Citation
Solar photochemical technology for potable water treatment : disinfection and detoxifications

Material Information

Title:
Solar photochemical technology for potable water treatment : disinfection and detoxifications
Creator:
Cooper, Adrienne Teresa, 1962-
Publication Date:
Language:
English
Physical Description:
xx, 269 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Arithmetic mean ( jstor )
Bacteria ( jstor )
Chemicals ( jstor )
Disinfection ( jstor )
Dyes ( jstor )
Photosensitivity disorders ( jstor )
Radiocarbon ( jstor )
Stills ( jstor )
Sunlight ( jstor )
Water treatment ( jstor )
Dissertations, Academic -- Environmental Engineering Sciences -- UF ( lcsh )
Environmental Engineering Sciences thesis, Ph.D ( lcsh )
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph.D.)--University of Florida, 1998.
Bibliography:
Includes bibliographical references (leaves 163-175).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Adrienne Teresa Cooper.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
029537927 ( ALEPH )
40470966 ( OCLC )

Downloads

This item has the following downloads:


Full Text









SOLAR PHOTOCHEMICAL TECHNOLOGY
FOR POTABLE WATER TREATMENT:
DISINFECTION AND DETOXIFICATION










By

ADRIENNE TERESA COOPER


















A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1998























Copyright 1998

by

Adrienne Teresa Cooper

























This dissertation is dedicated to my grandmothers, Gewenith
Manning and the late Ethel Cummings, who were women for their time and to my nephew Fatin D. Cooper who is the future.












ACKNOWLEDGMENTS

The research conducted for this dissertation was supported by the National Science Foundation through the University of Florida College of Engineering Minority Engineering Doctoral Initiative.

Appreciation is expressed to my committee chairman Dr. Thomas Crisman and cochairman Dr. D. Y. Goswami for their sage advice and unwavering support over the last few years. Acknowledgment and gratitude are extended to committee member Dr. Michael Annable for his support and generous provision of access to analytical equipment and laboratory facilities; to committee member Dr. Seymour S. Block whose knowledge of disinfection has served as a valuable resource and who graciously allowed me the use of his laboratory; committee member Dr. Paul Chadik, who helped to steer me in the right direction from the very beginning; to Sanjay Puranik for sharing his knowledge of analytical chemistry; to Chuck Garretson for making available his wealth of mechanical capabilities, keen insight and ever present smile; to Michael McCaskill and Michael Oliver for their diligent assistance in the laboratory; and to Barbara Walker and Berdenia Monroe for their administrative support and friendship. My gratitude and thanks are due to committee member Dr. Jonathan Earle for his guidance, encouragement, confidence and that extra push when I needed it.




iv







The insight, support and friendship of my colleagues in the Solar Energy Group, the Center for Wetlands and Environmental Engineering Sciences have truly enriched my learning experience here at the University of Florida, and they, in their own ways, have contributed to the achievement of this goal.

A special thank you is extended to the entire Earle family, Celia, Jeremy, Kevin and Mrs. Yvonne Earle, for being my "Gainesville Family." My parents Dr. and Mrs. Trenton Cooper, my sister Mrs. Edris Anifowoshe, and my nephew, Fatin Cooper, have provided invaluable support in every way imaginable. I want to convey a loving thank you to my special friend, Abdoulaye Kaba, for his support during the writing of this dissertation. Others have provided valuable support, insight, friendship and shoulders over the last years including Sonja Jonas, Clayton Clark, the Makaveli Gainesville Tennis Crew, and the Black Graduate Student Organization.

Finally and most importantly, I would like to give praise to the Creator for making it all possible.


















V













TABLE OF CONTENTS

page


ACKNOWLEDGMENTS ...................................................................... iv

LIST OF TABLES ............................................................................... ix

LIST OF FIGURES ............................................................................ xii

KEY TO SYMBOLS ......................................................................... xviii

ABSTRACT ...................................................................................... xix

CHAPTERS

1 INTRODUCTION ............................................................................ 1

Research Significance ...................................................................... 1
Theory of Photochemical Water Treatment ......................................... 4
Photocatalysis ............................................................................. 5
Photosensitization ....................................................................... 8
The Solar Resource ........................................................................ 10
Research Objectives ....................................................................... 12

2 REVIEW OF SOLAR BASED WATER TREATMENT ......................... 14

Physical Processes ......................................................................... 15
Distillation Processes ................................................................ 15
Passive distillation ................................................................ 15
Active distillation ................................................................. 21
Pasteurization Processes ........................................................... 24
Photo Processes ............................................................................. Z7
Solar Disinfection ...................................................................... 28
S O D IS ...................................................................................... 28
H alosol .................................................................................... 29
Photocatalysis ........................................................................... 29
Photosensitization ..................................................................... 30
Summary ..................................................................................... 32





vi







3 EXPERIMENTAL DESIGN AND METHODS .................................... 34

Choice of Experimental Parameters ................................................ 34
Contaminants .......................................................................... 35
Catalyst Choice ......................................................................... 35
Choice of Photosensitizer ........................................................... 37
Reactor Design ......................................................................... 39
p H ........................................................................................... 43
Catalyst/Sensitizer Concentration ............................................... 44
Laboratory Experimental Design ..................................................... 45
Materials and Methods .................................................................. 46
Reaction Vessels ....................................................................... 46
Bacterial Inoculation ................................................................. 47
Reactor Chamber ...................................................................... 49
Photocatalysis Reactor Setup ...................................................... 49
Photocatalysis Sampling and Analysis ........................................ 50
Photosensitization Reactor Setup ................................................ 51
Photosensitization Sampling and Analysis .................................. 52
Combination Experimental Setup, Sampling and Analysis ............ 52
Experiments for Confirmation of Previous Work with Bromacil ..... 53
4 RESULTS AND DISCUSSION ......................................................... 54

Dye Photosensitization ................................................................... 54
General Comments About Experimental Data .............................. 56
Statistical Treatment of the Data ................................................. 58
Presentation of Results and Identification of General Trends ......... 62 Data Analysis by ANOM ............................................................ 81
Effect of Sunlight ....................................................................... 82
Effect of pH ............................................................................... 86
Effect of Dye Concentration ......................................................... 89
Effect of Initial Coliform Density ................................................. 97
Reactor Efficacy ........................................................................ 99
Summary ................................................................................ 101
Photocatalysis with Titanium Dioxide ............................................. 102
General Comments About Experimental Data ............................. 104
Statistical Treatment of the Data ................................................ 105
Presentation of Results and Identification of General Trends ........ 105 Data Analysis by ANOM ........................................................... 112
Effect of Light .......................................................................... 113
Effect of pH .............................................................................. 117
Effect of Ti02Concentration ....................................................... M
Multiple Parameter Effects ....................................................... M
Effect of Initial Colony Density on Disinfection ............................. 129
Other Effects ............................................................................ 131
Photocatalysis vs. Air Stripping ................................................. JM
Summary ................................................................................ 134
Ti02Photocatalysis Combined With Methylene Blue ......................... 135
General Comments About Experimental Data ............................. 136


vii







Statistical Treatment of the Data ................................................ 137
Disinfection ............................................................................. 1x
Detoxification .......................................................................... 142
Summary ................................................................................ 152
Kinetic Considerations .................................................................. 152
Detoxification .......................................................................... 152
Disinfection ............................................................................. 154
General Summary of Results ......................................................... 157

5 SUMMARY AND CONCLUSIONS ................................................. 159

Summary .................................................................................... 159
Process Efficacy Comparison for Simultaneous Treatment ........... 159
Drinking Water Quality ............................................................ 160
Conclusions ................................................................................. 160
Recommendations for Future Work ................................................ 161

REFERENCES .................................................................................. 163

APPENDICES

A EXPERIMENTAL DATA ............................................................... 176

B LIGHT MEASUREMENT .............................................................. 260

BIOGRAPHICAL SKETCH ................................................................ 269
























viii













LIST OF TABLES

Tablepag

1-1. Spectral Distribution of Solar Radiation.............................. 11

2-1. Examples of Photocatalytic Treatment of Water and Wastewater .... 30 2-2. Examples of Photocatalytic Treatment of Water and Wastewater .... 31 2-3. Summary of Photosensitized Treatment of Water and Wastewater..3 3-1. Photostability of Semiconductor Oxides Tested by Carey and Oliver
(1980) ...............................................................3

3-2. Order of Effectiveness of Dyes at 104M Concentration on E. Coli
After 24 Hours Exposure to Light at Room Temperature........ 40 3-3. Design for TiO2 Photocatalytic Lab Experiments .................... 46

3-4. Design for Photosensitization Lab Experiments ..................... 46

3-5. Design for Combination Lab Experiments ........................... 46

4-1. Insolation Measurements from Dye Sensitization Experiments ...55 4-2. Descriptive Statistics of Measured Data for all Experiments........ 56 4-3. Average Standard Deviations for all Dye Photosensitization
Experiments ........................................................57

4-4. Mean Fractional Survival ( 31%) of E. coli @ t= 30 minutes in MB
Experiments ........................................................59

4-5. Mean Fractional Survival (25%) of E. coli in MB Experiments ...65 4-6. Mean Fractional Survival (13%) of E. coli in RB Experiments...68 4-7. Benzene (5 1) and Toluene (29) Concentrations (ppb) in MB
Experiments ........................................................70

4-8. Benzene ( 46) and Toluene ( 36) Concentrations (ppb) in RB
Experiments ........................................................70



ix








4-9. Normalized Benzene (0.09) and Toluene ( 0.11) Concentration in
MB Experiments ................................................... 76

4-10. Normalized Benzene (0.06) and Toluene (0.07) Concentration in RB
Experiments ........................................................77

4-11. Calculated ANOM Values for Dye Photosensitized Disinfection ...82 4-12. Sunlight Subgroup Averages for Dye Photosensitized Disinfection;
Values are Fractional Survival of E. coli.......................... 83

4-13. pH Subgroup Averages for Dye Photosensitized Disinfection. Values
are Fractional Survival of E. coli.................................. 86

4-14. Dye Concentration Subgroup Averages in Disinfection Experiments.
Values are Fractional Survival of E. Coli......................... 90

4-15. Mean Fractional Survival of Bacteria in TiO2 Experiments........ 107 4-16. Mean Concentration of BTEX (ppb) in TiO2 Experiments........... 108

4-17. Calculated ANOM Values for TiO2 Photocatalysis.................. 113

4-18. LTV Light Subgroup Averages for TiO2 Photocatalysis. Values are
Fractional Survival of Bacteria and Normalized Chemical
Concentration...................................................... 114

4-19. pH Subgroup Averages for TiO2 Photocatalysis. Values are
Fractional Survival of Bacteria and Normalized Chemical
Concentration...................................................... 117

4-20. TiO2 Concentration Subgroup Averages for Disinfection. Values are
Fractional Survival of Bacteria and Normalized Chemical
Concentration...................................................... 121

4-21. Mean Values for Fractional Survival as a Function of Light, pH and
TiO2 Concentration at t=240 Minutes ...........................12
4-22. Mean Normalized Benzene Concentration After 30 Minutes in TiO2
Experiments ....................................................... 129

4-23. Descriptive Statistics for Initial Colony Density in TiO2 Experimentsl30 4-24. Vapor Pressure Values for BTEX components...................... 133

4-25. Measured Sunlight Intensity in Combination Experiments ....... 136 4-26. Average Standard Deviations for all Combination Experiments..137 4-27. Mean Fractional Survival (14.1%) of E. Coli in Combination
Experiments ....................................................... 139

x







4-28. Calculated ANOM Values for Combination Experiments ............. 139

4-29. Sunlight Subgroup Averages for Combined Experiments. Values are
Fractional Survival of Bacteria and Normalized Chemical
C oncentration ..................................................................... 139
4-30. Photochemical Subgroup Averages for Combination Experiments;
Values are Fractional Survival of E. coli and Normalized
Chem ical Concentration ...................................................... 140

4-31. Mean Concentration (ppb) of Benzene (120) and Toluene (199) in
Combination Experiments; IT.,, Ag= 433-833 W/m IUV, Ag =25-40
W /m ................................................................................... 147

4-32. Experimental First Order Rate Constants (min') for Ti02
Photocatalytic Experiments .................................................. 153

4-33. Correlation Statistics for Least Squares Linear Regression of Kinetic
Data; Confidence Level is 95% .............................................. 154

4-34. First Order Rate Constants for All Photochemical Disinfection
E xperim ents ....................................................................... 157
4-35. Time to Complete Destruction by Photochemical Treatment .......... 158


























xi













LIST OF FIGURES

Fi~yure ag

1-1. Graphical Representation of the Generation of e-/h+ Pairs and
Recombination by Photocatalytic Reaction on the Surface of
aSemiconductor Particle .................................................... 7

2-1. Conventional Passive Solar Basin Still ...................................... 17

2-2. Schematic of Flash Distillation Using Solar Collector .................... 22

3-1. TiO2 Reaction Vessel .............................................................. 47

3-2. Photosensitization Reaction Vessel ......................................... 48

3-3. Graphical Representation of Bacterial Inoculation ................... 48

3-4. Ultraviolet Light and Dark Reactor Chamber ............................ 50

4-1. MB Destruction of E. coli in Sunlight; (a) pH =10, Iavg= 542-696 W/m2
(b) pH =7, Iavg = 665-891 W /m2 .................................................. 63
4-2. Destruction of E. coli in sunlight with 1 mg/L MB; (a) pH =10) Iavg=
542-696 W/m2 and (b) pH 7, I = 665-891 W/m2 ..................... 64
4-3. RB Destruction of E. coli in Sunlight; (a) pH = 7, Iag = 746-856 W/m2
(b) pH = 10, Iavg= 715-775 W/m ............................................ 67

4-4. RB Destruction of E. coli at pH =7, Iavg = 715-775 W/m2; (a) 5 mg/L RB
and (b) 10 m g/L RB ................................................................ 68
4-5. Benzene Concentration as a Function of Time and MB Concentration
in Sunlight; (a) pH=10, Iavg = 542-696 W/m2 (b) pH=7, Iavg = 665-891 W /m 2 ................................................................................... M
4-6. Toluene Concentration as a Function of Time and MB Concentration
in Sunlight; (a) pH =10, Iavg = 542-696 W/m2 (b) pH=7, Iag = 665-891 W /m 2 ................................................................................... M
4-7. Benzene Concentration as a Function of Time and RB Concentration
in Sunlight; (a) pH =10, Iavg = 715-775 W/m2 (b) pH=7, Iavg = 746-856 W /m 2 ............................................................................... 74



xii







4-8. Toluene Concentration as a Function of Time and RB Concentration
in Sunlight; (a) pH =10, Iavg = 715-775 W/m2 (b) pH=7, lavg = 746-856 W /m 2 ............................................................................... 75

4-9. Normalized Benzene Concentration in Sunlight with 0.1 mg/L MB,
(a) pH =10, Iavg = 542-696 W/m2 (b) pH=7, Iavg = 665-891 W/m2 ....... 78
4-10. Normalized Toluene Concentration in Sunlight with 0.1 mg/L MB;
(a) pH =10, Iavg = 542-696 W/m2 (b) pH=7, 'avg = 665-891 W/m2 ....... 79
4-11. Normalized Benzene Concentration in Sunlight with 0.1 mg/L RB, (a)
pH =10, Iavg = 715-775 W/m2 (b) pH=7, Iavg = 746-856 W/m2 ...... 80
4-12. Normalized Toluene Concentration in Sunlight with 0.1 mg/L RB, (a)
pH =10, Iavg = 715-775 W/m2 (b) pH=7, Iavg = 746-856 W/m2 ........... 81
4-13. Significance of Sunlight, Based on ANOM, in MB Experiments (a) 5
Minutes (b) 15 Minutes (c) 30 Minutes .................................. 84
4-14. Significance of Sunlight, Based on ANOM, in RB Experiments; (a) 5
Minutes (b) 15 Mintues (c) 30 Minutes ..................................... 85
4-15. Significance of pH, Based on ANOM, in MB Experiments; (a) 5
Minutes (b) 15 Minutes (c) 30 Minutes .................................. 87

4-16. Significance of pH, Based on ANOM, in RB Experiments; (a) 5
Mintues (b) 15 Minutes (c) 30 Minutes ..................................... 88
4-17. Statistical Significance of MB Concentration, Based on ANOM, on
Disinfection in Sunlight; (a) 5 Minutes (b) 15 Minutes (c) 30
M inutes ........................................................................... 91
4-18. Statistical Significance of RB Concentration, Based on ANOM, on
Disinfection in Sunlight; (a) 5 Minutes (b) 15 Minutes (c) 30
M in utes ............................................................................... 92
4-19. Comparison of Disinfection Efficacy of Control and 0.1 mg/ L MB in
Sunlight at 5 minutes, Based on ANOM .................................. 93
4-20. Comparison of Disinfection Efficacy of Control and 1 mg/L MB in
Sunlight at 5 minutes, Based on ANOM .................................. 94
4-21. Comparison of Disinfection Efficacy of Control and 5 mg/L MB in
Sunlight at 5 minutes, Based on ANOM .................................. 94
4-22. Comparison of Disinfection Efficacy of Control and 10 mg/L MB in
Sunlight at 5 minutes, Based on ANOM .................................. 95
4-23. Comparison of Disinfection Efficacy of 0.1 mg/ L and 10 mg/L MB in
Sunlight at 5 minutes, Based on ANOM .................................. 95


xiii







4-24. Comparison of Disinfection Efficacy of 1 mg/ L and 10 mg/L MB in
Sunlight at 5 minutes, Based on ANOM ............................... 96
4-25. Comparison of Disinfection Efficacy of 5 mg/ L and 10 mg/L MB in
Sunlight at 5 minutes, Based on ANOM .................................. 96
4-26. Fractional Survival of E. coli in sunlight at t=30 minutes as a
Function of MB Concentration; Bars are One Standard Deviation
...........................l.,,.......................97
4-27. Least Squares Regression of Natural Logarithm of Fractional
Survival of E. coli as a Function of MB Concentration at t=5
M inutes ........................................................................... 98
4-28. Initial Colony Count vs. Fractional Survival of E. coli at t=60 Minutes
for M B Experim ents .............................................................. 98
4-29. Initial Colony Count vs. Fractional Survival of E. coli at t=30 Minutes
in RB Experim ents ............................................................ 99
4-30. TiO2 Photocatalytic Disinfection in UV Light (29 W/m2); Error Bars
are One Standard Deviation; (a) pH = 4 (b) pH = 7 ..................... 106
4-31. Destruction of Benzene in Reactors 3 and 4 as a Function of Time;
Reactors Contained 0.01% TiO2 and were Irradiated for 60
minutes under UV Lamps (29 W/m2) ..................................... 110
4-32. Benzene Concentration in UV Light (29 W/m2) as a Function of Time
and TiO2 Concentration; Error Bars are One Standard Deviation.
(a) pH =4, (b) pH = 7 .............................................................. 110
4-33. Toluene Concentration in UV Light (29 W/m2) as a Function of Time
and TiO2 Concentration; Error Bars are One Standard Deviation.
(a) pH =4, (b) pH = 7 .............................................................. 111
4-34. m&p Xylene Concentration in UV Light (29 W/m2-) as a Function of
Time and TiO2 Concentration; Error Bars are One Standard
Deviation. (a) pH =4, (b) pH = 7 ............................................... 112
4-35. Significance of UV Light (29 W/m2), Based on ANOM, on Bacteria in
TiO2 Experiments at 120 Minutes ........................................... 115
4-36. Significance of UV Light (29 W/m2), Based on ANOM, on Benzene in
Ti02 Experiments (a) 30 Minutes (b) 60 Minutes ...................... 115
4-37. Significance of UV Light (29 W/m2), Based on ANOM, on Toluene in
TiO2 Experiments (a) 30 Minutes (b) 60 Minutes ...................... 116
4-38. Effect of UV Light (29 W/m2) on Fractional Survival of Bacteria in All
Reactors in TiO2 Experiments; Bars are One Standard Deviationll6


xiv







4-39. Significance of pH, Based on ANOM, to Bacteria Destruction in TiO2
Experiments at 120 M inutes .................................................. 118
4-40. Significance of pH, Based on ANOM, to Benzene Destruction in TiO2
Experiments (a) 30 Minutes (b) 60 Minutes ............................. 119
4-41. Significance of pH, Based on ANOM, to Toluene Destruction in TiO2
Experiments (a) 30 Minutes (b) 60 Minutes ............................. 120
4-42. Significance of TiO2 Concentration, Based on ANOM, on Bacteria in
Photocatalysis Experiments at 120 Minutes ............................ 121
4-43. Significance of TiO2 Concentration, Based on ANOM, on Benzene in
Photocatalysis Experiments; (a) 30 Minutes (b) 60 Minutes ....... 122 4-44. Significance of TiO2 Concentration, Based on ANOM, on Toluene in
Photocatalysis Experiments; (a) 30 Minutes (b) 60 Minutes ....... 123

4-45. Comparison of Control vs. 0.01% TiO2 on Photocatalytic Disinfection
at 120 Minutes, Based on ANOM ........................................... 124
4-46. Comparison of Control vs. 0.05% TiO2 on Photocatalytic Disinfection
at 120 Minutes, Based on ANOM ........................................... 124
4-47. Comparison of Control vs. 0.10% TiO2 on Photocatalytic Disinfection
at 120 Minutes, Based on ANOM ........................................... 125
4-48. Comparison of 0.01% vs. 0.05% TiO2 on Photocatalytic Disinfection at
120 Minutes, Based on ANOM ............................................... 125

4-49. Comparison of Control vs. 0.01% TiO2 on Photocatalytic Destruction of
Benzene at 60 Minutes, Based on ANOM ............................. 126
4-50. Comparison of Control vs. 0.05% TiO2 on Photocatalytic Destruction of
Benzene at 60 Minutes, Based on ANOM ................................ 126
4-51. Comparison of Control vs. 0.10% TiO2 on Photocatalytic Destruction of
Benzene at 60 Minutes, Based on ANOM ................................ 127
4-52. Comparison of 0.01% vs. 0.05% TiO2 on Photocatalytic Destruction of
Benzene at 60 Minutes, Based on ANOM ............................. 127
4-53. Fractional Survival of Bacteria as a Function of UV Light (29 W/m2)
and pH in TiO2 Experiments; Bars are One Standard Deviation
............................................130
4-54. Effect of UV Light (29 W/m') and pH on the Destruction of Benzene in
TiO2 Experiments; Bars are One Standard Deviation ............... 130
4-55. Initial Colony Count vs. Fractional Survival of Bacteria at t=120
Minutes for TiO2 Photocatalysis ............................................. 131

xv







4-56. Normalized Concentrations of BTEX Components in pH 7 Dark
Experiments with 0.01% TiO2 ..................................133.

4-57. Normalized Concentrations of BTEX Components in pH 4 Dark
Experiments with 0.01% TiO2 .................................... 134

4-58. Destruction of E. coli in Sunlight (ITot, Avg = 433-853 W/m IUV, Avg = 25-40
W/m2) in Combination Experiments............................. 138

4-59. Significance of Sunlight ('Tot Avg = 433-853 W/m2, 'UVAvg = 25-40 W/m2)
on E. coli Destruction, Based on ANOM, in Combination
Experiments; (a) 5 Minutes (b) 15 Minutes (c) 30 Minutes ...... 141

4-60. Significance of Photochemical on E. coli Destruction, Based on
ANOM, in Combination Experiments; (a) 5 Minutes (b) 15
Minutes (c) 30 Minutes ............................................ 143

4-61. Significance of TiO2 vs MB on E. coli Destruction, Based on ANOM, in
Combination Experiments; (a) 5 Minutes (b) 15 Miiues (c) 30
Minutes ............................................................ 144

4-62. Significance of TiO2 vs Both on E. coli Destruction, Based on ANOM,
in Combination Experiment; (a) 5 Minutes (b) 15 Minutes (c) 30
Minutes ............................................................ 145

4-63. Significance of MB vs Both on E. coli Destruction, Based on ANOM,
in Combination Experiments; (a) 5 Minutes (b) 15 Minutes (c) 30
Minutes ............................................................ 146

4-64. Normalized Concentration as a Function of Time in Combination
Experiments. 'rot Avg = 433-833 WWm, 'UVAvg = 25-40 W/m2; (a)
Benzene (b) Toluene................................................147

4-65. Significance of Photochemical on Benzene Destruction, Based on
ANOM, in Combination Experiments; (a) 30 Minutes (b) 120
Minutes ............................................................ 148

4-66. Significance of Photochemical on Toluene Destruction, Based on
ANOM, in Combination Experiments; (a) 30 Minutes (b) 120
Minutes ............................................................ 149

4-67. Significance of TiO2 vs Both on Benzene Destruction, Based on
ANOM, in Combination Experiments; (a) 30 Minutes (b) 120
Minutes ............................................................ 150

4-68. Significance of TiO 2vs Both on Toluene Destruction, Based on
ANOM, in Combination Experiments; (a) 30 Minutes (b) 120
Minutes.............................................................151




xvi







4-69. Least Squares Linear Regression of First Order Rate Equation for
Disinfection in UV Light (29 W/M2) with 0.05% TiO2 and PH = 4; r 2 = 0.90, p-value = 0.0025............................................. 155

4-70. Least Squares Linear Regression of First Order Rate Equation for
Disinfection in UV Light (29 W/m') with 0. 10% TiO2 and pH = 7; r' = 0.55, p-value = 0.0 19.............................................. 155

4-71. Least Squares Linear Regression of First Order Rate Equation for
Disinfection in Sunlight (7 15-775 W/m2) with no photochemical
and pH = 10; r' = 0.99, p-value = 0.0001 ........................... 156

4-72. Least Squares Linear Regression of First Order Rate Equation for
Disinfection in Sunlight (746-856 W/m') with 1 mg/L RB and pH=
7; r' = 0.95, p-value = 0.0003........................................ 156



































xvii












KEY TO SYMBOLS

X. Wavelength, nm
h Planck's constant, 6.625 x 10-'Js
C Speed of light, 3.0 x 1010 cm/s
E Band gap energy, ev
hv Light energy
h+ Positive hole in the valence band
e Electron
eExcited singlet state of component X 3X* Excited triplet state of component X
X* Excited state of component X
X* Singlet state of component X
x Triplet state of component X
R Hydrocarbon group
Isc Solar constant
Ct Concentration at time, t
Nt Colony density at time, t
I Insolation, W/m2
s Standard Deviation
Grand Average of all Data in ANOM XSubgroup Average for ANOM s Average standard deviation
RAverage Range H ANOM Critical Value
v degrees of freedom
d2 2 bias correction factor for ANOM
significance factor












xviii












Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

SOLAR PHOTOCHEMICAL TECHNOLOGY
FOR POTABLE WATER TREATMENT:
DISINFECTION AND DETOXIFICATION By

Adrienne Teresa Cooper

August 1998

Chairperson: Thomas Crisman Cochairperson: D. Yogi Goswami Major Department: Environmental Engineering Sciences

Clean water is scarce in many countries, and the goal of universal access to water and sanitation has not yet been achieved. Standard water treatment techniques are often expensive both in capital investment and operation and maintenance, particularly in lesser developed communities where resources are scarce.

Solar photochemistry has shown promise as an appropriate alternative technology for treatment of water, and provides potential for simultaneous disinfection and destruction of organic chemicals. The need for simultaneous treatment arises when conditions of contamination of source water, such as ground water, occurs. Potential sources of

contamination are industrial and agricultural runoff or leakage of underground storage tanks (gasoline) and sewerage lines.




xix







In a series of bench scale experiments, three photochemical technologies, TiO2 photocatalysis, dye photosensitization and a combination of dye photosensitization and TiO2 photocatalysis, were evaluated for their efficacy for simultaneous removal of coliform bacteria and aromatic hydrocarbons in drinking water under a variety of pH and photochemical concentration conditions.

Series of 100 ml and 500 ml reactors, containing various

concentrations of TiO2, and two pH levels (4 and 7), were inoculated with mixed bacteria species, benzene, toluene, and xylene, and illuminated under ultraviolet light for several hours. Under most conditions both the chemical and bacteriological contaminants were destroyed within an hour.

In photosensitization experiments, the 500 ml reactors were charged with several concentrations of rose bengal or methylene blue and neutral, pH 7, or basic, pH 10, water. After inoculation with Escherichia coli, benzene and toluene, the reactors were illuminated for four hours in sunlight. In all cases, the water was disinfected within one hour; however, destruction of the chemical contaminants did not occur.

The 500 ml hybrid reactors, loaded with 0.01% TiO2 and/or 5 mg/L methylene blue, were also illuminated in sunlight. The inoculations of Escherichia coli, benzene, and toluene were completely destroyed after two hours in all of the reactors which contained TiO2; however, the presence of methylene blue inhibited the reaction.







xx












CHAPTER 1
INTRODUCTION

Research Sienificance

Clean and safe water is a requirement for healthy living and development. While concerns with most water related diseases have been virtually eliminated in most developed regions, such as Western Europe and North America, diseases related to either the quantity or quality of water supply are still a major problem in other parts of the world

In 1977 Stein reported that 25,000 deaths occurred daily from water borne diseases. In an effort to reduce these deaths, the United Nations declared the ten year period from 1981 to 1990 the International Drinking Water Supply and Sanitation Decade. The goal of the decade was to provide universal access to safe water and sanitation. While many advances were made during this period to increase the supply of safe drinking water for the global human population, universal access has yet to be achieved. According to World Health Organization (WHO) estimates, as of 1990, 18% of urban populations and 36% of rural populations (approximately 1.23 billion people) are still without access to safe drinking water supplies (Christmas 1990). An inexpensive supply of clean water is one of the most pressing public health issues facing developing communities.

Over 10 million deaths result from more than 250 million new cases of water borne diseases yearly (Hazen and Toranzos 1990). During 1993


1





2

there were 272,500 reported cases of cholera in Sub-Saharan Africa and Latin America, with death rates of 3% and 1%, respectively. In 1994 WHO reported a decrease in the availability of clean water in several countries of Sub-Saharan Africa. Their estimates, based on the continuation of current trends, suggest that by the year 2025, the supply of renewable fresh water per person in the worst drought-affected countries of the continent will represent 15% of the 1955 values (WHO 1994). In many developing communities, water related infections caused by poor biological drinking water quality or lack of water supply are the most urgent public health issues. The water related infections are acute, tending to act quickly, causing illness and sometimes death. However, the chemical quality of water is also of growing concern.

In the 1970s it was discovered that disinfection by chlorination of water containing humic substances generates chloroform and other trihalomethanes (THMs). THMs are known animal carcinogens (Clark 1992; Glaze et al. 1993a; Moser 1992; Packham 1990; Stevens et al. 1989), raising concerns about chemical disinfection by-products and their toxicological effects on the population.

Rachel Carson (1962) brought the issue of pesticide contamination of water and soil to the forefront. The growth of industry and the prevalence of agricultural pesticides and fertilizers s cause concern for the effect of these discharges on the chemical quality of water. An increase in motorized transportation leads to contaminated runoff and the potential for leakage of benzene, toluene and other aromatic hydrocarbons. These

activities can have a severe impact on drinking water sources. The effect of





3

chemical contaminants on public health is more often chronic, building over time and causing long term illness (Droste and McJunkin 1982).

Standard water treatment techniques are very well defined in the United States and other developed countries. However, due to differences in economics and infrastructure, these treatments are not necessarily readily transferable from the developed to the developing world, including some lesser developed areas of developed nations. The operational and capital costs for this technology are often too expensive for developing communities.

The development of community appropriate technology for treatment of drinking water is critical if universal access to a safe water supply is to be achieved. Utilization of available natural resources, where feasible, provides a greater opportunity for a sustainable drinking water supply. This requires innovative and creative technology.

While no one technology can meet all of the needs of a community, solar photochemical oxidation holds promise as a viable alternative to standard, more expensive methods. The efficacy of the photocatalytic reaction has been demonstrated for biological contaminants (Block et al. 1997; Ireland et al. 1993) and chemical contaminants (Blake 1994; Legrini et al. 1993). Therefore, it is reasonable to expect that the simultaneous destruction of both chemical and biological contaminants can be accomplished, although it has not been reported. While some investigations of simultaneous disinfection and detoxification with dye photosensitization have been undertaken (Acher 1984; Acher and Rosenthal 1977; Eisenberg et al. 1987a; Eisenberg et al. 1986), these





4

processes have not been optimized, nor have they been compared directly with photocatalysis. The success of previous studies indicates that solar photochemical technology, when properly integrated with conventional treatment, has the potential to address the technical issues of water treatment facing a community.

Use of solar photochemical technology for water treatment has the potential to provide a solution which is technically, economically and socially acceptable, manifested by the following potential benefits:
The use of the sun as a primary driver results in a renewable and

essentially free source of energy for the reaction
Photochemical oxidation results in complete destruction of

pollutants, which is preferable to dissipation, concentration or

change of form
9 Since very small quantities of sensitizer or catalyst are required,

and little if any external energy besides the sun, the technology

has the potential for low capital and maintenance costs
0 The process is easily adaptable to a small scale, and therefore,

suitable for rural and suburban communities

Theory of Photochemical Water Treatment

Photochemical water treatment is an oxidation process which involves the use of a chemical as a catalyst or sensitizer for indirect photolysis of a contaminant within the water. When exposed to light of the appropriate wavelength, which is governed by the photochemical used, the photosensitizer or photocatalyst generates a reactive species, an hydroxyl or





5

peroxy radical, which subsequently reacts with the contaminant species (Ollis et al. 1989; Schiavello 1988; Teichner and Formenti 1985). This indirect process opens a much wider range of contaminants to destruction by photochemical means than would be available using only direct photolysis. The photochemical water treatment processes evaluated herein are photocatalysis, photosensitization and a combination of the two. The distinction between photocatalysis and photosensitization is based on the nature of the photochemical used.

Photocatalvsis

Photocatalysis, or photocatalytic oxidation, for water treatment applications refers to a heterogeneous oxidation reaction involving solid semiconductor surfaces. The reaction occurs via the irradiation of a semiconductor catalyst, such as titanium dioxide (TiO2), zinc oxide (ZnO), or cadmium sulfide (CdS), with visible or ultraviolet (UV) light. The reaction is possible because of the structure of the semiconductor. The optical bandgap of a semiconductor is an area devoid of energy levels, between the highest occupied energy band, the valence band, and the lowest unoccupied energy band, the conduction band. When a semiconductor absorbs light with energy greater than the energy of the semiconductor's optical band gap, photoexcitation results (Bahnemann et al. 1991; Mills et al. 1993). For example, since TiO2 has an optical band gap energy of 3.2 eV, absorption occurs with light of wavelengths less than 388 nm, ultraviolet light, as indicated by equation 1-1 (Zhang et al. 1994b).





6


he = (6.625x1T34jS)(3.oxl0lO cm )x( 1eV
..e 1.6xl- -9j )= 388nm ( 1-1)


The resulting excitation leads to the promotion of excess free electrons, e-, to the conduction band, leaving positive "holes," h', in the valence band, referred to as electron/hole (e-/h+) pairs. Equation 1-2 describes this process (Carey and Oliver 1980; Oliver and Carey 1986). The electrons and holes are highly energetic and very mobile (Turchi et al. 1989).


TiO2+ hv =* h+ + e- (1-2)

There are two paths that the e-/h+ pairs can take. They can either recombine and deactivate, or migrate to the surface of the semiconductor and react with surface species as shown in equations 1-3 to 1-5. Figure 1-1 is a graphical representation of this process for a single semiconductor particle.


OH + h' OH* (1-3)

H20(ads) + h+ OH* + H+ (1-4)

e- + O2-> HO*- (1-5)

If reactions 1-3 to 1-5 take place, reactive species are formed, which in turn are able to oxidize organic contaminants in the water. The less recombination which takes place, the more efficient the semiconductor is as a photocatalyst.





7

The peroxy radical, HO', disproportionates further to form more hydroxyl radicals, OH, which combine with organic substrate to form oxidation products as shown in reaction 1-6 (Blake et al. 1991; Ireland et al. 1993; Oliver and Carey 1986). If enough catalyst and light are present, a OH" + substrate oxidation products (1-6)

pseudo chain reaction occurs resulting in complete mineralization of organics. It is thought that the process for the destruction of biological substrate is very similar, with the oxidation of proteins, lipids or nucleic acids resulting in inhibition of respiration or growth of the microorganism (von Sonntag 1987).




Reduction


T hv > cond nd---- -- Adso 0tin of2
excitation

combination recomi t An

Adsorption
/ ofnH20
alenc oH2


Electron Energy Oxidation


Figure 1-1. Graphical Representation of the Generation of e-/h+ Pairs and
Recombination by Photocatalytic Reaction on the Surface of a Semiconductor Particle; After Bahnemann et al. (1991) and
Tseng and Huang (1990)





8

Photosensitization

Sensitized photolysis, also referred to as photosensitization or photodynamic action, is another method of indirect photolysis very similar to photocatalytic oxidation. In photosensitization, energy is transferred from a photochemically excited molecule to an acceptor. The sensitizer (S), often a dye, absorbs light and is photochemically excited to a higher energy state. This process may offer an advantage over the photocatalytic process because the sensitizers can absorb light in the visible spectrum, allowing for use of a greater percentage of available sunlight. The reaction proceeds via the triplet excited state, owing to its longer lifetime relative to the singlet excited state (Foote 1968; Larson et al. 1989) as shown in equation 1-7.


S + hv 'S* (excited singlet) -- 3S* (excited triplet) (1-7)


The excited sensitizer (S*) then transfers some of its excess energy to an acceptor, forming a reactive, transient form of oxygen, singlet oxygen, 102 (Larson and Weber 1994). Acceptors can be either organic material

(OM) or dissolved inorganic species such as molecular oxygen, 02. The intermediate reactive species produced from the reaction of the triplet sensitizer with organic material subsequently reacts with atmospheric oxygen under aerobic conditions (equation 1-8).


'S* + OM -+ transient specia + 02 -. oxidation products + S (1-8)

When the S' transfers its excess energy to molecular oxygen instead of OM, the oxygen molecule changes from its ground electronic state, the triplet state ('1g02), to the excited singlet state, '02. The organic matter is





9

then oxidized by the '02 to form oxidation products. Acher and Rosenthal (1977) described the mechanism by reactions 1-9 and 1-10: 3S* + 31g02-4 S + '02 (1-9)

102+ OM -4 oxidation products (1-10)


When '02 combines with unsaturated organic compounds (UC), it yields free radicals which readily combine with nucleic acids, lipids and proteins for destruction of microorganisms as demonstrated by reactions 111 to 1-13 (Acher and Rosenthal 1977).

102+ UC -4 ROOR --R (1-11)

RO" + RH --4 ROH + R" (1-12)

R"+02 -4 ROO', etc. (1-13)

The wavelength of light absorption is specific for each sensitizer. Methylene blue and rose bengal are widely used dye sensitizers which absorb in the visible region at Xmax 668 nm and Xmax 549 nm, respectively (Acher and Juven 1977).

Ideal sensitizers are defined as those compounds which exhibit the following criteria (Acher and Rosenthal 1977):

induce reactions with visible light,

are chemically stable during radiation or degrade to a sensitizing

species,
are free of reactive functional groups,





10

have good light absorption capacity, and are soluble in water but easy to remove.

Compounds which exhibit these qualities most efficiently are dyes, such as fluorescein and phenothiazine derivatives, flavins, certain porphyrins and polycyclic aromatic hydrocarbons (Foote 1968). For the purposes of water treatment, the latter two are too toxic; however, the others are acceptable. The sensitizers which have shown the most promise for both disinfection and detoxification, and which were evaluated for this research, are methylene blue and rose bengal. These dyes have been found to be relatively easily removed by precipitation with bentonite clay (Acher and Rosenthal 1977).

The Solar Resource


The sun can be modeled as a blackbody with a steady-state temperature of 5800K radiating approximately 6.416 x 107 W/m2 from its surface (Wieder 1992). The intensity of the sun's radiation on an object is inversely related to the square of its distance from the sun (Hsieh 1986). Since the distance of the earth from the sun varies throughout the year, the amount of sunlight reaching the atmosphere of the earth is not constant. However, a value termed the Solar constant, I, is the amount of solar radiation reaching a surface normal to the rays of sun outside the earth's atmosphere at a mean earth-sun distance of 1.5 x 1011 m (Hsieh 1986). Based on measurements, the established value of the Solar constant is 1377 W/m' (Randall and Bird 1989). Solar radiation reaching the atmosphere of the earth emits energies of wavelengths from gamma to radio, with most of





11

it concentrated in the visible region. The spectral distribution of the solar radiation outside the earth's atmosphere is given in Table 1-1.


Table 1-1. Spectral Distribution of Solar Radiation % of Total
0.00 0.395 (gamma to ultraviolet) 8.24
0.40 0.70 (visible) 38.15
0.71 2.00 (near infrared) 45.61
2.00 (infrared to radio) 6.51
urce: Thekaekara (1976)



The amount of solar radiation, also referred to as insulation, available at the earth's surface at a given time is dependent on the prevailing climatic conditions, the level of atmospheric pollution and the angle at which the sun strikes the surface (Hsieh 1986). Scattering and absorption of radiation, due to the presence of ozone, gas molecules, particulate matter and water vapor (including clouds), account for a significant reduction in the solar radiation incident on the earth's surface (Barry and Chorley 1992). The path length of the solar radiation in the atmosphere, which changes with the time of day and latitude, determines the amount of extinction of radiation by these parameters (Hsieh 1986). Approximately 4-6% of the solar radiation reaching the earth's surface is in the ultraviolet wavelength range (Goswami 1995). The remainder of incident radiation is in the visible and near infrared range. Using historical weather data the direct beam incident radiation for a given location in space and time can be calculated with reasonable accuracy (Randall and Bird 1989).





12

The photochemical oxidation process is governed by the absorption of light within the wavelength of effectiveness of the catalyst or sensitizer used. For the TiO, photocatalytic process, the ultraviolet part of the spectrum, wavelengths below about 390 nm, is the most critical (Goswami 1995). This process, therefore, is well suited for areas where cloudiness prevails, as the ultraviolet light is often present both as scattered and direct beam radiation.

Photosensitization works with visible light, which is the greater part of direct beam incident radiation. The sensitizers evaluated in this work, methylene blue and rose bengal, are most effective in the blue (- 670 nm) and red (- 550 rn) ranges, respectively (Acher and Juven 1977).


Research Objectives


There exists a need for research, at all levels, tailored to address the needs of smaller, and possibly lesser developed, communities. The direct transfer of technology from one community to another is one of the solutions. However, it cannot serve as a replacement for the development of regional and community specific technology to solve regional and community specific problems.

In order for this more localized technology development to occur, however, the information base must be expanded. One primary method for the appropriate expansion of the information base is the conduction of research which is more focused on the needs specific to these communities. The investigation of basic techniques, technologies and processes which





13

may differ from the mainstream is key to the provision of tools necessary for the advancement and development of all communities.

The research reported herein is an effort to add some knowledge to that information base, and addresses two key areas of photochemical technology:

simultaneous treatment of chemical and microbiological

pollutants,

comparative efficacies of photosensitization, photocatalysis and

combined photosensitization and photocatalysis,

While the research reported herein is not a solution to the problem of water supply, it is anticipated that the knowledge derived from this research could be applied to accept or reject one option, photochemical treatment, as a partial solution. In the process of creating a better reality, the best that one can wish for is options and the information to adequately evaluate those options.












CHAPTER 2
REVIEW OF SOLAR BASED WATER TREATMENT

The use of sunlight for water treatment is not a recent phenomenon. Documented evidence for solar distillation systems exists as far back as 1551 when Arab alchemists used glass vessels and concave mirrors to distill water (Malik et al. 1982). However, technologies for solar based water treatment have changed dramatically in recent years. The development of photochemical technologies have significantly expanded the application potential for solar based water treatment processes. What follows is an exploration of the various methods of water treatment which use solar energy as the primary driver, and a review of the current state of related research.

Solar based water treatment processes can be roughly categorized as either physical or chemical. Physical processes are those processes which use the sun as a source of heat energy. Distillation and heat pasteurization fall into the physical process category. The chemical processes are those which involve a chemical reaction either directly or indirectly induced by light. These photolytic processes include ultraviolet disinfection and a number of photochemical processes.









14





15

Physical Processes

Distillation Processes

The most studied solar based water treatment process is desalination by distillation. Solar distillation involves the use of sunlight to evaporate saline or brackish water for the purpose of collecting the desalinated condensate. Two approaches have been taken in the development of solar distillation units. The first, and more conventional, involves the direct absorption of solar energy by saline water, called passive solar distillation. The second, active solar distillation, is similar to a standard chemical distillation process using sunlight as the heat energy source for indirect heating of the water. In this type of unit, evaporation is in a centralized facility (Malik et al. 1982; Rajvanshi 1979). Passive distillation

Passive solar distillation is easily understood when compared to the natural process of the hydrologic cycle. In the hydrologic cycle, the sun provides energy which warms the water of the oceans and other large water bodies, causing evaporation. Convective wind energy transports this vapor into the atmosphere where it condenses and produces precipitation. The precipitation either directly, as rain, or indirectly, as melted snow, recharges fresh water sources: lakes, rivers, streams, underground springs and groundwater aquifers.

The solar distillation process is a simulation of this process in manufactured facilities. The sun warms the collected body of saline or brackish water and causes evaporation. The water vapor is carried by





16

convective winds, induced by the appropriate construction, and, upon cooling, the vapor condenses as pure distilled water.

The conventional design for passive distillation systems is the basintype solar still (Figure 2-1). The bottom surface of the basin is black to enhance the absorption of radiation by the saline or brackish water, supplied either continuously or batchwise (Malik et al. 1982; Rajvanshi 1979). The basin is covered with a transparent, air tight cover which slopes downward to facilitate transport of the condensate as a thin film into a collection trough (Malik et al. 1982; Rajvanshi 1979). Solar radiation penetrates the cover, generally glass or plastic, and is absorbed by the water, warming it to induce evaporation. The temperature differential between the cover, which does not absorb much radiation, and the water surface leads to air convection currents which move the water vapor to the underside of the cover. The cool temperatures of the basin cover, relative to the water temperature, cause condensation, and the water forms a thin film which is collected via troughs. Basin stills can be either shallow or deep, depending upon the design and operational requirements. Shallow basins stills have water depths ranging from 1.25 cm (0.5 in) to 5 cm. ( 2 in) and deep basin still water depths range anywhere from over 5 cm (2 in) up to 91 cm. (3 ft) (Rajvanshi 1979).

The first modem commercial solar still was installed in 1872 in the northern part of Chile, designed by Swedish engineer Carlos Wilson. The glass covered basin type solar still was 4700 m' and operated for many years treating feedwater with a salinity of 140,000 ppm (Howe and Themat 1977; Malik et al. 1982). Work conducted at the University of California's





17

Engineering Field Station in Richmond, California, concentrated on reducing capital costs and improving efficiency of the basin still by changing the geometric configuration. Designs tested included a circular still, several trough type stills with rounded or v-shape bottoms and stairstepped stills. The general conclusion of this work was that the basin type solar stills were not economically competitive in any of the tested configurations (Howe and Tliemat 1977).




SOLAR
RADIATION


GLAss COVER CONDENSATE
CNFILM
COLLECTION
TROUG
CONVECTIVE
WINDS

DISTILLATE

SALINE WATER IN BASIN WATER


BLACKENED BASIN BOTTOM
BRINE OUT

Figure 2-1. Conventional Passive Solar Basin Still; After Malik et al. 1982 and Rajvanshi (1979)


At the University of Florida's Solar Energy and Energy Conversion Laboratory, Rajvanshi (1979) evaluated the efficacy of dyes as a means of increasing the efficiency of solar distillation. Using deep basin stills he added dye to saline water to increase radiation absorption and alter the heat





18

transfer rate. Three dyes, black napthylamine, red carmoisine, and a dark green mixture were used. The water treated with up to 500 ppm dye had an increased output of as much as 29% on clear days, however, no increase in output was observed with the dyes on completely cloudy days. Both the red and green dyes degraded when exposed to sunlight, however, the black dye, which also exhibited the largest increase in evaporation rate, did not visibly degrade with exposure to sunlight.

Other research has focused on developing and improving the conventional basin type passive still. What emerged was the tilted tray solar still, wick solar stills, and double basin stills (Al-Karaghouli and Minasian 1995; Higazy 1995; Howe and Tliemat 1977; Malik et al. 1982).

The tilted tray solar still is a variation of the basin type solar still in which the basin is broken into a series of narrow strips arranged like steps. Each strip is on a different elevation, bringing the water surface much closer to the transparent cover, and increasing the operating efficiency. Generally these types of stills have very shallow basins. While the efficiency is increased, so is the capital cost, making this type of still infeasible for commercialization (Howe and Tliemat 1977).

Wick still designs utilize an absorbent material (wicking), usually black to absorb radiation, as a facing on a glass covered inclined plane. Saline water is introduced along the upper edge of the inclined plane and trickles down saturating the wicking. The primary difficulty with this design is an inability to maintain a uniformly wet surface (Howe and Tliemat 1977).





19

Double basin stills utilize the latent heat of the condensing water vapor, thereby increasing the daily yield over the conventional basin design. The double basin still has two transparent covers. The inner glass cover acts as a second, very shallow basin, with water running over it like a thin film from a pipe in the center. The heat from the water condensing on the underside of the lower basin cover is used to aid vaporization of the water on the topside, which then condenses on the upper cover. The distilled water is drained and collected from the underside of both transparent covers (Malik et al. 1982).

During World War II Dr. Maria Telkes designed an inflated plastic still for use with the life rafts of the United States armed forces (Howe and Themat 1977). The design was similar to the basin still, however, it utilized a saturated sponge as the absorption media, and the entire assembly was designed to float on top of the water. Distillate was collected in a bottle at the bottom of the unit. These types of stills were referred to as floating sponge solar stills and reportedly over 200, 000 of them were produced during the war (Howe and Thernat 1977).

Higazy (1995) reported on the design and performance of a floating sponge solar still for desalination of sea water. The still design was based on the original design by Telkes. In Higazy's design water was pumped into the bottom of the still and constituted the bottom layer. Above that layer was a plastic sponge covered with a black cloth, which was where the radiation was absorbed and then transferred by conduction to the sea water. He examined two still designs, a single sloped cover which used mirrors to increase the radiation absorption area and double sloped cover, evaluating





20

the parameters of insulation intensity, temperature and the sponge properties (thickness and density). The primary improvement of this system over Telke's was that the use of plastic parts eliminated the problem of corrosion.

Higazy's experiments were conducted using tap water and it was not indicated whether salts were added to simulate the saline environment produced by sea water, although the physical and behavioral properties were very similar. The design had no provisions for drainage of sea water or periodic removal of the salts from the still and or the sponge, and eventually problems might result from salt accumulation.

Al-Karaghouli and Minasian (1995) developed a new type of passive solar still using a floating-wick and compared the still to conventional basin solar still and the tilted wick solar still. They also introduced azimuth and altitude tracking to increase the incident solar radiation on the still. The floating wick still was a conventional basin type solar still which contained a blackened jute wick floated on a polystyrene sheet. The unit floated no more than 0.5 cm above the still water level. The benefit of the floating wick still was due to the capillary action of the jute cloth, which was prepared in a corrugated shape to restrict salt accumulation to the upper parts. The stills used for comparison were made with the same materials and similar style to the floating wick for direct comparison. The floating wick solar still had a higher output than the other stills with which it was compared.

The use of a corrugated shape solved the problem of scale formation and, due to the capillary action of jute cloth, the wick stayed uniformly wet. Consequently, in the summer months the floating wick still had a





21

higher output, versus comparable performance with the wick still during the cooler months. Tracking increased the output on all of the stills but was particularly impressive with the floating wick still, almost doubling the performance without tracking and having at least 30% higher output than the conventional basin still with tracking (Al-Karaghouli and Minasian 1995).

Solar distillation technology is fairly well established and has proven useful for small scale desalination of water. However, research has not advanced to the point where large scale processes are economically competitive with more conventional methods of distillation. Active distillation

Active solar stills are those systems in which the sun's energy is captured external to the distillation system, either as thermal energy or photovoltaic electrical energy used to generate heat. In both cases the generated heat is then applied to the distillation unit. They can operate in conjunction with the conventional basin still, or they can be designed like a conventional flash distillation unit. Figure 2-2 shows a standard schematic for an active solar still which uses a solar collector and multistage flash distillation.

Prasad and Tiwari (1996) conducted a thermal analysis of a concentrator-assisted solar distillation unit to optimize the inclination of the glass cover. They determined that the angle of inclination had an effect on the yield of this active solar distillation system, with an increase in yield which corresponded to an increase in the angle of inclination. For the climatic conditions studied (Delhi, India, latitude 28' N, longitude 77' E) an





22

angle of 75' was found to be optimal. The increased angle also led to a decrease in operating temperatures and evaporative heat losses.
SOLAR RADIATION



LU W
0
< VAPOR
HEAT
ExcmmeE
BRINE FLASH CHAMBERS FEED
COULD BE ULINE
ONE U141T WA-MR


Figure 2-2. Schematic of Flash Distillation Using Solar Collector; After
Malik et al. (1982)


Farwati (1997) conducted a comparison of a multi-stage flash distillation system using solar energy input with flat plate versus compound parabolic collector (CPQ systems. The conditions used for evaluation were monthly average climatic conditions for Benghazi, Libya. Both collectors had an aperture area of one square meter. The compound parabolic collector was able to achieve a higher water temperature for entry into the flash distillation system (122'C vs 80'C) and a larger monthly average daily output with maxima of 64.9 liters for the CPC and 43.7 liters for the flat plate collector system in the month of August. Both systems operated with auxiliary heaters. Using the solar collectors alone, the CPC had a maximum monthly average daily distillate output of around 40 liters and the flat plate collector one of about 25 liters.

Kumar and Tiwari (1996) compared performance of flat plate collector solar distillation systems in several operating modes. They





23

examined the systems with and without flow over the glass cover, operating in active versus passive mode and in double effect passive mode (i.e. second glass cover with water flow over the cover closest to the basin). They found that water flow over the glass cover gave the highest yield, as this decreased the condensation surface temperature and utilized the latent heat of condensation providing additional distillation. The system was a single basin solar still made of fiber-reinforced plastic, coupled with a flat plate collector and was really a hybrid of the passive and active system. The double effect mode did not enhance performance because of the difficulty of maintaining low and uniform flow rates over the glass cover. Tests were run with 1 m' area of cover and collector. On average the active mode with water flow yielded 7.5 liters per day, the passive mode yielded 2.2 liters per day, and the active without water flow yielded 3.9 liters per day.

Sing and Tiwari (1993) evaluated and compared the yields and thermal efficiencies of those types of solar stills recommended for rural or urban applications The types of stills evaluated were: 1) passive single basin, 2) passive double basin, 3) multiwick single basin, 4) multiwick double basin, 5) active single basin and 6) active double basin. As anticipated, the double basin stills outperformed the single basin counterparts in both daily yield and thermal efficiency. Of the systems studied, the active double basin had the highest yield while the multiwick double basin had the best thermal efficiency. However, the use of the double basin was not recommended with high salinity feedwater (> 20,000 ppm). The multiwick single basin was suggested for moderate salinity (<1500







ppm) and the double basin designs were only recommended if technical personnel were not readily available.

Pasteurization Processes


Pasteurization, or thermal disinfection, is the application of heat for a specified time in order to destroy harmful microorganisms (Parker 1984). The pasteurization process is best known for it's use in the food and beverage industry, particularly for the pasteurization of milk. Recently, this technology has been examined for it's use for drinking water. In order to sterilize water by pasteurization, the water must be heated to a temperature of 72'C (16 1'F) for a minimum of 15 seconds (Cheremisinoff et al. 1981). Pasteurization can be obtained at lower temperatures, as low as 55 65'C (134 1490F); however, the required residence time increases significantly as the temperature is reduced (Ciochetti and Metcalf 1984; Joyce et al. 1996). The lower temperatures are attainable by solar heating. One primary benefit of thermal disinfection over the photooxidation process is that light penetration is not required, thereby making it effective in high turbidity water.

Andreatta et al. (1994) reviewed the use of pasteurization devices in the developing world with reference to several different styles of systems. The solar box cooker, solar puddles and flow through systems similar to solar hot water heaters have all been used as pasteurizers.

The solar box cooker used as a pasteurizer is the least expensive, but also the most unreliable. A method for ensuring that the appropriate temperature has been reached is required and sometimes difficult to verify.





25

Another drawback is that it is strictly a batch method, so the water is not available throughout the day (Andreatta et al. 1994).

A flow through device can be manufactured using readily available materials such as an automobile radiator thermostat valve and black painted tubing. The design is a simple heat exchanger, and several design variations have been tested. Flat configurations have been demonstrated to be more effective than tubular varieties, although the tube exchanger may be simpler to construct. The temperature control is very important, and the design is critical in order to have the appropriate residence time. The primary benefits of the flow through pasteurizer are the availability of water throughout the day, easier control and ability to process larger quantities of water (Andreatta et al. 1994).

The solar puddle is a low cost large area device. It resembles a solar basin still in that there is a trough and a cover of clear plastic, however, since the water is not saline, there is no need to separate the condensate from the water in the puddle. For the puddle, determining that the appropriate water temperature and residence time is reached is difficult (Andreatta et al. 1994).

Ciochetti & Metcalf (1984) evaluated the use of a solar box cooker (SBC) for pasteurization of water. They found that temperatures for milk pasteurization (651C) for several hours were sufficient to kill most waterborne pathogens including viruses. Vertical temperature

differentials were found within containers, and the position of both the jug in the SBC and the SBC itself had a significant effect on temperature and consequently sterilization. Tests were conducted in northern California





26

and required temperatures for pasteurization were reached for approximately six months of the year, from mid-March through midSeptember.

Joyce et al. (1996) investigated the thermal contribution of sunlight to the inactivation of fecal coliforms with both onside testing and laboratory simulations. Their research was focused on the use of pasteurization for household systems. Using transparent 2-liter plastic bottles, of the type used for carbonated beverages, the water was heated to a temperature of about 55 'C, the same temperature recorded for 2-liter bottles of water in full sunshine in Kenya (latitude, 1'29'S; longitude, 36'38T). Complete disinfection was obtained after 7 hours at 550C.

Burch and Thomas (1997) evaluated the feasibility of solar pasteurization for water treatment in developing communities, comparing it with other technologies traditionally employed in that arena. They concluded that solar pasteurization, preceded by roughing filtration for high turbidity water, was not economically competitive when compared with slow sand filtration, chlorination, and UV disinfection. However, it was the most effective of the four for a broad spectrum of microbiological contaminants and had the lowest maintenance requirements. Flow

through solar pasteurization was slightly less costly than existing batch processes, and the cost could be reduced more with the use of a thin-film polymer system currently under study (Burch and Thomas 1997).

Solar pasteurization is not a feasible method for large water purification systems, however, it shows clear promise for small remote communities, household needs or emergency situations in areas with







several hours of sunshine throughout the day. Pasteurization has the benefit of providing disinfection regardless of the turbidity of the water. One major hurdle is the ineffectiveness on cloudy days, which may be circumvented by having storage available and purifying larger quantities of water on clear days for cloudy day use.

Photo Processes


Experiments on the effect of sunlight on microorganisms were conducted as early as the late 19th century. Downes and Blount (1877) observed the disappearance of turbidity, as an indication of the presence or absence of microorganisms, from acidic urine placed in sunlight for several hours. Since that time, much has been learned about the effect of light, specifically ultraviolet radiation, on the inactivation of microorganisms.

In the early 1900s direct photolysis by ultraviolet (UV) radiation was used for disinfection of potable water (Wolfe 1990). While this method was abandoned in favor of chlorination, problems with chlorine disinfection byproducts have encouraged researchers to take another look at UV. Recent studies on the use of UIV for drinking water have proven more successful (Slade et al. 1986; Wolfe 1990). Direct photolysis, however, only affects those species which can directly absorb light, primarily microorganisms.

Indirect photolysis, photosensitization or photocatalysis, provides another alternative. When exposed to light of the appropriate wavelength, the photosensitizer or photocatalyst generates a reactive species, such as a hydroxyl radical or peroxy radical, which subsequently reacts with the







contaminant species. This opens a much wider range of contaminants to destruction by photochemical means and creates the possibility of simultaneous destruction of microbiological and chemical contaminants. Solar Disinfection

Solar disinfection is direct photolysis by radiation from the ultraviolet spectrum (wavelengths shorter than 390 inn) sometimes referred to as photodynamic inactivation. Acra et al. 1990 have used sunlight for small scale disinfection of drinking water by direct photolysis of microbiological contaminants. Acra et al. (1990) postulated that a minimum solar UV-A intensity of 17.8 W/m' was required for 99.9% inactivation of fecal coliform based on field testing of solar disinfection reactors. The residence time required to reach these levels of inactivation ranged from 90 minutes to 2.5 hours depending on the microorganism (Acra et al. 1990). The data indicated that a longer residence time, achieved by recirculation, lower flow rates, or increased reactor volume, could also lead to inactivation (Acra et al. 1990). They found that bacterial destruction wsa exponential as a function of solar UV-A intensity and time. The major problem encountered was the growth of phytoplankton in the reactor (Acra et al. 1990).

In studies for the inactivation of Escherichia coli in sunlight, Shah et al. (1996) found that the rate of inactivation was related to the initial colony density. At very high initial densities of E. coli, inactivation was not sufficient for provision of safe drinking water. SODIS

A hybrid technology which combined the benefits of UV disinfection and heat pasteurization was proposed by Sommer et al. (1997). With the







SODIS reactors water was heated to a temperature of 501C and subjected to solar UV-A providing both thermal and UV disinfection. Complete

inactivation of fecal coliform in 2.5 hours was reported, even on completely cloudy days. The hybrid technology was more effective on the partly cloudy to completely overcast days when compared to pasteurization alone at 70'C. Halosol

The halosol process is a combination of the use of halogens and sunlight developed at the American University in Beirut, Lebanon in the late 1970s to early 1980s. The process involves treatment with large doses of sodium hypochlorite or iodine solutions followed by exposure to radiation. The intended benefit is disinfection of small volumes of heavily polluted water followed by the removal of excess halogens for taste and odor control (Acra et al. 1990).
Photocatalysis

The most commonly studied indirect photolysis reaction for water and wastewater treatment is photocatalysis using titanium dioxide, TiO2, as a catalyst. Laboratory, pilot and field studies have demonstrated TiO2 catalyzed photodegradation of a wide range of organic chemicals (Table 2-1) including alcohols, aldehydes, alkanes, alkenes, amines, aromatics, carboxylic acids, dioxins, dyes, fuel constituents, halogenated hydrocarbons, herbicides, ketones, mercaptans, pesticides, polychlorinated biphenyls, solvents, surfactants and thioethers (Aithal et al. 1993; Das et al. 1994; Ellis 1991; Goswami and Jotshi 1992; Legrini et al. 1993; Mills et al. 1993; Ollis 1986; Zhang et al. 1994b). Several researchers have





30

demonstrated the inactivation of microorganisms in water by TiO2

photocatalysis (Table 2-2).


Table 2-1. Examples of Photocatalytic Treatment of Water and Wastewater INVESTIGATOR(S) CONTAMINANT(S) .CATALYST
'Low et al. (1991) Amines TiO2
... ....................... ....................................................... .................. : ............... .......... .. .. .. ............................... ......... ............... .
Abdullah et al. (1990) Aniline TiO
Goswami et al. (1993) and Oberg (1993) enzene, Toluene, Ethylbenzene, TiO, Xylene
;Barbeni et al. (1987) Chlorinated Aromatics TiO,
Matthews (1986) :Chlorinated Benzenes -iO
Ahmed andli (1984 Hsiaoet al.' ,Halogenated Hydrocarbons, TiO (1983), Matthews (1986), Nguyen and Solvents (THMs, TCE, etc.) Ollis (1984), Ollis (1985), Pruden and
Ollis (1983a), and Pruden and Ollis
(1983b)
Harada et al. (1990) Organophosphorous Insecticides TiO/Pt
Al-Ekabi et al. (1989), Goswami" et al. Phenols & Chlorophenols TiO, 1992 and Li et al. (1992)
Pelizzetti et al. (1988) Polychlorinated Dioxins and 'iO ZnO, CdS
Polychlorinated Biphenyls IiOPt & Fe O
Maillard-Dupuy et al. (1994) Pyridine TiO,
Pelizzetti et al. (1990) S-Triazine Herbicides -TiO ,
Pelizzetti et al. (1989) Surfactants TiO2



Photosensitization


The body of literature on the use of photosensitization for water

and/or wastewater is much less extensive than that for photocatalysis with

TiO2. Most of the work with regard to microorganisms has been done in the

medical field (Tratnyek et al. 1994). However, some work on virus

inactivation and wastewater treatment was conducted in the early 1970s

(Gerba et al. 1977a; Gerba et al. 1977b; Hobbs et al. 1977; Sargent and

Sanks 1976). Recently, researchers have investigated the use of

immobilized sensitizers for coliform destruction (Savino and Angeli 1985).





31

Table 2-2. Examples of Photocatalytic Treatment of Water and Wastewater
SPECIAL
'INVESTIGATOR (S) CONTAMINANT(S) CATALYST CONDITIONS
. ........... ........ ....................... ............... ................................................................. ..................................... ............... ................. :
iBlock et al. (1997) Escherichia coli, Serratia TiO2
marcescens,
JIreland et al. (1993), Wei Escherichia coli :et al. (1994) and Zhang et
:al. (1994a)
.Matsunaga et al. (1988) -Escherichia coli _Ti02 Immobilized
......m Membrane
Matsunaga et al. (1985) tshrci :oi atbclu TiO2/Pt PtLoaded
icidophilus, Saccharomycces catalyst
cerevisiae
i' a tl................................... ............... 19 3 a i ls.......... ........................................ ......... ................................................... st a o h r o h l si i 2'i................................
:Patel (1993) B8acillus stearothermophilus MiO2
i spores, Escherichia coli,
.Micrococcus luteus,
Pseudomonas aeruginosa,
:Serratia marcescens,
Staphylococcus aureus
.............. -t i 9 2 ................................. z t e t c s o r n s ......................... ........................... ........ ...................... .i ...........................................
Stoet al. (1992) Streptococcus sobrinus
Sjogren and Sierka (1994) batriopaeM2T0 Adto of Iron
t p a e M 2 ............................ i % ....... ............



The remainder of the work on wastewater treatment has been

conducted by only a few researchers working in concert. Their

investigations on the treatment of wastewater and sewage effluents using

methylene blue and rose bengal have shown that the technology was viable

in laboratory, pilot and field scale demonstrations (Acher 1984; Acher et al.

1994; Acher et al. 1990; Acher and Juven 1977; Acher and Rosenthal 1977;

Eisenberg et al. 1987a; Eisenberg et al. 1986; Eisenberg et al. 1988). In

addition to the microbiological contaminants, this work addressed

wastewater and the specific industrial contaminant bromacil, indicating

some viability for simultaneous treatment. The use of flavins was

demonstrated for the destruction of herbicides and other organics such as

phenol and aniline (Larson et al. 1989; Larson et al. 1991; Schlauch 1987).

A brief summary of work in this area is shown in Table 2-3.








Table 2-3. Summary of Photosensitized Treatment of Water and Wastewater
INVESTIGATORS) -CONTAMINANTS ;SENSITZR(S) CONDMONS
.Acher and Juven 1977 Escherichia coli :MB, RB oxidation pond
s ewage water
Acher et al. 1990 ifecai coliform, OMB ilot plant sewage
-enterococci, coliforms,: Wffluents
polio viruses .. ........... I
iGerba et al. (1977a) and coliform & polio virus 'MB -ensitized for 24 h
'Gerba et al. (1977b)
. ............... .. .. ....... -... ................... ....... ........... ........................ ...................................... .. .. .. .. ....... ..........................................
Hobbs et al. 1977 coliform & polio virus ::MB
!Savino and Angeli 1985 E. coli MB RB, eosin Immobilized dyes
..... ................... .................................... ............................................ .......... ............ ....... .. ...................... ..........................................
:Burkhard and Guth (1976) Triazine Herbicides :Acetone 'Crosby and Wong (1973) 2,4,5-T 'Riboflavin & Acetone
Hadden et al. (1994), and ip -cresol, phenol *MB, rhodamine 6G, high pH (9-10) :Sargent and Sanks (1976) :neutral red, RB
:malachite green,
:hematoporphyrin-D,
L-hydrochloride,
acridine orange &
:others
l~so~ d ~i~i 89 .......... .... ........... I.a ] e i" ..........1- ...- o-- -............. --.......................................Larson et al. 1989 -Aniline & phenols :Riboflavin (RF)
:Schlauch 1987 Triazine Herbicides MB, RF
Aer an osenthal 1977 fcloiorC ,MBRBAerated sewage
-MBAS effluents
!: ch'e :" 9S~~~~~i ..................... a h : : o i ...... .......... .~ B a :.................a ......................................
Acher 1984 'Organics, E. coli, MB & RB(Algae, Vastewater
bacteriophages, polio bacteria & viruses) vrus & algae
'Acher et al. (1994) secondary effluent :MB wastewater
'Eisenberg et a]. 1987 coliform & bromacil :MB secondary sewage
............i ............. ....... ........... ............. ............ ...... ....... .. .......- -.... ...-.............................. e o ; g e
i i i effluent !



Summary


In terms of effectiveness, the photochemical processes are preferable

for overall water treatment to both the physical processes and straight solar

disinfection, with the exception of desalination, with which it is not

comparable. These processes are effective on both microbiological

contaminants as well as on a wide range of chemical contaminants.

However, in order for these methods to be commercially viable on a large

scale, additional research must be conducted. There are three primary





33

areas where efforts should be concentrated: separation of the photochemical from the water, including immobilization, elucidation of harmful intermediates in lieu of complete mineralization and development of cost efficient or optimal operating parameters. For disinfection the photochemical processes compare favorably to solar disinfection, pasteurization, SODIS and halosol. Any of these process can be viewed as appropriate, particularly for household or small community applications. In locations where sunshine is in large supply and technically trained personnel and fossil fuels are in shorter supply, the use of solar based processes for treatment of water may prove to be a satisfactory alternative.












CHAPTER 3
EXPERIMENTAL DESIGN AND METHODS Choice of Experimental Parameters

The performance of a photochemical reactor system is affected by a myriad of variables, only a few of which can be controlled. While the choice of photoreactant and the availability of light of the appropriate wavelength range are the two most critical variables, there are other, more subtle changes in reaction conditions that enhance or degrade the reaction efficiency. Both the concentration and the physical form of the catalyst or sensitizer have a marked influence on the efficacy of a given reactor (Matthews 1991; Wyness et al. 1994). Beyond those factors already mentioned, pH, the presence or absence of dissolved oxygen, reactor design, and the nature of the contaminants exhibit the most significant effect on process reaction rates (Acher et al. 1994; Befford et al. 1993; Hidden et al. 1994; Kawaguchi and Furuya 1990).

Development of the experimental design was predicated on analysis of reported work and preliminary experiments in consideration of the aforementioned variables. The choices made for the research reported herein regarding each parameter were noted at the end of the applicable section.






34





35

Contaminants

Some unique problems identified with groundwater throughout the United States Virgin Islands (USVI) served as a basis for the selection of contaminants for this study. Used as source for drinking water, much of the USVI groundwater is chemically contaminated with light hydrocarbons from leaking fuel tanks.' In addition, due to leakage from underground sewerage, the microbiological contamination is rather extensive.2 A 1986 study of USVI waters found microbiological

contamination in the form of Streptococcus, Klebsiella, Acinetobacter spp., Enterobacter, Pseudomonas, Salmonella and Escherichia coli (Canoy and Knudsen 1986).
To simulate contamination from leaking fuel tanks, benzene, toluene and xylene were used as chemical contaminants. E. coli, Serratia

marcescens and Pseudomonas aeruginosa were used as microbiological contaminants, indicative of the contamination identified by Canoy and Knudsen (1986), and what might be present from leaking sewerage. Catalyst Choice

A number of semiconducting materials have been tested for use as photocatalysts in water and wastewater treatment. In order for a material to be effective for solar photocatalytic water treatment, it must be photoactive, able to use visible and/or near UV light, biologically and chemically inert, stable under irradiation, inexpensive, and non-toxic to humans and aquatic organisms (Carey and Oliver 1980; Mills et al. 1993).


1 From private conversation with Bruce Green of Carribean Infratech.
2 Ibid.





36

Several researchers have tested semiconductors for photoactivity, including barium titanate, BaTiO3, cadmium sulfide, CdS, tungsten oxide, WO,3, titanium dioxide, TiO2, zinc oxide, ZnO, and zinc sulfide, ZnS (Blake 1994). On the whole, TiO2 is more active than the others (Blake 1994). Barbeni et al. (1985) evaluated four other semiconductor oxides relative to TiO2 for the photocatalytic degradation of pentachlorophenol and found photocatalysis to be the most efficient. In studies of the destruction of dichlorobenzene using ZnO, WO3, platinized TiO2 and untreated TiO2, the TiO, photocatalyzed samples reacted faster (Pelizzetti et al. 1988).

Carey and Oliver (1980) evaluated several semiconductor oxides for stability under irradiation in neutral aqueous solution (Table 3-1). Of the semiconductors tested, only those containing titanium were found to be photostable. With an optical band gap of 2.4 eV, CdS is highly photoactive and excited by visible light, appearing to be attractive as a photocatalyst. However, as is typical for semiconductors which absorb visible light, it is not photostable and tends toward photoanodic corrosion (Davis and Huang 1991; Mills et al. 1993). In the case of cadmium sulfide this leads to the precipitation of undesirable and ultimately toxic compounds, as shown in equation 3-1.


CdS + 2h' -+ Cd2+ + S (3-1)


Considering all of the evidence TiO2 seems to be the most desirable for photocatalytic processes to date. TiO2 in anatase form is the most





37

commonly used, due to its chemical stability, ready availability and photoactivity (Blake 1994; Zhang et al. 1994b).


Table 3-1. Photostability of Semiconductor Oxides Tested by Carey and Oliver (1980)
Semiconductor Photostable
BaTiO3 yes
CaTiO3 yes
MgTiO3 yes
SrTi03 yes
TiO2 (anatase) yes
TiO2 (rutile) yes
V205 no
ZnO no
ZnTiO3 yes


There have been a number of efforts to increase the efficiency of TiO2 by surface modification of the catalyst or substitution doping. Loading of the Ti02 surface with noble metals has been used to enhance electron transfer (production of hydroxyl radicals) and to prolong the life of the oxidation site at the exterior surface (Blake 1994; Zhang et al. 1994b). Silver-loading of anatase TiO2 increases the efficiency for the destruction of chloroform and urea by 10% and 67%, respectively (Kondo and Jardim 1991). Other metals used for surface modification are Pt, Rh, Cu, Ni and Pd. While these metals have been shown to increase efficiency, the cost and complexity of the surface deposition process are prohibitive for use in most communities. Substitution doping of TiO2 presents the same difficulty. For these reasons anatase TiO2, Degussa P25, was used for this research. Choice of Photosensitizer

In addition to the chemical criteria outlined previously for photosensitizers, they must also be inexpensive and non-toxic. Methylene





38

blue is the photosensitizer commonly used in water treatment research. It is preferred because it is inexpensive, absorbs preferentially at 670 nm, a wavelength which easily penetrates wastewater effluent, and has a very low toxicity. Methylene blue is administered orally in humans for medicinal purposes (Gerba et al. 1977b; Hobbs et al. 1977).

Martin and Perez-Cruet (1987) evaluated a number of dyes for suitability as sensitizers. Using sterile sea water with a salinity of 28 ppt, twelve dyes were studied for absorption tendency by clams (Mercenaria mercenaria) and photodynamic action against Escherichia coli. Of the dozen dyes tested, five were considered suitable for further testing by Martin and Perez-Cruet, and rose bengal showed the most promise. Table 3-2 shows the order of effectiveness of selected dyes against E. coli as determined by Martin and Perez-Cruet (1987).

Other researchers have found methylene blue to be the preferred dye sensitizer, although rose bengal seems to work almost as well under most circumstances (Acher and Rosenthal 1977; Gerba et al. 1977b; Sargent and Sanks 1976; Savino and Angeli 1985). Several researchers (Larson et al. 1989; Mopper and Zika 1987; Schlauch 1987) have investigated the use of flavin sensitizers. Their research suggests that riboflavin and lumichrome are both good photosensitizers.

Acetone is the one other photosensitizer which seems to have given good results for water treatment. In tests for the photodecomposition of the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), both acetone and riboflavin showed promise (Crosby and Wong 1973). Burkhard and Guth





39

(1976) also found acetone effective for the photodegradation of triazine herbicides. However, acetone is known to cause systemic effects when ingested by humans (Sax and Lewis 1989).

Based on this information it appears that the research of photosensitizers is less conclusive than that for photocatalysts, warranting further testing. Therefore, both methylene blue and rose bengal were selected for further evaluation.

Reactor Desien

The overwhelming majority of the research on reactor design for photochemical water treatment has been conducted for semiconductor photocatalysis, primarily with TiO2 (Blake 1994). However, since the reactions follow similar mechanisms, the same principles should apply to both photocatalysis and photosensitization.

The two major reactor options are reactors using catalyst suspended in slurry or those in which a fixed supported catalyst is employed (Blake 1994). While the bulk of the research for water and wastewater treatment has been conducted using slurries of titanium dioxide, there has also been a great deal of research in the area of immobilizing the catalyst using a number of different media, with varying results (Blake 1994). Benefits for the use of supported catalyst are the elimination of the need for separation and recovery of the catalyst and a possible increase in the reaction rate (Zhang et al. 1994b).

Researchers at the University of Florida tested both flat plate photoreactors (Wyness et al. 1994) and shallow pond reactors (Bedford et al.





40


1993) for the destruction of 4-chlorophenol (4-CP) using TiO2 adhered to

fiberglass mesh. They found that the same reactor systems performed

better with the slurry catalyst than with the fiberglass mesh. For the flat

plate configuration, reaction rates were two to five times faster (Wyness et

al. 1994).



Table 3-2. Order of Effectiveness of Dyes at 10-4 M Concentration on E. Coli After 24 Hours Exposure to Light at Room Temperature

Light Intensit5 E. coli colony coverage in quadrant areasa, mean + SD Dye gEm-2 sec- 1 1 2 3 4
Control 75 8.70.5 8.0 1.1 4.5 2.0 0.8 0.4
Control 300c 9.0 0.5 9.0 0.5 6.6 0.9 1.2 0.4
Rose Bengal 75 0 0 0 0
300 0 0 0 0
Erythrosine 75 7.0 1.4 0 0 0
300 0 0 0 0
Eosin Yellowish 75 6.0 2.8 0.5 0.7 0 0
300 1.0 0.5 0 0 0
Zinc Phthalocyanine- 75 7.0 1.4 4.0 4.2 0 0
tetrasulfonate 300
Acridine Orange 75 8.0 0.5 1.5 0.7 0.5 0.7 0
300 5.5 3.5 0.5 0.7 0 0
Methylene Blue 75 9.0 0.5 4.5 0.7 1.0 0.5 0
300
Fluorescein Sodium 75 9.0 0.5 7.5 0.7 3.5 0.7 0.3 0.1
Salt 300 8.5 0.7 2.0 2.8 0 0
Alphazurine A 75 9.0 0.5 7.5 2.1 1.5 0.7 0
300 9.0 0.5 8.5 0.7 4.5 2.1 0.5 0.7
Rosolic Acid 75 9.0 0.5 6.0 2.8 2.0 1.4 0
300
Alcian Blue 75 9.0 0.5 7.5 0.7 2.0 1.4 0.5 0.7
300
Hematoporphyrin 75 9.0 0.5 8.5 0.7 4.5 3.5 1.6 2.1
300 9.0 0.5 8.5 0.7 4.5 0.7 0.8 0.4
Alizarine S 75 9.0 0.5 9.0 0.5 4.5 2.1 0.8 0.4
Monohydrate 300 9.0 0.5 9.0 0.5 5.0 1.4 1.0 0.5
aStreaked areas: 1, first streak; 2, streaks from first streaks; 3, streaks from second streak; 4, streaks from third streaks. bTemperature, 250C. CTemperature, 280C. Source: Martin and Perez-Cruet (1987).





41


Zhang et al. (1994) compared the performance of a number of different optimized catalyst support options with TiO2 slurry using a flat plate reactor configuration. Of those supports tested, all except glass beads performed as well as, or slightly better than, the slurry, with silica gel performing best.

Hofstadler (1994) evaluated titanium dioxide-coated fused-silica glass fibers for the degradation of 4-CP and reported degradation rates 1.6 times higher than with TiO2 slurry. Some other silica based supports which have been evaluated were coated sand (Matthews 1991) and glass (Lu et al. 1993). Matthews found that suspensions of TiO2 coated sands were much easier to deal with in terms of separation, but were mass transfer limited. The work by Lu et al., using TiO2 supported on the inner surface of a glass tube reactor, indicated the possibility of catalyst reuse.

Fox et al. (1994) examined the effect of zeolite supported TiO2 and TiO2 pillared clays on the degradation of alcohols and found a slight decrease in photoactivity relative to TiO2 slurry. Matsunaga et al. (1988) found TiO2 supported on an acetylcellulose membrane to be effective for the destruction of Escherichia coli. Other supports tested for TiO2 were activated carbon (Uchida et al. 1993), ceramic membranes (Aguado et al. 1994), wood chips (Berry and Mueller 1994), metal, polymer, and thin films (Blake 1994).

Some research has also been conducted on the immobilization of photosensitizers. Savino and Angeli (1985) examined the effectiveness of methylene blue, rose bengal, and eosin on polystyrene beads, and





42

methylene blue on granular activated carbon, silica gel, and XAD-2 (polystyrene resin). They found that all of the immobilized dyes were effective for the destruction of Escherichia coli, but methylene blue on activated carbon was the most effective.

Keeping the initial criteria in mind, ease of use and low operational and capital cost, a number of reactor designs were quickly ruled out. The methods for immobilizing catalyst all require fairly extensive preparation, including precipitation and calcination, in almost all cases. Therefore, the current research was conducted using suspended TiO2 and dissolved sensitizers. The question of the feasibility of immobilized catalyst and/or sensitizer was left for another study.

There are a number of options available for the specific design of a reactor using slurry catalyst. In computer simulations of the destruction of TOE in batch flat plate and parabolic reactors, flat plate reactors yielded a larger treatment volume than did the concentrating and one-axis tracking parabolic reactors (Saltiel et al. 1992). Wyness et al. (1994) found that flat plate reactors were effective for chemical photodegradation with suspensions of titanium dioxide. Bedford et al. (1993) found that the shallow pond configuration was effective for the destruction of 4-OP. This minimalist configuration is attractive because of its potential for low capital and maintenance costs.

For photosensitization the reactors have more closely resembled chemical reactors. Plug-flow reactors were successfully tested for the treatment of secondary effluent (Eisenberg et al. 1988), and continuous flow reactors showed promise in the sensitized photodegradation of





43

chlorophenols (Li et al. 1992). Acher et al. (1990; 1994) successfully used a series of tank reactors which were similar to the shallow pond configuration evaluated by Bedford et al. (1993). The laboratory reactors for this study were designed to mimic the shallow pond configuration.



TiO2 is significantly affected by the pH of the aqueous solution in which it is suspended. Particle size and charge and the position of the valence and conduction bands are all a function of the pH of the solution (Mills et al. 1993). Block et al. (1997) found a neutral to acidic pH range best for the TiO2 photocatalyzed inactivation of bacteria.

