Citation
Physical, mineralogical and interfacial bonding properties of carbonate and silicate mineral aggregates used in portland cement concrete in Florida

Material Information

Title:
Physical, mineralogical and interfacial bonding properties of carbonate and silicate mineral aggregates used in portland cement concrete in Florida
Creator:
Graves, Robin Eric, 1960- ( Dissertant )
McClellan, G. H. ( Thesis advisor )
Eades, J. L. ( Thesis advisor )
Place of Publication:
Gainesville, Fla.
Publisher:
University of Florida
Publication Date:
Copyright Date:
1991
Language:
English
Physical Description:
viii, 176 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Calcium ( jstor )
Carbonates ( jstor )
Cements ( jstor )
Construction aggregate ( jstor )
Granite ( jstor )
Limestones ( jstor )
Paste ( jstor )
Photomicrographs ( jstor )
Quartz ( jstor )
Specimens ( jstor )
Dissertations, Academic -- Geology -- UF
Geology thesis Ph. D
City of Miami ( local )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Abstract:
Physical, mineralogical, and interfacial bonding properties of carbonate and silicate mineral aggregates, which are being used in a Florida Department of Transportation (FDOT) comprehensive concrete study, were investigated to develop basic data to aid in evaluation of concrete properties. Compilation of published information on geologic and economic factors important to the Florida concrete aggregate industry was an integral part of the investigation. Physical properties reported for the aggregates include size gradation, specific gravity, unit weight, water absorption, abrasion, strength, and particle shape. Mineralogical compositions and textural properties were investigated using X-ray diffraction and petrographic microscope methods. Interfacial bonding properties of the aggregates in portland cement concrete specimens also were characterized by microscopic methods. Physical data indicate that the aggregates meet general requirements for use in concrete and reflect typical values based on historical FDOT information. Mineralogical analyses show that the aggregates have limited variability in compositions and contain few deleterious constituents. Physical properties can be related to textural characteristics which are controlled by geologic history of the materials. Microscopic studies of concrete specimens containing crushed limestone and granite aggregates suggest that a good mechanical component of cement paste-aggregate interfacial bonding is provided because of rough surface textures. Smooth surface textures of uncrushed siliceous river gravel aggregates would not provide good mechanical bonding. Limestone aggregates also appear to provide a chemical component of interfacial bonding, resulting in good attachment of cement hydration products to the aggregate surfaces. Extensive separations were evident at cement paste-silicate aggregate interfaces, suggesting a poor chemical bond. This is believed to result from the different surface chemical properties of carbonate and silicate materials. A granite aggregate treatment method, using a calcium hydroxide solution followed by drying, resulted in a higher concrete compressive strength and improved interfacial bonding with cement paste. Spectroscopic analyses indicate that this may be becaue of stronger adsorption of cations on the silicate mineral surfaces. Rapid population growth and development has caused concerns regarding aggregate resources in Florida. Increasing demands, fixed resources, expanding urban development, and increasing environmental regulation are factors that may necessitate the use of alternative aggregate sources to meet future concrete production requirements.
Thesis:
Thesis (Ph. D.)--University of Florida, 1991.
Bibliography:
Includes bibliographical references (leaves 169-175).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Robin Eric Graves.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright Robin Eric Graves. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
026492016 ( ALEPH )
25222083 ( OCLC )
AJA5445 ( NOTIS )

Downloads

This item has the following downloads:


Full Text











PHYSICAL, MINERALOGICAL AND INTERFACIAL BONDING PROPERTIES
OF CARBONATE AND SILICATE MINERAL AGGREGATES USED IN PORTLAND CEMENT CONCRETE IN FLORIDA












By

ROBIN ERIC GRAVES


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1991

















ACKNOWLEDGEMENTS


This research paper was sponsored through grants from the Florida Department of Transportation. The project was under the general administration of Mr. L.L. Smith, State Materials Engineer; Mr. R.E. Daniels, Deputy State Materials Engineer; and Dr. J.M. Armaghani, Pavement and Materials Engineer. Additional funding was provided by the Chemstar Corporation, under the administration of Mr. D.D. Walker, Vice President of Technical Services. The project directors were Dr. J.L. Eades and Dr. G.H. McClellan of the Department of Geology, University of Florida.

I extend my sincere gratitude to the many people who have given me their help and support. This project would not have been possible without the support and guidance of Dr. G.H. McClellan and Dr. J.L. Eades who served as chairman and co-chairman of my committee. our many discussions have been invaluable in carrying out this work and have broadened my education to include many other aspects of industrial mineralogy. I thank them for being my teachers and my friends. I would like to thank Dr. F.N. Blanchard and Dr. A.F. Randazzo of the Department of Geology, and Dr. B.E. Ruth of the Department of Civil Engineering for their efforts in serving as additional members of my supervisory









committee. A special thank you goes to Dr. C.C. Mathewson of the Department of Geology, Texas A&M University for the extra effort required in serving as an outside member of my committee. I would also like to thank Dr. D.M. Patrick of the Department of Geology, University of Southern Mississippi for his enthusiasm for teaching, which led to my great interest in engineering geology.

I would like to acknowledge the personnel of the

Florida Department of Transportation, State Materials Office for their assistance in aggregate and concrete testing, and the staff of the Major Analytical Instrumentation Center at the University of Florida for their assistance in conducting spectroscopic analyses. I also thank the graduate and undergraduate students in the Department of Geology who assisted me in the project and were very helpful in sample acquisition, preparation, and analysis.

I am greatly indebted to my wife Jennifer for her love, patience, understanding, and support, which have been a big part in achieving this educational goal. Her word processing skills were invaluable in the preparation of this manuscript and many others. My thanks also go to my many friends because they truly make life more enjoyable.

Finally, I would like to thank my parents for their

love, support, and encouragement to excel in my educational pursuits.


iii


















TABLE OF CONTENTS





ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . .

ABSTRACT . . . . . . . . . . . . . . . . . . . . . .

INTRODUCTION . . . . . . . . . . . . . . . . . . . .

Purpose and Scope . . . . . . . . . . . . . . .

Methods . . . . . . . . . . . . . . . . . . . .

ECONOMIC AND GEOLOGIC ASPECTS OF FLORIDA AGGREGATES


page



vi



2 4 7


. . . 17 . . . 17 . . . 18 . . . 19 . . . 20 . . . 20 . . . 21 . . . 22 . . . 22 . . . 41 . . . 42 . . . 45 . . . 47 . . . 47


Coarse Aggregate Sources . . . . . . . . . .

Taylor County Region . . . . . . . . . .

Hernando County Region . . . . . . . . .

Lee and Collier Counties Region . . . .

Dade and Broward Counties Region . . . .

Levy and Citrus Counties Region . . . .

Fine Aggregate Sources . . . . . . . . . . .

AGGREGATE PROPERTIES . . . . . . . . . . . . . . .

Physical Properties . . . . . . . . . . . . .

Mineralogical Properties . . . . . . . . . .

Sample No. 08-005 (Brooksville, Florida) Sample No. 87-145 (Miami, Florida) . . .

Sample No. 87-090 (Miami, Florida) . . .

Sample No. 12-008 (Ft. Myers, Florida) .









Sample No. 86-062 (Pembroke Pines, Florida)

Sample No. 34-106 (Gulf Hammock, Florida)

Sample No. AL-149 (Calera, Alabama) . .

Sample No. GA-177 (Tyrone, Georgia) . .

Sample No. 50-120 (Chattahoochie, Florida).

Shape Characterization.

CEMENT PASTE-AGGREGATE INTERFACIAL BONDING. . .

Literature Review. . . .

Textural Characteristics of

the Interfacial Region. . . .

Bonding of Carbonate and Silicate Aggregates

Surface Chemical Considerations .

Microtextural Studies. . . .


Aggregate Treatment Investigations .

Improvement of the Cement Paste-Silicate


Aggregate Bond. . .

Concrete Materials and Design

Aggregate Treatment Methods

Strength Testing. . .

Microscopic Examinations . . DISCUSSION. . . . . CONCLUSIONS .

REFERENCES. . . . . . .

BIOGRAPHICAL SKETCH .


. 114 . . . . .116

. . . . .120

.* . . . 130 . . . . . 134 . . . . .150

. . . . . 163

. 169 . .176


* 49

* 50 52 52

54 56 76

* 79



79 80 81 90

112

















Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

PHYSICAL, MINERALOGICAL AND INTERFACIAL BONDING PROPERTIES OF CARBONATE AND SILICATE MINERAL AGGREGATES USED IN PORTLAND CEMENT CONCRETE IN FLORIDA By

ROBIN ERIC GRAVES

August 1991

Chairman: Dr. Guerry H. McClellan Major Department: Geology

Physical, mineralogical, and interfacial bonding

properties of carbonate and silicate mineral aggregates, which are being used in a Florida Department of Transportation (FDOT) comprehensive concrete study, were investigated to develop basic data to aid in evaluation of concrete properties. compilation of published information on geologic and economic factors important to the Florida concrete aggregate industry was an integral part of the investigation.

Physical properties reported for the aggregates include size gradation, specific gravity, unit weight, water absorption, abrasion, strength, and particle shape. Mineralogical compositions and textural properties were investigated using X-ray diffraction and petrographic microscope methods. Interfacial bonding properties of the









aggregates in portland cement concrete specimens also were characterized by microscopic methods.

Physical data indicate that the aggregates meet general requirements for use in concrete and reflect typical values based on historical FDOT information. Mineralogical analyses show that the aggregates have limited vari ability in compositions and contain few deleterious constituents. Physical properties can be related to textural characteristics which are controlled by geologic history of the materials.

Microscopic studies of concrete specimens containing

crushed limestone and granite aggregates suggest that a good mechanical component of cement paste-aggregate interfacial bonding is provided because of rough surface textures. Smooth surface textures of uncrushed siliceous river gravel aggregates would not provide good mechanical bonding.

Limestone aggregates also appear to provide a chemical component of interfacial bonding, resulting in good attachment of cement hydration products to the aggregate surfaces. Extensive separations were evident at cement paste-silicate aggregate interfaces, suggesting a poor chemical bond. This is believed to result from the different surface chemical properties of carbonate and silicate minerals.

A granite aggregate treatment method, using a calcium hydroxide solution followed by drying, resulted in higher concrete compressive strength and improved interfacial


vii









bonding with cement paste. Spectroscopic analyses indicate that this may be because of stronger adsorption of cations on the silicate mineral surfaces.

Rapid population growth and development has caused concerns regarding aggregate resources in Florida. Increasing demands, fixed resources, expanding urban development, and increasing environmental regulation are factors that may necessitate the use of alternative aggregate sources to meet future concrete production requirements.


viii














INTRODUCTION


The State of Florida has experienced rapid population growth and development in recent years, and this trend is expected to continue into the future. This growth has led to tremendous needs for expansion, repair, and maintenance of transportation systems. These needs have placed great demand on both the financial and material resources of the State. Design, construction, and maintenance of the transportation infrastructure presents challenging problems to planners, engineers, and scientists responsible for its development. Continued success in providing quality transportation systems is highly dependent on the material resources available for construction.

Asphaltic and portland cement concretes are the primary materials utilized for construction of pavements and structures composing highway systems. Mineral aggregates are the major component of these materials. Rapid growth, a limited resource base, and increasing environmental restrictions on mining and processing activities are causing concern over the future availability of quality construction aggregates for concrete production within the State. As the raw materials that have traditionally been used for concrete production are depleted, new sources may have to be found to accommodate the State's transportation needs. The Florida









Department of Transportation (FDOT) has considerable experience with concrete construction using these traditional raw materials. However, the inevitable future need to use alternative resources requires that existing materials be thoroughly investigated so that aggregates from non-traditional sources can be compared with these materials to assure the satisfactory performance of future structures.


Purpose and Scope

This study is one component of a comprehensive concrete research program organized and managed by the State Materials Office of the Florida Department of Transportation. This program is designed to evaluate systematically the behavior of portland cement concretes made from Florida materials. Extensive testing of fresh and hardened concrete containing aggregates from a wide range of sources and prepared using various mix designs and admixtures is being conducted for evaluation of strength and durability characteristics at both the macroscopic and microscopic levels.

At the macroscopic level, the concrete mixtures are

being tested for strength, elastic properties, permeability, sulfate resistance, and corrosion. At the microscopic level, petrographic, electron microscopic, and chemical techniques are being used to evaluate microtextural and microstructural properties that may effect strength and durability of concrete.









one objective of this study was to characterize

concrete aggregates from major Florida source areas which are currently being utilized in the comprehensive FDOT study. The data collected will be used in the overall interpretation of results from concrete testing using various materials and mix designs and will serve as a source of basic information on fundamental characteristics of Florida concrete aggregates for future reference and comparisons with alternative source materials. Economic and geologic aspects of the Florida aggregate industry also were surveyed to provide an overview of aggregate resources and associated current and future problems.

Portland cement concrete is a composite material and its behavior is dependent upon many variables. One important aspect of composite concrete behavior is the interfacial bond between the cement paste and aggregates, which has been the subject of an increasing number of investigations in recent years. The cement paste-aggregate interfacial bond is usually considered to be the weakest component of composite concrete strength and may also be an important factor for permeability and durability (Mindess and Young, 1981). Therefore, it is important to better understand the physical and chemical properties affecting the bond between aggregates and cement hydration products formed in the cement paste.

A second objective of the research project was to

compare the interfacial bonding properties of carbonate and









silicate mineral aggregates in portland cement concrete and to better understand the effects of surface properties of aggregates on interfacial bonding. In addition, a method for improving the bond between cement paste and silicate aggregates was investigated based on surface chemical considerations.


Methods

General geology and data on Florida aggregate resources were compiled from the literature and discussions with industry analysts. This information was used to provide an overview of current resources, extraction methods, and associated technical, economic, environmental, and social factors important to the mining industry.

Limestone coarse aggregates from selected Florida

sources, which are commonly utilized in concrete production, were tested and analyzed to determine their physical, mineralogical, and textural characteristics. These are properties that are important for concrete design, production, and performance. In addition to the Florida limestone aggregates, limestone aggregates from an Alabama source, granite aggregates from a Georgia source, and siliceous river gravel aggregates from the Florida Panhandle area, which have been utilized in some State projects and are included in the FDOT comprehensive study, were evaluated.

Physical properties of the various aggregates that were investigated included gradation, specific gravity, unit








weight, water absorption, strength, and particle shape. mineralogical investigations included petrographic descriptions, X-ray diffraction analyses, and surface textural studies. Historical FDOT information and literature reports were used for evaluation of physical and mineralogical data obtained for the various aggregates.

A literature review was conducted on previous studies of cement paste-aggregate bonding and surface properties of aggregates, which may be important in controlling interfacial bonding characteristics. Microscopic examinations were performed on field and laboratory concrete specimens to compare interfacial bonding properties of the limestone, granite, and siliceous river gravel aggregates.

Based on the published data and microscopic

examinations, a concrete testing program was implemented to further investigate interfacial bonding characteristics. Concrete mixtures were prepared with crushed aggregates from a commonly used Florida limestone source and a Georgia granite source. The concrete mixtures were cured, tested, and examined with microscopic techniques. In addition, concrete mixtures were prepared with granite aggregates that were subjected to pretreatment methods based on the literature review and analytical laboratory investigations. These concrete mixtures were cured, tested, and examined for comparison with concrete prepared with untreated granite aggregates.






6


The information collected in this study is intended to serve as a basic source of information on concrete aggregate resources commonly utilized within the State and their associated physical and mineralogical properties that may be important for concrete production and performance.















ECONOMIC AND GEOLOGIC ASPECTS OF FLORIDA AGGREGATES


Surface and near-surface carbonate deposits in Florida are mined for many uses, primarily for portland cement manufacture and as aggregate for road base and concrete production. However, many other chemical, industrial, and environmental applications also occur (Schmidt et al., 1979). The geographic distribution of these deposits is controlled by the geologic history of the State.

Florida is underlain by more than 4000 feet of Cretaceous to Holocene sedimentary rocks (primarily carbonates) which overlie a basement of older sedimentary, metamorphic, and igneous rocks. Miocene to Holocene surface sands, silts, and clays, which may reach several hundred feet in thickness, cover subsurface carbonate units in many areas (Schmidt et al., 1979; Cooke, 1945). Eocene to Miocene surficial carbonate units occur over a large portion of the western one-half of the central peninsula and over a small area of northwest Florida (Figure 1). These materials were deposited in a broad carbonate bank overlying the Florida Platform that composes the Florida peninsula, the adjacent continental shelves off the east and west coasts, and the Great Bahama Bank (Chen, 1965).

Deposition of Eocene and Oligocene carbonate rocks was followed by a period of post-Oligocene erosion and





























SERIES FORMATION .

Anastasia Fm.
HRAND ~ ORANGE
PLEISTOCENE Miami Polite P

Key Largo Limestone j o POLK K . PLIO-MIOCENE Tamiami Fm. / --, ,
_7 ST - . I ~l
E Hawthorn Fm. , ,.1 s e.HIGHLANS . .
M IO C E N E SARASOTA -, . . . _. .
St. Marks Fm. and C'.LOTTE A . .
Chattahoochie Fm. HEND AL

OLIGOCENE ' Suwannee Limestone and
Marianna Limestone DR

Ocala Limestone .

Avon Park Limestone Oe









Figure 1. Geologic map of surface and near-surface carbonate
deposits in Florida (after Schmidt et al., 1979).









structural uplift ("Ocala Uplift") in the western peninsula (Vernon, 1951). Miocene sediments subsequently covered much of the peninsula. Extensive erosion has occurred on the structural high, resulting in exposure of the Middle Eocene Avon Park Formation, roughly parallel to the northwestsoutheast trending crest of the structure. The surface exposure of the Avon Park Formation is surrounded in a roughly oval pattern by the Upper Eocene Ocala Limestone, which unconformably overlies the Avon Park and dips in all directions away from the elongate structural high. The Oligocene Suwannee Limestone unconformably overlies the Ocala Limestone and, because of erosion or non-deposition, is only exposed at the northwestern and southeastern ends of the Ocala outcrop area (Schmidt et al., 1979).

Lithologically, Lower to Middle Eocene deposits are predominantly fossiliferous limestones and fine to medium crystalline dolomites, along with small amounts of carbonaceous material and gypsum. overlying Upper Eocene and Oligocene deposits are generally high calcium limestones with sparse to abundant fossil contents (Chen, 1965; Vernon, 1951; Cooke, 1945). However, these may be dolomitized to various degrees in northwest Florida (Schmidt et al., 1979). Detailed lithology of these carbonate sequences can be highly variable, resulting from changing depositional environments and periods of non-deposition or erosion resulting from sea level fluctuations, and uplift and









downwarping of the Florida Platform (Chen, 1965; Vernon, 1951).

The Pleistocene Anastasia Formation, a sandy lithified coquina that represents an ancient beach facies, extends along the Atlantic coast and forms the Atlantic Coastal Ridge from St. Johns County to Palm Beach County (Figure 1). Southward, the Anastasia interfingers with and grades into the Pleistocene Miami Qolite and Key Largo Limestone. The Miami Qolite is a locally cross-bedded, sandy to pure limestone with a variable oolite content and abundant solution features. The Key Largo Limestone is a highly fossiliferous deposit from a coral reef environment. The Pleistocene Ft. Thompson Formation underlies these units and is characterized by alternating marine shell beds and freshwater limestones and marls (Schmidt et al., 1979; Cooke, 1945).

Surficial carbonates of Southwest Florida are from the Plio-Miocene Tamiami Formation. These are sandy, shallow water carbonate deposits with abundant fossil contents and dissolution features, and often have a recrystallized matrix (Schmidt et al., 1979; Cooke, 1945).

Concrete coarse aggregates (>4.75 mm) in Florida are supplied primarily by crushed limestone operations. Production of coarse aggregates is primarily limited to five geographic regions of the State (see Figure 1):

1 - the Taylor County region of northwest Florida 2 - the Hernando County region of central Florida









3 - the Levy and Citrus Counties region of central

Florida

4 - the Lee and Collier counties region of southwest

Florida

5 - the Dade and Broward Counties region of southeast

Florida

In addition to crushed limestone, some gravel deposits are utilized as concrete aggregate in the Florida panhandle.

Many other areas have surface or near-surface limestone deposits, but these generally do not meet physical, mineralogical or chemical requirements needed for use as concrete aggregate. The Ocala Limestone deposits are good examples. Although they are widespread in surficial exposure (Figure 1), they are generally too soft and friable for use as concrete aggregate. Local post-depositional diagenetic modification can result in small quantities that may be suitable for this use, but this is not common.

Concrete fine aggregates (<4.75 mm) in Florida are

derived from two principal sources. Quartz sands, which are mined in west Florida and the Ridge Section of north and central Florida from plastic Pleistocene deposits, and manufactured sands, which are produced from crushed limestone operations in south Florida, are the fine aggregates commonly used.

In 1989, Florida ranked second nationally in total

crushed stone production and fourth nationally in production of all types of construction aggregates (U.S. Bureau of









Mines, 1990a). The rapid growth and development of the state has caused a steadily increasing demand for aggregates for the period from 1960 to 1989 (Figures 2 and 3). In 1989, the crushed stone industry in Florida produced a total output of approximately 82,000,000 short tons with a value of approximately $382,000,000 (U.S. Bureau of Mines, 1990b).

A large portion of these aggregate materials are used for construction of the state's roads, bridges and general infrastructure. During the fiscal year of 1989, the FDOT let approximately $500,000,000 worth of road and bridge construction contracts (Spencer, 1990). The large increase in demand and production during recent years has led to concerns over future availability of quality aggregate resources to meet the state's construction needs. The Hernando County region, which has been an aggregate source for concrete production in much of north and central peninsular Florida, is rapidly being depleted and industry analysts estimate only five to ten years of supplies remaining in this area. The Taylor County region of northwest Florida is believed to have abundant aggregate resources remaining. However, the marginal quality of these aggregates and a lack of rail transportation may economically limit the use of these resources in the large, expanding markets in other areas of the State. South Florida deposits also are believed to have relatively abundant resources and reserves remaining. However, extensive urban development and strict environmental





















90000 80000Cn
o 70000o 60000C


S 40000a

30000

20000'
1960 1970 1980 1990

Years


Figure 2. Production of crushed stone in Florida (compiled
from U.S. Bureau of Mines statistics).





















400000"



CC 3000000

o 200000"

0


o 100000



0 i
1960 1970 1980 1990

Years


Figure 3. Value of crushed stone in Florida (compiled from
U.S. Bureau of Mines statistics).









regulations are making extraction of these materials increasingly difficult.

These factors have led many planners and industry

analysts to conclude that importation of aggregate materials from out-of-state sources may be necessary to supplement existing resources to meet future concrete production demands. Limestone aggregates already are being imported to the Tampa and Jacksonville market areas from the Bahamas and granite aggregates are being imported to these market areas from Canada. Granite aggregates from Georgia and Canada have been used in some State projects. Rapidly increasing demands, declining quality and quantity of resources, urban development, and environmental restrictions are all factors that may make increased importation of aggregate materials necessary in the future. This is not a situation that is unique to Florida. At the national level, limestone aggregate materials are being imported to gulf coast markets from Mexico, and granite aggregates are being imported to east coast markets from Canada (McConville, 1990).

Geologic factors that control the mining potential of aggregate resources are lithology, structure, stratigraphy, and geomorphology of the deposits. Lithology controls the physical and mineralogical properties that determine whether the material meets specific requirements for its intended use, and the percentage of mined material that can be used after mining and processing procedures (yield). Structure, stratigraphy, and geomorphology control the thickness and









areal extent of the deposit and also the amount, type, and thickness of overburden that must be removed during mining. These are important factors in determining the feasibility for mining of the deposit. In addition, groundwater conditions also may impose limits on mining activities in some areas.

Economic factors may be even more important than these technical considerations. Transportation is the principal factor that determines price and market for low value, bulk materials such as limestone aggregates. The high cost of truck transportation (approximately 35 cents per ton for the first mile and 7 cents per ton per mile thereafter) normally limits haul distances to about 50 miles. Longer distances require less expensive rail, barge, or ship transport. Barge shipment rates may only be one or two cents per ton per mile. Rail costs are slightly more expensive (Langer, 1988). Therefore, ready access to local markets and/or access to low-cost rail or sea transportation is essential for an economically viable limestone aggregate industry. The current uncertainty on future fuel prices makes the transportation costs of aggregates difficult to forecast.

High transportation costs often cause mining operations to be in close proximity to urban markets. This can result in a variety of social and political problems concerning air and water pollution, noise, and traffic. Land-use conflicts also are common in urban areas. Quality materials often are not available for mining due to overlying residential,









retail, or industrial development. These are common problems in many urban areas nationwide. zoning to protect potential mining areas and sequential land-use planning are steps being taken by some cities to mitigate this problem (Harben and Bates, 1990; Langer, 1988).

Exploration and development of mining deposits also are subject to many market and financial parameters. Many sitespecific issues such as quantity and quality of reserves, proximity to markets, land values, and royalty requirements determine the long-term cash flow feasibility of these large capital investments. Examples of valuation methods applied to limestone deposits can be found in Lewis and Moran (1990).


Coarse Aggregate Sources

The following sections present a summary of particular geologic and economic factors important to the production of aggregates from major source areas in Florida. The information reported was compiled from several literature sources including Anonymous (1990), Spencer (1990), Yon et al. (1989), Campbell (1986), Miller (1986), Schmidt et al., (1979), Edgarton (1974), Yon and Hendry (1972), White (1970), and Puri and Vernon (1964), Vernon (1951), and Cooke (1945).


Taylor County Region

The mining region of Taylor County is located in the

Gulf Coastal Lowlands physiographic province with elevations








ranging from 10 to 20 feet above mean sea level (MSL). Aggregate materials have been produced in this region from dolomitic limestones of the Oligocene Suwannee Limestone (Figure 1) since the early 1970s. The Suwannee Limestone in this area is highly variable with regard to degree of induration (i.e., hardness). Therefore, the material must often be selectively mined before crushing and sizing according to its intended use and associated specifications. Mining operations continue to a depth of approximately 45 feet, with draglines utilized for mining activities below the water table. The primary market for these aggregate materials is in the Tallahassee-Leon County area with truck operations being the primary method of transportation. Hernando County Region

Mining activity in this region is commonly along the north-south trending Brooksville Ridge, a sub-unit of the Central Highlands geomorphic province, with elevations ranging from 75 to greater than 250 feet above MSL. Aggregate materials in this region also are produced from the Oligocene Suwannee Limestone. This is a high calcium limestone deposit that has been mined since the 1920s. The limestone deposits in this area may be variable in degree of induration and interbedded with chert, sands, silts and clays. The deposit has an irregular karstic surface, but may be in excess of 100 feet in thickness in some areas. It is overlain by younger, siliciclastic sediments. Mining activity is concentrated along topographic highs and








regional elevations often permit dry mining techniques, but local mine dewatering may be required. Mined depths range from approximately 50 to 100 feet below land surface. Overburden materials, which must be removed initially, may reach up to 100 feet in thickness. The high cost of removing large amounts of overburden currently prohibits economic feasibility of mining in some areas that may have good aggregate materials. Blasting methods are utilized to fracture the limestone which is then sent to crushers for processing and sizing. Primary markets for these aggregate materials include the Tampa, Orlando, and Gainesville-Ocala regions along with numerous other areas of central Florida. Truck operations are the primary method of transportation.


Lee and Collier Counties Region

Mining activity in this region occurs along the

Southwestern Slope geomorphic subdivision of the Southern Peninsular zone. Elevations along the Southwestern Slope range from 0 to 25 feet above MSL. Limestone aggregate materials have been mined from the Plio-Miocene Tamiami and Pleistocene Ft. Thompson Formations (Figure 1) in this region since the mid-1950s. Overburden materials of sand, clay and shell reach thicknesses of 15 feet. Wet mining techniques are utilized after overburden removal due to shallow water table conditions. The limestone deposits in this region are variable in composition and often are interbedded with sands. Therefore, selective mining techniques are sometimes used to extract limestone materials









River (Citrus County) regions in the western part of northern peninsular Florida (Figure 1). These materials are variable in induration and physical properties and generally produce low yields. Relative deep deposits are extracted using wet mining techniques. These materials are primarily used in local north Florida markets. However, the Crystal River materials are used in other markets because of sea transport availability.


Fine Aggregate Sources

Fine aggregate materials in north and central Florida normally consist of quartz sands mined from Pleistocene terrace deposits. These materials may be produced using either wet or dry mining techniques depending on local water table conditions. Suction dredges are often employed for wet mining the deposits. The sands are usually wet screened for size grading purposes.

South Florida concrete producers commonly use

manufactured limestone sands as fine aggregate materials. These are often produced as processing by-products from coarse limestone aggregate operations discussed previously.









possessing the desired properties. Thickness of mineable deposits is typically 50 feet. Extensive development in the Ft. Myers and Naples areas provides an excellent local market and other truck transport markets range as far north as Tampa. In addition, there is rail service to the Orlando market.


Dade and Broward Counties Region

This region lies within the Everglades Trough

geomorphic subdivision of the Southern peninsular zone with elevations averaging about 10 feet above MSL. Aggregate materials in this region are produced from the Pleistocene Miami Oolite and the underlying Ft. Thompson Formation (Figure 1). These deposits have been extensively mined in this area since the early 1900s. Mining operations in this area typically involve removal of 10 feet or less of marl and peat overburden. Wet mining techniques are normally used due to very shallow water table conditions in this area. The tremendous urbanization of Florida's southeastern coastal areas provides an excellent local market for these materials. Products also are shipped by rail to other north Florida markets, such as Orlando, Tampa, and Jacksonville. Levy and Citrus Counties Region

This area of Florida has recently been opened to mining operations for coarse aggregate production. These materials are dolomitic limestones mined from the Eocene Avon Park Formation in the Gulf Hammock (Levy County) and Crystal















AGGREGATE PROPERTIES


Studies were conducted to determine physical and

mineralogical properties of limestone aggregates from six Florida sources, limestone aggregates from an Alabama source, siliceous river gravel aggregates from a Florida source, and granite aggregates from a Georgia source. Physical properties are critical in proper concrete mix design and preparation and also influence both fresh and hardened concrete properties (Mindess and Young, 1981). Petrographic studies were conducted to determine mineralogical and textural properties that often control physical and chemical properties of aggregates and their related performance in concrete.

computerized image analysis techniques also were

applied to characterize aggregate shapes from the various mining sources. Aggregate shape may be an important factor influencing economy of mix design and properties of fresh and hardened concrete.


Physical Properties

The limestone, granite, and siliceous river gravel

coarse aggregates and quartz fine aggregates were sampled from stockpiles at the FDOT State Materials Office in accordance with ASTM D 75, Standard Practice for Sampling








Aggregates (Annual Book of ASTM Standards, 1988). Sample quantities obtained for each aggregate source consisted of one bag containing approximately fifty pounds. Sample identifications along with corresponding source locations and mined geologic units are given in Table 1.

The representative samples collected were analyzed in accordance with ASTM C 136, Standard Method for Sieve Analysis of Fine and Coarse Aggregate (Annual Book of ASTM Standards, 1988). Results of the gradation analyses are summarized in Table 2 along with recommended FDOT specifications for No. 67 aggregate, which was the specified size for the comprehensive concrete study. Gradational properties for several of the samples analyzed failed to meet FDOT specifications. Additional shipments of aggregates were obtained for two source area materials (08005 and GA-177).

Gradational analyses for two shipments of fine

aggregates are given in Table 3 along with recommended FDOT specifications. Fineness modulus values for the two samples were slightly different. However, both values fall within acceptable limits and the slight difference should not be significant for concrete testing purposes.

Other physical properties of the aggregates that are important for concrete mix design, preparation, and properties were determined at the FDOT laboratories. Properties determined included specific gravity, unit weight, and water absorption for each aggregate sample









Table 1. Aggregate sample identifications.


FDOT Pit
Identification No.


08-005


87-145 87-090



12-008


86-062




34-106 AL-149 GA-177 50-120 71-132


Location


Brooksville, FL (Hernando County) Miami, FL (Dade County)



Miami, FL (Dade County)


Ft. Myers, FL (Lee County)


Pembroke Pines, FL (Broward County)



Gulf Hammock, FL (Levy County)

Calera, AL (Shelby County)

Tyrone, GA (Fayette County)

Chattahoochie, FL (Gadsden County)

Keystone Heights, FL (Putnam County)


Geologic Unit


Suwannee Ls. (Oligocene)

Miami Oolite and Ft. Thompson Fm. (Pleistocene)

Miami Oolite Fm.
(Pleistocene)

Tamiami (Plio-Miocene) and Ft. Thompson (Pleistocene) Fms.

Miami Oolite and Ft. Thompson Fm. (Pleistocene)

Avon Park Fm. (Eocene)

Newala Ls. (Ordovician)

Precambrian granite

Pleistocene gravels

Pleistocene sands














Table 2. Coarse aggregate gradations (% passing).


Sieve FDOT
Size Specifications'

1 in. 100

3/4 in. 90-100

3/8 in. 20-55

No. 4 0-10

No. 8 0-5


Sample Identification

08-005A 08-005B 87-145 87-090 12-008 86-062

100 100 100 100 100 100

86 97 84 b97 98 95

36 38 19 b52 60 b 38

4 4 3 4 6 7

3 2 2 2 3 4


aStandard Specifications for Road and Bridgre Construction (1986) b Does not conform to FDOT specifications














Table 2.--continued.


Sieve FDOT
Size Specificationsa

1 in. 100

3/4 in. 90-100

3/8 in. 20-55

No. 4 0-10

No. 8 0-5


34-106

100

98 43

3 1


Sample Identification AL-149 GA-177A GA-177B

100 100 100

96 93 91

27 54 12b

1 16b 1

1 9b 1


50-120

100

99 47

7

3


aStandard Specifications for Road and Bridqe Construction (1986) bDoes not conform to FDOT specifications









Table 3. Fine aggregate gradations (% passing).


Sieve Size Spec

No. 4 No. 8

No. 16 No. 30 No. 50

No. 100 No. 200

Fineness modulus b


FDOT if ications'

95-100 85-100 65-97 25-70 5-35 0-7


0-4


Sample Identification 71-132A 71-132B

100 100

99 98


88 56 18

2 0

2.38


85 50 17

2 0

2.48


a Standard Specifications for Road and Bridge Construction
(1986)

bASTM C 136, Method for Sieve Analysis of Fine and Coarse Aggregate (Annual Book of ASTM Standards, 1988)









(Table 4). Los Angeles abrasion values (Table 4) meet the FDOT requirement of 45 percent maximum loss. Results of these tests reflect typical values reported for Florida aggregate properties compiled from FDOT records and Ho and Hendricks (1991) (Table 5), and other aggregate studies (Anonymous, 1990; Spencer, 1990). Gradational, mineralogical, and physical properties of aggregates may vary over time as source locations, mining techniques, and processing operations change. Therefore, quality control and quality assurance programs are important for monitoring mining activities to insure procurement of acceptable materials.

Strengths of individual aggregate particles were

determined by loading each between two horizontal plates in a hydraulic press and measuring the force required for fracturing to occur. one hundred particles (+3/8 in.) from each aggregate source were tested. Results of the strength testing indicate that mean values (Table 6) for the Florida limestone aggregates are generally in the same strength range (200-300 lbs.). Mean values for the granite and siliceous river gravel aggregates were slightly higher (Table 6). Highest strengths were produced by the Alabama limestone aggregate (Table 6). Distribution of strength values (Table 6 and Figures 4 through 12) indicate that a wide range of strength values occur for each aggregate sample, with some samples possessing bimodal distributions.









Table 4. Physical properties of aggregate samples.


Sample No.

08-005 87-145 87-090 12-008 86-062 34-106 AL-149 GA-177 50-120 71-132


Specific Gravity
(SSD)

2.45 2.39 2.42 2.43 2.54 2.48 2.75 2.67 2.63


Unit Wt.b (lbs/f t.3)

92.12 86.00 86.04 89.00 90.08 92.72 105.80 93.62 104.80


2.63


Los Angeles
Abrasionc % Absorption' (% loss)


4.86 5.00 4.15 3.60 2.27 4.19 0.66

0.41 0.75

0.50


8ASTM C 127, Standard Test Method for Specific Gravity and Absorption of Coarse Aggregates (Annual Book of ASTM Standards, 1988)

bASTM C 29, Standard Test Method for Unit Weight and Voids in Aggregate (Annual Book of ASTM Standards, 1988) CASTM C 131, Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine (Annual Book of ASTM Standards, 1988)









Table 5. Summary of physical properties of aggregates compiled from historical FDOT data.


Aggregate ID

08-005
(Brooksville)

87-145 (Miami) 87-090 (Miami) 12-008
(Ft. Myers) 86-062
(Pembroke Pines)

34-106
(Gulf Hammock)

AL-149 (Calera) GA-177 (Tyrone) 50-120
(Chattahoochie)


Specific
Gravity (SSD) Mean Range

2.43 2.38-2.47


2.41 2.34-2.45


2.41 2.37-2.43


2.45 2.41-2.49


2.51 2.49-2.54


2.44 2.37-2.50


2.76 2.73-2.80


2.69 2.66-2.71


2.62 2.60-2.64


Absorption
(%)
Mean Range

3.87 2.28-5.80


4.48 3.38-7.16


4.25 2.75-6.04


3.62 3.05-4.50


3.42 0.85-5.50


5.22 3.56-7.68


0.53 0.44-0.56


1.52 0.76-2.28


1.05 0.60-1.49


Los Angeles Abrasion (% loss)
Mean Range

37 30-52


32 20-41


33 21-42


34 27-41


32 29-39


38 4-52


24 20-27


49 44-55


41 19-46






31


Table 6. Statistical distribution of coarse aggregate
strength data (values given in pounds).


Aggzregate ID

08-005
(Brooksvil1le)

87-145
(Miami) 87-090
(Miami) 12-008
(Ft. Myers)

86-062
(Pembroke Pines)

34-106
(Gulf Hammock) AL-149 (Calera) GA-177
(Tyrone) 50-120
(Chattahoochie)


Minimum

50 90 50 90 60 70


250 110


140


Maximum

740 780 710 710 790 870 >1000 >1000 900


Mean

214 295 285 286 237 280 703 367


454


Standard Deviation

123


148 142 126 135 158 228 169


174


















22.5.
20
15'

I-.
z
0 10



5


0
0 100 200 300 400 500 600 700 800 900 1000 POUNDS


Figure 4. Distribution of strength values for aggregate
sample no. 08-005 (Brooksville).





E


900 1000


100 200 300 400 500 600 POUNDS


700 800


Distribution of strength values for aggregate sample no. 87-145 (Miami).


Figure 5.



















20-
18 16.
14.
S12.
z o 10.
U
8.
6
4.

2
0
0 100 200 300 400 500 600 700 800 900 1000 POUNDS



Figure 6. Distribution of strength values for aggregate
sample no. 87-090 (Miami).



















22.5

20.


15
z
0
o10


5



0 100 200 30 0 400 500 600 700 800 900 1000 POUNDS



Figure 7. Distribution of strength values for aggregate
sample no. 12-008 (Ft. Myers).























20 1-15

0
10 5, 01


100 200 300 400 500 600 700 800 900 1000


POUNDS


Figure 8. Distribution of strength values for aggregate
sample no. 86-062 (Pembroke Pines).


rkj



































100 200 300 400 500 600
POUNDS


Figure 9.


760" 860 900 1000


Distribution of strength values for aggregate sample no. 34-106 (Gulf Hammock).


Ir-
0



















3025.

20

o 15.

10.


5

0 P
0 100 200 300 400 500 600 700 800 900 1000 POUNDS



Figure 10. Distribution of strength values for aggregate
sample no. AL-149 (Calera).



















2018.

16.
14
I-12.
z o 10' 8.
6
4.
2.
0,
0 100 200 300 400 500 600 700 800 900 1000 POUNDS



Figure 11. Distribution of strength values for aggregate
sample no. GA-177 (Tyrone).



















18.

16.

14.

12

Z 10
0
c. 8.

6.

4

2

0
0 100 200 300 400 500 600 700 800 900 1000 POUNDS



Figure 12. Distribution of strength values for aggregate
sample no. 50-120 (Chattahoochie).









Mineralogical Properties

Petrographic and X-ray diffraction analyses were

used to determine mineralogic compositions and textures of the coarse aggregate samples. Petrographic analyses were performed by hand specimen descriptions and use of polarized light microscopy on thin sections prepared from representative samples of each aggregate source. X-ray diffraction (XRD) analyses were conducted on the limestone coarse aggregates for qualitative and quantitative mineralogical determinations. Two size fractions of the coarse aggregates were ground to minus No. 200 mesh (74 Am) size fraction for XRD analyses.

The matrix-flushing method (Chung, 1974), using a Linde C alpha alumina (corundum) standard, was utilized for quantitative mineralogical determinations. Reference intensity ratios were initially determined for the major minerals (calcite, dolomite, and quartz) occurring in the limestone aggregates using a 50/50 mixture of each mineral phase and corundum. These values were used in calculation of quantitative amounts of these minerals in the aggregate samples according to the following equation: P = (Xs/Kx)(Ix/Is)

where,
P = weight fraction of phase x in sample
Xs = weight fraction of corundum in sample
Kx = reference intensity ratio of phase x
Ix = measured intensity of strongest line of phase x
Is = measured intensity of strongest line of corundum









A summary of the petrographic and X-ray diffraction analyses for the aggregate samples, along with corresponding representative photomicrographs are presented below. Refer to Table 1 for source locations and geologic units corresponding to the sample numbers provided.


Sample No. 08-005 (Brooksville. Florida)

The aggregate sample consisted of crushed limestone particles which were generally off-white to light tan in color (Table 7). The particles were hard, firm and dense, with angular to subrounded shapes and irregular surfaces containing some crusher fines. A few moderately soft aggregate particles were detected in hand samples. These particles, and similar ones occurring in other samples described below, probably represent particles occurring at the lower end (<100 lbs.) of the strength value distributions (Figures 4 through 12) previously discussed. A few chert particles, which were very hard and dense with a tan to dark brown color, also were noted.

Microscopic analyses revealed sparse to abundant fossil fragments in a microspar to sparry calcite matrix. Pore space was fairly sparse and isolated with a vuggy appearance. Minor amounts of fine, subangular quartz grains were seen within the aggregate. A typical photomicrograph (Figure 13) shows sparse fossil fragments (F) in a microspar to sparry calcite matrix (M), with a few quartz particles

(Q) and small, isolated pore spaces (P). XRD analysis











Table 7. Munsell color designations for coarse aggregate samples.


Sample No.

08-005 87-145 87-090 12-008 86-062 34-106 AL-149 GA-177 50-120


Munsella Designations

2.5Y 8.25/2, 10YR 8/4, 10YR 5/2 10YR 7.5/2

10YR 7.5/1, 10YR 6/2, 5Y 8.75/1 10YR 7/1, 5YR 8/2, 10YR 8/1.5 5Y 8.5/1, 5YR 7.5/2, N6.25/ 10YR 5/4, 10YR 6.5/4, 10YR 7.5/2, N 6.25/

N 6/, N 8/

N 9/, 5 G 4/1

N 5.5/, 2.5y 8/2, 5Y 8.5/1, 5YR 7/4


aMunsell Book of Color (1976)





























Figure 13. Photomicrograph of aggregate sample no. 08-005 (Brooksville). Aggregate is composed of sparse fossil fragments (F) in a microspar to sparry calcite matrix (M). Crossed nicols.


Figure 14. Photomicrograph of aggregate sample no. 87-145 (Miami). Aggregate is composed of sparry calcite filled fossil fragments (F) and abundant quartz grains (Q) in a microspar matrix. Crossed nicols.









Sample No. 87-090 (Miami. Florida)

The aggregate sample consisted of crushed limestone particles that were generally off-white to light tan in color (Table 7). The aggregates generally were hard and firm, with occasional moderately soft and friable particles. Particle shapes were angular to subrounded with some crusher fines occurring on particle surfaces. Some fossil fragments and fairly abundant porosity were noted in hand specimens.

Microscopically the particles contained sparse to

moderate amounts of fossil fragments in a microspar matrix. Sparry calcite commonly occurred as fossil fillings. Pore space was sparse to abundant and fairly isolated with sparry calcite rims. Subrounded quartz grains were moderately abundant and sometimes occurred as channel fillings. Feldspar grains also were seen in minor amounts. A photomicrograph (Figure 15) of the aggregate shows sparse fossil fragments (F) and veins (V) filled with sparry calcite occurring in a micritic matrix (M). Quartz grains

(Q) and small isolated pore spaces (P) also are evident. XRD analysis (Table 8) showed the sample was composed primarily of calcite, with a moderate quartz content. Sample No. 12-008 (Ft. Myers. Florida)

The aggregate sample consisted of crushed limestone

particles which were light tan to gray in color (Table 7). Particles shapes were angular to subrounded, with crusher fines occurring on particle surfaces. The aggregate particles generally were hard and dense, with some soft and






























Figure 15. Photomicrograph of aggregate sample no. 87-090 (Miami). Aggregate is composed of sparry calcite filled fossil fragments (F) and veins (V), along with quartz grains
(Q), in a micritic matrix (M). Crossed nicols.


