Citation
Tapered velocity couplers and devices

Material Information

Title:
Tapered velocity couplers and devices a treatise
Creator:
Kim, Hyoun Soo, 1964- ( Dissertant )
Ramaswamy, Ramu V. ( Thesis advisor )
Nishida, Toshikazu ( Reviewer )
Tanner, D. ( Reviewer )
Uman, M. ( Reviewer )
Zory, P. ( Reviewer )
Place of Publication:
Gainesville, Fla.
Publisher:
University of Florida
Publication Date:
Copyright Date:
1994
Language:
English
Physical Description:
vii, 120 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Adiabatic conditions ( jstor )
Annealing ( jstor )
Diffusion index ( jstor )
Electric potential ( jstor )
Experimental results ( jstor )
Light refraction ( jstor )
Modeling ( jstor )
Protons ( jstor )
Velocity ( jstor )
Waveguides ( jstor )
Adiabatic invariants ( lcsh )
Directional couplers -- Mathematical models ( lcsh )
Dissertations, Academic -- Electrical Engineering -- UF
Electrical Engineering thesis Ph.D
Optical wave guides -- Mathematical models ( lcsh )
Optoelectronic devices -- Mathematical models ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Abstract:
A polarization independent device is highly desirable for use in single-mode fiber optical communication systems. Tapered velocity coupler (TVC) is expected to play an important role since its operation is polarization independent as well as wavelength insensitive. Thus far, TVC has received little attention primarily because of the unusually long device length required for complete power transfer. In this dissertation we establish that a TVC with an acceptable device length for integration can be indeed realized and integrated by tapering in index as well as in dimension. We demonstrate, for the first time, that complete power transfer can be achieved in a tapered, both in index and in dimension, velocity coupler in Ti:LiNbO3 with device length reduced to one quarter of that of conventional TVC. The coupler is analyzed by use of step transition model in conjunction with local normal modes of the grade index TVC, overcoming the deficiency of the five-layer step index model. We further demonstrate a Ti:LiNb)3 digital optical switch with the smallest voltage length product reported to date, namely, 7.2 Vcm for TM and 24 Vcm TE mode with a 15 dB cross talk. In an effort to extend the tapered, both in index and in dimension, velocity coupler concepts to step index compound semiconductor waveguides, we introduce proton exchanged periodically segmentted (PEPS) waveguides. PEPS waveguides in LiNb)3 are first studied theoretically and experimentally. The mode index of PEPS waveguides increases linearly and saturates finally with increas of duty cycle. Next, segmented waveguides in AlGaAs/GaAs are characterized in terms of propagation loss and modal size with respect to duty cycle. These segmented waveguides will be utilized in the development of step index tapered velocity couplers. Finally, we present an application for TVC as an optical interconnect. In particular, a tapered waveguide interconnect between a single quantum well (SQW) laser and multi-quantum well (MQW) modulator is presented. Using vertical coupling between SQW guiding layers and tapered, both in index and dimension, MQW layer, the tapered interconnect is modified for complete power transfer from SQW laser to MQW modulator.
Thesis:
Thesis (Ph. D.)--University of Florida, 1994.
Bibliography:
Includes bibliographical references (leaves 115-119).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Hyoun Soo Kim.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001975597 ( ALEPH )
31798924 ( OCLC )
AKF2427 ( NOTIS )

Downloads

This item has the following downloads:


Full Text











TAPERED VELOCITY COUPLERS AND DEVICES:
A TREATISE

















By

HYOUN SOO KIM


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1994





























To

My Parents















ACKNOWLEDGMENTS


I would like to express my deep gratitude to my advisor Prof. Ramu V.

Ramaswamy for his guidance, encouragement, and support throughout my graduate

study. His high standard in academic achievement really inspired me to do my very best

for the completion of this work. In addition, through his discipline and leadership I have

learned a lot more than the scientific knowledge required in the integrated optics field.

I would like to thank Prof. T. Nishida, D. Tanner, M. Uman, and P. Zory for their

participation on my supervisory committee. I also would like to express my thanks to Dr.

Figueroa whose enthusiasm was what initially got me interested in studying in this field.

I thank my fellow graduate students, particularly, Dr. Young Soon Kim, Dr. Sang

Sun Lee, Dr. Hsing Chien Cheng, Dr. Amalia Miliou, Sang Kook Han, Chris Hussel, S.

Muthu, J. Natour, K. Lewis, Young Soh Park, Maj. Mike Grove, Capt. Craig Largent, and

fellow researchers Dr. Simon Cao, Dr. Sanjai Sinha, and Dr. K. Thyagarajan for many

stimulating and interesting discussions. Thanks are extended to my friends, Dr. Sung

Jong Choi, Dr. Chang Yong Choi, Kwang Rip Hyun, Min Jong Yeo, Duck Hyun Chang,

Dong wook Suh, who have provided many unforgettable memories throughout all the

years I spent in Gainesville.

I am greatly indebted to my parents and sisters for their endless love, patience,

and support during all the years of my life. Last, but not least, I would like to give my

special thanks to my wife for her support and sacrifice and to my lovely two daughters for

their encouragement.















TABLE OF CONTENTS


ACKNOW LEDGM ENTS ........................................................................................... iii

A B STRA CT ......................................................................................................................... vi

CHAPTERS

ONE INTRODUCTION .................................................................................... 1

TWO NORMAL MODE THEORY
AND ADIABATIC THEOREM............................................................ 11

2.1 Definition of Normal Modes........................................................... 11
2.2 Characteristics of Normal Modes
in Five-layer Waveguide Structure ............................................. 18
2.3 Adiabatic Theorem in Optical Devices .............................................. 28

THREE TAPERED, BOTH IN INDEX AND IN DIMENSION,
VELOCITY COUPLER IN Ti:LiNbO3 ............................................. 33

3.1 Single Mode Channel Guide:
Normal Mode Analysis and Field Profile ................................. 34
3.2 Tapered, Both in Index and Dimension, Velocity Coupler................... 40
3.3 Step Transition Model: Power Flow in the TVC.................................... 50
3.4 Theoretical and Experimental Results ............................................... 53

FOUR TAPERED, BOTH IN DIMENSION AND IN INDEX
VELOCITY COUPLER SWITCH .................................... ........... .. 62

4.1 Principles of Operation ................................................................... 63
4.2 Theory and Experiments ................................................................... 66
4.3 Sum m ary ............................................................................................ 69

FIVE TAPERED VELOCITY COUPLER
USING SEGMENTED WAVEGUIDES.................................................. 71

5.1 Proton Exchanged Periodically Segmented
W aveguide in LiNbO3 ................................... .................................. 74
5.2 Modeling of Proton Exchanged Periodically Segmented
W aveguides in LiNbO3............................................... ................ 76
5.3 Periodically Segmented Waveguides in AlGaAs/GaAs
and Their Application to Tapered Velocity Coupler ................................ 84










SIX AN MQW-SQW TAPERED WAVEGUIDE INTERCONNECT ................. 94

6.1 Introduction ......................................................................................... 94
6.2 Tapered Waveguide Interconnect Using IILD........................................ 95
6.3 Modeling of Impurity Induced Layer Disordered MQW and
Analysis of Tapered Waveguide Interconnect.................................. 97
6.4 Optimization of the Taper Modal Evolution......................................... 104
6.5 Conclusion .................................................................................... 111

SEVEN CONCLUSIONS AND SUMMARY ......................................................... 112

REFEREN CES.......................................................................................................... 115

BIOGRAPHICAL SKETCH .................................................................................... 120















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy


TAPERED VELOCITY COUPLERS AND DEVICES:
A TREATISE


By

Hyoun Soo Kim

April 1994


Chairman: Ramu V. Ramaswamy
Major Department: Electrical Engineering


A polarization independent device is highly desirable for use in single-mode fiber

optical communication systems. Tapered velocity coupler (TVC) is expected to play an

important role since its operation is polarization independent as well as wavelength

insensitive. Thus far, TVC has received little attention primarily because of the unusually

long device length required for complete power transfer. In this dissertation we establish

that a TVC with an acceptable device length for integration can be indeed realized and

integrated by tapering in index as well as in dimension.

We demonstrate, for the first time, that complete power transfer can be achieved

in a tapered, both in index and in dimension, velocity coupler in Ti:LiNbO3 with device

length reduced to one quarter of that of conventional TVC. The coupler is analyzed by

use of step transition model in conjunction with local normal modes of the grade index

TVC, overcoming the deficiency of the five-layer step index model.









We further demonstrate a Ti:LiNbO3 digital optical switch with the smallest

voltage length product reported to date, namely, 7.2 Vcm for TM and 24 Vcm TE mode

with a 15 dB cross talk.

In an effort to extend the tapered, both in index and in dimension, velocity coupler

concepts to step index compound semiconductor waveguides, we introduce proton

exchanged periodically segmented (PEPS) waveguides. PEPS waveguides in LiNbO3 are

first studied theoretically and experimentally. The mode index of PEPS waveguides

increases linearly and saturates finally with increase of duty cycle. Next, segmented

waveguides in AlGaAs/GaAs are characterized in terms of propagation loss and modal

size with respect to duty cycle. These segmented waveguides will be utilized in the

development of step index tapered velocity couplers.

Finally, we present an application for TVC as an optical interconnect. In

particular, a tapered waveguide interconnect between a single quantum well (SQW) laser

and a multi-quantum well (MQW) modulator is presented. Using vertical coupling

between SQW guiding layers and a tapered, both in index and dimension, MQW layer,

the tapered interconnect is modified for complete power transfer from SQW laser to

MQW modulator.















CHAPTER ONE
INTRODUCTION


Tapered velocity couplers (TVC) play an important role in optical communication

systems. In particular, they are useful as digital optical switches for optical signal

processing applications as well as optical interconnects within an integrated optical chip

interconnecting a laser and a modulator. The present dissertation is a treatise on the subject

of TVC.

Tapered velocity couplers consist of two waveguides separated by a constant gap

but with at least one of the waveguides tapered along the direction of propagation. Several

cases of such couplers are illustrated in Fig. 1.1. The primary advantage of a TVC is that

its behavior is predicated upon the evolution of the fundamental and/or the first order

normal mode along the longitudinal direction of the coupler. Gradual tapering of the guides

in the coupler that meets the adiabatic invariance condition prevents mode conversion

between the local normal modes as well as into radiation modes so that the optical power in

a local normal mode at the input remains unchanged while the mode propagates along the

coupler with the evolution of its field profile. In addition, it is possible to physically

transfer power from one of the waveguides at the input of the TVC to another at the output,

provided the local normal modes of the TVC, both at the input and the output, approximate

that of the individual guides. The adiabatic condition can be met over a wide range of

parameters governing the device rather than at discrete values or positions as is the case

with the interferometric device.

The concept of the TVC was first suggested by Cook [Co55] for applications at

microwave frequencies and it was analyzed by Fox [Fo55] and Louisell [Lo55] using local

normal modes. Later, Wilson and Teh [Wi73, Wi75] followed by considering the



















(a)


(c)


Fig. 1.1 Schematics of couplers. (a) Directional coupler. (b) Tapered velocity
coupler [Wi75]. (c) Optical fiber tapered veloctiy coupler [Ro91].












































(e)

Fig. 1.1-continued (d) Tapered, both in dimension and in coupling, velocity
coupler for digital optical switch [Xi93]. (e) Tapered, both
in index and in dimension, velocity coupler [Ki93a]. The
gradual index change is qualitatively illustrated by the
varying degree of the shadow in the waveguide regions.


_ _


~








tolerance aspect of 5-layer TVC in terms of the coupled mode theory and experimentally

demonstrated complete power transfer between waveguides. Milton and Burns [Mi75]

established the criteria for the adiabatic operation and complete power transfer in a planar

step index TVC. Using the step transition model [Mar70], they considered mode

conversion between approximated local normal modes under the assumption of weak

coupling. Analytic solutions for the mode amplitudes in the TVC [Sm75, Sm76] were

derived under the assumptions of a constant coupling coefficient and linearly varying

propagation constants, yielding a simple analytic expression for the coupler efficiency as
well as quantitative criteria for the coupler length. In their recent work [Ki89a], Kim and

Ramaswamy achieved complete power transfer between the channel waveguides of the

TVC, thus demonstrating the adiabatic regime; however, theoretical analysis using the step

transition model and the beam propagation method did not correlate well with the

experimental results. TVCs have been considered and their characteristics analyzed for the

applications as power dividers [Ca90] and fiber-to-fiber couplers [Ro91].

The underlying concept of the TVC can be best understood by considering the

adiabatic condition (Eq. 1.1) in a tapered velocity coupler and another inequality (Eq. 1.2)

for the complete power transfer, identified by Milton and Burns [Mi75] based on a five

layer slab waveguide step transition model,


A~PT1AZT
-- --<1.5 (1.1)

(A T/2)2
> 80 (1.2)



so that


ApT AZT 2 213


(1.3)









where APT is the total phase difference between the uncoupled, individual guided modes of

the coupler over the taper length of AZT and K is the coupling coefficient. The adiabatic

condition Eq. 1.1 must be satisfied to prevent undesired normal mode conversion.

Equation 1.2 must also be satisfied to achieve at least 95% of power transfer. And Eq. 1.3

represents the design limitation on the device length where the first two conditions are

satisfied. Although the above relations are derived by writing the local normal modes in

terms of uncoupled modes to arrive at the adiabatic condition, which, as stated before, is

valid only for the weak coupling case, certain conclusions can be drawn from Eq. 1.1. To

begin with, the adiabatic condition can be satisfied by a slow enough taper (small

APT/AZT) and strong coupling (large K), which can be achieved by a small taper angle and

a small gap. However, for small K, ApT/AZT has to be extremely small which means that

in order to meet the above condition, the device length has to become prohibitively large

and mode conversion between the local normal modes is more likely. However, in this

case, exclusive excitation of an individual waveguide at the input and the sorting of the

mode power entirely into either of the individual waveguides at the output of the 2x2 TVC

is easily achieved. On the other hand stronger coupling helps meet the adiabatic condition

more easily while facilitating a shorter length device. The major problem in this case is that

the two normal mode excitation is unavoidable and as a result, the concentration of power

in one of the guides either at the input or at the output can not be realized (see Eq. 1.2).

Furthermore, the coupled mode theory is no longer applicable. Clearly, to achieve shorter

length devices and localization of energy into one of waveguides both at the input and the

output of the TVC, larger value of K should be incorporated in the middle, permitting a

relatively large APT/AZT at the center while decreasing K at both ends. This can be

achieved by tapering at least one channel waveguide dimension from a narrow to a larger

value while gradually increasing the index at the same time.

We demonstrate the concept using Ti:LiNbO3 channel waveguides where we take

advantage of the fact that the surface index of the waveguide is proportional to erf(w/2dy)








where w is the Ti strip width prior to diffusion and dy is the effective diffusion width. We

model this device by first converting the 2-D graded index profile of the five layer TVC

structure into a 1-D profile by using the effective index method [Ra74, Fur74]. Field

profiles and mode indices of the local normal modes of the 1-D index profile is then

calculated using the multilayer stack analysis and finally using the step transition model

[Mar70, Mi75, Ya78], we calculate the overlap integral between the field profiles of the

local normal modes successively at each section of the TVC to arrive at the power flow

along the coupler. The results show that for a taper length in the interaction region, of only

4.8 mm, i. e., about one fourth of the length indicated in Eq. 1.3, a APTAZT = 51.36 is

sufficient to achieve a cross talk of better than 15 dB due to primarily, the considerably

reduced coupling at both the input and output. Therefore, the inequality in Eq. 1.3, which

imposes the minimum device length for a given tapered structure, can be rewritten as
ApTAZT > 50, thus, facilitating a smaller device length. The analysis, in general, is

applicable to any tapered (dimension, index, coupling, or any combination of the three)

velocity coupler. We further show that use of a step transition model with a five layer slab

model or an equivalent step index waveguide, representing each graded index channel

waveguide section of TVC, leads to erroneous results making the use of the local normal

modes of the composite graded index channel waveguide TVC structure imperative.

Since strong coupling between two waveguides occurs in the middle of TVCs,

normal mode theory must be used for any type of numerical analysis of the TVC. We

introduce the normal mode theory in chapter two and show its application to numerical

analysis of 5-layer step index TVC. In addition, the adiabatic theorem in optical z-variant

devices is also described. Qualitative explanation of power flow in z-variant structures is

presented, using the adiabatic theorem in conjunction with the normal mode theory. In

chapter three, we consider a novel 2x2, tapered velocity coupler, analyze the structure and

demonstrate excellent agreement with experimental results. The discrepancies reported in

our previous work [Ki89a] arise mainly due to an approximation of a graded index channel









waveguide TVC as a 5-layer step index TVC with a constant, equivalent refractive index

for the tapered guide. This approximation has been widely used [Si87, Sy89] in the case

of many z-variant devices due to the relative ease of the numerical computation and this

approach provides reasonable agreement with experimental results for conventional tapers

as well. However, the above approximation is inappropriate for our coupler which

incorporates tapered index as well as tapered dimension along its length. Furthermore,

approximate representation of the local normal modes as the superposition of the modes of

the uncoupled guides [Mi75] is also inappropriate since the TVC often involves strongly

coupled guides. The model presented here corrects the previous deficiencies and predicts

accurately the behavior of the TVC, using the local normal modes of the composite, five

layer graded index, channel waveguide structure [Ki93a]. Although we must use local

normal modes to describe the strongly coupled guides, we facilitate single mode excitation

at the input and sorting of the power at the output, by tapering both the dimension and

index.

As an application, we proposed and demonstrated [Ra93] a novel digital optical

switch using the TVC in Ti:LiNbO3, which exhibits the smallest voltage-length product

reported in the literature to date. The superior performance of our digital optical switch is

mainly due to the short device length of the TVC in Ti:LiNbO3, using the tapered, both in

index and in dimension, channel waveguide. Numerical analysis has also been performed

and presented in chapter four, confirming the operation of the switch in the adiabatic

regime.

Extension of this technique to proton exchanged waveguides poses a problem since

the index change in proton-exchange waveguides does not vary with waveguide width. On

the other hand, index tapering together with dimension tapering in semiconductor

waveguides is not impossible; however it requires elaborate pregrowth processing such as

the delineation of desired dielectric patterns on substrate, so called selective growth

technique [Az81, Ka85], or epitaxially grown spacer and mask layers and two steps of








preferential etching through photolithographically defined windows on substrate, namely,

epitaxial growth through shadow mask [De90, V191]. Both techniques give rise to

composition and thickness change in epitaxially grown ridge waveguides with respect to

the width of the mask. Kato et al. [Ka92] demonstrated integration of a multi-quantum

well (MQW) DFB laser and modulator, using selective growth technique. However, it

should be noted that the composition and thickness of the epitaxially grown ridge

waveguides are also subject to a filling factor [Ga90] of the patterned substrate, which is

defined by ratio of area of mask opening to that of the whole substrate. Since compositions

and thicknesses of all the devices are correlated through the filling factor of the substrate,

modification of one device affects all other devices on the chip. Therefore, we believe both

techniques are inappropriate for integration of several devices in one chip.

As an alternative, we propose the use of segmented waveguides, presented in

chapter five for the fabrication of tapered, both in index and in dimension, proton

exchanged channel waveguides in LiNbO3 or semiconductor ridge waveguides. While the

current effort was in progress, several researchers in Israel, Weissman and Hardy [We92,

We93] and Eger et al. [Eg93], have taken the initiative simultaneously to conduct a

theoretical and analytical study on segmented waveguides. Periodically segmented channel

waveguides consisting of an array of high refractive index regions surrounded by lower

index regions, have been used as gratings recently, to achieve phase-matched second

harmonic generation (SHG), particularly in KTiOPO4 [Bi90, Po90] and LiNbO3 [We89,

Ca92b]. The high refractive index regions are responsible for both domain inversion and

waveguiding where as in LiNbO3, the segmented waveguides act as a grating for the

guided wave, usually, in a proton exchanged waveguide. Using segmented waveguides,

efficient SHG was obtained and thus we may achieve remarkably good waveguiding in

spite of the segmentation [Bi90]. Waveguiding characteristics of segmented waveguides

show that the effective index of the propagating mode depends on the duty cycle of the

segmentation. Therefore, tapering both in duty cycle and width of segmented waveguides








results in tapered, both in index and dimension, channel waveguides in proton-exchange

waveguides as well as semiconductor waveguides. As part of a preliminary study, we

investigated the effective indices of segmented waveguides with different duty cycles using

planar segmented proton-exchange waveguides in LiNbO3 [Th94]. Both the experimental

and the theoretical results show that the effective index linearly increases with duty cycle up

to 70 % of duty cycle, then increases sublinearly, and finally saturates at the effective index

value of the continuous proton-exchange waveguide. Measured effective indices of first

two modes for different periods with a duty cycle remained unchanged. Segmented

waveguides in semiconductors were fabricated using epitaxially grown AlGaAs/GaAs

sample and then characterized by the investigation of the variation of propagation loss, and

near field intensity profile on different duty cycles. The ability to control the effective index

of the mode by changing the duty cycle of the segmented waveguide enables us to design

and fabricate the tapered, both in index and in dimension, velocity coupler in

AlGaAs/GaAs.

So far, horizontal coupling between a tapered and a straight channel waveguide in a

substrate plane have been utilized for power transfer in the TVCs in Ti:LiNbO3 and

AlGaAs/GaAs. We have also extended our concept by considering vertical coupling

between epitaxially grown single quantum well (SQW) guiding layers and tapered multi-

quantum well (MQW) layers. Tapering index and dimension of the MQW was performed

by tapered impurity induced layer disordering (IILD) [La81, Si92, Ki93b] of the MQW

which modifies their equivalent refractive index profile as the MQW region in such a way

that the index profile is gradually increased along the beam propagation direction.

Equivalent refractive indices for MQW regions before and after disordering were

determined for numerical analysis as those of AlxGal-xAs layers which have the same

bandgap as the respective MQW regions [Ki93b]. With the equivalent indices of the

tapered MQW regions, adiabatic characteristics of the tapered interconnects [Si92, Ki93b]

were successfully analyzed by use of the step transition model; results are presented in






10


chapter six. We also present a modified tapered interconnect which incorporates efficient

vertical coupling between an SQW guiding layer and a tapered MQW waveguide. The

modification of the tapered interconnect results in a better coupling from an external laser to

SQW guiding layers with complete power transfer from the SQW guiding layers to the

MQW layer within a reasonable taper length, and concentration of the mode in the MQW

region for higher efficiency in modulation.















CHAPTER TWO
NORMAL MODE THEORY
AND ADIABATIC THEOREM


Tapered velocity coupler (TVC) structures are not easily amenable to analytical

solutions. Often computer simulations are the only means even to achieve physical

understanding of the wave propagation in such complex structures. The normal mode

theory should be used rather than coupled mode theory to analyze a TVC structure by

computer simulation since strong coupling between two waveguides must occur for

efficiency power transfer in TVCs. To gain a general insight into the normal modes, we

present various characteristics of normal modes in symmetric or asymmetric five-layer step

index waveguides. Aidiabatic theorem in optical devices is discussed in conjunction with

the normal mode theory. Qualitatively explanations of output power profiles in Y-branch

and cross couplers are to be presented in this chapter using the adiabatic theorem and the

normal mode theory.

2.1 Definition of Normal Modes

A five-layer directional coupler considered in this section consists of two planar

waveguides and a gap of finite thickness. There are two guiding layers (A and B) of

thickness D1 and D2, respectively, and a lower refractive index material of thickness T is

placed between the two guiding layers. The cross section of a five-layer directional coupler

is shown in Fig. 2.1. As is the case with conventional directional couplers, the refractive

indices ni and n2 of the guiding layers A and B are chosen to be higher than that of the

cover (nc), the gap (ng), and substrate (ns).


















cover


x=O-j


z


D2 waveguide B

T gap


D1 waveguide A


substrate


Fig. 2.1 A cross sectional view of five-layer step index waveguide structure.









For the sake of simplicity, we restrict our attention to TE mode waveguide

solutions, which by definition have the electric field polarized along y-axis. For the

conventional five-layer directional coupler, we can write the fields in each layer as follows:


Eys = As exp(ksx)

Eyl = Al sin(klx) + B1 cos(klx)

Eyg = Ag exp(kgx) + Bg exp(-kgx)

Ey2 = A2 sin(k2x) + B2 cos(k2x)

Eye = Ac exp(-kcx)


(x <0)

(0 < x D1)

(DI < x DI+T)

(DI+T < x < DI+D2+T)

(x 2 DI+D2+T)


where ko = 2m'/ is the free space propagation constant,


ks= k N2-n2,

kl=ko n?-N2,
kg=ko N2-n2,

k2 = ko0/n-N2, and

kc =k0oN2-n2.


X represents the free space wavelength of light and N is called the effective index of a mode

or simply mode index. N equals P/ko, where 0 is the propagation constant of the mode.

The most general TE mode expression in each layer may, unlike the above

equations, be represented as


Eyq = Aq exp(jkqx) + Bq exp(-jkqx) (2.2)


where


(2.1)









kq=k n-N2 q = 1, 2, s, g, c.



Equation 2.2 is valid, in general, for any five-layer structure regardless of the magnitude of

each layer's refractive index. Under guiding conditions, the mode index N is always larger

than ns and ne and we obtain exponentially decaying solutions that vanish at infinity. For

unguided leaky or radiation modes, the solutions grow exponentially. Under the

assumption, ni, n2 > ns, ng, nc, a more specific representation in the form of Eq. 2.2 and

the resulting five-layer dispersion relation presented by Yajima [Ya78] are obtained. We

are interested in only the guided mode, not the leaky or radiation mode. The properly

chosen refractive indices (ni, n2 > ns, ng, nc) for guiding an optical wave and a finite value

of the electric field component Ey(x), i. e., approaching zero, at infinity (x = oo or -oo)

allow us to write Eq. 2.2 into a set of equations given by Eq. 2.1 for each of the five

layers.

Hx(x) and Hz(x), the other components of the TE mode, are given by Maxwell's

equation as follows:


k0N
Hx =- o Ey

Hz=- ( E (2.3)



where o is the angular frequency and Ig is the permeability.

Application of Maxwell's equation at each of the four boundaries assures the

continuity of the tangential component at each boundary. These boundary conditions

demand that Ey (and automatically thereby Hx) and DEy/Ox (and thereby Hz) be continuous

across the layer boundaries at x = 0, D1, DI+T, and DI+D2+T. For Ey(x) to be continuous

at each boundary, we require


(2.4)







A1 sin(kiDI) + B1 cos(kiD1)
= Ag exp(kg D1) + Bg exp(-kg Di) (2.5)
Ag exp(kg(Di+T)) + Bg exp(-kg(Di+T))
= A2 sin(k2 (DI+T)) + B2 cos(k2 (DI+T)) (2.6)
A2 sin(k2(Dl+D2+T)) + B2 cos(k2(DI+D2+T))
= Ac exp(-kc (DI+D2+T)) (2.7)


Imposing the continuity of EEy//x at each boundary, we obtain


ks As = ki Al (2.8)
kl (A1 cos(kiDI) BI sin(klD1))
= kg (Ag exp(kg Di) Bg exp(-kg Di)) (2.9)
kg (Ag exp(kg(Di+T)) Bg exp(-kg(Di+T))
= k2 (A2 cos(k2 (DI+T)) + B2 sin(k2 (DI+T))) (2.10)
k2 (A2 cos(k2(Dl+D2+T)) B2 sin(k2(Dl+D2+T)))
= -kc Ac exp(-kc (DI+D2+T)) (2.11)


From the above eight equations (Eqs. 2.4 2.11), we want to obtain a value of N,
which is the mode index of the five-layer structure, and relations between the eight
amplitude coefficients. Matrix representation can be used to simplify the above equations
by relating each amplitude coefficient as follows:


MIA = A) (2.12)
(AM ) (Ag (2.13)
M2 B1 =Bg9

M3 =(A 2) (2.14)

M4 (A2)=M5 Ac (2.15)
(4B2










where M1 and M5 are 2x1 matrices while M2, M3, and M4 are 2x2 matrices. All the matrix
elements can be easily obtained from Eqs. 2.4 2.11 with a little bit of algebra; so we omit
explicit analytic expressions of these elements. Substitution of Eqs. 2.12 2.15 yields


M5 Ac = M4 M3 M2 M1 As = M As (2.16)


where M = M4 M3 M2 M1 and size of M is 2x1. Let us define [Q]ij as an i-th row and j-th
column element of a matrix Q. According to Eq. 2.16, we have


Ac = ( 1[M / M5111) As (2.17)
Ac= ([M]21 / [M521) As (2.18)


However, a value of Ac is uniquely defined for a given value of As, since the field
distribution of a mode has a unique shape. Therefore,


M]II [M]21 = [M5]11 / [M5121 (2.19)


Equation 2.19 consists of the known constants such as D1, D2, T, ko and the
unknown variables, which are ks, kl, kg, k2, kc. However, wave vectors of each layer can
be easily determined as long as we know the mode index N (see Eq. 2.1). Therefore Eq.
2.19 can be interpreted as a nonlinear solving Eq. 2.19. Once N is determined, eight
coefficients as well as the five wave vectors at each layer can be obtained by considering
the normalization equation making the mode power unity. A normalized power equation is
usually stated as follows:


P= 1= I E (x) dx (2.20)
2cotof-0










So far, we have presented the general expression (Eq. 2.2) of field distribution

along the x-axis normal to the beam propagation direction (+z-axis) and a simplified set of

equations (Eq. 2.1) under the assumption of appropriately chosen indices (ni, n2 > ns, ng,

nc). And then by considering boundary conditions, a set of eight equations (Eqs. 2.4 -

2.11) has been obtained. By the consideration of one more equation (Eq. 2.20), that is the

normalization of mode power, we obtained nine equations for nine unknowns, which are

eight amplitude coefficients of Eq. 2.1 and the mode index N. Now we propose a

methodology for handling the numerical problem. We use the bisection method for solving

Eq. 2.19; representation of which is modified as follows:


F(N) = [M] 11/ [M]21 [M511 / [M5121 = 0 (2.21)


where a value of N of a given mode should lie in the region of min(nl, n2) > N > max(ns,

ng, nc). While N decrease from min(nl, n2) to max(ns, ng, nc) in small, discrete steps,

F(N) would change its sign between two discrete values of N. Since the function F(N) is

continuous, it is obvious that the change in sign of F(N) between two consecutive points

guarantees at least one solution of F(N) = 0. Let us evaluate the function F(N) at the mid-

point of the two adjacent points and compare the sign. We then choose a smaller interval

for the solution of F(N) = 0 where the sign changes. We can continue this process of

interval-halving to determine a smaller and smaller interval within which the solution for

F(N) = 0 must lie. Since the solution obtained by this method would be the largest value of

N satisfying Eq. 2.21, we call this the fundamental mode index, denote by NO. Further

decreasing of N by small, discrete steps and following the above procedure, we obtain the

second largest solution. It is called the first order mode index (Ni). When N decreases to

max(ns, ng, nc), all possible solutions of Eq. 2.21 would have been found at every sign-

change by the bisection method.









2.2 Characteristics of Normal Modes
in Five-layer Waveguide Structures

As numerical examples, we will consider two cases, one symmetric case and the

other asymmetric. As a first example, we consider a symmetric structure with ns = ng = nc
= 2.16 and ni = n2 = 2.2, D1 = D2 = 3 Jm, X = 1.3 pim and the gap between the two

planar waveguides T = 2 gLm. This specific waveguide structure supports only four guided

modes. The Ey(x) components of the four TE modes of this five-layer waveguide structure

are shown in Figs. 2.2 (a)-(d). All the field distributions are normalized by assuming each

mode to have a unity power. Same as in the three-layer waveguide, the number of zero-

crossings of Ey(x) coincides with the mode number. In addition, even mode has a

symmetric field distribution and add mode an antisymmetric distribution. The effective

indices of each mode are NO = 2.19411, N1 = 2.19398, N2 = 2.17773, N3 = 2.17680.

For the purpose of reference, we calculate the mode index of symmetric three-layer

waveguide which consists of substrate, film, and cover layer and indices of each layer are
ns = 2.16, nf =2.2, and nc =2.16, respectively. The thickness of film layer is 3 gim. This

structure is nothing but one of the two waveguides waveguidee A or B) in our five-layer

structure with a infinity gap (T = oo). Using a well-known three-layer dispersion equation

[Ko74], we have (NO)A = (NO)B = 2.19404 and (NI)A = (N1)B = 2.17729. To avoid the

confusion we discriminate between five-layer normal mode and three-layer individual mode

by the notation. That is, Ni is the i-th mode index of the five-layer normal mode and (Ni)A

is the i-th uncoupled three-layer individual mode in waveguide A. We recognize the

obvious fact


NO = (NO)A + 80/2
N1 =(No)A- 50/2

N2 = (N1)A + 1/2

N3 = (N1)A 81/2 (2.22)


























0.4


0.2


0


-0.2


-0.4


-2 0 2 4
x (nm)
(a)


-- Fundamental
--------- First order
I I I \' I






- -
- -






I n II ,, I


6 8 10


Fig 2.2 Normalized field distribution of normal modes. D1 = 3 gim, D2 = 3 ptm, T
= 2 Lm, X = 1.3 gpm, ns = ng = nc = 2.16, and nl = n2 =2.2. (a) The
fundamental (solid curve) and the first order (dotted curve) normal mode.

























0.4


0.2


0


-0.2


-0.4


-2 0 2 4
x (pam)
(b)


Fig. 2.2-continued.


-- second order
--------- Third order


6 8 10


(b) The second order (solid curve) and the third order (dotted
curve) normal mode.









where


80 = NO N1

81 = N2 N3



This trend is plotted in Fig. 2.3 where NO, N1, N2, and N3 are shown as a function

of thickness T. As T increases, 80 decreases and with the result NO and N1 converge into

the value of (NO)A. The same is true in the case of 81. So N2 and N3 becomes (N1)A. It

means that as the separation between waveguide A and B becomes large, No and N1

become degenerate and equal (N0)A, and each waveguide gives no influence to the other
waveguide. On the other hand, 80 and 81 become larger and larger as the gap (T) continues

to decrease.

So far, we have investigated the various characteristics of a symmetric five-layer

directional coupler. We turn our attention to an asymmetric structure. Our asymmetric

structure has the same dimensions and refractive indices as the previous symmetric
structure has except for D2 = 2 pm. In Fig. 2.4, we present the electric field distribution of

the first four modes of asymmetric structure. In order to understand these field

distributions, a comparison between individual mode indices of each waveguide is needed.

In this case, we have (N0)A > (No)B > (N1)A > (N1)B. According to this order, we can

imagine a rough field distribution without exact computation. (N0)A corresponds to No

and a field distribution of TEo (the fundamental mode of TE in five-layer structure)

essentially consists of that of (TEo)A (the fundamental mode of TE mode in waveguide A)

and a small lobe in waveguide B. Likewise, (N0)B corresponds to N1 and the field

distribution of TE1 is composed of that of (TEo)B and a small lobe in waveguide A, and so

on. Also in asymmetric structures the number of zero-crossing of a mode is the mode

number. Let us consider a more asymmetric case. If we set D2 = 0.5 pm and all the other

dimensions and refractive indices are same as before, (Ni)A and (Ni)B should be calculated






















2.2


2.19



2.18


2.17


2
T (gm)


Fig. 2.3 Normal mode indices as a function of T.


SN



.NI


* 3^ ====== ~























0.6


0.4


0.2


0


-0.2


-2 0 2 4
x (im)
(a)


- Fundamental
....---- First order


6 8 10


Fig. 2.4 Normalized field distribution of normal modes. D1 = 3 gpm, D2 = 2 gim,
T = 2 jm, = 1.3 gm, ns = ng = nc = 2.16, and nl = n2 = 2.2. (a) The
fundamental (solid curve) and the first order (dotted curve) normal mode.

























0.4


0.2


0


-0.2


-0.4


-2 0 2 4
x (pm)
(b)


Fig. 2.4-continued.


Second order
--------- Third order


6 8 10


(b) The second order (solid curve) and the third order (dotted
curve) ormal mode.









by the three-layer dispersion equation and their magnitude comparison is as follows: (NO)A

>(N1)A > (NO)B. Therefore the field distribution of TEO essentially consists of (TEO)A

with a perturbation in waveguide B. A field distribution of TE1 is composed of that of

(TE1)A and a small lobe in waveguide B, and for TE2 field distribution, the filed of (TEO)B
and a little perturbation in waveguide A can be matched. The computer calculated field

distributions for the TEO, TE1, and TE2 modes are shown in Fig. 2.5.

Now we describe the general characteristics of a normal mode field distribution in

five-layer structures, based upon previous results and many other simulations we have

done.

The general characteristics of symmetric directional couplers are

1. The number of zero-crossing of the guided mode corresponds to the mode number.

2. Power confinement factor of both individual waveguides are identical. Even mode

filed distribution is symmetric while odd mode distribution is antisymmetric.

3. The number (Np) of peak points in the power profile is


Np = 2 (Int(i/2) + 1) (2.23)


where i is mode number and Int(x) integer function.

The general characteristics of asymmetric directional couplers are

1. The number of zero-crossings of the guided mode again corresponds to the mode

number.

2. Depending upon the asymmetry, power confinement factor of one waveguide,

having the maximum peak power point, is larger than that of the other waveguide.

3. An approximate field distribution can be drawn by considering the field distribution

of the corresponding individual mode in the uncoupled guide and the number of

zero-crossings as well as the smoothness and continuity of a field.




















- Fundamental
--------- First order


-2 0 2 4
x (wm)
(a)


6 8 10


Fig. 2.5 Normalized field distribution of normal modes. D1 = 3 gm, D2 = 0.5
gIm, T = 2 pm, X = 1.3 gm, ns = ng = nc = 2.16, and nl = n2 = 2.2. (a)
The fundamental (solid curve) and the first order (dotted curve) normal
mode.


0.4


0.2


0


-0.2


-0.4






















Second order
I I Im' I I


-2 0 2 4
x (pm)
(b)


6 8 10


Fig. 2.5-continued. (b) The second order (solid curve) normal mode


0.6


0.4


0.2


0


-0.2









2.3 Adiabatic Theorem in Optical Devices

It is possible to predict qualitatively the output power profile in z-variant devices

without complicated numerical calculations by utilizing the adiabatic theorem in conjunction

with the normal mode theory. In this section, we consider, first, the adiabatic theorem,

apply it to Y-branch and cross coupler structures, and qualitatively discuss the field
distributions using normal modes.

The adiabatic theorem states that motion in some dynamic state with slowly varying

parameters has some invariable quantities, called adiabatic invariants. A few papers [Bu75,

Ya78, Bu80] discussing the behavior of an asymmetric Y-branch waveguide have used the

adiabatic theorem. For the normal mode propagation process in the Y-branch waveguide,

the state is the propagation mode in the five-layer waveguide with slowly varying

separation (distance between the branches) being the external parameter. The adiabatic

invariants are the mode number and the mode energy. This means that the mode

propagation in the branching waveguide keeps its initial state as a local normal mode which

is defined as the normal mode of the coupled structure that is evolving along the length of

tapers and that essentially no energy transfer between the local normal mode occurs, as

long as the change in the waveguide parameter, i. e., the separation, varies very slowly
along the propagation direction. If the gradualness of the slowly varying parameter in the

Y-branch, which is determined by the angle between two branches, is sufficiently small for

the adiabatic invariants, namely, the mode number and the mode power, to maintain their

initial values, then the adiabatic condition is satisfied. Supposing that the widths of the

branches differ, the fundamental mode at the input would keep its power as the

fundamental local normal mode at the output as long as the adiabatic condition is met.

Therefore, at distance far away from the branch, the entire output power would physically

be found in the wider branch. Of course, the first order mode at the input should come out

of the narrower guide at the output. A schematic of Y-branch is shown in Fig. 2.6 (a) for

the fundamental mode at the input and Fig. 2.6 (b) for the first order mode, where the

















































Fig. 2.6 A schematic of field evolution along the Y-branch.
(a) For the fundamental normal mode input.
(b) For the first order normal mode input









adiabatic property is illustrated. These results were verified experimentally by Yajima

[Ya73].

For the purpose of qualitative discussion, we now apply the adiabatic theorem to

cross coupler, which has asymmetric input branches and symmetric output branches

[Si87]. A schematic of the cross coupler is shown in Fig. 2.7 (a). Let us assume that the

cross coupler meets the adiabatic condition, namely, the angle between the branches is

sufficiently small enough for the normal mode power to be conserved in the same mode

along the coupler. Widths of all four branches are appropriately chosen for single mode

propagation, while the width of center region is wide enough to have two modes

propagate. Supposing that we excite the narrower branch of the input side using a single-

lobe input beam, which is essentially the first order normal mode in the five-layer structure

consisting of the two asymmetric guides, the gap in between the guides, and the two outer

claddings. As the first order mode in the input side propagates toward the center region

and separation becomes smaller, the adiabatic condition requires that the energy remain in

the first order mode. This implies that the field distribution has to gradually evolve from an

essentially single-lobe distribution to two-lobe distribution with a phase shift of nt between

them. This corresponds to the first order mode of the double-moded center region, and the

power profiles at the center region should now have two equal lobes. Since the output

branches are symmetric, the input power is equally divided between the two branches as

the beam propagates toward the output. Finally we have equal power profiles with the field

amplitudes exhibiting a t phase difference at the output branches. In Fig. 2.7 (b) and (c),

we present the schematic representation of the evolution of the fields along the cross

coupler for both the first order normal mode and the fundamental normal mode input,

respectively. For the fundamental mode input, we excite a single-lobe input beam in the

wider input branch. A small lobe with the field amplitude whose phase is the same as that

of the lobe in the wider branch is built up in the narrower branch as the fundamental mode
















(a)


rcC


Fig. 2.7 A schematic of field evolutions along the cross coupler.
(a) Structure of an asymmetric cross coupler.
(b) For the first order normal mode input.
(c) For the fundamental normal mode input.


~~c:






32


approaches the center region. In this case, we have equally divided power in both the

symmetric output branches with their field amplitude in phase.

So far we have discussed the normal mode theory and the adiabatic theorem in five-

layer step-index waveguides. These concepts are extended further in the next chapter for

numerical analysis of graded index channel waveguide TVC.















CHAPTER THREE
TAPERED, BOTH IN INDEX AND IN DIMENSION,
VELOCITY COUPLER IN Ti:LiNbO3


In Ti:LiNbO3 waveguides, width of a Ti strip before its diffusion governs not only

the waveguide dimension but also determines the peak index change at the center of

diffusion profile. Within single mode regime, the peak index change at center of the Ti

strip monotonically increases and then saturates at the planar waveguide value with

increase of strip width. Therefore, a tapered Ti strip yields naturally a channel waveguide

with its both index and dimension tapered so that it can be used in a tapered velocity

coupler for reducing length of the coupler.

In 1989, Kim and Ramaswamy [Ki89a] reported, for the first time, the realization

of a tapered velocity coupler (TVC) using Ti diffused channel waveguides in LiNbO3.

By virtue of the fact that tapering exists both in index and in dimension of the channel

waveguides of the TVC, we were able to reduce a device length as much as one-quarter

of minimum length possible as predicted by Milton and Burs [Mi75] while maintaining

the coupler in the adiabatic regime. Although complete power transfer was achieved

while satisfying the adiabatic condition, the theoretical model that used in [Ki89a] was

inadequate in predicting the behavior of the TVC.

In this chapter, we analyze the structure by using local normal modes of the entire

structure and extend the concept by considering a carefully designed tapered velocity

coupler (TVC) that is tapered both in index and in dimension which meets the adiabatic

invariance condition with sufficiently strong coupling between the fundamental modes of

individual guides in the center region of the coupler while permitting individual








excitation at the input end and sorting of the modes at the output end. This approach

helps reduce the device length considerably by permitting much higher taper angle. We

model a TVC that consist of one tapered and another straight, graded index waveguide,

by using normal modes of the entire, composite TVC structure [Ki93a]. The analytical

results are in excellent agreement with experimental results in a TVC fabricated in

Ti:LiNbO3, substantiating the possibility of a short-length TVC. In particular, we show

that the representation of the local normal modes as the superposition of the modes of the

uncoupled guides leads to erroneous results, as the avoidance of mode conversion

between the local normal modes in a reasonably short length TVC invariably involves

strong coupling between the guides and that the use of actual local normal modes of the

TVC structure under consideration is imperative in the modeling to accurately describe

the device.

3.1. Single Mode Channel Guide:
Normal Mode Analysis and Field Profile

Before describing the TVC, we present the results of the numerical analysis and

the experimental verification of the normal mode index and the associated field profile

for a single mode, straight channel waveguide. The results are used later to describe the

characteristics of local normal mode of the composite tapered velocity coupler. The 2-D

refractive index profile of an individual Ti diffused LiNbO3 channel waveguide, in

general, can be expressed as


n(x,y) = nb + An(T,t,w) G(x) Erf(y) (3.1)


where nb is the bulk index, T and t are diffusion temperature and diffusion time,

respectively, w is the titanium strip width, G(x) is the normalized Gaussian function with

G(0)=1 and Erf(y) is a normalized linear combination of the error functions with Erf(0) =









1, as well. The exact index distribution, substantiated by the experimental results of

Fukuma et al. [Fu78], qualitatively illustrated in Fig. 3.1 (a), is given by


f(y+w/2 erfy+w/2
n(x,y) = nb + An exp(-(x/dx)2) I -y y (3.2)
2 erf Qw'2)
-y


where x represents the depth direction and y is measured along the width of the titanium

strip, from its midpoint. The propagation direction is assumed to be along the z axis.

