6 (k -k.) 6. (k -kj q,q' m 1 2 i 1 2 x F^d^.kj) F^" q ^kj,^) (C-38) The remaining delta functions allow us to perform the kÂ„-integrations Then we obtain 2 2 N(N-1) nA^ f + H k l ^ ; yv = e 2 ^ 2 J dk i e ~ 6 ^ ^> q+q x Fj'^Ck^k^ F Â„" q > (fc 1 k 1 ) (C-39) Comparing this result with Equation (C-18) we can identify the terms above as

PAGE 145

139 u 1 I h, ti = -r Â„ Â„ = (C-40) W ;y v 2 er yp er ]}"\i' v Therefore the neglect of correlations in the density operator leads to the result that the i^m contribution to I must vanish. The final result we have obtained is 2 2 4ne 4 A 3 f ^ k l = -^2R py"'Vy' \ dk l ) dk 2 e 2m H_ ,,2 2. x e XC 2m U 2 V f (k ,k ) (C-41) where f(k r k 2 ) k^k 2 2 E {(Â£ + 1) T Â£; / + x + Â£T &;Â£ 2 x } (C-42) (24) We conclude here by identifying f (k.. ,k.) as f(k l5 k 2 ) = k 2 k 2 2/3 g ff (k 1 ,k 2 ) (C-43) where g (k ,k ) is the free-free Gaunt factor. 2 9 23 42 43

PAGE 146

APPENDIX D THE PARABOLIC REPRESENTATION Schrodinger 's equation for hydrogen-like atoms is separable in parabolic coordinates. According to Bethe and Salpeter "This alternative is connected with the degeneracy of the eigenvalues belonging to like principal and different orbital quantum numbers. The connection between spherical coordinates and the parabolic coordinates g, n, and may be expressed by x = E,r\ cosij) E, = r + z y = 5n sine)) n = r z 1 Â—1 v z = (Â£ n) (j) = tan x r = ~ (| + n) (D-l) The details of the separation and solution of the Schrodinger equation in parabolic coordinates are given in some detail in Reference (11) The normalized eigenfunction is given by im. N l/2m m _.Â„ m ,_ _,. ; (?n) L ni+ m(^> L n 2+ m (erl) (D 2) where Â£= and the L's are the associated Laguerre polynomials. na o n = n + n + |m| +1 } (D-3) where n is the usual principal quantum number. For fixed m, n (or n ) runs from to n-|m|-l. Also m runs from to n-1 It is convenient to 140

PAGE 147

141 define a quantum number q: q = n l n 2 (D 4 ) The number q is called "the electric quantum number". Using these relations and the allowed values of n (and n ) and m, we can generate the quantum numbers n,q,m which specify the hydrogenic states in the parabolic representation. The Stark effect for hydrogen-like atoms is especially amenable to calculation within the parabolic representation. The interaction to consider is (see Appendix A) : V. nt = eze ( D _5) The electric field e defines the z-direction of the atomic system. A first-order perturbation treatment of this interaction yields the energy level shifts of a hydrogen-like atom for the linear Stark effect. When this calculation is carried out the level shifts are given by 3 a e AE nqm = 2 T nqE (D 6) Note that the energy levels are still degenerate with respect to the quantum number m. This degeneracy is a consequence of the rotational symmetry of the perturbed Hamiltonian about the z-axis and remains in all orders of perturbation theory.

PAGE 148

APPENDIX E CALCULATION OF RADIATOR DIPOLE MATRIX ELEMENTS In this appendix we wish to derive a computational form for the radiator dipole moment matrix elements in Equation (1-94) The expression we are interested in is -$ D li *.** (E-l) where | 1> represents the ground state of the hydrogen-like radiator. Employing the parabolic representation introduced in Appendix D for the hydrogenic states i and i' we have D = -<100|d|nq'm'> (E-2) where n is the principal quantum number for the upper state of the transition and q andm.ar^the parabolic quantum numbers. With the notation of Edmonds we may expand the vector dot product into a product of tensor operators. D I (-l) k <100|d |nq'm'> (E-3) n k k k k i = E E E (-1) k 1 m 1 Â£ 2 m 2 L L Ilk x <100|d |n& m > (E-4) The state | 100> is equivalent in the two representations |nqm> and |n&-m>. Now we must evaluate the matrix elements of the spherical tensor operators d between spherical states. From Edmonds, d k (f ) 1/2 er Y 1)k (fl) (E-5) 142 *

PAGE 149

143 Inserting this and performing the angular integrals of the spherical matrix elements we obtain: k D. .. = I Â£ X (-1) 11 Â„ Â„ 11 2 2 1 k ^ l 2 m 2 X ( 1} K2Â£ 1+ 1)C2Â£ 2+ 1)] (^ _, )( Q \ )( k m 2)( J Q 2 ) x <10 I er I nÂ£ > (E-6) The last two factors here are radial matrix elements of er. In obtaining this equation we have made use of the following identity \ da \* Â™ %m 2 <> Y 3 m 3 < D ? (2Â£+l)(2Â£ 9 +l)(2Â£Â„+l) A l 2 \ A % 2 \ = [ t-^ 1Â— ] 1/Z ^0 O'V m, mÂ„ ; (E-7) 4tt 1 2 3 The 3-j symbols vanish unless the following angular momentum rules are met: (i) The triangle identity, K-JU i^i^ + ilj ; (E-8) (ii) m + m 2 + m 3 = ; (E-9) (iii) if m = m = m = then I + I + I = 2n (n = 0,1,2,...) (E-10) The important symmetry properties of the 3-j symbols are given by Edmonds :

PAGE 150

144 (iv) An even permutation of the columns leaves the numerical value of the 3-j symbol unchanged: h h h m j 2 h h m h h h m l m 2 m 3 m 2 m 3 m i m 3 m l m 2 (v) An odd permutation of the columns is equivalent to multiplication by (-1)^1 ^2 ^3: ( 1 2 3 ) = (-1) j l + V j 3 ( 2 1 h (E-12) m 1 m 2 m 3 m 2 ^ m 3 (vi) Also, i 1 3l 33 ) = (-l) j l +j 2 +j 3 ( X 2 3 ) (E-13) m m m -m -m^ -m Now we note that, in Equation (E-6) ,Â£=Â£,_ = 1 because of rules (i) and (iii) Also rule (ii) requires (-l) k+m l = 1 (E-14) Thus the angular momentum rules satisfied by the 3-j symbols have allowed us to simplify Equation (E-6) considerably: D..i = 1 I ii 1 2' k mm x ( 1 \ )( I X ) || 2 (E-15) -m -k k mÂ„ 41 Some cancellation has occurred due to the following identity: ( J j ) m ( 1} i-n. (2j + ir l/2 (E 16) (J m -m Now rule (ii) allows us to perform the sums over mand m D... L k

PAGE 151

145 ,1 1 W 1 1 N | 1 2 x (n t -0 || (E-17) ^k -k 0^0 k -k Using rule (iv) we obtain D iit = Â£ (J ) 2 | | 2 (E-18) When this 3-j symbol is evaluated using the above identity we obtain D.., = Z -| | (E-19) A convenient form for is given by Vidal, Cooper, and Smith. n-1 n-1 =6 (-l) 1/Z(1 ^" n) [2Â£+l] 1/2 ( 2 J ) (E-20) mm' m-q m+q 2 2 m Inserting this into Equation (E-19) we obtain n-1 n-1 .. D... E { (_Dl/2(l-k-q-n) j2 2 n m,-k v m-q m+q ~2 ~2 _m X{6 km'^ 1/2(1+m '" q, n) I^C) "I, \)> -k,m 'I m-q m+q -m 1 9 x Â— | | ( (E-21) C + \ n ~^ n-1 n-1 n-1 = 6 (-l) 1 ~ n+m 2 1 ( 2 2 )( 2 2 ) mm m-q m+q -m m-q' m+q -m 2 2 2 2 x || 2 (E-22) Equation (E-22) is now in a form convenient for computation. The 3-j symbols are computed using a subroutine given in Reference (45).

PAGE 152

APPENDIX F THE MANY-PARTICLE FUNCTION r(Aoj) The definition of the many-particle function r(Aw) is obtained by combining Equation (1-76) with the result for given in Equation (C-41) Upon making this step we find: / o 2 2 2 4 Â™ 4 f r r K k i -u Â£-(k 2 a r(4 ., _i f_J] ) dt J dk j dk ,ut.-( -^ e 2/2 k i> f 3tt 12 (F-l) Here n is the density of the electron perturbers in the plamsa; A is the thermal wavelength of the electrons; = (kT)" 1 for the electrons. The function Â£(1^, kp was defined in Appendix C. It is related to the free-free Gaunt factor 42 43 by the following: 23 f(k x k 2 ) = k 1 k 2 Â— g ff (k v k 2 ) (F-2) We insert a theta function into Equation (F-l) in order to extend the lower limit on the t-integration to -. OO 00 CO 4ne A r(Aaj) = -i [ ^L] 3tt 2 2 Ek l 00 00 CO \ dt\ dt \ dk 2 G(t)e 1Awt eit: fe (k 2 k l> Â• e 2m fCkp k 2 ) ( F 3 ) i ^V^ J ^ \ dk \ dkÂ„ ^r]dz V^ e 1 iAut z+iri 2 2 B 2 2 ^ k 1 -it Â£(fcf kf) -f 2m 2 1 e 2m f(k r k 2 ) (F-4) 146

PAGE 153

147 We have inserted the integral definition of the theta function. 16 We define' n to be the positive infinitesimal. We may now perform the t-integration in Equation (F-4) OS CO co 2 2 r(A.) = l^lÂ£l J dz ^ 5 dk i 5 ^ e "^ fCk l'V 6 {Aa, ~ Z "'2m~ (V k l )} Â• ( F ~ 5 ) Let us now define a new function of Aw: 2 2 4.3 f r ? k i 5 dk i 5 G(Au>) = -tt[ T ] \ d^ \ dk 2 e p 2m f(k ,k ) 3tt 2 6 {Aal to (k 2" k l )} (F_6) With this definition, Equation (F-5) becomes CO 5 r(Aco) = \ dz Â—VG(Aoj-z) (F-7) At this point we apply the following identity -^ -> P \ ~ 1tt5(z) (F-8) We then obtain r(Au) 00 oo _I P I dz G(Au-z) + [ dz G(Aw z)6(z) ^ (p 9) Â—CO Â—CO CO p J dz SÂ£ + iG(AW) Â• (F 10 > This equation allows us to identify G(Aoi) as the imaginary part of the function r(Aio) :

PAGE 154

148 r im (Aa>) = G(Aoj) ; (F-ll) CO i'S r T (z) r_ (Aw) P \ dz m (F-12) Re n i z-Aw We now must develop a computational form for the function T (Aw) where 00 oo 2 2 4ne \ [ \ Â„ 5 dk i J r im (AÂ„) -Â„ [Â— ji] \ d kl dk 2 2m Â£(k ,kj) JIT *' o Â•6 {Aco~ (k^-k*)} (F-13) We now insert the definition of Equation (F-2) and make the following change of variables: k i 4h h zr K 2 Â• < F 14) n h We obtain 4 3 4ne \_ 2 Â„ 3 n tk \ r Tt r me 4 r 2n r T (Aw) = -it [ =-] [Â— ] [Â— rl Iiri L 2 J \2 J L 4 J 2/3 3tt h me CO oo 2 f f _K 1 /6 R_ 2 2 \ d^ I dK 2 e "KjK g ff (K 1 ,K 2 )6{An-K 2 + Kj} (F-15) where 3 2 Afi = ~Ao) ; 6 R = -25K B T ; (F-16) me me are the frequency and temperature in Rydberg units. We consider first the case where Au)>0. We employ an identity from Messiah to simplify the delta function with the result

PAGE 155

149 4ne X 2 ,_3 Im l 2 Jl 2 J L 4 J 2/3 3tt H me 00 CO J dK l J dK 2 e ~ Kl/6R K i g ff ( K r K 2 > n\ r 2ne r 8Trm -|l/2 2-n \ -k /QÂ„ l jJ*" 0) [-y-H-j^-] 7 y 7 j d k;L e l'^K^OL^X^CF-lQ) o The one-dimensional integral in this equation may be evaluated rapidly and accurately using a Gauss-Laguerre quadrature formula. Proceeding in a similar manner and using the fact that g f (k ,k ) = g ffr (k ,k ) we obtain r im (Ato<0) = e l An l /0 R r im (Aoj>0) (F-20) After computing T (Aw) in this manner we may obtain T (Ao)) by lm Re numerically evaluating the Hilbert transform of Equation (F-12)

PAGE 156

APPENDIX G A COMPUTATIONAL FORM FOR THE ATOMIC FACTOR We indicated previously that the electron broadening operator for our case will factor into a frequency-dependent many-body part times an atomic factor. The many-body function r(Au) was discussed in Appendix F. As a prelude to the development of a computational for the atomic factor we now consider = Â„ -^mlRln^m > Â• (G-l) g m ''11 ll 11 This expression gives the form of the atomic factor in the spherical representation. That there is no internal sum over n here is a consequence of the no-quenching approximation. Using Equations (E-3) (E-5) and (E-7) we obtain = Â£ E (-l) k k Â£,m A/X/Aj-JO JO JO x (-l) m + m l [(21 + 1)(2Â£ 1 + 1)] 1/2 ( )( -m k m } I IV % 1 Â£' x [(22 + 1)(22' + 1)] 1/2 ( 0^-B^ -k m*1 (G-2) Rule (ii) (Appendix E) for 3-j symbols causes the phase factors to cancel to unity. If we also use rules (iii) (iv) and (vi) to rearrange this expression, we obtain: Z E (2Â£ + 1) k 2,111 tli Â£ 1 Â£, Â£' 1 2. Â£' 12. 1/2 ( )( )( )( X ) x [(22 + 1)(2Â£' + 1)] /Z S 0, -m k m 1 V -m' k m J (G-3) 150

PAGE 157

151 41 The following identity allows us to perform the sum over k,m 1 : ( 3 1 J 2 3 3 ( 3 l J 2 J 3 } E m m m ; V m ml. = (2j + 1) 6. ., 6 m im2 1 2 3 1 2 3 3 J 3 J 3 m 3 m 3 (G-4) After performing this sum we obtain a much simpler expression. tlÂ£ 12 = 6 5 E || 2 (21. +1) ( ? (G-5) &* nun n J_ J_ *i Since the 3-j symbol must satisfy rules (i) and (iii) the sum over Â£ has only two terms. Performing this sum we obtain 2 A 1 Â£-1 2 = 6.., 6 { I I (2Â£-l) > Â£Â£ mm ' 2 ,Â£1 Â£+1.2 + | I (2Â£ + 3) { 6 } (G-6) The 3-j symbols here are a special case evaluated in Edmonds. After substituting in the values and performing some cancellation we have = 6 Â£Â£l 5^, { | | 2 j^+ | | 2 ^.(G-7) The radial matrix elements are given by Condon and Shortley: 47 CO s 3 a n 2 2 1/2 dr r R(nÂ£) R(n Â£-1) =4 -**[n Â£ ] z z (G-8) where a is the Bohr radius and z is the nuclear charge. When this expression is used in Equation (G-7) we find q 2 2 = 6 flflt 6 Â— 2Â— -Â— {[ n 2 -Â£ 2 ]Â£ 11 Â£Â£ mm 2 2Â£+l 4z + [n 2 -(Â£+l) 2 ] (Â£+1)} (G-9) After collecting terms we arrive at a convenient form. Q 2 2 n 11 2 2 = 6 n Â„ 6 Â— ^Â— [n -Â£ -Â£-1] Â£Â£ mm I (G-10)

PAGE 158

152 Our intent here is to obtain a computational form for the atomic part of the electron broadening operator. Now we will show that Equation (G-10) is a valuable step in the development of a computational form for the atomic factor in the parabolic representation. We wish to compute = I -< n q m |r| nq'm'> (G-ll) q l m i Now the sum over q_m that is, > Inq.m > = E Â• (G-13) Vi I I 1 -< n Â£ m |R|nÂ£ m > Â£ A Â£ 2 m 2 Â£ 3 m 3 U 2 2 x t (G-14) Here we may recognize that the two middle factors are just the spherical representation of the atomic factor. We now insert the result appearing in Equation (G-10) = I E Â£ 2 m 2 Â£ 3 m 3 >' f (G-15)

PAGE 159

153 Q 2 2 = y o 1 7 7 % m Â— [ n -1^-4-1] (G-16) 11 4z We again need to make use of Equation (E-20) We then obtain = I {6 (-1) l/2U+m-q-n) [2Â£ + 1] -l/2 Vl X n-1 n-1 2 2 Â£., 9aÂ„n x ( 2 J ^-^-[n 2 -^-!] m-q m+q ,2 11 Â— n Â— n m 4z n-1 n-1 x { ( 1/2(1^-, *-n) + 1/2 2 2 1 m,m 1 m-,-q m+q' -m 9^n 2 1+m n .(q+q') 4z Â£ n-1 n-1 n-1 n-1 2 2 2 ? m-q m+q -m y v m-q' m+q' -m y [n -Â£ -Â£-1] (G-18) 2 2 2 2 This is the final form for the atomic part of the electron broadening operator.

PAGE 160

APPENDIX H NUMERICAL PROCEDURES Introduction The first two sections have developed the theory needed in computing Stark broadened spectral line profiles. The numerical procedure for producing these profiles involves four basic steps. This appendix will provide a discussion of the four programs needed, as well as the computational techniques involved. The first three programs carry out the production of the electric microfield probability distribution function P(e). The fourth program computes the Stark broadened profile for a given set of plasma parameters. Also, this final program generates plots of the Stark profiles and the Doppler-corrected profiles. In addition to discussing the numerical techniques employed, we discuss sources of error and the general reliability of the programs in their present form. The Alpha-Search Program In Section II we indicated that a is a variable effective range parameter. Essentially, a determines how much of the calculation will be treated by the collective coordinate method. It enters the calculation in the following manner: N l N 2 V VÂ„ + I W.Â„ + I W n (H-l) i0 mO j=l J m=l where V is the total potential energy of the plasma and W.. is given by 154

PAGE 161

155 W. n = XZn 7~ e jO (H-2) J JO We recall that these W's are the short-range central interactions which are treated by cluster-expansion techniques. The term V defined by these two equations contains long-range central interations as well as all the noncentral interactionsThis term is treated by the collective coordinate method. By inspecting these two equations and comparing them with Equation II-9, we can see that as a approaches unity, the contribution of central interactions to V vanishes. In this limit, then, V contains contributions only from the noncentral interactions. In this sense, as we stated previously, the parameter a "measures" the relative importance of the short-range interactions and the collective coordinate contribution. In the calculation of P(e), two basic approximations have been made. First, we have terminated the cluster expansion at second order. Second, we have neglected correction terms in the Jacobian of the transformation from spatial coordinates to collective coordinates. As is well discussed in the literature, > > t ^ e a pp ro p r i a te choice of the value of a should make negligible the error in P(e) due to each of these two approximations. If this is the case, we should be able to locate a range of a values for which the final computed P(e) is stationary. Indeed, this is the case. The a-search program attempts to locate an "a-plateau" region over which T(L) is stationary. In all cases considered here, there is an obvious a-plateau region. The a-search program currently requires 256 k bytes of memory on the IBM 370-165 at the Northeast Regional Data Center at the University of Florida. The program computes T(L) in the first approximation at several L values (currently four values) for each a value. A typical

PAGE 162

Table H-l. The electric microfield distribution function P(e) is tabulated for different values of a, the effective range parameter, a = 0.8. The radiator is hydrogenlc argon (X= +17), perturbed by ions of charge +1.

PAGE 163

TABLE. H-l. 157 P(E) E a=0.95 a =1.05 a=1.15 0-1.25 a-1.35 0.1 0.235 0.237 0.240 0.239 0.232 0.2 0.758 0.763 0.759 0.767 0.751 0.3 1.223 1.227 1.232 1.230 1.215 0.4 1.430 1.431 1.431 1.429 1.422 0.5 1.387 1.384 1.382 1.380 1.381 0o6 1.196 1.193 1.189 1.188 1.194 0.7 0.959 0.955 0.952 0.952 0.959 0.8 0.734 0.731 0.729 0.729 0.736 0.9 0.546 0.544 0.543 0.544 0.549 1.0 0.400 0.399 0.398 0.399 0.404 1.1 0.291 0.290 0.291 0.292 0.295 1.2 0.212 0.212 0.212 0.213 0.215 1.3 0.154 0.155 0.155 0.156 0.158 1.4 0.113 0.113 0.114 0.114 0.116 1.5 0.084 0.084 0.084 0.085 0.086 1.6 0.062 0.062 0.063 0.063 0.064 1.7 0.047 0.047 0.047 0.048 0.048 1.8 0.035 0.036 0.036 0.036 0.037 1.9 0.027 0.027 0.028 0.028 0.028 2.0 0.021 0.021 0.021 0.021 0.022

PAGE 164

158 run for 20 a values requires vL.2 minutes of computer time. Since we employ the first approximation to T(L) the major part of the program is directed at computing the terms I 1Q (L) and I (L) These one-dimensional integrations are performed by subdividing the range of integration and using a 32-point Gauss-Legendre quadrature formula in each sub-interval. This procedure has been tested for numerical accuracy; results indicate that we have obtained at least six significant figures of numerical precision for I, Q (L) and Ig-rCL). Thus the numerical precision present in the a-search program is comfortably redundant. Presently, the choice of a requires a decision by the programmer. A future goal is to develop the program to allow the machine to make this choice. After an inspection of the output for T(L) it is a straightforward task to locate a range of a values for which T(L) is approximately stationary. In certain cases (especially a = .6,. 8), the a-plateau appears to be quite narrow. However, as is indicated in Table H~l, the final curve for P(e) is much more stable with respect to a variations than might be expected. In addition, the effect on P(e) due to a variations offers one type of error estimate for the final P(e) curves. From this point of view, we may expect that errors in P(e) will not exceed a few per cent. The P(e) Production Program The selected a value is fed as input into the P(e) production program. This program requires 384 k bytes of storage and may require from ^4.0 to 7.5 minutes of computer time (depending on the input parameters). Three major job steps are required, with intermediate results stored on magnetic disk storage. The first step produces I (L)

PAGE 165

159 The second step produces IÂ„(L). The third step computes T(L) and performs the integral transform /to produce P(e) The final P(e) appears as printed and punched output as well as graphical display. The method employed to compute I (L) is the same as that discussed for the a search. The difference is that here we compute I (L) over a finer mesh of L values with consequently increased CPU time. For R = a normal CPU time for this step (for 95 L values) is approximately 50 seconds. This time is doubled for cases of R ^ 0. We shall only repeat here that the accuracy in the computation of 1, (L) probably exceeds six significant figures. The evaluation of IÂ„(L) involves a two-dimensional integration so that this step requires significantly more computer time than the first step. The case R = requires about 2.8 minutes of CPU time. This time is to be doubled if R / 0. The two-dimensional integration is carried out using a product of two one-dimensional rules (Trapezoidal and Simpson rules) Also an algorithm developed especially for these half-quadrant 48 integrations is employed. Currently, the sum over k is terminated at k = 6. We obtain about three significant figures with k = 6 but it has been pointed out that for higher a. values (eg. a = /3) more terms may 49 be needed. The cost of evaluating these terms is considerable so that it is important to remember that IÂ„(L) is expected to be a small correction to I (L) That is to say, in the same spirit in which we linearized the Debye-HUckel pair correlation function, we now recognize that an error in I~(L) as large as ten per cent will not cause more than a two or three per cent error in the final P(e). (Normally IÂ„(L) is less than twenty per cent of the magnitude of I (L).) This gives the justification for truncating the sum over k at k = 6.

PAGE 166

160 The final step in this program reads as input the results of the previous step, computes T(L) in the second approximation, and evaluates the sine transform. This step requires one minute of CPU time. As we have indicated previously we must evaluate the following integral: CO P(e) 2e7T~ 1 \ L T(L) sin(EL) dL f (H-3) o where T(L) = exp {-yL 2 + I 1 (L) + I^L)} (H-4) The following approach was suggested by Coldwell. We approximate T(L) in the following manner: exp[f(x)] = E 9(x. x) 6(x x.) exp[a.x + b.] (H-5) l + l 11 i where f f i+l i f .x. f .X. a l-*i + l-*l "i" 11 + 1 1 + 11 Â• (H- X. -, X. 1 + 1 1 We have performed a piece-wise linear fit to the smoothe function in the exponent of T(L) If we insert this expression into the integral of Equation (H-3) we obtain J I = \ x exp [f(x)] sin(ex) dx o x b. 1+1 a .x x e sin(Ex) dx < (H-7) X. 1 This integral may be performed analytically with the result: a.x 2 2 b l a e i r e "i I = 2 e {Â— Â— [(a.x Â— -) sin ex i a + e a + e i i

PAGE 167

2a. (ex = -j Â— ) cos ex]} a + e 161 X i+1 (H-8) X l This computation is carried out using IBM's extended precision option to insure adequate numerical accuracy. As in all numerical transforms of this type, at large values of Â£ we encounter unphysical oscillations in the computed P(e). One interpretation of this phenomenon is that the numerical error is of the same order of magnitude as the exact value of the transform. With this in mind, we may regard the amplitude of these oscillations as an estimate of the error obtained in the numerical transform. Indeed, checks on the numerical accuracy of this technique indicate that, in the region where P(e) shows structure, we obtain about three significant figures of precision. Extension of the microfield table into the asymptotic region (large e) is carried out by the third computer program. The Asymptotic Microfield Program In the third program, the asymptotic microfield distribution function described in Section II is joined smoothly to the computed transform. Let us make the following definitions. The range of e values corresponding to the microfield peak we define to be Region I. The range of e values, e>100 (where we measure Â£ in units of e n the Holtsmark field strength), we designate Region III. The intermediate region (Region II) contains the unphysical oscillations. We assume that for e>100, P(e) is given exactly by the asymptotic form. The approach taken here is to use the reliable results from Regions I and III to interpolate into Region II. 5/2 If we scale the data in Regions I and III by e (the inverse of the asymptotic Holtsmark distribution) and take the logarithm of the

PAGE 168

162 result, we obtain a smooth curve. A fit to this curve is performed using a least-squares Monte Carlo Spline fitting routine. We simply invert the fit to obtain P(e) in Region II. In this manner we preserve the accuracy achieved in Region I and obtain a P(e) which makes a smooth transition to the asymptotic form. In order to make a statement about the numberical accuracy of this technique it is necessary to compare the fitted P(e) with the transform result in Region II. When these two results are plotted, several facts can be immediately noticed. First, as the two curves enter Region II, they overlie one another. Second, as e increases, the transform result begins to oscillate closely around the fitted P(e). These two facts tend to support our previous error estimate of a few per cent for P(e). In addition, the magnitude of P(e) in Region II is so small (^10~ ) that errors in this region are not likely to cause any difficulty in subsequent line profile calculations. The Stark Profile Program The fourth program generates the function J(u,e) discussed in Section I and carries out the microfield average over the static ions to produce the Stark broadened profile. In a final step, Doppler corrections are added by the convolution indicated in Equation (1-6) The final profile appears as printed and punched output as well as graphical display. In addition to the appropriate microfield table, basic input to this program consists of the electron number density, the electron kinetic temperature, the nuclear charge of the radiator, and the principal quantum number n of the upper level of the desired Lyman transition. The CPU times required are 2.1 minutes for Lyman-a and 6.8 minutes for

PAGE 169

163 Lymana Most of this time is consumed by the matrix inversions required to produce J(w,e). The matrices which must be inverted are of order 2 n u Preliminary computations of the electron broadening function r(Aw) for the cases studied in this work indicated that T (Aw) is smaller in Re 3 magnitude than Fj (Aw) by a factor of vl_0 Therefore the program does not compute r (Aw) and it is assumed to be negligible. This causes most of the shift and asymmetry of the resulting line profile to vanish. We mention here that it would be straightforward task to include T (Aw). Re However, by neglecting r (Aw) we achieve a savings of approximately 3 minutes of computer time. Another feature of the line profile calculation is an approximate treatment of electron correlations. In order to approximate the effect of electron correlations, we modify our ideal gas result for T T (Aw) such Im that, F Im (Aw i V = r im ( V < H ~ 9) This procedure is suggested by Figure 1 of Reference 22. If we impose the cutoff not at w but at some fraction or multiple thereof, we find that the line center will be lowered or raised. However the changes are small and quite insensitive to the cutoff frequency. In the Classical Path Impact Theory, the operator corresponding to r Re (Aw) is also neglected. Also, that theory treats electron correlations by a cutoff procedure yielding a result similar in form to that given in Equation (H-9.) These two facts appear to give the present theory the form of a quantum mechanical analog to the Classical Path Impact Theory.

