Citation
novel tunable filter for wavelength division multiplexed communication systems

Material Information

Title:
novel tunable filter for wavelength division multiplexed communication systems
Series Title:
novel tunable filter for wavelength division multiplexed communication systems
Creator:
Hussell, Christopher Parke,
Place of Publication:
Gainesville FL
Publisher:
University of Florida

Subjects

Subjects / Keywords:
Dielectric materials ( jstor )
Electric fields ( jstor )
Etching ( jstor )
Lasers ( jstor )
Light refraction ( jstor )
Mirrors ( jstor )
Reflectance ( jstor )
Silicon ( jstor )
Waveguides ( jstor )
Wavelengths ( jstor )

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright Christopher Parke Hussell. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
33628675 ( oclc )
002056059 ( alephbibnum )

Downloads

This item has the following downloads:


Full Text












A NOVEL TUNABLE FILTER FOR WAVELENGTH DIVISION MULTIPLEXED
COMMUNICATION SYSTEMS














By

CHRISTOPHER PARKE HUSSELL


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1995

































Copyright 1995

by

Christopher Parke Hussell












To my loving wife, Mary.












ACKNOWLEDGEMENTS


Many people have assisted me with my work at the University of Florida and it

would be impossible to acknowledge all of them. However, I would like to acknowledge

several individuals in particular.

First, I want to thank Dr. Ramu V. Ramaswamy for his hard work and devotion

to his students in providing funds, well-equipped laboratory facilities, and a stable

working environment conducive for research. His devotion towards generating funds

for the Photonics Research Laboratory and the University is truly commendable.

His success in doing so allowed me to take a novel concept and buy the necessary

equipment for its demonstration in a very reasonable time frame. His willingness to

share his broad knowledge of this and related areas proved to be essential for the

completion of this work.

I would also like to thank Dr. Robert Tavlykaev for constantly providing helpful

discussions. I found him to be very knowledgeable of the current as well as past

literature. This has made him an invaluable resource for me.

Very conducive discussions with Dr. K. Thyagarajan helped me to have a deeper

understanding of the problem at hand. I found him to have a very broad theoretical

knowledge. He was always willing to assist.

I am grateful to Dr. Sanjai Sinha for assisting me with MOCVD growth. I also

found him to be very helpful in providing me with ideas. In fact, when looking for

the best materials to use for a dielectric mirror, he suggested using silicon. Not long

after that, I formulated the idea of using silicon as a buffer layer for DBR grating

waveguides.












I am indebted to Hsing Chien Cheng. He was very eager on countless occasions to

help me with theoretical modeling, fabrication, and measurement. I greatly respect

his hard work and pleasant attitude.

I want to thank the professors in the area: Dr. Peter Zory, and Dr. Ramakant

Srivastava. Their work at the University is commendable.

I want to thank Dr. Scott Samson for reviewing the rough draft of this dissertation.

His comments helped me to convey the information in this work more effectively.

Also, I appreciate my other colleagues, particularly, Wuhong Li, Suning Xie, Dave

Marring, Kirk Lewis, Ron Slocumb, Dr. Amalia Miliou, Jamal Natour, Dr. Sang K.

Han, Dr. Hyoun S. Kim, Dr. Song Jae Lee, Dr. Young Soon Kim, Dr. Sang Sun

Lee. Through personal discussions and group meetings, these people have been very

helpful.

Several members of the department have also provided me with necessary as-

sistance in their areas of expertise. The machinist, Allan Herlinger, professionally

modeled several optical measurement devices for me. Keith Rambo helped me to

plan the installation of the RIE, provided me with spare parts, and assisted me with

finding vendors of vacuum equipment. The Microelectronics Laboratory managers,

James Chamblee, Tim Vaught, Steve Schein, and Jim Hales, provided me with two

well-maintained laboratories.

The brotherhood in Gainesville at the Campus Church of Christ have warmly

opened their homes to me and my family constantly from the time we first moved

into the area. These people, far too many to list here, have kept me in their prayers

and offered much moral support.

My father, Lewis, and mother, Rosalee, have been supportive to me towards

fulfilling my dreams since childhood. Their love and support continue to encourage












me to attain higher goals. I am truly grateful for their financial support. I love them

very much.

My greatest appreciation goes to my wife, Mary. She has unceasingly supported

me in keeping the home and family in order. She is very devoted and giving to our

lovely children, Ashley and Kristin, who take after their mother in beauty. She has

endured much and keeps on smiling. Truly, she has made it all worth while. My love

for her is unending. My children truly bring joy to my life.

















TABLE OF CONTENTS




ACKNOWLEDGEMENTS ............................ iv

LIST OF FIGURES .................... .......... x

ABSTRACT .................................... xvi

CHAPTERS

1 INTRODUCTION ............................... 1

1.1 M otivation . . 1
1.1.1 Bandwidth of Optical Fiber .................. 2
1.1.2 Practical WDM Communication Systems ........... 4
1.1.3 Wavelength Selective lOCs ................... 6
1.2 A New Wavelength Selective Tunable Filter ............. 11
1.3 A Novel Waveguide Technology .................... 14
1.4 Chapter Organization ........................... 17

2 THEORY OF OPTICAL FIELDS IN MULTILAYER STRUCTURES ... 20

2.1 Basic Equations .............................. 21
2.2 Reflection and Transmission From a Single Boundary ........ 27
2.3 Characteristic Matrix of a Thin Film ................. 31
2.4 Characteristics of a Multilayer Structure ............... 33
2.5 Alternative Matrix Formulation .................... 36
2.6 Connection Between the Two Formalisms ............... 37
2.7 Applications of the Formalisms to Real Structures ... 39
2.7.1 Reflectance from Periodic Quarter-Wave Structures 39
2.7.2 Basic Laser Relationships . 40
2.7.3 Basic Waveguide Relationships . 43
2.7.4 Application to Corrugated Waveguides ... 44
2.8 Spectral Index Method .......................... 47
2.9 Summary of the Numerical Methods . 51

3 A NEW WAVELENGTH SELECTIVE FABRY-PEROT FILTER .... 52

3.1 Thin Film Dielectric Fabry-Perot Filters . 52
3.1.1 Characteristics of a Thin Film Dielectric Mirror ... 52
3.1.2 Characteristics of a Thin Film Dielectric Fabry-Perot Filter 53
3.2 DBR Corrugated Waveguide Fabry-Perot Filters ... 55














3.2.1 Characteristics of a DBR Corrugated Waveguide ... 55
3.2.2 Characteristics of a DBR Corrugated Waveguide Fabry-Perot
F ilter . . 58
3.3 Proposal: Asymmetric Fabry-Perot Filter . 59
3.3.1 Passive ASFP Filter .... ................... 60
3.3.2 Tuning an ASFP filter ..................... 62
3.3.3 Tunable DFB laser ....................... 65
3.3.4 Sum m ary ............................ 66

4 A NOVEL WAVEGUIDE GEOMETRY . 68

4.1 The Need for Better DBR Corrugated Waveguides ... 68
4.2 Corrugated Waveguide Technologies (Previous Work) ... 69
4.2.1 Investigations of DBR Corrugated Waveguides .... 70
4.2.2 Passive DBR Corrugated Waveguide Devices .... 71
4.3 Difficulties in Achieving High Reflectance . 72
4.4 Proposal: Channel Waveguides With High-Index Overlays 74
4.5 Benefits of Silicon as a High-Index Overlay On LiNbO3 ... 78
4.5.1 Previous Reports of Waveguides with Silicon Overlays 78
4.5.2 Additional Benefits of Silicon on LiNbO3 ... 80
4.6 Misconceptions of Guiding in Thick-Film Structures .... 80
4.7 Properties of LiNbO3 Waveguides With Varying Silicon Overlay Thick-
ness . . 85
4.8 Sum m ary ... .... .... ... .... .... .. .. .. .. 88

5 DEVICE FABRICATION TECHNIQUES . 89

5.1 Reactive Ion Etching .......................... 89
5.1.1 Cl2 Reactive Ion Etching . 93
5.1.2 02 Plasma Ashing ....................... 96
5.2 Waveguide Fabrication ......................... 100
5.3 Grating Lithography and Transfer . 103
5.4 Polishing .. . 107
5.5 Endface DBR Fabrication ....................... 108
5.6 Sum m ary ... .. .. ... .... .... .... .. .. ... 110

6 EXPERIMENTAL RESULTS OF THE NEW WAVEGUIDE GEOMETRY 113


6.1 Near Field Profile Measurement .
6.1.1 Measurement Technique .
6.1.2 Field Profile Results ...
6.2 Loss Measurement ........
6.2.1 Waveguide Device Reflection
6.2.2 Loss Results .........
6.3 Mode Index Measurement ....
6.3.1 Prism Coupler Technique. .
6.3.2 Prism Coupler Results .
6.4 Summary .............


. .
. .
. .
. .
and Transmission
o.........
o.o.......
. .
. .
. .


..oo.o.
.....o..
Measurement
. o .


........












7 EXPERIMENTAL RESULTS OF GRATING FILTERS IN LiNbO3 .... 129

7.1 Waveguide Grating Results ........................ 129
7.1.1 The First Sample: APE:LiTaOs . 131
7.1.2 The First APE:LiNbO3 Sample ................ 132
7.1.3 The First Ti:LiNbO3 Sample .................. 136
7.1.4 Short Period DBR Corrugated Waveguide ... 137
7.1.5 The Best Reflection Measurements 137
7.2 ASFP Filter Results .......................... 140
7.2.1 Results of ASFP #1 ...................... 140
7.2.2 ASFP Filter Results with Endface-Deposited DBR Mirror on
ASFP # 2 .... ... .... ... .... .. .. ... .. 144
7.3 Prospects for Improvement ........................ 146
7.3.1 Improvement of Grating Fabrication 147
7.3.2 Optimization of APE:LiNbO3 Waveguides ... 151
7.3.3 Optimization of the Silicon Thickness 151
7.3.4 Optimize Structure With Buffer Layer 152
7.4 Sum m ary ................................ 152

8 CONCLUSIONS AND FUTURE WORK . 156

8.1 Conclusions .. . 156
8.2 Future W ork ................................ 158
8.2.1 Detailed Study of Waveguides With High-Index Overlays 159
8.2.2 Optimization of Grating Performance 160
8.2.3 High Performance lOCs .................... 161

APPENDICES

A DISPERSION OF SILICON ................ .... ... 166

B DISPERSION OF LITHIUM NIOBATE . 171

REFERENCES ................................... 173

BIOGRAPHICAL SKETCH ............................ 180

















LIST OF FIGURES


1.1 Attenuation of a low-loss optical fiber (reference [45]). 3

1.2 Simplified schematic of a WDM distribution system 4

1.3 Simplified schematic of a WDM ring network. 5

1.4 Polarization insensitive acoustically tunable optical filter. 7

1.5 Cascaded Mach-Zehnder interferometer. . 9

1.6 Resonant grating assisted directional coupler filter. 9

1.7 Proposed Tunable Wavelength Selective Filter. .. 12

1.8 Comparison of the reflection spectra of a dielectric endface mirror and
a corrugated waveguide. a) shows that the reflection band of a corru-
gated waveguide is very narrow compared to the spectra of the dielec-
tric mirror. b) shows an expanded view of the corrugated waveguide
spectra. . .. 13

1.9 Transverse cross section of a graded-index channel waveguide with an
overlaying film of refractive index near or higher than the core of the
w aveguide .. . . 15

1.10 Longitudinal cross section of a DBR corrugated waveguide made from
a high-index overlay. ......................... 15

2.1 k vector relationships with light incident on a single surface. ... 27

2.2 Conventions for the positive directions of the E and H field vectors for
the (a) TE or s-polarized waves and (b) TM or p-polarized waves. 28

2.3 A single dielectric planar layer on a substrate. ... 31

2.4 A general multilayer thin-film structure. .. 34

2.5 Dielectric mirror made from a periodic quarter-wave stack. .. 40

2.6 Single-film laser.. ............................. 41












2.7 Single-film waveguide. ........................ 43

2.8 Single mode waveguide with an abrupt step. ... 45

2.9 Dual rib waveguide cross section. The dashed line represents the ef-
fective movement of the boundary by the Goos-Hiinchen shift. 48

3.1 Simple DBR consisting of a multilayer dielectric stack (a), and its
reflectance and transmission spectra (b). The parameters are no = 1,
ns = 2.14, nL = 1.2, nH = 2.2, and 4 periods .... 53

3.2 Fabry-Perot filter consisting of two multilayer dielectric stack DBRs
separated by a short waveguide cavity (a), reflectance spectra of the
structure with a cavity length of 10pm (b). The parameters for each
mirror are no = 1, n, = 2.14, nL = 1.2, nH = 2.2, and 4 periods. 54

3.3 DBR corrugated waveguide (a), reflectance spectra (b). The parame-
ters used in the calculation are NH = 2.1406 and NL = No = N, = 2.14
and 10,000 periods. Loss of 0.35dB/cm is also included in the calculation. 56

3.4 Fabry-Perot filter consisting of two DBR corrugated waveguides sepa-
rated by a short waveguide cavity (a), reflectance spectra of the struc-
ture (b) . . 58

3.5 Asymmetric Fabry-Perot filter consisting of a DBR corrugated waveg-
uide with a dielectric mirror deposited on the endface .... 60

3.6 Transmission spectra of an asymmetric Fabry-Perot filter (a); expanded
view of the transmission peak (b). The parameters used for the dielec-
tric mirror were the same as those used for figure 3.1(b) and those used
for the corrugated waveguide were the same as those use for figure 3.3(b). 61

3.7 Transmission spectra of an ASFP filter for a corrugated waveguide loss
of .35dB/cm (solid) and 3.5dB/cm (dotted). .. 62

3.8 Tunable ASFP filter. .......................... 63

3.9 Transmission spectra of a Tunable ASFP filter for several values of the
mode index change ............................. 64

4.1 Longitudinal cross section of a graded-index waveguide with an over-
laying film grating (a); local normal mode index profile along the prop-
agation direction (b) ............................ 75

4.2 Corrugated waveguide structure used by Adar et al. [2] (a); Local nor-
mal mode index profile of the structure along the propagation direction
(b); Local normal mode index profile of the structure with Si3N4 only
in the valleys of the grating (solid) and with no Si3N4 at all (dotted) (c). 77












4.3 Simple ridge waveguide structure used to illustrate a case were the
effective index method gives the wrong number of modes. This waveg-
uide is single mode, but the effective index method predicts five modes. 82

4.4 The effective index method is applied to the waveguide structure in
figure 4.3 by finding the mode indices of asymmetric planar waveguides
with film thicknesses of D (a) and H (b). These mode indices are
applied to a symmetric laterally confined planar waveguide (c). The
mode indices of the waveguide depicted in (c) are generally accepted
to be equivalent to the mode indices of the structure in figure 4.3. 83

4.5 Viewing the proposed structure (figure 1.9) upside down, we see some
similarity between it and the structure in figure 4.3. In this case, the
rectangular ridge is replaced by a lower refractive index strip load with
larger cross section ............................. 84

4.6 High-index strip-loaded waveguide structure used for spectral index
calculations . . 85

4.7 Dependence of the mode index of the device in figure 4.6 on silicon
strip thickness for several strip widths. .. 86


5.1 Schematic illustration of the voltage drop across a plasma discharge. 90

5.2 RIE machine used for etching the devices in this work. 91

5.3 Diagram of the RIE system pictured in figure 5.2. .... 92

5.4 A trench 3pm wide by 9pm deep, etched in GaAs. .... 94

5.5 A 1/m period grating etched into GaAs by Cl2 RIE. .... 94

5.6 Schematic of a multilayer mask that can be used for very deep RIE or
thick lift-off, a) shows the structure just after developing the imaging
layer and b) shows the completed structure. .. 97

5.7 Picture of the multilayer photoresist mask from an optical microscope. 98

5.8 SEM picture the result of etching GaAs using a multilayer structure
without the SiO2 layer and non-optimized 02 etching parameters. 100

5.9 Standard fabrication process for annealed proton exchanged LiNbO3
waveguides. .. . .. 102

5.10 Diagram of the grating lithography setup. ... 104

5.11 Plot of equation 5.1. ......................... 105

5.12 Setup used to verify the period and measure the chirp of the gratings. 105











5.13 SEM picture of an etched grating on a silicon substrate .


5.14 Picture of two stages of an LiNbO3 endface polish. After polishing
with 0.25/m diamond paste (a), and after using a colloidal alumina
polishing compound (b,c). The LiNbO3 substrate (bottom) with a
thin silicon layer on top of it, followed by a 2/pm thick layer of SiO2.
The silicon layer is barely visible in the picture. Above the SiO2 layer
is a thin layer of wax, which is thick enough to be visible only in (c),
that does not polish well. A silicon polishing block is on the top. The
picture was taken by an optical microscope with the contrast enhanced
to show any scratches. ........................ 109

5.15 Diagram of the sample holder/shutter assembly (a), and picture (b) of
the e-beam deposition system ....................... 110

5.16 Calculated and measured transmission of two dielectric mirrors de-
posited by the system shown in figure 5.15 (a) onto glass microscope
slides, and calculated reflection of the same structure (b). .... 111

6.1 Near field measurement setup. . .. 114

6.2 Contour plots of the optical intensity profiles for the fiber (upper left)
and waveguides of several mask widths with a 1775A silicon overlay. 120

6.3 Experimental setup used to measure reflection, transmission, and loss
of waveguide device samples. . ... 121

6.4 Loss measurements of z-cut APE:LiNbO3 waveguides proton exchanged
in pyrophosphoric acid at 200C for 71 minutes, and annealed for 7
hours at 3500C for two sample lengths. ... 123
6.5 Loss measurements of z-cut APE:LiNbO3 waveguides proton exchanged
in pyrophosphoric acid at 200C for 71 minutes, and annealed for 7
hours at 350C for three thicknesses of silicon: none, 4120A, and 8200A. 124

6.6 Schematic diagram of the prism coupler. ... 125

6.7 Measurements of the mode index of APE:LiNbO3 waveguides with
silicon overlays of different thicknesses. .. 127

7.1 Transmission spectra of a 5pm wide APE:LiTaO3 waveguide on the
first DBR corrugated waveguide sample (DBR #1), fabricated with
the high-index overlay technology. . 132

7.2 Transmission spectra of an 8.5/tm waveguide on the first APE:LiNbO3
DBR corrugated waveguide sample (DBR #2). .. 133


106












7.3 Exact solution of the mode index of the first three modes of a planar
waveguide with a cladding index of 1.0, a film index of 3.5 (silicon), and
a substrate index of 2.14 for varying film thicknesses at a wavelength
of 1534nm .. . . 134

7.4 The grating not only causes coupling between the forward and re-
verse guided modes, but also between the forward guided mode and
reverse radiation modes. The planar high-index overlay allows for one-
dimensional radiation with mode indices above those of the channel
w aveguide .. . . 135

7.5 Transmission spectra of the TM mode of a 5.5/pm waveguide on the
first Ti:LiNbO3 DBR corrugated waveguide sample (DBR #3). 136

7.6 Transmission spectra of a 10pm waveguide on a DBR corrugated waveg-
uide sample with a shorter period. After these measurements, the
silicon grating was removed and a new one fabricated on the sample
(D BR # 4). . .. 137

7.7 Reflection spectra of a 10ym waveguide on an APE:LiNbO3 DBR cor-
rugated waveguide sample (DBR #4). ... 138

7.8 Calculated and measured reflection and transmission of a DBR cor-
rugated waveguide with ~ 10,300 periods, AN = 2.8 x 10-4, A =
358.55nm, and a 50:50 duty cycle (DBR #5). .. 139

7.9 SEM picture of a grating over an APE:LiNbO3 waveguide. .. 139

7.10 Structure of sample ASFP #1. The cavity is of sufficient length to
add electrodes. .. ....... .... ... .... .. .. ... 141

7.11 Reflection spectra of the sample configuration depicted in figure 7.10. 142

7.12 An external dielectric mirror was index matched and butt-coupled to
the device of figure 7.10. ....................... 142

7.13 Reflection spectra of the sample with an external butt-coupled mirror
as depicted in figure 7.12. ...................... 143

7.14 Measured and calculated transmission of the device in figure 7.12. 143

7.15 ASFP #1 after fabricating the electrodes. ... 144

7.16 Two sets of measured results for OV and 30V for the device in figure 7.15.145

7.17 A dielectric mirror was deposited on the end of a device as shown. 145

7.18 Calculated and measured reflection spectra for the device in figure 7.17.146

7.19 SEM picture of the grating profile produced on a silicon substrate by
R IE . . .. 147
xiv












7.20 Calculated reflection spectra of a DBR corrugated waveguide with a
30:70 duty cycle. ........................... 148

7.21 A grating with a curved longitudinal mode index profile (a) was used
to calculate the effect of a non-square grating on the reflectance spectra
(b ) . . 149

7.22 SEM picture of an etched grating on a silicon substrate produced by
under exposure ............................... 149

7.23 Reflection spectra of a chirped DBR corrugated waveguide. .. 150

8.1 Conceptual drawing of an ASFP directional coupler. .... 162

8.2 A tunable Er:LiNbO3 single longitudinal mode laser. .... 162

8.3 Application of high index overlay strips to reduce radiation loss at
waveguide bends. ........................... 163

8.4 Conceptual drawing of a WDM Mux/Demux Chip. .... 164


A.1 Match between the measured and theoretical transmission through an
8050A thick silicon film on a glass microscope slide after iteration of
the dispersion curves ............................ 167

A.2 Comparison between the known dispersion curves of single crystal sil-
icon and the e-beam deposited 8050A film ... 168

A.3 Match between the measured and theoretical transmission through a
4210A thick silicon film on a glass microscope slide using the e-beam
Si dispersion curves in figure A.2. . .. 168

A.4 Match between the measured and theoretical transmission through a
4180A thick silicon film on a glass microscope slide using the e-beam
Si dispersion curves in figure A.2. The poor result is attributed to
oxidation of the Si film caused by evaporating SiO2 immediately prior
to the Si evaporation ............................ 169

A.5 Comparison of the dispersion curves of single crystal silicon, uncontam-
inated e-beam deposited silicon, and contaminated e-beam deposited
silicon . . 170












Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

A NOVEL TUNABLE FILTER FOR WAVELENGTH DIVISION MULTIPLEXED
COMMUNICATION SYSTEMS

By

Christopher Parke Hussell

August 1995

Chairman: Dr. Ramu V. Ramaswamy
Major Department: Electrical and Computer Engineering

Two essential integrated optical components of wavelength division multiplexed

(WDM) systems are tunable lasers and tunable wavelength selective filters, which we

address in this dissertation within a common framework by proposing a new concept

that has commercial potential.

Conventional Fabry-Perot filters lack the free spectral range (FSR) required in

WDM systems. A new approach to achieve transmission filters with large FSR,

tunable over many channels using the linear electro-optic effect, is proposed. By

simply adding gain to the waveguide, this configuration is extendible as a tunable,

single longitudinal mode laser The most significant obstacle in realizing these filters

is achieving high-reflectance corrugated waveguides-an essential consideration for

achieving a useful filter.

The primary contribution of this work is the novel approach used to achieve

high-reflectance corrugated waveguides. The concept involves channel waveguides

with planar films of higher refractive index on top. This influences the propagation

constant of the channel waveguide mode. However, the film does not become the

primary guiding layer (the majority of the guided power remains in the lower-index

material) even for a considerably thick film. A somewhat startling finding is that

planar films with thicknesses capable of supporting multiple planar guided modes
xvi












do not necessarily have a measurable affect on the loss and mode field profile of the

channel waveguide. The effect on the propagation constant is small, but measurable.

This new technology forms the basis of an ideal geometry for creating corrugated

waveguide devices.

These new concepts are applied and demonstrated in a material system in which

it is difficult to achieve high reflectance from a corrugated waveguide-LiNbO3. We

choose this material not only to prove the robustness of the new technology, but

because it is one of the few material systems in which integrated optical circuit prod-

ucts are commercially available. Preliminary structures exhibit the highest reflection

reported to date in LiNbO3 corrugated waveguides (80%) with an order of magni-

tude shorter length (3.7mm) than that has recently been reported for devices with

comparable reflection. The results of the proposed wavelength selective filter are in

excellent agreement with the theory.


xvii

















CHAPTER 1
INTRODUCTION

Our motivation for this dissertation begins with a discussion of how wavelength

division multiplexing in optical fiber communication systems can be used to meet the

growing need for high-bandwidth services. Most of the components in these commu-

nication systems such as tunable laser sources, external modulators, star couplers,

fiber amplifiers, and detectors are already commercially available. Several concepts

for the remaining crucial component, the tunable wavelength selective filter, have also

been reported; however, they are either unrealizable for commercial applications or

inadequate in meeting the needs of practical WDM systems. We propose a new filter

device that can meet the needs of even the most complex WDM system. However, the

primary difficulty of this filter is that it requires a totally new technology: the fabri-

cation of a high reflectance corrugated waveguide in an electro-optic material. This

problem is addressed and a novel waveguide geometry that overcomes the difficulties

inherent to most other waveguide geometries associated with high reflectance corru-

gated waveguides is proposed. Section 1.4 presents the organization of the ensuing

chapters of this dissertation.

1.1 Motivation

This information age that we are living in now continues to demand more and more

communications bandwidth. However, the bandwidth of typical residential telephone

services has remained virtually the same for decades. Integrated Services Digital

Network (ISDN) offers a modest improvement in digital transmission rates, but much












higher bandwidth is required in order to move into a new era of communications along

with the continuing advancements of computer hardware that is propelling us into

this explosive information age.

There is great demand for broadband distribution networks such as CATV, but

consumers also require services that can only be provided by two-way, routable net-

works. These broadband communication networks are the key to the future of many

recently emerging technologies such as video on demand, video teleconferenceing, re-

mote medical imaging, home shopping, and virtual reality networking, just to name

a few. These technologies will further enable us to meet in a virtual world to discuss

and share ideas, to conduct business transactions, and to embark towards new lev-

els of entertainment, all in the comfort of our homes. Recently, all the processing,

storage, and imaging technology required to do these things has become available at

affordable prices. However, these services will be severely limited until the realization

of Broadband ISDN.

It is inevitable that a broadband communications era is on the horizon. The

question is, "What is the most efficient way to realize broadband communication

systems?"

1.1.1 Bandwidth of Optical Fiber

The question just posed is easy to answer because conventional optical fiber offers

the bandwidth we need-much more than what is presently being utilized. To deter-

mine the bandwidth of an optical fiber, we recall that the bandwidth B is related to

the spectral width AA by

B=AAf= (1.1)













10



-





1000 1200 1400 1600 1800 2000
Wavelength (nm)

Figure 1.1. Attenuation of a low-loss optical fiber (reference [45]).

where c and A are the speed of light and its wavelength in vacuum, respectively. The

theoretical maximum binary signaling efficiency is

R 2 bits
(1.2)
B Hz sec

Nationwide fiber-optic networks are based upon single wavelength transmission

at 1.3 or 1.55[m with bit rates of about 565 Mb/s. This data rate is high enough for

more than 7600 multiplexed voice or about 8 video channels, and equations 1.1 and 1.2

suggest that this transmission rate can be contained within a spectral width less than

0.003nm when A = 1.55[/m. Typical systems, however, require more bandwidth due

to laser chirp, but this can be avoided by using external-cavity modulators.

Figure 1.1 shows that the fiber provides low loss regions around the wavelengths

of 1.3/tm and 1.5/im that are about 100nm wide. In principle, the fiber has more

than 10 THz of bandwidth to offer in the 1.51tm region. That is theoretically enough

bandwidth for about 300,000 high quality uncompressed video transmissions (70Mb/s

each). Since the operating bandwidth of low-cost electronics is presently far below

100 GHz, it appears that the only available means of utilizing more of the fiber

bandwidth is to move towards wavelength division multiplexing (WDM).


















Ch 1 L' Narrow Bandpass Z ,
Ch 2 L 2 Wavelength Filter
Ch 2- LD 2| 7Star
Coupler

ChM m LD I Controller Chx
----------------- --------------------------j

Figure 1.2. Simplified schematic of a WDM distribution system.

1.1.2 Practical WDM Communication Systems

Figure 1.2 shows a simple WDM distribution system. First, many electrical chan-

nels are multiplexed together using a scheme such as time division multiplexing. Each

of those are used to externally or internally modulate a laser for one of the wavelength

channels. Each laser output becomes an individual optical channel. The optical chan-

nels are multiplexed together by a star coupler and then distributed. Each receiver
has the ability to select the desired optical channel using a narrow bandpass tunable

optical filter with high free spectral range. After detection, the electrical signal is

then further demultiplexed for the user.

Recently, a couple of groups have successfully demonstrated the feasibility of such

systems. In 1990, H. Toba et al. [79] from NTT Laboratories in Japan demonstrated a

100 channel WDM transmission system at 622 Mb/s over 50 km. They have since ex-

tended their system to 128 channels over 480 km using erbium doped fiber amplifiers

(EDFAs) [50]. A. Chraplyvy et al. [14] from AT&T Bell Laboratories demonstrated

a WDM system transmitting over 0.3 Tb/s through 150 km of fiber. That is enough

bandwidth for almost 5000 uncompressed high quality video transmissions, which is









5


WDM Mux/Demux Chip

------------ -------y-----
|Tunable LD O utput'
Input t Output
---------- ---I 11------- -- ---- *--*Otu
In-----------








ANe )k -Router










Figure 1.3. Simplified schematic of a WDM ring network.

almost as many video channels as today's systems offer for voice conversations. By

using newly developed video compression schemes, this figure can easily be increased

by one or two orders of magnitude. Although these experiments were conducted at

a wavelength of 1.55/m, they utilized conventional 1.3pm zero dispersion fiber. This

means that the existing fiber network can be dramatically enhanced by simply re-

placing transmitter, receiver, and repeater hardware, instead of laying thousands of

miles of new fiber.

These concepts are expected to be applied to ring networks where each subscriber

can transmit and receive data on a network. Figure 1.3 shows a simplified diagram of

an optical WDM ring network which is then routed to a wide area network (WAN).

The expanded view in the inset of figure 1.3 shows a conceptual view of the optical












hardware of one of the subscribers to the ring. In this case, each subscriber has a

tunable laser diode and a WDM multiplexing/demultiplexing chip. The tunable laser

allows the subscriber to transmit information on any of the wavelength channels. The

purpose of the WDM multiplexing/demultiplexing chip is threefold: extract all the

optical power of only the desired channel from the fiber optic bus, route the rest of the

channels back onto the bus for other subscribers, and retransmit a new signal from

the tunable laser tuned to the same wavelength channel as the filter. In this simplified

conceptual system, to prevent interference of signals from different sources, it would

be necessary for the laser and filter to be tuned to the same frequency channel and

for the filter to extract most of the input light in that channel (perhaps with -15dB

or less transmitted).

Many essential components of WDM systems such as tunable semiconductor laser

diodes, external modulators, waveguide couplers, detectors, and EDFAs are com-

mercially available. However, commercially viable technologies for filters of densely

spaced WDM systems are yet to be reported. As will be discussed below, the filters

used in previous systems [79, 50, 14] do not meet all of the requirements of a practical

system.

1.1.3 Wavelength Selective IOCs

So far, we have presented a motivation for WDM as a realistic means of obtaining

very high bandwidth communication systems. Crucial to the realization of WDM in

commercial communication systems is the advent of practical wavelength selective

integrated optical circuit (IOC) filters. Many wavelength selective IOC filter designs

have been reported for WDM applications, but few are adequate for densely spaced

WDM. Typically, the devices are very long, have rather broad pass-band spectra,

require high power, and often involve complex fabrication processes. The remainder of












Acoustic Transducer TE-TM Splitter
T-TM Splitter Acoustic Bea


Input


Unfiltered


Filtered


Figure 1.4. Polarization insensitive acoustically tunable optical filter.

our motivation will discuss some of the most common designs of wavelength selective

IOC filters reported in the literature. The pitfalls of these devices as they apply

to densely spaced WDM systems will be discussed. Then the goals of this research

work will be presented in section 1.2 as it presents a proposal for a new wavelength

selective IOC filter more suitable for densely spaced WDM systems.

Acoustically Tunable Optical Filter

Figure 1.4 shows a diagram of a polarization insensitive acoustically tunable op-

tical filter (ATOF) [71]. The two waveguide polarizations are first separated by a

polarization splitter and fed through two identical waveguides that are under the

influence of a surface acoustic wave (SAW). Within a narrow band of wavelengths,

the difference between the propagation constants of the TE and TM modes equals

the propagation constant of the SAW and the two modes can then couple.

The ATOF is often regarded as one of the most promising filters for WDM sys-

tems because it can easily be made polarization insensitive, it is tunable over more

than 100nm, and it can route many channels at one time by creating a SAW with

multiple frequency components. However, the ATOF is not suitable for systems such












as those in the most notable demonstrations of WDM systems [79, 50, 14]. This is

primarily because the passband is too broad (~'nm). Equation 1.1 shows that Inm

bandwidth corresponds to a 125 GHz channel at A = 1.55Lm. This is theoretically

enough bandwidth for a channel capacity of over 200 Gb/s. Since even very expen-

sive electronic and electro-optic hardware presently cannot achieve these rates, the

ATOF would result in wasted bandwidth. The ATOF makes up for this deficiency

by having a very broad tuning range, but currently available tunable semiconductor

lasers and laser arrays (excluding external cavity lasers) can only operate within a

wavelength range of only a few nanometers. Therefore, a filter with a very narrow

passband is needed to more fully utilize the band of wavelengths within the tuning

range of commercial lasers.

Other disadvantages of the ATOF are that it is several centimeters long and

requires high power to generate the surface acoustic wave (SAW), typically more

than 100mW. In turn, the requirement for heat dissipation can make it difficult to

maintain stable operation. Recently, significant advances have been made to maintain

temperature stability in a commercial device [80].

Cascaded Filters

The systems demonstrated in references [79, 50, 14] used cascaded tunable band-

pass filters. A cascade of three filters was used in reference [14] to achieve a 0.65nm

full width half maximum (FWHM) passband. This provided enough bandwidth for

a bit rate of over 100 Gb/s, although only 20 Gb/s was achieved.

The filter cascade used in references [79, 50] had a much narrower bandwidth

of 0.04nm (5 GHz), which corresponded to the bandwidth of the frequency shift

keyed (FSK) optical signal they used. This filter consisted of a cascade of seven

Mach-Zehnder filters. Figure 1.5 shows a diagram of a similar device with only three













Thin Film Heater


Figure 1.5. Cascaded Mach-Zehnder interferometer.


Figure 1.6. Resonant grating assisted directional coupler filter.


Mach-Zehnder filters. The total device length was about 21cm which required a chip
size of 5 x 6cm2. Although it was not mentioned, it is reasonable to assume that the

filter was fabricated around the perimeter of the chip. The polarization dependence

of each Mach-Zehnder filter was compensated using a laser trimming technique. Not
only is this a very long device which would be very difficult and costly to mass

produce, but each of the 7 Mach-Zehnder stages must be individually controlled to

achieve wavelength selection.

Resonant Optical Directional Coupler

The resonant optical directional coupler (RODC) proposed by Kazarinov et al. [33]

is shown in figure 1.6 is a modification of the original proposal by Haus et al. [26].

The structure consists of two waveguide Fabry-Perot interferometers with zero-length












cavities (quarter-wave shifted gratings) coupled to a center waveguide that acts as

the signal transmission bus. Light couples out of the upper grating waveguide only

at wavelengths for which the Fabry-Perot waveguide is resonant. The second Fabry-

Perot waveguide below the center waveguide permits a complete power transfer to

the filtered output of the top waveguide at the resonant frequency if both Fabry-

Perot waveguides are resonant at the same wavelength. Without the second resonant

waveguide, only half of the power at the resonant wavelength would be coupled to

the filtered output channel with a quarter of it being transmitted to the unfiltered

output and the other quarter being reflected to the source.

The theoretical device transmission characteristic is very narrow (~ .01nm), but

has yet to be adequately demonstrated. The first attempt at demonstrating a sim-

ilar device without the lower resonant waveguide was reported in reference [39] in

GaAs/AlGaAs. The theoretical response of the RODC indicates that it is well suited

for WDM applications, but there are two fundamental limitations for which no solu-

tions have been reported: it requires excellent DBR corrugated waveguides and has

a narrow stopband (typically ~ 2nm).

The new innovations in waveguide grating fabrication and the concepts that are

presented in this dissertation may prove to be invaluable towards circumventing the

limitations of the RODC and ultimately realizing an electro-optically tunable RODC

as well as other Fabry-Perot filters that are suitable for WDM. The filter we propose

is a Fabry-Perot waveguide structure that can be used in the RODC to extend its

stopband (see section 8.2.3). Section 1.3 will introduce a new waveguide geometry

well suited to make high reflection corrugated waveguides in commercially viable

electro-optic materials such as LiNbO3.












1.2 A New Wavelength Selective Tunable Filter

A wavelength selective filter most suitable for densely spaced WDM systems

should have a very narrow passband (~ 0.01nm), a very broad stopband (> 100nm),

and a high extinction ratio (> 14dB). The narrow passband is adequate for moderate

bit rates (< 2 Gb/s) and enables the fiber bandwidth to be utilized more efficiently

as the wavelength channels are densely spaced. The broad stopband and high extinc-

tion ratio allows a receiver with a discriminant signal detection scheme to isolate one

of the wavelength channels without crosstalk. Other desirable aspects of a tunable

wavelength selective filter are the ability to operate at high speed with low electrical

power, a simple biasing scheme, and few controllers. In order for the device to be

commercially practical, it should be as compact as possible and be manufactured with

standard microelectronics technology. Most wavelength selective filters reported to

date, including all of those described in section 1.1.3, lack one or more of the above

requirements. We propose a new filter scheme that has the potential to satisfy all

these requirements.

Figure 1.7 shows the proposed filter structure. It consists of a corrugated waveg-

uide that exhibits high reflectance in a narrow wavelength spectrum in cascade with

a broadband high reflectance mirror deposited on the endface. The reflection spectra

of these two mirrors is shown in figure 1.8. The reflection band of the corrugated

waveguide is shown as a sharp spike in figure 1.8 (a). Comparing the width of the

reflection bands of the dielectric mirror from the plot in figure 1.8 (a) with that of the

corrugated waveguide in the expanded view in figure 1.8 (b), we see that the reflec-

tion band of the dielectric mirror is over three orders of magnitude wider than that

of the corrugated waveguide. These two mirrors, fabricated in cascade constitute an

asymmetric Fabry-Perot (ASFP) interferometer. We use the term "Asymmetric" to












Corrugated Waveguide
Reflector






AR Coating


Figure 1.7. Proposed Tunable Wavelength Selective Filter.

refer to the use of two mirrors with vastly different reflection spectra as opposed to

the conventional case where two similar mirrors are used.

The two conventional cases of waveguide Fabry-Perot filters, where similar mirrors

are used on both ends, are not adequate for WDM. For the case where two dielectric

mirrors are separated by a cavity, there exist many transmission peaks. The use of

two corrugated waveguides separated by a cavity may exhibit a single transmission

peak, but the stopband is very narrow. It will be shown that the proposed struc-

ture in figure 1.7 utilizes the desirable characteristics of both mirrors: a very broad

stopband contributed by the dielectric endface mirror, and the selection of only one

transmission peak by the narrow reflection band of the corrugated waveguide mirror.

The resulting transmission spectra consists of a single transmission peak with an

extremely high free spectral range (FSR). It will be shown that by using the electro-

optic effect via an appropriate electrode scheme, the transmission peak can be shifted

to accommodate many wavelength channels in a WDM system. The reader is referred
to chapter 3 for a detailed explanation of this filter structure. We demonstrate the





















-- Dielectric Mirror |
- Corrugated Waveguide |


0.2


0 L
1000


1


0.8


0.6
U
o 0.4


0.2


0
153


1200 1400 1600 1800 2000
Wavelength (nm)


2200


-- Dielectric Mirror I
- Corrugated Waveguide


I










'I
~l~

/ I ~ ~ I'
I- -


33


1533.5


I'
I'
II
I I\ N
A ,


1534
Wavelength (nm)


1534.5


1535


Figure 1.8. Comparison of the reflection spectra of a dielectric endface mirror and a
corrugated waveguide. a) shows that the reflection band of a corrugated waveguide is
very narrow compared to the spectra of the dielectric mirror. b) shows an expanded
view of the corrugated waveguide spectra.












experimental results of the proposed filter in a very practical and mature material

system: LiNbO3.

A reader familiar with distributed feedback (DFB) lasers will recognize the ASFP

filter as a commonly used structure for low threshold DFB lasers. The structure is

the same, except the filter does not have a gain medium and uses the electro-optic

effect for tunability. However, requirements the two devices have on the resonant

structure are very different. This will be addressed in section 3.3.3.

This work proposes that the ASFP structure be used as a passive filter ("passive"

refers to the lack of a gain medium). Furthermore, it is shown how the filter can

be tuned by a simple electrode scheme, utilizing the linear electro-optic effect. The

modeling of this device as well as the experimental results are presented.

1.3 A Novel Waveguide Technology

The ASFP filter proposed in this work requires two high-reflectance mirrors. For

decades, high reflectance dielectric mirrors have been available. Corrugated waveg-

uides have been studied for over two decades, but high-reflectance, low-loss corrugated

waveguides have yet to be demonstrated in a material system suitable for making the

tunable ASFP filter.

In light of the failure of conventional methods to produce high reflectance corru-

gated waveguides, such as etching gratings into the waveguide or buffer layer, a new

waveguide geometry is proposed and developed. Figure 1.9 shows the transverse cross

section of the waveguide. It consists of a conventional graded-index channel waveg-

uide with an overlay of higher refractive index material. A grating in this material

(figure 1.10) can be used to create a considerably more perturbation to the waveguide

mode than conventional corrugated waveguides without producing excessive scatter-

ing loss. This is necessary to achieve high reflectance and low loss. Of course there













Graded-index
waveguide
N,


High-index
overlay
,


Figure 1.9. Transverse cross section of a graded-index channel waveguide with an
overlaying film of refractive index near or higher than the core of the waveguide.


Graded-index
waveguide




R


nclad


High-index
grating overlay

/i


nsubI


Figure 1.10. Longitudinal cross section of a DBR corrugated waveguide
a high-index overlay.


made from


T
- r












is always a tradeoff between the perturbation and radiation loss, but the benefit of

using this waveguide geometry is that more perturbation can be achieved with less

radiation loss. A detailed description of our waveguide geometry will be presented.

Commercially viable materials and waveguide technologies are used for our ex-

perimental demonstration. LiNbO3 is chosen as the substrate material because it is

currently the material system primarily used in the industry for state-of-the-art pas-

sive IOC devices. Waveguides are made by either annealed proton exchange (APE)

or titanium indiffusion. Silicon is chosen as the overlay not only because of its high

refractive index, but also because it is opaque to visible light, is easily deposited by

e-beam evaporation, is easily etched by reactive ion etching (RIE), and can screen

pyroelectrically generated surface charges. We will cover these benefits in detail.

A somewhat startling discovery was made during the course of the investigation

and characterization of the structure: when a planar film of high-index silicon with

thickness large enough to support multiple planar modes is deposited on the surface

of a single-mode channel waveguide in LiNbO3, the resulting channel waveguide may

still support only a single mode. Furthermore, in contrast to planar waveguides alone,

a comparably small amount of optical power is drawn up into the silicon layer, the

mode index increases by a small amount, and the propagation loss remains low. This

is exactly what is required to make good corrugated waveguides: low propagation

and mismatch losses with very little change in the mode field profile.

Rib waveguides consisting of planar films with thicknesses capable of supporting

multiple modes have already been shown to produce single-mode waveguides by Soref

et al. [73]. However, the prescribed concept in this dissertation goes one step further

as it applies to waveguides of much lower refractive index than the planar layer.

Furthermore, the proposed waveguide geometry is much more practical because it is












applicable to graded-index channel waveguides made by APE or titanium indiffusion

which have proved to be commercially viable technologies.

It will be shown in that commonly-used theoretical estimations of the propagation

constants and mode field profiles cannot be applied to this structure and hence, do

not support these claims. Perhaps this may explain why such a simple structure has

not been investigated to date. Complete waveguide characterization measurements

including mode index, loss, and field profile are presented. All of the experimental

measurements made in this work support these claims. In addition, some very unique

transmission measurements of DBR corrugated waveguides are presented that can not

be explained without this new insight.

This new waveguide geometry is used to demonstrate the highest reflection in

LiNbO3 corrugated waveguides reported to date. The results are in excellent agree-

ment with theory. The proposed filter structure is also demonstrated using this new

technology.

1.4 Chapter Organization

Chapter 2 covers most of the numerical modeling used in this work for device

simulation. In particular, two transfer matrix formalisms that are useful in solving

the optical fields in planar multiple layered structures are presented. The benefits

of each approach and their application to lasers, other Fabry-Perot structures, and

waveguides are then discussed. A brief description of the spectral index method is

given. The derivation of these formalisms from Maxwell's equations is used to develop

the notation and identify all the approximations, as well as some common mistakes.

A detailed discussion of DBR Fabry-Perot devices and an in-depth proposal of

the new wavelength selective tunable filter follows in chapter 3. Calculations, with

reasonably achievable waveguide parameters without neglecting loss, are presented












for the proposed structure. The device is shown to exhibit the characteristics neces-

sary for a densely-spaced WDM system only for structures with low-loss corrugated

waveguides.

To achieve good tunable ASFP filters, high-reflection low-loss corrugated waveg-

uides must be made in a material system that exhibits a large electro-optic effect,

such as, LiNb03. In chapter 4, first we describe many of the previous attempts to

make high reflectance corrugated waveguides, most of which yielded mediocre results.

Then, we propose a new waveguide geometry in LiNb03 that overcomes several fun-

damental limitations. This geometry is applicable to several other material systems

as well.

Chapter 5 illustrates the details of the various fabrication and processing tech-

niques required to fabricate the devices. These techniques include reactive ion etching

(RIE), waveguide fabrication by APE, grating lithography and transfer of the grating

to the waveguide, electrode fabrication, endface polishing, and endface DBR deposi-

tion.

A detailed experimental analysis of the new waveguide geometry is presented in

chapter 6. The mode index, mode field profiles, and loss are measured. These results

are in agreement with the theory, in support of the claims made in this work, resulting

in a clear understanding of the unique characteristics of the geometry as applied to

our devices.

Chapter 7 presents the experimental results of several corrugated waveguide filters

made with the new waveguide geometry. The results of a simple corrugated waveguide

reflector is found to be in excellent agreement with the theory and exhibits the

highest reflection from a corrugated waveguide in LiNbO3 reported to date. With the

fundamental building blocks in place, the proposed ASFP structure is demonstrated

and compared with theory.









19


Finally, chapter 8 summarizes the results. The scope of this work cannot begin to

cover all of the potential uses and enhancements to this new cutting-edge technology.

It seems that many other uses for the new high-index overlay technology exist. An

outline of future work, some of which is already under way, is also described in this

chapter.

















CHAPTER 2
THEORY OF OPTICAL FIELDS IN MULTILAYER STRUCTURES

This chapter covers the theory used throughout most of this work to calculate

reflection and transmission spectra for dielectric mirrors and DBR corrugated waveg-

uides, and the waveguide mode characteristics. This chapter does not present any

new theory or derivation, but it approaches the subject from a very unique and sim-

plistic angle. To develop the notation and justify all of the assumptions made, we

start from Maxwell's equations.

Most textbooks cover reflection of TE and TM waves independently. Here, we

use a formalism that is used in only a few textbooks [40] to describe both cases

with a common set of equations. The angle of incidence and polarization is factored

out in a way that makes the equations take the form of those of normal incidence.

Most references use only one of two matrix methods [40, 22], but, depending on the

problem at hand, one formalism is generally more convenient than the other. This

will be demonstrated by several examples in section 2.7. Section 2.7.4 will show that

both matrix formalisms can be applied to waveguide devices by substituting the local

normal mode indices for the refractive indices in the previously derived equations.

Finally, the theory of the spectral index method to solve for waveguides with two-

dimensional cross sections is presented in section 2.8. The spectral index method is

useful for calculating the local normal mode indices which can then be used in the

matrix methods for calculating the reflection and transmission spectra of corrugated

waveguide structures.












2.1 Basic Equations

We begin with Maxwell's equations along with the constitutive equations for
isotropic media:
V. D p (2.1)

V B = 0 (2.2)
OB
Vx E (2.3)

Vx H = J + (2.4)

D = eE (2.5)

B = pH (2.6)

J = oE (2.7)

where E is the electric field strength [V/m], D is the electric displacement [C/m2],
H is the magnetic field strength [A/m], J is the electric current density [A/m2], B is
the magnetic flux density [T], p is the electric charge density [C/m3], a is the electric
conductivity [1/Om], p is the permeability [H/m], and e is the permittivity [F/m].
Furthermore, we add that
e = Creo (2.8)

p = PrPo (2.9)
1
co = 2 (2.10)
POC2
where e, and pr are the relative permittivity and permeability, respectively (dimen-
sionless), co is the permittivity of free space (8.8541853 x 10-12F/m), Po is the per-
meability of free space (47r x 10-H/m), and c is the speed of light in free space
(2.997925 x 108m/s).












In an isotropic, homogeneous medium of no free charges, we may rewrite Maxwell's

equations in terms of two field variables

V.-E= 0 (2.11)

V H =0 (2.12)

V x E = (2.13)

OE
Vx H = oE + E (2.14)
at
Now taking the curl of equation 2.13 using the vector identity

V x (V x A) = V(V A) V2A

and substituting equations 2.11 and 2.14, we have

0 OVE 02E
V x (V x E) = V(V E) V2E = -V2E = -pV x H = -pa-O tpe -2

or
2E 02E
V2E- = 0 (2.15)

In the same manner, by taking the curl of equation 2.14 we obtain

OH 02H
V2H -- =0 (2.16)

Equations 2.15 and 2.16 are wave equations for the E and H fields. The solutions

for the E and H fields are of the same form. The solution of equations 2.15 and 2.16

for a plane wave traveling in the r direction is

E = Eoei(k-r-wt) (2.17)

and

H = Hoei(k-r-wt) (2.18)












where k is the propagation vector, r is the position vector of an arbitrary point with

respect to a reference, and w is the angular frequency of the wave. Some authors

prefer to use ei(wt-k'r). Generally, the results between the two formulations may be

compared by replacing i with -i and visa versa. This will not be the case in equation

2.69. Equations 2.17 and 2.18 do not represent physical quantities because they are

complex, but they are a general solution to the pair of wave equations 2.15 and 2.16.

However, physical quantities may be obtained by taking the real part of the complex

solutions. The results by doing such will also be a solution to the wave equations

because they are linear allowing the real and imaginary parts of the solutions to be

separated. We could take the real part here and obtain

R(E) = R(Eo) cos(k r wt) '(Eo) sin(k r wt)

but it is most often easier to carry the complex expression through the arithmetic and

take the real part after manipulation when a physical quantity is desired. However,

when using them in a relation which is not linear with respect to E or H such as

the power relationship, the complex quantities may not be used unless an adequate

formulation for complex numbers is used.

Substituting equation 2.17 into equation 2.15 we find that

k2 = Ik|2 = w21 + iwA,0 (2.19)

The phase velocity of the wave is given by v = w/k and the velocity of light in free

space is given by c = 1//-p-o-. Combining these equations with equations 2.19, 2.8,

and 2.9 we obtain the square of the complex refractive index n:
2 c2k2 .r )2
nr -r + i- = (nr + ii2 (2.20)

where nr and ni are the real and imaginary parts of the complex refractive index,

respectively. nr is referred to as simply the refractive index and ni (often denoted by












k) is known as the extinction coefficient. With the free space propagation constant

being
w 27r
ko= (2.21)
c Ao
equation 2.17 becomes

E = Eoei(nk'k-r-wt) = Eoe-nikokre i(nrkok-r-wt) (2.22)

The first exponent on the right hand side of equation 2.22 represents absorption (or

gain) while the second represents phase.

The wave equations, although derived from Maxwell's equations, do not represent

all of the information useful for determining the fields. They only help us to define

a certain class of solutions, namely the transverse propagating waves. To determine

a solution of Maxwell's equations, equations 2.17 and 2.18 must be substituted into

equations 2.11 2.14. Doing this, a simplified form of Maxwell's equations for trans-

verse propagating waves is obtained:

k E = 0 (2.23)

k H=0 (2.24)

k x E = pwH (2.25)

k x H = -(cw + io)E (2.26)

From these equations, we see that E, H and the direction of propagation form a

mutually orthogonal set. From equation 2.25 we see that the magnitudes of the field

vectors are related by

|E =7 |HI (2.27)

where, using equations 2.20, 2.10, and 2.9,

Sn o n(2.28)
k n eo n












The quantity q] is the wave impedance; the impedance of free space 7ro = 377P.

The right hand side of equation 2.28 makes the assumption that Pr = 1 at optical

frequencies.

Next, we discuss the Poynting vector S. It is defined by

S = Ex H (2.29)

and is the energy current density [W/m2]. Equation 2.29 may be derived from

Maxwell's equations and the relation describing the loss of electromagnetic energy

due to Joule heating, fy Jf E dr, and making the argument that rate of electromag-

netic energy decreasing within a volume must be equal to that consumed by Joule

heating plus that which is leaving the volume. The Poynting vector "points" in the

direction of energy flow. The above definition for the Poynting vector is not limited

to time varying fields. It is important to realize, as stated earlier that in calculating

S, both E and H must be physical quantities, i.e. real, and they must be the total

resultant of all the waves of a given frequency at the point of interest. As previously

illustrated, however, it is more convenient to work with complex quantities to rep-

resent time varying fields. Extracting the time dependence from equations 2.17 and

2.18 and expressing them as

E = (Eoek.r)e-iwt = Ece-iwt (2.30)

and

H = (Hoeik-r)e-it = He-iwt (2.31)

it may be shown that the time average of the energy flow is

(S) = 1 R(E, x H*) (2.32)

which is in the direction of k. In doing this, we have simplified the calculation of

the energy flow of time varying fields in terms of the complex time-invariant field












amplitudes. It must be remembered that the complex field amplitudes are used in

equation 2.32 while only their real part is used in equation 2.29. For a single wave

traveling in direction k, equation 2.32 may be further reduced using equations 2.25,

2.27, and the identity

A x (B x C) = B(A C) C(A B)

resulting in

(S) = r IEc2 1k (2.33)

the scalar intensity is then

I = n EcE* (2.34)
2 7,
where Ec is the complex scalar electric field amplitude. From equation 2.22, we find

that

1 n |Eo 12 e-2nikok-r= Ie-ak-r (2.35)

Io is the intensity at the reference point, I|r| = 0, and
47rn,
ao -- (2.36)

is the absorption coefficient. Two important points must be remembered about the

calculation of intensity:

In deriving equations 2.33 2.35, we assumed that there was a single wave

propagating in the direction k. Therefore, when calculating intensities resulting

from fields traveling in different directions, equation 2.32 must be used.

I oc nr (amplitude)2 should be remembered rather than simply I oc (amplitude)2

which is often quoted. If the later is used when comparing intensities present

in two different media, the result will be in error.

These two important points must be remembered when calculating reflectance or

transmittance, which is done in the next section.

























Figure 2.1. k vector relationships with light incident on a single surface.

2.2 Reflection and Transmission From a Single Boundary

Figure 2.1 shows the k vectors from the incident ki, reflected kr, and transmitted,

kt plane waves. The boundary conditions for the fields may be found from Maxwell's

equations. These state that the tangential components of E and H are continuous.

These conditions must be satisfied at any point on the boundary for all values of time.

This implies that the exponential terms of the incident, reflected, and transmitted

waves must be equal for all values of time. Thus, all the waves have the same

frequency w and

ki Arb = kr Arb = kt. Arb (2.37)

where Arb is the position vector between any two points in the boundary. This

assures us that all the waves have the same phase at any point on the boundary at

any time t. From equation 2.37 we find that


6, = Or (2.38)

and

no sin 0i = nl sin 0t (2.39)


which is Snell's law.












S E E r E Hkr
E E H H E
H k7no kno


E E
H

(a) kt t (b) t

Figure 2.2. Conventions for the positive directions of the E and H field vectors for
the (a) TE or s-polarized waves and (b) TM or p-polarized waves.

Figure 2.2 shows the convention we use to define the positive directions of the
electric and magnetic field vectors for the cases when E is perpendicular to the plane
of incidence (referred to as TE or s-polarized) (a) and when E lies within the plane
of incidence (referred to as TM or p-polarized) (b). The tangential components of
the field vectors, and 7-, are related to the field amplitudes E and H by

8= E and 7-=H cos (TE) (2.40)

for the TE case and
= Ecos and7-= H (TM) (2.41)

for the TM case. 0 is the angle between the normal fi and the propagation vector k
in each medium.
Now we introduce a constant by which we will factor out the polarization and angle
dependence to simplify further derivations. This is the modified optical admittance
y which connects the two tangential components ET and HT by


y = 7-//


(2.42)












where, for the two polarizations,

n n
yTE =-cos0 and YTM = (2.43)
77o 1o cos 0

It should be noted that y is the modified optical admittance for a single wave and

not the total field.

To solve for the reflectivity and the transmissivity, we simply need to meet the

boundary conditions with the resultant tangential fields. Noting the sign conventions

in figure 2.2 we have

Ei + r = st (2.44)

and

Hi r = Ht (2.45)

Solving equations 2.44, 2.45, and 2.42, then comparing field amplitudes using 2.38,

2.40, and 2.41 we find that the reflectivity r is

r = Yo = E, (2.46)
Ei yo +y E+

Similarly, but comparing with equation 2.39 instead of equation 2.38 we find that the

transmissivity t is

t-= 2yo which is E for the TM case (2.47)
Si o + yi E T

Using equation 2.41 we find that

Et 2yo cos 0i
Sfor the TM case
E= yo + Yi cos Ot

which is more commonly used as the transmissivity. We, however, will use the tan-

gential form in equation 2.47 because it is more convenient to use since it represents

both polarizations and the angular dependence has been factored out. These equa-

tions are particularly easy to remember since they appear exactly the same as those












for normal incidence. Furthermore, we will see that they are more consistent with
the power relations.
The resultant tangential electric and magnetic fields in the incident medium are

i+r = (1 +r)

and
Hi Hr = yo( r)S

and for the transmitting region are tSi and y1t8, respectively. Using equation 2.32,
we find the intensity in each region. When we equate these we get

1 rr i(Y) (r Yr*) = ft
r (Yo) r () )

which is similar to the power rule, 1 R = T where R is the reflectance and T is the
transmittance, except for the last term on the left hand side. This difficulty may be
avoided by assuming that the incident medium is non-absorbing, making F(yo) = 0.
This is true for most practical circumstances. Now we have the reflectance and
transmittance:
R = rr* = (2.48)

and

(yo) 4(yo+y)(yoy(1) (249
R(-o) (Yo + Yi)(Yo + Yv)*
Notice that the definition we use for t results in a very simple equation for T, unlike
many textbooks that redefine T by making power arguments based on using a finite
area of the incident beam versus the resulting area of the transmitted beam as is done
in many textbooks. The dependence of this area on angle was factored out in the
original relations for y, thus illustrating another nicety of this uncommon formalism.

















noBoundary a
ni d
Boundary b
n2



Figure 2.3. A single dielectric planar layer on a substrate.

2.3 Characteristic Matrix of a Thin Film

Now we extend the above analysis to the case of a thin film as in figure 2.3.

Multiple reflections exist between the two surfaces of the film and, if the film thick-

ness is smaller than the coherence length of the incident light, they interfere. One

way to solve this problem is to set up an equation which takes the sum of all of

the reflections taking the phase of each reflected wave into account. The following,

however, is a much more straightforward approach which may easily be extended

to accommodate multilayer structures. This procedure rederives the reflectivity and

transmissivity for the whole structure without using the results for a simple single-

interface system. In doing this, we will solve for the fields in all regions simultaneously.

In any medium, only two waves can exist: forward traveling and reverse traveling.

These are what would be the resultants of many reflections if it were calculated by

the former procedure.

We begin by denoting waves traveling in the direction of incidence (forward) with

a + superscript and those traveling in the reverse direction with a superscript.

Using the same convention for the direction of the E and H vectors, their tangential

components at the lower boundary b are


9b = 9U + Slb












Hb = y91 -y11b

(2.50)

Solving in terms of the resultants Lb and -b we get

E = I('b/1+b)
1
lb = (- b/Y1 + b) (2.51)
1
-Hb = Y1L= 1 +(bY19b)
1
'H-b = -yigf = -('b Yl1b)

The tangential fields at the same lateral position on the top boundary, a, may be
found from equations 2.51 by considering difference in phase 6 between the top and
bottom interfaces at the same instant where

6 = konidcos 01 (2.52)

Note that the cosine factor is present because we are comparing the phase of the
waves at the same horizontal position between the top and bottom interfaces. The
fields at the top interface now become


Ea = 1(lb/y + Eb)e-'6
1
Sa = 1(--b/1 + cb)e"
1

H = =2 ('b Ylb)eib

so that

Sa = a + 1a = Lb COS 6 i-sin 6
Yi
'Ha ='H + la= -iylb sin 6 + b COS 6











which can be written in matrix form as

S ,a [ cos 6 -isin(6)/y1 1 5
LHa -iyI sin 6 cos J (b

The 2 x 2 matrix on the right hand side of equation 2.53 is called the characteristic
or transfer matrix of the film. If we define the optical admittance for the assembly
to be
Y = Ha/Sa (2.54)

the task of determining the reflectance becomes the same as for the single boundary
case so that
Yo Y
r = Y-(2.55)
yo +Y
and
R= (Yo-Y) ( -Y)* (2.56)

Using equation 2.54 and assuming Sb is a single propagating wave, ie. the last layer,
equation 2.53 becomes

a 1 = [ cos6 -isin(6)/yl [ 1 ] b (2.57)
Y -iyj sin 6 cos 6 Y2

The characteristic matrix may be further simplified from 2 x 2 form to a 1 x 2 matrix
by letting
B cos 6 -isin(6)/y [1 (2.58)
C -iyj sin 6 cos 6 y2
so that Y = C/B. This notation will be useful in the next section.

2.4 Characteristics of a Multilayer Structure

Now we will consider the general thin film structure of figure 2.4. The thin film
results obtained above may be generalized to obtain the characteristics of an assembly
of thin films by recognizing that the tangential fields at boundaries b and c may be











no Incident medium

n2 n d2d
c Multilayer Structure
n1 di m
nm Substrate

Figure 2.4. A general multilayer thin-film structure.

related in the same way that those of boundaries a and b were in section 2.3. That
is,
[ b COS 62 -i Sin(62)/y2 (2.59)
[ b ] 2-iy2 sin 62 cos 62 7Hc
where
6k = konkdk cos Ok (2.60)

Combining 2.53 with 2.59 and using 2.54 and 2.42, the solution becomes

ea [ = [ C ] =

E cos 6 -i sin(61)/yi cos 62 -i sin(62)/Y2 1 ]c (2.61)
-iyj sin 61 cos 61 -iy2 sin 62 cos 62 Y3 J
and continuing the process, we see that the characteristic matrix for the whole as-
sembly of figure 2.4 is
B = i cos 6k -i sin(6k) Ik 1 (262)
C -iyk sin bk cos 6k m 22
Some care must be taken when calculating the phase factor when absorption or
total internal reflection is involved. The angles may be complex and are found by
Snell's law:
nk sin Ok = no sin 00o (2.63)

Since the complex arcsine function is often unavailable on computers, we calculate
6k by


k = kodk /n no sin2 (0


(2.64)












As we have assumed, no and 0o are real and for absorption, nk is in the first quadrant

of the complex plane. The square root is then in the first or third quadrants. 6k must

be in the first quadrant because the phase must be increasing and the amplitude

exponentially decreasing in the direction of k in order for the situation to be physically

possible. Similarly, if medium k produces gain, we find that 6k must be in the fourth

quadrant. In either case the + sign in equation 2.64 should be chosen since most

computer algorithms produce positive real parts when calculating the complex square

root. However, it is a good idea to verify if this is indeed the case. The same value

for cos Ok should be used for both 6k and Yk. That is,

nj- nj sin2 O0
cos k = ----n-- (2.65)
nk
The reflection coefficient may be found using equation 2.56 with Y being the

optical admittance for the multilayer assembly. With Y = C/B,

(yoB-C (yoB-C\ (2.66)
R= yoB +C yoB+C)
To find the transmittance T and absorptance A, we note that the intensity normal

to the last interface m and the first interface a are

Im = -gmVy' ) = 1W m m
2 2
and

la = If(BC*)8m*
2
la is the intensity normal to the interface actually entering the assembly. This is

related to the incident intensity 1i by

a = (1 R)I

so that
2(1 R)m
A 2(1 R)











The transmittance is
Im R(ym)(1 R) 4yo((Ym)
Ii R(BC*) (yoB + C)(yoB + C)* (2.67)
The absorptance is
I( (ym) 4yo(BC* ym)
A=1-R-T=(1-R) 1 -(Y) 4 (y(BC* (2.68)
R(BC*)J (yoB + C)(yoB + C)*
The phase change on reflection can be found from equation 2.55 to be
Sarctan (iyo(B*C C*) (2-69)

where it is important to note the signs of the numerator and denominator to assure
the correct quadrant since the arctangent only has a range within the first and fourth
quadrants.

2.5 Alternative Matrix Formulation

Next we describe an alternative formulation to the solution of a multilayer struc-
ture given in section 2.4. This is the approach used in reference [22]. It will be shown
in the next section that both formalisms have much to offer in understanding and
calculation of multilayer structures. The previous formalism was a set of equations
calculating the total electric and magnetic fields at each interface. This formulation,
however, will calculate the forward and reverse electric fields on each side of each
interface.
At boundary a of figure 2.3, the total fields are

Sa = 0a + + a = g= a + Sa

RHa = ( a) = Y1i(gl+a + gh)

Rearranging these equations, we have

SO+a = 1la S l+a -+agla
ta ta












where
Yo Yi 2yo
ra=- and ta= 2 (2.70)
yo + Y1 Yo + Y1
Written in matrix form,

[ J 1 ra -1 J (2.71)


The electric fields on each side of film a are related by






where 61 = konlidcosOt. Written in matrix form,

p+ \-ii n0 S +
[a l ] (2.72)


the fields throughout a multilayer structure may be calculated by repetitive use of

equations 2.71 and 2.72-equation 2.71 for each interface and equation 2.72 for each
film.
Examples illustrating the benefits and uses of each matrix formalism will be given

in section 2.7. First, the relationship between the two formalisms will be given in

section 2.6.

2.6 Connection Between the Two Formalisms

Both matrix formalisms derived in sections 2.4 and 2.5 are useful for solving fields

in planar multilayer dielectric structures. A connection matrix will be derived in this

section showing that they equivalent. Even though they are equivalent, the knowledge

of both of them facilitates deriving different sets of basic analytic expressions. This

will become clear in section 2.7 as the advantages of each formalism will be discussed

for a variety of cases.











In the first formalism (section 2.4), the total and '7 fields were determined
at each interface and a transfer matrix was formed by multiplying a set of 2 x 2
matrices together, each matrix representing a film. We will call this the film method
because each matrix contains only information about one film and is not dependent
on adjacent films.
In the second formalism (section 2.5), where the forward and reverse tangential
electric fields (S+ and 8-) were determined at each interface, a transfer matrix was
formed by multiplying a set of 2 x 2 matrices together for each interface and each
film. We will call this the interface/film method.
We start with the tangential fields at boundary a. They are given by

Sa = '0+a+ 8 F

Ha = yO(+a a)

In matrix form, this becomes

Ea i-I (2.73)
Ha O -0 O -6a6
By inverting the matrix, we get

Eoa \a (2.74)
,%a -2 1 --1 H/a
If M is the transfer matrix for a structure with boundaries a through m such that

Ea] = M (2.75)

then the use of relations 2.73 and 2.74 can be used to make equation 2.75 become

[ = 1 [ 1 1 1 M 1 Y[ (2.76)
[o O 2 1 [Ys -Ys Y -sm
where s denotes the last media on the right hand side of the last boundary m.
Equation 2.76 is in the same form as equations 2.71 and 2.72 showing that the two
formalisms are connected by the two transformation matrices in equation 2.76.












2.7 Applications of the Formalisms to Real Structures

This section will use each formalism to derive some basic relations in a very
straightforward way. Depending on the problem at hand, it will be shown that
in some cases the interface/film method is preferred, and in another case, the film
method is preferred.
In general, the film method is better for computer calculation of the fields of a
structure. This is because it is composed of a stack of independent 2 x 2 film matrices.
For a periodic structure, a matrix may be generated for a single period and taken
to the power N where N is the number of periods. As will be shown below, this
yields a very simple expression for the reflectance of a periodic A/4 structure. The
interface/film method is better suited for calculation of resonance conditions. These
will now be discussed in detail.

2.7.1 Reflectance from Periodic Quarter-Wave Structures

A periodic stack of dielectric films is of particular interest because it can be used
for a high reflectance mirror. The optimum thicknesses for the films, in this case, is
A/4 where A = Ao/ni is the center wavelength of the reflection band. (Due to the
asymmetry of the reflection band A is not the true center, but it does correspond
to the maximum reflectance.) Either the film or the interface/film methods can be
used to solve for the reflection, but the film method yields an analytic solution for
the reflection at the center wavelength in a very straightforward fashion.
If the periodic structure in figure 2.5 is nonabsorbing and the thickness of each
layer is AO, using equation 2.62, we find that



i = Ys
~ [ [Y2













no n1 n2 n1 n2 n1 n2 n1 n2 ns

So o--




a b m

Figure 2.5. Dielectric mirror made from a periodic quarter-wave stack.

[ (_y)N 1
(Y2 JOySJ
(2.77)

so that

B= Y2 C=y Y- and y=-=ys )2N (2.78)
Y1 Y2 B Y2

and using equation 2.56,
y(_2)2N 1
r = )" 1 (2.79)
Yo (2 2 )2N +

This equation is very useful for the design of high reflectance dielectric mirrors. It

allows a straightforward determination of the number of periods and ratio of the

indices required for a desired reflectance. Furthermore, it shows that if y, > yo,

better reflectance is obtained if yi > y2.

2.7.2 Basic Laser Relationships

So far, the multilayer matrix formulations derived in sections 2.4 and 2.5 have

been used to solve problems in which there are incident, reflected and transmitted

waves. For the case of the laser this is not the case. However, the formalism is general

and, as will now be shown, is applicable to the laser as well. For reasons that should

soon be apparent, the interface/film method is more convenient for calculation of the













no n1 n2




'F-= 0



a b

Figure 2.6. Single-film laser.

conditions required for lasing. (If it is not obvious, it is suggested that the reader
try to derive these conditions using the film formalism.) To demonstrate this, we
start with the single-film layer laser in figure 2.6. The interface/film method requires
the multiplication of three matrices-one for interface a, one for film 1, and one for
interface b. Using equations 2.71 and 2.72 we have

[oa 1 [ ra e-'e 0 1 1 r, 2b
[Oa tatb ra 1 0 eii rb 1 2b (2.80)
multiplying, we get

6(+,a 1 [ e-i6 + rarbe'61 raei6l + rbe'i6' 1 r 1(281
Soa tatb rae-i6 + rbei61 ei6l + rarbe-'6'

Radiation is emitted from the laser and propagates away from the device to infinity
in regions 1 and 2. The laser cannot produce incoming waves from infinity. Therefore,
the boundary conditions for the problem are o = 0 and = 0. Using these
boundary conditions in equation 2.81 we find that

e-~61 + rarbe'61 = 0 (2.82)

Rearranging, we have the basic gain relationship:

rarbe2i51 = 1 (2.83)












This relationship is more fundamental than those given in most textbooks because it
contains both magnitude and phase information in one simple relation. To see this,
we separate the amplitude reflection coefficients into magnitude and phase, and 61
into real and imaginary parts:

I|ra ei(O.+7) Irbl e ibe-261e2i61r = 1 (2.84)

where 61 = 61r + i61i. The 7r phase shift is introduced by considering the negative
sign. It is important to consider that both ra and rb are considered from left to right.
The negative sign in equation 2.83 is the result of defining ra with the incident wave
in medium 0. Even though this is not the case, the equations still hold provided the
consistency of the definitions is observed and not intermittently changed. Defining
ra this way causes a 7r phase shift. For this equation to hold, both the magnitude
and phase components must equal one:


I|ra Irb e-2651 = 1 and ei(261r+-a+b+7) = 1 (2.85)

Using equations 2.36 and 2.48 with the magnitude part, it may be easily shown that

1 1
g = n (2.86)
g = 2d RaRb

where g = -a is the intensity gain coefficient. The phase portion shows us that

261,r + a + Ob + T = m27r where m = 0, 1,2,... (2.87)

The last two equations correspond to those found most often in textbooks and are
equivalent to equation 2.83. They offer a more conceptual view because they are
easily derived by arguing that the round trip gain equals one and the round trip
optical path length is a multiple of A. It should be noted that in extreme cases,
the gain affects the reflectance of the mirrors and the gain should be found through
















a

x nl d
b

n2


Figure 2.7. Single-film waveguide.

iteration of equations 2.86 and 2.87. However, this may usually be neglected because

the gain is almost always very small compared to the real part of the refractive index.

2.7.3 Basic Waveguide Relationships

The multilayer matrix formalisms developed in sections 2.4 and 2.5 have been

used so far for solving for the fields for a structure with traveling wave components

perpendicular to the boundaries. However, even though reflection coefficients and

other relations that conceptually imply traveling waves were used, it was never ac-

tually assumed that they were traveling. This section will demonstrate how general

the two formalisms really are by applying them to a single-film waveguide.

Figure 2.7 shows a waveguide of a single film. The tangential field in media 0 is

given by

go = So&e-iox + EoaeiKO~ (2.88)

where ,i = niko cos 0i. Assuming total internal reflection (ni and n2 must also be

real), Snell's law becomes
n1
sin0o = sin 0 > 1 (2.89)
no












and equations 2.88 and 2.89 can be linked by the trigonometric law

cos 0o = /J sin2 20 (2.90)

It is convenient, but not necessary, to choose the + sign. This makes Ko positive

and imaginary which, in turn, causes one component in equation 2.88 to increase

towards infinity for negative x. This cannot represent physical boundary conditions.

Approaching the other side of the waveguide in the same way, we find that the

boundary conditions are

0+ = 0 = 0 (2.91)

This is the same set of boundary conditions as for the laser! Therefore, the gain

relationship (equation 2.83) applies also to the waveguide. However, it is interpreted

somewhat differently. With the waveguide, Iral = Irbl = 1 and g = -a = 0 (which

was already assumed). The characteristic equation (equation 2.87) is the same.

This example illustrated the use of the matrix formalism to solve for modes of

a lossless planar waveguide. However, it was not necessary to assume the lossless

case. It can be shown that with loss, the basic resonance equation (equation 2.83)

still holds and the solution requires both traveling and evanescent components in the

solutions of the side regions. With loss, equation 2.83 cannot be separated into two

independent relations. However, as with the case of the laser, if the imaginary part of

the refractive index is small compared to the real part, the solution can be separated

and approximated by the magnitude and phase relationships. It is also interesting to

note that equation 2.83 is useful for solving surface plasmon modes.

2.7.4 Application to Corrugated Waveguides

This section will show how the matrix formalism can be used to solve for corru-

gated waveguides. The result will be a very simple, yet effective model for corrugated
















x










a

Figure 2.8. Single mode waveguide with an abrupt step.

waveguide devices. The applications of the formalisms thus far have been exact. Due
to the added complexity of this problem, we are now required to make some approx-
imations, but the approximate theory presented here will yield accurate solutions for
the devices of interest in this work.
We will apply the theory developed by Burns and Milton [12, 44, 81]. The problem
becomes very simple for single mode waveguides (as is the case in this work). We
start with a single mode waveguide with an abrupt step at boundary a (figure 2.8).
The solution of the TE electric field can be expressed as

Ey = +(z)P(x, z)e-i(z)z + -(z)P(x, z)eio(z)z (2.92)

where .+(z) and 9-(z) are the complex amplitudes of the forward and reflected
waves, respectively, P(x, z) is the local normal mode profile at position z, f3(z) is the
mode propagation constant. We will assume negligible scattering of the energy from
the guided mode into the radiation modes. The boundary conditions on each side
of the step in figure 2.8 require that the tangential electric and magnetic fields be












continuous. Therefore, at z = a

EPoe-iPoa + o Poei~a = +Pie-I31a (2.93)

and

o Poe-iPa o&o Poeia = +PIe- (2.94)

By eliminating +Pire-sila in these two equations, we get

S6o 03o 01 No N (2.95)
SOT 3 "+ 31 No+N,

where Ni = Oi/ko are the mode indices. The solution for the reflection at an abrupt

transition (equation 2.95) is in the same form as the reflection from a planar interface

(equation 2.46). There is really nothing mysterious here because equations 2.93

and 2.94 are analogous to equations 2.44 and 2.45, respectively. In fact, by assuming

both forward an reverse propagating waves in all regions, the whole matrix theory for

multiple layers can be applied to multiple step waveguides (a corrugated waveguide

being one example) by substituting the mode indices for the local normal modes for

the individual film indices. This is very useful as most of the results presented thus

far are applicable to grating devices. Furthermore, the same computer programs that

are used to calculate the reflectance, transmission, and absorption spectra of planar

multilayer structures can be used to calculate the behavior of waveguide devices, in

particular, waveguide Fabry-Perot interferometers and lasers. As long as there is low

loss (light is not scattered into radiation modes), and there is no mode conversion

between guided modes (in multimode waveguides) this simulation method is very

accurate.

The modeling of DBR corrugated waveguides is analogous to the periodic quarter-

wave structure analyzed in section 2.7.1. Taking advantage of our ability to directly

substitute mode indices for film indices we can use equation 2.79 to find the reflectance












of a first order grating at the center wavelength:



NN, NH)

where No is the mode index of the input waveguide to the grating, Ns is the mode

index of the output waveguide of the grating, NL is the mode index of half-periods

exhibiting the lower mode index, NHis the mode index of the other half-periods, and

M is the number of grating periods. This shows that to obtain high reflectance, we

require a large difference in mode index, AN = NH NL, between each half-period

of the grating, or large number of periods.

2.8 Spectral Index Method

The channel waveguide structures presented in this work require extensive nu-

merical techniques to adequately solve for their propagation constants and field pro-

files [62, 63, 47, 60]. The spectral index method represents a much less rigorous and

computer intensive method and has been shown to give very accurate results [43]. It

involves a simple variational technique that utilizes the FFT rather than large ma-

trix eigenvalue problems. However, the spectral index method is limited to simple rib

waveguide structures with square homogeneous stripes on top of a planar structure

varying only in the depth direction. Even though this does not represent the type

of structures of interest in this work, it will be found useful in section 4.7 to gain

qualitative insight.