Figure 16. Photomicrograph of aggregate sample no. 12-008 (Ft. Myers). Aggregate is composed of sparse fossil fragments, sparry calcite veins (V) and quartz grains (Q) in a microspar matrix (M). Crossed nicols.









friable pieces. Vuggy particles and fossil fragments were abundant in hand specimens.

Microscopically the particles contained sparse to moderate amounts of fossil fragments in a predominantly micritic and microspar cement matrix. Sparry calcite was common as fossil fillings and pore linings. Vuggy porosity was fairly abundant, but usually isolated. Quartz particles were abundant, with subrounded to subangular shapes. Feldspar grains were noted in trace amounts. A photomicrograph (Figure 16) shows sparse fossil fragments

(F) with sparry calcite fillings in a microspar (M) cement matrix. Quartz grains (Q) are abundant and pore space (P) is moderately abundant, but isolated. XRD analysis (Table 8) showed the sample consisted of calcite, with significant amounts of quartz.


Sample No. 86-062 (Pembroke Pines, Florida)

The aggregate sample consisted of crushed limestone particles which were off-white to tan in color (Table 7). The aggregate particles were hard and dense, with a few soft and friable pieces. Particle shapes were angular to subrounded with crusher fines occurring on particle surfaces. Fossil fragments and vuggy porosity were abundant in hand specimens.

Microscopically the particles contained moderate to

abundant fossil fragments in a microspar to sparry calcite matrix. Subangular to subrounded quartz grains were abundant throughout the aggregate particles. Moldic and









vuggy porosity was fairly abundant, with sparry calcite linings common. Feldspar grains were noted in trace amounts. A photomicrograph (Figure 17) shows sparse fossil fragments (F) with sparry calcite fillings in a micritic matrix (M). Quartz grains (Q) are abundant and pore spaces

(P) are small and isolated. XRD analysis (Table 8) showed the sample consisted primarily of calcite, along with significant amounts of quartz. Sample No. 34-106 (Gulf Hammock. Florida)

The aggregate sample consisted of crushed limestone particles with distinct colors of off-white, light brown, and gray (Table 7). The particles were angular to subrounded, and generally hard and dense with some friable pieces. A few particles appeared weathered and iron stained. Fossil fragments were sparse, and porosity sparse to moderate in hand specimens.

Microscopically the particles consisted of sparse to moderately abundant fossil fragments in a microspar to sparry calcite matrix. Channel fillings and veins of sparry calcite were common. Quartz particles were sparse in the aggregate. Porosity also was sparse and was very small and isolated. A photomicrograph (Figure 18) shows a mixture of microspar (M) with patches and veins of sparry calcite (S). Note the absence of quartz grains and the very small, isolated pore spaces (P). XRD analysis (Table 8) showed that the aggregate consisted of roughly equal amounts of calcite and dolomite. Pyrite has been known to occur in






























Figure 17. Photomicrograph of aggregate sample no. 86-062 (Pembroke Pines). Aggregate is composed of sparse sparry calcite filled fossil fragments (F) and quartz grains (Q) in a micritic matrix (M). Crossed nicols.


Figure 18. Photomicrograph of aggregate sample no. 34-106 (Gulf Hammock). Aggregate is composed of a mixture of microspar (M) and sparry calcite (S). Crossed nicols.









(Table 8) confirmed that the aggregate is composed primarily of calcite, with minor amounts of quartz.


Sample No. 87-145 (Miami. Florigal

The aggregate sample consisted of crushed limestone

particles which were off-white to light tan in color (Table 7). The aggregates generally were hard and firm with occasional friable pieces. Particle shapes were angular to subrounded and crusher fines were common on particle surfaces. Fossil fragments and vuggy porosity were evident in hand specimens.

Microscopically the particles contained sparse to

abundant fossil fragments, along with a few peloids in a predominantly microspar matrix. Sparry calcite commonly occurred on and within fossil fragments, and also as infillings of pores and channels. Porosity was fairly sparse and isolated. Subangular to subrounded quartz grains were abundant in some aggregates. Trace amounts of feldspar and opaque heavy minerals also were noted. A typical photomicrograph (Figure 14) shows sparry calcite filled fossil fragments (F) in a microspar matrix. Quartz grains

(Q) are abundant and pore spaces (P) are small and isolated. XRD analysis (Table 8) confirmed petrographic observations, showing that the aggregate is primarily calcite, but contains a sizeable quartz component. Trace amounts of feldspar and heavy minerals observed in microscopic analysis did not occur in detectable amounts.










Table 8. Quantitative X-ray diffraction analyses of
limestone aggregates.



Calculated Percentages

Sample No. Size Fraction Calcite Dolomite Ouartz

08-005 +3/8 in. 98 - 2
-3/8 in. + No. 4 94 - 6

87-145 +3/8 in. 79 - 21
-3/8 in. + No. 4 87 - 13

87-090 +3/8 in. 91 - 9
-3/8Bin. + No. 4 89 - 11

12-008 +3/8 in. 75 - 25
-3/8 in. + No. 4 83 - 17

86-062 +3/8 in. 82 - 18
-3/8 in. + No. 4 78 - 22

34-106 +3/8 in. 49 51
-3/8 in. + No. 4 57 43AL-149 +3/8 in. 77 23
-3/8 in. + No. 4 57 41 2

50-120 +3/8 in. -- 100
-3/8 in. + No. 4 -100









generally were hard and dense, with occasional friable schistose pieces.

Microscopically the particles contained anhedral

quartz, and subhedral to anhedral albite (sodium feldspar), orthoclase and microcline (potassium feldspars) as the primary minerals, and subhedral to euhedral biotite as a minor constituent. Several accessory minerals were noted in trace amounts including magnetite, zircon, apatite, tourmaline, and garnet. The major mineral components exhibited some undulatory extinction and fracturing, with sericitic alteration occurring along feldspar fractures. Some iron staining along fractures and alteration of biotite to chlorite also was noted. A photomicrograph (Figure 21) shows the coarsely crystalline and interlocking nature of the mineral constituents of the aggregate. Quartz (Q), biotite (B), and microcline (M), with its characteristic twinning, can be seen in the photomicrograph. Some fracturing also occurs in the aggregate (Figure 22). Sample No. 50-120 (Chattahoochie, Florida)

The aggregate sample consisted of uncrushed siliceous river gravel particles which were light brown to tan in color (Table 7). The particles were hard and dense, with subrounded to rounded shapes. Particle surfaces were generally smooth textured with some dusty material. Some particles contained visible fractures.

Microscopically the particles consisted of

polycrystalline quartz grains with some iron-stained
































Figure 21. Photomicrograph of aggregate sample no. GA-177 (Tyrone). Aggregate is composed of coarsely crystalline quartz (Q), alkali feldspar (M) and biotite (B). Crossed nicols.


Figure 22. Photomicrograph of aggregate sample no. GA-177 (Tyrone). Aggregate is composed of coarsely crystalline mineral grains with abundant fracturing. Crossed nicols.









these materials and is suspected to be the cause of the iron staining. However, it was not detected in XRD analysis.


Sample No. AL-149 (Calera, Alabama)

The aggregate sample consisted of crushed limestone particles which were light to medium gray in color (Table 7). Particle shapes were angular to surrounded with some crusher fines occurring on particle surfaces. The aggregates were hard and dense, with little visible porosity.

Microscopically the aggregates ranged from those with interlocking coarsely crystalline carbonate particles of moderate interference color (Figure 19) to ones having a matrix of fine grained particles (M), with abundant coarser, parry veins and infillings (S) (Figure 20). Very little porosity was observed. Fossil fragments were absent, but some recrystallized oolitic structures were evident in some particles. XRD analysis (Table 8) showed that the particles consisted of calcite and dolomite.


Sample No. GA-177 (Tyrone, Georgia)

The aggregate sample consisted primarily of crushed

granite particles, along with a few pieces of biotite gneiss and schist. The particles were generally light to medium gray, except for the very dark gneiss and schist particles (Table 7), medium to coarse grained, and of granular texture. Particle shapes were angular to surrounded, with abundant crusher fines on particle surfaces. The aggregates
































Figure 19. Photomicrograph of aggregate sample no. AL-149 (Calera). Aggregate is composed of coarsely crystalline carbonate particles. Crossed nicols.


Figure 20. Photomicrograph of aggregate sample no. AL-149 (Calera). Aggregate is composed of coarse sparry calcite in a fine-grained matrix (M). Crossed nicols.








fracturing (F) (Figure 23). Some aggregates consisted of elongate polycrystalline quartz grains with highly sutured contacts typical of metamorphic rocks (Blatt, 1982) (Figure 24). Undulatory extinction of quartz grains was common. Quartz was the only mineral detected by XRD analysis of the aggregates (Table 8).


Shape Characterization

Aggregate shape can be an important factor in concrete mix design, properties and performance. In the past, characterization of aggregate shapes has been limited to simple visual descriptions or to indirect correlation with various physical tests on bulk aggregate samples (Meier and Elnicky, 1989). In this study, computerized image analysis techniques were utilized for direct measurement of individual aggregate particle shape and geometry. The aggregates were cast in epoxy resins and, after hardening of the epoxy, sawed or polished to their medial planes to give a maximum projection area. One hundred particles of two size fractions for each coarse aggregate sample were analyzed using computerized imaging procedures for areas, perimeters, Feret diameters, and shape functions.

Area to perimeter ratios were calculated for each

particle to provide an indicator of surface irregularity. As particles become more irregular, perimeter values become longer for a given area. Therefore, the area to perimeter ratio becomes smaller as particle surface irregularity becomes greater. Higher surface irregularity of concrete

































Figure 23. Photomicrograph of aggregate sample no. 50-120 (Chattahoochie). Aggregate is composed of polycrystalline quartz grains with iron stained fractures (F). Crossed nicols.


Figure 24. Photomicrograph of aggregate sample no. 50-120 (Chattahoochie). Aggregate is composed of elongate polycrystalline quartz grains with highly sutured contacts. Crossed nicols.









aggregates should provide greater interlocking or mechanical bond with cement paste. However, excessive irregularity of particles may affect economy of mix designs by causing higher cement requirements.

Shape functions (aspect ratios) were determined by taking the minimum to maximum ratio of thirty-two Feret diameters measured for each particle. The smaller the aspect ratio, the more elongate the particle shape. In general, high aspect ratios (more equant grains) are more desirable for concrete aggregates.

Circularity shape factors are a measure of how closely particle shape resembles the shape of a circle. Particles that closely approximate a circle would be assigned a value close to one with lower numbers assigned as the particle shape deviates from a circle in elongation or surface roughness. As in the case of area to perimeter ratios, more irregular particles (low shape factor numbers) would generally be more desirable for concrete aggregates due to greater interlocking or mechanical bond with the cement paste. Extremely low values may indicate very elongate particles, which are not desirable for concrete.

Average values for area to perimeter ratios, aspect ratios and circularity shape factors from the one hundred particle measurements of two size fractions for each aggregate sample were determined (Table 9). These data indicate that no large differences exist between average values of the parameters for the various aggregates





Table 9. Average values from image analysis dataa.


Area/ Perimeter

0.1051 0.0827

0.1205 0.0801

0.1095 0.0733

0.1008 0.0755

0.1155 0.0782

0.1172 0.0791

0.1170 0.0769


Shape Function

0.7413 0.7177

0.7491 0.6957

0.7569 0.6953

0.7194 0.7327

0.7360 0.7274

0.7302 0.7106

0.7379 0.7284


circularity Shape Factor

0.7030 0.7123

0.6060
0.6349

0.5958
0.6427

0.6563 0.6637

0.6497 0.6763

0.6541 0.6837

0.6032 0.6285


Aggregate ID

08-005
(Brooksville)

87-145
(Miami) 87-090
(Miami) 12-008
(Ft. Myers)

86-062
(Pembroke Pines)

34-106
(Gulf Hammock)

GA-177
(Tyrone, GA)


Size Fraction

+3/8 in.
-3/8 in. + No +3/8 in.
-3/8 in. + No +3/8 in.
-3/8 in. + No +3/8 in.
-3/8 in. + No +3/8 in.
-3/8 in. + No +3/8 in.
-3/8 in. + No +3/8 in.
-3/8 in. + No


4


4


4


4 .1,4


4


4


a Data are based on measurements of at least 100 grains to their medial plane.


of each aggregate sample, polished









measured. Comparison of values for the two size fractions indicate that the smaller particles have more irregular shapes and are less equant than the larger particles. Although average values of the shape parameters are in close agreement, the distribution of values for the aggregate particles (Figures 25 through 38) differs between samples. Standard deviation and variance values (Table 10) also indicate slight variations in distribution of particle values.

Because aggregate samples AL-149 (Calera) and 50-120 (Chattahoochie) were late additions to the project, these materials were not analyzed for shape parameters. Sample AL-149 would be expected to possess similar shape properties as the other crushed materials. However, analysis of sample 50-120 would likely yield different shape parameter data because it is an uncrushed aggregate, possessing smooth particle textures.
























0.06 0.1


0.14 0.18


AREAIPERIM


0 0150.375 0.625 0.875 1.125
SHAPE


0 0.125 0.375 0.625 0.875


Figure 25.


CIRCLE
Distributions of shape parameter values for aggregate sample no. 08-005 (Brooksville), plus 3/8 in. size fraction.


0 0.02























0 0.02


0.06 0.1 AREAIPERIM


0 0.125 0.37 5 0.62 5

SHAPE


Figure 26.


0.14 0.18


0.875 1.125


0 0.125 0.375 0.625' 0.875
CIRCLE
Distributions of shape parameter values for aggregate sample no. 08-005 (Brooksville), minus 3/8 in. plus No. 4 size fraction.























0 0.02 0.06 0.1 0.14 0.18


AREAIPERIM


0 0.125 0.375 0.625 0.875 1.125
SHAPE


Figure 27.


0 0.125 ,0.375 0.625 0.875
CIRCLE
Distributions of shape parameter values for aggregate sample no. 87-145 (Miami), plus 3/8 in. size fraction.























0 0.02


I


0.06 0.1 0.14 0.18


AREA/PERIM


0 0150.375 0.625 0.875 1.125
SHAPE


0 0.125 0.375 0.625


0.875


Figure 28.


CIRCLE
Distributions of shape parameter values for aggregate sample no. 87-145 (Miami), minus 3/8 in. plus No. 4 size fraction.























0 0.02 0.06 0.1 0.14 0.18
AREAIPERIM


0 0.125 0.375 0.625 0.875 1.125


SHAPE


0 0.125 0.375


Figure 29.


0.625 0.875


CIRCLE
Distributions of shape parameter values for aggregate sample no. 87-090 (Miami), plus 3/8 in. size fraction.





0 0.02


0.14 0.18


0.06 0.1


AREAIPERIM


0.875 1.125


0 0.1255 0.375 0.625
SHAPE


0 1
0 0.125 0.375 0.625 0.875
CIRCLE
Figure 30. Distributions of shape parameter values for
aggregate sample no. 87-090 (Miami),
minus 3/8 in. plus No. 4 size fraction.






















RE
0.06 0.1 AREANPERIM


0.14 0.18


*1~


0.125 0.375 0.625 0.875 1.125


SHAPE


0


Figure 3 1.


0 0.125 0.375 0.625 0.875
CIRCLE
Distributions of shape parameter values for aggregate sample no. 12-008 (Ft. Myers), plus 3/8 in. size fraction.


0 0.02
























0 0.02 0.06 0.1
AREA/PERIM


0.14 0.18


0 0.125 0.375 0.625 0.875 1.125
SHAPE


Figure 32.


0 0.125 0.375 0.625 0.875
CIRCLE
Distributions-of shape parameter values for aggregate sample no. 12-008 (Ft. Myers), minus 3/8 in. plus No. 4 size fraction.





0 0.02 0.06 0.1
AREAIPERIM


0.14 0.18


0 0.125 0.375 0.625 0.875 1.125
SHAPE


0 0.125 0.375 0.625 0.875
CIRCLE
Distributions of shape parameter values for aggregate sample no. 86-062 (Pembroke Pines), plus 3/8 in. size fraction.


Figure 33.
























0 0.02 0.06 0.1 0.14 0.18
AREAIPERIM


100 80 60

40

20


0 0.125 0.375 0.625 0.875 1.125
SHAPE


1 0.125IL
0 0150.375 0.625 0.875


CIRCLE
Figure 34. Distributions of shape parameter values for
aggregate sample no. 86-062 (Pembroke Pines),
minus 3/8 in. plus No. 4 size fraction.






















0 0.02 0.06 0.1
AREA/PERIM


0.14 0.18


0 0.125 0.375 0.625 0.875 1.125
SHAPE


Figure 35.


0 0.125 0.375 0.625 0.875
CIRCLE
Distributions of shape parameter values for aggregate sample no. 34-106 (Gulf Hammock), plus 3/8 in. size fraction.























0 .2 0.06 0.1 0.14 0.18


AREA/PERIM


*1


0 0.125


0.375 0.625
SHAPE


0.875 1.125


Figure 36.


0 0.125 0.375 0.625 0.875 CIRCLE
Distributions of shape parameter values for aggregate sample no. 34-106 (Gulf Hammock), minus 3/8 in. plus No. 4 size fraction.


0 0.02





0 0.022 00.0066 0.1 0.14 0.18
AREAIPERIM


50 ,


0 0.125 0.375


CIRCLE
Figure 37. Distributions of shape parameter values for
aggregate sample no. GA-177 (Tyrone),
plus 3/8 in. size fraction.


0 0.125 0.375 0.625 0.875 1.125
SHAPE


0.625 0.875






















o 1
0 0.02 0.06 0.1
AREAJPERIM

so0M


0.14 0.18


0 0.125 0.375 0.625 0.875 1.125


SHT.AE


Figure 38.


0 0.125 0.375 0.625 0.875
CIRCLE
Distributions of shape parameter values for aggregate sample no. GA-177 (Tyrone), minus 3/8 in. plus No. 4 size fraction.





Area/Perimeter

Std.
Deviation Variance


circularity


Table 10. Statistical distribution of shape parameter data.


ShaDe Function


Std.
Deviation Variance


Std.
Deviation


Fraction


Aggregate ID

08-005
(Brooksville)


Variance


+3/8
-3/8

+3/8
-3/8

+3/8
-3/8

+3/8
-3/8


0.0218
0.0174

0.0151
0.0154

0.0190 0.0159

0.0205 0.0135

0.0191 0.0162

0.0189
0.0145

0.0222 0.0153


0.0005 0.0003

0.0002 0.0002

0.0004 0.0003

0.0004 0.0002

0.0004 0.0003

0.0004 0.0002

0.0005
0.0002


0.1361
0.1471

0.1276 0.1387

0.1207
0.1402

0.1446 0.1332

0.1164 0.1399

0.1245 0.1440

0.1388
0.1459


0.0185 0.0216

0.0163 0.1092

0.0146 0.0196

0.0209 0.0177

0.0136 0.0196

0.0155 0.0207

0.0193 0.0213


0.0758
0.0714


0.0057 0.0051


" No. 4 " No. 4 " No. 4 " No. 4 " No. 4 " No. 4 " No. 4


87-145
(Miami)

87-090
(Miami)


0.2066 0.0427 0.0988 0.0098


0.1104 0.1017


0.0122 0.0103


12-008
(Ft. Myers)


0.0830 0.0069 0.0756 0.0057

0.0865 0.0075 0.0834 0.0070

0.0916 0.0084 0.0829 0.0069


86-062 +3/8
(P;embroke Pines) -3/8


34-106 (Gulf Hammock)

GA-177 (Tyrone, GA)


+3/8
-3/8

+3/8
-3/8


0.1003 0.0837


0.0101 0.0080















CEMENT PASTE-AGGREGATE INTERFACIAL BONDING


Portland cement concrete is a composite material

consisting of a mixture of portland cement, aggregates, air, and water. Various admixtures also may be used for achieving specific properties such as increased workability, entrained air content, and set retardation. Hydration reactions between water and portland cement result in formation of cementitious compounds which bind the system together to form hardened concrete. The most abundant compounds formed from hydration reactions are calcium silicate hydrates and calcium hydroxide. Minor amounts of other compounds are formed, including calcium aluminate hydrates and calcium sulfoaluminates (Mindess and Young, 1981).

Composite strength of portland cement concrete may be divided into three general components;

1 - strength of the cement paste

2 - strength of the aggregates

3 - strength of the interface between the cement paste

and aggregates.

The water to cement ratio is one of the most important properties affecting the strength of the cement paste. A ratio of approximately 0.2 is required to hydrate the cement. However, this will not produce a workable mix and









therefore, larger amounts of water are required. This produces greater amounts of voids in the paste which reduces its strength. Hydration of the cement paste is a gradual process with most of the strength developed after 28 days.

Strength of the aggregates is dependent on

mineralogical composition, grain size, texture, and alteration. These factors are determined by their geologic mode of formation and subsequent geologic history.

The cement paste-aggregate interfacial bond is usually considered to be the weakest component of composite concrete strength (Mindess and Young, 1981) and has been the subject of an increasing number of investigations in recent years. The strength of the cement paste-aggregate interfacial bond can be divided into mechanical and chemical components. Mechanical bonds result from physical interlocking of cement paste and aggregates as provided by physical properties of the aggregates such as size, shape, and surface texture. Chemical bonds result from chemical interactions between the hydrating cement compounds and aggregate surfaces. These interactions may be highly dependent upon the mineralogical composition of the aggregate which controls its surface properties. Surface properties of aggregates such as chemical composition, atomic arrangement, and associated surface charges are likely to determine cement pasteaggregate interactions.

It is generally accepted that differences exist in the bonding of cement paste with different aggregate types.









Carbonate aggregates are believed to react chemically with cement hydration products, forming a good interfacial bond. In contrast, silicate aggregates do not seem to bond well with cement paste, as evidenced by more abundant separations occurring at the cement paste-silicate aggregate boundary. These interfacial separations may provide pathways for fluid migration and therefore, may affect permeability and durability of concrete (Mindess and Young, 1981).

Microtextural studies were conducted on concrete

specimens containing limestone aggregates from major Florida sources, limestone aggregates from an Alabama source, granite aggregates from a Georgia source, and siliceous river gravel aggregates from a Florida source, that have been utilized in State concrete projects, to characterize their interfacial bonding properties.

While the interfacial region has been studied extensively with regard to detailed textural characteristics, relatively little work has been done to improve the cement paste-silicate aggregate bond. A review of some previous work on cement paste-aggregate bonding is presented, followed by considerations of mineral surface properties thought to be important for observed bonding characteristics and their modification to improve bonding with the cement paste. Aggregate treatment methods for improving the cement paste-silicate aggregate bond were investigated by analytical laboratory techniques, concrete testing, and microscopic examinations.









Literature Review


Textural Characteristics of the Interfacial Regiion

Several studies have been conducted in recent years to characterize the textural details of the interfacial region between cement paste and aggregate. Barnes et al. (1978a) conducted SEM investigations of early hydration characteristics for interfacial regions between glass slides and cement pastes. They observed a thin (1 urn) "duplex"

film of calcium hydroxide (Ca(OH)2) crystals adjacent to the glass slide with elongated hydrated calcium silicate (C-SH) particles covering the film and projecting toward the body of the paste. Beyond the C-S-H particle occurred a zone of hydrating cement grains. With increasing hydration, the C-S-H partEicles shortened or formed a reticulated network pattern and the zone beyond filled with abundant

Ca(OH)2 crystals. Subsequent work by the same authors (1978b) showed similar features occurring in the interfacial regions of mortars prepared with quartz sand.

Textural studies of the interfacial regions between cement paste and carbonate aggregates by Barnes et al. (1978) proved to be more difficult due to separation through the aggregate rather than at the interface. However, some textural studies of the cement paste-carbonate aggregate interface have been carried out. X-ray diffraction studies by Carles-Giberques et al. (1982) concluded that the Ca(OH)2 crystals at the interface of carbonate aggregates had much less parallel orientation to the aggregate surface than









those at silicate aggregate interfaces. They attribute the decreased orientation to etching of the carbonate aggregate surface due to reactions with the hydrating cement compounds. These reaction mechanisms will be discussed in more detail later.


Bonding of Carbonate and Silicate Aggregates

It is widely reported in the literature that the

carbonate aggregate-cement paste system provides superior bonding properties relative to the silicate aggregate-cement paste system. Bond strength measurements between hydrated cement paste and various aggregate types generally show that carbonate aggregates produce higher bond strength than silicate aggregates (Farran, 1956; Hsu and Slate, 1963). This is consistent with reports that highest concrete compressive strength is obtained with limestone aggregates (Bedard et al., 1984; Carrasquillo, 1987).

some studies using polished aggregates have indicated that extrusive siliceous aggregates may develop high bond strengths (Alexander et al., 1965). This is likely due to the amorphous nature of some extrusive aggregate components, producing a pozzolanic type reaction with the cement paste because of silica dissolution in the highly alkaline environment. It is doubtful that this mechanism would occur for the more commonly used non-extrusive, siliceous aggregates of a highly crystalline nature, such as quartz gravels and crushed granites, because of much lower silica solubility.









SEM observations of cement paste-aggregate interfaces have supported bond strength studies. Cracks are often observed to exist at cement paste-silicate aggregate boundaries (Christensen et al., 1981; Shah and Slate, 1965; Regourd, 1987), even before any loading (Shah and Slate, 1965). Regourd (1987) states that carbonate aggregates exhibit good interfacial bonding characteristics in contrast to silicate aggregates on which the cement hydration products are weakly bound to and from which they are easily torn.


Surface Chemical Considerations

The contrasting bonding characteristics of carbonate

and silicate aggregates probably are a result of differences in surface chemical properties which are affected by mineralogical composition and crystallographic structure (Figures 319 and 40). The higher bond strengths provided by carbonate aggregates likely are due to chemical reactions with the cement paste. These reactions may occur due to favorable atomic composition and arrangement of calcite

mineral surf aces which are composed of Ca2+ and C03 2- charge centers (Figure 41) (Sherwood, 1967; Thompson and Pownall, 1989).

The two commonly proposed models of reaction between limestone aggregates and cement paste are:

1- bonding of calcium hydroxide formed at the

interface to the calcite surface, either by



















0Carbon *Oxygen


Charge not neutralized on each oxygen =- 3


Carbon e Cakcium 0
Oxygen Q


Figure 39. Mineralogical properties of calcite, CaCO3.
(a) Bond strength and residual charges for
carbonate anionic complex. (b) Structure
of calcite (after Klein and Hurlbut, 1985).

















(SiO4)-"
* Silicon

A *Oxygen

ee.v. = I
Charge not neutralized on each oxygen = -1


(a) (bi


Figure 40. Mineralogical properties of quartz, SiO.
(a) Bond strength and residual charges for
the tetrahedral Si04 group. (b)
Tectosilicate structure of quartz (after
Klein and Hurlbut, 1985).













Charge Surface
Centers


C a - O3 -C - O3 -Ca C - Ca- COCa -3 -Ca - CO -O3- Ca -3COa -Ca- CO I I I I I I I I
Ca-CO - Ca - CO - Ca CO - Ca -Ca
3 3 3 3


Figure 41. Charges on calcite surface (after Sherwood,
1967).









epitaxial overgrowth (Farran, 1956) or nonhomogenous nucleation (Yuan and Guo, 1987), and

2- formation of the carboaluminate

3CaO.A1203. CaCO3. 11H20 (Carles-Gibergues et al.,

1982; Yuan and Guo, 1987).

Some studies have concluded that the formation of carboaluminates is the most beneficial of these reactions for providing a strong cement paste-aggregate bond (Yuan and Guo, 1987; Yuan and Odler, 1987).

The interactions between carbonate mineral surfaces and cement hydration products likely are related to the highly reactive nature of the carbonate mineral surfaces. Complex and dynamic interactions occur at the interface of carbonate mineral surfaces and aqueous solutions (Davis and Kent, 1990; Morse 1987). Studies by Davis et al. (1987) and Xu et al. (1990) have shown that some cations initially adsorb onto the hydrated calcite surface, followed by absorption into the mineral by exchange with calcium, resulting in solid solution formation. However, the ease of such reactions may be influenced by many factors including ionic radius and hydration properties, and solution chemistry (Davis and Kent, 1990).

The surface properties of common silicate minerals,

such as quartz and feldspar, are different than those of the carbonate minerals. Quartz is composed of Si and 0 atoms linked in tetrahedral coordination (Klein and Hurlbut, 1985), and yields a negatively charged fracture surface









(Figure 42) (Sherwood, 1967). Dissociation of hydrogen atoms results in negative charges at the quartz surface and positive charges in the adjacent water medium.

The structure of oxides such as quartz causes them to exhibit a strong hydrophilic (water attractive) character (Iler, 1979). The water on the mineral surface can be separated into weakly (physisorbed) and strongly (chemisorbed) held layers (Figure 43). Electrical imbalances at the mineral surface are satisfied by chemisorption of water to form surface hydroxyl groups. Hydrogen bonding between these groups and additional adsorption of water forms a physisorbed water layer (Davis and Kent, 1990; Parks, 1990). Adsorption of ions at oxide mineral surfaces may occur by either chemisorption or physisorption processes. Chemisorption occurs by formation of inner-sphere complexes and involves loss of hydration water and direct, short-range electrostatic or covalent bonding of ions to surface oxygens (Figure 44). Physisorption occurs by formation of outer-sphere complexes, with ionic complexes retaining waters of hydration and either hydrogen bonded to the surface or attracted by longrange coulombic forces (Figure 44). The difference in the strength between these long-range and short-range forces causes outer-sphere adsorption complexes to be less strongly bound to the mineral surface than inner-sphere adsorption complexes (Brown, 1990).














0 -0face
\N77 '/j\ \4 Sold
-Si -0 -Si -O -Si-0
-S- 0 -Si -J







Figure 42. Charges on quartz surface (after Sherwood,
1967).















H I~


I I I


Figure 43.


H f Physosored H2O

H
-- Chenisorbed H.0 7Z7A/


Adsorbed water on oxide surface. M represents cation in solid (from Davis and Kent, 1990).



















A



OUTER-SPHERE INNER-SPHERE
COMPLEX COMPLEXES


Figure 44. Sorption complexes of metal cations (M) at
oxide/water interfaces. The larger shaded
spheres in the oxide substrate and
surrounding the metal cations are oxygens.
The smaller shaded spheres are cations in
the substrate (after Brown, 1990).









The poor interfacial bonding properties of silicate mineral aggregates with cement hydration products are believed by the present author to result from these surface adsorption characteristics. Alkaline earth metal cations, such as Ca 2+ , are believed to adsorb onto silicate surfaces as outer-sphere adsorption complexes, with a hydration layer separating them from the mineral surface (Davis and Kent, 1990; Hayes, 1987; James and Healy, 1972). Therefore, Ca 2+ which is the most abundant cation to be released during cement hydration reactions, adsorbs as weakly held outersphere complexes onto silicate mineral surfaces, thus preventing strong chemical bond formation between cement hydration products and silicate aggregates.


Microtextural Studies

Previous studies have indicated that differences exist between interfacial bonding characteristics of carbonate and silicate aggregates in portland cement concrete. Concrete specimens from both laboratory and field environments were examined with the SEM in order to investigate cement pasteaggregate bonding characteristics of carbonate and silicate aggregates for comparison with reported literature findings. These observations served as a basis for later concrete testing and microscopic examinations.

Laboratory samples of concrete containing limestone coarse and quartz fine aggregates were obtained from the Department of Civil Engineering, University of Florida and the Florida Department of Transportation, State Materials









Office. The concrete cylinders were subjected to 28 or 91 days moist curing at room temperature. Specimens were then removed from the concrete and prepared for microscopic examinations.

Field samples of concrete were obtained from cores

extracted from two existing bridges by FDOT personnel. One core contained siliceous river gravel coarse aggregate from west Florida. The other contained limestone coarse aggregate fro m south Florida. Specimens from these concrete cores also were removed and prepared for microscopic examinations.

Interfacial bonding properties of the various aggregates were investigated using polarized light microscope (PIM) and scanning electron microscope (SEM) methods on the concrete specimens removed from the concrete mixtures. Specimens were removed from the concrete cylinders, and surfaces perpendicular to the long dimension of the cylinders were analyzed.

SEM examinations were conducted on bulk and polished thin section specimens of the concrete samples using an International Scientific Instruments DS-130 dual stage high resolution scanning electron microscope. Chemical information was obtained with an attached energy dispersive X-ray (EDX) spectrometer. PLM examinations were conducted on polished thin sections of the concrete specimens using a Zeiss polarizing research microscope. Results presented in this section are generally limited to cement paste-aggregate









interfacial bonding properties for concrete mixtures having water to cement ratios of approximately 0.45 or 0.33, no additives, and curing times of 28 or 91 days.

The mechanical component of interfacial bonding results from physical interlocking of the aggregates and cement paste. Because the aggregates investigated in this study are crushed stone materials, they are primarily angular particles with irregular surfaces as previously noted in the particle shape studies of this report. Therefore, they would be expected to provide good mechanical bonding properties. Surface textural characteristics on a microscopic level are illustrated by PIM photomicrographs of thin section specimens prepared from the concrete cylinders (Figures 45 through 51). These photomicrographs show that both the limestone (L) and granite (G) aggregates have rough, irregular surfaces which provide good interlocking with the cement paste matrix (C) and, therefore, good mechanical bonding. The siliceous river gravel coarse aggregates (G in Figure 52) and the quartz fine aggregates (Q in Figure 45) used in the concrete mixtures often have smooth surface textures which do not provide good mechanical bonding.

The surface chemical reaction component of interfacial bonding was evaluated by SEM analyses on concrete specimens from the laboratory and field samples. All limestone aggregates studied exhibited good attachment of cement hydration products to the aggregate surfaces, indicating




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E5USE9N8F_CQH44U INGEST_TIME 2013-09-13T22:09:03Z PACKAGE UF00073002_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

3+<6,&$/ 0,1(5$/2*,&$/ $1' ,17(5)$&,$/ %21',1* 3523(57,(6 2) &$5%21$7( $1' 6,/,&$7( 0,1(5$/ $**5(*$7(6 86(' ,1 3257/$1' &(0(17 &21&5(7( ,1 )/25,'$ %\ 52%,1 (5,& *5$9(6 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*(0(176 7KLV UHVHDUFK SDSHU ZDV VSRQVRUHG WKURXJK JUDQWV IURP WKH )ORULGD 'HSDUWPHQW RI 7UDQVSRUWDWLRQ 7KH SURMHFW ZDV XQGHU WKH JHQHUDO DGPLQLVWUDWLRQ RI 0U // 6PLWK 6WDWH 0DWHULDOV (QJLQHHU 0U 5( 'DQLHOV 'HSXW\ 6WDWH 0DWHULDOV (QJLQHHU DQG 'U -0 $UPDJKDQL 3DYHPHQW DQG 0DWHULDOV (QJLQHHU $GGLWLRQDO IXQGLQJ ZDV SURYLGHG E\ WKH &KHPVWDU &RUSRUDWLRQ XQGHU WKH DGPLQLVWUDWLRQ RI 0U '' :DONHU 9LFH 3UHVLGHQW RI 7HFKQLFDO 6HUYLFHV 7KH SURMHFW GLUHFWRUV ZHUH 'U -/ (DGHV DQG 'U *+ 0F&OHOODQ RI WKH 'HSDUWPHQW RI *HRORJ\ 8QLYHUVLW\ RI )ORULGD , H[WHQG P\ VLQFHUH JUDWLWXGH WR WKH PDQ\ SHRSOH ZKR KDYH JLYHQ PH WKHLU KHOS DQG VXSSRUW 7KLV SURMHFW ZRXOG QRW KDYH EHHQ SRVVLEOH ZLWKRXW WKH VXSSRUW DQG JXLGDQFH RI 'U *+ 0F&OHOODQ DQG 'U -/ (DGHV ZKR VHUYHG DV FKDLUPDQ DQG FRFKDLUPDQ RI P\ FRPPLWWHH 2XU PDQ\ GLVFXVVLRQV KDYH EHHQ LQYDOXDEOH LQ FDUU\LQJ RXW WKLV ZRUN DQG KDYH EURDGHQHG P\ HGXFDWLRQ WR LQFOXGH PDQ\ RWKHU DVSHFWV RI LQGXVWULDO PLQHUDORJ\ , WKDQN WKHP IRU EHLQJ P\ WHDFKHUV DQG P\ IULHQGV , ZRXOG OLNH WR WKDQN 'U )1 %ODQFKDUG DQG 'U $) 5DQGD]]R RI WKH 'HSDUWPHQW RI *HRORJ\ DQG 'U %( 5XWK RI WKH 'HSDUWPHQW RI &LYLO (QJLQHHULQJ IRU WKHLU HIIRUWV LQ VHUYLQJ DV DGGLWLRQDO PHPEHUV RI P\ VXSHUYLVRU\ LL

PAGE 3

FRPPLWWHH $ VSHFLDO WKDQN \RX JRHV WR 'U && 0DWKHZVRQ RI WKH 'HSDUWPHQW RI *HRORJ\ 7H[DV $t0 8QLYHUVLW\ IRU WKH H[WUD HIIRUW UHTXLUHG LQ VHUYLQJ DV DQ RXWVLGH PHPEHU RI P\ FRPPLWWHH , ZRXOG DOVR OLNH WR WKDQN 'U '0 3DWULFN RI WKH 'HSDUWPHQW RI *HRORJ\ 8QLYHUVLW\ RI 6RXWKHUQ 0LVVLVVLSSL IRU KLV HQWKXVLDVP IRU WHDFKLQJ ZKLFK OHG WR P\ JUHDW LQWHUHVW LQ HQJLQHHULQJ JHRORJ\ , ZRXOG OLNH WR DFNQRZOHGJH WKH SHUVRQQHO RI WKH )ORULGD 'HSDUWPHQW RI 7UDQVSRUWDWLRQ 6WDWH 0DWHULDOV 2IILFH IRU WKHLU DVVLVWDQFH LQ DJJUHJDWH DQG FRQFUHWH WHVWLQJ DQG WKH VWDII RI WKH 0DMRU $QDO\WLFDO ,QVWUXPHQWDWLRQ &HQWHU DW WKH 8QLYHUVLW\ RI )ORULGD IRU WKHLU DVVLVWDQFH LQ FRQGXFWLQJ VSHFWURVFRSLF DQDO\VHV , DOVR WKDQN WKH JUDGXDWH DQG XQGHUJUDGXDWH VWXGHQWV LQ WKH 'HSDUWPHQW RI *HRORJ\ ZKR DVVLVWHG PH LQ WKH SURMHFW DQG ZHUH YHU\ KHOSIXO LQ VDPSOH DFTXLVLWLRQ SUHSDUDWLRQ DQG DQDO\VLV , DP JUHDWO\ LQGHEWHG WR P\ ZLIH -HQQLIHU IRU KHU ORYH SDWLHQFH XQGHUVWDQGLQJ DQG VXSSRUW ZKLFK KDYH EHHQ D ELJ SDUW LQ DFKLHYLQJ WKLV HGXFDWLRQDO JRDO +HU ZRUG SURFHVVLQJ VNLOOV ZHUH LQYDOXDEOH LQ WKH SUHSDUDWLRQ RI WKLV PDQXVFULSW DQG PDQ\ RWKHUV 0\ WKDQNV DOVR JR WR P\ PDQ\ IULHQGV EHFDXVH WKH\ WUXO\ PDNH OLIH PRUH HQMR\DEOH )LQDOO\ , ZRXOG OLNH WR WKDQN P\ SDUHQWV IRU WKHLU ORYH VXSSRUW DQG HQFRXUDJHPHQW WR H[FHO LQ P\ HGXFDWLRQDO SXUVXLWV LLL

PAGE 4

7$%/( 2) &217(176 SDJH $&.12:/('*(0(176 ž $%675$&7 YL ,1752'8&7,21 3XUSRVH DQG 6FRSH 0HWKRGV (&2120,& $1' *(2/2*,& $63(&76 2) )/25,'$ $**5(*$7(6 &RDUVH $JJUHJDWH 6RXUFHV 7D\ORU &RXQW\ 5HJLRQ +HUQDQGR &RXQW\ 5HJLRQ /HH DQG &ROOLHU &RXQWLHV 5HJLRQ 'DGH DQG %URZDUG &RXQWLHV 5HJLRQ /HY\ DQG &LWUXV &RXQWLHV 5HJLRQ )LQH $JJUHJDWH 6RXUFHV $**5(*$7( 3523(57,(6 3K\VLFDO 3URSHUWLHV 0LQHUDORJLFDO 3URSHUWLHV 6DPSOH 1R %URRNVYLOOH )ORULGDf 6DPSOH 1R 0LDPL )ORULGDf 6DPSOH 1R 0LDPL )ORULGDf 6DPSOH 1R )W 0\HUV )ORULGDf LY

PAGE 5

6DPSOH 1R 3HPEURNH 3LQHV )ORULGDf 6DPSOH 1R *XOI +DPPRFN )ORULGDf 6DPSOH 1R $/ &DOHUD $ODEDPDf 6DPSOH 1R *$ 7\URQH *HRUJLDf 6DPSOH 1R &KDWWDKRRFKLH )ORULGDf 6KDSH &KDUDFWHUL]DWLRQ &(0(17 3$67($**5(*$7( ,17(5)$&,$/ %21',1* /LWHUDWXUH 5HYLHZ 7H[WXUDO &KDUDFWHULVWLFV RI WKH ,QWHUIDFLDO 5HJLRQ %RQGLQJ RI &DUERQDWH DQG 6LOLFDWH $JJUHJDWHV 6XUIDFH &KHPLFDO &RQVLGHUDWLRQV 0LFURWH[WXUDO 6WXGLHV $JJUHJDWH 7UHDWPHQW ,QYHVWLJDWLRQV ,PSURYHPHQW RI WKH &HPHQW 3DVWH6LOLFDWH $JJUHJDWH %RQG &RQFUHWH 0DWHULDOV DQG 'HVLJQ $JJUHJDWH 7UHDWPHQW 0HWKRGV 6WUHQJWK 7HVWLQJ 0LFURVFRSLF ([DPLQDWLRQV ',6&866,21 &21&/86,216 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ 9

PAGE 6

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 3+<6,&$/ 0,1(5$/2*,&$/ $1' ,17(5)$&,$/ %21',1* 3523(57,(6 2) &$5%21$7( $1' 6,/,&$7( 0,1(5$/ $**5(*$7(6 86(' ,1 3257/$1' &(0(17 &21&5(7( ,1 )/25,'$ %\ 52%,1 (5,& *5$9(6 $XJXVW &KDLUPDQ 'U *XHUU\ + 0F&OHOODQ 0DMRU 'HSDUWPHQW *HRORJ\ 3K\VLFDO PLQHUDORJLFDO DQG LQWHUIDFLDO ERQGLQJ SURSHUWLHV RI FDUERQDWH DQG VLOLFDWH PLQHUDO DJJUHJDWHV ZKLFK DUH EHLQJ XVHG LQ D )ORULGD 'HSDUWPHQW RI 7UDQVSRUWDWLRQ )'27f FRPSUHKHQVLYH FRQFUHWH VWXG\ ZHUH LQYHVWLJDWHG WR GHYHORS EDVLF GDWD WR DLG LQ HYDOXDWLRQ RI FRQFUHWH SURSHUWLHV &RPSLODWLRQ RI SXEOLVKHG LQIRUPDWLRQ RQ JHRORJLF DQG HFRQRPLF IDFWRUV LPSRUWDQW WR WKH )ORULGD FRQFUHWH DJJUHJDWH LQGXVWU\ ZDV DQ LQWHJUDO SDUW RI WKH LQYHVWLJDWLRQ 3K\VLFDO SURSHUWLHV UHSRUWHG IRU WKH DJJUHJDWHV LQFOXGH VL]H JUDGDWLRQ VSHFLILF JUDYLW\ XQLW ZHLJKW ZDWHU DEVRUSWLRQ DEUDVLRQ VWUHQJWK DQG SDUWLFOH VKDSH 0LQHUDORJLFDO FRPSRVLWLRQV DQG WH[WXUDO SURSHUWLHV ZHUH LQYHVWLJDWHG XVLQJ ;UD\ GLIIUDFWLRQ DQG SHWURJUDSKLF PLFURVFRSH PHWKRGV ,QWHUIDFLDO ERQGLQJ SURSHUWLHV RI WKH YL