PAGE 170

164 J(oi,e) is given by Equation (1-95): J(o),e) = -it Id I D, K p., (H-10) i 11 11 1 n where D and p are real. Now <Â£. A 1 + IB.., (H-ll) where from Equations (1-96) and (1-97) we have (after letting F (Aco) vanish) : A -5 {Aoj 4 -gn q.e} (H-12) ii ii z nz u i -v -> B.., = K" 2 r im (Aa>) ^ l lin '* nt (H-13) We have K. = C. + iF. ., (H-14) ii n n' v such that [A + IB] [C + iF] = JL and JL is the unit matrix. Now J(tD,e) reduces to J(oj,e) Â— rr I D. F.., p., (H-15) ... ii ii i n From Reference 19 we have: F.., = -(B + AB _1 A)" 1 .., (H-16) ii ii A final form for J(u),e) is given by J(a),e) = tt~ Z D. t (B + AB A)"*, p ., (H-17) ii' x This expression makes it obvious that for every value of Aid and e we must invert a matrix. The matrix inversion is carried out by an IBM-supplied subroutine MINV which has been modified to employ extended precision

PAGE 171

165 arithmetic. The atomic factor in Eauation (H-5) is evaluated in Appendix G. 3 The n distinct 3-j symbols required are computed by a subroutine given in Reference 33. T (Aid) is calculated in Appendix F. After J(u>,e) has been computed, the integration over the microfield distribution function P(e) is performed by a Trapezoidal Rule formula. In order to assess the numerical precision in the computation of J(o),e) we consider the last three equations in Section I. Starting with Equation (1-97) we note: (1) as discussed in Appendix F, T (Aw) is computed using a 40 point Gauss-Laguerre quadrature formula Â— numerical tests indicate that we obtain at least six figure accuracy; (2) in the computation of the atomic factor, we essentially are using single precision arithmetic (8 significant figures) to perform an integer arithmetic calculation. We obtain at least six figure accuracy in calculating H(Aa)) as given in Equation (1-97) Now consider Equation (1-96). In the present work, all numerical operations in the production of R (w) the effective radiator resolvent operator, (including the matrix inversion) are carried out using IBM's extended precision option (33 significant figures). We retain six figure accuracy. In the case of Equation (1-95), argument (2) above holds for the operator D. The result is that we obtain at least six figure accuracy in the calculation of J(oi, e) There are two possible checks on the accuracy of the microfield integration. The first check is to halve the integration interval and double the number of points. When this check was applied to a test case, we obtained ^4 place agreement between the two results. A second check involves extending the limit of integration. This check applied to a worst case (slowly decaying P(e), e.g., T = 0.25) yielded roughly 3 R

PAGE 172

166 place agreement. The result is that we obtain 3 significant figure accuracy for the Stark profiles. Actually the precision for the Doppler-corrected profiles is slightly better than this due to the "smoothing" effect of the Doppler convolution. Our conclusion is that the numerical error present in the final line profile is almost entirely due to the numerical error in the microfield functions. This allows us to set a rather conservative error bar on the final line profiles of a few per cent.

PAGE 173

APPENDIX I TABLES OF THE ELECTRIC MICROFIELD DISTRIBUTION FUNCTION P(e) In this appendix we present tables of the electric microfield distribution function P(e) computed using the numerical procedures discussed in Appendix H. The various parameters are defined as follows: A The plasma parameter (= r /A ) The value of this parameter is determined by the temperature and density of the electron perturbers. R The ratio of the density of the charge z specie of ion perturber to the density of the charge z specie. TEMP RATIO The ratio of the electron kinetic temperature to the ion kinetic temperature. CHARGE AT ORIGIN The net charge of the hydrogenic radiator (= z-1). zl,z2 The charges of the ion perturbers. 2 e is expressed in units of e (= e/r ) 167

PAGE 174

168 ELECTRIC MICRQFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURB^RS A= 0.2000 R= 0,0 TEMP RATIQ= 1.00 CHARGE AT ORIGlN= 9*00 Z 1= 1,00 Z2= 9.00 E P(E) 0. 10E 00 0.20E 00 0.30E 00 0.40E 00 0.50E 00 0.60E 00 0.70E 00 0.80E 00 0. 90E 00 0. 10E 01 0, I IE 01 0.1 2E 01 0. 13E 01 0. 14E 01 0.15E 01 0. 16E 01 0. 17E 01 0, 18E 01 0. 19c 01 0.20E 01 0.25E 01 0.3 0E 01 0.35E 01 0.40E 01 Q.45E 01 0.50E 01 0.29671E-01 0.60E 01 0.17142E-01 0.7QE 01 0.10789E-01 0.80E 01 0.72993E-02 0.90E 01 0.52378E-02 0.10E 02 0.39335E-02 0.12E 02 0.24105E-02 0.14E 02 0.15585E-02 0.16E 02 0.10512E-02 0.18E 02 0.73717E-03 0.20E 02 0.53550E-03 0.22E 02 0.40156E-03 0.24E 02 0.30975E-03 0.26E 02 0.24490E-03 0.28E 02 0.19777E-03 0-30E 02 0.16255E-03 0.35E 02 0.10503E-03 0.40E 02 0.71638E-04 0.45E 02 0.50974E-04 0.50E 02 0.37507E-04 0.60E 02 0.21932E-04 0.70E 02 0.13850E-04 0.80E 02 0.92562E-05 0.90E 02 0.64616E-05 0. 10E 03 0.46688E-05 0, 82795E-02 = 3 2355E-01 0, 70015E-0 1 0, 1 1 793E 00 0. 1 7206E 00 0. 2281 7E 00 0. 2 8 22 7E 00 0. 33099E 00 0< 37184E 00 0< 40329E 00 0* 42471E 00 0, 4 3629E 00 0. 43883E 00 0. 43352E 00 0, 42178E 00 0. 40507E 00 0 38481E 00 Q< 3G224E 00 0< 33844E 00 0 3 1427E 00 Or 20551E 00 0. 1 31 16E 00 = 85068EÂ•01 Q 57464E-0 1 0. 40516E-01

PAGE 175

169 ELECTRIC MICRQFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURB5RS A= 0,4000 R= 0.0 CHARGE AT ORIGIN= 9.00 TEMP RATIO= 1.00 Zl= 1.00 Z2= 9.00 P(E) 0.10E 00 0.20E 00 0.30E 00 0.40E 00 0.50E 00 0.60E 00 0.70E 00 0.80E 00 0.90E 00 0. 10E 01 0. HE 01 0. 12E 01 0. 13E 01 0.14E 01 0. 15E 01 0.16E 01 0. 17E 01 0. 18E 01 0, 19E 01 0.20E 01 0.25E 01 0.30E 01 0.3SE 01 Q.40E 01 0.45E 01 0.50E 01 0,60E 01 0.70E 01 0.80E 01 0.90E 01 0.10E 02 0.12E 02 0. 14E 02 0. 16E 02 0. 18Â£ 02 0.20E 02 0.22E 02 0.24E 02 0.2&E 02 0.28E 02 0.30E 02 0.35E 02 0.40E 02 0.45E 02 0.50E 02 0.60E 02 0.70E 02 0.80E 02 0.90E 02 0. 10E 03 0. 19933E-01 0.76325E-01 0. 1S982E 00 0.25750E 00 0.35582E 00 0. .44323E 00 0.51 181E 00 0.55773E 00 0, .58074E 00 0.S8321E 00 0.56899E 00 0.54242E 00 0.50765E 00 0.46826E 00 0.42706E 00 0< .38613E 00 0, .34688E 00 0, 31 01 8E 00 0, .2 7649E 00 0. .24600E 00 = 1 3715E 00 0. .79675E-01 0, 48503E01 Q< 3 1248E-01 0< 2 1209E-0 1 0 1 4989E-01 0. 80386E02 0, 45998E-02 0, 2 794 3E-02 Oc 17931E-02 0< 12092E02 0, 62569E03 = 37178E-03 0.. 24365E03 0^ I6914E-03 Oc 12035E03 0, 87 183E-04 = 64236E-04 0 48092E04 0. 3&551E04 0Â„ 28174EÂ•04 0. 15539E04 Oc 91622E05 0. 56849E05 Go 36742EÂ•05 0. 16876EÂ•05 0. 8 5331 E06 0, 46362E06 0, 26642EÂ•06 0,., 160 13E06

PAGE 176

170 ELECTRIC MICROFIELO DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ERS A= 0.6000 R= 0.0 CHARGE AT ORIGIN^ 9*00 TEMP RATIO= I. 00 Zl= 1.00 Z2 = 9.00 PIE) Oc 10E 00 = 20E 00 0. 30E 00 0. 40E 00 0* 5 0E 00 0. 60E 00 Oo 70E 00 = 80E 00 Oo 90E 00 Oo 10E 01 0., 1 IE 01 0, 12E 01 0 13E Oi 0* 14E 5 Oo 15E 01 Oo 16E 01 Oo I 7E Oi Oo 18E oa 0. 19E 01 0. 20E 01 Oo 25E 01 0. 30E 0! 0. 35E 01 Oo 40E 01 0. 45E 01 0. 50E oa Oo 60E 01 0. 70E 01 Oo 80E oi Oo 90E 01 0, 10E 02 Oo 12E 02 0. 14E 02 0. 16E 02 0, 18E 02 0. 20E 02 0. 22E 02 0. 24E 02 0. 26E 02 0. 28E 02 0. 30E 02 0. 35E 02 0. 40E 02 0. 45E 02 0. 50E 02 0. 60E 02 0. 70E 02 0. 80E 02 0. 90E 02 0. 10E 03 0.5Q061E-01 0.18414E 00 0.36197E 00 0.53756E 00 0.67584E 00 0.76003E 00 0.78978E 00 0.77485E 00 0.72874E 00 0.66441E 00 0.59217E 00 0.51927E 00 0.45019E 00 0.38734E 00 0.33 169E 00 0.28332E 00 0.24180E 00 0.20646E 00 0.17652E 00 0.15124E 00 0.72915E-01 0.38276E-01 0.21727E-01 0. 1 3077E-01 0.8 1010E-02 0.51674E-02 0.22912E-02 0.1 1280E-02 0.6101 IE-03 0.35875E-03 0.22692E-03 0.10834E-03 0.6 1023E-04 0.37269E-04 0.23137E-04 0. 14510E-04 0.92342E-05 0.59900E-05 0.39741E-05 0.26941E-05 0.18622E-05 0.79448E-06 0.36830E-06 0. 18222E-06 0.95030E-07 0.29264E-07 0. 10237E-07 0.39452E-08 0.16415E-08 0.72675E-09

PAGE 177

171 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERIUR3ERS A= 0.8000 R= 0.0 TEMP RAT10= 1.00 CHARGE AT ORIGIN^ 9.00 Zl = 1.00 Z2= 9.00 E P(E> 0. 10E 00 0.12237E 00 0.20E 00 0.41742E 00 0.30E 00 0.73441E 00 0.40E 00 0.95661E 00 0.50E 00 0.10474E 01 0.60E 00 0.10281E 01 0.70E 00 0.93966E 00 0.80E 00 0.81936E 00 0.90E 00 0.69277E 00 O.IOE Oi 0.57426E 00 0.11E 01 0.47032E 00 0.12E 01 0.38264E 00 0. 13E 01 0.31040E 00 0. 14E 01 0.25178E 00 0. 15E 01 0.20455E 00 0.16E 01 0.lfc669E 00 0. 17E 01 0.13636E 00 0. 18E 01 0. 1 1204E 00 0. 19E 01 0.92505E-01 0.20E 01 0.76738E-01 0.25E 01 0.32482E-01 0.30E 01 0.15390E-01 0.35E 01 0.77776E-02 0.40E 01 0.41S04E-02 0.45E 01 0.23258E-02 0.50E 01 0.13616E-02 0.60E 01 0.52827E-03 0.70E 01 0.23S64E-03 0.80E 01 0.11756E-Q3 0.90E 01 0.64287E-04 O.IOE 02 0.37953E-04 0.12E 02 0.15666E-04 0.14E 02 0.73255E-05 0. 16E 02 0.35754E-05 0.18E 02 0.18041E-05 0.20E 02 0.93957E-06 0.22E 02 0.50419E-06 0.24E 02 0.27831E-06 0.2GE 02 0.15776E-06 0.28E 02 0.91682E-07 0.30E 02 0.54532E-07 0.35E 02 0.16307E-07 0.40E 02 0.54218E-08 0.45E 02 0.19609E-08 0.5QE 02 0.75974E-09 0.60E 02 0.13436E-09 0.70E 02 0.28175E-10 0.80E 02 0.67364E-11 0.90E 02 0.17885E-11 O.IOE 03 0.5 1737E-12

PAGE 178

172 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ZRS A= 0.2000 R= 0, CHARGE AT ORIGIN= 17.00 TEMP RATIO= 1.00 Zl= I. 00 22= 17.00 P(E) 0. 10E 00 0.20E 00 0.30E 00 0.40E 00 0.50E 00 0.60E 00 0.70E 00 O. 8 0E 00 0.90E 00 0. 10E 01 0. 1 IE 01 0. 12E 01 0.13E 01 0.14E 01 0. 15E 01 0. 16E 01 0.17E 01 0. 13E 01 0. 19E 01 0.20E 01 0.25E 01 0.30E 01 0.35E 01 0.40E 01 0.45E 01 0.50E 01 0.60E 01 0.70E 01 0.80E 01 0.90E 01 0. 10E 02 0. 12E 02 0. 14E 02 0. 16E 02 0.18E 02 0.20E 02 0.22E 02 0.24E 02 0.26E 02 0.28E 02 0.30E 02 0.35E 02 O.40E 02 0.45E 02 0.50E 02 0.60E 02 0. 70E 02 0.80E 02 0.90E 02 0.10E 03 0.9S228E-02 0.37158E-01 0.80215E-01 0.13465E 00 0.19562E 00 0.25808E 00 0.3 1733E 00 0.36968E 00 0.41225E 00 0.44355E 00 0.46313E 00 0.47149E 00 0.46980E 00 0.45964E 00 0.44278E 00 0.42099E 00 0.39590E 00 0.36892E 00 0.34I22E 00 0.31371E 00 0.19583E 00 0.12025E 00 0.75688E-01 0.49866E-01 0.34268E-01 0.24542E-01 0.13796E-01 0.83781E-02 0.53663E-02 0.36029E-02 0.25254E-02 0.13890E-02 0.36449E-03 0.58938E-03 0.42614E-03 0.31716E-03 0.24048E-03 0.18514E-03 0.1 4534E-03 0.1 1575E-03 0.93423E-04 0.57539E-04 0.37575E-04 0.25666E-04 0. 18169E-04 0.98870E-05 0.58438E-05 0.36723E-05 0.24195E-05 0.16551E-05

PAGE 179

173 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTJR3ERS A= 0.4000 R= 0.0 TEMP RATIO= I. 00 CHARGE AT ORIGIN^ 17.00 Zl = 1.00 12 = 17.00 E P(E> 0.10E 00 0.28835E-01 0.20E 00 0.10951E 00 0.30E 00 0.22627E 00 0.40E 00 0.35799E 00 0.50E 00 0.48363E 00 0.60E 00 0.58673E 00 0.70E 00 0.65769E 00 0.80E 00 0.69383E 00 0.90E 00 0.69796E 00 0. 10E 01 0.67612E 00 0.11E 01 0.63564E 00 0. 12E 01 0.58360E 00 O. 13E 01 0.52597E 00 0. 14E 01 0.46730E 00 0. 15E 01 0.4 1072E 00 0.16E 01 0.35815E 00 0. 17E 01 0.31061E 00 0. 18E 01 0.26843E 00 0. 19E 01 0.23153E 00 0.20E 01 0.19958E 00 0.25E 01 0.96666E-01 0.30E 01 0.50139E-01 0.35E 01 0.27997E-01 0.40E 01 0.16809E-01 0.45E 01 0.10658E-01 0.50E 01 0.70776E-02 0.60E 01 0.34344E-02 0.70E 01 0.18018E-02 0.80E 01 0.10092E-02 0.90E 01 0.60027E-03 0.10E 02 0.37715E-03 0.12E 02 0.1717SE-03 0.14E 02 0.91379E-04 0.16E 02 0.54402E-04 0.18E 02 0.34735E-04 0.20E 02 Q.22793E-04 0.22E 02 0.14962E-04 0.24E 02 0.10010E-04 0.26E 02 0.68513E-05 0.28E 02 0.47876E-05 0.30E 02 0.34090E-05 0.35E 02 0.15630E-05 0.40E 02 0.77485E-06 0.4SE 02 0.40847E-06 0.50E 02 0.22627E-06 0.60E 02 0.78005E-07 0.70E 02 0.30289E-07 0.80E 02 0.12870E-07 0.90E 02 0.58705E-08 0. 10E 03 0.28358E-08

PAGE 180

174 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBcRS A= 0.6000 R= 0.0 TEMP RATIQ= 1.00 CHARGE AT ORIGIN^ 17.00 Zl= I. 00 Z2= 17.00 E P(E) 0.10E 00 0.87047E-01 0.20E 00 0.31204E 00 0.30E 00 0.58882E 00 0.40E 00 0.82879E 00 0.50E 00 0.97782E 00 0.60E 00 0.10245E 01 0.70E 00 0.98700E 00 0.80E 00 0.89527E 00 0.90E 00 0.77760E 00 0. 10E 01 0.65488E 00 O.ilE 01 0.53982E 00 0. 12E 01 0.43866E 00 0.13E 01 0.35331E 00 0. 14E 01 0.28320E 00 0. 15E 01 0.22662E 00 0. 16E 01 0. 18145E 00 0 17E 01 0. 14561E 00 0. 18E 01 0.1 1725E 00 0.19E 01 0.94821E-01 0.20E 01 0.77057E-01 0.25E 01 0.29511E-01 0.30E 01 0.12954E-01 0. 35E 01 0.65264E-Q2 0.40E 01 0.37288E-02 0.45E 01 0.23715E-02 0.50E 01 0.15980E-02 0.60E 01 0.74376E-03 0.70E 01 0.35938E-03 0.80E 01 0.18001E-03 0.90E 01 0.93331E-04 0.10E 02 0.50016E-04 0.12E 02 0.15767E-04 0.14E 02 0.5S728E-05 0.1 6E 02 0.2 1825E-05 0. 18E 02 0.93600E-06 0.20E 02 0.43440E-06 0.22E 02 0.21561E-06 0.246 02 0.11311E-06 0.26E 02 0.61975E-07 0.28E 02 0.35056E-07 0.30E 02 0.20323E-07 0.35E 02 0.57179E-08 0.40E 02 0.17985E-08 0.45E 02 0-61783E-09 0.50E 02 0.22812E-09 0.60E 02 0.36929E-10 0. 70E 02 0.71466E-1 I 0.80E 02 0.15869E-H 0.90E 02 0.39320E-12 0.10E 03 0.10660E-12 0.80E 02 0.15869E-11 0.90E 02 0.39320E-12

PAGE 181

175 ELECTRIC MICROFtELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0.8000 R0.0 TEMP RATION I. 00 CHARGE AT ORIGIN= 17.00 Zl = 1.00 Z2 = 17.00 E PIE) O. 10E 00 0.24017E 00 0.20E 00 0.7692SE 00 0.30E 00 0.12320E 01 C.40E 00 0.14314E 01 0.50E 00 0.13S16E 01 0.60E 00 0.1 1891E 01 0.70E 00 0.9S200E 00 0.80E 00 0.72853E 00 0.90E 00 0.54282E 00 O.IOE 01 0.39835E 00 O.llE 01 0.29057E 00 0. 12E 01 0.21 173E 00 0.13E 01 0.15468E 00 0. 14E 01 0. 1 1 377E 00 0. 15E 01 0.84086E-01 0. 16E 01 0.62798E-01 0.17E 01 0.47238E-01 0.18E 01 Q.35784E-01 O. 19E 01 0.27502E-01 0.20E 01 0.21 122E-01 0.25E 01 0.61281E-02 0.30E 01 0.23034E-02 0.35E 01 0.1 1 119E-02 0.40E 01 0.63823E-03 0.45E 01 0.37731E-03 0.50E 01 0.22775E-03 0.60E 01 0.84627E-04 0.70E 01 0.32703E-04 0.80E 01 0.13126E-04 0.90E 01 0.54647E-05 O.IOE 02 0.23568E-05 0.12E 02 0.48479E-06 0.14E 02 0.113Q6E-06 0. 16E 02 0.29582E-07 0.186 02 0.85947E-08 0.20E 02 0.27439E-08 0.22E 02 Q.95263E-09 0.24E 02 0.35593E-09 0.26E 02 0.14164E-09 0.28E 02 0.59404E-10 0.30E 02 0.25988E-10 0.35E 02 0.37381E-11 0.40E 02 Q.62702E-12 0.45E 02 0. 1 191 1E-12 0.50E 02 0.25071E-13 0.60E 02 0.14225E-14 0.70E 02 0.1Q465E-15 0.80E 02 0.94251E-17 O. 90E 02 0.99924E-18 O.IOE 03 0.12121E-I8

PAGE 182

176 ELECTRIC MICROFIELO DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURB=RS A= 0.2830 R= 0.0 TEMP RATIQ= 1.00 CHARGE AT ORI GI N= 9,00 Zl~ 1.00 Z2= 9.00 E PCE) 0.10E 00 0.11729E-01 0.20E 00 0.45525E-01 0.30E 00 0.97467E-01 0.40E 00 0.16178E 00 0.50E 00 0.23179E 00 0.60E 00 0.30092E 00 0.70E 00 0.36351E 00 0.80E 00 0.41540E 00 0.9QE 00 0.45413E 00 O.IOE 01 0.47887E 00 0. I IE 01 0.49015E 00 0.12E 01 0.48943E 00 0.13E 01 0.47876E 00 0. 14E 01 0.46039E 00 0.15E 01 0.43653E 00 0. 16E 01 0.40914E 00 0.17E 01 0.37989E 00 0. 18E 01 0.35010E 00 0.19E 01 0.32075E 00 0.20E 01 0.292S5E 00 0.2SE 01 0.17886E 00 0.30E 01 0.1096SE 00 0.35E 01 0.69770E-01 0,40E 01 0.46423E-01 0.45E 01 0.32220E-01 0.50E 01 0.23202E-01 0.60E 01 0.13262E-01 0.70E 01 0.81944E-02 0.80E 01 0.53917E-02 0.90E 01 0.37480E-02 0.10E 02 0.27307E-02 0.12E 02 0.16169E-02 0. 14E 02 0.10505E-02 0. 16E 02 0.71261E-03 0.18E 02 0.50000E-03 0.20E 02 0.36201E-03 0.22E 02 0.26983E-03 0.24E 02 0.20656E-03 0.26E 02 0.16202E-03 0.28E 02 0.12991E-03 0.30E 02 0.10624E-03 0.35E 02 0.68949E-04 0.40E 02 0.48069E-04 0.45E 02 0.34714E-04 0.50E 02 0.25393E-04 0-60E 02 0.14034E-04 0.70E 02 0.80836E-05 0.80E 02 0.48420E-05 0.90E 02 0.30094E-05 O.iOE 03 0.19364E-05

PAGE 183

177 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ERS A= 0.2630 R= 0.0 TEMP RATIQ= 1.00 CHARGE AT ORIGIN^ 17.00 Zl = 1.00 Z2 = 17.00 E P(E) 0.10E 00 0.14925E-01 0.20E 00 0.57726E-01 0.30E 00 0.12287E 00 0.4QE 00 0.20233E 00 0.50E 00 0.28700E 00 0.60E 00 0.36819E 00 0.70E 00 0.43876E 00 0.80E 00 0.49388E 00 0.90E 00 0.53115E 00 O.IOE 01 0.55038E 00 0. HE 01 0.55309E 00 0.I2E 01 0.S4186E 00 0. 13E 01 0.5 1981E 00 0.14E 01 0.49Q06E 00 0.15E 01 0.45549E 00 0. 16E 01 0.4 1850E 00 0. 17E 01 0.38099E 00 0.18E 01 0.34436E 00 0. 19E 01 0.30955E 00 0.20E 01 0.27714E 00 0.25E 01 0.15579E 00 0.30E 01 0.89203E-01 0.35E 01 0.53722E-01 0.40E 01 Q.34172E-01 0.4SE 01 0.22833E-01 O.SOE 01 0.15907E-01 0.60E 01 0.85994E-02 0.70E 01 0.50563E-02 0.80E 01 0.31854E-02 0.90E 01 0.21320E-02 O.IOE 02 0.15032E-02 0. 12E 02 0.84441E-03 0.14E 02 0.5276&E-03 0. 16E 02 0.34548E-03 0. 18E 02 0.23315E-G3 0.20E 02 0.16189E-03 0.22E 02 0. I 1S45E-03 0.24E 02 0.84402E-04 0.26E 02 0.63149E-04 0.28E 02 0.48266E-04 0.30E 02 0.37fjl8E-04 0.35E 02 0.21720E-04 0.40E 02 0.13628E-04 0.45E 02 0.90368E-05 0.50E 02 0.61619E-05 0.60E 02 0.29770E-05 0.70E 02 0.15079E-05 0.80E 02 0.79879E-06 0.90E 02 0.44141E-06 O.IOE 03 0.25383E-06

PAGE 184

178 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ERS A= 0.1362 R= 0.0 TEMP RATIQ= I. 00 CHARGE AT ORIGIN= 17.00 Z 1= I. 00 Z 217.00 E P(EJ 0.69354E-02 0.27188E-01 0.59163E-01 0.10040E 00 0.14787E 00 0.19 826E 00 0.24831E 00 0.29512E 00 0.33632E 00 0.37022E 00 0.39582E 00 0.41281E 00 0.42143E 00 0.42236E 00 0.41660E 00 0.40530E 00 0.38966E 00 0.37084E 00 0.34990E 00 0.32776E 00 0.22042E 00 0.14173E 00 0.92188E-01 0.62Q17E-01 0.43359E-01 0.31434E-01 O.I8138E-01 0. 1 1373E-01 0.77231E-02 0.56134E-02 0.43160E-02 0.20816E-02 0.20932E-02 0. 1S587E-02 0. 1 1827E-02 0.91365E-03 0.71772E-03 0.57276E-03 0.46384E-03 0.38080E-03 0.31658E-03 0.20936E-03 0. 14639E-03 0. 10647E-03 0.79232E-04 0.45488E-04 0.27279E-04 0.1 7045E-04 0. 1 1071E-Q4 0.7455BE-05 0, 10E 00 = 20E 00 Oo 3 0E 00 Oc 4 0E 00 = 50E 00 Or 60E 00 Q 70E 00 0. 8 0E 00 0, 90E 00 0Â„ 10E 01 0. 1 IE 01 Q* 12E 01 Oo 13E 01 0* 14E 01 0, 15E 01 Oo 16E 01 0. 17E 01 Oo 18E 01 Oo 19E 01 Oo 20E 01 0. 25E 01 0. 30E 01 Oo 35E 01 Oo 40E 01 0. 45E 01 0, 50E 01 Oo 60E 01 0. 70E 01 Oo 80E 01 Oo 90E 01 0. 10E 02 Oo 12E 02 0. 14E 02 0, 16E 02 0. 18E 02 0. 20E 02 0. 22E 02 0. 24E 02 0. 26E 02 0. 2 8E 02 0. 30E 02 0. 35E 02 0. 40E 02 0. 45E 02 0. 50E 02 0. 60E 02 0. 70E 02 0. 80E 02 0. 90E 02 0. 10E 03

PAGE 185

179 ELECTRIC MICROFIELO DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR35RS A= 0.1731 R= 0.0 TEMP RATIO= 1.00 CHARGE AT ORIGIN^ 9.00 Zl= I. 00 Z2= 9.00 E P(E) 0.75651E-02 0.29603E-01 0.64224E-01 0.10855E 00 0.15905E 00 0.21198E 00 0.26372E 00 0.3H15E 00 0.35184E 00 0.38420E 00 Q.40744E 00 0.42150E 00 0.42690E 00 0.42462E 00 0.4 1584E 00 0.40189E 00 0.38407E 00 0.363S6E 00 0.34144E 00 0.31856E 00 0.21207E 00 0.1366IE 00 0.89521E-01 0.60752E-01 0.42821E-01 0.31258E-Q1 0. 1 8068E-01 0.1 1586E-01 0.81328E-02 0.61632E-02 0.49736E-02 0.37012E-02 0.30 146E-02 0.25029E-02 0.20842E-02 0.1 7406E-02 0.1 4578E-02 0. 12244E-02 0. 10313E-02 0.87107E-03 0.73776E-03 0.49288E-03 0.33480E-03 0.231 14E-03 0. 16211E-03 0.83462E-04 0.45535E-04 0.26235E-04 O. 15908E-04 O. 1 01 16E-04 Or 10E 00 = 2 0E 00 0. 30E 00 = 40E 00 Q bOE 00 0. 60E 00 Oc 70E 00 3, 80E 00 0. 90E 00 Oc 10E Oi Oc HE 01 0. 12E 01 0. 13E 01 0* 14E 01 0. 15E 01 0, 16E 01 0* 17E 01 Oo 18E 01 o 19E 01 Oo 20E 01 0. 25E 01 0. 30E 01 0. 35E 01 0. 40E 01 0. 45E 01 0. 50E 01 0. 60E 01 0. 70E 01 0. 80E Oi 0. 90E 01 0. 10E 02 0. 12E 02 0. 14E 02 Q. 16E 02 0. 18E 02 20E 02 0. 22E 02 0. 24E 02 0. 26E 02 0. 28E 02 0. 30E 02 0. 35E 02 0. 40E 02 0. 45E 02 0. 50E 02 0. 60E 02 0. 70E 02 0. 80E 02 0. 90E 02 0. 10E 03

