Citation |

- Permanent Link:
- https://ufdc.ufl.edu/UF00073903/00001
## Material Information- Title:
- Population trends for the United States nation and states
- Series Title:
- Special series publication (University of Florida. Agricultural and Biological Engineering Dept.)
- Creator:
- Overman, Allen R., 1937-
Pirozzoli, Heather J Thourot, Charles S University of Florida -- Agricultural and Biological Engineering Dept - Place of Publication:
- [Gainesville
- Publisher:
- Agricultural and Biological Engineering Dept., University of Florida
- Publication Date:
- 1996]
- Language:
- English
- Physical Description:
- 12, [52] leaves : ill. ; 28 cm.
## Subjects- Subjects / Keywords:
- Population -- Statistics -- United States ( lcsh )
Population -- History -- Statistics -- United States ( lcsh ) - Genre:
- bibliography ( marcgt )
statistics ( marcgt ) federal government publication ( marcgt ) non-fiction ( marcgt )
## Notes- Bibliography:
- Includes bibliographical references (leaf 8).
- General Note:
- "September 1996."
- Statement of Responsibility:
- by Allen R. Overman, Heather J. Pirozzoli and Charles S. Thourot.
## Record Information- Source Institution:
- University of Florida
- Holding Location:
- University of Florida
- Rights Management:
- All rights reserved, Board of Trustees of the University of Florida
- Resource Identifier:
- 027541624 ( ALEPH )
36860875 ( OCLC ) ALL6425 ( NOTIS )
## UFDC Membership |

Full Text |

Agricultural and Biological Engineering Department Special Series Publication SS-AGE-42 September 1996 Population Trends for the United States Nation and States by Allen R. Overman, Heather J. Pirozzoli and Charles S. Thourot POPULATION TRENDS FOR THE UNITED STATES NATION AND STATES Allen R. Overman, Heather J. Pirozzoli and Charles S. Thourot ABSTRACT This document summarizes population trends in the United States for the 200-year period between 1790 and 1990. The first official Census was taken in 1790 after adoption of the constitution in 1789. Population increased steadily from 3,929,000 in 1790 to 248,710,000 in 1990. In 1990 the net rate of growth was approximately 2,300,000 persons/year. If the early geometric trend of 1790 through 1850 had continued, then U. S. population would have reached approximately 1 billion by the year 1980. Analysis of the past trend for the period 1850 through 1990 by the logistic model, on the other hand, projects a maximum population of 461 million. States exhibit a variety of patterns. Advanced phase of growth is characterized by reaching more than 75% of projected maximum by the 1990 Census, which includes 14 states. Rapid phase reached less than 50% of projected maximum, which includes 13 states. Undetermined includes those states for which the growth trends are not clear, which includes 15 states. The remaining 8 states are between rapid and advanced phases of growth. According to the logistic model, U.S. population is projected to reach 307 million (75% of maximum) around the year 2036. Rapid population growth will generate large demands for agricultural production, engineering services, education, and information. Our challenge in the academic community is to provide training and information to meet these needs. The format of this document gives a numerical and graphical portrait of the nation and of each state, and is intended to provide information to the public and professionals alike. Literature references are given for persons interested in further reading on this subject. Allen R. Overman, Heather J. Pirozzoli and Charles S. Thourot are Professor, Staff Assistant, and Graduate Research Assistant, respectively, Agricultural & Biological Engineering Department, UF/ IFAS, University of Florida, Gainesville, FL 32611-0570. Population Trends for the United States Overman, Pirozzoli & Thourot, 1996 POPULATION TRENDS FOR THE UNITED STATES: NATION AND STATES INTRODUCTION An informed public on key issues is important for future planning. Population growth affects each of us and everything we do. This document provides information on the population trends in the nation and states in a form not readily available elsewhere. Census data are presented in both tabular and graphical format, so the reader can view the results and draw individual conclusions. Where trends are clear enough to do so, a model has been fitted to data and projections made into the near future. Outside the range of data used to calibrate the models, projections are shown as dashed curves and lines to call attention to the uncertainty of estimates. A wide range of views has been expressed on the subject of population. Growth drives rising demand for agricultural production, engineering services, education, and information. More than a quarter century ago Paul Ehrlich at Stanford University called attention to the runaway growth of the world population (Ehrlich, 1968) and to the serious implications in store. This message was updated in 1990 (Ehrlich and Ehrlich, 1990). The demands on the natural system and stress on the environment have been pointed out by Lester Brown of the Worldwatch Institute (Brown, 1995; Brown and Kane, 1994) and Joel Cohen of Rockefeller University (Cohen, 1995). Contrasting views of Norman Meyers (environmentalist) and Julian Simon (economist) have been published (Myers and Simon, 1994). It is easy to become confused about this subject, and to tune out the entire discussion. A very readable book on geography and related topics (including population) is that of Harm de Blij (de Blij, 1995). Analysis of population trends involves two aspects: (1) data and (2) models. Various sources (Cohen, 1995, Appendix 2) have summarized estimates of world population. Data for the United States are taken from the Census conducted every decade. The database for the states is taken from Kurian (1994), and can also be found in the World Almanac published each year and is readily available in most communities. Models cover a wide spectrum from the geometric model of Malthus to the logistic model of Verhulst to more complicated demographic models which incorporate geographic and age distributions (Caswell, 1989). We have chosen the logistic model because it describes the essence of the trends and is relatively easy to use. It has been used to model various social indicators (Marchetti, 1986). Application of the logistic model to forage production has been discussed by Overman (1995). Virtually all models are open to criticism at some level. The viewpoint of Charles Babbage (Mackay, 1991) appears relevant to our case: Errors using inadequate data are much less than those using no data at all. This document follows the same format as the companion document on state and county population trends for Florida (Overman et al., 1996). Population Trends for the United States Overman, Pirozzoli & Thourot, 1996 MODELS This document focuses on two models of population: (1) geometric and (2) logistic. Both are relatively simple mathematically and are useful in describing general trends. Benjamin Franklin pointed out in 1755 that the U.S. population appeared to double every 25 years. In 1798 Thomas Malthus published an essay on population (Petersen, 1979) in which he noted the tendency toward geometric (exponential) increase: Population, when unchecked, increases in a geometric ratio. Subsistence only increases in an arithmetic ratio. The essay set off a debate which continues