Figure 2.9 shows the general case of a dual rib waveguide structure for which we

want to solve for the mode index and electric field profile. The ribs are separated by

2S, the widths of the ribs are W1 and W2, their heights are H1 and H2, and the planar

guiding layer has a thickness of D. The refractive index of each region is also shown

in the figure. Region 1 is the cladding (usually air), region 2 is the guiding layer,












W, W2
n H .


n :5H
n2 S S D

n3


Figure 2.9. Dual rib waveguide cross section. The dashed line represents the effective
movement of the boundary by the Goos-Hinchen shift.

region 3 is the substrate, and regions 4 and 5 are stripes of possibly different indices.
The principle of the spectral-index technique is to express the solution in the regions
below the ribs in terms of a Fourier transform in the x direction and approximate the
solution in the rib in terms of sines and cosines with a field of zero in the cladding.
These two solutions are linked together by requiring continuity and using Parseval's
formula to obtain a simple dispersion relation. The method is outlined as follows.
Assuming a source free media (lossless), equation 2.15 reduces to
02E
V2E pC a2 = 0 (2.97)

For a z propagating wave in a structure invariant with z, equation 2.17 reduces to

E(x, y, z) = Eo(x, y)ei(z-Wzt) (2.98)

After substituting equation 2.98 into equation 2.97, dropping the common terms,
and using k2 = w2/1e (equation 2.19 in a source free media), we get a scalar wave
equation for the solution of the electric field in each region

02E (2E
+ + (k2 )32)E = 0 (2.99)
_x2 + -a2


where we now will use E to represent a polarization of Eo(x, y).












In deriving equation 2.15, equation 2.11 assumed that Ve = 0 (homogeneous

media). Therefore, equation 2.99 must be applied to each individual medium with

the proper boundary conditions met at each interface. Some methods, such as the

beam propagation method (BPM) and finite difference methods, give approximate

solutions by using equation 2.99 with an inhomogenious index, n(x,y), inserted

(k(x, y) = 2irn(x,y)/A). This approximation is usually acceptable for structures

where the refractive index varies slowly. This is not the case in rib waveguides, but

the approximations sometimes yield acceptable results.

If the refractive index of the cladding, ni, is much smaller than n2, n4, and n5

as it is with an air cladding, the electric field may be approximated to be zero on

the interface if the boundary is moved slightly using the Goos-Hiinchen shift. These

boundaries are shown by the dotted lines in figure 2.9. The new dimensions are given

by
2k2
W',2 = W1,2 + (2.100)

D'= D + q (2.101)

and
H2 = H1,2 + q (2.102)

where for TE modes p = q = 1, and for TM modes p = kl/k4,5 and q = kl/kj.

Applying the Fourier transform with respect to x on the wave equation (2.99), we

have
022
2Y +{k2(y)s2- 32}8 = 0 (2.103)
where 8(s, y) is the Fourier transform of E(x, y). The solution is similar to that of a
slab waveguide with a spectral index, n, = n2 s2/ko.











The solution in the rib regions may be expressed as E(x, y) = F(x)G(y) where
SAi cos(si(x + C1)) -Ci WT/2 < x < -CI + W7/2
F(x) = A2cos(s2( + C2)) W- /2 < x < -C2 + W2/2 (2.104)
0 elsewhere
and
Ssin(y(Hy)) -C W- /2 < x < -CI + W{/2
G(y) = sin(y2(Hy)) -C2 W2/2 < x < -C2 + W2/2 (2.105)
10 elsewhere
with

C, = S + W1/2 (2.106)

C2 = S + W2/2 (2.107)

71 = ki s ,2 (2.108)

7'2 = k5 s2 /2 (2.109)

si = r/Wl (2.110)

S2 = r/W2 (2.111)

k4,5 are the propagation constants of the respective ribs, /3 is the propagation constant
of the mode, and the + sign in equation 2.104 represents the fundamental mode while
the sign represents the first higher-order mode.
Using Parseval's formula, it may be shown that the spectral solution below the
rib and the real-space solution within the rib may be linked together by [43]

0EE dx = -E ds (2.112)
-oo ay 27 -oo 9y
This represents a dispersion relation of which there are three unknowns: A1, A2,
and 0/. One of the field amplitudes is arbitrary while the other may be used to
determine the correct field profile. Since /3 depends on the field profile variationally,
an extremum in 3 will be observed when the correct value for A1/A2 is found. Thus,
the dispersion relation, 2.112, must be used in conjunction with an optimization
routine.












2.9 Summary of the Numerical Methods

This chapter presented a simple method to calculate the characteristics of corru-

gated waveguide filters and lasers. In doing so, one first must determine the local

normal mode propagation constants. The spectral index method was presented for

this purpose. Next an appropriate matrix formalism should be chosen to solve the

problem at hand. The film matrix method was shown to be the best choice for

determining reflection and transmission spectra (such as a mirror or filter). The

interface/film method was shown to be the best choice for determining resonance

conditions (such as for a waveguide or laser). Analytical solutions were derived for

simple cases of these. However, to solve general problems, computer calculation of

the matrices may be required.

















CHAPTER 3
A NEW WAVELENGTH SELECTIVE FABRY-PEROT FILTER

This chapter introduces the concepts of a new tunable wavelength selective filter.

Most IOC filter technologies require a very long device length or the use of the

acousto-optic effect (chapter 1). The device we present has the potential of being very

short in length (r1cm) and utilizes the electro-optic effect. Furthermore, it has the

potential of being tuned to over 50 wavelength channels with bandwidths comparable

to that available with modern-day electronics. The chapter starts by reviewing some

of the basic concepts of dielectric mirrors and the Fabry-Perot interferometer before

the new device structure is introduced. Computer programs implementing the theory

of section 2.4 were used for this purpose. The new waveguide Fabry-Perot device that

is characterized by a single transmission peak with a very large free spectral range is

then proposed.

3.1 Thin Film Dielectric Fabry-Perot Filters

3.1.1 Characteristics of a Thin Film Dielectric Mirror

We begin by reviewing some of the properties of dielectric mirrors. Figure 3.1(a)

shows an alternating dielectric stack typical of bulk-optic dielectric mirrors. It was

stated in section 2.7.1 that this periodic structure can be used as a mirror if the

thickness of each layer is A/4. Using equation 2.79 with the following values used for

the refractive indices, no = 1, n8 = 2.14, nL = 1.2, nH = 2.2, and with 4 periods, we

get R = rr* = 0.985 at the center wavelength. This is more reflectance than can be

achieved by uncoated silver or aluminum mirrors.














i
----
no

'R
a)


1-

0.8

0.6

0.4

0.2


0 I
500


Dielectric Stack


nH nL nH nL nH nL nH nL


1000 1500 2000
Wavelength


Figure 3.1. Simple DBR consisting of a multilayer dielectric stack (a), and its re-
flectance and transmission spectra (b). The parameters are no = 1, n8 = 2.14,
nL = 1.2, nH = 2.2, and 4 periods.

A computer program is required to solve the matrix equations 2.62 for values

of the reflection at wavelengths other than the center wavelength. The reflection

spectra in figure 3.1(b) shows the result. In this case, the refractive index difference

between successive layers, An = 1. This large index difference not only contributes

to a high reflectance with a small number of periods but also makes the full width

half maximum (FWHM) of the reflection peak very broad (803nm).

3.1.2 Characteristics of a Thin Film Dielectric Fabry-Perot Filter

When two mirrors are separated by a cavity, they form a Fabry-Perot interferom-

eter. Such a device is shown in figure 3.2(a) using two of the mirrors just described


T

ns


2500




































1200 1400 1600 1800
Wavelength


T


2000 2200 2400


Figure 3.2. Fabry-Perot filter consisting of two multilayer dielectric stack DBRs
separated by a short waveguide cavity (a), reflectance spectra of the structure with
a cavity length of 101im (b). The parameters for each mirror are no = 1, n, = 2.14,
nL = 1.2, nH = 2.2, and 4 periods.

in section 3.1.1. In this case, they are separated by a waveguide cavity 10/tm in

length. Even with this very short cavity length, figure 3.2(b) shows that there are

many transmission peaks in the reflection band. To utilize the electro-optic effect to

make a tunable filter, the cavity length must be increased, but this causes the peaks

to become too close together and the reduced free spectral range will cause crosstalk

in a WDM system.

The reflection spectra in figure 3.2(b) was calculated with the methods presented

in chapter 2 with one more approximation. The structure was calculated as a planar


-Lc -


i


0 IW
1000












multilayer structure with the mode index of the waveguide (shown as the cavity in

figure 3.2(a)) substituted in for the refractive index of the cavity. This was already

shown to be a good approximation in section 2.7.4. Here, we go one step further

by assuming the overlap between the mode field of the waveguide and the reflected

wave by the endface mirror is quite good. This approximation becomes better as the

total thickness of the mirror is decreased because the mode field is dispersed less by

the shorter structure. To make a thin mirror with high reflection, we require AN to

be large. A 4 period mirror with nL = 1.2, nH = 2.2, and a center wavelength A =

1534nm, is 1.98/pm thick. The field divergence within these dimensions is negligible.

These values were only used to demonstrate the concept. For the mirrors used in this

work, nH = 3.5 and nL = 1.56 (which correspond the the refractive index of silicon

and A1203), and about the same reflection as for the mirror just illustrated can be

achieved in just 2 periods. Therefore, the total mirror thickness is reduced to just

0.82/m which makes the approximation made above is even more applicable to our

structures.

3.2 DBR Corrugated Waveguide Fabry-Perot Filters

3.2.1 Characteristics of a DBR Corrugated Waveguide

In contrast to an endface mirror, a DBR corrugated waveguide has many (typically

thousands) periods and the mode index difference between the peaks and valleys is

very small (typically AN ~ 10-4). The structure is illustrated in figure 3.3 (a).

According to the theory in section 2.7.4, the solution of the reflection and transmission

spectra of this structure is essentially the same as the dielectric mirror with the mode

index difference used in place of the refractive index of a film.

To demonstrate the characteristics of such a grating, we find that to obtain about

the same reflection from a lossless grating structure as we did for the dielectric mirror





















Waveguide Grating

i .n T
R Ins
no

a)


0 L,
1533


1533.5 1534 1534.5 1535
Wavelength


Figure 3.3. DBR corrugated waveguide (a), reflectance spectra (b). The parameters
used in the calculation are NH = 2.1406 and NL = No = N, = 2.14 and 10,000
periods. Loss of 0.35dB/cm is also included in the calculation.












in section 3.1.1 with a mode indices of NH = 2.1406 and NL = No = N, = 2.14 for

the peaks and valleys, respectively (AN = 6 x 10-4), we require 10,000 periods. For

a center wavelength of A = 1534nm, this device is 3.6mm long, and for the lossless

case equation 2.96 predicts that R = 98.5%.

We expect there to be some loss in the waveguide. Low-loss APE:LiNb03

and Ti:LiNbO3 waveguides typically exhibit 0.1-0.2dB/cm loss. The loss in dB,

a[dB/cm], is related to the absorption coefficient, a[1/cm] by

a[cm-_ a[dB/cm] (3.1)
10 log e

According to equation 2.36, these values for loss correspond to the imaginary part

of the refractive index, ni, (in this case we are really talking about the mode index)

between 2.81 x 10-' and 5.6 x 10-7. When there is loss, we need to use the computer

calculation of the matrices even for the reflection at the center wavelength. Figure 3.3

(b) shows the reflection spectra of this corrugated waveguide structure with a loss

of 0.35dB/cm (n, = 1 x 10-6). A somewhat higher loss was used because we expect

the grating to induce some additional loss on the waveguide. The peak reflection

is reduced from 98.5% for the lossless case to 97.5% for the case where we have

0.35dB/cm loss.
The distinct differences between the characteristics of the corrugated waveguide

reflector and a dielectric mirror are that the corrugated waveguide can have more than

three orders of magnitude shorter bandwidth (FWHM is 3.4A in this case), and a

much longer length with orders of magnitude more grating periods is required for high

reflection. The difficulty in achieving high reflection from a corrugated waveguide is

maintaining low loss when the grating is formed. In this example, we showed that a

very low loss of 0.35dB/cm already has a noticeable effect on the peak reflectance.

This issue will be discussed many times throughout the rest of this dissertation.













Cavity



R


a)




0.8

S0.6

g 0.4

0.2 -

0
1533 1533.5 1534 1534.5 1535
b) Wavelength (nm)

Figure 3.4. Fabry-Perot filter consisting of two DBR corrugated waveguides separated
by a short waveguide cavity (a), reflectance spectra of the structure (b).

3.2.2 Characteristics of a DBR Corrugated Waveguide Fabry-Perot Filter

Figure 3.4 (a) shows a Fabry-Perot interferometer formed by introducing a short

cavity or a quarter-wave shift in the center of the grating. Figure 3.4 (b) shows the

reflectance spectrum of the device using two gratings with the same parameters as

were used in section 3.2.1 and with a quarter-wave shift between them. A single

transmission peak is observed in the center of the reflection band. Only one peak is

observed because the width of the reflection peak is narrower than the free spectral

range.












The free spectral range (FSR) of a Fabry-Perot interferometer is given by

AA2sr = (3.2)
2nL,

where A0 is the free space wavelength, n is the refractive index of the cavity, and

Lc is the length of the cavity. A Fabry-Perot made with a mirror with a FWHM

of 3.4A and a center wavelength of 1534nm will exhibit at most one transmission

peak if Lc < 1.6mm. However, if this device were to be used as a filter, inter-channel

crosstalk would still be a problem because the stopband itself is narrow and the

sidelobes exhibit extremely high transmission.

This device can make a good single frequency laser because there is only one

transmission peak in the reflection band. All the other Fabry-Perot peaks are in the

sidelobes where equation 2.86 cannot be satisfied. The sidelobes have little detrimen-

tal effect on its performance (the only detrimental effect is that spontaneous emission

is allowed to pass through. However, a filter is adversely affected by the sidelobes as

light is allowed to pass through them almost as well as the Fabry-Perot transmission

peak.

3.3 Proposal: Asymmetric Fabry-Perot Filter

In this section, we propose the asymmetric Fabry-Perot (ASFP) filter that takes

advantage of the characteristics of both the dielectric mirror and the corrugated

waveguide DBR reflector. Asymmetric refers to the use of two mirrors differing vastly

in their reflection spectra. The DBR mirrors described in sections 3.1.1 and 3.2.1 are

two such examples where the one in section 3.1.1 has a reflection band FWHM over

2300 times that of section 3.2.1.












Corrugated Waveguide DBR


R --T




Figure 3.5. Asymmetric Fabry-Perot filter consisting of a DBR corrugated waveguide
with a dielectric mirror deposited on the endface.

3.3.1 Passive ASFP Filter

We recall that the Fabry-Perot made from dielectric mirrors had a broad stop-

band, but many transmission peaks within that stopband. The Fabry-Perot made

from corrugated waveguide reflectors had the opposite scenario where the stopband

was extremely narrow and there was only one transmission peak. A somewhat novel

approach would be to combine the favorable characteristics of both types of DBRs

as shown in figure 3.5. The dielectric stack deposited on the endface of a waveg-

uide will provide a very broad stopband while the waveguide grating will provide

rejection of unwanted Fabry-Perot transmission peaks. When they are fabricated

in cascade, forming an asymmetric Fabry-Perot filter (ASFP filter), they provide a

single, very narrow transmission peak with an artificially 1 high free spectral range

(figure 3.6). The phase shift between the grating and the DBR is crucial to assure

that a transmission peak lies within the stopband of the grating.

In the calculations, typical values for the dimensions and indices of the two DBRs

were used and loss was included. The filter characteristics (shown in dB in figure 3.7)

are suitable for a wavelength channel with a bit rate of about 1 Gb/s and an inter-

channel crosstalk of about -14 dB. The solid curve was calculated assuming a grating
'The reason why this FSR is called "artificial" is because there are still many transmission peaks
within the stopband as the phase condition required for interference is met. However, the reflection
of the grating reflector is so low that little interference takes place and the peaks are not visible in
the graph.










61












0.8


0.6

c 0.4


0.2

0
500 1000 1500 2000 2500
a) Wavelength


0.6 .

0.5

o 0.4

0.3

0.2

0.1

0
), 1533 1533.5 1534 1534.5 1535
U) Wavelength


Figure 3.6. Transmission spectra of an asymmetric Fabry-Perot filter (a); expanded
view of the transmission peak (b). The parameters used for the dielectric mirror were
the same as those used for figure 3.1(b) and those used for the corrugated waveguide
were the same as those use for figure 3.3(b).












0
0.05 A 635 MHz
-5 -

-10
10.25 A 3.2 GHz

-15



-25

-30
1533.5 1534 1534.5
Wavelength (nm)

Figure 3.7. Transmission spectra of an ASFP filter for a corrugated waveguide loss
of .35dB/cm (solid) and 3.5dB/cm (dotted).

loss of .35 dB/cm. However, the dotted curve shows that if the grating loss is 3.5

dB/cm, the filter response is broadened and the magnitude of the transmission peak

is comparable to the sidelobes making the device useless for a filter. Hence, the most

important technology for the realization of this and similar devices is the fabrication

of high reflectance waveguide grating mirrors with low loss. There is some redun-

dancy in this statement in that a high reflectance waveguide grating mirror implicitly

implies low loss.

3.3.2 Tuning an ASFP filter

The device proposed in section 3.3.1 has the potential of being tuned to many

channels in a very simple and straightforward manner by utilizing the linear electro-

optic effect with an appropriate electrode scheme (figure 3.8). The electro-optic effect

is used to change the mode index of the corrugated waveguide and the cavity (if one is

included). Small changes in the mode index are sufficient to shift the peak to another

wavelength channel. Unlike many other electro-optic devices, the total phase shift





















DBR
4 pair


Electrodes Waveguide Grating
Electrodes 10k Periods






Z+ LiNbO

Z+ LiNbO3


Device Length: -3.6 mm

Figure 3.8. Tunable ASFP filter.

can be much less than 7r. Therefore, the total device length can be very short. For
the device we are discussing, the length is merely 3.6mm.
To determine the amount of change in the mode index realizable, we recall that
the refractive index of the extraordinary wave in LiNbO3 is dependent upon the DC
electric field along the optical axis (z), expressed as

ne(Ez) = ne er33Ez (3.3)
2
were ne is the extraordinary refractive index without applied field, Ez is the ap-
plied field, and r33 is the appropriate Pockel's coefficient which, for LiNbO3, r33 =
30.8 x 10-12m/V. LiNbO3 breaks down with electric fields greater than 22-23kV/mm,
and hence Ez must be somewhat less than this. With these applied fields, the ex-
traordinary index change An = 3.3 x 10-3. The change in mode index is related to
the change in refractive index by AN = FAn where F is called the fill factor. The
fill factor is basically the normalized overlap integral between the DC (modulating)
electric field and the optical field profiles. Electrode configurations that result in
r > 0.5 are easily achieved experimentally. The mode index change is further limited



















S 635 MHz FWHM
-5



-15

-20

-25 -

-30 I .* *
1533.2 1533.6 1534 1534.4 1534.8
Wavelength (nm)

Figure 3.9. Transmission spectra of a Tunable ASFP filter for several values of the
mode index change.

by the breakdown of air, but either a polymer or an oxide overlay can help eliminate

this problem. All things considered, the upper limit for the mode index change is

about AN = 10-3.

To determine the range of tunability of the device, several transmission curves

with varying mode index change are plotted in figure 3.9. If the maximum mode

index change is AN = 10-3, the device is capable of tuning to 57 channels spaced at

3.2 GHz apart with a crosstalk of -14 dB. These results may be improved with lower

loss, higher reflection, and sidelobe suppression of the grating DBR. Furthermore, a

longer, but weaker, grating may be used to increase the number of tunable channels.

The number of channels can also be increased by fabricating an array of these

tunable filters with varying grating periods. Wideband prefilters, such Mach-Zehnder

interferometers, can be used to distribute the groups of wavelength channels to the












appropriate ASFP filters, or if power is not an issue, a simple star coupler can be

used to distribute the power to each ASFP filter.

In contrast to most other wavelength selective filters, the ASFP filter is much less

complex, extremely short (less than 4 mm), and tunable to many channels with a

single low power controller. Relatively few technologies are yet to be developed and

successful development will make this filter amenable to large scale production.

3.3.3 Tunable DFB laser

As we recall from section 1.2, the concept of using the ASFP structure as a

wavelength selective filter is new, but the device structure is not. Many practical

DFB lasers use the same resonator structure, but the purpose is different. The

purpose of the corrugated waveguide is essentially the same for the laser as it is for the

filter: produce narrowband reflection capable of selecting a single transmission peak.

The purpose of the endface mirror is different. The filter requires the broadband

mirror to produce a very broad stopband with very small transmission sidelobes. An

endface mirror is useful for DFB lasers because it usually causes the transmission

spectra to be asymmetric with a dominant transmission peak [74]. The use of a

single grating causes a DFB laser to exhibit dual wavelength operation at the two

dominate transmission sidelobes (shown in figure 3.3). An alternative method to

achieving single longitudinal mode operation is to use a quarter-wave shifted grating,

which is essentially the same as the structure in figure 3.4, but this is generally

more difficult to fabricate. Transmission sidelobes of the Fabry-Perot structure are

of no consequence with the laser since, when laser action begins, the spontaneous

emission in these sidelobes is greatly dwarfed by the high power laser emission from

the dominant mode.












The ASFP filter functions as a DFB or DBR laser if enough gain is introduced

to the cavity and/or grating to overcome the losses. The conditions for lasing can

be determined by equations 2.86 and 2.87 if the gain is only in a cavity, but if there

is gain in the grating, an iterative calculation of the matrix method is necessary to

calculate the gain required for lasing.

The DFB and DBR lasers do not require a high quality grating to lase. Such lasers

have been experimentally demonstrated with erbium doped LiNbO3 [23]. The lasers

were made with a 35mm erbium doped cavity and DBR corrugated waveguides 30mm

and 16mm in length. The 30mm grating exhibited a maximum of 80% reflection and

the 16mm grating exhibited a maximum of 55%. The device with the 30mm grating

was shown to lase even without an endface mirror (the LiNbO3/air interface exhibits

R = 14.3%).

The ASFP laser can be tuned in the same way as its filter counterpart. The

wavelength shifts (shown in figure 3.9) are the same, but the linewidth of the laser is

much narrower. The theory in chapter 2 would predict infinitesimally small linewidths

for the laser, but several broadening mechanisms will produce a linewidth, probably

on the order of 1MHz.

The ASFP filter and laser complement each other. Both can be fabricated on the

same chip and designed to have the same tunability with the same applied voltage.

3.3.4 Summary

In this chapter, we presented the basics of endface dielectric and corrugated waveg-

uide reflectors. Their application to a Fabry-Perot filter showed that neither arrange-

ment was sufficient to act as a WDM filter alone, but when the benefits of both of

them are exploited in a cascaded arrangement, forming an asymmetric Fabry-Perot

filter, a much more useful filter is possible. This filter was then shown to have












almost-ideal characteristics for many WDM applications: reduced complexity; ex-

tremely short length (less than 4 mm); tunability to many channels with just a single

DC controller (low power); and amenability to large scale production. Most other

filters reported to date lack one or more of these characteristics. The same structure

can be used to make a laser (which has been reported elsewhere very recently). This

new filter has the potential of becoming an ideal companion device with a tunable

laser because they are fabricated with mostly the same steps, can be integrated to-

gether on the same chip, and have the same tuning ranges with the same applied

voltage.

It was shown that the filter is much more demanding on the quality of the grating.

There are few reports of good DBR corrugated waveguides-none in LiNbO3. The

next chapter introduces a new waveguide geometry that has the potential to achieve

good corrugated waveguides for the first time in LiNbO3.

















CHAPTER 4
A NOVEL WAVEGUIDE GEOMETRY

This chapter proposes a novel waveguide geometry that provides a potential solu-

tion to an age-old problem: producing high reflectance DBR corrugated waveguides.

It is amenable to many existing waveguide technologies including those that are cur-

rently used and most viable in the industry. In addition, it will be shown that it

offers a number of other benefits as well.

4.1 The Need for Better DBR Corrugated Waveguides

Presently, the only commercially viable use of reflection corrugated waveguides is

for DFB lasers. This is because the material systems used for DFB lasers is excep-

tionally amenable to making good gratings (the reasons are presented in section 4.3),

and often high reflection is not required when the optical gain is very high. Con-

sequently, as the loss in the grating decreases, the reflection improves. This is why

DFB lasers (lasers that have the grating in the active region) are generally better

than DBR lasers which use a passive grating outside the active region. Other devices

and material systems lack these conveniences.

The device proposed in section 3.3 is only one example where a good DBR cor-

rugated waveguide is required. Describing all of the needs for such components is

analogous to defining all the uses of a bulk-optical dielectric mirror. With significant

technological advances, the proposed DBR corrugated waveguide can become a basic

building block for a broad array of IOCs, sharing in the success of directional couplers

and Y-branches.












The characteristics of corrugated waveguide mirrors are clearly unique. First, they

have a very narrow reflection band (~ 1A). This is useful for narrow bandpass filters

such as the one proposed in section 3.3 and others proposed in references [33, 25, 26,

27]. The fact that they do not require the use of an endface make them very attractive

for IOC devices. Many gratings with varying periods may be placed anywhere on the

chip. Generally, with endface mirrors, all waveguides exiting the same facet as the

ones with mirrors must be polished perpendicular to the waveguide. This prevents

the use of one of the most common methods to prevent unwanted backreflections:

angle polishing.

4.2 Corrugated Waveguide Technologies (Previous Work)

Much research has been devoted to periodic waveguide structures ever since their

first few demonstrations in DFB lasers [36, 86, 87] and filters [16, 19]. Since then, the

use of corrugated waveguides has excelled, providing low threshold and high power

single longitudinal semiconductor lasers. However, passive devices have not shared

that success.

Ironically, there have been many reports of high reflectance corrugated waveg-

uides, but many of them used ambiguous measurement techniques that are not de-

pendable. There have been several claims of almost 100% reflectivity, even 99%, but

very few reports support the claims with indisputable results. To the best of our

knowledge, the best indisputable results to date were produced in silica waveguides

by Adar et al. [2]. They measured 69% of the light back into a fiber using a 2 x 2

fiber coupler. Their measurement was calibrated by butt coupling the fiber to a ma-

terial of known reflectance. Furthermore, they made a reasonable claim that the light

undergoes two fiber-waveguide coupling losses that could total a value near 1.6dB.












Therefore, it is quite reasonable that their DBR corrugated waveguide produced re-

flectance > 95%.

4.2.1 Investigations of DBR Corrugated Waveguides

This section briefly summarizes the most important results of the other efforts on

passive DBR corrugated Waveguides, from their first demonstration to present. Many

of the results reported were not properly substantiated by indisputable measurement

techniques.

Most of the early investigations were carried out on planar glass waveguides [19,

67, 84, 30, 10]. They all used a prism coupler (section 6.3) to measure the reflected

power and reported better than 80% reflection. An absolute determination of the

amount of light that is coupled in and out of the waveguide is generally impossible.

If they were able to accomplish this, the details were not reported. Therefore, the

measurements are somewhat ambiguous.

A planar DBR corrugated waveguide was demonstrated in InGaAsP/InP in ref-

erence [4]. 99% reflectivity was reported, but not measured. Only the transmission

was measured and they used R = 1 T to calculate the reflection. This assumes

there is no loss. The Fabry-Perot device, later made by the same group, indicated

that loss was indeed a problem [5]. Ridge DBR corrugated waveguides have been

reported in GaAs/AlGaAs as well [83].

There have been several studies of higher order gratings [69, 68, 64, 65, 9, 10].

Shinozaki et al. [69, 68] reported DBR reflectors in LiNbO3 with periods of 10/tm

and above, using proton exchange. One was used for a marginally improved second

harmonic generation (SHG) device and another was used for feedback of both an

external cavity laser and SHG.












Polarization independent DBR corrugated waveguides have also been reported [1].

This was achieved by etching trenches along the sides of the waveguides to practically

eliminate the strain-induced birefringence. The two transmission peaks coincided

when the two orthogonal mode indices were equal.

Low loss Bragg reflectors have also been reported. A technique to measure the

scattering loss from the surface roughness of a corrugated waveguide was demon-

strated by Lee et al. [38]. The transmission characteristics of a Si3N4 channel cor-

rugated waveguide were observed with and without an index-matching fluid on the

grating surface. The index matching fluid eliminates the scattering loss as well as

the reflection peak. By comparing the passband response of the sample for the

two cases, they determined that the incoherent scattering loss of their structure was

~ 0.2dB/cm. Reflection measurements were not reported.

4.2.2 Passive DBR Corrugated Waveguide Devices

This section summarizes most of the passive DBR corrugated waveguide devices

that have been demonstrated. None have proven to be quite practical yet. However,

with the improvement of waveguide grating technology, many of these devices may

gain acceptance.

There are several reports of Fabry-Perot interferometers of two DBR corrugated

waveguides separated by a cavity (figure 3.4). A planar corrugated waveguide in

glass with a wedge etched out of the center, was used to demonstrate a filter that

is tunable by positioning the beam [34]. A quarter-wave shifted grating resonator

with a 7dB transmission peak 1A wide in the center of the narrow reflection band

(AA ~ 10A) was demonstrated in InGaAsP/InP [5]. The most impressive result is

found in reference [28]. They used a Si3N4 channel waveguide for their quarter-wave

shifted grating resonator. Their measurement setup was similar to the one shown












in figure 6.3, but they did not report the absolute reflectivity of the device. An

electro-optically tunable Fabry-Perot filter using waveguide gratings has also been

demonstrated [48, 49].

Other corrugated waveguide devices previously demonstrated have been the res-

onant optical reflector [53], the folded directional coupler [3], and the narrow-band

channel-dropping filter [39] (see figure 1.6). None of these exhibited commercially

acceptable passive characteristics, but the resonant optical reflector was used as an

external-cavity reflector of a laser. 5mW of optical power and a linewidth of 135kHz

was observed. Simple corrugated waveguides have been used for the same purpose

to achieve a 1MHz linewidth [54].

4.3 Difficulties in Achieving High Reflectance

The theoretical calculations of a corrugated waveguide in section 3.2.1 indicate

that it is possible to achieve 97.5% reflection in a corrugated waveguide of 10,000

periods, a AN = 6 x 10-4, and a loss of 0.35dB/cm. This corresponds to a grating

length of only 3.59mm. Even higher reflection can be expected for a larger number

of periods, larger AN, or lower loss.

Unfortunately, many difficulties have prevented the realization of such high reflec-

tion corrugated waveguides in any material. The best results of previous work (section

4.2) have produced gratings of better than 95% reflection in glass waveguides. Re-

ports of reflection from corrugated waveguides in LiNbO3 and related electro-optic

materials are very scarce. Perhaps this is because it is more difficult to make a high

reflectance corrugated waveguide in LiNbO3 than in other common materials used

for IOC technology. Several factors significantly complicate the fabrication of high

reflection DBR corrugated waveguides in LiNbO3. These will now be discussed.












First, the chemical reactivity of LiNbO3 is poor. Device shaping using aqueous-

acid and other solutions is almost impossible [58]. Solutions of HF and HNO3 have

generally been useful only for identifying domain polarity and crystal defects. Reac-

tive Ion Etching (RIE) is usually ineffective because the etch rate is very low and the

process causes damage to the crystal (see section 5.1.1). Since etching of LiNbO3 by

wet-etching, RIE, ion milling, or by other means, have generally proven far inferior

to the etching technology of Si02, semiconductors, polymers, and other materials,

gratings in the LiNb03 crystal itself cannot easily be made deep. Therefore, making

waveguide gratings by etching LiNb03 directly is not a promising approach for high

reflectance devices.

Second, most practical low-loss waveguides in LiNb03 have mode indices very

close to the substrate index. This fundamentally limits the mode index difference,

AN, that can be achieved by etching a grating directly on LiNb03. Etching com-

pletely through the waveguide creates very high AN at the expense of high scattering

losses.

Third, LiNbO3 has a relatively high refractive index (compared to glass and poly-

mers). This poses two problems: conventional holography is more complicated, and

perturbation of the optical field by a corrugated buffer layer is lower. These will now

be explained in more detail.

Holography is more difficult due to more intense reflections from the bottom

surface of the substrate. Glass and polymers have lower refractive index, so that the

reflection from substrate-air interfaces is about a third less than in LiNbO3. Even

more important is that their is a multitude of suitable index matching fluids available

for glass and polymers to match the substrate to a prism, absorber, or other beam

diversion element. Index matching fluids for LiNb03 are usually highly absorptive in

the visible and UV wavelength range and are thus much more reflective than LiNbO3.












Most buffer layers used for LiNbO3 waveguide devices have a low refractive index.

(Usually SiO2 is used which has a refractive index of about 1.45 at A = 1.5ym, whereas

the index of LiNbO3 is about 2.14.) The field profile of the guided wave in LiNbO3

exhibits a very small evanescent tail in such a buffer layer. As a consequence, a

periodical perturbation in the buffer layer thickness produces little perturbation to

the optical field. According to equation 2.96, this is needed to achieve high reflection

within a reasonable number of periods. For the same reasons, polymers generally do

not produce good corrugated waveguides on LiNbOa.

4.4 Proposal: Channel Waveguides With High-Index Overlays

A high refractive index film on top of a planar or channel waveguide (figure 1.9),

in the place of a lower refractive index buffer layer, can be used as a medium in which

a high perturbation grating can be formed. When the refractive index of the film is

greater than the mode index, the solution of the field in the film is no longer evanes-

cent and the film becomes part of the guiding media. It will be shown in section 4.7

that this overlay causes the guided mode index to become more dependent on the

thickness of the film. This is useful in making high reflectance gratings (figure 4.1 (a))

because the difference in the local normal mode index between the peaks and valleys

of the corrugated waveguide (figure 4.1 (b)) can be very significant-much more so

than by etching a grating on a low-index buffer layer or the waveguide itself.

This may initially appear to present detrimental effects. First, if a significant

portion of the optical mode is guided in the overlay, the electro-optic effect is reduced

since most overlay materials would exhibit little electro-optic effect. Second, for

relatively thick overlays with very high refractive index the optical field is expected

to be drawn out of the low-index material and yield a smaller mode size. This would

present problems with coupling to other waveguides, particularly fibers. Third, a















High-index
NH NL grating overlay




nsub


y
Figure 4.1. Longitudinal cross section of a graded-index waveguide with an overlaying
film grating (a); local normal mode index profile along the propagation direction (b).


i
R


a)


N
NH-
NL-
b)


............ .............. I ............. ...... ........ .............. ..............












significant portion of the field in the overlay may result in increased loss, especially

due to radiation. However, these problems do not necessarily exist. Some common

misconceptions of similar structures will be addressed in section 4.6.

The term "overlay" as opposed to "buffer layer" is used because the intent is

to perturb the guided optical mode rather than buffering the field at the surface.

Since the field in the overlay is significant, in practical devices, a buffer layer should

be used on top of the "overlay" to reduce surface scattering and provide spacing

from electrodes. In discussions that follow, the term "mode index" is used to refer

to the local normal mode index which is the mode index of a z-invariant (along

the propagation direction) waveguide with a transverse cross section identical to the

waveguide in question at a particular local position.

There is some similarity between this proposal and the work in reference [2]. Fig-

ure 4.2 (a) shows the structure they used. In that work, they deposited a higher-index

material (Si3N4) on the vertical walls of a glass grating. Their reasoning was that cov-

ering the vertical groove walls would form highly reflecting interfaces perpendicular

to the guide axis. However, a more precise interpretation would be the same as that

for our structure. That is, the high-index material helps create a high mode-index

difference between the two half-periods of the waveguide. As shown in figure 4.2, the

former interpretation led to a comparatively complicated structure where the mode

index variation in the propagation direction has spikes. Because they are so thin,

and the optical mode overlap in that region is small, they can be expected to produce

little perturbation to the mode. However, the thin layer of Si3N4 in the valleys of

the grating can be expected to create a significant perturbation because it resides
directly on the surface of the guiding layer and there is significant overlap.

The solid curve in figure 4.2 (c) represents the mode index profile in the propaga-

tion direction if the Si3N4 were placed only in the valley of the grating. The dotted
















Si3N4

SB,P-Glass


T
R




N


b) __
N


c)
y

Figure 4.2. Corrugated waveguide structure used by Adar et al. [2] (a); Local normal
mode index profile of the structure along the propagation direction (b); Local normal
mode index profile of the structure with Si3N4 only in the valleys of the grating (solid)
and with no Si3N4 at all (dotted) (c).












curve represents the mode index profile of just the glass grating without adding Si3N4.

Comparing the two, we see that by putting Si3N4 in the valley, the mode index profile

becomes inverted with a much larger differential, improving the reflection.

When considering such extreme changes in the local normal modes associated

with the structure in figure 4.2, one must also consider some assumptions that were

made with the step transition method we used to derive equation 2.96. The paraxial

approximation requires that the overlap between the fields on each side of a discon-

tinuity be good. This is not so for the spikes in the mode index profile of figure 4.2

(b). Consequently, it is expected that these spikes will have relatively little effect on

the mode field as it propagates through the structure. The main perturbation comes

from the film of Si3N4 in the valleys of the grating. More rigorous calculations are

necessary to determine their effect exactly, but this is beyond the scope of this work.

With this insight, the structure in figure 4.2 (a) is determined to be much more

complicated than necessary due to the presence of the glass/Si3N4 grating. Only a

grating of Si3N4 is needed, or even beneficial.

4.5 Benefits of Silicon as a High-Index Overlay On LiNbO.

We found silicon to be very suitable to demonstrate our concept of a high refractive

index overlay. There are many reports in the literature of devices made from deposited

films of LiNb03 on silicon for non waveguide applications, but there are few reports

that would relate its use as a waveguide device. These few relevant references are

discussed briefly below.

4.5.1 Previous Reports of Waveguides with Silicon Overlays

The work of reference [70] suggests that by putting a semiconductor film on the

surface of a LiNbO3 waveguide device, the pyroelectrically-induced bound surface

charges can be screened out as they are being generated by slow thermal variations.












The capacitive loading of the electrodes causes the potential of the electrodes to

change much less than the the potential of the rest of the z surface. The potential

difference between the electrode and the surrounding area leads to significant drift.

The addition of a semiconductor film on the surface to reduce the potential difference

has been used to reduce drift in experimental devices [52, 51]. These references state

that a "thin semiconductor film" was used, and do not specify the material.

Silicon was used in reference [66] for the electrodes of a parallel-plate electro-

optic waveguide modulator. 0.231Lm of RF sputtered lithium niobate films were

sandwiched between a 0.165pm layer single crystal silicon on a sapphire substrate

and a 0.181/m layer of vapor-deposited hydrogenated amorphous silicon. The device

loss was calculated to be about 1dB, but the loss of the experimental device was not

reported.

Most research on optical waveguides on silicon substrates has concentrated on

the use of deposited layers on oxidized silicon substrates. However, some recent work

has focused on silicon-on-insulator (SOI) waveguide structures. Moderately low-loss

silicon waveguides (2 dB/cm) have been reported [18]. These studies have shown

that ridge waveguides with very thick films of silicon can be single-moded. A further

discussion will follow in section 4.6.

The emission properties (coupling of the guided modes into radiation modes) of

corrugated waveguides with a metal or semiconductor coating was studied in refer-

ence [7]. To overcome the problem of the unwanted emission of light from a grating

to cladding orders, they used a highly reflecting barrier on one side of the corrugated

waveguide, with and without a buffer layer spaced between them. The purpose of

this reflecting layer was to redirect the light from the unwanted orders back into the

substrate. Their conclusion was that the best emission properties could be achieved












by using a highly reflecting metal with a buffer layer. A structure using an aluminum

grating was demonstrated to couple out 81% of power from the waveguide.

4.5.2 Additional Benefits of Silicon on LiNbOa

The only previously-reported benefit of a silicon overlay on a waveguide device

as it pertains to this work is its use towards the screening of the bound charges gen-

erated by the pyroelectric effect [70]. For the purposes of our proposed structure,

silicon exhibits a number of other benefits as well. Separate sections of this disserta-

tion will discuss each of the following benefits in detail. The high refractive index of

silicon (~ 3.5, appendix A) is suitable to achieve a large AN corrugated waveguide

(section 4.7). The use of silicon greatly simplifies the fabrication process because it

is easily deposited by e-beam evaporation (section 5.5), it is easily etched by a num-

ber of well-developed processes (section 5.1.1), and its high absorption in the visible

spectral region makes it very useful for greatly reducing substrate backreflections

during holography (section 5.3). Based on our studies, there is no appreciable dif-

ference in loss between waveguides with and without relatively thick layers of silicon

(section 6.2.2).

4.6 Misconceptions of Guiding in Thick-Film Structures

The purpose of this section is to alleviate some common misconceptions of guid-

ing in channel waveguides. This is necessary because,in cases such as the proposed

waveguide geometry in figure 1.9, there is a vast contrast between the results of

some standard theories used to solve channel waveguides, namely the effective in-

dex method [61], and more accurate analysis. In these cases, only rigorous compu-

tational methods, that do not utilize the separation of variables when solving the

two-dimensional wave equation, can yield accurate results. Even though this has

been shown several years ago, it is not commonly known, perhaps because an elegant












analytical technique to adequately solve these types of problems is not available and

the former, simplified theory is more often used in textbooks. For the purpose of this

section, rather than using elaborate methods to draw the same conclusions as pre-

viously reported for simpler structures, we will describe those conclusions in detail,

comparing with the use of the effective index method; and then use the similarity

between the structures to argue that the same principles apply to our structure.

Richard Soref et al. investigated single mode silicon-based ridge waveguides [73].

It was shown that, although a planar silicon waveguide becomes double moded with

thicknesses greater than 0.3pm, contrary to analysis of the effective index method,

single-mode ridge waveguides can be made with the planar portion several microm-

eters thick! This implies that by removing the ridge portion of a single mode guide,

the remaining planar waveguide can support multiple modes. This seems to be a

contradiction; but the fallacy here is that in one case we have one dimensional con-

finement, and in the other we have two dimensional confinement. They cannot be

related in such simple terms.

It is sometimes assumed that for a single-mode ridge waveguide, its cross-sectional

dimensions must be close to the thickness of a single-mode planar waveguide of the

same material. Perhaps this erroneous assumption stems from the misuse of the

effective index method for solving 2-D structures. The analysis in reference [29]

shows that the effective index method has a tendency to overestimate the mode

indices-especially near cutoff. Therefore, it predicts the presence of modes below

their actual cutoff. Even so, if the results of reference [29] are accepted to be true

for the general case, we get a false impression that the number of modes predicted

by the effective index method is accurate within 1 or 2.

To demonstrate that even this assumption is incorrect, figure 4.3 shows a sim-

ple ridge waveguide structure that has been previously shown to exhibit only one











x

W=.65m



n2=3.5 )H=.65gm D=.52gm

n3=1.45





Figure 4.3. Simple ridge waveguide structure used to illustrate a case were the effec-
tive index method gives the wrong number of modes. This waveguide is single mode,
but the effective index method predicts five modes.

mode [73]. This structure is analyzed by the effective index method [61, 37] by

determining the mode indices of the waveguide at each position, y, as if it were a

vertically confined planar waveguide with those dimensions. In this case, there are

only two different regions with film thicknesses of D and H. They are depicted in
figure 4.4 (a) and (b), respectively. The equivalent horizontal confinement is a planar
waveguide with an index profile derived from the mode indices of the vertical confin-

ing waveguide at each position, y. In this case, it is a symmetric planar waveguide

(figure 4.4 (c)).
Using the parameters given in figure 4.3 at a wavelength of 1.3p/m, we find that
each of the planar waveguides in figure 4.4 (a) and (b) support three TE modes
with approximate normalized propagation constants [35] of bH = .93, .73, .42 and
bD = 0.9, 0.6, 0.2, respectively, where

b = (4.1)
nf ns












H
n, D n W 14.
n2 2

n33 ND NH ND


a) b) c)

Figure 4.4. The effective index method is applied to the waveguide structure in
figure 4.3 by finding the mode indices of asymmetric planar waveguides with film
thicknesses of D (a) and H (b). These mode indices are applied to a symmetric
laterally confined planar waveguide (c). The mode indices of the waveguide depicted
in (c) are generally accepted to be equivalent to the mode indices of the structure in
figure 4.3.

n, is the substrate index (n3) and nf is the film index (n2). The corresponding mode

indices are NH = 3.36, 2.95, 2.31, and ND = 3.30,2.68, 1.86, respectively. By paring

these numbers together to form the horizontally confined waveguide in figure 4.4 (c),

we get the normalized parameters of v = 2.0, 3.9,4.3 where
2-Wr -2-N2
v = W/NH ND (4.2)

Using the normalized b-v diagram in reference [35], we find that the first value for v

supports one mode while the other two each support two modes. In all, the effective
index method predicts five modes for this structure. However, reference [73] shows
that this structure supports only a single mode! In fact, structures several times
larger support only one mode. In these cases, the effective index method would

predict even more modes.
The waveguides of interest in this work (figure 1.9) are quite different to the one
just illustrated (figure 4.3). However, some similarity is apparent when the structure
of figure 1.9 is viewed upside down as shown in figure 4.5. Instead of having a rect-
angular ridge of the same refractive index as the planar layer, the proposed structure




Full Text
xml record header identifier oai:www.uflib.ufl.edu.ufdc:UF0008235600001datestamp 2009-03-20setSpec [UFDC_OAI_SET]metadata oai_dc:dc xmlns:oai_dc http:www.openarchives.orgOAI2.0oai_dc xmlns:dc http:purl.orgdcelements1.1 xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.openarchives.orgOAI2.0oai_dc.xsd dc:title novel tunable filter for wavelength division multiplexed communication systemsdc:creator Hussell, Christopher Parke,dc:type Bookdc:identifier http://www.uflib.ufl.edu/ufdc/?b=UF00082356&v=0000133628675 (oclc)002056059 (alephbibnum)dc:source University of Florida



PAGE 1

$ 129(/ 781$%/( ),/7(5 )25 :$9(/(1*7+ ',9,6,21 08/7,3/(;(' &20081,&$7,21 6<67(06 %\ &+5,6723+(5 3$5.( +866(// $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

&RS\ULJKW E\ &KULVWRSKHU 3DUNH +XVVHOO

PAGE 3

7R P\ ORYLQJ ZLIH 0DU\

PAGE 4

$&.12:/('*(0(176 0DQ\ SHRSOH KDYH DVVLVWHG PH ZLWK P\ ZRUN DW WKH 8QLYHUVLW\ RI )ORULGD DQG LW ZRXOG EH LPSRVVLEOH WR DFNQRZOHGJH DOO RI WKHP +RZHYHU ZRXOG OLNH WR DFNQRZOHGJH VHYHUDO LQGLYLGXDOV LQ SDUWLFXODU )LUVW ZDQW WR WKDQN 'U 5DPX 9 5DPDVZDP\ IRU KLV KDUG ZRUN DQG GHYRWLRQ WR KLV VWXGHQWV LQ SURYLGLQJ IXQGV ZHOOHTXLSSHG ODERUDWRU\ IDFLOLWLHV DQG D VWDEOH ZRUNLQJ HQYLURQPHQW FRQGXFLYH IRU UHVHDUFK +LV GHYRWLRQ WRZDUGV JHQHUDWLQJ IXQGV IRU WKH 3KRWRQLFV 5HVHDUFK /DERUDWRU\ DQG WKH 8QLYHUVLW\ LV WUXO\ FRPPHQGDEOH +LV VXFFHVV LQ GRLQJ VR DOORZHG PH WR WDNH D QRYHO FRQFHSW DQG EX\ WKH QHFHVVDU\ HTXLSPHQW IRU LWV GHPRQVWUDWLRQ LQ D YHU\ UHDVRQDEOH WLPH IUDPH +LV ZLOOLQJQHVV WR VKDUH KLV EURDG NQRZOHGJH RI WKLV DQG UHODWHG DUHDV SURYHG WR EH HVVHQWLDO IRU WKH FRPSOHWLRQ RI WKLV ZRUN ZRXOG DOVR OLNH WR WKDQN 'U 5REHUW 7DYO\NDHY IRU FRQVWDQWO\ SURYLGLQJ KHOSIXO GLVFXVVLRQV IRXQG KLP WR EH YHU\ NQRZOHGJHDEOH RI WKH FXUUHQW DV ZHOO DV SDVW OLWHUDWXUH 7KLV KDV PDGH KLP DQ LQYDOXDEOH UHVRXUFH IRU PH 9HU\ FRQGXFLYH GLVFXVVLRQV ZLWK 'U 7K\DJDUDMDQ KHOSHG PH WR KDYH D GHHSHU XQGHUVWDQGLQJ RI WKH SUREOHP DW KDQG IRXQG KLP WR KDYH D YHU\ EURDG WKHRUHWLFDO NQRZOHGJH +H ZDV DOZD\V ZLOOLQJ WR DVVLVW DP JUDWHIXO WR 'U 6DQMDL 6LQKD IRU DVVLVWLQJ PH ZLWK 02&9' JURZWK DOVR IRXQG KLP WR EH YHU\ KHOSIXO LQ SURYLGLQJ PH ZLWK LGHDV ,Q IDFW ZKHQ ORRNLQJ IRU WKH EHVW PDWHULDOV WR XVH IRU D GLHOHFWULF PLUURU KH VXJJHVWHG XVLQJ VLOLFRQ 1RW ORQJ DIWHU WKDW IRUPXODWHG WKH LGHD RI XVLQJ VLOLFRQ DV D EXIIHU OD\HU IRU '%5 JUDWLQJ ZDYHJXLGHV ,9

PAGE 5

, DP LQGHEWHG WR +VLQJ &KLHQ &KHQJ +H ZDV YHU\ HDJHU RQ FRXQWOHVV RFFDVLRQV WR KHOS PH ZLWK WKHRUHWLFDO PRGHOLQJ IDEULFDWLRQ DQG PHDVXUHPHQW JUHDWO\ UHVSHFW KLV KDUG ZRUN DQG SOHDVHQW DWWLWXGH ZDQW WR WKDQN WKH SURIHVVRUV LQ WKH DUHD 'U 3HWHU =RU\ DQG 'U 5DPDNDQW 6ULYDVWDYD 7KHLU ZRUN DW WKH 8QLYHUVLW\ LV FRPPHQGDEOH ZDQW WR WKDQN 'U 6FRWW 6DPVRQ IRU UHYLHZLQJ WKH URXJK GUDIW RI WKLV GLVVHUWDWLRQ +LV FRPPHQWV KHOSHG PH WR FRQYH\ WKH LQIRUPDWLRQ LQ WKLV ZRUN PRUH HIIHFWLYHO\ $OVR DSSUHFLDWH P\ RWKHU FROOHDJXHV SDUWLFXODUO\ :XKRQJ /L 6XQLQJ ;LH 'DYH 0DUULQJ .LUN /HZLV 5RQ 6ORFXPE 'U $PDOLD 0LOLRX -DPDO 1DWRXU 'U 6DQJ +DQ 'U +\RXQ 6 .LP 'U 6RQJ -DH /HH 'U
PAGE 6

PH WR DWWDLQ KLJKHU JRDOV DP WUXO\ JUDWHIXO IRU WKHLU ILQDQFLDO VXSSRUW ORYH WKHP YHU\ PXFK 0\ JUHDWHVW DSSUHFLDWLRQ JRHV WR P\ ZLIH 0DU\ 6KH KDV XQFHDVLQJO\ VXSSRUWHG PH LQ NHHSLQJ WKH KRPH DQG IDPLO\ LQ RUGHU 6KH LV YHU\ GHYRWHG DQG JLYLQJ WR RXU ORYHO\ FKLOGUHQ $VKOH\ DQG .ULVWLQ ZKR WDNH DIWHU WKHLU PRWKHU LQ EHDXW\ 6KH KDV HQGXUHG PXFK DQG NHHSV RQ VPLOLQJ 7UXO\ VKH KDV PDGH LW DOO ZRUWK ZKLOH 0\ ORYH IRU KHU LV XQHQGLQJ 0\ FKLOGUHQ WUXO\ EULQJ MR\ WR P\ OLIH YL

PAGE 7

7$%/( 2) &217(176 $&.12:/('*(0(176 LY /,67 2) ),*85(6 [ $%675$&7 [YL &+$37(56 ,1752'8&7,21 0RWLYDWLRQ %DQGZLGWK RI 2SWLFDO )LEHU 3UDFWLFDO :'0 &RPPXQLFDWLRQ 6\VWHPV :DYHOHQJWK 6HOHFWLYH &V $ 1HZ :DYHOHQJWK 6HOHFWLYH 7XQDEOH )LOWHU $ 1RYHO :DYHJXLGH 7HFKQRORJ\ &KDSWHU 2UJDQL]DWLRQ 7+(25< 2) 237,&$/ ),(/'6 ,1 08/7,/$<(5 6758&785(6 %DVLF (TXDWLRQV 5HIOHFWLRQ DQG 7UDQVPLVVLRQ )URP D 6LQJOH %RXQGDU\ &KDUDFWHULVWLF 0DWUL[ RI D 7KLQ )LOP &KDUDFWHULVWLFV RI D 0XOWLOD\HU 6WUXFWXUH $OWHUQDWLYH 0DWUL[ )RUPXODWLRQ &RQQHFWLRQ %HWZHHQ WKH 7ZR )RUPDOLVPV $SSOLFDWLRQV RI WKH )RUPDOLVPV WR 5HDO 6WUXFWXUHV 5HIOHFWDQFH IURP 3HULRGLF 4XDUWHU:DYH 6WUXFWXUHV %DVLF /DVHU 5HODWLRQVKLSV %DVLF :DYHJXLGH 5HODWLRQVKLSV $SSOLFDWLRQ WR &RUUXJDWHG :DYHJXLGHV 6SHFWUDO ,QGH[ 0HWKRG 6XPPDU\ RI WKH 1XPHULFDO 0HWKRGV $ 1(: :$9(/(1*7+ 6(/(&7,9( )$%5<3(527 ),/7(5 7KLQ )LOP 'LHOHFWULF )DEU\3HURW )LOWHUV &KDUDFWHULVWLFV RI D 7KLQ )LOP 'LHOHFWULF 0LUURU &KDUDFWHULVWLFV RI D 7KLQ )LOP 'LHOHFWULF )DEU\3HURW )LOWHU '%5 &RUUXJDWHG :DYHJXLGH )DEU\3HURW )LOWHUV YLL

PAGE 8

&KDUDFWHULVWLFV RI D '%5 &RUUXJDWHG :DYHJXLGH &KDUDFWHULVWLFV RI D '%5 &RUUXJDWHG :DYHJXLGH )DEU\3HURW )LOWHU 3URSRVDO $V\PPHWULF )DEU\3HURW )LOWHU 3DVVLYH $6)3 )LOWHU 7XQLQJ DQ $6)3 ILOWHU 7XQDEOH ')% ODVHU 6XPPDU\ $ 129(/ :$9(*8,'( *(20(75< 7KH 1HHG IRU %HWWHU '%5 &RUUXJDWHG :DYHJXLGHV &RUUXJDWHG :DYHJXLGH 7HFKQRORJLHV 3UHYLRXV :RUNf ,QYHVWLJDWLRQV RI '%5 &RUUXJDWHG :DYHJXLGHV 3DVVLYH '%5 &RUUXJDWHG :DYHJXLGH 'HYLFHV 'LIILFXOWLHV LQ $FKLHYLQJ +LJK 5HIOHFWDQFH 3URSRVDO &KDQQHO :DYHJXLGHV :LWK +LJK,QGH[ 2YHUOD\V %HQHILWV RI 6LOLFRQ DV D +LJK,QGH[ 2YHUOD\ 2Q /L1E2D 3UHYLRXV 5HSRUWV RI :DYHJXLGHV ZLWK 6LOLFRQ 2YHUOD\V $GGLWLRQDO %HQHILWV RI 6LOLFRQ RQ /L1E2D 0LVFRQFHSWLRQV RI *XLGLQJ LQ 7KLFN)LOP 6WUXFWXUHV 3URSHUWLHV RI /L1E2D :DYHJXLGHV :LWK 9DU\LQJ 6LOLFRQ 2YHUOD\ 7KLFNn QHVV 6XPPDU\ '(9,&( )$%5,&$7,21 7(&+1,48(6 5HDFWLYH ,RQ (WFKLQJ &O 5HDFWLYH ,RQ (WFKLQJ 3ODVPD $VKLQJ :DYHJXLGH )DEULFDWLRQ *UDWLQJ /LWKRJUDSK\ DQG 7UDQVIHU 3ROLVKLQJ (QGIDFH '%5 )DEULFDWLRQ 6XPPDU\ (;3(5,0(17$/ 5(68/76 2) 7+( 1(: :$9(*8,'( *(20(75< 1HDU )LHOG 3URILOH 0HDVXUHPHQW 0HDVXUHPHQW 7HFKQLTXH )LHOG 3URILOH 5HVXOWV /RVV 0HDVXUHPHQW :DYHJXLGH 'HYLFH 5HIOHFWLRQ DQG 7UDQVPLVVLRQ 0HDVXUHPHQW /RVV 5HVXOWV 0RGH ,QGH[ 0HDVXUHPHQW 3ULVP &RXSOHU 7HFKQLTXH 3ULVP &RXSOHU 5HVXOWV 6XPPDU\ YLLL

PAGE 9

(;3(5,0(17$/ 5(68/76 2) *5$7,1* ),/7(56 ,1 /L1E :DYHJXLGH *UDWLQJ 5HVXOWV 7KH )LUVW 6DPSOH $3(/L7D 7KH )LUVW $3(/L1E 6DPSOH 7KH )LUVW 7L/L1E 6DPSOH 6KRUW 3HULRG '%5 &RUUXJDWHG :DYHJXLGH 7KH %HVW 5HIOHFWLRQ 0HDVXUHPHQWV $6)3 )LOWHU 5HVXOWV 5HVXOWV RI $6)3 $6)3 )LOWHU 5HVXOWV ZLWK (QGIDFH'HSRVLWHG '%5 0LUURU RQ $6)3 3URVSHFWV IRU ,PSURYHPHQW ,PSURYHPHQW RI *UDWLQJ )DEULFDWLRQ 2SWLPL]DWLRQ RI $3(/L1E :DYHJXLGHV 2SWLPL]DWLRQ RI WKH 6LOLFRQ 7KLFNQHVV 2SWLPL]H 6WUXFWXUH :LWK %XIIHU /D\HU 6XPPDU\ &21&/86,216 $1' )8785( :25. &RQFOXVLRQV )XWXUH :RUN 'HWDLOHG 6WXG\ RI :DYHJXLGHV :LWK +LJK,QGH[ 2YHUOD\V 2SWLPL]DWLRQ RI *UDWLQJ 3HUIRUPDQFH +LJK 3HUIRUPDQFH ,2&V $33(1',&(6 $ ',63(56,21 2) 6,/,&21 % ',63(56,21 2) /,7+,80 1,2%$7( 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ L[

PAGE 10

/,67 2) ),*85(6 $WWHQXDWLRQ RI D ORZORVV RSWLFDO ILEHU UHIHUHQFH >@f 6LPSOLILHG VFKHPDWLF RI D :'0 GLVWULEXWLRQ V\VWHP 6LPSOLILHG VFKHPDWLF RI D :'0 ULQJ QHWZRUN 3RODUL]DWLRQ LQVHQVLWLYH DFRXVWLFDOO\ WXQDEOH RSWLFDO ILOWHU &DVFDGHG 0DFK=HKQGHU LQWHUIHURPHWHU 5HVRQDQW JUDWLQJ DVVLVWHG GLUHFWLRQDO FRXSOHU ILOWHU 3URSRVHG 7XQDEOH :DYHOHQJWK 6HOHFWLYH )LOWHU &RPSDULVRQ RI WKH UHIOHFWLRQ VSHFWUD RI D GLHOHFWULF HQGIDFH PLUURU DQG D FRUUXJDWHG ZDYHJXLGH Df VKRZV WKDW WKH UHIOHFWLRQ EDQG RI D FRUUXn JDWHG ZDYHJXLGH LV YHU\ QDUURZ FRPSDUHG WR WKH VSHFWUD RI WKH GLHOHFn WULF PLUURU Ef VKRZV DQ H[SDQGHG YLHZ RI WKH FRUUXJDWHG ZDYHJXLGH VSHFWUD 7UDQVYHUVH FURVV VHFWLRQ RI D JUDGHGLQGH[ FKDQQHO ZDYHJXLGH ZLWK DQ RYHUOD\LQJ ILOP RI UHIUDFWLYH LQGH[ QHDU RU KLJKHU WKDQ WKH FRUH RI WKH ZDYHJXLGH /RQJLWXGLQDO FURVV VHFWLRQ RI D '%5 FRUUXJDWHG ZDYHJXLGH PDGH IURP D KLJKLQGH[ RYHUOD\ N YHFWRU UHODWLRQVKLSV ZLWK OLJKW LQFLGHQW RQ D VLQJOH VXUIDFH &RQYHQWLRQV IRU WKH SRVLWLYH GLUHFWLRQV RI WKH ( DQG + ILHOG YHFWRUV IRU WKH Df 7( RU VSRODUL]HG ZDYHV DQG Ef 70 RU SSRODUL]HG ZDYHV $ VLQJOH GLHOHFWULF SODQDU OD\HU RQ D VXEVWUDWH $ JHQHUDO PXOWLOD\HU WKLQILOP VWUXFWXUH 'LHOHFWULF PLUURU PDGH IURP D SHULRGLF TXDUWHUZDYH VWDFN 6LQJOHILOP ODVHU [

PAGE 11

6LQJOHILOP ZDYHJXLGH 6LQJOH PRGH ZDYHJXLGH ZLWK DQ DEUXSW VWHS 'XDO ULE ZDYHJXLGH FURVV VHFWLRQ 7KH GDVKHG OLQH UHSUHVHQWV WKH HIn IHFWLYH PRYHPHQW RI WKH ERXQGDU\ E\ WKH *RRV+£QFKHQ VKLIW 6LPSOH '%5 FRQVLVWLQJ RI D PXOWLOD\HU GLHOHFWULF VWDFN Df DQG LWV UHIOHFWDQFH DQG WUDQVPLVVLRQ VSHFWUD Ef 7KH SDUDPHWHUV DUH Q QV XO QQ DQG SHULRGV )DEU\3HURW ILOWHU FRQVLVWLQJ RI WZR PXOWLOD\HU GLHOHFWULF VWDFN '%5V VHSDUDWHG E\ D VKRUW ZDYHJXLGH FDYLW\ Df UHIOHFWDQFH VSHFWUD RI WKH VWUXFWXUH ZLWK D FDYLW\ OHQJWK RI [P Ef 7KH SDUDPHWHUV IRU HDFK PLUURU DUH Q QV KO Q DQG SHULRGV '%5 FRUUXJDWHG ZDYHJXLGH Df UHIOHFWDQFH VSHFWUD Ef 7KH SDUDPHn WHUV XVHG LQ WKH FDOFXODWLRQ DUH 1+ DQG 1/ 1 1V DQG SHULRGV /RVV RI G%FP LV DOVR LQFOXGHG LQ WKH FDOFXODWLRQ )DEU\3HURW ILOWHU FRQVLVWLQJ RI WZR '%5 FRUUXJDWHG ZDYHJXLGHV VHSDn UDWHG E\ D VKRUW ZDYHJXLGH FDYLW\ Df UHIOHFWDQFH VSHFWUD RI WKH VWUXFn WXUH Ef $V\PPHWULF )DEU\3HURW ILOWHU FRQVLVWLQJ RI D '%5 FRUUXJDWHG ZDYHJn XLGH ZLWK D GLHOHFWULF PLUURU GHSRVLWHG RQ WKH HQGIDFH 7UDQVPLVVLRQ VSHFWUD RI DQ DV\PPHWULF )DEU\3HURW ILOWHU Df H[SDQGHG YLHZ RI WKH WUDQVPLVVLRQ SHDN Ef 7KH SDUDPHWHUV XVHG IRU WKH GLHOHFn WULF PLUURU ZHUH WKH VDPH DV WKRVH XVHG IRU ILJXUH Ef DQG WKRVH XVHG IRU WKH FRUUXJDWHG ZDYHJXLGH ZHUH WKH VDPH DV WKRVH XVH IRU ILJXUH Ef 7UDQVPLVVLRQ VSHFWUD RI DQ $6)3 ILOWHU IRU D FRUUXJDWHG ZDYHJXLGH ORVV RI G%FP VROLGf DQG G%FP GRWWHGf 7XQDEOH $6)3 ILOWHU 7UDQVPLVVLRQ VSHFWUD RI D 7XQDEOH $6)3 ILOWHU IRU VHYHUDO YDOXHV RI WKH PRGH LQGH[ FKDQJH /RQJLWXGLQDO FURVV VHFWLRQ RI D JUDGHGLQGH[ ZDYHJXLGH ZLWK DQ RYHUn OD\LQJ ILOP JUDWLQJ Df ORFDO QRUPDO PRGH LQGH[ SURILOH DORQJ WKH SURSn DJDWLRQ GLUHFWLRQ Ef &RUUXJDWHG ZDYHJXLGH VWUXFWXUH XVHG E\ $GDU HW DO >@ Df /RFDO QRUn PDO PRGH LQGH[ SURILOH RI WKH VWUXFWXUH DORQJ WKH SURSDJDWLRQ GLUHFWLRQ Ef /RFDO QRUPDO PRGH LQGH[ SURILOH RI WKH VWUXFWXUH ZLWK 6L1 RQO\ LQ WKH YDOOH\V RI WKH JUDWLQJ VROLGf DQG ZLWK QR 61 DW DOO GRWWHGf Ff [L

PAGE 12

6LPSOH ULGJH ZDYHJXLGH VWUXFWXUH XVHG WR LOOXVWUDWH D FDVH ZHUH WKH HIIHFWLYH LQGH[ PHWKRG JLYHV WKH ZURQJ QXPEHU RI PRGHV 7KLV ZDYHJn XLGH LV VLQJOH PRGH EXW WKH HIIHFWLYH LQGH[ PHWKRG SUHGLFWV ILYH PRGHV 7KH HIIHFWLYH LQGH[ PHWKRG LV DSSOLHG WR WKH ZDYHJXLGH VWUXFWXUH LQ ILJXUH E\ ILQGLQJ WKH PRGH LQGLFHV RI DV\PPHWULF SODQDU ZDYHJXLGHV ZLWK ILOP WKLFNQHVVHV RI Df DQG + Ef 7KHVH PRGH LQGLFHV DUH DSSOLHG WR D V\PPHWULF ODWHUDOO\ FRQILQHG SODQDU ZDYHJXLGH Ff 7KH PRGH LQGLFHV RI WKH ZDYHJXLGH GHSLFWHG LQ Ff DUH JHQHUDOO\ DFFHSWHG WR EH HTXLYDOHQW WR WKH PRGH LQGLFHV RI WKH VWUXFWXUH LQ ILJXUH 9LHZLQJ WKH SURSRVHG VWUXFWXUH ILJXUH f XSVLGH GRZQ ZH VHH VRPH VLPLODULW\ EHWZHHQ LW DQG WKH VWUXFWXUH LQ ILJXUH ,Q WKLV FDVH WKH UHFWDQJXODU ULGJH LV UHSODFHG E\ D ORZHU UHIUDFWLYH LQGH[ VWULS ORDG ZLWK ODUJHU FURVV VHFWLRQ +LJKLQGH[ VWULSORDGHG ZDYHJXLGH VWUXFWXUH XVHG IRU VSHFWUDO LQGH[ FDOFXODWLRQV 'HSHQGHQFH RI WKH PRGH LQGH[ RI WKH GHYLFH LQ ILJXUH RQ VLOLFRQ VWULS WKLFNQHVV IRU VHYHUDO VWULS ZLGWKV 6FKHPDWLF LOOXVWUDWLRQ RI WKH YROWDJH GURS DFURVV D SODVPD GLVFKDUJH 5,( PDFKLQH XVHG IRU HWFKLQJ WKH GHYLFHV LQ WKLV ZRUN 'LDJUDP RI WKH 5,( V\VWHP SLFWXUHG LQ ILJXUH $ WUHQFK [P ZLGH E\ [P GHHS HWFKHG LQ *D$V $ MP SHULRG JUDWLQJ HWFKHG LQWR *D$V E\ &, 5,( 6FKHPDWLF RI D PXOWLOD\HU PDVN WKDW FDQ EH XVHG IRU YHU\ GHHS 5,( RU WKLFN OLIWRII Df VKRZV WKH VWUXFWXUH MXVW DIWHU GHYHORSLQJ WKH LPDJLQJ OD\HU DQG Ef VKRZV WKH FRPSOHWHG VWUXFWXUH 3LFWXUH RI WKH PXOWLOD\HU SKRWRUHVLVW PDVN IURP DQ RSWLFDO PLFURVFRSH 6(0 SLFWXUH WKH UHVXOW RI HWFKLQJ *D$V XVLQJ D PXOWLOD\HU VWUXFWXUH ZLWKRXW WKH 6L OD\HU DQG QRQRSWLPL]HG HWFKLQJ SDUDPHWHUV 6WDQGDUG IDEULFDWLRQ SURFHVV IRU DQQHDOHG SURWRQ H[FKDQJHG /L1E ZDYHJXLGHV 'LDJUDP RI WKH JUDWLQJ OLWKRJUDSK\ VHWXS 3ORW RI HTXDWLRQ 6HWXS XVHG WR YHULI\ WKH SHULRG DQG PHDVXUH WKH FKLUS RI WKH JUDWLQJV ;OO

PAGE 13

6(0 SLFWXUH RI DQ HWFKHG JUDWLQJ RQ D VLOLFRQ VXEVWUDWH 3LFWXUH RI WZR VWDJHV RI DQ /L1E&! HQGIDFH SROLVK $IWHU SROLVKLQJ ZLWK LP GLDPRQG SDVWH Df DQG DIWHU XVLQJ D FROORLGDO DOXPLQD SROLVKLQJ FRPSRXQG EFf 7KH /L1E2D VXEVWUDWH ERWWRPf ZLWK D WKLQ VLOLFRQ OD\HU RQ WRS RI LW IROORZHG E\ D LP WKLFN OD\HU RI 62 7KH VLOLFRQ OD\HU LV EDUHO\ YLVLEOH LQ WKH SLFWXUH $ERYH WKH 62 OD\HU LV D WKLQ OD\HU RI ZD[ ZKLFK LV WKLFN HQRXJK WR EH YLVLEOH RQO\ LQ Ff WKDW GRHV QRW SROLVK ZHOO $ VLOLFRQ SROLVKLQJ EORFN LV RQ WKH WRS 7KH SLFWXUH ZDV WDNHQ E\ DQ RSWLFDO PLFURVFRSH ZLWK WKH FRQWUDVW HQKDQFHG WR VKRZ DQ\ VFUDWFKHV 'LDJUDP RI WKH VDPSOH KROGHUVKXWWHU DVVHPEO\ Df DQG SLFWXUH Ef RI WKH HEHDP GHSRVLWLRQ V\VWHP &DOFXODWHG DQG PHDVXUHG WUDQVPLVVLRQ RI WZR GLHOHFWULF PLUURUV GHn SRVLWHG E\ WKH V\VWHP VKRZQ LQ ILJXUH Df RQWR JODVV PLFURVFRSH VOLGHV DQG FDOFXODWHG UHIOHFWLRQ RI WKH VDPH VWUXFWXUH Ef ,OO 1HDU ILHOG PHDVXUHPHQW VHWXS &RQWRXU SORWV RI WKH RSWLFDO LQWHQVLW\ SURILOHV IRU WKH ILEHU XSSHU OHIWf DQG ZDYHJXLGHV RI VHYHUDO PDVN ZLGWKV ZLWK D ƒ VLOLFRQ RYHUOD\ ([SHULPHQWDO VHWXS XVHG WR PHDVXUH UHIOHFWLRQ WUDQVPLVVLRQ DQG ORVV RI ZDYHJXLGH GHYLFH VDPSOHV /RVV PHDVXUHPHQWV RI FXW $3(/L1E ZDYHJXLGHV SURWRQ H[FKDQJHG LQ S\URSKRVSKRULF DFLG DW r& IRU PLQXWHV DQG DQQHDOHG IRU KRXUV DW r& IRU WZR VDPSOH OHQJWKV /RVV PHDVXUHPHQWV RI FXW $3(/L1E ZDYHJXLGHV SURWRQ H[FKDQJHG LQ S\URSKRVSKRULF DFLG DW r& IRU PLQXWHV DQG DQQHDOHG IRU KRXUV DW r& IRU WKUHH WKLFNQHVVHV RI VLOLFRQ QRQH ƒ DQG ƒ 6FKHPDWLF GLDJUDP RI WKH SULVP FRXSOHU 0HDVXUHPHQWV RI WKH PRGH LQGH[ RI $3(/L1E ZDYHJXLGHV ZLWK VLOLFRQ RYHUOD\V RI GLIIHUHQW WKLFNQHVVHV 7UDQVPLVVLRQ VSHFWUD RI D LP ZLGH $3(/L7D ZDYHJXLGH RQ WKH ILUVW '%5 FRUUXJDWHG ZDYHJXLGH VDPSOH '%5 f IDEULFDWHG ZLWK WKH KLJKLQGH[ RYHUOD\ WHFKQRORJ\ 7UDQVPLVVLRQ VSHFWUD RI DQ LP ZDYHJXLGH RQ WKH ILUVW $3(/L1E '%5 FRUUXJDWHG ZDYHJXLGH VDPSOH '%5 f ;OOO

PAGE 14

([DFW VROXWLRQ RI WKH PRGH LQGH[ RI WKH ILUVW WKUHH PRGHV RI D SODQDU ZDYHJXLGH ZLWK D FODGGLQJ LQGH[ RI D ILOP LQGH[ RI VLOLFRQf DQG D VXEVWUDWH LQGH[ RI IRU YDU\LQJ ILOP WKLFNQHVVHV DW D ZDYHOHQJWK RI QP 7KH JUDWLQJ QRW RQO\ FDXVHV FRXSOLQJ EHWZHHQ WKH IRUZDUG DQG UHn YHUVH JXLGHG PRGHV EXW DOVR EHWZHHQ WKH IRUZDUG JXLGHG PRGH DQG UHYHUVH UDGLDWLRQ PRGHV 7KH SODQDU KLJKLQGH[ RYHUOD\ DOORZV IRU RQHn GLPHQVLRQDO UDGLDWLRQ ZLWK PRGH LQGLFHV DERYH WKRVH RI WKH FKDQQHO ZDYHJXLGH 7UDQVPLVVLRQ VSHFWUD RI WKH 70 PRGH RI D P ZDYHJXLGH RQ WKH ILUVW 7L/L1E&! '%5 FRUUXJDWHG ZDYHJXLGH VDPSOH '%5 f 7UDQVPLVVLRQ VSHFWUD RI D LP ZDYHJXLGH RQ D '%5 FRUUXJDWHG ZDYHJn XLGH VDPSOH ZLWK D VKRUWHU SHULRG $IWHU WKHVH PHDVXUHPHQWV WKH VLOLFRQ JUDWLQJ ZDV UHPRYHG DQG D QHZ RQH IDEULFDWHG RQ WKH VDPSOH '%5 f 5HIOHFWLRQ VSHFWUD RI D P ZDYHJXLGH RQ DQ $3(/L1E&! '%5 FRUn UXJDWHG ZDYHJXLGH VDPSOH '%5 f &DOFXODWHG DQG PHDVXUHG UHIOHFWLRQ DQG WUDQVPLVVLRQ RI D '%5 FRUn UXJDWHG ZDYHJXLGH ZLWK a SHULRGV $1 [ $ QP DQG D GXW\ F\FOH '%5 f 6(0 SLFWXUH RI D JUDWLQJ RYHU DQ $3(/L1E ZDYHJXLGH 6WUXFWXUH RI VDPSOH $6)3 7KH FDYLW\ LV RI VXIILFLHQW OHQJWK WR DGG HOHFWURGHV 5HIOHFWLRQ VSHFWUD RI WKH VDPSOH FRQILJXUDWLRQ GHSLFWHG LQ ILJXUH $Q H[WHUQDO GLHOHFWULF PLUURU ZDV LQGH[ PDWFKHG DQG EXWWFRXSOHG WR WKH GHYLFH RI ILJXUH 5HIOHFWLRQ VSHFWUD RI WKH VDPSOH ZLWK DQ H[WHUQDO EXWWFRXSOHG PLUURU DV GHSLFWHG LQ ILJXUH 0HDVXUHG DQG FDOFXODWHG WUDQVPLVVLRQ RI WKH GHYLFH LQ ILJXUH $6)3 DIWHU IDEULFDWLQJ WKH HOHFWURGHV 7ZR VHWV RI PHDVXUHG UHVXOWV IRU 9 DQG 9 IRU WKH GHYLFH LQ ILJXUH $ GLHOHFWULF PLUURU ZDV GHSRVLWHG RQ WKH HQG RI D GHYLFH DV VKRZQ &DOFXODWHG DQG PHDVXUHG UHIOHFWLRQ VSHFWUD IRU WKH GHYLFH LQ ILJXUH 6(0 SLFWXUH RI WKH JUDWLQJ SURILOH SURGXFHG RQ D VLOLFRQ VXEVWUDWH E\ 5,( [LY

PAGE 15

&DOFXODWHG UHIOHFWLRQ VSHFWUD RI D '%5 FRUUXJDWHG ZDYHJXLGH ZLWK D GXW\ F\FOH $ JUDWLQJ ZLWK D FXUYHG ORQJLWXGLQDO PRGH LQGH[ SURILOH Df ZDV XVHG WR FDOFXODWH WKH HIIHFW RI D QRQVTXDUH JUDWLQJ RQ WKH UHIOHFWDQFH VSHFWUD Ef 6(0 SLFWXUH RI DQ HWFKHG JUDWLQJ RQ D VLOLFRQ VXEVWUDWH SURGXFHG E\ XQGHU H[SRVXUH 5HIOHFWLRQ VSHFWUD RI D FKLUSHG '%5 FRUUXJDWHG ZDYHJXLGH &RQFHSWXDO GUDZLQJ RI DQ $6)3 GLUHFWLRQDO FRXSOHU $ WXQDEOH (U/L1E VLQJOH ORQJLWXGLQDO PRGH ODVHU $SSOLFDWLRQ RI KLJK LQGH[ RYHUOD\ VWULSV WR UHGXFH UDGLDWLRQ ORVV DW ZDYHJXLGH EHQGV &RQFHSWXDO GUDZLQJ RI D :'0 0X['HPX[ &KLS $O 0DWFK EHWZHHQ WKH PHDVXUHG DQG WKHRUHWLFDO WUDQVPLVVLRQ WKURXJK DQ ƒ WKLFN VLOLFRQ ILOP RQ D JODVV PLFURVFRSH VOLGH DIWHU LWHUDWLRQ RI WKH GLVSHUVLRQ FXUYHV $ &RPSDULVRQ EHWZHHQ WKH NQRZQ GLVSHUVLRQ FXUYHV RI VLQJOH FU\VWDO VLOn LFRQ DQG WKH HEHDP GHSRVLWHG ƒ ILOP $ 0DWFK EHWZHHQ WKH PHDVXUHG DQG WKHRUHWLFDO WUDQVPLVVLRQ WKURXJK D ƒ WKLFN VLOLFRQ ILOP RQ D JODVV PLFURVFRSH VOLGH XVLQJ WKH HEHDP 6L GLVSHUVLRQ FXUYHV LQ ILJXUH $ $ 0DWFK EHWZHHQ WKH PHDVXUHG DQG WKHRUHWLFDO WUDQVPLVVLRQ WKURXJK D ƒ WKLFN VLOLFRQ ILOP RQ D JODVV PLFURVFRSH VOLGH XVLQJ WKH HEHDP 6L GLVSHUVLRQ FXUYHV LQ ILJXUH $ 7KH SRRU UHVXOW LV DWWULEXWHG WR R[LGDWLRQ RI WKH 6L ILOP FDXVHG E\ HYDSRUDWLQJ 62 LPPHGLDWHO\ SULRU WR WKH 6L HYDSRUDWLRQ $ &RPSDULVRQ RI WKH GLVSHUVLRQ FXUYHV RI VLQJOH FU\VWDO VLOLFRQ XQFRQWDPn LQDWHG HEHDP GHSRVLWHG VLOLFRQ DQG FRQWDPLQDWHG HEHDP GHSRVLWHG VLOLFRQ [Y

