Citation
Design and analysis of massively parallel computing structures for image synthesis

Material Information

Title:
Design and analysis of massively parallel computing structures for image synthesis
Creator:
Wilson, Anitra C., 1960-
Publication Date:
Language:
English
Physical Description:
viii, 163 leaves : ill. ; 28 cm.

Subjects

Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1991.
Bibliography:
Includes bibliographical references (leaves 156-162).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Anitra C. Wilson.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright Anitra C. Wilson. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
25764287 ( OCLC )
ocm25764287
990272002890306597 ( Alma )

Downloads

This item has the following downloads:


Full Text
xml version 1.0
xml-stylesheet type textxsl href daitss_report_xhtml.xsl
REPORT xsi:schemaLocation 'http:www.fcla.edudlsmddaitss http:www.fcla.edudlsmddaitssdaitss2Report.xsd' xmlns:xsi 'http:www.w3.org2001XMLSchema-instance' xmlns 'http:www.fcla.edudlsmddaitss'
DISSEMINATION IEID 'EXUNH3FIT_65X3YK' PACKAGE 'AA00024582_00001' INGEST_TIME '2015-03-25T18:08:54-04:00'
AGREEMENT_INFO ACCOUNT 'UF' PROJECT 'UFDC'
REQUEST_EVENTS TITLE Disseminate Event
REQUEST_EVENT NAME 'disseminate request placed' TIME '2018-12-19T08:14:25-05:00' NOTE 'request id: 343500; EXUNH3FIT_65X3YK' AGENT 'UF73'
finished' '2018-12-19T08:54:55-05:00' '' 'SYSTEM'
FILES
FILE SIZE '341899' DFID 'info:fdaEXUNH3FIT_65X3YKfile0' ORIGIN 'DEPOSITOR' PATH 'sip-filesAA00024582_00001.xml'
MESSAGE_DIGEST ALGORITHM 'MD5' 279f251889d81d1a28059b9f21788acf
'SHA-1' 1a70cead60f685c0fa7e62bb357aa485bffcf0cc
EVENT '2018-12-19T08:36:03-05:00' OUTCOME 'success'
PROCEDURE describe
'2018-12-19T08:38:32-05:00'
xml resolution
'7534260' 'info:fdaEXUNH3FIT_65X3YKfile1' 'sip-files00004.tif'
97ff83cf7758061c47d8c968c73c2b93
bb7b90d0642f691d9ae80d658640e7fbaea1bb76
'2018-12-19T08:34:08-05:00'
describe
'7701756' 'info:fdaEXUNH3FIT_65X3YKfile10' 'sip-files00013.tif'
1ed60b6caf5e57be52c055ca78613f88
42422a5245fe81ff91b2acd75c6f5923b29ba74f
'2018-12-19T08:33:03-05:00'
describe
'7587504' 'info:fdaEXUNH3FIT_65X3YKfile100' 'sip-files00103.tif'
ec0aa0707d60b5d54cca92d98c960ead
761937d90cbeed1c1f19fb712ea01a39c64382d5
'2018-12-19T08:28:40-05:00'
describe
'34827' 'info:fdaEXUNH3FIT_65X3YKfile1000' 'sip-files00133.pro'
b4bd17639492b66aa01a83ff95348c9e
e36c83e68cc3cfa32db93e793abe9c0dfae61a4b
'2018-12-19T08:32:49-05:00'
describe
'38311' 'info:fdaEXUNH3FIT_65X3YKfile1001' 'sip-files00134.pro'
fe99493243a0ea1f076ffcce34f85d70
e4951384bb29c3ffd3e24210c8052416cb604313
'2018-12-19T08:32:32-05:00'
describe
'46626' 'info:fdaEXUNH3FIT_65X3YKfile1002' 'sip-files00135.pro'
8535093f52e90bfc3ffcc60caae7a4df
deb9e07e913e52ee976ad3173257ce7d149cc504
'2018-12-19T08:26:57-05:00'
describe
'39671' 'info:fdaEXUNH3FIT_65X3YKfile1003' 'sip-files00136.pro'
7aedd7886c9fcc39c9ef877de43b4125
ab67c809bed8beefaceb1de0e4f0df54d3db4c47
'2018-12-19T08:29:21-05:00'
describe
'41041' 'info:fdaEXUNH3FIT_65X3YKfile1004' 'sip-files00137.pro'
fb883c2da5303f572efece0bb8f2a12f
0f58bafc119fe5e3b343f8ba41580a147bc255b1
'2018-12-19T08:36:36-05:00'
describe
'25565' 'info:fdaEXUNH3FIT_65X3YKfile1005' 'sip-files00138.pro'
bb69ff0761cda82ca3c6651a92ee7b1a
971f3485c4bc6ff397c3f081d623636734fbce89
'2018-12-19T08:34:59-05:00'
describe
'34059' 'info:fdaEXUNH3FIT_65X3YKfile1006' 'sip-files00139.pro'
b1f967450984f0c0b0c0d4bd7fc0c064
1b01caa055db2f3cb49e16411464d149e658f529
'2018-12-19T08:30:02-05:00'
describe
'22004' 'info:fdaEXUNH3FIT_65X3YKfile1007' 'sip-files00140.pro'
5154eeb5afbd83379a208090c77d6803
d3f2dd5420d5105e31241f7c383a6453c5d38345
'2018-12-19T08:33:25-05:00'
describe
'7422' 'info:fdaEXUNH3FIT_65X3YKfile1008' 'sip-files00141.pro'
2df5e2ea820f76fa56f160532e50d92c
7e7f48685cdf05b79e57b69deb2c1fe25198285d
'2018-12-19T08:31:32-05:00'
describe
'2417' 'info:fdaEXUNH3FIT_65X3YKfile1009' 'sip-files00142.pro'
c7ab005e471f77f24b3de3163a05b505
900a825bd9eb1dda2df69ee3f475ebde760d4baa
'2018-12-19T08:37:12-05:00'
describe
'7586672' 'info:fdaEXUNH3FIT_65X3YKfile101' 'sip-files00104.tif'
659c606bb9ea47a89e2412a7559cdc7f
4e9c26da6e4ddddd8bb0a42031d26ca6b3ad34d9
'2018-12-19T08:27:47-05:00'
describe
'6740' 'info:fdaEXUNH3FIT_65X3YKfile1010' 'sip-files00143.pro'
ce3519cf10e2e69c28d0249cb6c71dc9
f8cc003a7c6d8c7949cbbe912190196d22eca826
describe
'2269' 'info:fdaEXUNH3FIT_65X3YKfile1011' 'sip-files00144.pro'
2bd11f118639d740428fd07d5d052c25
1a8d0e046c23acd2790694c668c12d46aee4d9c2
'2018-12-19T08:31:50-05:00'
describe
'2503' 'info:fdaEXUNH3FIT_65X3YKfile1012' 'sip-files00145.pro'
79e2ea2121e40578f5257284567d4c92
8e672de61f363d4a571ae189666d713bb5ccd8aa
'2018-12-19T08:32:02-05:00'
describe
'2013' 'info:fdaEXUNH3FIT_65X3YKfile1013' 'sip-files00146.pro'
176645cf546c67398b060485e15ded59
9907db5962bba5bbf816f06fb9eea92dc723a8b9
'2018-12-19T08:29:48-05:00'
describe
'2018' 'info:fdaEXUNH3FIT_65X3YKfile1014' 'sip-files00147.pro'
a3b9f687825c16d494afac974b56ef09
3619d643f8b5286ba4eaae417711e83ce1c7dcdc
'2018-12-19T08:33:31-05:00'
describe
'3577' 'info:fdaEXUNH3FIT_65X3YKfile1015' 'sip-files00148.pro'
68569b1be52977a3265f798fca2e2897
068a33e722c7aeab0c265aaaf7a25e798902204c
'2018-12-19T08:29:54-05:00'
describe
'29775' 'info:fdaEXUNH3FIT_65X3YKfile1016' 'sip-files00149.pro'
572a8612ab0c431757dd5337b11f3767
8fd2da0db1a07d31901e2a209924d4d903b63451
'2018-12-19T08:29:42-05:00'
describe
'36505' 'info:fdaEXUNH3FIT_65X3YKfile1017' 'sip-files00150.pro'
2a8afa6b1c58bd638bf502ad2fa2c18d
e7ba2f727ef2197f4a870fcecbd54ff83f5cde99
'2018-12-19T08:31:14-05:00'
describe
'35016' 'info:fdaEXUNH3FIT_65X3YKfile1018' 'sip-files00151.pro'
ea40342f8a50ca759310240e70506e87
30f2d8ce9685717d88e26064f709b7361e9890b3
'2018-12-19T08:28:24-05:00'
describe
'35152' 'info:fdaEXUNH3FIT_65X3YKfile1019' 'sip-files00152.pro'
7fdf2ad26701f5278045b9536529586c
e8ec9566631a846fb2d9ce1604250c3c5c2eacec
'2018-12-19T08:36:12-05:00'
describe
'7595472' 'info:fdaEXUNH3FIT_65X3YKfile102' 'sip-files00105.tif'
e0fa856fc5a97a36f3eac483cf3d170d
3d6638f4046769257d1e2a920c472fd2d3419e77
'2018-12-19T08:31:16-05:00'
describe
'39423' 'info:fdaEXUNH3FIT_65X3YKfile1020' 'sip-files00153.pro'
600901b93013f5d86d2686ccf1d66af5
35d59d679ab63924817cb9fe6c779c942248f3a5
'2018-12-19T08:37:35-05:00'
describe
'39152' 'info:fdaEXUNH3FIT_65X3YKfile1021' 'sip-files00154.pro'
595af26bf7afe4a62a4c96d817d48078
a11454850b7f71d683d60c15e8c6dc07e8b3da02
'2018-12-19T08:34:21-05:00'
describe
'35678' 'info:fdaEXUNH3FIT_65X3YKfile1022' 'sip-files00155.pro'
95600720bfa1d313f80e8431ddb60366
cf874776b654c426d91fb42ddfd99730f61ca02c
'2018-12-19T08:35:49-05:00'
describe
'32808' 'info:fdaEXUNH3FIT_65X3YKfile1023' 'sip-files00156.pro'
ddc0455ba0c82873c79f14d294ff2e5d
8534c4ba67a397eb0b4fdea3f8c29ab99260baf4
'2018-12-19T08:30:03-05:00'
describe
'31480' 'info:fdaEXUNH3FIT_65X3YKfile1024' 'sip-files00157.pro'
1702403c8569c0dfde5d5721c2d8a385
c7d0e33410fee4e3a766e71ca4130f0986907762
'2018-12-19T08:31:59-05:00'
describe
'30486' 'info:fdaEXUNH3FIT_65X3YKfile1025' 'sip-files00158.pro'
99357873b677012e52f03f1b0b5c2d55
f645c87d6a3ddaa1281ff693bd587e02cae6bce2
'2018-12-19T08:32:05-05:00'
describe
'32136' 'info:fdaEXUNH3FIT_65X3YKfile1026' 'sip-files00159.pro'
574c4f11432d5e47dc804c228c75ce93
2d5a7cddcd4d46bf700c8057f3216c02066176dc
'2018-12-19T08:34:27-05:00'
describe
'29367' 'info:fdaEXUNH3FIT_65X3YKfile1027' 'sip-files00160.pro'
4e3c56f2f49114d3c93d1ce74c557ffe
0eb9130d3d72328e210c84dafe5b86183c1f34f8
'2018-12-19T08:31:43-05:00'
describe
'38766' 'info:fdaEXUNH3FIT_65X3YKfile1028' 'sip-files00161.pro'
08211f8dc9a679039b75dc31aa1cb69f
f3c8629bee3ad20b0120906360b5f1ef79b5fd39
'2018-12-19T08:31:05-05:00'
describe
'29054' 'info:fdaEXUNH3FIT_65X3YKfile1029' 'sip-files00162.pro'
80a5ff6270b65b1e59c97809e662e4d0
49a1e4968e280b855ace5781d0b42476ac84d285
'2018-12-19T08:29:55-05:00'
describe
'7584284' 'info:fdaEXUNH3FIT_65X3YKfile103' 'sip-files00106.tif'
d840fbd46a3d639667f0e3f381e1c429
4e16e0cc671ea7bb27b4379e7c07aa2ac950d5f6
'2018-12-19T08:36:20-05:00'
describe
'31353' 'info:fdaEXUNH3FIT_65X3YKfile1030' 'sip-files00163.pro'
9d27d6a74eb179fe9d32307165bc0555
50d05e7ff28aade14eca004295f12e0a9449ffe5
'2018-12-19T08:27:12-05:00'
describe
'28857' 'info:fdaEXUNH3FIT_65X3YKfile1031' 'sip-files00164.pro'
eb4871016a6587139da0d254c1ef8ee5
23a6baca53a8b7a195e225b52c682b80a7825d0b
'2018-12-19T08:34:18-05:00'
describe
'39039' 'info:fdaEXUNH3FIT_65X3YKfile1032' 'sip-files00165.pro'
c1946917487cabb64be5369932f997c9
14a65e372da54cb5c696f7086dc2dac4ab029ea3
'2018-12-19T08:33:33-05:00'
describe
'34735' 'info:fdaEXUNH3FIT_65X3YKfile1033' 'sip-files00166.pro'
9421ceb04bee864c14a7455ff38c9915
3a4bd54b31ef0c6f3ee91d3ecff12dd42eb083a3
'2018-12-19T08:28:10-05:00'
describe
'27367' 'info:fdaEXUNH3FIT_65X3YKfile1034' 'sip-files00167.pro'
25fa125cc7e3bc3982121be085d3c1b6
f8e77a8820ac2c43861ec2e5d25b9e328bb17086
'2018-12-19T08:36:21-05:00'
describe
'42042' 'info:fdaEXUNH3FIT_65X3YKfile1035' 'sip-files00168.pro'
7296105ecd61c07fcad24b348403dab4
3504bd8d970bf1c548f62d32c9250b9b1f2a9e1b
'2018-12-19T08:28:35-05:00'
describe
'52188' 'info:fdaEXUNH3FIT_65X3YKfile1036' 'sip-files00169.pro'
e5754a75c9e59eb1ca725f21b594acf6
d2d8ab602ef6ad1a471d21ef0b9fc5638068cd60
describe
'53668' 'info:fdaEXUNH3FIT_65X3YKfile1037' 'sip-files00170.pro'
fa3aa1b93d35cd81f8369059c73ce8ca
edf9d77a22e599968d4866fc7a4e944d809ce15a
'2018-12-19T08:29:41-05:00'
describe
'51065' 'info:fdaEXUNH3FIT_65X3YKfile1038' 'sip-files00171.pro'
cf104fbaeb8d9714dd012125d2cf8351
408f0ef0c38dc5ffd95c53ab4991c9a845c9c27d
'2018-12-19T08:30:26-05:00'
describe
'55983' 'info:fdaEXUNH3FIT_65X3YKfile1039' 'sip-files00172.pro'
d966130da3687f42d4fffe3450e0237f
fadaedbf5f1875055e67316eba89aadc6a1f7139
'2018-12-19T08:33:18-05:00'
describe
'7599116' 'info:fdaEXUNH3FIT_65X3YKfile104' 'sip-files00107.tif'
a987c9c4ee351317f1b524793a78be0b
02e9606feba83039fe5fe5531be66558264e2afa
'2018-12-19T08:29:17-05:00'
describe
'51674' 'info:fdaEXUNH3FIT_65X3YKfile1040' 'sip-files00173.pro'
f665f2352e23d4586b79faec609be711
f8066e450ad57bbf0195264476e44b372bb15db5
'2018-12-19T08:34:20-05:00'
describe
'17931' 'info:fdaEXUNH3FIT_65X3YKfile1041' 'sip-files00174.pro'
180cef938f7c5bb0bc362c1f7b8c7f5d
66e1f1823cff610d4e7fbc4474c42c297f83175a
describe
'25580' 'info:fdaEXUNH3FIT_65X3YKfile1042' 'sip-files00175.pro'
51ceb69424b40bd57235f6b79b8bd8cb
f760f22640d7eb60dea679d3f99325d7409e1812
'2018-12-19T08:28:46-05:00'
describe
'38631' 'info:fdaEXUNH3FIT_65X3YKfile1043' 'sip-files00176.pro'
a3cb972a373fe335773c4834b6827bcf
602d9fdea0a9dd8ba8b9b4fa59b332cd5ca85642
'2018-12-19T08:35:36-05:00'
describe
'9158' 'info:fdaEXUNH3FIT_65X3YKfile1044' 'sip-files00177.pro'
79b4dd80123c970f8c49cafaa60ecad1
793c33ac8b74df5dc31bb03c78dd98493a1a1085
'2018-12-19T08:37:04-05:00'
describe
'476' 'info:fdaEXUNH3FIT_65X3YKfile1045' 'sip-files00004.txt'
4ddcaf4f208e119f1f0454c0f77e69c6
f561cdfa9b5e96ab491e864e13e5d88b52d2ef56
'2018-12-19T08:28:23-05:00'
describe
'97' 'info:fdaEXUNH3FIT_65X3YKfile1046' 'sip-files00005.txt'
d1f8d50cbc268eabc07d79c4e4a802a9
6e27bc424335cca6fdd2f26d9f3e9e0932037f21
'2018-12-19T08:35:41-05:00'
describe
'1349' 'info:fdaEXUNH3FIT_65X3YKfile1047' 'sip-files00006.txt'
cbea75c0469a83696a19c626f7d56b04
34a7443d7b287de60383ac4796c9fd1daf63f241
'2018-12-19T08:36:44-05:00'
describe
'1812' 'info:fdaEXUNH3FIT_65X3YKfile1048' 'sip-files00007.txt'
c09640e2fd9247e53187b069080c90bd
495b1a53388b4ca3b9b2b2d165af0f3f182b586d
'2018-12-19T08:30:33-05:00'
describe
'2523' 'info:fdaEXUNH3FIT_65X3YKfile1049' 'sip-files00008.txt'
61af9cad33e4e739f459d8bd862f4eaa
1a23e0df6d11409c37744436a97af62b719519b8
'2018-12-19T08:28:11-05:00'
describe
'7609076' 'info:fdaEXUNH3FIT_65X3YKfile105' 'sip-files00108.tif'
2db2fd15fa7421fadbae1d981ed409c8
d19a360d03ed63dfd3b21a709f95d6e8523f4e15
'2018-12-19T08:29:05-05:00'
describe
'783' 'info:fdaEXUNH3FIT_65X3YKfile1050' 'sip-files00009.txt'
b47cdd6a2bf60e80d7c83a79c063f7fd
271df2574ab8232ca91b5b522c1dcac5b9386a58
'2018-12-19T08:35:51-05:00'
describe
'1195' 'info:fdaEXUNH3FIT_65X3YKfile1051' 'sip-files00010.txt'
e18234dfdc29fac945991b2c3070b95d
89dcb2efdf69a50cf1ed1fc1ea0e1e07c195b20e
'2018-12-19T08:37:06-05:00'
describe
'1512' 'info:fdaEXUNH3FIT_65X3YKfile1052' 'sip-files00011.txt'
ffac143ccfa67674b89b51af66f04fa0
a13510fcd28a6ca06fe1c097d2539bdc7482853d
'2018-12-19T08:35:39-05:00'
describe
'825' 'info:fdaEXUNH3FIT_65X3YKfile1053' 'sip-files00012.txt'
4c1800f836a41ae6c3db950012440583
f9195c73d5751fb7e64a8eefec4b647a3a9c9a86
'2018-12-19T08:34:37-05:00'
describe
'1364' 'info:fdaEXUNH3FIT_65X3YKfile1054' 'sip-files00013.txt'
97cbaecb48d88e58e67e192d3c2fae17
0e1618760d23e15463309d22756a89ba155252d8
'2018-12-19T08:36:11-05:00'
describe
'1312' 'info:fdaEXUNH3FIT_65X3YKfile1055' 'sip-files00014.txt'
544bd549affb82d1c35c5b37dbe20c70
f81d84f82d57411adb8cd1c2165cd5f9dc007607
describe
'1470' 'info:fdaEXUNH3FIT_65X3YKfile1056' 'sip-files00015.txt'
5d9a589271915bcda137a9178b71db9b
03bb365fb6bdd0d1a11c3c10558eac0ad906f0f0
'2018-12-19T08:37:36-05:00'
describe
'1249' 'info:fdaEXUNH3FIT_65X3YKfile1057' 'sip-files00016.txt'
675f5439174ede93b695cbe4abe5cf30
ed0eec791dc29a762da39301e7906dc02914e1c5
'2018-12-19T08:30:42-05:00'
describe
'1375' 'info:fdaEXUNH3FIT_65X3YKfile1058' 'sip-files00017.txt'
55aae4561bca11c7c9598586a4e203c6
71828edb265f698b43be2dabeab19e9208971b19
'2018-12-19T08:36:13-05:00'
describe
'1220' 'info:fdaEXUNH3FIT_65X3YKfile1059' 'sip-files00018.txt'
9c1c84206e721323267f456966d60c8d
bc9d6a799661f60c14bb4bdb9f099acfc501cdec
'2018-12-19T08:30:25-05:00'
describe
'7596020' 'info:fdaEXUNH3FIT_65X3YKfile106' 'sip-files00109.tif'
0da4e448d56456e29c06c2ded697437a
74d7920a10e48d95b7cf6f0f5f3057ee7f695adf
'2018-12-19T08:35:32-05:00'
describe
'1520' 'info:fdaEXUNH3FIT_65X3YKfile1060' 'sip-files00019.txt'
5fb3e10147a2addc7d3e1a44ee41ff04
d6a42d3022a3c1b450047add9032c3c2f411c868
'2018-12-19T08:27:58-05:00'
describe
'1405' 'info:fdaEXUNH3FIT_65X3YKfile1061' 'sip-files00020.txt'
238a7118bb704a8c712f0aee69914f49
22aa645c5a3e8032c347ec993d57f74510d64672
'2018-12-19T08:33:27-05:00'
describe
'1491' 'info:fdaEXUNH3FIT_65X3YKfile1062' 'sip-files00021.txt'
24c7ff1f7e1f31da53481bd92667f8d7
02934b9ac5c95e60c6d0a409912a3a77eaa5ef17
'2018-12-19T08:28:14-05:00'
describe
'1537' 'info:fdaEXUNH3FIT_65X3YKfile1063' 'sip-files00022.txt'
e26f246ea8deedf44f3116c18092b00f
21403022eda5eda346c0b7dea347fb62248ef0b2
'2018-12-19T08:35:34-05:00'
describe
'1490' 'info:fdaEXUNH3FIT_65X3YKfile1064' 'sip-files00023.txt'
fae75c401b065670c0cfd79edd2fa2b6
ed45703b1dd5d312f23fd215dfa5cffa1c687b61
'2018-12-19T08:34:45-05:00'
describe
'1495' 'info:fdaEXUNH3FIT_65X3YKfile1065' 'sip-files00024.txt'
f44ff413edca10ad34c18d4bc39cea93
8f60d0afbecc2503d1ae1ca70198c9de3ec3596c
'2018-12-19T08:28:54-05:00'
describe
'1584' 'info:fdaEXUNH3FIT_65X3YKfile1066' 'sip-files00025.txt'
c2101530409ee9d635af041a39ce708c
556583e7affe1b5f4b9aa43375af6d69a7378d9d
'2018-12-19T08:28:00-05:00'
describe
'1424' 'info:fdaEXUNH3FIT_65X3YKfile1067' 'sip-files00026.txt'
13ec66a52079ceb248d76e83a9ea5cc3
3a6889f1c99b892f66a8ca806ca012e2bc090614
'2018-12-19T08:32:52-05:00'
describe
'1493' 'info:fdaEXUNH3FIT_65X3YKfile1068' 'sip-files00027.txt'
43d6b2ef2e2fe954b72e4165dccab926
ad3c7974840eea94658a8640b07c642b334b8921
'2018-12-19T08:36:23-05:00'
describe
'888' 'info:fdaEXUNH3FIT_65X3YKfile1069' 'sip-files00028.txt'
14d93a5126f6b971897a980f110327d6
c677975bb277b155083d9f32729ddcaf198e8e02
describe
'7601136' 'info:fdaEXUNH3FIT_65X3YKfile107' 'sip-files00110.tif'
b887e67086d05c4c172fcb12ecddef9a
732d117a843f475f80e80855235705d61d16f3c8
'2018-12-19T08:37:46-05:00'
describe
'350' 'info:fdaEXUNH3FIT_65X3YKfile1070' 'sip-files00029.txt'
86101171a34eba0036c2398282e1bfe5
42dd9f61c34d4be798da490c43b5869ec9cf2e37
'2018-12-19T08:33:16-05:00'
describe
'645' 'info:fdaEXUNH3FIT_65X3YKfile1071' 'sip-files00030.txt'
a63ba37c7dd039b4ae22863d55fc5982
106de44362f964f2f4aea1d0ce9d7cbe51bfea5a
'2018-12-19T08:28:29-05:00'
describe
'1261' 'info:fdaEXUNH3FIT_65X3YKfile1072' 'sip-files00031.txt'
f835a8a731585ee15108ab3159fe79e1
e8a12b53eb3ce0debd4e164b6243a72088af590d
'2018-12-19T08:28:21-05:00'
describe
'1504' 'info:fdaEXUNH3FIT_65X3YKfile1073' 'sip-files00032.txt'
fa63bc4cca31ca6993fe6ea83f88183d
c0a7fdd49cd160837ea3cdf2d6168831c23aa105
'2018-12-19T08:34:48-05:00'
describe
'1488' 'info:fdaEXUNH3FIT_65X3YKfile1074' 'sip-files00033.txt'
a8c3a794b805cb0002f6cf7c964124ef
38a701fb4ca91244f9bc4a848be9eb8b92e242e9
'2018-12-19T08:36:07-05:00'
describe
'1461' 'info:fdaEXUNH3FIT_65X3YKfile1075' 'sip-files00034.txt'
c538948ab1e6db6fdad2726594163420
d5d587bdc521da821179460bcd027b473bb45b1f
'2018-12-19T08:30:14-05:00'
describe
'1522' 'info:fdaEXUNH3FIT_65X3YKfile1076' 'sip-files00035.txt'
3e1777611990e8644ac6dd0016fd9aca
381a71c6af83e1e2c3e9c17977c7a46799b48544
'2018-12-19T08:35:23-05:00'
describe
'1497' 'info:fdaEXUNH3FIT_65X3YKfile1077' 'sip-files00036.txt'
02b65bb3b9f108fc86f12d41f3c4b947
e1608c3aecd55df77883271a20759a180f9d8001
'2018-12-19T08:29:29-05:00'
describe
'info:fdaEXUNH3FIT_65X3YKfile1078' 'sip-files00037.txt'
8ed719b177e039ac5c6d6895ba98247c
88fd36573e505c61bff2d375f3c2565abf4532cd
'2018-12-19T08:31:39-05:00'
describe
'1581' 'info:fdaEXUNH3FIT_65X3YKfile1079' 'sip-files00038.txt'
6a5ab654566d060c0fa43f1caf1cef39
ef0500e7f6874976a8784186f3bb3c140db579b0
'2018-12-19T08:35:18-05:00'
describe
'7616656' 'info:fdaEXUNH3FIT_65X3YKfile108' 'sip-files00111.tif'
36e742fdaff9e7f03c301672101b8478
3e15e7dc8ab51983d70e51798ef1f6a0aa8af6d6
'2018-12-19T08:36:40-05:00'
describe
'1484' 'info:fdaEXUNH3FIT_65X3YKfile1080' 'sip-files00039.txt'
ee6ed5ec4b829a6ac3696729d73808b0
65b1245291caf08118f68f13747112fff8636f78
'2018-12-19T08:27:27-05:00'
describe
'1415' 'info:fdaEXUNH3FIT_65X3YKfile1081' 'sip-files00040.txt'
0416daf10d86a1a886d90fe8f029f763
b3141811640cb5727244fe70684b5b32ec74a778
'2018-12-19T08:35:50-05:00'
describe
'1542' 'info:fdaEXUNH3FIT_65X3YKfile1082' 'sip-files00041.txt'
e049e0cadd703a2b1dbd2999aa61ede2
b288799f3e7a7148da0e7ae8a9ee23a456994971
'2018-12-19T08:30:58-05:00'
describe
'1474' 'info:fdaEXUNH3FIT_65X3YKfile1083' 'sip-files00042.txt'
5f6bd89099f1a9c8eb1e2b98eaba2ff4
2c939cbd97bf1ab233060674da161abb344f7f6c
'2018-12-19T08:29:27-05:00'
describe
'1499' 'info:fdaEXUNH3FIT_65X3YKfile1084' 'sip-files00043.txt'
c2dbbdb5bb117e30977cc899a685142f
01aa633890482db957f1b540fa07ad1d8765abef
'2018-12-19T08:32:35-05:00'
describe
'1513' 'info:fdaEXUNH3FIT_65X3YKfile1085' 'sip-files00044.txt'
a2f811df44cf2bf356d76d70cb6f626a
a5038a9a7caa7c62649ddbf27f98e346bf2bf5d3
'2018-12-19T08:32:44-05:00'
describe
'1382' 'info:fdaEXUNH3FIT_65X3YKfile1086' 'sip-files00045.txt'
d0133bad09244b116cf1fc9cd5c40a7c
3a6738db224f14ff95ab6d5c0db1e7bd086f1bd9
'2018-12-19T08:35:35-05:00'
describe
'1481' 'info:fdaEXUNH3FIT_65X3YKfile1087' 'sip-files00046.txt'
9eb7d8fa3938c05ea36af632103a48bb
a1bd762b619ad86dd696d5d910119de1eb7c0b2c
'2018-12-19T08:28:41-05:00'
describe
'1503' 'info:fdaEXUNH3FIT_65X3YKfile1088' 'sip-files00047.txt'
7d834c7996bef0f95b3880bc589dcdf1
6cb89e84498d6a4a0568a813537964cc90b0af03
'2018-12-19T08:37:18-05:00'
describe
'1300' 'info:fdaEXUNH3FIT_65X3YKfile1089' 'sip-files00048.txt'
839f8f7bb8d56a7e566c1ee4214158af
b2f6888ffdb4b107f5c35c9faeb53d2d65eaef42
'2018-12-19T08:30:56-05:00'
describe
'7589980' 'info:fdaEXUNH3FIT_65X3YKfile109' 'sip-files00112.tif'
34a1ce21de6bde4fdafed463a032ae4e
c2020261f31061cd1789cc425a64a94b110cabd8
'2018-12-19T08:35:24-05:00'
describe
'970' 'info:fdaEXUNH3FIT_65X3YKfile1090' 'sip-files00049.txt'
87c8f687094a75a161697ba6a50a5eb0
806955f86a9debe6ed83ffaa33c131abb9ac2bae
'2018-12-19T08:29:03-05:00'
describe
'155' 'info:fdaEXUNH3FIT_65X3YKfile1091' 'sip-files00050.txt'
16a8734024ddf5c7bb389f5ff536c4ba
e65bc0de099b315c27e740026610241ef290548d
'2018-12-19T08:27:18-05:00'
describe
'145' 'info:fdaEXUNH3FIT_65X3YKfile1092' 'sip-files00051.txt'
9fc14654b6962bf1b5088b4719a68b8c
77b0b8b9d4c166ca31a07b9cc1740613e04d9c50
'2018-12-19T08:29:18-05:00'
describe
'143' 'info:fdaEXUNH3FIT_65X3YKfile1093' 'sip-files00052.txt'
9477487e528006abc54a57c1c8da20c3
2c879066c755a47f8f769657dc747ffacac1b1c9
'2018-12-19T08:28:34-05:00'
describe
'235' 'info:fdaEXUNH3FIT_65X3YKfile1094' 'sip-files00053.txt'
92d189b526b186bd495395ac8242e78d
f5425aae3ad795a8ac7441754c0a8c13e86faf88
describe
'160' 'info:fdaEXUNH3FIT_65X3YKfile1095' 'sip-files00054.txt'
8a6814995851eeb9b7f89504dd6b59bc
f0613a5c0bff0d3735c983842af2a0707534c4ac
describe
'420' 'info:fdaEXUNH3FIT_65X3YKfile1096' 'sip-files00055.txt'
1383044b4d4c55f67228917a400f6183
497ac8505c6788990bb6738fe916219c05994ae4
'2018-12-19T08:29:24-05:00'
describe
'524' 'info:fdaEXUNH3FIT_65X3YKfile1097' 'sip-files00056.txt'
7c8b85cf57fbeaf5a87f1c3394474d25
729caee399fac436efedf2123a26cdc2851fb170
'2018-12-19T08:37:38-05:00'
describe
'330' 'info:fdaEXUNH3FIT_65X3YKfile1098' 'sip-files00057.txt'
b5332635826f7deff852f216078ae75e
edd7d26992396018beebbb999af605a2e7b4e48a
'2018-12-19T08:31:04-05:00'
describe
'415' 'info:fdaEXUNH3FIT_65X3YKfile1099' 'sip-files00058.txt'
135dc23ef0535344110b76d56d0936a8
d1465ddebaae75d3bf42e6009e35f401978b66f8
'2018-12-19T08:37:30-05:00'
describe
'7707236' 'info:fdaEXUNH3FIT_65X3YKfile11' 'sip-files00014.tif'
0d6f6b0445fa5e34c950fad4a5de7e34
39f9279a9ed3e77585a436fadcbba8c128328f7b
describe
'7589984' 'info:fdaEXUNH3FIT_65X3YKfile110' 'sip-files00113.tif'
91057cdd1ee304011ce323e0a855e550
2cde0fa48187f0ea7573d61ef8da488432d22a6b
'2018-12-19T08:31:58-05:00'
describe
'540' 'info:fdaEXUNH3FIT_65X3YKfile1100' 'sip-files00059.txt'
faf137c206c57ddaa631bf845ecc632b
7c53dc5ef1795fa9487e22539907c22447cd22d1
'2018-12-19T08:33:55-05:00'
describe
'320' 'info:fdaEXUNH3FIT_65X3YKfile1101' 'sip-files00060.txt'
861ff1c06ab82590891ddc060d7dfede
f5dd7dbfb08c0f6dd938887f02c19c33f773c6f6
'2018-12-19T08:36:47-05:00'
describe
'1297' 'info:fdaEXUNH3FIT_65X3YKfile1102' 'sip-files00061.txt'
856e483919fff7948f6150a23bd9e23d
d2d6514b01a15172f5610a1b0a4cb1183bd3ab62
describe
'1505' 'info:fdaEXUNH3FIT_65X3YKfile1103' 'sip-files00062.txt'
7e78ac823feef59c5dbada3fa98ff94b
7bdfdbfc99cb941321fa945fa6a88963d24f872a
'2018-12-19T08:33:14-05:00'
describe
'1577' 'info:fdaEXUNH3FIT_65X3YKfile1104' 'sip-files00063.txt'
5c07b5082952af8f6676c8b62cb2a29f
ffb95685342f3f8c14b5d73aa8fbc381b52bad34
'2018-12-19T08:27:06-05:00'
describe
'1799' 'info:fdaEXUNH3FIT_65X3YKfile1105' 'sip-files00064.txt'
d82ec7b218cc5059cff997ac66881259
450c379e362a1af46f504a8790ba1d19a494e9ed
'2018-12-19T08:30:57-05:00'
describe
'1545' 'info:fdaEXUNH3FIT_65X3YKfile1106' 'sip-files00065.txt'
52fa937d177f9baccfa1840c0d8bfc10
11690db8edb9186c5876a5e0344ac0843ed884cf
'2018-12-19T08:32:50-05:00'
describe
'1486' 'info:fdaEXUNH3FIT_65X3YKfile1107' 'sip-files00066.txt'
9c9c41c2603a009780ca2aaa6784b577
c16b455e2bc99c7cf2ed74928ba234af25580368
'2018-12-19T08:32:07-05:00'
describe
'1426' 'info:fdaEXUNH3FIT_65X3YKfile1108' 'sip-files00067.txt'
2004cd250dee627877f28b60ec432af7
c8a35868610a99ff8337d806c68a9a3fc6fafbd9
'2018-12-19T08:32:37-05:00'
describe
'1332' 'info:fdaEXUNH3FIT_65X3YKfile1109' 'sip-files00068.txt'
f3cbada19cb2402a48ca48d4da8108d4
52d7fa0e4631323223d6c03e56583131dc0d56bb
'2018-12-19T08:37:21-05:00'
describe
'7571592' 'info:fdaEXUNH3FIT_65X3YKfile111' 'sip-files00114.tif'
1f196a50e715c575207d25c1e5fbb8bb
79c03339eac1083fe2f477a39f2cc265a3ef6691
describe
'1476' 'info:fdaEXUNH3FIT_65X3YKfile1110' 'sip-files00069.txt'
17241df226b28a18dab802173050a87c
32de3f4d340669c98b483afe477eee9281243ebc
'2018-12-19T08:31:09-05:00'
describe
'1451' 'info:fdaEXUNH3FIT_65X3YKfile1111' 'sip-files00070.txt'
947d124542d2016cb519c1bef5d0a6f3
2afea9c7b2392fe22348c4d594f40f5cd2e00420
'2018-12-19T08:34:54-05:00'
describe
'1399' 'info:fdaEXUNH3FIT_65X3YKfile1112' 'sip-files00071.txt'
fdfb9a8c96cb05741615191e8273f34b
b60dc9645be2d16b450aaec4bb27e0ac29230e88
'2018-12-19T08:32:40-05:00'
describe
'1532' 'info:fdaEXUNH3FIT_65X3YKfile1113' 'sip-files00072.txt'
c686c95282a43e79560a8c2938031242
2491c24671f834637443f84316dd52281047732c
describe
'1367' 'info:fdaEXUNH3FIT_65X3YKfile1114' 'sip-files00073.txt'
3598554399d4ce81a4d73daaad2d97c8
f79df5b0c65604ad823221379227e14bd939805d
'2018-12-19T08:35:31-05:00'
describe
'1477' 'info:fdaEXUNH3FIT_65X3YKfile1115' 'sip-files00074.txt'
b2c511b3f4cafd9cd8a1b8065da19bb8
c850dd5c627222a3db5f512420f6ce74de77b6a0
'2018-12-19T08:34:06-05:00'
describe
'1479' 'info:fdaEXUNH3FIT_65X3YKfile1116' 'sip-files00075.txt'
470558560eac6d717d8573b2f15a459f
701739065c9ef836a41648d952bc1b77c7fce520
'2018-12-19T08:28:01-05:00'
describe
'1417' 'info:fdaEXUNH3FIT_65X3YKfile1117' 'sip-files00076.txt'
45c5e3de2113fd8282f3280c935e29c1
d29a8f1f945051b338726b62697c539063595e48
describe
'info:fdaEXUNH3FIT_65X3YKfile1118' 'sip-files00077.txt'
3cf59390a546ac821a61e2ba2bcdeda4
5ea8ba1531385804405d4ceb62a559abbf6d2fba
'2018-12-19T08:29:47-05:00'
describe
'1536' 'info:fdaEXUNH3FIT_65X3YKfile1119' 'sip-files00078.txt'
0209b1fe2c81120d352ff9d583801703
a096dcd063056c8fef6503b6ce6040631d036846
'2018-12-19T08:35:20-05:00'
describe
'7605812' 'info:fdaEXUNH3FIT_65X3YKfile112' 'sip-files00115.tif'
934d88efc0880216ab001a6a6221d3f0
3c3f80c742ff3583455234649a361d5648da1e11
'2018-12-19T08:28:27-05:00'
describe
'info:fdaEXUNH3FIT_65X3YKfile1120' 'sip-files00079.txt'
da9d9f28a5e579a2bd6b1ea8e84b694d
8e9b616cc13398c754f5295da64b5bd51a51d9bf
'2018-12-19T08:37:11-05:00'
describe
'772' 'info:fdaEXUNH3FIT_65X3YKfile1121' 'sip-files00080.txt'
7235e22d0612f266e1de5645610cfabb
a84a8c92e0bd7c0cea1c6741da3c2290b46097df
'2018-12-19T08:33:20-05:00'
describe
'294' 'info:fdaEXUNH3FIT_65X3YKfile1122' 'sip-files00081.txt'
2f6d9dd2cf35871c428ff1b7780f4f62
6d3c12b36c143b586ad0e445754342def9760ef4
'2018-12-19T08:33:29-05:00'
describe
'307' 'info:fdaEXUNH3FIT_65X3YKfile1123' 'sip-files00082.txt'
bd88a323c0db82824c4517cafbed9626
00388e5b2bab89441d30e45caa9b7c2df85e8e43
'2018-12-19T08:36:55-05:00'
describe
'1240' 'info:fdaEXUNH3FIT_65X3YKfile1124' 'sip-files00083.txt'
31a673fbe64fdb1dbce50eb5e3786846
d1f6b8d669ba4fbbb8c54adf780f8843251d9c41
'2018-12-19T08:33:10-05:00'
describe
'1358' 'info:fdaEXUNH3FIT_65X3YKfile1125' 'sip-files00084.txt'
89cb93ff58c236502a12280dc7d55cf7
875bfde63a43bff4f30bec8be1f678979b6c2119
'2018-12-19T08:36:17-05:00'
describe
'info:fdaEXUNH3FIT_65X3YKfile1126' 'sip-files00085.txt'
678ef861377a49f0b9f727248127fd9a
0965f319515e2ec7559723bd84299ce296851db1
'2018-12-19T08:28:06-05:00'
describe
'1492' 'info:fdaEXUNH3FIT_65X3YKfile1127' 'sip-files00086.txt'
a7e19d62392a35c83209a6676342fa3c
5c002d456cd8ea2ec94a32b5fa43d8b3156e202c
describe
'1565' 'info:fdaEXUNH3FIT_65X3YKfile1128' 'sip-files00087.txt'
99f3168032184dbad35c58e83abc4e44
56e044360ba971d8e5e8f48f9ab5123ab7b497d6
'2018-12-19T08:35:44-05:00'
describe
'1516' 'info:fdaEXUNH3FIT_65X3YKfile1129' 'sip-files00088.txt'
05bf9834f9751a7fa30e5464cf84b921
abbaade8b731068fab2fff15e59a08b9461b8724
'2018-12-19T08:35:57-05:00'
describe
'7583276' 'info:fdaEXUNH3FIT_65X3YKfile113' 'sip-files00116.tif'
00169b1ef6abd1b875d92fb80f6fd16d
f3998acef3f21b4c153de510bdc63340472a07b2
'2018-12-19T08:27:37-05:00'
describe
'1462' 'info:fdaEXUNH3FIT_65X3YKfile1130' 'sip-files00089.txt'
98b4306090fb8a73c6a9c5b390959de4
95a824f4bb08c44dd543bd2cb0275d00191b7ab5
'2018-12-19T08:34:29-05:00'
describe
'info:fdaEXUNH3FIT_65X3YKfile1131' 'sip-files00090.txt'
25e011cbb79d8bee8bbd7872c121c1df
1828cb7769ecc812853aa7ce0085423097354600
'2018-12-19T08:35:37-05:00'
describe
'1182' 'info:fdaEXUNH3FIT_65X3YKfile1132' 'sip-files00091.txt'
42f3bdc3b8ae34f65c8416804769a776
23372b25911a43e10ca1abd541d9592ebc6b9ca0
'2018-12-19T08:29:11-05:00'
describe
'1511' 'info:fdaEXUNH3FIT_65X3YKfile1133' 'sip-files00092.txt'
ab901044dc06cfdd46f211fb3e759b32
0643fdf88048f245d589749a2b22572b273b872e
'2018-12-19T08:28:16-05:00'
describe
'1343' 'info:fdaEXUNH3FIT_65X3YKfile1134' 'sip-files00093.txt'
d8aeae87655980b9e0bc63b592bb1656
82232852c164604fcca2d9662cd4b73c141721a0
'2018-12-19T08:37:23-05:00'
describe
'1278' 'info:fdaEXUNH3FIT_65X3YKfile1135' 'sip-files00094.txt'
f2060db825a9ec7c943039f1d5450ebd
7934955d14880e445ddf62f1ada8f9a9ffe593ed
'2018-12-19T08:37:42-05:00'
describe
Invalid characterNot valid first byte of UTF-8 encoding
WARNING CODE 'Daitss::Anomaly' Invalid character
Not valid first byte of UTF-8 encoding
'2401' 'info:fdaEXUNH3FIT_65X3YKfile1136' 'sip-files00095.txt'
dbed66691de91188ff201eb563c14b5c
78b7f7dead4f60c1bd756b64210828965621ebc9
'2018-12-19T08:34:44-05:00'
describe
'1566' 'info:fdaEXUNH3FIT_65X3YKfile1137' 'sip-files00096.txt'
6ce69ee319c693d92180f568e8b1b9f4
d1c187d14ca6e8cf23a4d4e18ccd538cd3051a1a
'2018-12-19T08:32:11-05:00'
describe
'1305' 'info:fdaEXUNH3FIT_65X3YKfile1138' 'sip-files00097.txt'
fc84084216d038df337b60f61b34163c
fc4e81281ac010a99a5bef56f486559fdbc821c4
'2018-12-19T08:29:08-05:00'
describe
'1574' 'info:fdaEXUNH3FIT_65X3YKfile1139' 'sip-files00098.txt'
0efefc74e83770cbee59bd9fec88b3a8
f526e30b3ce38104b8e45a9763a15a565ff4d3ff
'2018-12-19T08:36:09-05:00'
describe
'7612248' 'info:fdaEXUNH3FIT_65X3YKfile114' 'sip-files00117.tif'
131714b09f9a53e559bbd888c909390a
d8e8af75c837c93eba648e5e6e7df77ac6cdb176
'2018-12-19T08:37:00-05:00'
describe
'1778' 'info:fdaEXUNH3FIT_65X3YKfile1140' 'sip-files00099.txt'
e7699ecfc5cee59049fd403b2e51ab53
7b16d870e24a862e72ce93cfe67b5d59d3a8e025
'2018-12-19T08:31:51-05:00'
describe
'1190' 'info:fdaEXUNH3FIT_65X3YKfile1141' 'sip-files00100.txt'
1b679d726ca4913636d76df6318485d1
a93ba6d1a5aa27a0b7e574260baa10dc5bf6af6b
describe
'1478' 'info:fdaEXUNH3FIT_65X3YKfile1142' 'sip-files00101.txt'
e7aa5916322eba8e17625d72d31950b0
186f94fd31422e077a5ea9180a5f375abf14737e
'2018-12-19T08:37:56-05:00'
describe
'1801' 'info:fdaEXUNH3FIT_65X3YKfile1143' 'sip-files00102.txt'
0b74198a6e3c4ca1886867739a24c1bc
afc76624fea9f0e4ab1da9ed6b75d4efe06a0263
describe
'2029' 'info:fdaEXUNH3FIT_65X3YKfile1144' 'sip-files00103.txt'
e89fb2fc5dd439e5a2823acde606658d
ddcd832672b417a1636e254fcadb50ba0ae74ce0
'2018-12-19T08:37:53-05:00'
describe
'1604' 'info:fdaEXUNH3FIT_65X3YKfile1145' 'sip-files00104.txt'
98f07d55334b69e98b31bc9ef8a1dbc4
8c5200999f6b910d70f21a8c3121668f8524b5b2
'2018-12-19T08:27:49-05:00'
describe
'1482' 'info:fdaEXUNH3FIT_65X3YKfile1146' 'sip-files00105.txt'
3024bcb3ee683f8ef04f66d45a64f208
c99cba7e41a1c4711f52f5247f2ce7d9eefca206
'2018-12-19T08:35:58-05:00'
describe
'info:fdaEXUNH3FIT_65X3YKfile1147' 'sip-files00106.txt'
9d33384d033840b56154c4ed8a3e3109
10b45acc37b5c0ed7ae58001bb3d77b4edd3ccdd
'2018-12-19T08:36:10-05:00'
describe
'438' 'info:fdaEXUNH3FIT_65X3YKfile1148' 'sip-files00107.txt'
9dd1c6939d3600e636d278f28b746406
3406a9357cb72ef52d349e3091a93d1c3cb5a2ff
'2018-12-19T08:34:40-05:00'
describe
'207' 'info:fdaEXUNH3FIT_65X3YKfile1149' 'sip-files00108.txt'
b419c9ac4ccbd916960997ada529426e
464965238e910a6dc10422655811bc73005564bf
'2018-12-19T08:36:15-05:00'
describe
'7579744' 'info:fdaEXUNH3FIT_65X3YKfile115' 'sip-files00118.tif'
9543985006837addf74c5ec242f5d133
e9956a127c361ba26c6b8ec56fa1122b80bfd5db
'2018-12-19T08:36:02-05:00'
describe
'499' 'info:fdaEXUNH3FIT_65X3YKfile1150' 'sip-files00109.txt'
bb02111564bb5c27ce77a757a0e5b58b
05cdfe636ce1dbccdf72c71ba4d611ddbd01cd1b
'2018-12-19T08:30:45-05:00'
describe
'267' 'info:fdaEXUNH3FIT_65X3YKfile1151' 'sip-files00110.txt'
62f2bff1b7e2e00f8605bd4c397d1357
2bbe3c9164088ee769f1901f94ae84d462751d2d
'2018-12-19T08:35:19-05:00'
describe
'1555' 'info:fdaEXUNH3FIT_65X3YKfile1152' 'sip-files00111.txt'
bcaf298d4854b86ee0a4f1bf80250854
848acefc459302887bb91f0156b3ed9502b49171
'2018-12-19T08:36:42-05:00'
describe
'1475' 'info:fdaEXUNH3FIT_65X3YKfile1153' 'sip-files00112.txt'
16cd20e22742ecb52501e1712d92c4cb
7bede2a4462b8a64b4b275c9c4b9000a7ca93b0a
'2018-12-19T08:32:03-05:00'
describe
'1515' 'info:fdaEXUNH3FIT_65X3YKfile1154' 'sip-files00113.txt'
1cb365eca4b7e8c312179ae13b53d875
0408458246863362c38b03ac763b193ba0816bd3
'2018-12-19T08:32:06-05:00'
describe
'116' 'info:fdaEXUNH3FIT_65X3YKfile1155' 'sip-files00114.txt'
85c55b5d35c10129378eeafb2cf8eb32
e94d7bd80675ed3c3b2c2b6f67a7e7dd879f590e
'2018-12-19T08:35:13-05:00'
describe
'224' 'info:fdaEXUNH3FIT_65X3YKfile1156' 'sip-files00115.txt'
97c355bdd64c4ed54f8faeff80264ce0
8a4b55738ad45a9039e5396ef1691becbb50da68
'2018-12-19T08:31:57-05:00'
describe
'264' 'info:fdaEXUNH3FIT_65X3YKfile1157' 'sip-files00116.txt'
eaf8e02c60eff0e8eda38d88348a5d0c
5984462107c943d578828224115a1dfaee18f780
'2018-12-19T08:29:31-05:00'
describe
'info:fdaEXUNH3FIT_65X3YKfile1158' 'sip-files00117.txt'
1675b9e3bff7025c135eb1902c320748
d351ca66e7da49903aa62b02a775cfda8f4331fd
'2018-12-19T08:34:42-05:00'
describe
'284' 'info:fdaEXUNH3FIT_65X3YKfile1159' 'sip-files00118.txt'
af5a8e3ae4940ae40ce307d49b854489
9037f6020f93ddb58fcf41f1601a5ab70163e5d8
'2018-12-19T08:37:52-05:00'
describe
'7577052' 'info:fdaEXUNH3FIT_65X3YKfile116' 'sip-files00119.tif'
32c45eefb559aec6b9cfb8b48cddfa85
576a18dc5442c3871389bbc367291058369bced1
'2018-12-19T08:36:52-05:00'
describe
'206' 'info:fdaEXUNH3FIT_65X3YKfile1160' 'sip-files00119.txt'
9b287bb700e4d95ffcc30f4c97fd4bb3
538614298d35b284377c1ecbce3624ec337432c3
describe
'361' 'info:fdaEXUNH3FIT_65X3YKfile1161' 'sip-files00120.txt'
27842fc97c0c3bbd695d94abaa17281d
84e15666b30e929775b0fbb163f75378b3298840
'2018-12-19T08:30:32-05:00'
describe
Invalid characterNot valid first byte of UTF-8 encoding
Invalid character
Not valid first byte of UTF-8 encoding
'496' 'info:fdaEXUNH3FIT_65X3YKfile1162' 'sip-files00121.txt'
f17062d7e0c9062e97470c6931ab4a54
8029dc3f922014893080e9657fdff0e6d614290c
'2018-12-19T08:35:16-05:00'
describe
'594' 'info:fdaEXUNH3FIT_65X3YKfile1163' 'sip-files00122.txt'
d2c74a725965088277820afde37fa9aa
7018bd6846f78c44133a5a50df9da6758a0ca5b7
'2018-12-19T08:37:14-05:00'
describe
'512' 'info:fdaEXUNH3FIT_65X3YKfile1164' 'sip-files00123.txt'
1a6fb0f557fd2f43be1d3405848e6861
a5464c65168393595d5cbcdea66af45a672b5552
'2018-12-19T08:34:12-05:00'
describe
'318' 'info:fdaEXUNH3FIT_65X3YKfile1165' 'sip-files00124.txt'
501cba3fc925868c223ad92bab78f4f6
f8cce9794b8f1ad211d74279260eebb74ee152bc
'2018-12-19T08:30:30-05:00'
describe
'376' 'info:fdaEXUNH3FIT_65X3YKfile1166' 'sip-files00125.txt'
d60c446d898119c7adb73249677ab64c
641704a19b15a436be1feb47ee93ab703aa6f3bb
'2018-12-19T08:33:56-05:00'
describe
'349' 'info:fdaEXUNH3FIT_65X3YKfile1167' 'sip-files00126.txt'
4137ab4bec45e5aef08d8691be7ea518
2953b8a5fc86179f808a0359f4dfaca86381107f
'2018-12-19T08:33:09-05:00'
describe
'1275' 'info:fdaEXUNH3FIT_65X3YKfile1168' 'sip-files00127.txt'
734e7b572264bac81c300805617ac7b2
ffd3cbac83ec6fa2f92549038a39cce53850761b
'2018-12-19T08:32:30-05:00'
describe
'1580' 'info:fdaEXUNH3FIT_65X3YKfile1169' 'sip-files00128.txt'
3c74f0847b64c8729206f8ebad59beca
158bf00b4e3438536d132136c28025bda125cc6d
'2018-12-19T08:28:22-05:00'
describe
'7578000' 'info:fdaEXUNH3FIT_65X3YKfile117' 'sip-files00120.tif'
1b698ce64d6642f52daeadbdcea573bd
27898674ebfb67cf703108a00bb2bfe87ecced9e
'2018-12-19T08:32:31-05:00'
describe
'1448' 'info:fdaEXUNH3FIT_65X3YKfile1170' 'sip-files00129.txt'
2be535c44f0b75a676bc0eeadf4f84a4
52dc2b358df1385d3895ae8c7210303bd9849356
describe
'1471' 'info:fdaEXUNH3FIT_65X3YKfile1171' 'sip-files00130.txt'
cdb2f965093e36fcef96796b32c9902f
b2c2e135def21c10b8aaa0fd05e9f51f48af7201
describe
'info:fdaEXUNH3FIT_65X3YKfile1172' 'sip-files00131.txt'
5d57e29cf22fcf522e9cb4b96b1cbfa7
93166b42425d901013b354cbc3a1f6250ed4afcf
'2018-12-19T08:35:09-05:00'
describe
'1352' 'info:fdaEXUNH3FIT_65X3YKfile1173' 'sip-files00132.txt'
0cb7033eab0e75a8d060f3981ecf9933
4f799876172c0e7d059ef93aea7911962cd270d5
describe
'1371' 'info:fdaEXUNH3FIT_65X3YKfile1174' 'sip-files00133.txt'
007e6faa403b62562652c2e05a81c2e5
76c2f4461d73a1a2b1fa4450a0f35df615b80258
'2018-12-19T08:33:40-05:00'
describe
'1498' 'info:fdaEXUNH3FIT_65X3YKfile1175' 'sip-files00134.txt'
4c09e0f60303106eb78a82f0e0132301
adc3c7aa3d2b43148cf87535e1b08d01c14a452a
'2018-12-19T08:30:37-05:00'
describe
'1883' 'info:fdaEXUNH3FIT_65X3YKfile1176' 'sip-files00135.txt'
0cc5c016026e37d1c9f140cb6af2d0fe
2a1a397fccc3a3a7ab181e21e924358b04e958aa
'2018-12-19T08:30:08-05:00'
describe
'1640' 'info:fdaEXUNH3FIT_65X3YKfile1177' 'sip-files00136.txt'
3cf5134cbc44ae7a3be969c9e525cd0a
441b254c6b2d7a9b41a7657f314d6ffdaaeeab22
describe
'1606' 'info:fdaEXUNH3FIT_65X3YKfile1178' 'sip-files00137.txt'
af2926c3756587c45e3ed331af0fe464
ef4f0c9e4bf11f8183fbeb27ab73153a4eed8723
'2018-12-19T08:37:50-05:00'
describe
'1177' 'info:fdaEXUNH3FIT_65X3YKfile1179' 'sip-files00138.txt'
5bdb7178f0ebf18ea27f2f62c09ec751
e6dec3455a355bdb8b4771ebb619b0a09198a61a
'2018-12-19T08:35:15-05:00'
describe
'7573752' 'info:fdaEXUNH3FIT_65X3YKfile118' 'sip-files00121.tif'
40bf5192b34ffb062e8699d029bf0cb2
e3908f1a7a1396bd6fb5a17c3495dd03c73231df
'2018-12-19T08:27:46-05:00'
describe
'info:fdaEXUNH3FIT_65X3YKfile1180' 'sip-files00139.txt'
431fd93e926a72d87794e41aa1056eb6
56631f4c336f6231542b0f0a9ac4c4e22fd5b5fb
describe
'917' 'info:fdaEXUNH3FIT_65X3YKfile1181' 'sip-files00140.txt'
60c4ec92c987352c8948b3ade1c3b37f
40dc9981ea6bcfbebccd600aebcbd0f67e2c3071
'2018-12-19T08:35:29-05:00'
describe
'373' 'info:fdaEXUNH3FIT_65X3YKfile1182' 'sip-files00141.txt'
407bf5c80dbaeebfcd18bc84c8989cd8
07e731427da8a1d27530f431978d45545ebc5d7e
'2018-12-19T08:31:49-05:00'
describe
'198' 'info:fdaEXUNH3FIT_65X3YKfile1183' 'sip-files00142.txt'
58afd5e66a78942164a9be1f9b8187c3
3ab5cd08660a304634458d57d8f8fafb4d695a9f
describe
'457' 'info:fdaEXUNH3FIT_65X3YKfile1184' 'sip-files00143.txt'
19d34109183a9e797a314d36c6a5a78a
c234cd7a7ce0376a6f9f5fac4d8fa92ce898e2dc
describe
'236' 'info:fdaEXUNH3FIT_65X3YKfile1185' 'sip-files00144.txt'
4ab6ce57e0d3e10f286a4e3dbb45526f
790e239f3c6f3f23e86db902886dd718c219d2ad
'2018-12-19T08:33:47-05:00'
describe
'221' 'info:fdaEXUNH3FIT_65X3YKfile1186' 'sip-files00145.txt'
34a2c1cf2d074209341482fc801e4737
553ee73eeca5cb382e749b7dbfb8267fcf0bde48
'2018-12-19T08:37:05-05:00'
describe
'186' 'info:fdaEXUNH3FIT_65X3YKfile1187' 'sip-files00146.txt'
aa5e5f9b72f6f5a58bcfd8e8f6873245
7e1c6bf92e144340adb3f1f3733aba5fb40bf548
describe
'192' 'info:fdaEXUNH3FIT_65X3YKfile1188' 'sip-files00147.txt'
17a668ab05d5dfeac056bf414cb549cd
fde9f6e77889a4f45fe1d7abc5d84d05f22332a9
'2018-12-19T08:28:39-05:00'
describe
'290' 'info:fdaEXUNH3FIT_65X3YKfile1189' 'sip-files00148.txt'
5fe8a96031abd5ba7e59d35bce3c0603
8424057053757f5d8601066611fac42b1440dea8
'2018-12-19T08:37:49-05:00'
describe
'7589404' 'info:fdaEXUNH3FIT_65X3YKfile119' 'sip-files00122.tif'
2ccda66cba2bdac17517478c3a60d7e9
5cf6a9545c30fa7381792f806e55005f963e18fb
'2018-12-19T08:32:26-05:00'
describe
'1244' 'info:fdaEXUNH3FIT_65X3YKfile1190' 'sip-files00149.txt'
66f54f12ad93d789541a2b135d14f4ca
efbaf4c6675b64e184c8b2a40b01ec2d9564ff2d
'2018-12-19T08:27:01-05:00'
describe
'1464' 'info:fdaEXUNH3FIT_65X3YKfile1191' 'sip-files00150.txt'
07f55f2076b67d3893bbf78fa3263b3d
cdf13e6cf149e76d1b6eb804a2998d68ae24a66e
'2018-12-19T08:34:36-05:00'
describe
'1393' 'info:fdaEXUNH3FIT_65X3YKfile1192' 'sip-files00151.txt'
b61f21430c12750b279809273aa881ee
663fbdec88ce54e57d1931d7009e13e4238c6f89
'2018-12-19T08:37:19-05:00'
describe
'1392' 'info:fdaEXUNH3FIT_65X3YKfile1193' 'sip-files00152.txt'
3a1f60ee98d7b9e693e1c1c9053437ee
e9f4cab2c46f0664f77b749a330e9260073fb1eb
'2018-12-19T08:34:28-05:00'
describe
'1546' 'info:fdaEXUNH3FIT_65X3YKfile1194' 'sip-files00153.txt'
fdee35ee52c42856aaa9bc0f49148d22
286995523671c4f9ba0e25566330ea8d5f761c06
'2018-12-19T08:28:02-05:00'
describe
'1531' 'info:fdaEXUNH3FIT_65X3YKfile1195' 'sip-files00154.txt'
eac1215a39f4c974560b37371608cdce
79195eaf45cda1183ff921a703e6fd96a94086b1
'2018-12-19T08:36:25-05:00'
describe
'1404' 'info:fdaEXUNH3FIT_65X3YKfile1196' 'sip-files00155.txt'
72b1534392721c094f51f7ec2b3f95f5
64b9c1dbcd486724acd5db3b5afd8b3e12581055
'2018-12-19T08:32:12-05:00'
describe
'1339' 'info:fdaEXUNH3FIT_65X3YKfile1197' 'sip-files00156.txt'