Furthermore,


nb = bulk index'of LiNbO3,


An = dn -2 erf(- 2) (3.3)
de in- dx dy



dn/dc = rate of change of index with concentration,

t = Ti strip thickness,

w = Ti strip width,
T = diffusion temperature in C,

t = diffusion time in hours,
dx =2 D- xt, and

dy = 2 /Dyt.


The validity of the above expression have been verified by a number of researchers

[Ki89b, Ko82, Su87]. For our operating condition, we have nb = 2.2195, substrate index

(no) for quasi TE mode, and dn/dc = 0.5 at X = 1.32 gpm. Titanium film of thickness t =

800 A was deposited over a z- cut LiNbO3 crystal with an e-beam evaporator and a strip
width of w = 4 pLm was delineated using standard photolithography techniques and wet









2-D index profile : n(x,y)

n(x,y)
------------------------------------k '7


S.7


n(x,y)


Graded-index
Gaussian
profile

Approximated
step-index
Gaussian
profile


Fig. 3.1 A schematic of graded index profile of a Ti:LiNbO3 channel
waveguide. (a) A schematic cross section of a Ti:LiNbO3 channel
waveguide. The gradual index change is qualitatively illustrated
by varying degree of the shadow in the diffused region. (b)
Graded index profile along the depth direction and the stair case
approximation of the profile


m


1\7B~









(etching process. The diffusion was carried out at a temperature T = 1025 'C for t

= 6 hours in a wet oxygen atmosphere to minimize Li out diffusion and to ensure the

crystal remains fully oxidized through the entire diffusion process. The end faces of the

crystals are polished to facilitate near field measurements. For our fabrication condition,
Dx = Dy = 1.2 x 10-4 pm2/sec, dx = dy = 2.684 9m.

Very briefly, we outline the analytical approach including the effective index (EI)

method and the multilayer stack analysis, as we use them extensively in the subsequent

sections for the analysis of the TVC structure. To convert the two dimensional index

profile into one dimensional profile, we use the El method. Figure 3.1 (b) illustrates the

graded index, Gaussian profile G(x), at a given discrete position along the y-axis. The

Gaussian profile can be conveniently approximated by a staircase, step-index profile with

its surface index at that position along y and is given by


ns(y) = n(0,y) = nb + An(w) Erf(y) (3.4)


We numerically solve the approximated step index profile at a given position y by using

the multilayer stack analysis [Hu90, Th87]. By considering a multilayer infinite slab in

the y direction, with r-2 layers and two semi-infinite regions above and below,

representing the surface and the substrate, we can represent each i-th layer with

appropriate index ni and thickness ti = xi xi-1, in the x direction, thus approximating the

Gaussian profile. The field amplitudes, for example for the quasi TE mode (Ey, hx, hz), at

each i-th layer (slab) can be written as


ai cos(ui) + bi sin(ui), if N 5 ni (
i ai cosh(ui) + bi sinh(ui), if N > ni )



where


ul = k1(x1 x),








ui = ki(x xi-1), i = 2,3,...,r,

ki= 2- nk2,
N = p / ko, effective mode index,

ko = free space propagation constant and
3 = propagation constant of the mode.


We apply the appropriate boundary conditions at each interface of the slab. For the quasi
TE mode, the field amplitude F corresponding to ey(x) and its derivative dF/dx are

continuous at r-1 interfaces. Thus, we have 2(r-1) equations. In addition, we have two

equations in the region 1 and r, where we have F1 = exp(x), for x < xl, resulting in al =
-bl and Fr = exp(-x) for x > Xr, with ar = -br. Thus, we have 2(r+l) unknowns viz., al,
a2, -., ar, bl, b2, ..., br and3. In addition, we have also an equation for the normalization

of the field intensity.



f 2t F2 dx= 1 (3.6)



By solving successively for the effective mode index N at each discrete position

y, for the index profile G(x), we can solve for the effective index profile N(y). As

always, this value is bounded by the surface index at that point ns(y) and the substrate
index nb, at each position y. Figure 3.2 shows the converted 1-D index profile N(y),

calculated from the 2-D index profile n(x,y) for a 4 pim wide Ti:LiNbO3 channel

waveguide. The dotted line curve represents the converted 1-D profile N(y) nb. The

figure also shows the surface index profile ns(y) nb, indicated by the solid line. For the
purpose of reference, the 4 tpm wide Ti strip is also shown.

The above index profile N(y) in Fig. 3.2 is solved once again by using the
multilayer stack analysis, now for the quasi TM mode ey(y), so that the polarization of the

original quasi TE mode field remains consistent. The normalized intensity (square of the




















0.01

0.008

S0.006

0.004


0.002 .*"'" \


-10 -5 0 5 10
y (wm)



Fig. 3.2 Converted 1-D index profile (N(y)-nb, dotted curve) and actual surface
index profile (ns(y)-nb, solid curve) of a 4 g m wide channel
waveguide.









electric field) profile of the fundamental mode is illustrated in Fig. 3.3 by the solid line.
The near field intensity profile was measured by launching the light from an 1.32 ptm

laser diode into a single mode fiber which was then used to excite the quasi TE mode in 4
p.m wide guide. The output was collected with an objective and focused on to a

germanium detector placed at the image plane through a 10 pm pin hole. The output was

scanned parallel to the substrate plane across the y direction at the peak intensity position

in the x (depth) direction and is shown by the dotted line. As seen from the figure,

excellent agreement is obtained between the theoretical analysis and the experimental
result. The calculated fundamental mode index No (= 3/ko) for the 4 pgm wide guide is

2.2205 at 1.32 p.m.

Once we were satisfied with the accuracy of the channel waveguide
representation, we varied strip width of titanium from 1 p.m to 12 p.m and calculated the

effective mode indices No, N1, and N2 of the first three modes of the channel waveguide.

These normal mode indices of the individual channel waveguides are plotted in Fig. 3.4

where the maximum surface index n(0,0) at the surface (dotted line) is also included.
Note that the fundamental mode is cut off at about 2 gpm. The guide remains single

moded till around 6 pum at which point the first order mode begins to propagate. No

varies from 2.2195 to 2.2218 as w is changed from 2 to 6 p.m. Although the cutoff

wavelengths of the guides in the TVC which are strongly coupled, will be different, these

results, nevertheless, are useful in the preliminary design of TVC. When the gap in the

tapered coupler device becomes quite large, the normal modes approach the modes of the

uncoupled case and these results are directly applicable.

3.2 Tapered. Both in Index and in Dimension.
Velocity Coupler

Figure 3.5 (a) illustrates the schematic sketch of the delineated Ti strip waveguide

patterns, on a z- LiNbO3 substrate prior to diffusion of the tapered velocity structure. It
consists of a 7800 pim long, uniform Ti strip of width 4 pm and an equally thick, 2 ptm to






41

















1.2 .... .- iprimnt
W=4. -------- Experiment
-1 Theory

-4 -
r: 0.8

a 0.6

0.4
0
Z 0.2

0 -. ......,........I '
-10 -5 0 5 10
y (pim)



Fig. 3.3 Theoretical (solid curve) and experimental (dashed curve) intensity
profiles of the quasi TE fundamental mode for a Ti:LiNbO3 graded
index, 4 tim wide waveguide.






















-- Mode index
----- Maximum surface index

/f
*


0 2 4 6 8
Width of Waveguide


10
(pmn)


. N2

12
12


Fig. 3.4 Quasi TE mode indices (solid curve) for the first three modes and
maximum surface index (dashed curve) of Ti:LiNbO3 channel
waveguides.


2.2255

2.2245

2.2235

2.2225

2.2215

2.2205

2.2195











































x


Fig. 3.5 Schematics of LiNbO3 sample. (a) with its delineated pattern and
before Ti diffusion on z- surface and (b) with index profile with
coordinate system after diffusion.









6 p.m wide, 4800 p.m long, tapered Ti strip separated by a constant gap. Only the straight

channel is extended to the input end to prevent input light from coupling into the tapered

channel. The diffused index profiles are qualitatively illustrated in Fig. 3.5 (b) and the

gradual increase in the index of the tapered guide with w, is illustrated by the darker

region. The z-axis is chosen to coincide with the beginning of the tapered guide, but as

before, the xy origin is located at the center of the 4pm wide straight guide. At the input,

the index of the straight guide is larger than that of the tapered guide and vice versa at the

output; as a result, the modes are well guided (except for the 2 pm guide at the input) and

weakly coupled permitting excitation of the individual waveguides both at the input and

output. At the center, where the guides are of equal width and hence identical, they are
strongly coupled permitting a larger AP3T/AZT.

To solve for the field profile of TVC at any point along its length, we must

consider the evolution of the mode profile along the taper. To accomplish that we need

the knowledge of the normal mode index N and the field Ey(x,y) at any point along the

taper, by treating it as if it is a uniform directional coupler, infinite in extent in the z

direction, consisting of two graded index guides of constant widths, one corresponding to

a straight guide and the other to the width of the tapered guide at that point, separated by
the same gap. The eigen values (N and ey(y)) obtained through the El method, are the

solutions of the eigen mode at that point, referred to as the local normal mode.

In order to solve for the eigen values of the local normal mode, we assume the

composite index profile of the structure at any point is the superposition of the index
profiles of the straight 4 p.m channel and the tapered channel width (between 2 pm and 6

p.m) at that point For the purpose of discussion, we will identify the diffused waveguides

by referring to the strip width prior to diffusion. As before, the converted 1-D index

profile i.e., the effective index change N(y) nb of the composite index profile for the

quasi TE mode is obtained by the use of El method and is plotted in Fig. 3.6. Three

curves are shown, one at each end of the tapered coupler and a third one at the mid point



















Output end
0.004-

S Middle of
0.003 the coupler


U 0.002 :, Input end


S0.001


0
--I

-5 0 5 10 15
y(pm)



Fig. 3.6 Effective index change (N(y)-nb) at the input end (solid curve), middle
of the coupler (dashed curve), and the output end (dotted line).









of the coupler. It is interesting to note, the perturbation of the effective index profile at

the input end is rather small, since the index of the narrower guide is smaller where as at

the output end, the wider tapered guide exhibits a larger index change and hence

influences the profile more strongly. As expected, the profile is symmetrical at the

midpoint of the coupler. The location of the Ti strips, of both the straight and the tapered

channel waveguide, are shown in the figure. In addition, the darkness (shadow) of the

strip is indicative of the amount of index change due to Ti in diffusion and depth of the

strip has no physical meaning. Darker shadow represents stronger waveguides.

As before, the 1-D effective index profile of the composite structure was solved

by using multilayer stack analysis, now for the quasi TM mode, so that we are consistent.

The fundamental and the first order local normal mode indices, namely, No and N1, for

the quasi TE mode as well as the intensity profiles of these modes were calculated as a

function of the width of the tapered guide, for various gaps. The normalized intensity

profile at the input of the device at z = 0 is illustrated in Fig. 3.7. The theoretical

intensity profile of the uncoupled 4 p.m channel waveguide replotted from Fig. 3.3 is also

shown in the same figure. Clearly, the fundamental mode of the composite structure

nearly coincides with that of the individual, straight 4 gpm channel waveguide, thus

facilitating sole excitation of the straight channel at the input. The overlap with the

fundamental mode is better than 97% while the overlap with the first order mode,

although exists, is extremely small. The field profiles of both fundamental and first order

local normal modes along the length of the coupler are later used in the step transition

model to study the evolution of the modes and the power flow along the TVC.

It can be clearly seen in Fig. 3.7 that the first order local normal mode at the input

can not be properly represented by the superposition of the two modes of the uncoupled

guides due to considerably shifted peak position from the center of the 4 p.m wide

channel waveguide and large asymmetry of both the lobes in the intensity profile. In

addition, investigation of the normal mode field profiles confirms the fact that it is





















1 S
S-- Input to TVC
S....... Fundamental of TVC
S0.8 -----First-order of TVC

S 0.6

0.4


Z 0.2



-10 -5 0 5 10 15 20
y (pm)



Fig 3.7 Normalized intensity profiles of the fundamental mode (dotted curve),
the first order mode (dashed curve) at the input end (z=0), and the
profile (solid curve) of 4 pm wide channel guide prior to input to the
TVC.








inappropriate to describe the local normal modes, especially the first order modes, in the
case of small gap (g = 2, 3, and 4 gim) couplers in terms of the superposition of the

uncoupled modes.
In Fig. 3.8, the fundamental mode index No of the uncoupled, uniform guide viz.,

2.2205 is indicated by the dashed, straight line. The other dashed curve in the figure

represents the mode index No of the uncoupled, tapered guide, replotted from Fig. 3.4, in
the single mode regime (W = 2 to 6 im ). The two dashed curves cross when the guides

become identical, i.e., when their widths equal 4 jim. The figure also shows the mode

indices of the fundamental (No) and the first order (N1) mode as the width of the tapered

guides is varied from 2 to 6 jim with the gap between the straight guide and the tapered

guide being the parameter. The gap was also varied from 2 to 6 pm in steps of 1 p.m. As

seen from the figure, No of the composite structure at the input section is close to that of

the wider, straight channel guide which supports most of the energy and increases

monotonically with increasing gap width; the situation reverses at the output end where

the tapered guide width is now larger and supports most of the energy in the structure. If

the tapering is slow enough and the adiabatic invariance condition is met, the evolution of

the fundamental mode is unaffected although physically, now different guides both at the

input and output support most of the energy in the coupler. As a result, the energy of the

fundamental mode in the straight section at the input now arrives at the tapered guide at

the output. The switching occurs around the central region of the coupler. As seen from

the figure, the tapering of the guide seems to affect the mode index No of the fundamental

mode of the structure the most while N1 is affected very little. At the input and output of

the device, for large gaps, both No and N1 are nearly equal to the mode indices of the

uncoupled guides. As the gap decreases, the guides become strongly coupled, the

perturbation becomes quite strong, which reaches a maximum at the midpoint of the

coupler. No increases monotonically with decreasing gap width where as N1 undulates

although the deviations appear to be rather small. While N1 at the input end is very close






















2.24
g = 2.m
N 3pm
0 4,5,6pm
2.239

2pm
o 3g3m
S2.238 -- ---- --- -- -4,5,6pm



2.237 L I I
2 3 4 5 6
Width of the Tapered Waveguide (gLm)



Fig. 3.8 Local normal mode indices (solid curves) along the TVC for different
gaps and mode indices (dashed curves) for the uncoupled channel
waveguides of the TVC.








to that of the tapered guide, independent of the gap width, No is higher for smaller values

of the gap width. It is clear, by increasing the length of the input section further, it is

possible to make No approach closer to that of the straight guide; but our aim is to keep

the device length as small as possible, while permitting nearly sole excitation of

waveguides is possible at either end, and simultaneously allowing power transfer via the

adiabatic condition. It is interesting to note that the value of N1 is independent of the gap
width for two specific tapered guide widths, around 2.8 gpm and 4.6 gim. It appears that

the bunching of the curves is merely a coincidence, since Ni's at both the extremes viz.,
zero and infinite gap, are almost equal (Fig. 3.4). For example, NO of a 4 gim guide as

seen from Fig. 3.4, equals N1 for a TVC consisting of 4 and 4.6 pim wide guides with an

infinite gap (Fig. 3.8). In addition, as seen from Fig. 3.4, it almost equals N1 of an 8.6

pm wide, that is the case of a TVC with zero gap between the two guides. Thus N1, for

all the values of the gap in between is nearly equal to each other.

3.3 Step Transition Model: Power Flow in the TVC

Now that we have, based on the one dimensional effective index profile N(y), an
accurate description of the local normal modes indices No,1(=Po,1/k) and their field

profiles Eyo,yl(y) of a uniform directional coupler of constant guide widths (one fixed and

another variable) and a constant gap, the step transition model [Mar70] and the enhanced

step transition model [Mi75] can now be applied to calculate the power transfer between

local normal modes. This model approximates the gradual, continuous increase in the

width of the tapered guide by the stair case structure consisting of a series of small,

piecewise continuous but abrupt steps (Fig. 3.9 (a)). While coupling between local

normal modes between the sections occur at each step discontinuity, no coupling is

assumed to occur within a given section. We assume two local normal modes (Fig. 3.9

(b)) on either side of such a step discontinuity in the sections labeled 0 and 1. The
fundamental and the first order modes, illustrated on either side, are also designated by 0

and 1 respectively. The first digit of the mode nomenclature identifies the mode while




















0 side


U 9~


-4 -- I.


Overlap integral :


I, = edy y, = 00, 10, 01, or 11


Fig. 3.9 Illustrations for step transition model. (a) Stair case approximation of
the TVC structure. (b) Normal mode field profiles in the two sections
at the step discontinuity and the overlap integral across the
discontinuity.


1 side









the second, represents the section. Thus, for example, 10 would signify the first order

mode on side 0. Although the step discontinuity is rather small, for the purposes of

illustration, the mode shapes have been exaggerated in Fig. 3.9 (b). We summarize the

results below following the treatment in Ref.[Mi75].

we write the general expression for the guided normal mode at any point z along

the coupler is


Ey = Ak(z) Eyk(y) exp(-ia(z)) (3.7)

where

Ak(z)= Field amplitude (real) of the guided mode k = 0 or 1

Eyk(y)= Normalized field distribution of the guided mode k = 0 or 1
a(z) = pz+ (

p = Propagation constant
= Arbitrary phase constant


By considering the continuity of the transverse field components hxk(y) and Eyk(y) across

the discontinuity, we can calculate the transmitted field amplitude. By normalizing the

local normal mode amplitudes for unit power, the overlap integral between the mode

fields is then,


I = f edy y,8 = 00, 10, 01, or 11 (3.8)



It follows, the complex transmission coefficient for the j-th mode (j = 0 or 1) across the

discontinuity is given by [Mi75]


Ajl exp(-ajl) = Cij AiO exp(-aio) + CjjAjo exp(-ajo)


(3.9)








where Cij is the coupling coefficient between the i-th order mode on the incident (0) side

to the j-th order on the transmitted side and Cjj is the coupling coefficient between the j-th
modes on either side. Therefore, the real and imaginary parts of Eq.2.9 represent the
amplitude and the phase transmission coefficient Aji and ajl and describe the transmitted

mode j (0 or 1) in terms of the input modes.


Ajl = Cij Aio cos(aio-ajl) + CjjAjo cos(ajo-ajl) (3.10a)

and
Cij Aio sin(ao) + Cjj Ajo sin(ajo)
tan ail= Cij Aio cos(aio) + Cjj Ajo cos(ajo) (3.1b)



where the coupling coefficient between the transmitted j-th mode and the incident i-th

mode is given by


Ci 2 -ij PjO+l jOj (3.10c)
= jo+Pj1 Pio+Pil JIoi0ijiji


In Eq. 3.10c, the coupling coefficient Cjj is obtained by substituting j for i. Equations

3.10a-3.10c and their counterparts for the i-th mode describe the mode conversion and the
radiation loss in the tapered waveguide structure approximated by a piecewise continuous

staircase structure. Cij (and Cjj) in Eq. 3.10c can easily be evaluated with the knowledge
of py's. Equations 3.10a and 3.10b can be numerically solved by iterative means for both

aji and Ajl. Since we are interested in the transmitted amplitude on side 1, we will drop

the subscript 1 and use Aj, with j = 0 and 1, to represent the amplitudes of the

fundamental and the first order mode respectively.

3.4 Theoretical and Experimental Results

Since we excite only the fundamental mode at the input z=0, the initial conditions
for the mode amplitudes are A00(z=0)=Ao=1 and Ao1(z=0)=AI=0 corresponding to the








normalized power in the modes P0(0)=1 and PI(0)=0. The 2 to 6 Rim taper was

approximated by one hundred staircase steps of size 0.04 im. The distance between

consecutive steps is 0.048 mm and the resulting taper angle is therefore 0.0480. Figure

3.10 shows the mode amplitudes A0 and A1 for various gaps, as the input beam

propagates along the coupler. (A0)2+(A1)2, which represents the guided mode power, is

almost equal to unity for all the five cases so that the calculated radiation loss is to be less

than 1% of the input power. If the adiabatic regime is defined as less than 5% conversion
of input mode power into other modes, the TVCs with g = 2, 3, 4 gim can be classified as

meeting the adiabatic invariance condition. As seen from Eq. 1.1, the mode conversion

becomes severe with increasing gap width, that is, as the coupling becomes weak.
Oscillation of A0,1 within the adiabatic regime where (A0)2+(A1)2 = 1, can be clearly

seen in Al, although it is not so obvious in A0, for g =2 or 3 plm. It is caused by

interference between the two normal modes [Mi75] and has a period of 2i/(0o-P 1). From

A0 and Al at the output with phase constant ao and al, we obtain the output intensity

profile as


Iout(y) = AoEoe-iao + A lele-ial I
= A'e~(y) + A'ec(y) + 2AoA leo(y)El(y) cos(azo-al) (3.11)


where Ai is the amplitude ratio at the output, ai is the phase constant at the output and ei

is the normalized field profile for the local i-th (i=0,1) mode at the output.

Output intensity profiles obtained from Eq. 3.11 are shown in Figs. 3.11 (a)-(c)

with solid lines. Locations of the guides and their widths at the output are illustrated by

the rectangular boxes under the horizontal axis. The degree of darkness of the

rectangular box once again indicates the amount of index change as illustrated before in

Fig. 3.6. The output intensity profiles in Figs. 3.11 (a) and (b) are almost identical with

that of the fundamental local normal mode at the output. The output intensity profile for























1 -... .
A0 ---- 2,3,4m
-A
0.8 A
-~ A1 = 6gm
0.6

S0.4 5m



0.2
4gm
3pm
0 12.m
2 3 4 5 6
WIDTH OF THE TAPERED WAVEGUIDE



Fig. 3.10 Amplitude ratios of the fundamental and first order local normal mode
along the TVC as a function of the width of the tapered channel for
various gaps.





















1.2 I I .. .. .
S- Graded index g = 2pm
1 Step index
0 Experiment
0.8

S 0.6

0.4
o /

0
0.2 / \


-10 -5 0 5 10 15 20
y(tm)



Fig. 3.11 Normalized output intensity profiles calculated using the graded index
model (solid curve) and 5-layer step index model (dashed curve)
compared with the measured intensity profile (open square) for (a) g =
2 pm.























1.2 I 1
Graded index
1 -Step index
S Experiment
5 0.8

1 0.6

0.4 -
o0
0.2 /
/
0 0.
-10 -5 0 5
y(ptm)


10 15 20


Fig 3.11-continued. (b) g = 3 urm.
























1 -Step index
S Experiment
0.8

0.6 i

0.4 /

0.2 7


-10 -5 0 5
y(pm)


Fig. 3.11-continued. (c) g = 5 pm.


15 20









g = 2 Rpm shows large mode width as well as asymmetry due to the strong coupling. In

addition, the peak position does not coincide with the center of the tapered guide but

shifted to the straight guide so that the representation of the local normal modes as the

superposition of the modes of the uncoupled guides [Mi75] is inappropriate for this and

other strongly coupled case. As we move our attention to the weakly coupled cases,

namely, the large gap TVC, we observe that the amount of the power within the straight

guide reduces, until the adiabatic condition breaks down. For the case of g = 5, small

lobe on the straight guide due to mode conversion can be recognized. With the 3 cases

considered here, although A3rAZT (= 51.36) is constant, we are able to achieve both the

adiabatic and non-adiabatic operation, by varying the gap and hence the coupling

coefficient. Equations (1.1)-(1.3) are not applicable for describing the behavior of our

couplers, which employs both the tapered index and tapered dimension. For a given gap,

an order of magnitude difference in coupling constant (K) exists along its length and thus

violating the constant coupling constant assumption under which conditions Eqs. (1.1)-

(1.3) were derived.

To verify our theoretical predictions, we fabricated several tapered velocity

couplers shown in Fig. 3.5 with the same fabrication parameters and procedures as we did
for 4 Rim wide strip channel waveguide. The measured output intensity profiles for each

of the coupler are presented in Figs. 3.11 (a)-(c). Excellent agreements are obtained for

all three cases, which are g = 2, 3, and 5 Rim. As expected, there is no mode conversion

for strongly coupled cases, viz. g = 2 and 3 jim so that the theoretical output intensity

profiles of the fundamental mode in these two cases agree very well with the measured

intensity profiles. In Fig. 3.11 (a), slight deviation of the experimental results from the

theoretical predictions based on graded index model especially within the straight guide

and gap regions, is due to the fact that approximated composite index profile as the

superposition of the individual index profiles yields larger than actual index values in

these regions for the couplers with small gap. With g = 5 jim, we can observe the mode









power conversion due to the weak coupling, and also the excellent agreements even in the

straight and gap regions by which our approximated composite index profile is proven to

be very accurate for couplers of large gap. The extinction ratios, which is defined as

10log(Po/P1) where Pi is the power of the i-th local normal mode at the output, are 17.0

dB, 15.2 dB, and 7.7 dB for g = 2, 3, and 5 pm, respectively. The insertion losses for

these three devices were measured to be less than 3.5 dB.

For the purpose of illustration, we compare the numerical results using the

popular [Sy89] equivalent index slab model. In this model, the TVC is approximated as a

step index 5-layer structure with a fixed refractive index (ng) for the guiding layers, one
of which is tapered with thickness increasing from 2 p.m to 6 pm. The other guiding

player is a 4 p.m thick straight guiding layer separated by constant gap from the tapered

layer. Refractive index (ncl) for the cladding layers is assumed to equal no (=2.2195),

which is the same as the bulk substrate index (nb) in the graded index model. To

determine ng, we follow the procedure successfully used by Suchosky and Ramaswamy

[Su87] for modeling a constant width, variable index tapered waveguide in Ti:LiNbO3,

by determining a equivalent step index slab waveguide-by comparing the field profiles.
First we assume a hypothetical 3-layer slab waveguide with a 4 pim thick guiding layer

with the cladding layers of index no (=2.2195). Then we calculate the intensity profiles

of the fundamental mode for various refractive indices for the guiding layer. The

calculated intensity profiles are compared to that of the graded index channel waveguide
of 4 pgm wide in Fig. 3.3. Over 99% overlap was achieved for a guiding layer index of

2.2215 which we use as the guiding layer index ng of the 5-layer step index model. Upon

finding ng, to determine the output intensity profile, we follow the same procedure as we

did with the graded index profile (N(y)). This involves evaluating 1) the local normal

mode indices and field profiles, 2) overlap integrals between the local normal modes

across the steps, 3) the Ai's and ai's along the coupler with the input condition A0 = 1

and A1 = 0, and finally, 4) the output intensity profiles. The results are shown in Figs.






61

3.11 (a)-(c) as dashed lines. Analytical results of the step index model are indeed quite

different from that of the graded index model especially in describing the intensity profile

over the straight guide region of the coupler. The experimental results clearly

demonstrates the inappropriateness of the step index model.















CHAPTER FOUR
TAPERED, BOTH IN DIMENSION AND IN INDEX
VELOCITY COUPLER SWITCH


Tapered Velocity Couplers (TVC) are attractive candidates for optical signal

processing applications, as their behavior is predicated upon the evolution of a normal

mode along the longitudinal direction of the coupler. As a result, the tapered velocity

couplers exhibit polarization independent behavior and they are insensitive to wavelength

within the limits imposed by the adiabatic condition. On the contrary, interferometric

devices like conventional directional coupler devices, Mach-Zehnder interferometers, and

two mode interference devices (BOA), depend on the precise phase relationships between

the interfering modes. Consequently, these interferometric devices have to meet strict

fabrication tolerances.

A number of switches using the modal evolution, known as digital optical

switches with step like response rather than the conventional sine squared response of the

interferometric counterpart, have been demonstrated. The first and the foremost was by

Silberberg [Si87], where the switching was accomplished at the output of the symmetrical

arms of an intersecting, 2x2, two-mode cross coupler in z-cut LiNbO3 which was made

asymmetrical by the application of an external d.c. bias. In this case, the voltage length

product was 135 Vcm for TM mode with a cross talk of 15 dB. Another cross coupler

digital switch on x-cut LiNbO3 with a better voltage length product (114 Vcm with a

cross talk of 17 dB) was demonstrated later [Mc91]. Y-branch digital switches on

LiNbO3 (a voltage length product of 68.4 Vcm with 14 dB) [Gr90, Thy89], in

InP/GaInAsP [Cav91, Vi92], and shaped Y-branch digital switches (60 Vcm with 15 dB)

on LiNbO3 have also been demonstrated.








Recently, Xie et al. [Xi92] reported a 2x2 digital optical switch in InGaAsP/InP

using both the tapered dimension and tapered coupling between step index, channel

waveguides of the TVC. This structure was analytically examined previously [Sy89] for

the case of LiNbO3. However, this device shows poor extinction ratio.

In this chapter, we propose and demonstrate a novel digital switch using tapered

velocity coupler in Ti:LiNbO3, taking an advantage of short operating length of the TVC.
The schematic of our switch is shown in Fig. 4.1. A straight channel (5 p.m wide) is

separated by a uniform gap (4pm) from the tapered channel whose width increases from

3 pim to 5 jim, with the width of the straight channel remaining the same, namely, 5 ipm

[Ra93]. Application of positive and negative voltages between the electrodes switches

the states at the output. We achieved 15 dB extinction ratio with 50 V swing for TE

mode and 15 V swing for TM mode in a 2.4 mm long device length, yielding the

smallest voltage length products, reported to date, of 24 Vcm for TE and 7.2 Vcm for TM

mode, respectively

4.1 Principles of Operation

To understand the switching mechanism, consider the following: Without any

applied voltage, the propagation constants of both channels are identical at the output,

that is, the phase matching condition occurs at the output (solid line in Fig. 4.2); light

launched into the straight channel at the input should be equally divided between the

channels at the output if the adiabatic condition is ensured. As we increase the voltage so

as to decrease the refractive index of the straight channel and increase that of the tapered

channel, the phase matching point would shift towards the central region of the switch

(dashed lines in Fig. 4.2). Then the power launched into the straight channel should be

transferred to the tapered channel in the central region, close to the phase matching point

and exit out of the tapered channel at the output. On the other hand, with increased

reverse bias, phase matching does not occur along the entire device length (dotted lines in

Fig. 4.2) and the power would remain in the straight channel.


































Wti=3 gm
Wto = Ws = 5 m
L = 2400 pm
G=4gm



Fig. 4.1 A schematic of the tapered velocity digital optical switch
The hatched area illustrates the electrode structure.






65













P
unbiased -
+V biased- -
-V biased .-



U 00
0 0
----------------- --

0 -
--=
c I -




Propagation Length



Fig. 4.2 Propagation constants of both the straight and tapered channel at
three bias voltages.









Operation of this device can also be understood from another point of view, using

the normal mode theory. The light launched through the straight channel is coupled into

the fundamental local normal mode at the input (z=0) and propagates without mode

conversion along the device. Although mode evolves along the TVC, the mode remains

as the fundamental mode of the composite structure as long as the adiabatic condition is

satisfied; however the output intensity profile can be switched the output between the

tapered and straight channel waveguide by the application of bias voltage of appropriate

polarity. Without the bias voltage, the fundamental local normal mode at the output has a

symmetric profile so that the power on each channel waveguide is same. With forward

bias, refractive index of the tapered channel increases. Energy of the fundamental local

normal mode at the output becomes concentrated in the tapered waveguide with increased

forward bias voltage. Similarly, it follows that the power of the output intensity profile

tends to concentrate in the straight channel with the reverse bias voltage.


4.2 Theory and Experiments

We believe that the 5-layer step index approximation [Si87, Sy89] with a constant

equivalent index guiding layer regardless of the variation of the thickness of the taper is

not appropriate for analysis of graded-index Ti:LiNbO3 channel waveguide tapered

velocity coupler [Ki93a]. Primary reason is that the width of the tapered Ti-strip before

its diffusion governs not only the physical dimension of the guiding region but also the

absolute index change resulting from the Ti in-diffusion [Fu78]. In addition, strong

coupling between the channels does not allow the use of the conventional coupled mode

theory for the description of the physical power transfer between the waveguides [Ki93a].

For the same reason, the superposition of the individual modes [Mi75] for an

approximated expression for the local normal modes is not adequate on account of the

strong coupling in the power transfer region dictated by the adiabatic condition.

For the theoretical analysis, we assume the following fabrication parameters:

800A of Ti diffused at 1025 oC for 6 hours. The coupler is divided into large number of









segments along its length by approximating the taper by a piecewise continuous staircase

structure. Each segment consists of two straight channels; the width of one channel is 4
plm and the width of the other is determined by that of the tapered channel at that point.

A 2-D index profile for a cross section of a segment is derived from the superposition of

the index profiles of the two straight channels, resulting in the Gaussian profile along the

depth direction. To convert the 2-D index profile into a 1-D index profile, the graded-

index Gaussian profile along the depth direction at a given discrete position along the

width is approximated by a staircase step-index profile. For the approximated step-index

profile at each position, we can obtain the effective index 1-D profile, in the conventional

manner, using multi-layer stack theory [Hu90, Th87]. Once again, we apply the multi-

layer stack theory to the resultant 1-D effective index profile to obtain the mode indices

and field profiles of the first two normal modes at a given segment along the propagation

direction. Following the standard procedure of the step transition model [Mi75], we can

evaluate mode power conversion along the coupler by calculating overlap integral across

the abrupt step between the two adjacent segments. We found that no mode conversion

occurs along the taper, thus satisfying the adiabatic condition. The refractive index

change due to the bias voltage was also taken into account in our calculation. Detailed

theoretical analysis of the graded-index channel waveguide TVC is presented in chapter

three [Ki93a], with substantiating the previously reported experimental results [Ki89a],

demonstrating, for the first time, complete power transfer between channel waveguides of

the TVC.

Evolution of the calculated intensity profile of the fundamental normal mode in

the substrate plane of the switch is shown in Fig. 4.3 for three biased states. In all the

three cases the adiabatic condition is satisfied. Therefore, the fundamental local normal

mode coupled at the input does not suffer any mode conversion and evolves along as the

fundamental mode of the structure with its mode power unchanged and switching is

accomplished with the forward and reverse bias.


































- V biased


unbiased


+V biased


Fig. 4.3 Modal evolutions for three bias voltage.









The switch was fabricated on z- cut LiNbO3 using the same fabrication conditions

assumed in the theoretical analysis. 2000 A of SiO2 buffer layer was sputtered over the

device. 2.4 mm long aluminum electrodes were delineated over the Ti-diffused TVC

waveguides by photolithography and wet etching technique. The switching behavior was

investigated by characterizing the output intensity profile in the substrate plane at each
bias voltage. Figure 4.4 (a) shows the output intensity profiles at X=1.32 pm for the three

cases for TE mode which uses the rl3 coefficient. In unbiased case, almost equal power

division were achieved. With 50V swing, we were able to observe digital switching

with 15 dB cross talk. For TM mode which uses r33 coefficient (almost three times

bigger than r13), we were also able to observe the digital switching in 15 V swing with

better than 15 dB cross talk (Fig. 4.4 (b)). This translates to a voltage length product of

7.2 Vcm for TM and 24 Vcm for TE mode. This is the shortest voltage length product

for a digital switch reported so far. This has been accomplished by the use of tapered,

both in index and in index, velocity coupler [Ki93a] where weak coupling both at input

and output of the TVC due to increased index difference assures concentration of energy

in one of the waveguides at the ends while strong coupling in the center region enables

the adiabatic condition to be achieved for secured operation of the switch.

4.3 Summary

In summary, we have presented a novel digital optical switch using tapered, both

in dimension and in index, velocity coupler, which shows smallest voltage length product

among those of the reported digital optical switches. Numerical results for the graded-

index channel waveguide coupler has been introduced, which can be applied to all z-

variant structure with the 2-D graded-index profile.



















































Fig. 4.4 Output intensity profiles for (a) TE and (b) TM
polarization.
The black areas illustrates the waveguide regions.















CHAPTER FIVE
TAPERED VELOCITY COUPLER
USING SEGMENTED WAVEGUIDES


Recently, segmented waveguides consisting of a periodic array of high refractive

index regions surrounded by lower index regions (see Fig. 5.1 (a)), have received

considerable attention for applications in efficient second harmonic generation in KTP. In
the case of LiNbO3 [Ca92a, Ca92b, Li89] and LiTaO3 [Bi90, La93, Ma93, Va90], the

segmentation acts as a grating, orthogonal to the direction of the guided wave propagating

along another waveguide, such as proton exchanged waveguides (Fig. 5.1 (b)). Such

segmented waveguides in Fig. 5.1 (a) act as gratings for achieving quasi phase matching in

nonlinear interactions since the periodic segmentation also leads to periodic domain

reversal, i. e., reversal of optic axis.

Besides as grating structures, segmented waveguides by themselves are also

interesting since the effective index of the propagating mode can be controlled by simply

varying the duty cycle of the segmentation. The ability to control the effective index of the

mode by changing the duty cycle of the segmented waveguide can be used for the efficient

design of z-variant waveguide devices such as mode expanders, polarization converters,

wavelength filters, tapered velocity couplers, etc.

In Ti:LiNbO3, tapering of the Ti strip width before its diffusion yields tapering in

index as well as in dimension after diffusion due to side diffusion. A tapered, both in

dimension and in index, velocity coupler in Ti:LiNbO3 can be obtained directly by the

single diffusion of Ti. But ion-exchanged waveguides in glass [Ra88] and proton-

exchanged waveguides [Go89] in LiNbO3 give a fixed surface refractive index for specific

fabrication parameters (e.g. exchange time and temperature, annealing time and







segmented waveguide



. ...V


domain inversion

yi\~


waveguide


Fig. 5.1 Top view of segmented waveguides (a) in KTP and (b) in LiNbO3 with
gratings orthogonal to the propagating wave.









temperature) regardless of channel widths. To achieve a taper, annealing has been used

which requires gradual variation of annealing temperature along the propagation direction

[Le90]. However, one can get tapered, both in index and in dimension, channel

waveguides even in these channel waveguides by using segmented waveguides. It is also

known that index tapering in a semiconductor channel waveguide needs elaborate

fabrication techniques, such as selective growth on patterned substrates [Ka92] or on

shadow masked substrate [Co92]. But segmented waveguides make it possible to fabricate

tapered, both in index and in dimension, channel waveguides and couplers in

semiconductor without elaborate processing steps.

Segmented waveguides in KTP with step index segments and vertical walls have

been analyzed using a lamellar grating analysis; it was shown that a step index segmented

waveguide can be represented by an equivalent uniform step index planar waveguide with a

film index equal to the weighted average of the high and low index values [Li92].

Segmented waveguides have also been analyzed using the BPM method [We92, We93]

and the coupled mode theory [We93]. Very recently, reflection and transmission

characteristics and mode field profiles as well as second harmonic generation involving

QPM interaction in KTP segmented waveguides have been measured and modeled with a

linearly graded refractive index variation [Eg93]. Although the validity of the proposed

model as applied to KTP has been demonstrated by the above comparison, to date no direct

measurement of effective indices of the various modes and its variation with the duty cycle

and period of segmentation have been reported in the literature.

In this chapter we present experimental and theoretical results on the propagation

characteristics of planar proton exchanged periodically segmented (PEPS) waveguides in

lithium niobate. Prism coupling measurements of the variation of the effective index of the

modes of the waveguide as a function of the duty cycle and period of segmentation for

different annealing times are presented. Since the PEPS waveguide is a graded index

segmented waveguide, it is assumed that they can be modeled by an equivalent z-invariant









graded index waveguide. Using the measured effective index values, we show that the

PEPS waveguide can be represented by an equivalent graded index planar waveguide with

a Gaussian refractive index distribution with the peak index change varying almost linearly

with duty cycle for small duty cycles and saturating at large duty cycles, with its depth

independent of the duty cycle. Results obtained using our model are in excellent agreement

with the measured values for single as well as multimode PEPS waveguides [Th94].

Proton exchange waveguides exhibit a graded index profile where as compound

semiconductor waveguides exhibit a step index profile. Segmentation can be used to vary

the effective index. Variation in propagation loss and mode size with respect to duty cycles

in GaAs/AlGaAs is presented. Tapered, both in dimension and in index, velocity couplers

in GaAs/AlGaAs will be proposed in this chapter using tapered segmented waveguides.

5.1 Proton Exchanged Periodically Segmented
Waveguides in LiNbO3

A 50 nm tantalum mask for a PEPS planar waveguide with a period of 10 gpm and a

duty cycle varying from 0.15 to 0.9 was patterned on a pair of Z+ cut lithium niobate

substrates using standard photolithographic techniques. In parallel, in another Z+ lithium

niobate substrate, similar mask for a planar PEPS waveguide with a period of 10 gim with a

constant duty cycle of 0.5 was also patterned. Proton exchange of all the substrates was
then carried out in pyrophosphoric acid at a temperature (Te) of 200 C for a period (te) of

1 hour. The waveguides were subsequently annealed for three different annealing times (ta

= 3, 5, and 8 hours) at a temperature (Ta) of 300 'C (see Fig. 5.2). Recent studies have

demonstrated that the effect of the ambient conditions during annealing on the propagation

characteristics of the waveguide is relatively insignificant [Lo92].

Since proton exchange creates a high index region close to the surface, the annealed

proton exchanged segmented waveguide sample has a refractive index grating with varying

duty cycle on its surface. With a laser beam incident on the surface of the substrate we

could observe various diffracted orders in the reflected beam. Measurements of the angles










Proton exchanged
region for guiding


Z+ LiNb03


Te =200 C
te = 1 hour
Ta = 300 C
ta = 3, 5, and 8 hours


L = length of segmentation
A = period


L
Duty Cycle- A


(0-1.0)


Fig. 5.2 A schematic of proton exchanged periodically segmented waveguides in LiNbO3
with fabrication conditions.


Propa
direct


nation
ion


V









of diffraction of the various orders were consistent with the period of 10 pm of the periodic

grating structure. The intensity of diffraction was also observed to vary with the duty cycle

of the grating. Such measurements could be used to estimate the surface index change by

measuring the intensity of the various orders for different polarization directions.

Prism coupling measurements with a He-Ne laser operating at 632.8 nm were

carried out for different duty cycles after each annealing. The sample exhibited very strong

scattering up to 2 hours of annealing and no mode measurements were possible for these

annealing times. Indeed for short annealing times we have also observed strong diffraction

of the light incident in the prism into +1 and -1 orders. By properly choosing the angle of

incidence (and hence the phase vector) in the prism and the grating vector (= 2m7t/A, A

being the period of the segmentation ) of the segmented waveguide we have observed that

we can indeed excite any individual waveguide mode with any of the diffracted orders.

The scattering from the waveguides reduced with increased annealing times due to

reduced index change in the diffused regions. Mode angle measurements for various

modes and for different duty cycles were carried out using a prism coupling arrangement

for annealing times greater than 3 hours. Open circles in Figs. 5.3 (a), (b), and (c) show

the measured variation of the effective index of the propagating modes of the waveguide as

a function of duty cycle for ta = 3 5, and 8 hours.


5.2 Modeling of Proton Exchanged Periodically
Segmented Waveguides in LiNbO3

Annealed proton exchange waveguides have a graded refractive index profile and

various analytical models describing the profile are already available [Ca92b, Go89, Ni91,

Vo89, Za93]. These include complimentary error function profile [Vo89], hyperbolic

tangent profile function [Ca92b], Gaussian profile [Go89, Za93] and a generalized

Gaussian function [Ni91]. All of the above mentioned profiles have very similar behavior

and except for the hyperbolic tangent profile need numerical methods for



















2.26

2.25

2.24

2.23

2.22

2.21

2.2


0.2


0.4


0.6


0.8


Duty Cycle

(a)



Fig. 5.3 Variation of mode indices of PEPS waveguide with respect to duty cycle
for (a) 3-hour annealed sample (Circles represent measured values and
solid curves correspond to calculated variation of an equivalent z-invariant
graded index waveguide with Gaussian index distribution),


I I I I
STa=3000C
ta=3hrs.
- dx=1.Om TMo


TTM
IIM,
































TM1

0.2 0.4 0.6 0.8
Duty Cycle

(b)


(b) 5-hour annealed sample, and


I I I I
Ta=3000C
ta=5hrs.
dx=1.2pu m


2.26

2.25

2.24

2.23

2.22

2.21

2.2


Fig. 5.3-continued




















2.26 I a
Ta=300C
2.25 ta=8hrs.

2.24 dx= 1.4pm

" 2.23

S2.22

2.21 -

2.2
0.2 0.4 0.6
Duty Cycle

(c)


TM2 .

0.8


Fig. 5.3-continued. (c) 8-hour annealed sample.


- I









estimating the mode indices. Our fabrication (Te = 200 OC and te = 1 hour) and annealing

(Ta = 300 oC and ta = 3 to 10 hours) conditions correspond to thin waveguides, which can

be approximated very well by a Gaussian refractive index profile [Go89, Za93]. Thus we

model the planar PEPS waveguide by an equivalent z-invariant graded index waveguide

with the following Gaussian refractive index distribution:


n(x) = ns + An exp(- x2 / dx2) (5.1)


where ns is the substrate index, An is the peak index change and dx is the diffusion depth.

For duty cycles and annealing times for which the waveguide supports two modes, both
An and dx are uniquely determined. Fitting to the measured effective indices was

performed by a numerical evaluation of the mode indices of the modeled waveguide. While

fitting with the measured effective indices at different duty cycles, we found, as expected,

that the depth of the equivalent waveguide is independent of the duty cycle (within

experimental errors of the measured effective indices) while the peak index change

increases almost linearly with the duty cycle for low duty cycles. Hence the same depth

was assumed even for the region where the waveguide supports just a single mode. Our

findings regarding the depth independence of the equivalent waveguide with the duty cycle

are also consistent with the equivalent waveguide model of step index segmented

waveguide [Li92] and equivalent waveguide models used to represent tapered diffused

waveguides [Su87].