A number of researchers have investigated the effects of pH on the photocatalytic degradation rate of organics in aqueous suspensions (Bahnemann et al. 1991; Glaze et al. 1993b; Kawaguchi and Furuya 1990; Matthews 1986; Tseng and Huang 1990; Tseng and Huang 1991; Vidal et al. 1994). Kawaguchi and Furuya (1990) reported an increase in photocatalytic effect in acidic solution. The general consensus is that pH has little (no more than one order of magnitude) effect on the reaction rate, but that neutral pH provides the most efficient degradation. Other apparent pH effects are attributed to anionic effects from chemicals used for pH control. While pH was not a major factor in the photocatalytic reactions, it was necessary to seek an optimum pH for the simultaneous treatment of chemical and microbiological contaminants. In the research reported herein, photocatalytic experiments were conducted at neutral and acidic pH.





44

Photosensitization is much more pH dependent. In studies of methylene blue photodisinfection processes, pH values ranging from 8.6 to 10 were found to be optimum (Acher et al. 1994; Acher et al. 1990; Gerba et al. 1977b; Melnick et al. 1976). The same pH dependence was seen with methylene blue and rose bengal for the photodegradation of organic chemicals (Hadden et al. 1994; Li et al. 1992). In photosensitization of bromacil using methylene blue and rose bengal, reaction rates increased as pH values increased, with the highest rates at pH 9-10 (Eisenberg et al. 1986; Eisenberg et al. 1988). Based on this information, the sensitizer experiments for this research were conducted in neutral and basic environments.

Catalyst/Sensitizer Concentration

The concentration of the photocatalyst and photosensitizer needed to be optimized in order to obtain meaningful comparison data. An optimum of 0.1% TiO2 concentration was found to be effective for BTEX by Goswami et al. (1993) and Oberg (1993). Patel (1993) and Block et al. (1997) found that 0.01% TiO2 concentration worked best for the photocatalytic destruction of bacteria. Therefore a range of TiO2 concentrations, from 0.01% to 0.1% were tested in the laboratory in order to optimize the concentration for simultaneous photocatalysis.

In pilot plant studies Eisenberg et al. (1988) found that concentration of methylene blue ranging from 1 to 10 mg/1 were sufficient for the photooxidation of bromacil. Acher and Juven (1977) conducted

photosensitization experiments with sewage effluent and reported an increase in the destruction of coliforms with a corresponding increase in





45

methylene blue concentration, up to 5.0 mg/l. However, in pilot plant studies, smaller concentrations (less than 1.0 mg/1) were effective (Acher et al. 1994) and concentrations higher than 0.9 mg/I methylene blue hindered light penetration (Acher and Rosenthal, 1977). The photosensitization screening experiments for this research were conducted at several levels of concentration, ranging from 0.01 mg/l to 10 mg/.

Laboratory Experimental Design

In this research full factorial designs were used for both the photocatalytic and photosensitization experiments. While the designs differed slightly the parameters tested were the same, catalyst/sensitizer concentration, pH, and light. A two dimensional control was imbedded in the experimental design by way of the dark experiments and the level with no photochemical. For the photocatalytic experiment four levels of catalyst concentration, two levels of pH, two levels of light, and redundant reactors were used, as shown in Table 3-3. For each of the two dye sensitizers tested, methylene blue and rose bengal, five levels of sensitizer concentration, two levels of pH, and two levels of light were used, as shown in Table 3-4. The photocatalytic experiments were repeated twice and the photosensitization experiments were repeated three times.

In the combination experiments no pH adjustments were made. The experiments were conducted with 5 mg/L methylene blue and 0.01% TiO2. Controls for this experiments were no photochemicals, TiO2 only and methylene blue only. The full design, repeated three times, is shown in Table 3-5.





46


Table 3-3. Design for TiO2 Photocatalytic Lab Experiments
Treatment One Treatment Two
Contaminants BTEX and Bacteria BTEX and Bacteria
L i'g 'h t .... ........... ................. ............................. N.... o... n.... e............. .........................................No n e." o* ... n...e'.............................................N n
Light... N one........ ............... N one.....
pH Neutral, 7 (0.5) Acid,.4 (0.5)
TiO2 Concentration None 0.01% 0.05% 0.10% None 0.01% 0.05%:0.10%
Contaminants BTEX and Bacteria BTEX and Bacteria
Light UV Lamps @ 29 W/m UV Lamps @ 29 W/m
n .... ... .. ... ........ .. ... ... ........ i4... ..................... ............... ... .... ................. ...... ............... ..... ... ......... .......
pHNutral, 7 (0.5) Acid, 4 (0.5)
.......... ... .. .. .... ... ... e.......... ......... ......... .. .. ............. ... .. ...: ? : : :
Tb oncentration INone 0.01% 0.05% 0.10% None 0.01% 0.05% f0.10%0/





Table 3-4. Design for Photosensitization Lab Experiments

Treatment One Treatment Two
Contaminants BTEX and Bacteria BTEX and Bacteria
Lgt .None None
.L g t ......................................... ........ ...... .- ... ............... ... ....... ............... ............... ...................... N .. ............................
pH Basic, 10 (0.5) Basic, 10 (0.5)
ye Conc., mg/L None 0.10 1 5 10 None 0.10 1 5 10
Contaminants BTEX and Bacteria BTEX and Bacteria
. ..... ig. ....................... ............................... .... .. ............ ..... .. .. ........ ..... .. h t....................
........ Sunlight Sunlight
pH Basic, 10 (0.5) Basic, 10 (0.5)
9eo .................... ... .. -- ... ..... .... .. .. .......... ... .. ...N..' 9N .. ........o





Table 3-5. Design for Combination Lab Experiments
Treatment One Treatment Two
Contaminants BTEX and Bacteria BTEX and Bacteria
... g .............................. ...... ...... ......................... o.e. ..................... .... .... .... ....................... S o: .............. .......- ........... .
Light None .None
Photochemical None 0.01% TiO2 5 mg/L MB' Both iNoneO01% TiO25 mg/b MB. Both



Materials and Methods


Reaction Vessels

The photocatalysis reaction vessels were covered Pyrex dishes

(Figure 3-1), which allowed light transmission above wavelengths of X > 300





47

rum, the shortest wavelength that reaches the earth's surface from the sun (Hsieh 1986). This filtered out the germicidal effects of the ultraviolet light which would not be present in naturally occurring sunlight.



Water line
Lid removed to take
samples


60 m ----------100 mm


Figure 3-1. TiO2 Reaction Vessel


In order to eliminate problems of air stripping and ensure that the reactor was airtight, a slightly modified version of the photocatalytic reaction vessel was used for both photosensitization and the combination experiments. The reactor was equipped with a glass blown sampling port plugged with a butyl rubber septum and sealed with parafilm (Figure 3-2). The reactors were filled to the rim of the vessel in order to minimize head space.



Bacterial Inoculation

Cultures were prepared using trypticase soy broth nutrient, and incubated for 24 hours at 35*C. Three serial dilutions of 1:100 were





48


prepared using distilled deionized water. Photocatalytic reactors were inoculated with 400 0l of E. coli, 400 gl of Serratia marcescens and 200 gl of Pseudomonas aeruginosa, using the 2nd dilution of each culture.

Water line


Sample port
Parafilm to with septum
seal 60 mm



100 mm


Figure 3-2. Photosensitization Reaction Vessel


Only E. coli was used for photosensitization experiments, and the reactors were inoculated with 45 gl of the first dilution of the culture. In all cases the third dilution was used to confirm that the cultures were viable. This procedure is shown graphically in Figure 3-3.

E. coi culture DilutionsInitial Count E. odi in Trypticase :10 1 Agar Plate
Slant Soy Broth (Incubated)
Dncubated)


> >

", hot mxatalysis
photosensitization'"
"1

Experimental
Glass Reactor



Figure 3-3. Graphical Representation of Bacterial Inoculation





49

Initial bacterial densities in the reactors ranged from 103 to 104 colonies per ml, with most values falling around 3.5 x 103 colonies per ml. Bacteria were obtained from American Type Culture Collection (ATCC). Reactor Chamber

The reactor chamber was used for all of the photocatalytic experiments and the dark experiments for photosensitization. The

chamber was a metal box equipped with 32 ultraviolet low-pressure mercury lamps and painted in flat black (Figure 34). The lamps were purchased from Southern New England Ultraviolet, model RPR-3500. The design output of the lamps was 3500A. Reactors were placed approximately 35 cm from the light source, at which point the ultraviolet irradiation measured was 29 W/m2. External light was blocked via a hinged metal door which fit snugly over the chamber. The lamps were turned off for the dark experiments.

Photocatalysis Reactor Setup

The reactors were loaded with deionized distilled and pH adjusted water and a combination of bacteriological and volatile organic chemical (VOC) contaminants, for a total volume of 100 ml. The chemical

contaminants were approximately 1 ppm each of benzene, toluene and mixed xylenes, referred to as BTEX, and the bacterial species were Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. Redundant reactors were placed for two to four hours in a reactor chamber either with or without light.





50
.. ..... .... .......................
............ ....... .........
.............. ..........
.............. ..........















Figure 3-4. Ultraviolet Light and Dark Reactor Chamber


As shown in Table 3-3, four Ti02 concentrations were used for the experiments: 0.1%, 0.05%, 0.01% and none. The catalyst used was Degussa P-25. The water was adjusted to an acid pH (4.0 0.5) and a neutral pH (7.0 0.5) with hydrochloric acid and sodium hydroxide. After pH adjustment the water was autoclaved to remove any microbiological contamination. The 100 ml reactors were illuminated for 2 to 4 hours in the reactor chamber.

Photocatalysis Sampling and Analysis

Samples for chemical analysis were taken prior to irradiation, after 5 minutes, 15 minutes, 30 minutes and one hour of irradiation and at the same time intervals in the dark chamber. Samples were taken with a sterile syringe and placed directly into amber borosilicate screw cap vials with Teflon TM septa, and refrigerated until analysis. The samples were analyzed by a modification of the EPA purge and trap method using an SR





51

8610 gas chromatograph with PID detector (Abeel et al. 1994; Bellar and Lichtenber 1974; Oberg 1993). The method used was sensitive to a low concentration of about 1 ppb for the components in question.

For evaluation of disinfection efficacy, duplicate petri dishes containing plate count agar nutrient were inoculated with 100 41 from each reactor. Two replicates were taken at 0, 30, 60, 120 and 240 minutes, yielding four counts for each set of conditions per experiment. The inoculated plates were spread and incubated for 24 hours at 35C. After 24 hours the number of bacterial colonies on each plate were counted. Photosensitization Reactor Setup

The reactors were loaded with deionized, distilled, pH adjusted water and a combination of bacteriological and volatile organic chemical (VOC) contaminants to the top of the container, a total volume of approximately 450 ml. The chemical contaminants were approximately 1 ppm benzene and 1 ppm toluene, referred to as BTEX, and the bacterial species was Escherichia coli, as noted above. The reactors were placed either in sunlight or in a closed, dark reactor chamber (Figure 3-4) for four hours and constantly agitated with a magnetic stirrer.

As outlined in Table 3-4, five sensitizer concentrations of either methylene blue or rose bengal, were used for the experiments: 0.1 mg/I, 1.0 mg/1, 5 mg/I, 10 mg/I and none. Both the methylene blue and the rose bengal were purchased from Fisher Scientific. The water was adjusted to a neutral pH (7.0 0.5) and a basic pH (10.0 0.5) using sodium hydroxide. After pH adjustment the water was autoclaved to remove any microbiological contamination.





52

Photosensitization Sampling and Analysis

A sterilized 10 ml syringe was used for taking samples via the sample port. Samples were taken at 0, 5, 15, 30, 60, 120 and 240 minutes by sterilized syringe and transferred into amber borosilicate screw cap vials with TeflonTM septa, and refrigerated in a standard commercial refrigeration unit until they were analyzed.

For evaluation of disinfection efficacy, petri dishes containing plate count agar nutrient were inoculated, in triplicate, with 100 Rl from each sample. Three replicates were taken per sample. The inoculated plates were spread and incubated for 24 hours at 350C. After 24 hours the number of bacterial colonies on each plate were counted. Chemical analysis was the same as that used for TiO2 photocatalysis. Combination Experimental Setup. Sampling and Analysis

The setup, sampling, and analyses for the combination experiments were very similar to that of the photosensitization experiments. The reactors were loaded with deionized, distilled water and a combination of bacteriological and volatile organic chemical (VOC) contaminants to the top of the container, a total volume of approximately 450 ml. The chemical contaminants were approximately 1 ppm benzene and 1 ppm toluene, referred to as BTEX, and the bacterial species was Escherichia coli, as noted above. The reactors were placed either in sunlight or in a closed, dark reactor chamber (Figure 3-4) for one hour and constantly agitated with a magnetic stirrer.

As outlined in Table 3-5, four photochemical concentrations of methylene blue and/or TiO2 were used for the experiments: no





53

photochemical, 0.01% TiO2, 5 mg/I methylene blue, and 0.01% TiO2 and 5 mg/I methylene blue.
A sterilized 10 ml syringe was used for taking samples via the sample port. Samples were taken at 0, 5, 15, 30, 60, 120 into amber glass screw cap vials with TeflonTM septa. The samples were refrigerated in a standard commercial refrigeration unit until they were analyzed.

For evaluation of disinfection efficacy, petri dishes containing plate count agar nutrient were inoculated with 100 pl from each sample. Three replicates were taken per sample. The inoculated plates were spread and incubated for 24 hours at 35C. After 24 hours the number of bacterial colonies on each plate were counted. Chemical analysis was the same as that used for TiO2 photocatalysis.

Experiments for Confirmation of Previous Work with Bromacil

One set of experiments was conducted to confirm the previous work with photosensitizers in which methylene blue was used for the destruction of bromacil in wastewater. Duplicate photosensitization reaction vessels (Figure 3-2) were loaded with approximately 1300 ppb bromacil, 5 mg/L methylene blue and deionized water. After irradiation in sunlight for four hours, the reactor contents were analyzed by GCMS. The bromacil used for the experiments was tech grade obtained from E. I. DuPont de Nemours and Company, Inc.












CHAPTER 4
RESULTS AND DISCUSSION

The results of laboratory experiments are presented and discussed in 'this chapter. The results are divided by experiment type: dye photosensitization, TiO2 photocatalysis and combination experiments. A general discussion is presented at the end of the chapter. Raw data for all experiments are contained in Appendix A.

Dye Photosensitization

Laboratory experiments were conducted to determine the effects of dye concentration and pH on the destruction rate of Escherichia coli and aromatic hydrocarbons (benzene and toluene) in sunlight. As described in Chapter 3, the experiments were conducted with the following treatments:

methylene blue (MB) and rose bengal (RB),

0 sunlight and dark,

0 pH 10 and pH 7,

0 0, 0.1, 1, 5 and 10 mg/L of dye.

In order to ensure reproducibility of the results, each set of experiments was conducted three times. A complete set of experiments was represented by one reactor for each of the sets of conditions highlighted above, for a total of 40 reactors per set. Five reactors were run at a time, each reactor containing a different concentration of a single dye (either methylene blue or rose bengal) with all other parameters the same.


54





55

Samples were taken from each reactor at 0, 5, 15, 30, 60, 120 and 24.0 minutes and refrigerated immediately. Three replicates were plated from each sample for microbiological analysis. The remainder of the 0, 60 and 240 minute samples was refrigerated and saved for chemical analysis.

For the experiments conducted in sunlight, the light was measured and recorded over the duration of the experiment, and ranged from 542 W/m2 to 892 W/m2 The average total insolation (incident z-jar radiaion) measured in each experiment is given in Table 4-1 and graphs of the total insolation are shown in Appendix B.


Table 4-1. Insolation Measurements from Dye Sensitization Experiments
set Conditions Insolation, W/m2
........ 1- M ethy.ene B lue................. pH...... 7........................ 685...............................
#1Methylene Blue, pH 10 671
Rosyee Benga, pH 0 76
Rose Bengal, pH 10 715
# 2 Methylene Blue, pH 7 665
Methylene Blue, pH 10 542
Rose Bengal, pH 7 856
Rose Bengal, pH 10 775
#3 Methylene Blue, pH 7 892
Methylene Blue, pH 10 696
Rose Bengal, pH 7 841
Rose. Bengal, pH. 10 749



Experimental sets were conducted on different days, and though efforts were made to minimize the differences between sets, both solar insolation and initial contaminant concentrations did vary from one set to another. The mean, standard deviation, and range of these parameters for all experiments are shown in Table 4-2.





56

Table 4-2. Descriptive Statistics of Measured Data for all Experiments MB Parameter Mean StdDev Mini Max
Sunlight, W/m2 692 112 542 891
Sunlight, pH 7, W/m' 743 129 665 891
Sunlight, pH 10, W/m' 641 50 542 696
Initial Coliform Density, cfulL x 10' 784 365 27 1453
Initial Benzene concentration, ppb 676 210 377 1218
Initial Toluene concentration, ppb 314 139 136 770
IRB Parameter Mean SbdDev Mini Max
Sunlight, WfM2 781 56 715 856
Sunlight, pH 7, W/m' 815 60 746 856
Sunlight, pH 10, W/M2 746 30 715 775
Initial Coliform Density, efufb x 10' 816 375 187 1680
Initial Benzene concentration, ppb 560 262 296 1407
Initial Toluene concentration, ppb 426 226 155 1026



The data, as well as the impact of each of the measured and

controlled parameters, are explored in more detail below, and results are compared with the work of Eisenberg et al. 1987b, Acher et al. (1994), and Acher et al. (1990), for the photosensitized disinfection and bromacil destruction in secondary treated wastewater effluent. General Comments About Exjerimental Data

The average standard deviation of the disinfection data was 25% for methylene blue experiments and 13% for rose bengal experiments (Table 43). Plates on which the colonies were not individually identifiable and those with severe contamination were not counted, which resulted in the loss of approximately 20% of the 840 plates in a given experimental set. Due to contamination of the incubator, all 105 of the plates from the sunlight, pH 10, methylene blue experiment in set number two had to be discarded. In a few instances the samples were dropped and broken before they could be plated.





57

The initial (t=0) disinfection samples for the dark, pH 10, rose bengal experiment in set number one were abnormally, though consistently, low. The low values were attributed to not allowing time for adequate mixing in the reactors prior to drawing the first sample. Since the values were consistent from one reactor to the next, the data could not be treated as outliers, but accommodations were required for accurate interpretation. For this set of data, the fractional survival values were calculated using the

5 minute instead of the zero minute samples.

The average standard deviations of the detoxification data were 10%, or less, of the average values as shown in Table 4-3. Sample loss for detoxification occurred when the sample was dropped and broken prior to analysis, which occurred twice in experimental set number three. The samples on either side of the dropped sample, 8., were analyzed, and the sample value for the desired time was interpolated. When the dropped sample was an initial sample, 330, the 5 minute sample was substituted. Chemical samples were generally analyzed within two weeks of the experiment.


Table 4-3. Average Standard Deviations for all Dye Photosensitization Experiments
Benzene (ppb) Toluene (ppb) E. Coli
dDev Avg SWDev Avg % oftotal
M ethylene Blue 51 578 29 ..................... 5" ............. ..2.5-3......5.....25....
Rose Bengal 46 487 36 363 13





58

Statistical Treatment of the Data

Microsoft Excel version 5.0 for the Macintosh was used for statistical analysis of the data. For the more common calculations, including least squares linear regression, the functions available in the software package were used. All other values were calculated using the equations as noted throughout this section.

Since the sample sizes were generally small (less than 30), the entire populations were used to calculate standard deviation from Equation 4-1.

S.D. = jnjx'-(YX) 2 (4-1)

n 2

For disinfection data analysis, the fractional survival and percent destruction of colony forming units (cfu) were used for reporting and analyzing the data. The values used for disinfection data analysis were obtained by taking the average of the plates for each sample collected within an experimental set, calculating fractional survival (or % destruction) and averaging those values across experiments for use. The data, obtained in this way for methylene blue at 30 minutes, are shown in Table 4-4.

In situations where calculations resulted in a negative percent destruction, the percent destruction was set to zero. In some instances the fractional survival exceeded 2.0, specifically, the data from the dark, pH 10, rose bengal experiment in set one. For that data set, the fractional survival was calculated relative to the 5 minute samples, i.e. fractional survival Nt/N5.





59


Table 4-4. Mean Fractional Survival ( 31%) of E. coli @ t-- 30 minutes in MB Experiments

Set# Sunrlight-pHl0 1SunfightpH7 :DarkpH1lO DarkpH7
Cotd1 0.000 0.172 1.113 1.500
2 0.534 1.013 0.169
3 0.084 0.082 0.364 0.503
Average .020620.830 0.724
0.1 mgfL 1 0000.013 0.592 1.547'
2 0.155 0.84 1 0.068
3 0.009 0.000 0.583 0.540
Average 0.005 0560.672 0.718
1 gL 0.000 0.007 0.494 0.779
2 0.013 0.538 0.101
3 0.000 0.000 0.000 0.502
Average 0.000 0.007 0.344 0.46 1
5 mgL1 0.000 0.002 0030 0.000
2 0.016 0.007 0.000
3 0.000 0.000 0.08 1 0.473
Aege0.000 006039 0.158
1mgL1 0.000 0. ....01..... 6 0.011 0.034*..
2 0.000 0.000 0.018
3 0.000 0.000 0.004 0.195
Aeae0.000 0.005 0.005 0.082




Detoxification data were treated in a similar manner. The

concentration data, as parts per billion (ppb), for each experimental set

were normalized to the initial concentration (Ct/C0). The normalized values

were averaged across experimental sets. Since only one data value existed

per sample for each experimental set, standard deviations were calculated

across sets only. Outliers were identified using the ASTM recommended

criterion for single samples (ASTM 1988) which uses the following test:



T,= I(x xA/s (4-2)

The critical value of Tn is a function of the number of observations and is

obtained from a table (ASTM 1988). Using this criterion, one value was

found to be an outlier at a significance level of 10% (5% for toluene) and





60

subsequently discarded. The outlying sample, the 240 minute, 1 mg/L sample from RB, dark, pH 10 in experimental set number two, was thought to have been poorly capped, resulting in volatilization of the sample prior to analysis.

The data were viewed in several ways. An initial observation was conducted for the detection of trends and to determine if the desired effect was achieved. These trends were displayed as a function of time for all of the average values as x-y scatter plots. If trends of the desired effect, destruction of contaminants with time, were detected, the data were analyzed further for the impact of specific parameters on the final results as described below.

Analysis of Means (ANOM) was applied to obtain a statistical snapshot of the effect of specific parameters on the outcome. In this method, mean values and statistical deviations were used to clarify the significance of each parameter. The ANOM is a variation on a process control chart and allows for the exploratory analysis of several parameters simultaneously (Mason et al. 1989). A relatively conservative a-level of 0.05 was chosen to minimize the probability of false alarms. A smaller a-level was not desirable as it might have resulted in missed signals and would be inappropriate for this type of exploratory analysis (Wheeler 1990).

The Pooled Variance Estimator was used for determination of Estimated SD M as shown below. Decision limits for the ANOM charts were calculated using the following equations (Wheeler 1990):





61


Estimated SD M = qS' (4-3)


(Estimated SD ON = Estimated SD W (4-4)


UDL,, = X + H (Estimated SD 06) (4-5)


LDLx = X H (Estimated SD (9)) (4-6)

where:

s standard deviation of X,

average of observations in a subgroup,

S2 average variance of X,

n number of observations per subgroup,

X grand average of all observations,

H ANOM critical value at a selected a, from table (Wheeler 1990),

UDLX upper decision limit, and

LDLX lower decision limit.

Averages which were outside of the decision limits were considered to be statistically significant, and those parameters were determined to be influential

In some instances the data were graphically represented. For this analysis, data were simply categorized according to the parameters of interest, and standard deviation and mean values were calculated using the Microsoft Excel functions. These values were then charted, either as scatter plots or bar charts. Where appropriate, least squares linear





62

regression, also using Microsoft Excel, was performed to identify specific trends and relationships.

Where clear destruction of contaminants was seen, kinetics were considered. Results were fitted to first order kinetic equations, and experimental reaction rate constants were obtained for comparison to published data. This information is presented in the section on kinetic considerations, which includes kinetic data for all relevant experimental sets.

Presentation of Results and Identification of General Trends

While disinfection in the presence of aromatic hydrocarbons was achieved with both rose bengal and methylene blue, simultaneous detoxification was not observed with either dye. Under the conditions tested, the presence of MB increased the disinfection rate of water contaminated with E. coli over sunlight alone.

MB photosensitized disinfection at pH 10 (Figure 4-1a) appears to be slightly more effective than MB photosensitized disinfection at pH 7. At pH 10, all AM concentrations resulted in at least a 99.5% coliform reduction after thirty minutes of irradiation, compared to 9601b reduction with sunlight alone. With 10 mg/L MB, complete coliform. destruction was achieved after only five minutes of irradiation. No coliforms appeared in any of the samples taken after irradiation began. The intensity of sunlight in these experiments ranged from 542 to 696 W/m'.

Destruction at pH 7 was not quite as dramatic (Figure 4-1b). The coliform reduction after 30 minutes ranged from 99.5% with 10 mg/L MB to 96% with 0.1 mg/L MB. Comparatively, only a 74% reduction was attained






63


with sunlight alone. The intensity of sunlight ranged from 665 W/m2 to

891 W/m2. Differences between pH 10 and pH 7 cannot be attributed to

differences in light intensity since, as shown in Tables 4-1 and 4-2, the

intensity was greater in the pH 7 experiments even though less reduction

was achieved. The difference in values for control reactors would lead one

to conclude that any pH effect was a function of the general disinfection

mechanism rather than of the photosensitization process specifically.



100%
90%
80%
S70% --- Control
60%- --0.1 mg/L
250% 1 mglL
0% ---- 10 mg/L
0 -K-5 mg/L
40%
30%- -IC 10 mg/L
20%
10% Avg S.D. 14.5%
0%
0 15 30 45 60

(a) Time (minutes)



100%

80%
-4- Control
0
60% -3- 0.1 mg/L
2
-A- I mg/L
S40%
S-X- 5 mg/L 20% Avg S. D. 25.4% -- 10 mgL

0%
0 15 30 45 60
Time (minutes)
(b)
Figure 4-1. MB Destruction of E. coli in Sunlight; (a) pH =10, Iavg= 542-696
W/m2 (b) pH =7, Iavg = 665-891 W/m2






64


In the presence of at least 1 mg/L MB and sunlight (542 696 W/m2),

complete disinfection occurred within 5 to 30 minutes. However, in the

absence of MB with the same intensity sunlight, complete disinfection

required at least 60 minutes (Figure 4-2). Complete disinfection did not


occur at all in the dark, although a 99% coliform reduction was observed

with 10 mg/L MB in the dark. Mean fractional values for the methylene


blue experiments are presented in Table 4-5.


100% .
90%
80%
c 70% 60% S50%
40% .
30%
20%
10% AVG S.D. =16.6%
0%
0 15 30 45 60
Time (minutes)
-4-No MB, Sunlight --A-I mg/L MB, Sunlight
---No MB, Dark -1I-lmg/L, MB Dark
(a)




100%

80%

60%

o 40%

20% Avg S.D. =28%

0%
0 15 30 45 60
Time (minutes)

-4-o MB, Sunlight ---1 mg/L, Sunlight Nb L--- No MB, Dark X- mg/L, Dark


Figure 4-2. Destruction of E. coli in sunlight with 1 mg/L MB; (a) pH =10,
Iavg= 542-696 W/m2 and (b) pH 7, Iavg = 665-891 W/m2





65


Table 4-5. Mean Fractional Survival (25%) of E. coli in MB Experiments

Control Sunlight pH 10 Sunlight pH 7 Dark pH 10 Dark pH 7
N51No 1.133 0.811 0.954 0.671
N151No 0.707 0.428 0.626 0.493
N30/No 0.042 0.262 0.830 0.724
N60/No 0.000 0.013 0.681 0.858
N120/No 0.000 0.000 0.449 0.063
0.000 0.000 0.365 0.008
0.1 mg/L
N/No 0.030 0.65 1 0.867 0.609
N151No 0.002 0.234 0.766 0.613
N30/No 0.005 0.056 0.672 0.718
N60/No 0.000 0.016 0.600 0.363
N120/No 0.000 0.005 0.299 0.141
........... ....... .................. -: ..I............................... oI o ................................. 2 5...................... .. 7 !.............
I mg/L
N5/No 0.000 0.194 0.700 0.622
N151No 0.000 0.011 0.581 0.657
N30/No 0.000 0.007 0.344 0.461
N601No 0.000 0.006 0.223 0.312
N120/No 0.000 0.002 0.040 0.329
N240/NO 0.000 0.000 0.006 0.08 1
5 mgfL
N.. No 0.006 0.000 0.109 0.299
N151No 0.003 0.014 0.118 0.209
N3o/No 0.000 0.006 0.039 0.158
N601oN 0.001 0.002 0.039 0.139
N120/No 0.000 0.002 0.000 0.160
N240/No 0.000 0.000 0.005 0.012
10 mg/L
N5/No 0.000 0.000 0.000 0.176
N11No 0.000 0.010 0.002 0.160
N301No 0.000 0.005 0.005 0.082
N6o/No 0.000 0.002 0.002 0.076
N120/No 0.000 0.000 0.000 0.023
N240/No 0.000 0.000 0.005 0.052



Rose bengal was less effective for photochemical disinfection than

was MB. The presence of RB had little, if any, positive effect on the

disinfection rate over sunlight alone, although the experiments at pH 7

appeared to exhibit some photochemical disinfection (Figure 4-3a).

In the experiments conducted at pH 10 (Figure 4-3b), RB had no

positive effect on disinfection over sunlight alone. Coliform reduction of





66

greater than 99.9% was observed by 60 minutes in sunlight alone; however, in the presence of RB the same coliform reduction was not evident until the 240 minute samples with 0.1 mg/L RB and the 12 minute samples for all other RB concentrations. Coliform reduction was about the same by 30 minutes regardless of the RB concentration, with a low of 81% for 10 mg/b RB and a high of 90% with 1 mg/b RB. The control, sunlight alone, had a coliform reduction of 88%. The differences are not significant, as all values fall within the average standard deviation of 21%. The average intensity of sunlight in these experiments ranged from 715 to 775 W/m'.

As was evidenced in the experiments with MB, disinfection appeared to be less effective at the neutral pH value of 7 (Figure 4-3a). The exception was with the higher concentrations of RB, 5 and 10 mg/b (Figure 4-4), where coliform reductions by 30 minutes were 961% and 97%, respectively. In comparison, coliform reduction in sunlight alone (746-856 W/m') by 30 minutes was 77%, 78% with 0.1 mg/b RB and 89%/ with 1 mg/b RB. Mean values for the fractional survival of E. coli in the rose bengal experiments are shown in Table 4-6.

While some reduction in both benzene and toluene concentration was observed with both dyes under every set of conditions, there was a substantial amount of contaminant (130 550 ppb) remaining in the water (Tables 4-7 and 4-8) after four hours. Initial concentrations ranged from 139 1400 ppb as shown in Table 4-2. Figures 4-5 to 4-8 show the concentration of benzene and toluene as a function of time at various dye concentrations.






67





100%90%
80%
c: 70% -- Control
2 -0-0.1 mg/IL
V 60%
-A-- 1 mg/L
Vi 50% o 40%
30% X 10 mg/L
20% Avg S. D. 20.6%

10%
0%
0 15 30 45 60
Time (minutes)
(a)




100% E
90%
80%
C 70% Control
60%- 0.1 mg/L
-; 50% -f-1 mgIL
a 40% ~ 5 mg/L
30% -2 --10 mg/L
20% AVG S.D. = 16.1%
10%
0%
0 15 30 45 60
Time (minutes)
(b)

Figure 4-3. RB Destruction of E. coli in Sunlight; (a) pH = 7, Iavg = 746-856
W/m2 (b) pH = 10, Iavg = 715-775 W/m2



The experimental values for both benzene and toluene in MB showed

fairly consistent reductions, with normalized concentrations ranging from

0.59 to 0.87 after four hours. Both the greatest and smallest reductions

corresponded to control reactors, sunlight at pH 10 and dark at pH 7,

respectively.






68




100%
90% Avg S.D. = 23.6 c 8 0 % "

.2 70%
1 60%
2 50%- 40%
D30%
20%
1 0 % -,s
0%
0 15 30 45 60
Time (minutes)
-- No RB, Sunlight -X- 5 mgL RB, Sunlight
(a) ---No RB, Dark 5 mg/L, Dark



100% 90%
80%

2 70%
U 60%
W50%
40% .
30% ...
2 0 %" .
10%- Avg S.D.= 18.8%

0 15 30 45 60
Time (minutes)
-- No RB, Sunlight X-10 mg/L RB, Sunlight ( 0 No RB, Dark l- 10 mg/L RB, Dark
(b)

Figure 4-4. RB Destruction of E. coli at pH =7, avg = 715-775 W/m2;
(a) 5 mg/L RB and (b) 10 mg/L RB



Examination of the normalized data (Tables 4-9 and 4-10) did not yield

a different conclusion. Neither chemical contaminant exhibited a


substantial difference in behavior between control and non-control reactors

in either MB or RB experiments, as seen from Figures 4-9 to 4-12.


In RB experiments reductions ranging from 15% to 36% for benzene

and 24% to 47% for toluene in sunlight were observed. One reactor, the

dark control reactor at pH 10, exhibited no reduction at all. However, since

the other controls, both in sunlight and in dark, had destruction rates








which were in the middle of the range for the non-control reactors, this

cannot be considered an indication that photochemical action took place.



Table 4-6. Mean Fractional Survival (13%) of E. coli in RB Experiments

Control Sunlight pH 10 Sunlight pH 7 Dark pH 10 Dark pH 7
N5/No 0.668 0.714 0.961 0.925
N151No 0.315 0.458 1.074 0.729
N301No 0.122 0.226 0.952 0.762
N60/No 0.000 0.001 0.795 0.527
N20/No 0.000 0.000 0.660 0.512
N240/N0 0.000 0.003 0.381 0.331
.............. ....................... .................................... ........... ........... -................................................ ........ o 3 l..................................................... o3 ............
0.1 mg/L
N5/N, 0.541 0.599 0.846 0.717
N15/No 0.381 0.216 1.058 0.545
N301No 0.131 0.221 0.930 0.649
N60/No 0.002 0.006 0.797 0.696
N120/No 0.005 0.000 0.617 0.552
N4/O 0.000 0.000 0.269 0.451
1lmg/L
N 5/ 0 .498 ................ 0..-62.4 ........1.02 8 .... ----- 0 .436.....
N151No 0.241 0.462 1.007 0.678
N30/No 0.102 0.110 1.033 0.530
NGO/No 0.009 0.001 1.107 0.625
N120/NO 0.000 0.000 0.838 0.499
N24o/No 0.000 0.003 0.461 0.292

0.707 0.562 0.966 0.681
N15No 0.447 0.371 1.006 0.970
N30/No 0.150 0.044 1.015 0.693
N601No 0.006 0.007 0.920 0.650
N120/No 0.000 0.000 0.597 0.820
N240/No 0.000 0.000 0.334 0.640
10 mg/L
N5/N0 0.5 55 0.5 16 0.9 89 0.74 6
N151No 0.451 0.365 0.884 0.551
N30/No 0.188 0.029 0.918 0.537
N601No 0.002 0.000 0.888 0.666
N120/No 0.000 0.004 0.659 0.490
N0/No 0.000 0.000 0.388 0.478





70


Table 4-7. Benzene (5 1) and Toluene (29) Concentrations (ppb) in MB Experiments

BENZENE Time (min) Sunlight pH 10 Sunlight pH 7 Dark pH 10 Dark pH 7
Cnrl095 3 609 632 630.
60 686 593 565 643
240 522 545 476 545
0.1 mg/L 0 767 622 59r7 646
60 578 533 583 533
240 513 482 399 495
1lmg/L 0 733 642 729 705
60 643 555 521 554
240 544 527 419 500
5 mgfL 0 707 658 604 662
60 626 502 562 597
240 564 418 385 491
10 mgfL 0 762 583 596 679
60 567 535 565 548
240 478 456 4.31 483
TOLUENE Time (min) Sunlight pH 10 Sunlight pH 7 Dark pH 10.Dark pH 7
499ro 07 310
60 298 250 224 312
240 214 221 176 234
0.1 mgfL 0 358 282 264 324
60 248 217 245 243
240 210 158 141 211
1 mg/L, 0 326 297 319 357
60 275 235 207 256
240 226 208 157 209
5 mg/L 0 330 300 261 327
60 261 215 248 281
240 230 160 131 203
10 mgIL 0 347 266 255 331
60 233 225 227 261
240 183 171 155 211



The greatest apparent reductions seemed to correspond to higher

initial concentrations and exposure to sunlight. This type of behavior

would be consistent with benzene and toluene being trapped in the vapor

space above the water line. Although head space was kept to a minimum,

as the samples were drawn from the reactor, head space increased.

Though temperature was not a consistently measured parameter, an

increase in temperature was observed, probably due to sunlight and friction





71


from the magnetic stirrers. The combination of temperature and head

space increase would necessarily lead to volatilization of the chemical

contaminants in the vapor space. Spot temperature checks with

temperature strips on the outside reactor glass yielded values in excess of

96'F in sunlight.



Table 4-8. Benzene ( 46) and Toluene ( 36) Concentrations (ppb) in RB Experiments

BENZENE Time (min) Sunligh -t ..p H 10 Sunlight pH 7 Dark pH 10 Dark pH 7
Cnri0 7 16 746 432 4 97
60 692 557 446 466
240 499 539 447 425
0.1lmg/L 0 542 657 478 504
60 508 541 474 440
240 463 508 371 417
1 mg/b 0 593 618 463 516
60 533 513 399 438
240 389 504 332 379
5 mg/L 0 611 646 437 515
60 516 524 434 413
240 386 476 350 365
10 mg/b 0 583 635 483 461
60 420 513 438 419
240 375 483 371 341
TOLUENE Time (min) Sunlight pH 10 Sunlight pH 7 Dark pH -10 Dark pH 7
C.......... 0, 543", 541. 27 ......21 ...
60 486 415 283 385
240 338 370 289 349
0.1 mg/b 0 401 493 318 442
60 367 394 311 387
240 310 367 250 346
1 mg/b 0 427 481 30Y7 464
60 367 374 246 368
240 259 355 195 303
5 mg/b 0 458 491 294 443
60 364 373 282 338
240 246 317 206 284
10 mg/b 0 416 483 323 410
60 298 375 281 349
240 255 329 223 275





72




1000


800
-0- Control
CL 600
600 --X- 0.1 mg/L
-- 1 mg/L
N 400
-E3 5 mg/L

200 Avg S.D. = 71.16 ppb 6 10 mg/L

0 I
0 60 120 180 240
*Referenced to intemat
Time (minutes) sanded, Corob
(a)












700 600
500 ---Control
0 --E-6-0.1 mg/L
-400
---1 mg/L
S300 ---X5 mg/L
20 10 mg/L
m 200
100 Avg S.D. = 48.25 ppb

0
0 60 120 180 240
Time (minutes) Reer'nceto rna
standard, chlorobenzene.
(b)
Figure 4-5. Benzene Concentration as a Function of Time and MB
Concentration in Sunlight; (a) pH=10, Iavg = 542-696 W/m2
(b) pH=7, Iavg = 665-891 W/m2





73




500

400
-*- Control
C.
a 300 -X--0.1 mg/L
C-------- 1 mg/L
S200
0- -5 mg/L
100 --10 mg/L
Avg S.D. = 42.82 ppb

0
0 60 120 180 240
Time (minutes)
*Referenced to internal
(a) standard, chlorobenaene.











350

300

250 -0- -Control
.- -30.1 mg/L 200
-&1 mg/L
2 150 --X-5 mg/L

100 10 mg/L

50 Avg S.D = 23.45 ppb
0 i i
0 60 120 180 240
Time (minutes) "eferen I wtea
standard. chlorobenzene.
(b)
NC






Figure 4-6. Toluene Concentration as a Function of Time and MB
Concentration in Sunlight; (a) pH =10, Img = 542-696 W/m2
(b) pH=7, I. = 665-891 W/m2





74



800 700
600 Control
500 -0.1 mg/L
400 -&-1 mg/L
0 -X5 mg/L
300
20 ---10 mg/L
m 200 Avg S. D. = 74.41 ppb 10 mg/L
100
0
0 60 120 180 240
*Referenced to internal
Time (minutes) standard. chorobetzene
(a)









800 700
-600 ---Control
CL500 --0.1 mg/L
( 400 --A-1 mg/L
r 300 -X-5 mg/L
a)
S200 -3110 mg/L
~200 -Avg S. D. = 36.02 ppb 10 mg/L
100
0 1 i ii
0 60 120 180 240
*Referenced to internal
Time (minutes) stard, boob&ene
(b)
Figure 4-7. Benzene Concentration as a Function of Time and RB
Concentration in Sunlight; (a) pH =10, Iavg = 715-775 W/m2
(b) pH=7, I.avg = 746-856 W/m2





75




600
500
-- -Control
S400 -E-0.1 mg/L
-A-1 mg/L
e300
0 X-5 mg/L
200 --10 mg/L
100 Avg S. D. = 57.09 ppb
100

0 1i
0 60 120 180 240
Time (minutes) "Rndce dto ndem
(a)










600

500
400 --Control
S--E-0.1 mg/L a 300 1 mg/L
S--X-5 mg/L 200
200--10 mg/L 100 Avg S.D. = 27.07 ppb

0
0 60 120 180 240
*Referencd to inimal
Time (minutes) -ndWd, chorobeene
(b)
Figure 4-8. Toluene Concentration as a Function of Time and RB
Concentration in Sunlight; (a) pH =10, Iavg = 715-775 W/m2
(b) pH=7, IaV = 746-856 W/m2





76


Table 4-9. Normalized Benzene (0.09) and Toluene ( 0.11) Concentration in MB Experiments
BENZENE Sunlight pH 10 Sunlight pH 7 Dark pH 10 Dark pH 7
Control

N6o/No 0.78 0.96 0.90 1.01
N120/No 0.59 0.86 0.75 0.87
0.1 mg/L
N60/No 0.77 0.88 1.02 0.83
N24o/No 0.67 0.80 0.68 0.77
1 mg/L
N6o1No 0.86 0.85 0.72 0.79
N24o/No 0.71 0.80 0.59 0.71
5mg/L
N60/No 0.87 0.76 0.95 0.90
N240/No 0.77 0.65 0.65 0.75
10 mg/L
N60iN0 0.75 0.92 0.98 0.81
0.63 0.77 0.74 0.72
TOLUENE Sunlight pH 10 Sunlight pH 7 Dark pH 10 Dark pH 7
Control
N6o1No 0.70 0.88 0.85 0.99
N120/NO 0.49 0.77 0.68 0.76
0.1 mg/L
N6oiNo 0.72 0.80 0.98 0.76
N240/No 0.57 0.57 0.58 0.63
1 mg/L
N60/No 0.82 0.77 0.66 0.71
N240/No 0.64 0.67 0.51 0.58
5 mg/L
N60/No 0.77 0.72 1.01 0.84
N240/NO 0.64 0.54 0.55 0.63
10 mg/L
N601No 0.70 0.85 0.92 0.78
N24oiNo 0.53 0.62 0.65 0.63





77


Table 4-10. Normalized Benzene (0.06) and Toluene (0.07) Concentration in RB Experiments
BENZENE Sunlight pH 10 Sunlight pH 7 Dark pH 10 Dark pH 7
Contr ..

N601No 0.94 0.81 1.04 0.95
N120/No 0.68 0.74 1.02 0.86
0.1 mg/L
N6/No 0.93 0.87 1.00 0.87
N240/N0 0.85 0.77 0.71 0.81
1 mg/L
N60No 0.90 0.83 0.84 0.91
N240/NO 0.65 0.81 0.71 0.78
5 mg/L
N6/No 0.84 0.82 1.00 0.81
N240/NO 0.64 0.73 0.81 0.69
10 mg/L
N6/No 0.72 0.85 0.90 0.95
N24No 0.66 0.74 0.77 0.75
TOLUENE Sunlight pH 10 Sunlight pH 7 Dark pH 10 Dark pH 7
Contml
N601No 0.86 0.82 1.01 0.94
N120No 0.58 0.69 1.03 0.81
0.1 mg/L
NwINo 0.89 0.83 0.99 0.89
N24/NO 0.76 0.71 0.65 0.75
1 mg/L
N6o1No 0.87 0.79 0.78 0.89
N240/NO 0.59 0.73 0.65 0.71
5mg/L
Nr/N0 0.78 0.78 0.96 0.78
N240/NO 0.53 0.64 0.69 0.61
10 mg/L
NwINO 0.71 0.82 0.87 0.91
N24o/NO 0.62 0.65 0.69 0.65





78



1.20

1.00

0.80

Q 0.60
0
0.40

0.20 Avg S.D. = 0.07

0.00 1
0 60 120 180 240
Time (minReferened to internal Time (minutes) standard, chbrobenzee
--No MB, Sunlight ---0.10 mg/L, Sunlight
-e-No MB, Dark --- 0.10 mg/L, Dark
(a)









1.20
1.00

0.80 -,

S0.60

0.40

0.20 Avg S. D. = 0.04

0.00
0 60 120 180 240
Referenced to internal Time (minutes) s rd.bv ior enzene o- No MB, Sunlight --30.1 mg/L, Sunlight
-No MB, Sunlight -+-0.1 mgIL, Dark
(b)

Figure 4-9. Normalized Benzene Concentration in Sunlight with 0.1 mg/L
MB, (a) pH =10, Iag = 542-696 W/m2 (b) pH=7, Iag = 665-891 W/m2





79




1.00 0.90 0.80 0.70 0.60 0.50
0.40
0.30
0.20 Avg S.D. = 0.07
0.10
0.00 1 i i i
0 50 100 150 200
SReferenced to intemal Time (minutes) "stardd o "ob
-O-No MB, Sunlight --30.1 mg/L, Sunlight
-X-No MB, Dark ----0.1 mg/L, Dark
(a)











1.00 I
0.90 0.80 0.70 0.60 S0.50
0.40
0.30 Avg S.D. = 0.05
0.20 0.10
0.00 ---0 60 120 180 240
Referenced to internal Time (minutes) standard, chlobenzene F -No MB, Sunlight -0- 0.1 mg/L, Sunlight
-1--No MB, Dark -+-0.1 mg/L, Dark
(b)
Figure 4-10. Normalized Toluene Concentration in Sunlight with 0.1 mg/L
MB; (a) pH =10, Ia, = 542-696 W/m (b) pH=7, I.avg = 665-891 W/m2





80



1.20
1.00

0.80
0
S0.60
0.40

0.20 Avg S.D. = 0.28
0.00 I
0 60 120 180 240
*Referenced to internal Time (minutes) ndard,co benzene

--No MB, Sunlight -E--0.1 mg/L, Sunlight
---No MB, Dark --+-0.1 mg/L, Dark
(a)










1.00 0.90 0.80 0.70 o 0.60 2 0.50 0.40 0.30
0.20 Avg S. D. = 0.05
0.10
0.00
0 60 120 180 240
*Referenced b, eternal Time (minutes) standard, ch. benzene
---No MB, Dark --0.1 mg/L, Sunlight
No MB, Dark ---- 0.1 mg/L, Dark
(b)
Figure 4-11. Normalized Benzene Concentration in Sunlight with 0.1 mg/L
RB, (a) pH =10, Iavg = 715-775 W/m2 (b) pH=7, I.avg = 746-856 W/m2




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ECEMHMHAS_IYLVLL INGEST_TIME 2014-08-05T23:38:57Z PACKAGE AA00022876_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES


SOLAR PHOTOCHEMICAL TECHNOLOGY
FOR POTABLE WATER TREATMENT:
DISINFECTION AND DETOXIFICATION
By
ADRIENNE TERESA COOPER
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1998

Copyright 1998
by
Adrienne Teresa Cooper

This dissertation is dedicated to my grandmothers, Gewenith
Manning and the late Ethel Cummings, who were women for their time
and to my nephew Fatin D. Cooper who is the future.

ACKNOWLEDGMENTS
The research conducted for this dissertation was supported by the
National Science Foundation through the University of Florida College of
Engineering Minority Engineering Doctoral Initiative.
Appreciation is expressed to my committee chairman Dr. Thomas
Crisman and cochairman Dr. D. Y. Goswami for their sage advice and
unwavering support over the last few years. Acknowledgment and
gratitude are extended to committee member Dr. Michael Annable for his
support and generous provision of access to analytical equipment and
laboratory facilities; to committee member Dr. Seymour S. Block whose
knowledge of disinfection has served as a valuable resource and who
graciously allowed me the use of his laboratory; committee member Dr.
Paul Chadik, who helped to steer me in the right direction from the very
beginning; to Sanjay Puranik for sharing his knowledge of analytical
chemistry; to Chuck Garretson for making available his wealth of
mechanical capabilities, keen insight and ever present smile; to Michael
McCaskill and Michael Oliver for their diligent assistance in the
laboratory; and to Barbara Walker and Berdenia Monroe for their
administrative support and friendship. My gratitude and thanks are due to
committee member Dr. Jonathan Earle for his guidance, encouragement,
confidence and that extra push when I needed it.
IV

The insight, support and friendship of my colleagues in the Solar
Energy Group, the Center for Wetlands and Environmental Engineering
Sciences have truly enriched my learning experience here at the University
of Florida, and they, in their own ways, have contributed to the achievement
of this goal.
A special thank you is extended to the entire Earle family, Celia,
Jeremy, Kevin and Mrs. Yvonne Earle, for being my “Gainesville Family.”
My parents Dr. and Mrs. Trenton Cooper, my sister Mrs. Edris
Anifowoshe, and my nephew, Fatin Cooper, have provided invaluable
support in every way imaginable. I want to convey a loving thank you to my
special friend, Abdoulaye Kaba, for his support during the writing of this
dissertation. Others have provided valuable support, insight, friendship
and shoulders over the last years including Sonja Jonas, Clayton Clark, the
Makaveli Gainesville Tennis Crew, and the Black Graduate Student
Organization.
Finally and most importantly, I would like to give praise to the
Creator for making it all possible.

TABLE OF CONTENTS
page
ACKNOWLEDGMENTS iv
LIST OF TABLES ix
LIST OF FIGURES xii
KEY TO SYMBOLS xviii
ABSTRACT xix
CHAPTERS
1 INTRODUCTION 1
Research Significance 1
Theory of Photochemical Water Treatment 4
Photocatalysis 5
Photosensitization 8
The Solar Resource 10
Research Objectives 12
2 REVIEW OF SOLAR BASED WATER TREATMENT 14
Physical Processes 15
Distillation Processes 15
Passive distillation 15
Active distillation 21
Pasteurization Processes 24
Photo Processes 27
Solar Disinfection 28
SODIS 28
Halosol 29
Photocatalysis 29
Photosensitization 30
Summary 32
vi

3 EXPERIMENTAL DESIGN AND METHODS
34
Choice of Experimental Parameters 34
Contaminants 35
Catalyst Choice 35
Choice of Photosensitizer 37
Reactor Design 39
pH 43
Catalyst/Sensitizer Concentration 44
Laboratory Experimental Design 45
Materials and Methods 46
Reaction Vessels 46
Bacterial Inoculation 47
Reactor Chamber 49
Photocatalysis Reactor Setup 49
Photocatalysis Sampling and Analysis 50
Photosensitization Reactor Setup 51
Photosensitization Sampling and Analysis 52
Combination Experimental Setup, Sampling and Analysis 52
Experiments for Confirmation of Previous Work with Bromacil 53
4 RESULTS AND DISCUSSION 54
Dye Photosensitization 54
General Comments About Experimental Data 56
Statistical Treatment of the Data 58
Presentation of Results and Identification of General Trends 62
Data Analysis by ANOM 81
Effect of Sunlight 82
Effect of pH 86
Effect of Dye Concentration 89
Effect of Initial Coliform Density 97
Reactor Efficacy 99
Summary 101
Photocatalysis with Titanium Dioxide 102
General Comments About Experimental Data 104
Statistical Treatment of the Data 105
Presentation of Results and Identification of General Trends 105
Data Analysis by ANOM 112
Effect of Light 113
Effect of pH 117
Effect of Ti02 Concentration 120
Multiple Parameter Effects 128
Effect of Initial Colony Density on Disinfection 129
Other Effects 131
Photocatalysis vs. Air Stripping 132
Summary 134
Ti02 Photocatalysis Combined With Methylene Blue 135
General Comments About Experimental Data 136
vii

Statistical Treatment of the Data 137
Disinfection 137
Detoxification 142
Summary 152
Kinetic Considerations 152
Detoxification 152
Disinfection 154
General Summary of Results 157
5 SUMMARY AND CONCLUSIONS 159
Summary 159
Process Efficacy Comparison for Simultaneous Treatment 159
Drinking Water Quality 160
Conclusions 160
Recommendations for Future Work 161
REFERENCES 163
APPENDICES
A EXPERIMENTAL DATA 176
B LIGHT MEASUREMENT 260
BIOGRAPHICAL SKETCH 269
viii

LIST OF TABLES
Table page
1-1. Spectral Distribution of Solar Radiation 11
2-1. Examples of Photocatalytic Treatment of Water and Wastewater.... 30
2-2. Examples of Photocatalytic Treatment of Water and Wastewater.... 31
2-3. Summary of Photosensitized Treatment of Water and Wastewater.. 32
3-1. Photostability of Semiconductor Oxides Tested by Carey and Oliver
(1980) 37
3-2. Order of Effectiveness of Dyes at 10’^ M Concentration on E. Coli
After 24 Hours Exposure to Light at Room Temperature 40
3-3. Design for Ti02 Photocatalytic Lab Experiments 46
3-4. Design for Photosensitization Lab Experiments 46
3-5. Design for Combination Lab Experiments 46
4-1. Insolation Measurements from Dye Sensitization Experiments 55
4-2. Descriptive Statistics of Measured Data for all Experiments 56
4-3. Average Standard Deviations for all Dye Photosensitization
Experiments 57
4-4. Mean Fractional Survival (± 31%) of E. coli @ t= 30 minutes in MB
Experiments 59
4-5. Mean Fractional Survival (±25%) of E. coli in MB Experiments 65
4-6. Mean Fractional Survival (±13%) of E. coli in RB Experiments 68
4-7. Benzene (±51) and Toluene (±29) Concentrations (ppb) in MB
Experiments 70
4-8. Benzene (± 46) and Toluene (± 36) Concentrations (ppb) in RB
Experiments 70
IX

4-9. Normalized Benzene (+0.09) and Toluene (± 0.11) Concentration in
MB Experiments 76
4-10. Normalized Benzene (±0.06) and Toluene (±0.07) Concentration in RB
Experiments 77
4-11. Calculated ANOM Values for Dye Photosensitized Disinfection 82
4-12. Sunlight Subgroup Averages for Dye Photosensitized Disinfection;
Values are Fractional Survival of E. coli 83
4-13. pH Subgroup Averages for Dye Photosensitized Disinfection. Values
are Fractional Survival of E. coli 86
4-14. Dye Concentration Subgroup Averages in Disinfection Experiments.
Values are Fractional Survival of E. Coli 90
4-15. Mean Fractional Survival of Bacteria in Ti02 Experiments 107
4-16. Mean Concentration of BTEX (ppb) in Ti02 Experiments 108
4-17. Calculated ANOM Values for Ti02 Photocatalysis 113
4-18. UV Light Subgroup Averages for Ti02 Photocatalysis. Values are
Fractional Survival of Bacteria and Normalized Chemical
Concentration 114
4-19. pH Subgroup Averages for Ti02 Photocatalysis. Values are
Fractional Survival of Bacteria and Normalized Chemical
Concentration 117
4-20. TiOz Concentration Subgroup Averages for Disinfection. Values are
Fractional Survival of Bacteria and Normalized Chemical
Concentration 121
4-21. Mean Values for Fractional Survival as a Function of Light, pH and
Ti02 Concentration at t=240 Minutes 128
4-22. Mean Normalized Benzene Concentration After 30 Minutes in Ti02
Experiments 129
4-23. Descriptive Statistics for Initial Colony Density in Ti02 Experiments 130
4-24. Vapor Pressure Values for BTEX components 133
4-25. Measured Sunlight Intensity in Combination Experiments 136
4-26. Average Standard Deviations for all Combination Experiments 137
4-27. Mean Fractional Survival (±14.1%) of E. Coli in Combination
Experiments 139
x

139
4-28. Calculated ANOM Values for Combination Experiments
4-29. Sunlight Subgroup Averages for Combined Experiments. Values are
Fractional Survival of Bacteria and Normalized Chemical
Concentration 139
4-30. Photochemical Subgroup Averages for Combination Experiments;
Values are Fractional Survival of E. coli and Normalized
Chemical Concentration 140
4-31. Mean Concentration (ppb) of Benzene (±120) and Toluene (±199) in
Combination Experiments; A = 433-833 W/m2,1^ A = 25-40
W/m2 147
4-32. Experimental First - Order Rate Constants (min'1) for Ti02
Photocatalytic Experiments 153
4-33. Correlation Statistics for Least Squares Linear Regression of Kinetic
Data; Confidence Level is 95% 154
4-34. First Order Rate Constants for All Photochemical Disinfection
Experiments 157
4-35. Time to Complete Destruction by Photochemical Treatment 158
xi

LIST OF FIGURES
Figure
page
1-1. Graphical Representation of the Generation of e /h+ Pairs and
Recombination by Photocatalytic Reaction on the Surface of
aSemiconductor Particle 7
2-1. Conventional Passive Solar Basin Still 17
2-2. Schematic of Flash Distillation Using Solar Collector 22
3-1. Ti02 Reaction Vessel 47
3-2. Photosensitization Reaction Vessel 48
3-3. Graphical Representation of Bacterial Inoculation 48
3-4. Ultraviolet Light and Dark Reactor Chamber 50
4-1. MB Destruction of E. coli in Sunlight; (a) pH =10,I = 542-696 W/m2
(b) pH =7, Iavg = 665-891 W/m2 63
4-2. Destruction of E. coli in sunlight with 1 mg/L MB; (a) pH =10,1 =
542-696 W/m2 and (b) pH 7, Iavg = 665-891 W/m2 64
4-3. RB Destruction of E. coli in Sunlight; (a) pH = 7,1 = 746-856 W/m2
(b) pH = 10, Iavg = 715-775 W/m2 67
4-4. RB Destruction of E. coli at pH =7, Iavg = 715-775 W/m2; (a) 5 mg/L RB
and (b) 10 mg/L RB 68
4-5. Benzene Concentration as a Function of Time and MB Concentration
in Sunlight; (a) pH=10, Iave = 542-696 W/m2 (b) pH=7, Iave = 665-891
W/m2 72
4-6. Toluene Concentration as a Function of Time and MB Concentration
in Sunlight; (a) pH =10,1 = 542-696 W/m2 (b) pH=7,1 = 665-891
W/m2 73
4-7. Benzene Concentration as a Function of Time and RB Concentration
in Sunlight; (a) pH =10, T = 715-775 W/m2 (b) pH=7, T = 746-856
W/m2 74

4-8. Toluene Concentration as a Function of Time and RB Concentration
in Sunlight; (a) pH =10, Iavg = 715-775 W/m2 (b) pH=7, Iavg = 746-856
W/m2 75
4-9. Normalized Benzene Concentration in Sunlight with 0.1 mg/L MB,
(a) pH =10, Iavg = 542-696 W/m2 (b) pH=7, Iavg = 665-891 W/m2 78
4-10. Normalized Toluene Concentration in Sunlight with 0.1 mg/L MB;
(a) pH =10, Iavg = 542-696 W/m2 (b) pH=7, Iavg = 665-891 W/m2 79
4-11. Normalized Benzene Concentration in Sunlight with 0.1 mg/L RB, (a)
pH =10, Iavg = 715-775 W/m2 (b) pH=7, Iavg = 746-856 W/m2 80
4-12. Normalized Toluene Concentration in Sunlight with 0.1 mg/L RB, (a)
pH =10, Iavg = 715-775 W/m2 (b) pH=7, Iavg = 746-856 W/m2 81
4-13. Significance of Sunlight, Based on ANOM, in MB Experiments (a) 5
Minutes (b) 15 Minutes (c) 30 Minutes 84
4-14. Significance of Sunlight, Based on ANOM, in RB Experiments; (a) 5
Minutes (b) 15 Mintues (c) 30 Minutes 85
4-15. Significance of pH, Based on ANOM, in MB Experiments; (a) 5
Minutes (b) 15 Minutes (c) 30 Minutes 87
4-16. Significance of pH, Based on ANOM, in RB Experiments; (a) 5
Mintues (b) 15 Minutes (c) 30 Minutes 88
4-17. Statistical Significance of MB Concentration, Based on ANOM, on
Disinfection in Sunlight; (a) 5 Minutes (b) 15 Minutes (c) 30
Minutes 91
4-18. Statistical Significance of RB Concentration, Based on ANOM, on
Disinfection in Sunlight; (a) 5 Minutes (b) 15 Minutes (c) 30
Minutes 92
4-19. Comparison of Disinfection Efficacy of Control and 0.1 mg/ L MB in
Sunlight at 5 minutes, Based on ANOM 93
4-20. Comparison of Disinfection Efficacy of Control and 1 mg/L MB in
Sunlight at 5 minutes, Based on ANOM 94
4-21. Comparison of Disinfection Efficacy of Control and 5 mg/L MB in
Sunlight at 5 minutes, Based on ANOM 94
4-22. Comparison of Disinfection Efficacy of Control and 10 mg/L MB in
Sunlight at 5 minutes, Based on ANOM 95
4-23. Comparison of Disinfection Efficacy of 0.1 mg/ L and 10 mg/L MB in
Sunlight at 5 minutes, Based on ANOM 95
xin

4-24. Comparison of Disinfection Efficacy of 1 mg/ L and 10 mg/L MB in
Sunlight at 5 minutes, Based on ANOM 96
4-25. Comparison of Disinfection Efficacy of 5 mg/ L and 10 mg/L MB in
Sunlight at 5 minutes, Based on ANOM 96
4-26. Fractional Survival of E. coli in sunlight at t=30 minutes as a
Function of MB Concentration; Bars are One Standard Deviation
97
4-27. Least Squares Regression of Natural Logarithm of Fractional
Survival of E. coli as a Function of MB Concentration at t=5
Minutes 98
4-28. Initial Colony Count vs. Fractional Survival of E. coli at t=60 Minutes
for MB Experiments 98
4-29. Initial Colony Count vs. Fractional Survival of E. coli at t=30 Minutes
in RB Experiments 99
4-30. Ti02 Photocatalytic Disinfection in UV Light (29 W/m2); Error Bars
are One Standard Deviation; (a) pH = 4 (b) pH = 7 106
4-31. Destruction of Benzene in Reactors 3 and 4 as a Function of Time;
Reactors Contained 0.01% Ti02 and were Irradiated for 60
minutes under UV Lamps (29 W/m2) 110
4-32. Benzene Concentration in UV Light (29 W/m2) as a Function of Time
and Ti02 Concentration; Error Bars are One Standard Deviation,
(a) pH =4, (b) pH = 7 110
4-33. Toluene Concentration in UV Light (29 W/m2) as a Function of Time
and Ti02 Concentration; Error Bars are One Standard Deviation,
(a) pH =4, (b) pH = 7 Ill
4-34. m&p Xylene Concentration in UV Light (29 W/m2) as a Function of
Time and Ti02 Concentration; Error Bars are One Standard
Deviation, (a) pH =4, (b) pH = 7 112
4-35. Significance of UV Light (29 W/m2), Based on ANOM, on Bacteria in
Ti02 Experiments at 120 Minutes 115
4-36. Significance of UV Light (29 W/m2), Based on ANOM, on Benzene in
Ti02 Experiments (a) 30 Minutes (b) 60 Minutes 115
4-37. Significance of UV Light (29 W/m2), Based on ANOM, on Toluene in
Ti02 Experiments (a) 30 Minutes (b) 60 Minutes 116
4-38. Effect of UV Light (29 W/m2) on Fractional Survival of Bacteria in All
Reactors in Ti02 Experiments; Bars are One Standard Deviationll6
xiv

4-39. Significance of pH, Based on ANOM, to Bacteria Destruction in Ti02
Experiments at 120 Minutes 118
4-40. Significance of pH, Based on ANOM, to Benzene Destruction in Ti02
Experiments (a) 30 Minutes (b) 60 Minutes 119
4-41. Significance of pH, Based on ANOM, to Toluene Destruction in Ti02
Experiments (a) 30 Minutes (b) 60 Minutes 120
4-42. Significance of Ti02 Concentration, Based on ANOM, on Bacteria in
Photocatalysis Experiments at 120 Minutes 121
4-43. Significance of Ti02 Concentration, Based on ANOM, on Benzene in
Photocatalysis Experiments; (a) 30 Minutes (b) 60 Minutes 122
4-44. Significance of Ti02 Concentration, Based on ANOM, on Toluene in
Photocatalysis Experiments; (a) 30 Minutes (b) 60 Minutes 123
4-45. Comparison of Control vs. 0.01% Ti02 on Photocatalytic Disinfection
at 120 Minutes, Based on ANOM 124
4-46. Comparison of Control vs. 0.05% Ti02 on Photocatalytic Disinfection
at 120 Minutes, Based on ANOM 124
4-47. Comparison of Control vs. 0.10% Ti02 on Photocatalytic Disinfection
at 120 Minutes, Based on ANOM 125
4-48. Comparison of 0.01% vs. 0.05% Ti02 on Photocatalytic Disinfection at
120 Minutes, Based on ANOM 125
4-49. Comparison of Control vs. 0.01% Ti02 on Photocatalytic Destruction of
Benzene at 60 Minutes, Based on ANOM 126
4-50. Comparison of Control vs. 0.05% Ti02 on Photocatalytic Destruction of
Benzene at 60 Minutes, Based on ANOM 126
4-51. Comparison of Control vs. 0.10% Ti02 on Photocatalytic Destruction of
Benzene at 60 Minutes, Based on ANOM 127
4-52. Comparison of 0.01% vs. 0.05% Ti02 on Photocatalytic Destruction of
Benzene at 60 Minutes, Based on ANOM 127
4-53. Fractional Survival of Bacteria as a Function of UV Light (29 W/m2)
and pH in Ti02 Experiments; Bars are One Standard Deviation
130
4-54. Effect of UV Light (29 W/m2) and pH on the Destruction of Benzene in
Ti02 Experiments; Bars are One Standard Deviation 130
4-55. Initial Colony Count vs. Fractional Survival of Bacteria at t=120
Minutes for Ti02 Photocatalysis 131
xv

4-56. Normalized Concentrations of BTEX Components in pH 7 Dark
Experiments with 0.01% Ti02 133
4-57. Normalized Concentrations of BTEX Components in pH 4 Dark
Experiments with 0.01% Ti02 134
4-58. Destruction of E. coli in Sunlight (IXot Avg = 433-853 W/m2,1^ Avg = 25-40
W/m2) in Combination Experiments 138
4-59. Significance of Sunlight (ITot Avg = 433-853 W/m2,1^ A^g = 25-40 W/m2)
on E. coli Destruction, Based on ANOM, in Combination
Experiments; (a) 5 Minutes (b) 15 Minutes (c) 30 Minutes 141
4-60. Significance of Photochemical on E. coli Destruction, Based on
ANOM, in Combination Experiments; (a) 5 Minutes (b) 15
Minutes (c) 30 Minutes 143
4-61. Significance of Ti02 vs MB on E. coli Destruction, Based on ANOM, in
Combination Experiments; (a) 5 Minutes (b) 15 Miiues (c) 30
Minutes 144
4-62. Significance of Ti02 vs Both on E. coli Destruction, Based on ANOM,
in Combination Experiment; (a) 5 Minutes (b) 15 Minutes (c) 30
Minutes 145
4-63. Significance of MB vs Both on E. coli Destruction, Based on ANOM,
in Combination Experiments; (a) 5 Minutes (b) 15 Minutes (c) 30
Minutes 146
4-64. Normalized Concentration as a Function of Time in Combination
Experiments. 1^ Avg = 433-833 W/m2, Iuv Avg = 25-40 W/m2; (a)
Benzene (b) Toluene 147
4-65. Significance of Photochemical on Benzene Destruction, Based on
ANOM, in Combination Experiments; (a) 30 Minutes (b) 120
Minutes 148
4-66. Significance of Photochemical on Toluene Destruction, Based on
ANOM, in Combination Experiments; (a) 30 Minutes (b) 120
Minutes 149
4-67. Significance of Ti02 vs Both on Benzene Destruction, Based on
ANOM, in Combination Experiments; (a) 30 Minutes (b) 120
Minutes 150
4-68. Significance of Ti02 vs Both on Toluene Destruction, Based on
ANOM, in Combination Experiments; (a) 30 Minutes (b) 120
Minutes 151
xvi

4-69. Least Squares Linear Regression of First Order Rate Equation for
Disinfection in UV Light (29 W/m2) with 0.05% Ti02 and pH = 4; r2
= 0.90, p-value = 0.0025 155
4-70. Least Squares Linear Regression of First Order Rate Equation for
Disinfection in UV Light (29 W/m2) with 0.10% Ti02 and pH = 7; r2
= 0.55, p-value = 0.019 155
4-71. Least Squares Linear Regression of First Order Rate Equation for
Disinfection in Sunlight (715-775 W/m2) with no photochemical
and pH = 10; r2 = 0.99, p-value = 0.0001 156
4-72. Least Squares Linear Regression of First Order Rate Equation for
Disinfection in Sunlight (746-856 W/m2) with 1 mg/L RB and pH =
7; r2 = 0.95, p-value = 0.0003 156
XVII

KEY TO SYMBOLS
k
h
e
hv
h+
e_
‘X*
3X*
X*
!x
3X
R
Nt
I
s
X
X
s_
R
H
v
d22
a
Wavelength, nm
Planck’s constant, 6.625 x 10 4Js
Speed of light, 3.0 x 1010 cm/s
Band gap energy, ev
Light energy
Positive hole in the valence band
Electron
Excited singlet state of component X
Excited triplet state of component X
Excited state of component X
Singlet state of component X
Triplet state of component X
Hydrocarbon group
Solar constant
Concentration at time, t
Colony density at time, t
Insolation, W/m2
Standard Deviation
Grand Average of all Data in ANOM
Subgroup Average for ANOM
Average standard deviation
Average Range
ANOM Critical Value
degrees of freedom
bias correction factor for ANOM
significance factor
xvm

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
SOLAR PHOTOCHEMICAL TECHNOLOGY
FOR POTABLE WATER TREATMENT:
DISINFECTION AND DETOXIFICATION
By
Adrienne Teresa Cooper
August 1998
Chairperson: Thomas Crisman
Cochairperson: D. Yogi Goswami
Major Department: Environmental Engineering Sciences
Clean water is scarce in many countries, and the goal of universal
access to water and sanitation has not yet been achieved. Standard water
treatment techniques are often expensive both in capital investment and
operation and maintenance, particularly in lesser developed communities
where resources are scarce.
Solar photochemistry has shown promise as an appropriate
alternative technology for treatment of water, and provides potential for
simultaneous disinfection and destruction of organic chemicals. The need
for simultaneous treatment arises when conditions of contamination of
source water, such as ground water, occurs. Potential sources of
contamination are industrial and agricultural runoff or leakage of
underground storage tanks (gasoline) and sewerage lines.
xix

In a series of bench scale experiments, three photochemical
technologies, Ti02 photocatalysis, dye photosensitization and a combination
of dye photosensitization and Ti02 photocatalysis, were evaluated for their
efficacy for simultaneous removal of coliform bacteria and aromatic
hydrocarbons in drinking water under a variety of pH and photochemical
concentration conditions.
Series of 100 ml and 500 ml reactors, containing various
concentrations of Ti02, and two pH levels (4 and 7), were inoculated with
mixed bacteria species, benzene, toluene, and xylene, and illuminated
under ultraviolet light for several hours. Under most conditions both the
chemical and bacteriological contaminants were destroyed within an hour.
In photosensitization experiments, the 500 ml reactors were charged
with several concentrations of rose bengal or methylene blue and neutral,
pH 7, or basic, pH 10, water. After inoculation with Escherichia coli,
benzene and toluene, the reactors were illuminated for four hours in
sunlight. In all cases, the water was disinfected within one hour; however,
destruction of the chemical contaminants did not occur.
The 500 ml hybrid reactors, loaded with 0.01% Ti02 and/or 5 mg/L
methylene blue, were also illuminated in sunlight. The inoculations of
Escherichia coli, benzene, and toluene were completely destroyed after two
hours in all of the reactors which contained Ti02; however, the presence of
methylene blue inhibited the reaction.
xx

CHAPTER 1
INTRODUCTION
Research Significance
Clean and safe water is a requirement for healthy living and
development. While concerns with most water related diseases have been
virtually eliminated in most developed regions, such as Western Europe
and North America, diseases related to either the quantity or quality of
water supply are still a major problem in other parts of the world
In 1977 Stein reported that 25,000 deaths occurred daily from water
borne diseases. In an effort to reduce these deaths, the United Nations
declared the ten year period from 1981 to 1990 the International Drinking
Water Supply and Sanitation Decade. The goal of the decade was to provide
universal access to safe water and sanitation. While many advances were
made during this period to increase the supply of safe drinking water for
the global human population, universal access has yet to be achieved.
According to World Health Organization (WHO) estimates, as of 1990, 18%
of urban populations and 36% of rural populations (approximately 1.23
billion people) are still without access to safe drinking water supplies
(Christmas 1990). An inexpensive supply of clean water is one of the most
pressing public health issues facing developing communities.
Over 10 million deaths result from more than 250 million new cases
of water borne diseases yearly (Hazen and Toranzos 1990). During 1993
1

2
there were 272,500 reported cases of cholera in Sub-Saharan Africa and
Latin America, with death rates of 3% and 1%, respectively. In 1994 WHO
reported a decrease in the availability of clean water in several countries of
Sub-Saharan Africa. Their estimates, based on the continuation of current
trends, suggest that by the year 2025, the supply of renewable fresh water
per person in the worst drought-affected countries of the continent will
represent 15% of the 1955 values (WHO 1994). In many developing
communities, water related infections caused by poor biological drinking
water quality or lack of water supply are the most urgent public health
issues. The water related infections are acute, tending to act quickly,
causing illness and sometimes death. However, the chemical quality of
water is also of growing concern.
In the 1970s it was discovered that disinfection by chlorination of
water containing humic substances generates chloroform and other
trihalomethanes (THMs). THMs are known animal carcinogens (Clark
1992; Glaze et al. 1993a; Moser 1992; Packham 1990; Stevens et al. 1989),
raising concerns about chemical disinfection by-products and their
toxicological effects on the population.
Rachel Carson (1962) brought the issue of pesticide contamination of
water and soil to the forefront. The growth of industry and the prevalence
of agricultural pesticides and fertilizers s cause concern for the effect of
these discharges on the chemical quality of water. An increase in
motorized transportation leads to contaminated runoff and the potential for
leakage of benzene, toluene and other aromatic hydrocarbons. These
activities can have a severe impact on drinking water sources. The effect of

3
chemical contaminants on public health is more often chronic, building
over time and causing long term illness (Droste and McJunkin 1982).
Standard water treatment techniques are very well defined in the
United States and other developed countries. However, due to differences in
economics and infrastructure, these treatments are not necessarily readily
transferable from the developed to the developing world, including some
lesser developed areas of developed nations. The operational and capital
costs for this technology are often too expensive for developing
communities.
The development of community appropriate technology for treatment
of drinking water is critical if universal access to a safe water supply is to
be achieved. Utilization of available natural resources, where feasible,
provides a greater opportunity for a sustainable drinking water supply.
This requires innovative and creative technology.
While no one technology can meet all of the needs of a community,
solar photochemical oxidation holds promise as a viable alternative to
standard, more expensive methods. The efficacy of the photocatalytic
reaction has been demonstrated for biological contaminants (Block et al.
1997; Ireland et al. 1993) and chemical contaminants (Blake 1994; Legrini
et al. 1993). Therefore, it is reasonable to expect that the simultaneous
destruction of both chemical and biological contaminants can be
accomplished, although it has not been reported. While some
investigations of simultaneous disinfection and detoxification with dye
photosensitization have been undertaken (Acher 1984; Acher and
Rosenthal 1977; Eisenberg et al. 1987a; Eisenberg et al. 1986), these

4
processes have not been optimized, nor have they been compared directly
with photocatalysis. The success of previous studies indicates that solar
photochemical technology, when properly integrated with conventional
treatment, has the potential to address the technical issues of water
treatment facing a community.
Use of solar photochemical technology for water treatment has the
potential to provide a solution which is technically, economically and
socially acceptable, manifested by the following potential benefits:
• The use of the sun as a primary driver results in a renewable and
essentially free source of energy for the reaction
• Photochemical oxidation results in complete destruction of
pollutants, which is preferable to dissipation, concentration or
change of form
• Since very small quantities of sensitizer or catalyst are required,
and little if any external energy besides the sun, the technology
has the potential for low capital and maintenance costs
• The process is easily adaptable to a small scale, and therefore,
suitable for rural and suburban communities
Theory of Photochemical Water Treatment
Photochemical water treatment is an oxidation process which
involves the use of a chemical as a catalyst or sensitizer for indirect
photolysis of a contaminant within the water. When exposed to light of the
appropriate wavelength, which is governed by the photochemical used, the
photosensitizer or photocatalyst generates a reactive species, an hydroxyl or

5
peroxy radical, which subsequently reacts with the contaminant species
(Ollis et al. 1989; Schiavello 1988; Teichner and Formenti 1985). This
indirect process opens a much wider range of contaminants to destruction
by photochemical means than would be available using only direct
photolysis. The photochemical water treatment processes evaluated herein
are photocatalysis, photosensitization and a combination of the two. The
distinction between photocatalysis and photosensitization is based on the
nature of the photochemical used.
Photocatalvsis
Photocatalysis, or photocatalytic oxidation, for water treatment
applications refers to a heterogeneous oxidation reaction involving solid
semiconductor surfaces. The reaction occurs via the irradiation of a
semiconductor catalyst, such as titanium dioxide (Ti02), zinc oxide (ZnO),
or cadmium sulfide (CdS), with visible or ultraviolet (UV) light. The
reaction is possible because of the structure of the semiconductor. The
optical bandgap of a semiconductor is an area devoid of energy levels,
between the highest occupied energy band, the valence band, and the lowest
unoccupied energy band, the conduction band. When a semiconductor
absorbs light with energy greater than the energy of the semiconductor’s
optical band gap, photoexcitation results (Bahnemann et al. 1991; Mills et
al. 1993). For example, since Ti02 has an optical band gap energy of 3.2 eV,
absorption occurs with light of wavelengths less than 388 nm, ultraviolet
light, as indicated by equation 1-1 (Zhang et al. 1994b).

6
he
'(6.625xHT34Js)(3.0x1010 cnj/)'
xi leV 1
e
3.2eV
Vl.6xlO”19J J
= 388nm (1-1)
The resulting excitation leads to the promotion of excess free
electrons, e”, to the conduction band, leaving positive “holes,” h+, in the
valence band, referred to as electron/hole (e~/h+) pairs. Equation 1-2
describes this process (Carey and Oliver 1980; Oliver and Carey 1986). The
electrons and holes are highly energetic and very mobile (Turchi et al.
1989).
Ti02 +hv=>h+ + e~ (1-2 )
There are two paths that the e~/h+ pairs can take. They can either
recombine and deactivate, or migrate to the surface of the semiconductor
and react with surface species as shown in equations 1-3 to 1-5. Figure 1-1
is a graphical representation of this process for a single semiconductor
particle.
OH' + h+ OH'
(1-3)
'(ads, + h+ -> OH- + H+
(1-4)
e“ + 02 -> H02~
(1-5)
If reactions 1-3 to 1-5 take place, reactive species are formed, which
in turn are able to oxidize organic contaminants in the water. The less
recombination which takes place, the more efficient the semiconductor is
as a photocatalyst.

7
The peroxy radical, HO2 , disproportionates further to form more
hydroxyl radicals, OH-, which combine with organic substrate to form
oxidation products as shown in reaction 1-6 (Blake et al. 1991; Ireland et al.
1993; Oliver and Carey 1986). If enough catalyst and light are present, a
OH- + substrate —> oxidation products (1-6 )
pseudo chain reaction occurs resulting in complete mineralization of
organics. It is thought that the process for the destruction of biological
substrate is very similar, with the oxidation of proteins, lipids or nucleic
acids resulting in inhibition of respiration or growth of the microorganism
(von Sonntag 1987).
Figure 1-1. Graphical Representation of the Generation of e~/h+ Pairs and
Recombination by Photocatalytic Reaction on the Surface of a
Semiconductor Particle; After Bahnemann et al. (1991) and
Tseng and Huang (1990)

8
Photosensitization
Sensitized photolysis, also referred to as photosensitization or
photodynamic action, is another method of indirect photolysis very similar
to photocatalytic oxidation. In photosensitization, energy is transferred
from a photochemically excited molecule to an acceptor. The sensitizer (S),
often a dye, absorbs light and is photochemically excited to a higher energy
state. This process may offer an advantage over the photocatalytic process
because the sensitizers can absorb light in the visible spectrum, allowing
for use of a greater percentage of available sunlight. The reaction proceeds
via the triplet excited state, owing to its longer lifetime relative to the singlet
excited state (Foote 1968; Larson et al. 1989) as shown in equation 1-7.
S + hv —»'S* (excited singlet) —> :!S’ (excited triplet) (1-7 )
The excited sensitizer (S’) then transfers some of its excess energy to
an acceptor, forming a reactive, transient form of oxygen, singlet oxygen,
'02 (Larson and Weber 1994). Acceptors can be either organic material
(OM) or dissolved inorganic species such as molecular oxygen, 02. The
intermediate reactive species produced from the reaction of the triplet
sensitizer with organic material subsequently reacts with atmospheric
oxygen under aerobic conditions (equation 1-8).
,!S* + OM -» transient specia + 02 —> oxidation products + S (1-8 )
When the S’ transfers its excess energy to molecular oxygen instead
of OM, the oxygen molecule changes from its ground electronic state, the
triplet state (^XgOa), to the excited singlet state, L02. The organic matter is

9
then oxidized by the '02 to form oxidation products. Acher and Rosenthal
(1977) described the mechanism by reactions 1-9 and 1-10:
3S* + 3Ig02-> S + '02
(1-9)
‘02 + OM —> oxidation products
(1-10)
When '02 combines with unsaturated organic compounds (UC), it
yields free radicals which readily combine with nucleic acids, lipids and
proteins for destruction of microorganisms as demonstrated by reactions 1-
11 to 1-13 (Acher and Rosenthal 1977).
‘02 + UC->R00R^>R0*
(1-11)
RO* + R H -4 ROH + R *
(1-12)
R * + 02 -» ROO*, etc.
(1-13)
The wavelength of light absorption is specific for each sensitizer.
Methylene blue and rose bengal are widely used dye sensitizers which
absorb in the visible region at A.max 668 nm and A.max 549 nm, respectively
(Acher and Juven 1977).
Ideal sensitizers are defined as those compounds which exhibit the
following criteria (Acher and Rosenthal 1977):
• induce reactions with visible light,
• are chemically stable during radiation or degrade to a sensitizing
species,
• are free of reactive functional groups,

10
• have good light absorption capacity, and
• are soluble in water but easy to remove.
Compounds which exhibit these qualities most efficiently are dyes,
such as fluorescein and phenothiazine derivatives, flavins, certain
porphyrins and polycyclic aromatic hydrocarbons (Foote 1968). For the
purposes of water treatment, the latter two are too toxic; however, the
others are acceptable. The sensitizers which have shown the most promise
for both disinfection and detoxification, and which were evaluated for this
research, are methylene blue and rose bengal. These dyes have been found
to be relatively easily removed by precipitation with bentonite clay (Acher
and Rosenthal 1977).
The Solar Resource
The sun can be modeled as a blackbody with a steady-state
temperature of 5800K, radiating approximately 6.416 x 10' W/m2 from its
surface (Wieder 1992). The intensity of the sun’s radiation on an object is
inversely related to the square of its distance from the sun (Hsieh 1986).
Since the distance of the earth from the sun varies throughout the year, the
amount of sunlight reaching the atmosphere of the earth is not constant.
However, a value termed the Solar constant, Isc, is the amount of solar
radiation reaching a surface normal to the rays of sun outside the earth’s
atmosphere at a mean earth-sun distance of 1.5 x 1011 m (Hsieh 1986).
Based on measurements, the established value of the Solar constant is 1377
W/m2 (Randall and Bird 1989). Solar radiation reaching the atmosphere of
the earth emits energies of wavelengths from gamma to radio, with most of

11
it concentrated in the visible region. The spectral distribution of the solar
radiation outside the earth’s atmosphere is given in Table 1-1.
Table 1-1. Spectral Distribution of Solar Radiation
Wavelength (pm)
% of Total
0.00 - 0.395 (gamma to ultraviolet)
8.24
0.40 - 0.70 (visible)
38.15
0.71 - 2.00 (near infrared)
45.61
2.00 - °° (infrared to radio)
6.51
Source: Thekaekara (1976)
The amount of solar radiation, also referred to as insolation,
available at the earth’s surface at a given time is dependent on the
prevailing climatic conditions, the level of atmospheric pollution and the
angle at which the sun strikes the surface (Hsieh 1986). Scattering and
absorption of radiation, due to the presence of ozone, gas molecules,
particulate matter and water vapor (including clouds), account for a
significant reduction in the solar radiation incident on the earth’s surface
(Barry and Chorley 1992). The path length of the solar radiation in the
atmosphere, which changes with the time of day and latitude, determines
the amount of extinction of radiation by these parameters (Hsieh 1986).
Approximately 4-6% of the solar radiation reaching the earth’s surface is in
the ultraviolet wavelength range (Goswami 1995). The remainder of
incident radiation is in the visible and near infrared range. Using
historical weather data the direct beam incident radiation for a given
location in space and time can be calculated with reasonable accuracy
(Randall and Bird 1989).