to this day. Since such a trend can not continue indefinitely due to a number of factors (such as availability of resources, accumulation of wastes, maintenance of essential functions), the Belgian mathematician Verhulst proposed the logistic sigmoidd) model, which is self-limiting in structure. These models have the forms geometric: P = Po ek (Y 1800) [1] logistic: P = A / [1 + eb c (Y -1800)] [2] where P = estimated population Y = year Po = estimated population at year 1800 k = geometric response coefficient A = estimated maximum population b = logistic intercept parameter c = logistic response coefficient Both models can be rewritten in linearized form to describe straight lines on semilog paper: geometric: In [P/Po] = k (Y 1800) [3] logistic: In [P/(A P)] = c (Y 1800) b [4] The logistic model is considered to be the more realistic of the two, since it approaches a maximum and is self-limiting. We use this model to estimate trends and projections (where feasable) for the states. A minimum of 6 data points (50-year span) are used to calibrate the model. Trends were inadequate to perform regression analysis for 15 states. Population Trends for the United States Overman, Pirozzoli & Thourot, 1996 NATIONAL TREND The U. S. trend is best illustrated by the log graph shown in Figure 1. Note that the vertical axis is logarithmic, and covers the range 3.93 million (3,929,000) in 1790 to 249 million (248,710,000) in 1990. The straight line is given by P (millions) = 5.32 e0.0294 (Y -1800) [5] for data from 1790 through 1850. Several things may be noted. The geometric (Malthus) model describes the trend rather well for this period, with an average doubling time of 24 years. If this trend had continued, then the U.S. population would have reached 1 billion by the year 1980. It is clear from Figure 1 that the relative (logarithmic) rate of growth slowed down considerably after 1850. In our view, a more realistic alternative is to use the logistic model to describe the U.S. trend from 1850 onward. The maximum value A = 461 million for Eq. [2] can be obtained by nonlinear regresssion. Data can then be reduced to the form shown in Figure 2, where the line is given by In [P/(A P)] = 0.0204 (Y 1800) 3.72 [6] It follows that the logistic model for the national trend becomes P (millions) = 461 / [1 + e3.72 0.0204 (Y 1800)] [7] Results can be presented in linear graphical form shown in Figure 3, where the curve is drawn from Eq. [7]. Parameters listed in Eqs. [6] and [7] (viz. 461, 3.72, and 0.0204) represent best estimates by statistical procedures. This model projects a population of 230 million (50% of maximum) by the year 1982 and 307 million (75% of maximum) by 2036. The linearized plot helps to identify trends which are described by the logistic model and is used in the analysis of state data. The geometric and logistic models both show a stronger persistence in population growth than is often perceived. Expectation that this trend will abruptly level off appears rather unrealistic. What seems more likely is that the rate of growth will eventually slow down and population approach some maximum value, as has occurred in England & Wales (see Figure 4). It has been pointed out that no simple model appears adequate for long-term projections (Cohen, 1995, p. 96). Population Trends for the United States Overman, Pirozzoli & Thourot, 1996 STATE TRENDS In the remainder of this report we adopt a one-page format to show trends for each state in the United States. This format includes Census data, graphs showing data along with estimates and projections (where appropriate), model parameters, and equations. For this purpose we use only the logistic model, referenced to the year 1800. Parameter estimates by nonlinear regression include maximum population (A), intercept parameter (b), and response coefficient (c). Note that Yo.5o and Yo.75 are years when population is estimated to reach 50% and 75%, respectively, of projected maximum. Linear and log graphs cover the period 1800 until 2050. The straight line portion of the log graphs lends support to the utility of the logistic model. Dashed curves and lines have been used beyond 1990 to emphasize uncertainty of the projections. Model parameters for the states are summarized in Table 1, except where trends were inadequate to make estimates by the logistic model. Growth patterns can be characterized in a variety of ways, of which we choose the following classification. Advanced phase of growth is characterized by having reached more than 75% of projected maximum by the 1990 Census. Rapid phase describes those which have reached less than 50% of projected maximum. Undetermined include those states for which data are insufficient to evaluate the model. The remaining 8 states are between rapid and advanced phases of growth. EXAMPLE Alabama data are used for a detailed description of results. The population grew from approximately 1,000 in 1800 to 4,041,000 in 1990 as shown in the linear graph. It is apparent from the log graph that the logistic model describes the trend during the period 1850-1990. Statistical analysis of data during this time interval gives the parameters listed in the table, so that the model becomes P (millions) = 5.0 / [1 + e2.78 0.0220(Y 1800)] [8] To make estimates from Eq. [8] a calculator which contains the function ex is -0.51 needed. Substitution of Y = 1950 into Eq. [8] leads to e = 0.600 and gives the estimate P = 3,112,000 for 1950, compared to the census value of 3,062,000, an error of 1.6%. Similarly, the estimate for 1990 is 3,987,000, compared to 4,041,000 for an error of 1.4%. These estimates confirm the accuracy of the parameters. Projections can be made by choosing a future time. For example, for the year 2020 the projected population would be 4,412,000, or 89% of estimated maximum. It should be emphasized again that these are projections and are not to be taken as absolute. Many factors, such as public policy and events in the rest of the world, may cause actual values to come out either lower or higher than projected. Population Trends for the United States Overman, Pirozzoli & Thourot, 1996 Table 1. Parameters for Logistic Trends in the United States. Unit A b c Y.50 Y075 Ref. millions yr-1 United States 461 3.72 0.0204 1982 2036 1800 Alabama 5.0 2.78 0.0220 1927 1977 1800 Alaska 2.1 8.28 0.0380 2018 2047 1800 Arizona 11.1 9.23 0.0449 2006 2030 1800 Arkansas - California 45.5 7.75 0.0440 1975 2000 1800 Colorado 6.3 6.48 0.0347 1986 2018 1800 Conneticut 5.4 3.91 0.0233 1968 2015 1800 Delaware - Florida 44.2 8.87 0.0421 2011 2037 1800 Georgia 32.4 4.15 0.0141 2093 2170 1800 Hawaii 2.5 5.48 0.0275 1999 2039 1800 Idaho - Illinois 12.5 3.87 0.0330 1917 1951 1800 Indiana - Iowa - Kansas - Kentucky 4.3 2.12 0.0197 1908 1964 1800 Louisiana 7.9 3.63 0.0202 1980 2034 1800 Maine 5.4 2.53 0.0063 2200 2375 1800 Maryland 5.6 7.81 0.0503 1955 1977 1800 Massachusetts 6.6 3.18 0.0284 1912 1951 1800 Michigan 11.9 4.60 0.0322 1943 1977 1800 Minnesota 4.5 4.20 0.0345 1922 1953 1800 Mississippi 2.6 2.69 0.0303 1889 1925 1800 Missouri 6.6 2.48 0.0196 1927 1983 1800 Montana - Nebraska - Nevada 2.8 12.15 0.0624 1995 2012 1800 New Hampshire - New Jersey 10.0 4.48 0.0305 1947 1983 1800 New Mexico 3.5 5.50 0.0276 1999 2039 1800 New York 21.1 3.34 0.0282 1918 1957 1800 North Carolina 17.3 3.82 0.0175 2018 2081 1800 North Dakota - Population Trends for the United States Overman, Pirozzoli & Thourot, 1996 Table 1. (continued). Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming 16.0 4.6 12.7 1.1 16.7 17.8 79.6 9.5 10.6 7.9 5.6 3.12 5.47 3.18 3.41 3.82 3.42 5.56 6.06 5.00 5.70 3.49 0.0213 0.0315 0.0323 0.0297 0.0129 0.0129 0.0223 0.0238 0.0279 0.0323 0.0276 1947 1998 1973 1898 1915 2097 2065 2049 2054 2008 1932 1952 2182 2150 2099 2100 1979 2019 1977 2011 1926 1966 No analysis was performed for states with dashed (-) entries due to insufficient trends. SUMMARY Results of this document are relevant to agriculture, engineering, education, and the public in general. Large challenges are ahead for resource management and environmental quality. This document does not advocate any public policy or reaction to these trends. Some will view these trends favorably, while others will see them in a negative context. This is a complex issue with implications at county, state, national, and international levels. Information is provided here to enlighten public discussion and debate. 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 Population Trends for the United States Overman, Pirozzoli & Thourot, 1996 REFERENCES Brown, L. R. 1995. Who Will Feed China? W. W. Norton & Co. New York, NY. Brown, L. R. and H. Kane. 1994. Full House. W. W. Norton & Co. New York, NY. Caswell, H. 1989. Matrix Population Models. Sinauer Associates, Inc. Sunderland, MA. Cohen, J. E. 1995. How Many People Can the Earth Support? W. W. Norton & Co. New York, NY. de Blij, H. 1995. Geography Book. John Wiley & Sons. New York, NY. Ehrlich, P. R. 1968. The Population Bomb. Ballantine. New York, NY. Ehrlich, P. R. and A. H. Ehrlich. 1990. The Population Explosion. Simon and Schuster. New York, NY. Kurian, G. T. 1994. Datapedia of the United States 1790-2000. Bernan Press. Lanham, MD. Mackay, A. L. 1991. A Dictionary of Scientific Quotations. Institute of Physics Publishing. Philadelphia, PA. Marchetti, C. 1986. Stable Rules in Social Behavior. IBM Conference. Brazilian Academy of Sciences. Brasilia, Brazil. Marth, D. and M. J. Marth. 1990. Florida Almanac 1990-1991. Pelican Publishing Co. Gretna, FL. Myers, N. and J. L. Simon. 1994. Scarcity or Abundance? A Debate on the Environment. W. W. Norton & Co. New York, NY. Overman, A. R. 1995. Rational Basis for the Logistic Model for Forage Grasses. J. Plant Nutrition 18:995-1012. Overman, A. R., H. J. Pirozzoli and C. S. Thourot. 1996. Population Trends for Florida: State and Counties. Special Series Publication SS-AGE-41. University of Florida. Gainesville, FL. Petersen, W. 1979. Malthus. Harvard University Press. Cambridge, MA. Population Trends for the United States 1000 1800 1850 1900 1950 2000 2050 Year Figure 1. United States Population Trend Log Scale. I I I I I Exponential United States / Logistic / Z- I I I I I 100 10 1 1750 Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States 10 2 0 1 100 10^ - 10-2 e 0 0 10-2 )-IIII 1800 1850 1900 1950 2000 2050 Year Figure 2. United States Population Trend Linearized Plot. Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Overman, Pirozzoli & Thourot, 1996 450 400 350 300 250 200 150 100 50 1800 1800 1950 2000 2050 Figure 3. United States Population Trend Linear Scale. 1850 1900 Year Population Trends for the United States Overman, Pirozzoli & Thourot, 1996 60 c 40 0 0 o 2 E o a. 20 0 I I I I I I I 1750 1800 1850 1900 1950 2000 2050 2100 Year Figure 4. England & Wales Population Trend Linear Scale. I I I I I I England and Wales - Population Trends for the United States United States Year Population 1790 3,929,000 1800 5,308,000 1810 7,240,000 1820 9,638,000 1830 12,861,000 1840 17,063,000 1850 23,192,000 1860 31,443,000 1870 38,558,000 1880 50,189,000 1890 62,980,000 1900 76,212,000 1910 92,228,000 1920 106,022,000 1930 123,203,000 1940 132,165,000 1950 151,326,000 1960 179,323,000 1970 203,302,000 1980 226,542,000 1990 248,710,000 Parameter Estimates A 461,000,000 b 3.72 c 0.0204 Yo.5o 1982 Yo.75 2036 A P b-c(Y- ) 1 + eb-c(Y-1800) 450 I I I I 400 - United States 350 - o 300 - E250 - 0 S200 g 150 100 - 50 1800 1850 1900 1950 2000 2050 Year Linear plot of population 10.2 V 1800 1850 1900 1950 2000 2050 Year Log plot of population P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo.50 = year for 50% maximum Y0.5 = year for 75% maximum Notes: 10-1 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression --------= projection Overman, Pirozzoli & Thourot, 1996 In(A P) = c(Y- 1800)-b Population Trends for the United States Alabama Year Population 1790 -- 1800 1,000 1810 9,000 1820 128,000 1830 310,000 1840 591,000 1850 772,000 1860 964,000 1870 997,000 1880 1,263,000 1890 1,513,000 1900 1,829,000 1910 2,138,000 1920 2,348,000 1930 2,646,000 1940 2,833,000 1950 3,062,000 1960 3,267,000 1970 3,444,000 1980 3,890,000 1990 4,041,000 Parameter Estimates A 4,980,000 b 2.79 c 0.0220 Yo.so 1927 Yo.75 1977 1 + eb-c(Y-1800) SIn p =c(Y-1800)-b [(A P)] P = population estimate Y = year A b = c = Yo.50 Yo.75 estimated maximum population intercept parameter response coefficient = year for 50% maximum = year for 75% maximum g0o I I I1 I 1800 1850 1900 1950 2000 Year Linear plot of population 10-2 I I 1800 1850 1900 1950 2000 Year Log plot of population Notes: 10-1 = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression --------= projection I I I I Alabama 2050 2050 I I I I A = 4,980,000 - -o Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Alaska Year Population 1790 1800 1810 1820 1830 1840 1850 1860 1870 -- 1880 33,000 1890 32,000 1900 64,000 1910 64,000 1920 55,000 1930 59,000 1940 73,000 1950 129,000 1960 226,000 1970 300,000 1980 400,000 1990 550,000 Parameter Estimates A 2,140,000 b 8.28 c 0.0380 Yo.5o 2018 Yo.75 2047 0.0 1 1800 A P= 1 + eb-c(Y-1800) 10-2 L 1800 1850 1900 1950 2000 2050 Year Linear plot of population 1850 1900 1950 2000 2050 Year Log plot of population P = population estimate Y = year A = estimated maximum population b = c = Yo.50 Y0.75 intercept parameter response coefficient = year for 50% maximum = year for 75% maximum Notes: 101 = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression ----------= projection Overman, Pirozzoli & Thourot, 1996 ln[(A P) c(Y-1800)- b [(A P)]J Population Trends for the United States Arizona Year Population 1790 1800 1810 1820 1830 1840 1850 1860 -- 1870 10,000 1880 40,000 1890 88,000 1900 123,000 1910 204,000 1920 334,000 1930 436,000 1940 499,000 1950 750,000 1960 1,302,000 1970 1,771,000 1980 2,718,000 1990 3,665,000 Parameter Estimates A 11,100,000 b 9.23 c 0.0449 Yo.so 2006 Yo.75 2030 1 + ebc(Y 1+ eb-c(Y-1800) 2 - 0 - 1800 10-2 L 1800 1850 1900 1950 2000 2050 Year Linear plot of population 1850 1900 1950 2000 2050 In (Ap = c(Y-1800)- b [(A -P)J P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo0., = year for 50% maximum Y0.75 = year for 75% maximum Year Log plot of population Notes: 101 = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression ----------= projection Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Arkansas Year Population 1790 -- 1800 1810 1,000 1820 14,000 1830 30,000 1840 98,000 1850 210,000 1860 435,000 1870 484,000 1880 803,000 1890 1,128,000 1900 1,312,000 1910 1,574,000 1920 1,752,000 1930 1,854,000 1940 1,949,000 1950 1,910,000 1960 1,786,000 1970 1,923,000 1980 2,286,000 1990 2,351,000 Parameter Estimates A -- b -- c -- Yo.50 o.75 -- A P= 1+ eb-c(Y-1800) In -p- = c(Y -1800)-b [(A P)J