PAGE 7

DJJUHJDWHV LQ SRUWODQG FHPHQW FRQFUHWH VSHFLPHQV DOVR ZHUH FKDUDFWHUL]HG E\ PLFURVFRSLF PHWKRGV 3K\VLFDO GDWD LQGLFDWH WKDW WKH DJJUHJDWHV PHHW JHQHUDO UHTXLUHPHQWV IRU XVH LQ FRQFUHWH DQG UHIOHFW W\SLFDO YDOXHV EDVHG RQ KLVWRULFDO )'27 LQIRUPDWLRQ 0LQHUDORJLFDO DQDO\VHV VKRZ WKDW WKH DJJUHJDWHV KDYH OLPLWHG YDULDELOLW\ LQ FRPSRVLWLRQV DQG FRQWDLQ IHZ GHOHWHULRXV FRQVWLWXHQWV 3K\VLFDO SURSHUWLHV FDQ EH UHODWHG WR WH[WXUDO FKDUDFWHULVWLFV ZKLFK DUH FRQWUROOHG E\ JHRORJLF KLVWRU\ RI WKH PDWHULDOV 0LFURVFRSLF VWXGLHV RI FRQFUHWH VSHFLPHQV FRQWDLQLQJ FUXVKHG OLPHVWRQH DQG JUDQLWH DJJUHJDWHV VXJJHVW WKDW D JRRG PHFKDQLFDO FRPSRQHQW RI FHPHQW SDVWHDJJUHJDWH LQWHUIDFLDO ERQGLQJ LV SURYLGHG EHFDXVH RI URXJK VXUIDFH WH[WXUHV 6PRRWK VXUIDFH WH[WXUHV RI XQFUXVKHG VLOLFHRXV ULYHU JUDYHO DJJUHJDWHV ZRXOG QRW SURYLGH JRRG PHFKDQLFDO ERQGLQJ /LPHVWRQH DJJUHJDWHV DOVR DSSHDU WR SURYLGH D FKHPLFDO FRPSRQHQW RI LQWHUIDFLDO ERQGLQJ UHVXOWLQJ LQ JRRG DWWDFKPHQW RI FHPHQW K\GUDWLRQ SURGXFWV WR WKH DJJUHJDWH VXUIDFHV ([WHQVLYH VHSDUDWLRQV ZHUH HYLGHQW DW FHPHQW SDVWHVLOLFDWH DJJUHJDWH LQWHUIDFHV VXJJHVWLQJ D SRRU FKHPLFDO ERQG 7KLV LV EHOLHYHG WR UHVXOW IURP WKH GLIIHUHQW VXUIDFH FKHPLFDO SURSHUWLHV RI FDUERQDWH DQG VLOLFDWH PLQHUDOV $ JUDQLWH DJJUHJDWH WUHDWPHQW PHWKRG XVLQJ D FDOFLXP K\GUR[LGH VROXWLRQ IROORZHG E\ GU\LQJ UHVXOWHG LQ KLJKHU FRQFUHWH FRPSUHVVLYH VWUHQJWK DQG LPSURYHG LQWHUIDFLDO YLL

PAGE 8

ERQGLQJ ZLWK FHPHQW SDVWH 6SHFWURVFRSLF DQDO\VHV LQGLFDWH WKDW WKLV PD\ EH EHFDXVH RI VWURQJHU DGVRUSWLRQ RI FDWLRQV RQ WKH VLOLFDWH PLQHUDO VXUIDFHV 5DSLG SRSXODWLRQ JURZWK DQG GHYHORSPHQW KDV FDXVHG FRQFHUQV UHJDUGLQJ DJJUHJDWH UHVRXUFHV LQ )ORULGD ,QFUHDVLQJ GHPDQGV IL[HG UHVRXUFHV H[SDQGLQJ XUEDQ GHYHORSPHQW DQG LQFUHDVLQJ HQYLURQPHQWDO UHJXODWLRQ DUH IDFWRUV WKDW PD\ QHFHVVLWDWH WKH XVH RI DOWHUQDWLYH DJJUHJDWH VRXUFHV WR PHHW IXWXUH FRQFUHWH SURGXFWLRQ UHTXLUHPHQWV YLLL

PAGE 9

,1752'8&7,21 7KH 6WDWH RI )ORULGD KDV H[SHULHQFHG UDSLG SRSXODWLRQ JURZWK DQG GHYHORSPHQW LQ UHFHQW \HDUV DQG WKLV WUHQG LV H[SHFWHG WR FRQWLQXH LQWR WKH IXWXUH 7KLV JURZWK KDV OHG WR WUHPHQGRXV QHHGV IRU H[SDQVLRQ UHSDLU DQG PDLQWHQDQFH RI WUDQVSRUWDWLRQ V\VWHPV 7KHVH QHHGV KDYH SODFHG JUHDW GHPDQG RQ ERWK WKH ILQDQFLDO DQG PDWHULDO UHVRXUFHV RI WKH 6WDWH 'HVLJQ FRQVWUXFWLRQ DQG PDLQWHQDQFH RI WKH WUDQVSRUWDWLRQ LQIUDVWUXFWXUH SUHVHQWV FKDOOHQJLQJ SUREOHPV WR SODQQHUV HQJLQHHUV DQG VFLHQWLVWV UHVSRQVLEOH IRU LWV GHYHORSPHQW &RQWLQXHG VXFFHVV LQ SURYLGLQJ TXDOLW\ WUDQVSRUWDWLRQ V\VWHPV LV KLJKO\ GHSHQGHQW RQ WKH PDWHULDO UHVRXUFHV DYDLODEOH IRU FRQVWUXFWLRQ $VSKDOWLF DQG 3RUWODQG FHPHQW FRQFUHWHV DUH WKH SULPDU\ PDWHULDOV XWLOL]HG IRU FRQVWUXFWLRQ RI SDYHPHQWV DQG VWUXFWXUHV FRPSRVLQJ KLJKZD\ V\VWHPV 0LQHUDO DJJUHJDWHV DUH WKH PDMRU FRPSRQHQW RI WKHVH PDWHULDOV 5DSLG JURZWK D OLPLWHG UHVRXUFH EDVH DQG LQFUHDVLQJ HQYLURQPHQWDO UHVWULFWLRQV RQ PLQLQJ DQG SURFHVVLQJ DFWLYLWLHV DUH FDXVLQJ FRQFHUQ RYHU WKH IXWXUH DYDLODELOLW\ RI TXDOLW\ FRQVWUXFWLRQ DJJUHJDWHV IRU FRQFUHWH SURGXFWLRQ ZLWKLQ WKH 6WDWH $V WKH UDZ PDWHULDOV WKDW KDYH WUDGLWLRQDOO\ EHHQ XVHG IRU FRQFUHWH SURGXFWLRQ DUH GHSOHWHG QHZ VRXUFHV PD\ KDYH WR EH IRXQG WR DFFRPPRGDWH WKH 6WDWHnV WUDQVSRUWDWLRQ QHHGV 7KH )ORULGD

PAGE 10

'HSDUWPHQW RI 7UDQVSRUWDWLRQ )'27f KDV FRQVLGHUDEOH H[SHULHQFH ZLWK FRQFUHWH FRQVWUXFWLRQ XVLQJ WKHVH WUDGLWLRQDO UDZ PDWHULDOV +RZHYHU WKH LQHYLWDEOH IXWXUH QHHG WR XVH DOWHUQDWLYH UHVRXUFHV UHTXLUHV WKDW H[LVWLQJ PDWHULDOV EH WKRURXJKO\ LQYHVWLJDWHG VR WKDW DJJUHJDWHV IURP QRQWUDGLWLRQDO VRXUFHV FDQ EH FRPSDUHG ZLWK WKHVH PDWHULDOV WR DVVXUH WKH VDWLVIDFWRU\ SHUIRUPDQFH RI IXWXUH VWUXFWXUHV 3XUSRVH DQG 6FRSH 7KLV VWXG\ LV RQH FRPSRQHQW RI D FRPSUHKHQVLYH FRQFUHWH UHVHDUFK SURJUDP RUJDQL]HG DQG PDQDJHG E\ WKH 6WDWH 0DWHULDOV 2IILFH RI WKH )ORULGD 'HSDUWPHQW RI 7UDQVSRUWDWLRQ 7KLV SURJUDP LV GHVLJQHG WR HYDOXDWH V\VWHPDWLFDOO\ WKH EHKDYLRU RI 3RUWODQG FHPHQW FRQFUHWHV PDGH IURP )ORULGD PDWHULDOV ([WHQVLYH WHVWLQJ RI IUHVK DQG KDUGHQHG FRQFUHWH FRQWDLQLQJ DJJUHJDWHV IURP D ZLGH UDQJH RI VRXUFHV DQG SUHSDUHG XVLQJ YDULRXV PL[ GHVLJQV DQG DGPL[WXUHV LV EHLQJ FRQGXFWHG IRU HYDOXDWLRQ RI VWUHQJWK DQG GXUDELOLW\ FKDUDFWHULVWLFV DW ERWK WKH PDFURVFRSLF DQG PLFURVFRSLF OHYHOV $W WKH PDFURVFRSLF OHYHO WKH FRQFUHWH PL[WXUHV DUH EHLQJ WHVWHG IRU VWUHQJWK HODVWLF SURSHUWLHV SHUPHDELOLW\ VXOIDWH UHVLVWDQFH DQG FRUURVLRQ $W WKH PLFURVFRSLF OHYHO SHWURJUDSKLF HOHFWURQ PLFURVFRSLF DQG FKHPLFDO WHFKQLTXHV DUH EHLQJ XVHG WR HYDOXDWH PLFURWH[WXUDO DQG PLFURVWUXFWXUDO SURSHUWLHV WKDW PD\ HIIHFW VWUHQJWK DQG GXUDELOLW\ RI FRQFUHWH

PAGE 11

2QH REMHFWLYH RI WKLV VWXG\ ZDV WR FKDUDFWHUL]H FRQFUHWH DJJUHJDWHV IURP PDMRU )ORULGD VRXUFH DUHDV ZKLFK DUH FXUUHQWO\ EHLQJ XWLOL]HG LQ WKH FRPSUHKHQVLYH )'27 VWXG\ 7KH GDWD FROOHFWHG ZLOO EH XVHG LQ WKH RYHUDOO LQWHUSUHWDWLRQ RI UHVXOWV IURP FRQFUHWH WHVWLQJ XVLQJ YDULRXV PDWHULDOV DQG PL[ GHVLJQV DQG ZLOO VHUYH DV D VRXUFH RI EDVLF LQIRUPDWLRQ RQ IXQGDPHQWDO FKDUDFWHULVWLFV RI )ORULGD FRQFUHWH DJJUHJDWHV IRU IXWXUH UHIHUHQFH DQG FRPSDULVRQV ZLWK DOWHUQDWLYH VRXUFH PDWHULDOV (FRQRPLF DQG JHRORJLF DVSHFWV RI WKH )ORULGD DJJUHJDWH LQGXVWU\ DOVR ZHUH VXUYH\HG WR SURYLGH DQ RYHUYLHZ RI DJJUHJDWH UHVRXUFHV DQG DVVRFLDWHG FXUUHQW DQG IXWXUH SUREOHPV 3RUWODQG FHPHQW FRQFUHWH LV D FRPSRVLWH PDWHULDO DQG LWV EHKDYLRU LV GHSHQGHQW XSRQ PDQ\ YDULDEOHV 2QH LPSRUWDQW DVSHFW RI FRPSRVLWH FRQFUHWH EHKDYLRU LV WKH LQWHUIDFLDO ERQG EHWZHHQ WKH FHPHQW SDVWH DQG DJJUHJDWHV ZKLFK KDV EHHQ WKH VXEMHFW RI DQ LQFUHDVLQJ QXPEHU RI LQYHVWLJDWLRQV LQ UHFHQW \HDUV 7KH FHPHQW SDVWHDJJUHJDWH LQWHUIDFLDO ERQG LV XVXDOO\ FRQVLGHUHG WR EH WKH ZHDNHVW FRPSRQHQW RI FRPSRVLWH FRQFUHWH VWUHQJWK DQG PD\ DOVR EH DQ LPSRUWDQW IDFWRU IRU SHUPHDELOLW\ DQG GXUDELOLW\ 0LQGHVV DQG
PAGE 12

VLOLFDWH PLQHUDO DJJUHJDWHV LQ SRUWODQG FHPHQW FRQFUHWH DQG WR EHWWHU XQGHUVWDQG WKH HIIHFWV RI VXUIDFH SURSHUWLHV RI DJJUHJDWHV RQ LQWHUIDFLDO ERQGLQJ ,Q DGGLWLRQ D PHWKRG IRU LPSURYLQJ WKH ERQG EHWZHHQ FHPHQW SDVWH DQG VLOLFDWH DJJUHJDWHV ZDV LQYHVWLJDWHG EDVHG RQ VXUIDFH FKHPLFDO FRQVLGHUDWLRQV 0HWKRGV *HQHUDO JHRORJ\ DQG GDWD RQ )ORULGD DJJUHJDWH UHVRXUFHV ZHUH FRPSLOHG IURP WKH OLWHUDWXUH DQG GLVFXVVLRQV ZLWK LQGXVWU\ DQDO\VWV 7KLV LQIRUPDWLRQ ZDV XVHG WR SURYLGH DQ RYHUYLHZ RI FXUUHQW UHVRXUFHV H[WUDFWLRQ PHWKRGV DQG DVVRFLDWHG WHFKQLFDO HFRQRPLF HQYLURQPHQWDO DQG VRFLDO IDFWRUV LPSRUWDQW WR WKH PLQLQJ LQGXVWU\ /LPHVWRQH FRDUVH DJJUHJDWHV IURP VHOHFWHG )ORULGD VRXUFHV ZKLFK DUH FRPPRQO\ XWLOL]HG LQ FRQFUHWH SURGXFWLRQ ZHUH WHVWHG DQG DQDO\]HG WR GHWHUPLQH WKHLU SK\VLFDO PLQHUDORJLFDO DQG WH[WXUDO FKDUDFWHULVWLFV 7KHVH DUH SURSHUWLHV WKDW DUH LPSRUWDQW IRU FRQFUHWH GHVLJQ SURGXFWLRQ DQG SHUIRUPDQFH ,Q DGGLWLRQ WR WKH )ORULGD OLPHVWRQH DJJUHJDWHV OLPHVWRQH DJJUHJDWHV IURP DQ $ODEDPD VRXUFH JUDQLWH DJJUHJDWHV IURP D *HRUJLD VRXUFH DQG VLOLFHRXV ULYHU JUDYHO DJJUHJDWHV IURP WKH )ORULGD 3DQKDQGOH DUHD ZKLFK KDYH EHHQ XWLOL]HG LQ VRPH 6WDWH SURMHFWV DQG DUH LQFOXGHG LQ WKH )'27 FRPSUHKHQVLYH VWXG\ ZHUH HYDOXDWHG 3K\VLFDO SURSHUWLHV RI WKH YDULRXV DJJUHJDWHV WKDW ZHUH LQYHVWLJDWHG LQFOXGHG JUDGDWLRQ VSHFLILF JUDYLW\ XQLW

PAGE 13

ZHLJKW ZDWHU DEVRUSWLRQ VWUHQJWK DQG SDUWLFOH VKDSH 0LQHUDORJLFDO LQYHVWLJDWLRQV LQFOXGHG SHWURJUDSKLF GHVFULSWLRQV ;UD\ GLIIUDFWLRQ DQDO\VHV DQG VXUIDFH WH[WXUDO VWXGLHV +LVWRULFDO )'27 LQIRUPDWLRQ DQG OLWHUDWXUH UHSRUWV ZHUH XVHG IRU HYDOXDWLRQ RI SK\VLFDO DQG PLQHUDORJLFDO GDWD REWDLQHG IRU WKH YDULRXV DJJUHJDWHV $ OLWHUDWXUH UHYLHZ ZDV FRQGXFWHG RQ SUHYLRXV VWXGLHV RI FHPHQW SDVWHDJJUHJDWH ERQGLQJ DQG VXUIDFH SURSHUWLHV RI DJJUHJDWHV ZKLFK PD\ EH LPSRUWDQW LQ FRQWUROOLQJ LQWHUIDFLDO ERQGLQJ FKDUDFWHULVWLFV 0LFURVFRSLF H[DPLQDWLRQV ZHUH SHUIRUPHG RQ ILHOG DQG ODERUDWRU\ FRQFUHWH VSHFLPHQV WR FRPSDUH LQWHUIDFLDO ERQGLQJ SURSHUWLHV RI WKH OLPHVWRQH JUDQLWH DQG VLOLFHRXV ULYHU JUDYHO DJJUHJDWHV %DVHG RQ WKH SXEOLVKHG GDWD DQG PLFURVFRSLF H[DPLQDWLRQV D FRQFUHWH WHVWLQJ SURJUDP ZDV LPSOHPHQWHG WR IXUWKHU LQYHVWLJDWH LQWHUIDFLDO ERQGLQJ FKDUDFWHULVWLFV &RQFUHWH PL[WXUHV ZHUH SUHSDUHG ZLWK FUXVKHG DJJUHJDWHV IURP D FRPPRQO\ XVHG )ORULGD OLPHVWRQH VRXUFH DQG D *HRUJLD JUDQLWH VRXUFH 7KH FRQFUHWH PL[WXUHV ZHUH FXUHG WHVWHG DQG H[DPLQHG ZLWK PLFURVFRSLF WHFKQLTXHV ,Q DGGLWLRQ FRQFUHWH PL[WXUHV ZHUH SUHSDUHG ZLWK JUDQLWH DJJUHJDWHV WKDW ZHUH VXEMHFWHG WR SUHWUHDWPHQW PHWKRGV EDVHG RQ WKH OLWHUDWXUH UHYLHZ DQG DQDO\WLFDO ODERUDWRU\ LQYHVWLJDWLRQV 7KHVH FRQFUHWH PL[WXUHV ZHUH FXUHG WHVWHG DQG H[DPLQHG IRU FRPSDULVRQ ZLWK FRQFUHWH SUHSDUHG ZLWK XQWUHDWHG JUDQLWH DJJUHJDWHV

PAGE 14

7KH LQIRUPDWLRQ FROOHFWHG LQ WKLV VWXG\ LV LQWHQGHG WR VHUYH DV D EDVLF VRXUFH RI LQIRUPDWLRQ RQ FRQFUHWH DJJUHJDWH UHVRXUFHV FRPPRQO\ XWLOL]HG ZLWKLQ WKH 6WDWH DQG WKHLU DVVRFLDWHG SK\VLFDO DQG PLQHUDORJLFDO SURSHUWLHV WKDW PD\ EH LPSRUWDQW IRU FRQFUHWH SURGXFWLRQ DQG SHUIRUPDQFH

PAGE 15

(&2120,& $1' *(2/2*,& $63(&76 2) )/25,'$ $**5(*$7(6 6XUIDFH DQG QHDUVXUIDFH FDUERQDWH GHSRVLWV LQ )ORULGD DUH PLQHG IRU PDQ\ XVHV SULPDULO\ IRU SRUWODQG FHPHQW PDQXIDFWXUH DQG DV DJJUHJDWH IRU URDG EDVH DQG FRQFUHWH SURGXFWLRQ +RZHYHU PDQ\ RWKHU FKHPLFDO LQGXVWULDO DQG HQYLURQPHQWDO DSSOLFDWLRQV DOVR RFFXU 6FKPLGW HW DO f 7KH JHRJUDSKLF GLVWULEXWLRQ RI WKHVH GHSRVLWV LV FRQWUROOHG E\ WKH JHRORJLF KLVWRU\ RI WKH 6WDWH )ORULGD LV XQGHUODLQ E\ PRUH WKDQ IHHW RI &UHWDFHRXV WR +RORFHQH VHGLPHQWDU\ URFNV SULPDULO\ FDUERQDWHVf ZKLFK RYHUOLH D EDVHPHQW RI ROGHU VHGLPHQWDU\ PHWDPRUSKLF DQG LJQHRXV URFNV 0LRFHQH WR +RORFHQH VXUIDFH VDQGV VLOWV DQG FOD\V ZKLFK PD\ UHDFK VHYHUDO KXQGUHG IHHW LQ WKLFNQHVV FRYHU VXEVXUIDFH FDUERQDWH XQLWV LQ PDQ\ DUHDV 6FKPLGW HW DO &RRNH f (RFHQH WR 0LRFHQH VXUILFLDO FDUERQDWH XQLWV RFFXU RYHU D ODUJH SRUWLRQ RI WKH ZHVWHUQ RQHKDOI RI WKH FHQWUDO SHQLQVXOD DQG RYHU D VPDOO DUHD RI QRUWKZHVW )ORULGD )LJXUH f 7KHVH PDWHULDOV ZHUH GHSRVLWHG LQ D EURDG FDUERQDWH EDQN RYHUO\LQJ WKH )ORULGD 3ODWIRUP WKDW FRPSRVHV WKH )ORULGD SHQLQVXOD WKH DGMDFHQW FRQWLQHQWDO VKHOYHV RII WKH HDVW DQG ZHVW FRDVWV DQG WKH *UHDW %DKDPD %DQN &KHQ f 'HSRVLWLRQ RI (RFHQH DQG 2OLJRFHQH FDUERQDWH URFNV ZDV IROORZHG E\ D SHULRG RI SRVW2OLJRFHQH HURVLRQ DQG

PAGE 16

L :$,721 ‘ 6 Z$6+77f§6Af§Q *$'6'(1 BB ‘ , ! 6 M BL 3 UHZa L If A 9nnO(21 A 0$',621 MA e e 7HAIH6.f° 7 r :$.8//$ 7$
PAGE 17

VWUXFWXUDO XSOLIW 2FDOD 8SOLIWf LQ WKH ZHVWHUQ SHQLQVXOD 9HUQRQ f 0LRFHQH VHGLPHQWV VXEVHTXHQWO\ FRYHUHG PXFK RI WKH SHQLQVXOD ([WHQVLYH HURVLRQ KDV RFFXUUHG RQ WKH VWUXFWXUDO KLJK UHVXOWLQJ LQ H[SRVXUH RI WKH 0LGGOH (RFHQH $YRQ 3DUN )RUPDWLRQ URXJKO\ SDUDOOHO WR WKH QRUWKZHVW VRXWKHDVW WUHQGLQJ FUHVW RI WKH VWUXFWXUH 7KH VXUIDFH H[SRVXUH RI WKH $YRQ 3DUN )RUPDWLRQ LV VXUURXQGHG LQ D URXJKO\ RYDO SDWWHUQ E\ WKH 8SSHU (RFHQH 2FDOD /LPHVWRQH ZKLFK XQFRQIRUPDEO\ RYHUOLHV WKH $YRQ 3DUN DQG GLSV LQ DOO GLUHFWLRQV DZD\ IURP WKH HORQJDWH VWUXFWXUDO KLJK 7KH 2OLJRFHQH 6XZDQQHH /LPHVWRQH XQFRQIRUPDEO\ RYHUOLHV WKH 2FDOD /LPHVWRQH DQG EHFDXVH RI HURVLRQ RU QRQGHSRVLWLRQ LV RQO\ H[SRVHG DW WKH QRUWKZHVWHUQ DQG VRXWKHDVWHUQ HQGV RI WKH 2FDOD RXWFURS DUHD 6FKPLGW HW DO f /LWKRORJLFDOO\ /RZHU WR 0LGGOH (RFHQH GHSRVLWV DUH SUHGRPLQDQWO\ IRVVLOLIHURXV OLPHVWRQHV DQG ILQH WR PHGLXP FU\VWDOOLQH GRORPLWHV DORQJ ZLWK VPDOO DPRXQWV RI FDUERQDFHRXV PDWHULDO DQG J\SVXP 2YHUO\LQJ 8SSHU (RFHQH DQG 2OLJRFHQH GHSRVLWV DUH JHQHUDOO\ KLJK FDOFLXP OLPHVWRQHV ZLWK VSDUVH WR DEXQGDQW IRVVLO FRQWHQWV &KHQ 9HUQRQ &RRNH f +RZHYHU WKHVH PD\ EH GRORPLWL]HG WR YDULRXV GHJUHHV LQ QRUWKZHVW )ORULGD 6FKPLGW HW DO f 'HWDLOHG OLWKRORJ\ RI WKHVH FDUERQDWH VHTXHQFHV FDQ EH KLJKO\ YDULDEOH UHVXOWLQJ IURP FKDQJLQJ GHSRVLWLRQDO HQYLURQPHQWV DQG SHULRGV RI QRQGHSRVLWLRQ RU HURVLRQ UHVXOWLQJ IURP VHD OHYHO IOXFWXDWLRQV DQG XSOLIW DQG

PAGE 18

GRZQZDUSLQJ RI WKH )ORULGD 3ODWIRUP &KHQ 9HUQRQ f 7KH 3OHLVWRFHQH $QDVWDVLD )RUPDWLRQ D VDQG\ OLWKLILHG FRTXLQD WKDW UHSUHVHQWV DQ DQFLHQW EHDFK IDFLHV H[WHQGV DORQJ WKH $WODQWLF FRDVW DQG IRUPV WKH $WODQWLF &RDVWDO 5LGJH IURP 6W -RKQV &RXQW\ WR 3DOP %HDFK &RXQW\ )LJXUH f 6RXWKZDUG WKH $QDVWDVLD LQWHUILQJHUV ZLWK DQG JUDGHV LQWR WKH 3OHLVWRFHQH 0LDPL 2ROLWH DQG .H\ /DUJR /LPHVWRQH 7KH 0LDPL 2ROLWH LV D ORFDOO\ FURVVEHGGHG VDQG\ WR SXUH OLPHVWRQH ZLWK D YDULDEOH RROLWH FRQWHQW DQG DEXQGDQW VROXWLRQ IHDWXUHV 7KH .H\ /DUJR /LPHVWRQH LV D KLJKO\ IRVVLOLIHURXV GHSRVLW IURP D FRUDO UHHI HQYLURQPHQW 7KH 3OHLVWRFHQH )W 7KRPSVRQ )RUPDWLRQ XQGHUOLHV WKHVH XQLWV DQG LV FKDUDFWHUL]HG E\ DOWHUQDWLQJ PDULQH VKHOO EHGV DQG IUHVKZDWHU OLPHVWRQHV DQG PDUOV 6FKPLGW HW DO &RRNH f 6XUILFLDO FDUERQDWHV RI 6RXWKZHVW )ORULGD DUH IURP WKH 3OLR0LRFHQH 7DPLDPL )RUPDWLRQ 7KHVH DUH VDQG\ VKDOORZ ZDWHU FDUERQDWH GHSRVLWV ZLWK DEXQGDQW IRVVLO FRQWHQWV DQG GLVVROXWLRQ IHDWXUHV DQG RIWHQ KDYH D UHFU\VWDOOL]HG PDWUL[ 6FKPLGW HW DO &RRNH f &RQFUHWH FRDUVH DJJUHJDWHV ! PPf LQ )ORULGD DUH VXSSOLHG SULPDULO\ E\ FUXVKHG OLPHVWRQH RSHUDWLRQV 3URGXFWLRQ RI FRDUVH DJJUHJDWHV LV SULPDULO\ OLPLWHG WR ILYH JHRJUDSKLF UHJLRQV RI WKH 6WDWH VHH )LJXUH f WKH 7D\ORU &RXQW\ UHJLRQ RI QRUWKZHVW )ORULGD WKH +HUQDQGR &RXQW\ UHJLRQ RI FHQWUDO )ORULGD

PAGE 19

WKH /HY\ DQG &LWUXV &RXQWLHV UHJLRQ RI FHQWUDO )ORULGD WKH /HH DQG &ROOLHU &RXQWLHV UHJLRQ RI VRXWKZHVW )ORULGD WKH 'DGH DQG %URZDUG &RXQWLHV UHJLRQ RI VRXWKHDVW )ORULGD ,Q DGGLWLRQ WR FUXVKHG OLPHVWRQH VRPH JUDYHO GHSRVLWV DUH XWLOL]HG DV FRQFUHWH DJJUHJDWH LQ WKH )ORULGD SDQKDQGOH 0DQ\ RWKHU DUHDV KDYH VXUIDFH RU QHDUVXUIDFH OLPHVWRQH GHSRVLWV EXW WKHVH JHQHUDOO\ GR QRW PHHW SK\VLFDO PLQHUDORJLFDO RU FKHPLFDO UHJXLUHPHQWV QHHGHG IRU XVH DV FRQFUHWH DJJUHJDWH 7KH 2FDOD /LPHVWRQH GHSRVLWV DUH JRRG H[DPSOHV $OWKRXJK WKH\ DUH ZLGHVSUHDG LQ VXUILFLDO H[SRVXUH )LJXUH f WKH\ DUH JHQHUDOO\ WRR VRIW DQG IULDEOH IRU XVH DV FRQFUHWH DJJUHJDWH /RFDO SRVWGHSRVLWLRQDO GLDJHQHWLF PRGLILFDWLRQ FDQ UHVXOW LQ VPDOO JXDQWLWLHV WKDW PD\ EH VXLWDEOH IRU WKLV XVH EXW WKLV LV QRW FRPPRQ &RQFUHWH ILQH DJJUHJDWHV PPf LQ )ORULGD DUH GHULYHG IURP WZR SULQFLSDO VRXUFHV 4XDUW] VDQGV ZKLFK DUH PLQHG LQ ZHVW )ORULGD DQG WKH 5LGJH 6HFWLRQ RI QRUWK DQG FHQWUDO )ORULGD IURP FODVWLF 3OHLVWRFHQH GHSRVLWV DQG PDQXIDFWXUHG VDQGV ZKLFK DUH SURGXFHG IURP FUXVKHG OLPHVWRQH RSHUDWLRQV LQ VRXWK )ORULGD DUH WKH ILQH DJJUHJDWHV FRPPRQO\ XVHG ,Q )ORULGD UDQNHG VHFRQG QDWLRQDOO\ LQ WRWDO FUXVKHG VWRQH SURGXFWLRQ DQG IRXUWK QDWLRQDOO\ LQ SURGXFWLRQ RI DOO W\SHV RI FRQVWUXFWLRQ DJJUHJDWHV 86 %XUHDX RI

PAGE 20

0LQHV Df 7KH UDSLG JURZWK DQG GHYHORSPHQW RI WKH VWDWH KDV FDXVHG D VWHDGLO\ LQFUHDVLQJ GHPDQG IRU DJJUHJDWHV IRU WKH SHULRG IURP WR )LJXUHV DQG f ,Q WKH FUXVKHG VWRQH LQGXVWU\ LQ )ORULGD SURGXFHG D WRWDO RXWSXW RI DSSUR[LPDWHO\ VKRUW WRQV ZLWK D YDOXH RI DSSUR[LPDWHO\ 86 %XUHDX RI 0LQHV Ef $ ODUJH SRUWLRQ RI WKHVH DJJUHJDWH PDWHULDOV DUH XVHG IRU FRQVWUXFWLRQ RI WKH VWDWHnV URDGV EULGJHV DQG JHQHUDO LQIUDVWUXFWXUH 'XULQJ WKH ILVFDO \HDU RI WKH )'27 OHW DSSUR[LPDWHO\ ZRUWK RI URDG DQG EULGJH FRQVWUXFWLRQ FRQWUDFWV 6SHQFHU f 7KH ODUJH LQFUHDVH LQ GHPDQG DQG SURGXFWLRQ GXULQJ UHFHQW \HDUV KDV OHG WR FRQFHUQV RYHU IXWXUH DYDLODELOLW\ RI TXDOLW\ DJJUHJDWH UHVRXUFHV WR PHHW WKH VWDWHnV FRQVWUXFWLRQ QHHGV 7KH +HUQDQGR &RXQW\ UHJLRQ ZKLFK KDV EHHQ DQ DJJUHJDWH VRXUFH IRU FRQFUHWH SURGXFWLRQ LQ PXFK RI QRUWK DQG FHQWUDO SHQLQVXODU )ORULGD LV UDSLGO\ EHLQJ GHSOHWHG DQG LQGXVWU\ DQDO\VWV HVWLPDWH RQO\ ILYH WR WHQ \HDUV RI VXSSOLHV UHPDLQLQJ LQ WKLV DUHD 7KH 7D\ORU &RXQW\ UHJLRQ RI QRUWKZHVW )ORULGD LV EHOLHYHG WR KDYH DEXQGDQW DJJUHJDWH UHVRXUFHV UHPDLQLQJ +RZHYHU WKH PDUJLQDO TXDOLW\ RI WKHVH DJJUHJDWHV DQG D ODFN RI UDLO WUDQVSRUWDWLRQ PD\ HFRQRPLFDOO\ OLPLW WKH XVH RI WKHVH UHVRXUFHV LQ WKH ODUJH H[SDQGLQJ PDUNHWV LQ RWKHU DUHDV RI WKH 6WDWH 6RXWK )ORULGD GHSRVLWV DOVR DUH EHOLHYHG WR KDYH UHODWLYHO\ DEXQGDQW UHVRXUFHV DQG UHVHUYHV UHPDLQLQJ +RZHYHU H[WHQVLYH XUEDQ GHYHORSPHQW DQG VWULFW HQYLURQPHQWDO

PAGE 21

7KRXVDQG 6KRUW 7RQV )LJXUH 3URGXFWLRQ RI FUXVKHG VWRQH LQ )ORULGD FRPSLOHG IURP 86 %XUHDX RI 0LQHV VWDWLVWLFVf

PAGE 22

7KRXVDQGV RI 'ROODUV )LJXUH 9DOXH RI FUXVKHG VWRQH LQ )ORULGD FRPSLOHG IURP 86 %XUHDX RI 0LQHV VWDWLVWLFVf

PAGE 23

UHJXODWLRQV DUH PDNLQJ H[WUDFWLRQ RI WKHVH PDWHULDOV LQFUHDVLQJO\ GLIILFXOW 7KHVH IDFWRUV KDYH OHG PDQ\ SODQQHUV DQG LQGXVWU\ DQDO\VWV WR FRQFOXGH WKDW LPSRUWDWLRQ RI DJJUHJDWH PDWHULDOV IURP RXWRIVWDWH VRXUFHV PD\ EH QHFHVVDU\ WR VXSSOHPHQW H[LVWLQJ UHVRXUFHV WR PHHW IXWXUH FRQFUHWH SURGXFWLRQ GHPDQGV /LPHVWRQH DJJUHJDWHV DOUHDG\ DUH EHLQJ LPSRUWHG WR WKH 7DPSD DQG -DFNVRQYLOOH PDUNHW DUHDV IURP WKH %DKDPDV DQG JUDQLWH DJJUHJDWHV DUH EHLQJ LPSRUWHG WR WKHVH PDUNHW DUHDV IURP &DQDGD *UDQLWH DJJUHJDWHV IURP *HRUJLD DQG &DQDGD KDYH EHHQ XVHG LQ VRPH 6WDWH SURMHFWV 5DSLGO\ LQFUHDVLQJ GHPDQGV GHFOLQLQJ TXDOLW\ DQG TXDQWLW\ RI UHVRXUFHV XUEDQ GHYHORSPHQW DQG HQYLURQPHQWDO UHVWULFWLRQV DUH DOO IDFWRUV WKDW PD\ PDNH LQFUHDVHG LPSRUWDWLRQ RI DJJUHJDWH PDWHULDOV QHFHVVDU\ LQ WKH IXWXUH 7KLV LV QRW D VLWXDWLRQ WKDW LV XQLTXH WR )ORULGD $W WKH QDWLRQDO OHYHO OLPHVWRQH DJJUHJDWH PDWHULDOV DUH EHLQJ LPSRUWHG WR JXOI FRDVW PDUNHWV IURP 0H[LFR DQG JUDQLWH DJJUHJDWHV DUH EHLQJ LPSRUWHG WR HDVW FRDVW PDUNHWV IURP &DQDGD 0F&RQYLOOH f *HRORJLF IDFWRUV WKDW FRQWURO WKH PLQLQJ SRWHQWLDO RI DJJUHJDWH UHVRXUFHV DUH OLWKRORJ\ VWUXFWXUH VWUDWLJUDSK\ DQG JHRPRUSKRORJ\ RI WKH GHSRVLWV /LWKRORJ\ FRQWUROV WKH SK\VLFDO DQG PLQHUDORJLFDO SURSHUWLHV WKDW GHWHUPLQH ZKHWKHU WKH PDWHULDO PHHWV VSHFLILF UHTXLUHPHQWV IRU LWV LQWHQGHG XVH DQG WKH SHUFHQWDJH RI PLQHG PDWHULDO WKDW FDQ EH XVHG DIWHU PLQLQJ DQG SURFHVVLQJ SURFHGXUHV \LHOGf 6WUXFWXUH VWUDWLJUDSK\ DQG JHRPRUSKRORJ\ FRQWURO WKH WKLFNQHVV DQG

PAGE 24

DUHDO H[WHQW RI WKH GHSRVLW DQG DOVR WKH DPRXQW W\SH DQG WKLFNQHVV RI RYHUEXUGHQ WKDW PXVW EH UHPRYHG GXULQJ PLQLQJ 7KHVH DUH LPSRUWDQW IDFWRUV LQ GHWHUPLQLQJ WKH IHDVLELOLW\ IRU PLQLQJ RI WKH GHSRVLW ,Q DGGLWLRQ JURXQGZDWHU FRQGLWLRQV DOVR PD\ LPSRVH OLPLWV RQ PLQLQJ DFWLYLWLHV LQ VRPH DUHDV (FRQRPLF IDFWRUV PD\ EH HYHQ PRUH LPSRUWDQW WKDQ WKHVH WHFKQLFDO FRQVLGHUDWLRQV 7UDQVSRUWDWLRQ LV WKH SULQFLSDO IDFWRU WKDW GHWHUPLQHV SULFH DQG PDUNHW IRU ORZ YDOXH EXON PDWHULDOV VXFK DV OLPHVWRQH DJJUHJDWHV 7KH KLJK FRVW RI WUXFN WUDQVSRUWDWLRQ DSSUR[LPDWHO\ FHQWV SHU WRQ IRU WKH ILUVW PLOH DQG FHQWV SHU WRQ SHU PLOH WKHUHDIWHUf QRUPDOO\ OLPLWV KDXO GLVWDQFHV WR DERXW PLOHV /RQJHU GLVWDQFHV UHTXLUH OHVV H[SHQVLYH UDLO EDUJH RU VKLS WUDQVSRUW %DUJH VKLSPHQW UDWHV PD\ RQO\ EH RQH RU WZR FHQWV SHU WRQ SHU PLOH 5DLO FRVWV DUH VOLJKWO\ PRUH H[SHQVLYH /DQJHU f 7KHUHIRUH UHDG\ DFFHVV WR ORFDO PDUNHWV DQGRU DFFHVV WR ORZFRVW UDLO RU VHD WUDQVSRUWDWLRQ LV HVVHQWLDO IRU DQ HFRQRPLFDOO\ YLDEOH OLPHVWRQH DJJUHJDWH LQGXVWU\ 7KH FXUUHQW XQFHUWDLQW\ RQ IXWXUH IXHO SULFHV PDNHV WKH WUDQVSRUWDWLRQ FRVWV RI DJJUHJDWHV GLIILFXOW WR IRUHFDVW +LJK WUDQVSRUWDWLRQ FRVWV RIWHQ FDXVH PLQLQJ RSHUDWLRQV WR EH LQ FORVH SUR[LPLW\ WR XUEDQ PDUNHWV 7KLV FDQ UHVXOW LQ D YDULHW\ RI VRFLDO DQG SROLWLFDO SUREOHPV FRQFHUQLQJ DLU DQG ZDWHU SROOXWLRQ QRLVH DQG WUDIILF /DQGXVH FRQIOLFWV DOVR DUH FRPPRQ LQ XUEDQ DUHDV 4XDOLW\ PDWHULDOV RIWHQ DUH QRW DYDLODEOH IRU PLQLQJ GXH WR RYHUO\LQJ UHVLGHQWLDO

PAGE 25

UHWDLO RU LQGXVWULDO GHYHORSPHQW 7KHVH DUH FRPPRQ SUREOHPV LQ PDQ\ XUEDQ DUHDV QDWLRQZLGH =RQLQJ WR SURWHFW SRWHQWLDO PLQLQJ DUHDV DQG VHTXHQWLDO ODQGXVH SODQQLQJ DUH VWHSV EHLQJ WDNHQ E\ VRPH FLWLHV WR PLWLJDWH WKLV SUREOHP +DUEHQ DQG %DWHV /DQJHU f ([SORUDWLRQ DQG GHYHORSPHQW RI PLQLQJ GHSRVLWV DOVR DUH VXEMHFW WR PDQ\ PDUNHW DQG ILQDQFLDO SDUDPHWHUV 0DQ\ VLWH VSHFLILF LVVXHV VXFK DV TXDQWLW\ DQG TXDOLW\ RI UHVHUYHV SUR[LPLW\ WR PDUNHWV ODQG YDOXHV DQG UR\DOW\ UHTXLUHPHQWV GHWHUPLQH WKH ORQJWHUP FDVK IORZ IHDVLELOLW\ RI WKHVH ODUJH FDSLWDO LQYHVWPHQWV ([DPSOHV RI YDOXDWLRQ PHWKRGV DSSOLHG WR OLPHVWRQH GHSRVLWV FDQ EH IRXQG LQ /HZLV DQG 0RUDQ f &RDUVH $JJUHJDWH 6RXUFHV 7KH IROORZLQJ VHFWLRQV SUHVHQW D VXPPDU\ RI SDUWLFXODU JHRORJLF DQG HFRQRPLF IDFWRUV LPSRUWDQW WR WKH SURGXFWLRQ RI DJJUHJDWHV IURP PDMRU VRXUFH DUHDV LQ )ORULGD 7KH LQIRUPDWLRQ UHSRUWHG ZDV FRPSLOHG IURP VHYHUDO OLWHUDWXUH VRXUFHV LQFOXGLQJ $QRQ\PRXV f 6SHQFHU f
PAGE 26

UDQJLQJ IURP WR IHHW DERYH PHDQ VHD OHYHO 06/f $JJUHJDWH PDWHULDOV KDYH EHHQ SURGXFHG LQ WKLV UHJLRQ IURP GRORPLWLF OLPHVWRQHV RI WKH 2OLJRFHQH 6XZDQQHH /LPHVWRQH )LJXUH f VLQFH WKH HDUO\ V 7KH 6XZDQQHH /LPHVWRQH LQ WKLV DUHD LV KLJKO\ YDULDEOH ZLWK UHJDUG WR GHJUHH RI LQGXUDWLRQ LHI KDUGQHVVf 7KHUHIRUH WKH PDWHULDO PXVW RIWHQ EH VHOHFWLYHO\ PLQHG EHIRUH FUXVKLQJ DQG VL]LQJ DFFRUGLQJ WR LWV LQWHQGHG XVH DQG DVVRFLDWHG VSHFLILFDWLRQV 0LQLQJ RSHUDWLRQV FRQWLQXH WR D GHSWK RI DSSUR[LPDWHO\ IHHW ZLWK GUDJOLQHV XWLOL]HG IRU PLQLQJ DFWLYLWLHV EHORZ WKH ZDWHU WDEOH 7KH SULPDU\ PDUNHW IRU WKHVH DJJUHJDWH PDWHULDOV LV LQ WKH 7DOODKDVVHH/HRQ &RXQW\ DUHD ZLWK WUXFN RSHUDWLRQV EHLQJ WKH SULPDU\ PHWKRG RI WUDQVSRUWDWLRQ +HUQDQGR &RXQW\ 5HJLRQ 0LQLQJ DFWLYLW\ LQ WKLV UHJLRQ LV FRPPRQO\ DORQJ WKH QRUWKVRXWK WUHQGLQJ %URRNVYLOOH 5LGJH D VXEXQLW RI WKH &HQWUDO +LJKODQGV JHRPRUSKLF SURYLQFH ZLWK HOHYDWLRQV UDQJLQJ IURP WR JUHDWHU WKDQ IHHW DERYH 06/ $JJUHJDWH PDWHULDOV LQ WKLV UHJLRQ DOVR DUH SURGXFHG IURP WKH 2OLJRFHQH 6XZDQQHH /LPHVWRQH 7KLV LV D KLJK FDOFLXP OLPHVWRQH GHSRVLW WKDW KDV EHHQ PLQHG VLQFH WKH V 7KH OLPHVWRQH GHSRVLWV LQ WKLV DUHD PD\ EH YDULDEOH LQ GHJUHH RI LQGXUDWLRQ DQG LQWHUEHGGHG ZLWK FKHUW VDQGV VLOWV DQG FOD\V 7KH GHSRVLW KDV DQ LUUHJXODU NDUVWLF VXUIDFH EXW PD\ EH LQ H[FHVV RI IHHW LQ WKLFNQHVV LQ VRPH DUHDV ,W LV RYHUODLQ E\ \RXQJHU VLOLFLFODVWLF VHGLPHQWV 0LQLQJ DFWLYLW\ LV FRQFHQWUDWHG DORQJ WRSRJUDSKLF KLJKV DQG