12
The photochemical oxidation process is governed by the absorption of
light within the wavelength of effectiveness of the catalyst or sensitizer
used. For the Ti02 photocatalytic process, the ultraviolet part of the
spectrum, wavelengths below about 390 nm, is the most critical (Goswami
1995). This process, therefore, is well suited for areas where cloudiness
prevails, as the ultraviolet light is often present both as scattered and direct
beam radiation.
Photosensitization works with visible light, which is the greater part
of direct beam incident radiation. The sensitizers evaluated in this work,
methylene blue and rose bengal, are most effective in the blue (~ 670 nm)
and red (~ 550 nm) ranges, respectively (Acher and Juven 1977).
Research Objectives
There exists a need for research, at all levels, tailored to address the
needs of smaller, and possibly lesser developed, communities. The direct
transfer of technology from one community to another is one of the
solutions. However, it cannot serve as a replacement for the development of
regional and community specific technology to solve regional and
community specific problems.
In order for this more localized technology development to occur,
however, the information base must be expanded. One primary method for
the appropriate expansion of the information base is the conduction of
research which is more focused on the needs specific to these communities.
The investigation of basic techniques, technologies and processes which

13
may differ from the mainstream is key to the provision of tools necessary for
the advancement and development of all communities.
The research reported herein is an effort to add some knowledge to
that information base, and addresses two key areas of photochemical
technology:
• simultaneous treatment of chemical and microbiological
pollutants,
• comparative efficacies of photosensitization, photocatalysis and
combined photosensitization and photocatalysis,
While the research reported herein is not a solution to the problem of
water supply, it is anticipated that the knowledge derived from this
research could be applied to accept or reject one option, photochemical
treatment, as a partial solution. In the process of creating a better reality,
the best that one can wish for is options and the information to adequately
evaluate those options.

CHAPTER 2
REVIEW OF SOLAR BASED WATER TREATMENT
The use of sunlight for water treatment is not a recent phenomenon.
Documented evidence for solar distillation systems exists as far back as
1551 when Arab alchemists used glass vessels and concave mirrors to
distill water (Malik et al. 1982). However, technologies for solar based water
treatment have changed dramatically in recent years. The development of
photochemical technologies have significantly expanded the application
potential for solar based water treatment processes. What follows is an
exploration of the various methods of water treatment which use solar
energy as the primary driver, and a review of the current state of related
research.
Solar based water treatment processes can be roughly categorized as
either physical or chemical. Physical processes are those processes which
use the sun as a source of heat energy. Distillation and heat pasteurization
fall into the physical process category. The chemical processes are those
which involve a chemical reaction either directly or indirectly induced by
light. These photolytic processes include ultraviolet disinfection and a
number of photochemical processes.
14

15
Physical Processes
Distillation Processes
The most studied solar based water treatment process is desalination
by distillation. Solar distillation involves the use of sunlight to evaporate
saline or brackish water for the purpose of collecting the desalinated
condensate. Two approaches have been taken in the development of solar
distillation units. The first, and more conventional, involves the direct
absorption of solar energy by saline water, called passive solar distillation.
The second, active solar distillation, is similar to a standard chemical
distillation process using sunlight as the heat energy source for indirect
heating of the water. In this type of unit, evaporation is in a centralized
facility (Malik et al. 1982; Rajvanshi 1979).
Passive distillation
Passive solar distillation is easily understood when compared to the
natural process of the hydrologic cycle. In the hydrologic cycle, the sun
provides energy which warms the water of the oceans and other large
water bodies, causing evaporation. Convective wind energy transports this
vapor into the atmosphere where it condenses and produces precipitation.
The precipitation either directly, as rain, or indirectly, as melted snow,
recharges fresh water sources: lakes, rivers, streams, underground
springs and groundwater aquifers.
The solar distillation process is a simulation of this process in
manufactured facilities. The sun warms the collected body of saline or
brackish water and causes evaporation. The water vapor is carried by

16
convective winds, induced by the appropriate construction, and, upon
cooling, the vapor condenses as pure distilled water.
The conventional design for passive distillation systems is the basin-
type solar still (Figure 2-1). The bottom surface of the basin is black to
enhance the absorption of radiation by the saline or brackish water,
supplied either continuously or batchwise (Malik et al. 1982; Rajvanshi
1979). The basin is covered with a transparent, air tight cover which slopes
downward to facilitate transport of the condensate as a thin film into a
collection trough (Malik et al. 1982; Rajvanshi 1979). Solar radiation
penetrates the cover, generally glass or plastic, and is absorbed by the
water, warming it to induce evaporation. The temperature differential
between the cover, which does not absorb much radiation, and the water
surface leads to air convection currents which move the water vapor to the
underside of the cover. The cool temperatures of the basin cover, relative to
the water temperature, cause condensation, and the water forms a thin
film which is collected via troughs. Basin stills can be either shallow or
deep, depending upon the design and operational requirements. Shallow
basins stills have water depths ranging from 1.25 cm (0.5 in) to 5 cm ( 2 in)
and deep basin still water depths range anywhere from over 5 cm (2 in) up
to 91 cm (3 ft) (Rajvanshi 1979).
The first modern commercial solar still was installed in 1872 in the
northern part of Chile, designed by Swedish engineer Carlos Wilson. The
glass covered basin type solar still was 4700 m2 and operated for many years
treating feedwater with a salinity of 140,000 ppm (Howe and Tliemat 1977;
Malik et al. 1982). Work conducted at the University of California's

17
Engineering Field Station in Richmond, California, concentrated on
reducing capital costs and improving efficiency of the basin still by
changing the geometric configuration. Designs tested included a circular
still, several trough type stills with rounded or v-shape bottoms and
stairstepped stills. The general conclusion of this work was that the basin
type solar stills were not economically competitive in any of the tested
configurations (Howe and Tliemat 1977).
Solar
Radiation
Figure 2-1. Conventional Passive Solar Basin Still; After Malik et al. 1982
and Rajvanshi (1979)
At the University of Florida's Solar Energy and Energy Conversion
Laboratory, Rajvanshi (1979) evaluated the efficacy of dyes as a means of
increasing the efficiency of solar distillation. Using deep basin stills he
added dye to saline water to increase radiation absorption and alter the heat

18
transfer rate. Three dyes, black napthylamine, red carmoisine, and a dark
green mixture were used. The water treated with up to 500 ppm dye had an
increased output of as much as 29% on clear days, however, no increase in
output was observed with the dyes on completely cloudy days. Both the red
and green dyes degraded when exposed to sunlight, however, the black dye,
which also exhibited the largest increase in evaporation rate, did not visibly
degrade with exposure to sunlight.
Other research has focused on developing and improving the
conventional basin type passive still. What emerged was the tilted tray solar
still, wick solar stills, and double basin stills (Al-Karaghouli and Minasian
1995; Higazy 1995; Howe and Tliemat 1977; Malik et al. 1982).
The tilted tray solar still is a variation of the basin type solar still in
which the basin is broken into a series of narrow strips arranged like steps.
Each strip is on a different elevation, bringing the water surface much
closer to the transparent cover, and increasing the operating efficiency.
Generally these types of stills have very shallow basins. While the
efficiency is increased, so is the capital cost, making this type of still
infeasible for commercialization (Howe and Tliemat 1977).
Wick still designs utilize an absorbent material (wicking), usually
black to absorb radiation, as a facing on a glass covered inclined plane.
Saline water is introduced along the upper edge of the inclined plane and
trickles down saturating the wicking. The primary difficulty with this
design is an inability to maintain a uniformly wet surface (Howe and
Tliemat 1977).

19
Double basin stills utilize the latent heat of the condensing water
vapor, thereby increasing the daily yield over the conventional basin design.
The double basin still has two transparent covers. The inner glass cover
acts as a second, very shallow basin, with water running over it like a thin
film from a pipe in the center. The heat from the water condensing on the
underside of the lower basin cover is used to aid vaporization of the water
on the topside, which then condenses on the upper cover. The distilled
water is drained and collected from the underside of both transparent
covers (Malik et al. 1982).
During World War II Dr. Maria Telkes designed an inflated plastic
still for use with the life rafts of the United States armed forces (Howe and
Tliemat 1977). The design was similar to the basin still, however, it
utilized a saturated sponge as the absorption media, and the entire
assembly was designed to float on top of the water. Distillate was collected
in a bottle at the bottom of the unit. These types of stills were referred to as
floating sponge solar stills and reportedly over 200, 000 of them were
produced during the war (Howe and Tliemat 1977).
Higazy (1995) reported on the design and performance of a floating
sponge solar still for desalination of sea water. The still design was based
on the original design by Telkes. In Higazy's design water was pumped
into the bottom of the still and constituted the bottom layer. Above that layer
was a plastic sponge covered with a black cloth, which was where the
radiation was absorbed and then transferred by conduction to the sea water.
He examined two still designs, a single sloped cover which used mirrors to
increase the radiation absorption area and double sloped cover, evaluating

20
the parameters of insolation intensity, temperature and the sponge
properties (thickness and density). The primary improvement of this
system over Telke's was that the use of plastic parts eliminated the problem
of corrosion.
Higazy’s experiments were conducted using tap water and it was not
indicated whether salts were added to simulate the saline environment
produced by sea water, although the physical and behavioral properties
were very similar. The design had no provisions for drainage of sea water
or periodic removal of the salts from the still and or the sponge, and
eventually problems might result from salt accumulation.
Al-Karaghouli and Minasian (1995) developed a new type of passive
solar still using a floating-wick and compared the still to conventional basin
solar still and the tilted wick solar still. They also introduced azimuth and
altitude tracking to increase the incident solar radiation on the still. The
floating wick still was a conventional basin type solar still which contained
a blackened jute wick floated on a polystyrene sheet. The unit floated no
more than 0.5 cm above the still water level. The benefit of the floating wick
still was due to the capillary action of the jute cloth, which was prepared in
a corrugated shape to restrict salt accumulation to the upper parts. The
stills used for comparison were made with the same materials and similar
style to the floating wick for direct comparison. The floating wick solar still
had a higher output than the other stills with which it was compared.
The use of a corrugated shape solved the problem of scale formation
and, due to the capillary action of jute cloth, the wick stayed uniformly
wet. Consequently, in the summer months the floating wick still had a

21
higher output, versus comparable performance with the wick still during
the cooler months. Tracking increased the output on all of the stills but was
particularly impressive with the floating wick still, almost doubling the
performance without tracking and having at least 30% higher output than
the conventional basin still with tracking (Al-Karaghouli and Minasian
1995).
Solar distillation technology is fairly well established and has proven
useful for small scale desalination of water. However, research has not
advanced to the point where large scale processes are economically
competitive with more conventional methods of distillation.
Active distillation
Active solar stills are those systems in which the sun’s energy is
captured external to the distillation system, either as thermal energy or
photovoltaic electrical energy used to generate heat. In both cases the
generated heat is then applied to the distillation unit. They can operate in
conjunction with the conventional basin still, or they can be designed like a
conventional flash distillation unit. Figure 2-2 shows a standard schematic
for an active solar still which uses a solar collector and multistage flash
distillation.
Prasad and Tiwari (1996) conducted a thermal analysis of a
concentrator-assisted solar distillation unit to optimize the inclination of
the glass cover. They determined that the angle of inclination had an effect
on the yield of this active solar distillation system, with an increase in yield
which corresponded to an increase in the angle of inclination. For the
climatic conditions studied (Delhi, India, latitude 28° N, longitude 77° E) an

22
angle of 75° was found to be optimal. The increased angle also led to a
decrease in operating temperatures and evaporative heat losses.
Solar Radiation
Figure 2-2. Schematic of Flash Distillation Using Solar Collector; After
Malik et al. (1982)
Farwati (1997) conducted a comparison of a multi-stage flash
distillation system using solar energy input with flat plate versus
compound parabolic collector (CPC) systems. The conditions used for
evaluation were monthly average climatic conditions for Benghazi, Libya.
Both collectors had an aperture area of one square meter. The compound
parabolic collector was able to achieve a higher water temperature for entry
into the flash distillation system (122°C vs 80°C) and a larger monthly
average daily output with maxima of 64.9 liters for the CPC and 43.7 liters
for the flat plate collector system in the month of August. Both systems
operated with auxiliary heaters. Using the solar collectors alone, the CPC
had a maximum monthly average daily distillate output of around 40 liters
and the flat plate collector one of about 25 liters.
Kumar and Tiwari (1996) compared performance of flat plate
collector solar distillation systems in several operating modes. They

23
examined the systems with and without flow over the glass cover, operating
in active versus passive mode and in double effect passive mode (i.e. second
glass cover with water flow over the cover closest to the basin). They found
that water flow over the glass cover gave the highest yield, as this decreased
the condensation surface temperature and utilized the latent heat of
condensation providing additional distillation. The system was a single
basin solar still made of fiber-reinforced plastic, coupled with a flat plate
collector and was really a hybrid of the passive and active system. The
double effect mode did not enhance performance because of the difficulty of
maintaining low and uniform flow rates over the glass cover. Tests were
run with 1 m2 area of cover and collector. On average the active mode with
water flow yielded 7.5 liters per day, the passive mode yielded 2.2 liters per
day, and the active without water flow yielded 3.9 liters per day.
Sing and Tiwari (1993) evaluated and compared the yields and
thermal efficiencies of those types of solar stills recommended for rural or
urban applications The types of stills evaluated were: 1) passive single
basin, 2) passive double basin, 3) multiwick single basin, 4) multiwick
double basin, 5) active single basin and 6) active double basin. As
anticipated, the double basin stills outperformed the single basin
counterparts in both daily yield and thermal efficiency. Of the systems
studied, the active double basin had the highest yield while the multiwick
double basin had the best thermal efficiency. However, the use of the double
basin was not recommended with high salinity feedwater (> 20,000 ppm).
The multiwick single basin was suggested for moderate salinity (<1500

24
ppm) and the double basin designs were only recommended if technical
personnel were not readily available.
Pasteurization Processes
Pasteurization, or thermal disinfection, is the application of heat for
a specified time in order to destroy harmful microorganisms (Parker 1984).
The pasteurization process is best known for it’s use in the food and
beverage industry, particularly for the pasteurization of milk. Recently,
this technology has been examined for it’s use for drinking water. In order
to sterilize water by pasteurization, the water must be heated to a
temperature of 72°C (161°F) for a minimum of 15 seconds (Cheremisinoff et
al. 1981). Pasteurization can be obtained at lower temperatures, as low as
55 - 65°C (134 - 149°F); however, the required residence time increases
significantly as the temperature is reduced (Ciochetti and Metcalf 1984;
Joyce et al. 1996). The lower temperatures are attainable by solar heating.
One primary benefit of thermal disinfection over the photooxidation process
is that light penetration is not required, thereby making it effective in high
turbidity water.
Andreatta et al. (1994) reviewed the use of pasteurization devices in
the developing world with reference to several different styles of systems.
The solar box cooker, solar puddles and flow through systems similar to
solar hot water heaters have all been used as pasteurizers.
The solar box cooker used as a pasteurizer is the least expensive, but
also the most unreliable. A method for ensuring that the appropriate
temperature has been reached is required and sometimes difficult to verify.

25
Another drawback is that it is strictly a batch method, so the water is not
available throughout the day (Andreatta et al. 1994).
A flow through device can be manufactured using readily available
materials such as an automobile radiator thermostat valve and black
painted tubing. The design is a simple heat exchanger, and several design
variations have been tested. Flat configurations have been demonstrated to
be more effective than tubular varieties, although the tube exchanger may
be simpler to construct. The temperature control is very important, and the
design is critical in order to have the appropriate residence time. The
primary benefits of the flow through pasteurizer are the availability of
water throughout the day, easier control and ability to process larger
quantities of water (Andreatta et al. 1994).
The solar puddle is a low cost large area device. It resembles a solar
basin still in that there is a trough and a cover of clear plastic, however,
since the water is not saline, there is no need to separate the condensate
from the water in the puddle. For the puddle, determining that the
appropriate water temperature and residence time is reached is difficult
(Andreatta et al. 1994).
Ciochetti & Metcalf (1984) evaluated the use of a solar box cooker
(SBC) for pasteurization of water. They found that temperatures for milk
pasteurization (65°C) for several hours were sufficient to kill most
waterborne pathogens including viruses. Vertical temperature
differentials were found within containers, and the position of both the jug
in the SBC and the SBC itself had a significant effect on temperature and
consequently sterilization. Tests were conducted in northern California

26
and required temperatures for pasteurization were reached for
approximately six months of the year, from mid-March through mid-
September.
Joyce etal. (1996) investigated the thermal contribution of sunlight to
the inactivation of fecal coliforms with both onsite testing and laboratory
simulations. Their research was focused on the use of pasteurization for
household systems. Using transparent 2-liter plastic bottles, of the type
used for carbonated beverages, the water was heated to a temperature of
about 55 °C, the same temperature recorded for 2-liter bottles of water in full
sunshine in Kenya (latitude, 1°29’S; longitude, 36°38’E). Complete
disinfection was obtained after 7 hours at 55°C.
Burch and Thomas (1997) evaluated the feasibility of solar
pasteurization for water treatment in developing communities, comparing
it with other technologies traditionally employed in that arena. They
concluded that solar pasteurization, preceded by roughing filtration for
high turbidity water, was not economically competitive when compared
with slow sand filtration, chlorination, and UV disinfection. However, it
was the most effective of the four for a broad spectrum of microbiological
contaminants and had the lowest maintenance requirements. Flow
through solar pasteurization was slightly less costly than existing batch
processes, and the cost could be reduced more with the use of a thin-film
polymer system currently under study (Burch and Thomas 1997).
Solar pasteurization is not a feasible method for large water
purification systems, however, it shows clear promise for small remote
communities, household needs or emergency situations in areas with

27
several hours of sunshine throughout the day. Pasteurization has the
benefit of providing disinfection regardless of the turbidity of the water. One
major hurdle is the ineffectiveness on cloudy days, which may be
circumvented by having storage available and purifying larger quantities of
water on clear days for cloudy day use.
Photo Processes
Experiments on the effect of sunlight on microorganisms were
conducted as early as the late 19th century. Downes and Blount (1877)
observed the disappearance of turbidity, as an indication of the presence or
absence of microorganisms, from acidic urine placed in sunlight for
several hours. Since that time, much has been learned about the effect of
light, specifically ultraviolet radiation, on the inactivation of
microorganisms.
In the early 1900s direct photolysis by ultraviolet (UV) radiation was
used for disinfection of potable water (Wolfe 1990). While this method was
abandoned in favor of chlorination, problems with chlorine disinfection by¬
products have encouraged researchers to take another look at UV. Recent
studies on the use of UV for drinking water have proven more successful
(Slade et al. 1986; Wolfe 1990). Direct photolysis, however, only affects those
species which can directly absorb light, primarily microorganisms.
Indirect photolysis, photosensitization or photocatalysis, provides
another alternative. When exposed to light of the appropriate wavelength,
the photosensitizer or photocatalyst generates a reactive species, such as a
hydroxyl radical or peroxy radical, which subsequently reacts with the

28
contaminant species. This opens a much wider range of contaminants to
destruction by photochemical means and creates the possibility of
simultaneous destruction of microbiological and chemical contaminants.
Solar Disinfection
Solar disinfection is direct photolysis by radiation from the ultraviolet
spectrum (wavelengths shorter than 390 nm) sometimes referred to as
photodynamic inactivation. Acra et al. 1990 have used sunlight for small
scale disinfection of drinking water by direct photolysis of microbiological
contaminants. Acra et al. (1990) postulated that a minimum solar UV-A
intensity of 17.8 W/m2 was required for 99.9% inactivation of fecal coliform
based on field testing of solar disinfection reactors. The residence time
required to reach these levels of inactivation ranged from 90 minutes to 2.5
hours depending on the microorganism (Acra et al. 1990). The data
indicated that a longer residence time, achieved by recirculation, lower flow
rates, or increased reactor volume, could also lead to inactivation (Acra et
al. 1990). They found that bacterial destruction wsa exponential as a
function of solar UV-A intensity and time. The major problem encountered
was the growth of phytoplankton in the reactor (Acra et al. 1990).
In studies for the inactivation of Escherichia coli in sunlight, Shah et
al. (1996) found that the rate of inactivation was related to the initial colony
density. At very high initial densities of E. coli, inactivation was not
sufficient for provision of safe drinking water.
SODIS
A hybrid technology which combined the benefits of UV disinfection
and heat pasteurization was proposed by Sommer et al. (1997). With the

29
SODIS reactors water was heated to a temperature of 50°C and subjected to
solar UV-A providing both thermal and UV disinfection. Complete
inactivation of fecal coliform in 2.5 hours was reported, even on completely
cloudy days. The hybrid technology was more effective on the partly cloudy
to completely overcast days when compared to pasteurization alone at 70°C.
Halosol
The halosol process is a combination of the use of halogens and
sunlight developed at the American University in Beirut, Lebanon in the
late 1970s to early 1980s. The process involves treatment with large doses of
sodium hypochlorite or iodine solutions followed by exposure to radiation.
The intended benefit is disinfection of small volumes of heavily polluted
water followed by the removal of excess halogens for taste and odor control
(Acra et al. 1990).
Photocatalvsis
The most commonly studied indirect photolysis reaction for water
and wastewater treatment is photocatalysis using titanium dioxide, Ti02,
as a catalyst. Laboratory, pilot and field studies have demonstrated Ti02
catalyzed photodegradation of a wide range of organic chemicals (Table 2-1)
including alcohols, aldehydes, alkanes, alkenes, amines, aromatics,
carboxylic acids, dioxins, dyes, fuel constituents, halogenated
hydrocarbons, herbicides, ketones, mercaptans, pesticides, polychlorinated
biphenyls, solvents, surfactants and thioethers (Aithal et al. 1993; Das et al.
1994; Ellis 1991; Goswami and Jotshi 1992; Legrini et al. 1993; Mills et al.
1993; Ollis 1986; Zhang et al. 1994b). Several researchers have

30
demonstrated the inactivation of microorganisms in water by Ti02
photocatalysis (Table 2-2).
Table 2-1. Examples of Photocatalytic Treatment of Water and Wastewater
AW^V.VAW.V.VlV.W/A'.V.W.VA'.V.'.V.-AVAV.V.^V.^VAVAV.V.V.V.'AV.V.V.V.V.V.V.V.V.V.V.'.V.
i Investigator (s)
ICONTAMINANT(S)
Catalyst
Low et al. (1991)
Amines
Ti02
Abdullah et al. (1990)
Aniline
Ti02
iGoswami et al. (1993) and Óberg(1993)
^Benzene, Toluene, Ethylbenzene
IXylene
TiO_,
Barbeni et al. (1987)
Chlorinated Aromatics
Ti02
iMatthews (1986)
Chlorinated Benzenes
TiO,
iAhmed and Ollis (1984), Hsiao et al.
;(1983), Matthews (1986), Nguyen and
iOllis (1984), Ollis (1985), Pruden and
jOllis (1983a), and Pruden and Ollis
k1983b)
jHalogenated Hydrocarbons,
Solvents (THMs, TCE, etc.)
I
Ti02
jHarada et al. (1990)
Organophosphorous Insecticides
Pj
— •
o
to
—.
**
L
Al-Ekabi et al. (1989), Goswami et al.
j 1992 and Li et al. (1992)
jPhenols & Chlorophenols
Ti02
Ti02 ZnO, CdS,
Ti02/Pt & Fe,03 :
iPelizzetti et al. (1988)
jPolychlorinated Dioxins and
Polychlorinated Biphenyls
iMaillard-Dupuy et al. (1994)
iPyridine
h’iO»
jPelizzetti et al. (1990)
S-Triazine Herbicides
tío2
iPelizzetti et al. (1989)
Surfactants
Ti02
Photosensitization
The body of literature on the use of photosensitization for water
and/or wastewater is much less extensive than that for photocatalysis with
Ti02. Most of the work with regard to microorganisms has been done in the
medical field (Tratnyek et al. 1994). However, some work on virus
inactivation and wastewater treatment was conducted in the early 1970s
(Gerba et al. 1977a; Gerba et al. 1977b; Hobbs et al. 1977; Sargent and
Sanks 1976). Recently, researchers have investigated the use of
immobilized sensitizers for coliform destruction (Savino and Angeli 1985).

31
Table 2-2. Examples of Photocatalytic Treatment of Water and Wastewater
Investigator (s) Contaminants )
AV.V.VA\VAV.V.V.\V.V.V.V.V.V.V.V.V.V.V.V.V.V.-AV.V.VAV.-.V.-.V.'.V.V.V.V.V.
Special
Catalyst ¡ Conditions 1
iBlock et al. (1997)
Escherichia coli, Serratia
marcescens,
Ti02
i
Ireland et al. (1993), Wei
let al. (1994) and Zhang et
lal. (1994a)
Escherichia coli
\
;Matsunaga et al. (1988)
Escherichia coli
Ti02
Immobilized
membrane
iMatsunaga et al. (1985)
Escherichia coli, Lactobacillus
acidophilus, Saccharomycces
cerevisiae
Ticypt
Pt Loaded
catalyst
:Patel (1993)
:
Bacillus stearothermophilus
spores, Escherichia coli,
Micrococcus luteus,
Pseudomonas aeruginosa,
Serratia marcescens,
Staphylococcus aureus
Ti02
:
j
I
1
iSaito et al. (1992)
Streptococcus sobrinus
iSjogren and Sierka (1994)jbacteriophage MS2
Ti02 Addition of Iron ;
The remainder of the work on wastewater treatment has been
conducted by only a few researchers working in concert. Their
investigations on the treatment of wastewater and sewage effluents using
methylene blue and rose bengal have shown that the technology was viable
in laboratory, pilot and field scale demonstrations (Acher 1984; Acher et al.
1994; Acher et al. 1990; Acher and Juven 1977; Acher and Rosenthal 1977;
Eisenberg et al. 1987a; Eisenberg et al. 1986; Eisenberg et al. 1988). In
addition to the microbiological contaminants, this work addressed
wastewater and the specific industrial contaminant bromacil, indicating
some viability for simultaneous treatment. The use of flavins was
demonstrated for the destruction of herbicides and other organics such as
phenol and aniline (Larson et al. 1989; Larson et al. 1991; Schlauch 1987).
A brief summary of work in this area is shown in Table 2-3.

32
Table 2-3. Summary of Photosensitized Treatment of Water and Wastewater
•.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.
i Investigator (s)
Contaminants
iSENSmZER(S)
Conditions
IAcher and Juven 1977
Escherichia coli
MB, RB
; :
oxidation pond
Isewage water
IAcher et a! 1990
fecal coliform,
enterococci, coliforms,
polio viruses
MB Ipilot plant - sewage ¡
effluents
IGerba et al. (1977a) and
IGerba et al. (1977b)
coliform & polio virus
MB
sensitized for 24 h 1
iHobbsetal. 1977
coliform & polio virus
MB
iSavino and Angelí 1985
E. coli
MB, RB, eosin
Immobilized dyes ¡
iBurkhard and Guth (1976) 1
Triazine Herbicides
Acetone
\ |
fCrosby and Wong (1973)
2,4,5-T
Riboflavin & Acetone
i \
iHadden et al. (1994), and
iSargent and Sanks (1976) 1
p-cresol, phenol
MB, rhodamine 6G,
neutral red, RB
malachite green,
Ihematoporphyrin-D,
IL-hydrochloride,
acridine orange &
others
high pH (9-10)
:Larson et al. 1989
aniline & phenols
Riboflavin (RF)
jSchlauch 1987
Triazine Herbicides
MB, RF
IAcher and Rosenthal 1977 1
fecal coliform, COD,
MBAS
MB, RB
aerated sewage
effluents
IAcher 1984
Organics, E. coli,
bacteriophages, polio
virus & algae
MB & RB(Algae,
bacteria & viruses)
wastewater
IAcher et al. (1994)
secondary effluent
MB
wastewater
¿Eisenberg et al. 1987
coliform & bromacil :
|
secondary sewage i
effluent
Summary
In terms of effectiveness, the photochemical processes are preferable
for overall water treatment to both the physical processes and straight solar
disinfection, with the exception of desalination, with which it is not
comparable. These processes are effective on both microbiological
contaminants as well as on a wide range of chemical contaminants.
However, in order for these methods to be commercially viable on a large
scale, additional research must be conducted. There are three primary

33
areas where efforts should be concentrated: separation of the
photochemical from the water, including immobilization, elucidation of
harmful intermediates in lieu of complete mineralization and development
of cost efficient or optimal operating parameters. For disinfection the
photochemical processes compare favorably to solar disinfection,
pasteurization, SODIS and halosol. Any of these process can be viewed as
appropriate, particularly for household or small community applications.
In locations where sunshine is in large supply and technically trained
personnel and fossil fuels are in shorter supply, the use of solar based
processes for treatment of water may prove to be a satisfactory alternative.

CHAPTER 3
EXPERIMENTAL DESIGN AND METHODS
Choice of Experimental Parameters
The performance of a photochemical reactor system is affected by a
myriad of variables, only a few of which can be controlled. While the choice
of photoreactant and the availability of light of the appropriate wavelength
range are the two most critical variables, there are other, more subtle
changes in reaction conditions that enhance or degrade the reaction
efficiency. Both the concentration and the physical form of the catalyst or
sensitizer have a marked influence on the efficacy of a given reactor
(Matthews 1991; Wyness et al. 1994). Beyond those factors already
mentioned, pH, the presence or absence of dissolved oxygen, reactor
design, and the nature of the contaminants exhibit the most significant
effect on process reaction rates (Acher et al. 1994; Bedford et al. 1993;
Hadden et al. 1994; Kawaguchi and Furuya 1990).
Development of the experimental design was predicated on analysis
of reported work and preliminary experiments in consideration of the
aforementioned variables. The choices made for the research reported
herein regarding each parameter were noted at the end of the applicable
section.
34

35
Contaminants
Some unique problems identified with groundwater throughout the
United States Virgin Islands (USVI) served as a basis for the selection of
contaminants for this study. Used as source for drinking water, much of
the USVI groundwater is chemically contaminated with light
hydrocarbons from leaking fuel tanks.1 In addition, due to leakage from
underground sewerage, the microbiological contamination is rather
extensive.2 A 1986 study of USVI waters found microbiological
contamination in the form of Streptococcus, Klebsiella, Acinetobacter spp.,
Enterobacter, Pseudomonas, Salmonella and Escherichia coli (Canoy and
Rnudsen 1986).
To simulate contamination from leaking fuel tanks, benzene, toluene
and xylene were used as chemical contaminants. E. coli, Serratia
marcescens and Pseudomonas aeruginosa were used as microbiological
contaminants, indicative of the contamination identified by Canoy and
Knudsen (1986), and what might be present from leaking sewerage.
Catalyst Choice
A number of semiconducting materials have been tested for use as
photocatalysts in water and wastewater treatment. In order for a material
to be effective for solar photocatalytic water treatment, it must be
photoactive, able to use visible and/or near UV light, biologically and
chemically inert, stable under irradiation, inexpensive, and non-toxic to
humans and aquatic organisms (Carey and Oliver 1980; Mills et al. 1993).
1 From private conversation with Bruce Green of Carribean Infratech.
2 Ibid.

36
Several researchers have tested semiconductors for photoactivity,
including barium titanate, BaTiOa, cadmium sulfide, CdS, tungsten oxide,
W03, titanium dioxide, Ti02, zinc oxide, ZnO, and zinc sulfide, ZnS (Blake
1994). On the whole, Ti02 is more active than the others (Blake 1994).
Barbeni et al. (1985) evaluated four other semiconductor oxides relative to
Ti02 for the photocatalytic degradation of pentachlorophenol and found
photocatalysis to be the most efficient. In studies of the destruction of
dichlorobenzene using ZnO, W03, platinized Ti02 and untreated Ti02, the
Ti02 photocatalyzed samples reacted faster (Pelizzetti et al. 1988).
Carey and Oliver (1980) evaluated several semiconductor oxides for
stability under irradiation in neutral aqueous solution (Table 3-1). Of the
semiconductors tested, only those containing titanium were found to be
photostable. With an optical band gap of 2.4 eV, CdS is highly photoactive
and excited by visible light, appearing to be attractive as a photocatalyst.
However, as is typical for semiconductors which absorb visible light, it is
not photostable and tends toward photoanodic corrosion (Davis and Huang
1991; Mills et al. 1993). In the case of cadmium sulfide this leads to the
precipitation of undesirable and ultimately toxic compounds, as shown in
equation 3-1.
CdS + 2h+ -> Cd2+ + Si (3-1)
Considering all of the evidence Ti02 seems to be the most desirable for
photocatalytic processes to date. Ti02 in anatase form is the most

37
commonly used, due to its chemical stability, ready availability and
photoactivity (Blake 1994; Zhang et al. 1994b).
Table 3-1. Photostability of Semiconductor Oxides Tested by Carey and
Oliver (1980)
Semiconductor
Photostable
BaTi03
yes
CaTi03
yes
MgTi03
yes
SrTi03
yes
Ti02 (anatase)
yes
Ti02 (rutile)
yes
v2o5
no
ZnO
no
ZnTi03
yes
There have been a number of efforts to increase the efficiency of Ti02
by surface modification of the catalyst or substitution doping. Loading of
the Ti02 surface with noble metals has been used to enhance electron
transfer (production of hydroxyl radicals) and to prolong the life of the
oxidation site at the exterior surface (Blake 1994; Zhang et al. 1994b).
Silver-loading of anatase Ti02 increases the efficiency for the destruction of
chloroform and urea by 10% and 67%, respectively (Kondo and Jardim
1991). Other metals used for surface modification are Pt, Rh, Cu, Ni and
Pd. While these metals have been shown to increase efficiency, the cost and
complexity of the surface deposition process are prohibitive for use in most
communities. Substitution doping of Ti02 presents the same difficulty. For
these reasons anatase Ti02, Degussa P25, was used for this research.
Choice of Photosensitizer
In addition to the chemical criteria outlined previously for
photosensitizers, they must also be inexpensive and non-toxic. Methylene

38
blue is the photosensitizer commonly used in water treatment research. It
is preferred because it is inexpensive, absorbs preferentially at 670 nm, a
wavelength which easily penetrates wastewater effluent, and has a very
low toxicity. Methylene blue is administered orally in humans for
medicinal purposes (Gerba et al. 1977b; Hobbs et al. 1977).
Martin and Perez-Cruet (1987) evaluated a number of dyes for
suitability as sensitizers. Using sterile sea water with a salinity of 28 ppt,
twelve dyes were studied for absorption tendency by clams (Mercenaria
mercenaria) and photodynamic action against Escherichia coli. Of the
dozen dyes tested, five were considered suitable for further testing by
Martin and Perez-Cruet, and rose bengal showed the most promise. Table
3-2 shows the order of effectiveness of selected dyes against E. coli as
determined by Martin and Perez-Cruet (1987).
Other researchers have found methylene blue to be the preferred dye
sensitizer, although rose bengal seems to work almost as well under most
circumstances (Acher and Rosenthal 1977; Gerba et al. 1977b; Sargent and
Sanks 1976; Savino and Angeli 1985). Several researchers (Larson et al.
1989; Mopper and Zika 1987; Schlauch 1987) have investigated the use of
flavin sensitizers. Their research suggests that riboflavin and lumichrome
are both good photosensitizers.
Acetone is the one other photosensitizer which seems to have given
good results for water treatment. In tests for the photodecomposition of the
herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), both acetone and
riboflavin showed promise (Crosby and Wong 1973). Burkhard and Guth

39
(1976) also found acetone effective for the photodegradation of triazine
herbicides. However, acetone is known to cause systemic effects when
ingested by humans (Sax and Lewis 1989).
Based on this information it appears that the research of
photosensitizers is less conclusive than that for photocatalysts, warranting
further testing. Therefore, both methylene blue and rose bengal were
selected for further evaluation.
Reactor Design
The overwhelming majority of the research on reactor design for
photochemical water treatment has been conducted for semiconductor
photocatalysis, primarily with Ti02 (Blake 1994). However, since the
reactions follow similar mechanisms, the same principles should apply to
both photocatalysis and photosensitization.
The two major reactor options are reactors using catalyst suspended
in slurry or those in which a fixed supported catalyst is employed (Blake
1994). While the bulk of the research for water and wastewater treatment
has been conducted using slurries of titanium dioxide, there has also been
a great deal of research in the area of immobilizing the catalyst using a
number of different media, with varying results (Blake 1994). Benefits for
the use of supported catalyst are the elimination of the need for separation
and recovery of the catalyst and a possible increase in the reaction rate
(Zhang et al. 1994b).
Researchers at the University of Florida tested both flat plate
photoreactors (Wyness et al. 1994) and shallow pond reactors (Bedford et al.

40
1993) for the destruction of 4-chlorophenol (4-CP) using Ti02 adhered to
fiberglass mesh. They found that the same reactor systems performed
better with the slurry catalyst than with the fiberglass mesh. For the flat
plate configuration, reaction rates were two to five times faster (Wyness et
al. 1994).
Table 3-2. Order of Effectiveness of Dyes at 10'4 M Concentration on E. Coli
After 24 Hours Exposure to Light at Room Temperature
Dye
Light Intensity
pEm sec
E. coli colony coverage in quadrant areasa, mean ± SD
1
2
3
4
Control
75b
8.7±0.5
8.0 ±1.1
4.5 ±2.0
0.8 ± 0.4
Control
300c
9.0 ±0.5
9.0 ±0.5
6.6 ± 0.9
1.2 ± 0.4
Rose Bengal
75
0
0
0
0
300
0
0
0
0
Erythrosine
75
7.0 ± 1.4
0
0
0
300
0
0
0
0
Eosin Yellowish
75
6.0 ±2.8
0.5 ± 0.7
0
0
300
1.0 ±0.5
0
0
0
Zinc Phthalocyanine-
tetrasulfonate
75
7.0 ± 1.4
4.0 ±4.2
0
0
300
Acridine Orange
75
8.0 ±0.5
1.5 ±0.7
0.5 ±0.7
0
300
5.5 ±3.5
0.5 ± 0.7
0
0
Methylene Blue
75
9.0 ±0.5
4.5 ±0.7
1.0 ±0.5
0
300
Fluorescein Sodium
Salt
75
9.0 ± 0.5
7.5 ±0.7
3.5 ±0.7
0.3 ±0.1
300
8.5 ±0.7
2.0 ±2.8
0
0
Alphazurine A
75
9.0 ±0.5
7.5 ±2.1
1.5 ±0.7
0
300
9.0 ±0.5
8.5 ±0.7
4.5 ±2.1
0.5 ± 0.7
Rosolic Acid
75
9.0 ±0.5
6.0 ±2.8
2.0 ± 1.4
0
300
Alcian Blue
75
9.0 ±0.5
7.5 ±0.7
2.0 ± 1.4
0.5 ±0.7
300
Hematoporphyrin
75
9.0 ±0.5
8.5 ±0.7
4.5 ±3.5
1.6 ±2.1
300
9.0 ±0.5
8.5 ±0.7
4.5 ±0.7
0.8 ± 0.4
Alizarine S
Monohydrate
75
9.0 ±0.5
9.0 ±0.5
4.5 ±2.1
0.8 ± 0.4
300
9.0 ±0.5
9.0 ± 0.5
5.0 ± 1.4
1.0 ±0.5
aStreaked areas: 1, first streak; 2, streaks from first streaks; 3, streaks from second
streak; 4, streaks from third streaks. Temperature, 25°C. cTemperature, 28°C. Source:
Martin and Perez-Cruet (1987).

41
Zhang et al. (1994) compared the performance of a number of
different optimized catalyst support options with Ti02 slurry using a flat
plate reactor configuration. Of those supports tested, all except glass beads
performed as well as, or slightly better than, the slurry, with silica gel
performing best.
Hofstadler (1994) evaluated titanium dioxide-coated fused-silica glass
fibers for the degradation of 4-CP and reported degradation rates 1.6 times
higher than with Ti02 slurry. Some other silica based supports which have
been evaluated were coated sand (Matthews 1991) and glass (Lu et al. 1993).
Matthews found that suspensions of Ti02 coated sands were much easier to
deal with in terms of separation, but were mass transfer limited. The
work by Lu et al., using Ti02 supported on the inner surface of a glass tube
reactor, indicated the possibility of catalyst reuse.
Fox et al. (1994) examined the effect of zeolite supported Ti02 and
Ti02 pillared clays on the degradation of alcohols and found a slight
decrease in photoactivity relative to Ti02 slurry. Matsunaga et al. (1988)
found Ti02 supported on an acetylcellulose membrane to be effective for the
destruction of Escherichia coli. Other supports tested for Ti02 were
activated carbon (Uchida et al. 1993), ceramic membranes (Aguado et al.
1994), wood chips (Berry and Mueller 1994), metal, polymer, and thin films
(Blake 1994).
Some research has also been conducted on the immobilization of
photosensitizers. Savino and Angeli (1985) examined the effectiveness of
methylene blue, rose bengal, and eosin on polystyrene beads, and

42
methylene blue on granular activated carbon, silica gel, and XAD-2
(polystyrene resin). They found that all of the immobilized dyes were
effective for the destruction of Escherichia coli, but methylene blue on
activated carbon was the most effective.
Keeping the initial criteria in mind, ease of use and low operational
and capital cost, a number of reactor designs were quickly ruled out. The
methods for immobilizing catalyst all require fairly extensive preparation,
including precipitation and calcination, in almost all cases. Therefore, the
current research was conducted using suspended Ti02 and dissolved
sensitizers. The question of the feasibility of immobilized catalyst and/or
sensitizer was left for another study.
There are a number of options available for the specific design of a
reactor using slurry catalyst. In computer simulations of the destruction of
TCE in batch flat plate and parabolic reactors, flat plate reactors yielded a
larger treatment volume than did the concentrating and one-axis tracking
parabolic reactors (Saltiel et al. 1992). Wyness et al. (1994) found that flat
plate reactors were effective for chemical photodegradation with
suspensions of titanium dioxide. Bedford et al. (1993) found that the
shallow pond configuration was effective for the destruction of 4-CP. This
minimalist configuration is attractive because of its potential for low capital
and maintenance costs.
For photosensitization the reactors have more closely resembled
chemical reactors. Plug-flow reactors were successfully tested for the
treatment of secondary effluent (Eisenberg et al. 1988), and continuous flow
reactors showed promise in the sensitized photodegradation of

43
chlorophenols (Li et al. 1992). Acher et al. (1990; 1994) successfully used a
series of tank reactors which were similar to the shallow pond
configuration evaluated by Bedford et al. (1993). The laboratory reactors for
this study were designed to mimic the shallow pond configuration.
EH
Ti02 is significantly affected by the pH of the aqueous solution in
which it is suspended. Particle size and charge and the position of the
valence and conduction bands are all a function of the pH of the solution
(Mills et al. 1993). Block et al. (1997) found a neutral to acidic pH range best
for the Ti02 photocatalyzed inactivation of bacteria.
A number of researchers have investigated the effects of pH on the
photocatalytic degradation rate of organics in aqueous suspensions
(Bahnemann et al. 1991; Glaze et al. 1993b; Kawaguchi and Furuya 1990;
Matthews 1986; Tseng and Huang 1990; Tseng and Huang 1991; Vidal et
al. 1994). Kawaguchi and Furuya (1990) reported an increase in
photocatalytic effect in acidic solution. The general consensus is that pH
has little (no more than one order of magnitude) effect on the reaction rate,
but that neutral pH provides the most efficient degradation. Other apparent
pH effects are attributed to anionic effects from chemicals used for pH
control. While pH was not a major factor in the photocatalytic reactions, it
was necessary to seek an optimum pH for the simultaneous treatment of
chemical and microbiological contaminants. In the research reported
herein, photocatalytic experiments were conducted at neutral and acidic
pH.

44
Photosensitization is much more pH dependent. In studies of
methylene blue photodisinfection processes, pH values ranging from 8.6 to
10 were found to be optimum (Acher et al. 1994; Acher et al. 1990; Gerba et
al. 1977b; Melnick et al. 1976). The same pH dependence was seen with
methylene blue and rose bengal for the photodegradation of organic
chemicals (Hadden et al. 1994; Li et al. 1992). In photosensitization of
bromacil using methylene blue and rose bengal, reaction rates increased as
pH values increased, with the highest rates at pH 9-10 (Eisenberg et al.
1986; Eisenberg et al. 1988). Based on this information, the sensitizer
experiments for this research were conducted in neutral and basic
environments.
Catalvst/Sensitizer Concentration
The concentration of the photocatalyst and photosensitizer needed to
be optimized in order to obtain meaningful comparison data. An optimum
of 0.1% Ti02 concentration was found to be effective for BTEX by Goswami et
al. (1993) and Óberg (1993). Patel (1993) and Block et al. (1997) found that
0.01% Ti02 concentration worked best for the photocatalytic destruction of
bacteria. Therefore a range of Ti02 concentrations, from 0.01% to 0.1%
were tested in the laboratory in order to optimize the concentration for
simultaneous photocatalysis.
In pilot plant studies Eisenberg et al. (1988) found that concentration
of methylene blue ranging from 1 to 10 mg/1 were sufficient for the
photooxidation of bromacil. Acher and Juven (1977) conducted
photosensitization experiments with sewage effluent and reported an
increase in the destruction of coliforms with a corresponding increase in

45
methylene blue concentration, up to 5.0 mg/1. However, in pilot plant
studies, smaller concentrations (less than 1.0 mg/1) were effective (Acher
et al. 1994) and concentrations higher than 0.9 mg/1 methylene blue
hindered light penetration (Acher and Rosenthal, 1977). The
photosensitization screening experiments for this research were conducted
at several levels of concentration, ranging from 0.01 mg/1 to 10 mg/1.
LabQratory Experimental Design
In this research full factorial designs were used for both the
photocatalytic and photosensitization experiments. While the designs
differed slightly the parameters tested were the same, catalyst/sensitizer
concentration, pH, and light. A two dimensional control was imbedded in
the experimental design by way of the dark experiments and the level with
no photochemical. For the photocatalytic experiment four levels of catalyst
concentration, two levels of pH, two levels of light, and redundant reactors
were used, as shown in Table 3-3. For each of the two dye sensitizers tested,
methylene blue and rose bengal, five levels of sensitizer concentration, two
levels of pH, and two levels of light were used, as shown in Table 3-4. The
photocatalytic experiments were repeated twice and the photosensitization
experiments were repeated three times.
In the combination experiments no pH adjustments were made. The
experiments were conducted with 5 mg/L methylene blue and 0.01% Ti02.
Controls for this experiments were no photochemicals, Ti02 only and
methylene blue only. The full design, repeated three times, is shown in
Table 3-5.

46
Table 3-3. Design for Ti02 Photocatalytic Lab Experiments
Treatment One Treatment Two
Contaminants BTÉX and Bacteria BTÉX and Bacteria
Light None None
pH Neutral, 7 (±0.5) Acid, 4 (±0.5)
TiO, Concentration None 0.01% 0.05% 0.10% None I 0.01% 0.05%: 0.10%
Contaminants BTEX and Bacteria BTEX and Bacteria
Light UV Lamps @ 29 W/m2 ÃœV Lamps @ 29 W/m2
pH Neutral, 7 (±0.5) Acid, 4 (±6.5)
Ti02 Concentration None j 0.01% ! 0.05% :6.l6%; None ! 0.01% | 0.05% 10.10%
Table 3-4. Design for Photosensitization Lab Experiments
Treatment One Treatment Two
VV.V.VAV.;AV.%V.V.V.V.W.VAW.V.W.V.V.V.VAV.V.V.VV.'.W.VAVAV.,AV.%V/.VAVAV.V.;.V.V.V.\V.V.W“.,.‘.V.V.V.V.V.V.,.V.V.V.V.V.V.,.V.V.V.V.W.V.V.W".V.V.V.W.,.V.V.V.V
Contaminants BTEX and Bacteria | BTEX and Bacteria
Light None None
pH Basic, 10 (±0.5) Basic, 10 (io'S)
Dye Cone , mg/L None i 0.10 1 5 10 None 0.10 15 10
Contaminants BTEX and Bacteria BTEX and Bacteria
Light Sunlight j Sunlight
pH Basic, 10 (±6.5) Basic, 10 (±0.5)
Dye Cone., mg/L j None \ 6.10 I 1 I 5 i 10 None j 6.10 1 5 10
Table 3-5. Design for Combination Lab Experiments
Treatment One
Treatment Two
Contaminants
BTEX and Bacteria
BTEX and Bacteria
Light
None
None
Photochemical . None 0.01% TiO¿5 mg/L MB Both :None0.01% TiOj5 mg/L MB
•■".■•■-■•■••-•.'•".-.'.'••.'-.•-■•'.••y-'-w.w.-a^'av.-.v.v.w.v.v.v.-.-.-.-.v.-.v.v.vXw.v.v.w.v.v.v.v.v.v.-.-.'v.v .■.v.v.vav.v.v.v.vav.%\w.v.Wavavav.v.-.w.v.v.w.w.-.-.w.w.w.w.v.w.-.v.v.w.w.w.w.v.-.-.-.-.w.w.-.w.w.v.w.:
Both
Materials and Methods
Reaction Vessels
The photocatalysis reaction vessels were covered Pyrex dishes
(Figure 3-1), which allowed light transmission above wavelengths of X > 300

47
nm, the shortest wavelength that reaches the earth’s surface from the sun
(Hsieh 1986). This filtered out the germicidal effects of the ultraviolet light
which would not be present in naturally occurring sunlight.
Water line
Figure 3-1. Ti02 Reaction Vessel
In order to eliminate problems of air stripping and ensure that the
reactor was airtight, a slightly modified version of the photocatalytic
reaction vessel was used for both photosensitization and the combination
experiments. The reactor was equipped with a glass blown sampling port
plugged with a butyl rubber septum and sealed with parafilm (Figure 3-2).
The reactors were filled to the rim of the vessel in order to minimize head
space.
Bacterial Inoculation
Cultures were prepared using trypticase soy broth nutrient, and
incubated for 24 hours at 35°C. Three serial dilutions of 1:100 were

48
prepared using distilled deionized water. Photocatalytic reactors were
inoculated with 400 |il of E. coli, 400 pi of Serratia marcescens and 200 pi of
Pseudomonas aeruginosa, using the 2nd dilution of each culture.
Sample port
with septum
Figure 3-2. Photosensitization Reaction Vessel
Only E. coli was used for photosensitization experiments, and the
reactors were inoculated with 45 pi of the first dilution of the culture. In all
cases the third dilution was used to confirm that the cultures were viable.
This procedure is shown graphically in Figure 3-3.
Figure 3-3. Graphical Representation of Bacterial Inoculation

49
Q A
Initial bacterial densities in the reactors ranged from 10 to 10
colonies per ml, with most values falling around 3.5 x 103 colonies per ml.
Bacteria were obtained from American Type Culture Collection (ATCC).
Reactor Chamber
The reactor chamber was used for all of the photocatalytic
experiments and the dark experiments for photosensitization. The
chamber was a metal box equipped with 32 ultraviolet low-pressure
mercury lamps and painted in flat black (Figure 3-4). The lamps were
purchased from Southern New England Ultraviolet, model RPR-3500. The
design output of the lamps was 3500A. Reactors were placed approximately
35 cm from the light source, at which point the ultraviolet irradiation
measured was 29 W/m2. External light was blocked via a hinged metal
door which fit snugly over the chamber. The lamps were turned off for the
dark experiments.
Photocatalvsis Reactor Setup
The reactors were loaded with deionized distilled and pH adjusted
water and a combination of bacteriological and volatile organic chemical
(VOC) contaminants, for a total volume of 100 ml. The chemical
contaminants were approximately 1 ppm each of benzene, toluene and
mixed xylenes, referred to as BTEX, and the bacterial species were
Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens.
Redundant reactors were placed for two to four hours in a reactor chamber
either with or without light.

50
Figure 3-4. Ultraviolet Light and Dark Reactor Chamber
As shown in Table 3-3, four Ti02 concentrations were used for the
experiments: 0.1%, 0.05%, 0.01% and none. The catalyst used was Degussa
P-25. The water was adjusted to an acid pH (4.0 ± 0.5) and a neutral pH (7.0
± 0.5) with hydrochloric acid and sodium hydroxide. After pH adjustment
the water was autoclaved to remove any microbiological contamination.
The 100 ml reactors were illuminated for 2 to 4 hours in the reactor
chamber.
Photocatalvsis Sampling and Analysis
Samples for chemical analysis were taken prior to irradiation, after 5
minutes, 15 minutes, 30 minutes and one hour of irradiation and at the
same time intervals in the dark chamber. Samples were taken with a
sterile syringe and placed directly into amber borosilicate screw cap vials
with TeflonrM septa, and refrigerated until analysis. The samples were
analyzed by a modification of the EPA purge and trap method using an SR

51
8610 gas chromatograph with PID detector (Abeel et al. 1994; Bellar and
Lichtenber 1974; Óberg 1993). The method used was sensitive to a low
concentration of about 1 ppb for the components in question.
For evaluation of disinfection efficacy, duplicate petri dishes
containing plate count agar nutrient were inoculated with 100 pi from each
reactor. Two replicates were taken at 0, 30, 60, 120 and 240 minutes,
yielding four counts for each set of conditions per experiment. The
inoculated plates were spread and incubated for 24 hours at 35°C. After 24
hours the number of bacterial colonies on each plate were counted.
Photosensitization Reactor Setup
The reactors were loaded with deionized, distilled, pH adjusted water
and a combination of bacteriological and volatile organic chemical (VOC)
contaminants to the top of the container, a total volume of approximately
450 ml. The chemical contaminants were approximately 1 ppm benzene
and 1 ppm toluene, referred to as BTEX, and the bacterial species was
Escherichia coli, as noted above. The reactors were placed either in
sunlight or in a closed, dark reactor chamber (Figure 3-4) for four hours
and constantly agitated with a magnetic stirrer.
As outlined in Table 3-4, five sensitizer concentrations of either
methylene blue or rose bengal, were used for the experiments: 0.1 mg/1, 1.0
mg/1, 5 mg/1, 10 mg/1 and none. Both the methylene blue and the rose
bengal were purchased from Fisher Scientific. The water was adjusted to a
neutral pH (7.0 ± 0.5) and a basic pH (10.0 ± 0.5) using sodium hydroxide.
After pH adjustment the water was autoclaved to remove any
microbiological contamination.

52
Photosensitization .Sampling and Analysis
A sterilized 10 ml syringe was used for taking samples via the
sample port. Samples were taken at 0, 5, 15, 30, 60, 120 and 240 minutes by
sterilized syringe and transferred into amber borosilicate screw cap vials
with Teflonâ„¢ septa, and refrigerated in a standard commercial
refrigeration unit until they were analyzed.
For evaluation of disinfection efficacy, petri dishes containing plate
count agar nutrient were inoculated, in triplicate, with 100 |il from each
sample. Three replicates were taken per sample. The inoculated plates
were spread and incubated for 24 hours at 35°C. After 24 hours the number
of bacterial colonies on each plate were counted. Chemical analysis was
the same as that used for Ti02 photocatalysis.
Combination Experimental Setup. Sampling and Analysis
The setup, sampling, and analyses for the combination experiments
were very similar to that of the photosensitization experiments. The
reactors were loaded with deionized, distilled water and a combination of
bacteriological and volatile organic chemical (VOC) contaminants to the top
of the container, a total volume of approximately 450 ml. The chemical
contaminants were approximately 1 ppm benzene and 1 ppm toluene,
referred to as BTEX, and the bacterial species was Escherichia coli, as
noted above. The reactors were placed either in sunlight or in a closed,
dark reactor chamber (Figure 3-4) for one hour and constantly agitated with
a magnetic stirrer.
As outlined in Table 3-5, four photochemical concentrations of
methylene blue and/or Ti02 were used for the experiments: no

53
photochemical, 0.01% Ti02, 5 mg/1 methylene blue, and 0.01% Ti02 and 5
mg/1 methylene blue.
A sterilized 10 ml syringe was used for taking samples via the
sample port. Samples were taken at 0, 5, 15, 30, 60, 120 into amber glass
screw cap vials with Teflonâ„¢ septa. The samples were refrigerated in a
standard commercial refrigeration unit until they were analyzed.
For evaluation of disinfection efficacy, petri dishes containing plate
count agar nutrient were inoculated with 100 pi from each sample. Three
replicates were taken per sample. The inoculated plates were spread and
incubated for 24 hours at 35°C. After 24 hours the number of bacterial
colonies on each plate were counted. Chemical analysis was the same as
that used for Ti02 photocatalysis.
Experiments for Confirmation of Previous Work with Bromacil
One set of experiments was conducted to confirm the previous work
with photosensitizers in which methylene blue was used for the destruction
of bromacil in wastewater. Duplicate photosensitization reaction vessels
(Figure 3-2) were loaded with approximately 1300 ppb bromacil, 5 mg/L
methylene blue and deionized water. After irradiation in sunlight for four
hours, the reactor contents were analyzed by GCMS. The bromacil used for
the experiments was tech grade obtained from E. I. DuPont de Nemours
and Company, Inc.

CHAPTER 4
RESULTS AND DISCUSSION
The results of laboratory experiments are presented and discussed in
this chapter. The results are divided by experiment type: dye
photosensitization, Ti02 photocatalysis and combination experiments. A
general discussion is presented at the end of the chapter. Raw data for all
experiments are contained in Appendix A.
Dve Photosensitization
Laboratory experiments were conducted to determine the effects of
dye concentration and pH on the destruction rate of Escherichia coli and
aromatic hydrocarbons (benzene and toluene) in sunlight. As described in
Chapter 3, the experiments were conducted with the following treatments :
• methylene blue (MB) and rose bengal (RB),
• sunlight and dark,
• pH 10 and pH 7,
• 0, 0.1, 1, 5 and 10 mg/L of dye.
In order to ensure reproducibility of the results, each set of
experiments was conducted three times. A complete set of experiments
was represented by one reactor for each of the sets of conditions highlighted
above, for a total of 40 reactors per set. Five reactors were run at a time,
each reactor containing a different concentration of a single dye (either
methylene blue or rose bengal) with all other parameters the same.
54

55
Samples were taken from each reactor at 0, 5, 15, 30, 60, 120 and 240
minutes and refrigerated immediately. Three replicates were plated from
each sample for microbiological analysis. The remainder of the 0, 60 and
240 minute samples was refrigerated and saved for chemical analysis.
For the experiments conducted in sunlight, the light was measured
and recorded over the duration of the experiment, and ranged from 542
W/m2 to 892 W/m2. The average total insolation (incident solar radiation)
measured in each experiment is given in Table 4-1 and graphs of the total
insolation are shown in Appendix B.
Table 4-1. Insolation Measurements from Dye Sensitization Experiments
Set
Conditions
Insolation, W/m2
#1
Methylene Blue, pH 7
685
Methylene Blue, pH 10
671
Rose Bengal, pH 7
746
Rose Bengal, pH 10
715
#2
Methylene Blue, pH 7
665
Methylene Blue, pH 10
542
Rose Bengal, pH 7
856
Rose Bengal, pH 10
775
#3
Methylene Blue, pH 7
892
Methylene Blue, pH 10
696
Rose Bengal, pH 7
841
%V.V/.V.V.V.VAV.\W.V.V.V.V.V.V.V.V.V.V.V.V.V.-.V.V.-.V.-.Y.V.V.V.V.V.V.V.V.V
Rose Bengal, pH 10
749
Experimental sets were conducted on different days, and though
efforts were made to minimize the differences between sets, both solar
insolation and initial contaminant concentrations did vary from one set to
another. The mean, standard deviation, and range of these parameters for
all experiments are shown in Table 4-2.

56
Table 4-2. Descriptive Statistics of Measured Data for all Experiments
MB
Parameter
Mean
StdDev
Min
Max
Sunlight, W/m2
692
112
542
891
Sunlight, pH 7, W/m2
743
129
665
891
Sunlight, pH 10, W/m2
641
50
542
696
Initial Coliform Density, cfu/L x 103
784
365
27
1453
Initial Benzene concentration, ppb
676
210
377
1218
Initial Toluene concentration, ppb
314
139
136
770
RB
Parameter
Mean
StdDev
Min
Max
Sunlight, W/m2
781
56
715
856
Sunlight, pH 7, W/m2
815
60
746
856
Sunlight, pH 10, W/m2
746
30
715
775
Initial Coliform Density, cfu/L x 103
816
375
187
1680
Initial Benzene concentration, ppb
560
262
296
1407
Initial Toluene concentration, ppb
426
226
155
1026
The data, as well as the impact of each of the measured and
controlled parameters, are explored in more detail below, and results are
compared with the work of Eisenberg et al. 1987b, Acher et al. (1994), and
Acher et al. (1990), for the photosensitized disinfection and bromacil
destruction in secondary treated wastewater effluent.
General Comments About Experimental Data
The average standard deviation of the disinfection data was 25% for
methylene blue experiments and 13% for rose bengal experiments (Table 4-
3). Plates on which the colonies were not individually identifiable and those
with severe contamination were not counted, which resulted in the loss of
approximately 20% of the 840 plates in a given experimental set. Due to
contamination of the incubator, all 105 of the plates from the sunlight, pH
10, methylene blue experiment in set number two had to be discarded. In a
few instances the samples were dropped and broken before they could be
plated.

57
The initial (t=0) disinfection samples for the dark, pH 10, rose bengal
experiment in set number one were abnormally, though consistently, low.
The low values were attributed to not allowing time for adequate mixing in
the reactors prior to drawing the first sample. Since the values were
consistent from one reactor to the next, the data could not be treated as
outliers, but accommodations were required for accurate interpretation.
For this set of data, the fractional survival values were calculated using the
5 minute instead of the zero minute samples.
The average standard deviations of the detoxification data were 10%,
or less, of the average values as shown in Table 4-3. Sample loss for
detoxification occurred when the sample was dropped and broken prior to
analysis, which occurred twice in experimental set number three. The
samples on either side of the dropped sample, Sgo, were analyzed, and the
sample value for the desired time was interpolated. When the dropped
sample was an initial sample, 330, the 5 minute sample was substituted.
Chemical samples were generally analyzed within two weeks of the
experiment.
Table 4-3. Average Standard Deviations for all Dye Photosensitization
Experiments
Benzene (ppb)
Toluene (ppb)
E. Coli
StdDev
Avg
StdDev
Avg
% of total
Methylene Blue
Rose Bengal
51
46
578
487
29
36
375
363
25
13

58
Statistical Treatment of the Data
Microsoft Excel version 5.0 for the Macintosh was used for statistical
analysis of the data. For the more common calculations, including least
squares linear regression, the functions available in the software package
were used. All other values were calculated using the equations as noted
throughout this section.
Since the sample sizes were generally small (less than 30), the entire
populations were used to calculate standard deviation from Equation 4-1.
S.D. =
n2>2-(5>)
(4-1)
For disinfection data analysis, the fractional survival and percent
destruction of colony forming units (cfu) were used for reporting and
analyzing the data. The values used for disinfection data analysis were
obtained by taking the average of the plates for each sample collected within
an experimental set, calculating fractional survival (or % destruction) and
averaging those values across experiments for use. The data, obtained in
this way for methylene blue at 30 minutes, are shown in Table 4-4.
In situations where calculations resulted in a negative percent
destruction, the percent destruction was set to zero. In some instances the
fractional survival exceeded 2.0, specifically, the data from the dark, pH 10,
rose bengal experiment in set one. For that data set, the fractional survival
was calculated relative to the 5 minute samples, i.e. fractional survival =
Nt/N5 .

50
Table 4-4. Mean Fractional Survival (± 31%) of E. coli @ t= 30 minutes in
MB Experiments
I-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:
¡
««MKHMQeeMwweoowMMeooewooo*
Set#
Sunlight pH 10
««•X*X*X*K-X-X-»««M»W«WWM
Sunlight pH 7
Dark pH 10
Dark pH 7;
>• ••
Control
1
0.000
0.172
1.113
1.500 1
:
2
0.534
1.013
0.169
•
3
0.084
0.082
0.364
0.503
j Average
0.042
0.262
0.830
0.724 j
0.1 mg/L
1
0.000
0.013 \ 0.592
1.547 j
2
0.155
0.841
0.068
3
0.009
0.000
0.583
0.540 j
Average
0.005
0.056
............................................
0.672
6.718 |
j 1 mg/L
1
2
3
0.000
0.000
0.000
aooo
o.ooo
0.000
o.ooo
0.007
0.013
0.000
0.007
0.002
0.016
0.000
0.006
0.016
0.000
0.000
0.0Ó5
0.779
0.101
0.502
0.461
o.ooo
o.ooo
0.473
0.158
0.034
0.018
0.195
Average
15 mg/L
Average
i 10 mg/L
1
2
3
Average
V.VtVWiAv.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.-.v.v.v.v.v.v.v.v.v.v.v.v.uv.v.v.v.v.v.v.v.v.
Detoxification data were treated in a similar manner. The
concentration data, as parts per billion (ppb), for each experimental set
were normalized to the initial concentration (Ct/C0). The normalized values
were averaged across experimental sets. Since only one data value existed
per sample for each experimental set, standard deviations were calculated
across sets only. Outliers were identified using the ASTM recommended
criterion for single samples (ASTM 1988) which uses the following test:
T =
(x-*»)|/s
(4-2)
The critical value of Tn is a function of the number of observations and is
obtained from a table (ASTM 1988). Using this criterion, one value was
found to be an outlier at a significance level of 10% (5% for toluene) and

00
subsequently discarded. The outlying sample, the 240 minute, 1 mg/L
sample from RB, dark, pH 10 in experimental set number two, was thought
to have been poorly capped, resulting in volatilization of the sample prior to
analysis.
The data were viewed in several ways. An initial observation was
conducted for the detection of trends and to determine if the desired effect
was achieved. These trends were displayed as a function of time for all of
the average values as x-y scatter plots. If trends of the desired effect,
destruction of contaminants with time, were detected, the data were
analyzed further for the impact of specific parameters on the final results
as described below.
Analysis of Means (ANOM) was applied to obtain a statistical
snapshot of the effect of specific parameters on the outcome. In this
method, mean values and statistical deviations were used to clarify the
significance of each parameter. The ANOM is a variation on a process
control chart and allows for the exploratory analysis of several parameters
simultaneously (Mason et al. 1989). A relatively conservative a-level of 0.05
was chosen to minimize the probability of false alarms. A smaller a-level
was not desirable as it might have resulted in missed signals and would be
inappropriate for this type of exploratory analysis (Wheeler 1990).
The Pooled Variance Estimator was used for determination of
Estimated SD (X) as shown below. Decision limits for the ANOM charts
were calculated using the following equations (Wheeler 1990):

61
Estimated SD (X) =
(4-3)
,. . , OT. , vv, Estimated SD (X)
(Estimated SD (X)) = j=
Vn
(4-4)
UDLX = X + H (Estimated SD (X))
(4-5)
LDLX = X - H (Estimated SD (X))
(4-6)
where:
s = standard deviation of X,
X = average of observations in a subgroup,
s2 = average variance of X,
n = number of observations per subgroup,
X = grand average of all observations,
H = ANOM critical value at a selected a, from table (Wheeler 1990),
UDLX = upper decision limit, and
LDLX = lower decision limit.
Averages which were outside of the decision limits were considered to be
statistically significant, and those parameters were determined to be
influential
In some instances the data were graphically represented. For this
analysis, data were simply categorized according to the parameters of
interest, and standard deviation and mean values were calculated using
the Microsoft Excel functions. These values were then charted, either as
scatter plots or bar charts. Where appropriate, least squares linear

62
regression, also using Microsoft Excel, was performed to identify specific
trends and relationships.
Where clear destruction of contaminants was seen, kinetics were
considered. Results were fitted to first order kinetic equations, and
experimental reaction rate constants were obtained for comparison to
published data. This information is presented in the section on kinetic
considerations, which includes kinetic data for all relevant experimental
sets.
Presentation of Results and Identification of General Trends
While disinfection in the presence of aromatic hydrocarbons was
achieved with both rose bengal and methylene blue, simultaneous
detoxification was not observed with either dye. Under the conditions
tested, the presence of MB increased the disinfection rate of water
contaminated with E. coli over sunlight alone.
MB photosensitized disinfection at pH 10 (Figure 4-la) appears to be
slightly more effective than MB photosensitized disinfection at pH 7. At pH
10, all MB concentrations resulted in at least a 99.5% coliform reduction
after thirty minutes of irradiation, compared to 96% reduction with
sunlight alone. With 10 mg/L MB, complete coliform destruction was
achieved after only five minutes of irradiation. No coliforms appeared in
any of the samples taken after irradiation began. The intensity of sunlight
in these experiments ranged from 542 to 696 W/m2.
Destruction at pH 7 was not quite as dramatic (Figure 4-lb). The
coliform reduction after 30 minutes ranged from 99.5% with 10 mg/L MB to
96% with 0.1 mg/L MB. Comparatively, only a 74% reduction was attained

63
with sunlight alone. The intensity of sunlight ranged from 665 W/m2 to
891 W/m2. Differences between pH 10 and pH 7 cannot be attributed to
differences in light intensity since, as shown in Tables 4-1 and 4-2, the
intensity was greater in the pH 7 experiments even though less reduction
was achieved. The difference in values for control reactors would lead one
to conclude that any pH effect was a function of the general disinfection
mechanism rather than of the photosensitization process specifically.
(a)
O Control
—O— 0.1 mg/L
A - 1 mg/L
5 mg/L
-X- 10 mg/L
Figure 4-1. MB Destruction of E. coli in Sunlight; (a) pH =10,1 = 542-696
W/m2 (b) pH =7, Iavg = 665-891 W/m2

64
In the presence of at least 1 mg/L MB and sunlight (542 - 696 W/m2),
complete disinfection occurred within 5 to 30 minutes. However, in the
absence of MB with the same intensity sunlight, complete disinfection
required at least 60 minutes (Figure 4-2). Complete disinfection did not
occur at all in the dark, although a 99% coliform reduction was observed
with 10 mg/L MB in the dark. Mean fractional values for the methylene
blue experiments are presented in Table 4-5.
Time (minutes)
—4 No MB, Sunlight A 1 mg/L MB, Sunlight
-■□—No MB, Dark ~X“1mg/L, MB Dark
(b)
I - ♦ No MB, Sunlight -A 1 mg/L, Sunlight
I ~P No MB, Dark X~1 mg/L, Dark
Figure 4-2. Destruction of E. coli in sunlight with 1 mg/L MB; (a) pH =10,
Iavg= 542-696 W/m2 and (b) pH 7, Iavg = 665-891 W/m2

65
Table 4-5. Mean Fractional Survival (±25%) of E. coli in MB Experiments
Control
Sunlight pH 10
Sunlight pH 7
Dark pH 10
Dark pH 7
n5/n0
1.133
0.811
0.954
0.671
n15/n0
0.707
0.428
0.626
0.493
N30/N0
0.042
0.262
0.830
0.724
N60/N0
0.000
0.013
0.681
0.858
Ni2(/N0
0.000
0.000
0.449
0.063
N240/N0
0.000
0.000
0.365
0.008
0.1 mg/L
n5/n0
0.030
0.651
0.867
0.609
N15/N0
0.002
0.234
0.766
0.613
N30/N0
0.005
0.056
0.672
0.718
Nfl/No
0.000
0.016
0.600
0.363
N120/N0
0.000
0.005
0.299
0.141
N240/N0
0.000
0.000
0.285
0.077
1 mg/L
n5/n0
0.000
0.194
0.700
0.622
n15/n0
0.000
0.011
0.581
0.657
N3c/N0
0.000
0.007
0.344
0.461
N<¡o/No
0.000
0.006
0.223
0.312
N 120/No
0.000
0.002
0.040
0.329
N240/N0
0.000
0.000
0.006
0.081
5 mg/L
n5/n0
0.006
0.000
0.109
0.299
n15/n0
0.003
0.014
0.118
0.209
n30/n0
0.000
0.006
0.039
0.158
Neo7N0
0.001
0.002
0.039
0.139
N120/No
0.000
0.002
0.000
0.160
N24(/No
0.000
0.000
0.005
0.012
10 mg/L
n5/n0
0.000
0.000
0.000
0.176
n15/n0
0.000
0.010
0.002
0.160
N30/N0
0.000
0.005
0.005
0.082
n60/n0
0.000
0.002
0.002
0.076
N120/N0
0.000
0.000
0.000
0.023
â– ^240^0
0.000
0.000
0.005
0.052
Rose bengal was less effective for photochemical disinfection than
was MB. The presence of RB had little, if any, positive effect on the
disinfection rate over sunlight alone, although the experiments at pH 7
appeared to exhibit some photochemical disinfection (Figure 4-3a).
In the experiments conducted at pH 10 (Figure 4-3b), RB had no
positive effect on disinfection over sunlight alone. Coliform reduction of

66
greater than 99.9% was observed by 60 minutes in sunlight alone; however,
in the presence of RB the same coliform reduction was not evident until the
240 minute samples with 0.1 mg/L RB and the 120 minute samples for all
other RB concentrations. Coliform reduction was about the same by 30
minutes regardless of the RB concentration, with a low of 81% for 10 mg/L
RB and a high of 90% with 1 mg/L RB. The control, sunlight alone, had a
coliform reduction of 88%. The differences are not significant, as all values
fall within the average standard deviation of 21%. The average intensity of
sunlight in these experiments ranged from 715 to 775 W/m2.
As was evidenced in the experiments with MB, disinfection appeared
to be less effective at the neutral pH value of 7 (Figure 4-3a). The exception
was with the higher concentrations of RB, 5 and 10 mg/L (Figure 4-4),
where coliform reductions by 30 minutes were 96% and 97%, respectively.
In comparison, coliform reduction in sunlight alone (746-856 W/m2) by 30
minutes was 77%, 78% with 0.1 mg/L RB and 89% with 1 mg/L RB. Mean
values for the fractional survival of E. coli in the rose bengal experiments
are shown in Table 4-6.
While some reduction in both benzene and toluene concentration was
observed with both dyes under every set of conditions, there was a
substantial amount of contaminant (130 - 550 ppb) remaining in the water
(Tables 4-7 and 4-8) after four hours. Initial concentrations ranged from
139 - 1400 ppb as shown in Table 4-2. Figures 4-5 to 4-8 show the
concentration of benzene and toluene as a function of time at various dye
concentrations.

67
100%
90%
80%
i 70%
u 60%
I 50%
S 40%
sS 30%
20%
10%
0%
0 15 30 45 60
Time (minutes)
(a)
100% -T-
90%
80%
| 70% -
o 60%
5 50%
á 40%
Sí 30%
20%
10%
0% i
0
(b)
Figure 4-3. RB Destruction of E. coli in Sunlight; (a) pH = 7,1 = 746-856
W/m2 (b) pH = 10, Iavg = 715-775 W/m2
4-
15 30 45
Time (minutes)
-Control
-0.1 mg/L
-1 mg/L
-5 mg/L
-10 mg/L
- Control
- 0.1 mg/L
-1 mg/L
-5 mg/L
-10 mg/L
The experimental values for both benzene and toluene in MB showed
fairly consistent reductions, with normalized concentrations ranging from
0.59 to 0.87 after four hours. Both the greatest and smallest reductions
corresponded to control reactors, sunlight at pH 10 and dark at pH 7,
respectively.

68
(a)
Time (minutes)
—4- Ño RB, Sunlight —X- 5 mg/L RB, Sunlight
O No RB, Dark - 5 mg/L , Dark
(b)
Time (minutes)
—O— No RB, Sunlight —*—10 mg/L RB, Sunlight
O No RB, Dark C- 10 mg/L RB, Dark
Figure 4-4. RB Destruction of E. coli at pH =7, Iavg = 715-775 W/m2;
(a) 5 mg/L RB and (b) 10 mg/L RB
Examination of the normalized data (Tables 4-9 and 4-10) did not yield
a different conclusion. Neither chemical contaminant exhibited a
substantial difference in behavior between control and non-control reactors
in either MB or RB experiments, as seen from Figures 4-9 to 4-12.
In RB experiments reductions ranging from 15% to 36% for benzene
and 24% to 47% for toluene in sunlight were observed. One reactor, the
dark control reactor at pH 10, exhibited no reduction at all. However, since
the other controls, both in sunlight and in dark, had destruction rates

09
which were
in the middle of the range
for the non-control
reactors, this
cannot be considered
an indication that photochemical action
took place.
Table 4-6. Mean Fractional Survival (±13%) of E. coli in RB Experiments
Control
Sunlight pH 10 Sunlight pH 7
Dark pH 10 Dark pH 7
n5/n0
0.668
0.714
0.961
0.925
n15/n0
0.315
0.458
1.074
0.729
N30/N0
0.122
0.226
0.952
0.762
Neo/No
0.000
0.001
0.795
0.527
n120/n0
0.000
0.000
0.660
0.512
N240/N0
0.000
0.003
0.381
0.331
0.1 mg/L
n5/n0
0.541
0.599
0.846
0.717
n16/n0
0.381
0.216
1.058
0.545
N31/N0
0.131
0.221
0.930
0.649
N60/N0
0.002
0.006
0.797
0.696
N120/N0
0.005
0.000
0.617
0.552
N240/N0
0.000
0.000
0.269
0.451
1 mg/L
n5/n0
0.498
0.624
1.028
0.436
n15/n0
0.241
0.462
1.007
0.678
n30/n0
0.102
0.110
1.033
0.530
N6o/Nu
0.009
0.001
1.107
0.625
N 120/No
0.000
0.000
0.838
0.499
N240/N0
0.000
0.003
0.461
0.292
5 mg/L
n5/n0
0.707
0.562
0.966
0.681
n15/n0
0.447
0.371
1.006
0.970
N30/N0
0.150
0.044
1.015
0.693
Ngo/Nq
0.006
0.007
0.920
0.650
N 120/No
0.000
0.000
0.597
0.820
N240/N0
0.000
0.000
0.334
0.640
ib mg/L
n5/n0
0.555
0.516
0.989
0.746
Ni5/N0
0.451
0.365
0.884
0.551
N3u/No
0.188
0.029
0.918
0.537
n60/n0
0.002
0.000
0.888
0.666
N120/N0
0.000
0.004
0.659
0.490
N240/N0
0.000
0.000
0.388
0.478

70
Table 4-7. Benzene (±51) and Toluene (±29) Concentrations (ppb) in MB
Experiments
benzene'"'
Time (min)
Sunlight pH 10
Sunlight pH 7
Dark pH 10
Dark pH 7
Control
0
953
609
632
630
60
686
593
565
643
240
522
545
476
545
0.1 mg/L
0
767
622
597
646
60
578
533
583
533
240
513
482
399
495
1 mg/L
0
733
642
729
705
60
643
555
521
554
240
544
527
419
500
5 mg/L
0
707
658
604
662
60
626
502
562
597
240
564
418
385
491
10 mg/L
0
762
583
596
679
60
567
535
565
548
240
478
456
431
483
TOLUENE
Time (min)
Sunlight pH 10
Sunlight pH 7
Dark pH 10
Dark pH 7
Control
0
499
275
269
310
60
298
250
224
312
240
214
221
176
234
0.1 mg/L
0
358
282
264
324
60
248
217
245
243
240
210
158
141
211
1 mg/L
0
326
297
319
357
60
275
235
207
256
240
226
208
157
209
5 mg/L
0
330
300
261
327
60
261
215
248
281
240
230
160
131
203
10 mg/L
0
347
266
255
331
60
233
225
227
261
240
183
171
155
211
The greatest apparent reductions seemed to correspond to higher
initial concentrations and exposure to sunlight. This type of behavior
would be consistent with benzene and toluene being trapped in the vapor
space above the water line. Although head space was kept to a minimum,
as the samples were drawn from the reactor, head space increased.
Though temperature was not a consistently measured parameter, an
increase in temperature was observed, probably due to sunlight and friction

71
from the magnetic stirrers. The combination of temperature and head
space increase would necessarily lead to volatilization of the chemical
contaminants in the vapor space. Spot temperature checks with
temperature strips on the outside reactor glass yielded values in excess of
96°F in sunlight.
Table 4-8. Benzene (± 46) and Toluene (± 36) Concentrations (ppb) in RB
Experiments
BENZENE
Time (min)
Sunlight pH 10
Sunlight pH 7
Dark pH 10
Dark pH 7
Control
0
716
746
432
497
60
692
557
446
466
240
499
539
447
425
0.1 mg/L
0
542
657
478
504
60
508
541
474
440
240
463
508
371
417
1 mg/L
0
593
618
463
516
60
533
513
399
438
240
389
564
332
379
5 mg/L
0
611
646
437
515
60
516
524
434
413
240
386
476
350
365
10 mg/L
0
583
635
483
461
60
420
513
438
419
240
375
483
371
341
TOLUENE
Time (min)
Sunlight pH 10
Sunlight pH 7
Dark pH 10
Dark pH 7
Control
0
543
541
279
421
60
486
415
283
385
240
338
370
289
349
0.1 mg/L
0
401
493
318
442
60
367
394
311
387
240
310
367
250
346
1 mg/L
0
427
481
307
464
60
367
374
246
368
240
259
355
195
303
5 mg/L
0
458
491
294
443
60
364
373
282
338
240
246
317
206
284
10 mg/L
0
416
483
323
410
60
298
375
281
349
240
255
329
223
275

72
(a)
—O— Control
—X— 0.1 mg/L
X 1 mg/L
O— 5 mg/L
A 10 mg/L
•Referenced to internal
standard, chlorobenzene
(b)
—O— Control
-Q—0.1 mg/L
A 1 mg/L
X 5 mg/L
-X~ 10 mg/L
Time (minutes)
•Referenced to internal
standard, chlorobenzene.
Figure 4-5. Benzene Concentration as a Function of Time and MB
Concentration in Sunlight; (a) pH=10,1 = 542-696 W/m2
(b) pH=7, Iavg = 665-891 W/m2

73
(b)
Control
0.1 mg/L
1 mg/L
5 mg/L
10 mg/L
Time (minutes)
•Referenced to internal
standard, chlorobenzene
Figure 4-6. Toluene Concentration as a Function of Time and MB
Concentration in Sunlight; (a) pH =10,1 = 542-696 W/m2
(b) pH=7, Iavg = 665-891 W/m2

74
(a)
Control
0.1 mg/L
1 mg/L
5 mg/L
10 mg/L
Time (minutes)
•Referenced to internal
standard, chlorobenzene
(b)
—O— Control
—0—0.1 mg/L
A 1 mg/L
5 mg/L
10 mg/L
y ■ . v ‘Referenced to internal
Time (minutes) standard, chlorobenzene
Figure 4-7. Benzene Concentration as a Function of Time and RB
Concentration in Sunlight; (a) pH =10,1 = 715-775 W/m2
(b) pH=7, Iavg = 746-856 W/m2

75
(a)
Control
0.1 mg/L
1 mg/L
5 mg/L
10 mg/L
Time (minutes)
•Referenced to internal
standard, chlorobenzene
(b)
—❖—Control
-e-0.1 mg/L
-A—1 mg/L
—X—5 mg/L
-X-10 mg/L
Time (minutes)
•Referenced to internal
standard, chlorobenzene
Figure 4-8. Toluene Concentration as a Function of Time and RB
Concentration in Sunlight; (a) pH =10,1 = 715-775 W/m2
(b) pH=7, Iavg = 746-856 W/m2

76
Table 4-9. Normalized Benzene (±0.09) and Toluene (± 0.11) Concentration
in MB Experiments
BENZENE
Sunlight pH 10
Sunlight pH 7
Dark pll 10
ffi-:vXív»»s*xvX‘»:w:«MM«ocoo»
Dark pH 7
Control
Nei/No
0.78
0.96
0.90
1.01
Ni2(/No
0.59
0.86
0.75
0.87
0.1 mg/L
n60/n0
0.77
0.88
1.02
0.83
N240/N0
0.67
0.80
0.68
0.77
1 mg/L
Neo/No
0.86
0.85
0.72
0.79
n240/n0
0.71
0.80
0.59
0.71
5 mg/L
^60^0
0.87
0.76
0.95
0.90
N24q/N0
0.77
0.65
0.65
0.75
10 mg/L
Nh/No
0.75
0.92
0.98
0.81
N24o/No
0.63
0.77
0.74
0.72
TOLUENE
Sunlight pH 10
Sunlight pH 7
Dark pH 10
Dark pH 7
Control
n60/n0
0.70
0.88
0.85
0.99
N120/N0
0.49
0.77
0.68
0.76
0.1 mg/L
0.72
0.80
0.98
0.76
N240/N 0
0.57
0.57
0.58
0.63
1 mg/L
n60/n0
0.82
0.77
0.66
0.71
N240/NO
0.64
0.67
0.51
0.58
5 mg/L
N60/N0
0.77
0.72
1.01
0.84
N240/NO
0.64
0.54
0.55
0.63
10 mg/L
Neo/N0
0.70
0.85
0.92
0.78
N240/N0
0.53
0.62
0.65
0.63

77
Table 4-10. Normalized Benzene (±0.06) and Toluene (±0.07) Concentration
in RB Experiments
BENZENE
Sunlight pH 10
Sunlight pH 7
Dark pH 10
Dark pH 7
Control
0.94
0.81
1.04
0.95
Ni20/No
0.68
0.74
1.02
0.86
0.1 mg/L
n60/n0
0.93
0.87
1.00
0.87
N241/N0
0.85
0.77
0.71
0.81
1 mg/L
0.90
0.83
0.84
0.91
N240/N0
0.65
0.81
0.71
0.78
5 mg/L
Neo/N,,
0.84
0.82
1.00
0.81
N2VN0
0.64
0.73
0.81
0.69
10 mg/L
Ngo/No
0.72
0.85
0.90
0.95
N240/N0
0.66
0.74
0.77
0.75
TOLUENE
Sunlight pH 10
Sunlight pH 7
Dark pH 10
Dark pH 7
Control
n60/n0
0.86
0.82
1.01
0.94
Ni2(/N0
0.58
0.69
1.03
0.81
0.1 mg/L
Ngo/No
0.89
0.83
0.99
0.89
E240/N0
0.76
0.71
0.65
0.75
1 mg/L
Ng«/N0
0.87
0.79
0.78
0.89
N24(/N0
0.59
0.73
0.65
0.71
5 mg/L
Ngc/No
0.78
0.78
0.96
0.78
N240/N0
0.53
0.64
0.69
0.61
10 mg/L
E go/N0
0.71
0.82
0.87
0.91
N24(/Nd
V.V.V.V^V.W.V.V.VAVAV.V.V.V.V.V.V.V.V.V.V,
0.62
.•.*.V.*.V.V.W.V.W.V.V.V.W.*.V.V.V.W.V.V.V.W.V
0.65
0.69
VA\V.V.V.V.\V.\V.V.V.V.V.V.WAV.V.V.V.W.V.W.V
0.65
W.W.V.W.W.-.W.V.V.W.W.W.W.V.W.