4b0fdce0628af872e57d7be7eaf43b03
d58adcfa9c11217901f76d374549fba2f2f2b32d
describe
'1558' 'info:fdaEXUNH3FIT_65X3YKfile1198' 'sip-files00157.txt'
d5a8a2d84ce83e8105f6705bd14ff77d
a00f52bfbeadf7513c2834928b869b53edc1bd13
describe
'info:fdaEXUNH3FIT_65X3YKfile1199' 'sip-files00158.txt'
eace23f39a409f9b80088d959bfa0c0b
51912bc3e1a32e0805a4f9c152b6ec414463f332
'2018-12-19T08:34:25-05:00'
describe
'7702324' 'info:fdaEXUNH3FIT_65X3YKfile12' 'sip-files00015.tif'
fcee3460ec9979fd81387209bf13af14
6be4e0d3788f003115abc85a56f33639941c0cd5
describe
'7586668' 'info:fdaEXUNH3FIT_65X3YKfile120' 'sip-files00123.tif'
67747ef27795370883a203110c7df156
f85f02eba723c1f25535cc9ff6ccc3e2d2d7f3b8
'2018-12-19T08:37:33-05:00'
describe
'1378' 'info:fdaEXUNH3FIT_65X3YKfile1200' 'sip-files00159.txt'
5bb73021b55c730411a50d3ba1304730
41accf7e64483e1ea7c1e9575d414ca366dd4a3c
describe
'1346' 'info:fdaEXUNH3FIT_65X3YKfile1201' 'sip-files00160.txt'
e7cf706fcdb7da91523d917427958621
7be766e9f4f5ac9551eb21f735074b6c5dd15b37
describe
'1517' 'info:fdaEXUNH3FIT_65X3YKfile1202' 'sip-files00161.txt'
e9076ebc5d1d74af1071e7d909076823
02fbf197eaec60d9c57a0a89b87ce2530da56df4
'2018-12-19T08:28:33-05:00'
describe
'1204' 'info:fdaEXUNH3FIT_65X3YKfile1203' 'sip-files00162.txt'
4ae5ae10f151a76c82604019209f060e
585f9785479f58509e0672a41b97c4041f747356
'2018-12-19T08:33:12-05:00'
describe
'1303' 'info:fdaEXUNH3FIT_65X3YKfile1204' 'sip-files00163.txt'
ceac80163b0058aaf059c47b7c202f61
eb8b94da7936420a7cc1fde745b86e9db6c0d183
describe
'1259' 'info:fdaEXUNH3FIT_65X3YKfile1205' 'sip-files00164.txt'
7f24a96e2dfee3511584c2717f7bc062
6b2a8fcacf620f3d955fd0c61ec13a674732cd43
describe
'info:fdaEXUNH3FIT_65X3YKfile1206' 'sip-files00165.txt'
63caaaf37138e6c1d7911443fba7ab8a
57266ac1e232fec939cc1c37a648ae3033af3226
'2018-12-19T08:32:23-05:00'
describe
'1438' 'info:fdaEXUNH3FIT_65X3YKfile1207' 'sip-files00166.txt'
acadc1b694408405ce8b86b28dd510bd
07f7cc550f984efe004ee7f044d577d636903b55
describe
'1105' 'info:fdaEXUNH3FIT_65X3YKfile1208' 'sip-files00167.txt'
06b483bb764906f1f97821bb71137abf
641e94dae1fa7eee77d448da85df5c4b5d19f747
'2018-12-19T08:31:03-05:00'
describe
'1693' 'info:fdaEXUNH3FIT_65X3YKfile1209' 'sip-files00168.txt'
412cf5134622bceb3ff31d999bde3673
1040aeb3c5b0398b26d0b824498f55c9df0280f3
'2018-12-19T08:36:01-05:00'
describe
'7594880' 'info:fdaEXUNH3FIT_65X3YKfile121' 'sip-files00124.tif'
7ec1d12dfa6caacee393d8f7d112f379
ca45233b142860061beb2fc3844573f63c8ee4e6
'2018-12-19T08:36:22-05:00'
describe
'2030' 'info:fdaEXUNH3FIT_65X3YKfile1210' 'sip-files00169.txt'
dd3364f6d84b88247e1b2a926cb6dd6a
58bc7c68ad693f2ff9417d10c89a8e6bf69fbf7d
'2018-12-19T08:28:18-05:00'
describe
'2087' 'info:fdaEXUNH3FIT_65X3YKfile1211' 'sip-files00170.txt'
14d4a20606f5fc40a1697de72078587a
e837d76c82166ba64da9a974ae1d4ec9a7ed8468
'2018-12-19T08:30:10-05:00'
describe
'1988' 'info:fdaEXUNH3FIT_65X3YKfile1212' 'sip-files00171.txt'
d8a1a3afa2e6c9ce0ae735fa599954b3
0ce766f7651170ddf8d3d0b23560d03108186001
'2018-12-19T08:32:29-05:00'
describe
'2170' 'info:fdaEXUNH3FIT_65X3YKfile1213' 'sip-files00172.txt'
169c02b7075bd3ef52494c92de6b8a09
257d5b7d75db1e02d52f8ad2608873ebc7055eac
'2018-12-19T08:28:49-05:00'
describe
'info:fdaEXUNH3FIT_65X3YKfile1214' 'sip-files00173.txt'
5aaeb72264e3a22afd39bc4702ad0d57
2d4419d3a4bce15844dd1b8015696d8b593abf22
'2018-12-19T08:31:02-05:00'
describe
'729' 'info:fdaEXUNH3FIT_65X3YKfile1215' 'sip-files00174.txt'
28992254c992fb046ee02888ba341423
295ec7e415c68af044f2d6489c2d16292cb34e9e
'2018-12-19T08:28:37-05:00'
describe
'1085' 'info:fdaEXUNH3FIT_65X3YKfile1216' 'sip-files00175.txt'
73750c65388407781f16f9a6a90de0b3
c40d4562b0e1d444deb7ae7500e727b350f114e3
'2018-12-19T08:34:32-05:00'
describe
'1879' 'info:fdaEXUNH3FIT_65X3YKfile1217' 'sip-files00176.txt'
b8559b5a4cc633ba6c9959639c34435e
9f2aa52e8f01b379fb7977bea0b8c25d15c38da9
'2018-12-19T08:32:53-05:00'
describe
'423' 'info:fdaEXUNH3FIT_65X3YKfile1218' 'sip-files00177.txt'
16e51d305c3f3cccb399d666482e1da0
642af902f23e62292e60696823277476e9a0169f
'2018-12-19T08:36:58-05:00'
describe
'183051' 'info:fdaEXUNH3FIT_65X3YKfile1219' 'sip-filesAA00024582_00001.mets'
4db71b4faf5f509943d4b613a01ac599
dff113c139cdc41e5407c886076abef13adb81d7
'2018-12-19T08:32:55-05:00'
describe
'2018-12-19T08:38:31-05:00'
xml resolution
'7612228' 'info:fdaEXUNH3FIT_65X3YKfile122' 'sip-files00125.tif'
2ea8326d5fff821523e33fe7fa37f62d
acd5477cea08ae875948fc47132273bd0179ef1c
'2018-12-19T08:35:56-05:00'
describe
'7601620' 'info:fdaEXUNH3FIT_65X3YKfile123' 'sip-files00126.tif'
dd429346e48f251e59e9bc4856db20a8
0093be3a25a54dfd7ed61f15e93c344ce6bd580b
'2018-12-19T08:30:28-05:00'
describe
'7600956' 'info:fdaEXUNH3FIT_65X3YKfile124' 'sip-files00127.tif'
6e14c2c277250a281692d662357f3707
783890ab18af6bb665f4e88d480a777c4dba5c4b
'2018-12-19T08:30:55-05:00'
describe
'7590256' 'info:fdaEXUNH3FIT_65X3YKfile125' 'sip-files00128.tif'
2d4232235b67c898848d13e1da868632
65bf1c96d2fd21679c272a566b310de47df232cf
'2018-12-19T08:30:51-05:00'
describe
'7589784' 'info:fdaEXUNH3FIT_65X3YKfile126' 'sip-files00129.tif'
d92fd0d07857149058986477110709a8
ec854265eeffa3ba65d52b0dc05a23ba97fe5a35
'2018-12-19T08:28:44-05:00'
describe
'7589928' 'info:fdaEXUNH3FIT_65X3YKfile127' 'sip-files00130.tif'
0dc50f79857de2aa896bea38347cae93
f5f6ccd518a4b784808a116b5bade93161c1d774
'2018-12-19T08:28:31-05:00'
describe
'7587768' 'info:fdaEXUNH3FIT_65X3YKfile128' 'sip-files00131.tif'
a35720f752b731647f8b1f60f8046fb0
f1eb1ed88481aa1ff0be585de366b9c60b651207
describe
'7590448' 'info:fdaEXUNH3FIT_65X3YKfile129' 'sip-files00132.tif'
94862e953e3974b5b2c61be1205ef318
d2586b6918fa8105d327bca0fa70c01562643436
'2018-12-19T08:32:34-05:00'
describe
'7698312' 'info:fdaEXUNH3FIT_65X3YKfile13' 'sip-files00016.tif'
679738849b80bc85596dc39071bd9a57
49cc8e277935ccd8b70ea7be44b1e7424f78939b
'2018-12-19T08:32:15-05:00'
describe
'7583156' 'info:fdaEXUNH3FIT_65X3YKfile130' 'sip-files00133.tif'
c90b3b8317cbd19eeaa499452c031b63
601d5a6aca5ca86d8a84eb46bba3fd9506dc57be
'2018-12-19T08:37:48-05:00'
describe
'7596628' 'info:fdaEXUNH3FIT_65X3YKfile131' 'sip-files00134.tif'
adb97c2f71d20a46cf9f84049fd83d6e
13d20076ba049f79dfe4c27156d63799516a6c33
'2018-12-19T08:36:51-05:00'
describe
'7586504' 'info:fdaEXUNH3FIT_65X3YKfile132' 'sip-files00135.tif'
246c56f0719b62707a71cc5af04eb9dc
884cc3dd5bce907baf11970d6167d51461cf45d2
'2018-12-19T08:29:06-05:00'
describe
'7589860' 'info:fdaEXUNH3FIT_65X3YKfile133' 'sip-files00136.tif'
27817a52afe14257e7b5f86209cb19ac
a47ba9b99ee927489f0d4ddcab10349c77c3dfbc
describe
'7600036' 'info:fdaEXUNH3FIT_65X3YKfile134' 'sip-files00137.tif'
b7b7e4651ac2358e26c3311abe280734
b95540d9ace0cdf0a2c007f417cc14ac3ac15452
'2018-12-19T08:29:01-05:00'
describe
'7579288' 'info:fdaEXUNH3FIT_65X3YKfile135' 'sip-files00138.tif'
b9e3fc79c6764000cc6c8ad6cde40ee6
2b8d914da0c306dcd83a663835d1d23f9ed817c8
'2018-12-19T08:37:47-05:00'
describe
'7605028' 'info:fdaEXUNH3FIT_65X3YKfile136' 'sip-files00139.tif'
565cc47ea375375c9ac5a80114cf33aa
a7d1acd105e7964e0adf4914fb959c400a210786
'2018-12-19T08:37:55-05:00'
describe
'7606428' 'info:fdaEXUNH3FIT_65X3YKfile137' 'sip-files00140.tif'
e33716e33f595a1b205d7389ce60d539
45e749746ffb3c71d0ef059197f724753947c0bf
describe
'7589436' 'info:fdaEXUNH3FIT_65X3YKfile138' 'sip-files00141.tif'
3925a0d8123039994b14a49e65a5bf1b
a75422c1516f9a227219ef3761b6edc37aa51be5
'2018-12-19T08:29:51-05:00'
describe
'7601180' 'info:fdaEXUNH3FIT_65X3YKfile139' 'sip-files00142.tif'
4e700b57cdc71d0b4eaeb09d6ce92f44
31c2af8422eaf43f6b91f1f639a8bc891ac0cc33
describe
'7687828' 'info:fdaEXUNH3FIT_65X3YKfile14' 'sip-files00017.tif'
72b838d2771cffbfa4822c6ecb91fb14
b8de113b6c1bf7dc27246a7efe49786a06ae724f
'2018-12-19T08:27:00-05:00'
describe
'7595904' 'info:fdaEXUNH3FIT_65X3YKfile140' 'sip-files00143.tif'
569bdcae3eee9235337b942278e62dde
c10f9a184f07268c4a2bf34058a93f792b590f6d
'2018-12-19T08:37:02-05:00'
describe
'7579704' 'info:fdaEXUNH3FIT_65X3YKfile141' 'sip-files00144.tif'
38e7c816b07db0ccf9c9af74dfa7c5d7
216665e9decebe68772f260fcacccaa0636ace46
'2018-12-19T08:36:50-05:00'
describe
'7580312' 'info:fdaEXUNH3FIT_65X3YKfile142' 'sip-files00145.tif'
c49d944ea63360e97f39c0f9172ff9b9
5053f636f21fd3c2508d204b4135887864e3b644
'2018-12-19T08:34:07-05:00'
describe
'7586460' 'info:fdaEXUNH3FIT_65X3YKfile143' 'sip-files00146.tif'
6d444ab2a5ac2c3dedeeb1fadf8c15a3
37696d1ce6b1af5cdecaf28014c9ba3bec2f0907
describe
'7586196' 'info:fdaEXUNH3FIT_65X3YKfile144' 'sip-files00147.tif'
09b639d607096068792923eebde34f83
676ad7ab83a2a98a3067d79095d37166d60f741c
'2018-12-19T08:26:59-05:00'
describe
'7580332' 'info:fdaEXUNH3FIT_65X3YKfile145' 'sip-files00148.tif'
3a0598b2f0fbfc25e109e013f4957301
e54f39088be60c4d3ee4fc2974600c9e59ceb519
'2018-12-19T08:34:51-05:00'
describe
'7630644' 'info:fdaEXUNH3FIT_65X3YKfile146' 'sip-files00149.tif'
9669d59318059bd75240160819dc2dd8
e90d976d7f57627d6bfccad69c03936858221241
'2018-12-19T08:27:41-05:00'
describe
'7581124' 'info:fdaEXUNH3FIT_65X3YKfile147' 'sip-files00150.tif'
6b12319e63d5621101438699c41bd693
9a218ef5485d3e7c61292164a1fb86ed3d2bbac3
'2018-12-19T08:29:33-05:00'
describe
'7584108' 'info:fdaEXUNH3FIT_65X3YKfile148' 'sip-files00151.tif'
ee2ef11b9917ece9dd270e0f93cba2fc
98b69ca6ef9215e56902ba2d515e69786f6876e3
'2018-12-19T08:32:17-05:00'
describe
'7587412' 'info:fdaEXUNH3FIT_65X3YKfile149' 'sip-files00152.tif'
2f3698b6e1a6f55fb101fef559044c99
a7eb60c6d0362ac77ddddfb6ab464422c485e12f
'2018-12-19T08:33:21-05:00'
describe
'7686152' 'info:fdaEXUNH3FIT_65X3YKfile15' 'sip-files00018.tif'
d18ce761d4d9596dde476bcea36ec86c
a0a67eb830f901b4825c85d748afa8a713b7f49b
'2018-12-19T08:37:57-05:00'
describe
'7587904' 'info:fdaEXUNH3FIT_65X3YKfile150' 'sip-files00153.tif'
459466db85825ea7d498feda25de286a
89b6e1f51a73c7da68a436611fa28192f5f58c17
'2018-12-19T08:33:17-05:00'
describe
'7584692' 'info:fdaEXUNH3FIT_65X3YKfile151' 'sip-files00154.tif'
19b5f973f8a4d53b419cb4211ee85815
081b961b60ed53e9e8b339a67d647dbcbb306f24
describe
'7581112' 'info:fdaEXUNH3FIT_65X3YKfile152' 'sip-files00155.tif'
56e784a367bd3d121f2b324bd627f290
f61402bf417a5bad76b25a57baa28b259d408c56
'2018-12-19T08:36:26-05:00'
describe
'7584080' 'info:fdaEXUNH3FIT_65X3YKfile153' 'sip-files00156.tif'
0972722ee99bda833dd1fbdf4edc8959
993f2a00ffa39f1fe0d06029768fe7465b5df853
describe
'7617044' 'info:fdaEXUNH3FIT_65X3YKfile154' 'sip-files00157.tif'
ada5d57a240d88b08f9d165455a64c7a
d5d880a147e2faf52b2aaeb325b89c4dd9fdb6d4
'2018-12-19T08:35:40-05:00'
describe
'7588320' 'info:fdaEXUNH3FIT_65X3YKfile155' 'sip-files00158.tif'
50267a9c1a717cc8fcccaf9804fe1762
49a2ddf28a9e71358c51509b00d2ac09019ad02a
describe
'7643144' 'info:fdaEXUNH3FIT_65X3YKfile156' 'sip-files00159.tif'
52f5cbde62b727b6f63f5d85a0f58806
1462f8d3f46dac9b785e3762328b721339595fd6
describe
'7650424' 'info:fdaEXUNH3FIT_65X3YKfile157' 'sip-files00160.tif'
b9e056340496df6d91a1be5c9fb81594
6f32039e6d6d6811ef9b99cbb3329fa9812d815c
'2018-12-19T08:32:19-05:00'
describe
'7626428' 'info:fdaEXUNH3FIT_65X3YKfile158' 'sip-files00161.tif'
596e9805ce5a527455fc4aa682d4fbb4
1ff68363f658233004a78fbbaa08e64aade721a6
'2018-12-19T08:33:26-05:00'
describe
'7656172' 'info:fdaEXUNH3FIT_65X3YKfile159' 'sip-files00162.tif'
d904da16a3fd8c0bd3bb578142852a21
8ae3d9b9567e49a4df29544487613b71e76eed41
'2018-12-19T08:31:30-05:00'
describe
'7682040' 'info:fdaEXUNH3FIT_65X3YKfile16' 'sip-files00019.tif'
5f18a443ea599cb73dc9cefcd54510d2
cf2c39d782e52c60200a8e59f2417c8e687e1c5d
'2018-12-19T08:31:38-05:00'
describe
'7639744' 'info:fdaEXUNH3FIT_65X3YKfile160' 'sip-files00163.tif'
c898917c7b83396a3ef2ee8baf6990ae
7a0057055a2c1b9b00d8f283f7c0a61187e4e9d6
'2018-12-19T08:29:35-05:00'
describe
'7633632' 'info:fdaEXUNH3FIT_65X3YKfile161' 'sip-files00164.tif'
b3be4d01352daa0000f863abcee3c78f
a466cfc7c2d3fae6422af934628679ce25f6d3a5
'2018-12-19T08:31:35-05:00'
describe
'7637348' 'info:fdaEXUNH3FIT_65X3YKfile162' 'sip-files00165.tif'
7b0329b83125eaf9eefaf1c1e92d0876
b510e26b6a75c542d0a16a46616e6ffa7a7bc675
'2018-12-19T08:28:53-05:00'
describe
'7634420' 'info:fdaEXUNH3FIT_65X3YKfile163' 'sip-files00166.tif'
03746a67373d7c22804024c710a22e1e
0eb425a7f880f62217b36aea5e6ef24ff6ac8d81
'2018-12-19T08:28:07-05:00'
describe
'7627064' 'info:fdaEXUNH3FIT_65X3YKfile164' 'sip-files00167.tif'
719acd30ad1cccec5354eaa5f5b6299e
ac0a8095497282bead1e3a0d448302c055dde889
'2018-12-19T08:29:40-05:00'
describe
'7651200' 'info:fdaEXUNH3FIT_65X3YKfile165' 'sip-files00168.tif'
f54fc82ae75cf808bfbf04221f1e051e
dea37badc698caf7b8d7bfcae4bf2ee8f1cc9c70
'2018-12-19T08:27:57-05:00'
describe
'7640136' 'info:fdaEXUNH3FIT_65X3YKfile166' 'sip-files00169.tif'
e340e848d7c44367628bed5304fc9642
d33dbbbedd740108878df3fe5d8d46e54a949ac6
'2018-12-19T08:27:17-05:00'
describe
'7640460' 'info:fdaEXUNH3FIT_65X3YKfile167' 'sip-files00170.tif'
5000b21bdfa2d2779f8d9605df9d4374
5865194683b7c1fa0ffce74afce2fe24569b84f2
'2018-12-19T08:37:10-05:00'
describe
'7657792' 'info:fdaEXUNH3FIT_65X3YKfile168' 'sip-files00171.tif'
68fa916a70647fae11c499c3af5db66d
06904dfd234b11480be052cc00cacad10a8e6abb
describe
'7651748' 'info:fdaEXUNH3FIT_65X3YKfile169' 'sip-files00172.tif'
684e1ba988539ae66779a2bb78a9f49c
4baed3e9a041f48c5db8cc8fd29985d984356c28
describe
'7686268' 'info:fdaEXUNH3FIT_65X3YKfile17' 'sip-files00020.tif'
2a4f06d2033f089e7b720ebefb648886
b0cb6f5b5411fdd057c919b0cb3bd573b7024fa1
describe
'7628292' 'info:fdaEXUNH3FIT_65X3YKfile170' 'sip-files00173.tif'
a3aafed26806863f02ccf982baaf7195
e05a132ef578b4d2785c3ec933bbb2f22f7ee0cd
describe
'7604608' 'info:fdaEXUNH3FIT_65X3YKfile171' 'sip-files00174.tif'
b7457b1d3c2b5dac4972cea6f82b80cf
65a2c6e7c2b0820a730c6d115f301fd0ca4a4c94
describe
'7599768' 'info:fdaEXUNH3FIT_65X3YKfile172' 'sip-files00175.tif'
b90c5f94d4377d7ff7010f6925f60b2c
1337a48407c9b12e6a94dc7d0a07456e92375983
describe
'7599856' 'info:fdaEXUNH3FIT_65X3YKfile173' 'sip-files00176.tif'
b08de70cbeda739bdc7bbe9ea099ec95
ced098d86db886009f28ab104bc94f38f7d2ac67
'2018-12-19T08:37:25-05:00'
describe
'7598260' 'info:fdaEXUNH3FIT_65X3YKfile174' 'sip-files00177.tif'
89e795f2d8865c363f5b0faaca09bd7e
b256250674d5d63175c92944a59f85704311352b
describe
'456872' 'info:fdaEXUNH3FIT_65X3YKfile175' 'sip-files00004.jp2'
d44de9cc9e74d17a7238a0e7140c4200
492e727c2796c40e5eb2a2aa170966d053eba547
'2018-12-19T08:35:48-05:00'
describe
'250701' 'info:fdaEXUNH3FIT_65X3YKfile176' 'sip-files00005.jp2'
658470d80a3180f2f6040ca786a1ffa9
c31142de20fd27403b543f9406f115b19f450f11
'2018-12-19T08:29:46-05:00'
describe
'965612' 'info:fdaEXUNH3FIT_65X3YKfile177' 'sip-files00006.jp2'
671a2e32ef66fedf5dcbab093982db20
b4e523982f6cea39eefe6e8359842dc5eee2980e
'2018-12-19T08:37:13-05:00'
describe
'839140' 'info:fdaEXUNH3FIT_65X3YKfile178' 'sip-files00007.jp2'
7fd5614a6f27627b0e3d48628958062f
0f7a42917d7310aeb9096cc6d492fed45983b73e
'2018-12-19T08:35:12-05:00'
describe
'963948' 'info:fdaEXUNH3FIT_65X3YKfile179' 'sip-files00008.jp2'
a757afb35986004e6dfee14c42beb015
57b4b103e93e0db5778fdebe7a34c8c013fd6eb9
'2018-12-19T08:33:59-05:00'
describe
'7678648' 'info:fdaEXUNH3FIT_65X3YKfile18' 'sip-files00021.tif'
3e7007cb71f2d1c9c0a8136908471bec
df66ccbf906ce4bccad30740165ea31c1ccec6e2
describe
'498143' 'info:fdaEXUNH3FIT_65X3YKfile180' 'sip-files00009.jp2'
dae821dfeeee8767e597081af49501ee
93fce991df4ca33da1218188154f584654184e6b
'2018-12-19T08:28:15-05:00'
describe
'963496' 'info:fdaEXUNH3FIT_65X3YKfile181' 'sip-files00010.jp2'
0f2543225674d7bf59b6c13cb0e5b87e
a3ea51426d7b2941f38763283fa59edd09ed8382
describe
'962359' 'info:fdaEXUNH3FIT_65X3YKfile182' 'sip-files00011.jp2'
5e63041bebf84c178d7ef2e17c9db007
a039de1b216ed15093251d9a6612dad26f381bba
describe
'694984' 'info:fdaEXUNH3FIT_65X3YKfile183' 'sip-files00012.jp2'
3549faff389597969b94bd23f68a70ab
d89421ac5166f9ea2920dd5ec3b5d54c9e3470e1
'2018-12-19T08:27:24-05:00'
describe
'944787' 'info:fdaEXUNH3FIT_65X3YKfile184' 'sip-files00013.jp2'
b18edf7b8b31edbbb10002ae8aaf55ba
921b524074d4cc97a7471526bbfd9bc78126d212
'2018-12-19T08:35:42-05:00'
describe
'954768' 'info:fdaEXUNH3FIT_65X3YKfile185' 'sip-files00014.jp2'
75e9dd1faef836f46f746865aa72be4d
4a8bf9192ddaca471416fbe4bb96ced66a75e2c6
'2018-12-19T08:28:57-05:00'
describe
'961189' 'info:fdaEXUNH3FIT_65X3YKfile186' 'sip-files00015.jp2'
c7b8a039b2b26be2ecb27bbe6044208d
efc8ece61d45e77e06814a6d53a89e8f4f4b1a71
'2018-12-19T08:37:32-05:00'
describe
'947435' 'info:fdaEXUNH3FIT_65X3YKfile187' 'sip-files00016.jp2'
0f1ee774dd46be2143e90460f57731ee
e0f45adbb192c381cf8455d7a896f02dca358aea
describe
'959372' 'info:fdaEXUNH3FIT_65X3YKfile188' 'sip-files00017.jp2'
576472675c627465f4b762d30f711a3f
0462b5c7cd78eaae4447608aaa94040200eb71b0
'2018-12-19T08:29:43-05:00'
describe
'855332' 'info:fdaEXUNH3FIT_65X3YKfile189' 'sip-files00018.jp2'
9aea71425072275632f07b27ae1efe6a
dc0eb34e22d9fa4a16991ba1849e123bee6dfa89
'2018-12-19T08:27:25-05:00'
describe
'7672168' 'info:fdaEXUNH3FIT_65X3YKfile19' 'sip-files00022.tif'
b9b4cf775a8b87f35bdc60b43e5d740a
0600c5943e5e21e774638b11e3b09b076cceeffb
describe
'958538' 'info:fdaEXUNH3FIT_65X3YKfile190' 'sip-files00019.jp2'
2198ba2169ea8292b9a03b130c84c02c
48b15154a493fb505401cf8c64229ba727da2ae6
describe
'959174' 'info:fdaEXUNH3FIT_65X3YKfile191' 'sip-files00020.jp2'
fa20af2b36d21ef0ef52839ad85f4f25
e850d373f4b23ce8003fb246d483bbbf960abd38
'2018-12-19T08:29:25-05:00'
describe
'958117' 'info:fdaEXUNH3FIT_65X3YKfile192' 'sip-files00021.jp2'
84f4a49f96e7563bf89d3d99b45c749a
1fad71012ced8a6ebede3b006d651592e7923333
'2018-12-19T08:29:02-05:00'
describe
'957376' 'info:fdaEXUNH3FIT_65X3YKfile193' 'sip-files00022.jp2'
1c62c651f6726e57e777fd4a19764970
f67f344a8dedc8a1c534cd02427f393297e09efc
describe
'957630' 'info:fdaEXUNH3FIT_65X3YKfile194' 'sip-files00023.jp2'
df95945bec1e6112ef9cfa5b6a77cc88
24e96526fbe4f9f215bcc0d14312ef8690cc34bb
'2018-12-19T08:29:00-05:00'
describe
'957538' 'info:fdaEXUNH3FIT_65X3YKfile195' 'sip-files00024.jp2'
51f32cec72cb4851c73342b7a7045a56
1b81fbf987741e8740f2bef4561b8c1234d065c5
describe
'956167' 'info:fdaEXUNH3FIT_65X3YKfile196' 'sip-files00025.jp2'
88df49c0359a883541285a5321d790c4
b52f0fc07612dbe20ec72b0162980bedd32d478b
describe
'954755' 'info:fdaEXUNH3FIT_65X3YKfile197' 'sip-files00026.jp2'
7cdaa831ef1ddaca7ce4e98c5cbe998b
f01e7c39d23d7cbc7dbe986656b00a94081d55e7
'2018-12-19T08:26:55-05:00'
describe
'957563' 'info:fdaEXUNH3FIT_65X3YKfile198' 'sip-files00027.jp2'
6bc8b42fb0787590c1f6115a6937aaed
fee40db20581e982c8f8735291c61c357497bbd3
describe
'955070' 'info:fdaEXUNH3FIT_65X3YKfile199' 'sip-files00028.jp2'
b73ce73e0728015a172c29a964dcb71e
37fb2983ab6e58c91929fbd72673838ece1b1c72
'2018-12-19T08:34:41-05:00'
describe
'7741792' 'info:fdaEXUNH3FIT_65X3YKfile2' 'sip-files00005.tif'
4b58842dcd6f00955a828e2093bc9f78
0fcd72f13d1d5582ffb510e4910764e3d5810b8f
'2018-12-19T08:30:43-05:00'
describe
'7674552' 'info:fdaEXUNH3FIT_65X3YKfile20' 'sip-files00023.tif'
3f29fe72b8f27ff4a4d84a6943706312
b34b6c1842994a80785ef1f24e3e1d8b7064ec31
describe
'627012' 'info:fdaEXUNH3FIT_65X3YKfile200' 'sip-files00029.jp2'
75695bb76941abfafba22ead3ddaf754
2bce32bfe5a220e9b615b4be2fc43a5a3381eb40
describe
'416962' 'info:fdaEXUNH3FIT_65X3YKfile201' 'sip-files00030.jp2'
5503bab7e1b16d8d9cfa437944fec2e5
d3684490c52b3c87a2afe13c74c29b7195aed0e3
'2018-12-19T08:28:09-05:00'
describe
'954046' 'info:fdaEXUNH3FIT_65X3YKfile202' 'sip-files00031.jp2'
55b6d738d681c05de2f7ffcc919218a0
8754e203269ee9c2dc018f2765ad5ee39d1446e7
'2018-12-19T08:34:58-05:00'
describe
'952429' 'info:fdaEXUNH3FIT_65X3YKfile203' 'sip-files00032.jp2'
cd05548dc05a9515fdd57caf805ae0a8
d033dd3860349ac64c3773f969283c54f0fda5d7
describe
'952441' 'info:fdaEXUNH3FIT_65X3YKfile204' 'sip-files00033.jp2'
f50bea36208ffadbad031c743c6af1a0
d8fe3e480371bf8b943935175dcb7830a352d719
'2018-12-19T08:28:05-05:00'
describe
'952748' 'info:fdaEXUNH3FIT_65X3YKfile205' 'sip-files00034.jp2'
c9ae3422cd7724582921fedb7d09806d
1173f8e49fd60d2a4cba2ab73b64fb17c691916f
describe
'951452' 'info:fdaEXUNH3FIT_65X3YKfile206' 'sip-files00035.jp2'
a0a83ca79ee6b91e63acac9ff04177ab
7a1e91158b3fd180d6945463d5f8c5a7c65b9901
describe
'950256' 'info:fdaEXUNH3FIT_65X3YKfile207' 'sip-files00036.jp2'
7b5ca918cdbaf4b3a9d7ae42e3710b3b
fcbeedaf5131e7819b83c80ff3f8e08899315048
describe
'952030' 'info:fdaEXUNH3FIT_65X3YKfile208' 'sip-files00037.jp2'
40d858d5e441bdd423a5187f72e3dd99
c56a0d63534955ba96069296af1710a0c29f9af2
'2018-12-19T08:28:03-05:00'
describe
'950619' 'info:fdaEXUNH3FIT_65X3YKfile209' 'sip-files00038.jp2'
2b430f2a073e79f87b010104fce6dde1
bdecfe7876050dd24431751571a025fc35076ae1
describe
'7673952' 'info:fdaEXUNH3FIT_65X3YKfile21' 'sip-files00024.tif'
9f58d21b1fc5f55c8d08e527e11fa19f
8effe2a5ac7fdad9c38797bf13d2e728825910f6
'2018-12-19T08:29:15-05:00'
describe
'950119' 'info:fdaEXUNH3FIT_65X3YKfile210' 'sip-files00039.jp2'
fca096fe8349f34f6963e9f5e8f400a5
3caa6094ab08ceb2aeb1a53110b5fca6c6ec45ec
describe
'949648' 'info:fdaEXUNH3FIT_65X3YKfile211' 'sip-files00040.jp2'
7a8e38dac97911d027084c86396286d1
82ab7acaac66ac55878eeb5810661510c3b618a0
describe
'949033' 'info:fdaEXUNH3FIT_65X3YKfile212' 'sip-files00041.jp2'
32b0c9808f7cbe7f528457f145b03e6f
761343f1947af37f45e05957ae903e6947388218
describe
'949764' 'info:fdaEXUNH3FIT_65X3YKfile213' 'sip-files00042.jp2'
c646b90b386292d03d2a12fa14c1509f
41c21a5eeba801687026d1106df88cf3da78e005
'2018-12-19T08:31:56-05:00'
describe
'949062' 'info:fdaEXUNH3FIT_65X3YKfile214' 'sip-files00043.jp2'
2604720c4eaafb54e3773de8c1b9e361
096f056b6f721b28b0f6ffdb4041430c8516989f
'2018-12-19T08:35:45-05:00'
describe
'951258' 'info:fdaEXUNH3FIT_65X3YKfile215' 'sip-files00044.jp2'
ad537bb3b23f2e602408f374fc2c6e4d
5bae8485e4543d45de50d4ef8aa45ab1d34df843
'2018-12-19T08:29:39-05:00'
describe
'948762' 'info:fdaEXUNH3FIT_65X3YKfile216' 'sip-files00045.jp2'
b8ae8603da438e34b5c801283074d2c7
be5f969c155fb245350a5217f59720ede1a57cd1
'2018-12-19T08:34:19-05:00'
describe
'950159' 'info:fdaEXUNH3FIT_65X3YKfile217' 'sip-files00046.jp2'
489fd38b23c49beab70f6390243dcc44
fb2533d4c763f5984bf3dd038cfc84d6472d45dc
'2018-12-19T08:36:14-05:00'
describe
'948510' 'info:fdaEXUNH3FIT_65X3YKfile218' 'sip-files00047.jp2'
2b91f3c8406e2909988324b3acfb9ce0
29aac3f81d928584737427b03f193cbeed6d62cd
'2018-12-19T08:27:43-05:00'
describe
'947954' 'info:fdaEXUNH3FIT_65X3YKfile219' 'sip-files00048.jp2'
2c860b084692b34559d6653f597b7197
75346f8ec3dbabed7797882d17cc9ffd85a72a9c
'2018-12-19T08:34:11-05:00'
describe
'7662744' 'info:fdaEXUNH3FIT_65X3YKfile22' 'sip-files00025.tif'
9e8faeeb777a0a5f71135561a5231fb0
2ac0024caa766092fdfdd06d2bf968e38793b1f0
describe
'819520' 'info:fdaEXUNH3FIT_65X3YKfile220' 'sip-files00049.jp2'
f241c12c668f5f4345ff743d7dd5a462
0e07d67e0ab5d3123d954e3d684d81bdf50ad158
'2018-12-19T08:28:52-05:00'
describe
'280763' 'info:fdaEXUNH3FIT_65X3YKfile221' 'sip-files00050.jp2'
c3a6b283659ca17b9cca5e12e462cf46
30bb470eeabc69245510d9579ff2d5891dd63056
'2018-12-19T08:27:48-05:00'
describe
'312781' 'info:fdaEXUNH3FIT_65X3YKfile222' 'sip-files00051.jp2'
3346d1636dbd015f1a30fbebb58c371a
eccf69b64444b2ba819cd9ffb1d04043cdb399e3
'2018-12-19T08:37:41-05:00'
describe
'290435' 'info:fdaEXUNH3FIT_65X3YKfile223' 'sip-files00052.jp2'
37e065a00249155278ff55df7fc92758
ab549cf92495bb24d142b5d4646ebac27407bb6c
'2018-12-19T08:33:01-05:00'
describe
'362704' 'info:fdaEXUNH3FIT_65X3YKfile224' 'sip-files00053.jp2'
38c3deb0e56b18764d9d896fbe86aa76
bb66f3d51fd589bacfbfa1a242ea095e415e2f45
'2018-12-19T08:37:01-05:00'
describe
'549878' 'info:fdaEXUNH3FIT_65X3YKfile225' 'sip-files00054.jp2'
12b0bc08aca0b315ba05e913e267ca47
75dd2e7ce2064c6127c342272ebe131a4d39f18b
describe
'436709' 'info:fdaEXUNH3FIT_65X3YKfile226' 'sip-files00055.jp2'
a11bdaf72805952a6c98073d7da60d5b
ea1fd7796a2644130678c1c4b5ed14d448fb10f9
describe
'453997' 'info:fdaEXUNH3FIT_65X3YKfile227' 'sip-files00056.jp2'
6a721d503fc66ca0dc0909fc54dea5b3
cb64be0486fe210e80aa104716e5c1bb33cfa9df
'2018-12-19T08:28:32-05:00'
describe
'548104' 'info:fdaEXUNH3FIT_65X3YKfile228' 'sip-files00057.jp2'
d881ae6fe2b71b90f757c1fbf2897282
02a96378738aa85fb97babc59c1ae3d997dd2730
describe
'431465' 'info:fdaEXUNH3FIT_65X3YKfile229' 'sip-files00058.jp2'
846f7d051f933b92eae0ccaeb2a4d5fe
e19b1841b79e3b4210f90ab3091e742edb7bdc67
describe
'7651204' 'info:fdaEXUNH3FIT_65X3YKfile23' 'sip-files00026.tif'
355aac49414568ff8e2e0af851c45bfb
a17efa92ca221ddb2eac546aa9577d8f017ef221
'2018-12-19T08:33:06-05:00'
describe
'394148' 'info:fdaEXUNH3FIT_65X3YKfile230' 'sip-files00059.jp2'
e819490c49021ca4a37a3fe1f2788545
ab11bb0ad805abec062bc717fd8a5e81024814a5
describe
'407962' 'info:fdaEXUNH3FIT_65X3YKfile231' 'sip-files00060.jp2'
1e9a6774c2b4da0987619f0f8cac5928
146adb22e8cf33071724c178bcf1c831fca83e4d
describe
'947568' 'info:fdaEXUNH3FIT_65X3YKfile232' 'sip-files00061.jp2'
9734056514f59745f84a59ad33ef735f
6422f06273e809b38d7f3e1b1472cfc445c7569b
describe
'946453' 'info:fdaEXUNH3FIT_65X3YKfile233' 'sip-files00062.jp2'
2a4dcf92f3640d94acbc27890aa81daf
ce4886e099c70f6f65a4f7e124c373c52dee32d0
describe
'950433' 'info:fdaEXUNH3FIT_65X3YKfile234' 'sip-files00063.jp2'
0cae2b9256efd1847c707f86dadfae8e
9967a151ba0999f479c0af31bbcb0d7d672de475
'2018-12-19T08:32:54-05:00'
describe
'948033' 'info:fdaEXUNH3FIT_65X3YKfile235' 'sip-files00064.jp2'
c97b422f69c8cb523c92ab8d74695798
8a50a1dcac55c46535d4abe49da57d713ec87db2
'2018-12-19T08:32:59-05:00'
describe
'948753' 'info:fdaEXUNH3FIT_65X3YKfile236' 'sip-files00065.jp2'
586c7c406877c50c2e5c0652202eddb8
9986777d8dd69ad99c360edfc880835af567b8de
'2018-12-19T08:34:16-05:00'
describe
'948706' 'info:fdaEXUNH3FIT_65X3YKfile237' 'sip-files00066.jp2'
889ee4f62f2a75a72e8f22acb7a68c45
6a98c4f17384c0fe8f5fa757180d34b390c95e92
'2018-12-19T08:29:14-05:00'
describe
'949104' 'info:fdaEXUNH3FIT_65X3YKfile238' 'sip-files00067.jp2'
67d4fb30aa9448731797c3cc8f50d7ea
63b1a2f06b389d7fcbe59bbc56eb4df9b7ca2180
'2018-12-19T08:37:43-05:00'
describe
'948449' 'info:fdaEXUNH3FIT_65X3YKfile239' 'sip-files00068.jp2'
b5dc65d4bb52d8d61c5a03e04c96cfaa
3a01d7411c9a44cae75336a53fb62a31e55dbc5e
'2018-12-19T08:35:47-05:00'
describe
'7673604' 'info:fdaEXUNH3FIT_65X3YKfile24' 'sip-files00027.tif'
7d5503be29804cd7c835815e2d3b5e17
79dc19b3b51bde4d20f60a40e93c172361c18b59
'2018-12-19T08:33:11-05:00'
describe
'949129' 'info:fdaEXUNH3FIT_65X3YKfile240' 'sip-files00069.jp2'
8c5f518b52f3037a39f4acb4371f5df7
12893eb65074a3c8ed7486f2e0d4cb36ba90ef4c
describe
'947803' 'info:fdaEXUNH3FIT_65X3YKfile241' 'sip-files00070.jp2'
ea37345b314cbf3d41a2bb960ecc1b8a
23ec875e90ab5d367f1b0b5404dfbeb0a4e51ed5
'2018-12-19T08:34:09-05:00'
describe
'947921' 'info:fdaEXUNH3FIT_65X3YKfile242' 'sip-files00071.jp2'
57679e6ceced0587f76d95e750d02c22
6eb0eff8fd355e7e489adb6b49302e2c8384739b
describe
'948741' 'info:fdaEXUNH3FIT_65X3YKfile243' 'sip-files00072.jp2'
f639edc841a29b19858c4c8594542659
91e7252aba2636bad0e34fc8594c5b7a35ad4ef0
'2018-12-19T08:28:56-05:00'
describe
'948446' 'info:fdaEXUNH3FIT_65X3YKfile244' 'sip-files00073.jp2'
197825f82106fcb47f5f966081024e85
04f0e3526e3aa28c00fba0e1915cdc872c07abdf
'2018-12-19T08:26:58-05:00'
describe
'948338' 'info:fdaEXUNH3FIT_65X3YKfile245' 'sip-files00074.jp2'
d8938ebd1060be43f5eec02875998476
dfc994dcbb47fc6cbfc9d4efdd6c5a5221c98f74
describe
'948333' 'info:fdaEXUNH3FIT_65X3YKfile246' 'sip-files00075.jp2'
7eaf81a321a1f15a9d1c6ac1425878f0
4d22f0fd3be5482b3c839289100f4c6d18ae83ea
'2018-12-19T08:37:44-05:00'
describe
'934292' 'info:fdaEXUNH3FIT_65X3YKfile247' 'sip-files00076.jp2'
1cfc4627e1ee8770ab19f14a4ffb342d
75ca8ed7fa87244f348e7ccc5dcb92504dcbfa47
describe
'947557' 'info:fdaEXUNH3FIT_65X3YKfile248' 'sip-files00077.jp2'
ac9947f63783eac460c40311e9d5d6bf
6a63401b63c488ea27c8336004d3f7a9d626d1d2
'2018-12-19T08:30:23-05:00'
describe
'948640' 'info:fdaEXUNH3FIT_65X3YKfile249' 'sip-files00078.jp2'
ec258370ecdd3d83547bbbfb82b55596
97b8ca67ddb2c7a5fe4c30ee5549c178ae28bb4a
'2018-12-19T08:30:31-05:00'
describe
'7651536' 'info:fdaEXUNH3FIT_65X3YKfile25' 'sip-files00028.tif'
8b76beed3dc796be7b186700f39267af
036084cde496c219470d224bf5484f9969f6f2e6
describe
'947532' 'info:fdaEXUNH3FIT_65X3YKfile250' 'sip-files00079.jp2'
7529a6a3f2bbfe0321df3759df478865
7cf90f55bec58af786447820470d89224bd18351
'2018-12-19T08:30:22-05:00'
describe
'434417' 'info:fdaEXUNH3FIT_65X3YKfile251' 'sip-files00080.jp2'
02db4fb37dd59d2c0341580f1fd1093d
19abb0c76df56994f637e8d957caacd26184e1d0
'2018-12-19T08:35:30-05:00'
describe
'299998' 'info:fdaEXUNH3FIT_65X3YKfile252' 'sip-files00081.jp2'
e9415007dcf649cc29543395adac0d8f
a47fe21c1b39a8f02a57db1960306c40723ed045
'2018-12-19T08:30:16-05:00'
describe
'350157' 'info:fdaEXUNH3FIT_65X3YKfile253' 'sip-files00082.jp2'
0e4a57b7edb27f96fc174d68f2418391
470c99ece3f1ab95f4fd589f6a5ede90b25734e2
'2018-12-19T08:33:32-05:00'
describe
'882578' 'info:fdaEXUNH3FIT_65X3YKfile254' 'sip-files00083.jp2'
c786dc7ef93bcc5e46fca69d46bf584b
9b0f66634612a032fccd2244591b0bde98f6e7e8
describe
'947536' 'info:fdaEXUNH3FIT_65X3YKfile255' 'sip-files00084.jp2'
129f81f88e89ae70d3dad77ac7842661
34d8e2488b4fba0a97612ef9accecc059fc1fd01
describe
'947205' 'info:fdaEXUNH3FIT_65X3YKfile256' 'sip-files00085.jp2'
946ec52bb1e5131f3db0b057b83a4525
1cc3c1af84228cd4ca717aa346aeee529bed0acb
'2018-12-19T08:34:03-05:00'
describe
'946832' 'info:fdaEXUNH3FIT_65X3YKfile257' 'sip-files00086.jp2'
083e2b3d2c3488995b6460144d753b5d
cd2b0879b4ac356a06f883013caba238afe87096
describe
'947944' 'info:fdaEXUNH3FIT_65X3YKfile258' 'sip-files00087.jp2'
3ede664d1905a375c00a494c5b421869
fd881ec3f0015070356f462c8ccd9cbf3a7ce024
describe
'946445' 'info:fdaEXUNH3FIT_65X3YKfile259' 'sip-files00088.jp2'
0021d7c98cc720deb289b53a440e8a7a
7be0aecbbd2a4f58fee2fe2a59ecd846e2f9e65d
'2018-12-19T08:27:22-05:00'
describe
'7635916' 'info:fdaEXUNH3FIT_65X3YKfile26' 'sip-files00029.tif'
920ec3bf35aeef5a1fcf16cb78d448d0
582f4d3dca1e0bc1d900a56ec1a745c913113b86
'2018-12-19T08:33:35-05:00'
describe
'949721' 'info:fdaEXUNH3FIT_65X3YKfile260' 'sip-files00089.jp2'
8762641f074621e48dc1550a927fdfec
4a34e0a722ca9e75fe6e37dfd099f9b68df8d13a
'2018-12-19T08:30:17-05:00'
describe
'948642' 'info:fdaEXUNH3FIT_65X3YKfile261' 'sip-files00090.jp2'
f893449a0810d96b29460119b2676d7b
5af1d39d38d690baadfeb4c748daf119615f2cea
describe
'846156' 'info:fdaEXUNH3FIT_65X3YKfile262' 'sip-files00091.jp2'
58483233d13792646ba0fd645b365714
fb6131e8dcf637fced29b6a37718038787d01e84
'2018-12-19T08:37:27-05:00'
describe
'949710' 'info:fdaEXUNH3FIT_65X3YKfile263' 'sip-files00092.jp2'
972d214912f8899c6d08024866112d41
38dd3a288f645ca0690245658aa39826fea9d6ae
describe
'949741' 'info:fdaEXUNH3FIT_65X3YKfile264' 'sip-files00093.jp2'
f042c9d85c0a910be9df132943722760
faad6a6bc7c74242da9b4e7e492c0bee3f77b43a
describe
'798106' 'info:fdaEXUNH3FIT_65X3YKfile265' 'sip-files00094.jp2'
8abb332c60797a42879a4cdfaad709f8
75be216082b2dca3dd1448af6c379e06d59e16cf
'2018-12-19T08:36:06-05:00'
describe
'947916' 'info:fdaEXUNH3FIT_65X3YKfile266' 'sip-files00095.jp2'
1101bc7da743a1df45c74fab5957eddf
878172ad088fcc0d18f835722fe1fc2f2691aced
describe
'952922' 'info:fdaEXUNH3FIT_65X3YKfile267' 'sip-files00096.jp2'
e95946241aaf56b28b57cd25969b48e2
8585af9b8e463574cec99e84468a9eb616e618a3
'2018-12-19T08:27:39-05:00'
describe
'919658' 'info:fdaEXUNH3FIT_65X3YKfile268' 'sip-files00097.jp2'
1e125c8a129bc58dab3f7e29f3e99b84
ca8539ede28eedc525bf10511b82cbea5c82fe44
'2018-12-19T08:28:08-05:00'
describe
'918561' 'info:fdaEXUNH3FIT_65X3YKfile269' 'sip-files00098.jp2'
42560cd40e0aca0e6835a24529f6a24d
eb81ed74d3eb74545da003e228e47005d478193e
describe
'7658176' 'info:fdaEXUNH3FIT_65X3YKfile27' 'sip-files00030.tif'
4acf898c1f213c7729316decefd6acae
9dbc46c36ce27b0ea3c1c7777c51147b3a1740af
describe
'946321' 'info:fdaEXUNH3FIT_65X3YKfile270' 'sip-files00099.jp2'
0c93e47c808d592fabb3c16e13fe31dd
b6f5c15a2347999826700e0edf5238e51610bdc6
describe
'686098' 'info:fdaEXUNH3FIT_65X3YKfile271' 'sip-files00100.jp2'
c2a63914a31b47d731d402e4b4201cf0
5cc83044082f7777f7b0cf51e9d0a0bdec5b7c12
'2018-12-19T08:27:20-05:00'
describe
'876098' 'info:fdaEXUNH3FIT_65X3YKfile272' 'sip-files00101.jp2'
cae2019694353335dd4d2ff26614d034
4ae51ee4f04ea320a37ae8b642f24b7bce710e48
'2018-12-19T08:27:11-05:00'
describe
'947249' 'info:fdaEXUNH3FIT_65X3YKfile273' 'sip-files00102.jp2'
d801e1acd403bef63ec7ecb052ef192c
52862da41551597c803566d6cc6453607f3a07f9
'2018-12-19T08:27:53-05:00'
describe
'946745' 'info:fdaEXUNH3FIT_65X3YKfile274' 'sip-files00103.jp2'
14696afc990265579e736178e1f59f11
5589355677b713fb632c31ee7bdc529b3adb19b3
'2018-12-19T08:34:26-05:00'
describe
'882477' 'info:fdaEXUNH3FIT_65X3YKfile275' 'sip-files00104.jp2'
b5fe6d312ee0930d76987fae7701dc95
41293c00764cc66299a7501f23fcdb6abc173b41
'2018-12-19T08:32:22-05:00'
describe
'927599' 'info:fdaEXUNH3FIT_65X3YKfile276' 'sip-files00105.jp2'
70793dac6d254a792b2feb9ceca6932b
04a753a78ab0239adadb7d1546e819b5a6e8f91f
'2018-12-19T08:31:07-05:00'
describe
'946431' 'info:fdaEXUNH3FIT_65X3YKfile277' 'sip-files00106.jp2'
b7ebae89bc4a33481fa6ff247d25d4c5
f2bb783ceb39b0c7f804a2a7c658118fb252c704
'2018-12-19T08:32:24-05:00'
describe
'548632' 'info:fdaEXUNH3FIT_65X3YKfile278' 'sip-files00107.jp2'
7a61de986a7b8574e3a4aba9902d01f9
72759d0c8722a68f27cbe5bda9b31686006a9adf
describe
'353162' 'info:fdaEXUNH3FIT_65X3YKfile279' 'sip-files00108.jp2'
dcc19fe84efd928a8e059f37ad0813d5
9e6cd26c90df497438f6ec940a9a4073386fec66
'2018-12-19T08:34:56-05:00'
describe
'7644684' 'info:fdaEXUNH3FIT_65X3YKfile28' 'sip-files00031.tif'
d11145969dd27b8e4fa17137e2b23009
4f8f244ab6ecc6751402ab17737977f0363b65e1
describe
'610494' 'info:fdaEXUNH3FIT_65X3YKfile280' 'sip-files00109.jp2'
d4dc1dabf27c054ab73ab3e4af018dae
010c0e052be9d7f2e8d51268f4662d193e6091bf
describe
'353930' 'info:fdaEXUNH3FIT_65X3YKfile281' 'sip-files00110.jp2'
1a69564426a35eb600459d197416784c
5a032c8726be1ab67e424e1fdf358269aaa8c51d
'2018-12-19T08:31:18-05:00'
describe
'950394' 'info:fdaEXUNH3FIT_65X3YKfile282' 'sip-files00111.jp2'
675b9e2f2daf4ae73451dc70d64460ff
d43f73a91eed94519c8e16edea245899c1f2300d
'2018-12-19T08:33:37-05:00'
describe
'947103' 'info:fdaEXUNH3FIT_65X3YKfile283' 'sip-files00112.jp2'
8033e6740f264fec1b755c6ebd752675
44cc0b77b954294df29713080efb910fe887639f
describe
'947127' 'info:fdaEXUNH3FIT_65X3YKfile284' 'sip-files00113.jp2'
3ab99e50d3b9b0be471585880e321d3d
614082a42a82852760a8f3addd1de38b7043163e
describe
'302904' 'info:fdaEXUNH3FIT_65X3YKfile285' 'sip-files00114.jp2'
06a96d3aa75234a9e534f95da985bbcb
0b4f09ff47744704c6a20cd87191af7c7bf5aea2
'2018-12-19T08:29:36-05:00'
describe
'323758' 'info:fdaEXUNH3FIT_65X3YKfile286' 'sip-files00115.jp2'
7388e19fa3e7fedff4a5b7dec80d9367
4e44b7440962beb7f435b84d8961383fdafb1551
'2018-12-19T08:35:17-05:00'
describe
'303738' 'info:fdaEXUNH3FIT_65X3YKfile287' 'sip-files00116.jp2'
1263c6918d06ba0ec752626d39b9bba7
ff2d9644f506386d3a422de65061258123788a9d
'2018-12-19T08:31:54-05:00'
describe
'327900' 'info:fdaEXUNH3FIT_65X3YKfile288' 'sip-files00117.jp2'
72045057813cc83eadb0cef1f38e5b80
5f0054c4cb575839d0b552f7330d506bfdcf3242
describe
'434700' 'info:fdaEXUNH3FIT_65X3YKfile289' 'sip-files00118.jp2'
5eb7fbddc28683b38a29f4c603c2798f
ae142728aa62bce51f526e00cda990a6237fcddb
describe
'7632988' 'info:fdaEXUNH3FIT_65X3YKfile29' 'sip-files00032.tif'
6a2ee08ed9933e7efee3d3f740653daf
c222c6dd3a136dbbd06b87f03a81c79a62f216c1
'2018-12-19T08:31:11-05:00'
describe
'340241' 'info:fdaEXUNH3FIT_65X3YKfile290' 'sip-files00119.jp2'
5519df0e78c0914f7c8c171e4b744607
20a6459b570d66d0adca4a64d145ac86662b7395
'2018-12-19T08:30:13-05:00'
describe
'466841' 'info:fdaEXUNH3FIT_65X3YKfile291' 'sip-files00120.jp2'
0635b0a440c85e734903901eb2039a12
207f607d253e05f4b89c75c53a34e6b78cbe694d
describe
'453576' 'info:fdaEXUNH3FIT_65X3YKfile292' 'sip-files00121.jp2'
e17cf32ef35f6e32df5e64ac8a53de3b
31104c7ac0f792fc48127e452c796c1198878612
'2018-12-19T08:31:41-05:00'
describe
'457890' 'info:fdaEXUNH3FIT_65X3YKfile293' 'sip-files00122.jp2'
390703b0b2f224facb8f403a28ba80f3
7d5e122576cea5a402d12a80cc70529851e2151b
'2018-12-19T08:33:34-05:00'
describe
'429510' 'info:fdaEXUNH3FIT_65X3YKfile294' 'sip-files00123.jp2'
4ed6b994e9e9462ef41aa5cae997d161
e80da8e5ae02f2f47b3a5751d4014b684baf208d
'2018-12-19T08:29:59-05:00'
describe
'364242' 'info:fdaEXUNH3FIT_65X3YKfile295' 'sip-files00124.jp2'
f02060d3499d2e4410a6d5e2f9ed5fc1
90b1835e054738515602dfc1117f3899b7e98be3
'2018-12-19T08:36:59-05:00'
describe
'465751' 'info:fdaEXUNH3FIT_65X3YKfile296' 'sip-files00125.jp2'
73c3676571f0a57f8ea6b1b01f2ebd91
b39f7d9b5288c56cd02bb421090efda362780343
'2018-12-19T08:32:09-05:00'
describe
'523604' 'info:fdaEXUNH3FIT_65X3YKfile297' 'sip-files00126.jp2'
be0339991a98e64f202dc215b12b916e
55111e7e275c544ee2d6a958fb53ce0c622c6f49
'2018-12-19T08:28:43-05:00'
describe
'948641' 'info:fdaEXUNH3FIT_65X3YKfile298' 'sip-files00127.jp2'
fb9746606e18aa57fe2cd91a6f5a62b8
501d13e14603fadbc0c9a9fcc8fce959ab38594e
'2018-12-19T08:37:20-05:00'
describe
'947114' 'info:fdaEXUNH3FIT_65X3YKfile299' 'sip-files00128.jp2'
769a3d79f589da07513cba7c96dbf02c
b46a28113af12135ecebce6f8f492a0b50d4d0c0
'2018-12-19T08:34:50-05:00'
describe
'7737268' 'info:fdaEXUNH3FIT_65X3YKfile3' 'sip-files00006.tif'
f2658ce57a74a9ba64e2516d423f74ee
254c60e0ec7c029e1e30eba1f1f91072d2a96208
'2018-12-19T08:29:10-05:00'
describe
'7632824' 'info:fdaEXUNH3FIT_65X3YKfile30' 'sip-files00033.tif'
9ce23c184a1fa69d992bdddde000b3d9
3fcafff2e36b9c4363a9323ec8daa5acf0d5a915
'2018-12-19T08:30:48-05:00'
describe
'947141' 'info:fdaEXUNH3FIT_65X3YKfile300' 'sip-files00129.jp2'
287c01fa0cec112d3aeb54aa29fa0054
b342d046708ccecaf999310e3884b510dc949845
describe
'947117' 'info:fdaEXUNH3FIT_65X3YKfile301' 'sip-files00130.jp2'
05345a4713cddf1ae7386bb5b0f02d5d
f7e8b28219c4bac01d25f844d8911f31adeb2b65
'2018-12-19T08:36:48-05:00'
describe
'946833' 'info:fdaEXUNH3FIT_65X3YKfile302' 'sip-files00131.jp2'
6a4d5d965a0580b04cb2ca3e0b0bef38
424683735aae1dfa37045dd4026917628f7ada40
describe
'947247' 'info:fdaEXUNH3FIT_65X3YKfile303' 'sip-files00132.jp2'
d6444e1037180e188ac2a464fba0bac1
4460e5863410055b6d5ba642d778634482cfdfd1
'2018-12-19T08:34:30-05:00'
describe
'946336' 'info:fdaEXUNH3FIT_65X3YKfile304' 'sip-files00133.jp2'
50197317ecc58298c377b4eef64dc9bf
f3c58bfee4d063c3ed1ec24963ed5e50f127dbc5
describe
'947945' 'info:fdaEXUNH3FIT_65X3YKfile305' 'sip-files00134.jp2'
ff51f577f412e015d16b58ed494dc990
4f413f833282ca6d6cc728df00f2accb26071339
'2018-12-19T08:32:04-05:00'
describe
'946695' 'info:fdaEXUNH3FIT_65X3YKfile306' 'sip-files00135.jp2'
cf7ff6bac0c38df43b05f0b1a4dda235
fb51dc9e12732e5a2c80d4201f56bdb7a61f3942
'2018-12-19T08:28:45-05:00'
describe
'info:fdaEXUNH3FIT_65X3YKfile307' 'sip-files00136.jp2'
6d9e8816d50d43c8c73c74b6f5a51e3e
bd125fdd953136acf43cd7c1ac893685d6b1c2d7
'2018-12-19T08:30:11-05:00'
describe
'948331' 'info:fdaEXUNH3FIT_65X3YKfile308' 'sip-files00137.jp2'
8fb9ea7f80681c904e668d7dec4bf1d1
6b716b4a77c144108e28e68925c9b57f05976e44
'2018-12-19T08:31:31-05:00'
describe
'824546' 'info:fdaEXUNH3FIT_65X3YKfile309' 'sip-files00138.jp2'
f255efab2b834e4804194996dd98119d
a271d2147f2cf6271a249999e1f1be51f33c9e23
describe
'7635292' 'info:fdaEXUNH3FIT_65X3YKfile31' 'sip-files00034.tif'
2d7a40ae2d736e0ff90f16fcdcea5981
0e64c5793c042fdc134f537ee044674fc021d7b8
describe
'949034' 'info:fdaEXUNH3FIT_65X3YKfile310' 'sip-files00139.jp2'
af79dc95cf441c16f5dd713b826c0a60
61e9dd587bba555554f70b31660285e35b331371
describe
'766592' 'info:fdaEXUNH3FIT_65X3YKfile311' 'sip-files00140.jp2'
88f296d66091bed2c15d01daab4ed04f
1cd5145badf284a5d76f3a2a7cf4af7d6b35469f
describe
'458259' 'info:fdaEXUNH3FIT_65X3YKfile312' 'sip-files00141.jp2'
b3e55f31b7c4f1d75989057cc17677a7
6ef1d9e0b5c23a70ed64b25a6c13fb638e342108
describe
'406625' 'info:fdaEXUNH3FIT_65X3YKfile313' 'sip-files00142.jp2'
1135faacd3b6a43dea202535a5541725
7b739889d86e05c1f5dd27012a53da492c1b8c18
describe
'499051' 'info:fdaEXUNH3FIT_65X3YKfile314' 'sip-files00143.jp2'
dea43cecb9d9e0beabab81ff00ab2444
b847eecd2002894850ff55235620565aa038042d
'2018-12-19T08:27:02-05:00'
describe
'392152' 'info:fdaEXUNH3FIT_65X3YKfile315' 'sip-files00144.jp2'
4772eb23cc06af1517c54136eec9ffcf