P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo0.o = year for 50% maximum Yo.5 = year for 75% maximum 2.5 2.0 1.5 1.0 0.5 f rt UV.VU 1800 1850 1900 1950 2000 2050 Year Linear plot of population Notes: no apparent logistic trend I I I I Arkansas 0 0 0 0 0 00 0 ^ oI I I I Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States California Year Population 1790 -- 1800 1810 1820 1830 1840 -- 1850 93,000 1860 380,000 1870 560,000 1880 865,000 1890 1,213,000 1900 1,485,000 1910 2,378,000 1920 3,427,000 1930 5,677,000 1940 6,907,000 1950 10,586,000 1960 15,717,000 1970 19,953,000 1980 23,668,000 1990 29,760,000 Parameter Estimates A 45,500,000 b 7.75 c 0.0440 Yo.5o 1975 Yo.75 2000 0 1800 A P= 1 + eb-c(Y-1800) 10-2 1800 1850 1900 1950 2000 2050 Year Linear plot of population 1850 1900 1950 2000 2050 In P = c(Y 1800)- b [(A -P) P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient YO.50 = year for 50% maximum Y0.75 = year for 75% maximum Year Log plot of population Notes: 10-1 = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression --------= projection Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Colorado Year Population 1790 1800 1810 1820 1830 1840 1850 -- 1860 34,000 1870 40,000 1880 194,000 1890 413,000 1900 540,000 1910 799,000 1920 940,000 1930 1,036,000 1940 1,123,000 1950 1,325,000 1960 1,754,000 1970 2,207,000 1980 2,890,000 1990 3,294,000 Parameter Estimates A 6,270,000 b 6.48 c 0.0307 Yo.5o 1986 Yo.75 2018 A P + ec(Y ) 1 + e b-c(Y-1800) 5 / Colorado / / / 3 2 - 0 l 1800 1850 1900 1850 1900 1 I 1950 2000 2050 Year Linear plot of population 10-2 . 1800 I I A = 6,270,000 00,0( I/ i 1850 1900 1950 I I / / I I 2000 2050 In = c(Y-1800)-b (A P) P = population estimate Y = year A= b = c = Yo.50 Y0.75 estimated maximum population intercept parameter response coefficient = year for 50% maximum = year for 75% maximum Year Log plot of population Notes: 10' = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression --------= projection Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Connecticut Year Population 1790 238,000 1800 251,000 1810 262,000 1820 275,000 1830 298,000 1840 310,000 1850 371,000 1860 460,000 1870 537,000 1880 623,000 1890 746,000 1900 908,000 1910 1,115,000 1920 1,381,000 1930 1,607,000 1940 1,709,000 1950 2,007,000 1960 2,535,000 1970 3,032,000 1980 3,108,000 1990 3,287,000 Parameter Estimates A 5,430,000 b 3.91 c 0.0233 YO.sO 1967 Yo.75 2015 0 0- 1800 A P= c 1 + eb-c(Y-1800) 10-2 L 1800 ln P ]= (Y-1800)-b P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient YO.0 = year for 50% maximum Yo.75 = year for 75% maximum 1850 1900 1950 2000 2050 Year Linear plot of population 1850 1900 1950 Year 2000 2050 Log plot of population Notes: 101 = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression --------= projection Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Delaware Year Population 1790 59,000 1800 64,000 1810 73,000 1820 73,000 1830 77,000 1840 78,000 1850 92,000 1860 112,000 1870 125,000 1880 147,000 1890 168,000 1900 185,000 1910 202,000 1920 223,000 1930 238,000 1940 267,000 1950 318,000 1960 446,000 1970 548,000 1980 594,000 1990 666,000 Parameter Estimates A -- b -- c -- Yo.50 Y.75 -- A P= 1 + eb-c(Y-1800) (AI P = c(Y-1800)-b P = population estimate Y = year A = estimated maximum population b = c = Yo.50 Yo.75 intercept parameter response coefficient = year for 50% maximum = year for 75% maximum 0.8 U) o 0.6 E S 0.4 Cc 0L I. 1800 1850 1900 1950 1800 1850 1900 1950 I I I 1 S Delaware 0 0 0 0 0 - o 000 0000 I I I O 2000 2050 Year Linear plot of population Notes: no apparent logistic trend Overman, Pirozzoli & Thourot, 1996 0 0 Population Trends for the United States Florida Year Population 1790 1800 1810 1820 -- 1830 35,000 1840 54,000 1850 87,000 1860 140,000 1870 188,000 1880 269,000 1890 391,000 1900 529,000 1910 753,000 1920 968,000 1930 1,468,000 1940 1,897,000 1950 2,771,000 1960 4,952,000 1970 6,789,000 1980 9,746,000 1990 12,938,000 Parameter Estimates A 44,200,000 b 8.87 c 0.0421 Yo.so 2011 Y0.75 2037 1 + eb-cY- 1 + eb-c(Y-1800) 5 1800 1800 102 1800 1850 1900 1950 2000 2050 Year Linear plot of population 1850 1900 1950 n[ (AP ](Y-1800)-b [(A P)] population estimate year estimated maximum population intercept parameter response coefficient = year for 50% maximum = year for 75% maximum Year Log plot of population Notes: 10" = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression ----------= projection 2000 2050 P Y = A= b = c = Yoso Y0.50 Y0.75 Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Georgia Year Population 1790 83,000 1800 163,000 1810 252,000 1820 341,000 1830 517,000 1840 691,000 1850 906,000 1860 1,057,000 1870 1,184,000 1880 1,542,000 1890 1,837,000 1900 2,216,000 1910 2,609,000 1920 2,896,000 1930 2,909,000 1940 3,124,000 1950 3,445,000 1960 3,943,000 1970 4,590,000 1980 5,463,000 1990 6,478,000 Parameter Estimates A 32,400,000 b 4.15 c 0.0141 YO.s0 2093 Y0.75 2172 1800 1850 1900 1950 2000 2050 Year Linear plot of population 100 10-1 ~ 2 A P= 1 + e b-c(Y-1800) -1! - 1800 1850 1900 1950 2000 2050 In (AP = c(Y-1800)-b [(A P) P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Y.50 = year for 50% maximum Yo.75 = year for 75% maximum Year Log plot of population Notes: 101 = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression ----------= projection I I I I A = 32,400,000 SI*0 O I I I I Overman, Pirozzoli & Thourot, 1996 ,v Population Trends for the United States Hawaii Year Population 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 -- 1900 154,000 1910 192,000 1920 256,000 1930 368,000 1940 423,000 1950 500,000 1960 633,000 1970 769,000 1980 965,000 1990 1,108,000 Parameter Estimates A 2,550,000 b 5.48 c 0.0275 YO.s0 1999 Y0.75 2039 0.5 - 0.0 - 1800 101 A P 1 + eb 1 + eb-c(Y-1800) 10-2 1 1800 I P) = c(Y- 1800)-b P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo.5o = year for 50% maximum Y0.75 = year for 75% maximum 1850 1900 1950 2000 2050 Year Linear plot of population I I I I A = 2,550,000 / de .0 I I I 1850 1900 1950 2000 2050 Year Log plot of population Notes: 10-1 = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression ----------= projection Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Idaho 1.4 1.2 1.0 0 - 0.8 E o 0.6 . 0.4 0 a- Year Population 1790 1800 1810 1820 1830 1840 1850 1860 -- 1870 15,000 1880 33,000 1890 89,000 1900 162,000 1910 326,000 1920 432,000 1930 445,000 1940 525,000 1950 589,000 1960 667,000 1970 713,000 1980 944,000 1990 1,007,000 Parameter Estimates A - b -- c -- Y0.50 Y0.75 -- A P= 1 + eb-c(Y-1800) In PA c(Y -1800)-b p = Y = A = b = c = Yoso Y0.50 Y0.75 population estimate year estimated maximum population intercept parameter response coefficient = year for 50% maximum = year for 75% maximum I- 0.2 - 0.0 1800 I I I Idaho 0 0 0 0 0 00 0 0 O0 I no I I I 1850 1900 1950 2000 Year Linear plot of population Notes: no apparent logistic trend 2050 Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Illinois Year Population 1790 1800 -- 1810 12,000 1820 55,000 1830 157,000 1840 476,000 1850 851,000 1860 1,712,000 1870 2,540,000 1880 3,078,000 1890 3,826,000 1900 4,822,000 1910 5,639,000 1920 6,485,000 1930 7,631,000 1940 7,897,000 1950 8,712,000 1960 10,081,000 1970 11,114,000 1980 11,427,000 1990 11,431,000 Parameter Estimates A 12,500,000 b 3.87 c 0.0330 Yo.50 1917 Yo.75 1951 P= b-c(Y ) I eb-c(Y-1800) 2 0 L 1800 1850 1900 1950 2000 2050 Year Linear plot of population / / 0 10-2 1 0 1800 11 / A = 12,500,000 0 850 1900 1950 2000 2050 Year Log plot of population In c (Y 1800)-b [(A P)J P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo.50 = year for 50% maximum Yo.7s = year for 75% maximum Notes: 10" = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression ---------= projection Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Indiana Year Population 1790 -- 1800 6,000 1810 25,000 1820 147,000 1830 343,000 1840 686,000 1850 988,000 1860 1,350,000 1870 1,681,000 1880 1,978,000 1890 2,192,000 1900 2,516,000 1910 2,701,000 1920 2,930,000 1930 3,239,000 1940 3,428,000 1950 3,934,000 1960 4,662,000 1970 5,194,000 1980 5,490,000 1990 5,544,000 Parameter Estimates A -- b -- c C -- Yo.50 Yo.75 -- A P= 1+ eb-c(Y-1800) In P = c(Y 1800) b .