78
(a)
Time (minutes)
* Referenced to internal
standard, chlorobenzene
O No MB, Sunlight -O- 0.10 mg/L, Sunlight
~O— No MB, Dark —I-— 0.10 mg/L, Dark
(b)
-r- , . . v * Referenced to internal
Time (minutes) standard chlorobenzene
■O— No MB, Sunlight —Q— 0.1 mg/L, Sunlight
-O—No MB, Sunlight —I—0.1 mg/L, Dark
Figure 4-9. Normalized Benzene Concentration in Sunlight with 0.1 mg/L
MB, (a) pH =10, Iavg = 542-696 W/m2 (b) pH=7, IaV(? = 665-891 W/m2

79
(a)
A No MB, Sunlight D 0.1 mg/L, Sunlight
X No MB, Dark A 0.1 mg/L, Dark
(b)
. * Referenced to internal
Time (minutes) standard, chlorobenzene
O No MB, Sunlight D 0.1 mg/L, Sunlight
—No MB, Dark —I—0.1 mg/L, Dark
Figure 4-10. Normalized Toluene Concentration in Sunlight with 0.1 mg/L
MB; (a) pH =10, Iavg = 542-696 W/m2 (b) pH=7, Iavg = 665-891 W/m2

80
(a)
Time (minutes)
•Referenced to internal
standard, chlorobenzene
— O No MB, Sunlight - B— 0.1 mg/L, Sunlight
—©—No MB, Dark —I—0.1 mg/L, Dark
(b)
Time (minutes)
•Referenced to internal
standard, chlorobenzene
—©—No MB, Dark
—1—0.1 mg/L, Sunlight
—O— No MB, Dark
—B- 0.1 mg/L, Dark
Figure 4-11. Normalized Benzene Concentration in Sunlight with 0.1 mg/L
RB, (a) pH =10, Iavg = 715-775 W/m2 (b) pH=7, Iavg = 746-856 W/m2

81
(a)
—♦-No MB, Sunlight —B—0.1 mg/L, Sunlight
O No MB, Dark —1—0.1 mg/L , Dark
(b)
. ’Referenced to internal
Time (minutes) sandara. chlorobenzene
-No MB, Sunlight
No MB, Dark
—I—0 1 mg/L, Sunlight
—B—0.1 mg/L, Dark
Figure 4-12. Normalized Toluene Concentration in Sunlight with 0.1 mg/L
RB, (a) pH =10, Iavg = 715-775 W/m2 (b) pH=7, Iavg = 746-856 W/m2
Data Analysis bv ANOM
Initial observation of the disinfection data for dye photosensitization
suggested that photochemical destruction may have taken place.
Therefore, these data were selected for additional analysis by ANOM. The
fractional survival of colony forming emits (efu) after 5 minutes, 15 minutes
and 30 minutes were all analyzed in this manner, for both MB and RB
experiments. An a-level of 0.05 was used for all data presented.
ANOM was used to examine the controlled parameters for the
experiments, presence or absence of sunlight, pH level, and dye

82
concentration. The presence and absence of sunlight appeared to be the
most significant factor in both MB and RB experiments, based upon the
ANOM.
Grand averages were calculated separately for the MB and RB data
at 5, 15 and 30 minutes using fractional survival of cfu. The grand
averages calculated for MB experiments were 0.39 (±0.14), 0.28 (±0.13) and
0.23 (±0.13) for 5,15 and 30 minutes, respectively. Both the grand averages
and average standard deviations were slightly higher for the RB
experiments with grand average values of 0.71 (±0.19), 0.61 (±0.24) and 0.47
(±0.16), respectively, for 5, 15, and 30 minutes. The general values
calculated for use in ANOM are given in Table 4-11.
Table 4-11. Calculated ANOM Values for Dye Photosensitized Disinfection
Sample Set
Grand Average, X
Avg Std Dev
Avg Range
Estimated
SD(X)
RB @ t=5 minutes
0.71
0.19
0.46
0.23
RB @ t=15 minutes
0.61
0.24
0.57
0.27
RB @ t=30 minutes
0.47
0.16
0.36
0.21
MB @ t=5 minutes
0.39
0.14
0.31
0.20
MB @ t=15 minutes
0.28
0.13
0.31
0.18
MB @ t=30 minutes
0.23
0.13
0.30
0.18
Effect of Sunlight
The data from each sample set (5, 15 and 30 minutes) were separated
into two subgroups, based on the absence and presence of sunlight. This
gave an n value of 30 samples per subgroup and a k value of 2 subgroups for
each sample set. The n and k values were used to determine the degrees of
freedom, v, bias correction factor, cL/, and , subsequently, ANOM critical
value, H, from the bias correction factor and critical values tables (Wheeler

83
1990). The corresponding values were v = 33.5, d/ = 4.116, and, for an a =
0.05, H = 1.44. These values, along with the values in Table 4-11, were used
to determine the decision limits as shown in Equations 4-4 to 4-6.
For each subgroup, in this case sunlight and dark, an average was
calculated and plotted on a chart with the decision limits. The subgroup
averages for sunlight in both the MB and RB experiments are shown in
Table 4-12. As noted previously, a subgroup average outside of the decision
limits indicated a parameter was statistically significant. As shown below
the absence or presence of sunlight was found to be statistically significant
in all cases tested for both MB (Figure 4-13) and RB (Figure 4-14)
experiments.
Table 4-12. Sunlight Subgroup Averages for Dye Photosensitized
Disinfection; Values are Fractional Survival of E. coli
MB Subgroup
Sunlight (542
-891 W/m2)
Dark
X
S
R
X
S
R
t = 5 minutes
0.282
0.064
0.139
0.501
0.212
0.479
t = 15 minutes
0.141
0.069
0.153
0.454
0.196
0.461
t = 30 minutes
0.038
0.033
0.075
0.420
0.227
0.528
RB Subgroup
Sunlight (715
- 856 W/m2)
Dark
X
S
R
X
S
R
t = 5 minutes
0.598
0.224
0.518
0.830
0.166
0.396
t = 15 minutes
0.371
0.231
0.541
0.850
0.253
0.595
t = 30 minutes
0.132
0.146
0.330
0.802
0.165
0.390

m
(a)
-UDLxbar â– 
-LDLxbar Gavg 1
-Light
Figure 4-13. Significance of Sunlight, Based on ANOM, in MB Experiments
(a) 5 Minutes (b) 15 Minutes (c) 30 Minutes

85
(a)
0.90 -i
0.80 - UDL = 0.77 >Dark
/ Grand Avc
0.70 —
0.60 - LDL = 0.65 *(715-856
¿0.50 W/m2>
z 0.40
0.30 -
0.20
0.10
0.00 -I
UDLxbar LDLxbar Gavg ♦—Light]
- UDL = 0.77
^ Dark
Grand Avc
LDL = 0.65
#(715-856
W/m2)
(b)
(0
UDLxbar LDLxbar Gavg ♦ Light j
Figure 4-14. Significance of Sunlight, Based on ANOM, in RB Experiments
(a) 5 Minutes (b) 15 Mintues (c) 30 Minutes

86
Effect of pH
As was done for evaluation of the effect of sunlight, the data from
each sample set (5, 15 and 30 minutes) were separated into two subgroups,
based upon the pH value of 7 or 10. Since k and n were the same, and the
same a-level was used, the values for v, d/, and H were also the same.
Again, these values, along with the values in Table 4-11, were used to
determine the decision limits as shown in Equations 4-4 to 4-6.
For each subgroup, in this case pH=7 and pH=10, an average was
calculated and plotted on a chart with the decision limits. The subgroup
averages for pH are shown in Table 4-13. ANOM charts are shown in
Figures 4-15 and 4-16.
Table 4-13. pH Subgroup Averages for Dye Photosensitized Disinfection.
Values are Fractional Survival of E. coli.
MB Subgroup pH = 10 pH = 7
X
S
R
X
S
R
t = 5 minutes
0.38
0.09
0.20
0.40
0.34
0.76
t = 15 minutes
0.31
0.07
0.15
0.28
0.19
0.46
t = 30 minutes
0.21
0.10
0.23
0.25
0.35
0.83
RB Subgroup
pH =10
PH = 7
X
s
R
X
S
R
t = 5 minutes
0.78
0.07
0.16
0.65
0.26
0.63
t = 15 minutes
0.69
0.16
0.37
0.54
0.32
0.76
t = 30 minutes
0.55
0.12
0.27
0.38
0.19
0.45

87
0.50
0.45
0.40
o
z
n
Z 0.35
0.30
0.25
(a)
0.40 -i
0.38
0.36 -- UDL = 0.35
0.34 J
o 0 :32
1 0 30 -- Grand Av¿
2 „ „ u 7 T7.3Ü"
0.28 XpH7
0.26 -
0 24 + LDL = 0.25
0.22 --
0.20 -I
UDLxbar LDLxbar Gavg —X—pH
(b)
0.50 -|
0.45 -
0 40 .. UDL = 0.38
0.35
o 0.30 -
"a 0-25 -- JjH, pH 7 Grand Avg
z 0.20 Xf>H 10 ~
0.15 -â– 
0.10 --
0.05 - LDL = 0.08
0.00 -I
UDLxbar LDLxbar Gavg —X—pitl
(c)
Figure 4-15. Significance of pH, Based on ANOM, in MB Experiments; (a) 5
Minutes (b) 15 Minutes (c) 30 Minutes
UDL = 0.38
^XpH7
XtfH 10
Grand Avg
TJ.73
LDL = 0.08
UDL = 0.35
\dH 10
XpH7
Grand Avg
TTSÜ-
LDL = 0.25
UDLxbar LDLxbar Gavg —X—pHl

88
Figure 4-16. Significance of pH, Based on ANOM, in RB Experiments; (a) 5
Mintues (b) 15 Minutes (c) 30 Minutes

89
It is clear that pH was statistically insignificant in MB experiments.
This was inconsistent with the findings of Eisenberg et al. (1987), who
reported a very strong correlation with pH values and more efficient MB
inactivation at a basic pH.
The ANOM tests were somewhat inconclusive for RB experiments.
The data suggested that a neutral pH of 7 was slightly more effective for
disinfection than the basic pH of 10; however, since the a-level used for
determination of critical values was 0.05, it was possible that the signals
were false and, therefore, not significant.
Effect of Dve Concentration
For evaluation of the effect of the concentration of MB and RB, the
data from each sample set (5, 15 and 30 minutes) were separated into five
subgroups, based upon the concentration of dye. This gave an n value of 12
samples per subgroup and a k value of 5 subgroups for each sample set.
The n and k values were used to determine the degrees of freedom, v, bias
correction factor, d2*, and, subsequently, ANOM critical value, H, from the
bias correction factor and critical values tables (Wheeler 1990). The
corresponding values were v = 44.1, d/ = 3.276, and, for an a = 0.05, H =
2.39. These values, along with the values in Table 4-11, were used to
determine the decision limits as shown in Equations 4-4 to 4-6.
For each subgroup an average was calculated and plotted on a chart
with the decision limits. The subgroup averages for dye concentrations in
both the MB and RB experiments are shown in Table 4-14. As shown in
Figure 4-17, signals were obtained for the control reactor on the upper side,

90
and for 5 and 10 mg/L of MB on the lower side, indicating that the absence
or presence of MB was significant at both 5 and 15 minutes. However, by 30
minutes (Figure 4-17c), the presence of MB was no longer of significance,
and disinfection in sunlight alone was just as effective.
The presence of RB, however, in any concentration, did not appear to
differ significantly from the absence of RB, suggesting that it neither
enhanced nor detracted from the photolytic disinfection (Figure 4-18).
Since MB concentration displayed some significance, each of the
subgroup averages at 5 minutes was plotted against the control and the
high concentration (10 mg/L) to determine the minimum significant
concentration. These combinations allowed for the determination of
optimum concentration range for the fastest disinfection. There were
again two subgroups, for a k of 2, with the n value (samples per subgroup)
remaining at 12. The corresponding table values were v = 17.8, d¡ = 3.304,
and, for an a = 0.05, H = 1.5.
Table 4-14. Dye Concentration Subgroup Averages in Disinfection
Experiments. Values are Fractional Survival of E. Coli.
MB
Ctrl
0.1 mg/L
1 mg/L
5 mg/L
10 mg/L
X
S
R
X
S
R
X
S
R
X
S
R
X
S
R
5
0.90
0.23
0.52
0.54
0.13
0.30
0.38
0.13
0.29
0.10
0.14
0.31
0.04
0.06
0.13
15
0.64
0.21
0.48
0.40
0.17
0.41
0.31
0.13
0.31
0.09
0.10
0.23
0.04
0.05
0.11
30
0.47
0.28
0.65
0.36
0.20
0.48
0.25
0.08
0.18
0.05
0.07
0.14
0.02
0.02
0.05
RB
Ctrl
0.1 mg/L
1 mg/L
5 mg/L
10 mg/L
X
S
R
X
S
R
X
S
R
X
S
R
X
S
R
5
0.82
0.18
0.43
0.68
0.25
0.58
0.65
0.24
0.56
0.73
0.16
0.38
0.70
0.15
0.34
15
0.64
0.28
0.66
0.55
0.30
0.72
0.60
0.25
0.53
0.70
0.18
0.44
0.56
0.20
0.47
30
0.52
0.15
0.35
0.48
0.17
0.40
0.44
0.21
0.49
0.48
0.12
0.27
0.42
0.13
0.29

91
(a)
•UDLxbar LDLxbar Gavg B MB Cone |
(b)
(c)
Figure 4-17. Statistical Significance of MB Concentration, Based on ANOM,
on Disinfection in Sunlight; (a) 5 Minutes (b) 15 Minutes (c) 30
Minutes

92
Figure 4-18. Statistical Significance of RB Concentration, Based on ANOM,
on Disinfection in Sunlight; (a) 5 Minutes (b) 15 Minutes (c) 30
Minutes

93
As noted previously, a subgroup average outside of the decision limits
indicated a parameter was statistically significant. When all of the MB
concentrations were considered, the presence of at least 5 mg/L MB showed
significance up to 30 minutes. By 30 minutes, the presence of MB no longer
had an impact on the destruction of E. coli. The presence of RB was not
significant in any instance, as was anticipated from the initial
observations.
In order to determine the minimum effective MB concentration, the 5
minute subgroup averages were plotted against the control, and then,
selectively, against each other. Every concentration showed significance
relative to the control, suggesting that all concentrations contribute to
photodynamic action. When examined relative to 10 mg/L, all
concentrations except 5 mg/L showed a significant difference, suggesting
that an increase in effectiveness occurred with increases in MB
concentration up 5 mg/L.
Figure 4-19. Comparison of Disinfection Efficacy of Control and 0.1 mg/ L
MB in Sunlight at 5 minutes, Based on ANOM

UDLxbar LDLxbar Gavg —□—MB Cone
Figure 4-20. Comparison of Disinfection Efficacy of Control and 1 mg/L MB
in Sunlight at 5 minutes, Based on ANOM
Figure 4-21. Comparison of Disinfection Efficacy of Control and 5 mg/L MB
in Sunlight at 5 minutes, Based on ANOM

95
Figure 4-22. Comparison of Disinfection Efficacy of Control and 10 mg/L
MB in Sunlight at 5 minutes, Based on ANOM
0.60
0.50
0.40
I 0.30
z
0.20
0.10
0.00
ÜDLxbar LDLxbar Gavg —X—MB Cone
Figure 4-23. Comparison of Disinfection Efficacy of 0.1 mg/ L and 10 mg/L
MB in Sunlight at 5 minutes, Based on ANOM
1
UDL = 0.38 \
0.1 mg/L
J
Grand Avg
LDL = 0.20
J
X 10 mg/L

96
0.40
0.35
0.30
0.25
* 0.20
z
0.15
0.10
1
UDL = 0.30 1
1 mg/L
J
Grand Avg
I CT2r
LDL = 0.12
I
X 10 mg/L
0.00
UDLxbar
-LDlxbar Gavg —X—MB Cone
Figure 4-24. Comparison of Disinfection Efficacy of 1 mg/ L and 10 mg/L
MB in Sunlight at 5 minutes, Based on ANOM
0.20
0.15
0.10
o
>, 0.05
z
0.00
-0.05
-0.10
ÜDLxbar LDLxbar Gavg—X—MB Cone'
Figure 4-25. Comparison of Disinfection Efficacy of 5 mg/ L and 10 mg/L
MB in Sunlight at 5 minutes, Based on ANOM
When the data were viewed graphically (Figure 4-26), a significant
correlation was seen between the concentration of MB and disinfection,
which was confirmed by linear regression. At the tested concentrations an
increase in the MB concentration led to a direct increase in the effectiveness
of disinfection with time. The strongest correlation was found with the MB
concentration and ln(Nt/N0). A linear fit gave an r2 of 0.94, with p-values of
UDL = 0.15
X5 mg/L Grand Av£_
XI
10 mg/L
DUT‘
LDL = -0.02

97
0.02 and 0.01 for the intercept and slope, respectively, for t=5 minutes
(Figure 4-27).
Acher and Juven (1977) reported that an increase in MB
concentration from 0.5 to 5.0 mg/L caused an increase in the inactivation of
coliform in both sewage water and tap water in sunlight. They also
reported that 10 mg/L of RB was required to achieve the same disinfection
effect as 4 mg/L MB, although no relationship of RB concentration and
disinfection was reported. The results found in this experiment were
consistent with those reported by Acher and Juven (1977) with regard to
destruction of E. Coli by MB.
Figure 4-26. Fractional Survival of E. coli in sunlight at t=30 minutes as a
Function of MB Concentration; Bars are One Standard Deviation
Effect of Initial Coliform Density
As shown in Table 4-2 the initial coliform density varied broadly
between experiments. The variations seen across experiments were also
present, though to a lesser extent, within each experimental set.

98
Analysis of the data indicated no significant correlation of initial
coliform density with fractional survival (Nt/N0) at time t for either dye. The
typical relationship, based on the mean values from all experiments, is
shown for both MB (Figure 4-28) and RB (Figure 4-29).
Figure 4-27. Least Squares Regression of Natural Logarithm of Fractional
Survival of E. coli as a Function of MB Concentration at t=5
Minutes (p-values for intercept and coefficient are 0.02 and 0.01,
respectively)
Figure 4-28. Initial Colony Count vs. Fractional Survival of E. coli at t=60
Minutes for MB Experiments

99
Figure 4-29. Initial Colony Count vs. Fractional Survival of E. coli at
t=30 Minutes in RB Experiments
Correlation of initial coliform density with disinfection rate has not
been reported in the literature for dye photosensitization. The indication,
from the results of these experiments, was that no true correlation exists.
This is consistent with the findings of Ti02 photocatalysis reported in this
chapter.
Reactor Efficacy
After numerous iterations of reactor configurations with no evidence
of destruction of chemical contaminants, the question of the effectiveness of
the reactor and/or reaction process arose. Examination of the problem led
to several possibilities for ineffectiveness of the reactor or reaction process:
• dye concentrations were not consistent with previous work
• reactor was not transparent to light of appropriate wavelengths;
• dye used was not photoactive.

100
Consistency with previous work
In order to provide confidence in the reactor system, a set of
experiments was conducted which reproduced results found in the
literature. Eisenberg et al. (1987) were able to destroy bromacil in
wastewater with MB in sunlight under a variety of pH conditions using
several MB concentrations. While these experiments did not attempt to
duplicate the work conducted by Eisenberg et al., there was a desire to
ensure that similar results could be obtained using the photosensitization
reactor design. Photosensitization of water containing bromacil with 10
mg/L MB resulted in a 75% reduction, from 1448 ppb (±218) to 358 ppb
(±48.5), after four hours of irradiation in sunlight versus a 13% reduction,
to 1265 ppb, for the control reactor with no MB.
Transparency of reactor.
Disinfection of E. coli occurred in all reactors tested in the sunlight,
but not in the reactors tested in the dark in both the MB and RB
experiments. This disinfection occurred, albeit at different rates, both in the
presence and absence of dye. Were the reactors not transparent to sunlight,
there would have been no difference in disinfection between the reactors
run in sunlight and those held in the dark chamber.
Photoactivity of dyes
Observation of the reactors in sunlight provided visual evidence of the
photoactivity of the dyes. Methylene blue and, to a lesser extent rose bengal,
began to self-destruct in sunlight. The disappearance of the dye suggested
clearly that the dye was photoactive, as this was the behavior anticipated by
the photoactive dye (Schlauch 1987). Indeed, the fact that the dye would

101
eventually react with itself was one of the features which made it attractive
as a water treatment photochemical.
Summary
Of the systems tested in these experiments, photosensitized
disinfection with methylene blue was the only process which yielded
positive results. While disinfection did occur in the presence of rose bengal,
it did not enhance the reaction to any degree. There were no indications at
all that photosensitization occurred with respect to the chemical
contaminants with either methylene blue or rose bengal. Consequently,
with the exception of methylene blue photosensitized disinfection, these
processes did not show promise for application.
Initial results indicate promise for methylene blue disinfection;
however, before the process is viable, additional, application specific,
research is required. The positive aspects were pH and dosage of MB.
Since pH was not a significant factor, no adjustments would be required for
use of MB as a disinfectant. While dosage was of some importance, it
would not require tight control.
One drawback to the use of MB as a disinfectant for drinking water
was the presence of color. While all of the MB disappeared from reactors at
the lower dosages, by the end of a four hour experiment, some slight color
was still visible at the higher dosages (5 and 10 mg/L). The color in the
water would likely be a deterrent for use as drinking water, particularly if
the water was clear prior to treatment. In most cultures there is an
expectation that ingested substances be visually appealing, including
colorless water.

102
Most importantly, however, in order for this process to be determined
feasible for application, it must be tested over a much broader range of
microbiological contaminants. Site specific testing is a must, as species
may differ from one locale to the other. Additionally, the process would
need to be tested for inactivation of viruses and cysts.
While the addition of MB did increase the rate of disinfection over
sunlight alone, the advantage may not be enough to justify the addition of a
foreign substance into a drinking water system, no matter how benign.
Photocatalvsis with Titanium Dioxide
Laboratory experiments were conducted to determine the effects of
Ti02 concentration and pH on the destruction of bacteria (Escherichia coli,
Pseudomonas aeruginosa, and Serratia marcescens) and aromatic
hydrocarbons (benzene, toluene, and xylene) under UV light. As described
in Chapter 3 the experiments were conducted under the following
conditions:
• UV lamps and dark,
• pH 4 and pH 7,
• 0.01, 0.05 and 0.10% Ti02 .
Initially, two experimental sets were conducted, to ensure
reproducibility of the results. A complete set of experiments were
represented by two reactors for each of the sets of conditions highlighted
above, for a total of 32 reactors per set. Eight reactors were run at a time,
every two reactors containing a different concentration of Ti02, with all
other parameters the same. A third set was conducted to collect additional

103
chemical analysis data; however, no microbiological data were collected
from this set. The chemical analysis results were reported from the final
set, and the disinfection results were reported from the first two sets.
In the first experimental set, samples were taken directly onto agar
plates from each reactor at time intervals of 0, 15, 30, 60, 120 and 240
minutes. Two replicates were plated from each sample for immediate
microbiological analysis. A second sample was taken at 0, 120 and 240
minutes directly into headspace vials, refrigerated and saved for chemical
analysis. In the second experimental set, samples were taken from the
reactor at time intervals of 0, 30, 60 and 120 minutes with the same
treatment as stated above. The samples for chemical analysis were taken
at 0, 60 and 120 minutes directly into headspace vials, refrigerated and
saved for chemical analysis.
The third set of experiments was conducted because complete
destruction of all chemical components was observed in almost all of the
second samples in each of the first two experimental sets, making trend
detection impossible. Samples were taken at 0, 5, 15, 30 and 60 minutes and
refrigerated immediately.
For the experiments conducted under UV lamps, the lamp intensity
was measured and recorded in the light chamber to be approximately 29
W/m2 when the chamber door was closed. The dark experiments were
conducted in the same chamber with the lights turned off.
Disinfection results were reported as aggregate colony forming units
and fractional survival of total bacteriological colonies for all species
present. Results for detoxification of aromatic hydrocarbon compounds

104
were reported by individual component with the exception of m-xylene and
p-xylene. The two isomers eluted too closely for separate peak
identification, therefore, the results were reported as one component.
The data, as well as the impact of each of the measured and
controlled parameters, are explored in more detail below, and results are
compared with published data on Ti02 photocatalysis of BTEX and Ti02
photocatalyzed disinfection.
General Comments About Experimental Data
The average standard deviation of the disinfection data was 12% as
calculated from fractional survival values. Plates on which the colonies
were not individually identifiable and those with severe contamination were
not counted, which resulted in the loss of approximately 50% of the plates in
a given experimental set. The difficulties encountered in microbiological
analysis that resulted in such a high loss rate and large standard deviation
were attributed to three factors: 1) use of mixed cultures, 2) extremely high
initial colony densities, and 3) inexperience of the experimenter in
microbiological techniques.
In the first experimental set, very few values were obtained from the
intermediate samples at 15, 30 and 60 minutes. The colony densities were
much too high for differentiation of the data.
The average standard deviations of the detoxification data ranged
from 6-9% of the average values, with o-Xylene having the highest. No
sample loss occurred for detoxification. Chemical samples were analyzed
within approximately two weeks of the experiment.

105
Statistical Treatment of the Data
The data were treated as outlined previously in the section on dye
photosensitization. No specific adjustments were required for the Ti02
disinfection data with the exception of normalizing negative percentages of
destruction to zero. There were two samples in chemical data thought to be
outliers; however, since only two replicates existed, outlier detection was
not possible.
Presentation of Results and Identification of General Trends
Ti02 photocatalysis was effective for simultaneous detoxification of
aromatic hydrocarbons and disinfection of the mixed bacterial species
tested over a range of conditions. The most destruction of both
bacteriological and chemical contaminants occurred in the presence of UV
light with 0.01% Ti02; however, disinfection seemed to be more effective at a
pH of 4, and detoxification appeared to fare better at pH 7.
Complete disinfection was achieved in one hour with 0.01% Ti02 at
pH 4. Complete disinfection within one hour was not observed in any other
reactor, where photocatalytic destruction of cfu ranged from 78% with
0.01% Ti02 at pH 7, to 92% observed with both 0.05% at pH 4 (Figure 4-30a)
and 0.10% Ti02 at pH 7 (Figure 4-30b). Complete disinfection was achieved
by four hours with both 0.01% and 0.05% Ti02 at pH 7.
Less than 60% reduction of cfu was attained in the control reactors by
four hours of irradiation under the UV lamps, and no persistent
destruction was observed in the dark reactors either with or without Ti02.
The data are presented as mean fractional survival of bacteria in Table 4-15.

(a)
E
3
CO
ra
c
o
•c
ra
0.60
0.50
0.40
0.30
0.20
0.10
0.00
Time (minutes)
0.00%
—0— 0.01 %
0.05%
0.10%
(b)
TiO; Cone.
- 0.00%
0.01%
0.05%
0.10%
Figure 4-30. Ti02 Photocatalytic Disinfection in UV Light (29 W/m2); Error
Bars are One Standard Deviation; (a) pH = 4 (b) pH = 7
The presence of Ti02 in reactors irradiated under ultraviolet lamps
resulted in some destruction of all of the aromatic hydrocarbons tested at all
concentrations. Photocatalytic destruction of all of the components to below
the detectable limits was observed in one reactor, reactor 4, by 60 minutes.
This reactor contained 0.01% Ti02 and water adjusted to a pH of 7. Figure
4-31 is a graphical representation of this reactor and its redundant reactor
(reactor 3), which was treated with the same conditions.
An examination of Table 4-16 shows that photocatalytic detoxification
took place under all conditions; however, by 60 minutes, only 50%

107
destruction of benzene was seen with 0.10% Ti02 at pH=4 and only 30% at
pH=7 (Figure 4-32). These values are fairly consistent for all of the
components as shown in Figures 4-33 and 4-34. Virtually no destruction of
any of the components in the absence of Ti02 or in the absence of light was
observed.
Table 4-15. Mean Fractional Survival of Bacteria in Ti02 Experiments
UV Light pH 4
UV Light pH 7
Dark pH 4
Dark pH 7
Control
Mean
Std Dev
Mean
Std Dev
Mean
Std Dev
Mean
Std Dev
N15/N0
-
-
-
-
0.63
0.00
-
-
N30/N0
-
-
1.48
0.08
0.56
0.24
0.77
0.20
Ngo/Nq
-
-
1.15
0.10
0.41
0.25
0.77
0.08
N120/N0
0.62
0.18
0.89
0.07
0.95
0.29
0.88
0.03
N2VN0
0.42
0.25
0.77
0.03
1.51
1.25
1.14
0.17
0.01% Ti02
N15/N0
0.33
0.00
-
-
-
-
-
-
N30/N0
0.05
0.00
-
-
0.36
0.08
0.88
0.00
n60/n0
0.00
0.00
0.21
0.08
0.29
0.09
0.74
0.00
N120/N 0
0.00
0.00
0.06
0.02
1.06
0.24
0.85
0.11
N 240/N 0
0.00
0.00
0.00
0.00
2.15
0.02
1.88
0.15
0.05% Ti02
n15/n„
-
-
-
-
-
-
-
-
N30/N0
0.26
0.03
0.59
0.11
0.59
0.12
0.62
0.05
N g()/N Q
0.08
0.01
0.22
0.01
0.61
0.01
0.98
0.32
N 120/No
0.03
0.00
0.11
0.04
0.81
0.08
1.09
0.47
N240/N0
0.09
0.08
0.00
0.00
1.04
0.17
1.63
0.33
0.10% Ti02
Ni5/N0
-
-
-
-
-
-
-
-
N30/N0
-
-
0.18
0.08
0.78
0.05
0.45
0.02
Ngo/No
0.18
0.06
0.08
0.02
1.22
0.29
0.49
0.05
N120/N0
0.23
0.16
0.07
0.04
0.99
0.31
1.11
0.24
_ N24q/N0
0.12
’.V.V.V.V.V.V.V.V.V.V.*.
0.13
'.â– .V/.V.V.V.V.V.V.'.V.W.*.'
0.09
AVMW.V.V.V.V.V.V.V.V
0.11
.v.v.v.v.v.v.v.v.v.v.v.v.v.
1.21
V.W.W.VAW.VAV.V
0.29
1.26
0.08

108
Table 4-16. Mean Concentration of BTEX (ppb) in Ti02 Experiments
.v.v.w-v.v.'.v.v.v.v.v.v.v.v.v.y
.v/.v.v.v.-.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.-.v.v.v.v.v.v.v.v.v,
BENZENE
UV Light pH 4
UV Light pH 7
Dark pH 4
Dark pH 7
0.00% Ti02 j
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
0 min
r 765
7
924
8
922
72
935
17
5 min
i 813
46
895
26
1008
90
1019
25
15 min
825
22
956
41
891
14
1029
23
30 min
i 769
38
901
16
828
6
1004
0
60 min
372
355
907
36
882
22
1068
69
0.01% Ti02 j
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Omin
Í 753
36
957
6
860
68
1009
19
5 min
466
84
264
24
853
2
1069
14
15 min
Í 250
47
78
8
581
323
1052
21
30 min
63
20
23
3
727
10
1016
1
60 min
5
1
1
0
754
72
1010
68
0.05% TiO, ;
Ayg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
0 min
| 867
35
967
14
865
6
1042
39
5 min
1 706
23
707
206
863
10
1070
27
15 min
i 488
35
626
174
838
84
1110
27
30 min
I 267
102
448
122
689
60
1088
1
60 min
l 187
69
255
69
812
48
1075
1
0.10% TiO, ;
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
0 min
| 853
8
840
14
876
17
976
108
5 min
| 790
71
902
27
901
9
985
83
15 min
706
49
797
14
873
12
958
45
30 min
! 629
10
661
30
756
10
1005
53
60 min
521
33
602
11
842
10
988
79
I
TOLUENE
UV Light pH 4
UV Light pH 7
Dark pH 4
Dark pH 7
Ó.ÓÓ%fiÓ2 ]
\ Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
0 min
478
2
484
13
738
67
685
20
5 min
\ 503
14
491
24
848
60
745
35
15 min
j 512
9
526
18
758
20
768
9
30 min
Í 509
13
518
35
700
8
746
5
60 min
263
252
523
16
740
3
772
54
0.01% Ti02 j
| Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
0 min
! 493
22
499
7
768
65
754
20
5 min
302
56
130
10
757
0
810
5
15 min
153
31
32
3
522
310
775
2
30 min |
35
13
7
1
653
15
768
19
60 mm
0
0
1
0
653
58
760
50
0.05% ti02 |
Avg
Std Dev
Avg
Std Dev
Avg
Std ÍDev
Avg
Std Dev
0 min
519
22
522
17
759
7
765
39
5 min
459
21
378
103
771
23
782
27
15 min |
309
38
339
92
748
88
828
8
30 min ^
170
72
249
53
571
90
813
1
60 min 1
119
47
136
42
733
54
808
27
0.10% Ti02 \
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Omin
562
11
458
1
774
11
767
86
5 min |
539
57
496
1
792
23
764
52
15 min |
471
34
424
8
770
9
750
59
30 min |
410
17
358
13
674
4
768
48
60 min j
327
30
315
1
750
10
756
65

109
Table 4-16 -
continued.
M&P-XYLÉNÉ
UV Light pH 4
UV Light pH 7
Dark pH 4
Dark pH 7
0.00% ti02 I
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
0 min
201
1
318
15
444
36
454
7
5 min
204
6
287
47
514
38
498
22
15 min I
217
7
308
53
466
2
511
18
30 min 1
230
8
315
75
429
9
487
14
60 min |
130
129
311
56
437
0
519
8
0.01% Ti02 T
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
0 min
192
7
233
1
484
46
497
10
5 min g
129
33
56
3
475
0
532
8
15 min 1
66
14
11
1
317
192
506
11
30 min f
11
4
1
0
408
3
505
5
60 min i
1
0
1
0
438
33
501
32
0.05% TiÓ2 I
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Omin
206
13
246
10
497
3
534
29
5 min
194
2
186
44
495
12
542
18
15 min I
126
29
168
36
495
49
575
4
30 min 1
68
36
114
14
341
62
559
3
60 min 1
47
23
65
20
459
44
556
1
0.10% Ti02 1
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
0 min
233
3
204
7
495
9
529
66
5 min
220
25
221
1
518
9
537
40
15 min |
191
18
196
4
498
15
533
36
30 min 1
161
9
157
7
414
15
543
54
60 min
I
125
16
136
1
467
0 536 34
O-XYLENE
Â¥
UV Light pH 4
UV Light pH 7
Dark pH 4
Dark pH 7
0.00% Ti02 ]
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
0 min
$
5 min I
52
1
107
5
145
20
147
4
54
3
86
24
178
18
165
12
15 min 1
60
1
97
27
157
1
169
8
30 min I
67
4
100
35
142
3
164
2
60 min
0.01% Ti02 I
40
39
98
29
148
2
178
5
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Omin
49
2
62
3
166
18
164
6
5 min
45
12
11
0
172
0
181
2
15 min 1
18
4
1
0
106
79
174
3
30 min
60 min
1
0
1
0
153
10
171
2
1
0
1
1
161
1
169
13
0.05% ti02 l
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
0 min
51
8
66
6
170
2
181
12
5 min
53
9
53
6
174
6
186
6
15 min I
29
24
48
2
175
17
197
4
30 min 1
17
16
27
9
119
17
191
2
60 min 1
9
8
25
2
159
17
191
1
0.10% TiO, |
0 min
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
Avg
Std Dev
60
1
52
3
170
2
177
27
5 min
57
9
58
1
175
5
184
18
15 min I
43
6
47
2
173
4
180
17
30 min 1
33
3
31
1
145
0
186
19
60 min
|
16
6
23
0
164
2
183
18

110
Time (minutes)
Reactor 3 a Reactor 4
Figure 4-31. Destruction of Benzene in Reactors 3 and 4 as a Function of
Time; Reactors Contained 0.01% Ti02 and were Irradiated for
60 minutes under UV Lamps (29 W/m2)
(a)
Ti02 Cone.
—•—Control
-*-0.01%
—A—0.05%
-X-0.10%
1000
S' 900
a.
3 800
.1 700
| 600
| 500
§ 400
® 300
8 200
I 100
0
0 20 40 60
Time (minutes)
(b)
Figure 4-32. Benzene Concentration in UV Light (29 W/m2) as a Function
of Time and Ti02 Concentration; Error Bars are One Standard
Deviation, (a) pH =4, (b) pH = 7

Ill
(a)
Ti02 Cone.
„ 600
I SCO
I 400
§ 300
C
° 200
0)
§ 100
o
0
0 20 40 60
Time (minutes)
(b)
Figure 4-33. Toluene Concentration in UV Light (29 W/m2) as a Function of
Time and Ti02 Concentration; Error Bars are One Standard
Deviation, (a) pH =4, (b) pH = 7
Initial observation of both the disinfection and detoxification data for
Ti02 photocatalysis suggested that the process displayed some efficacy.
Therefore, these data were selected for additional analysis by ANOM. For
disinfection the fractional survival of colony forming units after 120
minutes were selected. The normalized concentrations of benzene and
toluene after 30 and 60 minutes were used for the detoxification ANOM. An
a-level of 0.05 was selected for all of the data presented.

112
(a)
T¡02 Cone.
—O- Control
-«-0 01%
—ft—0.05%
-*-0 10%
Figure 4-34. m&p Xylene Concentration in UV Light (29 W/m2) as a
Function of Time and Ti02 Concentration; Error Bars are One
Standard Deviation, (a) pH =4, (b) pH = 7
Data Analysis bv ANOM
ANOM was used to examine the controlled parameters for the
experiments, presence or absence of UV light, pH level and Ti02
concentration. Based upon the ANOM, the presence and absence of light
and the concentration of both were deemed significant factors for both
disinfection and detoxification.
The grand average calculated for bacteria, as fractional survival,
was 0.66 (±0.20). The grand averages calculated for benzene were 0.75

113
(±0.05) and 0.70 (±0.08) for 30 and 60 minutes, respectively. The respective
values for toluene for 30 and 60 minutes were 0.76 (± 0.06) and 0.71 (±0.08).
The general values calculated for use in ANOM are given in Table 4-17.
Table 4-17. Calculated ANOM Values for Ti02 Photocatalysis
Grand Average, X
Avg Std Dev
Avg Range
Estimated
SD(X)
Bacteria @ t-120 min
0.66
0.20
0.40
0.28
Benzene @ t= 30 min
0.75
0.05
0.09
0.04
Benzene @ t= 60 min
0.70
0.08
0.15
0.09
Toluene @ t=30 min
0.76
0.06
0.11
0.05
Toluene @t=60 min
0.71
0.08
0.17
0.10
Effect of Light
UV light was measured in the lab experiments to be approximately
29 W/m2, a value slightly less than the measured values of UV light
available on a clear day. Therefore, the data gathered in the laboratory
experiments under UV light can be extrapolated to sunlight. Patel (1993)
and Wei et al. (1994) reported disinfection efficacy in sunlight to be greater
than in UV light.
The data from each of the sample sets were separated into two
subgroups based upon the absence and presence of light. This gave an n
value of 16 samples per subgroup and a k value of 2 subgroups for each
sample set. The n and k values were used to determine the degrees of
freedom, v, bias correction factor, d2‘, and, subsequently, the ANOM critical
value, H, from the bias correction factor and critical values tables (Wheeler
1990). The corresponding values were v = 22.5, d2* = 3.571, and, for an a =

114
0.05, H = 1.47. These values, along with the values in Table 4-17, were used
to determine the decision limits using Equations 4-4 to 4-6.
For each subgroup, in this case UV light and dark, an average was
calculated and plotted on a chart with the decision limits. The subgroup
averages are shown in Table 4-18. As noted previously, a subgroup average
outside of the decision limits indicated a parameter was statistically
significant. As shown below the absence or presence of light was found to
be statistically significant for both disinfection and detoxification.
Table 4-18. UV Light Subgroup Averages for Ti02 Photocatalysis. Values
are Fractional Survival of Bacteria and Normalized Chemical
Concentration.
Subgroup
UV Light (29 W/m¿)
MOOOOOMOOOMKOMMOeMMeOMCOOMMMMCOM»
Dark
X
S
R
X
S
R
Bacteria @ t=120 min
0.36
0.12
0.24
0.96
0.28
0.57
Benzene @ t = 30 min
0.55
0.05
0.09
0.95
0.05
0.10
Benzene @ t = 60 min
0.41
0.09
0.19
0.99
0.06
0.12
Toluene @ t= 30 min
0.57
0.05
0.10
0.95
0.06
0.13
Toluene @ t= 60 min
0.42
0.09
0.09
0.99
0.07
0.15
As demonstrated by the ANOM chart (Figure 4-35), the presence of
UV light had an appreciable impact on disinfection. This relationship is
shown graphically in Figure 4-38.
As shown in Table 4-15, there was some destruction of bacteria in the
presence of light and the absence of Ti02, with N240/N0 values of 0.42 (±0.25)
and 0.77 (±0.03) for pH 4 and pH 7, respectively. This was not unexpected,
as the bactericidal effects of both UV light (Oliver and Carey 1976; Severin
et al. 1983; Wolfe 1990) and sunlight (Acra et al. 1990; Fujioka and

115
Narikawa 1982; Gameson and Saxon 1967) in aqueous systems have been
demonstrated.
Figure 4-35. Significance of UV Light (29 W/m2), Based on ANOM, on
Bacteria in Ti02 Experiments at 120 Minutes
(a)
•UDLxbar LDLxbar Gavg —♦—Light~j
(b)
Figure 4-36. Significance of UV Light (29 W/m2), Based on ANOM, on
Benzene in Ti02 Experiments (a) 30 Minutes (b) 60 Minutes

116
Figure 4-37. Significance of UV Light (29 W/m2), Based on ANOM, on
Toluene in Ti02 Experiments (a) 30 Minutes (b) 60 Minutes
Figure 4-38. Effect of UV Light (29 W/m2) on Fractional Survival of Bacteria
in All Reactors in Ti02 Experiments; Bars are One Standard
Deviation

117
Effect of pH
As was done for evaluation of the effect of sunlight the data from each
sample set were separated into two subgroups, based upon the pH value of 7
or 10. Since k and n were the same, and the same a-level was used, the
values for v, d2*, and H were also the same. Again these values, along with
the values in Table 4-17, were used to determine the decision limits using
Equations 4-4 to 4-6.
For each subgroup, in this case pH = 4 and pH = 7, an average was
calculated and plotted on a chart with the decision limits. The subgroup
averages for pH are shown in Table 4-19 and the ANOM charts are shown
in Figures 4-39 to 4-41.
Table 4-19. pH Subgroup Averages for Ti02 Photocatalysis. Values are
Fractional Survival of Bacteria and Normalized Chemical Concentration
Subgroup
pH = 4
pH = 7
X
s
R
X
S
R
Bacteria @ t=120 min
0.61
0.17
0.35
0.71
0.23
0.46
Benzene @ t=30 min
0.69
0.06
0.11
0.80
0.04
0.08
Benzene @ t=60 min
0.63
0.11
0.22
0.77
0.05
0.09
Toluene @ t=30 min
0.70
0.06
0.13
0.82
0.05
0.10
Toluene @ t=60 min
0.65
0.12
0.24
0.78
0.04
0.09

118
0.80 n
UDL = 0.77
0.75
0.70
♦ pH = 7
o
/ Grand Avg
0.65
Z 0.60
¿pH = 4
0.55
LDL = 0.73
0.50
UDLxbar LDLxbar Gavg —♦—pH
Figure 4-39. Significance of pH, Based on ANOM, to Bacteria Destruction in
Ti02 Experiments at 120 Minutes
ANOM demonstrated that, at the levels tested, pH had no significant
effect on the destruction rate of the mixed bacteria species, E. coli,
Pseudomonas aeruginosa, and Serratia marcescens. These findings are
consistent with the findings of Block et al. (1997), who studied the effect of
pH on the inactivation of Serratia marcescens and reported that acidic and
neutral pH values, from 3.5 - 7, had no perceptible impact on disinfection
efficacy.
Examination of the charts above suggested that ANOM tests were
somewhat inconclusive for detoxification. The data suggested that pH
could be statistically significant; however, the proximity of subgroup
averages, particularly at 60 minutes, to the decision limits indicated a need
for caution. With an a-level of 0.05 values close to the decision limits were
possibly false signals.
The acid pH of 4 appeared to be slightly more effective than the
neutral pH of 7. As shown above there was a slight difference between the
mean normalized concentrations of BTEX components after 30 minutes and

119
60 minutes. While the significance of this was not conclusive, the data
were consistent with values reported by (Kawaguchi and Furuya 1990), who
found that 3.5 was an optimum pH for the Ti02 photocatalyzed degradation
of chlorobenzene.
0.85
0.80
0.75
O 0.70
o 0.65
0.60
0.55
0.50
— UDLxbar LDLxbar Gavg ♦ Light
UDL = 0.77
y*pH = 7
• pH = 4
Grond Avg
— ©-7S-
LDL = 0.73
0.80
0.75
0.70
^ 0.65
3
0.60
0.55
0.50
i UDLxbar LDLxbar Gavg ♦ LigTrt~|
(b)
Figure 4-40. Significance of pH, Based on ANOM, to Benzene Destruction
in Ti02 Experiments (a) 30 Minutes (b) 60 Minutes
The concentration of Ti02 appeared to have a significant impact on
disinfection. In order to clarify the meaning of the differences seen with
Ti02 concentration, ANOM tests were performed for bacteria at 120
minutes, and benzene and toluene at 30 and 60 minutes. The data were
divided into four subgroups based upon the concentration of Ti02. This gave
an n value of 8 samples per subgroup and a k value of 4 subgroups for each

120
sample set. The n and k values were used to determine v, d2‘, and H from
the appropriate tables (Wheeler 1990). The corresponding values were v =
24.4, d/ = 2.876, and, for an a = 0.05, H= 2.29. These values, along with the
values from Table 4-17, were used to determine the decision limits using
Equations 4-4 to 4-6.
0.85
0.80
0.75
O 0 70
O 0.65
0.60
0.55
0.50
UDLxbar LDLxbar Gavg —♦" tight"]
(a)
0.80
0.75
0.70
o
o
~0 0.65
o
0.60
0.55
0.50
I —UDLxbar LDLxbar Gavg Light!
(b) i JL ~
Figure 4-41. Significance of pH, Based on ANOM, to Toluene Destruction in
Ti02 Experiments (a) 30 Minutes (b) 60 Minutes
UDL = 0.78
J
^PH = 7
T
LDL = 0.73
«(pH =
4
Effect of TiO„ Concentration
For each subgroup an average was calculated and plotted on a chart
with the decision limits. The calculated subgroup averages are shown in
Table 4-20 and the ANOM charts are shown in Figures 4-42 to 4-44.

121
Table 4-20. Ti02 Concentration Subgroup Averages for Disinfection. Values
are Fractional Survival of Bacteria and Normalized Chemical
Concentration
Subgroup
Control
0.01% TiO.,
0.05% TiO,
0.10% Ti02
X
S
R
X
S
R
X
S
R
X
S
R
Bacteria
t=120 min
@
0.93
0.10
0.21
0.48
0.11
0.23
0.36
0.09
0.18
0.71
0.44
0.89
Benzene
t=30 min
@
0.99
0.04
0.07
0.49
0.03
0.06
0.57
0.11
0.22
0.86
0.03
0.06
Benzene
t=60 min
@
0.89
0.16
0.31
0.48
0.06
0.12
0.45
0.07
0.14
0.83
0.03
0.06
Toluene
t=30 min
@
1.05
0.05
0.10
0.49
0.04
0.59
0.04
0.08
0.59
0.10
0.85
0.10
Toluene
t=60 min
@
0.09
0.17
0.33
0.45
0.06
0.12
0.45
0.09
0.17
0.81
0.02
0.05
Figure 4-42. Significance of Ti02 Concentration, Based on ANOM, on
Bacteria in Photocatalysis Experiments at 120 Minutes
Since Ti02 concentration displayed some significance for both
disinfection and detoxification, the subgroup averages were plotted against
the control and the two concentrations which were closest together against
each other to determine the minimum significant concentration. These
combinations allowed for the determination of the optimum concentration
range for the fastest destruction. There were again two subgroups, for a k
of 2, with the n value (samples per subgroup) remaining at 8. The

122
corresponding table values were v = 17.8, d2’ = 3.304, and, for an a = 0.05, H
= 1.54.
Figure 4-43. Significance of Ti02 Concentration, Based on ANOM, on
Benzene in Photocatalysis Experiments; (a) 30 Minutes (b) 60
Minutes

123
Figure 4-44. Significance of Ti02 Concentration, Based on ANOM, on
Toluene in Photocatalysis Experiments; (a) 30 Minutes (b) 60
Minutes
Examination of the ANOM charts (Figures 4-45 to 4-52) indicated that
while there was no significant difference between 0.01% Ti02 and 0.05%
Ti02 for either disinfection or detoxification, both concentrations were
more effective than 0.10% and no Ti02. This was consistent with the initial
trends observed wherein 0.01% was observed to be the most effective
concentration.

124
UDLxbar LDLxbar
Gavg —□—Ti02 Cone
Figure 4-45. Comparison of Control vs. 0.01% Ti02 on Photocatalytic
Disinfection at 120 Minutes, Based on ANOM
UDLxbar LDLxbar
Gavg —T¡02 Cone
Figure 4-46. Comparison of Control vs. 0.05% Ti02 on Photocatalytic
Disinfection at 120 Minutes, Based on ANOM

125
UDLxbar LDLxbar
Gavg —□—Ti02 Cone
Figure 4-47. Comparison of Control vs. 0.10% Ti02 on Photocatalytic
Disinfection at 120 Minutes, Based on ANOM
'ft
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00
UDL = 0.65
■Tunn#*®5*- “-9-
LDL = 0.35
UDLxbar
Gavg
LDLxbar
Ti02 Cone
Figure 4-48. Comparison of 0.01% vs. 0.05% Ti02 on Photocatalytic
Disinfection at 120 Minutes, Based on ANOM

126
UDLxbar LDLxbar
Gavg —□—Ti02 Cone
Figure 4-49. Comparison of Control vs. 0.01% Ti02 on Photocatalytic
Destruction of Benzene at 60 Minutes, Based on ANOM
UDLxbar LDLxbar
Gavg —□—T¡02 Cone
Figure 4-50. Comparison of Control vs. 0.05% Ti02 on Photocatalytic
Destruction of Benzene at 60 Minutes, Based on ANOM

127
1.00
0.95
0.90
¿ 0.85
O 0.80
0.75
0.70
0.65
UDLxbar LDLxbar
Gavg —□—T¡02 Conc
UDL = 0.93
q^o Ti02
TI 0.10%
Grand Ave
ÃœB6-'
LDL = 0.79
Figure 4-51. Comparison of Control vs. 0.10% Ti02 on Photocatalytic
Destruction of Benzene at 60 Minutes, Based on ANOM
UDLxbar
Gavg
IDLxbar
TÍ02 Conc
Figure 4-52. Comparison of 0.01% vs. 0.05% Ti02 on Photocatalytic
Destruction of Benzene at 60 Minutes, Based on ANOM
The disinfection results of this study were compared with those
reported by Patel (1993), Block et al. (1997) and Wei et al. (1994). The latter
two studies both reported that a concentration of 0.01% TiOz was optimum
for destruction of Serratia marcescens and Escherichia coli. Patel found
that consistent inactivation of Serratia marcescens and Pseudomonas
aeruginosa, both in sunlight and UV light, was achieved with a Ti02
concentration of 0.01%.

128
The superior effectiveness of 0.01% and 0.05% Ti02 over 0.10% Ti02
concentrations for detoxification of BTEX was not anticipated, as others
have found 0.10% Ti02 to be the optimum concentration for the destruction
of BTEX (Goswami et al. 1993; Óberg 1993). It is conceivable that the
presence of bacteria had some influence on light penetration, such that
light penetration at the higher levels of Ti02 was not as strong.
Experiments would need to be designed to consider the effect of the turbidity
of the water in order to prove this.
Multiple Parameter Effects
Evaluation of the effects of multiple parameters helped to clarify the
role played by each (Ti02, UV light and pH) on the destruction of the tested
components. When all parameters were considered together, it appeared
that the most effective treatment for both disinfection (Table 4-21) and
detoxification (Table 4-22) consisted of photocatalysis with 0.01% Ti02 at a
pH of 4. Figures 4-53 and 4-54 show the effects of light and pH together on
fractional survival of bacteria and the destruction of benzene. As was
shown by the ANOM, however, the impact of the pH was not significant,
and the 0.01% and 0.05% Ti02 concentrations do not produce significantly
different effects.
Table 4-21. Mean Values for Fractional Survival as a Function of Light, pH
and Ti02 Concentration at t=240 Minutes
TiO-2 Concentration
Light pH 4
Light pH 7
Dark pH 4
Dark pH 7
0.00%
0.63
0.89
1.21
1.01
0.01%
0.00
0.08
0.87
0.96
0.05%
0.02
0.10
0.75
1.19
0.10%
0.16
0.05
0.89
1.10

129
Table 4-22. Mean Normalized Benzene Concentration After 30 Minutes in
Ti02 Experiments
TiO, Concentration
Light pH 4
Light pH 7
Dark pH 4
Dark pH 7
0.00%
1.01
0.98
0.90
1.07
0.01%
0.08
0.02
0.85
1.01
0.05%
0.31
0.47
0.80
1.05
0.10%
0.74
0.79
0.86
1.04
Effect of Initial Colony Density on Disinfection
The large range (1177 x 10;! cfu/L) and average standard deviation
(67%) of the initial bacterial colony density (Table 4-23) required the
exploration of its impact on disinfection. No linear or logarithmic
relationship was found for initial bacterial colony density with fractional
survival. A linear regression analysis of initial colony density with N120/N0
yielded an r2 of 0.02, at a 95% confidence level and a p-value of 0.36. For
ln(N120/N0) as a function of initial colony density, least squares linear
regression at a 95% confidence level yielded an r2 of 0.01, with a p-value of
0.22.
No trend was discernible by graphical examination of the data either.
Figure 4-55 shows the relationship between initial colony density and
N30/N0, using data from individual reactors. The finding of no correlation
of fractional survival rates with initial colony density was in accord with
results reported by Li et al. (1996), who compared the destruction of E. coli
for two different initial coliform densities, 400/L and 110/L, and found only a
slightly higher destruction rate with the lower initial density, and no
difference after one hour.

130
Figure 4-53. Fractional Survival of Bacteria as a Function of UV Light (29
W/m2) and pH in Ti02 Experiments; Bars are One Standard
Deviation
1.40
UV UV Dark Dark
Light Light pH 4 pH 7
pH 4 pH 7
Figure 4-54. Effect of UV Light (29 W/m2) and pH on the Destruction of
Benzene in Ti02 Experiments; Bars are One Standard Deviation
Table 4-23. Descriptive Statistics for Initial Colony Density in Ti02
Experiments
Parameter
Mean
Std Dev
Min
Max
Initial Bacteria Density, cfu/L x 104
335
226
67
1244

131
Other Effects
There were two other effects which merited mention, although the
experiments were not designed to account for them specifically. Both the
presence of multiple bacteria species and the combination of bacteria and
VOCs were likely to have had some impact on both disinfection and
detoxification.
Figure 4-55. Initial Colony Count vs. Fractional Survival of Bacteria at t=120
Minutes for Ti02 Photocatalysis
Interaction between the bacteria and the VOCs was very likely as the
BTEX could serve as a substrate for the bacteria, causing the organisms to
multiply. Specifically, P. aeruginosa has been used successfully to degrade
pentachlorophenol (Premalatha and Suseela Rajakumar 1994).
Previous photocatalytic disinfection work (Block et al. 1997; Ireland
et al. 1993; Patel 1993; Wei et al. 1994) examined the destruction of
individual bacteria species. The longer reaction times experienced in this
study could be a function of the presence of multiple bacteria species.

132
However, as the experiments were not designed to discern this, additional
work would need to be done in order to confirm this.
Photocatalysis vs. Air Stripping
The chemical contaminants (BTEX) are very volatile and therefore
subject to air stripping (The system tested in these experiments, Ti02
photocatalysis, yielded positive results at all conditions tested.
Consequently, the process shows promise for application in small
communities. However, as evidenced by the efficacy of the
photosensitization process for the destruction of bromacil, coupled with its
ineffectiveness for the destruction of benzene and toluene, it is critical that
any system be tested for the specific contaminants of a water source.
Table 4-24). In order to determine how much, if any, of the BTEX
reduction was due to air stripping, dark control experiments were
conducted. As shown in Figures 4-56 and 4-57, there was essentially no
reduction observed in any of the BTEX components during the dark
experiments with Ti02 at either pH value. The apparent decrease at 15
minutes for pH 4 (Figure 4-57) was within the standard deviation of 16%
and evidence of error encountered in sampling and analysis. The
precautions taken to limit air stripping, minimal headspace and parafilm
sealing of the reactor, were sufficient to alleviate transfer of the chemical
contaminants to the atmosphere. The results reported herein were
consistent with results reported from outdoor pilot scale experiments
conducted by (Óberg 1993) and Madabhushi (1997). Both reported less than
10% reduction in dark tests. Óberg did report on one dark test which
resulted in an 80-85% reduction of all BTEX components, however, the test

133
was conducted with a large air space above the water, wherein a 380 liter
tank was filled with only 57 liters of water.
The system tested in these experiments, Ti02 photocatalysis, yielded
positive results at all conditions tested. Consequently, the process shows
promise for application in small communities. However, as evidenced by
the efficacy of the photosensitization process for the destruction of bromacil,
coupled with its ineffectiveness for the destruction of benzene and toluene, it
is critical that any system be tested for the specific contaminants of a water
source.
Table 4-24. Vapor Pressure Values for BTEX components.
Component
Vapor Pressure © 25 °C (mm Hgj
Boiling Point @ 1 atm
Benzene
94
80.1
Toluene
28.9
110.8
o-Xylene
6.4
144
m-Xylene
8
139.3
p-Xylene
â– xvx*.-x*x%*x\wx\\-x-x-x-x-x-x-xvxx-x-x-x-x-
8.6
138.5
X-X-X-X-X-X-X-X-X-X-X-X-.'-X-X-X-X-X-X-X-X-X-X-X-.-X-X-X-X-X-X-X-X-XvX-X-Xv
1.20
1.00
0.80
y 0.60
0.40
0.20
0.00
0 20 40 60
Time (minutes)
Figure 4-56. Normalized Concentrations of BTEX Components in pH 7 Dark
Experiments with 0.01% Ti02
Benzene
^^Toluene
A m& p-Xy le ne
-X-o-Xylene

134
—♦—Benzene
—B—Toluene
—&— m&p-Xylene
o-Xylene
Figure 4-57. Normalized Concentrations of BTEX Components in pH 4 Dark
Experiments with 0.01% Ti02
Summary
Examination of the conditions under which Ti02 photocatalysis was
most effective brings up two aspects for consideration. On the positive side,
pH was not a significant factor and no pH adjustments would be required.
The specificity of the concentration of Ti02, however, is a disadvantage for
the applications considered here. The dosage of Ti02 must be fairly tightly
controlled as too much could result in inhibition of the photocatalytic
reaction. However, the low Ti02 dosage requirements do offer an advantage
in that operational costs are minimized.
In order for this process to be determined feasible for application,
two areas of research should be addressed. First, the issue of
immobilization or separation of the catalyst and associated cost, must be
examined. This may be accomplished via the use of a small filter, however,
such a system should be tested. Secondly, the system must be tested over a
much broader range of microbiological and chemical contaminants,

135
including viruses. Site specific testing is a must, as microbiological species
may differ from one locale to the other.
TiO. Photocatalvsis Combined With Methylene Blue
Several experiments were conducted using both Ti02 and MB. These
combination experiments were conducted in order to determine if the use of
a dye in combination with Ti02 would enhance the photochemical process
by extending the range of photons available for photochemical reaction.
In order to ensure reproducibility of the results, each set of
experiments was conducted three times. Four reactors were run at a time,
each reactor containing either no photochemical, 0.01% Ti02, 5 mg/L MB,
or a combination of 0.01% Ti02 and 5 mg/L MB. A complete set of
experiments was defined as two groups of four reactors, one group in
sunlight and one group in the dark.
Samples were taken from each reactor at time intervals of 0, 5, 15, 30,
60, 120 minutes and refrigerated immediately. Three replicates from each
sample were plated for microbiological analysis. The remainder of the 0, 30
and 120 minute samples was refrigerated and saved for chemical analysis.
For the experiments conducted in sunlight, both the total insolation
and the UV light intensity were measured and recorded over the duration
of the experiment. Total insolation ranged from 433 W/m2 to 853 W/m2, and
the total UV intensity measurements ranged from 25 to 40 W/m2. The
recorder was jammed for approximately the last half hour of the set three
experiment. Values for that portion of the experiment were estimated
based on measurements before the recorder jammed and the maximum

136
and minimum values during this time period (as determined by the high
and low of the pen marks). The average total insolation measured in each
experiment is given in Table 4-25, and graphs of the total insolation are
shown in Appendix B.
Table 4-25. Measured Sunlight Intensity in Combination Experiments
Set
Total Avg Insolation, W/m2
Total Avg UV, W/m2
#1
780
39
#2
853
40
#3
433
25
General Comments About Experimental Data
The average standard deviation of the disinfection data was 13%.
Plates on which the colonies were not individually identifiable and those
with severe contamination were not counted, which resulted in the loss of
11-37% of the 144 plates in a given experimental set.
The average standard deviations of the detoxification data were much
higher than in either of the other experimental groups, 23% for benzene
and 56% for toluene. However, when normalized concentrations were
used, the average standard deviation was lower, 14% for benzene and 17%
for toluene, although they still exceeded the values of the other two
experimental groups. The average standard deviation values are given in
Table 4-26.
Sample loss for detoxification occurred when the sample was
dropped and broken prior to analysis, which occurred once in experimental
set number one. The dropped sample was an initial sample, 430, and the 5

137
minute sample was substituted. Chemical samples were generally
analyzed within two weeks of the experiment.
Table 4-26. Average Standard Deviations for all Combination Experiments
Benzene (ppb) Toluene (ppb) E. Coli (cfu x K^/L
StdDev
Avg
StdDev
Avg
StdDev
Avg
Raw Data
Normalized Data
120
0.11
511
0.77
199
0.12
357
0.72
119
0.13
651
0.50
Statistical Treatment of the Data
The data were treated as outlined in the section on dye
photosensitization. No specific adjustments were required for the data,
with the exception of normalizing negative percentages of destruction to
zero. No outliers were observed.
Disinfection
Since both MB and Ti02 increased the efficiency of disinfection of E.
coli bacteria over sunlight or UV light alone, it was anticipated that the
combination would be better than either alone. However, as shown in
Figure 4-58, there was little difference between using Ti02 alone, MB alone
or a combination of Ti02 and MB. The use of a photochemical, however, did
improve disinfection over sunlight alone (Table 4-27). In the presence of
MB, either with or without Ti02 there was a 95% coliform reduction within
5 minutes and complete disinfection within 15 minutes. A coliform
reduction of 95% was reached by 15 minutes with Ti02 and not until 60
minutes in sunlight alone. Total disinfection was not observed until the 30
minute samples with Ti02 and 120 minutes in sunlight alone.

138
The data were analyzed by ANOM (as outlined previously) to
determine the effect of sunlight and photochemicals on disinfection. The
fractional survival at 5, 15 and 30 minutes were analyzed in this manner.
The grand average values for E. coli destruction at 5, 15 and 30 minutes
were 0.63 (±0.16), 0.57 (±0.14), 0.52 (±0.12), respectively. The general values
for the ANOM are shown in Table 4-27.
For determination of the effect of sunlight, the sample sets were
divided into two subgroups (k=2) with twelve observations per subgroup
(n=12). The corresponding table values were v = 17.8, d2 = 3.304, and, for a =
0.05, H = 1.49. These values, along with the values in Table 4-28, were used
to determine the decision limits using Equations 4-4 to 4-6. The calculated
subgroup averages, shown in Table 4-29, were then plotted on a chart with
the decision limits, and the significance of the presence of sunlight was
determined. As anticipated, the presence or absence of sunlight was a
statistically significant factor in all of the sample sets, as shown in Figure
4-59.
Figure 4-58. Destruction of E. coli in Sunlight (I^iAvg = 433-853 W/m2,1^ Avg
= 25-40 W/m2) in Combination Experiments

139
Table 4-27. Mean Fractional Survival (±14.1%) of E. Coli in Combination
Experiments
-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-
Control Samples
0.1% tíó2
Sunlight
Dark
Sunlight
Dark
N5/N0
1.10
1.21
0.62
0.61
nI5/n0
0.99
1.32
0.05
0.91
N3O/N0
0.63
1.30
0.00
0.82
Neo/No
0.05
1.29
0.00
0.55
N 120/No
0.00
1.11
0.00
0.94
5 mg/L MB
0.1% Ti02
& 5 mg/L MB
Sunlight
Dark
Sunlight
Dark
n5/n0
0.04
0.70
0.01
0.73
n15/n0
0.00
0.66
0.00
0.64
N30/N0
0.00
0.64
0.00
0.77
Neo/No
0.00
0.36
0.00
0.61
N120/N0
0.00
0.65
0.00
0.59
Table 4-28. Calculated ANOM Values for Combination Experiments
Sample Set
Grand Average, X
Avg Std
Dev
Avg Range
Estimated
SD(X)
E. coli @ t=5 minutes
0.63
0.16
0.36
0.21
E. coli @ t= 15 minutes
0.57
0.14
0.31
0.18
E. coli @ t=30 minutes
0.52
0.12
0.30
0.16
Benzene @ t= 30 minutes
0.69
0.01
0.22
0.11
Benzene @ t= 120 minutes
0.84
0.12
0.28
0.15
Toluene @ t= 30 minutes
0.81
0.14
0.33
0.16
Toluene @ 120 minutes
0.63
0.01
0.23
0.12
Table 4-29. Sunlight Subgroup Averages for Combined Experiments.
Values are Fractional Survival of Bacteria and Normalized Chemical
Concentration
Sunlight ( 433-853 W/m2)
Dark
X
S
R
X
S
R
E. coli @ t= 5 minutes
0.44
0.05
0.12
0.81
0.26
0.60
E. coli @ t=15 minutes
0.26
0.02
0.05
0.88
0.25
0.56
E. coli @ t= 30 minutes
0.16
0.06
0.15
0.88
0.19
0.45
Benzene @ t= 30 minutes
0.76
0.14
0.32
0.93
0.10
0.24
Benzene @ t= 120 minutes
0.55
0.08
0.18
0.83
0.11
0.26
Toluene @ t= 30 minutes
0.68
0.17
0.39
0.93
0.11
0.26
Toluene @ t= 120 minutes
0.48
0.05
0.12
0.77
0.15
0.35

140
In order to clarify the impact of the photochemicals on disinfection,
ANOM was performed. The data were divided into four subgroups based on
the photochemical used in the reactor. This gave an n value of 6 samples
per subgroup and a k value of 4 subgroups for each sample set. The
corresponding table values were v = 18.1, d2 = 2.569, and, for a = 0.05, H =
2.35. These values, along with the values in Table 4-28, were used to
determine the decision limits using Equations 4-4 to 4-6.
The calculated subgroup averages (Table 4-30) were plotted on a chart
with the decision limits, and the significance of photochemicals was
determined. The presence or absence of photochemical was a statistically
significant factor in all of the sample sets, as shown in Figure 4-60.
Table 4-30. Photochemical Subgroup Averages for Combination Experiments;
Values are Fractional Survival of E. coli and Normalized Chemical Concentration
Control
0.01% TiO,
5 mg/L MB
Both
XII
S
R
X
S
R
X
S
R
X
S
R
E. coli @ t=5 min
1.07
0.06
0.11
0.57
0.30
0.59
0.32
0.20
0.40
0.40
0.02
0.04
E. coli @ t=15 min
1.08
0.03
0.05
0.55
0.07
0.14
0.30
0.20
0.38
0.28
0.16
0.32
E. coli @ t=30 min
0.81
0.11
0.22
0.42
0.10
0.20
0.30
0.12
0.24
0.38
0.10
0.19
Benzene @ t=30 min
0.89
0.08
0.16
0.83
0.21
0.42
0.97
0.06
0.11
0.75
0.14
0.29
Benzene @ t=120 min
0.81
0.14
0.28
0.50
0.08
0.15
0.86
0.09
0.18
0.65
0.12
0.24
Toluene @ t=30 min
0.85
0.11
0.22
0.77
0.18
0.35
0.92
0.04
0.08
0.69
0.20
0.39
Toluene @ t=120 min
0.77
0.12
0.25
0.44
0.05
0.10
0.74
0.16
0.32
0.55
0.10
0.20
In order to discern if there was any differentiation in the treatments,
the different photochemical subgroup averages were plotted against each
other. The new decision limits were based on a k of 2 and an n of 6, which
changed the table values to v = 9.2, d2* = 2.603, and, for a = 0.05, H = 1.6. The
plotted subgroup averages are shown in Figures 4-61 to 4-63.

141
(a)
UDLx ——LDLx Gavg —H—Light
(b)
■UDLx LDLx Gavg M—Light
Figure 4-59. Significance of Sunlight (Iroti Avg = 433-853 W/m2, IUVi Avg = 25-40
W/m2) on E. coli Destruction, Based on ANOM, in Combination
Experiments; (a) 5 Minutes (b) 15 Minutes (c) 30 Minutes

142
The ANOM demonstrated clearly what the graphical display of the
data suggested. There was no statistically significant difference between
the use of MB, Ti02 or a combination of the two in photochemical
disinfection.
Detoxification
The addition of MB to the Ti02 photocatalyzed reaction appeared to
have an inhibitory effect on detoxification. After 120 minutes in sunlight
(IXot, Avg = 433-833 W/m2,1^ Avg = 25-40 W/m2), reactors dosed with 0.01% Ti02
showed a 94% reduction of benzene and a reduction of toluene below
detectable limits (Figure 4-64). However, when 0.01% Ti02 was combined
with 5 mg/L MB and exposed to the same intensity sunlight for 120
minutes, only a 65% and 70% reduction in benzene and toluene,
respectively, was observed. The mean concentrations of both benzene and
toluene in the combination experiments are shown in Table 4-31.
While the conclusions seemed to be clear, an ANOM was performed
to clarify the distinction between the use of Ti02 alone and the combination
of Ti02 and MB. The data were divided into four subgroups as outlined
above in the disinfection section, with the same values used for calculation
of decision limits, for both four subgroups and two subgroups. The
subgroup averages are shown in Table 4-30. Selected ANOM charts are
shown as Figures 4-65 to 4-68.

143
(a)
UDLxbar LDLxbar
Gavg —□^—Photochemical
(b)
UDLxbar LDLxbar
Gavg —□—Photochemical
Figure 4-60. Significance of Photochemical on E. coli Destruction, Based on
ANOM, in Combination Experiments; (a) 5 Minutes (b) 15
Minutes (c) 30 Minutes

144
(a)
(b)
(c)
UDL = 0.47
UDLxbar LDLxbar
Gavg —O Photochemical
Figure 4-61. Significance of Ti02 vs MB on E. coli Destruction, Based on
ANOM, in Combination Experiments; (a) 5 Minutes (b) 15
Minutes (c) 30 Minutes

145
(a)
UDLxbar LDLxbar
Gavg —O—Photochemical
(b)
Figure 4-62. Significance of Ti02 vs Both on E. coli Destruction, Based on
ANOM, in Combination Experiment; (a) 5 Minutes (b) 15
Minutes (c) 30 Minutes

146
0.60
0.50
0.40
10.30
z
0.20
0.10
0.00
UDL = 0.51
MB
â–¡
Grand Avq
Both
0.37
LDL = 0.23
(a)
UDLxbar LDLxbar
Gavg —□—Photochemical
(b)
0.60
0.50
0.40
o
^ 0.30
z
0.20
0.10
0.00
UDLxbar LDLxbar
Gavg —□—Photochemical
UDL = 0.45
MB
Grand Avg
Both
C.33
LDL = 0.21
Figure 4-63. Significance of MB vs Both on E. coli Destruction, Based on
ANOM, in Combination Experiments; (a) 5 Minutes (b) 15
Minutes (c) 30 Minutes

147
(b)
Figure 4-64. Normalized Concentration as a Function of Time in Combination
Experiments ITot Avg = 433-833 W/m2, 1^ Avg = 25-40 W/m2; (a)
Benzene (b) Toluene
Table 4-31. Mean Concentration (ppb) of Benzene (±120) and Toluene (±199)
in Combination Experiments; ITot Avg = 433-833 W/m2, 1,^ Avg = 25-40 W/m2
Benzene
Sunlight
Dark
Sunlight
Dark
Time (min)
Control
0.01% Ti02
0
542
649
576
677
30
459
640
233
620
120
430
535
17
588
5 mg/L MB
Both
0
490
672
549
714
30
485
644
372
607
120
421
538
231
581
Toluene
Sunlight
Dark
Sunlight
Dark
Time (min)
Control
0.01% Ti02
0
413
445
439
447
30
348
436
148
428
120
320
392
1
387
5 mg/L MB
Both
Ó
371
462
451
456
30
352
448
254
437
120
293
315
128
393

148
(a)
UDLxbar LDLxbar
Gavg —□— Photochemical
Figure 4-65. Significance of Photochemical on Benzene Destruction, Based
on ANOM, in Combination Experiments; (a) 30 Minutes (b) 120
Minutes

149
(a)
(b)
UDLxbar
Gavg
LDLxbar
Photochemical
Figure 4-66. Significance of Photochemical on Toluene Destruction, Based
on ANOM, in Combination Experiments; (a) 30 Minutes (b) 120
Minutes

150
(a)
UDLxbar LDLxbar
Gavg —□—Photochemical
Figure 4-67. Significance of Ti02 vs Both on Benzene Destruction, Based on
ANOM, in Combination Experiments; (a) 30 Minutes (b) 120
Minutes

151
(b)
O 60
0 0.50
s
O
0.40
0.30
r
f UDL = 0.56
/
/*lBoth
Grand Avg
tr.*8
LDL = 0.40
-UDLxbar
Gavg
-LDLxbar
-Photochemical
Figure 4-68. Significance of Ti02 vs Both on Toluene Destruction, Based on
ANOM, in Combination Experiments; (a) 30 Minutes (b) 120
Minutes
Examination of the ANOM charts showed that differences between
control and Ti02 were not apparent until 120 minutes (Figures 4-65 and 4-
66). By 120 minutes, there was a statistically significant difference between
the reactors which contained Ti02 only and both the control reactors and
the reactors containing only MB. The inhibitory effect of MB in the
combination reactor was evident for benzene by 120 minutes (Figure 4-67),
though not for toluene (Figure 4-68).

152
Summary
The use of dye in conjunction with Ti02 did not enhance the
photochemical process for either disinfection or detoxification. While it had
no apparent effect in the disinfection reactions, the dye acted as an
inhibitory agent in the detoxification process. The reduction of efficacy with
the addition of MB was possibly due to scavenging of hydroxyl radicals by
the MB. While this has not been reported for MB, scavenging has been
reported for other oxidizing agents, such as hydrogen peroxide (Blake 1994).
Kinetic Considerations
For a quantitative comparison of experimental conditions,
experimental reaction rate constants, k, were calculated using the first
order reaction rate equation shown below. Rate constants are presented
only for those experiments in which destruction of contaminants occurred.
lnCCyC) = kt ( 4-7 )
where:
C0 = Initial concentration (or colony density)
C = Concentration (or colony density) at time, t
t = time, in minutes
k = calculated rate constant (min1)
Detoxification
Experimental first order rate constants are presented for the
destruction of benzene, toluene and xylene isomers by Ti02 photocatalysis in
UV light, Ti02 photocatalysis in sunlight and the use of Ti02 photocatalysis
combined with MB. The calculated rate constants are shown in Table 4-32.

153
The higher rate constants correspond to faster reaction time. For Ti02
photocatalysis the fastest reaction rate (k = 0.12 min'1) was observed in
reactors illuminated by UV lamps (29 W/m2) which contained 0.01% Ti02
and water adjusted to pH 7.
Table 4-32. Experimental First - Order Rate Constants (min'1) for Ti02
Photocatalytic Experiments
Wl^129w^)¥;h—
Benzene
Toluene
m&p-Xylene
o-Xylene
0.01% Ti02
0.08
0.11
0.09
0.08
0.05% Ti02
0.03
0.03
0.03
0.03
0.10% Ti02
0.009
0.009
0.01
0.02
UV Light (29 W/m2) @ pH 7
Benzene
Toluene
m&p-Xylene
o-Xylene
0.01% Ti02
0.12
0.12
0.12
0.10
0.05% Ti02
0.02
0.02
0.02
0.02
0.10% Ti02
0.006
0.007
0.007
0.01
Sunlight (itot,avK = 433-853 W/m
2. T _
> AUV. Avg -
25-40 W/m2); pH was not measured
0.01% Ti02
0.02
0.04
N. A.
N.A.
0.01% Ti02 & 5 mg/L MB
0.007
0.01
N. A.
N.A.
The calculated first-order reaction rate constants were consistent
with the previous analysis of the data, wherein 0.01% Ti02 was found to be
most effective, though not significantly different from 0.05% Ti02. The rate
constants obtained in these experiments were consistent with those
reported by Madabhushi (1997) for indoor tests at a slightly higher UV
intensity (35 W/m2) and 0.1% Ti02. He reported values ranging from 0.1 -
0.15 for p-Xylene and values of 0.13 - 0.14 for all other components. The
values for his outdoor tests also compared favorably to the value obtained in
this experiment. He reported a consistent value of k=0.03 min'1 with 1^ avg =
31-35 W/m2 and 0.1% Ti02,compared to 0.02 min'1 in sunlight (1^, avg = 25-40
W/m2) with 0.01% Ti02 in this study.