PAGE 186

180 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ERS A= 0,2246 R= 0.0 CHARGE AT ORIGIN= 17,00 Zl = TEMP RATIO= 1,00 1.00 Z2 = 17.00 PIE) 0.1 OE 00 0.20E 00 0.30E 00 0.40E 00 O.SQE 00 0.60E 00 0.70E 00 0.80E 00 0.90E 00 0.10E 01 0. 1 IE 01 0.12E 01 0. 13E 01 0. 14E 01 0.15E 01 0. 16E 01 0. 17E 01 0.1 8E 01 0. 19E 01 0.20E 01 0.25E 01 0.30E 01 0.35E 01 0.40E 01 0.45E 01 0.50E 01 0.60E 01 0.70E 01 0.80E 01 0.90E 01 0.10E 02 0.12E 02 0. 14E 02 0. 16E 02 0.1 8E 02 0.20E 02 0.22E 02 0.24E 02 0.26E 02 0.28E 02 0.30E 02 0.35E 02 0.40E 02 0.45E 02 0.50E 02 0.60E 02 0.70E 02 0.80E 02 0.90E 02 0. 10E 03 0. 10832E-01 0.42164E-01 0.9Q6 96E-0 1 0.15150E 0.21874E 0.28648E 0.34940E 0.40331E 0.44S43E 0.47443E 0.49027E 0.49392E 0.48703E 0.47162E 0.44980E 0.42356E 0.39467E 0.36459E 0.33446E 0.30515E O. 1 8474E 0.1 1 103E 0.69143E00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 0.451 17E-01 0.30795E-01 0.21 865E-01 0.98212E-02 0.51315E-02 0.28833E-02 0.17337E-02 0.1 1 101E-02 0.53878E-03 0.31692E-03 0.2 1719E-03 0. 16670E-03 0. 13776E-03 0. 1 t 784E-03 0.10 137E-0 3 0.87375E-04 0.75455E-04 0.65286E-04 0.45838E-04 0.32557E-04 0.23386E-04 0. 16985E-04 0.92500E-05 0.52474E-05 O.3O941E-05 0. 18923E-05 0.1 1977E-05

PAGE 187

181 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBzRS A= 0-121* R= 0,0 TEMP RATIO= 1.00 CHARGE AT ORIGIN= 9.00 Z II. 00 Z2= 9.00 E P(E) 0. 10E 00 0. 2 0E 00 0. 30E 00 0. 4QE 00 0. 50E 00 0. 60E 00 0. 70E 00 0 80E 00 0. 90E 00 0. 10E 01 0, 1 IE 01 0. 12E 01 0. 13E OS 0. 14E 0! 0. 15E 01 Oo 16E 01 = 17E 01 Oo 18E 01 0. 19E Oi 0. 20E 01 Oo 25E 01 0. 30E 01 0. 35E 01 Q 40 E 01 0. 45E 01 0. 50E Oi = 60E 01 0. 70E 01 Oo 80E 01 0. 90E 01 Go 10E 02 Go 12E 02 14E 02 Oo 16E 02 Oo 18E 02 0. 20E 02 Oo 22E 02 0. 24E 02 0. 26E 02 GÂ„ 28E 02 = 30E 02 Oo 35E 02 Â• 4QÂ£ 02 0, 45E 02 0, 50E 02 O* 60E 02 0. 70E 02 Oo 80E 02 0, 90E 02 Oo 10E 03 0. 61 114E-02 0, 23991E01 c< 52327E-01 0. 89088E-OX 0. 131 74E 00 = 17748E 00 0< 22353E 00 0, 26732E 00 0, .30672E 00 0 .34009E 00 0< .36642E 00 0, .38522E 00 0. 39653E 00 0.40077E 00 0.39868E 00 0. ,391 18E 00 0.37928E 00 0.36398E 00 0.34624E 00 0.32691E 00 0, 22780E 00 0.1S065E 00 0. 100 19E 00 0.68697E-01 0.48944E-01 0.36270E-01 0. 19896E-01 0.1 1997E-01 0.77649E-02 0.53547E-02 0.39054E-02 0.23861E-02 0. 16693E-02 0. 12662E-02 0. 10150E-02 0.848I8E-03 0.72B59E-03 0.63453E-03 0.55454E-03 0.48E>63E-03 0.42616E-03 0.31016E-03 0.228S6E-03 0. I 7047E-03 0.12865E-03 0.75814E-04 0.46660E-04 0.29917E-04 O. 19934E-04 0. 13769E-04

PAGE 188

182 ELECTRIC MICRQFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0.2000 R= 0.0 TEMP RATIQ= 0.25 CHARGE AT ORIGIN^ 9.00 Zl= 1.00 Z2= 9.00 E P(E I 0. 10E 00 0. 20E 00 0. 30Â£ 00 0. 40E 00 0. 5 0E 00 0. 60E 00 0. 70E 00 0. 80E 00 0. 90E 00 0. 10E 01 0. i ie 01 0. I2E 01 0. 13E 01 0* 14E 01 0. 15E 01 Oo 16E 01 0. 17E 01 0. 18E 01 0. 19E 01 0. 20E 01 Oo 25E 01 0. 30E 01 Oo 35E 01 0. 40E 01 Oo 45E 01 0. 50E 01 0* 60E 01 Oo 70E 01 Oo 80E 01 Oo 90E 01 Oo 10E 02 0, 12E 02 Oo I4E 02 Oo 16E 02 0, 18E 02 Oo 20E 02 0 22E 02 Oo 24E 02 Oo 26E 02 Oo 28E 02 Oo 3 0E 02 Oo 35E 02 Oo 40E 02 0, 45E 02 Oc 50E 02 0. 60E 02 0. 70E 02 0. 80E 02 Oo 90E 02 Oo 10E 03 0, 69169E02 Oc 2708SE-01 0. 5 8 83 IE-0 1 0, 99596E01 Oc 14624E 00 0, 19540E 00 G< 24381E 00 0. 2 8 863 E 00 0, 32761.E 00 0, 35922E 00 0 38266E 00 0< 39776E 00 0. 40492E 00 0< .40490E 00 0, 39874E 00 0< 38758E 00 0< 37256E 00 0, .35478E 00 Q c .33520E 00 Q< .31464E 00 0 -21571E 00 0< 14264E 00 0. Â• 95532E-01 0.66001E-01 0.47220E-01 0.34918E-01 0.208S7E-01 0.13455E-01 0.93047E-02 0.67955E-02 0.51675E-02 0.32821E-02 0.23002E-02 0. 17232E-02 0. 13429E-02 0. 10731E-02 0.86865E-03 0.70815E-03 0.58118E-03 0.48Q12E-03 0.39918E-03 0.25849E-03 0. 17367E-03 0.12077E-03 0.86731E-04 0.48812E-04 0.30391E-04 0.20550E-04 0. 14816E-04 0.11 180E-04

PAGE 189

183 ELECTRIC MICRQFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR8ERS A= 0.2000 R= 0.0 TEMP RATI0= 0.50 CHARGE AT ORIGIN= 9.00 Zl = I. 00 Z2 = 9.00 E PIE) 0. 10E 00 0. 2 0E 00 0. 3 0E 00 0. 40E 00 0o 5 0E 00 0. 60E 00 Oo 7 0E 00 0. 80E 00 Oo 90E 00 Oo 10E 01 = 1 IE 01 0. 12E 01 0. 13E 01 Oo 14E 01 0. 15E 01 Oo 16E 01 Oc 17E 01 Oo I8E 01 0. 19E oa 0. 20E 01 Oc 25E 01 30E 01 Oo 35E 01 Oo 4 0E 01 Oo 45E 01 Oo SOE 01 0. 60E Oi Oc 70E 01 Go SOE 01 0. 90E 01 Oo 10E 02 Oo 12E 02 0. 14E 02 Oo 16E 02 0. 13E 02 0. 20E 02 Oo 22E 02 Oo 24E 02 Oo 26E 02 0. 28E 02 Oo 30 E 02 Oo 35E 02 0. 40E 02 Oo 45E 02 0., 50E 02 Oo 60E 02 Oo 70E 02 Oo 80E 02 Oo 90E 02 Oo 10E 03 Oc 73606E-02 0, 28802E-01 Oo 62484E-01 0 10561E 00 Oo 15474E 00 0. 2Q62SE 00 0, 25662E 00 Oc 30284E 00 0, 34256E 00 0, 37425E 00 0. 39714E 00 = 41 1 18E 00 0< 41689E 00 = 41516E 00 0, 40717E 00 Oc 39416E 00 0, 37737E 00 0, 35795E 00 0, 33690E 00 0< 31507E 00 0< 21252E 00 0. 138 78E 00 0, 92072E-01 0.63146E-01 0.44905E-01 0.33029E-01 0.19445E-01 0. 12496E-01 0.85725E-02 0.61816E-02 0.46384E-02 0.28790E-02 0. 19393E-02 0.13850E-02 0. 10247E-02 0.77259E-03 0.59203E-03 0.46077E-03 0.36397E-03 0.29161E-03 0.23681E-03 0. I 4863E-03 0. 10001E-03 0.71377E-04 0.53471E-04 0.33265E-04 0.22244E-04 0. 15501E-04 0. I 1 199E-04 0.83479E-05

PAGE 190

184 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ERS A0.2000 R= 0.0 TEMP RATIO= I. 00 CHARGE AT ORIGIN9.00 Zl= 1.00 22= 9.00 E P(E) 0.82510E-02 0..32244E-01 0.69784E-01 0.11757E 00 0.17159E 00 0.22761E 00 0.28167E 00 0.33039E 00 0.37129E 00 0.40281E 00 0.42433E 00 0.43601E 00 0.43065E 00 0.43344E 00 0.42178E 00 0.40515E 00 0.38493E 00 0.36241E 00 0.33863E 00 0.31447E 00 0.20S68E 00 0.13U7E 00 0.85474E-0I 0.57804E-01 0.40638E-01 0.29597E-01 0. 17131E-01 0. 10842E-01 0.73268E-02 0.S2021E-02 0.38397E-02 0.22831E-02 0. 14898E-02 0.10314E-02 0.73817E-03 0.54258E-03 0.40877E-03 0.31501E-03 0.24782E-03 0. 19862E-03 0.16186E-03 O.i 0297E-03 0.69598E-04 0.49155E-04 0.36063E-04 0.21281E-04 0.13679E-04 0.92259E-05 0.64576E-05 0.46688E-05 0, 10E 00 0. 2 0E 00 0. 30E 00 0. 40E 00 0. 50E 00 0. 60E 00 0. 70E 00 0. 80E 00 0. 90E 00 0. 10E 01 0. 1 IE 01 0. 12E 01 0. 13E 01 0, 14E 01 0. 15E 01 0. 16E 01 0. 17E 01 0. 18E 01 0. 19E 01 0. 20E 01 0. 25E 01 0. 30E 01 0. 35E 01 0. 40E 01 0. 45E 01 0. 50E 01 0. 60E 01 0. 70E 01 0. 80E 01 Oo 90E 01 0. 10E 02 0. 12E 02 0. 14E 02 0* 16E 02 0. 18E 02 0. 20E 02 Oo 22E 02 Oo 24E 02 Oo 26E 02 Oo 28E 02 0. 30E 02 Oo 35E 02 Oo 40E 02 Oo 45E 02 0, 50E 02 = 60E 02 Oo 70E 02 Oo 80E 02 = 90E 02 Oo tOE 03

PAGE 191

185 IN ELECTRIC MICROFIELD O I S TR IBUT I ON FUNCTION A PLASMA CONTAINING MULTIPLY CHARGEO ION PERTUR8ERS A= 0.2000 R= 0.0 CHARGE AT ORIGIN= 9.00 Zl = TEMP 1.00 RATIO= Z2 = 2< 9< 00 00 PE) 0. IOE 00 0.2 0E 00 0.30E 00 0.40E 00 0.50E 00 0.6 0E 00 0.70E 00 0.80E 00 0.90E 00 0. IOE 01 0. I IE 01 0. 12E 01 0.1 3E 01 0. 14E 01 0. 15E 01 0.16E 01 0.17E 01 0. 18E 01 0. 19E 01 0.20E 01 0.25E 01 0.30E 01 0.35E 01 0.40E 01 0.45E 01 0.50E 01 0.60E 01 0.70E 01 0.80E 01 Q.90E 01 0. IOE 02 0.1 2E 02 0.14E 02 0. 16E 02 0.1 8E 02 0.20E 02 0.22E 02 0.24E 02 0.26E 02 0.28E 02 0.30E 02 0.35E 02 0.40E 02 0.45E 02 0.50E 02 0.60E 02 0.70E 02 0.80E 02 0.90E 02 0. IOE 03 0.10082E-01 0.39290E-01 0.84664E-01 0.14177E 00 0.20532E 00 0.26988E 00 0.33051E 00 0.38323E 00 0.42531E 00 0.45533E 00 0.47303E 00 0.47915E 00 0.47507E 00 0.46258E 00 0.44353E 00 0.41995E 00 0.39336E 00 0.36523E 00 0.33670E 00 0.30864E 00 0.19073E 00 0. I 1647E 00 0.73431E-01 0.48396E-01 0.33312E-01 0.23826E-01 0.13373E-01 0.82431E-02 0.54385E-02 0.37759E-02 0.27278E-02 0. 15555E-02 0.96490E-03 0.63921E-03 0.44385E-03 0.31878E-03 0.23590E-03 0.17936E-03 0.13972E-03 0.11 119E-03 0.90 137E-04 0.56766E-04 0.37731E-04 0.25798E-04 0. 18090E-04 0.95363E-05 0.54575E-05 0.33480E-05 0.21741E-05 0. 14756E-05

PAGE 192

186 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0-2000 R= 0.0 TEMP RATIO= 4.00 CHARGE AT ORIGIN^ 9.00 Zl= I. 00 Z2 = 9.00 E PtE) 0. 10E 00 0.13971E-01 0.20E 00 0.54165E-01 0.30E 00 0.11574E 00 0.40E 00 0.19157E 00 0.50E 00 0.27344E 00 0.60E 00 0.35330E 00 0.70E 00 0.42428E 00 0.80E 00 0.48142E 00 0.90E 00 0.52195E 00 0.10E 01 0.b4512E 00 0.11E 01 0.55191E 00 0.12E 01 0.54444E 00 0. 13E 01 0.52550E 00 0.14E 01 0.49808E 00 0.I5E 01 0.46500E 00 0. 16E 01 0.42875E 00 0.17E 01 0.39136E 00 0.18E 01 0.35437E 00 0.19E 01 0.31887E 00 0.20E 01 0.28S58E 00 0.25E 01 0.15956E 00 0.30E 01 0.9Q274E-01 0.35E 01 0.53715E-01 0.40E 01 0.33818E-01 0.45E 01 0.22409E-01 0.50E 01 0.15S07E-01 0.60E 01 0.82225E-02 0.70E 01 0.48242E-02 0.80E 01 0.30438E-02 0.90E 01 0.2Q269E-02 0.10E 02 0.14088E-02 0.12E 02 0.74952E-03 0. 14E 02 0.43435E-03 0. 16E 02 0.26946E-03 0.18E 02 0.17633E-03 0.20E 02 0.12004E-03 Q.22E 02 0.84494E-04 0.24E 02 0.61290E-04 0.26E 02 0.45669E-04 0.28E 02 0.3484SE-04 0.30E 02 0.27136E-04 0.35E 02 0.15551E-0* 0.40E 02 0.94481E-05 0.45E 02 0.59196E-05 0.50E 02 0.3ai36E-05 0.60E 02 0.17096E-05 0.70E 02 0.84023E-06 0.80E 02 0.44690E-06 0.90E 02 0.25392E-06 0.10E 03 0.1S214E-06

PAGE 193

187 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0.2000 R= 0.10E 00 TEMP RATIO= I. 00 CHARGE AT ORIGIN^ 9.00 Zl= 1.00 Z2 = 9.00 P(E) 0.49883E-02 0.19604E-01 0.42837E-01 0.73121E-01 Q.10849E 00 0.14678E 00 0.I8580E 00 0.22351E 00 0.25820E 00 0.28853E 00 0.31359E 00 G.33290E 00 0.34636E 00 0.35420E 00 0.35687E 00 0.35499E 00 0.34924E 00 0.34036E 00 0.32903E 00 0.31590E 00 0.24019E 00 0.17200E 00 0.12137E 00 0.86255E-01 Q.62353E-01 0.46013E-01 0.26755E-01 0.16649E-01 0. 10981E-01 0.76200E-02 0.55222E-02 0.32282E-02 0.21 122E-02 0. 14922E-02 0. 1Q982E-02 0.82073E-03 0.62085E-03 0.47521E-03 0.36790E-03 0.28799E-03 0.22786E-03 O. 13 263E-03 0.81888E-04 0.53325E-04 0.36419E-04 0. 19163E-04 0. 11404E-04 0.73385E-05 0.4941 OE-05 0.34523E-05 0. 10E 00 0. 2 0E 00 0. 30E 00 0. 40E 00 0. 50E 00 0. 6 0E 00 0. 7 0E 00 0. 80E 00 0* 9 0E 00 0. 10E 01 0. HE Oil 0. 12E 01 0. I3E 01 0, 14E 01 0. 15E 01 0. 16E 01 0. 17E 01 0. 18E 01 0. 19E 01 0, 20E 01 0Â„ 25E 01 Oo 30E 01 Oo 3SE 03 0Â„ 40E 01 Oo 4SE 01 0. 50E 01 0. 60E 01 0. 70E 01 0. 80E 01 0. 90E 01 0. 10E 02 0. 12E 02 Oo 14E 02 0. 16E 02 0 18E 02 0 20E 02 0. 22E 02 0. 24E 02 Oo 26E 02 0.=28E 02 0, 30E 02 Oc 35E 02 Oo 40E 02 0, 45E 02 0 50E 02 Oc 60E 02 Oc 70E 02 0. 80E 02 0. 90E 02 0, 10E 03

PAGE 194

188 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0.2000 R= 0.10E 13 TEMP RATIO= I. 00 CHARGE AT ORIGIN= 9.00 Zl = I. 00 Z2= 9.00 E P

PAGE 195

189 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3^RS A= 0.4000 R= 0.0 TEMP RATIO= 0.25 CHARGE AT ORIGIN= 9.00 Zl= 1.00 Z2 = 9.00 E PIE) 0.10E 00 0.12604E-01 0.20E 00 0.48683E-01 0.30E 00 0.10342E 00 Q.40E 00 0.16990E 00 O.SOE 00 0.24047E 00 0.60E 00 0.30798E 00 0.70E 00 0.36679E 00 0.80E 00 0.41323E 00 0.90E 00 0.44564E 00 0.10E 01 0.46406E 00 O.HE 01 0.46975E 00 0.12E 01 0.46471E 00 0.13E 01 0.45123E 00 0. 14E 01 0.43160E 00 0.15E 01 0.40786E 00 0.16E 01 0.38173E 00 0.17E 01 0.35458E 00 0.18E 01 0.32744E 00 0. 19E 01 0.30105E 00 0.20E 01 0.27S90E 00 0.25E 01 0.17495E 00 0.30E 01 0.11214E 00 0.3SE 01 0.74449E-01 0.40E 01 0.51421E-01 0.45E 01 0.36851E-01 O.SOE 01 0.27276E-01 0.60E 01 0.16221E-01 0.70E 01 0.1Q373E-G1 0.80E 01 0.70741E-02 0.90E 01 0.50692E-02 0.10E 02 0.37794E-02 O. 12E 02 0.23297E-02 0.14E 02 0. 16094E-02 0.16E 02 0.12Z09E-02 0.18E 02 0.96406E-03 0.20E 02 0.78928E-03 0.22E 02 0.64956E-03 0.24E 02 0.53544E-03 0.26E 02 0.44217E-03 0.28E 02 0.36589E-03 0.30E 02 0.30345E-03 0.35E 02 0.19222E-03 0.40E 02 0.12404E-03 0.45E 02 0.81816E-04 O.SOE 02 0.55339E-04 0.60E 02 0.276S3E-04 0.70E 02 0.1S615E-04 0.80E 02 0.97681E-05 0. 90E 02 0.661 89E-05 0.10E 03 0.47499E-05

PAGE 196

190 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0.4000 R= 0,0 CHARGE AT ORlGIN= 9.00 TEMP RATIOa 0.50 Zl= 1.00 Z2 = 9.00 PIE) 0, 10E 00 0. 20E 00 = 30E 00 Oc 4 0E 00 0. 50E 00 Go 60E 00 0, 70E 00 0. 80E 00 Go 90E 00 0. 10E OS Oo HE 01 Oo 12E 01 Oo 13E 01 Go 14E 01 Oo 15E 01 Oo 16E OS 0. 17E 01 0. 18E 01 0. 19E 01 Oo 20E 01 0. 25E 01 Oo 30E 01 0. 35E 01 Go 40E 01 0. 45E 01 Oo 50E 01 Qo 60E 01 0. 70E 01 Oo 80E 01 Oo 90E 01 Oo 10E 02 Oo 12E 02 Oo 14E 02 0* 16E 02 Oo 18E 02 0, 20E 02 0. 22E 02 024E 02 0. 26E 02 0. 28E 02 Oo 30E 02 0. 35E 02 Oo 40E 02 0. 45E 02 0, 50E 02 0. 60E 02 0. 70E 02 0. 80E 02 0, 90E 02 0. 10E 03 0.14940E-01 0.57535E-01 0.12163E 00 0. 19851E 00 0.27869E 00 0.35359E 00 0.41671E 00 0.46418E 00 0.49463E 00 0.S0872E 00 0.50849E 00 0.49668E 00 0.47620E 00 0.44982E 00 0.41988E 00 0.38831E 00 0.35653E 00 0.32557E 00 0.29612E 00 0.26B58E 00 0.16274E 00 0.10062E 00 0.64895E-01 0.43761E-01 Q.30726E-01 0.22339E-01 0. 12900E-01 0.80521E-02 0.53528E-02 0.37452E-02 0.27258E-02 0.15697E-02 0.97858E-03 0.64543E-03 0.441 91 E-03 0.31229E-03 0.22728E-03 0.16999E-03 0. 13036E-03 0. 10228E-03 0.8 1925E-04 0.50755E-04 0.34100E-04 0.24009E-04 0. 17287E-04 0.94703E-05 0.55444E-05 0.34394E-05 0.22416E-05 0.15218E-05

PAGE 197

191 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURB-RS A= 0-4000 R= 0.0 TEMP RATIO= I. 00 CHARGE AT ORIGIN^ 9.00 Zl = 1.00 Z 2= 9.00 E P(E) 0.19902E-01 0.762Q7E-01 0.1596GE 00 0.25718E 00 0.35S45E 00 0.44285E 00 0.51 146E 00 0.55742E 00 0.5805QE 00 0.58305E 00 0.56889E 00 0.54238E 00 0.50766E 00 0.46831E 00 0.42714E 00 0.38623E 00 0.34699E 00 0.31029E 00 0.27660E 00 0.24610E 00 0.13716E 00 0.79413E-01 0.48590E-01 0.31365E-01 0.2121 1E-01 0. 14917E-01 0.80882E-02 0.4S052E-02 0.30726E-02 0.20688E-02 0. 14353E-02 0.72804E-03 0.39389E-03 0.22635E-03 0. 13756E-03 0.88044E-04 0.59092E-04 0.41414E-04 0.30 179E-04 0.22769E-04 O. 1771 IE-04 0, 10502E-04 0.G8653E-05 0.46536E-05 0.32051E-05 0. 15902E-05 0.83421E-06 0.46043E-06 0.26604E-06 0.16G13E-06 0, 10E 00 0. 20E 00 Oo 30E 00 0. 40E 00 0. 50E 00 Oo 6 0E 00 0. 70E 00 = 80E 00 Oo 9 0E 00 0. 10E 01 Oo HE 01 0. 12E 01 Oo 13E 01 Oo 14E 01 Oo 15E OS 0. 16E 01 0. 17E 01 Oo 18E 3 Oo 19E 01 0, 20E 01 Oo 25E 05 Do 30E 01 Oo 35E 01 Oo 40E 01 Oo 45E 01 0. 50E 01 0, 60E 01 Oo 70E 01 Oo 80E 01. Oo 90E 01 0. 10E 02 Go 12E 02 Oo 14E 02 Oo 16E 02 Co 18E 02 Oo 20E 02 Oo 22E 02 0. 24E 02 Oe 26E 02 Oo 2 8E 02 Oo 30E 02 Oo 35E 02 Oo 40E 02 Oo 45E 02 Oo 50E 02 Oo 60E 02 Oo 70E 02 0, 80E 02 Oo 90E 02 Oo 10E 03

PAGE 198

192 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0,4000 R= 0.0 CHARGE AT ORIGIN= 9.00 Zl = TEMP RATIO= 2,00 1,00 Z2= 9,00 P(E) 0. 10E 00 0.20E 00 0.30E 00 0.40E 00 0.50E 00 0.6 0E 00 0.70E 00 0.80E 00 0.90E 00 0. 10E 01 0. 1 IE 01 012E 01 0.1 3E 01 0. 14E 01 0.15E 01 0. 16E 01 0. 17E 01 0. 18E 01 0. 19E 01 0.20E 01 0.25E 01 0.30E 01 0.35E 01 0.40E 01 0.45E 01 0.50E 01 0.60E 01 0.70E 01 0.80E 01 0.90E 01 0. 10E 02 0.1 2E 02 0. 14E 02 0.16E 02 0. 18E 02 0.20E 02 0.22E 02 0.24E 02 0.26E 02 0.28E 02 0.30E 02 0.35E 02 0.40E 02 0.45E 02 0.50E 02 0.60E 02 0.70E 02 0.80E 02 0.90E 02 0. 10E 03 = 3 1 042E-01 Oc l 1753E 00 0, 24 169E 00 Oc 38000E 00 Oc 50954E 00 Oc 61303E 00 0. 68112E 00 0* 71211E 00 Go 70999E 00 0 68189E 00 Oc 63588E 00 Oc 57943E 00 Oc 51863E 00 0 4 5 793 E 00 Oc 40027E 00 = 3 4 735E 00 Oc 29997E 00 Oc 25829E 00 Oc 22209E 00 Oc 19093E 00 Oc 91839E-0 1 Oc 47435E-01 Oc 26485E-01 0 15835E-0 1 Oc 10016E-01 Oc 66323E-02 Oc 32Q3QE-02 Oc 17402E-02 Oc 10 238E-02 Oc 63476E03 Oc 40924E03 Oc 18562E-03 Oc 92768E-04 Oc 50000E-04 0. 28454E-04 Oc 16877E-04 Oc 10402E-04 Oc 66439E-05 Oc 43869E-05 0. 29867E-05 0. 20913EÂ•05 0, 95390E-06 = 49026E-06 Oc 27278E-06 Oc 15806E-06 Oo 5666 7E-07 Oc 22000E-07 Oc 91 775E-08 Oc 40820E-08 Qc 19208E-08