(A-P)J P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo.5o = year for 50% maximum 6 Indiana 00 0 4 0 2 O 0 0 0 1 0 0 Al 1_ __ I I II 1800 1850 1900 1950 2000 2050 Year Linear plot of population Notes: no apparent logistic trend = year for 75% maximum Overman, Pirozzoli & Thourot, 1996 Yo.75 Population Trends for the United States Iowa Year Population 1790 1800 1810 1820 1830 -- 1840 43,000 1850 192,000 1860 675,000 1870 1,194,000 1880 1,625,000 1890 1,912,000 1900 2,232,000 1910 2,225,000 1920 2,404,000 1930 2,471,000 1940 2,538,000 1950 2,621,000 1960 2,758,000 1970 2,824,000 1980 2,914,000 1990 2,777,000 Parameter Estimates A -- b -- c -- Y0.50 Y0.75 -- A 1 + eb-c(Y-1800) In[ ( = c(Y-1800)-b 0) ' 2.0 E g 1.5- . 1.0 0 0.5 0.0 I- 1800 P = population estimate Y = year A = estimated maximum population b = c = Yo.50 Y0.75 1850 1900 1950 2000 2050 Year Linear plot of population Notes: no apparent logistic trend intercept parameter response coefficient = year for 50% maximum = year for 75% maximum Iowa 00 0 0000 00 0 0 0 0 0 Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Kansas Year Population 1790 -- 1800 1810 1820 1830 1840 1850 -- 1860 107,000 1870 364,000 1880 996,000 1890 1,428,000 1900 1,470,000 1910 1,691,000 1920 1,769,000 1930 1,881,000 1940 1,801,000 1950 1,905,000 1960 2,179,000 1970 2,247,000 1980 2,364,000 1990 2,478,000 Parameter Estimates A -- b -- c -- Y0.50 YO.75 -- A P= 1+ eb-c(Y-1800) In p) = c(Y 1800)-b P Y = A= b = c = Y0.50 Y0.75 2.5 2.0 1.5 1.0 0.0 I- 1800 population estimate year estimated maximum population intercept parameter response coefficient = year for 50% maximum = year for 75% maximum 1850 1900 1950 2000 Year Linear plot of population Notes: no apparent logistic trend I I I I Kansas 00 o 00 00 0 0 10 I I I 2050 Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Kentucky Year Population 1790 74,000 1800 221,000 1810 407,000 1820 564,000 1830 688,000 1840 780,000 1850 982,000 1860 1,156,000 1870 1,321,000 1880 1,649,000 1890 1,859,000 1900 2,147,000 1910 2,290,000 1920 2,417,000 1930 2,615,000 1940 2,846,000 1950 2,945,000 1960 3,038,000 1970 3,219,000 1980 3,661,000 1990 3,685,000 Parameter Estimates A 4,340,000 b 2.12 c 0.0917 Yo.50 1908 Yo.7s 1964 A P + 1 + eb-c(Y-1800) 1800 1850 1900 1950 2000 2050 Year Linear plot of population 10-2 1800 1850 1900 1950 2000 2050 In p = c(Y-1800)-b L(A -P)J P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo.s, = year for 50% maximum Yo.7s = year for 75% maximum Year Log plot of population Notes: 10'1 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression --------= projection I I I I A = 4,340,000 I I I Overman, Pirozzoli & Thourot, 1996 I Population Trends for the United States Louisiana Year Population 1790 1800 -- 1810 77,000 1820 153,000 1830 216,000 1840 352,000 1850 518,000 1860 708,000 1870 727,000 1880 940,000 1890 1,119,000 1900 1,382,000 1910 1,656,000 1920 1,799,000 1930 2,102,000 1940 2,364,000 1950 2,684,000 1960 3,257,000 1970 3,641,000 1980 4,206,000 1990 4,220,000 Parameter Estimates A 7,940,000 b 3.63 c 0.0202 Y.50 1980 Y0.75 2034 1 + eb-c(Y-1800) In -P-\= c(Y-O1800)-b (A P)J P = population estimate Y = year A = estimated maximum population b = c = Yo.5o Yo.75 intercept parameter response coefficient = year for 50% maximum = year for 75% maximum 0 -.%o I I I I 1800 1850 1900 1950 2000 2050 Year Linear plot of population A = 7,940,000 101 - 100 10- - 0 10-2 I I I 1800 1850 1900 1950 2000 2050 Year Log plot of population Notes: 101' = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression ---------= projection Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Maine Year Population 1790 97,000 1800 152,000 1810 229,000 1820 298,000 1830 399,000 1840 502,000 1850 583,000 1860 628,000 1870 627,000 1880 649,000 1890 661,000 1900 694,000 1910 742,000 1920 768,000 1930 797,000 1940 847,000 1950 914,000 1960 969,000 1970 992,000 1980 1,125,000 1990 1,228,000 Parameter Estimates A 5,450,000 b 2.53 c 0.0063 Yo.so 2200 Yo.75 2375 1.5 " 1.0 0.U 1800 A P 1 + eb-c(Y-1800) 10-2 L 1800 1850 1900 1950 2000 Year Linear plot of population 1850 1900 1950 2050 In ] = c(Y-1800)-b [(A P) ] P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo.0 = year for 50% maximum Yo.75 = year for 75% maximum Year Log plot of population Notes: 10' = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression ----------= projection Maine -f / 0 t 1 .e I II 2000 2050 I I I I Overman, Pirozzoli & Thourot, 1996 n rI Population Trends for the United States Maryland Year Population 1790 320,000 1800 342,000 1810 381,000 1820 407,000 1830 447,000 1840 470,000 1850 583,000 1860 687,000 1870 781,000 1880 935,000 1890 1,042,000 1900 1,188,000 1910 1,295,000 1920 1,450,000 1930 1,632,000 1940 1,821,000 1950 2,343,000 1960 3,101,000 1970 3,922,000 1980 4,217,000 1990 4,781,000 Parameter Estimates A 5,580,000 b 7.81 c 0.503 Yo.5o 1955 Yo.75 1977 A P= 1+e b-c(Y-1800) 0 - 1800 1850 1900 1950 2000 2050 Year Linear plot of population 10-2 1800 1850 1900 1950 n (A = (Y-1800)-b [(A P) J P = population estimate Y = year A = estimat'er maximuim 1rr1l- t Year Log plot of population Notes: popua on 10 = 10% of maxnnu i 1 n-i rn, f 2000 2050 Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Massachusetts Year Population 1790 379,000 1800 423,000 1810 472,000 1820 523,000 1830 610,000 1840 738,000 1850 995,000 1860 1,231,000 1870 1,457,000 1880 1,783,000 1890 2,239,000 1900 2,805,000 1910 3,366,000 1920 3,852,000 1930 4,250,000 1940 4,317,000 1950 4,691,000 1960 5,149,000 1970 5,689,000 1980 5,737,000 1990 6,016,000 Parameter Estimates A 6,580,000 b 3.18 c 0.0284 Yo.50 1912 Yo.75 1951 0 L- 1800 1n-2 1 + c(Y ) 1 + eb-c(Y-1800) 1850 1900 1950 2000 2050 Year Linear plot of population 1800 1850 1900 1950 2000 2050 In -P = c(Y -1800)-b [(A P)] P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo.5 = year for 50% maximum Yo., = year for 75% maximum Year Log plot of population Notes: 10"1 = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression ---------= projection I I I I A = 6,580,000 I I I I Overman, Pirozzoli & Thourot, 1996 I V Population Trends for the United States Michigan Year Population 1790 1800 -- 1810 5,000 1820 9,000 1830 32,000 1840 212,000 1850 398,000 1860 749,000 1870 1,184,000 1880 1,637,000 1890 2,094,000 1900 2,421,000 1910 2,810,000 1920 3,668,000 1930 4,842,000 1940 5,256,000 1950 6,372,000 1960 7,823,000 1970 8,875,000 1980 9,262,000 1990 9,295,000 Parameter Estimates A 11,900,000 b 4.60 c 0.0322 Yo.5o 1943 Yo.75 1977 1 + eb-c(Y-1800) 21 0 0 1800 10-2 /. 