47a97d1cf5a04b3424f7cc3257b0fd78a96ee66d
'2018-12-19T08:34:24-05:00'
describe
'527683' 'info:fdaEXUNH3FIT_65X3YKfile316' 'sip-files00145.jp2'
7daa4da477742ed357f6f5b2c915e0fc
de1f25607938940ff77cb2c13b0bf57d3e4b3355
'2018-12-19T08:38:01-05:00'
describe
'354529' 'info:fdaEXUNH3FIT_65X3YKfile317' 'sip-files00146.jp2'
0415c389b1ce51446373c3452c437460
1ed6c9d7555ca1e2c1acfa2bf524666cbda67690
describe
'380178' 'info:fdaEXUNH3FIT_65X3YKfile318' 'sip-files00147.jp2'
d81d428109e013846c8f9b2225e0a7ea
8d0b87f48fd231a5c4410b8ed296556f73f3b47a
describe
'523669' 'info:fdaEXUNH3FIT_65X3YKfile319' 'sip-files00148.jp2'
2a56bb23daca7cc8849641bec2c324b0
6768f1533b111ca7bb5c2311c453d1cf4e826c1f
describe
'7624840' 'info:fdaEXUNH3FIT_65X3YKfile32' 'sip-files00035.tif'
6eccbf55ba9d9b250e5362933bf5f248
e7b2b21b69a1d23456fd6f7c48a7a0129ec37cfa
'2018-12-19T08:32:57-05:00'
describe
'952336' 'info:fdaEXUNH3FIT_65X3YKfile320' 'sip-files00149.jp2'
3c1cf06452521e3ec29f60ce9d1a8f17
263a8efee2375275dec3730c3d6c60b42fdd8371
'2018-12-19T08:37:07-05:00'
describe
'946011' 'info:fdaEXUNH3FIT_65X3YKfile321' 'sip-files00150.jp2'
0f0d97123def8db997a8c6ade409b274
a42511e1e28857c67663935b80f7d6074b2686b1
describe
'946443' 'info:fdaEXUNH3FIT_65X3YKfile322' 'sip-files00151.jp2'
9ff15882f28edb2a7ca2867cd7c05855
75b44d0e6760d0213aaaafc78fe2765cd4732ede
describe
'946810' 'info:fdaEXUNH3FIT_65X3YKfile323' 'sip-files00152.jp2'
bf3e7de39de64b0f9f5c67daa1dcc3f1
21dcfc5f76d5780abdedb7883151c66d66458a1f
describe
'946805' 'info:fdaEXUNH3FIT_65X3YKfile324' 'sip-files00153.jp2'
ca7e945555288674f7647eb3157abd26
173664e0072268934e65aaa48249d759813b387f
'2018-12-19T08:34:15-05:00'
describe
'946419' 'info:fdaEXUNH3FIT_65X3YKfile325' 'sip-files00154.jp2'
f0d40f7679992b0728d49a42bbd8f3fb
fa8a1c52a5af8ade229700fec8b110da5dc559a8
'2018-12-19T08:35:52-05:00'
describe
'946045' 'info:fdaEXUNH3FIT_65X3YKfile326' 'sip-files00155.jp2'
3e0b435bbf994b0a491a92416ba18188
bac2a7ada40d0bf961e27f2809a9a92aa3221f3e
'2018-12-19T08:35:26-05:00'
describe
'946441' 'info:fdaEXUNH3FIT_65X3YKfile327' 'sip-files00156.jp2'
6da9e24c1d5a6d74c79ebdef4be28b80
c27dacfde69664c16093fe0324d63a64cdd4a1d2
describe
'922263' 'info:fdaEXUNH3FIT_65X3YKfile328' 'sip-files00157.jp2'
e7c5c682e9a005c550f20ace690257f7
68617c767fbe4fff941d3e1262323211463cabae
describe
'897026' 'info:fdaEXUNH3FIT_65X3YKfile329' 'sip-files00158.jp2'
eddde38452fd9dc0c7bc79089529c4c1
d633a73df45aead46de23b55b5a4b1df2c0541d1
describe
'7615480' 'info:fdaEXUNH3FIT_65X3YKfile33' 'sip-files00036.tif'
325639043d48808bca2b52fc16ab75e7
1ed95c587b7bf081b26bbf93af57320002a04ccf
'2018-12-19T08:31:22-05:00'
describe
'953839' 'info:fdaEXUNH3FIT_65X3YKfile330' 'sip-files00159.jp2'
d4f159de510991217b67b2103346a818
73b56b3c5a694b9e7a56ab3ce16a64dedc6eeb3b
'2018-12-19T08:29:13-05:00'
describe
'898466' 'info:fdaEXUNH3FIT_65X3YKfile331' 'sip-files00160.jp2'
b5f12c965e15b7cd3c45ef9ef17ce211
d0dd5f6c916ab06c9143b66806a4335d37da8b0f
'2018-12-19T08:27:56-05:00'
describe
'951645' 'info:fdaEXUNH3FIT_65X3YKfile332' 'sip-files00161.jp2'
3b9fac2a4e4201021174d488fe0feefa
1854f1ba5df6d45c31aa82d0b5e8f3525aeca73a
describe
'911123' 'info:fdaEXUNH3FIT_65X3YKfile333' 'sip-files00162.jp2'
5351770f9e9a0aea5e295cfb5bcf718c
a62ac3a1c906455b40fca5b31725485f7cd68198
'2018-12-19T08:29:45-05:00'
describe
'933054' 'info:fdaEXUNH3FIT_65X3YKfile334' 'sip-files00163.jp2'
9f777b61c428e64764dd8ebcce602537
0be5e2058f5c40b57866cfaa598b38a416e31e87
'2018-12-19T08:35:25-05:00'
describe
'899001' 'info:fdaEXUNH3FIT_65X3YKfile335' 'sip-files00164.jp2'
da70b4daec123416cefebf5e09383eff
0def31f2a763ea010939695b8bd4e43865876e18
'2018-12-19T08:29:58-05:00'
describe
'953023' 'info:fdaEXUNH3FIT_65X3YKfile336' 'sip-files00165.jp2'
a25a657d5f60844a2ab2014b4a871833
207dc7858fe947a171898791379b79b14535d88b
describe
'952744' 'info:fdaEXUNH3FIT_65X3YKfile337' 'sip-files00166.jp2'
d7b3c54b4427fdb24a4acf4b218f520f
7cfc335e49e72a28e72804a12b08d544ef64729f
'2018-12-19T08:27:16-05:00'
describe
'849103' 'info:fdaEXUNH3FIT_65X3YKfile338' 'sip-files00167.jp2'
9e95c289e64ed71b28c0dffa1b488dea
6d35f038190f94feaa76004c06187680396e78bb
describe
'954824' 'info:fdaEXUNH3FIT_65X3YKfile339' 'sip-files00168.jp2'
a48f91c2155e37c26ca5e980e2e92084
b8ee43d834d147c8bf742bbc9de370b08afb8708
describe
'7629412' 'info:fdaEXUNH3FIT_65X3YKfile34' 'sip-files00037.tif'
e589805567e3459a195193a83a24f6a5
c16abefcdaf47b143e88fe65010c1632537b138f
'2018-12-19T08:36:31-05:00'
describe
'953337' 'info:fdaEXUNH3FIT_65X3YKfile340' 'sip-files00169.jp2'
63bc022609e7ad9b706d9f066f18ff96
57324e0b2c1da1fdd42161cefa613ad953d21aea
'2018-12-19T08:33:24-05:00'
describe
'953321' 'info:fdaEXUNH3FIT_65X3YKfile341' 'sip-files00170.jp2'
93c1b4e5920c3b7905287febad51d8fd
e3744b127afcf3f947556a0a96f2feec582cd220
'2018-12-19T08:30:41-05:00'
describe
'955479' 'info:fdaEXUNH3FIT_65X3YKfile342' 'sip-files00171.jp2'
80da76729c8c743771918f9e574b1a35
87583a821450eb9f26ec8a224b0514e72696f555
'2018-12-19T08:35:08-05:00'
describe
'954719' 'info:fdaEXUNH3FIT_65X3YKfile343' 'sip-files00172.jp2'
bb41e79a684bcf56325c11d37bdc7a3a
de6668223b31a6061cdff3ae130784c9f16ad6c7
describe
'951810' 'info:fdaEXUNH3FIT_65X3YKfile344' 'sip-files00173.jp2'
1663cab6e93db35a30bcec63e777e0ad
98ca112922217a80b1e0ea143f7f32b188c72f5f
'2018-12-19T08:35:33-05:00'
describe
'673850' 'info:fdaEXUNH3FIT_65X3YKfile345' 'sip-files00174.jp2'
361c770984eb613a119d8be97244d8bc
cffa24ae5351deb5cf58fa7c6eef752e5d418649
describe
'932959' 'info:fdaEXUNH3FIT_65X3YKfile346' 'sip-files00175.jp2'
6965467a16be9ba615796bd74c1aa6e1
aabf4e04f2defa75cd910be651b25d51884d7eaa
describe
'948337' 'info:fdaEXUNH3FIT_65X3YKfile347' 'sip-files00176.jp2'
63f84b056fb69041a9dee6f5c38bf382
4f937f0226de3a7194aff6288ddedcde8e6445de
'2018-12-19T08:32:08-05:00'
describe
'564661' 'info:fdaEXUNH3FIT_65X3YKfile348' 'sip-files00177.jp2'
fb1232bc2ef4acb52b6a543f3485d4ee
404b18d1c084d48af84684ad56114064bbfe911c
describe
'44919' 'info:fdaEXUNH3FIT_65X3YKfile349' 'sip-files00004.jpg'
20b6ec12d68c9543ffc5c30fc7e7503c
f985904518d9e049b057579413bd4d7934854f48
describe
'7618628' 'info:fdaEXUNH3FIT_65X3YKfile35' 'sip-files00038.tif'
1853e8cb60a7b5a9036fc51ef8b2d352
41111893a38bd847473b0c33235832a0bb1cd543
'2018-12-19T08:32:51-05:00'
describe
'19084' 'info:fdaEXUNH3FIT_65X3YKfile350' 'sip-files00004.QC.jpg'
f84084d0d1a28ffd8a98899222a09b94
6a59085343665334ecbe03c3847605604cf95b06
'2018-12-19T08:28:13-05:00'
describe
'19302' 'info:fdaEXUNH3FIT_65X3YKfile351' 'sip-files00005.jpg'
9f80c1d60b6edfd2b5350b21eefd02ce
7f14b48ac79860bdbb5d35499595aee1b1753827
describe
'11425' 'info:fdaEXUNH3FIT_65X3YKfile352' 'sip-files00005.QC.jpg'
05ea5194f570148eb9a2541a9718f123
bb750e9597239e0a3798625b71b2da7f998dc258
describe
'124260' 'info:fdaEXUNH3FIT_65X3YKfile353' 'sip-files00006.jpg'
e279d55d4ce8ee36064105055a5d592e
33147d2b03ee9e466f4f528e37c9d6d45bbe730d
'2018-12-19T08:33:42-05:00'
describe
'54507' 'info:fdaEXUNH3FIT_65X3YKfile354' 'sip-files00006.QC.jpg'
952ec698eff729bfdf5d8121d76f6dd2
0bc92ccb14c45225732f1c7c5ca3555f70e8091b
describe
'104929' 'info:fdaEXUNH3FIT_65X3YKfile355' 'sip-files00007.jpg'
53ea45e11df126d5b77f2cd1ab15f7eb
607611796c50a6e4528d1474dd85b29024a172ee
describe
'43054' 'info:fdaEXUNH3FIT_65X3YKfile356' 'sip-files00007.QC.jpg'
88dd35757eb05f50b32bf26480df4225
0b1d8012e3a49e2206e4557302873163162b74ba
'2018-12-19T08:37:29-05:00'
describe
'150893' 'info:fdaEXUNH3FIT_65X3YKfile357' 'sip-files00008.jpg'
7d4bfbe775e5ceb4c041a28f02926f10
9d7a32843affcacc4f6e91b578dacd9402fd44f9
'2018-12-19T08:36:45-05:00'
describe
'57008' 'info:fdaEXUNH3FIT_65X3YKfile358' 'sip-files00008.QC.jpg'
ed3dd2c41c552b949e2cd53d2c239b67
08d8bb6a2f3a49fe5fec7abc4024c17fd807bacf
'2018-12-19T08:36:30-05:00'
describe
'53445' 'info:fdaEXUNH3FIT_65X3YKfile359' 'sip-files00009.jpg'
050631ff9763a729443d8f061a336dab
3afd05b2f9c134058d054bda3ed2045370ab9d82
describe
'7614544' 'info:fdaEXUNH3FIT_65X3YKfile36' 'sip-files00039.tif'
9a92becdbc3978f2f8508edd18e69924
411bc2b3f31852f8c1fc5ec33794aa261116fa1c
'2018-12-19T08:30:46-05:00'
describe
'24812' 'info:fdaEXUNH3FIT_65X3YKfile360' 'sip-files00009.QC.jpg'
0ecdb6a2e0bfa99325a64ffb40bba132
4d35f59cd8d8570222bdcf99c624614873b8da15
describe
'111385' 'info:fdaEXUNH3FIT_65X3YKfile361' 'sip-files00010.jpg'
655533cda4f5bd151b705e86692fb692
b6c5c1d8c2c29a4b2c9ea1857f98e57c79f5374e
'2018-12-19T08:34:46-05:00'
describe
'45257' 'info:fdaEXUNH3FIT_65X3YKfile362' 'sip-files00010.QC.jpg'
befc41262372ae81f59153f0287c649b
7c9d90b444477f9f922dd857b5492dccef7dd2db
describe
'145474' 'info:fdaEXUNH3FIT_65X3YKfile363' 'sip-files00011.jpg'
02c45e984c6c4a19f5ef48b127c2c03e
e1a3363a2d503ffa0be3c98ed7473866aac830f3
'2018-12-19T08:35:10-05:00'
describe
'61169' 'info:fdaEXUNH3FIT_65X3YKfile364' 'sip-files00011.QC.jpg'
3b28894c6dc814880d282bad405cfc80
e4ab909d2f067d6139411d008c1d2f30c7374f72
'2018-12-19T08:33:38-05:00'
describe
'83463' 'info:fdaEXUNH3FIT_65X3YKfile365' 'sip-files00012.jpg'
6448fb3a516e5b06c5cf5d3b72f4fc39
2e54af5394b28de71300a10c37ccba9a60f97ccd
'2018-12-19T08:27:45-05:00'
describe
'36012' 'info:fdaEXUNH3FIT_65X3YKfile366' 'sip-files00012.QC.jpg'
a206e62071d43f396d117ded25d0eb94
496f9fb6e63cb2d7873d263939d6ade7f0bf7a06
describe
'124137' 'info:fdaEXUNH3FIT_65X3YKfile367' 'sip-files00013.jpg'
383086cacdefa45704096d01f946338a
2a877680934e23166748cff86c9c802cdde78c66
describe
'52709' 'info:fdaEXUNH3FIT_65X3YKfile368' 'sip-files00013.QC.jpg'
258d86c59c0fbfd6c57c937f4c6742e0
85a4b628cab89d4bd9af482b55fad15065532b88
'2018-12-19T08:33:52-05:00'
describe
'126078' 'info:fdaEXUNH3FIT_65X3YKfile369' 'sip-files00014.jpg'
45cf15d4728e23a4c4adfc3b4ea2f6c4
985cef8f6a0d00f7cd7fb419a7db8e4db7dadfbe
describe
'7610300' 'info:fdaEXUNH3FIT_65X3YKfile37' 'sip-files00040.tif'
20b6245c370b462bb4307f346e0bf127
c4e49562dc320b98366e4ceb28adb273c0e8fa16
'2018-12-19T08:32:27-05:00'
describe
'53878' 'info:fdaEXUNH3FIT_65X3YKfile370' 'sip-files00014.QC.jpg'
517d4fa496d02450d4b066312becf98c
4b721a8591c3459f4c5268d21ae6688ed2ada504
'2018-12-19T08:27:09-05:00'
describe
'136261' 'info:fdaEXUNH3FIT_65X3YKfile371' 'sip-files00015.jpg'
c038bb0ca419d0edce1d0504555a58aa
8a4547752716e0a9c4736a727eccd4cd185eeeda
describe
'56877' 'info:fdaEXUNH3FIT_65X3YKfile372' 'sip-files00015.QC.jpg'
0f1fcd446dea5fbbef89e58f62175da4
bd64111b6743f843bdc4b182e3dd5b4c0265893b
'2018-12-19T08:35:21-05:00'
describe
'118658' 'info:fdaEXUNH3FIT_65X3YKfile373' 'sip-files00016.jpg'
8e5954866068a77df0ab34718c104339
57082506e7915b4736fca5197c3a962041daec92
describe
'50538' 'info:fdaEXUNH3FIT_65X3YKfile374' 'sip-files00016.QC.jpg'
81403429806baa817daf4cc703a3ae12
e15c43e6e4a4e0043c7fd188aa796a748846711f
'2018-12-19T08:35:59-05:00'
describe
'128122' 'info:fdaEXUNH3FIT_65X3YKfile375' 'sip-files00017.jpg'
81c167e18e3f10a9ed2b40571d66d3f5
3529525a6a0699f4de28a1382d372e027997ff58
describe
'55045' 'info:fdaEXUNH3FIT_65X3YKfile376' 'sip-files00017.QC.jpg'
ac81651d8be66016e50593f168058925
6d827d0ba5b910d27f4b094a36ac4a8b3f19f471
describe
'108828' 'info:fdaEXUNH3FIT_65X3YKfile377' 'sip-files00018.jpg'
f014a4c146dda9c3778e286be084dcb5
494d35d720023fc4253ccb9ba544c97b528443b7
'2018-12-19T08:29:38-05:00'
describe
'47520' 'info:fdaEXUNH3FIT_65X3YKfile378' 'sip-files00018.QC.jpg'
db914262ee4adf1338f8923c3ae3a9a6
0601704e8b6c537e2c6731db12c1e2592ee95f89
'2018-12-19T08:34:05-05:00'
describe
'142716' 'info:fdaEXUNH3FIT_65X3YKfile379' 'sip-files00019.jpg'
0ce71afe63e33b21f95dff6144f00517
3c816d4e3b87dd2a150c57a8fc6961f8a660c7b9
describe
'7605876' 'info:fdaEXUNH3FIT_65X3YKfile38' 'sip-files00041.tif'
9226318aa00b6f7ec8d847c16ccfde5d
6bfcf728bbb2ed9724bc0c57f6021ffa46813629
'2018-12-19T08:31:37-05:00'
describe
'60356' 'info:fdaEXUNH3FIT_65X3YKfile380' 'sip-files00019.QC.jpg'
efb73fdfcc6e3f0bca2a5311c17462f3
21090c271e776824d7524b88d1d4dfccd8635656
describe
'132062' 'info:fdaEXUNH3FIT_65X3YKfile381' 'sip-files00020.jpg'
fd40d0aa30bfae00fb9df2bbf2ebc3d0
c49c9e094d061603abe13873824b63a5564d1223
describe
'57588' 'info:fdaEXUNH3FIT_65X3YKfile382' 'sip-files00020.QC.jpg'
3b5f8d8bb2ef61f03f43e61232c87b5b
659f375edffc0f266219f2ed93d697ef1858edc8
describe
'140801' 'info:fdaEXUNH3FIT_65X3YKfile383' 'sip-files00021.jpg'
18256a5fdd87e2deb53eb3eb69776234
6983bfd1f947ead9417a422741b9ebf21116497e
describe
'60505' 'info:fdaEXUNH3FIT_65X3YKfile384' 'sip-files00021.QC.jpg'
96303e1b73ffa640b7daf44649852a28
eeebf2e08c27dfb7443e3b5616cc294108fcd340
'2018-12-19T08:34:31-05:00'
describe
'145678' 'info:fdaEXUNH3FIT_65X3YKfile385' 'sip-files00022.jpg'
8ea139e9d43560b157142dd3b0f239c7
80aacab1455080b4ba05a9dc36b339d5515fea52
describe
'62107' 'info:fdaEXUNH3FIT_65X3YKfile386' 'sip-files00022.QC.jpg'
e7eba3bd5ef6ae9d3cf582afb09f5045
525a354ed9e6099742eafd4d2a5015c5500786ec
describe
'138919' 'info:fdaEXUNH3FIT_65X3YKfile387' 'sip-files00023.jpg'
ff9869a0b6ef4392ff8205664b4ed3d3
34661ea89e2ed3c19cb4ea9107d26b0915cb1ceb
'2018-12-19T08:31:21-05:00'
describe
'60804' 'info:fdaEXUNH3FIT_65X3YKfile388' 'sip-files00023.QC.jpg'
4ffdaf1112c3e6c35c30112f4e032d6f
45e98d55af0e8881c4a85741814fd50c7229d69b
'2018-12-19T08:36:32-05:00'
describe
'142576' 'info:fdaEXUNH3FIT_65X3YKfile389' 'sip-files00024.jpg'
e8e60931e89e58b023e2799896fdc5d0
a0c8e14bf579fd81bb603bb66099ee40c2bb950f
'2018-12-19T08:31:08-05:00'
describe
'7611056' 'info:fdaEXUNH3FIT_65X3YKfile39' 'sip-files00042.tif'
99ac0ec09e5cc76a7bae5bea21d3e4c9
6098d7bb9b36de3de1b8b986098a2cb82ef6aa43
'2018-12-19T08:28:47-05:00'
describe
'60546' 'info:fdaEXUNH3FIT_65X3YKfile390' 'sip-files00024.QC.jpg'
6c6513472024b32a4dfca5df4836ddc0
05d266555ea4b1d33f2b001edf3f8e034cd97ed4
'2018-12-19T08:32:33-05:00'
describe
'152361' 'info:fdaEXUNH3FIT_65X3YKfile391' 'sip-files00025.jpg'
d000308a9e2d10b505fa738bc8881669
e4a218b592cfb6c606cd3dc8cda96578a4f92395
describe
'63723' 'info:fdaEXUNH3FIT_65X3YKfile392' 'sip-files00025.QC.jpg'
044999d64f4dd144e4a2e9bbe7a6f9a5
43835f2fbe0b14fc01fd83a6513b57b14d1baa1a
describe
'135178' 'info:fdaEXUNH3FIT_65X3YKfile393' 'sip-files00026.jpg'
1b7838dd344873e385c7a07fd2bb0f60
81c091040bfa81c1dc79d6ca343121b371b9763b
describe
'57690' 'info:fdaEXUNH3FIT_65X3YKfile394' 'sip-files00026.QC.jpg'
adbe1a0eb3bb729da24ef19fbc11b3ed
61a879114d90fada53a9e0d4a832713fe75e516f
describe
'147156' 'info:fdaEXUNH3FIT_65X3YKfile395' 'sip-files00027.jpg'
35662df9d9d477f25352ad9c2905fbd8
b549c464601f3bab2ed0c645dd423b025956ed50
describe
'60888' 'info:fdaEXUNH3FIT_65X3YKfile396' 'sip-files00027.QC.jpg'
471ed3aaff66b176812fc0aac03440c2
1cac168359fa20ae393fa06ad474164649c3414b
describe
'97289' 'info:fdaEXUNH3FIT_65X3YKfile397' 'sip-files00028.jpg'
67a8031a7c7a989d5a1b253b41311884
743e7904a952e97fee1b1813bcfe5830976d54a6
'2018-12-19T08:29:52-05:00'
describe
'39620' 'info:fdaEXUNH3FIT_65X3YKfile398' 'sip-files00028.QC.jpg'
5bc3303d4867f0fabb2611cfdcafd09c
350da3241b74422a42148ed6e66e0355338ac76a
describe
'51772' 'info:fdaEXUNH3FIT_65X3YKfile399' 'sip-files00029.jpg'
6285485e8d8feff825bbbaa12dbac485
d6d816d12e643cc21b1e0ffafa1ca52ef596b794
describe
'7732280' 'info:fdaEXUNH3FIT_65X3YKfile4' 'sip-files00007.tif'
ba713a15d0b0c950c8ce33dab1181f52
4f7460d0a5a3a21d87dc93d00017b64060b051c0
'2018-12-19T08:33:50-05:00'
describe
'7605612' 'info:fdaEXUNH3FIT_65X3YKfile40' 'sip-files00043.tif'
747a9354a79548a1404f4661ab0ad692
3e88dcaaf86c57202aef8183ddb8aa7157ba321f
describe
'24181' 'info:fdaEXUNH3FIT_65X3YKfile400' 'sip-files00029.QC.jpg'
e5dde2856023d2bf8db36a676e4feea2
1df060e014a4a2393eb7f5ef2dda9f4b7b23b63a
'2018-12-19T08:33:54-05:00'
describe
'46145' 'info:fdaEXUNH3FIT_65X3YKfile401' 'sip-files00030.jpg'
7274a0f66d42c786e3f585c2df960f8d
da5917ca87f79cf7373858da997c3d3f6b8fd7e7
describe
'22325' 'info:fdaEXUNH3FIT_65X3YKfile402' 'sip-files00030.QC.jpg'
1c736af2456aba2c0805f414b7b0cf4a
aa7e21d52e45e814cb511b72710e2c0a5e9722c0
'2018-12-19T08:27:52-05:00'
describe
'119400' 'info:fdaEXUNH3FIT_65X3YKfile403' 'sip-files00031.jpg'
72506fb8c8091c0d6f3a529d8a1a8416
abf3c55245def8733e690794390c5c7d7121cfb5
'2018-12-19T08:27:44-05:00'
describe
'49829' 'info:fdaEXUNH3FIT_65X3YKfile404' 'sip-files00031.QC.jpg'
095692f39b317d60c88a65ab6f921eb8
ac3b1201166cef4f4c7ff6b2394c27cb18d93892
'2018-12-19T08:27:13-05:00'
describe
'146425' 'info:fdaEXUNH3FIT_65X3YKfile405' 'sip-files00032.jpg'
48b6ed70e78c9325846fc4694bebd120
1375b87cb09d1e81a2319692e033da69c0f373e2
describe
'61155' 'info:fdaEXUNH3FIT_65X3YKfile406' 'sip-files00032.QC.jpg'
4825e2ad3a5522954f426a4b2ce88eb0
27400a2df9172050596da7d194d165ccb751f03f
describe
'146210' 'info:fdaEXUNH3FIT_65X3YKfile407' 'sip-files00033.jpg'
f506fbc32fc2e150dc98dbe15bc9e43d
6dbcc8c0a604b4f8ca2e4d55f09204d690052439
describe
'60524' 'info:fdaEXUNH3FIT_65X3YKfile408' 'sip-files00033.QC.jpg'
4b7d94cc9debc466ed872a051f2a9b33
3a8c2de9f5ccb52f9907f095f7e0f75f01a08816
describe
'143224' 'info:fdaEXUNH3FIT_65X3YKfile409' 'sip-files00034.jpg'
e232ca6d5390182a6fd11b61ff887dcb
c921f6afc1381769dc966b2a977b9b8c86145962
describe
'7623248' 'info:fdaEXUNH3FIT_65X3YKfile41' 'sip-files00044.tif'
3cfae9dd9fa2b9ea06ba8757fd0b78ce
c0944c58f5e4a150827f628b06c1ed02c6f30fe3
'2018-12-19T08:31:55-05:00'
describe
'59736' 'info:fdaEXUNH3FIT_65X3YKfile410' 'sip-files00034.QC.jpg'
10c630732d3f49bdc8c76d799fd75e59
3f257768a0c09f2cc26902635db9d2cfe3e81bfd
describe
'147092' 'info:fdaEXUNH3FIT_65X3YKfile411' 'sip-files00035.jpg'
975acf525281b6cf0e2545a8e0311c64
667e9c2dd971102c9b4675d91428adad833272fb
describe
'62252' 'info:fdaEXUNH3FIT_65X3YKfile412' 'sip-files00035.QC.jpg'
73890f519685e135d791b41c1820b233
84385993449a7515cb5d2de5bb70ac18c5b84ff6
describe
'146302' 'info:fdaEXUNH3FIT_65X3YKfile413' 'sip-files00036.jpg'
2b6e185c62d3c0bb5b6352d1fe8ee09a
de7e1cbb18c947b6bdc0c4d63865808f0194cf24
describe
'62022' 'info:fdaEXUNH3FIT_65X3YKfile414' 'sip-files00036.QC.jpg'
6a5f1969bececa48850d6531039e5abd
294d3f3a68d146ed9d4262919ab56cd7cfdf4216
'2018-12-19T08:34:35-05:00'
describe
'141558' 'info:fdaEXUNH3FIT_65X3YKfile415' 'sip-files00037.jpg'
d14878b2f15d6c22128269effabefe06
cbfa9182ff31c5155db00cece200d50a2d04f163
'2018-12-19T08:37:08-05:00'
describe
'59774' 'info:fdaEXUNH3FIT_65X3YKfile416' 'sip-files00037.QC.jpg'
f76970805feaa8a2dfccc54bda842733
d46c4b238e0de149496846995d3ee8b04c8ac2cf
describe
'151464' 'info:fdaEXUNH3FIT_65X3YKfile417' 'sip-files00038.jpg'
925db24f3bcfc30761882be11be1ee83
ce0316d7939df4d5222df0e8e56f55c07dee1052
describe
'64255' 'info:fdaEXUNH3FIT_65X3YKfile418' 'sip-files00038.QC.jpg'
73ee76f4ee0f7015dc9136a76c6a3047
cb0f2f8ee0df9eaab6a0c9e39d95286732ab52a1
describe
'147991' 'info:fdaEXUNH3FIT_65X3YKfile419' 'sip-files00039.jpg'
b2bc46628d2dfbff67afa4bd2bffb85d
51b456d1d0ca0ef7d5e3c852ccbf28b19d3be717
'2018-12-19T08:30:00-05:00'
describe
'7602680' 'info:fdaEXUNH3FIT_65X3YKfile42' 'sip-files00045.tif'
0053a670d18a15cede10b03be85d391f
4df456151338c8319062805ed6b3bcc1f4ebef4f
describe
'61741' 'info:fdaEXUNH3FIT_65X3YKfile420' 'sip-files00039.QC.jpg'
e76e374c40ccb8b469728b2f20b52f0f
ac59b06e264fe08dd535bcb60b9af7b39975c4e0
'2018-12-19T08:30:05-05:00'
describe
'141900' 'info:fdaEXUNH3FIT_65X3YKfile421' 'sip-files00040.jpg'
5efebecb7c269b5894b87848ac536a71
d95d1655b1ae53eb83f2a06155641817d0d4e75e
'2018-12-19T08:35:11-05:00'
describe
'60264' 'info:fdaEXUNH3FIT_65X3YKfile422' 'sip-files00040.QC.jpg'
1747ce2369293a18758f7fda1a377e88
77e1fc65f675d929f79e731e5c368ab94fb40c71
describe
'147938' 'info:fdaEXUNH3FIT_65X3YKfile423' 'sip-files00041.jpg'
16ee8b05d8d8a368625ce0b12f62e71e
6c9241eb5dade358d00c2ab0f1d8b4b48fc772dc
describe
'63428' 'info:fdaEXUNH3FIT_65X3YKfile424' 'sip-files00041.QC.jpg'
15f8e1229f6ab1e24d16d2c9c32d69fa
bd15e3d017ccb022a289e866b92864894cabf2e7
'2018-12-19T08:29:19-05:00'
describe
'144095' 'info:fdaEXUNH3FIT_65X3YKfile425' 'sip-files00042.jpg'
fb6bbea193b33a460c23e96eba83a405
8d97e76f2df8a5a2b812c5a9d5386253284b3964
'2018-12-19T08:31:53-05:00'
describe
'60824' 'info:fdaEXUNH3FIT_65X3YKfile426' 'sip-files00042.QC.jpg'
af041a3b94c903cfd8d6a23270a4df3a
6be523b4aded94ab047e37da276a1d3f4100d4b2
'2018-12-19T08:28:50-05:00'
describe
'149131' 'info:fdaEXUNH3FIT_65X3YKfile427' 'sip-files00043.jpg'
af3e96bf3a6e4788e5ef94c95622dfeb
755954b74a6eb54048db53072f474d38b4466ad9
'2018-12-19T08:34:55-05:00'
describe
'63359' 'info:fdaEXUNH3FIT_65X3YKfile428' 'sip-files00043.QC.jpg'
04c9a0ce963a68266c196a2c721e02e0
0d257eacd5853ee48b3070376353c39985c66590
describe
'144344' 'info:fdaEXUNH3FIT_65X3YKfile429' 'sip-files00044.jpg'
5540bd40c33c530214164c3ec532ace5
af64683444b1bc672e3b1077cb3a5fa678235d27
'2018-12-19T08:36:18-05:00'
describe
'7614472' 'info:fdaEXUNH3FIT_65X3YKfile43' 'sip-files00046.tif'
6bdc16df854dee991ca3c55fb3510995
ed6cdeda761f74bbcbdb722c13ba964750cbc009
'2018-12-19T08:36:08-05:00'
describe
'61592' 'info:fdaEXUNH3FIT_65X3YKfile430' 'sip-files00044.QC.jpg'
a3a5c00f826dedebb23a2713b0dac04e
84fabdb4737929928e6029b67e9e22d1fa880aaa
describe
'131818' 'info:fdaEXUNH3FIT_65X3YKfile431' 'sip-files00045.jpg'
d95c43ad86b9e4bd7fd1cca951fa5be8
76601880da1b8547f368f523c7eb4bc0c848b714
describe
'55627' 'info:fdaEXUNH3FIT_65X3YKfile432' 'sip-files00045.QC.jpg'
9b6eef6b9c89b12f0c0b5ab8ecc20919
3d43cf4a39f52a2c81cf886677567eeaf7342dfe
describe
'139909' 'info:fdaEXUNH3FIT_65X3YKfile433' 'sip-files00046.jpg'
33472059908b93e0504ff983ff3eb6ab
a59ff23431ce66844e181ff0c0237487c69d6da2
describe
'59961' 'info:fdaEXUNH3FIT_65X3YKfile434' 'sip-files00046.QC.jpg'
d471778b9af79b2f9d35d5779f94348c
cbaf1f4ed49eeac6fe4b19776208faef7a17799a
describe
'146342' 'info:fdaEXUNH3FIT_65X3YKfile435' 'sip-files00047.jpg'
67c5358e2240872bbb2b34611e89c0d4
10e6a2aeed053170c3a57bdd9656ac5b1501088a
'2018-12-19T08:37:34-05:00'
describe
'62152' 'info:fdaEXUNH3FIT_65X3YKfile436' 'sip-files00047.QC.jpg'
080ec0ac7c2ad84dfbdf48c35e9eee93
5c0bf9dd4bf0c40bd55a60fa3254f20d914d32eb
'2018-12-19T08:32:21-05:00'
describe
'127656' 'info:fdaEXUNH3FIT_65X3YKfile437' 'sip-files00048.jpg'
3e3dedcf99ca77d8354f674e20b9aafc
a5e4a10308e45077949fa75629a164490f808e29
describe
'54586' 'info:fdaEXUNH3FIT_65X3YKfile438' 'sip-files00048.QC.jpg'
cb7f2e03dc40f591706ad3f6ab338740
8b5b0161c2c7fb3c7f98e68221eea3ddd60d6fbc
'2018-12-19T08:34:17-05:00'
describe
'97006' 'info:fdaEXUNH3FIT_65X3YKfile439' 'sip-files00049.jpg'
96e49aa9342904feaa8e162b3f87c133
55a511bb967a51a4435590e84c9ba01200c7058c
'2018-12-19T08:33:00-05:00'
describe
'7601440' 'info:fdaEXUNH3FIT_65X3YKfile44' 'sip-files00047.tif'
f9f7afbc4f3c3e896f4c329314683ab3
c5cae5d7be918c6e687a75dd00f73afb03d6c1da
'2018-12-19T08:32:41-05:00'
describe
'42970' 'info:fdaEXUNH3FIT_65X3YKfile440' 'sip-files00049.QC.jpg'
15d13836cf692add6f0dec7eae75f166
ef3ddeaf59b6ceeb8bba98809d7c89bc75889c09
'2018-12-19T08:34:57-05:00'
describe
'26329' 'info:fdaEXUNH3FIT_65X3YKfile441' 'sip-files00050.jpg'
66d8b285d0eca9edc09b2faaf3e80f41
0142ed5562df22188cfa890e0a204d25bb6bea6b
'2018-12-19T08:32:28-05:00'
describe
'14251' 'info:fdaEXUNH3FIT_65X3YKfile442' 'sip-files00050.QC.jpg'
355a5b1f70a8c63c0b05e380535e9204
570cccc9585a1f2424c9517c33b410eb3ff7faad
describe
'26530' 'info:fdaEXUNH3FIT_65X3YKfile443' 'sip-files00051.jpg'
ff4f7bd87c8c029227bc952cb732855f
81aa8260a811ec579ceb91a080a630fbd451fe9d
'2018-12-19T08:30:49-05:00'
describe
'14368' 'info:fdaEXUNH3FIT_65X3YKfile444' 'sip-files00051.QC.jpg'
407fc46962f2e58a19ce3aab21844575
0b7275fb684239547d921956082876b1fc45aeb8
'2018-12-19T08:35:38-05:00'
describe
'24848' 'info:fdaEXUNH3FIT_65X3YKfile445' 'sip-files00052.jpg'
36778ba141178c6b4781a942496f269b
133835d607ce8965226ea10e0528e4b5eda14221
describe
'13630' 'info:fdaEXUNH3FIT_65X3YKfile446' 'sip-files00052.QC.jpg'
3095ae222f80bd2202c0f5b6b9194f72
d8dd7e0d72d9c4ea3cee0b396ebb8e58e470f0cf
'2018-12-19T08:28:04-05:00'
describe
'32630' 'info:fdaEXUNH3FIT_65X3YKfile447' 'sip-files00053.jpg'
3e70f0f7bc879a94ed9266ff8168667a
6216c79a746b517e21d9a2490ca8d136c263eadd
'2018-12-19T08:27:26-05:00'
describe
'16592' 'info:fdaEXUNH3FIT_65X3YKfile448' 'sip-files00053.QC.jpg'
fa1103c1253f06c6f4e3184901074d7c
f0caa63a95a89a8736be88a1cab744a8cb969d0f
'2018-12-19T08:31:10-05:00'
describe
'51604' 'info:fdaEXUNH3FIT_65X3YKfile449' 'sip-files00054.jpg'
b620b3c018e8661b4b3fe577efb14e12
458843617b2316572a52c145bf0fc21b8f233a24
'2018-12-19T08:34:23-05:00'
describe
'7596112' 'info:fdaEXUNH3FIT_65X3YKfile45' 'sip-files00048.tif'
feaad0d3e8617e1df43af7228805635f
b3200bf1713ea0bad4555abddf52e36009f71a61
describe
'25888' 'info:fdaEXUNH3FIT_65X3YKfile450' 'sip-files00054.QC.jpg'
d9518be948ed06be7f29eb7848e4417d
9d25b55e95cb02f9e505601a3bcdf94215612a5c
describe
'47451' 'info:fdaEXUNH3FIT_65X3YKfile451' 'sip-files00055.jpg'
71799943e681ed636e11e71f442a92cf
f33c79e998a3755f0e1848097ef873c72e841341
'2018-12-19T08:31:12-05:00'
describe
'24871' 'info:fdaEXUNH3FIT_65X3YKfile452' 'sip-files00055.QC.jpg'
9521005b8e4e4800469fc8734dfebc56
c81577d0311b29dbeb06d9ef4790d7bbbd7c1c34
describe
'49612' 'info:fdaEXUNH3FIT_65X3YKfile453' 'sip-files00056.jpg'
d7d9741bc81cfcef83b9fc6f766ef64f
92f0a7a108f90d9a195f15427db80632cf34c5de
'2018-12-19T08:27:33-05:00'
describe
'22950' 'info:fdaEXUNH3FIT_65X3YKfile454' 'sip-files00056.QC.jpg'
68098da04ded8e643eda6be0e3bf24c3
e5e41843d3f3c35a5b5a840bf4af262b1c9fa7fc
'2018-12-19T08:27:15-05:00'
describe
'50210' 'info:fdaEXUNH3FIT_65X3YKfile455' 'sip-files00057.jpg'
acf8eef19013359511e3e6821457d0fa
fc16d2a807269ff6fc6e0a284b8ae3dfcda48765
describe
'23356' 'info:fdaEXUNH3FIT_65X3YKfile456' 'sip-files00057.QC.jpg'
15ed0f4ca363a013703ce6f504a04590
a6c7c476a251a60ec3276644d79b5fe53f8aecd0
describe
'47350' 'info:fdaEXUNH3FIT_65X3YKfile457' 'sip-files00058.jpg'
1addd0ecea1c1caf9c5d502e7e150b51
f2d58edf943ea03e2057f4a332da78de572031cf
describe
'22371' 'info:fdaEXUNH3FIT_65X3YKfile458' 'sip-files00058.QC.jpg'
010bacc754d07c126bc0c91bd2184ed5
d826403992a55208ab7e138215cfbaa0c759229a
describe
'41384' 'info:fdaEXUNH3FIT_65X3YKfile459' 'sip-files00059.jpg'
e01e841505eaa19964cd4b20253783a4
a4bcbe9a28f0b3985f6eb7bd02b3851dbd53f83f
'2018-12-19T08:30:40-05:00'
describe
'7603800' 'info:fdaEXUNH3FIT_65X3YKfile46' 'sip-files00049.tif'
7183dd2e0b0ffdce551ca81287d7abfe
8a68d14119b672a935413f8468ed2c31ad26e97a
describe
'18406' 'info:fdaEXUNH3FIT_65X3YKfile460' 'sip-files00059.QC.jpg'
acdabee065aa919bfdcef5dad89bfc53
79148044decbf4d4f234ee83b28c09eeb2b25b9f
'2018-12-19T08:35:43-05:00'
describe
'43904' 'info:fdaEXUNH3FIT_65X3YKfile461' 'sip-files00060.jpg'
f219d12f4d240955de31749f1a850e8a
34123e032ad559383c4f5c63785a06c86f55bf02
describe
'18977' 'info:fdaEXUNH3FIT_65X3YKfile462' 'sip-files00060.QC.jpg'
b84b13a43418b363c8bf2d334dc9a7ca
0a7f95009419e30cd8041ca12e3cc395642146bb
'2018-12-19T08:33:41-05:00'
describe
'122393' 'info:fdaEXUNH3FIT_65X3YKfile463' 'sip-files00061.jpg'
c71b7e122d53dc438ed71a6dac02eafc
3f0233fe2c10346efba81b6af85f6b21e055fe8c
'2018-12-19T08:37:37-05:00'
describe
'52101' 'info:fdaEXUNH3FIT_65X3YKfile464' 'sip-files00061.QC.jpg'
80d306bd4a3fce8d29c8b626083df43d
4ff0b9c00eb2a88945ea1390000f3fcbcfa19631
'2018-12-19T08:27:30-05:00'
describe
'143622' 'info:fdaEXUNH3FIT_65X3YKfile465' 'sip-files00062.jpg'
0277b0370347251e5aaf8cf8b31d1dfa
dc6d187991089b2ddc466330c4d0ef5a55f75a33
'2018-12-19T08:38:00-05:00'
describe
'62267' 'info:fdaEXUNH3FIT_65X3YKfile466' 'sip-files00062.QC.jpg'
c48af8aa8fc757bc7f10ed3c1f4271d1
a9cd8e58b0ceff859a6c910bebb3195201009ed7
describe
'140966' 'info:fdaEXUNH3FIT_65X3YKfile467' 'sip-files00063.jpg'
e6c6df7367f3a505d68722bb6d8f444f
f97647089bce8f0b764d03310dec009392d2ecb4
'2018-12-19T08:36:27-05:00'
describe
'55715' 'info:fdaEXUNH3FIT_65X3YKfile468' 'sip-files00063.QC.jpg'
7a05272e7fbba79762ca709d9c370668
b5ba6368d55939bf65c770f4c8f6c3027615497b
describe
'161789' 'info:fdaEXUNH3FIT_65X3YKfile469' 'sip-files00064.jpg'
d5616a88bc252ad17a5779b57a9465af
0ba7e3963d7021c0b76edff70bbfbc3621f2a379
describe
'7587436' 'info:fdaEXUNH3FIT_65X3YKfile47' 'sip-files00050.tif'
9540c3340cf08716bf1a7726ba2957d2
36ad4683ebb4b65e42840fb7c6f129d12faa8630
describe
'63720' 'info:fdaEXUNH3FIT_65X3YKfile470' 'sip-files00064.QC.jpg'
196ea4301764357ba8806dadb34e7c3b
519761126a6ad338eddf2947e6027713e348793c
'2018-12-19T08:37:15-05:00'
describe
'149891' 'info:fdaEXUNH3FIT_65X3YKfile471' 'sip-files00065.jpg'
c3b2b6d3c9268728cb7762d4ddb5ac58
577d40577f1989f4108a8ee8f7b6a6a79c6f6834
'2018-12-19T08:29:53-05:00'
describe
'63136' 'info:fdaEXUNH3FIT_65X3YKfile472' 'sip-files00065.QC.jpg'
3743ff2a018e8a09dad3959e806b3832
60e54e310f3a4a8663cda4f9f8a56045b16ac2c3
describe
'146658' 'info:fdaEXUNH3FIT_65X3YKfile473' 'sip-files00066.jpg'
03bd6d0e94d8ecb887a9a5a62bd8f5f1
6c2fa6a7b0bb3c736c98eabec3299a26b3164316
describe
'61434' 'info:fdaEXUNH3FIT_65X3YKfile474' 'sip-files00066.QC.jpg'
546dbd1c93ac262c4a7054f0782d5ea0
234faa9e464ba1f8cd4468f638e957d545efd317
'2018-12-19T08:31:06-05:00'
describe
'140807' 'info:fdaEXUNH3FIT_65X3YKfile475' 'sip-files00067.jpg'
cb7c74d79d2238afd463f6d6a0d639d7
cba5e8eee4626843e393b3644633de7d38d27575
describe
'58560' 'info:fdaEXUNH3FIT_65X3YKfile476' 'sip-files00067.QC.jpg'
0fa618f657caaa6db99b50918533d5bd
64728f3ef789495ddf8a69e660e875ce2a1efd86
'2018-12-19T08:33:44-05:00'
describe
'128908' 'info:fdaEXUNH3FIT_65X3YKfile477' 'sip-files00068.jpg'
c9fe712a14ea158f928394900be0c4d7
bde18824d325815dc19d2ab1e80f0533a7f38ff0
describe
'54706' 'info:fdaEXUNH3FIT_65X3YKfile478' 'sip-files00068.QC.jpg'
905d028e5494594ccd47d5140eabde0b
33ac946d2e22c2d65a92f32932d2e750b4d95ed4
describe
'147026' 'info:fdaEXUNH3FIT_65X3YKfile479' 'sip-files00069.jpg'
dbc28e9512e1660457a74ef4ce247bb1
d87ce4ce5363b592dafecc31443202951a35b4ed
describe
'7598720' 'info:fdaEXUNH3FIT_65X3YKfile48' 'sip-files00051.tif'
76c356ff8355b428ff1c53a1aab203e9
45a32e2306663591399a175bc47ce8e6d8a6c1b8
'2018-12-19T08:35:28-05:00'
describe
'60394' 'info:fdaEXUNH3FIT_65X3YKfile480' 'sip-files00069.QC.jpg'
111b2b9a02c8de1fbc73d70657b3b1a5
0456c0fa88aa2add17ef0b362119e4bab4d6e24f
'2018-12-19T08:32:46-05:00'
describe
'139967' 'info:fdaEXUNH3FIT_65X3YKfile481' 'sip-files00070.jpg'
7aae2719fbc2afc0bb4b7bbf47c36bcd
3917265fd7a82b33eea1d7472c196537066f39bd
'2018-12-19T08:35:55-05:00'
describe
'58122' 'info:fdaEXUNH3FIT_65X3YKfile482' 'sip-files00070.QC.jpg'
bb97f24054d97a220e8fdd7beb096d1f
1f6a8422e36cc1a7926d164e75733b4673f8e7ab
'2018-12-19T08:34:47-05:00'
describe
'133549' 'info:fdaEXUNH3FIT_65X3YKfile483' 'sip-files00071.jpg'
7166b06a754c952f3881225c8a9f37ea
eb0d348f30066f489af4685bb4e85d58cdf66dbb
'2018-12-19T08:32:25-05:00'
describe
'57448' 'info:fdaEXUNH3FIT_65X3YKfile484' 'sip-files00071.QC.jpg'
bc2d176f7cb8ddfafdbe5347ec65c9ee
2872134952034c1d878b36aeb1f1a789d545100d
'2018-12-19T08:32:47-05:00'
describe
'145585' 'info:fdaEXUNH3FIT_65X3YKfile485' 'sip-files00072.jpg'
b12a706ed77467a687bff1c5c142e967
2dbb180416a352c9ed81c8618fab7a1bdda7283c
describe
'61012' 'info:fdaEXUNH3FIT_65X3YKfile486' 'sip-files00072.QC.jpg'
178131c6658d567a655063d9d4cd6e2a
787ca0fe64670938747c0f312ca8ebaeb18a2f1b
describe
'129013' 'info:fdaEXUNH3FIT_65X3YKfile487' 'sip-files00073.jpg'
b5889c1e5ea77e043b587a9aa6289484
bf080bf78e8fa0d5e8eb121e89bb93996ede73dc
describe
'56833' 'info:fdaEXUNH3FIT_65X3YKfile488' 'sip-files00073.QC.jpg'
07ff706d8cfb4c5adc63c1d73e023b19
b6f413cb1e6a15cbd292d295204cae9187b738df
describe
'139528' 'info:fdaEXUNH3FIT_65X3YKfile489' 'sip-files00074.jpg'
b8fb28ecf845a821c997188a82156da6
895004571e50628e4fb1d0bb3e1518f7afff5478
describe
'7585760' 'info:fdaEXUNH3FIT_65X3YKfile49' 'sip-files00052.tif'
5d2a19b54bcccb97207ec0798b8e44f9
8a67c1b6ef5aa9fb2b2c1a281777f66b1d287929
'2018-12-19T08:34:43-05:00'
describe
'59654' 'info:fdaEXUNH3FIT_65X3YKfile490' 'sip-files00074.QC.jpg'
a7a0a6658f696fa0257e45d1a64dda78
7062bde131394b816f03d649f31b8e63a191a5b4
describe
'139407' 'info:fdaEXUNH3FIT_65X3YKfile491' 'sip-files00075.jpg'
cbf7f22a082313cdc30c4954613f156c
892cc37b39518106281b423258a2ad6157a590f8
'2018-12-19T08:33:02-05:00'
describe
'58708' 'info:fdaEXUNH3FIT_65X3YKfile492' 'sip-files00075.QC.jpg'
21afd2877e96af53c060e87c48b41138
de71fc2d7da0dfb69479eb793e9a551478892b93
describe
'123836' 'info:fdaEXUNH3FIT_65X3YKfile493' 'sip-files00076.jpg'
1a2e9f533d4fd6c78b559377e4fb39bf
accbdfe0cd48f60dd950d240592026fc3fbc4cff
describe
'53252' 'info:fdaEXUNH3FIT_65X3YKfile494' 'sip-files00076.QC.jpg'
b4e39acf16dc8dc0969607e63ac3b878
75e4b6276b82cc741a05624e5e09d5e9a8260e06
describe
'128182' 'info:fdaEXUNH3FIT_65X3YKfile495' 'sip-files00077.jpg'
493f098e56dfe602812895e8de96a97d
0abd23c5f8a6be80d208b570ef26c059769a3493
describe
'54868' 'info:fdaEXUNH3FIT_65X3YKfile496' 'sip-files00077.QC.jpg'
98c9f68f3326a689ec92cc2c1ed7a277
faf907e7fc1cb5b523960a319619a9f6a82da79d
describe
'143402' 'info:fdaEXUNH3FIT_65X3YKfile497' 'sip-files00078.jpg'
5fa3a4fd0ae347e076ec9fbc354fa0ac
5728fe5c5fb2dbc759308d05c99802dfe4196088
describe
'61316' 'info:fdaEXUNH3FIT_65X3YKfile498' 'sip-files00078.QC.jpg'
316ed3dbebe8a48d37d831075c393b66
f5e0fe714a322298ccabbecc3fbd16cf831392db
describe
'123058' 'info:fdaEXUNH3FIT_65X3YKfile499' 'sip-files00079.jpg'
fbc5960c2b7c70767a54b9c665ff608b
6484bccd44227ea7d594cb587de576ab570d1f00
describe
'7724816' 'info:fdaEXUNH3FIT_65X3YKfile5' 'sip-files00008.tif'
0507717d349e6b658abde9300f7bc274
c5844c86f036f5cd77bf2f9d9ae48f5c5b6daa4d
describe
'7586112' 'info:fdaEXUNH3FIT_65X3YKfile50' 'sip-files00053.tif'
753770f0828facb034781bfc54950d13
ec887e2abc86b2b0df5eacbfb456926be7d68217
describe
'51633' 'info:fdaEXUNH3FIT_65X3YKfile500' 'sip-files00079.QC.jpg'
893ef0cdb285cf5f68437c7d80de07f7
08e46007145caea2e9afc77ab7578efafdca21cf
describe
'53544' 'info:fdaEXUNH3FIT_65X3YKfile501' 'sip-files00080.jpg'
d1f2a142c26aa1e8f6e4d34e9e542f3f
f96f7a6a7a2f87828c03a506305ee11b22bc2b84
describe
'23945' 'info:fdaEXUNH3FIT_65X3YKfile502' 'sip-files00080.QC.jpg'
136d71498e1f4cb06324ba1cabb9a219
fc8dbedf1d47567a509e6a9d988323a11655475f
'2018-12-19T08:34:52-05:00'
describe
'32940' 'info:fdaEXUNH3FIT_65X3YKfile503' 'sip-files00081.jpg'
2d340960203c9b2145397bb49908f491
480f4919760971c2e4dd562153e6ba6015fd6cdd
'2018-12-19T08:27:14-05:00'
describe
'18251' 'info:fdaEXUNH3FIT_65X3YKfile504' 'sip-files00081.QC.jpg'
b9059ada112b38fa8d765c1139c4c99d
4559d252b8e8e1316ecc6365193064c2e153c981
'2018-12-19T08:28:25-05:00'
describe
'35405' 'info:fdaEXUNH3FIT_65X3YKfile505' 'sip-files00082.jpg'
cb0e72a0924fac863fe08966075c53e1
4f5166474f7363761de0dee54023c6e889eaef69
'2018-12-19T08:36:34-05:00'
describe
'17981' 'info:fdaEXUNH3FIT_65X3YKfile506' 'sip-files00082.QC.jpg'
323aada209b4b0a50fd50739efdf6de7
a09d9762c9a2d83b9038aab56d825e8c8e391be9
describe
'114731' 'info:fdaEXUNH3FIT_65X3YKfile507' 'sip-files00083.jpg'
74c8d067b2edb53d922c1a8bbf5139cd
81b3a2390118c4ffa341947e5de06f67459fee33
describe
'48223' 'info:fdaEXUNH3FIT_65X3YKfile508' 'sip-files00083.QC.jpg'
691db8c8ead117a4a96cd98ca246cbfb
3b8f033dfee3be083e939fa17985e124fd24b8a9
'2018-12-19T08:37:59-05:00'
describe
'128723' 'info:fdaEXUNH3FIT_65X3YKfile509' 'sip-files00084.jpg'
d63b531924ed07903c340e321dbd19e4
aba4ef76244c67c3ad134f86a7d96d4907ccf06e
'2018-12-19T08:35:54-05:00'
describe
'7593412' 'info:fdaEXUNH3FIT_65X3YKfile51' 'sip-files00054.tif'
89104a859297aeeffd0e73dba80ac6b3
d49425265580591266f91031390b257c45118271
describe
'54905' 'info:fdaEXUNH3FIT_65X3YKfile510' 'sip-files00084.QC.jpg'
0dcddb65186d9d70ea4d426c8f7b9bb6
2deb786d058830a65095fca059dea4ae9ac38d82
'2018-12-19T08:27:36-05:00'
describe
'145227' 'info:fdaEXUNH3FIT_65X3YKfile511' 'sip-files00085.jpg'
332fea014598b128595b19f1df9cbe5b
e831c43f85dfe819f31b73320c49eec747133ccf
describe
'62198' 'info:fdaEXUNH3FIT_65X3YKfile512' 'sip-files00085.QC.jpg'
0daf022ccfd2af2c55f07b376430c2d5
94ff65d666e21c16cb28ebf8706e3228ad5b4921
'2018-12-19T08:30:47-05:00'
describe
'141473' 'info:fdaEXUNH3FIT_65X3YKfile513' 'sip-files00086.jpg'
acfcb39ec325b274063bee062a9f7400
5441c822b1ef3244e8e13814137e09e72626056e
describe
'61330' 'info:fdaEXUNH3FIT_65X3YKfile514' 'sip-files00086.QC.jpg'
9095085b18a73d66806672865e583687
50f88c2c68d89f4edf9e95fabfaa76f225a81800
'2018-12-19T08:30:34-05:00'
describe
'148918' 'info:fdaEXUNH3FIT_65X3YKfile515' 'sip-files00087.jpg'
b958e7a43263501190eb0ececca61e8b
66f5e49272f68162c34b0a33c0d9234eaafc59f1
describe
'62986' 'info:fdaEXUNH3FIT_65X3YKfile516' 'sip-files00087.QC.jpg'
124ca3c109bedc35b1b66f5e652aeeb1
ccaa598169035a3fc1cf5f1be3507c10bc49db74
describe
'143720' 'info:fdaEXUNH3FIT_65X3YKfile517' 'sip-files00088.jpg'
2a1b1f4291e77d3ec50712f025e6d7d5
b49aac421946c14dd1f53f69fb867e382ad924dd
'2018-12-19T08:37:03-05:00'
describe
'60337' 'info:fdaEXUNH3FIT_65X3YKfile518' 'sip-files00088.QC.jpg'
a558a89059bee9afa7b023a0b33cc54c
bcace6125d21569558bb31a5178c24f30e59bf48
describe
'137511' 'info:fdaEXUNH3FIT_65X3YKfile519' 'sip-files00089.jpg'
15e6b46b54887b72a70d9e6f480fb34f
5e0ae1c21a8668efcc9cc626d7ec9a290b6ce99e
describe
'7592008' 'info:fdaEXUNH3FIT_65X3YKfile52' 'sip-files00055.tif'
aa1a100a7f7434d44b58f3f8de24eaa6
091633b80e08114684fd8ea2ee73a5b13dd348a0
describe
'59800' 'info:fdaEXUNH3FIT_65X3YKfile520' 'sip-files00089.QC.jpg'
4cf093fa21fdedf36b8c8613f8b861a1
15e548ac66b14e5573ab0c613d6281717d786ba4
describe
'136268' 'info:fdaEXUNH3FIT_65X3YKfile521' 'sip-files00090.jpg'
cdf2598ec08012b201588793d1ae9253
ef24b2012b350c802a8c30442cedc0dcff02b042
'2018-12-19T08:27:42-05:00'
describe
'59226' 'info:fdaEXUNH3FIT_65X3YKfile522' 'sip-files00090.QC.jpg'
3777cbbf2b7338937524d8070a74b4ee
8bc18230a4f63ea3d3ed37e11869f10b2e2b9a2d
'2018-12-19T08:33:58-05:00'
describe
'109096' 'info:fdaEXUNH3FIT_65X3YKfile523' 'sip-files00091.jpg'
a0596f51bd60255d480fccd2fa1a64da
00b46d305b00b3ce80789db0a1ff7709a9be2761
describe
'47623' 'info:fdaEXUNH3FIT_65X3YKfile524' 'sip-files00091.QC.jpg'
c4b0770a4076ee82a81e51bb2862bc1b
11c7873873237ee83fe11726e35ddb82831063fc
describe
'140834' 'info:fdaEXUNH3FIT_65X3YKfile525' 'sip-files00092.jpg'
24598b46480e37411dc96371a6faa4b5
9d37f66342c8e0341d77f8e8376e33eaf44fd4f4
'2018-12-19T08:36:37-05:00'
describe
'60421' 'info:fdaEXUNH3FIT_65X3YKfile526' 'sip-files00092.QC.jpg'
2ed9d1da945fe3a3ff6c680795e6a3a4
b5d39207a449700661684454e991442d71ed6a8e
describe
'126958' 'info:fdaEXUNH3FIT_65X3YKfile527' 'sip-files00093.jpg'
e76e37e77550261e790a9070fc1b608e
5863c719aa3c6656c0b3d45b41b50777001a7ba7
describe
'53906' 'info:fdaEXUNH3FIT_65X3YKfile528' 'sip-files00093.QC.jpg'
79f6c6f672c92d28d570df288c105fbf
e3e1eb8f24ecbffc7485bad0865329a0345bfa14
'2018-12-19T08:30:18-05:00'
describe
'107053' 'info:fdaEXUNH3FIT_65X3YKfile529' 'sip-files00094.jpg'
85c35e4bbcd84ed40337f6c6cbe4631a
6b9c33b477c2b11d985e07a7ec5a6d2d175ec7f0
'2018-12-19T08:29:56-05:00'
describe
'7582852' 'info:fdaEXUNH3FIT_65X3YKfile53' 'sip-files00056.tif'
049d56f0bc69bd0062069a09e960d8ea
d084401bf108a0698df319d93af9e22dd8b28d2b
'2018-12-19T08:33:45-05:00'
describe
'47728' 'info:fdaEXUNH3FIT_65X3YKfile530' 'sip-files00094.QC.jpg'
5df45b706c32c6ebc09c4b517c6be8f1
631f860a753b60caaa4d665db389140ed0cfe2a5
describe
'179975' 'info:fdaEXUNH3FIT_65X3YKfile531' 'sip-files00095.jpg'
66db2d16665f752aa0bd3ce9d8b1d312
13ba6f21d8cb95bd303e6c7a7cfe2492d196553d
describe
'62072' 'info:fdaEXUNH3FIT_65X3YKfile532' 'sip-files00095.QC.jpg'
1cda7ae11523e55d38b8fb4bf48671b1
d551e24ba0da72e5e9ed1fe67fb6cdf1f4e93e4a
describe
'147719' 'info:fdaEXUNH3FIT_65X3YKfile533' 'sip-files00096.jpg'
5ceaaf10af74215b0473cf1520bc67d1
2e6fcb68a201705a6978bd6aca3f852df7f25ae3
'2018-12-19T08:27:40-05:00'
describe
'63113' 'info:fdaEXUNH3FIT_65X3YKfile534' 'sip-files00096.QC.jpg'
aa71457b66e8e57268f069c86f80f0a5
83927fde2a6443b4fa3e78e0c8819376822e3bbb
'2018-12-19T08:30:20-05:00'
describe
'120433' 'info:fdaEXUNH3FIT_65X3YKfile535' 'sip-files00097.jpg'
a3ad402076b05aa52b993ed0c9866b36
2690e7eae0604b99e8e3d10b998338dd7344e4b9
describe
'51489' 'info:fdaEXUNH3FIT_65X3YKfile536' 'sip-files00097.QC.jpg'
1f3c6b8f0a2ea81778a0600334cddb47
05d442b01531a2cc4ac0c6919dece0bad17c2bba
describe
'121322' 'info:fdaEXUNH3FIT_65X3YKfile537' 'sip-files00098.jpg'
53a828cfb06922cdb448a1f42ef59029
44860c928943b2a144d4e1f595d2857e41b864ac
describe
'47964' 'info:fdaEXUNH3FIT_65X3YKfile538' 'sip-files00098.QC.jpg'