154
Disinfection
While reaction rate constants as a function of time have not been
reported for photochemical disinfection, some of the reported results have
appeared to follow first order kinetics with time (Block et al. 1997). Most of
the data fit well to first-order reaction rate kinetics as shown in Table 4-33.
Several graphical examples are given in Figures 4-69 to 4-72. These results
can be used as a basis for comparison of the processes studied in this
research.
Table 4-33. Correlation Statistics for Least Squares Linear Regression of
Kinetic Data; Confidence Level is 95%
ÃœV Li^r?29 pH 4 UV Light (29 W/m2) @ pH 7
P
p-value
r2
p-value
0.01% Ti02
0.84
0.0077
0.97
0.0007
0.05% Ti02
0.90
0.0025
0.96
0.0002
0.10% Ti02
0.44
0.0257
0.55
0.0188
Sunlight (542- 696 W/m2) @ pH =10
Sunlight (665-891 W/m2) @ pH= 7
0 mg/L MB
0.79
0.0256
0.95
0.0003
0.1 mg/L MB
0.30
0.0415
0.76
0.0009
1 mg/L MB
N. A.
N. A.
0.14
0.0091
5 mg/L MB
0.49
0.0899
N.A.
N.A.
10 mg/L MB
N. A.
N. A.
N. A.
N.A.
Sunlight (715-775 W/m2) @ pH =10
Sunlight (746-856 W/m2) @ pH= 7
0 mg/L RB
0.99
0.0001
0.99
0.0001
0.1 mg/L RB
0.92
0.001
0.81
0.0010
1 mg/L RB
0.95
0.0003
0.95
0.0003
5 mg/L RB
0.91
0.0012
0.91
0.0012
10 mg/L RB
0.88
0.0022
0.88
0.0022

155
Figure 4-69. Least Squares Linear Regression of First Order Rate Equation
for Disinfection in UV Light (29 W/m2) with 0.05% Ti02 and pH
= 4; r2 = 0.90, p-value = 0.0025
Figure 4-70. Least Squares Linear Regression of First Order Rate Equation
for Disinfection in UV Light (29 W/m2) with 0.10% Ti02 and pH
= 7; r2 = 0.55, p-value = 0.019

156
Figure 4-71. Least Squares Linear Regression of First Order Rate Equation
for Disinfection in Sunlight (715-775 W/m2) with no
photochemical and pH = 10; r2 = 0.99, p-value = 0.0001
Figure 4-72. Least Squares Linear Regression of First Order Rate Equation
for Disinfection in Sunlight (746-856 W/m2) with 1 mg/L RB and
pH = 7; r2 = 0.95, p-value = 0.0003
Table 4-34 is a comparison of the experimental first order rate
constants, k, for all of the disinfection experiment sets. Where no values
were reported, the reactions occurred too quickly to accurately calculate a
rate constant. Examination of the experimental rate constants gave a
hierarchy of processes for disinfection. The largest rate constant,

157
corresponding to the fastest reaction time, 0.45 min'1, was in the reactors
containing 5 mg/L MB at pH 10, with 0.1 mg/L MB coming in a close second
at 0.24 min'1. It is important to note that values could not be calculated for
the other concentrations of MB because the reactions occurred too quickly to
collect enough data for determination of rate constants. The calculated rate
constants for all other conditions were similar in value, ranging from 0.09 -
0.01 min'1.
Table 4-34. First Order Rate Constants for All Photochemical Disinfection
Experiments
UV Light (29 W/m2) © pH 4
UV Light (29 W/m2) @ pH 7
0.01% Ti02
0.05
0.03
0.05% Ti02
0.03
0.03
0.10% Ti02
0.01
0.03
Sunlight (542- 696 W/m2) @ pH =10
Sunlight (542-696 W/m2) @ pH =7
0 mg/L MB
0.09
0.07
0.1 mg/L MB
0.24
0.05
1 mg/L MB
N. A.
0.07
5 mg/L MB
0.45
N. A.
10 mg/L MB
N. A.
N. A.
Sunlight (715-775 W/m2) @ pH =10
Sunlight (746-856 W/m2) @ pH =7
0 mg/L RB
0.05
0.05
0.1 mg/L RB
0.09
0.06
1 mg/L RB
0.09
0.09
5 mg/L RB
0.08
0.08
10 mg/L RB
VAV/.V.V.V.\V.-.\V.V.\V.V.V.V.V.V.V.V.V.V.V.V
0.08
0.08
General Summary of Results
The only process which was effective for destruction of all of the
contaminants was Ti02 photocatalysis. A quantitative comparison of the
experimental sets performed in this study is shown in Table 4-35.

158
Table 4-35. Time to Complete Destruction by Photochemical Treatment.
Photochemical
Light
pH
Benzene
Destruction
Bacteria
Destruction
0.1 mg/L MB
Sunlight, 665-891 W/m2
7
(20%, 240 min)
240 min
1 mg/L MB
Sunlight, 665-891 W/mz
7
(20%, 240 min)
240 min
5 mg/L MB
Sunlight, 665-891 W/m2
7
(35%, 240 min)
240 min
10 mg/L MB
Sunlight, 665-891 W/m2
7
(23%, 240 min)
120 min
0.1 mg/L MB
Sunlight, 542-696 W/m2
10
(33%, 240 min)
60 min
1 mg/L MB
Sunlight, 542-696 W/m2
10
(29%, 240 min)
5 min
5 mg/L MB
Sunlight, 542-696 W/m2
10
(23%, 240 min)
120 min
10 mg/L MB
Sunlight, 542-696 W/m2
10
(37%, 240 min)
5 min
0.1 mg/L MB
Sunlight, 746-856 W/m2
7
(23%, 240 min)
120 min
1 mg/L RB
Sunlight, 746-856 W/m2
7
(19%, 240 min)
(99.7%, 240 min)
5 mg/L RB
Sunlight, 746-856 W/m2
7
(27%, 240 min)
120 min
10 mg/L RB
Sunlight, 746-856 W/m2
7
(26%, 240 min)
240 min
0.1 mg/L RB
Sunlight, 715-775 W/m2
10
(15%, 240 min)
240 min
1 mg/L RB
Sunlight, 715-775 W/m2
10
(35%, 240 min)
120 min
5 mg/L RB
Sunlight, 715-775 W/m2
10
(36%, 240 min)
120 min
10 mg/L RB
Sunlight, 715-775 W/m2
10
(34%, 240 min)
120 min
0.01% Ti02
UV, 29 W/m2
4
(99%, 60 min)
60 min
0.05% Ti02
UV, 29 W/m2
4
(78%, 60 min)
(97%, 60 min)
0.10 % Ti02
UV, 29 W/m2
4
(39%, 60 min)
(88%, 60 min)
0.01% Ti02
UV, 29 W/m2
10
60 min
240 min
0.05% Ti02
UV, 29 W/m2
10
(74%, 60 min)
240 min
0.10 % Ti02
UV, 29 W/m2
10
(28%, 60 min)
(91%, 60 min)
0.01% Ti02
Sunlight, 433-853lol, 25-40^, W/m2
n m
(94%, 240 min)
30 min
Ti02 &MB
Sunlight, 433-853*,, 25-40^ W/m2
n m
(56%, 240 min)
15 min
Notes: values in () indicate maximum destruction achieved by time indicated; nm = not
measured.
In almost all processes in which destruction was observed the key
factors were: (1) the absence and presence of light, (2) the absence and
presence of photochemical, and (3) the concentration of photochemical. The
one exception was in Rose Bengal disinfection experiments, wherein
neither light nor photochemical had any effect. The significance of these
two parameters was indicative of photochemical action. Minimal pH
effects were observed in disinfection with rose bengal. The lack of effect of
RB concentration on disinfection in these experiments indicates that no
photochemical reaction occurred with RB.

CHAPTER 5
SUMMARY AND CONCLUSIONS
Summary
Laboratory scale studies were conducted to assess the potential for
solar photochemistry to serve as a feasible technology for drinking water
treatment. The objectives defined for the research were to (1) assess the
ability of photochemical processes to effect simultaneous treatment of
chemical and microbiological pollutants and (2) to compare efficacies of
photosensitization, photocatalysis and combined photosensitization and
photocatalysis.
Process Efficacy Comparison for Simultaneous Treatment
The three processes investigated were: 1) heterogeneous Ti02
photocatalysis, 2) homogeneous dye photosensitization with methylene blue
and rose bengal, and 3) a combination of the heterogeneous and
homogeneous process with Ti02 and methylene blue.
Of the three processes, only one, Ti02 photocatalysis, successfully
demonstrated simultaneous detoxification and disinfection of the
components tested. The dye sensitization process with methylene blue
achieved disinfection but did not achieve destruction of the chemical
contaminants tested. When the three processes were compared directly (in
the combination experiments), there were no differences in disinfection
159

160
efficacy. However, the Ti02 photocatalytic process was significantly more
effective for detoxification.
Drinking Water Quality
Where photochemical action occurred in the systems studied, the
contaminants either were reduced or demonstrated clear potential for
reduction below standard water quality parameters.
The Ti02 photocatalytic process was able to meet or exceed the US
EPA maximum contaminant level for benzene of 5 ppb (Kawamura 1991).
The requirements for toluene (1 ppm) and combined xylenes (10 ppm) were
higher than the starting point of this study. Both MB photosensitization
and Ti02 photocatalysis exceeded the requirements for total coliform
reduction of < 5% of initial cfu remaining.
These results indicated that, for this type of contaminant, a
photochemical system could easily be designed to meet the WHO drinking
water quality guidelines, which are less stringent than the US EPA
guidelines.
Conclusions
From these studies it was concluded that the use of solar
photochemical technology has potential for drinking water treatment under
certain conditions. Specific conclusions are as follows:
• Ti02 photocatalysis is technically feasible for simultaneous
disinfection and detoxification when the contaminants are well
identified

161
• Dye photosensitization is not an effective treatment for
simultaneous disinfection and detoxification of aromatic
hydrocarbons
• The addition of dye does not enhance the Ti02 photocatalytic
reaction for either disinfection or the destruction of BTEX
• Ti02 photocatalysis in sunlight and under UV light can meet
WHO drinking water standards for disinfection and BTEX
destruction
• Both Ti02 photocatalysis and MB photosensitization exhibit
potential as a small scale disinfectant for rural or peri urban
applications
• Photochemical technology may be more appropriate for treatment
of wastewater or contaminated water, than specifically for
drinking water.
Recommendations for Future Work
The following recommendations are made for future work for
photochemical technology:
• Development of inexpensive technology for the separation or
immobilization of catalyst
• Testing of the technology on a broader range of both
microbiological and chemical contaminants, including viruses
• Determination of relative effectiveness of disinfection techology on
specific microbiological species

162
• Exploration of a continuous photochemical supply for
photosensitization
• Analysis for destruction of sensitizer in photosensitization
• Analysis for intermediate formation in both photocatalysis and
photosensitization.

REFERENCES
Abdullah, M., G. K.-C. Low and R. Matthews. “Effects of Common
Inorganic Anions on Rates of Photocatalytic Oxidation of Organic
Carbon Over Illuminated Titanium Dioxide.” Journal of Physical
Chemistry 94 (17 1990): 6820-6825.
Abeel, S. M., A. K. Vickers and D. Decker. “Trends in Purge and Trap.”
Journal of Chromatographic Science 32 (August 1994): 328-338.
Acher, A. J. “Sunlight Photooxidation of Organic Pollutants in
Wastewater.” Water Science and Technology 17 (4/5 1984): 623-632.
Acher, A. J., E. Fischer and Y. Manor. “Sunlight Disinfection of Domestic
Effluent for Agricultural Use.” Water Research 28 (5 1994): 1153-1160.
Acher, A. J., E. Fischer, R. Zellengher and Y. Manor. “Photochemical
Disinfection of Effluents - Pilot Plant Studies.” Water Research. 24 ( 7
1990): 837-843.
Acher, A. J. and B. J. Juven. “Destruction of Coliforms in Water and
Sewage Water by Dye-Sensitized Photooxidation.” Applied and
Environmental Microbiology 33 (5 1977): 1019-1022.
Acher, A. J. and I. Rosenthal. “Dye-sensitized Photo-oxidation - A New
Approach to the Treatment of Organic Matter in Sewage Effluents.”
Water Research 11 (1977): 557-562.
Acra, A., M. Jurdi, H. Mu'allem, Y. Karahagopian and Z. Raffoul. Water
Disinfection bv Solar Radiation: Assessment and Application.
Ottawa, Ontario, Canada: International Development Research
Centre, 1990.
Aguado, M. A., M. A. Anderson and C. G. Hill, Jr. “Influence of Light
Intensity and Membrane Properties on the Photocatalytic
Degradation of Formic Acid over TÍO2 Ceramic Membranes.”
Journal of Molecular Catalysis 89 (1/2 1994): 165-178.
Ahmed, S. and D. F. Ollis. “Solar Photoassisted Catalytic Decomposition of
the Chlorinated Hydrocarbons Trichloroethylene and
Trichloromethane.” Solar Energy 32 (5 1984): 597-601.
163

164
Aithal, U. S., T. M. Aminabhavi and S. S. Shukla.
“Photomicroelectrochemical Detoxification of Hazardous Materials.”
Journal of Hazardous Materials 33 (1993): 369-400.
Al-Ekabi, H., N. Serpone, E. Pelizzetti, C. Minero, M. A. Fox and R. B.
Draper. “Kinetic Studies in Heterogeneous Photocatalysis. 2. Ti02-
Mediated Degradation of 4-Chlorophenol Alone and in a Three-
Componenet Mixture of 4-Chlorophenol, 2, 4,-Dichlorophenol, and
2,4,5-Trichlorophenol in Air-Equilabrated Aqueous Media.”
Langmuir 5 (1 1989): 250-255.
Al-Karaghouli, A. A. and A. N. Minasian. “A Floating-Wick Type Solar
Still (Technical Note).” Renewable Energy 6 (11995): 77-79.
Andreatta, D., D. T. Yegian, L. Connelly and R. H. Metcalf. “Recent
Advances in Devices for the Heat Pastuerization of Drinking Water in
the Developing World.” In 29th Intersocietv Energy Conversion
Engineering Conference in Monterrey. CA. American Institute of
Aeronautics and Astronautics, 1741-1746, 1994.
ASTM. “Standard Practice for Dealing with Outlying Observations.” In
Annual Book of ASTM Standards. Designation: E 178-80.102-118.
14.02. Philadelphia, PA: American Society for Testing Materials,
1988.
Bahnemann, D., D. Bockelmann and R. Goslich. “Mechanistic Studies of
Water Detoxification in Illuminated Ti02 Suspensions.” Solar Energy
Materials 21 (1-4 1991): 564-583.
Barbeni, M., M. Morello, E. Pramauro, E. Pelizzetti, M. Vincenti, E.
Borgarello and N. Serpone. “Sunlight Photodegradation of 2,3,5-
trichlorophenoxy-acetic Acid and 2,4,5-trichlorophenol on Ti02.
Identification of Intermediates and Degradation Pathway.”
Chemosphere 16(6 1987): 1165-1179.
Barbeni, M., E. Pramauro, E. Pelizzetti, E. Borgarello and N. Serpone.
“Photodegradation of Pentachlorophenol Catalyzed by Semiconductor
Particles.” Chemosphere 14(2 1985): 195-208.
Barry, R. G. and R. J. Chorley. Atmonshere. Weather and Climate, sixth
ed., London: Routledge,, 1992.
Bedford, J., J. F. Klausner, D. Y. Goswami and K. S. Schanze.
“Performance of Nonconcentrating Sloar photocatalytic Oxidation
Reactors Part II: Shallow Pond Configuration.” Solar Engineering
(1993): 35-41.

165
Bellar, T. A. and J. J. Lichtenber. “Determining Volatile Organics at
Microgram-per-Liter Levels by Gas Chromatography.” Journal of the
American Water Works Association (December 1974): 739-744.
Berry, R. J. and M. R. Mueller. “Photocatalytic Decomposition of Crude Oil
Slicks Using TÍO2 on a Floating Substrate.” Microchemical Journal
50 (1 1994): 28-32.
Blake, D. M. Bibliography of Work on the Photocatalytic Removal of
Hazardous Compounds from Water and Air. NREL/TP-430-6084.
National Renewable Energy Laboratory, Boulder, CO, 1994. Technical
Report.
Blake, D. M., J. Webb, C. Turchi and K. Magrini. “Kinetic and Mechanistic
Overview of Ti02-photocatalyzed Oxidation Reactions in Aqueous
Solution.” Solar Energy Materials 24 (1991): 584-593.
Block, S. S., V. P. Seng and D. Y. Goswami. “Chemically Enhanced
Sunlight for Killing Bacteria.” Journal of Solar Energy Engineering
119 (February 1997): 85-91.
Burch, J. D. and K. E. Thomas. “Water Disinfection for Developing
Countries and Potential for Solar Thermal Pasteurization.” In
International Solar Energy Society in Korea. 1997.
Burkhard, N. and J. A. Guth. “Photodegradation of Atrazine, Atraton and
Ametryne in Aqueous Solution with Acetone as a Photosensitiser.”
Pesticide Science 7 (1976): 65-71.
Canoy, N. J. and A. Knudsen. Waterborne Pathogens of the U. S. Virgin
Islands. Technical Report No. 25. Caribbean Research Institute.
College of the Virgin Islands, 1986. Project Report.
Carey, J. H. and B. G. Oliver. “The Photochemical Treatment of
Wastewater by Ultraviolet Irradiation of Semiconductors.” Water
Pollution Research Journal of Canada 15 (2 1980): 157-185.
Carson, R. Silent Spring. Boston, MA: Houghton Miflin, 1962.
Cheremisinoff, N. P., P. N. Cheremisinoff and R. B. Trattner. Chemical
and Nonchemical Disinfection. Ann Arbor, MI: Ann Arbor Science,
1981.
Christmas, J. “The International Drinking Water Supply and Sanitation
Decade and Beyond.” In Supplying Water and Saving the
Environment for Six Billion People, eds. U. P. Singh and O. J.
Helwig. 12-30. New York, NY: American Society of Civil Engineers,
1990.

166
Ciochetti, D. and R. H. Metcalf. “Pasteurization of Naturally Contaminated
Water with Solar Energy.” Applied and Environmental Microbiology
47 (2 1984): 223-228.
Clark, S. W. “Key Issues for Regulating Disinfection By-products.” In
Regulating Drinking Water Quality, eds. C. Gilbert, E. and E. J.
Calabrese. 135-144. Boca Raton, FL: Lewis Publishers, 1992.
Crosby, D. G. and A. S. Wong. “Photodecomposition of 2,4,5-
Trichlorophenoxyacetic Acid (2,4,5-T) in Water.” Journal of
Agricultural and Food Chemistry 21 (6 1973): 1052-1054.
Das, S., M. Muneer and K. R. Goppidas. “Photocatalytic Degradation of
Wastewater Pollutants. Titanium-dioxide-mediated Oxidation of
Polynuclear Aromatic Hydrocarbons.” Journal of Photochemistry
and Photobiologv A: Chemistry 77 (1 1994): 83-88.
Davis, A. P. and C. P. Huang. “The Photocatalytic Oxidation of Sulfur-
Containing Organic Compounds Using Cadmium Sulfide and the
Effect on CdS Photocorrosion.” Water Research 10 (10 1991): 1273-1278.
Downes, A. and T. P. Blunt. “Researches on the Effect of Light upon
Bacteria and Other Organisms.” Proceedings of the Roval Society of
London 26 (1877): 488-500.
Droste, R. L. and F. E. McJunkin. “Simple Water Treatment Methods.” In
Water Supply and Sanitation In Developing Countries, eds. E. J.
Schiller and R. L. Droste. 101-122. Ann Arbor, MI: Ann Arbor
Science Publishers, 1982.
Eisenberg, T. N., E. J. Middlebrook and V. D. Adams. “Sensitized
Photooxidation for Wastewater Disinfection and Detoxification.”
Water Science and Technology 19 (Rio 1987a): 1255-1258.
Eisenberg, T. N., E. J. Middlebrooks and V. D. Adams. “Dye Sensitized
Photo-oxidation of Bromacil in Wastewater.” In 40th Industrial
Waste Conference. Purdue University. Mav 14-15. 1985. in West
Lafayette. Indiana. Butterworths, 693-702,1986.
Eisenberg, T. N., E. J. Middlebrooks and V. D. Adams. “Sensitized
Photooxidation of Bromacil: Pilot, Bench, and Laboratory Scale
Studies.” In 42nd Industrial Waste Conference. Purdue University.
Mav 12-14, 1987. West Lafayette. Indiana. Lewis Publishers, 509-518,
1988.
Eisenberg, T. N., E. J. Middlebrooks, V. D. Adams, A. J. Acher and S.
Saltzman. Use of Solar Energy for Wastewater Disinfection for Crop
Irrigation. 1987b.

167
Ellis, K. V. “Water Disinfection: A Review with Some Consideration of the
Requirements of the Third World.” Critical Reviews in
Environmental Control 20 (5/6 1991): 341-407.
Farwati, M. A. “Theoretical Study of Multi-Stage Flash Distillation Using
Solar Energy.” Energy 22 (1 1997): 1-5.
Foote, C. S. “Mechanisms of Photosensitized Oxidation.” Science 162 (3857
1968): 963-970.
Fox, M. A., K. E. Doan and M. T. Dulay. “The Effect of the "Inert" Support
on Relative Photocatalytic Activity in the Oxidateive Decomposition of
Alcohols on Irradiated Titanium Dioxide Composites.” Research on
Chemical Intermediates 20 (7 1994): 711-722.
Fujioka, R. S. and O. T. Narikawa. “Effect of Sunlight on Enumeration of
Indicator Bacteria Under Field Conditions.” Applied and
Environmental Microbiology 44 (2 1982): 395-401.
Gameson, A. L. H. and J. R. Saxon. “Field Studies on Effect of Daylight on
Mortality of Coliform Bacteria.” Water Research 1 (1967): 279-295.
Gerba, C. P., C. Wallis and J. L. Melnick. “Application of Photodynamic
Oxidation to the Disinfection of Tapwater, Seawater, and Sewage
Contaminated with Poliovirus.” Photochemistry and Photobiologv 26
(5 1977a): 499-504.
Gerba, C. P., C. Wallis and J. L. Melnick. “Disinfection of Wastewater by
Photodynamic Action.” Journal of the Water Pollution Control
Federation 49 (4 1977b): 575-583.
Glaze, W. H., J. B. Andelman, R. J. Bull, R. B. Conolly, C. D. Hertz, R. D.
Hood and R. A. Pegram. “Determining Health Risks Associated With
Disinfectants and Disinfection By-products: Research Needs.”
Journal of the American Water Works Association 85 (3 1993a): 53-56.
Glaze, W. H., J. F. Kenneke and J. L. Ferry. “Chlorinated Byproducts from
the Ti02-Mediated Photodegradation of Trichloroethylene and
Tetrachloroethylene in Water.” Environmental Science & Technology
27 (11993b): 177-184.
Goswami, D. Y. “Engineering of Solar Photocatalytic Detoxification and
Disinfection Processes.” In Advances in Solar Energy. An Annual
Review of Research and Development, ed. K. W. Boer. 165-209. 10.
Boulder, CO: American Solar Energy Society, 1995.
Goswami, D. Y. and C. K. Jotshi. A Review of UV Radiation Based
Treatment of Wastewater. University of Florida, 1992.

168
Goswami, D. Y., J. Klausner, P. Wyness, A. Martin, G. D. Mathur, K.
Schanze, C. Turchi and E. Marchand. Solar Photocatalvtic
Treatment of Groundwater at Tvndall AFB: Field Test Results.
University of Florida, 1993. UFME/SEECL-9302.
Hadden, P. L., R. R. Hill, D. Jeffrey-Smith, J. E. L. McDonald, D. R.
Roberts and A. R. Werninck. “Photooxidation of Organic Pollutants
in Aqueous Systems.” Poster Presentation at Advanced Oxidation
Technologies (AOTs) -1, 1994.
Harada, K., T. Hisanaga and K. Tanaka. “Photocatalytic Degradation of
Organophosphorous Insecticides in Aqueous Semiconductor
Suspensions.” Water Research 24(11 1990): 1415-1417.
Hazen, T. C. and G. A. Toranzos. “Tropical Source Water.” In Drinking
Water Microbiology, ed. G. A. McFeters. 32-53. New York: Springer-
Verlag, 1990.
Higazy, M. G. “A Floating Sponge Solar Still Design and Performance.”
International Journal of Solar Energy 17 (1995): 61-71.
Hobbs, M. F., C. P. Gerba, C. Wallis, J. Melnick and J. S. Lennon.
“Photodynamic Inactivation of Infectious Agents.” Journal of the
Environmental Engineering Division (ASCE) 103 (EES 1977): 459-472.
Hofstadler, K., R. Bauer, S. Novalic and G. Heisler. “New Reactor Design
for Photocatalytic Wastewater Treatment with TÍO2 Immobilized on
Fused-Silica Glass Fibers: Photomineralization of 4-Chlorophenol.”
Environmental Science and Technology 28 (4 1994): 670-674.
Howe, E. D. and B. W. Tliemat. “Fundamentals of Water Desalination.” In
Solar Energy Engineering, ed. A. A. M. Sayigh. 431-464. New York:
Academic Press, 1977.
Hsiao, C.-Y., C.-L. Lee and D. F. Ollis. “Heterogeneous Photocatalysis:
Degradation of Dilute Solutions of Dichloromethane (CH2CI2),
Chloroform (CHC13), and Carbon Tetrachloride (CC14) with
illuminated Ti02 Photocatalyst.” Journal of Catalysis 82 (1983): 418-
423.
Hsieh, J. S. Solar Energy Engineering. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1986.
Ireland, J. C., P. Klostermann, E. W. Rice and R. M. Clark. “Inactivation
of Escherichia coli by Titanium Dioxide Photocatalytic Oxidation.”
Applied and Environmental Microbiology 59 (5 1993): 1668-1670.

169
Joyce, T. M., K. G. McGuigan, M. Elmore-Meegan and R. M. Conroy.
“Inactivation of Fecal Bacteria in Drinking Water by Solar Heating.”
Applied and Environmental Microbiology 62 (2 1996): 399-402.
Kawaguchi, H. and M. Furuya. “Photodegradation of Monochlorobenzene
in Titanium Dioxide Aqueous Suspensions.” Chemosphere 21 (12
1990): 1435-1440.
Kawamura, S. Integrated Design of Water Treatment Facilities. New York:
John Wiley and Sons, Inc., 1991.
Kondo, M. and W. F. Jardim. “Photodegradation of Chloroform and Urea
Using Ag-Loaded Titanium Dioxide as Catalyst.” Water Research 25
(7 1991): 823-827.
Kumar, S. and G. N. Tiwari. “Performance Evaluation of an Active Solar
Distillation System.” Energy 221 (9 1996): 805-809.
Larson, R. A., D. D. Ellis, H.-L. Ju and K. A. Marley. “Flavin-Sensitized
Photodecomposition of Anilines and Phenols.” Environmental
Toxicology and Chemistry 8 (1989): 1165-1170.
Larson, R. A., K. A. Marley and M. B. Schlauch. “Strategies for
Photochemical Treatment of Wastewaters.” In Emerging
Technologies for Hazardous Waste Management II. eds. D. W.
Tedder and F. Pohland, G. 66-82. Washington, DC: American
Chemical Society, 1991.
Larson, R. A. and E. J. Weber. Reaction Mechanisms in Environmental
Organic Chemistry. Boca Raton: CRC Press, 1994.
Legrini, O., E. Oliveros and A. M. Braun. “Photochemical Processes for
Water Treatment.” Chemical Reviews 93 (1993): 671-698.
Li, X., P. Fitzgerald and L. Bowen. “Sensitized Photo-degradation of
Chlorophenols in a Continuous Flow Reactor System.” Water
Science and Technology 26 (1/2 1992): 367-276.
Li, X. Z., M. Zhang and H. Chua. “Disinfection of Municipal Wastewater
Sensitized by Photooxidaion.” Water Science and Technology 33 (3
1996): 111-118.
Low, G. K.-C., S. R. McEvoy and R. W. Matthews. “Formation of Nitrate
and Ammonium Ions in Titanium Dioxide Mediated Photocatalytic
Degradation of Organic Compounds Containing Nitrogen Atoms.”
Environmental Science and Technology 25 (3 1991): 460-467.
Lu, M.-C., G.-D. Roam, J.-N. Chen and C. P. Huang. “Factors Affecting the
Photocatalytic Degradation of Dichlorvos Over Titanium Dioxide

170
Supported on Glass.” Journal of Photochemistry and Photobiologv A:
Chemistry 76 (1/2 1993): 103-110.
Madabhushi, S. “Development of a Solar Photocatalytic Treatment Facility
for Contaminated Ground Water.” Master of Science Thesis,
University of Florida, 1997.
Maillard-Dupuy, C., C. Guillard, H. Courbon and P. Pichat. “Kinetics and
Products of the Ti(>2 Photocatalytic Degradation of Pyridine in
Water.” Environmental Science and Technology 28 (12 1994): 2176-
2183.
Malik, M. A. S., G. N. Tiwari, A. Kumar and M. S. Sodha. Solar
Distillation. Oxford: Peramon Press, 1982.
Martin, D. F. and M. J. Perez-Cruet. “Preparation of Sterile Seawater
Through Photodynamic Action. Preliminary Screening Studies.”
Florida Scientist 50 (3 1987): 167-176.
Mason, R. L., R. F. Gunst and J. L. Hess. Statistical Design and Analysis of
Experiments: with applications to engineering and science. Wiley
Series in Probability and Mathematical Statistics, eds. V. Barnett, R.
A. Bradley, J. S. Hunter, D. G. Kendall, R. G. Miller, Jr., A. F. M.
Smith, S. M. Stigler and G. S. Watson. New York: John Wiley &
Sons, 1989.
Matsunaga, T., R. Tomada, T. Nakajima, N. Nakamura and T. Komine.
“Continuous-Sterilization System That Uses Photosemicondutor
Powders.” Applied and Environmental Microbiology 54 (6 1988): 1330-
1333.
Matsunaga, T., R. Tomada, T. Nakajima and H. Wake.
“Photoelectrochemical sterilization of microbial cells by
semiconductor powders.” Federation of European Microbiological
Societes Microbiology Letters 29 (1985): 211-214.
Matthews, R. W. “Photo-oxidation of organic material in aqueous
suspensions of titanium dioxide.” Water Research 20 (5 1986): 569-578.
Matthews, R. W. “Photooxidative Degradation of Coloured Organics in
Water Using Supported Catalysts. Ti02 on Sand.” Water Research 25
(10 1991): 1169-1176.
Melnick, J. L., C. P. Gerba, C. Wallis and M. F. Hobbs. “Photodynamic
Inactivation of Virus in Sewage.” In Virus Aspects of Applying
Municipal Waste to Land in University of Florida. Gainesville. FL.
edited by L. B. Baldwin, Institute of Food and Agricultural Sciences,
University of Florida, 25-36, 1976.

171
Mills, A., R. H. Davies and D. Worsley. “Water Purification by
Semiconductor Photocatalysis.” Chemical Society Reviews 22 (6 1993):
417-425.
Mopper, K. and R. G. Zika. “Natural Photosensitizers in Sea Water:
Riboflavin and Its Breakdown Products.” In Photochemistry of
Environmental Aquatic Systems, eds. R. G. Zika and W. J. Cooper.
174-190. Washington, DC: American Chemical Society, 1987.
Moser, R. H. “Critical Issues in Regulating Microbes and Disinfection By-
Products.” In Regulating Drinking Water Quality in Boca Raton. FL.
edited by C. Gilbert, E. and E. J. Calabrese, Lewis Publishers, 145-
151,1992.
Nguyen, T. and D. F. Ollis. “Complete Heterogeneously Photocatalyzed
Transformation of 1,1- and 1,2-Dibromoethane to C02 and HBr.”
Journal of Physical Chemistry 88 (16 1984): 3386-3388.
Óberg, V. “Photocatalytic Detoxification of Water Containing Volatile
Organic Compounds.” Master of Science Thesis, Kungl Tekniska
Hógskolan (Royal Institute of Technology), 1993.
Oliver, B. G. and J. H. Carey. “Photodegradation of Wastes and Pollutants
in Aquatic Environment.” In Homogeneous and Heterogeneous
Photocatalvsis. eds. E. Pelizzetti and N. Serpone. 629-650. 174.
Dordrecht: D. Reidel Publishing Company, 1986.
Oliver, L. G. and J. H. Carey. “Ultraviolet disinfection: an alternative to
chlorination.” Journal Water Pollution Control Federation 48 (11
1976): 2619-2624.
Ollis, D. F. “Contaminant Degradation in Water.” Environmental Science
and Technology 19 (6 1985): 480-474.
Ollis, D. F. “Heterogeneous Photocatalysis for Water Purification: Prospects
and Problems.” In Homogeneous and Heterogeneous Photocatalvsis.
eds. E. Pelizzetti and N. Serpone. 651-656. 174. Dordrecht: D. Reidel
Publishing Company, 1986.
Ollis, D. F., E. Pelizzetti and N. Serpone. “Heterogeneous Photocatalysis in
the Environment: Application to Water Purification.” In
Photocatalvsis. Fundamentals and Applications, eds. N. Serpone and
E. Pelizzetti. 603-637. New York: John Wiley and Sons, 1989.
Packham, R. F. “Chemical Aspects of Water Quality and Health.” Journal
of the Institution of Water and Environmental Management 4 (5
1990): 484-488.
Parker, S. B., ed. McGraw-Hill Dictionary of Scientifica nd Technical
Terms. New York: McGraw-Hill Book Company, 1984.

172
Patel, K. B. “The Antimicrobial Effect of Catalyzed Solar Radiation.” Master
of Science Thesis, University of Florida, 1993.
Pelizzetti, E., M. Borgarello, C. Minero, E. Pramauro, E. Borgarello and N.
Serpone. “Photocatalytic Degradation of Polchlorinated Dioxins and
Polychlorinated Biphenyls in Aqueous Suspensions of
Semiconductors Irradiated with Simulated Solar Light.”
Chemosphere 17 (3 1988): 499-510.
Pelizzetti, E., V. Maurino, C. Minero, V. Carlin, E. Pramauro, O. Zerbinati
and M. L. Tosato. “Photocatalytic Degradation of Atrizine and Other
s-Triazine Herbicides.” Environmental Science and Technology 24 (10
1990): 1559-1565.
Pelizzetti, E., C. Minero, V. Maurino, A. Sclafani and H. Hidaka.
“Photocatalytic Degradation of Nonylphenol Ethoxylated
Surfactants.” Environmental Science and Technology 23 (11 1989):
1380-1385.
Prasad, G. “The Application of Solar Energy in Water Reuse.” Journal of
Chemical Technology and Biotechnology 39 (1987): 29-36.
Premalatha, A. and G. Suseela Rajakumar. “Pentachlorophenol
Degradation by Psuedomonas aeruginosa.” World Journal of
Microbiology & Biotechnology 10 (3 1994): 334-337.
Pruden, A. L. and D. F. Ollis. “Degradation of Chloroform by Photoassisted
Heterogeneous Catalysts in Dilute Aqueous Suspensions of Titanium
Dioxide.” Environmental Science and Technology 17 (10 1983a): 628-
631.
Pruden, A. L. and D. F. Ollis. “Photoassisted Heterogeneous Catalysis: The
Degradation of Trichloroethylene in Water.” Journal of Catalysis 82
(2 1983b): 404-417.
Rajvanshi, A. K. “Analytical and Experimental Investigation of the Effect of
Dyes on Solar Distillation.” Doctor of Philosophy, University of
Florida, 1979.
Randall, C. M. and R. Bird. “Insolation Models and Algorithms.” In Solar
Resources, ed. R. 1. Hulstrom. 61-141. Cambridge, MA: The MIT
Press, 1989.
Saito, T., T. Iwase, J. Horie and T. Morioka. “Mode of Photocatalytic
Bactericidal Action of Powdered Semiconductor Ti02 on Mutans
streptococci.” Journal of Photochemistry and Photobiologv B: Biology
14(1992): 369-379.

173
Saltiel, C., A. Martin and D. Y. Goswami. “Performance Analysis of Solar
Water Detoxification Systems by Detailed Simulation.” Solar
Engineering 1 (ASME 1992 1992): 21-28.
Sargent, J. W. and R. L. Sanks. “Dye Catalyzed Oxidation of Industrial
Wastes.” Journal of the Environmental Engineering Division (ASCE)
102 (EE5 1976): 879-895.
Savino, A. and G. Angeli. “Photodynamic Inactivation of E. coli by
Immobilized or Coated Dyes on Insoluble Supports.” Water Research
19 (12 1985): 1465-1469.
Sax, N. I. and R. J. Lewis, Sr. Dangerous Properties of Industrial
Materials. 7th ed., Vol. I-III. New York, NY: Van Nostrand
Reinhold, 1989.
Schiavello, M. “Basic Concepts in Photocatalysis.” In Photocatalvsis and
Environment, ed. M. Schiavello. 351-360. 237. Kluwer Academic
Publishers, 1988.
Schlauch, M. B. “Sensitized Photodecomposition of Triazine Herbicides.”
Master of Science Thesis, University of Illinois, 1987.
Severin, B. F., M. T. Suidan and R. S. Engelbrecht. “Effects of Temperature
on Ultraviolet Light Disinfection.” Environmental Science and
Technology 17 (12 1983): 717-721.
Shah, S. K., E. A. McBean and W. A. Anderson. “Preliminary Studies into
the Disinfection of Potable Water Using Solar Radiation.” Canadian
Journal of Civil Engineering 23 (2 1996): 373-380.
Singh, A. K. and G. N. Tiwari. “Long-Term Comparative Study of Solar
Distiller System.” Energy 18 (11 1993): 1161-1169.
Sjogren, J. C. and R. A. Sierka. “Inactivation of Phage MS2 by Iron-Aided
Titanium Dioxide Photocatalysis.” Applied and Environmental
Microbiology 60 (1 1994): 344-347.
Slade, J. S., N. R. Harris and R. G. Chisholm. “Disinfection of Chlorine
Resistent Enteroviruses in Ground Water by Ultraviolet Irradiation.”
Water Science and Technology 18 (10 1986): 115-123.
Sommer, B., A. Mariño, Y. Solarte, M. L. Salas, C. Dierolf, C. Valiente, D.
Mora, R. Rechsteiner, P. Setter, W. Wirojanagud, H. Ajarmeh, A.
Al-Hassan and M. Wegelin. “SODIS - an emerging water treatment
process.” Journal of Water Supply Research and Technology - Aoua
46 (3 1997): 127-137.
Stein, J. “Water for the Wealthy.” Environment 19 (4 1977): 6-14.

174
Stevens, A. A., L. A. Moore and R. J. Miltner. “Formation and Control of
Non-Trihalomethane Disinfection By-Products.” Journal of the
American Water Works Association 81 (8 1989): 54-60.
Teichner, S. J. and M. Formenti. “Heterogeneous Photocatalysis.” In
Photoelectrochemistry, Photocatalvsis and Photoreactors:
Fundamentals and Developments, ed. M. Schiavello. 457-489. 146.
Dordrecht: D. Reidel Publishing Co., 1985.
Thekaekara, M. P. “Solar Radiation Measurement: Techniques and
Instrumentation.” Solar Energy 18 (1976): 309.
Tratnyek, P. G., M. S. Elovitz and P. Colverson. “Photoeffects of Textile Dye
Wastewaters: Sensitization of Singlet Oxygen Formation, Oxidation
of Phenols and Toxicity to Bacteria.” Environmental Toxicology and
Chemistry 13 (1994): 27-33.
Tseng, J. and C. P. Huang. “Mechanistic Aspects of the Photocatalytic
Oxidation of Phenol in Aqueous Solutions.” In Emerging
Technologies for Hazardous Waste Management, eds. D. W. Tedder
and F. Pohland, G. 12-39. Washington, DC: American Chemical
Society, 1990.
Tseng, J. M. and C. P. Huang. “Removal of Chlorophenols From Water by
Photocatalytic Oxidation.” Water Science and Technology 23 (1/3
1991): 377-387.
Turchi, C. S., L. Edmundson and D. F. Ollis. Application of Heterogeneous
Photocatalvsis for the Destruction of Organic Contaminants from a
Paper Mill Alkali Extraction Process. TAPPI 5th International
Symposium on Wood and Pulping Chemistry, Raleigh, NC 1989,
1989. Conference Paper.
Uchida, H., S. Itoh and H. Yoneyama. “Photocatalytic Decomposition of
Propyzamide Using TÍO2 Supported on Activated Carbon.” Chemistry
Letters (12 1993): 1995-1998.
Vidal, A., J. Herrero, M. Romero, B. Sanchez and M. Sanchez.
“Heterogeneous Photocatalysis: Degradation of Ethylbenzene in TÍO2
Aqueous Suspension.” Journal of Photochemistry and Photobiologv
A: Chemistry 79 (3 1994): 213-219.
von Sonntag, C. The Chemical Basis of Radiation Biology. Philadelphia:
Taylor & Francis, Inc., 1987.
Wei, C., W.-Y. Lin, Z. Zainal, N. E. Williams, K. Zhu, A. P. Kruzic, R.
Smith and K. Rajeshwar. “Bactericidal Activity of TÍO2 Photocatalyst
in Aqueous Media: Toward a Solar-Assisted Water Disinfection
System.” Environmental Science and Technology 28 (5 1994): 934-938.

175
Wheeler, D. J. Understanding Industrial Experimentation. 2nd ed.,
Knoxville, TN: SPC Press, Inc., 1990.
WHO. “WHO Calls for New International Partnership on Water and
Sanitation in Africa.” Press Release, 1994.
Wieder, S. An Introduction to Solar Energy for Scientists and Engineers.
2nd ed., Malabar, FL: Krieger Publishing Company, 1992.
Wolfe, R. L. “Ultraviolet Disinfection of Potable Water.” Environmental
Science and Technology 24 (6 1990): 768-773.
Wyness, P., J. F. Klausner, D. Y. Goswami and K. S. Schanze.
“Performance of Nonconcentrating Solar Photocatalytic Oxidations
REactors Part I: Flat Plate Configuration.” Journal of Solar Energy
Engineering 116 (1 1994): 2-7.
Zhang, P., R. J. Scrudato and G. Germano. “Solar catalytic Inactivation of
Escherichia coli in Aqueous Solutions Using TÍO2 as a Catalyst.”
Chemosphere 28 (3 1994a): 607-611.
Zhang, Y., J. C. Crittenden and D. W. Hand. “The Solar Photocatalytic
Decontamination of Water.” Chemistry and Industry (19 Sep 1994
1994b): 714-717.

APPENDIX A
EXPERIMENTAL DATA
Control Reactors, TI02.XLS
UV Light @) pH 7
—
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor tt
1
2
1
2
1
2
1
2
1
2
0 min
1858.9
1891.9
1021.5
1065.0
696.2
743.9
305.3
320.1
351.6
356.6
5 min
1843.7
1827.4
1000 3
1136.4
568.1
769.5
226.1
327.0
346.9
367.8
15 min
1958.2
1789.1
1062.0
1113.5
587.6
768.8
239.1
3300
342.4
343.8
30 min
1773.9
1738.2
1028.7
1095.1
568.7
796.8
233.5
341.4
346.4
333.4
60 min
1845.9
1637.5
1052.7
1059.1
583.5
746.2
233.9
322.8
339.9
329.7
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactortt
1
2
1
2
1
2
1
2
1
2
0 min
1839.7
1891.9
997.6
1057.7
679.9
743.9
297.8
320.1
342.9
346.8
5 min
1824.5
1827.4
976.4
1129.0
551.8
769.5
218.6
327.0
338.2
358.0
15 min
1939.0
1789.1
1038.1
1106.2
571.2
768.8
231.6
330.0
333.7
334.1
30 min
1754.7
1738.2
1004.7
1087.7
5524
796.8
226.1
341.4
337.7
323.6
60 min
1826.6
1637.5
1028.8
1051.8
567.2
746.2
226.5
322.8
331.2
319.9
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor tt
1
2
1
2
1
2
1
2
1
2
0 min
5.36
5.45
2.91
3.05
1.98
2.14
0.87
0.92
0.1
0.1
5 min
5.39
5.10
2.89
3.15
1.63
2.15
0.65
0.91
0.1
0.1
15 min
5.81
5.36
3.11
3.31
1.71
2.30
0.69
0.99
0.1
0.1
30 min
5.20
5.37
2.97
3.36
1.64
2.46
0.67
1.05
0.1
0.1
60 min
5.52
5.12
3.11
3.29
1.71
2.33
0.68
1.01
0.1
0.1
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor #
1
2
1
2
1
2
1
2
1
2
0 min
916 ppb
932 ppb
471 ppb
497 ppb
303 ppb
333 ppb
102 ppb
111 ppb
10
10
5 min
922 ppb
869 ppb
467 ppb
516 ppb
240 ppb
334 ppb
61 ppb
110 ppb
10
10
15 min
997 ppb
914 ppb
508 ppb
544 ppb
254 ppb
361 ppb
70 ppb
123 ppb
10
10
30 min
885 ppb
917 ppb
483 ppb
553 ppb
241 ppb
390 ppb
66 ppb
135 ppb
10
10
60 min
943 ppb
872 ppb
507 ppb
540 ppb
255 ppb
367 ppb
68 ppb
127 ppb
10
10
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor tt
1
2
1
2
1
2
1
2
0 min
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
5 min
1.01
0.93
0.99
1.04
0.79
1.00
0.60
0.98
15 min
1.09
0.98
1.08
1.10
0.84
1.09
0.69
1.11
30 min
0.97
0.98
1.03
1.11
0.79
1.17
0.64
1.21
60 min
1.03
0.93
1.08
1.09
0.84
1.10
0.67
1.14
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
Avd
SO
Avg I SD
Avg
SD
Avg
SD
0 min
1.00
0.00
1.00 0.00
1.00
0.00
1.00
0.00
5 min
0.97
0.04
1.01 1 0.02
0.90
0.11
0.79
0.19
15 min
1.03
0.05
1.09 0.01
0.96
0.12
0.90
0.21
30 min
0.98
0.01
1.07 0 04
0.98
0.19
0.93
0.28
60 min
0.98
0.05
1.08 1 OÓT
0.97
0.13
0.91
0.23
176

177
Control Reactors, TI02.XLS
Dark @ pH 7
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
9 10
9
10
9
10
9
10
9
10
0 min
1967.7
1879.6
1477.1
1439.1
1030.6
980.1
408.6
393.5
368.0
339.8
5 min
1824.1
2019.5
1406.9
1493.8
969.9
1038.2
392.6
409.7
303.0
350.7
15 min
1960.0
1980.5
1491.7
1538.1
1050.5
1039.3
419.8
411.3
323.0
340.0
30 min
1952.3
2002.7
1505 0
1526.6
1041.1
1016.1
416.6
418.7
335.8
344.6
60 min
1894.8
2117.4
1408.9
1585.4
1031.0
1050.3
417.2
431.8
327.4
324.2
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor#
9
10
9
10
9
10
9
10
9
10
0 min
1938.0
1850.0
1435.4
1397.4
999.8
949.3
394.7
379.6
360.7
332.57
5 min
1794.5
1989.8
1365.2
1452.1
939.1
1007.5
378.7
395.8
295.8
343.44
15 min
1930.4
1950.8
1449.9
1496.4
1019.7
1008.5
406.0
397.4
315.7
332.78
30 min
1922.6
1973.0
1463.2
1484.8
1010.3
985.3
402.7
404.8
328.5
337.39
60 min
1865.1 2087.8
1367.1
1543.7
1000.2
1019.5
403.3
417.9
320.2 317.01
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor #
9
10
9
10
9
10
9
10
9
10
0 min
5.37
5.56
3.98
4.20
2.77
2.85
1.09
1.14
0.1
0.1
5 min
6.07
5.79
4.62
4.23
3.18
2.93
1.28
1.15
0.1
0.1
15 min
6.11
5.86
4.59
4.50
3.23
3.03
1.29
1.19
0.1
0.1
30 min
5.85
5.85
4.45
4.40
3.08
2.92
1.23
1.20
0.1
0.1
60 min
5.83
6.59
4.27
4.87
3.12
3.22
1.26
1.32
0.1
0.1
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor tt
9
10
9
10
9
10
9
10
9
10
0 min
918 ppb
952 ppb
665 ppb
705 ppb
446 ppb
461 ppb
143 ppb
151 ppb
10
10
5 min
1043 ppb
994 ppb
780 ppb
710 ppb
520 ppb
476 ppb
176 ppb
153 ppb
10
10
15 min
1052 ppb
1004 ppb
1006 ppb
776 ppb
759 ppb
529 ppb
493 ppb
177 ppb
161 ppb
10
10
30 min
1004 ppb
751 ppb
742 ppb
501 ppb
473 ppb
166 ppb
162 ppb
10
10
60 min
1000 ppb
1137 ppb
718 ppb
826 ppb
510 ppb
527 ppb
172 ppb
183 ppb
10
10
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor #
9
10
9
10
9
10
9
10
0 min
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
5 min
1.14
1.04
1.17
1.01
1.16
1.03
1.24
1.01
15 min
1.15
1.06
1.17
1.08
1.19
1.07
1.24
1.06
30 min
1.09
1.05
1.13
1.05
1.12
1.03
1.17
1.07
60 min
1.09
1.19
1.08
1.17
1.14
1.14
1.21
1.21
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
Avg
SD
Avg SD
Avg
SD
Avg I SD
0 min
1.00
0.00
1.00
0.00
1.00
0.00
1.00
0.00
5 min
1.09
0.05
1.09
0.08
1.10
0.07
1.12
0.11
15 min
1.10
0.04
1.12
0.05
1.13
0.06
1.15
0.09
30 min
1.07
0.02
1.09
0.04
1.07
0.05
1.12
0.05
60 min
1.14
0.05
1.13
0.05
1.14
0.00
1.21
0.00

178
Control Reactors, TI02.XLS
UV Light @ pH 4
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor tt
17
18
17
18
17
18
17
18
17
18
0 min
1506.97
1502.08
976.19
982.82
469.28
470.8
193.61
200.3
329.9
334.69
5 min
1590.08
1595.19
996.3
'1055.99
461.4
491.82
196.22
207.15
314.97
351.29
15 min
1623.54
1591.84
1037.26
1034.55
503.98
493.19
209.46
213.34
325.83
336.04
30 min
1574.43
1461.74
1054.33
1025.17
506.8
544.7
217.5
234.87
330.41
336.48
60 min
306.95
1546.92
238.43
1126.6
136.81
621.13
81.34
264.22
388.04
357.93
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
17
18
17
18
17
18
17
18
17
18
0 min
1506.97
1502.08
976.19
982.82
469.28
4708
193.61
200.3
329.9
334.69
5 min
1590.08
1595.19
996.3
1055.99
461.4
491.82
196.22
207.15
314.97
351.29
15 min
1623.54
1591.84
1037.26
1034.55
503.98
493.19
209.46
213.34
325.83
336.04
30 min
1574.43
1461.74
1054.33
1025.17
506.8
544.7
217.5
234.87
330.41
336.48
60 min
306.95
1546.92
238.43
1126.6
136.81
621.13
81.34
264.22
388.04
357.93
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor #
17
18
17
18
17
18
17
18
17
18
0 min
4.57
4.49
2.96
2.94
1.42
1.41
0.59
0.60
0.1
0.1
5 min
5.05
4.54
3.16
3.01
1.46
1.40
0.62
0.59
0.1
0.1
15 min
4.98
4.74
3.18
3.08
1.55
1.47
0.64
0.63
0.1
0.1
30 min
4.77
4.34
3.19
3.05
1.53
1.62
0.66
0.70
0.1
0.1
60 min
0.79
4.32
0.61
3.15
0.35
1.74
0.21
0.74
0.5
0.1
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor #
17
18
17
18
17
18
17
18
17
18
0 min
772 ppb
757 ppb
480 ppb
476 ppb
202 ppb
199 ppb
51 ppb
53 ppb
10
10
5 min
859 ppb
767 ppb
517 ppb
489 ppb
210 ppb
198 ppb
57 ppb
51 ppb
10
10
15 min
847 ppb
802 ppb
521 ppb
502 ppb
225 ppb
210 ppb
61 ppb
59 ppb
10
10
30 min
808 ppb
731 ppb
522 ppb
496 ppb
222 ppb
238 ppb
64 ppb
71 ppb
10
10
60 min
18 ppb
727 ppb
11 ppb
514 ppb
2 ppb
259 ppb
1 PPb
78 ppb
2
10
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor U
17
18
17
18
17
18
17
18
0 min
1 00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
5 min
1.11
1.01
1.08
1.03
1.04
0.99
1.13
0.97
15 min
1.10
1.06
1.08
1.05
1.11
1.06
1.20
1.13
30 min
1.05
0.97
1.09
1.04
1.10
1.19
1.26
1.34
60 min
0.02
0.96
0.02
1.08
0.01
1.30
0.02
1 48
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
Ava
SO
Avq
SD
Ava
SD
Ava
SD
0 min
1 00
0.00
1.00
0.00
1.00
0.00
1.00
0.00
5 min
1 06
0.05
1.05
0.03
1.02
0.02
1.05
0 08
15 min
1 08
0.02
1.07
0.02
1.08
0.03
1.16
0.04
30 min
1.01
0.04
1.06
0.02
1.15
0.05
1.30
0.04
60 min
0.49
0.47
0.55
0.53
0.65
0.65
0.75
0.73

179
Control Reactors, TI02.XLS
Dark @ pH 4
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
25
26
25
26
25
26
25
26
25
26
0 min
1834.74
2089.47
1512.20
1752.57
981.57
1107.61
390.90
463.79
363.74
359.02
5 min
1935.79
2213.77
1716.51
1888.85
1099.80
1207.84
453.91
506.12
358.09
346.97
15 min
1910.17
1883.61
1694.00
1640.92
1081.81
1090.52
443.65
454.70
357.63
363.31
30 min
1857.45
1758.63
1630.87
1537.70
1071.19
994.99
442.80
414.41
374.89
359.73
60 min
1889.55
1917.40
1673.64
1633.89
1058 40
1027.93
439.43
434.51
371.12
359.43
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
25
26
25
26
25
26
25
26
25
26
0 min
1778.48
2033.21
1425.86
1666.23
910.12
1036.16
355.13
428.02
355.52
350.80
5 min
1879.53
2157.51
1630.17
1802.51
1028.35
1136.39
418.14
470.35
349.87
338.75
15 min
1853.91
1827.35
1607.66
1554 58
1010.36
1019.07
407.88
418.93
349.41
355.09
30 min
1801.19
1702.37
1544.53
1451.36
999.74
923.54
407.03
378.64
366.67
351.51
60 min
1833.29
1861.14
1587 30
1547.55
986.95
956.48
403.66
398.74
362.90
351.21
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor #
25
26
25
26
25
26
25
26
25
26
0 min
5.00
5.80
4.01
4.75
2.56
2.95
1.00
1.22
0.1
0.1
5 min
5.37
6.37
4.66
5.32
2.94
3.35
1.20
1.39
0.1
0.1
15 min
5.31
5.15
4.60
4.38
2.89
2.87
1.17
1.18
0.1
0.1
30 min
4.91
4.84
4.21
4.13
2.73
2.63
1.11
1.08
0.1
0.1
60 min
5.05
5.30
4.37
4.41
2.72
2.72
1.11
1.14
0.1
0.1
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor U
25
26
25
26
25
26
25
26
25
26
0 min
851 ppb
994 ppb
671 ppb
805 ppb
408 ppb
479 ppb
125 ppb
165 ppb
10
10
5 min
917 ppb
1098 ppb
788 ppb
908 ppb
477 ppb
552 ppb
161 ppb
196 ppb
10
10
15 min
905 ppb
877 ppb
778 ppb
737 ppb
468 ppb
464 ppb
156 ppb
158 ppb
10
10
30 min
834 ppb
822 ppb
707 ppb
692 ppb
438 ppb
420 ppb
145 ppb
139 ppb
10
10
60 min
859 ppb
904 ppb
737 ppb
743 ppb
437 ppb
438 ppb
146 ppb
150 ppb
10
10
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor #
25
26
25
26
25
26
25
26
0 min
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
5 min
1.08
1.10
1.18
1.13
1.17
1.15
1.28
1.18
15 min
1.06
0 88
1.16
0.92
1.15
0.97
1.24
0.96
30 min
0.98
0.83
1.05
0.86
1.07
0 88
1.16
0.84
60 min
1.01
0.91
1.10
0.92
1.07
0.91
1.16
0.91
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
Avg
SD
Ava
SD
Avg
SD
Avg
SD
0 min
1.00
000
1.00
0.00
1.00
0.00
1.00
0 00
5 min
1 09
0.01
1.15
0.02
1.16
0.01
1.23
0.05
15 min
0.97
0.09
1.04
0.12
1.06
009
1.10
0.14
30 min
0.90
0.08
0.96
0.10
0.98
0.10
1.00
0.16
60 min
0.96
0.05
1.01
0.09
0.99
0.08
1.04
0.13

180
0.01% Ti02, TI02.XLS
UV Light @ pH 7
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor tt
3
^ 4
3
4
3
4
3
4
3
4
0 min
1733.8
1874.1
975.3
1013.4
497.4
529.0
208.5
211.4
321.8
342.87
5 min
1647.1
1395.2
855.7
751.7
417.2
380.6
159.6
154.9
334.2
334.93
15 min
751.6
688.1
367.8
349.6
179.0
177.6
68.8
69.1
290.1
319.29
30 min
445.7
455.6
2144
219.3
99.3
105.0
35.8
38.5
276.8
334.1
60 min
80.6
78.5
43 1
43.9
23.7
22.7
10.0
0.0
308.5
295.27
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
3
4
3
4
3
4
3
4
3
4
0 min
1733.8
1874.1
968.0
1006.1
497.4
529.0
208.5
211.4
312.0
333.095
5 min
1647.1
1395.2
848.4
744.3
417.2
380.6
159.6
154.9
324.4
325.155
15 min
751.6
688.1
360.4 342.3
179.0
177.6
68.8
69.1
2803
309.515
30 min
445.7
455.6
207.1
212.0
99.3
105.0
35.8
38.5
267.0
324.325
60 min
806
78.5
35.8
36.6
23.7
22.7
10.0
0.0
298.8
285.495
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor it
3
4
3
4
3
4
3
4
3
4
0 min
5.56
5.63
3.10
3.02
1.59
1.59
0.67
0.63
0.10
0.10
5 min
5 08
4.29
2.62
2 29
1.29
1.17
0.49
0.48
0.30
0.30
15 min
2.68
2.22
1.29
1.11
0.64
0.57
0.25
0.22
0.50
0.50
30 min
1.67
1.40
0.78
0.65
0.37
0.32
0.13
0.12
0 98
1.00
60 min
0.27
0.28
0.12
0.13
0.08
0.08
0.03
0.00
0 98
1.00
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor #
3
4
3
4
3
4
3
4
3
4
0 min
951 ppb
964 ppb
506 ppb
491 ppb
233 ppb
232 ppb
65 ppb
59 ppb
10 00
10.00
5 min
288 ppb
241 ppb
139 ppb
120 ppb
59 ppb
52 ppb
11 ppb
10 ppb
3.33
3.33
15 min
86 ppb
69 ppb
35 ppb
29 ppb
12 ppb
10 ppb
1 ppb
1 ppb
2.00
2.00
30 min
25 ppb
20 ppb
9 ppb
6 ppb
1 ppb
0 ppb
1 ppb
1 ppb
1.02
1.00
60 min
1 ppb
1 ppb
1 PPt>
1 ppb
1 ppb
1 ppb
1 ppb
0 ppb
1.02
1.00
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor It
3
4
3
4
3
4
3
4
0 min
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
5 min
0.301
0.25
6.28
0.24
0.25
0.22
0.17
0.17
15 min
0.09
0.07
0.07
0.06
0.05
0.04
0.02
0.02
30 min
0.03
0.02
0.02
001
001
0.00
0.02
0.02
60 min
0.00
0.00
0.00
0.00
000
0.00
0.02
0.00
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
Ava
SD
Avg
SD
Avg
SD
Avg
SD
0 min
1.00
000
1.00
000
1 00
0.00
1.00
0.00
5 min
0.28'
0.03
0 26'
0.02
0.24
0.01
0.17
0.00
15 min
0.08
0.01
0.06
0.01
0.05
0.00
002
0.00
30 min
0.02
0.00
0.01
0.00
0.00
0.00
0 02'
0.00
Avd SD
0.0047
60 min
0.00
000
0.00
0.00
0.00
0.00
0.01
0.01

181
0.01% TÍ02, TI02.XLS
Dark @ pH 7
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
11
12
11
12
11
12
11
12
11
12
0 min
1979.7
2153.9
1497.2
1614.6
1014.5
1099.9
403.9
431 9
328.8
369.7
5 min
1966.9
2080 6
1485.4
1601.8
1014.2
1068.6
403.7
430.5
310.4
335.9
15 min
2066.3
2142.3
1505.3
1624 3
992.9
1113.1
408.5
449.6
329.3
353.9
30 min
1920.1
2059.5
1423.4
1607.6
981.9
1068.5
396.3
430.7
322.6
344.4
60 min
1976.1
2104.4
1498.0
1596.0
1025.6
1075.4
412.3
433.2
357.2
332.7
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
11
12
11
12
11
12
11
12
11
12
0 min
2009.3
2176.0
1538.9
1642.8
1045.3
1128.8
417.8
445.5
336.0
376.8
5 min
1996.5
2102.6
1527.2
1630.1
1045.0
1097.5
417.6
444.0
317.6
342.9
15 min
2095.9
2164.3
1547.0
1652.5
1023.7
1142.0
422.4
463.2
336.5
360.9
30 min
1949.8
2081.6
1465.1
1635.9
1012.7
1097.3
410.1
444.3
329.8
351.4
60 min
2005.7
2126.4
1539.7
1624.2
1056.4
1104.2
426.2
446.7
364.4
339.7
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor #
11
12
11
12
11
12
11
12
11
12
0 min
5.98
5.78
4.58
4 36
3.11
3.00
1.24
1.18
0.1
0.1
5 min
6.29
6.13
4.81
4.75
3.29
3.20
1.31
1.29
0.1
0.1
15 min
6.23
6.00
4.60
4.58
3.04
3.16
1.26
1.28
0.1
0.1
30 min
5.91
5.92
444
4.66
3.07
3.12
1.24
1.26
0.1
0.1
60 min
5.50
6.26
4.23
4.78
2.90
3.25
1.17
1.32
0.1
0.1
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor #
11
12
11
12
11
12
11
12
11
12
0 min
1028 ppb
991 ppb
774 ppb
734 ppb
508 ppb
487 ppb
170 ppb
158 ppb
10
10
5 min
1083 ppb
1055 ppb
815 ppb
805 ppb
540 ppb
524 ppb
183 ppb
179 ppb
10
10
15 min
1073 ppb
1031 ppb
777 ppb
774 ppb
495 ppb
518 ppb
172 ppb
177 ppb
10
10
30 min
1015 ppb
1017 ppb
749 ppb T 788 ppb
501 ppb
510 ppb
170 ppb
173 ppb
10
10
60 min
941 ppb
1078 ppb
710 ppb
811 ppb
469 ppb
533 ppb
156 ppb
183 ppb
10
10
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor #
11
12
11
12
11
12
11
12
0 min
Too1
1.00
1.00
1.00
1.00
1.00
1.00
1.00
5 min
1.05
1.07
1.05
1.10
1.06
1.08
1.08
1.13
15 min
1.04
1.04
1.00
1.05
0.981
1.06
1.01
1.12
30 min
0.99
1.03
0.97
1.07
0.99
1.05
1.00
1.09
60 min
0.92
1.09
0.92
1.10
0.92
1.09
0.92
1.15
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
5
SO
Avg
SO
Avg
SD
Avg
SD
0 min
1.00
0.00
1.001
0.00
1.00
0.00
1.00
0.00
5 min
1.06
0.01
1.08
0.02
1.07
0.01
1.10
0.03
15 min
1.04
0.00
1.03
0.03
1.02
0.04
1.06
0.05
30 min
1.01
0.02
1.02
0.05
1.02
0.03
1.05
0.05
Ávd SD
0.0356
60 min
1.00
0.09
1.01
0.09
1.01
0.09
1.04
0.12

182
0.01% T¡02, TI02.XLS
UV Light @ pH 4
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
19
20
19
20
19
20
19
20
19
20
0 min
1448.44
1583.69
987.85
1077.18
451.56
484.74
191.46
203.69
339.72
348.18
5 min
2145.27
3114.01
1416.17
2073.28
611.66
997.62
277.65
419.74
323.47
341.71
15 min
1733.81
1638.23
1081.52
1062.7
511.57
518.21
202.06
213.02
293.28
322.49
30 min
869.28
754.57
4949
478.81
237.25
217.29
95.79
88.98
325.44
295.32
60 min
120.98
188.52
76.94
114.88
36.51
54.39
14.59
21.29
238.02
290.98
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
19
20
19
20
19
20
19
20
19
20
0 min
1448.44
1563.39
987.85
1056.29
451.56
472.095
191.46
197.825
339.72
335.535
5 min
2145.27
3093.71
1416.17
2052.39
611 66
984975
277.65
413.875
323.47
329.065
15 min
1733.81
1617.93
1081.52
1041.81
511.57
505.565
202.06
207.155
293.28
309.845
30 min
869.28
734.27
494.9
457 92
237.25
204.645
95.79
83.115
325.44
282.675
60 min
120.98
168.22
76.94
93.99
36.51
41.745
14.59
15.425
238.02
278.335
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor #
19
20
19
20
19
20
19
20
19
20
0 min
4.26
4.66
2.91
3T5l
1.33
1.41
0.56
0.59
0.1
0.1
5 min
6.63
9.40
4.38
6.24
1.89
2.99
0.86
1.26
0.3
0.3
15 min
5.91
5.22
3.69
3.36
1.74
1.63
0.69
0.67
0.5
0.3
30 min
2.67
2.60
1.52
1.62
0.73
0.72
0.29
0 29
0.98
0.5
60 min
0.51
0.60
0.32
0.34
0.15
0.15
0.06
0.06
0.98
0.98
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor #
19
20
19
20
19
20
19
20
19
20
0 min
717 ppb
788 ppb
471 ppb
515 ppb
185 ppb
199 ppb
46 ppb
51 ppb
10.00
10.00
5 min
382 ppb
549 ppb
246 ppb
358 ppb
96 ppb
162 ppb
33 ppb
57 ppb
3.33
3.33
15 min
203 ppb
297 ppb
122 ppb
184 ppb
52 ppb
80 ppb
14 ppb
22 ppb
2.00
3.33
30 min
44 ppb
83 ppb
22 ppb
48 ppb
8 ppb
15 ppb
1 ppb
1 PPb
1.02
2.00
60 min
4 PPb
5 ppb
0 ppb
1 ppb
1 ppb
1 ppb
1 ppb
1 PPb
1.02
1.02
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor#
19
20
19
20
19
20
19
20
0 min
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
5 min
0.53
0.70
0.52
0.70
0.52
0.81
0.72
1.12
15 min
0.28
0.38
0.26
0.36
0.28
0.40
0.30
0.43
30 min
0.06
0.11
0.05
0.09
0.04
0.08
002
0.02
60 min
0.01
0.01
0.00
0.00
0.01
0.01
0.02
0.02
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
Avq
SD
Avq
SD
Avq
SD
Avq
SD
0 min
1.00
0.00
1.00
0.00
Tool
0.00
1 00
0.00
5 min
0.61
0.08
0.61
0.09
0.67
0.15
0.92
0.20
15 min
0.33
0.05
0.31
0.05
0.34
0.06
0.36
0.06
30 min
O08Í
0.02
0.07
0.02
0.06
0.02
0.02
0.00
Avd SD
0.0403
60 min
o.oTj
0.00
0.00
0.00
0.01
0.00
0.02
0.00
—

183
0.01 % Ti02, TI02.XLS
Dark @ pH 4
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor it
27
28
27
28
27
28
27
28
27
28
0 min
1832.27
1732.28
1617.83
1540.56
1052.36
992.91
424.93
408.18
339.32
365.11
5 min
1720.36
1844 29
1506.01
1635.55
969.51
1061.41
409.96
452.17
346.64
361.75
15 min
566 18
1837.19
444.72
1690.27
286.89
1066.18
129.3
452.59
351.5
341.46
30 min
4427.07
1620.28
3920.01
1469.56
2548.8
926.62
1068.19
398.23
359.88
365.47
60 min
4205.84
1746.93
3646.46
1505.29
2501.18
1028.34
1049.85
422 13
359.17
353.38
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor it
27
28
27
28
27
28
27
28
27
28
0 min
1888.54
1749.70
1704.17
1566.75
1123.82
1017.22
460.70
420.94
347.55
373.88
5 min
1776.63
1861.71
1592.35
1661 74
1040.97
1085.72
445.73
464.93
354.87
370.52
15 min
622.45
1854.61
531.06
1716.46
358.35
1090.49
165.07
465.35
359.73
350.23
30 min
4483.34
1637.70
4006.35
1495.75
2620 26
950.93
1103.96
410.99
368.11
374.24
60 min
4262.11
1764.35
3732.80
1531.48
2572.64
1052.65
1085.62
434.89
367.40
362.15
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor #
27
28
27
28
27
28
27
28
27
28
0 min
5.43
4.68
4.90
4.19
3.23
2.72
1.33
1.13
0.1
0.1
5 min
5.01
5.02
4.49
4.48
2.93
2.93
1.26
1.25
0.1
0.1
15 min
1.73
5.30
1.48
4.90
1.00
3.11
0.46
1.33
0.1
0.1
30 min
12.18
4.38
10.88
400
7.12
2.54
3.00
1.10
0.3
0.1
60 min.
11.60
4.87
10.16
4 23
7.00
2.91
2.95
1.20
0.3
0.1
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor#
27
28
27
28
27
28
27
28
27
28
0 min
929 ppb
792 ppb
833 ppb
703 ppb
530 ppb
437 ppb
184 ppb
148 ppb
10
10
5 min
851 ppb
855 ppb
757 ppb
757 ppb
476 ppb
475 ppb
172 ppb
172 ppb
10
10
15 min
258 ppb
904 ppb
212 ppb
832 ppb
125 ppb
508 ppb
27 ppb
185 ppb
10
10
30 min
717 ppb
737 ppb
639 ppb
668 ppb
411 ppb
405 ppb
163 ppb
143 ppb
3.333333
10
60 min
682 ppb
827 ppb
595 ppb
710 ppb
404 ppb
471 ppb
160 ppb
162 ppb
3.333333
10
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor #
27
28
27
28
27
28
27
28
0 min
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
5 min
0.92
1.08
0.91
1.08
6.901
1.09
0.93
1.16
15 min
0.28
1.14
0.25
1.18
0.24
1.16
0 15
1.25
30 min
0.77
0.93
0.77
0.95
0.781
0.93
0.88
0.97
60 min
0.73
1.04
0.71
1.01
0.76
1.08
0.87
1.09
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
Ava
SD
Avg
SD
Ava
SD
Avq
SD
0 min
Toa
0.00
Too1
0.00
Too1
0.00
1.00
0.00
5 min
1.00
0.08
0.991
0.08
0.99
0.09
1.04
0.11
15 min
0.71
0.43
0.72
0.46
0.70
0.46
0.70
0.55
30 min
0.85
0.08
0.86
0.09
0.85
0.07
0 92
0.04
Avd SD
0.1571
60 min
0.89
0.15
0.86
0.15
0.92
0.16
0.98
0.11

184
0.05% T¡02, TI02.XLS
UV Light @ pH 7
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor It
5
6
5
6
5
6
5
6
5
6
0 min
1703.09
1984.40
966.07
1093.10
499.36
562.34
204.64
222.76
295.62
354.80
5 min
2883.61
1925.68
1624.48
1056.15
877.49
557.20
355.76
221.56
331.78
358.91
15 min
4303.10
1649.94
2385.48
928.49
1316.55
489.98
526.35
197.31
331.19
348.73
30 min
5196.38
1131.51
3145.22
636.48
1649 49
320 56
644.42
127.38
277.81
329.68
60 min
1957.67
3001.18
1032.92
1679.48
545.74
845.64
331.52
336.54
358.78
320.58
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor It
5
6
5
6
5
6
5
6
5
6
0 min
1735.04
2016.35
994 69
1121.72
520.18
583.16
214.16
232.28
302.96
362.14
5 min
2915.56
1957.63
1653.10
1084.77
898.31
578.02
365.28
231.08
339.12
366.25
15 min
4335.05
1681.89
2414.10
957 11
1337.37
510.80
535.87
206.83
338.53
356.07
30 min
5228.33
1163.46
3173.84
665.10
1670.31
341.38
653.94
136.90
285.15
337.02
60 min
1989.62
3033.13
1061.54
1708.10
566.56
866.46
341.04
346.06
366.12
327.92
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor it
5
6
5
6
5
6
5
6
5
6
0 min
5.73
5.57
3.28
3.10
1.72
1.61
0.71
0.64
0.1
0.1
5 min
8.60
5.35
4.87
2.96
2.65
1.58
1.08
0.63
0 3
0.1
15 min
12.81
4.72
7.13
2.69
3.95
1.43
1.58
0.58
0.5
0.1
30 min
18.34
3.45
11.13
1.97
5.86
1.01
2.29
0.41
1
0.1
60 min
5.43
9.25
2.90
5.21
1.55
2.64
0.93
1.06
0.5
0.5
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor #
5
6
5
6
5
6
5
6
5
6
0 min
982 ppb
953 ppb
539 ppb
505 ppb
255 ppb
236 ppb
72 ppb
60 ppb
10.0
10
5 min
501 ppb
913 ppb
276 ppb
481 ppb
141 ppb
230 ppb
46 ppb
59 ppb
3.3
10
15 min
453 ppb
800 ppb
247 ppb
431 ppb
132 ppb
204 ppb
46 ppb
50 ppb
2.0
10
30 min
327 ppb
570 ppb
196 ppb
302 ppb
101 ppb
128 ppb
36 ppb
18 ppb
1.0
10
60 min
186 ppb
324 ppb
94 ppb
178 ppb
45 ppb
85 ppb
23 ppb
27 ppb
2.0
2
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor It
5
6
5
6
5
6
5
6
0 min
“Too1
1.00
1.00
1 00
“Too1
1.00
1.00
1.00
5 min
0.51
0.96
0.51
0.95
0.551
0.98
0.64
0.97
15 min
0.46
0.84
0.46
0.85
0.52
0.87
0.64
0.82
30 min
0.33
0.60
0.36
0.60
0.39
0.54
0.50
0.30
60 min
0.19
0.34
0.17
0.35
TTs1
0.36
0.31
0.45
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
Ava
SD
Ava
SD
Ava
SD
Ava
SD
0 min
1.00
0.00
1.00
0.00
1.00
000
1.00
0.00
5 min
0 73
0.22
0.73
0.22
0.76
0.21
0.81
0.16
15 min
0.65
0.19
0.66
0.20
0.69
0.17
0.73
0 09
30 min
0.47
0.13
0.48
0.12
0.47
007
0.40
0.10
60 min
0.26
0.08
0.26
0.09
0.27
0.09
0.38
0.07

185
0.05% T¡02, TI02.XLS
Dark @ pH 7
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
13
14
13
14
13
14
13
14
13
14
0 min
2063.2
2249.1
1550.4
1648.6
1106.5
1173.3
443.2
468.7
325.27
381.62
5 min
2180.9
2161.7
1624.5
1583.8
1149.1
1122.7
459.8
453.3
339.40
352.98
15 min
2137.0
2255.0
1586.3
1724.5
1120.4
1223.9
452.4
484.4
320.88
355.44
30 min
2159.5
2299.6
1627.6
1735.5
1150.4
1210.6
462.4
482.5
338.81
360.49
60 min
2210.1
2097.3
1621.8
1642.2
1180.0
1117.9
475.5
447.8
350.25
332.81
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor#
13
14
13
14
13
14
13
14
13
14
0 min
2085.3
2271.1
1578.6
1676.9
1135.3
1202.2
456.8
482.3
332.29
388.64
5 min
2202.9
2183.8
1652.7
1612.1
1178.0
1151.6
473.4
466.9
346.42
360.00
15 min
2159.1
22770
1614.5
1752.7
1149.2
1252 8
466.0
498.0
327 90
36246
30 min
2181.6
2321.7
1655.9
1763.8
1179.3
1239.5
4759
496.1
345.83
367.51
60 min
2232.2
2119.4
1650.0
1670.4
1208.9
1146.8
489.0
461.3
357.27
339.83
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor #
13
14
13
14
13
14
13
14
13
14
0 min
6.28
5.84
4.75
4.31
3.42
3.09
1.37
1.24
0.1
0.1
5 min
6.36
6.07
4.77
4.48
3.40
3.20
1.37
1.30
0.1
0.1
15 min
6.58
6.28
4.92
4.84
3.50
3.46
1.42
1.37
0.1
0.1
30 min
6.31
6.32
4.79
4.80
3.41
3.37
1.38
1.35
0.1
0.1
60 min
6.25
6.24
4.62
4.92
3.38
3.37
1.37
1.36
0.1
0.1
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor #
13
14
13
14
13
14
13
14
13
14
0 min
1081 ppb
1003 ppb
805 ppb
726 ppb
563 ppb
505 ppb
193 ppb
169 ppb
10
10
5 min
1096 ppb
1043 ppb
809 ppb
756 ppb
560 ppb
524 ppb
192 ppb
179 ppb
10
10
15 min
1137 ppb
1082 ppb
836 ppb
820 ppb
579 ppb
570 ppb
202 ppb
193 ppb
10
10
30 min
1087 ppb
1089 ppb
812 ppb
814 ppb
562 ppb
555 ppb
194 ppb
189 ppb
10
10
60 min
1076 ppb
1074 ppb
781 ppb
835 ppb
557 ppb
556 ppb
192 ppb
190 ppb
10
10
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor #
13
14
13
14
13
14
13
14
0 min
Too1
1.00
1.00
1.00
1.00
1.00
1.00
1.00
5 min
1.01
1.04
1.00
1.04
0.99
1.04
0.99
1.06
15 min
1.05
1.08
1.04
1.13
1.03
1.13
~ 1.04
1.14
30 min
1.01
1.09
1.01
1.12
1.00
1.10
1.00
1.12
60 min
1.00
1.07
0.97
1.15
0.99
1.10
0.99
1.12
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
—Av9
SO
Avg
SD
Ava
SD
Ava
SD
0 min
1.00
0.00
1.00
0.00
Too1
0.00
TOO1
0.00
5 min
1.03
0.01
1.02
0.02
1.02
0.02
1.03
0.03
15 min
1.07
0.01
1.08
0.05
1.08
0.05
1.09
0.05
30 min
1.05
0.04
1.06
0.06
1.05
0.05
1.06
0.06
60 min
1.03
004
1.06
0.09
1.05
0.06
T06l
0.07

186
0.05% Ti02, TI02.XLS
UV Light @ pH 4
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
21
22
21
22
21
22
21
22
21
22
0 min
1643.32
1975.62
1097.35
1126.45
501.67
509.00
208.42
204.75
327.1
370.43
5 min
2535.57
1370 45
1654.29
924.44
793.58
430.06
317 14
175.29
313.07
313.96
15 min
2825.57
996.67
1899.02
627.49
90389
295.7
368.85
121.9
305.08
354.33
30 min
2103.24
718.78
1405.59
453.68
656.52
218.60
27486
87.78
318.05
339.04
60 min
1369.25
709.19
914.00
458.78
435.61
219.99
173.16
83.53
293.1
316.54
Adjusted
Benzene
Toluene
m&p-xyiene
o-xylene
Chlorobenzene
Reactor it
21
22
21
22
21
22
21
22
21
22
0 min
1663.62
1993.07
1118.24
1150.46
514.32
517.27
214.29
204.75
339.75
377.11
5 min
2555.87
1387.90
1675.18
948.45
806.23
438.33
323.01
175.29
325.72
320.64
15 min
2845.87
1014.12
1919.91
651.50
916.54
303.97
374.72
121.90
317.73
361.01
30 min
2123.54
736.23
1426.48
477.69
669.17
226.87
280.73
87.78
330.70
345.72
60 min
1389.55
726.64
934.89
482.79
448.26
228.26
179.03
83.53
305.75
323.22
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor tt
21
22
21
22
21
22
21
22
21
22
0 min
4.90
5.29
3.29
3.05
1.51
1.37
0.63
0.54
0.1
0.1
5 min
7.85
4.33
5.14
2.96
2.48
1.37
0.99
0.55
0.2
0.1
15 min
8.96
2.81
6.04
1.80
2.88
0.84
1.18
0.34
0.3
0.1
30 min
6.42
2.13
4.31
1.38
2.02
0.66
0 85
0.25
0.3
0.2
60 min
4.54
2.25
3.06
1.49
1.47
0.71
0.59
0 26
0.3
0.3
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor tt
21
22
21
22
21
22
21
22
21
22
0 min
831 ppb
902 ppb
541 ppb
497 ppb
219 ppb
193 ppb
59 ppb
43 ppb
10.0
10.0
5 min
683 ppb
728 ppb
438 ppb
480 ppb
196 ppb
192 ppb
62 ppb
43 ppb
5.0
10.0
15 min
522 ppb
453 ppb
346 ppb
271 ppb
156 ppb
97 ppb
53 ppb
5 ppb
3.3
10.0
30 min
369 ppb
165 ppb
242 ppb
97 ppb
104 ppb
32 ppb
33 ppb
1 ppb
3.3
5.0
60 min
256 ppb
117 ppb
166 ppb
72 ppb
70 ppb
24 ppb
17 ppb
1 PPb
3.3
3.3
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor It
21
22
21
22
21
22
21
22
0 min
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
5 min
0.82
0.81
081
0.97
0.90
1.00
1.06
1.02
15 min
0.63
0.50
0.64
0.55
0.71
0.50
0.90
0.13
30 min
0.44
0.18
0.45
0.20
0.47
0.16
0.56
0.02
60 min
0.31
0.13
0.31
0.14
0.32
0.12
0.29
0.02
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
Avq
SD
Avq
SD
Avq
SD
Avq
SD
0 min
1.00
0.00
1.00
0.00
1.00
0.00
1.00
0.00
5 min
0.81
0.01
0.89'
0.08
0.95
0.05
1,04
0.02
15 min
0.57
0.06
0.59
0.05
061
0.10
0.51
0.39
30 min
0.31
0.13
0.32
0.13
0.321
0.16
0.29
0.27
60 min
0.22
009
0.23
0.08
0.22
0.10
0.16^
0.13