PAGE 16

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ $ 129(/ 781$%/( ),/7(5 )25 :$9(/(1*7+ ',9,6,21 08/7,3/(;(' &20081,&$7,21 6<67(06 %\ &KULVWRSKHU 3DUNH +XVVHOO $XJXVW &KDLUPDQ 'U 5DPX 9 5DPDVZDP\ 0DMRU 'HSDUWPHQW (OHFWULFDO DQG &RPSXWHU (QJLQHHULQJ 7ZR HVVHQWLDO LQWHJUDWHG RSWLFDO FRPSRQHQWV RI ZDYHOHQJWK GLYLVLRQ PXOWLSOH[HG :'0f V\VWHPV DUH WXQDEOH ODVHUV DQG WXQDEOH ZDYHOHQJWK VHOHFWLYH ILOWHUV ZKLFK ZH DGGUHVV LQ WKLV GLVVHUWDWLRQ ZLWKLQ D FRPPRQ IUDPHZRUN E\ SURSRVLQJ D QHZ FRQFHSW WKDW KDV FRPPHUFLDO SRWHQWLDO &RQYHQWLRQDO )DEU\3HURW ILOWHUV ODFN WKH IUHH VSHFWUDO UDQJH )65f UHTXLUHG LQ :'0 V\VWHPV $ QHZ DSSURDFK WR DFKLHYH WUDQVPLVVLRQ ILOWHUV ZLWK ODUJH )65 WXQDEOH RYHU PDQ\ FKDQQHOV XVLQJ WKH OLQHDU HOHFWURRSWLF HIIHFW LV SURSRVHG %\ VLPSO\ DGGLQJ JDLQ WR WKH ZDYHJXLGH WKLV FRQILJXUDWLRQ LV H[WHQGLEOH DV D WXQDEOH VLQJOH ORQJLWXGLQDO PRGH ODVHU 7KH PRVW VLJQLILFDQW REVWDFOH LQ UHDOL]LQJ WKHVH ILOWHUV LV DFKLHYLQJ KLJKUHIOHFWDQFH FRUUXJDWHG ZDYHJXLGHVf§DQ HVVHQWLDO FRQVLGHUDWLRQ IRU DFKLHYLQJ D XVHIXO ILOWHU 7KH SULPDU\ FRQWULEXWLRQ RI WKLV ZRUN LV WKH QRYHO DSSURDFK XVHG WR DFKLHYH KLJKUHIOHFWDQFH FRUUXJDWHG ZDYHJXLGHV 7KH FRQFHSW LQYROYHV FKDQQHO ZDYHJXLGHV ZLWK SODQDU ILOPV RI KLJKHU UHIUDFWLYH LQGH[ RQ WRS 7KLV LQIOXHQFHV WKH SURSDJDWLRQ FRQVWDQW RI WKH FKDQQHO ZDYHJXLGH PRGH +RZHYHU WKH ILOP GRHV QRW EHFRPH WKH SULPDU\ JXLGLQJ OD\HU WKH PDMRULW\ RI WKH JXLGHG SRZHU UHPDLQV LQ WKH ORZHULQGH[ PDWHULDOf HYHQ IRU D FRQVLGHUDEO\ WKLFN ILOP $ VRPHZKDW VWDUWOLQJ ILQGLQJ LV WKDW SODQDU ILOPV ZLWK WKLFNQHVVHV FDSDEOH RI VXSSRUWLQJ PXOWLSOH SODQDU JXLGHG PRGHV [YL

PAGE 17

GR QRW QHFHVVDULO\ KDYH D PHDVXUDEOH DIIHFW RQ WKH ORVV DQG PRGH ILHOG SURILOH RI WKH FKDQQHO ZDYHJXLGH 7KH HIIHFW RQ WKH SURSDJDWLRQ FRQVWDQW LV VPDOO EXW PHDVXUDEOH 7KLV QHZ WHFKQRORJ\ IRUPV WKH EDVLV RI DQ LGHDO JHRPHWU\ IRU FUHDWLQJ FRUUXJDWHG ZDYHJXLGH GHYLFHV 7KHVH QHZ FRQFHSWV DUH DSSOLHG DQG GHPRQVWUDWHG LQ D PDWHULDO V\VWHP LQ ZKLFK LW LV GLIILFXOW WR DFKLHYH KLJK UHIOHFWDQFH IURP D FRUUXJDWHG ZDYHJXLGHf§/L1E :H FKRRVH WKLV PDWHULDO QRW RQO\ WR SURYH WKH UREXVWQHVV RI WKH QHZ WHFKQRORJ\ EXW EHFDXVH LW LV RQH RI WKH IHZ PDWHULDO V\VWHPV LQ ZKLFK LQWHJUDWHG RSWLFDO FLUFXLW SURGn XFWV DUH FRPPHUFLDOO\ DYDLODEOH 3UHOLPLQDU\ VWUXFWXUHV H[KLELW WKH KLJKHVW UHIOHFWLRQ UHSRUWHG WR GDWH LQ /L1E FRUUXJDWHG ZDYHJXLGHV bf ZLWK DQ RUGHU RI PDJQLn WXGH VKRUWHU OHQJWK PPf WKDQ WKDW KDV UHFHQWO\ EHHQ UHSRUWHG IRU GHYLFHV ZLWK FRPSDUDEOH UHIOHFWLRQ 7KH UHVXOWV RI WKH SURSRVHG ZDYHOHQJWK VHOHFWLYH ILOWHU DUH LQ H[FHOOHQW DJUHHPHQW ZLWK WKH WKHRU\ ;9,,

PAGE 18

&+$37(5 ,1752'8&7,21 2XU PRWLYDWLRQ IRU WKLV GLVVHUWDWLRQ EHJLQV ZLWK D GLVFXVVLRQ RI KRZ ZDYHOHQJWK GLYLVLRQ PXOWLSOH[LQJ LQ RSWLFDO ILEHU FRPPXQLFDWLRQ V\VWHPV FDQ EH XVHG WR PHHW WKH JURZLQJ QHHG IRU KLJKEDQGZLGWK VHUYLFHV 0RVW RI WKH FRPSRQHQWV LQ WKHVH FRPPXn QLFDWLRQ V\VWHPV VXFK DV WXQDEOH ODVHU VRXUFHV H[WHUQDO PRGXODWRUV VWDU FRXSOHUV ILEHU DPSOLILHUV DQG GHWHFWRUV DUH DOUHDG\ FRPPHUFLDOO\ DYDLODEOH 6HYHUDO FRQFHSWV IRU WKH UHPDLQLQJ FUXFLDO FRPSRQHQW WKH WXQDEOH ZDYHOHQJWK VHOHFWLYH ILOWHU KDYH DOVR EHHQ UHSRUWHG KRZHYHU WKH\ DUH HLWKHU XQUHDOL]DEOH IRU FRPPHUFLDO DSSOLFDWLRQV RU LQDGHTXDWH LQ PHHWLQJ WKH QHHGV RI SUDFWLFDO :'0 V\VWHPV :H SURSRVH D QHZ ILOWHU GHYLFH WKDW FDQ PHHW WKH QHHGV RI HYHQ WKH PRVW FRPSOH[ :'0 V\VWHP +RZHYHU WKH SULPDU\ GLIILFXOW\ RI WKLV ILOWHU LV WKDW LW UHTXLUHV D WRWDOO\ QHZ WHFKQRORJ\ WKH IDEULn FDWLRQ RI D KLJK UHIOHFWDQFH FRUUXJDWHG ZDYHJXLGH LQ DQ HOHFWURRSWLF PDWHULDO 7KLV SUREOHP LV DGGUHVVHG DQG D QRYHO ZDYHJXLGH JHRPHWU\ WKDW RYHUFRPHV WKH GLIILFXOWLHV LQKHUHQW WR PRVW RWKHU ZDYHJXLGH JHRPHWULHV DVVRFLDWHG ZLWK KLJK UHIOHFWDQFH FRUUXn JDWHG ZDYHJXLGHV LV SURSRVHG 6HFWLRQ SUHVHQWV WKH RUJDQL]DWLRQ RI WKH HQVXLQJ FKDSWHUV RI WKLV GLVVHUWDWLRQ 0RWLYDWLRQ 7KLV LQIRUPDWLRQ DJH WKDW ZH DUH OLYLQJ LQ QRZ FRQWLQXHV WR GHPDQG PRUH DQG PRUH FRPPXQLFDWLRQV EDQGZLGWK +RZHYHU WKH EDQGZLGWK RI W\SLFDO UHVLGHQWLDO WHOHSKRQH VHUYLFHV KDV UHPDLQHG YLUWXDOO\ WKH VDPH IRU GHFDGHV ,QWHJUDWHG 6HUYLFHV 'LJLWDO 1HWZRUN ,6'1f RIIHUV D PRGHVW LPSURYHPHQW LQ GLJLWDO WUDQVPLVVLRQ UDWHV EXW PXFK

PAGE 19

KLJKHU EDQGZLGWK LV UHTXLUHG LQ RUGHU WR PRYH LQWR D QHZ HUD RI FRPPXQLFDWLRQV DORQJ ZLWK WKH FRQWLQXLQJ DGYDQFHPHQWV RI FRPSXWHU KDUGZDUH WKDW LV SURSHOOLQJ XV LQWR WKLV H[SORVLYH LQIRUPDWLRQ DJH 7KHUH LV JUHDW GHPDQG IRU EURDGEDQG GLVWULEXWLRQ QHWZRUNV VXFK DV &$79 EXW FRQVXPHUV DOVR UHTXLUH VHUYLFHV WKDW FDQ RQO\ EH SURYLGHG E\ WZRZD\ URXWDEOH QHWn ZRUNV 7KHVH EURDGEDQG FRPPXQLFDWLRQ QHWZRUNV DUH WKH NH\ WR WKH IXWXUH RI PDQ\ UHFHQWO\ HPHUJLQJ WHFKQRORJLHV VXFK DV YLGHR RQ GHPDQG YLGHR WHOHFRQIHUHQFHLQJ UHn PRWH PHGLFDO LPDJLQJ KRPH VKRSSLQJ DQG YLUWXDO UHDOLW\ QHWZRUNLQJ MXVW WR QDPH D IHZ 7KHVH WHFKQRORJLHV ZLOO IXUWKHU HQDEOH XV WR PHHW LQ D YLUWXDO ZRUOG WR GLVFXVV DQG VKDUH LGHDV WR FRQGXFW EXVLQHVV WUDQVDFWLRQV DQG WR HPEDUN WRZDUGV QHZ OHYn HOV RI HQWHUWDLQPHQW DOO LQ WKH FRPIRUW RI RXU KRPHV 5HFHQWO\ DOO WKH SURFHVVLQJ VWRUDJH DQG LPDJLQJ WHFKQRORJ\ UHTXLUHG WR GR WKHVH WKLQJV KDV EHFRPH DYDLODEOH DW DIIRUGDEOH SULFHV +RZHYHU WKHVH VHUYLFHV ZLOO EH VHYHUHO\ OLPLWHG XQWLO WKH UHDOL]DWLRQ RI %URDGEDQG ,6'1 ,W LV LQHYLWDEOH WKDW D EURDGEDQG FRPPXQLFDWLRQV HUD LV RQ WKH KRUL]RQ 7KH TXHVWLRQ LV f:KDW LV WKH PRVW HIILFLHQW ZD\ WR UHDOL]H EURDGEDQG FRPPXQLFDWLRQ V\VWHPV"f %DQGZLGWK RI 2SWLFDO )LEHU 7KH TXHVWLRQ MXVW SRVHG LV HDV\ WR DQVZHU EHFDXVH FRQYHQWLRQDO RSWLFDO ILEHU RIIHUV WKH EDQGZLGWK ZH QHHGf§PXFK PRUH WKDQ ZKDW LV SUHVHQWO\ EHLQJ XWLOL]HG 7R GHWHUn PLQH WKH EDQGZLGWK RI DQ RSWLFDO ILEHU ZH UHFDOO WKDW WKH EDQGZLGWK % LV UHODWHG WR WKH VSHFWUDO ZLGWK $$ E\ % $I F$$ $ f

PAGE 20

)LJXUH $WWHQXDWLRQ RI D ORZORVV RSWLFDO ILEHU UHIHUHQFH >@f ZKHUH F DQG $ DUH WKH VSHHG RI OLJKW DQG LWV ZDYHOHQJWK LQ YDFXXP UHVSHFWLYHO\ 7KH WKHRUHWLFDO PD[LPXP ELQDU\ VLJQDOLQJ HIILFLHQF\ LV 5 ELWV 9 aI f % +] VHF 1DWLRQZLGH ILEHURSWLF QHWZRUNV DUH EDVHG XSRQ VLQJOH ZDYHOHQJWK WUDQVPLVVLRQ DW RU UP ZLWK ELW UDWHV RI DERXW 0EV 7KLV GDWD UDWH LV KLJK HQRXJK IRU PRUH WKDQ PXOWLSOH[HG YRLFH RU DERXW YLGHR FKDQQHOV DQG HTXDWLRQV DQG VXJJHVW WKDW WKLV WUDQVPLVVLRQ UDWH FDQ EH FRQWDLQHG ZLWKLQ D VSHFWUDO ZLGWK OHVV WKDQ QP ZKHQ $ LP 7\SLFDO V\VWHPV KRZHYHU UHTXLUH PRUH EDQGZLGWK GXH WR ODVHU FKLUS EXW WKLV FDQ EH DYRLGHG E\ XVLQJ H[WHUQDOFDYLW\ PRGXODWRUV )LJXUH VKRZV WKDW WKH ILEHU SURYLGHV ORZ ORVV UHJLRQV DURXQG WKH ZDYHOHQJWKV RI PL DQG LP WKDW DUH DERXW O22QP ZLGH ,Q SULQFLSOH WKH ILEHU KDV PRUH WKDQ 7+] RI EDQGZLGWK WR RIIHU LQ WKH SP UHJLRQ 7KDW LV WKHRUHWLFDOO\ HQRXJK EDQGZLGWK IRU DERXW KLJK TXDOLW\ XQFRPSUHVVHG YLGHR WUDQVPLVVLRQV 0EV HDFKf 6LQFH WKH RSHUDWLQJ EDQGZLGWK RI ORZFRVW HOHFWURQLFV LV SUHVHQWO\ IDU EHORZ *+] LW DSSHDUV WKDW WKH RQO\ DYDLODEOH PHDQV RI XWLOL]LQJ PRUH RI WKH ILEHU EDQGZLGWK LV WR PRYH WRZDUGV ZDYHOHQJWK GLYLVLRQ PXOWLSOH[LQJ :'0f

PAGE 21

3UDFWLFDO :'0 &RPPXQLFDWLRQ 6\VWHPV )LJXUH VKRZV D VLPSOH :'0 GLVWULEXWLRQ V\VWHP )LUVW PDQ\ HOHFWULFDO FKDQn QHOV DUH PXOWLSOH[HG WRJHWKHU XVLQJ D VFKHPH VXFK DV WLPH GLYLVLRQ PXOWLSOH[LQJ (DFK RI WKRVH DUH XVHG WR H[WHUQDOO\ RU LQWHUQDOO\ PRGXODWH D ODVHU IRU RQH RI WKH ZDYHOHQJWK FKDQQHOV (DFK ODVHU RXWSXW EHFRPHV DQ LQGLYLGXDO RSWLFDO FKDQQHO 7KH RSWLFDO FKDQn QHOV DUH PXOWLSOH[HG WRJHWKHU E\ D VWDU FRXSOHU DQG WKHQ GLVWULEXWHG (DFK UHFHLYHU KDV WKH DELOLW\ WR VHOHFW WKH GHVLUHG RSWLFDO FKDQQHO XVLQJ D QDUURZ EDQGSDVV WXQDEOH RSWLFDO ILOWHU ZLWK KLJK IUHH VSHFWUDO UDQJH $IWHU GHWHFWLRQ WKH HOHFWULFDO VLJQDO LV WKHQ IXUWKHU GHPXOWLSOH[HG IRU WKH XVHU 5HFHQWO\ D FRXSOH RI JURXSV KDYH VXFFHVVIXOO\ GHPRQVWUDWHG WKH IHDVLELOLW\ RI VXFK V\VWHPV ,Q + 7RED HW DO >@ IURP 177 /DERUDWRULHV LQ -DSDQ GHPRQVWUDWHG D FKDQQHO :'0 WUDQVPLVVLRQ V\VWHP DW 0EV RYHU NP 7KH\ KDYH VLQFH H[n WHQGHG WKHLU V\VWHP WR FKDQQHOV RYHU NP XVLQJ HUELXP GRSHG ILEHU DPSOLILHUV (')$Vf >@ $ &KUDSO\Y\ HW DO >@ IURP $7t7 %HOO /DERUDWRULHV GHPRQVWUDWHG D :'0 V\VWHP WUDQVPLWWLQJ RYHU 7EV WKURXJK NP RI ILEHU 7KDW LV HQRXJK EDQGZLGWK IRU DOPRVW XQFRPSUHVVHG KLJK TXDOLW\ YLGHR WUDQVPLVVLRQV ZKLFK LV

PAGE 22

,QSXW :'0 0X['HPX[ &KLS )LJXUH 6LPSOLILHG VFKHPDWLF RI D :'0 ULQJ QHWZRUN DOPRVW DV PDQ\ YLGHR FKDQQHOV DV WRGD\fV V\VWHPV RIIHU IRU YRLFH FRQYHUVDWLRQV %\ XVLQJ QHZO\ GHYHORSHG YLGHR FRPSUHVVLRQ VFKHPHV WKLV ILJXUH FDQ HDVLO\ EH LQFUHDVHG E\ RQH RU WZR RUGHUV RI PDJQLWXGH $OWKRXJK WKHVH H[SHULPHQWV ZHUH FRQGXFWHG DW D ZDYHOHQJWK RI LP WKH\ XWLOL]HG FRQYHQWLRQDO SP ]HUR GLVSHUVLRQ ILEHU 7KLV PHDQV WKDW WKH H[LVWLQJ ILEHU QHWZRUN FDQ EH GUDPDWLFDOO\ HQKDQFHG E\ VLPSO\ UHn SODFLQJ WUDQVPLWWHU UHFHLYHU DQG UHSHDWHU KDUGZDUH LQVWHDG RI OD\LQJ WKRXVDQGV RI PLOHV RI QHZ ILEHU 7KHVH FRQFHSWV DUH H[SHFWHG WR EH DSSOLHG WR ULQJ QHWZRUNV ZKHUH HDFK VXEVFULEHU FDQ WUDQVPLW DQG UHFHLYH GDWD RQ D QHWZRUN )LJXUH VKRZV D VLPSOLILHG GLDJUDP RI DQ RSWLFDO :'0 ULQJ QHWZRUN ZKLFK LV WKHQ URXWHG WR D ZLGH DUHD QHWZRUN :$1f 7KH H[SDQGHG YLHZ LQ WKH LQVHW RI ILJXUH VKRZV D FRQFHSWXDO YLHZ RI WKH RSWLFDO

PAGE 23

KDUGZDUH RI RQH RI WKH VXEVFULEHUV WR WKH ULQJ ,Q WKLV FDVH HDFK VXEVFULEHU KDV D WXQDEOH ODVHU GLRGH DQG D :'0 PXOWLSOH[LQJGHPXOWLSOH[LQJ FKLS 7KH WXQDEOH ODVHU DOORZV WKH VXEVFULEHU WR WUDQVPLW LQIRUPDWLRQ RQ DQ\ RI WKH ZDYHOHQJWK FKDQQHOV 7KH SXUSRVH RI WKH :'0 PXOWLSOH[LQJGHPXOWLSOH[LQJ FKLS LV WKUHHIROG H[WUDFW DOO WKH RSWLFDO SRZHU RI RQO\ WKH GHVLUHG FKDQQHO IURP WKH ILEHU RSWLF EXV URXWH WKH UHVW RI WKH FKDQQHOV EDFN RQWR WKH EXV IRU RWKHU VXEVFULEHUV DQG UHWUDQVPLW D QHZ VLJQDO IURP WKH WXQDEOH ODVHU WXQHG WR WKH VDPH ZDYHOHQJWK FKDQQHO DV WKH ILOWHU ,Q WKLV VLPSOLILHG FRQFHSWXDO V\VWHP WR SUHYHQW LQWHUIHUHQFH RI VLJQDOV IURP GLIIHUHQW VRXUFHV LW ZRXOG EH QHFHVVDU\ IRU WKH ODVHU DQG ILOWHU WR EH WXQHG WR WKH VDPH IUHTXHQF\ FKDQQHO DQG IRU WKH ILOWHU WR H[WUDFW PRVW RI WKH LQSXW OLJKW LQ WKDW FKDQQHO SHUKDSV ZLWK G% RU OHVV WUDQVPLWWHGf 0DQ\ HVVHQWLDO FRPSRQHQWV RI :'0 V\VWHPV VXFK DV WXQDEOH VHPLFRQGXFWRU ODVHU GLRGHV H[WHUQDO PRGXODWRUV ZDYHJXLGH FRXSOHUV GHWHFWRUV DQG (')$V DUH FRPn PHUFLDOO\ DYDLODEOH +RZHYHU FRPPHUFLDOO\ YLDEOH WHFKQRORJLHV IRU ILOWHUV RI GHQVHO\ VSDFHG :'0 V\VWHPV DUH \HW WR EH UHSRUWHG $V ZLOO EH GLVFXVVHG EHORZ WKH ILOWHUV XVHG LQ SUHYLRXV V\VWHPV > @ GR QRW PHHW DOO RI WKH UHTXLUHPHQWV RI D SUDFWLFDO V\VWHP :DYHOHQJWK 6HOHFWLYH ,2&V 6R IDU ZH KDYH SUHVHQWHG D PRWLYDWLRQ IRU :'0 DV D UHDOLVWLF PHDQV RI REWDLQLQJ YHU\ KLJK EDQGZLGWK FRPPXQLFDWLRQ V\VWHPV &UXFLDO WR WKH UHDOL]DWLRQ RI :'0 LQ FRPPHUFLDO FRPPXQLFDWLRQ V\VWHPV LV WKH DGYHQW RI SUDFWLFDO ZDYHOHQJWK VHOHFWLYH LQWHJUDWHG RSWLFDO FLUFXLW ,2&f ILOWHUV 0DQ\ ZDYHOHQJWK VHOHFWLYH ,2& ILOWHU GHVLJQV KDYH EHHQ UHSRUWHG IRU :'0 DSSOLFDWLRQV EXW IHZ DUH DGHTXDWH IRU GHQVHO\ VSDFHG :'0 7\SLFDOO\ WKH GHYLFHV DUH YHU\ ORQJ KDYH UDWKHU EURDG SDVVEDQG VSHFWUD UHTXLUH KLJK SRZHU DQG RIWHQ LQYROYH FRPSOH[ IDEULFDWLRQ SURFHVVHV 7KH UHPDLQGHU RI

PAGE 24

RXU PRWLYDWLRQ ZLOO GLVFXVV VRPH RI WKH PRVW FRPPRQ GHVLJQV RI ZDYHOHQJWK VHOHFWLYH ,2& ILOWHUV UHSRUWHG LQ WKH OLWHUDWXUH 7KH SLWIDOOV RI WKHVH GHYLFHV DV WKH\ DSSO\ WR GHQVHO\ VSDFHG :'0 V\VWHPV ZLOO EH GLVFXVVHG 7KHQ WKH JRDOV RI WKLV UHVHDUFK ZRUN ZLOO EH SUHVHQWHG LQ VHFWLRQ DV LW SUHVHQWV D SURSRVDO IRU D QHZ ZDYHOHQJWK VHOHFWLYH ,2& ILOWHU PRUH VXLWDEOH IRU GHQVHO\ VSDFHG :'0 V\VWHPV $FRXVWLFDOO\ 7XQDEOH 2SWLFDO )LOWHU )LJXUH VKRZV D GLDJUDP RI D SRODUL]DWLRQ LQVHQVLWLYH DFRXVWLFDOO\ WXQDEOH RSn WLFDO ILOWHU $72)f >@ 7KH WZR ZDYHJXLGH SRODUL]DWLRQV DUH ILUVW VHSDUDWHG E\ D SRODUL]DWLRQ VSOLWWHU DQG IHG WKURXJK WZR LGHQWLFDO ZDYHJXLGHV WKDW DUH XQGHU WKH LQIOXHQFH RI D VXUIDFH DFRXVWLF ZDYH 6$:f :LWKLQ D QDUURZ EDQG RI ZDYHOHQJWKV WKH GLIIHUHQFH EHWZHHQ WKH SURSDJDWLRQ FRQVWDQWV RI WKH 7( DQG 70 PRGHV HTXDOV WKH SURSDJDWLRQ FRQVWDQW RI WKH 6$: DQG WKH WZR PRGHV FDQ WKHQ FRXSOH 7KH $72) LV RIWHQ UHJDUGHG DV RQH RI WKH PRVW SURPLVLQJ ILOWHUV IRU :'0 V\Vn WHPV EHFDXVH LW FDQ HDVLO\ EH PDGH SRODUL]DWLRQ LQVHQVLWLYH LW LV WXQDEOH RYHU PRUH WKDQ O22QP DQG LW FDQ URXWH PDQ\ FKDQQHOV DW RQH WLPH E\ FUHDWLQJ D 6$: ZLWK PXOWLSOH IUHTXHQF\ FRPSRQHQWV +RZHYHU WKH $72) LV QRW VXLWDEOH IRU V\VWHPV VXFK

PAGE 25

DV WKRVH LQ WKH PRVW QRWDEOH GHPRQVWUDWLRQV RI :'0 V\VWHPV > @ 7KLV LV SULPDULO\ EHFDXVH WKH SDVVEDQG LV WRR EURDG aOQPf (TXDWLRQ VKRZV WKDW OQP EDQGZLGWK FRUUHVSRQGV WR D *+] FKDQQHO DW $ [P 7KLV LV WKHRUHWLFDOO\ HQRXJK EDQGZLGWK IRU D FKDQQHO FDSDFLW\ RI RYHU *EV 6LQFH HYHQ YHU\ H[SHQn VLYH HOHFWURQLF DQG HOHFWURRSWLF KDUGZDUH SUHVHQWO\ FDQQRW DFKLHYH WKHVH UDWHV WKH $72) ZRXOG UHVXOW LQ ZDVWHG EDQGZLGWK 7KH $72) PDNHV XS IRU WKLV GHILFLHQF\ E\ KDYLQJ D YHU\ EURDG WXQLQJ UDQJH EXW FXUUHQWO\ DYDLODEOH WXQDEOH VHPLFRQGXFWRU ODVHUV DQG ODVHU DUUD\V H[FOXGLQJ H[WHUQDO FDYLW\ ODVHUVf FDQ RQO\ RSHUDWH ZLWKLQ D ZDYHOHQJWK UDQJH RI RQO\ D IHZ QDQRPHWHUV 7KHUHIRUH D ILOWHU ZLWK D YHU\ QDUURZ SDVVEDQG LV QHHGHG WR PRUH IXOO\ XWLOL]H WKH EDQG RI ZDYHOHQJWKV ZLWKLQ WKH WXQLQJ UDQJH RI FRPPHUFLDO ODVHUV 2WKHU GLVDGYDQWDJHV RI WKH $72) DUH WKDW LW LV VHYHUDO FHQWLPHWHUV ORQJ DQG UHTXLUHV KLJK SRZHU WR JHQHUDWH WKH VXUIDFH DFRXVWLF ZDYH 6$:f W\SLFDOO\ PRUH WKDQ O22P: ,Q WXUQ WKH UHTXLUHPHQW IRU KHDW GLVVLSDWLRQ FDQ PDNH LW GLIILFXOW WR PDLQWDLQ VWDEOH RSHUDWLRQ 5HFHQWO\ VLJQLILFDQW DGYDQFHV KDYH EHHQ PDGH WR PDLQWDLQ WHPSHUDWXUH VWDELOLW\ LQ D FRPPHUFLDO GHYLFH >@ &DVFDGHG )LOWHUV 7KH V\VWHPV GHPRQVWUDWHG LQ UHIHUHQFHV > @ XVHG FDVFDGHG WXQDEOH EDQGn SDVV ILOWHUV $ FDVFDGH RI WKUHH ILOWHUV ZDV XVHG LQ UHIHUHQFH >@ WR DFKLHYH D QP IXOO ZLGWK KDOI PD[LPXP ):+0f SDVVEDQG 7KLV SURYLGHG HQRXJK EDQGZLGWK IRU D ELW UDWH RI RYHU *EV DOWKRXJK RQO\ *EV ZDV DFKLHYHG 7KH ILOWHU FDVFDGH XVHG LQ UHIHUHQFHV > @ KDG D PXFK QDUURZHU EDQGZLGWK RI QP *+]f ZKLFK FRUUHVSRQGHG WR WKH EDQGZLGWK RI WKH IUHTXHQF\ VKLIW NH\HG )6.f RSWLFDO VLJQDO WKH\ XVHG 7KLV ILOWHU FRQVLVWHG RI D FDVFDGH RI VHYHQ 0DFK=HKQGHU ILOWHUV )LJXUH VKRZV D GLDJUDP RI D VLPLODU GHYLFH ZLWK RQO\ WKUHH

PAGE 26

,QSXW ?-$ VKLIW )LOWHUHG f§ 8QILOWHUHG $ VKLIW )LJXUH 5HVRQDQW JUDWLQJ DVVLVWHG GLUHFWLRQDO FRXSOHU ILOWHU 0DFK=HKQGHU ILOWHUV 7KH WRWDO GHYLFH OHQJWK ZDV DERXW FP ZKLFK UHTXLUHG D FKLS VL]H RI [ FP $OWKRXJK LW ZDV QRW PHQWLRQHG LW LV UHDVRQDEOH WR DVVXPH WKDW WKH ILOWHU ZDV IDEULFDWHG DURXQG WKH SHULPHWHU RI WKH FKLS 7KH SRODUL]DWLRQ GHSHQGHQFH RI HDFK 0DFK=HKQGHU ILOWHU ZDV FRPSHQVDWHG XVLQJ D ODVHU WULPPLQJ WHFKQLTXH 1RW RQO\ LV WKLV D YHU\ ORQJ GHYLFH ZKLFK ZRXOG EH YHU\ GLIILFXOW DQG FRVWO\ WR PDVV SURGXFH EXW HDFK RI WKH 0DFK=HKQGHU VWDJHV PXVW EH LQGLYLGXDOO\ FRQWUROOHG WR DFKLHYH ZDYHOHQJWK VHOHFWLRQ 5HVRQDQW 2SWLFDO 'LUHFWLRQDO &RXSOHU 7KH UHVRQDQW RSWLFDO GLUHFWLRQDO FRXSOHU 52'&f SURSRVHG E\ .D]DULQRY HW DO >@ LV VKRZQ LQ ILJXUH LV D PRGLILFDWLRQ RI WKH RULJLQDO SURSRVDO E\ +DXV HW DO >@ 7KH VWUXFWXUH FRQVLVWV RI WZR ZDYHJXLGH )DEU\3HURW LQWHUIHURPHWHUV ZLWK ]HUROHQJWK

PAGE 27

FDYLWLHV TXDUWHUZDYH VKLIWHG JUDWLQJVf FRXSOHG WR D FHQWHU ZDYHJXLGH WKDW DFWV DV WKH VLJQDO WUDQVPLVVLRQ EXV /LJKW FRXSOHV RXW RI WKH XSSHU JUDWLQJ ZDYHJXLGH RQO\ DW ZDYHOHQJWKV IRU ZKLFK WKH )DEU\3HURW ZDYHJXLGH LV UHVRQDQW 7KH VHFRQG )DEU\ 3HURW ZDYHJXLGH EHORZ WKH FHQWHU ZDYHJXLGH SHUPLWV D FRPSOHWH SRZHU WUDQVIHU WR WKH ILOWHUHG RXWSXW RI WKH WRS ZDYHJXLGH DW WKH UHVRQDQW IUHTXHQF\ LI ERWK )DEU\ 3HURW ZDYHJXLGHV DUH UHVRQDQW DW WKH VDPH ZDYHOHQJWK :LWKRXW WKH VHFRQG UHVRQDQW ZDYHJXLGH RQO\ KDOI RI WKH SRZHU DW WKH UHVRQDQW ZDYHOHQJWK ZRXOG EH FRXSOHG WR WKH ILOWHUHG RXWSXW FKDQQHO ZLWK D TXDUWHU RI LW EHLQJ WUDQVPLWWHG WR WKH XQILOWHUHG RXWSXW DQG WKH RWKHU TXDUWHU EHLQJ UHIOHFWHG WR WKH VRXUFH 7KH WKHRUHWLFDO GHYLFH WUDQVPLVVLRQ FKDUDFWHULVWLF LV YHU\ QDUURZ a 2OQPf EXW KDV \HW WR EH DGHTXDWHO\ GHPRQVWUDWHG 7KH ILUVW DWWHPSW DW GHPRQVWUDWLQJ D VLPn LODU GHYLFH ZLWKRXW WKH ORZHU UHVRQDQW ZDYHJXLGH ZDV UHSRUWHG LQ UHIHUHQFH >@ LQ *D$V$O*D$V 7KH WKHRUHWLFDO UHVSRQVH RI WKH 52'& LQGLFDWHV WKDW LW LV ZHOO VXLWHG IRU :'0 DSSOLFDWLRQV EXW WKHUH DUH WZR IXQGDPHQWDO OLPLWDWLRQV IRU ZKLFK QR VROXn WLRQV KDYH EHHQ UHSRUWHG LW UHTXLUHV H[FHOOHQW '%5 FRUUXJDWHG ZDYHJXLGHV DQG KDV D QDUURZ VWRSEDQG W\SLFDOO\ a QPf 7KH QHZ LQQRYDWLRQV LQ ZDYHJXLGH JUDWLQJ IDEULFDWLRQ DQG WKH FRQFHSWV WKDW DUH SUHVHQWHG LQ WKLV GLVVHUWDWLRQ PD\ SURYH WR EH LQYDOXDEOH WRZDUGV FLUFXPYHQWLQJ WKH OLPLWDWLRQV RI WKH 52'& DQG XOWLPDWHO\ UHDOL]LQJ DQ HOHFWURRSWLFDOO\ WXQDEOH 52'& DV ZHOO DV RWKHU )DEU\3HURW ILOWHUV WKDW DUH VXLWDEOH IRU :'0 7KH ILOWHU ZH SURSRVH LV D )DEU\3HURW ZDYHJXLGH VWUXFWXUH WKDW FDQ EH XVHG LQ WKH 52'& WR H[WHQG LWV VWRSEDQG VHH VHFWLRQ f 6HFWLRQ ZLOO LQWURGXFH D QHZ ZDYHJXLGH JHRPHWU\ ZHOO VXLWHG WR PDNH KLJK UHIOHFWLRQ FRUUXJDWHG ZDYHJXLGHV LQ FRPPHUFLDOO\ YLDEOH HOHFWURRSWLF PDWHULDOV VXFK DV /L1E

PAGE 28

$ 1HZ :DYHOHQJWK 6HOHFWLYH 7XQDEOH )LOWHU $ ZDYHOHQJWK VHOHFWLYH ILOWHU PRVW VXLWDEOH IRU GHQVHO\ VSDFHG :'0 V\VWHPV VKRXOG KDYH D YHU\ QDUURZ SDVVEDQG a 22OQPf D YHU\ EURDG VWRSEDQG O22QPf DQG D KLJK H[WLQFWLRQ UDWLR G%f 7KH QDUURZ SDVVEDQG LV DGHTXDWH IRU PRGHUDWH ELW UDWHV *EVf DQG HQDEOHV WKH ILEHU EDQGZLGWK WR EH XWLOL]HG PRUH HIILFLHQWO\ DV WKH ZDYHOHQJWK FKDQQHOV DUH GHQVHO\ VSDFHG 7KH EURDG VWRSEDQG DQG KLJK H[WLQFn WLRQ UDWLR DOORZV D UHFHLYHU ZLWK D GLVFULPLQDQW VLJQDO GHWHFWLRQ VFKHPH WR LVRODWH RQH RI WKH ZDYHOHQJWK FKDQQHOV ZLWKRXW FURVVWDON 2WKHU GHVLUDEOH DVSHFWV RI D WXQDEOH ZDYHOHQJWK VHOHFWLYH ILOWHU DUH WKH DELOLW\ WR RSHUDWH DW KLJK VSHHG ZLWK ORZ HOHFWULFDO SRZHU D VLPSOH ELDVLQJ VFKHPH DQG IHZ FRQWUROOHUV ,Q RUGHU IRU WKH GHYLFH WR EH FRPPHUFLDOO\ SUDFWLFDO LW VKRXOG EH DV FRPSDFW DV SRVVLEOH DQG EH PDQXIDFWXUHG ZLWK VWDQGDUG PLFURHOHFWURQLFV WHFKQRORJ\ 0RVW ZDYHOHQJWK VHOHFWLYH ILOWHUV UHSRUWHG WR GDWH LQFOXGLQJ DOO RI WKRVH GHVFULEHG LQ VHFWLRQ ODFN RQH RU PRUH RI WKH DERYH UHTXLUHPHQWV :H SURSRVH D QHZ ILOWHU VFKHPH WKDW KDV WKH SRWHQWLDO WR VDWLVI\ DOO WKHVH UHTXLUHPHQWV )LJXUH VKRZV WKH SURSRVHG ILOWHU VWUXFWXUH ,W FRQVLVWV RI D FRUUXJDWHG ZDYHJn XLGH WKDW H[KLELWV KLJK UHIOHFWDQFH LQ D QDUURZ ZDYHOHQJWK VSHFWUXP LQ FDVFDGH ZLWK D EURDGEDQG KLJK UHIOHFWDQFH PLUURU GHSRVLWHG RQ WKH HQGIDFH 7KH UHIOHFWLRQ VSHFWUD RI WKHVH WZR PLUURUV LV VKRZQ LQ ILJXUH 7KH UHIOHFWLRQ EDQG RI WKH FRUUXJDWHG ZDYHJXLGH LV VKRZQ DV D VKDUS VSLNH LQ ILJXUH Df &RPSDULQJ WKH ZLGWK RI WKH UHIOHFWLRQ EDQGV RI WKH GLHOHFWULF PLUURU IURP WKH SORW LQ ILJXUH Df ZLWK WKDW RI WKH FRUUXJDWHG ZDYHJXLGH LQ WKH H[SDQGHG YLHZ LQ ILJXUH Ef ZH VHH WKDW WKH UHIOHFn WLRQ EDQG RI WKH GLHOHFWULF PLUURU LV RYHU WKUHH RUGHUV RI PDJQLWXGH ZLGHU WKDQ WKDW RI WKH FRUUXJDWHG ZDYHJXLGH 7KHVH WZR PLUURUV IDEULFDWHG LQ FDVFDGH FRQVWLWXWH DQ DV\PPHWULF )DEU\3HURW $6)3f LQWHUIHURPHWHU :H XVH WKH WHUP f$V\PPHWULFf WR

PAGE 29

)LJXUH 3URSRVHG 7XQDEOH :DYHOHQJWK 6HOHFWLYH )LOWHU UHIHU WR WKH XVH RI WZR PLUURUV ZLWK YDVWO\ GLIIHUHQW UHIOHFWLRQ VSHFWUD DV RSSRVHG WR WKH FRQYHQWLRQDO FDVH ZKHUH WZR VLPLODU PLUURUV DUH XVHG 7KH WZR FRQYHQWLRQDO FDVHV RI ZDYHJXLGH )DEU\3HURW ILOWHUV ZKHUH VLPLODU PLUURUV DUH XVHG RQ ERWK HQGV DUH QRW DGHTXDWH IRU :'0 )RU WKH FDVH ZKHUH WZR GLHOHFWULF PLUURUV DUH VHSDUDWHG E\ D FDYLW\ WKHUH H[LVW PDQ\ WUDQVPLVVLRQ SHDNV 7KH XVH RI WZR FRUUXJDWHG ZDYHJXLGHV VHSDUDWHG E\ D FDYLW\ PD\ H[KLELW D VLQJOH WUDQVPLVVLRQ SHDN EXW WKH VWRSEDQG LV YHU\ QDUURZ ,W ZLOO EH VKRZQ WKDW WKH SURSRVHG VWUXFn WXUH LQ ILJXUH XWLOL]HV WKH GHVLUDEOH FKDUDFWHULVWLFV RI ERWK PLUURUV D YHU\ EURDG VWRSEDQG FRQWULEXWHG E\ WKH GLHOHFWULF HQGIDFH PLUURU DQG WKH VHOHFWLRQ RI RQO\ RQH WUDQVPLVVLRQ SHDN E\ WKH QDUURZ UHIOHFWLRQ EDQG RI WKH FRUUXJDWHG ZDYHJXLGH PLUURU 7KH UHVXOWLQJ WUDQVPLVVLRQ VSHFWUD FRQVLVWV RI D VLQJOH WUDQVPLVVLRQ SHDN ZLWK DQ H[WUHPHO\ KLJK IUHH VSHFWUDO UDQJH )65f ,W ZLOO EH VKRZQ WKDW E\ XVLQJ WKH HOHFWURn RSWLF HIIHFW YLD DQ DSSURSULDWH HOHFWURGH VFKHPH WKH WUDQVPLVVLRQ SHDN FDQ EH VKLIWHG WR DFFRPPRGDWH PDQ\ ZDYHOHQJWK FKDQQHOV LQ D :'0 V\VWHP 7KH UHDGHU LV UHIHUUHG WR FKDSWHU IRU D GHWDLOHG H[SODQDWLRQ RI WKLV ILOWHU VWUXFWXUH :H GHPRQVWUDWH WKH

PAGE 30

:DYHOHQJWK QPf 2 2 Ef ‘ 'LHOHFWULF 0LUURU &RUUXJDWHG :DYHJXLGH ? r \ :DYHOHQJWK QPf )LJXUH &RPSDULVRQ RI WKH UHIOHFWLRQ VSHFWUD RI D GLHOHFWULF HQGIDFH PLUURU DQG D FRUUXJDWHG ZDYHJXLGH Df VKRZV WKDW WKH UHIOHFWLRQ EDQG RI D FRUUXJDWHG ZDYHJXLGH LV YHU\ QDUURZ FRPSDUHG WR WKH VSHFWUD RI WKH GLHOHFWULF PLUURU Ef VKRZV DQ H[SDQGHG YLHZ RI WKH FRUUXJDWHG ZDYHJXLGH VSHFWUD

PAGE 31

H[SHULPHQWDO UHVXOWV RI WKH SURSRVHG ILOWHU LQ D YHU\ SUDFWLFDO DQG PDWXUH PDWHULDO V\VWHP /L1E $ UHDGHU IDPLOLDU ZLWK GLVWULEXWHG IHHGEDFN ')%f ODVHUV ZLOO UHFRJQL]H WKH $6)3 ILOWHU DV D FRPPRQO\ XVHG VWUXFWXUH IRU ORZ WKUHVKROG ')% ODVHUV 7KH VWUXFWXUH LV WKH VDPH H[FHSW WKH ILOWHU GRHV QRW KDYH D JDLQ PHGLXP DQG XVHV WKH HOHFWURRSWLF HIIHFW IRU WXQDELOLW\ +RZHYHU UHTXLUHPHQWV WKH WZR GHYLFHV KDYH RQ WKH UHVRQDQW VWUXFWXUH DUH YHU\ GLIIHUHQW 7KLV ZLOO EH DGGUHVVHG LQ VHFWLRQ 7KLV ZRUN SURSRVHV WKDW WKH $6)3 VWUXFWXUH EH XVHG DV D SDVVLYH ILOWHU fSDVVLYHf UHIHUV WR WKH ODFN RI D JDLQ PHGLXPf )XUWKHUPRUH LW LV VKRZQ KRZ WKH ILOWHU FDQ EH WXQHG E\ D VLPSOH HOHFWURGH VFKHPH XWLOL]LQJ WKH OLQHDU HOHFWURRSWLF HIIHFW 7KH PRGHOLQJ RI WKLV GHYLFH DV ZHOO DV WKH H[SHULPHQWDO UHVXOWV DUH SUHVHQWHG $ 1RYHO :DYHJXLGH 7HFKQRORJ\ 7KH $6)3 ILOWHU SURSRVHG LQ WKLV ZRUN UHTXLUHV WZR KLJKUHIOHFWDQFH PLUURUV )RU GHFDGHV KLJK UHIOHFWDQFH GLHOHFWULF PLUURUV KDYH EHHQ DYDLODEOH &RUUXJDWHG ZDYHJn XLGHV KDYH EHHQ VWXGLHG IRU RYHU WZR GHFDGHV EXW KLJKUHIOHFWDQFH ORZORVV FRUUXJDWHG ZDYHJXLGHV KDYH \HW WR EH GHPRQVWUDWHG LQ D PDWHULDO V\VWHP VXLWDEOH IRU PDNLQJ WKH WXQDEOH $6)3 ILOWHU ,Q OLJKW RI WKH IDLOXUH RI FRQYHQWLRQDO PHWKRGV WR SURGXFH KLJK UHIOHFWDQFH FRUUXn JDWHG ZDYHJXLGHV VXFK DV HWFKLQJ JUDWLQJV LQWR WKH ZDYHJXLGH RU EXIIHU OD\HU D QHZ ZDYHJXLGH JHRPHWU\ LV SURSRVHG DQG GHYHORSHG )LJXUH VKRZV WKH WUDQVYHUVH FURVV VHFWLRQ RI WKH ZDYHJXLGH ,W FRQVLVWV RI D FRQYHQWLRQDO JUDGHGLQGH[ FKDQQHO ZDYHJn XLGH ZLWK DQ RYHUOD\ RI KLJKHU UHIUDFWLYH LQGH[ PDWHULDO $ JUDWLQJ LQ WKLV PDWHULDO ILJXUH f FDQ EH XVHG WR FUHDWH D FRQVLGHUDEO\ PRUH SHUWXUEDWLRQ WR WKH ZDYHJXLGH PRGH WKDQ FRQYHQWLRQDO FRUUXJDWHG ZDYHJXLGHV ZLWKRXW SURGXFLQJ H[FHVVLYH VFDWWHUn LQJ ORVV 7KLV LV QHFHVVDU\ WR DFKLHYH KLJK UHIOHFWDQFH DQG ORZ ORVV 2I FRXUVH WKHUH

PAGE 32

*UDGHGLQGH[ +LJKLQGH[ ZDYHJXLGH RYHUOD\ )LJXUH 7UDQVYHUVH FURVV VHFWLRQ RI D JUDGHGLQGH[ FKDQQHO ZDYHJXLGH ZLWK DQ RYHUOD\LQJ ILOP RI UHIUDFWLYH LQGH[ QHDU RU KLJKHU WKDQ WKH FRUH RI WKH ZDYHJXLGH *UDGHGLQGH[ +LJKLQGH[ ZDYHJXLGH JUDWLQJ RYHUOD\ )LJXUH /RQJLWXGLQDO FURVV VHFWLRQ RI D '%5 FRUUXJDWHG ZDYHJXLGH PDGH IURP D KLJKLQGH[ RYHUOD\

PAGE 33

LV DOZD\V D WUDGHRII EHWZHHQ WKH SHUWXUEDWLRQ DQG UDGLDWLRQ ORVV EXW WKH EHQHILW RI XVLQJ WKLV ZDYHJXLGH JHRPHWU\ LV WKDW PRUH SHUWXUEDWLRQ FDQ EH DFKLHYHG ZLWK OHVV UDGLDWLRQ ORVV $ GHWDLOHG GHVFULSWLRQ RI RXU ZDYHJXLGH JHRPHWU\ ZLOO EH SUHVHQWHG &RPPHUFLDOO\ YLDEOH PDWHULDOV DQG ZDYHJXLGH WHFKQRORJLHV DUH XVHG IRU RXU H[n SHULPHQWDO GHPRQVWUDWLRQ /L1E2D LV FKRVHQ DV WKH VXEVWUDWH PDWHULDO EHFDXVH LW LV FXUUHQWO\ WKH PDWHULDO V\VWHP SULPDULO\ XVHG LQ WKH LQGXVWU\ IRU VWDWHRIWKHDUW SDVn VLYH ,2& GHYLFHV :DYHJXLGHV DUH PDGH E\ HLWKHU DQQHDOHG SURWRQ H[FKDQJH $3(f RU WLWDQLXP LQGLIIXVLRQ 6LOLFRQ LV FKRVHQ DV WKH RYHUOD\ QRW RQO\ EHFDXVH RI LWV KLJK UHIUDFWLYH LQGH[ EXW DOVR EHFDXVH LW LV RSDTXH WR YLVLEOH OLJKW LV HDVLO\ GHSRVLWHG E\ HEHDP HYDSRUDWLRQ LV HDVLO\ HWFKHG E\ UHDFWLYH LRQ HWFKLQJ 5,(f DQG FDQ VFUHHQ S\URHOHFWULFDOO\ JHQHUDWHG VXUIDFH FKDUJHV :H ZLOO FRYHU WKHVH EHQHILWV LQ GHWDLO $ VRPHZKDW VWDUWOLQJ GLVFRYHU\ ZDV PDGH GXULQJ WKH FRXUVH RI WKH LQYHVWLJDWLRQ DQG FKDUDFWHUL]DWLRQ RI WKH VWUXFWXUH ZKHQ D SODQDU ILOP RI KLJKLQGH[ VLOLFRQ ZLWK WKLFNQHVV ODUJH HQRXJK WR VXSSRUW PXOWLSOH SODQDU PRGHV LV GHSRVLWHG RQ WKH VXUIDFH RI D VLQJOHPRGH FKDQQHO ZDYHJXLGH LQ /L1E WKH UHVXOWLQJ FKDQQHO ZDYHJXLGH PD\ VWLOO VXSSRUW RQO\ D VLQJOH PRGH )XUWKHUPRUH LQ FRQWUDVW WR SODQDU ZDYHJXLGHV DORQH D FRPSDUDEO\ VPDOO DPRXQW RI RSWLFDO SRZHU LV GUDZQ XS LQWR WKH VLOLFRQ OD\HU WKH PRGH LQGH[ LQFUHDVHV E\ D VPDOO DPRXQW DQG WKH SURSDJDWLRQ ORVV UHPDLQV ORZ 7KLV LV H[DFWO\ ZKDW LV UHTXLUHG WR PDNH JRRG FRUUXJDWHG ZDYHJXLGHV ORZ SURSDJDWLRQ DQG PLVPDWFK ORVVHV ZLWK YHU\ OLWWOH FKDQJH LQ WKH PRGH ILHOG SURILOH 5LE ZDYHJXLGHV FRQVLVWLQJ RI SODQDU ILOPV ZLWK WKLFNQHVVHV FDSDEOH RI VXSSRUWLQJ PXOWLSOH PRGHV KDYH DOUHDG\ EHHQ VKRZQ WR SURGXFH VLQJOHPRGH ZDYHJXLGHV E\ 6RUHI HW DO >@ +RZHYHU WKH SUHVFULEHG FRQFHSW LQ WKLV GLVVHUWDWLRQ JRHV RQH VWHS IXUWKHU DV LW DSSOLHV WR ZDYHJXLGHV RI PXFK ORZHU UHIUDFWLYH LQGH[ WKDQ WKH SODQDU OD\HU )XUWKHUPRUH WKH SURSRVHG ZDYHJXLGH JHRPHWU\ LV PXFK PRUH SUDFWLFDO EHFDXVH LW LV

PAGE 34

DSSOLFDEOH WR JUDGHGLQGH[ FKDQQHO ZDYHJXLGHV PDGH E\ $3( RU WLWDQLXP LQGLIIXVLRQ ZKLFK KDYH SURYHG WR EH FRPPHUFLDOO\ YLDEOH WHFKQRORJLHV ,W ZLOO EH VKRZQ LQ WKDW FRPPRQO\XVHG WKHRUHWLFDO HVWLPDWLRQV RI WKH SURSDJDWLRQ FRQVWDQWV DQG PRGH ILHOG SURILOHV FDQQRW EH DSSOLHG WR WKLV VWUXFWXUH DQG KHQFH GR QRW VXSSRUW WKHVH FODLPV 3HUKDSV WKLV PD\ H[SODLQ ZK\ VXFK D VLPSOH VWUXFWXUH KDV QRW EHHQ LQYHVWLJDWHG WR GDWH &RPSOHWH ZDYHJXLGH FKDUDFWHUL]DWLRQ PHDVXUHPHQWV LQFOXGLQJ PRGH LQGH[ ORVV DQG ILHOG SURILOH DUH SUHVHQWHG $OO RI WKH H[SHULPHQWDO PHDVXUHPHQWV PDGH LQ WKLV ZRUN VXSSRUW WKHVH FODLPV ,Q DGGLWLRQ VRPH YHU\ XQLTXH WUDQVPLVVLRQ PHDVXUHPHQWV RI '%5 FRUUXJDWHG ZDYHJXLGHV DUH SUHVHQWHG WKDW FDQ QRW EH H[SODLQHG ZLWKRXW WKLV QHZ LQVLJKW 7KLV QHZ ZDYHJXLGH JHRPHWU\ LV XVHG WR GHPRQVWUDWH WKH KLJKHVW UHIOHFWLRQ LQ /L1E&! FRUUXJDWHG ZDYHJXLGHV UHSRUWHG WR GDWH 7KH UHVXOWV DUH LQ H[FHOOHQW DJUHHn PHQW ZLWK WKHRU\ 7KH SURSRVHG ILOWHU VWUXFWXUH LV DOVR GHPRQVWUDWHG XVLQJ WKLV QHZ WHFKQRORJ\ &KDSWHU 2UJDQL]DWLRQ &KDSWHU FRYHUV PRVW RI WKH QXPHULFDO PRGHOLQJ XVHG LQ WKLV ZRUN IRU GHYLFH VLPXODWLRQ ,Q SDUWLFXODU WZR WUDQVIHU PDWUL[ IRUPDOLVPV WKDW DUH XVHIXO LQ VROYLQJ WKH RSWLFDO ILHOGV LQ SODQDU PXOWLSOH OD\HUHG VWUXFWXUHV DUH SUHVHQWHG 7KH EHQHILWV RI HDFK DSSURDFK DQG WKHLU DSSOLFDWLRQ WR ODVHUV RWKHU )DEU\3HURW VWUXFWXUHV DQG ZDYHJXLGHV DUH WKHQ GLVFXVVHG $ EULHI GHVFULSWLRQ RI WKH VSHFWUDO LQGH[ PHWKRG LV JLYHQ 7KH GHULYDWLRQ RI WKHVH IRUPDOLVPV IURP 0D[ZHOOfV HTXDWLRQV LV XVHG WR GHYHORS WKH QRWDWLRQ DQG LGHQWLI\ DOO WKH DSSUR[LPDWLRQV DV ZHOO DV VRPH FRPPRQ PLVWDNHV $ GHWDLOHG GLVFXVVLRQ RI '%5 )DEU\3HURW GHYLFHV DQG DQ LQGHSWK SURSRVDO RI WKH QHZ ZDYHOHQJWK VHOHFWLYH WXQDEOH ILOWHU IROORZV LQ FKDSWHU &DOFXODWLRQV ZLWK UHDVRQDEO\ DFKLHYDEOH ZDYHJXLGH SDUDPHWHUV ZLWKRXW QHJOHFWLQJ ORVV DUH SUHVHQWHG

PAGE 35

IRU WKH SURSRVHG VWUXFWXUH 7KH GHYLFH LV VKRZQ WR H[KLELW WKH FKDUDFWHULVWLFV QHFHVn VDU\ IRU D GHQVHO\VSDFHG :'0 V\VWHP RQO\ IRU VWUXFWXUHV ZLWK ORZORVV FRUUXJDWHG ZDYHJXLGHV 7R DFKLHYH JRRG WXQDEOH $6)3 ILOWHUV KLJKUHIOHFWLRQ ORZORVV FRUUXJDWHG ZDYHJn XLGHV PXVW EH PDGH LQ D PDWHULDO V\VWHP WKDW H[KLELWV D ODUJH HOHFWURRSWLF HIIHFW VXFK DV /L1E&! ,Q FKDSWHU ILUVW ZH GHVFULEH PDQ\ RI WKH SUHYLRXV DWWHPSWV WR PDNH KLJK UHIOHFWDQFH FRUUXJDWHG ZDYHJXLGHV PRVW RI ZKLFK \LHOGHG PHGLRFUH UHVXOWV 7KHQ ZH SURSRVH D QHZ ZDYHJXLGH JHRPHWU\ LQ /L1E2V WKDW RYHUFRQLHV VHYHUDO IXQn GDPHQWDO OLPLWDWLRQV 7KLV JHRPHWU\ LV DSSOLFDEOH WR VHYHUDO RWKHU PDWHULDO V\VWHPV DV ZHOO &KDSWHU LOOXVWUDWHV WKH GHWDLOV RI WKH YDULRXV IDEULFDWLRQ DQG SURFHVVLQJ WHFKn QLTXHV UHTXLUHG WR IDEULFDWH WKH GHYLFHV 7KHVH WHFKQLTXHV LQFOXGH UHDFWLYH LRQ HWFKLQJ 5,(f ZDYHJXLGH IDEULFDWLRQ E\ $3( JUDWLQJ OLWKRJUDSK\ DQG WUDQVIHU RI WKH JUDWLQJ WR WKH ZDYHJXLGH HOHFWURGH IDEULFDWLRQ HQGIDFH SROLVKLQJ DQG HQGIDFH '%5 GHSRVLn WLRQ $ GHWDLOHG H[SHULPHQWDO DQDO\VLV RI WKH QHZ ZDYHJXLGH JHRPHWU\ LV SUHVHQWHG LQ FKDSWHU 7KH PRGH LQGH[ PRGH ILHOG SURILOHV DQG ORVV DUH PHDVXUHG 7KHVH UHVXOWV DUH LQ DJUHHPHQW ZLWK WKH WKHRU\ LQ VXSSRUW RI WKH FODLPV PDGH LQ WKLV ZRUN UHVXOWLQJ LQ D FOHDU XQGHUVWDQGLQJ RI WKH XQLTXH FKDUDFWHULVWLFV RI WKH JHRPHWU\ DV DSSOLHG WR RXU GHYLFHV &KDSWHU SUHVHQWV WKH H[SHULPHQWDO UHVXOWV RI VHYHUDO FRUUXJDWHG ZDYHJXLGH ILOWHUV PDGH ZLWK WKH QHZ ZDYHJXLGH JHRPHWU\ 7KH UHVXOWV RI D VLPSOH FRUUXJDWHG ZDYHJXLGH UHIOHFWRU LV IRXQG WR EH LQ H[FHOOHQW DJUHHPHQW ZLWK WKH WKHRU\ DQG H[KLELWV WKH KLJKHVW UHIOHFWLRQ IURP D FRUUXJDWHG ZDYHJXLGH LQ /L1E2V UHSRUWHG WR GDWH :LWK WKH IXQGDPHQWDO EXLOGLQJ EORFNV LQ SODFH WKH SURSRVHG $6)3 VWUXFWXUH LV GHPRQVWUDWHG DQG FRPSDUHG ZLWK WKHRU\

PAGE 36

)LQDOO\ FKDSWHU VXPPDUL]HV WKH UHVXOWV 7KH VFRSH RI WKLV ZRUN FDQQRW EHJLQ WR FRYHU DOO RI WKH SRWHQWLDO XVHV DQG HQKDQFHPHQWV WR WKLV QHZ FXWWLQJHGJH WHFKQRORJ\ ,W VHHPV WKDW PDQ\ RWKHU XVHV IRU WKH QHZ KLJKLQGH[ RYHUOD\ WHFKQRORJ\ H[LVW $Q RXWOLQH RI IXWXUH ZRUN VRPH RI ZKLFK LV DOUHDG\ XQGHU ZD\ LV DOVR GHVFULEHG LQ WKLV FKDSWHU

PAGE 37

&+$37(5 7+(25< 2) 237,&$/ ),(/'6 ,1 08/7,/$<(5 6758&785(6 7KLV FKDSWHU FRYHUV WKH WKHRU\ XVHG WKURXJKRXW PRVW RI WKLV ZRUN WR FDOFXODWH UHIOHFWLRQ DQG WUDQVPLVVLRQ VSHFWUD IRU GLHOHFWULF PLUURUV DQG '%5 FRUUXJDWHG ZDYHJn XLGHV DQG WKH ZDYHJXLGH PRGH FKDUDFWHULVWLFV 7KLV FKDSWHU GRHV QRW SUHVHQW DQ\ QHZ WKHRU\ RU GHULYDWLRQ EXW LW DSSURDFKHV WKH VXEMHFW IURP D YHU\ XQLTXH DQG VLPn SOLVWLF DQJOH 7R GHYHORS WKH QRWDWLRQ DQG MXVWLI\ DOO RI WKH DVVXPSWLRQV PDGH ZH VWDUW IURP 0D[ZHOOfV HTXDWLRQV 0RVW WH[WERRNV FRYHU UHIOHFWLRQ RI 7( DQG 70 ZDYHV LQGHSHQGHQWO\ +HUH ZH XVH D IRUPDOLVP WKDW LV XVHG LQ RQO\ D IHZ WH[WERRNV >@ WR GHVFULEH ERWK FDVHV ZLWK D FRPPRQ VHW RI HTXDWLRQV 7KH DQJOH RI LQFLGHQFH DQG SRODUL]DWLRQ LV IDFWRUHG RXW LQ D ZD\ WKDW PDNHV WKH HTXDWLRQV WDNH WKH IRUP RI WKRVH RI QRUPDO LQFLGHQFH 0RVW UHIHUHQFHV XVH RQO\ RQH RI WZR PDWUL[ PHWKRGV > @ EXW GHSHQGLQJ RQ WKH SUREOHP DW KDQG RQH IRUPDOLVP LV JHQHUDOO\ PRUH FRQYHQLHQW WKDQ WKH RWKHU 7KLV ZLOO EH GHPRQVWUDWHG E\ VHYHUDO H[DPSOHV LQ VHFWLRQ 6HFWLRQ ZLOO VKRZ WKDW ERWK PDWUL[ IRUPDOLVPV FDQ EH DSSOLHG WR ZDYHJXLGH GHYLFHV E\ VXEVWLWXWLQJ WKH ORFDO QRUPDO PRGH LQGLFHV IRU WKH UHIUDFWLYH LQGLFHV LQ WKH SUHYLRXVO\ GHULYHG HTXDWLRQV )LQDOO\ WKH WKHRU\ RI WKH VSHFWUDO LQGH[ PHWKRG WR VROYH IRU ZDYHJXLGHV ZLWK WZR GLPHQVLRQDO FURVV VHFWLRQV LV SUHVHQWHG LQ VHFWLRQ 7KH VSHFWUDO LQGH[ PHWKRG LV XVHIXO IRU FDOFXODWLQJ WKH ORFDO QRUPDO PRGH LQGLFHV ZKLFK FDQ WKHQ EH XVHG LQ WKH PDWUL[ PHWKRGV IRU FDOFXODWLQJ WKH UHIOHFWLRQ DQG WUDQVPLVVLRQ VSHFWUD RI FRUUXJDWHG ZDYHJXLGH VWUXFWXUHV

PAGE 38

%DVLF (TXDWLRQV :H EHJLQ ZLWK 0D[ZHOOfV HTXDWLRQV DORQJ ZLWK WKH FRQVWLWXWLYH HTXDWLRQV IRU LVRWURSLF PHGLD 9' S f 9 f % f G% 9[( DW f RQ 9[+ -DU f H( f ,, f FU( f ZKHUH ( LV WKH HOHFWULF ILHOG VWUHQJWK >9P@ LV WKH HOHFWULF GLVSODFHPHQW >&P@ + LV WKH PDJQHWLF ILHOG VWUHQJWK >$P@ LV WKH HOHFWULF FXUUHQW GHQVLW\ >$P@ % LV WKH PDJQHWLF IOX[ GHQVLW\ >7@ S LV WKH HOHFWULF FKDUJH GHQVLW\ >&P@ D LV WKH HOHFWULF FRQGXFWLYLW\ >ILP@ S LV WKH SHUPHDELOLW\ >+P@ DQG H LV WKH SHUPLWWLYLW\ >)P@ )XUWKHUPRUH ZH DGG WKDW H f§ HUfR f 3 f§ 3U3R f f R ;& f ZKHUH HU DQG SU DUH WKH UHODWLYH SHUPLWWLYLW\ DQG SHUPHDELOLW\ UHVSHFWLYHO\ GLPHQn VLRQOHVVf HR LV WKH SHUPLWWLYLW\ RI IUHH VSDFH [ a)Pf SR LV WKH SHUn PHDELOLW\ RI IUHH VSDFH LU [ B+Pf DQG F LV WKH VSHHG RI OLJKW LQ IUHH VSDFH [ PVf

PAGE 39

,Q DQ LVRWURSLF KRPRJHQHRXV PHGLXP RI QR IUHH FKDUJHV ZH PD\ UHZULWH 0D[ZHOOfV HTXDWLRQV LQ WHUPV RI WZR ILHOG YDULDEOHV + ,, R f ,, R f f A G. f 9[+ m% L DW f 1RZ WDNLQJ WKH FXUO RI HTXDWLRQ XVLQJ WKH YHFWRU LGHQWLW\ 9 [ 9 [ $f 99 f $f 9$ DQG VXEVWLWXWLQJ HTXDWLRQV DQG ZH KDYH Lf U"( A) 9 [ 9 [ (f 99 f (f 9( 9( [9 [ + I[Df§ RU a ( D( Q YHB.BBAB r ,Q WKH VDPH PDQQHU E\ WDNLQJ WKH FXUO RI HTXDWLRQ ZH REWDLQ f $+ $+ f f (TXDWLRQV DQG DUH ZDYH HTXDWLRQV IRU WKH ( DQG + ILHOGV 7KH VROXWLRQV IRU WKH ( DQG + ILHOGV DUH RI WKH VDPH IRUP 7KH VROXWLRQ RI HTXDWLRQV DQG IRU D SODQH ZDYH WUDYHOLQJ LQ WKH U GLUHFWLRQ LV ( (HLNfUDLf f DQG + +HLN Uf! f

PAGE 40

ZKHUH N LV WKH SURSDJDWLRQ YHFWRU U LV WKH SRVLWLRQ YHFWRU RI DQ DUELWUDU\ SRLQW ZLWK UHVSHFW WR D UHIHUHQFH DQG X! LV WKH DQJXODU IUHTXHQF\ RI WKH ZDYH 6RPH DXWKRUV SUHIHU WR XVH HLZLBN UK *HQHUDOO\ WKH UHVXOWV EHWZHHQ WKH WZR IRUPXODWLRQV PD\ EH FRPSDUHG E\ UHSODFLQJ L ZLWK f§ L DQG YLVD YHUVD 7KLV ZLOO QRW EH WKH FDVH LQ HTXDWLRQ (TXDWLRQV DQG GR QRW UHSUHVHQW SK\VLFDO TXDQWLWLHV EHFDXVH WKH\ DUH FRPSOH[ EXW WKH\ DUH D JHQHUDO VROXWLRQ WR WKH SDLU RI ZDYH HTXDWLRQV DQG +RZHYHU SK\VLFDO TXDQWLWLHV PD\ EH REWDLQHG E\ WDNLQJ WKH UHDO SDUW RI WKH FRPSOH[ VROXWLRQV 7KH UHVXOWV E\ GRLQJ VXFK ZLOO DOVR EH D VROXWLRQ WR WKH ZDYH HTXDWLRQV EHFDXVH WKH\ DUH OLQHDU DOORZLQJ WKH UHDO DQG LPDJLQDU\ SDUWV RI WKH VROXWLRQV WR EH VHSDUDWHG :H FRXOG WDNH WKH UHDO SDUW KHUH DQG REWDLQ IW(f "(Tf FRVN f U f§ X!Wf f§ 6(Rf VLQN f U f§ XWf EXW LW LV PRVW RIWHQ HDVLHU WR FDUU\ WKH FRPSOH[ H[SUHVVLRQ WKURXJK WKH DULWKPHWLF DQG WDNH WKH UHDO SDUW DIWHU PDQLSXODWLRQ ZKHQ D SK\VLFDO TXDQWLW\ LV GHVLUHG +RZHYHU ZKHQ XVLQJ WKHP LQ D UHODWLRQ ZKLFK LV QRW OLQHDU ZLWK UHVSHFW WR ( RU + VXFK DV WKH SRZHU UHODWLRQVKLS WKH FRPSOH[ TXDQWLWLHV PD\ QRW EH XVHG XQOHVV DQ DGHTXDWH IRUPXODWLRQ IRU FRPSOH[ QXPEHUV LV XVHG 6XEVWLWXWLQJ HTXDWLRQ LQWR HTXDWLRQ ZH ILQG WKDW N _N_ ZLH f 7KH SKDVH YHORFLW\ RI WKH ZDYH LV JLYHQ E\ Y XfN DQG WKH YHORFLW\ RI OLJKW LQ IUHH VSDFH LV JLYHQ E\ F OLRAR &RPELQLQJ WKHVH HTXDWLRQV ZLWK HTXDWLRQV DQG ZH REWDLQ WKH VTXDUH RI WKH FRPSOH[ UHIUDFWLYH LQGH[ Q Q FN ILUD fU+U b QU bPf XU RHR f ZKHUH QU DQG DUH WKH UHDO DQG LPDJLQDU\ SDUWV RI WKH FRPSOH[ UHIUDFWLYH LQGH[ UHVSHFWLYHO\ QU LV UHIHUUHG WR DV VLPSO\ WKH UHIUDFWLYH LQGH[ DQG Q RIWHQ GHQRWHG E\

PAGE 41

Nf LV NQRZQ DV WKH H[WLQFWLRQ FRHIILFLHQW :LWK WKH IUHH VSDFH SURSDJDWLRQ FRQVWDQW EHLQJ U ; f HTXDWLRQ EHFRPHV ( (RHQIFrNUZWf B JAJQMIFRNUHQUIFNUZWf f 7KH ILUVW H[SRQHQW RQ WKH ULJKW KDQG VLGH RI HTXDWLRQ UHSUHVHQWV DEVRUSWLRQ RU JDLQf ZKLOH WKH VHFRQG UHSUHVHQWV SKDVH 7KH ZDYH HTXDWLRQV DOWKRXJK GHULYHG IURP 0D[ZHOOfV HTXDWLRQV GR QRW UHSUHVHQW DOO RI WKH LQIRUPDWLRQ XVHIXO IRU GHWHUPLQLQJ WKH ILHOGV 7KH\ RQO\ KHOS XV WR GHILQH D FHUWDLQ FODVV RI VROXWLRQV QDPHO\ WKH WUDQVYHUVH SURSDJDWLQJ ZDYHV 7R GHWHUPLQH D VROXWLRQ RI 0D[ZHOOfV HTXDWLRQV HTXDWLRQV DQG PXVW EH VXEVWLWXWHG LQWR HTXDWLRQV 'RLQJ WKLV D VLPSOLILHG IRUP RI 0D[ZHOOfV HTXDWLRQV IRU WUDQVn YHUVH SURSDJDWLQJ ZDYHV LV REWDLQHG N f ( f N f + f N [ ( MDY+ f N [ + f§ HX LFUf( f )URP WKHVH HTXDWLRQV ZH VHH WKDW ( + DQG WKH GLUHFWLRQ RI SURSDJDWLRQ IRUP D PXWXDOO\ RUWKRJRQDO VHW )URP HTXDWLRQ ZH VHH WKDW WKH PDJQLWXGHV RI WKH ILHOG YHFWRUV DUH UHODWHG E\ _(_ Q _+_ f ZKHUH XVLQJ HTXDWLRQV DQG 9R Q f

PAGE 42

7KH TXDQWLW\ LV WKH ZDYH LPSHGDQFH WKH LPSHGDQFH RI IUHH VSDFH Uc  7KH ULJKW KDQG VLGH RI HTXDWLRQ PDNHV WKH DVVXPSWLRQ WKDW QU DW RSWLFDO IUHTXHQFLHV 1H[W ZH GLVFXVV WKH 3R\QWLQJ YHFWRU 6 ,W LV GHILQHG E\ 6 ( [ + f DQG LV WKH HQHUJ\ FXUUHQW GHQVLW\ >:P@ (TXDWLRQ PD\ EH GHULYHG IURP 0D[ZHOOfV HTXDWLRQV DQG WKH UHODWLRQ GHVFULELQJ WKH ORVV RI HOHFWURPDJQHWLF HQHUJ\ GXH WR -RXOH KHDWLQJ IY f ( GU DQG PDNLQJ WKH DUJXPHQW WKDW UDWH RI HOHFWURPDJn QHWLF HQHUJ\ GHFUHDVLQJ ZLWKLQ D YROXPH PXVW EH HTXDO WR WKDW FRQVXPHG E\ -RXOH KHDWLQJ SOXV WKDW ZKLFK LV OHDYLQJ WKH YROXPH 7KH 3R\QWLQJ YHFWRU fSRLQWVf LQ WKH GLUHFWLRQ RI HQHUJ\ IORZ 7KH DERYH GHILQLWLRQ IRU WKH 3R\QWLQJ YHFWRU LV QRW OLPLWHG WR WLPH YDU\LQJ ILHOGV ,W LV LPSRUWDQW WR UHDOL]H DV VWDWHG HDUOLHU WKDW LQ FDOFXODWLQJ 6 ERWK ( DQG + PXVW EH SK\VLFDO TXDQWLWLHV LH UHDO DQG WKH\ PXVW EH WKH WRWDO UHVXOWDQW RI DOO WKH ZDYHV RI D JLYHQ IUHTXHQF\ DW WKH SRLQW RI LQWHUHVW $V SUHYLRXVO\ LOOXVWUDWHG KRZHYHU LW LV PRUH FRQYHQLHQW WR ZRUN ZLWK FRPSOH[ TXDQWLWLHV WR UHSn UHVHQW WLPH YDU\LQJ ILHOGV ([WUDFWLQJ WKH WLPH GHSHQGHQFH IURP HTXDWLRQV DQG DQG H[SUHVVLQJ WKHP DV ( (HLNnUfHBLfn (FHaL-W f DQG + +HLNUfHLZL +FHaLZW f LW PD\ EH VKRZQ WKDW WKH WLPH DYHUDJH RI WKH HQHUJ\ IORZ LV 6f LV(F [ +rf f ZKLFK LV LQ WKH GLUHFWLRQ RI N ,Q GRLQJ WKLV ZH KDYH VLPSOLILHG WKH FDOFXODWLRQ RI WKH HQHUJ\ IORZ RI WLPH YDU\LQJ ILHOGV LQ WHUPV RI WKH FRPSOH[ WLPHLQYDULDQW ILHOG

PAGE 43

DPSOLWXGHV ,W PXVW EH UHPHPEHUHG WKDW WKH FRPSOH[ ILHOG DPSOLWXGHV DUH XVHG LQ HTXDWLRQ ZKLOH RQO\ WKHLU UHDO SDUW LV XVHG LQ HTXDWLRQ )RU D VLQJOH ZDYH WUDYHOLQJ LQ GLUHFWLRQ N HTXDWLRQ PD\ EH IXUWKHU UHGXFHG XVLQJ HTXDWLRQV DQG WKH LGHQWLW\ $ [ % [ &f %$ f &f &$ f %f UHVXOWLQJ LQ 6f LA_(-N f WKH VFDODU LQWHQVLW\ LV WKHQ aHFH f A 9R ZKHUH (F LV WKH FRPSOH[ VFDODU HOHFWULF ILHOG DPSOLWXGH )URP HTXDWLRQ ZH ILQG WKDW ?f§ ,(HQLNRNU ,HrA 7 f 9R ,4 LV WKH LQWHQVLW\ DW WKH UHIHUHQFH SRLQW _U_ DQG .7OL D f§ LV WKH DEVRUSWLRQ FRHIILFLHQW 7ZR LPSRUWDQW SRLQWV PXVW EH UHPHPEHUHG DERXW WKH FDOFXODWLRQ RI LQWHQVLW\ f ,Q GHULYLQJ HTXDWLRQV ZH DVVXPHG WKDW WKHUH ZDV D VLQJOH ZDYH SURSDJDWLQJ LQ WKH GLUHFWLRQ N 7KHUHIRUH ZKHQ FDOFXODWLQJ LQWHQVLWLHV UHVXOWLQJ IURP ILHOGV WUDYHOLQJ LQ GLIIHUHQW GLUHFWLRQV HTXDWLRQ PXVW EH XVHG f RF QU DPSOLWXGHf VKRXOG EH UHPHPEHUHG UDWKHU WKDQ VLPSO\ RF DPSOLWXGHf ZKLFK LV RIWHQ TXRWHG ,I WKH ODWHU LV XVHG ZKHQ FRPSDULQJ LQWHQVLWLHV SUHVHQW LQ WZR GLIIHUHQW PHGLD WKH UHVXOW ZLOO EH LQ HUURU 7KHVH WZR LPSRUWDQW SRLQWV PXVW EH UHPHPEHUHG ZKHQ FDOFXODWLQJ UHIOHFWDQFH RU WUDQVPLWWDQFH ZKLFK LV GRQH LQ WKH QH[W VHFWLRQ

PAGE 44

)LJXUH N YHFWRU UHODWLRQVKLSV ZLWK OLJKW LQFLGHQW RQ D VLQJOH VXUIDFH 5HIOHFWLRQ DQG 7UDQVPLVVLRQ )URP D 6LQJOH %RXQGDU\ )LJXUH VKRZV WKH N YHFWRUV IURP WKH LQFLGHQW N UHIOHFWHG NU DQG WUDQVPLWWHG NW SODQH ZDYHV 7KH ERXQGDU\ FRQGLWLRQV IRU WKH ILHOGV PD\ EH IRXQG IURP 0D[ZHOOfV HTXDWLRQV 7KHVH VWDWH WKDW WKH WDQJHQWLDO FRPSRQHQWV RI ( DQG + DUH FRQWLQXRXV 7KHVH FRQGLWLRQV PXVW EH VDWLVILHG DW DQ\ SRLQW RQ WKH ERXQGDU\ IRU DOO YDOXHV RI WLPH 7KLV LPSOLHV WKDW WKH H[SRQHQWLDO WHUPV RI WKH LQFLGHQW UHIOHFWHG DQG WUDQVPLWWHG ZDYHV PXVW EH HTXDO IRU DOO YDOXHV RI WLPH 7KXV DOO WKH ZDYHV KDYH WKH VDPH IUHTXHQF\ X DQG N f $UIF NU f $U NW f $U f ZKHUH $Ur LV WKH SRVLWLRQ YHFWRU EHWZHHQ DQ\ WZR SRLQWV LQ WKH ERXQGDU\ 7KLV DVVXUHV XV WKDW DOO WKH ZDYHV KDYH WKH VDPH SKDVH DW DQ\ SRLQW RQ WKH ERXQGDU\ DW DQ\ WLPH W )URP HTXDWLRQ ZH ILQG WKDW HI U f DQG QR VLQ L Q? VLQ W f ZKLFK LV 6QHOOfV ODZ