1800 1850 1900 1950 2000 2050 Year Linear plot of population 1850 1900 1950 2000 2050 n (A = (Y- 1800)- b [(A P)] population estimate year estimated maximum population intercept parameter response coefficient = year for 50% maximum = year for 75% maximum Year Log plot of population Notes: 10" = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression --------= projection p = Y = A= b = c = Yo.5o Yo.75 Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Minnesota Year Population 1790 -- 1800 1810 1820 1830 1840 -- 1850 6,000 1860 172,000 1870 440,000 1880 781,000 1890 1,310,000 1900 1,751,000 1910 2,076,000 1920 2,387,000 1930 2,564,000 1940 2,792,000 1950 2,982,000 1960 3,414,000 1970 3,805,000 1980 4,076,000 1990 4,375,000 Parameter Estimates A 4,540,000 b 4.20 c 0.0345 Yo0.0 1922 Yo.75 1953 1 b-c(Y ) 1 + e b-c(Y-1800) In P = c(Y-1800)-b [(A P) P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Y0.50 = year for 50% maximum Y0.75 = year for 75% maximum 00- 185 1800 1850 1900 1950 2000 2050 Year Linear plot of population 10-2 I I I 1800 1850 1900 1950 2000 2050 Year Log plot of population Notes: 10" = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression --------= projection I I I I Minnesota 4 - I I I A =4,540,000 I I A = 4,540,000 O / 0 , Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Mississippi Year Population 1790 -- 1800 8,000 1810 31,000 1820 75,000 1830 137,000 1840 376,000 1850 607,000 1860 791,000 1870 828,000 1880 1,132,000 1890 1,290,000 1900 1,551,000 1910 1,797,000 1920 1,791,000 1930 2,010,000 1940 2,184,000 1950 2,179,000 1960 2,178,000 1970 2,217,000 1980 2,521,000 1990 2,573,000 Parameter Estimates A 2,570,000 b 2.69 c 0.0303 Y0.s0 1889 YO.75 1925 1 + eb-c(Y-1800) n (AP) c(Y-1800)- b [(A P)j P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo.0 = year for 50% maximum Y0.7 = year for 75% maximum 2.51- 1.5 - 1.0 - 0.5 - 1800 1850 1900 1950 2000 2050 Year Linear plot of population 10-1 0 e 10-2 10 I 1800 1850 1900 1950 2000 2050 Year Log plot of population Notes: 10" = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression --------= projection I I I I uU- I I1 I A = 2,570,000 / II li .. -. Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Missouri Year Population 1790 -- 1800 -- 1810 20,000 1820 67,000 1830 140,000 1840 384,000 1850 682,000 1860 1,182,000 1870 1,721,000 1880 2,168,000 1890 2,679,000 1900 3,107,000 1910 3,293,000 1920 3,404,000 1930 3,629,000 1940 3,785,000 1950 3,995,000 1960 4,320,000 1970 4,677,000 1980 4,917,000 1990 5,117,000 Parameter Estimates A 6,620,000 b 2.48 c 0.0196 YO.so 1927 Yo.75 1983 A P=1+ 1 + b-c(Y-1800) 1 1800 U--1850 1800 1850 1900 1950 2000 Year Linear plot of population 10-2 L0 I I I 1800 1850 1900 1950 2000 InP = i=c(Y-1800)-bpA [(A P) e P = population estimate Y = A= b = c = Yo.50 \I year estimated maximum population intercept parameter response coefficient = year for 50% maximum .. _- l 2 t"fy/ .. -" ..... . 0.75 year for /79/o maximum Year Log plot of population Notes: 10" = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression I I I I Missouri - ooo, / /0 I I A e" 2050 A = 6,620,000 eo ^60 0 2050 Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Montana Year Population 1.0 I I 1790 1800 -- 0.8 Montana o0 1810 1820 0- 0 1830 -- 0.6 - 1840 E 1850 0.4 1860 -- 1870 21,000 0 0 1880 39,000 0.2 1890 143,000 0 1900 243,000 0.0 00 1 1910 376,000 1800 1850 1900 1950 2000 2050 1920 549,000 1930 538,000 Year 1940 559,000 Linear plot of population Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Overman, Pirozzoli & Thourot, 1996 Nebraska 2.0 1.5 C .2 E 1.0 C o 0o o 0.5 a- - 0.0 L 1800 i I I i Nebraska 00 0 00 0 0 I 0 I I I 1850 1900 1950 2000 2050 Year Linear plot of population Parameter Estimates A -- b -- c -- Y0.50 Y0.75 -- A P= 1 eb-c(Y-1800) [ P = c(Y-1800)-b [(A P) P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Y0.50 = year for 50% maximum Yo.75 = year for 75% maximum Notes: no apparent logistic trend Population Trends for the United States Nevada Year Population 1790 -- 1800 1810 1820 1830 1840 1850 -- 1860 7,000 1870 42,000 1880 62,000 1890 47,000 1900 42,000 1910 82,000 1920 77,000 1930 91,000 1940 110,000 1950 160,000 1960 285,000 1970 489,000 1980 800,000 1990 1,202,000 Parameter Estimates A 2,820,000 b 12.2 c 0.0624 YO.s0 1995 Yo.75 2012 0.5 - 0.0 - 1800 A P= c 1+ eb-c(Y-1800) 10-2 I 1800 In [P = c(Y-1800)-b n(A P) P = population estimate Y = year A = estimated maximum population b = c = Y0.50 Yo.75 intercept parameter response coefficient = year for 50% maximum = year for 75% maximum 1850 1900 1950 2000 2050 Year Linear plot of population 1850 1900 1950 2000 2050 Year Log plot of population Notes: 10' = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression --------= projection A = 2,820,000 / / / / 0 000 p 0I O / Overman, Pirozzoli & Thourot, 1996 I I Population Trends for the United States New Hampshire 1.4 1.2 1.0 C o S0.8 E 0.6 E 0.4 0 a- Year Population 1790 142,000 1800 184,000 1810 214,000 1820 244,000 1830 269,000 1840 285,000 1850 318,000 1860 326,000 1870 318,000 1880 347,000 1890 377,000 1900 412,000 1910 431,000 1920 443,000 1930 465,000 1940 492,000 1950 533,000 1960 607,000 1970 738,000 1980 921,000 1990 1,109,000 Parameter Estimates A -- b -- c -- Yo.50 Yo.75 -- A P= 1 + eb-c(Y-1800) I(n P = c(Y-1800)-b P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo.0 = year for 50% maximum Yo.75 = year for 75% maximum U.0 1800 1850 1900 1950 2000 Year Linear plot of population Notes: no apparent logistic trend New Hampshire 0 0 0 0 -- - 00000000 I I I I I II 2050 Overman, Pirozzoli & Thourot, 1996 nr Population Trends for the United States New Jersey Year Population 1790 184,000 1800 211,000 1810 246,000 1820 278,000 1830 321,000 1840 373,000 1850 490,000 1860 672,000 1870 906,000 1880 1,131,000 1890 1,445,000 1900 1,884,000 1910 2,537,000 1920 3,156,000 1930 4,041,000 1940 4,160,000 1950 4,835,000 1960 6,067,000 1970 7,168,000 1980 7,365,000 1990 7,730,000 Parameter Estimates A 10,000,000 b 4.48 c 0.0308 Yo.50 1947 Yo.,5 1983 1 + eb-c(Y-1800) 1800 1850 1900 1950 2000 2050 Year Linear plot of population 101 10-2 k 1800 In (A =c(Y-1800)-b [(A P) P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Y0.0 = year for 50% maximum Y.75 = year for 75% maximum I 1 A= 10,000,000 I I 1850 1900 1950 2000 2050 Year Log plot of population Notes: 10"' = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression --------= projection Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States New Mexico Year Population 1790 1800 1810 1820 1830 1840 -- 1850 62,000 1860 94,000 1870 92,000 1880 120,000 1890 160,000 1900 195,000 1910 327,000 1920 360,000 1930 423,000 1940 532,000 1950 681,000 1960 951,000 1970 1,016,000 1980 1,303,000 1990 1,515,000 Parameter Estimates A 3,480,000 b 5.50 c 0.0276 Y0.50 1999 Yo.75 2039 P= + 1 + eb-c(Y-1800) 2.5 . 2.0 E d 1.5 - 0 . 