187
0.05% TÍ02, TI02.XLS
Dark @ pH 4
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor tt
29
30
29
30
29
30
29
30
29
30
0 min
1907.03
1767.5
1681.47
1547.71
1131.47
1048.55
459.78
422.82
367.71
344.67
5 min
1834.87
1834.88
1668.61
1611.21
1097.55
1072.41
456.92
443.04
352.48
360.59
15 min
1772.88
1570.57
1607.79
1377.59
1073.81
959.79
441.09
406.81
323.20
346.52
30 min
1742.16
1375.2
1543.12
1065.97
979.25
657.69
407.88
308.63
387.67
359.55
60 min
1791.27
1704.33
1637.3
1519.13
1078.69
963.71
444.00
402.75
348.92
372.05
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
29
30
29
30
29
30
29
30
29
30
0 min
1924.45
1784.92
1707.66
1573.90
1155.78
1072.86
472.54
435.58
376.48
353.44
5 min
1852.29
1852.30
1694.80
1637.40
1121.86
1096.72
469.68
455.80
361.25
369.36
15 min
1790.30
1587.99
1633.98
1403.78
1098.12
984.10
453.85
419.57
331.97
355.29
30 min
1759.58
1392.62
1569.31
1092.16
1003.56
682.00
420.64
321 39
396.44
368.32
60 min
1808.69
1721.75
1663.49
1545.32
1103.00
988.02
456.76
415.51
357.69
380.82
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor #
29
30
29
30
29
30
29
30
29
30
0 min
5.11
5.05
4.54
4.45
3.07
3.04
1.26
1.23
0.1
0.1
5 min
5.13
5.01
4.69
4.43
3.11
2.97
1.30
1.23
0.1
0.1
15 min
5.39
4.47
4.92
3.95
3.31
2.77
1.37
1.18
0.1
0.1
30 min
4.44
3.78
3.96
2.97
2.53
1.85
1.06
0.87
0.1
0.1
60 min
5.06
4.52
4.65
4.06
3.08
2.59
1.28
1.09
0.1
0.1
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor #
29
30
29
30
29
30
29
30
29
30
0 min
870 ppb
859 ppb
766 ppb
751 ppb
500 ppb
494 ppb
172 ppb
168 ppb
10
10
5 min
873 ppb
853 ppb
794 ppb
747 ppb
507 ppb
482 ppb
180 ppb
168 ppb
10
10
15 min
921 ppb
754 ppb
836 ppb
660 ppb
544 ppb
446 ppb
192 ppb
158 ppb
io1
10
30 min
748 ppb
629 ppb
661 ppb
481 ppb
403 ppb
280 ppb
137 ppb
102 ppb
10
10
60 min
860 ppb
763 ppb
787 ppb
679 ppb
503 ppb
414 ppb
176 ppb
142 ppb
10
10
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor tt
29
30
29
30
29
30
29
30
0 min
“Too1
1.00
1.00
1.00
1.00
1.00
1.00
1.00
5 min
1.00
0.99
1.04
1.00
1.01
0.98
1.05
1.00
15 min
1.06
0.88
1.09
0.88
1.09
0.90
1.12
0.94
30 min
0.86
0.73
0.86
0.64
0.81
0.57
0.80
0.61
60 min
0.99
0.89
1.03
0.90
1.00
0.84
1.02
0.85
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
Avg
SD
Avg
SD
Avg
SD
Avg
SD
0 min
1.00[
0.00
1.001
0.00
1.00
0.00
1.00
0.00
5 min
1.00
0.01
1.02
0.02
0.99
0.02
1.02
0.02
15 min
0.97
0.09
0.99
0.11
099
0.09
1.03
0.09
30 min
0.80
0.06
0.75
0.11
0.69
0.12
0.701
0.09
60 min
0.94
0.05
0.97
0.06
0.92
008
0.94
0.09

188
0.10% T¡02, TI02.XLS
UV Light @ pH 7
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
7
8
7
8
7
8
7
8
7
8
0 min
1997.21
1697.92
1156.8
932.8
593.81
450.32
244.95
185.52
409.6
336.98
5 min
1876.06
1868.57
1104.75
1020.28
544.55
503.71
221.76
205.76
364.06
342.17
15 min
1708.7
1730.76
950.57
949.24
49306
488.29
200.84
198.16
368.58
360.45
30 min
1363.74
1529.45
786.85
848.59
396.08
427.53
164.46
170.51
361.07
370.85
60 min
1325.77
1039 57
726.26
568 53
367.49
287.22
149.57
116.08
360.44
291.97
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
7
8
7
8
7
8
7
8
7
8
0 min
2029.16
1727.57
1185.42
974.54
614.63
481.11
254.47
199.41
416.94
344.20
5 min
1908.01
1898.22
1133.37
1062.02
565.37
534.50
231.28
219.65
371.40
349.39
15 min
1740.65
1760.41
979.19
990.98
513.88
519.08
210.36
212.05
375.92
367.67
30 min
1395.69
1559.10
815.47
890.33
416.90
458.32
173.98
184.40
368.41
378.07
60 min
1357.72
1069.22
754.88
610.27
388.31
318.01
159.09
129.97
367.78
299.19
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor #
7
8
7
8
7
8
7
8
7
8
0 min
4.87
5.02
2.84
2.83
1.47
1.40
0.61
0.58
0.1
0.1
5 min
5.14
5.43
3.05
3.04
1.52
1.53
0.62
0.63
0.1
0.1
15 min
4 63
4.79
2.60
2.70
1.37
1.41
0.56
0.58
0.1
0.1
30 min
3.79
4.12
2.21
2.35
1.13
1.21
0.47
0.49
0.1
0.1
60 min
3.69
3.57
2.05
2.04
1.06
1.06
0.431
0.43
0.1
0.1
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor #
7
8
7
8
7
8
7
8
7
8
0 min
826 ppb
854 ppb
459 ppb
457 ppb
211 ppb
198 ppb
55 ppb
49 ppb
10
10
5 min
875 ppb
928 ppb
497 ppb
495 ppb
220 ppb
221 ppb
57 ppb
58 ppb
10
10
15 min
783 ppb
812 ppb
416 ppb
433 ppb
192 ppb
200 ppb
46 ppb
49 ppb
10
10
30 min
631 ppb
691 ppb
345 ppb
371 ppb
149 ppb
164 ppb
30 ppb
33 ppb
10
10
60 min
613 ppb
592 ppb
316 ppb
314 ppb
136 ppb
137 ppb
23 ppb
23 ppb
10
10
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor tt
7
8
7
8
7
8
7
8
0 min
1 00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
5 min
1.06
1.09
1.08
1.08
1.04
1.12
1.04
1.18
15 min
0.95
0.95
091
0.95
0.91
1.01
0.83
0.99
30 min
0.76
0.81
0.75
0.81
0.71
0.83
0.54
0.66
60 min
0.74
0.69
0.69
0.69
0.64
0.69
0.41
0.47
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
Avq
SD
Avg
SD
Avg
SD
Avg
SD
0 min
Too
0.00
1.00
0.00
1.00
0.00
TOO1
0.00
5 min
1.07
0.01
1.08
0.00
1.08
0.04
1.11
0.07
15 min
0.95
0.00
0.93
0.02
0.96
0.05
0.91
0.08
30 min
0.79
0.02
0.78
0.03
0 77
0.06
0.60
0.06
60 min
0.72
002
0.69
0.00
067
0.03
0.44
0.03

189
0.10% T¡02, TI02.XLS
Dark @ pH 7
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
15
16
15
16
15
16
15
16
15
16
0 min
2178.82
1853.33
1724.7
1479.23
1227.72
1042.29
486.67
412.78
342.72
363.73
5 min
2140.26
1921.16
1649.31
1537.86
1189.07
1109.62
480.82
444.5
341.64
363.25
15 min
2278.49
1893.25
1851.61
1459.82
1329.57
1080.59
534.1
427.58
386.69
354.07
30 min
2180.36
1964.28
1695.59
1511.15
1260.78
1062.63
500.38
433.86
351.19
353.25
60 min
2257.5
1820.29
1750.2
1408.06
1240.53
1052.74
505.92
416.06
360.68
341.67
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
15
16
15
16
15
16
15
16
15
16
0 min
2200.88
1853.33
1752.945
1479.23
1256.605
1042.29
500.235
412.78
349.74
363.73
5 min
2162.32
1921.16
1677.555
1537.86
1217.955
1109.62
494.385
444.5
348.66
363.25
15 min
2300.55
1893.25
1879.855
1459.82
1358.455
1080.59
547.665
427.58
393.71
354.07
30 min
2202.42
1964.28
1723.835
1511.15
1289.665
1062.63
513.945
433.86
358.21
353.25
60 min
2279.56
1820.29
1778.445
1408.06
1269.415
1052.74
519.485
416.06
367.7
341.67
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor #
15
16
15
16
15
16
15
16
15
16
0 min
6.29
5.10
5.01
4.07
3.59
2.87
1.43
1.13
0.1
0.1
5 min
6.20
5.29
4.81
423
3.49
3.05
1.42
1.22
0.1
0.1
15 min
5.84
5.35
477
4.12
3.45
3.05
1.39
1.21
0.1
0.1
30 min
6.15
5.56
4.81
4.28
3.60
3.01
1.43
1.23
0.1
0.1
60 min
6.20
5.33
4.84
4.12
3.45
3.08
1.41
1.22
0.1
0.1
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor #
15
16
15
16
15
16
15
16
15
16
0 min
1084 ppb
867 ppb
852 ppb
681 ppb
595 ppb
463 ppb
203 ppb
150 ppb
10
10
5 min
1068 ppb
902 ppb
816 ppb
711 ppb
577 ppb
498 ppb
201 ppb
166 ppb
10
10
15 min
1003 ppb
913 ppb
809 ppb
691 ppb
569 ppb
497 ppb
196 ppb
163 ppb
10
10
30 min
1058 ppb
952 ppb
816 ppb
719 ppb
597 ppb
489 ppb
204 ppb
167 ppb
10
10
60 min
1067 ppb
909 ppb
820 ppb
691 ppb
570 ppb
502 ppb
200 ppb
165 ppb
10
10
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor It
15
16
15
16
15
16
15
16
0 min
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
5 min
0.98
1.04
0.96
1.04
0.971
1.07
0.99
1.11
15 min
0.92
1.05
0.95
1.01
0.96
1.07
0.97
1.09
30 min
0.98
1.10
0.96!
1.06
1.00
1.06
1.00
1.11
60 min
0981
1.05
0.96
1.01
0961
1.08
0.98
1.10
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
Avq
SD
Avq
SD
Avq
SD
Avq
SD
0 min
1.00
000
1.00
0.00
1.00
0.00
1.00
0.00
5 min
1.01
0.03
1.00
0.04
1.02
0.05
1.05
0.06
15 min
0.99
0.06
0.98
0.03
1.01
0.06
1.03
0.06
30 min
1.04
0.06
1.01
0.05
1.03
0.03
1.06
0.05
60 min
1.02
0.03
0.99
0.03
1.02
0.06
1.04
0.06

190
0.10% T¡02, TI02.XLS
UV Light @ pH 4
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
23
24
23
24
23
24
23
24
23
24
0 min
1651.67
1682.29
1100.09
1141.38
522.23
532.67
212.55
215.54
329.02
328.92
5 min
1553.54
1727.82
1066.94
1217.19
501.87
563.75
210.36
231.70
360.94
338.23
15 min
1403.71
1575.74
958.92
1078.89
448.75
511.34
185.63
206.81
354.80
349.25
30 min
1322.98
1305.94
867.52
894.61
405.00
421.79
168.66
175.05
353.36
338.56
60 min
1063.27
1080.04
675.39
719.18
317.17
345.59
130.64
141.13
352.88
319.37
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
23
24
23
24
23
24
23
24
23
24
0 min
1669.12
1699.74
1124.10
1165.39
530.50
540.94
212.55
215.54
335.70
335.60
5 min
1570.99
1745.27
1090.95
1241.20
510.14
572.02
210.36
231.70
367.62
344.91
15 min
1421.16
1593.19
982.93
1102.90
457.02
519 61
185.63
206.81
361.48
355.93
30 min
1340.43
1323.39
891.53
918.62
413.27
430.06
168.66
175.05
360.04
345.24
60 min
1080.72
1097.49
699.40
743.19
325.44
353.86
130.64
141.13
359.56
326.05
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor #
23
24
23
24
23
24
23
24
23
24
0 min
4.97
5.06
3.35
3.47
1.58
1.61
0.63
0.64
0.1
0.1
5 min
4.27
5.061
2.97
3.60
1.39
1.66
0.57
0.67
0.1
0.1
15 min
3.93
4.48
2.72
3.10
1.26
1.46
0.51
0.58
0.1
0.1
30 min
3.72
3.83
2.48
2.66
1.15
1.25
0.47
0.51
0.1
0.1
60 min
3.01
3.37
1.95
2.28
0.91
1.09
0.36
0.43
0.1
0.1
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor #
23
24
23
24
23
24
23
24
23
24
0 min
845 ppb
862 ppb
551 ppb
573 ppb
231 ppb
236 ppb
59 ppb
61 ppb
10
10
5 min
718 ppb
861 ppb
482 ppb
596 ppb
196 ppb
245 ppb
48 ppb
66 ppb
10
10
15 min
657 ppb
755 ppb
437 ppb
506 ppb
173 ppb
209 ppb
37 ppb
50 ppb
10
10
30 min
619 ppb
639 ppb
393 ppb
426 ppb
152 ppb
170 ppb
29 ppb
36 ppb
10
10
60 min
489 ppb
554 ppb
297 ppb
357 ppb
108 ppb
141 ppb
10 ppb
23 ppb
10
10
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor #
23
24
23
24
23
24
23
24
0 min
1.00
1.00
“Too1
1.00
1.00
1.00
1.00
1.00
5 min
0.85
1.00
0.87
1.04
0.85
1.04
0.81
1.09
15 min
0.78
088
0.79,
0.88
0.75
0.88
0.63
0.82
30 min
0.73
0.74
0.71
0.74
0.66
0.72
0.49
0.60
60 min
0.58
0.64
0.54
0.62
0.47
060
0.17
0.37
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
Avq
SD
Ava
SO
Ava
SD
Ava
SD
0 min
1.00
0.00
1.00
0.00
1.00
0.00
1.00
0.00
5 min
0.92
0.07
'0961
0.08
0.94
0.09
0.95
0.14
15 min
0.83
0.05
0.84
0.04
0.82
007
0.72
0.09
30 min
0.74
0.00
0.73
0.02
0.691
0.03
0.55
0.05
60 min
0.61
0.03
0.58
0.04
0.53
0.06
0.27
0.10

191
0.10% Ti02, TI02.XLS
Dark @ pH 4
Raw Area
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor#
31
32
31
32
31
32
31
32
31
32
0 min
1827.06
1830.94
1617.42
1602.38
1067.34
1062 94
439.03
432.33
35885
346.21
5 min
1867.72
1820.84
1665.63
1564.75
1112.21
1070 49
447.98
426.53
347.16
344.88
15 min
1824 91
1713.21
1563.89
1543.74
1029.51
1048.92
427.31
427.75
348.18
335.78
30 min
1606.19
1786.41
1413.13
1598.49
873.77
1065.27
383.24
438.77
351.52
401.31
60 min
1711 94
1778.02
1519.03
1574.86
969.38
1031.9
411.56
428.24
338.77
360.21
Adjusted
Benzene
Toluene
m&p-xylene
o-xylene
Chlorobenzene
Reactor #
31
32
31
32
31
32
31
32
31
32
0 min
1848.54
1852.42
1655.51
1640.47
1095.15
1090.75
452.05
445.35
366.08
353.44
5 min
1889.20
1842.32
1703.72
1602.84
1140.02
1098.30
461.00
439.55
354.39
352.11
15 min
1846.39
1734.69
1601.98
1581.83
1057.32
1076.73
440.33
440.77
355.41
343.01
30 min
1627.67
1807.89
1451.22
1636.58
901.58
1093.08
396.26
451.79
358.75
408.54
60 min
1733.42
1799 50
1557.12
1612.95
997.19
1059.71
424.58
441.26
346.00
367.44
Referenced
Sample
Benzene
Toluene
m&p-xylene
o-xylene
Dilution
Reactor #
31
32
31
32
31
32
31
32
31
32
0 min
5.05
5.24
4.52
4.64
2.99
3.09
1.23
1.26
0.1
0.1
5 min
5.33
5.23
4.81
4.55
3.22
3.12
1.30
1.25
0.1
0.1
15 min
5.20
5.06
4.51
4.61
2.97
3.14
1 24
1.28
0.1
0.1
30 min
4.54
4.43
4.05
4.01
2.51
2.68
1.10
1.11
0.1
0.1
60 min
5.01
4.90
4.50
4.39
2.88
2.88
1.23
1.20
0.1
0.1
Concentrations
Dilution
Benzene
Toluene
m&p-xylene
o-xylene
Factor
Reactor #
31
32
31
32
31
32
31
32
31
32
0 min
859 ppb
894 ppb
764 ppb
785 ppb
486 ppb
503 ppb
168 ppb
173 ppb
10
10
5 min
910 ppb
892 ppb
815 ppb
769 ppb
527 ppb
509 ppb
180 ppb
170 ppb
10
10
15 min
885 ppb
860 ppb
761 ppb
780 ppb
483 ppb
513 ppb
169 ppb
177 ppb
10
10
30 min
766 ppb
746 ppb
677 ppb
670 ppb
400 ppb
429 ppb
144 ppb
145 ppb
10
10
60 min
852 ppb
831 ppb
760 ppb
740 ppb
466 ppb
467 ppb
167 ppb
162 ppb
10
10
Normalized Concentrations
Benzene
Toluene
m&p-xylene
o-xylene
Reactor it
31
32
31
32
31
32
31
32
0 min
1 00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
5 min
1.06
1.00
1.07
0.98
1.08
1.01
1.07
0.99
15 min
1.03
0.96
1.00
0.99
0.99
1 02
1.00
1.03
30 min
0.89
0.83
0.89
0.85
0.82
0.85
0.86
0.84
60 min
0.99
0.93
0.99
0.94
0.96
0.93
0.99
0.94
Statistics
Benzene
Toluene
m&p-xylene
o-xylene
Avq
SD
Avg
SD
Avg
SD
Avg
SD
0 min
1.00
0.00
1 00
0.00
1.00
0.00
1.00
0.00
5 min
1.03
0.03
1.02
0.04
1.05
0.04
1.03
0.04
15 min
1.00
0.03
0 99
0.00
1.01
0.01
1.02
0.01
30 min
0.86
0.03
0.87
0.02
0.84
0.02
0.85
0.01
60 min
0.96
0.03
0.97
0.03
0.94
0.02
0.96
0.03

Bacteria Analysis (5/98)
May 1996
I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dl Water <® pH
= 4.31
Light
No Ti02
0.01%
time
33
34
Tot
35
36
Tot
(min)
A
B
avq
A
B
avq
avq
N/N„
% Des
A
B
avq
A
B
avq
avq
N/Nn
% Dest
0
556
556
306
-
306
431
1.00
0%
-
432
432
-
292
292
362
1.00
0.0%
15
-
-
####
.
_
mm
####
mm
mm
_
_
mm#
_
172
172
172
0 48
52.5%
30
.
-
mm
.
.
mm
mm
mm
mm
_
_
#####
18
9
13.5
13.5
0.04
96.3%
60
-
_
mm
_
_
ff ft ff ff
mm
mm
mm
_
_
#####
0
0
0
0
0.00
100%
120
-
245
r 245
371
200
286
265
0.62
38%
10
0
5
0
0
0
2.5
0.01
99.3%
240
270
140
205
24
32
28
117
0.27
73%
0
0
0
0
0
0
0
0 00
100%
Dark
No Ti02
0.01%
time
41
42
Tot
43
44
Tot
(min)
A
B
avq
A
B
avq
avq
N/Nn
% Des
A
B
avq
A
B
avq
avq
N/Nn
% Dest
0
-
748
748
-
-
mm
748
^00
0%
748
508
628
1112
840
976
802
1.00
0%
15
-
-
ff ff ft ft
944
952
948
948
1.27
0%
_
_
#####
_
_
#####
#####
#####
#DIV/0!
30
-
mm
_
ft ft ft ft
mm
mm
mm
_
#####
_
_
#####
mm#
#####
#DIV/0!
60
-
_
mm
_
-
ft ft ft ft
mm
mm
mm
_
_
#####
.
-
#####
mm#
#DIV/0!
120
928
800
864
1064
840
952
908
1.21
0%
880
1192
1036
784
1144
964
1000
1 25
0%
24o|
592
712
652
2000
1204
1602
1127
1.51
0%
924
996
960
1148
1500
1324
1142
1.42
0%

Bacteria Analysis (5/98)
May 1996
Dl Water (® pH
= 6.77
Light
No Ti02
0.01%
time
49
50
Tot
51
52
Tot
(min)
A
B
avq
A
B
avq
avq
N/Nn
% Des
A
B
avq
A
B
avq
avq
N/Nn
% Dest
0
263
228
246
476
168
322
284
1.00
0%
364
316
340
432
360
396
368
1 00
0 0%
15
-
_
####
_
_
ff ft ft ft
####
mm
mm
_
_
mm#
_
_
#####
#####
#####
#D IV/0!
30
_
_
####
_
_
ft ft tf ft
mm
mm
mm
.
_
#####
.
.
#####
#####
#####
#D IV/0!
60
_
_
####
_
_
##m
##m
mm
mm
.
.
ti it it it it
.
#####
mm#
lltllltltl
#D IV/0'
120
324
260
292
200
260
230
261
~ 0.92
8%
2
3
2.5
4
1
2.5
~ 2.5
0.01
99.3%
240
-
196
196
69
320
195
195
0.69
31%
0
0
0
0
1
0.5
0.25
0.00
99.9%
Dark
No TÍ02
0.01%
time
57
58
Tot
59
60
Tot
(min)
A
B
avq
A
B
avq
avq
N/N0
% Des
A
B
avq
A
B
avq
avq
N/Nn
% Dest
0
744
572
658
628
688
658
658
1.00
0%
616
672
644
-
336
336
490
1.00
0%
15
-
-
####
.
_
mm
mm
mm
mm
_
_
###1111
_
_
mm#
#####
#####
#D IV/0!
30
U H H H
“
~
“
“
60
-
_
####
_
_
ff-ffjfff
mm
mm
mm
_
_
_
_
#####
#D IV/0!
120
385
316
351
396
612
504
427
0.65
35%
492
312
402
500
580
540
471
0.96
4%
240
484
400
442
812
476
644
543
0.83
17%
1096
924
1010
888
484
686
848
1.73
0%

Bacteria Analysis (5/98)
May 1996
III I I I I I I I I I
Dl Water pH =
4.31
Light
0.05%
0.10%
time
37
38
Tot
39
40
Tot
(min)
A
B
avg
A
B
avq
avq
N/Nn
% Des
A
B
avq
A
B
avq
avq
N/Nn
% Dest
0
204
256
230
241
251
246
238
1.00
0%
182
-
182
202
264
233
208
1 00
0%
15
-
-
jj jj jj jj
_
_
fttttttt
####
mm
mm
_
_
mm
_
-
it it tt it
mm
mm
#####
30
_
_
ff jf
_
_
tttftttt
####
mm
mm
_
_
mm
_
mm
mm
mm
#####
60
.
-
tt tt It tl
_
_
tt ## tt
mm
mm
mm
I
_
mm
.
.
mm
mm
mm
#####
120
4
14
9
9
-
~9~
9
0.04
96%
106
99
103
_
28
28
65.3
0.31
69%
240
-
29
29
1
1
1
15
0.06
94%
57
11
34
1
0
0.5
17.3
0.08
92%
Dark
0.05%
0.10%
time
45
46
Tot
47
48
Tot
(min)
A
B
avq
A
B
avq
avq
N/Nn
% Des
A
B
avq
A
B
avq
avq
N/Nn
% Dest
0
243
228
236
285
239
262
249
1.00
0%
221
164
193
211
280
246
219
1.00
0%
15
_
_
####
_
_
####
mm
mm
mm
_
_
it it it H
_
_
mm
mm
mm
mm#
30
_
_
ff ff If ff
_
-
fl-ffitit
mm
mm
mm
_
_
tt tt tt tt
_
_
mm
mm
mm
mm#
60
-
-
####
It tut II
mm
mm
mm
424
226
325
-
_
mm
325
1.48
6%
120
227
284
256
245
_
245
250
1.01
0%
-
-
mm
245
-
245
245
1.12
0%
240
225
229
227
161
211
186
207
0.83
17%
160
182
171
320
216 I 268
220
1.00
0%

Bacteria Analysis (5/98)
May 1996
I I I l l l I
Dl Water @ pH =
6.77
Light
0.05%
0.10%
time
53
54
Tot
55
24
Tot
(min)
A
B
avq
A
B
avq
avq
N/N„
% Des
A
B
avq
A
B
avq
avq
N/Nn
% Dest
0
520
492
506
416
528
472
506
1.00
0%
488
2000
1244
2000
-
2000
2000
1.00
0%
15
-
_
####
_
nn Htt
####
####
####
_
_
####
_
####
####
####
#####
30
-
_
####
####
####
####
.
.
####
####
####
#####
60
_
_
####
_
HiHHt
####
####
####
_
_
####
I
#â– ###
####
####!
it it Hit it
120
-
107
107
28
32
30
68.5
0.14
86%
-
178
178
122
91
107
142
0.07
93%
240
2
0
1
0
0
0
0.5
0.00
100%
69
260
165
17
27
22
93.3
0.05
95%
Dark
0.05%
0.10%
time
61
62
Tot
63
64
Tot
(min)
A
B
avq
A
B
avq
avq
N/N„
% Des
A
B
avq
A
B
avq
avq
N/Nn
% Dest
0
428
-
428
766
472
619
524
1.00
0%
644
460
552
564
556
560
560
1.00
0%
15
-
-
####
-
-
####
####
####
####
-
-
####
-
-
####
####
####
mm#
30
-
-
####
_
_
nnttn
####
####
####
_
_
nttnn
_
_
####
####
####
#####
60
-
_
####
_
_
jtitjtft
####
####
####
_
ntttttt
_
_
####
####
####
120
o>
o
-fc*
656
630
-
j(D
I CO
316
473
0.90
10%
-
854
854
628
192
410
854
1.53
0%
240
452
380
416
684
1040
862
639
1.22
0%
592
504
548
828
516
672
610
1.09
0%

June 1996, Bacteria Analysis (5/98)
Dl Water, pH 4.08
Light
No TiO,
0.01% TiO?
time
49
50
Tot
51
52
Tot
(min)
A
B
avq
A
B
avg
avq
N/N0
% Dest
A
B
avq
A
B
avq
avq
N/Nn
% Dest
0
##
101
##
##
135
118
1.00
0%
169
121
145
208
124
166
155.5
1.00
0%
15
-
-
#D IV/0!
#D IV/0!
#D IV/0!
o
CO
-
-
#DIV/0!
#D IV/0!
-
-
ff II II II
-
-
#DIV/0!
ttrtrrtttt
tttttttttt
ft ft ft ft ft
tf ft tf tf
tttttttttt
tttttttttt
tttttttttt
60
-
#D IV/0!
#D IV/0!
#####
#####
#####
0
0
0
0
0
0
0
0.00
100%
120
70
62
66
96
76
86
76
0.64
36%
0
0
0
0
0
0
0
0.00
100%
240
-
-
#D IV/0!
#D IV/0!
ii ii ii ii ii
ffffffttff
ii ii ii ii ii
// if if ff ff
#####
#D IV/0!
11 11 11 11 11
ff ff ff ff ff
11 11 11 11 11
ff ff ff tf ff
Dark
No TiO,
0.01% TiO,
time
57
C
8
Tot
59
6(
Tot
(min)
A
B
avq
A
B
avq
avq
N/Nn
% Dest
A
B
avq
A
B
avq
avq
N/Nn
% Dest
0
.
#D IV/0!
c
c
it
o
<
o
II 11 11 11 11
IIIIII It It
#####
252
bs
252
bs
264
264
258
1.00
0%
15
#DIV/0!
30
##
##
380
##
##
464
422
It IIIIIIII
#####
bs
196
196
185
177
181
188.5
0.73
27%
60
##
##
232
##
m
380
232
mum it
ii ii ii ii ii
ft ff tf ft ft
179
165
172
94
178
136
172
0.67
33%
120
##
##
532
##
m
484
508
#####
IIIIII tut
116
168
142
123
103
113
127.5
0.49
51%
240
tilt IIII it
mm#
#####
#DIV/0!
IUUUUI
#####

June 1996, Bacteria Analysis (5/98)

June 1996, Bacteria Analysis (5/98)
Dl Water, pH 7.03
Light
No TÍO?
0.01% TiO
2
time
33
¡4
Tot
35
3C
Tot
(min)
A
B
avq
A
B
avq
avq
N/N„
% Dest
A
B
avq
A
B
avq
avq
N/N„
% Dest
0
##
c
243
##
##
192.5
217.8
1.00
0%
123
160
142
296
262
279
210.3
1.00
0%
15
#####
#####
#####
#D IV/0!
#####
#####
30
##
m
380
bs
##
364
372
1.71
0%
bs
416
416
bs
ba
#####
#DIV/0!
#####
#####
60
##
##
290
##
##
294
290
1.33
0%
91
76
83.5
c
58
58
70.75
0.34
66%
120
##
##
174.5
##
##
198
186.3
0.86
14%
2
31
16.5
48
46
47
31.75
0.15
85%
240
11 11 11 11 11
ffffffff ft
ii ii ii ii ii
#D IV/0!
n n ff ff h
i i i / ii ii ii
ft If ff H ff
Dark
No TiO,
0.01% TiO
2
time
4
1
4
2
Tot
43
4-i
Tot
(min)
A
B
avq
A
B
avq
avq
N/N0
% Dest
A
B
avq
A
B
avq
avq
N/Nn
% Dest
0
##
##
260.5
##
##
340
300.3
1.00
0%
c
355
355
c
c
u u unit
#D IV/0!
#####
#####
#####
#D IV/0!
#####
#####
30
##
##
448
c
##
284
366
1.22
0%
360
508
434
c
c
#####
#D IV/0!
#####
#####
60
##
bs
392
##
##
387.5
392
1.31
0%
364
bs
364
c
c
#####
364
mm#
120
##
488
##
##
334
411
1.37
0%
340
bs
340
c
c
#####
#D IV/0!
#####
#####
240
#####
ii »i ii ii it
n »ft ft ff
#####
#D IV/0!
#####
#####

June 1996, Bacteria Analysis (5/98)
l l
111!
1 1 1 1 1
PI Water, pH 7.03
Light
0.05% TiO,
0.10% TiO,
time
37
38
Tot
39
40
Tot
(min)
A
B
avq
A
B
avq
avq
N/Nn
% Dest
A
B
avq
A
B
avq
avq
N/Nn
% Dest
0
c
##
##
##
##
##
257.3
1.00
0%
213
148
##
##
m
m
170
1.00
0%
15
#####
#####
#####
mm#
mm#
#####
30
##
##
##
##
##
##
233.8
0.91
9%
122
256
##
78
m
~m
147.5
0.87
13%
60
##
83
95
85
73
79
87
0.34
66%
36
130
83
89
83
86
84.5
0.50
50%
120
4
23
14
bs
21
21
17.25
0.07
93%
bs
3
3
10
bs
10
6.5
0.04
96%
240
ii ii ffffffffff
<1 II 11 n it
// ff H ft »
ii ii ii ii ii
ft ft ft ft ft
ii ii ii ii ii
ff ff ff ff ft
II II II 11 11
ff ff ff ff ff
ii it ii ii ii
ff-ffffffff
Dark
0.05% TiO,
0.10% TiO,
time
45
46
Tot
47
48
Tot
(min)
A
B
avq
A
B
avq
avq
N/N„
% Dest
A
B
avq
A
B
avq
avq
N/Nn
% Dest
0
##
c
##
##
##
##
260.5
1.00
0%
287
400
##
##
##
##
375.8
1.00
0%
If till II It
#####
IIII ttllll
111111##
#####
#####
30
##
bs
##
bs
##
##
266
1.02
0%
183
256
m
bs
m
##
218.8
0.58
42%
60
bs
##
##
##
##
##
448
1.72
0%
231
278
m
##
m
##
239
0.64
36%
120
##
##
##
##
##
##
385
1.48
0%
236
200
m
##
m
##
254
0.68
32%
240
H il II n n
frff ff ff ff
ii ii ii ii ii
ft ft ft ft ft
ii ii ii ¡i ¡i
ft ff ff ff ft
ii it ii ii ii
ff ft ff ff ff
ii ii ii ii ii
tfffffffft
ii ii ii ii ii
ft tt ft ft ft

Methylene Blue, Set #1
SUNLIGHT (pH =10)
|
Time
11 (control)
12(0.1 mg/L)
13
(1.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BA di Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
0
953.26
942.65
731.33
731.33
973.26
962.65
768.93
768.93
1003.8
993.19
782.31
782.31
60
803.61
770.94
662.69
613.35
899.2
866.53
712.59
663.25
930.16
897 49
69579
646.45
240
750.51
739.90
561.85
561.85
737.83
727.22
572.37
572.37
701.34
690.73
534.65
534.65
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
212.51
207.04
4.55
3.53
311.51
306.04
3.15
2.51
319.09
313.62
3.17
2.49
60
318.36
306.69
2.51
2.00
345.13
333.46
2.60
1.99
350.43
338.76
2.65
1.91
240
309.57
304.10
2.43
1.85
344.76
339.29
2.14
1.69
309.19
303.72
2.27
1.76
Concentrations
0
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
688 ppb
321 ppb
1176 ppb
560 ppb
706 ppb
344 ppb
751 ppb
352 ppb
733 ppb
352 ppb
758 ppb
349 ppb
60
535 ppb
250 ppb
560 ppb
248 ppb
620 ppb
280 ppb
586 ppb
246 ppb
648 ppb
270 ppb
601 ppb
229 ppb
240
507 ppb
219 ppb
536 ppb
217 ppb
496 ppb
225 ppb
449 ppb
184 ppb
463 ppb
202 ppb
488 ppb
199 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1 00
1.00
1.00
1.00
1.00
60
0.78
0.78
0.48
0.44
0.88
0.81
0.78
0 70
0.88
0.77
0.79
0,66
240
0.74
0.68
0.46
0.39
0.70
065
0.60
0.52
0.63
0.57
0.64
0.57
e. con
(cfuA)x10 4
A
6
C
Avq
A I B
C I Avq
A I S
C
Avq
0
67
92
79.5
95 95.0
95
95.0
5
114
114.0
0 0
0 0.0
0 0
0
0.0
15
76
76.0
0
0
0
0.0
0
- Q
0
0.0
30
0
0
0
0.0
0
0
0
0.0
0
0
0.0
60
0
0
0.0
0
0
0
0.0
0
0
0.0
120
0
0
0
0.0
0
0
0
0.0
Ó
0
0
0.0
240
0
0
0
0.0
0
0
0
0.0
1
0
0
0.3
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfuA. x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
12.5
15.7%
0.0%
795.0
0.0
0.0%
0.0%
950.0
0.0
0.0%
0.0%
950.0
5
0.0
0.0%
0.0%
1140.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
15
0.0
0.0%
4.4%
760.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
30
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
60
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100,0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240|
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.5
141.4%
99.6%
3.3

Methylene Blue, Set#1
SUNLIGHT (pH =10)
Time
14 (5.0 mq/L)
15 (10.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
1038 66
1028.05
836.92
836.92
988.43
977.82
803.11
803.11
60
977.88
945.21
750.54
701.20
854.23
821.56
663.43
614.09
240
667.63
657.02
503.33
503.33
658.94
648.33
492.61
492.61
Chlorobenzene
Raw Area I Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
346.43
340.96
302
2.45
306.67
301 20
3.25
2.67
60
342.53
330.86
2.86
2.12
340.09
328.42
2.50
1.87
240
316.11
310.64
2.12
1.62
318.94
313.47
2.07
1.57
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
764 ppb
385 ppb
712 ppb
341 ppb
719 ppb
365 ppb
782 ppb
384 ppb
60
690 ppb
303 ppb
664 ppb
272 ppb
580 ppb
250 ppb
557 ppb
221 ppb
240
433 ppb
183 ppb
440 ppb
170 ppb
425 ppb
177 ppb
426 ppb
160 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.90
0.79
0.93
0.80
0.81
0.69
0.71
0.58
240
0.57
048
0.62
0.50
0.59
0.48
0.54
0.42
E. coll
(cfu/L)x10 *
A
B C
Avq
A
B I C
Avq
0
107
142
124.5
118
108
113.0
5
0 I 0
0.0
0
0
0
0.0
15
0
1
0
0.3
0
0
0
0.0
30
0
0
0
0.0
0
0
0
00
60
1
0
0
0.3
0
0.0
120
0
0
0
0.0
0
0
0.0
240
0
0.0
0
0
0
0.0
SD
%SD
%Dest
cfuA x 10 3
SD
%SD
%Dest
cfuA. x 10 3
0
17.5
14.1%
0.0%
1245.0
5.0
4.4%
0.0%
1130.0
5
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
00
15
0.5
141.4%
99.5%
3.3
0.0
0.0%
100.0%
0.0
30
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
60
0.5
141.4%
99.5%
3.3
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Methylene Blue. Set #1
SUNLIGHT (pH = 7)
Time
6
(control)
7 (0.1 mg/L)
8 (1.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
896 13
874.16
697.14
667.27
856.28
834 31
674.34
644.47
921 93
899.96
742.26
712.39
60
834.51
812.54
650.17
620.30
798.62
776.65
614.83
584.96
87498
85301
683.21
653.34
240
799.43
777.46
616.62
586.75
930.23
908.26
548.70
518.83
713.28
691.31
540.27
510.40
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
299.88
299.88
2.92
2.23
331.34
331.34
2.52
1.95
333.29
333.29
2.70
2.14
293.37
293.37
2.77
2.11
337.8
337.80
2.30
1.73
321.07
321.07
2.66
2.03
240
258.28
258.28
3.01
2.27
330.89
330.89
2.74
1.57
257.41
257.41
2.69
1.98
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
627 ppb
282 ppb
681 ppb
294 ppb
591 ppb
269 ppb
562 ppb
237 £pb
650 ppb
310 ppb
617 ppb
276 ppb
60
572 ppb
254 ppb
638 ppb
271 ppb
540 ppb
233 ppb
496 ppb
193 ppb
608 ppb
274 ppb
604 ppb
255 ppb
240
540 ppb
234 ppb
710 ppb
303 ppb
657 ppb
193 ppb
630 ppb
160 ppb
464 ppb
188 ppb
612 ppb
244 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.91
0.90
0.94
0.92
0.91
0.87
0.88
0.82
0.94
0.88
0.98
0.92
240
0.86
0.83
1.04
1.03
1.11
0.72
1.12
0.68
0.71
0.61
0.99
0 89
E. coli
(cfuA)x10 4
A
B
C I Avg
A
B
C
Avg
A I B
C
Avg
0
108
143
122 ¡ 124.3
136
117
144
132.3
135 149
140
141.3
5
114
100
100
104.7
70
96
80
82.0
42 35
48
41.7
15
41
58
40
46.3
14
18
18
16.7
6
0
2
2.7
30
19
23
22
21.3
2
1
2
1.7
2
0
.
1.0
60
0
1
5
2.0
7
0
4
3.7
0
0
0
0.0
120
0
-
0
0.0
0
0
6
2.0
_
0
0
0.0
240
-
0
0
0.0
0
0
0
0.0
0
0
0
0.0
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
14.4
11.6%
0.0%
1243.3
11.3
8.6%
0.0%
1323.3
5.8
4.1%
0.0%
1413.3
5
6.6
6.3%
15.8%
1046.7
10.7
13.1%
38 0%
820.0
5.3
12.7%
70.5%
416.7
15
8.3
17.8%
62.7%
463.3
1.9
11 3%
87.4%
166.7
2.5
93.5%
98.1%
26.7
30
1.7
8.0%
82.8%
213.3
0.5
28.3%
98.7%
16.7
1.0
100.0%
99.3%
10.0
60
2.2
108.0%
98.4%
20.0
2.9
782%
97.2%
36.7
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
2.8
141.4%
98.5%
20.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Methylene Blue, Set #1
SUNLIGHT (pH = 7)
Time
9 (5.0 mq/L)
10(10.0 mg/L)
(minutes)
Benz Area
BAdi Area
To 1 Area
TAdi Area
Benz Area
BA dj Area
Tot Area
TAdi Area
0
892.63
870.66
696.28
666.41
874 14
852.17
670.21
640.34
60
772.48
750.51
628.06
598.19
859.81
837 84
663.65
633.78
240
696.62
674.65
547.73
517.86
716.24
694.27
527.65
497.78
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area Benzene Ref
Toluene Ref
0
297.01
297.01
2.93
2.24
34693
346.93, 2.46
1.85
60
330.84
330.84
2.27
1.81
330.49
330.49 ¡ 2.54
1.92
240
324.07
324.07
2.08
1,60
32467
324.671 2.14
1.53
Concentrations
Benzene
Toluene Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
624 ppb
282 ppb 686 ppb
298 ppb
607 ppb
266 ppb
543 ppb
216 ppb
60
516 ppb
241 ppb 486 ppb
209 ppb
594 ppb
262 ppb
567 ppb
231 ppb
240
449 ppb
192 ppb I 430 ppb
166 ppb
466 ppb
180 ppb
447 ppb
153 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.83
085
0.71
0.70
0 98
0.99
1.04
1.07
240
0.72
0.68
0.63
0.56
0.77
068
0.82
0.71
E. coli
(cfuA)x10 4
A
B
C
Avq
A
B I C
Avq
0
139
137
154
143.3
117
173 146
145 3
5
0
0
0
0.0
0
-
0
0.0
15
0
0
0
0.0
0
0
0
0.0
30
1
0
0
0.3
0
4
3
2.3
60
_
0
0
0.0
2
0
0
0.7
120
0
1
2
1.0
.
0
0
0.0
240
0
0
0
0.0
0
0
0
0.0
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu,1 x 10 3
0
7.6
5.3%
0.0%
1433.3
22.9
15.7%
0.0%
1453.3
5
0.0
0.0%
100.0%
0.0
00
0.0%
100.0%
0.0
15
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
30
0.5
141.4%
99.8%
3.3
1.7
72.8%
98.4%
23.3
60
0.0
0.0%
100.0%
0.0
0.9
141.4%
99.5%
6.7
120
0.8
81.6%
99.3%
10.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
00%
100 0%
0.0

Methylene Blue, Set #1
Dark (pH=10)
Time
1
(control)
2 (0.1 mg/L)
3 (1.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
0
821.00
821 00
625.27
625.27
888.33
888.33
698.97
698.97
931.65
931 65
705.20
705 20
60
726.06
726.06
512.29
512.29
795.93
795.93
619.38
619.38
770.04
770 04
590,01
590.01
240
713.08
713.08
528.86
528.86
649.18
649.18
478.54
478.54
581.66
581.66
422.38
422.38
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
275.60
275.60
2.98
2.27
339.25
339.25
2.62
2.06
241.22
241.22
3.86
2.92
60
273.41
273.41
2.66
1.87
259.39
259.39
3.07
2.39
277.62
277.62
2.77
2.13
240
318.38
318.38
2.24
1.66
357.17
357.17
1.82
1.34
310.07
310.07
1.88
1.36
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
428 ppb
192 ppb
546 ppb
242 ppb
469 ppb
228 ppb
458 ppb
211 ppb
496 ppb
231 ppb
759 ppb
340 ppb
60
369 ppb
137 ppb
467 ppb
183 ppb
412 ppb
189 ppb
567 ppb
260 ppb
396 ppb
175 ppb
496 ppb
220 ppb
240
361 ppb
145 ppb
366 ppb
151 ppb
322 ppb
121 ppb
264 ppb
103 ppb
281 ppb
94 ppb
278 ppb
106 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.86
0.71
0.86
0.76
0.88
0.83
1.24
1.23
0.80
0.76
0.65
0.65
240
0.85
0.76
0.67
0.62
0.69
0.53
058
0.49
0.57
0.41
0.37
0.31
E. coli
(cfu/L)x10 4
A
8
C
Ava
A
B
C
Avq
A
8
C
Avq
0
73
59
71
67.7
58
53
73
61.3
76
80
79
78.3
5
61
68
69
66.0
50
64
66
60.0
42
45
29
38.7
15
69
57
78
68 0
58
53
57
56.0
33
25
31
29.7
30
79
74
73
75.3
30
43
36
36.3
35
37
44
38.7
60
59
60
52
57.0
32
26
29
29.0
30
12
32
24.7
120
19
19
28
22.0
9
1
3
4.3
1
1
2
1.3
240
0
2
1
1.0
0
0
0
0.0
0
1
0
0.3
SD
%SD
%Dest
cfuA x 10 3
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfuA x 10 3
0
6.2
9.1%
0.0 %
676.7
8.5
13.9%
0.0%
613.3
1.7
2.2%
0.0%
783.3
5
3.6
5.4%
2.5%
660.0
7.1
11.9%
2.2%
600.0
6.9
18.0%
50.6%
386.7
15
8.6
12.7%
0.0%
680.0
2.2
3.9%
8.7%
560.0
3.4
11.5%
62.1%
296.7
30
2.6
3.5%
0.0%
753.3
5.3
14.6%
40.8%
363.3
3.9
10.0%
50.6%
386.7
60
3.6
6.2%
15.8%
570.0
2.4
8.4%
52.7%
290.0
9.0
36.5%
68.5%
246.7
120
4.2
19.3%
67.5%
220.0
3.4
78.4%
92.9%
43.3
0.5
35.4%
98.3%
13.3
240
0.8
81.6%
98.5%
10.0
0.0
0.0%
100.0%
00
0.5
141.4%
99.6%
3.3

Methylene Blue, Set #1
Dark
pH 10
Time
4
,5.0 mg/L)
5(10.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
To 1 Area
TAdi Area
0
853.53
853.53
651.37
651.37
870.95
870.95
668.56
668.56
60
801.91
801.91
744.07
744.07
792.14
792.14
598.74
598.74
240
575.45
575.45
433.29
433.29
541.41
541.41
399.89
399.89
Chlorobenzene
Raw Area
Adi Area I Benzene Ref
Toluene Ref
Raw Area Adi Area
Benzene Ref
Toluene Ref
0
315.09
315.09
2.71
2.07
347.85 347.85
2.50
1.92
60
354.90
354.90
2.26
2 10
33266 33266
2.38
180
240
316.20
316.20
1.82
1.37
274.30 274.30
1.97
1.46
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
448 ppb
205 ppb
480 ppb
212 ppb
458 ppb
213 ppb
430 ppb
190 ppb
60
562 ppb
329 ppb
484 ppb
268 ppb
554 ppb
241 ppb
520 ppb
207 ppb
240
277 ppb
99 ppb
265 ppb 108 ppb
256 ppb
83 ppb
302 ppb
121 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene I Benzene Ref
Toluene Ref
0
100
TOO
TOO
TOO
TOO
TOO TOO
TOO
60
1.26
1.61
1.01
1.26
1.21
1.13 1.21
1.09
240
0.62
0 48
0.55
0.51
0.56
0.39 0.70
0.63
E. coli
(cfu/L )x10 '
A
a
C Ava
A B
C
Avq
0
75
63
65 67.7
59 58
71
62.7
5
63
0
0
21.0
0 0
0
0.0
15
65
0 _
0
21.7
0 0
0
0.0
30
0 —,
H 6.
0
2.0
0
2
0
0.7
60
0
o
24
80
0
1
0
0.3
120
0 H
0
0
0.0
0
0
0
0.0
240
2
1
0
TO
2
0
0
0.7
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
5.2
7.8%
0.0%
676.7
5.9
9.4%
0.0%
626.7
5
29.7
141.4%
69.0%
210.0
0.0
0.0%
100.0%
0.0
15
30.6
141.4%
68.0%
216.7
0.0
0.0%
100.0%
0.0
30
2.8
141.4%
97.0%
20.0
0.9
141.4%
98 9%
6.7
60
11.3
141.4%
88.2%
800
0.5
141.4%
99.5%
3.3
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
0.8
81.6%
98.5% I 10.0
0.9
141.4%
98.9%
6.7

Methylene Blue, Set #1
DARK (pH =7)
Time
16 (control)
17(0.1 mg/L)
18
(1.0 mg/L)
(minutes)
Benz Area
BAdi Area I Tot Area
TAdi Area
Benz Area
BAdi Area I Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
0
1360.62
132795 1255.18
1205.84
1395 6
1362.93 1267.76
1218.42
1473.52
1440.85
1343 56
1294 22
60
1316.39
1283.72 1219,09
1169.75
1268.92
^\23625 } 1108.63 1059.29
1284 78
1252.11
1135.07
1085 73
240
1163.12
1130.45 i 994.86
945.52
1143.73
1111.06 1001.38 952.04
1120.26
1087.59
964.67
915 33
Chlorobenzene
Raw Area
Adj Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
341.25
329.58
4.03
3.66
308 93
297.26
4.59
4.10
325.27
313.60
4.59
4.13
60
323.12
311.45
4.12
3.76
338.36
32669
3 78
3.24
330.9
319.23
3.92
3.40
240
328.8
317.13
3.56
2.98
329.55
317 88
3.50
2.99
317.26
305 59
3,56
3.00
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
746 ppb
433 ppb
750 ppb
434 ppb
768 ppb
438 ppb
867 ppb
498 ppb
817 ppb
471 ppb
869 ppb
502 ppb
60
718 ppb
417 ppb
770 ppb
448 ppb
688 ppb
369 ppb
699 ppb
375 ppb
698 ppb
381 ppb
728 ppb
398 ppb
240
621 ppb
320 ppb
653 ppb
337 ppb
608 ppb
323 ppb
638 ppb
339 ppb
594 ppb
307 ppb
651 ppb
339 ppb
Normalized Concentrations
Benzene
Toluene Benzene Ref Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00 I 1.00
1.00
1.00
1.00
100
1.00
1.00
1,00
1.00
1.00
60
0.96
0.96 S 103
1.03
0.90
0.84
0.81
0.75
0.85
0.81
0.84
0.79
240
0.83
0.74 j 0.87
0.78
0.79
0.74
0.74
0.68
0.73
0.65
0.75
0 68
E. coll
(cfu/L)x10 4
A
B
C
Avg
A
8 I C
Avg
A B
C
Avg
0
4
2
2
2.7
23
15 26
21.3
30 24
14
22.7
5
3
5
2
3.3
30
12
16
19.3
19
17
18
18.0
15
0
6
1
2.3
25
21
23
23.0
27
20
29
25.3
30
3
5
4
4.0
36
21
42
33.0
20
15
18
17.7
60
2
6
9
5.7
14
14
16
14.7
19
0
14
11.0
120
0
0
0.0
4
6
4
4.7
20
7
22
16.3
240
0
0
0.0
0
0
0
0.0
4
4
5 '
4.3
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfuA x 10 3
SD
%SD
%Dest
cfuA. x 10 3
0
0.9
35.4%
0.0%
26.7
46
21.8%
0.0%
213.3
6.6
29.1%
0.0%
226.7
5
1.2
37.4%
0.0%
33.3
7.7
39.9%
9.4%
193.3
0.8
4.5%
20 6%
180.0
15
2.6
112.5%
12.5%
23.3
1.6
7.1%
0.0%
230.0
3.9
15.2%
0.0%
253.3
30
0.8
20.4%
0.0%
40.0
8.8
26.8%
0.0%
330.0
2.1
11.6%
22.1%
176.7
60
2.9
50.6%
0.0%
56.7
0.9
6.4%
31.3%
146.7
8.0
73.1%
51.5%
110.0
120
0.0
0.0%
100.0%
0.0
0.9
20.2%
78.1%
46.7
6.6
40.7%
27 9%
163.3
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.5
10.9%
80.9%
43.3

Methylene Blue, Set #1
DARK (
T>
I
II
Time
19
(5.0 mq/L)
20 (10.0 mq/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
1422.31
1389.64
1295.33
1245 99
1488.83
1456.16
1370.02
1320.68
60
1259.11
1226.44
1155.80
1106 46
1295.48
1262 81
1206.71
1157.37
240
1096.17
1063.50
907.80
858.46
1144.44
1111.77
1023.56
974.22
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
338.32
326.65
4.25
3.81
331.75
320.08
4.55
4.13
60
32256
310.89
3.94
3.56
340.35
32868
384
3.52
240
345 32
333.65
3.19
2.57
329.37
317.70
3.50
3.07
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
785 ppb
450 ppb
798 ppb
457 ppb
827£gb
482 ppb
860 ppb
501 ppb
60
681 ppb
390 ppb
733 ppb
420 ppb
704 ppb
412 ppb
711 ppb
415 ppb
240
578 ppb
283 ppb
573 ppb
279 ppb
609 ppb
333 ppb
639 ppb
350 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.87
0.87
0.92
0.92
0.85
0.85
0.83
0.83
240
0.74
063
0.72
0.61
0.74
0.69
0.74
0.70
E. coli
(cfu/L)x10 ‘
A
8
c
Avq
A
8
C
Avq
0
14
Ü
13
14.3
34
31
24
29.7
5
0
0
0.0
0
0
0
0.0
15
0
3
0
1.0
1
2
4
2.3
30
0
0,0
1
0
2
1.0
60
0
1
0
0.3
9
0 _
0
3.0
120
6
1
3.5
0
0
0
0.0
240
0
0
0
0.0
0
0
0
0.0
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
1.2
8.7%
0.0%
143.3
4.2
14.1 %
0.0%
296.7
5
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
15
1.4
141.4%
93.0%
10 0
1.2
53.5%
92.1%
23.3
30
0.0
0.0%
100.0%
0.0
0.8
81.6%
96.6%
10.0
60
0.5
141.4%
97.7%
3.3
4.2
141.4%
89.9%
30.0
120
2.5
71.4%
75.6%
35.0
0.0
0.0%
100 0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Rose Bengal, Set #1
SUNLIGHT (pH = 10)
Time
(minutes)
26 (control)
27 (0.1 mg/L)
28 (1.0 mg/L)
Benz Area
BA di Area
Tot Area
TAdi Area
Benz Area
BAdi Area
To 1 Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
1534.56
1503.77
1752.43
1704.04
1044.16
1013.37
1171.91
1123.52
1151.94
1121.15
1269.18
1220.79
60
1331.75
1300,96
1451.25
1402.86
1035 84
1005.05
1183.36
1134.97
968.68
937.89
1011 58
963.19
240
1111.52
1080.73
1190.85 1142.46
892.52
861.73
953.54
905.15
870.38
839.59
931.70
883.31
Chlorobenzene
Raw Area
Adi Area ] Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref I Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
332.29
321.07
4.68
5.31
322.51
311.29
3.26 3.61
330.5
319.28
3.51
3.82
60
284.69
273.47
4.76
5.13
324.9
313.68
3.20 3.62
306 07
294.85
3.18
3.27
240
309.69
298.47
3.62
3.83
307.44
296.22
2.91 3.06
333.37
322.15
2.61
2.74
Concentrations
Benzene
Toluene I Benzene Ref ' Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1189 ppb
910 ppb
1215 ppb ! 922 ppb
751 ppb
559 ppb
784 ppb
576 ppb
847 ppb
617 ppb
862 ppb
620 ppb
60
1008 ppb
728 ppb
1238 ppb 886 ppb
744 ppb
566 ppb
769 ppb
578 ppb
684 ppb
462 ppb
762 ppb
506 ppb
240
811 ppb
570 ppb
895 ppb 621 ppb
616 ppb
426 ppb
680 ppb
463 ppb
596 ppb
413 ppb
588 ppb
399 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene ! Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1 00
1.00 1.00
1.00
1,00
1.00
1.00
1.00
60
0.85
0.80
1.02
0.96
0.99
1.01 0.98
1.00
0.81
0.75
0.88
0.82
240
0.68
0.63
0.74
0.67
0.82
0.76 0.87
0.80
0.70
0.67
0.68
0 64
E. coli
(cfu/L)x10 4
A
B
C
A vo
A
B
C i Avo
A
B
C
Avo
0
168
168.0
152
152.0
168
168.0
5
115
115.0
115
85
106 102.0
103
119
110
110.7
15
91
94
92 5
93
92
92.5
86
90
100
92.0
30
65
67
52
61.3
65
50
575
45
44
44.5
60
0
0
o n
0 0
2
0
0
0.7
0
0
0.0
120
0
0
0
0.0
0
0
0
0.0
0
0
0
0.0
240
0
0
0
0.0
0
0
0
0.0
0
0
0.0
0
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0.0
0.0%
0.0%
1680.0
0.0
0.0%
0.0%
1520.0
0.0
0.0%
0.0%
1680.0
5
0.0
0.0%
0.0%
1150.0
12.6
12.3%
0.0%
1020.0
6.5
5.9%
0.0%
1106.7
15
1.5
1.6%
0.0%
925.0
0.5
0.5%
0.0%
9250
59
6.4%
0.0%
920.0
30
6.6
10.8%
7.8%
613.3
7.5
13.0%
12.9%
575.0
0.5
1.1%
0.0%
445 0
60
0.0
0.0%
100.0%
0.0
0.9
141.4% 99.0%
6.7
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Rose Bengal, Set #1
SUNLIGHT (pH = 10)
Time
(minutes)
29 (5.0 mq/L)
30 (10.0 ma/L)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area ! BAdi Area
Tol Area
TAdi Area
0
1118.63
1087.84
1240.41
1192.02
1080.97 1050.18
1184.80
1136.41
60
960.62
929.83
1067.00
1018.61
931.19 900.40
1011.35
962.96
240
733.71
702.92
762.75
714.36
761.64 1 730.85 839.34
790.95
Chlorobenzene
0
Raw Area
Adi Area
Benzene Ref I Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
316,44
305.22
3.56 3.91
313.77
302.55
3.47
3.76
60
303.43
292.21
3.18 3.49
341 43
330.21
2.73
2.92
240
295.9
284.68
2A7 "1 Z51
326.75
315,53
2.32
2.51
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene Toluene
Benzene Ref
Toluene Ref
0
817 ppb
600 ppb
877 ppb
636 ppb
784 ppb
566 ppb
849 ppb
606 ppb
60
676 ppb
495 ppb
762 ppb
551 ppb
650 ppb
461 ppb
625 ppb
435 ppb
240
474 ppb
311 ppb
547 ppb
352 ppb
499 ppb
357 ppb
501 ppb
351 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00 1 1.00
1.00
1.00
1.00
1.00
60
0.83
0.83
0.87 I 087
0.83
0.81
0.74
0.72
240
0.58
0.52
0.62 0.55
0.64
063
0.59
0.58
E. coii
(cfuA-)x 10 4
A
B
C
Avq
A
B
C
Avq
0
154
1540
165
148
156,5
5
126
125
111
120 7
134
101
103
112.7
15
87
105
87
93.0
100
111
108
106,3
30
52
71
54 i 59.0
76
91
74
80.3
60
1
0
0
0.3
1
0
2
1.0
120
0
0
0
0.0
0
0
0
0.0
240
0
0
0
0.0
0
0
0.0
SD
%SD
%Dest
cfuA. x fOA3
SD
%SD
%Dest
cfu/L x 10h3
0
0.0
0.0%
0.0%
1540.0
8.5
5.4%
0.0%
1565.0
5
6.8
5.7%
0.0%
1206.7
15.1
13.4%
0.0%
1126.7
15
8.5
9.1%
0.0%
9300
4.6
4.4%
0.0%
0.0%
1063.3
30
8.5
14.4%
0.0%
590.0
7.6
9.4%
803.3
60
0.5
141.4%
99 2%
3.3
0.8
81.6%
98.1%
10.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Rose Bengal, Set #1
Sunlight pH 7
Time
21 (control)
22 (0.1 mg/L)
23 (1.0 mg/L)
(minutes)
Benz Area
BA di Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BA di Area
Tol Area
TAdi Area
0
1529 90
1466.31
1708.87
1603.69
1424.68
1361.09
1633.43
1528.25
1461.17
1397 58
1771 43
1666 25
60
1247.76
1184.17
1453.90
1348.72
1229.65
1166 06
1419.40
1314.22
1205.87
1142.28
1382.43
1277.25
240
1259.99
1196.40
1389.59
1284.41
1159 41
1095.82
1352.01
1246.83
1073.08
1009.49
1229.09
1123.91
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
303.39
275.68
5.32
5.82
328.73
301.02
4.52
5.08
360.33
332.62
4.20
5.01
60
337.52
309.81
3.82
4.35
357,4
329 69
3.54
399
347.01
319.30
3.58
4.00
240
327.55
299.84
3.99
4.28
326.06
298.35
3.67
4.18
311.37
283.66
3.56
396
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1155 ppb
849 ppb
1407 ppb
1026 ppb
1061 ppb
804 ppb
1167 ppb
875 ppb
1094 ppb
887 ppb
1070 ppb
862 ppb
60
903 ppb
695 ppb
955 ppb
728 ppb
887 ppb
674 ppb
869 ppb
653 ppb
866 ppb
652 ppb
881 ppb
656 ppb
240
914 ppb
656 ppb
1006 ppb
714 ppb
825 ppb
633 ppb
910 ppb
692 ppb
748 ppb
559 ppb
876 ppb
648 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
o
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.78
0.82
0.68
0.71
0.84
0.84
0.75
0.75
0.79
0.73
0.82
0.76
240
0.79
0.77
0.71
0.70
0.78
0.79
0.78
0.79
0.68
0.63
0.82
0.75
J
E. coli
(cfuAlxlO ‘
A B
C Av a
A
B C
Ava
A B
C
Avq
0
43
90 66.5
66
66.0
49 56
34.7
5
35
35.0
10
5
7.5
10 45
49
5.0
15
2
4
2
2.7
0
0
0.0
10
5
0
0.0
30
3
0
1.5
0
0
0.0
0
0
0.0
60
0
0
0
0.0
0
0
0
0.0
0
0
0
0.0
120
0
0
0
0.0
0
0
0
0.0
0
0
0
0.0
240
2
0
0
0.7
0
0
0
0.0
0
0.0
SD
%SD
%Dest
cfuA x 10*3
SD
%SD
%Dest
cfuA. x 10*3
SD
%SD
%Dest
cfuA x 10*3
0
23.5
35.3%
0.0%
665.0
0.0
00%
0.0%
660.0
17.5
50.5%
0.0%
346.7
5
0.0
0.0%
47.4%
350.0
2.5
33.3%
88.6%
75.0
4.1
81.6%
85.6%
50.0
15
0.9
35.4%
96.0%
26.7
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
30
1.5
100.0%
97.7%
15.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
60
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
0.9
141.4%
99.0%
6.7
00
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Rose Bengal, Set #1
Sunlight pH 7
Time
24 (5.0 ma/L)
25 (10.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area I BAdi Area
Tot Area
TAdi Area
0
1504.32
1440.73
1776.58
1671.40
1439.13 : 1375.54
1724.70
1619.52
60
1151.7
1088 11
1295.89
1190.71
1217.64 ¡ 1154.05
1414.92
1309.74
240
1132.09
1068,50
1236.43
1131.25
1156.33 ! 1092.74
1286.42
1181.24
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area I Benzene Ref
Toluene Ref
0
359.12
331.41
4.35
5.04
338.11
310.40 4.43
5.22
60
333.69
305.98
3,56
3.89
354 72
327.01 3.53
4.01
240
341.65
313.94
3.40
3.60
320.85
293.14 373
4.03
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1132 ppb
890 ppb
1114 ppb
868 ppb
1074 ppb
859 ppb
1139 ppb
904 ppb
60
818 ppb
599 ppb
875 ppb
634 ppb
877 ppb
671 ppb
867 ppb
657 ppb
240
800 ppb
563 ppb
829 ppb
575 ppb
822 ppb
594 ppb
927 ppb
662 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.72
0.67
0.79
0.73
0.82
0.78
0.76
0.73
240
0.71
0.63
0.74
0.66
0.77
0.69
0.81
0.73
E. co//
(cfu/L)x10 4
A | B
C
Avq
A
B
C
Avq
0
41
41.0
48
57
52.5
5
4 I 15 '
9.5
5
3
2
33
15
11
14
15
13.3
0
0
0
0.0
30
0
0
0.0
0
0
0
0.0
60
0
2
0
0.7
0
0
0
0.0
120
0
0
0
0.0
0
0
0
0.0
240
0
0
0
0.0
0
0
00
SD
%SD
%Dest
cfuA. x 10*3
SD
%SD
%Dest
cfuA. x 10*3
0
0.0
0.0%
0.0%
410.0
4.5
8.6%
0.0%
525.0
5
5.5
57.9%
76.8%
95 0
1.2
37.4%
93.7%
33.3
15
1.7
12.7%
67.5%
133.3
0.0
0.0%
100.0%
0.0
30
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
60
0.9
141.4%
98.4%
6.7
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Rose Bengal. Set #1
Dark (pH =10)
Time
31 (control)
32 (0.1 mq/L)
33 (1.0 mq/L)
(minutes)
Benz Area [ BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area BAdi Area
Tol Area
TAdi Area
0
1120 4 1082.43
1165.02
1112.39
1175.68
1137.71
1232.42
1179.79
1125.18 1087.21
1199 23
1146.60
60
1097.78 1059.81
1139.94
1087.31
1047.35
1009.38
1106.74
1054.11
962.99 925.02
989.25
936.62
240
915.08 877.11
936.96
884.33
877.55
' 83958
915.55
862.92
858.76 820.79
853.84
801.21
—
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
327.1
310.98
3.48
3.58
330.61
314.49
3.62
3.75
335.67
319.55
3.40
3.59
60
313.71
297 59
3.56
3.65
308.45
292.33
3.45
3.61
293.64
277.52
3.33
337
240
252.03 1
235.91
3 72
3.75
343.43
327.31
2.57
2.64
335.03
318.91
2.57
2.51
Concentrations
0
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
590 ppb
392 ppb
635 ppb
423 ppb
625 ppb
421 ppb
664 ppb
448 ppb
593 ppb
407 ppb
618 ppb
424 ppb
60
576 ppb
382 ppb
652 ppb
434 ppb
544 ppb
367 ppb
629 ppb
427 ppb
491 ppb
317 ppb
604 ppb
394 ppb
240
460 ppb
294 ppb
685 ppb
447 ppb
437 ppb
285 ppb
442 ppb
288 ppb
425 ppb
r 258 ppb
444 ppb
270 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1,00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.98
0.97
1.03
1.03
0.87
0.87
0.95
0.95
0.83
0.78
0.98
0.93
240
0.78
0.75
1.08
1.06
0.70
0.68
0.67
0.64
0.72
0.63
0.72
0 64
(cfuA )x 10 4
E. coll
A
6
c
Avg
A
8
C
Avg
A
B
C
Avg
0
14
2
50.0
22.0
33
30
29
30.7
21
16
19
18.7
5
51
41
58
50.0
68
72
65
68.3
32
40
38
36,7
15
53
53
54
53.3
53
52
61
55.3
49
53
45
49.0
30
46
55
42
47.7
64
61
55
600
41
48
49
46.0
60
42
47
43
44.0
46
30
38.0
76
40
58.0
120
15
21
25
20.3
11
17
41
23.0
18
45
35
32.7
240
15
11
13
13.0
4
3
3
3.3
14
12
11
12.3
SD
%SD
%Dest
cfuAL x 10*3
SD
%SD
%Dest
cfuA. x 10*3
SD
%SD
%Dest
cfuA. x 10*3
0
20.4
92.7%
0.0%
220.0
17
5.5%
0.0%
306.7
2.1
11.0%
0.0%
186.7
5
7.0
14.0%
0.0%
500.0
2.9
4.2%
0.0%
683.3
3.4
9.3%
0.0%
366.7
15
0.5
0.9%
0.0%
533.3
4.0
7.3%
0.0%
553.3
3.3
6.7%
0.0%
490.0
30
5.4
11.4%
0.0%
476.7
3.7
6.2%
0.0%
600.0
3.6
7.7%
0.0%
460.0
60
2.2
4.9%
0.0%
440.0
8.0
21.1%
0.0%
380.0
18.0
31.0%
0.0%
580.0
120
4.1
20.2%
7.6%
203.3
13.0
56.4%
25.0%
230.0
11.1
34 1%
0.0%
326.7
240
1.6
12.6%
40.9%
130.0
0.5
14.1%
89.1%
33.3
1.2
10.1%
33.9%
123.3

Rose Bengal, Set #1
Dark (pH =10)
Time
34 (5.0 mq/L)
35(10.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
1120.08
1082.11
1197.83
1145.20
1132.45
1094.48
1185.99
1133.36
60
1004.85
966.88
1027.38
974.75
1042.19
1004.22
1027.33
974.70
240
867.49
829.52
849,41
796.78
912.65
87468
895.09
842.46
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
347.24
331.12
3.27
3.46
326.68
310.56
3.52
3.65
60
322.96
306.84
3.15
3.18
319.98
303.86
3,30
3.21
240
326.71
310.59
2.67
2 57
324.65
308.53
2.83
2.73
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
590 ppb
407 ppb
590 ppb
406 ppb
598 ppb
401 ppb
644 ppb
433 ppb
60
517 ppb
333 ppb
565 ppb
365 ppb
541 ppb
333 ppb
598 ppb
370 ppb
240
430 ppb
256 ppb
464 ppb
278 ppb
459 ppb
276 ppb
499 ppb
301 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.88
0.82
0.96
0.90
0.90
0.83
0.93
0.85
240
0.73
0.63
0.79
0.68
0.77
0.69
0.77
0.70
E. cotí
(ctu/L)x10 ‘
A
B
C
Avg
A
B
C
Avg
0
28
24
26
26.0
37
48
38
41.0
5
37
46
41
41.3
54
65
64
61.0
15
38
34
46
39.3
41
42
46
43.0
30
45
49
37
43.7
51
54
46
50.3
60
32
22
36
30.0
50
61
50
53.7
120
7
_ 5
8
6.7
38
36
37.0
240
3
3.0
7
9
14
10.0
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfuA x 10*3
0
1.6
6.3%
0.0%
260.0
5.0
12.1%
0.0%
410.0
5
3.7
8.9%
0.0%
413.3
5.0
8.1%
00%
6100
15
5.0
12.7%
0.0%
393.3
2.2
5.0%
0.0%
430.0
30
5.0
11.4%
0.0%
436.7
3.3
6.6%
0.0%
503.3
60
5.9
19.6%
0.0%
300.0
52
9.7%
0.0%
536.7
120
1.2
18.7%
74.4%
66.7
1.0
2.7%
9.8%
370.0
240
0.0
0.0%
88.5%
30.0
2.9
29.4%
75.6%
100 0

Rose Bengal, Set #1
DARK (pH =
7)
Time
36 (control)
37 (0.1 mg/L)
38(1.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
0
1048.78
1014.77
969.49
934.74
1051.43
1017.42
1009.35
974.60
1096.45
1062.44
1050.29
1015,54
60
887.36
853.35
834.72
799.97
825.47
791.46
775.80
741.05
825.47
791.46
775.80
741.05
240
893.95
859.94
836.33
801 58
883.47
849.46
816.63 I 781.88
816.67
782.66
73897
704.22
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
238.26 I 230.29
4.41
4 06
259.34
251.37
4.05
3.88
228.63
220 66
4.81
4 60
60
228.80
220.83
386
362
237 00
229.03
3 46
3.24
237 00
229.03
3.46
3.24
240
235.00 I 227.03
I 3.79 .
3.53
235.00
227.03
3.74
3.44
256.75
248.78
3.15
2.83
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
682 ppb
685 ppb
727 ppb
733 ppb
684 ppb
719 ppb
662 ppb
696 ppb
718 ppb
753 ppb
801 ppb
843 ppb
60
561 ppb
572 ppb
629 ppb
644 ppb
514 ppb
523 ppb
555 ppb
566 ppb
514 ppb
523 ppb
555 ppb
566 ppb
240
566 ppb
573 ppb
615 ppb
626 ppb
558 ppb
557 ppb
607 ppb
608 ppb
507 ppb
492 ppb
499 ppb
484 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1 00
1.00
1 00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.82
0,83
0.87
0 88
0 75
0.73
0.84
0.81
0.72
0,69
0.69
0.67
240
0.83
0.84
0.85
0.85
0.82
0.77
0.92
0.87
0.71
0.65
0.62
0.57
E. coli
(cfu/L)x10 '
A
B
C
Av9
A
B
C
Avg
A
B
C
Avg
0
38
58
48.0
81
81.0
85
95
90.0
5
35
41
44
40.0
61
55
41
52.3
20
31
32
27.7
15
56
35
45.5
38
39
38.5
60
42
51.0
30
45
35
50
43.3
55
64
59.5
52
56
54.0
60
20
30
25.0
47
59
52
52.7
62
63
62.5
120
Z 17
17.0
- 52
^" 63 ]
57.5
64
64.0
240
1
1
3
1.7
39
46
31
38.7
86
58
72.0
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
10.0
20.8%
0.0%
480.0
0.0
0.0%
0.0%
810.0
5.0
5.6%
0.0%
900.0
5
3.7
9.4%
16.7%
400.0
8.4
16.0%
35.4%
523.3
5.4
19.7% 1
69.3%
276.7
15
10.5
23.1%
5.2%
455.0
0.5
1.3%
52.5%
385.0
9.0
17.6%
43.3%
510.0
30
6.2
14.4%
9.7%
433.3
4.5
7.6%
26.5%
595.0
2.0
3.7%
40.0%
540.0
60
5.0
20.0%
47.9%
250.0
4.9
93%
35.0%
526.7
0.5
0.8%
30.6%
625.0
120
0.0
0.0%
64.6%
170.0
55
9.6%
29.0%
5750
0.0
0.0%
28.9%
640.0
240
0.9
56.6%
96.5%
16.7
6.1
15.8%
52.3%
386.7
14.0
19.4%
20.0%
720.0

Rose Bengal, Set #1
o
>
*
pH =7)
Time
(minutes)
39 (5.0 ma/L)
40(10.0 ma/L)
Benz Area
BAdi Area
Tot Area I TAdi Area
Benz Area
BA dl Area
Tot Area
TAdi Area
0
1033.66
999.65
991.18 956.43
1040.58
1006.57
992.10
957.35
60
768.59
734.58
722.68 687.93
805.04
771.03
757 75
723.00
240
759.09
725.08
670.94 636.19
785.09
751.08
726.79
692.04
Chlorobenzene
Raw Area I Adi Area I Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
247.87 239.90I 4.17
3.99
241.9
233.93
4 ppb
4.09
60
231.09 223.12 3.29
3.08
230.98
223.01
3 ppb
3.24
240
224.5 I 216 53! 3.35
2.94
245.5
237.53
3 ppb
2.91
Concentrations
0
Benzene I Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
670 ppb I 704 ppb
684 ppb
718 ppb
676 ppb
704 ppb
708 ppb
740 ppb
60
471 ppb
478 ppb
525 ppb
535 ppb
499 ppb
507 ppb
555 ppb
567 ppb
240
464 ppb
434 ppb
535 ppb
505 ppb
484 ppb
481 ppb
502 ppb
500 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1 00
1.00
1.00
1.00
1.00
1.00
60
0.70
0.68
0.77
0.74
0.74
0.72
0.78
0.77
240
0.69
0.62
0.78
0.70
0.72
0.68
0.71
0.68
E. coli
(cfu/L)x10 4
A
B
C
Avq
A
B
C
Ava
0
62
69
64
65.0
103
103
103.0
9
62
41
33
453
74
78
68
73.3
15
106
89
97.5
59
78
70
69.0
30
49
46
47.5
78
61
69.5
60
45
45.0
98
80
89.0
120
64
64.0
89
71
84
81.3
240
60
63
61.5
100
90
107
99.0
SD
%SD
%Dest
cfuA. x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
2.9
4.5%
0.0%
650.0
0.0
0.0%
0.0%
1030 0
5
12.2
27.0%
30.3%
453.3
4.1
5.6%
28.8%
733.3
15
8.5
8.7%
0.0%
975.0
7.8
11.3%
33.0%
690.0
30
1.5
3.2%
26.9%
475.0
8.5
12.2%
32.5%
695.0
60
0.0
0.0%
30.8%
450.0
9.0
10.1%
13.6%
890.0
120
0.0
0.0%
1.5%
640.0
7.6
9.3%
21.0%
813.3
240
1.5
2.4%
5.4%
615.0
7.0
7.0%
3.9%
990.0

Mixed, Set#1
SUNLIGHT (pH=7)
Time
41 (control)
42 (0.01% TiO?)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdj Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
953.60
939.73
726.48
711.94
1017.37
1003.50
798.14
783.60
30
930.58
916.71
730.73
716.19
462.31
448.44
349.00
334.46
120
824.83
810.96
646.06
631.52
98.8
84.93
75.72
61.18
Chlorobenzene
Raw Area
Adj Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
199.92
193.03
4.87
3.69
196.57
189.68
5.29
4.13
30
217.20
210.31
4.36
3.41
227.16
220.27
2.04
1.52
120
223.19
216.30
3.75
2.92
214.83 207.94
0.41
0.29
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
675 ppb
677 ppb
753 ppb
723 ppb
724 ppb
745 ppb
822 ppb
817 ppb
30
657 ppb
681 ppb
669 ppb
663 ppb
295 ppb
319 ppb
287 ppb
262 ppb
120
575 ppb
601 ppb
569 ppb
560 ppb
15 ppb
59 ppb
19 ppb
1 PPb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
30
0.97
1.01
0.89
0.92
0.41
0.43
0.35
0.32
120
0.85
0.89
0.76
0.77
0.02
0.08 I 0.02
0.00
E. coli
(cfu/L)x10 *
A
B
C
Avq
A
B
C
Avq
0
103
89
97
96.3
118
119
116
VV77
5
120
108
88
105.3
83
90
101
91.3
15
112
72
92.0
0
3
1.5
30
39
33
36
36.0
0
0
0
0.0
60
0
0
0
0.0
0
0
0
0.0
120
0
0
0
0.0
0
0
0.0
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
5.7
6.0%
0.0%
963.3
1.2
1.1%
0.0%
1176.7
5
13.2
12.5%
0.0%
1053.3
7.4
8.1%
22.4%
913.3
15
20.0
21.7%
4.5%
920.0
1.5
100.0%
98.7%
15.0
30
2.4
6.8%
62.6%
360.0
0.0
0.0%
100.0%
0.0
60
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Mixed, Set #1
SUNLIGHT (pH=7)
Time
43 (5.0 mg/L Methylene Blue)
44 (0.01% TiO, & 5.0 mg/L Methylene Blue)
(minutes)
Benz Area
BAdj Area
Tol Area
TAdj Area
Benz Area
BAdj Area
Tol Area
TAdi Area
0
1001.53
987.66
773.24
758.70
963.8
949.93
789.91
775.37
30
865.51
851.64
662.68
648.14
722.68
708.81
537.23
522.69
120
791.85
777.98
575.54
561.00
408.14
394.27
284.20
269.66
Chlorobenzene
Raw Area
Adj Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
226.99
220.10
4.49
3.45
210.5
203.61
4.67
3.81
30
211.27
204.38
4.17
3.17
221.74
214.85
3.30
2.43
120
224.02
217.13
3.58 2.58
214.46
207.57
1.90
1.30
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
712 ppb
721 ppb
690 ppb
672 ppb
682 ppb
737 ppb
719 ppb
749 ppb
30
607 ppb
616 ppb
637 ppb
613 ppb
496 ppb
497 ppb
494 ppb
456 ppb
120
550 ppb
534 ppb
541 ppb
488 ppb
253 ppb
257 ppb
264 ppb
215 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
30
0.85
0.85
0.92
0.91
0.73
0.67
0.69
0.61
120
0.77
0.74
0.78
0.73
0.37
0.35
0.37
0.29
E. coli
(cfu/L)x10 4
A
B
C
Av Q
A
B I C
Avq
0
129
114
93
112.0
109
68
140
105.7
5
0
0
0.0
2
2.0
15
0
0
0
0.0
0
0.0
30
0
0
0
0.0
0
0.0
60
0
0
0
0.0
Ó
0
0
0.0
120
0
0
0
0.0
0
0
0.0
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
14.8
13.2%
0.0%
1120.0
29.5
27.9%
0.0%
1056.7
5
0.0
0.0%
100.0%
0.0
0.0
0.0%
98.1%
20.0
15
0.0
0.0%
100.0%
0.0
0.0 0.0%
100.0%
0.0
30
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
60
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Mixed, Set#1
15-Mar-98
DARK (pH = 7)
Time
45 (control)
46 (0.01% TiO,)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
951.18
931.18
793.19
770.21
902.13
882.13
735.29
712.31
30
927.73
907.73
743.00
720.02
927.73
889.57
743.00
720.02
120
883.85
845.69
728.26
705.28
817.72
779.56
640.19
617.21
Chlorobenzene
Raw Area
Adj Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
197.6
197.60
4.71
3.90
195.82
195.82
4.50
3.64
30
213.44
184.75
4.91
3.90
213.44
184.75
4.81
3.90
120
208.66
179.97
4.70
3.92
202.67
173.98
4.48
3.55
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
668 ppb
732 ppb
727 ppb
768 ppb
630 ppb
677 ppb
693 ppb
712 ppb
30
650 ppb
685 ppb
760 ppb
767 ppb
636 ppb
685 ppb
744 ppb
767 ppb
120
602 ppb
671 ppb
725 ppb
772 ppb
551 ppb
587 ppb
689 ppb
693 ppb
Normalized Concentrations
Benzene
Toluene Benzene Ref
Toluene Ref \ Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00 1.00
1.00 1.00
1.00
1.00
1.00
30
0.97
0.93 \ T705
1.00 I 1T01
1.01
1.07
1.08
120
0.90
0.92 1.00
1.01 0.87 | 0.87
0.99
0.97
E. coli
(cfu/L)x 10 4
A
B
C
Avg
A
B
c
Avg
0
124
101
155
126.7
110
140
121
123.7
5
125
168
146.5
4
9
8
7.0
15
141
149
145.0
141
124
142
135.7
30
131
191
165
162.3
120
134
127.0
60
137
165
151.0
92
112
123
109.0
120
108
146
135
129.7
135
130
132.5
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
22.1
17.5%
0.0%
1266.7
12.4
10.0%
0.0%
1236.7
5
21.5
14.7%
0.0%
1465.0
2.2
30.9%
94.3%
70.0
15
4.0
2.8%
0.0%
1450.0
8.3
6.1%
0.0%
1356.7
30
24.6
15.1%
0.0%
1623.3
7.0
5.5%
0.0%
1270.0
60
14.0
9.3%
0.0%
1510.0
12.8
11.8%
11.9%
1090.0
120
16.0
12.3%
0.0%
1296.7
2.5
1.9%
0.0%
1325.0

Mixed, Set#1
DARK
pH = 7)
Time
47 (5.0 mg/L Methylene Blue)
48 (0.01 % TiO, & 5
.0 mg/L Methylene Blue)
(minutes)
Benz Area
BAdi Area
To1 Area
TAdj Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
997.67
977.67
820.11
797.13
1017.52
997.52
831.83
808.85
30
910.61
872.45
743.18
720.20
897.72
859.56
754.07
731.09
120
833.74
795.58
642.47
619.49
848.49
810.33
663.17
640.19
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
198.41
198.41
4.93
4.02
218.78
218.78
4.56
3.70
30
207.57
178.88
4.88
4.03
200.75
172.06
5.00
4.25
120
221.87
193.18
4.12
3.21
201.67
172.98
4.68
3.70
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
704 ppb
758 ppb
762 ppb
793 ppb
719 ppb
769 ppb
702 ppb
725 ppb
30
623 ppb
685 ppb
754 ppb
795 ppb
613 ppb
695 ppb
774 ppb
842 ppb
120
563 ppb
589 ppb
629 ppb
621 ppb
575 ppb
609 ppb
722 ppb
726 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref \ Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00 1.00
1.00
1.00
1.00
1.00
30
0.88
0.90
o.99 TocT
0.85
0.90
1.10
1.16
120
0.80
0.78
0.83 I 0.78
0.80
0.79
1.03
1.00
E. coli
(cfu/L)x10 4
A
B
C
Avg
A
B
C
Avg
0
139
144
148
143.7
168
151
159.5
5
47
21
33
33.7
126
137
127
130.0
15
22
33
37
30.7
36
40
39
38.3
30
47
45
66
52.7
97
85
91
91.0
60
49
52
46
49.0
70
45
46
53.7
120
40
39
51
43.3
49
47
52
49.3
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
3.7
2.6%
0.0%
1436.7
8,5
5.3%
0.0%
1595.0
5
10.6
31.6%
76.6%
336.7
5.0
3.8%
18.5%
1300.0
15
6.3
20.7%
78.7%
306.7
1.7
4.4%
76.0%
383.3
30
9.5
18.0%
63.3%
526.7
4.9
5.4%
42.9%
910.0
60
2.4
5.0%
65.9%
490.0
11.6
21.5%
66.4%
536.7
120
5.4
12.5%
69.8%
433.3
2.1
4.2%
69.1%
493.3