PAGE 45

)LJXUH &RQYHQWLRQV IRU WKH SRVLWLYH GLUHFWLRQV RI WKH ( DQG + ILHOG YHFWRUV IRU WKH Df 7( RU VSRODUL]HG ZDYHV DQG Ef 70 RU SSRODUL]HG ZDYHV )LJXUH VKRZV WKH FRQYHQWLRQ ZH XVH WR GHILQH WKH SRVLWLYH GLUHFWLRQV RI WKH HOHFWULF DQG PDJQHWLF ILHOG YHFWRUV IRU WKH FDVHV ZKHQ ( LV SHUSHQGLFXODU WR WKH SODQH RI LQFLGHQFH UHIHUUHG WR DV 7( RU VSRODUL]HGf Df DQG ZKHQ ( OLHV ZLWKLQ WKH SODQH RI LQFLGHQFH UHIHUUHG WR DV 70 RU SSRODUL]HGf Ef 7KH WDQJHQWLDO FRPSRQHQWV RI WKH ILHOG YHFWRUV e DQG + DUH UHODWHG WR WKH ILHOG DPSOLWXGHV ( DQG + E\ e ( DQG + + FRV 7(f f IRU WKH 7( FDVH DQG e f§ (FRV DQG + + 70f f IRU WKH 70 FDVH LV WKH DQJOH EHWZHHQ WKH QRUPDO DQG WKH SURSDJDWLRQ YHFWRU N LQ HDFK PHGLXP 1RZ ZH LQWURGXFH D FRQVWDQW E\ ZKLFK ZH ZLOO IDFWRU RXW WKH SRODUL]DWLRQ DQG DQJOH GHSHQGHQFH WR VLPSOLI\ IXUWKHU GHULYDWLRQV 7KLV LV WKH PRGLILHG RSWLFDO DGPLWWDQFH \ ZKLFK FRQQHFWV WKH WZR WDQJHQWLDO FRPSRQHQWV (W DQG +W E\ \ Qe f

PAGE 46

ZKHUH IRU WKH WZR SRODUL]DWLRQV 7O \7( f§FRVG DQG \70 f UMR 9R FRV ,W VKRXOG EH QRWHG WKDW \ LV WKH PRGLILHG RSWLFDO DGPLWWDQFH IRU D VLQJOH ZDYH DQG QRW WKH WRWDO ILHOG 7R VROYH IRU WKH UHIOHFWLYLW\ DQG WKH WUDQVPLVVLYLW\ ZH VLPSO\ QHHG WR PHHW WKH ERXQGDU\ FRQGLWLRQV ZLWK WKH UHVXOWDQW WDQJHQWLDO ILHOGV 1RWLQJ WKH VLJQ FRQYHQWLRQV LQ ILJXUH ZH KDYH (L HU eW f DQG +L f§ +U +W f 6ROYLQJ HTXDWLRQV DQG WKHQ FRPSDULQJ ILHOG DPSOLWXGHV XVLQJ DQG ZH ILQG WKDW WKH UHIOHFWLYLW\ U LV 6U \R \L (U 6L \R \L (L 6LPLODUO\ EXW FRPSDULQJ ZLWK HTXDWLRQ LQVWHDG RI HTXDWLRQ ZH ILQG WKDW WKH WUDQVPLVVLYLW\ W LV W\Rf§ LV A IRU WKH 70 FDVH 6L \R \L (L f 8VLQJ HTXDWLRQ ZH ILQG WKDW (W \ FRV L IRU WKH 70 FDVH (L \ \L FRV HW ZKLFK LV PRUH FRPPRQO\ XVHG DV WKH WUDQVPLVVLYLW\ :H KRZHYHU ZLOO XVH WKH WDQn JHQWLDO IRUP LQ HTXDWLRQ EHFDXVH LW LV PRUH FRQYHQLHQW WR XVH VLQFH LW UHSUHVHQWV ERWK SRODUL]DWLRQV DQG WKH DQJXODU GHSHQGHQFH KDV EHHQ IDFWRUHG RXW 7KHVH HTXDn WLRQV DUH SDUWLFXODUO\ HDV\ WR UHPHPEHU VLQFH WKH\ DSSHDU H[DFWO\ WKH VDPH DV WKRVH

PAGE 47

IRU QRUPDO LQFLGHQFH )XUWKHUPRUH ZH ZLOO VHH WKDW WKH\ DUH PRUH FRQVLVWHQW ZLWK WKH SRZHU UHODWLRQV 7KH UHVXOWDQW WDQJHQWLDO HOHFWULF DQG PDJQHWLF ILHOGV LQ WKH LQFLGHQW PHGLXP DUH eU e I Uf DQG +L+U \^ UfeL DQG IRU WKH WUDQVPLWWLQJ UHJLRQ DUH DQG \?WeA UHVSHFWLYHO\ 8VLQJ HTXDWLRQ ZH ILQG WKH LQWHQVLW\ LQ HDFK UHJLRQ :KHQ ZH HTXDWH WKHVH ZH JHW A \Rf UU nP^UaUf PPf ‘IW\Rf ZKLFK LV VLPLODU WR WKH SRZHU UXOH f§ 5 7 ZKHUH 5 LV WKH UHIOHFWDQFH DQG 7 LV WKH WUDQVPLWWDQFH H[FHSW IRU WKH ODVW WHUP RQ WKH OHIW KDQG VLGH 7KLV GLIILFXOW\ PD\ EH DYRLGHG E\ DVVXPLQJ WKDW WKH LQFLGHQW PHGLXP LV QRQDEVRUELQJ PDNLQJ I\f 7KLV LV WUXH IRU PRVW SUDFWLFDO FLUFXPVWDQFHV 1RZ ZH KDYH WKH UHIOHFWDQFH DQG WUDQVPLWWDQFH 5 UUr YrYL? I\R\L ?\R \LM ?\R \L f DQG 7 p\LfWWr 65\f65\Lf A\Rf ^\R \Lf\R \Lfr f 1RWLFH WKDW WKH GHILQLWLRQ ZH XVH IRU W UHVXOWV LQ D YHU\ VLPSOH HTXDWLRQ IRU 7 XQOLNH PDQ\ WH[WERRNV WKDW UHGHILQH 7 E\ PDNLQJ SRZHU DUJXPHQWV EDVHG RQ XVLQJ D ILQLWH DUHD RI WKH LQFLGHQW EHDP YHUVXV WKH UHVXOWLQJ DUHD RI WKH WUDQVPLWWHG EHDP DV LV GRQH LQ PDQ\ WH[WERRNV 7KH GHSHQGHQFH RI WKLV DUHD RQ DQJOH ZDV IDFWRUHG RXW LQ WKH RULJLQDO UHODWLRQV IRU \ WKXV LOOXVWUDWLQJ DQRWKHU QLFHW\ RI WKLV XQFRPPRQ IRUPDOLVP

PAGE 48

)LJXUH $ VLQJOH GLHOHFWULF SODQDU OD\HU RQ D VXEVWUDWH &KDUDFWHULVWLF 0DWUL[ RI D 7KLQ )LOP 1RZ ZH H[WHQG WKH DERYH DQDO\VLV WR WKH FDVH RI D WKLQ ILOP DV LQ ILJXUH 0XOWLSOH UHIOHFWLRQV H[LVW EHWZHHQ WKH WZR VXUIDFHV RI WKH ILOP DQG LI WKH ILOP WKLFNn QHVV LV VPDOOHU WKDQ WKH FRKHUHQFH OHQJWK RI WKH LQFLGHQW OLJKW WKH\ LQWHUIHUH 2QH ZD\ WR VROYH WKLV SUREOHP LV WR VHW XS DQ HTXDWLRQ ZKLFK WDNHV WKH VXP RI DOO RI WKH UHIOHFWLRQV WDNLQJ WKH SKDVH RI HDFK UHIOHFWHG ZDYH LQWR DFFRXQW 7KH IROORZLQJ KRZHYHU LV D PXFK PRUH VWUDLJKWIRUZDUG DSSURDFK ZKLFK PD\ HDVLO\ EH H[WHQGHG WR DFFRPPRGDWH PXOWLOD\HU VWUXFWXUHV 7KLV SURFHGXUH UHGHULYHV WKH UHIOHFWLYLW\ DQG WUDQVPLVVLYLW\ IRU WKH ZKROH VWUXFWXUH ZLWKRXW XVLQJ WKH UHVXOWV IRU D VLPSOH VLQJOHn LQWHUIDFH V\VWHP ,Q GRLQJ WKLV ZH ZLOO VROYH IRU WKH ILHOGV LQ DOO UHJLRQV VLPXOWDQHRXVO\ ,Q DQ\ PHGLXP RQO\ WZR ZDYHV FDQ H[LVW IRUZDUG WUDYHOLQJ DQG UHYHUVH WUDYHOLQJ 7KHVH DUH ZKDW ZRXOG EH WKH UHVXOWDQWV RI PDQ\ UHIOHFWLRQV LI LW ZHUH FDOFXODWHG E\ WKH IRUPHU SURFHGXUH :H EHJLQ E\ GHQRWLQJ ZDYHV WUDYHOLQJ LQ WKH GLUHFWLRQ RI LQFLGHQFH IRUZDUGf ZLWK D VXSHUVFULSW DQG WKRVH WUDYHOLQJ LQ WKH UHYHUVH GLUHFWLRQ ZLWK D f§ VXSHUVFULSW 8VLQJ WKH VDPH FRQYHQWLRQ IRU WKH GLUHFWLRQ RI WKH ( DQG + YHFWRUV WKHLU WDQJHQWLDO FRPSRQHQWV DW WKH ORZHU ERXQGDU\ E DUH f§ tOE N A E

PAGE 49

7&E \L=WE \LALE f 6ROYLQJ LQ WHUPV RI WKH UHVXOWDQWV et DQG +E ZH JHW $W .WLL $f eY! A n+f[E \LeLE ?n+E \?eEf +[E \?eLE ?:E Ytf f 7KH WDQJHQWLDO ILHOGV DW WKH VDPH ODWHUDO SRVLWLRQ RQ WKH WRS ERXQGDU\ D PD\ EH IRXQG IURP HTXDWLRQV E\ FRQVLGHULQJ GLIIHUHQFH LQ SKDVH EHWZHHQ WKH WRS DQG ERWWRP LQWHUIDFHV DW WKH VDPH LQVWDQW ZKHUH NQLGFRVL f 1RWH WKDW WKH FRVLQH IDFWRU LV SUHVHQW EHFDXVH ZH DUH FRPSDULQJ WKH SKDVH RI WKH ZDYHV DW WKH VDPH KRUL]RQWDO SRVLWLRQ EHWZHHQ WKH WRS DQG ERWWRP LQWHUIDFHV 7KH ILHOGV DW WKH WRS LQWHUIDFH QRZ EHFRPH $W :Z $fHf $ OPL$fHf QW LI0P$. mU LeWfHf VR WKDW eD e;D e;D eE FRV f§ Lf§ VLQ \ L +D +ID +;D f§L\?eE VLQ +E FRV

PAGE 50

ZKLFK FDQ EH ZULWWHQ LQ PDWUL[ IRUP DV & e FRV f§L\L VLQ LZQ6f\L FRV HE QE f 7KH [ PDWUL[ RQ WKH ULJKW KDQG VLGH RI HTXDWLRQ LV FDOOHG WKH FKDUDFWHULVWLF RU WUDQVIHU PDWUL[ RI WKH ILOP ,I ZH GHILQH WKH RSWLFDO DGPLWWDQFH IRU WKH DVVHPEO\ WR EH < QDeD f WKH WDVN RI GHWHUPLQLQJ WKH UHIOHFWDQFH EHFRPHV WKH VDPH DV IRU WKH VLQJOH ERXQGDU\ FDVH VR WKDW \R< U \R < DQG 5 \R< \ < 92<< \R
PAGE 51

QR P fG? Q c fG ,QFLGHQW PHGLXP 0XOWLOD\HU 6WUXFWXUH m 0 P 6XEVWUDWH )LJXUH $ JHQHUDO PXOWLOD\HU WKLQILOP VWUXFWXUH UHODWHG LQ WKH VDPH ZD\ WKDW WKRVH RI ERXQGDULHV D DQG E ZHUH LQ VHFWLRQ 7KDW LV ZKHUH n VE n QE FRV 6 f§L\ VLQ 6 LVP6f\ FRV 6 6F QF 6N f§ NQNGN FRV N f f &RPELQLQJ ZLWK DQG XVLQJ DQG WKH VROXWLRQ EHFRPHV 6D \ f§ 4 6r FRV rVLQLf\L FRV LVP6f\ A f§ VLQ L FRV 6L f§L\ VLQ 6 FRV 6 \ Fn f DQG FRQWLQXLQJ WKH SURFHVV ZH VHH WKDW WKH FKDUDFWHULVWLF PDWUL[ IRU WKH ZKROH DVn VHPEO\ RI ILJXUH LV 7 ?} ? 7 f % & LQ ?IF L FRV f§L VLQf\MIF L\N VLQ 6N FRV N @f ?f 9P 6RPH FDUH PXVW EH WDNHQ ZKHQ FDOFXODWLQJ WKH SKDVH IDFWRU ZKHQ DEVRUSWLRQ RU WRWDO LQWHUQDO UHIOHFWLRQ LV LQYROYHG 7KH DQJOHV PD\ EH FRPSOH[ DQG DUH IRXQG E\ 6QHOOfV ODZ QN VLQ N QR VLQ T f 6LQFH WKH FRPSOH[ DUFVLQH IXQFWLRQ LV RIWHQ XQDYDLODEOH RQ FRPSXWHUV ZH FDOFXODWH 6N E\ N sNGN ?-Q?QO VLQ f

PAGE 52

$V ZH KDYH DVVXPHG Q DQG 2S DUH UHDO DQG IRU DEVRUSWLRQ Qr LV LQ WKH ILUVW TXDGUDQW RI WKH FRPSOH[ SODQH 7KH VTXDUH URRW LV WKHQ LQ WKH ILUVW RU WKLUG TXDGUDQWV N PXVW EH LQ WKH ILUVW TXDGUDQW EHFDXVH WKH SKDVH PXVW EH LQFUHDVLQJ DQG WKH DPSOLWXGH H[SRQHQWLDOO\ GHFUHDVLQJ LQ WKH GLUHFWLRQ RI N LQ RUGHU IRU WKH VLWXDWLRQ WR EH SK\VLFDOO\ SRVVLEOH 6LPLODUO\ LI PHGLXP N SURGXFHV JDLQ ZH ILQG WKDW N PXVW EH LQ WKH IRXUWK TXDGUDQW ,Q HLWKHU FDVH WKH VLJQ LQ HTXDWLRQ VKRXOG EH FKRVHQ VLQFH PRVW FRPSXWHU DOJRULWKPV SURGXFH SRVLWLYH UHDO SDUWV ZKHQ FDOFXODWLQJ WKH FRPSOH[ VTXDUH URRW +RZHYHU LW LV D JRRG LGHD WR YHULI\ LI WKLV LV LQGHHG WKH FDVH 7KH VDPH YDOXH IRU FRV 2N VKRXOG EH XVHG IRU ERWK N DQG ]N 7KDW LV ?MQO f§ Q4 VLQ 2S FRV 2N Q N f 7KH UHIOHFWLRQ FRHIILFLHQW PD\ EH IRXQG XVLQJ HTXDWLRQ ZLWK < EHLQJ WKH RSWLFDO DGPLWWDQFH IRU WKH PXOWLOD\HU DVVHPEO\ :LWK < &% \% \% &n ?\S% & O\S% & f 7R ILQG WKH WUDQVPLWWDQFH 7 DQG DEVRUSWDQFH $ ZH QRWH WKDW WKH LQWHQVLW\ QRUPDO WR WKH ODVW LQWHUIDFH P DQG WKH ILUVW LQWHUIDFH D DUH DQG K 5%&rfeP& ,D LV WKH LQWHQVLW\ QRUPDO WR WKH LQWHUIDFH DFWXDOO\ HQWHULQJ WKH DVVHPEO\ 7KLV LV UHODWHG WR WKH LQFLGHQW LQWHQVLW\ E\ OD 5fK 8^%&rfeP(rP 5f VR WKDW

PAGE 53

7KH WUDQVPLWWDQFH LV ,P B W\PfO5f B \RA5\Pf ,L .^%&rf \% &f\% &fr f 7KH DEVRUSWDQFH LV f 7KH SKDVH FKDQJH RQ UHIOHFWLRQ FDQ EH IRXQG IURP HTXDWLRQ WR EH f ZKHUH LW LV LPSRUWDQW WR QRWH WKH VLJQV RI WKH QXPHUDWRU DQG GHQRPLQDWRU WR DVVXUH WKH FRUUHFW TXDGUDQW VLQFH WKH DUFWDQJHQW RQO\ KDV D UDQJH ZLWKLQ WKH ILUVW DQG IRXUWK TXDGUDQWV $OWHUQDWLYH 0DWUL[ )RUPXODWLRQ 1H[W ZH GHVFULEH DQ DOWHUQDWLYH IRUPXODWLRQ WR WKH VROXWLRQ RI D PXOWLOD\HU VWUXFn WXUH JLYHQ LQ VHFWLRQ 7KLV LV WKH DSSURDFK XVHG LQ UHIHUHQFH >@ ,W ZLOO EH VKRZQ LQ WKH QH[W VHFWLRQ WKDW ERWK IRUPDOLVPV KDYH PXFK WR RIIHU LQ XQGHUVWDQGLQJ DQG FDOFXODWLRQ RI PXOWLOD\HU VWUXFWXUHV 7KH SUHYLRXV IRUPDOLVP ZDV D VHW RI HTXDWLRQV FDOFXODWLQJ WKH WRWDO HOHFWULF DQG PDJQHWLF ILHOGV DW HDFK LQWHUIDFH 7KLV IRUPXODWLRQ KRZHYHU ZLOO FDOFXODWH WKH IRUZDUG DQG UHYHUVH HOHFWULF ILHOGV RQ HDFK VLGH RI HDFK LQWHUIDFH $W ERXQGDU\ D RI ILJXUH WKH WRWDO ILHOGV DUH 5HDUUDQJLQJ WKHVH HTXDWLRQV ZH KDYH

PAGE 54

ZKHUH Af§f§ DQG WD \R \L :ULWWHQ LQ PDWUL[ IRUP \R \R \L n n B UD n e?OD n eT D WD UD eOaD 7KH HOHFWULF ILHOGV RQ HDFK VLGH RI ILOP D DUH UHODWHG E\ f f S f§ &SL6L DF S f§ Sa SaLK rOE f§ rODH ZKHUH 6L NQLG FRV W :ULWWHQ LQ PDWUL[ IRUP WKH ILHOGV WKURXJKRXW D PXOWLOD\HU VWUXFWXUH PD\ EH FDOFXODWHG E\ UHSHWLWLYH XVH RI HTXDWLRQV DQG f§HTXDWLRQ IRU HDFK LQWHUIDFH DQG HTXDWLRQ IRU HDFK ILOP ([DPSOHV LOOXVWUDWLQJ WKH EHQHILWV DQG XVHV RI HDFK PDWUL[ IRUPDOLVP ZLOO EH JLYHQ LQ VHFWLRQ )LUVW WKH UHODWLRQVKLS EHWZHHQ WKH WZR IRUPDOLVPV ZLOO EH JLYHQ LQ VHFWLRQ e?D n HaL6O eOE 6LD HL6O e?E &RQQHFWLRQ %HWZHHQ WKH 7ZR )RUPDOLVPV %RWK PDWUL[ IRUPDOLVPV GHULYHG LQ VHFWLRQV DQG DUH XVHIXO IRU VROYLQJ ILHOGV LQ SODQDU PXOWLOD\HU GLHOHFWULF VWUXFWXUHV $ FRQQHFWLRQ PDWUL[ ZLOO EH GHULYHG LQ WKLV VHFWLRQ VKRZLQJ WKDW WKH\ HTXLYDOHQW (YHQ WKRXJK WKH\ DUH HTXLYDOHQW WKH NQRZOHGJH RI ERWK RI WKHP IDFLOLWDWHV GHULYLQJ GLIIHUHQW VHWV RI EDVLF DQDO\WLF H[SUHVVLRQV 7KLV ZLOO EHFRPH FOHDU LQ VHFWLRQ DV WKH DGYDQWDJHV RI HDFK IRUPDOLVP ZLOO EH GLVFXVVHG IRU D YDULHW\ RI FDVHV

PAGE 55

,Q WKH ILUVW IRUPDOLVP VHFWLRQ f WKH WRWDO e DQG + ILHOGV ZHUH GHWHUPLQHG DW HDFK LQWHUIDFH DQG D WUDQVIHU PDWUL[ ZDV IRUPHG E\ PXOWLSO\LQJ D VHW RI [ PDWULFHV WRJHWKHU HDFK PDWUL[ UHSUHVHQWLQJ D ILOP :H ZLOO FDOO WKLV WKH ILOP PHWKRG EHFDXVH HDFK PDWUL[ FRQWDLQV RQO\ LQIRUPDWLRQ DERXW RQH ILOP DQG LV QRW GHSHQGHQW RQ DGMDFHQW ILOPV ,Q WKH VHFRQG IRUPDOLVP VHFWLRQ f ZKHUH WKH IRUZDUG DQG UHYHUVH WDQJHQWLDO HOHFWULF ILHOGV e DQG eaf ZHUH GHWHUPLQHG DW HDFK LQWHUIDFH D WUDQVIHU PDWUL[ ZDV IRUPHG E\ PXOWLSO\LQJ D VHW RI [ PDWULFHV WRJHWKHU IRU HDFK LQWHUIDFH DQG HDFK ILOP :H ZLOO FDOO WKLV WKH LQWHUIDFHILOP PHWKRG :H VWDUW ZLWK WKH WDQJHQWLDO ILHOGV DW ERXQGDU\ D 7KH\ DUH JLYHQ E\ 6D f§ eRD 64 D :D 92 ^2D f§ t Df ,Q PDWUL[ IRUP WKLV EHFRPHV n 6D f ‘ L n 6D n QD \R \R 6RD B %\ LQYHUWLQJ WKH PDWUL[ ZH JHW n BLB ‘ \ n 6D f 6RD f B \R +D f f ,I 0 LV WKH WUDQVIHU PDWUL[ IRU D VWUXFWXUH ZLWK ERXQGDULHV D WKURXJK P VXFK WKDW 6D +D 0 +Q f WKHQ WKH XVH RI UHODWLRQV DQG FDQ EH XVHG WR PDNH HTXDWLRQ EHFRPH f n 6RaD n n \R 0 n f 6IP n 6RD f \R 9V \} AVP ZKHUH V GHQRWHV WKH ODVW PHGLD RQ WKH ULJKW KDQG VLGH RI WKH ODVW ERXQGDU\ P (TXDWLRQ LV LQ WKH VDPH IRUP DV HTXDWLRQV DQG VKRZLQJ WKDW WKH WZR IRUPDOLVPV DUH FRQQHFWHG E\ WKH WZR WUDQVIRUPDWLRQ PDWULFHV LQ HTXDWLRQ

PAGE 56

$SSOLFDWLRQV RI WKH )RUPDOLVPV WR 5HDO 6WUXFWXUHV 7KLV VHFWLRQ ZLOO XVH HDFK IRUPDOLVP WR GHULYH VRPH EDVLF UHODWLRQV LQ D YHU\ VWUDLJKWIRUZDUG ZD\ 'HSHQGLQJ RQ WKH SUREOHP DW KDQG LW ZLOO EH VKRZQ WKDW LQ VRPH FDVHV WKH LQWHUIDFHILOP PHWKRG LV SUHIHUUHG DQG LQ DQRWKHU FDVH WKH ILOP PHWKRG LV SUHIHUUHG ,Q JHQHUDO WKH ILOP PHWKRG LV EHWWHU IRU FRPSXWHU FDOFXODWLRQ RI WKH ILHOGV RI D VWUXFWXUH 7KLV LV EHFDXVH LW LV FRPSRVHG RI D VWDFN RI LQGHSHQGHQW [ ILOP PDWULFHV )RU D SHULRGLF VWUXFWXUH D PDWUL[ PD\ EH JHQHUDWHG IRU D VLQJOH SHULRG DQG WDNHQ WR WKH SRZHU 1 ZKHUH 1 LV WKH QXPEHU RI SHULRGV $V ZLOO EH VKRZQ EHORZ WKLV \LHOGV D YHU\ VLPSOH H[SUHVVLRQ IRU WKH UHIOHFWDQFH RI D SHULRGLF $ VWUXFWXUH 7KH LQWHUIDFHILOP PHWKRG LV EHWWHU VXLWHG IRU FDOFXODWLRQ RI UHVRQDQFH FRQGLWLRQV 7KHVH ZLOO QRZ EH GLVFXVVHG LQ GHWDLO 5HIOHFWDQFH IURP 3HULRGLF 4XDUWHU:DYH 6WUXFWXUHV $ SHULRGLF VWDFN RI GLHOHFWULF ILOPV LV RI SDUWLFXODU LQWHUHVW EHFDXVH LW FDQ EH XVHG IRU D KLJK UHIOHFWDQFH PLUURU 7KH RSWLPXP WKLFNQHVVHV IRU WKH ILOPV LQ WKLV FDVH LV $ ZKHUH $ $RQ LV WKH FHQWHU ZDYHOHQJWK RI WKH UHIOHFWLRQ EDQG 'XH WR WKH DV\PPHWU\ RI WKH UHIOHFWLRQ EDQG $ LV QRW WKH WUXH FHQWHU EXW LW GRHV FRUUHVSRQG WR WKH PD[LPXP UHIOHFWDQFHf (LWKHU WKH ILOP RU WKH LQWHUIDFHILOP PHWKRGV FDQ EH XVHG WR VROYH IRU WKH UHIOHFWLRQ EXW WKH ILOP PHWKRG \LHOGV DQ DQDO\WLF VROXWLRQ IRU WKH UHIOHFWLRQ DW WKH FHQWHU ZDYHOHQJWK LQ D YHU\ VWUDLJKWIRUZDUG IDVKLRQ ,I WKH SHULRGLF VWUXFWXUH LQ ILJXUH LV QRQDEVRUELQJ DQG WKH WKLFNQHVV RI HDFK OD\HU LV XVLQJ HTXDWLRQ ZH ILQG WKDW f % n f§L LB n \L & 9 P R P f \V n f§ 0O n 1 9L 0O 9 \V

PAGE 57

)LJXUH 'LHOHFWULF PLUURU PDGH IURP D SHULRGLF TXDUWHUZDYH VWDFN n \?1 Y \ Ln ‘ VLV \V f VR WKDW ? 1 ? 1 ‘ DQG < BFB \s? E 9V 81 DQG XVLQJ HTXDWLRQ U B 9} \9L \RW\L ?1 B L 9 0L \R\Lf1 W L 9V.9 ?! f f 7KLV HTXDWLRQ LV YHU\ XVHIXO IRU WKH GHVLJQ RI KLJK UHIOHFWDQFH GLHOHFWULF PLUURUV ,W DOORZV D VWUDLJKWIRUZDUG GHWHUPLQDWLRQ RI WKH QXPEHU RI SHULRGV DQG UDWLR RI WKH LQGLFHV UHTXLUHG IRU D GHVLUHG UHIOHFWDQFH )XUWKHUPRUH LW VKRZV WKDW LI \V \R EHWWHU UHIOHFWDQFH LV REWDLQHG LI \L \L %DVLF /DVHU 5HODWLRQVKLSV 6R IDU WKH PXOWLOD\HU PDWUL[ IRUPXODWLRQV GHULYHG LQ VHFWLRQV DQG KDYH EHHQ XVHG WR VROYH SUREOHPV LQ ZKLFK WKHUH DUH LQFLGHQW UHIOHFWHG DQG WUDQVPLWWHG ZDYHV )RU WKH FDVH RI WKH ODVHU WKLV LV QRW WKH FDVH +RZHYHU WKH IRUPDOLVP LV JHQHUDO DQG DV ZLOO QRZ EH VKRZQ LV DSSOLFDEOH WR WKH ODVHU DV ZHOO )RU UHDVRQV WKDW VKRXOG VRRQ EH DSSDUHQW WKH LQWHUIDFHILOP PHWKRG LV PRUH FRQYHQLHQW IRU FDOFXODWLRQ RI WKH

PAGE 58

Q  Q? Q HU R D E )LJXUH 6LQJOHILOP ODVHU FRQGLWLRQV UHTXLUHG IRU ODVLQJ ,I LW LV QRW REYLRXV LW LV VXJJHVWHG WKDW WKH UHDGHU WU\ WR GHULYH WKHVH FRQGLWLRQV XVLQJ WKH ILOP IRUPDOLVPf 7R GHPRQVWUDWH WKLV ZH VWDUW ZLWK WKH VLQJOHILOP OD\HU ODVHU LQ ILJXUH 7KH LQWHUIDFHILOP PHWKRG UHTXLUHV WKH PXOWLSOLFDWLRQ RI WKUHH PDWULFHVf§RQH IRU LQWHUIDFH D RQH IRU ILOP DQG RQH IRU LQWHUIDFH E 8VLQJ HTXDWLRQV DQG ZH KDYH U W f U e} f e @ UD n HL6L n Q M &1 WR W erD WDAE UD HL6O Q O E PXOWLSO\LQJ ZH JHW 6D B -B > Ha:O UUEHL6O UDHL6O UEHaL6O ebE JY "RD ? WDWE > UDHaL6O UEHL6O HL6O UDUEHaL6O > f 5DGLDWLRQ LV HPLWWHG IURP WKH ODVHU DQG SURSDJDWHV DZD\ IURP WKH GHYLFH WR LQILQLW\ LQ UHJLRQV DQG 7KH ODVHU FDQQRW SURGXFH LQFRPLQJ ZDYHV IURP LQILQLW\ 7KHUHIRUH WKH ERXQGDU\ FRQGLWLRQV IRU WKH SUREOHP DUH (T DQG 8VLQJ WKHVH ERXQGDU\ FRQGLWLRQV LQ HTXDWLRQ ZH ILQG WKDW HaL6O UDUEHL6O f 5HDUUDQJLQJ ZH KDYH WKH EDVLF JDLQ UHODWLRQVKLS UDUEHL6n O f

PAGE 59

7KLV UHODWLRQVKLS LV PRUH IXQGDPHQWDO WKDQ WKRVH JLYHQ LQ PRVW WH[WERRNV EHFDXVH LW FRQWDLQV ERWK PDJQLWXGH DQG SKDVH LQIRUPDWLRQ LQ RQH VLPSOH UHODWLRQ 7R VHH WKLV ZH VHSDUDWH WKH DPSOLWXGH UHIOHFWLRQ FRHIILFLHQWV LQWR PDJQLWXGH DQG SKDVH DQG 6L LQWR UHDO DQG LPDJLQDU\ SDUWV _Uf_ HLAUf _U_ HLHfOLHLIOU f ZKHUH !L OU I L6X 7KH U SKDVH VKLIW LV LQWURGXFHG E\ FRQVLGHULQJ WKH QHJDWLYH VLJQ ,W LV LPSRUWDQW WR FRQVLGHU WKDW ERWK UD DQG UE DUH FRQVLGHUHG IURP OHIW WR ULJKW 7KH QHJDWLYH VLJQ LQ HTXDWLRQ LV WKH UHVXOW RI GHILQLQJ UD ZLWK WKH LQFLGHQW ZDYH LQ PHGLXP (YHQ WKRXJK WKLV LV QRW WKH FDVH WKH HTXDWLRQV VWLOO KROG SURYLGHG WKH FRQVLVWHQF\ RI WKH GHILQLWLRQV LV REVHUYHG DQG QRW LQWHUPLWWHQWO\ FKDQJHG 'HILQLQJ UD WKLV ZD\ FDXVHV D Q SKDVH VKLIW )RU WKLV HTXDWLRQ WR KROG ERWK WKH PDJQLWXGH DQG SKDVH FRPSRQHQWV PXVW HTXDO RQH _UD_ ?UE?H6OL DQG ArArf L f 8VLQJ HTXDWLRQV DQG ZLWK WKH PDJQLWXGH SDUW LW PD\ EH HDVLO\ VKRZQ WKDW OL B/B G 5D5E ZKHUH J f§D LV WKH LQWHQVLW\ JDLQ FRHIILFLHQW 7KH SKDVH SRUWLRQ VKRZV XV WKDW OU MfD MfE 7 PU ZKHUH P f§ f 7KH ODVW WZR HTXDWLRQV FRUUHVSRQG WR WKRVH IRXQG PRVW RIWHQ LQ WH[WERRNV DQG DUH HTXLYDOHQW WR HTXDWLRQ 7KH\ RIIHU D PRUH FRQFHSWXDO YLHZ EHFDXVH WKH\ DUH HDVLO\ GHULYHG E\ DUJXLQJ WKDW WKH URXQG WULS JDLQ HTXDOV RQH DQG WKH URXQG WULS RSWLFDO SDWK OHQJWK LV D PXOWLSOH RI $ ,W VKRXOG EH QRWHG WKDW LQ H[WUHPH FDVHV WKH JDLQ DIIHFWV WKH UHIOHFWDQFH RI WKH PLUURUV DQG WKH JDLQ VKRXOG EH IRXQG WKURXJK

PAGE 60

Q 9 D Q? G ; W E Q )LJXUH 6LQJOHILOP ZDYHJXLGH LWHUDWLRQ RI HTXDWLRQV DQG +RZHYHU WKLV PD\ XVXDOO\ EH QHJOHFWHG EHFDXVH WKH JDLQ LV DOPRVW DOZD\V YHU\ VPDOO FRPSDUHG WR WKH UHDO SDUW RI WKH UHIUDFWLYH LQGH[ %DVLF :DYHJXLGH 5HODWLRQVKLSV 7KH PXOWLOD\HU PDWUL[ IRUPDOLVPV GHYHORSHG LQ VHFWLRQV DQG KDYH EHHQ XVHG VR IDU IRU VROYLQJ IRU WKH ILHOGV IRU D VWUXFWXUH ZLWK WUDYHOLQJ ZDYH FRPSRQHQWV SHUSHQGLFXODU WR WKH ERXQGDULHV +RZHYHU HYHQ WKRXJK UHIOHFWLRQ FRHIILFLHQWV DQG RWKHU UHODWLRQV WKDW FRQFHSWXDOO\ LPSO\ WUDYHOLQJ ZDYHV ZHUH XVHG LW ZDV QHYHU DFn WXDOO\ DVVXPHG WKDW WKH\ ZHUH WUDYHOLQJ 7KLV VHFWLRQ ZLOO GHPRQVWUDWH KRZ JHQHUDO WKH WZR IRUPDOLVPV UHDOO\ DUH E\ DSSO\LQJ WKHP WR D VLQJOHILOP ZDYHJXLGH )LJXUH VKRZV D ZDYHJXLGH RI D VLQJOH ILOP 7KH WDQJHQWLDO ILHOG LQ PHGLD LV JLYHQ E\ f ZKHUH QIFRFRV $VVXPLQJ WRWDO LQWHUQDO UHIOHFWLRQ QL DQG QL PXVW DOVR EH UHDOf 6QHOOfV ODZ EHFRPHV VLQ T f§ f§ VLQ ? Q f

PAGE 61

DQG HTXDWLRQV DQG FDQ EH OLQNHG E\ WKH WULJRQRPHWULF ODZ FRV T s? f§ VLQ T f ,W LV FRQYHQLHQW EXW QRW QHFHVVDU\ WR FKRRVH WKH VLJQ 7KLV PDNHV N SRVLWLYH DQG LPDJLQDU\ ZKLFK LQ WXUQ FDXVHV RQH FRPSRQHQW LQ HTXDWLRQ WR LQFUHDVH WRZDUGV LQILQLW\ IRU QHJDWLYH [ 7KLV FDQQRW UHSUHVHQW SK\VLFDO ERXQGDU\ FRQGLWLRQV $SSURDFKLQJ WKH RWKHU VLGH RI WKH ZDYHJXLGH LQ WKH VDPH ZD\ ZH ILQG WKDW WKH ERXQGDU\ FRQGLWLRQV DUH 6 e f 7KLV LV WKH VDPH VHW RI ERXQGDU\ FRQGLWLRQV DV IRU WKH ODVHU 7KHUHIRUH WKH JDLQ UHODWLRQVKLS HTXDWLRQ f DSSOLHV DOVR WR WKH ZDYHJXLGH +RZHYHU LW LV LQWHUSUHWHG VRPHZKDW GLIIHUHQWO\ :LWK WKH ZDYHJXLGH _UD_ _Ut_ DQG J f§D ZKLFK ZDV DOUHDG\ DVVXPHGf 7KH FKDUDFWHULVWLF HTXDWLRQ HTXDWLRQ f LV WKH VDPH 7KLV H[DPSOH LOOXVWUDWHG WKH XVH RI WKH PDWUL[ IRUPDOLVP WR VROYH IRU PRGHV RI D ORVVOHVV SODQDU ZDYHJXLGH +RZHYHU LW ZDV QRW QHFHVVDU\ WR DVVXPH WKH ORVVOHVV FDVH ,W FDQ EH VKRZQ WKDW ZLWK ORVV WKH EDVLF UHVRQDQFH HTXDWLRQ HTXDWLRQ f VWLOO KROGV DQG WKH VROXWLRQ UHTXLUHV ERWK WUDYHOLQJ DQG HYDQHVFHQW FRPSRQHQWV LQ WKH VROXWLRQV RI WKH VLGH UHJLRQV :LWK ORVV HTXDWLRQ FDQQRW EH VHSDUDWHG LQWR WZR LQGHSHQGHQW UHODWLRQV +RZHYHU DV ZLWK WKH FDVH RI WKH ODVHU LI WKH LPDJLQDU\ SDUW RI WKH UHIUDFWLYH LQGH[ LV VPDOO FRPSDUHG WR WKH UHDO SDUW WKH VROXWLRQ FDQ EH VHSDUDWHG DQG DSSUR[LPDWHG E\ WKH PDJQLWXGH DQG SKDVH UHODWLRQVKLSV ,W LV DOVR LQWHUHVWLQJ WR QRWH WKDW HTXDWLRQ LV XVHIXO IRU VROYLQJ VXUIDFH SODVPRQ PRGHV $SSOLFDWLRQ WR &RUUXJDWHG :DYHJXLGHV 7KLV VHFWLRQ ZLOO VKRZ KRZ WKH PDWUL[ IRUPDOLVP FDQ EH XVHG WR VROYH IRU FRUUXn JDWHG ZDYHJXLGHV 7KH UHVXOW ZLOO EH D YHU\ VLPSOH \HW HIIHFWLYH PRGHO IRU FRUUXJDWHG

PAGE 62

)LJXUH 6LQJOH PRGH ZDYHJXLGH ZLWK DQ DEUXSW VWHS ZDYHJXLGH GHYLFHV 7KH DSSOLFDWLRQV RI WKH IRUPDOLVPV WKXV IDU KDYH EHHQ H[DFW 'XH WR WKH DGGHG FRPSOH[LW\ RI WKLV SUREOHP ZH DUH QRZ UHTXLUHG WR PDNH VRPH DSSUR[n LPDWLRQV EXW WKH DSSUR[LPDWH WKHRU\ SUHVHQWHG KHUH ZLOO \LHOG DFFXUDWH VROXWLRQV IRU WKH GHYLFHV RI LQWHUHVW LQ WKLV ZRUN :H ZLOO DSSO\ WKH WKHRU\ GHYHORSHG E\ %XUQV DQG 0LOWRQ > @ 7KH SUREOHP EHFRPHV YHU\ VLPSOH IRU VLQJOH PRGH ZDYHJXLGHV DV LV WKH FDVH LQ WKLV ZRUNf :H VWDUW ZLWK D VLQJOH PRGH ZDYHJXLGH ZLWK DQ DEUXSW VWHS DW ERXQGDU\ D ILJXUH f 7KH VROXWLRQ RI WKH 7( HOHFWULF ILHOG FDQ EH H[SUHVVHG DV (\ e]f3[ ]fHaLS^]f] ea]f3[ ]fHLO^]f] f ZKHUH e^]f DQG ea]f DUH WKH FRPSOH[ DPSOLWXGHV RI WKH IRUZDUG DQG UHIOHFWHG ZDYHV UHVSHFWLYHO\ 3[ ]f LV WKH ORFDO QRUPDO PRGH SURILOH DW SRVLWLRQ ] ]f LV WKH PRGH SURSDJDWLRQ FRQVWDQW :H ZLOO DVVXPH QHJOLJLEOH VFDWWHULQJ RI WKH HQHUJ\ IURP WKH JXLGHG PRGH LQWR WKH UDGLDWLRQ PRGHV 7KH ERXQGDU\ FRQGLWLRQV RQ HDFK VLGH RI WKH VWHS LQ ILJXUH UHTXLUH WKDW WKH WDQJHQWLDO HOHFWULF DQG PDJQHWLF ILHOGV EH

PAGE 63

FRQWLQXRXV 7KHUHIRUH DW ] D 63HLORD eR3RHL3rD e"3LHaLOLD f DQG 3e3HaLORD SeR3RHL3RD f %\ HOLPLQDWLQJ e3LHaOLD LQ WKHVH WZR HTXDWLRQV ZH JHW eT B 3R a 3L B 1R 1L eR 3R 3L 1T 1L ZKHUH 1 SL INR DUH WKH PRGH LQGLFHV 7KH VROXWLRQ IRU WKH UHIOHFWLRQ DW DQ DEUXSW WUDQVLWLRQ HTXDWLRQ f LV LQ WKH VDPH IRUP DV WKH UHIOHFWLRQ IURP D SODQDU LQWHUIDFH HTXDWLRQ f 7KHUH LV UHDOO\ QRWKLQJ P\VWHULRXV KHUH EHFDXVH HTXDWLRQV DQG DUH DQDORJRXV WR HTXDWLRQV DQG UHVSHFWLYHO\ ,Q IDFW E\ DVVXPLQJ ERWK IRUZDUG DQ UHYHUVH SURSDJDWLQJ ZDYHV LQ DOO UHJLRQV WKH ZKROH PDWUL[ WKHRU\ IRU PXOWLSOH OD\HUV FDQ EH DSSOLHG WR PXOWLSOH VWHS ZDYHJXLGHV D FRUUXJDWHG ZDYHJXLGH EHLQJ RQH H[DPSOHf E\ VXEVWLWXWLQJ WKH PRGH LQGLFHV IRU WKH ORFDO QRUPDO PRGHV IRU WKH LQGLYLGXDO ILOP LQGLFHV 7KLV LV YHU\ XVHIXO DV PRVW RI WKH UHVXOWV SUHVHQWHG WKXV IDU DUH DSSOLFDEOH WR JUDWLQJ GHYLFHV )XUWKHUPRUH WKH VDPH FRPSXWHU SURJUDPV WKDW DUH XVHG WR FDOFXODWH WKH UHIOHFWDQFH WUDQVPLVVLRQ DQG DEVRUSWLRQ VSHFWUD RI SODQDU PXOWLOD\HU VWUXFWXUHV FDQ EH XVHG WR FDOFXODWH WKH EHKDYLRU RI ZDYHJXLGH GHYLFHV LQ SDUWLFXODU ZDYHJXLGH )DEU\3HURW LQWHUIHURPHWHUV DQG ODVHUV $V ORQJ DV WKHUH LV ORZ ORVV OLJKW LV QRW VFDWWHUHG LQWR UDGLDWLRQ PRGHVf DQG WKHUH LV QR PRGH FRQYHUVLRQ EHWZHHQ JXLGHG PRGHV LQ PXOWLPRGH ZDYHJXLGHVf WKLV VLPXODWLRQ PHWKRG LV YHU\ DFFXUDWH 7KH PRGHOLQJ RI '%5 FRUUXJDWHG ZDYHJXLGHV LV DQDORJRXV WR WKH SHULRGLF TXDUWHU ZDYH VWUXFWXUH DQDO\]HG LQ VHFWLRQ 7DNLQJ DGYDQWDJH RI RXU DELOLW\ WR GLUHFWO\ VXEVWLWXWH PRGH LQGLFHV IRU ILOP LQGLFHV ZH FDQ XVH HTXDWLRQ WR ILQG WKH UHIOHFWDQFH

PAGE 64

RI D ILUVW RUGHU JUDWLQJ DW WKH FHQWHU ZDYHOHQJWK 0 n L94 W L!/ 5 1D ?1K; 0Ofr1 ?1V ?1f f A f ZKHUH 14 LV WKH PRGH LQGH[ RI WKH LQSXW ZDYHJXLGH WR WKH JUDWLQJ 1V LV WKH PRGH LQGH[ RI WKH RXWSXW ZDYHJXLGH RI WKH JUDWLQJ 1O LV WKH PRGH LQGH[ RI KDOISHULRGV H[KLELWLQJ WKH ORZHU PRGH LQGH[ 1+?V WKH PRGH LQGH[ RI WKH RWKHU KDOISHULRGV DQG 0 LV WKH QXPEHU RI JUDWLQJ SHULRGV 7KLV VKRZV WKDW WR REWDLQ KLJK UHIOHFWDQFH ZH UHTXLUH D ODUJH GLIIHUHQFH LQ PRGH LQGH[ $1 1MM f§ 1 EHWZHHQ HDFK KDOISHULRG RI WKH JUDWLQJ RU ODUJH QXPEHU RI SHULRGV 6SHFWUDO ,QGH[ 0HWKRG 7KH FKDQQHO ZDYHJXLGH VWUXFWXUHV SUHVHQWHG LQ WKLV ZRUN UHTXLUH H[WHQVLYH QXn PHULFDO WHFKQLTXHV WR DGHTXDWHO\ VROYH IRU WKHLU SURSDJDWLRQ FRQVWDQWV DQG ILHOG SURn ILOHV > @ 7KH VSHFWUDO LQGH[ PHWKRG UHSUHVHQWV D PXFK OHVV ULJRURXV DQG FRPSXWHU LQWHQVLYH PHWKRG DQG KDV EHHQ VKRZQ WR JLYH YHU\ DFFXUDWH UHVXOWV >@ ,W LQYROYHV D VLPSOH YDULDWLRQDO WHFKQLTXH WKDW XWLOL]HV WKH ))7 UDWKHU WKDQ ODUJH PDn WUL[ HLJHQYDOXH SUREOHPV +RZHYHU WKH VSHFWUDO LQGH[ PHWKRG LV OLPLWHG WR VLPSOH ULE ZDYHJXLGH VWUXFWXUHV ZLWK VTXDUH KRPRJHQHRXV VWULSHV RQ WRS RI D SODQDU VWUXFWXUH YDU\LQJ RQO\ LQ WKH GHSWK GLUHFWLRQ (YHQ WKRXJK WKLV GRHV QRW UHSUHVHQW WKH W\SH RI VWUXFWXUHV RI LQWHUHVW LQ WKLV ZRUN LW ZLOO EH IRXQG XVHIXO LQ VHFWLRQ WR JDLQ TXDOLWDWLYH LQVLJKW )LJXUH VKRZV WKH JHQHUDO FDVH RI D GXDO ULE ZDYHJXLGH VWUXFWXUH IRU ZKLFK ZH ZDQW WR VROYH IRU WKH PRGH LQGH[ DQG HOHFWULF ILHOG SURILOH 7KH ULEV DUH VHSDUDWHG E\ 6 WKH ZLGWKV RI WKH ULEV DUH :? DQG : WKHLU KHLJKWV DUH +L DQG + DQG WKH SODQDU JXLGLQJ OD\HU KDV D WKLFNQHVV RI 7KH UHIUDFWLYH LQGH[ RI HDFK UHJLRQ LV DOVR VKRZQ LQ WKH ILJXUH 5HJLRQ LV WKH FODGGLQJ XVXDOO\ DLUf UHJLRQ LV WKH JXLGLQJ OD\HU

PAGE 65

)LJXUH 'XDO ULE ZDYHJXLGH FURVV VHFWLRQ 7KH GDVKHG OLQH UHSUHVHQWV WKH HIIHFWLYH PRYHPHQW RI WKH ERXQGDU\ E\ WKH *RRV+£QFKHQ VKLIW UHJLRQ LV WKH VXEVWUDWH DQG UHJLRQV DQG DUH VWULSHV RI SRVVLEO\ GLIIHUHQW LQGLFHV 7KH SULQFLSOH RI WKH VSHFWUDOLQGH[ WHFKQLTXH LV WR H[SUHVV WKH VROXWLRQ LQ WKH UHJLRQV EHORZ WKH ULEV LQ WHUPV RI D )RXULHU WUDQVIRUP LQ WKH [ GLUHFWLRQ DQG DSSUR[LPDWH WKH VROXWLRQ LQ WKH ULE LQ WHUPV RI VLQHV DQG FRVLQHV ZLWK D ILHOG RI ]HUR LQ WKH FODGGLQJ 7KHVH WZR VROXWLRQV DUH OLQNHG WRJHWKHU E\ UHTXLULQJ FRQWLQXLW\ DQG XVLQJ 3DUVHYDOfV IRUPXOD WR REWDLQ D VLPSOH GLVSHUVLRQ UHODWLRQ 7KH PHWKRG LV RXWOLQHG DV IROORZV $VVXPLQJ D VRXUFH IUHH PHGLD ORVVOHVVf HTXDWLRQ UHGXFHV WR ( f 9 ( f§ ILH f§ f )RU D ] SURSDJDWLQJ ZDYH LQ D VWUXFWXUH LQYDULDQW ZLWK ] HTXDWLRQ UHGXFHV WR ([\]f %4[\fHLAA f $IWHU VXEVWLWXWLQJ HTXDWLRQ LQWR HTXDWLRQ GURSSLQJ WKH FRPPRQ WHUPV DQG XVLQJ N XILH HTXDWLRQ LQ D VRXUFH IUHH PHGLDf ZH JHW D VFDODU ZDYH HTXDWLRQ IRU WKH VROXWLRQ RI WKH HOHFWULF ILHOG LQ HDFK UHJLRQ G( G[ ,f G( G\ N Sf( R f ZKHUH ZH QRZ ZLOO XVH ( WR UHSUHVHQW D SRODUL]DWLRQ RI (T[ \f

PAGE 66

,Q GHULYLQJ HTXDWLRQ HTXDWLRQ DVVXPHG WKDW 9H KRPRJHQHRXV PHGLDf 7KHUHIRUH HTXDWLRQ PXVW EH DSSOLHG WR HDFK LQGLYLGXDO PHGLXP ZLWK WKH SURSHU ERXQGDU\ FRQGLWLRQV PHW DW HDFK LQWHUIDFH 6RPH PHWKRGV VXFK DV WKH EHDP SURSDJDWLRQ PHWKRG %30f DQG ILQLWH GLIIHUHQFH PHWKRGV JLYH DSSUR[LPDWH VROXWLRQV E\ XVLQJ HTXDWLRQ ZLWK DQ LQKRPRJHQLRXV LQGH[ Q[\f LQVHUWHG N[\f QQ[\f?f 7KLV DSSUR[LPDWLRQ LV XVXDOO\ DFFHSWDEOH IRU VWUXFWXUHV ZKHUH WKH UHIUDFWLYH LQGH[ YDULHV VORZO\ 7KLV LV QRW WKH FDVH LQ ULE ZDYHJXLGHV EXW WKH DSSUR[LPDWLRQV VRPHWLPHV \LHOG DFFHSWDEOH UHVXOWV ,I WKH UHIUDFWLYH LQGH[ RI WKH FODGGLQJ Q? LV PXFK VPDOOHU WKDQ Q Q DQG Q DV LW LV ZLWK DQ DLU FODGGLQJ WKH HOHFWULF ILHOG PD\ EH DSSUR[LPDWHG WR EH ]HUR RQ WKH LQWHUIDFH LI WKH ERXQGDU\ LV PRYHG VOLJKWO\ XVLQJ WKH *RRV+£QFKHQ VKLIW 7KHVH ERXQGDULHV DUH VKRZQ E\ WKH GRWWHG OLQHV LQ ILJXUH 7KH QHZ GLPHQVLRQV DUH JLYHQ E\ :OIO :L_ N? SN?c3 a N f 'n 4 \3 a r" f DQG nf ZKHUH IRU 7( PRGHV S T DQG IRU 70 PRGHV S N?N? E DQG T N?N? $SSO\LQJ WKH )RXULHU WUDQVIRUP ZLWK UHVSHFW WR [ RQ WKH ZDYH HTXDWLRQ f ZH KDYH A ^N\f a V 3`6 f ZKHUH eV \f LV WKH )RXULHU WUDQVIRUP RI ([ \f 7KH VROXWLRQ LV VLPLODU WR WKDW RI D VODE ZDYHJXLGH ZLWK D VSHFWUDO LQGH[ QV -UL f§ VNb

PAGE 67

7KH VROXWLRQ LQ WKH ULE UHJLRQV PD\ EH H[SUHVVHG DV ([ \f f§ )[f*\f ZKHUH )[f n $ FRV^V-[ &Lff &L :n[ &L :> s$ FRVV[ &ff & :n[ & :£ HOVHZKHUH 9 DQG *\f VLQL+n\ff VLQLLLMf VLQIAf§ \ff VLQf &O :nD &O :A f§& : D & :A HOVHZKHUH ZLWK f f &O 6 :f & 6 :f L \NMVMS f \M+VOS f 6O [:> f 6 7:n f $ DUH WKH SURSDJDWLRQ FRQVWDQWV RI WKH UHVSHFWLYH ULEV c LV WKH SURSDJDWLRQ FRQVWDQW RI WKH PRGH DQG WKH VLJQ LQ HTXDWLRQ UHSUHVHQWV WKH IXQGDPHQWDO PRGH ZKLOH WKH f§ VLJQ UHSUHVHQWV WKH ILUVW KLJKHURUGHU PRGH 8VLQJ 3DUVHYDOfV IRUPXOD LW PD\ EH VKRZQ WKDW WKH VSHFWUDO VROXWLRQ EHORZ WKH ULE DQG WKH UHDOVSDFH VROXWLRQ ZLWKLQ WKH ULE PD\ EH OLQNHG WRJHWKHU E\ >@ AG(r (f§f§G[ D\ "U DVr 6AGV D\ 7KLV UHSUHVHQWV D GLVSHUVLRQ UHODWLRQ RI ZKLFK WKHUH DUH WKUHH XQNQRZQV f $L $ DQG 2QH RI WKH ILHOG DPSOLWXGHV LV DUELWUDU\ ZKLOH WKH RWKHU PD\ EH XVHG WR GHWHUPLQH WKH FRUUHFW ILHOG SURILOH 6LQFH GHSHQGV RQ WKH ILHOG SURILOH YDULDWLRQDOO\ DQ H[WUHPXP LQ c ZLOO EH REVHUYHG ZKHQ WKH FRUUHFW YDOXH IRU $?$ LV IRXQG 7KXV WKH GLVSHUVLRQ UHODWLRQ PXVW EH XVHG LQ FRQMXQFWLRQ ZLWK DQ RSWLPL]DWLRQ URXWLQH

PAGE 68

6XPPDU\ RI WKH 1XPHULFDO 0HWKRGV 7KLV FKDSWHU SUHVHQWHG D VLPSOH PHWKRG WR FDOFXODWH WKH FKDUDFWHULVWLFV RI FRUUXn JDWHG ZDYHJXLGH ILOWHUV DQG ODVHUV ,Q GRLQJ VR RQH ILUVW PXVW GHWHUPLQH WKH ORFDO QRUPDO PRGH SURSDJDWLRQ FRQVWDQWV 7KH VSHFWUDO LQGH[ PHWKRG ZDV SUHVHQWHG IRU WKLV SXUSRVH 1H[W DQ DSSURSULDWH PDWUL[ IRUPDOLVP VKRXOG EH FKRVHQ WR VROYH WKH SUREOHP DW KDQG 7KH ILOP PDWUL[ PHWKRG ZDV VKRZQ WR EH WKH EHVW FKRLFH IRU GHWHUPLQLQJ UHIOHFWLRQ DQG WUDQVPLVVLRQ VSHFWUD VXFK DV D PLUURU RU ILOWHUf 7KH LQWHUIDFHILOP PHWKRG ZDV VKRZQ WR EH WKH EHVW FKRLFH IRU GHWHUPLQLQJ UHVRQDQFH FRQGLWLRQV VXFK DV IRU D ZDYHJXLGH RU ODVHUf $QDO\WLFDO VROXWLRQV ZHUH GHULYHG IRU VLPSOH FDVHV RI WKHVH +RZHYHU WR VROYH JHQHUDO SUREOHPV FRPSXWHU FDOFXODWLRQ RI WKH PDWULFHV PD\ EH UHTXLUHG

PAGE 69

&+$37(5 $ 1(: :$9(/(1*7+ 6(/(&7,9( )$%5<3(527 ),/7(5 7KLV FKDSWHU LQWURGXFHV WKH FRQFHSWV RI D QHZ WXQDEOH ZDYHOHQJWK VHOHFWLYH ILOWHU 0RVW ,2& ILOWHU WHFKQRORJLHV UHTXLUH D YHU\ ORQJ GHYLFH OHQJWK RU WKH XVH RI WKH DFRXVWRRSWLF HIIHFW FKDSWHU f 7KH GHYLFH ZH SUHVHQW KDV WKH SRWHQWLDO RI EHLQJ YHU\ VKRUW LQ OHQJWK aOFPf DQG XWLOL]HV WKH HOHFWURRSWLF HIIHFW )XUWKHUPRUH LW KDV WKH SRWHQWLDO RI EHLQJ WXQHG WR RYHU ZDYHOHQJWK FKDQQHOV ZLWK EDQGZLGWKV FRPSDUDEOH WR WKDW DYDLODEOH ZLWK PRGHUQGD\ HOHFWURQLFV 7KH FKDSWHU VWDUWV E\ UHYLHZLQJ VRPH RI WKH EDVLF FRQFHSWV RI GLHOHFWULF PLUURUV DQG WKH )DEU\3HURW LQWHUIHURPHWHU EHIRUH WKH QHZ GHYLFH VWUXFWXUH LV LQWURGXFHG &RPSXWHU SURJUDPV LPSOHPHQWLQJ WKH WKHRU\ RI VHFWLRQ ZHUH XVHG IRU WKLV SXUSRVH 7KH QHZ ZDYHJXLGH )DEU\3HURW GHYLFH WKDW LV FKDUDFWHUL]HG E\ D VLQJOH WUDQVPLVVLRQ SHDN ZLWK D YHU\ ODUJH IUHH VSHFWUDO UDQJH LV WKHQ SURSRVHG 7KLQ )LOP 'LHOHFWULF )DEU\3HURW )LOWHUV &KDUDFWHULVWLFV RI D 7KLQ )LOP 'LHOHFWULF 0LUURU :H EHJLQ E\ UHYLHZLQJ VRPH RI WKH SURSHUWLHV RI GLHOHFWULF PLUURUV )LJXUH Df VKRZV DQ DOWHUQDWLQJ GLHOHFWULF VWDFN W\SLFDO RI EXONRSWLF GLHOHFWULF PLUURUV ,W ZDV VWDWHG LQ VHFWLRQ WKDW WKLV SHULRGLF VWUXFWXUH FDQ EH XVHG DV D PLUURU LI WKH WKLFNQHVV RI HDFK OD\HU LV $ 8VLQJ HTXDWLRQ ZLWK WKH IROORZLQJ YDOXHV XVHG IRU WKH UHIUDFWLYH LQGLFHV Q QV Q/ Q DQG ZLWK SHULRGV ZH JHW 5 f§ UUr DW WKH FHQWHU ZDYHOHQJWK 7KLV LV PRUH UHIOHFWDQFH WKDQ FDQ EH DFKLHYHG E\ XQFRDWHG VLOYHU RU DOXPLQXP PLUURUV

PAGE 70

'LHOHFWULF 6WDFN L 7 Q QLL Q/ QQ QL QQ QL QQ Q/ QV 5 )LJXUH 6LPSOH '%5 FRQVLVWLQJ RI D PXOWLOD\HU GLHOHFWULF VWDFN Df DQG LWV UHn IOHFWDQFH DQG WUDQVPLVVLRQ VSHFWUD Ef 7KH SDUDPHWHUV DUH QR QV Q/ Q DQG SHULRGV $ FRPSXWHU SURJUDP LV UHTXLUHG WR VROYH WKH PDWUL[ HTXDWLRQV IRU YDOXHV RI WKH UHIOHFWLRQ DW ZDYHOHQJWKV RWKHU WKDQ WKH FHQWHU ZDYHOHQJWK 7KH UHIOHFWLRQ VSHFWUD LQ ILJXUH Ef VKRZV WKH UHVXOW ,Q WKLV FDVH WKH UHIUDFWLYH LQGH[ GLIIHUHQFH EHWZHHQ VXFFHVVLYH OD\HUV $Q 7KLV ODUJH LQGH[ GLIIHUHQFH QRW RQO\ FRQWULEXWHV WR D KLJK UHIOHFWDQFH ZLWK D VPDOO QXPEHU RI SHULRGV EXW DOVR PDNHV WKH IXOO ZLGWK KDOI PD[LPXP ):+0f RI WKH UHIOHFWLRQ SHDN YHU\ EURDG QPf &KDUDFWHULVWLFV RI D 7KLQ )LOP 'LHOHFWULF )DEU\3HURW )LOWHU :KHQ WZR PLUURUV DUH VHSDUDWHG E\ D FDYLW\ WKH\ IRUP D )DEU\3HURW LQWHUIHURPn HWHU 6XFK D GHYLFH LV VKRZQ LQ ILJXUH Df XVLQJ WZR RI WKH PLUURUV MXVW GHVFULEHG

PAGE 71

Df Ef :DYHOHQJWK )LJXUH )DEU\3HURW ILOWHU FRQVLVWLQJ RI WZR PXOWLOD\HU GLHOHFWULF VWDFN '%5V VHSDUDWHG E\ D VKRUW ZDYHJXLGH FDYLW\ Df UHIOHFWDQFH VSHFWUD RI WKH VWUXFWXUH ZLWK D FDYLW\ OHQJWK RI [P Ef 7KH SDUDPHWHUV IRU HDFK PLUURU DUH Q QV XO XK DQG SHULRGV LQ VHFWLRQ ,Q WKLV FDVH WKH\ DUH VHSDUDWHG E\ D ZDYHJXLGH FDYLW\ [P LQ OHQJWK (YHQ ZLWK WKLV YHU\ VKRUW FDYLW\ OHQJWK ILJXUH Ef VKRZV WKDW WKHUH DUH PDQ\ WUDQVPLVVLRQ SHDNV LQ WKH UHIOHFWLRQ EDQG 7R XWLOL]H WKH HOHFWURRSWLF HIIHFW WR PDNH D WXQDEOH ILOWHU WKH FDYLW\ OHQJWK PXVW EH LQFUHDVHG EXW WKLV FDXVHV WKH SHDNV WR EHFRPH WRR FORVH WRJHWKHU DQG WKH UHGXFHG IUHH VSHFWUDO UDQJH ZLOO FDXVH FURVVWDON LQ D :'0 V\VWHP 7KH UHIOHFWLRQ VSHFWUD LQ ILJXUH Ef ZDV FDOFXODWHG ZLWK WKH PHWKRGV SUHVHQWHG LQ FKDSWHU ZLWK RQH PRUH DSSUR[LPDWLRQ 7KH VWUXFWXUH ZDV FDOFXODWHG DV D SODQDU

PAGE 72

PXOWLOD\HU VWUXFWXUH ZLWK WKH PRGH LQGH[ RI WKH ZDYHJXLGH VKRZQ DV WKH FDYLW\ LQ ILJXUH Dff VXEVWLWXWHG LQ IRU WKH UHIUDFWLYH LQGH[ RI WKH FDYLW\ 7KLV ZDV DOUHDG\ VKRZQ WR EH D JRRG DSSUR[LPDWLRQ LQ VHFWLRQ +HUH ZH JR RQH VWHS IXUWKHU E\ DVVXPLQJ WKH RYHUODS EHWZHHQ WKH PRGH ILHOG RI WKH ZDYHJXLGH DQG WKH UHIOHFWHG ZDYH E\ WKH HQGIDFH PLUURU LV TXLWH JRRG 7KLV DSSUR[LPDWLRQ EHFRPHV EHWWHU DV WKH WRWDO WKLFNQHVV RI WKH PLUURU LV GHFUHDVHG EHFDXVH WKH PRGH ILHOG LV GLVSHUVHG OHVV E\ WKH VKRUWHU VWUXFWXUH 7R PDNH D WKLQ PLUURU ZLWK KLJK UHIOHFWLRQ ZH UHTXLUH $1 WR EH ODUJH $ SHULRG PLUURU ZLWK Q Q DQG D FHQWHU ZDYHOHQJWK $ QP LV XQ WKLFN 7KH ILHOG GLYHUJHQFH ZLWKLQ WKHVH GLPHQVLRQV LV QHJOLJLEOH 7KHVH YDOXHV ZHUH RQO\ XVHG WR GHPRQVWUDWH WKH FRQFHSW )RU WKH PLUURUV XVHG LQ WKLV ZRUN XK DQG ZKLFK FRUUHVSRQG WKH WKH UHIUDFWLYH LQGH[ RI VLOLFRQ DQG $,2f DQG DERXW WKH VDPH UHIOHFWLRQ DV IRU WKH PLUURU MXVW LOOXVWUDWHG FDQ EH DFKLHYHG LQ MXVW SHULRGV 7KHUHIRUH WKH WRWDO PLUURU WKLFNQHVV LV UHGXFHG WR MXVW LP ZKLFK PDNHV WKH DSSUR[LPDWLRQ PDGH DERYH LV HYHQ PRUH DSSOLFDEOH WR RXU VWUXFWXUHV '%5 &RUUXJDWHG :DYHJXLGH )DEUY3HURW )LOWHUV &KDUDFWHULVWLFV RI D '%5 &RUUXJDWHG :DYHJXLGH ,Q FRQWUDVW WR DQ HQGIDFH PLUURU D '%5 FRUUXJDWHG ZDYHJXLGH KDV PDQ\ W\SLFDOO\ WKRXVDQGVf SHULRGV DQG WKH PRGH LQGH[ GLIIHUHQFH EHWZHHQ WKH SHDNV DQG YDOOH\V LV YHU\ VPDOO W\SLFDOO\ $1 a f 7KH VWUXFWXUH LV LOOXVWUDWHG LQ ILJXUH Df $FFRUGLQJ WR WKH WKHRU\ LQ VHFWLRQ WKH VROXWLRQ RI WKH UHIOHFWLRQ DQG WUDQVPLVVLRQ VSHFWUD RI WKLV VWUXFWXUH LV HVVHQWLDOO\ WKH VDPH DV WKH GLHOHFWULF PLUURU ZLWK WKH PRGH LQGH[ GLIIHUHQFH XVHG LQ SODFH RI WKH UHIUDFWLYH LQGH[ RI D ILOP 7R GHPRQVWUDWH WKH FKDUDFWHULVWLFV RI VXFK D JUDWLQJ ZH ILQG WKDW WR REWDLQ DERXW WKH VDPH UHIOHFWLRQ IURP D ORVVOHVV JUDWLQJ VWUXFWXUH DV Z GLG IRU WKH GLHOHFWULF PLUURU

PAGE 73

:DYHJXLGH *UDWLQJ !‘ 5 L:O$$$$$$$$$$$ QV Q Df Ef :DYHOHQJWK )LJXUH '%5 FRUUXJDWHG ZDYHJXLGH Df UHIOHFWDQFH VSHFWUD Ef 7KH SDUDPHWHUV XVHG LQ WKH FDOFXODWLRQ DUH 1K DQG 1 1V DQG SHULRGV /RVV RI G%FP LV DOVR LQFOXGHG LQ WKH FDOFXODWLRQ

PAGE 74

LQ VHFWLRQ ZLWK D PRGH LQGLFHV RI L9 DQG 1/ 1 1V f§ IRU WKH SHDNV DQG YDOOH\V UHVSHFWLYHO\ $1 [ f ZH UHTXLUH SHULRGV )RU D FHQWHU ZDYHOHQJWK RI $ QP WKLV GHYLFH LV PP ORQJ DQG IRU WKH ORVVOHVV FDVH HTXDWLRQ SUHGLFWV WKDW 5 b :H H[SHFW WKHUH WR EH VRPH ORVV LQ WKH ZDYHJXLGH /RZORVV $3(/L1E DQG 7L/L1E ZDYHJXLGHV W\SLFDOO\ H[KLELW G%FP ORVV 7KH ORVV LQ G% D>G%FP@ LV UHODWHG WR WKH DEVRUSWLRQ FRHIILFLHQW R>OFP@ E\ D>G%FP@ D >FP @ f ORJ H $FFRUGLQJ WR HTXDWLRQ WKHVH YDOXHV IRU ORVV FRUUHVSRQG WR WKH LPDJLQDU\ SDUW RI WKH UHIUDFWLYH LQGH[ Q LQ WKLV FDVH ZH DUH UHDOO\ WDONLQJ DERXW WKH PRGH LQGH[f EHWZHHQ [ DQG [ :KHQ WKHUH LV ORVV ZH QHHG WR XVH WKH FRPSXWHU FDOFXODWLRQ RI WKH PDWULFHV HYHQ IRU WKH UHIOHFWLRQ DW WKH FHQWHU ZDYHOHQJWK )LJXUH Ef VKRZV WKH UHIOHFWLRQ VSHFWUD RI WKLV FRUUXJDWHG ZDYHJXLGH VWUXFWXUH ZLWK D ORVV RI G%FP Q [ f $ VRPHZKDW KLJKHU ORVV ZDV XVHG EHFDXVH ZH H[SHFW WKH JUDWLQJ WR LQGXFH VRPH DGGLWLRQDO ORVV RQ WKH ZDYHJXLGH 7KH SHDN UHIOHFWLRQ LV UHGXFHG IURP b IRU WKH ORVVOHVV FDVH WR b IRU WKH FDVH ZKHUH ZH KDYH G%FP ORVV 7KH GLVWLQFW GLIIHUHQFHV EHWZHHQ WKH FKDUDFWHULVWLFV RI WKH FRUUXJDWHG ZDYHJXLGH UHIOHFWRU DQG D GLHOHFWULF PLUURU DUH WKDW WKH FRUUXJDWHG ZDYHJXLGH FDQ KDYH PRUH WKDQ WKUHH RUGHUV RI PDJQLWXGH VKRUWHU EDQGZLGWK ):+0 LV ƒ LQ WKLV FDVHf DQG D PXFK ORQJHU OHQJWK ZLWK RUGHUV RI PDJQLWXGH PRUH JUDWLQJ SHULRGV LV UHTXLUHG IRU KLJK UHIOHFWLRQ 7KH GLIILFXOW\ LQ DFKLHYLQJ KLJK UHIOHFWLRQ IURP D FRUUXJDWHG ZDYHJXLGH LV PDLQWDLQLQJ ORZ ORVV ZKHQ WKH JUDWLQJ LV IRUPHG ,Q WKLV H[DPSOH ZH VKRZHG WKDW D YHU\ ORZ ORVV RI G%FP DOUHDG\ KDV D QRWLFHDEOH HIIHFW RQ WKH SHDN UHIOHFWDQFH 7KLV LVVXH ZLOO EH GLVFXVVHG PDQ\ WLPHV WKURXJKRXW WKH UHVW RI WKLV GLVVHUWDWLRQ

PAGE 75

&DYLW\ !‘ f§ 5 Df )LJXUH )DEU\3HURW ILOWHU FRQVLVWLQJ RI WZR '%5 FRUUXJDWHG ZDYHJXLGHV VHSDUDWHG E\ D VKRUW ZDYHJXLGH FDYLW\ Df UHIOHFWDQFH VSHFWUD RI WKH VWUXFWXUH Ef &KDUDFWHULVWLFV RI D '%5 &RUUXJDWHG :DYHJXLGH )DEUY3HURW )LOWHU )LJXUH Df VKRZV D )DEU\3HURW LQWHUIHURPHWHU IRUPHG E\ LQWURGXFLQJ D VKRUW FDYLW\ RU D TXDUWHUZDYH VKLIW LQ WKH FHQWHU RI WKH JUDWLQJ )LJXUH Ef VKRZV WKH UHIOHFWDQFH VSHFWUXP RI WKH GHYLFH XVLQJ WZR JUDWLQJV ZLWK WKH VDPH SDUDPHWHUV DV ZHUH XVHG LQ VHFWLRQ DQG ZLWK D TXDUWHUZDYH VKLIW EHWZHHQ WKHP $ VLQJOH WUDQVPLVVLRQ SHDN LV REVHUYHG LQ WKH FHQWHU RI WKH UHIOHFWLRQ EDQG 2QO\ RQH SHDN LV REVHUYHG EHFDXVH WKH ZLGWK RI WKH UHIOHFWLRQ SHDN LV QDUURZHU WKDQ WKH IUHH VSHFWUDO UDQJH

PAGE 76

7KH IUHH VSHFWUDO UDQJH )65f RI D )DEU\3HURW LQWHUIHURPHWHU LV JLYHQ E\ $$IHU !f ZKHUH $R LV WKH IUHH VSDFH ZDYHOHQJWK Q LV WKH UHIUDFWLYH LQGH[ RI WKH FDYLW\ DQG /F LV WKH OHQJWK RI WKH FDYLW\ $ )DEU\3HURW PDGH ZLWK D PLUURU ZLWK D ):+0 RI ƒ DQG D FHQWHU ZDYHOHQJWK RI QP ZLOO H[KLELW DW PRVW RQH WUDQVPLVVLRQ SHDN LI /F PP +RZHYHU LI WKLV GHYLFH ZHUH WR EH XVHG DV D ILOWHU LQWHUFKDQQHO FURVVWDON ZRXOG VWLOO EH D SUREOHP EHFDXVH WKH VWRSEDQG LWVHOI LV QDUURZ DQG WKH VLGHOREHV H[KLELW H[WUHPHO\ KLJK WUDQVPLVVLRQ 7KLV GHYLFH FDQ PDNH D JRRG VLQJOH IUHTXHQF\ ODVHU EHFDXVH WKHUH LV RQO\ RQH WUDQVPLVVLRQ SHDN LQ WKH UHIOHFWLRQ EDQG $OO WKH RWKHU )DEU\3HURW SHDNV DUH LQ WKH VLGHOREHV ZKHUH HTXDWLRQ FDQQRW EH VDWLVILHG 7KH VLGHOREHV KDYH OLWWOH GHWULPHQn WDO HIIHFW RQ LWV SHUIRUPDQFH WKH RQO\ GHWULPHQWDO HIIHFW LV WKDW VSRQWDQHRXV HPLVVLRQ LV DOORZHG WR SDVV WKURXJK +RZHYHU D ILOWHU LV DGYHUVHO\ DIIHFWHG E\ WKH VLGHOREHV DV OLJKW LV DOORZHG WR SDVV WKURXJK WKHP DOPRVW DV ZHOO DV WKH )DEU\3HURW WUDQVPLVVLRQ SHDN 3URSRVDO $V\PPHWULF )DEU\3HURW )LOWHU ,Q WKLV VHFWLRQ ZH SURSRVH WKH DV\PPHWULF )DEU\3HURW $6)3f ILOWHU WKDW WDNHV DGYDQWDJH RI WKH FKDUDFWHULVWLFV RI ERWK WKH GLHOHFWULF PLUURU DQG WKH FRUUXJDWHG ZDYHJXLGH '%5 UHIOHFWRU $V\PPHWULF UHIHUV WR WKH XVH RI WZR PLUURUV GLIIHULQJ YDVWO\ LQ WKHLU UHIOHFWLRQ VSHFWUD 7KH '%5 PLUURUV GHVFULEHG LQ VHFWLRQV DQG DUH WZR VXFK H[DPSOHV ZKHUH WKH RQH LQ VHFWLRQ KDV D UHIOHFWLRQ EDQG ):+0 RYHU WLPHV WKDW RI VHFWLRQ

PAGE 77

&RUUXJDWHG :DYHJXLGH '%5 )LJXUH $V\PPHWULF )DEU\3HURW ILOWHU FRQVLVWLQJ RI D '%5 FRUUXJDWHG ZDYHJXLGH ZLWK D GLHOHFWULF PLUURU GHSRVLWHG RQ WKH HQGIDFH 3DVVLYH $6)3 )LOWHU :H UHFDOO WKDW WKH )DEU\3HURW PDGH IURP GLHOHFWULF PLUURUV KDG D EURDG VWRS EDQG EXW PDQ\ WUDQVPLVVLRQ SHDNV ZLWKLQ WKDW VWRSEDQG 7KH )DEU\3HURW PDGH IURP FRUUXJDWHG ZDYHJXLGH UHIOHFWRUV KDG WKH RSSRVLWH VFHQDULR ZKHUH WKH VWRSEDQG ZDV H[WUHPHO\ QDUURZ DQG WKHUH ZDV RQO\ RQH WUDQVPLVVLRQ SHDN $ VRPHZKDW QRYHO DSSURDFK ZRXOG EH WR FRPELQH WKH IDYRUDEOH FKDUDFWHULVWLFV RI ERWK W\SHV RI '%5V DV VKRZQ LQ ILJXUH 7KH GLHOHFWULF VWDFN GHSRVLWHG RQ WKH HQGIDFH RI D ZDYHJn XLGH ZLOO SURYLGH D YHU\ EURDG VWRSEDQG ZKLOH WKH ZDYHJXLGH JUDWLQJ ZLOO SURYLGH UHMHFWLRQ RI XQZDQWHG )DEU\3HURW WUDQVPLVVLRQ SHDNV :KHQ WKH\ DUH IDEULFDWHG LQ FDVFDGH IRUPLQJ DQ DV\PPHWULF )DEU\3HURW ILOWHU $6)3 ILOWHUf WKH\ SURYLGH D VLQJOH YHU\ QDUURZ WUDQVPLVVLRQ SHDN ZLWK DQ DUWLILFLDOO\ KLJK IUHH VSHFWUDO UDQJH ILJXUH f 7KH SKDVH VKLIW EHWZHHQ WKH JUDWLQJ DQG WKH '%5 LV FUXFLDO WR DVVXUH WKDW D WUDQVPLVVLRQ SHDN OLHV ZLWKLQ WKH VWRSEDQG RI WKH JUDWLQJ ,Q WKH FDOFXODWLRQV W\SLFDO YDOXHV IRU WKH GLPHQVLRQV DQG LQGLFHV RI WKH WZR '%5V ZHUH XVHG DQG ORVV ZDV LQFOXGHG 7KH ILOWHU FKDUDFWHULVWLFV VKRZQ LQ G% LQ ILJXUH f DUH VXLWDEOH IRU D ZDYHOHQJWK FKDQQHO ZLWK D ELW UDWH RI DERXW *EV DQG DQ LQWHUn FKDQQHO FURVVWDON RI DERXW G% 7KH VROLG FXUYH ZDV FDOFXODWHG DVVXPLQJ D JUDWLQJ [7KH UHDVRQ ZK\ WKLV )65 LV FDOOHG fDUWLILFLDOf LV EHFDXVH WKHUH DUH VWLOO PDQ\ WUDQVPLVVLRQ SHDNV ZLWKLQ WKH VWRSEDQG DV WKH SKDVH FRQGLWLRQ UHTXLUHG IRU LQWHUIHUHQFH LV PHW +RZHYHU WKH UHIOHFWLRQ RI WKH JUDWLQJ UHIOHFWRU LV VR ORZ WKDW OLWWOH LQWHUIHUHQFH WDNHV SODFH DQG WKH SHDNV DUH QRW YLVLEOH LQ WKH JUDSK