PAGE 199

193 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBZRS A= 0.4000 R= 0.0 TEMP RATIO= 4.00 CHARGE AT ORIGIN9.00 Zl= 1.00 Z2= 9.00 E P(E) 0.10E 00 0.57717E-01 0.20E 00 0.21386E 00 0.30E 00 0.42460E 00 0.40E 00 0.63674E 00 0.50E 00 0.80586E 00 0.60E 00 0.90717E 00 0.70E 00 0.93670E 00 0.80E 00 0.90561E 00 0.90E 00 0.83223E 00 0. 10E Oi 0.73545E 00 0. 1 IE 01 0.63080E 00 0.12E 01 0.52907E 00 0.13E 01 0.43659E 00 0.14E 01 0.35623E 00 0. 15E 01 0.28856E 00 0. 16E 01 0.23281E 00 0.17E 01 0.18756E 00 0. 18E 01 0.151 18E 00 0. 19E 01 0. 12212E 00 0.20E 01 0.98964E-01 0.25E 01 0.37073E-01 0.30E 01 0.15799E-01 0.35E 01 0.75352E-02 0.40E 01 0.39393E-02 0.45E 01 0.22067E-02 0.50E 01 0.13061E-02 0.60E 01 0.50714E-03 0.70E 01 0.23346E-03 0.80E 01 0.11906E-03 0.90E 01 0.64587E-04 0.10E 02 0.36683E-04 0.12E 02 0.13053E-04 0.14E 02 0.50456E-05 0. 16E 02 0.20924E-05 0.18E 02 0.92673E-06 0.20E 02 0.43647E-06 0.22E 02 0.21765E-06 0.24E 02 0.11440E-06 0.26E 02 0.63103E-07 0.28E 02 0.36370E-07 0.30E 02 0.21807E-07 0.35E 02 0.70106E-08 0.40E 02 0.26206E-08 0.45E 02 0.10637E-08 0.50E 02 0.44795E-09 0.60E 02 0.87136E-10 0.70E 02 0.19006E-10 0.80E 02 0.45989E-11 0.90E 02 0.12215E-11 0.10E 03 0.35237E-12

PAGE 200

194 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ERS A= 0.4000 CHARGE AT ORIGIN= R= 0.10E 9.00 Zl = 1.00 TEMP RATIO= I. 00 Z2= 9.00 P(E) 0.10E 00 0.20E 00 0.30E 00 0.40E 00 0.50E 00 0.60E 00 0.70E 00 0.80E 00 O.90E 00 0.10E 01 0. 1 IE 01 0.12E 01 0. 13E 01 0.14E 01 0.1 5E 01 0. 16E 01 0. 17E 01 0. 18E 1 0. 19E 01 0.20E 01 0.25E 01 0.30E 01 0.35E 01 0.40E 01 0.45E 01 0.50E 01 0.60E 01 0.70E 01 0.80E 01 0.90E 01 0. 10E 02 0. 12E 02 0.14E 02 016E 02 0. 18E 02 0.20E 02 0.22E 02 0.24E 02 0.26E 02 0.28E 02 0.30E 02 0.35E 02 0.40E 02 0.45E 02 0.50E 02 0.60E 02 0.70E 02 0.80E 02 0.90E 02 O.IOE 03 0. 19877E-01 0.75868E-01 0.1581 IE 00 0.25319E 00 0.34751E 00 0.42996E 00 0.49347E 00 0.53515E 00 0.55555E 00 0.55744E 00 0.54463E 00 0.52113E 00 0.49058E 00 0.45600E 00 0.41972E 00 0.38342E 00 0.34827E 00 0.31501E 00 0.28405E 00 0.25559E 00 0.14939E 00 0.88827E-01 0.54741E-01 0.35097E-01 0.23368E-01 0. 16094E-01 0.83018E-02 0.47002E-02 0.28971E-02 0. 19222E-02 0. 13574E-02 0.78017E-03 0.50242E-03 0.33512E-03 0.22710E-03 0.15630E-03 G.10919E-03 0.77396E-04 0.55638E-04 0.40545E-04 0.29938E-04 0. 14815E-04 0.78819E-0b 0.44771E-05 0.26960E-05 0. 1 1324E-05 0.55216E-06 0.29575E-06 0. 16850E-06 0.1 0096E-06

PAGE 201

195 IN ELECTRIC MICROFIELD DISTR IBUTION FUNCT ION A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0-4000 CHARGE AT ORIGIN^ R= O-lOE 13 9.00 Z\ I. 00 TEMP RATIO= Z2= a. oo 9.00 P

PAGE 202

196 ELECTRIC MICROFIELU DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0.2000 R= 0.0 TEMP RATIO= 0.25 CHARGE AT ORIGIN^ 12.00 Z 1 = 12.00 ZZ= 11.00 E PCE) 0.10E 00 0.16916E-02 0.20E 00 0.67025E-02 0.30E 00 0.14844E-01 0.40E 00 0.25816E-01 0.50E 00 0.39221E-01 0.60E 00 0.54588E-01 0.70E 00 0.7140GE-01 Q.80E 00 0.89118E-01 0.9QE 00 0.10721E 00 0.10E 01 0.12517E 00 0. 1 IE 01 0.14253E 00 0.I2E 01 0.15891E 00 0. 13E 01 0.1 7397E 00 0.14E 01 0.18747E 00 0.15E 01 0.19924E 00 0. 16E 01 0.20918E 00 0. 17E 01 0.21726E 00 0. 18E 01 0.22349E 00 0.19E 01 0.22794E 00 0.20E 01 0.23072E 00 0. 25E 01 0.22446E 00 0.30E 01 0.19812E 00 0.35E 01 0.16583E 00 0.40E 01 0.13508E 00 0.45E 01 0.10874E 00 0.50E 01 0.87299E-01 0.60E 01 0.56923E-01 0.70E 01 0.38251E-01 0.80E 01 0.26616E-01 0.90E 01 0.19149E-01 0.10E 02 0.14194E-01 0.12E 02 0.83716E-02 0.14E 02 0.53603E-02 0. 16E 02 0.36493E-02 0.18E 02 0.25885E-02 0.20E 02 0.18919E-02 0.22E 02 0.14139E-02 0.24E 02 0.10879E-02 0.26E 02 0.84935E-03 0.28E 02 0.67376E-03 0.30E 02 0.54257E-03 0.35E 02 0.33532E-03 0.40E 02 0.22345E-03 0.45E 02 0.15843E-03 0.50E 02 0.11795E-03 0.60E 02 0.71759E-04 0.70E 02 0.46224E-04 0.80E 02 0.30986E-04 0.90E 02 0.21528E-04 O. 10E 03 0.15439E-04

PAGE 203

197 ELECTRIC M1CRQFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0*2000 R= 0.0 TEMP RATIO= 0.50 CHARGE AT ORIGIN^ 12.00 Z 1= 12.00 Z2= 11.00 E P(E) 0.23951E-02 0.94670E-02 0.20884E-01 0.361 19E-01 Q.54492E-01 0.75213E-01 0.97433E-0 1 0.12032E 00 0.14305E 00 0.16491E 00 0.18530E 00 0.20373E 00 0.219S5E 00 0.23345E 00 0.24445E 00 0.25284E 00 0.25872E 00 0.26226E 00 0.26364E 00 0.26310E 00 0.23984E 00 0.20043E 00 0.16030E 00 0.12566E 00 0.97908E-0 1 0.76431E-01 0.47616E-01 0.30872E-01 0.20858E-01 0. 14630E-01 O. 10604E-01 0.60253E-02 0.37298E-02 0.24473E-02 0. 16820E-02 0. 12014E-02 0.88512E-03 0.66789E-03 0.51459E-03 0.40402E-03 0.32259E-03 0. 19524E-03 0.12579E-03 0.84928E-04 0.59690E-04 0.32423E-04 0. 19155E-04 0. 1 I875E-04 0.76647E-05 0.51272E-05 Oo 10E 00 = 2 0E 00 Oo 3 0E 00 Oo 40E 00 Oo 50E 00 Oo 6 0E 00 Oo 70E 00 Oc 80E 00 Go 90E 00 Oo 10E 01 = 1 IE OS Oo 12E 01 Oo 13E 01 Or, 14E 01 Oo I5E 0! Oo 2 6E 01 Oo 17E 01 = 18E 01 Oo 19E 01 Oo 20E oa Oo 25E 01 Oo 30E 01 Oo 35E 01 Oo 40E OE Oo 45E 01 Oo SOE 01 0. 60E 01 Oo 70E 01 Oo SOE 01 0. 90E 01 Oo 10E 02 Oo 12E 02 Oo 14E 02 Oo 16E 02 0. 18Â£ 02 Oo 20E 02 0. 22E 02 Oo 24E 02 0. 26E 02 Oo 28E 02 0. 30E 02 Oo 35E 02 Oo 40E 02 Oo 45E 02 0. SOE 02 Oo 60E 02 Oo 70E 02 Oo 80E 02 Oo 90E 02 Oo 10E 03

PAGE 204

198 ELECTRIC MICRQFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ERS A= 0.2000 R0.0 CHARGE AT ORIGIN^ 12.00 TEMP Z\~ 12.00 RATIO= Z2= 1.00 1 1.00 P(EI 0. 10E 00 0.20E 00 0.30E 00 Q.40E 00 0.50E 00 0.60E 00 0.70E 00 0.80E 00 0.90E 00 0. 10E 01 0. HE 01 0.12E 01 0. 13E 01 0. 14E 01 0. 15E 01 0. 16E 01 0. 17E 01 0. 18E 01 0. 19E 01 0.20E 01 0.25E 01 0.30E 01 0.35E 01 0.4 0E 01 0.45E 01 0.50E 01 0.60E 01 0.70E 01 0.8QE 01 0.9QE 01 0. 10E 02 0.12E 02 O. 14E 02 0. 16E 02 0. 18E 02 0.20E 02 0.22E 02 0.24E 02 0.26E 02 0.28E 02 0.30E 02 0.35E 02 0.40E 02 0.45E 02 0.50E 02 0.60E 02 0. 70E 02 0.80E 02 0.90E 02 0.10E 03 0.38992E-02 0. 15350E-01 0.33636E-01 0.57642E-0 1 0.85959E-01 0.H701E 00 0.14919E 00 0.18098E 00 0.21105E 00 0.23830E 00 0.26197E 00 0.281S5E 00 0.29684E 00 0.30783E 00 0.3 1 4 75E 0.3 1792E 0.31775E 00 0.31 473E 00 0.30930E 00 0.30192E 00 0.24893E 00 0.19129E 00 0.14267E 00 0.10547E 00 0.78170E-01 0.58439E-01 0.33887E-01 0.20720E-01 0. 1331 1E-01 0.89281E-02 0.62 129E-02 0.32814E-02 0. 18969E-02 O. 1 1696E-02 0.75767E-03 0.51224E-03 0.35912E-03 0.25944E-03 0. 19191E-03 0. 14481E-03 0. 1 1 130E-03 0.61897E-04 0.37462E-04 0.24145E-04 0. 16217E-04 0.77524E-05 0.39262E-05 0.20957E-05 0. I 1729E-05 0.68471E-06

PAGE 205

199 IN ELECTRIC MICROFIELO DISTRIBUTION FUNCTION A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ERS A0,2000 R= 0.0 CHARGE AT ORIGIN^ 12.00 Zl= 12.00 TEMP RATIO= 2.00 Z2= 11.00 PIE) 0. 10E 00 0.20E 00 0.30E 00 0.40E 00 0.50E 00 0.6GE 00 0.70E 00 0.8QE 00 0.90E 00 0.10E 01 O. 1 IE 01 0. 12E 01 0. 13E 01 0. 14E 01 0. 15E 01 0.16E 01 0. 17E 01 0. 18E 01 0. 19E 01 0.20E 01 0.25E 01 0.30E 01 0.35E 01 0.4 0E 01 0.45E 01 0.50E 01 0.60E 01 0.70E 01 0.80E 01 0.90E 01 0. 10E 02 0.12E 02 0. 14E 02 0.16E 02 0. 18E 02 0.2 0E 02 0.22E 02 0.24E 02 0.26E 02 0.28E 02 0.30E 02 0.35E 02 0.40E 02 0.45E 02 0.50E 02 0.60E 02 0. 70E 02 0.80E 02 0.90E 02 0.1 OE 03 0.74 139E-02 0.28983E-0I 0.62780E-01 0.10589E 0.15479E 0.20576E 0.25532E 0.30053E 0.33919E 0.36995E 0.39223E 0.40614E 0.41227E 0.41 157E 0-40516E 0.39419E 0.37977E 0.36289E 0.34441E 0.32503E 0.23018E 0. 15584E 0.10448E 0.70517E0.48299E00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 01 0.33685E-01 0.17394E-01 0.95934E-02 0.56194E-02 0.34717E-02 0.22465E-02 0. 10519E-02 0.55468E-03 0.32333E-03 Q.20481E-03 0.13858E-03 0.98458E-04 0.72203E-04 0.53740E-04 0.40232E-04 Q.30279E-04 0. 15220E-04 0.78924E-05 0.42162E-05 0.23170E-05 0.75733E-06 0.27245E-06 0.10665E-06 0.449Q3E-07 0.20103E-07

PAGE 206

A= 0. CHARGE 200 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS 2000 R= 0.0 TEMP RATIO= 4.00 AT ORIGIN^ 12.00 Zl= 12.00 Z2= 11.00 E PIE) 0. 10E 00 0.16406E-01 0.20E 00 0.63290E-01 0.30E 00 0.13415E 00 0.40E 00 0.21 965E 0.50E 00 0.30947E 00 0.60E 00 0.39400E 00 0. 70E 00 0.46576E 00 0. 80E 00 0.52004E 00 0.90E 00 0.55498E 00 0, 10E 01 0.57104E 00 0. HE 01 0.57040E 00 0. 12E 01 0.55612E 00 0. I3E 01 0.53160E 00 0. 14E 01 0.50005E 00 0. I5E 01 0.46428E 00 0. 16E 01 0.42654E 00 0. 17E 01 0.38858E 00 0. ISE 01 0.35161E 00 0. 19E 01 0.3I646E 00 0. 20E 01 0.28364E 00 Q.2SE 01 0.15851E 00 0.30E 01 0.87402E-01 0.35E 01 0.49030E-01 0.40E 01 0.28312E-01 0.45E 01 0.16865E-01 0.50E 01 0.10371E-01 G.60E 01 0.42660E-02 0. 70E 01 0.19341E-02 0.80E 01 Q.96267E-03 0.9QE 01 0.52187E-03 0. 10E 02 0.30568E-03 0. 12E 02 0.12816E-03 0* 14E 02 0.66566E-04 0, 16E 02 0.40190E-04 0. 18E 02 0.26467E-04 0.20E 02 0.179Q3E-04 0.22E 02 0.12164E-04 0.24E 02 0.02992E-05 0. 26E 02 0.56855E-05 0.28E 02 0.39107E-05 0. 30E 02 0.27008E-05 0.35E 02 0.10892E-05 0.40E 02 0.45008E-06 0.45E 02 0.19043E-06 0.50E 02 0.82452E-07 0.60E 02 0.16526E-07 0. TOE 02 0.36065E-08 0.80E 02 0.85288E~09 0. 90E 02 0.21751E-09 0. 10E 03 0.59538E-10

PAGE 207

201 ELECTRIC MICROFIELO DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ERS A= 0.4000 R= 0.0 TEMP RATIO= 0.25 CHARGE AT ORIGIN= 12.00 21= 12.00 Z2= 11.00 E PIE) 0.81058E-02 0.31499E-01 0.67568E-01 0.H246E 00 0.16171E 00 0.21090E 00 0.25623E 00 0.29489E 00 G.32524E 00 0.34671E 00 0.35966E 00 0.36501E 00 0.36405E 00 0.35814E 00 0.34858E 00 0.33648E 00 0.32274E 00 0.30807E 00 0.29 296E 0.27778E 00 0.20729E 00 0.15164E 00 O.lllOOE 00 0.82016E-01 0.61350E-01 0.46549E-01 0.28038E-01 0. 17738E-01 0. 1 1744E-01 0.80982E-02 0.57872E-02 0.32260E-02 0.19636E-02 0. 12822E-02 0.8871 IE-03 0.64215E-03 0.48028E-03 0.36653E-03 0.28243E-03 0.21924E-03 0. 17142E-03 0.95520E-04 0.55463E-04 0.33465E-04 0.20926E-04 0.90064E-0S 0.43257E-05 0.22680E-05 0.12699E-05 0.74424E-06 0. 10E 00 0. 20E 00 0. 3 0E 00 0. 40E 00 0. 50E 00 0. 6 0E 00 0. 70E 00 0. 80E 00 0. 90E 00 0. 10E 01 0. HE 01 0. 12E 01 0. 13E 01 0. 14E 01 0. 15E 01 0. 16E 01 0. 17E 01 0. 18E 01 0. 19E 01 0. 20E 01 0. 25E 01 0. 30E 01 0. 35E 01 0. 40E 01 0. 45E 01 0. 50E 01 0. 60E 01 0. 70E 01 0. 80E 01 0. 9GE 01 0. 10E 02 0. 12E 02 0. 14E 02 0. 16E 02 0. 18E 02 0. 20E 02 0. 22E 02 0. 24E 02 0. 26E 02 0. 28E 02 0. 30E 02 0. 35E 02 0. 40E 02 0. 45E 02 0. 50E 02 0. 60E 02 0. 70E 02 0. 80E 02 0. 90E 02 0. 10E 03

PAGE 208

202 ELECTRIC MICRQFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PÂ£RTURBÂ£R5 A= 0.4000 R= 0.0 CHARGE AT ORIGIN12.00 Z 1= 12.00 TEMP RATIQ= 0.50 Z2= 11.00 P(E> 0. 10E 00 0.20E 00 0.3 0E 00 0.40E 00 0.50E 00 0.60E 00 0.70E 00 0.80E 00 0.90E 00 0. 10E 01 0. HE 01 0. 12E 01 0. 13E 01 O. 14E 01 0.15E 01 0. 16E 01 0. 17E 01 0. 18E 01 0. 19E 1 0.20E 01 0.25E 01 0.30E 01 0.35E 01 0.40E 01 0.45E 01 0.50E 01 0.60E 01 0.70E 1 0.80E 01 0.90E 01 1 E 2 0. 12E 02 0. 14E 02 0. 16E 02 0. 18E 02 0.20E 02 0.22E 02 0.24E 02 0.26E 02 0.28E 02 0.30E 02 0.35E 02 0.40E 02 0.45E 02 0.50E 02 0.60E 02 0. 70E 02 0.80E 02 0.9QE 02 0.1 OE 03 0. 14290E-01 0, S4852E-01 0, l 1534E 00 0, 18694E 00 Oc 26028E 00 0, 32730E 00 0, 38235E 00 0, 42258E 00 0, 44761E 00 Oc 45881E 00 0-= 45853E 00 0< 44942E 00 0, 43398E 00 0* 41434E 00 0. 39217E 00 0. 36873E 00 0. 34493E 00 0< 32139E 00 0, 29854E 00 = 27667E 00 = 18554E 00 0., 1 2358E 00 0< 83 192E-01 0, 57003E-01 Oc 39855E-01 Oc 28437E-0 1 0 1 5337E-01 0, 88056E-02 053475E-02 34055E-02 = 22S53E-02 Oc 10858E-02 0 57322E-03 0. 32433E-03 Oc 19510E-03 Q< 12398E-03 0. 82695E-04 0, 57527E-04 0, 4 1471E-04 = 30782E-04 = 23376E-04 Oc 1 2448E-04 0< 68373E-05 0< 38386E-05 O a 22009E-05 = 76805E-06 Oc 28866E-06 Qc l 1607E-06 0, 49599E-07 0, 22377E-07

PAGE 209

203 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0.4000 R= 0.0 TEMP RATIO= I. 00 CHARGE AT ORIGIN12.00 Zl= 12.00 Z 2= 11.00 E PIE) 0.29234E-01 0.10988E 00 0.22343E 00 0.34653E 00 0.45808E 00 0.54409E 00 0.S9882E 00 0.62327E 00 0.62242E 00 0.60275E 00 0.57049E 00 0.53081E 00 0.48763E 00 0.44369E 00 0.40081E 00 0.36012E 00 0.32225E 00 0.2 8 752 E 0.25600E 00 0.22764E 00 0.12620E 00 0.71 157E-01 0.41322E-01 0.2477SE-01 0. 15339E-0 1 0.98159E-02 0.42972E-02 0.20876E-02 0.1 I 110E-02 0.64174E-03 0.39861E-03 0. 18427E-03 0.10189E-03 0.62722E-04 0.40641E-Q4 0.26794E-04 0.17770E-04 0. I 1849E-04 Q.79436E-05 0.53535E-05 0.36268E-05 0. 1401 1E-05 0.55828E-06 0.22922E-06 0.96858E-07 0. 18771E-07 0.40273E-08 0.94805E-09 0.24269E-09 0.66958E-10 0. 10E 00 0. 2 0E 00 0. 3 0E 00 0. 40E 00 0. 50E 00 0. 60E 00 0. 70E 00 0. 80E 00 0. 90E 00 0. 10E 01 0. t IE 01 0. 12E 01 0. 13E 01 0. 14E 01 0. 15E 01 0. 16E 01 0. 17E 01 0. 18E 01 0. 19E 01 0. 20E 01 0. 25E 01 0. 30E 01 0. 35E 01 0. 40E 01 0. 45E 01 0. 50E 01 0. 60E 01 0. 70E 01 0. 80E 01 0. 90E 01 0. 10E 02 0. 12E 02 0. 14E 02 0. 16E 02 0. 18E 02 0. 20E 02 0. 22E 02 0. 24E 02 0. 26E 02 0. 2 8E 02 0. 30E 02 0. 3SE 02 0. 40E 02 0. 45Â£ 02 0. 50E QZ 0. 60E 02 0. 70E 02 0. 80E 02 0. 90E 02 0. 10E 03

PAGE 210

204 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ERS A= 0.4000 R= 0.0 TEMP RATI0= 2.00 CHARGE AT ORIGIN^ 12.00 Zl= 12.00 Z2= 11.00 E PtEi 0.10E 00 0.69327E-01 0.20E 00 0.25100E 00 0.30E 00 0.48131E 00 0.40E 00 0.69233E 00 0.50E 00 0.83912E 00 0.60E 00 0.907S4E 00 0.70E 00 0.90655E 00 O.OOE 00 0.85567E 00 0.90E 00 0.77537E 00 0.10E 01 0.68221E 00 0.1 IE 01 0.58760E 00 0.12E 01 0.49843E 00 0. 13E 01 0.41820E 00 0.14E 01 0.34823E 00 0. 15E 01 0.28847E 00 0.16E 01 0.23819E 00 0.17E 01 0.19632E 00 0. 18E 01 0.16168E 00 0.19E 01 0.13317E 00 0.20E 01 0.10978E 00 0.25E 01 0.43303E-01 0.30E 01 0.18016E-01 0.35E 01 0.78091E-02 0.40E 01 0.35226E-02 0.45E 01 0.165I8E-02 0.50E 01 0.8G419E-03 0.60E 01 0.21240E-03 0.70E 01 0.64313E-04 0.80E 01 0.22120E-04 0.90E 01 0.85640E-05 O. 10E 02 0.36980E-05 0.12E 02 0.92238E-06 0. 14E 02 0.31901E-06 0. 16E 02 0.14220E-06 0.18E 02 0.75921E-07 0.20E 02 0.45177E-07 0.22E 02 0.28438E-07 0.24E 02 0.18294E-07 0.26E 02 0.1I802E-07 0.28E 02 0.76281E-08 0.30E 02 0.49392E-08 0.35E 02 0.16735E-08 0.40E 02 0.57754E-09 0.45E 02 0.20081E-09 0.50E 02 0.70593E-10 0.60E 02 0.90113E-11 0.70E 02 0.12002E-11 0.80E 02 0.16665E-12 0.90E 02 0.24098E-13 0. 10E 03 0.36259E-14

PAGE 211

205 ELECTRIC MICRQFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0*4000 R= 0.0 TEMP RATIO= 4.00 CHARGE AT ORIGIN^ 12.00 21= 12.00 Z2= 11.00 E P(E) O.IOE 00 0.19266E 00 0.20E 00 0.64645E 00 0.30E 00 0.11024E 01 0.40E 00 0.13677E 01 0.50E 00 0.14011E 01 0.60E 00 0.12664E 01 0.70E 00 0.10489E 01 0.80E 00 0.81950E 00 0.90E 00 0.61477E 00 0. 10E 01 0.44860E 00 0. HE 01 0.32138E 00 0.12E 01 0.22758E 00 0.13E 01 0. 16007E 00 0. 14E 01 0.1 1224E 00 0.15E 01 0.78664E-01 0.16E 01 0.55207E-01 0.17E 01 0.3Q853E-01 0. 18E 01 0.27447E-01 0.19E 01 0.19474E-01 0.20E 01 0.13882E-01 0.25E 01 0.23946E-02 0.30E 01 0.42685E-03 0.35E 01 0.77142E-04 0.40E 01 0.14134E-04 0.45E 01 0.26254E-05 0.50E 01 0.49435E-06 0.60E 01 0.18255E-07 070E 01 0.71143E-09 0.80E 01 0.29250E-10 0.90E 01 0.12682E-H 0.10E 02 0.57962E-13 0.12E 02 0.14 159E-15 0.14E 02 0.42504E-18 0.16E 02 0.15629E-20 0.18E 02 0.70169E-23 0.20E 02 0.38344E-25 0.22E 02 0.25421E-27 0.24E 02 0.20383E-29 0.26E 02 0.19702E-31 0.28E 02 0.22885E-33 0.30E 02 0.31842E-35 0.35E 02 0.15687E-39 0.40E 02 0.22274E-43 0.45E 02 0.86726E-47 O.SOE 02 0.88086E-50 0.60E 02 0.13215E-54 0.70E 02 0.50470E-58 0.80E 02 0.32930E-60 0.90E 02 0.24634E-61 O.IOE 03 0.14177E-61

PAGE 212

206 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ERS A= 0.2000 tt= 0-0 TEMP RATIO= 0.25 CHARGE AT ORIGIN= 17.00 Zl= I. 00 Z2 = 17.00 E PIE) 0.72 126E-02 0.28232E-01 Q.61279E-01 0.10364E 00 0.15200E 00 0.20281E 00 0.25265E 00 0.29856E 00 0.33821E 00 0.37007E 00 0.39333E 00 0.40789E 00 0.41422E 00 0.413I3E 00 0.40586E 00 0.39348E 00 0.37725E 00 0.3S832E 00 0.33 767E 0.31614E 00 0.2I413E 00 0.14010E 00 0.93015E-01 0.63797E-01 0.45362E-01 0.33359E-01 0.19766E-01 0.1267IE-01 0.86S60E-02 0.62389E-02 0.46972E-02 0.29157E-02 0. 19356E-02 0. 13498E-02 0.98256E-03 0.74192E-03 0.57749E-03 0.46045E-03 0.37372E-03 0.30691E-03 0.2S427E-03 0. 16473E-03 0. I I 196E-03 0. 7943 8E-04 0.5855QE-04 0.34995E-04 0.22981E-04 0.15976E-04 0. 11542E-04 0.86138E-05 0. 10E 00 = 2 0E 00 0. 3 0E 00 Oo 40E 00 0. 50E 00 0. 60E 00 0. 7 0E 00 0. 80E 00 0-c 90E 00 Oo 10E 01 Oo HE 01 Oo 12E 01 Oo i3E 01 0^ 14E 01 Oo 15E oa Oo I6E 01 Oo 17E oa Oo 18E 01 Oo 19E 01 Oo 20E 01 Oo 25E 01 Oo 30E 01 Oo 35E 01 0. 40E 01 Oo 45E 01 Oo 50E 01 Oo 60E 01 Oo 70E OJ Oo 80E oa Oo 90E 01 Oo 10E 02 0. 12E 02 Oo 14E 02 Oo 16E 02 o 18E 02 Oo 2 0E 02 Oo 22E 02 0. 24E 02 Co 26E 02 Oo 2 8E 02 Oo 30E 02 Oo 35E 02 0, 40E 02 Oo 45E 02 Oo 50E 02 Oo 60E 02 Oo 70E 02 Oo 80E 02 Oo 90E 02 Oo 10E 03

PAGE 213

207 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTJRBzRS A= 0.2000 R= 0.0 TEMP RATI0= 0.50 CHARGE AT ORIGIN= 17.00 Zl= 1.00 Z2= 17.00 E PIE) 0.79625E-02 0.31 132E-01 0.67453E-01 0. I 1380E 00 0.16637E 00 0.22114E 00 0.27429E 00 0.32256E 00 0.36347E 00 0.39545E 00 0.41780E 00 0.43 057E 00 0.43445E 00 0.43052E 00 0.42010E 00 0.40459E 00 0.38536E 00 0.36365E 00 0.34Q51E 00 0.31682E 00 0.20862E 00 0.13346E 00 0.87050E-01 0.58876E-01 Q.41384E-01 0.3O135E-01 0. 17540E-01 0.1 I 068E-01 0.74578E-02 0.53048E-02 0.39378E-02 0.23650E-Q2 0. 15255E-02 0. 10261E-02 0.71607E-03 0.51 703E-03 0.38525E-03 0.29544E-03 0.23256E-03 O. 18741E-03 0.1542QE-03 0.10191E-03 0.72354E-04 0.53095E-04 0.39725E-04 0.23457E-04 0. 14767E-04 0.98258E-05 0.68502E-05 0.49606E-05 0. I OE 00 0. 20E 00 0. 30E 00 0. 4 0E 00 0. 50E 00 0. 60E 00 Oo 70E 00 0. 80E 00 0. 90E 00 0. I0E 01 0. I IE 01 0. 12E 01 0. 13E 01 0. 14E 01 0. 15E 01 0. 16E 01 Oo 17E 01 0. 18E 01 0. 19E 01 0. 20E 01 0. 25E 01 Oo 30E 01 0. 35E 01 0. 40E 01 0. 45E 01 0. 50E OS o 60E 01 0* 70E 01 Go 80E 01 o, 90E 01 0, 10E 02 Oo 12E 2 Oo 14E 02 Oo 16E 02 0. 18E 02 o 20E 02 Oo 22E 02 Oc 24E 02 Oo 26E 02 Oo 28E 02 Oo 30E 02 Oc 35E 02 0. 40E 02 0, 45E 02 Oc 50E 02 Oo 60E 02 Oc 70E 02 = 80E 02 Oo 90E 02 Oc 10E 03