Methylene Blue, Set #2
Sunlight (pH=10)
Time
1
control)
2 (0.1 mg/L)
3 (1.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area I TAdjArea
0
745.62
737.97
680.85
672.66
684.9
677.25
521.45
513.26
621.55
613.90
445,16 436.97
60
644.27
636.62
465.46
457.27
608.85
601 20
453.78
445 59
644.53
636.88
482.68 474.49
240
543.77
536.12
405.20
397.01
572.42
564.77
416.05
407.86
585.82
578.17
428.62 420.43
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref I Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
246.02
246.02
3.00
2.73
248.93
248.93
2.72 2.06
254.89
254.89
2.41
1.71
60
250.58
250.58
2.54
1.82
301 83
301.83
1.99 1.48
270.39
270.39
2.36
1.75
240
295.17
295.17
1.82
1.35
279.82
279.82
2.02 1 46
265
265.00
2.18
1.59
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1082.34
656.78
1218 ppb
770 ppb
975.07
452.47
1091.4 ppb
549 4 ppb
863.16
354.69
949.3 ppb
435.3 ppb
60
903.29
380.71
1009.4 ppb
4716ppb
840.72
365.74
759.5 ppb
357.1 ppb
903.75
402.78
925.1 ppb
448.6 ppb
240
725.75
303.48
679.6 ppb
314.1 ppb
776.36
317.38
771.6 ppb
351.0 ppb
800.04
333 49
846.0 ppb
393.3 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.83
0.58
0.83
0.61
0 86
0.81
0.70
0.65
1.05
1.14
0.97
1.03
240
0.67
0.46
0.56
0.41
0.80
0.70
0.71
0.64
0.93
0.94
0.89
0.90
8-M ay-98
e. con
(cfu/L)x10 4
A
B
C
Avq
A
B
C
Avq
A
B
C
Avq
0
5
15
30
60
120
240
SD
%SD
%Dest
cfuA. x 10A3
SD
%SD
%Dest
cfuA. x 10A3
SD
%SD
%Dest
cfuA. x 10A3
0
5
15
30
60
120
240

Methylene Blue, Set #2
Sunlight (pH=10)
Time
4 (5.0 ma/L)
5 (10.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
706.88
699.23
544 52
536 33
737.15
729.50
546.40
538.21
60
614.95
607.30
443.74
435.55
499 58
491.93
355.94
347.75
240
552.53 544.88
395.54 387.35
527.62
519.97
372.51
364.32
—
Chlorobenzene
Raw Area
Adi Area
Benzene Ref Toluene Ref
Raw Area
Adi Area Benzene Ref
Toluene Ref
0
283.48
283.48
2 47 1.89
290 1
290.10
2.51
1.86
60
270.73
270.73
2.24 1.61
247.87
247,87
1.98
1.40
240
227.49
227.49
2.40 1/70
287.61
287.61
1.81
1.27
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene I Benzene Ref
Toluene Ref
0
1013.90
482.04
975 7 ppb
493.6 ppb
1067.37
484.45
997.6 ppb
481.5 ppb
60
698.89
308.16
874.0 ppb
400.6 ppb
548.53
206.49
756.3 ppb
333.1 ppb
240
741.23
291.09
943.2 ppb
431.5 ppb
697.22
261.58
675.8 ppb
288.3 ppb
Normalized Concentrations
r â– 
Benzene ¡ Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene ; Benzene Ref
Toluene Ref
0
1,00 1.00
1.00
1.00
1.00
1.00 1.00
1.00
60
0.69 0.64
0.90
0.81
0.51
043 0.76
0.69
240
0.73 I 0.60
0.97
0.87
0.65
0.54 I 0.68
0.60
E. coli
(cfu/L)x10 '
A
B
C
A vo
A
8 C
Avq
0
5
15
30
60
120
240
SD
%SD
%Dest
cfuA. x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
5
15
30
60
120
240

Methylene Blue, Set #2
SUNLIGHT (pH =7)
Time
6 (control)
7 (0.1 mg/L)
8 (TO mg/L)
(minutes)
Benz Area
BAdj Area
Tot Area
TAdi Area
Benz Area
BA di Area
Tot Area I TAdi Area
Benz Area
BA di Area
Tot Area
TAdi Area
0
657.02
636.24
507.54
498.88
723.46
702.68
553.63
544.97
721.46
700.68
556.45
547.79
60
607.56
586.78
437.23
428.57
581.51
560.73
41542
406.76
579.71
558.93
418.02
409.36
240
537.17
516.39
366.88
358.22
493.6
472.82
351.34
342.68
534.33
513.55
368.51
359.85
Chlorobenzene
0
Raw Area
Adi Area j Benzene Ref
Toluene Ref
Raw Area i Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
316.16
31616! 2.01
1.58
299.42 299.42
2.35
1.82
305.33
305.33
2.29
1.79
60
282.07
282.07] 208
1.52
287.2 ; 287.20
1.95
1.42
277.08
277.08
2.02
1.48
240
284.36
284.36 1.82
1.26
305.26 | 305.26
1.55
1.12
268.83
268.83
1.91
1.34
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
902.62
434.05
768.9 ppb
390.5 ppb
1019.99
493.12
921.2 ppb
470.0 ppb
1016.46
496 74
897.5 ppb
461.5 ppb
60
815.25
343.93
799.8 ppb
371.3 ppb
769.23
315.98
741.6 ppb
337.5 ppb
766.05
31931
771.1 ppb
357.5 ppb
240
690.89
253.76
679.5 ppb
286.1 ppb
613.92
233.85
557.8 ppb
241.0 ppb
685.88
255 85
722.4 ppb
311.9 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
100
TOO
TOO
TOO
TOO
TOO
TOO
TOO
TOO
TOO
60
0.90
0.79
1 04
0.95
0.75
0.64
0.81
0.72
0.75
0 64
0.86
0 77
240
0.77
0.58
088
0.73
0.60
0.47
0.61
0.51
0.67
0.52
0.80
0,68
E. coli
(cfu/L)x10 ‘
A
8
C
Ava
A
B
C
Ava
A
B
C
Avq
0
61
79
96
78.7
79
82
80.5
67
94
79
80.0
5
37
71
53
53.7
54
81
57
64.0
16
20
18
18.0
15
55
41
66
54.0
48
38
41
42.3
1
TO
30
55
45
26
42.0
10
15
12.5
1
TO
60
3
0
0
TO
0
1
0
0.3
0
0
4
1.3
120
0
0
0
0.0
0
0
0
0.0
1
0
0.5
240
0
0
0.0
0
0
0
0.0
0
0.0
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfuA. x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
14.3
18.2%
0.0%
786.7
1.5
1.9%
0.0%
805.0
11.0
13.8%
0.0%
800.0
5
13.9
25.9%
31.8%
536.7
12.1
18.9%
20.5%
640.0
1.6
9.1%
77.5%
180 0
15
10.2
18.9%
31.4%
540.0
4.2
9.9%
47.4%
4233
0.0
0.0%
98.8%
10.0
30
12.0
28.6%
46.6%
420.0
2.5
20.0%
84.5%
125.0
0.0
0.0%
98.8%
10.0
60
1.4
141.4%
98.7%
10.0
0.5
141.4%
99.6%
3.3
1.9
141.4%
98.3%
13.3
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.5
100.0%
99.4%
5.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
—

Methylene Blue, Set #2
SUNLIGHT (pH = 7)
Time
9 (5.0 mq/L)
10(10.0 mg/L)
(minutes)
Benz Area
BA di Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
691.22
670.44
538.46
529.80
421.61
400.83
332.23
323.57
60
574.75
553.97
423.83
415.17
564.37
543.59
417.93
409.27
240
469.34 | 448.56
334.94
326.28
520.34
499.56
365.07
356.41
Chlorobenzene
Raw Area I Adi Area Benzene Ref I Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
292.18 | 292.18
2.29 I 1.81
189.32
189.32
2.12
1.71
60
291.55 291.55
1.90 142
288.29
288.29
1.89
1.42
240
291.49 | 29149
1.54 T12
281.73
281.73
1.77
1.27
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
963.04
473.68
897.4 ppb
467.8 ppb
486.75
209.35
816.6 ppb
433.6 ppb
60
757.28
326.76
717.8 ppb
340.0 ppb
738.95
319.20
711.1 ppb
338.6 ppb
240
571.07
212.83
553.3 ppb
240.0 ppb
661.16
251.44
660.0 ppb
287.8 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.79
0.69
0.80
0.73
1.52
1.52
0.87
0.78
240
0.59
0.45
0.62
0.51
1.36
1.20
0.81
0.66
E. coli
(cfu/L)xlO 4
A
B
C
Avq
A
B
C
Avq
0
80
88
97
88.3
58
76
69
67.7
5
0
0
0.0
0
0
0
0.0
15
0
1
0
0.3
0
0
6
2.0
30
0
0
0.0
0
0
0.0
60
0
0.0
0
0
0.0
120
0
0
0.0
0
0
0
0.0
240
0
0.0
0
0
0
0.0
SD
%SD
%Dest
cfuA x 10 3
SD
%SD
%Dest
cfuA. x 10 3
0
6.9
7.9%
0.0%
883.3
7.4
10.9%
0.0%
676.7
5
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
15
0.5
141.4%
99.6%
3.3
2.8
141.4%
97.0%
20.0
30
0.0
00%
100.0%
0.0
0.0
0.0%
100.0%
0.0
60
0.0
0.0%
100.0%
0.0
0.0
0.0%
100 0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Methylene Blue, Set #2
7-Apr-98 J Dark (pH =10)
Time
11 (control)
12(0.1 mq/L)
13(1.0 mq/L)
(minutes)
Benz Area
BAdi Area
To 1 Area
TAdi Area
Benz Area
BA di Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
0
638.04
638.04
478.11
464.13
636.23
636.23
488.80
47482
704.25
704.25
533 55
519.57
60
568 08
568.08
412.78
398.80
450.83
450 83
336.61
322.63
567.54
567.54
401 36
38738
240
451.41
451.41
305.00
291.02
455.12
455.12
313.19
299 21
455.18
455.18
330.34
316 36
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
295 56
295.56
2.16
1.57
289.03
289.03
2 20
1.64
305.97
305.97
2.30
1.70
60
293.94
293.94
1.93
1.36
236,38
236.38
1.91
1.36
326.05
326.05
1.74
1.19
240
262.76
262.76
1.72
1.11
31087
310.87
1.46
0.96
281.23
281.23
1.62
1.12
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
905.80
389.51
835.5 ppb
388.0 ppb
902.60
403.21
854.9 ppb
411.8 ppb
1022.77
460.56
900.6 ppb
430.0 ppb
60
782.21
305.77
732.6 ppb
317.9 ppb
575.08
208.14
721.0 ppb
320.6 ppb
781.26
291.13
645.2 ppb
262.5 ppb
240
576.10
167.63
634.8 ppb
236.1 ppb
58266
178.13
519.2 ppb
188.5 ppb
582.76
200.11
589 5 ppb
241.8 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene I Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
TOO 1,00
1,00
1.00
1.00
1.00
1.00
1.00
60
0.86
0.79
0.88
0.82
0.64 0.52
0.84
0.78
0.76
0 63
0.72
0.61
240
0.64
0.43
0.76
0.61
0.65 0.44
0.61
0.46
0 57
0.43
0.65
0.56
E. coli
(cfuA)x10 4
A
B
C
Avq
A \ B C I Avq
A
B
C
Avq
0
93
93
79
88.3
110 l 96 103.0
99
108
111
106.0
5
81
102
92
91.7
63 98 96 85.7
' 74
88
89
83.7
15
68
65
98
77.0
69 96
65
76.7
82
69
68
73.0
30
83
96
89.5
74
86
100
86.7
47
67
57.0
60
103
107
96
102.0
93
96
94.5
33
30
31.5
120
90
90.0
85
85.0
11
11.0
240
100
91
95
95.3
91
85
88.0
2
0
1.0
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfuA. x 10*3
0
6.6
7.5%
0.0%
883 3
7.0
6.8%
0.0%
10300
5.1
4.8%
0.0%
1060 0
5|| 8.6
9.4%
0.0%
916.7
16.0
18.7%
16.8%
856 7
6.8
8.2%
21.1%
836.7
15
14 9
19.4%
12 8%
770.0
13.8
18 0%
25.6%
766.7
6.4
8.7%
31.1%
730.0
30
6 5
7.3%
0.0%
895.0
10.6
12.3%
15.9%
866.7
10.0
17.5%
46.2%
570.0
60
4.5
4.5%
0.0%
1020.0
1.5
1.6%
8.3%
945.0
1.5
4.8%
70.3%
315 0
120
0.0
0.0%
0.0%
900.0
0.0
0.0%
17.5%
850.0
0.0
0.0%
89.6%
110,0
240
3.7
3.9%
0.0%
953.3
3.0
3.4%
14.6%
880.0
1.0
100.0%
99.1%
10.0

Methylene Blue, Set #2
Dark (pH =10)
Time
14(5.0 mq/L)
15 (10.0 mg/L)
(minutes)
Benz Area
BA di Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
0
620.05
620.05
477.31
463.33
648.6
648.60
488.96
474.98
60
553.31
553.31
394.03
380.05
473.18
473.18
347.98
334.00
240
424.91
424.91
280.50
266.52
446.68
446.68
302.71
288.73
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
290.22
290.22
2.14
1.60
302.9
302.90
2.14
1.57
60
291.95
291,95
1.90
1.30
253.24
253.24
1.87
1.32
240
312.57
312.57
1.36
0.85
301 28
301.28
1.48
0.96
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
874.02
388.48
825.4 ppb
396.6 ppb
92446
403.41
827.6 ppb
387.3 ppb
60
756.12
281.74
715.5 ppb
299.9 ppb
614.56
222.72
703.4 ppb
305.5 ppb
240
529.29
136.23
471.6 ppb
152.4 ppb
567.75
164.69
527.7 ppb
187.1 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.87
0.73
0.87
0.76
0.66
0.55
0.85
0.79
240
0.61
0.35
0.57
0.38
0.61
0 41
0.64
0.48
E. coll
(cfu/L)x10 '
A
B
C
Avg
A
B
C
Avg
0
98
107
102.5
108
102
115
108.3
5
0
0
0.0
0
0.0
15
0
0
0.0
0
0
0
0.0
30
0
0
2
0.7
0
0
0
0.0
60
0
0
0.0
0
0
0
0.0
120
0
00
0
0.0
240
o
0
0
0.0
0
0
0
0.0
SD
%SD
%Dest
cfuA. x 10*3
SD
%SD
%Dest
cfuA. x 10*3
0
4.5
4.4%
00%
1025 0
5.3
4.9%
0.0%
1083.3
5
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
15
0.0
0.0%
100.0%
0.0
0.0
0.0%
100 0%
0.0
30
0.9
141.4%
99.3%
6.7
0.0
0.0%
100 0%
0.0
60
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Methylene Blue, Set #2
7-Apr-98 I DARK (pH =7)
Time
16 (control)
17(0.1 mq/L)
18 (1.0 mq/L)
(minutes)
Benz Area
BAdi Area
Tot Area TAdi Area
Benz Area
BAdi Area
To 1 Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
504.81
499.43
38081 375.54
516.62
511.24
394.28
389.01
501.65
49627
384.02
378.75
60
46321
457.83
341.91 336.64
421.74
416.36
300.08
294.81
417.77
412.39
307.12
301.85
240
400.58
395.20
271.91 266.64
413.99
408.61
279.51
274.24
373.81
368.43
242.03
236.76
Chlorobenzene
Raw Area
Adi Area
Benzene Ref Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
299.08
291.22
1.71 1.29
302.81
294 95
1.73
1.32
270.78
262.92
1.89
1.44
60
259.25
251.39
1.82 1.34
291.71
283.85
1.47
1.04
310.27
302.41
1.36
1.00
240
279.04
271.18
1.46 I 0.98
283.99
276 13
1.48
0.99
292.06
284.20
1.30
0.83
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
660.93
275.96
633.5 ppb
295.8 ppb
681.80
29323
641.8 ppb
305.5 ppb
655.35
280.08
712.0 ppb
345.4 ppb
60
587.44
226.10
681.8 ppb
312.1 ppb
514.18
172.49
520.5 ppb
213.5 ppb
507.17
181.51
473.5 ppb
200.2 ppb
240
476.80
136.38
516.1 ppb
195.3 ppb
500,49
146.13
526.4 ppb
198.5 ppb
429.51
98.09
442.9 ppb
146.0 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 1.00
1.00
1.00
60
0,89
0.82
1.08
1.06
0.75
059
0.81
0 70
0.77 0,65
0.66
0.58
240
0.72
0.49
0.81
0.66
0.73
0.50
0 82
0.65
0.66 0.35
0.62
0.42
£. coli
(cfuA)x10 *
A
8
C
Avq
A
8 C
Avq
A
B
C
Avq
24
35
29.5
27
47
37.0
34
47
53
44 7
4
6
7
5.7
5
11
8.0
13
8
10.5
13
2
1
1.5
6
8
7.0
9
9
10
9.3
7
3
5.0
3
2
2.5
3
6
4.5
0
3
4
2.3
1
1
5
2.3
1
4
1
2.0
120
4
2
10
5.3
1
0
0.5
1
0
1
0.7
240
1
1
0
0.7
7
7.0
0
1
0
0.3
SD
%SD
%Dest
cfuA. x 10*3
SD
%SD
%Dest
cfuA x 10*3
SD
%SD
%Dest
cfu/L x 10*3
5.5
18.6%
0 0%
295.0
10.0
27 0%
0.0%
370.0
7.9
17.8%
0,0%
446.7
1.2
22.0%
80.8%
56.7
3.0
37.5%
78.4%
80.0
2.5
23.8%
76.5%
105.0
15fl 0.5
33.3%
94.9%
15.0
1.0
14.3%
81.1%
70.0
0.5
5.1%
79.1%
93.3
l(f 2.0
40.0%
83.1%
50.0
0.5
20.0%
93.2%
25.0
1.5
33.3%
89.9%
450
60| 1.7
72.8%
92.1%
233
1.9
80.8%
93.7%
23.3
1.4
70.7%
95.5%
20.0
12o| 3.4
63.7%
81.9%
53.3
0.5
100.0%
98.6%
5.0
0.5
70.7%
98.5%
6.7
240H 0.5
70.7%
97.7%
6.7
0.0
0.0%
81.1%
70.0
0.5
141.4%
99.3%
3.3

Methylene Blue, Set #2
DARK (pH =7)
Time
19 (5.0 mq/L)
20 (10.0 mg/L)
(minutes)
Benz Area
BAdi Area ! TolArea
TAdi Area
Benz Area
BA di Area
Tot Area
TAdi Area
0
515.69
510.31 384.64
379.37
508 69
503.31
360.50
355.23
60
463.75
458.37 324.32
319.05
407 64
402.26
297.88
292.61
240
387.22
381.84 258.60
253.33
337.94
332.56
221.27
216.00
Chlorobenzene
0
Raw Area
Adi Area
Benzene Ref
1.81
Toluene Ref
Raw Area
Adi Area Benzene Ref
Toluene Ref
2899
282.04
1.35
285.91
278.05
1.81
1.28
60
277.05
269.19 1.70
1.19
297.05
289.19
1.39
1.01
240
273.14
265.28 1.44
0.95
282.97
275.11
1.21
0.79
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
680.15
280.87
676.4 ppb
314.1 ppb
667.79
249.93
676.8 ppb
291 9 ppb
60
588.40
203.56
627.9 ppb
2616ppb
48927
169.67
485.9 ppb
204.7 ppb
240
453.20
119.32
508.0 ppb
186.0 ppb
366.14
71.48
403.0 ppb
130 3 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1,00
60
0.87
0.72
0.93
0.83
0.73
0.68
0.72
0.70
240
0.67
0.42
0.75
0.59
0.55
0.29
0.60
0.45
£. coli
(cfuA)x10 4
A
B
C
Avq
A
B
C
Avq
0
55
101
88
81.3
20
31
32
27.7
5
0
0.0
0
0
0.0
15
1
1
0
0.7
0
0
0
0.0
30
0
0.0
0
1
0,5
60
0
0
0.0
0
0
0.0
120
0
0.0
1
0
0
0.3
240
0
0
0.0
4
4.0
SD
%SD
%Dest
cfuA x 10*3
SD
%SD
%Dest
cfuA x 10*3
0
19.4
23.8%
00%
813.3
5.4
19.7%
0.0%
276.7
5
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
15
0.5
70.7%
99.2%
6 7
0.0
0.0%
100.0%
0.0
30
0.0
0.0%
100.0%
0.0
0.5
100.0%
98.2%
5.0
60
0.0
0.0%
100.0%
0.0
00
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.5
141.4%
98.8%
3.3
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
85.5%
40.0

Rose Bengal, Set #2
Sunlight (pH = 10)
Time
21 (control)
22 (0.1 mg/L)
23 (1.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
800.90
800 90
713.28
713.28
76344
763.44
662 76
662.76
833.14
823.22
740.69
723.75
686.40
68640
565.84
565.84
689 83
689.83
565 09
565.09
793.82
783.90
686.54
669 60
240
436.82
436.82
345.24
345.24
490.52
490.52
381.49
381.49
522.91
512.99
425.53
408.59
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
366.85
357.60
2.24
1.99
383.14
373.89
2.04
1.77
369 56
369.56
2.23
1.96
60
335.78
326.53
2.10
1.73
373.64
364 39
1.89
1.55
377.24
377.24
2.08
1.77
240
323.70
314.45
1.39
1.10
281.06
271.81
1.80
1.40
354.25
354.25
1.45
1.15
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
476 ppb
315 ppb
475 ppb
294 ppb
451 ppb
286 ppb
428 ppb
252 ppb
490 ppb
321 ppb
472 ppb
287ppb
60
401 ppb
230 ppb
442 ppb
244 ppb
403 ppb
229 ppb
393 ppb
210 ppb
465 ppb
290 ppb
436 ppb
252 ppb
240
238 ppb
102 ppb
273 ppb
125 ppb
273 ppb
123 ppb
372 ppb
182 ppb
288 ppb
138 ppb
287 ppb
135 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
084
0.73
0.93
0.83
089
0.80
0.92
0.83
0.95
0.90
0 93
0.88
240
0.50
0.32
0.58
0 42
0.61
0.43
0 87
0 72
0.59
0.43
0.61
0.47
E. coli
(cfuA. )x 10 *
A
B
C
Avg
A
B I C Avg
A
B
C
Avg
0
20
35
27.5
41
41.0
36
38
37.0
5
10
10
8
9.3
12
10 13
11.7
11
9
10.0
15
1
1
1
1.0
3
2
3
2.7
6
0
1
2.3
30
0
0
0.0
0
0
0
0.0
0
0
1
0.3
60
0
0
0
0.0
0
0
0.0
0
1
2
1.0
120
0
0
0.0
1
0
1
0.7
0
0
0
0.0
240
0
0
0.0
0
0
0
0.0
0
0
0
0.0
SD
%SD
%Dest
cfuA x 10 3
SD
%SD
%Dest
cfuA x 10 3
SD
%SD
%Dest
cfuA. x 10 3
0
7.5
27.3%
0.0%
275.0
0.0
0.0%
0.0%
410.0
1.0
2.7%
0.0%
370.0
5
0.9
101%
66.1%
93.3
1.2
10.7%
71.5%
116.7
1.0
10.0%
73.0%
100 0
15
0.0
0.0%
96.4%
10.0
0.5
17.7%
93.5%
26.7
2.6
112.5%
93.7%
23.3
30
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.5
141.4%
99.1%
3.3
0.0
0.0%
100.0%
0.0
0.0
00%
100.0%
0.0
0.8
81.6%
97.3%
10 0
12d
0.0
0.0%
100.0%
0.0
0.5
70.7%
98.4%
6.7
0.0
0.0%
100.0%
0.0
240|
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Rose Bengal, Set #2
Sunlight I
pH = 10)
Time
24 (5.0 mq/L)
25 (10.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
862.75
852.83
801.17
784.23
744.26
734.34
648.49
631.55
60
697.25
687.33
599.03
582.09
560.98
551.06
502.14
485.20
240
606.15
596.23
487.58
470.64
528.31
518.39
451.43
434.49
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
374.94
374.94
2.27
2.09
339.75
339.75
2.16
1.86
60
349.96
349.96
1.96
1.66
372.62
372.62
1.48
1.30
240
371.68
371.68
1.60
1.27
333.51
333.51
1.55
1.30
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
509 ppb
356 ppb
483 ppb
312 ppb
432 ppb
268 ppb
456 ppb
268 ppb
60
402 ppb
239 ppb
409 ppb
231 ppb
313 ppb
183 ppb
295 ppb
163 ppb
240
342 ppb
174 ppb
324 ppb
156 ppb
292 ppb
153 ppb
313 ppb
163 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
TOO
TOO
TOO
TOO
TOO
TOO
60
0.79
0.67
0.85
0.74
0.72
0.68
0.65
0.61
240
0.67
0.49
0.67
0.50
0.67
0.57
0.69
0.61
E. coli
(cfu/L)x10 ‘
A
B
C
Av o
A
B
C
A vo
0
28
33
28
29.7
15
35
30
26.7
5
25
20
17
20.7
14
14
13
13.7
15
10
14
12.0
7
8
7
7.3
30
1
0
5
2 0
0
2
TO
60
1
0
05
0
0
0
0.0
120
0
0
0
0.0
0
0
0
0.0
240
0
0
0
0.0
0
0
0
0.0
SD
%SD
%Dest
cfuA x 10 3
SD
%SD
%Dest
cfuA x 10 3
0
2.4
7.9%
0.0%
296.7
8.5
31.9%
0.0%
266.7
5
3.3
16.0%
30.3%
206.7
0.5
3.4%
48.8%
136.7
15
2.0
16.7%
59.6%
120.0
0.5
6.4%
72.5%
73.3
30
2.2
108.0%
93.3%
20.0
TO
100.0%
96.3%
10.0
60
0.5
100.0%
98.3%
5.0
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
00
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Rose Bengal, Set #2
SUNLIGHT (pH = 7)
Time
26 (control)
27 (0.1 mg/L)
28 (1.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
0
864 13
854.21
809.32
792.38
852.56
842.64
789.10
772.16
825.63
815.71
767.38
750.44
60
776.6
766.68
720.84
703.90
798.11
788.19
732.69
715.75
725.34
715.42
666.00
649.06
240
691.55
681.63
595.69
578.75
669.48
659.56
584.35
567.41
704.98
695 06
623.97
607.03
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
352.43
352.43
2.42
2.25
37682
376.82
2.24
2.05
367.78
367.78
2.22
2.04
60
379.11
379.11
2.02
1.86
364.01
364.01
2.17
1.97
377.57
377.57
1.89
1.72
240
397.27
397.27
1.72
1.46
367.12
367.12
1.80
1.55
369.06
369.06
1.88
1.64
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
510 ppb
361 ppb
518 ppb
341 ppb
503 ppb
349 ppb
474 ppb
304 ppb
485 ppb
336 ppb
469 ppb
302 ppb
60
453 ppb
309 ppb
423 ppb
268 ppb
467 ppb
316 ppb
457 ppb
288 ppb
420 ppb
278 ppb
393 ppb
242 ppb
240
398 ppb
237 ppb
351 ppb
192 ppb
383 ppb
230 ppb
370 ppb
209 ppb
407 ppb
253 ppb
390 ppb
228 ppb
Normalized Concentrations
Benzene
Toluene Benzene Ref
Toluene Ref
Benzene
Toluene Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00 1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.89
0.86 0.82
0.78
0.93
0.91
0.96
0.95
0.87
0.83
0.84
0.80
240
0.78
0.66 I 0 68
0.56
0 76
0.66
0.78
0.69
084
0.75
0.83
0.75
E. coll
(cfu/L)x10 4
A B
C
Ava
A
B
C Av q
A
B
C
Ava
0
88
96
92.0
96
85
100 93.7
93
86
89.5
5
86 87
96
89.7
78
81
79 5
78
87
85
83.3
15
72
73
72.5
87
61
74.0
30
46
36
48
433
41
45
43
43.0
22
31
26.5
60
0
0
0.0
0
0
4
1.3
0
0
0
0.0
120
0
0
0
0.0
0
0
0
0.0
0
0
0
0.0
240
0
0
0.0
0
0
0
0.0
2
0
0
0.7
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
4.0
4.3%
0.0%
920.0
6.3
6.8%
0.0%
936.7
3.5
3.9%
0.0%
895.0
4.5
5.0%
2.5%
896.7
1.5
1.9%
15.1%
795.0
3.9
4,6%
6.9%
833.3
15
0.5
0.7%
21.2%
725.0
13 0
17.6%
17.3%
740.0
5.2
12.1%
52.9%
433.3
1.6
3.8%
54.1%
430.0
4.5
17.0%
70.4%
265.0
0.0
0.0%
100.0%
0.0
1.9
141.4%
98.6%
13.3
0.0
00%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240(| 0.0
0.0%
100.0%
0.0
0.0
0.0%
100 0%
00
0.9
141.4%
99.3%
6.7

Rose Bengal, Set #2
SUNLIGHT (pH = 7)
Time
29 (5.0 mg/L)
30 (10.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
0
749.46
739.54
706.96
690.02
788.38
778.46
696.46
679.52
60
706 98
697.06
620.62
603.68
705.08
695.16
634.03
617 09
240
652.51
642.59
549,89
532.95
535.89
525.97
453.93
436.99
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
325.57
325.57
2.27
2.12
351.57
351.57
2.21
1 93
60
353.25
353.25
1.97
1.71
368.49
368.49
1.89
1.67
240
364.00
364.00
1.77
1.46
367.72
367.72
‘ 1.43
1.19
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
436 ppb
301 ppb
482 ppb
317 ppb
461 ppb
295 ppb
469 ppb
282 ppb
60
408 ppb
251 ppb
412 ppb
240 ppb
407 ppb
259 ppb
391 ppb
233 ppb
240
372 ppb
210 ppb
362 ppb
194 ppb
296 ppb
155 ppb
283 ppb
142 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1 00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.94
083
0.85
0.76
0.88
0.88
0.83
0.83
240
0.85
070 0.75
0.61
0.64
0.52
0.60
0.50
E. coli
(cfu/L)x10 4
A
B C
Avg
A
B
C
Avg
0
81
88
98
89.0
99
99
990
5
71
80
67
72.7
65
57
59
60.3
15
60
60
60.0
23
21
29
243
30
7
8
7.5
1
0
1
0.7
60
0 .
0
0
0.0
0
0
1
0.3
120
0
3
0
1.0
0
0
0
0.0
240
0
0
0
0.0
0
0
0
0.0
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
7.0
7.8%
0.0%
890.0
0.0
0.0%
0.0%
990.0
5
5.4
7.5%
18.4%
726.7
3.4
5.6%
39.1%
603.3
15
0.0
0.0%
32 6%
600 0
3.4
14.0%
75.4%
243.3
30
0.5
6.7%
91.6%
75.0
0.5
70.7%
99.3%
6.7
60
0.0
0.0%
100.0%
0.0
0.5
141.4%
99.7%
3.3
120
1.4
141.4%
98.9%
10.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Rose Bengal, Set #2
Dark (pH =10)
Time
31 (control)
32 (0.1 mg/L)
33 (1.0 mq/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BA di Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
0
590.12
563.32
487.77
460.41
680.42
653.62
536.61
509.25
706.87
680.07
553.66
526.30
60
644.47
617.67
480.39
453.03
600.22
573.42
478.95
451.59
602.04
575.24
467 65
440.29
240
582.61
555.81
466.88
439.52
120.86
94.06
51 42
24,06
569.7
542.90
455 38
428.02
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
377.75
366.20
1.54
1.26
371.16
359.61
1.82
1.42
364.39
352.84
1.93
1.49
60
382.62
371.07
1.66
1 22
326.42
314.87
1.82
1.43
371.93
360.38
1.60
1.22
240
349.9
338.35
1.64
1.30
356.95
345,40
0.27
0.07
363.17
351.62
1.54
1.22
—
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
321 ppb
168 ppb
309 ppb
155 ppb
380 ppb
197 ppb
375 ppb
185 ppb
397 ppb
207 ppb
401 ppb
199 ppb
60
356 ppb
164 ppb
339 ppb
148 ppb
327 ppb
163 ppb
376 ppb
188 ppb
329 ppb
157 ppb
322 ppb
148 ppb
240
316 ppb
156 ppb
333 ppb
163 ppb
15 ppb
1 PPb
9 ppb
1 PPb
307 ppb
150 ppb
310 ppb
147 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1,00
1.00
1.00
1.00
1,00
1.00
1.00
1.00
1.00
1.00
1.00
60
1.11
0.97
1.10
0.96
0.86
0.83
1.00
1.02
0.83
0.76
0.80
0,74
240
0.98
0.93
1.08
1.05
0.04
0.01
0.02
0.01
0.77
0.72
0,77
0.74
(cfu/L)x10 4
E. coli
A
B
C
Ava
A
B
C
Avq
A
8
C
Avq
0
87
95
91 0
74
69
71.5
88
97
92.5
5
91
91.0
51
51.0
96
102
99.0
15
105
105.0
92
92.0
76
76.0
30
78
97
87.5
79
62
69
70.0
100
87
88
91.7
60
65
79
71
71.7
64
52
89
68.3
68
104
91
87.7
120
59
97
70
75.3
47
55
51.0
74
72
82
76.0
240
21
21
20
20.7
4
8
3
5.0
45
35
40.0
SO
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
4.0
4.4%
0.0%
910.0
2.5
3.5%
0.0%
715.0
4.5
4,9%
0.0%
925.0
5
0.0
0.0%
0.0%
910.0
0.0
0.0%
28.7%
510.0
3.0
3.0%
0.0%
990.0
15
0.0
0.0%
0.0%
1050 0
0.0
0.0%
0.0%
920.0
0.0
0.0%
17.8%
760.0
30
9.5
10.9%
3.8%
875.0
7.0
10.0%
2.1%
700.0
5.9
6.4%
0.9%
916.7
60
5.7
8.0%
21.2%
716.7
15.4
22 6%
4.4%
683.3
14.9
17.0%
5.2%
876.7
120
16.0
21.2%
17.2%
753.3
4.0
7.8%
28.7%
510.0
4.3
5.7%
17.8%
760.0
240
0.5
2.3%
77.3%
206.7
2.2
43.2%
93.0%
500
5.0
12.5%
56.8%
400.0

Rose Bengal, Set #2
Dark (pH =10)
Time
(minutes)
34 (5.0 ma/L)
35 (10.0 mg/L)
Benz Area
BAdi Area Tot Area
TAdi Area
BAdi Area
To 1 Area
TAdi Area
0
674.83
648.03 561.69
534.33
678.31
651.51
550.03
522.67
60
648.05
621.25 515.65
488.29
610.81
584.01
507.99
480 63
240
515.27
488.47 I 388.30
360.94
538.94
512.14
416.51
389.15
0
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
370.38
358.83
1.81
1.49
344.08
332.53
1.96
1.57
60
368.04
356.49
1.74
1.37
359.48
34793
1.68
1.38
240
368.56
357.01
1.37
1.01
340.87
329.32
1.56
1.18
—
Concentrations
—
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
376 ppb
211 ppb
372 ppb
198 ppb
378 ppb
205 ppb
408 ppb
214 ppb
60
359 ppb
185 ppb
357 ppb
176 ppb
334 ppb
180 ppb
342 ppb
178 ppb
240
272 ppb
111 ppb
269 ppb
108 ppb
287 ppb
127 ppb
313 ppb
140 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
q
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
095
0.87
0.96
0.89
0.88
0.88
0.84
0.83
240
0.72
0.52
0.72
0.55
0.76
0.62
0.77
0 66
E. coli
(cfu/L)x10 ‘
A
B
C
Avg
A
B
C
Ava
0
95
110
88
97.7
94
83
94
90.3
5
91
81
81
84.3
101
97
92
96.7
15
95
100
110
101.7
81
106
81
89.3
30
100
100.0
84
100
92.0
60
101
77
100
92.7
78
69
59
68 7
120
74
61
68
67.7
42
43
48
44.3
240
23
28
36
29.0
10
18
14
14.0
SD
%SD
%Dest
cfuA. x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
9.2
9.4%
0.0%
976.7
5.2
5.7%
0.0%
903 3
5
4.7
5.6%
13.7%
843.3
3.7
3.8%
0.0%
966 7
15
6.2
6.1%
0.0%
1016.7
11.8
13.2%
1.1%
893.3
30
0.0
0.0%
0.0%
1000.0
8.0
8.7%
0.0%
920.0
60
11.1
12.0%
5.1%
926.7
7.8
11.3%
24.0%
686 7
120
5.3
7.9%
30.7%
676.7
2.6
5.9%
50.9%
443.3
240
5.4
18.5%
70.3%
290.0
3.3
23.3%
84.5%
140.0

Rose Bengal, Set #2
DARK (pH =7)
Time
36
(control)
37(0.1 mg/L)
38 (1.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
761.26
752.05
625.47
614,85
751 55
742.34
611.83
601.21
684.52
675.31
585.87
575.25
60
757.38
748.17
614.48
603.86
657.78 T 648.57
54527
534.65
696.99
687.78
585.57
574.95
240
656.07
646.86
500.63
490.01
616.33 T 607.12
48T29 470.67
585.89
57668
47451
463.89
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
383.65
369.99
2.03
1 66
358 12
344.46
2.16
1.75
380.51
366 85
1.84
1.57
60
364.26
350.60
2.13
1.72
320.35
30669
2.11
1.74
357.87
344.21
2 00
1.67
240
375.79
362.13
1.79
1 35
345.49
331.83
1.83
1.42
359.73
346.07
1.67
134
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
444 ppb
258 ppb
426 ppb
231 ppb
437 ppb
250 ppb
455 ppb
247 ppb
394 ppb
235 ppb
380 ppb
213 ppb
60
441 ppb
252 ppb
450 ppb
242 ppb
376 ppb
211 ppb
445 ppb
246 ppb
402 ppb
235 ppb
418 ppb
233 ppb
240
375 ppb
186 ppb
367 ppb
173 ppb
349 ppb
174 ppb
378 ppb
185 ppb
329 ppb
170 ppb
339 ppb
170 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.99
0.98
1 06
1.05
0.86
0.85
0.98
1.00
1.02
1.00
1.10
1.09
240
0.85
0.72
0.86
0.75
0 80
0.70
083
0.75
0.84
0.73
0 89
0.80
E. coli
(cfu/L)x10 4
A
8
C
Avq
A
B
C
Avq
A
8
c
Avq
0
67
76
71 5
73
74
83
76.7
94
91
83
89.3
5
89
84
89
87.3
80
98
98
92.0
91
88
89.5
15
95
96
75
88.7
80
84
103
890
87
82
84.5
30
53
74
82
69.7
66
72
77
71.7
97
80
88.5
60
59
52
67
59.3
77
78
80
78.3
98
75
108
93.7
120
76
51
63
63.3
70
52
70
64.0
56
58
81
65.0
240
60
76
58
64.7
59
65
68
64.0
5
8
7 ~
6.7
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
4.5
6.3%
0.0%
715.0
4.5
5.9%
0.0%
766.7
4.6
5.2%
0.0%
893.3
5
2.4
2.7%
0.0%
873.3
8.5
9.2%
0.0%
920.0
1.5
1.7%
0.0%
895.0
15
97
10.9%
0.0%
886.7
10.0
11.3%
0.0%
890.0
2.5
3.0%
5.4%
845.0
30
12.2
17.6%
2.6%
696.7
4.5
6.3%
6.5%
716.7
8.5
9.6%
0.9%
885.0
60
6.1
10.3%
17.0%
593.3
1.2
1.6%
0.0%
7833
138
14 8%
0.0%
936.7
120
10.2
16.1%
114%
633.3
8.5
13.3%
16.5%
640.0
11.3
17.5%
27.2%
650.0
240
8.1
12.5%
9.6%
646.7
3.7
5.8%
16.5%
640.0
1.2
18.7%
92.5%
66.7

Rose Bengal, Set #2
DARK (pH =7)
Time
39
(5.0 mg/L)
40 (10.0 mg/L)
(minutes)
Benz Area
BA di Area
Tol Area
TAdj Area
Benz Area
BAdi Area
Tol Area
TAdj Area
0
727.44
718.23
590.23
579.61
550.94
541.73
454.45
443.83
60
681.16
671.95
548.55
537.93
562.37
553.16
444.40
433.78
240
557.28
548.07
431.52
420.90
527.75
518.54
406.74
396.12
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
340.85
327.19
2.20
1.77
350.87
337.21
1.61
1.32
60
360.1
346.44
1.94
1.55
339.22
325.56
1.70
1.33
240
384.63
370.97
1.48
1.13
431.29
417.63
1.24
0.95
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
422 ppb
237 ppb
464 ppb
252 ppb
307 ppb
159 ppb
325 ppb
166 ppb
60
392 ppb
213 ppb
404 ppb
210 ppb
314 ppb
153 ppb
347 ppb
169 ppb
240
311 ppb
146 ppb
294 ppb
132 ppb
292 ppb
131 ppb
239 ppb
97 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1 00
1,00
1.00
1.00
1,00
1.00
1.00
1.00
60
0.93
0.90
0.87
084
1.02
0.96
1.07
1.02
240
0.74
0.61
0.63
0.52
0.95
0.83
0.73
058
E. coli
(cfu/L )x 10 4
A
B
C
Avq
A
B
C
Av Q
0
86
85
88
86.3
101
91
102
98.0
5
90
62
99
83.7
65
62
75
67.3
15
87
87
87.0
68
78
73.0
30
77 _
77
83
79.0
65
50
78
64 3
60
74
76
94
81.3
96
69
90
85.0
120
86
87
97
90.0
62
58
54
58.0
240
68
61
72
670
39
48
45
44 0
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
1.2
1.4%
0.0%
863.3
5.0
5.1%
0.0%
980.0
5
15.8
18.8%
3.1%
836.7
5.6
8.3%
31.3%
673.3
15
0.0
0.0%
0.0%
870.0
5.0
6.8%
25.5%
730.0
30
2.8
3.6%
8.5%
790.0
11.4
17.8%
34.4%
643.3
60
9.0
11.1%
5.8%
813.3
11.6
13.6%
13.3%
850.0
120
5.0
5.5%
0.0%
900.0
3.3
5.6%
40.8%
580.0
240
4.5
6.8%
22.4%
670.0
3.7
8.5%
55.1%
440.0

Mixed, Set #2
SUNLIGHT
Time
41 (control)
42 (0.01 %TiO,)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
1042.37
1036.08
862.76
847.01
876.7
870.41
717.50
701.75
30
889.13
882.84
724.92
709.17
775.78
769.49
590.13
574.38
120
976.33
970.04
746.99
731.24
333.25
326.96
235.13
219.38
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
440.31
432.03
2.40
1.96
499.51
491.23
1.77
1.43
30
504.03
495.75
1.78
1.43
440.95
432.67
1.78
1.33
120
446.62
438.34
2.21
1.67
432.5
424.22
0.77
0.52
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
853 ppb
605 ppb
304 ppb
242 ppb
700 ppb
480 ppb
199 ppb
122 ppb
30
711 ppb
486 ppb
200 ppb
122 ppb
606 ppb
370 ppb
200 ppb
99 ppb
120
792 ppb
505 ppb
273 ppb
176 ppb
197 ppb
63 ppb
30 ppb
1 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
30
0.83
0.80
0.66
0.51
0.87
0.77
1.01
0.81
120
0.93
0.83
0.90
0.73
0.28
0.13
0.15
0.01
25-Apr-98
E. coli
(cfu/L)x 10 4
A
B I C
Avg
A B
C
Avg
0
90
87
120
99.0
85
123
123
110.3
5
106
101
106
104.3
56
60
65
60.3
15
88
110
100
99.3
13
14
19
15.3
30
59
46
61
55.3
0
0
0
0.0
60
2
4
6
4.0
0
0
0
0.0
120
0
0
0
0.0
0
0
0.0
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
14.9
15.1%
0.0%
990.0
17.9
16.2%
0.0%
1103.3
5
2.4
2.3%
0.0%
1043.3
3.7
6.1%
45.3%
603.3
15
9.0
9.1%
0.0%
993.3
2.6
17.1%
86.1%
153.3
30
6.6
12.0%
44.1%
553.3
0.0
0.0%
100.0%
0.0
60
1,6
40.8%
96.0%
40.0
0.0
0.0%
100.0%
0.0
120]
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Mixed, Set #2
SUNLIGHT
Time
43 (5.0 me
/L Methylene Blue)
44 (0.01% TiO, & 5.0 mg/L Methylene Blue)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
965.83
959.54
793.42
777.67
1119.99
1113.70
959.30
943.55
30
935.53
929.24
713.90
698.15
784.42
778.13
612.19
596.44
120
866.51
860.22
683.13
667.38
670.21
663.92
507.85
492.10
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
510.94
502.66
1.91
1.55
442.3
434.02
2.57
2.17
30
476.95
468.67
1.98
1.49
473.62
465.34
1.67
1.28
120
437.42
429.14
2.00
1.56
426.42
418.14
1.59
1.18
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
782 ppb
545 ppb
222 ppb
149 ppb
925 ppb
689 ppb
333 ppb
290 ppb
30
754 ppb
477 ppb
234 ppb
136 ppb
614 ppb
389 ppb
182 ppb
89 ppb
120
690 ppb
450 ppb
238 ppb
151 ppb
508 ppb
299 ppb
168 ppb
65 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
30
0.96
0.87
1.06
0.91
0.66
0.56
0.55
0.31
120
0.88
0.83
1.07
1.01
0.55
0.43
0.50
0.22
E. coli
(cfu/L)x 10 4
A
B
C
Avo
A
B
C
Avo
0
109
105
135
116.3
115
121
78
104.7
5
17
14
11
14.0
3
2
2
2.3
15
2
0
3
1.7
0
0
1
0.3
30
0
0
0
0.0
0
0
0.0
60
0
0
0.0
0
0
0
0.0
120
0
0
0
0.0
0
0
0.0
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
13.3
11.4%
0.0%
1163.3
19.0
18.2%
0.0%
1046.7
5
2.4
17.5%
88.0%
140.0
0.5
20.2%
97.8%
23.3
15
1.2
74.8%
98.6%
16.7
0.5
141.4%
99.7%
3.3
30
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
60
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
l

Mixed, Set #2
DARK
Time
45
(control)
46 (0.01 %TiO,)
(minutes)
Benz Area
BAdj Area
Tol Area
TAdj Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
1043.72
1025.81
1024.74
984.46
1132.27
1114.36
1091.14
1050.86
30
1027.73
1009.82
1014.72
974.44
1040.87
1022.96
982.29
942.01
120
941.28
923.37
904.12
863.84
975.06
957.15
892.78
852.50
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
233.05
233.05
4.40
4.22
239.72
239.72
4.65
4.38
30
237.55
237.55
4.25
4.10
247.04
247.04
4.14
3.81
120
348.46
348.46
2.65
2.48
247.81
247.81
3.86
3.44
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
740 ppb
326 ppb
671 ppb
310 ppb
810 ppb
351 ppb
710 ppb
322 ppb
30
727 ppb
322 ppb
647 ppb
300 ppb
738 ppb
309 ppb
629 ppb
277 ppb
120
660 ppb
279 ppb
391 ppb
173 ppb
686 ppb
275 ppb
585 ppb
248 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
30
0.98
0.99
0.96
0.97
0.91
0.88
0.89
0.86
120
0.89
0.86
0.58
0.56
0.85
0.78
0.82
0.77
E. coli
(cfuA)x 10 4
A
e
C
Avq
A
B
C
Avq
0
97
117
93
102.3
122
122.0
5
89
110
99.5
133
99
116.0
15
123
123.0
116
116.0
30
119
92
105.5
77
77.0
60
129
129.0
#DIV/0!
120
115
115.0
133
133.0
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
10.5
10.3%
0.0%
1023.3
0.0
0.0%
0.0%
1220.0
5
10.5
10.6%
2.8%
995.0
17.0
14.7%
4.9%
1160.0
15
0.0
0.0%
0.0%
1230.0
0.0
0.0%
4.9%
1160.0
30
13.5
12.8%
0.0%
1055.0
0.0
0.0%
36.9%
770.0
60
0.0
0.0%
0.0%
1290.0
#DIV/0!
#DIV/0!
#DIV/0!
#DIV/0!
120
0.0
0.0%
0.0%
1150.0
0.0
0.0%
0.0%
1330.0

Mixed, Set #2
DARK
Time
47 (5.0 me
/L Methylene Blue)
48(
0.01 % TiO, & 5.0 mq/L Methylene Blue)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
1064.96
1047.05
1075.14
1034.86
1025.58
1007.67
963.18
922.90
30
999.59
981.68
966.09
925.81
962.12
944.21
925.41
885.13
120
937.79
919.88
585.02
544.74
951.35
933.44
892.19
851.91
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
219.05
219.05
4.78
4.72
176.595
176.60
5.71
5.23
30
228.3
228.30
4.30
4.06
242.91
242.91
3.89
3.64
120
248.81
248.81
3.70
2.19
237.23
237.23
3.93
3.59
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
757 ppb
345 ppb
731 ppb
349 ppb
726 ppb
302 ppb
879 ppb
388 ppb
30
705 ppb
303 ppb
655 ppb
296 ppb
676 ppb
287 ppb
589 ppb
264 ppb
120
657 ppb
156 ppb
559 ppb
150 ppb
668 ppb
275 ppb
596 ppb
260 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
30
0.93
0.88
0.90
0.85
0.93
0.95
0.67
0.68
120
0.87
0.45
0.76
0.43
0.92
0.91
0.68
0.67
E. coli
(cfuA)x 10 4
A
B
C
Avq
A
B
C
A vp
0
94
115
104.5
125
120
122.5
5
93
96
94.5
76
110
88
91.3
15
100
100.0
125
98
96
106.3
30
88
88.0
117
117.0
60
76
76.0
80
101
101
94.0
120
82
82.0
79
81
93
84.3
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
10.5
10.0%
0.0%
1045.0
2.5
2.0%
0.0%
1225.0
5
1.5
1.6%
9.6%
945.0
14.1
15.4%
25.4%
913.3
15
0.0
0.0%
4.3%
1000.0
13.2
12.4%
13.2%
1063.3
30
0.0
0.0%
15.8%
880.0
0.0
0.0%
4.5%
1170.0
60
0.0
0.0%
27.3%
760.0
9.9
10.5%
23.3%
940.0
120
0.0
0.0%
21.5%
820.0
6.2
7.3%
31.2%
843.3

Methylene Blue, Set #3
2-May-98 | Sunliaht (dH=10)
Time
1
(control)
2 (0.1 mq/L)
3
1.0 mq/L)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
929.33
917.29
588.79
564.14
905.66
893.62
592.88
568.23
932 96
920.92
623.58
598.93
60
857.16
845.12
541.35
516.70
829 32
817.28
545.65
521.00
802.59
790 55
527.28
502.63
240
746.36
734.32
460.56
435.91
679.23
667.19
409 84
385.19
670.62
658.58
404.19
379.54
Chlorobenzene
Raw Area Adi Area Benzene Ref i Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
449.80
433.78
2.11
1.30
445.04
429.02
2.08
1 32
431 08
415.06
2.22
1.44
60
400 05
384.03
2.20
1.35
466.55
450.53
1.81
1.16
437.6
421 58
1 88
1.19
240
454.24
438.22
1.68
0.99
446.26
430.24
1.55
0.90
465.18
449.16
1.47
0.84
—
Concentrations
Benzene
Toluene
Benzene Ref ; Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
472 ppb
163 ppb
466 ppb 168 ppb
457 ppb
165 ppb
457 ppb
172.2 ppb
474 ppb
178 ppb
493 ppb
194 ppb
60
427 ppb
142 ppb
488 ppb 176 ppb
409 ppb
144 ppb
387 ppb
141.5 ppb
393 ppb
136 ppb
403 ppb
148 ppb
240
358 ppb
107ppb
351 ppb 112ppb
316 ppb
85 ppb
319 ppb
93.8 ppb
310 ppb
82 ppb
297 ppb
85 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene Toluene
Benzene Ref Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00 . 1.00
1.00
1.00
1.00
1.00
60
0.90
0.87
1.05
1.05
0.90
0.87
0.85 0.82
0.83
0.76
0.82
0.76
240
0.76
0.66
0.75
0.67
0.69
0.51
0.70 0.54
0,66
0,46
0.60
0.44
E. coll
(cfu/L)x10 '
A
B
C Ava
A
B
C
Avg
A
B
C
Avg
0
89
77 83.0
120
97
108 5
94
109
88
97.0
5
90
48 .
69.0
7
6
6.5
0
0
0.0
15
41
35
38.0
0
0
1
03
o
0
0
0.0
30
9
6
6
7.0
2
1
0
1.0
0
0
0
0.0
60
0
0
0
0.0
0
0
0
0.0
0
0
0
0.0
120
0
0.0
0
0
0.0
0
0.0
240
0
0
0.0
0
0.0
0
0
0.0
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfuA. x 10*3
0
6.0
7.2%
0.0%
830.0
11.5
10.6%
0.0%
1085.0
8.8
9.1%
0.0%
970.0
5
21.0
30.4%
16.9%
690.0
0.5
7 7%
94.0%
65.0
0.0
0.0%
100.0%
0.0
15
3.0
7.9%
54.2%
380.0
0.5
141.4%
99.7%
3.3
0.0
0.0%
100.0%
0.0
30
1.4
20.2%
91.6%
70.0
0.8
81.6%
99 1%
10.0
00
0.0%
100.0%
0.0
60
00
0.0%
100.0%
00
0.0
0.0%
100.0%
0.0
0.0
0.0%
100 0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Methylene Blue, Set #3
Sunlight
pH=10)
I
Time
4 (5.0 mg/L)
5(10.0 mq/L)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BA di Area
Tol Area
TAdi Area
0
93900
92696
601.09
57644
938.8
926.76
573.88
549.23
60
732.48
720.44
460.75
436.10
816.62
804.58
546.37
521.72
240
675.26
663.22
399.64
374.99
709.36
697.32
429.83
405.18
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
480.63
464.61
2.00
1.24
424.58
408.56
2.27
1.34
60
456.75
440.73
1.63
0.99
458 00
441.98
1.82
1.18
240
453.47
437.45
1.52
0.86
451.81
435.79
1.60
0.93
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
478 ppb
168 ppb
435 ppb
157 ppb
478 ppb
156 ppb
506 ppb
176 ppb
60
349 ppb
107 ppb
341 ppb
111 ppb
401 ppb
144 ppb
389 ppb
146 ppb
240
313 ppb
80 ppb
310 ppb
87 ppb
335 ppb
94 ppb
332 ppb
100 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1 00
1 00
1.00
1.00
1 00
1,00
1.00
1.00
60
0.73
0.64
0.78
0,71
0.84
0.92
0.77
083
240
0.66
048
0.71
0.55
0.70
0.60
0.66
0.57
E. coli
(cfuA.)x10 4
A
B
C
Ava
A
B
C
Avg
0
92
92
90
91 3
77
77.0
5
2
0
1.0
0
0
0
0.0
15
0
1
0
0.3
0
0
0
0.0
30
0
0
0
00
0
0
0
0.0
60
0
0
00
0
0
0
0.0
120
0
0
0.0
0
0
0.0
240
0
0
0
0.0
0
0
0
0.0
SD
%SD
%Dest
cfuA. x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
0.9
1.0%
0.0%
913.3
0.0
0.0%
0.0%
770.0
5
1.0
100.0%
98.9%
10.0
0.0
0.0%
100.0%
0.0
15
0.5
141.4%
99.6%
3.3
0.0
0.0%
100.0%
0.0
30
0.0
0.0%
100.0%
0.0
0.0
0.0%
100 0%
0.0
60
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
|
I

Methylene Blue, Set #3
3-May-98 l SUNLIGHT (pH = 7)
Time
6
(control)
7 (0.1 mg/L)
8
(1.0 mg/L)
(minutes)
Benz Area
BA di Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
0
810.67
802.84
529.91
522.72
789.58
781.75
504.44
497.25
810.42
802.59
522.81
515.62
60
609.55
601.72
363.63
356.44
735.25
727.42
450.67
443.48
660.97
653.14
412.80
405.61
240
615.42
607.59
386.32
379.13
578.21
570.38
349.59
342.40
553.14
545.31
329.12
321.93
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
461.1
452.49
1.77
1.16
443.47
434.86
1.80
1.14
429.2
420.59
1.91
1.23
60
376.93
368.32
1.63
0.97
431.43
422.82
1.72
1.05
462.25
453.64
1.44
0.89
240
487.27
478.66
1.27
0.79
442.65
434.04
1.31
0.79
438.75
430.14
1.27
0.75
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
400.34
144.89
377.0 ppb
141.3 ppb
387.20
133.76
383.1 ppb
139.1 ppb
400.18
141.79
411.9 ppb
154.2 ppb
60
275.02
72.24
340.4 ppb
107.0 ppb
353.34
110.27
363.0 ppb
121.8 ppb
307.06
93.73
289.9 ppb
93.6 ppb
240
278.68
82.16
245.5 ppb
74.9 ppb
255.49
66.11
257.1 ppb
74.3 ppb
239.87
57.17
245.1 ppb
66.9 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.69
0.50
0.90
0.76
0.91
0.82
0.95
0.88
0.77
0.66
0.70
0.61
240
0.70
0.57
0.65
0.53
0.66
0.49
0.67
0.53
0 60
0.40
0.59
0.43
E. coli
(cfu/L)x10 '
A B
C
Avq
A
B C Avq
A B
C
Avq
0
49
49.0
41
37 39.0
59 67
87
71.0
5
44
45
44.5
21
21.0
5
1
7
4.3
15
11
11.0
1
3
2.0
0
0
0
0.0
30
5
5
2
4.0
0
0.0
0
0
0
0.0
60
0
1
0.5
0
2
0
0.7
120
0
0
0
0.0
0
0
0
0.0
0
0
0.0
240
0
0
0
0.0
0
0
0
0.0
0
0
0.0
SD
%SD
%Dest
cfuA. x 10 3
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfuA. x 10 3
0
0.0
0.0%
0.0%
490.0
2.0
5.1%
0.0%
390.0
11.8
16.6%
0.0%
710.0
5
0.5
1.1%
9.2%
445.0
0.0
0.0%
46.2%
210.0
2.5
57.6%
93.9%
43.3
15
0.0
0.0%
77.6%
110.0
1.0
50.0%
94.9%
20.0
0.0
0.0%
100.0%
0.0
30
1.4
35.4%
91.8%
40.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
60
0.5
100.0%
99.0%
5.0
0.9
141.4%
98.3%
6.7
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Methylene Blue, Set #3
SUNLIGHT (pH = 7)
Time
9 (5,0 mq/L)
10(10.0 mq/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area I To 1 Area
TAdi Area
0
899 48
891.65
557.80
550.61
788.72
780.89 ! 519.03
511.84
60
694.35
686.52
43199
424.80
710.24
702.41 430.57
423.38
240
590,11
582.28
340.89
333.70
612.24
604.41 361.79
354.60
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
497.25
488.64
1.82
1.13
436.14
427.53
1.83
1 20
60
471.85
463.24
1.48
092
452 13
443.52
1.58
095
240
435.37
426.76
1.36
0.78
463.25
454 64
1.33
0.78
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
455.67
157.08
390.2 ppb
136.1 ppb
386 66
140.14
390.6 ppb
148 9 ppb
60
327.86
102.11
300 9 ppb
97.7 ppb
337.76
101.49
327.4 ppb
104.6 ppb
240
262.91
62.31
270.3 ppb
73.1 ppb
276.70
71.44
261.1 ppb
72.7 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
100
TOO
TOO
TOO
TOO
TOO
TOO
TOO
60
0.72
065
0.77
0.72
0.87
0.72
0.84
0.70
240
0.58
0.40
0 69
0.54
0.72
0.51
0.67
0.49
E. coli
(cfu/L)x10 4
A
B
C
Ava
A
8
C
Av g
0
43
52
475
16
19
175
5
0
0
0.0
0
0
0.0
15
.. o _
2
4
2.0
0
0
0.0
30
0 .
0
0
0.0
0
0
0.0
60
0
0
0.0
0
0
0
0.0
120
0
0
0
0.0
0
0
0.0
240
0
0.0
0
0
0
0.0
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
4.5
9.5%
0.0%
475.0
1.5
8.6%
0.0%
175.0
5
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
15
1.6
81.6%
95 8%
20.0
00
0.0%
100.0%
00
30
0.0
0.0%
100.0%
00
0.0
0.0%
100.0%
0.0
60
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100 0%
0.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0,0%
100.0%
0.0

Methylene Blue, Set #3
29-Apr-98 I Dark (pH =10)
Time
11 (control)
12(0.1 mg/L)
13 (1.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
970.04
962.21
573.84
566.65
947.79
939.96
573.40
566.21
977.62
969 79
585.73
578.54
60
991.53
983.70
588.45
581.26
912.19
904.36
539.88
53269
827.96
820.13
482.50
475.31
240
834.91
827.08
494.06
486.87
836.13
828.30
484.19
477.00
802.33
794.50
466.36
459.17
Chlorobenzene
Raw Area
Adj Area
Benzene Ref \ Toluene Ref
Raw Area Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0|| 427,27
418 66
2.30 1.35
443.62 435.01
2.16
1 30
421.46
412.85
2 35
1.40
60
449.74
441.13
2.23 1.32
439.83 431.22
2.10
1.24
428.65
420.04
1.95
1.13
240
430.73
422.12
1.96 1.15
440.35 431.74
1.92
1.10
444.25
435,64
1.82
1.05
Concentrations
Benzene I Toluene
Benzene Ref
Toluene Ref
Benzene Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
499.64 164.09
513.5 ppb
177.5 ppb
485,78 163.89
477.7 ppb
168.0 ppb
504.36
169.28
526.7 ppb
186.3 ppb
60
513.03 170.47
495.7 ppb
171.0 ppb
463.59 149.25
461 1 ppb
155.9 ppb
411.11
124.18
423.4 ppb
137.0 ppb
240
415.44 I 129.23
425.2 ppb
140.9 ppb
416.20 124.92
414.6 ppb
132.1 ppb
395.14
117.13
389.9 ppb
122.8 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00 I 1.00
1,00
1.00
1.00
1.00
60
1.03
1.04 I 0.97
0.96
0.95
0.91
0.97 0.93
0.82
0.73
0 80
0.74
240
0.83
0.79 I 0.83
0.79
0,86
0.76
0.87 0.79
0.78
0.69
0.74
0.66
E. coli
(cfuA)xtO 4
A
B I C
Avg
A I 8
C Avg
A B
C
Avg
0
88
88.0
120 120.0
88
88.0
5
79
70 75
74.7
95
95.0
72
72.0
15
~ 77
77.0
49
70
59.5
30
24
40
32.0
64
76
70.0
60
2
5
5
4.0
46
52
490
1
8
6
5.0
120
1
0
0
0.3
0
0
0
0.0
240
0
0
0
0.0
0
0
0
0.0
1
0
0
0.3
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
0.0
0.0%
0.0%
880.0
0.0
0.0%
0.0%
1200.0
0.0
0.0%
0.0%
880.0
5
3.7
4.9%
15.2%
746.7
0.0
0.0%
208%
950.0
0.0
0.0%
18.2%
720.0
15
0.0
0.0%
35.8%
770.0
10.5
17.6%
32.4%
595.0
30
8.0
25.0%
63.6%
320.0
60
8.6%
41.7%
700.0
60
1.4
35.4%
95.5%
40.0
3.0
6.1%
59.2%
490.0
2.9
58.9%
94 3%
50.0
120
0.5
141.4%
99.6%
3.3
00
0.0%
100.0%
0.0
240
00
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.5
141.4%
99.6%
3.3

Methylene Blue, Set #3
Dark (pH =10)
Time
14 (5.0 mg/L)
15(10.0 mg/L)
(minutes)
Benz Area
BA di Area
Tot Area
TAdi Area
Benz Area | BAdi Area
Tot Area
TAdi Area
0
996 09
988 26
587.78
580.59
1062.11 1055.78
635.40
629.10
60
964.94
957.11
592.50
585.31
914.56 \ 908.23
560 75
554.45
240
827.16
819.33
480.37
473.18
91908 [ 912.75
545.34
539 04
Chlorobenzene
Raw Area
Adi Area I Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
443.75
435.14 2.27
1.33
454.61
446 30
2.37
1.41
60
444 56
435.95] 2.20
1.34
433.81
425.50
2.13
1.30
240
433.15
424.54 1.93
1.11
441.46
433.15P 2.11
1.24
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
515.87
170.18
506.4 ppb
174.0 ppb
557.94
191.37
531.1 ppb
187.8 ppb
60
496.46
172.24
486.7 ppb
175.5 ppb
466.00
158 76
470 9 ppb
168.3 ppb
240
410.61
123.25
417.6 ppb
133.8 ppb
468.82
152.02
463.8 ppb
157.6 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1 00
1 00
1.00
1.00
1,00
1.00
1.00
1.00
60
0 96
1.01
0.96
1.01
0.84
083
0.89
0.90
240
0.80
0.72
0.82
0.77
0.84
0.79
0.87
0.84
E. coli
(cfu/L)x10 4
A
B
C
Av o
A
6
C
Avq
0
94
77
87
86,0
91
91.0
5
1
0
3
1.3
0
0
0
0.0
15
0
6
3.0
1
0
0.5
30
0
6
15
7.0
0
1
0
0.3
60
0
0
0.0
0
0
0
0.0
120
0
0
0
0.0
0
0
0
0.0
240
0
0
0
0.0
0
0
1
0.3
SD
%SD
%Dest
cfuA. x 10*3
SD
%SD
%Dest
cfuA. x 10*3
0
7.0
8.1%
0.0%
860.0
0.0
0.0%
0.0%
910.0
5
1.2
93.5%
98.4%
13.3
0.0
0.0%
100.0%
0.0
15
3.0
100.0%
96.5%
30.0
0.5
100.0%
99.5%
5.0
30
6.2
88.1%
91.9%
70.0
0.5
141.4%
99.6%
3.3
60
0.0
0.0%
100.0%
0.0
O
b
0.0%
100.0%
0.0
120
0.0
00%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
M
0.0%
100.0%
0.0
0.5
141.4%
99.6%
3.3

Methylene Blue, Set #3
DARK (pH =7)
Time
19
(5.0 ma/U
20(10.0 mg/L)
(minutes)
Benz Area
BAdj Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
979.96
973.63
661.50
655.20
971.20
964.87
638.69
632.39
60
889.30
882.97
569.45
563.15
910,40
904.07
569.76
563.46
240
790.20
783.87
508 90
502.60
819.03
812.70
527.23
520.93
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
434.22
425.91
2.29
1.54
437.37
429.06
2.25
1.47
60
453.17
444.86
1.98
1.27
451.73
443.42
2.04
1.27
240
435.50
427.19
1.83
1.18
438.00
429.69
1.89
1.21
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
506.75
202.77
510.3 ppb
211.3 ppb
501.30
192.81
500.6 ppb
199.5 ppb
60
450.26
162.56
431.9 ppb
161.5 ppb
463.41
162.69
445.9 ppb
162.4 ppb
240
388.51
136.10
392.8 ppb
145.2 ppb
406.48
144.11
407.5 ppb
151.7 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.89
0.80
0.85
0.76
0.92
0.84
0.89
0.81
240
0.77
0.67
0.77
0.69
0.81
0.75
0.81
0.76
e. con
(cfu/L)x10 4
A
B
C
Avq
A
B
C
Avq
0
81
82
80
81.0
70
96
80
82.0
5
73
63
82
72.7
41
51
' 38
43.3
15
48
41
44.5
25
40
34
33.0
30
40
37
38
38.3
15
17
16
16.0
60
34
30
32
32.0
7
14
10.5
120
18
20
19.0
1
4
9
4.7
240
1
5
3.0
1
0
2
1.0
SD
%SD
%Dest
cfuA. x 10*3
SD
%SD
%Dest
cfuA. x 10*3
0
0.8
1.0%
0.0%
810.0
10.7
13.1%
0.0%
820.0
5
7.8
10.7%
10.3%
726.7
5.6
12.8%
47.2%
433.3
15
3.5
7.9%
45.1%
445.0
6.2
18.7%
59.8%
330.0
30
1.2
3.3%
52.7%
383.3
0.8
5.1%
80.5%
160.0
60
1.6
5.1%
60.5%
320.0
3.5
33.3%
87.2%
105.0
120
1.0
5.3%
76.5%
190.0
3.3
70.7%
94.3%
46.7
240
2.0
66.7%
96.3%
30.0
0.8
81.6%
98.8%
10.0

Methylene Blue, Set #3
1-May-98 I DARK (dH =7)
Time
16 (control)
17(0.1 mg/L)
18(1.0 mg/L)
(minutes)
Benz Area
BA dj Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
977.09
970.76
635.78
629.48
961.61
955.28
635.24
628.94
976.62
970.29
660.03
653.73
60
898.35
892.02
565.48
559.18
790.39
784.06
510.29
503.99
941 4
935.07
595.15
588.85
240
906.40
900.07
563.18
556.88
675.87
669.54
391 89
385.59
826.48
820.15
509.50
503.20
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
435.20
426.89
2.27
1.47
492.59
484.28
1.97
1.30
416.31
408.00
2.38
1.60
60
422.46
414.15
2.15
1.35
448.15
439.84
1.78
1.15
454.99
446.68
2.09
1.32
240
433.35
425.04
2.12
1.31
438.6
430.29
1.56
0.90
442.33
434.02
1.89
1.16
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
504.97
191.54
507.2 ppb
199.6 ppb
495.32
191.30
428.7 ppb
167.5 ppb
504.67
202.13
534 3 ppb
223.0 ppb
60
455.90
160.82
475.9 ppb
176.9 ppb
388.63
136.71
379.2 ppb
139.6 ppb
482.73
173.79
460.1 ppb
171.1 ppb
240
460.92
159.82
466.5 ppb
169.6 ppb
317.28
84.98
320.2 ppb
93.9 ppb
411.12
136.36
407.1 ppb
142.0 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.90
0.84
0.94
0.89
0.78
0 71
0.88
0.83
0.96
0.86
0.86
0.77
240
0.91
0.83
0.92
0.85
0.64
0.44
0.75
0.56
0.81
0.67
0.76
0.64
E. coli
(cfu/L)x10 ‘
A
a
C
Avd
A
a
C
Avd
A I 8
C
Avq
0
83
104
93.5
96
93
94.5
89 I 88
86
87.7
5
53
54
53.5
57
76
66.5
74 | 73
73
73.3
15
47
56
52
51.7
61
47
54.0
58
55
56.5
30
44
50
47.0
53
56
44
51.0
43
42
47
44.0
60
33
36
34.5
32
32.0
35
35
37
35.7
120
0
1
1
0.7
17
14
23
18.0
22
22.0
240
0
0
0
0.0
5
3
4.0
3
5
4
4.0
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfuj1 x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
10.5
11.2%
0.0%
935.0
1.5
1.6%
0.0%
945.0
1.2
1.4%
0.0%
876.7
5
0.5
0.9%
42.8%
535.0
9.5
14.3%
29.6%
665.0
0.5
0.6%
16.3%
733.3
15
3.7
7.1%
44.7%
516.7
7.0
13.0%
42.9%
540.0
1.5
2.7%
35.6%
565.0
30
3.0
6.4%
49.7%
470.0
5.1
10.0%
46.0%
510.0
2.2
4.9%
49.8%
440.0
60
1.5
4.3%
63.1%
345.0
0.0
0.0%
66.1%
320.0
0.9
2.6%
59.3%
356 7
120
0.5
70.7%
99.3%
6.7
3.7
20.8%
81.0%
180.0
0.0
0.0%
74.9%
220.0
240
0.0
0.0%
100.0%
0.0
1.0
25.0%
95.8%
40.0
0.8
20.4%
95.4%
40.0

Rose Bengal, Set #3
Sunliqht (pH =
10)
Time
21 (control)
22
(0.1 mq/L)
23
(1.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
903.50
903.50
1148.50
1148.50
884.01
884.01
1126.29
1126.29
805.00
805.00
957.85
957.85
60
771.00
771.00
908.72
908.72
721.62
721.62
876.07
876.07
726.00
726.00
876.41
876.41
240
637.01
637.01
742.24
742.24
690.68
690.68
824.02
824.02
566,45
566.45
671.28
671.28
Chlorobenzene
Raw Area \
Adi Area
Benzene Ref
I Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
440.08
433.54
2.08
2.65
469.05
462.51
1.91
2.44
401.56
395.02
2.04
2.42
60
423.77
417.23
1.85
2.18
425.4
418.86
1.72
2.09
394.87
388.33
1.87
2.26
240
408.10
401.56
1.59
1.85
432.54
426.00
1.62
1.93
398.72
392.18
1.44
1.71
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
463 ppb
418 ppb
458 ppb
414 ppb
451 ppb
409 ppb
413 ppb
375 ppb
402 ppb
335 ppb
446 ppb
373 ppb
60
380 ppb
314 ppb
396 ppb
328 ppb
350 ppb
299 ppb
364 ppb
312 ppb
352 ppb
299 ppb
402 ppb
343 ppb
240
297 ppb T
241 ppb
328 ppb
268 ppb
330 ppb
277 ppb
337 ppb
284 ppb
253 ppb
210 ppb
291 ppb
243 ppb
Normalized Concentrations
Benzene I
Toluene
Benzene Ref
I Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1,00
1.00
1.00
1.00
1.00
1.00
60
0.82
0.75
0.87
0.79
0.78
0.73
0.88
0.83
0 88
0.89
0.90
0.92
240
0.64
0.58
0.72
0.65
0.73
0.68
0.82
0.76
0.63
0.63
0.65
0.65
E. coli
(cfuA)x10 4
A
B
C
Avq
A
B
C
Avq
A
8
c
Avq
0
104
41
72.5
102
102.0
68
56
62.0
5
71
71.0
68
68.0
35
35.0
15
20
32
26.0
47
49
48.0
5
12
4
7.0
30
0
0
0
0.0
1
2
1.5
4
0
2.0
60
l o
0
0.0
0
0
0
0.0
0
0
0
0.0
120
0
0
0
0.0
0
0
0.0
0
0
0
0.0
240
0
0
0.0
0
0
0
0.0
0
0.0
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfufL x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
31.5
43.4%
0.0%
725.0
0.0
00%
0.0%
1020.0
6.0
9.7%
0.0%
620.0
5
0.0
0.0%
2.1%
710.0
0.0
0.0%
33.3%
680.0
0.0
0.0%
43.5%
350.0
15
6.0
23.1%
64.1%
260.0
1.0
2.1%
52.9%
480.0
3.6
50.8%
88.7%
70.0
30
0.0
0.0%
100.0%
0.0
0.5
333%
98.5%
15.0
2.0
100.0%
96.8%
20.0
60
0.0
0.0%
100 0%
0.0
0.0
0.0%
100,0%
0.0
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Rose Bengal, Set #3
Sunlight (pH = 10)
Time
24 (5.0 ma/L)
25 (10.0 mg/L)
(minutes)
Benz Area
BAdi Area
To 1 Area
TAdi Area
Benz Area
BA di Area
To! Area
TAdi Area
0
879.86
879.86
1118.12
1118.12
911.27
911.27
1090.64
1090.64
60
737.28
737.28
864.89
864.89
692.48
692.48
843.54
843.54
240
638.49
638.49
730.72
730.72
669.26
669.26
769.07
769.07
Chlorobenzene
Raw Area I Adi Area Benzene Ref
Toluene Ref
Raw Area \ Adi Area
Benzene Ref
Toluene Ref
0
418.39 | 411.85 2.14
2.71
456.23 449.69
2.03
2.43
60
423.07 416.53 1.77
2.08
429.12 ! 422.58
1.64
2 00
240
451.99 I 445.45 I 1.43
1.64
446.20 439.66
1.52
1.75
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene I Benzene Ref
Toluene Ref
0
448 ppb
405 ppb
471 ppb
426 ppb
468 ppb
393 ppb
443 ppb
373 ppb
60
359 ppb
294 ppb
376 ppb
310 ppb
332 ppb
285 ppb
342 ppb
295 ppb
240
298 ppb
236 ppb
288 ppb
230 ppb
317 ppb
253 ppb
311 ppb
250 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
TOO
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.80
0.73
0.80
0.73
0.71
0.73
0.77
0.79
240
0.66
0.58
0.61
0.54
0.68
0.64
0.70
0.67
E. cotí
(cfu/L)x10 1
A
B
C
Avq
A
8
C
Avq
0
84
71
65
73.3
86
83
84.5
5
48
59
34
47.0
35
38
365
15
12
29
32
24.3
33
33
35
33.7
30
0
0.0
1
1
TO
60
0
0
0
0.0
0
0
00
120
0
0
0
0.0
0
0
0
0.0
240
0
0
0
0.0
0
0
0
0.0
SD
%SD
%Dest
cfuA x 10 3
SD
%SD
%Dest
CfuA x 10 3
0
7.9
10.8%
0.0%
733.3
1.5
1.8%
0.0%
845.0
5
10.2
21.8%
35.9%
470.0
1.5
4.1%
56.8%
365.0
15
8.8
36.2%
66.8%
243.3
0.9
2.8%
60.2%
336.7
30
0.0
0.0%
100.0%
0.0
0.0
0.0%
98.8%
10.0
60
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Rose Bengal, Set #3
SUNLIGHT (pH = 7)
Time
26 (control)
27(0.1 mg/L)
28(1.0 mg/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdj Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
0
704.12
698.84
823.04
812.65
697.76
692.48
888.28
877.89
692.17
686.89
859.83
849 44
60
645.78
640.50
779.95
769.56
616.93
611.65
717.91
707.52
604.36
599.08
728.12
717.73
240
575.71
570.43
658.75
648.36
572.14
566.86
669.37
658.98
577.8
572.52
649.78
639.39
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref ¡ Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
465.07
456 99
1.53
1.78
440.74
432.66
1.60
2.03
454.27
446.19
1.54
1.90
60
449.34
441.26
1.45
1.74
425.11
417 03
1.47
1.70
453.21
445.13
1.35
1.61
240
440.18
432.10
1.32
1.50
455.21
447.13
1.27
1.47
459.28
451.20
1.27
1.42
Concentrations
Benzene I Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
336 ppb
272 ppb
313 ppb
255 ppb
332 ppb
300 ppb
332 ppb
301 ppb
328 ppb
288 ppb
316 ppb
278 ppb
60
299 ppb
253 ppb
293 ppb
249 ppb
281 ppb
226 ppb
297 ppb
240 ppb
273 ppb
230 ppb
265 ppb
225 ppb
240
256 ppb
200 ppb
259 ppb
204 ppb
253 ppb
204 ppb
245 ppb
199 ppb
257 ppb
196 ppb
245 ppb
189 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref I Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00 1.00
1.00
1.00
1.00
1.00
60
0.89
0.93
0.94
0.98
0.85
0.75
0.89 0.80
0.83
0.80
0.84
0.81
240
0.76
0.74
0.83
0.80
0.76
0.68
0.74 0.66
0.78
0.68
0.78
0.68
E. coli
(cfu/L)x10 4
A
8 | C I Ava
A |6 C
Ava
A
B
C
Ava
0
130 130.0
114
1140
114.4
5
94
83 73 83.3
89 107
89
95.0
91
91.0
15
Zj
71.0
75
73
74 0
64
64.0
30
15
25
32
24.0
21
28
21
23.3
4
4.0
60
0
1
0
0.3
0
1
0.5
0
0
1
0.3
120
0
0
0
0.0
0
0
0
0.0
0
0
0
0.0
240
0
0
0.0
0
0
0.0
0
0
0
0.0
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfuA x 10 3
0
0.0
0.0%
0.0%
1300.0
0.0
0.0%
0.0%
1140.0
0.0%
1143.8
5
8.6
10.3%
35.9%
833.3
8.5
8.9%
16.7%
950.0
0.0
0.0%
20.4%
910.0
15
0.0
0.0%
45.4%
710.0
1.0
1.4%
35.1%
740.0
0.0
0.0%
44.0%
640.0
30
7.0
29.1%
81.5%
240.0
3.3
14.1%
79.5%
233.3
0.0
0.0%
96.5%
40.0
60
0.5
141.4%
99.7%
3.3
0.5
100.0%
99.6%
5.0
0.5
141.4%
99.7%
3.3
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
l

Rose Bengal, Set #3
SUNLIGHT (pH = 10)
Time
29 (5.0 mq/L)
30 (10.0 mq/L)
(minutes)
Benz Area
BAdi Area
Toi Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
0
737.37
732.09
878.40
868.01
705.71
700.43
877.86
867.47
60
625.39
620.11
758.75
748.36
626.33
621.05
741.19
730.80
240
552.74
547.46
623.61
613.22
528.5
523.22
597.69
587.30
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
453.36
445.28
1.64
1.95
486.13
478.05
1.47
1.81
60
442.8
434.72
1.43
1.72
448.08
440.00
1.41
1.66
240
452.08
444.00
1.23
1.38
429.87
421.79
1.24
1.39
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
356 ppb
296 ppb
343 ppb
286 ppb
337 ppb
296 ppb
296 ppb
262 ppb
60
286 ppb
243 ppb
286 ppb
245 ppb
287 ppb
236 ppb
283 ppb
234 ppb
240
241 ppb
184 ppb
236 ppb
183 ppb
226 ppb
173 ppb
238 ppb
185 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1 00
1.00
1.00
60
0.80
0.82
0.83
0.85
0.85
0.80
0.95
0.89
240
0.68
0.62
0.69
0.64
0.67
0.59
0.80
0.71
E. coli
(cfu/L)x10 '
A
B I C
Avg
A
B I C
Ava
0
98
127
112.5
114
96 93
101.0
5
95
95.0
67
68
67.5
15
66
63
54
61.0
46
39
42.5
30
17
11
14.0
0
0
1
0.3
60
0
0
0
0.0
0
0
0
0.0
120
0
0
0
0.0
0
0
0
0.0
240
0
0
0
0.0
0
0
0
0.0
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
14.5
12.9%
0.0%
1125.0
9.3
9.2%
0.0%
1010.0
5
0.0
0.0%
15.6%
950.0
0.5
0.7%
33.2%
675.0
15
5.1
8.4%
45.8%
610.0
3.5
8.2%
57.9%
425.0
30
3.0
21.4%
87.6%
140.0
0.5
141.4%
99.7%
3.3
60
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
240
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Rose Bengal, Set #3
Dark (pH =10)
Time
31 (control)
32 (0.1 mg/L)
33
(1.0 mq/l)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
To! Area
TAdi Area
0
739.78
734.50
794.53
784,14
787.24
781.96
917.68
907.29
722.73
717.45
831.64
821.25
60
755.44
750.16
844.07
833.68
750.01
744.73
830.48
820.09
570.87
565.59
613.97
603.58
240
700.28
695.00
803.72
793 33
647.85
642.57
679.25
668.86
548.99
543.71
575.28
564.89
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
444.23
436.15
1.68
1.80
431.97
423.89
1.84
2.14
417.48
409.40
1.75
2.01
60
458.67
450.59
1.66
1.85
393.94
385.86
1.93
2.13
421.23
413.15
1.37
1.46
240
452.53
444.45
1.56
1.78
443.03
434.95
1.48
1.54
441.02
432.94
1.26
1.30
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
358 ppb
259 ppb
354 ppb
259 ppb
387 ppb
313 ppb
395 ppb
321 ppb
347 ppb
275 ppb
371 ppb
297 ppb
60
368 ppb
281 ppb
349 ppb
268 ppb
364 ppb
275 ppb
418 ppb
319 ppb
253 ppb
180 ppb
271 ppb
197 ppb
240
333 ppb
263 ppb
322 ppb
256 ppb
300 ppb
209 ppb
300 ppb
211 ppb
239 ppb
163 ppb
242 ppb
169 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
1.03
1.08
0.99
1.04
0.94
0.88
1.06
0.99
0.73
0.65
0.73
0.66
240
0.93
1.02
0.91
0.99
0.78
0.67
0.76
0.66
0.69
059
0.65
0.57
e. con
(cfu/L)x10 4
A
8
C
A vo
A
a
C
A vo
A
a
C
Avq
0
110
113
111.5
107
99
103.0
126
99
112.5
5
120
77
98.5
85
85.0
114
114.0
15
111
112
111.5
111
111.0
97
97.0
30
105
105,0
96
96.0
96
96.0
60
94
66
800
81
100
90.5
89
89.0
120
83
83.0
85
80
82.5
97
83
90.0
240
73
73.0
71
71.0
68
70
69.0
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
1.5
1.3%
0.0%
1115.0
4.0
3.9%
0.0%
1030.0
13.5
12.0%
0.0%
1125.0
5
21.5
21.8%
11.7%
985.0
0.0
0.0%
17.5%
850.0
0.0
0.0%
0.0%
1140.0
15
0.5
0.4%
0.0%
1115.0
0.0
0.0%
0.0%
1110.0
0.0
0.0%
13.8%
970.0
30
0.0
0.0%
5.8%
1050.0
0.0
0.0%
6.8%
960.0
0.0
0.0%
14.7%
960.0
60
14.0
17.5%
28.3%
800.0
9.5
10.5%
12.1%
905.0
0.0
0.0%
20.9%
890.0
120
0.0
0.0%
25.6%
830.0
2.5
3.0%
19.9%
825.0
7.0
7.8%
20.0%
900.0
240
0.0
0.0%
34.5%
730.0
0.0
0.0%
31.1%
710.0
1.0
1.4%
38.7%
690.0