756ffe3733546dccf82b314bc8453817
725c6d8965808761515b276e6e2d927145652061
describe
'137924' 'info:fdaEXUNH3FIT_65X3YKfile539' 'sip-files00099.jpg'
ea4e0e8c54d04e57a9ef657d31319dfe
a143ba52c4c2ba71d3bea9652afa93246a7392f3
describe
'7586100' 'info:fdaEXUNH3FIT_65X3YKfile54' 'sip-files00057.tif'
6697cb2cca5e9e95529b413b6431ccab
f5471b507379abf9dca3fde6ca1d4fb67c2e594d
describe
'51269' 'info:fdaEXUNH3FIT_65X3YKfile540' 'sip-files00099.QC.jpg'
af3311c640df79fde3ba424c5638f6bb
1b1b5ed8d8f983a1f1c97f235b804e0e81631eb0
describe
'85373' 'info:fdaEXUNH3FIT_65X3YKfile541' 'sip-files00100.jpg'
bc083253c5527da706fdc859b905dd28
e4c18128c51ce80006e1a87f2bc0f9300f4b9479
describe
'39941' 'info:fdaEXUNH3FIT_65X3YKfile542' 'sip-files00100.QC.jpg'
5809aea01f821a693128cf1b8eb05187
ae6cfbb047f58febcb18d9e4682adbd999e3b732
describe
'106918' 'info:fdaEXUNH3FIT_65X3YKfile543' 'sip-files00101.jpg'
d16bcb29b4a4cef7be1cd68d84a38303
64023fcd0c8446d34633c6a0929e239ac59be99a
describe
'41122' 'info:fdaEXUNH3FIT_65X3YKfile544' 'sip-files00101.QC.jpg'
aad8a7b93b83b4f0e9d6eae5ec3f7090
85a70d5270ed82a8b1e7d7e0e2dce284d7353028
describe
'133211' 'info:fdaEXUNH3FIT_65X3YKfile545' 'sip-files00102.jpg'
1f2c8412074b6da460ba7cedae70f2fd
1c4cccfe54148c7ebff795ea7427eb4383569340
describe
'47901' 'info:fdaEXUNH3FIT_65X3YKfile546' 'sip-files00102.QC.jpg'
4230262c798c534e750443b9a3cdb5c8
4c8739ca7e008e3165ed67655574fe93e2983d92
describe
'156443' 'info:fdaEXUNH3FIT_65X3YKfile547' 'sip-files00103.jpg'
6fde67d5ba6334fa90ae4335d5720a73
83a6bd649ea701235800fc94bcdd6a3530c495c9
'2018-12-19T08:33:49-05:00'
describe
'54939' 'info:fdaEXUNH3FIT_65X3YKfile548' 'sip-files00103.QC.jpg'
45736245e4a8dbbdc648088bac614d40
bd9c9198a84e30db82c9b143c7f075633ef1603e
'2018-12-19T08:36:29-05:00'
describe
'111951' 'info:fdaEXUNH3FIT_65X3YKfile549' 'sip-files00104.jpg'
7ade8c66d9d1b114f6d12c4942fff0db
c7ab6791c687f16bd73ebcff69c8cbfba641c84b
describe
'7581212' 'info:fdaEXUNH3FIT_65X3YKfile55' 'sip-files00058.tif'
c24930c25fa8513694a1ee2e955eca3f
167ce9efafeaf3f2121f6c5262378bd6bd268c8d
'2018-12-19T08:28:38-05:00'
describe
'43240' 'info:fdaEXUNH3FIT_65X3YKfile550' 'sip-files00104.QC.jpg'
4c13f77b739f2f357d6370f02952f272
11331c55f96b044ea8d5c9ad038fd3311ac61eab
describe
'113653' 'info:fdaEXUNH3FIT_65X3YKfile551' 'sip-files00105.jpg'
12b1907edaed84e3db1b9fb014dc1184
89c162cfd50aae92c8636397e11c849968b9e8bc
describe
'44902' 'info:fdaEXUNH3FIT_65X3YKfile552' 'sip-files00105.QC.jpg'
adebb75380a38e7e07d6b3da74a00d94
c087655152ea5c22c25cf40fb0c06349020db362
'2018-12-19T08:28:59-05:00'
describe
'141025' 'info:fdaEXUNH3FIT_65X3YKfile553' 'sip-files00106.jpg'
87e101918e4d579330c83a271f7e3fc5
7cf601e459b9516b91cc953b96db36cb48aab9e7
'2018-12-19T08:32:16-05:00'
describe
'58775' 'info:fdaEXUNH3FIT_65X3YKfile554' 'sip-files00106.QC.jpg'
05ace30f7bd4186ae1713dad39eeac86
6c78150f24ba35630615e4bf6ccc37ae9b399bad
'2018-12-19T08:34:01-05:00'
describe
'63352' 'info:fdaEXUNH3FIT_65X3YKfile555' 'sip-files00107.jpg'
27c73dcb0dd395a7624bb5c7cb05b9d3
0b9b947602cac9f306977ab6243a0695061cf7ef
describe
'28693' 'info:fdaEXUNH3FIT_65X3YKfile556' 'sip-files00107.QC.jpg'
951c49054ec1a35164418628ecc6035d
bdc1a00d06f05b3569d342f4aed532781947ba41
describe
'33097' 'info:fdaEXUNH3FIT_65X3YKfile557' 'sip-files00108.jpg'
4b0db1f90df21d85b060204286754f93
e331886333fa21209be201020acaa7df235aa2f4
'2018-12-19T08:31:24-05:00'
describe
'17126' 'info:fdaEXUNH3FIT_65X3YKfile558' 'sip-files00108.QC.jpg'
910ed75697ba8761e9250c734746d720
76cf282096e92b97e569dbce15f9cafcad7c62b7
'2018-12-19T08:28:12-05:00'
describe
'69966' 'info:fdaEXUNH3FIT_65X3YKfile559' 'sip-files00109.jpg'
ed1beef81975dbcecf6eb3353fa9c2c8
94bd915b4d6682b73af3cf22f6876f04dabe43ae
describe
'7598328' 'info:fdaEXUNH3FIT_65X3YKfile56' 'sip-files00059.tif'
c71586a24654af896d92abbc13098002
0bd9e9bc7bcb910f0b03210af54081daa8816bcd
'2018-12-19T08:33:53-05:00'
describe
'30430' 'info:fdaEXUNH3FIT_65X3YKfile560' 'sip-files00109.QC.jpg'
4083f30c272d6095859d36ad867bf5f3
01e1190e3345856807884f41333260d44b3f8dca
describe
'36010' 'info:fdaEXUNH3FIT_65X3YKfile561' 'sip-files00110.jpg'
956d4b1d56f57f926e77c5803cddfba3
74916c3e0a7e738f0174bf100e005fda8698be35
'2018-12-19T08:37:51-05:00'
describe
'17459' 'info:fdaEXUNH3FIT_65X3YKfile562' 'sip-files00110.QC.jpg'
62c963eadb1fded7bcf2d71adc0836fd
d212f7e5bb577978a2a75053b59afab16227fb93
describe
'149664' 'info:fdaEXUNH3FIT_65X3YKfile563' 'sip-files00111.jpg'
83d0771d312f07baa5b5220255c056fa
2f0e616743c85e1ddd7284102db17dbab85bb711
describe
'63278' 'info:fdaEXUNH3FIT_65X3YKfile564' 'sip-files00111.QC.jpg'
fe075fd1246db6893fd134cf0d64fcc9
6d3d09bbedd249032cc88c16db8072e73377b586
'2018-12-19T08:31:26-05:00'
describe
'146158' 'info:fdaEXUNH3FIT_65X3YKfile565' 'sip-files00112.jpg'
6c5e5fced7c6ca5c96d7e2138d7af6d8
1c001a5af6ecb00258fb7079c6299d7064c04089
describe
'60738' 'info:fdaEXUNH3FIT_65X3YKfile566' 'sip-files00112.QC.jpg'
d644d42a55caff6e1c19072ad30f0879
159c632fa5efd474ab60d77368bf8cc6510c11c3
describe
'146714' 'info:fdaEXUNH3FIT_65X3YKfile567' 'sip-files00113.jpg'
b3686b2f27a98edc0e82ce51b08b7954
4cf4ba6073c18d17b40f266356a031e869c093a6
'2018-12-19T08:30:39-05:00'
describe
'60851' 'info:fdaEXUNH3FIT_65X3YKfile568' 'sip-files00113.QC.jpg'
31283e785d8ffdeb5729ae2e0f2cda8d
a1d7da4db66e983310943d0b5c2937dc177195c2
describe
'23278' 'info:fdaEXUNH3FIT_65X3YKfile569' 'sip-files00114.jpg'
8365987b02ecc4e61ce7c07a3aeb3b47
4919ced141bcfac2d986ce79bb34f0f260a79932
'2018-12-19T08:36:16-05:00'
describe
'7587012' 'info:fdaEXUNH3FIT_65X3YKfile57' 'sip-files00060.tif'
84938f4957466d3922002934d41baab7
044472307bea1039d836030d68cf0bd7b89856d4
'2018-12-19T08:28:48-05:00'
describe
'12565' 'info:fdaEXUNH3FIT_65X3YKfile570' 'sip-files00114.QC.jpg'
f32fc3efa46535b4447493d73eb461b2
2aeff868ad8feae2adad5da3ef7dd6fc95cf2306
'2018-12-19T08:33:22-05:00'
describe
'29744' 'info:fdaEXUNH3FIT_65X3YKfile571' 'sip-files00115.jpg'
93562fb613caa9f1cb259c96e9cf25e5
523bba7113f9a11c108bd9bb0a0cf88f4dba8bb4
describe
'15772' 'info:fdaEXUNH3FIT_65X3YKfile572' 'sip-files00115.QC.jpg'
6cd3eab400c46599024be8934e2ba08f
6d5d6b88bfff336a4fa1a3eced348a53f539934a
describe
'26321' 'info:fdaEXUNH3FIT_65X3YKfile573' 'sip-files00116.jpg'
f215d632f46f0b805e6181b7e1fc1365
57ead20c888b0d7e531654aaad04cf9d76b683a8
describe
'14901' 'info:fdaEXUNH3FIT_65X3YKfile574' 'sip-files00116.QC.jpg'
c309bd964e371fbbb8800c6a3402a8a6
ad5ea3035fc6a0b12855362994c7e3fdaa98ab91
'2018-12-19T08:27:34-05:00'
describe
'32232' 'info:fdaEXUNH3FIT_65X3YKfile575' 'sip-files00117.jpg'
ec3adadb8c1004592ca873181894f463
349649b826d67b9d33d5836159bd7d2b32f0950c
describe
'17064' 'info:fdaEXUNH3FIT_65X3YKfile576' 'sip-files00117.QC.jpg'
d8866fa62e7b17abec54c0e0b076ec52
c892aba7ebb4a3966d5db78b2d35cf7ae8d451dd
describe
'42747' 'info:fdaEXUNH3FIT_65X3YKfile577' 'sip-files00118.jpg'
eacebf117cc237b020dc63b0cf288685
2a376ca6c0415794e12b08803a1e257c8f54ee5a
describe
'19495' 'info:fdaEXUNH3FIT_65X3YKfile578' 'sip-files00118.QC.jpg'
ad76e9daf4f297f92578587024265ad2
bb03ee3f0d29798fc71507f8af95b69b1b8ea375
'2018-12-19T08:30:04-05:00'
describe
'34348' 'info:fdaEXUNH3FIT_65X3YKfile579' 'sip-files00119.jpg'
f08775be2bd34faeeaa5873cd474b5f1
d10dfccbf8dcef1870144dd4b2f7289a8d066053
describe
'7592608' 'info:fdaEXUNH3FIT_65X3YKfile58' 'sip-files00061.tif'
9c3f6a7e8a719d1cdd25bfdfaf82fc02
b9f7e277654c688193e54bef2b0c26282c0eb779
describe
'17421' 'info:fdaEXUNH3FIT_65X3YKfile580' 'sip-files00119.QC.jpg'
cafd0d34120ea0861a38dfe1ef5ef10c
290ec3cc8cd5b84679fd0a2865203a7241ed1eff
'2018-12-19T08:31:20-05:00'
describe
'53935' 'info:fdaEXUNH3FIT_65X3YKfile581' 'sip-files00120.jpg'
c07e13bd4a986d18febf2a42d24767e6
2979a191177a1d72c2b7e1d25e11ec57a10b2670
'2018-12-19T08:32:18-05:00'
describe
'25239' 'info:fdaEXUNH3FIT_65X3YKfile582' 'sip-files00120.QC.jpg'
f8981f8f2c58751ccddcfa1a5d98ff09
0fa79723cb22f5832ab4e8c6a4ae13d15b454d1f
'2018-12-19T08:32:43-05:00'
describe
'34569' 'info:fdaEXUNH3FIT_65X3YKfile583' 'sip-files00121.jpg'
635b4b30dd924bc774c4073487b41b7a
ee1f875f7d3aab666ffe6d09437e6db17482fbd6
'2018-12-19T08:28:55-05:00'
describe
'15978' 'info:fdaEXUNH3FIT_65X3YKfile584' 'sip-files00121.QC.jpg'
f34f869ca205eb27851c7c35a0d5b88b
d6bc2012dded923f6a3d2800674084d0cfd2accf
describe
'44419' 'info:fdaEXUNH3FIT_65X3YKfile585' 'sip-files00122.jpg'
3701c2d2573ac628801c6bcbb2ae15ea
4751097e5655d36399036b5a51d27b417953c544
'2018-12-19T08:30:19-05:00'
describe
'20477' 'info:fdaEXUNH3FIT_65X3YKfile586' 'sip-files00122.QC.jpg'
b072494f7bd8e237f74ccc9881037cd0
429cb4f3c1e5cef8ddacc7319d1ccdda9860887a
'2018-12-19T08:29:37-05:00'
describe
'50731' 'info:fdaEXUNH3FIT_65X3YKfile587' 'sip-files00123.jpg'
dddeb80f2e45f108583451a8a56a6136
94f743796d6bc32def1d3b10de9546b3233b7714
describe
'23629' 'info:fdaEXUNH3FIT_65X3YKfile588' 'sip-files00123.QC.jpg'
876ece5cc3aabb89a38872dbca6d330c
561d09ea69636a874aa150126139ec836e5a6b79
'2018-12-19T08:32:20-05:00'
describe
'38221' 'info:fdaEXUNH3FIT_65X3YKfile589' 'sip-files00124.jpg'
22e84363f10d35f5daba260eb8001c78
00548d8d04ecdd9e5ad50cd0f70d32ebe8477ee0
describe
'7584684' 'info:fdaEXUNH3FIT_65X3YKfile59' 'sip-files00062.tif'
bbb027f40759e76e5575d94ae6538406
b27877a528c10d0af6c626b5d16a7b8d26c19853
'2018-12-19T08:34:14-05:00'
describe
'19249' 'info:fdaEXUNH3FIT_65X3YKfile590' 'sip-files00124.QC.jpg'
060c433446661fc4dc18f4329f51b0f1
95f160ac141d422101ee4bcb426c6742b556d521
'2018-12-19T08:30:36-05:00'
describe
'35414' 'info:fdaEXUNH3FIT_65X3YKfile591' 'sip-files00125.jpg'
c245c6c5f48ea3884c24ae3f3dad9f3e
140009e51166b033d92e7628ca7d14fb1f679165
describe
'16255' 'info:fdaEXUNH3FIT_65X3YKfile592' 'sip-files00125.QC.jpg'
9641132e78d9e4e5b1d561ed37a3baef
7a0278780590b7e3f9d394e620af43cb71a3b108
describe
'50680' 'info:fdaEXUNH3FIT_65X3YKfile593' 'sip-files00126.jpg'
e3176abe3b3c7e8951cb323930f8f261
85fd93120fe03681ccb07ef9c9c7f850fee42f98
'2018-12-19T08:33:57-05:00'
describe
'23151' 'info:fdaEXUNH3FIT_65X3YKfile594' 'sip-files00126.QC.jpg'
bd9c012e414b62358284497ae8dcb563
6b74a5626834072b7e37fc2f5a47036ed6e93074
describe
'121068' 'info:fdaEXUNH3FIT_65X3YKfile595' 'sip-files00127.jpg'
1ad8112ec200f2c62462739682a3ab25
56073a84fcf8832ad061a9535a0a37fd2146d7aa
describe
'49535' 'info:fdaEXUNH3FIT_65X3YKfile596' 'sip-files00127.QC.jpg'
2e6507ea9494907a5f4766d161f86cad
1ebceeff5e6370d56effc500a20754494abbb0d0
'2018-12-19T08:30:24-05:00'
describe
'152261' 'info:fdaEXUNH3FIT_65X3YKfile597' 'sip-files00128.jpg'
4b64a10dc975b97b04690ed462c52aee
b75ff46f9ae5bd199a0f14c35e364740e79e4d35
describe
'63210' 'info:fdaEXUNH3FIT_65X3YKfile598' 'sip-files00128.QC.jpg'
52a73e32f9a4fc3787ad94669d7c4d53
484a352b83d67d3a8c3977c437f75fcf3b514b43
describe
'140809' 'info:fdaEXUNH3FIT_65X3YKfile599' 'sip-files00129.jpg'
1858ebefaa5fd5a75b86d9961379c804
1cbee91204385a9a2e22b1736fcb3d4b71a40086
'2018-12-19T08:37:45-05:00'
describe
'7720564' 'info:fdaEXUNH3FIT_65X3YKfile6' 'sip-files00009.tif'
631884fe34d285a78c10922da141bac3
edbf5f00f629d95b8e48e71f639474d09f14506c
'2018-12-19T08:34:49-05:00'
describe
'7616876' 'info:fdaEXUNH3FIT_65X3YKfile60' 'sip-files00063.tif'
ec4cebbb6156605ee8ba7cbeed20049d
0eeb6ab8dfbe22ecbaba443ab70ece80528fc714
'2018-12-19T08:36:39-05:00'
describe
'58858' 'info:fdaEXUNH3FIT_65X3YKfile600' 'sip-files00129.QC.jpg'
e5081a806c8b3012eeb18b137a13ca23
d3bc97e84f1bc05a58033aa688a6b5a3a835d7d7
describe
'139860' 'info:fdaEXUNH3FIT_65X3YKfile601' 'sip-files00130.jpg'
a4a19e2a60a5937a95abc7e7f1d2c3db
ec981221b877fb874e8d3afecde7ca43ffd7cdb5
describe
'58457' 'info:fdaEXUNH3FIT_65X3YKfile602' 'sip-files00130.QC.jpg'
72cb29be581a1d02ad6bd54dad1ef45c
3341026b84056f794a67a9a4fd69428c167561d2
describe
'147504' 'info:fdaEXUNH3FIT_65X3YKfile603' 'sip-files00131.jpg'
82fb9d44d3f6ca46843a76ed9b93e62e
e63f65afdb49f75860ca3e974f23eff66c63ae6d
'2018-12-19T08:33:15-05:00'
describe
'62525' 'info:fdaEXUNH3FIT_65X3YKfile604' 'sip-files00131.QC.jpg'
998d69958bd6c997e6057722bda20ae9
792c1d7554ef3059fc4109057cf8982559d92561
describe
'129967' 'info:fdaEXUNH3FIT_65X3YKfile605' 'sip-files00132.jpg'
d1715fac7777d10ade486448ebc6dadd
c1ed9264e14d96085eca77ffb967d07a04a67c26
describe
'54848' 'info:fdaEXUNH3FIT_65X3YKfile606' 'sip-files00132.QC.jpg'
cf1fdf5a07d2db98cc2048781d3f3296
e8b3d4a5163fe5acf52cf0750ba1c44ffa84d12e
describe
'132575' 'info:fdaEXUNH3FIT_65X3YKfile607' 'sip-files00133.jpg'
c465e2d68dd0291fc04314979d5ca6ed
ebbe657ac7e18a5163a73d1f3ae8965d0c94d241
describe
'56655' 'info:fdaEXUNH3FIT_65X3YKfile608' 'sip-files00133.QC.jpg'
c5d759f575a077a76b529ec3496798d1
fbcba945c4c559661e005820e56ba082b043a9f7
describe
'143357' 'info:fdaEXUNH3FIT_65X3YKfile609' 'sip-files00134.jpg'
414cf4881af0e65d44fe39be01de675b
d6db72d9e6d16cef1764f3a335e5e3b0eaa2ef87
describe
'7597528' 'info:fdaEXUNH3FIT_65X3YKfile61' 'sip-files00064.tif'
85edc789c9a3c29a3da336882425cbff
9dd891e7647b58671390238459b67c87ffb52822
describe
'61256' 'info:fdaEXUNH3FIT_65X3YKfile610' 'sip-files00134.QC.jpg'
50267ce86d236fb7f93411c0c7ce2bb3
f001f7bda79f34924a966ff4140e42c349201b8f
describe
'160346' 'info:fdaEXUNH3FIT_65X3YKfile611' 'sip-files00135.jpg'
3650f1a57a0cfaeb991a5c6a5fd1c14f
41fe0ef16e45bc261cf79c608118df3449236a93
describe
'55655' 'info:fdaEXUNH3FIT_65X3YKfile612' 'sip-files00135.QC.jpg'
9974dc5850039346fcdd295220838527
7a3260e20800c347ffb723797733709664821d4f
describe
'144981' 'info:fdaEXUNH3FIT_65X3YKfile613' 'sip-files00136.jpg'
9ae36856fd8deec339637152b8d4a4e4
28626da24f1fca16789a183c097f6215206566bc
describe
'57495' 'info:fdaEXUNH3FIT_65X3YKfile614' 'sip-files00136.QC.jpg'
c7ea0089e22c7b26379635f3bf6dc910
cfa7cf35b7c5a24d9b92feed67c45058b57b426a
describe
'152441' 'info:fdaEXUNH3FIT_65X3YKfile615' 'sip-files00137.jpg'
a36f194741d8c637fc9be22b9b9a559d
b84712ef20e18d168f058b123e0d06800c57288b
describe
'64282' 'info:fdaEXUNH3FIT_65X3YKfile616' 'sip-files00137.QC.jpg'
595d7f2eb6b55bdfaeb5e94111457ab8
523c6a9ad0afbd8ab4331e390fdd6608654c2b31
'2018-12-19T08:33:36-05:00'
describe
'99038' 'info:fdaEXUNH3FIT_65X3YKfile617' 'sip-files00138.jpg'
4800bf7503a5a4501ec4f6ed8bcc8922
984e27a36b7769155227027c761a5bcedd92b901
describe
'43663' 'info:fdaEXUNH3FIT_65X3YKfile618' 'sip-files00138.QC.jpg'
7422fc70a1af767aa31d0e6ec86bcdf1
974425d23b223e538d00ef8bd8dc71e575cf3d5a
describe
'131466' 'info:fdaEXUNH3FIT_65X3YKfile619' 'sip-files00139.jpg'
e965bacaafb7e3d00aad45cd0b1ffaad
7011022625060aefce7426dcc802605382f30435
describe
'7604076' 'info:fdaEXUNH3FIT_65X3YKfile62' 'sip-files00065.tif'
42261bc5b22cc0225890dac16c197647
9a4bb96beda29652ec21d98e456f3e5df9a025f5
describe
'54474' 'info:fdaEXUNH3FIT_65X3YKfile620' 'sip-files00139.QC.jpg'
3f0cb0d9ceabe3df9f85b84698183d17
478d614355c8595d84907e05eac94b6989e1cb65
describe
'90677' 'info:fdaEXUNH3FIT_65X3YKfile621' 'sip-files00140.jpg'
b2df6183539574bca8cce447ad186043
665451efa13471dc2864fb98f1a77296e704cec2
describe
'39341' 'info:fdaEXUNH3FIT_65X3YKfile622' 'sip-files00140.QC.jpg'
4ce9a5b596d528c6ed2388e674cd553e
76fedd80805e399f4e6fb1aa5fa48b385dc7c38f
describe
'info:fdaEXUNH3FIT_65X3YKfile623' 'sip-files00141.jpg'
3c1091b6fccde99d450eb87b781e801c
22a23a3956497a075664c0b2fcdf068312d76d08
describe
'19887' 'info:fdaEXUNH3FIT_65X3YKfile624' 'sip-files00141.QC.jpg'
04454072bc370b47f570eee3fbe6aaad
fbce5966ceb13cbdac05c49f07d13a3846f2cacc
'2018-12-19T08:30:35-05:00'
describe
'35563' 'info:fdaEXUNH3FIT_65X3YKfile625' 'sip-files00142.jpg'
c894c277fe34e2b0d92f287c74b7f166
84f0bd1d0562ebf38be53680ab5ab866a32b64e4
describe
'18081' 'info:fdaEXUNH3FIT_65X3YKfile626' 'sip-files00142.QC.jpg'
7bb1a0a6024cf94a26910838a8e829e3
e5f66bf51c87569e6760561bf37ed3fab68f1085
'2018-12-19T08:37:39-05:00'
describe
'49102' 'info:fdaEXUNH3FIT_65X3YKfile627' 'sip-files00143.jpg'
4840a25deac2baf7e9be039f225663ff
60ed40b126c08755d813056bb48baeb82b620d4b
'2018-12-19T08:36:49-05:00'
describe
'20676' 'info:fdaEXUNH3FIT_65X3YKfile628' 'sip-files00143.QC.jpg'
d06bbe8155335b03dd6fdf8212491aa9
1645522e33abf37bea10644a1b644168ab401e27
describe
'37408' 'info:fdaEXUNH3FIT_65X3YKfile629' 'sip-files00144.jpg'
877904a45e26f71755ed2de48fca2088
d55524d221ed373ed212c85a9230d39548982bb2
describe
'7603052' 'info:fdaEXUNH3FIT_65X3YKfile63' 'sip-files00066.tif'
bae44ed1f51bd9fceeb02447e1ded11b
a350d900a8f604add2cb42d7abe2a1aef4a03370
'2018-12-19T08:36:05-05:00'
describe
'18712' 'info:fdaEXUNH3FIT_65X3YKfile630' 'sip-files00144.QC.jpg'
284a01ab904f8b2b6cb034f12c0f3cec
1605d70695ba2ed7150ac50182213ea389c031b5
'2018-12-19T08:34:33-05:00'
describe
'56489' 'info:fdaEXUNH3FIT_65X3YKfile631' 'sip-files00145.jpg'
1ccf14545ada28224854e3605aa24068
4f9dc94ade39622f69bed07bb60a2ca23bffea46
describe
'25507' 'info:fdaEXUNH3FIT_65X3YKfile632' 'sip-files00145.QC.jpg'
40dd5a1c6c1c012b4dfaf12513e1a9e1
03ea881b4e998d32e066c2095cf4b375c5acf1ce
describe
'35181' 'info:fdaEXUNH3FIT_65X3YKfile633' 'sip-files00146.jpg'
211627712554fd5f8640657f1bb6e5d2
edbb03d9ca7c57ee11cd49ac6b04f834326cb095
describe
'16607' 'info:fdaEXUNH3FIT_65X3YKfile634' 'sip-files00146.QC.jpg'
7e64589aa8f14393354dd6f159e0a9a7
85c55b60a2327493817c894d589fff0ad9458c1f
'2018-12-19T08:33:13-05:00'
describe
'37254' 'info:fdaEXUNH3FIT_65X3YKfile635' 'sip-files00147.jpg'
a0261c5395dbc364b43efde4cd3f5e97
5fbf1af3c1935e4a32a7f6237af121ae17249388
describe
'18737' 'info:fdaEXUNH3FIT_65X3YKfile636' 'sip-files00147.QC.jpg'
b62a0cd2fcdaeb31f5a38093ad7b5807
1dccd522672dd4a39cc2c3367ebbbc3dfd1a2f06
'2018-12-19T08:31:17-05:00'
describe
'58349' 'info:fdaEXUNH3FIT_65X3YKfile637' 'sip-files00148.jpg'
ab8fac2de5c4504723b5feb72fde17ca
8974e815b2f0aa04da9f40d12d4a368d8fb5b06e
describe
'25066' 'info:fdaEXUNH3FIT_65X3YKfile638' 'sip-files00148.QC.jpg'
5e8cd61a38b9171fb8f02c9eb1db15b9
4f76fa60560e00b150908f91490ea7714e0dcf5a
describe
'116744' 'info:fdaEXUNH3FIT_65X3YKfile639' 'sip-files00149.jpg'
1dea9ca8596ba9bce7d505d8b6474b9d
bf065e9136c109d5d08864a07bd56f9a8979ca4d
describe
'7605972' 'info:fdaEXUNH3FIT_65X3YKfile64' 'sip-files00067.tif'
208a84eda10456562000cfe11ea7e901
8af91b0d8cea2152949c60219e97d201d80a1273
describe
'48852' 'info:fdaEXUNH3FIT_65X3YKfile640' 'sip-files00149.QC.jpg'
ec56d551fe487fd75b82a469fe84af62
5e36ace43a17147c3f17179d5849c78bc300afca
describe
'140060' 'info:fdaEXUNH3FIT_65X3YKfile641' 'sip-files00150.jpg'
4d041915ccb2708c8d11fd264bbaa7b6
2b0e9da905f9cf913f1f6cc056c3d532f20f8c3f
describe
'58615' 'info:fdaEXUNH3FIT_65X3YKfile642' 'sip-files00150.QC.jpg'
16e358b0c3e25f38fcb08c99acefe657
9d03e3f82b1aa91ba3969200c21dcf1883ece27d
describe
'136226' 'info:fdaEXUNH3FIT_65X3YKfile643' 'sip-files00151.jpg'
730eb5495042cd3e9bb9f7f5b5ce4250
0ed967264cc6ddf9b0d875fd181112d9805dde24
describe
'58204' 'info:fdaEXUNH3FIT_65X3YKfile644' 'sip-files00151.QC.jpg'
d261990883e17f78539c6a5ceeba421a
b966ff9d7bb72d82e10c2eefc25ab18b6df2a413
describe
'133385' 'info:fdaEXUNH3FIT_65X3YKfile645' 'sip-files00152.jpg'
3c0c736c64419f31b3ed25a3cf71831c
b15f206434f00b50637f13e16000114fcc71eea4
describe
'58086' 'info:fdaEXUNH3FIT_65X3YKfile646' 'sip-files00152.QC.jpg'
77df427c9934efd92ffccfe1b8416ad0
4c80dcc778f77265f13f87ea6da43b23d7882b08
describe
'149321' 'info:fdaEXUNH3FIT_65X3YKfile647' 'sip-files00153.jpg'
78d4cb316cb66e63f56a5f962b85cbb1
6b6d14dd945942e741b84d5d9f1e719f4edf1e21
'2018-12-19T08:34:39-05:00'
describe
'61904' 'info:fdaEXUNH3FIT_65X3YKfile648' 'sip-files00153.QC.jpg'
691b6dfda7de4255c4c2de31787e4655
1f507aa7f70621db583fad0c9c25f19df480ab42
describe
'146905' 'info:fdaEXUNH3FIT_65X3YKfile649' 'sip-files00154.jpg'
e32686e2d800188eafd58da89da2403a
a55e989d80dbcb303ded2f423c36fe9fb8376f08
describe
'7599996' 'info:fdaEXUNH3FIT_65X3YKfile65' 'sip-files00068.tif'
8fd32474da8f6a6088972f6a7c6d3094
92a45ba061ede4020619168796ec358f5c9cea90
'2018-12-19T08:33:07-05:00'
describe
'62376' 'info:fdaEXUNH3FIT_65X3YKfile650' 'sip-files00154.QC.jpg'
d4401fff93889100034263b2c456186d
56806ffbb738f6f36ac8b784514f6d95587c9472
'2018-12-19T08:32:42-05:00'
describe
'136556' 'info:fdaEXUNH3FIT_65X3YKfile651' 'sip-files00155.jpg'
7fa2dc201bcbbc77c288c79ab644f2a9
4540b30835f58cc797794e7e6cdc2a17de0767ba
describe
'57381' 'info:fdaEXUNH3FIT_65X3YKfile652' 'sip-files00155.QC.jpg'
65b451a14faf159d9d4a49d831e55c91
ed197cbe07806bef66070f12ce268ecd4197fc09
'2018-12-19T08:27:04-05:00'
describe
'128422' 'info:fdaEXUNH3FIT_65X3YKfile653' 'sip-files00156.jpg'
9a33f755723bf42abaa94824f7219210
b8ede45c576fc98dccd4cf3c7c369c2d30d06744
describe
'53712' 'info:fdaEXUNH3FIT_65X3YKfile654' 'sip-files00156.QC.jpg'
c652fe7c8a232159d4d83e94b0efb6cd
8643c9dd3c194e61ed62bd51e188cc7ddda9d58e
describe
'111981' 'info:fdaEXUNH3FIT_65X3YKfile655' 'sip-files00157.jpg'
219a1092b4747c650e9f597269227c75
5125a4445921fe8c3e8446cc5f5f59ada9d30c00
'2018-12-19T08:29:12-05:00'
describe
'47917' 'info:fdaEXUNH3FIT_65X3YKfile656' 'sip-files00157.QC.jpg'
1078374d732bac208d2cda368832996c
18998e1af748d434f487ea5649a963b3fc444801
describe
'112742' 'info:fdaEXUNH3FIT_65X3YKfile657' 'sip-files00158.jpg'
b2f06bbc59380252ac507d4aa8d6fd90
103f6f77d1d7d38ed8d1148819e408a6a43e335b
describe
'44716' 'info:fdaEXUNH3FIT_65X3YKfile658' 'sip-files00158.QC.jpg'
d00f18b89e285ce35b395f4d64f8ea7f
7e1573e359281c0691d4fad99e2fa4fb3275b6ce
describe
'120744' 'info:fdaEXUNH3FIT_65X3YKfile659' 'sip-files00159.jpg'
db8e645d4b97b7f0ab215be945622e3a
dfda722490dba7374bd35f29b1289fe20f17da51
describe
'7606184' 'info:fdaEXUNH3FIT_65X3YKfile66' 'sip-files00069.tif'
9150c168da97ad84d3d33d1943ae4b82
0b1463a990122285932ce7dac315baf4518d449b
'2018-12-19T08:29:09-05:00'
describe
'51201' 'info:fdaEXUNH3FIT_65X3YKfile660' 'sip-files00159.QC.jpg'
c376d502d02e988b5447330d41ceb485
1462858c4a3c0ff9dc05b545123beb3a9f6d2cb7
describe
'110130' 'info:fdaEXUNH3FIT_65X3YKfile661' 'sip-files00160.jpg'
6ca1391ab1abea30142db81500fb7a33
547a2691096c0aaea6454fd44d69c92275c85fca
describe
'45611' 'info:fdaEXUNH3FIT_65X3YKfile662' 'sip-files00160.QC.jpg'
5656e97600f10fa56bdaa2432ed70df6
060ab9efe133c120a6c9034ff1d1a3857fd723dc
describe
'144848' 'info:fdaEXUNH3FIT_65X3YKfile663' 'sip-files00161.jpg'
5e6cd76fd473c3d3ae7c48b8b7ccb17b
8c7b19562310b955bb5cf19bd07e175cb7ab921b
'2018-12-19T08:29:28-05:00'
describe
'60975' 'info:fdaEXUNH3FIT_65X3YKfile664' 'sip-files00161.QC.jpg'
7da225f03c6028062e6dae7fdeb21ca2
07414e6986ad8fc80e01381a744d6a43fa196f10
'2018-12-19T08:30:07-05:00'
describe
'113165' 'info:fdaEXUNH3FIT_65X3YKfile665' 'sip-files00162.jpg'
7e4eb7c86cff598f7b44a46ddddd2623
eba8704ff5b8a96fcd6360f4f3f90a8f7b5c4b93
describe
'46729' 'info:fdaEXUNH3FIT_65X3YKfile666' 'sip-files00162.QC.jpg'
138a31cf6303da773da5851b29b113e4
256c0646d9d70fec15e53f71d002a887a8a44645
describe
'120701' 'info:fdaEXUNH3FIT_65X3YKfile667' 'sip-files00163.jpg'
60f0e86e14f8a607ec2b2c59cc0cbe42
5033f69c7695eb361c946372d2558936bb791135
'2018-12-19T08:30:59-05:00'
describe
'51819' 'info:fdaEXUNH3FIT_65X3YKfile668' 'sip-files00163.QC.jpg'
65188fa7026e10704a6ca149ba59806d
75ff016d46a75472a851357e2a7c32b94cea19f3
describe
'112039' 'info:fdaEXUNH3FIT_65X3YKfile669' 'sip-files00164.jpg'
4c84264756c334a64330081198a6437c
a9d00a96f902bb1bb9e995a7b7a20e0d3a4e3bbb
describe
'7595188' 'info:fdaEXUNH3FIT_65X3YKfile67' 'sip-files00070.tif'
14044b16c609bdbac59ccb5984b187cd
b4cbd92924b9b9b5f25a534003e9f462b9b4a836
describe
'47388' 'info:fdaEXUNH3FIT_65X3YKfile670' 'sip-files00164.QC.jpg'
f10a87af5fe48761e43d9c7bce261032
9059eaa34d720ab86295d31b748b991fe10099c5
'2018-12-19T08:27:05-05:00'
describe
'144913' 'info:fdaEXUNH3FIT_65X3YKfile671' 'sip-files00165.jpg'
0f8f7f60ba6a2937a15ed10dc24cb6a6
9b4660bd0208ecb6b514fea0379afd69b5586560
'2018-12-19T08:34:22-05:00'
describe
'60811' 'info:fdaEXUNH3FIT_65X3YKfile672' 'sip-files00165.QC.jpg'
46ffc4e530f1692b2f3ac0885baacf9a
0d8af4e9c305c39034e700852fbaf58941cd7c83
'2018-12-19T08:32:48-05:00'
describe
'130327' 'info:fdaEXUNH3FIT_65X3YKfile673' 'sip-files00166.jpg'
216807a78e917c66e0a0fe9ec6e6602c
53e3e31551292981880c6e75a6eac737d59243aa
describe
'55054' 'info:fdaEXUNH3FIT_65X3YKfile674' 'sip-files00166.QC.jpg'
a5376dd9d437a36e018bf1941b124764
569b1d858e7868c0a8c3daeef0de931a82806a2a
describe
'108309' 'info:fdaEXUNH3FIT_65X3YKfile675' 'sip-files00167.jpg'
734a18daf307452e00c95da5df7c30c1
9cb8ce7c02d0dfb1419986da7e069b22047b81a1
'2018-12-19T08:36:24-05:00'
describe
'46796' 'info:fdaEXUNH3FIT_65X3YKfile676' 'sip-files00167.QC.jpg'
2d71a2eb4a0be500d3565bf42fd880a4
659744433397f158e5a64a29ce88326460da4d5c
'2018-12-19T08:28:26-05:00'
describe
'145633' 'info:fdaEXUNH3FIT_65X3YKfile677' 'sip-files00168.jpg'
831c94943bfb262ecc6e1a364bae374b
60ce41a2f67c0d5ab8536cc89f61937b164d4cec
describe
'53222' 'info:fdaEXUNH3FIT_65X3YKfile678' 'sip-files00168.QC.jpg'
f70f587d7c39a53eb9efa515bffc7c69
161610907b06b8dbea3310d40b436c70ed02a143
'2018-12-19T08:29:49-05:00'
describe
'172622' 'info:fdaEXUNH3FIT_65X3YKfile679' 'sip-files00169.jpg'
44a7ffb2d7239d50ecb7c4ccc36d5100
551d14c14179727a4dc1fca2365dd2de9946e776
'2018-12-19T08:36:56-05:00'
describe
'7596292' 'info:fdaEXUNH3FIT_65X3YKfile68' 'sip-files00071.tif'
0ee8b2efb2f9dbdab3d262f3a057e65f
7f7a5846fd408938a5743b7bfd87c57baf21d3a6
describe
'63092' 'info:fdaEXUNH3FIT_65X3YKfile680' 'sip-files00169.QC.jpg'
a056f2e5a202d6703ed1d63c41408b23
b322820eb9daa2c18bb0ff0d8890606717991408
describe
'183074' 'info:fdaEXUNH3FIT_65X3YKfile681' 'sip-files00170.jpg'
3d3ecb433ee302ea68c40bd851eb1dcf
5873b55ef699b6086564e07a340baeea0ced6bd8
describe
'65764' 'info:fdaEXUNH3FIT_65X3YKfile682' 'sip-files00170.QC.jpg'
75ed98181853bf0210d590ef2515266e
df0e34b7fccf562afb27d7d1ce983c1c91118e4d
'2018-12-19T08:35:14-05:00'
describe
'170925' 'info:fdaEXUNH3FIT_65X3YKfile683' 'sip-files00171.jpg'
f9d4d66d2dd618945d5358461cbd35ab
8b6a7bf00a2be9ec003ea77d38569a1a9ed7ae4b
describe
'62898' 'info:fdaEXUNH3FIT_65X3YKfile684' 'sip-files00171.QC.jpg'
ce3a01c21c31f8aa0532965dc7dab2aa
8c68762ce4b57ed812f8630e59712db7147662e6
describe
'184810' 'info:fdaEXUNH3FIT_65X3YKfile685' 'sip-files00172.jpg'
fff83f82226d954189041420cdc46652
e8a3e9fae44946febcf1fe2c0da2574773b2e212
'2018-12-19T08:36:57-05:00'
describe
'65321' 'info:fdaEXUNH3FIT_65X3YKfile686' 'sip-files00172.QC.jpg'
0e498471569eb307dc48c5b75fed20fb
ff3a8431d46c4f17692e8f6eff4596c8b916d5d4
'2018-12-19T08:37:54-05:00'
describe
'177990' 'info:fdaEXUNH3FIT_65X3YKfile687' 'sip-files00173.jpg'
75715d948ca8650c95583d6b42e3594d
aca0a215066d2ece655a6a73b4c4bc44f98b0c2a
'2018-12-19T08:33:04-05:00'
describe
'64265' 'info:fdaEXUNH3FIT_65X3YKfile688' 'sip-files00173.QC.jpg'
c1e9fd154624dd3c23e65d0e32ae60a3
f7b6853e82e791a63d24404547b538b8a4e21d50
'2018-12-19T08:37:16-05:00'
describe
'73436' 'info:fdaEXUNH3FIT_65X3YKfile689' 'sip-files00174.jpg'
55bb746731e974475db88eb29b1e1584
c203b322995c115bd329488deaa9e054dfabe3ac
describe
'7602956' 'info:fdaEXUNH3FIT_65X3YKfile69' 'sip-files00072.tif'
dc793618135f47d01b5cd458e2e9ebbb
b6eb480bd24d085ce51dcde47e7dfce13303c3fc
describe
'29108' 'info:fdaEXUNH3FIT_65X3YKfile690' 'sip-files00174.QC.jpg'
d6335190de702f53b0aef7b6d6633890
21d37dfc7fe1701e42d1021813c9ea37457716ef
describe
'107372' 'info:fdaEXUNH3FIT_65X3YKfile691' 'sip-files00175.jpg'
f9cf911989e1f5e2971e233db51950a1
da8b144f4fb9c3ff371d96052687c95ecd429592
'2018-12-19T08:33:51-05:00'
describe
'45788' 'info:fdaEXUNH3FIT_65X3YKfile692' 'sip-files00175.QC.jpg'
0dd9ae07d4f3cf30cca0324ef1711c28
02b277f8f970f14b9c519ec28c2178b950b3ba38
describe
'155203' 'info:fdaEXUNH3FIT_65X3YKfile693' 'sip-files00176.jpg'
89e0349d8a6425fee9f690dcbe811fd9
5404f8b66e942f17c8e91fd8f4da4e3b5f809a91
describe
'55794' 'info:fdaEXUNH3FIT_65X3YKfile694' 'sip-files00176.QC.jpg'
9ec288e31bbbd51b5227f6ef115d3da6
12562acc1fba9310658d304ea7ea00b5381afc57
describe
'50779' 'info:fdaEXUNH3FIT_65X3YKfile695' 'sip-files00177.jpg'
404a250638ea507e5b2c585fa1d27532
faa462a46587422d549817a45e9b785f36e6e145
describe
'21352' 'info:fdaEXUNH3FIT_65X3YKfile696' 'sip-files00177.QC.jpg'
6a4aa389325f045b978d9c80c87d2fb2
0767b972b235191ba0f0511da8b112e45e0cc41f
'2018-12-19T08:31:25-05:00'
describe
'12357' 'info:fdaEXUNH3FIT_65X3YKfile697' 'sip-files00004thm.jpg'
e06595c7267a0335875721e55a85a896
d742b9b155846753d08e2f9cbf4fd4d5e15166fb
describe
'9479' 'info:fdaEXUNH3FIT_65X3YKfile698' 'sip-files00005thm.jpg'
89496962e5a1796d27ff157d809ac7a2
480d2e588a1ed22dc84a8f99410123a1b8b8f890
'2018-12-19T08:31:01-05:00'
describe
'22920' 'info:fdaEXUNH3FIT_65X3YKfile699' 'sip-files00006thm.jpg'
d982434ef5c772ba79846a6c84e780ee
a3df803f16e19fbb0779007316b713cd48db3b4c
describe
'7719692' 'info:fdaEXUNH3FIT_65X3YKfile7' 'sip-files00010.tif'
70ff52cae2c38eab209371f143ec523c
472b91abff93ca36db8a7402c8f5b019a883877d
'2018-12-19T08:36:41-05:00'
describe
'7600184' 'info:fdaEXUNH3FIT_65X3YKfile70' 'sip-files00073.tif'
766d880d7aedfd1b2e73e716baeba513
fd63420b51bdf3f757c81e1f21c8308825a5d1d4
'2018-12-19T08:27:10-05:00'
describe
'19644' 'info:fdaEXUNH3FIT_65X3YKfile700' 'sip-files00007thm.jpg'
604c90f63f2c8e50371c1fdbb4bc1ec9
7e32a35045d04bfc4edc356405ba1ef1594f9c1a
describe
'23788' 'info:fdaEXUNH3FIT_65X3YKfile701' 'sip-files00008thm.jpg'
a5c93dad8dbe3ea9f7e792e735e8256d
96aa6309d2e5b08038a5084bbcfad5f0d13d1841
'2018-12-19T08:29:22-05:00'
describe
'13540' 'info:fdaEXUNH3FIT_65X3YKfile702' 'sip-files00009thm.jpg'
5990bc86db8fe23dd2335c56b20059c8
5f2351e299180bf1cc478c85a48672cb00591564
describe
'20866' 'info:fdaEXUNH3FIT_65X3YKfile703' 'sip-files00010thm.jpg'
ac234aed15b8f9a22e97712fb7e9e42e
b05e6e4ab2678f7754856d968f2acce2ac1354f6
'2018-12-19T08:32:39-05:00'
describe
'26000' 'info:fdaEXUNH3FIT_65X3YKfile704' 'sip-files00011thm.jpg'
e573efea7a6fe7fc70734ca639590e17
fe3da44d9ed14f4e8c53963b01e05d89a126497d
'2018-12-19T08:27:03-05:00'
describe
'17356' 'info:fdaEXUNH3FIT_65X3YKfile705' 'sip-files00012thm.jpg'
546bbee8343f0dd76e6a005efa2aa0cf
c2732b8a21eed279c174b0d8b00b5a8f3da7bb7f
'2018-12-19T08:27:07-05:00'
describe
'22868' 'info:fdaEXUNH3FIT_65X3YKfile706' 'sip-files00013thm.jpg'
a5f83cfd798e875480d81ee0c2304513
5a545342af8d70efb6376710e372db922df016c2
'2018-12-19T08:35:22-05:00'
describe
'23027' 'info:fdaEXUNH3FIT_65X3YKfile707' 'sip-files00014thm.jpg'
9ce194bec988354bcaabeab1dcff4b11
bfec8b3a6340291de1a0a94f2fda63bcff549ece
'2018-12-19T08:36:00-05:00'
describe
'24384' 'info:fdaEXUNH3FIT_65X3YKfile708' 'sip-files00015thm.jpg'
e7740100280f672bc234b3aed3f67094
aba4a3fe6451a3333fb5936bb18c2d31f7d752d4
describe
'22875' 'info:fdaEXUNH3FIT_65X3YKfile709' 'sip-files00016thm.jpg'
3ad462bfb915702c77a7bd82591d399f
299713d0d83309b3997853518f239c16d4189851
describe
'info:fdaEXUNH3FIT_65X3YKfile71' 'sip-files00074.tif'
d4e6791ea7a900aa879706cb7e2328a0
81dd257922b3e2f2534e6fc7463998ab1fbccd76
'2018-12-19T08:29:50-05:00'
describe
'24686' 'info:fdaEXUNH3FIT_65X3YKfile710' 'sip-files00017thm.jpg'
8a5aea4cd70c4bd14d612d43bd364aa7
6da6c6aa4ef947d64844407cf84af5654610e9da
describe
'21967' 'info:fdaEXUNH3FIT_65X3YKfile711' 'sip-files00018thm.jpg'
f9fce763b9d85de4e45b0a5d4c212bfb
1c1add84945097b14ccba9293ef53e93f62f9e1f
describe
'26253' 'info:fdaEXUNH3FIT_65X3YKfile712' 'sip-files00019thm.jpg'
4c07f241c017cfe48246dc1f47e806fd
f7aef74dcb9a0fb73258a5a403d590eedba5ddf5
describe
'24960' 'info:fdaEXUNH3FIT_65X3YKfile713' 'sip-files00020thm.jpg'
64eca946f00e127e00a617145517dcb2
7642729e4dbbeb2ad9d6dc8dbf7e6784d2ef020d
describe
'25943' 'info:fdaEXUNH3FIT_65X3YKfile714' 'sip-files00021thm.jpg'
7e3ef8ffbf68166e54d0eefb535f0365
c1d385fd8e518e9f4ad01f864cc432996e6037d0
describe
'26128' 'info:fdaEXUNH3FIT_65X3YKfile715' 'sip-files00022thm.jpg'
1a24a186e1db47df2f026858443da235
4377a25b99a665f2f9bdf95dd93fc64c0b5e9b47
'2018-12-19T08:29:32-05:00'
describe
'25368' 'info:fdaEXUNH3FIT_65X3YKfile716' 'sip-files00023thm.jpg'
75e4f0659794e465bb84531e5a9dcaff
fa68af3262f67dcb0000faed97447968c5f256e2
'2018-12-19T08:35:46-05:00'
describe
'26284' 'info:fdaEXUNH3FIT_65X3YKfile717' 'sip-files00024thm.jpg'
acd5761092218516c4d033567a905eda
c72f76754cdee4fa1c1d33579a506375ebd36138
describe
'26459' 'info:fdaEXUNH3FIT_65X3YKfile718' 'sip-files00025thm.jpg'
bad2e25ae4f1d7db6377cb398b58c2a3
d3b8239fdd518bbc516581d7cd5340d585b9e99e
describe
'25255' 'info:fdaEXUNH3FIT_65X3YKfile719' 'sip-files00026thm.jpg'
e40a5844aa140ee62efd6e335a6f0f41
322fe168ffa2ed747a42545e7dbc2dbc4312fccc
'2018-12-19T08:34:53-05:00'
describe
'7599520' 'info:fdaEXUNH3FIT_65X3YKfile72' 'sip-files00075.tif'
76d99aa18cf29b465bd8ec68ff15462a
e10d9e0ec567ed69b1bc17e3c3f9cf53ad7b4ce2
'2018-12-19T08:33:43-05:00'
describe
'25630' 'info:fdaEXUNH3FIT_65X3YKfile720' 'sip-files00027thm.jpg'
82aeae24e73c10838abfc1bb93bd91f4
a112bce1905304ec8f3413bd98a0a8deb68d767e
describe
'19049' 'info:fdaEXUNH3FIT_65X3YKfile721' 'sip-files00028thm.jpg'
2865851bae0aa7d419a284b47b15b3f2
687b935a069c71c7f03c57762903e928b3f8888e
describe
'14828' 'info:fdaEXUNH3FIT_65X3YKfile722' 'sip-files00029thm.jpg'
f30ce6da4227d08ae09ee064aad7ac53
38cfa1dc4ce4d20912fbb32f355d07bee481ddd2
describe
'14036' 'info:fdaEXUNH3FIT_65X3YKfile723' 'sip-files00030thm.jpg'
bb3cd6c82509ddc83fd774e2c023da2d
b679f420c8c42523858118424bc9e4ae9ba480ad
describe
'22479' 'info:fdaEXUNH3FIT_65X3YKfile724' 'sip-files00031thm.jpg'
ab2928831711f907074cc84478b10f4e
614342855bc023d64cdc856b80a0eec94c203ed8
'2018-12-19T08:36:28-05:00'
describe
'26167' 'info:fdaEXUNH3FIT_65X3YKfile725' 'sip-files00032thm.jpg'
49996fbb55d9f007e5d068a2c43787e5
96beba5afee234bd72390a966b08f3c3e0d84d44
describe
'25017' 'info:fdaEXUNH3FIT_65X3YKfile726' 'sip-files00033thm.jpg'
0cbea9d4a8d23c35a00648ea5a0680cc
850550e7de6890fd4e50eab5762b102fe00f5a1e
'2018-12-19T08:31:40-05:00'
describe
'25443' 'info:fdaEXUNH3FIT_65X3YKfile727' 'sip-files00034thm.jpg'
aa08275f81dc9934ced96c0be132c7f8
add64fc79e7bd4e037a4d46990f0522308a6bf80
'2018-12-19T08:30:15-05:00'
describe
'25687' 'info:fdaEXUNH3FIT_65X3YKfile728' 'sip-files00035thm.jpg'
cd0cf88a26c8275aa21af96ba722b64e
a1ac74e4853fe80d01810260d7b6233d9ff5348f
describe
'26436' 'info:fdaEXUNH3FIT_65X3YKfile729' 'sip-files00036thm.jpg'
aced40bc6fd7f1bcb64eb7509ed7eac7
8214d918497e241d9bd31cd58521b0099befb02c
'2018-12-19T08:33:30-05:00'
describe
'7592840' 'info:fdaEXUNH3FIT_65X3YKfile73' 'sip-files00076.tif'
a0eb0617de979da4578587ca824266df
71011e16c7a706518a9fc93da1e7d66523944973
describe
'25498' 'info:fdaEXUNH3FIT_65X3YKfile730' 'sip-files00037thm.jpg'
c220b9cee73f00afff29d5244b92ac0e
0930cb938f3ba42fef243fb16641a218018834aa
describe
'26395' 'info:fdaEXUNH3FIT_65X3YKfile731' 'sip-files00038thm.jpg'
76a7ac8ea95657f4f5996d480fe8377e
a9ec950c60267f12c28ed56c72c1384af2458550
describe
'26154' 'info:fdaEXUNH3FIT_65X3YKfile732' 'sip-files00039thm.jpg'
a28e3961af66856ce822a3bd7f801927
8de1d6ad2d6ee71db3b3baf84d4651ba972aef3f
'2018-12-19T08:27:29-05:00'
describe
'24844' 'info:fdaEXUNH3FIT_65X3YKfile733' 'sip-files00040thm.jpg'
14b1cd4c61ae08622df6d210e0a95aa0
993e23907b3247d49d540f8de492b70baefdd742
describe
'26562' 'info:fdaEXUNH3FIT_65X3YKfile734' 'sip-files00041thm.jpg'
afaaa5d808169bfa15403560fda9cb05
6da1c4cd4e3309f0f90765e6b00367e366545d87
describe
'25603' 'info:fdaEXUNH3FIT_65X3YKfile735' 'sip-files00042thm.jpg'
87290cdb64bcf2248260e689a9a543e6
361c35600584734b5f70a98173b4d38ef7215410
describe
'25853' 'info:fdaEXUNH3FIT_65X3YKfile736' 'sip-files00043thm.jpg'
739d4291efd6e70caebf3fd9dad31f6b
eddfdfc7f8a12a36d73f23a60f3a76dbafcd20e7
describe
'25929' 'info:fdaEXUNH3FIT_65X3YKfile737' 'sip-files00044thm.jpg'
2aceb5c1ac007e208bb4b12ed4fe5413
68dd7eb04f78a3205c05c2bcd64cc9f031232112
describe
'24116' 'info:fdaEXUNH3FIT_65X3YKfile738' 'sip-files00045thm.jpg'
cbcc7a4b31d0dff74cad129ff946a8ba
716ba394978ab195d394aeedeb4bae292195a5b8
describe
'25460' 'info:fdaEXUNH3FIT_65X3YKfile739' 'sip-files00046thm.jpg'
6f4d2cdee9dba5f33fef7d1ae89c5c65
733c35233f6219830daa715b5d3fb7360fa71211
'2018-12-19T08:31:13-05:00'
describe
'7593692' 'info:fdaEXUNH3FIT_65X3YKfile74' 'sip-files00077.tif'
4d17fb265a06e5d714161d4291acf154
96b2a24b5d25aa2bb932788fc995f59eef8ce5dd
'2018-12-19T08:31:23-05:00'
describe
'25535' 'info:fdaEXUNH3FIT_65X3YKfile740' 'sip-files00047thm.jpg'
0f4f5e6568a04b8dc50424e7a714c970
56fa76243050e221c754e00a8d135a8784fdf638
describe
'23117' 'info:fdaEXUNH3FIT_65X3YKfile741' 'sip-files00048thm.jpg'
a07dca7eef76a4c30a89fabe8abba3da
6dfc11d8539dc73cbaad3cd9e0f47d47dfb5ca3e
describe
'20063' 'info:fdaEXUNH3FIT_65X3YKfile742' 'sip-files00049thm.jpg'
39ae739104d7c90bd46cfac6a70da4e8
4c5c625abf7230f25497a09567cc54923be4174c
describe
'10940' 'info:fdaEXUNH3FIT_65X3YKfile743' 'sip-files00050thm.jpg'
aa492bbb75659f0a46e97300427a7f80
7e7b4752d67879d9e6917bcb46e52c956381b789
describe
'10902' 'info:fdaEXUNH3FIT_65X3YKfile744' 'sip-files00051thm.jpg'
a900223d8a4e11c98a05e75c7840a205
0a71b05f1334c7c14e043d4da4df7347faa9b4ee
describe
'10661' 'info:fdaEXUNH3FIT_65X3YKfile745' 'sip-files00052thm.jpg'
103d87161aff5f33c2392bcc314cfe60
4124d95898269b4e58aeb85352b00993e9e4c98c
'2018-12-19T08:27:38-05:00'
describe
'11943' 'info:fdaEXUNH3FIT_65X3YKfile746' 'sip-files00053thm.jpg'
d476327aa3a3599e1ba9bfa76b877a3c
202b418c97999538d453e3fac1693447c7f9c164
describe
'14509' 'info:fdaEXUNH3FIT_65X3YKfile747' 'sip-files00054thm.jpg'
e8d2a880854731b96ca85a0038ae2cc5
7a53f63330843b814dfa360028679c481f46d0d7
describe
'14944' 'info:fdaEXUNH3FIT_65X3YKfile748' 'sip-files00055thm.jpg'
2e541f3786a74948291d4eefb3dce122
838acad6e193bf9f96306ab7d24f8afaf44f8e73
describe
'14437' 'info:fdaEXUNH3FIT_65X3YKfile749' 'sip-files00056thm.jpg'
0f7d8a2316d1c10335d603826543a0ef
2b243f5b1b087527ca94360375351888a40d0e88
describe
'7602348' 'info:fdaEXUNH3FIT_65X3YKfile75' 'sip-files00078.tif'
b50aadecdf7509454812a7f4b17787ae
9684bffc4a387da8e2154deab9750972e74338b0
'2018-12-19T08:34:34-05:00'
describe
'14292' 'info:fdaEXUNH3FIT_65X3YKfile750' 'sip-files00057thm.jpg'
f7f42c9a8ced356b5f2842bb0fcecb85
bf0bb4f9b7367b885fc05b9b64ceda282726a1ec
describe
'14010' 'info:fdaEXUNH3FIT_65X3YKfile751' 'sip-files00058thm.jpg'
69ab454c3fd8023414e922225474cf54
398dd6ee10a74946e6b262ac49b2458d63175f40
describe
'12620' 'info:fdaEXUNH3FIT_65X3YKfile752' 'sip-files00059thm.jpg'
0cb7264b3272f2b00f58bc8b60bb759b
3efd28fdd9779b33c3cd710a107b932b86b559b0
describe
'12707' 'info:fdaEXUNH3FIT_65X3YKfile753' 'sip-files00060thm.jpg'
fa0768c0afa31ee9041d4ec3cfc9f08b
4a7a95869907a75fde9ce0aae51cfc1b0842df76
describe
'22626' 'info:fdaEXUNH3FIT_65X3YKfile754' 'sip-files00061thm.jpg'
4002281f305a7b756ff8468b579897d0
474f0d99662ff4b44932ff9f3cd34298b9a68a6f
describe
'25723' 'info:fdaEXUNH3FIT_65X3YKfile755' 'sip-files00062thm.jpg'
1175a6d3afdd7707799d87a354c866e3
2307c6d31af12a8acee6349a69bc1ddc658789ba
describe
'24107' 'info:fdaEXUNH3FIT_65X3YKfile756' 'sip-files00063thm.jpg'
6c963bd60758d0175becec5eeb59adcf
c36428ea3e7dac4b3659b62cec02ba53cfecd305
'2018-12-19T08:34:13-05:00'
describe
'25690' 'info:fdaEXUNH3FIT_65X3YKfile757' 'sip-files00064thm.jpg'
0ad55e033911e05f717c0f69d2b34519
66d06994303a971f09cc6770f4fae2cb5b8603d9
describe
'25968' 'info:fdaEXUNH3FIT_65X3YKfile758' 'sip-files00065thm.jpg'
f749fd267b2c32ca853cd6b550257259
8cd7c735938ba977737d10a069adf20802e78281
describe
'25549' 'info:fdaEXUNH3FIT_65X3YKfile759' 'sip-files00066thm.jpg'
2561d7a073fe792f430c57dcab86e0bf
8c943be40d831d4f2d3238a5af7519fbd0008777
describe
'7592452' 'info:fdaEXUNH3FIT_65X3YKfile76' 'sip-files00079.tif'
135d5837d8a83de2daeb54e68260a6d5
d4caf38c2153eb269f301876627a141bdfd528f1
describe
'25154' 'info:fdaEXUNH3FIT_65X3YKfile760' 'sip-files00067thm.jpg'
1e0ae3b0c093abd57b4d13ee37134644
a149fd20e0627ffee8c6731d63d920990b595859
describe
'23481' 'info:fdaEXUNH3FIT_65X3YKfile761' 'sip-files00068thm.jpg'
2e3c5de1f76e79b06c96977839570a77
4c2712aebfa1ab56699d43a492f748cdee7733e4
describe
'25284' 'info:fdaEXUNH3FIT_65X3YKfile762' 'sip-files00069thm.jpg'
c8b3f47a97d9ff839914e138f3fd5caa
674ba4a802fc047cec8517244c63594aa05136c2
'2018-12-19T08:33:19-05:00'
describe
'24288' 'info:fdaEXUNH3FIT_65X3YKfile763' 'sip-files00070thm.jpg'
bd14f38f0d3f37f04307224a96ab8534
9e5ed380e360132215ba9dd574935fde5cc03afd
describe
'24417' 'info:fdaEXUNH3FIT_65X3YKfile764' 'sip-files00071thm.jpg'
56c9acab3655320c8c72d389a499e14d
9a634ebdcc7a675ea41b76896463d02bbd43ccea