In Figs. 5.3 (a)-(c) we have also plotted the calculated effective mode index (solid

curves) of the fitted equivalent graded index planar waveguide with equivalent thicknesses

(dx) of 1.0 pim, 1.2 p.m and 1.4 pim corresponding to ta of 3, 5, and 8 hours, respectively.

As can be seen the agreement between the measured and fitted effective indices is very

good. Figure 5.4 shows the corresponding variation of surface index change of the

equivalent graded index waveguide with the duty cycle. As the duty cycle increases, the









surface index change of the equivalent waveguide increases almost linearly with the duty

cycle (for small duty cycles) and as should be expected, tends to saturate at large duty

cycles. In addition, as the annealing time increases, the depth of the equivalent waveguide

also increases. Our estimated surface index change and the depth of the equivalent

waveguide are consistent with those of nonsegmented annealed proton exchange

waveguides as obtained in recent research [Ca92b, Go89, Pu93].

To determine the dependence of the effective index of the modes of the segmented

waveguide on the period of segmentation, we made prism coupling measurements on the
PEPS waveguide sample with a period of 10 plm and a constant duty cycle of 0.5. By

changing the angle between the direction of propagation of the guided light and the

direction of segmentation, we could generate different periods of segmentation without

changing the duty cycle. Figure 5.5 corresponds to a typical measured variation for TMO

and TM1 modes for 5 hours of annealing and show that the effective index is independent

of the period of segmentation. These experimental results confirm that the effective index

of the propagating mode is independent of the period of segmentation and depends only on

the duty cycle [Li92].

Figures 5.3 and 5.4 provide conclusive evidence that the PEPS waveguide can be

represented by an equivalent z-invariant graded index planar waveguide with a Gaussian
refractive index profile with the peak An value increasing almost linearly at low duty cycles

and saturating as the duty cycle approaches unity while the corresponding diffusion depth
is independent of duty cycle for a given annealing condition (i.e., given Ta and ta).

In summary, we have presented the characterization of proton exchanged periodic

segmented waveguide in lithium niobate. Variation of effective indices for different modes

for different annealing times as a function of duty cycle and period of segmentation have

been presented. It is shown that the PEPS waveguide can be modeled by a z-invariant

graded index waveguide with a Gaussian refractive index distribution.
























0.1


0.08


, 0.06


0.04


0.02


0


0.2


0.4


0.6


0.8


Duty Cycle




Fig. 5.4 Variation of An at the surface of the equivalent graded index waveguide
with duty cycle


I t I-3hrs. d=l.Op
_- ta=3hrs.
- t=5hrs" dxlhO
--------- ta=8hrs. m_
a


^ ^ ^ .. .-- .......

.- -. --


I I I I























2.26

2.25

S2.24

S2.23

2.22

2.21

2.2


9 10 11 12
Period


13 14 15 16
(pmn)


Fig. 5.5 Measured variation of the effective indices of the TMO and TM1 modes
with period of segmentation of a PEPS waveguide with a duty cycle of
0.5


I I I I I I
T =300C
a
- t =5hrs.
a



TM
O O O O O 0


TM1
0
I I I I I I I -









5.3 Periodically Segmented Waveguides
in AlGaAs/GaAs and their Application to
Tapered Velocity Couplers

In PEPS planar waveguides in LiNbO3 shown in Fig. 5.2, the segmented

waveguides consist of discontinuous proton exchanged guiding regions along the beam

propagation direction. Segmented waveguides in AlGaAs/GaAs have been realized by the

use of a continuous guiding layer but with a segmented ridge, cladding region. As shown

in Fig. 5.6 (a), GaAs guiding layer is sandwiched by two Al0.15Ga0.85As cladding layers.

The upper cladding, however, is a segmented ridge structure along the beam propagation

direction, giving rise to effects of segmentation as well as horizontal confinement of the

mode. Figure 5.6 (b) and (c) illustrate the front and side view of the final segmented

waveguide structure, respectively.

To fabricate the segmented waveguide structure, however, we require two etching

steps. A ridge waveguide was defined by standard photolithography and wet etching

technique as shown in Fig. 5.7 (a). Without removing photoresist (PR) on the ridge, the

sample was exposed to UV light to delineate the segmented PR patterns on the ridge using

the appropriate mask pattern. After removing the exposed part of the remaining PR on the

ridge, the sample was dipped into etching solution again. The second etching yielded not

only segmentation of the ridge but also further etching outside the ridge as shown in Fig.
5.7 (b). About 0.7 and 0.5 lpm were etched out by the first and second etching process,

respectively. Diluted phosphoric acid (1H3P04:1H202:10H20) was used for the etching

solution, which provides an equal etching rate for both GaAs and A10.15Ga0.85As layers,
viz., 0.4 p.m/min at room temperature.

As shown in Fig. 5.6 (a), final structure of the segmented waveguide is a ridge

GaAs channel waveguide with segmented Al0.15Ga0.85As strip which gives high and low

mode index regions along the GaAs ridge according to the thickness of the strip. Front and

side views of the segmented waveguide are shown in Fig. 5.6 (b) and (c), respectively. It

should be noted that there are two key parameters which must be optimized. These are





































GaAs substrate


(a)


Periodically segmented waveguide in A1GaAs/GaAs (a) Schematic of the
final structure.


Fig. 5.6










AklsGao.8 s


(b)


L
Duty Cycle -=L
A


(c)


Fig. 5.6-continued (b) Front and (c) Side view of the segmented waveguide.


0.5 im

0.8 Rm







A.15Gao.85As


Photoresist

/\


GaAs substrate


(a)


Photoresist


GaAs substrate


(b)


Illustration for two step etching process.
Sample after (a) the first etching and (b) the second etching.


0.7


Fig. 5.7









GaAs thickness (tl) outside the ridge and Al0.15Ga0.85As thickness (t2) in the low mode
index region. First ti needs to be smaller than 0.9 pgm so as to obtain well confined,

channel waveguide modes by suppressing guided mode outside the ridge. Second, t2 must
be larger than 0.4 pgm so that the segmented waveguides do not suffer large propagation

loss due to large difference in mode size between high and low mode index region.

AlGaAs/GaAs segmented waveguides with different duty cycles illustrated in Fig.

5.6 were characterized by measuring the propagation loss and near field intensity profiles.

Propagation loss was measured by the cut back method and the results are shown in Fig.

5.8. Propagation loss of segmented waveguides with high and low duty cycles is less than

that of 0.5 duty cycle segmented waveguides [Li92, We93]. This is to be expected since

segmented waveguides with duty cycle of 0 and 1 correspond to straight channel, GaAs
ridge waveguides with 0.5 and 1 ipm thick AlGaAs strip loading, respectively, and as such

these should have the smallest propagation loss compared to segmented waveguide with a

duty cycle of 0.5.

Variation in mode size with respect to duty cycle was obtained by near field

intensity measurements. No significant variation in modal depth with respect to duty cycle

was observed in Fig 5.9 (a). This is understandable because the effective index in the
central region is hardly affected by varying the height of cladding from 0.5 to 1.0 p.m since

the effect due to decreased asymmetry is negligible. On the other hand, noticeable variation

in modal width with respect to duty cycle was obtained, as presented in Fig. 5.9 (b). As

can be seen in Fig. 5.9 (b), minimum modal width occurs at duty cycle of 0.5. Using the

effective index method, modal width can be calculated by considering a hypothetical

symmetric three-layer waveguide whose effective indices for guiding and cladding layers

are those of ridge and outside ridge region, respectively. The hypothetical waveguide

certainly has minimum modal width with changing effective index of guiding layer [Ko74].

We believe that change in duty cycle of the segmented waveguides results in change in






89

















5 I II


i -
0
0
3 -
o o \




& 1 -i I I lt)

0 0.2 0.4 0.6 0.8 1
Duty Cycle



Fig. 5.8 Variation of propagation loss of segmented waveguides with respect to
duty cycle. Circles represent measured values and solid curve
corresponds to fitting.






















3 I II 1Ii

S2.8


S2.6 0o u o o o


2.4
o
2.2

2 I I I -- I I ,
0 0.2 0.4 0.6 0.8 1
Duty Cycle
(a)


Fig. 5.9 Variation in mode size with respect to duty cycle. (a) Modal depth
variation withespect to duty cycle. Circles represent measured values
and solid curve corresponds to fitting.








































Fig. 5.9-continued


0.2 0.4 0.6 0.8 1
Duty Cycle
(b)

(b) Modal width variation with respect to duty cycle.









effective index of the ridge and thus minimum of the modal width should be able to be

observed.

Realization of segmentation in GaAs which has a very high refractive index (n =

3.3) is indeed difficult since a careful balance between the non-guiding planar section and

low propagation loss ridge section has to be arrived at. In addition, we must ensure that

segmentation of the ridge is still sufficiently strong enough to affect the propagation

constant without causing too much propagation loss. Using the segmented waveguides

that has been developed thus far, there are new opportunities to fabricate a tapered, both in

index and in dimension, velocity coupler (TVC) in AlGaAs/GaAs in the future. Proposed

TVC will consist of two ridge waveguides one of which, for example, is a straight ridge

waveguide with constant width (Wst) and duty cycle of 0.6 along the beam propagation

direction. The other waveguide can be a waveguide tapered in width (from Wti to Wto,

Wti
cycle would effectively taper the index so that there is a weak coupling between the two

ridges at input and output due to large difference both in dimension and in index of each of

the ridge. By employing tapered duty cycle together with tapered width of the ridge, we

expect that complete power transfer can be achieved with a reasonable device length.

Fabrication of the proposed tapered velocity coupler, verification of complete power

transfer, and its application to digital optical switch still remain to be investigated.



















Duty Cycle =
0.2


Duty Cycle =
1.0


Fig. 5.10 Top view of the proposed tapered velocity coupler with both dimension and
duty cycle tapered along the beam propagation direction.




Full Text

PAGE 1

7$3(5(' 9(/2&,7< &283/(56 $1' '(9,&(6 $ 75($7,6( %\ +<281 622 .,0 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

0\ 3DUHQWV

PAGE 3

$&.12:/('*0(176 ZRXOG OLNH WR H[SUHVV P\ GHHS JUDWLWXGH WR P\ DGYLVRU 3URI 5DPX 9 5DPDVZDP\ IRU KLV JXLGDQFH HQFRXUDJHPHQW DQG VXSSRUW WKURXJKRXW P\ JUDGXDWH VWXG\ +LV KLJK VWDQGDUG LQ DFDGHPLF DFKLHYHPHQW UHDOO\ LQVSLUHG PH WR GR P\ YHU\ EHVW IRU WKH FRPSOHWLRQ RI WKLV ZRUN ,Q DGGLWLRQ WKURXJK KLV GLVFLSOLQH DQG OHDGHUVKLS KDYH OHDUQHG D ORW PRUH WKDQ WKH VFLHQWLILF NQRZOHGJH UHTXLUHG LQ WKH LQWHJUDWHG RSWLFV ILHOG ZRXOG OLNH WR WKDQN 3URI 7 1LVKLGD 7DQQHU 0 8PDQ DQG 3 =RU\ IRU WKHLU SDUWLFLSDWLRQ RQ P\ VXSHUYLVRU\ FRPPLWWHH DOVR ZRXOG OLNH WR H[SUHVV P\ WKDQNV WR 'U )LJXHURD ZKRVH HQWKXVLDVP ZDV ZKDW LQLWLDOO\ JRW PH LQWHUHVWHG LQ VWXG\LQJ LQ WKLV ILHOG WKDQN P\ IHOORZ JUDGXDWH VWXGHQWV SDUWLFXODUO\ 'U
PAGE 4

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 LLL $%675$&7 YL &+$37(56 21( ,1752'8&7,21 7:2 1250$/ 02'( 7+(25< $1' $',$%$7,& 7+(25(0 'HILQLWLRQ RI 1RUPDO 0RGHV &KDUDFWHULVWLFV RI 1RUPDO 0RGHV LQ )LYHOD\HU :DYHJXLGH 6WUXFWXUH $GLDEDWLF 7KHRUHP LQ 2SWLFDO 'HYLFHV 7+5(( 7$3(5(' %27+ ,1 ,1'(; $1' ,1 ',0(16,21 9(/2&,7< &283/(5 ,1 7L/L1E 6LQJOH 0RGH &KDQQHO *XLGH 1RUPDO 0RGH $QDO\VLV DQG )LHOG 3URILOH 7DSHUHG %RWK LQ ,QGH[ DQG 'LPHQVLRQ 9HORFLW\ &RXSOHU 6WHS 7UDQVLWLRQ 0RGHO 3RZHU )ORZ LQ WKH 79& 7KHRUHWLFDO DQG ([SHULPHQWDO 5HVXOWV )285 7$3(5(' %27+ ,1 ',0(16,21 $1' ,1 ,1'(; 9(/2&,7< &283/(5 6:,7&+ 3ULQFLSOHV RI 2SHUDWLRQ 7KHRU\ DQG ([SHULPHQWV 6XPPDU\ ),9( 7$3(5(' 9(/2&,7< &283/(5 86,1* 6(*0(17(' :$9(*8,'(6 3URWRQ ([FKDQJHG 3HULRGLFDOO\ 6HJPHQWHG :DYHJXLGH LQ /L1E 0RGHOLQJ RI 3URWRQ ([FKDQJHG 3HULRGLFDOO\ 6HJPHQWHG :DYHJXLGHV LQ /L1E 3HULRGLFDOO\ 6HJPHQWHG :DYHJXLGHV LQ $O*D$V*D$V DQG 7KHLU $SSOLFDWLRQ WR 7DSHUHG 9HORFLW\ &RXSOHU ,9

PAGE 5

6,; $1 04:64: 7$3(5(' :$9(*8,'( ,17(5&211(&7 ,QWURGXFWLRQ 7DSHUHG :DYHJXLGH ,QWHUFRQQHFW 8VLQJ (/' 0RGHOLQJ RI ,PSXULW\ ,QGXFHG /D\HU 'LVRUGHUHG 04: DQG $QDO\VLV RI 7DSHUHG :DYHJXLGH ,QWHUFRQQHFW 2SWLPL]DWLRQ RI WKH 7DSHU 0RGDO (YROXWLRQ &RQFOXVLRQ ,OO 6(9(1 &21&/86,216 $1' 6800$5< 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+

PAGE 6

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 7$3(5(' 9(/2&,7< &283/(56 $1' '(9,&(6 $ 75($7,6( %\ +\RXQ 6RR .LP $SULO &KDLUPDQ 5DPX 9 5DPDVZDP\ 0DMRU 'HSDUWPHQW (OHFWULFDO (QJLQHHULQJ $ SRODUL]DWLRQ LQGHSHQGHQW GHYLFH LV KLJKO\ GHVLUDEOH IRU XVH LQ VLQJOHPRGH ILEHU RSWLFDO FRPPXQLFDWLRQ V\VWHPV 7DSHUHG YHORFLW\ FRXSOHU 79&f LV H[SHFWHG WR SOD\ DQ LPSRUWDQW UROH VLQFH LWV RSHUDWLRQ LV SRODUL]DWLRQ LQGHSHQGHQW DV ZHOO DV ZDYHOHQJWK LQVHQVLWLYH 7KXV IDU 79& KDV UHFHLYHG OLWWOH DWWHQWLRQ SULPDULO\ EHFDXVH RI WKH XQXVXDOO\ ORQJ GHYLFH OHQJWK UHTXLUHG IRU FRPSOHWH SRZHU WUDQVIHU ,Q WKLV GLVVHUWDWLRQ ZH HVWDEOLVK WKDW D 79& ZLWK DQ DFFHSWDEOH GHYLFH OHQJWK IRU LQWHJUDWLRQ FDQ EH LQGHHG UHDOL]HG DQG LQWHJUDWHG E\ WDSHULQJ LQ LQGH[ DV ZHOO DV LQ GLPHQVLRQ :H GHPRQVWUDWH IRU WKH ILUVW WLPH WKDW FRPSOHWH SRZHU WUDQVIHU FDQ EH DFKLHYHG LQ D WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ YHORFLW\ FRXSOHU LQ 7L/L1E&! ZLWK GHYLFH OHQJWK UHGXFHG WR RQH TXDUWHU RI WKDW RI FRQYHQWLRQDO 79& 7KH FRXSOHU LV DQDO\]HG E\ XVH RI VWHS WUDQVLWLRQ PRGHO LQ FRQMXQFWLRQ ZLWK ORFDO QRUPDO PRGHV RI WKH JUDGH LQGH[ 79& RYHUFRPLQJ WKH GHILFLHQF\ RI WKH ILYHOD\HU VWHS LQGH[ PRGHO YL

PAGE 7

:H IXUWKHU GHPRQVWUDWH D 7L/L1E GLJLWDO RSWLFDO VZLWFK ZLWK WKH VPDOOHVW YROWDJH OHQJWK SURGXFW UHSRUWHG WR GDWH QDPHO\ 9FP IRU 70 DQG 9FP 7( PRGH ZLWK D G% FURVV WDON ,Q DQ HIIRUW WR H[WHQG WKH WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ YHORFLW\ FRXSOHU FRQFHSWV WR VWHS LQGH[ FRPSRXQG VHPLFRQGXFWRU ZDYHJXLGHV ZH LQWURGXFH SURWRQ H[FKDQJHG SHULRGLFDOO\ VHJPHQWHG 3(36f ZDYHJXLGHV 3(36 ZDYHJXLGHV LQ /L1E&! DUH ILUVW VWXGLHG WKHRUHWLFDOO\ DQG H[SHULPHQWDOO\ 7KH PRGH LQGH[ RI 3(36 ZDYHJXLGHV LQFUHDVHV OLQHDUO\ DQG VDWXUDWHV ILQDOO\ ZLWK LQFUHDVH RI GXW\ F\FOH 1H[W VHJPHQWHG ZDYHJXLGHV LQ $O*D$V*D$V DUH FKDUDFWHUL]HG LQ WHUPV RI SURSDJDWLRQ ORVV DQG PRGDO VL]H ZLWK UHVSHFW WR GXW\ F\FOH 7KHVH VHJPHQWHG ZDYHJXLGHV ZLOO EH XWLOL]HG LQ WKH GHYHORSPHQW RI VWHS LQGH[ WDSHUHG YHORFLW\ FRXSOHUV )LQDOO\ ZH SUHVHQW DQ DSSOLFDWLRQ IRU 79& DV DQ RSWLFDO LQWHUFRQQHFW ,Q SDUWLFXODU D WDSHUHG ZDYHJXLGH LQWHUFRQQHFW EHWZHHQ D VLQJOH TXDQWXP ZHOO 64:f ODVHU DQG D PXOWLTXDQWXP ZHOO 04:f PRGXODWRU LV SUHVHQWHG 8VLQJ YHUWLFDO FRXSOLQJ EHWZHHQ 64: JXLGLQJ OD\HUV DQG D WDSHUHG ERWK LQ LQGH[ DQG GLPHQVLRQ 04: OD\HU WKH WDSHUHG LQWHUFRQQHFW LV PRGLILHG IRU FRPSOHWH SRZHU WUDQVIHU IURP 64: ODVHU WR 04: PRGXODWRU 9OO

PAGE 8

&+$37(5 21( ,1752'8&7,21 7DSHUHG YHORFLW\ FRXSOHUV 79&f SOD\ DQ LPSRUWDQW UROH LQ RSWLFDO FRPPXQLFDWLRQ V\VWHPV ,Q SDUWLFXODU WKH\ DUH XVHIXO DV GLJLWDO RSWLFDO VZLWFKHV IRU RSWLFDO VLJQDO SURFHVVLQJ DSSOLFDWLRQV DV ZHOO DV RSWLFDO LQWHUFRQQHFWV ZLWKLQ DQ LQWHJUDWHG RSWLFDO FKLS LQWHUFRQQHFWLQJ D ODVHU DQG D PRGXODWRU 7KH SUHVHQW GLVVHUWDWLRQ LV D WUHDWLVH RQ WKH VXEMHFW RI 79& 7DSHUHG YHORFLW\ FRXSOHUV FRQVLVW RI WZR ZDYHJXLGHV VHSDUDWHG E\ D FRQVWDQW JDS EXW ZLWK DW OHDVW RQH RI WKH ZDYHJXLGHV WDSHUHG DORQJ WKH GLUHFWLRQ RI SURSDJDWLRQ 6HYHUDO FDVHV RI VXFK FRXSOHUV DUH LOOXVWUDWHG LQ )LJ 7KH SULPDU\ DGYDQWDJH RI D 79& LV WKDW LWV EHKDYLRU LV SUHGLFDWHG XSRQ WKH HYROXWLRQ RI WKH IXQGDPHQWDO DQGRU WKH ILUVW RUGHU QRUPDO PRGH DORQJ WKH ORQJLWXGLQDO GLUHFWLRQ RI WKH FRXSOHU *UDGXDO WDSHULQJ RI WKH JXLGHV LQ WKH FRXSOHU WKDW PHHWV WKH DGLDEDWLF LQYDULDQFH FRQGLWLRQ SUHYHQWV PRGH FRQYHUVLRQ EHWZHHQ WKH ORFDO QRUPDO PRGHV DV ZHOO DV LQWR UDGLDWLRQ PRGHV VR WKDW WKH RSWLFDO SRZHU LQ D ORFDO QRUPDO PRGH DW WKH LQSXW UHPDLQV XQFKDQJHG ZKLOH WKH PRGH SURSDJDWHV DORQJ WKH FRXSOHU ZLWK WKH HYROXWLRQ RI LWV ILHOG SURILOH ,Q DGGLWLRQ LW LV SRVVLEOH WR SK\VLFDOO\ WUDQVIHU SRZHU IURP RQH RI WKH ZDYHJXLGHV DW WKH LQSXW RI WKH 79& WR DQRWKHU DW WKH RXWSXW SURYLGHG WKH ORFDO QRUPDO PRGHV RI WKH 79& ERWK DW WKH LQSXW DQG WKH RXWSXW DSSUR[LPDWH WKDW RI WKH LQGLYLGXDO JXLGHV 7KH DGLDEDWLF FRQGLWLRQ FDQ EH PHW RYHU D ZLGH UDQJH RI SDUDPHWHUV JRYHUQLQJ WKH GHYLFH UDWKHU WKDQ DW GLVFUHWH YDOXHV RU SRVLWLRQV DV LV WKH FDVH ZLWK WKH LQWHUIHURPHWULF GHYLFH 7KH FRQFHSW RI WKH 79& ZDV ILUVW VXJJHVWHG E\ &RRN >&R@ IRU DSSOLFDWLRQV DW PLFURZDYH IUHTXHQFLHV DQG LW ZDV DQDO\]HG E\ )R[ >)R@ DQG /RXLVHOO >/R@ XVLQJ ORFDO QRUPDO PRGHV /DWHU :LOVRQ DQG 7HK >:L :L@ IROORZHG E\ FRQVLGHULQJ WKH

PAGE 9

Ff )LJ 6FKHPDWLFV RI FRXSOHUV Df 'LUHFWLRQDO FRXSOHU Ef 7DSHUHG YHORFLW\ FRXSOHU >:L@ Ff 2SWLFDO ILEHU WDSHUHG YHORFWL\ FRXSOHU >5R@

PAGE 10

Gf Hf )LJ FRQWLQXHG Gf 7DSHUHG ERWK LQ GLPHQVLRQ DQG LQ FRXSOLQJ YHORFLW\ FRXSOHU IRU GLJLWDO RSWLFDO VZLWFK >;L@ Hf 7DSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ YHORFLW\ FRXSOHU >.LD@ 7KH JUDGXDO LQGH[ FKDQJH LV TXDOLWDWLYHO\ LOOXVWUDWHG E\ WKH YDU\LQJ GHJUHH RI WKH VKDGRZ LQ WKH ZDYHJXLGH UHJLRQV

PAGE 11

WROHUDQFH DVSHFW RI OD\HU 79& LQ WHUPV RI WKH FRXSOHG PRGH WKHRU\ DQG H[SHULPHQWDOO\ GHPRQVWUDWHG FRPSOHWH SRZHU WUDQVIHU EHWZHHQ ZDYHJXLGHV 0LOWRQ DQG %XPV >0L@ HVWDEOLVKHG WKH FULWHULD IRU WKH DGLDEDWLF RSHUDWLRQ DQG FRPSOHWH SRZHU WUDQVIHU LQ D SODQDU VWHS LQGH[ 79& 8VLQJ WKH VWHS WUDQVLWLRQ PRGHO >0DU@ WKH\ FRQVLGHUHG PRGH FRQYHUVLRQ EHWZHHQ DSSUR[LPDWHG ORFDO QRUPDO PRGHV XQGHU WKH DVVXPSWLRQ RI ZHDN FRXSOLQJ $QDO\WLF VROXWLRQV IRU WKH PRGH DPSOLWXGHV LQ WKH 79& >6P 6P@ ZHUH GHULYHG XQGHU WKH DVVXPSWLRQV RI D FRQVWDQW FRXSOLQJ FRHIILFLHQW DQG OLQHDUO\ YDU\LQJ SURSDJDWLRQ FRQVWDQWV \LHOGLQJ D VLPSOH DQDO\WLF H[SUHVVLRQ IRU WKH FRXSOHU HIILFLHQF\ DV ZHOO DV TXDQWLWDWLYH FULWHULD IRU WKH FRXSOHU OHQJWK ,Q WKHLU UHFHQW ZRUN >.LD@ .LP DQG 5DPDVZDP\ DFKLHYHG FRPSOHWH SRZHU WUDQVIHU EHWZHHQ WKH FKDQQHO ZDYHJXLGHV RI WKH 79& WKXV GHPRQVWUDWLQJ WKH DGLDEDWLF UHJLPH KRZHYHU WKHRUHWLFDO DQDO\VLV XVLQJ WKH VWHS WUDQVLWLRQ PRGHO DQG WKH EHDP SURSDJDWLRQ PHWKRG GLG QRW FRUUHODWH ZHOO ZLWK WKH H[SHULPHQWDO UHVXOWV 79&V KDYH EHHQ FRQVLGHUHG DQG WKHLU FKDUDFWHULVWLFV DQDO\]HG IRU WKH DSSOLFDWLRQV DV SRZHU GLYLGHUV >&D@ DQG ILEHUWRILEHU FRXSOHUV >5R@ 7KH XQGHUO\LQJ FRQFHSW RI WKH 79& FDQ EH EHVW XQGHUVWRRG E\ FRQVLGHULQJ WKH DGLDEDWLF FRQGLWLRQ (T f LQ D WDSHUHG YHORFLW\ FRXSOHU DQG DQRWKHU LQHTXDOLW\ (T f IRU WKH FRPSOHWH SRZHU WUDQVIHU LGHQWLILHG E\ 0LOWRQ DQG %XPV >0L@ EDVHG RQ D ILYH OD\HU VODE ZDYHJXLGH VWHS WUDQVLWLRQ PRGHO $W$=W f§ N n $3Wf ] A f f VR WKDW $S7 $=W f

PAGE 12

ZKHUH $S[ LV WKH WRWDO SKDVH GLIIHUHQFH EHWZHHQ WKH XQFRXSOHG LQGLYLGXDO JXLGHG PRGHV RI WKH FRXSOHU RYHU WKH WDSHU OHQJWK RI $=[ DQG N LV WKH FRXSOLQJ FRHIILFLHQW 7KH DGLDEDWLF FRQGLWLRQ (T PXVW EH VDWLVILHG WR SUHYHQW XQGHVLUHG QRUPDO PRGH FRQYHUVLRQ (TXDWLRQ PXVW DOVR EH VDWLVILHG WR DFKLHYH DW OHDVW b RI SRZHU WUDQVIHU $QG (T UHSUHVHQWV WKH GHVLJQ OLPLWDWLRQ RQ WKH GHYLFH OHQJWK ZKHUH WKH ILUVW WZR FRQGLWLRQV DUH VDWLVILHG $OWKRXJK WKH DERYH UHODWLRQV DUH GHULYHG E\ ZULWLQJ WKH ORFDO QRUPDO PRGHV LQ WHUPV RI XQFRXSOHG PRGHV WR DUULYH DW WKH DGLDEDWLF FRQGLWLRQ ZKLFK DV VWDWHG EHIRUH LV YDOLG RQO\ IRU WKH ZHDN FRXSOLQJ FDVH FHUWDLQ FRQFOXVLRQV FDQ EH GUDZQ IURP (T 7R EHJLQ ZLWK WKH DGLDEDWLF FRQGLWLRQ FDQ EH VDWLVILHG E\ D VORZ HQRXJK WDSHU VPDOO $3W$=Wf DQG VWURQJ FRXSOLQJ ODUJH Nf ZKLFK FDQ EH DFKLHYHG E\ D VPDOO WDSHU DQJOH DQG D VPDOO JDS +RZHYHU IRU VPDOO N $3M$=W KDV WR EH H[WUHPHO\ VPDOO ZKLFK PHDQV WKDW LQ RUGHU WR PHHW WKH DERYH FRQGLWLRQ WKH GHYLFH OHQJWK KDV WR EHFRPH SURKLELWLYHO\ ODUJH DQG PRGH FRQYHUVLRQ EHWZHHQ WKH ORFDO QRUPDO PRGHV LV PRUH OLNHO\ +RZHYHU LQ WKLV FDVH H[FOXVLYH H[FLWDWLRQ RI DQ LQGLYLGXDO ZDYHJXLGH DW WKH LQSXW DQG WKH VRUWLQJ RI WKH PRGH SRZHU HQWLUHO\ LQWR HLWKHU RI WKH LQGLYLGXDO ZDYHJXLGHV DW WKH RXWSXW RI WKH [ 79& LV HDVLO\ DFKLHYHG 2Q WKH RWKHU KDQG VWURQJHU FRXSOLQJ KHOSV PHHW WKH DGLDEDWLF FRQGLWLRQ PRUH HDVLO\ ZKLOH IDFLOLWDWLQJ D VKRUWHU OHQJWK GHYLFH 7KH PDMRU SUREOHP LQ WKLV FDVH LV WKDW WKH WZR QRUPDO PRGH H[FLWDWLRQ LV XQDYRLGDEOH DQG DV D UHVXOW WKH FRQFHQWUDWLRQ RI SRZHU LQ RQH RI WKH JXLGHV HLWKHU DW WKH LQSXW RU DW WKH RXWSXW FDQ QRW EH UHDOL]HG VHH (T f )XUWKHUPRUH WKH FRXSOHG PRGH WKHRU\ LV QR ORQJHU DSSOLFDEOH &OHDUO\ WR DFKLHYH VKRUWHU OHQJWK GHYLFHV DQG ORFDOL]DWLRQ RI HQHUJ\ LQWR RQH RI ZDYHJXLGHV ERWK DW WKH LQSXW DQG WKH RXWSXW RI WKH 79& ODUJHU YDOXH RI N VKRXOG EH LQFRUSRUDWHG LQ WKH PLGGOH SHUPLWWLQJ D UHODWLYHO\ ODUJH $S[$=[ DW WKH FHQWHU ZKLOH GHFUHDVLQJ N DW ERWK HQGV 7KLV FDQ EH DFKLHYHG E\ WDSHULQJ DW OHDVW RQH FKDQQHO ZDYHJXLGH GLPHQVLRQ IURP D QDUURZ WR D ODUJHU YDOXH ZKLOH JUDGXDOO\ LQFUHDVLQJ WKH LQGH[ DW WKH VDPH WLPH :H GHPRQVWUDWH WKH FRQFHSW XVLQJ 7L/L1E&! FKDQQHO ZDYHJXLGHV ZKHUH ZH WDNH DGYDQWDJH RI WKH IDFW WKDW WKH VXUIDFH LQGH[ RI WKH ZDYHJXLGH LV SURSRUWLRQDO WR HUIZG\f

PAGE 13

ZKHUH Z LV WKH 7L VWULS ZLGWK SULRU WR GLIIXVLRQ DQG G\ LV WKH HIIHFWLYH GLIIXVLRQ ZLGWK :H PRGHO WKLV GHYLFH E\ ILUVW FRQYHUWLQJ WKH JUDGHG LQGH[ SURILOH RI WKH ILYH OD\HU 79& VWUXFWXUH LQWR D SURILOH E\ XVLQJ WKH HIIHFWLYH LQGH[ PHWKRG >5D )XU@ )LHOG SURILOHV DQG PRGH LQGLFHV RI WKH ORFDO QRUPDO PRGHV RI WKH LQGH[ SURILOH LV WKHQ FDOFXODWHG XVLQJ WKH PXOWLOD\HU VWDFN DQDO\VLV DQG ILQDOO\ XVLQJ WKH VWHS WUDQVLWLRQ PRGHO >0DU 0L .LD@ DULVH PDLQO\ GXH WR DQ DSSUR[LPDWLRQ RI D JUDGHG LQGH[ FKDQQHO

PAGE 14

ZDYHJXLGH 79& DV D OD\HU VWHS LQGH[ 79& ZLWK D FRQVWDQW HTXLYDOHQW UHIUDFWLYH LQGH[ IRU WKH WDSHUHG JXLGH 7KLV DSSUR[LPDWLRQ KDV EHHQ ZLGHO\ XVHG >6L 6\@ LQ WKH FDVH RI PDQ\ ]YDULDQW GHYLFHV GXH WR WKH UHODWLYH HDVH RI WKH QXPHULFDO FRPSXWDWLRQ DQG WKLV DSSURDFK SURYLGHV UHDVRQDEOH DJUHHPHQW ZLWK H[SHULPHQWDO UHVXOWV IRU FRQYHQWLRQDO WDSHUV DV ZHOO +RZHYHU WKH DERYH DSSUR[LPDWLRQ LV LQDSSURSULDWH IRU RXU FRXSOHU ZKLFK LQFRUSRUDWHV WDSHUHG LQGH[ DV ZHOO DV WDSHUHG GLPHQVLRQ DORQJ LWV OHQJWK )XUWKHUPRUH DSSUR[LPDWH UHSUHVHQWDWLRQ RI WKH ORFDO QRUPDO PRGHV DV WKH VXSHUSRVLWLRQ RI WKH PRGHV RI WKH XQFRXSOHG JXLGHV >0L@ LV DOVR LQDSSURSULDWH VLQFH WKH 79& RIWHQ LQYROYHV VWURQJO\ FRXSOHG JXLGHV 7KH PRGHO SUHVHQWHG KHUH FRUUHFWV WKH SUHYLRXV GHILFLHQFLHV DQG SUHGLFWV DFFXUDWHO\ WKH EHKDYLRU RI WKH 79& XVLQJ WKH ORFDO QRUPDO PRGHV RI WKH FRPSRVLWH ILYH OD\HU JUDGHG LQGH[ FKDQQHO ZDYHJXLGH VWUXFWXUH >.LD@ $OWKRXJK ZH PXVW XVH ORFDO QRUPDO PRGHV WR GHVFULEH WKH VWURQJO\ FRXSOHG JXLGHV ZH IDFLOLWDWH VLQJOH PRGH H[FLWDWLRQ DW WKH LQSXW DQG VRUWLQJ RI WKH SRZHU DW WKH RXWSXW E\ WDSHULQJ ERWK WKH GLPHQVLRQ DQG LQGH[ $V DQ DSSOLFDWLRQ ZH SURSRVHG DQG GHPRQVWUDWHG >5D@ D QRYHO GLJLWDO RSWLFDO VZLWFK XVLQJ WKH 79& LQ 7L/L1E&! ZKLFK H[KLELWV WKH VPDOOHVW YROWDJHOHQJWK SURGXFW UHSRUWHG LQ WKH OLWHUDWXUH WR GDWH 7KH VXSHULRU SHUIRUPDQFH RI RXU GLJLWDO RSWLFDO VZLWFK LV PDLQO\ GXH WR WKH VKRUW GHYLFH OHQJWK RI WKH 79& LQ 7L/L1E&! XVLQJ WKH WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ FKDQQHO ZDYHJXLGH 1XPHULFDO DQDO\VLV KDV DOVR EHHQ SHUIRUPHG DQG SUHVHQWHG LQ FKDSWHU IRXU FRQILUPLQJ WKH RSHUDWLRQ RI WKH VZLWFK LQ WKH DGLDEDWLF UHJLPH ([WHQVLRQ RI WKLV WHFKQLTXH WR SURWRQ H[FKDQJHG ZDYHJXLGHV SRVHV D SUREOHP VLQFH WKH LQGH[ FKDQJH LQ SURWRQH[FKDQJH ZDYHJXLGHV GRHV QRW YDU\ ZLWK ZDYHJXLGH ZLGWK 2Q WKH RWKHU KDQG LQGH[ WDSHULQJ WRJHWKHU ZLWK GLPHQVLRQ WDSHULQJ LQ VHPLFRQGXFWRU ZDYHJXLGHV LV QRW LPSRVVLEOH KRZHYHU LW UHTXLUHV HODERUDWH SUHJURZWK SURFHVVLQJ VXFK DV WKH GHOLQHDWLRQ RI GHVLUHG GLHOHFWULF SDWWHUQV RQ VXEVWUDWH VR FDOOHG VHOHFWLYH JURZWK WHFKQLTXH >$] .D@ RU HSLWD[LDOO\ JURZQ VSDFHU DQG PDVN OD\HUV DQG WZR VWHSV RI

PAGE 15

SUHIHUHQWLDO HWFKLQJ WKURXJK SKRWROLWKRJUDSKLFDOO\ GHILQHG ZLQGRZV RQ VXEVWUDWH QDPHO\ HSLWD[LDO JURZWK WKURXJK VKDGRZ PDVN >'H 9@ %RWK WHFKQLTXHV JLYH ULVH WR FRPSRVLWLRQ DQG WKLFNQHVV FKDQJH LQ HSLWD[LDOO\ JURZQ ULGJH ZDYHJXLGHV ZLWK UHVSHFW WR WKH ZLGWK RI WKH PDVN .DWR HW DO >.D@ GHPRQVWUDWHG LQWHJUDWLRQ RI D PXOWLTXDQWXP ZHOO 04:f ')% ODVHU DQG PRGXODWRU XVLQJ VHOHFWLYH JURZWK WHFKQLTXH +RZHYHU LW VKRXOG EH QRWHG WKDW WKH FRPSRVLWLRQ DQG WKLFNQHVV RI WKH HSLWD[LDOO\ JURZQ ULGJH ZDYHJXLGHV DUH DOVR VXEMHFW WR D ILOOLQJ IDFWRU >*D@ RI WKH SDWWHUQHG VXEVWUDWH ZKLFK LV GHILQHG E\ UDWLR RI DUHD RI PDVN RSHQLQJ WR WKDW RI WKH ZKROH VXEVWUDWH 6LQFH FRPSRVLWLRQV DQG WKLFNQHVVHV RI DOO WKH GHYLFHV DUH FRUUHODWHG WKURXJK WKH ILOOLQJ IDFWRU RI WKH VXEVWUDWH PRGLILFDWLRQ RI RQH GHYLFH DIIHFWV DOO RWKHU GHYLFHV RQ WKH FKLS 7KHUHIRUH ZH EHOLHYH ERWK WHFKQLTXHV DUH LQDSSURSULDWH IRU LQWHJUDWLRQ RI VHYHUDO GHYLFHV LQ RQH FKLS $V DQ DOWHUQDWLYH ZH SURSRVH WKH XVH RI VHJPHQWHG ZDYHJXLGHV SUHVHQWHG LQ FKDSWHU ILYH IRU WKH IDEULFDWLRQ RI WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ SURWRQ H[FKDQJHG FKDQQHO ZDYHJXLGHV LQ /L1E&! RU VHPLFRQGXFWRU ULGJH ZDYHJXLGHV :KLOH WKH FXUUHQW HIIRUW ZDV LQ SURJUHVV VHYHUDO UHVHDUFKHUV LQ ,VUDHO :HLVVPDQ DQG +DUG\ >:H :H@ DQG (JHU HW DO >(J@ KDYH WDNHQ WKH LQLWLDWLYH VLPXOWDQHRXVO\ WR FRQGXFW D WKHRUHWLFDO DQG DQDO\WLFDO VWXG\ RQ VHJPHQWHG ZDYHJXLGHV 3HULRGLFDOO\ VHJPHQWHG FKDQQHO ZDYHJXLGHV FRQVLVWLQJ RI DQ DUUD\ RI KLJK UHIUDFWLYH LQGH[ UHJLRQV VXUURXQGHG E\ ORZHU LQGH[ UHJLRQV KDYH EHHQ XVHG DV JUDWLQJV UHFHQWO\ WR DFKLHYH SKDVHPDWFKHG VHFRQG KDUPRQLF JHQHUDWLRQ 6+*f SDUWLFXODUO\ LQ .7232 >%L 3R@ DQG /L1E&! >:H &DE@ 7KH KLJK UHIUDFWLYH LQGH[ UHJLRQV DUH UHVSRQVLEOH IRU ERWK GRPDLQ LQYHUVLRQ DQG ZDYHJXLGLQJ ZKHUH DV LQ /L1E WKH VHJPHQWHG ZDYHJXLGHV DFW DV D JUDWLQJ IRU WKH JXLGHG ZDYH XVXDOO\ LQ D SURWRQ H[FKDQJHG ZDYHJXLGH 8VLQJ VHJPHQWHG ZDYHJXLGHV HIILFLHQW 6+* ZDV REWDLQHG DQG WKXV ZH PD\ DFKLHYH UHPDUNDEO\ JRRG ZDYHJXLGLQJ LQ VSLWH RI WKH VHJPHQWDWLRQ >%L@ :DYHJXLGLQJ FKDUDFWHULVWLFV RI VHJPHQWHG ZDYHJXLGHV VKRZ WKDW WKH HIIHFWLYH LQGH[ RI WKH SURSDJDWLQJ PRGH GHSHQGV RQ WKH GXW\ F\FOH RI WKH VHJPHQWDWLRQ 7KHUHIRUH WDSHULQJ ERWK LQ GXW\ F\FOH DQG ZLGWK RI VHJPHQWHG ZDYHJXLGHV

PAGE 16

UHVXOWV LQ WDSHUHG ERWK LQ LQGH[ DQG GLPHQVLRQ FKDQQHO ZDYHJXLGHV LQ SURWRQH[FKDQJH ZDYHJXLGHV DV ZHOO DV VHPLFRQGXFWRU ZDYHJXLGHV $V SDUW RI D SUHOLPLQDU\ VWXG\ ZH LQYHVWLJDWHG WKH HIIHFWLYH LQGLFHV RI VHJPHQWHG ZDYHJXLGHV ZLWK GLIIHUHQW GXW\ F\FOHV XVLQJ SODQDU VHJPHQWHG SURWRQH[FKDQJH ZDYHJXLGHV LQ /L1E&! >7K@ %RWK WKH H[SHULPHQWDO DQG WKH WKHRUHWLFDO UHVXOWV VKRZ WKDW WKH HIIHFWLYH LQGH[ OLQHDUO\ LQFUHDVHV ZLWK GXW\ F\FOH XS WR b RI GXW\ F\FOH WKHQ LQFUHDVHV VXEOLQHDUO\ DQG ILQDOO\ VDWXUDWHV DW WKH HIIHFWLYH LQGH[ YDOXH RI WKH FRQWLQXRXV SURWRQH[FKDQJH ZDYHJXLGH 0HDVXUHG HIIHFWLYH LQGLFHV RI ILUVW WZR PRGHV IRU GLIIHUHQW SHULRGV ZLWK D GXW\ F\FOH UHPDLQHG XQFKDQJHG 6HJPHQWHG ZDYHJXLGHV LQ VHPLFRQGXFWRUV ZHUH IDEULFDWHG XVLQJ HSLWD[LDOO\ JURZQ $O*D$V*D$V VDPSOH DQG WKHQ FKDUDFWHUL]HG E\ WKH LQYHVWLJDWLRQ RI WKH YDULDWLRQ RI SURSDJDWLRQ ORVV DQG QHDU ILHOG LQWHQVLW\ SURILOH RQ GLIIHUHQW GXW\ F\FOHV 7KH DELOLW\ WR FRQWURO WKH HIIHFWLYH LQGH[ RI WKH PRGH E\ FKDQJLQJ WKH GXW\ F\FOH RI WKH VHJPHQWHG ZDYHJXLGH HQDEOHV XV WR GHVLJQ DQG IDEULFDWH WKH WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ YHORFLW\ FRXSOHU LQ $O*D$V*D$V 6R IDU KRUL]RQWDO FRXSOLQJ EHWZHHQ D WDSHUHG DQG D VWUDLJKW FKDQQHO ZDYHJXLGH LQ D VXEVWUDWH SODQH KDYH EHHQ XWLOL]HG IRU SRZHU WUDQVIHU LQ WKH 79&V LQ 7L/L1E&! DQG $O*D$V*D$V :H KDYH DOVR H[WHQGHG RXU FRQFHSW E\ FRQVLGHULQJ YHUWLFDO FRXSOLQJ EHWZHHQ HSLWD[LDOO\ JURZQ VLQJOH TXDQWXP ZHOO 64:f JXLGLQJ OD\HUV DQG WDSHUHG PXOWLn TXDQWXP ZHOO 04:f OD\HUV 7DSHULQJ LQGH[ DQG GLPHQVLRQ RI WKH 04: ZDV SHUIRUPHG E\ WDSHUHG LPSXULW\ LQGXFHG OD\HU GLVRUGHULQJ ,,/'f >/D 6L .LE@ RI WKH 04: ZKLFK PRGLILHV WKHU HTXLYDOHQW UHIUDFWLYH LQGH[ SURILOH DV WKH 04: UHJLRQ LQ VXFK D ZD\ WKDW WKH LQGH[ SURILOH LV JUDGXDOO\ LQFUHDVHG DORQJ WKH EHDP SURSDJDWLRQ GLUHFWLRQ (TXLYDOHQW UHIUDFWLYH LQGLFHV IRU 04: UHJLRQV EHIRUH DQG DIWHU GLVRUGHULQJ ZHUH GHWHUPLQHG IRU QXPHULFDO DQDO\VLV DV WKRVH RI $O[*DL[$V OD\HUV ZKLFK KDYH WKH VDPH EDQGJDS DV WKH UHVSHFWLYH 04: UHJLRQV >.LE@ :LWK WKH HTXLYDOHQW LQGLFHV RI WKH WDSHUHG 04: UHJLRQV DGLDEDWLF FKDUDFWHULVWLFV RI WKH WDSHUHG LQWHUFRQQHFWV >6L .LE@ ZHUH VXFFHVVIXOO\ DQDO\]HG E\ XVH RI WKH VWHS WUDQVLWLRQ PRGHO UHVXOWV DUH SUHVHQWHG LQ