PAGE 27

UHJLRQDO HOHYDWLRQV RIWHQ SHUPLW GU\ PLQLQJ WHFKQLTXHV EXW ORFDO PLQH GHZDWHULQJ PD\ EH UHTXLUHG 0LQHG GHSWKV UDQJH IURP DSSUR[LPDWHO\ WR IHHW EHORZ ODQG VXUIDFH 2YHUEXUGHQ PDWHULDOV ZKLFK PXVW EH UHPRYHG LQLWLDOO\ PD\ UHDFK XS WR IHHW LQ WKLFNQHVV 7KH KLJK FRVW RI UHPRYLQJ ODUJH DPRXQWV RI RYHUEXUGHQ FXUUHQWO\ SURKLELWV HFRQRPLF IHDVLELOLW\ RI PLQLQJ LQ VRPH DUHDV WKDW PD\ KDYH JRRG DJJUHJDWH PDWHULDOV %ODVWLQJ PHWKRGV DUH XWLOL]HG WR IUDFWXUH WKH OLPHVWRQH ZKLFK LV WKHQ VHQW WR FUXVKHUV IRU SURFHVVLQJ DQG VL]LQJ 3ULPDU\ PDUNHWV IRU WKHVH DJJUHJDWH PDWHULDOV LQFOXGH WKH 7DPSD 2UODQGR DQG *DLQHVYLOOH2FDOD UHJLRQV DORQJ ZLWK QXPHURXV RWKHU DUHDV RI FHQWUDO )ORULGD 7UXFN RSHUDWLRQV DUH WKH SULPDU\ PHWKRG RI WUDQVSRUWDWLRQ /HH DQG &ROOLHU &RXQWLHV 5HJLRQ 0LQLQJ DFWLYLW\ LQ WKLV UHJLRQ RFFXUV DORQJ WKH 6RXWKZHVWHUQ 6ORSH JHRPRUSKLF VXEGLYLVLRQ RI WKH 6RXWKHUQ 3HQLQVXODU ]RQH (OHYDWLRQV DORQJ WKH 6RXWKZHVWHUQ 6ORSH UDQJH IURP WR IHHW DERYH 06/ /LPHVWRQH DJJUHJDWH PDWHULDOV KDYH EHHQ PLQHG IURP WKH 3OLR0LRFHQH 7DPLDPL DQG 3OHLVWRFHQH )W 7KRPSVRQ )RUPDWLRQV )LJXUH f LQ WKLV UHJLRQ VLQFH WKH PLGV 2YHUEXUGHQ PDWHULDOV RI VDQG FOD\ DQG VKHOO UHDFK WKLFNQHVVHV RI IHHW :HW PLQLQJ WHFKQLTXHV DUH XWLOL]HG DIWHU RYHUEXUGHQ UHPRYDO GXH WR VKDOORZ ZDWHU WDEOH FRQGLWLRQV 7KH OLPHVWRQH GHSRVLWV LQ WKLV UHJLRQ DUH YDULDEOH LQ FRPSRVLWLRQ DQG RIWHQ DUH LQWHUEHGGHG ZLWK VDQGV 7KHUHIRUH VHOHFWLYH PLQLQJ WHFKQLTXHV DUH VRPHWLPHV XVHG WR H[WUDFW OLPHVWRQH PDWHULDOV

PAGE 28

SRVVHVVLQJ WKH GHVLUHG SURSHUWLHV 7KLFNQHVV RI PLQHDEOH GHSRVLWV LV W\SLFDOO\ IHHW ([WHQVLYH GHYHORSPHQW LQ WKH )W 0\HUV DQG 1DSOHV DUHDV SURYLGHV DQ H[FHOOHQW ORFDO PDUNHW DQG RWKHU WUXFN WUDQVSRUW PDUNHWV UDQJH DV IDU QRUWK DV 7DPSD ,Q DGGLWLRQ WKHUH LV UDLO VHUYLFH WR WKH 2UODQGR PDUNHW 'DGH DQG %URZDUG &RXQWLHV 5HJLRQ 7KLV UHJLRQ OLHV ZLWKLQ WKH (YHUJODGHV 7URXJK JHRPRUSKLF VXEGLYLVLRQ RI WKH 6RXWKHUQ SHQLQVXODU ]RQH ZLWK HOHYDWLRQV DYHUDJLQJ DERXW IHHW DERYH 06/ $JJUHJDWH PDWHULDOV LQ WKLV UHJLRQ DUH SURGXFHG IURP WKH 3OHLVWRFHQH 0LDPL 2ROLWH DQG WKH XQGHUO\LQJ )W 7KRPSVRQ )RUPDWLRQ )LJXUH f 7KHVH GHSRVLWV KDYH EHHQ H[WHQVLYHO\ PLQHG LQ WKLV DUHD VLQFH WKH HDUO\ V 0LQLQJ RSHUDWLRQV LQ WKLV DUHD W\SLFDOO\ LQYROYH UHPRYDO RI IHHW RU OHVV RI PDUO DQG SHDW RYHUEXUGHQ :HW PLQLQJ WHFKQLJXHV DUH QRUPDOO\ XVHG GXH WR YHU\ VKDOORZ ZDWHU WDEOH FRQGLWLRQV LQ WKLV DUHD 7KH WUHPHQGRXV XUEDQL]DWLRQ RI )ORULGDnV VRXWKHDVWHUQ FRDVWDO DUHDV SURYLGHV DQ H[FHOOHQW ORFDO PDUNHW IRU WKHVH PDWHULDOV 3URGXFWV DOVR DUH VKLSSHG E\ UDLO WR RWKHU QRUWK )ORULGD PDUNHWV VXFK DV 2UODQGR 7DPSD DQG -DFNVRQYLOOH /HZ DQG &LWUXV &RXQWLHV 5HJLRQ 7KLV DUHD RI )ORULGD KDV UHFHQWO\ EHHQ RSHQHG WR PLQLQJ RSHUDWLRQV IRU FRDUVH DJJUHJDWH SURGXFWLRQ 7KHVH PDWHULDOV DUH GRORPLWLF OLPHVWRQHV PLQHG IURP WKH (RFHQH $YRQ 3DUN )RUPDWLRQ LQ WKH *XOI +DPPRFN /HY\ &RXQW\f DQG &U\VWDO

PAGE 29

5LYHU &LWUXV &RXQW\f UHJLRQV LQ WKH ZHVWHUQ SDUW RI QRUWKHUQ SHQLQVXODU )ORULGD )LJXUH f 7KHVH PDWHULDOV DUH YDULDEOH LQ LQGXUDWLRQ DQG SK\VLFDO SURSHUWLHV DQG JHQHUDOO\ SURGXFH ORZ \LHOGV 5HODWLYH GHHS GHSRVLWV DUH H[WUDFWHG XVLQJ ZHW PLQLQJ WHFKQLJXHV 7KHVH PDWHULDOV DUH SULPDULO\ XVHG LQ ORFDO QRUWK )ORULGD PDUNHWV +RZHYHU WKH &U\VWDO 5LYHU PDWHULDOV DUH XVHG LQ RWKHU PDUNHWV EHFDXVH RI VHD WUDQVSRUW DYDLODELOLW\ )LQH $JJUHJDWH 6RXUFHV )LQH DJJUHJDWH PDWHULDOV LQ QRUWK DQG FHQWUDO )ORULGD QRUPDOO\ FRQVLVW RI TXDUW] VDQGV PLQHG IURP 3OHLVWRFHQH WHUUDFH GHSRVLWV 7KHVH PDWHULDOV PD\ EH SURGXFHG XVLQJ HLWKHU ZHW RU GU\ PLQLQJ WHFKQLTXHV GHSHQGLQJ RQ ORFDO ZDWHU WDEOH FRQGLWLRQV 6XFWLRQ GUHGJHV DUH RIWHQ HPSOR\HG IRU ZHW PLQLQJ WKH GHSRVLWV 7KH VDQGV DUH XVXDOO\ ZHW VFUHHQHG IRU VL]H JUDGLQJ SXUSRVHV 6RXWK )ORULGD FRQFUHWH SURGXFHUV FRPPRQO\ XVH PDQXIDFWXUHG OLPHVWRQH VDQGV DV ILQH DJJUHJDWH PDWHULDOV 7KHVH DUH RIWHQ SURGXFHG DV SURFHVVLQJ E\SURGXFWV IURP FRDUVH OLPHVWRQH DJJUHJDWH RSHUDWLRQV GLVFXVVHG SUHYLRXVO\

PAGE 30

$**5(*$7( 3523(57,(6 6WXGLHV ZHUH FRQGXFWHG WR GHWHUPLQH SK\VLFDO DQG PLQHUDORJLFDO SURSHUWLHV RI OLPHVWRQH DJJUHJDWHV IURP VL[ )ORULGD VRXUFHV OLPHVWRQH DJJUHJDWHV IURP DQ $ODEDPD VRXUFH VLOLFHRXV ULYHU JUDYHO DJJUHJDWHV IURP D )ORULGD VRXUFH DQG JUDQLWH DJJUHJDWHV IURP D *HRUJLD VRXUFH 3K\VLFDO SURSHUWLHV DUH FULWLFDO LQ SURSHU FRQFUHWH PL[ GHVLJQ DQG SUHSDUDWLRQ DQG DOVR LQIOXHQFH ERWK IUHVK DQG KDUGHQHG FRQFUHWH SURSHUWLHV 0LQGHVV DQG
PAGE 31

$JJUHJDWHV $QQXDO %RRN RI $670 6WDQGDUGV f 6DPSOH TXDQWLWLHV REWDLQHG IRU HDFK DJJUHJDWH VRXUFH FRQVLVWHG RI RQH EDJ FRQWDLQLQJ DSSUR[LPDWHO\ ILIW\ SRXQGV 6DPSOH LGHQWLILFDWLRQV DORQJ ZLWK FRUUHVSRQGLQJ VRXUFH ORFDWLRQV DQG PLQHG JHRORJLF XQLWV DUH JLYHQ LQ 7DEOH 7KH UHSUHVHQWDWLYH VDPSOHV FROOHFWHG ZHUH DQDO\]HG LQ DFFRUGDQFH ZLWK $670 & 6WDQGDUG 0HWKRG IRU 6LHYH $QDO\VLV RI )LQH DQG &RDUVH $JJUHJDWH $QQXDO %RRN RI $670 6WDQGDUGV f 5HVXOWV RI WKH JUDGDWLRQ DQDO\VHV DUH VXPPDUL]HG LQ 7DEOH DORQJ ZLWK UHFRPPHQGHG )'27 VSHFLILFDWLRQV IRU 1R DJJUHJDWH ZKLFK ZDV WKH VSHFLILHG VL]H IRU WKH FRPSUHKHQVLYH FRQFUHWH VWXG\ *UDGDWLRQDO SURSHUWLHV IRU VHYHUDO RI WKH VDPSOHV DQDO\]HG IDLOHG WR PHHW )'27 VSHFLILFDWLRQV $GGLWLRQDO VKLSPHQWV RI DJJUHJDWHV ZHUH REWDLQHG IRU WZR VRXUFH DUHD PDWHULDOV 26n 226 DQG *$f *UDGDWLRQDO DQDO\VHV IRU WZR VKLSPHQWV RI ILQH DJJUHJDWHV DUH JLYHQ LQ 7DEOH DORQJ ZLWK UHFRPPHQGHG )'27 VSHFLILFDWLRQV )LQHQHVV PRGXOXV YDOXHV IRU WKH WZR VDPSOHV ZHUH VOLJKWO\ GLIIHUHQW +RZHYHU ERWK YDOXHV IDOO ZLWKLQ DFFHSWDEOH OLPLWV DQG WKH VOLJKW GLIIHUHQFH VKRXOG QRW EH VLJQLILFDQW IRU FRQFUHWH WHVWLQJ SXUSRVHV 2WKHU SK\VLFDO SURSHUWLHV RI WKH DJJUHJDWHV WKDW DUH LPSRUWDQW IRU FRQFUHWH PL[ GHVLJQ SUHSDUDWLRQ DQG SURSHUWLHV ZHUH GHWHUPLQHG DW WKH )'27 ODERUDWRULHV 3URSHUWLHV GHWHUPLQHG LQFOXGHG VSHFLILF JUDYLW\ XQLW ZHLJKW DQG ZDWHU DEVRUSWLRQ IRU HDFK DJJUHJDWH VDPSOH

PAGE 32

7DEOH $JJUHJDWH VDPSOH LGHQWLILFDWLRQV )'27 3LW ,GHQWLILFDWLRQ $/ *$f§ /RFDWLRQ *HRORDLF 8QLW %URRNVYLOOH )/ +HUQDQGR &RXQW\f 6XZDQQHH /V 2OLJRFHQHf 0LDPL )/ 'DGH &RXQW\f 0LDPL 2ROLWH DQG )W 7KRPSVRQ )P 3OHLVWRFHQHf 0LDPL )/ 'DGH &RXQW\f 0LDPL 2ROLWH )P 3OHLVWRFHQHf )W 0\HUV )/ /HH &RXQW\f 7DPLDPL 3OLR0LRFHQHf DQG )W 7KRPSVRQ 3OHLVWRFHQHf )PV 3HPEURNH 3LQHV )/ %URZDUG &RXQW\f 0LDPL 2ROLWH DQG )W 7KRPSVRQ )P 3OHLVWRFHQHf *XOI +DPPRFN )/ /HY\ &RXQW\f $YRQ 3DUN )P (RFHQHf &DOHUD $/ 6KHOE\ &RXQW\f 1HZDOD /V 2UGRYLFLDQf 7\URQH *$ )D\HWWH &RXQW\f 3UHFDPEULDQ JUDQLWH &KDWWDKRRFKLH )/ *DGVGHQ &RXQW\f 3OHLVWRFHQH JUDYHOV .H\VWRQH +HLJKWV )/ 3XWQDP &RXQW\f 3OHLVWRFHQH VDQGV

PAGE 33

7DEOH &RDUVH DJJUHJDWH JUDGDWLRQV b SDVVLQJf 6DPSOH ,GHQWLILFDWLRQ 6LHYH 6L]H )'27 6SHFLILFDWLRQV $ % LQ LQ E LQ E E 1R 12 6WDQGDUG 6SHFLILFDWLRQV IRU 5RDG DQG %ULGJH &RQVWUXFWLRQ f E'RHV QRW FRQIRUP WR )'27 VSHFLILFDWLRQV

PAGE 34

7DEOH f§FRQWLQXHG 6DPSOH ,GHQWLILFDWLRQ 6LHYH 6L]H )'27 6SHFLILFDWLRQV $/f§ *$$ *$% LQ LQ LQ E 1R E 1R E D6WDQGDUG 6SHFLILFDWLRQV IRU 5RDG DQG %ULGFUH &RQVWUXFWLRQ f E'RHV QRW FRQIRUP WR )'27 VSHFLILFDWLRQV

PAGE 35

7DEOH )LQH DJJUHJDWH JUDGDWLRQV b SDVVLQJf 6DPµOH ,GHQWLILFDWLRQ 6LHYH 6L]H )'27 6RHFLILFDWLRQVD $ % 1R 1R 1R 1R 1R 1R 1R )LQHQHVV PRGXOXVE 6WDQGDUG 6SHFLILFDWLRQV IRU 5RDG DQG %ULGJH &RQVWUXFWLRQ f E$670 & 0HWKRG IRU 6LHYH $QDO\VLV RI )LQH DQG &RDUVH $JJUHJDWH $QQXDO %RRN RI $670 6WDQGDUGV f

PAGE 36

7DEOH f /RV $QJHOHV DEUDVLRQ YDOXHV 7DEOH f PHHW WKH )'27 UHTXLUHPHQW RI SHUFHQW PD[LPXP ORVV 5HVXOWV RI WKHVH WHVWV UHIOHFW W\SLFDO YDOXHV UHSRUWHG IRU )ORULGD DJJUHJDWH SURSHUWLHV FRPSLOHG IURP )'27 UHFRUGV DQG +R DQG +HQGULFNV f 7DEOH f DQG RWKHU DJJUHJDWH VWXGLHV $QRQ\PRXV 6SHQFHU f *UDGDWLRQDO PLQHUDORJLFDO DQG SK\VLFDO SURSHUWLHV RI DJJUHJDWHV PD\ YDU\ RYHU WLPH DV VRXUFH ORFDWLRQV PLQLQJ WHFKQLTXHV DQG SURFHVVLQJ RSHUDWLRQV FKDQJH 7KHUHIRUH TXDOLW\ FRQWURO DQG TXDOLW\ DVVXUDQFH SURJUDPV DUH LPSRUWDQW IRU PRQLWRULQJ PLQLQJ DFWLYLWLHV WR LQVXUH SURFXUHPHQW RI DFFHSWDEOH PDWHULDOV 6WUHQJWKV RI LQGLYLGXDO DJJUHJDWH SDUWLFOHV ZHUH GHWHUPLQHG E\ ORDGLQJ HDFK EHWZHHQ WZR KRUL]RQWDO SODWHV LQ D K\GUDXOLF SUHVV DQG PHDVXULQJ WKH IRUFH UHTXLUHG IRU IUDFWXULQJ WR RFFXU 2QH KXQGUHG SDUWLFOHV LQf IURP HDFK DJJUHJDWH VRXUFH ZHUH WHVWHG 5HVXOWV RI WKH VWUHQJWK WHVWLQJ LQGLFDWH WKDW PHDQ YDOXHV 7DEOH f IRU WKH )ORULGD OLPHVWRQH DJJUHJDWHV DUH JHQHUDOO\ LQ WKH VDPH VWUHQJWK UDQJH OEVf 0HDQ YDOXHV IRU WKH JUDQLWH DQG VLOLFHRXV ULYHU JUDYHO DJJUHJDWHV ZHUH VOLJKWO\ KLJKHU 7DEOH f +LJKHVW VWUHQJWKV ZHUH SURGXFHG E\ WKH $ODEDPD OLPHVWRQH DJJUHJDWH 7DEOH f 'LVWULEXWLRQ RI VWUHQJWK YDOXHV 7DEOH DQG )LJXUHV WKURXJK f LQGLFDWH WKDW D ZLGH UDQJH RI VWUHQJWK YDOXHV RFFXU IRU HDFK DJJUHJDWH VDPSOH ZLWK VRPH VDPSOHV SRVVHVVLQJ ELPRGDO GLVWULEXWLRQV

PAGE 37

7DEOH 3K\VLFDO SURSHUWLHV RI DJJUHJDWH VDPSOHV 6DPµOH 1R 6SHFLILF *UDYLW\ 66'`6 8QLW :WE OEVIW` b $EVRURWLRQ /RV $QJHOHV $EUDVLRQ b ORVV` $/ *$ D$670 & $EVRUSWLRQ 6WDQGDUGV 6WDQGDUG RI &RDUVH f 7HVW 0HWKRG $JJUHJDWHV IRU 6SHFLILF *UDYLW\ DQG $QQXDO %RRN RI $670 E$670 & 6WDQGDUG 7HVW 0HWKRG IRU 8QLW :HLJKW DQG 9RLGV LQ $JJUHJDWH $QQXDO %RRN RI $670 6WDQGDUGV f &$670 & 6WDQGDUG 7HVW 0HWKRG IRU 5HVLVWDQFH WR 'HJUDGDWLRQ RI 6PDOO6L]H &RDUVH $JJUHJDWH E\ $EUDVLRQ DQG ,PSDFW LQ WKH /RV $QJHOHV 0DFKLQH $QQXDO %RRN RI $670 6WDQGDUGV f

PAGE 38

7DEOH 6XPPDU\ RI SK\VLFDO SURSHUWLHV RI DJJUHJDWHV FRPSLOHG IURP KLVWRULFDO )'27 GDWD 6SHFLILF *UDYLW\ I66'f $FUFUUHFUDWH ,' 0HDQ 5DQFUH %URRNVYLOOHf 0LDPLf 0LDPLf )W 0\HUVf 3HPEURNH 3LQHVf *XOI +DPPRFNf $/f§ &DOHUDf *$f§ 7\URQHf &KDWWDKRRFKLHf /RV $QJHOHV $EVRUSWLRQ $EUDVLRQ bf b ORVVf 0HDQ 5DQFLH 0HDQ 5DQFUH X! R

PAGE 39

7DEOH 6WDWLVWLFDO GLVWULEXWLRQ RI FRDUVH DJJUHJDWH VWUHQJWK GDWD YDOXHV JLYHQ LQ SRXQGVf $DFUUHFUDWH ,' 0LQLPXP 0D[LPXP 0HDQ 6WDQGDUG 'HYLDWLRQ %URRNVYLOOHf 0LDPLf 0LDPLf )W 0\HUVf 3HPEURNH 3LQHVf *XOI +DPPRFNf $/f§ &DOHUDf ! *$ 7\URQHf ! &KDWWDKRRFKLHf

PAGE 40

&2817 3281'6 )LJXUH 'LVWULEXWLRQ RI VWUHQJWK YDOXHV IRU DJJUHJDWH VDPSOH QR %URRNVYLOOHf

PAGE 41

‘ } f§ L L L 3281'6 )LJXUH 'LVWULEXWLRQ RI VWUHQJWK YDOXHV IRU DJJUHJDWH VDPSOH QR 0LDPLf

PAGE 42

3281'6 )LJXUH 'LVWULEXWLRQ RI VWUHQJWK YDOXHV IRU DJJUHJDWH VDPSOH QR 0LDPLf

PAGE 43

&2817 3281'6 )LJXUH 'LVWULEXWLRQ RI VWUHQJWK YDOXHV IRU DJJUHJDWH VDPSOH QR )W 0\HUVf

PAGE 44

&2817 3281'6 )LJXUH 'LVWULEXWLRQ RI VWUHQJWK YDOXHV IRU DJJUHJDWH VDPSOH QR 3HPEURNH 3LQHVf

PAGE 45

&2817 3281'6 )LJXUH 'LVWULEXWLRQ RI VWUHQJWK YDOXHV IRU DJJUHJDWH VDPSOH QR *XOI +DPPRFNf

PAGE 46

&2817 fµ ‘ ‘ r r fµ 3281'6 )LJXUH 'LVWULEXWLRQ RI VWUHQJWK YDOXHV IRU DJJUHJDWH VDPSOH QR $/ &DOHUDf

PAGE 47

‘ m‘ ‘ L mLr1 L ‘ L ‘ m ‘ L 3281'6 )LJXUH 'LVWULEXWLRQ RI VWUHQJWK YDOXHV IRU DJJUHJDWH VDPSOH QR *$ 7\URQHf

PAGE 48

\ m ‘ QL L L L ‘ ‘ ! f§ L 3281'6 )LJXUH 'LVWULEXWLRQ RI VWUHQJWK YDOXHV IRU DJJUHJDWH VDPSOH QR &KDWWDKRRFKLHf

PAGE 49

0LQHUDORTLFDO 3URSHUWLHV 3HWURJUDSKLF DQG ;UD\ GLIIUDFWLRQ DQDO\VHV ZHUH XVHG WR GHWHUPLQH PLQHUDORJLF FRPSRVLWLRQV DQG WH[WXUHV RI WKH FRDUVH DJJUHJDWH VDPSOHV 3HWURJUDSKLF DQDO\VHV ZHUH SHUIRUPHG E\ KDQG VSHFLPHQ GHVFULSWLRQV DQG XVH RI SRODUL]HG OLJKW PLFURVFRS\ RQ WKLQ VHFWLRQV SUHSDUHG IURP UHSUHVHQWDWLYH VDPSOHV RI HDFK DJJUHJDWH VRXUFH ;UD\ GLIIUDFWLRQ ;5'f DQDO\VHV ZHUH FRQGXFWHG RQ WKH OLPHVWRQH FRDUVH DJJUHJDWHV IRU JXDOLWDWLYH DQG JXDQWLWDWLYH PLQHUDORJLFDO GHWHUPLQDWLRQV 7ZR VL]H IUDFWLRQV RI WKH FRDUVH DJJUHJDWHV ZHUH JURXQG WR PLQXV 1R PHVK IPf VL]H IUDFWLRQ IRU ;5' DQDO\VHV 7KH PDWUL[IOXVKLQJ PHWKRG &KXQJ f XVLQJ D /LQGH & DOSKD DOXPLQD FRUXQGXPf VWDQGDUG ZDV XWLOL]HG IRU TXDQWLWDWLYH PLQHUDORJLFDO GHWHUPLQDWLRQV 5HIHUHQFH LQWHQVLW\ UDWLRV ZHUH LQLWLDOO\ GHWHUPLQHG IRU WKH PDMRU PLQHUDOV FDOFLWH GRORPLWH DQG TXDUW]f RFFXUULQJ LQ WKH OLPHVWRQH DJJUHJDWHV XVLQJ D PL[WXUH RI HDFK PLQHUDO SKDVH DQG FRUXQGXP 7KHVH YDOXHV ZHUH XVHG LQ FDOFXODWLRQ RI TXDQWLWDWLYH DPRXQWV RI WKHVH PLQHUDOV LQ WKH DJJUHJDWH VDPSOHV DFFRUGLQJ WR WKH IROORZLQJ HTXDWLRQ 3 ;V.[f,[,Vf ZKHUH 3 ZHLJKW IUDFWLRQ RI SKDVH [ LQ VDPSOH ;V ZHLJKW IUDFWLRQ RI FRUXQGXP LQ VDPSOH .[ UHIHUHQFH LQWHQVLW\ UDWLR RI SKDVH [ O[ PHDVXUHG LQWHQVLW\ RI VWURQJHVW OLQH RI SKDVH [ ,V PHDVXUHG LQWHQVLW\ RI VWURQJHVW OLQH RI FRUXQGXP

PAGE 50

$ VXPPDU\ RI WKH SHWURJUDSKLF DQG ;UD\ GLIIUDFWLRQ DQDO\VHV IRU WKH DJJUHJDWH VDPSOHV DORQJ ZLWK FRUUHVSRQGLQJ UHSUHVHQWDWLYH SKRWRPLFURJUDSKV DUH SUHVHQWHG EHORZ 5HIHU WR 7DEOH IRU VRXUFH ORFDWLRQV DQG JHRORJLF XQLWV FRUUHVSRQGLQJ WR WKH VDPSOH QXPEHUV SURYLGHG 6DPSOH 1R %URRNVYLOOH )ORULGDf 7KH DJJUHJDWH VDPSOH FRQVLVWHG RI FUXVKHG OLPHVWRQH SDUWLFOHV ZKLFK ZHUH JHQHUDOO\ RIIZKLWH WR OLJKW WDQ LQ FRORU 7DEOH f 7KH SDUWLFOHV ZHUH KDUG ILUP DQG GHQVH ZLWK DQJXODU WR VXEURXQGHG VKDSHV DQG LUUHJXODU VXUIDFHV FRQWDLQLQJ VRPH FUXVKHU ILQHV $ IHZ PRGHUDWHO\ VRIW DJJUHJDWH SDUWLFOHV ZHUH GHWHFWHG LQ KDQG VDPSOHV 7KHVH SDUWLFOHV DQG VLPLODU RQHV RFFXUULQJ LQ RWKHU VDPSOHV GHVFULEHG EHORZ SUREDEO\ UHSUHVHQW SDUWLFOHV RFFXUULQJ DW WKH ORZHU HQG OEVf RI WKH VWUHQJWK YDOXH GLVWULEXWLRQV )LJXUHV WKURXJK f SUHYLRXVO\ GLVFXVVHG $ IHZ FKHUW SDUWLFOHV ZKLFK ZHUH YHU\ KDUG DQG GHQVH ZLWK D WDQ WR GDUN EURZQ FRORU DOVR ZHUH QRWHG 0LFURVFRSLF DQDO\VHV UHYHDOHG VSDUVH WR DEXQGDQW IRVVLO IUDJPHQWV LQ D PLFURVSDU WR VSDUU\ FDOFLWH PDWUL[ 3RUH VSDFH ZDV IDLUO\ VSDUVH DQG LVRODWHG ZLWK D YXJJ\ DSSHDUDQFH 0LQRU DPRXQWV RI ILQH VXEDQJXODU TXDUW] JUDLQV ZHUH VHHQ ZLWKLQ WKH DJJUHJDWH $ W\SLFDO SKRWRPLFURJUDSK )LJXUH f VKRZV VSDUVH IRVVLO IUDJPHQWV )f LQ D PLFURVSDU WR VSDUU\ FDOFLWH PDWUL[ 0f ZLWK D IHZ TXDUW] SDUWLFOHV 4f DQG VPDOO LVRODWHG SRUH VSDFHV 3f ;5' DQDO\VLV

PAGE 51

7DEOH 0XQVHOO FRORU GHVLJQDWLRQV IRU FRDUVH DJJUHJDWH VDPSOHV 6DPµOH 1R 0XQVHOO 'HVLFUQDWLRQV < <5 <5 <5 <5 <5 < <5 <5 <5 < <5 1 <5 <5 <5 1 $/ 1 1 *$ 1 * 1 \ < <5 D0XQVHOO %RRN RI &RORU f

PAGE 52

)LJXUH 3KRWRPLFURJUDSK RI DJJUHJDWH VDPSOH QR %URRNVYLOOHf $JJUHJDWH LV FRPSRVHG RI VSDUVH IRVVLO IUDJPHQWV )f LQ D PLFURVSDU WR VSDUU\ FDOFLWH PDWUL[ 0f &URVVHG QLFROV )LJXUH 3KRWRPLFURJUDSK RI DJJUHJDWH VDPSOH QR 0LDPLf $JJUHJDWH LV FRPSRVHG RI VSDUU\ FDOFLWH ILOOHG IRVVLO IUDJPHQWV )f DQG DEXQGDQW TXDUW] JUDLQV 4f LQ D PLFURVSDU PDWUL[ &URVVHG QLFROV

PAGE 53

7DEOH f FRQILUPHG WKDW WKH DJJUHJDWH LV FRPSRVHG SULPDULO\ RI FDOFLWH ZLWK PLQRU DPRXQWV RI TXDUW] 6DPSOH 1R 0LDPL )ORULGDf 7KH DJJUHJDWH VDPSOH FRQVLVWHG RI FUXVKHG OLPHVWRQH SDUWLFOHV ZKLFK ZHUH RIIZKLWH WR OLJKW WDQ LQ FRORU 7DEOH f 7KH DJJUHJDWHV JHQHUDOO\ ZHUH KDUG DQG ILUP ZLWK RFFDVLRQDO IULDEOH SLHFHV 3DUWLFOH VKDSHV ZHUH DQJXODU WR VXEURXQGHG DQG FUXVKHU ILQHV ZHUH FRPPRQ RQ SDUWLFOH VXUIDFHV )RVVLO IUDJPHQWV DQG YXJJ\ SRURVLW\ ZHUH HYLGHQW LQ KDQG VSHFLPHQV 0LFURVFRSLFDOO\ WKH SDUWLFOHV FRQWDLQHG VSDUVH WR DEXQGDQW IRVVLO IUDJPHQWV DORQJ ZLWK D IHZ SHORLGV LQ D SUHGRPLQDQWO\ PLFURVSDU PDWUL[ 6SDUU\ FDOFLWH FRPPRQO\ RFFXUUHG RQ DQG ZLWKLQ IRVVLO IUDJPHQWV DQG DOVR DV LQILOOLQJV RI SRUHV DQG FKDQQHOV 3RURVLW\ ZDV IDLUO\ VSDUVH DQG LVRODWHG 6XEDQJXODU WR VXEURXQGHG TXDUW] JUDLQV ZHUH DEXQGDQW LQ VRPH DJJUHJDWHV 7UDFH DPRXQWV RI IHOGVSDU DQG RSDTXH KHDY\ PLQHUDOV DOVR ZHUH QRWHG $ W\SLFDO SKRWRPLFURJUDSK )LJXUH f VKRZV VSDUU\ FDOFLWH ILOOHG IRVVLO IUDJPHQWV )f LQ D PLFURVSDU PDWUL[ 4XDUW] JUDLQV 4f DUH DEXQGDQW DQG SRUH VSDFHV 3f DUH VPDOO DQG LVRODWHG ;5' DQDO\VLV 7DEOH f FRQILUPHG SHWURJUDSKLF REVHUYDWLRQV VKRZLQJ WKDW WKH DJJUHJDWH LV SULPDULO\ FDOFLWH EXW FRQWDLQV D VL]HDEOH TXDUW] FRPSRQHQW 7UDFH DPRXQWV RI IHOGVSDU DQG KHDY\ PLQHUDOV REVHUYHG LQ PLFURVFRSLF DQDO\VLV GLG QRW RFFXU LQ GHWHFWDEOH DPRXQWV

PAGE 54

7DEOH 4XDQWLWDWLYH ;UD\ GLIIUDFWLRQ DQDO\VHV RI OLPHVWRQH DJJUHJDWHV &DOFXODWHG 3HUFHQWDJHV 6DPµOH 1R 6L]H )UDFWLRQ &DOFLWH 'RORPLWH 2XDUW] LQ f§ LQ 1R f§ LQ f§ LQ 1R f§ LQ f§ LQ 1R f§ LQ LQ 1R LQ f§ LQ 12 f§ LQ LQ 1R $/ LQ LQ 1R LQ f§ f§ LQ 1R

PAGE 55

6DPSOH 1R I0LDPL )ORULGD! 7KH DJJUHJDWH VDPSOH FRQVLVWHG RI FUXVKHG OLPHVWRQH SDUWLFOHV WKDW ZHUH JHQHUDOO\ RIIZKLWH WR OLJKW WDQ LQ FRORU 7DEOH f 7KH DJJUHJDWHV JHQHUDOO\ ZHUH KDUG DQG ILUP ZLWK RFFDVLRQDO PRGHUDWHO\ VRIW DQG IULDEOH SDUWLFOHV 3DUWLFOH VKDSHV ZHUH DQJXODU WR VXEURXQGHG ZLWK VRPH FUXVKHU ILQHV RFFXUULQJ RQ SDUWLFOH VXUIDFHV 6RPH IRVVLO IUDJPHQWV DQG IDLUO\ DEXQGDQW SRURVLW\ ZHUH QRWHG LQ KDQG VSHFLPHQV 0LFURVFRSLFDOO\ WKH SDUWLFOHV FRQWDLQHG VSDUVH WR PRGHUDWH DPRXQWV RI IRVVLO IUDJPHQWV LQ D PLFURVSDU PDWUL[ 6SDUU\ FDOFLWH FRPPRQO\ RFFXUUHG DV IRVVLO ILOOLQJV 3RUH VSDFH ZDV VSDUVH WR DEXQGDQW DQG IDLUO\ LVRODWHG ZLWK VSDUU\ FDOFLWH ULPV 6XEURXQGHG TXDUW] JUDLQV ZHUH PRGHUDWHO\ DEXQGDQW DQG VRPHWLPHV RFFXUUHG DV FKDQQHO ILOOLQJV )HOGVSDU JUDLQV DOVR ZHUH VHHQ LQ PLQRU DPRXQWV $ SKRWRPLFURJUDSK )LJXUH f RI WKH DJJUHJDWH VKRZV VSDUVH IRVVLO IUDJPHQWV )f DQG YHLQV 9f ILOOHG ZLWK VSDUU\ FDOFLWH RFFXUULQJ LQ D PLFULWLF PDWUL[ 0f 4XDUW] JUDLQV 4f DQG VPDOO LVRODWHG SRUH VSDFHV 3f DOVR DUH HYLGHQW ;5' DQDO\VLV 7DEOH f VKRZHG WKH VDPSOH ZDV FRPSRVHG SULPDULO\ RI FDOFLWH ZLWK D PRGHUDWH TXDUW] FRQWHQW 6DPSOH 1R I)W 0YHUV )ORULGDf 7KH DJJUHJDWH VDPSOH FRQVLVWHG RI FUXVKHG OLPHVWRQH SDUWLFOHV ZKLFK ZHUH OLJKW WDQ WR JUD\ LQ FRORU 7DEOH f 3DUWLFOHV VKDSHV ZHUH DQJXODU WR VXEURXQGHG ZLWK FUXVKHU ILQHV RFFXUULQJ RQ SDUWLFOH VXUIDFHV 7KH DJJUHJDWH SDUWLFOHV JHQHUDOO\ ZHUH KDUG DQG GHQVH ZLWK VRPH VRIW DQG

PAGE 56

)LJXUH 3KRWRPLFURJUDSK RI DJJUHJDWH VDPSOH QR 0LDPLf $JJUHJDWH LV FRPSRVHG RI VSDUU\ FDOFLWH ILOOHG IRVVLO IUDJPHQWV )f DQG YHLQV 9f DORQJ ZLWK TXDUW] JUDLQV 4f LQ D PLFULWLF PDWUL[ 0f &URVVHG QLFROV )LJXUH 3KRWRPLFURJUDSK RI DJJUHJDWH VDPSOH QR )W 0\HUVf $JJUHJDWH LV FRPSRVHG RI VSDUVH IRVVLO IUDJPHQWV VSDUU\ FDOFLWH YHLQV 9f DQG TXDUW] JUDLQV 4f LQ D PLFURVSDU PDWUL[ 0f &URVVHG QLFROV

PAGE 57

IULDEOH SLHFHV 9XJJ\ SDUWLFOHV DQG IRVVLO IUDJPHQWV ZHUH DEXQGDQW LQ KDQG VSHFLPHQV 0LFURVFRSLFDOO\ WKH SDUWLFOHV FRQWDLQHG VSDUVH WR PRGHUDWH DPRXQWV RI IRVVLO IUDJPHQWV LQ D SUHGRPLQDQWO\ PLFULWLF DQG PLFURVSDU FHPHQW PDWUL[ 6SDUU\ FDOFLWH ZDV FRPPRQ DV IRVVLO ILOOLQJV DQG SRUH OLQLQJV 9XJJ\ SRURVLW\ ZDV IDLUO\ DEXQGDQW EXW XVXDOO\ LVRODWHG 4XDUW] SDUWLFOHV ZHUH DEXQGDQW ZLWK VXEURXQGHG WR VXEDQJXODU VKDSHV )HOGVSDU JUDLQV ZHUH QRWHG LQ WUDFH DPRXQWV $ SKRWRPLFURJUDSK )LJXUH f VKRZV VSDUVH IRVVLO IUDJPHQWV )f ZLWK VSDUU\ FDOFLWH ILOOLQJV LQ D PLFURVSDU 0f FHPHQW PDWUL[ 4XDUW] JUDLQV 4f DUH DEXQGDQW DQG SRUH VSDFH 3f LV PRGHUDWHO\ DEXQGDQW EXW LVRODWHG ;5' DQDO\VLV 7DEOH f VKRZHG WKH VDPSOH FRQVLVWHG RI FDOFLWH ZLWK VLJQLILFDQW DPRXQWV RI TXDUW] 6DPSOH 1R 3HPEURNH 3LQHV )ORULGDA 7KH DJJUHJDWH VDPSOH FRQVLVWHG RI FUXVKHG OLPHVWRQH SDUWLFOHV ZKLFK ZHUH RIIZKLWH WR WDQ LQ FRORU 7DEOH f 7KH DJJUHJDWH SDUWLFOHV ZHUH KDUG DQG GHQVH ZLWK D IHZ VRIW DQG IULDEOH SLHFHV 3DUWLFOH VKDSHV ZHUH DQJXODU WR VXEURXQGHG ZLWK FUXVKHU ILQHV RFFXUULQJ RQ SDUWLFOH VXUIDFHV )RVVLO IUDJPHQWV DQG YXJJ\ SRURVLW\ ZHUH DEXQGDQW LQ KDQG VSHFLPHQV 0LFURVFRSLFDOO\ WKH SDUWLFOHV FRQWDLQHG PRGHUDWH WR DEXQGDQW IRVVLO IUDJPHQWV LQ D PLFURVSDU WR VSDUU\ FDOFLWH PDWUL[ 6XEDQJXODU WR VXEURXQGHG TXDUW] JUDLQV ZHUH DEXQGDQW WKURXJKRXW WKH DJJUHJDWH SDUWLFOHV 0ROGLF DQG

PAGE 58

YXJJ\ SRURVLW\ ZDV IDLUO\ DEXQGDQW ZLWK VSDUU\ FDOFLWH OLQLQJV FRPPRQ )HOGVSDU JUDLQV ZHUH QRWHG LQ WUDFH DPRXQWV $ SKRWRPLFURJUDSK )LJXUH f VKRZV VSDUVH IRVVLO IUDJPHQWV )f ZLWK VSDUU\ FDOFLWH ILOOLQJV LQ D PLFULWLF PDWUL[ 0f 4XDUW] JUDLQV 4f DUH DEXQGDQW DQG SRUH VSDFHV 3f DUH VPDOO DQG LVRODWHG ;5' DQDO\VLV 7DEOH f VKRZHG WKH VDPSOH FRQVLVWHG SULPDULO\ RI FDOFLWH DORQJ ZLWK VLJQLILFDQW DPRXQWV RI JXDUW] 6DPSOH 1R *XOI +DPPRFN )ORULGD` 7KH DJJUHJDWH VDPSOH FRQVLVWHG RI FUXVKHG OLPHVWRQH SDUWLFOHV ZLWK GLVWLQFW FRORUV RI RIIZKLWH OLJKW EURZQ DQG JUD\ 7DEOH f 7KH SDUWLFOHV ZHUH DQJXODU WR VXEURXQGHG DQG JHQHUDOO\ KDUG DQG GHQVH ZLWK VRPH IULDEOH SLHFHV $ IHZ SDUWLFOHV DSSHDUHG ZHDWKHUHG DQG LURQ VWDLQHG )RVVLO IUDJPHQWV ZHUH VSDUVH DQG SRURVLW\ VSDUVH WR PRGHUDWH LQ KDQG VSHFLPHQV 0LFURVFRSLFDOO\ WKH SDUWLFOHV FRQVLVWHG RI VSDUVH WR PRGHUDWHO\ DEXQGDQW IRVVLO IUDJPHQWV LQ D PLFURVSDU WR VSDUU\ FDOFLWH PDWUL[ &KDQQHO ILOOLQJV DQG YHLQV RI VSDUU\ FDOFLWH ZHUH FRPPRQ 4XDUW] SDUWLFOHV ZHUH VSDUVH LQ WKH DJJUHJDWH 3RURVLW\ DOVR ZDV VSDUVH DQG ZDV YHU\ VPDOO DQG LVRODWHG $ SKRWRPLFURJUDSK )LJXUH f VKRZV D PL[WXUH RI PLFURVSDU 0f ZLWK SDWFKHV DQG YHLQV RI VSDUU\ FDOFLWH 6f 1RWH WKH DEVHQFH RI TXDUW] JUDLQV DQG WKH YHU\ VPDOO LVRODWHG SRUH VSDFHV 3f ;5' DQDO\VLV 7DEOH f VKRZHG WKDW WKH DJJUHJDWH FRQVLVWHG RI URXJKO\ HTXDO DPRXQWV RI FDOFLWH DQG GRORPLWH 3\ULWH KDV EHHQ NQRZQ WR RFFXU LQ

PAGE 59

)LJXUH 3KRWRPLFURJUDSK RI DJJUHJDWH VDPSOH QR 3HPEURNH 3LQHVf $JJUHJDWH LV FRPSRVHG RI VSDUVH VSDUU\ FDOFLWH ILOOHG IRVVLO IUDJPHQWV )f DQG TXDUW] JUDLQV 4f LQ D PLFULWLF PDWUL[ 0f &URVVHG QLFROV )LJXUH 3KRWRPLFURJUDSK RI DJJUHJDWH VDPSOH QR *XOI +DPPRFNf $JJUHJDWH LV FRPSRVHG RI D PL[WXUH RI PLFURVSDU 0f DQG VSDUU\ FDOFLWH 6f &URVVHG QLFROV

PAGE 60

WKHVH PDWHULDOV DQG LV VXVSHFWHG WR EH WKH FDXVH RI WKH LURQ VWDLQLQJ +RZHYHU LW ZDV QRW GHWHFWHG LQ ;5' DQDO\VLV 6DPSOH 1R $/ &DOHUD $ODEDPDA 7KH DJJUHJDWH VDPSOH FRQVLVWHG RI FUXVKHG OLPHVWRQH SDUWLFOHV ZKLFK ZHUH OLJKW WR PHGLXP JUD\ LQ FRORU 7DEOH f 3DUWLFOH VKDSHV ZHUH DQJXODU WR VXEURXQGHG ZLWK VRPH FUXVKHU ILQHV RFFXUULQJ RQ SDUWLFOH VXUIDFHV 7KH DJJUHJDWHV ZHUH KDUG DQG GHQVH ZLWK OLWWOH YLVLEOH SRURVLW\ 0LFURVFRSLFDOO\ WKH DJJUHJDWHV UDQJHG IURP WKRVH ZLWK LQWHUORFNLQJ FRDUVHO\ FU\VWDOOLQH FDUERQDWH SDUWLFOHV RI PRGHUDWH LQWHUIHUHQFH FRORU )LJXUH f WR RQHV KDYLQJ D PDWUL[ RI ILQH JUDLQHG SDUWLFOHV 0f ZLWK DEXQGDQW FRDUVHU VSDUU\ YHLQV DQG LQILOOLQJV 6f )LJXUH f 9HU\ OLWWOH SRURVLW\ ZDV REVHUYHG )RVVLO IUDJPHQWV ZHUH DEVHQW EXW VRPH UHFU\VWDOOL]HG RROLWLF VWUXFWXUHV ZHUH HYLGHQW LQ VRPH SDUWLFOHV ;5' DQDO\VLV 7DEOH f VKRZHG WKDW WKH SDUWLFOHV FRQVLVWHG RI FDOFLWH DQG GRORPLWH 6DPSOH 1R *$ 7\URQH *HRUJLDA 7KH DJJUHJDWH VDPSOH FRQVLVWHG SULPDULO\ RI FUXVKHG JUDQLWH SDUWLFOHV DORQJ ZLWK D IHZ SLHFHV RI ELRWLWH JQHLVV DQG VFKLVW 7KH SDUWLFOHV ZHUH JHQHUDOO\ OLJKW WR PHGLXP JUD\ H[FHSW IRU WKH YHU\ GDUN JQHLVV DQG VFKLVW SDUWLFOHV 7DEOH f PHGLXP WR FRDUVH JUDLQHG DQG RI JUDQXODU WH[WXUH 3DUWLFOH VKDSHV ZHUH DQJXODU WR VXEURXQGHG ZLWK DEXQGDQW FUXVKHU ILQHV RQ SDUWLFOH VXUIDFHV 7KH DJJUHJDWHV

PAGE 61

)LJXUH 3KRWRPLFURJUDSK RI DJJUHJDWH VDPSOH QR $/ &DOHUDf $JJUHJDWH LV FRPSRVHG RI FRDUVHO\ FU\VWDOOLQH FDUERQDWH SDUWLFOHV &URVVHG QLFROV )LJXUH 3KRWRPLFURJUDSK RI DJJUHJDWH VDPSOH QR $/ &DOHUDf $JJUHJDWH LV FRPSRVHG RI FRDUVH VSDUU\ FDOFLWH LQ D ILQHJUDLQHG PDWUL[ 0f &URVVHG QLFROV