PAGE 214

208 IN ELECTRIC MICROFIELD DISTRIBUTION FUNCTION A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ERS A= 0,2000 R= 0,0 CHARGE AT ORIGIN= 17,00 Zl = 1.00 TEMP RATIO= I. 00 Z2= 17,00 P(Â£J O.IOE 00 0.20E 00 0.30E 00 0.40E 00 O.SOE 00 0,60E 00 0.70E 00 0.80E 00 0.90E 00 0. 10E 01 0. 1 IE 01 0. 12E 01 0. 13E 01 0.14E 01 0.15E 01 0.16E 01 0,17E 01 0. 18E 01 0.19E 01 0.20E 01 0.25E 01 0.30E 01 0.35E 01 0.4QE 01 Q.45E 01 0.50E 01 0.60E 01 0. 70E 01 0.80E 01 0.90E 01 0. 10E 02 012E 02 0.14E 02 0,16E 02 0.18E 02 0.20E 02 0.22E 02 0.24E 02 0.26E 02 0.28E 02 0.30E 02 0,35E 02 0.40E 02 0.45E 02 0.50E 02 0.60E 02 0.70E 02 0.80E 02 0.90E 02 0, 10E 03 0.95103E-02 0.37104E-01 0.80107E-01 0.13449E 00 0.19540E 00 0.25783E 00 0.31 71 OE 00 0.36939E 00 0.41 198E 00 0.44331E 00 0.46293E 00 0.47134E 00 0.46970E 00 0.45958E 00 0,44276E 00 0.42100E 00 0.39593E 00 0.36898E 00 0.34129E 00 0.31 378E 0.19584E 00 0.12005E 00 0.7575GE-01 0.499GSE-01 0.34330E-01 0.24541E-01 0. 13847E-01 0.85044E-02 0.55927E-02 0.38881E-02 0.28214E-02 0. 16142E-02 0,99775E-03 0.65892E-03 0.46090E-03 0.33851E-03 0.25877E-03 0,204l2E-03 0. 16469E-03 0. 13473E-03 0. I 1098E-03 0.69954E-04 Q.4553QE-04 0.3Q542E-04 0.21079E-04 0. 10854E-04 0.61269E-05 0.37370E-05 0.24275E-05 0. 16551E-05

PAGE 215

209 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ERS A= 0.2000 R= 0.0 TEMP RATlO= 2.00 CHARGE AT ORIGIN= 17.00 Zl= 1.00 Z2= 17.00 E P(E> 0. 10E 00 0.20E 00 0.30E 00 0.4 0E 00 0.50E 00 0.60E 00 0.70E 00 0.80E 00 0.90E 00 0. 10E 01 0. 1 IE 01 0. 12E 01 0. 13E 01 0. 14E 01 0.1 5E 01 0.16E 01 0.17E 01 0.18E 01 0.19E 01 0.20E 01 0.25E 01 0.30E 01 0.35E 01 0.40E 01 0.45E 01 0.50E 01 0.60E 01 0.70E 01 0.80E 01 0.90E 01 0. 10E 02 0. 12E 02 0. 14E 02 0.16E 02 0. 18E 02 0.20E 02 0.22E 02 0.24E 02 0.26E 02 0.28E 02 0.30E 02 0.35E 02 0.40E 02 0.45E 02 0.50E 02 0.60E 02 0.70E 02 0.80E 02 0.90E 02 0. 10E 03 Oo 12844E-01 0. 49898E-01 0. 10698E 00 0. 17787E 00 0. 25532E 00 0, 33205E 00 Go 40167E 00 = 45935E 00 0* 5 2 1 I E 00 0. 52880E 00 Oc 53988E 00 Oc 53695E 00 = 52238E 00 Oo 49883E 00 Oo 46895E 00 0, 43516E 00 Oo 39951E 00 Oo 36361E 00 Q, 32865E 00 Oo 29548E 00 0* 16699E 00 Oc 9474 1E-0 1 0. 56325E-01 Oc 35401E-0 1 0. 23423E-01 0* 16 194E-01 Oo 85 169E-02 Oo 50298E-02 Oo 32 150E-02 Oo 2 1483E-02 Oo 14675E-02 Oo 72575E-03 Oo 38614E-03 0* 21987E-03 Oc 1332SE -0 3 Oo 85558E-04 Oo 57861E-04 Oo 4 1006E-04 o. 30296E-04 Oo 2321 1E-04 Oo 18345E-04 Oo 1 1276E-04 0. 750G3E-05 Oo 51 121E-05 Oo 35383E-05 0. 1 7747E-05 Oo 94210E-06 Go 52652E-06 Oo 30817E-06 Go 18 789E-06

PAGE 216

210 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0.2000 R= 0.0 TEMP RATIO= 4.00 CHARGE AT ORIGIN= 17.00 Zl = 1.00 Z2= 17.00 E P(E) 0.20351E-01 0.78416E-01 0.16586E 00 0.27070E 00 0.37959E 00 0.48011E 00 0.56257E 00 0.62100E 00 0.65323E 00 0.66039E 00 0.64593E 00 0.61459E 00 0.57148E 00 0.52136E 00 0.46828E 00 0.41534E 00 0.36476E 00 0.31791E 00 0.27555E 00 0.23793E 00 0.11279E 00 0.55990E-01 0.30066E-01 0. 17427E-01 0.10775E-01 0.70208E-02 0.33176E-02 0.17863E-02 0.10484E-02 0.64989E-03 0.4 1900E-03 0. 18960E-03 0.94366E-04 0.50675E-04 0.28808E-04 0. 17131E-04 0. 10618E-04 G.68397E-05 0.45643E-05 0.31460E-05 0.2232 8E-05 0.10556E-05 0.56051E-06 0.31872E-06 0.18675E-06 0.63498E-07 0.27253E-07 0. 1 1663E-07 0.53242E-08 0.25710E-0S 0. 10E 00 0. 20E 00 0. 30E 00 0. 4 0E 00 0. 5 0E 00 0. 60E 00 0. 70E 00 0. 80E 00 0. 90E 00 0. 10E 01 0. HE 01 0. 12E 01 0. 13E 01 0. 14E 01 0. 15E 01 0. 16E 01 0. 17E 01 Go 18E 01 0. 19E 01 0Â„ 20E 01 0. 25E 01 0. 30E 01 0. 35E 01 0. 40E 01 o 4 5E 01 0. 50E 0! 0. 60E 01 0. 70E 01 0. 80E 01 0. 90E 01 0. 10E 02 0. 12E 02 0. 14E 02 0. 16E 02 0, 18E 02 0. 20E 02 Oo 22E 02 Oo 24E 02 26E 02 Go 28E 02 Oo 30E 02 0. 35E 02 Oo 40E 02 Oo 45E 02 Oo 50E 02 0. 60E 02 Oo 70E 02 Oo 80E 02 Oo 90E 02 Oo 10E 03

PAGE 217

211 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR8=:RS A= 0.2000 R~ O.IOE 00 TEMP RATIO= I. 00 CHARGE AT QRIGIN= 17.00 2 1= 1. 00 12.= 17.00 E PIE) O.IOE 00 0.59614E-02 0.20E 00 0.23377E-01 0.30E 00 0.50896E-01 0.40E 00 0.86448E-01 0.50E 00 0.12748E 00 0.60E 00 0.17123E 00 0.70E 00 0.21499E 00 0.80E 00 0.25637E 00 0.90E 00 0.29341E 00 O.IOE 01 0.32473E 00 O.llE 01 0.3495QE 00 0. 12E 01 0.36741E 00 0. 13E 01 0.37862E 00 0. 14E 01 0.38360E 00 0.15E 01 0.38305E 00 0.16E 01 0.37779E 00 0.17E 01 0.36869E 00 0.18E 01 0.35658E 00 0. 19E 01 0.34225E 00 0.20E 01 0.32638E 00 0.25E 01 0.24093E 00 0.30E 01 0.16801E 00 0.35E 01 0. 1 1536E 00 0.40E 01 0.79594E-01 Q.45E 01 0.55719E-01 0.50E 01 0.39739E-01 O.&OE 01 0.21484E-01 0. 70E 01 0.12495E-01 0.80E 01 0.77148E-02 0.90E 01 0.50046E-02 O.IOE 02 0.33758E-02 0.12E 02 0.16593E-02 0.14E 02 0.37726E-03 0.16E 02 Q.49568E-03 0.18E 02 0.29791E-03 0.20E 02 0.18954E-03 0.22E 02 0.12705E-03 0.24E 02 0.89298E-04 0.26E 02 0.65495E-04 0.28E 02 0.4989QE-04 0.30E 02 0.39280E-04 0.35E 02 0.24198E-04 0.40E 02 0.16510E-04 0.45E 02 0.11676E-04 0.50E 02 0.04067E-05 0.60E 02 0.45832E-05 0.70E 02 0.26579E-05 0.80E 02 0.16291E-05 0.90E 02 0.10486E-05 O.IOE 03 0.70417E-06

PAGE 218

212 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR8ERS A= 0.2000 CHARGE AT ORIGlN= R= 0.10E 13 17.00 Â£1= I. 00 TEMP RAT10= 1.00 Z2= 17.00 P(E) o.ioe oo 0.20E 00 0.30E 00 0.40E 00 0.50E 00 0.6 0E 00 0.70E 00 0.80E 00 0.90E 00 0. 10E 01 0. 1 IE 01 0. 12E 01 0.13E 01 Q.14E 01 0.15E 01 0. 16E 01 0. 17E 01 0.18E 01 0. 19E 01 0.20E 01 0.25E 01 0.30E 01 0.35E 01 0.40E 01 0.45E 01 0.50E 01 0.60E 01 0.70E 01 0.80E 01 0.90E 01 0. 10E 02 0.12E 02 0.14E 02 0.16E 02 0. I8E 02 0.20E 02 0.2 2E 02 0.24E 02 0.26E 02 0.28E 02 0.30E 02 0.35E 02 0.40E 02 0.45E 02 0.50E 02 0.60E 02 0.70E 02 0.80E 02 0.90E 02 0. 10E 03 0.49992E-02 0. 19634E-01 0.42857E-0t 0.73053E-01 0.10821E 00 0.14613E 00 0.18463E 00 0.22170E 00 0.25S69E 00 0.28535E 00 0.30986E 00 0.32882E 00 0.34221E 00 0.35028E 00 0.3S350E 00 0.35246E 00 0.34781E 00 0.34020E 00 0.33027E 00 0.31859E 00 0.24883E 00 0.18259E 00 0.13078E 00 0.93205E-01 0.66779E-01 0.48358E-01 0.26439E-01 0. 15274E-01 0.92784E-02 0.59034E-02 0.39190E-02 0. 19316E-02 0. 10772E-02 0.65903E-03 0.43066E-03 0.29562E-03 0.20995E-03 0. 1 5199E-03 0. 1 1 128E-03 0.82345E-04 0.61 559E-04 0.31022E-04 0. 16S16E-04 0.92304E-05 0.5381 1E-05 0.20233E-05 0.83515E-06 0.36710E-06 0.17063E-06 0.83380E-07

PAGE 219

213 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURB^RS A= 0.4000 R= 0.0 TEMP RATIO= 0,25 CHARGE AT ORIGIN= 17.00 Z I1.00 Z2= 17.00 E PE> 0.10E 00 0.14433E-01 0.20E 00 0.55630E-01 0.30E 00 0.11776E 00 0.40E 00 0.19255E 00 0.50E 00 0.27092E 00 0.60E 00 0.34460E 00 0.70E 00 0.40727E 00 0.80E 00 0.45503E 00 0.90E 00 0.48638E 00 0. 10E 01 0.50180E 00 0.11E 01 0.50312E 00 0.I2E 01 0.49290E 00 0.13E 01 0.47393E 00 0. 14E 01 0.44888E 00 0.15E 01 0.42006E 00 Q.16E 01 0.38938E 00 0. 17E 01 0.35828E 00 0.18E 01 0.32781E 00 0. 19E 01 0.29868E 00 0.20E 01 0.27134E 00 0.25E 01 0.16540E 00 0.30E 01 0.10262E 00 0.35E 01 0.66329E-01 0.40E 01 0.44793E-01 0.45E 01 0.31485E-01 0.50E 01 0.22912E-01 0.60E 01 0.13232E-01 0.70E 01 0.82442E-02 0.80E 01 0.54982E-02 0.90E 01 0.38661E-02 O.IOE 02 0.28337E-02 0.12E 02 0.16795E-02 0. 14E 02 0.11015E-02 0.16E 02 0.78119E-03 0.18E 02 0.58585E-03 0.20E 02 0.45440E-03 0.22E 02 0.35717E-03 0.24E 02 0.28273E-03 0.26E 02 0.22534E-03 0.28E 02 0.18081E-03 0.30E 02 0.14603E-03 0.35E 02 0.88025E-04 0.40E 02 0.55109E-04 0.45E 02 Q.35755E-04 0.50E 02 0.23988E-04 0.60E 02 0.11831E-04 0.70E 02 0.64959E-05 0.80E 02 0.39000E-05 0.90E 02 0.25154E-05 O.IOE 03 0.17121E-05

PAGE 220

214 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0,4000 R= 0.0 CHARGE AT ORIGlN= 17.00 TEMP RATION 0.50 Zl= I. 00 Z2 = 17.00 PIE) 0-= 10E 00 0. 20E 00 Q. 30E 00 = 4 0E 00 0. 50E 00 0Â„ 60E 00 0. 70E 00 Q<= aoE 00 0-o 90E 00 0, 10E 01 0-=, 1 IE 01 0. 12E 01 0 13E 01 0. 14E 05 Oo 15E 01 0. 16E 01 0. 17E OS Oo 18E 01 Qo 19E 01 0, 20E 01 3, 25E 01 Qo 30E 01 0. 35E 01 0. 40E 01 0. 45E 01 Oo 50E 01 Oo 60E 01 0. 70E oa QÂ„ 80E 01 0. 90E 01 0. 10E 02 0. 12E 02 0Â„ 14E 02 0. 16E 02 Oo 18E 02 0, 20E 02 Oo 22E 02 Oo 24E 02 Oo 26E 02 0. 28E 02 Oo 30E 02 Oo 35E 02 0., 40E 02 Go 45E 02 Oo 50E 02 Oo 60E 02 Oo 70E 02 Oo 80E 02 0. 90E 02 Oo 10E 03 0.1 8858E-01 0.72326E-01 0.15187E 00 0.24559E 00 0.34087E 00 0.42673E 00 0.49542E 00 0.54288E 00 0.56846E 00 0.57406E 00 0.56307E 00 0.53951E 00 0.50734E 00 0.47005E 00 0.43043E 00 0.39061E 00 0.35208E 00 0.31576E 00 0.2.8222E 00 0.25168E 00 0.14142E 00 0.82232E-01 0.50441E-01 0.32616E-01 0.22089E-01 0. 15555E-01 0.83782E-02 0.50774E-02 0.33806E-02 0.24219E-02 0.18286E-02 0. I 1468E-02 0.77776E-03 0.54961E-03 0.39371E-03 0.28477E-03 0.20793E-03 0.15323E-03 O. I 1395E-03 0.85495E-04 0.64705E-04 0.33447E-04 0. 181 77E-04 0. 10353E-04 0.61626E-05 0.24616E-05 0.1 1309E-05 0.58330E-06 0.32974E-06 0. 19944E-06

PAGE 221

215 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURB5RS A= 0.4000 R= 0.0 TEMP RATIO= 1.00 CHARGE AT ORlGIN= 17.00 Zl= I. 00 Z 2= 17.00 E P(E) 0.10E 00 0.28832E-01 0.20E 00 0.10949E 00 0.30E 00 0.22624E 00 0.40E 00 0.35795E 00 0.50E 00 0.48359E 00 0.60E 00 0.58669E 00 0.70E 00 0.65765E 00 0.80E 00 0.69380E 00 Q.90E 00 0.69793E 00 0.10E 01 0.67609E 00 0. 1 IE 01 0.63561E 00 0. 12E 01 0.583S6E 00 0. 13E 01 0.52593E 00 0.14E 01 0.46726E 00 0.15E 01 0.41068E 00 0. 16E 01 0.35812E 00 0.17E 01 0.31058E 00 0. 18E 01 0.26840E 00 0. 19E 01 0.23150E 00 0.20E 01 0.19954E 00 0.25E 01 0.96755E-01 0.30E 01 0.50137E-01 0.35E 01 0.28042E-01 0.40E 01 0.16790E-01 0.45E 01 0.10640E-01 0.50E 01 0.70631E-02 0.60E 01 0.34681E-02 0.70E 01 0.18783E-02 0.80E 01 0.11058E-02 0.90E 01 0.69196E-03 O.IOE 02 0.44993E-03 0.12E 02 0.20215E-03 0.14E 02 0.97504E-04 0. 16c 02 0.50257E-04 0.18E 02 0.27554E-04 0.20E 02 0.15994E-04 0.22E 02 0.97847E-05 0.24E 02 0.62791E-05 0.26E 02 0.42074E-05 0.28E 02 0.29302E-05 0.30E 02 0.211UE-05 0.35E 02 0.10468E-05 0.40E 02 0.57993E-06 0.45E 02 0.33578E-06 0.50E 02 0.19872E-06 0.60E 02 0.74018E-07 0. 70E 02 0.29749E-07 0.80E 02 0.12809E-07 0.90E 02 0.S8654E-08 O.IOE 03 0.28358E-08

PAGE 222

216 ELECTRIC MICRQFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0.4000 R= 0*0 TEMP RATIO= 2.00 CHARGE AT ORIGIN= 17.00 Zl = I. 00 Z2= 17.00 E P(E) 0. 10E 00 0. 20E 00 0, 30E 00 0, 40E 00 Qo 50E 00 0. 6 0E 00 0, 70E 00 0. 80E 00 0. 90E 00 0 10E 0! I IE 01 Oo 12E 01 0. 13E 01 0. 14E 01 0, 15E 01 Go 16E 01 Oo 17E 1 0. 18E oa Oo 19E 01 Oo 20E 01 0. 25E oa 0. 30E 01 0, 35E 01 Oo 40E 01 0. 45E 01 0, 50E 01 Oo 60E 01 Oo 70E 01 0. 80E 01 0. 90E 01 Oo 10E 02 0, i2E 02 Oo 14E 02 Oo I6E 02 Oo 18E 02 o.= 20E 02 0. 22E 02 Oo 24E 02 Oo 26E 02 Oo 28E 02 Oo 30E 02 Oo 35E 02 Oo 40E 02 Oo 45E 02 Oo S0E 02 Oo 60E 02 Oo 70E 02 Oo 80E 02 Oo 90 E 02 Oo 10E 03 0 53124E-01 0. I9777E 00 Oo 39560E 00 Oo 59906E 00 Oo 76687E 00 Oo S7410E 00 Oo 91431E 00 Oo 89S44E 00 Oo 83319E 00 Oo 74495E 00 Oo 64582E 00 Oo 54687E 00 Oo 45508E 00 Oo 37402E 00 Oo 30 483E 00 Oo 24719E 00 Oo 19998E 00 0., 16174E 00 Oo 13100E 00 0. 10638E 00 Oo 40Q75E-01 Oo 171 19E-01 Oo 81968E-02 Oo 43029E-02 Oo 24286E-02 Oo 14484E-02 Oo 5 7625E03 Oo 27136E-0 3 Oo I4313E-03 0. 82936E-04 Oo 5 1839E-0 4 Oo 23630E-04 Oo 1 1766E-04 Oo 59930E-05 Oo 31 150E-05 Oo 16514E-05 Oo 89257E-06 Oo 49157E-06 Oo 27573E-06 Oo 15744E-06 Oo 91474E-07 Oo 2S310E-07 Oo 77220E-08 0. 25782E-08 0. 93491E-09 0 15276E-09 Oo 31 700E-1 Oo 786 16E-1 1 Q a 21956E-1 1 Oo 667Q0E-12

PAGE 223

217 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTUR3ERS A= 0.4000 R= 0.0 TEMP RATIO= 4.00 CHARGE AT ORIGIN= 17,00 2 1= 1.00 Z2= 17.00 E P(E) 0.11872E 00 0.42394E 00 0.79266E 00 0.10962E 01 0.12561E 01 0.12609E 01 0. 1 1469E 01 0.96810E 00 0.77215E 00 0.590376 00 0.43780E 00 0.31793E 00 0.22789E 00 0.16225E 00 0. 1 1533E 00 0.82156E-01 0.58834E-01 0.42446E-01 0.30898E-01 0.22717E-01 0.55399E-02 0. 14230E-02 0.39675E-03 0. 1 1972E-03 0.38986E-04 0. 13659E-04 0.20641E-05 0.40354E-06 0.99694E-07 0.304G1E-07 0.1 1 177E-07 0.24099E-08 0.32795E-09 0.37555E-09 0. 18744E-09 0.94630E-1 0.48203E-10 0.24772E-10 0. 12841E-10 0.67142E-1 1 0.3S404E-1 1 0.74133E-12 0. 16328E-12 0.3 7 76 IE13 0.91540E-14 0.61529E-15 0.48901E-16 0.45319E-17 0.48301E-18 0.58387E-19 0. 10E 00 0. 2 0E 00 0. 3 0E 00 0. 40E 00 0. 50E 00 0. 60E 00 0. 70E 00 Oo 80E 00 Oo 90E 00 o 10E 01 0. 1 IE 01 0. 12E 01 Oo 13E 01 0. I4E 0! 0. I5E OS Oo 16E Oi Oo 17E 01 Oo 18E 01 Oo 19E 01 Oo 20E Oi Oo 25E Oil 0. 30E 01 0. 35E 01 0. 40E 01 0. 45E 01 0* 50E 01 0. 60E 01 Oo 70E 01 0, 80E 01 0. 90E 01 Oo 10E 02 Oo 12E 02 Oo 14E 02 Oo 16E 02 Oo 18E 02 Oo 20E 02 Oo 22E 02 0. 24E 02 Oo 26E 02 0, 28E 02 Oo 30E 02 Oo 35E 02 Oo 40E 02 Oo 4SE 02 Oo 50E 02 Oo 60E 02 0. 70E 02 Oo 80E 02 0* 90E 02 Oo 10E 03

PAGE 224

218 ELECTRIC MICROFIELO DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0.4000 R= 0.10E 00 TEMP RATIO= 1.00 CHARGE AT ORIGIN= 17.00 Zl = I. 00 Z2= 17.00 E PCE) 0.39815E-01 0.14844E 00 Q.29802E 00 0.45455E 00 0.58910E 00 0.68420E 00 0.73467E 00 0.74436E 00 0.72202E 00 0.67763E 00 0.62027E 00 0.55713E 00 0.49335E 00 0.43226E 00 0.37581E 00 0.32494E 00 0.27989E 00 0.24051E 00 0.20641E 00 0.17706E 00 0.83333E-01 0.41 135E-01 0.21560E-01 0. 12001E-01 0.70657E-02 0.43744E-02 0. 17910E-02 0.83950E-03 0.44128E-03 0.25679E-03 0. 16332E-03 0.81912E-04 0.50222E-04 0.33961E-Q4 0.23434E-04 O. 16321E-04 0. 1 1470E-04 0.81331E-05 0.58172E-05 0.41963E-05 0.30524E-05 0. 14269E-05 0.69995E-06 0.35925E-06 0.19238E-06 0.61962E-07 0.22861E-07 0.94457E-08 0.42729E-08 0.20688E-08 Oc 10E 00 0. 20E 00 Oo 30E 00 0. 40E 00 Qo 50E 00 = 60E 00 0. 70E 00 Oo 80E 00 0, 90Â£ 00 Oo 10E 01 0. HE 01 a. 12E 01 0. 13E 01 0. 14E 01 Oc 15E 01 Oo 16E 01 Oo 17E 1 0, 18E 01 Oo 19E 01 Oo 20E 01 Oo 25E 01 0. 30E 01 0. 35E 01 0. 40E 01 0. 45E oa Qo 50E 01 0, 60E 01 Oo 70E 01 0* 80E 01 Oo 90E 01 0. 10E 02 0. 12E 02 Oo 14E 02 0. 16E 02 0. 18E 02 Oo 20E 02 0. 22E 02 Oo 24E 02 0* 26E 02 Oo 28E 02 0. 30E 02 0. 35E 02 Oo 40E 02 Oo 45E 02 0. 50E 02 Oo 60E 02 Oo 70Â£ 02 0.-= 80E 02 Oo 90E 02 Oo 10E 03

PAGE 225

219 ELECTRIC MICROFIELD DISTRIBUTION FUNCTION IN A PLASMA CONTAINING MULTIPLY CHARGED ION PERTURBERS A= 0*4000 R = O.IOE 13 TEMP RATIO= 1.00 CHARGE AT ORIGIN= 17,00 Zl= I. 00 ZZ~ 17,00 E PIE) O.IOE 00 0.49364E-01 0.20E 00 0.18114E 00 0.30E 00 0.35497E 00 0.40E 00 0.52569E 00 0.50E 00 0.660Q4E 00 0.60E 00 0.74305E 00 0.70E 00 0.77522E 00 0.80E 00 0.76585E 00 0.9QE 00 0.72713E 00 0. 10E 01 0.67Q51E 00 0.11E 01 0,605Q3E 00 0, 12E 1 0.53735E 00 0.13E 01 0-47155E 00 0.14E 01 0.41018E 00 0. 15E 01 0.35452E 00 0. 16E 01 0.30S00E 00 0.17E 01 0.26156E 00 0. 18E 01 0.22384E 00 0. 19E 01 0. 19132E 00 0.20E 01 0.16345E 00 0,25E 01 0.74938E-01 0.30E 01 0.35532E-01 0.35E 01 0.17624E-01 0.40E 01 0.91662E-02 0,4SE 01 0.49835E-02 0.50E 01 0,28247E-02 0.60E 01 0.86779E-03 0.70E 01 0.29878E-03 0.80E 01 0.11074E-03 0.90E 01 0.44061E-04 O.IOE 02 0.18763E-04 0.12E 02 0.41243E-0S 0.14E 02 0.11493E-05 0. 16E 02 0.39676E-06 0.18E 02 0.16581E-06 0.20E 02 0.81968E-07 0.22E 02 0.46841E-07 0.24E 02 0.30236E-Q7 0.26E 02 0.21S43E-07 0.28E 02 0.16556E-07 0.30E 02 0,l341lÂ£-07 0.3SE 02 0.85816E-08 0.40E 02 O.S1922E-08 0.45E 02 0.29108E-08 0.50E 02 0.15246E-08 0.60E 02 0.35260E-09 0. 70E 02 0.68629E-10 0.80E 02 0.12013E-10 0.90E 02 0.20205E-11 O.IOE 03 0.34802E-12

PAGE 226

APPENDIX J TABLES OF STARK BROADENED LYMAN SERIES LINE PROFILES In this appendix we present tables of the final Stark broadened line profiles, computed using the numerical procedures discussed in Appendix H. We tabulate the blue wing of each profile since the asymmetry present is negligible. The electron temperature is expressed -3 in units of electron volts and the electron density is given in cm The third line of parameters in each table heading identifies the electric microfield distribution function employed to produce the profile. (We designate the net radiator charge by XI.) The frequency separations (DELTA OMEGA) are expressed in Rydberg units. The middle column gives the unnormalized Stark profile in arbitrary units (relative intensity) The right-hand column gives the Doppler-corrected Stark profile, normalized to unit intensity. 220