PAGE 78

)LJXUH 7UDQVPLVVLRQ VSHFWUD RI DQ DV\PPHWULF )DEU\3HURW ILOWHU Df H[SDQGHG YLHZ RI WKH WUDQVPLVVLRQ SHDN Ef 7KH SDUDPHWHUV XVHG IRU WKH GLHOHFWULF PLUURU ZHUH WKH VDPH DV WKRVH XVHG IRU ILJXUH Ef DQG WKRVH XVHG IRU WKH FRUUXJDWHG ZDYHJXLGH ZHUH WKH VDPH DV WKRVH XVH IRU ILJXUH Ef

PAGE 79

:DYHOHQJWK QPf )LJXUH 7UDQVPLVVLRQ VSHFWUD RI DQ $6)3 ILOWHU IRU D FRUUXJDWHG ZDYHJXLGH ORVV RI G%FP VROLGf DQG G%FP GRWWHGf ORVV RI G%FP +RZHYHU WKH GRWWHG FXUYH VKRZV WKDW LI WKH JUDWLQJ ORVV LV G%FP WKH ILOWHU UHVSRQVH LV EURDGHQHG DQG WKH PDJQLWXGH RI WKH WUDQVPLVVLRQ SHDN LV FRPSDUDEOH WR WKH VLGHOREHV PDNLQJ WKH GHYLFH XVHOHVV IRU D ILOWHU +HQFH WKH PRVW LPSRUWDQW WHFKQRORJ\ IRU WKH UHDOL]DWLRQ RI WKLV DQG VLPLODU GHYLFHV LV WKH IDEULFDWLRQ RI KLJK UHIOHFWDQFH ZDYHJXLGH JUDWLQJ PLUURUV ZLWK ORZ ORVV 7KHUH LV VRPH UHGXQn GDQF\ LQ WKLV VWDWHPHQW LQ WKDW D KLJK UHIOHFWDQFH ZDYHJXLGH JUDWLQJ PLUURU LPSOLFLWO\ LPSOLHV ORZ ORVV 7XQLQJ DQ $6)3 ILOWHU 7KH GHYLFH SURSRVHG LQ VHFWLRQ KDV WKH SRWHQWLDO RI EHLQJ WXQHG WR PDQ\ FKDQQHOV LQ D YHU\ VLPSOH DQG VWUDLJKWIRUZDUG PDQQHU E\ XWLOL]LQJ WKH OLQHDU HOHFWURn RSWLF HIIHFW ZLWK DQ DSSURSULDWH HOHFWURGH VFKHPH ILJXUH f 7KH HOHFWURRSWLF HIIHFW LV XVHG WR FKDQJH WKH PRGH LQGH[ RI WKH FRUUXJDWHG ZDYHJXLGH DQG WKH FDYLW\ LI RQH LV LQFOXGHGf 6PDOO FKDQJHV LQ WKH PRGH LQGH[ DUH VXIILFLHQW WR VKLIW WKH SHDN WR DQRWKHU ZDYHOHQJWK FKDQQHO 8QOLNH PDQ\ RWKHU HOHFWURRSWLF GHYLFHV WKH WRWDO SKDVH VKLIW

PAGE 80

(OHFWURGHV :DYHJXLGH *UDWLQJ N 3HULRGV )LJXUH 7XQDEOH $6)3 ILOWHU FDQ EH PXFK OHVV WKDQ U 7KHUHIRUH WKH WRWDO GHYLFH OHQJWK FDQ EH YHU\ VKRUW )RU WKH GHYLFH ZH DUH GLVFXVVLQJ WKH OHQJWK LV PHUHO\ PP 7R GHWHUPLQH WKH DPRXQW RI FKDQJH LQ WKH PRGH LQGH[ UHDOL]DEOH ZH UHFDOO WKDW WKH UHIUDFWLYH LQGH[ RI WKH H[WUDRUGLQDU\ ZDYH LQ /L1E&! LV GHSHQGHQW XSRQ WKH '& HOHFWULF ILHOG DORQJ WKH RSWLFDO D[LV ]f H[SUHVVHG DV Q QH(]f QH eU=(] f ZHUH QH LV WKH H[WUDRUGLQDU\ UHIUDFWLYH LQGH[ ZLWKRXW DSSOLHG ILHOG (] LV WKH DSn SOLHG ILHOG DQG U LV WKH DSSURSULDWH 3RFNHOfV FRHIILFLHQW ZKLFK IRU /L1E2V [ fP9 /L1E2V EUHDNV GRZQ ZLWK HOHFWULF ILHOGV JUHDWHU WKDQ N9PP DQG KHQFH (] PXVW EH VRPHZKDW OHVV WKDQ WKLV :LWK WKHVH DSSOLHG ILHOGV WKH H[n WUDRUGLQDU\ LQGH[ FKDQJH $Q [ 7KH FKDQJH LQ PRGH LQGH[ LV UHODWHG WR WKH FKDQJH LQ UHIUDFWLYH LQGH[ E\ $1 7$Q ZKHUH 7 LV FDOOHG WKH ILOO IDFWRU 7KH ILOO IDFWRU LV EDVLFDOO\ WKH QRUPDOL]HG RYHUODS LQWHJUDO EHWZHHQ WKH '& PRGXODWLQJf HOHFWULF ILHOG DQG WKH RSWLFDO ILHOG SURILOHV (OHFWURGH FRQILJXUDWLRQV WKDW UHVXOW LQ U DUH HDVLO\ DFKLHYHG H[SHULPHQWDOO\ 7KH PRGH LQGH[ FKDQJH LV IXUWKHU OLPLWHG

PAGE 81

)LJXUH 7UDQVPLVVLRQ VSHFWUD RI D 7XQDEOH $6)3 ILOWHU IRU VHYHUDO YDOXHV RI WKH PRGH LQGH[ FKDQJH E\ WKH EUHDNGRZQ RI DLU EXW HLWKHU D SRO\PHU RU DQ R[LGH RYHUOD\ FDQ KHOS HOLPLQDWH WKLV SUREOHP $OO WKLQJV FRQVLGHUHG WKH XSSHU OLPLW IRU WKH PRGH LQGH[ FKDQJH LV DERXW $1 7R GHWHUPLQH WKH UDQJH RI WXQDELOLW\ RI WKH GHYLFH VHYHUDO WUDQVPLVVLRQ FXUYHV ZLWK YDU\LQJ PRGH LQGH[ FKDQJH DUH SORWWHG LQ ILJXUH ,I WKH PD[LPXP PRGH LQGH[ FKDQJH LV $1 WKH GHYLFH LV FDSDEOH RI WXQLQJ WR FKDQQHOV VSDFHG DW *+] DSDUW ZLWK D FURVVWDON RI G% 7KHVH UHVXOWV PD\ EH LPSURYHG ZLWK ORZHU ORVV KLJKHU UHIOHFWLRQ DQG VLGHOREH VXSSUHVVLRQ RI WKH JUDWLQJ '%5 )XUWKHUPRUH D ORQJHU EXW ZHDNHU JUDWLQJ PD\ EH XVHG WR LQFUHDVH WKH QXPEHU RI WXQDEOH FKDQQHOV 7KH QXPEHU RI FKDQQHOV FDQ DOVR EH LQFUHDVHG E\ IDEULFDWLQJ DQ DUUD\ RI WKHVH WXQDEOH ILOWHUV ZLWK YDU\LQJ JUDWLQJ SHULRGV :LGHEDQG SUHILOWHUV VXFK 0DFK=HKQGHU LQWHUIHURPHWHUV FDQ EH XVHG WR GLVWULEXWH WKH JURXSV RI ZDYHOHQJWK FKDQQHOV WR WKH

PAGE 82

DSSURSULDWH $6)3 ILOWHUV RU LI SRZHU LV QRW DQ LVVXH D VLPSOH VWDU FRXSOHU FDQ EH XVHG WR GLVWULEXWH WKH SRZHU WR HDFK $6)3 ILOWHU ,Q FRQWUDVW WR PRVW RWKHU ZDYHOHQJWK VHOHFWLYH ILOWHUV WKH $6)3 ILOWHU LV PXFK OHVV FRPSOH[ H[WUHPHO\ VKRUW OHVV WKDQ PPf DQG WXQDEOH WR PDQ\ FKDQQHOV ZLWK D VLQJOH ORZ SRZHU FRQWUROOHU 5HODWLYHO\ IHZ WHFKQRORJLHV DUH \HW WR EH GHYHORSHG DQG VXFFHVVIXO GHYHORSPHQW ZLOO PDNH WKLV ILOWHU DPHQDEOH WR ODUJH VFDOH SURGXFWLRQ 7XQDEOH ')% ODVHU $V ZH UHFDOO IURP VHFWLRQ WKH FRQFHSW RI XVLQJ WKH $6)3 VWUXFWXUH DV D ZDYHOHQJWK VHOHFWLYH ILOWHU LV QHZ EXW WKH GHYLFH VWUXFWXUH LV QRW 0DQ\ SUDFWLFDO ')% ODVHUV XVH WKH VDPH UHVRQDWRU VWUXFWXUH EXW WKH SXUSRVH LV GLIIHUHQW 7KH SXUSRVH RI WKH FRUUXJDWHG ZDYHJXLGH LV HVVHQWLDOO\ WKH VDPH IRU WKH ODVHU DV LW LV IRU WKH ILOWHU SURGXFH QDUURZEDQG UHIOHFWLRQ FDSDEOH RI VHOHFWLQJ D VLQJOH WUDQVPLVVLRQ SHDN 7KH SXUSRVH RI WKH HQGIDFH PLUURU LV GLIIHUHQW 7KH ILOWHU UHTXLUHV WKH EURDGEDQG PLUURU WR SURGXFH D YHU\ EURDG VWRSEDQG ZLWK YHU\ VPDOO WUDQVPLVVLRQ VLGHOREHV $Q HQGIDFH PLUURU LV XVHIXO IRU ')% ODVHUV EHFDXVH LW XVXDOO\ FDXVHV WKH WUDQVPLVVLRQ VSHFWUD WR EH DV\PPHWULF ZLWK D GRPLQDQW WUDQVPLVVLRQ SHDN >@ 7KH XVH RI D VLQJOH JUDWLQJ FDXVHV D ')% ODVHU WR H[KLELW GXDO ZDYHOHQJWK RSHUDWLRQ DW WKH WZR GRPLQDWH WUDQVPLVVLRQ VLGHOREHV VKRZQ LQ ILJXUH f $Q DOWHUQDWLYH PHWKRG WR DFKLHYLQJ VLQJOH ORQJLWXGLQDO PRGH RSHUDWLRQ LV WR XVH D TXDUWHUZDYH VKLIWHG JUDWLQJ ZKLFK LV HVVHQWLDOO\ WKH VDPH DV WKH VWUXFWXUH LQ ILJXUH EXW WKLV LV JHQHUDOO\ PRUH GLIILFXOW WR IDEULFDWH 7UDQVPLVVLRQ VLGHOREHV RI WKH )DEU\3HURW VWUXFWXUH DUH RI QR FRQVHTXHQFH ZLWK WKH ODVHU VLQFH ZKHQ ODVHU DFWLRQ EHJLQV WKH VSRQWDQHRXV HPLVVLRQ LQ WKHVH VLGHOREHV LV JUHDWO\ GZDUIHG E\ WKH KLJK SRZHU ODVHU HPLVVLRQ IURP WKH GRPLQDQW PRGH

PAGE 83

7KH $6)3 ILOWHU IXQFWLRQV DV D ')% RU '%5 ODVHU LI HQRXJK JDLQ LV LQWURGXFHG WR WKH FDYLW\ DQGRU JUDWLQJ WR RYHUFRPH WKH ORVVHV 7KH FRQGLWLRQV IRU ODVLQJ FDQ EH GHWHUPLQHG E\ HTXDWLRQV DQG LI WKH JDLQ LV RQO\ LQ D FDYLW\ EXW LI WKHUH LV JDLQ LQ WKH JUDWLQJ DQ LWHUDWLYH FDOFXODWLRQ RI WKH PDWUL[ PHWKRG LV QHFHVVDU\ WR FDOFXODWH WKH JDLQ UHTXLUHG IRU ODVLQJ 7KH ')% DQG '%5 ODVHUV GR QRW UHTXLUH D KLJK TXDOLW\ JUDWLQJ WR ODVH 6XFK ODVHUV KDYH EHHQ H[SHULPHQWDOO\ GHPRQVWUDWHG ZLWK HUELXP GRSHG /L1E >@ 7KH ODVHUV ZHUH PDGH ZLWK D PP HUELXP GRSHG FDYLW\ DQG '%5 FRUUXJDWHG ZDYHJXLGHV PP DQG PP LQ OHQJWK 7KH PP JUDWLQJ H[KLELWHG D PD[LPXP RI b UHIOHFWLRQ DQG WKH PP JUDWLQJ H[KLELWHG D PD[LPXP RI b 7KH GHYLFH ZLWK WKH PP JUDWLQJ ZDV VKRZQ WR ODVH HYHQ ZLWKRXW DQ HQGIDFH PLUURU WKH /L1EDLU LQWHUIDFH H[KLELWV 5 bf 7KH $6)3 ODVHU FDQ EH WXQHG LQ WKH VDPH ZD\ DV LWV ILOWHU FRXQWHUSDUW 7KH ZDYHOHQJWK VKLIWV VKRZQ LQ ILJXUH f DUH WKH VDPH EXW WKH OLQHZLGWK RI WKH ODVHU LV PXFK QDUURZHU 7KH WKHRU\ LQ FKDSWHU ZRXOG SUHGLFW LQILQLWHVLPDOO\ VPDOO OLQHZLGWKV IRU WKH ODVHU EXW VHYHUDO EURDGHQLQJ PHFKDQLVPV ZLOO SURGXFH D OLQHZLGWK SUREDEO\ RQ WKH RUGHU RI 0+] 7KH $6)3 ILOWHU DQG ODVHU FRPSOHPHQW HDFK RWKHU %RWK FDQ EH IDEULFDWHG RQ WKH VDPH FKLS DQG GHVLJQHG WR KDYH WKH VDPH WXQDELOLW\ ZLWK WKH VDPH DSSOLHG YROWDJH 6XPPDU\ ,Q WKLV FKDSWHU ZH SUHVHQWHG WKH EDVLFV RI HQGIDFH GLHOHFWULF DQG FRUUXJDWHG ZDYHJn XLGH UHIOHFWRUV 7KHLU DSSOLFDWLRQ WR D )DEU\3HURW ILOWHU VKRZHG WKDW QHLWKHU DUUDQJHn PHQW ZDV VXIILFLHQW WR DFW DV D :'0 ILOWHU DORQH EXW ZKHQ WKH EHQHILWV RI ERWK RI WKHP DUH H[SORLWHG LQ D FDVFDGHG DUUDQJHPHQW IRUPLQJ DQ DV\PPHWULF )DEU\3HURW ILOWHU D PXFK PRUH XVHIXO ILOWHU LV SRVVLEOH 7KLV ILOWHU ZDV WKHQ VKRZQ WR KDYH

PAGE 84

DOPRVWLGHDO FKDUDFWHULVWLFV IRU PDQ\ :'0 DSSOLFDWLRQV UHGXFHG FRPSOH[LW\ H[n WUHPHO\ VKRUW OHQJWK OHVV WKDQ PPf WXQDELOLW\ WR PDQ\ FKDQQHOV ZLWK MXVW D VLQJOH '& FRQWUROOHU ORZ SRZHUf DQG DPHQDELOLW\ WR ODUJH VFDOH SURGXFWLRQ 0RVW RWKHU ILOWHUV UHSRUWHG WR GDWH ODFN RQH RU PRUH RI WKHVH FKDUDFWHULVWLFV 7KH VDPH VWUXFWXUH FDQ EH XVHG WR PDNH D ODVHU ZKLFK KDV EHHQ UHSRUWHG HOVHZKHUH YHU\ UHFHQWO\f 7KLV QHZ ILOWHU KDV WKH SRWHQWLDO RI EHFRPLQJ DQ LGHDO FRPSDQLRQ GHYLFH ZLWK D WXQDEOH ODVHU EHFDXVH WKH\ DUH IDEULFDWHG ZLWK PRVWO\ WKH VDPH VWHSV FDQ EH LQWHJUDWHG WRn JHWKHU RQ WKH VDPH FKLS DQG KDYH WKH VDPH WXQLQJ UDQJHV ZLWK WKH VDPH DSSOLHG YROWDJH ,W ZDV VKRZQ WKDW WKH ILOWHU LV PXFK PRUH GHPDQGLQJ RQ WKH TXDOLW\ RI WKH JUDWLQJ 7KHUH DUH IHZ UHSRUWV RI JRRG '%5 FRUUXJDWHG ZDYHJXLGHVf§QRQH LQ /L1E2D 7KH QH[W FKDSWHU LQWURGXFHV D QHZ ZDYHJXLGH JHRPHWU\ WKDW KDV WKH SRWHQWLDO WR DFKLHYH JRRG FRUUXJDWHG ZDYHJXLGHV IRU WKH ILUVW WLPH LQ /L1E2D

PAGE 85

&+$37(5 $ 129(/ :$9(*8,'( *(20(75< 7KLV FKDSWHU SURSRVHV D QRYHO ZDYHJXLGH JHRPHWU\ WKDW SURYLGHV D SRWHQWLDO VROXn WLRQ WR DQ DJHROG SUREOHP SURGXFLQJ KLJK UHIOHFWDQFH '%5 FRUUXJDWHG ZDYHJXLGHV ,W LV DPHQDEOH WR PDQ\ H[LVWLQJ ZDYHJXLGH WHFKQRORJLHV LQFOXGLQJ WKRVH WKDW DUH FXUn UHQWO\ XVHG DQG PRVW YLDEOH LQ WKH LQGXVWU\ ,Q DGGLWLRQ LW ZLOO EH VKRZQ WKDW LW RIIHUV D QXPEHU RI RWKHU EHQHILWV DV ZHOO 7KH 1HHG IRU %HWWHU '%5 &RUUXJDWHG :DYHJXLGHV 3UHVHQWO\ WKH RQO\ FRPPHUFLDOO\ YLDEOH XVH RI UHIOHFWLRQ FRUUXJDWHG ZDYHJXLGHV LV IRU ')% ODVHUV 7KLV LV EHFDXVH WKH PDWHULDO V\VWHPV XVHG IRU ')% ODVHUV LV H[FHSn WLRQDOO\ DPHQDEOH WR PDNLQJ JRRG JUDWLQJV WKH UHDVRQV DUH SUHVHQWHG LQ VHFWLRQ f DQG RIWHQ KLJK UHIOHFWLRQ LV QRW UHTXLUHG ZKHQ WKH RSWLFDO JDLQ LV YHU\ KLJK &RQn VHTXHQWO\ DV WKH ORVV LQ WKH JUDWLQJ GHFUHDVHV WKH UHIOHFWLRQ LPSURYHV 7KLV LV ZK\ ')% ODVHUV ODVHUV WKDW KDYH WKH JUDWLQJ LQ WKH DFWLYH UHJLRQf DUH JHQHUDOO\ EHWWHU WKDQ '%5 ODVHUV ZKLFK XVH D SDVVLYH JUDWLQJ RXWVLGH WKH DFWLYH UHJLRQ 2WKHU GHYLFHV DQG PDWHULDO V\VWHPV ODFN WKHVH FRQYHQLHQFHV 7KH GHYLFH SURSRVHG LQ VHFWLRQ LV RQO\ RQH H[DPSOH ZKHUH D JRRG '%5 FRUn UXJDWHG ZDYHJXLGH LV UHTXLUHG 'HVFULELQJ DOO RI WKH QHHGV IRU VXFK FRPSRQHQWV LV DQDORJRXV WR GHILQLQJ DOO WKH XVHV RI D EXONRSWLFDO GLHOHFWULF PLUURU :LWK VLJQLILFDQW WHFKQRORJLFDO DGYDQFHV WKH SURSRVHG '%5 FRUUXJDWHG ZDYHJXLGH FDQ EHFRPH D EDVLF EXLOGLQJ EORFN IRU D EURDG DUUD\ RI ,2&V VKDULQJ LQ WKH VXFFHVV RI GLUHFWLRQDO FRXSOHUV DQG
PAGE 86

7KH FKDUDFWHULVWLFV RI FRUUXJDWHG ZDYHJXLGH PLUURUV DUH FOHDUO\ XQLTXH )LUVW WKH\ KDYH D YHU\ QDUURZ UHIOHFWLRQ EDQG a ƒf 7KLV LV XVHIXO IRU QDUURZ EDQGSDVV ILOWHUV VXFK DV WKH RQH SURSRVHG LQ VHFWLRQ DQG RWKHUV SURSRVHG LQ UHIHUHQFHV > @ 7KH IDFW WKDW WKH\ GR QRW UHTXLUH WKH XVH RI DQ HQGIDFH PDNH WKHP YHU\ DWWUDFWLYH IRU ,2& GHYLFHV 0DQ\ JUDWLQJV ZLWK YDU\LQJ SHULRGV PD\ EH SODFHG DQ\ZKHUH RQ WKH FKLS *HQHUDOO\ ZLWK HQGIDFH PLUURUV DOO ZDYHJXLGHV H[LWLQJ WKH VDPH IDFHW DV WKH RQHV ZLWK PLUURUV PXVW EH SROLVKHG SHUSHQGLFXODU WR WKH ZDYHJXLGH 7KLV SUHYHQWV WKH XVH RI RQH RI WKH PRVW FRPPRQ PHWKRGV WR SUHYHQW XQZDQWHG EDFNUHIOHFWLRQV DQJOH SROLVKLQJ &RUUXJDWHG :DYHJXLGH 7HFKQRORJLHV 3UHYLRXV :RUNf 0XFK UHVHDUFK KDV EHHQ GHYRWHG WR SHULRGLF ZDYHJXLGH VWUXFWXUHV HYHU VLQFH WKHLU ILUVW IHZ GHPRQVWUDWLRQV LQ ')% ODVHUV > @ DQG ILOWHUV > @ 6LQFH WKHQ WKH XVH RI FRUUXJDWHG ZDYHJXLGHV KDV H[FHOOHG SURYLGLQJ ORZ WKUHVKROG DQG KLJK SRZHU VLQJOH ORQJLWXGLQDO VHPLFRQGXFWRU ODVHUV +RZHYHU SDVVLYH GHYLFHV KDYH QRW VKDUHG WKDW VXFFHVV ,URQLFDOO\ WKHUH KDYH EHHQ PDQ\ UHSRUWV RI KLJK UHIOHFWDQFH FRUUXJDWHG ZDYHJn XLGHV EXW PDQ\ RI WKHP XVHG DPELJXRXV PHDVXUHPHQW WHFKQLTXHV WKDW DUH QRW GHn SHQGDEOH 7KHUH KDYH EHHQ VHYHUDO FODLPV RI DOPRVW b UHIOHFWLYLW\ HYHQ b EXW YHU\ IHZ UHSRUWV VXSSRUW WKH FODLPV ZLWK LQGLVSXWDEOH UHVXOWV 7R WKH EHVW RI RXU NQRZOHGJH WKH EHVW LQGLVSXWDEOH UHVXOWV WR GDWH ZHUH SURGXFHG LQ VLOLFD ZDYHJXLGHV E\ $GDU HW DO >@ 7KH\ PHDVXUHG b RI WKH OLJKW EDFN LQWR D ILEHU XVLQJ D [ ILEHU FRXSOHU 7KHLU PHDVXUHPHQW ZDV FDOLEUDWHG E\ EXWW FRXSOLQJ WKH ILEHU WR D PDn WHULDO RI NQRZQ UHIOHFWDQFH )XUWKHUPRUH WKH\ PDGH D UHDVRQDEOH FODLP WKDW WKH OLJKW XQGHUJRHV WZR ILEHUZDYHJXLGH FRXSOLQJ ORVVHV WKDW FRXOG WRWDO D YDOXH QHDU G%

PAGE 87

7KHUHIRUH LW LV TXLWH UHDVRQDEOH WKDW WKHLU '%5 FRUUXJDWHG ZDYHJXLGH SURGXFHG UHn IOHFWDQFH b ,QYHVWLJDWLRQV RI '%5 &RUUXJDWHG :DYHJXLGHV 7KLV VHFWLRQ EULHIO\ VXPPDUL]HV WKH PRVW LPSRUWDQW UHVXOWV RI WKH RWKHU HIIRUWV RQ SDVVLYH '%5 FRUUXJDWHG :DYHJXLGHV IURP WKHLU ILUVW GHPRQVWUDWLRQ WR SUHVHQW 0DQ\ RI WKH UHVXOWV UHSRUWHG ZHUH QRW SURSHUO\ VXEVWDQWLDWHG E\ LQGLVSXWDEOH PHDVXUHPHQW WHFKQLTXHV 0RVW RI WKH HDUO\ LQYHVWLJDWLRQV ZHUH FDUULHG RXW RQ SODQDU JODVV ZDYHJXLGHV > @ 7KH\ DOO XVHG D SULVP FRXSOHU VHFWLRQ f WR PHDVXUH WKH UHIOHFWHG SRZHU DQG UHSRUWHG EHWWHU WKDQ b UHIOHFWLRQ $Q DEVROXWH GHWHUPLQDWLRQ RI WKH DPRXQW RI OLJKW WKDW LV FRXSOHG LQ DQG RXW RI WKH ZDYHJXLGH LV JHQHUDOO\ LPSRVVLEOH ,I WKH\ ZHUH DEOH WR DFFRPSOLVK WKLV WKH GHWDLOV ZHUH QRW UHSRUWHG 7KHUHIRUH WKH PHDVXUHPHQWV DUH VRPHZKDW DPELJXRXV $ SODQDU '%5 FRUUXJDWHG ZDYHJXLGH ZDV GHPRQVWUDWHG LQ ,Q*D$V3,Q3 LQ UHIn HUHQFH >@ b UHIOHFWLYLW\ ZDV UHSRUWHG EXW QRW PHDVXUHG 2QO\ WKH WUDQVPLVVLRQ ZDV PHDVXUHG DQG WKH\ XVHG 5 f§ 7 WR FDOFXODWH WKH UHIOHFWLRQ 7KLV DVVXPHV WKHUH LV QR ORVV 7KH )DEU\3HURW GHYLFH ODWHU PDGH E\ WKH VDPH JURXS LQGLFDWHG WKDW ORVV ZDV LQGHHG D SUREOHP >@ 5LGJH '%5 FRUUXJDWHG ZDYHJXLGHV KDYH EHHQ UHSRUWHG LQ *D$V$O*D$V DV ZHOO >@ 7KHUH KDYH EHHQ VHYHUDO VWXGLHV RI KLJKHU RUGHU JUDWLQJV > @ 6KLQR]DNL HW DO > @ UHSRUWHG '%5 UHIOHFWRUV LQ /L1E2D ZLWK SHULRGV RI PD DQG DERYH XVLQJ SURWRQ H[FKDQJH 2QH ZDV XVHG IRU D PDUJLQDOO\ LPSURYHG VHFRQG KDUPRQLF JHQHUDWLRQ 6+*f GHYLFH DQG DQRWKHU ZDV XVHG IRU IHHGEDFN RI ERWK DQ H[WHUQDO FDYLW\ ODVHU DQG 6+*

PAGE 88

3RODUL]DWLRQ LQGHSHQGHQW '%5 FRUUXJDWHG ZDYHJXLGHV KDYH DOVR EHHQ UHSRUWHG >@ 7KLV ZDV DFKLHYHG E\ HWFKLQJ WUHQFKHV DORQJ WKH VLGHV RI WKH ZDYHJXLGHV WR SUDFWLFDOO\ HOLPLQDWH WKH VWUDLQLQGXFHG ELUHIULQJHQFH 7KH WZR WUDQVPLVVLRQ SHDNV FRLQFLGHG ZKHQ WKH WZR RUWKRJRQDO PRGH LQGLFHV ZHUH HTXDO /RZ ORVV %UDJJ UHIOHFWRUV KDYH DOVR EHHQ UHSRUWHG $ WHFKQLTXH WR PHDVXUH WKH VFDWWHULQJ ORVV IURP WKH VXUIDFH URXJKQHVV RI D FRUUXJDWHG ZDYHJXLGH ZDV GHPRQn VWUDWHG E\ /HH HW DO >@ 7KH WUDQVPLVVLRQ FKDUDFWHULVWLFV RI D 61 FKDQQHO FRUn UXJDWHG ZDYHJXLGH ZHUH REVHUYHG ZLWK DQG ZLWKRXW DQ LQGH[PDWFKLQJ IOXLG RQ WKH JUDWLQJ VXUIDFH 7KH LQGH[ PDWFKLQJ IOXLG HOLPLQDWHV WKH VFDWWHULQJ ORVV DV ZHOO DV WKH UHIOHFWLRQ SHDN %\ FRPSDULQJ WKH SDVVEDQG UHVSRQVH RI WKH VDPSOH IRU WKH WZR FDVHV WKH\ GHWHUPLQHG WKDW WKH LQFRKHUHQW VFDWWHULQJ ORVV RI WKHLU VWUXFWXUH ZDV a G%FP 5HIOHFWLRQ PHDVXUHPHQWV ZHUH QRW UHSRUWHG 3DVVLYH '%5 &RUUXJDWHG :DYHJXLGH 'HYLFHV 7KLV VHFWLRQ VXPPDUL]HV PRVW RI WKH SDVVLYH '%5 FRUUXJDWHG ZDYHJXLGH GHYLFHV WKDW KDYH EHHQ GHPRQVWUDWHG 1RQH KDYH SURYHQ WR EH TXLWH SUDFWLFDO \HW +RZHYHU ZLWK WKH LPSURYHPHQW RI ZDYHJXLGH JUDWLQJ WHFKQRORJ\ PDQ\ RI WKHVH GHYLFHV PD\ JDLQ DFFHSWDQFH 7KHUH DUH VHYHUDO UHSRUWV RI )DEU\3HURW LQWHUIHURPHWHUV RI WZR '%5 FRUUXJDWHG ZDYHJXLGHV VHSDUDWHG E\ D FDYLW\ ILJXUH f $ SODQDU FRUUXJDWHG ZDYHJXLGH LQ JODVV ZLWK D ZHGJH HWFKHG RXW RI WKH FHQWHU ZDV XVHG WR GHPRQVWUDWH D ILOWHU WKDW LV WXQDEOH E\ SRVLWLRQLQJ WKH EHDP >@ $ TXDUWHUZDYH VKLIWHG JUDWLQJ UHVRQDWRU ZLWK D G% WUDQVPLVVLRQ SHDN ƒ ZLGH LQ WKH FHQWHU RI WKH QDUURZ UHIOHFWLRQ EDQG $$ a ƒf ZDV GHPRQVWUDWHG LQ ,Q*D$V3,Q3 >@ 7KH PRVW LPSUHVVLYH UHVXOW LV IRXQG LQ UHIHUHQFH >@ 7KH\ XVHG D 61 FKDQQHO ZDYHJXLGH IRU WKHLU TXDUWHUZDYH VKLIWHG JUDWLQJ UHVRQDWRU 7KHLU PHDVXUHPHQW VHWXS ZDV VLPLODU WR WKH RQH VKRZQ

PAGE 89

LQ ILJXUH EXW WKH\ GLG QRW UHSRUW WKH DEVROXWH UHIOHFWLYLW\ RI WKH GHYLFH $Q HOHFWURRSWLFDOO\ WXQDEOH )DEU\3HURW ILOWHU XVLQJ ZDYHJXLGH JUDWLQJV KDV DOVR EHHQ GHPRQVWUDWHG > @ 2WKHU FRUUXJDWHG ZDYHJXLGH GHYLFHV SUHYLRXVO\ GHPRQVWUDWHG KDYH EHHQ WKH UHVn RQDQW RSWLFDO UHIOHFWRU >@ WKH IROGHG GLUHFWLRQDO FRXSOHU >@ DQG WKH QDUURZEDQG FKDQQHOGURSSLQJ ILOWHU >@ VHH ILJXUH f 1RQH RI WKHVH H[KLELWHG FRPPHUFLDOO\ DFFHSWDEOH SDVVLYH FKDUDFWHULVWLFV EXW WKH UHVRQDQW RSWLFDO UHIOHFWRU ZDV XVHG DV DQ H[WHUQDOFDYLW\ UHIOHFWRU RI D ODVHU P: RI RSWLFDO SRZHU DQG D OLQHZLGWK RI N+] ZDV REVHUYHG 6LPSOH FRUUXJDWHG ZDYHJXLGHV KDYH EHHQ XVHG IRU WKH VDPH SXUSRVH WR DFKLHYH D 0+] OLQHZLGWK >@ 'LIILFXOWLHV LQ $FKLHYLQJ +LJK 5HIOHFWDQFH 7KH WKHRUHWLFDO FDOFXODWLRQV RI D FRUUXJDWHG ZDYHJXLGH LQ VHFWLRQ LQGLFDWH WKDW LW LV SRVVLEOH WR DFKLHYH b UHIOHFWLRQ LQ D FRUUXJDWHG ZDYHJXLGH RI SHULRGV D $1 [ DQG D ORVV RI G%FP 7KLV FRUUHVSRQGV WR D JUDWLQJ OHQJWK RI RQO\ PP (YHQ KLJKHU UHIOHFWLRQ FDQ EH H[SHFWHG IRU D ODUJHU QXPEHU RI SHULRGV ODUJHU $1 RU ORZHU ORVV 8QIRUWXQDWHO\ PDQ\ GLIILFXOWLHV KDYH SUHYHQWHG WKH UHDOL]DWLRQ RI VXFK KLJK UHIOHFn WLRQ FRUUXJDWHG ZDYHJXLGHV LQ DQ\ PDWHULDO 7KH EHVW UHVXOWV RI SUHYLRXV ZRUN VHFWLRQ f KDYH SURGXFHG JUDWLQJV RI EHWWHU WKDQ b UHIOHFWLRQ LQ JODVV ZDYHJXLGHV 5Hn SRUWV RI UHIOHFWLRQ IURP FRUUXJDWHG ZDYHJXLGHV LQ /L1E&! DQG UHODWHG HOHFWURRSWLF PDWHULDOV DUH YHU\ VFDUFH 3HUKDSV WKLV LV EHFDXVH LW LV PRUH GLIILFXOW WR PDNH D KLJK UHIOHFWDQFH FRUUXJDWHG ZDYHJXLGH LQ /L1E&! WKDQ LQ RWKHU FRPPRQ PDWHULDOV XVHG IRU ,2& WHFKQRORJ\ 6HYHUDO IDFWRUV VLJQLILFDQWO\ FRPSOLFDWH WKH IDEULFDWLRQ RI KLJK UHIOHFWLRQ '%5 FRUUXJDWHG ZDYHJXLGHV LQ /L1E2V 7KHVH ZLOO QRZ EH GLVFXVVHG

PAGE 90

)LUVW WKH FKHPLFDO UHDFWLYLW\ RI /L1E LV SRRU 'HYLFH VKDSLQJ XVLQJ DTXHRXV DFLG DQG RWKHU VROXWLRQV LV DOPRVW LPSRVVLEOH >@ 6ROXWLRQV RI +) DQG +12 KDYH JHQHUDOO\ EHHQ XVHIXO RQO\ IRU LGHQWLI\LQJ GRPDLQ SRODULW\ DQG FU\VWDO GHIHFWV 5HDFn WLYH ,RQ (WFKLQJ 5,(f LV XVXDOO\ LQHIIHFWLYH EHFDXVH WKH HWFK UDWH LV YHU\ ORZ DQG WKH SURFHVV FDXVHV GDPDJH WR WKH FU\VWDO VHH VHFWLRQ f 6LQFH HWFKLQJ RI /L1E E\ ZHWHWFKLQJ 5,( LRQ PLOOLQJ RU E\ RWKHU PHDQV KDYH JHQHUDOO\ SURYHQ IDU LQIHULRU WR WKH HWFKLQJ WHFKQRORJ\ RI 62 VHPLFRQGXFWRUV SRO\PHUV DQG RWKHU PDWHULDOV JUDWLQJV LQ WKH /L1E FU\VWDO LWVHOI FDQQRW HDVLO\ EH PDGH GHHS 7KHUHIRUH PDNLQJ ZDYHJXLGH JUDWLQJV E\ HWFKLQJ /L1E GLUHFWO\ LV QRW D SURPLVLQJ DSSURDFK IRU KLJK UHIOHFWDQFH GHYLFHV 6HFRQG PRVW SUDFWLFDO ORZORVV ZDYHJXLGHV LQ /L1E KDYH PRGH LQGLFHV YHU\ FORVH WR WKH VXEVWUDWH LQGH[ 7KLV IXQGDPHQWDOO\ OLPLWV WKH PRGH LQGH[ GLIIHUHQFH $1 WKDW FDQ EH DFKLHYHG E\ HWFKLQJ D JUDWLQJ GLUHFWO\ RQ /L1E (WFKLQJ FRPn SOHWHO\ WKURXJK WKH ZDYHJXLGH FUHDWHV YHU\ KLJK $1 DW WKH H[SHQVH RI KLJK VFDWWHULQJ ORVVHV 7KLUG /L1E KDV D UHODWLYHO\ KLJK UHIUDFWLYH LQGH[ FRPSDUHG WR JODVV DQG SRO\n PHUVf 7KLV SRVHV WZR SUREOHPV FRQYHQWLRQDO KRORJUDSK\ LV PRUH FRPSOLFDWHG DQG SHUWXUEDWLRQ RI WKH RSWLFDO ILHOG E\ D FRUUXJDWHG EXIIHU OD\HU LV ORZHU 7KHVH ZLOO QRZ EH H[SODLQHG LQ PRUH GHWDLO +RORJUDSK\ LV PRUH GLIILFXOW GXH WR PRUH LQWHQVH UHIOHFWLRQV IURP WKH ERWWRP VXUIDFH RI WKH VXEVWUDWH *ODVV DQG SRO\PHUV KDYH ORZHU UHIUDFWLYH LQGH[ VR WKDW WKH UHIOHFWLRQ IURP VXEVWUDWHDLU LQWHUIDFHV LV DERXW D WKLUG OHVV WKDQ LQ /L1E (YHQ PRUH LPSRUWDQW LV WKDW WKHLU LV D PXOWLWXGH RI VXLWDEOH LQGH[ PDWFKLQJ IOXLGV DYDLODEOH IRU JODVV DQG SRO\PHUV WR PDWFK WKH VXEVWUDWH WR D SULVP DEVRUEHU RU RWKHU EHDP GLYHUVLRQ HOHPHQW ,QGH[ PDWFKLQJ IOXLGV IRU /L1E DUH XVXDOO\ KLJKO\ DEVRUSWLYH LQ WKH YLVLEOH DQG 89 ZDYHOHQJWK UDQJH DQG DUH WKXV PXFK PRUH UHIOHFWLYH WKDQ /L1E

PAGE 91

0RVW EXIIHU OD\HUV XVHG IRU /L1E ZDYHJXLGH GHYLFHV KDYH D ORZ UHIUDFWLYH LQGH[ 8VXDOO\ 62 LV XVHG ZKLFK KDV D UHIUDFWLYH LQGH[ RI DERXW DW $ ]P ZKHUHDV WKH LQGH[ RI /L1E LV DERXW f 7KH ILHOG SURILOH RI WKH JXLGHG ZDYH LQ /L1E H[KLELWV D YHU\ VPDOO HYDQHVFHQW WDLO LQ VXFK D EXIIHU OD\HU $V D FRQVHTXHQFH D SHULRGLFDO SHUWXUEDWLRQ LQ WKH EXIIHU OD\HU WKLFNQHVV SURGXFHV OLWWOH SHUWXUEDWLRQ WR WKH RSWLFDO ILHOG $FFRUGLQJ WR HTXDWLRQ WKLV LV QHHGHG WR DFKLHYH KLJK UHIOHFWLRQ ZLWKLQ D UHDVRQDEOH QXPEHU RI SHULRGV )RU WKH VDPH UHDVRQV SRO\PHUV JHQHUDOO\ GR QRW SURGXFH JRRG FRUUXJDWHG ZDYHJXLGHV RQ /L1E 3URSRVDO &KDQQHO :DYHJXLGHV :LWK +LJK,QGH[ 2YHUOD\V $ KLJK UHIUDFWLYH LQGH[ ILOP RQ WRS RI D SODQDU RU FKDQQHO ZDYHJXLGH ILJXUH f LQ WKH SODFH RI D ORZHU UHIUDFWLYH LQGH[ EXIIHU OD\HU FDQ EH XVHG DV D PHGLXP LQ ZKLFK D KLJK SHUWXUEDWLRQ JUDWLQJ FDQ EH IRUPHG :KHQ WKH UHIUDFWLYH LQGH[ RI WKH ILOP LV JUHDWHU WKDQ WKH PRGH LQGH[ WKH VROXWLRQ RI WKH ILHOG LQ WKH ILOP LV QR ORQJHU HYDQHVn FHQW DQG WKH ILOP EHFRPHV SDUW RI WKH JXLGLQJ PHGLD ,W ZLOO EH VKRZQ LQ VHFWLRQ WKDW WKLV RYHUOD\ FDXVHV WKH JXLGHG PRGH LQGH[ WR EHFRPH PRUH GHSHQGHQW RQ WKH WKLFNQHVV RI WKH ILOP 7KLV LV XVHIXO LQ PDNLQJ KLJK UHIOHFWDQFH JUDWLQJV ILJXUH Dff EHFDXVH WKH GLIIHUHQFH LQ WKH ORFDO QRUPDO PRGH LQGH[ EHWZHHQ WKH SHDNV DQG YDOOH\V RI WKH FRUUXJDWHG ZDYHJXLGH ILJXUH Eff FDQ EH YHU\ VLJQLILFDQWf§PXFK PRUH VR WKDQ E\ HWFKLQJ D JUDWLQJ RQ D ORZLQGH[ EXIIHU OD\HU RU WKH ZDYHJXLGH LWVHOI 7KLV PD\ LQLWLDOO\ DSSHDU WR SUHVHQW GHWULPHQWDO HIIHFWV )LUVW LI D VLJQLILFDQW SRUWLRQ RI WKH RSWLFDO PRGH LV JXLGHG LQ WKH RYHUOD\ WKH HOHFWURRSWLF HIIHFW LV UHGXFHG VLQFH PRVW RYHUOD\ PDWHULDOV ZRXOG H[KLELW OLWWOH HOHFWURRSWLF HIIHFW 6HFRQG IRU UHODWLYHO\ WKLFN RYHUOD\V ZLWK YHU\ KLJK UHIUDFWLYH LQGH[ WKH RSWLFDO ILHOG LV H[SHFWHG WR EH GUDZQ RXW RI WKH ORZLQGH[ PDWHULDO DQG \LHOG D VPDOOHU PRGH VL]H 7KLV ZRXOG SUHVHQW SUREOHPV ZLWK FRXSOLQJ WR RWKHU ZDYHJXLGHV SDUWLFXODUO\ ILEHUV 7KLUG D

PAGE 92

f§ \ )LJXUH /RQJLWXGLQDO FURVV VHFWLRQ RI D JUDGHGLQGH[ ZDYHJXLGH ZLWK DQ RYHUOD\LQJ ILOP JUDWLQJ Df ORFDO QRUPDO PRGH LQGH[ SURILOH DORQJ WKH SURSDJDWLRQ GLUHFWLRQ Ef

PAGE 93

VLJQLILFDQW SRUWLRQ RI WKH ILHOG LQ WKH RYHUOD\ PD\ UHVXOW LQ LQFUHDVHG ORVV HVSHFLDOO\ GXH WR UDGLDWLRQ +RZHYHU WKHVH SUREOHPV GR QRW QHFHVVDULO\ H[LVW 6RPH FRPPRQ PLVFRQFHSWLRQV RI VLPLODU VWUXFWXUHV ZLOO EH DGGUHVVHG LQ VHFWLRQ 7KH WHUP fRYHUOD\f DV RSSRVHG WR fEXIIHU OD\HUf LV XVHG EHFDXVH WKH LQWHQW LV WR SHUWXUE WKH JXLGHG RSWLFDO PRGH UDWKHU WKDQ EXIIHULQJ WKH ILHOG DW WKH VXUIDFH 6LQFH WKH ILHOG LQ WKH RYHUOD\ LV VLJQLILFDQW LQ SUDFWLFDO GHYLFHV D EXIIHU OD\HU VKRXOG EH XVHG RQ WRS RI WKH fRYHUOD\f WR UHGXFH VXUIDFH VFDWWHULQJ DQG SURYLGH VSDFLQJ IURP HOHFWURGHV ,Q GLVFXVVLRQV WKDW IROORZ WKH WHUP fPRGH LQGH[f LV XVHG WR UHIHU WR WKH ORFDO QRUPDO PRGH LQGH[ ZKLFK LV WKH PRGH LQGH[ RI D ALQYDULDQW DORQJ WKH SURSDJDWLRQ GLUHFWLRQf ZDYHJXLGH ZLWK D WUDQVYHUVH FURVV VHFWLRQ LGHQWLFDO WR WKH ZDYHJXLGH LQ TXHVWLRQ DW D SDUWLFXODU ORFDO SRVLWLRQ 7KHUH LV VRPH VLPLODULW\ EHWZHHQ WKLV SURSRVDO DQG WKH ZRUN LQ UHIHUHQFH >@ )LJn XUH Df VKRZV WKH VWUXFWXUH WKH\ XVHG ,Q WKDW ZRUN WKH\ GHSRVLWHG D KLJKHULQGH[ PDWHULDO 61f RQ WKH YHUWLFDO ZDOOV RI D JODVV JUDWLQJ 7KHLU UHDVRQLQJ ZDV WKDW FRYn HULQJ WKH YHUWLFDO JURRYH ZDOOV ZRXOG IRUP KLJKO\ UHIOHFWLQJ LQWHUIDFHV SHUSHQGLFXODU WR WKH JXLGH D[LV +RZHYHU D PRUH SUHFLVH LQWHUSUHWDWLRQ ZRXOG EH WKH VDPH DV WKDW IRU RXU VWUXFWXUH 7KDW LV WKH KLJKLQGH[ PDWHULDO KHOSV FUHDWH D KLJK PRGHLQGH[ GLIIHUHQFH EHWZHHQ WKH WZR KDOISHULRGV RI WKH ZDYHJXLGH $V VKRZQ LQ ILJXUH WKH IRUPHU LQWHUSUHWDWLRQ OHG WR D FRPSDUDWLYHO\ FRPSOLFDWHG VWUXFWXUH ZKHUH WKH PRGH LQGH[ YDULDWLRQ LQ WKH SURSDJDWLRQ GLUHFWLRQ KDV VSLNHV %HFDXVH WKH\ DUH VR WKLQ DQG WKH RSWLFDO PRGH RYHUODS LQ WKDW UHJLRQ LV VPDOO WKH\ FDQ EH H[SHFWHG WR SURGXFH OLWWOH SHUWXUEDWLRQ WR WKH PRGH +RZHYHU WKH WKLQ OD\HU RI 61 LQ WKH YDOOH\V RI WKH JUDWLQJ FDQ EH H[SHFWHG WR FUHDWH D VLJQLILFDQW SHUWXUEDWLRQ EHFDXVH LW UHVLGHV GLUHFWO\ RQ WKH VXUIDFH RI WKH JXLGLQJ OD\HU DQG WKHUH LV VLJQLILFDQW RYHUODS 7KH VROLG FXUYH LQ ILJXUH Ff UHSUHVHQWV WKH PRGH LQGH[ SURILOH LQ WKH SURSDJDn WLRQ GLUHFWLRQ LI WKH 61 ZHUH SODFHG RQO\ LQ WKH YDOOH\ RI WKH JUDWLQJ 7KH GRWWHG

PAGE 94

6L1 Ef Ff 1 N \ nff§ \ )LJXUH &RUUXJDWHG ZDYHJXLGH VWUXFWXUH XVHG E\ $GDU HW DO >@ Df /RFDO QRUPDO PRGH LQGH[ SURILOH RI WKH VWUXFWXUH DORQJ WKH SURSDJDWLRQ GLUHFWLRQ Ef /RFDO QRUPDO PRGH LQGH[ SURILOH RI WKH VWUXFWXUH ZLWK 61 RQO\ LQ WKH YDOOH\V RI WKH JUDWLQJ VROLGf DQG ZLWK QR 61 DW DOO GRWWHGf Ff

PAGE 95

FXUYH UHSUHVHQWV WKH PRGH LQGH[ SURILOH RI MXVW WKH JODVV JUDWLQJ ZLWKRXW DGGLQJ 61 &RPSDULQJ WKH WZR ZH VHH WKDW E\ SXWWLQJ 61 LQ WKH YDOOH\ WKH PRGH LQGH[ SURILOH EHFRPHV LQYHUWHG ZLWK D PXFK ODUJHU GLIIHUHQWLDO LPSURYLQJ WKH UHIOHFWLRQ :KHQ FRQVLGHULQJ VXFK H[WUHPH FKDQJHV LQ WKH ORFDO QRUPDO PRGHV DVVRFLDWHG ZLWK WKH VWUXFWXUH LQ ILJXUH RQH PXVW DOVR FRQVLGHU VRPH DVVXPSWLRQV WKDW ZHUH PDGH ZLWK WKH VWHS WUDQVLWLRQ PHWKRG ZH XVHG WR GHULYH HTXDWLRQ 7KH SDUD[LDO DSSUR[LPDWLRQ UHTXLUHV WKDW WKH RYHUODS EHWZHHQ WKH ILHOGV RQ HDFK VLGH RI D GLVFRQn WLQXLW\ EH JRRG 7KLV LV QRW VR IRU WKH VSLNHV LQ WKH PRGH LQGH[ SURILOH RI ILJXUH Ef &RQVHTXHQWO\ LW LV H[SHFWHG WKDW WKHVH VSLNHV ZLOO KDYH UHODWLYHO\ OLWWOH HIIHFW RQ WKH PRGH ILHOG DV LW SURSDJDWHV WKURXJK WKH VWUXFWXUH 7KH PDLQ SHUWXUEDWLRQ FRPHV IURP WKH ILOP RI 61 LQ WKH YDOOH\V RI WKH JUDWLQJ 0RUH ULJRURXV FDOFXODWLRQV DUH QHFHVVDU\ WR GHWHUPLQH WKHLU HIIHFW H[DFWO\ EXW WKLV LV EH\RQG WKH VFRSH RI WKLV ZRUN :LWK WKLV LQVLJKW WKH VWUXFWXUH LQ ILJXUH Df LV GHWHUPLQHG WR EH PXFK PRUH FRPSOLFDWHG WKDQ QHFHVVDU\ GXH WR WKH SUHVHQFH RI WKH JODVV61 JUDWLQJ 2QO\ D JUDWLQJ RI 61 LV QHHGHG RU HYHQ EHQHILFLDO %HQHILWV RI 6LOLFRQ DV D +LJK,QGH[ 2YHUOD\ 2Q /L1E2V :H IRXQG VLOLFRQ WR EH YHU\ VXLWDEOH WR GHPRQVWUDWH RXU FRQFHSW RI D KLJK UHIUDFWLYH LQGH[ RYHUOD\ 7KHUH DUH PDQ\ UHSRUWV LQ WKH OLWHUDWXUH RI GHYLFHV PDGH IURP GHSRVLWHG ILOPV RI /L1E2V RQ VLOLFRQ IRU QRQ ZDYHJXLGH DSSOLFDWLRQV EXW WKHUH DUH IHZ UHSRUWV WKDW ZRXOG UHODWH LWV XVH DV D ZDYHJXLGH GHYLFH 7KHVH IHZ UHOHYDQW UHIHUHQFHV DUH GLVFXVVHG EULHIO\ EHORZ 3UHYLRXV 5HSRUWV RI :DYHJXLGHV ZLWK 6LOLFRQ 2YHUOD\V 7KH ZRUN RI UHIHUHQFH >@ VXJJHVWV WKDW E\ SXWWLQJ D VHPLFRQGXFWRU ILOP RQ WKH VXUIDFH RI D /L1E2V ZDYHJXLGH GHYLFH WKH S\URHOHFWULFDOO\LQGXFHG ERXQG VXUIDFH FKDUJHV FDQ EH VFUHHQHG RXW DV WKH\ DUH EHLQJ JHQHUDWHG E\ VORZ WKHUPDO YDULDWLRQV

PAGE 96

7KH FDSDFLWLYH ORDGLQJ RI WKH HOHFWURGHV FDXVHV WKH SRWHQWLDO RI WKH HOHFWURGHV WR FKDQJH PXFK OHVV WKDQ WKH WKH SRWHQWLDO RI WKH UHVW RI WKH ] VXUIDFH 7KH SRWHQWLDO GLIIHUHQFH EHWZHHQ WKH HOHFWURGH DQG WKH VXUURXQGLQJ DUHD OHDGV WR VLJQLILFDQW GULIW 7KH DGGLWLRQ RI D VHPLFRQGXFWRU ILOP RQ WKH VXUIDFH WR UHGXFH WKH SRWHQWLDO GLIIHUHQFH KDV EHHQ XVHG WR UHGXFH GULIW LQ H[SHULPHQWDO GHYLFHV > @ 7KHVH UHIHUHQFHV VWDWH WKDW D fWKLQ VHPLFRQGXFWRU ILOPf ZDV XVHG DQG GR QRW VSHFLI\ WKH PDWHULDO 6LOLFRQ ZDV XVHG LQ UHIHUHQFH >@ IRU WKH HOHFWURGHV RI D SDUDOOHOSODWH HOHFWURn RSWLF ZDYHJXLGH PRGXODWRU [P RI 5) VSXWWHUHG OLWKLXP QLREDWH ILOPV ZHUH VDQGZLFKHG EHWZHHQ D P OD\HU VLQJOH FU\VWDO VLOLFRQ RQ D VDSSKLUH VXEVWUDWH DQG D [P OD\HU RI YDSRUGHSRVLWHG K\GURJHQDWHG DPRUSKRXV VLOLFRQ 7KH GHYLFH ORVV ZDV FDOFXODWHG WR EH DERXW OG% EXW WKH ORVV RI WKH H[SHULPHQWDO GHYLFH ZDV QRW UHSRUWHG 0RVW UHVHDUFK RQ RSWLFDO ZDYHJXLGHV RQ VLOLFRQ VXEVWUDWHV KDV FRQFHQWUDWHG RQ WKH XVH RI GHSRVLWHG OD\HUV RQ R[LGL]HG VLOLFRQ VXEVWUDWHV +RZHYHU VRPH UHFHQW ZRUN KDV IRFXVHG RQ VLOLFRQRQLQVXODWRU 62,f ZDYHJXLGH VWUXFWXUHV 0RGHUDWHO\ ORZORVV VLOLFRQ ZDYHJXLGHV G%FPf KDYH EHHQ UHSRUWHG >@ 7KHVH VWXGLHV KDYH VKRZQ WKDW ULGJH ZDYHJXLGHV ZLWK YHU\ WKLFN ILOPV RI VLOLFRQ FDQ EH VLQJOHPRGHG $ IXUWKHU GLVFXVVLRQ ZLOO IROORZ LQ VHFWLRQ 7KH HPLVVLRQ SURSHUWLHV FRXSOLQJ RI WKH JXLGHG PRGHV LQWR UDGLDWLRQ PRGHVf RI FRUUXJDWHG ZDYHJXLGHV ZLWK D PHWDO RU VHPLFRQGXFWRU FRDWLQJ ZDV VWXGLHG LQ UHIHUn HQFH >@ 7R RYHUFRPH WKH SUREOHP RI WKH XQZDQWHG HPLVVLRQ RI OLJKW IURP D JUDWLQJ WR FODGGLQJ RUGHUV WKH\ XVHG D KLJKO\ UHIOHFWLQJ EDUULHU RQ RQH VLGH RI WKH FRUUXJDWHG ZDYHJXLGH ZLWK DQG ZLWKRXW D EXIIHU OD\HU VSDFHG EHWZHHQ WKHP 7KH SXUSRVH RI WKLV UHIOHFWLQJ OD\HU ZDV WR UHGLUHFW WKH OLJKW IURP WKH XQZDQWHG RUGHUV EDFN LQWR WKH VXEVWUDWH 7KHLU FRQFOXVLRQ ZDV WKDW WKH EHVW HPLVVLRQ SURSHUWLHV FRXOG EH DFKLHYHG

PAGE 97

E\ XVLQJ D KLJKO\ UHIOHFWLQJ PHWDO ZLWK D EXIIHU OD\HU $ VWUXFWXUH XVLQJ DQ DOXPLQXP JUDWLQJ ZDV GHPRQVWUDWHG WR FRXSOH RXW b RI SRZHU IURP WKH ZDYHJXLGH $GGLWLRQDO %HQHILWV RI 6LOLFRQ RQ /L1E&E 7KH RQO\ SUHYLRXVO\UHSRUWHG EHQHILW RI D VLOLFRQ RYHUOD\ RQ D ZDYHJXLGH GHYLFH DV LW SHUWDLQV WR WKLV ZRUN LV LWV XVH WRZDUGV WKH VFUHHQLQJ RI WKH ERXQG FKDUJHV JHQn HUDWHG E\ WKH S\URHOHFWULF HIIHFW >@ )RU WKH SXUSRVHV RI RXU SURSRVHG VWUXFWXUH VLOLFRQ H[KLELWV D QXPEHU RI RWKHU EHQHILWV DV ZHOO 6HSDUDWH VHFWLRQV RI WKLV GLVVHUWDn WLRQ ZLOO GLVFXVV HDFK RI WKH IROORZLQJ EHQHILWV LQ GHWDLO 7KH KLJK UHIUDFWLYH LQGH[ RI VLOLFRQ a DSSHQGL[ $f LV VXLWDEOH WR DFKLHYH D ODUJH $1 FRUUXJDWHG ZDYHJXLGH VHFWLRQ f 7KH XVH RI VLOLFRQ JUHDWO\ VLPSOLILHV WKH IDEULFDWLRQ SURFHVV EHFDXVH LW LV HDVLO\ GHSRVLWHG E\ HEHDP HYDSRUDWLRQ VHFWLRQ f LW LV HDVLO\ HWFKHG E\ D QXPn EHU RI ZHOOGHYHORSHG SURFHVVHV VHFWLRQ f DQG LWV KLJK DEVRUSWLRQ LQ WKH YLVLEOH VSHFWUDO UHJLRQ PDNHV LW YHU\ XVHIXO IRU JUHDWO\ UHGXFLQJ VXEVWUDWH EDFNUHIOHFWLRQV GXULQJ KRORJUDSK\ VHFWLRQ f %DVHG RQ RXU VWXGLHV WKHUH LV QR DSSUHFLDEOH GLIn IHUHQFH LQ ORVV EHWZHHQ ZDYHJXLGHV ZLWK DQG ZLWKRXW UHODWLYHO\ WKLFN OD\HUV RI VLOLFRQ VHFWLRQ f 0LVFRQFHSWLRQV RI *XLGLQJ LQ 7KLFN)LOP 6WUXFWXUHV 7KH SXUSRVH RI WKLV VHFWLRQ LV WR DOOHYLDWH VRPH FRPPRQ PLVFRQFHSWLRQV RI JXLGn LQJ LQ FKDQQHO ZDYHJXLGHV 7KLV LV QHFHVVDU\ EHFDXVHLQ FDVHV VXFK DV WKH SURSRVHG ZDYHJXLGH JHRPHWU\ LQ ILJXUH WKHUH LV D YDVW FRQWUDVW EHWZHHQ WKH UHVXOWV RI VRPH VWDQGDUG WKHRULHV XVHG WR VROYH FKDQQHO ZDYHJXLGHV QDPHO\ WKH HIIHFWLYH LQn GH[ PHWKRG >@ DQG PRUH DFFXUDWH DQDO\VLV ,Q WKHVH FDVHV RQO\ ULJRURXV FRPSXn WDWLRQDO PHWKRGV WKDW GR QRW XWLOL]H WKH VHSDUDWLRQ RI YDULDEOHV ZKHQ VROYLQJ WKH WZRGLPHQVLRQDO ZDYH HTXDWLRQ FDQ \LHOG DFFXUDWH UHVXOWV (YHQ WKRXJK WKLV KDV EHHQ VKRZQ VHYHUDO \HDUV DJR LW LV QRW FRPPRQO\ NQRZQ SHUKDSV EHFDXVH DQ HOHJDQW

PAGE 98

DQDO\WLFDO WHFKQLTXH WR DGHTXDWHO\ VROYH WKHVH W\SHV RI SUREOHPV LV QRW DYDLODEOH DQG WKH IRUPHU VLPSOLILHG WKHRU\ LV PRUH RIWHQ XVHG LQ WH[WERRNV )RU WKH SXUSRVH RI WKLV VHFWLRQ UDWKHU WKDQ XVLQJ HODERUDWH PHWKRGV WR GUDZ WKH VDPH FRQFOXVLRQV DV SUHn YLRXVO\ UHSRUWHG IRU VLPSOHU VWUXFWXUHV ZH ZLOO GHVFULEH WKRVH FRQFOXVLRQV LQ GHWDLO FRPSDULQJ ZLWK WKH XVH RI WKH HIIHFWLYH LQGH[ PHWKRG DQG WKHQ XVH WKH VLPLODULW\ EHWZHHQ WKH VWUXFWXUHV WR DUJXH WKDW WKH VDPH SULQFLSOHV DSSO\ WR RXU VWUXFWXUH 5LFKDUG 6RUHI HW DO LQYHVWLJDWHG VLQJOH PRGH VLOLFRQEDVHG ULGJH ZDYHJXLGHV >@ ,W ZDV VKRZQ WKDW DOWKRXJK D SODQDU VLOLFRQ ZDYHJXLGH EHFRPHV GRXEOH PRGHG ZLWK WKLFNQHVVHV JUHDWHU WKDQ P FRQWUDU\ WR DQDO\VLV RI WKH HIIHFWLYH LQGH[ PHWKRG VLQJOHPRGH ULGJH ZDYHJXLGHV FDQ EH PDGH ZLWK WKH SODQDU SRUWLRQ VHYHUDO PLFURPn HWHUV WKLFN 7KLV LPSOLHV WKDW E\ UHPRYLQJ WKH ULGJH SRUWLRQ RI D VLQJOH PRGH JXLGH WKH UHPDLQLQJ SODQDU ZDYHJXLGH FDQ VXSSRUW PXOWLSOH PRGHV 7KLV VHHPV WR EH D FRQWUDGLFWLRQ EXW WKH IDOODF\ KHUH LV WKDW LQ RQH FDVH ZH KDYH RQH GLPHQVLRQDO FRQn ILQHPHQW DQG LQ WKH RWKHU ZH KDYH WZR GLPHQVLRQDO FRQILQHPHQW 7KH\ FDQQRW EH UHODWHG LQ VXFK VLPSOH WHUPV ,W LV VRPHWLPHV DVVXPHG WKDW IRU D VLQJOHPRGH ULGJH ZDYHJXLGH LWV FURVVVHFWLRQDO GLPHQVLRQV PXVW EH FORVH WR WKH WKLFNQHVV RI D VLQJOHPRGH SODQDU ZDYHJXLGH RI WKH VDPH PDWHULDO 3HUKDSV WKLV HUURQHRXV DVVXPSWLRQ VWHPV IURP WKH PLVXVH RI WKH HIIHFWLYH LQGH[ PHWKRG IRU VROYLQJ VWUXFWXUHV 7KH DQDO\VLV LQ UHIHUHQFH >@ VKRZV WKDW WKH HIIHFWLYH LQGH[ PHWKRG KDV D WHQGHQF\ WR RYHUHVWLPDWH WKH PRGH LQGLFHVf§HVSHFLDOO\ QHDU FXWRII 7KHUHIRUH LW SUHGLFWV WKH SUHVHQFH RI PRGHV EHORZ WKHLU DFWXDO FXWRII (YHQ VR LI WKH UHVXOWV RI UHIHUHQFH >@ DUH DFFHSWHG WR EH WUXH IRU WKH JHQHUDO FDVH ZH JHW D IDOVH LPSUHVVLRQ WKDW WKH QXPEHU RI PRGHV SUHGLFWHG E\ WKH HIIHFWLYH LQGH[ PHWKRG LV DFFXUDWH ZLWKLQ RU 7R GHPRQVWUDWH WKDW HYHQ WKLV DVVXPSWLRQ LV LQFRUUHFW ILJXUH VKRZV D VLPn SOH ULGJH ZDYHJXLGH VWUXFWXUH WKDW KDV EHHQ SUHYLRXVO\ VKRZQ WR H[KLELW RQO\ RQH

PAGE 99

-& $ : XP f§ m m _I @LP MLP m W )LJXUH 6LPSOH ULGJH ZDYHJXLGH VWUXFWXUH XVHG WR LOOXVWUDWH D FDVH ZHUH WKH HIIHFn WLYH LQGH[ PHWKRG JLYHV WKH ZURQJ QXPEHU RI PRGHV 7KLV ZDYHJXLGH LV VLQJOH PRGH EXW WKH HIIHFWLYH LQGH[ PHWKRG SUHGLFWV ILYH PRGHV PRGH >@ 7KLV VWUXFWXUH LV DQDO\]HG E\ WKH HIIHFWLYH LQGH[ PHWKRG > @ E\ GHWHUPLQLQJ WKH PRGH LQGLFHV RI WKH ZDYHJXLGH DW HDFK SRVLWLRQ \ DV LI LW ZHUH D YHUWLFDOO\ FRQILQHG SODQDU ZDYHJXLGH ZLWK WKRVH GLPHQVLRQV ,Q WKLV FDVH WKHUH DUH RQO\ WZR GLIIHUHQW UHJLRQV ZLWK ILOP WKLFNQHVVHV RI DQG + 7KH\ DUH GHSLFWHG LQ ILJXUH Df DQG Ef UHVSHFWLYHO\ 7KH HTXLYDOHQW KRUL]RQWDO FRQILQHPHQW LV D SODQDU ZDYHJXLGH ZLWK DQ LQGH[ SURILOH GHULYHG IURP WKH PRGH LQGLFHV RI WKH YHUWLFDO FRQILQn LQJ ZDYHJXLGH DW HDFK SRVLWLRQ \ ,Q WKLV FDVH LW LV D V\PPHWULF SODQDU ZDYHJXLGH ILJXUH Fff 8VLQJ WKH SDUDPHWHUV JLYHQ LQ ILJXUH DW D ZDYHOHQJWK RI P ZH ILQG WKDW HDFK RI WKH SODQDU ZDYHJXLGHV LQ ILJXUH Df DQG Ef VXSSRUW WKUHH 7( PRGHV ZLWK DSSUR[LPDWH QRUPDOL]HG SURSDJDWLRQ FRQVWDQWV >@ RI EQ DQG tG UHVSHFWLYHO\ ZKHUH 1 f§ QV QI QV f

PAGE 100

Df Ef )LJXUH 7KH HIIHFWLYH LQGH[ PHWKRG LV DSSOLHG WR WKH ZDYHJXLGH VWUXFWXUH LQ ILJXUH E\ ILQGLQJ WKH PRGH LQGLFHV RI DV\PPHWULF SODQDU ZDYHJXLGHV ZLWK ILOP WKLFNQHVVHV RI Df DQG + Ef 7KHVH PRGH LQGLFHV DUH DSSOLHG WR D V\PPHWULF ODWHUDOO\ FRQILQHG SODQDU ZDYHJXLGH Ff 7KH PRGH LQGLFHV RI WKH ZDYHJXLGH GHSLFWHG LQ Ff DUH JHQHUDOO\ DFFHSWHG WR EH HTXLYDOHQW WR WKH PRGH LQGLFHV RI WKH VWUXFWXUH LQ ILJXUH QV LV WKH VXEVWUDWH LQGH[ Qf DQG ULI LV WKH ILOP LQGH[ f 7KH FRUUHVSRQGLQJ PRGH LQGLFHV DUH 1K DQG 1' UHVSHFWLYHO\ %\ SDULQJ WKHVH QXPEHUV WRJHWKHU WR IRUP WKH KRUL]RQWDOO\ FRQILQHG ZDYHJXLGH LQ ILJXUH Ff ZH JHW WKH QRUPDOL]HG SDUDPHWHUV RI Y ZKHUH Y \:?1K 1G f 8VLQJ WKH QRUPDOL]HG EY GLDJUDP LQ UHIHUHQFH >@ ZH ILQG WKDW WKH ILUVW YDOXH IRU Y VXSSRUWV RQH PRGH ZKLOH WKH RWKHU WZR HDFK VXSSRUW WZR PRGHV ,Q DOO WKH HIIHFWLYH LQGH[ PHWKRG SUHGLFWV ILYH PRGHV IRU WKLV VWUXFWXUH +RZHYHU UHIHUHQFH >@ VKRZV WKDW WKLV VWUXFWXUH VXSSRUWV RQO\ D VLQJOH PRGH ,Q IDFW VWUXFWXUHV VHYHUDO WLPHV ODUJHU VXSSRUW RQO\ RQH PRGH ,Q WKHVH FDVHV WKH HIIHFWLYH LQGH[ PHWKRG ZRXOG SUHGLFW HYHQ PRUH PRGHV 7KH ZDYHJXLGHV RI LQWHUHVW LQ WKLV ZRUN ILJXUH f DUH TXLWH GLIIHUHQW WR WKH RQH MXVW LOOXVWUDWHG ILJXUH f +RZHYHU VRPH VLPLODULW\ LV DSSDUHQW ZKHQ WKH VWUXFWXUH RI ILJXUH LV YLHZHG XSVLGH GRZQ DV VKRZQ LQ ILJXUH ,QVWHDG RI KDYLQJ D UHFWn DQJXODU ULGJH RI WKH VDPH UHIUDFWLYH LQGH[ DV WKH SODQDU OD\HU WKH SURSRVHG VWUXFWXUH

PAGE 101

*UDGHGLQGH[ +LJKLQGH[ ZDYHJXLGH RYHUOD\ )LJXUH 9LHZLQJ WKH SURSRVHG VWUXFWXUH ILJXUH f XSVLGH GRZQ ZH VHH VRPH VLPLODULW\ EHWZHHQ LW DQG WKH VWUXFWXUH LQ ILJXUH ,Q WKLV FDVH WKH UHFWDQJXODU ULGJH LV UHSODFHG E\ D ORZHU UHIUDFWLYH LQGH[ VWULS ORDG ZLWK ODUJHU FURVV VHFWLRQ LV VWULS ORDGHG ZLWK D ORZHU UHIUDFWLYH LQGH[ PDWHULDO ZLWK D JUDGHG SURILOH DQG ODUJHU FURVV VHFWLRQ $OWKRXJK WKH LQGH[ RI WKH SODQDU VHFWLRQ LV PXFK KLJKHU FRPSDUHG WR WKH JUDGHG LQGH[ VWULS ORDGLQJ WKH VWUXFWXUDO VLPLODULW\ EHWZHHQ ILJXUHV DQG VWLOO H[LVWV 7KLV FRPSDULVRQ KHOSV XV WR GUDZ WKH FRQFOXVLRQ WKDW WKH HIIHFWLYH LQGH[ PHWKRG PD\ QRW UHOLDEO\ SUHGLFW WKH PRGHV RI RXU SURSRVHG VWUXFWXUH LQ WKH VDPH ZD\ WKDW LW IDLOHG WR DFFXUDWHO\ PRGHO WKH IRUPHU ULGJH ZDYHJXLGH VWUXFWXUH ,Q DGn GLWLRQ LW LV SRVVLEOH WKDW DQ RYHUOD\ ZLWK D WKLFNQHVV FDSDEOH RI VXSSRUWLQJ PXOWLSOH SODQDU PRGHV PD\ QRW SURGXFH PXOWLSOH PRGHV LQ WKH FKDQQHO ZDYHJXLGH 7KLV ZLOO EH VKRZQ WUXH H[SHULPHQWDOO\ LQ FKDSWHU 8QIRUWXQDWHO\ WKH RQO\ DYDLODEOH PHDQV WR DFFXUDWHO\ PRGHO RXU SURSRVHG VWUXFn WXUH UHTXLUH ULJRURXV FRPSXWDWLRQ )RU WKH SXUSRVH RI WKLV GLVVHUWDWLRQ LW LV LPSRUWDQW WKDW ZH WR SURYLGH SK\VLFDO LQVLJKW UDWKHU WKDQ DFFXUDWH QXPHULFDO UHVXOWV ,Q WKH QH[W VHFWLRQ ZH ZLOO SUHVHQW D URXJK FRPSDULVRQ EHWZHHQ WKH WZR VWUXFWXUHV WDNHQ

PAGE 102

6WHSLQGH[ ZDYHJXLGH IW@ O +LJKLQGH[ ULGJH RYHUOD\ Q f _' m r } I m W )LJXUH +LJKLQGH[ VWULSORDGHG ZDYHJXLGH VWUXFWXUH XVHG IRU VSHFWUDO LQGH[ FDOn FXODWLRQV D VWHS IXUWKHU HQDEOLQJ XV WR DSSO\ D UHODWLYHO\ VLPSOH PHWKRG WR GHWHUPLQH WKH GHn SHQGHQFH RI WKH PRGH LQGLFHV RQ WKH WKLFNQHVV RI WKH RYHUOD\ DQG WKH ZLGWK RI WKH ZDYHJXLGH 3URSHUWLHV RI /L1E&K :DYHJXLGHV :LWK 9DU\LQJ 6LOLFRQ 2YHUOD\ 7KLFNQHVV 7KH LQWHQW RI WKLV VHFWLRQ LV WR XVH D UHODWLYHO\ VLPSOH FDOFXODWLRQ IRU D TXDOLWDWLYH XQGHUVWDQGLQJ RI WKH GHSHQGHQFH RI ZDYHJXLGH PRGH LQGH[ RQ WKH WKLFNQHVV RI WKH RYHUOD\ DQG WKH ZLGWK RI WKH ZDYHJXLGH IRU WKH VWUXFWXUH LQ ILJXUH 6LQFH WKLV VWUXFWXUH UHTXLUHV D IDLUO\ ULJRURXV PRGHOLQJ WHFKQLTXH VRPH VXEVWLWXWLRQV ZLOO EH PDGH VR WKDW WKH VSHFWUDO LQGH[ PHWKRG VHFWLRQ f FDQ EH XVHG IRU WKLV SXUSRVH 6LQFH WKH VSHFWUDO LQGH[ PHWKRG LV OLPLWHG WR WKH PRGHOLQJ RI KRPRJHQHRXV VWULSV RQ WRS RI D SODQDU ZDYHJXLGH VWUXFWXUH ZH ZLOO XVH WKH VWUXFWXUH VKRZQ LQ ILJXUH +HUH WKH JUDGHGLQGH[ FKDQQHO ZDYHJXLGH ZLWK D SODQDU VLOLFRQ RYHUOD\ LQ ILJXUH LV DSSUR[LPDWHG E\ D VWHSLQGH[ SODQDU ZDYHJXLGH ZLWK D VLOLFRQ VWULS RQ WRS ,Q WKLV FDVH WKH ODWHUDO FRQILQHPHQW FRPHV IURP WKH KLJKLQGH[ VLOLFRQ VWULS UDWKHU WKDQ D ODWn HUDOO\ JUDGHG LQGH[ HPEHGGHG FKDQQHO ZDYHJXLGH 7KH YHUWLFDO VWHS LQGH[ ZDYHJXLGH LV FKRVHQ ZLWK GLPHQVLRQV DQG LQGLFHV WKDW ZRXOG UHSUHVHQW D JRRG DSSUR[LPDWLRQ

PAGE 103

)LJXUH 'HSHQGHQFH RI WKH PRGH LQGH[ RI WKH GHYLFH LQ ILJXUH RQ VLOLFRQ VWULS WKLFNQHVV IRU VHYHUDO VWULS ZLGWKV WR D JUDGHGLQGH[ SODQDU ZDYHJXLGH HJ $3(/L1Ef 7KH VWUXFWXUH LQ ILJXUH UHSUHVHQWV DQ H[FHOOHQW DSSUR[LPDWLRQ WR WKH SURSRVHG VWUXFWXUH IRU ZLGH HPEHGGHG FKDQQHO ZDYHJXLGHV ODUJH : LQ WKH HTXLYDOHQW VWUXFWXUH LQ ILJXUH f DV WKH\ EHFRPH LGHQWLFDO IRU LQILQLWH ZLGWKV H[FHSW IRU WKH ODFN RI D JUDGHGLQGH[ SODQDU ZDYHJXLGH :H H[SHFW ILJXUH WR FRQWLQXH WR EH D JRRG UHSUHVHQWDWLRQ RI WKH SURSRVHG ZDYHJn XLGH VWUXFWXUH IRU VXIILFLHQWO\ VPDOO ZLGWKV 7KH YDOXHV XVHG LQ WKH FDOFXODWLRQ FRUUHVSRQG WR D SODQDU VWHSLQGH[ ZDYHJXLGH LQ /L1E ZLWK D VLOLFRQ VWULS RQ WRS 7KH\ DUH Q? f§ Q DQG XQ )LJXUH VKRZV WKH GHSHQGHQFH RI WKH PRGH LQGH[ RQ VLOLFRQ VWULS WKLFNQHVV + IRU VHYHUDO VWULS ZLGWKV : &RQVLGHULQJ RQO\ WKH SODQDU ZDYHJXLGH DQG XVLQJ WKH QRUPDOL]HG PHWKRG RI SUHGLFWLQJ WKH PRGH LQGH[ >@ ZH ILQG WKDW IRU WKLV SODQDU ZDYHJXLGH Y DQG E ZKLFK FRUUHVSRQGV WR D PRGH LQGH[ RI DERXW 1 $V H[SHFWHG ILJXUH VXJJHVWV WKDW IRU DOO ZDYHJXLGH ZLGWKV : WKH