PAGE 62

JHQHUDOO\ ZHUH KDUG DQG GHQVH ZLWK RFFDVLRQDO IULDEOH VFKLVWRVH SLHFHV 0LFURVFRSLFDOO\ WKH SDUWLFOHV FRQWDLQHG DQKHGUDO TXDUW] DQG VXEKHGUDO WR DQKHGUDO DOELWH VRGLXP IHOGVSDUf RUWKRFODVH DQG PLFURFOLQH SRWDVVLXP IHOGVSDUVf DV WKH SULPDU\ PLQHUDOV DQG VXEKHGUDO WR HXKHGUDO ELRWLWH DV D PLQRU FRQVWLWXHQW 6HYHUDO DFFHVVRU\ PLQHUDOV ZHUH QRWHG LQ WUDFH DPRXQWV LQFOXGLQJ PDJQHWLWH ]LUFRQ DSDWLWH WRXUPDOLQH DQG JDUQHW 7KH PDMRU PLQHUDO FRPSRQHQWV H[KLELWHG VRPH XQGXODWRU\ H[WLQFWLRQ DQG IUDFWXULQJ ZLWK VHULFLWLF DOWHUDWLRQ RFFXUULQJ DORQJ IHOGVSDU IUDFWXUHV 6RPH LURQ VWDLQLQJ DORQJ IUDFWXUHV DQG DOWHUDWLRQ RI ELRWLWH WR FKORULWH DOVR ZDV QRWHG $ SKRWRPLFURJUDSK )LJXUH f VKRZV WKH FRDUVHO\ FU\VWDOOLQH DQG LQWHUORFNLQJ QDWXUH RI WKH PLQHUDO FRQVWLWXHQWV RI WKH DJJUHJDWH 4XDUW] 4f ELRWLWH %f DQG PLFURFOLQH 0f ZLWK LWV FKDUDFWHULVWLF WZLQQLQJ FDQ EH VHHQ LQ WKH SKRWRPLFURJUDSK 6RPH IUDFWXULQJ DOVR RFFXUV LQ WKH DJJUHJDWH )LJXUH f 6DPSOH 1R O&KDWWDKRRFKLH )ORULGDA 7KH DJJUHJDWH VDPSOH FRQVLVWHG RI XQFUXVKHG VLOLFHRXV ULYHU JUDYHO SDUWLFOHV ZKLFK ZHUH OLJKW EURZQ WR WDQ LQ FRORU 7DEOH f 7KH SDUWLFOHV ZHUH KDUG DQG GHQVH ZLWK VXEURXQGHG WR URXQGHG VKDSHV 3DUWLFOH VXUIDFHV ZHUH JHQHUDOO\ VPRRWK WH[WXUHG ZLWK VRPH GXVW\ PDWHULDO 6RPH SDUWLFOHV FRQWDLQHG YLVLEOH IUDFWXUHV 0LFURVFRSLFDOO\ WKH SDUWLFOHV FRQVLVWHG RI SRO\FU\VWDOOLQH TXDUW] JUDLQV ZLWK VRPH LURQVWDLQHG

PAGE 63

)LJXUH 3KRWRPLFURJUDSK RI DJJUHJDWH VDPSOH QR *$ 7\URQHf $JJUHJDWH LV FRPSRVHG RI FRDUVHO\ FU\VWDOOLQH TXDUW] 4f DONDOL IHOGVSDU 0f DQG ELRWLWH %f &URVVHG QLFROV )LJXUH 3KRWRPLFURJUDSK RI DJJUHJDWH VDPSOH QR *$ 7\URQHf $JJUHJDWH LV FRPSRVHG RI FRDUVHO\ FU\VWDOOLQH PLQHUDO JUDLQV ZLWK DEXQGDQW IUDFWXULQJ &URVVHG QLFROV

PAGE 64

IUDFWXULQJ )f )LJXUH f 6RPH DJJUHJDWHV FRQVLVWHG RI HORQJDWH SRO\FU\VWDOOLQH TXDUW] JUDLQV ZLWK KLJKO\ VXWXUHG FRQWDFWV W\SLFDO RI PHWDPRUSKLF URFNV %ODWW f )LJXUH f 8QGXODWRU\ H[WLQFWLRQ RI TXDUW] JUDLQV ZDV FRPPRQ 4XDUW] ZDV WKH RQO\ PLQHUDO GHWHFWHG E\ ;5' DQDO\VLV RI WKH DJJUHJDWHV 7DEOH f 6KDSH &KDUDFWHUL]DWLRQ $JJUHJDWH VKDSH FDQ EH DQ LPSRUWDQW IDFWRU LQ FRQFUHWH PL[ GHVLJQ SURSHUWLHV DQG SHUIRUPDQFH ,Q WKH SDVW FKDUDFWHUL]DWLRQ RI DJJUHJDWH VKDSHV KDV EHHQ OLPLWHG WR VLPSOH YLVXDO GHVFULSWLRQV RU WR LQGLUHFW FRUUHODWLRQ ZLWK YDULRXV SK\VLFDO WHVWV RQ EXON DJJUHJDWH VDPSOHV 0HLHU DQG (OQLFN\ f ,Q WKLV VWXG\ FRPSXWHUL]HG LPDJH DQDO\VLV WHFKQLTXHV ZHUH XWLOL]HG IRU GLUHFW PHDVXUHPHQW RI LQGLYLGXDO DJJUHJDWH SDUWLFOH VKDSH DQG JHRPHWU\ 7KH DJJUHJDWHV ZHUH FDVW LQ HSR[\ UHVLQV DQG DIWHU KDUGHQLQJ RI WKH HSR[\ VDZHG RU SROLVKHG WR WKHLU PHGLDO SODQHV WR JLYH D PD[LPXP SURMHFWLRQ DUHD 2QH KXQGUHG SDUWLFOHV RI WZR VL]H IUDFWLRQV IRU HDFK FRDUVH DJJUHJDWH VDPSOH ZHUH DQDO\]HG XVLQJ FRPSXWHUL]HG LPDJLQJ SURFHGXUHV IRU DUHDV SHULPHWHUV )HUHW GLDPHWHUV DQG VKDSH IXQFWLRQV $UHD WR SHULPHWHU UDWLRV ZHUH FDOFXODWHG IRU HDFK SDUWLFOH WR SURYLGH DQ LQGLFDWRU RI VXUIDFH LUUHJXODULW\ $V SDUWLFOHV EHFRPH PRUH LUUHJXODU SHULPHWHU YDOXHV EHFRPH ORQJHU IRU D JLYHQ DUHD 7KHUHIRUH WKH DUHD WR SHULPHWHU UDWLR EHFRPHV VPDOOHU DV SDUWLFOH VXUIDFH LUUHJXODULW\ EHFRPHV JUHDWHU +LJKHU VXUIDFH LUUHJXODULW\ RI FRQFUHWH

PAGE 65

)LJXUH 3KRWRPLFURJUDSK RI DJJUHJDWH VDPSOH QR &KDWWDKRRFKLHf $JJUHJDWH LV FRPSRVHG RI SRO\FU\VWDOOLQH TXDUW] JUDLQV ZLWK LURQ VWDLQHG IUDFWXUHV )f &URVVHG QLFROV )LJXUH 3KRWRPLFURJUDSK RI DJJUHJDWH VDPSOH QR &KDWWDKRRFKLHf $JJUHJDWH LV FRPSRVHG RI HORQJDWH SRO\FU\VWDOOLQH TXDUW] JUDLQV ZLWK KLJKO\ VXWXUHG FRQWDFWV &URVVHG QLFROV

PAGE 66

DJJUHJDWHV VKRXOG SURYLGH JUHDWHU LQWHUORFNLQJ RU PHFKDQLFDO ERQG ZLWK FHPHQW SDVWH +RZHYHU H[FHVVLYH LUUHJXODULW\ RI SDUWLFOHV PD\ DIIHFW HFRQRP\ RI PL[ GHVLJQV E\ FDXVLQJ KLJKHU FHPHQW UHTXLUHPHQWV 6KDSH IXQFWLRQV DVSHFW UDWLRVf ZHUH GHWHUPLQHG E\ WDNLQJ WKH PLQLPXP WR PD[LPXP UDWLR RI WKLUW\WZR )HUHW GLDPHWHUV PHDVXUHG IRU HDFK SDUWLFOH 7KH VPDOOHU WKH DVSHFW UDWLR WKH PRUH HORQJDWH WKH SDUWLFOH VKDSH ,Q JHQHUDO KLJK DVSHFW UDWLRV PRUH HTXDQW JUDLQVf DUH PRUH GHVLUDEOH IRU FRQFUHWH DJJUHJDWHV &LUFXODULW\ VKDSH IDFWRUV DUH D PHDVXUH RI KRZ FORVHO\ SDUWLFOH VKDSH UHVHPEOHV WKH VKDSH RI D FLUFOH 3DUWLFOHV WKDW FORVHO\ DSSUR[LPDWH D FLUFOH ZRXOG EH DVVLJQHG D YDOXH FORVH WR RQH ZLWK ORZHU QXPEHUV DVVLJQHG DV WKH SDUWLFOH VKDSH GHYLDWHV IURP D FLUFOH LQ HORQJDWLRQ RU VXUIDFH URXJKQHVV $V LQ WKH FDVH RI DUHD WR SHULPHWHU UDWLRV PRUH LUUHJXODU SDUWLFOHV ORZ VKDSH IDFWRU QXPEHUVf ZRXOG JHQHUDOO\ EH PRUH GHVLUDEOH IRU FRQFUHWH DJJUHJDWHV GXH WR JUHDWHU LQWHUORFNLQJ RU PHFKDQLFDO ERQG ZLWK WKH FHPHQW SDVWH ([WUHPHO\ ORZ YDOXHV PD\ LQGLFDWH YHU\ HORQJDWH SDUWLFOHV ZKLFK DUH QRW GHVLUDEOH IRU FRQFUHWH $YHUDJH YDOXHV IRU DUHD WR SHULPHWHU UDWLRV DVSHFW UDWLRV DQG FLUFXODULW\ VKDSH IDFWRUV IURP WKH RQH KXQGUHG SDUWLFOH PHDVXUHPHQWV RI WZR VL]H IUDFWLRQV IRU HDFK DJJUHJDWH VDPSOH ZHUH GHWHUPLQHG 7DEOH f 7KHVH GDWD LQGLFDWH WKDW QR ODUJH GLIIHUHQFHV H[LVW EHWZHHQ DYHUDJH YDOXHV RI WKH SDUDPHWHUV IRU WKH YDULRXV DJJUHJDWHV

PAGE 67

7DEOH $YHUDJH YDOXHV IURP LPDJH DQDO\VLV GDWD $UHD 6KDSH &LUFXODULW\ $FIFUUHDDWH ,' 6L]H )UDFWLRQ 3HULPHWHU )XQFWLRQ 6KDQH )DFWRU LQ %URRNVYLOOHf LQ 1R LQ 0LDPLf LQ 1R LQ 0LDPLf LQ 1R LQ )W 0\HUVf LQ 1R LQ 3HPEURNH 3LQHVf LQ 1R LQ *XOI +DPPRFNf LQ 1R *$ LQ 7\URQH *$f LQ 1R D'DWD DUH EDVHG RQ PHDVXUHPHQWV RI DW OHDVW JUDLQV RI HDFK DJJUHJDWH VDPSOH SROLVKHG WR WKHLU PHGLDO SODQH

PAGE 68

PHDVXUHG &RPSDULVRQ RI YDOXHV IRU WKH WZR VL]H IUDFWLRQV LQGLFDWH WKDW WKH VPDOOHU SDUWLFOHV KDYH PRUH LUUHJXODU VKDSHV DQG DUH OHVV HTXDQW WKDQ WKH ODUJHU SDUWLFOHV $OWKRXJK DYHUDJH YDOXHV RI WKH VKDSH SDUDPHWHUV DUH LQ FORVH DJUHHPHQW WKH GLVWULEXWLRQ RI YDOXHV IRU WKH DJJUHJDWH SDUWLFOHV )LJXUHV WKURXJK f GLIIHUV EHWZHHQ VDPSOHV 6WDQGDUG GHYLDWLRQ DQG YDULDQFH YDOXHV 7DEOH f DOVR LQGLFDWH VOLJKW YDULDWLRQV LQ GLVWULEXWLRQ RI SDUWLFOH YDOXHV %HFDXVH DJJUHJDWH VDPSOHV $/ &DOHUDf DQG &KDWWDKRRFKLHf ZHUH ODWH DGGLWLRQV WR WKH SURMHFW WKHVH PDWHULDOV ZHUH QRW DQDO\]HG IRU VKDSH SDUDPHWHUV 6DPSOH $/ ZRXOG EH H[SHFWHG WR SRVVHVV VLPLODU VKDSH SURSHUWLHV DV WKH RWKHU FUXVKHG PDWHULDOV +RZHYHU DQDO\VLV RI VDPSOH ZRXOG OLNHO\ \LHOG GLIIHUHQW VKDSH SDUDPHWHU GDWD EHFDXVH LW LV DQ XQFUXVKHG DJJUHJDWH SRVVHVVLQJ VPRRWK SDUWLFOH WH[WXUHV

PAGE 69

)5(4 )5(4 )5(4 6+$3( &,5&/( 'LVWULEXWLRQV RI VKDSH SDUDPHWHU YDOXHV IRU DJJUHJDWH VDPSOH QR %URRNVYLOOHf SOXV LQ VL]H IUDFWLRQ )LJXUH

PAGE 70

)5(4 )5(4 )5(4 $5($3(5,0 6+$3( &,5&/( )LJXUH 'LVWULEXWLRQV RI VKDSH SDUDPHWHU YDOXHV IRU DJJUHJDWH VDPSOH QR %URRNVYLOOHf PLQXV LQ SOXV 1R VL]H IUDFWLRQ

PAGE 71

)5(4 )5(4 )5(4 6+$3( &,5&/( )LJXUH 'LVWULEXWLRQV RI VKDSH SDUDPHWHU YDOXHV IRU DJJUHJDWH VDPSOH QR 0LDPLf SOXV LQ VL]H IUDFWLRQ

PAGE 72

)5(4 )5(4 )5(4 $5($3(5,0 6+$3( &,5&/( )LJXUH 'LVWULEXWLRQV RI VKDSH SDUDPHWHU YDOXHV IRU DJJUHJDWH VDPSOH QR 0LDPLf PLQXV LQ SOXV 1R VL]H IUDFWLRQ

PAGE 73

)5(4 )5(4 )5(4 $5($3(5,0 &,5&/( )LJXUH 'LVWULEXWLRQV RI VKDSH SDUDPHWHU YDOXHV IRU DJJUHJDWH VDPSOH QR 0LDPLf SOXV LQ VL]H IUDFWLRQ

PAGE 74

$5($3(5,0 6+$3( &,5&/( )LJXUH 'LVWULEXWLRQV RI VKDSH SDUDPHWHU YDOXHV IRU DJJUHJDWH VDPSOH QR 0LDPLf PLQXV LQ SOXV 1R VL]H IUDFWLRQ

PAGE 75

$5($3(5,0 6+$3( D FF X 'LVWULEXWLRQV RI VKDSH SDUDPHWHU YDOXHV IRU DJJUHJDWH VDPSOH QR )W 0\HUVf SOXV LQ VL]H IUDFWLRQ )LJXUH

PAGE 76

)5(4 )5(4 $5($3(5,0 6+$3( &,5&/( )LJXUH 'LVWULEXWLRQV RI VKDSH SDUDPHWHU YDOXHV IRU DJJUHJDWH VDPSOH QR )W 0\HUVf PLQXV LQ SOXV 1R VL]H IUDFWLRQ

PAGE 77

)5(4 )5(4 )5(4 6+$3( &,5&/( )LJXUH 'LVWULEXWLRQV RI VKDSH SDUDPHWHU YDOXHV IRU DJJUHJDWH VDPSOH QR 3HPEURNH 3LQHVf SOXV LQ VL]H IUDFWLRQ

PAGE 78

)5(4 )5(4 $5($3(5,0 6+$3( &,5&/( )LJXUH 'LVWULEXWLRQV RI VKDSH SDUDPHWHU YDOXHV IRU DJJUHJDWH VDPSOH QR 3HPEURNH 3LQHVf PLQXV LQ SOXV 1R VL]H IUDFWLRQ

PAGE 79

)5(4 6+$3( &,5&/( )LJXUH 'LVWULEXWLRQV RI VKDSH SDUDPHWHU YDOXHV IRU DJJUHJDWH VDPSOH QR *XOI +DPPRFNf SOXV LQ VL]H IUDFWLRQ

PAGE 80

)5(4 )5(4 )5(4 6+$3( &,5&/( 'LVWULEXWLRQV RI VKDSH SDUDPHWHU YDOXHV IRU DJJUHJDWH VDPSOH QR *XOI +DPPRFNf PLQXV LQ SOXV 1R VL]H IUDFWLRQ )LJXUH

PAGE 81

)5(4 )5(4 )5(4 $5($3(5,0 6+$3( &,5&/( )LJXUH 'LVWULEXWLRQV RI VKDSH SDUDPHWHU YDOXHV IRU DJJUHJDWH VDPSOH QR *$ 7\URQHf SOXV LQ VL]H IUDFWLRQ

PAGE 82

)5(4 2 $5($3(5,0 6+$3( &,5&/( 'LVWULEXWLRQV RI VKDSH SDUDPHWHU YDOXHV IRU DJJUHJDWH VDPSOH QR *$ 7\URQHf PLQXV LQ SOXV 1R VL]H IUDFWLRQ )LJXUH

PAGE 83

&LUFXODULW\ 7DEOH 6WDWLVWLFDO GLVWULEXWLRQ RI VKDSH SDUDPHWHU GDWD $UHD3HULPHWHU 6KDSH )XQFWLRQ 6WG 6WG 6WG $DFUUHDDWH ,' )UDFWLRQ 'HYLDWLRQ 9DULDQFH 'HYLDWLRQ 9DULDQFH 'HYLDWLRQ 9DULDQFH %URRNVYLOOHf 1R 0LDPLf 1R 0LDPLf 1R )W 0\HUVf 12 3HPEURNH 3LQHVf 1R *XOI +DPPRFNf 12 *$ 7\URQH *$f 1R

PAGE 84

&(0(17 3$67($**5(*$7( ,17(5)$&,$/ %21',1* 3RUWODQG FHPHQW FRQFUHWH LV D FRPSRVLWH PDWHULDO FRQVLVWLQJ RI D PL[WXUH RI SRUWODQG FHPHQW DJJUHJDWHV DLU DQG ZDWHU 9DULRXV DGPL[WXUHV DOVR PD\ EH XVHG IRU DFKLHYLQJ VSHFLILF SURSHUWLHV VXFK DV LQFUHDVHG ZRUNDELOLW\ HQWUDLQHG DLU FRQWHQW DQG VHW UHWDUGDWLRQ +\GUDWLRQ UHDFWLRQV EHWZHHQ ZDWHU DQG SRUWODQG FHPHQW UHVXOW LQ IRUPDWLRQ RI FHPHQWLWLRXV FRPSRXQGV ZKLFK ELQG WKH V\VWHP WRJHWKHU WR IRUP KDUGHQHG FRQFUHWH 7KH PRVW DEXQGDQW FRPSRXQGV IRUPHG IURP K\GUDWLRQ UHDFWLRQV DUH FDOFLXP VLOLFDWH K\GUDWHV DQG FDOFLXP K\GUR[LGH 0LQRU DPRXQWV RI RWKHU FRPSRXQGV DUH IRUPHG LQFOXGLQJ FDOFLXP DOXPLQDWH K\GUDWHV DQG FDOFLXP VXOIRDOXPLQDWHV 0LQGHVV DQG
PAGE 85

WKHUHIRUH ODUJHU DPRXQWV RI ZDWHU DUH UHTXLUHG 7KLV SURGXFHV JUHDWHU DPRXQWV RI YRLGV LQ WKH SDVWH ZKLFK UHGXFHV LWV VWUHQJWK +\GUDWLRQ RI WKH FHPHQW SDVWH LV D JUDGXDO SURFHVV ZLWK PRVW RI WKH VWUHQJWK GHYHORSHG DIWHU GD\V 6WUHQJWK RI WKH DJJUHJDWHV LV GHSHQGHQW RQ PLQHUDORJLFDO FRPSRVLWLRQ JUDLQ VL]H WH[WXUH DQG DOWHUDWLRQ 7KHVH IDFWRUV DUH GHWHUPLQHG E\ WKHLU JHRORJLF PRGH RI IRUPDWLRQ DQG VXEVHTXHQW JHRORJLF KLVWRU\ 7KH FHPHQW SDVWHDJJUHJDWH LQWHUIDFLDO ERQG LV XVXDOO\ FRQVLGHUHG WR EH WKH ZHDNHVW FRPSRQHQW RI FRPSRVLWH FRQFUHWH VWUHQJWK 0LQGHVV DQG
PAGE 86

&DUERQDWH DJJUHJDWHV DUH EHOLHYHG WR UHDFW FKHPLFDOO\ ZLWK FHPHQW K\GUDWLRQ SURGXFWV IRUPLQJ D JRRG LQWHUIDFLDO ERQG ,Q FRQWUDVW VLOLFDWH DJJUHJDWHV GR QRW VHHP WR ERQG ZHOO ZLWK FHPHQW SDVWH DV HYLGHQFHG E\ PRUH DEXQGDQW VHSDUDWLRQV RFFXUULQJ DW WKH FHPHQW SDVWHVLOLFDWH DJJUHJDWH ERXQGDU\ 7KHVH LQWHUIDFLDO VHSDUDWLRQV PD\ SURYLGH SDWKZD\V IRU IOXLG PLJUDWLRQ DQG WKHUHIRUH PD\ DIIHFW SHUPHDELOLW\ DQG GXUDELOLW\ RI FRQFUHWH 0LQGHVV DQG
PAGE 87

/LWHUDWXUH 5HYLHZ 7H[WXUDO &KDUDFWHULVWLFV RI WKH ,QWHUIDFLDO 5HJLRQ 6HYHUDO VWXGLHV KDYH EHHQ FRQGXFWHG LQ UHFHQW \HDUV WR FKDUDFWHUL]H WKH WH[WXUDO GHWDLOV RI WKH LQWHUIDFLDO UHJLRQ EHWZHHQ FHPHQW SDVWH DQG DJJUHJDWH %DUQHV HW DO Df FRQGXFWHG 6(0 LQYHVWLJDWLRQV RI HDUO\ K\GUDWLRQ FKDUDFWHULVWLFV IRU LQWHUIDFLDO UHJLRQV EHWZHHQ JODVV VOLGHV DQG FHPHQW SDVWHV 7KH\ REVHUYHG D WKLQ XUQf GXSOH[ ILOP RI FDOFLXP K\GUR[LGH &D2+ff FU\VWDOV DGMDFHQW WR WKH JODVV VOLGH ZLWK HORQJDWHG K\GUDWHG FDOFLXP VLOLFDWH &6 +f SDUWLFOHV FRYHULQJ WKH ILOP DQG SURMHFWLQJ WRZDUG WKH ERG\ RI WKH SDVWH %H\RQG WKH &6+ SDUWLFOH RFFXUUHG D ]RQH RI K\GUDWLQJ FHPHQW JUDLQV :LWK LQFUHDVLQJ K\GUDWLRQ WKH &6+ SDUWLFOHV VKRUWHQHG RU IRUPHG D UHWLFXODWHG QHWZRUN SDWWHUQ DQG WKH ]RQH EH\RQG ILOOHG ZLWK DEXQGDQW &D2+f FU\VWDOV 6XEVHTXHQW ZRUN E\ WKH VDPH DXWKRUV Ef VKRZHG VLPLODU IHDWXUHV RFFXUULQJ LQ WKH LQWHUIDFLDO UHJLRQV RI PRUWDUV SUHSDUHG ZLWK TXDUW] VDQG 7H[WXUDO VWXGLHV RI WKH LQWHUIDFLDO UHJLRQV EHWZHHQ FHPHQW SDVWH DQG FDUERQDWH DJJUHJDWHV E\ %DUQHV HW DO f SURYHG WR EH PRUH GLIILFXOW GXH WR VHSDUDWLRQ WKURXJK WKH DJJUHJDWH UDWKHU WKDQ DW WKH LQWHUIDFH +RZHYHU VRPH WH[WXUDO VWXGLHV RI WKH FHPHQW SDVWHFDUERQDWH DJJUHJDWH LQWHUIDFH KDYH EHHQ FDUULHG RXW ;UD\ GLIIUDFWLRQ VWXGLHV E\ &DUOHV*LEHUTXHV HW DO f FRQFOXGHG WKDW WKH &D2+f FU\VWDOV DW WKH LQWHUIDFH RI FDUERQDWH DJJUHJDWHV KDG PXFK OHVV SDUDOOHO RULHQWDWLRQ WR WKH DJJUHJDWH VXUIDFH WKDQ

PAGE 88

WKRVH DW VLOLFDWH DJJUHJDWH LQWHUIDFHV 7KH\ DWWULEXWH WKH GHFUHDVHG RULHQWDWLRQ WR HWFKLQJ RI WKH FDUERQDWH DJJUHJDWH VXUIDFH GXH WR UHDFWLRQV ZLWK WKH K\GUDWLQJ FHPHQW FRPSRXQGV 7KHVH UHDFWLRQ PHFKDQLVPV ZLOO EH GLVFXVVHG LQ PRUH GHWDLO ODWHU %RQGLQJ RI &DUERQDWH DQG 6LOLFDWH $JJUHJDWHV ,W LV ZLGHO\ UHSRUWHG LQ WKH OLWHUDWXUH WKDW WKH FDUERQDWH DJJUHJDWHFHPHQW SDVWH V\VWHP SURYLGHV VXSHULRU ERQGLQJ SURSHUWLHV UHODWLYH WR WKH VLOLFDWH DJJUHJDWHFHPHQW SDVWH V\VWHP %RQG VWUHQJWK PHDVXUHPHQWV EHWZHHQ K\GUDWHG FHPHQW SDVWH DQG YDULRXV DJJUHJDWH W\SHV JHQHUDOO\ VKRZ WKDW FDUERQDWH DJJUHJDWHV SURGXFH KLJKHU ERQG VWUHQJWK WKDQ VLOLFDWH DJJUHJDWHV )DUUDQ +VX DQG 6ODWH f 7KLV LV FRQVLVWHQW ZLWK UHSRUWV WKDW KLJKHVW FRQFUHWH FRPSUHVVLYH VWUHQJWK LV REWDLQHG ZLWK OLPHVWRQH DJJUHJDWHV %HGDUG HW DO &DUUDVTXLOOR f 6RPH VWXGLHV XVLQJ SROLVKHG DJJUHJDWHV KDYH LQGLFDWHG WKDW H[WUXVLYH VLOLFHRXV DJJUHJDWHV PD\ GHYHORS KLJK ERQG VWUHQJWKV $OH[DQGHU HW DO f 7KLV LV OLNHO\ GXH WR WKH DPRUSKRXV QDWXUH RI VRPH H[WUXVLYH DJJUHJDWH FRPSRQHQWV SURGXFLQJ D SR]]RODQLF W\SH UHDFWLRQ ZLWK WKH FHPHQW SDVWH EHFDXVH RI VLOLFD GLVVROXWLRQ LQ WKH KLJKO\ DONDOLQH HQYLURQPHQW ,W LV GRXEWIXO WKDW WKLV PHFKDQLVP ZRXOG RFFXU IRU WKH PRUH FRPPRQO\ XVHG QRQH[WUXVLYH VLOLFHRXV DJJUHJDWHV RI D KLJKO\ FU\VWDOOLQH QDWXUH VXFK DV TXDUW] JUDYHOV DQG FUXVKHG JUDQLWHV EHFDXVH RI PXFK ORZHU VLOLFD VROXELOLW\

PAGE 89

6(0 REVHUYDWLRQV RI FHPHQW SDVWHDJJUHJDWH LQWHUIDFHV KDYH VXSSRUWHG ERQG VWUHQJWK VWXGLHV &UDFNV DUH RIWHQ REVHUYHG WR H[LVW DW FHPHQW SDVWHVLOLFDWH DJJUHJDWH ERXQGDULHV &KULVWHQVHQ HW DO 6KDK DQG 6ODWH 5HJRXUG f HYHQ EHIRUH DQ\ ORDGLQJ 6KDK DQG 6ODWH f 5HJRXUG f VWDWHV WKDW FDUERQDWH DJJUHJDWHV H[KLELW JRRG LQWHUIDFLDO ERQGLQJ FKDUDFWHULVWLFV LQ FRQWUDVW WR VLOLFDWH DJJUHJDWHV RQ ZKLFK WKH FHPHQW K\GUDWLRQ SURGXFWV DUH ZHDNO\ ERXQG WR DQG IURP ZKLFK WKH\ DUH HDVLO\ WRUQ 6XUIDFH &KHPLFDO &RQVLGHUDWLRQV 7KH FRQWUDVWLQJ ERQGLQJ FKDUDFWHULVWLFV RI FDUERQDWH DQG VLOLFDWH DJJUHJDWHV SUREDEO\ DUH D UHVXOW RI GLIIHUHQFHV LQ VXUIDFH FKHPLFDO SURSHUWLHV ZKLFK DUH DIIHFWHG E\ PLQHUDORJLFDO FRPSRVLWLRQ DQG FU\VWDOORJUDSKLF VWUXFWXUH )LJXUHV DQG f 7KH KLJKHU ERQG VWUHQJWKV SURYLGHG E\ FDUERQDWH DJJUHJDWHV OLNHO\ DUH GXH WR FKHPLFDO UHDFWLRQV ZLWK WKH FHPHQW SDVWH 7KHVH UHDFWLRQV PD\ RFFXU GXH WR IDYRUDEOH DWRPLF FRPSRVLWLRQ DQG DUUDQJHPHQW RI FDOFLWH PLQHUDO VXUIDFHV ZKLFK DUH FRPSRVHG RI &D DQG &n FKDUJH FHQWHUV )LJXUH f 6KHUZRRG 7KRPSVRQ DQG 3RZQDOO f 7KH WZR FRPPRQO\ SURSRVHG PRGHOV RI UHDFWLRQ EHWZHHQ OLPHVWRQH DJJUHJDWHV DQG FHPHQW SDVWH DUH ERQGLQJ RI FDOFLXP K\GUR[LGH IRUPHG DW WKH LQWHUIDFH WR WKH FDOFLWH VXUIDFH HLWKHU E\

PAGE 90

&2fn A&KDUJH QRW QHXWUDOL]HG f¯RQ HDFK R[\JHQ P f§ b Df Ef 0LQHUDORJLFDO SURSHUWLHV RI FDOFLWH &D& Df %RQG VWUHQJWK DQG UHVLGXDO FKDUJHV IRU FDUERQDWH DQLRQLF FRPSOH[ Ef 6WUXFWXUH RI FDOFLWH DIWHU .OHLQ DQG +XUOEXW f )LJXUH

PAGE 91

Df Ef )LJXUH 0LQHUDOµJLFD SURSHUWLHV RI TXDUW] 6L Df %RQG VWUHQJWK DQG UHVLGXDO FKDUJHV IRU WKH WHWUDKHGUDO 6L JURXS Ef 7HFWRVLOLFDWH VWUXFWXUH RI TXDUW] DIWHU .OHLQ DQG +XUOEXW f

PAGE 92

6XUIDFH &D f§ &2 f§ &D f§ &R f§ &D &2 &D f§ &2 L L U &r &D & f§ &D R fµ R &2 f§ &D f§ , &2 f§ &D 2 &D &r &D &2 f§ &D & O &D f§ &2 )LJXUH &KDUJHV RQ FDOFLWH VXUIDFH DIWHU 6KHUZRRG f &KDUJH &HQWHUV

PAGE 93

HSLWD[LDO RYHUJURZWK )DUUDQ f RU QRQ KRPRJHQRXV QXFOHDWLRQ
PAGE 94

)LJXUH f 6KHUZRRG f 'LVVRFLDWLRQ RI K\GURJHQ DWRPV UHVXOWV LQ QHJDWLYH FKDUJHV DW WKH TXDUW] VXUIDFH DQG SRVLWLYH FKDUJHV LQ WKH DGMDFHQW ZDWHU PHGLXP 7KH VWUXFWXUH RI R[LGHV VXFK DV TXDUW] FDXVHV WKHP WR H[KLELW D VWURQJ K\GURSKLOLF ZDWHU DWWUDFWLYHf FKDUDFWHU +HU f 7KH ZDWHU RQ WKH PLQHUDO VXUIDFH FDQ EH VHSDUDWHG LQWR ZHDNO\ SK\VLVRUEHGf DQG VWURQJO\ FKHPLVRUEHGf KHOG OD\HUV )LJXUH f (OHFWULFDO LPEDODQFHV DW WKH PLQHUDO VXUIDFH DUH VDWLVILHG E\ FKHPLVRUSWLRQ RI ZDWHU WR IRUP VXUIDFH K\GUR[\O JURXSV +\GURJHQ ERQGLQJ EHWZHHQ WKHVH JURXSV DQG DGGLWLRQDO DGVRUSWLRQ RI ZDWHU IRUPV D SK\VLVRUEHG ZDWHU OD\HU 'DYLV DQG .HQW 3DUNV f $GVRUSWLRQ RI LRQV DW R[LGH PLQHUDO VXUIDFHV PD\ RFFXU E\ HLWKHU FKHPLVRUSWLRQ RU SK\VLVRUSWLRQ SURFHVVHV &KHPLVRUSWLRQ RFFXUV E\ IRUPDWLRQ RI LQQHUVSKHUH FRPSOH[HV DQG LQYROYHV ORVV RI K\GUDWLRQ ZDWHU DQG GLUHFW VKRUWUDQJH HOHFWURVWDWLF RU FRYDOHQW ERQGLQJ RI LRQV WR VXUIDFH R[\JHQV )LJXUH f 3K\VLVRUSWLRQ RFFXUV E\ IRUPDWLRQ RI RXWHUVSKHUH FRPSOH[HV ZLWK LRQLF FRPSOH[HV UHWDLQLQJ ZDWHUV RI K\GUDWLRQ DQG HLWKHU K\GURJHQ ERQGHG WR WKH VXUIDFH RU DWWUDFWHG E\ ORQJ UDQJH FRXORPELF IRUFHV )LJXUH f 7KH GLIIHUHQFH LQ WKH VWUHQJWK EHWZHHQ WKHVH ORQJUDQJH DQG VKRUWUDQJH IRUFHV FDXVHV RXWHUVSKHUH DGVRUSWLRQ FRPSOH[HV WR EH OHVV VWURQJO\ ERXQG WR WKH PLQHUDO VXUIDFH WKDQ LQQHUVSKHUH DGVRUSWLRQ FRPSOH[HV %URZQ f

PAGE 95

)LJXUH &KDUJHV RQ TXDUW] VXUIDFH DIWHU 6KHUZRRG f

PAGE 96

+ + , +r + , R! 9 -WL 9 0 Rn 9 Rn A , , , 9"n"=b=, rA+ 9 + + 3K\VLRVRFWRHG + &KHPLVRLEHG + )LJXUH $GVRUEHG ZDWHU RQ R[LGH VXUIDFH 0 UHSUHVHQWV FDWLRQ LQ VROLG IURP 'DYLV DQG .HQW f

PAGE 97

287(563+(5( &203/(; ,11(563+(5( &203/(;(6 )LJXUH 6RUSWLRQ FRPSOH[HV RI PHWDO FDWLRQV 0f DW R[LGHZDWHU LQWHUIDFHV 7KH ODUJHU VKDGHG VSKHUHV LQ WKH R[LGH VXEVWUDWH DQG VXUURXQGLQJ WKH PHWDO FDWLRQV DUH R[\JHQV 7KH VPDOOHU VKDGHG VSKHUHV DUH FDWLRQV LQ WKH VXEVWUDWH DIWHU %URZQ f

PAGE 98

7KH SRRU LQWHUIDFLDO ERQGLQJ SURSHUWLHV RI VLOLFDWH PLQHUDO DJJUHJDWHV ZLWK FHPHQW K\GUDWLRQ SURGXFWV DUH EHOLHYHG E\ WKH SUHVHQW DXWKRU WR UHVXOW IURP WKHVH VXUIDFH DGVRUSWLRQ FKDUDFWHULVWLFV $ONDOLQH HDUWK PHWDO FDWLRQV VXFK DV &D DUH EHOLHYHG WR DGVRUE RQWR VLOLFDWH VXUIDFHV DV RXWHUVSKHUH DGVRUSWLRQ FRPSOH[HV ZLWK D K\GUDWLRQ OD\HU VHSDUDWLQJ WKHP IURP WKH PLQHUDO VXUIDFH 'DYLV DQG .HQW +D\HV -DPHV DQG +HDO\ f 7KHUHIRUH &D ZKLFK LV WKH PRVW DEXQGDQW FDWLRQ WR EH UHOHDVHG GXULQJ FHPHQW K\GUDWLRQ UHDFWLRQV DGVRUEV DV ZHDNO\ KHOG RXWHU VSKHUH FRPSOH[HV RQWR VLOLFDWH PLQHUDO VXUIDFHV WKXV SUHYHQWLQJ VWURQJ FKHPLFDO ERQG IRUPDWLRQ EHWZHHQ FHPHQW K\GUDWLRQ SURGXFWV DQG VLOLFDWH DJJUHJDWHV 0LFURWH[WXUDO 6WXGLHV 3UHYLRXV VWXGLHV KDYH LQGLFDWHG WKDW GLIIHUHQFHV H[LVW EHWZHHQ LQWHUIDFLDO ERQGLQJ FKDUDFWHULVWLFV RI FDUERQDWH DQG VLOLFDWH DJJUHJDWHV LQ SRUWODQG FHPHQW FRQFUHWH &RQFUHWH VSHFLPHQV IURP ERWK ODERUDWRU\ DQG ILHOG HQYLURQPHQWV ZHUH H[DPLQHG ZLWK WKH 6(0 LQ RUGHU WR LQYHVWLJDWH FHPHQW SDVWH DJJUHJDWH ERQGLQJ FKDUDFWHULVWLFV RI FDUERQDWH DQG VLOLFDWH DJJUHJDWHV IRU FRPSDULVRQ ZLWK UHSRUWHG OLWHUDWXUH ILQGLQJV 7KHVH REVHUYDWLRQV VHUYHG DV D EDVLV IRU ODWHU FRQFUHWH WHVWLQJ DQG PLFURVFRSLF H[DPLQDWLRQV /DERUDWRU\ VDPSOHV RI FRQFUHWH FRQWDLQLQJ OLPHVWRQH FRDUVH DQG TXDUW] ILQH DJJUHJDWHV ZHUH REWDLQHG IURP WKH 'HSDUWPHQW RI &LYLO (QJLQHHULQJ 8QLYHUVLW\ RI )ORULGD DQG WKH )ORULGD 'HSDUWPHQW RI 7UDQVSRUWDWLRQ 6WDWH 0DWHULDOV

PAGE 99

2IILFH 7KH FRQFUHWH F\OLQGHUV ZHUH VXEMHFWHG WR RU GD\V PRLVW FXULQJ DW URRP WHPSHUDWXUH 6SHFLPHQV ZHUH WKHQ UHPRYHG IURP WKH FRQFUHWH DQG SUHSDUHG IRU PLFURVFRSLF H[DPLQDWLRQV )LHOG VDPSOHV RI FRQFUHWH ZHUH REWDLQHG IURP FRUHV H[WUDFWHG IURP WZR H[LVWLQJ EULGJHV E\ )'27 SHUVRQQHO 2QH FRUH FRQWDLQHG VLOLFHRXV ULYHU JUDYHO FRDUVH DJJUHJDWH IURP ZHVW )ORULGD 7KH RWKHU FRQWDLQHG OLPHVWRQH FRDUVH DJJUHJDWH IURP VRXWK )ORULGD 6SHFLPHQV IURP WKHVH FRQFUHWH FRUHV DOVR ZHUH UHPRYHG DQG SUHSDUHG IRU PLFURVFRSLF H[DPLQDWLRQV ,QWHUIDFLDO ERQGLQJ SURSHUWLHV RI WKH YDULRXV DJJUHJDWHV ZHUH LQYHVWLJDWHG XVLQJ SRODUL]HG OLJKW PLFURVFRSH 3/0f DQG VFDQQLQJ HOHFWURQ PLFURVFRSH 6(0f PHWKRGV RQ WKH FRQFUHWH VSHFLPHQV UHPRYHG IURP WKH FRQFUHWH PL[WXUHV 6SHFLPHQV ZHUH UHPRYHG IURP WKH FRQFUHWH F\OLQGHUV DQG VXUIDFHV SHUSHQGLFXODU WR WKH ORQJ GLPHQVLRQ RI WKH F\OLQGHUV ZHUH DQDO\]HG 6(0 H[DPLQDWLRQV ZHUH FRQGXFWHG RQ EXON DQG SROLVKHG WKLQ VHFWLRQ VSHFLPHQV RI WKH FRQFUHWH VDPSOHV XVLQJ DQ ,QWHUQDWLRQDO 6FLHQWLILF ,QVWUXPHQWV '6 GXDO VWDJH KLJK UHVROXWLRQ VFDQQLQJ HOHFWURQ PLFURVFRSH &KHPLFDO LQIRUPDWLRQ ZDV REWDLQHG ZLWK DQ DWWDFKHG HQHUJ\ GLVSHUVLYH ;UD\ (';f VSHFWURPHWHU 3/0 H[DPLQDWLRQV ZHUH FRQGXFWHG RQ SROLVKHG WKLQ VHFWLRQV RI WKH FRQFUHWH VSHFLPHQV XVLQJ D =HLVV SRODUL]LQJ UHVHDUFK PLFURVFRSH 5HVXOWV SUHVHQWHG LQ WKLV VHFWLRQ DUH JHQHUDOO\ OLPLWHG WR FHPHQW SDVWHDJJUHJDWH

PAGE 100

LQWHUIDFLDO ERQGLQJ SURSHUWLHV IRU FRQFUHWH PL[WXUHV KDYLQJ ZDWHU WR FHPHQW UDWLRV RI DSSUR[LPDWHO\ RU QR DGGLWLYHV DQG FXULQJ WLPHV RI RU GD\V 7KH PHFKDQLFDO FRPSRQHQW RI LQWHUIDFLDO ERQGLQJ UHVXOWV IURP SK\VLFDO LQWHUORFNLQJ RI WKH DJJUHJDWHV DQG FHPHQW SDVWH %HFDXVH WKH DJJUHJDWHV LQYHVWLJDWHG LQ WKLV VWXG\ DUH FUXVKHG VWRQH PDWHULDOV WKH\ DUH SULPDULO\ DQJXODU SDUWLFOHV ZLWK LUUHJXODU VXUIDFHV DV SUHYLRXVO\ QRWHG LQ WKH SDUWLFOH VKDSH VWXGLHV RI WKLV UHSRUW 7KHUHIRUH WKH\ ZRXOG EH H[SHFWHG WR SURYLGH JRRG PHFKDQLFDO ERQGLQJ SURSHUWLHV 6XUIDFH WH[WXUDO FKDUDFWHULVWLFV RQ D PLFURVFRSLF OHYHO DUH LOOXVWUDWHG E\ 3/0 SKRWRPLFURJUDSKV RI WKLQ VHFWLRQ VSHFLPHQV SUHSDUHG IURP WKH FRQFUHWH F\OLQGHUV )LJXUHV WKURXJK f 7KHVH SKRWRPLFURJUDSKV VKRZ WKDW ERWK WKH OLPHVWRQH /f DQG JUDQLWH *f DJJUHJDWHV KDYH URXJK LUUHJXODU VXUIDFHV ZKLFK SURYLGH JRRG LQWHUORFNLQJ ZLWK WKH FHPHQW SDVWH PDWUL[ &f DQG WKHUHIRUH JRRG PHFKDQLFDO ERQGLQJ 7KH VLOLFHRXV ULYHU JUDYHO FRDUVH DJJUHJDWHV * LQ )LJXUH f DQG WKH TXDUW] ILQH DJJUHJDWHV 4 LQ )LJXUH f XVHG LQ WKH FRQFUHWH PL[WXUHV RIWHQ KDYH VPRRWK VXUIDFH WH[WXUHV ZKLFK GR QRW SURYLGH JRRG PHFKDQLFDO ERQGLQJ 7KH VXUIDFH FKHPLFDO UHDFWLRQ FRPSRQHQW RI LQWHUIDFLDO ERQGLQJ ZDV HYDOXDWHG E\ 6(0 DQDO\VHV RQ FRQFUHWH VSHFLPHQV IURP WKH ODERUDWRU\ DQG ILHOG VDPSOHV $OO OLPHVWRQH DJJUHJDWHV VWXGLHG H[KLELWHG JRRG DWWDFKPHQW RI FHPHQW K\GUDWLRQ SURGXFWV WR WKH DJJUHJDWH VXUIDFHV LQGLFDWLQJ