describe
'25022' 'info:fdaEXUNH3FIT_65X3YKfile765' 'sip-files00072thm.jpg'
1a8d70448223350e8bf32882ec12eeaa
89b889065148f9a8a55059682ea98579274f9cbf
describe
'24120' 'info:fdaEXUNH3FIT_65X3YKfile766' 'sip-files00073thm.jpg'
7a55c1f447b26e12b08fdbd65d5bcedf
9a0959e74d24296a51bf9ddbfe5ba3a84061a296
describe
'25948' 'info:fdaEXUNH3FIT_65X3YKfile767' 'sip-files00074thm.jpg'
f580b7f0e772b7d504fd01f7665bc85c
5ed1b4c1f3af4b2925d5efed54bfaa7986c65264
'2018-12-19T08:30:54-05:00'
describe
'24725' 'info:fdaEXUNH3FIT_65X3YKfile768' 'sip-files00075thm.jpg'
483ca5f0a729cb861cba0774ce0ba666
aeb59115ad309cdf75eb1e176ca3ff831aedf26f
describe
'23536' 'info:fdaEXUNH3FIT_65X3YKfile769' 'sip-files00076thm.jpg'
661df2fb89c690f2f22681c596beb432
3f4bd4ed80ae8be1f136f013c28a5fb8330c1314
describe
'7605232' 'info:fdaEXUNH3FIT_65X3YKfile77' 'sip-files00080.tif'
33a80bd716648bf01834af678ec380ae
1bc3248d59d708ed48b19d9c69cbe5d2e2093f84
'2018-12-19T08:36:04-05:00'
describe
'24062' 'info:fdaEXUNH3FIT_65X3YKfile770' 'sip-files00077thm.jpg'
eb01cff4d0457546850e12578db5388f
1e47ebbd4e848adb578767e40f092c0260c035cc
'2018-12-19T08:28:58-05:00'
describe
'26018' 'info:fdaEXUNH3FIT_65X3YKfile771' 'sip-files00078thm.jpg'
4296d6b04e8b761b9e781909dd147243
079d22376b63df4655ddcf2a88be1491442fedbd
'2018-12-19T08:29:23-05:00'
describe
'23167' 'info:fdaEXUNH3FIT_65X3YKfile772' 'sip-files00079thm.jpg'
b713bf27a75c0750aaff4076b7897880
6809984c20d7bbbcc5b10a39040ae86794c6fafe
describe
'14402' 'info:fdaEXUNH3FIT_65X3YKfile773' 'sip-files00080thm.jpg'
c2983fa16c960cc3f9120cc95ad4839d
edf76ba049f7a32c06e28972216284b13cb149bd
describe
'12605' 'info:fdaEXUNH3FIT_65X3YKfile774' 'sip-files00081thm.jpg'
2106e47ee04d4e0c024f157c6e017faa
d508f326d2497b15d911fbdbf96654a52a234e70
'2018-12-19T08:28:36-05:00'
describe
'12467' 'info:fdaEXUNH3FIT_65X3YKfile775' 'sip-files00082thm.jpg'
0e0b5565882cb874103a8b4bf8efb8e2
f37592b97376f2e39fbc48331774267ec425d864
'2018-12-19T08:30:38-05:00'
describe
'21490' 'info:fdaEXUNH3FIT_65X3YKfile776' 'sip-files00083thm.jpg'
ee14419c60bbd3d29be25e97d20c7256
824937f1f30cdf7066ff0c3e63b26fd636c409e8
'2018-12-19T08:28:30-05:00'
describe
'24082' 'info:fdaEXUNH3FIT_65X3YKfile777' 'sip-files00084thm.jpg'
1518a99558bf3054f716715b2915da5a
9c4b169c2ef37b8bd5d08888e5182a3bbc912819
describe
'25786' 'info:fdaEXUNH3FIT_65X3YKfile778' 'sip-files00085thm.jpg'
374b9e08cb1bc4beb2520de167902be2
0896e4f669121e45e3cf178ec9f1f6dbf61741e2
describe
'25923' 'info:fdaEXUNH3FIT_65X3YKfile779' 'sip-files00086thm.jpg'
dc22ed51584ef29ff4ea039ff08dfcd4
cc1fcbae93fcf0547d675ba913d75cb150f75c5b
describe
'7604532' 'info:fdaEXUNH3FIT_65X3YKfile78' 'sip-files00081.tif'
2400850ff7e7185840cecdcd3f05954f
95272b7ab48c6684d809a92db444de945ea5850c
describe
'26042' 'info:fdaEXUNH3FIT_65X3YKfile780' 'sip-files00087thm.jpg'
6acde077531011b89a199440545f9704
ac9057fc634ff922baec949378c20d7c7818cca7
'2018-12-19T08:30:06-05:00'
describe
'25961' 'info:fdaEXUNH3FIT_65X3YKfile781' 'sip-files00088thm.jpg'
5afd1bc2f19e80d6f98a12f7c07959f9
98bbd397ceb13bae368e7cf1adff359f1e6b3b6b
describe
'24925' 'info:fdaEXUNH3FIT_65X3YKfile782' 'sip-files00089thm.jpg'
3c03e580796dcfcac0d2f94fdd187a87
18887f48b32535f43d12a7f6e12687b07c20e177
describe
'25520' 'info:fdaEXUNH3FIT_65X3YKfile783' 'sip-files00090thm.jpg'
1db7cef0875d25548e05d4ae7b9d5d51
d05de4a27b9e2c49fed7f5d6e5119e7c96a95a69
describe
'21548' 'info:fdaEXUNH3FIT_65X3YKfile784' 'sip-files00091thm.jpg'
2619bf9d8d9c35a37792f6f8e0b95b60
88489e785bdf2c7210f3fb4ff8e38592886f2296
describe
'25294' 'info:fdaEXUNH3FIT_65X3YKfile785' 'sip-files00092thm.jpg'
0cc95e479baf57b88f80e9fab737cce9
00c622b6deed2047dfa196a043481a983ea2d4dc
'2018-12-19T08:33:08-05:00'
describe
'23537' 'info:fdaEXUNH3FIT_65X3YKfile786' 'sip-files00093thm.jpg'
5d774871723f45a60d6c533972061b93
6b200f4747deb884aaf339baeb35b95ac9cebc25
describe
'22191' 'info:fdaEXUNH3FIT_65X3YKfile787' 'sip-files00094thm.jpg'
b57b70d57b5fa6a50c01b8666afd0b5c
41f7bffb382e40ad3963b724166dcce4e8828c35
'2018-12-19T08:27:21-05:00'
describe
'25088' 'info:fdaEXUNH3FIT_65X3YKfile788' 'sip-files00095thm.jpg'
37ec1af64f8533a9c46b5baed4427b45
4f38129b0668528ea1a633035be847b20f1aff10
'2018-12-19T08:37:24-05:00'
describe
'25982' 'info:fdaEXUNH3FIT_65X3YKfile789' 'sip-files00096thm.jpg'
3e234987c2d5b09372d7a689d208e907
2b3201e68c4e722ab0fb98b066f5b6c27b057ce7
describe
'7601300' 'info:fdaEXUNH3FIT_65X3YKfile79' 'sip-files00082.tif'
c3932a8c070535494437c756e2ac096e
0e597b9387f545908ff7e2991ea76bb74a6a3311
'2018-12-19T08:31:36-05:00'
describe
'23499' 'info:fdaEXUNH3FIT_65X3YKfile790' 'sip-files00097thm.jpg'
8bb4c3f707365ac953cb04830a84e4f8
c3a99cb85ec2ef7ddf5bcb7e282ccc570fd8b1bd
describe
'22136' 'info:fdaEXUNH3FIT_65X3YKfile791' 'sip-files00098thm.jpg'
12c813083c78c089260bdb2078a1851d
929f14ace142fe338785aacab7409513fe076f01
describe
'23265' 'info:fdaEXUNH3FIT_65X3YKfile792' 'sip-files00099thm.jpg'
1f3160e736a01200f6b3e6298c4be660
0f47db5b77dfb60fcf09c99dc89d58f13264a284
describe
'19616' 'info:fdaEXUNH3FIT_65X3YKfile793' 'sip-files00100thm.jpg'
aa9ef0404542478afff34777c7daacd3
e9e737c452e74b5617c2249075d0d5e2c33bbb96
describe
'19940' 'info:fdaEXUNH3FIT_65X3YKfile794' 'sip-files00101thm.jpg'
6c33e3a7bf1f29c80f14553d4315f3cd
14c5b9e824bf29af2d6522804534ce42df23212d
describe
'21800' 'info:fdaEXUNH3FIT_65X3YKfile795' 'sip-files00102thm.jpg'
b0bbf3ce93ba314d9836d41ec2c2ac93
2ba2a46aa40cd40f00b2af946c3449eac871b779
'2018-12-19T08:31:34-05:00'
describe
'23817' 'info:fdaEXUNH3FIT_65X3YKfile796' 'sip-files00103thm.jpg'
3c4198d20501f41bf35452a1d883395b
de01495641d35a0588a097da0a7f0c920bbcca06
describe
'info:fdaEXUNH3FIT_65X3YKfile797' 'sip-files00104thm.jpg'
ff5e1f967dd417ac1d8345bbed67617b
7b2a7ef2f932c6089fdcba24d05d2fdde86eff08
'2018-12-19T08:27:51-05:00'
describe
'21174' 'info:fdaEXUNH3FIT_65X3YKfile798' 'sip-files00105thm.jpg'
e75db53af821c8803fab964ba621df6a
6f6e5253a80b6d4e859c49b81866102a52cf5b2d
describe
'24562' 'info:fdaEXUNH3FIT_65X3YKfile799' 'sip-files00106thm.jpg'
7258d167c351c6c8c5f4927bec9eda09
e8a070b8d5b8acb6f5682a11ec36148b481122b9
describe
'7712388' 'info:fdaEXUNH3FIT_65X3YKfile8' 'sip-files00011.tif'
f5fb21dfa0e6b8b99d2f6345c584544a
6a85aee03d77eb52486637ad8614448706940bc3
'2018-12-19T08:37:28-05:00'
describe
'7588004' 'info:fdaEXUNH3FIT_65X3YKfile80' 'sip-files00083.tif'
2a7a2ab79ffab656c84b511dcf2b388b
ab2c260ca091125ba2d157edb27f5e2095397d1c
'2018-12-19T08:31:00-05:00'
describe
'15511' 'info:fdaEXUNH3FIT_65X3YKfile800' 'sip-files00107thm.jpg'
fa5e9e1a1092a274a4e25af281c7f2e8
4a31a840fe7520391cb144166d50b57b9c3f3c74
describe
'11813' 'info:fdaEXUNH3FIT_65X3YKfile801' 'sip-files00108thm.jpg'
fd1e3d57b9f51a9bc7f7be79b677903f
61fcbe3ba9074466861049575589fc6cf9fb8e42
describe
'15833' 'info:fdaEXUNH3FIT_65X3YKfile802' 'sip-files00109thm.jpg'
b73a8ee6025bd1d36782e0fccee750fa
ddc4ee194335719c8655bfa7c092c1fc43fcd21e
describe
'11922' 'info:fdaEXUNH3FIT_65X3YKfile803' 'sip-files00110thm.jpg'
c07929af145c76880912513257d38790
6cee42011bc1de919624611ca8b56631a84c636e
describe
'25593' 'info:fdaEXUNH3FIT_65X3YKfile804' 'sip-files00111thm.jpg'
0938ae270c13e89e10aa07961526d832
889fa270bef18a5ba89b2616744196005dcd457b
describe
'24924' 'info:fdaEXUNH3FIT_65X3YKfile805' 'sip-files00112thm.jpg'
bccad584a8f5277e4134d6f465f2f8c7
ac87569a8eaf14dcc621a2b37ea0b80dac2e9810
'2018-12-19T08:37:58-05:00'
describe
'24971' 'info:fdaEXUNH3FIT_65X3YKfile806' 'sip-files00113thm.jpg'
50053c1162bd08985e2a364a06dca251
02f03bf1aaf56ad95e4ba4e13442031d7efd4e6f
'2018-12-19T08:35:53-05:00'
describe
'10150' 'info:fdaEXUNH3FIT_65X3YKfile807' 'sip-files00114thm.jpg'
ac01d86b6d1890032c104b5ec7f182eb
d64c62f00c1150761d98106edaf76d6e2dea276c
describe
'11691' 'info:fdaEXUNH3FIT_65X3YKfile808' 'sip-files00115thm.jpg'
a376683efe9ece18394ed6a48ffcf3ec
049a4c45890c2bf17142a33e6e8a96730c1cdcf8
describe
'11112' 'info:fdaEXUNH3FIT_65X3YKfile809' 'sip-files00116thm.jpg'
2ddff746aa8db9366cf6d7e89b9b1ad0
f8959839df1b59004c364c328ac3f844138880be
describe
'7592812' 'info:fdaEXUNH3FIT_65X3YKfile81' 'sip-files00084.tif'
12bd03b00b1ed0a9ae93909d0cc96ed9
b324001678a04e62ce683854f654dc00d14a5c58
'2018-12-19T08:34:38-05:00'
describe
'11900' 'info:fdaEXUNH3FIT_65X3YKfile810' 'sip-files00117thm.jpg'
4aa5b134f2eb53aaf62dfcef180a5eaf
97e355b2c556bd8e132180ab8697f66ca849bb69
describe
'12713' 'info:fdaEXUNH3FIT_65X3YKfile811' 'sip-files00118thm.jpg'
16055f01ed2d2834584e66415dcec058
8ca799a2aafb862346ecbf1d81022fd9b9841dfb
describe
'12223' 'info:fdaEXUNH3FIT_65X3YKfile812' 'sip-files00119thm.jpg'
c92f4f7773941ee25c10295dee3cfdb5
c432e62e427cdec01d01ee52c4830494fec37ddf
describe
'14544' 'info:fdaEXUNH3FIT_65X3YKfile813' 'sip-files00120thm.jpg'
68573b9ec224ea6bf9f7fcad8271a2e7
03a81c5680370b6c65b2005d25dd3927e062fcf1
describe
'11329' 'info:fdaEXUNH3FIT_65X3YKfile814' 'sip-files00121thm.jpg'
97ff42f41227e28cf2220920f0e4a877
e7f20157c5ce6fb16e44418adf05604e144b7204
'2018-12-19T08:30:53-05:00'
describe
'12925' 'info:fdaEXUNH3FIT_65X3YKfile815' 'sip-files00122thm.jpg'
d2aeedefe72a6cc7ccb4fb62d646765b
c969220efd7bf692433a0879364235e46386b3b1
describe
'14071' 'info:fdaEXUNH3FIT_65X3YKfile816' 'sip-files00123thm.jpg'
7083f988c482b9745936a3b6640a9aae
904f967a2da177486f6663cd39ed535b20319dbc
describe
'12356' 'info:fdaEXUNH3FIT_65X3YKfile817' 'sip-files00124thm.jpg'
a750e74977d4382ce3cb1799ef861b10
9ea0070543d4d36db327ca8a3faac846b760efeb
describe
'11424' 'info:fdaEXUNH3FIT_65X3YKfile818' 'sip-files00125thm.jpg'
dc956846dc620e9f940909f602863029
8379b773e9d26761a2dc325a4c7adca9d9400702
describe
'13560' 'info:fdaEXUNH3FIT_65X3YKfile819' 'sip-files00126thm.jpg'
94b19750d9ea1f2c551709ef08f5de98
b9779e9fbca9ee3afe4e230679ecf59c9112d2c5
'2018-12-19T08:35:27-05:00'
describe
'7591264' 'info:fdaEXUNH3FIT_65X3YKfile82' 'sip-files00085.tif'
dc822d3a9dee567451d834914c8b8d31
5084c1b84d58c5b66b2a775d9d78e0bb5114fdc7
describe
'21828' 'info:fdaEXUNH3FIT_65X3YKfile820' 'sip-files00127thm.jpg'
59fc1e8306fa5fb129c70220dde74600
bdb013668b670fcdb1dfb1bdea72986144dfc1ba
describe
'25962' 'info:fdaEXUNH3FIT_65X3YKfile821' 'sip-files00128thm.jpg'
be8a43b802ea6fb0278abd2172e01174
b83db034b76037c56ee9c4033221ebdf38365521
describe
'24878' 'info:fdaEXUNH3FIT_65X3YKfile822' 'sip-files00129thm.jpg'
da204940e08503d0a76fee9095a26c19
7e7c1ab9edbc90a2f4c3424741676d5f380b6fc2
describe
'25223' 'info:fdaEXUNH3FIT_65X3YKfile823' 'sip-files00130thm.jpg'
9566be72bbb665a576e50a5bc9a90a97
42000733206bdcca7c2e5ac9fb230142dd076d47
describe
'25390' 'info:fdaEXUNH3FIT_65X3YKfile824' 'sip-files00131thm.jpg'
04a2969ec059269f048369ccec878d9c
0a34513fdbb411d0985b287f571a4b3a569bb40f
describe
'23639' 'info:fdaEXUNH3FIT_65X3YKfile825' 'sip-files00132thm.jpg'
f76cc3d213813566049737fcf6af8b4c
508807fb81652245a039928a77444aca56a1b504
describe
'24047' 'info:fdaEXUNH3FIT_65X3YKfile826' 'sip-files00133thm.jpg'
c03da0114f99069d6ed3a25a4ac888f2
2eb30ceaf91a53fb5909cbb70b4bd8f922c21fe4
describe
'25701' 'info:fdaEXUNH3FIT_65X3YKfile827' 'sip-files00134thm.jpg'
33143868e16e2996e3064934d0594f47
b6c346e8083818feff4dc0dec09a047dc5613490
describe
'24017' 'info:fdaEXUNH3FIT_65X3YKfile828' 'sip-files00135thm.jpg'
77533f851e2712e743b847907b88122f
99df45d7644906053d56fb97d407623600f5cc90
'2018-12-19T08:37:09-05:00'
describe
'24676' 'info:fdaEXUNH3FIT_65X3YKfile829' 'sip-files00136thm.jpg'
3511998450668895de87c2519aea99d8
7f4ac735c5bb88a43367c2f644bac4125c8c4048
describe
'7587924' 'info:fdaEXUNH3FIT_65X3YKfile83' 'sip-files00086.tif'
b742ed9974e1127bcf4ff7781637ed59
c1d8ed4f28e2d81c5178476221a908ae2df7331a
describe
'25912' 'info:fdaEXUNH3FIT_65X3YKfile830' 'sip-files00137thm.jpg'
e2cc24c36c91a6b517be471a836b4c0a
3792d6df6e022787fb51aafba7879598c52d28d4
describe
'21495' 'info:fdaEXUNH3FIT_65X3YKfile831' 'sip-files00138thm.jpg'
60e76e05d3346d1c6a867a194120b67d
8fb0e2bc5744a70f0e21fd6bbe97b5132083b91c
'2018-12-19T08:32:38-05:00'
describe
'23605' 'info:fdaEXUNH3FIT_65X3YKfile832' 'sip-files00139thm.jpg'
c44daf83cd87cb8a0df01b25200c129e
d9d449945b95c5eda9da24c4dbb5429266854432
describe
'18745' 'info:fdaEXUNH3FIT_65X3YKfile833' 'sip-files00140thm.jpg'
93bb0b9a79d46bfc13643ffe7918c3aa
67abbff0b13f5a3ecdcf44f1c685d358117b42d9
'2018-12-19T08:31:15-05:00'
describe
'12591' 'info:fdaEXUNH3FIT_65X3YKfile834' 'sip-files00141thm.jpg'
ee74e61bb0aa9b72d0874cd6aaef90d4
1f2a2fc6d526d4cce7e0c8f906c52303186d4e05
describe
'11997' 'info:fdaEXUNH3FIT_65X3YKfile835' 'sip-files00142thm.jpg'
385e712ec3eb73085a97a46272df1e46
f85a6102ee65c8b9e29a9f4be62a6d6349b81aef
describe
'13126' 'info:fdaEXUNH3FIT_65X3YKfile836' 'sip-files00143thm.jpg'
48488e778d9dda4417891ac04e651aca
29bd7b034a508b248be131949a7c5a3e000f2edc
describe
'12469' 'info:fdaEXUNH3FIT_65X3YKfile837' 'sip-files00144thm.jpg'
6c4ddca7113be33b732feb9f73dd26b9
17058840888bb7100a73a1b5cf84a1a26df9a5f3
describe
'14841' 'info:fdaEXUNH3FIT_65X3YKfile838' 'sip-files00145thm.jpg'
afeea4dec63885e2b6fa54d8f3bc88c8
678ca0b6a0985ad370aa6e1a1912c38a4b2aa322
describe
'11646' 'info:fdaEXUNH3FIT_65X3YKfile839' 'sip-files00146thm.jpg'
0b23b396cd8c68c2eee135c96dab4f10
6c31a172ed48af43f642e9771d391f95fbe1b68f
describe
'7596720' 'info:fdaEXUNH3FIT_65X3YKfile84' 'sip-files00087.tif'
70de0ad57b0f277f6b375da8b07c6770
a0cae63bb009ee9f8144453a08daf8ff99c7b6aa
describe
'13030' 'info:fdaEXUNH3FIT_65X3YKfile840' 'sip-files00147thm.jpg'
0fe6f31daac3647279a6614b38a55dd1
b368a93afe79cd5025409e5ec3a627d267ef41f8
'2018-12-19T08:33:39-05:00'
describe
'14838' 'info:fdaEXUNH3FIT_65X3YKfile841' 'sip-files00148thm.jpg'
ee1ce5fca0322e1a59f26b2933dce70d
049d921481b1ef2cb5a581deb57f806b56697b42
describe
'22020' 'info:fdaEXUNH3FIT_65X3YKfile842' 'sip-files00149thm.jpg'
fd71e79fb5a7478cb1706dac4c9e0afb
5e494c3f49b63b111ebb2885815be861cb87b8a1
describe
'24544' 'info:fdaEXUNH3FIT_65X3YKfile843' 'sip-files00150thm.jpg'
e407775b6a1a7f2725ead8346f72ae57
e76725da2a5f4d63f92bb3b76a62cc5911a886be
describe
'24232' 'info:fdaEXUNH3FIT_65X3YKfile844' 'sip-files00151thm.jpg'
3e13be511ee030d3c8ee3096ec1f8937
c34202916ada5caeb5eabdb5187481d8eb10ff72
describe
'24383' 'info:fdaEXUNH3FIT_65X3YKfile845' 'sip-files00152thm.jpg'
56f4099846e7a76dd6986b3df13d6b13
18dd4007a57c232b71b597f7c72cb7d63a02b5c7
describe
'25902' 'info:fdaEXUNH3FIT_65X3YKfile846' 'sip-files00153thm.jpg'
5a32bbb274789f97866e401420bda8bc
80fbf525bb18ec7b39195b7cce44de0aadd1186a
'2018-12-19T08:36:19-05:00'
describe
'25860' 'info:fdaEXUNH3FIT_65X3YKfile847' 'sip-files00154thm.jpg'
a9582e15ada7c6ad9709f5c7b12183fb
0489ea1112137069a71f96f54adfd9494a71bd50
describe
'24325' 'info:fdaEXUNH3FIT_65X3YKfile848' 'sip-files00155thm.jpg'
98f7f9520beba184f4f08c758399adc8
6f2a0978ebec41842a0db82d88fad170eed4cc69
'2018-12-19T08:36:53-05:00'
describe
'23449' 'info:fdaEXUNH3FIT_65X3YKfile849' 'sip-files00156thm.jpg'
12c643b7d57b741f4b2513b8824245ca
79da9b47887561640f9dcc2dacfdf4a09103643c
'2018-12-19T08:36:35-05:00'
describe
'7584680' 'info:fdaEXUNH3FIT_65X3YKfile85' 'sip-files00088.tif'
d55e43b7bf644ccf7361525a46cc2713
bfa59ecc0457233727378397bb0211c439e434c8
describe
'22310' 'info:fdaEXUNH3FIT_65X3YKfile850' 'sip-files00157thm.jpg'
fa778aa77ee060a6f0931bed3dc89346
72301a4e3e95fdacdee6650b7b0f391fb82313d9
describe
'21512' 'info:fdaEXUNH3FIT_65X3YKfile851' 'sip-files00158thm.jpg'
382eff6be5f958686aafd35466f272eb
207b66e60a5b5505fed43d1396b93c102b6cdd89
describe
'22889' 'info:fdaEXUNH3FIT_65X3YKfile852' 'sip-files00159thm.jpg'
61d569354f52e503d45d09442e06ca56
b2e03df0a22a197e281e4c8df1455181424aea93
describe
'21056' 'info:fdaEXUNH3FIT_65X3YKfile853' 'sip-files00160thm.jpg'
1a730edec8961fac78d714a417d5b5a4
abdfbc8a769f4b3454b14444c7092af2e31ac4b7
describe
'25995' 'info:fdaEXUNH3FIT_65X3YKfile854' 'sip-files00161thm.jpg'
88ebb0185f61c3c3a601bfd3468fb3a8
653705d402fba3a6518e50b896ec854136dc5ed0
describe
'21945' 'info:fdaEXUNH3FIT_65X3YKfile855' 'sip-files00162thm.jpg'
a4f88c08ca1824574fc3359020eed065
7a56495ed200b58e88db81461e32c0d23bed0354
describe
'22400' 'info:fdaEXUNH3FIT_65X3YKfile856' 'sip-files00163thm.jpg'
c1119bceb1d4002f28c85db05f5a75d3
ace6c634c4120738232e1f1e8eb0c58fadc5e9c3
'2018-12-19T08:33:28-05:00'
describe
'21020' 'info:fdaEXUNH3FIT_65X3YKfile857' 'sip-files00164thm.jpg'
ecc75705ed3d8cfdc1512d9a9e256b20
f1776f82e69ded607a26541313f99c618afe71b2
'2018-12-19T08:32:13-05:00'
describe
'25125' 'info:fdaEXUNH3FIT_65X3YKfile858' 'sip-files00165thm.jpg'
eb35ef02665fdb42ea154316813cff95
f010b704899c5b7d9e32a382780836e95dc93077
describe
'23560' 'info:fdaEXUNH3FIT_65X3YKfile859' 'sip-files00166thm.jpg'
d291f1e6b23638baa93b398a604f4386
851d76b8ed655a824bd2825fb7027021ed7a17c7
describe
'7610768' 'info:fdaEXUNH3FIT_65X3YKfile86' 'sip-files00089.tif'
af789ef0cd332d133beeb8cfa0c7a072
c6bf8b6256b37be063c64ebdcbc0e53f6c7f775a
describe
'20617' 'info:fdaEXUNH3FIT_65X3YKfile860' 'sip-files00167thm.jpg'
7ac563b95d308ccc9fc2102cde3eef79
0630d1a3c51aed2e2b4dec9ca33e89d85c635da3
describe
'22989' 'info:fdaEXUNH3FIT_65X3YKfile861' 'sip-files00168thm.jpg'
42728a0b9477d31f6d7335f9d60fed0a
f33777516837cdf065c73696ef39b8bd0e3f1d02
'2018-12-19T08:30:27-05:00'
describe
'26189' 'info:fdaEXUNH3FIT_65X3YKfile862' 'sip-files00169thm.jpg'
6691e4ae1900f421cae863b30cc88f93
b3dcfbc55f12a98a83b6f98c3b24ff4cb0bdb110
describe
'27126' 'info:fdaEXUNH3FIT_65X3YKfile863' 'sip-files00170thm.jpg'
961f408f652cba3adacabf452576c770
9d3c4ca82c52fc29a59f4e9a98f9342fd64459ce
describe
'26197' 'info:fdaEXUNH3FIT_65X3YKfile864' 'sip-files00171thm.jpg'
4cd55b4095d98db92b93e6a9c08502d1
5a80dc9a7b12971f00fc2843dcd5aeeae1c26ca1
'2018-12-19T08:27:32-05:00'
describe
'27109' 'info:fdaEXUNH3FIT_65X3YKfile865' 'sip-files00172thm.jpg'
bf600faad3cb1814abbc6a45b3caaffc
03d3d5cb96549ceb2ada9d4364ca6696c562768e
describe
'27077' 'info:fdaEXUNH3FIT_65X3YKfile866' 'sip-files00173thm.jpg'
f56ea818e7b6e4110840266d92ceb9c4
afd0d849927cfabb61ed97e96cc10c49fdb014ec
describe
'15434' 'info:fdaEXUNH3FIT_65X3YKfile867' 'sip-files00174thm.jpg'
6aebda56cc1fc0099f0600de0aaf60ac
68a99d219fb574d99ccd7adcf6417857d45b641c
'2018-12-19T08:32:14-05:00'
describe
'20365' 'info:fdaEXUNH3FIT_65X3YKfile868' 'sip-files00175thm.jpg'
e20a7b0f911f3ec3bfa348a0608a0b59
5c5c94c02406cafc2008f4dbb41824edad47dded
describe
'24026' 'info:fdaEXUNH3FIT_65X3YKfile869' 'sip-files00176thm.jpg'
be554ee9f55344bbf4f22c3fed368292
2f2c01026ae71f1ca35ceb020c895cccb51c0e76
'2018-12-19T08:27:31-05:00'
describe
'7602052' 'info:fdaEXUNH3FIT_65X3YKfile87' 'sip-files00090.tif'
caec69a3c69e0b142d79dbf18a8f153e
7446b2a2c02e60fbdb4a6811eb3785d78eba2600
describe
'12904' 'info:fdaEXUNH3FIT_65X3YKfile870' 'sip-files00177thm.jpg'
73f159eafe488aa2a8b9681b5be44e79
2b5a6faa0e4bdf161ae2c2a2340b20f23c1d18ef
describe
'8263' 'info:fdaEXUNH3FIT_65X3YKfile871' 'sip-files00004.pro'
f11c74f6226f1494aa4f8bd0ee03e8bb
952d044f750365151f172ea8fd2ab8e6b02e5908
describe
'1181' 'info:fdaEXUNH3FIT_65X3YKfile872' 'sip-files00005.pro'
e3caa95135768561b14e7caeb217e8ea
ee7a6837df31ad85dfc9334aab3bbbbadc7642b0
describe
'33898' 'info:fdaEXUNH3FIT_65X3YKfile873' 'sip-files00006.pro'
994da0c1ccf705b8194df4ade5fca05a
4bf3ba3855e7c11c6e0f823eaf3eb3895e8099c9
describe
'40604' 'info:fdaEXUNH3FIT_65X3YKfile874' 'sip-files00007.pro'
83bb1ca3c2c2a8b2a17693733d3d0412
468cc032eb1e681b2be7cc46e5a0bf55beb09a32
describe
'57714' 'info:fdaEXUNH3FIT_65X3YKfile875' 'sip-files00008.pro'
344cfe487b7fd28723f0ca93833d8818
c86677fb694f015fd229bf18f91070e20bc8deb3
describe
'16160' 'info:fdaEXUNH3FIT_65X3YKfile876' 'sip-files00009.pro'
b2cf173e5e37ddad2db061134c7e0983
10016011a5b49e34b7bf9f843c93fadfe2368c9a
describe
'27921' 'info:fdaEXUNH3FIT_65X3YKfile877' 'sip-files00010.pro'
b8ee053826db39fb80ce34d2b51ac264
48fe974917888594f02a709d4aeee42dc4702308
describe
'38400' 'info:fdaEXUNH3FIT_65X3YKfile878' 'sip-files00011.pro'
ccd6a051e7a443c434eb15402e1d6e58
64eaed98cbeed6bcc91f1f4ab2fafcb9ee960a99
describe
'19325' 'info:fdaEXUNH3FIT_65X3YKfile879' 'sip-files00012.pro'
d350fd5bc2d264dbd7cd31a80bc1cb39
7a2409acb01e8b40a7027143535c25a5bf5020b2
describe
'7618548' 'info:fdaEXUNH3FIT_65X3YKfile88' 'sip-files00091.tif'
cc9a503a3e4f21f22f3494656ff72fae
50e61bd321e24c5b0cd3882eb5281f955eebca9c
'2018-12-19T08:27:08-05:00'
describe
'32819' 'info:fdaEXUNH3FIT_65X3YKfile880' 'sip-files00013.pro'
00351b579c2917eefebf46596218b545
24ec74accaf7468723a47dbf904caf15db21ab43
describe
'33281' 'info:fdaEXUNH3FIT_65X3YKfile881' 'sip-files00014.pro'
40e8ad59fbcfdaba524b802f41f51e88
58dfb6fe4ad44682f77aa7ab2e8459d83d51cc86
describe
'36611' 'info:fdaEXUNH3FIT_65X3YKfile882' 'sip-files00015.pro'
1b86637659bccb7dbc496c62f7fb069f
1a7555a99291afb4b1c31bd8850580df6af6610a
describe
'30978' 'info:fdaEXUNH3FIT_65X3YKfile883' 'sip-files00016.pro'
91e3db090023b3bba431efaa6bdd5143
6ece8bdacd66d72d4ad07d94b25686f178f52bf4
describe
'34113' 'info:fdaEXUNH3FIT_65X3YKfile884' 'sip-files00017.pro'
d8571e061f5818f25f601b658a46591a
641aef25970e8bc75e27ce48793f4f8684646c7d
'2018-12-19T08:31:44-05:00'
describe
'28391' 'info:fdaEXUNH3FIT_65X3YKfile885' 'sip-files00018.pro'
1c5786a6e24e7a5dbc9ceca8bb67ff40
acec26f827c16f484f9b884cbc8fad8d4ae746fd
describe
'38501' 'info:fdaEXUNH3FIT_65X3YKfile886' 'sip-files00019.pro'
0dcec618506d1c7dce44fc424b9671c2
b88cda748097caead76e7eab0782d2859b06abc7
describe
'35195' 'info:fdaEXUNH3FIT_65X3YKfile887' 'sip-files00020.pro'
96c2e7b155bc710b3ac4f113cf8fbc5d
91d77fe243a34db107f6720159dfa39630738a7c
describe
'37937' 'info:fdaEXUNH3FIT_65X3YKfile888' 'sip-files00021.pro'
2e7df1e396f5863ea37a43b4ae38dae2
ac86ebea97d8e5d998701cea3430b2156cbff384
'2018-12-19T08:29:44-05:00'
describe
'39120' 'info:fdaEXUNH3FIT_65X3YKfile889' 'sip-files00022.pro'
efa81f74c97fbccc3e7fb5a0b9577264
565339f2cc180d8ca3ffbaa3ed2612bbb89fc43e
describe
'7610812' 'info:fdaEXUNH3FIT_65X3YKfile89' 'sip-files00092.tif'
a294a5ccb84bdb4f4d435a9534f8ae6f
33b7d1abf4a295e389f1029a513def094f06967b
describe
'38017' 'info:fdaEXUNH3FIT_65X3YKfile890' 'sip-files00023.pro'
79c617f32afd18c9c6f38e94da452100
525ac4ff31481f99d82a24028e9555a2c058ff38
describe
'38212' 'info:fdaEXUNH3FIT_65X3YKfile891' 'sip-files00024.pro'
baef5903a02907c72f8e2d7d7a502ce5
24c34c167d1d3812a7466625f9b948c5eecfdf7e
describe
'41006' 'info:fdaEXUNH3FIT_65X3YKfile892' 'sip-files00025.pro'
a1d34f9a4637d06bea8f4b4c333e98fc
9326b55ef34f1a773a70e5110ccd12590c9e9f57
describe
'36077' 'info:fdaEXUNH3FIT_65X3YKfile893' 'sip-files00026.pro'
1d16dd916a30eeae3be34af24505c6d2
915c0ce00f30ecbaff55863126aacd7bd589d989
describe
'37867' 'info:fdaEXUNH3FIT_65X3YKfile894' 'sip-files00027.pro'
912c09262bea5c6fe577432af238562a
f08c45fed20e4939020601b73fef26762f4e713f
describe
'21296' 'info:fdaEXUNH3FIT_65X3YKfile895' 'sip-files00028.pro'
b58d697f7600c9e7fafcbd7a59b246bf
92b0b48391b6e675a8f4c07b8d6dbda35028bc9d
describe
'5704' 'info:fdaEXUNH3FIT_65X3YKfile896' 'sip-files00029.pro'
d76bc8de2848652998454863ff6d025b
5a362955dda7352ffd6fdd31120e7122255f64ea
describe
'7848' 'info:fdaEXUNH3FIT_65X3YKfile897' 'sip-files00030.pro'
c0aea386f7c66522416ef12984b28395
abfa2c815bbf5a9ab4cf187bf1dd450720496a4c
describe
'29730' 'info:fdaEXUNH3FIT_65X3YKfile898' 'sip-files00031.pro'
e77d3b6d5bb1f31eb969e90d013ea564
142a72982989007a02436a5ed018b3a66e242a56
describe
'38628' 'info:fdaEXUNH3FIT_65X3YKfile899' 'sip-files00032.pro'
7d3cc4284071091e1d319ad490840289
32f98d53c98351a8f07f5699542439495b4d7ab8
describe
'7709732' 'info:fdaEXUNH3FIT_65X3YKfile9' 'sip-files00012.tif'
32f56b01f5faf21baff32bc41dc8c483
50e481751c42d694e357b45b35acf52f4df4f46a
describe
'7610456' 'info:fdaEXUNH3FIT_65X3YKfile90' 'sip-files00093.tif'
6f6ed5cb615b151836d620749fc77b91
4b832dcfdba6e37dce755e14e98aabe552c0d446
'2018-12-19T08:30:21-05:00'
describe
'37468' 'info:fdaEXUNH3FIT_65X3YKfile900' 'sip-files00033.pro'
380a2efe3f421a31028ac1fc6f7b7b3a
6a07f20cc5ed71694bb98dcd0fa06ac828a2344c
describe
'37379' 'info:fdaEXUNH3FIT_65X3YKfile901' 'sip-files00034.pro'
aeea340dc8bd4b657ce12cd803806e7e
c1f6da92548cec4f2d005363448ba632c36a7b44
describe
'39161' 'info:fdaEXUNH3FIT_65X3YKfile902' 'sip-files00035.pro'
8b5419bf4a5f5271bd9705ca8476cd2f
1305a088da87e08250777177527fb62999a24a3a
describe
'38433' 'info:fdaEXUNH3FIT_65X3YKfile903' 'sip-files00036.pro'
167de9b295347f4be7d8913f94359237
334cdd439d3d1199b745c0d7a9c18dd8e8aa14b5
describe
'36305' 'info:fdaEXUNH3FIT_65X3YKfile904' 'sip-files00037.pro'
baec5f81c5173680a02d8de93aa7bcdd
fbaca89be2c119412ef18c4fb15c32241fe9fb2e
describe
'40500' 'info:fdaEXUNH3FIT_65X3YKfile905' 'sip-files00038.pro'
5714e47f0d2b75d9a4e24165c8b7e8a6
de04fb0dfc911564dfd7176b4b1cea2c855983a1
describe
'37876' 'info:fdaEXUNH3FIT_65X3YKfile906' 'sip-files00039.pro'
546d85a1e38ea9f057a51e3005ff5cb1
ecd755179f97ecc43ec50a8013d7d8d8ee355a1b
describe
'36101' 'info:fdaEXUNH3FIT_65X3YKfile907' 'sip-files00040.pro'
81414dd60cf6ad7074ebed5c644c5701
b1f193aea111ee01f4aa4b0aae533cb1f2555721
describe
'39517' 'info:fdaEXUNH3FIT_65X3YKfile908' 'sip-files00041.pro'
ab2a96713a7b246007b4c6486c93f544
df5f402ba4e100297962ab671635db21f3281ee0
describe
'37573' 'info:fdaEXUNH3FIT_65X3YKfile909' 'sip-files00042.pro'
fa686db2457c6fe4ca52c6191454c591
0f07a833b56fef94da627e873af39bb701d4bd5a
describe
'7601204' 'info:fdaEXUNH3FIT_65X3YKfile91' 'sip-files00094.tif'
338b1c52a270f15a53ad6346bd95fd39
6fabcae92905a284d0eaa900b6d3086ace208f80
describe
'38161' 'info:fdaEXUNH3FIT_65X3YKfile910' 'sip-files00043.pro'
b3ece408e9862d06a800fd15f2f59f4b
5c716707379ee193d385ec3019a0b82c13142675
describe
'38555' 'info:fdaEXUNH3FIT_65X3YKfile911' 'sip-files00044.pro'
91f729d0afad978dde6df51dd488a3e7
529f7af9452ad42dfe8f8165eebdf8a8ea16590d
describe
'34901' 'info:fdaEXUNH3FIT_65X3YKfile912' 'sip-files00045.pro'
03781630860e74dfe89602f459202d7b
61f048523b47cf93acc3301a64dc5f1fb2ea324e
'2018-12-19T08:27:23-05:00'
describe
'37355' 'info:fdaEXUNH3FIT_65X3YKfile913' 'sip-files00046.pro'
5aa997c8e00a055e0841c0225b0a1afe
c98132274ea14f2024e41469ceb06dc2279ab5f0
describe
'38627' 'info:fdaEXUNH3FIT_65X3YKfile914' 'sip-files00047.pro'
925fb5015d16c6ead1b8f45e93bab7bd
8050ba3fd1b478da7564527baf727076c4f3a6b2
describe
'32874' 'info:fdaEXUNH3FIT_65X3YKfile915' 'sip-files00048.pro'
04ab87a2175e8f9987240001bffadf20
0acc90f4b0f2acfdd268ebc1e6dda20d2a70ba28
describe
'23324' 'info:fdaEXUNH3FIT_65X3YKfile916' 'sip-files00049.pro'
c73388b6ee17fef3f537c7939886ead8
9bc5ff5c05d3890b8e0f7a2eedf21d94dd50a0d2
describe
'1400' 'info:fdaEXUNH3FIT_65X3YKfile917' 'sip-files00050.pro'
e451f19a13a08ffb09f6f142958f8eb4
8d0d1e8c49c67fa1133123513d6c883a2f4d468b
'2018-12-19T08:28:17-05:00'
describe
'info:fdaEXUNH3FIT_65X3YKfile918' 'sip-files00051.pro'
52f1a3cf61c4cc3d07e9fa477163505f
ed7ef6c4733072cbc264ad5935c820c9d5f1030a
describe
'1192' 'info:fdaEXUNH3FIT_65X3YKfile919' 'sip-files00052.pro'
5da43b2ae93872fb53675af55ef649a3
cb7b314d5cf2ddf09abd4bfffd58f59bc053d7cb
describe
'7596732' 'info:fdaEXUNH3FIT_65X3YKfile92' 'sip-files00095.tif'
8545b2d570f9771cf883ee5133b735d8
4a3b5c4ae007857712bd3d2cf903b963d93b4294
describe
'2792' 'info:fdaEXUNH3FIT_65X3YKfile920' 'sip-files00053.pro'
cc54ffc5c72dd1b202c40aa68ff64c92
f28ac27946d54e13ff279517bf68dee08704e306
describe
'1398' 'info:fdaEXUNH3FIT_65X3YKfile921' 'sip-files00054.pro'
6e74436f9b6c6fe009a33bf14f362769
b8810ca3f25ae6b48f2a29c2364feb5ab838ad83
describe
'4418' 'info:fdaEXUNH3FIT_65X3YKfile922' 'sip-files00055.pro'
0d5bc003d6982b692284010ea7141b7d
e1c612c6a1e107aaaa4ab0c47a914fafa3a45906
describe
'5103' 'info:fdaEXUNH3FIT_65X3YKfile923' 'sip-files00056.pro'
e57abb838d299591019041508e4984c5
933e8bc6972337f666bf27da67f4f9ceba8875f6
describe
'4493' 'info:fdaEXUNH3FIT_65X3YKfile924' 'sip-files00057.pro'
f87f3f117aad335d0fe26137a976b54b
9700b11b8a51e34a68bc69e1d86847d5c99c893c
describe
'5812' 'info:fdaEXUNH3FIT_65X3YKfile925' 'sip-files00058.pro'
d6e074db96a05e84a45e48b51c21b110
de5cc89e55178298d995f21a6c9d9369d6e8a8cc
describe
'8186' 'info:fdaEXUNH3FIT_65X3YKfile926' 'sip-files00059.pro'
6f50a48fd8fe11c4850aa8e65a864c4e
828a7181f60d5d4cff9cda768e45c1d212edc772
describe
'4394' 'info:fdaEXUNH3FIT_65X3YKfile927' 'sip-files00060.pro'
b6045626464bef41fd6c0e4dba10d6e3
341518bfb701ca94e879b130fe02b5cb6a31a0ad
describe
'31789' 'info:fdaEXUNH3FIT_65X3YKfile928' 'sip-files00061.pro'
a4d510c9670e3fd8bb3e19bb7125dc3a
3a63f185f9ef380f4b187158132ccc9d3d8ad57c
describe
'38682' 'info:fdaEXUNH3FIT_65X3YKfile929' 'sip-files00062.pro'
4b1474fb1e483b2c1abed6f52eae7efe
38ed16ed5a18a7b1c03f39db0363b358ee654ee6
describe
'7636720' 'info:fdaEXUNH3FIT_65X3YKfile93' 'sip-files00096.tif'
ce3dea5a4d44afde51b6d735398a2716
0d785994628c4386d2801b6c0fb2c6a27d8ed61d
describe
'37644' 'info:fdaEXUNH3FIT_65X3YKfile930' 'sip-files00063.pro'
b8fe23cbe9fb539536a47479495fc5af
3c06a8403f8c24a6ad46dfbfb314b40b1aaf77eb
describe
'43994' 'info:fdaEXUNH3FIT_65X3YKfile931' 'sip-files00064.pro'
2355c8c0ea1647c0edb0feb3c9298a40
63d930a2f66a9048d66001424f8f78b4bd32819b
describe
'39778' 'info:fdaEXUNH3FIT_65X3YKfile932' 'sip-files00065.pro'
b2ccba8690d19940e50d9e52c081d91e
07c551a37b37f31f4101ffc50e89faff950ff1eb
describe
'37982' 'info:fdaEXUNH3FIT_65X3YKfile933' 'sip-files00066.pro'
f23066edcf4d9a7d9fd7473c8881c875
4bc420b3b17558dd99f3a723f17d91394f3a917b
describe
'36438' 'info:fdaEXUNH3FIT_65X3YKfile934' 'sip-files00067.pro'
b125f845faabcb2309f69cc1db0dc731
ab00a68efc5d855342916eabe29181bdc2129431
describe
'33706' 'info:fdaEXUNH3FIT_65X3YKfile935' 'sip-files00068.pro'
b394f735db443823ef7fd7814252ea7a
81e83943aa3d3565b206de13b1716de825c9f887
describe
'37734' 'info:fdaEXUNH3FIT_65X3YKfile936' 'sip-files00069.pro'
e9934eea582970858184704832f2e2b6
ff8475b5f36b38ac7a82842de2b7f300875bb61e
describe
'37137' 'info:fdaEXUNH3FIT_65X3YKfile937' 'sip-files00070.pro'
ccbb593b9d95bbeb8523f39d8f3c973d
dd91e9832aef9abed4b117a2d9a1eea410e01cc5
describe
'34999' 'info:fdaEXUNH3FIT_65X3YKfile938' 'sip-files00071.pro'
929ff16210a11ed054db5b089c64ad74
cb1feafcdbdb60da636cb86ba781ac135f7cd0c2
describe
'38932' 'info:fdaEXUNH3FIT_65X3YKfile939' 'sip-files00072.pro'
43aa7590b1a19f54231a36044064e2b8
8ad577f05b2cc7ab22d02ee68f43e122a8a09a37
describe
'7607252' 'info:fdaEXUNH3FIT_65X3YKfile94' 'sip-files00097.tif'
d92f50feeff12dcc4da0aa865dd07d04
1216aef2d4cc4a921b23cbc6afa529cf4b4b1ebb
describe
'34671' 'info:fdaEXUNH3FIT_65X3YKfile940' 'sip-files00073.pro'
25313e0214bc24966daf1901e3e8b6f9
2a34ea6539eb5b3ae1a03da671ef9cc620471ff3
describe
'37580' 'info:fdaEXUNH3FIT_65X3YKfile941' 'sip-files00074.pro'
675608ccb769d5acaf96e358bff4a428
e5db1c2bf848cf848302d9549ccd3a5119b557d0
describe
'37092' 'info:fdaEXUNH3FIT_65X3YKfile942' 'sip-files00075.pro'
88730050620fa27dfdf039ef8e4ca73a
4ec51c67e49a030412b713ef555d2c60ba942b7e
'2018-12-19T08:36:33-05:00'
describe
'32726' 'info:fdaEXUNH3FIT_65X3YKfile943' 'sip-files00076.pro'
35f211cb1323560bad1bf669f3fbdc0b
76ab712edf054dec2d6d8a763fad33aead42210b
describe
'33619' 'info:fdaEXUNH3FIT_65X3YKfile944' 'sip-files00077.pro'
15a5a25bdf37bed97b03b8a828857aed
0c10edff21aa5f9855f83a763a42b7944ef9c5b8
describe
'38890' 'info:fdaEXUNH3FIT_65X3YKfile945' 'sip-files00078.pro'
f305f08faf423eb28d0a245d620f7368
820251d2efdb4d37d062b170cc4f36634f0b3626
describe
'32294' 'info:fdaEXUNH3FIT_65X3YKfile946' 'sip-files00079.pro'
91ca8e6c6099dcee9c6d9ecb152ab3e9
b5f290ce009151ffdd849aec47aaf2b0e4768755
describe
'12041' 'info:fdaEXUNH3FIT_65X3YKfile947' 'sip-files00080.pro'
dd0d9c0d9a9cde2be04e7747f84dd4cc
6f9d1a29f20902f3492374e30e2ff23c75c95c40
describe
'3062' 'info:fdaEXUNH3FIT_65X3YKfile948' 'sip-files00081.pro'
f873bbb4a327a2ea0d97dcafb4c38cd5
0f3b906da6a7f570b111c7de28ce8ba08a0cae9d
describe
'3114' 'info:fdaEXUNH3FIT_65X3YKfile949' 'sip-files00082.pro'
cba76613550b7271e74fbfe27437f602
6543c441ea167cb42476f138053fd39d21f7fef8
describe
'7630160' 'info:fdaEXUNH3FIT_65X3YKfile95' 'sip-files00098.tif'
73d620eed6f75338418bc98fdfe83bf7
fc540a087f0c9d6bf39cc6d6f4077feda9fa9c82
'2018-12-19T08:30:44-05:00'
describe
'29494' 'info:fdaEXUNH3FIT_65X3YKfile950' 'sip-files00083.pro'
3277007b3cb13ec625440549c25abdfe
04279a5dc7b40fc500007eb2d995f30035e591e2
describe
'34042' 'info:fdaEXUNH3FIT_65X3YKfile951' 'sip-files00084.pro'
4dedaf444d29df1fc0e5755f30126638
cf92d16a45e9d0fb3e0ef878377f06a794d39600
describe
'39344' 'info:fdaEXUNH3FIT_65X3YKfile952' 'sip-files00085.pro'
cc7ee99426db92520f1bab711c9ff525
38f567b782051b2457e5159c72bccb9d2dbae170
describe
'38145' 'info:fdaEXUNH3FIT_65X3YKfile953' 'sip-files00086.pro'
dc1c34bb69ec56d19e7521cb344c7fc9
11487b5cf1ce7d79f413b356e9a7115f229acb69
describe
'39974' 'info:fdaEXUNH3FIT_65X3YKfile954' 'sip-files00087.pro'
ec1d63b3b7c90833a0a6f9b3d6fe4fe2
f314c56ae332740d10f2016150dc37e38f7980d7
describe
'38841' 'info:fdaEXUNH3FIT_65X3YKfile955' 'sip-files00088.pro'
062bbd12d03afc932430821ba1a7845d
ffdd42964893cf4db0cf0b31dc809cec80cdf8b2
describe
'37240' 'info:fdaEXUNH3FIT_65X3YKfile956' 'sip-files00089.pro'
6beade2621890595e49fe57a92d060b6
2de0469d178c470113170d561dae784276d5e851
'2018-12-19T08:30:52-05:00'
describe
'37133' 'info:fdaEXUNH3FIT_65X3YKfile957' 'sip-files00090.pro'
ec6c0c3e1205695625884af2039f9d11
ad506c013d3fb1d440f037d276c73d11ce65ce3c
describe
'28586' 'info:fdaEXUNH3FIT_65X3YKfile958' 'sip-files00091.pro'
34b86aeb4ff4bf6c4949ea337e19dbd3
3e2586f498f05142bf8f0f895a793b2c2be462ea
describe
'38551' 'info:fdaEXUNH3FIT_65X3YKfile959' 'sip-files00092.pro'
ed612712ba11a7b5e93960e51bc27f86
8cd61496160439d6b2b8326aca78cf26e37bc0f6
describe
'7583232' 'info:fdaEXUNH3FIT_65X3YKfile96' 'sip-files00099.tif'
68a1b081ba82dd4e65f65a34588e59c2
f9ba1ee49359fb7bc32f9ad27cb22ca00b54b8e3
'2018-12-19T08:30:50-05:00'
describe
'33551' 'info:fdaEXUNH3FIT_65X3YKfile960' 'sip-files00093.pro'
6ad615ad77b1fd13f78b0022c8fd2bfb
bc0c026082c36f47dbf62d12baff072834bc2534
describe
'29354' 'info:fdaEXUNH3FIT_65X3YKfile961' 'sip-files00094.pro'
3f8ba463987aeb6a2e9ad91fbd53fd3f
432227d6ec471e59fcc9a39d72abc8b446216cae
describe
'55727' 'info:fdaEXUNH3FIT_65X3YKfile962' 'sip-files00095.pro'
917e298308e70fc4952acd364561fa2d
0ab73a5751b30a7f7c4f102a3d4b293a6da69179
describe
'40348' 'info:fdaEXUNH3FIT_65X3YKfile963' 'sip-files00096.pro'
783ad44975e94bd7d43d9a72661f8887
58daddadb2288b7bb86ea915b802de5a8cde704e
describe
'31727' 'info:fdaEXUNH3FIT_65X3YKfile964' 'sip-files00097.pro'
aa1640522cc8391d4f8dcf6f7774c129
3bd8dc73aa36f71659f4d0aeaa52ed2b8ba12a93
describe
'35306' 'info:fdaEXUNH3FIT_65X3YKfile965' 'sip-files00098.pro'
04f197555c7318f0f84c42e2b1de50cd
4bdb295f2b9bc0b8705cdb06eeea2a445fd41762
describe
'39509' 'info:fdaEXUNH3FIT_65X3YKfile966' 'sip-files00099.pro'
b9489699bdbb6eb28bc5bd0451029f67
a3ab23eb5c271baae9039e7f542ea8109c764d43
describe
'21221' 'info:fdaEXUNH3FIT_65X3YKfile967' 'sip-files00100.pro'
4ba361f303560ef1730f8a5cc2456f19
5329bbd6488e83f8494eb2428d0bf839df1c3364
describe
'29275' 'info:fdaEXUNH3FIT_65X3YKfile968' 'sip-files00101.pro'
9e1b2508689f6198a04c465fd70d987a
e8e3bb3ff7d66626d6236f46ece85a336cd0dd5f
describe
'37997' 'info:fdaEXUNH3FIT_65X3YKfile969' 'sip-files00102.pro'
0fc83c49a252f18e4cadd757c09e29fc
64acb7cbed70da1c686ae9bb25665fa7b72722e1
describe
'7591684' 'info:fdaEXUNH3FIT_65X3YKfile97' 'sip-files00100.tif'
2f1b42a1e7628657358c27a08ad3049c
edde62b6a17f88aa09d69e0f63eef1ba2e1070fc
'2018-12-19T08:36:54-05:00'
describe
'46342' 'info:fdaEXUNH3FIT_65X3YKfile970' 'sip-files00103.pro'
d3e3353584abe18e4178e9e12a2294e3
9b39352e826b62249233cb3a0ea2ff34e684a9ad
describe
'31871' 'info:fdaEXUNH3FIT_65X3YKfile971' 'sip-files00104.pro'
005b4d31d15f2abe86db8e5ec94eb60a
a92b12a91e6a6053520bfc9f2db476c1a1c00fec
describe
'31943' 'info:fdaEXUNH3FIT_65X3YKfile972' 'sip-files00105.pro'
49cfd3dd5944f10c86f683ef282a2ea0
f782390c4404b77a30aa2089e3baeb09fb3abc5d
describe
'37643' 'info:fdaEXUNH3FIT_65X3YKfile973' 'sip-files00106.pro'
8e2862888248d975fc5a02a89f27d3b8
6971cff6c3615975bc694a5b74bb84ce9a858d56
describe
'8947' 'info:fdaEXUNH3FIT_65X3YKfile974' 'sip-files00107.pro'
064b968dd2e03ae2bb20013f8d681bca
b52250a2eda9d112dbd318ae2980aecc66745e68
describe
'3201' 'info:fdaEXUNH3FIT_65X3YKfile975' 'sip-files00108.pro'
ebbbe8c274a1a48e03bb86ecbce0a9b2
1c26b3f508ae9186fa0f59a8c5a2f808ce4fdcd2
describe
'9998' 'info:fdaEXUNH3FIT_65X3YKfile976' 'sip-files00109.pro'
387e9cac7e24c9459ef8bea2a0671895
664b9af48822dfdead9b7794b2210ea894eddbbb
describe
'3877' 'info:fdaEXUNH3FIT_65X3YKfile977' 'sip-files00110.pro'
bf3c3ee0ca41ed7ba130ab5b5e0d1c2c
5059bc06c0ad13b2176a62e7c2e71f762ea120c2
describe
'40106' 'info:fdaEXUNH3FIT_65X3YKfile978' 'sip-files00111.pro'
80b0b4a6dce66e3564c9ad8db1382445
9ef6ea823b7ee78eeba5e66f9355bee69170042d
'2018-12-19T08:31:52-05:00'
describe
'37575' 'info:fdaEXUNH3FIT_65X3YKfile979' 'sip-files00112.pro'
6c47ce7212a2922ade3e1df4f4f47592
4c7b81b9580267b59f0768dfa95f2464b60e239b
describe
'7589376' 'info:fdaEXUNH3FIT_65X3YKfile98' 'sip-files00101.tif'
4afe5eb87b21abf158fbc5c48b4cf152
35d676ea6e88881fec690145ca523d2bf12f14e0
describe
'38269' 'info:fdaEXUNH3FIT_65X3YKfile980' 'sip-files00113.pro'
e9b5cd4f9ec73bf426b4ac32b0c946a2
b974c89bab8a93d217f05e3b6025fd064efe102d
'2018-12-19T08:30:29-05:00'
describe
'2079' 'info:fdaEXUNH3FIT_65X3YKfile981' 'sip-files00114.pro'
0175bcfb05089e63c2b63e2c57cb292c
3a06d60d8235b8d786655ea90ae3e2ec35a8c799
describe
'4005' 'info:fdaEXUNH3FIT_65X3YKfile982' 'sip-files00115.pro'
dd9e23451833992ed6087c094942606b
5037c571a6581ba130701bddb1a7f47bfe2f5855
describe
'1972' 'info:fdaEXUNH3FIT_65X3YKfile983' 'sip-files00116.pro'
7d0e2684f3110931f401a0be8062c5f7
4ecd9ef34f1e47b6e08e4df22a44ec668a2a66d3
describe
'2355' 'info:fdaEXUNH3FIT_65X3YKfile984' 'sip-files00117.pro'
100dadc313cde76436455307b1821b58
c336533fc168a56149fa4b1fc91d0c61bc89fba1
describe
'2806' 'info:fdaEXUNH3FIT_65X3YKfile985' 'sip-files00118.pro'
fd3790d63cf176789f8359a23f84fca7
e0f739b5f6dc7426e06f7712b43cb132173d5ea9
describe
'2618' 'info:fdaEXUNH3FIT_65X3YKfile986' 'sip-files00119.pro'
5a076d74b1d4ba9f5f17816a37d9b147
e3596f7c2ff80b17fe68d7afc7e75abc7541bf7a
describe
'5870' 'info:fdaEXUNH3FIT_65X3YKfile987' 'sip-files00120.pro'
9f6263338613e04dbe3963a4c333f6f7
b152b98c7d3894202874701322d8af550659a0e4
describe
'8057' 'info:fdaEXUNH3FIT_65X3YKfile988' 'sip-files00121.pro'
13696213c59448622b9e7ca2110bc010
0406b9220e2b87a16006b0dbc30cd0de48ebc7d1
'2018-12-19T08:31:33-05:00'
describe
'7153' 'info:fdaEXUNH3FIT_65X3YKfile989' 'sip-files00122.pro'
11cf5fef58b894f310f9a328eaea8d89
bc2bcfc9b0cabbfd61d6ab38ffa68310969eb7c2
describe
'7590100' 'info:fdaEXUNH3FIT_65X3YKfile99' 'sip-files00102.tif'
5c3f5c35a32fb78ab8b5fdbb678f8d02
4bb43f77b34a0395976f90282a3ad97143e79dde
'2018-12-19T08:31:19-05:00'
describe
'7975' 'info:fdaEXUNH3FIT_65X3YKfile990' 'sip-files00123.pro'
4e5db15ce9a4d4c677c63aaf6e9c2f0b
de4cf351a10aaec3a42ce84465d2456b79736e91
describe
'5650' 'info:fdaEXUNH3FIT_65X3YKfile991' 'sip-files00124.pro'
6c0214e20486401650c470c4dc5adb61
1daaeac8be2b13c1944281d0cc744024e11be414
describe
'3972' 'info:fdaEXUNH3FIT_65X3YKfile992' 'sip-files00125.pro'
5ff271ec252be70660079c5ad2ad33c5
35ee8c182ebd775c982617da1c88c3dbdda4391a
describe
'4531' 'info:fdaEXUNH3FIT_65X3YKfile993' 'sip-files00126.pro'
69d3a9ecab865d9f208d76fc2b841654
20cc12aa913db4c856cdedacfe3554f302d08e7a
describe
'30431' 'info:fdaEXUNH3FIT_65X3YKfile994' 'sip-files00127.pro'
01f4c5afc0350557e02ff2497e72d8b2
ba8dd5dda5ea3c1d32a59bd6089783bef860af8c
describe
'40416' 'info:fdaEXUNH3FIT_65X3YKfile995' 'sip-files00128.pro'
c0ac005307fd9ddbea7b9a6ad6482281
9a73c9eb30431543d59387ff8af68ce3b320fe4f
'2018-12-19T08:28:28-05:00'
describe
'36891' 'info:fdaEXUNH3FIT_65X3YKfile996' 'sip-files00129.pro'
648630930e0606c45b60e77ce7403c2e
052e9112f939c3b92083629080912228b50b471f
describe
'36939' 'info:fdaEXUNH3FIT_65X3YKfile997' 'sip-files00130.pro'
580e9e8fe277fb03f9de413554774815
f401e8c6f964b77c6b73c0dfba3d856e47057344
describe
'39853' 'info:fdaEXUNH3FIT_65X3YKfile998' 'sip-files00131.pro'
0a25834bbb2c0bbac5e15de465582fbe
4615d0b3a7f22fc247d6f0d06f7ad6b70bc9da97
describe
'34092' 'info:fdaEXUNH3FIT_65X3YKfile999' 'sip-files00132.pro'
6cd3f9a9d1502d53cbd16609319edf03
8ce037272afa16b6fc7ef8a0ae205b7bc9790fde
describe