0o 1.0 - 0.5 0.0 - 1800 1850 1900 1950 2000 2050 Year Linear plot of population 10-2 1 / 1 1800 1850 1900 1950 2000 2050 In = c(Y- 1800)-b [(A -P)J P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo., = year for 50% maximum Y.75 = year for 75% maximum Year Log plot of population Notes: 10" = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression ----------= projection 1 I I I A =3,480,000 / - ~ I I Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States New York Year Population 1790 340,000 1800 589,000 1810 959,000 1820 1,373,000 1830 1,919,000 1840 2,429,000 1850 3,097,000 1860 3,881,000 1870 4,383,000 1880 5,083,000 1890 6,003,000 1900 7,269,000 1910 9,114,000 1920 10,385,000 1930 12,588,000 1940 13,479,000 1950 14,830,000 1960 16,782,000 1970 18,237,000 1980 17,558,000 1990 17,990,000 Parameter Estimates A 21,100,000 b 3.34 c 0.0282 YO.s0 1918 Yo.75 1957 1 + eb-c(Y-1800) 1800 1850 1900 1950 2000 2050 Year Linear plot of population 10-2 18C ln[ (A (Y-1800)-b [(A P) P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Y0.50 = year for 50% maximum Y7,5 = year for 75% maximum 1850 1900 1950 2000 2050 Year Log plot of population Notes: 10'" = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression --------= projection I I I A =21,100,000 - 4- I I I Overman, Pirozzoli & Thourot, 1996 )0 Population Trends for the United States North Carolina Year Population 1790 394,000 1800 478,000 1810 556,000 1820 639,000 1830 738,000 1840 753,000 1850 869,000 1860 993,000 1870 1,071,000 1880 1,400,000 1890 1,618,000 1900 1,894,000 1910 2,206,000 1920 2,559,000 1930 3,170,000 1940 3,572,000 1950 4,062,000 1960 4,556,000 1970 5,082,000 1980 5,882,000 1990 6,629,000 Parameter Estimates A 17,300,000 b 3.82 c 0.0175 YO.s0 2018 Yo.75 2081 2 1800 1800 A P= 1 + eb-c(Y-1800) 10-2 L 1800 1850 1900 1950 2000 2050 Year Linear plot of population 1850 1900 1950 2000 2050 In P = c(Y-1800)-b [(A P)] P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo0.s = year for 50% maximum Yo.75 = year for 75% maximum Year Log plot of population Notes: 10"' = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression ----------= projection Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States North Dakota Year Population 1790 1800 1810 1820 1830 1840 1850 -- 1860 5,000 1870 2,000 1880 37,000 1890 191,000 1900 319,000 1910 577,000 1920 647,000 1930 681,000 1940 642,000 1950 620,000 1960 632,000 1970 618,000 1980 653,000 1990 639,000 Parameter Estimates A -- b -- c -- Yo.50 Yo0.75 -- A P= 1 + eb-c(Y-1800) I" ( p) c(Y-1800)-b P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo.0 = year for 50% maximum Yo.75 = year for 75% maximum 0.8 0.6 0.4 0.2 0.0 1800 1850 1900 1950 2000 Year Linear plot of population Notes: no apparent logistic trend I I I I North Dakota 0 0 I I I 2050 Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Oklahoma Year Population 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 -- 1890 259,000 1900 790,000 1910 1,657,000 1920 2,028,000 1930 2,396,000 1940 2,336,000 1950 2,233,000 1960 2,328,000 1970 2,559,000 1980 3,025,000 1990 3,146,000 Parameter Estimates A -- b -- c -- Yo.50 Yo.75 -- A P= 1 + eb-c(Y-1800) In P- cP(Y-1800)-b [(A P) P = Y = A= b = c = Yo.5o Yo.75 population estimate year estimated maximum population intercept parameter response coefficient = year for 50% maximum = year for 75% maximum 3.0 2.5 2.0 1.5 1.0 0.5 0.0 18C 1850 1900 1950 2000 2050 Year Linear plot of population Notes: no apparent logistic trend 0 Oklahoma 0 OQO 00 0 0 0 I I I I Overman, Pirozzoli & Thourot, 1996 )0 Population Trends for the United States Ohio Year Population 1790 -- 1800 45,000 1810 231,000 1820 581,000 1830 938,000 1840 1,519,000 1850 1,980,000 1860 2,340,000 1870 2,665,000 1880 3,198,000 1890 3,672,000 1900 4,158,000 1910 4,767,000 1920 5,759,000 1930 6,647,000 1940 6,908,000 .1950 7,947,000 1960 9,706,000 1970 10,652,000 1980 10,798,000 1990 10,847,000 Parameter Estimates A 16,000,000 b 3.12 c 0.0213 Yo.5o 1947 Yo.75 1998 A P= 1 + eb-c(Y-1800) 10 1- 1800 1850 1900 1950 2000 Year Linear plot of population lU - 1 00 10-2 18 I 1800 1850 1900 1950 In p = c(Y-1800)-b [(A P)] P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo0., = year for 50/o maximum Yo.7 = year for 75% maximum Year Log plot of population Notes: 101 = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression --------= projection Ohio n A6' I I I I 2050 2050 I I I I A = 16,000,000 I I 2000 Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Oregon Year Population 1790 -- 1800 1810 1820 1830 1840 -- 1850 12,000 1860 52,000 1870 91,000 1880 175,000 1890 318,000 1900 414,000 1910 673,000 1920 783,000 1930 954,000 1940 1,090,000 1950 1,521,000 1960 1,769,000 1970 2,091,000 1980 2,633,000 1990 2,842,000 Parameter Estimates A 4,570,000 b 5.47 c 0.0315 YO.50 1973 Yo.75 2008 Overman, Pirozzoli & Thourot, 1996 0 L 1800 A P1 = 1 + eb-c(Y-1800) In p- = c(Y-1800)-b [(A P)J P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo.5o = year for 50% maximum Yo.75 = year for 75% maximum 10-2 l 1800 1850 1900 1950 2000 2050 Year Linear plot of population 1850 1900 1950 2000 2050 Year Log plot of population Notes: 101 = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression --------= projection I I I4, A = 4,570,000 / in I I I Population Trends for the United States Pennsylvania Year Population 1790 434,000 1800 602,000 1810 810,000 1820 1,049,000 1830 1,348,000 1840 1,724,000 1850 2,312,000 1860 2,906,000 1870 3,522,000 1880 4,283,000 1890 5,258,000 1900 6,302,000 1910 7,665,000 1920 8,720,000 1930 9,631,000 1940 9,900,000 1950 10,498,000 1960 11,319,000 1970 11,794,000 1980 11,864,000 1990 11,882,000 Parameter Estimates A 12,700,000 b 3.18 c 0.0323 Yo.5o 1898 Yo.75 1932 1 + b-c(Y ) I+ eb-c(Y-1800) 21 0 1800 101 1850 1900 1950 2000 2050 Year Linear plot of population 10-2 I 1 1800 1850 1900 1950 2000 2050 n (P = c(Y-1800)-b [(A P)] P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Y0.50 = year for 50% maximum Yo.75 = year for 75% maximum Year Log plot of population Notes: 10"1 = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression --------= projection S 1 I A = 12,700,000 / | | | Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Rhode Island Year Population 1790 69,000 1800 69,000 1810 77,000 1820 83,000 1830 97,000 1840 109,000 1850 148,000 1860 175,000 1870 217,000 1880 277,000 1890 346,000 1900 429,000 1910 543,000 1920 604,000 1930 687,000 1940 713,000 1950 792,000 1960 859,000 1970 947,000 1980 947,000 1990 1,003,000 Parameter Estimates A 1,100,000 b 3.41 c 0.0297 Yo.50 1915 Yo.75 1952 1 + eb-c(Y-1800) 0.2 0.0 1800 10-2 1 1800 1850 1900 1950 2000 2050 Year Linear plot of population 1850 1900 1950 2000 2050 In P = c(Y-1800)-b [(A -P)J P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo.0o = year for 50% maximum Y0.7s = year for 75% maximum Year Log plot of population Notes: 10' = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression ---------= projection Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States South Carolina Year Population 1790 249,000 1800 346,000 1810 415,000 1820 503,000 1830 581,000 1840 594,000 1850 669,000 1860 704,000 1870 706,000 1880 996,000 1890 1,151,000 1900 1,340,000 1910 1,515,000 1920 1,684,000 1930 1,739,000 1940 1,900,000 1950 2,117,000 1960 2,383,000 1970 2,591,000 1980 3,122,000 1990 3,487,000 Parameter Estimates A 16,700,000 b 3.82 c 0.0129 Yo.5o 2097 Yo.7s 2182 0 L 1800 A P c(Y 1 + eb-c(Y-1800) In P = c(Y- 1800)- b [(A P)] P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo0. = year for 50%o maximum Y0.75 = year for 75% maximum 1850 1900 1950 2000 2050 Year Linear plot of population A = 16,700,000 101 - 100 10-1 0- 10-2 I I I 1800 1850 1900 1950 2000 2050 Year Log plot of population Notes: 10' = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression --------= projection Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Overman, Pirozzoli & Thourot, 1996 South Dakota Year Population 1790 1800 1810 1820 1830 1840 1850 1860 -- 1870 12,000 1880 98,000 1890 349,000 1900 402,000 1910 584,000 1920 637,000 1930 693,000 1940 643,000 1950 653,000 1960 681,000 1970 666,000 1980 691,000 1990 696,000 Parameter Estimates A -- b -- c -- Yo.50 Yo.75 -- A P= 1+ eb-c(Y-1800) n = c(Y-1800)-b [(A P)] P = population estimate Y = year A = estimated maximum b = intercept parameter c = response coefficient Yo0. = year for 50% maxi Yo.75 = year for 75% maxi 0.8 F r o 0.6 E e- . 