PAGE 17

FKDSWHU VL[ :H DOVR SUHVHQW D PRGLILHG WDSHUHG LQWHUFRQQHFW ZKLFK LQFRUSRUDWHV HIILFLHQW YHUWLFDO FRXSOLQJ EHWZHHQ DQ 64: JXLGLQJ OD\HU DQG D WDSHUHG 04: ZDYHJXLGH 7KH PRGLILFDWLRQ RI WKH WDSHUHG LQWHUFRQQHFW UHVXOWV LQ D EHWWHU FRXSOLQJ IURP DQ H[WHUQDO ODVHU WR 64: JXLGLQJ OD\HUV ZLWK FRPSOHWH SRZHU WUDQVIHU IURP WKH 64: JXLGLQJ OD\HUV WR WKH 04: OD\HU ZLWKLQ D UHDVRQDEOH WDSHU OHQJWK DQG FRQFHQWUDWLRQ RI WKH PRGH LQ WKH 04: UHJLRQ IRU KLJKHU HIILFLHQF\ LQ PRGXODWLRQ

PAGE 18

&+$37(5 7:2 1250$/ 02'( 7+(25< $1' $',$%$7,& 7+(25(0 7DSHUHG YHORFLW\ FRXSOHU 79&f VWUXFWXUHV DUH QRW HDVLO\ DPHQDEOH WR DQDO\WLFDO VROXWLRQV 2IWHQ FRPSXWHU VLPXODWLRQV DUH WKH RQO\ PHDQV HYHQ WR DFKLHYH SK\VLFDO XQGHUVWDQGLQJ RI WKH ZDYH SURSDJDWLRQ LQ VXFK FRPSOH[ VWUXFWXUHV 7KH QRUPDO PRGH WKHRU\ VKRXOG EH XVHG UDWKHU WKDQ FRXSOHG PRGH WKHRU\ WR DQDO\]H D 79& VWUXFWXUH E\ FRPSXWHU VLPXODWLRQ VLQFH VWURQJ FRXSOLQJ EHWZHHQ WZR ZDYHJXLGHV PXVW RFFXU IRU HIILFLHQF\ SRZHU WUDQVIHU LQ 79&V 7R JDLQ D JHQHUDO LQVLJKW LQWR WKH QRUPDO PRGHV ZH SUHVHQW YDULRXV FKDUDFWHULVWLFV RI QRUPDO PRGHV LQ V\PPHWULF RU DV\PPHWULF ILYHOD\HU VWHS LQGH[ ZDYHJXLGHV $LGLDEDWLF WKHRUHP LQ RSWLFDO GHYLFHV LV GLVFXVVHG LQ FRQMXQFWLRQ ZLWK WKH QRUPDO PRGH WKHRU\ 4XDOLWDWLYHO\ H[SODQDWLRQV RI RXWSXW SRZHU SURILOHV LQ
PAGE 19

[ / ] FRYHU ? ZDYHJXLGH % I @ 7 JDS N ZDYHJXLGH $ I VXEVWUDWH )LJ $ FURVV VHFWLRQDO YLHZ RI ILYHOD\HU VWHS LQGH[ ZDYHJXLGH VWUXFWXUH

PAGE 20

)RU WKH VDNH RI VLPSOLFLW\ ZH UHVWULFW RXU DWWHQWLRQ WR 7( PRGH ZDYHJXLGH VROXWLRQV ZKLFK E\ GHILQLWLRQ KDYH WKH HOHFWULF ILHOG SRODUL]HG DORQJ \D[LV )RU WKH FRQYHQWLRQDO ILYHOD\HU GLUHFWLRQDO FRXSOHU ZH FDQ ZULWH WKH ILHOGV LQ HDFK OD\HU DV IROORZV (\V $V H[SNV[f (\L $L VLQNL[f %L FRVNL[f (\J $J H[SNJ[f %J H[SNJ[f (\ $ VLQN[f % FRVN[f (\H $F H[SNF[f [f ['Lf 'L [ '@7f 'L7 [ ''7f [ ''7f f ZKHUH NS UF$ LV WKH IUHH VSDFH SURSDJDWLRQ FRQVWDQW NV :1QV} NO N9UQ"1 NJ N\n1Q_ N NVQA1 DQG NF :QfF f ; UHSUHVHQWV WKH IUHH VSDFH ZDYHOHQJWK RI OLJKW DQG 1 LV FDOOHG WKH HIIHFWLYH LQGH[ RI D PRGH RU VLPSO\ PRGH LQGH[ 1 HTXDOV NR ZKHUH LV WKH SURSDJDWLRQ FRQVWDQW RI WKH PRGH 7KH PRVW JHQHUDO 7( PRGH H[SUHVVLRQ LQ HDFK OD\HU PD\ XQOLNH WKH DERYH HTXDWLRQV EH UHSUHVHQWHG DV (\T $T H[SMNT[f %T H[SMNT[f f ZKHUH

PAGE 21

NT N? QT f§ 1 T OVJF (TXDWLRQ LV YDOLG LQ JHQHUDO IRU DQ\ ILYHOD\HU VWUXFWXUH UHJDUGOHVV RI WKH PDJQLWXGH RI HDFK OD\HUnV UHIUDFWLYH LQGH[ 8QGHU JXLGLQJ FRQGLWLRQV WKH PRGH LQGH[ 1 LV DOZD\V ODUJHU WKDQ QV DQG QF DQG ZH REWDLQ H[SRQHQWLDOO\ GHFD\LQJ VROXWLRQV WKDW YDQLVK DW LQILQLW\ )RU XQJXLGHG OHDN\ RU UDGLDWLRQ PRGHV WKH VROXWLRQV JURZ H[SRQHQWLDOO\ 8QGHU WKH DVVXPSWLRQ QL WL QV QJ QF D PRUH VSHFLILF UHSUHVHQWDWLRQ LQ WKH IRUP RI (T DQG WKH UHVXOWLQJ ILYHOD\HU GLVSHUVLRQ UHODWLRQ SUHVHQWHG E\
PAGE 22

$L VLQNL'Lf %L FRVNL'Lf $J H[SNJ 'Lf %J H[SNJ 'Lf f $J H[SNJ'L7ff %J H[SNJ'L7ff $ VLQN 'L7ff % FRVN 'L7ff f $ VLQN'L'7ff % FRVN'L'7ff $F H[SNF ''7ff f ,PSRVLQJ WKH FRQWLQXLW\ RI (\[ DW HDFK ERXQGDU\ ZH REWDLQ NV $V f§ NL $L f NL $L FRVNL'Lf %L VLQNL'Lff NJ $J H[SNJ 'Lf %J H[SNJ 'Lff f NJ $J H[SNJ'L7ff %J H[SNJ'L7ff N $ FRVN 'L7ff % VLQN 'L7fff f N $ FRVN'L'7ff % VLQN'L'7fff NF $F H[SNF ''7ff f )URP WKH DERYH HLJKW HTXDWLRQV (TV f ZH ZDQW WR REWDLQ D YDOXH RI 1 ZKLFK LV WKH PRGH LQGH[ RI WKH ILYHOD\HU VWUXFWXUH DQG UHODWLRQV EHWZHHQ WKH HLJKW DPSOLWXGH FRHIILFLHQWV 0DWUL[ UHSUHVHQWDWLRQ FDQ EH XVHG WR VLPSOLI\ WKH DERYH HTXDWLRQV E\ UHODWLQJ HDFK DPSOLWXGH FRHIILFLHQW DV IROORZV 0[ $ 0U 0T f f f f

PAGE 23

ZKHUH 0L DQG 0 DUH [ PDWULFHV ZKLOH 0 0 DQG 0 DUH [ PDWULFHV $OO WKH PDWUL[ HOHPHQWV FDQ EH HDVLO\ REWDLQHG IURP (TV ZLWK D OLWWOH ELW RI DOJHEUD VR ZH RPLW H[SOLFLW DQDO\WLF H[SUHVVLRQV RI WKHVH HOHPHQWV 6XEVWLWXWLRQ RI (TV \LHOGV 0 $F 0 0 00L $V 0 $V f ZKHUH 0 0 0 0 0L DQG VL]H RI 0 LV [ /HW XV GHILQH >4KM DV DQ LWK URZ DQG MWK FROXPQ HOHPHQW RI D PDWUL[ 4 $FFRUGLQJ WR (T ZH KDYH $F >0KL>0@LLf$V $F _0@ >0OOf $V f f +RZHYHU D YDOXH RI $F LV XQLTXHO\ GHILQHG IRU D JLYHQ YDOXH RI $V VLQFH WKH ILHOG GLVWULEXWLRQ RI D PRGH KDV D XQLTXH VKDSH 7KHUHIRUH >0LOO >0@ >0@K >0@L f (TXDWLRQ FRQVLVWV RI WKH NQRZQ FRQVWDQWV VXFK DV 'L 7 NR DQG WKH XQNQRZQ YDULDEOHV ZKLFK DUH NV NL NJ N NF +RZHYHU ZDYH YHFWRUV RI HDFK OD\HU FDQ EH HDVLO\ GHWHUPLQHG DV ORQJ DV ZH NQRZ WKH PRGH LQGH[ 1 VHH (T f 7KHUHIRUH (T FDQ EH LQWHUSUHWHG DV D QRQOLQHDU VROYLQJ (T 2QFH 1 LV GHWHUPLQHG HLJKW FRHIILFLHQWV DV ZHOO DV WKH ILYH ZDYH YHFWRUV DW HDFK OD\HU FDQ EH REWDLQHG E\ FRQVLGHULQJ WKH QRUPDOL]DWLRQ HTXDWLRQ PDNLQJ WKH PRGH SRZHU XQLW\ $ QRUPDOL]HG SRZHU HTXDWLRQ LV XVXDOO\ VWDWHG DV IROORZV f

PAGE 24

6R IDU ZH KDYH SUHVHQWHG WKH JHQHUDO H[SUHVVLRQ (T f RI ILHOG GLVWULEXWLRQ DORQJ WKH [D[LV QRUPDO WR WKH EHDP SURSDJDWLRQ GLUHFWLRQ ]D[LVf DQG D VLPSOLILHG VHW RI HTXDWLRQV (T f XQGHU WKH DVVXPSWLRQ RI DSSURSULDWHO\ FKRVHQ LQGLFHV QL Q QV QJ QFf $QG WKHQ E\ FRQVLGHULQJ ERXQGDU\ FRQGLWLRQV D VHW RI HLJKW HTXDWLRQV (TV f KDV EHHQ REWDLQHG %\ WKH FRQVLGHUDWLRQ RI RQH PRUH HTXDWLRQ (T f WKDW LV WKH QRUPDOL]DWLRQ RI PRGH SRZHU ZH REWDLQHG QLQH HTXDWLRQV IRU QLQH XQNQRZQV ZKLFK DUH HLJKW DPSOLWXGH FRHIILFLHQWV RI (T DQG WKH PRGH LQGH[ 1 1RZ ZH SURSRVH D PHWKRGRORJ\ IRU KDQGOLQJ WKH QXPHULFDO SUREOHP :H XVH WKH ELVHFWLRQ PHWKRG IRU VROYLQJ (T UHSUHVHQWDWLRQ RI ZKLFK LV PRGLILHG DV IROORZV )1f >0@Q >0@ >0@ >0@ f ZKHUH D YDOXH RI 1 RI D JLYHQ PRGH VKRXOG OLH LQ WKH UHJLRQ RI PLQQL Qf 1 PD[QV QJ QFf :KLOH 1 GHFUHDVH IURP PLQQL Qf WR PD[QV QJ QFf LQ VPDOO GLVFUHWH VWHSV )1f ZRXOG FKDQJH LWV VLJQ EHWZHHQ WZR GLVFUHWH YDOXHV RI 1 6LQFH WKH IXQFWLRQ )1f LV FRQWLQXRXV LW LV REYLRXV WKDW WKH FKDQJH LQ VLJQ RI )1f EHWZHHQ WZR FRQVHFXWLYH SRLQWV JXDUDQWHHV DW OHDVW RQH VROXWLRQ RI )1f /HW XV HYDOXDWH WKH IXQFWLRQ )1f DW WKH PLGn SRLQW RI WKH WZR DGMDFHQW SRLQWV DQG FRPSDUH WKH VLJQ :H WKHQ FKRRVH D VPDOOHU LQWHUYDO IRU WKH VROXWLRQ RI )1f ZKHUH WKH VLJQ FKDQJHV :H FDQ FRQWLQXH WKLV SURFHVV RI LQWHUYDOKDOYLQJ WR GHWHUPLQH D VPDOOHU DQG VPDOOHU LQWHUYDO ZLWKLQ ZKLFK WKH VROXWLRQ IRU )1f PXVW OLH 6LQFH WKH VROXWLRQ REWDLQHG E\ WKLV PHWKRG ZRXOG EH WKH ODUJHVW YDOXH RI 1 VDWLVI\LQJ (T ZH FDOO WKLV WKH IXQGDPHQWDO PRGH LQGH[ GHQRWH E\ 1R )XUWKHU GHFUHDVLQJ RI 1 E\ VPDOO GLVFUHWH VWHSV DQG IROORZLQJ WKH DERYH SURFHGXUH ZH REWDLQ WKH VHFRQG ODUJHVW VROXWLRQ ,W LV FDOOHG WKH ILUVW RUGHU PRGH LQGH[ 1Lf :KHQ 1 GHFUHDVHV WR PD[QV QJ QFf DOO SRVVLEOH VROXWLRQV RI (T ZRXOG KDYH EHHQ IRXQG DW HYHU\ VLJQ FKDQJH E\ WKH ELVHFWLRQ PHWKRG

PAGE 25

&KDUDFWHULVWLFV RI 1RUPDO 0RGHV LQ )LYHODYHU :DYHJXLGH 6WUXFWXUHV $V QXPHULFDO H[DPSOHV ZH ZLOO FRQVLGHU WZR FDVHV RQH V\PPHWULF FDVH DQG WKH RWKHU DV\PPHWULF $V D ILUVW H[DPSOH ZH FRQVLGHU D V\PPHWULF VWUXFWXUH ZLWK QV QJ QF DQG QL Q 'L _LP $ LP DQG WKH JDS EHWZHHQ WKH WZR SODQDU ZDYHJXLGHV 7 P 7KLV VSHFLILF ZDYHJXLGH VWUXFWXUH VXSSRUWV RQO\ IRXU JXLGHG PRGHV 7KH (\[f FRPSRQHQWV RI WKH IRXU 7( PRGHV RI WKLV ILYHOD\HU ZDYHJXLGH VWUXFWXUH DUH VKRZQ LQ )LJV DfGf $OO WKH ILHOG GLVWULEXWLRQV DUH QRUPDOL]HG E\ DVVXPLQJ HDFK PRGH WR KDYH D XQLW\ SRZHU 6DPH DV LQ WKH WKUHHOD\HU ZDYHJXLGH WKH QXPEHU RI ]HUR FURVVLQJV RI (\[f FRLQFLGHV ZLWK WKH PRGH QXPEHU ,Q DGGLWLRQ HYHQ PRGH KDV D V\PPHWULF ILHOG GLVWULEXWLRQ DQG DGG PRGH DQ DQWLV\PPHWULF GLVWULEXWLRQ 7KH HIIHFWLYH LQGLFHV RI HDFK PRGH DUH 1 1L 1 1 )RU WKH SXUSRVH RI UHIHUHQFH ZH FDOFXODWH WKH PRGH LQGH[ RI V\PPHWULF WKUHHOD\HU ZDYHJXLGH ZKLFK FRQVLVWV RI VXEVWUDWH ILOP DQG FRYHU OD\HU DQG LQGLFHV RI HDFK OD\HU DUH QV QI DQG QF UHVSHFWLYHO\ 7KH WKLFNQHVV RI ILOP OD\HU LV LP 7KLV VWUXFWXUH LV QRWKLQJ EXW RQH RI WKH WZR ZDYHJXLGHV ZDYHJXLGH $ RU %f LQ RXU ILYHOD\HU VWUXFWXUH ZLWK D LQILQLW\ JDS 7 f 8VLQJ D ZHOONQRZQ WKUHHOD\HU GLVSHUVLRQ HTXDWLRQ >.R@ ZH KDYH 1fD 1fE DQG 1LfD 1LfE 7R DYRLG WKH FRQIXVLRQ ZH GLVFULPLQDWH EHWZHHQ ILYHOD\HU QRUPDO PRGH DQG WKUHHOD\HU LQGLYLGXDO PRGH E\ WKH QRWDWLRQ 7KDW LV 1L LV WKH LWK PRGH LQGH[ RI WKH ILYHOD\HU QRUPDO PRGH DQG 12 D LV WKH LWK XQFRXSOHG WKUHHOD\HU LQGLYLGXDO PRGH LQ ZDYHJXLGH $ :H UHFRJQL]H WKH REYLRXV IDFW 1R}1fD R 1Lr1RfDR 1m1LfD L 1a1LfDL f

PAGE 26

)XQGDPHQWDO )LUVW RUGHU )LJ 1RUPDOL]HG ILHOG GLVWULEXWLRQ RI QRUPDO PRGHV 'L _LP ILP 7 ILP ; ILP QV QJ QF DQG QL Q Df 7KH IXQGDPHQWDO VROLG FXUYHf DQG WKH ILUVW RUGHU GRWWHG FXUYHf QRUPDO PRGH

PAGE 27

(OHFWULF ILHOG DUE XQLWf VHFRQG RUGHU 7KLUG RUGHU [ -LPf Ef )LJ FRQWLQXHG Ef 7KH VHFRQG RUGHU VROLG FXUYHf DQG WKH WKLUG RUGHU GRWWHG FXUYHf QRUPDO PRGH

PAGE 28

ZKHUH 1R1L 1 1 7KLV WUHQG LV SORWWHG LQ )LJ ZKHUH 1R 1L 1 DQG 1 DUH VKRZQ DV D IXQFWLRQ RI WKLFNQHVV 7 $V 7 LQFUHDVHV GHFUHDVHV DQG ZLWK WKH UHVXOW 1R DQG 1L FRQYHUJH LQWR WKH YDOXH RI 1RfD 7KH VDPH LV WUXH LQ WKH FDVH RI 6R 1 DQG 1 EHFRPHV 1LfD ,W PHDQV WKDW DV WKH VHSDUDWLRQ EHWZHHQ ZDYHJXLGH $ DQG % EHFRPHV ODUJH 1R DQG 1L EHFRPH GHJHQHUDWH DQG HTXDO 1RfD} DQG HDFK ZDYHJXLGH JLYHV QR LQIOXHQFH WR WKH RWKHU ZDYHJXLGH 2Q WKH RWKHU KDQG DQG EHFRPH ODUJHU DQG ODUJHU DV WKH JDS 7f FRQWLQXHV WR GHFUHDVH 6R IDU ZH KDYH LQYHVWLJDWHG WKH YDULRXV FKDUDFWHULVWLFV RI D V\PPHWULF ILYHOD\HU GLUHFWLRQDO FRXSOHU :H WXUQ RXU DWWHQWLRQ WR DQ DV\PPHWULF VWUXFWXUH 2XU DV\PPHWULF VWUXFWXUH KDV WKH VDPH GLPHQVLRQV DQG UHIUDFWLYH LQGLFHV DV WKH SUHYLRXV V\PPHWULF VWUXFWXUH KDV H[FHSW IRU SP ,Q )LJ ZH SUHVHQW WKH HOHFWULF ILHOG GLVWULEXWLRQ RI WKH ILUVW IRXU PRGHV RI DV\PPHWULF VWUXFWXUH ,Q RUGHU WR XQGHUVWDQG WKHVH ILHOG GLVWULEXWLRQV D FRPSDULVRQ EHWZHHQ LQGLYLGXDO PRGH LQGLFHV RI HDFK ZDYHJXLGH LV QHHGHG ,Q WKLV FDVH ZH KDYH 1RfD 1RfE 1LfD 1LfE $FFRUGLQJ WR WKLV RUGHU ZH FDQ LPDJLQH D URXJK ILHOG GLVWULEXWLRQ ZLWKRXW H[DFW FRPSXWDWLRQ 1RfD FRUUHVSRQGV WR 1R DQG D ILHOG GLVWULEXWLRQ RI 7(R WKH IXQGDPHQWDO PRGH RI 7( LQ ILYHOD\HU VWUXFWXUHf HVVHQWLDOO\ FRQVLVWV RI WKDW RI 7(RfD WKH IXQGDPHQWDO PRGH RI 7( PRGH LQ ZDYHJXLGH $f DQG D VPDOO OREH LQ ZDYHJXLGH % /LNHZLVH 1RfE FRUUHVSRQGV WR 1L DQG WKH ILHOG GLVWULEXWLRQ RI 7(L LV FRPSRVHG RI WKDW RI 7(RfE DQG D VPDOO OREH LQ ZDYHJXLGH $ DQG VR RQ $OVR LQ DV\PPHWULF VWUXFWXUHV WKH QXPEHU RI ]HURFURVVLQJ RI D PRGH LV WKH PRGH QXPEHU /HW XV FRQVLGHU D PRUH DV\PPHWULF FDVH ,I ZH VHW SP DQG DOO WKH RWKHU GLPHQVLRQV DQG UHIUDFWLYH LQGLFHV DUH VDPH DV EHIRUH 12 D DQG 12E VKRXOG EH FDOFXODWHG

PAGE 29

7 QPf )LJ 1RUPDO PRGH LQGLFHV DV D IXQFWLRQ RI 7

PAGE 30

)XQGDPHQWDO 2 [ -LPf Df )LJ 1RUPDOL]HG ILHOG GLVWULEXWLRQ RI QRUPDO PRGHV 'L LP _LP 7 _LP ; _[P QV QJ QF DQG QL Q Df 7KH IXQGDPHQWDO VROLG FXUYHf DQG GLH ILUVW RUGHU GRWWHG FXUYHf QRUPDO PRGH

PAGE 31

6HFRQG RUGHU 7KLUG RUGHU [ _;Pf Ef )LJ FRQWLQXHG Ef 7KH VHFRQG RUGHU VROLG FXUYHf DQG WKH WKLUG RUGHU GRWWHG FXUYHf RUPDO PRGH

PAGE 32

E\ WKH WKUHHOD\HU GLVSHUVLRQ HTXDWLRQ DQG WKHLU PDJQLWXGH FRPSDULVRQ LV DV IROORZV 1RfD !1LfD 1fE 7KHUHIRUH WKH ILHOG GLVWULEXWLRQ RI 7(R HVVHQWLDOO\ FRQVLVWV RI 7(RfD ZLWK D SHUWXUEDWLRQ LQ ZDYHJXLGH % $ ILHOG GLVWULEXWLRQ RI 7(M LV FRPSRVHG RI WKDW RI 7(LfD DQG D VPDOO OREH LQ ZDYHJXLGH % DQG IRU 7( ILHOG GLVWULEXWLRQ WKH ILOHG RI 7(RfE DQG D OLWWOH SHUWXUEDWLRQ LQ ZDYHJXLGH $ FDQ EH PDWFKHG 7KH FRPSXWHU FDOFXODWHG ILHOG GLVWULEXWLRQV IRU WKH 7(R 7(L DQG 7( PRGHV DUH VKRZQ LQ )LJ 1RZ ZH GHVFULEH WKH JHQHUDO FKDUDFWHULVWLFV RI D QRUPDO PRGH ILHOG GLVWULEXWLRQ LQ ILYHOD\HU VWUXFWXUHV EDVHG XSRQ SUHYLRXV UHVXOWV DQG PDQ\ RWKHU VLPXODWLRQV ZH KDYH GRQH 7KH JHQHUDO FKDUDFWHULVWLFV RI V\PPHWULF GLUHFWLRQDO FRXSOHUV DUH 7KH QXPEHU RI ]HURFURVVLQJ RI WKH JXLGHG PRGH FRUUHVSRQGV WR WKH PRGH QXPEHU 3RZHU FRQILQHPHQW IDFWRU RI ERWK LQGLYLGXDO ZDYHJXLGHV DUH LGHQWLFDO (YHQ PRGH ILOHG GLVWULEXWLRQ LV V\PPHWULF ZKLOH RGG PRGH GLVWULEXWLRQ LV DQWLV\PPHWULF 7KH QXPEHU 1Sf RI SHDN SRLQWV LQ WKH SRZHU SURILOH LV 1S ,QWLf f f ZKHUH L LV PRGH QXPEHU DQG ,QW[f LQWHJHU IXQFWLRQ 7KH JHQHUDO FKDUDFWHULVWLFV RI DV\PPHWULF GLUHFWLRQDO FRXSOHUV DUH 7KH QXPEHU RI ]HURFURVVLQJV RI WKH JXLGHG PRGH DJDLQ FRUUHVSRQGV WR WKH PRGH QXPEHU 'HSHQGLQJ XSRQ WKH DV\PPHWU\ SRZHU FRQILQHPHQW IDFWRU RI RQH ZDYHJXLGH KDYLQJ WKH PD[LPXP SHDN SRZHU SRLQW LV ODUJHU WKDQ WKDW RI WKH RWKHU ZDYHJXLGH $Q DSSUR[LPDWH ILHOG GLVWULEXWLRQ FDQ EH GUDZQ E\ FRQVLGHULQJ WKH ILHOG GLVWULEXWLRQ RI WKH FRUUHVSRQGLQJ LQGLYLGXDO PRGH LQ WKH XQFRXSOHG JXLGH DQG WKH QXPEHU RI ]HURFURVVLQJV DV ZHOO DV WKH VPRRWKQHVV DQG FRQWLQXLW\ RI D ILHOG

PAGE 33

)XQGDPHQWDO )LUVW RUGHU )LJ 1RUPDOL]HG ILHOG GLVWULEXWLRQ RI QRUPDO PRGHV 'L ILP LP 7 LP ; >LP QV QJ QF DQG QL Q Df 7KH IXQGDPHQWDO VROLG FXUYHf DQG WKH ILUVW RUGHU GRWWHG FXUYHf QRUPDO PRGH

PAGE 34

(OHFWULF ILHOG DUE XQLWf 6HFRQG RUGHU [ _LPf Ef )LJ FRQWLQXHG Ef 7KH VHFRQG RUGHU VROLG FXUYHf QRUPDO PRGH

PAGE 35

$GLDEDWLF 7KHRUHP LQ 2SWLFDO 'HYLFHV ,W LV SRVVLEOH WR SUHGLFW TXDOLWDWLYHO\ WKH RXWSXW SRZHU SURILOH LQ ]YDULDQW GHYLFHV ZLWKRXW FRPSOLFDWHG QXPHULFDO FDOFXODWLRQV E\ XWLOL]LQJ WKH DGLDEDWLF WKHRUHP LQ FRQMXQFWLRQ ZLWK WKH QRUPDO PRGH WKHRU\ ,Q WKLV VHFWLRQ ZH FRQVLGHU ILUVW WKH DGLDEDWLF WKHRUHP DSSO\ LW WR %X
PAGE 36

)LJ $ VFKHPDWLF RI ILHOG HYROXWLRQ DORQJ WKH
PAGE 37

DGLDEDWLF SURSHUW\ LV LOOXVWUDWHG 7KHVH UHVXOWV ZHUH YHULILHG H[SHULPHQWDOO\ E\ 6L@ $ VFKHPDWLF RI WKH FURVV FRXSOHU LV VKRZQ LQ )LJ Df /HW XV DVVXPH WKDW WKH FURVV FRXSOHU PHHWV WKH DGLDEDWLF FRQGLWLRQ QDPHO\ WKH DQJOH EHWZHHQ WKH EUDQFKHV LV VXIILFLHQWO\ VPDOO HQRXJK IRU WKH QRUPDO PRGH SRZHU WR EH FRQVHUYHG LQ WKH VDPH PRGH DORQJ WKH FRXSOHU :LGWKV RI DOO IRXU EUDQFKHV DUH DSSURSULDWHO\ FKRVHQ IRU VLQJOH PRGH SURSDJDWLRQ ZKLOH WKH ZLGWK RI FHQWHU UHJLRQ LV ZLGH HQRXJK WR KDYH WZR PRGHV SURSDJDWH 6XSSRVLQJ WKDW ZH H[FLWH WKH QDUURZHU EUDQFK RI WKH LQSXW VLGH XVLQJ D VLQJOHn OREH LQSXW EHDP ZKLFK LV HVVHQWLDOO\ WKH ILUVW RUGHU QRUPDO PRGH LQ WKH ILYHOD\HU VWUXFWXUH FRQVLVWLQJ RI WKH WZR DV\PPHWULF JXLGHV WKH JDS LQ EHWZHHQ WKH JXLGHV DQG WKH WZR RXWHU FODGGLQJV $V WKH ILUVW RUGHU PRGH LQ WKH LQSXW VLGH SURSDJDWHV WRZDUG WKH FHQWHU UHJLRQ DQG VHSDUDWLRQ EHFRPHV VPDOOHU WKH DGLDEDWLF FRQGLWLRQ UHTXLUHV WKDW WKH HQHUJ\ UHPDLQ LQ WKH ILUVW RUGHU PRGH 7KLV LPSOLHV WKDW WKH ILHOG GLVWULEXWLRQ KDV WR JUDGXDOO\ HYROYH IURP DQ HVVHQWLDOO\ VLQJOHOREH GLVWULEXWLRQ WR WZROREH GLVWULEXWLRQ ZLWK D SKDVH VKLIW RI b EHWZHHQ WKHP 7KLV FRUUHVSRQGV WR WKH ILUVW RUGHU PRGH RI WKH GRXEOHPRGHG FHQWHU UHJLRQ DQG WKH SRZHU SURILOHV DW WKH FHQWHU UHJLRQ VKRXOG QRZ KDYH WZR HTXDO OREHV 6LQFH WKH RXWSXW EUDQFKHV DUH V\PPHWULF WKH LQSXW SRZHU LV HTXDOO\ GLYLGHG EHWZHHQ WKH WZR EUDQFKHV DV WKH EHDP SURSDJDWHV WRZDUG WKH RXWSXW )LQDOO\ ZH KDYH HTXDO SRZHU SURILOHV ZLWK WKH ILHOG DPSOLWXGHV H[KLELWLQJ D W SKDVH GLIIHUHQFH DW WKH RXWSXW EUDQFKHV ,Q )LJ Ef DQG Ff ZH SUHVHQW WKH VFKHPDWLF UHSUHVHQWDWLRQ RI WKH HYROXWLRQ RI WKH ILHOGV DORQJ WKH FURVV FRXSOHU IRU ERWK WKH ILUVW RUGHU QRUPDO PRGH DQG WKH IXQGDPHQWDO QRUPDO PRGH LQSXW UHVSHFWLYHO\ )RU WKH IXQGDPHQWDO PRGH LQSXW ZH H[FLWH D VLQJOHOREH LQSXW EHDP LQ WKH ZLGHU LQSXW EUDQFK $ VPDOO OREH ZLWK WKH ILHOG DPSOLWXGH ZKRVH SKDVH LV WKH VDPH DV WKDW RI WKH OREH LQ WKH ZLGHU EUDQFK LV EXLOW XS LQ WKH QDUURZHU EUDQFK DV WKH IXQGDPHQWDO PRGH

PAGE 38

Ef )LJ $ VFKHPDWLF RI ILHOG HYROXWLRQV DORQJ WKH FURVV FRXSOHU Df 6WUXFWXUH RI DQ DV\PPHWULF FURVV FRXSOHU Ef )RU WKH ILUVW RUGHU QRUPDO PRGH LQSXW Ff )RU WKH IXQGDPHQWDO QRUPDO PRGH LQSXW

PAGE 39

DSSURDFKHV WKH FHQWHU UHJLRQ ,Q WKLV FDVH ZH KDYH HTXDOO\ GLYLGHG SRZHU LQ ERWK WKH V\PPHWULF RXWSXW EUDQFKHV ZLWK WKHLU ILHOG DPSOLWXGH LQ SKDVH 6R IDU ZH KDYH GLVFXVVHG WKH QRUPDO PRGH WKHRU\ DQG WKH DGLDEDWLF WKHRUHP LQ ILYH OD\HU VWHSLQGH[ ZDYHJXLGHV 7KHVH FRQFHSWV DUH H[WHQGHG IXUWKHU LQ WKH QH[W FKDSWHU IRU QXPHULFDO DQDO\VLV RI JUDGHG LQGH[ FKDQQHO ZDYHJXLGH 79&

PAGE 40

&+$37(5 7+5(( 7$3(5(' %27+ ,1 ,1'(; $1' ,1 ',0(16,21 9(/2&,7< &283/(5 ,1 7L/L1E ,Q 7L/L1E ZDYHJXLGHV ZLGWK RI D 7L VWULS EHIRUH LWV GLIIXVLRQ JRYHUQV QRW RQO\ WKH ZDYHJXLGH GLPHQVLRQ EXW DOVR GHWHUPLQHV WKH SHDN LQGH[ FKDQJH DW WKH FHQWHU RI GLIIXVLRQ SURILOH :LWKLQ VLQJOH PRGH UHJLPH WKH SHDN LQGH[ FKDQJH DW FHQWHU RI WKH 7L VWULS PRQRWRQLFDOO\ LQFUHDVHV DQG WKHQ VDWXUDWHV DW WKH SODQDU ZDYHJXLGH YDOXH ZLWK LQFUHDVH RI VWULS ZLGWK 7KHUHIRUH D WDSHUHG 7L VWULS \LHOGV QDWXUDOO\ D FKDQQHO ZDYHJXLGH ZLWK LWV ERWK LQGH[ DQG GLPHQVLRQ WDSHUHG VR WKDW LW FDQ EH XVHG LQ D WDSHUHG YHORFLW\ FRXSOHU IRU UHGXFLQJ OHQJWK RI WKH FRXSOHU ,Q .LP DQG 5DPDVZDP\ >.LD@ UHSRUWHG IRU WKH ILUVW WLPH WKH UHDOL]DWLRQ RI D WDSHUHG YHORFLW\ FRXSOHU 79&f XVLQJ 7L GLIIXVHG FKDQQHO ZDYHJXLGHV LQ /L1E&! %\ YLUWXH RI WKH IDFW WKDW WDSHULQJ H[LVWV ERWK LQ LQGH[ DQG LQ GLPHQVLRQ RI WKH FKDQQHO ZDYHJXLGHV RI WKH 79& ZH ZHUH DEOH WR UHGXFH D GHYLFH OHQJWK DV PXFK DV RQHTXDUWHU RI PLQLPXP OHQJWK SRVVLEOH DV SUHGLFWHG E\ 0LOWRQ DQG %XPV >0L@ ZKLOH PDLQWDLQLQJ WKH FRXSOHU LQ WKH DGLDEDWLF UHJLPH $OWKRXJK FRPSOHWH SRZHU WUDQVIHU ZDV DFKLHYHG ZKLOH VDWLVI\LQJ WKH DGLDEDWLF FRQGLWLRQ WKH WKHRUHWLFDO PRGHO WKDW XVHG LQ >.LD@ ZDV LQDGHTXDWH LQ SUHGLFWLQJ WKH EHKDYLRU RI WKH 79& ,Q WKLV FKDSWHU ZH DQDO\]H WKH VWUXFWXUH E\ XVLQJ ORFDO QRUPDO PRGHV RI WKH HQWLUH VWUXFWXUH DQG H[WHQG WKH FRQFHSW E\ FRQVLGHULQJ D FDUHIXOO\ GHVLJQHG WDSHUHG YHORFLW\ FRXSOHU 79&f WKDW LV WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ ZKLFK PHHWV WKH DGLDEDWLF LQYDULDQFH FRQGLWLRQ ZLWK VXIILFLHQWO\ VWURQJ FRXSOLQJ EHWZHHQ WKH IXQGDPHQWDO PRGHV RI LQGLYLGXDO JXLGHV LQ WKH FHQWHU UHJLRQ RI WKH FRXSOHU ZKLOH SHUPLWWLQJ LQGLYLGXDO

PAGE 41

H[FLWDWLRQ DW WKH LQSXW HQG DQG VRUWLQJ RI WKH PRGHV DW WKH RXWSXW HQG 7KLV DSSURDFK KHOSV UHGXFH WKH GHYLFH OHQJWK FRQVLGHUDEO\ E\ SHUPLWWLQJ PXFK KLJKHU WDSHU DQJOH :H PRGHO D 79& WKDW FRQVLVW RI RQH WDSHUHG DQG DQRWKHU VWUDLJKW JUDGHG LQGH[ ZDYHJXLGH E\ XVLQJ QRUPDO PRGHV RI WKH HQWLUH FRPSRVLWH 79& VWUXFWXUH >.LD@ 7KH DQDO\WLFDO UHVXOWV DUH LQ H[FHOOHQW DJUHHPHQW ZLWK H[SHULPHQWDO UHVXOWV LQ D 79& IDEULFDWHG LQ 7L/L1E&! VXEVWDQWLDWLQJ WKH SRVVLELOLW\ RI D VKRUWOHQJWK 79& ,Q SDUWLFXODU ZH VKRZ WKDW WKH UHSUHVHQWDWLRQ RI WKH ORFDO QRUPDO PRGHV DV WKH VXSHUSRVLWLRQ RI WKH PRGHV RI WKH XQFRXSOHG JXLGHV OHDGV WR HUURQHRXV UHVXOWV DV WKH DYRLGDQFH RI PRGH FRQYHUVLRQ EHWZHHQ WKH ORFDO QRUPDO PRGHV LQ D UHDVRQDEO\ VKRUW OHQJWK 79& LQYDULDEO\ LQYROYHV VWURQJ FRXSOLQJ EHWZHHQ WKH JXLGHV DQG WKDW WKH XVH RI DFWXDO ORFDO QRUPDO PRGHV RI WKH 79& VWUXFWXUH XQGHU FRQVLGHUDWLRQ LV LPSHUDWLYH LQ WKH PRGHOLQJ WR DFFXUDWHO\ GHVFULEH WKH GHYLFH 6LQJOH 0RGH &KDQQHO *XLGH 1RUPDO 0RGH $QDO\VLV DQG )LHOG 3URILOH %HIRUH GHVFULELQJ WKH 79& ZH SUHVHQW WKH UHVXOWV RI WKH QXPHULFDO DQDO\VLV DQG WKH H[SHULPHQWDO YHULILFDWLRQ RI WKH QRUPDO PRGH LQGH[ DQG WKH DVVRFLDWHG ILHOG SURILOH IRU D VLQJOH PRGH VWUDLJKW FKDQQHO ZDYHJXLGH 7KH UHVXOWV DUH XVHG ODWHU WR GHVFULEH WKH FKDUDFWHULVWLFV RI ORFDO QRUPDO PRGH RI WKH FRPSRVLWH WDSHUHG YHORFLW\ FRXSOHU 7KH UHIUDFWLYH LQGH[ SURILOH RI DQ LQGLYLGXDO 7L GLIIXVHG /L1E&! FKDQQHO ZDYHJXLGH LQ JHQHUDO FDQ EH H[SUHVVHG DV Q[\f QE $Q7WZf *[f (UI\f f ZKHUH QE LV WKH EXON LQGH[ 7 DQG W DUH GLIIXVLRQ WHPSHUDWXUH DQG GLIIXVLRQ WLPH UHVSHFWLYHO\ Z LV WKH WLWDQLXP VWULS ZLGWK *[f LV WKH QRUPDOL]HG *DXVVLDQ IXQFWLRQ ZLWK *f DQG (UI\f LV D QRUPDOL]HG OLQHDU FRPELQDWLRQ RI WKH HUURU IXQFWLRQV ZLWK (UIf

PAGE 42

DV ZHOO 7KH H[DFW LQGH[ GLVWULEXWLRQ VXEVWDQWLDWHG E\ WKH H[SHULPHQWDO UHVXOWV RI )XNXPD HW DO >)X@ TXDOLWDWLYHO\ LOOXVWUDWHG LQ )LJ Df LV JLYHQ E\ Q[\f QE $Q H[S[G[ff M HUIAHUIAf HUIASf 8\ f ZKHUH [ UHSUHVHQWV WKH GHSWK GLUHFWLRQ DQG \ LV PHDVXUHG DORQJ WKH ZLGWK RI WKH WLWDQLXP VWULS IURP LWV PLGSRLQW 7KH SURSDJDWLRQ GLUHFWLRQ LV DVVXPHG WR EH DORQJ WKH ] D[LV )XUWKHUPRUH QE EXON LQGH[nRI /L1E&! GQGF UDWH RI FKDQJH RI LQGH[ ZLWK FRQFHQWUDWLRQ [ 7L VWULS WKLFNQHVV} Z 7L VWULS ZLGWK rU! 7 GLIIXVLRQ WHPSHUDWXUH LQ W GLIIXVLRQ WLPH LQ KRXUV G[ A'[W DQG G\ \'\W 7KH YDOLGLW\ RI WKH DERYH H[SUHVVLRQ KDYH EHHQ YHULILHG E\ D QXPEHU RI UHVHDUFKHUV >.LE .R 6X@ )RU RXU RSHUDWLQJ FRQGLWLRQ ZH KDYH QE VXEVWUDWH LQGH[ Qf IRU TXDVL 7( PRGH DQG GQGF DW ; -LP 7LWDQLXP ILOP RI WKLFNQHVV [ ƒ ZDV GHSRVLWHG RYHU D ] FXW /L1E FU\VWDO ZLWK DQ HEHDP HYDSRUDWRU DQG D VWULS ZLGWK RI Z SP ZDV GHOLQHDWHG XVLQJ VWDQGDUG SKRWROLWKRJUDSK\ WHFKQLTXHV DQG ZHW

PAGE 43

' LQGH[ SURILOH Q[\f Q[\f 7 ; Df Q[\f Ef )LJ $ VFKHPDWLF RI JUDGHG LQGH[ SURILOH RI D 7L/L1E&! FKDQQHO ZDYHJXLGH Df $ VFKHPDWLF FURVV VHFWLRQ RI D 7L/L1E FKDQQHO ZDYHJXLGH 7KH JUDGXDO LQGH[ FKDQJH LV TXDOLWDWLYHO\ LOOXVWUDWHG E\ YDU\LQJ GHJUHH RI WKH VKDGRZ LQ WKH GLIIXVHG UHJLRQ Ef *UDGHG LQGH[ SURILOH DORQJ WKH GHSWK GLUHFWLRQ DQG WKH VWDLU FDVH DSSUR[LPDWLRQ RI WKH SURILOH

PAGE 44

HWFKLQJ SURFHVV 7KH GLIIXVLRQ ZDV FDUULHG RXW DW D WHPSHUDWXUH 7 r& IRU W KRXUV LQ D ZHW R[\JHQ DWPRVSKHUH WR PLQLPL]H /L RXW GLIIXVLRQ DQG WR HQVXUH WKH FU\VWDO UHPDLQV IXOO\ R[LGL]HG WKURXJK WKH HQWLUH GLIIXVLRQ SURFHVV 7KH HQG IDFHV RI WKH FU\VWDOV DUH SROLVKHG WR IDFLOLWDWH QHDU ILHOG PHDVXUHPHQWV )RU RXU IDEULFDWLRQ FRQGLWLRQ '[ '\ [ _LPVHF G[ G\ OLP 9HU\ EULHIO\ ZH RXWOLQH WKH DQDO\WLFDO DSSURDFK LQFOXGLQJ WKH HIIHFWLYH LQGH[ (Of PHWKRG DQG WKH PXOWLOD\HU VWDFN DQDO\VLV DV ZH XVH WKHP H[WHQVLYHO\ LQ WKH VXEVHTXHQW VHFWLRQV IRU WKH DQDO\VLV RI WKH 79& VWUXFWXUH 7R FRQYHUW WKH WZR GLPHQVLRQDO LQGH[ SURILOH LQWR RQH GLPHQVLRQDO SURILOH ZH XVH WKH (O PHWKRG )LJXUH Ef LOOXVWUDWHV WKH JUDGHG LQGH[ *DXVVLDQ SURILOH *[f DW D JLYHQ GLVFUHWH SRVLWLRQ DORQJ WKH \D[LV 7KH *DXVVLDQ SURILOH FDQ EH FRQYHQLHQWO\ DSSUR[LPDWHG E\ D VWDLUFDVH VWHSLQGH[ SURILOH ZLWK LWV VXUIDFH LQGH[ DW WKDW SRVLWLRQ DORQJ \ DQG LV JLYHQ E\ QV\f Q\f QE $QZf (UI\f f :H QXPHULFDOO\ VROYH WKH DSSUR[LPDWHG VWHS LQGH[ SURILOH DW D JLYHQ SRVLWLRQ \ E\ XVLQJ WKH PXOWLOD\HU VWDFN DQDO\VLV >+X 7K@ %\ FRQVLGHULQJ D PXOWLOD\HU LQILQLWH VODE LQ WKH \ GLUHFWLRQ ZLWK U OD\HUV DQG WZR VHPLLQILQLWH UHJLRQV DERYH DQG EHORZ UHSUHVHQWLQJ WKH VXUIDFH DQG WKH VXEVWUDWH ZH FDQ UHSUHVHQW HDFK LWK OD\HU ZLWK DSSURSULDWH LQGH[ QL DQG WKLFNQHVV T [c [BL` LQ WKH [ GLUHFWLRQ WKXV DSSUR[LPDWLQJ WKH *DXVVLDQ SURILOH 7KH ILHOG DPSOLWXGHV IRU H[DPSOH IRU WKH TXDVL 7( PRGH H\ K[ K]f DW HDFK LWK OD\HU VODEf FDQ EH ZULWWHQ DV ) Y Dc FRV8Mf Ec VLQXcf LI1A L: r Dc FRVKXcf Ec VLQKXcf LI 1 Qc f ZKHUH XL NL[L[f