PAGE 1

DESIGN AND ANALYSIS OF MASSIVELY PARALLEL COMPUTING STRUCTURES FOR IMAGE SYNTHESIS By ANITRA C. WILSON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1991

PAGE 2

Copyright 1991 by Anitra c. Wilson

PAGE 3

ACKNOWLEDGEMENTS The author extends her sincere gratitude to the chairman of her doctoral supervisory committee, Dr. John Staudhammer, for his technical advice and support during her graduate studies. The author also thanks the other members of her doctoral supervisory committee: Dr. Keith L. Doty, Dr. William R. Eisenstadt, Dr. Zeran R. Pop-Stojanovic, and Dr. Fazil Najafi for their time and critical review of this work. A special appreciation is extended to Dr. John Dyer for his time and thorough critique of chapter 5 and section 6.4.4. The author also extends a heartfelt thank 9 to her family and friends for their encouragement and support through the various stages of her graduate program. The author wishes to express her sincere gratitude to the following organizations for providing resources which made this research possible. Financial support was provided, via a McKnight Doctoral Fellowship, from the Florida Endowment Fund for Higher Education and from summer employment with Bell Communications Research. Finally, the author expresses her sincere appreciation to her husband, Dr. Roderick D. Wilson, for the insightful technical discussions and his unconditional support through all phases of her graduate study at the University of Florida.

PAGE 4

ACKNOWLEDGEMENTS Abstract CHAPTER 1 TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . INTRODUCTION . . . . . . . . . . . . . . . 1.1 Statement of the Research Problem .• 1.2 Scope and Objectives of this Research 1.3 Organization of Dissertation CHAPTER 2 FUNDAMENTAL PRINCIPLES IN COMPUTER GRAPHICS 2.1 Introduction 2.2 overview of the Image synthesis Pipeline 2.3 Illumination Models for Image Synthesis 2.4 Hidden Surface Algorithms. 2.5 Volumetric Rendering . . 2.6 Constructive Solid Geometry 2.7 Chapter Highlights CHAPTER 3 COMPUTER GRAPHICS SYSTEMS ......... . 3.1 Introduction 3.2 Overview of Parallel Computer Graphics Architectures. . . . . . . ••... 3~2.1 Image Space Architectures .•.... 3.2.2 Object Space Architectures 3.3 Parallel Architectures for Realistic Image iii vi 1 1 3 4 6 6 6 8 10 14 15 16 19 19 19 22 28 Synthesis . . . . 30 3.4 Trend Towards Massively Parallel Computers 33 3.4.1 Characteristics of Massively Parallel Computers . 3 4 3.4.2 Motivation for Massively Parallel CG Systems 36 3.5 Chapter Highlights 37 iv

PAGE 5

CHAPTER 4 INTRODUCTION TO PARALLEL COMPUTERS. . 49 4.1 Introduction . . . . 49 4.2 Parallel Computing Structures 51 4.2.1 Classification Schemes. . . . 51 4.2.2 Architectural Paradigms . . 54 4. 2. 3 Abstract Machines 55 4.2.4 Performance Metrics and Architectural Limitations 62 4.3 Operating Systems. . . 65 4.4 Parallel Computational Models . 65 4.5 Chapter Highlights . . 68 CHAPTER 5 THE HYPERSTAR: A NEW HYPERCUBE-BASED ARCHITECTURE MASSIVELY PARALLEL COMPUTERS .......... . 5.1 Introduction . . .• FOR 71 71 5.2 Formal Description of the Hypercube Architecture 5.3 Structural Enhancements to the Hypercube Topology . . . . . . . . . . . . . . 5.4 Formal Definition of the Hyperstar Architecture 5.5 5.6 5.7 5.8 5.9 CHAPTER 6 Construction of the Hyperstar Topology Data Communication in the Hyperstar Network Parameters of the Hyperstar Performance Measures for the Hyperstar Network Chapter Highlights MASSIVELY PARALLEL COMPUTING STRUCTURES FOR IMAGE SYNTHESIS 6.1 Introduction 6.2 Overview of the System Architecture 6.3 Architecture of the MIMD Computer 6.4 The Hierarchical Interconnection Network CHAPTER 7 6.4.1 Why Hierarchical Interconnection 6.4.2 6.4.3 6.4.4 Networks for MPCs? Design Issues Construction of the HIN Performance Analysis of the HIN A NOVEL COMPUTATIONAL MODEL FOR A MASSIVELY PARALLEL 73 75 78 81 84 85 94 101 117 117 118 120 122 122 123 126 128 ARCHITECTURE . 13 9 7.1 Introduction 139 7.2 Theoretical Computational Models 140 7.2.1 The Object-Oriented Model 142 7.2.2 The Functional Model 145 V

PAGE 6

7.3 The Computational Model •.......... 146 7.3.1 Formal Definition . . . . . . . 146 7.3.2 Synchronization and Communication 152 7.3.3 Semantics of the Computational Model 152 7. 4 Chapter Highlights . . . . . . . . . . . . 153 CHAPTER 8 CONCLUSIONS . ...... . 8.1 summary ....... . 8.2 Research Contributions 8.3 Open Research Problems REFERENCES BIOGRAPHICAL SKETCH. vi 154 154 154 156 158 165

PAGE 7

Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy DESIGN AND ANALYSIS OF MASSIVELY PARALLEL COMPUTING STRUCTURES FOR IMAGE SYNTHESIS By Anitra c. Wilson December 1991 Chairperson: Dr. John Staudhammer Major Department: Electrical Engineering During the past decade, the demand for high performance large-scale parallel computers for computationally intensive applications has continued. one such application area is computer graphics. The complexity of realistic images and the time needed to generate these images in real-time requires computers that are capable of providing up to 10 12 operations per second. In this dissertation, a new massively parallel architecture is designed for solving computationally intensive problems in real-time image synthesis. This architecture utilizes a unique theoretical communication model (i.e., large-scale interconnection network) for constructing a massively parallel system. vi

PAGE 8

The basic premise of the communication model is in the design of a novel hierarchical interconnection network that is applicable for massively parallel systems, in general, as well as the special purpose architecture for real-time image synthesis. The hierarchical interconnection network consists of a global interconnection network and a local interconnection network. The analysis is presented for this HIN structure. In addition, a new hypercube-based topology known as the hyperstar is proposed. This interconnection network is also utilized as the local interconnection network within the hierarchical interconnection network, but is suitable as a large-scale interconnection network. The unique design of the hyperstar reduces the overall node degree of a conventional hypercube to a fixed degree of three. In compar~son to other hypercube-based topologies, this topology has a denser structure for interconnecting millions of nodes at a modest increase in average distance, at a constant degree, and at a lower dimension. This structure also has many of the attractive properties of the conventional hypercube: symmetry, fault-tolerance, and recursivity. Several network parameters are defined for this structure to evaluate its potential performance. Finally, a new theoretical model of parallel computations is developed for a general-purpose massively parallel computer. This conceptual framework is applied to a massively vii

PAGE 9

parallel graphics system. The fundamental purpose of the model is to provide a basis for a high-level programming language as well as to provide a formalism for structuring parallel computations onto a massively parallel computer. The basic idea of our model is to integrate the functional, real time, and object-oriented paradigms into a single paradigm to _ yield a powerful computational model for meeting the enormous computational demands of different scientific applications such as real-time image synthesis. Several open research problems pertinent to hypercube based topologies are enumerated. Additional theoretical research questions and/or problems peculiar to massively parallel computers are also discussed. viii

PAGE 10

CHAPTER 1 INTRODUCTION 1.1 Statement of the Research Problem The study of massively parallel computing is currently an active area of research and encompasses a broad spectrum of areas such as the design and analysis of massively parallel algorithms, the development of massively parallel systems, and the formulation of parallel programming languages for massively parallel systems. Research in this field is motivated by one dominant factor--to build systems that are capable of solving large computational problems that are not feasible with existing sequential computing technology. The recent trend towards massive parallel computation has been made possible because of rapid technological advances in VLSI (Very Large Scale Integration) device theory. However, with this new computing technology, new issues have emerged that are peculiar to massively parallel computing. For example, in a massively parallel system, the computational tasks of an algorithm must be partitioned into fine-grain subtasks and ,subsequently, each subtask must be allocated to one of the processing elements or processors while maintaining the correct overall sequencing of tasks. The aim is also to ensure that the workload among the 1

PAGE 11

2 processors is balanced, that maximum parallelism is obtained and that the execution time is minimized. It is assumed that the processors are working simultaneously to solve an aspect, i.e. ,subtask, of a computational problem. Another consideration must be given to communications between processors, i.e. the synchronization of processors when communicating intermediate results. Besides synchronization and task allocation issues, there are performance issues: cost, speed, reliability, and fault tolerance. In order to design efficient computations, it is therefore imperative that models which represent the execution of these computations be developed to facilitate the understanding of the interactions between the computations and their underlying parallel architectures. The effect of interactions between parallel algorithms and architectures (i.e., algorithmic parameters and architectural parameters) is still not well understood. Some examples of architectural parameters are: configuration of the underlying architecture, number of processors, speed, and . bandwidth of processors. Some examples of algorithmic parameters are: task granularity, communication structure of computations, task decomposition, and task allocation strategies.

PAGE 12

3 1.2 Scope and Objectives of this Research There are two main research questions that are considered in this dissertation. They are: (1) What is an appropriate interconnection network model for a massively parallel architecture for image-synthesis? (2) What is a suitable computational model for a massively parallel architecture for real-time image synthesis? In this work, design options for interconnection networks are explored and a new general-purpose hypercube-based interconnection network for a massively parallel architecture is proposed. In addition, a unique design of a hierarchical interconnection network (HIN) for constructing a massively parallel architecture that utilizes this hypercube-based topology is proposed. Moreover, a formalism for structuring parallel computations onto a massively parallel system is developed. The formalism is a conceptual framework of a computation model which serves as a basis for a parallel programming language. There are three motivating factors for this research. One motivating factor is to design a high performance interconnection network for a massively parallel architecture. The design of large-scale interconnection ' networks for parallel architectures is a non-trivial task and is a research area under intense study. An analysis of the hypercube-based structure is provided to characterize the potential

PAGE 13

4 performance of this architecture as well as the performance of the HIN. Another motivating factor is to design a massively parallel architecture for solving computationally intensive problems found in real-time image synthesis. The second motivation is to gain in~ight into the application of massively parallel synthesis. architectures for real-time image The last motivation is to provide a conceptual framework for structuring parallel computations onto a massively parallel architecture. Most of the current research in the massively parallel computing area has focus on the design of architectural structures. There exits only rudimentary knowledge on how to structure application programs for these architectures and limited empirical experience on programming massively parallel computing structures. Thus, there is ample opportunity to make significant contributions towards the theoretical foundations of massively parallel computing structures. 1.3 Organization of Dissertation , The remainder of this dissertation is organized as follows. Chapter 2 provides background material that is essential for understand _ ing the theory of realistic image

PAGE 14

5 synthesis and related research in parallel computer graphics system design. Chapter 3 describes related research in parallel computer graphics system design. .. Chapter 4 presents an overview of pertinent research areas and theoretical concepts in massively parallel computing. Chapter 5 presents the theoretical framework of a new hypercube-based topology, i.e. , the hypers tar. A formal description of both the hypercube and the hyperstar is included. A brief survey of topological enhancements are described. Network parameters and performance measures are presented for the analysis of this structure. In addition, a illustration of the construction of this network as well as a routing algorithm is presented. Chapter 6 presents an architectural overview of a massively parallel system for real-time image synthesis. The application of the hyperstar as a local interconnection network within a hierarchical interconnection network structure is also presented. Mathematical analysis is presented for this hierarchical interconnection network. Chapter 7 presents a novel object-oriented computational model that exploits massive parallelism~ Chapter 8 presents a summary and the major research contributions. are discussed. In addition, several open research problems

PAGE 15

CHAPTER 2 FUNDAMENTAL PRINCIPLES IN COMPUTER GRAPHICS 2.1 Introduction In this section, a review of basic concepts in generating realistic images is presented. Section 2. 2 presents an overview of the image synthesis pipeline. Section 2. 3 discusses illumination models for image synthesis. Section 2.4 presents a description of various hidden surface algorithms for determining the visibility of objects in a scene. Section 2.5 describes volumetric rendering. Section 2.6 describes constructive solid geometry. Finally, section 2.7 presents the chapter highlights. 2.2 overview of the Image Synthesis Pipeline There are six steps that are performed in generating a synthetic computer image: viewing transformation, clipping, projection transformation, visibility calculations, shading, and scan conversion. Figure 2 .1 presents a functional diagram of the image generation pipeline. A scene is comprised of objects that are stored initially in a database. The database contains a description in world view coordinates of the entire scene. Some examples of 6

PAGE 16

7 information stored in the database are the basic properties of an object. These properties include the color, material, location, and geometry of that object. The geometry of an object is specified by a set of primitives. An example of a common primitive used in computer graphics is the polygon. However, a frequent problem with the use of polygons is faceting. In other words, an object is composed of a collection of interconnected polygons that appear faceted. To eliminate the problem of faceting, one solution is to use opaque structures with curved surfaces such as spheres, cylinders, and cones, as well as boxes (Iskandar, 1990). The objects that comprise the scene stored in the object database must undergo several transformations such as rotation, scaling, skewing, and other geometric operations. These transformations are part of the viewing transformation process for generating synthetic computer images. The next step is the clipping process which involves determining which lines or portions of lines in the scene or image lie outside the window. Those lines or portions of lines which are outside of the window are discarded. The next step is the shading computation. This process involves determining the correct color for each pixel in a particular object and performing texture operations. After shading calculations have been performed, the next procedure is to determine the visibility of each pixel in an

PAGE 17

8 image. Each pixel which might be hidden by an object must be identified to determine whether it is truly visible, or if it is obscured by other objects at that pixel. Finally, projective transformations and scan conversion . ' are performed. These two steps determine which pixels should be altered in order to add the object to the final image. The final image is displayed by the video display after undergoing the video generation process which may employ algorithms for display correction of the image. These algorithms include color adjustment and compensation from a particular observer's point of view (Glassner and Fuchs, 1985). 2.3 Illumination Models for Image Synthesis Illumination models in computer graphics are essential to the creation of realistic images. These models determine the appearance of each point on the display. These models are used to create the appearance of the same point in the projection of a scene that is obtained when viewed in a real environment. In observing any scene, light is dispersed in complex ways on objects contained in that scene. The observed pixel color for an object in a scene is a synthesis of the combination of many components. Some of these include such lighting characteristics as the actual material surfaces associated with the object upon which the

PAGE 18

9 light reflects, and the position of other objects contained in the scene. Light behavior under many conditions has been extensively studied in the fields of physics and optics. Based on the work in these fields, the illumination models utilized in computers can be categorized into three broad classification areas: empirical, transitional, and analytical. Empirical models have been used to display shaded images in the majority of the early research in computer graphics. These models utilized concepts from perspective geometry as well as used incremental techniques for pixel illumination. Moreover, image coherence properties are also utilized for performing rapid incremental shading. Other models include the transitional models. These models are based on the principles of physics and optics and employ characteristics that capture the true geometry of the environment. Some of these characteristics include reflections, refractions, and shadows. Another model is the class of analytical models. These models are primarily concerned with visible realism. Thus, the models produce simulations of the physical environment in contrast to realistic productions. This is accomplished via the incorporation of many methods for maintaining an equilibrium of light energy, as light propagates through a diffuse environment. These models are often expressed in terms of light energy as opposed to light intensity.

PAGE 19

10 2.4 Hidden Surface Algorithms The two-dimensional projection of a three-dimensional object consisting of edges and/or faces onto a display is fairly simple. However, the determination of which edges and/or faces would be invisible when opaque material is employed is a non-trivial problem. This particular problem has been referred to as the hidden surface problem. Several techniques have been developed to address this problem and are referred to as visible surface algorithms. The visible surface algorithms discussed here are based on the concept of point sampling. An approximation to the solution of the hidden surface problem is obtained by point sampling at a finite number of discrete sample points. There are four visible surface algorithms of interest which are briefly discussed here. They are Z-buffer, Painter's, Scan-line, and ray-tracing algorithms. Together, these visible surface algorithms constitute the majority of all the visible surface algorithms which are currently employed. The problem geometry is equivalent for each of the algorithms. The model environment is defined by a number of geometric primitives, typically polygons. This environment is viewed from an arbitrary viewpoint in an arbitrary view direction. The aforementioned algorithms each perform a projection of the three-dimensional space onto the two dimensional virtual image plane centered at the eye or view point. In those instances where parts of more than one

PAGE 20

11 particular object project onto the same point of the image, then only the nearest parts of the objects are said to correspond to the visible surface, _ and all others are subsequently discarded. The most widely used and simplest of the visible surface algorithms is the Z-buffer (or depth-buffer). In addition to the required memory to store the actual image, an additional memory called a Z-buffer is utilized. In this buffer, the depth of the object in a particular scene, that is closest to the viewer, is stored for each pixel on the display. In object processing, for each pixel that lies within a specific objects boundary, a z-value and intensity are calculated. If a pixels z-value is closer to the corresponding position in the Z-buffer, then the z-value and intensity of the pixel are replaced with those of the closer object. In the scan-line algorithm, each line in a scene is processed to determine where the intersection of objects with a particular line occurs. These areas of intersections are referred to as _ spans. These spans are subsequently sorted into depth order and finally displayed, one scan line at a time. Scan-line algorithms can be made to function in a faster way by exploiting the coherence properties of an image in order that incremental processing may be utilized. The techniques used by scan-line algorithms function to reduce the hidden surface problem from three dimensions to two

PAGE 21

12 dimensions, and thereby greatly reduce the geometry of calculations required. Another visible surface algorithm utilized is the Painter's algorithm. This relatively simple algorithm first sorts objects in order of the distance from the eye or vie~ point. This is followed by each object being displayed in a back to front order in the frame buff er. The sorting guarantees visibility of the objects which are closer to the view point. A major shortcoming that can be experienced in using this technique is that the ordering of objects must be determined globally. This shortcoming limits its use for complex models. The visible surface algorithms described thus far for visible surface processing are examples of image space algorithms. These algorithms solve the hidden surface problem by first projecting the objects into the plane of the image. This is followed by the manipulation of those projections. The final visible surface algorithm discussed here, ray tracing, operates differently. Ray tracing is a visible surface algorithm that belongs to the class of object space algorithms. For these algorithms, no explicit projection is performed. Therefore, each object is a suitable candidate for the visible surface of each pixel on the screen. Ray tracing is considered to be an example of a technique for realistic image synthesis. The ray tracing algorithm utilizes the principles of geometric optics by considering

PAGE 22

13 rays of light of infinitesimal width and their interaction within the environment. The literature in this area is rich with algorithms which adapt the ray tracing technique for use in synthesizing many natural phenomena, in addition to accommodating complex shapes and surfaces. Widespread interest in ray tracing is evident in the extension of the basic algorithm by many researchers. Ray tracing has become established as one of the most powerful and widely used techniques for realistic image synthesis. The ray tracing algorithm was first described by Appel (1968). He suggested that rays should be traced from the view point through each pixel of the virtual screen and into the environment. These rays should be transversed in the reverse direction from the way the rays of light would propagate in a physical environment. This novel approach indicates which rays are closest to the object where the rays intersect. This determination illustrates which rays are visible to the surface. This idea was extended by Whitted (Whitted 1980) in an extension to the ray tracing algorithm to incorporate reflections, refractions, and shadows within a common shading model. For each intersection of a primary ray with a surface, a secondary ray called a shadow ray is first ~raced towards each point-light source (Whitted, 1980). If an object is encountered between the surface and a light source, then the point of intersection is the shadow with respect to that light source. In this situation, where an object exists between the

PAGE 23

14 surface and the light source, no direct contribution is made to the illumination of the intersection point. He also observed that if the surface is made of a material with reflective and/or refractive properties, then the secondary . rays are traced in the direction of reflection and/or refraction. If these rays are seen to intersect with other surfaces, then a contribution of the illumination of the closest of these surfaces is made towards the intensity of the original pixel. The recursive repetition of this process provides multiple reflections and refractions, with each intersection giving rise to subsequent rays. The geometry of the ray and surface intersection is shown in Figure 2.2. The direction and intensity of the incident ray along the mirrored direction, i.e., the direction and intensity of the reflected ray with respect to the surface normal, is shown. In addition, the direction and intensity of the refracted ray, obtained by Snell's law of refraction, is also shown along with the light source (Green, 1989). 2.5 Volumetric Rendering Volumetric rendering is based on the use ' of 2n X 2n X 2n unit cubes called voxels or volume elements (Kaufman and Bakalash, 1988). A voxel-image system for volumetric rendering is based on the concept that a three-dimensional inherently continuous scene is discretized, sampled, and

PAGE 24

15 stored in a large three-dimensional cubic frame buffer of voxels or volume elements (Kaufman and Bakalash, 1988). Voxel based imagery is used in medicine (e.g., computed tomography and ultrasounding), geology, biology, and three-dimensional image processing (e.g., time varying two-dimensional images) (Kaufman and Bakalash, 1988). There are some major advantages for volumetric rendering for voxel-based images (Kaufman and Bakalash, 1988). The projections of the voxel-based image along a viewing direction display only the visible surfaces and thus implicitly ignore the hidden surfaces. Also, there is no need to scan convert and manipulate the graphical display list repeatedly for every small modification. Finally, projection, rendering, and manipulation are independent of the scan complexity for voxel based processing (Kaufman and Bakalash, 1988). 2.6 Constructive Solid Geometry Complex objects can be constructed by applying certain boolean set operations such as union, difference to simple geometric solids. intersection, and Some examples of simple geometric solids include blocks, spheres and cylinders. The use of boolean set operations to develop C?mplex objects from simple geometric solids is referred to as constructive solid geometry (CSG). Highly complex objects may be represented by combining just a few primitives (i.e., simple geometric solids). This particular property makes the

PAGE 25

16 representation highly economical . by minimizing the amount of storage required. One particular CSG technique is the one proposed by Roth (1982). He described a technique for producing images of CSG-modelled objects by ray tracing and called it ray casting. Other CSG models are utilized extensively in CAD/CAM (Computer Aided Design/ Computer Aided Manufacturing) applications (Green, 1989). 2.7 Chapter Highlights In this chapter, the basic concepts in generating realistic images were presented. An overview of the image generation pipeline was presented. Illumination models for image synthesis were also discussed. Several illumination models were discussed, namely empirical, transitional, and analytical. In addition, the descriptions of several hidden surface algorithms were also described. l

PAGE 26

17 ObJect Viewing Clipping Database lrransformation 1' Shading Visible Projective Calculation surface --Transformation Calculation ,, Scan Video Video conversion Generation Display Figure 2.1 Image Generation Pipeline

PAGE 27

0 Light Source Intens1ty of the Incident Ray \ Incident Ray Ang1e 1 -CHor:111a1) 18 ll'or:111a1 Angle z Intensity of the Refracted Ray ~tensity of the Reflected Ray Sha.day Figure 2.2 Geometry of ray and surface intersection (Reproduced from (Green, 1989))

PAGE 28

CHAPTER 3 COMPUTER GRAPHICS SYSTEMS 3.1 Introduction This chapter presents a review of the basic system concepts that are needed in the design of computer graphics systems for image synthesis. Section 3. 2 presents an overview of parallel computer graphics architectures. Two types of parallel architectures for computer graphics are discussed: Image space architectures {Section 3.2.1) and Object space architectures {Section 3.2.2). Section 3.3 presents a survey of parallel computer architectures for generating realistic images. Section 3.4 describes the recent trend towards the development of massively parallel computers. Finally, the chapter concludes with a summary of the important concepts. 3.2 overview of Parallel Computer Graphics Architectures Significant developments have been made in recent years in image synthesis, a subfield of computer graphics concerned with generating realistic pictures or synthetic images indistinguishable from photographs of real ' objects. These computer generated images are useful in applications that require a visual prototype, or model, of an object as a 19

PAGE 29

20 replacement for the construction of a physical object. The applications utilizing the development of image synthesis include many fields and commercial enterprises, such as CAD/CAM, scientific visualization, the medical industry, and the entertainment industry. Unfortunately, as the realism and quality of computer generated images improve, the computation eff art and time required to create the images increases. The time is directly related to the complexity and number of objects in a scene. Also, the algorithms used to generate these images involve complex models, and are computationally intensive. Computation time can range from a few seconds on a fast supercomputer to days on a mainframe computer. Ideally, it is desirable to render images in real time. This requires images to be updated at a rate of 1/10 of a second (image update rate) and displayed in a video frame time or less (display rate). The standard NTSC video frame time is thirty frames per second. Because of the image update rate, some images are rendered without much realism. This may be sufficient depending upon a particular application, such as robotics simulation. Substantial speedups in computation can , be achieved in several ways. They are as follows: (1) developing faster devices, (2) designing architectures that enable concurrent processing, ( 3) developing compilers to restructure sequential programs into their parallel equivalent, (4) developing

PAGE 30

21 algorithms which permit the specification of concurrency, and (5) developing better analytic models of computation (Kleinrock, 1985). One research direction in image synthesis has been to exploit the inherent parallelism in the algorithms used to create realistic images. Ray tracing, a popular algorithm used to create realistic images, is an ideal candidate for parallel processing ~ The ray-object intersection calculations can be performed in parallel (Dippe' and Swensen, .1984; Gottlieb et al., 1983; Nishimura et al., 1983, and Ullner, 1984). These intersection calculations represent the most computationally expensive portion of the algorithm. Another research direction has been to develop parallel machines and graphics processors. Various architectures that utilize parallelism have been proposed. Some of these proposals have been built into actual machines. Two examples of commercial machines are the AT&T Pixel Machine and the Ardent Titan Graphics Supercomputer. The parallel machines for computer graphics can be separated into two basic categories: (1) Image Architectures and ( 2) Object Space Architectures. Space Other architectures, known as hybrid architectures , combine these two approaches (Kedem and Ellis, 1984; Weinberg, 1981, and Whelan, 1985). These two architectural schemes are used because they are related to two important aspects which represent images in

PAGE 31

22 computer graphics, namely, the image space and the object space. The image space of an image is a matrix of the raster elements (pixels) of a display. The number of pixels equals the resolution of the display (Reghbati and Lee, 1988). The object space of an image is the set of graphical primitives such as lines, polygons, and quadratic surfaces (e.g., spheres and cylinders) that are used to model the graphical objects to be depicted in a scene. The application of parallel processing to achieve real time image synthesis is an active area of research. In the next section, a review of previous applications of parallel processing in computer graphics will be presented. Parallel processing techniques have been applied to specific image generation functions: scan conversion, hidden surface removal, and shading. These algorithms . represent the most I computationally intensive operations for generating realistic images in real-time. Executing these algorithms in parallel enables the overall image generation process to be completed faster for complex images. 3.2.1 Image Space Architectures There are several ways to partition the im,age space. For example, the image space may be separated into horizontal or vertical partitions of pixels or into subregions of pixels. Most of the partitioning methods may be categorized as either static or dynamic. Figures 3.1-3.3 illustrate several

PAGE 32

23 examples of image space partitioning. ( In the image space, the pixels are independent and can be processed simultaneously). Processors are permanently (static partitioning) or temporarily ( dynamic partitioning ) assigned to each partition for further processing. Several researchers have studied mapping schemes which associate processors to image space partitions. Kaplan and Greenberg (1979) used a dynamic partitioning scheme for two hidden surface removal algorithms. The processors they used were dynamically allocated to operate on groups of n scan lines and image subregions for the scan line algorithm or area subdivision algorithm. Hu and Foley (1985) studied three types of mapping schemes for hidden surface removal: static contiguous, static interleaved, and dynamic processing. A static contiguous mapping scheme partitions the image space into contiguous groups of scan lines while a static interleaved mapping scheme partitions the image space into non-contiguous set of interleaved scan lines (Figure 3. 4). On the other hand, a dynamic processing mapping scheme is a temporal partitioning of the image space into groups of scan lines or individual scan lines. When the entire image space is considered as one ' partition, the processors are allocated to each individual pixel. This scheme is also known as the "processor per pixel II architecture. The Pixel Planes (Fuchs et al., 1982; Fuchs and Poulton, 1981, and Poulton et al. 1985) and Rectangular

PAGE 33

24 Filling System (Whelan, 1982) are examples of this type of architecture. Many architectures have been proposed which use parallelism to speed up the tiling of objects. The imag~ space is partitioned into regions which form a regular tesselated pattern of pixels and processors are assigned to groups of interleaved pixels. Architectures based upon this approach include the " 8 X 8 11 displays (Clark and Hannah, 1980; Fuchs and Johnson, 1979; Gupta et al., 1981, and Sproul et al., 1983) (Figure 3.5). Fuchs and Johnson ( 1979) developed a novel processor assignment based upon modular arithmetic. They proposed a distributed depth buffer architecture where many tiling processors work in parallel to determine pixel visibility. This architecture is essentially static interleaving in 2 dimensions. Polygons to be tiled are passed to a central broadcast processor which broadcasts a description of the polygon to all of the tiling processors via an object bus. Upon completion, the pixels are sent via a video bus to a Video Scan Generator (VSG). There the pixels are assembled into a complete image in a frame buff er. The Video Scan Generator updates the frame buffer memory , as new frame information becomes available. Synchronization is achieved by the handshaking that occurs between the central Broadcast Processor (CBP) and the tiling processors. Demetrescu (1985) used a similar partitioning scheme with the exception that a .

PAGE 34

25 processor can access and update an entire scan-line instead of a single pixel. Clark and Hannah(1980) developed an architecture to speed up the rasterization of the screen (i.e., perform scan conversion) (Figure 3.6). The architecture is comprised of Column Image Processors (C-IMPs) and Row Image Processors IMPs). The parent processor prepares the geometric primitives for scan conversion (i.e., lines, characters, and polygons) and sends this data to the eight C-IMPs. The C-IMPs redistribute this information to a set of eight R-IMPs under their control. Each R-IMP scan converts the data and sends the resulting pixel data directly to the image buffer, i.e., to the memory chips under its control. This system uses a two-level hierarchical bus structure where eight processors are interleaved along each bus. This interleaved structure maps into any contiguous 8 X 8 set of pixels on the screen such that each pixel in the region is controlled by one processor and each pr9cessor controls one pixel. In other words, a tessellation scheme similar to that of Fuchs and Johnson is used to assign individual pixels in an adjacent group of pixels to the R-IMPs. Very high tiling rates can be achieved with this interleaved architecture. The architecture can also be extended to implement a parallel depth buffer algorithm for hidden surface removal.

PAGE 35

26 Niimi et " al. (1984) developed an architecture which is similar to Clark and Johnson's architecture. The architecture utilizes a two-level structure composed of several Scan Line Processors (SLPs) which control several Pixel Processors (PXPs) (Figure 3. 7). The author calls this configuration EXPERTS. EXPERTS is connected to a host computer. This system used dynamic partitioning instead of static interleaving like some of the earlier methods. A group of scan lines are dynamically allocated to the SLPs by the ~ost computer. The SLPs initialize, update, and sort the specific data structure for each scan 1 ine (i.e. , a 1 ist of active segments or intersections of polygons with a scan line). Then, the SLPs dynamically allocate the scan lines to the PXPs. The PXPs execute the hidden surface removal algorithm (i.e., the scan line algorithm) for the span or scan line segment in _ their territory. The scan line algorithm had been e~tended to perform smooth shading (Gouraud shading) and anti aliasing on a per scan line basis. This enables scan line coherence and span coherence to be preserved. The SLPs manage the workload distribution to PXPs via a dynamic load balancing strategy. When an SLP completes its tasks, it counts the number of completion signals received from its set of PXPs. If the number of signals is less than N/2 (N is the number of PXPs connected to the SLP), then the SLP remains idle until N/2 PXPs terminate. Otherwise, the SLP assigns additional pixels to the active PXPs, up to the

PAGE 36

27 allowable limits, and allocates the remaining pixels to the other PXPs. A similar scheme is employed by the host to manage the SLPs. Parke (1980) presented two architectures for polygon tiling: the Splitter Tree and the Hybrid Architecture. One of his architectures, the Splitter Tree, consists of a tree of clipping engines which redistribute polygons to the tiling processors (Figure 3. 8). Each splitter divides an input region in half. Each half consists of clipped polygons. The output of the splitters forms the input to the next level of splitters. These splitters distribute a stream of polygons into a number of image processors by partitioning the screen into subregions. Each image processor is therefore assigned to a subregion and performs scan conversion in this depth buffer architecture. Parke• s hybrid architecture is a multi processor depth buffer architecture which combines the splitter tree approach with a broadcast approach similar to the one used in Fuchs and Johnson's system (Figure 3.9). The image processors tile the polygons in the assigned subregion. Parke mentioned several limitations with these architectures. None of the approaches above handles anti aliasing. The Splitter Tree architecture depends on a uniform distribution of regions. A non-uniform distribution may permit one branch of the tree to become more heavily loaded while other branches remain idle. The broadcast

PAGE 37

28 approach encounters a polygon-edge overhead. However, this problem can be reduced by allowing the central broadcast controller instead of the image processors to perform these calculations. The hybrid approach minimizes these limitations by (1) lowering the polygon-edge overhead through reductions in the number of incoming polygons and edges broadcast to an image processor and (2) utilizing a row-column interleave pattern for broadcasting or equally distributing the pixel computations across the image processors. 3.2.2 Object Space Architectures This architectural configuration associates graphical objects to processors. The union of these objects form the object space. Each processor may perform hidden surface removal calculations on individual objects or groups of objects to determine which objects are visible at each pixel (Dippe' and Swensen, 1984; Fussell and Rathi, 1982; Pavicic, 1985, and Ullner, 1983). For groups of objects, the processors must process them sequentially. Ullner (1983) subdivided the object space in one of his proposed parallel machines for ray tracing. This machine is a two-dimensional array of microprocessors with custom ray intersections and communication hardware (refer again to Figure 3.5). Specifically, the object space is subdivided along all three axes, thus resulting in a collection of

PAGE 38

29 subvolumes. Contiguous subvolumes of objects are mapped to each processor. This mapping distributes a set of rays onto an equal number of processors. In this method, the mapping function aids in balancing the load of the system. Appropriate actions are taken by each processor depending upon the outcome of the ray-object intersection testing via message passing. Dippe' and Swensen (1984) also presented an architecture for ray tracing which adaptively partitions the object ~pace into subvolumes. Each subvolume is also associated with a processor. A processor, in this 3-D array of processors, can communicate with other processors by sending and receiving messages. The messages which check for ray intersections in processors are only passed along the path of the ray. This constraint provides speedup over algorithms which check for rays in all processors. Dippe' (1984) uses an adaptive subdivision to handle load balancing. As computations continue, the processors dynamically reconfigure the mapping, i.e., adjust the boundaries of the subvolumes, as load shifts from area to area. Global information about load distribution is maintained and used to redistribute the resources, thus, allowing the system to reconfigure itself. Pavicic (1985) presented an architecture which associates one or more objects to processors (object processors) for hidden surface removal. In addition, he developed several algorithms. They are (1) a selective refinement algorithm

PAGE 39

30 which performs visibility surface determination (z-buffer algorithm) and anti-aliasing in parallel, (2) an efficient algorithm which makes incremental updates on portions of an image that change, and (3) two filter functions for anti aliasing. Originally, he developed a conceptual design comprised of multiple processors for object processing. This design was intended to be used as a front-end object processor to an IBM SIMD (Single Instruction Stream Multiple Data Stream) image processor. He extended his design to a MIMD (Multiple Instruction Stream Multiple Data Stream) architecture with shared memory and studied several interconnection networks. After performance analysis, he chose the omega network which used switches with queues to connect processors and memory. Object information was encapsulated in packets and routed to the memory. Pavicic (1985) viewed the memory as image processors which communicated via messages to the object processors and handled the arriving packets. In his architecture, a priori object descriptions were assumed to be distributed uniformly to the object processors. No further attention was given to the load balancing issue. 3.3 Parallel Architectures for Realistic Image synthesis Several architectures have been proposed and/or built in recent years for reali~tic image synthesis. The primary motivation for designing these architectures has been to

PAGE 40

31 decrease the processing time for rendering realistic images in real-time. complexity. These images may be complex or have modest (The complexity of an image depends upon the numnber of objects in a particular scene. Nevertheless, there are four basic categories for realistic image synthesis architectures. They are: 1) general-purpose vector processors, 2) general-purpose multicomputers, 3) special-purpose hardware, and 4) general purpose multiprocessors. Systems which fall into categories 1, 2, and 4 employ commercially available hardware. These systems have been tested and evaluated. On the other hand, systems which comprise category 3 are propos~ls of concurrent ray-tracing systems (Green, 1989). General-purpose vector processors have been utilized to speed up the processing time for ray-tracing. Some examples of these systems are the Cray-1 and CDC Cyber 205 supercomputers. Max (1981) developed a rendering algorithm to generate ocean waves and islands. In this Cray-1 implementation, a high resolution animation sequence was produced in near real-time (i.e. , close to 3 O seconds per frame). Plunkett and Bailey (1985) implemented a more general-purpose vectorized ray-tracing algorithm on a CDC Cyber 205. This implementation worked well for simple scenes that contained a small number of objects. However, due to the exhaustive ray tracing, its use was precluded for scenes of considerable complexity.