PAGE 227

221 LYMAN ALPHA PROFILE FOR HYDROGENIC NEON ELECTRON TEMPERATURE^ 1019.20 ELECTRON DENSITY= 0.20E 24 A=0.20 R= 0-0 TRATIO=0.25 XI= 9.0 Zl= 1.0 Z2= 9.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0. 169E 02 0.622E 01 0.735E-02 0. 12 BE 02 0.612E 01 0. 14 7EÂ•0 1 0. 740E 01 0.583E 01 0.221E-0 I 0.439E 01 0.539E 01 0.2 9 4E-01 0. 283E 01 0.484E 01 0.368E-01 0. 198E 01 0.422E 1 0.4* 1E-01 0. 14 7E 01 0.359E 01 0.51 5E-0 1 0. 1 16E 01 0.299E 01 0.588E-01 0.950E 00 0.245E 01 0.66 2EÂ•0 I 0.809E 00 0. 1 98E 01 0.735E-0 1 0.712E 00 0.160E 01 0.882E-01 0.595E 0.10 7E 01 1 3E 00 0.535E 00 0.773E 00 1 1 8E 00 0.506E 00 0.626E 00 0. 13 2E 00 0.492E 00 0.554E 00 1 4 7E 00 0.485E 00 0.520E 00 0.22 IE 00 0.448E 00 0.456E 00 0.294E 00 0.359E 00 0.369E 00 0.366E 00 0.259E 00 0.270E 00 0.441E 00 0. 181E 00 0. 189E 00 0.588E 00 0-899E-01 0.941E-01 0.735E 00 0.498E-01 0.519E-01 LYMAN ALPHA PROFILE FOR HYDROGENIC NEON ELECTRON TEMPERATURE := 1019.20 ELECTRON DENSITY= 0.20E 24 A=0.2 R= 0.0 TRATIQ=1.00 XI = 9.0 21= 1.0 Z2= 9.0 delÂ™ k STARK STARK* DOPPLER OMEGA PROFILE 0Â„0 0. 168E 02 0.971E 01 0.7 3 5E-02 0. 127E 02 0.924E 01 0. 147EI 0.7 39E 01 0.800E 01 0.22 IEÂ•0 1 0.439E 01 0.636E 01 0.294EÂ•01 0.284E 01 0.4 73E 01 0.368E01 0. 199E 01 0.337E 01 0.4 4 IE -0 I 0* 149E 01 0.238E 01 0*51 5E-0 1 0. 1 18E I 0. 172E 01 0.58 8EI 0.971E 00 0.130E 01 0.662EÂ•01 0.833E 00 0.104E 01 0. 7 3 5EÂ•0 1 0.738E 00 0.872E 00 0.882E01 0.624E 00 0.691E 00 0.103E 00 0.568E 00 0.608E 00 0. 1 1 8E 00 0.541E 00 0.567E 00 0. 132E 00 0.528E 00 0.54 7E 00 0. 14 7E 00 0.52 IE 00 0.536E 00 00 0,22 IE 00 0.469E 00 0.480E 0.294E 00 0.361E 00 0.371E 00 0.368E 00 0.251E CO 0.259E 00 0.441E 00 0. 170E 00 0.1 75E 00 0.58 8E 00 0.81 1E-01 0.836EÂ•01 0.735E 00 0,438E-01 0.451E-01

PAGE 228

222 LYMAN ALPHA PROFILE FOR HYDRQGENIC NEON ELECTRON TEMPERATURE= 1019.20 ELECTRON DENSITY= 0.20E 24 A=0Â„20 R* 0.0 TRATI0=4.00 XI= 9.0 21= 1.0 Z2= 9.0 DELTA STARK STARK+ OMEGA PROFILE OOPPLER 0.0 0. 168E 02 0.132E 02 0.735E-02 0. 127E 02 0.117E 02 0.147E-0 I 0.741E 01 0.849E 01 0.221E-01 0.443E 01 0.54 8E 1 0.294E-0 1 0.289E 01 0.350E 01 0.368E-0 I 0.205E 01 0.237E 01 0.441E-0 I 0. 15bE 01 0.173E 01 0.51 5E-0 1 0. 125E 01 0.136E 01 0.588E-0 I 0. 105E 01 0.1 12E 01 0.662E-0 1 0.924E 00 0.971E 00 0.73 5E-0 1 0.836E 00 0.870E 00 0.882E-0 I 0.734E 00 0.755E 00 1 3E 0.686E 00 0.701E 00 0.118E 0.662E 00 0.674E 00 0.132E 00 0.64 7E 00 0.657E 00 1 4 7E 0.634E 00 0.643E 00 0,22 IE 00 0.51 IE 00 0.519E 00 0.294E 00 0.34 IE 00 0.34 7E 0.368E 00 0.209E 00 0.213E 00 0.441E 00 0. 128E 00 0. 131E 00 0.58 8E 0.545E-01 0.554E-01 0.73 5E 0.275E-01 0.280E-01 LYMAN ALPHA PROFILE FOR HYDROGENIC NEON ELECTRON TEMPERATURE-1019.20 ELECTRON OENSITY= 0.20E 24 A=0.20 Rss 0.10E 00 TRATID=1.00 XI= 9,0 Zl = 1.0 Z2 = 9.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0. 169E 02 0.980E 01 0.735E-02 0. 127E 02 0.9 33E 1 0, 14 7E-0 1 0.737E 01 0.807E 01 0.22 IE-01 0.436E 01 0.640E 01 0.29 4E-0 1 0. 280E 01 0.4 75E 01 0.368E-01 0. 195E 01 0.337E 01 0.44 IE-01 0. 144E 01 0.236E 01 0.51 5E-0 1 0. 1 12E 01 0, 169E 1 0.58 8E-0 1 0.912E 00 0.126E 01 0.662E-01 0. 769E 00 0.984E 00 0.735E-01 0.669E 00 0.810E 00 0.882E-0 1 0.546E 00 0.618E 00 3E 0.481E 00 0.525E 00 U 8E 0.448E 00 0.479E 00 0.132E 00 0.432E 00 0.455E 00 1 4 7E 0.424E 00 0.444E 00 0.221E 00 0.4 10E 00 0.424E 00 0.294E 00 0.356E 00 0.369E 00 0.368E 00 0.2 79E 00 0.290E 00 0.441E 00 0.208E 00 0.216E 58 8E 0. 1 I IE 00 0.1 16E 0.735E 00 0.625E-01 0.650E-01

PAGE 229

223 LYMAN ALPHA PROFILE FOR HYDROGEN IC NEON ELECTRON TEMPERATURE= 1019.20 ELECTRON DENSITY^ Q.20E 24 A=0.20 R= 0.10E 13 TRATIO=1.00 Xl = 9.0 Zl = 10 Z2 = 9.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0. 169E 02 0.992E 01 0.735E-02 0. 127E 02 0.944E 01 0.14 7EÂ•01 0.73 7E 01 0.816E 01 0.22 1E0 1 0.4 35E 01 0.64 7E 01 0.294E01 0.279E 01 0.479E 01 0.363E01 0. 193E 01 0.339E 01 0.44 IEÂ•0 1 0. 142E 01 0.236E 01 0.51 5E01 0. 109E 01 0.1 68E 01 0.S8 8E01 0.881E 00 0. 124E 01 0.662E01 0. 734E 00 0.959E 00 0.735E01 0.630E 00 0.780E 00 0.88 2EÂ•0 1 0.501E 00 0.579E 00 1 3E 00 0.430E 00 0.479E 00 1 1 8E 00 0.392E 00 0.427E 00 1 3 2E 00 0.372E 00 0.399E 00 1 4 7E 00 0.362E 00 0.385E 00 0.22 IE 00 0.357E 00 0.374E 00 0.294E 00 0.332E 00 0.349E 00 0.368E 00 0.282E 00 0.296E 00 0,44 IE 00 0.226E 00 0.237E 00 0.58 8E 00 0. 135E 00 0.142E 00 7 3 5Â£ 00 0.805E-01 0.847E-01 LYMAN ALPHA PROFILE FOR HYDROGEN IC NEON ELECTRON TEMPERATURE^ 254.80 ELECTRON DENSITY= 0.20E 24 A=0.40 R* 0,0 TRATIO-0.25 X 1= 9.0 2 1= 1.0 Z2 = 9.0 DELTA STARK STARK.+ OMEGA PROFILE DOPPLER 0,0 0. 121E 02 0.838E 01 0.735E-02 0. 1 04E 02 0.806E 01 0, 14 7E-0 I 0.742E 01 0.719E 01 0.221E-01 0.505E 01 0.600E 1 0.294E-01 0.353E 01 0.4 75E 1 0.36 8E-01 0.259E 01 0.364E 01 0.441E-01 0. 199E 01 0.277E 01 0.51 SE-01 0. 159E 01 0.213E 01 0.588E01 0. 133E 01 0.168E 01 0.66 2E01 0. 1 14E 01 0.138E 01 0.735E-01 0. 100E 01 0. 1 17E 1 0.882E-0 1 0.830E 00 0.916E 00 0.10 3E 00 0.73 IE 00 0.783E 00 0. 1 I 8E 00 0.671E 00 0.705E 1 3 2E 00 0.630E 00 0.655E 00 0. 14 7E 00 0.598E 00 0.618E 00 0.221E 00 0.464E 00 0.477E 00 0.294E 00 0.331E 00 0.34 IE 0.36 6E 00 0.226E 00 0.233E 00 0.44 IE 00 0. 154E 00 0.159E 00 0.58 8E 00 0.770E-01 0.793E-01 0.735E 00 0.433E-01 0.446E-0 1

PAGE 230

224 LYMAN ALPHA PROFILE FOR HYDROGEN tC NEON ELECTRON TEMPERATURE^ 254.90 ELECTRON DENSITY: 0.20E 24 L=0.0 Ra* O.C TRATIO=l .0( ) Xl= 9 .0 Zl = 1.0 DELTA STARK STARK* OMEGA PROFILE DOPPLER 0.0 0. 121E 02 0.105E 02 0.73 5E02 0. 10SE 02 0.971E 01 0.14 7E1 0.745E 01 0.777E 1 0.22 1EÂ•0 I 0.510E 1 0.569E 01 0.294E01 0.359E 01 0.407E 01 0.368E01 0.266E 1 0.297E 01 0.44 1Ea i 0.206E 01 0.226E 1 0.515EÂ•01 0. 168E 01 0.180E 01 0.58 8EÂ•01 0. 14 IE 01 0.150E 01 Q.662EÂ•01 0. 123E 1 0.129E 01 0.7 3 5EÂ•01 0.1 10E 01 0.1 I 4E 01 Q.882EÂ•01 0.930E 00 0.959E 00 0. 103E 00 0.833E 00 0.854E 00 0.1 11 8E 00 0.770E 00 0.786E 00 0. 132E 00 0.723E 00 0.737E 00 0.147E 00 0.682E 00 0.694E 00 0.22 IE 00 0.486E 00 0.495E 0.294E 00 0.312E 00 0.318E 00 0.368E 00 0. 194E 00 0.1 97E 0.44 IE 00 0. 123E 00 0.12 5E 0.588E 00 0.558E-01 0.569E-0 1 0.735E 00 0.297E-01 0.302E-01 LYMAN ALPHA PROFILE FOR HYDROGEN IC NEON ELECTRON TEMPERATURE= 254.80 ELECTRON DENSITY= 0.20E 24 R= O.C TRATIO=4.00 XI= 9 .0 Zl= 1.0 DELTA STARK STARK* OMEGA PROFILE DOPPLER 0.0 0. 123E 02 0.119E 02 0.73 5E02 0. 107E 02 0.105E 02 0.14 7E-0 1 0.769E 01 0.786E 01 0.22 IE01 0.534E 01 0.554E 01 0.294EÂ•01 0.385E 01 0.398E 01 0.368E1 0.293E 01 0,30 IE 01 0.44 1E-01 0.234E 01 0.240E 01 0.51 SEÂ•01 0. 196E 01 0.200E 01 0.588EÂ•0 1 0.170E 01 0.1 73E 1 0.662EÂ•0 I 0. 152E 01 0.155E 01 0.735E0 I 0. 139E 01 0.141E 01 0.882EÂ•0 1 0. 121E 01 0.123E 01 0.103E 00 0. 109E 01 0.110E 01 0.11 8E 00 0.985E 00 0.994E 00 0. 13 2E 00 0. 889E 00 0.897E 00 1 4 7E 00 0.797E 00 0.804E 00 0.22 IE 00 0.4 06E 00 0.410E 00 0.29 4E 00 0. 193E 00 0.195E 00 0.368E 00 0.986E-01 0.996E-01 0.44 IE 00 0.563E-01 0.568E-01 0.588E 00 0.243E-01 0.246E-01 0.73 5E 00 0. 135E-01 0. 136E-01

PAGE 231

225 LYMAN ALPHA PROFILE FOR HYOROGENIC NEON ELECTRON TEMPERATURE= 254.80 ELECTRON OENSITY= 0.20E 24 A=0.4Q Rs= 0.10E 00 TRATIO-1.00 Xl = 9.0 Zl1.0 Z2= 9.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0. 121E 02 0.1 05E 2 0.735E-02 0. 104E 02 0.971E 01 1 4 7E-01 0.745E 01 0.777E 01 0.22 1E01 0.509E 01 0.569E 01 0.294E-01 0.359E 01 0.406E 01 0.368E-01 0.265E 01 0.296E 01 0.44 1E-01 0.206E 1 0.225E 01 0.51 5E-01 0. 167E 01 0.179E 1 0.588E-01 0. 140E 01 0.149E 01 0.662EÂ•01 0. 122E 01 0.128E 01 0.73 5E-0 I 0. 108E 01 0.113E 1 0.882E-01 0.916E 00 0.94 5E 0.103E 00 0. 81 7E 00 0.838E 00 0.118E 00 0.753E 00 0.769E 00 0.13 2E 00 0.705E 00 0.71 9E 0.14 7E 00 0.664E 00 0.677E 00 0.221E 00 0.479E 00 0.488E 00 0.294E 00 0.31 7E 00 0.323E 00 0.368E 00 0.203E 00 0.207E 00 0.441E 00 0. 131E 00 0.1 34E 0.58 8E 00 0.599E-01 0.610E-01 0.73 5E 00 0.312E-01 0.318E-01 LYMAN ALPHA PROFILE FOR HYOROGENIC NEON ELECTRON TEMPERATURE= 254.80 ELECTRON DENSITY= 0.20E 24 A=0.40 R0.10E 13 TRATIO=1.00 Xl= 9.0 Zl= 1.0 ZZ~ 9.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 1 2 1 E 02 0.105E 02 0.73 5E-0 2 0. 104E 02 0.970E 01 0.147E-01 0.744E 01 0.776E 01 0.221E-01 0.509E 01 0.569E 01 0.294E-0 I 0.358E 01 0.406E 01 0.368E-QI 0.265E 01 0.296E 1 0.44 1E-0 1 0.205E 01 0.225E 01 0.51 5E-01 0. 166E 01 0.179E 1 Q.58 8E-01 0.140E 01 0.1 49E 1 0.662E-0 1 0.121E 1 0.128E 01 0.735E-01 0. 10 8E 01 0.1 13E 1 0.882E-01 0.910E 00 0.939E 00 0.10 3E 0.809E 00 0.831E 00 0.118E 0.743E 00 0.760E 00 0.13 2E 0.694E 00 0.708E 00 1 4 7E 0.652E 00 0.665E 00 0.221E 00 0.470E 00 0.4 79E 0.294E 00 0.31 7E 00 0.323E 00 0.368E 00 0.209E 00 0.213E 00 0.441E 00 0. 138E 00 0. 141E 00 0.588E 00 0.642E-01 0.655E-01 0.735E 00 0.332E-01 0.338E-01

PAGE 232

226 LYMAN BETA PROFILE FOR HYDROGENIC NEON ELECTRON TEMPERATURÂ£= 809.10 ELECTRON OENSITY= 0.10E 24 A=0-20 R= 0.0 TRATIQ=0.25 XI = 9,0 Zl= 1-0 Z2= 9.0 DELTA STARK STARK+ OMEGA PROFILE DQPPLER 0.0 0.243E 00 0.358E 00 0.735E-02 0.246E 00 0.360E 00 0.147E-01 0.254E 00 0.36 7E 00 0.221E-01 0.266E 00 0.377E 00 0.294E-01 0.282E 00 0.392E 00 0.368E-01 0.302E 00 0.410E 00 0.44 IE-01 0.325E 00 0.432E 00 0.51 5E1 0.350E 00 0.456E 00 0.588E-01 0.378E 00 0.484E 00 0.662E-01 0.407E 00 0.513E 00 0.7J5E-01 0.4 3 7E 00 0.544E 00 0.882E-0 1 0.501E 00 0.6UE 00 0.103E 00 0.566E 00 0.679E 00 0.1 18E 0.630E 00 0.74 7E 00 0.I32E 00 0.689E 00 0.812E 00 1 4 7E 0.743E 00 0.871E 00 0.221E 00 0.886E 00 0.104E 01 0.294E 00 0.845E 00 0.101E 01 0.368E 00 0.721E 00 0.869E 00 0.441E 00 0.589E 00 0.7 13E 00 0.5S8E 0.383E 00 0.465E 00 0.73 5E 0.252E 00 0.306E 00 LYMAN BETA PROFILE FOR HYDROGENIC NEON ELECTRON TEMPERATURE= 809.10 ELECTRON DENSITY^ 0.10E 24 A=0.20 R= 0.0 TRATI0=1.00 XI= 9.0 Zl = 1.0 Z2 = 9.0 delÂ™ STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.26 7E 00 0.335E 00 0.73 5E02 0.269E 00 0.338E 00 Q.147E01 0.278E 00 0.34 7E 0.221EÂ•01 0.292E 00 0.361E 00 0.29 4E01 0.310E 00 0.381E 00 0.368E0 1 0.332E 00 0.405E 00 0.44 Â£Â•01 0.357E 00 0.433E 00 0.51 SE~ 01 0.386E 00 0.465E 00 0.598E01 0.4 I 6E 00 0.499E 00 0.662E0 1 0.448E 00 0.535E 00 0.735E01 0.482E 00 0.574E 00 0.882E01 0.552E 00 0.653E 00 1 3Â£ 00 0.622E 00 0.733E 00 0.1 18E 00 0.689E 00 0.810E 00 0.13 2E 00 0. 751E 00 0.881E 00 1 4 7E 00 0.805E 00 0.944E 00 0.22 IE 00 0.933E 00 O.llOE 01 0.2 94E 00 0.864E 00 0. 102E 01 0.36 8E 00 0.720E 00 0.851E 00 4 4 1 E 00 0.577E 00 0.633E 00 0.59 8E 00 0.365E 00 0.432E 00 0.735E 00 0.235E 00 0.278E 00

PAGE 233

227 LYMAN BETA PROFILE FOR HYDROGENIC NEON ELECTRON TEMPERATURE= 809.10 ELECTRON OENSITY= 0.10E 24 A=0.20 R~ 0.0 TRATIO=4.00 XI = 9.0 Zl = 1.0 Z2= 9.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.350E 00 0.401E 00 0.735E-02 0.354E 00 0.406E 00 0.14 7E-0 1 0.366E 00 0.419E 00 0.22 1E-0 1 0.386E 00 0.440E 00 0.294E-01 0. 41 IE 00 0.468E 00 0.36 8E-0 I 0.442E 00 0.501E 00 0.441E-01 0.477E 00 0.540E 00 0.51 5E-Q1 0.516E 00 0.583E 00 0.588E-0 I 0.55 7E 00 0.628E 00 0.662E-01 0. 600E 00 0.676E 00 0.735E-0 1 0.644E 00 0.725E 00 0.882E-0 1 0.732E 00 0.823E 00 0.103E 00 0.81 7E 00 0.918E 00 0.1 I 8E 0.894E 00 0.100E 01 0.13 2E 0.959E 00 0.108E 01 0.14 7E 0. 101E 01 0.1 13E 01 0.221E 00 0.106E 01 0. 1 19E 01 0.294E 00 0. 895E 00 0.101E 01 0.36 8E 0.694E 00 0.781E 00 0.441E 00 0.527E 00 0.593E 00 0.588E 00 0.306E 00 0.344E 00 0.735E 00 0. I83E 00 0.206E 00 LYMAN BETA PROFILE FOR HYDROGEN IC NEON ELECTRON TEMPERATURE^ 809.10 ELECTRON DENSITY= 0.10E 24 A=0.20 R= O.IOE 00 TRATIQ=1.00 XI = 9.0 Zl= 1.0 Z2= 9.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.204E 00 0.269E 00 0.735E-02 0.206E 00 0.272E 00 0, 147E-01 0.212E 00 0.278E 00 0.22 1E-01 0.221E 00 0.289E 00 0.294E-0 1 0.234E 00 0.304E 00 G.368E-0! 0.250E 00 0.322E 00 0.44 1E-0 1 0.268E 00 0.344E 00 0.51 5E-01 0.289E 00 0.368E 00 0.588E-01 0.31 IE 00 0.394E 00 0.662E-0 1 0.335E 00 0.423E 00 C.735E-01 0.360E 00 0.453E 00 0.882E-0 I 0.413E 00 0.51 8E 0.103E 00 0.469E 00 0.585E 00 0. 1 1 8E 0.524E 00 0.652E 00 0.132E 00 0.5 78E 00 0.718E 00 1 4 7E 0.628E 00 0.779E 00 0.22 IE 0.793E 00 0.983E 00 0.29 4E 0.805E 00 0.100E 01 0.368E 0.724E 00 0.902E 00 0.441E 00 0.615E 00 0.768E 00 0.58 8E 0.421E 00 0.525E 00 0.735E 00 0.286E 00 0.357E 00

PAGE 234

228 LYMAN BETA PROFILE FOR HYDROGENIC NEON ELECTRON TEMPERATURE= 809.10 ELECTRON DENSITY= 0.10E 24 A=0.20 H0.10E 13 TRATlO=l.00 Xl= 9.0 Zl = 1.0 Z2 = 9.0 DELTA STARK STARK*OMEGA PROFILE DOPPLER 0.0 0. 16 7E 00 0.231E 00 0.73SE-02 0. 168E 00 0.233E 00 0. 14 7E-0 1 0. 173E 00 0.238E 00 0.22 1E-01 0. 180E 00 0.247E 00 0.294E-0 I 0. 190E 00 0.259E 00 0.368E-0 1 0.202E 00 0.274E 00 0.44 1E-0 1 0.216E 00 0.291E 00 0.515E-01 0.232E 00 0.311E 00 0.588E-01 0.249E 00 0.333E 00 0.662E-Q1 0.268E 00 0.357E 00 0.735E-0 I 0.288E 00 0.382E 00 0.832E-01 0.331E 00 0.437E 00 0.10 3E 0.376E 00 0.495E 00 0. 1 18E 0.422E 00 0.554E 00 0.132E 00 0.468E 00 0.613E 0.147E 00 0.513E 00 0.671E 00 0.221E 00 0.683E 00 0.892E 00 0.29 4E 0.736E 00 0.963E 00 0.36 8E 0.701E 00 0.919E 00 0.441E 00 0.625E 00 0.820E 00 0.53 8E 0.458E 00 0.601E 00 0.735E 00 0.326E 00 0.429E 00 LYMAN BETA PROFILE FOR HYDROGENIC NEON ELECTRON TEMPERATURE^ 202.30 ELECTRON DENSITY= 0. 10E 24 A=0.40 R= 0.0 TRATIO=0.25 XI= 9.0 Z 1= 1.0 Z2 = 9.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.382E 00 0.471E 00 0.73SE-02 0.384E 00 0.474E 00 0. 147E-0 t 0.39 IE 00 0.482E 00 0.22 1E-0 1 0.402E 00 0.494E 00 0.294E-01 0.418E 00 0.51 IE 00 0.368E-0 1 0.438E 00 0.532E 00 0.44 1E-01 0.460E 00 0.557E 00 0.5 1 5E-0 1 0.485E 00 0.584E 00 0.58 8E-0 1 0.51 IE 00 0.614E 00 0.66 2E-01 0.539E 00 0.645E 00 0.735E-0 I 0.566E 00 0.678E 00 0.882E-01 0.626E 00 0.744E 00 0.10 3E 0.682E 00 0.809E 00 1 1 8E 0.735E 00 0.869E 00 0.13 2E 0.781E 00 0.923E 00 1 4 7E 0.819E 00 0.968E 00 0.221E 00 0.890E 00 1 5E 1 0. 294E 0.81 IE 00 0.963E 00 0.368E 00 0.679E 00 0.808E 00 0.44 IE 0.550E 00 0.656E 00 0.58 8E 0.355E 00 0.424E 00 0.73 5E 0.234E 00 0.2 79E 00

PAGE 235

229 LYMAN BETA PROFILE FOR HYDROGEN 1C NEON ELECTRON TEMPERATURE= 202.30 ELECTRON DENSITY= 0.10E 24 A=0.40 R0-0 TRATIO=1.00 XI = 9.0 Zl~ 1.0 Z2 = 9.0 DELT/> STARK STARK* OMEG/s i PROFILE DOPPLER 0.0 0.473E 00 0.545E 00 0.73 5EÂ•02 0.475E 00 0.548E 00 0. 14 7E01 0.484E 00 0.559E 00 0.221EOi 0.499E 00 0.575E 00 0.29 4EI 0.520E 00 0.598E 00 0.368EÂ•01 0.544E 00 0.625E 00 0.44 1EÂ•0 I 0.572E 00 0.656E 00 0.51 5E01 0.603E 00 0.691E 00 0.S8 8EÂ•01 0.636E 00 0.72 7E 00 0.662E0 I 0.670E 00 0.765E 00 0.735E01 0.704E 00 0.804E 00 0.882E01 0.771E 00 0.880E 00 0.10 3E 00 0.834E 00 0.951E 00 1 1 8E 00 0.889E 00 0.101E 01 0.132E 00 0.934E 00 0. 106E 01 0.14 7E 00 0.969E 00 0.1 10E 01 0.221E 00 0.981E 00 0.U2E 01 0.29*E 00 0.836E 00 0.955E 00 0.368E 00 0.663E 00 0.757E 00 0.44 IE 00 0.514E 00 0.587E 00 0.SS8E 00 0.309E 00 0.354E 00 0.73 5E 00 0. 193E 00 0.221E 00 LYMAN BETA PROFILE FOR HYOROGENIC NEON ELECTRON TEMPERATURE^ 202.30 ELECTRON DENSITY= 0.10E 2* A=0.40 R= 0.0 TRATIO=4.00 XI= 9.0 Zl = 1-0 Z2 = 9.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0. 758E 00 0.824E 00 0.735E-02 0.763E 00 0.829E 00 0. 147E-0 I 0.778E 00 0.846E 00 0.221E-01 0.803E 00 0.873E 00 0.294E-0 1 0.836E 00 0.908E 00 0.368E-0 I 0.876E 00 0.950E 00 0.44 1E-0 1 0.919E 00 0.997E 00 0.51SE-0 1 0.965E 00 0.1 OSE 01 0.58 8E-0 1 0. 101E 01 0. 1 10E 01 0.662E-01 0. 106E 01 0. 1 14E 01 0.735E-01 0. HOE 01 0.1 19E 02 0.882E-0 I 0. 1 18E 01 0. 128E 1 0.10 3E 0. 124E 01 0.134E 1 Â• 1 I 8E 0. 127E 01 0.138E 01 0.132E 0.129E 01 0. 140E 01 0.147E 00 0. 129E 01 0.139E 01 0.22 IE 0. 107E 01 0. 1 16E 01 0.294E 00 0.781E 00 0.84 7E 00 0.3&8E 00 0.551E 00 0.597E 00 C.441E 00 0.391E 00 0.424E 00 0.588E 00 0.208E 00 0.225E 00 0.73 5E 0. I22E 00 0.132E 00

PAGE 236

230 LYMAN BETA PROFILE FOR HYDROGEN IC NEON ELECTRON TEMPERATURE^ 202-30 ELECTRON DENSITY= O.iOE 24 A=0.40 R= O.IOE 00 TRATIO=1.00 XI= 9.0 Zl = 1-0 Z2= 9-0 DELTA STARK STARK* OMEGA PROFILE DOPPLER 0.0 0.462E 00 0.535E 00 0.735E-02 0.464E 00 0.538E 00 0. 14 7E-0 1 0.473E 00 0.548E 00 0.22 1E-0 1 0.488E 00 0.564E 00 0.294E-01 0.507E 00 0.586E 00 0.368E-0 1 0.531E 00 0.613E 00 0.44 1E-0 1 0-558E 00 0.643E 00 0.515E-01 0.588E 00 0.677E 00 0.588E-01 0.620E 00 0.712E 00 0.662E-0 1 0.652E 00 0.749E 00 0.735E-01 0.686E 00 0.787E 00 0.882E-01 0.751E 00 0.861E 00 0.10 3E 0.81 IE 00 0.930E 00 0. 1 1 8E 0. 865E 00 0.990E 00 0.1J2E 0-909E 00 0.104E 01 1 4 7E 0.943E 00 0I08E 01 0.221E 00 0963E 00 0.1 10E 01 0.294E 00 0.832E 00 0.955E 00 0.368E 00 0.668E 00 0.767E 00 0.441E 00 0.523E 00 0.600E 00 0.588E 00 0.31 8E 00 0.366E 00 0.73 5E 0.200E 00 0.230E 00 LYMAN BETA PROFILE FOR HYDROGEN IC NEON ELECTRON TEMPERATURE= 202.30 ELECTRON DENSITY^ 0.10E 24 A=0.40 Rss 0.10E 13 TRATI0=1.00 XI= 9.0 Zl= 1.0 Z2= 9-0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.457E 00 0.5 32E 00 0.735E-G2 0.460E 00 0.535E 00 0.147E-01 0.468E 00 0.545E 00 0.221E-01 0.483E 00 0.561E 00 0.294E-01 0.502E 00 0.583E 00 0.368E-01 0.52&E 00 0.609E 00 0.44 IE1 0.552E 00 0.639E 00 0.51 5E-0 1 0. 582E 00 0.672E 00 0.588E-0 I 0.613E 00 0.707E 00 0.66 2E-0 1 0.645E 00 0.743E 00 0.735E-0 1 0.677E 00 0.780E 00 0.88 2E-0 1 0.740E 00 0.852E 00 1 3E 0. 799E 00 0.920E 00 0.1 1 8E 0.851E 00 0.979E 00 0.13 2E 0.893E 00 0.103E 01 1 4 7E 0.926E 00 0.1 06E 01 0.221E 00 0.946E 00 0.109E 01 0.29 AC 0.B24E 00 0.950E 00 0.368E 00 0.668E oo 0.770E 00 0.441E 00 0.528E 00 0.608E 00 G.588E 00 0.325E oo 0.3 75E 00 0.735E 00 0.206E 00 0.237E 00