PAGE 45

X NL[ [Lf L U NL ?3Q"NR 1 SNR HIIHFWLYH PRGH LQGH[ NR IUHH VSDFH SURSDJDWLRQ FRQVWDQW DQG 3 SURSDJDWLRQ FRQVWDQW RI WKH PRGH :H DSSO\ WKH DSSURSULDWH ERXQGDU\ FRQGLWLRQV DW HDFK LQWHUIDFH RI WKH VODE )RU WKH TXDVL 7( PRGH WKH ILHOG DPSOLWXGH ) FRUUHVSRQGLQJ WR H\[f DQG LWV GHULYDWLYH G)G[ DUH FRQWLQXRXV DW U LQWHUIDFHV 7KXV ZH KDYH UOf HTXDWLRQV ,Q DGGLWLRQ ZH KDYH WZR HTXDWLRQV LQ WKH UHJLRQ DQG U ZKHUH ZH KDYH )L a H[S[f IRU [ [L UHVXOWLQJ LQ DL EL DQG )U a H[S[f IRU [ [U ZLWK DU EU 7KXV ZH KDYH UOf XQNQRZQV YL] DM D DU EL O! fff EU DQGS ,Q DGGLWLRQ ZH KDYH DOVR DQ HTXDWLRQ IRU WKH QRUPDOL]DWLRQ RI WKH ILHOG LQWHQVLW\ f %\ VROYLQJ VXFFHVVLYHO\ IRU WKH HIIHFWLYH PRGH LQGH[ 1 DW HDFK GLVFUHWH SRVLWLRQ \ IRU WKH LQGH[ SURILOH *[f ZH FDQ VROYH IRU WKH HIIHFWLYH LQGH[ SURILOH 1\f $V DOZD\V WKLV YDOXH LV ERXQGHG E\ WKH VXUIDFH LQGH[ DW WKDW SRLQW QV\f DQG WKH VXEVWUDWH LQGH[ QE DW HDFK SRVLWLRQ \ )LJXUH VKRZV WKH FRQYHUWHG LQGH[ SURILOH 1\f FDOFXODWHG IURP WKH LQGH[ SURILOH Q[\f IRU D LP ZLGH 7L/L1E&! FKDQQHO ZDYHJXLGH 7KH GRWWHG OLQH FXUYH UHSUHVHQWV WKH FRQYHUWHG SURILOH 1\f QW! 7KH ILJXUH DOVR VKRZV WKH VXUIDFH LQGH[ SURILOH QV\f QE LQGLFDWHG E\ WKH VROLG OLQH )RU WKH SXUSRVH RI UHIHUHQFH WKH MDP ZLGH 7L VWULS LV DOVR VKRZQ 7KH DERYH LQGH[ SURILOH 1\f LQ )LJ LV VROYHG RQFH DJDLQ E\ XVLQJ WKH PXOWLOD\HU VWDFN DQDO\VLV QRZ IRU WKH TXDVL 70 PRGH H\\f VR WKDW WKH SRODUL]DWLRQ RI WKH RULJLQDO TXDVL 7( PRGH ILHOG UHPDLQV FRQVLVWHQW 7KH QRUPDOL]HG LQWHQVLW\ VTXDUH RI WKH

PAGE 46

\ LPf )LJ &RQYHUWHG LQGH[ SURILOH 1\fQE GRWWHG FXUYHf DQG DFWXDO VXUIDFH LQGH[ SURILOH QV\fQE VROLG FXUYHf RI D _LP ZLGH FKDQQHO ZDYHJXLGH

PAGE 47

HOHFWULF ILHOGf SURILOH RI WKH IXQGDPHQWDO PRGH LV LOOXVWUDWHG LQ )LJ E\ WKH VROLG OLQH 7KH QHDU ILHOG LQWHQVLW\ SURILOH ZDV PHDVXUHG E\ ODXQFKLQJ WKH OLJKW IURP DQ SP ODVHU GLRGH LQWR D VLQJOH PRGH ILEHU ZKLFK ZDV WKHQ XVHG WR H[FLWH WKH TXDVL 7( PRGH LQ SP ZLGH JXLGH 7KH RXWSXW ZDV FROOHFWHG ZLWK DQ REMHFWLYH DQG IRFXVHG RQ WR D JHUPDQLXP GHWHFWRU SODFHG DW WKH LPDJH SODQH WKURXJK D SP SLQ KROH 7KH RXWSXW ZDV VFDQQHG SDUDOOHO WR WKH VXEVWUDWH SODQH DFURVV WKH \ GLUHFWLRQ DW WKH SHDN LQWHQVLW\ SRVLWLRQ LQ WKH [ GHSWKf GLUHFWLRQ DQG LV VKRZQ E\ WKH GRWWHG OLQH $V VHHQ IURP WKH ILJXUH H[FHOOHQW DJUHHPHQW LV REWDLQHG EHWZHHQ WKH WKHRUHWLFDO DQDO\VLV DQG WKH H[SHULPHQWDO UHVXOW 7KH FDOFXODWHG IXQGDPHQWDO PRGH LQGH[ 1 Nf IRU WKH SP ZLGH JXLGH LV DW SP 2QFH ZH ZHUH VDWLVILHG ZLWK WKH DFFXUDF\ RI WKH FKDQQHO ZDYHJXLGH UHSUHVHQWDWLRQ ZH YDULHG VWULS ZLGWK RI WLWDQLXP IURP SP WR SP DQG FDOFXODWHG WKH HIIHFWLYH PRGH LQGLFHV 1 1L DQG 1 RI WKH ILUVW WKUHH PRGHV RI WKH FKDQQHO ZDYHJXLGH 7KHVH QRUPDO PRGH LQGLFHV RI WKH LQGLYLGXDO FKDQQHO ZDYHJXLGHV DUH SORWWHG LQ )LJ ZKHUH WKH PD[LPXP VXUIDFH LQGH[ Qf DW WKH VXUIDFH GRWWHG OLQHf LV DOVR LQFOXGHG 1RWH WKDW WKH IXQGDPHQWDO PRGH LV FXW RII DW DERXW SP 7KH JXLGH UHPDLQV VLQJOH PRGHG WLOO DURXQG SP DW ZKLFK SRLQW WKH ILUVW RUGHU PRGH EHJLQV WR SURSDJDWH 1 YDULHV IURP WR DV Z LV FKDQJHG IURP WR SP $OWKRXJK WKH FXWRII ZDYHOHQJWKV RI WKH JXLGHV LQ WKH 79& ZKLFK DUH VWURQJO\ FRXSOHG ZLOO EH GLIIHUHQW WKHVH UHVXOWV QHYHUWKHOHVV DUH XVHIXO LQ WKH SUHOLPLQDU\ GHVLJQ RI 79& :KHQ WKH JDS LQ WKH WDSHUHG FRXSOHU GHYLFH EHFRPHV TXLWH ODUJH WKH QRUPDO PRGHV DSSURDFK WKH PRGHV RI WKH XQFRXSOHG FDVH DQG WKHVH UHVXOWV DUH GLUHFWO\ DSSOLFDEOH 7DSHUHG %RWK LQ ,QGH[ DQG LQ 'LPHQVLRQ 9HORFLW\ &RXSOHU )LJXUH Df LOOXVWUDWHV WKH VFKHPDWLF VNHWFK RI WKH GHOLQHDWHG 7L VWULS ZDYHJXLGH SDWWHUQV RQ D ] /L1E&! VXEVWUDWH SULRU WR GLIIXVLRQ RI WKH WDSHUHG YHORFLW\ VWUXFWXUH ,W FRQVLVWV RI D SP ORQJ XQLIRUP 7L VWULS RI ZLGWK SP DQG DQ HTXDOO\ WKLFN SP WR

PAGE 48

)LJ 7KHRUHWLFDO VROLG FXUYHf DQG H[SHULPHQWDO GDVKHG FXUYHf LQWHQVLW\ SURILOHV RI WKH TXDVL 7( IXQGDPHQWDO PRGH IRU D 7L/L1E JUDGHG LQGH[ SP ZLGH ZDYHJXLGH

PAGE 49

:LGWK RI :DYHJXLGH _LPf )LJ 4XDVL 7( PRGH LQGLFHV VROLG FXUYHf IRU WKH ILUVW WKUHH PRGHV DQG PD[LPXP VXUIDFH LQGH[ GDVKHG FXUYHf RI 7L/L1E FKDQQHO ZDYHJXLGHV

PAGE 50

7L VWULS Ef )LJ 6FKHPDWLFV RI /L1E&! VDPSOH Df ZLWK LWV GHOLQHDWHG SDWWHUQ DQG EHIRUH 7L GLIIXVLRQ RQ ] VXUIDFH DQG Ef ZLWK LQGH[ SURILOH ZLWK FRRUGLQDWH V\VWHP DIWHU GLIIXVLRQ

PAGE 51

SP ZLGH SP ORQJ WDSHUHG 7L VWULS VHSDUDWHG E\ D FRQVWDQW JDS 2QO\ WKH VWUDLJKW FKDQQHO LV H[WHQGHG WR WKH LQSXW HQG WR SUHYHQW LQSXW OLJKW IURP FRXSOLQJ LQWR WKH WDSHUHG FKDQQHO 7KH GLIIXVHG LQGH[ SURILOHV DUH TXDOLWDWLYHO\ LOOXVWUDWHG LQ )LJ Ef DQG WKH JUDGXDO LQFUHDVH LQ WKH LQGH[ RI WKH WDSHUHG JXLGH ZLWK Z LV LOOXVWUDWHG E\ WKH GDUNHU UHJLRQ 7KH ]D[LV LV FKRVHQ WR FRLQFLGH ZLWK WKH EHJLQQLQJ RI WKH WDSHUHG JXLGH EXW DV EHIRUH WKH [\ RULJLQ LV ORFDWHG DW WKH FHQWHU RI WKH SP ZLGH VWUDLJKW JXLGH $W WKH LQSXW WKH LQGH[ RI WKH VWUDLJKW JXLGH LV ODUJHU WKDQ WKDW RI WKH WDSHUHG JXLGH DQG YLFH YHUVD DW WKH RXWSXW DV D UHVXOW WKH PRGHV DUH ZHOO JXLGHG H[FHSW IRU WKH SP JXLGH DW WKH LQSXWf DQG ZHDNO\ FRXSOHG SHUPLWWLQJ H[FLWDWLRQ RI WKH LQGLYLGXDO ZDYHJXLGHV ERWK DW WKH LQSXW DQG RXWSXW $W WKH FHQWHU ZKHUH WKH JXLGHV DUH RI HTXDO ZLGWK DQG KHQFH LGHQWLFDO WKH\ DUH VWURQJO\ FRXSOHG SHUPLWWLQJ D ODUJHU $3W$=W 7R VROYH IRU WKH ILHOG SURILOH RI 79& DW DQ\ SRLQW DORQJ LWV OHQJWK ZH PXVW FRQVLGHU WKH HYROXWLRQ RI WKH PRGH SURILOH DORQJ WKH WDSHU 7R DFFRPSOLVK WKDW ZH QHHG WKH NQRZOHGJH RI WKH QRUPDO PRGH LQGH[ 1 DQG WKH ILHOG H\[\f DW DQ\ SRLQW DORQJ WKH WDSHU E\ WUHDWLQJ LW DV LI LW LV D XQLIRUP GLUHFWLRQDO FRXSOHU LQILQLWH LQ H[WHQW LQ WKH ] GLUHFWLRQ FRQVLVWLQJ RI WZR JUDGHG LQGH[ JXLGHV RI FRQVWDQW ZLGWKV RQH FRUUHVSRQGLQJ WR D VWUDLJKW JXLGH DQG WKH RWKHU WR WKH ZLGWK RI WKH WDSHUHG JXLGH DW WKDW SRLQW VHSDUDWHG E\ WKH VDPH JDS 7KH HLJHQ YDOXHV 1 DQG H\\ff REWDLQHG WKURXJK WKH (O PHWKRG DUH WKH VROXWLRQV RI WKH HLJHQ PRGH DW WKDW SRLQW UHIHUUHG WR DV WKH ORFDO QRUPDO PRGH ,Q RUGHU WR VROYH IRU WKH HLJHQ YDOXHV RI WKH ORFDO QRUPDO PRGH ZH DVVXPH WKH FRPSRVLWH LQGH[ SURILOH RI WKH VWUXFWXUH DW DQ\ SRLQW LV WKH VXSHUSRVLWLRQ RI WKH LQGH[ SURILOHV RI WKH VWUDLJKW SP FKDQQHO DQG WKH WDSHUHG FKDQQHO ZLGWK EHWZHHQ SP DQG SPf DW WKDW SRLQW )RU WKH SXUSRVH RI GLVFXVVLRQ ZH ZLOO LGHQWLI\ WKH GLIIXVHG ZDYHJXLGHV E\ UHIHUULQJ WR WKH VWULS ZLGWK SULRU WR GLIIXVLRQ $V EHIRUH WKH FRQYHUWHG LQGH[ SURILOH LH WKH HIIHFWLYH LQGH[ FKDQJH 1\f QE RI WKH FRPSRVLWH LQGH[ SURILOH IRU WKH TXDVL 7( PRGH LV REWDLQHG E\ WKH XVH RI (O PHWKRG DQG LV SORWWHG LQ )LJ 7KUHH FXUYHV DUH VKRZQ RQH DW HDFK HQG RI WKH WDSHUHG FRXSOHU DQG D WKLUG RQH DW WKH PLG SRLQW

PAGE 52

(IIHFWLYH ,QGH[ &KDQJH 1&\fAf )LJ U 2XWSXW HQG 0LGGOH RI WKH FRXSOHU ? ,QSXW HQG \SPf (IIHFWLYH LQGH[ FKDQJH 1\fQEf DW WKH LQSXW HQG VROLG FXUYHf PLGGOH RI WKH FRXSOHU GDVKHG FXUYHf DQG WKH RXWSXW HQG GRWWHG OLQHf

PAGE 53

RI WKH FRXSOHU ,W LV LQWHUHVWLQJ WR QRWH WKH SHUWXUEDWLRQ RI WKH HIIHFWLYH LQGH[ SURILOH DW WKH LQSXW HQG LV UDWKHU VPDOO VLQFH WKH LQGH[ RI WKH QDUURZHU JXLGH LV VPDOOHU ZKHUH DV DW WKH RXWSXW HQG WKH ZLGHU WDSHUHG JXLGH H[KLELWV D ODUJHU LQGH[ FKDQJH DQG KHQFH LQIOXHQFHV WKH SURILOH PRUH VWURQJO\ $V H[SHFWHG WKH SURILOH LV V\PPHWULFDO DW WKH PLGSRLQW RI WKH FRXSOHU 7KH ORFDWLRQ RI WKH 7L VWULSV RI ERWK WKH VWUDLJKW DQG WKH WDSHUHG FKDQQHO ZDYHJXLGH DUH VKRZQ LQ WKH ILJXUH ,Q DGGLWLRQ WKH GDUNQHVV VKDGRZf RI WKH VWULS LV LQGLFDWLYH RI WKH DPRXQW RI LQGH[ FKDQJH GXH WR 7L LQ GLIIXVLRQ DQG GHSWK RI WKH VWULS KDV QR SK\VLFDO PHDQLQJ 'DUNHU VKDGRZ UHSUHVHQWV VWURQJHU ZDYHJXLGHV $V EHIRUH WKH HIIHFWLYH LQGH[ SURILOH RI WKH FRPSRVLWH VWUXFWXUH ZDV VROYHG E\ XVLQJ PXOWLOD\HU VWDFN DQDO\VLV QRZ IRU WKH TXDVL 70 PRGH VR WKDW ZH DUH FRQVLVWHQW 7KH IXQGDPHQWDO DQG WKH ILUVW RUGHU ORFDO QRUPDO PRGH LQGLFHV QDPHO\ 1 DQG 1L IRU WKH TXDVL 7( PRGH DV ZHOO DV WKH LQWHQVLW\ SURILOHV RI WKHVH PRGHV ZHUH FDOFXODWHG DV D IXQFWLRQ RI WKH ZLGWK RI WKH WDSHUHG JXLGH IRU YDULRXV JDSV 7KH QRUPDOL]HG LQWHQVLW\ SURILOH DW WKH LQSXW RI WKH GHYLFH DW ] LV LOOXVWUDWHG LQ )LJ 7KH WKHRUHWLFDO LQWHQVLW\ SURILOH RI WKH XQFRXSOHG SP FKDQQHO ZDYHJXLGH UHSORWWHG IURP )LJ LV DOVR VKRZQ LQ WKH VDPH ILJXUH &OHDUO\ WKH IXQGDPHQWDO PRGH RI WKH FRPSRVLWH VWUXFWXUH QHDUO\ FRLQFLGHV ZLWK WKDW RI WKH LQGLYLGXDO VWUDLJKW SP FKDQQHO ZDYHJXLGH WKXV IDFLOLWDWLQJ VROH H[FLWDWLRQ RI WKH VWUDLJKW FKDQQHO DW WKH LQSXW 7KH RYHUODS ZLWK WKH IXQGDPHQWDO PRGH LV EHWWHU WKDQ b ZKLOH WKH RYHUODS ZLWK WKH ILUVW RUGHU PRGH DOWKRXJK H[LVWV LV H[WUHPHO\ VPDOO 7KH ILHOG SURILOHV RI ERWK IXQGDPHQWDO DQG ILUVW RUGHU ORFDO QRUPDO PRGHV DORQJ WKH OHQJWK RI WKH FRXSOHU DUH ODWHU XVHG LQ WKH VWHS WUDQVLWLRQ PRGHO WR VWXG\ WKH HYROXWLRQ RI WKH PRGHV DQG WKH SRZHU IORZ DORQJ WKH 79& ,W FDQ EH FOHDUO\ VHHQ LQ )LJ WKDW WKH ILUVW RUGHU ORFDO QRUPDO PRGH DW WKH LQSXW FDQ QRW EH SURSHUO\ UHSUHVHQWHG E\ WKH VXSHUSRVLWLRQ RI WKH WZR PRGHV RI WKH XQFRXSOHG JXLGHV GXH WR FRQVLGHUDEO\ VKLIWHG SHDN SRVLWLRQ IURP WKH FHQWHU RI WKH SP ZLGH FKDQQHO ZDYHJXLGH DQG ODUJH DV\PPHWU\ RI ERWK WKH OREHV LQ WKH LQWHQVLW\ SURILOH ,Q DGGLWLRQ LQYHVWLJDWLRQ RI WKH QRUPDO PRGH ILHOG SURILOHV FRQILUPV WKH IDFW WKDW LW LV

PAGE 54

\ _Pf )LJ 1RUPDOL]HG LQWHQVLW\ SURILOHV RI WKH IXQGDPHQWDO PRGH GRWWHG FXUYHf WKH ILUVW RUGHU PRGH GDVKHG FXUYHf DW WKH LQSXW HQG ] f DQG WKH SURILOH VROLG FXUYHf RI SP ZLGH FKDQQHO JXLGH SULRU WR LQSXW WR WKH 7<&

PAGE 55

LQDSSURSULDWH WR GHVFULEH WKH ORFDO QRUPDO PRGHV HVSHFLDOO\ WKH ILUVW RUGHU PRGHV LQ WKH FDVH RI VPDOO JDS J DQG _LPf FRXSOHUV LQ WHUPV RI WKH VXSHUSRVLWLRQ RI WKH XQFRXSOHG PRGHV ,Q )LJ WKH IXQGDPHQWDO PRGH LQGH[ 1 RI WKH XQFRXSOHG XQLIRUP JXLGH YL] LV LQGLFDWHG E\ WKH GDVKHG VWUDLJKW OLQH 7KH RWKHU GDVKHG FXUYH LQ WKH ILJXUH UHSUHVHQWV WKH PRGH LQGH[ 1 RI WKH XQFRXSOHG WDSHUHG JXLGH UHSORWWHG IURP )LJ LQ WKH VLQJOH PRGH UHJLPH : WR LPf 7KH WZR GDVKHG FXUYHV FURVV ZKHQ WKH JXLGHV EHFRPH LGHQWLFDO LH ZKHQ WKHLU ZLGWKV HTXDO LP 7KH ILJXUH DOVR VKRZV WKH PRGH LQGLFHV RI WKH IXQGDPHQWDO 1f DQG WKH ILUVW RUGHU 1Lf PRGH DV WKH ZLGWK RI WKH WDSHUHG JXLGHV LV YDULHG IURP WR LP ZLWK WKH JDS EHWZHHQ WKH VWUDLJKW JXLGH DQG WKH WDSHUHG JXLGH EHLQJ WKH SDUDPHWHU 7KH JDS ZDV DOVR YDULHG IURP WR SP LQ VWHSV RI SP $V VHHQ IURP WKH ILJXUH 1 RI WKH FRPSRVLWH VWUXFWXUH DW WKH LQSXW VHFWLRQ LV FORVH WR WKDW RI WKH ZLGHU VWUDLJKW FKDQQHO JXLGH ZKLFK VXSSRUWV PRVW RI WKH HQHUJ\ DQG LQFUHDVHV PRQRWRQLFDOO\ ZLWK LQFUHDVLQJ JDS ZLGWK WKH VLWXDWLRQ UHYHUVHV DW WKH RXWSXW HQG ZKHUH WKH WDSHUHG JXLGH ZLGWK LV QRZ ODUJHU DQG VXSSRUWV PRVW RI WKH HQHUJ\ LQ WKH VWUXFWXUH ,I WKH WDSHULQJ LV VORZ HQRXJK DQG WKH DGLDEDWLF LQYDULDQFH FRQGLWLRQ LV PHW WKH HYROXWLRQ RI WKH IXQGDPHQWDO PRGH LV XQDIIHFWHG DOWKRXJK SK\VLFDOO\ QRZ GLIIHUHQW JXLGHV ERWK DW WKH LQSXW DQG RXWSXW VXSSRUW PRVW RI WKH HQHUJ\ LQ WKH FRXSOHU $V D UHVXOW WKH HQHUJ\ RI WKH IXQGDPHQWDO PRGH LQ WKH VWUDLJKW VHFWLRQ DW WKH LQSXW QRZ DUULYHV DW WKH WDSHUHG JXLGH DW WKH RXWSXW 7KH VZLWFKLQJ RFFXUV DURXQG WKH FHQWUDO UHJLRQ RI WKH FRXSOHU $V VHHQ IURP WKH ILJXUH WKH WDSHULQJ RI WKH JXLGH VHHPV WR DIIHFW WKH PRGH LQGH[ 1 RI WKH IXQGDPHQWDO PRGH RI WKH VWUXFWXUH WKH PRVW ZKLOH 1L LV DIIHFWHG YHU\ OLWWOH $W WKH LQSXW DQG RXWSXW RI WKH GHYLFH IRU ODUJH JDSV ERWK 1 DQG 1L DUH QHDUO\ HTXDO WR WKH PRGH LQGLFHV RI WKH XQFRXSOHG JXLGHV $V WKH JDS GHFUHDVHV WKH JXLGHV EHFRPH VWURQJO\ FRXSOHG WKH SHUWXUEDWLRQ EHFRPHV TXLWH VWURQJ ZKLFK UHDFKHV D PD[LPXP DW WKH PLGSRLQW RI WKH FRXSOHU 1 LQFUHDVHV PRQRWRQLFDOO\ ZLWK GHFUHDVLQJ JDS ZLGWK ZKHUH DV 1c XQGXODWHV DOWKRXJK WKH GHYLDWLRQV DSSHDU WR EH UDWKHU VPDOO :KLOH 1L DW WKH LQSXW HQG LV YHU\ FORVH

PAGE 56

0RGH ,QGH[ )LJ /RFDO QRUPDO PRGH LQGLFHV VROLG FXUYHVf DORQJ WKH 79& IRU GLIIHUHQW JDSV DQG PRGH LQGLFHV GDVKHG FXUYHVf IRU WKH XQFRXSOHG FKDQQHO ZDYHJXLGHV RI WKH 79&

PAGE 57

WR WKDW RI WKH WDSHUHG JXLGH LQGHSHQGHQW RI WKH JDS ZLGWK 1 LV KLJKHU IRU VPDOOHU YDOXHV RI WKH JDS ZLGWK ,W LV FOHDU E\ LQFUHDVLQJ WKH OHQJWK RI WKH LQSXW VHFWLRQ IXUWKHU LW LV SRVVLEOH WR PDNH 1 DSSURDFK FORVHU WR WKDW RI WKH VWUDLJKW JXLGH EXW RXU DLP LV WR NHHS WKH GHYLFH OHQJWK DV VPDOO DV SRVVLEOH ZKLOH SHUPLWWLQJ QHDUO\ VROH H[FLWDWLRQ RI ZDYHJXLGHV LV SRVVLEOH DW HLWKHU HQG DQG VLPXOWDQHRXVO\ DOORZLQJ SRZHU WUDQVIHU YLD WKH DGLDEDWLF FRQGLWLRQ ,W LV LQWHUHVWLQJ WR QRWH WKDW WKH YDOXH RI 1L LV LQGHSHQGHQW RI WKH JDS ZLGWK IRU WZR VSHFLILF WDSHUHG JXLGH ZLGWKV DURXQG SP DQG SP ,W DSSHDUV WKDW WKH EXQFKLQJ RI WKH FXUYHV LV PHUHO\ D FRLQFLGHQFH VLQFH 1LfV DW ERWK WKH H[WUHPHV YL] ]HUR DQG LQILQLWH JDS DUH DOPRVW HTXDO )LJ f )RU H[DPSOH 1R RI D SP JXLGH DV VHHQ IURP )LJ HTXDOV 1L IRU D 79& FRQVLVWLQJ RI DQG SP ZLGH JXLGHV ZLWK DQ LQILQLWH JDS )LJ f ,Q DGGLWLRQ DV VHHQ IURP )LJ LW DOPRVW HTXDOV 1L RI DQ SP ZLGH WKDW LV WKH FDVH RI D 79& ZLWK ]HUR JDS EHWZHHQ WKH WZR JXLGHV 7KXV 1L IRU DOO WKH YDOXHV RI WKH JDS LQ EHWZHHQ LV QHDUO\ HTXDO WR HDFK RWKHU 6WHS 7UDQVLWLRQ 0RGHO 3RZHU )ORZ LQ WKH 79& 1RZ WKDW ZH KDYH EDVHG RQ WKH RQH GLPHQVLRQDO HIIHFWLYH LQGH[ SURILOH 1\f DQ DFFXUDWH GHVFULSWLRQ RI WKH ORFDO QRUPDO PRGHV LQGLFHV 1L 3OAFf DQG WKHLU ILHOG SURILOHV e\R\L\f RI D XQLIRUP GLUHFWLRQDO FRXSOHU RI FRQVWDQW JXLGH ZLGWKV RQH IL[HG DQG DQRWKHU YDULDEOHf DQG D FRQVWDQW JDS WKH VWHS WUDQVLWLRQ PRGHO >0DU@ DQG WKH HQKDQFHG VWHS WUDQVLWLRQ PRGHO >0L@ FDQ QRZ EH DSSOLHG WR FDOFXODWH WKH SRZHU WUDQVIHU EHWZHHQ ORFDO QRUPDO PRGHV 7KLV PRGHO DSSUR[LPDWHV WKH JUDGXDO FRQWLQXRXV LQFUHDVH LQ WKH ZLGWK RI WKH WDSHUHG JXLGH E\ WKH VWDLU FDVH VWUXFWXUH FRQVLVWLQJ RI D VHULHV RI VPDOO SLHFHZLVH FRQWLQXRXV EXW DEUXSW VWHSV )LJ Dff :KLOH FRXSOLQJ EHWZHHQ ORFDO QRUPDO PRGHV EHWZHHQ WKH VHFWLRQV RFFXU DW HDFK VWHS GLVFRQWLQXLW\ QR FRXSOLQJ LV DVVXPHG WR RFFXU ZLWKLQ D JLYHQ VHFWLRQ :H DVVXPH WZR ORFDO QRUPDO PRGHV )LJ Eff RQ HLWKHU VLGH RI VXFK D VWHS GLVFRQWLQXLW\ LQ WKH VHFWLRQV ODEHOHG DQG 7KH IXQGDPHQWDO DQG WKH ILUVW RUGHU PRGHV LOOXVWUDWHG RQ HLWKHU VLGH DUH DOVR GHVLJQDWHG E\ DQG UHVSHFWLYHO\ 7KH ILUVW GLJLW RI WKH PRGH QRPHQFODWXUH LGHQWLILHV WKH PRGH ZKLOH

PAGE 58

Df VLGH VLGH f ? f ` ? f 2YHUODS LQWHJUDO ,\J HAG\ \ RU Ef )LJ ,OOXVWUDWLRQV IRU VWHS WUDQVLWLRQ PRGHO Df 6WDLU FDVH DSSUR[LPDWLRQ RI WKH 79& VWUXFWXUH Ef 1RUPDO PRGH ILHOG SURILOHV LQ WKH WZR VHFWLRQV DW WKH VWHS GLVFRQWLQXLW\ DQG WKH RYHUODS LQWHJUDO DFURVV WKH GLVFRQWLQXLW\

PAGE 59

WKH VHFRQG UHSUHVHQWV WKH VHFWLRQ 7KXV IRU H[DPSOH ZRXOG VLJQLI\ WKH ILUVW RUGHU PRGH RQ VLGH $OWKRXJK WKH VWHS GLVFRQWLQXLW\ LV UDWKHU VPDOO IRU WKH SXUSRVHV RI LOOXVWUDWLRQ WKH PRGH VKDSHV KDYH EHHQ H[DJJHUDWHG LQ )LJ Ef :H VXPPDUL]H WKH UHVXOWV EHORZ IROORZLQJ WKH WUHDWPHQW LQ 5HI >0L@ ZH ZULWH WKH JHQHUDO H[SUHVVLRQ IRU WKH JXLGHG QRUPDO PRGH DW DQ\ SRLQW ] DORQJ WKH FRXSOHU LV (\ $N]f H\N\f H[SLD]ff f ZKHUH $N]f )LHOG DPSOLWXGH UHDOf RI WKH JXLGHG PRGH N RU e\N\f 1RUPDOL]HG ILHOG GLVWULEXWLRQ RI WKH JXLGHG PRGH N RU D]f S ] _f 3 3URSDJDWLRQ FRQVWDQW M! $UELWUDU\ SKDVH FRQVWDQW %\ FRQVLGHULQJ WKH FRQWLQXLW\ RI WKH WUDQVYHUVH ILHOG FRPSRQHQWV K[N\f DQG e\N\f DFURVV WKH GLVFRQWLQXLW\ ZH FDQ FDOFXODWH WKH WUDQVPLWWHG ILHOG DPSOLWXGH %\ QRUPDOL]LQJ WKH ORFDO QRUPDO PRGH DPSOLWXGHV IRU XQLW SRZHU WKH RYHUODS LQWHJUDO EHWZHHQ WKH PRGH ILHOGV LV WKHQ \6 f§ RU f ,W IROORZV WKH FRPSOH[ WUDQVPLVVLRQ FRHIILFLHQW IRU WKH MWK PRGH M RU f DFURVV WKH GLVFRQWLQXLW\ LV JLYHQ E\ >0L@ $ML H[SW[MLf &\ $R H[SRFLRf &MM$MR H[SDMRf f

PAGE 60

ZKHUH 4M LV WKH FRXSOLQJ FRHIILFLHQW EHWZHHQ WKH LWK RUGHU PRGH RQ WKH LQFLGHQW f VLGH WR WKH MWK RUGHU RQ WKH WUDQVPLWWHG VLGH DQG &MM LV WKH FRXSOLQJ FRHIILFLHQW EHWZHHQ WKH MWK PRGHV RQ HLWKHU VLGH 7KHUHIRUH WKH UHDO DQG LPDJLQDU\ SDUWV RI (T UHSUHVHQW WKH DPSOLWXGH DQG WKH SKDVH WUDQVPLVVLRQ FRHIILFLHQW $ML DQG RWML DQG GHVFULEH WKH WUDQVPLWWHG PRGH M RU f LQ WHUPV RI WKH LQSXW PRGHV $ML &\ $\f FRVW[LRF[MLf &MM$MR FRVFFMRDMLf DQG 4M $LR VLQDLf &MM $M VLQDMf WDQ DM[ FcB DT FRVDcf F $MFRVDMf Df Ef ZKHUH WKH FRXSOLQJ FRHIILFLHQW EHWZHHQ WKH WUDQVPLWWHG MWK PRGH DQG WKH LQFLGHQW LWK PRGH LV JLYHQ E\ f B?3LR3MO 3M23LO ,M4MO 3MR3ML 3LR3LL Y4RLR,MLML r Ff ,Q (T F WKH FRXSOLQJ FRHIILFLHQW &MM LV REWDLQHG E\ VXEVWLWXWLQJ M IRU L (TXDWLRQV DF DQG WKHLU FRXQWHUSDUWV IRU WKH LWK PRGH GHVFULEH WKH PRGH FRQYHUVLRQ DQG WKH UDGLDWLRQ ORVV LQ WKH WDSHUHG ZDYHJXLGH VWUXFWXUH DSSUR[LPDWHG E\ D SLHFHZLVH FRQWLQXRXV VWDLUFDVH VWUXFWXUH &\ DQG &MMf LQ (T F FDQ HDVLO\ EH HYDOXDWHG ZLWK WKH NQRZOHGJH RI S\fV (TXDWLRQV D DQG E FDQ EH QXPHULFDOO\ VROYHG E\ LWHUDWLYH PHDQV IRU ERWK DML DQG $ML 6LQFH ZH DUH LQWHUHVWHG LQ WKH WUDQVPLWWHG DPSOLWXGH RQ VLGH ZH ZLOO GURS WKH VXEVFULSW DQG XVH $M ZLWK M DQG WR UHSUHVHQW WKH DPSOLWXGHV RI WKH IXQGDPHQWDO DQG WKH ILUVW RUGHU PRGH UHVSHFWLYHO\ 7KHRUHWLFDO DQG ([SHULPHQWDO 5HVXOWV 6LQFH ZH H[FLWH RQO\ WKH IXQGDPHQWDO PRGH DW WKH LQSXW ] WKH LQLWLDO FRQGLWLRQV IRU WKH PRGH DPSOLWXGHV DUH $TR] f $R DQG $LR] f $L FRUUHVSRQGLQJ WR WKH

PAGE 61

QRUPDOL]HG SRZHU LQ WKH PRGHV 3Rf O DQG 3Lf 7KH WR SP WDSHU ZDV DSSUR[LPDWHG E\ RQH KXQGUHG VWDLUFDVH VWHSV RI VL]H SP 7KH GLVWDQFH EHWZHHQ FRQVHFXWLYH VWHSV LV PP DQG WKH UHVXOWLQJ WDSHU DQJOH LV WKHUHIRUH r )LJXUH VKRZV WKH PRGH DPSOLWXGHV $R DQG $L IRU YDULRXV JDSV DV WKH LQSXW EHDP SURSDJDWHV DORQJ WKH FRXSOHU $Rf$Lf ZKLFK UHSUHVHQWV WKH JXLGHG PRGH SRZHU LV DOPRVW HTXDO WR XQLW\ IRU DOO WKH ILYH FDVHV VR WKDW WKH FDOFXODWHG UDGLDWLRQ ORVV LV WR EH OHVV WKDQ b RI WKH LQSXW SRZHU ,I WKH DGLDEDWLF UHJLPH LV GHILQHG DV OHVV WKDQ b FRQYHUVLRQ RI LQSXW PRGH SRZHU LQWR RWKHU PRGHV WKH 79&V ZLWK J SP FDQ EH FODVVLILHG DV PHHWLQJ WKH DGLDEDWLF LQYDULDQFH FRQGLWLRQ $V VHHQ IURP (T WKH PRGH FRQYHUVLRQ EHFRPHV VHYHUH ZLWK LQFUHDVLQJ JDS ZLGWK WKDW LV DV WKH FRXSOLQJ EHFRPHV ZHDN 2VFLOODWLRQ RI $RL ZLWKLQ WKH DGLDEDWLF UHJLPH ZKHUH $RA&$Lf a FDQ EH FOHDUO\ VHHQ LQ $L DOWKRXJK LW LV QRW VR REYLRXV LQ $R IRU J RU SP ,W LV FDXVHG E\ LQWHUIHUHQFH EHWZHHQ WKH WZR QRUPDO PRGHV >0L@ DQG KDV D SHULRG RI MF^R3 Lf )URP $R DQG $L DW WKH RXWSXW ZLWK SKDVH FRQVWDQW DR DQG DL ZH REWDLQ WKH RXWSXW LQWHQVLW\ SURILOH DV :\f $RHRHLDr $ LHLHLDL ? $fAHJ\f $nIHI \f $$ A\OHA\f FRVWHRDA f ZKHUH $c LV WKH DPSOLWXGH UDWLR DW WKH RXWSXW Dc LV WKH SKDVH FRQVWDQW DW WKH RXWSXW DQG (L LV WKH QRUPDOL]HG ILHOG SURILOH IRU WKH ORFDO LWK L Of PRGH DW WKH RXWSXW 2XWSXW LQWHQVLW\ SURILOHV REWDLQHG IURP (T DUH VKRZQ LQ )LJV DfFf ZLWK VROLG OLQHV /RFDWLRQV RI WKH JXLGHV DQG WKHLU ZLGWKV DW WKH RXWSXW DUH LOOXVWUDWHG E\ WKH UHFWDQJXODU ER[HV XQGHU WKH KRUL]RQWDO D[LV 7KH GHJUHH RI GDUNQHVV RI WKH UHFWDQJXODU ER[ RQFH DJDLQ LQGLFDWHV WKH DPRXQW RI LQGH[ FKDQJH DV LOOXVWUDWHG EHIRUH LQ )LJ 7KH RXWSXW LQWHQVLW\ SURILOHV LQ )LJV Df DQG Ef DUH DOPRVW LGHQWLFDO ZLWK WKDW RI WKH IXQGDPHQWDO ORFDO QRUPDO PRGH DW WKH RXWSXW 7KH RXWSXW LQWHQVLW\ SURILOH IRU

PAGE 62

:,'7+ 2) 7+( 7$3(5(' :$9(*8,'( )LJ $PSOLWXGH UDWLRV RI WKH IXQGDPHQWDO DQG ILUVW RUGHU ORFDO QRUPDO PRGH DORQJ WKH 79& DV D IXQFWLRQ RI WKH ZLGWK RI WKH WDSHUHG FKDQQHO IRU YDULRXV JDSV

PAGE 63

1RUPDOL]HG ,QWHQVLW\ , , , , 7 ,n , , , , , , , \_DPf )LJ 1RUPDOL]HG RXWSXW LQWHQVLW\ SURILOHV FDOFXODWHG XVLQJ WKH JUDGHG LQGH[ PRGHO VROLG FXUYHf DQG OD\HU VWHS LQGH[ PRGHO GDVKHG FXUYHf FRPSDUHG ZLWK WKH PHDVXUHG LQWHQVLW\ SURILOH RSHQ VTXDUHf IRU Df J _LP

PAGE 64

c; X [W 1 f + D R e L ,, L L L L L L L L L L *UDGHG LQGH[ 6WHS LQGH[ r ([SHULPHQW \MMPf )LJ FRQWLQXHG Ef J LP

PAGE 65

, , , , , , L L L L L L L L L L _a7 \LXQf )LJ FRQWLQXHG Ff J _LP

PAGE 66

J LP VKRZV ODUJH PRGH ZLGWK DV ZHOO DV DV\PPHWU\ GXH WR WKH VWURQJ FRXSOLQJ ,Q DGGLWLRQ WKH SHDN SRVLWLRQ GRHV QRW FRLQFLGH ZLWK WKH FHQWHU RI WKH WDSHUHG JXLGH EXW VKLIWHG WR WKH VWUDLJKW JXLGH VR WKDW WKH UHSUHVHQWDWLRQ RI WKH ORFDO QRUPDO PRGHV DV WKH VXSHUSRVLWLRQ RI WKH PRGHV RI WKH XQFRXSOHG JXLGHV >0L@ LV LQDSSURSULDWH IRU WKLV DQG RWKHU VWURQJO\ FRXSOHG FDVH $V ZH PRYH RXU DWWHQWLRQ WR WKH ZHDNO\ FRXSOHG FDVHV QDPHO\ WKH ODUJH JDS 79& ZH REVHUYH WKDW WKH DPRXQW RI WKH SRZHU ZLWKLQ WKH VWUDLJKW JXLGH UHGXFHV XQWLO WKH DGLDEDWLF FRQGLWLRQ EUHDNV GRZQ )RU WKH FDVH RI J VPDOO OREH RQ WKH VWUDLJKW JXLGH GXH WR PRGH FRQYHUVLRQ FDQ EH UHFRJQL]HG :LWK WKH FDVHV FRQVLGHUHG KHUH DOWKRXJK $AM$=W f LV FRQVWDQW ZH DUH DEOH WR DFKLHYH ERWK WKH DGLDEDWLF DQG QRQDGLDEDWLF RSHUDWLRQ E\ YDU\LQJ WKH JDS DQG KHQFH WKH FRXSOLQJ FRHIILFLHQW (TXDWLRQV ff DUH QRW DSSOLFDEOH IRU GHVFULELQJ WKH EHKDYLRU RI RXU FRXSOHUV ZKLFK HPSOR\V ERWK WKH WDSHUHG LQGH[ DQG WDSHUHG GLPHQVLRQ )RU D JLYHQ JDS DQ RUGHU RI PDJQLWXGH GLIIHUHQFH LQ FRXSOLQJ FRQVWDQW Nf H[LVWV DORQJ LWV OHQJWK DQG WKXV YLRODWLQJ WKH FRQVWDQW FRXSOLQJ FRQVWDQW DVVXPSWLRQ XQGHU ZKLFK FRQGLWLRQV (TV f f ZHUH GHULYHG 7R YHULI\ RXU WKHRUHWLFDO SUHGLFWLRQV ZH IDEULFDWHG VHYHUDO WDSHUHG YHORFLW\ FRXSOHUV VKRZQ LQ )LJ ZLWK WKH VDPH IDEULFDWLRQ SDUDPHWHUV DQG SURFHGXUHV DV ZH GLG IRU SP ZLGH VWULS FKDQQHO ZDYHJXLGH 7KH PHDVXUHG RXWSXW LQWHQVLW\ SURILOHV IRU HDFK RI WKH FRXSOHU DUH SUHVHQWHG LQ )LJV DfFf ([FHOOHQW DJUHHPHQWV DUH REWDLQHG IRU DOO WKUHH FDVHV ZKLFK DUH J DQG SP $V H[SHFWHG WKHUH LV QR PRGH FRQYHUVLRQ IRU VWURQJO\ FRXSOHG FDVHV YL] J DQG SP VR WKDW WKH WKHRUHWLFDO RXWSXW LQWHQVLW\ SURILOHV RI WKH IXQGDPHQWDO PRGH LQ WKHVH WZR FDVHV DJUHH YHU\ ZHOO ZLWK WKH PHDVXUHG LQWHQVLW\ SURILOHV ,Q )LJ Df VOLJKW GHYLDWLRQ RI WKH H[SHULPHQWDO UHVXOWV IURP WKH WKHRUHWLFDO SUHGLFWLRQV EDVHG RQ JUDGHG LQGH[ PRGHO HVSHFLDOO\ ZLWKLQ WKH VWUDLJKW JXLGH DQG JDS UHJLRQV LV GXH WR WKH IDFW WKDW DSSUR[LPDWHG FRPSRVLWH LQGH[ SURILOH DV WKH VXSHUSRVLWLRQ RI WKH LQGLYLGXDO LQGH[ SURILOHV \LHOGV ODUJHU WKDQ DFWXDO LQGH[ YDOXHV LQ WKHVH UHJLRQV IRU WKH FRXSOHUV ZLWK VPDOO JDS :LWK J SP ZH FDQ REVHUYH WKH PRGH