PAGE 104

PRGH LQGH[ RI WKH FKDQQHO ZDYHJXLGH DSSURDFKHV WKLV YDOXH ZKHQ WKH VLOLFRQ WKLFNQHVV LV YHU\ WKLQ $V WKH VLOLFRQ EHFRPHV WKLFNHU WKH PRGH LQGH[ RI FKDQQHO ZDYHJXLGHV FRQWLQXHV WR UHPDLQ YHU\ FORVH WR WKH /L1E&! SODQDU ZDYHJXLGH PRGH LQGH[ YDOXH IRU D UHDVRQDEO\ WKLFN VLOLFRQ ILOP DQG WKHQ VWDUWV WR ULVH VKDUSO\ 7KH SODQDU ZDYHJXLGH DSSUR[LPDWHG ZLWK : LPf H[KLELWV D PXFK ODUJHU YDULDWLRQ IRU WKLQ VLOLFRQ ILOPV 7KH VSHFWUDO LQGH[ PHWKRG FRXOG QRW FRQYHUJH ZLWK WKLQ DQG QDUURZ VLOLFRQ VWULSV 7KLV LV ZK\ WKH FXUYHV LQ ILJXUH DUH WUXQFDWHG IRU VPDOO + 7KH VKDUS ULVH LQ WKH SURSDJDWLRQ FRQVWDQW LV DWWULEXWHG WR WKH JXLGLQJ RI OLJKW LQ WKH VLOLFRQ ILOP LQGHSHQGHQW RI WKH /L1E&! SODQDU ZDYHJXLGH ILOP %HORZ WKH FXWRII RI WKH LQGHSHQGHQW VLOLFRQ ZDYHJXLGH WKH /L1E SODQDU ZDYHJXLGH ILOP FRQWLQXHV WR JXLGH DQG XVHV WKH VLOLFRQ IRU ODWHUDO FRQILQHPHQW $ERYH WKH FXWRII RI WKH VLOLFRQ ZDYHJXLGH WKH PRGH LQGH[ ULVHV VKDUSO\ :KHQ WKH PRGH LQGH[ ULVHV DERYH WKH UHIUDFWLYH LQGH[ RI WKH /L1E&! FODGGLQJ OD\HU WKH RSWLFDO ILHOG LQ WKH /L1E UHJLRQ EHFRPHV HYDQHVFHQW DQG DV WKH VLOLFRQ WKLFNQHVV EHFRPHV ODUJHU WKH PRGH LV SXOOHG RXW RI WKH /L1E&! ZDYHJXLGH DQG LQWR WKH VLOLFRQ ULGJH ZDYHJXLGH $W WKLV SRLQW WKH VSHFWUDO LQGH[ PHWKRG FDQ QR ORQJHU EH XVHG VLQFH LW UHTXLUHV WKDW WKH VWUXFWXUH EHORZ WKH ULGJH DOVR EH JXLGLQJ )XUWKHUPRUH WKH DFFXUDF\ RI WKH PHWKRG EUHDNV GRZQ MXVW EHIRUH WKH SRLQW ZKHUH WKH VLOLFRQ VWDUWV WR LQGHSHQGHQWO\ JXLGH EHFDXVH OLNH WKH HIIHFWLYH LQGH[ PHWKRG WKH VSHFWUDO LQGH[ PHWKRG VHSDUDWHV WKH KRUL]RQWDO DQG YHUWLFDO ILHOG HTXDWLRQV LQ WKH ULGJH VWUXFWXUH $V ZLWK WKH HIIHFWLYH LQGH[ PHWKRG WKLV FDQ KDYH D WHQGHQF\ WR RYHUHVWLPDWH WKH PRGH LQGH[ 7KHUHIRUH WKH VKDUS ULVH LQ WKH PRGH LQGH[ LQ ILJXUH LV H[SHFWHG QRW WR EH DV VWHHS )RU RXU SXUSRVH RI '%5 FRUUXJDWHG ZDYHJXLGHV ZH QHHG WKUHH FKDUDFWHULVWLFV D ODUJH PRGHLQGH[RYHUOD\WKLFNQHVV GLIIHUHQWLDO PRVW RI WKH OLJKW VKRXOG EH JXLGHG E\ WKH /L1E&! OD\HU DQG PLQLPXP PLVPDWFK EHWZHHQ WKH WZR ORFDO QRUPDO PRGHV 2I WKH WKUHH WKH PRGH LQGH[ GLIIHUHQWLDO LV TXLWH HVVHQWLDO WR PDNH D KLJK UHIOHFWDQFH

PAGE 105

JUDWLQJ ZLWK D UHDVRQDEOH GHYLFH OHQJWK +RZHYHU WKH OLJKW QHHGV WR EH JXLGHG LQ WKH /L1E&! WR XWLOL]H WKH HOHFWURRSWLF DQG RWKHU FU\VWDO SURSHUWLHV DV ZHOO DV WR PLQLPL]H WKH DGGLWLRQDO ORVV 7KH PRGH PLVPDWFK VKRXOG DOVR EH ORZ WR DFKLHYH D ORZORVV GHYLFH 2EYLRXVO\ WKH ILUVW UHTXLUHPHQW WKDW WKH PRGH LQGH[ GLIIHUHQWLDO EH KLJK LV LQ FRQIOLFW ZLWK WKH RWKHU WZR 7KHUHIRUH D FRPSURPLVH PXVW EH GHWHUPLQHG WR \LHOG WKH EHVW SHUIRUPDQFH :RUNLQJ LQ D UHJLRQ QHDU WKH HOERZ RI WKH FXUYH LQ ILJXUH VKRXOG VXIILFH IRU PRVW SXUSRVHV ,Q WKLV UHJLRQ D JRRG PRGH LQGH[ GLIIHUHQWLDO ZLWK UHVSHFW WR VLOLFRQ WKLFNQHVV H[LVWV )XUWKHUPRUH ZLGHU ZDYHJXLGHV H[KLELW KLJKHU PRGH LQGH[ GLIIHUHQWLDOV 6LQFH LQ WKLV UHJLRQ WKH RSWLFDO ILHOG VWLOO KDV RVFLOODWRU\ VROXWLRQV LQ WKH /L1E&! ILOP PRVW RI WKH PRGH UHPDLQV LQ WKH /L1E DQG WKH PRGH PLVPDWFK LQ D FRUUXJDWHG ZDYHJXLGH LV UDWKHU ORZ 6XPPDU\ '%5 FRUUXJDWHG ZDYHJXLGHV KDYH WKH SRWHQWLDO WR VHUYH D EDVLF HOHPHQW RI FRPn PHUFLDO ,2& GHYLFHV $OWKRXJK WKHLU GHYHORSPHQW KDV EHHQ VWXGLHG IRU RYHU WZR GHFDGHV UHVHDUFK HIIRUWV KDYH IDLOHG WR SURGXFH KLJK UHIOHFWDQFH FRUUXJDWHG ZDYHJn XLGHV LQ PRVW PDWHULDO V\VWHPV )XUWKHUPRUH VHYHUDO FKDUDFWHULVWLFV RI /L1E2V DQG UHODWHG PDWHULDOV VXFK DV /L7D PDNH LW PRUH GLIILFXOW WR PDNH D KLJK UHIOHFWDQFH JUDWLQJ LQ WKHP WKDQ LQ PRVW RWKHU PDWHULDOV ,W ZDV SURSRVHG WKDW E\ SODFLQJ D KLJK UHIUDFWLYH LQGH[ PDWHULDO RQ WRS RI D FKDQQHO ZDYHJXLGH D KLJK HIILFLHQF\ JUDWn LQJ PD\ EH PDGH $OWKRXJK WKLV SULQFLSOH LV DSSOLFDEOH LQ DQ\ PDWHULDO V\VWHP LW LV SDUWLFXODUO\ DWWUDFWLYH IRU /L1E2V ZKHUH WKHUH DUH KDUGO\ DQ\ RWKHU VROXWLRQV WR DFKLHYH DQ HIILFLHQW JUDWLQJ UHIOHFWRU 6LPSOH FDOFXODWLRQV ZHUH PDGH WR JDLQ D TXDOn LWDWLYH XQGHUVWDQGLQJ RI WKH HIIHFW 7KH IROORZLQJ FKDSWHUV SUHVHQW WKH H[SHULPHQWDO GHPRQVWUDWLRQ RI WKH FRQFHSW

PAGE 106

&+$37(5 '(9,&( )$%5,&$7,21 7(&+1,48(6 7R UHDOL]H WKH GHYLFH SURSRVHG LQ VHFWLRQ VHYHUDO IDEULFDWLRQ VWHSV DUH QHFHVn VDU\ f IDEULFDWH WKH ZDYHJXLGHV f PDNH WKH JUDWLQJ f IDEULFDWH WKH HOHFWURGHV f SROLVK WKH HQGIDFHV DQG f GHSRVLW DQ HQGIDFH '%5 PLUURU 7KHVH SURFHVVHV ZLOO EH GHVFULEHG LQ WKLV FKDSWHU DOWKRXJK QRW QHFHVVDULO\ LQ WKDW RUGHU )LUVW ZH ZLOO VWDUW E\ GHILQLQJ WKH 5,( SURFHVV EHFDXVH LW LV XVHG SHULRGLFDOO\ WKURXJKRXW WKH ZDYHJXLGH GHYLFH IDEULFDWLRQ 1H[W WKH GHWDLOV RI WKH SURWRQ H[FKDQJHG OLWKLXP QLREDWH ZDYHJn XLGH IDEULFDWLRQ ZLOO EH SUHVHQWHG IROORZHG E\ WKH JUDWLQJ IDEULFDWLRQ SURFHVV 7KHQ D VSHFLDO WHFKQLTXH IRU SROLVKLQJ WKH HQGIDFHV ZLOO EH GHVFULEHG )LQDOO\ WKH HEHDP GHSRVLWLRQ SURFHVV IRU WKH HQGIDFH PLUURUV ZLOO EH GHVFULEHG 7KH GHSRVLWLRQ SURFHVV IRU VLOLFRQ ZLOO EH GHVFULEHG DOVR 5HDFWLYH ,RQ (WFKLQJ 7KH 5,( SURFHVV LV FRPSOH[ ,W LV D PXOWLGLVFLSOLQDU\ SUREOHP LQ ZKLFK D KLJK NLQHWLF HQHUJ\ EHDP RI SDUWLFOHV DUH LQYROYHG LQ D FKHPLFDO UHDFWLRQ ,Q DGGLWLRQ LW LQYROYHV PDWWHU LQ LWV IRXUWK VWDWHf§SODVPD ,W LV EH\RQG WKH VFRSH RI WKLV ZRUN WR GHILQH WKH SK\VLFV LQ GHWDLO EXW D IHZ JHQHUDO REVHUYDWLRQV KHOS XV WR EHWWHU XVH 5,( DV D WRRO )LUVW WKH HQHUJ\ GLVFKDUJH IURP WKH VRXUFH FUHDWHV D SODVPD RI LRQV DQG UDGLFDOV IURP WKH SURFHVV JDVHV (YHQ WKRXJK WKH DSSOLHG HQHUJ\ LV 5) D QHJDWLYH '& VHOIELDV IRUPV EHWZHHQ WKH FDWKRGH WKH VDPSOH KROGHUf DQG DQRGH WKH FKDPEHU DQG VKRZHU KHDGf ZLWK DQ LRQ VKHDWK EHWZHHQ 7KHUH LV VSDFH EHWZHHQ WKH LRQ VKHDWK DQG WKH HOHFWURGHV FDOOHG GDUN VSDFH LQ ZKLFK WKH SUREDELOLW\ RI ILQGLQJ LRQV RU UDGLFDOV

PAGE 107

)LJXUH 6FKHPDWLF LOOXVWUDWLRQ RI WKH YROWDJH GURS DFURVV D SODVPD GLVFKDUJH LV VPDOO 0RVW SDUWLFOHV LQ WKLV UHJLRQ DUH QHXWUDO 7KLV LV EHFDXVH WKHUH LV D ODUJH YROWDJH GURS DFURVV WKLV UHJLRQ DQG KHQFH FKDUJHG SDUWLFOHV DUH DFFHOHUDWHG WKURXJK LW VHH ILJXUH f 7KH LRQV DUH QHXWUDOL]HG DW WKH DQRGH DQG FDWKRGH E\ D WUDQVIHU RI FKDUJH VRPHWLPHV DVVRFLDWHG ZLWK D FKHPLFDO UHDFWLRQ 7KHUH LV D YHU\ VPDOO YROWDJH GURS DFURVV WKH LRQLF VKHDWK EHFDXVH LW LV D JRRG FRQGXFWRU 7KH WKLFNQHVVHV RI WKH GDUN VSDFHV DQG WKH FRUUHVSRQGLQJ YROWDJH GURSV DUH SURSRUWLRQDO WR WKH DUHD RI WKH FRUUHVSRQGLQJ HOHFWURGHV :H FDQ EXLOG RQ WKHVH LQVLJKWV WR KHOS XV GHVLJQ RXU HTXLSPHQW DQG GHILQH RXU SURFHVVHV *HQHUDOO\ ZH ZDQW DQLVRWURSLF YHUWLFDOf HWFKLQJ :H FDQ XVH WKH VHOIn JHQHUDWHG '& ELDV WR DFFRPSOLVK WKLV ,I WKH SUHVVXUH LV ORZ O2P7f WKH '& ELDV LV XVXDOO\ VHYHUDO KXQGUHG YROWV DQG WKH GDUN VSDFH RYHU WKH FDWKRGH LV DERXW FP $OVR DV WKH SUHVVXUH EHFRPHV ORZ WKH PHDQ IUHH SDWK RI WKH LRQV WUDYHOLQJ WKURXJK WKH GDUN VSDFH EHFRPHV KLJK DQG WKH\ JDLQ FRQVLGHUDEO\ PRUH YHORFLW\ LQ WKH YHUWLFDO GLUHFWLRQ 7KH GLUHFWLRQDO KLJK NLQHWLF HQHUJ\ fEHDPf RI UHDFWLYH LRQV DQG UDGLFDOV LQ WKH YHUWLFDO GLUHFWLRQ LV WKH SULQFLSOH GULYLQJ PHFKDQLVP RI 5,( 7KH XVH RI QRQn UHDFWLYH JDVHV VXFK DV DUJRQ ZRXOG FRQVWLWXWH RQO\ VSXWWHU HWFKLQJ ZKLFK DOWKRXJK

PAGE 108

)LJXUH 5,( PDFKLQH XVHG IRU HWFKLQJ WKH GHYLFHV LQ WKLV ZRUN WKH\ DUH LPSLQJHQW RQ WKH VDPSOH YHUWLFDOO\ WKH\ JHQHUDOO\ GR QRW SURGXFH YHUWLFDOO\ HWFKHG SURILOHV EHFDXVH RI UHGHSRVLWLRQ %\ XVLQJ JDVHV WKDW IRUP UDGLFDOV WKDW DUH UHDFWLYH ZLWK WKH VXEVWUDWH D UHDFWLRQ RFFXUV RQ WKH VXUIDFH ,I WKH SURGXFWV DUH YRODWLOH WKH SURFHVV FDQ EH IROORZHG E\ HLWKHU D VHOIGHVRUSWLRQ RU D VSXWWHU DVVLVWHG GHVRUSWLRQ ,Q VRPH FDVHV WKHUH LV D ILQH OLQH EHWZHHQ 5,( DQG VSXWWHU HWFKLQJ LI WKH SURFHVV JDVHV GR QRW IRUP YRODWLOH SURGXFWV ZLWK WKH VXEVWUDWH 7KHVH QRQYRODWLOH SURGXFWV KDYH WR EH UHPRYHG E\ SK\VLFDO LRQ ERPEDUGPHQW DQG FDQ UHVXOW LQ QRQn YHUWLFDO HWFKLQJ E\ UHGHSRVLWLRQ $ SURSHUO\ GHVLJQHG V\VWHP ZLOO KDYH D YHU\ ODUJH DQRGH DUHD FRPSDUHG WR WKH FDWKRGH 7KLV UHVXOWV LQ D WKLQQHU GDUN VSDFH DORQJ WKH SHULPHWHU RI WKH DQRGH ZLWK D VPDOO YROWDJH GURS EHWZHHQ LW DQ WKH SODVPD VKHDWK 7KLV LV EHQHILFLDO EHFDXVH LW LV GHVLUDEOH WR UHGXFH WKH DPRXQW RI SK\VLFDO ERPEDUGPHQW RI LRQV RQ WKH SDUWV RI WKH FKDPEHU WKXV HURGLQJ WKH FKDPEHU DQG FRQWDPLQDWLQJ WKH SURFHVV )RU D PRUH GHWDLOHG H[SODQDWLRQ RI WKH 5,( SURFHVV WKH UHDGHU LV UHIHUUHG WR UHIHUHQFH >@ )LJXUH VKRZV D SLFWXUH RI WKH KRPHEXLOW 5,( PDFKLQH XVHG IRU HWFKLQJ WKH GHYLFHV LQ WKLV ZRUN ILJXUH VKRZV D VLPSOLILHG VFKHPDWLF RI WKH V\VWHP 7KH 5,(

PAGE 109

&O 0)& f§>;@f§ f§ 0)& f§.f§ )9 f§ )RUHOLQH 9DOYH +9 f§ +LJK 9DFXXP 9DOYH ,* f§ ,RQL]DWLRQ *DXJH 0)&f§ 0DVV )ORZ &RQWUROOHU 30 f§ %LUG 3RZHU 0HWHU 37 f§ 3UHVVXUH 7UDQVGXFHU 5) f§ 5) 3RZHU 6XSSO\ 53 f§ 5RXJKLQJ 3XPS 59 f§ 5RXJKLQJ 9DOYH 73 f§ 7XUER 3XPS 79 f§ 7KURWWOH 9DOYH )LJXUH 'LDJUDP RI WKH 5,( V\VWHP SLFWXUHG LQ ILJXUH

PAGE 110

V\VWHP DFFRPPRGDWHV D ILYH LQFK ZDIHU DQG XVHV D 0+] 5) UDGLR IUHTXHQF\f SRZHU VRXUFH ,W LV D UHWURILW IURP D 3ODVPD ,QOLQH SODVPD HWFKHU PDGH E\ 7HJDO $OWKRXJK PXFK RI LWV RULJLQDO DSSHDUDQFH UHPDLQV WKH RSHUDWLRQ LV TXLWH GLIIHUHQW 6RPH RI WKH PDMRU FKDQJHV DUH WKH IROORZLQJ f 7KH YDFXXP KDUGZDUH DQG YDOYHV ZHUH UHSODFHG ZLWK PXFK ODUJHU LQFK GLDPn HWHU DQG JUHDWHUf FRPSRQHQWV WR DFFRPPRGDWH KLJK YROXPH SXPSLQJ DW ORZHU SUHVVXUHV f $ WXUER SXPS LRQL]DWLRQ JDXJH DQG DSSURSULDWH YDOYHV ZHUH DGGHG WR WKH V\VWHP IRU ORZ SUHVVXUH RSHUDWLRQ DQG PRQLWRULQJ f 7KH LQVLGH RI WKH FKDPEHU ZDV UHWURILWWHG WR DFFRPPRGDWH D fVKRZHU KHDGf WR GLVSHUVH WKH JDV EHFDXVH LW ZDV QHFHVVDU\ WR SURYLGH HQRXJK URRP IRU WKH JDV WR IORZ DURXQG LW DQG RXW WR WKH SXPS f 7KH 5) SRZHU VXSSO\ DQG PDWFKLQJ QHWZRUN ZHUH UHSODFHG f $ FRPSXWHU FRQWUROGDWD DFTXLVLWLRQ V\VWHP ZDV DGGHG DQG SURJUDPPHG WR DXWRPDWH WKH 5,( SURFHVV f 7KH $OXPLQXP FKDPEHU ZDV DQRGL]HG WR SUHYHQW HWFKLQJ RI WKH DOXPLQXP E\ WKH FRUURVLYH JDVHV &O" 5HDFWLYH ,RQ (WFKLQJ 0RVW RI RXU 5,( SURFHVVHV XVH &, DV WKH SURFHVV JDV :H LQLWLDOO\ FKRVH &, EHFDXVH LW SURGXFHV YHU\ JRRG UHVXOWV ZLWK *D$V )LJXUH VKRZV D WUHQFK WKDW ZDV HWFKHG LQ *D$V PL ZLGH E\ P GHHS DQG ILJXUH VKRZV D JUDWLQJ HWFKHG LQWR *D$V ZLWK D SHULRG RI PQ %HFDXVH LW LW KLJKO\ UHDFWLYH &, HWFKHV PDQ\ RWKHU VXEVWUDWHV IRUPLQJ YRODWLOH SURGXFWV DV ZHOO ,Q VRPH FDVHV KRZHYHU &O GRHV QRW

PAGE 111

)LJXUH $ WUHQFK XQ ZLGH E\ LP GHHS HWFKHG LQ *D$V )LJXUH $ LUQ SHULRG JUDWLQJ HWFKHG LQWR *D$V E\ &, 5,(

PAGE 112

0DWHULDO )ORZ 5DWH 6&&0 3UHVVXUH P7 5) 3RZHU :FP (WFK 5DWH ƒPLQ 3URILOH *D$V 9HUWLFDO H%HDP 6L 9HUWLFDO 6L &U\VWDOf 9HUWLFDO 3KRWRUHVLVW a /L1E 7UDSH]RLGDO /L1E 7UDSH]RLGDO 7DQWDOXP 7LWDQLXP a 7DEOH (WFK UDWHV RI VHOHFWHG PDWHULDOV LQ WKH 5,( ILJXUH f ZLWK &O IRUP YRODWLOH SURGXFWV ,Q WKHVH FDVHV VLQFH &O KDV D FRPSDUDWLYHO\ KLJK DWRPLF ZHLJKW f LW DFWV DOPRVW DV HIILFLHQWO\ DV $U f WR SK\VLFDOO\ UHPRYH WKH QRQn YRODWLOH SURGXFWV *RRG HWFK UDWHV FDQ EH DFKLHYHG ZLWK WKLV SK\VLFDO SURFHVV EXW UHGHSRVLWLRQ XVXDOO\ UHVXOWV LQ QRQYHUWLFDO SURILOHV 2QH GUDZEDFN RI XVLQJ &O LV WKDW EHFDXVH RI LWV ODUJH DWRPLF ZHLJKW LW VSXWWHU HWFKHV WKH PDVN 0XOWLOD\HU PDVN VWUXFWXUHV FDQ EH XVHG WR KHOS UHGXFH WKLV SUREOHP VHH VHFWLRQ f 7DEOH VKRZV VRPH UHVXOWV IURP RXU V\VWHP XVLQJ &O DV D SURFHVV JDV 7KHVH UHVXOWV DUH FRPSDUDEOH WR WKRVH UHSRUWHG XVLQJ FRPPHUFLDO V\VWHPV > @ 1RQH RI WKHVH KDYH EHHQ RSWLPL]HG ZLWK UHVSHFW WR HWFK UDWH 7KLV LV EHFDXVH ZH DUH PRVW RIWHQ FRQFHUQHG ZLWK JHWWLQJ YHUWLFDO HWFK SURILOHV $OWKRXJK KLJKHU HWFK UDWHV FDQ EH REWDLQHG DW KLJKHU SUHVVXUHV EXW WKLV ZLOO GHFUHDVH WKH PHDQ IUHH SDWK RI WKH UHDFWLYH VSHFLHV ZKLFK ZLOO SURGXFH PRUH LVRWURSLF HWFKLQJ 7KH HWFK SURILOHV DUH GHSHQGHQW RQ WKH LQWHJULW\ RI WKH PDVN 7KH SURILOHV LQGLFDWHG LQ WDEOH DVVXPH WKDW WKH PDVN LV QRW HURGHG ,I LW LV HURGHG DQG WKH HWFK SURILOH LQGLFDWHG LQ WDEOH LV YHUWLFDO WKH PDVN SURILOH LV WUDQVIHUUHG WR WKH VXEVWUDWH VWDUWLQJ DW WKH ERWWRP ZLWK D QHZ DVSHFW UDWLR GHSHQGLQJ RQ WKH UDWLR RI WKH HWFK UDWHV 6HFWLRQ ZLOO VKRZ KRZ WR IDEULFDWH D WKLFN YHUWLFDO SKRWRUHVLVW SURILOH

PAGE 113

ZKLFK VLQFH LW LV LWVHOI YHUWLFDO D YHUWLFDO SURILOH FDQ EH WUDQVIHUUHG WR WKH VXEVWUDWH HYHQ WKRXJK WKH PDVN LV HURGHG 5HDFWLYH LRQ HWFKLQJ RI /L1E&E LV QRW JHQHUDOO\ DWWUDFWLYH IRU RSWLFDO ZDYHJXLGH GHYLFHV 7KH HWFK UDWH LV YHU\ ORZ DQG GDPDJH WR WKH FU\VWDO FDQ EH H[SHFWHG >@ ,W LV EHOLHYHG WKDW WKH OLWKLXP IRUPV QRQYRODWLOH FRPSRXQGV ZLWK FKORULQH WKDW FDQ RQO\ EH UHPRYHG E\ VSXWWHU HWFKLQJ 7KH XVH RI &, LV D JRRG JHQHUDOSXUSRVH 5,( SURFHVV JDV EXW ZKHQ RSWLPXP UHVXOWV DUH UHTXLUHG IRU D VSHFLILF PDWHULDO V\VWHP RWKHU UHDFWDQWV PD\ EH EHWWHU 7KHUH DUH D ZLGH YDULHW\ RI JDVHV DYDLODEOH IRU VHYHUDO PDWHULDO V\VWHPV > @ 6RPH RI WKH PRVW FRPPRQ DUH IORXURFDUERQV DQG 6) 0L[WXUHV RI 6)J DQG 2 RU 6) DQG $U KDYH EHHQ XVHG WR REWDLQ HWFK UDWHV RI VLOLFRQ JUHDWHU WKDQ ƒPLQ LQ 5,( V\VWHPV 2 3ODVPD $VKLQJ 3RO\PHUV VXFK DV SKRWRUHVLVW FDQ EH HWFKHG DVKHGf YHU\ HIIHFWLYHO\ ZLWK 7KLV SURFHVV LV YHU\ HVVHQWLDO WR PLFUROLWKRJUDSK\ EHFDXVH LW KDV D YDULHW\ RI DSSOLFDWLRQV )LUVW PRVW VROYHQWV DUH LQHIIHFWLYH LQ FRPSOHWHO\ UHPRYLQJ DOO RI WKH SKRWRUHVLVW 7KHUH XVXDOO\ UHPDLQV D PRQROD\HU RI SRO\PHU PDWHULDO RQ WKH VXEVWUDWH 7KLV FDQ EH UHPRYHG E\ DVKLQJ 6HFRQG VLQFH PDQ\ 5,( SURFHVV JDVHV HURGH WKH PDVN LW LV HVVHQWLDO WR KDYH D YHUWLFDO PDVN VWUXFWXUH WR JHW D YHUWLFDO HWFK SURILOH LQ WKH VXEVWUDWH 2 DVKLQJ RI D PXOWLOD\HU PDVN VWUXFWXUH GHILQHG EHORZf FDQ EH XVHG WR DFKLHYH WKLV UHVXOW +LJKHU SUHVVXUHV \LHOG EHWWHU DVK UDWHV EXW ORZ SUHVVXUH \LHOGV YHUWLFDO HWFK SURn ILOHV LQ PRVW SRO\PHUV ,Q RXU V\VWHP ZH IRXQG WKDW SUHVVXUHV EHWZHHQ DQG P7 \LHOGHG RSWLPXP UHVXOWV IRU YHUWLFDO SKRWRUHVLVW SURILOHV DQG ZDV DOVR XVHIXO IRU JHQHUDO SXUSRVH DVKLQJ 2XU VWDQGDUG SURFHVV XVHV D IORZ UDWH RI 6&&0 RI

PAGE 114

3DWWHUQHG 3KRWRUHVLVW ƒ 7LWDQLXP 7KLFN 3KRWRUHVLVW ƒ 6L Ef )LJXUH 6FKHPDWLF RI D PXOWLOD\HU PDVN WKDW FDQ EH XVHG IRU YHU\ GHHS 5,( RU WKLFN OLIWRII Df VKRZV WKH VWUXFWXUH MXVW DIWHU GHYHORSLQJ WKH LPDJLQJ OD\HU DQG Ef VKRZV WKH FRPSOHWHG VWUXFWXUH 2 :FP :f RI 5) SRZHU DW D SUHVVXUH RI P7 7KLV SURGXFHV YHUWLFDO HWFKLQJ DW D UDWH RI DERXW ƒPLQ )LJXUH VKRZV D GLDJUDP RI D FRPSOHWHG PXOWLOD\HU PDVN VWUXFWXUH WKDW ZH IRXQG WR EH YHU\ HIIHFWLYH 7KH SURFHVV IRU WKH PDVN LV DV IROORZV 'HSRVLW ƒ RI 62 RQ FOHDQ VDPSOH E\ HEHDP GHSRVLWLRQ &RDW ZLWK 6KLSOH\ SKRWRUHVLVW ZLWK D VSLQ VSHHG RI 530 7KLV SURGXFHV D OD\HU RI SKRWRUHVLVW DERXW UP WKLFN %DNH DW r& IRU PLQXWHV 7KHQ EDNH DJDLQ DW r& IRU PLQXWHV 'HSRVLW ƒ RI WLWDQLXP E\ HEHDP GHSRVLWLRQ

PAGE 115

)LJXUH 3LFWXUH RI WKH PXOWLOD\HU SKRWRUHVLVW PDVN IURP DQ RSWLFDO PLFURVFRSH 3DWWHUQ PDVN $ W\SLFDO SURFHVV IRU WKLV LV WR VSLQ 6KLSOH\ DW 530 EDNH DW r& IRU PLQXWHV H[SRVH DW OOP:FP IRU VHFRQGV DQG GHYHORS LQ 6KLSOH\ 0,) IRU VHFRQGV $ SRVWEDNH LV XVXDOO\ XQQHFHVVDU\ (WFK WKH WKLQ WLWDQLXP OD\HU XVLQJ WKH &O 5,( SURFHVV LQ WDEOH IRU VHFRQGV (WFK WKH WKLFN SKRWRUHVLVW OD\HU XVLQJ 5,( 6&&0 RI : RI 5) SRZHU DW D SUHVVXUH RI P7f IRU PLQXWHV (WFK WKH 6L OD\HU LQ EXIIHUHG R[LGH HWFK %2(f IRU VHFRQGV E\ LPPHUn VLRQ DW URRP WHPSHUDWXUH 7KH HWFK UDWH IRU WKH 6L XQGHU WKHVH FRQGLWLRQV LV DERXW ƒVf )LJXUH VKRZV D SLFWXUH RI WKH FRPSOHWHG SKRWRUHVLVW PDVN 7KH UHVLVW LV WKLFN HQRXJK WR HQGXUH WKH &O HWFKLQJ IRU PRUH WKDQ PLQXWHV HYHQ DW KLJK 5) SRZHU 6LQFH QR KLJK WHPSHUDWXUH SURFHVV LV LQYROYHG WKH UHVLVW LV VWLOO VXLWDEOH IRU OLIWRII 7KH SXUSRVH RI HDFK OD\HU LV DV IROORZV

PAGE 116

f 7KH WRS SKRWRUHVLVW OD\HU LV XVHG WR JHQHUDWH WKH GHVLUHG LPDJH 7KLV FDQ EH DFFRPSOLVKHG E\ D YDULHW\ RI PHDQV LQFOXGLQJ VWDQGDUG SKRWROLWKRJUDSK\ RU KRORJUDSK\ f 7KH WLWDQLXP DFWV DV DQ HWFK EDUULHU IRU WKH 2 HWFKLQJ RI WKH ERWWRP SKRWRUHVLVW OD\HU ,W LV DOPRVW LPSHUYLRXV WR WKH R[\JHQ 5,( EHFDXVH LW GRHV QRW IRUP YRODWLOH SURGXFWV ZLWK R[\JHQ DQG VLQFH R[\JHQ KDV D UHODWLYHO\ VPDOO DWRPLF ZHLJKW FDQQRW EH VSXWWHUHG HDVLO\ E\ R[\JHQ f 7KH WKLFN ERWWRP SKRWRUHVLVW OD\HU DFWV DV DQ HWFK EDUULHU IRU DQ\ QXPEHU RI SURFHVVHV LQFOXGLQJ WKH &O SURFHVVHV LQ WDEOH ,W LV DOVR XVHIXO IRU WKH OLIWRII WHFKQLTXH f 7KH 6L2n OD\HU LV XVHIXO WR FOHDQ WKH VXEVWUDWH IURP DQ\ FRQWDPLQDWHV JHQHUDWHG IURP WKH 5,( SURFHVV 7KLV OD\HU ZDV IRXQG WR EH SDUWLFXODUO\ KHOSIXO IRU UHPRYLQJ WKH SRO\PHUV WKDW DUH UHGHSRVLWHG RQ WKH VXEVWUDWH VXUIDFH GXULQJ WKH HQG RI R[\JHQ 5,( SURFHVV 7KHVH GHSRVLWV DUH KDUGO\ YLVLEOH LQ DQ RSWLFDO PLFURVFRSH XQGHU KLJK PDJQLILFDWLRQ EXW WKH\ DUH YHU\ UHVLVWDQW WR DQG &O 5,( >@ $V D FRQVHTXHQFH DIWHU HWFKLQJ WKH VXEVWUDWH WKHLU HIIHFW LV GUDPDWLF )LJXUH VKRZV DQ RSWLFDO PLFURVFRSH SLFWXUH RI WKH UHVXOW RI HWFKLQJ *D$V XVLQJ D PXOWLOD\HU VWUXFWXUH ZLWKRXW WKH 6L OD\HU DQG QRQRSWLPL]HG 2 HWFKLQJ SDUDPHWHUV 9HU\ VPDOO SXGGOHV RI UHVLGXH UHVXOWHG LQ WKH HWFKLQJ RI SROHV LQ WKH *D$V VR WKLQ WKDW WKH\ VWDUWHG WR FXUO JLYLQJ WKH DSSHDUDQFH RI JUDVV 7KHVH SROHV DUH YHU\ ORQJ SP LQ WKLV FDVHf :H EHOLHYH WKDW WKH UHVLGXH LWVHOI LV QRW UHVSRQVLEOH IRU WKH PDVNLQJ 7KH UHVLGXH LV UHVSRQVLEOH IRU JHWWLQJ WKH HWFKLQJ RI WKH SROHV VWDUWHG EXW DQ HOHFWULF FKDUJH RQ WKH WLSV RI WKH SROHV GHIOHFW WKH FKORULQH LRQV 7KH ZHWHWFKLQJ WHFKQLTXH XVHG WR UHPRYH

PAGE 117

)LJXUH 6(0 SLFWXUH WKH UHVXOW RI HWFKLQJ *D$V XVLQJ D PXOWLOD\HU VWUXFWXUH ZLWKRXW WKH 62 OD\HU DQG QRQRSWLPL]HG 2 HWFKLQJ SDUDPHWHUV WKH 62 OD\HU LV QRW HIIHFWLYH IRU YHU\ VPDOO GLPHQVLRQV XQf EHFDXVH WKH XQGHUHWFKLQJ FDQ OLIW RII WKH PDVN :DYHJXLGH )DEULFDWLRQ :DYHJXLGHV FDQ EH IDEULFDWHG E\ ORFDOO\ H[FKDQJLQJ WKH OLWKLXP LQ WKH /L1E&E FU\VWDO ZLWK K\GURJHQ 7KH SURFHVV ILUVW UHSRUWHG E\ -DFNHO HW DO >@ LV YHU\ VLPSOH WKH OLWKLXP QLREDWH VDPSOH LV LPPHUVHG LQ D SURWRQULFK PHOW VXFK DV EHQ]RLF DFLG DW D WHPSHUDWXUH VXLWDEOH IRU WKH H[FKDQJH :H XVH WKH WHUP H[FKDQJH UDWKHU WKDQ GLIIXVLRQ EHFDXVH LW LV D SURFHVV LQ ZKLFK WKH OLWKLXP PXVW GLIIXVH RXW EHIRUH K\GURJHQ FDQ GLIIXVH LQ 7KH SURFHVV TXLFNO\ EHFRPHV D RQHWRRQH PHFKDQLVP 7KH UHVXOW RI WKH H[FKDQJH LV D VWHSOLNH UHIUDFWLYH LQGH[ SURILOH ZLWK DQ LQFUHDVHG LQGH[ LQ WKH UHJLRQV DOORZHG WR XQGHUJR WKH H[FKDQJH 3ODQDU ZDYHJXLGHV DUH IRUPHG E\ DOORZLQJ WKH ZKROH /L1E VXEVWUDWH VXUIDFH WR FRPH LQ FRQWDFW ZLWK WKH PHOW DQG FKDQQHO

PAGE 118

ZDYHJXLGHV FDQ EH IRUPHG E\ PDVNLQJ RII WKH ZKROH VXUIDFH H[FHSW IRU WKLQ W\SLFDOO\ OHVV WKDQ [Pf VWULSHV 6HYHUDO REVHUYDWLRQV KDYH EHHQ PDGH UHJDUGLQJ WKH SURSHUWLHV RI SURWRQ H[FKDQJHG ZDYHJXLGHV 7KH SURWRQ H[FKDQJH SURFHVV KDV D WHQGHQF\ WR JUHDWO\ UHGXFH WKH HOHFWURRSWLF HIIHFW >@ 3URWRQ H[FKDQJH XVLQJ S\URSKRVSKRULF DFLG >@ KDV EHHQ VKRZQ WR \LHOG ORZHUORVV ZDYHJXLGHV WKDQ EHQ]RLF DFLG >@ KRZHYHU D SRVWDQQHDOLQJ SURFHVV FDQ SURGXFH ORZORVV ZDYHJXLGHV PDGH ZLWK EHQ]RLF DFLG DQG UHFRYHU WKH HOHFWURRSWLF HIIHFW >@ 3URWRQ H[FKDQJH SURGXFHV D VLJQLILFDQW UHIUDFWLYH LQGH[ LQn FUHDVH $Q a IRU XQDQQHDOHG ZDYHJXLGHVf RQO\ IRU WKH H[WUDRUGLQDU\ UHIUDFWLYH LQGH[ 7KHUH LV OLWWOH FKDQJH WR WKH RUGLQDU\ UHIUDFWLYH LQGH[ 7KXV WKH ZDYHJXLGHV FDQ RQO\ VXSSRUW D VLQJOH SRODUL]DWLRQf§70 IRU ]FXW DQG 7( IRU [ RU \FXW 7KH UHIUDFWLYH LQGH[ FKDQJH LV QRW OLQHDUO\ GHSHQGHQW RQ WKH SURWRQ FRQFHQWUDWLRQ +RZn HYHU WKLV GHSHQGHQFH KDV UHFHQWO\ EHHQ GHILQHG IRU DQQHDOHG ZDYHJXLGHV H[FKDQJHG LQ EHQ]RLF DFLG >@ 3URWRQ H[FKDQJHG ZDYHJXLGHV DUH PRUH GDPDJH UHVLVWDQW WKDQ WLWDQLXP LQGLIIXVHG ZDYHJXLGHV >@ 7KH PDQ\ EHQHILWV DQG WKH VLPSOH IDEULFDWLRQ SURFHVV RI DQQHDOHG SURWRQ H[FKDQJHG $3(f /L1E&! ZDYHJXLGHV KDV UHVXOWHG LQ WKHLU ZLGH DFFHSWDQFH DQG VXFFHVV LQ WKH LQGXVWU\ )LJXUH LOOXVWUDWHV WKH VWHSV RI D IDLUO\ VWDQGDUG IDEULFDWLRQ SURFHVV XVHG WR IDEULFDWH $3(/L1E ZDYHJXLGHV 7KH VWHSV DUH DV IROORZV &OHDQ WKH VDPSOH ZLWK VWDQGDUG VROYHQWV VXFK DV DFHWRQH DQG PHWKDQRO DQG XVH DQ 2 DVK VHFWLRQ f WR UHPRYH DQ\ UHPDLQLQJ SRO\PHUV 'HSRVLW ƒ RI WDQWDOXP E\ VSXWWHULQJ Df 'HILQH ZDYHJXLGH GHYLFH SDWWHUQ E\ SKRWROLWKRJUDSK\ Ef 7KLV FDQ EH DFn FRPSOLVKHG E\ VSLQQLQJ 6KLSOH\ DW 530 EDNLQJ DW r& IRU

PAGE 119

W= /L1E 6XEVWUDWH Df 'HSRVLW $ 7D Ef 'HILQH 3DWWHUQ E\ 3KRWROLWKRJUDSK\ Ff 5,( (WFK 7D 6WULS 35 Gf 3URWRQ ([FKDQJH LQ 3\URSKRVSKRULF $FLG r& a PLQ Hf 5HPRYH 7D $QQHDO r& a KU )LJXUH 6WDQGDUG IDEULFDWLRQ SURFHVV IRU DQQHDOHG SURWRQ H[FKDQJHG /L1E2\ ZDYHJXLGHV

PAGE 120

PLQXWHV H[SRVLQJ WKH VDPSOH WKURXJK D UHWLFOH ZLWK XOWUDYLROHW OLJKW DW OOP:FP IRU VHFRQGV DQG GHYHORSLQJ LQ 6KLSOH\ 0,) IRU VHFRQGV (WFK LQ &O 5,( VHFWLRQ f IRU VHFRQGV Ff 5HPRYH SKRWRUHVLVW ZLWK FOHDQLQJ SURFHGXUH LQ VWHS ,QGLYLGXDOO\ KHDW WKH VDPSOH DQG D S\URSKRVSKRULF DFLG PHOW WR r & WKHQ WUDQVIHU WKH VDPSOH WR WKH PHOW $IWHU DERXW D PLQXWH H[FKDQJH UHPRYH WKH VDPSOH DQG PHOW IURP WKH RYHQ DQG DOORZ WKHP WR FRRO WRJHWKHU Gf 5LQVH WKH S\URSKRVSKRULF DFLG RII LQ GHLRQL]HG ',f ZDWHU DQG LPPHUVH LQ WDQn WDOXP HWFKDQW XQWLO WKH WDQWDOXP LV FRPSOHWHO\ UHPRYHG DERXW PLQXWHVf $QQHDO WKH VDPSOH LQ DQ DPELHQW DWPRVSKHUH E\ UDPSLQJ WKH WHPSHUDWXUH WR r& RYHU WZR KRXUV KROGLQJ WKH WHPSHUDWXUH IRU KRXUV DQG UDPSLQJ GRZQ WR URRP WHPSHUDWXUH LQ WZR KRXUV Hf *UDWLQJ /LWKRJUDSK\ DQG 7UDQVIHU +RORJUDSKLF JUDWLQJV FDQ EH PDGH E\ D YDULHW\ RI PHDQV > @ 8VXDOO\ WKH\ DUH IRUPHG XVLQJ WZR FROOLPDWHG EHDPV LQ ZKLFK RQH KDV XQGHUJRQH WZR UHIOHFWLRQV +RZHYHU WKLV FRQILJXUDWLRQ LV GLIILFXOW WR DGMXVW IRU D GHVLUHG SHULRG )LJXUH LOOXVWUDWHV WKH YHU\ VLPSOH \HW HIIHFWLYH JUDWLQJ OLWKRJUDSK\ VHWXS WKDW ZDV XVHG IRU RXU GHYLFHV $ VSDWLDO ILOWHU ZDV XVH WR SURGXFH D FOHDQ ZDYHIURQW RI DUJRQ ODVHU OLJKW $ QPf 7KH EHDP ZDV QRW FROOLPDWHG $ PLUURU SODFHG LPPHGLDWHO\ QH[W WR WKH VDPSOH DW r SURYLGHV GLYLVLRQ RI WKH EHDP LQWR WZR 7KH WZR ZDYHV LPSLQJHQW RQ WKH VDPSOH LQWHUIHUH WR IRUP D KLJK IUHTXHQF\ JUDWLQJ 7KH XVH RI DQ XQFROOLPDWHG EHDP UHVXOWHG LQ D PRUH XQLIRUP H[SRVXUH RYHU D ODUJH DUHD EXW \LHOGHG D FKLUSHG JUDWLQJ +RZHYHU WKH JUDWLQJ FKLUS ZDV PHDVXUHG WR EH RQO\ QPFP WKDW LV D

PAGE 121

SHULRG VKLIW RI QP DORQJ FP RI WKH JUDWLQJ $VVXPLQJ D SODQDU ZDYHIURQW WKH JUDWLQJ SHULRG $ LV UHODWHG WR WKH DQJOH RI WKH VDPSOH E\ $ $ VLQ f 7KLV VHWXS SHUPLWV YHU\ SUHFLVH DGMXVWPHQWV WR WKH JUDWLQJ SHULRG EHFDXVH WKH RSWLFV DUH SODFHG RQ D VLQJOH PRWRUL]HG URWDWLRQ VWDJH ZLWK DQ DQJOH DFFXUDF\ RI RI D GHJUHH DQG IRU D JUDWLQJ ZLWK D SHULRG RI $ QP rf WKH JUDWLQJ SHULRG LV VORZO\ GHSHQGHQW RQ WKH DQJOH DV VKRZQ LQ ILJXUH 7KHUHIRUH WKH JUDWLQJV DUH UHSURGXFLEOH ZLWK DYHUDJH SHULRGV DFFXUDWH WR EHWWHU WKDQ ƒ 7KH JUDWLQJ SHULRG ZDV YHULILHG DQG WKH FKLUS GHWHUPLQHG E\ PHDVXULQJ WKH DQJOH RI WKH ILUVW RUGHU %UDJJ UHIOHFWLRQ RI D +H1H ODVHU EHDP EDFN LQWR WKH ODVHU ILJn XUH f 7KH UHODWLRQVKLS EHWZHHQ WKH DQJOH DQG JUDWLQJ SHULRG IRU WKLV FDVH LV WKH VDPH DV IRU WKH H[SRVXUH HTXDWLRQ f H[FHSW WKH ZDYHOHQJWK LV QRZ $ QP 7KH SURFHGXUH IRU SURGXFLQJ D JUDWLQJ LV DV IROORZV 6SLQ D PL[WXUH RI 6KLSOH\ SKRWRUHVLVW DQG 6KLSOH\ 77$ SKRWRUHVLVW WKLQQHU RQ WKH VDPSOH DW 530 DQG VRIWEDNH DW r& IRU PLQXWHV

PAGE 122

)LJXUH 3ORW RI HTXDWLRQ )LJXUH 6HWXS XVHG WR YHULI\ WKH SHULRG DQG PHDVXUH WKH FKLUS RI WKH JUDWLQJV

PAGE 123

)LJXUH 6(0 SLFWXUH RI DQ HWFKHG JUDWLQJ RQ D VLOLFRQ VXEVWUDWH 3ODFH WKH VDPSOH RQ WKH YDFXXP FKXFN QH[W WR WKH PLUURU &DUH VKRXOG EH WDNHQ WR PDNH VXUH WKH HGJH LV SDUDOOHO WR WKH PLUURU ZKLFK VKRXOG EH SHUSHQGLFXODU WR WKH ZDYHJXLGHVf VR WKH JUDWLQJ OLQHV DUH FORVH WR r IURP WKH ZDYHJXLGH 0DNH VXUH WKH VWDJH LV DW WKH FRUUHFW DQJOH DQG H[SRVH IRU DERXW PLQXWH :H XVHG D WRWDO SRZHU RI DERXW : RI OLJKW H[LWLQJ WKH SLQKROHf 'HYHORS LQ D UDWLR RI 6KLSOH\ 0,) DQG ', ZDWHU UHVSHFWLYHO\ IRU DERXW VHFRQGV 7KH SDWWHUQ FDQ EH WUDQVIHUUHG WR WKH VXEVWUDWH E\ &, 5,( VHFWLRQ f 7KH UHVLVW VKRXOG HQGXUH WKH &O SODVPD IRU DERXW WZR PLQXWHV )LJXUH VKRZV DQ 6(0 SLFWXUH RI DQ HWFKHG JUDWLQJ RQ D VLOLFRQ VXEVWUDWH 7KH VLOLFRQ ZDIHU LV D ORW HDVLHU WKDQ /L1E WR PDNH D JUDWLQJ RQ EHFDXVH WKHUH DUH QR

PAGE 124

EDFNUHIOHFWLRQV IURP WKH ERWWRP VXUIDFH RI WKH VDPSOH $OWKRXJK WKH /L1E VDPSOHV ZHUH FRDWHG ZLWK DERXW ƒ RI VLOLFRQ EDFNUHIOHFWLRQV VWLOO FDXVH GHJUDGDWLRQ RI WKH H[SRVXUH 6WDQGLQJ ZDYHV SURGXFHG E\ WKH KLJK UHIOHFWLRQ DW WKH VLOLFRQ VXUIDFH DOVR UHGXFH WKH TXDOLW\ RI WKH JUDWLQJ EXW WKLV SUREOHP LV QRW DV VHYHUH 3ROLVKLQJ $ JRRG HQGIDFH SROLVK LV HVVHQWLDO IRU ORZ FRXSOLQJ ORVVHV )RU WKLV UHVHDUFK ZRUN ZH GHYHORSHG D SROLVKLQJ SURFHVV WKDW \LHOGV YHU\ JRRG UHVXOWV ,Q SDUWLFXODU ZH ZHUH LQWHUHVWHG LQ PHDVXULQJ WKH RSWLFDO LQWHQVLW\ LQ WKH WKLQ VLOLFRQ OD\HU RQ WKH VXUIDFH RI WKH /L1E ZDYHJXLGH 7R WKLV HQG ZH QHHGHG WR EH DEOH WR SROLVK WKH HGJH RI WKH VDPSOH ZLWK PRUH TXDOLW\ WKDQ LV XVXDOO\ UHTXLUHG 7R DFKLHYH D YHU\ KLJK TXDOLW\ HQGIDFH SROLVK ZLWK QR FKLSV RU HGJHEHYHOLQJ ZH FRDWHG WKH VDPSOH ZLWK DERXW SP RI 6L E\ HEHDP GHSRVLWLRQ 1H[W ZH ZD[HG WKH VDPSOH RQWR D VLOLFRQ ZDIHU DQG PRXQWHG WKHP RQ D SROLVKLQJ MLJ %HFDXVH WKH HQGV RI WKH VDPSOH ZHUH FXW DQG ZHOO DOLJQHG LQ WKH SROLVKLQJ MLJ ODSSLQJ ZDV QRW QHFHVVDU\ DQG ZH ZHQW GLUHFWO\ WR WKH SROLVKLQJ VWDJH 7KH VDPSOH ZDV DOORZHG WR URWDWH IUHHO\ RQ D SROLVKLQJ ZKHHO ZLWK SP GLDPRQG SDVWH RQ D Q\ORQ SROLVKLQJ FORWK $IWHU WKH VDPSOH ZDV SROLVKHG HYHQO\ ZH DGYDQFHG WR D ILQHU SP GLDPRQG SDVWH )LJXUH Df VKRZV D SLFWXUH RI WKH UHVXOWLQJ SROLVK WDNHQ IURP DQ RSWLFDO PLFURVFRSH ZLWK PD[LPXP FRQWUDVW WR VKRZ WKH VFUDWFKHV 7KLV SROLVK LV XVXDOO\ UHJDUGHG DV DGHTXDWH EXW WKH QH[W VWHS JUHDWO\ HQKDQFHV WKH UHVXOW ([FHOOHQW ILQLVKHV FDQ EH REWDLQHG ZLWK D VKRUW ILQDO SROLVK ZLWK DQ DONDOLQH VLOLFD VRO >@ :H XVHG 8OWUD6RO $ D FROORLGDO DOXPLQD SROLVKLQJ FRPSRXQG PDQn XIDFWXUHG E\ 6ROXWLRQ 7HFKQRORJ\ ,QFf RQ D %XHKOHU 0LFURFORWK $IWHU SROLVKLQJ IRU DERXW ILYH PLQXWHV WKH VDPSOH DV WDNHQ RII WKH ZKHHO DQG LPPHUVHG LQ DQ DONDOLQH VROXWLRQ D IHZ SHOOHWV RI 1D2+ GLVVROYHG LQ ', ZDWHUf EHIRUH LW FRXOG GU\ 7KLV LV

PAGE 125

QHFHVVDU\ WR SUHYHQW D JODVV\ ILOP IURP GHYHORSLQJ RQ WKH /L1E )LJXUH Ef VKRZV WKH ILQDO UHVXOW )LJXUH Ff VKRZV WKDW LW LV QRW QHFHVVDU\ WR PDNH WKH ZD[ OD\HU YHU\ WKLQ WR DFKLHYH D JRRG UHVXOW (QGIDFH '%5 )DEULFDWLRQ 0RVW RI WKH ILOPV LQ WKLV ZRUN LQFOXGLQJ WKH HQGIDFH '%5V ZHUH GHSRVLWHG E\ H EHDP )LJXUH VKRZV D GLDJUDP DQG SLFWXUH RI RXU KRPHEXLOW HEHDP GHSRVLWLRQ V\VWHP ,W LQFOXGHV D GXDO FU\VWDO WKLFNQHVV PRQLWRU ZLWK VKXWWHU WR PHDVXUH WKH WKLFNQHVV RI HDFK GLHOHFWULF PDWHULDO DFFXUDWHO\ ,W LV HTXLSSHG ZLWK D FU\RSXPS WR SURGXFH D FOHDQ EDVH YDFXXP RI [ 7RUU ,W KDV D IRXUSRFNHW ZDWHUFRROHG FRSSHU FUXFLEOH HDFK ZLWK D FDSDFLW\ RI FF DQG D N: SRZHU VXSSO\ )RU D GHWDLOHG GHVFULSWLRQ RI WKH HEHDP GHSRVLWLRQ SURFHVV WKH UHDGHU VKRXOG UHIHU WR UHIHUHQFH >@ 2WKHU UHIHUHQFHV WKDW DUH KHOSIXO SDUWLFXODUO\ IRU GHVFULELQJ WKH HYDSRUDWLRQ EHKDYLRU RI YDULRXV PDWHULDOV DUH > @ 2XU HQGIDFH PLUURUV ZHUH PDGH IURP SHULRGV RI VLOLFRQ DQG $ VLOLFRQ EHLQJ WKH ILUVW DQG ODVW OD\HUV 7R PDNH D PLUURU ZLWK WKH UHIOHFWLRQ SHDN FHQWHUHG DURXQG $ QP ZH XVHG DERXW ƒ RI VLOLFRQ Q f DQG ƒ RI $ 7KH PLUURUV ZHUH GHSRVLWHG RQ WKH /L1E HQGIDFHV DQG RQ JODVV PLFURVFRSH VOLGHV IRU WHVWLQJ )LJXUH Df VKRZV WKH PHDVXUHG WUDQVPLVVLRQ RI WZR PLUURUV ZKLFK DUH LQ H[FHOOHQW DJUHHPHQW ZLWK WKH WKHRU\ HVSHFLDOO\ DW WKH ZDYHOHQJWK RI LQWHUHVW 6LQFH WKLV PDWFK LV VR JRRG WKH FDOFXODWHG FXUYH RI WKH UHIOHFWDQFH LQ ILJXUH Ef VKRXOG DOVR EH DFFXUDWH DOWKRXJK LW ZDV QRW PHDVXUHG 7KH UHIOHFWLRQ LV DERXW b DW ZDYHOHQJWKV DURXQG QP 7KH WUDQVPLVVLRQ DQG UHIOHFWLRQ FXUYHV ZHUH FDOFXODWHG XVLQJ WKH PHDVXUHG GLVSHUVLRQ GDWD LQ DSSHQGL[ $ 7KH DOXPLQXP R[LGH LV YHU\ HDV\ WR GHSRVLW DQG JLYHV FRQVLVWHQW UHVXOWV XQGHU D ZLGH UDQJH RI FRQGLWLRQV EXW WKH GHSRVLWLRQ RI VLOLFRQ LV D GLIIHUHQW PDWWHU HQWLUHO\

PAGE 126

6LOLFRQ:DIHU :D[ 6L2 6L 6XEVWUDWH )LJXUH 3LFWXUH RI WZR VWDJHV RI DQ /L1E HQGIDFH SROLVK $IWHU SROLVKLQJ ZLWK SP GLDPRQG SDVWH Df DQG DIWHU XVLQJ D FROORLGDO DOXPLQD SROLVKLQJ FRPSRXQG EFf 7KH /L1E VXEVWUDWH ERWWRPf ZLWK D WKLQ VLOLFRQ OD\HU RQ WRS RI LW IROORZHG E\ D SP WKLFN OD\HU RI 62 7KH VLOLFRQ OD\HU LV EDUHO\ YLVLEOH LQ WKH SLFWXUH $ERYH WKH 6L&! OD\HU LV D WKLQ OD\HU RI ZD[ ZKLFK LV WKLFN HQRXJK WR EH YLVLEOH RQO\ LQ Ff WKDW GRHV QRW SROLVK ZHOO $ VLOLFRQ SROLVKLQJ EORFN LV RQ WKH WRS 7KH SLFWXUH ZDV WDNHQ E\ DQ RSWLFDO PLFURVFRSH ZLWK WKH FRQWUDVW HQKDQFHG WR VKRZ DQ\ VFUDWFKHV

PAGE 127

Df Ef )LJXUH 'LDJUDP RI WKH VDPSOH KROGHUVKXWWHU DVVHPEO\ Df DQG SLFWXUH Ef RI WKH HEHDP GHSRVLWLRQ V\VWHP 6LOLFRQ LV GLIILFXOW WR HYDSRUDWH EHFDXVH LW UHDFWV ZLWK DQ\ FUXFLEOH PDWHULDO 7KH EHVW ZD\ WR GHDO ZLWK WKLV SUREOHP LV WR SXW LW LQ D ZDWHUFRROHG FUXFLEOH VR WKDW WKH FROG VLOLFRQ LQ FRQWDFW ZLWK WKH FROG FUXFLEOH DFWV DV LWV RZQ FRQWDLQHU >@ :H XVHG WKLV PHWKRG LQ WKH FRSSHU FUXFLEOH LQ RXU V\VWHP :H IRXQG WKDW LI WKH FUXFLEOH LV QRW FOHDQHG WKRURXJKO\ DIWHU HDFK UXQ WKH QH[W WLPH WKH VLOLFRQ LV KHDWHG LW FDQ SRS YLROHQWO\ $QRWKHU SUREOHP ZLWK VLOLFRQ LV WKDW LW IRUPV 6L2 DW SUHVVXUHV DERYH [ &7 7RUU >@ 7KLV SUREOHP LV DYRLGHG LQ RXU V\VWHP E\ SXPSLQJ LW GRZQ WR DW OHDVW [ 7RUU EHIRUH EHJLQQLQJ WKH HYDSRUDWLRQ 7KH SDUWLDO SUHVVXUH LV RQ WKH RUGHU RI 7RUU 6XPPDU\ ,Q WKLV FKDSWHU WKH GHWDLOV RI WKH SURFHVVLQJ RI RXU ZDYHJXLGH GHYLFHV ZHUH GHn VFULEHG 5,( XVLQJ &O DV D SURFHVV JDV ZDV IRXQG WR EH D YHU\ JRRG JHQHUDO SXUSRVH HWFKLQJ WRRO D WDEOH SURGXFHG IRU HDV\ UHIHUHQFH WR WKH HWFK UDWHV DQG SURFHVV FRQGLn WLRQV IRU VHYHUDO PDWHULDOV ZDV LQFOXGHG DVKLQJ ZDV IRXQG WR EH XVHIXO IRU FOHDQLQJ

PAGE 128

,OO Df :DYHOHQJWK QPf )LJXUH &DOFXODWHG DQG PHDVXUHG WUDQVPLVVLRQ RI WZR GLHOHFWULF PLUURUV GHSRVLWHG E\ WKH V\VWHP VKRZQ LQ ILJXUH Df RQWR JODVV PLFURVFRSH VOLGHV DQG FDOFXODWHG UHIOHFWLRQ RI WKH VDPH VWUXFWXUH Ef

PAGE 129

VXEVWUDWHV DQG PDNLQJ YHU\ WKLFN YHUWLFDO SKRWRUHVLVW PDVNV 7KH IDEULFDWLRQ VWHSV IRU PDNLQJ $3(/L1E ZDYHJXLGHV ZHUH GHVFULEHG 7KH PHWKRG XVHG WR SURGXFH KRORJUDSKLF JUDWLQJV ZDV GLVFXVVHG DQG WKH UHVXOWV VKRZHG WKDW D VLPSOH VHWXS FDQ EH XVHG WR SURGXFH DFFXUDWH JUDWLQJV $Q LPSURYHG SROLVKLQJ WHFKQLTXH WKDW FDQ JHQHUDWH QHDUSHUIHFW HGJHV ZDV GHVFULEHG )LQDOO\ UHVXOWV RI DQ HEHDP GHSRVLWHG GLHOHFWULF PLUURU ZHUH VKRZQ WR EH LQ H[FHOOHQW DJUHHPHQW ZLWK WKHRU\

PAGE 130

&+$37(5 (;3(5,0(17$/ 5(68/76 2) 7+( 1(: :$9(*8,'( *(20(75< 7KLV FKDSWHU SUHVHQWV WKH H[SHULPHQWDO UHVXOWV RI WKH FKDUDFWHULVWLFV RI JUDGHG LQGH[ FKDQQHO ZDYHJXLGHV ZLWK KLJKLQGH[ RYHUOD\V 7KLV GHPRQVWUDWLRQ ZDV SHUn IRUPHG XVLQJ $3(/L1E FKDQQHO ZDYHJXLGHV IDEULFDWHG E\ WKH SURFHVVHV RXWOLQHG LQ FKDSWHU ZLWK RYHUOD\V RI VLOLFRQ GHSRVLWHG E\ HEHDP HYDSRUDWLRQ 7KLV FKDSWHU GLVFXVVHV WKH UHVXOWV DVVRFLDWHG ZLWK WKUHH EDVLF ZDYHJXLGH SDUDPHWHUV ORVV PRGH ILHOG SURILOH DQG SURSDJDWLRQ FRQVWDQW 7KHVH SDUDPHWHUV DUH UHTXLUHG IRU WKH GHVLJQ RI PRVW ZDYHJXLGH GHYLFHV DQG ZLOO IRUP WKH EDVLV IURP ZKLFK FRUUXJDWHG ZDYHJXLGH DQG RWKHU GHYLFHV FDQ EH GHVLJQHG 1HDU )LHOG 3URILOH 0HDVXUHPHQW 7KH GHWHUPLQDWLRQ RI WKH PRGH ILHOG SURILOH LV LPSRUWDQW IRU VHYHUDO UHDVRQV ,W LV QHHGHG WR FDOFXODWH WKH FRXSOLQJ ORVV GXH WR D PLVPDWFK EHWZHHQ WKH PRGH ILHOG SURILOHV RI WKH ZDYHJXLGH DQG WKH LQSXW DQG RXWSXW ILEHUV 7KLV HVWLPDWHG YDOXH FDQ EH VXEWUDFWHG IURP WKH WRWDO LQVHUWLRQ ORVV WR GHWHUPLQH WKH ZDYHJXLGH SURSDJDWLRQ ORVV 7KH PRGH ILHOG SURILOH LV RI SDUWLFXODU LQWHUHVW LQ WKLV ZRUN EHFDXVH WKH PDLQ FRQFHUQ RQH ZRXOG KDYH LQ SODFLQJ D KLJK UHIUDFWLYH LQGH[ PDWHULDO RQ WRS RI D JUDGHG LQGH[ ZDYHJXLGH ZLWK PXFK ORZHU UHIUDFWLYH LQGH[ LV KRZ PXFK RI WKH JXLGHG RSWLFDO ILHOG LV LQ WKH RYHUOD\ 3HUKDSV WKH PRVW VWUDLJKWIRUZDUG PHWKRG RI GHWHUPLQLQJ WKH PRGH ILHOG SURILOH LV WR PHDVXUH WKH QHDU ILHOG LQWHQVLW\ SURILOH 7KLV VHFWLRQ ZLOO SUHVHQW WKH WHFKQLTXH DQG PHDVXUHG ILHOG SURILOHV RI $3(/L1E&! FKDQQHO ZDYHJXLGHV ZLWK VLOLFRQ RYHUOD\V

PAGE 131

)LJXUH 1HDU ILHOG PHDVXUHPHQW VHWXS 0HDVXUHPHQW 7HFKQLT XH )LJXUH VKRZV D GLDJUDP RI WKH QHDU ILHOG VHWXS XVHG WR PDNH PRGH ILHOG SURILOH PHDVXUHPHQWV $ ODVHU HPLWWLQJ DW D ZDYHOHQJWK RI XQ ZDV VHOHFWHG EHFDXVH D P ODVHU ZDV QRW DYDLODEOH DW WKDW WLPH DQG WKH LP ODVHU ZDV FDSDEOH RI HPLWWLQJ VHYHUDO PLOLZDWWV RI RSWLFDO SRZHU 7KH VLQJOH ORQJLWXGLQDO PRGH ODVHU ZDV SLJWDLOHG WR D VLQJOH PRGH RSWLFDO ILEHU E\ WKH PDQXIDFWXUHU $ VKRUW SLHFH RI VLQJOH PRGH ILEHU ZDV XVHG EHWZHHQ WKH ODVHU DQG WKH GHYLFH %\ PRXQWLQJ WKH ODVHU RQ WKH WUDQVODWLRQ VWDJH ZLWK D VKRUW LQSXW ILEHU QRLVH GXH WR SRODUL]DWLRQ IOXFWXDWLRQV LQ WKH VLQJOH PRGH ILEHU ZHUH UHGXFHG ,W ZDV SRVVLEOH WR SRVLWLRQ WKH DUUDQJHPHQW VR WKDW WKH RXWSXW RI WKH ILEHU ZDV 70 SRODUL]HG 7KLV ZDV YHULILHG E\ D *ODQ7KRPSVRQ SRODUL]HU 7KH RXWSXW RI WKH ILEHU ZDV FRXSOHG LQWR WKH WHVW ZDYHJXLGH E\ PHDQV RI PLFURSRVLWLRQHUV 7KLV WDVN ZDV IDFLOLWDWHG E\ WKH XVH RI D VWHUHR PLFURVFRSH 7KH LPDJH RI WKH ZDYHJXLGH RXWSXW ZDV LQLWLDOO\ IRFXVHG RQWR D YLGHR FDPHUD HTXLSSHG ZLWK D YLGLFRQ WXEH VHQVLWLYH WR OLJKW RI ZDYHOHQJWK EH\RQG LP $ PLUURU ZDV XVHG WR GLUHFW WKH ZDYHJXLGH RXWSXW WR WKH YLGHR FDPHUD ZKLFK ZDV SRVLWLRQHG

PAGE 132

VR WKDW WKH RSWLFDO SDWK EHWZHHQ WKH FDPHUD DQG WKH OHQV ZDV DERXW WKH VDPH DV EHWZHHQ WKH OHQV DQG WKH SLQKROH DWWDFKHG WR D JHUPDQLXP GHWHFWRU 7KLV SURYLGHG DQ HDV\ ZD\ WR PDNH URXJK DOLJQPHQWV 7KHQ WKH PLUURU ZDV UHPRYHG WR DOORZ WKH OLJKW WR EH IRFXVHG RQWR WKH mQ SLQKROH SRVLWLRQHG LQFKHV DZD\ IURP WKH ; REMHFWLYH OHQV 1R RSWLFDO HOHPHQWV VXFK DV SRODUL]HUV RU PLUURUVf ZHUH XVHG EHWZHHQ WKH OHQV REMHFWLYH DQG WKH SLQKROH EHFDXVH PXOWLSOH UHIOHFWLRQV LQ VXFK HOHPHQWV FDQ UHVXOW LQ D GLVWRUWHG SURILOH PHDVXUHPHQW 6HYHUDO ILQDO DGMXVWPHQWV DUH FULWLFDO WR DVVXUH DQ DFFXUDWH VFDQf§SDUWLFXODUO\ WKH IRFXV 7KH LPDJH LV IRFXVHG RQWR WKH SLQKROH SURSHUO\ ZKHQ WKH SHDN RI WKH LQWHQVLW\ SURILOH LV PD[LPL]HG 7KLV LV GRQH E\ SRVLWLRQLQJ WKH SLQKROH DW WKH SHDN ERWK KRUL]RQWDOO\ DQG YHUWLFDOO\ DQG PD[LPL]LQJ WKH SKRWRGHWHFWRU RXWSXW E\ DGMXVWLQJ WKH ORQJLWXGLQDO PLFURSRVLWLRQHU RI WKH REMHFWLYH OHQV 7KHVH WZR VWHSV PXVW EH GRQH UHSHWLWLYHO\ EHFDXVH WKH SHDN FDQ VKLIW WUDQVYHUVHO\ LI WKH REMHFWLYH LV QRW SUHFLVHO\ FHQWHUHG ZLWK UHVSHFW WR WKH EHDP 7KLV FRXOG JLYH DQ DSSHDUDQFH RI D GHFUHDVH LQ WKH SHDN LQWHQVLW\ ,W LV EHVW WR SUHDOLJQ WKH ZDYHJXLGH RXWSXW HQG OHQV DQG SLQKROH DORQJ D VWUDLJKW OLQH WR PLQLPL]H WKLV HIIHFW 7KH QHDU ILHOG LQWHQVLW\ ZDV VDPSOHG E\ VHTXHQWLDOO\ VFDQQLQJ WKH SLQKROH ERWK KRUL]RQWDOO\ DQG YHUWLFDOO\ DFURVV WKH HQWLUH FURVV VHFWLRQ RI WKH PRGH LPDJH DQG UHFRUGLQJ WKH DPRXQW RI OLJKW GHWHFWHG E\ D JHUPDQLXP SKRWRGLRGH ORFDWHG MXVW EHn KLQG WKH SLQKROH 7KH RXWSXW RI WKH SKRWRGLRGH ZDV SUHDPSOLILHG E\ D FDOLEUDWHG RSWLFDO SRZHU PHWHU DQG D GLJLWDO PXOWLPHWHU ZDV XVHG WR LQWHUIDFH WKH DQDORJ RXWn SXW RI WKH SRZHU PHWHU WR D FRPSXWHU YLD DQ ,((( EXV $ ORFNLQ DPSOLILHU ZDV QRW UHTXLUHG IRU WKHVH PHDVXUHPHQWV EHFDXVH WKH VRXUFH ZDV VWDEOH DQG HPLWWHG VHYHUDO PLOLZDWWV RI RSWLFDO SRZHU +HQFH WKH VLJQDOWRQRLVH UDWLR GLG QRW QHHG WR EH LPSURYHG $ FRPSXWHU ZDV XVHG WR FRQWURO WKH SRVLWLRQ RI WKH SLQKROH DQG SKRn WRGLRGH E\ PHDQV RI OLQHDUGULYH VWDJHV HTXLSSHG ZLWK VWHSSLQJ PRWRUV ZLWK ]P

PAGE 133

LQFUHPHQW $ SURJUDP ZDV ZULWWHQ WR PDNH KRUL]RQWDO YHUWLFDO DQG WZRGLPHQVLRQDO ILHOG SURILOH PHDVXUHPHQWV 7R DYRLG WKH FRQVHTXHQFHV RI PHFKDQLFDO EDFNODVK PHDn VXUHPHQWV ZHUH PDGH LQ D XQLGLUHFWLRQDO IDVKLRQ E\ UHWXUQLQJ WKH PRWRUL]HG GULYHU WR D YDOXH VHYHUDO PLFURQV EHORZ WKH VWDUWLQJ YDOXH DQG DSSURDFKLQJ WKDW YDOXH LQ WKH VDPH GLUHFWLRQ LQ ZKLFK WKH VFDQ ZDV PDGH 7KLV ZDV HVSHFLDOO\ LPSRUWDQW ZKHQ PDNLQJ WZR GLPHQVLRQDO PHDVXUHPHQWV 7KH PDJQLILFDWLRQ ZDV GHWHUPLQHG WZR ZD\V ERWK WKHRUHWLFDOO\ DQG H[SHULPHQn WDOO\ 7KH PDJQLILFDWLRQ RI DQ REMHFWLYH OHQV LV PRVW RIWHQ JLYHQ E\ >@ 0 M f ZKHUH 0 LV WKH PDJQLILFDWLRQ PDUNHG RQ WKH OHQV LV WKH IRFDO OHQJWK RI WKH OHQV DQG WKH QXPEHU LV FKRVHQ E\ FRQYHQWLRQ WR GHILQH WKH PDJQLILFDWLRQ RI D OHQV E\ WKH DSSDUHQW VL]H RI LWV YLUWXDO LPDJH FRPSDUHG WR WKDW RI DQ REMHFW FP IURP WKH H\H 7KH WKLQ OHQV HTXDWLRQ f§ f§ V Vn I FRPELQHG ZLWK WKH PDJQLILFDWLRQ RI WKH LPDJH P f§VnVf ZH ILQG WKDW n0Vn f P f )RU WKH REMHFWLYH DQG OHQJWK ZH XVHG ; REMHFWLYH DW D GLVWDQFH RI FP IURP WKH SLQKROHf ZH ILQG WKH PDJQLILFDWLRQ WR EH f§ ZKHUH WKH QHJDWLYH VLJQ UHIHUV WR DQ LQYHUWHG LPDJH $OWHUQDWLYHO\ ZH PHDVXUHG WKH PDJQLILFDWLRQ E\ SRVLWLRQLQJ WKH SLQKROH DW WKH PD[LPXP LQWHQVLW\ RI WKH QHDU ILHOG LPDJH 7KHQ ZLWKRXW PDNLQJ DQ\ DGMXVWPHQWV WR WKH ZDYHJXLGH RU REMHFWLYH WKH ILEHU ZDV PRYHG WR DQ DGMDFHQW ZDYHJXLGH ORFDWHG UQL DZD\ 7KH SLQKROH DQG GHWHFWRU DVVHPEO\ ZDV PRYHG WR WKH QHZ ORFDWLRQ RI WKH LPDJH SHDN ZLWK WKH XVH RI WKH KRUL]RQWDO GULYHU RI D PLFURFRQWUROOHU DQG WKH

PAGE 134

QXPEHU RI VWHSV UHFRUGHG (DFK FRQWUROOHU VWHS FRUUHVSRQGV WR LP )RU WKH DERYH VHWXS WKH WZR SHDNV ZHUH IRXQG WR EH VWHSV DSDUW ZKLFK FRUUHVSRQGV WR D ODWHUDO PRYHPHQW RI LP 7KH PDJQLILFDWLRQ JLYHQ E\ WKH UDWLR RI WKH ODWHUDO PRYHPHQW WR WKH ZDYHJXLGH VHSDUDWLRQ ZDV WKHUHIRUH PHDVXUHG WR EH 7KLV LV LQ DJUHHPHQW WR WKH WKHRU\ DERYH ZLWKLQ DERXW b *LYHQ WKDW WKH OHQV LV H[SHFWHG WR H[KLELW VSKHULFDO DEHUUDWLRQ WKLV LV DQ H[FHOOHQW DJUHHPHQWf 7KLV QXPEHU ZDV XVHG WR GHWHUPLQH WKH [ DQG \ GLPHQVLRQV RI WKH LQWHQVLW\ SURILOHV $ LP SLQKROH ZDV XVHG EHFDXVH LW DOORZV PRUH OLJKW WR IDOO RQ WKH GHWHFWRU 7KH ODUJHU SLQKROH GLDPHWHU GRHV QRW FDXVH DQ\ ORVV LQ WKH UHVROXWLRQ EHFDXVH GLIIUDFWLRQ OLPLWV WKH UHVROXWLRQ RI WKH QHDU ILHOG SURILOH WR DERXW WKH ZDYHOHQJWK RI OLJKW 1Hn JOHFWLQJ GLIIUDFWLRQ WKLV SLQKROH VL]H ZLWK WKH DERYH PDJQLILFDWLRQ ZRXOG EH DEOH WR UHVROYH D QQ VSRW ZKLFK LV ZHOO EHORZ WKH GLIIUDFWLRQ OLPLW 7KHUHIRUH QRWKLQJ LV JDLQHG E\ XVLQJ D VPDOOHU SLQKROH ZLWK WKLV VHWXS 7KH QHDU ILHOG LQWHQVLW\ SURILOH RI WKH ILEHU DORQH ZDV DOVR PHDVXUHG 7KH ZDYHJXLGH VDPSOH ZDV UHPRYHG DQG WKH ILEHU SRVLWLRQHG LQ WKH IRFDO SODQH RI WKH REMHFWLYH ZLWKRXW PRYLQJ WKH REMHFWLYH WR PDLQWDLQ WKH VDPH PDJQLILFDWLRQ $ JRRG DSSUR[LPDWLRQ WR WKH HOHFWULF ILHOG SURILOH RI D VLQJOH PRGH ZDYHJXLGH FDQ EH GHWHUPLQHG IURP WKH QHDU ILHOG LQWHQVLW\ SURILOH E\ f ZKHUH 3P[ P\f LV WKH RSWLFDO SRZHU SDVVLQJ WKURXJK WKH SLQKROH DQG PHDVXUHG E\ WKH GHWHFWRU (OHFWULF ILHOG SURILOHV RI PXOWLPRGH ZDYHJXLGHV FDQ EH GHWHUPLQHG LI RQO\ RQH PRGH LV H[FLWHG $ FKDQJH LQ VLJQ RI WKH SURILOHV RI KLJKHURUGHU PRGHV ZRXOG KDYH WR EH LQVHUWHG PDQXDOO\ 7KLV LV JHQHUDOO\ QRW GRQH EHFDXVH RI WKH GLIILFXOW\ LQYROYHG LQ H[FLWLQJ RQO\ WKH KLJKHURUGHU PRGH ,Q DGGLWLRQ RQH RI WKH DSSUR[LPDWLRQV RI XVLQJ WKLV PHWKRG LV WKH DVVXPSWLRQ RI QR GLIIUDFWLRQ 'LIIUDFWLRQ SUHYHQWV ]HURV IURP

PAGE 135

EHLQJ PHDVXUHG LQ WKH ILHOG SURILOH WKHUHIRUH DQ LQVHUWLRQ RI D FKDQJH LQ VLJQ DW DQ LQWHQVLW\ PLQLPXP ZRXOG FUHDWH D VPDOO VWHS LQ WKH SURILOH 7KLV FDQ EH D YDOXDEOH PHDQV RI PHDVXULQJ WKH UHVROXWLRQ RI WKH VHWXS ZKLFK LV H[SHFWHG WR EH DERXW WKH ZDYHOHQJWK RI OLJKW LQ DLUf 7KH PRGH PLVPDWFK ORVV FDQ EH FDOFXODWHG E\ PD[LPL]LQJ WKH RYHUODS LQWHJUDO RI WKH HOHFWULF ILHOGV ZLWK UHVSHFW WR WKH ODWHUDO SRVLWLRQ B >+R IRR (I^[\f(J[ [\ \4fG[G\@ rf\r >ORR,RR(I[\fG[G\@ >M742=R(O^[\fG[G\? ZKHUH (I[\f DQG (J[\f DUH WKH PRGH ILHOG SURILOHV RI WKH ILEHU DQG ZDYHJXLGH UHVSHFWLYHO\ 7KH PRGH PLVPDWFK ORVV LV JLYHQ LQ G% E\ ORJ >G%@ 7KH PHDVXUHG LQWHQVLW\ DQG HOHFWULF ILHOG SURILOH DUH UHODWHG E\ HTXDWLRQ 7KH RWKHU FRQVWDQWV FRQWDLQHG LQ HTXDWLRQ QHHG QRW EH FRQVLGHUHG KHUH EHFDXVH WKH\ ZRXOG EH GLYLGHG RII LQ HTXDWLRQ )LHOG 3URILOH 5HVXOWV 7KH QHDUILHOG PHDVXUHPHQW MXVW GHVFULEHG ZDV XVHG WR PHDVXUH WKH ILHOG SURn ILOHV RI D ZDYHJXLGH VDPSOH SURWRQ H[FKDQJHG LQ S\URSKRVSKRULF DFLG DW r& IRU PLQXWHV DQQHDOHG DW r& IRU KRXUV DQG ZLWK ƒ RI HEHDPGHSRVLWHG VLOLFRQ RQ WRS 7R PDNH VXUH DQ\ PRGH ILHOG SUHVHQW LQ WKH VLOLFRQ FRXOG EH VHHQ DW WKH HQGIDFH D YHU\ WKLFN OD\HU RI 62 ZDV GHSRVLWHG RQ WRS RI WKH VLOLFRQ VR WKDW ZKHQ SROLVKHG ERWK WKH ZDYHJXLGH DQG WKH VLOLFRQ RYHUOD\ ZHUH QLFHO\ SROLVKHG VHH ILJXUH f )LJXUH VKRZV WKH FRQWRXU SORWV RI WKH ILHOG SURILOHV RI WKH ILEHU DQG ZDYHJXLGHV PDGH ZLWK PDVN RSHQLQJ ZLGWKV RI DQG XQ 7KH SORWV DUH VKRZQ ZLWK WKH ILHOG SUHVHQW LQ WKH /L1E&! RQ WKH ERWWRP DQG WKH ILHOG LQ WKH EXIIHU OD\HU RQ WKH WRS 7KLV PHDVXUHPHQW GRHV QRW SURYLGH D PHWKRG RI GHWHUPLQLQJ WKH SRVLWLRQ RI WKH WRS VXUIDFH RI WKH /L1E&! EXW LW LV H[SHFWHG WR EH a XQ DERYH WKH