PAGE 101

)LJXUH 3KRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ WKLQ VHFWLRQ FRQWDLQLQJ DJJUHJDWH QR %URRNVYLOOHf 5RXJK VXUIDFH WH[WXUH RI OLPHVWRQH DJJUHJDWH /f SURYLGHV JRRG PHFKDQLFDO ERQG ZLWK FHPHQW SDVWH &f 4XDUW] ILQH DJJUHJDWH 4f KDV VPRRWK VXUIDFH WH[WXUH &URVVHG QLFROV )LJXUH 3KRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ WKLQ VHFWLRQ FRQWDLQLQJ DJJUHJDWH QR 0LDPLf ,UUHJXODU VKDSH RI OLPHVWRQH DJJUHJDWH /f SURYLGHV JRRG PHFKDQLFDO ERQG ZLWK FHPHQW SDVWH &f &URVVHG QLFROV

PAGE 102

)LJXUH 3KRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ WKLQ VHFWLRQ FRQWDLQLQJ DJJUHJDWH QR 0LDPLf 5RXJK VXUIDFH WH[WXUH RI OLPHVWRQH DJJUHJDWH /f SURYLGHV JRRG PHFKDQLFDO ERQG ZLWK FHPHQW SDVWH &f &URVVHG QLFROV )LJXUH 3KRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ WKLQ VHFWLRQ FRQWDLQLQJ DJJUHJDWH QR )W 0\HUVf 5RXJK VXUIDFH WH[WXUH RI OLPHVWRQH DJJUHJDWH /f SURYLGHV JRRG PHFKDQLFDO ERQG ZLWK FHPHQW SDVWH &f &URVVHG QLFROV

PAGE 103

)LJXUH 3KRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ WKLQ VHFWLRQ FRQWDLQLQJ DJJUHJDWH QR *XOI +DPPRFNf 5RXJK VXUIDFH WH[WXUH RI OLPHVWRQH DJJUHJDWH /f SURYLGHV JRRG PHFKDQLFDO ERQG ZLWK FHPHQW SDVWH &f &URVVHG QLFROV )LJXUH 3KRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ WKLQ VHFWLRQ FRQWDLQLQJ DJJUHJDWH QR *$ 7\URQHf 5RXJK VXUIDFH WH[WXUH RI JUDQLWH DJJUHJDWH *f SURYLGHV JRRG PHFKDQLFDO ERQG ZLWK FHPHQW SDVWH &f &URVVHG QLFROV

PAGE 104

)LJXUH 3KRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ WKLQ VHFWLRQ FRQWDLQLQJ DJJUHJDWH QR $/ &DOHUDf 5RXJK VXUIDFH WH[WXUH RI OLPHVWRQH DJJUHJDWH /f SURYLGHV JRRG PHFKDQLFDO ERQG ZLWK FHPHQW SDVWH &URVVHG QLFROV )LJXUH 3KRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ WKLQ VHFWLRQ FRQWDLQLQJ DJJUHJDWH QR &KDWWDKRRFKLHf 5LYHU JUDYHO DJJUHJDWH KDV VPRRWK VXUIDFH WH[WXUH &URVVHG QLFROV

PAGE 105

FKHPLFDO ERQGLQJ LQ DGGLWLRQ WR PHFKDQLFDO ERQGLQJ ,Q D JHQHUDO YLHZ RI D FRQFUHWH VSHFLPHQ FRQWDLQLQJ OLPHVWRQH FRDUVH DJJUHJDWH IURP WKH %URRNVYLOOH VRXUFH )LJXUH f QR VHSDUDWLRQV DUH HYLGHQW DW WKH LQWHUIDFH EHWZHHQ WKH FHPHQW SDVWH &f DQG WKH OLPHVWRQH DJJUHJDWH /f $W KLJKHU PDJQLILFDWLRQ )LJXUH f WKH JRRG LQWHUIDFLDO ERQGLQJ EHWZHHQ WKH FHPHQW SDVWH &f DQG DQG WKH ILQHJUDLQHG OLPHVWRQH /f VXUIDFH FDQ EH VHHQ 6XUIDFH GHWDLOV VKRZ )LJXUHV DQG f WKH FHPHQW K\GUDWLRQ SURGXFWV LQ WKH SDVWH DWWDFKHG WR WKH OLPHVWRQH VXUIDFH &DOFLXP K\GUR[LGH &f ZKLFK LV D FRPPRQ K\GUDWLRQ SURGXFW IRXQG LQ LQWHUIDFLDO ]RQHV LV ZHOO ERQGHG )LJXUH f WR VPDOO FDOFLWH SDUWLFOHV RI WKH OLPHVWRQH DJJUHJDWH /f $ JHOOLNH PDWHULDO RI WKH FHPHQW SDVWH &f VKRZQ WR EH FDOFLXP VLOLFDWH E\ HQHUJ\ GLVSHUVLYH ;UD\ DQDO\VLV VKRZV JRRG ERQGLQJ )LJXUH f ZLWK WKH OLPHVWRQH DJJUHJDWH /f ([DPSOHV RI LQWHUIDFLDO ERQGLQJ )LJXUHV WKURXJK f IRU WKH YDULRXV OLPHVWRQH DJJUHJDWHV /f ZLWK WKH FHPHQW SDVWH &f KDYH EHHQ VHOHFWHG IURP RWKHU FRQFUHWH VSHFLPHQV $OO OLPHVWRQH DJJUHJDWHV H[DPLQHG H[KLELWHG JRRG LQWHUIDFLDO ERQGLQJ ZLWK FHPHQW SDVWH 6RPH FUDFNV FDQ EH VHHQ LQ VRPH RI WKH SKRWRPLFURJUDSKV EXW WKHVH RFFXU LQ WKH FHPHQW SDVWH DQG QRW DW WKH FHPHQW SDVWHDJJUHJDWH LQWHUIDFH 2QH H[DPSOH )LJXUH f VKRZV FUDFNV RFFXUULQJ LQ WKH FHPHQW SDVWH PDWUL[ DQG FRQWLQXLQJ WKURXJK WKH OLPHVWRQH DJJUHJDWH ZLWK QR VHSDUDWLRQV HYLGHQW DW WKH FHPHQW SDVWHDJJUHJDWH LQWHUIDFH

PAGE 106

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR %URRNVYLOOHf 1R VHSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR %URRNVYLOOHf *RRG LQWHUIDFLDO ERQGLQJ RFFXUV EHWZHHQ OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f

PAGE 107

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR %URRNVYLOOHf &DOFLXP K\GUR[LGH &f LQ FHPHQW SDVWH VKRZV JRRG ERQGLQJ ZLWK ILQH JUDLQHG OLPHVWRQH DJJUHJDWH /f 9 6} )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR %URRNVYLOOHf &DOFLXP VLOLFDWH K\GUDWH &f LQ FHPHQW SDVWH VKRZV JRRG ERQGLQJ ZLWK OLPHVWRQH DJJUHJDWH /f

PAGE 108

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR 0LDPLf 1R VHSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR 0LDPLf *RRG ERQGLQJ RFFXUV EHWZHHQ OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f &UDFN LV WKURXJK FHPHQW SDVWH PDWUL[

PAGE 109

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR 0LDPLf 1R VHSDUDWLRQ RFFXUV EHWZHHQ OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR 0LDPLf *RRG ERQGLQJ RFFXUV EHWZHHQ OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f

PAGE 110

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR )W 0\HUVf 1R VHSDUDWLRQ RFFXUV EHWZHHQ OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR )W 0\HUVf *RRG ERQGLQJ RFFXUV EHWZHHQ OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f

PAGE 111

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR *XOI +DPPRFNf 1R VHSDUDWLRQ RFFXUV EHWZHHQ OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR *XOI +DPPRFNf *RRG ERQGLQJ RFFXUV EHWZHHQ OLPHVWRQH DJJUHJDWH /f FRQWDLQLQJ GRORPLWH UKRPEV DQG FHPHQW SDVWH &f

PAGE 112

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR $/ &DOHUDf 1R VHSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR $/ &DOHUDf *RRG ERQGLQJ RFFXUV EHWZHHQ OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f

PAGE 113

)LJXUH 6(0 SKRWRPLFURJUDSK RI ODERUDWRU\ FRQFUHWH VSHFLPHQ &HPHQW SDVWH VKRZV JRRG ERQGLQJ WR OLPHVWRQH DJJUHJDWH /f )LJXUH 6(0 SKRWRPLFURJUDSK RI ODERUDWRU\ FRQFUHWH VSHFLPHQ &UDFNLQJ LQ FHPHQW SDVWH FRQWLQXHV LQWR OLPHVWRQH DJJUHJDWH /f ZLWK QR LQWHUIDFLDO VHSDUDWLRQ

PAGE 114

)LHOG FRQFUHWH VSHFLPHQV FRQWDLQLQJ OLPHVWRQH DJJUHJDWH DOVR UHYHDOHG JRRG FHPHQW SDVWHDJJUHJDWH ERQGLQJ $ VPDOO OLPHVWRQH SDUWLFOH /f LQ FRQFUHWH )LJXUH f VKRZV QR LQWHUIDFLDO VHSDUDWLRQV $ IRVVLOLIHURXV OLPHVWRQH FRDUVH DJJUHJDWH / LQ )LJXUH f DOVR UHYHDOV QR HYLGHQFH RI YRLGV DW WKH FHPHQW SDVWHDJJUHJDWH LQWHUIDFLDO ERXQGDU\ &DOFLXP K\GUR[LGH DQG FDOFLXP VLOLFDWHV DUH WKH SULQFLSDO K\GUDWLRQ SURGXFWV IRUPHG LQ 3RUWODQG FHPHQW SDVWH 6(0 DQG ('; DQDO\VHV LQGLFDWH WKDW ERWK K\GUDWLRQ SURGXFWV IRUP JRRG DWWDFKPHQW WR WKH OLPHVWRQH DJJUHJDWHV VXJJHVWLQJ JRRG FKHPLFDO ERQGLQJ DW WKH FHPHQW SDVWH DJJUHJDWH LQWHUIDFH ,Q VRPH FDVHV JHOOLNH FDOFLXP VLOLFDWH DSSHDUHG WR SHQHWUDWH LQWR VPDOO SRUH VSDFHV RI ILQHJUDLQHG OLPHVWRQH VXUIDFHV 7KLV PD\ SURYLGH DQ DGGLWLRQDO PHFKDQLFDO FRPSRQHQW RI LQWHUIDFLDO ERQGLQJ ,Q FRQWUDVW WR WKH JRRG LQWHUIDFLDO ERQGLQJ REVHUYHG IRU OLPHVWRQH DJJUHJDWHV 6(0 H[DPLQDWLRQV RI ODERUDWRU\ FRQFUHWH VSHFLPHQV UHYHDOHG SRRU LQWHUIDFLDO ERQGLQJ RI VLOLFDWH DJJUHJDWHV ZLWK WKH FHPHQW SDVWH &RQFUHWH VSHFLPHQV FRQWDLQLQJ JUDQLWH DJJUHJDWHV UHYHDOHG H[WHQVLYH FUDFNLQJ DW WKH FHPHQW SDVWHDJJUHJDWH LQWHUIDFH 6HSDUDWLRQV RFFXU DORQJ WKHVH LQWHUIDFHV EHWZHHQ WKH JUDQLWH DJJUHJDWHV *f DQG WKH FHPHQW SDVWH &f )LJXUHV WKURXJK f 4XDUW] ILQH DJJUHJDWHV )LJXUH f DQG VLOLFHRXV ULYHU JUDYHO DJJUHJDWHV )LJXUHV DQG f DOVR UHYHDOHG SRRU LQWHUIDFLDO ERQGLQJ ZLWK FHPHQW SDVWH ([WHQVLYH FUDFNLQJ RFFXUV DURXQG WKH SHULPHWHU RI D TXDUW] 4f DQG ULYHU JUDYHO

PAGE 115

)LJXUH 6(0 SKRWRPLFURJUDSK RI ILHOG FRQFUHWH VSHFLPHQ 1R VHSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ FHPHQW SDVWH DQG OLPHVWRQH DJJUHJDWH /f )LJXUH 6(0 SKRWRPLFURJUDSK RI ILHOG FRQFUHWH VSHFLPHQ *RRG ERQGLQJ RFFXUV EHWZHHQ IRVVLOLIHURXV OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH

PAGE 116

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR *$ 7\URQHf 6HSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH &f )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR *$ 7\URQHf 6HSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH &f

PAGE 117

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR *$ 7\URQHf 6HSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH &f )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR .H\VWRQH +HLJKWVf 6HSDUDWLRQ RFFXUV DORQJ SHULPHWHU RI JXDUW] DJJUHJDWH 4f DW LQWHUIDFH ZLWK FHPHQW SDVWH &f

PAGE 118

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR &KDWWDKRRFKLHf 6HSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ ULYHU JUDYHO DJJUHJDWH *f DQG FHPHQW SDVWH &f f§ }L , PQ7UQULLL70LQU QU L :na ODLLPQ77nLLOLPU :P 78 +:, , LIIOOLUUZUnOaPUQf§L QP7PUU-W+7%,,,+LDL8 QLO LZDQZUf§ )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ FRQWDLQLQJ DJJUHJDWH QR &KDWWDKRRFKLHf 6HSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ ULYHU JUDYHO DJJUHJDWH *f DQG FHPHQW SDVWH &f

PAGE 119

,OO *f SDUWLFOHV DW WKH LQWHUIDFH ZLWK WKH FHPHQW SDVWH &f 2WKHU H[DPSOHV )LJXUHV DQG f VKRZ FUDFNV H[LVWLQJ DORQJ WKH LQWHUIDFH EHWZHHQ WKH TXDUW] DJJUHJDWHV 4f DQG FHPHQW K\GUDWLRQ SURGXFWV )LHOG FRQFUHWH VSHFLPHQV DOVR UHYHDOHG SRRU LQWHUIDFLDO ERQGLQJ EHWZHHQ VLOLFDWH DJJUHJDWHV DQG FHPHQW SDVWH $ YRLG FDQ EH VHHQ )LJXUH f VXUURXQGLQJ D TXDUW] ILQH DJJUHJDWH 4f DW WKH LQWHUIDFH ZLWK WKH FHPHQW K\GUDWLRQ SURGXFWV ,Q WKH XSSHU OHIW KDQG FRUQHU RI WKH SKRWRPLFURJUDSK D VPRRWKZDOOHG KROH FDQ EH VHHQ ZKHUH DQ DJJUHJDWH SDUWLFOH IRUPHUO\ H[LVWHG &UDFNLQJ FDQ EH VHHQ )LJXUH f LQ WKH FHPHQW SDVWH DQG FRQWLQXLQJ DURXQG WKH SHULPHWHU RI D SRUWLRQ RI D ODUJH VLOLFHRXV ULYHU JUDYHO WKH DJJUHJDWH *f DW WKH LQWHUIDFLDO ERXQGDU\ ZLWK WKH FHPHQW SDVWH 7KHVH REVHUYDWLRQV RQ DJJUHJDWHV IURP YDULRXV VRXUFHV VXSSRUW SUHYLRXV VWXGLHV RQ FHPHQW SDVWHDJJUHJDWH LQWHUIDFLDO ERQGLQJ PHQWLRQHG DERYH 7KH GLIIHUHQFH LQ ERQGLQJ SURSHUWLHV H[KLELWHG E\ FDUERQDWH DQG VLOLFDWH DJJUHJDWHV DUH EHOLHYHG WR EH WKH UHVXOW RI PLQHUDORJLF FRPSRVLWLRQ ZKLFK FRQWUROV VXUIDFH FKHPLFDO SURSHUWLHV RI WKH DJJUHJDWHV $JJUHJDWH 7UHDWPHQW ,QYHVWLJDWLRQV %DVHG RQ WKH OLWHUDWXUH UHYLHZ DQG SUHOLPLQDU\ PLFURVFRSLF H[DPLQDWLRQV DQ H[SHULPHQWDO SURJUDP ZDV GHVLJQHG WR FRPSDUH VWUHQJWK DQG LQWHUIDFLDO ERQGLQJ FKDUDFWHULVWLFV RI FRQFUHWH PL[WXUHV PDGH ZLWK FRPPRQO\ XVHG

PAGE 120

)LJXUH 6(0 SKRWRPLFURJUDSK RI ODERUDWRU\ FRQFUHWH VSHFLPHQ 6HSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ TXDUW] DJJUHJDWH 4f DQG FHPHQW SDVWH )LJXUH 6(0 SKRWRPLFURJUDSK RI ODERUDWRU\ FRQUHWH VSHFLPHQ 6HSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ TXDUW] DJJUHJDWH 4f DQG FHPHQW SDVWH

PAGE 121

)LJXUH 6(0 SKRWRPLFURJUDSK RI ILHOG FRQFUHWH VSHFLPHQ 6HSDUDWLRQ RFFXUV DURXQG SHULPHWHU RI TXDUW] DJJUHJDWH 4f DW LQWHUIDFH ZLWK FHPHQW SDVWH )LJXUH 6(0 SKRWRPLFURJUDSK RI ILHOG FRQFUHWH VSHFLPHQ &UDFNLQJ RFFXUV LQ FHPHQW SDVWH DQG FRQWLQXHV DURXQG SHULPHWHU RI ULYHU JUDYHO DJJUHJDWH *f

PAGE 122

)ORULGD OLPHVWRQH DJJUHJDWHV DQG *HRUJLD JUDQLWH DJJUHJDWHV XVLQJ VLPLODU PL[ GHVLJQV ,Q DGGLWLRQ FRQFUHWH F\OLQGHUV ZHUH SUHSDUHG XVLQJ WKH VDPH PL[ GHVLJQ ZLWK JUDQLWH DJJUHJDWHV ZKLFK ZHUH VXEMHFWHG WR SUHWUHDWPHQW PHWKRGV EDVHG RQ ODERUDWRU\ LQYHVWLJDWLRQV XVLQJ VXUIDFH VHQVLWLYH DQDO\WLFDO WHFKQLTXHV 7KHVH F\OLQGHUV DOVR ZHUH WHVWHG DQG H[DPLQHG IRU FRPSDULVRQ ZLWK FRQFUHWH SUHSDUHG ZLWK XQWUHDWHG DJJUHJDWHV ,PSURYHPHQW RI WKH &HPHQW 3DVWH6LOLFDWH $JJUHJDWH %RQG ,PSURYHG ERQGLQJ RI FHPHQW WR VLOLFDWH DJJUHJDWHV KDV EHHQ UHSRUWHG IRU KLJK WHPSHUDWXUH DXWRFODYHG FRQFUHWH DQG E\ XVLQJ HSR[\ FRDWHG DJJUHJDWHV &DUUDVTXLOOR f +RZHYHU VXFK PHWKRGV DUH H[SHQVLYH DQG DUH QRW ZLGHO\ XVHG =LPEHOPDQQ f UHSRUWV LQFUHDVHG ERQG VWUHQJWK IRU JUDQLWH DJJUHJDWHV FRDWHG ZLWK D VXVSHQVLRQ RI VRGLXP VLOLFDWH DQG JURXQG SXPLFH 7KH SURSRVHG PHFKDQLVP IRU WKH LPSURYHG ERQGLQJ ZDV DWWDFKPHQW RI WKH SXPLFH WR WKH DJJUHJDWH VXUIDFH ZLWK WKH DLG RI WKH VRGLXP VLOLFDWH ZKLFK UHDFWHG ZLWK FDOFLXP K\GUR[LGH RI WKH LQWHUIDFLDO UHJLRQ 7KH PHWKRG DOWKRXJK UHSRUWHGO\ HIIHFWLYH PD\ QRW DOZD\V EH SUDFWLFDO GXH WR H[SHQVH RI WKH PDWHULDOV DQG WKH KLJK DONDOL FRQWHQW UHVXOWLQJ IURP WKH XVH RI VRGLXP VLOLFDWH =LPEHOPDQQ f PHQWLRQV WKDW WKH PHWKRG ZRUNHG EHVW ZKHQ WKH VXVSHQVLRQ ZDV ILUVW GULHG RQWR WKH JUDQLWH DJJUHJDWH 'U\LQJ RI WKH VXVSHQVLRQ RQ WKH DJJUHJDWH LV EHOLHYHG WR EH D NH\ IDFWRU IRU LPSURYLQJ WKH LQWHUIDFLDO

PAGE 123

ERQG E\ WKH SUHVHQW DXWKRU $VSKDOWLF FRQFUHWH PD\ EH VXVFHSWLEOH WR PRLVWXUH GDPDJH ZKHQ FHUWDLQ PLQHUDO DJJUHJDWHV SULPDULO\ VLOLFDWHV DUH XVHG GXH WR VWULSSLQJf° RU ORVV RI ERQG EHWZHHQ WKH DJJUHJDWH DQG DVSKDOWLF FHPHQW +\GUDWHG OLPH &D2+ff LV D ZLGHO\ XVHG DQWLVWULSSLQJ DJHQW IRU DJJUHJDWHV LQ DVSKDOWLF FRQFUHWH DQG WHVWV KDYH VKRZQ WKDW WKLV WUHDWPHQW DOVR LV PRVW HIIHFWLYH ZKHQ DSSOLHG WR WKH DJJUHJDWHV LQ VOXUU\ IRUP DQG WKHQ GULHG EHIRUH FRQFUHWH PL[LQJ %XWWRQ .HQQHG\ f $OWKRXJK LW LV VXVSHFWHG WKDW WKH LPSURYHG HIIHFWLYHQHVV IURP WKLV PHWKRG PD\ EH GXH LQ SDUW WR LPSURYHG LQWHUDFWLRQ EHWZHHQ WKH K\GUDWHG OLPH DQG DJJUHJDWHV .HQQHG\ f OLWWOH ZRUN LQ WKLV DUHD LV UHSRUWHG LQ WKH OLWHUDWXUH 7KH WHPSHUDWXUH W\SLFDOO\ XVHG r&f IRU GU\LQJ RI DJJUHJDWHV LQ DVSKDOWLF FRQFUHWH SUHSDUDWLRQ LV OHVV WKDQ WKDW QRUPDOO\ FRQVLGHUHG QHFHVVDU\ IRU UHPRYDO RI FKHPLVRUEHG K\GUR[\O JURXSV RQ WKH VLOLFDWH PLQHUDO VXUIDFHV !r&f +RZHYHU PRVW ODERUDWRU\ GHK\GUDWLRQ VWXGLHV KDYH QRW FRQVLGHUHG WKH HIIHFWV RI VXUIDFH FDWLRQV 7KH SUHVHQFH RI . LRQV RQ VLOLFD VXUIDFHV KDV EHHQ UHSRUWHG WR ORZHU GHK\GUR[\ODWLRQ WHPSHUDWXUHV E\ r& +HU f 7KH SUHVHQFH RI &D LRQV RQ WKH VXUIDFH RI VLOLFDWH PLQHUDO VXUIDFHV PD\ FDXVH GHK\GUR[\ODWLRQ RI WKH VXUIDFH DW ORZHU PRUH HFRQRPLFDOf WHPSHUDWXUHV DQG DOORZ LQQHUVSKHUH FKHPLVRUSWLRQ RI &D LRQV ZKLFK ZRXOG SURYLGH VWURQJHU ERQGLQJ 7KHVH DGVRUEHG LRQV PD\ SURYLGH D EULGJLQJ PHFKDQLVP IRU ERQGLQJ RI WKH PLQHUDO VXUIDFH ZLWK FHPHQW

PAGE 124

:RUNLQJ IURP WKLV K\SRWKHVLV &D2+f WUHDWPHQW RI VLOLFDWH DJJUHJDWHV IRU LPSURYHG LQWHUIDFLDO ERQGLQJ LQ SRUWODQG FHPHQW FRQFUHWH ZDV LQYHVWLJDWHG &RQFUHWH 0DWHULDOV DQG 'HVLJQ &RQFUHWH PL[WXUHV IRU WKH VWXG\ ZHUH SUHSDUHG XVLQJ WZR FUXVKHG DJJUHJDWH W\SHV /LPHVWRQH FRDUVH DJJUHJDWHV PLQHG IURP WKH 2OLJRFHQH 6XZDQQHH /LPHVWRQH )LJXUH f QHDU %URRNVYLOOH )ORULGD ZHUH RQH W\SH XVHG IRU WKH FRQFUHWH PL[HV 7KHVH DUH VLPLODU LQ VRXUFH DUHD DQG SURSHUWLHV DV DJJUHJDWH VDPSOH QXPEHU GHVFULEHG SUHYLRXVO\ 7KH OLPHVWRQH DJJUHJDWHV FDQ EH FKDUDFWHUL]HG DV OLJKW WDQ FRORUHG VSDUVH WR SDFNHG ELRPLFURVSDULWHV )RVVLO IUDJPHQWV DUH VRPHWLPHV DEXQGDQW DQG HIIHFWLYHO\ IORDW LQ D PLFURVSDU PDWUL[ 6RPH SRUHV DQG YXJV DUH ILOOHG ZLWK FRDUVHU VSDUU\ FDOFLWH 7KH DJJUHJDWHV DUH DQJXODU WR VXEURXQGHG KDUG DQG GHQVH ZLWK YDULDEOH SRURVLW\ &DOFLWH ILQHV PD\ EH IRXQG RQ DJJUHJDWH VXUIDFHV DV UHVXOW RI FUXVKLQJ RSHUDWLRQV &KHUW SDUWLFOHV DOVR RFFXU LQ WKHVH PDWHULDOV LQ WUDFH DPRXQWV &RQFUHWH PL[WXUHV DOVR ZHUH SUHSDUHG XVLQJ 3UHFDPEULDQ JUDQLWH FRDUVH DJJUHJDWHV PLQHG QHDU 7\URQH *HRUJLD 7KHVH DUH VLPLODU LQ VRXUFH DUHD DQG SURSHUWLHV DV DJJUHJDWH VDPSOH QXPEHU *$ GHVFULEHG SUHYLRXVO\ H[FHSW IRU VOLJKWO\ FRDUVHU VL]H LQFK PD[LPXPf 7KH DJJUHJDWHV DUH SULPDULO\ OLJKW JUD\FRORUHG PHGLXP WR FRDUVH JUDLQHG JUDQLWH ZLWK JUDQXODU WH[WXUH DORQJ ZLWK VPDOO DPRXQWV RI ELRWLWH VFKLVW $QKHGUDO TXDUW] LV WKH PRVW DEXQGDQW

PAGE 125

PLQHUDO DQG VLJQLILFDQW DPRXQWV RI VXEKHGUDO WR DQKHGUDO DOELWH VRGLXP SODJLRFODVHf RUWKRFODVH DQG PLFURFOLQH SRWDVVLXPf IHOGVSDUV DOVR RFFXU 6XEKHGUDO WR HXKHGUDO ELRWLWH JUDLQV DOVR DUH SUHVHQW EXW DUH PXFK OHVV DEXQGDQW 7KH SDUWLFOHV DUH DQJXODU WR VXEDQJXODU KDUG DQG GHQVH ZLWK ILQH SDUWLFOHV IURP FUXVKLQJ RFFXUULQJ RQ WKH VXUIDFHV 6RPH VWUDLQLQJ DQG IUDFWXULQJ RI TXDUW] DQG IHOGVSDU ZDV HYLGHQW LQ PLFURVFRSLF H[DPLQDWLRQV ZLWK VRPH LURQ VWDLQLQJ DQG VHULFLWLF DOWHUDWLRQ RFFXUULQJ DORQJ IUDFWXUHV 7ZR W\SHV RI ILQH DJJUHJDWH ZHUH XVHG LQ WKH VWXG\ 4XDUW] VDQG IURP .HXND )ORULGD ZDV XVHG LQ FRQFUHWH PL[WXUHV ZLWK ERWK OLPHVWRQH DQG JUDQLWH FRDUVH DJJUHJDWH 7KH TXDUW] SDUWLFOHV ZHUH VXEDQJXODU WR VXEURXQGHG ZLWK D VOLJKW LURQ VWDLQLQJ ,Q DGGLWLRQ FRQFUHWH PL[WXUHV FRQWDLQLQJ OLPHVWRQH FRDUVH DJJUHJDWH DOVR ZHUH SUHSDUHG XVLQJ OLPHVWRQH ILQH DJJUHJDWH 7KH OLPHVWRQH ILQH DJJUHJDWH ZDV GHULYHG IURP FUXVKLQJ RSHUDWLRQV RI WKH OLPHVWRQH FRDUVH DJJUHJDWH DQG WKHUHIRUH SRVVHVVHV VLPLODU SURSHUWLHV 3K\VLFDO SURSHUWLHV DQG JUDGDWLRQV IRU FRDUVH DQG ILQH DJJUHJDWHV DUH JLYHQ LQ 7DEOH DQG 7DEOH UHVSHFWLYHO\ &RQFUHWH PL[WXUHV ZHUH GHVLJQHG LQ DFFRUGDQFH ZLWK )'27 VSHFLILFDWLRQV IRU &ODVV ,, FRQFUHWH IRU ERWK OLPHVWRQH DQG JUDQLWH DJJUHJDWHV 0DWHULDOV XVHG FRQVLVWHG RI 7\SH , 3RUWODQG FHPHQW IURP )ORULGD 3RUWODQG &HPHQW &RUS DQ $670 7\SH ' ZDWHU UHGXFLQJUHWDUGLQJ DGPL[WXUH XVHG IRU DFKLHYLQJ ZRUNDELOLW\ DW WKH WDUJHW ZDWHUFHPHQW UDWLR DQG DQ

PAGE 126

7DEOH 3URSHUWLHV RI FRDUVH DJJUHJDWHV XVHG LQ FRQFUHWH PL[WXUHV /LPHVWRQH &RDUVH 6SHFLILF *UDYLW\ 66'f $EVRUSWLRQ bf 6LHYH $QDO\VLV b 3DVVLQJf LQ LQ LQ 1R *UDQLWH &RDUVH 1R

PAGE 127

7DEOH 3URSHUWLHV RI ILQH DJJUHJDWHV XVHG LQ FRQFUHWH PL[WXUHV /LPHVWRQH )LQH 6SHFLILF *UDYLW\ 66'f $EVRUSWLRQ bf 6LHYH $QDO\VLV b 3DVVLQJf 1R 1R 1R 1R 1R 1R 1R 4XDUW] )LQH )LQHQHVV 0RGXOXV

PAGE 128

DLU HQWUDLQLQJ DJHQW WR REWDLQ VSHFLILHG DLU FRQWHQW RI SHUFHQW 'HWDLOV RI FRQFUHWH PL[ GHVLJQV DUH JLYHQ LQ 7DEOH &RQFUHWH F\OLQGHUV LQ [ LQf ZHUH SUHSDUHG E\ URGGLQJ DQG WKHQ PRLVW FXUHG IRU GD\V EHIRUH WHVWLQJ IRU FRPSUHVVLYH DQG VSOLW WHQVLOH VWUHQJWKV $OO FRQFUHWH SUHSDUDWLRQ DQG WHVWLQJ ZDV FRQGXFWHG DW WKH )'27 6WDWH 0DWHULDOV 2IILFH E\ $PHULFDQ &RQFUHWH ,QVWLWXWH $&,f FHUWLILHG SHUVRQQHO $JJUHJDWH 7UHDWPHQW 0HWKRGV 7KH SRRU LQWHUIDFLDO ERQGLQJ SURSHUWLHV RI VLOLFDWH DJJUHJDWHV ZLWK FHPHQW K\GUDWLRQ SURGXFWV LV EHOLHYHG WR EH FDXVHG E\ WKHLU VXUIDFH FKHPLFDO SURSHUWLHV ZKLFK FDXVH WKHP WR EH YHU\ K\GURSKLOLF 2QH REMHFWLYH RI WKH UHVHDUFK ZDV WR LQYHVWLJDWH D UHODWLYHO\ VLPSOH DQG HFRQRPLFDO WUHDWPHQW PHWKRG IRU PRGLI\LQJ WKH VXUIDFH FKHPLVWU\ RI VLOLFDWH DJJUHJDWHV LQ RUGHU WR LPSURYH WKHLU LQWHUIDFLDO ERQGLQJ SURSHUWLHV 7KH DJJUHJDWH WUHDWPHQW PHWKRG LQYHVWLJDWHG LQYROYHG PL[LQJ RI FUXVKHG JUDQLWH DJJUHJDWHV ZLWK D FDOFLXP K\GUR[LGH &D+ff VROXWLRQ IROORZHG E\ RYHQ GU\LQJ EHIRUH PL[LQJ RI WKH FRQFUHWH 7KLV WUHDWPHQW PHWKRG ZDV FKRVHQ EHFDXVH LW KDV EHHQ VKRZQ WR EH VXFFHVVIXO LQ LPSURYLQJ ERQGLQJ SURSHUWLHV RI VLOLFDWH DJJUHJDWHV LQ DVSKDOWLF FRQFUHWH DV GLVFXVVHG SUHYLRXVO\ 6LQFH LW LV D ZLGHO\ XVHG WUHDWPHQW PHWKRG LQ DVSKDOWLF FRQFUHWH SURGXFWLRQ WHFKQLFDO DQG HFRQRPLF DVSHFWV RI WKLV WHFKQLTXH DOUHDG\ DUH NQRZQ DQG WKH V\VWHP FRXOG HDVLO\ EH DSSOLHG WR SRUWODQG FHPHQW

PAGE 129

7DEOH &RQFUHWH PL[ GHVLJQV IRU WKH YDULRXV DJJUHJDWH FRPELQDWLRQV 0L[ 0DWHULDO :HLJKW OEVFX\Gf /LPHVWRQH FRDUVH 7\SH , SRUWODQG FHPHQW 4XDUW] ILQH :DWHU &RDUVH DJJUHJDWH )LQH DJJUHJDWH :DWHU UHGXFHU $LU HQWUDLQHU 2=f 2=f /LPHVWRQH FRDUVH 7\SH , 3RUWODQG FHPHQW /LPHVWRQH ILQH :DWHU &RDUVH DJJUHJDWH )LQH DJJUHJDWH :DWHU UHGXFHU $LU HQWUDLQHU R]f R]f *UDQLWH FRDUVH 7\SH , SRUWODQG FHPHQW 4XDUW] ILQH :DWHU &RDUVH DJJUHJDWH )LQH DJJUHJDWH :DWHU UHGXFHU $LU HQWUDLQHU R]f 2=f

PAGE 130

FRQFUHWH SURGXFWLRQ $OWKRXJK WKLV LV D ZLGHO\ XVHG DQG VXFFHVVIXO PHWKRG OLWWOH ZRUN KDV EHHQ UHSRUWHG RQ SK\VLFRn FKHPLFDO PHFKDQLVPV UHVSRQVLEOH IRU LPSURYHG ERQGLQJ 7KH SURSRVHG PHFKDQLVP IRU ERQG LPSURYHPHQW LV DGVRUSWLRQ RI &D LRQV DV LQQHUVSKHUH FRPSOH[HV )LJXUH f RQWR WKH VLOLFDWH PLQHUDO VXUIDFHV DV ZDWHU LV GULYHQ RII E\ KHDWLQJ )LJXUH f 7KHVH ZRXOG VHUYH DV D EULGJLQJ PHFKDQLVP IRU ERQGLQJ ZLWK FHPHQW K\GUDWLRQ SURGXFWV &KDQJHV LQ VXUIDFH FKHPLFDO SURSHUWLHV RI JUDQLWH DJJUHJDWHV UHVXOWLQJ IURP FDOFLXP K\GUR[LGH VROXWLRQ WUHDWPHQW ZHUH LQYHVWLJDWHG E\ WKH XVH RI ;UD\ SKRWRHOHFWURQ VSHFWURVFRS\ ;36 DOVR NQRZQ DV (6&$ HOHFWURQ VSHFWURVFRS\ IRU FKHPLFDO DQDO\VLVf DQG LQIUDUHG ,5f VSHFWURVFRS\ 7KHVH VSHFWURVFRSLF PHWKRGV ZHUH FKRVHQ EHFDXVH VROXELOLW\ DQG NLQHWLF PHWKRGV ZRXOG QRW EH SUDFWLFDO GXH WR GHK\GUDWLRQ SURFHGXUHV UHTXLUHG ,Q DGGLWLRQ VROXELOLW\ DQG NLQHWLF PHWKRGV DUH PDFURVFRSLF LQ QDWXUH DQG GR QRW GLUHFWO\ H[DPLQH VRUEHG PDWHULDO 7KHUIRUH VSHFWURVFRSLF PHWKRGV SURYLGH D PRUH GLUHFW PHDQV IRU LQYHVWLJDWLRQ RI VXUIDFH DGVRUSWLRQ SURFHVVHV 6SRVLWR f ;36 DQG ,5 DQDO\VHV ZHUH FRQGXFWHG DW WKH 0DMRU $QDO\WLFDO ,QVWUXPHQWDWLRQ &HQWHU 8QLYHUVLW\ RI )ORULGD ,Q ;36 WKH VDPSOH LV H[SRVHG WR D PRQRFKURPDWLF ;UD\ EHDP FDXVLQJ SULPDU\ HOHFWURQ WUDQVLWLRQV LQ DWRPV RI WKH VDPSOH 7KLV UHVXOWV LQ HPLVVLRQ RI SKRWRHOHFWURQV ZKRVH HQHUJLHV DUH XQLTXH WR WKH HOHPHQWV IURP ZKLFK WKH\ RULJLQDWH 7KH SKRWRHOHFWURQV DUH DQDO\]HG \LHOGLQJ

PAGE 131

B? ? 6V 6Om 2 R 9 +nn A + + &D KHDW 6LD1 6,f§Rn &D r+ )LJXUH 3URSRVHG DGVRUSWLRQ RI FDOFLXP RQWR VLOLFDWH PLQHUDO VXUIDFH UHVXOWLQJ IURP DJJUHJDWH WUHDWPHQW PHWKRG

PAGE 132

TXDOLWDWLYH VHPLTXDQWLWDWLYH DQG ELQGLQJ HQHUJ\ LQIRUPDWLRQ 7KH WHFKQLTXH LV H[WUHPHO\ VXUIDFH VHQVLWLYH ZLWK RQO\ WKRVH SKRWRHOHFWURQV JHQHUDWHG LQ WKH ILUVW IHZ DWRPLF OD\HUV DEOH WR HVFDSH GXH WR VFDWWHULQJ HIIHFWV 5\QG DQG 5DVWRJL f ,Q ,5 VSHFWURVFRS\ WKH VDPSOH LV H[SRVHG WR LQIUDUHG UDGLDWLRQ ZKLFK PD\ LQWHUDFW ZLWK VWUHWFKLQJ DQG EHQGLQJ ERQG YLEUDWLRQV RI PROHFXOHV LQ WKH VDPSOH :KHQ WKH YLEUDWLRQV DUH DFFRPSDQLHG E\ D FKDQJH LQ GLSROH PRPHQW DEVRUSWLRQ RI LQIUDUHG UDGLDWLRQ RFFXUV 9DULRXV W\SHV RI ERQGV FDQ EH LGHQWLILHG E\ WKHLU FKDUDFWHULVWLF DEVRUSWLRQ SRVLWLRQV LQ WKH LQIUDUHG UHJLRQ ZKLFK DUH PHDVXUHG DQG GHVLJQDWHG E\ ZDYHQXPEHU ZDYHV SHU FPf :KLWH f 6PDOO FP [ FPf SLHFHV RI JUDQLWH ZHUH FXW DQG SROLVKHG IRU ;36 H[SHULPHQWV 7KH VDPSOHV ZHUH VXEMHFWHG WR YDULRXV ZHWWLQJ DQG GU\LQJ WUHDWPHQWV DQG WKHQ DQDO\]HG E\ ;36 IRU VXUIDFH FKHPLFDO SURSHUWLHV 6LPLODU ;36 H[SHULPHQWV DOVR ZHUH FRQGXFWHG RQ FXW XQSROLVKHG SULVP IDFHV RI TXDUW] FU\VWDOV ;36 UHVXOWV RQ FDOFLXP PDVV FRQFHQWUDWLRQV DQG ELQGLQJ HQHUJLHV IRU WKH YDULRXV JUDQLWH DQG TXDUW] VDPSOH WUHDWPHQWV 7DEOHV DQG f LQGLFDWH WKDW KLJKHU VXUIDFH FRQFHQWUDWLRQV RI FDOFLXP RFFXU DIWHU VRDNLQJ LQ D VDWXUDWHG FDOFLXP K\GUR[LGH VROXWLRQ IROORZHG E\ GU\LQJ 6RDNLQJ RI WUHDWHG DQG GULHG VDPSOHV LQ GLVWLOOHG ZDWHU UHVXOWHG LQ WLPHGHSHQGHQW UHPRYDO RI FDOFLXP IURP WKH VXUIDFHV 7KH KLJKHU FDOFLXP FRQFHQWUDWLRQV RFFXUULQJ RQ WKH JUDQLWH VSHFLPHQV DUH

PAGE 133

7DEOH ;UD\ SKRWRHOHFWURQ VSHFWURVFRS\ GDWD IRU SROLVKHG JUDQLWH VSHFLPHQV 6DPSOH &DOFLXP PDVV FRQFHQWUDWLRQ bf %LQGLQJ HQHUJ\ H9f $ % & ' ( WUHDWPHQWV $ GULHG # & % &D2+f VROXWLRQ PLQf GLVWLOOHG ZDWHU PLQf GULHG # & & &D+f VROXWLRQ PLQf GULHG # & ' &D+f VROXWLRQ PLQf GULHG # & GLVWLOOHG ZDWHU PLQf GULHG # & ( &D2+f VROXWLRQ PLQf GULHG # & GLVWLOOHG ZDWHU KRXUf GULHG # &

PAGE 134

7DEOH ;UD\ SKRWRHOHFWURQ VSHFWURVFRS\ GDWD IRU TXDUW] VSHFLPHQV 6DPSOH &DOFLXP PDVV FRQFHQWUDWLRQ bf %LQGLQJ HQHUJ\ H9f $ % & ' ( WUHDWPHQWV $ GULHG # & % &D+f VROXWLRQ PLQf GLVWLOOHG ZDWHU PLQf GULHG # & & &D+f VROXWLRQ PLQf GULHG # & ' &D2+f VROXWLRQ PLQf GULHG # & GLVWLOOHG ZDWHU PLQf GULHG # OLR & ( &D2+f VROXWLRQ PLQf GULHG # & GLVWLOOHG ZDWHU KRXUf GULHG # &

PAGE 135

EHOLHYHG WR UHVXOW IURP SROLVKLQJ SURFHGXUHV UHTXLUHG WR REWDLQ IODW VXUIDFHV 7KLV OLNHO\ UHVXOWHG LQ EUHDNLQJ RI ERQGV LQ WKH PLQHUDOV FDXVLQJ KLJKHU QHJDWLYH FKDUJH FRQFHQWUDWLRQV RQ WKH VXUIDFH &UXVKHG DJJUHJDWH DGVRUSWLRQ FKDUDFWHULVWLFV SUREDEO\ ZRXOG EH EHWZHHQ WKRVH RI WKH SROLVKHG JUDQLWH DQG XQSROLVKHG TXDUW] VSHFLPHQV VWXGLHG ,QIUDUHG DQDO\VHV ZHUH FRQGXFWHG RQ TXDUW] SRZGHUV ZKLFK ZHUH JURXQG DQG SDVVHG WKURXJK D 1R [Pf VLHYH 6DPSOHV RI XQWUHDWHG VRDNHG LQ GLVWLOOHG ZDWHU DQG GULHG DW r&f DQG WUHDWHG VRDNHG LQ FDOFLXP K\GUR[LGH VROXWLRQ DQG GULHG DW r&f TXDUW] SRZGHUV ZHUH SUHSDUHG E\ PL[LQJ ZLWK .%U SRZGHU GU\LQJ DW r& DQG SUHVVLQJ DW SVL LQWR D FOHDU GLVN *ULQGLQJ ZDV DYRLGHG LQ PL[LQJ RI WKH VDPSOH DQG .%U WR SUHYHQW IRUPDWLRQ RI IUHVK IUDFWXUH VXUIDFHV 7KH ,5 VSHFWUD RI WKH XQWUHDWHG TXDUW] SRZGHU $ LQ )LJXUH f VKRZV WKH FKDUDFWHULVWLF DEVRUSWLRQ SHDN IRU LVRODWHG 6L2+ VWUHWFKLQJ YLEUDWLRQV FPnf $EVRUSWLRQ SHDNV DOVR RFFXU IRU VWUHWFKLQJ YLEUDWLRQV RI K\GURJHQ ERQGHG 2+ JURXSV FPf DQG PROHFXODU ZDWHU FPnf )LJXUH f +DLU +HU f ,Q WKH ,5 VSHFWUD IRU WKH WUHDWHG VDPSOH % LQ )LJXUH f WKH 2+ DEVRUSWLRQ SHDNV DUH JUHDWO\ UHGXFHG VXJJHVWLQJ WKDW WKH TXDUW] VXUIDFH KDV ORVW PXFK RI LWV FKHPLVRUEHG ZDWHU :LWKRXW WKH FKHPLVRUEHG ZDWHU OD\HU WKH FDOFLXP LRQV PD\ EH DGVRUEHG RQ PRUH VWURQJO\ ERQGHG LQQHUVSKHUH SRVLWLRQV DJUHHLQJ ZLWK WKH JUHDWHU FRQFHQWUDWLRQV REVHUYHG LQ ;36 DQDO\VLV DIWHU VLPLODU WUHDWPHQW $OWKRXJK WKHVH ;36 DQG ,5