PAGE 67

SRZHU FRQYHUVLRQ GXH WR WKH ZHDN FRXSOLQJ DQG DOVR WKH H[FHOOHQW DJUHHPHQWV HYHQ LQ WKH VWUDLJKW DQG JDS UHJLRQV E\ ZKLFK RXU DSSUR[LPDWHG FRPSRVLWH LQGH[ SURILOH LV SURYHQ WR EH YHU\ DFFXUDWH IRU FRXSOHUV RI ODUJH JDS 7KH H[WLQFWLRQ UDWLRV ZKLFK LV GHILQHG DV RJ3R3Lf ZKHUH 3L LV WKH SRZHU RI WKH LWK ORFDO QRUPDO PRGH DW WKH RXWSXW DUH G% G% DQG G% IRU J DQG SP UHVSHFWLYHO\ 7KH LQVHUWLRQ ORVVHV IRU WKHVH WKUHH GHYLFHV ZHUH PHDVXUHG WR EH OHVV WKDQ G% )RU WKH SXUSRVH RI LOOXVWUDWLRQ ZH FRPSDUH WKH QXPHULFDO UHVXOWV XVLQJ WKH SRSXODU >6\@ HTXLYDOHQW LQGH[ VODE PRGHO ,Q WKLV PRGHO WKH 79& LV DSSUR[LPDWHG DV D VWHS LQGH[ OD\HU VWUXFWXUH ZLWK D IL[HG UHIUDFWLYH LQGH[ QJf IRU WKH JXLGLQJ OD\HUV RQH RI ZKLFK LV WDSHUHG ZLWK WKLFNQHVV LQFUHDVLQJ IURP SP WR SP 7KH RWKHU JXLGLQJ [OD\HU LV D SP WKLFN VWUDLJKW JXLGLQJ OD\HU VHSDUDWHG E\ FRQVWDQW JDS IURP WKH WDSHUHG OD\HU 5HIUDFWLYH LQGH[ QFLf IRU WKH FODGGLQJ OD\HUV LV DVVXPHG WR HTXDO QR f ZKLFK LV WKH VDPH DV WKH EXON VXEVWUDWH LQGH[ QEf LQ WKH JUDGHG LQGH[ PRGHO 7R GHWHUPLQH QJ ZH IROORZ WKH SURFHGXUH VXFFHVVIXOO\ XVHG E\ 6XFKRVN\ DQG 5DPDVZDP\ >6X@ IRU PRGHOLQJ D FRQVWDQW ZLGWK YDULDEOH LQGH[ WDSHUHG ZDYHJXLGH LQ 7L/L1E&! E\ GHWHUPLQLQJ D HTXLYDOHQW VWHS LQGH[ VODE ZDYHJXLGHE\ FRPSDULQJ WKH ILHOG SURILOHV )LUVW ZH DVVXPH D K\SRWKHWLFDO OD\HU VODE ZDYHJXLGH ZLWK D SP WKLFN JXLGLQJ OD\HU ZLWK WKH FODGGLQJ OD\HUV RI LQGH[ Q4 f 7KHQ ZH FDOFXODWH WKH LQWHQVLW\ SURILOHV RI WKH IXQGDPHQWDO PRGH IRU YDULRXV UHIUDFWLYH LQGLFHV IRU WKH JXLGLQJ OD\HU 7KH FDOFXODWHG LQWHQVLW\ SURILOHV DUH FRPSDUHG WR WKDW RI WKH JUDGHG LQGH[ FKDQQHO ZDYHJXLGH RI SP ZLGH LQ )LJ 2YHU b RYHUODS ZDV DFKLHYHG IRU D JXLGLQJ OD\HU LQGH[ RI ZKLFK ZH XVH DV WKH JXLGLQJ OD\HU LQGH[ QJ RI WKH OD\HU VWHS LQGH[ PRGHO 8SRQ ILQGLQJ QJ WR GHWHUPLQH WKH RXWSXW LQWHQVLW\ SURILOH ZH IROORZ WKH VDPH SURFHGXUH DV ZH GLG ZLWK WKH JUDGHG LQGH[ SURILOH 1\ff 7KLV LQYROYHV HYDOXDWLQJ f WKH ORFDO QRUPDO PRGH LQGLFHV DQG ILHOG SURILOHV f RYHUODS LQWHJUDOV EHWZHHQ WKH ORFDO QRUPDO PRGHV DFURVV WKH VWHSV f WKH $MfV DQG FTfV DORQJ WKH FRXSOHU ZLWK WKH LQSXW FRQGLWLRQ $R DQG $L DQG ILQDOO\ f WKH RXWSXW LQWHQVLW\ SURILOHV 7KH UHVXOWV DUH VKRZQ LQ )LJV

PAGE 68

DfFf DV GDVKHG OLQHV $QDO\WLFDO UHVXOWV RI WKH VWHS LQGH[ PRGHO DUH LQGHHG TXLWH GLIIHUHQW IURP WKDW RI WKH JUDGHG LQGH[ PRGHO HVSHFLDOO\ LQ GHVFULELQJ WKH LQWHQVLW\ SURILOH RYHU WKH VWUDLJKW JXLGH UHJLRQ RI WKH FRXSOHU 7KH H[SHULPHQWDO UHVXOWV FOHDUO\ GHPRQVWUDWHV WKH LQDSSURSULDWHQHVV RI WKH VWHS LQGH[ PRGHO

PAGE 69

&+$37(5 )285 7$3(5(' %27+ ,1 ',0(16,21 $1' ,1 ,1'(; 9(/2&,7< &283/(5 6:,7&+ 7DSHUHG 9HORFLW\ &RXSOHUV 79&f DUH DWWUDFWLYH FDQGLGDWHV IRU RSWLFDO VLJQDO SURFHVVLQJ DSSOLFDWLRQV DV WKHLU EHKDYLRU LV SUHGLFDWHG XSRQ WKH HYROXWLRQ RI D QRUPDO PRGH DORQJ WKH ORQJLWXGLQDO GLUHFWLRQ RI WKH FRXSOHU $V D UHVXOW WKH WDSHUHG YHORFLW\ FRXSOHUV H[KLELW SRODUL]DWLRQ LQGHSHQGHQW EHKDYLRU DQG WKH\ DUH LQVHQVLWLYH WR ZDYHOHQJWK ZLWKLQ WKH OLPLWV LPSRVHG E\ WKH DGLDEDWLF FRQGLWLRQ 2Q WKH FRQWUDU\ LQWHUIHURPHWULF GHYLFHV OLNH FRQYHQWLRQDO GLUHFWLRQDO FRXSOHU GHYLFHV 0DFK=HKQGHU LQWHUIHURPHWHUV DQG WZR PRGH LQWHUIHUHQFH GHYLFHV %2$f GHSHQG RQ WKH SUHFLVH SKDVH UHODWLRQVKLSV EHWZHHQ WKH LQWHUIHULQJ PRGHV &RQVHTXHQWO\ WKHVH LQWHUIHURPHWULF GHYLFHV KDYH WR PHHW VWULFW IDEULFDWLRQ WROHUDQFHV $ QXPEHU RI VZLWFKHV XVLQJ WKH PRGDO HYROXWLRQ NQRZQ DV GLJLWDO RSWLFDO VZLWFKHV ZLWK VWHS OLNH UHVSRQVH UDWKHU WKDQ WKH FRQYHQWLRQDO VLQH VTXDUHG UHVSRQVH RI WKH LQWHUIHURPHWULF FRXQWHUSDUW KDYH EHHQ GHPRQVWUDWHG 7KH ILUVW DQG WKH IRUHPRVW ZDV E\ 6LOEHUEHUJ >6L@ ZKHUH WKH VZLWFKLQJ ZDV DFFRPSOLVKHG DW WKH RXWSXW RI WKH V\PPHWULFDO DUPV RI DQ LQWHUVHFWLQJ [ WZRPRGH FURVV FRXSOHU LQ ]FXW /L1E&! ZKLFK ZDV PDGH DV\PPHWULFDO E\ WKH DSSOLFDWLRQ RI DQ H[WHUQDO GF ELDV ,Q WKLV FDVH WKH YROWDJH OHQJWK SURGXFW ZDV 9FP IRU 70 PRGH ZLWK D FURVV WDON RI G% $QRWKHU FURVV FRXSOHU GLJLWDO VZLWFK RQ [FXW /L1E&! ZLWK D EHWWHU YROWDJH OHQJWK SURGXFW 9FP ZLWK D FURVV WDON RI G%f ZDV GHPRQVWUDWHG ODWHU >0F@ *U 7K\@ LQ ,Q3*DOQ$V3 >&DY 9L@ DQG VKDSHG
PAGE 70

5HFHQWO\ ;LH HW DO >;L@ UHSRUWHG D [ GLJLWDO RSWLFDO VZLWFK LQ ,Q*D$V3,Q3 XVLQJ ERWK WKH WDSHUHG GLPHQVLRQ DQG WDSHUHG FRXSOLQJ EHWZHHQ VWHS LQGH[ FKDQQHO ZDYHJXLGHV RI WKH 79& 7KLV VWUXFWXUH ZDV DQDO\WLFDOO\ H[DPLQHG SUHYLRXVO\ >6\@ IRU WKH FDVH RI /L1E&! +RZHYHU WKLV GHYLFH VKRZV SRRU H[WLQFWLRQ UDWLR ,Q WKLV FKDSWHU ZH SURSRVH DQG GHPRQVWUDWH D QRYHO GLJLWDO VZLWFK XVLQJ WDSHUHG YHORFLW\ FRXSOHU LQ 7L/L1E WDNLQJ DQ DGYDQWDJH RI VKRUW RSHUDWLQJ OHQJWK RI WKH 79& 7KH VFKHPDWLF RI RXU VZLWFK LV VKRZQ LQ )LJ $ VWUDLJKW FKDQQHO LP ZLGHf LV VHSDUDWHG E\ D XQLIRUP JDS _LPf IURP WKH WDSHUHG FKDQQHO ZKRVH ZLGWK LQFUHDVHV IURP LP WR LP ZLWK WKH ZLGWK RI WKH VWUDLJKW FKDQQHO UHPDLQLQJ WKH VDPH QDPHO\ SP >5D@ $SSOLFDWLRQ RI SRVLWLYH DQG QHJDWLYH YROWDJHV EHWZHHQ WKH HOHFWURGHV VZLWFKHV WKH VWDWHV DW WKH RXWSXW :H DFKLHYHG s G% H[WLQFWLRQ UDWLR ZLWK s 9 VZLQJ IRU 7( PRGH DQG s 9 VZLQJ IRU 70 PRGH LQ D PP ORQJ GHYLFH OHQJWK \LHOGLQJ WKH VPDOOHVW YROWDJH OHQJWK SURGXFWV UHSRUWHG WR GDWH RI 9FP IRU 7( DQG 9FP IRU 70 PRGH UHVSHFWLYHO\ 3ULQFLSOHV RI 2SHUDWLRQ 7R XQGHUVWDQG WKH VZLWFKLQJ PHFKDQLVP FRQVLGHU WKH IROORZLQJ :LWKRXW DQ\ DSSOLHG YROWDJH WKH SURSDJDWLRQ FRQVWDQWV RI ERWK FKDQQHOV DUH LGHQWLFDO DW WKH RXWSXW WKDW LV WKH SKDVH PDWFKLQJ FRQGLWLRQ RFFXUV DW WKH RXWSXW VROLG OLQH LQ )LJ f OLJKW ODXQFKHG LQWR WKH VWUDLJKW FKDQQHO DW WKH LQSXW VKRXOG EH HTXDOO\ GLYLGHG EHWZHHQ WKH FKDQQHOV DW WKH RXWSXW LI WKH DGLDEDWLF FRQGLWLRQ LV HQVXUHG $V ZH LQFUHDVH WKH YROWDJH VR DV WR GHFUHDVH WKH UHIUDFWLYH LQGH[ RI WKH VWUDLJKW FKDQQHO DQG LQFUHDVH WKDW RI WKH WDSHUHG FKDQQHO WKH SKDVH PDWFKLQJ SRLQW ZRXOG VKLIW WRZDUGV WKH FHQWUDO UHJLRQ RI WKH VZLWFK GDVKHG OLQHV LQ )LJ f 7KHQ WKH SRZHU ODXQFKHG LQWR WKH VWUDLJKW FKDQQHO VKRXOG EH WUDQVIHUUHG WR WKH WDSHUHG FKDQQHO LQ WKH FHQWUDO UHJLRQ FORVH WR WKH SKDVH PDWFKLQJ SRLQW DQG H[LW RXW RI WKH WDSHUHG FKDQQHO DW WKH RXWSXW 2Q WKH RWKHU KDQG ZLWK LQFUHDVHG UHYHUVH ELDV SKDVH PDWFKLQJ GRHV QRW RFFXU DORQJ WKH HQWLUH GHYLFH OHQJWK GRWWHG OLQHV LQ )LJ f DQG WKH SRZHU ZRXOG UHPDLQ LQ WKH VWUDLJKW FKDQQHO

PAGE 71

9 )LJ $ VFKHPDWLF RI WKH WDSHUHG YHORFLW\ GLJLWDO RSWLFDO VZLWFK 7KH KDWFKHG DUHD LOOXVWUDWHV WKH HOHFWURGH VWUXFWXUH

PAGE 72

3 )LJ 3URSDJDWLRQ FRQVWDQWV RI ERWK WKH VWUDLJKW DQG WDSHUHG FKDQQHO DW WKUHH ELDV YROWDJHV

PAGE 73

2SHUDWLRQ RI WKLV GHYLFH FDQ DOVR EH XQGHUVWRRG IURP DQRWKHU SRLQW RI YLHZ XVLQJ WKH QRUPDO PRGH WKHRU\ 7KH OLJKW ODXQFKHG WKURXJK WKH VWUDLJKW FKDQQHO LV FRXSOHG LQWR WKH IXQGDPHQWDO ORFDO QRUPDO PRGH DW WKH LQSXW ] f DQG SURSDJDWHV ZLWKRXW PRGH FRQYHUVLRQ DORQJ WKH GHYLFH $OWKRXJK PRGH HYROYHV DORQJ WKH 79& WKH PRGH UHPDLQV DV WKH IXQGDPHQWDO PRGH RI WKH FRPSRVLWH VWUXFWXUH DV ORQJ DV WKH DGLDEDWLF FRQGLWLRQ LV VDWLVILHG KRZHYHU WKH RXWSXW LQWHQVLW\ SURILOH FDQ EH VZLWFKHG WKH RXWSXW EHWZHHQ WKH WDSHUHG DQG VWUDLJKW FKDQQHO ZDYHJXLGH E\ WKH DSSOLFDWLRQ RI ELDV YROWDJH RI DSSURSULDWH SRODULW\ :LWKRXW WKH ELDV YROWDJH WKH IXQGDPHQWDO ORFDO QRUPDO PRGH DW WKH RXWSXW KDV D V\PPHWULF SURILOH VR WKDW WKH SRZHU RQ HDFK FKDQQHO ZDYHJXLGH LV VDPH :LWK IRUZDUG ELDV UHIUDFWLYH LQGH[ RI WKH WDSHUHG FKDQQHO LQFUHDVHV (QHUJ\ RI WKH IXQGDPHQWDO ORFDO QRUPDO PRGH DW WKH RXWSXW EHFRPHV FRQFHQWUDWHG LQ WKH WDSHUHG ZDYHJXLGH ZLWK LQFUHDVHG IRUZDUG ELDV YROWDJH 6LPLODUO\ LW IROORZV WKDW WKH SRZHU RI WKH RXWSXW LQWHQVLW\ SURILOH WHQGV WR FRQFHQWUDWH LQ WKH VWUDLJKW FKDQQHO ZLWK WKH UHYHUVH ELDV YROWDJH 7KHRU\ DQG ([SHULPHQWV :H EHOLHYH WKDW WKH OD\HU VWHS LQGH[ DSSUR[LPDWLRQ >6L 6\@ ZLWK D FRQVWDQW HTXLYDOHQW LQGH[ JXLGLQJ OD\HU UHJDUGOHVV RI WKH YDULDWLRQ RI WKH WKLFNQHVV RI WKH WDSHU LV QRW DSSURSULDWH IRU DQDO\VLV RI JUDGHGLQGH[ 7L/L1E&! FKDQQHO ZDYHJXLGH WDSHUHG YHORFLW\ FRXSOHU >.LD@ 3ULPDU\ UHDVRQ LV WKDW WKH ZLGWK RI WKH WDSHUHG 7LVWULS EHIRUH LWV GLIIXVLRQ JRYHUQV QRW RQO\ WKH SK\VLFDO GLPHQVLRQ RI WKH JXLGLQJ UHJLRQ EXW DOVR WKH DEVROXWH LQGH[ FKDQJH UHVXOWLQJ IURP WKH 7L LQGLIIXVLRQ >)X@ ,Q DGGLWLRQ VWURQJ FRXSOLQJ EHWZHHQ WKH FKDQQHOV GRHV QRW DOORZ WKH XVH RI WKH FRQYHQWLRQDO FRXSOHG PRGH WKHRU\ IRU WKH GHVFULSWLRQ RI WKH SK\VLFDO SRZHU WUDQVIHU EHWZHHQ WKH ZDYHJXLGHV >.LD@ )RU WKH VDPH UHDVRQ WKH VXSHUSRVLWLRQ RI WKH LQGLYLGXDO PRGHV >0L@ IRU DQ DSSUR[LPDWHG H[SUHVVLRQ IRU WKH ORFDO QRUPDO PRGHV LV QRW DGHTXDWH RQ DFFRXQW RI WKH VWURQJ FRXSOLQJ LQ WKH SRZHU WUDQVIHU UHJLRQ GLFWDWHG E\ WKH DGLDEDWLF FRQGLWLRQ )RU WKH WKHRUHWLFDO DQDO\VLV ZH DVVXPH WKH IROORZLQJ IDEULFDWLRQ SDUDPHWHUV ƒ RI 7L GLIIXVHG DW r& IRU KRXUV 7KH FRXSOHU LV GLYLGHG LQWR ODUJH QXPEHU RI

PAGE 74

VHJPHQWV DORQJ LWV OHQJWK E\ DSSUR[LPDWLQJ WKH WDSHU E\ D SLHFHZLVH FRQWLQXRXV VWDLUFDVH VWUXFWXUH (DFK VHJPHQW FRQVLVWV RI WZR VWUDLJKW FKDQQHOV WKH ZLGWK RI RQH FKDQQHO LV _LP DQG WKH ZLGWK RI WKH RWKHU LV GHWHUPLQHG E\ WKDW RI WKH WDSHUHG FKDQQHO DW WKDW SRLQW $ LQGH[ SURILOH IRU D FURVV VHFWLRQ RI D VHJPHQW LV GHULYHG IURP WKH VXSHUSRVLWLRQ RI WKH LQGH[ SURILOHV RI WKH WZR VWUDLJKW FKDQQHOV UHVXOWLQJ LQ WKH *DXVVLDQ SURILOH DORQJ WKH GHSWK GLUHFWLRQ 7R FRQYHUW WKH LQGH[ SURILOH LQWR D LQGH[ SURILOH WKH JUDGHG LQGH[ *DXVVLDQ SURILOH DORQJ WKH GHSWK GLUHFWLRQ DW D JLYHQ GLVFUHWH SRVLWLRQ DORQJ WKH ZLGWK LV DSSUR[LPDWHG E\ D VWDLUFDVH VWHSLQGH[ SURILOH )RU WKH DSSUR[LPDWHG VWHSLQGH[ SURILOH DW HDFK SRVLWLRQ ZH FDQ REWDLQ WKH HIIHFWLYH LQGH[ SURILOH LQ WKH FRQYHQWLRQDO PDQQHU XVLQJ PXOWLOD\HU VWDFN WKHRU\ >+X 7K@ 2QFH DJDLQ ZH DSSO\ WKH PXOWLn OD\HU VWDFN WKHRU\ WR WKH UHVXOWDQW HIIHFWLYH LQGH[ SURILOH WR REWDLQ WKH PRGH LQGLFHV DQG ILHOG SURILOHV RI WKH ILUVW WZR QRUPDO PRGHV DW D JLYHQ VHJPHQW DORQJ WKH SURSDJDWLRQ GLUHFWLRQ )ROORZLQJ WKH VWDQGDUG SURFHGXUH RI WKH VWHS WUDQVLWLRQ PRGHO >0L@ ZH FDQ HYDOXDWH PRGH SRZHU FRQYHUVLRQ DORQJ WKH FRXSOHU E\ FDOFXODWLQJ RYHUODS LQWHJUDO DFURVV WKH DEUXSW VWHS EHWZHHQ WKH WZR DGMDFHQW VHJPHQWV :H IRXQG WKDW QR PRGH FRQYHUVLRQ RFFXUV DORQJ WKH WDSHU WKXV VDWLVI\LQJ WKH DGLDEDWLF FRQGLWLRQ 7KH UHIUDFWLYH LQGH[ FKDQJH GXH WR WKH ELDV YROWDJH ZDV DOVR WDNHQ LQWR DFFRXQW LQ RXU FDOFXODWLRQ 'HWDLOHG WKHRUHWLFDO DQDO\VLV RI WKH JUDGHGLQGH[ FKDQQHO ZDYHJXLGH 79& LV SUHVHQWHG LQ FKDSWHU WKUHH >.LD@ ZLWK VXEVWDQWLDWLQJ WKH SUHYLRXVO\ UHSRUWHG H[SHULPHQWDO UHVXOWV >.LD@ GHPRQVWUDWLQJ IRU WKH ILUVW WLPH FRPSOHWH SRZHU WUDQVIHU EHWZHHQ FKDQQHO ZDYHJXLGHV RI WKH 79& (YROXWLRQ RI WKH FDOFXODWHG LQWHQVLW\ SURILOH RI WKH IXQGDPHQWDO QRUPDO PRGH LQ WKH VXEVWUDWH SODQH RI WKH VZLWFK LV VKRZQ LQ )LJ IRU WKUHH ELDVHG VWDWHV ,Q DOO WKH WKUHH FDVHV WKH DGLDEDWLF FRQGLWLRQ LV VDWLVILHG 7KHUHIRUH WKH IXQGDPHQWDO ORFDO QRUPDO PRGH FRXSOHG DW WKH LQSXW GRHV QRW VXIIHU DQ\ PRGH FRQYHUVLRQ DQG HYROYHV DORQJ DV WKH IXQGDPHQWDO PRGH RI WKH VWUXFWXUH ZLWK LWV PRGH SRZHU XQFKDQJHG DQG VZLWFKLQJ LV DFFRPSOLVKHG ZLWK WKH IRUZDUG DQG UHYHUVH ELDV

PAGE 75

)LJ 0RGDO HYROXWLRQV IRU WKUHH ELDV YROWDJH

PAGE 76

7KH VZLWFK ZDV IDEULFDWHG RQ ]n FXW /L1E&! XVLQJ WKH VDPH IDEULFDWLRQ FRQGLWLRQV DVVXPHG LQ WKH WKHRUHWLFDO DQDO\VLV ƒ RI 62 EXIIHU OD\HU ZDV VSXWWHUHG RYHU WKH GHYLFH PP ORQJ DOXPLQXP HOHFWURGHV ZHUH GHOLQHDWHG RYHU WKH 7LGLIIXVHG 79& ZDYHJXLGHV E\ SKRWROLWKRJUDSK\ DQG ZHW HWFKLQJ WHFKQLTXH 7KH VZLWFKLQJ EHKDYLRU ZDV LQYHVWLJDWHG E\ FKDUDFWHUL]LQJ WKH RXWSXW LQWHQVLW\ SURILOH LQ WKH VXEVWUDWH SODQH DW HDFK ELDV YROWDJH )LJXUH Df VKRZV WKH RXWSXW LQWHQVLW\ SURILOHV DW ; SP IRU WKH WKUHH FDVHV IRU 7( PRGH ZKLFK XVHV WKH UL FRHIILFLHQW ,Q XQELDVHG FDVH DOPRVW HTXDO SRZHU GLYLVLRQ ZHUH DFKLHYHG :LWK s9 VZLQJ ZH ZHUH DEOH WR REVHUYH GLJLWDO VZLWFKLQJ ZLWK s G% FURVV WDON )RU 70 PRGH ZKLFK XVHV U FRHIILFLHQW DOPRVW WKUHH WLPHV ELJJHU WKDQ URf ZH ZHUH DOVR DEOH WR REVHUYH WKH GLJLWDO VZLWFKLQJ LQ s 9 VZLQJ ZLWK EHWWHU WKDQ s G% FURVV WDON )LJ Eff 7KLV WUDQVODWHV WR D YROWDJH OHQJWK SURGXFW RI 9FP IRU 70 DQG 9FP IRU 7( PRGH 7KLV LV WKH VKRUWHVW YROWDJH OHQJWK SURGXFW IRU D GLJLWDO VZLWFK UHSRUWHG VR IDU 7KLV KDV EHHQ DFFRPSOLVKHG E\ WKH XVH RI WDSHUHG ERWK LQ LQGH[ DQG LQ LQGH[ YHORFLW\ FRXSOHU >.LD@ ZKHUH ZHDN FRXSOLQJ ERWK DW LQSXW DQG RXWSXW RI WKH 79& GXH WR LQFUHDVHG LQGH[ GLIIHUHQFH DVVXUHV FRQFHQWUDWLRQ RI HQHUJ\ LQ RQH RI WKH ZDYHJXLGHV DW WKH HQGV ZKLOH VWURQJ FRXSOLQJ LQ WKH FHQWHU UHJLRQ HQDEOHV WKH DGLDEDWLF FRQGLWLRQ WR EH DFKLHYHG IRU VHFXUHG RSHUDWLRQ RI WKH VZLWFK 6XPPDU\ ,Q VXPPDU\ ZH KDYH SUHVHQWHG D QRYHO GLJLWDO RSWLFDO VZLWFK XVLQJ WDSHUHG ERWK LQ GLPHQVLRQ DQG LQ LQGH[ YHORFLW\ FRXSOHU ZKLFK VKRZV VPDOOHVW YROWDJH OHQJWK SURGXFW DPRQJ WKRVH RI WKH UHSRUWHG GLJLWDO RSWLFDO VZLWFKHV 1XPHULFDO UHVXOWV IRU WKH JUDGHG LQGH[ FKDQQHO ZDYHJXLGH FRXSOHU KDV EHHQ LQWURGXFHG ZKLFK FDQ EH DSSOLHG WR DOO ] YDULDQW VWUXFWXUH ZLWK WKH JUDGHGLQGH[ SURILOH

PAGE 77

9 ?EOW Ef )LJ 2XWSXW LQWHQVLW\ SURILOHV IRU Df 7( DQG Ef 70 SRODUL]DWLRQ 7KH EODFN DUHDV LOOXVWUDWHV WKH ZDYHJXLGH UHJLRQV

PAGE 78

&+$37(5 ),9( 7$3(5(' 9(/2&,7< &283/(5 86,1* 6(*0(17(' :$9(*8,'(6 5HFHQWO\ VHJPHQWHG ZDYHJXLGHV FRQVLVWLQJ RI D SHULRGLF DUUD\ RI KLJK UHIUDFWLYH LQGH[ UHJLRQV VXUURXQGHG E\ ORZHU LQGH[ UHJLRQV VHH )LJ Dff KDYH UHFHLYHG FRQVLGHUDEOH DWWHQWLRQ IRU DSSOLFDWLRQV LQ HIILFLHQW VHFRQG KDUPRQLF JHQHUDWLRQ LQ .73 ,Q WKH FDVH RI /L1E >&DD &DE /L@ DQG /L7D >%L /D 0D 9D@ WKH VHJPHQWDWLRQ DFWV DV D JUDWLQJ RUWKRJRQDO WR WKH GLUHFWLRQ RI WKH JXLGHG ZDYH SURSDJDWLQJ DORQJ DQRWKHU ZDYHJXLGH VXFK DV SURWRQ H[FKDQJHG ZDYHJXLGHV )LJ Eff 6XFK VHJPHQWHG ZDYHJXLGHV LQ )LJ Df DFW DV JUDWLQJV IRU DFKLHYLQJ TXDVL SKDVH PDWFKLQJ LQ QRQOLQHDU LQWHUDFWLRQV VLQFH WKH SHULRGLF VHJPHQWDWLRQ DOVR OHDGV WR SHULRGLF GRPDLQ UHYHUVDO L H UHYHUVDO RI RSWLF D[LV %HVLGHV DV JUDWLQJ VWUXFWXUHV VHJPHQWHG ZDYHJXLGHV E\ WKHPVHOYHV DUH DOVR LQWHUHVWLQJ VLQFH WKH HIIHFWLYH LQGH[ RI WKH SURSDJDWLQJ PRGH FDQ EH FRQWUROOHG E\ VLPSO\ YDU\LQJ WKH GXW\ F\FOH RI WKH VHJPHQWDWLRQ 7KH DELOLW\ WR FRQWURO WKH HIIHFWLYH LQGH[ RI WKH PRGH E\ FKDQJLQJ WKH GXW\ F\FOH RI WKH VHJPHQWHG ZDYHJXLGH FDQ EH XVHG IRU WKH HIILFLHQW GHVLJQ RI ]YDULDQW ZDYHJXLGH GHYLFHV VXFK DV PRGH H[SDQGHUV SRODUL]DWLRQ FRQYHUWHUV ZDYHOHQJWK ILOWHUV WDSHUHG YHORFLW\ FRXSOHUV HWF ,Q 7L/L1E WDSHULQJ RI WKH 7L VWULS ZLGWK EHIRUH LWV GLIIXVLRQ \LHOGV WDSHULQJ LQ LQGH[ DV ZHOO DV LQ GLPHQVLRQ DIWHU GLIIXVLRQ GXH WR VLGH GLIIXVLRQ $ WDSHUHG ERWK LQ GLPHQVLRQ DQG LQ LQGH[ YHORFLW\ FRXSOHU LQ 7L/L1E&! FDQ EH REWDLQHG GLUHFWO\ E\ WKH VLQJOH GLIIXVLRQ RI 7L %XW LRQH[FKDQJHG ZDYHJXLGHV LQ JODVV >5D@ DQG SURWRQ H[FKDQJHG ZDYHJXLGHV >*R@ LQ /L1E&! JLYH D IL[HG VXUIDFH UHIUDFWLYH LQGH[ IRU VSHFLILF IDEULFDWLRQ SDUDPHWHUV HJ H[FKDQJH WLPH DQG WHPSHUDWXUH DQQHDOLQJ WLPH DQG

PAGE 79

VHJPHQWHG ZDYHJXLGH Df GRPDLQ LQYHUVLRQ )LJ 7RS YLHZ RI VHJPHQWHG ZDYHJXLGHV Df LQ .73 DQG Ef LQ /L1E&! ZLWK JUDWLQJV RUWKRJRQDO WR WKH SURSDJDWLQJ ZDYH

PAGE 80

WHPSHUDWXUHf UHJDUGOHVV RI FKDQQHO ZLGWKV 7R DFKLHYH D WDSHU DQQHDOLQJ KDV EHHQ XVHG ZKLFK UHTXLUHV JUDGXDO YDULDWLRQ RI DQQHDOLQJ WHPSHUDWXUH DORQJ WKH SURSDJDWLRQ GLUHFWLRQ >/H@ +RZHYHU RQH FDQ JHW WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ FKDQQHO ZDYHJXLGHV HYHQ LQ WKHVH FKDQQHO ZDYHJXLGHV E\ XVLQJ VHJPHQWHG ZDYHJXLGHV ,W LV DOVR NQRZQ WKDW LQGH[ WDSHULQJ LQ D VHPLFRQGXFWRU FKDQQHO ZDYHJXLGH QHHGV HODERUDWH IDEULFDWLRQ WHFKQLTXHV VXFK DV VHOHFWLYH JURZWK RQ SDWWHUQHG VXEVWUDWHV >.D@ RU RQ VKDGRZ PDVNHG VXEVWUDWH >&R@ %XW VHJPHQWHG ZDYHJXLGHV PDNH LW SRVVLEOH WR IDEULFDWH WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ FKDQQHO ZDYHJXLGHV DQG FRXSOHUV LQ VHPLFRQGXFWRU ZLWKRXW HODERUDWH SURFHVVLQJ VWHSV 6HJPHQWHG ZDYHJXLGHV LQ .73 ZLWK VWHS LQGH[ VHJPHQWV DQG YHUWLFDO ZDOOV KDYH EHHQ DQDO\]HG XVLQJ D ODPHOODU JUDWLQJ DQDO\VLV LW ZDV VKRZQ WKDW D VWHS LQGH[ VHJPHQWHG ZDYHJXLGH FDQ EH UHSUHVHQWHG E\ DQ HTXLYDOHQW XQLIRUP VWHS LQGH[ SODQDU ZDYHJXLGH ZLWK D ILOP LQGH[ HTXDO WR WKH ZHLJKWHG DYHUDJH RI WKH KLJK DQG ORZ LQGH[ YDOXHV >/L@ 6HJPHQWHG ZDYHJXLGHV KDYH DOVR EHHQ DQDO\]HG XVLQJ WKH %30 PHWKRG >:H :H@ DQG WKH FRXSOHG PRGH WKHRU\ >:H@ 9HU\ UHFHQWO\ UHIOHFWLRQ DQG WUDQVPLVVLRQ FKDUDFWHULVWLFV DQG PRGH ILHOG SURILOHV DV ZHOO DV VHFRQG KDUPRQLF JHQHUDWLRQ LQYROYLQJ 430 LQWHUDFWLRQ LQ .73 VHJPHQWHG ZDYHJXLGHV KDYH EHHQ PHDVXUHG DQG PRGHOHG ZLWK D OLQHDUO\ JUDGHG UHIUDFWLYH LQGH[ YDULDWLRQ >(J@ $OWKRXJK WKH YDOLGLW\ RI WKH SURSRVHG PRGHO DV DSSOLHG WR .73 KDV EHHQ GHPRQVWUDWHG E\ WKH DERYH FRPSDULVRQ WR GDWH QR GLUHFW PHDVXUHPHQW RI HIIHFWLYH LQGLFHV RI WKH YDULRXV PRGHV DQG LWV YDULDWLRQ ZLWK WKH GXW\ F\FOH DQG SHULRG RI VHJPHQWDWLRQ KDYH EHHQ UHSRUWHG LQ WKH OLWHUDWXUH ,Q WKLV FKDSWHU ZH SUHVHQW H[SHULPHQWDO DQG WKHRUHWLFDO UHVXOWV RQ WKH SURSDJDWLRQ FKDUDFWHULVWLFV RI SODQDU SURWRQ H[FKDQJHG SHULRGLFDOO\ VHJPHQWHG 3(36f ZDYHJXLGHV LQ OLWKLXP QLREDWH 3ULVP FRXSOLQJ PHDVXUHPHQWV RI WKH YDULDWLRQ RI WKH HIIHFWLYH LQGH[ RI WKH PRGHV RI WKH ZDYHJXLGH DV D IXQFWLRQ RI WKH GXW\ F\FOH DQG SHULRG RI VHJPHQWDWLRQ IRU GLIIHUHQW DQQHDOLQJ WLPHV DUH SUHVHQWHG 6LQFH WKH 3(36 ZDYHJXLGH LV D JUDGHG LQGH[ VHJPHQWHG ZDYHJXLGH LW LV DVVXPHG WKDW WKH\ FDQ EH PRGHOHG E\ DQ HTXLYDOHQW ]LQYDULDQW

PAGE 81

JUDGHG LQGH[ ZDYHJXLGH 8VLQJ WKH PHDVXUHG HIIHFWLYH LQGH[ YDOXHV ZH VKRZ WKDW WKH 3(36 ZDYHJXLGH FDQ EH UHSUHVHQWHG E\ DQ HTXLYDOHQW JUDGHG LQGH[ SODQDU ZDYHJXLGH ZLWK D *DXVVLDQ UHIUDFWLYH LQGH[ GLVWULEXWLRQ ZLWK WKH SHDN LQGH[ FKDQJH YDU\LQJ DOPRVW OLQHDUO\ ZLWK GXW\ F\FOH IRU VPDOO GXW\ F\FOHV DQG VDWXUDWLQJ DW ODUJH GXW\ F\FOHV ZLWK LWV GHSWK LQGHSHQGHQW RI WKH GXW\ F\FOH 5HVXOWV REWDLQHG XVLQJ RXU PRGHO DUH LQ H[FHOOHQW DJUHHPHQW ZLWK WKH PHDVXUHG YDOXHV IRU VLQJOH DV ZHOO DV PXOWLPRGH 3(36 ZDYHJXLGHV >7K@ 3URWRQ H[FKDQJH ZDYHJXLGHV H[KLELW D JUDGHG LQGH[ SURILOH ZKHUH DV FRPSRXQG VHPLFRQGXFWRU ZDYHJXLGHV H[KLELW D VWHS LQGH[ SURILOH 6HJPHQWDWLRQ FDQ EH XVHG WR YDU\ WKH HIIHFWLYH LQGH[ 9DULDWLRQ LQ SURSDJDWLRQ ORVV DQG PRGH VL]H ZLWK UHVSHFW WR GXW\ F\FOHV LQ *D$V$O*D$V LV SUHVHQWHG 7DSHUHG ERWK LQ GLPHQVLRQ DQG LQ LQGH[ YHORFLW\ FRXSOHUV LQ *D$V$O*D$V ZLOO EH SURSRVHG LQ WKLV FKDSWHU XVLQJ WDSHUHG VHJPHQWHG ZDYHJXLGHV 3URWRQ ([FKDQJHG 3HULRGLFDOO\ 6HHPHQWHG :DYHJXLGHV LQ /L1E&K $ QP WDQWDOXP PDVN IRU D 3(36 SODQDU ZDYHJXLGH ZLWK D SHULRG RI _LP DQG D GXW\ F\FOH YDU\LQJ IURP WR ZDV SDWWHUQHG RQ D SDLU RI = FXW OLWKLXP QLREDWH VXEVWUDWHV XVLQJ VWDQGDUG SKRWROLWKRJUDSKLF WHFKQLTXHV ,Q SDUDOOHO LQ DQRWKHU = OLWKLXP QLREDWH VXEVWUDWH VLPLODU PDVN IRU D SODQDU 3(36 ZDYHJXLGH ZLWK D SHULRG RI _LP ZLWK D FRQVWDQW GXW\ F\FOH RI ZDV DOVR SDWWHUQHG 3URWRQ H[FKDQJH RI DOO WKH VXEVWUDWHV ZDV WKHQ FDUULHG RXW LQ S\URSKRVSKRULF DFLG DW D WHPSHUDWXUH 7Hf RI r& IRU D SHULRG WHf RI KRXU 7KH ZDYHJXLGHV ZHUH VXEVHTXHQWO\ DQQHDOHG IRU WKUHH GLIIHUHQW DQQHDOLQJ WLPHV WD DQG KRXUVf DW D WHPSHUDWXUH 7Df RI r& VHH )LJ f 5HFHQW VWXGLHV KDYH GHPRQVWUDWHG WKDW WKH HIIHFW RI WKH DPELHQW FRQGLWLRQV GXULQJ DQQHDOLQJ RQ WKH SURSDJDWLRQ FKDUDFWHULVWLFV RI WKH ZDYHJXLGH LV UHODWLYHO\ LQVLJQLILFDQW >/R@ 6LQFH SURWRQ H[FKDQJH FUHDWHV D KLJK LQGH[ UHJLRQ FORVH WR WKH VXUIDFH WKH DQQHDOHG SURWRQ H[FKDQJHG VHJPHQWHG ZDYHJXLGH VDPSOH KDV D UHIUDFWLYH LQGH[ JUDWLQJ ZLWK YDU\LQJ GXW\ F\FOH RQ LWV VXUIDFH :LWK D ODVHU EHDP LQFLGHQW RQ WKH VXUIDFH RI WKH VXEVWUDWH ZH FRXOG REVHUYH YDULRXV GLIIUDFWHG RUGHUV LQ WKH UHIOHFWHG EHDP 0HDVXUHPHQWV RI WKH DQJOHV

PAGE 82

3URWRQ H[FKDQJHG UHJLRQ IRU JXLGLQJ 7H r& WH KRXU 7D r& WD DQG KRXUV / OHQJWK RI VHJPHQWDWLRQ $ SHULRG 'XW\ &\FOH f§ a f )LJ $ VFKHPDWLF RI SURWRQ H[FKDQJHG SHULRGLFDOO\ VHJPHQWHG ZDYHJXLGHV LQ /L1E ZLWK IDEULFDWLRQ FRQGLWLRQV

PAGE 83

RI GLIIUDFWLRQ RI WKH YDULRXV RUGHUV ZHUH FRQVLVWHQW ZLWK WKH SHULRG RI _LP RI WKH SHULRGLF JUDWLQJ VWUXFWXUH 7KH LQWHQVLW\ RI GLIIUDFWLRQ ZDV DOVR REVHUYHG WR YDU\ ZLWK WKH GXW\ F\FOH RI WKH JUDWLQJ 6XFK PHDVXUHPHQWV FRXOG EH XVHG WR HVWLPDWH WKH VXUIDFH LQGH[ FKDQJH E\ PHDVXULQJ WKH LQWHQVLW\ RI WKH YDULRXV RUGHUV IRU GLIIHUHQW SRODUL]DWLRQ GLUHFWLRQV 3ULVP FRXSOLQJ PHDVXUHPHQWV ZLWK D +H1H ODVHU RSHUDWLQJ DW QP ZHUH FDUULHG RXW IRU GLIIHUHQW GXW\ F\FOHV DIWHU HDFK DQQHDOLQJ 7KH VDPSOH H[KLELWHG YHU\ VWURQJ VFDWWHULQJ XS WR KRXUV RI DQQHDOLQJ DQG QR PRGH PHDVXUHPHQWV ZHUH SRVVLEOH IRU WKHVH DQQHDOLQJ WLPHV ,QGHHG IRU VKRUW DQQHDOLQJ WLPHV ZH KDYH DOVR REVHUYHG VWURQJ GLIIUDFWLRQ RI WKH OLJKW LQFLGHQW LQ WKH SULVP LQWR DQG RUGHUV %\ SURSHUO\ FKRRVLQJ WKH DQJOH RI LQFLGHQFH DQG KHQFH WKH SKDVH YHFWRUf LQ WKH SULVP DQG WKH JUDWLQJ YHFWRU PW$ $ EHLQJ WKH SHULRG RI WKH VHJPHQWDWLRQf RI WKH VHJPHQWHG ZDYHJXLGH ZH KDYH REVHUYHG WKDW ZH FDQ LQGHHG H[FLWH DQ\ LQGLYLGXDO ZDYHJXLGH PRGH ZLWK DQ\ RI WKH GLIIUDFWHG RUGHUV 7KH VFDWWHULQJ IURP WKH ZDYHJXLGHV UHGXFHG ZLWK LQFUHDVHG DQQHDOLQJ WLPHV GXH WR UHGXFHG LQGH[ FKDQJH LQ WKH GLIIXVHG UHJLRQV 0RGH DQJOH PHDVXUHPHQWV IRU YDULRXV PRGHV DQG IRU GLIIHUHQW GXW\ F\FOHV ZHUH FDUULHG RXW XVLQJ D SULVP FRXSOLQJ DUUDQJHPHQW IRU DQQHDOLQJ WLPHV JUHDWHU WKDQ KRXUV 2SHQ FLUFOHV LQ )LJV Df Ef DQG Ff VKRZ WKH PHDVXUHG YDULDWLRQ RI WKH HIIHFWLYH LQGH[ RI WKH SURSDJDWLQJ PRGHV RI WKH ZDYHJXLGH DV D IXQFWLRQ RI GXW\ F\FOH IRU WD DQG KRXUV 0RGHOLQJ RI 3URWRQ ([FKDQJHG 3HULRGLFDOO\ 6HJPHQWHG :DYHJXLGHV LQ /L1E&K $QQHDOHG SURWRQ H[FKDQJH ZDYHJXLGHV KDYH D JUDGHG UHIUDFWLYH LQGH[ SURILOH DQG YDULRXV DQDO\WLFDO PRGHOV GHVFULELQJ WKH SURILOH DUH DOUHDG\ DYDLODEOH >&DE *R 1L 9R =D@ 7KHVH LQFOXGH FRPSOLPHQWDU\ HUURU IXQFWLRQ SURILOH >9R@ K\SHUEROLF WDQJHQW SURILOH IXQFWLRQ >&DE@ *DXVVLDQ SURILOH >*R =D@ DQG D JHQHUDOL]HG *DXVVLDQ IXQFWLRQ >1L@ $OO RI WKH DERYH PHQWLRQHG SURILOHV KDYH YHU\ VLPLODU EHKDYLRU DQG H[FHSW IRU WKH K\SHUEROLF WDQJHQW SURILOH QHHG QXPHULFDO PHWKRGV IRU

PAGE 84

Df )LJ 9DULDWLRQ RI PRGH LQGLFHV RI 3(36 ZDYHJXLGH ZLWK UHVSHFW WR GXW\ F\FOH IRU Df KRXU DQQHDOHG VDPSOH &LUFOHV UHSUHVHQW PHDVXUHG YDOXHV DQG VROLG FXUYHV FRUUHVSRQG WR FDOFXODWHG YDULDWLRQ RI DQ HTXLYDOHQW ]LQYDULDQW JUDGHG LQGH[ ZDYHJXLGH ZLWK *DXVVLDQ LQGH[ GLVWULEXWLRQf