PAGE 41

32 In contrast, general-purpose multi-computers consist of networked computers and workstations. These resources are supported by a centralized communication mechanism that is ideally suited for the transfer of object data and image results. one drawback, however, is that each computer requires a copy of the model database and image results in its local storage, thus, resulting in high storage costs. The other category of architectures, i.e., special purpose architectures, has been built to handle the complexity of ray-surface intersection calculations. Ullner ( 1983) proposed several techniques for designing special purpose hardware. These hardware proposals formed the foundation of work done in this area, i.e., realistic image synthesis. His first architecture, the Ray-Tracing Perpheral, performed pipelined ray-quadrilateral intersection calculations. This architecture is shown in Figure 3 .10. The Ray-Tracing Peripheral was employed to handle exhaustive ray tracing. Ullner (1983) also suggested an alternative pipeline architecture which implemented the ray-qualrilateral intersection computations onto a single VLSI circuit. A number of these processors would subsequently be connected together in a linear fashion (Green, 1989). This is shown in figure 3.11. General-purpose multiprocessors have been utilized for enhancing various types of ray tracing algorithms. For example, a number of researchers have demonstrated the

PAGE 42

33 suitability of line, square, cubic, and hypercube-connected MIMD systems (Goldsmith and Salmon, 1985) by developing ray tracing algorithms for these systems. Thus, the use of these systems has decreased the reliance on special-purpose systems. 3.4 Trend Towards Massively Parallel Computers The fundamental question of "Why massive parallelism?", on the surface seems to have an obvious answer. That is, by utilizing more processors to solve a problem we may obtain a faster solution to the display problem. However, such a response does not take into consideration the potential communication bottlenecks that may arise where a large number of processors need to exchange information simultaneously. For example, care must be given to how processors are to cooperate with one another during the performance of a computation. If not, too much time may be wasted in communication with other processors while no useful work is achieved. Because of their property of scalability, there are no inherent bottlenecks in the use of massively parallel computers. Thus, the utilization of a large number of processors to perform a simulation may res}ll t in faster results in rendering a scene. However, programming paradigms must work in conjunction with the hardware in order to perform in an efficient manner.

PAGE 43

34 3.4.1 Characteristics of Massively Parallel Computers A parallel computer is defined a s a massively parallel computer if it consists of a large number of simple processing . elements. The term "large" is relative to the current level of available technology. In other words, what is considered to be large scale today may not be considered as such with technological developments. Nevertheless, the accepted definition of massive parallelism is any computer that contains a million processing elements. A massively parallel computer can be visualized conceptually as an array of simple processing elements where each processor contains its own local memory. The interconnection network topology is regular and fixed and therefore does not change during the execution of computations. Most of today's conventional massively parallel computers adopt a SIMD machine model. The instruction granularity for this type of parallel architecture is fine-grain (i.e., one instruction) and is suitable for processing of large arrays in parallel (i.e., data parallelism). In the SIMD paradigm, a simple control mechanism is employed. Each processing element executes the same instruction simultaneously on different data streams. If a processing element needs to communicate to another processing element that is not its nearest neighbor, then it must communicate through the use of synchronization

PAGE 44

35 primitives. some examples of available massively parallel computers are the Connection Machine (Hillis, 1985) and the Massively Parallel Processor (Potter, 1985). The basic characteristics of these machines are as follows (Maresca and Fountain, 1991) The machines are basically SIMD machines and are control-driven. Some extensions have been introduced by augmenting the control mechanism to allow multiprocessing and associative processing. The complexity of each processing element is simple, thus enabling massive replication of each computing element. Similarly, each element is based upon a reduced instruction set (RISC) Existing high level languages such as Fortran and c can be utilized for programming these machines. They are applicable for parallel programming because they are also based upon a control driven paradigm. The final characteristic of these machines is that the Interconnection Network (IN) matches the algorithms. communication structure of the parallel This is ideal, and such a match between the communication medium (i.e., IN) of the architecture and the parallel program or algorithm enhances the performance of the machine for executing the algorithm. If there is not a perfect match between architecture and algorithm, then a , viable alternative would be to employ a reconfigurable network into the architecture that adapts to the communication structure of the algorithm. The investigation into the use of

PAGE 45

36 reconfigurable _ IN for massively parallel computers is currently being pursued elsewhere. Two additional features of a massively parallel computer are scalability and universality (Kodhevar, 1989). If the grid size in the array can grow, then the architecture is considered to be scalable. In other words, the basic structure can be replicated and there is not a limit to how large the overall structure can expand. The primary reason is that for a large array structure, a processing element is restricted to communicate with its nearest neighbors. The communication of processing elements between nearest neighbors is not affected by the growth in the overall grid structure. Moreover, one of the main communication bottlenecks normally associated with architectures that have global memory is eliminated. There is no global addressable memory for the configuration of the massively parallel computer just described. The property of universality refers to the massively parallel computer's capability of processing computations independent of the machine's interconnection network topology, or the total number of processors in the system. Such a property allows the massiyely parallel computer to be a general-purpose machine.

PAGE 46

37 3.4.2 Motivat1on for Massively Parallel CG Systems To understand the motivation for massively parallel computer graphics systems, one must understand that computer graphics is primarily concerned with the simulation of physical systems that deal with light and natural shape creation processes. massively parallel Thus, there is a significant role for computers to play in aiding in the achievement of a more direct emulation of natural processes. 3.5 Chapter Highlights This chapter has presented an overview of parallel computer graphics architectures, and described parallel architectures for realistic image synthesis. Ih particular, image space and object space architectures were discussed. The trend toward massively parallel computers was also discussed. In addition, the motivation and characteristics of massively parallel computer graphics systems were described.

PAGE 47

38 Figure 3.1 Area Subdivision Partitioning

PAGE 48

39 Figure 3.2 Horizontal Partitioning

PAGE 49

40 Figure 3.3 Vertical Partitioning

PAGE 50

41 PE :1. L:1.ne 1 PE z L1ne 2 PE 3 L1ne 3 PE L:1.ne n n PE 1 L:1.ne n+1 . . Figure 3.4 Static Interleave Partitioning

PAGE 51

42 Figure 3.5 8 X 8 Display Architecture I

PAGE 52

43 pp ' ' ' ' C-:IHI? C-:IHP C-:IMP 1 2 e R-Il!P R-:IHP R-IHP 1 1 1 ' .. l{ 11 lt R-Il!P R-:IHP R-IMP 2 z z ck=] ' ' 11 lt ' R-Il!P R-IliP R-IHP 8 6 6 ' ' lt n lt Figure 3.6 8 X 8 Display Architecture of Clark and Hannah

PAGE 53

Frame Buffer tle'llory Figure 3.7 44 eost Co:aputer VLdeo Controller 1'raae Buffer l!enory The EXPERTS Architecture

PAGE 54

Clipped Pol.ygons Spl.itter I11aga Processor I11aga Processor Figure 3.8 45 Spl.1ttar Video Generator Imaga Processor Splltter Izaga Processor Splitter Tree Architecture

PAGE 55

Clipped Polygons Broadcast Controller Illaga Processor I11.aga Processor Figure 3.9 46 Spl:Ltter Video Generator Broadcast Controller 111.119• Processor Vidao Display Izage Processor Hybrid Architecture

PAGE 56

47 ! ~-----~ ~-----~ ..------~ ! ; i l Fetch .,__ ___ '"'I Intersect 1----~ S'2lect l ! i ! i ! ...... .. ... .. . .. .. ........ . ........ ......... ..................................... ... ....... . . . . ........................................... . ... ..................... . .. . ; scene l1odel Ray Descriptions Host Computer Intersection Results Figure 3.10 Ray Tracing Peripheral Architecture

PAGE 57

48 : ........... .... . ... . ...... ........ ...... .. .. ... .. ...... .............. . ....... ... ..... .. ..... . ....... .... . . ... ... . .. ... .. ............ .. . ........... . .. ... . . .. .. .. .... .. ... , : i : ~-----~ ~------------, I i i l i : Fetch 1----~ Intersect Select : i ... ....... . ..... .. .. .. .... . ....... ... ... ......... .... ... .... .. .. . ....... . .......................... . ..... .. ... ..... ... .. .... .. .. .. . . ......... . . .. .. ... .. . ... . .. . ... . ..... i scene l1odel and Ray Descr1.pt1.ons Host Computer Intersection Results Figure 3 .11 The Ray Polygon Intersection Pipeline Architecture

PAGE 58

CHAPTER 4 INTRODUCTION TO PARALLEL COMPUTERS 4.1 Introduction As computers evolve, the growing demand for highperformance computers is expected to continue. This is especially true in the scientific community where the quest to discover unknown phenomena and expand knowledge has prompted researchers to delve into more complex problems, previously perceived as intractable. These computational problems require enormous processing power which are exceeding the performance limits of sequential computers. Akl (1989) cites examples of some of these scientific areas which require simulations that use many systems of partial differential equations: aerodynamics, plasma physics, nuclear physics, and seismology. Other computation-intensive . applications and areas include weather forecasting, medical applications, artificial intelligence (Hwang and Briggs, 1984), and real-time image synthesis. In an effort to improve the performance of sequential computers, innovations. computer architects developed a number of Enhancements in architectural configurationsi.e., the utilization of multiple functiom1l units, multiprogramming, and timesharing (Hwang and Briggs, 1984), 49

PAGE 59

50 along with advances in electronic circuit speeds-enabled computer manufacturers to boost throughput rates for supercomputers by a factor of two approximately every five years (Hennessy and Jouppi, 1991). Other architectural improvements included the use of interleaved memory, cache memory, instruction look ahead, and instruction pipelining (Quinn, 1987). Unfortunately, there exists inherent physical constraints in these systems which can compromise any gains in processor speed. These physical limitations are due to the laws of physics which dictate 1) how close individual electronic components can be placed to each other without causing component interactions that lead to reliability problems and 2) how fast signals can travel over these intercomponent distances without introducing unacceptable communication delays between the components which serve to further reduce system performance. An option to circumvent these constraints and to achieve optimum system performance when solving large computational intensive problems is to utilize alternative formalisms in the design of computers, i.e., use the concept of parallelism. The basic idea of parallelism is to allow multiple processors to cooperate in solving simultaneous subproblems of a given computational problem. This is not a novel concept since the idea has been applied previously, at the architectural level, to improve the performance of sequential computers.

PAGE 60

51 This chapter presents the fundamental concepts in parallel computing to facilitate an understanding of the research presented in subsequent chapters and of advances in this field. Section 4.2 describes the classification schemes of parallel computer architectures. Section 4. 3 describes the models of parallel computation. chapter highlights. Section 4 4 presents the 4.2 Parallel Computing Structures The following sections will discuss the classification schemes for parallel computing structures, architectural paradigms, and the performance metrics and architectural limitations associated with these structures. 4.2.1 Classification Schemes Flynn {1972) classifies parallel computer architectures according to the number of instruction and data streams that can be processed concurrently. Other architectural taxonomies have been proposed, but Flynn's scheme is the only taxonomy which is widely used today. His classification scheme consists of the following categories. SISD {Single Instruction, Single Data Stream) Each instruction is processed serially by a processor for a given data set. Sequential computers or uniprocessors belong to this category. MISD (Multiple Instruction, Single Data Stream) Multiple processors use the same data when executing different instructions. No commercial machines are available for this category and it is regarded as impractical to achieve.

PAGE 61

52 SIMD (Single Instruction, Multiple Data Stream) Multiple processors use different data when executing the same instruction simultaneously. Array processors, associative memory processors, and vector processors belong to . this category. MIMD (Multiple Instruction, Multiple Data Stream) Independent multiple processors use different data when executing different instructions concurrently. Shared-memory and distributed-memory architectures belong to this category. Flynn's classification scheme has several limitations. First, it is inadequate for classifying some modern computers such as pipeline vector processors (Duncan, 1990). As Duncan notes, these computers can perform a significant number of concurrent vector element operations in parallel (i.e., in a pipeline fashion), but they are difficult to categorize with Flynn's architectural scheme since the processors are not executing the same instruction in the method indicative of the SIMD category and they do not operate in an asychronous, autonomous fashion as described in the MIMD category. Second, Flynn's classification does not indicate any characteristics that are associated with the computational models for the different parallel computer architectures (Mauney et al., 1989) , for example, granularity and synchronization mechanisms. Third, it is difficult to discriminate between various multi processors while discerning the , relationships between parallel architectures (Skillicorn, 1988). Some researchers have extended Flynn's classification in order to alleviate these shortcomings. Skillicorn (1988) presented a two-level hierarchical classification scheme that

PAGE 62

53 represents the architecture's behavior by describing its functionality and the information flow between the architectural functional components: instruction processors (IPs), data processors (DPs), intelligent storage devices . (memory hierarchy), and switches. In his scheme, level one expanded Flynn's SIMD and MIMD categories into additional subclasses for specifying additional architectural properties. The system parameters that could be indicated are 1) the number of instruction processors and instruction memories, 2) the number of data processors and data memories, 3) the type of switch connecting IPs to instruction memories, 4) the type of switch connecting DPs and data memories, 5) the type of switch connecting IPs to DPs, and 6) the type of switch connecting DPs to DPs. The next level enabled further distinction of parallel architectures by indicating if and how much pipeline parallelism is used by processors and using state diagrams to describe the processors' behaviors. An additional level could be added for describing any implementation details. Hwang and Briggs (1984) enhanced Flynn's scheme by 1) removing the MISD category, 2) subdividing the SISD category into two new subcategoriesSISD-S which included single , functional uni ts and SISD-M which included multiple functional units, 3) subdividing the SIMD category into two classes of machines: word-slice processing (SIMD-W) and bit-slice processing (SIMD-B) , and 4) refining the MIMD category to

PAGE 63

54 include two subclasses: loosely-coupled processors and tightly-coupled processors (Dasgupta, 1989). Mauney (1989) describes another category that is referred to as MSIMD (Multiple-SIMD) where there are multiple processors which are capable of employing pipelining and processing vectors. Duncan (1990) describes another class of machines which are hybrids of MIMD and SIMD architectures (MIMD/SIMD). Examples of these architectures include the PASM machines, Texas Reconfigurable Array Computer (TRAC), and the Non-Von computer. Figure 2.0 illustrates the taxonomy for parallel computer architectures. 4.2.2 Architectural Paradigms There are various levels of abstractions for describing parallel systems (Skillicorn, 1988). At the top level, there are computational models on which a computer architecture--in this case, a parallel computer architecture--is based. These computational models not only exhibit the execution flow of computations, but facilitate the development of efficient and optimum algorithmic solutions which are deemed viable for different problem domains. An important issue is how to develop better computational models. At the next sublevel, a representation of the system is provided, i.e., the abstract machine. The abstract machine is actually an implementation of the computational model for a given target architecture. Abstract machines are important because they provide a high

PAGE 64

55 level overview of the functionality of a system and its behavior while masking low level hardware constraints and implementation details. The last level provides information concerning hardware component implementations using available technology. A discussion of abstract machines is presented in the next section. 4.2.3 Abstract Machines In sequential computing, the theoretical model which forms the basis for the development of sequential algorithms, operating systems, and programming languages is the Von-Neuman Machine model, which is an abstract representation of the system (i.e. , abstract machine) . This model consists of several primary components: CPU (Central Processing Unit), I/0 (Input/Output), and memory. The scenario in which the system operates is based on a simple fetch instruction-decode instruction-execute instruction and store results paradigm. In other words, the CPU fetches an instruction from memory, decodes and executes this instruction, and, either sends the results to an I/0 unit or stores the results in main memory. This type of sequencing in which the flow of instructions is under the control of a program counter is known as control flow. In contrast, there is no equivalent single model upon which the design of parallel computations is based. There are classes of machine models for specific applications and types

PAGE 65

56 of parallelism for which these architectures are ideally suited. In a recent study, Jamieson {1987) concluded that the SIMD machines were appropriate for applications which exploit data parallelism and MIMD were better suited for applications which utilitize functional parallelism. Abstract machines, sometimes referred to as virtual or idealized machine models, represent the salient features of parallel computer architectures. Instruction flow for these machines can either incorporate control flow mechanisms, data flow principles (i.e., instructions are executed when all operands or data are available; this premise is also called demand-driven) or both techniques. Data flow machines are also known as Non-Von Neuman machines. Control flow machines are referred to as Von Neuman machines. Figure 4.1 illustrates the classification of Parallel Non-Von Neuman and Von-Neuman machines. There are several abstract machine models for Parallel Computing: shared-memory models, distributed-memory models, array processor models, pipeline processor models, reduction machine models and data flow models. These are the only known abstract machine models to date. Each type of these abstract machines and their characteristics is presented in the following sections.

PAGE 66

57 4.2.3.1 Shared-memory machines A shared-memory machine is a multiprocessor system in which global memory is accessible by _ each of the processing elements, or processors. In this system configuration, a . . processing element may contain its own private or cache memory, stored. where instructions that comprised a subtask are The processors are connected to the global memory through an interconnection network topology which can be either common (single or multiple) bus interconnections, single stage interconnections (crossbar), or multistage interconnnections. The basic mode of operation includes processing elements which execute distinct subtask instructions using different data values . and communicating these interim results to other processors by storing them in global memory via an interconnection network. Figure 4. 2 illustrates the system architecture for a shared-memory machine. Since these machines share a common global memory, they are also known as tightly coupled systems. Several commercial shared-memory machines are available: Encore' s Multimax computer, Alliant computer, and Balance Sequencer computer. There are unique problems that are associated with shared-memory machines. One of the most prevalent problems is contention for memory or a bus when more than one processing element tries to gain access simultaneously to these components. Another problem (cache coherency) deals

PAGE 67

58 with maintaining data consistency when multiple copies of data exis t s in private cache memories of each processing element. Mechanisms must be provided to resolve these problems and to coordinate the synchronization when processing elements want to communicate interim results by writing data into memory. 4.2.3.2 Distributed-memory machines Distributed-memory machines are asychronous, autonomous multi processor architectures. These machines are a synonym of shared-memory architectures in that, since there is no global clock to synchronize operations among the multi processors, there is no common global memory. Each processor in this architecture has its own local or private memory and employs a message passing protocol when communicating with other processors. Therefore, the basic mode of operation consists of processors that execute tasks, whose granularity can be fine grain, medium-grain, or coarse-grain, and which are stored in their private memories for different data values. The task granularity is contingent upon the type of multi processor machine used: for example, data flow. Occasionally, there is a need for processors to share intermediate results depending upon the computations of the tasks involved. A distributed control mechanism is employed for this type of operation. Figure 4.3 shows a generic system configuration for a distributed-memory machine.

PAGE 68

59 4.2.3.3 Array processing machines Array processors are synchronous SIMD machines which consist of an array (typically VLSI structures) of identical simple processing elements. The basic mode of operation involves a central control unit which broadcasts the same instruction to each processor, and the processors execute these instructions using different data values. The data set is usually large. The partitioning of large blocks of data for processing utilizes the concept of data parallelism~ Array processors are more flexible than pipeline processors. However, there are some program constructs which present problems for these machines: recurrence relations and conditional branch statements. A well known problem with these SIMD architectures is the data alignment problem. Thus, SIMD machines or array processors (the two terms are used in the literature interchangeably) are only suitable for certain applications. Many commercial machines exhibit this type of architectural paradigm. Some examples include the Illiac-IV Massively Parallel Processor, and the Connection Machine (Hillis, 1985). 4.2.3.4 Pipeline machines Pipeline machines are SIMD architectures that have vector processing capabilities. The basis of pipelining is to exploit temporal parallelism by overlapping the execution of

PAGE 69

60 instructions on processors. These processors manipulate or calculate vector elements or scalars as they progress through the pipeline. The output results of a preceding processor is used as input data for a succeeding processor. Actually, the overall computation to be performed by the pipeline is decomposed into several stages where each stage consists of a subtask to be performed by individual processors. The operation of a pipeline is analogous to an assembly line operation in a factory. 4.2.3.5 Reduction machines Reduction machines are functional language based machines that mechanize an execution model that is demand-driven. Simply stated, the execution model for instructions utilizes data dependent ordering to enable instructions, i.e., current instructions are only enabled when operands in the form of a previous instruction's results are available. There are two types of reduction machines: string reduction or graph reduction. Programs for these machines are comprised of nested expressions. The expressions can be actual literals or functions of other literals or expressions. Duncan (1989) refers to these functions as function applications. In string reduction architectures, literals and values represented as strings are operated upon. In graph reduction architectures, literals and pointers are utilized. During the execution of a reduction based program, the expressions within a program are recognized and replaced by

PAGE 70

61 computed values. This process of replacing expressions with their associated values is repeated until all expressions have been evaluated and the final result of the program is obtained. Reduction machines are useful since they represent a divergence from conventional wisdom regarding the execution of computations. Thus, the primary motivation for the development of these machines is to devise new execution models of computations for parallel computing. An additional motive is to devise parallel architectures that support functional languages. Research in this area is relatively new, having been explored only since the late 1970s. Therefore, there are issues which remain to be resolved: synchronization of requests for instruction results, and maintaining coherency and consistency in multiple copies of results from evaluated expressions. 4.2.3.6 Data flow machines Data flow machines are also sequenced by data dependencies. The basic model of execution for data flow machines entails an instruction which is enabled only when all of the operands for the instruction are available . . Data flow machines were first introduced by the work of J. Dennis in the 1970s. These machines represent a new school of thought in computing and certainly a radical departure from conventional

PAGE 71

62 nomenclature for the development of new computational models and high level programming languages. Data flow machines are still primarily in the research stage. Some prototype architectures have been studied-for example, the Manchester Data Flow Computer-but no commercial machines are available as of yet because these machines are still plagued by several problems, namely, issues relating to efficiency, task allocation, selection, and firing (i.e. , enabling) of operations to be executed. 4.2.4 Performance Metrics and Architectural Limitations The parallel processing paradigm is based on the simultaneous execution of a number of processors working on different parts of a single problem. One aspect of the paradigm, which is vital in terms of its appropriateness for utilization, is the parallel nature of the problem for which it is applied. That is, the criteria for a parallel processing application must take into consideration whether or not the application (i.e., computational aspects) can be decomposed or partitioned in a manner which will allow the simultaneous execution of a number of processors working on different parts of a single problem. Reality dictates that there are very few computational problems which are totally parallel in nature. There exist a mixture of sequential and parallel parts to problems. Thus, problems should be structured to take advantage of parallel

PAGE 72

63 processing, i.e. , as much of the sequential parts of a problem should be made parallelizable. There are limits that dictate how much of an algorithm can be made parallel and how much increase in speed can result form the application of parallel processing techniques. The increase in speed can be considered as a performance metric. This metric is determined as follows. Assume that an ideal parallel computational model with N identical processors exists, and that it has an associated ideal communication network. The communication network prohibits processor to processor communication based on this assumption because it is involved in parallel computation. These assumptions are made only for illustrative purposes. Another assumption is that this ideal parallel computer requires Q steps of operations by a single processor. It is also assumed that the particular problem on which this ideal parallel computer is applied is partitionable into a sequential component s, and a parallel component p. With these assumptions the total number of steps of operations for a single processor is Q=s+p. Assuming ideal conditions, s+p/N steps would be required to solve the problem using N identical processors. Thus, the general speed up equation is defined as the sequential execution time divided by the parallel execution time. This is represented in eq 4.1. S= s+p s+p/N (s+p)N sN+p 4.1

PAGE 73

64 For general parallel computations, eq. 4.1 has certain limitations. By letting N approach infinity, the maximum speed up that can be realized is eq. _ 4.2. 4.2 To illustrate this limitation known as Amdahl's law (Amdahl, 1967), consider a parallel computational problem containing one percent sequential operations. It can be shown that even if an infinite number of processors are available for an ideal computer, the maximum speed up that can be achieved will never exceed 100. This has been a major hurdle for parallel , processing advocates. Barsis of Sandia National Laboratories (Gustafson, 1988) suggested a new formula for speed up which assumed that problem size was a variable as opposed to a constant assumed by Amdahl's law. His work showed that the parallel component of a problem is scalable in relation to the problem size, and the serial component is constant. derived. From this, eq. 4.3 was where, Q=s+pN S=N+(l-N)s Q problem size S serial component p parallel component N number of processors S speed up 4.3 4.4 Zhou (1989) derived a new speed up function which embodied the low-extreme of Amdahl's law and the Bars is' s high-extreme. His derivation was based on considering the

PAGE 74

65 problem size to be an independent variable in the speed up function. 4.3 Operating Systems The role of operating systems will increase drastically in the development of parallel processing systems in the future. Operating systems are responsible for allocating processes (i.e., tasks) to various processors and providing interprocess communication, processor invocation, and cancellation (Casavant and Kuhl, 1988). In general, task scheduling is performed in order to minimize or maximize some objective function. 4.4 Parallel Computational Models Several computational models have been formulated for parallel computing, the most notable being the Parallel Random Access Machine (PRAM) model of computation. The PRAM model represents computations for an idealized shared-memory machine. The internal communication scheme is ignored in this paradigm. (The corresponding computational model in sequential computing is the Random Access Machine (RAM) model. Another serial computational model is the Turing machine model). The PASM, like the connection machine model, is a paradigm for the development of synchronous parallel algorithms. This model is useful for deriving lower bounds for parallel algorithms and for identifying any inherent

PAGE 75

66 parallelism in a particular problem. computation is the hypercube. Another model of In comparison to the RAM model, the PRAM model also uses a global memory, in addition to any local memory of the individual processors. The architectural assumptions include 1) an infinite global memory, 2) finite local memory, 3) one unit memory access time, and 4) arbitration protocols for resolving reading and writing conflicts. These arbitration protocols are Exclusive Read Exclusive Write (EREW), Concurrent Read Exclusive Write (CREW), and current. Read Current Write (CRCW). Each protocol represents a different implementation of the PRAM model. Many numerical algorithms have developed from thes . e PRAM models (Akl , . 1989) The development of parallel algorithms, and in particular algorithms based on these models, is an active area of research. One prevalent research question arises: i.e., How to design parallel algorithms that exploit the inherent parallelism in a problem and utilize the maximum parallelism available on a target architecture? Designing parallel algorithms and programming parallel machines are not easy tasks. There are not many automated programming tools or high level programming language constructs which allow programmers to partition problems with relative ease. However, attention in the research community has been devoted towards the development of parallel programming paradigms (Nelson and Snyder, 1987; Zhou, 1990),

PAGE 76

67 high level parallel programming languages (Carriero and Gelernter, 1990), and structured programming constructs (Zhou, 1990). Nevertheless, the programmer is still mainly responsible for partitioning an application problem and must be cognizant of many issues in parallel program design. Thus, additional questions become apparent, especially for MIMD machines: 1) How should the computations of a problem be partitioned into processes? 2) What is the granularity of these processes? 3) What influence does the granularity have on cost or performance? 4) What type of synchronization mechanism is suitable for a given application? Another issue deals with the communication network structure of the underlying architecture. 4.5 Chapter Highlights In this chapter, the fundamental concepts in the theory of parallel computing were presented. The taxonomy of parallel computer architectures was discussed and extensions to the popular classification scheme proposed by Flynn were described. The architectural models and computational models for parallel computing were presented. Moreover, issues relevant to the design of interconnection networks for large scale parallel systems were also discussed.

PAGE 77

68 PARALLEL COHPUTER ARCHITECTURES /~ Parallel Von Neuman tlach1.nes (control-dr1.ven) Parallel Non Von Neuman Hach1.nes i•-~ /\ Vector or P1.pel1.ne Data-FloY Hach1.nes Reduct1.on Processors tlultiprocessors /~ ltIHD . Hach1.nes Sil:!D Hach1.nes Bybr1.d t1ach1.nes //~ Shared D1.str1.buted l1ach1.nes \~ Hemory l1ach1.nes :nemory ltach1.nes Systolic Arch1.tectures WaTefront Array Processors Assoc1.at1.ve !:!emery Processors Array Processors Figure 4.1 Classification of Parallel Computer Architectures

PAGE 78

69 INTERCONNECTION NETWORK tl m Figure 4.2 System Configuration of a Shared-memory Machine

PAGE 79

70 11 1 11 2 11 m INTERCONNECTION NETWORK Figure 4.3 System Architecture of a Distributed-memory Machine

PAGE 80

CHAPTER 5 THE HYPERSTAR: A NEW HYPERCUBE-BASED ARCHITECTURE FOR MASSIVELY PARALLEL COMPUTERS 5.1 Introduction The hypercube has several notable properties: symmetry, fault-tolerance, homogeneity, and recursivity. However, it has one major limitation. This limitation is the large number of connections incident to each node (i.e. node degree) for higher dimension hypercubes. To remedy this limitation, a new hypercube-based topology that reduces the node degree of the conventional hypercube is proposed. called the hyperstar. This new structure is The hyperstar reduces the node degree of the conventional hypercube to 3 for a D-dimensional hyperstar, (D~l). In addition, the hyperstar structure can interconnect more nodes than any other hypercube-based topology at a fixed degree (6=3) and a lower dimension. The hyperstar also has the same properties of the hypercube, i.e. symmetry, fault-tolerance, and recursivity. In comparison to the hypercube, the hyperstar is far superior for interconnecting thousands or millions of nodes due to its lower normalized average distance and cost factor. 71

PAGE 81

72 In this chapter, a formal description of the hyperstar topology is presented. This description characterizes the construction, general properties, and routing in the hyperstar. In addition, network parameters are defined. Some of these network parameters are performance measures that are .. used for evaluating the potential performance of the hyperstar topology. Also, a formal description of the hypercube architecture is included as background material for understanding the theoretical basis of the hyperstar topology. This chapter concludes with highlights of important conc~pts and results. 5.2 Formal Description of the Hypercube Architecture A D-dimensional hypercube consists of N=2 nodes interconnected as a D-dimensional binary cube. The hypercube is a homogeneous structure. Each node has a direct link or edge (i.e. point-to-point connection) to its D adjacent or neighbor nodes if the binary address for each pair of nodes differ in exactly one bit position. Formally, this is stated as follows. AD-dimensional hypercube can be modeled as an undirected finite graph, GH=(VH,EH) where VH is the set of nodes, IVHl=N=2 and EH is the set of edges or communication links, IEHl=o2 1 Figures 5.1-5.2 show examples of a D-dimensional hypercube for (053).

PAGE 82

73 Each dimension in the hypercube has an associated axis, i, that is labeled from o to D-1. An edge connects two nodes, A and B, in the direction of the i th axis if the respective addresses of A and B (i.e. a 0 a 1 ai_ 1 oai+, a 0 _ 1 and b 0 b 1 bi_ 1 1bi+i •. b 0 _ 1 ) differ only in the i th bit position. That isf, only one bit position changes when the addresses of a pair of nodes are compared. As an illustrative example, let the respective addresses of nodes A and Bin a 3-dimensional hypercube equal OOQ and 001. These addresses differ in the 2~ bit position. (The second bit position is underlined). The ref ore, the edge connecting nodes A and B would be labeled with the number 2. See figure 5.2. The hypercube can be constructed recursiyely from lower dimensional hypercubes. Specifically, a D-dimensional hypercube can be constructed from two (D-1) hypercubes by the following procedures (Saad and Schultz, 1988). First, prefix the binary address of each node in the first hypercube with a Second, prefix the binary address of each node in the second cube with a 1 (e.g. lb 1 b 2 b 0 _ 1 ) Then, connect the nodes in the first cube with the corresponding nodes in the second cube. Corresponding nodes in this context imply nodes whose bj bits where j e{0-D-1} are the same. This procedure is repeated for the construction of any D-dimensional hypercube. Thus, the construction of a dimensional hypercube . entails enclosing hypercubes within

PAGE 83

74 other hypercubes. See figure 5.3 for an illustration of this recursive construction of a 4-dimensional hypercube. Also, the diagonal links are not shown). 5.3 Structural Enhancements to the Hypercube Topology The hypercube topology has been enhanced in order to alleviate some of its structural limitations. One of its main limitations is the large node degree as the hypercube is expanded into the higher dimensions. The large node degree becomes a significant problem when the number of . port connections (i.e. node degree) exceed the technological limits of electronic components. Some examples of technological constraints include the number of pin connections on a single chip and the channel bandwidth (i.e. wiring) in a printed circuit board. Some of the most notable augmented hypercube based topologies will be briefly characterized below. These include the Cube-Connected Cycle (Preparata and Vuillemin, 1981), Spanning Bus Hypercube (Wittie, 1981), Generalized Hypercube (Bhuyan and Aggarawal, 1984), Folded Hypercube (Latifi, 1989), Bridged Hypercube (Latifi, 1989),and the Enhanced Hypercube (Tzeng and Wei, 1991) The cube-connected cycle augments the hypercube with a ring interconnection structure. A node in the conventional hypercube is replaced by a ring (Preparata and Vuillemin, 1981). The idea is simple. By replacing each node with a ring topology, the degree is constant and does not grow as the

PAGE 84

75 structure grows. The reduction in degree is at a moderate increase in diameter. Thus, the CCC is ideally suited for VLSI implementation. However, the main limitation is its reduced fault-tolerance capabilities (Shahram, 1989). The spanning bus hypercube augments the hypercube by. . connecting nodes in a dimension by a shared-bus (Wittie, 1981). However, the main disadvantage is the problem of bus contention for a large number of nodes. The ref ore, bus contention problems off set any improvement in the actual communication latency. Nevertheless, the spanning bus does have fewer connections per node and a low average distance. The generalized hypercube replaces each node in the conventional hypercube with a complete graph (Bhuyan and Agrawal, 1984). The generalized hypercube has the advantage of a low average distance. However, the tradeoff is a very high node degree. Thus, this particular architecture is not well suited for VLSI implementation. Other recent enhancements include augmenting the hypercube with redundant links to increase the fault tolerance capabilities-Folded Hypercube (Latifi, 1989) and Enhanced Hypercube (Tzeng and Wei, 1991)-and judiciously placing additional communication links to decrease the diameter of the hypercube topology, i.e. Bridge Hypercube (Latifi, 1989). The main problem with these structures have been the increase in the node degree. Also, the addition of extra links have made some of these structures, i.e. the Bridge Hypercube (Latifi,

PAGE 85

76 1989) and the Enhanced Hypercube (Tzeng and Wei, 1991), asymmetrical. Most of these enhancements yield improvements in one area such as node degree or average distance, but reduce the advantages in other areas. The topologies discussed thus far are really hybrid topologies. For instance, the CCC combines the ring network with the hypercube. The Spanning Bus Hypercube combines the hypercube with buses. The Generalized Hypercube combines the hypercube with the completely connected graph. However, there are tradeoffs with these topologies as mentioned earlier. Nevertheless, the objective has been to design a hybrid or hypercube-based architecture that achieves a certain network characteristic ( i. e maximiz~s the advantages while eliminating the disadvantages of the individual topologies). The next section will present a formal description of a new hypercube-based topology that achieves a compromise between node degree and average distance. This proposed architecture has a low node degree. The proposed topology is a denser topology. For example, it connects twice as many nodes as the Cube-Connected Cycle at a modest increase in average distance. Moreover, the hyperstar interconnects more nodes than any other hypercube-based topology with fewer node connections and with a smaller D-dimensional hyperstar. For instance, a 12-dimensional hyperstar can interconnect approximately a million nodes (i.e., 983,040). In comparison,

PAGE 86

77 a 20-dimensional hypercube is needed to interconnect a million nodes (i.e. 1,048,576) and a 16-dimensional cube-connected cycle is needed to interconnect the same number of nodes. 5.4 Formal Definition of the Hyperstar Architecture AD-dimensional hyperstar consists of N=2D2 nodes where 2 nodes are interconnected as a D-dimensional hypercube and 2D nodes are arranged in a star configuration at the vertices of a D-dimensional hypercube. In other words, a D-dimensional hyperstar consists of a hypercube with the nodes replaced with a D-star graph. Here, a star graph, G 5 =(V 5 ,E 5 ) is defined as a graph with V 5 =N 5 =2D nodes and E 5 =3D links . The D-star graph has the structure of a star topology with the center node replaced by an inner ring containing D nodes and each edge replaced by an edge with an endpoint node. Figure 5.4 illustrates the topology of a 5-star graph. Each endpoint node (figure 5.4) of a D-star graph has 3 connections or links: a starlink (figure 5.4) (i.e. a connection to a node in the inner ring of the star), a crosslink (figure 5.4) (i.e. link along the i th axis or dimension of the hypercube) , and a diagonal link. The starlink connects a node to its adjacent node on the inner ring. The crosslink connects corresponding endpoint nodes in different star graphs to form the cubical (i.e. hypercube) structure. Like the edges in the conventional hypercube, an

PAGE 87

78 edge connects two endpoint nodes if the respective binary addresses differ in only one bit position. The diagonal links interconnects corresponding endpoint nodes in diametrically opposite star graphs (i.e. corresponding endpoint nodes on opposite ends of a diagonal are interconnected). Later, a corresponding node is defined as a node with the same C and P coordinates, but different binary coordinates. The use of diagonal links reduces the overall diameter of the hyperstar topology. hyperstar is defined as follows. Formally, the AD-dimensional hyperstar can be modeled as an undirected finite graph without parallel edges . . Let GHs denote the graph of the hyperstar where GHs= (VHS' EHs>. I VHs I is the set of vertices =NHs=2D2 1 and I EHs I is the set of edges=6D2 1 See figure 5. 5-5. 6 for a D-dimensional hyperstar (DS3). Each node in a hyperstar graph is labeled by a 3-tuple address, (C,bj'P) where C is the cross-link position, bj is the binary coordinate of the node, and Pis the node type in a star. There are two types of nodes in a star: a inner ring node (P=0) or an endpoint node (P=l). In other words, a node has an address in the following form. C,b 0 b 1 b 0 _ 1 ,P where C {0 D-1}, bj {0,1}, j {0 D-1}; P {0,1} Specifically, a node on an inner ring (P=0) has the address, C, b 0 b 1 b 0 _ 1 , o and is connected to its two nearest neighbors at addresses

PAGE 88

79 [ (C+l)modD] ,bob, •.. bo_,,o [ (C-l)modD] ,bob, ... bo_,,o and to an endpoint at the address: C,b 0 b 1 b 0 _ 1 , 1 An endpoint node is connected to a node in the inner ring at address: C,b 0 b 1 b 0 _ 1 , 0 and to the diagonal node at address: c, E 0 E 1 E 0 _,, 1 and to a cross-link node at address: C, b 0 b 1 bc_,Ecbc+, b 0 _ 1 , 1 A corresponding node is defined as a node with the same c and P coordinates, but different binary coordinates as shown below. Similar to the hypercube, the hyperstar is also a recursive structure. Generally, a D-dimensional hyperstar can be constructed from two (D-1) hyperstars. A similar algorithm used for constructing D-dimensional hypercubes can be utilized for constructing higher dimension hyperstars. The procedure is as follows. First, the binary coordinates for each star graph in the first hyperstar is prefixed with a O (e.g. Second, the binary coordinates for each star graph in the second hyperstar is prefixed with a 1 (e.g. lb 1 b 2 b 0 _ 1 ). Next, an extra node is added to each inner ring

PAGE 89

80 of every star graph in both (D-1) hyperstars. Also, an extra endpoint node is added to every star graph in each ( D-1) hyperstar. In each (D-1) hyperstar, the extra ring nodes are connected to the adjacent extra endpoint nodes. The addresses of the ring nodes and endpoint nodes in the first hyperstar are (C,0b 1 b 2 b 0 _ 1 ,0) and (C,0b 1 b 2 b 0 _ 1 ,1) respectively. The addresses of the ring nodes and endpoint nodes in the second hyperstar are ( C, lb1b2 •. bD-1, 0) and ( C, lb1b2 bD-1, 1) respectively. Then, the two (D-1) hyperstars are interconnected as follows. Each endpoint in one star graph is interconnected to one endpoint in one of the neighboring star graphs. (There are D neighbor star graphs for each star graph which are labeled: (o 0 b 1 b 2 b 0 _ 1 ) , (b 0 '6 1 b 2 b 0 _ 1 ) , (b 0 b 1 b 2 E' 0 _ 1 )). Finally, each endpoint in one star graph is interconnected to another endpoint at the end of a diagonal link at address (C,'6 0 '6 1 '6 0 _ 1 ) where C {0 D-1}. Examples of this recursive construction for a 3-dimensional and 12dimensional hyperstar are described in the next section. Figure 5.7 illustrates the construction of a 4-dimensional hyperstar. 5.5 Construction of the Hyperstar Topology For an intuitive illustration of this construction, refer to figure 5.8. (In figure 5.8a, the nodes are not shown). Let 0=2. A hyperstar is constructed from a conventional hypercube structure. For a 2 dimensional hypercube, a corner

PAGE 90

81 (or node) is labeled with a binary coordinate, b 0 b 1 where bj = o or 1. Notice that the neighbors of b 0 b 1 are E 0 b 1 and b 0 '6 1 A pair of nodes are interconnected so the binary coordinates differ in only one bit position, i.e. , the j th coordinate. Endpoint nodes are added to each corner of the hypercube structure (figure 5.8b). Each endpoint node is labeled with a 3-tuple address (C,bj,l). c is the hypercube 1 ink ( or crosslink) where c {0 •.. D-1}. bj are the binary coordinates where b {0,1} and j {0 ... D-1}. Each endpoint node has three connections: a diagonal link, a hypercube link, and a star link. Figure 5. Sb illustrates the addressing of endpoint nodes for a 2-dimensional hyperstar. In this diagram, only one diagonal link, c,'6 0 '6 1 ,1, is shown. Finally, a ring is added to each local structure. Each ring node has a 3-tuple address, (C,bj,0). Figure 5.8c illustrates the addition of a ring to each local structure for a 2 dimensional hyperstar and its associated addressing scheme. Similarly, a 12-dimensional hyperstar can be constructed as follows. The hypercube has 2 12 =4096 nodes with the binary coordinates, b 0 b 1 b 2 b 11 where bj= o or 1. The b 0 b 1 b 2 b 11 is connected to the nodes below. (1) '6 0 b 1 b 2 b 11 (2) b 0 '6 1 b 2 b 11 (3) b 0 b 1 '6 2 b 11

PAGE 91

82 Endpoints are added to the each corner of this structure. An endpoint with address, C,b 0 b 1 b 11 ,1 for OSCSll is connected to other en~points nodes in the hypercube. That is, (1) O,b 0 b 1 b 11 ,1 connects to o,'6 0 b 1 b 11 ,1 (2) 1,b 0 b 1 b 11 ,1 connects to 1,b 0 '6 1 b 11 ,1 ( 3) 2, b 0 b 1 b 2 b 3 b 11 , 1 connects to 2, b 0 b 1 '6 2 b 3 b 11 , 1 In addition, diagonal 1 inks are drawn from C, b 0 b 1 b 11 , 1 to Each endpoint node is connected to a corresponding ring node as described below: c, b 0 b 1 b 11 , 1 connects to the ring node c, b 0 b 1 b 11 , 1 and to the ring neighbors [(C+l)modulo12],b 0 b 1 b 2 b 11 ,o and [(C l) modulo12] , b 0 b 1 b 11 , 0. Figure 5.9 illustrates a similar addressing scheme for a 3-dimensional hyperstar when the endpoints have been added to , the hypercube nodes. The next step that is not shown would be to add the ring nodes. (figure 5.10) The diagonals are also not shown in this figure.

PAGE 92

83 5.6 Data Communication in the Hyperstar The simple efficient node-to-node routing algorithm proposed by Wittie (1981) for the cube-connected cycle is .. adopted and modified for the hyperstar. algorithm is as follows: This modified Step 1 Step 2 Step 3 Assign a 3-tuple address, (C,bj,P) to each node: C, bqb1b2 . .. bD-1, P where C l.S the crossl ink position (0SCSD-1), bi is the coordinate in a 2 lattice (0SjSD-1) and bj {0,1}, and Pis the bit position, P {0,1}. For each source node that contains a message, compare the binary coordinates, b~, of the source node to the destination node. Ir the coordinates of the source node and the coordinates of the destination node differ in more than half of the bits, then use a diagonal lin~. Examine in sequence bits requiring change from current c coordinate. This is the i th bit. Otherwise, use the i th dimension crosslink to send the message to a new node with the same coordinate as the source node except in the bj coordinate. If the comparison between the i th coordinates of both the source and destination nodes match, but the message has not reached the final local structure, i.e., star, then use an inner ring. An inner ring is used to move to a node in the next position within the same ring that is , attached to the next crosslink position (i.e. move to the node with the address: ( [C+l) modulo D], b 0 b 1 b 2 b 0 _ 1 , 0) If the message has reached the final local structure, then determine which node on the inner ring is closest to the final crosslink position and move in the previous (C-1) or the next (C+l) direction on the inner ring towards this position. Then, use the star link to move to the crosslink position closest to the final destination node : (Note: Any comparison between two nodes is an exclusive OR operation on the respective addresses.) Repeat the comparison between source and destination nodes and use the crosslinks or inner ring links until the message has been received by the final destination node. (It is important to note that there are at most D/2 binary coordinates that must be changed).

PAGE 93

84 Consider as an example a 6 th dimensional hyperstar with a source node address equal 4,110000,1 and a destination node address equal 2, 010111, 1. The binary coordinates of the source exclusive OR' ed with the binary coordinates of the destination node is 110000 XOR 010111 = 100111. Since more than half of the bits must be changed, a diagonal link is used, i.e. 4,001111,1. (Note: If D is two, there are 2 different paths. One path equals the diameter. The other path equals the diameter + 1. Therefore, this is not an optimal routing algorithm). Bit 4 in the binary coordinates is examined in 4, 0011.ll, 1 and compared to the 4 th bit in binary coordinates of the destination node address, 2, 0101.ll, 1. This bit does not need to be changed. The next step is to go to the inner ring node connected at 4,001111,0. Go around the ring node at position 5,001111,0. Repeat the comparison of binary coordinates between 5,00111.l,0 and 2,010111, 0 for the 5 th bit position. Bit 5 does not need to be changed. Consequently, go to the ring node at address, 0 ,Q0llll, 0. Compare the o th bit binary coordinate with the o th binary coordinate in the destination address, 2,010111. Bit o does not need to be changed. Go around to the next ring node at address, 1,001111,0. Compare the binary coordinates in bit 1 of addresses l,0Qllll,0 and 2,0.1.0111,1. Bit 1 must be changed. Therefore, go to an endpoint node from the ring node (i.e., 1,001111,0 --> 1,001111,1). Then, use the hypercube link (i.e., 1,001111,1 --> 1,0.1.1111).

PAGE 94

85 Next, go to the ring (i.e., 1,011111,1 --> 1,011111,0). Go to the next ring node at 2,011111,0 (i.e., 1,011111,0 --> 2,011111,0). Compare the 2 nd bit position in the binary coordinates of 2, 01.1111, 0 and the destination address of 2,010111,1. Bit 2 must be changed. Therefore, go to an endpoint node from the ring node (i.e., 2,011111,0 --> 2,011111,1). Then use the hypercube link (i.e., 2,011111,1 --> 2,010111,1) to go from one endpoint to the destination endpoint. Since bit 3 does not have to be changed, the algorithm terminates. 5.7 Network Parameters of the . Hyperstar In this section, several network parameters for the hyperstar will be defined. These parameters include the node degree, diameter, node connectivity, average distance, and message traffic density. The node degree of a network equals the maximum node degree. The diameter is the largest minimum path between any two nodes. Theorem s.1: The node degree of a hyperstar is 6 = 3 Proof: Every node has 3 incident connections for any dimension, D. Each endpoint node, C, b 0 b 1 b 2 bc-,bcbc+i b 0 _ 1 , 1 is connected to (1) an endpoint at a hypercube neighbor c' bob1b2 bc-,Ecbc+1 bo-1' 1 (2) a diagonal link

PAGE 95

86 c, E 0 E 1 E 2 Ec_,EcEc+, ..• E 0 _ 1 , 1 (3) a corresponding ring node and each ring node, C, b 0 b 1 b 2 ... bc-,bcbc+, •.. b 0 _ 1 , O is connected to {l) a corresponding endpoint node C, bob1b2 bc-1bcbc+1 bo-1' l (2) the next ring node [ (C+l)moduloD] ,b 0 b 1 b 2 bc_ 1 bcbcbc+ 1 , b 0 _ 1 ,0, and (3) the previous ring node Theorem 5.2: An upper bound on the diameter hyperstar is d = 3D if D is even or d = 3D-2 if D is odd of Proof: The maximum global path is calculated as follows {l+ D-1 +3D +:Q) 2 2 if Dis even or (1 +D-1 +3(D-ll +D-1) if Dis odd 2 2 the The above total for the maximum path length is explained as follows: one step (or link) is required for traversing a diagonal. {Here, a step is a procedural process; i.e. it is analogous to a step in an algorithm). It is not a path or link). A total of D-1 steps are required for going from any ring node to another ring node (i.e, ring to ring steps) for all corners in the hypercube. These ring to ring steps take into consideration whether or not the ring is a part of the source star or any other star. There are 3 additional steps for traversing links connecting nodes in intermediate stars. These steps include going from an endpoint node to a ring node; going from a ring

PAGE 96

87 node to an endpoint node, and going through a crosslink (i.e., 3D/2 for D even or 3(0-l)/2 for Dodd.) Finally, there is an additional step to go around the ring to get to the correct endpoint node (i.e. , the final crosslink of the destination node) This is equal to D/2 for Dis even or (D-1)/2 for Dodd). This step is needed in case the destination node is on an endpoint node. Theorem 5.3: The node connectivity of the hyperstar is A= 3 Proof: Theorem 5.1 The connectivity of a graph is defined as the minimum number of nodes that can be removed in order to disconnect a graph (Latifi, 1989). The connectivity can be considered as a fault-tolerance measure. In this context, the connectivity of a symmetric network is the same as the node degree (Saad and Schultz, 1988). A symmetric network is defined as a network where all nodes have the same node degree. Definition 5.1: A upper bound for the f-fault diameter for the hyperstar is d 1 = 3D+l 3D-1 (Dis even) (Dis odd) The f-fault diameter is a fault-tolerance measure of a network. It is defined as the maximum distance for all possible graphs that can occur with at most f faults (Chan and Chin, 1988). For the hypercube (i.e., n-cube), the f-fault diameter is defined as the diameter+ 1 or n+l (Chan and Chin, 1988). Definition 5.2: The average distance between two nodes in a hypercube is approximately equal to D/2 (Latifi, 1989). In general, the average distance is defined below (Wang, 1989) . D I: i * N. 1 i=l 5.1 a= N-1

PAGE 97

88 where Ni is the total number of nodes i steps away from the source node and N is the total number of nodes. It is important to note that a depends upon the topology of the network (Wang, 1989). The average distance of the hypercube can be computed from the following equation. (Oandamudi and Eager, 1990) Average distance (hypercube) Using the identity ( 0 ) i i = 021 (Brualdi, 1977) , i=l the average distance for the hypercube becomes QH = 02D21 2D = .Q 5.2 2 Theorem 5.4 The average distance in the hyperstar is computed from equation 5.3 when O is odd or equation 5.4 when o is even. Equation 5.3: 0-1 OHS= ( 0 4 +1 +J.\ + ( 1-)( 0-1 + 3(0.85)0 + O+l + , 0.5 -I:k/2k) J 2 4 k=l Equation 5.4: a"s = ( 0 2 14 + 1) + 0-1 0-1 ( 1-oc) (0-1 + 3(0.85)0 + 0 2 /4 +0.5 -I:k/2k) 2 0-1 k=l

PAGE 98

89 where is the probability of local communication and 1is the probability of global communication Proof: The above equations are derived under the assumption that there is local communication. In other words, there is communication between nodes in a star (cluster) and between nodes in different stars through the cross-links (i.e. , hypercube portion of the hyperstar topology) The communication through the cross-links can be viewed as global' communication. The probability of local communication is and the probability of global communication is 1-. The average distance between nodes in a star (i.e., the average path for local communication between nodes in a star) depends upon whether Dis odd or even (See figure 5.lla and 5.llb for D=odd and D=even respectively). Using equation 5.1, the average distance, when Dis odd, is given below. (D-1)/2 I: i * N. 1 1=1 a= N-1 N. is equal to 2 and N =D. Factoring out the constant, 2, the 1 average distance becomes a= (D-1)/2 2 I: i i=l D-1 n Using the arithmetic average, I: i = distance is given below i=l 2 2 a= D-1 n(n+ll. the average

PAGE 99

90 = ( 0;1) ( 0;1 +1) 0-1 = ( 0;1 +1) a = O+l 5.5 .. 4 Using equation 5.1, the average distance when O is even is as follows. a= 2*1 + 2*2 + 2*3 + 2*~ -1 +O a= 0 2 L D-1 2 2 0-1 5.6 In equation 5.1, Ni is the number of nodes at a distance of i away from the start node. (Refer to figure 5. lla for an example of a star when Dis even. See the location of the start node.) In figure 5. lla, Ni is 2 or 1 and i is the distance away from the start node. In other words, there are 2 nodes at a distance of 1 from the start node, 2 nodes at a distance of 2, 2 nodes at a distance of 3 and 1 node at a distance of 0/2. This summation of the number of nodes times the distance away from the start node is simply the arithmetic average, i.e. i * Ni for i = 1 to 0/2. Moreover, in equation 5.1, N is defined as the total of nodes. In this case, the total number of nodes in the inner ring of a star is o. Therefore, there are 0-1 nodes. Given, the above average distances when o is odd or even, the total average path for local communication can be computed from the following algorithm. This algorithm consists of three steps. Step 1 Go from an endpoint node to a ring node. (This is a .5 probability) Step 2 Go around a ring to get to the correct ring node. (This is the value of a when Dis odd or even). Step 3 Go from a ring node to an endpoint node. (This is a .5 probability of going to an endpoint node).

PAGE 100

91 Therefore, the total average path from the above algorithm when O is odd is al= O+l + .5 +.5 4 = O+l +1 4 5.7 and the total average path from the above steps when o is even is oz = L +1 0-1 The average global path is computed as follows: 5.8 A total of 0-1 steps are required for all ring to ring steps regardless of whether the nodes are in a source star or any other local structure ( i. e, star) for all corners in the hypercube. When diagonals are used, there is a step (.85*.Q/2) for going through a crosslink and two additional steps for going from an endpoint node to a ring node and from a ring node to an endpoint node (i.e. 2*.85 *O/2). Therefore, there are a total of (3*.85*0)/2 steps when diagonal are used. In other words, the quantity, .85 *O/2 is ,. multiplied by three as a result of going through the local structure at each corner of the hypercube. The quantity .85 *O/2 is the average distance of a hypercube with diagonal links. (p. 87, Latifi, 1989). This quantity reduces the average distance of the hypercube and takes into account the cost o( using a diagonal and a crosslink or hypercube link. Notice that the three additional steps for transversing a local structure did not include any ring to ring steps. These are accounted for in the 0-1 quantity. There are at most (O+l)/4 or (0 2 /4)/0-1 additional steps to reach the final correct endpoint in the destination star for o odd or even respectively. The 0.5 term accounts for going to the correct final endpoint node or crosslink position. Thus, the total average global path is as follows. a 9 = 0-1 + 3(0.85)0 2 where, 0-1 0-1 + a -L k/2k k=l 5.9 L kk = the probability that k crosslinks k=l 2 are unused or k binary coordinates are unchanged (Wittie, 1981),

PAGE 101

92 2k = the number of nodes in the hypercube portion of the hyperstar Definition s.s: The normalized average distance for the hyperstar is defined as 0 norm = 30 The normalized average distance is defined as the average distance* the node degree (Wang, 1989). The average message delay for the hyperstar is = a*302D+ 1 5.10 c(1-ar) The average message delay is given by Kleinrock (1976) and Latifi (1989). The same notation is used. T = a: * ( ( l i ) 112) 2 _ , 5.11 i=l l c(1-ar) where, M l = :E l.; 1 M = the total number of directed channels 1=1 r = y_; C M C= :E c. =M 1 1=1 The equation above is derived under the following assumptions (Kleinrock, 1976; Latifi, 1989). (1) Each channel or link in a network is modeled as a M/M/1 system with Poisson arrival rate, li. The service time is exponential with a mean service time of 1/C. (Note: i~ the averaie service rate and ci is the capacity of the it channel). (r is called the utilization factor and is defined as the average rate at which messages enter the network for a unit of link capacity. y is defined as the mean number of total messages that flow through a network) (Latifi, 1989). (Note: The values for and c are

PAGE 102

93 constants that are characteristic of the network elements). (2) Every node has the same probability of sending a message to another node within a fixed time slot. (3) There is a unique path between any two pair of nodes. (4) The workload is uniformally distributed. (5) All channels or links have the same capacity. Equation 5.5 can be simplified for a hypercube-based network due to the symmetry and homogeneity property. (Latifi, 1989). For the hypercube, all links are assumed to be bidirectional (Latifi, 1989). A similar assumption can be used for the hypers tar. Homogeneity is assumed between endpoint node-ring node pairs. Since all links are also bidirectional in the hyperstar, Mis defined as follows. M = 2* ( 3D*2D) Therefore, THS = a (3D2D+1) c(1-ar) (Note: O!::T~l , c and are constants. Also, as r approaches 1, the average message delay gets larger.) The equation above can be normalized as follows. THS = a (1-ar) Definition 5.7: The cost of the hyperstar is a= 9D (Dodd) 9D-6 (Dis even) The general formula for the cost is defined as the node degree * the diameter (Latifi, 1989). The node degree for the hyperstar is 3 and the diameter is defined in definition 5.2.