PAGE 136

$%62537,21 )LJXUH ,QIUDUHG VSHFWUD RI XQWUHDWHG $f DQG WUHDWHG %f TXDUW] SRZGHUV

PAGE 137

UHVXOWV JLYH JRRG VXSSRUWLQJ HYLGHQFH IRU WKH SURSRVHG PHFKDQLVP RI LPSURYHG ERQGLQJ RI FDOFLXP RQ VLOLFDWH VXUIDFHV WKH\ GR QRW JLYH GLUHFW HYLGHQFH IRU ERQG SRVLWLRQV DW WKH VXUIDFH 2QH SURPLVLQJ WHFKQLTXH IRU GHWHUPLQLQJ ERQG SRVLWLRQV WKDW KDV RQO\ UHFHQWO\ EHJXQ WR EH DSSOLHG WR JHRORJLF PDWHULDOV LV ;UD\ DEVRUSWLRQ VSHFWURVFRS\ ;$6f 7KH PHWKRG LWVHOI LV QRW D VXUIDFH VHQVLWLYH WHFKQLTXH +RZHYHU LW LV DQ HOHPHQW VSHFLILF WHFKQLTXH DQG E\ GHWHUPLQLQJ QHLJKERULQJ DWRPV LQ FORVH SUR[LPLW\ WR D VSHFLILF HOHPHQW LWV SRVLWLRQ ZLWK UHVSHFW WR WKH VXUIDFH FDQ EH GHWHUPLQHG %URZQ f $ PDMRU OLPLWDWLRQ RI WKH WHFKQLTXH LV WKH OLPLWHG DYDLODELOLW\ RI LQVWUXPHQWDWLRQ IRU UHVHDUFK DQG DQDO\WLFDO OLPLWDWLRQV IRU DQDO\VLV &DOFLXP DQDO\VLV LV QRW SRVVLEOH ZLWK FXUUHQW LQVWUXPHQWDWLRQ KRZHYHU VWURQWLXP FDQ EH DQDO\]HG DQG PD\ SURYLGH D JRRG DQDORJ IRU FDOFLXP )XWXUH LQVWUXPHQWDWLRQ PD\ DOORZ FDOFLXP WR EH DQDO\]HG %HDP WLPH DFTXLVLWLRQ FDQ EH D ORQJ DQG FRPSHWLWLYH SURFHVV VRPHWLPHV UHTXLULQJ XS WR D WZR \HDU ZDLWLQJ SHULRG 7KHUHIRUH WKLV WHFKQLTXH PD\ EH FRQVLGHUHG IRU IXWXUH LQYHVWLJDWLRQV IRU PRUH FRPSOHWH XQGHUVWDQGLQJ RI DGVRUSWLRQ SURFHVVHV ;36 DQG ,5 UHVXOWV LQGLFDWH WKDW FDOFLXP LV EHVW DGVRUEHG RQWR WKH JUDQLWH DQG TXDUW] VXUIDFHV ZKHQ GULHG DIWHU VRDNLQJ LQ WKH FDOFLXP K\GUR[LGH VROXWLRQ ([WHQGHG VRDNLQJ RI WKH JUDQLWH LQ GLVWLOOHG ZDWHU DIWHU GU\LQJ UHPRYHG WKH FDOFLXP IURP WKH VXUIDFH 7KLV VXJJHVWV WKDW

PAGE 138

ZKHQ SUHSDULQJ FRQFUHWH PL[HV ZLWK JUDQLWH DJJUHJDWHV XVLQJ WKLV WUHDWPHQW PHWKRG WKH DJJUHJDWHV VKRXOG EH GULHG DIWHU FDOFLXP K\GUR[LGH VROXWLRQ WUHDWPHQW DQG NHSW GU\ XQWLO PL[LQJ RI WKH FRQFUHWH ,Q WKH KLJK S+ DQG KLJK &D LRQ FRQFHQWUDWLRQ HQYLURQPHQW RI WKH K\GUDWLQJ FRQFUHWH V\VWHP WKH &D LRQV VKRXOG UHPDLQ RQ WKH VXUIDFH DQG SURYLGH ERQGLQJ ZLWK FHPHQW K\GUDWLRQ SURGXFWV %DVHG RQ WKHVH H[SHULPHQWV WKH ILUVW WUHDWPHQW PHWKRG FRQVLVWHG RI PL[LQJ WKH JUDQLWH FRDUVH DJJUHJDWH ZLWK b &D2+f] DQG b ZDWHU E\ ZW RI FRDUVH DJJUHJDWHf IRU PLQXWHV LQ D FRQFUHWH PL[HU GU\LQJ RI WKH DJJUHJDWHV RYHUQLJKW DW r& DQG WKHQ FRROLQJ WR URRP WHPSHUDWXUH DQG PL[LQJ RI WKH FRQFUHWH ZLWK WUHDWHG JUDQLWH DJJUHJDWHV XVLQJ LGHQWLFDO PDWHULDOV DQG PL[ GHVLJQV DV ZLWK XQWUHDWHG JUDQLWH DJJUHJDWHV 6HH 7DEOH f 7KH HIIHFWLYHQHVV RI WKH WUHDWPHQW PHWKRG ZDV HYDOXDWHG WKURXJK FRPSDULVRQ RI VWUHQJWK WHVWLQJ UHVXOWV DQG PLFURVFRSLF H[DPLQDWLRQV RI FRQFUHWH F\OLQGHUV SUHSDUHG ZLWK XQWUHDWHG DQG WUHDWHG JUDQLWH DJJUHJDWHV 6WUHQJWK 7HVWLQJ $V GLVFXVVHG SUHYLRXVO\ FRQFUHWH PL[WXUHV ZHUH SUHSDUHG XVLQJ VLPLODU PDWHULDOV DQG PL[ GHVLJQV IRU OLPHVWRQH DJJUHJDWHV JUDQLWH DJJUHJDWHV DQG WUHDWHG JUDQLWH DJJUHJDWHV IRU FRPSDULVRQ RI VWUHQJWK WHVWLQJ GDWD DQG LQWHUIDFLDO ERQGLQJ SURSHUWLHV )UHVK FRQFUHWH SURSHUWLHV IRU WKH YDULRXV PL[WXUHV DUH JLYHQ LQ 7DEOH 6OLJKW YDULDWLRQV IURP WKH WDUJHW ZF UDWLR ZHUH QHFHVVDU\ WR

PAGE 139

7DEOH )UHVK FRQFUHWH PL[WXUH SURSHUWLHV 0L[ :&D 6OXPSE LQf $LUF bf 8QLW :WG OEVFXIWf /LPHVWRQH FRDUVH 4XDUW] ILQH /LPHVWRQH FRDUVH /LPHVWRQH ILQH *UDQLWH FRDUVH 4XDUW] ILQH *UDQLWH FRDUVH WUHDWHG ZLWK &D 2+f 4XDUW] ILQH f¯:DWHU WR FHPHQW UDWLR E$670 7HVW 0HWKRG IRU 6OXPS RI 3RUWODQG &HPHQW &RQFUHWH $QQXDO %RRN RI $670 6WDQGDUGV f &$670 7HVW 0HWKRG IRU $LU &RQWHQW RI )UHVKO\ 0L[HG &RQFUHWH E\ WKH 9ROXPHWULF 0HWKRG $QQXDO %RRN RI $670 6WDQGDUGV f G$670 & 7HVW 0HWKRG IRU 8QLW :HLJKW
PAGE 140

PHHW YDULRXV FULWHULD VXFK DV VOXPS YDOXHV 3UHSDUDWLRQ RI FRQFUHWH PL[WXUHV VRPHWLPHV KDG WR EH UHSHDWHG WR LQVXUH WKDW IUHVK FRQFUHWH SURSHUWLHV IRU WKH PL[WXUHV ZHUH LQ FORVH DJUHHPHQW &RPSUHVVLYH DQG VSOLWWLQJ WHQVLOH VWUHQJWKV IRU WKH GD\ PRLVW FXUHG FRQFUHWH F\OLQGHUV IURP WKH YDULRXV PL[HV DUH JLYHQ LQ 7DEOH 7KH YDOXHV UHSRUWHG DUH DYHUDJHV RI IRXU WR HLJKW WHVWHG F\OLQGHUV ,Q VRPH FDVHV VWUHQJWK YDOXHV ZKLFK VKRZHG JUHDWHU WKDQ SHUFHQW YDULDWLRQ IURP WKH DYHUDJH ZHUH GLVFDUGHG DQG WKH DYHUDJH UHFDOFXODWHG +RZHYHU WKLV UDUHO\ RFFXUUHG DQG QR PRUH WKDQ RQH VWUHQJWK YDOXH KDG WR EH GLVFDUGHG IRU DQ\ RI WKH PL[HV 7KH GDWD VKRZ WKDW OLPHVWRQH FRDUVH DJJUHJDWHV SURGXFHG PRUH FRPSUHVVLYH DQG VSOLWWLQJ WHQVLOH VWUHQJWK WKDQ JUDQLWH FRDUVH DJJUHJDWHV IRU WKH PL[ GHVLJQ XVHG 7KLV PD\ EH GXH LQ SDUW WR WKH FRDUVHU SDUWLFOH VL]H JUDGDWLRQ RI WKH JUDQLWH DJJUHJDWHV ZKLFK PLJKW FDXVH GHFUHDVHG FRQFUHWH VWUHQJWK 1HYLOOH f 8VH RI OLPHVWRQH FRDUVH DQG OLPHVWRQH ILQH DJJUHJDWHV LQ WKH FRQFUHWH PL[WXUHV SURGXFHG VOLJKWO\ KLJKHU FRPSUHVVLYH VWUHQJWK WKDQ XVH RI OLPHVWRQH FRDUVH DQG TXDUW] ILQH DJJUHJDWHV +LJKHU FRPSUHVVLYH VWUHQJWK ZDV DFKLHYHG LQ WKH FRQFUHWH PL[WXUHV FRQWDLQLQJ WUHDWHG JUDQLWH DJJUHJDWHV DV FRPSDUHG WR WKRVH FRQWDLQLQJ XQWUHDWHG JUDQLWH DJJUHJDWHV &DOFLXP K\GUR[LGH WUHDWPHQW UHVXOWHG LQ D SHUFHQW LQFUHDVH RYHU XQWUHDWHG FRPSUHVVLYH VWUHQJWK 6SOLWWLQJ

PAGE 141

7DEOH 6WUHQJWK WHVWLQJ UHVXOWV IRU FRQFUHWH PL[WXUHV &RPRUHVVLYH 6'OLWWLQD 7HQVLOH 0L[ SVL 03Df SVL 03Df /LPHVWRQH FRDUVH 4XDUW] ILQH f f /LPHVWRQH FRDUVH /LPHVWRQH ILQH f f *UDQLWH FRDUVH 4XDUW] ILQH f f *UDQLWH FRDUVH WUHDWHG ZLWK &D 2+f 4XDUW] ILQH f f D$670 & 7HVW 0HWKRG IRU &RPSUHVVLYH 6WUHQJWK RI &\OLQGULFDO &RQFUHWH 6SHFLPHQV $QQXDO %RRN RI $670 6WDQGDUGV f E$670 & 7HVW 0HWKRG IRU 6SOLWWLQJ 7HQVLOH 6WUHQJWK RI &\OLQGULFDO &RQFUHWH 6SHFLPHQV $QQXDO %RRN RI $670 6WDQGDUGV f

PAGE 142

WHQVLOH VWUHQJWK ZDV QRW DV VLJQLILFDQWO\ DIIHFWHG SHUFHQW LQFUHDVHf E\ WKH DJJUHJDWH WUHDWPHQW PHWKRG 0LFURVFRSLF ([DPLQDWLRQV &RQFUHWH F\OLQGHUV SUHSDUHG IRU WKH VWXG\ ZHUH H[DPLQHG ZLWK ERWK SRODUL]HG OLJKW DQG VFDQQLQJ HOHFWURQ PLFURVFRS\ 3/0 DQG 6(0f 6SHFLPHQV ZHUH FXW SULPDULO\ IURP XQWHVWHG F\OLQGHUV IRU H[DPLQDWLRQ RI LQWHUIDFLDO ERQGLQJ FKDUDFWHULVWLFV 6SHFLPHQV ZHUH FXW IURP WKH FRQFUHWH F\OLQGHUV ZLWK RULHQWDWLRQV SHUSHQGLFXODU WR WKH ORQJ GLPHQVLRQ RI WKH F\OLQGHUV 3/0 H[DPLQDWLRQV ZHUH FRQGXFWHG RQ PLFURQ WKLQ VHFWLRQV SUHSDUHG IURP FRQFUHWH VSHFLPHQV 6(0 H[DPLQDWLRQV ZHUH SHUIRUPHG RQ EXON VSHFLPHQV FXW IURP FRQFUHWH F\OLQGHUV DQG RQ SROLVKHG PLFURQ WKLQ VHFWLRQV SUHSDUHG IURP FXW VSHFLPHQV 0LFURVFRSLF DQDO\VHV RI FRQFUHWH VSHFLPHQV UHYHDOHG GLIIHUHQW FHPHQW SDVWHDJJUHJDWH ERQGLQJ FKDUDFWHULVWLFV IRU WKH YDULRXV FRQFUHWH PL[HV 3/0 H[DPLQDWLRQV SURYHG QRW WR EH YHU\ XVHIXO IRU VWXG\LQJ LQWHUIDFLDO ERQGLQJ FKDUDFWHULVWLFV GXH WR PDJQLILFDWLRQ OLPLWDWLRQV 7KHUHIRUH GLVFXVVLRQ RI PLFURVFRSLF H[DPLQDWLRQ UHVXOWV ZLOO EH OLPLWHG WR SKRWRPLFURJUDSKV IURP 6(0 LQYHVWLJDWLRQV /LPHVWRQH DJJUHJDWHV &RQFUHWH PL[WXUHV FRQWDLQLQJ OLPHVWRQH DJJUHJDWHV VKRZHG YHU\ JRRG FHPHQW SDVWHDJJUHJDWH LQWHUIDFLDO ERQGLQJ FKDUDFWHULVWLFV $ SRUWLRQ RI D IUDFWXUHG FRQFUHWH VSHFLPHQ )LJXUH f VKRZV FHPHQW SDVWH DGKHULQJ ZHOO WR D OLPHVWRQH DJJUHJDWH /f ZLWK QR VHSDUDWLRQV DURXQG WKH DJJUHJDWH HGJHV ,Q D ORZ

PAGE 143

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ /LPHVWRQH DJJUHJDWH /f H[KLELWV JRRG ERQGLQJ ZLWK FHPHQW SDVWH )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ 1R VHSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f

PAGE 144

PDJQLILFDWLRQ YLHZ IURP D SROLVKHG WKLQ VHFWLRQ )LJXUH f WKH ERQG EHWZHHQ WKH OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f DSSHDUV YHU\ JRRG ZLWK QR VHSDUDWLRQV DORQJ WKH LQWHUIDFH +LJKHU PDJQLILFDWLRQ YLHZV IURP WKH ER[HG DUHD )LJXUHV DQG f FRQILUP WKH WLJKW LQWHUIDFLDO ERQG EHWZHHQ WKH OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f )LJXUHV DQG VKRZ VRPH GHWDLOV RI FHPHQW SDVWH PLFURVWUXFWXUH DQG FRPSRVLWLRQ QHDU WKH LQWHUIDFH ZLWK D OLPHVWRQH DJJUHJDWH /f %RWK FDOFLXP K\GUR[LGH D LQ )LJXUH f DQG FDOFLXP VLOLFDWHV D LQ )LJXUH f SURYLGH JRRG LQWHUIDFLDO ERQGLQJ DORQJ WKH LQWHUIDFH +LJK PDJQLILFDWLRQ SKRWRPLFURJUDSKV )LJXUHV DQG f VKRZ PRUH GHWDLOV RI FHPHQW K\GUDWLRQ SURGXFWV SULPDULO\ FDOFLXP VLOLFDWHVf ERQGLQJ WR OLPHVWRQH DJJUHJDWHV /f *UDQLWH DJJUHJDWHV ,Q FRQWUDVW WR WKH JRRG LQWHUIDFLDO ERQGLQJ FKDUDFWHULVWLFV RI OLPHVWRQH DJJUHJDWHV REVHUYHG LQ WKH FRQFUHWH VSHFLPHQV JUDQLWH DJJUHJDWHV KDG PXFK PRUH SURPLQHQW FUDFNLQJ DW WKH FHPHQW SDVWHDJJUHJDWH LQWHUIDFH ([DPSOHV IURP FXW FRQFUHWH VSHFLPHQV )LJXUHV DQG f VKRZ VHSDUDWLRQV H[WHQGLQJ DORQJ WKH LQWHUIDFH EHWZHHQ JUDQLWH DJJUHJDWHV *f DQG FHPHQW SDVWH +LJKHU PDJQLILFDWLRQ H[DPSOHV )LJXUHV WKURXJK f IURP SROLVKHG WKLQ VHFWLRQV RI FRQFUHWH VSHFLPHQV FRQWDLQLQJ JUDQLWH DJJUHJDWHV *f DOVR VKRZ VHSDUDWLRQV RFFXUULQJ DORQJ WKH OHQJWK RI WKH FHPHQW SDVWHDJJUHJDWH LQWHUIDFHV ('; LQIRUPDWLRQ QRW VKRZQf IURP WKHVH FRQFUHWH PL[HV DOVR VKRZHG ERWK FDOFLXP K\GUR[LGH DQG FDOFLXP VLOLFDWHV

PAGE 145

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ 1R VHSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ *RRG ERQGLQJ RFFXUV EHWZHHQ OLPHVWRQH DJJUHJDWH /f DQG FHPHQW SDVWH &f

PAGE 146

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ %RQGLQJ RI FDOFLXP K\GUR[LGH Df WR OLPHVWRQH DJJUHJDWH /f LV VKRZQ )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ %RQGLQJ RI FDOFLXP VLOLFDWH K\GUDWH Ef WR OLPHVWRQH DJJUHJDWH /f LV VKRZQ

PAGE 147

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ %RQGLQJ RI FDOFLXP VLOLFDWH K\GUDWH WR OLPHVWRQH DJJUHJDWH /f LV VKRZQ )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ %RQGLQJ RI FDOFLXP VLOLFDWH K\GUDWH WR OLPHVWRQH DJJUHJDWH /f LV VKRZQ

PAGE 148

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ 6HSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ 6HSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH

PAGE 149

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ 6HSDUDWLRQ RFFXUV EHWZHHQ JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ 6HSDUDWLRQ RFFXUV EHWZHHQ JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH

PAGE 150

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ 6HSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ 6HSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH

PAGE 151

RFFXUULQJ DORQJ WKH LQWHUIDFH DV LQ WKH OLPHVWRQH FRQFUHWH PL[WXUHV +RZHYHU QRQH RI WKHVH FHPHQW K\GUDWLRQ SURGXFWV VHHPHG WR ERQG ZHOO ZLWK WKH JUDQLWH DJJUHJDWHV IRU HLWKHU TXDUW] RU IHOGVSDU PLQHUDO FRQVWLWXHQWV 7UHDWHG JUDQLWH DJJUHJDWHV 6(0 H[DPLQDWLRQV RI VSHFLPHQV IURP FRQFUHWH PL[WXUHV FRQWDLQLQJ WUHDWHG JUDQLWH DJJUHJDWHV UHYHDOHG LPSURYHG LQWHUIDFLDO ERQGLQJ FKDUDFWHULVWLFV DV FRPSDUHG WR WKRVH FRQWDLQLQJ XQWUHDWHG JUDQLWH DJJUHJDWHV /RZ PDJQLILFDWLRQ SKRWRPLFURJUDSKV IURP FXW )LJXUH f DQG SROLVKHG WKLQ VHFWLRQ VSHFLPHQV )LJXUHV DQG f VKRZ JRRG LQWHUIDFLDO ERQGLQJ EHWZHHQ JUDQLWH DJJUHJDWHV *f DQG FHPHQW SDVWH &f +LJKHU PDJQLILFDWLRQ YLHZV RI FXW )LJXUH f DQG SROLVKHG WKLQ VHFWLRQ )LJXUHV DQG f VSHFLPHQV VKRZ WKH LPSURYHG LQWHUIDFLDO ERQG EHWZHHQ JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH )LJXUHV DQG DOVR IURP SROLVKHG WKLQ VHFWLRQ VSHFLPHQV VKRZ JRRG ERQGLQJ FKDUDFWHU RI FHPHQW SDVWH ZLWK D IHOGVSDU PLQHUDO FRPSRQHQW )LJXUH f DQG D TXDUW] PLQHUDO FRPSRQHQW )LJXUH f +LJKHU PDJQLILFDWLRQ SKRWRPLFURJUDSKV )LJXUHV WKURXJK f VKRZ PRUH GHWDLOHG FKDUDFWHULVWLFV RI FHPHQW K\GUDWLRQ SURGXFWV SULPDULO\ FDOFLXP VLOLFDWHVf IRUPLQJ JRRG LQWHUIDFLDO ERQG DWWDFKPHQW WR JUDQLWH DJJUHJDWHV *f

PAGE 152

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ 1R VHSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ WUHDWHG JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH &f )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ ,PSURYHG ERQGLQJ EHWZHHQ WUHDWHG JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH &f LV VKRZQ

PAGE 153

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ 1R VHSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ WUHDWHG JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH &f )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ *RRG ERQGLQJ RFFXUV EHWZHHQ WUHDWHG JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH &f

PAGE 154

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ 1R VHSDUDWLRQ RFFXUV DW LQWHUIDFH EHWZHHQ WUHDWHG JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ 1R VHSDUDWLRQ RFFXUV DW LQWHUIDFH RI WUHDWHG JUDQLWH DJJUHJDWH *f DQG FDOFLXP K\GUR[LGH RI FHPHQW SDVWH

PAGE 155

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ *RRG ERQGLQJ DW LQWHUIDFH EHWZHHQ IHOGVSDU FRPSRQHQW RI WUHDWHG JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH LV VKRZQ )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ *RRG ERQGLQJ DW LQWHUIDFH EHWZHHQ TXDUW] FRPSRQHQW RI WUHDWHG JUDQLWH DJJUHJDWH *f DQG FHPHQW SDVWH LV VKRZQ

PAGE 156

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ *RRG ERQGLQJ RI FDOFLXP VLOLFDWH K\GUDWH WR WUHDWHG JUDQLWH DJJUHJDWH *f LV VKRZQ )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ *RRG ERQGLQJ RI FDOFLXP VLOLFDWH K\GUDWH WR WUHDWHG JUDQLWH DJJUHJDWH *f LV VKRZQ

PAGE 157

)LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ *RRG ERQGLQJ RI FDOFLXP VLOLFDWH K\GUDWH WR WUHDWHG JUDQLWH DJJUHJDWH *f LV VKRZQ )LJXUH 6(0 SKRWRPLFURJUDSK RI FRQFUHWH VSHFLPHQ *RRG ERQGLQJ RI FDOFLXP VLOLFDWH K\GUDWH WR WUHDWHG JUDQLWH DJJUHJDWH *f LV VKRZQ

PAGE 158

',6&866,21 7KH JHRORJ\ RI )ORULGD FRQWUROV WKH JHRJUDSKLF GLVWULEXWLRQ RI UHVRXUFHV WKDW DUH H[SORLWHG E\ WZR RI WKH 6WDWHnV PDMRU LQGXVWULHV DJULFXOWXUH DQG PLQLQJ (FRQRPLF FRQVLGHUDWLRQV UHTXLUH WKDW WKHVH UHVRXUFHV EH XVHG ZKHUH WKH\ RFFXU DQG WKLV PD\ OHDG WR FRPSHWLWLRQ LQ D 6WDWH ZLWK D UDSLGO\ H[SDQGLQJ SRSXODWLRQ +RZHYHU WKH GHYHORSPHQW RI WKH LQIUDVWUXFWXUH WR VXSSRUW WKLV JURZWK UHTXLUHV VXIILFLHQW VXSSOLHV RI TXDOLW\ UDZ PDWHULDOV IRU FRQVWUXFWLRQ )ORULGD KDV H[LVWHG DV SDUW RI D EURDG FDUERQDWH EDQN IRU PXFK RI WKH WLPH VLQFH WKH &UHWDFHRXV 7KH JHRORJLF KLVWRU\ RI WKH UHJLRQ FRQWUROV WKH RFFXUUHQFH DQG FKDUDFWHU RI VXUIDFH DQG QHDUVXUIDFH FDUERQDWH GHSRVLWV ZKLFK DUH WKH SULQFLSDO VRXUFHV RI FRQFUHWH FRDUVH DJJUHJDWHV IRU FRQVWUXFWLRQ )RXU JHRJUDSKLF UHJLRQV DUH WKH PDM RU VXSSOLHUV RI WKHVH DJJUHJDWHV ,Q QRUWKZHVW )ORULGD DQG WKH ZHVWHUQ SDUW RI FHQWUDO SHQLQVXODU )ORULGD DJJUHJDWHV DUH SURGXFHG IURP (RFHQH DQG 2OLJRFHQH FDUERQDWH GHSRVLWV ZKLFK DUH H[SRVHG LQ DQ DUHD RI SRVWGHSRVLWLRQDO VWUXFWXUDO XSOLIW 7KHVH XQLWV DUH FRYHUHG E\ WKLFN VHTXHQFHV RI 0LRFHQH WR +RORFHQH VHGLPHQWV LQ RWKHU DUHDV RI QRUWK DQG FHQWUDO )ORULGD DQG WKHUHIRUH FDQQRW EH HFRQRPLFDOO\ PLQHG DW SUHVHQW 7KH FKDUDFWHU RI

PAGE 159

WKHVH FDUERQDWH GHSRVLWV KDV EHHQ VWURQJO\ LQIOXHQFHG E\ WKHLU FRPSOH[ JHRORJLF KLVWRU\ 6HD OHYHO IOXFWXDWLRQV DQG VWUXFWXUDO FKDQJHV RI WKH )ORULGD 3ODWIRUP FDXVHG IUHTXHQW FKDQJHV LQ WKH HQYLURQPHQWV RI GHSRVLWLRQ DQG SRVW GHSRVLWLRQDO HURVLRQ DQG GLDJHQHWLF DOWHUDWLRQ 7KHUHIRUH WKH PDWHULDOV RFFXUULQJ LQ WKHVH GHSRVLWV H[KLELW KLJKO\ YDULDEOH OLWKRORJLHV PDQ\ RI ZKLFK GR QRW SRVVHVV WKH UHTXLUHG SK\VLFDO SURSHUWLHV VSHFLILHG IRU XVH LQ FRQFUHWH ,Q PDQ\ DUHDV VHOHFWLYH PLQLQJ DQG SURFHVVLQJ WHFKQLTXHV RIWHQ PXVW EH XVHG WR REWDLQ DFFHSWDEOH PDWHULDOV 6RXWKZHVW DQG VRXWKHDVW )ORULGD UHJLRQV DUH VXSSOLHG E\ SURGXFWLRQ IURP 3OLR0LRFHQH DQG 3OHLVWRFHQH FDUERQDWH GHSRVLWV 7KHVH PDWHULDOV DOVR W\SLFDOO\ KDYH YDULDEOH OLWKRORJLF FKDUDFWHU EHFDXVH RI FKDQJLQJ GHSRVLWLRQDO HQYLURQPHQWV DQG GLDJHQHWLF DOWHUDWLRQ UHVXOWLQJ IURP VHD OHYHO IOXFWXDWLRQV 7KH LQFRQVLVWHQW QDWXUH RI WKH FDUERQDWH GHSRVLWV LQ )ORULGD UHTXLUHV WKDW FDUHIXO PRQLWRULQJ RI PDWHULDOV EH FRQGXFWHG WR LQVXUH WKDW DFFHSWDEOH PDWHULDOV DUH SURGXFHG E\ PLQLQJ DQG SURFHVVLQJ RSHUDWLRQV 4XDOLW\ FRQWURO DQG TXDOLW\ DVVXUUDQFH SURJUDPV DUH XWLOL]HG WR PHHW WKLV REMHFWLYH 7KH GLVWULEXWLRQ DQG YDULDELOLW\ RI )ORULGD PDWHULDOV LPSRVHV OLPLWDWLRQV RQ WKH DEXQGDQFH RI UHVRXUFHV IRU FRQFUHWH SURGXFWLRQ ,QFUHDVLQJ GHPDQGV FRPELQHG ZLWK LQFUHDVLQJ HQYLURQPHQWDO DQG VRFLDO UHVWUDLQWV UHVXOWLQJ IURP UDSLG JURZWK DUH FDXVLQJ FRQFHUQ RYHU ORQJWHUP

PAGE 160

DYDLODELOLW\ RI FRQFUHWH DJJUHJDWHV +LJKHU SURGXFWLRQ DQG WUDQVSRUWDWLRQ FRVWV ZKLFK ZLOO XOWLPDWHO\ FDXVH KLJKHU FRQVXPHU UDWHV PD\ EH QHFHVVDU\ DV DOWHUQDWLYH PLQLQJ ORFDWLRQV DUH UHTXLUHG /RQJWHUP ]RQLQJ DQG ODQGXVH SODQQLQJ PD\ EH QHFHVVDU\ VWHSV LQ UDSLGO\ JURZLQJ XUEDQ DUHDV WR SURWHFW SRWHQWLDO PLQLQJ DUHDV ,Q DGGLWLRQ LQFUHDVHG LPSRUWDWLRQ IURP RXWRIVWDWH VRXUFHV PD\ EH UHTXLUHG WR PHHW IXWXUH FRQFUHWH SURGXFWLRQ QHHGV 5HVXOWV RI SK\VLFDO DQG PLQHUDORJLFDO DQDO\VHV RI VHOHFWHG DJJUHJDWHV EHLQJ XVHG LQ WKH )'27 FRPSUHKHQVLYH FRQFUHWH VWXG\ LQGLFDWH WKDW DOO SRVVHVV SURSHUWLHV ZKLFK PDNH WKHP VXLWDEOH IRU XVH LQ FRQFUHWH 7KHLU SK\VLFDO SURSHUWLHV DUH JHQHUDOO\ ZLWKLQ DFFHSWDEOH OLPLWV RI )'27 VSHFLILFDWLRQV 6L]H JUDGDWLRQV IRU VRPH DJJUHJDWH VDPSOHV GLG QRW PHHW )'27 VSHFLILFDWLRQV DQG DGGLWLRQDO VKLSPHQWV ZHUH REWDLQHG IRU VRPH PDWHULDOV 'HVLJQ SDUDPHWHUV VXFK DV VSHFLILF JUDYLW\ XQLW ZHLJKW DQG DEVRUSWLRQ SHUFHQWDJH IRU WKH OLPHVWRQH DJJUHJDWHV UHIOHFW W\SLFDO YDOXHV IRU )ORULGD PDWHULDOV EDVHG RQ KLVWRULFDO )'27 GDWD /RV $QJHOHV DEUDVLRQ YDOXHV ZKLFK DUH VWURQJO\ FRQWUROOHG E\ SK\VLFDO DQG PLQHUDORJLFDO SURSHUWLHV RI WKH DJJUHJDWHV PHHW )'27 UHTXLUHPHQWV 0HDVXUHG VWUHQJWK SURSHUWLHV RI WKH DJJUHJDWHV LQGLFDWH WKDW DOO WKH )ORULGD OLPHVWRQH DJJUHJDWHV JHQHUDOO\ SRVVHVV VLPLODU VWUHQJWK FKDUDFWHULVWLFV +RZHYHU ZLGH UDQJHV DQG GLIIHUHQFHV LQ GLVWULEXWLRQV RI VWUHQJWK YDOXHV RFFXU 7KH JUDQLWH DQG VLOLFHRXV ULYHU JUDYHO DJJUHJDWHV KDYH VOLJKWO\ JUHDWHU

PAGE 161

VWUHQJWK WKDQ WKH )ORULGD OLPHVWRQH DJJUHJDWHV 7KH $ODEDPD OLPHVWRQH DJJUHJDWH ZDV IRXQG WR KDYH WKH JUHDWHVW VWUHQJWK RI WKH VHYHUDO FRDUVH DJJUHJDWHV LQYHVWLJDWHG 0LQHUDORJLFDO DQG SHWURJUDSKLF DQDO\VHV LQGLFDWH WKDW WKH OLPHVWRQH DJJUHJDWHV DUH YDULDEOH LQ FRPSRVLWLRQ EXW FRQWDLQ YHU\ IHZ GHOHWHULRXV FRQVWLWXHQWV VXFK DV RUJDQLF LPSXULWLHV DQG UHDFWLYH VLOLFD 7KH )ORULGD OLPHVWRQH DJJUHJDWHV SULPDULO\ ZHUH FRPSRVHG RI ILQHJUDLQHG FDOFLWH ZLWK VSDUU\ FDOFLWH LQILOOLQJV 7KH *XOI +DPPRFN DQG &DOHUD DJJUHJDWHV DUH GRORPLWLF OLPHVWRQHV 7KH &DOHUD PDWHULDOV ZHUH PRUH XQLIRUP DQG FRDUVHO\ FU\VWDOOLQH ZLWK OHVV SRURVLW\ WKDQ WKH )ORULGD FDUERQDWH URFNV 7KLV UHVXOWV IURP WKH PXFK ROGHU JHRORJLF DJH 2UGRYLFLDQf RI WKH &DOHUD PDWHULDOV ZKLFK KDV DOORZHG H[WHQVLYH UHFU\VWDOOL]DWLRQ WR RFFXU $JJUHJDWHV IURP WKH 0LDPL DQG )W 0\HUV DUHDV FRQWDLQHG FRQVLGHUDEOH DPRXQWV RI GHWULWDO JXDUW] 7KHVH JUDLQV DUH JHQHUDOO\ GLVSHUVHG ZLWKLQ WKH FDOFLWH PDWUL[ DQG DUH QRW OLNHO\ WR DGYHUVHO\ DIIHFW DJJUHJDWH SHUIRUPDQFH LQ FRQFUHWH 3RURVLW\ RI WKH DJJUHJDWHV ZDV YDULDEOH DQG GLIILFXOW WR JXDQWLI\ +RZHYHU LQ PRVW DJJUHJDWHV DQDO\]HG PLFURVFRSLFDOO\ SRUH VSDFHV DSSHDUHG VPDOO DQG LVRODWHG 0HDVXUHG DEVRUSWLRQ YDOXHV ZHUH OHVV WKDQ ILYH SHUFHQW VXJJHVWLQJ WKDW WKH SRUH VSDFHV KDYH OLPLWHG LQWHUQDO FRQQHFWLYLW\ 3RURVLW\ FDQ RIWHQ EH LQGLUHFWO\ FRUUHODWHG WR /RV $QJHOHV DEUDVLRQ VSHFLILF JUDYLW\ DQG DEVRUSWLRQ

PAGE 162

YDOXHV DQG WKHVH WHVWV VKRXOG VHUYH DV FRQWUROV RQ H[FHVVLYHO\ SRURXV PDWHULDOV 7KH JUDQLWH DJJUHJDWHV ZHUH FRPSRVHG SULPDULO\ RI TXDUW] DQG IHOGVSDUV DORQJ ZLWK VRPH ELRWLWH 2FFDVLRQDO ELRWLWH JQHLVV DQG VFKLVW IUDJPHQWV ZHUH QRWHG 7KH ODWWHU SDUWLFOHV PD\ EH YHU\ IULDEOH EXW FRQFHQWUDWLRQV FDQ EH PRQLWRUHG E\ /RV $QJHOHV DEUDVLRQ WHVWLQJ 7KH JUDQLWH DJJUHJDWHV ZHUH UHODWLYHO\ XQZHDWKHUHG DOWKRXJK VRPH DOWHUDWLRQ ZDV QRWHG DORQJ IUDFWXUHV 6RPH VWUDLQLQJ RI TXDUW] SDUWLFOHV ZDV VHHQ DV HYLGHQFHG E\ IUDFWXUHV DQG XQGXODWRU\ H[WLQFWLRQ XQGHU SRODUL]HG OLJKW 6WUDLQLQJ RI TXDUW] JUDLQV DOVR ZDV HYLGHQW LQ VLOLFHRXV ULYHU JUDYHO DJJUHJDWHV 8QGXODWRU\ H[WLQFWLRQ IUDFWXULQJ OLQHDWHG WH[WXUHV DQG VXWXUHG FRQWDFWV ZHUH QRWHG LQ PLFURVFRSLF H[DPLQDWLRQV 8QGXODWRU\ H[WLQFWLRQ RI VLOLFDWH PLQHUDOV LV YHU\ FRPPRQ LQ LJQHRXV DQG PHWDPRUSKLF URFNV DQG PD\ EH DQ LQGLFDWRU RI SODVWLF GHIRUPDWLRQ LQ UHVSRQVH WR WHFWRQLF VWUHVVHV %ODWW HW DO f 7KHVH VWUDLQHG VLOLFDWH PLQHUDO FRPSRQHQWV DUH EHOLHYHG WR EH WKH FDXVH RI VRPH GHOHWHULRXV DONDOLVLOLFDWH DJJUHJDWH UHDFWLRQV LQ FRQFUHWH UHVXOWLQJ IURP IRUPDWLRQ RI VLOLFD JHOV DW DJJUHJDWH 6XUIDFHV *LOORW *RJWH 0LHOHQ] f 7KHUHIRUH FDXWLRQ VKRXOG EH XVHG ZKHQ XWLOL]LQJ WKHVH DJJUHJDWHV /RZDONDOL FHPHQWV DQG UHGXFHG SHUPHDELOLW\ RI FRQFUHWH H[SRVHG WR KLJKDONDOL HQYLURQPHQWV PD\ EH QHFHVVDU\ SUHYHQWDWLYH PHDVXUHV WR FRQWURO SRVVLEOH GHOHWHULRXV UHDFWLRQV

PAGE 163

7KH SK\VLFDO SURSHUWLHV RI WKH DJJUHJDWHV FDQ EH UHODWHG WR WKHLU WH[WXUDO FKDUDFWHULVWLFV ZKLFK DUH D UHVXOW RI WKHLU JHRORJLF PRGH RI IRUPDWLRQ DQG VXEVHTXHQW KLVWRU\ )ORULGD FDUERQDWH PDWHULDOV JHQHUDOO\ SRVVHVV VLPLODU SK\VLFDO SURSHUWLHV 7KLV LV EHFDXVH RI WKHLU UHODWLYHO\ \RXQJ JHRORJLF DJHV (RFHQH WR 3OHLVWRFHQHf DQG VLPLODU GLDJHQHWLF KLVWRU\ $OWKRXJK WKHVH PDWHULDOV FDQ EH ORFDOO\ YDULDEOH LQ FKDUDFWHU WKH DJJUHJDWH SURGXFWV FRQWDLQ VRPH FRPPRQ WH[WXUDO HOHPHQWV VXFK DV ILQH JUDLQHG PLFULWLF WR PLFURVSDU PDWULFHV ZLWK VSDUU\ FDOFLWH LQILOOLQJV DQG VSDUVH WR PRGHUDWH SRURVLW\ 7KH $ODEDPD DJJUHJDWH LV D PXFK ROGHU 2UGRYLFLDQf UHFU\VWDOOL]HG FDUERQDWH ZLWK D PRUH FRDUVHO\ FU\VWDOOLQH LQWHUORFNLQJ WH[WXUH DQG YHU\ OLWWOH SRURVLW\ 7KLV UHVXOWV LQ KLJKHU VSHFLILF JUDYLW\ XQLW ZHLJKW DQG VWUHQJWK DQG ORZHU DEVRUSWLRQ DQG DEUDVLRQ DV FRPSDUHG WR WKH )ORULGD PDWHULDOV 7KH VLOLFDWH PLQHUDO DJJUHJDWHV DOVR KDG PRUH FRDUVHO\ FU\VWDOOLQH LQWHUORFNLQJ WH[WXUHV ZLWK OLWWOH SRURVLW\ 7KLV LV UHVSRQVLEOH IRU WKHLU KLJKHU VWUHQJWK DQG ORZHU DEVRUSWLRQ YDOXHV WKDQ IRU WKH )ORULGD OLPHVWRQHV +RZHYHU VWUHQJWKV RI WKHVH DJJUHJDWHV ZHUH ORZHU DQG DEUDVLRQ YDOXHV KLJKHU WKDQ WKRVH RI WKH $ODEDPD OLPHVWRQH 7KLV LV EHOLHYHG WR EH GXH WR IUDFWXULQJ ZHDWKHULQJ DQG IROLDWHG PHWDPRUSKLF FRPSRQHQWV RI WKH VLOLFDWH DJJUHJDWHV &RPSXWHUL]HG LPDJLQJ GDWD IRU DJJUHJDWH VKDSH SDUDPHWHUV DUH GLIILFXOW WR HYDOXDWH EHFDXVH FRPSDUDWLYH GDWD IRU RWKHU DJJUHJDWHV DUH LQIUHTXHQWO\ UHSRUWHG LQ WKH

PAGE 164

OLWHUDWXUH 3UHYLRXV WHFKQLTXHV XWLOL]HG WR FKDUDFWHUL]H DJJUHJDWH VKDSHV KDYH LQYROYHG LQGLUHFW FRUUHODWLRQ RI DJJUHJDWH VKDSH ZLWK YDULRXV SK\VLFDO WHVWV 0HLHU DQG (OQLFN\ f ,PDJH DQDO\VLV LV D UHODWLYHO\ QHZ WHFKQLTXH WKDW SURYLGHV TXDQWLWDWLYH GDWD IRU DJJUHJDWH VKDSH SDUDPHWHUV DQG OLWWOH LQIRUPDWLRQ H[LVWV RQ FRUUHODWLRQ RI WKLV GDWD ZLWK FRQFUHWH SURSHUWLHV 4XDQWLWDWLYH GDWD VKRXOG HYROYH TXDQWLWDWLYH PHWKRGV RI DQDO\VLV IRU FRUUHODWLRQ RI VKDSH FKDUDFWHULVWLFV ZLWK FRQFUHWH GHVLJQ DQG SHUIRUPDQFH 7KH PHDVXUHPHQWV REWDLQHG LQ WKLV VWXG\ DUH SUHOLPLQDU\ VWHSV LQ EXLOGLQJ D GDWDEDVH IRU )ORULGD DJJUHJDWHV 7KLV VKRXOG SHUPLW FRPSDULVRQV RI DJJUHJDWH VKDSH SDUDPHWHUV DV PLQLQJ ORFDWLRQV FKDQJH RU QHZ VRXUFHV RI PDWHULDOV DUH HYDOXDWHG $YHUDJH YDOXHV RI WKH PHDVXUHG VKDSH SDUDPHWHUV VKRZ OLPLWHG YDULDWLRQ IRU WKH GLIIHUHQW DJJUHJDWHV 7KLV PLJKW EH H[SHFWHG EHFDXVH DOO WKH DJJUHJDWH VDPSOHV ZHUH VL]HG DIWHU FUXVKLQJ WR PHHW )'27 VSHFLILFDWLRQV DQG PDQ\ ZHUH VLPLODU LQ SHWURJUDSKLF DQG PLQHUDORJLFDO SURSHUWLHV 7KH XQFUXVKHG VLOLFHRXV ULYHU JUDYHO DJJUHJDWHV ZHUH QRW DQDO\]HG 7KHVH PDWHULDOV PD\ SURGXFH GLIIHUHQW VKDSH SDUDPHWHU GDWD WKDQ WKH FUXVKHG PDWHULDOV 7KH GLVWULEXWLRQ RI SDUWLFOHV RFFXUULQJ RYHU WKH UDQJH RI YDOXHV IRU WKH GLIIHUHQW VKDSH SDUDPHWHUV YDULHV EHWZHHQ WKH VDPSOHV 7KLV YDULDWLRQ PD\ EH DQ LPSRUWDQW FRQVLGHUDWLRQ IRU FRUUHODWLRQ ZLWK FRQFUHWH SURSHUWLHV 2QH WUHQG REVHUYHG LQ WKH GDWD ZDV WKH WHQGHQF\ IRU WKH VPDOOHU VL]H IUDFWLRQV LQ