PAGE 136

SHDN RI WKH SURILOH 7KH IXQGDPHQWDO PRGH ZDV IRXQG WR EH FXWRII IRU ZDYHJXLGHV PDGH IURP PDVN ZLGWKV EHORZ P 7KH ILUVW KLJKHURUGHU PRGH REVHUYHG E\ ODWHUDOO\ RIIVHWWLQJ WKH VLQJOH PRGH ILEHUf ZDV FXWRII EHORZ P 7KH VRPHZKDW VXUSULVLQJ UHVXOW LV WKDW WKHUH LV QHJOLJLEOH GLIIHUHQFH EHWZHHQ WKH LQWHQVLW\ ILHOG SURILOHV RI WKHVH ZDYHJXLGHV DQG WKRVH RI VLPLODU ZDYHJXLGHV ZLWKn RXW WKH VLOLFRQ RYHUOD\ 3ODQDU ZDYHJXLGH WKHRU\ VKRZV WKDW D VLOLFRQ RYHUOD\ RQ WKH /L1E2V VXEVWUDWH ZLWKRXW DQ\ SURWRQ H[FKDQJHG ZDYHJXLGH ZLOO JXLGH OLJKW DW $ [P ZLWK VLOLFRQ WKLFNQHVVHV RYHU XQ DQG EHFRPHV GRXEOHPRGHG DERYH QQ )XUWKHUPRUH EDVHG RQ SODQDU ZDYHJXLGH WKHRU\ WKH ILHOG SURILOH LV H[SHFWHG WR YDU\ VKDUSO\ DFURVV WKH VLOLFRQ OD\HU +RZHYHU WKLV LV QRW WKH FDVH DV VHHQ IURP WKH FKDQQHO ZDYHJXLGH FRQWRXU SORWV LQ ILJXUH 2QH LQLWLDO K\SRWKHVLV IRU WKLV ZDV WKDW WKH VLOLFRQ LV R[LGL]HG DQG WKH UHIUDFWLYH LQGH[ LV DFWXDOO\ TXLWH ORZ +RZHYHU WKH UHIUDFWLYH LQGH[ ZDV YHULILHG WR EH YHU\ FORVH WR WKDW RI VLQJOH FU\VWDO VLOLFRQ DW $ XQf 7KLV LV UHSRUWHG LQ DSn SHQGL[ $ $QRWKHU H[SODQDWLRQ PD\ EH WKDW WKHUH LV DFWXDOO\ DQRWKHU LQWHUIDFH RI ORZ LQGH[ PDWHULDO DJDLQ SUREDEO\ R[LGL]HG VLOLFRQf EHWZHHQ WKH VLOLFRQ DQG WKH /L1E&! +RZHYHU LI WKLV ZHUH WKH FDVH WKH SODQDU WKHRU\ ZRXOG VWLOO SUHGLFW VLJQLILFDQW ILHOG LQWHQVLW\ LQ WKH VLOLFRQ OD\HU ,Q VHFWLRQ ZH VKRZHG WKDW WKHUH LV D IXQGDPHQWDO IDOODF\ LQYROYHG ZLWK LQGLVn FULPLQDWHO\ DSSO\LQJ WKH SODQDU ZDYHJXLGH WKHRU\ DQG WKH HIIHFWLYH LQGH[ PHWKRG ZKLFK LV EDVHG RQ SODQDU ZDYHJXLGH WKHRU\ WR FKDQQHO ZDYHJXLGHV 7KH WKHRU\ LQ VHFWLRQ XVHG D VLPSOH FDOFXODWLRQ WR SDUWLDOO\ UHFWLI\ WKH VLWXDWLRQ 6LQFH WKH VRn OXWLRQ LW SURYLGHV LQ WKH KLJKLQGH[ VWULS ORDGHG VHFWLRQ LV EDVHG RQ WKH VHSDUDWLRQ RI YDULDEOHV DQG WKXV DJDLQ RQ SODQDU ZDYHJXLGH WKHRU\ LW DOVR LV ODFNLQJ LQ GHVFULELQJ WKH FRUUHFW VROXWLRQ IRU WKLFN VLOLFRQ RYHUOD\V +RZHYHU LW ZDV VRPHZKDW XVHIXO LQ EULGJLQJ WKH JDS EHWZHHQ WKH PLVFRQFHSWLRQV DQG UHDOLW\

PAGE 137

9HUWLFDO +Pf 9HUWLFDO _-Pf 9HUWLFDO IWRLf )LJXUH &RQWRXU SORWV RI WKH RSWLFDO LQWHQVLW\ SURILOHV IRU WKH ILEHU XSSHU OHIWf DQG ZDYHJXLGHV RI VHYHUDO PDVN ZLGWKV ZLWK D ƒ VLOLFRQ RYHUOD\

PAGE 138

)LJXUH ([SHULPHQWDO VHWXS XVHG WR PHDVXUH UHIOHFWLRQ WUDQVPLVVLRQ DQG ORVV RI ZDYHJXLGH GHYLFH VDPSOHV 0RUH ULJRURXV FDOFXODWLRQ PHWKRGV VXFK DV WKH ILQLWH HOHPHQW PHWKRG >@ QHHG EH FRQVLGHUHG WR DUULYH DW DQ DFFXUDWH QXPHULFDO VROXWLRQ WR WKLV SUREOHP 7KLV LV EH\RQG WKH VFRSH RI WKLV ZRUN DQG LV FXUUHQWO\ XQGHU LQYHVWLJDWLRQ /RVV 0HDVXUHPHQW 7KH ZDYHJXLGH ORVV LV RI SDUWLFXODU LQWHUHVW LQ WKLV ZRUN EHFDXVH ORZ ORVV ZDYHJn XLGHV DUH QHFHVVDU\ WR REWDLQ KLJK UHIOHFWDQFH '%5 FRUUXJDWHG ZDYHJXLGHV IRU KLJK ILQHVVH )DEU\3HURW ILOWHUV DQG ORZ WKUHVKROG ODVHUV )LUVW WKLV VHFWLRQ GHVFULEHV WKH VHWXS XVHG WR PHDVXUH WKH WRWDO LQVHUWLRQ ORVV 7KH VDPH VHWXS LV DOVR XVHG WR PHDVXUH WKH UHIOHFWLRQ DQG WUDQVPLVVLRQ VSHFWUD LQ FKDSWHU 7KHUHIRUH LW ZLOO EH SUHVHQWHG KHUH IRU ERWK SXUSRVHV 7KHQ WKLV VHFWLRQ ZLOO SUHVHQW WKH ORVV PHDVXUHPHQWV RI $3(/L1E FKDQQHO ZDYHJXLGHV PDGH ZLWK YDU\LQJ PDVN RSHQLQJ ZLGWKV DQG ZLWK YDU\LQJ WKLFNQHVVHV RI VLOLFRQ RYHUOD\V :DYHJXLGH 'HYLFH 5HIOHFWLRQ DQG 7UDQVPLVVLRQ 0HDVXUHPHQW )LJXUH GHSLFWV WKH H[SHULPHQWDO VHWXS XVHG WR PHDVXUH WKH UHIOHFWLRQ WUDQVPLV

PAGE 139

VLRQ DQG ORVV RI RXU ZDYHJXLGH GHYLFH VDPSOHV 7KH RXWSXW RI DQ +3$ WXQDEOH ODVHU VRXUFH ZDV IHG WKURXJK D SRODUL]LQJ 3=f ILEHU WR SRODUL]H WKH RXWSXW RI WKH ODVHU $ SRODUL]DWLRQ PDLQWDLQLQJ 30f ILEHU FRXSOHU ZDV XVHG WR SHUPLW GHWHFWLRQ RI WKH EDFNUHIOHFWHG OLJKW IURP WKH VDPSOH $ GXDOGHWHFWRU OLJKWZDYH PXOWLPHWHU ZDV XVHG WR VLPXOWDQHRXVO\ FROOHFW PHDVXUHPHQWV RI ERWK WKH WUDQVPLWWHG DQG UHIOHFWHG OLJKW IURP WKH GHYLFH XQGHU WHVW 5HIOHFWHG OLJKW GLG QRW FDXVH VWDELOLW\ SUREOHPV ZLWK WKH ODVHU EHFDXVH WKH +3$ LV HTXLSSHG ZLWK DQ RSWLFDO LVRODWRU $ FRPSXWHU FRQn WUROOHG WKH LQVWUXPHQWV DQG UHFRUGHG WKH GDWD YLD DQ ,((( EXV 7KLV LV D YHU\ FRQYHQLHQW VHWXS WR PHDVXUH WKH UHIOHFWLRQ DQG WUDQVPLVVLRQ VSHFWUD DV ZHOO DV WKH WRWDO LQVHUWLRQ ORVV DQG ZDYHJXLGH SURSDJDWLRQ ORVV ,Q VRPH FDVHV WKH SURSDJDWLRQ ORVV FDQ EH GHWHUPLQHG E\ PHDVXULQJ WKH FRQWUDVW RI WKH )DEU\3HURW SHDNV ZLWK UHVSHFW WR ZDYHOHQJWK 8VLQJ WKH FRQWUDVW WKH UHIOHFWLRQ FRHIILFLHQW RI WKH HQGIDFHV DQG WKH OHQJWK RI WKH ZDYHJXLGH WKH SURSDJDWLRQ ORVV FDQ EH GHWHUPLQHG $QRWKHU ZD\ WR H[WUDFW MXVW WKH FRXSOLQJ ORVV LV WKH FXWEDFN PHWKRG 7KLV LV GRQH E\ PHDVXULQJ WKH WRWDO LQVHUWLRQ ORVV RI WKH VDPSOH FXWWLQJ D VHFWLRQ RII WR PDNH LW VKRUWHU DQG UHPHDVXULQJ WKH ORVV 7KH SURSDJDWLRQ ORVV LV GHWHUPLQHG DV WKH GLIIHUHQFH EHWZHHQ WKH WZR 7KLV ZDV WKH PHWKRG XVHG LQ WKLV ZRUN 7KH VDPSOH ZDV SROLVKHG YHU\ ZHOO ERWK WLPHV DQG YHU\ FDUHIXO PHDVXUHPHQWV ZHUH PDGH XVLQJ DQ LQGH[ PDWFKLQJ IOXLG WR DFKLHYH FRQVLVWHQW FRXSOLQJ HOLPLQDWLQJ WKH )DEU\3HURW LQWHUIHUHQFH EHWZHHQ WKH ILEHU DQG WKH GHYLFH /RVV 5HVXOWV /RVV PHDVXUHPHQWV ZHUH SHUIRUPHG RQ ZDYHJXLGHV IDEULFDWHG RQ WKH ] VXUIDFH RI D /L1E&! VDPSOH WKDW ZDV SURWRQ H[FKDQJHG LQ S\URSKRVSKRULF DFLG DW r & IRU PLQXWHV DQG DQQHDOHG IRU KRXUV DW r& ,QLWLDOO\ WKH VDPSOH ZDV FP ORQJ DQG WKHQ ZDV FXW EDFN WR FP DIWHU WKH ILUVW VHW RI ORVV PHDVXUHPHQWV ZDV PDGH 7KH

PAGE 140

)LJXUH /RVV PHDVXUHPHQWV RI FXW $3(/L1E ZDYHJXLGHV SURWRQ H[FKDQJHG LQ S\URSKRVSKRULF DFLG DW r& IRU PLQXWHV DQG DQQHDOHG IRU KRXUV DW r& IRU WZR VDPSOH OHQJWKV WRWDO LQVHUWLRQ ORVV IRU HDFK VDPSOH OHQJWK LV VKRZQ LQ ILJXUH 7KH UHVXOWV VKRZ WKDW WKH SURSDJDWLRQ ORVV LV FRPSDUDEOH WR WKH PHDVXUHPHQW HUURU DERXW G%FPf 7R GHWHUPLQH WKH HIIHFW RI WKH VLOLFRQ RYHUOD\ RQ WKH SURSDJDWLRQ ORVV RI WKH ZDYHJn XLGH PHDVXUHPHQWV RI WKH VDPH VHW RI ZDYHJXLGHV ZHUH FRQGXFWHG DIWHU VXFFHVVLYH GHSRVLWLRQV RI VLOLFRQ )LUVW ƒ ZDV GHSRVLWHG 7KHQ ƒ ZDV DGGHG IRU D WRWDO RI ƒ DQG WKHQ ƒ ZDV DJDLQ DGGHG IRU D WRWDO RI XQ 7KH UHVXOWV RI WKH ILUVW WZR DUH VKRZQ DORQJ ZLWK WKH SUHYLRXV PHDVXUHPHQWV ZLWKRXW WKH RYHUOD\ LQ ILJXUH 7KH ORVV RI WKH ZDYHJXLGHV ZLWK XS WR ƒ DUH VKRZQ WR H[KLELW ORZHU ORVV WKDQ WKH ZDYHJXLGHV ZLWKRXW VLOLFRQ 7KLV UHVXOW GRHV QRW QHFHVVDULO\ PHDQ WKDW WKH SURSDJDWLRQ ORVV KDV EHFRPH ORZHU /RZHU FRXSOLQJ ORVV RU EHWWHU ILEHU DOLJQPHQW FRXOG KDYH FRQWULEXWHG WR WKLV VPDOO GHFUHDVH LQ ORVV ,W GRHV PHDQ WKDW WKH WKHVH WKLFNQHVVHV RI VLOLFRQ FRQWULEXWH YHU\ OLWWOH WR WKH ORVV ,Q FRQWUDVW WKH ORVV PHDVXUHPHQWV RI WKH ZDYHJXLGHV ZLWK D [P VLOLFRQ RYHUOD\ JDYH TXLWH GLIIHUHQW UHVXOWV 7KH $3(/L1E ZDYHJXLGH PDGH IURP D P ZLGH PDVN RSHQLQJ H[KLELWHG DERXW O2G% ORVV 7KH H[SODQDWLRQ LV VLPSOH 7KH EXON ORVV RI

PAGE 141

)LJXUH /RVV PHDVXUHPHQWV RI FXW $3(/L1E ZDYHJXLGHV SURWRQ H[FKDQJHG LQ S\URSKRVSKRULF DFLG DW r& IRU PLQXWHV DQG DQQHDOHG IRU KRXUV DW r& IRU WKUHH WKLFNQHVVHV RI VLOLFRQ QRQH ƒ DQG ƒ WKH HEHDP GHSRVLWHG VLOLFRQ LV YHU\ KLJK FRPSDUHG WR /L1E 7KLV ODUJH WKLFNQHVV LPf JXLGHV D PRUH VLJQLILFDQW SRUWLRQ RI WKH RSWLFDO PRGH DQG WKH ORVV LQFUHDVHV DV D UHVXOW 7KLV UHVXOW IXUWKHU VXSSRUWV WKH FODLP WKDW KDV EHHQ PDGH VHYHUDO WLPHV WKURXJKn RXW WKLV GLVVHUWDWLRQ WKDW D VLJQLILFDQWO\ WKLFN VLOLFRQ RYHUOD\ OHVV WKDQ a XQf GRHV QRW QHFHVVDULO\ DGYHUVHO\ DIIHFW WKH RSWLFDO ILHOG RI WKH HPEHGGHG /L1E FKDQQHO ZDYHJXLGH 7KLV UHVXOW LV QRW VXUSULVLQJ LQ OLJKW RI WKH DUJXPHQW WKDW ZDV PDGH LQ VHFWLRQ 6HFWLRQ YHULILHG WKDW DQ RYHUOD\ WKLFN HQRXJK WPf WR VXSSRUW D SODQDU JXLGHG PRGH LQ WKH LQGHSHQGHQW VLOLFRQ OD\HU GLG QRW DIIHFW WKH PRGH ILHOG SURILOHV RI WKH FKDQQHO ZDYHJXLGHV HQRXJK WR EH PHDVXUHG 1RZ ZH KDYH VKRZQ WKDW VLOLFRQ RYHUOD\V WKLFN HQRXJK WR VXSSRUW PXOWLSOH PRGHV LQGHSHQGHQW RI WKH HPEHGGHG FKDQQHO GR QRW DGYHUVHO\ DIIHFW WKH SURSDJDWLRQ ORVV 7KHVH UHVXOWV DUH YHU\ HQFRXUDJLQJ IRU WKH SXUSRVH RI XVLQJ WKLV RYHUOD\ IRU PDNn LQJ ORZORVV FRUUXJDWHG ZDYHJXLGHV *LYHQ WKDW VLOLFRQ LV YHU\ HDVLO\ HWFKHG LW LV

PAGE 142

W 3UHVVXUH )LJXUH 6FKHPDWLF GLDJUDP RI WKH SULVP FRXSOHU FRQFHLYDEOH WKDW D ORZORVV FRUUXJDWHG ZDYHJXLGH FDQ EH PDGH IURP WKLV ZDYHJXLGH JHRPHWU\ 0RGH ,QGH[ 0HDVXUHPHQW 3ULVP &RXSOHU 7HFKQLTXH 7KH SULVP FRXSOHU KDV EHHQ D IXQGDPHQWDO WRRO IRU FKDUDFWHUL]LQJ ZDYHJXLGHV IRU RYHU WZR GHFDGHV >@ )LJXUH VKRZV D GLDJUDP RI WKH VHWXS XVHG LQ WKLV ZRUN 7KH SULQFLSOH RI WKH SULVP FRXSOHU LV TXLWH VLPSOH ,W FDQ EH H[SODLQHG LQ WKH VDPH ZD\ DV 6QHOOfV ODZ HTXDWLRQ f ,W ZDV DUJXHG WKDW LI WKH WDQJHQWLDO ILHOGV DORQJ D ERXQGDU\ DUH WR EH FRQWLQXRXV IRU DOO WLPH WKH FRPSRQHQWV RI WKH SURSDJDWLRQ FRQVWDQWV LQ WKH GLUHFWLRQ RI WKH ERXQGDU\ PXVW EH HTXDO DFURVV WKDW ERXQGDU\ &RXSOLQJ LV PD[LPL]HG ZKHQ WZR FRQGLWLRQV DUH VDWLVILHG 7KH KRUL]RQWDO FRPSRQHQWV RI WKH SURSDJDWLRQ FRQVWDQWV DUH HTXDO SKDVH PDWFKn LQJ FRQGLWLRQf

PAGE 143

7KH VSDFLQJ EHWZHHQ WKH SULVP DQG WKH ZDYHJXLGH LV VPDOO RI WKH RUGHU RI $f 7KH ILUVW UHTXLUHPHQW LV VDWLVILHG E\ 1 QS VLQ f ZKHUH 1 LV WKH PRGH LQGH[ RI WKH ZDYHJXLGH DQG QS LV WKH UHIUDFWLYH LQGH[ RI WKH SULVP 7KHUHIRUH QS PXVW EH ODUJHU WKDQ 1 IRU D UHDO DQJOH DQG WKXV D WUDQVn YHUVH SURSDJDWLQJ ZDYHf WR H[LVW 7KH VHFRQG FRQGLWLRQ LV VDWLVILHG E\ FODPSLQJ WKH VXEVWUDWH WLJKWO\ DJDLQVW WKH SULVP FUHDWLQJ D WKLQ ILOP RI DLU EHWZHHQ WKHP 8VLQJ VLPSOH JHRPHWU\ DQG 6QHOOfV ODZ DJDLQ DW WKH SULVPDLU ERXQGDU\ ZH ILQG WKDW 1 QS VLQ ‘ O VLQ L D VLQ 9 QY f ZKHUH LV WKH H[LW RU LQFLGHQWf DQJOH RI WKH OLJKW IURP WKH SULVP 5HVXOWV IURP WKLV PHWKRG DUH SUHVHQWHG QH[W 3ULVP &RXSOHU 5HVXOWV 7KLV VHFWLRQ XVHV WKH PHWKRG MXVW GHVFULEHG WR PHDVXUH WKH PRGH LQGLFHV RI $3(/L1E ZDYHJXLGHV ZLWKRXW VLOLFRQ RYHUOD\V DQG WKRVH ZLWK RYHUOD\V RI GLIIHUHQW WKLFNQHVVHV $ UXWLOH SULVP ZLWK D UHIUDFWLYH LQGH[ RI DW $ DQG DW $ DQG DQ DQJOH D r ZDV XVHG IRU WKH PHDVXUHPHQWV 7KH VDPSOH ZDV FODPSHG WLJKWO\ DJDLQVW WKH SULVP DQG OLJKW IURP DQ RSWLFDO ILEHU ZDV HIILFLHQWO\ FRXSOHG LQWR WKH ZDYHJXLGH XQGHU WHVW 7KH PRGH LQGLFHV RI WKH LQGLYLGXDO ZDYHJXLGHV ZDV FDOFXODWHG XVLQJ HTXDWLRQ ZLWK WKH PHDVXUHG DQJOHV RI WKH OLJKW H[LWLQJ WKH SULVP 7KH PHDVXUHG UHVXOWV ILJXUH f H[KLELW VPDOO LQFUHDVHV LQ WKH PRGH LQGH[ ZLWK VLOLFRQ WKLFNQHVV 2QFH DJDLQ WKH H[SHULPHQWDO GDWD VXSSRUW WKH FODLP WKDW D WKLFN VLOLFRQ RYHUOD\ RQ $3(/L1E FKDQQHO ZDYHJXLGHV KDUGO\ DIIHFWV WKH ZDYHJXLGH FKDUn DFWHULVWLFV +HUH LW LV VKRZQ WR LQFUHDVH WKH PRGH LQGH[ RQO\ VOLJKWO\ 7KH DYHUDJH

PAGE 144

)LJXUH 0HDVXUHPHQWV RI WKH PRGH LQGH[ RI $3(/L1E&! ZDYHJXLGHV ZLWK VLOLFRQ RYHUOD\V RI GLIIHUHQW WKLFNQHVVHV LQFUHDVH LQ WKH PRGH LQGH[ EHWZHHQ D ZDYHJXLGH ZLWK ƒ RI VLOLFRQ DQG RQH ZLWK QR VLOLFRQ LV $1 [ :KHQ FRPSDULQJ WKLV UHVXOW WR WKH DSSUR[LPDWH FDOFXODWLRQV IURP WKH VSHFWUDO LQGH[ PHWKRG VHFWLRQ ILJXUH f ZH ILQG JRRG DJUHHPHQW RQO\ IRU VPDOO VLOLFRQ WKLFNQHVVHV [Pf 7KLV LV EHFDXVH WKH VSHFWUDO LQGH[ PHWKRG LV RQO\ DFFXUDWH ZKHQ WKH ILHOG LQ WKH KLJKLQGH[ ULGJH LV VPDOO )RU D VXIILFLHQWO\ WKLFN VLOLFRQ ULGJH WKH VSHFWUDO LQGH[ PHWKRG EUHDNV GRZQ EHFDXVH OLNH WKH HIIHFWLYH LQGH[ PHWKRG LW XVHV VHSDUDWLRQ RI YDULDEOHV WR VROYH IRU WKH ILHOG LQ WKH ULGJH UHJLRQ &RQVHTXHQWO\ LW SUHGLFWV D VKDUS ULVH LQ WKH PRGH LQGH[ ZKHQ WKH WKLFNQHVV RI WKH VLOLFRQ LV ODUJH HQRXJK WR VXSSRUW D SODQDU PRGH 7KHVH H[SHULPHQWDO UHVXOWV LQGLFDWH WKDW WKH PRGH LQGH[ GRHV QRW ULVH VKDUSO\ LQ WKH ORZORVV UHJLRQ RI VLOLFRQ WKLFNQHVV EHORZ XQ

PAGE 145

6XPPDU\ ,Q WKLV FKDSWHU WKH FKDUDFWHULVWLFV RI WKH QHZ ZDYHJXLGH JHRPHWU\ ZHUH HVWDEn OLVKHG H[SHULPHQWDOO\ :DYHJXLGHV IRUPHG LQ $3(/L1E&! ZLWK FRQVLGHUDEO\ WKLFN RYHUOD\V RI VLOLFRQ ZHUH VKRZQ WR KDYH YHU\ VLPLODU SURSHUWLHV DV WKRVH ZLWKRXW WKH RYHUOD\V 7KLV FUHDWHV DQ LGHDO VLWXDWLRQ IRU PDNLQJ KLJK UHIOHFWLRQ '%5 FRUUXJDWHG ZDYHJXLGHV EHFDXVH WKH ZDYHJXLGHV DUH YHU\ ORZ ORVV DQG WKH ILHOG SURILOH LV QRW PHDn VXUDEO\ DIIHFWHG E\ WKH RYHUOD\ 7KH VPDOO FKDQJHV LQ WKH PRGH LQGH[ IURP GLIIHUHQW WKLFNQHVVHV RI VLOLFRQ DUH PHDVXUDEOH 7KLV GHSHQGHQFH LV VXIILFLHQW WR PDNH D KLJK UHIOHFWLRQ FRUUXJDWHG ZDYHJXLGH &KDSWHU ZLOO SUHVHQW WKH UHVXOWV RI FRUUXJDWHG ZDYHJXLGH GHYLFHV XVLQJ WKLV WHFKQRORJ\

PAGE 146

&+$37(5 (;3(5,0(17$/ 5(68/76 2) *5$7,1* ),/7(56 ,1 /L1E &KDSWHU VKRZHG YHU\ JRRG WKHRUHWLFDO UHVXOWV RI :'0 ILOWHU GHYLFHV IURP ORZ ORVV KLJKUHIOHFWLRQ FRUUXJDWHG ZDYHJXLGHV ZLWK GLHOHFWULF PLUURUV GHSRVLWHG RQ WKH HQGIDFHV &KDSWHU SURSRVHG D QHZ ZDYHJXLGH JHRPHWU\ ZLWK FKDUDFWHULVWLFV SDUWLFXn ODUO\ IDYRUDEOH WR PDNLQJ JRRG FRUUXJDWHG ZDYHJXLGHV 7KH GHWDLOV RI WKH IDEULFDWLRQ SURFHVVHV ZHUH JLYHQ LQ FKDSWHU &KDSWHU SUHVHQWHG DVWRXQGLQJ UHVXOWV RI WKLV QHZ JHRPHWU\ LQ $3(/L1E ZDYHJXLGHV ZLWK WKLFN VLOLFRQ RYHUOD\V 7KLV FKDSWHU HVWDEOLVKHV WKH IDFW WKDW WKH WHFKQRORJ\ LV LQGHHG YHU\ SURPLVLQJ IRU JUDWLQJ GHYLFHV )LUVW UHIOHFWLRQ DQG WUDQVPLVVLRQ UHVXOWV RI ILUVWRUGHU '%5 FRUUXJDWHG ZDYHJXLGHV LQ WKUHH W\SHV RI ZDYHJXLGHV $3(/L7D $3(/L1E DQG 7L/L1Ef ZLOO EH SUHVHQWHG 7KHQ UHVXOWV RI $6)3 ILOWHUV VLPLODU WR WKH RQH SURSRVHG LQ FKDSWHU ZLOO EH SUHVHQWHG IROORZHG E\ D GLVFXVVLRQ RI WKH VDPH :DYHJXLGH *UDWLQJ 5HVXOWV 7KLV VHFWLRQ SUHVHQWV UHVXOWV IURP ILYH RI RXU '%5 FRUUXJDWHG ZDYHJXLGH VDPSOHV 7KHVH ZHUH VHOHFWHG EHFDXVH HDFK H[HPSOLILHV XQLTXH FKDUDFWHULVWLFV WKH UHVXOWV RI WKH ILUVW DWWHPSWV LQ $3(/L7D $3(/L1E DQG 7L/L1E DQG WZR RI WKH EHVW UHVXOWV DFKLHYHG WR GDWHf§RQH UHSUHVHQWLQJ WKH EHVW PDWFK WR WKHRU\ DQG WKH RWKHU UHSUHVHQWLQJ WKH KLJKHVW UHIOHFWLRQ PHDVXUHG 7DEOH JLYHV WKH SURFHVVLQJ GHWDLOV DQG VXPPDUL]HV VRPH RI WKH UHVXOWV

PAGE 147

'%5 '%5 '%5 '%5 '%5 6XEVWUDWH ] /L7D&! /L1E2D /L1E2D r /L1E2D /L1E2D 3URSDJDWLRQ \ \ \ \ \ ([FKDQJH 7LPH7HPS r& PLQ r& PLQ 7L 'LIIXVHG ƒ 7L r& KU r& PLQ r& PLQ $QQHDO 7LPH7HPS r& PLQ r& KU r& KU r & KU 6L 7KLFNQHVV VHH WH[W ƒ ƒ ƒ (WFK 'HSWK VHH WH[W QP QP , 3HULRG aQP QP QP QP QP /HQJWK aPP aPP aPP PP PP 3HULRGV a a a 6LQJOH 0RGH [P [P 0DVN :LGWK RI %HVW 5HVXOW P [P PL O4ILP XQ 3HDN 5HIOHFWLRQ b b $1 [ a [ a ):+0 ƒ $ ƒ &HQWHU $ QP OQP QP QP QP 7DEOH 3URFHVV SDUDPHWHUV RI VHOHFWHG '%5 FRUUXJDWHG ZDYHJXLGHV VDPSOHV 6RPH DGGLWLRQDO LQIRUPDWLRQUHVXOWV DUH VXPPDUL]HG EHORZ WKH GRXEOH OLQH

PAGE 148

7KH )LUVW 6DPSOH $3(U/L7D2V 7KH VXFFHVV RI WKLV QHZ WHFKQRORJ\ LV H[HPSOLILHG E\ WKH IDFW WKDW ZH REWDLQHG JRRG UHVXOWV ZLWK WKH YHU\ ILUVW VDPSOH IDEULFDWHG $ VDPSOH RI /L7D&! ZLWK DQQHDOHG SURWRQ H[FKDQJHG FKDQQHO ZDYHJXLGHV DOUHDG\ IDEULFDWHG RQ WKH VXUIDFH ZDV VHOHFWHG IRU WKH ILUVW GHPRQVWUDWLRQ VHH WDEOH '%5f $W SUHVHQW VLQFH RQO\ YHU\ ULJRURXV QXPHULFDO PHWKRGV DUH DEOH WR DFFXUDWHO\ SUHGLFW WKH FKDUDFWHULVWLFV RI WKHVH FRUUXJDWHG ZDYHJXLGH FKDUDFWHULVWLFV WKH SUREOHP ZDV DGGUHVVHG H[SHULPHQWDOO\ )LUVW ƒ RI VLOLFRQ ZDV GHSRVLWHG E\ HEHDP RQ WKH VXUIDFH RI WKH $3(/L7D&! VDPSOH $ ILUVWRUGHU JUDWLQJ SDWWHUQ RI SKRWRUHVLVW ZDV SURGXFHG E\ KRORJUDSK\ RQ WKH VXUIDFH XVLQJ WKH SURFHVV GHILQHG LQ VHFWLRQ WR VHUYH DV DQ HWFK EDUULHU 7KH JUDWLQJ ZDV HWFKHG E\ 5,( DSSUR[LPDWHO\ ƒ GHHS WKH SKRWRUHVLVW ZDV WKHQ UHPRYHG DQG WKH WUDQVPLVVLRQ FKDUDFWHULVWLFV PHDVXUHG 9HU\ OLWWOH ZDYHOHQJWK GHSHQGHQFH DQG OLWWOH FKDQJH LQ WKH WUDQVPLVVLRQ ZHUH REVHUYHG DV FRPSDUHG WR WKH ZDYHJXLGHV EHIRUH DGGLQJ VLOLFRQ 7KHUHIRUH ZH FRQFOXGHG WKDW WKLFNHU VLOLFRQ ZDV QHFHVVDU\ WR SHUWXUE WKH ZDYHJXLGH PRGH PRUH 7KLV SUREOHP ZDV UHFWLILHG TXLFNO\ ZLWKRXW HWFKLQJ WKH VLOLFRQ RII UHGHSRVLWLQJ D QHZ OD\HU RI VLOLFRQ DQG IDEULFDWLQJ D QHZ JUDWLQJ E\ GHSRVLWLQJ VLOLFRQ RQ WRS RI WKH ZKROH VWUXFWXUH 7KH TXDOLW\ RI WKH JUDWLQJ LV H[SHFWHG WR GHFUHDVH E\ GRLQJ WKLV EXW WKH SURFHGXUH LV DGHTXDWH IRU TXLFN RSWLPL]DWLRQ RI WKH VLOLFRQ WKLFNQHVV ƒ RI VLOLFRQ ZDV GHSRVLWHG RQ WRS RI WKH RULJLQDO JUDWLQJ $ ODUJHU GHFUHDVH LQ WUDQVPLVVLRQ DW WKH H[SHFWHG UHIOHFWLRQ ZDYHOHQJWK ZDV REVHUYHG 6XFFHVVLYH GHSRVLWLRQV RI ƒ ƒ DQG ƒ ZHUH PDGH ZLWK WKH UHVXOWV FRQWLQXLQJ WR LPSURYH HDFK WLPH H[FHSW DIWHU WKH ODVW GHSRVLWLRQ 7KH RSWLPXP UHVXOWV ZHUH UHJDLQHG E\ HWFKLQJ ƒ EDFN RII RI WKH ZKROH VWUXFWXUH E\ 5,( )LJXUH VKRZV WKH ILQDO UHVXOWV RI D XQ ZLGH ZDYHJXLGH

PAGE 149

)LJXUH 7UDQVPLVVLRQ VSHFWUD RI D LP ZLGH $3(/L7D ZDYHJXLGH RQ WKH ILUVW '%5 FRUUXJDWHG ZDYHJXLGH VDPSOH '%5 f IDEULFDWHG ZLWK WKH KLJKLQGH[ RYHUOD\ WHFKQRORJ\ 2QO\ WKH WUDQVPLVVLRQ VSHFWUD IRU WKLV VDPSOH ZDV PHDVXUHG EHFDXVH WKH SRODUn L]DWLRQ PDLQWDLQLQJ ILEHU FRXSOHU ZDV QRW DYDLODEOH DW WKDW WLPH 7KH EURDG VWRSEDQG DQG YHU\ ORZ WUDQVPLVVLRQ LQ WKH VWRSEDQG LV LQGLFDWLYH RI D YHU\ JRRG JUDWLQJ FRXn SOLQJ WR WKH UHYHUVH SURSDJDWLQJ PRGH $V H[SHFWHG WKH RYHUDOO WUDQVPLVVLRQ RQ WKH VKRUW ZDYHOHQJWK VLGH RI WKH VWRSEDQG LV ORZHU WKDQ RQ WKH RWKHU VLGH 7KLV LV EHFDXVH WKH JUDWLQJ FDQ FRXSOH WKH OLJKW LQWR VXEVWUDWH UDGLDWLRQ PRGHV DW ZDYHOHQJWKV MXVW EHORZ WKH VWRSEDQG 7KHUH VKRXOG EH QR RXWFRXSOLQJ RI OLJKW IURP WKH ZDYHJXLGH DERYH WKH VWRSEDQG EHFDXVH LI WKH JXLGHG PRGH H[KLELWV WKH ODUJHVW SURSDJDWLRQ FRQVWDQW QR RWKHU PRGHV FDQ VDWLVI\ WKH SKDVH UHTXLUHPHQWV 7KH )LUVW $3(U/L1E2r 6DPSOH 7KH ILUVW $3(/L1E 6DPSOH '%5 LQ WDEOH f H[KLELWHG VHHPLQJO\ EHWWHU UHVXOWV ILJXUH f $ VWRSEDQG ZLWK DERXW D QP ZLGWK LV VKRZQ FHQWHUHG DERXW $ QP ,I WKLV ZHUH GXH WR UHIOHFWLRQ LQWR WKH EDFNZDUGWUDYHOLQJ ZDYHJXLGH PRGH LW ZRXOG LPSO\ WKDW WKH VLOLFRQ RYHUOD\ FUHDWHG D PRGH LQGH[ VKLIW RI $1 [ ,Q DGGLWLRQ DV LW ZDV MXVW GLVFXVVHG WKH ODUJH GURS LQ WUDQVPLVVLRQ VKRXOG

PAGE 150

)LJXUH 7UDQVPLVVLRQ VSHFWUD RI DQ PL ZDYHJXLGH RQ WKH ILUVW $3(/L1E '%5 FRUUXJDWHG ZDYHJXLGH VDPSOH '%5 f QRW EH FDXVHG E\ FRXSOLQJ WR UDGLDWLRQ PRGHV EHFDXVH WKH\ FDQQRW PHHW WKH SKDVH UHTXLUHPHQWV ZLWK WKH ILUVW RUGHU JUDWLQJ 7KHUHIRUH RQH PLJKW EH LQFOLQHG WR EHOLHYH WKDW WKLV LV GXH WR UHIOHFWLRQ LQWR WKH UHYHUVHWUDYHOLQJ JXLGHG PRGH +RZHYHU WKLV ZDV ODWHU SURYHQ QRW WR EH WKH FDVH E\ WKH PHDVXUHPHQW RI WKH UHIOHFWLRQ XVLQJ D SRODUL]DWLRQ PDLQWDLQLQJ ILEHU FRXSOHU 7KHUH ZDV YHU\ OLWWOH UHIOHFWLRQ PHDVXUHG RYHU WKLV ZDYHOHQJWK UDQJH EXW WKHUH ZDV D ODUJH UHIOHFWLRQ SHDN DW $ OPf§WKH ORFDWLRQ RI WKH QDUURZ SHDN WR WKH OHIW RI WKH ZLGH WUDQVPLVVLRQ VWRSEDQG LQ ILJXUH 7R MXVWLI\ WKLV VHHPLQJO\ FRQWUDGLFWRU\ UHVXOW ZH UHFDOO WKDW WKH VROXWLRQ RI WKH PRGH LQGH[ RI WKH SODQDU ZDYHJXLGH FDQ EH IRXQG H[DFWO\ VHH VHFWLRQ f )LJn XUH VKRZV WKH UHVXOW 7KH SODQDU VLOLFRQ ILOP FDQ VXSSRUW JXLGHG PRGHV ZKHQ LWV WKLFNQHVV LV JUHDWHU WKDQ PL 7KLV LV DERXW WKH VDPH WKLFNQHVV DV WKH UHPDLQLQJ VLOLFRQ ILOP DIWHU HWFKLQJ WKH JUDWLQJ )RU VLOLFRQ WKLFNQHVVHV VOLJKWO\ DERYH PL ILJXUH VKRZV WKDW WKH PRGH LQGH[ RI WKH SODQDU ZDYHJXLGH EHFRPHV ODUJHU WKDQ WKH PHDVXUHG PRGH LQGH[ RI WKH FKDQQHO ZDYHJXLGH FRPSDUH ZLWK WKH PHDVXUHG UHVXOW LQ ILJXUH f 1RZ RXWFRXSOLQJ RI WKH /L1E&! FKDQQHO JXLGHG ZDYH E\ WKH ILUVW RUGHU FRUUXJDWHG ZDYHJXLGH LV SRVVLEOH DW ZDYHOHQJWKV ORQJHU WKDQ WKRVH RI WKH

PAGE 151

)LJXUH ([DFW VROXWLRQ RI WKH PRGH LQGH[ RI WKH ILUVW WKUHH PRGHV RI D SODQDU ZDYHJXLGH ZLWK D FODGGLQJ LQGH[ RI D ILOP LQGH[ RI VLOLFRQf DQG D VXEVWUDWH LQGH[ RI IRU YDU\LQJ ILOP WKLFNQHVVHV DW D ZDYHOHQJWK RI QP UHIOHFWLRQ EDQG 6LQFH WKH JHRPHWU\ RI WKH JUDWLQJ GRHV QRW DOORZ VXIILFLHQW RIID[LV PRPHQWXP WUDQVIHU WR WKH PDWHULDO FRXSOLQJ LV OLPLWHG WR D VPDOO EDQG RI DQJOHV DQG WKXV ZDYHOHQJWKV DURXQG WKH UHYHUVH GLUHFWLRQ VHH ILJXUH f :LWK RWKHU FRUn UXJDWHG ZDYHJXLGH WHFKQRORJLHV ZKHUH WKHUH DUH QR KLJKLQGH[ UDGLDWLRQ PRGHV D ILUVW RUGHU JUDWLQJ FDQ RQO\ FRXSOH OLJKW LQWR EDFNZDUGWUDYHOLQJ UDGLDWLRQ PRGHV DW ZDYHOHQJWKV EHORZ WKH UHIOHFWLRQ EDQG 7KH PHDVXUHPHQWV LQ VHFWLRQ WKH H[DFW SODQDU ZDYHJXLGH WKHRU\ ILJXUH f DQG WKH UHVXOWV RI ILJXUH FRQFOXVLYHO\ SURYH WKDW WKH KLJKLQGH[ RYHUOD\ SURYLGHV D SODQDU ZDYHJXLGH WKDW KDV PRGH LQGLFHV IDU DERYH WKH PRGH LQGLFHV RI WKH FKDQQHO JXLGHG PRGHV 7KLV FRQWUDGLFWV SRSXODU EHOLHI WKDW UDGLDWLRQ PRGHV PXVW KDYH ORZHU PRGH LQGLFHV WKDQ JXLGHG PRGHV 7R VXPPDUL]H WKH WUDQVPLVVLRQ FKDUDFWHULVWLFV LQ ILJXUH FDQ EH XQGHUVWRRG DQG DUH FRPSOHWHO\ H[SODLQHG DV IROORZV

PAGE 152

%DFN5HIOHFWHG &KDQQHO *XLGHG :DYH %DFN5HIOHFWHG 5DGLDWLRQ ,QWR 3ODQDU :DYHJXLGH )LJXUH 7KH JUDWLQJ QRW RQO\ FDXVHV FRXSOLQJ EHWZHHQ WKH IRUZDUG DQG UHYHUVH JXLGHG PRGHV EXW DOVR EHWZHHQ WKH IRUZDUG JXLGHG PRGH DQG UHYHUVH UDGLDWLRQ PRGHV 7KH SODQDU KLJKLQGH[ RYHUOD\ DOORZV IRU RQHGLPHQVLRQDO UDGLDWLRQ ZLWK PRGH LQGLFHV DERYH WKRVH RI WKH FKDQQHO ZDYHJXLGH f 7KH QDUURZ VWRSEDQG DW $ OQP LV FDXVHG E\ UHIOHFWLRQ LQWR WKH EDFNZDUG WUDYHOLQJ JXLGHG PRGH 7KLV UHIOHFWLRQ FDQ EH GHWHFWHG XVLQJ WKH PHDVXUHPHQW VHWXS GHVFULEHG LQ VHFWLRQ f 7KH GHFUHDVH LQ WUDQVPLVVLRQ IRU $ OQP LV FDXVHG E\ FRXSOLQJ LQWR WKH VXEVWUDWH UDGLDWLRQ PRGHV $V WKH ZDYHOHQJWK FRQWLQXHV WR GHFUHDVH WKH WUDQVPLVVLRQ LQFUHDVHV EHFDXVH WKH FRXSOLQJ LQWR UDGLDWLRQ DW ODUJHU RIID[LV DQJOHV DQG WKH JUDWLQJ JHRPHWU\ LV VXFK WKDW LW GRHV QRW DOORZ IRU HQRXJK WUDQVYHUVH PRPHQWXP WUDQVIHU EHWZHHQ WKH PDWHULDO DQG WKH ZDYH f 7KH ZLGH WUDQVPLVVLRQ VWRSEDQG FHQWHUHG DURXQG $ QP LV FDXVHG E\ JUDWLQJFRXSOLQJ EHWZHHQ WKH IRUZDUG FKDQQHOJXLGHG PRGH DQG UHYHUVH SODQDU JXLGHG PRGHV 7KLV RFFXUV RYHU D VPDOO EDQG RI DQJOHV WKXV ZDYHOHQJWKVf ZKHUH WKH WUDQVYHUVH PRPHQWXP LV VPDOO 7KH KLJK DEVRUSWLRQ LQ WKH VLOLFRQ VHH DSSHQGL[ $f SUHYHQWV WKLV IURP EHLQJ GHWHFWHG ZKHQ PHDVXULQJ EDFNUHIOHFWLRQ LQ WKH ILEHU

PAGE 153

)LJXUH 7UDQVPLVVLRQ VSHFWUD RI WKH 70 PRGH RI D LUQ ZDYHJXLGH RQ WKH ILUVW 7L/L1E '%5 FRUUXJDWHG ZDYHJXLGH VDPSOH '%5 f 7KH )LUVW 7K/L1E&5 6DPSOH 7LWDQLXP LQGLIIXVHG /L1E ZDYHJXLGHV SUHVHQW DQ DGGLWLRQDO FRPSOH[LW\ WR PDNn LQJ JUDWLQJV 7KH LQGLIIXVLRQ SURFHVV FUHDWHV VZHOOLQJ VR WKDW WKH ZDYHJXLGHV KDYH ULGJHV DERXW ƒ KLJK 7KH WKLQ SKRWRUHVLVW OD\HU QHHGHG IRU WKH JUDWLQJ PDVN DOVR DERXW ƒ WKLFNf GRHV QRW VSUHDG HYHQO\ DV D UHVXOW &RQVHTXHQWO\ WKH WRSV RI WKH ULGJHV KDYH WKLQQHU UHVLVW 'HVSLWH WKHVH GLIILFXOWLHV D JUDWLQJ ZDV PDGH RQ D WLWDQLXP LQGLIIXVHG VDPSOH )LJXUH VKRZV WKH UHVXOW $ YHU\ VWURQJ UHIOHFWLRQ SHDN LV REVHUYHG DW $ QP $JDLQ DV ZLWK WKH SUHYLRXV VDPSOH D ODUJH WUDQVPLVVLRQ VWRSEDQG LV IRXQG DW ZDYHOHQJWKV ORQJHU WKDQ WKH UHIOHFWLRQ ZDYHOHQJWK 7LWDQLXP LQGLIIXVHG ZDYHJXLGHV VXSSRUW ERWK 7( DQG 70 PRGHV ZLWK YHU\ GLIn IHUHQW SURSDJDWLRQ FRQVWDQWV 7KXV WKLV GHYLFH WHFKQRORJ\ FDQ DOVR EH XVHG WR VHUYH DV D SRODUL]HU ,Q WKLV VSHFLILF GHYLFH WKH 7( PRGH LV H[SHFWHG WR EH UHIOHFWHG E\ WKH JUDWLQJ DURXQG $ QP ZKLFK ZDV RXWVLGH WKH WXQDELOLW\ UDQJH RI RXU ODVHUf ,Q WKH 70 VWRSEDQG WKH 7( ZDYH LV QRW DIIHFWHG 7KH RSSRVLWH VLWXDWLRQ LV H[SHFWHG WR WDNH SODFH DW WKH 7( VWRSEDQG 7KHVH UHVXOWV GHPRQVWUDWH G% H[WLQFWLRQ EHWZHHQ

PAGE 154

:DYHOHQJWK QPf )LJXUH 7UDQVPLVVLRQ VSHFWUD RI D SP ZDYHJXLGH RQ D '%5 FRUUXJDWHG ZDYHJn XLGH VDPSOH ZLWK D VKRUWHU SHULRG $IWHU WKHVH PHDVXUHPHQWV WKH VLOLFRQ JUDWLQJ ZDV UHPRYHG DQG D QHZ RQH IDEULFDWHG RQ WKH VDPSOH '%5 f WKH 7( DQG 70 PRGHV EXW KLJKHU H[WLQFWLRQ PD\ EH DFKLHYHG E\ RSWLPL]LQJ VHYHUDO SDUDPHWHUV G% RXWFRXSOLQJ LV VKRZQ LQ ILJXUH f 6KRUW 3HULRG '%5 &RUUXJDWHG :DYHJXLGH )LJXUH VKRZV WKH WUDQVPLVVLRQ VSHFWUD RI D '%5 FRUUXJDWHG ZDYHJXLGH ZLWK D SHULRG RI QP QRW OLVWHG LQ WDEOH f ,W H[KLELWHG D ):+0 RI ƒ DW D FHQWHU ZDYHOHQJWK RI OQP 7KH VLOLFRQ JUDWLQJ ZDV WKHQ HWFKHG RII DQG D QHZ JUDWLQJ ZDV IRUPHG RQ WKH VXUIDFH OLVWHG DV '%5 LQ WDEOH f 7KH %HVW 5HIOHFWLRQ 0HDVXUHPHQWV ,Q WKLV VHFWLRQ ZH SUHVHQW WKH EHVW UHIOHFWLRQ PHDVXUHPHQWV DFKLHYHG LQ WKLV ZRUN )LJXUH VKRZV WKH EHVW PDWFK EHWZHHQ DQ H[SHULPHQWDO GHYLFH DQG WKHRU\ (TXDn WLRQ FDQ EH PDQLSXODWHG WR JLYH 1O 0 n-a5 f 1K ?_ A 95f 8VLQJ WKH PHDVXUHG YDOXH RI 5 DQG WKH QXPEHU RI SHULRGV IDEULFDWHG RQ WKH VDPSOH ZLWKLQ DERXW f LQ HTXDWLRQ ZH ILQG WKDW $1 f§ 1+ f§ 1/ [ IRU

PAGE 155

)LJXUH 5HIOHFWLRQ VSHFWUD RI D UP ZDYHJXLGH RQ DQ $3(/L1E '%5 FRUUXn JDWHG ZDYHJXLGH VDPSOH '%5 f PRGH LQGLFHV RI DERXW 7KLV YDOXH ZDV XVHG IRU WKH FDOFXODWLRQ LQ ILJXUH $ VTXDUH JUDWLQJ ZDV DVVXPHG 7KH FDOFXODWLRQ VKRZV DQ H[FHOOHQW PDWFK ZLWK WKH PHDVXUHG ):+0 7KLV LQGLFDWHV WKDW JUDWLQJ FKLUS DQG ILOP WKLFNQHVV XQLIRUPLW\ DUH QRW D SUREOHP 7KH UHIOHFWLRQ UHVXOWV IRU D KLJKO\ UHIOHFWLQJ VWUXFWXUH '%5 f DIWHU FRUUHFWLQJ IRU D G% PRGH PLVPDWFK ORVV DW HDFK HQGIDFH DUH VKRZQ LQ ILJXUH IRU D LUQ ZDYHJXLGH 7KLV ZDYHJXLGH H[KLELWV DQ b UHIOHFWLRQ DQG DJDLQ WKH H[SHULPHQWDO UHVXOWV DUH LQ JRRG DJUHHPHQW ZLWK WKHRU\ 7KH WKHRUHWLFDO FDOFXODWLRQV VKRZQ LQ WKH ILJXUH XVHG WKH VDPH QXPEHU RI SHULRGV WKDW LV ZLWKLQ DERXW f $1 [ $ QP DQG D GXW\ F\FOH )LJXUH VKRZV DQ 6(0 SLFWXUH RI WKH VLOLFRQ JUDWLQJ RYHU WKH $3(/L1E ZDYHJXLGH 7KHVH KLJK UHIOHFWLRQ PHDVXUHPHQWV UHSUHVHQW DQ DGYDQFHPHQW LQ WKH VWDWHRI WKHDUW IRU '%5 FRUUXJDWHG ZDYHJXLGHV LQ WKLV PDWHULDO V\VWHP 7KLV LPSURYHPHQW LV DWWULEXWHG WR WKH LPSURYHG $1 DFKLHYHG E\ WKH QHZ WHFKQRORJ\ SURSRVHG LQ FKDSWHU DQG GHPRQVWUDWHG IRU WKH ILUVW WLPH LQ FKDSWHU 6HFWLRQ SUHVHQWV D GLVFXVVLRQ RQ WKH IXUWKHU LPSURYHPHQW RI WKHVH UHVXOWV

PAGE 156

)LJXUH &DOFXODWHG DQG PHDVXUHG UHIOHFWLRQ DQG WUDQVPLVVLRQ RI D '%5 FRUUXJDWHG ZDYHJXLGH ZLWK a SHULRGV $1 [ $ QP DQG D GXW\ F\FOH '%5 f )LJXUH 6(0 SLFWXUH RI D JUDWLQJ RYHU DQ $3(/L1E ZDYHJXLGH

PAGE 157

$6)3 $6)3 6XEVWUDWH ] /L1E2V ] /L1E2V 3URSDJDWLRQ \ \ ([FKDQJH r& r& 7LPH7HPS PLQ PLQ $QQHDO r & r& 7LPH7HPS KU KU 6L 7KLFNQHVV ƒ ƒ *UDW 3HULRG QP QP *UDWLQJ (WFK 'HSWK QP QP *UDWLQJ PP PP /HQJWK 0 0 &DYLW\ /HQJWK PP PP 7DEOH 3URFHVV SDUDPHWHUV RI H[SHULPHQWDO $6)3 GHYLFHV $6)3 )LOWHU 5HVXOWV 7KLV VHFWLRQ UHSRUWV UHVXOWV RI WKH ILUVW $6)3 ILOWHUV :H EHOLHYH WKLV LV WKH ILUVW UHDOL]DWLRQ RI $6)3 ILOWHU FRQFHSW LQ DQ\ PDWHULDO V\VWHP 7DEOH VXPPDUL]HV WKH IDEULFDWLRQ SDUDPHWHUV RI WKH GHYLFHV 'HYLFH $6)3 LV WKH ORQJHU KDOI RI D VDPSOH WKDW ZDV FXW LQWR WZR SLHFHV DIWHU WKH JUDWLQJ ZDV IRUPHG 'HYLFH '%5 LV WKH RWKHU KDOI $6)3 LV WKH VDPH VDPSOH DV '%5 UHSRUWHG LQ VHFWLRQ DIWHU IXUWKHU SURFHVVLQJ 5HVXOWV RI $6)3 5HVXOWV %\ %XWW&RXSOLQJ DQ ([WHUQDO 0LUURU 7KHVH ILUVW UHVXOWV FDPH IURP D VDPSOH ZLWK DQ LQIHULRU JUDWLQJV WKDW H[KLELWHG KLJK ORVV )XUWKHUPRUH GHVLJQ SDUDPHWHUV IRU WKH JUDWLQJ KDYH QRW EHHQ RSWLPL]HG IRU XVH ZLWK D EXIIHU OD\HU DQG HOHFWURGHV 7KHUHIRUH WR WHPSRUDULO\ DYRLG SXWWLQJ HOHFWURGHV RYHU WKH JUDWLQJ D VRPHZKDW GLIIHUHQW FRQILJXUDWLRQ WKDQ ZKDW ZDV SURSRVHG LQ

PAGE 158

*UDWLQJ /HQJWK PP &DYLW\ /HQJWK PP )LJXUH 6WUXFWXUH RI VDPSOH $6)3 7KH FDYLW\ LV RI VXIILFLHQW OHQJWK WR DGG HOHFWURGHV VHFWLRQ ZDV IDEULFDWHG ,QVWHDG RI KDYLQJ D ]HURFDYLW\ VWUXFWXUH D FDYLW\ RI VXIILFLHQW OHQJWK WR DGG HOHFWURGHV QRW FRYHULQJ WKH JUDWLQJ ZDV DGGHG ILJXUH f 7KH WKHRU\ LQGLFDWHV WKDW WKLV DGGLWLRQDO FDYLW\ OHQJWK UHVXOWV LQ PXOWLSOH SHDNV LQ WKH JUDWLQJ UHIOHFWLRQ EDQG )LJXUH VKRZV WKH UHIOHFWLRQ VSHFWUD RI WKH JUDWLQJ PLUURU EHIRUH DGGLQJ WKH HQGIDFH PLUURU (YHQ ZLWKRXW WKH HQGIDFH PLUURU WKH UHIOHFWLRQ IURP WKH HQGIDFH RI WKH ZDYHJXLGH RQ WKH FDYLW\ VLGH ZDV VXIILFLHQW WR FDXVH VSXULRXV SHDNV LQ WKH UHIOHFWLRQ VSHFWUXP $Q H[WHUQDO GLHOHFWULF PLUURU ZDV EXWWFRXSOHG WR WKH GHYLFH DV VKRZQ LQ ILJn XUH $V H[SHFWHG ILJXUH VKRZV WKDW WKH SHDNV EHFDPH PXFK PRUH SURn QRXQFHG +RZHYHU WKH EURDGEDQG UHIOHFWLRQ ZDV QRW DV KLJK DV H[SHFWHG bf 7KLV LV EHFDXVH RI KLJK EXWWFRXSOLQJ ORVV EHWZHHQ WKH H[WHUQDO PLUURU DQG WKH ZDYHJn XLGH )LJXUH VKRZV WKH PHDVXUHG DQG FDOFXODWHG WUDQVPLVVLRQ RI WKH GHYLFH $6)3 f

PAGE 159

)LJXUH 5HIOHFWLRQ VSHFWUD RI WKH VDPSOH FRQILJXUDWLRQ GHSLFWHG LQ ILJXUH ([WHUQDO %XWW&RXSOHG 0LUURU )LJXUH $Q H[WHUQDO GLHOHFWULF PLUURU ZDV LQGH[ PDWFKHG DQG EXWWFRXSOHG WR WKH GHYLFH RI ILJXUH

PAGE 160

)LJXUH 5HIOHFWLRQ VSHFWUD RI WKH VDPSOH ZLWK DQ H[WHUQDO EXWWFRXSOHG PLUURU DV GHSLFWHG LQ ILJXUH :DYHOHQJWK QPf )LJXUH 0HDVXUHG DQG FDOFXODWHG WUDQVPLVVLRQ RI WKH GHYLFH LQ ILJXUH

PAGE 161

)LJXUH $6)3 DIWHU IDEULFDWLQJ WKH HOHFWURGHV 7XQDEOH &DYLW\ $6)3 5HVXOWV (OHFWURGHV ZHUH IDEULFDWHG RQ WKH VDPH GHYLFH $6)3 f LQ WKH PDQQHU VKRZQ LQ ILJXUH 7KH VLOLFRQ ZDV HWFKHG RII WKH VDPSOH LQ WKH UHJLRQ XQGHU WKH HOHFWURGHV DQG DQ 62 EXIIHU OD\HU ZDV XVHG $V PD\ EH VHHQ LQ ILJXUH WKH WUDQVPLVVLRQ VSHFWUD PD\ EH HOHFWURRSWLFDOO\ VKLIWHG 7KH WZR VHWV RI UHVXOWV IRU 29 DQG 9 ELDV GHPRQVWUDWH WKH UHSURGXFLELOLW\ RI WKH PHDVXUHPHQW 7KH GHYLFH H[KLELWV DQ RQRII UDWLR RI G% DW D ZDYHOHQJWK RI QP &RUUHODWLQJ WKH UHVXOWV ZLWK WKHRU\ LQGLFDWHV WKDW D PRGH LQGH[ VKLIW RI [ a ZDV FUHDWHG ZLWK WKH ELDV RI 9 7KHVH UHVXOWV DUH FRPSDUDEOH WR WKRVH RI D VLPLODU GHYLFH PDGH LQ D PDWHULDO V\VWHP WKDW LV HDVLHU WR PDNH D JUDWLQJ LQ > @ 7KH HIILFLHQF\ FDQ LQ JHQHUDO EH LPSURYHG E\ RSWLPL]LQJ WKH HOHFWURRSWLF LQWHUDFWLRQ DQG PDNLQJ VXUH WKH FU\VWDO QRQOLQHDULW\ XVHG IRU WKH OLQHDU HOHFWURRSWLF HIIHFWf LV FRPSOHWHO\ UHFRYHUHG E\ DQQHDOLQJ $6)3 )LOWHU 5HVXOWV ZLWK (QGIDFH'HSRVLWHG '%5 0LUURU RQ $6)3 )LQDOO\ D GLHOHFWULF PLUURU ZDV GHSRVLWHG GLUHFWO\ RQ WKH HQGIDFH RI D GHYLFH DV VKRZQ LQ ILJXUH )LJXUH VKRZV WKDW WKH PLUURU GHSRVLWHG GLUHFWO\ RQWR

PAGE 162

)LJXUH 7ZR VHWV RI PHDVXUHG UHVXOWV IRU 29 DQG 9 IRU WKH GHYLFH LQ ILJXUH )LJXUH $ GLHOHFWULF PLUURU ZDV GHSRVLWHG RQ WKH HQG RI D GHYLFH DV VKRZQ

PAGE 163

:DYHOHQJWK QPf )LJXUH &DOFXODWHG DQG PHDVXUHG UHIOHFWLRQ VSHFWUD IRU WKH GHYLFH LQ ILJXUH WKH HQGIDFH H[KLELWHG D PXFK KLJKHU EURDGEDQG UHIOHFWLRQ EDFN LQWR WKH ZDYHJXLGH WKDQ WKDW ZKLFK ZDV DFKLHYHG ZLWK WKH H[WHUQDO PLUURU ILJXUH f +RZHYHU WKH SURFHVVLQJ VWHSV XVHG WR IDEULFDWH WKH HQGIDFH PLUURU FDXVHG D YLVLEOH KD]H WR GHYHORS RQ WKH JUDWLQJ 7KLV ILOP LQFUHDVHG WKH ORVV RI WKH GHYLFH GUDPDWLFDOO\ 1R HOHFWURn RSWLF WXQLQJ ZDV DWWHPSWHG ZLWK WKLV VDPSOH EHFDXVH WKH WUDQVPLVVLRQ VSHFWUD ZHUH QRW VLJQLILFDQWO\ EHWWHU WKDQ ZKDW ZH KDG DOUHDG\ DFKLHYHG LQ ILJXUH 3URVSHFWV IRU ,PSURYHPHQW $OWKRXJK WKH UHVXOWV SUHVHQWHG LQ VHFWLRQV DQG UHSUHVHQW DQ DGYDQFHPHQW LQ WKH VWDWHRIWKHDUW IRU '%5 FRUUXJDWHG ZDYHJXLGHV LQ WKLV PDWHULDO V\VWHP IXUWKHU LPSURYHPHQWV PXVW EH PDGH LI D XVDEOH GHYLFH VXFK DV WKH RQH SURSRVHG LQ VHFWLRQ LV WR EH UHDOL]HG &RUUHFWLRQ RI WKH GHILFLHQFLHV LQ RXU GHYLFH SURFHVVLQJ RIIHUV PXFK KRSH IRU DFFRPSOLVKLQJ WKLV WDVN

PAGE 164

QP .0 ; } )LJXUH 6(0 SLFWXUH RI WKH JUDWLQJ SURILOH SURGXFHG RQ D VLOLFRQ VXEVWUDWH E\ 5,( ,PSURYHPHQW RI *UDWLQJ )DEULFDWLRQ &RQVLGHULQJ WKH FUXGH KRORJUDSK\ VHWXS XVHG GHVFULEHG LQ VHFWLRQ f ILJXUH VKRZV D YHU\ QLFH UHVXOW +RZHYHU E\ WDNLQJ DGGLWLRQDO VWHSV E\ PRGLI\LQJ WKH VHWXS DQG IXUWKHU UHILQLQJ WKH SURFHVV PXFK EHWWHU UHVXOWV FDQ EH H[SHFWHG )LJXUH VKRZV D KLJKO\ PDJQLILHG YLHZ RI DQ 6(0 SLFWXUH RI D JUDWLQJ SURILOH SURGXFHG RQ D VLOLFRQ VXEVWUDWH 7KLV VDPSOH ZDV SUHSDUHG DFFRPSOLVKHG E\ FOHDYLQJ WKH VLOLFRQ VDPSOH DIWHU HWFKLQJ WKH JUDWLQJ DQG UHPRYLQJ DQ\ UHVLGXDO SKRWRUHVLVW ,Q JHQHUDO LW LV PRUH GLIILFXOW WR FOHDYH /L1E&! WKHUHIRUH LW ZDV QRW DWWHPSWHG LQ WKLV ZRUN 7KLV ILJXUH LOOXVWUDWHV WZR GHILFLHQFLHV RI WKH JUDWLQJ LW GRHV QRW KDYH D GXW\ F\FOH DQG WKH SURILOH LV QRW VTXDUH ,Q WKLV FDVH WKH SKRWRUHVLVW ZDV RYHU H[SRVHG ZKHQ SURGXFLQJ WKH JUDWLQJ 3URSHU H[SRVXUH LV H[SHFWHG WR FRUUHFW WKH GXW\ F\FOH ZKLOH D PRGLILHG HWFKLQJ SURFHVV RU WKLFNHU SKRWRUHVLVW PD\ EH XVHIXO WR SURGXFH PRUH VTXDUH JUDWLQJV 7R LOOXVWUDWH WKH HIIHFW RI D VPDOOHU GXW\ F\FOH ILJXUH VKRZV D FDOFXODWLRQ RI WKH UHIOHFWLRQ VSHFWUD IRU D GXW\ F\FOH VWUXFWXUH DQG FRPSDUHV LW WR D FRPSDUDEOH VWUXFWXUH

PAGE 165

)LJXUH &DOFXODWHG UHIOHFWLRQ VSHFWUD RI D '%5 FRUUXJDWHG ZDYHJXLGH ZLWK D GXW\ F\FOH 7KH ORQJLWXGLQDO PRGH LQGH[ SURILOH LQ ILJXUH Df REWDLQHG E\ DVVXPLQJ D OLQHDU UHODWLRQVKLS EHWZHHQ WKH PRGH LQGH[ SURILOH DQG WKH JUDWLQJ SURILOH GHWHUPLQHG IURP WKH 6(0 SKRWRJUDSK RI ILJXUH f ZDV XVHG XVHG IRU WKH FDOFXODWLRQ RI WKH UHIOHFWLRQ VSHFWUD VKRZQ LQ ILJXUH Ef (YHQ WKRXJK WKH EDFN VLGH RI WKH /L1E VXEVWUDWH ZDV ODSSHG DQG EODFNHQHG DQG D VLOLFRQ RYHUOD\ EDFNUHIOHFWLRQV RI WKH DUJRQ ODVHU OLJKW VWLOO FDXVHG H[SRVXUH SUREOHPV ZLWK WKH KRORJUDSK\ SURFHVV 7KLV ZDV SRVVLEOH EHFDXVH WKH VLOLFRQ OD\HU ZDV WKLQ a ƒf )XUWKHUPRUH D QRQXQLIRUP SKRWRUHVLVW WKLFNQHVV ZDV SURGXFHG RQ WKH 6L RYHUOD\ RQ WKH /L1E2V VDPSOH EHFDXVH LW ZDV VSXQ RQ VDPSOHV ZLWK GLPHQVLRQV W\SLFDOO\ OHVV WKDQ FP +LJK HIILFLHQF\ JUDWLQJV ZHUH RQO\ REWDLQHG RQ D VPDOO DUHD RI HDFK VDPSOH DOZD\V OHVV WKDQ PP /DUJH KLJK HIILFLHQF\ JUDWLQJV ZHUH SURGXFHG YHU\ HDVLO\ RQ WKH VLOLFRQ VXEVWUDWHV EHFDXVH SKRWRUHVLVW ZDV VSXQ RQ DQ HQWLUH ZDIHU EHIRUH LW ZDV FOHDYHG LQWR VPDOOHU SLHFHV DQG H[SRVHG 7KLV SURGXFHG YHU\ XQLIRUP SKRWRUHVLVW WKLFNQHVV )LJXUH DOWKRXJK RQ D VLOLFRQ VXEVWUDWH VKRZV ZKDW KDSSHQV WR WKH JUDWLQJ ZKHQ WKH H[SRVXUHSKRWRUHVLVWWKLFNQHVV SDUDPHWHUV

PAGE 166

)LJXUH $ JUDWLQJ ZLWK D FXUYHG ORQJLWXGLQDO PRGH LQGH[ SURILOH Df ZDV XVHG WR FDOFXODWH WKH HIIHFW RI D QRQVTXDUH JUDWLQJ RQ WKH UHIOHFWDQFH VSHFWUD Ef )LJXUH 6(0 SLFWXUH RI DQ HWFKHG JUDWLQJ RQ D VLOLFRQ VXEVWUDWH SURGXFHG E\ XQGHU H[SRVXUH

PAGE 167

)LJXUH 5HIOHFWLRQ VSHFWUD RI D FKLUSHG '%5 FRUUXJDWHG ZDYHJXLGH DUH QRW FRUUHFW 7KLV ZDV WDNHQ IURP DQ DUHD RI D ODUJH VDPSOH WKDW ZDV XQGHU H[SRVHG :DYHJXLGHV ZLWK JUDWLQJV VXFK DV WKHVH ZHUH IRXQG WR H[KLELW KLJKHU ORVV WKDQ WKRVH ZLWK FOHDQ JUDWLQJ OLQHV 3HUKDSV WKH EHVW ZD\ WR VROYH WKHVH SUREOHPV ZRXOG EH WR XVH D WKLFNHU ILOP RI VLOLFRQ a ]Pf WR DEVRUE PRUH RI WKH KRORJUDSK\ ODVHU OLJKW DQG DOVR WR SURFHVV D ZKROH /L1E&! ZDIHU UDWKHU WKDQ VPDOO SLHFHV $V PHQWLRQHG LQ VHFWLRQ WKH JUDWLQJ FKLUS SURGXFHG E\ WKH XQFROOLPDWHG H[n SRVXUH ZDV QPFP WKDW LV WKH JUDWLQJ SHULRG FKDQJHV E\ QP DFURVV DQ DUHD RI WKH VDPSOH FP ORQJ )LJXUH VKRZV D FDOFXODWLRQ RI WKH UHIOHFWDQFH VSHFWUXP IURP D '%5 FRUUXJDWHG ZDYHJXLGH ZLWK WKLV DPRXQW RI FKLUS DV ZHOO DV IRU QPFP :H VHH WKDW WKH FKLUS DOVR GHFUHDVHV WKH PD[LPXP UHIOHFWDQFH 7KH FKLUS PD\ EH UHGXFHG E\ FROOLPDWLQJ WKH KRORJUDSK\ H[SRVXUH EHDPV ,Q DGGLWLRQ WR LPSURYLQJ WKH JUDWLQJ IDEULFDWLRQ DV VXJJHVWHG DERYH WKHUH LV D YDULHW\ RI RWKHU PHWKRGV WR SURGXFH D JUDWLQJ 6HYHUDO JURXSV KDYH GHPRQVWUDWHG PXFK EHWWHU JUDWLQJV XVLQJ PHWKRGV VXFK DV HEHDP DQG [UD\ OLWKRJUDSK\ SKDVH PDVN H[SRVXUH DQG KRORJUDSK\ ZLWK D VKRUWHU ZDYHOHQJWK ODVHU 7KHVH DV ZHOO DV RWKHU PHWKRGV LQFOXGLQJ FRQWDFW JUDWLQJ UHSURGXFWLRQ VKRXOG EH FRQVLGHUHG

PAGE 168

2SWLPL]DWLRQ RI $3(/L1E4T :DYHJXLGHV 7KLV ZRUN GLG QRW LQYROYH D GHWDLOHG VWXG\ RI WKH DQQHDOHG SURWRQ H[FKDQJHG ZDYHJXLGHV 7KH ORVV PHDVXUHPHQWV VHFWLRQ f LQGLFDWHG WKDW WKH SURFHVV XVHG ZDV OHVV WKDQ RSWLPXP EHFDXVH WKH ORZHVW FRXSOLQJ ORVV FDPH IURP D PXOWLPRGH ZDYHJXLGH )XUWKHUPRUH WKH EHVW JUDWLQJ UHVXOWV FDPH IURP WKH ODUJH ZDYHJXLGHV ,W LV QHFHVVDU\ WR LQYHVWLJDWH WKH GHSHQGHQFH RI WKH FRXSOLQJ ORVV SURSDJDWLRQ ORVV DQG JUDWLQJ FRXSOLQJ RQ ZDYHJXLGH ZLGWK DQG DQQHDOHG SURWRQ H[FKDQJH FRQGLWLRQV ,I WKH EHVW JUDWLQJ UHVXOWV FRQWLQXH WR FRPH IURP PXOWLPRGH ZDYHJXLGHV DGLDEDWLF WDSHUV VKRXOG WR EH XVHG WR HQVXUH ILEHU FRXSOLQJ LQWR RQO\ WKH IXQGDPHQWDO PRGH 7KH SURSRVHG WXQDEOH $6)3 ILOWHU UHTXLUHV WKH OLQHDU HOHFWURRSWLF HIIHFW 3URWRQ H[FKDQJH LQ /L1E JUHDWO\ UHGXFHV WKLV HIIHFW EXW LW FDQ EH UHFRYHUHG E\ DQQHDOLQJ WKH VXEVWUDWH 7KH GHSHQGHQFH RI WKH ZDYHJXLGH SURSHUWLHV DORQJ ZLWK WKH UHFRYHU\ RI WKH HOHFWURRSWLF HIIHFW RQ WKH DQQHDOLQJ SDUDPHWHUV QHHGV WR EH GHWHUPLQHG VR WKDW D ODUJH UHIUDFWLYH LQGH[ FKDQJH DQG KHQFH ZLGH WXQLQJ UDQJH LV SRVVLEOH 2SWLPL]DWLRQ RI WKH 6LOLFRQ 7KLFNQHVV 7KH GHSHQGHQFH RI WKH ZDYHJXLGH SDUDPHWHUV RQ VLOLFRQ WKLFNQHVV QHHGV WR EH LQYHVWLJDWHG LQ GHWDLO $ ODUJH $1 ZLWK UHVSHFW WR VLOLFRQ WKLFNQHVV LV GHVLUDEOH EXW WKH ORVV PXVW DOVR EH ORZ 7KH VLOLFRQ RYHUOD\ ZDV VKRZQ WR H[KLELW DOPRVW QR FKDQJH LQ ORVV IRU D QRQFRUUXJDWHG ZDYHJXLGH HYHQ IRU YHU\ WKLFN ILOP WKLFNQHVVHV +RZHYHU WKH HIILFLHQW FRXSOLQJ RI WKH OLJKW LQWR WKH VLOLFRQ SODQDU ZDYHJXLGH PXVW EH DYRLGHG E\ XVLQJ WKLFNQHVVHV WKDW WKH JUDWLQJ FDQQRW FRXSOH LQWR WKH VLOLFRQ PRGH 7KLV GRHV QRW QHFHVVDULO\ LPSO\ WKLQ VLOLFRQ 7KH FKDQQHO ZDYHJXLGH PRGH FDQ RQO\ FRXSOH LQWR WKRVH VLOLFRQ ZDYHJXLGH PRGHV ZLWK PRGH LQGLFHV QHDU WKDW RI WKH FKDQQHO ZDYHJXLGH PRGH 5HIHUULQJ WR ILJXUHV DQG ZH VHH WKDW WKLV RFFXUV RQO\ ZKHQ HDFK RI WKH VLOLFRQ ZDYHJXLGH PRGHV DUH QHDU FXWRII )RU RWKHU WKLFNQHVVHV WKH PRGH LQGLFHV RI

PAGE 169

WKH VLOLFRQ SODQDU ZDYHJXLGH KDYH YHU\ GLIIHUHQW YDOXHV WKDQ WKH PRGH LQGH[ RI WKH FKDQQHO ZDYHJXLGH DQG WKHUHIRUH FDQ QRW FRXSOH 7KLV LV H[HPSOLILHG E\ WKH UHVXOWV LQ ILJXUHV DQG ZKHUH WKH EURDG VWRSEDQG FRUUHVSRQGV WR WKH PDWFKLQJ RI WKH PRGH LQGLFHV RI WKH FKDQQHO ZDYHJXLGH ZLWK WKH VLOLFRQ SODQDU ZDYHJXLGH :H EHOLHYH WKDW WKLFNHU VLOLFRQ ZRXOG KDYH FDXVHG WKLV SHDN WR VKLIW WRZDUGV ORQJHU ZDYHOHQJWKV DQG DQRWKHU ZRXOG IROORZ DV WKH WKLFNQHVV RI WKH VLOLFRQ LV LQFUHDVHG HQRXJK WR VXSSRUW WZR PRGHV $QRWKHU ZD\ WKH FRXSOLQJ WR WKH VLOLFRQ SODQDU ZDYHJXLGH PD\ EH UHGXFHG RU HYHQ HOLPLQDWHG LV E\ HWFKLQJ D VLOLFRQ ULGJH RYHU WKH FKDQQHO ZDYHJXLGH WR PDNH D VLOLFRQJUDWLQJ ULGJH RYHU WKH HPEHGGHG ZDYHJXLGH 7KH RSWLPXP HWFK GHSWK PXVW DOVR EH GHWHUPLQHG 6PDOO HWFK GHSWKV KDYH ORZHU VFDWWHULQJ ORVVHV EXW ODUJH HWFK GHSWKV FUHDWH D ODUJH $1 $Q RSWLPXP LV H[SHFWHG WR H[LVW EHWZHHQ WKHVH WZR 2SWLPL]H 6WUXFWXUH :LWK %XIIHU /DYHU 7KH WXQDEOH $6)3 ILOWHU UHTXLUHV WKH XVH RI HOHFWURGHV )RU AFXW /L1E2V RQH RI WKH HOHFWURGHV PXVW EH SODFHG RQ WRS RI WKH ZDYHJXLGH WR DFKLHYH PD[LPXP RYHUODS EHWZHHQ WKH '& PRGXODWLQJf DQG RSWLFDO HOHFWULF ILHOGV 6LQFH PRVW HOHFWURGHV DEVRUE WKH RSWLFDO PRGH D EXIIHU OD\HU PXVW EH XVHG WR VHSDUDWH LW VXIILFLHQWO\ IURP IURP WKH ZDYHJXLGH 7KH HIIHFW RI WKH EXIIHU OD\HU RQ WKH JUDWLQJ SHUIRUPDQFH QHHGV WR EH LQYHVWLJDWHG VR WKDW WKH VWUXFWXUH FDQ EH RSWLPL]HG IRU XVH ZLWK D EXIIHU OD\HU 6XPPDU\ 7KLV FKDSWHU SUHVHQWHG PDQ\ ILUVW UHVXOWV RI '%5 FRUUXJDWHG ZDYHJXLGHV XVLQJ WKH ZDYHJXLGH JHRPHWU\ SURSRVHG LQ VHFWLRQ DQG GHPRQVWUDWHG LQ FKDSWHU 7KH JUDWLQJV ZHUH LQFRUSRUDWHG LQWR $6)3 ILOWHU GHYLFHV SURSRVHG LQ FKDSWHU f 7KH UHVXOWV RI WKHVH GHYLFHV GHPRQVWUDWHG WKH IHDVLELOLW\ RI WKH $6)3 GHYLFH IRU HOHFWUR RSWLFDOO\ WXQDEOH ZDYHOHQJWK VHOHFWLYH ILOWHUV 7KH UHVXOWV IURP WKH WZR VWUXFWXUHV