PAGE 85

'XW\ &\FOH Ef )LJ FRQWLQXHG Ef KRXU DQQHDOHG VDPSOH DQG

PAGE 86

'XW\ &\FOH &f )LJ FRQWLQXHG Ff KRXU DQQHDOHG VDPSOH

PAGE 87

HVWLPDWLQJ WKH PRGH LQGLFHV 2XU IDEULFDWLRQ 7H r& DQG WH KRXUf DQG DQQHDOLQJ 7D r& DQG WD WR KRXUVf FRQGLWLRQV FRUUHVSRQG WR WKLQ ZDYHJXLGHV ZKLFK FDQ EH DSSUR[LPDWHG YHU\ ZHOO E\ D *DXVVLDQ UHIUDFWLYH LQGH[ SURILOH >*R =D@ 7KXV ZH PRGHO WKH SODQDU 3(36 ZDYHJXLGH E\ DQ HTXLYDOHQW ]LQYDULDQW JUDGHG LQGH[ ZDYHJXLGH ZLWK WKH IROORZLQJ *DXVVLDQ UHIUDFWLYH LQGH[ GLVWULEXWLRQ Q[f QV $Q H[S [A G[Af f ZKHUH QV LV WKH VXEVWUDWH LQGH[ $Q LV WKH SHDN LQGH[ FKDQJH DQG G[ LV WKH GLIIXVLRQ GHSWK )RU GXW\ F\FOHV DQG DQQHDOLQJ WLPHV IRU ZKLFK WKH ZDYHJXLGH VXSSRUWV WZR PRGHV ERWK $Q DQG G[ DUH XQLTXHO\ GHWHUPLQHG )LWWLQJ WR WKH PHDVXUHG HIIHFWLYH LQGLFHV ZDV SHUIRUPHG E\ D QXPHULFDO HYDOXDWLRQ RI WKH PRGH LQGLFHV RI WKH PRGHOHG ZDYHJXLGH :KLOH ILWWLQJ ZLWK WKH PHDVXUHG HIIHFWLYH LQGLFHV DW GLIIHUHQW GXW\ F\FOHV ZH IRXQG DV H[SHFWHG WKDW WKH GHSWK RI WKH HTXLYDOHQW ZDYHJXLGH LV LQGHSHQGHQW RI WKH GXW\ F\FOH ZLWKLQ H[SHULPHQWDO HUURUV RI WKH PHDVXUHG HIIHFWLYH LQGLFHVf ZKLOH WKH SHDN LQGH[ FKDQJH LQFUHDVHV DOPRVW OLQHDUO\ ZLWK WKH GXW\ F\FOH IRU ORZ GXW\ F\FOHV +HQFH WKH VDPH GHSWK ZDV DVVXPHG HYHQ IRU WKH UHJLRQ ZKHUH WKH ZDYHJXLGH VXSSRUWV MXVW D VLQJOH PRGH 2XU ILQGLQJV UHJDUGLQJ WKH GHSWK LQGHSHQGHQFH RI WKH HTXLYDOHQW ZDYHJXLGH ZLWK WKH GXW\ F\FOH DUH DOVR FRQVLVWHQW ZLWK WKH HTXLYDOHQW ZDYHJXLGH PRGHO RI VWHS LQGH[ VHJPHQWHG ZDYHJXLGH >/L@ DQG HTXLYDOHQW ZDYHJXLGH PRGHOV XVHG WR UHSUHVHQW WDSHUHG GLIIXVHG ZDYHJXLGHV >6X@ ,Q )LJV DfFf ZH KDYH DOVR SORWWHG WKH FDOFXODWHG HIIHFWLYH PRGH LQGH[ VROLG FXUYHVf RI WKH ILWWHG HTXLYDOHQW JUDGHG LQGH[ SODQDU ZDYHJXLGH ZLWK HTXLYDOHQW WKLFNQHVVHV G[f RI SP SP DQG SP FRUUHVSRQGLQJ WR WD RI DQG KRXUV UHVSHFWLYHO\ $V FDQ EH VHHQ WKH DJUHHPHQW EHWZHHQ WKH PHDVXUHG DQG ILWWHG HIIHFWLYH LQGLFHV LV YHU\ JRRG )LJXUH VKRZV WKH FRUUHVSRQGLQJ YDULDWLRQ RI VXUIDFH LQGH[ FKDQJH RI WKH HTXLYDOHQW JUDGHG LQGH[ ZDYHJXLGH ZLWK WKH GXW\ F\FOH $V WKH GXW\ F\FOH LQFUHDVHV WKH

PAGE 88

VXUIDFH LQGH[ FKDQJH RI WKH HTXLYDOHQW ZDYHJXLGH LQFUHDVHV DOPRVW OLQHDUO\ ZLWK WKH GXW\ F\FOH IRU VPDOO GXW\ F\FOHVf DQG DV VKRXOG EH H[SHFWHG WHQGV WR VDWXUDWH DW ODUJH GXW\ F\FOHV ,Q DGGLWLRQ DV WKH DQQHDOLQJ WLPH LQFUHDVHV WKH GHSWK RI WKH HTXLYDOHQW ZDYHJXLGH DOVR LQFUHDVHV 2XU HVWLPDWHG VXUIDFH LQGH[ FKDQJH DQG WKH GHSWK RI WKH HTXLYDOHQW ZDYHJXLGH DUH FRQVLVWHQW ZLWK WKRVH RI QRQVHJPHQWHG DQQHDOHG SURWRQ H[FKDQJH ZDYHJXLGHV DV REWDLQHG LQ UHFHQW UHVHDUFK >&DE *R 3X@ 7R GHWHUPLQH WKH GHSHQGHQFH RI WKH HIIHFWLYH LQGH[ RI WKH PRGHV RI WKH VHJPHQWHG ZDYHJXLGH RQ WKH SHULRG RI VHJPHQWDWLRQ ZH PDGH SULVP FRXSOLQJ PHDVXUHPHQWV RQ WKH 3(36 ZDYHJXLGH VDPSOH ZLWK D SHULRG RI ILP DQG D FRQVWDQW GXW\ F\FOH RI %\ FKDQJLQJ WKH DQJOH EHWZHHQ WKH GLUHFWLRQ RI SURSDJDWLRQ RI WKH JXLGHG OLJKW DQG WKH GLUHFWLRQ RI VHJPHQWDWLRQ ZH FRXOG JHQHUDWH GLIIHUHQW SHULRGV RI VHJPHQWDWLRQ ZLWKRXW FKDQJLQJ WKH GXW\ F\FOH )LJXUH FRUUHVSRQGV WR D W\SLFDO PHDVXUHG YDULDWLRQ IRU 70R DQG 70L PRGHV IRU KRXUV RI DQQHDOLQJ DQG VKRZ WKDW WKH HIIHFWLYH LQGH[ LV LQGHSHQGHQW RI WKH SHULRG RI VHJPHQWDWLRQ 7KHVH H[SHULPHQWDO UHVXOWV FRQILUP WKDW WKH HIIHFWLYH LQGH[ RI WKH SURSDJDWLQJ PRGH LV LQGHSHQGHQW RI WKH SHULRG RI VHJPHQWDWLRQ DQG GHSHQGV RQO\ RQ WKH GXW\ F\FOH >/L@ )LJXUHV DQG SURYLGH FRQFOXVLYH HYLGHQFH WKDW WKH 3(36 ZDYHJXLGH FDQ EH UHSUHVHQWHG E\ DQ HTXLYDOHQW ]LQYDULDQW JUDGHG LQGH[ SODQDU ZDYHJXLGH ZLWK D *DXVVLDQ UHIUDFWLYH LQGH[ SURILOH ZLWK WKH SHDN $Q YDOXH LQFUHDVLQJ DOPRVW OLQHDUO\ DW ORZ GXW\ F\FOHV DQG VDWXUDWLQJ DV WKH GXW\ F\FOH DSSURDFKHV XQLW\ ZKLOH WKH FRUUHVSRQGLQJ GLIIXVLRQ GHSWK LV LQGHSHQGHQW RI GXW\ F\FOH IRU D JLYHQ DQQHDOLQJ FRQGLWLRQ LH JLYHQ 7D DQG WDf ,Q VXPPDU\ ZH KDYH SUHVHQWHG WKH FKDUDFWHUL]DWLRQ RI SURWRQ H[FKDQJHG SHULRGLF VHJPHQWHG ZDYHJXLGH LQ OLWKLXP QLREDWH 9DULDWLRQ RI HIIHFWLYH LQGLFHV IRU GLIIHUHQW PRGHV IRU GLIIHUHQW DQQHDOLQJ WLPHV DV D IXQFWLRQ RI GXW\ F\FOH DQG SHULRG RI VHJPHQWDWLRQ KDYH EHHQ SUHVHQWHG ,W LV VKRZQ WKDW WKH 3(36 ZDYHJXLGH FDQ EH PRGHOHG E\ D ]LQYDULDQW JUDGHG LQGH[ ZDYHJXLGH ZLWK D *DXVVLDQ UHIUDFWLYH LQGH[ GLVWULEXWLRQ

PAGE 89

)LJ 9DULDWLRQ RI $Q DW WKH VXUIDFH RI WKH HTXLYDOHQW JUDGHG LQGH[ ZDYHJXLGH ZLWK GXW\ F\FOH

PAGE 90

)LJ 0HDVXUHG YDULDWLRQ RI WKH HIIHFWLYH LQGLFHV RI WKH 70R DQG 70L PRGHV ZLWK SHULRG RI VHJPHQWDWLRQ RI D 3(36 ZDYHJXLGH ZLWK D GXW\ F\FOH RI

PAGE 91

3HULRGLFDOO\ 6HJPHQWHG :DYHJXLGHV LQ $O*D$V*D$V DQG WKHLU $SSOLFDWLRQ WR 7DSHUHG 9HORFLW\ &RXSOHUV ,Q 3(36 SODQDU ZDYHJXLGHV LQ /L1E&! VKRZQ LQ )LJ WKH VHJPHQWHG ZDYHJXLGHV FRQVLVW RI GLVFRQWLQXRXV SURWRQ H[FKDQJHG JXLGLQJ UHJLRQV DORQJ WKH EHDP SURSDJDWLRQ GLUHFWLRQ 6HJPHQWHG ZDYHJXLGHV LQ $O*D$V*D$V KDYH EHHQ UHDOL]HG E\ WKH XVH RI D FRQWLQXRXV JXLGLQJ OD\HU EXW ZLWK D VHJPHQWHG ULGJH FODGGLQJ UHJLRQ $V VKRZQ LQ )LJ Df *D$V JXLGLQJ OD\HU LV VDQGZLFKHG E\ WZR $OR*DR$V FODGGLQJ OD\HUV 7KH XSSHU FODGGLQJ KRZHYHU LV D VHJPHQWHG ULGJH VWUXFWXUH DORQJ WKH EHDP SURSDJDWLRQ GLUHFWLRQ JLYLQJ ULVH WR HIIHFWV RI VHJPHQWDWLRQ DV ZHOO DV KRUL]RQWDO FRQILQHPHQW RI WKH PRGH )LJXUH Ef DQG Ff LOOXVWUDWH WKH IURQW DQG VLGH YLHZ RI WKH ILQDO VHJPHQWHG ZDYHJXLGH VWUXFWXUH UHVSHFWLYHO\ 7R IDEULFDWH WKH VHJPHQWHG ZDYHJXLGH VWUXFWXUH KRZHYHU ZH UHTXLUH WZR HWFKLQJ VWHSV $ ULGJH ZDYHJXLGH ZDV GHILQHG E\ VWDQGDUG SKRWROLWKRJUDSK\ DQG ZHW HWFKLQJ WHFKQLTXH DV VKRZQ LQ )LJ Df :LWKRXW UHPRYLQJ SKRWRUHVLVW 35f RQ WKH ULGJH WKH VDPSOH ZDV H[SRVHG WR 89 OLJKW WR GHOLQHDWH WKH VHJPHQWHG 35 SDWWHUQV RQ WKH ULGJH XVLQJ WKH DSSURSULDWH PDVN SDWWHUQ $IWHU UHPRYLQJ WKH H[SRVHG SDUW RI WKH UHPDLQLQJ 35 RQ WKH ULGJH WKH VDPSOH ZDV GLSSHG LQWR HWFKLQJ VROXWLRQ DJDLQ 7KH VHFRQG HWFKLQJ \LHOGHG QRW RQO\ VHJPHQWDWLRQ RI WKH ULGJH EXW DOVR IXUWKHU HWFKLQJ RXWVLGH WKH ULGJH DV VKRZQ LQ )LJ Ef $ERXW DQG SP ZHUH HWFKHG RXW E\ WKH ILUVW DQG VHFRQG HWFKLQJ SURFHVV UHVSHFWLYHO\ 'LOXWHG SKRVSKRULF DFLG +3++f ZDV XVHG IRU WKH HWFKLQJ VROXWLRQ ZKLFK SURYLGHV DQ HTXDO HWFKLQJ UDWH IRU ERWK *D$V DQG $OR*DR$V OD\HUV YL] SPPLQ DW URRP WHPSHUDWXUH $V VKRZQ LQ )LJ Df ILQDO VWUXFWXUH RI WKH VHJPHQWHG ZDYHJXLGH LV D ULGJH *D$V FKDQQHO ZDYHJXLGH ZLWK VHJPHQWHG $OR*DR$V VWULS ZKLFK JLYHV KLJK DQG ORZ PRGH LQGH[ UHJLRQV DORQJ WKH *D$V ULGJH DFFRUGLQJ WR WKH WKLFNQHVV RI WKH VWULS )URQW DQG VLGH YLHZV RI WKH VHJPHQWHG ZDYHJXLGH DUH VKRZQ LQ )LJ Ef DQG Ff UHVSHFWLYHO\ ,W VKRXOG EH QRWHG WKDW WKHUH DUH WZR NH\ SDUDPHWHUV ZKLFK PXVW EH RSWLPL]HG 7KHVH DUH

PAGE 92

Df )LJ 3HULRGLFDOO\ VHJPHQWHG ZDYHJXLGH LQ $O*D$V*D$V Df 6FKHPDWLF RI WKH ILQDO VWUXFWXUH

PAGE 93

Ef LP _LP )LJ FRQWLQXHG Ef )URQW DQG Ff 6LGH YLHZ RI WKH VHJPHQWHG ZDYHJXLGH

PAGE 94

Df 3KRWRUHVLVW ADA6 *D$V VXEVWUDWH Ef )LJ ,OOXVWUDWLRQ IRU WZR VWHS HWFKLQJ SURFHVV 6DPSOH DIWHU Df WKH ILUVW HWFKLQJ DQG Ef WKH VHFRQG HWFKLQJ

PAGE 95

*D$V WKLFNQHVV WLf RXWVLGH WKH ULGJH DQG $OR*DR$V WKLFNQHVV Wf LQ WKH ORZ PRGH LQGH[ UHJLRQ )LUVW WL QHHGV WR EH VPDOOHU WKDQ SP VR DV WR REWDLQ ZHOO FRQILQHG FKDQQHO ZDYHJXLGH PRGHV E\ VXSSUHVVLQJ JXLGHG PRGH RXWVLGH WKH ULGJH 6HFRQG W PXVW EH ODUJHU WKDQ SP VR WKDW WKH VHJPHQWHG ZDYHJXLGHV GR QRW VXIIHU ODUJH SURSDJDWLRQ ORVV GXH WR ODUJH GLIIHUHQFH LQ PRGH VL]H EHWZHHQ KLJK DQG ORZ PRGH LQGH[ UHJLRQ $O*D$V*D$V VHJPHQWHG ZDYHJXLGHV ZLWK GLIIHUHQW GXW\ F\FOHV LOOXVWUDWHG LQ )LJ ZHUH FKDUDFWHUL]HG E\ PHDVXULQJ WKH SURSDJDWLRQ ORVV DQG QHDU ILHOG LQWHQVLW\ SURILOHV 3URSDJDWLRQ ORVV ZDV PHDVXUHG E\ WKH FXW EDFN PHWKRG DQG WKH UHVXOWV DUH VKRZQ LQ )LJ 3URSDJDWLRQ ORVV RI VHJPHQWHG ZDYHJXLGHV ZLWK KLJK DQG ORZ GXW\ F\FOHV LV OHVV WKDQ WKDW RI GXW\ F\FOH VHJPHQWHG ZDYHJXLGHV >/L :H@ 7KLV LV WR EH H[SHFWHG VLQFH VHJPHQWHG ZDYHJXLGHV ZLWK GXW\ F\FOH RI DQG FRUUHVSRQG WR VWUDLJKW FKDQQHO *D$V ULGJH ZDYHJXLGHV ZLWK DQG SP WKLFN $O*D$V VWULS ORDGLQJ UHVSHFWLYHO\ DQG DV VXFK WKHVH VKRXOG KDYH WKH VPDOOHVW SURSDJDWLRQ ORVV FRPSDUHG WR VHJPHQWHG ZDYHJXLGH ZLWK D GXW\ F\FOH RI 9DULDWLRQ LQ PRGH VL]H ZLWK UHVSHFW WR GXW\ F\FOH ZDV REWDLQHG E\ QHDU ILHOG LQWHQVLW\ PHDVXUHPHQWV 1R VLJQLILFDQW YDULDWLRQ LQ PRGDO GHSWK ZLWK UHVSHFW WR GXW\ F\FOH ZDV REVHUYHG LQ )LJ Df 7KLV LV XQGHUVWDQGDEOH EHFDXVH WKH HIIHFWLYH LQGH[ LQ WKH FHQWUDO UHJLRQ LV KDUGO\ DIIHFWHG E\ YDU\LQJ WKH KHLJKW RI FODGGLQJ IURP WR SP VLQFH WKH HIIHFW GXH WR GHFUHDVHG DV\PPHWU\ LV QHJOLJLEOH 2Q WKH RWKHU KDQG QRWLFHDEOH YDULDWLRQ LQ PRGDO ZLGWK ZLWK UHVSHFW WR GXW\ F\FOH ZDV REWDLQHG DV SUHVHQWHG LQ )LJ Ef $V FDQ EH VHHQ LQ )LJ Ef PLQLPXP PRGDO ZLGWK RFFXUV DW GXW\ F\FOH RI 8VLQJ WKH HIIHFWLYH LQGH[ PHWKRG PRGDO ZLGWK FDQ EH FDOFXODWHG E\ FRQVLGHULQJ D K\SRWKHWLFDO V\PPHWULF WKUHHOD\HU ZDYHJXLGH ZKRVH HIIHFWLYH LQGLFHV IRU JXLGLQJ DQG FODGGLQJ OD\HUV DUH WKRVH RI ULGJH DQG RXWVLGH ULGJH UHJLRQ UHVSHFWLYHO\ 7KH K\SRWKHWLFDO ZDYHJXLGH FHUWDLQO\ KDV PLQLPXP PRGDO ZLGWK ZLWK FKDQJLQJ HIIHFWLYH LQGH[ RI JXLGLQJ OD\HU >.R@ :H EHOLHYH WKDW FKDQJH LQ GXW\ F\FOH RI WKH VHJPHQWHG ZDYHJXLGHV UHVXOWV LQ FKDQJH LQ

PAGE 96

)LJ 9DULDWLRQ RI SURSDJDWLRQ ORVV RI VHJPHQWHG ZDYHJXLGHV ZLWK UHVSHFW WR GXW\ F\FOH &LUFOHV UHSUHVHQW PHDVXUHG YDOXHV DQG VROLG FXUYH FRUUHVSRQGV WR ILWWLQJ

PAGE 97

'XW\ &\FOH Df )LJ 9DULDWLRQ LQ PRGH VL]H ZLWK UHVSHFW WR GXW\ F\FOH Df 0RGDO GHSWK YDULDWLRQ ZLWKHVSHFW WR GXW\ F\FOH &LUFOHV UHSUHVHQW PHDVXUHG YDOXHV DQG VROLG FXUYH FRUUHVSRQGV WR ILWWLQJ

PAGE 98

'XW\ &\FOH Ef )LJ FRQWLQXHG Ef 0RGDO ZLGWK YDULDWLRQ ZLWK UHVSHFW WR GXW\ F\FOH

PAGE 99

HIIHFWLYH LQGH[ RI WKH ULGJH DQG WKXV PLQLPXP RI WKH PRGDO ZLGWK VKRXOG EH DEOH WR EH REVHUYHG 5HDOL]DWLRQ RI VHJPHQWDWLRQ LQ *D$V ZKLFK KDV D YHU\ KLJK UHIUDFWLYH LQGH[ Q f LV LQGHHG GLIILFXOW VLQFH D FDUHIXO EDODQFH EHWZHHQ WKH QRQJXLGLQJ SODQDU VHFWLRQ DQG ORZ SURSDJDWLRQ ORVV ULGJH VHFWLRQ KDV WR EH DUULYHG DW ,Q DGGLWLRQ ZH PXVW HQVXUH WKDW VHJPHQWDWLRQ RI WKH ULGJH LV VWLOO VXIILFLHQWO\ VWURQJ HQRXJK WR DIIHFW WKH SURSDJDWLRQ FRQVWDQW ZLWKRXW FDXVLQJ WRR PXFK SURSDJDWLRQ ORVV 8VLQJ WKH VHJPHQWHG ZDYHJXLGHV WKDW KDV EHHQ GHYHORSHG WKXV IDU WKHUH DUH QHZ RSSRUWXQLWLHV WR IDEULFDWH D WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ YHORFLW\ FRXSOHU 79&f LQ $O*D$V*D$V LQ WKH IXWXUH 3URSRVHG 79& ZLOO FRQVLVW RI WZR ULGJH ZDYHJXLGHV RQH RI ZKLFK IRU H[DPSOH LV D VWUDLJKW ULGJH ZDYHJXLGH ZLWK FRQVWDQW ZLGWK :VWf DQG GXW\ F\FOH RI DORQJ WKH EHDP SURSDJDWLRQ GLUHFWLRQ 7KH RWKHU ZDYHJXLGH FDQ EH D ZDYHJXLGH WDSHUHG LQ ZLGWK IURP :WL WR :W :WL:VW:Wf DQG LQ GXW\ F\FOH IURP WR f VXFK DV LQ )LJ 7DSHULQJ WKH GXW\ F\FOH ZRXOG HIIHFWLYHO\ WDSHU WKH LQGH[ VR WKDW WKHUH LV D ZHDN FRXSOLQJ EHWZHHQ WKH WZR ULGJHV DW LQSXW DQG RXWSXW GXH WR ODUJH GLIIHUHQFH ERWK LQ GLPHQVLRQ DQG LQ LQGH[ RI HDFK RI WKH ULGJH %\ HPSOR\LQJ WDSHUHG GXW\ F\FOH WRJHWKHU ZLWK WDSHUHG ZLGWK RI WKH ULGJH ZH H[SHFW WKDW FRPSOHWH SRZHU WUDQVIHU FDQ EH DFKLHYHG ZLWK D UHDVRQDEOH GHYLFH OHQJWK )DEULFDWLRQ RI WKH SURSRVHG WDSHUHG YHORFLW\ FRXSOHU YHULILFDWLRQ RI FRPSOHWH SRZHU WUDQVIHU DQG LWV DSSOLFDWLRQ WR GLJLWDO RSWLFDO VZLWFK VWLOO UHPDLQ WR EH LQYHVWLJDWHG

PAGE 100

'XW\ &\FOH 'XW\ &\FOH )LJ 7RS YLHZ RI WKH SURSRVHG WDSHUHG YHORFLW\ FRXSOHU ZLWK ERWK GLPHQVLRQ DQG GXW\ F\FOH WDSHUHG DORQJ WKH EHDP SURSDJDWLRQ GLUHFWLRQ

PAGE 101

&+$37(5 6,; $1 04:64: 7$3(5(' :$9(*8,'( ,17(5&211(&7 ,QWURGXFWLRQ 2SWLFDO PRGDO LQWHUFRQQHFWV EHWZHHQ GHYLFHV RQ DQ 2(,& FKLS UHTXLUH WDLORULQJ RI EDQG JDS HQHUJLHV DQG WKHUHIRUH UHIUDFWLYH LQGLFHV RI WKH UHJLRQV EHWZHHQ WKH GHYLFHV 7KLV FDQ EH DFKLHYHG E\ XVLQJ LPSXULW\ LQGXFHG OD\HU GLVRUGHULQJ (/'f RI WKH TXDQWXP ZHOOV >/D@ ,,/' FDXVHV LQWHUPL[LQJ RI *D$O ZKLFK KDV UHFHLYHG FRQVLGHUDEOH DWWHQWLRQ UHFHQWO\ >/L 0H@ DV LW HOLPLQDWHV WKH QHHG IRU UHJURZWK LQ WKH IDEULFDWLRQ VHTXHQFH $ QRYHO WDSHULQJ WHFKQLTXH VXLWDEOH IRU LQWHUFRQQHFWLQJ D VLQJOH TXDQWXP ZHOO 64:f ZDYHJXLGH WR D PRQROLWKLF PXOWLTXDQWXP ZHOO 04:f ZDYHJXLGH XVLQJ ,'/' RI WKH 04: UHJLRQ YLD =Q GLIIXVLRQ WKURXJK D WDSHUHG 6L2[ EDUULHU OD\HU RQ WKH 04: ZDYHJXLGH ZDV UHFHQWO\ UHSRUWHG E\ 6LQKD HW DO DW 8QLYHUVLW\ RI )ORULGD >6L@ 7KH =Q FRQFHQWUDWLRQ SURILOH DORQJ WKH JURZWK GLUHFWLRQ LQ WKH 04: ZDYHJXLGH LV GHWHUPLQHG E\ WKH WKLFNQHVV RI WKH 6L2[ EDUULHU OD\HU 6LQFH WKH WKLFNQHVV RI 6L2[ EDUULHU YDULHV VORZO\ DORQJ WKH SURSDJDWLRQ GLUHFWLRQ VR GRHV WKH GLIIXVHG =Q SURILOH =Q GLIIXVLRQ LQWR WKH 04: ZDYHJXLGH LQWHUPL[HV *D DQG $O LRQV WKURXJK JURXS +, YDFDQF\ JHQHUDWLRQ YLD D nNLFN RXWn PHFKDQLVP VR WKDW WKH TXDQWXP ZHOOV DUH JUDGXDOO\ GHVWUR\HG 7KLV UHVXOWV LQ EOXH VKLIWLQJ RI WKH DEVRUSWLRQ HGJH L H WKH EDQG JDS RI WKH 04: LQFUHDVHV ZKLOH VLPXOWDQHRXVO\ GHFUHDVLQJ WKH UHIUDFWLYH LQGH[ RI WKH 04: UHJLRQ VLQFH WKH HIIHFWLYH $O FRQFHQWUDWLRQ LQ WKH ZHOOV LQFUHDVHV 7KH H[WHQW RI EOXH VKLIWLQJ WKH EDQG JDS DQG GHFUHDVLQJ RI WKH UHIUDFWLYH LQGH[ RI WKH 04: FDQ EH FRQWUROOHG E\ YDU\LQJ WKH FRQFHQWUDWLRQ RI =Q GLIIXVDQW WKURXJK YDULDWLRQ RI WKLFNQHVV RI WKH 6L2[ EDUULHU OD\HU :H H[WHQG RXU SUHYLRXV VWXG\ >6L@ IXUWKHU DQG GHPRQVWUDWH DQ DGLDEDWLFDOO\ WDSHUHG 04: E\ ]YDULDQW LPSXULW\ LQGXFHG OD\HU GLVRUGHULQJ ,,/'f FDXVHG E\ =Q

PAGE 102

GLIIXVLRQ WKURXJK DQ 6L2[ EDUULHU OD\HU ZKRVH WKLFNQHVV YDULHV OLQHDUO\ DORQJ D ORQJLWXGLQDO GLUHFWLRQ 5HVXOWV RI QXPHULFDO DQDO\VLV DUH LQ H[FHOOHQW DJUHHPHQW ZLWK H[SHULPHQWDO UHVXOWV 7KLV DQDO\VLV XWLOL]HV WKH VWHS WUDQVLWLRQ PRGHO DQG PXOWLOD\HU VWDFN WKHRU\ WR HVWDEOLVK WKH DGLDEDWLF QDWXUH RI WKH WDSHUHG VWUXFWXUH >.LE@ ,Q WKLV DQDO\VLV WKH UHIUDFWLYH LQGH[ RI WKH 04: ZDYHJXLGH ZDV GHWHUPLQHG E\ HYDOXDWLQJ DQ HTXLYDOHQW $O[*DL[$V DOOR\ FRUUHVSRQGLQJ WR WKH 04: EDQGJDS HQHUJ\ DORQJ GLIIHUHQW VHJPHQWV RI WKH WDSHU %DVHG XSRQ RXU WKHRUHWLFDO DQG H[SHULPHQWDO UHVXOWV ZH SURSRVH D PRGLILHG HSLOD\HU VWUXFWXUH WR UHGXFH FRXSOLQJ ORVV EHWZHHQ ODVHU DQG WDSHU VHFWLRQV DQG WR DFKLHYH KLJKHU PRGXODWLRQ HIILFLHQF\ 7KLV PRGLILFDWLRQ HPSOR\V D FRQFHSW RI WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ YHORFLW\ FRXSOHUV DQG LV EHLQJ XVHG LQ WKH FXUUHQW HIIRUWV RI LQWHJUDWLQJ D 64: ODVHU WR DQ 04: LQWHQVLW\ PRGXODWRU 7DSHUHG :DYHJXLGH ,QWHUFRQQHFW 8VLQJ ,,/' )LJXUH Df VKRZV D VFKHPDWLF RI WKH HSLOD\HUV RI WKH LQWHJUDWHG VWUXFWXUH ,Q WKH 04: UHJLRQ WKH EDUULHU OD\HUV DUH WKLFN HQRXJK WR SUHYHQW FRXSOLQJ RI WKH ZHOOV (SLWD[LDO JURZWK ZDV SHUIRUPHG LQ DQ DWPRVSKHULF SUHVVXUH PHWDORUJDQLF FKHPLFDO YDSRU GHSRVLWLRQ 02&9'f V\VWHP DW D WHPSHUDWXUH RI r& XVLQJ 70$ 70* DQG $6+ DV WKH SUHFXUVRUV 7KH SURFHVV RI WDSHU IDEULFDWLRQ FRQVLVWV RI Df GHSRVLWLRQ RI 6L2[ OD\HU ZLWK D WKLFNQHVV YDU\LQJ OLQHDUO\ IURP WR QP DORQJ D PP OHQJWK IROORZHG Ef GHSRVLWLRQ RI =Q Ff GHSRVLWLRQ RI D FDSSLQJ 6L2[ OD\HU DQG ILQDOO\ Gf GLIIXVLRQ RI =Q LQWR WKH 04: VHFWLRQ YLD DQQHDOLQJ DW r& IRU PLQ )LJXUH Ef VKRZV FURVV VHFWLRQ RI WKH VDPSOH EHIRUH DQG DIWHU =Q GLIIXVLRQ 3KRWROXPLQHVFHQFH 3/f VSHFWUD DFURVV WKH WDSHU RI WKH =Q GLIIXVHG VDPSOH ZHUH PHDVXUHG DW r. ,W VKRZHG WKDW WKH H[WHQW RI EOXH VKLIW RI WKH EDQG JDS RI WKH 04: FRUUHODWHG ZHOO ZLWK WKLFNQHVV RI =Q GLIIXVLRQ EDUULHU )URP WKH WHPSHUDWXUH GHSHQGHQFH RI WKH 04: 3/ SHDN SRVLWLRQ RI WKH DVJURZQ VDPSOH ZH HVWLPDWHG YDOXH RI WKH EDQGJDS RI WKH 04: DW URRP WHPSHUDWXUH WR EH H< SPf

PAGE 103

8QGRSHG *D$V QP 8QGRSHG $ORAR*DRR$V QP 8QGRSHG $*D$V O22QP SHULRG 8QGRSHG QP $,T R*DR !$VQP *D$V 04: 8QGRSHG $*D$V QP 8QGRSHG *D$V 64: O2QP 8QGRSHG $*D$V QP QGRSHG QP QGRSHG *D$V EXIIHU QP QGRSHG *D$V VXEVWUDWH Df Ef )LJ 6FKHPDWLF RI HSLOD\HU VWUXFWXUH DQG WDSHUHG 04: Df 6FKHPDWLF RI HSLOD\HU RI PRQROLWKLFDOO\ JURZQ 04: DQG 64: VWUXFWXUH Ef 6FKHPDWLF RI WKH IRUPDWLRQ RI WKH WDSHU E\ ]LQF GLIIXVLRQ

PAGE 104

,Q RUGHU WR VHSDUDWH WKH FRQWULEXWLRQ RI WKH IUHH FDUULHU LQGXFHG FKDQJH DQG WKH ,,/' LQGXFHG FKDQJH WR WKH UHIUDFWLYH LQGH[ RI WKH 04: WZR PHDVXUHPHQWV ZHUH SHUIRUPHG 0RGH LQGH[ PHDVXUHPHQWV >+X@ DW SP ZHUH XVHG WR GHWHUPLQH WKH IUHH FDUULHU LQGXFHG LQGH[ FKDQJH )RU WKHVH PHDVXUHPHQWV ULGJH ZDYHJXLGHV ZHUH SKRWROLWKRJUDSKLFDOO\ GHILQHG DQG HWFKHG SHUSHQGLFXODU WR WKH WDSHUHG =Q GLVRUGHUHG GLUHFWLRQ RI DQ 04: VDPSOH 0RGH LQGH[ FKDQJH DW SP $1f ZDV HYDOXDWHG WR EH 7KLV VPDOO YDOXH RI $1 LPSOLHV WKDW WKH IUHH FDUULHU FRQWULEXWLRQ WR WKH UHIUDFWLYH LQGH[ FKDQJH LV UDWKHU VPDOO DQG KHQFH FDQ EH QHJOHFWHG 1HDU ILHOG LQWHQVLW\ PHDVXUHG DW SP ZDV XVHG WR GHWHUPLQH WKH ,,/' LQGXFHG LQGH[ FKDQJH $ WXQDEOH 7LU6DSSKLUH ODVHU SPf ZDV XVHG WR H[FLWH WKH JXLGHG PRGHV RI WKH FRPSRVLWH VWUXFWXUH IRU ERWK WKH DVJURZQ DQG =Q GLIIXVHG VDPSOH 7KH VROLG FXUYH LQ )LJ Df VKRZV WKH PHDVXUHG RXWSXW LQWHQVLW\ SURILOH DORQJ WKH JURZWK GLUHFWLRQ RI WKH DVJURZQ VDPSOH $OPRVW b RI WKH SRZHU LV FRQFHQWUDWHG LQ WKH 04: UHJLRQ ZLWK D VPDOO OREH DURXQG WKH 64: UHJLRQ 7KH VROLG FXUYH LQ )LJ Ef VKRZV DQ RXWSXW LQWHQVLW\ SURILOH PHDVXUHG DW WKH GLVRUGHUHG HQG RI WKH =Q GLIIXVHG VLGH ZLWK OLJKW ODXQFKHG LQWR WKH XQGLVRUGHUHG HQG SURSDJDWLQJ DORQJ WKH PPORQJ WDSHUHG VHFWLRQ ,W VKRZV D EURDGHU SURILOH WKDQ WKDW LQ )LJ Df DQG LV D GLUHFW FRQVHTXHQFH RI WKH UHIUDFWLYH LQGH[ GHFUHDVH LQ WKH GLVRUGHUHG 04: 0RGHOLQJ RI ,PSXULW\ ,QGXFHG /DYHU 'LVRUGHUHG 02: DQG $QDO\VLV RI 7DSHUHG :DYHJXLGH ,QWHUFRQQHFW 7KH ILUVW ERXQG VWDWH HQHUJ\ OHYHOV RI WKH HOHFWURQ DQG KHDY\ KROH ZHUH FDOFXODWHG XVLQJ D FRQGXFWLRQ EDQG $(&f WR YDOHQFH EDQG $(9f RIIVHW UDWLR 7KLV JLYHV DQ (J04:f RI H9 ZKLFK LV HVVHQWLDOO\ WKH YDOXH REWDLQHG IURP WKH 3/ PHDVXUHPHQWV 7KH UHIUDFWLYH LQGH[ RI WKH $O[*DL[$V DOOR\ IRU DOO UHOHYDQW YDOXHV RI [ DW SP ZDV DQDO\WLFDOO\ FDOFXODWHG XVLQJ WKH IROORZLQJ HTXDWLRQV >$I@

PAGE 105

\OLPf Df )LJ ,QWHQVLW\ SURILOHV RI ERWK HQGV RI WKH WDSHU Df 1HDU ILHOG LQWHQVLW\ SURILOH RI WKH DVJURZQ VDPSOH LOOXVWUDWHG LQ )LJ Df 6ROLG FXUYHV UHSUHVHQW PHDVXUHG SURILOHV GRWWHG FXUYHV QXPHULFDOO\ FDOFXODWHG SURILOHV DQG VROLG OLQHV XQGHU WKH SURILOHV LQGH[ SURILOH DORQJ WKH GHSWK GLUHFWLRQ

PAGE 106

\_LPf Ef )LJ FRQWLQXHG Ef 1HDU ILHOG LQWHQVLW\ SURILOH RI WKH GLVRUGHUHG VHFWLRQ

PAGE 107

f ZKHUH (R [[ (G [ (J [[ IRU [f ( KF$ $ZDYHOHQJWKf f f f f 6XEVWLWXWLQJ WKH YDOXH RI (J04:f LQWR (T JLYHV WKH $ PROH IUDFWLRQ [f RI WKH $O[*DLB[$V DOOR\ HTXLYDOHQW WR WKH XQGLVRUGHUHG 04: DQG LV [ ZKLFK LV WKHQ XVHG LQ (TV DQG )LQDOO\ WKH UHIUDFWLYH LQGH[ RI WKH 04: DV FDOFXODWHG IURP (T LV 7KH VROLG OLQH XQGHU WKH LQWHQVLW\ SURILOH LQ )LJ Df VKRZV WKH UHIUDFWLYH LQGH[ SURILOH DFURVV WKH VDPSOH DQG LQFOXGHV WKH HTXLYDOHQW UHIUDFWLYH LQGH[ IRU WKH 04: ZDYHJXLGH 7KH UHIUDFWLYH LQGH[ IRU WKH PRVW GLVRUGHUHG VHFWLRQ RI WKH 04: ZDV FDOFXODWHG VLPLODUO\ H[FHSW WKDW WKH $ PROH IUDFWLRQ RI DQ HTXLYDOHQW $O[*DL[$V DOOR\ LV FDOFXODWHG IURP (T XVLQJ PHDVXUHG EDQGJDS YDOXHV REWDLQHG IURP WKH 3/ VSHFWUXP $ WRWDOO\ GLVRUGHUHG 04: ZRXOG KDYH DQ HTXLYDOHQW $ PROH IUDFWLRQ RI [ EXW WKH 3/ VSHFWUXP LQGLFDWHV WKDW WKH SHDN RI WKH PRVW GLVRUGHUHG 04: UHPDLQV DW D KLJKHU ZDYHOHQJWK UHJLRQ WKDQ WKDW RI WKH FODGGLQJ $OR*DR$V OD\HU +HQFH WKH DFWXDO UHIUDFWLYH LQGH[ RI WKH PRVW GLVRUGHUHG 04: LV VOLJKWO\ KLJKHU WKDQ WKDW RI WKH FODGGLQJ 7KH VROLG OLQH LQ )LJ Ef XQGHU WKH LQWHQVLW\ SURILOH VKRZV WKH UHIUDFWLYH LQGH[ SURILOH RI WKH PRVW GLVRUGHUHG 04: )RU D JLYHQ VWHS LQGH[ SURILOH PXOWLOD\HU VWDFN WKHRU\ JLYHV WKH PRGH LQGH[ DV ZHOO DV LWV ILHOG SURILOH >.LD@ :H ILQG WKDW WKUHH QRUPDO PRGHV FDQ EH JXLGHG LQ WKH DV JURZQ VWUXFWXUH ZH FDQ ILW WKH PHDVXUHG RXWSXW LQWHQVLW\ SURILOH ZLWK D FRPELQDWLRQ RI WKH FDOFXODWHG JXLGHG PRGHV 7KH EHVW ILWWHG LQWHQVLW\ SURILOH LV VKRZQ LQ )LJ Df DV WKH GRWWHG FXUYH ZKLFK LV REWDLQHG IURP HR\ffH\ff ZKHUH HL\f UHSUHVHQWV WKH

PAGE 108

ILHOG SURILOH RI WKH LWK PRGH 7KH ILUVW RUGHU PRGH GRHV QRW FRQWULEXWH WR WKH LQWHQVLW\ SURILOH GXH WR WKH LQSXW H[FLWDWLRQ FRQGLWLRQ :H EHOLHYH WKDW WKH GLIIHUHQFH LQ PRGDO GHSWK EHWZHHQ WKH PHDVXUHG DQG FDOFXODWHG SURILOH LV SDUWLDOO\ GXH WR D PLQRU YDULDWLRQ LQ WKH $ PROH IUDFWLRQ DQG WKLFNQHVV RI WKH OD\HUV DV ZHOO DV GXH WR YDOXH RI WKH UHIUDFWLYH LQGH[ IRU WKH 04: ZKLFK LV QRW FRUUHFWHG WR LQFRUSRUDWH WKH HIIHFW RI WKH H[FLWRQLF SHDN LQ WKH DEVRUSWLRQ VSHFWUD )RU WKH PRVW GLVRUGHUHG 04: FDVH WKHUH VKRXOG EH QR H[FLWRQLF SHDN SUHVHQW LQ LWV DEVRUSWLRQ VSHFWUD DQG KHQFH LV REWDLQHG D EHWWHU ILW )LJ Eff 7R DQDO\]H WKH WDSHUHG VHFWLRQ ZH XWLOL]H WKH VWHS WUDQVLWLRQ PRGHO >0DU 0L 7K@ FRPELQHG ZLWK WKH PXOWLOD\HU VWDFN WKHRU\ ,Q WKH WDSHUHG VHFWLRQ WKH VORZO\ YDU\LQJ =Q DQG KHQFH WKH UHIUDFWLYH LQGH[ SURILOH FDQ EH DSSUR[LPDWHG E\ D SLHFHZLVH OLQHDU SURILOH 7KH DEUXSW VWHS VHSDUDWHV WZR DGMDFHQW VHJPHQWV RI GLIIHUHQW UHIUDFWLYH LQGLFHV :LWKLQ HDFK VHJPHQW ZH DVVXPH D FRQVWDQW LQGH[ YDOXH 7KH UHIUDFWLYH LQGH[ GHFUHDVH GXH WR =Q LQ WKH GLVRUGHUHG 04: LV DVVXPHG WR EH SURSRUWLRQDO WR WKH FRQFHQWUDWLRQ RI =Q 7KH =Q FRQFHQWUDWLRQ SURILOH DORQJ WKH JURZWK GLUHFWLRQ LQ WKH 04: UHJLRQ LV DVVXPHG WR EH OLQHDU 7KH PLQLPXP YDOXH RI WKH UHIUDFWLYH LQGH[ RI WKH GLVRUGHUHG 04: UHJLRQ LV VHW WR EH VOLJKWO\ ODUJHU WKDQ WKDW RI WKH FODGGLQJ DQG LV LOOXVWUDWHG E\ WKH VROLG OLQH LQ )LJ Ef $W HDFK VHJPHQW WKH PRGH LQGLFHV DUH FDOFXODWHG DQG DUH VKRZQ LQ )LJ ,Q DGGLWLRQ WKH ILHOG SURILOHV RI WKH JXLGHG PRGHV QHHGHG IRU WKH FDOFXODWLRQ RI WKH RYHUODS LQWHJUDO EHWZHHQ WKH PRGHV DFURVV WKH VWHS DQG EHWZHHQ WKH VHJPHQWV DUH DOVR HYDOXDWHG 7KH QRUPDO PRGH DPSOLWXGHV DORQJ WKH HQWLUH GHYLFH OHQJWK DUH WKHQ FDOFXODWHG IROORZLQJ WKH SURFHGXUH RI WKH VWHS WUDQVLWLRQ PRGHO >.LD@ XVLQJ ORFDO QRUPDO PRGHV 7KH ORVV LV SULPDULO\ GXH WR IUHH FDUULHU JHQHUDWLRQ E\ ,,/' G%f DQG WKH WDSHU ORVV LV HVWLPDWHG WR EH QHJOLJLEOH $V LV VKRZQ LQ )LJ $R DQG $ $LLWK PRGH DPSOLWXGHf DW WKH LQSXW ZHUH VHW WR EH DQG UHVSHFWLYHO\ 7KH YDOXHV ZHUH REWDLQHG IURP WKH EHVW ILW SUHVHQWHG LQ )LJ Df $V WKH FRPELQHG PRGHV WUDYHO DORQJ WKH WDSHUHG WUDQVLWLRQ DOPRVW QR PRGH FRQYHUVLRQ RFFXUV WKXV

PAGE 109

)LJ 0RGH LQGLFHV DORQJ WKH WDSHU

PAGE 110

/RQJLWXGLQDO GLUHFWLRQ _[Pf )LJ 0RGH DPSOLWXGHV DORQJ WKH WDSHUHG VWUXFWXUH FDOFXODWHG IURP WKH VWHS WUDQVLWLRQ PRGHO ZLWK LQSXW DPSOLWXGHV RI WKH IXQGDPHQWDO DQG VHFRQG RUGHU PRGH DV $T DQG $L