0.4 a o Q- n i F Al I u.u 1800 I I I I South Dakota 000000 0 0 0 0 I tie I I| 1850 1900 1950 2000 2050 Year Linear plot of population Notes: Spopi imum imum nation no apparent logistic trend Population Trends for the United States Texas Year Population 1790 -- 1800 1810 1820 1830 1840 -- 1850 213,000 1860 604,000 1870 819,000 1880 1,592,000 1890 2,236,000 1900 3,049,000 1910 3,897,000 1920 4,663,000 1930 5,825,000 1940 6,415,000 1950 7,711,000 1960 9,580,000 1970 11,197,000 1980 14,229,000 1990 16,987,000 Parameter Estimates A 79,900,000 b 5.56 c 0.0223 YO.50 2049 Yo.5 2099 10 - 180 1800 1850 1900 1950 2000 2050 Year Linear plot of population 1 + eb-c(Y-1800) 10-2 1800 1850 1900 1950 2000 2050 In- P = c(Y-1800)- b [(A P). P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Y0.5 = year for 50% maximum Yo75 = year for 75% maximum Year Log plot of population Notes: 10- = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression --------= projection Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Utah Year Population 1790 1800 1810 1820 1830 1840 -- 1850 11,000 1860 40,000 1870 87,000 1880 144,000 1890 211,000 1900 277,000 1910 373,000 1920 449,000 1930 508,000 1940 550,000 1950 689,000 1960 891,000 1970 1,059,000 1980 1,461,000 1990 1,723,000 Parameter Estimates A 9,570,000 b 6.06 c 0.0238 Yo.5o 2054 Yo.7s 2100 0 - 1800 A P= 1 + eb-c(Y-1800) 10-2 180 ln[(A = c(Y-1800)- b [(A P) P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Y0.0 = year for 50%ol maximum Yo.7s = year for 75% maximum 10 1850 1900 1950 2000 2050 Year Linear plot of population 1850 1900 1950 2000 2050 Year Log plot of population Notes: 101 = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression --------= projection I I I I A = 9,570,000 Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Vermont Year Population 1790 85,000 1800 154,000 1810 218,000 1820 236,000 1830 281,000 1840 292,000 1850 314,000 1860 315,000 1870 331,000 1880 332,000 1890 332,000 1900 344,000 1910 356,000 1920 352,000 1930 360,000 1940 359,000 1950 378,000 1960 390,000 1970 444,000 1980 511,000 1990 563,000 Parameter Estimates A -- b -- c -- Yo.50 1Y.75 -- A P= 1 + eb-c(Y-1800) In[ = c(Y-1800)-b P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Y.50 = year for 50% maximum Yo.75 = year for 75% maximum 0.8 I U, . 0.6 E . 0.4 -i 0 QL n n ) 0.0 L I I I I Vermont 0 0 0 -O 00o00000000000 .>0 I I I I 1800 1850 1900 1950 2000 2050 Year Linear plot of population Notes: no apparent logistic trend Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Virginia Year Population 1790 692,000 1800 808,000 1810 878,000 1820 938,000 1830 1,044,000 1840 1,025,000 1850 1,119,000 1860 1,220,000 1870 1,225,000 1880 1,513,000 1890 1,656,000 1900 1,854,000 1910 2,062,000 1920 2,309,000 1930 2,422,000 1940 2,678,000 1950 3,319,000 1960 3,967,000 1970 4,648,000 1980 5,347,000 1990 6,187,000 Parameter Estimates A 10,600,000 b 5.00 c 0.0279 Yo.so 1979 Yo.7s 2019 A P1 1 + eb-c(Y-1800) 2 1 18( 1850 1900 1950 2000 2050 Year Linear plot of population 10-2 L1 1800 1850 1900 1950 In P) c(Y- 1800)-b S(A -P)J P = population estimate Y = year A = estimated maximum population b = c = Y0.50 Yo.75 intercept parameter response coefficient = year for 50% maximum = year for 75% maximum Year Log plot of population Notes: 10" = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression ----------= projection I I I I S Virginia / / / 000oo00 ,0000000 ./ -- r 2000 2050 I I | Overman, Pirozzoli & Thourot, 1996 8 30 Population Trends for the United States Tennessee Overman, Pirozzoli & Thourot, 1996 Year Population 1790 36,000 1800 106,000 1810 262,000 1820 423,000 1830 682,000 1840 829,000 1850 1,003,000 1860 1,110,000 1870 1,259,000 1880 1,542,000 1890 1,768,000 1900 2,021,000 1910 2,185,000 1920 2,338,000 1930 2,617,000 1940 2,916,000 1950 3,292,000 1960 3,567,000 1970 3,924,000 1980 4,591,000 1990 4,877,000 Parameter Estimates A 17,800,000 b 3.42 c 0.0129 Y0.s0 2065 Yo.75 2150 A P1 + 1 + eb-c(Y-1800) p = Y = A= b = c = Yo.5o Yo.75 1800 1850 1900 1950 2000 2050 Year Linear plot of population S -2 I- iu * population estimate year estimated maximum population intercept parameter response coefficient = year for 500/ maximum = year for 75% maximum |U ---- --- ---- -- -- ---- 1800 1850 1900 1950 2000 20 Year Log plot of population Notes: 101 = 10% of maximum population 100 = 50% of maximum population 10' = 90% of maximum population = regression --------- projection 50 I I I I A = 17,800,000 - ^ 0 I I I I I In (A = c(Yl-1800)-b Population Trends for the United States Washington Year Population 1790 1800 1810 1820 1830 1840 -- 1850 1,000 1860 12,000 1870 24,000 1880 75,000 1890 357,000 1900 518,000 1910 1,142,000 1920 1,357,000 1930 1,563,000 1940 1,736,000 1950 2,379,000 1960 2,853,000 1970 3,409,000 1980 4,132,000 1990 4,867,000 Parameter Estimates A 7,860,000 b 5.70 c 0.0323 YO.s0 1977 Yo.75 2011 1 + b-c(Y 1 + e b-c(Y-1800) 0 L 1800 10-2 1800 1850 1900 1950 2000 2050 Year Linear plot of population 1850 1900 1950 2000 2050 In (AP)=c(Y-1800)-b [(A P)] = P = population estimate Y = year A = estimated maximum population b = c = Yo.50 Yo.75 intercept parameter response coefficient = year for 50% maximum = year for 75% maximum Year Log plot of population Notes: 10- = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression --------= projection Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States West Virginia Year Population 1790 56,000 1800 79,000 1810 105,000 1820 137,000 1830 177,000 1840 225,000 1850 302,000 1860 377,000 1870 442,000 1880 618,000 1890 763,000 1900 959,000 1910 1,221,000 1920 1,464,000 1930 1,729,000 1940 1,902,000 .1950 2,006,000 1960 1,860,000 1970 1,744,000 1980 1,950,000 1990 1,793,000 Parameter Estimates A -- b -- c -- Y0.50 Y0.75 A P= 1 + eb-c(Y-1800) In[P = c(Y-1800)-b [(A P) P Y = A = b = c = C -- Yo.5so Y0.7S population estimate year estimated maximum population intercept parameter response coefficient = year for 50% maximum = year for 75% maximum .0- I I I I 2.0 West Virginia 0 0 00 C S1.5 o E 0 . 1.0 0 . 0 o o S0.5 0 0.0 00 1800 1850 1900 1950 2000 2( 050 Year Linear plot of population Notes: no apparent logistic trend Overman, Pirozzoli & Thourot, 1996 Population Trends for the United States Wisconsin Year Population 1790 1800 1810 1820 1830 -- 1840 31,000 1850 305,000 1860 776,000 1870 1,055,000 1880 1,315,000 1890 1,693,000 1900 2,069,000 1910 2,334,000 1920 2,632,000 1930 2,939,000 1940 3,138,000 1950 3,435,000 1960 3,952,000 1970 4,418,000 1980 4,706,000 1990 4,892,000 Parameter Estimates A 5,650,000 b 3.49 c 0.0276 YO.s0 1926 Yo.75 1966 Overman, Pirozzoli & Thourot, 1996 0 ' 1800 A P= c 1+ eb-c(Y-1800) 10-2 1 1800 1850 1900 1950 2000 2050 Year Linear plot of population 1850 1900 1950 2000 2050 n P = c(Y-1800)-b [(A -P)J P = population estimate Y = year A = estimated maximum population b = intercept parameter c = response coefficient Yo.50 = year for 50% maximum Year Log plot of population Notes: 10'1 = 10% of maximum population 100 = 50% of maximum population 101 = 90% of maximum population = regression |