PAGE 170

PDGH ZHUH PDWFKHG ZLWK WKHRU\ 7KLV VKRZHG WKDW ORVV LV D SUREOHP LQ WKHVH WHVW VWUXFWXUHV :H EHOLHYH WKDW E\ RSWLPL]LQJ WKH SURFHVV SDUDPHWHUV DQG LPSURYLQJ WKH IDEULFDWLRQ WHFKQLTXHV WKH ORVV FDQ EH GHFUHDVHG E\ DQ RUGHU RI PDJQLWXGH 7KLV LV PRUH WKDQ VXIILFLHQW WR PDNH D XVHIXO $6)3 GHYLFH )RU WKH LQLWLDO PHDVXUHPHQWV RQO\ WUDQVPLVVLRQ PHDVXUHPHQWV FRXOG EH PDGH 7KHVH PHDVXUHPHQWV ZHUH VKRZQ WR EH PLVOHDGLQJ LI LQWHUSUHWHG E\ D FRPPRQ DVn VXPSWLRQ LQ WKH OLWHUDWXUH 5 7 f§ f 7KHVH UHVXOWV ZHUH HYHQ PRUH PLVOHDGLQJ DV WKH\ ZHUH FRQVLVWHQW ZLWK D VLPSOLILHG WKHRU\ 7KDW LV E\ PDNLQJ WKHRUHWLFDO FRPSDULVRQ EHWZHHQ D WZRGLPHQVLRQDO FURVVVHFWLRQ VWUXFWXUH WR D FRPSDUDEOH RQHn GLPHQVLRQDO VWUXFWXUH 6LQFH WKHUH LV QRW DQ DGHTXDWH H[SODQDWLRQ DV WR ZK\ OLJKW FDQ EH FRXSOHG RXW RI D ZDYHJXLGH E\ D ILUVWRUGHU JUDWLQJ DW ZDYHOHQJWKV DERYH WKH UHIOHFWLRQ EDQG WUDQVPLVVLRQ PHDVXUHPHQWV DORQH FRXOG LQGLFDWH WKDW D YHU\ ODUJH PRGH LQGH[ VKLIW LV FDXVHG E\ WKH KLJKLQGH[ RYHUOD\ ZKLFK VKLIWV WKH UHIOHFWLRQ EDQG WR ORQJHU ZDYHOHQJWKV DQG FDXVHV LW WR EHFRPH EURDG 7KLV DVVXPSWLRQ ZDV VKRZQ WR EH ZURQJ ZKHQ UHIOHFWLRQ PHDVXUHPHQWV ZHUH DOVR PDGH 7KH FRUUXJDWHG ZDYHJXLGHV RQO\ UHIOHFWHG OLJKW LQWR WKH UHYHUVHWUDYHOLQJ FKDQQHO JXLGHG PRGH DW ZDYHOHQJWKV YHU\ FORVH WR WKRVH WKDW ZRXOG EH H[SHFWHG LI WKH PRGH LQGH[ ZDV FKDQJHG YHU\ OLWWOH E\ WKH VLOLFRQ RYHUOD\ $ GLVFXVVLRQ RI WKHVH UHVXOWV IROORZHG ,W ZDV VKRZQ WKDW WKH GLVFUHSDQFLHV EHWZHHQ UHVXOWV DQG WKH VLPSOLILHG WKHRU\ ZHUH GXH WR XVLQJ HUURQHRXV DQDORJLHV EHWZHHQ WKH WKHRU\ RI SODQDU ZDYHJXLGHV DQG FKDQQHO ZDYHJXLGHV 0RVW UHVHDUFKHUV XVH SODQDU ZDYHJXLGH WKHRU\ DV D EDVLV RI XQGHUVWDQGLQJ ZDYHJXLGLQJ LQ FKDQQHO ZDYHJXLGHV EHFDXVH VLPSOH UHODWLRQVKLSV ZKLFK DUH WKHRUHWLFDOO\ H[DFWf DUH DYDLODEOH WR GHILQH PRVW DQ\ SRVVLEOH FDVH RI WKH IRUPHU +RZHYHU H[FHSW IRU D IHZ JHRPHWULHV WKDW H[KLELW F\OLQGULFDO V\PPHWU\ VLPSOH UHODWLRQVKLSV IRU FKDQQHO ZDYHJXLGHV GR QRW H[LVW &RQVHTXHQWO\ PRVW QHZ FRQFHSWV DUH JHQHUDWHG ZLWK WKHVH UHODWLRQVKLSV LQ

PAGE 171

PLQG 7KH RULJLQDO LGHDV RI WKLV ZRUN ZHUH IRUPXODWHG LQ WKH VDPH PDQQHU EXW ZKHQ WKH H[SHULPHQWDO UHVXOWV GHILHG WKH SODQDU ZDYHJXLGH WKHRU\ LW KDG WR EH DEDQGRQHG ,Q SDUWLFXODU SODQDU ZDYHJXLGH WKHRU\ SUHGLFWV WKDW WKH IXQGDPHQWDO PRGH RI D VWUXFWXUH KDV WKH KLJKHVW SURSDJDWLRQ FRQVWDQW DQG WKH UDGLDWLRQ PRGHV KDYH ORZHU PRGH LQGH[ WKDQ DOO RI WKH JXLGHG PRGHV 2XU H[SHULPHQWDO UHVXOWV LQ FKDSWHU VKRZHG WKDW D VLOLFRQ RYHUOD\ ZLWK VXIILFLHQW WKLFNQHVV WR VXSSRUW PXOWLSOH JXLGHG SODQDU PRGHV LQFUHDVHG WKH PRGH LQGLFHV RI WKH FKDQQHO ZDYHJXLGHV RQO\ VOLJKWO\ IURP WKHLU RULJLQDO YDOXHV ZLWKRXW WKH RYHUOD\ ([DFW WKHRU\ KRZHYHU LQGLFDWHV WKDW WKH PRGH LQGLFHV RI WKH LQGHSHQGHQWO\ JXLGHG SODQDU PRGHV LQ WKH VLOLFRQ RYHUOD\ DUH PXFK KLJKHU $FWXDOO\ WKH RQO\ WUXO\ JXLGHG PRGHV LQ WKLV VWUXFWXUH DUH LQ WKH FKDQQHO ZDYHJXLGH 7KH LQGHSHQGHQW VLOLFRQ SODQDU ZDYHJXLGH PRGHV DUH RQH GLPHQVLRQ UDGLDWLRQ PRGHV 2XU VWUXFWXUH WKHQ LV RQH WKDW VXSSRUWV JXLGHG PRGHV LQ D FRQWLQXXP RI UDGLDWLRQ PRGHV 7KH UDGLDWLRQ PRGHV KDYH ORQJLWXGLQDO SURSDJDWLRQ FRQVWDQWV WKDW VWDUW IURP ]HUR IRU r RIID[LV SURSDJDWLRQ WR VRPH PD[LPXP YDOXH DERYH WKH JXLGHG PRGH SURSDJDWLRQ FRQVWDQWf 7KH JXLGHG PRGH FDQQRW FRXSOH WR WKH UDGLDWLRQ PRGHV XQOHVV WKHUH LV DQ DSSURSULDWH SHUWXUEDWLRQ WR VDWLVI\ WKH UHTXLUHPHQW RI FRQVHUYDWLRQ RI WUDQVYHUVH PRPHQWXP 7KHVH FRQFHSWV ZHUH H[HPSOLILHG E\ WKH ILUVW H[SHULPHQWDO UHVXOWV LQ FRUUXJDWHG /L1E2D FKDQQHO ZDYHJXLGHV DV WKH JUDWLQJ SURYLGHG D PHDQV IRU WKH JXLGHG FKDQQHO PRGH WR FRXSOH LQWR D QDUURZ EDQG RI SODQDU PRGHV :H EHOLHYH WKLV WR EH WKH ILUVW WLPH WKLV SKHQRPHQD KDV EHHQ REVHUYHG DQG H[n SODLQHG ,W KDV D QHJDWLYH LPSDFW RQ IDEULFDWLQJ KLJK UHIOHFWLRQ JUDWLQJV EXW FDQ EH HDVLO\ DYRLGHG E\ XVLQJ D SURSHU WKLFNQHVV RU HWFKLQJ D ULGJH VWUXFWXUH WR HOLPLn QDWH WKH UDGLDWLRQ PRGHV +RZHYHU RWKHU GHYLFHV FDQ EHQHILW IURP WKLV HIIHFW 7KH 7L/L1E GHYLFH DFWV DV D SRODUL]HU ZLWK G% H[WLQFWLRQ UDWLR 7KLV FRXOG SUREn DEO\ EH LPSURYHG *UDWLQJ DVVLVWHG GLUHFWLRQDO FRXSOHUV FDQ DOVR EHQHILW IURP WKLV

PAGE 172

SKHQRPHQD DV WKH\ QHHG QRW EH FORVH WRJHWKHU 7KH ZDYH FDQ WUDYHO LQ WKH SODQDU RYHUOD\ HYHQ FURVV RWKHU ZDYHJXLGHV ZLWKRXW JUDWLQJVf ZLWKRXW FRXSOLQJ DQG FRXSOH LQWR D ZDYHJXLGH ZLWK D VLPLODU JUDWLQJ VRPHZKHUH HOVH RQ WKH VDPSOH 7KHVH QHZ REVHUYDWLRQV KDYH JRQH EH\RQG WKH RULJLQDO LQWHQWLRQ RI WKLV UHVHDUFK HIIRUWf§PDNLQJ KLJK UHIOHFWLRQ FRUUXJDWHG ZDYHJXLGH GHYLFHV \HW WKH UHVXOWV RI WKLV FKDSWHU DUH IDYRUDEOH WRZDUGV RXU RULJLQDO SXUSRVH DV ZHOO :LWK PLQLPDO GHVLJQ RSWLPL]DWLRQ RQH RI RXU SUHOLPLQDU\ FRUUXJDWHG ZDYHJXLGHV H[KLELWHG WKH KLJKHVW UHIOHFWLRQ IURP D FRUUXJDWHG /L1E FKDQQHO ZDYHJXLGH WR GDWH 2QO\ YHU\ UHFHQWO\ KDV FRPSDUDEOH KLJK UHIOHFWLRQ UHVXOWV EHHQ UHSRUWHG >@ EXW WKRVH GHYLFHV UHTXLUHG DQ RUGHU RI PDJQLWXGH ORQJHU OHQJWK DQG GLG QRW PDWFK WKH WKHRU\ ZHOO 2XU UHVXOWV VKRZ ZHOOPDWFKHG SUHGLFWDEOH FKDUDFWHULVWLFV

PAGE 173

&+$37(5 &21&/86,216 $1' )8785( :25. &RQFOXVLRQV 7KLV UHVHDUFK ZRUN KDV UHVXOWHG LQ D QHZ ZDYHJXLGH WHFKQRORJ\ ZLWK VLJQLILFDQW SRn WHQWLDO IRU ,2& GHYLFHV 7KH DGYDQFHPHQW RI ,2& GHYLFHV LV RI SDUDPRXQW LPSRUWDQFH DV WKH\ FRQWLQXH WR ILQG QLFKH DSSOLFDWLRQV LQ WKH HYROXWLRQ RI RSWLFDO FRPPXQLFDWLRQ V\VWHPV WRZDUGV KLJK EDQGZLGWK :'0 QHWZRUNV 7KH SUHOLPLQDU\ UHVXOWV SUHVHQWHG KHUH DUH HQFRXUDJLQJ :H H[SHFW D TXLFN DFFHSWDQFH RI WKH FRQFHSW E\ WKH VFLHQWLILF FRPPXQLW\ RQ DFFRXQW RI LWV GHVLUDEOH EHQHILWV WKDW KDYH EHHQ EDGO\ QHHGHG IRU D ORQJ WLPH DV ZHOO DV WKH PDQ\ QHZ GHVLJQ RSSRUWXQLWLHV LW RIIHUV 3DUWLFXODU HPSKDVLV LV SODFHG RQ WKH /L1E&! PDWHULDO V\VWHP DV LW DSSHDUV WR EH WKH PRVW SURPLVLQJ PDWHULDO V\VWHP IRU ,2& ZDYHJXLGH GHYLFHV LQ WKH LPPHGLDWH IXWXUH +RZHYHU WKH WHFKQLTXH LV DPHQDEOH WR PRVW RWKHU SODQDUSURFHVVHG ZDYHJXLGH WHFKQRORJLHV DV ZHOO 5HVXOWV VKRZ DQ DGYDQFHPHQW RI WKH VWDWHRIWKHDUW LQ FRUUXJDWHG ZDYHJXLGH WHFKn QRORJ\ 7KLV WHFKQRORJ\ LV XVHG WR GHPRQVWUDWH D QHZ WXQDEOH ZDYHOHQJWK VHOHFWLYH ILOWHU EDVHG RQ DQ DV\PPHWULF )DEU\3HURW $6)3f FRQFHSW IRU WKH ILUVW WLPH 7KH IROORZLQJ LV D OLVW RI WKH PDMRU DFFRPSOLVKPHQWV $ QRYHO ZDYHJXLGH JHRPHWU\ WKDW FRQVLVWV RI D EXULHG FKDQQHO ZDYHJXLGH ZLWK DQ RYHUOD\ RI KLJK UHIUDFWLYH LQGH[ PDWHULDO LV SURSRVHG VHFWLRQV DQG f WKDW LV XVHG WR HQKDQFH '%5 FRUUXJDWHG ZDYHJXLGHV 6WULNLQJ FKDUDFWHULVWLFV RI WKH QHZ ZDYHJXLGH JHRPHWU\ DUH REVHUYHG XVLQJ D VLOLFRQ RYHUOD\ RQ FXW $3(/L1E FKDQQHO ZDYHJXLGHV :KHQ FRPSDUHG WR

PAGE 174

ZDYHJXLGHV ZLWKRXW WKH RYHUOD\V WKH QHZ JHRPHWU\ H[KLELWV YHU\ ORZ ORVV DQG OLWWOH FKDQJH WR WKH RSWLFDO ILHOG SURILOH HYHQ ZLWK VLOLFRQ WKLFNQHVVHV FDSDEOH RI VXSSRUWLQJ PXOWLSOH SODQDU ZDYHJXLGH PRGHV 7KDW LV PRVW RI WKH RSWLFDO SRZHU UHPDLQV LQ WKH /L1E2V 6PDOO GLIIHUHQFHV LQ WKH VLOLFRQ WKLFNQHVV UHVXOW LQ VPDOO EXW VLJQLILFDQW FKDQJHV LQ WKH PRGH LQGH[ FKDSWHU f 6LOLFRQ LV IRXQG WR EH DQ H[FHOOHQW RYHUOD\ PDWHULDO IRU LW IDFLOLWDWHV JUDWLQJ KRORJUDSK\ LW FDQ EH XVHG WR VFUHHQ S\URHOHFWULFDOO\ JHQHUDWHG ERXQG FKDUJHV LW LV HDVLO\ GHSRVLWHG DQG LW LV HDVLO\ HWFKHG ,Q DGGLWLRQ LWV PDWHULDO SURSHUWLHV DUH ZHOO NQRZQ VHFWLRQ f '%5 FRUUXJDWHG ZDYHJXLGHV D[H GHPRQVWUDWHG ZLWK WKH QHZ ZDYHJXLGH JHRPn HWU\ 3UHOLPLQDU\ UHVXOWV H[KLELW WKH KLJKHVW PHDVXUHG UHIOHFWLRQ UHSRUWHG VR IDU bf IURP D VKRUW FKDQQHO '%5 FRUUXJDWHG ZDYHJXLGH PP ORQJf LQ /L1E )XUWKHUPRUH WKH UHVXOWV DUH FRQVLVWHQW ZLWK WKHRU\ VHFWLRQ f $Q $6)3 ILOWHU LV SURSRVHG DQG VKRZQ WR EH XVHIXO DV D WXQDEOH :'0 ZDYHn OHQJWK VHOHFWLYH ILOWHU IRU :'0 VHFWLRQV DQG f ,WV QDUURZ SDVVEDQG ƒf ZLGH VWRSEDQG QPf JRRG H[WLQFWLRQ a f§G%f VKRUW OHQJWK PPf VLPSOH FRQWURO VFKHPH D VLQJOH ELDV FRQWUROOHUf ORZ SRZHU UHTXLUHn PHQW a :f ZLGH WXQLQJ UDQJH FKDQQHOVf DQG VWUDLJKWIRUZDUG IDEULFDn WLRQ SURFHVV ZLWK VWDQGDUG SODQDU SURFHVVLQJ PDNH LW DQ DWWUDFWLYH DOWHUQDWLYH WR H[LVWLQJ GHYLFHV $Q $6)3 WXQDEOH ILOWHU FRPSULVLQJ RI D GLHOHFWULF HQGIDFH PLUURU DQG D FRUUXn JDWHG ZDYHJXLGH PLUURU VHSDUDWHG E\ D VKRUW HOHFWURRSWLFDOO\ WXQDEOH FDYLW\ LV GHPRQVWUDWHG IRU WKH ILUVW WLPH LQ /L1E&! VHFWLRQ f 7KH SUHOLPLQDU\

PAGE 175

UHVXOWV H[KLELW G% H[WLQFWLRQ &RPSDULVRQ ZLWK WKHRU\ VKRZV WKDW ZDYHJXLGH ORVV LV WKH SULPDU\ UHDVRQ IRU QRW DFKLHYLQJ EHWWHU UHVXOWV $OO RI WKH DVSHFWV RI WKLV UHVHDUFK ZRUN VXSSRUW D FRPPRQ WKHPH DV WKH\ UHSUHn VHQW D FRPSOHWH DQG GHWDLOHG VWXG\ DQG GHYHORSPHQW RI D QHZ GHYLFHf§WKH WXQDEOH $6)3 ILOWHU 7KHRU\ LV XVHG WR GHWHUPLQH WKH SHUIRUPDQFH RI WKH GHYLFH YHUVXV WKH SHUIRUPDQFH RI WKH LQGLYLGXDO FRPSRQHQWV *LYHQ WKDW D GHPRQVWUDWLRQ RI D FRUn UXJDWHG ZDYHJXLGH H[KLELWLQJ KLJK HQRXJK UHIOHFWLRQ WR PDNH D XVDEOH GHYLFH LV \HW WR EH UHSRUWHG D QHZ ZDYHJXLGH JHRPHWU\ WKDW FLUFXPYHQWV PDQ\ RI WKH SUREOHPV DVVRFLDWHG ZLWK FRQYHQWLRQDO FRUUXJDWHG ZDYHJXLGHV LV SUHVHQWHG 7KH WKHRUHWLFDO DQG H[SHULPHQWDO LQYHVWLJDWLRQ RI WKH QHZ ZDYHJXLGH JHRPHWU\ VKRZ LW WR EH FRPSOHn PHQWDU\ WR WKH IDEULFDWLRQ RI FRUUXJDWHG ZDYHJXLGHV &RUUXJDWHG ZDYHJXLGHV PDGH ZLWK WKH KLJKLQGH[ RYHUOD\ SURYH WKH FRQFHSW DQG UHSUHVHQW DQ DGYDQFHPHQW LQ WKH VWDWHRIWKHDUW LQ FRUUXJDWHG ZDYHJXLGHV 7KH SURSRVHG GHYLFH LV GHPRQVWUDWHG IRU WKH ILUVW WLPH XVLQJ WKH KLJKLQGH[ RYHUOD\ FRUUXJDWHG ZDYHJXLGHV *LYHQ WKDW WKLV UHVHDUFK HIIRUW UHSUHVHQWV D ILUVWGHPRQVWUDWLRQ WKH UHVXOWV DUH YHU\ JRRG +RZHYHU FRPPHUFLDO V\VWHPV DUH YHU\ GHPDQGLQJ XSRQ GHYLFH FKDUDFWHULVWLFV 6LQFH WKHUH LV QR LQGLFDWLRQ RI D IXQGDPHQWDO OLPLW WR WKH UHIOHFWDQFH RI WKH FRUUXJDWHG ZDYHJXLGH LW LV UHDVRQDEOH WR FRQFOXGH WKDW E\ RSWLPL]LQJ WKH IDEULFDWLRQ SDUDPHWHUV D GHYLFH VXLWDEOH IRU D :'0 FRPPXQLFDWLRQ V\VWHP VKRXOG EH DFKLHYDEOH )XWXUH :RUN 0XFK UHVHDUFK UHPDLQV WR EH GRQH LQ WKH LQYHVWLJDWLRQ RI WKH SURSHUWLHV DQG XVHV RI WKLV QHZ ZDYHJXLGH JHRPHWU\f§PXFK PRUH WKDQ FRXOG EH DFKLHYHG ZLWKLQ WKH VFRSH RI WKLV GLVVHUWDWLRQ $ FRQWLQXHG VWXG\ RI WKH ZDYHJXLGHV WKHPVHOYHV ZLOO JHQHUDWH WKH GDWD QHFHVVDU\ WR GHVLJQ RSWLPXP GHYLFHV 7KLV GDWD ZLOO FHUWDLQO\ EH XVHIXO LQ

PAGE 176

GHWHUPLQLQJ WKH RSWLPXP SDUDPHWHUV IRU '%5 FRUUXJDWHG ZDYHJXLGHV DQG VHUYH DV D EDVLV IRU DGYDQFHG KLJK SHUIRUPDQFH ,2& GHYLFHV 'HWDLOHG 6WXG\ RI :DYHJXLGHV :LWK +LJK,QGH[ 2YHUOD\V $ GHWDLOHG VWXG\ RI KRZ VHYHUDO FKDUDFWHULVWLFV VXFK DV WKH PRGH LQGH[ WKH ILHOG SURILOH DQG WKH SURSDJDWLRQ ORVVf RI WKH KLJKLQGH[ RYHUOD\ ZDYHJXLGH VWUXFWXUH LQ JHQHUDO DUH DIIHFWHG E\ D YDULHW\ RI SDUDPHWHUV DQG IDEULFDWLRQ WHFKQLTXHV LV QHHGHG 7KLV LQIRUPDWLRQ LV XVHIXO WR RSWLPL]H WKH ZDYHJXLGH FKDUDFWHULVWLFV DV WKH\ DSSO\ WR D SDUWLFXODU GHYLFH 7KLV VWXG\ PXVW LQFOXGH WKH GHYHORSPHQW RI QXPHULFDO PHWKRGV WR PRGHO WKLV JHRPHWU\ PRUH DFFXUDWHO\ $ IXOO YHFWRULDO DQDO\VLV XVLQJ WKH ILQLWH HOHn PHQW PHWKRG >@ FDQ EH XVH IRU WKLV SXUSRVH EXW LW ZRXOG EH PRVW KHOSIXO LI DQDO\WLF QRUPDOL]HG H[SUHVVLRQV FDQ EH GHULYHG WR JDLQ TXDOLWDWLYH LQVLJKW DQG DSSUR[LPDWH VROXWLRQV ZKLFK LV XVXDOO\ DOO WKDW LV QHHGHGf 7KH VWXG\ PXVW DOVR LQFOXGH H[SHULn PHQWDO PHDVXUHPHQWV WR YHULI\ WKH WKHRU\ 7KH IROORZLQJ LV D OLVW RI VRPH DUHDV ZRUWK\ RI LQYHVWLJDWLRQ ERWK WKHRUHWLFDOO\ DQG H[SHULPHQWDOO\ $ GHWDLOHG VWXG\ RI WKH GHSHQGHQFH RI WKH PRGH LQGH[ WKH ILHOG SURILOH DQG WKH SURSDJDWLRQ ORVV RQ RYHUOD\ WKLFNQHVV ,Q SDUWLFXODU DFFXUDWH UHVXOWV DUH UHTXLUHG IRU RYHUOD\ WKLFNQHVVHV QHDU WKH SRLQW ZKHUH LW SXOOV WKH RSWLFDO SRZHU RXW RI WKH FKDQQHO ZDYHJXLGH DQG KRZ WKLV LV DIIHFWHG E\ GLIIHUHQW ZDYHJXLGH IDEULFDWLRQ FRQGLWLRQV (IIHFWV WKDW YDULRXV EXIIHU OD\HUV DQG PHWDO FRQWDFWV KDYH RQ WKH KLJKLQGH[ RYHUOD\ ZDYHJXLGHV (IIHFWV RI VLOLFRQ GRSLQJ RQ WKH RYHUOD\ ZDYHJXLGH ORVV ?

PAGE 177

3URSHUWLHV RI ZDYHJXLGHV ZLWK VWULSH RYHUOD\V DV RSSRVHG WR WKH SODQDU RYHUOD\V SUHVHQWHG LQ WKLV ZRUNf 3URSHUWLHV RI RWKHU ZDYHJXLGH W\SHV VXFK DV 7L/L1E DQG GLIIHUHQW RYHUOD\ PDWHULDOV RU GHSRVLWLRQ WHFKQLTXHV 7KHVH VWXGLHV ZLOO KHOS WR HVWDEOLVK UHOLDEOH QXPHULFDO PRGHOV DQG D GDWDEDVH WKDW ZLOO EH KHOSIXO IRU ILQH WXQLQJ WKH FKDUDFWHULVWLFV RI WKH ZDYHJXLGHV IRU WKH YDULRXV GHYLFHV &OHDUO\ LW ZRXOG EH YHU\ WLPH FRQVXPLQJ WR FRQVLGHU HYHU\ FRPELQDWLRQ LQ WKLV PXOWLYDULDWH SUREOHP EXW WKH PRUH WKDW LV NQRZQ WKH EHWWHU LW ZLOO KHOS HQJLQHHUV WR TXLFNO\ GHVLJQ D YDULHW\ RI XVHIXO RSWLPL]HG GHYLFHV 7KLV LV SDUWLFXODUO\ LPSRUWDQW IRU FRPPHUFLDO GHYLFHV DV LW ZLOO GHILQH KRZ WLJKWO\ HDFK SDUDPHWHU PXVW EH FRQWUROOHG LQ WKH IDEULFDWLRQ SURFHVV 2SWLPL]DWLRQ RI *UDWLQJ 3HUIRUPDQFH $ PDMRU LVVXH LQ FRQWLQXHG UHVHDUFK LV WR GHVLJQ EHWWHU FRUUXJDWHG ZDYHJXLGHV IRU KLJKHU UHIOHFWLRQ ,W LV XVXDOO\ GHVLUDEOH WR KDYH YHU\ KLJK UHIOHFWLRQ ZLWK ORZ VLGHOREHV 7KH VLGHOREHV FDQ EH VXSSUHVVHG E\ XVLQJ D JUDWLQJ VWUXFWXUH ZLWK KDUPRQLFV 7KHUH DUH WKUHH EDVLF SDUDPHWHUV WKDW PXVW EH YDULHG IRU HDFK PDWHULDO V\VWHP WR DFKLHYH WKH KLJKHVW UHIOHFWLRQ RYHUOD\ WKLFNQHVV HWFK GHSWK DQG QXPEHU RI JUDWLQJ SHULRGV 7ZR RSSRVLQJ FKDUDFWHULVWLFV UHVXOW ZKHQ RSWLPL]LQJ WKHVH SDUDPHWHUV ZDYHJXLGH ORVV DQG PRGH LQGH[ GLIIHUHQWLDO 7KHUHIRUH WUDGHRIIV H[LVW WKDW ZLOO LQ JHQHUDO EH GLFWDWHG E\ WKH SDUWLFXODU UHTXLUHPHQWV RI HDFK GHYLFH GHVLJQ 7KH LQWHUGHSHQGHQFH RI WKH JUDWLQJ FKDUDFWHULVWLFV RQ WKH IDEULFDWLRQ SDUDPHWHUV PDNH WKH WUDGHRII GHVLJQ UXOHV VRPHZKDW REVFXUH )RU H[DPSOH D ODUJH HWFK GHSWK SURGXFHV D ODUJHU PRGH LQGH[ GLIIHUHQFH WKDW FDQ KHOS WR SURGXFH D KLJKHU UHIOHFWDQFH JUDWLQJ ZLWK D VKRUWHU OHQJWK EXW LW DOVR FDXVHV PRUH UDGLDWLRQ ORVV ZKLFK FRXQWHUDFWV LWV SRWHQWLDO IRU KLJKHU UHIOHFWDQFH 7KHUHIRUH D JRRG VHW RI GHVLJQ JXLGHOLQHV QHHG WR EH GHYHORSHG WR HQDEOH

PAGE 178

HQJLQHHUV WR FXW WKURXJK WKLV REVFXULW\ DQG WR GHVLJQ RSWLPL]HG FRUUXJDWHG ZDYHJXLGH GHYLFHV +LJK 3HUIRUPDQFH ,2&V 7KH LQIRUPDWLRQ JDLQHG E\ VWXG\LQJ WKH IXQGDPHQWDOV RI WKH QHZ ZDYHJXLGH JHRPn HWU\ DQG '%5 JUDWLQJ WHFKQRORJLHV ZLOO HQDEOH UHVHDUFKHUV WR SURGXFH DGYDQFHG ,2& GHYLFHV IRU D EURDG DUUD\ RI DSSOLFDWLRQVf§SDUWLFXODUO\ :'0 V\VWHPV 7KH H[WUHPHO\ VKRUW OHQJWKV PPf RI WKH GHYLFHV GHPRQVWUDWHG LQ WKLV ZRUN DUH TXLWH HQFRXUDJn LQJ DQG EXLOG WR WKH SURPLVH RI LQFUHDVHG SDFNLQJ GHQVLW\ 7KHVH QHZ WHFKQRORJLHV KDYH JUHDW SRWHQWLDO DSSOLFDWLRQV IRU DUUD\V RI WXQDEOH ODVHUV ILOWHUV PRGXODWRUV LQn WHUFRQQHFWLQJ ZDYHJXLGHV DQG RWKHU FRPSRQHQWV RQ D VLQJOH FKLS $ IHZ H[DPSOHV IROORZ $V\PPHWULF 5HVRQDQW 2SWLFDO 'LUHFWLRQDO &RXSOHU 7KH DGYDQWDJH RI WKH 52'& GLVFXVVHG LQ VHFWLRQ RYHU WKH ILOWHU GHPRQn VWUDWHG LQ WKLV ZRUN LV WKDW LW GRHV QRW UHIOHFW WKH XQILOWHUHG ZDYHOHQJWKV EDFN WR WKH VRXUFH EXW LQVWHDG SDVVHV WKHP WR WKH QH[W GHYLFH +RZHYHU LWV QDUURZ VWRSEDQG FRPSDUDEOH WR WKH UHIOHFWLRQ EDQG RI WKH JUDWLQJVf OLPLW LWV XVH DV D :'0 GHYLFH 7KH $6)3 VWUXFWXUH FDQ EH DSSOLHG WR WKH 52'& WR JLYH LW D EURDG VWRSEDQG LQ WKH VDPH ZD\ DV LW GRHV IRU WKH ILOWHU GHPRQVWUDWHG LQ WKLV ZRUN )LJXUH VKRZV D GLDJUDP RI WKH PRGLILHG VWUXFWXUH WKDW H[KLELWV D EURDG VWRSEDQG (UELXP'RSHG ,QWHJUDWHG ')% /DVHUV LQ /L1E2A $GGLQJ JDLQ WR WKH $6)3 ILOWHU GHPRQVWUDWHG LQ WKLV ZRUN FDQ EH XVHG WR PDNH D WXQDEOH ')% ODVHU ILJXUH f (UELXPGRSHG ZDYHJXLGH DPSOLILHUV DQG ODVHUV LQ /L1E KDV EHFRPH D YHU\ KRW WRSLF UHFHQWO\ > @ 5HFHQWO\ WXQDEOH ODVHUV KDYH EHHQ GHPRQVWUDWHG XVLQJ DQ DFRXVWRRSWLFDO GHYLFH >@ DQG D '%5 ODVHU KDV

PAGE 179

)LJXUH &RQFHSWXDO GUDZLQJ RI DQ $6)3 GLUHFWLRQDO FRXSOHU 'LHOHFWULF 0LUURU *UDWLQJ :DYHJXLGH )LJXUH $ WXQDEOH (U/L1E VLQJOH ORQJLWXGLQDO PRGH ODVHU

PAGE 180

)LJXUH $SSOLFDWLRQ RI KLJK LQGH[ RYHUOD\ VWULSV WR UHGXFH UDGLDWLRQ ORVV DW ZDYHJn XLGH EHQGV EHHQ GHPRQVWUDWHG XVLQJ D PP ORQJ JUDWLQJ >@ 7KH KLJKHU UHIOHFWLRQ IURP WKH H[WUHPHO\ VKRUW FRUUXJDWHG ZDYHJXLGHV LQ WKLV ZRUN LV D YHU\ SURPLVLQJ FDQGLGDWH IRU ORZHUWKUHVKROG VLQJOH ORQJLWXGLQDO PRGH ODVHUV LQ (U/L1E 7KLV GHYLFH LV DWWUDFWLYH EHFDXVH LW FDQ EH PRQROLWKLFDOO\ LQWHJUDWHG ZLWK D EURDG DUUD\ RI SDVVLYH HOHPHQWV FDQ EH HDVLO\ WXQHG E\ WKH HOHFWURRSWLF HIIHFW DQG KDV WKH SRWHQWLDO WR SURYLGH DQ LQH[SHQVLYH DOWHUQDWLYH WR VHPLFRQGXFWRU ODVHUV HPLWWLQJ DW ZDYHOHQJWKV RI DERXW $ UP :DYHJXLGH %HQGV 7UDGLWLRQDOO\ PXFK RI WKH UHDO HVWDWH RI DQ ,2& FKLS LV FRQVXPHG E\ EHQGV EHFDXVH RI WKH ODUJH UDGLXV RI FXUYDWXUH UHTXLUHG WR NHHS UDGLDWLRQ ORVVHV ORZ )LJXUH VKRZV KRZ D KLJKLQGH[ RYHUOD\ FRXOG EH XVHG WR KHOS FRQILQH WKH RSWLFDO PRGH WKURXJK D EHQG RI VPDOO UDGLXV RI FXUYDWXUH ,Q VLPSOH WHUPV E\ ORDGLQJ WKH VLGH RI WKH ZDYHJXLGH RQ WKH VLGH WRZDUGV WKH FHQWHU RI FXUYDWXUH LW KHOSV WR SXOO WKH PRGH DZD\ IURP WKH RXWVLGH HGJH RI WKH FXUYH ZKHUH LW LV UDGLDWHG +HDY\ ORDGLQJ LV UHTXLUHG WR \LHOG D UHDVRQDEOH LPSURYHPHQW LQ EHQG ORVVHV

PAGE 181

)LJXUH &RQFHSWXDO GUDZLQJ RI D :'0 0X['HPX[ &KLS $ :'0 0X['HPX[ &KLS $OO RI WKH RSWLFDO FRPSRQHQWV IRU RQH RI WKH VXEVFULEHU QRGHV RI WKH :'0 ULQJ QHWn ZRUN LOOXVWUDWHG LQ ILJXUH H[FHSW IRU WKH SXPS VRXUFH DQG WKH GHWHFWRU FDQ EH IDEn ULFDWHG RQ D VLQJOH FKLS $ FRQFHSWXDO GUDZLQJ RI DQ LQWHJUDWHG :'0 0X['HPX[ FKLS LV VKRZQ LQ ILJXUH 7KH GHYLFH FRQVLVWV RI DQ LQWHJUDWHG ODVHU DQG ZDYHOHQJWK VHOHFWLYH ILOWHU WKDW DUH ERWK WXQDEOH RYHU WKH VDPH ZDYHOHQJWK VSHFWUXP 7KH WXQn DEOH ODVHU LV D VLQJOH ORQJLWXGLQDO PRGH (U/L1E ODVHU SXPSHG E\ DQ LQH[SHQVLYH KLJK SRZHU PXOWLORQJLWXGLQDO PRGH VHPLFRQGXFWRU ODVHU PRXQWHG RQ WKH HQGIDFH RI WKH FKLS ,WV RXWSXW LV PRGXODWHG E\ DQ HOHFWURRSWLFDOO\ FRQWUROOHG ZDYHJXLGH 0DFK =HKQGHU LQWHUIHURPHWHU /LJKW IURP WKH LQSXW ILEHU LV ILOWHUHG DQG VHQW WR WKH GHWHFWRU 7KH XQILOWHUHG OLJKW LV URXWHG WR WKH RXWSXW ILEHU VR LW FDQ EH SDVVHG RQ WR WKH QH[W VXEVFULEHU RQ WKH QHWZRUN 7KH PRGXODWHG OLJKW IURP WKH WXQDEOH ODVHU LH WKH QHZ VLJQDOf LV DOVR URXWHG WR WKH RXWSXW ILEHU

PAGE 182

2WKHU 8VHV IRU WKH 1HZ 7HFKQRORJ\ 7KHUH DUH PDQ\ RWKHU DSSOLFDWLRQV IRU WKH FRQFHSWV GHPRQVWUDWHG LQ WKLV ZRUN WKDW DUH ZRUWK QRWLQJ 6HFRQG KDUPRQLF JHQHUDWLRQ 6+*f XVLQJ D TXDVLSKDVHPDWFKHG /L1E ZDYHJn XLGH LQ D UHVRQDQW VWUXFWXUH > @ 0DWFKLQJ RI 7( DQG 70 PRGH YHORFLWLHV ,QFUHDVLQJ WKH EDQGZLGWK RI WUDYHOLQJZDYH HOHFWURGH PRGXODWRUV E\ GHFUHDVLQJ WKH YHORFLW\ PLVPDWFK EHWZHHQ WKH RSWLFDO DQG 5) ZDYHV > @ 0RGH VKDSLQJ IRU UHGXFHG ILEHUZDYHJXLGH FRXSOLQJ ORVV 9HUWLFDOO\ VWDFNHG ZDYHJXLGH FRXSOHUV *UDWLQJIROGHG GHYLFHV >@ *UDWLQJ DVVLVWHG DV\PPHWULF GLUHFWLRQDO FRXSOHUV > @ 7KLV UHVHDUFK ZRUN LV VR IXQGDPHQWDO WR ZDYHJXLGH WHFKQRORJ\ WKDW LW ERGHV PDQ\ RWKHU XVHV DV ZHOO 7KH XVH RI WKH KLJKLQGH[ RYHUOD\ ZDYHJXLGH DQG JUDWLQJ LQ FRPPHUFLDO ,2& GHYLFHV LV H[SHFWHG WR KHOS JLYH WKHP WKH SHUIRUPDQFH ERRVW WKH\ QHHG WR SURYLGH SUDFWLFDO DOWHUQDWLYHV WR WKH GHYLFHV FXUUHQWO\ XVHG LQ FRPPXQLFDWLRQ V\VWHPV

PAGE 183

$33(1',; $ ',63(56,21 2) 6,/,&21 ,Q DOO RI WKH H[SHULPHQWDO GHPRQVWUDWLRQV RI RYHUOD\ ZDYHJXLGHV LQ WKLV GLVVHUWDn WLRQ VLOLFRQ LV XVHG DV WKH RYHUOD\ PDWHULDO 7KH NQRZOHGJH DQG YHULILFDWLRQ RI LWV RSWLFDO SURSHUWLHV LQ SDUWLFXODU WKH UHDO DQG LPDJLQDU\ FRPSRQHQWV RI WKH UHIUDFn WLYH LQGH[f LV RI SDUDPRXQW LPSRUWDQFH WR VXSSRUW WKH FODLPV DQG PDWFK WKHRU\ WR H[SHULPHQW ,W LV DOVR XVHG DV WKH KLJKUHIUDFWLYHLQGH[ PDWHULDO IRU WKH GLHOHFWULF ZDYHJXLGH HQGIDFH PLUURUV 5HIUDFWLYH LQGH[ GDWD IRU VLQJOH FU\VWDO VLOLFRQ LV ZHOO NQRZQ +RZHYHU VLQFH H EHDP GHSRVLWLRQ UHVXOWV RQO\ LQ DPRUSKRXV ILOPV XVH RI WKH GDWD RI VLQJOH FU\VWDO VLOLFRQ PD\ EH HUURQHRXV ,Q DGGLWLRQ VLOLFRQ LV YHU\ VXVFHSWLEOH WR R[LGDWLRQ GXULQJ WKH GHSRVLWLRQ SURFHVV DV LW HDVLO\ IRUPV PDQ\ R[LGHV 6L2A 7KLV R[LGDWLRQ FDQ GUDVWLn FDOO\ UHGXFH LWV UHIUDFWLYH LQGH[ Q6Lfa Q6L2fa Q6L&!ff§f 7KHUHIRUH LW LV QHFHVVDU\ WR GHWHUPLQH WR ZKDW GHJUHH R[LGDWLRQ LV D SUREOHP LQ RXU VLWXDWLRQ 7KLV DSSHQGL[ GHVFULEHV WKH PHWKRG XVHG WR GHWHUPLQH WKH FRPSOH[ UHIUDFWLYH LQGH[ 7KH UHVXOWV DUH DOVR SUHVHQWHG 6LOLFRQ ILOPV RI NQRZQ WKLFNQHVVHV GHWHUPLQHG E\ D 'HN7DN ,,$ VXUIDFH SURILOHUf ZHUH GHSRVLWHG RQ JODVV PLFURVFRSH VOLGHV DQG WKH WUDQVPLVVLRQ VSHFWUD ZDV PHDVXUH E\ D 3HUNLQ (OPHU /DPEGD VSHFWURSKRWRPHWHU 7KH WKHRU\ RXWOLQHG LQ VHFWLRQ ZDV XVHG WR FDOFXODWH WKH WUDQVPLVVLRQ VSHFWUD RI WKH ILOP RQ D JODVV VOLGH XVLQJ WKH SXEOLVKHG GLVSHUVLRQ GDWD IRU VLQJOH FU\VWDO VLOLFRQ 7KH EDFN VLGH RI WKH VOLGH H[KLELWHG DERXW D b GHFUHDVH LQ WKH WUDQVPLVVLRQ VSHFWUD DQG WKDW LQWHUIDFH ZDV QRW LQFOXGHG DV DQ LQWHUIDFH LQ WKH PXOWLOD\HU WKHRU\ EHFDXVH WKH FRKHUHQFH OHQJWK

PAGE 184

)LJXUH $O 0DWFK EHWZHHQ WKH PHDVXUHG DQG WKHRUHWLFDO WUDQVPLVVLRQ WKURXJK DQ ƒ WKLFN VLOLFRQ ILOP RQ D JODVV PLFURVFRSH VOLGH DIWHU LWHUDWLRQ RI WKH GLVSHUVLRQ FXUYHV RI WKH VSHFWURSKRWRPHWHU LV VKRUWHU WKDQ WKH WKLFNQHVV RI WKH JODVV VOLGH 7R LQFOXGH WKLV HIIHFW LQ WKH FDOFXODWLRQ WKH FDOFXODWHG UHVXOWV ZHUH UHGXFHG E\ b WR PDWFK ZLWK WKH PHDVXUHG UHVXOWV $ PDWFK EHWZHHQ WKH WKHRU\ DQG H[SHULPHQW ZDV IRXQG E\ LWHUDWLRQ FKDQJLQJ WKH GLVSHUVLRQ GDWD XQWLO D ILW ZLWK WKH PHDVXUHG UHVXOWV ZDV REWDLQHG 7KH PDWFKHG FXUYHV DUH VKRZQ LQ ILJXUH $O IRU D VLOLFRQ ILOP ƒ WKLFN 7KLV SORW LQ LWVHOI SURYHV QRWKLQJ VLQFH E\ FKDQJLQJ WKH UHIUDFWLYH LQGH[ DW HDFK ZDYHOHQJWK DOPRVW DQ\ FXUYH FDQ EH SURGXFHG +RZHYHU WKH UHVXOWV PDWFK WKH GLVSHUVLRQ RI VLQJOH FU\VWDO VLOLFRQ YHU\ ZHOO DV VKRZQ LQ ILJXUH $ 7R GHPRQVWUDWH WKH UHSURGXFLELOLW\ RI WKH GHSRVLWLRQ SURFHVV DQRWKHU VLOLFRQ ILOP WKLV WLPH ƒ WKLFN ZDV GHSRVLWHG RQ D JODVV VOLGH DQG WKH WUDQVPLVVLRQ UHVXOWV ZHUH FRPSDUHG ZLWK WKHRU\ XVLQJ WKH GLVSHUVLRQ FXUYHV GHWHUPLQHG IURP WKH ILUVW VDPSOH $ YHU\ JRRG PDWFK ZDV DJDLQ REWDLQHG ILJXUH $f 7KH H[SHULPHQW ZDV UHSHDWHG RQFH PRUH IRU D ƒ WKLFN VLOLFRQ ILOP ILJXUH $f 7KH GLVFUHSDQF\ EHWZHHQ WKH WZR LV EHOLHYHG WR KDYH EHHQ FDXVHG E\ R[LGDWLRQ RI WKH 6L ILOP ZKLFK ZDV FDXVHG E\ HYDSRUDWLQJ 62 LPPHGLDWHO\ SULRU WR WKH 6L HYDSRUDWLRQ

PAGE 185

)LJXUH $ &RPSDULVRQ EHWZHHQ WKH NQRZQ GLVSHUVLRQ FXUYHV RI VLQJOH FU\VWDO VLOLFRQ DQG WKH HEHDP GHSRVLWHG ƒ ILOP :DYHOHQJWK QPf )LJXUH $ 0DWFK EHWZHHQ WKH PHDVXUHG DQG WKHRUHWLFDO WUDQVPLVVLRQ WKURXJK D ƒ WKLFN VLOLFRQ ILOP RQ D JODVV PLFURVFRSH VOLGH XVLQJ WKH HEHDP 6L GLVSHUVLRQ FXUYHV LQ ILJXUH $

PAGE 186

)LJXUH $ 0DWFK EHWZHHQ WKH PHDVXUHG DQG WKHRUHWLFDO WUDQVPLVVLRQ WKURXJK D ƒ WKLFN VLOLFRQ ILOP RQ D JODVV PLFURVFRSH VOLGH XVLQJ WKH HEHDP 6L GLVSHUVLRQ FXUYHV LQ ILJXUH $ 7KH SRRU UHVXOW LV DWWULEXWHG WR R[LGDWLRQ RI WKH 6L ILOP FDXVHG E\ HYDSRUDWLQJ 62 LPPHGLDWHO\ SULRU WR WKH 6L HYDSRUDWLRQ 2XU HEHDP GHSRVLWLRQ V\VWHP LV XVHG IRU GHSRVLWLRQ RI PDQ\ PDWHULDOVf 7KH RWKHU WZR ILOPV ZHUH GHSRVLWHG LQ WKH VDPH V\VWHP EXW WKH 62 ZDV FOHDQHG RII RI WKH JXQ DQG HOHFWURGHV ILUVW 62 LV RQH RI WKH ZRUVW PDWHULDOV WR EH XVHG LQ DQ HEHDP HYDSRUDWLRQ V\VWHP EHFDXVH UHVLGXDO ILOPV RI 62 GHJDV 7KH GHJDVVLQJ SUREOHP LV VR EDG WKDW DUFLQJ EHWZHHQ WKH KLJK YROWDJH HOHFWURGHV LV D FRPPRQ RFFXUUHQFH 6WLOO WKH LQIRUPDWLRQ IURP WKLV VDPSOH LV XVHIXO EHFDXVH ZH ZDQW WR NQRZ KRZ PXFK WKH GLVSHUVLRQ FXUYHV RI VLOLFRQ DUH DIIHFWHG E\ WKH FRQWDPLQDWLRQ 7KH UHVXOW RI UHLWHUDWLQJ WKH GLVSHUVLRQ FXUYHV IRU WKH FRQWDPLQDWHG VDPSOH LV LQFOXGHG ZLWK WKH IRUPHU UHVXOW LQ ILJXUH $ 7KH GLVSHUVLRQ GDWD RI DQ XQFRQWDPLQDWHG HEHDP GHSRVLWHG VLOLFRQ ILOP LV SURYLGHG LQ WDEOH $O IRU FRQYHQLHQFH

PAGE 187

7 e R F R r MJ R R 8 D R 2 V Z 7 i )LJXUH $ &RPSDULVRQ RI WKH GLVSHUVLRQ FXUYHV RI VLQJOH FU\VWDO VLOLFRQ XQFRQWDPn LQDWHG HEHDP GHSRVLWHG VLOLFRQ DQG FRQWDPLQDWHG HEHDP GHSRVLWHG VLOLFRQ :DYHOHQJWK QPf Q N 7DEOH $O 7DEXODWHG GDWD RI WKH GLVSHUVLRQ RI DQ XQFRQWDPLQDWHG HEHDP GHSRVLWHG VLOLFRQ ILOP

PAGE 188

$33(1',; % ',63(56,21 2) /,7+,80 1,2%$7( 7KH GLVSHUVLRQ RI WKH RUGLQDU\ DQG H[WUDRUGLQDU\ UHIUDFWLYH LQGH[ RI /L1E LV JLYHQ LQ WDEOH %O IRU FRQYHQLHQFH

PAGE 189

:DYHOHQJWK QPf QH Q 7DEOH %O 7DEXODWHG GDWD RI WKH GLVSHUVLRQ RI WKH H[WUDRUGLQDU\ DQG RUGLQDU\ UHn IUDFWLYH LQGH[ RI /L1E&!

PAGE 190

5()(5(1&(6 >@ 5 $GDU & + +HQU\ 5 & .LVWOHU DQG 5 ) .D]DULQRY 3RODUL]DWLRQ LQGHSHQn GHQW QDUURZ EDQG %UDJJ UHIOHFWLRQ JUDWLQJV PDGH ZLWK VLOLFDRQVLOLFRQ ZDYHJn XLGHV $SSOLHG 3K\VLFV /HWWHUV f >@ 5 $GDU & + +HQU\ 5 & .LVWOHU 5 ) .D]DULQRY DQG 6 :HLQHU :LGHn EDQG %UDJJ UHIOHFWRUV PDGH ZLWK VLOLFD RQ VLOLFRQ ZDYHJXLGHV $SSOLHG 3K\VLFV /HWWHUV f >@ 5 & $OIHUQHVV / / %XKO 0 5 0DUW\DN 0 'LYLQR & + -R\QHU DQG $ 'HQWDL 1DUURZEDQG *DOQ$V3,Q3 ZDYHJXLGH JUDWLQJIROGHG GLUHFWLRQDO FRXSOHU PXOWLSOH[HUGHPXOWLSOH[HU (OHFWURQLFV /HWWHUV f >@ 5 & $OIHUQHVV & + -R\QHU 0 'LYLQR DQG / / %XKO ,Q*D$V3,Q3 ZDYHJXLGH JUDWLQJ ILOWHU IRU $ LP $SSOLHG 3K\VLFV /HWWHUV >@ 5 & $OIHUQHVV & + -R\QHU 0 'LYLQR 0 5 0DUW\DN DQG / / %XKO 1DUURZEDQG JUDWLQJ UHVRQDWRU ILOWHUV LQ ,Q*D$V3,Q3 ZDYHJXLGHV $Sn SOLHG 3K\VLFV /HWWHUV >@ 5 & $OIHUQHVV 6WHYHQ .RURWN\ DQG (QULTXH $ 0DUFDWLOL 9HORFLW\n PDWFKLQJ WHFKQLTXHV IRU LQWHJUDWHG RSWLFDO WUDYHOLQJ ZDYH VZLWFKPRGXODWRUV ,((( 4XDQWXP (OHFWURQ 4( >@ % $ $WD\D DQG $ 1 2VRYLWVNLL (PLVVLRQ SURSHUWLHV RI JUDGHGLQGH[ FRUn UXJDWHG ZDYHJXLGHV ZLWK D PHWDO RU VHPLFRQGXFWRU FRDWLQJ 6RYLHW -RXUQDO RI 4XDQWXP (OHFWURQLFV f >@ 6WHZDUW $XVWLQ DQG ) 7 6WRQH 7KLQ SHULRGLF VWUXFWXUHV LQ SKRWRUHVLVW )DEULn FDWLRQ DQG H[SHULPHQWDO HYDOXDWLRQ $SSOLHG 2SWLFV f >@ $ %DVX DQG 0 %DOODQW\QH 6HFRQG DQG KLJHURUGHU ZDYHJXLGH JUDWLQJ ILOWHUV 7KHRU\ $SSOLHG 2SWLFV f >@ $ %DVX DQG 0 %DOODQW\QH 6HFRQG DQG KLJHURUGHU ZDYHJXLGH JUDWLQJ ILOWHUV ([SHULPHQW $SSOLHG 2SWLFV f >@ 5 $ %HFNHU &RPSDULVRQ RI JXLGHGZDYH LQWHUIHURPHWULF PRGXODWRU IDEULFDWHG RQ /L1E2V YLD 7L ,QGLIIXVLRQ DQG SURWRQ H[FKDQJH $SSOLHG 3K\VLFV /HWWHUV >@ :LOOLDP %XUQV DQG $ )HQQHU 0LOWRQ 0RGH FRQYHUVLRQ LQ SODQDUGLHOHFWULF VHSDUDWLQJ ZDYHJXLGHV ,((( 4XDQWXP (OHFWURQ 4(OOOf

PAGE 191

>@ ; ) &DR 5 9 5DPDVZDP\ DQG 5DPDNDQW 6ULYDVWDYD &KDUDFWHUL]DWLRQ RI DQQHDOHG SURWRQ H[FKDQJHG /L1E ZDYHJXLGHV IRU QRQOLQHDU IUHTXHQF\ FRQYHUn VLRQ ,((( -RXUQDO RI /LJKWZDYH 7HFKQRORJ\ f >@ $ 5 &KUDSO\Y\ $ + *QDXFN 5 : 7NDFK 5 0 'HURVLHU & 5 *LOHV % 0 1\PDQ $ )HUJXVRQ : 6XOKRII DQG / =\VNLQG 2QHWKLUG WHUn DELWV WUDQVPLVVLRQ WKURXJK NP RI GLVSHUVLRQPDQDJHG ILEHU ,((( 3KRWRQ 7HFKQRO /HWW f >@ ) &ODUN $ & 1XWW . :RQJ 3 5 /D\ERXUQ DQG 5 0 'H /D 5XH &KDUDFWHUL]DWLRQ RI SURWRQH[FKDQJH VODE RSWLFDO ZDYHJXLGHV LQ ]FXW /L1E2V -RXUQDO RI $SSOLHG 3K\VLFV >@ ) : 'DEE\ 0 $ 6DLIL DQG $ .HVWHQEDXP +LJKIUHTXHQF\ FXWRII SHULRGLF GLHOHFWULF ZDYHJXLGHV $SSOLHG 3K\VLFV /HWWHUV f >@ 5 & (QJHU DQG 6 &DVH +LJKIUHTXHQF\ KRORJUDSKLF WUDQVPLVVLRQ JUDWLQJV LQ SKRWRUHVLVW -RXUQDO RI WKH 2SWLFDO 6RFLHW\ RI $PHULFD ff§ >@ $ ) (YDQV +DOO DQG : 3 0DV]DUD 3URSDJDWLRQ ORVV PHDVXUHPHQWV LQ VLOLFRQRQLQVXODWRU RSWLFDO ZDYHJXLGHV IRUPHG E\ WKH ERQGDQGHWFKEDFN SURn FHVV $SSOLHG 3K\VLFV /HWWHUV f >@ & )ODQGHUV + .RJHOQLN 5 9 6FKPLGW DQG & 9 6KDQN *UDWLQJ ILOWHUV IRU WKLQILOP RSWLFDO ZDYHJXLGHV $SSOLHG 3K\VLFV /HWWHUV f >@ : )\QQ DQG : $ 3RZHOO 7KH &XWWLQJ DQG 3ROLVKLQJ RI (OHFWUR2SWLF 0DWHULDOV -RKQ :LOH\ DQG 6RQV 1HZ @ -R\ *HRUJH 3UHSDUDWLRQ RI 7KLQ )LOPV 0DUFHO 'HNNHU ,QF 1HZ $ *KDWDN DQG 7K\DJDUDMDQ 2SWLFDO (OHFWURQLFV &DPEULGJH 8QLYHUVLW\ 3UHVV 1HZ @ 5 *URE 6RFKWLJ %DXPDQQ : 6RKOHU + 6FKW] DQG 5 :LGPHU ,QWHn JUDWHG '%5 ODVHU LQ HUELXPGLIIXVLRQGRSHG /L1E >@ +LURVKL +DJD 0DVD\XNL ,]XWVX DQG 7DGDVL 6XHWD /L1E WUDYHOLQJZDYH OLJKW PRGXODWRUVZLWFK ZLWK DQ HWFKHG JURRYH ,((( 4XDQWXP (OHFWURQ 4( >@ + $ +DXV DQG < /DL 1DUURZEDQG GLVWULEXWHG IHHGEDFN UHIOHFWRU GHVLJQ ,((( -RXUQDO RI /LJKWZDYH 7HFKQRORJ\ >@ + $ +DXV DQG < /DL 1DUURZEDQG RSWLFDO FKDQQHOGURSSLQJ ILOWHU ,((( -RXUQDO RI /LJKWZDYH 7HFKQRORJ\ >@ + $ +DXV DQG < /DL 7KHRU\ RI FDVFDGHG TXDUWHU ZDYH VKLIWHG GLVWULEXWHG IHHGEDFN UHVRQDWRUV ,((( 4XDQWXP (OHFWURQ >@ & + +HQU\ < 6KDQL 5 & .LVWOHU 7 ( -HZHOO 9 3RO 1 $ 2OVVRQ 5 ) .D]DULQRY DQG 2UORZVN\ &RPSRXQG %UDJJ UHIOHFWLRQ ILOWHUV PDGH E\ VSDWLDO IUHTXHQF\ GRXEOLQJ OLWKRJUDSK\ ,((( -RXUQDO RI /LJKWZDYH 7HFKQRORJ\ f

PAGE 192

>@ % +RFNHU DQG : %XUQV 0RGH GLVSHUVLRQ LQ GLIIXVHG FKDQQHO ZDYHJXLGHV E\ WKH HIIHFWLYH LQGH[ PHWKRG $SSOLHG 2SWLFV >@ & 6 +RQJ % 6KHOODQ $ & /LYDQRV $ @ / -DFNHO $ 0 *ODVV ( 3HWHUVRQ & ( 5LFH + 2OVRQ DQG 9HVHOND 3URWRQ H[FKDQJH IRU KLJKLQGH[ ZDYHJXLGHV LQ /L1E2V -RXUQDO RI $SSOLHG 3K\VLFV >@ / -DFNHO & ( 5LFH DQG 9HVHOND 3URWRQ H[FKDQJH IRU KLJKLQGH[ ZDYHJXLGHV LQ /L1E $SSOLHG 3K\VLFV /HWWHUV >@ 5XGROSK ) .D]DULQRY &KDUOHV + +HQU\ DQG 1 $QGHUV 2OVVRQ 1DUURZEDQG UHVRQDQW RSWLFDO UHIOHFWRUV DQG UHVRQDQW RSWLFDO WUDQVIRUPHUV IRU ODVHU VWDELOL]Dn WLRQ DQG ZDYHOHQJWK GLYLVLRQ PXOWLSOH[LQJ ,((( 4XDQWXP (OHFWURQ 4( >@ 6HL+HH .LP DQG &OLIWRQ )RQVWDG 7XQDEOH QDUURZEDQG WKLQILOP ZDYHJXLGH JUDWLQJ ILOWHUV ,((( 4XDQWXP (OHFWURQ 4( >@ + .RJHOQLN DQG 5 9 5DPDVZDP\ 6FDOLQJ UXOHV IRU WKLQILOP RSWLFDO ZDYHJn XLGHV $SSOLHG 2SWLFV >@ + .RJHOQLN DQG & 9 6KDQN 6WLPXODWHG HPLVVLRQ LQ D SHULRGLF VWUXFWXUH $SSOLHG 3K\VLFV /HWWHUV f >@ 'RQDOG / /HH (OHFWURPDJQHWLF 3ULQFLSOHV RI ,QWHJUDWHG 2SWLFV -RKQ :LOH\ t 6RQV 1HZ @ + /HH & + +HQU\ 5 ) .D]DULQRY DQG 2UORZVN\ /RZ ORVV %UDJJ UHIOHFWRUV RQ 626162 ULE ZDYHJXLGHV $SSOLHG 2SWLFV f >@ 0 /HY\ / (OGDGD 5 6FDUPR]]LQR -U 5 0 2VJRRG 3 6 /LQ DQG ) 7RQJ )DEULFDWLRQ RI QDUURZEDQG FKDQQHOGURSSLQJ ILOWHUV ,((( 3KRWRQ 7HFKQRO /HWW f >@ + $ 0DFOHRG 7KLQ)LOP 2SWLFDO )LOWHUV 0DFPLOODQ 3XEOLVKLQJ &RPSDQ\ 1HZ @ 'LHWULFK 0DUFXVH 'LUHFWLRQDO FRXSOHUV PDGH RI QRQLGHQWLFDO DV\PPHWULF VODEV SDUW 6\QFKURQRXV FRXSOHUV ,((( -RXUQDO RI /LJKWZDYH 7HFKQRORJ\ /7 ff§ >@ 'LHWULFK 0DUFXVH 'LUHFWLRQDO FRXSOHUV PDGH RI QRQLGHQWLFDO DV\PPHWULF VODEV SDUW ,, *UDWLQJDVVLVWHG FRXSOHUV ,((( -RXUQDO RI /LJKWZDYH 7HFKQRORJ\ /7 f >@ 3DXO : $ 0FOOUR\ 0LFKDHO 6 6WHUQ DQG 3HWHU & .HQGDOO 6SHFWUDO LQGH[ PHWKRG IRU SRODUL]HG PRGHV LQ VHPLFRQGXFWRU ULE ZDYHJXLGHV ,((( -RXUQDO RI /LJKWZDYH 7HFKQRORJ\ ff§

PAGE 193

>@ $ )HQQHU 0LOWRQ DQG :LOOLDP %XUQV 0RGH FRXSOLQJ LQ RSWLFDO ZDYHJXLGH KRUQV ,((( 4XDQWXP (OHFWURQ 4(f >@ 7 0L\D (OHFWURQLFV /HWWHUV >@ :D\QH 0 0RUHDX 6HPLFRQGXFWRU /LWKRJUDSK\ 3OHQXP 3UHVV 1HZ @ + 1RUR DQG 7 1DND\DPD 0RGH DQDO\VLV RI RSWLFDO ZDYHJXLGHV $ QHZ DSn SURDFK 2SWLFV /HWWHUV f >@ 7 1XPDL 6 0XUDWD DQG 0LWR 7XQDEOH ZDYHOHQJWK ILOWHUV XVLQJ $VKLIWHG ZDYHOHQJWK JUDWLQJ UHVRQDWRUV $SSOLHG 3K\VLFV /HWWHUV f >@ 7DNDKLUR 1XPDL MP VHPLFRQGXFWRU ZDYHOHQJWK WXQDEOH RSWLFDO ILOWHU XVn LQJ D $VKLIWHG SDVVLYH ZDYHJXLGH JUDWLQJ UHVRQDWRU -DSDQ $SSO 3K\V f >@ 2GD 0 )XNXWRNX DQG + 7RED FKDQQHO NP )6.'' WUDQVPLVVLRQ H[SHULPHQW XVLQJ P SXPSHG HUELXPGRSHG ILEUH DPSOLILHUV DQG D WXQDEOH JDLQ HTXDOLVHU (OHFWURQLFV /HWWHUV f >@ + 2ND\DPD DQG 0 .DZDKDUD @ + 2ND\DPD 7 8VKLNXER DQG 0 .DZDKDUD /RZ GULYH YROWDJH @ 1 $ 2OVVRQ & + +HQU\ 5 ) .D]DULQRY + /HH % + -RKQVRQ DQG 2UORZVN\ 1DUURZ OLQHZLGWK LP VHPLFRQGXFWRU ODVHU ZLWK D UHVRQDQW RSWLFDO UHIOHFWRU $SSOLHG 3K\VLFV /HWWHUV f >@ 1 $QGHUV 2OVVRQ &KDUOHV + +HQU\ 5XGROI ) .D]DULQRY + /HH 2UORZVN\ % + -RKQVRQ 5 ( 6FRWWL $ $FNHUPDQ DQG 3KLOLS $QWKRQ\ 3HUIRUPDQFH FKDUDFWHULVWLFV RI D LP VLQJOHIUHTXHQF\ VHPLFRQGXFWRU ODVHU ZLWK DQ H[WHUQDO ZDYHJXLGH %UDJJ UHIOHFWRU ,((( 4XDQWXP (OHFWURQ f >@ ) / 3HGURWWL DQG / 6 3HGURWWL ,QWURGXFWLRQ WR 2SWLFV 3UHQWLFH+DOO 1HZ -HUVH\ >@ : 3LO] + +XEQHU ) +HLQULFK 3 +RIIPDQQ DQG 0 )UDQRVFK 'LVFXVVLRQ LQ SURILOH SKHQRPHQD LQ VXEXQ UHVLVW UHDFWLYH LRQ HWFKLQJ 0LFURHOHFWURQLF (QJLn QHHULQJ >@ 3URSHUWLHV RI *DOOLXP $UVHQLGH ,163(& 7KH ,QVWLWXWLRQ RI (OHFWULFDO (QJLn QHHUV /RQGRQ > 3URSHUWLHV RI /LWKLXP 1LREDWH ,163(& 7KH ,QVWLWXWLRQ RI (OHFWULFDO (QJLQHHUV /RQGRQ >@ 3URSHUWLHV RI 6LOLFRQ ,163(& 7KH ,QVWLWXWLRQ RI (OHFWULFDO (QJLQHHUV /RQGRQ

PAGE 194

>@ % 0 $]L]XU 5DKPDQ DQG %ULDQ 'DYLHV )LQLWHHOHPHQW DQDO\VLV RI RSWLFDO DQG PLFURZDYH ZDYHJXLGH SUREOHPV ,((( 7UDQVDQFWLRQV RQ 0LFURZDYH 7KHRU\ DQG 7HFKQLTXHV 077Of >@ 5DPX 9 5DPDVZDP\ 6WULSORDGHG ILOP ZDYHJXLGH 7KH %HOO 6\VWHP 7HFKQLFDO -RXUQDO f >@ 5 3 5DWRZVN\ DQG -U $ )OHFN $FFXUDWH QXPHULFDO VROXWLRQ RI WKH +HOPKROW] HTXDWLRQ E\ LWHUDWLYH /DQF]RV UHGXFWLRQ 2SWLFV /HWWHUV f >@ 5 3 5DWRZVN\ -U $ )OHFN DQG 0 )HLW +HOPKROW] EHDP SURSDJDWLRQ LQ ULE ZDYHJXLGHV DQG FRXSOHUV E\ LWHUDWLYH /DQF]RV UHGXFWLRQ -RXUQDO RI WKH 2SWLFDO 6RFLHW\ RI $PHULFD $ f >@ : 3 5LVN DQG 6 /DX 'LVWULEXWHG%UDJJUHIOHFWLRQ SURSHUWLHV RI VHJPHQWHG .73 ZDYHJXLGHV 2SWLFV /HWWHUV f >@ : 3 5LVN 6 /DX DQG 0 $ 0F&RUG 7KLUGRUGHU JXLGHGZDYH GLVWULEXn WLRQ %UDJJ UHIOHFWRUV IDEULFDWHG E\ LRQH[FKDQJH LQ .7232 ,((( 3KRWRQ 7HFKQRO /HWW f >@ +HQU\ 5RELQVRQ &KULVWRSKHU : 3LWW DQG 5RG $ *LEVRQ 6LOLFRQ OLWKLXP QLREDWH HOHFWURRSWLF ZDYHJXLGH PRGXODWRU VWUXFWXUHV LQ WKH SDUDOOHOSODWH FRQn ILJXUDWLRQ $SSOLHG 2SWLFV f >@ 5 9 6FKPLGW & )ODQGHUV & 9 6KDQN DQG 5 6WDQGOH\ 1DUURZ EDQG JUDWLQJ ILOWHUV IRU WKLQILOP RSWLFDO ZDYHJXLGHV $SSOLHG 3K\VLFV /HWWHUV OOf >@ 6KLQR]DNL 7 )XNXQDJD :DWDQDEH DQG 7 .DPLMRK 6HOITXDVLSKDVH PDWFKHG VHFRQGKDUPRQLF JHQHUDWLRQ LQ WKH SURWRQH[FKDQJHG /L1E&! RSWLFDO ZDYHJXLGH ZLWK SHULRGLFDOO\ GRPDLQLQYHUWHG UHJLRQV $SSOLHG 3K\VLFV /HWWHUV f >@ 6KLQR]DNL < 0L\DPRWR + 2ND\DPD 7 .DPLMRK DQG 7 1RQDND 6HFRQG KDUPRQLF JHQHUDWLRQ GHYLFH ZLWK LQWHJUDWHG SHULRGLFDOO\ GRPDLQLQYHUWHG UHJLRQV DQG GLVWULEXWHG %UDJJ UHIOHFWRU LQ D /L1E2V FKDQQHO ZDYHJXLGH $SSOLHG 3K\VLFV /HWWHUV f >@ 3HUU\ 6NHDWK & + %XOPHU 6 & +LVHU DQG : %XUQV 1RYHO HOHFWURVWDWLF PHFKDQLVP LQ WKH WKHUPDO LQVWDELOLW\ RI ]FXW /L1E LQWHUIHURPHWHUV $SSOLHG 3K\VLFV /HWWHUV f >@ $ 6PLWK ( %DUDQ : &KHXQJ DQG -RKQVRQ 3RODUL]DWLRQ LQGHSHQGHQW DFRXVWLFDOO\ WXQDEOH RSWLFDO ILOWHU $SSOLHG 3K\VLFV /HWWHUV f >@ : 6RKOHU (UELXPGRSHG ZDYHJXLGH DPSOLILHUV DQG ODVHUV LQ /L1E2V ,Q ,QWHn JUDWHG 3KRWRQLFV 5HVHDUFK 7HFKQLFDO 'LJHVW SDJHV 2SWLFDO 6RFLHW\ RI $PHULFD )HEUXDU\

PAGE 195

>@ 5LFKDUG $ 6RUHI -RDFKLP 6FKPLGWFKHQ DQG .ODXV 3HWHUPDQQ /DUJH VLQJOHn PRGH ULE ZDYHJXLGHV LQ *H6L DQG 6L RQ 62 $SSOLHG 3K\VLFV /HWWHUV f >@ : 6WUHLIHU 5 %XUQKDP DQG 5 6FLIUHV (IIHFW RI H[WHUQDO UHIOHFWRUV RQ ORQJLWXGLQDO PRGHV RI GLVWULEXWHG IHHGEDFN ODVHUV ,((( 4XDQWXP (OHFWURQ 4( >@ + 6XFKH (UELXPGRSHG LQWHJUDWHG ODVHUV DQG DPSOLILHUV >@ 3 6XFKRVNL 7 )LQGDNO\ DQG ) /HRQEHUJHU 6WDEOH ORZORVV SURWRQ H[FKDQJHG /L1E ZDYHJXLGH GHYLFHV ZLWK QR HOHFWURRSWLF GHJUDGDWLRQ 2SWLFV /HWWHUV f >@ 7KLQ )LOP (YDSRUDWLRQ 6RXUFH 5HIHUHQFH 5 0DWKLV &RPSDQ\ /RQJ %HDFK &D >@ 3 7LHQ 5 8OULFK DQG 5 0DUWLQ 0RGHV RI SURSDJDWLQJ OLJKW ZDYHV LQ WKLQ GHSRVLWHG VHPLFRQGXFWRU ILOPV $SSOLHG 3K\VLFV /HWWHUV f >@ +LURPX 7RED .D]XKLUR 2GD .HQML 1DNDQLVKL 1RUL 6KLEDWD .L\RVKL 1RVX 1RULR 7DNDWR DQG 0LWVXR )XNXGD $ FKDQQHO RSWLFDO )'0 WUDQVPLVn VLRQGLVWULEXWLRQ DW 0EV RYHU NP ,((( -RXUQDO RI /LJKWZDYH 7HFKQROn RJ\ >@ 0 ( :LQVORZ 5 9RLVLQH 3 .RUQDFNL 0F%ULHQ 9 5RGLQR DQG 5 : $GH 3DFNDJLQJ DQG WKHUPDO VWDELOL]DWLRQ RI DFRXVWRRSWLF WXQDEOH ILOn WHUV ,Q ,QWHJUDWHG 3KRWRQLFV 5HVHDUFK 7HFKQLFDO 'LJHVW SDJHV 2SWLFDO 6RFLHW\ RI $PHULFD )HEUXDU\ >@ +LUR\RVKL @ @ $ @ $ @ 6KX7RQJ =KRX =RQJ4L /LQ DQG :LOOLDP 6 & &KDQJ 3UHFLVH SHULRGLFLW\ FRQWURO LQ WKH IDEULFDWLRQ RI KRORJUDSKLF JUDWLQJV $SSOLHG 2SWLFV f >@ 3HWHU =RU\ /HDN\ ZDYH WKLQ ILOP ODVHU ,Q ,QWHJUDWHG 2SWLFV &RQIHUHQFHf§'LJHVW RI 7HFKQLFDO 3DSHUV SDJHV 7K$O 2SWLFDO 6RFLHW\ RI $PHULFD :DVKLQJWRQ '& )HEUXDU\

PAGE 196

>@ 3HWHU =RU\ /DVHU RVFLOODWLRQ LQ OHDN\ FRUUXJDWHG RSWLFDO ZDYHJXLGHV $SSOLHG 3K\VLFV /HWWHUV f

PAGE 197

%,2*5$3+,&$/ 6.(7&+ &KULVWRSKHU 3DUNH +XVVHOO ZDV ERUQ LQ 3DUNHUVEXUJ :HVW 9LUJLQLD LQ +H UHFHLYHG KLV %6 GHJUHH LQ HOHFWULFDO HQJLQHHULQJ IURP WKH 8QLYHUVLW\ RI )ORULGD LQ 'HFHPEHU 'XULQJ WKH VXPPHU RI KH ZRUNHG DW %HOO &RPPXQLFDWLRQV 5HVHDUFK GHVLJQn LQJ FURVV FRXSOHUV +H UHFHLYHG KLV 0( GHJUHH XQGHU WKH VXSHUYLVLRQ RI 'U 5DPX 9 5DPDVZDP\ DQG 'U 5DPDNDQW 6ULYDVWDYD LQ WKH 3KRWRQLFV 5HVHDUFK /DERUDWRU\ DW WKH 8QLYHUVLW\ RI )ORULGD +LV PDVWHUfV WKHVLV ZDV HQWLWOHG f'HVLJQ DQG )DEULFDWLRQ RI :DYHOHQJWK DQG 3RODUL]DWLRQ ,QVHQVLWLYH G% &URVV&RXSOHU 3RZHU 'LYLGHUV E\ ,RQ ([FKDQJH LQ *ODVVf +H VSHQW WKH VXPPHU RI VWXG\LQJ DV\PPHWULF GLUHFWLRQDO FRXSOHU ILOWHUV DW (JOLQ $LU )RUFH %DVH )RUW :DOWRQ %HDFK ), ,Q DGGLWLRQ KH KDV GRQH UHVHDUFK LQ QRQOLQHDU DOORSWLFDO VZLWFKHV DQG YHUWLFDO FDYLW\ VXUIDFH HPLWWLQJ ODVHUV +LV FXUUHQW UHVHDUFK LQWHUHVWV LQFOXGH DFWLYH DQG SDVVLYH ZDYHJXLGH GHYLFHV LQ VHPLFRQGXFWRU DQG QRQVHPLFRQGXFWRU PDWHULDOV +H LV D PHPEHU RI WKH ,(((

PAGE 198

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWn DEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5DPX 9 5DPDVZDP\ &KDLUPDQ 3URIHVVRU RI (OHFWULFDO DQG &RPSXWHU (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWn DEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3HWHU =RU\ 3URIHVVRU RI (OHFWULFDO DQG RPSXWHU (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWn DEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0DUWLQ $ 8PDQ 3URIHVVRU RI (OHFWULFDO DQG &RPSXWHU (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWn DEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ Inc 0DUN /DZ $VVRFLDWH 3URIHVVRU RI (OHFWULFDO DQG &RPSXWHU (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWn DEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5REHUW 3DUN 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ

PAGE 199

,QWHUQHW 'LVWULEXWLRQ &RQVHQW $JUHHPHQW ,Q UHIHUHQFH WR WKH IROORZLQJ GLVVHUWDWLRQV $87+25 +XVVHOO &KULVWRSKHU 7,7/( $ QRYHO WXQDEOH ILOWHU IRU ZDYHOHQJWK GLYLVLRQ PXOWLSOH[HG FRPPXQLFDWLRQ V\VWHPV UHFRUG QXPEHU f 38%/,&$7,21 '$7( &KULVURSKWWU I +Y66= DV FRS\ULJKW KROGHU IRU WKH DIRUHPHQWLRQHG GLVVHUWDWLRQ KHUHE\ JUDQW VSHFLILF DQG OLPLWHG DUGKL9k NQG GLVWULEXWLRQ ULJKWV WR WKH %RDUG RI 7UXVWHHV RI WKH 8QLYHUVLW\ nRI)ORULGD DPL LWV DJHQWV DXWKRUL]H WKH 8QLYHUVLW\ RI )ORULGD WR GLJLWL]H DQG GLVWULEXWH WKH GLVVHUWDWLRQ GHVFULEHG DERYH IRU QRQSURILW HGXFDWLRQDO SXUSRVHV YLD WKH ,QWHUQHW RU VXFFHVVLYH WHFKQRORJLHV 7KLV LV D QRQH[FOXVLYH JUDQW RI SHUPLVVLRQV IRU VSHFLILF RIIOLQH DQG RQOLQH XVHV IRU DQ LQGHILQLWH WHUP 2IIOLQH XVHV VKDOO EH OLPLWHG WR WKRVH VSHFLILFDOO\ DOORZHG E\ )DLU 8VH DV SUHVFULEHG E\ WKH WHUPV RI 8QLWHG 6WDWHV FRS\ULJKW OHJLVODWLRQ FI 7LWOH 86 &RGHf DV ZHOO DV WR WKH PDLQWHQDQFH DQG SUHVHUYDWLRQ RI D GLJLWDO DUFKLYH FRS\ 'LJLWL]DWLRQ DOORZV WKH 8QLYHUVLW\ RI )ORULGD WR JHQHUDWH LPDJH DQG WH[WEDVHG YHUVLRQV DV DSSURSULDWH DQG WR SURYLGH DQG HQKDQFH DFFHVV XVLQJ VHDUFK VRIWZDUH 7KLV JUDQW RI SHUPLVVLRQV SURKLELWV XVH RI WKH GLJLWL]HG YHUVLRQV IRU FRPPHUFLDO XVH RU SURILW 3HUVRQDO LQIRUPDWLRQ EOXUUHG ?WUT 6f 'DWH RI 6LJQDWXUH 3OHDVH SULQW VLJQ DQG UHWXUQ WR &DWKOHHQ 0DUW\QLDN 8) 'LVVHUWDWLRQ 3URMHFW 3UHVHUYDWLRQ 'HSDUWPHQW 8QLYHUVLW\ RI )ORULGD /LEUDULHV 32 %R[ *DLQHVYLOOH )/