PAGE 165

1R f WR KDYH PRUH LUUHJXODU SDUWLFOH VKDSHV WKDQ ODUJHU VL]H IUDFWLRQV LQf 7KH TXDOLW\ RI WKH LQWHUIDFLDO ERQG PD\ EH DQ LPSRUWDQW IDFWRU IRU VWUHQJWK SURSHUWLHV RI FRQFUHWH VLQFH WKH FHPHQW SDVWHDJJUHJDWH LQWHUIDFH LV RIWHQ FRQVLGHUHG WR EH D ZHDN OLQN LQ FRPSRVLWH FRQFUHWH VWUHQJWK ,W DOVR PD\ EH LPSRUWDQW IRU FRQFUHWH GXUDELOLW\ VLQFH VHSDUDWLRQV RFFXUULQJ DW WKH LQWHUIDFH PD\ SURYLGH SDWKZD\V IRU LQFUHDVHG SHUPHDELOLW\ 'HWDLOHG PLFURVFRSLF REVHUYDWLRQV RI LQWHUIDFLDO ERQGLQJ FKDUDFWHULVWLFV IRU FDUERQDWH DQG VLOLFDWH DJJUHJDWHV IURP D ZLGH UDQJH RI VRXUFH DUHDV LQ 3RUWODQG FHPHQW FRQFUHWH KDYH H[SDQGHG DQG IXUWKHU GRFXPHQWHG FRQFHSWV DQG LGHDV SUHVHQWHG LQ SUHYLRXV OLWHUDWXUH UHSRUWV 0LFURVFRSLF LQYHVWLJDWLRQ RI FRQFUHWH VSHFLPHQV FRQWDLQLQJ WKH OLPHVWRQH DQG JUDQLWH DJJUHJDWHV UHYHDOHG URXJK VXUIDFH WH[WXUHV ZKLFK ZRXOG SURYLGH JRRG LQWHUORFNLQJ RU PHFKDQLFDO FRPSRQHQW RI LQWHUIDFLDO ERQG ZLWK WKH FHPHQW SDVWH PDWUL[ 7KH JRRG DWWDFKPHQW RI FHPHQW K\GUDWLRQ SURGXFWV ZLWK OLPHVWRQH DJJUHJDWHV VXJJHVWV WKDW WKHVH DJJUHJDWHV DOVR SURYLGH D FKHPLFDO ERQGLQJ FRPSRQHQW RI LQWHUIDFLDO ERQGLQJ )LQHJUDLQHG PLFULWLF VXUIDFH WH[WXUHV RI PDQ\ RI WKH OLPHVWRQH DJJUHJDWHV LQYHVWLJDWHG SURYLGH LQFUHDVHG VXUIDFH DUHD IRU WKHVH FKHPLFDO UHDFWLRQV $ WKLQ ]RQH RI FHPHQW SDVWH DEVRUSWLRQ DW ILQHJUDLQHG OLPHVWRQH DJJUHJDWH VXUIDFHV DOVR PD\ LQFUHDVH WKH PHFKDQLFDO FRPSRQHQW RI LQWHUIDFLDO ERQGLQJ 6LOLFDWH JUDQLWH DQG ULYHU JUDYHOf DJJUHJDWHV H[DPLQHG RIWHQ KDG

PAGE 166

PRUH SURPLQHQW VHSDUDWLRQV DW WKH LQWHUIDFH ZLWK FHPHQW SDVWH OHQGLQJ VXSSRUW WR WKH LGHDV WKDW WKLV LQWHUIDFH LV D ZHDN OLQN LQ FRPSRVLWH FRQFUHWH VWUHQJWK DQG PD\ LQFUHDVH SHUPHDELOLW\ RI FRQFUHWH 6LQFH TXDUW] ILQH DJJUHJDWHV DOVR H[KLELWHG SRRU ERQGLQJ ZLWK FHPHQW SDVWH WKH XVH RI OLPHVWRQH VFUHHQLQJV IRU WKH ILQH DJJUHJDWH FRPSRQHQW PD\ UHVXOW LQ FRQFUHWH ZLWK PRUH GHVLUDEOH SURSHUWLHV 6RPH FKHPLFDO DQG WH[WXUDO FKDUDFWHULVWLFV RI WKH LQWHUIDFLDO UHJLRQV REVHUYHG LQ WKLV VWXG\ GR QRW VXSSRUW VRPH SUHYLRXV JHQHUDOL]DWLRQV ,W LV RIWHQ DVVXPHG WKDW FDOFLXP K\GUR[LGH IRUPV DOO DORQJ WKH DJJUHJDWH VXUIDFHV IRU ERWK FDUERQDWH DQG VLOLFDWH DJJUHJDWHV +RZHYHU PLFURVFRSLF REVHUYDWLRQV DORQJ ZLWK VSHFWURVFRSLF LQIRUPDWLRQ IURP WKLV VWXG\ LQGLFDWH WKDW RWKHU FHPHQW K\GUDWLRQ SURGXFWV SULPDULO\ FDOFLXP VLOLFDWHV DOVR FRPPRQO\ RFFXU DGMDFHQW WR WKH DJJUHJDWH VXUIDFHV %RWK RI WKHVH K\GUDWLRQV SURGXFWV VKRZHG VLPLODU LQWHUIDFLDO ERQGLQJ FKDUDFWHULVWLFV IRU WKH DJJUHJDWH W\SHV VWXGLHG 3RRU ERQGLQJ ZDV REVHUYHG ZLWK VLOLFDWH DJJUHJDWHV DQG JRRG ERQGLQJ ZLWK FDUERQDWH DJJUHJDWHV 6WUHQJWK GDWD IURP SUHSDUHG FRQFUHWH PL[HV DOVR DUH FRQVLVWHQW ZLWK SUHYLRXV VWXGLHV 7KH KLJKHU FRPSUHVVLYH DQG VSOLWWLQJ WHQVLOH VWUHQJWKV REWDLQHG ZLWK WKH XVH RI OLPHVWRQH FRDUVH DJJUHJDWHV DV FRPSDUHG ZLWK JUDQLWH DJJUHJDWHV XVLQJ VLPLODU PL[ GHVLJQV VXSSRUWV WKH FRQWHQWLRQ RI %HGDUG HW DO f DQG &DUUDVTXLOOR f WKDW KLJKHVW FRQFUHWH FRPSUHVVLYH VWUHQJWK LV REWDLQHG ZLWK OLPHVWRQH

PAGE 167

DJJUHJDWHV %HGDUG HW DO f DOVR FRQFOXGH WKDW KLJKHVW VWUHQJWK LV DFKLHYHG ZKHQ OLPHVWRQH LV XVHG DV ERWK FRDUVH DQG ILQH DJJUHJDWH 7KLV DOVR LV FRQVLVWHQW ZLWK WKH UHVXOWV IURP WKLV VWXG\ DV HYLGHQFHG E\ WKH KLJKHVW FRPSUHVVLYH VWUHQJWK RFFXUULQJ ZKHQ WKH OLPHVWRQH FRDUVH DQG ILQH DJJUHJDWH FRPELQDWLRQ ZDV XVHG 7KHVH UHVXOWV DOVR OHQG VXSSRUW WR HDUOLHU VWXGLHV ZKLFK VKRZHG KLJKHU ERQG VWUHQJWK GHYHORSHG ZLWK FDUERQDWH DJJUHJDWHV WKDQ ZLWK VLOLFDWH DJJUHJDWHV )DUUDQ +VX DQG 6ODWH f 0LFURVFRSLF REVHUYDWLRQV DQG VWUHQJWK WHVWLQJ UHVXOWV DOVR VXJJHVW WKDW WKH UROH RI ILQH DJJUHJDWH ERQGLQJ PD\ KDYH JUHDWHU HIIHFW RQ FRPSRVLWH FRQFUHWH SURSHUWLHV WKDQ SUHYLRXVO\ WKRXJKW 7KH JUDQLWH DJJUHJDWH WUHDWPHQW PHWKRG LQYHVWLJDWHG SURYHG WR EH HIIHFWLYH LQ LPSURYLQJ FRPSUHVVLYH VWUHQJWK DQG LQWHUIDFLDO ERQGLQJ FKDUDFWHULVWLFV 7KH ODFN RI DQ\ VLJQLILFDQW HIIHFWV RQ VSOLWWLQJ WHQVLOH VWUHQJWK VXSSRUWV WKH FRQWHQWLRQ RI $OH[DQGHU f WKDW FRPSUHVVLYH VWUHQJWK LV PRVW DIIHFWHG E\ FHPHQW SDVWHDJJUHJDWH ERQGLQJ DQG WKH FRQFOXVLRQ RI +VX DQG 6ODWH f WKDW FRPSUHVVLYH DQG VSOLWWLQJ WHQVLOH VWUHQJWK YDOXHV GR QRW GLUHFWO\ FRUUHODWH &HPHQW SDVWHDJJUHJDWH ERQGLQJ DOVR LV WKRXJKW WR EH LPSRUWDQW IRU IOH[XUDO VWUHQJWK 1HYLOOH f +RZHYHU IOH[XUDO VWUHQJWK WHVWLQJ ZDV QRW FRQGXFWHG LQ WKLV VWXG\ DQG PD\ EH D FRQVLGHUDWLRQ IRU IXWXUH ZRUN 7KH LQFUHDVHG FRQFUHWH FRPSUHVVLYH VWUHQJWK REWDLQHG ZLWK XVH RI WUHDWHG JUDQLWH DJJUHJDWHV PD\ EH DFFRXQWHG IRU

PAGE 168

E\ WKH LPSURYHG FHPHQW SDVWHVLOLFDWH DJJUHJDWH ERQGLQJ REVHUYHG IURP 6(0 H[DPLQDWLRQV 7KH WUHDWPHQW PHWKRG UHVXOWHG LQ EHWWHU DWWDFKPHQW RI FHPHQW K\GUDWLRQ SURGXFWV WR WKH VLOLFDWH DJJUHJDWH VXUIDFHV 7KH NH\ PHFKDQLVP IRU LPSURYHG ERQGLQJ LV EHOLHYHG WR EH GU\LQJ RI WKH DJJUHJDWHV DFFRPSDQLHG E\ DGVRUSWLRQ RI SRVLWLYHO\ FKDUJHG LRQV RQWR WKH QHJDWLYHO\ FKDUJHG VLOLFDWH PLQHUDO VXUIDFHV DQG NHHSLQJ WKH WUHDWHG DJJUHJDWH GU\ XQWLO FRQFUHWH PL[LQJ 7KLV LV WKRXJKW WR SURYLGH D EULGJLQJ PHFKDQLVP IRU ERQGLQJ RI FHPHQW K\GUDWLRQ SURGXFWV WR WKH DJJUHJDWH VXUIDFHV 2WKHU WUHDWPHQW PDWHULDOV PD\ EH HJXDOO\ HIIHFWLYH LI VLPLODU PHWKRGV DUH XWLOL]HG 7HFKQRORJ\ IRU FDOFLXP K\GUR[LGH WUHDWPHQW RI DJJUHJDWHV FXUUHQWO\ H[LVWV LQ WKH DVSKDOWLF FRQFUHWH LQGXVWU\ ZKHUH LW LV XVHG DV D PHWKRG IRU SUHYHQWLRQ RI VWULSSLQJ RI DVSKDOW IURP VLOLFDWH DJJUHJDWHV (TXLSPHQW FRVWV UDQJH IURP WR GHSHQGLQJ RQ WKH W\SH RI V\VWHP DQG WKH DYHUDJH FRVW RI SXUFKDVH WUDQVSRUW DQG PL[LQJ RI K\GUDWHG OLPH LV DSSUR[LPDWHO\ SHU WRQ RI DVSKDOWLF PL[ 6FKUHFN f 7KH UHVXOWV RI WKH UHVHDUFK VKRZ WKDW UHODWLYHO\ VLPSOH DQG HFRQRPLFDO PHWKRGV FDQ EH XWLOL]HG WR LPSURYH WKH FHPHQW SDVWHVLOLFDWH DJJUHJDWH LQWHUIDFLDO ERQG 7KLV PD\ SURYH XVHIXO QRW RQO\ LQ LQFUHDVLQJ FRQFUHWH FRPSUHVVLYH VWUHQJWK DV VKRZQ EXW DOVR LQ GHFUHDVLQJ SHUPHDELOLW\ DQG LQFUHDVLQJ GXUDELOLW\ VLQFH LQWHUIDFLDO FUDFNLQJ PD\ EH DQ LPSRUWDQW IDFWRU DIIHFWLQJ WKHVH FRQFUHWH SURSHUWLHV

PAGE 169

$OWKRXJK VXSSRUWLQJ HYLGHQFH ZDV REWDLQHG IURP ODERUDWRU\ H[SHULPHQWV D IXOO XQGHUVWDQGLQJ RI GHWDLOHG VXUIDFH PHFKDQLVPV UHVXOWLQJ IURP WKH WUHDWPHQW PHWKRGV ZDV QRW DFKLHYHG ZLWK WKH DQDO\WLFDO PHWKRGV XWLOL]HG 2QH SURPLVLQJ WHFKQLTXH GHYHORSHG LQ UHFHQW \HDUV IRU VWXG\LQJ DGVRUSWLRQ SURFHVVHV DW LQWHUIDFHV LV ;UD\ DEVRUSWLRQ VSHFWURVFRS\ ;$6f 7KLV WHFKQLTXH KDV RQO\ UHFHQWO\ EHJXQ WR EH XWLOL]HG IRU LQYHVWLJDWLRQ RI JHRORJLF PDWHULDOV $ PDMRU OLPLWDWLRQ RI WKH WHFKQLTXH LV WKH ODFN RI DYDLODEOH LQVWUXPHQWDWLRQ IRU UHVHDUFK %HDP WLPH DFTXLVLWLRQ LV D ORQJ DQG FRPSHWLWLYH SURFHVV RIWHQ UHTXLULQJ XS WR D WZR \HDU SHULRG 7KHUHIRUH WKLV WHFKQLTXH PD\ EH FRQVLGHUHG IRU IXWXUH LQYHVWLJDWLRQV IRU PRUH FRPSOHWH XQGHUVWDQGLQJ RI DGVRUSWLRQ SURFHVVHV 5HVXOWV RI WKLV LQYHVWLJDWLRQ LQGLFDWH WKDW WKH FRDUVH DJJUHJDWH VDPSOHV VWXGLHG IURP PDMRU )ORULGD VRXUFH DUHDV DUH RI JRRG TXDOLW\ IRU FRQFUHWH FRQVWUXFWLRQ +RZHYHU LQFUHDVLQJ GHPDQGV DQG OLPLWHG UHVRXUFHV FRPELQHG ZLWK H[WHQVLYH XUEDQ GHYHORSPHQW DQG VWULFW HQYLURQPHQWDO UHJXODWLRQV PD\ FUHDWH WKH QHHG IRU LQFUHDVHG LPSRUWDWLRQ RI DJJUHJDWHV IURP RXWRIVWDWH VRXUFHV IRU IXWXUH FRQFUHWH SURGXFWLRQ QHHGV 7KH GDWD FROOHFWHG LQ WKH FRXUVH RI WKLV VWXG\ VKRXOG VHUYH DV DQ LQLWLDO GDWDEDVH IRU HYDOXDWLQJ SHUIRUPDQFH RI WKH DJJUHJDWHV LQ WKH )'27 FRPSUHKHQVLYH FRQFUHWH VWXG\ ,W DOVR ZLOO DLG LQ WKH IXWXUH HYDOXDWLRQ RI RWKHU LQVWDWH DQG RXWRIVWDWH FRQFUHWH DJJUHJDWH UHVRXUFHV E\ SURYLGLQJ

PAGE 170

V\VWHPDWLFDOO\ FROOHFWHG SK\VLFDO DQG PLQHUDORJLFDO GDWD WR FRUUHODWH ZLWK SDVW SUHVHQW DQG IXWXUH FRQFUHWH SHUIRUPDQFH LQ )ORULGD

PAGE 171

&21&/86,216 3URGXFWLRQ RI FRQFUHWH FRDUVH DJJUHJDWHV LQ )ORULGD LV JHQHUDOO\ OLPLWHG WR IRXU PDMRU JHRJUDSKLF UHJLRQV FRQWDLQLQJ VXUIDFH DQG QHDUVXUIDFH FDUERQDWH GHSRVLWV 7KHVH UHJLRQDO FHQWHUV DUH LPSDFWHG E\ JHRORJLF DQG HFRQRPLF IDFWRUV FRQWUROOLQJ WKHLU PDUNHW DYDLODELOLW\ 7KH JHRJUDSKLF GLVWULEXWLRQ RI WKHVH GHSRVLWV LV GLUHFWO\ UHODWHG WR WKH JHRORJLF KLVWRU\ RI WKH 6WDWH (RFHQH DQG 2OLJRFHQH GHSRVLWV DUH PLQHG LQ WKH QRUWKZHVW DQG ZHVWHUQ FHQWUDO SHQLQVXOD UHJLRQV 7KHVH UHSUHVHQW VRPH RI WKH ROGHVW URFN H[SRVXUHV LQ )ORULGD DQG WKHLU VXUILFLDO RFFXUUHQFH LV UHODWHG WR SRVW GHSRVLWLRQDO VWUXFWXUDO XSOLIW LQ WKLV DUHD 0LQRU DPRXQWV RI FRDUVH DJJUHJDWHV DOVR DUH SURGXFHG LQ QRUWKZHVW )ORULGD IURP 3OHLVWRFHQH VLOLFHRXV ULYHU JUDYHO GHSRVLWV &RDUVH DJJUHJDWHV LQ VRXWKZHVW DQG VRXWKHDVW )ORULGD DUH SURGXFHG IURP VXUILFLDO 3OLR 0LRFHQH DQG 3OHLVWRFHQH FDUERQDWH GHSRVLWV 0DQ\ RWKHU DUHDV RI WKH 6WDWH DUH FRYHUHG E\ WKLFN GHSRVLWV RI 0LRFHQH WR +RORFHQH VHGLPHQWV ZKLFK SURKLELW HFRQRPLF UHFRYHU\ RI FDUERQDWH PDWHULDOV +RZHYHU WKHVH FODVWLF PDWHULDOV SURYLGH PRVW RI WKH ILQH DJJUHJDWHV XVHG LQ QRUWK DQG FHQWUDO )ORULGD )LQH DJJUHJDWHV

PAGE 172

XVHG LQ VRXWK )ORULGD DUH PDQXIDFWXUHG E\SURGXFWV IURP FRDUVH DJJUHJDWH RSHUDWLRQV )UHTXHQWO\ FKDQJLQJ GHSRVLWLRQDO HQYLURQPHQWV DORQJ ZLWK SRVWGHSRVLWLRQDO HURVLRQ DQG GLDJHQHWLF DOWHUDWLRQ KDYH UHVXOWHG LQ JUHDW YHUWLFDO DQG ODWHUDO YDULDELOLW\ LQ WKH FKDUDFWHU RI WKHVH GHSRVLWV 7KHUHIRUH VHOHFWLYH PLQLQJ DQG SURFHVVLQJ WHFKQLTXHV RIWHQ PXVW EH XVHG WR SURGXFH PDWHULDOV ZLWK DFFHSWDEOH SURSHUWLHV IRU XVH DV FRQFUHWH DJJUHJDWHV *RRG TXDOLW\ FRQWURO DQG TXDOLW\ DVVXUDQFH SURJUDPV DUH FULWLFDO WR LQVXUH WKDW DFFHSWDEOH PDWHULDOV DUH SURGXFHG DV PLQLQJ ORFDWLRQV YDU\ &RQFUHWH DJJUHJDWHV IURP FXUUHQW )ORULGD VRXUFHV DUH TXDOLW\ PDWHULDOV IRU XVH LQ FRQFUHWH +RZHYHU LQFUHDVLQJ GHPDQGV OLPLWHG UHVRXUFHV DQG LQFUHDVLQJ HQYLURQPHQWDO DQG VRFLDO UHVWUDLQWV RQ PLQLQJ DFWLYLWLHV PD\ QHFHVVLWDWH KLJKHU FRVW SURGXFWLRQ LQ DOWHUQDWLYH VRXUFH DUHDV ORQJWHUP ]RQLQJ DQG ODQG XVH SODQQLQJ LQ XUEDQ DUHDV WR SURWHFW SRWHQWLDO PLQLQJ ORFDWLRQV DQG LQFUHDVHG LPSRUWDWLRQ RI DJJUHJDWHV IURP RXWRIVWDWH VRXUFHV WR PHHW IXWXUH FRQFUHWH SURGXFWLRQ QHHGV 3K\VLFDO SURSHUWLHV RI WKH DJJUHJDWHV VWXGLHG LQGLFDWH WKDW WKHVH PDWHULDOV PHHW JHQHUDO UHTXLUHPHQWV IRU XVH LQ FRQFUHWH 7KH GDWD IRU WKHVH VDPSOHV DUH W\SLFDO YDOXHV IRU )ORULGD PDWHULDOV EDVHG RQ SUHYLRXV UHSRUWV DQG KLVWRULFDO )'27 GDWD 7KH IDLOXUH RI VHYHUDO

PAGE 173

VDPSOHV WR PHHW VL]H JUDGDWLRQ VSHFLILFDWLRQV LOOXVWUDWHV WKH QHHG IRU FDUHIXO PRQLWRULQJ RI PDWHULDOV 0LQHUDOµJLFD DQG SHWURJUDSKLF DQDO\VHV RI WKH OLPHVWRQH DJJUHJDWHV VWXGLHG VKRZ OLPLWHG YDULDWLRQ LQ FRPSRVLWLRQV DQG WH[WXUHV ZLWK IHZ GHOHWHULRXV FRQVWLWXHQWV $OO OLPHVWRQH DJJUHJDWHV VWXGLHG ZHUH FRPSRVHG SULPDULO\ RI FDOFLWH ZLWK WKH H[FHSWLRQ RI WKH *XOI +DPPRFN )ORULGD DQG &DOHUD $ODEDPD PDWHULDOV ZKLFK DOVR FRQWDLQHG DEXQGDQW GRORPLWH /LPHVWRQHV IURP WKH VRXWK )ORULGD VRXUFHV FRQWDLQHG VLJQLILFDQW DPRXQWV RI GHWULWDO TXDUW] 7KH JUDQLWH DQG VLOLFHRXV ULYHU JUDYHO DJJUHJDWHV FRQWDLQHG VRPH VWUDLQHG PLQHUDO FRPSRQHQWV ZKLFK PD\ UHVXOW LQ GHOHWHULRXV DONDOLDJJUHJDWH UHDFWLRQV 7H[WXUDO FKDUDFWHULVWLFV RI WKH DJJUHJDWHV ZKLFK DUH D UHVXOW RI WKHLU JHRORJLF PRGH RI IRUPDWLRQ DQG VXEVHTXHQW KLVWRU\ DUH EHOLHYHG WR FRQWURO PDQ\ RI WKHLU PHDVXUHG SK\VLFDO SURSHUWLHV $OWKRXJK WKH )ORULGD OLPHVWRQH DJJUHJDWHV PD\ EH ORFDOO\ YDULDEOH LQ FKDUDFWHU WKH VLPLODULW\ LQ WKHLU SK\VLFDO SURSHUWLHV UHIOHFW VRPH FRPPRQ WH[WXUDO FRPSRQHQWV 7KHVH DUH UHODWLYHO\ \RXQJ (RFHQH WR 3OHLVWRFHQHf JHRORJLF PDWHULDOV JHQHUDOO\ FRPSRVHG RI IRVVLOLIHURXV OLPHVWRQHV DQG GRORPLWLF OLPHVWRQHV ZLWK VSDUU\ FDOFLWH YHLQV DQG ILOOLQJV LQ PLFULWLF WR PLFURVSDU PDWULFHV DQG SRVVHVVLQJ YDULDEOH SRURVLWLHV 7KH

PAGE 174

$ODEDPD FDUERQDWH DJJUHJDWHV DUH PXFK ROGHU 2UGRYLFLDQf UHFU\VWDOOL]HG PDWHULDOV ZLWK PRUH XQLIRUP FRDUVHO\ FU\VWDOOLQH WH[WXUHV DQG ORZHU SRURVLWLHV UHVXOWLQJ LQ KLJKHU VSHFLILF JUDYLW\ DQG VWUHQJWK DQG ORZHU DEUDVLRQ DQG DEVRUSWLRQ YDOXHV 7KH JUDQLWH DQG VLOLFHRXV ULYHU JUDYHO DJJUHJDWHV DOVR DUH PRUH FRDUVHO\ FU\VWDOOLQH ZLWK LQWHUORFNLQJ SDUWLFOH WH[WXUHV DQG ORZ SRURVLWLHV UHVXOWLQJ LQ KLJKHU VSHFLILF JUDYLW\ DQG VWUHQJWK DQG ORZHU DEVRUSWLRQ YDOXHV WKDQ WKH )ORULGD OLPHVWRQHV +RZHYHU IUDFWXULQJ ZHDWKHULQJ DQG IROLDWHG PHWDPRUSKLF FRPSRQHQWV FDXVH WKHVH PDWHULDOV WR KDYH ORZHU VWUHQJWK DQG KLJKHU DEUDVLRQ YDOXHV WKDQ WKH $ODEDPD OLPHVWRQHV /LPHVWRQH DQG JUDQLWH DJJUHJDWHV H[KLELWHG GHVLUDEOH VKDSH FKDUDFWHULVWLFV IRU FRQFUHWH XVH 7KH PDMRULW\ RI SDUWLFOHV ZHUH RI LUUHJXODU VKDSH ZLWK URXJK VXUIDFH WH[WXUHV ZKLFK ZRXOG SURYLGH D JRRG PHFKDQLFDO FRPSRQHQW RI LQWHUIDFLDO ERQGLQJ ZLWK FHPHQW SDVWH 6LOLFHRXV ULYHU JUDYHO DJJUHJDWHV SRVVHVVHG URXQGHG WR VXEURXQGHG SDUWLFOH VKDSHV DQG VPRRWK VXUIDFH WH[WXUHV ZKLFK ZRXOG QRW SURYLGH D JRRG PHFKDQLFDO FRPSRQHQW RI LQWHUIDFLDO ERQGLQJ 0LFURVFRSLF DQDO\VHV RI ODERUDWRU\ DQG ILHOG FRQFUHWH VSHFLPHQV UHYHDOHG EHWWHU DWWDFKPHQW RI FHPHQW K\GUDWLRQ SURGXFWV WR OLPHVWRQH DJJUHJDWHV WKDQ WR JUDQLWH RU VLOLFHRXV ULYHU JUDYHO DJJUHJDWHV 7KLV

PAGE 175

VXJJHVWV WKDW OLPHVWRQH DJJUHJDWHV IRUP D PLQHUDORJLFDOO\ FRQWUROOHG FKHPLFDO FRPSRQHQW RI LQWHUIDFLDO ERQGLQJ LQ DGGLWLRQ WR PHFKDQLFDO LQWHUORFNLQJ ,QFUHDVHG VXUIDFH DUHD DVVRFLDWHG ZLWK LUUHJXODU VKDSHV DQG ILQHJUDLQHG VXUIDFH WH[WXUHV RI WKH OLPHVWRQH DJJUHJDWHV LQFUHDVHV WKH SRWHQWLDO IRU FKHPLFDO UHDFWLRQV DW WKH FHPHQW SDVWHDJJUHJDWH LQWHUIDFH 6WUHQJWK WHVWLQJ UHVXOWV RQ SUHSDUHG FRQFUHWH PL[WXUHV VKRZHG KLJKHU FRPSUHVVLYH DQG VSOLWWLQJ WHQVLOH VWUHQJWK IRU FRQFUHWH FRQWDLQLQJ OLPHVWRQH FRDUVH DJJUHJDWHV DV FRPSDUHG WR JUDQLWH FRDUVH DJJUHJDWHV XVLQJ VLPLODU PL[ GHVLJQV 7KLV PD\ EH LQIOXHQFHG E\ JUDGDWLRQDO GLIIHUHQFHV EHWZHHQ WKH OLPHVWRQH DQG JUDQLWH FRDUVH DJJUHJDWHV XVHG LQ FRQFUHWH WHVWLQJ +LJKHVW FRPSUHVVLYH VWUHQJWK ZDV REWDLQHG XVLQJ OLPHVWRQH DV FRDUVH DQG ILQH DJJUHJDWHV 0LFURVFRSLF H[DPLQDWLRQV RI SUHSDUHG FRQFUHWH PL[HV DOVR UHYHDOHG EHWWHU FHPHQW SDVWHDJJUHJDWH LQWHUIDFLDO ERQGLQJ FKDUDFWHULVWLFV IRU FDUERQDWH DJJUHJDWHV DV FRPSDUHG WR VLOLFDWH DJJUHJDWHV 0LFURVFRSLF H[DPLQDWLRQV DQG VWUHQJWK WHVWLQJ FRQILUP DQG H[SDQG OLWHUDWXUH UHSRUWV WKDW FDUERQDWH DJJUHJDWHV SURYLGH VXSHULRU FHPHQW SDVWHDJJUHJDWH LQWHUIDFLDO ERQGLQJ SURSHUWLHV DV FRPSDUHG WR VLOLFDWH DJJUHJDWHV 7KHVH GLIIHUHQFHV LQ ERQGLQJ SURSHUWLHV DUH EHOLHYHG WR UHVXOW IURP GLIIHUHQFHV LQ VXUIDFH FKHPLFDO SURSHUWLHV

PAGE 176

RI FDUERQDWH DQG VLOLFDWH PLQHUDOV FRPSRVLQJ WKH DJJUHJDWHV ZKLFK DUH FRQWUROOHG E\ FKHPLFDO FRPSRVLWLRQ DQG FU\VWDOORJUDSKLF DUUDQJHPHQW 6LOLFDWH PLQHUDOV SRVVHVV QHJDWLYHO\ FKDUJHG VXUIDFH VLWHV ZKLFK FDXVH WKHP WR EH VWURQJO\ K\GURSKLOLF ZLWK ZHDN RXWHUVSKHUH DGVRUSWLRQ RI DONDOLQH HDUWK FDWLRQV &DUERQDWH PLQHUDO VXUIDFHV DUH FRPSRVHG RI SRVLWLYH DQG QHJDWLYH FKDUJH FHQWHUV ZLWK PRUH UHDFWLYH DGVRUSWLRQ DQG DEVRUSWLRQ FKDUDFWHULVWLFV 7KH JUDQLWH DJJUHJDWH WUHDWPHQW PHWKRG LQYHVWLJDWHG UHVXOWHG LQ LQFUHDVHG FRQFUHWH FRPSUHVVLYH VWUHQJWK DQG LPSURYHG FHPHQW SDVWHDJJUHJDWH LQWHUIDFLDO ERQGLQJ 7KH NH\ PHFKDQLVP IRU LPSURYHG ERQGLQJ LV EHOLHYHG WR EH GU\LQJ RI WKH DJJUHJDWH DIWHU PL[LQJ ZLWK D FDOFLXP K\GUR[LGH VROXWLRQ UHVXOWLQJ LQ PRUH VWURQJO\ ERQGHG LQQHUVSKHUH DGVRUSWLRQ RI SRVLWLYHO\ FKDUJHG FDOFLXP LRQV RQWR QHJDWLYHO\ FKDUJHG VLOLFDWH PLQHUDO VXUIDFHV 7KLV LV WKRXJKW WR IRUP D EULGJLQJ PHFKDQLVP EHWZHHQ WKH VLOLFDWH DJJUHJDWH VXUIDFHV DQG FHPHQW K\GUDWLRQ SURGXFWV

PAGE 177

5()(5(1&(6 $OH[DQGHU .0 'LVFXVVLRQ &RQFUHWH 6WUHQJWK DQG 0HFKDQLVPV RI )DLOXUH XQGHU 6KRUW7HUP /RDGLQJ 3URFHHGLQJV RI WKH ,QWHUQDWLRQDO &RQIHUHQFH RQ WKH 6WUXFWXUH RI &RQFUHWH /RQGRQ 6HSWHPEHU SS $OH[DQGHU .0 :DUGODZ DQG '*LOEHUW $JJUHJDWH &HPHQW %RQG &HPHQW 3DVWH 6WUHQJWK DQG WKH 6WUHQJWK RI &RQFUHWH 3URFHHGLQJV RI WKH ,QWHUQDWLRQDO &RQIHUHQFH RQ WKH 6WUXFWXUH RI &RQFUHWH /RQGRQ 6HSWHPEHU SS $QQXDO %RRN RI $670 6WDQGDUGV &RQFUHWH DQG $JJUHJDWHV 3KLODGHOSKLD $PHULFDQ 6RFLHW\ IRU 7HVWLQJ DQG 0DWHULDOV 9RO S $QRQ\PRXV )ORULGD $JJUHJDWHV LQ &RQVWUXFWLRQ 7KHLU &KDUDFWHULVWLFV DQG 3HUIRUPDQFH ,QVWLWXWH RI )RRG DQG $JULFXOWXUDO 6FLHQFHV 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH 5HSRUW 0DQXVFULSW S %DUQHV %' 6 'LDPRQG DQG :/ 'ROFK 7KH &RQWDFW =RQH %HWZHHQ 3RUWODQG &HPHQW 3DVWH DQG *ODVV n$JJUHJDWHn 6XUIDFHV &HPHQW DQG &RQFUHWH 5HVHDUFK 9RO D SS %DUQHV %' 6 'LDPRQG DQG :/ 'ROFK 0LFURPRUSKRORJ\ RI WKH ,QWHUIDFLDO =RQH $URXQG $JJUHJDWHV LQ 3RUWODQG &HPHQW 0RUWDUV -RXUQDO RI WKH $PHULFDQ &HUDPLF 6RFLHW\ 9RO E SS %HGDUG & * %DOOLY\ DQG 3 $LWFLQ 7KH ,QIOXHQFH RI 3K\VLFR0HFKDQLFDO 3URSHUWLHV RI $JJUHJDWHV RQ WKH 3URGXFWLRQ RI 9HU\ +LJK 6WUHQJWK &RQFUHWH %XOOHWLQ RI WKH ,QWHUQDWLRQDO $VVRFLDWLRQ RI (QJLQHHULQJ *HRORJ\ 3DULVf 1R SS %ODWW + 6HGLPHQWDU\ 3HWURORJ\ 6DQ )UDQFLVFR :+ )UHHPDQ DQG &R S %ODWW + * 0LGGOHWRQ DQG 5 0XUUD\ 2ULJLQ RI 6HGLPHQWDU\ 5RFNV (QJOHZRRG &OLIIV 13UHQWLFH +DOO ,QF S

PAGE 178

%URZQ *( 6SHFWURVFRSLF 6WXGLHV RI &KHPLVRUSWLRQ 5HDFWLRQ 0HFKDQLVPV DW 2[LGH:DWHU ,QWHUIDFHV 0LQHUDO:DWHU ,QWHUIDFH *HRFKHPLVWU\ (GV 0) +RFKHOOD DQG $) :KLWH :DVKLQJWRQ '& 0LQHUDORJLFDO 6RFLHW\ RI $PHULFD 5HYLHZV LQ 0LQHUDORJ\ 9ROXPH SS %XWWRQ -: 0D[LPL]LQJ WKH %HQHILFLDO (IIHFWV RI /LPH LQ $VSKDOW 3DYLQJ 0L[WXUHV (YDOXDWLRQ DQG 3UHYHQWLRQ RI :DWHU 'DPDJH WR $VSKDOW 3DYHPHQW 0DWHULDOV (G %( 5XWK 3KLODGHOSKLD $PHULFDQ 6RFLHW\ IRU 7HVWLQJ DQG 0DWHULDOV 6SHFLDO 7HFKQLFDO 3XEOLFDWLRQ SS &DPSEHOO .0 7KH ,QGXVWULDO 0LQHUDOV RI )ORULGD )ORULGD *HRORJLFDO 6XUYH\ 7DOODKDVVHH ,QIRUPDWLRQ &LUFXODU 1R S &DUOHV*LEHUJXHV $ *UDQGHW DQG -3 2OOLYLHU &RQWDFW =RQH %HWZHHQ &HPHQW 3DVWH DQG $JJUHJDWH %RQG LQ &RQFUHWH (G 3 %DUWRV /RQGRQ $SSOLHG 6FLHQFH 3XEOLVKHUV SS &DUUDVTXLOOR 5/ 3URGXFWLRQ RI 9HU\ +LJK 6WUHQJWK 3DVWHV 0RUWDUV DQG &RQFUHWHV 9HU\ +LJK 6WUHQJWK &HPHQW %DVHG 0DWHULDOV (G -)
PAGE 179

'DYLV -$ DQG '% .HQW 6XUIDFH &RPSOH[DWLRQ 0RGHOLQJ LQ $TXHRXV *HRFKHPLVWU\ 0LQHUDO:DWHU ,QWHUIDFH *HRFKHPLVWU\ (GV 0) +RFKHOOD DQG $) :KLWH :DVKLQJWRQ '& 0LQHUDORJLFDO 6RFLHW\ RI $PHULFD 5HYLHZV LQ 0LQHUDORJ\ 9ROXPH SS 'UHYHU -, 7KH *HRFKHPLVWU\ RI 1DWXUDO :DWHUV (QJOHZRRG &OLIIV 13UHQWLFH+DOO ,QF S (GJDUWRQ &' (IIHFWV RI 8UEDQL]DWLRQ 8SRQ WKH $YDLODELOLW\ RI &RQVWUXFWLRQ 0LQHUDOV LQ 6RXWK )ORULGD 86 %XUHDX RI 0LQHV :DVKLQJWRQ '& ,QIRUPDWLRQ &LUFXODU 1R S )DUUDQ 0LQHUDORJLFDO &RQWULEXWLRQ WR WKH 6WXG\ RI $GKHVLRQ %HWZHHQ WKH +\GUDWHG &RQVWLWXHQWV RI &HPHQW DQG WKH (PEHGGHG 0DWHULDOV 5HYXH GHV 0DWHULDX[ 3DULVf 1R SS *LOORW -( $ONDOL$JJUHJDWH 5HDFWLRQV LQ &RQFUHWH (QJLQHHULQJ *HRORJ\ 9RO SS *RJWH %6 $Q (YDOXDWLRQ RI 6RPH &RPPRQ ,QGLDQ 5RFNV ZLWK 6SHFLDO 5HIHUHQFH WR $ONDOL$JJUHJDWH 5HDFWLRQV (QJLQHHULQJ *HRORJ\ 9RO SS +DLU 0/ 7UDQVPLVVLRQ ,QIUDUHG 6SHFWURVFRS\ IRU +LJK 6XUIDFH $UHD 2[LGHV 9LEUDWLRQDO 6SHFWURVFRSLHV IRU $GVRUEHG 6SHFLHV (GV $7 %HOO DQG 0/ +DLU :DVKLQJWRQ '& $PHULFDQ &KHPLFDO 6RFLHW\ SS +DUEHQ 3: DQG 5/ %DWHV ,QGXVWULDO 0LQHUDOV *HRORJ\ DQG :RUOG 'HSRVLWV /RQGRQ 0HWDO %XOOHWLQ 3LF ,QGXVWULDO 0LQHUDOV 'LYLVLRQ S +D\HV .) (TXLOLEULXP 6SHFWURVFRSLF DQG .LQHWLF 6WXGLHV RI ,RQ $GVRUSWLRQ DW WKH 2[LGH$TXHRXV ,QWHUIDFH 6WDQIRUG &$ 3K' 7KHVLV 6WDQIRUG 8QLYHUVLW\ +R 5 DQG +HQGULFNV ' $JJUHJDWH 6WXG\ DW 6HOHFWHG &RQFUHWH 3ODQWV )ORULGD 'HSDUWPHQW RI 7UDQVSRUWDWLRQ 5HSRUW 6WDWH 0DWHULDOV 2IILFH *DLQHVYLOOH )/ +VX 77& DQG )2 6ODWH 7HQVLOH %RQG 6WUHQJWK %HWZHHQ $JJUHJDWH DQG &HPHQW 3DVWH RU 0RUWDU $PHULFDQ &RQFUHWH ,QVWLWXWH -RXUQDO 3URFHHGLQJV 9RO 1R $SULO SS +HU 5. 7KH &KHPLVWU\ RI 6LOLFD 1HZ
PAGE 180

-DPHV 52 DQG 7: +HDO\ $GVRUSWLRQ RI +\GURO\]DEOH 0HWDO ,RQV DW WKH 2[LGH:DWHU ,QWHUIDFH ,,, $ 7KHUPRG\QDPLF 0RGHO RI $GVRUSWLRQ -RXUQDO RI &ROORLG DQG ,QWHUIDFH 6FLHQFH 9RO SS .HQQHG\ 7: 3UHYHQWLRQ RI :DWHU 'DPDJH LQ $VSKDOW 0L[WXUHV (YDOXDWLRQ DQG 3UHYHQWLRQ RI :DWHU 'DPDJH WR $VSKDOW 3DYHPHQW 0DWHULDOV (G %( 5XWK 3KLODGHOSKLD $PHULFDQ 6RFLHW\ IRU 7HVWLQJ DQG 0DWHULDOV 6SHFLDO 7HFKQLFDO 3XEOLFDWLRQ SS .OHLQ & DQG &6 +XUOEXW -U 0DQXDO RI 0LQHUDORJ\ WK (G 1HZ
PAGE 181

1HYLOOH $0 3URSHUWLHV RI &RQFUHWH UG (G 1HZ
PAGE 182

6SRVLWR * 'LVWLQJXLVKLQJ $GVRUSWLRQ IURP 6XUIDFH 3UHFLSLWDWLRQ *HRFKHPLFDO 3URFHVVHV DW 0LQHUDO 6XUIDFHV (GV -$ 'DYLV DQG .) +D\HV :DVKLQJWRQ '& $PHULFDQ &KHPLFDO 6RFLHW\ SS 6WDQGDUG 6SHFLILFDWLRQV IRU 5RDG DQG %ULGJH &RQVWUXFWLRQ )ORULGD 'HSDUWPHQW RI 7UDQVSRUWDWLRQ 7DOODKDVVHH 7KRPSVRQ ': DQG 3* 3RZQDOO 6XUIDFH (OHFWULFDO 3URSHUWLHV RI &DOFLWH -RXUQDO RI &ROORLG DQG ,QWHUIDFLDO 6FLHQFH 9RO 1R SS 86 %XUHDX RI 0LQHV 0LQHUDO &RPPRGLW\ 6XPPDULHV 0LQHUDOV ,QIRUPDWLRQ 2IILFH 'HSDUWPHQW RI WKH ,QWHULRU :DVKLQJWRQ '& D S 86 %XUHDX RI 0LQHV 6WDWH 0LQHUDO 6XPPDULHV 0LQHUDOV ,QIRUPDWLRQ 2IILFH 'HSDUWPHQW RI WKH ,QWHULRU :DVKLQJWRQ '& E S 9HUQRQ 52 *HRORJ\ RI &LWUXV DQG /HY\ &RXQWLHV )ORULGD )ORULGD *HRORJLFDO 6XUYH\ %XOOHWLQ 1R S :KLWH -/ 3UHSDUDWLRQ RI 6SHFLPHQV IRU ,QIUDUHG $QDO\VLV 0LQHUDOV LQ 6RLO (QYLURQPHQWV (GV -% 'L[RQ DQG 6% :HHG 0DGLVRQ :, 6RLO 6FLHQFH 6RFLHW\ RI $PHULFD SS :KLWH :$ 7KH *HRPRUSKRORJ\ RI WKH )ORULGD 3HQLQVXOD )ORULGD *HRORJLFDO 6XUYH\ %XOOHWLQ 1R 3 ;X 1 *( %URZQ DQG *$ 3DUNV 6RUSWLRQ 0HFKDQLVP RI &R DW WKH &DOFLWH:DWHU ,QWHUIDFH $EVWUDFWV ZLWK 3URJUDP $QQXDO 0HHWLQJ *HRORJLFDO 6RFLHW\ RI $PHULFD
PAGE 183


PAGE 184

%,2*5$3+,&$/ 6.(7&+ 5RELQ ( *UDYHV ZDV ERUQ $XJXVW LQ /DXUHO 0LVVLVVLSSL +H HDUQHG D %DFKHORU RI 6FLHQFH GHJUHH DW WKH 8QLYHUVLW\ RI 6RXWKHUQ 0LVVLVVLSSL LQ $XJXVW ZLWK D PDMRU LQ JHRORJ\ DQG PLQRUV LQ FRPSXWHU VFLHQFH DQG JHQHUDO VFLHQFH +H WKHQ HQUROOHG LQ WKH *UDGXDWH 6FKRRO DW WKH 8QLYHUVLW\ RI )ORULGD DQG UHFHLYHG D 0DVWHU RI 6FLHQFH GHJUHH LQ $XJXVW ZLWK D PDMRU LQ JHRORJ\ DQG D PLQRU LQ FLYLO HQJLQHHULQJ $IWHU VSHQGLQJ RQH \HDU LQ WKH (QJLQHHULQJ *HRVFLHQFHV SURJUDP DW 7H[DV $t0 8QLYHUVLW\ KH UHWXUQHG WR WKH 8QLYHUVLW\ RI )ORULGD DQG UHFHLYHG D 'RFWRU RI 3KLORVRSK\ GHJUHH LQ $XJXVW ZLWK D PDMRU LQ JHRORJ\ DQG D PLQRU LQ FLYLO HQJLQHHULQJ +LV SURIHVVLRQDO LQWHUHVWV DUH ZLWKLQ WKH JHQHUDO DUHDV RI LQGXVWULDO PLQHUDORJ\ DQG HQJLQHHULQJ JHRORJ\

PAGE 185

, FHUWLI\ WKDW , KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ *XHUU\ + 0F&OHOODQ &KDLUPDQ $VVRFLDWH 3URIHVVRU RI *HRORJ\ , FHUWLI\ WKDW , KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -£LGHV / (DGHV &R&KDLUPDQ $VVRFLDWH 3URIHVVRU RI *HRORJ\ , FHUWLI\ WKDW , KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ DV )UDSN 1 %ODQ&KDUW 3URIHVVRU RI *HRORJ\ , FHUWLI\ WKDW , KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 4 5DQGD]]R 3URIHVVRU RI *HRORJ\

PAGE 186

, FHUWLI\ WKDW , KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ %\URULI ( 5XWK 3URIHVVRU RI &LYLO (QJLQHHULQJ , FHUWLI\ WKDW , KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GH &KULVWµSKHU & 0DWKHZVRQ 3URIHVVRU RI *HRORJ\ 7H[DV $t0 8QLYHUVLW\ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI *HRORJ\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI *HRORJ\ $XJXVW 'HDQ *UDGXDWH 6FKRRO