PAGE 237

231 LYMAN ALPHA PROFILE FOR HYDRQGENJC ALUMINUM ELECTRON TEMPERATURE^ 1019-20 ELECTRON DENSITY= 0.20E 24 A=0.20 R= 0.0 TRATI0=0.25 XI=12.0 Zl=12.0 Z2=11.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0*0 0.295E 02 0.507E 01 0.735E-02 0. 147E 02 0.502E 01 0.14 7E-0 1 0.588E 01 0.489E 01 0.221E-01 0.297E 01 0.468E 01 0.294E-01 0. 177E 01 0.439E 1 0.368E-01 0.U9E 01 0.406E 01 0.441E-01 0.862E 00 0.368E 1 0.515E-01 0.667E 00 0.329E 01 0.58 8E-0 I Q.543E 00 0.289E 01 0.662E-01 0.461E 00 0.251E 01 0.735E-0I 0.406E 00 0.215E 01 0.882E-01 0.344E 00 0.1 53E 1 1 3E 0.318E 00 0.106E 1 0I 18E 0.310E 00 0.751E 00 0.132E 00 0.31 IE 00 0.558E 00 1 4 7E 0.318E 00 0.450E 00 0.221E 00 0.348E 00 0.355E 00 0.29 4E 0.3 2 7E 00 0.336E 00 0.368E 00 0.2 75E 00 0.287E 00 0.441E 00 0.217E 00 0.229E 00 Q.S8 8E 0. 127E 00 0.136E 00 0.735E 00 0.757E-01 0.808E-01 LYMAN ALPHA PROFILE FOR HYDROGENIC ALUMINUM ELECTRON TEMPERATURE= 1019.20 ELECTRON OENSlTY= 0.20E 24 A =0.20 R= 0.0 TRATIO=1.00 XI=12.0 Z1=12.0 Z2=11.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.293E 02 0.882E 1 0.735E-02 0. 146E 02 0.853E 01 0.14 7E-0 1 0.587E 01 0.774E 01 0.221E-01 0.298E 01 0.660E 01 0.2 9 4E1 0. 181E 0! 0.531E 01 0.36 8E-0 1 0. 123E 01 0.405E 01 0.44 1E-0 1 0.917E 00 0.296E 01 0.51 5E-0 1 0.732E 00 0.21 IE 01 0.58 8E-0 1 0.61 8E 00 0.1 50E 1 0.66 2E-0 1 0.547E 00 0.109E 01 0.73 5E-0 I 0.502E 00 0.826E 00 0.882E-0 1 0.458E 00 0.578E 00 0.10 3E 0.44 8E 00 0.498E 00 1 1 8E 0.450E 00 0.475E 00 0.132E 00 0.458E 00 0.472E 00 1 4 7E 0.466E 00 0.475E 00 0.221E 00 0.445E 00 0.452E 00 0.294E 00 0.351E 00 0.360E 00 0.368E 00 0.253E 00 0.261E 00 0.44 IE 0. 177E 00 0.132E 00 0.588E 00 0.86 4E-01 0.892E-01 0.735E 00 0.453E-01 0.467E-0 1

PAGE 238

232 LYMAN ALPHA PROFILE FOR HYDROGEN IC ALUMINUM ELECTRON TEMPERATURE = 1019,20 ELECTRON DENSITY* 0.20E 24 A=0.2 R= 0.0 TRATIO=4.00 XI=12.0 Zl=12.0 Z2=ll.O DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.293E 02 0.14 3E 2 0.735E-02 0. 147E 02 0.129E 02 0-14 7E1 0.599E 01 0.956E 01 0.221E-01 0.313E 01 0.606E 01 0.294E-0 1 0. 199E 01 0.357E 01 0.368E-O1 0.144E 01 0.217E 1 0.44 1E-01 0. 1 16E 01 Q.149E 01 0.S15E-0 1 0. 101E 01 0.117E 01 0.588E-0 I 0.926E 00 0. 101E 01 0.662E-01 0.883E 00 0.929E 00 0.735E-0 1 0.861E 00 0.888E 00 0.882E-01 0.848E 00 0.857E 00 0.103E 00 0.844E 00 0.844E 00 0.118E 0.828E 00 0.827E 00 0.132E 00 0.797E 00 0.796E 00 1 4 7E Q.754E 00 0.754E 00 0.221E 00 0.458E 00 0.462E 00 0.294E 00 0.236E 00 0.239E 00 0.368E 00 0. 120E 00 0.1 22E 0.441E 00 0.642E-01 0.649E-01 0.58 8E 0.220E-01 0.222E-01 7 3 5E 0.960E-02 0.967E-02 LYMAN ALPHA PROFILE FOR HYDROGENIC ALUMINUM ELECTRON TÂ£MPERATURE= 254.80 ELECTRON DENSITY= 0.20E 24 = 0.40 R= 0.0 TRATI0=0.2Â£ i XI=12 1.0 Z1=12.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.21 IE 02 0.825E 01 0.735E-02 0. 140E 02 0.801E 01 0. 14 7E-0 1 0.705E 01 0.734E 01 0.22 1E-0 1 0.392E 01 0.637E 01 0.294E-0 1 0.248E 01 0.525E 01 0.368E-0 1 0. 174E 01 0.415E 01 0.44 1E-01 0. 132E 01 0.317E 1 0.51 5EI 0. 10 7E 01 0.238E 01 0.588E-01 0.914E 00 0.179E 01 0.662E-01 0.81 IE 00 0.137E 1 0.73 5E-0 1 0.744E 00 0. i 10E 01 0.882E-0 I 0.666E 00 0.806E 00 0.10 3E 0.628E 00 0.687E 00 1 I 8E 0. 604E 00 0.632E 00 0.132E 0.58 3E 00 0.600E 00 1 4 7E 0.5&2E 00 0.574E 00 0.221E 00 0.429E 00 0.440E 00 G.294E 0.30 IE 00 0.310E 00 0.368E 00 0.207E 00 0.214E 00 0.441E 00 0. 143E 00 0.148E 00 0.588E 00 0.721E-01 0.743E-01 0.73 5E 0.397E-01 0.409E-01

PAGE 239

233 LYMAN ALPHA PROFILE FOR HYDROGENIC ALUMINUM ELECTRON TEMPERATURE^ 254.80 ELECTRON DENSITY= 0.20E 24 A=0.40 R= 0.0 TRATIO=1.00 XI=12.0 Z1=12.0 Z2=ll.O DELTA i STARK STARK* OMEGA PROFILE DOPPLER 0.0 0.21 IE 02 0.127E 02 0.7 3 5E02 0. 141E 02 0.116E 2 0. 14 7E1 0.722E 01 0.910E 01 0.22 IE01 0.414E 01 0.630E 01 0.29 4E01 0.273E 01 0.412E 1 0.368E01 0.201E 01 0.275E 01 0.44 1E01 0.1 62E 01 0.199E 1 0.51 5EÂ•01 0.139E 01 0.1 58E 1 0.588E01 0. 12 5E 01 0.1 36E 01 0.662EÂ•01 0. 1 16E 01 0.122E 01 0.735E0 1 0. 109E 01 0.1 13E 01 0.88 2E0 1 0. 101E 01 0.102E 01 0.10 3E 00 0.937E 00 0.943E 00 1 1 8E 00 0.866E 00 0.871E 00 0.132E 00 0.792E 00 0.797E 00 1 4 7E 00 0.717E 00 0.722E 00 0.221E 00 0.392E 00 0.397E 00 0.294E 00 0.204E 00 0.207E 00 0.368E 00 0. 109E 00 0.1 1 IE 00 0.44 1Â£ 00 Q.619E-01 0.626E-01 0.588E 00 0.240E-01 0.242E-01 0.735E 00 0. 1 15E-01 0.116E-01 LYMAN ALPHA PROFILE FOR HYDROGENIC ALUMINUM ELECTRON TEMPERATURE= 254.80 ELECTRON OENSITY= 0.20E 24 A=0.40 R= 0.0 TRATIO=4.00 XI=12.0 Zl=12.0 Z2=ll.O DELTA OMEGA 0.0 0.73 0. 14 0.22 0.29 0.36 0.44 0.51 0.58 0.66 0.73 0.88 0.10 0.11 0.13 0. 14 0.22 0.29 0.36 0.44 0.58 0.73 5E-0 2 7E-0 1 1E-0 4E-0 8E-0 1E-0 5E-0 1 8E-0 1 2E-0 1 5E-0 1 2E-0 1 3E 8E 2E 7E IE 4E 8E IE 8E 5E 00 00 00 00 00 00 00 00 00 STARK PROFILE 0.219E 02 0. 149E 02 0.800E 01 0.496E 01 0.358E 01 0.288E 01 0.248E 01 0.220E 01 0. 199E 01 0. 180E 01 0. 162E 01 0. 12 8E 01 0.990E 00 0.74 7E 00 0.558E 00 0.416E 00 1 1 4E 00 0. 482E-01 0.274EÂ•01 0. 181E-01 0.986E-02 0.623E-02 STARK+ DOPPLER 0.177E 02 0.146E 02 0.926E 1 0.565E I 0.388E 01 0.301E 01 0.254E 01 0.224E 01 0.201E 01 0. 1 81E 01 0.163E 1 0. 129E 1 0. 100E 01 0.756E 00 0.565E 00 0.421E 00 0. 1 16E 00 0.485E-01 0.2 76E-01 0. 132E-0 1 0.991E-02 0.625E-02

PAGE 240

234 LYMAN BETA PROFILE FOR HYDROGEN IC ALUMINUM ELECTRON TEMPÂ£RATURE= 809.10 ELECTRON DENSITY^ 0.10E 24 A=0.20 R= 0.0 TRATI0=0.25 XI=1Â£ !.0 Zl=12.0 OEL.TA STARK STARK+ MEG/0 l PROFILE DOPPLER 0.0 0. 113E 00 0.254E 00 0.735E02 0. 1 15E 00 0.256E 00 0.14 7E01 0.122E 00 0.261E 00 0.22 1E01 0.132E 00 0-269E 00 0.294E01 0. 146E 00 0.280E 00 0.368E01 0. 162E 00 0.294E 00 0.44 IEÂ•01 0.181E 00 0.311E 00 0.51 5E 01 0.203E 00 0.331E 00 Q.588EÂ•01 0.226E 00 0.352E 00 0.66 2E01 0.25 IE 00 0.376E 00 0.73 5EÂ•0 1 0.278E 00 0.402E 00 0.882E01 0.336E 00 0.458E 0.103E 00 0.396E 00 0.51 9E 0.1 I 8Â£ 00 0.458E 00 0.581E 00 0. 13 2E 00 0.51 7E 00 0.643E 00 0.14 7E 00 0.573E 00 0.703E 00 0.221E 00 0.763E 00 0.927E 00 0.294E 00 0.792E 00 0.985E 00 0.368E 00 0.725E 00 0.920E 00 0.44 IE 00 0.626E 00 0.804E 00 0.588E 00 0.440E 00 0.570E 00 7 3 5E 00 0.3 06E 00 0.397E 00 LYMAN BETA PROFILE FOR HYOROGENIC ALUMINUM ELECTRON TEMPÂ£RATURE= 809.10 ELECTRON DENSITY= 0. 10E 24 A=0.20 R= 0.0 TRATIO^l.OO XI=12.0 Zl=12.0 Z2=ll.O DELT/S STARK STARK* OMEG/> i PROFILE DOPPLER 0.0 0. 177E 00 0.262E 00 0.735E02 0. 181E 00 0.266E 00 0.14 7E1 0. 194E 00 0.276E 00 0.22 1E01 0.213E 00 0.294E 00 C.294EÂ•01 0.239E 00 0.318E 0.36 8E01 0.269E 00 0.34 7E 4 4 I EÂ•01 0.303E 00 0.382E 00 0.51 5E01 0.34 IE 00 0.421E 00 0.588E01 0.382E 00 0.463E 00 0.662E-0 1 0.425E 00 0.508E 00 0.7 3 5EÂ•0 I 0.470E 00 0.556E 00 C.882E0 1 0.562E 00 0.653E 00 0.10 3E 00 0.652E 00 0.750E 00 1 1 8E 00 0.736E 00 0.841E 00 1 3 2E 00 0.81 IE 00 0.923E 00 1 4 7Â£ 00 0. 8 73E 00 0.993E 00 0.22 IE 00 0.990E 00 0.1 14E 01 0.294E 00 0.89 IE 00 0.103E 01 0.368E 0.730E 00 0.852E 00 0.441E 00 0.5 79E 00 0.677E 00 0.588E 00 0.358E 00 0.419E 0.73 5E 00 0.226E 00 0.264E 00

PAGE 241

235 LYMAN BETA PROFILE FOR HYOROGENIC ALUMINUM ELECTRON TEMPERATURE^ 809.10 ELECTRON OENSITY= 0.10E 24 A=0.2 R= 0.0 TRATIQ=4. 00 XI=12.0 Zl=12.0 Z2=11.0 DELTA STARK STARK* OMEGA PROFILE OOPPLER 0.0 0.403E 00 0.465E 00 0.735E-02 0.4 15E 00 0.476E 00 0.14 7E-0 1 0.452E 00 0.509E 00 0.22 1E-0 1 0.508E 00 0.561E 00 0.294E-Q1 0.579E 00 0.629E 00 0.368E-0 1 0.661E 00 0.710E 00 0.441E-0 1 0.751E 00 0.799E 00 0.515E-01 0.846E 00 0.893E 00 0.588E-01 0.942E 00 0.989E 00 0.662E-0 1 0. 104E 01 0.108E 01 0.735E-01 0. II 3E 01 0.1 18E 01 0.882E-0I 0.129E 01 0.134E 01 0.10 3E 0. 142E 01 0.1 47E 1 1 1 8Â£ 0. 150E 01 0.1 55E 01 0.132E 00 0. 153E 01 0.160E 01 0.14 7E 0. 153E 01 0.160E 1 0.221E 00 0. 122E 01 0.128E 01 0.294E 00 0.833E 00 0.878E 00 0.368E 00 0.557E 00 0.587E 00 0.441E 00 0.375E 00 0.395E 00 0588E 00 0. 179E 00 0.189E 00 0.735E 00 0.929E-01 0.980E-01 LYMAN SETA PROFILE FOR HYDROGEN IC ALUMINUM ELECTRON TEMPERATURE-= 202.30 ELECTRON DENSITY^ 0.10E 24 A=0.40 R= 0.0 TRATIO=0.2S i XI=12 !.0 Z1=12.C ) DELTA STARK 5TARK+ OMEGA PROFILE DOPPLER 0.0 0.31 9Â£ 00 0.436E 00 0.735E-02 0.324E 00 0.440E 00 0.14 7E-0 1 0.340E 00 0.453E 00 Â•22 1E-0 1 0.365E 00 0-474E 00 0.294E-0 1 0.39 7E 00 0.503E 00 0.36 8E-01 0.436E 00 0.537E 00 0.44 IE-0 1 0.479E 00 0.577E 00 0.51 5E1 0.S25E 00 0.622E 00 0.588E-01 0.573E 00 0.669E 00 0.662E-01 0.622E 00 0.717E 00 0.735E-0 I 0.671E 00 0.767E 00 0.832E-Q 1 0.765E 00 0.863E 00 CU10 3E 0. 84 9E 00 0.952E 00 1 I 8E 0.918E 00 0.103E 01 1 3 2E 0.971E 00 0. 109E 01 0.14 7E 0. I01E 01 0. 1 13E 01 0.22 IE 0.994E 00 1 1 3E 01 0.294E 00 0. 834E 00 Q-958E 00 0.368E 00 0.661E 00 0.763E 00 0.441E 00 0.516E 00 0.595E 00 0.58 8E 0.31SE 00 0.364E 00 0.73SE 0.200E 00 0.231E 00

PAGE 242

236 LYMAN BETA PROFILE FOR HYDROGEN IC ALUMINUM ELECTRON TEMPERATURE= 202.30 ELECTRON DENSITY^ 0.10E 24 A=0.40 R0.0 TRATI0=1.00 XI=12.0 Zl=12.0 Z2=lt.0 DELTA OMEGA STARK PROFILE STARK+ DOPPLER 0.0 0.73 0.14 0.22 0.29 0.36 0.44 0.51 0.58 0.66 0.73 0.88 0.10 0.1 1 0.13 0.14 0.22 0.29 0.36 0.44 0.58 0.73 5E-0 2 7E-0 1 IE-0 1 4E-0 1 8E-0 1 1E-0 I 5E-0 1 8E-0 I 2E-0 1 5E-0 1 2E-0 1 3E 8E 2E 7E IE 4E 8E IE 8E 5E 00 00 00 00 00 00 00 00 00 0.612E 0.623E 0.659E 0.713E 0.781E 0.859E 0.941E O. 103E 0. I 1 IE 0. 118E 0. 126E 0. 137E 0. 145E 0. 148E 0.148E 0. 146E O 1 I 2E 0.770E 0.521E 0.358E O. 180E 00 00 00 00 00 00 00 01 01 01 01 01 01 01 01 01 01 00 00 00 00 0.998E-0 1 0.669E 0.700E 0.732E 0.782E 0.846E 0.921E 0.100E 0.1 09E 0.1 17E 0. 125E 0. 132E 0. 144E 0.152E 0.1 56E 0. 156E 0.1 54E 0.U9E 0.819E 0.555E 0.381E 0.192E 0. 106E 00 00 00 00 00 00 01 01 01 01 01 01 01 01 01 01 01 00 00 00 00 00 LYMAN BETA PROFILE FOR HYDROGENIC ALUMINUM ELECTRON TEMPERATURE^ 202.30 ELECTRON DENSITY= 0.10E 24 A=0.40 ft0.0 DELTA OMEGA 0.0 0.735E-02 0. 14 7E-0 1 0.22 1E-01 0.29 4E-0 I 0.368E-0 1 0.44 IE-0 1 0.51 5E-0 1 0.58 8E-O1 0.662E-0 1 0.735E-0 I 0.882E-01 1 3E 0.118E 0.13 2E 1 4 7E 0.22 IE 00 0.2 9 4E 0.368E 00 0.441E 00 0.588E 00 0.73 5E TRATIO=4.00 XI=12.0 21=12.0 22=11.0 STARK+ DOPPLER 0.153E 01 0.156E 01 0.165E 01 0.177E 01 0.192E 01 0.206E 01 0.219E 01 0.230E 01 0.237E 01 0.241E 01 0.242E 01 0.236E 01 0.221E 01 0.201E 01 0.180E 01 0.159E 01 0.822E 00 0.445E 00 0.262E 00 0.168E 00 0.858E-01 0.526E-01 STARK PROFILE 0. 145E 01 0. 149E 01 0. 157E 01 0. 170E 01 0. 185E 01 0. 199E 01 0.212E 01 0.223E 01 0. 230E 01 0.234E 01 0.235E 01 0. 22 8E 01 0.213E 01 0. 194E 01 0. 173E 01 0. 15 3E 01 0. 792E 00 0.423E 00 0.252E 00 0. 162E 00 0.828E-01 0.507E-01

PAGE 243

237 LYMAN ALPHA PROFILE FOR HYDROGENIC ARGON ELECTRON TEMPERATURE^ 1019.20 ELECTRON DENSITY= 0.20E 24 A=0.20 R= 0.0 TRATIO=0.2S > xi=n '.0 Zl= 1.0 DELTA STARK STARK+ OMEGA PROFILE OOPPLER 0.0 0.558E 02 0.378E 01 0.735E-02 0. 109E 02 0.377E 01 0.147E-01 0.330E 01 0.373E 01 0.221E-01 0. 163E 01 0.366E 01 0.294E-0 I 0. 106E 01 0.358E 01 0.368E-01 0.820E 00 0.347E 01 0.441E-0 1 0.723E 00 0.335E 01 0.515E-01 0.693E 00 0.320E 01 0.58 8E-0 1 0.697E 00 0.305E 01 0.662E-01 0.714E 00 0.288E 01 0.735E-01 0.73SE 00 0.271E 01 0.882E-0 1 0.765E 00 0.236E 01 0.10 3E 0.782E 00 0.202E 01 11 8E 0.7 79E 00 0.170E 01 0.132E 00 0.741E 00 0.141E 01 0.147E 00 0.677E 00 0.1 I 7E 1 0.22 IE 0.364E 00 0.4 79E 0.294E 0. 183E 00 0.241E 00 0.368E 00 0.100E 00 0.130E 00 0.44 IE 00 0. 600E-01 0.738E-0 1 0.58 8E 0.266E-01 0.301E-01 0.735E 00 0. 146E-01 0.157E-01 LYMAN ALPHA PROFILE FOR HYDROGENIC ARGON ELECTRON TEMPERATURE^ 1019.20 ELECTRON DENSITY= 0.20E 24 A=0.20 R= 0.0 TRATIO=1.00 XI=17.0 Z 1= 1.0 Z2=17.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.557E 02 0.680E 01 0.735E-02 0. 109E 02 0.671E 01 0. 14 7E-0 1 0.333E 01 0.643E 01 0.22 IE-01 0. 167E 01 0.599E 1 0.294E-0 1 O.lllE 01 0.543E 01 0.36 8E-0 1 0.889E 00 0.481E 01 0.44 1E-0 1 0.807E 00 0.416E 1 0.51SE-01 0.79 IE 00 0.352E 01 0.58 8E-0 1 0.805E 00 0.294E 01 0.662E-01 0.830E 00 0.243E 01 0.73SE-01 0.853E 00 0.201E 01 0.882E-01 0.878E 00 0.140E 01 1 3E 0.879E 00 0.105E 01 0.118E 00 0.853E 00 0.868E 00 0.132E 00 0.788E 00 0.762E 1 4 7E 0.700E 00 0.684E 00 0.221E 00 0.330E 00 0.359E 00 0.294E 00 0. 152E 00 0.169E 00 3 6 8E 0. 787E-01 0.851E-01 0.441E 00 0.453E-01 0.480E-01 0.58 8E 0. 190E-01 0. 197E-01 0.73 5E 0.999E-02 0. 102E-0 1

PAGE 244

238 LYMAN ALPHA PROFILE FOR HYOROGENIC ARGON ELECTRON TEMPERATURE^ 1019.20 ELECTRON DENSITY= 0.20E 24 A=0.20 R= 0.0 TRATIQ=4.00 XI=17.0 Zl = 1.0 Z2=17.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.558E 02 0.125E 02 0.735EÂ•02 0.110E 02 0.118E 02 Q.147EÂ•0 1 0.346E 01 0.999E 1 0.221EÂ•01 0. 185E 01 0.764E 01 Q.294E-01 0.1 34E 01 0.537E 01 0.368EI 0. 1 17E 01 0.359E 01 0.441E01 0. 1 13E 01 0.241E 01 0.5 15E-0 1 0. 1 16E 01 0.174E 01 0.588E-01 0. 120E 01 0.141E 01 0.662E-01 0. 123E 01 0.127E 01 0.735E-01 0. 123E 01 0.121E 01 0-882E-01 0. 1 18E 01 0. 1 14E 1 0.10 3E 00 0.1 08E 01 0.105E 01 0.11 8E 00 0.951E 00 0.933E 00 0.132E 00 0.792E 00 0.793E 00 1 4 7E 00 0.634E 00 0.652E 00 0.22 IE 00 0. 196E 00 0.206E 00 C.294E 00 0.707E-01 0.736E-0 1 C.368E 00 0.320E-01 0.328E-01 0.441E 00 0. 170E-01 0.174E-01 .58 8E 00 0.666E-02 0.673E-02 0.73 5E 00 0.346E-02 0.348E-02 LYMAN ALPHA PROFILE FOR HYDROGENIC ARGON ELECTRON TEMPERATURE= 1019.20 ELECTRON DENSITY^ 0.20E 24 A-0.20 R= 0.10E 00 TRATIO=1.00 XI=17.0 Z 1= 1.0 Z2=17.0 DELTyi t STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.557E 02 0.671E 01 0.735EÂ•02 0. 109E 02 0.661E 01 0.147E-0 I 0.328E 01 0.633E 1 0.221E01 0. 160E 01 0.589E 01 0.29 4E01 0. 102E 01 0.533E 01 0.368E0 I 0.779E 00 0.469E 1 0.44 lÂ£0 1 0.673E 00 0.403E 01 0.51 5E-01 0. 635E 00 0.340E 01 0.58 8E0 1 0.631E 00 0.281E 01 0.662E-0 t 0.643E 00 0.230E 1 0.73 5E0 1 0.661E 00 0.187E 01 0.88 2E-0 1 0.693E 00 0.127E 01 0. 103E 00 0.719E 00 0.933E 00 0.1 18E 00 0.731E 00 0.770E 00 0.132E 00 0.712E 00 0.690E 00 1 4 7E 00 0.669E 00 0.642E 00 0.221E 00 0.4 10E 00 0.421E 00 0.29 4E 00 0.222E 00 0.236E 00 0.36 8E 00 0. 121E 00 0.1 29E 0.441E 00 0.68 7E-01 0.728E-01 0.58 8E 00 0.263E-01 0.274E-01 0.735E 00 0. 125E-01 0. 128E-0 1

PAGE 245

239 LYMAN ALPHA PROFILE FOR HYDROGENIC ARGON ELECTRCN TEMPÂ£RATURE= 1019.20 ELECTRON DENSITY= 0.20E 2* A=0.20 R= 0.10E 13 TRATI0=1.Q0 XI=17.0 Zl = 1-0 Z2=17.0 DELTA STARK STARK* OMEG/ i PROFILE DOPPLER 0.0 0.557E 02 0.669E 01 0.735E02 0. 109E 02 0.659E 01 0.14 7E1 0.326E 01 0.630E 01 0.22 te01 0. 158E 01 0Â„586E 01 0.29 4EÂ•01 0.997E 00 0.530E 01 0.368E01 0.74SE 00 0.466E 1 0.44 1E01 0.632E 00 0.400E 01 0.51 SE 01 0.587E 00 0.336E 01 0.588EÂ•01 0.576E 00 0.277E 01 0.66 2E-0 1 0.583E 00 0.225E 01 0.73 5E01 5 9 7E 00 0.182E 01 0.832EÂ•01 0..627E 00 0.1 22E 1 0.10 3E 00 0.6S5E 00 0.885E 00 0.11 8E 00 0.675E 00 0.726E 00 0.132E 00 0.667E 00 0.652E 00 1 4 7E 00 0.63 7E 00 0.612E 00 0.221E 00 0.427E 00 0.432E 00 0.294E 00 0.248E 00 0.26 IE 0.36 8E 00 0. 141E 00 0.14 9E 0.44 IE 00 0.822E-01 0.867E-0 1 58 8E 00 0.313E-01 0.327E-01 0.735E 00 0. 144E-01 0. 148E-0 1 LYMAN ALPHA PROFILE FOR HYDROGENIC ARGON ELECTRON TEMPERATURE= 254.80 ELECTRON DENSITY= 0.20E 2< A=0.40 R= 0.0 TRATIO=0.25 Xl=17.0 Zl= 1.0 Z2=17.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 00 0.4 16E 02 0.662E 1 0.735E-02 0. 136E 02 0.653E 01 0. 147E-0 1 0.470E 01 0.627E 01 0.221E-01 0.244E 01 0.587E 01 0.294E-0 1 0. 163E 1 0.536E 01 0.368E-0 I 0. 129E 01 0.477E 01 0.44 IE-01 0. 1 14E 01 0.41 7E 1 0.51 5E-0 1 0. 108E 01 0.357E 01 0.588E-01 0. 105E 01 0.302E 01 0.662E-0 I 0. 104E 01 0.253E 01 0.73SE-01 0. 104E 01 0.212E 01 0.882E-01 0. 101E 01 0. 151E 01 0.10 3E 0.947E 00 0. 1 14E 1 1 1 8E 0.864E 00 0.924E 00 0.13 2E 0.76 7E 00 0.788E 00 0.14 7E 0.668E 00 0.688E 00 0.221E 00 0.304E 00 0.336E 00 0.294E 00 0. 145E 00 0.160E 00 0.36 8E 0.781E-01 0.839E-01 0.441E 00 0.466E-01 0.491E-0 1 0.58 8E 0.205E-01 0.212E-01 0.7 3 5E 0. 1 10E-01 0.113E-0 1

