7ROn HUDQFH LQ 9/6, 6\VWHPV SDJHV 3OHQXP 3UHVV 1HZ PAGE 128 >@ 6 < .XQJ 9/6, DUUD\ SURFHVVRUV ,((( $663 0DJD]LQH SDJHV >@ 6 < .XQJ 9/6, $UUD\ 3URFHVVRUV 3UHQWLFH +DOO (QJOHZRRG &OLIIV 1>@ / / /DSLQ 3UREDELOLW\ DQG 6WDWLVWLFV IRU 0RGHUQ (QJLQHHULQJ 3:6.(17 3XEOLVKLQJ &RPSDQ\ %RVWRQ 0$ >@ 6 + /HXQJ $SSOLFDWLRQ RI UHVLGXH QXPEHU V\VWHPV WR FRPSOH[ GLJLWDO ILOWHUV 3URFHHGLQJV RI WK $VLORPDU &RQIHUHQFH RQ &LUFXLWV 6\VWHPV DQG &RPSXWHUV 3DFLILF *URYH &$ SDJHV 1RYHPEHU >@ 0HOORWW & 6PLWK DQG ) 7D\ORU 7KH JDXVV PDFKLQH $ JDORLV HQKDQFHG TXDGUDWLF UHVLGXH QXPEHU V\VWHP V\VWROLF DUUD\ ,Q 3URFHHGLQJV RI WK 6\PSRVLXP RQ &RPSXWHU $ULWKPHWLF :LQGVRU 2QWDULR &DQDGD SDJHV fÂ§ ,((( >@ % 7 0XUSK\ &RVWVL]H RSWLPD RI PRQROLWKLF LQWHJUDWHG FLUFXLWV 3URFHHGLQJV RI WKH ,((( SDJHV $XJXVW >@ +DUU\ $ 1LHQKDXV DQG 6FRWW $O\HD &026 FHOO OLEUDU\ GHYHORSPHQW SURMHFW 7HFKQLFDO UHSRUW 8QLYHUVLW\ RI 6RXWK )ORULGD 0D\ >@ 25%,7 )25(6,*+7 8VHUfV 0DQXDO 6XQQ\YDOH&DOLIRUQLD >@ 3 5 3XNLWH DQG & / %HUPDQ 'HIHFW FOXVWHU DQDO\VLV IRU ZDIHUVFDOH LQWHn JUDWLRQ ,((( 7UDQVDFWLRQV RQ 6HPLFRQGXFWRU 0DQXIDFWXULQJ f fÂ§ $XJXVW >@ 7 6DWR + 2NDGD 7 6XNHPXUD DQG *RWR $ QV E WUDQVPLVVLRQ JDWH DGGHU ZLWK D FRQIOLFWIUHH E\SDVV FLUFXLW ,((( -RXUQDO RI 6ROLG6WDWH &LUFXLWV f $SULO >@ & 6PLWK DQG ) 7D\ORU 7KH GHVLJQ RI D IDXOW WROHUDQW *(4516 SURFHVVLQJ HOHPHQW IRU OLQHDU V\VWROLF DUUD\ '63 DSSOLFDWLRQV ,Q 3URFHHGLQJV IWK *UHDW /DNHV 6\PSRVLXP RQ 9/6, 1RWUH 'DPH ,1 SDJHV ,((( 0DUFK >@ & 6PLWK DQG ) 7D\ORU $ IDXOW WROHUDQW *(4516 SURFHVVLQJ HOHPHQW IRU OLQHDU V\VWROLF DUUD\ '63 DSSOLFDWLRQV LQ VHFRQG UHYLHZf ,((( 7UDQVDFWLRQV RQ &RPSXWHUV >@ 0 $ 6RGHUVWUDQG : -HQNLQV $ -XOOLHQ DQG ) 7D\ORU 5HVLGXH 1XPEHU 6\VWHP $ULWKPHWLF 0RGHUQ $SSOLFDWLRQV LQ 'LJLWDO 6LJQDO 3URFHVVLQJ ,((( 3UHVV 1HZ PAGE 129 >@ & + 6WDSSHU 6PDOODUHD IDXOW FOXVWHUV DQG IDXOW WROHUDQFH LQ 9/6, FLUFXLWV ,%0 -RXUQDO RI 5HVHDUFK 'HYHORSPHQW f 0DUFK >@ & + 6WDSSHU ) $UPVWURQJ DQG 6DML ,QWHJUDWHG FLUFXLW \LHOG VWDWLVWLFV 3URFHHGLQJV RI WKH ,((( f $SULO >@ ( ( 6ZDUW]ODQGHU 6\VWROLF 6LJQDO 3URFHVVLQJ 6\VWHPV 0DUFHO 'HNNHU 1HZ PAGE 130 %,2*5$3+,&$/ 6.(7&+ -HUHP\ & 6PLWK ZDV ERUQ LQ WKH SDULVK RI 6W $QGUHZ -DPDLFD :, RQ $SULO ,Q $XJXVW RI KLV IDPLO\ PRYHG WR WKH 8QLWHG 6WDWHV ZKHUH WKH\ KDYH OLYHG HYHU VLQFH +H UHFHLYHG WKH %6(( DQG 06 GHJUHHV IURP WKH 8QLYHUVLW\ RI )ORULGD LQ DQG UHVSHFWLYHO\ +H LV FXUUHQWO\ FRPSOHWLQJ WKH UHTXLUHPHQWV IRU KLV 3K' GHJUHH LQ HOHFWULFDO HQJLQHHULQJ DW WKH 8QLYHUVLW\ RI )ORULGD +H LV VFKHGXOHG WR JUDGXDWH LQ $XJXVW RI PAGE 131 , FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ )UHG 3URI HO D\ORU &KDLUPDQ RI (OHFWULFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ *UDKNP $ -XOOLHQ 8QLYHUVLW\ 3URIHVVRU 8QLYHUVLW\ RI :LQGVRU FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0DUN ( /DZ $VVRFLDWH 3URIHVVRU RI (OHFWULFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRUARI 3KLORVRSK\ FWULFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ %HUQDUG $ 0DLU $VVRFLDWH 3URIHVVRU RI 0DWKHPDWLFV PAGE 132 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW :LQIUHG 0 3KLOOLSV 'HDQ &ROOHJH RI (QJLQHHULQJ .DUHQ $ +ROEURRN 'HDQ *UDGXDWH 6FKRRO |