PAGE 103

94 5.8 Performance Measures for the Hyperstar Network The average distance for different D-dimensional hyperstars is given in Table 1. The normalized average distance for the hyperstar is given in Table 2 for the same values of D as in Table 1. The average distance for different D-dimensional hypercubes is given in Table 3. The normalized average distance for the hypercube is given in Table 4 for the same values of Das in Table 2. The results of these tables convey the following information. As the percentage of local communication increases, the average distance of the hypers tar is less than the average distance of the hypercube. When the percentage of local communication is moderately low, then the average distance increases in comparison to the hypercube. For instance, if the percentage of local communication is 90%, then the average distance of the hyperstar is 8.06 (refer to Table 1, entry oc=0.8 for N=983,040). A percentage lower than 80%, results in a higher average distance. However, a true comparison for average internode distance between the hyperstar and the hypercube would be the comparison of normalized average distances. When the normalized average distances are compared, the hypers tar performs favorably. For this example, the percentage of localized communication can be 10% in order to yield a lower normalized average distance (refer to Table 3, entry oc=0.1 for N=983,040.

PAGE 104

95 Table 1 Average Distance for the Hyperstar N = 16 4096 983,040 2097152 D = 2 8 15 16 0( 0.1 4.30 16.57 32.56 34.88 0.2 4.04 15.10 29.51 31.59 0.3 3.79 13.63 26.44 28.30 ' 0.4 3.53 12.05 23.38 . 25. 01 0.5 3.28 10.67 20.31 21.72 0.6 3.02 9.19 17.25 18.43 0.7 2.77 7.72 14.19 15.14 0.8 2.51 6.24 11.13 11.85 0.9 2.26 4.76 8.06 8.56 1.0 2.00 3.29 5.00 5.27

PAGE 105

96 Table 2 Average Distance for the Hypercube N 0=6 a: 16 4 2.00 4096 12 6.00 1,048,576 20 10.00 2,097,152 21 10.50

PAGE 106

97 Table 3 Normalized Average Distance for the Hyperstar N = 16 4096 983,040 2097152 D = 2 8 15 16 y = 3 3 3 3 ' 0.1 12.90 49.71 97.68 104.64 0.2 12.12 45.30 88.53 94.77 0.3 11.37 40.89 79.32 84.90 0.4 10.59 36.45 70.14 75.03 0.5 9.84 32.01 60.93 65.16 0.6 9.06 27.57 51. 75 55.29 0.7 8.31 23.16 42.57 45.42 0.8 7.53 18.72 33.39 35.55 0.9 6.78 14.28 24.18 25.68 1.0 6.00 9.87 15.00 15.81

PAGE 107

98 Table 4 Normalized Average Distance for the Hypercube N D=y a(Normalized) 16 4 8.00 4096 12 72.00 1,048,576 20 200.00 2,097,152 21 220.50

PAGE 108

99 In general, the hyperstar is superior to the hypercube in having lower values of normalized average distances for different dimensions at lower percentages of localized communication. A low percentage of localized communication implies a higher percentage of global communication. The conventional hypercube is a structure that has only global communication. Thus, a better comparison between structures is possible. A comparison of the other network parameters yield the following observations. The node degree for the hyperstar is significantly less than that of the conventional hypercube. The connectivity of the hyperstar and hypercube is 3 and n respectively. A lower connectivity indicates that fewer nodes can be removed before the network is disabled. According to this definition, a lower connectivity implies a reduced fault tolerance. However, a node in this context implies the corner of the hypercube. In the hyperstar, a node is actually a cluster or star. Therefore, several star topologies would have to be disconnected before the entire network is disabled. However, the connectivity is not a true indicator of fault-tolerance because a network can have alternative paths. Having alternative paths in the presence of faulty nodes is indicated by the f-fault diameter. The hypercube has a fault diameter of n+l (Saad and Schultz, 1988). Ideally, the f-fault diameter should be small. A small f-fault diameter translates into a minimum path and lower communication delay.

PAGE 109

100 The hyperstar has a higher f-fault diameter of 3D+l and 3D-1 for D=odd or D=even respectively. The f-faul t diameter indicates that the performance of the hypercube will not significantly degrade with faulty nodes in the network (Latifi, 1989). In contrast, the performance of the hyperstar will not degrade significantly with faulty nodes in the network. In any case, the hyperstar still has fault-tolerance capabilities. The hyperstar has a linear cost whereas the hypercube has a squared cost, i.e. a=n 2 . Therefore, the hypers tar is a more cost effective network in comparison to the hypercube. Al though the hypers tar has a 1 inear cost, it has a diameter that it roughly three times the diameter of the hypercube. The increase in diameter is attributed to the additional paths in each star of the hyperstar, i.e. the path between nodes within an inner ring and the connecting link or path between ring nodes and endpoint nodes. Table 5 shows how the hyperstar compares with another interconnection network, the undirected binary Debruijn network. The undirected binary _ Debruijn network-a network with bidirectional communication links-is a scalable network. It has many attractive properties as the hypercube: fault tolerance, simple routing algorithms, embeddability of other network topologies. In addition, it has a low . degree. However, the undirected binary Debruijn network is asymmetrical.

PAGE 110

101 On the other hand, the undirected Debruijn network is a highly scalable and dense topology. It can interconnect d 0 nodes where dis a d-ary bits and Dis the diameter (Bermond and Peyrat, 1989). Furthermore, the undirected Debruijn network can interconnect more nodes than the hypercube at a maximum degree of 2d (Bermond and Peyret, 1989). The hyperstar can interconnect more nodes than the hypercube, at a fixed degree of 3. It is expected that an additional cost would be incurred for the utilization of more communication links. However, this cost is reasonable for large N. Therefore, the hyperstar can be considered a competitive network. This is especially appealing since the Debruijn network is widely viewed as an ideal large-scale interconnection network for the next generatio~ of massively parallel architectures (Bermond and Peyrot, 1989; Uhr,1987). 5.9 Chapter Highlights In this chapter, the design of a new hypercube-based topology has been described. The design is competitive as a potential large-scale interconnection network. Also, it shows a considerable improvement over the conventional hypercube by interconnecting a large number of nodes at a significantly smaller degree and increase in average distance. The increase in average distance is a slight increase in comparison to the CCC (Preparata and Vuillemin 1981). Furthermore, the hyperstar has several important characteristics: communication

PAGE 111

efficiency, density. 102 fault-tolerance, symmetry, recursivity, and

PAGE 112

103 Table 5 Comparison of Network Structures Architecture N d 0 L Hypercube 2D D D D2D-1 Hyperstar 02D+1 3D 3 302D 3D-2 Binary 2D 2D+1 Debruijn D 4

PAGE 113

10 00 104 0 0----0 1 11 01 1 axis Figure 5.1 A 2-dimensional Hypercube

PAGE 114

010 1. 000 105 110 111 \ 100 .0 .... ..... ... ... .. . .. . . ... . .. .. .. ... . . .. .... ... .. .... . . . .. . / _ . . 101 2 001 Figure 5.2 A 3-dimensional Hypercube 0 2 axis

PAGE 115

0010 106 0110 1110 1010 1011 0100 . . .. 1001 . _ . . . . 110 0000 0001 Figure 5.3 A 4-dimensional Hypercube 0111

PAGE 116

107 diagonal link ' f cross link node starlin};: endpoint node Figure 5.4 A 5-star Graph

PAGE 117

0,10,0 0,10,0 D 0,00,0 1,00,0 1,00,1 108 1 1,11,0 1 Figure 5.5 A 2-dimensional Hyperstar

PAGE 118

109 ' 0 . . . .................... . ...... ... ... .. . ... . . . ..... . ..... . ........ . . ......... . ....... .. . . ....... . .... .. .... ..... .......... .. .. . ... : Figure 5.6 A 3-dimensional Hyperstar

PAGE 119

110 0 0000 0001 Figure 5.7 A 4-dimensional Hyperstar

PAGE 120

0 10 00 1 1 (a) 1.10.1 1,10 , 0 (_ 0 . 10.0 0.10,:1. 0 0,00,1 o,oo.o 1. 00, 1 11 0 01 ( C) 111 1.10.1 0 1 0 10 1 0 I 0.00.1 0 1 1.00.1 d (b) 1,11,1 0,:1.1,1. 0.01,1 0.01.0 1. 01, 1 01.11,1 0, 11. 1 0 0,01.1 01.01.1 Figure 5.8 Addressing Scheme for a 2-dimensional Hyperstar

PAGE 121

112 1,010,1 1,000,1 o-----o 2,000,1 2,001,1 Figure 5.9 Addressing Scheme for 3-dimensional Hyperstar

PAGE 122

113 1.,101,1 100 -0 101 0,101.0 001 Figure 5.10 Addressing for one in a 3-dimensional hyperstar with ring nodes included

PAGE 123

114 0 start node a---~ ?~ \ I D-2 D = 1 2 z (a) 0 ~--L:t;;;• a---~ ?---a \ I D-1 2 2 Figure 5.11 (a) A star topology when Dis even (b) A star topology when Dis odd

PAGE 124

CHAPTER 6 MASSIVELY PARALLEL COMPUTING STRUCTURES FOR IMAGE SYNTHESIS 6.1 Introduction The purpose of this chapter is to present the architectural requirements for a massively parallel computer for image synthesis. The primary application area for this architecture is voxel-based processing. However, it is suitable for other areas within image synthesis. Moreover, the design and analysis of an efficient static hierarchical interconnection network for this architecture will be described. The massively parallel computing structures are fine-grained MIMD computing structures. Section 6. 2 will describe the architectural features for voxel-based processing and will present a functional description of the system architecture. Sec~ion 6.3 will describe the organization and operation of the MIMD computer, i.e. the massively parallel computer. Section 6.4 describes the details of the proposed structure for a hierarchical interconnection network as well as pertinent design issues. Section 6. 5 presents the analysis for the hierarchical interconnection network and a discussion of results. Section 6.6 presents the conclusions. 115

PAGE 125

116 6.2 Overview of the System Architecture The system architecture is shown in figure 6.1. There are three main components in this system architecture: the host computer, the MIMD computer, and the object database. The host computer serves as a central controller for the overall system and performs the system level jobs such as memory management, database management, allocation of processes (i.e. tasks) to processing elements, and object space or image space partitioning and allocation. In addition, the host also broadcasts global information to the processing elements in the network and retrieves and stores information in the object database, in the image storage unit, and in the distributed shared-memory modules. The distributed shared data modules contain information relevant to the objects in a particular scene. Normally, the entire scene is stored in a frame buffer. In our architecture, the frame buff er is distributed. That is, each processing element in the architecture has access to a local shared-memory module, i.e. distributed frame buffer, that is used to store a portion of the entire image or scene. Each processing element retrieves information from the local frame buffer, performs its designated functions, and then stores its results in the local frame buffer. The host computer consolidates the results from the shared memory modules and stores this information into the image store. The results of . the image store are then displayed onto the video display. The detailed

PAGE 126

117 description of the system control functions performed by the host computer is beyond the scope of this dissertation. The object database is an auxiliary storage unit for information about the objects in a _ particular scene. The modeling information and other information peculiar to the geometry of objects is located in this unit. If the image is voxel-based, then the objects contain voxel-based data. That is, the objects are comprised of 3-D primitives. It is assumed for the sake of discussion that a 3-D scene has been discretized, sampled, and partitioned into subregions that are to be allocated to the various shared-memory modules in the system. The MIMD computer is the fine-grain massively parallel computing structure that performs all of the image level operations that are essential to generate a synthetic image. The details of the internal architecture will be described in the next section. overall, the system architecture is highly scalable and efficient. The key features of this architecture, in the context of voxel-based processing, are the following. The architecture permits real-time display of synthetic images. The architecture supports general-purpose image synthesis applications and is not restricted to onlY, medical image rendering as is typical in other voxel-based systems. The architecture is designed to be modular. It is fault-tolerant,

PAGE 127

118 and the frame buffer memory is distributed to permit fast and efficient communication. Moreover, our architecture is a MIMD-based system. Many of today's massively parallel computers are SIMD systems with thousands of simple 1-bit or 4-bit processing elements. Our architectural framework is suitable for the incorporation of thousands of more powerful processing elements such as 32-bit processors with large on-chip memory locations. Such processing chips, often called computers, have been designed. An example of such a powerful processing chip is the transputer chip. The term fine-grain, in this dissertation, refers to the large number of these processing elements. In comparison to other voxel-based systems, most of these systems utilize only a few hundred processing elements. The architecture presented here is a massively parallel computer for voxel-based processing. Massively parallel computer in this context implies a large computing structure that associates one processing element per voxel or one processing element per voxel object. This is a 3-D analogy of the 2-D one processor per pixel architecture or one processor per object architecture. 6.3 Architecture of the MIMD Computer The internal architecture of the fine-grain massively parallel computer is shown in figure 6.2. This architecture consists of a hierarchical structure. The primary reason for

PAGE 128

119 selecting a hierarchical structure for the massively parallel computer was to permit the design of a scalable and cost efficient computing structure. A global high-speed interconnection network provides the interconnection between a fast image storage unit, the host computer, and a set of local interconnection structures. The local interconnection structures provide the interconnection between groups of clusters of processing elements and shared memory modules. The choice of the topologies for the global and local interconnection networks is the topic for . the subsequent section. The overall architecture is a typical organization of a MIMD computer. That is, the computer contains . a global shared memory (the image store) and distributed memory that is local to the individual processors (i.e. the local memory and the corresponding processor that controls this memory is referred collectively as the processing element). Additional shared memory is distributed among the processing elements through a hierarchical interconnection structure (i.e. in the local hyperstar structure of the global hypercube structure) to take advantage of the locality in communication of image synthesis algorithms. The ring nodes within the local hyperstar structures are smart memory cells (i.e. a chip with processing logic and memory logic) and the endpoint nodes are processing elements (figure 6.5). The processing elements and the global shared-memory are interconnected through a high

PAGE 129

120 performance interconnection network {i.e. the global hypercube structure) 6.4 The Hierarchical Interconnection Network In this section, the architectural configuration of the hierarchical interconnection network used in the MIMD computer described in the previous section will be discussed. The motivation for using a hierarchical interconnection network for a massively parallel architecture will be presented. The design issues for large-scale interconnection networks will be discussed. Also, the construction of the HIN is presented. The analysis is presented for the HIN structure. Finally, the chapter concludes with the highlights of important concepts and conclusions. 6.4.1 Why Hierarchical Interconnection Networks for MPCs? There are two main reasons for using a hierarchical interconnection network for constructing massively parallel computers {MPCs) . One reason for using a HIN is the reduction in the number of communication links that are required in a computer. This reduction is due to fewer communication links connected to a node. In other words, using a HIN has a distinct advantage of reducing the node degree. The second reason is that HINs provide a way of integrating different topologies, with current technology, in order to match the

PAGE 130

121 communication structure of an architecture with the structure of an application or problem. Alternative architectures that are reconfigurable require significant advances in VLSI technology (Dandamudi and Eager, 1990). The next section will address some of the design issues pertinent to static interconnection networks (i.e. interconnection networks that are not reconfigurable and non-hierarchical). 6.4.2 Design Issues A difficult problem in the design of a massively parallel architecture is in the construction of the interconnection network between the processing elements. The difficulty arises in trying to design a fast and flexible interconnection network at a cost that is low and considered reasonable. Thus, the choice of the interconnection network topology is very crucial. There are a number of different topological schemes for interconnection networks. However, several of these schemes are unsuitable for interconnecting a large number of processing elements. Connecting processing elements to a single bus is not sufficient because bus contention problems can occur. In other words, the contention for the single bus increases as the number of communicating processing elements increases. Another interconnection scheme is the fully connected scheme shown in figure 6.3.

PAGE 131

122 In this interconnection configuration, every processing element is connected to each other. The major problem with this scheme is the large number of links that are required for each processing element. For instance, if the number of processing elements is 1024, then over one million links (i.e. 1,040,574) links would be required. Such a large number of links is highly impractical and too costly (i.e. in terms of wiring, etc.). Another interconnection network that is used is the crossbar interconnection scheme. In the crossbar configuration, processing elements are connected to other processing elements or memory modules through an array of switches. The crossbar interconnection network is unfeasible for large systems due to its high cost. N 2 switches are required and the cost of the network increases N 2 as N increases. Similarly, the toroidal networks are examples of other interconnection structures. The 2-D toroidal interconnection network is similar to a 2-D mesh. The only difference is that the end connections are wrapped around and connected together. Figure 6. 4 provides an illustration of the 2-D toroidal interconnection network. This interconnection structure has several interesting properties. It is highly modular and scalable. Likewise, it has been shown to have an efficient layout for VLSI implementations. The primary disadvantage of this structure is that it is unsuitable for interconnecting

PAGE 132

123 large numbers of processing elements because of its high cost. Its cost grows with the addition of new processing elements in the same way as the crossbar structure or mesh structure grows. Many networks have been designed which represent a compromise between the two interconnection network extremes already discussed, i.e. the single bus and the fully connected interconnection network scheme. These networks try to achieve a compromise between architectural requirements and performance. A compilation of generic architectural requirements is listed below (Bermond and Peyrot, 1989 and Hillis, 1985). Small Diameter The diameter of graph is the maximum distance between any two pair of nodes. The distance represents the length of the path that a message must transverse between any two processing elements. (Note: Interconnection networks are actually depicted as a graph where the nodes correspond to the processing elements and the edges represent bidirectional communication links. The diameter represents the communication delay in a network.) Small Fixed Degree The degree of a node is the number of connection at a node. This translates to the number of wires that are connected to a processing element in a physical system. Ideally, the number of wires should be small since this represent a significant amount of the cost in a system. If the degree is fixed, then only one processor design is required and only one has to be constructed. Simple Routing Algorithms A simple routing algorithm provides the basic strategy for efficient inter-node communications. It is sometimes referred to as node-to node routing. Fault-Tolerance The network should be able to operate in the presence of faults, i.e. link failures and/or node

PAGE 133

124 failures. In graph theoretic terms, this translates to detecting the connectivity of a graph when a number of nodes or links are removed. The nodes or links removed represent the faulty paths between a particular pair of nodes. Scalability The network should be expandable. This implies a modular structure consisting of basic building blocks that can be replicated. The network should also be symmetrical. Embeddability of Different Network Topologies The significance of embeddability is to allow algorithms developed for one topology to be utilize on another topology. Efficient VLSI Layout The placement of an architecture on a chip is crucial and should efficiently utilized the available area on a chip. It is important to note that all of the above requirements are not achievable in a single network design. Other pertinent design issues include determining the set of appropriate network parameters for a particular application: e.g. mode of control (centralized or decentralized), and switching mode (circuit-switching or packet-switching). 6.4.3 Construction of the HIN The proposed structure of the hierarchical interconnection network consists of two levels. One level is a global interconnection network where each corner of this structure is a cluster. The second level is a local interconnection structure. These local INs are the cluster structures that are used in the global IN. In this research, the HIN consists of a conventional D-dimensional hypercube for

PAGE 134

125 the global interconnection structure and a D-dimensional hyperstar for the local interconnection network. Within each local interconnection network, one node is shared between the two INs. This shared node (i.e. between the local and global structures) has 0+4 connections and the remaining nodes (i.e. in the local IN) have three connections. The degree of a shared node is the degree of the global hypercube + the degree of the local hyperstar + an extra external link from the global hypercube (Figure 6.6) A shared node is really an endpoint node in the hyperstar. Therefore, one endpoint would have the following connections: a diagonal link (i.e. a connection to an endpoint node in a diametrically opposite star), a starlink (i.e. a connection between an endpoint node and its corresponding ring node), D crosslink connections (i.e. one crosslink connection in the direction of the i th dimension to the other shared nodes in the global hypercube structure) and one external link from the global hypercube (figure 6.6). The remaining nodes in the hyperstar would have the regular three connections: a diagonal link, a starlink, and one crosslink. Figure 6. 7 shows the HIN that is constructed from a 2-D global hypercube and 2-D hyperstar. In this diagram, the external link is not shown. Therefore, the actual degree, including the external link, is 6 for the shared node and 3 for the remaining nodes. consider the following example. If N=l million nodes and the global structure is a 4-hypercube and the local structure

PAGE 135

126 is a 12-hyperstar (i.e.16 *98,304=1,572,864), then there are N/2 (0) 2 or 16 shared nodes with 7+1=8 connections (i.e. degree= 7 + 1 external link) and 98,304 nodes with a degree of 3. The next section analyzes the performance of this HIN. 6.4.4 Performance Analysis of the HIN The average internode distance of the hierarchical interconnection network proposed in this research can be computed from the equations below (Oandamudi and Eager, 1990) Equation 6.1: pH IN = plocal IN/Global IN = oc:plocal IN + ( l-oc:) ( 2 PLocal IN + pGlobal IN) where p Global IN plocal IN = average internode distance of the global IN (i.e. binary hypercube) = average internode distance of the local IN (i.e. hyperstar) oc: = a probability with values from o 1 Equation 6.2: d pGlobal = 2 Equation 6.3: pHS/BH = 7 ~) + (l-oc:)( 2 aHS + where o is odd (equation 6.4) or O is eyen (equation 6.5) Equation 6.4: QHS = i 0:1 +~ 0-1 + (1-oc:,0-1 + 3(0.85)0 + O+l + 0.5 ~~k/2k} { 2 4 k=l

PAGE 136

Equation 6.5: QHS = i 02/4 +1) D-1 127 D-1 + (l-)(D-1 + 3(0.85)0 +D 2 /4 + 0.5 -Lk/2k 2 D-1 k=l Table 1 gives the results for the average internode distance for the Binary Hypercube/Binary Hypercube (BH/BH), the Hyperstar/Binary Hypercube (HS/BH) and the Cube-Connected . Cycle/Binary Hypercube (CCC/BH). The formulas used for the results of the CCC/BH and BH/BH are given below (Dandamudi and Eager, 1990). 0 ccc = where De is the dimension of the cube-connected cycle. pCCC/BH = (ace~ + (l-~ 20 ccc +~ The hierarchical interconnection network proposed in this research shows an improvement over the traditional hypercube network. To interconnect 1,048,576 nodes, the hypercube structure would require a degree of 2 0. The hierarchical interconnection network consisting of a hypercube for both the global and local INs (i.e. BH/BH) interconnects the same number of nodes, (i.e. 256 * 4096 =1,048,576). 256 nodes would have a degree of 21 (The 21 includes the , degree of 20 + the external link). 4096 nodes would have a degree of 12. In contrast, the hyperstar-based HIN also interconnects the same number of nodes (i.e. 4096 * 256 = 1,048,576). 4096 nodes have a degree of 3 and 256 nodes have a degree, including the

PAGE 137

128 external link, of 9. However, it has a higher average distance than the BH/BH. In comparison to the CCC/BH, the hyperstar based HIN interconnect twice as many nodes with fewer nodes connections and at a lower average distance for 50% or more local communication. 6.5 Conclusions In this chapter, the design of a hierarchical interconnection network for constructing massively parallel systems for real-time image synthesis has been proposed. The design was shown to be feasible and shows an improvement by interconnecting a larger number of nodes with a significantly smaller degree and a increase in average internode distance. The hyperstar-based HIN is also better than t~e CCC/BH for interconnecting a larger number of nodes at a fixed degree of 3 and lower average distance for greater than 40% local communication.

PAGE 138

129 TABLE 1 Average Internode Distance for N=l,048,576 cc BH/BH HS/BH CCC/BH 0.1 11.52 35.10 25.08 0.2 10.91 33.80 23.53 0.3 10.29 25.96 21.97 0.4 9.68 21.84 20.41 0.5 9.07 18.01 18.86 0.6 8.45 14.47 17.30 0.7 7.84 11.23 15.74 0.8 7.23 8.29 14 .18 0.9 6. 61 5.64 12.63 1.0 6.00 3.29 11.07

PAGE 139

130 E=3 CJ = Host I I ,, /0~ _, i l Di:,play lHl1D Computer ,, '-.... _/ ...._______, Object Database Figure 6.1 The System Architecture

PAGE 140

Host 131 ................................................... ...... ........... ..... ....................... . . ... .. .. ...... .. .... ....... .. .. .. ........ . ...... ......... . .. . .. ... Image Store Global Interconnection Betvork Loce.l IN rocessor/ Shared He110ry Cluster rocessor/ Shared. lfe110ry Cluster rocessor/ SharedKe110ry Cluster Loce.l IN rocessor/ Shared. Memory Cluster ........... . .... .. ... . ......... .... ............................ ........ ... ... .... .. .... ... .................. . .... ....... ... . . .. . . ....................... .. . . . . . l:1Il1D Computer Figure 6.2 Layout of the MIMD Computer Display

PAGE 141

132 0 1 4 2 3 Figure 6.3 A completely connected interconnection network

PAGE 142

133 ) o --r-r -r J . . . .. . . . . . . . . . . . . . . . l l i ! ! l . . . : : : . I l I ----t--1 \____,/ \____,/ Figure 6.4 A 2-D Toroidal interconnection network with N=Dd where 0=4 and d=2

PAGE 143

134 Figure 6.5 The Shared-memory Hyperstar Interconnection Network

PAGE 144

135 ~ -----------------------------------------------------------/ ------------\ ... Figure 6.6 Hypercube Augmented with one extra link per node

PAGE 145

136 shared node local hyperstar / Figure 6.7 A HIN with a 2-D global hypercube and 2-D local hypers tar

PAGE 146

CHAPTER 7 A NOVEL COMPUTATIONAL MODEL FOR A MASSIVELY PARALLEL ARCHITECTURE . 7.1 Introduction In this chapter, a novel object-oriented computational model is developed which exp~oits massive parallelism. In this model, parallel computations are represented as communicating objects. Parallel computations are expressed in a functional language. The primary motivation for the development of such a model is to provide a mechanism for structuring parallel computations onto a massively parallel computer. Another motivating factor is to provide a high-level computation model that is independent of the underlying machine architecture. The advantage of such a model is that it facilitates programming a massively parallel machine and designing efficient parallel programs while hiding the low level implementation details. All of these factors are related to the fundamental research problem of how to write parallel programs for a parallel computer that contains a large number of processing elements. Large is this context is relative, but implies a computer with a thousand or more processing elements. 137

PAGE 147

138 This chapter is organized as follows. The next section presents an overview of the fundamental concepts and technical advances in each of the computational paradigms considered in this research. Section 7.3 presents a formal computational model and integrates this model into the object-oriented _. paradigm as well as investigates technical issues associated with the object-oriented programming. 7.2 Theoretical Computational Models There are several computational paradigms that nave emerged in the last decade. These models provide the basis for imperative, declarative, and other programming languages for sequential as well as parallel computers~ In imperative languages, the data or state information is represented implicitly, i.e. data is stored in named memory location or variables. This data is modifiable through the use of programming constructs in the source code. Some examples of programming constructs are assignment statements, begin-end constructs, while loops, and GOTO constructs. When data is allowed to be modified, the language is said to have side effects. Any alteration in data values in a named memory location, through the use of an assignment statement, results in the binding of the altered data to a particular variable. A program in an imperative language consists of a collection of programming constructs that are executed in

PAGE 148

sequential statements order. enables deterministic manner. This the 139 sequencing of constructs and state to be controlled in a Declarative languages, on the other hand, do not permit an implicit representation of data, but rather the state information is represented explicitly in the programming constructs. For example, if the programming construct was a function, then the parameters of the function would represent the state. Moreover, there are no explicit constructs for looping operations. Instead, looping operations are implemented through recursion as opposed to sequencing of instructions. Another important feature of declarative languages is the emphasis on "what has to be done as opposed to how it is don . e" (Hudak, 1989). Lastly, declarative programming languages use expressions as the basic programming construct. There are two types of declarative languages-functional and logic. The basic expression in a functional programming language is a function. These functions are normally mathematical functions. Thus, computations are expressed in the form of functions. In contrast, relations or predicates comprise the primitive programming construct for logic programming languages. In this section, two models of programming languages will be described object-oriented and functional. Each

PAGE 149

140 section will present the basic concepts and give an overview of current research and any pertinent open problems. 7.2.1 The Object-Oriented Model In the object-oriented model, a program is represented as a collection of communicating objects. Here, an object denotes a group of operations (i.e. methods) that encapsulate data. The data represents state information. Only the operations that encapsulate the data are allowed to operate on it and access it. Any external reference to this data must occur through the communication medium, that is, through the exchange of messages between objects. The message that is sent to an object contains some parameters and a result (i.e. value). The general format for a message is given as the following (Ghelli, 1990) msg (par 1 , parn) Ghelli makes the comparison of sending a message from a caller object to a receiver object as having a similar effect of using a function call. (A function has the following form: function msg(par 1 , parn) (Ghelli, 1990)). He mentions the primary difference being that a message is considered overloaded (i.e. many objects in a system can receive a message that will invoke its code. Note: The code that is invoked is different for each object.) Moreover, he points out that since objects have a unique identity and are created

PAGE 150

141 at runtime as opposed to compile time, the binding of messages to objects and the execution of the code of objects occurs at runtime. This binding is referred to as late binding (Ghelli, 1990). When the code or method of an object has been invoked, the code operates on the parameters and the state of the .. receiver before returning a result. In the message passing scenario, the parallelism in this model is very limited and massive parallelism is still not obtainable in this paradigm. However, recently much effort has been forthcoming in enhancing this paradigm to exploit more parallelism. There are three basic concepts in this paradigm: data abstraction, inheritance, and polymorphism. Data abstraction involves the specification of a data type and of information hiding. The data type is referred to as an abstract data type, ADT. The internal representation of the ADT and its corresponding operations are defined. The ADT can be viewed as a template from which instances of an object are created. Information hiding is used for one important reason: the alteration of data in the internal representation of the ADT can occur without affecting any o~her parts of the program. Data abstraction provides a mechanism for data representation. However, it does not capture ' an important characteristic of objects, i.e. the relationship between objects. The idea of inheritance is used to capture this important characteristic of the object. Inheritance is based

PAGE 151

142 on the notion that objects do not exist in isolation and therefore exhibit some type of behavior. In other words, objects that share characteristics can be categorized into classes and all objects in a class have the same characteristic. Consider, as an example a class that represents triangles. Objects in this class could be an isosceles triangle, right triangle, and equilateral triangle. The class provides a mechanism for structuring objects as a hierarchy where the child class inherits from the parent class. Here, inheritance refers to the idea of defining one object in terms of an existing object. Actually, in this concept, objects in one class inherit data and behavior from another class. In programming terms, this idea really implies the sharing of data and operations between objects in a class. In other words, objects in a class can inherit code and data from the base class. Polymorphism refers to the idea of operations taking on different behaviors when applied to different objects. In other words, different objects respond differently to the same operation. Polymorphism allows the inclusions of different operations that are context dependent. The concepts of data abstraction, inheritance, and polymorphism off er several advantages to software development. The primary advantages are modularity, extensibility, reusability, and maintainability (Yau, 1991). The object oriented paradigm is ideally suited for representation of

PAGE 152

143 concurrent behavior in programs. However, one prevalent problem remains when the concept of inheritance is incorporated with the notion of parallelism. Some parallel object-oriented programming languages do not permit inheritance since the synchronization mechanisms are not directly inheritable. Other parallel object-oriented languages support inheritance, but the synchronization mechanisms are not inheritable. In other languages such as Concurrent Smalltalk and Rosette, inheritance is supported and synchronization constraints are inheritable. The only limitation to these languages is that in Concurrent Smalltalk, the use of critical sections for synchronization can be misused and sacrifices the notion of object encapsulation and in Rosette, the use of enabled sets for synchronization adds the overhead of modifying the enabled sets in the child class as well as in the parent class. POOL-1 is another language that has been recently extended to allow for inheritance and synchronization. 7.2.2 The Functional Model In the functional model, all computations are represented as mathematical functions. The functional paradigm prohibits the notion of side effects, i.e. no values of variables can be altered in any assignment statement. This eliminates the problem of binding variables with different values and

PAGE 153

144 determining the scope of variables within a program segment at compile time. Another notable attribute of functional languages is static type checking during compilation. This check and balance enables a functional program to be more efficient. Other features include the concept of polymorphism and the view of functions as first-class values that can be passed as arguments and/or results (Yau et al., 1991). 7.3 The Computational Model In this section, an object-oriented computational model is developed. This model supports the notion of multiple class . inheritance and real-time programming concepts. The real-time programming concepts include the specification of the following: (1) timing constraints at the statement level, (2) periodic tasks, and (3) task priority. An overview of this model will be discussed in subsequent sections. 7.3.1 Formal Definition The basic premise of our model is the integration of three programming paradigms into a single paradigm. A formal definition of the integrated object-oriented model is given below. The specification of the integrated object-oriented model as a tuple and an associated object-oriented notation is adopted and modified from Papaconstantinou (1991).

PAGE 154

145 Object Class Definition: An object class can be formally modeled as a 9-tuple as given below: OC = (OC.N, OC.I, CC.SC, OC.A, CC.IA, CC.CC, CC.FM, OC.S, OC.R) where OC.N = Name of the Object Class OC.I = { OC. i 1 , OC. i 2 , , OC. in} the object class is a set of instances of CC.SC= {oc.sc 1 , oc.sc 2 , ,oc.scm} is a set of object subclasses oc.A = (La, Ga, Ca) is the 3-tuple of class attributes and attribute constraints where La= (la 1 , la 2 , ,laj) is a set of local attributes Ga= (ga 1 , ga 2 , ,gak) is a set of global attributes Ca = ( ca 1 , ca 2 , , cat) is a set of optional attribute constraints oc. IA = (LA, GA, CA) is the 3-tuple of instance attributes and instance attribute constraints where LA = ( 1A 1 , lAz, , lA 0 ) is a set of local attributes GA= (gA,, gAz, ,gAP) is a set of global attributes CA = (cA 1 , cA 2 , ,gAq) is a set of optional attribute constraints oc. cc = { oc. cc 1 , oc. cc 2 , , oc. ccr) is a set of conditional constraints or predicates. These conditional constraints are referred to as guards and are used primarily for object synchronization and communication. OC. FM = ( LM, PM) is the tuple of methods ( functional operations where

PAGE 155

LM PM 146 = (lm 1 , lm 2 , lm 5 ) is a set of local methods where each operation is restricted to functional language statements internal to objects = (pm 1 , p~, , pmt) is a set of public methods that operate on public class attributes and public instance attributes. These operations are restricted to functional languag~ . statements. CC.S = {CC.SN, CC.SA, CC.SM) is the 3-tuple for the definition of a superclass where CC.SN= Name of the object's superclass cc. SA = ( a 1 , a 2 , au) is a set of superclass attributes CC.SM = {oc.sm 1 , oc.s~, ,oc.sm) is a set of methods (functional operations) for the superclass CC.R = {CC.RG, CC.RM) is the tuple for the definition of an object's real-time behavior where CC.RC= {TC, TP, PT) is a real-time constraint 3tuple where TC= {tc 1 , tc 2 , tcw} is a set of timing constraints TP = {tp 1 , tp 2 , ,tpi) is a set of priority tasks PT= {pt 1 , pt 2 , ,ptb) is a set of periodic tasks OC.RM = (EH, Ctp, Cpt) is a 3-tuple of real-time operations for exception handling and conditional operations where EH= {eh 1 , eh 2 , ,eh~) is a set of exception handling conditions when the associated

PAGE 156

Ctp 147 timing constraint(s) expired = { ctp 1 , ctp 2 , , ctp j) methods (operations) priority tasks is for a set of handling Cpt = {cpt 1 , cpt 2 , ,cptk) is a set of methods (operations) for handling periodic tasks In the integrated model, the methods internal to an object are represented in a functional language. Recall that an object class is an abstraction (i.e. abstract data type) for a set of objects that exhibit the same behavior or possess the same properties. A class is denoted by its interface and definition (Yau et al. 1991). Furthermore, a class consists of its internal data that is local to the object and its body, i.e. the methods. Every object is an instance of an object class. Also, a superclass is defined as a class with global propertie s whereas a subclass is a further subdivision of a class to indicate additional properties. For instance, if the superclass is a professor, then examples of subclasses would be a math professor, a civil engineering professor, and a electrical engineering professor. An object class has the following generic structure. Class Definition Object_class_name { Variable declarations; Method /*Body of Object*/ If condition then statement 1 ; else

PAGE 157

statement 2 ; statement 3 ; statement 4 ; 148 Method statement 5 ; statement 6 ; statement 7 ; } In our model, the statements above, for example, should be replaced by functional statements that are application specific. For an illustrative example, consider the following simple ray tracing algorithm. This algorithm is written in pseudocode (Foley et al. 1990). select center of projection and window on viewplane; for each scan line in image do for each pixel in the scan line do begin determine ray from center of projection through pixel; for each object in scene do if object is intersected and is closest considered thus far then record intersections and object name; set pixel's color to that at closest object intersection; end; Each of the above statements can be translated into the allowable assignment statements in a functional language. Furthermore, the above sequential algorithm cap be made into a parallel algorithm by tracing each ray independently. The sections of the algorithm for tracing each ray individually can be placed into separate methods in an object-oriented

PAGE 158

149 framework. Also, statements in a method could be executed concurrently. (The number of statements that are internal to a particular method indicates the granularity of the method. For massive parallelism, it is assumed that the granularity is fine-grained). The above algorithm can be further extended to take into account real-time constraints by encapsulating time in the method section of an object. An appropriate value for a time constraint should be chosen. Here, the time would be stated as a condition in an assignment statement that is internal to a method. In addition, other statements would be included for additional functions that would be executed in the event the time elapses before completion of computations or if an interrupt is received from another object. Moreover, each statement could be assigne~ a priority where appropriate. These priorities govern the order of execution for each statement. Higher priori ties preempt lower priorities. In addition, priorities are inheritable. In other words, all of the statements for a object in a superclass are inherited in the objects in a subclass. That is, a statement in a method of a superclass that invokes a statement in a subclass inherits or has the same priorities as the superclass statement. In addition to the above features of the programming constructs or statements, the functional statements used in the methods allow side effects. The allowance of side effects

PAGE 159

150 provides the programmer more flexibility, but at the expense of efficiency. Moreover, side effects permit the data structures to be updatable. The utilization of updatable data structures eliminates the need for multiple copies of data for different variables. 7.3.2 Synchronization and Communication If time encapsulation is not used to order the execution of an object, then a special programming construct called a guard can be used to synchronize methods in an object. The guard is also useful for restricting access to code that is shared. By definition, a guard is a predicate expression (i.e. a condition). If the condition evaluates . to true, then the method is executed, otherwise, the method is not executed. An example of the use of a guarded expression is as follows. Class definition Add { int subtotal; int i; Method } guard (i>subtotal); i=i+l; 7.3.3 Semantics of the Computational Model There are several programming constructs for delineating parallelizable sections of an application program. These constructs encapsulate statements that should be executed in

PAGE 160

151 parallel. One such construct is the parbegin parend (Yau et al., 1991). This construct is applicable to a delineating sections of methods (i.e. functional operations internal to methods) for parallel execution as . well as to specify parallelism at different granularities and levels: i.e. intra object and interobj ect. An example of the use of the parbegin parend construct is given below (Yau et al., 1991) para ( function ( a 1 , a 2 ) parbegin statement 1 II statement 2 , II statement 3 paraend return (Note: The symbol II specifies parallel execution) . 7.4 Chapter Highlights In this chapter, a novel object-oriented computational model that exploits massive parallelism ha~ been presented. The basic premise of the model is that computations are expressed in a unique model that unifies the functional, real time and object-oriented paradigms into a single more powerful and expressive computational paradigm. The functional model is integrated into the object oriented paradigm at the method definition level. The model is also enhanced to allow polymorphism. In this , research, the functional language assumed was not restricted to a purely functional language.

PAGE 161

CHAPTER 8 CONCLUSIONS 8.1 Summary This research had two primary objectives. The first objective was to design and analyze a massively parallel architecture for real-time image synthesis. A unique design of a hierarchical interconnection network was proposed for constructing the massively parallel architecture. The basic building block of the hierarchical interconnection network was a new hypercube-based topology called the hyperstar. The second objective was to develop a formalism for structuring parallel computations onto a massively parallel system. This formalism is a computational model which serves as the basis for a parallel programming language for massively parallel systems. 8.2 Research Contributions The major contributions of this rese~rch are as follows. A new hypercube-based topology (i.e. the hyperstar) has been proposed. This augmented hypercube-based structure reduces the node degree of the conventional hyper~ube topology from n to three and maintains many of the properties of the hypercube: symmetry, fault-tolerance, homogeneity, and 152

PAGE 162

153 recursivity. Other notable characteristics are: (1) The hyperstar is communication-efficient (i.e. exploits localized communication) and has an easy routing algorithm. Moreover, it is a dense topology which can interconnect more nodes than any other hypercube-based topology at a constant degree and at a lower dimension. However, the main design tradeoff is an increase in diameter for a reduction in the node degree. The increase in diameter is reasonable for a large number of nodes. A massively parallel architecture for real-time image synthesis has been designed. The basic building block of this proposed architecture is a hierarchical interconnection network. Within the HIN, the hyperstar is used as a local interconnection network structure and the hypercube as the global interconnection network. The HIN was analyzed and determined to be an efficient high-performance large-scale interconnection network. It was shown to be a competitive structure in comparison to other hypercube-based HINs. overall, the massively parallel architecture is a unique large-scale architecture which contains both global shared memory and local distributed memory. Many of the massively parallel architectures proposed or built today are based upon a distributed-memory point-to-point topology. A conceptual framework for structuring parallel computations onto a massively parallel computer has been formulated. Furthermore, a new formalism of a computational

PAGE 163

154 model that combines the object-oriented, functional, and real time programming paradigms into a single powerful programming paradigm has been proposed. 8.3 Open Research Problems The allocation of tasks, the performance of parallel computations, and the development of efficient algorithms are all pertinent research issues for hypercube-based topologies as well as massively parallel architectures in general. Some additional research issues stated as questions for hypercube based topologies are enumerated below. (1) How should problems be partitioned to efficiently utilized the hypercube? ( 2) Where should redundant communication links be placed to reduce the average distance of the hypercube? (3) What is an optimal routing algorithm for the hypercube? (4) How can the diameter of the hypercube be reduced? There are several areas of further study on the hyperstar topology. More fault-tolerance analysis is needed. Additional fault-tolerance parameters should be defined and a fault-tolerant routing algorithm should be developed for the hyperstar. Moreover, more work is needed to determine where the redundant diagonal links can be placed in order to further reduced the average distance of the hypercube. The result used in the research was an 85% reduction in the hypercube's

PAGE 164

155 average distance (Latifi, 1989). It would be interesting to investigate if a lower percentage is obtainable. In addition, a dynamic performance analysis study is needed on the hyperstar and the image synthesis massively parallel architecture. These studies should investigate the possibility of queuing contention for resources in these networks under uniform as well as non-uniform traffic. Moreover, further work is needed to determine the diameter of the hyperstar. Only an upperbound was presented in this research. Also, additional work is needed to develop an optimal routing algorithm for the hyperstar. This dissertation scratched only the surface in the development of an integrated object-oriented computational model. Some additional research issues that should be addressed are a characterization of the interobj ect communication and an implementation of a programming language based upon the computational model. Finally, additional constructs for expressing massive parallelism in applications should be developed.

PAGE 165

REFERENCES Akl, Selim G., Parallel Sorting Algorithms. Academic Press, Orlando, Florida, 1985. Akl, Selim G., The Design and Analysis of Parallel Algorithms. Prentice-Hall, Englewood Cliffs, New Jersey, 1989. Amdahl, G., "The Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities," AFIPS Conference Proceedings, vol. 30, 1967, pp. 483-485. Appel, Arthur, "Some Techniques for Shading Machine Renderings of Solids," Proceedings of AFIPS 1968 Spring Joint Computer Conference, pp. 37-45, 1968. Bermond, J. c. and c. Peyrat, "DeBruijn and Kautz networks: A Competitor for the Hypercube?" Hypercube and Distributed Computers, October 1989, pp.279-293. Bhuyan Laximi, N. and Dharma P. Agrawal, "Generalized Hypercube and Hyperbus Structures for a Computer Network," IEEE Transactions on Computers, vol. C-33, no. 4; April 1984, pp. 323-333. Brualdi, Richard A., Introductory Combinatorics, North Holland, New York City, New York, 1977. Carlson, William W. and Jose A. B. Fortes, "On the Performance of Combined Data Flow and Control Flow Systems: Experiments Using Two Iterative Algorithms," Journal of Parallel and Distributed Computing, vol. 5, no. 4, August 1988, pp. 359382. Carriero, Nicholas and David Gelernter, "How to Write Parallel Programs: A Guide to the Perplex~d," ACM Computing surveys, vol. 21, no. 3, September 1989, pp. 323-357. Casavant T. L. and J. G. Kuhl, "A Taxonomy of , Scheduling in General-Purpose Distributed Computing Systems," IEEE Transactions on Computers, vol. 14, no. 2, February 1988, pp. 141-154. 156

PAGE 166

157 Chan, M.Y. and F. Y. L. Chin, "On Embedding Rectangular Grids in Hypercubes," IEEE Transactions on Computers, vol. 37, no. 10, October 1988, pp. 1285-88. Clark, J. and M. Hannah, "Distributed Processing in a High Performance Smart Image Memory," Lambda, 4 th Quarter, 1980, pp. 40-45. Dandamudi, s i varama P. and Derek L. Eager, "Hierarchical Interconnection Networks for Multicomputer Systems," IEEE .. Transactions on computers, vol. 39, no. 6, June 1990, pp. 786797. Dasgupta, Subrata, Computer Architecture: A Modern Synthesis. Vol. 2. Advanced Topics, John Wiley and Sons, Inc. , New York City, New York, 1989. Demetrescu, s., "High Speed Image Rasterization Using Scan Line Access Memories," Proceedings of the Chapel Hill Conference on VLSI, 1985, pp. 221-243. Dias, Daniel M. and Manoj Kumar, "Packet Switching in NlogN Multi stage Networks," IEEE Global Telecommunications Conference, vol. 1, November 1984, pp. 114-120. Dippe', Mark and John Swensen, "An Adapt.ive Subdivision Algorithm and Parallel Architecture for Realistic Image Synthesis," Computer Graphics (Proc. SIGGRAPH 84), vol. 18, no. 3, July 1984, pp. 149-158. Duncan, Ralph, "A Survey of Parallel Computer Architectures," IEEE Computer, vol. 23, no. 2, February 1990, pp. 5-16. Feng, T. Y. , "A survey of Interconnection Networks," IEEE Computer, vol. 18, no. 12, December 1981, pp. 12-27. Flynn, Michael, "Some Computer Organizations and Their Effectiveness", IEEE Transactions on Computers, vol. c-21, no. 9, September 1972, pp. 948-960. Fuchs, H. and Brian Johnson, "An Expandable Multi Multiprocessor Architecture for Video Graphics (A Preliminary Report)," Proc. 6 th Annual Symposium on Computer Architecture, vol. 7, no. 6, April 1979, pp. 58-67. Fuchs, Henry and John Poulton, Alan Paeth, and Alan Bell, "Developing Pixel-Planes, A Smart Memory-based Raster Graphics System," Proceedings of the 1982 Conference on Advanced Research in VLSI, January 1982, pp. 137-146.

PAGE 167

158 Fuchs, H. and J. Poulton, "Pixel-Planes: A VLSI-Oriented Design for a Raster Graphics Engine," VLSI Design, no. 3, 19 81 , pp 2 o2 8 Fussell D. and B. Rathi, "A VLSI-Oriented Architecture for Real-Time Display of Shaded Polygons," Graphics Interface 82, 1982, pp. 373-380. Glassner, Andrew and Henry Fuchs, "Hardware Enhancements for Raster Graphics, " Fundamental Algorithms for Computer Graphics, Earnshaw, R. A., (editor), Springer-Verlag, Berlin and Heidelberg, 1985, pp. 631-657. Goldsmith, Jeffrey and John Salmon, "A Ray Tracing System for the Hypercube," Technical Report C3P-154, California Institute of Technology, 1985. Gottlieb, A., Rudolph, and M. Shared Memory Computers, vol. R. Grishman, c. Kruskal, K. McAuliffe, L. Snir, "The NYU Ultracomputer-Designing a MIMD Parallel Computer," IEEE Transactions on c-32, no. 2, February 1983, pp. 175-189. Green, s. A., "Multiprocessor Systems for Realistic Image Synthesis," Ph.D. dissertation, University of Bristol, United Kingdom, 1989. Gupta, s., R. F. Sproul, and I.E. Sutherland, Architecture for Updating Raster Scan Displays," Graphics (Proc. SIGGRAPH 81), vol. 15, no. 3, August 71-78. "A VLSI Computer 1981, pp. Gustafson, John, "Reevaluating Amdahl's Law," Communications of the ACM, vol. 31, no. 5, May 1988, pp. 532-533. Hennessy, J. L. and P. Jouppi, "Computer Technology and Architecture: An Evolving Interaction, " IEEE Computer, September 1991, pp. 18-19. Hilfinger, Paul N. and Phillip Colella, "FIDIL: A Language for Scientific Programming," Technical Report (UCRL-98057) , Lawrence Livermore National Laboratory, January 1988, pp.1-34. Hillis, w. D, The Connection Machine, The MIT Press, Cambridge, Massachusetts, 1985. Huang, Kai, and Faye' A. Briggs, Computer Architecture and Parallel Processing. McGraw-Hill Book Company, New York City, New York, 1984. Hu, Mei-Cheng and James D. Foley, "Parallel Processing Approaches to Hidden Surface Removal in Image Space," Computers and Graphics, vol. 9, no. 3, 1985, pp. 303-307.

PAGE 168

159 Ibbett, R. N. and N. P. Topham, Architecture of High Performance Computers. Volume II, Springer-Verlag, New York, 1989. Iskandar, Kris, "GRAPE: A Graphics P _ rimitive Engine," Ph.D. dissertation, University of Florida, Gainesville, Florida, 1990. Jamieson, Leah H., "Characterizing Parallel Algorithms," The Characteristics of Parallel Algorithms, MIT Press, Cambridge, Massachusetts, 1987. Kaplan, Michael and Donald Greenberg, "Parallel Processing Techniques for Hidden Surface Removal," Computer Graphics (Proc. SIGGRAPH 79), vol. 13, no. 2, August 1979, pp. 300-307. Kedem, G. and J. L. Ellis, "The Raycasting Machine," Proceedings of the 1984 International Conference on Computer Design, 1984, pp. 533-538. Kim, s. J. and J. C. Browne, "A General Approach to Mapping of Parallel Computations upon Multiprocessor Architectures," Proceedings of the 1988 International Conference on Parallel Processing, vol. 3, August 1988, pp. 1-8. Kleinrock, L., "Distributed Systems," Communications of the ACM, vol. 28, no. 11, November 1985, pp. 1200-1213. Kleinrock, L., Queuing Systems: Vol. II. Computer Applications, John Wiley and Sons, Inc, New York, New York, 1976. Kochevar, Peter Dale, "Computer Graphics and Massively Parallel Machines," Ph.D. dissertation, Cornell University, Ithaca, New York, 1989. Latifi, Shahram, "Hypercube-Based Topologies with Incremental Link Redundancy," Ph.D. dissertation, The Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana, 1989. Maresca, Massimo and Terence J. Fountain," Scannin the Issue: Massively Parallel Computers," Proceedings of the IEEE, vol. 79, no. 4, April 1991, pp. 395-401. Mauney, Jon, Dharma P. Agrawal, Young K. Choe, Edwin A Harcourt, Sukil Kim, and Wayne J. Staats, "Computational Models and Resource Allocation for Supercomputers," Proceedings of the IEEE, vol. 77, no. 12, December 1989, pp. 1859-1874.

PAGE 169

160 Max, N. L., "Vectorized Procedural Models for Natural Terrain," ACM Computer Graphics, vol. 15, no. 3, August 1981, pp 31 7 3 2 4 Nelson, Philip A. and Lawrence Snyder, "Programming Paradigms for Nonshared Memory Parallel Computers, " The Characteristics of Parallel Algorithms, MIT Press, Cambridge, Massachusetts, 1987. Niimi, Harno, Yoshirou Imai, Masayoshi Murakami, Shinji Tomita, and Hiroshi Hagiwara, "A Parallel Processor System for Three-Dimensional Color Graphics computer Graphics", (Proc. SIGGRAPH 84), vol. 18, no. 3, July 1984, pp. 67-76. Nishimura, N., H. Ohno, T. Kawata, I. Shirakawa. and K. Omura, "LINKS-1: A Parallel Pipelined Multimicrocomputer System for Image creation," Proceedinds of the 10 th Symposium on Computer Architecture, 1988, pp. 387-394. Papaconstantinou, Constantinos, "A Structure-Function-Control Paradigm for Knowledge-Based Modeling and Design of Manufacturing Workcells," Ph.D. dissertation, University of Florida, Gainesville, Florida, December 1991. Parke, Frederic J., "Simulation and Expected Performance Analysis of Multiple Processor Z-Buffer Systems," Computer Graphics (Proc. SIGGRAPH 80) vol. 14, no. 3, July 1980, pp. 48-56. Pavicic, Mark, "Super Displays: Improving the Speed and Quality of Image Synthesis Through Parallelism and Selective Refinement. Ph.D. dissertation, Columbia University, New York, New York, 1985. Plunkett, David, J. and Michael J. Bailey, "The Vectorization of a Ray-Tracing Algorithm for Improved Execution Speed," IEEE Computer Graphics and Applications, vol. 5, no. 8, August 1985, pp. 52-60. Potter, Jerry L. (editor), The Massively Parallel Processor. The MIT Press, Cambridge, Massachusetts, 1985. Poulton, J., H. Fuchs, J. D. Austin, J. G. Eyles, J. c. H. Hsieh, J. Goldfeather, J. P. Hultquist and "Pixel Planes: Building VLSI-Based Graphic Proceedings of the Chapel Hill Conference on VLSI, 35-61. Hienecke, s. Spach, Systems," 1985, pp. Preparata F. P. and J. Vuillemin, "The Cube-Connected-Cycle: A Versatile Network for Parallel Computations, " Communication of the ACM, vol. 24, 1981, pp. 300-309.

PAGE 170

161 Quinn, Michael J., Designing Efficient Algorithms for Parallel Computers. McGraw-Hill Book Company, New York City, New York, 1987. Reghbati, Hassan, and Anson Lee, =T~u~t~o-r~i=a=l"'-'-:_C~o=m=p----=u~t~e=r ____ G~r~a-p_h _____ i-c __ s Hardware ( Image Generation and Display) , Computer Society Press, Washington D.C., 1988. Roth, Scott D., "Ray Casting for Modeling Solids," Computer Graphics and Image Processing, vol. 18, no. 2, February, 1982/ pp. 109-144. Saad, Youcef and Martin H. Schultz, "Topological Properties of Hypercubes," IEEE Transactions on Computers, vol. 37, no. 7, 1988, pp. 867-872. Skillicorn, David B., "A Taxonomy for Computer Architectures," IEEE Computer, vol. 21, no. 11, November 1988, pp. 46-57. Sproul, Robert, Ivan Sutherland, Allistair Thompson, Satish Gupta, and Charles Minter, "The 8 X 8 Display," ACM Transactions on Graphics, vol. 2, no. 1, January 1985, pp. 3256. Uhr, Leonard, Multi-computer architectures for Artificial Intelligence: Toward Fast. Robust, Parallel systems, John Wiley and Sons, New York, New York, 1987. Ullner, Michael, "Parallel Machines for Comput er Graphics, 11 Ph.D. dissertation, California Institute of Technology, Pasadena, California, 1983. Wang, I-Fay, "Linked Crossbar Architecture for Multicomputer Interconnection," Southern Methodist University, Dallas, Texas, 1989. Weinberg, Richard, "Parallel Processing Image Synthesis and Anti-Aliasing," Computer Graphics (Proc. SIGGRAPH 81), vol. 15, no. 3, August 1981, pp.55-62. Whelan, D. s., "ANIMAC: A Multiprocessor Architecture for Real-Time Computer Animation," Ph.D. dissertation, California Institute of Technology, Pasadena, California, 1985. Whelan, D. s., "A Rectangular Area Filling Display Architecture," Computer Graphics (Proc. SIGGRAPH 82), vol. 16, no. 3, July 1982, pp. 147-158. Wittie, Larry D., "Communication Structures for Large Networks of Microcomputers," IEEE Transactions on Computers, vol. C-30, no. 4, April 1981, pp. 264-273.

PAGE 171

162 Whitted, Turner, "An Improved Illumination Model for Shaded Display," Communications of the ACM, vol. 23, no. 6, June 1980, pp. 343-349. Yau, Stephen, Xiaoping Jia, and Doo-Hwan Bae, "PROOF: A Parallel Object-Oriented Functional Computation Model," Journal of Parallel and Distributed Computing, vol. 12, no. 3, July 1991, pp. 202-212. Zhou, Xiaofeng, "Bridging the Gap Between Amdahl's Law and Sandia Laboratory's Result," Communications of the ACM, vol. 32, no. 8, August 1989, pp. 1014-1015. Zhou, Xiaofeng, "The Structure of Parallel Computation and computers for Graphics Procedures," Ph.D. dissertation, University of Florida, Gainesville, Florida, May 1990.

PAGE 172

BIOGRAPHICAL SKETCH Anitra c. Wilson was born in Buffalo, New York, on May 19, 1960. She graduated magna cum laude with a Bachelor of Science degree in electrical Engineering from Southern University in 1982. From 1982 to 1984, she worked as a Design Engineer at Texas Instruments' Industrial Systems Division in Johnson City, Tennessee. In 1984, she received a GEM Fellowship to work towards the Master of Science degree in electrical engineering at the University of Florida and received this degree in 1986. Since 1986, she has continued her graduate studies as a McKnight Doctoral Fellow in electrical engineering at the University of Florida. Her research interests include parallel computing, digital communications networks, and computer graphics. She is a member of Tau Beta Pi, Eta Kappa Nu, Institute ( of Electrical and Electronics Engineers, Inc. (IEEE), IEEE Computer Society, IEEE Communication Society, and the Association for Computing Machinery. 163

PAGE 173

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. Dhhn Staudhammer, Chairman Professor of Electrical Engineering I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. ,,...,...., _-,,,.,,~ zj . D P ssor of E neering I certify that I have read this study and that in . my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. ~e . ~ Dr. William R. Eisenstadt Associate Professor of Electrical Engineering I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. -2 R~1r_n c___: G/ Dr. Zoran Pop-Stojanovic Professor of Mathematics I certify that I have read this study and that in my opinion it conforms , to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. a 1 {;;'; Dr. Fazil Naj i As~ociate Professor of Civil Engineering

PAGE 174

This dissertation was submitted to the Graduate Faculty of the College of Engineering and to the Graduate School and was accepted as partial fulfillment of the requirements for the degree of Doctor of Philosophy. December 1991 I~ a. l3_,w4 f'n-,Dr. Winfred M. Phillips Dean, College of Engineering Dr. Madelyn M. Lockhart Dean, Graduate School