PAGE 246

240 LYMAN ALPHA PROFILE FOR HYDROGEN IC ARGON ELECTRON TEMPERATURE= 25*. 80 ELECTRON DENSITY= 0.20E 24 A=0.40 R= 0.0 TRATIO=1.00 XI=17.0 Zl = 1.0 Z2=17.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.416E 02 0.1 I 7E 2 0.735E-02 0. 137E 02 0.1 HE 02 0. 147E-0 1 0.488E 01 0.957E 01 0.22 1E-0 1 0.266E 01 0.751E 01 0.294E-0 1 0. 190E 01 0.548E 01 0.368E-01 0. 161E 01 0.385E 01 0.441E-01 0. 149E 01 0.272E 01 0.51 5E-01 0. 145E 01 0.204E 01 0.58 8E-0 1 0. 14 3E 01 0.1 67E 1 0.662E-01 0. 140E 01 0.147E 01 0.7 3 5E-0 1 0. 136E 01 0.136E 01 0.882E-0 1 0.124E 01 0. 121E 1 0.10 3E 0. 107E 01 0.106E 01 0. 118E 0.899E 00 0.907E 00 0.132E 00 0.732E 00 0.751E 00 1 4 7E 0.586E 00 0.610E 00 0.221E 00 0.191E 00 0.201E 00 0.294E 00 0.753E-01 0.761E-01 Q.368E 00 0.363E-01 0.372E-01 0.441E 00 0.203E-01 0.207E-01 0.588E 00 Q.851E-02 0.860E-02 0.735E 00 0.456E-02 0.459E-02 LYMAN ALPHA PROFILE FOR HYDROGEN1C ARGON ELECTRON TE MPER ATURE= 254.80 ELECTRON DENSITY^ 0.20E 24 A=0.40 R= 0.0 TRATIO=4.00 Xl=17.0 Zi= 1.0 Z2=17.0 DELTA STARK STARK* OMEGA PROFILE DOPPLER 0.0 0.422E 02 0.201E 02 0.735E-02 0. 143E 02 0.1 69E 2 0.147E-01 0.5&IE 01 0.106E 02 0,22 IE-0 1 0.354E 01 0.588E 01 0.294E-01 0.289E 01 0.366E 1 0.368E-0 I 0.263E 01 0.283E 1 0.44 IE-01 0.246E 01 0.249E 01 0.51 5E-01 0.228E 01 0.226E 01 0.58 8E-0 1 0.206E 01 0.204E 01 0.662E-01 0. 180E 01 0.180E 1 0.735E-0 1 0. 154E 01 0.1 55E 1 0.88 2E-0 1 0, 105E 01 0.1 08E 1 1 3E 0.690E 00 0.719E 00 0.118E 0.445E 00 0.46 7E 0.132E 00 0.291E 00 0.305E 00 0.147E 00 0. 195E 00 0.204E 00 0.221E 00 0.473E-01 0.480E-01 0.294E 00 0.212E-01 0.214E-01 0.368E 00 0. 127E-0 I 0.127E-0 I 0.441E 00 Q.856E-02 0.859E-02 0.588E 00 0.471E-02 0.473E-02 0.73 5E 0.299E-02 0.300E-02

PAGE 247

241 LYMAN ALPHA PROFILE FOR HYDROGEN IC ARGON ELECTRON TEMPERATURE= 254.80 ELECTRON DENSITY= 0.20E 24 A=0.40 RO.IOE 00 TRATIO=1.00 Xl=17.0 21= 1.0 Z2=17.0 DELTA STARK STARK+ OMEGA PROFILE OOPPLER 0.0 4 1 7E 02 0.U8E 2 0.735E-02 0. 138E 02 0.112E 02 0. 147E-0 1 0.49 8E 01 0.967E 01 0.22 IE-0 1 0.273E 01 0.762E 01 0.29 4E-0 1 0.204E 01 0.559E 01 0.368E-01 0.175E 01 0.396E 1 0.44 1E-01 O. 163E 01 0.283E 01 0.515E-01 0. 157E 01 0.214E 01 0.58 8E-01 0. 153E 01 0.1 76E 1 0.662E-0 I 0.1 47E 01 0.15 4E 1 0.735E-01 0. 14IE 1 0.141E 01 0.882E-01 0. 123E 01 0-122E 01 0.I0 3E 0. 104E 01 0.104E 01 0.I18E 0.849E 00 0.867E 00 0.132E 00 0.68 0E 00 0.705E 00 1 4 7E 0.539E 00 0.564E 00 0.221E 00 0. 169E 00 0.1 79E 0.294E 00 0.632E-01 0.657E-01 0.368E 00 0.291E-01 0.29BE-01 0.441E 00 0. 158E-01 0.161E-01 0.58 8E 0.655E-02 0.662E-02 0.735E 00 0.364E-02 0.366E-02 LYMAN ALPHA PROFILE FOR HYDROGENIC ARGON ELECTRON TEMPERATURE254.80 ELECTRON DENSITY* 0. 20E 24 A=0.40 R= O.IOE 13 TRATIO=1.00 XI=17.0 Zl= 1.0 Z2=17.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.418E 02 0.H9E 02 0.735E-02 0. 139E 02 0. 113E 02 0. 147E-01 0.505E 01 0.974E 01 0.22 1E-01 0.287E 01 0.769E 1 0.294E-01 0.213E 01 0.567E 1 0.368E-0 1 0. 185E 01 0.404E 1 0.441E-0 1 0. 172E 01 0.290E 01 0.515E-0 1 0.165E 01 0.220E 01 0.588E-01 0. 158E 01 0.1 80E 01 0.662E-01 0.151E 01 0.158E 01 0.735E-01 0. 142E 01 0.143E 01 0.882E-01 0. 122E 01 0.1 22E 1 0.10 3E O. 101E 01 0.I02E 01 1 1 8Â£ 0. 816E 00 0.839E 00 0.132E 00 0.648E 00 0.675E 00 0.14 7E 0.510E 00 0.536E 00 0.221E 00 0. 156E 00 0.1 64E 0.294E 00 C.558E-01 0.582E-01 0.368E 00 0.248E-01 0.255E-01 0.441E 00 0.133E-01 0. 135E-01 0.588E 00 0.552E-02 0.558E-02 0.735E 00 0.319E-02 0.321E-02

PAGE 248

242 LYMAN BETA PROFILE FOR HYDROGENIC ARGON ELECTRON TEMPERATURÂ£= 809,10 ELECTRON OENSITY= 0. 10E 24 A=0.20 Rat 0.0 TRATI0=0.2S XI=17.0 Z 1 = 1.0 Z2=17.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.262E 00 0. 1 10E 01 0.735E-02 0.285E 00 0.110E 01 0.14 7E-0 1 0.346E 00 0,1 I IE 01 0.22 IE-01 0.435E 00 0.1 1 IE 01 0.29 4E-O1 0.547E 00 0.112E 01 0*36 8E-0 t 0.6 7 7E 00 0. 1 14E 1 0.441E-01 0.818E 00 0.115E 01 0.515E-0 1 0.965E 00 0-1 17E 1 0.588E-01 0. 11 IE 01 0.119E 01 0.662E-01 0.125E 01 0.121E 01 0.735E-01 0, 137E 01 0.123E 1 0,882E-01 0. 158E 01 0,1 27E 01 G.I03E 00 0. 170E 01 0,131E 01 0.U8E 0,1 75E 01 0.134E 01 0.132E 00 0,174E 01 0.135E 01 0.14 7E 0, 168E 01 0.136E 01 0.221E 00 0, 116E 01 0.119E 01 0.29 4E 0-743E 00 0,868E 00 0.368E 00 0.484E 00 0,582E 00 0.441E 00 0.323E 00 0.387E 00 0.588E 00 0. 158E 00 0.184E 00 0.735E 00 0.874E-01 0.990E-0 1 LYMAN BETA PROFILE FOR HYDROGENIC ARGON ELECTRON TEMPERATURE^ 809*10 ELECTRON DENSITY= O.IOE 24 A=0.20 R= 0.0 TRATIO=1.00 XI=17.0 Z 1= 1.0 Z2=17.0 DELTA OMEGA 0.0 0.735E-02 0.147E-0 1 0.221E-0 1 0.294E-01 0.368E-01 0.441E-01 0.51 5E-01 0.588E-01 0.662E-01 0.73 5E-0 1 0.882E-01 I 3E 0.11 8E 0.132E 00 I 4 7E 0.221E 00 0.294E 00 0.36 8E 0.441E 00 0.58 8E 0.73 5E STARK PROFILE STARK+ DOPPLER 0.312E 0.34 0E 0.417E 0.S28E 0.666E 0.824E 0.995E 0, 1 17E O. 134E 0,1 49E 0, 163E 0.183E 0. 193E 0. 194E 0. 188E O. 178E 1 1 3E 0.691E 0.430E 0.276E 0. 126E 00 00 00 00 00 00 00 01 01 01 01 01 01 01 01 01 01 00 00 00 00 0.834E 0.844E 0.871E 0.915E 0.974E 0.104E 0.1 12E 0.121E 0.130E 0.1 39E 0.147E 0. 161E 0,171E 0.1 76E 0.1 76E 0.1 72E 0.121E 0.750E 0.466E 0.298E 0.135E 00 00 00 00 00 01 01 01 01 01 01 01 01 01 01 01 01 00 00 00 00 0.671E-01 0.711E-01

PAGE 249

243 LYMAN BETA PROFILE FOR HYOROGENIC ARGON ELECTRON TEMPERATURE^ 809.10 ELECTRON DENSITY^ 0. I OE 24 A=0.2 R= 0.0 TRATIO=4.00 XI=17.0 Zl = 1.0 Z2=17.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.499E 00 0.82 9E 0.735E-02 0.552E 00 0.859E 00 0. 147E-0 1 0.692E 00 0.946E 00 0.22 1E-0 1 0.892E 00 0.108E 01 0.29 4E-0 1 0.113E 01 0.125E 01 0.368E-0 1 0. 140E 01 0. 145E I 0.44 1E-Q 1 0. 167E 01 0.165E 01 0.51 5E-0 1 0. 192E 01 0.185E 01 0.588E-01 0.214E 01 0.203E 01 0.662E-Q1 0.232E 01 0.219E 01 0.735E-01 0.245E 01 0.231E 01 0.882E-01 0.256E 01 0.244E 1 0.103E 00 0.250E 01 0.24 3E 1 0.118E 0.233E 01 0.231E 01 0.132E 00 0.211E 01 0.212E 01 0.147E 00 0.187E 01 0.191E 01 0.221E 00 0.954E 00 0.990E 00 0.294E 00 0.499E 00 0.51 7E 0.368c 00 0.270E 00 0.2 79E 0.441E 00 0. 154E 00 0.159E 00 0.58 8E 0.621E-0 1 0.638E-01 0.73 5E 0.31SE-01 0.322E-01 LYMAN SETA PROFILE FOR HYOROGENIC ARGON ELECTRON TEMPERATURE^ 809.10 ELECTRON DENSITY= 0.10E 24 A=0.20 R= 0.10E 00 TRATIO=1.00 XI=17.0 Z 1= 1.0 Z2=17.0 DELTA OMEGA 0.0 0.73 0.14 0.22 0.29 0.36 0.44 0.51 0.58 0.66 0.73 0.88 0.10 0.11 0. 13 0.14 0.22 0.29 0.36 0.44 0.58 0.73 5E-0 2 7E-0 1 1E-0 1 4E-0 1 8E-0 1 1E-0 1 5E-01 8E-0 1 2E-0 1 5E-0 1 2E-0 1 3Â£ 8E 2E 7E IE 4E 8E IE 8E 5E 00 00 00 00 00 00 00 00 00 STARK PROFILE 0.232E 00 0.251E 00 0.303E 00 0.378E 00 0.473E 00 0.S85E 00 0.707E 00 0.836E 00 0.965E 00 0. 109E 01 0.121E 01 0.141E 01 0.1 55E 01 0.162E 01 0.164E 01 0.162E 01 0.122E 01 8 1 1 E 0.538E 00 0.362E 00 0.1 74E 0.915E-01 STARK+ DOPPLER 0.61 7E 0.624E 00 0.646E 00 0.682E 00 0.729E 00 0.788E 00 0.855E 00 0.928E 00 O.IOOE 01 0.1 08E 1 0.116E 01 0.130E 1 0.142E 01 0. 151E 01 0.155E 01 0.156E 01 0.128E 01 0.875E 00 0.582E 00 0.391E 00 0.188E 00 0.980E-01

PAGE 250

244 LYMAN BETA PROFILE FOR HYDROGEN IC ARGON ELECTRON TEMPERATURE^ 809-10 ELECTRON OENSITY= O.IOE 24 A=0.20 R= O.IOE 13 TRATIO=1.00 Xl=17.0 Zl= UO Z2=17.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.206E 00 0.549E 00 Q.735E-02 0.223E 00 0.555E 00 0.147E-01 0.267E 00 0.575E 00 0.221E-0 1 0.332E 00 0.608E 00 0.294E-0 1 0.4 15E 00 0.651E 00 0.368E-0 1 0.S11E 00 0.705E 00 0.44 1E-01 0.6 I 9E 00 0.767E 00 0.515E-01 0. 732E 00 0.835E 00 0.588E-0 1 0.848E 00 0.906E 00 0.t>62E-01 0.961E 00 0.980E 00 0.735E-01 0. 107E 01 0.1 05E 1 0.882E-01 0.1 26E 01 0.1 19E 1 0.103E 00 0. 140E 01 0.131E 01 0.1 1 8E 0. 149E 01 0.140E 01 0.13 2E 0. 153E 01 0.146E 01 0.14 7E 0. 153E 01 0.149E 01 0.221E 00 0. 122E 01 0.128E 01 0.294E 00 0.848E 00 0.916E 00 0.368E 00 0.578E 00 0.628E 00 0.44 IE 00 0.398E 00 0.432E 00 0.58 8E 0. 19 7E 00 0.214E 00 0.735E 00 0. 105E 00 0.113E LYMAN BETA PROFILE FOR HYDROGENIC ARGON ELECTRON TEMPERATURE^ 202.30 ELECTRON DENSITY= O.IOE 24 A=0.40 R= 0.0 TRATIO=0.25 Xl=17.0 21= 1.0 Z2=17.0 DELTA STARK STARK+ OMEGA PROFILE DOPPLER 0.0 0.487E 00 0.102E 01 0.735E-02 0.518E 00 0.103E 1 0. 147E-0 1 0.602E 00 0.106E 01 0.221E-01 0.724E 00 0. 1 10E 01 0.294E-0 I 0.871E 00 0. 115E 01 0.368E-0I 0.1 03E 01 0.12LE 01 0.44 1E-0 1 0. 120E 1 0.128E 01 0.51 5E-01 0. 136E 01 0.136E 01 0.S8 8E-01 0.151E 01 0.143E 01 0.662E-0 1 0. 164E 01 0. 151E 01 0.73SE-01 0. 175E 01 0.1 57E 1 0.882E-01 0. 189E 01 0.168E 01 0.10 3E 0. 193E 01 0.1 74E 1 1 1 8E 0. 189E 01 0.176E 01 0.132E 00 0. 180E 01 0.I73E 1 1 4 7E 0. 168E 01 0.167E 01 0.221E 00 0. 106E 01 0. 114E 01 0.294E 00 0.647E 00 0.706E 00 0.368E 00 0.4 07E 00 0.442E 00 0.441E 00 0.266E 00 0.287E 00 0.58 8E 0. 128E 00 0.1 37E 0.73 5E 0.707E-01 0.752E-01

PAGE 251

245 LYMAN BETA PROFILE FOR HYOROGENIC ARGON ELECTRON TEMPÂ£RATURE= 202.30 ELECTRON DENSITY^ O.IOE 24 A=0.40 R~ 0.0 TRATIO=1.00 Xl=17.0 Zl = 1.0 Z2=17.0 DEL.TA i STARK STARK+ OMEG/ i PROFILE DOPPLER 0.0 0.732E 00 0.106E 01 0.735EÂ•02 0. 783E 00 0.109E 01 0.14 7EÂ•0 1 0.922E 00 0. 1 17E 1 0.22 1E01 0.1 12E 01 0.129E 01 0.294EÂ•01 0. 1 35E 01 0.1 45E 1 0.368E01 0. 159E 01 0.162E 01 0.44 ieÂ•0 1 0. 183E 01 0.180E 01 0.51 5E01 0.203E 01 0.196E 01 0.58 8EÂ•01 0.221E 01 0.21 IE 01 0.662E01 0.234E 01 0.222E 01 0.735EÂ•01 0.242E 01 0.231E 01 0.882E01 0.245E 01 0.237E 01 0. 10 3E 00 0.235E 1 0.232E 01 0. 1 1 8E 00 0.217E 01 0.21 8E 1 0. 132E 00 0. 196E 01 0.1 99E 1 1 4 7E 00 0.1 74E 01 0.179E 01 0.22 IE 00 0.909E 00 0.947E 00 0.294E 00 0.485E 00 0.506E 00 0.368E 00 0.273E 00 0.284E 00 0.44 IE 00 0. 165E 00 0.171E 00 0.588E 00 0.721E-01 0.744E-01 0.735E 00 0.387E-01 0.398E-01 LYMAN BETA PROFILE FOR HYOROGENIC ARGON ELECTRON TEMPERATURE^ 202.30 ELECTRON DENSITY= 0.10E 24 A=0.40 R= O.C 1 TRAT10=4.0( ) xi=i; '.0 Z\~ 1.0 DELTA STARK STARK4OMEGA PROFILE OOPPLER 0.0 0. 155E 01 0.181E 01 0.735E02 0.168E 01 0.191E 01 0. 14 7E-0 1 0.202E 01 0.21 6E 1 0.22 IE01 0.245E 01 0.250E 01 Q.29 4E0 1 0.288E 01 0.288E 01 0.368E01 0.325E 01 0.320E 01 0.44 1E01 0.351E 01 0.344E 01 0.51 5E01 0.364E 01 0.358E 01 0.58 8E-01 0.364E 01 0.359E 1 0.662E01 0.353E 01 0.352E 01 0.735E-01 0.335E 01 0.336E 01 0.882EÂ•01 0.288E 01 0.292E 01 0. 103E 00 0.237E 01 0.243E 01 0. U8E 00 0. 193E 01 0.199E 01 0.13 2E 00 0. 157E 01 0.162E 01 1 4 7E 00 0.128E 01 0.1 32E 1 0.22 IE 00 0.486E 00 0.500E 00 0.294E 00 ,21 8E 00 0.223E 00 0.368E 00 Â„ 11 9E 00 0.122E 00 0.441E 00 0Â„754E-01 0.769E-01 0.58 8E 00 0..389E-01 0.396E-0 1 0.73 5c 00 0Â„ 241E-01 0.246E-01

PAGE 252

246 LYMAN BETA PROFILE FOR HYDROGEN IC ARGON ELECTRON TEMPER ATURE= 202.30 ELECTRON DENSITY^ 0.10E 24 A=0.40 R= 0.10E 00 TRATIO=1.00 XI=17.0 Zl = 1*0 Z2=17.0 DELTA STARK STARK+ OMEGA PROFILE OOPPLER 0.0 0.844E 00 0.122E 01 0.735E-02 0.906E 00 0.125E 01 0. 147E-0 1 0. 107E 01 0.1 34E 1 0.22 1E-01 0.130E 01 0.147E 01 0-294E-0 1 0. 156E 01 0.1 64E 1 0.36 8E-01 0. 182E 01 0.182E 01 0.44 IE-01 0.207E 0! 0.200E 01 0.51 5E1 0.227E 01 0.216E 1 0.588E-01 0.242E 01 0.229E 01 0.662E-0 1 0.253E 01 0.239E 01 0.735E-01 0.257E 01 0.245E 01 0.88 2E-01 0.254E 01 0.247E 01 0.103E 00 0.239E 01 0.236E 01 0. 1 I 8E 0.2I7E 01 0.21 8E 1 0.132E 00 0. 193E 01 0.197E 01 0.14 7E 0.1 70E 01 0.1 75E 1 0.221E 00 0.853E 00 0.889E 00 0.294E 00 0.443E 00 0.461E 00 0.368E 00 0.245E 00 0.255E 00 0.441E 00 0. 146E 00 0. 151E 00 0.588E 00 0.62 7E-01 0.645E-0 1 0.735E 00 0.335E-01 0.344E-0 1 LYMAN BETA PROFILE FOR HYDROGEN IC ARGON ELECTRON TEMPERATURE^ 202.30 ELECTRON DENSITY= 0.10E 24 A=0.40 R0.10E 13 TRATIO=1.00 XI=17.0 Zl = 1.0 Z2=17.0 DELT/1 L STARK STARK* OMEGA PROFILE DOPPLER 0.0 0.925E 00 0.1 33E 1 0.73 5E02 0.994E 00 0.136E 1 0.147E01 0.1 I 8E 01 0.145E 01 0.22 IE01 0. 143E 01 0.1 59E 1 0.29 4E01 0. 171E 01 0.1 77E 1 0.368E01 0.1 98E 01 0.1 95E 1 0.44 1Â£0 1 0.222E 01 0.213E 01 0.51 5E0 1 0.242E 01 0.228E 1 0.58 8E01 0.256E 01 0.241E 01 0.662E01 0.264E Oi 0.249E 01 0.73 5EÂ•01 0.266E 01 0.254E 01 0.88 2E-01 0.259E 01 0.252E 01 0.103E 00 0.240E 01 0.238E 01 0.1 18E 00 0.21 6E Oi 0.218E 1 0. 132E 00 0. 191E 01 0.195E 1 1 4 7E oo 0. 167E 01 0.172E 01 0.221E 00 8 1 7E 00 0.852E 00 0.294E 00 4 1 7E 00 0.434E 00 0.36 8E 00 0.228E 00 0.237E 00 0.441E 00 0, 134E 00 0.139E 00 0.58 8E 00 Q.572E-01 0.588E-0 1 0.735E 00 0.3 07E-01 0.314E-01

PAGE 253

LIST OF REFERENCES 1. H. R. Griem, Plasma Spectroscopy (McGraw-Hill Book Company, New York, 1964) 2. M. Baranger, Atomic and Molecular Processes D. R. Bates, Ed. (Academic Press, Inc., New York, 1962), Chapter 13. 3. J. Cooper, Plasma Spectroscopy, Rep. Progr. Phys _29, 35 (1966). 4. E. W. Smith, J. Cooper, C. R. Vidal, Phys. Rev. 185, 140 (1969); J. Quant. Spectr. Radiative Transfer 10, 1011 (1970). 5. F. E. Irons, J. Phys. B_6, 1562 (1973). 6. V. A. Batanov, V. A. Bogatyrev, N. K. Sukhodrev, and V. B. Fedorov, Zh. Eksp. Teor. Fiz. 64, 825 (1973) [Sov. Phys.-JETP 37, 419 (1973)] 7. B. Yaakobi and L. Goldman, Bull. Am. Phys. Soc. 20, 1302 (1975). 8. George F. Chapline, Hugh E. DeWitt, and C. F. Hooper, Jr., UCRL Report No. 76272, 1974 (unpublished). 9. John T. O'Brien and C. F. Hooper, Jr., J. Quant. Spectr. Radiative Transfer 14, 479 (1974). 10. John T. O'Brien and C. F. Hooper, Jr., Phys. Rev. A5, 867 (1972). 11. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of Oneand TwoElectron Atoms (Springer Verlag, Berlin, 1957). 12. E. W. Smith, J. Cooper, W. R. Chappell, and T. Dillon, J. Quant. Spectr. Radiative Transfer ri, 1547 (1971); see also J. Quant. Spectr. Radiative Transfer 11 1567 (1971) 13. Gerhart Luders, Ann. Phys. (Leipzig) 8, 301 (1951). 14. H. R. Griem and P. C. Kepple (unpublished). 15. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974) 16. Leonard Schiff, Quantum Mechanics (McGraw-Hill Book Company, New York, 1968). 17. E. W. Smith, Dissertation (University of Florida, 1966). 247

PAGE 254

248 18. T. W. Hussey, Dissertation (University of Florida, 1974). 19. Le Quang Rang and D. Voslamber, J. Phys. B8, 331 (1975). 20. J. E. Whalen, Dissertation (University of Florida, 1972). 21. James W. Dufty, Phys. Rev. 187, 305 (1969). 22. E. W. Smith, Phys. Rev. 166, 102 (1968). 23. John T. O'Brien, Dissertation (University of Florida, 1970). 24. C. F. Hooper, Jr., Phys. Rev. 165, 215 (1968). 25. C. F. Hooper, Jr., Phys. Rev. 149, 77 (1966). 26. Phillip M. Morse and Herman Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Company, New York, 1953). 27. W. J. Swiatecki, Proc Roy. Soc. (London) A205 283 (1951). 28. C. F. Hooper, Jr., Phys. Rev. 169 193 (1968). 29. J. Auerbach, Lawrence Livermore Laboratory internal memorandum LPIG-77-34, February 7, 1977 (unpublished). 30. Bernard Mozer and Michel Baranger, Phys. Rev. 118 626 (1960). 31. M. E. Bacon, J. Quant. Spectrosc. Radiative Transfer _12, 519 (1972). 32. Hugh E. DeWitt, Low-Luminosity Stars (Gordon and Breach, New York, 1969), Paper III-2. 33. K. Grutzmacher and B. Wende, Third International Conference on Spectral Line Shapes, London (September, 1976). 34. H. R. Griem, preprint (March, 1977). 35. James W. Dufty and David B. Boercker, J. Quant. Spectrosc. Radiative Transfer 16, 1065 (1976) 36. John D. Jackson, Classical Electrodynamics (John Wiley and Sons, Inc., New York, 1967) 37. Kurt Gottfried, Quantum Mechanics (W. A. Benjamin, Inc., New York, 1966). 38. K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther, Rev. Mod. Phys. _28, 432 (1956). 39. L. D. Landau and E. M. Lifschitz, Quantum Mechanics (Addison-Wesley Publishing Company, Reading, Massachusetts, 1958). 40. A. A. Barker, Aust. J. of Phys. 21, 121 (1968).

PAGE 255

249 41. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1957). 42. W. J. Karzas and R. Latter, Astrophys. J. Suppl. 55_, 167 (1961). 43. John T. O'Brien, Astrophys. J. L70, 613 (1971). 44. Albert Messiah, Quantum Mechanics (North-Holland Publishing Company, Amsterdam, 1965). 45. C. R. Vidal, J. Cooper, and E. W. Smith, National Bureau of Standards Monograph 116 (Boulder, Colorado, 1970). 46. Alexander L. Fetter and John D. Walecka, Quantum Theory of ManyParticle Systems (McGraw-Hill Book Company, New York, 1971). 47. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, London, 1970). 48. F. W. Vickers, University of Florida (unpublished). 49. F. E. Riewe, University of Florida, private communication. 50. R. L. Coldwell, University of Florida, private communication. 51. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1965), page 198.

PAGE 256

BIOGRAPHICAL SKETCH Richard Joseph Tighe was born on July 6, 1946, in Columbia, South Carolina. He graduated from A.C. Flora High School in June, 1964. In June, 1969, he received the Bachelor of Science degree with a major in Physics from the University of South Carolina. He spent the summer of 1969 working in the Stable Isotopes Separation Division of Union Carbide at Oak Ridge, Tennessee. In September, 1969, he enrolled in the Graduate School of the University of Florida. From that time until the present he has worked toward the degree of Doctor of Philosophy. Richard Joseph Tighe is married to Janette Cornish Gervin. He is a member of the American Physical Society. 250

PAGE 257

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. C. F; Hooper, //Jr. Chairman Professor of physics I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. E. D. Adams Professor of Physics I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. P. W. Vickers Associate Professor of Computer and Information Sciences This dissertation was submitted to the Graduate Faculty of the Department of Physics in the College of Arts and Sciences and to the Graduate Council, and was accepted as partial fulfillment of the requirements for the degree of Doctor of Philosophy. June 1977 Dean, Graduate School