PAGE 111

HVWDEOLVKLQJ WKH DGLDEDWLF RSHUDWLRQ RI WKH WDSHU WUDQVLWLRQ 1RWH WKDW ZKLOH WKH SRZHU LV DVVRFLDWHG ZLWK WKH WHUP ;$Mf WKH LQWHQVLW\ SURILOH LV UHSUHVHQWHG E\ ;$ceL\ff 7KH GRWWHG FXUYH LQ )LJ Ef ZDV SORWWHG XVLQJ =$LeL\ff ZLWK WKH $LnV FDOFXODWHG DW WKH RXWSXW LW VKRZV H[FHOOHQW DJUHHPHQW ZLWK WKH H[SHULPHQWDO UHVXOWV 2SWLPL]DWLRQ RI WKH 7DSHU 0RGDO (YROXWLRQ 0DLQ JRDO RI RXU WDSHUHG LQWHUFRQQHFW LV FRPSOHWH SRZHU WUDQVIHU IURP D 64: ODVHU WR D 04: PRGXODWRU ,Q WKDW VHQVH WKH VWUXFWXUH VKRZQ LQ )LJ Df PXVW EH GHVLJQHG WR DFKLHYH EHWWHU PRGH VRUWLQJ DW ERWK WKH HQGV RI WKH WDSHU $ VFKHPDWLF LQGH[ SURILOH RI WKH SUHYLRXV HSLOD\HU VWUXFWXUH LV LOOXVWUDWHG LQ )LJ Df DW D ZDYHOHQJWK RI LP 7KRXJK WKHUH LV QR PRGH FRQYHUVLRQ XVHG IRU WKH LQWHUFRQQHFW VHH )LJ f LQSXW EHDP IURP WKH 64: ODVHU FRXOG QRW EH FRXSOHG LQWR WKH IXQGDPHQWDO PRGH RI WKH GLVRUGHUHG VHFWLRQ 7KLV LV SULPDULO\ EHFDXVH WKH PRGH IURP WKH 64: ODVHU KDV D QDUURZ SHDN FHQWHUHG DW WKH 64: ZKLOH WKH IXQGDPHQWDO PRGH RI WKH GLVRUGHUHG VHFWLRQ KDV D EURDG SHDN DW DERXW WKH FHQWHU UHJLRQ RI D ELJ SHGHVWDO ZDYHJXLGH ZKLFK FRQVLVWV RI WKH GLVRUGHUHG 04: WKH 64: JDS EHWZHHQ WKHP $OR*DR$V OD\HUV EHORZ WKH 64: DQG DERYH WKH 04: UHJLRQ $FFRUGLQJO\ SRZHU DW WKH RXWSXW DVJURZQf VHFWLRQ LV QRW FRQFHQWUDWHG LQ WKH 04: UHJLRQ $Q RSWLPL]HG HSLOD\HU VWUXFWXUH LV SUHVHQWHG LQ )LJ Ef ZLWK LWV VFKHPDWLF GHSWK UHIUDFWLYH LQGH[ SURILOH 2SHUDWLQJ ZDYHOHQJWK ZDV FKRVHQ DV _LP DW ZKLFK ZDYHOHQJWK WKH 04: DEVRUSWLRQ PRGXODWRU VKRZV EHVW H[WLQFWLRQ UDWLR >+D@ 7KLFNQHVV RI WKH 64: ZLOO EH GHWHUPLQHG ODWHU EHFDXVH ILQH WXQLQJ RI D ODVLQJ ZDYHOHQJWK ZLOO LQYDULDEO\ LQYROYH DQ H[SHULPHQWDO WULDODQGHUURU SURFHGXUH %HVLGHV WKH WKLFNQHVV RI WKH 64: GRHV QRW KDYH PXFK HIIHFW RQ WKH SHUIRUPDQFH RI WKH WDSHU DQG WKH PRGXODWRU VHFWLRQV 5HIUDFWLYH RI LQGH[ RI DOO HSLOD\HUV ZHUH FDOFXODWHG DJDLQ IRU WKH QHZ RSHUDWLQJ ZDYHOHQJWK XVLQJ (TV 7KH SHGHVWDO ZDYHJXLGH ZDV UHPRYHG WR VXSSUHVV WKH WKLUGRUGHU QRUPDO PRGH $OR*DR$V OD\HUV RI SP WKLFNQHVV DUH SODFHG EHORZ DQG DERYH WKH 64: IRU D EHWWHU PRGH FRQILQHPHQW LQ ODVHU VHFWLRQ

PAGE 112

:DYHOHQJWK LP 04: 64: 9 ? ) ? ) RL *D$V LQGH[ 04:[ f [ [ Df :DYHOHQJWK _LP 04: 64: *D$V LQGH[ 04:[ f [ [ Ef )LJ 5HIUDFWLYH LQGH[ SURILOH RI WKH DVJURZQ VDPSOH IRU Df WKH ROG VWUXFWXUH DQG Ef WKH PRGLILHG VWUXFWXUH IRU RSWLPXP RSHUDWLRQ RI WKH WDSHU

PAGE 113

1XPEHU RI TXDQWXP ZHOOV LQ WKH 04: LV UHGXFHG WR DFFRPPRGDWH RQO\ RQH LQGLYLGXDO PRGH LQ WKH 04: UHJLRQ 7KH SUHYLRXV VWUXFWXUH ZKLFK KDV WZR LQGLYLGXDO PRGHV KDG *D$V TXDQWXP ZHOOV DQG $OR*DR$V EDUULHUV ZKLOH WKH QHZ VWUXFWXUH KDV ZHOOV DQG EDUULHUV ZLWK VDPH ZHOO DQG EDUULHU WKLFNQHVVHV DV ZHOO DV WKH VDPH $ PROH IUDFWLRQ IRU WKH EDUULHUV DV WKH SUHYLRXV VWUXFWXUH 7KHUHIRUH WKH EDQGJDS IRU WKH 04: VKRXOG UHPDLQ XQFKDQJHG 7KH SRVLWLRQ RI WKH ODVW ZHOO RI WKH 04: UHJLRQ IURP WKH VXUIDFH LV QRW FKDQJHG ZLWK H[SHFWLQJ VDPH H[WHQW RI ,,/' HIIHFW L H VDPH DPRXQW RI EOXH VKLIW 5HIUDFWLYH LQGLFHV IRU WKH JDS EHWZHHQ 04: DQG 64: JXLGLQJ OD\HUV DQG WKH WKLFNQHVV DQG UHIUDFWLYH LQGH[ RI WKH JXLGLQJ OD\HUV RI WKH 64: DUH FDUHIXOO\ FKRVHQ WR IDFLOLWDWH PRGH VRUWLQJ DW WKH ERWK HQGV RI WKH WDSHU ZLWKRXW DQ\ PRGH FRQYHUVLRQ ZKLOH SURSDJDWLQJ DORQJ D UHDVRQDEOH OHQJWK PPf RI WKH WDSHU 7KH PRGLILHG WDSHUHG LQWHUFRQQHFW WKHUHIRUH WXUQV RXW WR EH D WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ YHORFLW\ FRXSOHU ZKLFK XWLOL]HV D YHUWLFDO FRXSOLQJ EHWZHHQ WKH 64: JXLGLQJ OD\HUV DQG ]YDULDQW 04: OD\HUV 1RWH WKDW WKH WDSHUHG YHORFLW\ FRXSOHUV LQ 7L/L1E DQG LQ $O*D$V*D$V XWLOL]H D KRUL]RQWDO FRXSOLQJ EHWZHHQ WZR FKDQQHO ZDYHJXLGHV ,QWHQVLW\ SURILOH RI WKH ILUVW WZR QRUPDO PRGHV IRU WKH DVJURZQ DQG WKH GLVRUGHUHG VWUXFWXUH RI WKH QHZ VWUXFWXUH LV VKRZQ LQ )LJV Df DQG Ef UHVSHFWLYHO\ 6ROLG OLQHV LQ )LJV Df DQG Ef UHSUHVHQW WKH LQGH[ SURILOHV IRU ERWK WKH FDVHV 0RGH LQGH[ FKDQJH DORQJ WKH WDSHU LV VKRZQ LQ )LJ $V FDQ EH VHHQ IURP WKH ILJXUH WKHUH LV QR WKLUG RUGHU PRGH LQ WKLV VWUXFWXUH DQG DOPRVW SHUIHFW PRGH VRUWLQJ LV HDVLO\ REWDLQHG :LWK LQSXW FRQGLWLRQ RI $R DQG $L PRGH DPSOLWXGHV DORQJ WKH WDSHU LQ WKH PRGLILHG VWUXFWXUH DUH FDOFXODWHG XVLQJ WKH VWHS WUDQVLWLRQ PRGHO LQ FRQMXQFWLRQ ZLWK ORFDO QRUPDO PRGHV DQG SUHVHQWHG LQ )LJ 7KH IXQGDPHQWDO PRGH RI WKH )LJ Ef VKRXOG EH ODXQFKHG E\ 64: ODVHU WKHQ SURSDJDWH ZLWK YHU\ OLWWOH PRGH FRQYHUVLRQ G%f DQG ILQDOO\ HQG XS ZLWK ZKROH SRZHU LQ WKH 04: UHJLRQ DW PRGXODWRU VHFWLRQ L H DW WKH DV JURZQ VHFWLRQ UHVXOWLQJ LQ PD[LPXP PRGXODWRU HIILFLHQF\

PAGE 114

'HSWK WLPf Df )LJ ,QWHQVLW\ SURILOHV RI WKH ILUVW WZR QRUPDO PRGH RI Df WKH DVJURZQ VDPSOH RI WKH PRGLILHG VDPSOH

PAGE 115

'HSWK SPf Ef )LJ FRQWLQXHG Ef WKH GLVRUGHUHG VHFWLRQ RI WKH PRGLILHG VWUXFWXUH

PAGE 116

3URSDJDWLRQ /HQJWK SPf )LJ 0RGH LQGLFHV DORQJ WKH WDSHU LQ WKH PRGLILHG VWUXFWXUH

PAGE 117

)LJ 0RGH DPSOLWXGHV DORQJ WKH WDSHU LQ WKH PRGLILHG VWUXFWXUH

PAGE 118

,OO &RQFOXVLRQ :H KDYH GHPRQVWUDWHG DQ DGLDEDWLF WDSHUHG WUDQVLWLRQ LQ D PRQROLWKLF LQWHJUDWHG 04: DQG 64: FRXSOHG VWUXFWXUH XVLQJ =Q GLIIXVHG ,,/' RI WKH PXOWLTXDQWXP ZHOOV DQG KDYH PRGHOHG WKH VDPH 1XPHULFDO DQDO\VLV VKRZV H[FHOOHQW DJUHHPHQW ZLWK WKH H[SHULPHQWDO UHVXOWV 7KH WDSHU OHQJWK ZDV PP DQG DW WKH WZR HQGV RI WKH WDSHU QDPHO\ LQ WKH PRVW GLVRUGHUHG UHJLRQ DQG WKH XQGLVRUGHUHG UHJLRQ RI WKH 04: WKH $ PROH IUDFWLRQ LQ WKH HTXLYDOHQW $O[*DL[$V OD\HU ZDV [ DQG [ UHVSHFWLYHO\ 7KLV FRUUHVSRQGV WR DQ LQGH[ YDULDWLRQ RI DFURVV WKH WDSHU 0RGLILFDWLRQ RI WKH WDSHUHG LQWHUFRQQHFW KDV EHHQ FDUULHG RXW E\ XVLQJ WKH FRQFHSW RI D WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ YHORFLW\ FRXSOHU ZKLFK XWLOL]HV WKH YHUWLFDO FRXSOLQJ EHWZHHQ WKH 64: JXLGLQJ OD\HUV DQG 04: OD\HUV 1XPHULFDO QRUPDO PRGH DQDO\VLV RI WKH SURSRVHG PRGLILHG FRXSOHU SUHGLFWV D EHWWHU PRGH VRUWLQJ EHKDYLRU DQG KHQFH D FRPSOHWH SRZHU WUDQVIHU IURP WKH 04: UHJLRQ LQWR WKH 64: UHJLRQ

PAGE 119

&+$37(5 6(9(1 &21&/86,216 $1' 6800$5< 3ULPDU\ REMHFWLYH RI WKLV GLVVHUWDWLRQ LV D WKRURXJK DQG FRPSOHWH VWXG\ RI WDSHUHG YHORFLW\ FRXSOHUV LQ /L1E DQG $O*D$V*D$V 6 &RRN ILUVW VXJJHVWHG WKH FRQFHSW RI WKH WDSHUHG YHORFLW\ FRXSOHU 79&f LQ >&R@ IRU DSSOLFDWLRQV DW PLFURZDYH IUHTXHQFLHV :KLOH LW VWLPXODWHG D ORW RI H[FLWHPHQW WKH IDFW WKDW 79& QHHGHG D ORQJ LQWHUDFWLRQ OHQJWK IRU HIILFLHQW SRZHU WUDQVIHU PDGH LW VRPHZKDW LPSUDFWLFDO 5HFHQWO\ 0LOWRQ DQG %XPV >0L@ UHSRUWHG D GHVLJQ FRQVLGHUDWLRQ IRU VXFFHVVIXO RSHUDWLRQ RI DQ RSWLFDO 79& EDVHG RQ FRQVWDQW FRXSOLQJ FRHIILFLHQW DORQJ WKH GHYLFH UHTXLULQJ YHU\ ORQJ GHYLFH OHQJWKV IRU D FRPSOHWH SRZHU WUDQVIHU LQ RSWLFDO 79&V $V D UHVXOW 79& KDV UHFHLYHG OLWWOH DWWHQWLRQ VR IDU GXH WR LWV XQXVXDOO\ ORQJ GHYLFH OHQJWK LQ VSLWH RI LWV PDQ\ DGYDQWDJHV VXFK DV UHOD[HG IDEULFDWLRQ SDUDPHWHUV SRODUL]DWLRQ LQGHSHQGHQFH EURDG EDQGZLGWK ZDYHOHQJWK LQVHQVLWLYLW\ ZLWKLQ DGLDEDWLF UHJLPHf +RZHYHU RXU HIIRUW KDV UHFWLILHG WKH SUREOHP RI ORQJ GHYLFH OHQJWKV RI 79& IRU FRPSOHWH SRZHU WUDQVIHU DV GHPRQVWUDWHG E\ WKH UHVXOWV LQ 7L/L1E RXU UHVXOWV LQGLFDWH WKDW RQO\ RQHTXDUWHU RI GHYLFH OHQJWK VXJJHVWHG E\ WKH 79& GHVLJQ FRQVLGHUDWLRQ LV UHTXLUHG 7KLV ZDV PDGH SRVVLEOH E\ HPSOR\LQJ WDSHULQJ LQ LQGH[ DV ZHOO DV GLPHQVLRQ DORQJ WKH EHDP SURSDJDWLRQ GLUHFWLRQ *UDGHG YDULDWLRQ ERWK LQ LQGH[ DQG GLPHQVLRQ UHVXOWV LQ D WDSHUHG FRXSOLQJ ZKHUH VWURQJ FRXSOLQJ RFFXUV EHWZHHQ WKH ZDYHJXLGHV DW FHQWHU UHJLRQV RI WKH 79& IRU FRPSOHWH SRZHU WUDQVIHU DQG ZHDN FRXSOLQJ RFFXUV DW LQSXW DQG DW RXWSXW HQGV IRU HDV\ PRGH VRUWLQJ 5HVXOWV RI QXPHULFDO DQDO\VLV VXEVWDQWLDWHG RXU UHDVRQLQJ IRU WKH VKRUW GHYLFH OHQJWK :H EHOLHYH WKDW RQFH GHPLVHG LQWHUHVWV RQ 79& GXH WR LWV ORQJ GHYLFH

PAGE 120

OHQJWK KDV EHHQ UHYLYHG E\ WKLV ZRUN ZKLFK SURYLGHV D PHDQV IRU DFKLHYLQJ VKRUW GHYLFH OHQJWKV DV HYLGHQFHG E\ WKH UHDOL]DWLRQ RI WKH ILUVW 79& LQ /L1E IROORZHG E\ WKH ORZHVW YROWDJH OHQJWK SURGXFW RI GLJLWDO RSWLFDO VZLWFK 7KH UHVXOWV ZHUH WKHQ H[WHQGHG WR FRPSRXQG VHPLFRQGXFWRUV LQ SDUWLFXODU UHVXOWLQJ LQ WKH UHDOL]DWLRQ RI D WDSHUHG ZDYHJXLGH LQWHUFRQQHFW ,Q DGGLWLRQ GHYHORSPHQW DQG FKDUDFWHUL]DWLRQ RI VHJPHQWHG ZDYHJXLGHV ERWK LQ /L1E DQG LQ *D$V WRZDUGV WKH UHDOL]DWLRQ RI 79&V LQ VWHS LQGH[ ZDYHJXLGHV ZHUH DFFRPSOLVKHG :H VXPPDUL]H EHORZ WKH VSHFLILF DFFRPSOLVKPHQWV LQFOXGHG LQ WKH JHQHUDO FRQFOXVLRQV PHQWLRQHG DERYH $ WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ YHORFLW\ FRXSOHU LQ 7L/L1E&! ZDV GHPRQVWUDWHG DQG DQDO\]HG E\ WKH VWHS WUDQVLWLRQ PRGHO XVLQJ WUXH ORFDO QRUPDO PRGHV 7KH H[SHULPHQWDO UHVXOWV VKRZ FRPSOHWH SRZHU WUDQVIHU LQ WKH 79& LQGLFDWLQJ WKH DGLDEDWLF QDWXUH RI WKH 79& ,QFRUSRUDWLRQ RI LQGH[ WDSHULQJ ZLWK GLPHQVLRQDO WDSHULQJ UHVXOWV LQ WKH VXFFHVVIXO RSHUDWLRQ RI WKH 79& ZLWK RQHTXDUWHU RI GHYLFH OHQJWK E\ WKH FRQYHQWLRQDO 79& GHVLJQ FRQVLGHUDWLRQV (T f 7KLV VXSHULRU RSHUDWLQJ SURSHUW\ RYHU WKH FRQYHQWLRQDO WDSHUHG LQ GLPHQVLRQ RQO\ YHORFLW\ FRXSOHU LV VXEVWDQWLDWHG E\ ERWK DQDO\WLFDO DQG H[SHULPHQWDO UHVXOWV &RPSDULVRQ RI RXWSXW FKDUDFWHULVWLFV RI ERWK WKH 79&V SURYHV WKDW WKH XVH RI LQGH[ WDSHULQJ LV TXLWH HVVHQWLDO IRU WKH SXUSRVH RI UHGXFLQJ OHQJWK RI WKH GHYLFH 7DNLQJ DGYDQWDJH RI WKH UHGXFHG GHYLFH OHQJWK RI 7L/L1E&! 79& D GLJLWDO RSWLFDO VZLWFK ZDV GHPRQVWUDWHG DFKLHYLQJ WKH VPDOOHVW YROWDJH OHQJWK SURGXFW UHSRUWHG WR GDWH QDPHO\ 9FP IRU 70 DQG 9FP IRU 7( PRGH ZLWK G% FURVV WDON ,Q SDUWLFXODU WKH VZLWFKLQJ YROWDJH OHQJWK SURGXFW IRU 70 PRGH LV RQH HLJKWK RI WKDW UHSRUWHG VR IDU 3URWRQ H[FKDQJHG SHULRGLFDOO\ VHJPHQWHG 3(36f ZDYHJXLGHV ZHUH IDEULFDWHG DQG YDULDWLRQ LQ PRGH LQGH[ RI 3(36 ZDYHJXLGHV ZLWK UHVSHFW WR GXW\ F\FOH ZHUH PHDVXUHG :H SURSRVHG D JUDGHG LQGH[ PRGHO IRU 3(36 ZDYHJXLGHV WKDW SUHGLFWHG DFFXUDWHO\ WKH PRGH LQGLFHV RI WKH 3(36 ZDYHJXLGH 6HJPHQWHG ZDYHJXLGHV LQ $O*D$V*D$V ZHUH

PAGE 121

DOVR FKDUDFWHUL]HG VKRZLQJ SURSDJDWLRQ ORVV DQG PRGH VL]H YDULDWLRQV ZLWK UHVSHFW WR GXW\ F\FOH DQG WKH\ ZLOO EH XWLOL]HG IRU GHPRQVWUDWLRQ RI WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ YHORFLW\ FRXSOHUV $GLDEDWLF WDSHUHG ZDYHJXLGH LQWHUFRQQHFW ZDV GHPRQVWUDWHG E\ ]YDULDQW LPSXULW\ LQGXFHG OD\HU GLVRUGHULQJ +/'f FDXVHG E\ =Q GLIIXVLRQ WKURXJK 6L2[ EDUULHU OD\HU ZKRVH WKLFNQHVV YDULHG OLQHDUO\ DORQJ EHDP SURSDJDWLRQ GLUHFWLRQ 5HVXOWV RI QXPHULFDO DQDO\VLV XVLQJ VWHS WUDQVLWLRQ PRGHO DQG PXOWLOD\HU VWDFN WKHRU\ ZHUH LQ H[FHOOHQW DJUHHPHQW ZLWK H[SHULPHQWDO UHVXOWV :H SURSRVHG D PRGLILHG HSLOD\HU VWUXFWXUH ZKLFK HPSOR\V D FRQFHSW RI WDSHUHG ERWK LQ LQGH[ DQG LQ GLPHQVLRQ YHORFLW\ FRXSOHU 7KLV ZLOO EH XVHG LQ WKH FXUUHQW LQWHJUDWLRQ HIIRUW RI FRPELQLQJ D 64: ODVHU DQG D 04: LQWHQVLW\ PRGXODWRU )RU IXWXUH ZRUN PRGDO DQDO\VLV RQ WKH VHJPHQWHG ZDYHJXLGHV LV VXJJHVWHG XVLQJ VWHS WUDQVLWLRQ PRGHO DQG QRUPDO PRGH WKHRU\ 9DULDWLRQ LQ PRGH LQGH[ SURSDJDWLRQ ORVV DQG QHDU ILHOG LQWHQVLW\ SURILOH ZLWK UHVSHFW WR GXW\ F\FOH RI WKH VHJPHQWHG ZDYHJXLGHV VKRXOG EH LGHQWLILHG E\ WKH QXPHULFDO DQDO\VLV 8SRQ UHDOL]DWLRQ RI 79& XVLQJ VHJPHQWHG ZDYHJXLGHV LQ $O*D$V*D$V FRQVLGHUDWLRQ VKRXOG EH JLYHQ IRU WKH UHDOL]DWLRQ RI D GLJLWDO RSWLFDO VZLWFK

PAGE 122

5()(5(1&(6 >$I@ 0 $ $IURPRZLW] 5HIUDFWLYH LQGH[ RI *DL[$O[$V 6ROLG6WDWH &RPPXQ YRO SS f >%L@ %LHUOLHQ % /DXEDFKHU % %URZQ DQG & YDQ GHU 3RHO %DODQFHG SKDVH PDWFKLQJ LQ VHJPHQWHG .7232 ZDYHJXLGHV $SSO 3K\V /HWW YRO SS f >%X@ : %XPV DQG $ ) 0LOWRQ 0RGH FRQYHUVLRQ LQ SODQDUGLHOHFWULF VHSDUDWLQJ ZDYHJXLGHV ,((( 4XDQWXP (OHFWURQ YRO 4( SS f >%X@ : %XPV DQG $ ) 0LOWRQ $Q DQDO\WLF VROXWLRQ IRU PRGH FRXSOLQJ LQ RSWLFDO ZDYHJXLGH EUDQFKHV ,((( 4XDQWXP (OHFWURQ YRO 4( SS f >&D@ < &DL 7 0L]XPRWR DQG < 1DLWR $QDO\VLV RI WKH FRXSOLQJ FKDUDFWHULVWLFV RI D WDSHUHG FRXSOHG ZDYHJXLGH V\VWHP /LJKWZDYH 7HFKQRO YRO SS f >&DD@ ; &DR 5 6ULYDVWDYD DQG 5 5DPDVZDP\ 6LPXOWDQHRXV EOXH DQG JUHHQ VHFRQG KDUPRQLF JHQHUDWLRQ LQ TXDVLSKDVH PDWFKHG /L1E&! ZDYHJXLGH $SSO 3K\V /HWW YRO SS f >&DE@ ; &DR 5 9 5DPDVZDP\ DQG 5 6ULYDVWDYD &KDUDFWHUL]DWLRQ RI DQQHDOHG SURWRQ H[FKDQJHG /L1E&! ZDYHJXLGHV IRU QRQOLQHDU IUHTXHQF\ FRQYHUVLRQ ,((( /LJKWZDYH 7HFKQRO YRO SS f >&DY@ $ &DYDGOHV 0 5HQDXG ) 9LQFKDQW 0 (UPDQ 3 6YHQVVRQ DQG / 7K\OHQ )LUVW GLJLWDO RSWLFDO VZLWFK EDVHG RQ ,Q3*DOQ$V3 GRXEOH KHWHURVWUXFWXUH ZDYHJXLGHV (OHFWURQ /HWW YRO SS f >&R@ 6 &RRN 7DSHUHG YHORFLW\ FRXSOHUV %HOO 6\V 7HFK YRO SS f >&R@ &RXGHQ\V 0RHUPDQ : 9DQGHUEDXZKHGH 3 9 'DHOH DQG 3 'HPHHVWHU 6HOHFWLYH DQG VKDGRZ PDVNHG 0293( JURZWK RI ,Q3,Q*D$V3f KHWHURVWUXFWXUHV DQG TXDQWXP ZHOOV &U\VWDO *URZWK YRO SS f >(J@ (JHU 0 2URQ DQG 0 .DW] 2SWLFDO FKDUDFWHUL]DWLRQ RI .7232 SHULRGLFDOO\ VHJPHQWHG ZDYHJXLGHV IRU VHFRQGKDUPRQLF JHQHUDWLRQ RI EOXH OLJKW $SSO 3K\V YRO SS f >)R@ $ )R[ :DYH FRXSOLQJ E\ ZDUSHG QRUPDO PRGHV %HOO 6\V 7HFK YRO SS f

PAGE 123

>)X@ 0 )XNXPD 1RGD DQG + ,ZDVDNL 2SWLFDO SURSHUWLHV LQ WLWDQLXPGLIIXVHG /L1E VWULS ZDYHJXLGHV $SSO 3K\V YRO SS f >)XU@ + )XUXWD + 1RGD DQG $ ,KD\D 1RYHO RSWLFDO ZDYHJXLGH IRU LQWHJUDWHG RSWLFV $SSO 2SWLFV YRO SS f >*R@ 1 *RWR DULG / *U@ 3 *UDQHVWUDQG % /DJHUVWURP 3 6YHQVVRQ / 7K\OHQ % 6WROW] %HUJYDOO -( )DON DQG + 2ORIVVRQ f,QWHJUDWHG RSWLFV [ VZLWFK PDWUL[ ZLWK GLJLWDO RSWLFDO VZLWFKHVf (OHFWURQ /HWW YRO SS f >+D@ 6. +DQ 6 6LQKD DQG 5 9 5DPDVZDP\ ,QWHJUDWLRQ RI D WDSHUHG ZDYHJXLGH ZLWK DQ HOHFWURDEVRUSWLRQ PXOWLTXDQWXPZHOO PRGXODWRU LQ 7HFK 'LJ ,35 7RSLFDO 0HHWLQJ 6DQ )UDQFLVFR &$ 3DSHU 7K) >+X@ & 3 +XVVHOO 5 9 5DPDVZDP\ 5 6ULYDVWDYD DQG / -DFNHO $GLDEDWLF LQYDULDQFH LQ *5,1 FKDQQHO ZDYHJXLGHV DQG LWV XVH LQ G% FURVV FRXSOHUV $SSO 2SWLFV YRO SS f >.D@ 7 .DWR 7 6DVDNL .RPDWVX DQG 0LWR ')%/'0RGXODWRU LQWHJUDWHG OLJKW VRXUFH E\ EDQGJDS HQHUJ\ FRQWUROOHG VHOHFWLYH 0293( (OHFWURQLFV /HWW YRO SS f >.LD@ + 6 .LP DQG 5 9 5DPDVZDP\ 7DSHUHG YHORFLW\ FRXSOHU LQ WLWDQLXP GLIIXVHG OLWKLXP QLREDWH FKDQQHO ZDYHJXLGH 7HFK 'LJ /(26 3DSHU 2( f >.LE@ & 0 .LP DQG 5 9 5DPDVZDP\ 0RGHOLQJ RI JUDGHGLQGH[ FKDQQHO ZDYHJXLGHV XVLQJ QRQXQLIRUP ILQLWH GLIIHUHQFH PHWKRGn /LJKWZDYH 7HFKQRO YRO SS f >.LD@ + 6 .LP DQG 5 9 5DPDVZDP\ 7DSHUHG ERWK LQ GLPHQVLRQ DQG LQ LQGH[ YHORFLW\ FRXSOHU WKHRU\ DQG H[SHULPHQW ,((( 4XDQWXP (OHFWURQ YRO 4( SS f >.LE@ + 6 .LP 6 6LQKD DQG 5 9 5DPDVZDP\ $Q 04:64: WDSHUHG ZDYHJXLGH WUDQVLWLRQ ,((( 3KRWRQ 7HFKQRO /HWW YRO SS f >.R@ + .RJHOQLN DQG 9 5DPDVZDP\ 6FDOLQJ UXOHV IRU WKLQ ILOP RSWLFDO ZDYHJXLGHV $SSO 2SW YRO SS f >.R@ 6 .RURWN\ : 0LQIRUG / / %XKO 0 'LYLQR DQG 5 & $OIHPHVV 0RGH VL]H DQG PHWKRG IRU HVWLPDWLQJ WKH SURSDJDWLRQ FRQVWDQW RI VLQJOHn PRGH 7L/L1E VWULS ZDYHJXLGHV ,((( 4XDQWXP (OHFWURQ YRO 4( SS f

PAGE 124

>/D@ : /DLGLJ 1 +RORQ\DN -U 0 &DPUDV +HVV &ROHPDQ 3 'DSNXV DQG %DUGHHQ 'LVRUGHU RI DQ $ $V*D$V VXSHUODWWLFD E\ LPSXULW\ GLIIXVLRQ $SSO 3K\V /HWW YRO SS f >/D@ ) /DXUHOO % %URZQ DQG %LHUOHLQ6LPXOWDQHRXV JHQHUDWLRQ RI 89 DQG YLVLEOH OLJKW LQ VHJPHQWHG .73 ZDYHJXLGHV $SSO 3K\V /HWW YRO SS f >/H@ /HZLV )DEULFDWLRQ RI 7DSHUHG ,RQ([FKDQJHG 2SWLFDO :DYHJXLGHV E\ 7KLQ )LOP +HDWLQJ 0DVWHUnV 7KHVLV 8QLYHUVLW\ RI )ORULGD f >/L@ ( /LP 0 0 )HMHU DQG 5 / %\HU 6HFRQGKDUPRQLF JHQHUDWLRQ RI JUHHQ OLJKW LQ SHULRGLFDOO\ SROHG SODQDU OLWKLXP QLREDWH ZDYHJXLGH (OHFWURQ /HWW YRO SS f >/L@ / /L DQG %XUNH /LQHDU SURSDJDWLRQ FKDUDFWHULVWLFV RI SHULRGLFDOO\ VHJPHQWHG ZDYHJXLGHV 2WLFV /HWW YRO SS f >/L@ ( + /L % / :HLVV 6 &KDQ DQG 0LFDOOHI 3RODUL]DWLRQ GHSHQGHQW UHIUDFWLYH LQGH[ RI DQ LQWHUGLIIXVLRQ LQGXFHG $O*D$V*D$V TXDQWXP ZHOO $SSO 3K\V /HWW YRO SS f >/R@ : + /RXLVHOO $QDO\VLV RI WKH VLQJOH WDSHUHG PRGH FRXSOHU %HOO 6\V 7HFK YRO SS f >/R@ $ /RQL DQG 5 0 'H /D 5XH 3URWRQH[FKDQJHG /L1E ZDYHJXLGHV UHOHYDQFH RI DWPRVSKHULF HQYLURQPHQW GXULQJ DQQHDOLQJ $SSO 2SWLFV YRO SS f >0D@ 6 0DGR ) 1LWDQGD ,WR DQG 0 6DWR 4XDVLSKDVHPDWFKLQJ LQ SURWRQ H[FKDQJHG /L7D VHJPHQWHG ZDYHJXLGH LQ 7HFK 'LJ &/(2 %DOWLPRUH 0' 3DSHU &:+ >0DU@ 0DUFXVH 5DGLDWLRQ ORVVHV RI WDSHUHG GLHOHFWULF VODE ZDYHJXLGHV %HOO 6\V 7HFK YRO SS f >0F@ $ 0FJXLUH 0 6FRWW $ 3 7KRPDV DQG 5 & %RRWK ff3UDFWLFDO ORZ YROWDJH [ SRODULVDWLRQ LQGHSHQGHQW /L1E GLJLWDO RSWLFDO VZLWFKf (OHFWURQ /HWW YRO SS f >0H@ $ 7 0HQH\ ([FLWRQ ELQGLQJ HQHUJLHV DQG DEVRUSWLRQ LQ LQWHUPL[HG *D$V $O*D$V TXDQWXP ZHOOV $SSO 3K\V YRO SS f >0L@ $ ) 0LOWRQ DQG : %XPV 7DSHUHG YHORFLW\ FRXSOHUV IRU LQWHJUDWHG RSWLFV 'HVLJQ $SSO 2SWLFV YRO SS f >1L@ 1LNRORSRXORV DQG / 2N@ + 2ND\DPD 7 8VKLNXER DQG 0 .DZDKDUD f/RZ 'ULYH 9ROWDJH
PAGE 125

>3D@ 0 3DSXFKRQ $ 5R\ DQG % 2VWURZVN\ (OHFWULFDOO\ DFWLYH RSWLFDO ELIXUFDWLRQ %2$ $SSO 3K\V /HWW YRO SS f >3R@ & YDQ GHU 3RHO %LHUOHLQ % %URZQ DQG 6 &RODN (IILFLHQW W\SH EOXH VHFRQGKDUPRQLF JHQHUDWLRQ LQ SHULRGLFDOO\ VHJPHQWHG .7232 ZDYHJXLGHV $SSO 3K\V /HWW YRO SS f >3X@ ( < % 3XQ . /RL DQG 3 6 &KXQJ 3URWRQH[FKDQJHG RSWLFDO ZDYHJXLGHV LQ =FXW /L1E XVLQJ SKRVSKRULF DFLG ,((( 7UDQV /LJKWZDYH 7HFKQRO YRO SS f >5D@ < 5DPDVZDP\ 6WULSORDGHG ILOP ZDYHJXLGH %HOO 6\VWHP 7HFK -RXUQDO YRO SS f >5D@ 5 9 5DPDVZDP\ DQG 5 6ULYDVWDYD ,RQH[FKDQJHG JODVV ZDYHJXLGHV $ UHYLHZ ,((( /LJKWZDYH 7HFKQRO YRO SS f >5D@ 5 9 5DPDVZDP\ DQG + 6 .LP $ QRYHO WDSHUHG ERWK LQ GLPHQVLRQ DQG LQ LQGH[ YHORFLW\ FRXSOHU VZLWFK ,((( 3KRWRQ 7HFKQRO /HWW YRO SS f >5R@ 5 5RZODQG < &KHQ DQG $ : 6Q\GHU 7DSHUHG PLVPDWFKHG FRXSOHUV /LJKWZDYH 7HFKQRO YRO SS f >6L@ < 6LOEHUEHUJ 3 3HUOPXWWHU DQG ( %DUDQ f'LJLWDO RSWLFDO VZLWFKf $SSO 3K\V /HWW YRO SS f >6L@ 6 6LQKD 5 9 5DPDVZDP\ ; &DR DQG 8 'DV 7DSHUHG ZDYHJXLGH LQWHUFRQQHFW E\ ]LQF GLIIXVLRQ LQGXFHG OD\HU GLVRUGHULQJ RI TXDQWXP ZHOOV LQ 3URF ,(((/(26 7RSLFDO 0HHWLQJ 6DQWD %DUEDUD &$ 3DSHU 7K& >6P@ 5 % 6PLWK &RXSOLQJ HIILFLHQF\ RI WKH WDSHUHG FRXSOHU (OHFWURQ /HWW YRO SS f >6P@ 5 % 6PLWK $QDO\WLF VROXWLRQV IRU OLQHDUO\ WDSHUHG GLUHFWLRQDO FRXSOHUV 2SW 6RF $P YRO SS f >6XD@ 3 6XFKRVN\ DQG 5 9 5DPDVZDP\ 0LQLPXPPRGHVL]H ORZORVV 7L/L1E FKDQQHO ZDYHJXLGHV IRU HIILFLHQW PRGXODWRU RSHUDWLRQ DW SP ,((( 4XDQWXP (OHFWURQ YRO 4( SS f >6XE@ 3 6XFKRVN\ DQG 5 9 5DPDVZDP\ &RQVWDQWZLGWK YDULDEOHLQGH[ WUDQVLWLRQ IRU HIILFLHQW 7L/L1E ZDYHJXLGHILEHU FRXSOLQJ /LJKWZDYH 7HFKQRO YRO SS f >6\@ 5 5 $ 6\PV DQG 5 3HDOO f7KH GLJLWDO RSWLFDO VZLWFK $QDORJRXV GLUHFWLRQDO FRXSOHU GHYLFHVf 2SW &RPPXQ YRO SS f >7K@ 5 1 7KXUVWRQ ( .DSRQ DQG < 6LOEHUEHUJ $QDO\VLV RI PRGH VHSDUDWLRQ LQ PXOWLFKDQQHO EUDQFKLQJ ZDYHJXLGHVn ,((( 4XDQWXP (OHFWURQ YRO 4( SS f

PAGE 126

>7K@ 7K\DJDUDMDQ + 6 .LP 5 9 5DPDVZDP\ + & &KHQJ DQG & : &KLHQ &KDUDFWHUL]DWLRQ RI SURWRQ H[FKDQJHG VHJPHQWHG ZDYHJXLGHV LQ /L1E LQ 3URF ,35 n 6DQ )UDQFLVFR &$ SDSHU )( f >7K\@ / 7K\OHQ 3 6YHQVVRQ % /DJHUVWURP % 6WROW] 3 *UDQHVWUDQG DQG : %XPV f7KHRUHWLFDO DQG H[SHULPHQWDO LQYHVWLJDWLRQV RI [ GLJLWDO RSWLFDO VZLWFKHVf LQ 3URF (&2& f *RWKHQEXUJ 6ZHGHQ SDSHU :H$ f >9L@ ) 9LQFKDQW 0 5HQDXG $ *RXWHOOH 0 (UPDQ 3 6YHQVVRQ DQG / 7K\OHQ f/RZ GULYLQJ YROWDJH RU FXUUHQW GLJLWDO RSWLFDO VZLWFK RQ ,Q3 IRU PXOWLZDYHOHQJWK V\VWHP DSSOLFDWLRQVf (OHFWURQ /HWW YRO SS f >9R@ 6 7 9RKUD $ 5 0LFNHOVRQ DQG 6 ( $VKHU 'LIIXVLRQ FKDUDFWHULVWLFV DQG ZDYHJXLGLQJ SURSHUWLHV RI SURWRQH[FKDQJHG /L1E&! ZDYHJXLGHV $SSO 3K\V YRO SS f >:H@ = :HLVVPDQ DQG $ +DUG\ PRGH WDSHULQJ YLD WDSHUHG FKDQQHO ZDYHJXLGH VHJPHQWDWLRQ (OHFWURQLFV /HWW YRO SS f >:H@ = :HLVVPDQ DQG $ +DUG\ 0RGHV RI SHRLGLFDOO\ VHJPHQWHG ZDYHJXLGHV /LJKWZDYH 7HFKQRO YRO SS f >:L@ 0 ) :LOVRQ DQG $ 7HK ,PSURYHG WROHUDQFH LQ RSWLFDO GLUHFWLRQDO FRXSOHUV (OHFWURQ /HWW YRO SS f >:L@ 0 ) :LOVRQ DQG $ 7HK 7DSHUHG RSWLFDO GLUHFWLRQDO FRXSOHU ,((( 7UDQV 0LFU 7KHRU\ 7HFK YRO SS f >;L@ 6 ;LH + +HLGULFK +RIIPDQQ +3 1ROWLQJ DQG ) 5HLHU f&DUULHU LQMHFWHG *DOQ$V3,Q3 GLUHFWLRQDO FRXSOHU RSWLFDO VZLWFK ZLWK ERWK WDSHUHG YHORFLW\ DQG WDSHUHG FRXSOLQJf 3KRWRQ 7HFKQRO /HWW YRO SS f >=D@ 0 =DYDGD + & &DVH\ -U & &KHQ DQG $ /RQL &RUUHODWLRQ RI UHIUDFWLYH LQGH[ SURILOHV ZLWK VXEVWLWXWLRQDO K\GURJHQ FRQFHQWUDWLRQV LQ DQQHDOHG SURWRQH[FKDQJHG /L1E&! ZDYHJXLGHV $SSO 3K\V /HWW YRO SS f

PAGE 127

%,2*5$3+,&$/ 6.(7&+ +\RXQ 6RR .LP ZDV ERP LQ 6HRXO .RUHD LQ -XQH +H UHFHLYHG WKH %6 GHJUHH LQ HOHFWURQLFV HQJLQHHULQJ IURP 6HRXO 1DWLRQDO 8QLYHUVLW\ 6HRXO .RUHD LQ DQG WKH 06 GHJUHH LQ HOHFWULFDO HQJLQHHULQJ IURP 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )ORULGD LQ +H KDG WHPSRUDU\ OHDYH IRU KLV DUP\ GXW\ LQ .RUHD DIWHU KH HQWHUHG WKH 3K SURJUDP DW WKH 8QLYHUVLW\ RI )ORULGD +H KDV EHHQ D JUDGXDWH DVVLVWDQW VLQFH DW 3KRWRQLFV 5HVHDUFK /DERUDWRU\ LQ 'HSDUWPHQW RI (OHFWULFDO (QJLQHHULQJ ZKHUH KH LV HQJDJHG LQ UHVHDUFK RQ WDSHUHG YHORFLW\ FRXSOHUV DQG LQWHUFRQQHFW +LV UHVHDUFK LQWHUHVWV LQFOXGH LQWHJUDWLRQ RI HOHFWURRSWLF GHYLFHV DQG WKHLU DSSOLFDWLRQV LQ DQ RSWLFDO FRPPXQLFDWLRQ V\VWHP

PAGE 128

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5DPX 9 5DPDVZDP\ &KDLUPDQ 3URIHVVRU RI (OHFWULFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI (OHFWULFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0DUWLQ 8PDQ 3URIHVVRU RI (OHFWULFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DYLG 7DQQHU 3URIHVVRU RI 3K\VLFV

PAGE 129

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7RVKLND]X 1LVKLGD $VVRFLDWH 3URIHVVRU RI (OHFWULFDO (QJLQHHULQJ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $SULO :LQIUHG 0 3KLOOLSV 'HDQ &ROOHJH RI (QJLQHHULQJ .DUHQ $ +ROEURRN 'HDQ *UDGXDWH 6FKRRO

PAGE 130

,QWHUQHW 'LVWULEXWLRQ &RQVHQW $JUHHPHQW ,Q UHIHUHQFH WR WKH IROORZLQJ GLVVHUWDWLRQ $87+25 .LP +\RXQ6RR 7,7/( 7DSHUHG YHORFLW\ FRXSOHUV DQG GHYLFHV D WUHDWLVH UHFRUG QXPEHU f 38%/,&$7,21 '$7( ID +\L PHQWLRQHG GLVVF 98< eR9 DV FRS\ULJKW KROGHU IRU WKH DIRUHPHQWLRQHG GLVVHUWDWLRQ KHUHE\ JUDQW VSHFLILF DQF/OLPLWHG DUFKLYH DQG GLVWULEXWLRQ ULJKWV WR WKH %RDUG RI 7UXVWHHV RI WKH 8QLYHUVLW\ RI )ORULGD DQG LWV DJHQWV 7 DXWKRUL]H WKH 8QLYHUVLW\ RI )ORULGD WR GLJLWL]H DQG GLVWULEXWH WKH GLVVHUWDWLRQ GHVFULEHG DERYH IRU QRQSURILW HGXFDWLRQDO SXUSRVHV YLD WKH ,QWHUQHW RU VXFFHVVLYH WHFKQRORJLHV 7KLV LV D QRQH[FOXVLYH JUDQW RI SHUPLVVLRQV IRU VSHFLILF RIIOLQH DQG RQOLQH XVHV IRU DQ LQGHILQLWH WHUP 2IIOLQH XVHV VKDOO EH OLPLWHG WR WKRVH VSHFLILFDOO\ DOORZHG E\ )DLU 8VH DV SUHVFULEHG E\ WKH WHUPV RI 8QLWHG 6WDWHV FRS\ULJKW OHJLVODWLRQ FI7LWWH L 86 &RGHf DV ZHOO DV WR WKH PDLQWHQDQFH DQG SUHVHUYDWLRQ RI D GLJLWDO DUFKLYH FRS\ 'LJLWDWHWLRQ DOORZV WKH 8QLYHUVLW\ RI )ORULGD WR JHQHUDWH LPDJH DQG WH[WEDVHG YHUVLRQV DV DSSURSULDWH DQG WR SURYLGH DQG HQKDQFH DFFHVV XVLQJ VHDUFK VRIWZDUH 7KLV JMDQW RI SHUPLVVLRQV SURKLELWV XVH RI WKH GLJLWL]HG YHUVLRQV IRU FRPPHUFLDO XVH RU SURILW LJUA[XUH RI &RS\ULJKW +ROGHU .LP 1\RX\ 3ULQWHG RU 7\SHG 1DPH RI 6 R' RI &RS\ULJKW +ROGHU/LFHQVHH 3HUVRQDO LQIRUPDWLRQ EOXUUHG 'DWH RI 6LJQDWXUH 3OHDVH SULQW VLJQ DQG UHWXUQ WR &DWKOHHQ 0DUW\QLDN 8) 'LVVHUWDWLRQ 3URMHFW 3UHVHUYDWLRQ 'HSDUWPHQW 8QLYHUVLW\ RI )ORULGD /LEUDULHV 32 %R[ *DLQHVYLOOH )/


xml record header identifier oai:www.uflib.ufl.edu.ufdc:UF0008237500001datestamp 2009-02-16setSpec [UFDC_OAI_SET]metadata oai_dc:dc xmlns:oai_dc http:www.openarchives.orgOAI2.0oai_dc xmlns:dc http:purl.orgdcelements1.1 xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.openarchives.orgOAI2.0oai_dc.xsd dc:title Tapered velocity couplers and devices : a treatiseTapered velocity couplers and devicesdc:creator Kim, Hyoun Soodc:publisher Hyoun Soo Kimdc:date 1994dc:type Bookdc:identifier http://www.uflib.ufl.edu/ufdc/?b=UF00082375&v=0000131798924 (oclc)001975597 (alephbibnum)dc:source University of Floridadc:language English