Rose Bengal, Set #3
Dark (pH =10)
Time
34 (5.0 mq/L)
35(10.0 mq/L)
(minutes)
Benz Area
BAdi Area
Tot Area
TAdi Area
Benz Area
BA di Area
To 1 Area
TAdi Area
0
724.62
719.34
832.21
821.82
769.4
764.12
894.32
883.93
60
760.06
754.78
873.11
862,72
712.28
707.00
806.75
796.36
240
636.7
631.42
685.95
675.56
606.12
600.84
663.47
653.08
Chlorobenzene
Ram Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
439.12
431.04
1.67
1.91
421.52
413.44
1.85
2.14
60
430.11
422.03
1.79
2.04
408.33
400.25
1.77
1.99
240
416.62
408.54
1.55
1.65
411.46
403.38
1.49
1.62
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
348 ppb
276 ppb
350 ppb
279 ppb
376 ppb
303 ppb
396 ppb
321 ppb
60
370 ppb
293 ppb
381 ppb
304 ppb
341 ppb
264 ppb
375 ppb
294 ppb
240
294 ppb
212 ppb
317 ppb
232 ppb
274 ppb
202 ppb
303 ppb
226 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1 00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
1.06
1.06
1.09
1.09
0.91
0.87
0.95
0.92
240
0.84
0.77
0.91
0.83
0.73
0.67
0.76
0.70
E. coll
(cfu/L)x10 4
A
B
C
Avq
A
B
C
Avq
0
96
105
100.5
99
119
109.0
5
101
107
104.0
115
76
102
97.7
15
103
103.0
98
111
104.5
30
97
97.0
90
103
105
99.3
60
109
109.0
118
105
111.5
120
94
94.0
92
100
96.0
240
64
63
63.5
92
92.0
SD
%SD
%Dest
cfuA. x 10 3
SD
%SD
%Dest
cfuA. x 10 3
0
4.5
4.5%
0.0%
1005.0
10.0
9.2%
0.0%
1090.0
5
3.0
2.9%
0.0%
1040.0
16.2
16.6%
10.4%
976.7
15
0.0
0.0%
0.0%
1030.0
6.5
6.2%
4.1%
1045.0
30
0.0
0.0%
3.5%
970.0
6.6
6.7%
8.9%
993.3
60
0.0
0.0%
0.0%
1090.0
6.5
5.8%
0.0%
1115.0
120
0.0
0.0%
6.5%
940.0
4.0
4.2%
11.9%
960.0
240
0.5
0.8%
36.8%
635.0
0.0
0.0%
15.6%
920.0

Rose Bengal, Set #3
DARK (pH =7)
Time
36 (control)
37 (0.1 mg/L)
38 (1.0 ma/L)
(minutes)
Benz Area
BA dj Area
Tot Area
TAdj Area
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
727.16
727.16
903.79
903.79
762.31
762.31
940.66
940.66
751 69
751.69
957.89
957.89
60
715.82
715.82
852.54
852.54
658.16
658.16
788.58
788.58
706.22
706.22
880.39
880.39
240
638.69
638.69
773.18
773.18
619.31
619.31
745.71
745.71
644.66
644.66
778.94
778.94
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
r Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
453.8
446.60
1.63
2.02
419.13
411.93
1.85
2.28
440.35
433.15
1.74
2.21
60
468 37
461.17
1.55
1.85
430.25
423.05
1.56
1.86
437.30
430.10
1.64
2.05
240
449.05
441.85
1.45
1.75
466.50
459 30
1 35
1.62
445.23
438.03
1.47
1.78
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
353 ppb
311 ppb
339 ppb
300 ppb
375 ppb
327 ppb
397 ppb
347 ppb
368 ppb
335 ppb
367 ppb
334 ppb
60
346 ppb
289 ppb
319 ppb
268 ppb
310 ppb
261 ppb
320 ppb
271 ppb
340 ppb
301 ppb
343 ppb
304 ppb
240
298 ppb
254 ppb
291 ppb
250 ppb
286 ppb
242 ppb
266 ppb
227 ppb
302 ppb
257 ppb
298 ppb
255 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1 00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.98
0.93
0.94
0.89
0.83
0.80
0.81
0.78
0.92
0.90
0.93
0.91
240
0.84
0.82
0.86
0.83
0.76
0.74
0.67
0.65
0.82
0.77
081
0.76
E. coli
(cfu/L >x 10 4
A
B I C
Avq
A I B
C
Avq
A I B
C
Avq
0
29
32
30.5
34
38
36.0
75
63
690
5
22
22.0
10
12
11.0
15
36
360
9
16
12.5
12
8
100
8
6
7.0
15
15.0
9
9.0
120
9
90
4
4.0
3
6
3
4 0
240
0
5
0
1.7
1
2
1.5
0
0
00
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
SD
%SD
%Dest
cfu/L x 10 3
0
1.5
4.9%
0.0%
305.0
2.0
5.6%
0.0%
360.0
6.0
8.7%
0.0%
690.0
5
0.0
0.0%
27.9%
220.0
1.0
9.1%
69,4%
110.0
15
0.0
0.0%
47.8%
360.0
30
3.5
28.0%
59.0%
125.0
2.0
20.0%
72.2%
100.0
60
1.0
14.3%
77.0%
70.0
0.0
0.0%
58.3%
150.0
0.0
0.0%
87.0%
900
120
00
0.0%
70.5%
900
0.0
0.0%
88.9%
40.0
1.4
35.4%
94.2%
40.0
240
2.4
141.4%
94.5%
16.7
0.5
33.3%
95.8%
150
0.0
0.0%
100.0%
00

Rose Bengal, Set #3
DARK
pH =7)
Time
39 (5 0 mq/U
40 (10.0 mg/L)
(minutes)
Benz Area I BAdi Area
Tot Area
TAdi Area
Benz Area
BAdi Area
To 1 Area
TAdi Area
0
853.64
853.64
1081.20
1081.20
684 05
684 05
884.11
884.11
60
685.44
685.44
836.25
836.25
656.85
656.85
814.59
814.59
240
616.75
616.75
717.01
717.01
583.55
583 55
672.19
672.19
Chlorobenzene
Ran Area
Adi Area
Benzene Ref
Toluene Ref
Ran Area
Adi Area
Benzene Ref
Toluene Ref
0
468.19
460.99
1.85
2.35
415 88
408.68
1.67
2.16
60
460.06
452.86
1.51
1.85
397.02
389.82
1,69
2.09
240
467.51
460 31
1.34
1.56
418.83
411.63
1.42
1 63
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
432 ppb
389 ppb
397 ppb
359 ppb
326 ppb
303 ppb
351 ppb
326 ppb
60
327 ppb
282 ppb
309 ppb
268 ppb
309 ppb
272 ppb
354 ppb
312 ppb
240
284 ppb
230 ppb
264 ppb
215 ppb
264 ppb
210 ppb
284 ppb
229 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1 00
1.00
1.00
1.00
1.00
1.00
1.00
60
0.76
0.72
0.78
0.75
0.95
0 90
1.01
0.96
240
0.66
0.59
0.66
0.60
0.81
0 69
0.81
0.70
E. coli
(ctuA)x10 4
A
B
C
Avq
A
B
C
Ava
0
124
102
117
114.3
68
75
71 5
5
43
43.0
60
600
15
46
460
17
17.0
30
50
49
49.5
20
20
200
60
36
36.0
14
24
19.0
120
52
47
49
493
8
5
6
6.3
240
23
17
28
22.7
2
1
2
1.7
SD
%SD
%Dest
cfuA x 10 3
SD
%SD
%Dest
cfuA. x 10 3
0
9.2
8.0%
0.0%
1143.3
3.5
4.9%
0.0%
715.0
5
0.0
0.0%
62.4%
430.0
0.0
0.0%
16.1%
600.0
15
0.0
0.0%
59.8%
460.0
0.0
0.0%
76.2%
170 0
30
0.5
1.0%
56.7%
495.0
0.0
0.0%
72.0%
2000
60
0.0
00%
68.5%
360.0
5.0
26.3%
73.4%
190 0
120
2.1
4.2%
56.9%
493.3
1.2
19.7%
91.1%
633
240
4.5
19 8%
80.2%
226.7
0.5
28.3%
97.7%
16.7

Mixed, Set#3
7-May-98
SUNLIGHT
Time
41 (control)
42 (0.01 %TiO,)
(minutes)
Benz Area
BAdj Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
1076.52
1076.52
805.21
805.21
1199.07
1199.07
967.14
967.14
30
1035.86
1035.86
822.34
822.34
500.87
500.87
370.48
370.48
120
896.82
896.82
707.13
707.13
61.5
61.50
30.67
30.67
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
435.49
428.29
2.51
1.88
400.91
393.71
3.05
2.46
30
462.67
455.47
2.27
1.81
445.73
438.53
1.14
0.84
120
446.17
438.97
2.04
1.61
380.12
372.92
0.16
0.08
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
571 ppb
268 ppb
570 ppb
274 ppb
647 ppb
339 ppb
708 ppb
379 ppb
30
546 ppb
276 ppb
507 ppb
260 ppb
212 ppb
78 ppb
212 ppb
85 ppb
120
459 ppb
225 ppb
447 ppb
225 ppb
1 PPb
1 ppb
1 PPb
1 PPb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
30
0.96
1.03
0.89
0.95
0.33
0.23
0.30
0.22
120
0.80
0.84
0.78
0.82
0.00
0.00
0.00
0.00
E. coli
(cfuA)x10 4
A
B
C
Avq
A
B
C
Avq
0
92
74
83.0
78
78.0
5
95
95.0
32
53
42.5
15
83
83.0
0
0
2
0.7
30
79
73
84
78.7
0
0
0.0
60
5
11
12
9.3
0
0.0
120
0
0
0.0
0
0
0.0
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
9.0
10.8%
0.0%
830.0
0.0
0.0%
0.0%
780.0
5
0.0
0.0%
0.0%
950.0
10.5
24.7%
45.5%
425.0
15
0.0
0.0%
0.0%
830.0
0.9
141.4%
99.1%
6.7
30
4.5
5.7%
5.2%
786.7
0.0
0.0%
100.0%
0.0
60
3.1
33.1%
88.8%
93.3
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0

Mixed, Set#3
SUNLIGHT
Time
43 (5.0 mq/L Methylene Blue)
44 (0.01% TiO, & 5.0 mq/L Methylene Blue)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
1151.64
1145.35
934.02
918.27
1172.28
1165.99
958.54
942.79
30
1073.77
1067.48
869.99
854.24
859.29
853.00
683.40
667.65
120
906.82
900.53
716.99
701.24
600.34
594.05
441.32
425.57
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
472.98
464.70
2.46
1.98
455.54
447.26
2.61
2.11
30
423.99
415.71
2.57
2.05
431.83
423.55
2.01
1.58
120
420.3
412.02
2.19
1.70
453.80
445.52
1.33
0.96
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
614 ppb
318 ppb
557 ppb
291 ppb
627 ppb
328 ppb
594 ppb
315 ppb
30
565 ppb
290 ppb
584 ppb
306 ppb
432 ppb
208 ppb
439 ppb
218 ppb
120
461 ppb
223 ppb
484 ppb
241 ppb
270 ppb
102 ppb
262 ppb
105 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
30
0.92
0.91
1.05
1.05
0.69
0.63
0.74
0.69
120
0.75
0.70
0.87
0.83
0.43
0.31
0.44
0.33
E. coli
(cfu/L)x 10 4
A I B
C | Avo
A l B
C
A vp
0
114
89
110
104.3
99
104
112
105.0
5
0
0
0.0
0
0
1
0.3
15
0
0
0.0
1
0
0
0.3
30
0
0
0
0.0
1
1.0
60
0
0
0.0
0
0
0
0.0
120
0
0.0
0
1
0.5
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
11.0
10.5%
0.0%
1043.3
5.4
5.1%
0.0%
1050.0
5
0.0
0.0%
100.0%
0.0
0.5
141.4%
99.7%
3.3
15
0.0
0.0%
100.0%
0.0
0.5
141.4%
99.7%
3.3
30
0.0
0.0%
100.0%
0.0
0.0
0.0%
99.0%
10.0
60
0.0
0.0%
100.0%
0.0
0.0
0.0%
100.0%
0.0
120
0.0
0.0%
100.0%
0.0
0.5
100.0%
99.5%
5.0

Mixed, Set #3
l 6-May-98 | DARK
Time
45 (control)
46 (0.01 %TiO,)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
1053.27
1046.98
786.68
770.93
1041.27
1034.98
794.95
779.20
30
943.17
936.88
705.74
689.99
957.56
951.27
745.49
729.74
120
985.8
979.51
747.58
731.83
948.93
942.64
695.54
679.79
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
438.74
430.46
2.43
1.79
386.43
378.15
2.74
2.06
30
416.27
407.99
2.30
1.69
440.56
432.28
2.20
1.69
120
452.81
444.53
2.20
1.65
435.35
427.07
2.21
1.59
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
552 ppb
253 ppb
548 ppb
257 ppb
545 ppb
257 ppb
628 ppb
307 ppb
30
484 ppb
218 ppb
513 ppb
239 ppb
493 ppb
235 ppb
488 ppb
239 ppb
120
510 ppb
236 ppb
489 ppb
231 ppb
487 ppb
214 ppb
490 ppb
221 ppb
Normalizec
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
30
0.88
0.86
0.94
0.93
0.90
0.92
0.78
0.78
120
0.92
0.93
0.89
0.90
0.89
0.83
0.78
0.72
E. coli
(cfu/L)x10 4
A
B
C
Avq
A
B
C
Avq
0
66
66.0
115
115.0
5
102
95
98.5
104
96
100.0
15
106
106.0
87
68
77.5
30
104
104.0
92
92.0
60
94
94.0
98
78
88.0
120
78
78.0
76
76.0
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0|| 0.0
0.0%
0.0%
660.0
0.0
0.0%
0.0%
1150.0
5
3.5
3.6%
0.0%
985.0
4.0
4.0%
13.0%
1000.0
15
0.0
0.0%
0.0%
1060.0
9.5
12.3%
32.6%
775.0
30
0.0
0.0%
0.0%
1040.0
0.0
0.0%
20.0%
920.0
60
0.0
0.0%
0.0%
940.0
10.0
11.4%
23.5%
880.0
120
0.0
0.0%
0.0%
780.0
0.0
0.0%
33.9%
760.0

Mixed, Set #3
DARK
Time
47 (5.0 mq/L Methylene Blue)
48 (0.01% TiO, & 5.0 mq/L Methylene Blue)
(minutes)
Benz Area
BAdi Area
Tol Area
TAdi Area
Benz Area
BAdi Area
Tol Area
TAdi Area
0
974.08
967.79
730.07
714.32
873.89
867.60
634.75
619.00
30
945.17
938.88
727.44
711.69
827.79
821.50
605.38
589.63
120
862.67
856.38
598.21
582.46
825.32
819.03
617.20
601.45
Chlorobenzene
Raw Area
Adi Area
Benzene Ref
Toluene Ref
Raw Area
Adi Area
Benzene Ref
Toluene Ref
0
423.25
414.97
2.33
1.72
357.68
349.40
2.48
1.77
30
409.95
401.67
2.34
1.77
402.62
394.34
2.08
1.50
120
444.02
435.74
1.97
1.34
427.5
419.22
1.95
1.43
Concentrations
Benzene
Toluene
Benzene Ref
Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
503 ppb
229 ppb
522 ppb
245 ppb
441 ppb
187 ppb
562 ppb
254 ppb
30
485 ppb
227 ppb
524 ppb
254 ppb
412 ppb
174 ppb
458 ppb
203 ppb
120
434 ppb
171 ppb
427 ppb I 174 ppb
410 ppb
179 ppb
424 ppb
192 ppb
Normalized Concentrations
Benzene
Toluene
Benzene Ref \ Toluene Ref
Benzene
Toluene
Benzene Ref
Toluene Ref
0
1.00 | 1.00
1.00 1.00
1.00
1.00
1.00
1.00
30
0.96 0.99
1.00 T04
0.93
0.93
0.81
0.80
120
0.86 I 0.75
0.82 ~t 0.71
0.93
0.96
0.75
0.76
E. coli
(cfu/L)x 10 4
A
B
C
Avq
A I B
C
Avq
0
95
93
94.0
132
115
123.5
5
80
99
89.5
56
85
90
77.0
15
67
84
75.5
100
103
101.5
30
68
68.0
107
88
97.5
60
91
89
90.0
120
88
83
73
81.3
81
107
94.0
SD
%SD
%Dest
cfu/L x 10*3
SD
%SD
%Dest
cfu/L x 10*3
0
1.0
1.1%
0.0%
940.0
8.5
6.9%
0.0%
1235.0
5
9.5
10.6%
4.8%
895.0
15.0
19.5%
37.7%
770.0
15
8.5
11.3%
19.7%
755.0
1.5
1.5%
17.8%
1015.0
30
0.0
0.0%
27.7%
680.0
9.5
9.7%
21.1%
975.0
60
100.0%
0.0
1.0
1.1%
27.1%
900.0
120
6.2
7.7%
13.5%
813.3
13.0
13.8%
23.9%
940.0

APPENDIX B
LIGHT MEASUREMENT
The light available for experiments were measured using an Eppley
TUVR Model Ultraviolet Radiometer for UV light, and Eppley PSP
Pyranometer for total sunlight. Both instruments were factory calibrated
for use outdoors. During outdoor experiments, the measurements were
taken continuously for the duration of the experiments. Charts for these
experiments are shown below.
For the experiments conducted in the chamber, the measurements
were taken at the same distance from the lamps as the reactors were
located. The radiometer gave a stable reading over a period of several
hours. The measurement taken for the UV lamps in the chamber was
adjusted to account for the difference in the spectrum from sunlight and
the UV lamps.
The recorder was jammed for about the last half hour of the
Combination Experiment in experimental set three, so that the values for
that experiment are estimated based on measurements before the recorder
jammed and the maximum and minimum values while it was jammed.
260

261
Solar Insolation for Methylene Blue Experiment
Set #1, pH =7
0 30 60 90 120 150 180 210 240
Time (minutes)
Solar Insolation for Methylene Blue Experiment
Set #1, pH 10

262
Solar Insolation for Methylene Blue Experiment
Set #2, pH = 7
1200
Solar Insolation for Methylene Blue Experiment
Set #2, pH =10
Average = 542.36 W/m2
30 60 90 120 150 180 210 240
Time (minutes)

263
Solar Insolation for Methylene Blue Experiment
Set #3, pH = 7
Solar Insolation for Methylene Blue Experiment
Set #3, pH = 10
1200
1000
800
600
400
200
0
J
\
H
Average = 696.12 W/m2
1 1 1 1 1 1 1—
30 60 90 120 150 180 210
Time (minutes)
240

264
Solar Insolation for Rose Bengal Experiment
Set #1, pH 7
Solar Insolation for Rose Bengal Experiment
Set #1, pH 10

265
Solar Insolation for Rose Bengal Experiment
Set #2, pH =7
Solar Insolation for Rose Bengal
Set #2, pH =10

266
Solar Insolation for Rose Bengal Experiment
Set #3, pH =7
Solar Insolation for Rose Bengal Experiment
Set #3, pH = 10

267
Solar Insolation for Combination Experiment
Set #2
Total
UV

268
Solar Insolation for Combination Experiment
Set #3
c
<
2
3
Total
UV

BIOGRAPHICAL SKETCH
Adrienne Teresa Cooper was born in Baton Rouge, Louisiana, on
August 21, 1962. She received her undergraduate degree in chemical
engineering from the University of Tennessee in June 1984. Following
graduation she joined E. I. DuPont de Nemours and Company, Inc., as an
engineer in the research and development division of the Chemicals &
Pigments Department. She remained with DuPont until 1992 in various
assignments as a chemical engineer, business analyst, and diversity
education consultant.
From 1990 through 1993 she served on the Alumni Executive Board of
the National Society of Black Engineers. She is also a member of the
American Solar Energy Society, the International Society of African
Scientists and the International Solar Energy Society. She is certified as an
Engineer Intern in the state of Florida.
After leaving DuPont and following a brief stint in West Africa, she
enrolled in the doctoral program at the University of Florida Department of
Environmental Engineering Sciences. During her tenure in Gainesville,
she worked as en environmental engineer for the Alachua County
Department of Environmental Protection and as an instructor in college
prep math at Santa Fe Community College.
269

I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of Doctor of
Philosophy.
Thomas L. Crisman^ Chairman
Professor of Environmental
Engineering Sciences
I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of Doctor of
Philosophy.
D. Yogi Goswami, Cochairman
Professor of Mechanical
Engineering
I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of Doctor of
Philosophy.
Associate Professor of
Environmental Engineering
Sciences
I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of Doctor of
Philosophy.
Seymour S. Block
Professor Emeritus of
Chemical Engineering

I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of Doctor of
Philosophy.
Paul A. Chadik
Assistant Professor of
Environmental Engineering
Sciences
I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of Doctor of
Philosophy.
Associate Professor of
Agricultural
and Biological Engineering
This dissertation was submitted to the Graduate Faculty of the
Department of Environmental Engineering Sciences in the College of
Engineering and to the Graduate School and was accepted as partial
fulfillment of the requirements for the degree of Doctor of Philosophy.
August, 1998
c~
Winfred M. Phillips
Dean, College of Engineering
Dean, Graduate School

LD
1780
199£
,C77é
UNIVERSITY OF FLORIDA
3 1262 08554 8450




PAGE 1

62/$5 3+272&+(0,&$/ 7(&+12/2*< )25 327$%/( :$7(5 75($70(17 ',6,1)(&7,21 $1' '(72;,),&$7,21 %\ $'5,(11( 7(5(6$ &223(5 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

&RS\ULJKW E\ $GULHQQH 7HUHVD &RRSHU

PAGE 3

7KLV GLVVHUWDWLRQ LV GHGLFDWHG WR P\ JUDQGPRWKHUV *HZHQLWK 0DQQLQJ DQG WKH ODWH (WKHO &XPPLQJV ZKR ZHUH ZRPHQ IRU WKHLU WLPH DQG WR P\ QHSKHZ )DWLQ &RRSHU ZKR LV WKH IXWXUH

PAGE 4

$&.12:/('*0(176 7KH UHVHDUFK FRQGXFWHG IRU WKLV GLVVHUWDWLRQ ZDV VXSSRUWHG E\ WKH 1DWLRQDO 6FLHQFH )RXQGDWLRQ WKURXJK WKH 8QLYHUVLW\ RI )ORULGD &ROOHJH RI (QJLQHHULQJ 0LQRULW\ (QJLQHHULQJ 'RFWRUDO ,QLWLDWLYH $SSUHFLDWLRQ LV H[SUHVVHG WR P\ FRPPLWWHH FKDLUPDQ 'U 7KRPDV &ULVPDQ DQG FRFKDLUPDQ 'U < *RVZDPL IRU WKHLU VDJH DGYLFH DQG XQZDYHULQJ VXSSRUW RYHU WKH ODVW IHZ \HDUV $FNQRZOHGJPHQW DQG JUDWLWXGH DUH H[WHQGHG WR FRPPLWWHH PHPEHU 'U 0LFKDHO $QQDEOH IRU KLV VXSSRUW DQG JHQHURXV SURYLVLRQ RI DFFHVV WR DQDO\WLFDO HTXLSPHQW DQG ODERUDWRU\ IDFLOLWLHV WR FRPPLWWHH PHPEHU 'U 6H\PRXU 6 %ORFN ZKRVH NQRZOHGJH RI GLVLQIHFWLRQ KDV VHUYHG DV D YDOXDEOH UHVRXUFH DQG ZKR JUDFLRXVO\ DOORZHG PH WKH XVH RI KLV ODERUDWRU\ FRPPLWWHH PHPEHU 'U 3DXO &KDGLN ZKR KHOSHG WR VWHHU PH LQ WKH ULJKW GLUHFWLRQ IURP WKH YHU\ EHJLQQLQJ WR 6DQMD\ 3XUDQLN IRU VKDULQJ KLV NQRZOHGJH RI DQDO\WLFDO FKHPLVWU\ WR &KXFN *DUUHWVRQ IRU PDNLQJ DYDLODEOH KLV ZHDOWK RI PHFKDQLFDO FDSDELOLWLHV NHHQ LQVLJKW DQG HYHU SUHVHQW VPLOH WR 0LFKDHO 0F&DVNLOO DQG 0LFKDHO 2OLYHU IRU WKHLU GLOLJHQW DVVLVWDQFH LQ WKH ODERUDWRU\ DQG WR %DUEDUD :DONHU DQG %HUGHQLD 0RQURH IRU WKHLU DGPLQLVWUDWLYH VXSSRUW DQG IULHQGVKLS 0\ JUDWLWXGH DQG WKDQNV DUH GXH WR FRPPLWWHH PHPEHU 'U -RQDWKDQ (DUOH IRU KLV JXLGDQFH HQFRXUDJHPHQW FRQILGHQFH DQG WKDW H[WUD SXVK ZKHQ QHHGHG LW ,9

PAGE 5

7KH LQVLJKW VXSSRUW DQG IULHQGVKLS RI P\ FROOHDJXHV LQ WKH 6RODU (QHUJ\ *URXS WKH &HQWHU IRU :HWODQGV DQG (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV KDYH WUXO\ HQULFKHG P\ OHDUQLQJ H[SHULHQFH KHUH DW WKH 8QLYHUVLW\ RI )ORULGD DQG WKH\ LQ WKHLU RZQ ZD\V KDYH FRQWULEXWHG WR WKH DFKLHYHPHQW RI WKLV JRDO $ VSHFLDO WKDQN \RX LV H[WHQGHG WR WKH HQWLUH (DUOH IDPLO\ &HOLD -HUHP\ .HYLQ DQG 0UV
PAGE 6

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 LY /,67 2) 7$%/(6 L[ /,67 2) ),*85(6 [LL .(< 72 6<0%2/6 [YLLL $%675$&7 [L[ &+$37(56 ,1752'8&7,21 5HVHDUFK 6LJQLILFDQFH 7KHRU\ RI 3KRWRFKHPLFDO :DWHU 7UHDWPHQW 3KRWRFDWDO\VLV 3KRWRVHQVLWL]DWLRQ 7KH 6RODU 5HVRXUFH 5HVHDUFK 2EMHFWLYHV 5(9,(: 2) 62/$5 %$6(' :$7(5 75($70(17 3K\VLFDO 3URFHVVHV 'LVWLOODWLRQ 3URFHVVHV 3DVVLYH GLVWLOODWLRQ $FWLYH GLVWLOODWLRQ 3DVWHXUL]DWLRQ 3URFHVVHV 3KRWR 3URFHVVHV 6RODU 'LVLQIHFWLRQ 62',6 +DORVRO 3KRWRFDWDO\VLV 3KRWRVHQVLWL]DWLRQ 6XPPDU\ YL

PAGE 7

(;3(5,0(17$/ '(6,*1 $1' 0(7+2'6 &KRLFH RI ([SHULPHQWDO 3DUDPHWHUV &RQWDPLQDQWV &DWDO\VW &KRLFH &KRLFH RI 3KRWRVHQVLWL]HU 5HDFWRU 'HVLJQ S+ &DWDO\VW6HQVLWL]HU &RQFHQWUDWLRQ /DERUDWRU\ ([SHULPHQWDO 'HVLJQ 0DWHULDOV DQG 0HWKRGV 5HDFWLRQ 9HVVHOV %DFWHULDO ,QRFXODWLRQ 5HDFWRU &KDPEHU 3KRWRFDWDO\VLV 5HDFWRU 6HWXS 3KRWRFDWDO\VLV 6DPSOLQJ DQG $QDO\VLV 3KRWRVHQVLWL]DWLRQ 5HDFWRU 6HWXS 3KRWRVHQVLWL]DWLRQ 6DPSOLQJ DQG $QDO\VLV &RPELQDWLRQ ([SHULPHQWDO 6HWXS 6DPSOLQJ DQG $QDO\VLV ([SHULPHQWV IRU &RQILUPDWLRQ RI 3UHYLRXV :RUN ZLWK %URPDFLO 5(68/76 $1' ',6&866,21 '\H 3KRWRVHQVLWL]DWLRQ *HQHUDO &RPPHQWV $ERXW ([SHULPHQWDO 'DWD 6WDWLVWLFDO 7UHDWPHQW RI WKH 'DWD 3UHVHQWDWLRQ RI 5HVXOWV DQG ,GHQWLILFDWLRQ RI *HQHUDO 7UHQGV 'DWD $QDO\VLV E\ $120 (IIHFW RI 6XQOLJKW (IIHFW RI S+ (IIHFW RI '\H &RQFHQWUDWLRQ (IIHFW RI ,QLWLDO &ROLIRUP 'HQVLW\ 5HDFWRU (IILFDF\ 6XPPDU\ 3KRWRFDWDO\VLV ZLWK 7LWDQLXP 'LR[LGH *HQHUDO &RPPHQWV $ERXW ([SHULPHQWDO 'DWD 6WDWLVWLFDO 7UHDWPHQW RI WKH 'DWD 3UHVHQWDWLRQ RI 5HVXOWV DQG ,GHQWLILFDWLRQ RI *HQHUDO 7UHQGV 'DWD $QDO\VLV E\ $120 (IIHFW RI /LJKW (IIHFW RI S+ (IIHFW RI 7L &RQFHQWUDWLRQ 0XOWLSOH 3DUDPHWHU (IIHFWV (IIHFW RI ,QLWLDO &RORQ\ 'HQVLW\ RQ 'LVLQIHFWLRQ 2WKHU (IIHFWV 3KRWRFDWDO\VLV YV $LU 6WULSSLQJ 6XPPDU\ 7L 3KRWRFDWDO\VLV &RPELQHG :LWK 0HWK\OHQH %OXH *HQHUDO &RPPHQWV $ERXW ([SHULPHQWDO 'DWD YLL

PAGE 8

6WDWLVWLFDO 7UHDWPHQW RI WKH 'DWD 'LVLQIHFWLRQ 'HWR[LILFDWLRQ 6XPPDU\ .LQHWLF &RQVLGHUDWLRQV 'HWR[LILFDWLRQ 'LVLQIHFWLRQ *HQHUDO 6XPPDU\ RI 5HVXOWV 6800$5< $1' &21&/86,216 6XPPDU\ 3URFHVV (IILFDF\ &RPSDULVRQ IRU 6LPXOWDQHRXV 7UHDWPHQW 'ULQNLQJ :DWHU 4XDOLW\ &RQFOXVLRQV 5HFRPPHQGDWLRQV IRU )XWXUH :RUN 5()(5(1&(6 $33(1',&(6 $ (;3(5,0(17$/ '$7$ % /,*+7 0($685(0(17 %,2*5$3+,&$/ 6.(7&+ YLLL

PAGE 9

/,67 2) 7$%/(6 7DEOH SDJH 6SHFWUDO 'LVWULEXWLRQ RI 6RODU 5DGLDWLRQ ([DPSOHV RI 3KRWRFDWDO\WLF 7UHDWPHQW RI :DWHU DQG :DVWHZDWHU ([DPSOHV RI 3KRWRFDWDO\WLF 7UHDWPHQW RI :DWHU DQG :DVWHZDWHU 6XPPDU\ RI 3KRWRVHQVLWL]HG 7UHDWPHQW RI :DWHU DQG :DVWHZDWHU 3KRWRVWDELOLW\ RI 6HPLFRQGXFWRU 2[LGHV 7HVWHG E\ &DUH\ DQG 2OLYHU f 2UGHU RI (IIHFWLYHQHVV RI '\HV DW fA 0 &RQFHQWUDWLRQ RQ ( &ROL $IWHU +RXUV ([SRVXUH WR /LJKW DW 5RRP 7HPSHUDWXUH 'HVLJQ IRU 7L 3KRWRFDWDO\WLF /DE ([SHULPHQWV 'HVLJQ IRU 3KRWRVHQVLWL]DWLRQ /DE ([SHULPHQWV 'HVLJQ IRU &RPELQDWLRQ /DE ([SHULPHQWV ,QVRODWLRQ 0HDVXUHPHQWV IURP '\H 6HQVLWL]DWLRQ ([SHULPHQWV 'HVFULSWLYH 6WDWLVWLFV RI 0HDVXUHG 'DWD IRU DOO ([SHULPHQWV $YHUDJH 6WDQGDUG 'HYLDWLRQV IRU DOO '\H 3KRWRVHQVLWL]DWLRQ ([SHULPHQWV 0HDQ )UDFWLRQDO 6XUYLYDO s bf RI ( FROL # W PLQXWHV LQ 0% ([SHULPHQWV 0HDQ )UDFWLRQDO 6XUYLYDO sbf RI ( FROL LQ 0% ([SHULPHQWV 0HDQ )UDFWLRQDO 6XUYLYDO sbf RI ( FROL LQ 5% ([SHULPHQWV %HQ]HQH sf DQG 7ROXHQH sf &RQFHQWUDWLRQV SSEf LQ 0% ([SHULPHQWV %HQ]HQH s f DQG 7ROXHQH s f &RQFHQWUDWLRQV SSEf LQ 5% ([SHULPHQWV ,;

PAGE 10

1RUPDOL]HG %HQ]HQH f DQG 7ROXHQH s f &RQFHQWUDWLRQ LQ 0% ([SHULPHQWV 1RUPDOL]HG %HQ]HQH sf DQG 7ROXHQH sf &RQFHQWUDWLRQ LQ 5% ([SHULPHQWV &DOFXODWHG $120 9DOXHV IRU '\H 3KRWRVHQVLWL]HG 'LVLQIHFWLRQ 6XQOLJKW 6XEJURXS $YHUDJHV IRU '\H 3KRWRVHQVLWL]HG 'LVLQIHFWLRQ 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI ( FROL S+ 6XEJURXS $YHUDJHV IRU '\H 3KRWRVHQVLWL]HG 'LVLQIHFWLRQ 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI ( FROL '\H &RQFHQWUDWLRQ 6XEJURXS $YHUDJHV LQ 'LVLQIHFWLRQ ([SHULPHQWV 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI ( &ROL 0HDQ )UDFWLRQDO 6XUYLYDO RI %DFWHULD LQ 7L ([SHULPHQWV 0HDQ &RQFHQWUDWLRQ RI %7(; SSEf LQ 7L ([SHULPHQWV &DOFXODWHG $120 9DOXHV IRU 7L 3KRWRFDWDO\VLV 89 /LJKW 6XEJURXS $YHUDJHV IRU 7L 3KRWRFDWDO\VLV 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI %DFWHULD DQG 1RUPDOL]HG &KHPLFDO &RQFHQWUDWLRQ S+ 6XEJURXS $YHUDJHV IRU 7L 3KRWRFDWDO\VLV 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI %DFWHULD DQG 1RUPDOL]HG &KHPLFDO &RQFHQWUDWLRQ 7L &RQFHQWUDWLRQ 6XEJURXS $YHUDJHV IRU 'LVLQIHFWLRQ 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI %DFWHULD DQG 1RUPDOL]HG &KHPLFDO &RQFHQWUDWLRQ 0HDQ 9DOXHV IRU )UDFWLRQDO 6XUYLYDO DV D )XQFWLRQ RI /LJKW S+ DQG 7L &RQFHQWUDWLRQ DW W 0LQXWHV 0HDQ 1RUPDOL]HG %HQ]HQH &RQFHQWUDWLRQ $IWHU 0LQXWHV LQ 7L ([SHULPHQWV 'HVFULSWLYH 6WDWLVWLFV IRU ,QLWLDO &RORQ\ 'HQVLW\ LQ 7L ([SHULPHQWV 9DSRU 3UHVVXUH 9DOXHV IRU %7(; FRPSRQHQWV 0HDVXUHG 6XQOLJKW ,QWHQVLW\ LQ &RPELQDWLRQ ([SHULPHQWV $YHUDJH 6WDQGDUG 'HYLDWLRQV IRU DOO &RPELQDWLRQ ([SHULPHQWV 0HDQ )UDFWLRQDO 6XUYLYDO sbf RI ( &ROL LQ &RPELQDWLRQ ([SHULPHQWV [

PAGE 11

&DOFXODWHG $120 9DOXHV IRU &RPELQDWLRQ ([SHULPHQWV 6XQOLJKW 6XEJURXS $YHUDJHV IRU &RPELQHG ([SHULPHQWV 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI %DFWHULD DQG 1RUPDOL]HG &KHPLFDO &RQFHQWUDWLRQ 3KRWRFKHPLFDO 6XEJURXS $YHUDJHV IRU &RPELQDWLRQ ([SHULPHQWV 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI ( FROL DQG 1RUPDOL]HG &KHPLFDO &RQFHQWUDWLRQ 0HDQ &RQFHQWUDWLRQ SSEf RI %HQ]HQH sf DQG 7ROXHQH sf LQ &RPELQDWLRQ ([SHULPHQWV $ :PA $ :P ([SHULPHQWDO )LUVW 2UGHU 5DWH &RQVWDQWV PLQnf IRU 7L 3KRWRFDWDO\WLF ([SHULPHQWV &RUUHODWLRQ 6WDWLVWLFV IRU /HDVW 6TXDUHV /LQHDU 5HJUHVVLRQ RI .LQHWLF 'DWD &RQILGHQFH /HYHO LV b )LUVW 2UGHU 5DWH &RQVWDQWV IRU $OO 3KRWRFKHPLFDO 'LVLQIHFWLRQ ([SHULPHQWV 7LPH WR &RPSOHWH 'HVWUXFWLRQ E\ 3KRWRFKHPLFDO 7UHDWPHQW [L

PAGE 12

/,67 2) ),*85(6 )LJXUH SDJH *UDSKLFDO 5HSUHVHQWDWLRQ RI WKH *HQHUDWLRQ RI H K 3DLUV DQG 5HFRPELQDWLRQ E\ 3KRWRFDWDO\WLF 5HDFWLRQ RQ WKH 6XUIDFH RI D6HPLFRQGXFWRU 3DUWLFOH &RQYHQWLRQDO 3DVVLYH 6RODU %DVLQ 6WLOO 6FKHPDWLF RI )ODVK 'LVWLOODWLRQ 8VLQJ 6RODU &ROOHFWRU 7L 5HDFWLRQ 9HVVHO 3KRWRVHQVLWL]DWLRQ 5HDFWLRQ 9HVVHO *UDSKLFDO 5HSUHVHQWDWLRQ RI %DFWHULDO ,QRFXODWLRQ 8OWUDYLROHW /LJKW DQG 'DUN 5HDFWRU &KDPEHU 0% 'HVWUXFWLRQ RI ( FROL LQ 6XQOLJKW Df S+ :P Ef S+ ,DYJ :P 'HVWUXFWLRQ RI ( FROL LQ VXQOLJKW ZLWK PJ/ 0% Df S+ :P DQG Ef S+ ,DYJ :P 5% 'HVWUXFWLRQ RI ( FROL LQ 6XQOLJKW Df S+ :P Ef S+ ,DYJ :P 5% 'HVWUXFWLRQ RI ( FROL DW S+ ,DYJ :P Df PJ/ 5% DQG Ef PJ/ 5% %HQ]HQH &RQFHQWUDWLRQ DV D )XQFWLRQ RI 7LPH DQG 0% &RQFHQWUDWLRQ LQ 6XQOLJKW Df S+ ,DYF :P Ef S+ ,DYH :P 7ROXHQH &RQFHQWUDWLRQ DV D )XQFWLRQ RI 7LPH DQG 0% &RQFHQWUDWLRQ LQ 6XQOLJKW Df S+ :P Ef S+ :P %HQ]HQH &RQFHQWUDWLRQ DV D )XQFWLRQ RI 7LPH DQG 5% &RQFHQWUDWLRQ LQ 6XQOLJKW Df S+ 7 :P Ef S+ 7 :P

PAGE 13

7ROXHQH &RQFHQWUDWLRQ DV D )XQFWLRQ RI 7LPH DQG 5% &RQFHQWUDWLRQ LQ 6XQOLJKW Df S+ ,DYJ :P Ef S+ ,DYJ :P 1RUPDOL]HG %HQ]HQH &RQFHQWUDWLRQ LQ 6XQOLJKW ZLWK PJ/ 0% Df S+ ,DYJ :P Ef S+ ,DYJ :P 1RUPDOL]HG 7ROXHQH &RQFHQWUDWLRQ LQ 6XQOLJKW ZLWK PJ/ 0% Df S+ ,DYJ :P Ef S+ ,DYJ :P 1RUPDOL]HG %HQ]HQH &RQFHQWUDWLRQ LQ 6XQOLJKW ZLWK PJ/ 5% Df S+ ,DYJ :P Ef S+ ,DYJ :P 1RUPDOL]HG 7ROXHQH &RQFHQWUDWLRQ LQ 6XQOLJKW ZLWK PJ/ 5% Df S+ ,DYJ :P Ef S+ ,DYJ :P 6LJQLILFDQFH RI 6XQOLJKW %DVHG RQ $120 LQ 0% ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV 6LJQLILFDQFH RI 6XQOLJKW %DVHG RQ $120 LQ 5% ([SHULPHQWV Df 0LQXWHV Ef 0LQWXHV Ff 0LQXWHV 6LJQLILFDQFH RI S+ %DVHG RQ $120 LQ 0% ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV 6LJQLILFDQFH RI S+ %DVHG RQ $120 LQ 5% ([SHULPHQWV Df 0LQWXHV Ef 0LQXWHV Ff 0LQXWHV 6WDWLVWLFDO 6LJQLILFDQFH RI 0% &RQFHQWUDWLRQ %DVHG RQ $120 RQ 'LVLQIHFWLRQ LQ 6XQOLJKW Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV 6WDWLVWLFDO 6LJQLILFDQFH RI 5% &RQFHQWUDWLRQ %DVHG RQ $120 RQ 'LVLQIHFWLRQ LQ 6XQOLJKW Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV &RPSDULVRQ RI 'LVLQIHFWLRQ (IILFDF\ RI &RQWURO DQG PJ / 0% LQ 6XQOLJKW DW PLQXWHV %DVHG RQ $120 &RPSDULVRQ RI 'LVLQIHFWLRQ (IILFDF\ RI &RQWURO DQG PJ/ 0% LQ 6XQOLJKW DW PLQXWHV %DVHG RQ $120 &RPSDULVRQ RI 'LVLQIHFWLRQ (IILFDF\ RI &RQWURO DQG PJ/ 0% LQ 6XQOLJKW DW PLQXWHV %DVHG RQ $120 &RPSDULVRQ RI 'LVLQIHFWLRQ (IILFDF\ RI &RQWURO DQG PJ/ 0% LQ 6XQOLJKW DW PLQXWHV %DVHG RQ $120 &RPSDULVRQ RI 'LVLQIHFWLRQ (IILFDF\ RI PJ / DQG PJ/ 0% LQ 6XQOLJKW DW PLQXWHV %DVHG RQ $120 [LQ

PAGE 14

&RPSDULVRQ RI 'LVLQIHFWLRQ (IILFDF\ RI PJ / DQG PJ/ 0% LQ 6XQOLJKW DW PLQXWHV %DVHG RQ $120 &RPSDULVRQ RI 'LVLQIHFWLRQ (IILFDF\ RI PJ / DQG PJ/ 0% LQ 6XQOLJKW DW PLQXWHV %DVHG RQ $120 )UDFWLRQDO 6XUYLYDO RI ( FROL LQ VXQOLJKW DW W PLQXWHV DV D )XQFWLRQ RI 0% &RQFHQWUDWLRQ %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ /HDVW 6TXDUHV 5HJUHVVLRQ RI 1DWXUDO /RJDULWKP RI )UDFWLRQDO 6XUYLYDO RI ( FROL DV D )XQFWLRQ RI 0% &RQFHQWUDWLRQ DW W 0LQXWHV ,QLWLDO &RORQ\ &RXQW YV )UDFWLRQDO 6XUYLYDO RI ( FROL DW W 0LQXWHV IRU 0% ([SHULPHQWV ,QLWLDO &RORQ\ &RXQW YV )UDFWLRQDO 6XUYLYDO RI ( FROL DW W 0LQXWHV LQ 5% ([SHULPHQWV 7L 3KRWRFDWDO\WLF 'LVLQIHFWLRQ LQ 89 /LJKW :Pf (UURU %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ Df S+ Ef S+ 'HVWUXFWLRQ RI %HQ]HQH LQ 5HDFWRUV DQG DV D )XQFWLRQ RI 7LPH 5HDFWRUV &RQWDLQHG b 7L DQG ZHUH ,UUDGLDWHG IRU PLQXWHV XQGHU 89 /DPSV :Pf %HQ]HQH &RQFHQWUDWLRQ LQ 89 /LJKW :Pf DV D )XQFWLRQ RI 7LPH DQG 7L &RQFHQWUDWLRQ (UURU %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ Df S+ Ef S+ 7ROXHQH &RQFHQWUDWLRQ LQ 89 /LJKW :Pf DV D )XQFWLRQ RI 7LPH DQG 7L &RQFHQWUDWLRQ (UURU %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ Df S+ Ef S+ ,OO PtS ;\OHQH &RQFHQWUDWLRQ LQ 89 /LJKW :Pf DV D )XQFWLRQ RI 7LPH DQG 7L &RQFHQWUDWLRQ (UURU %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ Df S+ Ef S+ 6LJQLILFDQFH RI 89 /LJKW :Pf %DVHG RQ $120 RQ %DFWHULD LQ 7L ([SHULPHQWV DW 0LQXWHV 6LJQLILFDQFH RI 89 /LJKW :Pf %DVHG RQ $120 RQ %HQ]HQH LQ 7L ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV 6LJQLILFDQFH RI 89 /LJKW :Pf %DVHG RQ $120 RQ 7ROXHQH LQ 7L ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV (IIHFW RI 89 /LJKW :Pf RQ )UDFWLRQDO 6XUYLYDO RI %DFWHULD LQ $OO 5HDFWRUV LQ 7L ([SHULPHQWV %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQOO [LY

PAGE 15

6LJQLILFDQFH RI S+ %DVHG RQ $120 WR %DFWHULD 'HVWUXFWLRQ LQ 7L ([SHULPHQWV DW 0LQXWHV 6LJQLILFDQFH RI S+ %DVHG RQ $120 WR %HQ]HQH 'HVWUXFWLRQ LQ 7L ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV 6LJQLILFDQFH RI S+ %DVHG RQ $120 WR 7ROXHQH 'HVWUXFWLRQ LQ 7L ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV 6LJQLILFDQFH RI 7L &RQFHQWUDWLRQ %DVHG RQ $120 RQ %DFWHULD LQ 3KRWRFDWDO\VLV ([SHULPHQWV DW 0LQXWHV 6LJQLILFDQFH RI 7L &RQFHQWUDWLRQ %DVHG RQ $120 RQ %HQ]HQH LQ 3KRWRFDWDO\VLV ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV 6LJQLILFDQFH RI 7L &RQFHQWUDWLRQ %DVHG RQ $120 RQ 7ROXHQH LQ 3KRWRFDWDO\VLV ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV &RPSDULVRQ RI &RQWURO YV b 7L RQ 3KRWRFDWDO\WLF 'LVLQIHFWLRQ DW 0LQXWHV %DVHG RQ $120 &RPSDULVRQ RI &RQWURO YV b 7L RQ 3KRWRFDWDO\WLF 'LVLQIHFWLRQ DW 0LQXWHV %DVHG RQ $120 &RPSDULVRQ RI &RQWURO YV b 7L RQ 3KRWRFDWDO\WLF 'LVLQIHFWLRQ DW 0LQXWHV %DVHG RQ $120 &RPSDULVRQ RI b YV b 7L RQ 3KRWRFDWDO\WLF 'LVLQIHFWLRQ DW 0LQXWHV %DVHG RQ $120 &RPSDULVRQ RI &RQWURO YV b 7L RQ 3KRWRFDWDO\WLF 'HVWUXFWLRQ RI %HQ]HQH DW 0LQXWHV %DVHG RQ $120 &RPSDULVRQ RI &RQWURO YV b 7L RQ 3KRWRFDWDO\WLF 'HVWUXFWLRQ RI %HQ]HQH DW 0LQXWHV %DVHG RQ $120 &RPSDULVRQ RI &RQWURO YV b 7L RQ 3KRWRFDWDO\WLF 'HVWUXFWLRQ RI %HQ]HQH DW 0LQXWHV %DVHG RQ $120 &RPSDULVRQ RI b YV b 7L RQ 3KRWRFDWDO\WLF 'HVWUXFWLRQ RI %HQ]HQH DW 0LQXWHV %DVHG RQ $120 )UDFWLRQDO 6XUYLYDO RI %DFWHULD DV D )XQFWLRQ RI 89 /LJKW :Pf DQG S+ LQ 7L ([SHULPHQWV %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ (IIHFW RI 89 /LJKW :Pf DQG S+ RQ WKH 'HVWUXFWLRQ RI %HQ]HQH LQ 7L ([SHULPHQWV %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ ,QLWLDO &RORQ\ &RXQW YV )UDFWLRQDO 6XUYLYDO RI %DFWHULD DW W 0LQXWHV IRU 7L 3KRWRFDWDO\VLV [Y

PAGE 16

1RUPDOL]HG &RQFHQWUDWLRQV RI %7(; &RPSRQHQWV LQ S+ 'DUN ([SHULPHQWV ZLWK b 7L 1RUPDOL]HG &RQFHQWUDWLRQV RI %7(; &RPSRQHQWV LQ S+ 'DUN ([SHULPHQWV ZLWK b 7L 'HVWUXFWLRQ RI ( FROL LQ 6XQOLJKW ,;RW $YJ :PA $YJ :Pf LQ &RPELQDWLRQ ([SHULPHQWV 6LJQLILFDQFH RI 6XQOLJKW ,7RW $YJ :PA $AJ :Pf RQ ( FROL 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV 6LJQLILFDQFH RI 3KRWRFKHPLFDO RQ ( FROL 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV 6LJQLILFDQFH RI 7L YV 0% RQ ( FROL 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LLXHV Ff 0LQXWHV 6LJQLILFDQFH RI 7L YV %RWK RQ ( FROL 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQW Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV 6LJQLILFDQFH RI 0% YV %RWK RQ ( FROL 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV 1RUPDOL]HG &RQFHQWUDWLRQ DV D )XQFWLRQ RI 7LPH LQ &RPELQDWLRQ ([SHULPHQWV A $YJ :P ,XY $YJ :P Df %HQ]HQH Ef 7ROXHQH 6LJQLILFDQFH RI 3KRWRFKHPLFDO RQ %HQ]HQH 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV 6LJQLILFDQFH RI 3KRWRFKHPLFDO RQ 7ROXHQH 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV 6LJQLILFDQFH RI 7L YV %RWK RQ %HQ]HQH 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV 6LJQLILFDQFH RI 7L YV %RWK RQ 7ROXHQH 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV [YL

PAGE 17

/HDVW 6TXDUHV /LQHDU 5HJUHVVLRQ RI )LUVW 2UGHU 5DWH (TXDWLRQ IRU 'LVLQIHFWLRQ LQ 89 /LJKW :Pf ZLWK b 7L DQG S+ U SYDOXH /HDVW 6TXDUHV /LQHDU 5HJUHVVLRQ RI )LUVW 2UGHU 5DWH (TXDWLRQ IRU 'LVLQIHFWLRQ LQ 89 /LJKW :Pf ZLWK b 7L DQG S+ U SYDOXH /HDVW 6TXDUHV /LQHDU 5HJUHVVLRQ RI )LUVW 2UGHU 5DWH (TXDWLRQ IRU 'LVLQIHFWLRQ LQ 6XQOLJKW :Pf ZLWK QR SKRWRFKHPLFDO DQG S+ U SYDOXH /HDVW 6TXDUHV /LQHDU 5HJUHVVLRQ RI )LUVW 2UGHU 5DWH (TXDWLRQ IRU 'LVLQIHFWLRQ LQ 6XQOLJKW :Pf ZLWK PJ/ 5% DQG S+ U SYDOXH ;9,,

PAGE 18

.(< 72 6<0%2/6 N K H KY K HB f;r ;r ;r [ ; 5 1W V ; ; VB 5 + Y G D :DYHOHQJWK QP 3ODQFNfV FRQVWDQW [ -V 6SHHG RI OLJKW [ FPV %DQG JDS HQHUJ\ HY /LJKW HQHUJ\ 3RVLWLYH KROH LQ WKH YDOHQFH EDQG (OHFWURQ ([FLWHG VLQJOHW VWDWH RI FRPSRQHQW ; ([FLWHG WULSOHW VWDWH RI FRPSRQHQW ; ([FLWHG VWDWH RI FRPSRQHQW ; 6LQJOHW VWDWH RI FRPSRQHQW ; 7ULSOHW VWDWH RI FRPSRQHQW ; +\GURFDUERQ JURXS 6RODU FRQVWDQW &RQFHQWUDWLRQ DW WLPH W &RORQ\ GHQVLW\ DW WLPH W ,QVRODWLRQ :P 6WDQGDUG 'HYLDWLRQ *UDQG $YHUDJH RI DOO 'DWD LQ $120 6XEJURXS $YHUDJH IRU $120 $YHUDJH VWDQGDUG GHYLDWLRQ $YHUDJH 5DQJH $120 &ULWLFDO 9DOXH GHJUHHV RI IUHHGRP ELDV FRUUHFWLRQ IDFWRU IRU $120 VLJQLILFDQFH IDFWRU ;9OOO

PAGE 19

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 62/$5 3+272&+(0,&$/ 7(&+12/2*< )25 327$%/( :$7(5 75($70(17 ',6,1)(&7,21 $1' '(72;,),&$7,21 %\ $GULHQQH 7HUHVD &RRSHU $XJXVW &KDLUSHUVRQ 7KRPDV &ULVPDQ &RFKDLUSHUVRQ
PAGE 20

,Q D VHULHV RI EHQFK VFDOH H[SHULPHQWV WKUHH SKRWRFKHPLFDO WHFKQRORJLHV 7L SKRWRFDWDO\VLV G\H SKRWRVHQVLWL]DWLRQ DQG D FRPELQDWLRQ RI G\H SKRWRVHQVLWL]DWLRQ DQG 7L SKRWRFDWDO\VLV ZHUH HYDOXDWHG IRU WKHLU HIILFDF\ IRU VLPXOWDQHRXV UHPRYDO RI FROLIRUP EDFWHULD DQG DURPDWLF K\GURFDUERQV LQ GULQNLQJ ZDWHU XQGHU D YDULHW\ RI S+ DQG SKRWRFKHPLFDO FRQFHQWUDWLRQ FRQGLWLRQV 6HULHV RI PO DQG PO UHDFWRUV FRQWDLQLQJ YDULRXV FRQFHQWUDWLRQV RI 7L DQG WZR S+ OHYHOV DQG f ZHUH LQRFXODWHG ZLWK PL[HG EDFWHULD VSHFLHV EHQ]HQH WROXHQH DQG [\OHQH DQG LOOXPLQDWHG XQGHU XOWUDYLROHW OLJKW IRU VHYHUDO KRXUV 8QGHU PRVW FRQGLWLRQV ERWK WKH FKHPLFDO DQG EDFWHULRORJLFDO FRQWDPLQDQWV ZHUH GHVWUR\HG ZLWKLQ DQ KRXU ,Q SKRWRVHQVLWL]DWLRQ H[SHULPHQWV WKH PO UHDFWRUV ZHUH FKDUJHG ZLWK VHYHUDO FRQFHQWUDWLRQV RI URVH EHQJDO RU PHWK\OHQH EOXH DQG QHXWUDO S+ RU EDVLF S+ ZDWHU $IWHU LQRFXODWLRQ ZLWK (VFKHULFKLD FROL EHQ]HQH DQG WROXHQH WKH UHDFWRUV ZHUH LOOXPLQDWHG IRU IRXU KRXUV LQ VXQOLJKW ,Q DOO FDVHV WKH ZDWHU ZDV GLVLQIHFWHG ZLWKLQ RQH KRXU KRZHYHU GHVWUXFWLRQ RI WKH FKHPLFDO FRQWDPLQDQWV GLG QRW RFFXU 7KH PO K\EULG UHDFWRUV ORDGHG ZLWK b 7L DQGRU PJ/ PHWK\OHQH EOXH ZHUH DOVR LOOXPLQDWHG LQ VXQOLJKW 7KH LQRFXODWLRQV RI (VFKHULFKLD FROL EHQ]HQH DQG WROXHQH ZHUH FRPSOHWHO\ GHVWUR\HG DIWHU WZR KRXUV LQ DOO RI WKH UHDFWRUV ZKLFK FRQWDLQHG 7L KRZHYHU WKH SUHVHQFH RI PHWK\OHQH EOXH LQKLELWHG WKH UHDFWLRQ [[

PAGE 21

&+$37(5 ,1752'8&7,21 5HVHDUFK 6LJQLILFDQFH &OHDQ DQG VDIH ZDWHU LV D UHTXLUHPHQW IRU KHDOWK\ OLYLQJ DQG GHYHORSPHQW :KLOH FRQFHUQV ZLWK PRVW ZDWHU UHODWHG GLVHDVHV KDYH EHHQ YLUWXDOO\ HOLPLQDWHG LQ PRVW GHYHORSHG UHJLRQV VXFK DV :HVWHUQ (XURSH DQG 1RUWK $PHULFD GLVHDVHV UHODWHG WR HLWKHU WKH TXDQWLW\ RU TXDOLW\ RI ZDWHU VXSSO\ DUH VWLOO D PDMRU SUREOHP LQ RWKHU SDUWV RI WKH ZRUOG ,Q 6WHLQ UHSRUWHG WKDW GHDWKV RFFXUUHG GDLO\ IURP ZDWHU ERUQH GLVHDVHV ,Q DQ HIIRUW WR UHGXFH WKHVH GHDWKV WKH 8QLWHG 1DWLRQV GHFODUHG WKH WHQ \HDU SHULRG IURP WR WKH ,QWHUQDWLRQDO 'ULQNLQJ :DWHU 6XSSO\ DQG 6DQLWDWLRQ 'HFDGH 7KH JRDO RI WKH GHFDGH ZDV WR SURYLGH XQLYHUVDO DFFHVV WR VDIH ZDWHU DQG VDQLWDWLRQ :KLOH PDQ\ DGYDQFHV ZHUH PDGH GXULQJ WKLV SHULRG WR LQFUHDVH WKH VXSSO\ RI VDIH GULQNLQJ ZDWHU IRU WKH JOREDO KXPDQ SRSXODWLRQ XQLYHUVDO DFFHVV KDV \HW WR EH DFKLHYHG $FFRUGLQJ WR :RUOG +HDOWK 2UJDQL]DWLRQ :+2f HVWLPDWHV DV RI b RI XUEDQ SRSXODWLRQV DQG b RI UXUDO SRSXODWLRQV DSSUR[LPDWHO\ ELOOLRQ SHRSOHf DUH VWLOO ZLWKRXW DFFHVV WR VDIH GULQNLQJ ZDWHU VXSSOLHV &KULVWPDV f $Q LQH[SHQVLYH VXSSO\ RI FOHDQ ZDWHU LV RQH RI WKH PRVW SUHVVLQJ SXEOLF KHDOWK LVVXHV IDFLQJ GHYHORSLQJ FRPPXQLWLHV 2YHU PLOOLRQ GHDWKV UHVXOW IURP PRUH WKDQ PLOOLRQ QHZ FDVHV RI ZDWHU ERUQH GLVHDVHV \HDUO\ +D]HQ DQG 7RUDQ]RV f 'XULQJ

PAGE 22

WKHUH ZHUH UHSRUWHG FDVHV RI FKROHUD LQ 6XE6DKDUDQ $IULFD DQG /DWLQ $PHULFD ZLWK GHDWK UDWHV RI b DQG b UHVSHFWLYHO\ ,Q :+2 UHSRUWHG D GHFUHDVH LQ WKH DYDLODELOLW\ RI FOHDQ ZDWHU LQ VHYHUDO FRXQWULHV RI 6XE6DKDUDQ $IULFD 7KHLU HVWLPDWHV EDVHG RQ WKH FRQWLQXDWLRQ RI FXUUHQW WUHQGV VXJJHVW WKDW E\ WKH \HDU WKH VXSSO\ RI UHQHZDEOH IUHVK ZDWHU SHU SHUVRQ LQ WKH ZRUVW GURXJKWDIIHFWHG FRXQWULHV RI WKH FRQWLQHQW ZLOO UHSUHVHQW b RI WKH YDOXHV :+2 f ,Q PDQ\ GHYHORSLQJ FRPPXQLWLHV ZDWHU UHODWHG LQIHFWLRQV FDXVHG E\ SRRU ELRORJLFDO GULQNLQJ ZDWHU TXDOLW\ RU ODFN RI ZDWHU VXSSO\ DUH WKH PRVW XUJHQW SXEOLF KHDOWK LVVXHV 7KH ZDWHU UHODWHG LQIHFWLRQV DUH DFXWH WHQGLQJ WR DFW TXLFNO\ FDXVLQJ LOOQHVV DQG VRPHWLPHV GHDWK +RZHYHU WKH FKHPLFDO TXDOLW\ RI ZDWHU LV DOVR RI JURZLQJ FRQFHUQ ,Q WKH V LW ZDV GLVFRYHUHG WKDW GLVLQIHFWLRQ E\ FKORULQDWLRQ RI ZDWHU FRQWDLQLQJ KXPLF VXEVWDQFHV JHQHUDWHV FKORURIRUP DQG RWKHU WULKDORPHWKDQHV 7+0Vf 7+0V DUH NQRZQ DQLPDO FDUFLQRJHQV &ODUN *OD]H HW DO D 0RVHU 3DFNKDP 6WHYHQV HW DO f UDLVLQJ FRQFHUQV DERXW FKHPLFDO GLVLQIHFWLRQ E\SURGXFWV DQG WKHLU WR[LFRORJLFDO HIIHFWV RQ WKH SRSXODWLRQ 5DFKHO &DUVRQ f EURXJKW WKH LVVXH RI SHVWLFLGH FRQWDPLQDWLRQ RI ZDWHU DQG VRLO WR WKH IRUHIURQW 7KH JURZWK RI LQGXVWU\ DQG WKH SUHYDOHQFH RI DJULFXOWXUDO SHVWLFLGHV DQG IHUWLOL]HUV V FDXVH FRQFHUQ IRU WKH HIIHFW RI WKHVH GLVFKDUJHV RQ WKH FKHPLFDO TXDOLW\ RI ZDWHU $Q LQFUHDVH LQ PRWRUL]HG WUDQVSRUWDWLRQ OHDGV WR FRQWDPLQDWHG UXQRII DQG WKH SRWHQWLDO IRU OHDNDJH RI EHQ]HQH WROXHQH DQG RWKHU DURPDWLF K\GURFDUERQV 7KHVH DFWLYLWLHV FDQ KDYH D VHYHUH LPSDFW RQ GULQNLQJ ZDWHU VRXUFHV 7KH HIIHFW RI

PAGE 23

FKHPLFDO FRQWDPLQDQWV RQ SXEOLF KHDOWK LV PRUH RIWHQ FKURQLF EXLOGLQJ RYHU WLPH DQG FDXVLQJ ORQJ WHUP LOOQHVV 'URVWH DQG 0F-XQNLQ f 6WDQGDUG ZDWHU WUHDWPHQW WHFKQLTXHV DUH YHU\ ZHOO GHILQHG LQ WKH 8QLWHG 6WDWHV DQG RWKHU GHYHORSHG FRXQWULHV +RZHYHU GXH WR GLIIHUHQFHV LQ HFRQRPLFV DQG LQIUDVWUXFWXUH WKHVH WUHDWPHQWV DUH QRW QHFHVVDULO\ UHDGLO\ WUDQVIHUDEOH IURP WKH GHYHORSHG WR WKH GHYHORSLQJ ZRUOG LQFOXGLQJ VRPH OHVVHU GHYHORSHG DUHDV RI GHYHORSHG QDWLRQV 7KH RSHUDWLRQDO DQG FDSLWDO FRVWV IRU WKLV WHFKQRORJ\ DUH RIWHQ WRR H[SHQVLYH IRU GHYHORSLQJ FRPPXQLWLHV 7KH GHYHORSPHQW RI FRPPXQLW\ DSSURSULDWH WHFKQRORJ\ IRU WUHDWPHQW RI GULQNLQJ ZDWHU LV FULWLFDO LI XQLYHUVDO DFFHVV WR D VDIH ZDWHU VXSSO\ LV WR EH DFKLHYHG 8WLOL]DWLRQ RI DYDLODEOH QDWXUDO UHVRXUFHV ZKHUH IHDVLEOH SURYLGHV D JUHDWHU RSSRUWXQLW\ IRU D VXVWDLQDEOH GULQNLQJ ZDWHU VXSSO\ 7KLV UHTXLUHV LQQRYDWLYH DQG FUHDWLYH WHFKQRORJ\ :KLOH QR RQH WHFKQRORJ\ FDQ PHHW DOO RI WKH QHHGV RI D FRPPXQLW\ VRODU SKRWRFKHPLFDO R[LGDWLRQ KROGV SURPLVH DV D YLDEOH DOWHUQDWLYH WR VWDQGDUG PRUH H[SHQVLYH PHWKRGV 7KH HIILFDF\ RI WKH SKRWRFDWDO\WLF UHDFWLRQ KDV EHHQ GHPRQVWUDWHG IRU ELRORJLFDO FRQWDPLQDQWV %ORFN HW DO ,UHODQG HW DO f DQG FKHPLFDO FRQWDPLQDQWV %ODNH /HJULQL HW DO f 7KHUHIRUH LW LV UHDVRQDEOH WR H[SHFW WKDW WKH VLPXOWDQHRXV GHVWUXFWLRQ RI ERWK FKHPLFDO DQG ELRORJLFDO FRQWDPLQDQWV FDQ EH DFFRPSOLVKHG DOWKRXJK LW KDV QRW EHHQ UHSRUWHG :KLOH VRPH LQYHVWLJDWLRQV RI VLPXOWDQHRXV GLVLQIHFWLRQ DQG GHWR[LILFDWLRQ ZLWK G\H SKRWRVHQVLWL]DWLRQ KDYH EHHQ XQGHUWDNHQ $FKHU $FKHU DQG 5RVHQWKDO (LVHQEHUJ HW DO D (LVHQEHUJ HW DO f WKHVH

PAGE 24

SURFHVVHV KDYH QRW EHHQ RSWLPL]HG QRU KDYH WKH\ EHHQ FRPSDUHG GLUHFWO\ ZLWK SKRWRFDWDO\VLV 7KH VXFFHVV RI SUHYLRXV VWXGLHV LQGLFDWHV WKDW VRODU SKRWRFKHPLFDO WHFKQRORJ\ ZKHQ SURSHUO\ LQWHJUDWHG ZLWK FRQYHQWLRQDO WUHDWPHQW KDV WKH SRWHQWLDO WR DGGUHVV WKH WHFKQLFDO LVVXHV RI ZDWHU WUHDWPHQW IDFLQJ D FRPPXQLW\ 8VH RI VRODU SKRWRFKHPLFDO WHFKQRORJ\ IRU ZDWHU WUHDWPHQW KDV WKH SRWHQWLDO WR SURYLGH D VROXWLRQ ZKLFK LV WHFKQLFDOO\ HFRQRPLFDOO\ DQG VRFLDOO\ DFFHSWDEOH PDQLIHVWHG E\ WKH IROORZLQJ SRWHQWLDO EHQHILWV f 7KH XVH RI WKH VXQ DV D SULPDU\ GULYHU UHVXOWV LQ D UHQHZDEOH DQG HVVHQWLDOO\ IUHH VRXUFH RI HQHUJ\ IRU WKH UHDFWLRQ f 3KRWRFKHPLFDO R[LGDWLRQ UHVXOWV LQ FRPSOHWH GHVWUXFWLRQ RI SROOXWDQWV ZKLFK LV SUHIHUDEOH WR GLVVLSDWLRQ FRQFHQWUDWLRQ RU FKDQJH RI IRUP f 6LQFH YHU\ VPDOO TXDQWLWLHV RI VHQVLWL]HU RU FDWDO\VW DUH UHTXLUHG DQG OLWWOH LI DQ\ H[WHUQDO HQHUJ\ EHVLGHV WKH VXQ WKH WHFKQRORJ\ KDV WKH SRWHQWLDO IRU ORZ FDSLWDO DQG PDLQWHQDQFH FRVWV f 7KH SURFHVV LV HDVLO\ DGDSWDEOH WR D VPDOO VFDOH DQG WKHUHIRUH VXLWDEOH IRU UXUDO DQG VXEXUEDQ FRPPXQLWLHV 7KHRU\ RI 3KRWRFKHPLFDO :DWHU 7UHDWPHQW 3KRWRFKHPLFDO ZDWHU WUHDWPHQW LV DQ R[LGDWLRQ SURFHVV ZKLFK LQYROYHV WKH XVH RI D FKHPLFDO DV D FDWDO\VW RU VHQVLWL]HU IRU LQGLUHFW SKRWRO\VLV RI D FRQWDPLQDQW ZLWKLQ WKH ZDWHU :KHQ H[SRVHG WR OLJKW RI WKH DSSURSULDWH ZDYHOHQJWK ZKLFK LV JRYHUQHG E\ WKH SKRWRFKHPLFDO XVHG WKH SKRWRVHQVLWL]HU RU SKRWRFDWDO\VW JHQHUDWHV D UHDFWLYH VSHFLHV DQ K\GUR[\O RU

PAGE 25

SHUR[\ UDGLFDO ZKLFK VXEVHTXHQWO\ UHDFWV ZLWK WKH FRQWDPLQDQW VSHFLHV 2OOLV HW DO 6FKLDYHOOR 7HLFKQHU DQG )RUPHQWL f 7KLV LQGLUHFW SURFHVV RSHQV D PXFK ZLGHU UDQJH RI FRQWDPLQDQWV WR GHVWUXFWLRQ E\ SKRWRFKHPLFDO PHDQV WKDQ ZRXOG EH DYDLODEOH XVLQJ RQO\ GLUHFW SKRWRO\VLV 7KH SKRWRFKHPLFDO ZDWHU WUHDWPHQW SURFHVVHV HYDOXDWHG KHUHLQ DUH SKRWRFDWDO\VLV SKRWRVHQVLWL]DWLRQ DQG D FRPELQDWLRQ RI WKH WZR 7KH GLVWLQFWLRQ EHWZHHQ SKRWRFDWDO\VLV DQG SKRWRVHQVLWL]DWLRQ LV EDVHG RQ WKH QDWXUH RI WKH SKRWRFKHPLFDO XVHG 3KRWRFDWDOYVLV 3KRWRFDWDO\VLV RU SKRWRFDWDO\WLF R[LGDWLRQ IRU ZDWHU WUHDWPHQW DSSOLFDWLRQV UHIHUV WR D KHWHURJHQHRXV R[LGDWLRQ UHDFWLRQ LQYROYLQJ VROLG VHPLFRQGXFWRU VXUIDFHV 7KH UHDFWLRQ RFFXUV YLD WKH LUUDGLDWLRQ RI D VHPLFRQGXFWRU FDWDO\VW VXFK DV WLWDQLXP GLR[LGH 7Lf ]LQF R[LGH =Q2f RU FDGPLXP VXOILGH &G6f ZLWK YLVLEOH RU XOWUDYLROHW 89f OLJKW 7KH UHDFWLRQ LV SRVVLEOH EHFDXVH RI WKH VWUXFWXUH RI WKH VHPLFRQGXFWRU 7KH RSWLFDO EDQGJDS RI D VHPLFRQGXFWRU LV DQ DUHD GHYRLG RI HQHUJ\ OHYHOV EHWZHHQ WKH KLJKHVW RFFXSLHG HQHUJ\ EDQG WKH YDOHQFH EDQG DQG WKH ORZHVW XQRFFXSLHG HQHUJ\ EDQG WKH FRQGXFWLRQ EDQG :KHQ D VHPLFRQGXFWRU DEVRUEV OLJKW ZLWK HQHUJ\ JUHDWHU WKDQ WKH HQHUJ\ RI WKH VHPLFRQGXFWRUfV RSWLFDO EDQG JDS SKRWRH[FLWDWLRQ UHVXOWV %DKQHPDQQ HW DO 0LOOV HW DO f )RU H[DPSOH VLQFH 7L KDV DQ RSWLFDO EDQG JDS HQHUJ\ RI H9 DEVRUSWLRQ RFFXUV ZLWK OLJKW RI ZDYHOHQJWKV OHVV WKDQ QP XOWUDYLROHW OLJKW DV LQGLFDWHG E\ HTXDWLRQ =KDQJ HW DO Ef

PAGE 26

KH n[+7-Vf[ FQMfn [L OH9 H H9 9O[O2fQP f 7KH UHVXOWLQJ H[FLWDWLRQ OHDGV WR WKH SURPRWLRQ RI H[FHVV IUHH HOHFWURQV Hf WR WKH FRQGXFWLRQ EDQG OHDYLQJ SRVLWLYH fKROHVf K LQ WKH YDOHQFH EDQG UHIHUUHG WR DV HOHFWURQKROH HaKf SDLUV (TXDWLRQ GHVFULEHV WKLV SURFHVV &DUH\ DQG 2OLYHU 2OLYHU DQG &DUH\ f 7KH HOHFWURQV DQG KROHV DUH KLJKO\ HQHUJHWLF DQG YHU\ PRELOH 7XUFKL HW DO f 7L KY !K Ha f 7KHUH DUH WZR SDWKV WKDW WKH HaK SDLUV FDQ WDNH 7KH\ FDQ HLWKHU UHFRPELQH DQG GHDFWLYDWH RU PLJUDWH WR WKH VXUIDFH RI WKH VHPLFRQGXFWRU DQG UHDFW ZLWK VXUIDFH VSHFLHV DV VKRZQ LQ HTXDWLRQV WR )LJXUH LV D JUDSKLFDO UHSUHVHQWDWLRQ RI WKLV SURFHVV IRU D VLQJOH VHPLFRQGXFWRU SDUWLFOH 2+n K 2+n f 8 K 2+ + f Hf +a f ,I UHDFWLRQV WR WDNH SODFH UHDFWLYH VSHFLHV DUH IRUPHG ZKLFK LQ WXUQ DUH DEOH WR R[LGL]H RUJDQLF FRQWDPLQDQWV LQ WKH ZDWHU 7KH OHVV UHFRPELQDWLRQ ZKLFK WDNHV SODFH WKH PRUH HIILFLHQW WKH VHPLFRQGXFWRU LV DV D SKRWRFDWDO\VW

PAGE 27

7KH SHUR[\ UDGLFDO +2 GLVSURSRUWLRQDWHV IXUWKHU WR IRUP PRUH K\GUR[\O UDGLFDOV 2+ ZKLFK FRPELQH ZLWK RUJDQLF VXEVWUDWH WR IRUP R[LGDWLRQ SURGXFWV DV VKRZQ LQ UHDFWLRQ %ODNH HW DO ,UHODQG HW DO 2OLYHU DQG &DUH\ f ,I HQRXJK FDWDO\VW DQG OLJKW DUH SUHVHQW D 2+ VXEVWUDWH f§! R[LGDWLRQ SURGXFWV f SVHXGR FKDLQ UHDFWLRQ RFFXUV UHVXOWLQJ LQ FRPSOHWH PLQHUDOL]DWLRQ RI RUJDQLFV ,W LV WKRXJKW WKDW WKH SURFHVV IRU WKH GHVWUXFWLRQ RI ELRORJLFDO VXEVWUDWH LV YHU\ VLPLODU ZLWK WKH R[LGDWLRQ RI SURWHLQV OLSLGV RU QXFOHLF DFLGV UHVXOWLQJ LQ LQKLELWLRQ RI UHVSLUDWLRQ RU JURZWK RI WKH PLFURRUJDQLVP YRQ 6RQQWDJ f )LJXUH *UDSKLFDO 5HSUHVHQWDWLRQ RI WKH *HQHUDWLRQ RI HaK 3DLUV DQG 5HFRPELQDWLRQ E\ 3KRWRFDWDO\WLF 5HDFWLRQ RQ WKH 6XUIDFH RI D 6HPLFRQGXFWRU 3DUWLFOH $IWHU %DKQHPDQQ HW DO f DQG 7VHQJ DQG +XDQJ f

PAGE 28

3KRWRVHQVLWL]DWLRQ 6HQVLWL]HG SKRWRO\VLV DOVR UHIHUUHG WR DV SKRWRVHQVLWL]DWLRQ RU SKRWRG\QDPLF DFWLRQ LV DQRWKHU PHWKRG RI LQGLUHFW SKRWRO\VLV YHU\ VLPLODU WR SKRWRFDWDO\WLF R[LGDWLRQ ,Q SKRWRVHQVLWL]DWLRQ HQHUJ\ LV WUDQVIHUUHG IURP D SKRWRFKHPLFDOO\ H[FLWHG PROHFXOH WR DQ DFFHSWRU 7KH VHQVLWL]HU 6f RIWHQ D G\H DEVRUEV OLJKW DQG LV SKRWRFKHPLFDOO\ H[FLWHG WR D KLJKHU HQHUJ\ VWDWH 7KLV SURFHVV PD\ RIIHU DQ DGYDQWDJH RYHU WKH SKRWRFDWDO\WLF SURFHVV EHFDXVH WKH VHQVLWL]HUV FDQ DEVRUE OLJKW LQ WKH YLVLEOH VSHFWUXP DOORZLQJ IRU XVH RI D JUHDWHU SHUFHQWDJH RI DYDLODEOH VXQOLJKW 7KH UHDFWLRQ SURFHHGV YLD WKH WULSOHW H[FLWHG VWDWH RZLQJ WR LWV ORQJHU OLIHWLPH UHODWLYH WR WKH VLQJOHW H[FLWHG VWDWH )RRWH /DUVRQ HW DO f DV VKRZQ LQ HTXDWLRQ 6 KY f§}n6r H[FLWHG VLQJOHWf f§! 6f H[FLWHG WULSOHWf f 7KH H[FLWHG VHQVLWL]HU 6ff WKHQ WUDQVIHUV VRPH RI LWV H[FHVV HQHUJ\ WR DQ DFFHSWRU IRUPLQJ D UHDFWLYH WUDQVLHQW IRUP RI R[\JHQ VLQJOHW R[\JHQ n /DUVRQ DQG :HEHU f $FFHSWRUV FDQ EH HLWKHU RUJDQLF PDWHULDO 20f RU GLVVROYHG LQRUJDQLF VSHFLHV VXFK DV PROHFXODU R[\JHQ 7KH LQWHUPHGLDWH UHDFWLYH VSHFLHV SURGXFHG IURP WKH UHDFWLRQ RI WKH WULSOHW VHQVLWL]HU ZLWK RUJDQLF PDWHULDO VXEVHTXHQWO\ UHDFWV ZLWK DWPRVSKHULF R[\JHQ XQGHU DHURELF FRQGLWLRQV HTXDWLRQ f 6r 20 f§} WUDQVLHQW VSHFLD f§! R[LGDWLRQ SURGXFWV 6 f :KHQ WKH 6f WUDQVIHUV LWV H[FHVV HQHUJ\ WR PROHFXODU R[\JHQ LQVWHDG RI 20 WKH R[\JHQ PROHFXOH FKDQJHV IURP LWV JURXQG HOHFWURQLF VWDWH WKH WULSOHW VWDWH ;J2f WR WKH H[FLWHG VLQJOHW VWDWH f 7KH RUJDQLF PDWWHU LV

PAGE 29

WKHQ R[LGL]HG E\ WKH f WR IRUP R[LGDWLRQ SURGXFWV $FKHU DQG 5RVHQWKDO f GHVFULEHG WKH PHFKDQLVP E\ UHDFWLRQV DQG 6r ,J! 6 n f f 20 f§! R[LGDWLRQ SURGXFWV f :KHQ n FRPELQHV ZLWK XQVDWXUDWHG RUJDQLF FRPSRXQGV 8&f LW \LHOGV IUHH UDGLFDOV ZKLFK UHDGLO\ FRPELQH ZLWK QXFOHLF DFLGV OLSLGV DQG SURWHLQV IRU GHVWUXFWLRQ RI PLFURRUJDQLVPV DV GHPRQVWUDWHG E\ UHDFWLRQV WR $FKHU DQG 5RVHQWKDO f f 8&!55A!5r f 52r 5 + 52+ 5 r f 5 r 522r HWF f 7KH ZDYHOHQJWK RI OLJKW DEVRUSWLRQ LV VSHFLILF IRU HDFK VHQVLWL]HU 0HWK\OHQH EOXH DQG URVH EHQJDO DUH ZLGHO\ XVHG G\H VHQVLWL]HUV ZKLFK DEVRUE LQ WKH YLVLEOH UHJLRQ DW $PD[ QP DQG $PD[ QP UHVSHFWLYHO\ $FKHU DQG -XYHQ f ,GHDO VHQVLWL]HUV DUH GHILQHG DV WKRVH FRPSRXQGV ZKLFK H[KLELW WKH IROORZLQJ FULWHULD $FKHU DQG 5RVHQWKDO f f LQGXFH UHDFWLRQV ZLWK YLVLEOH OLJKW f DUH FKHPLFDOO\ VWDEOH GXULQJ UDGLDWLRQ RU GHJUDGH WR D VHQVLWL]LQJ VSHFLHV f DUH IUHH RI UHDFWLYH IXQFWLRQDO JURXSV

PAGE 30

f KDYH JRRG OLJKW DEVRUSWLRQ FDSDFLW\ DQG f DUH VROXEOH LQ ZDWHU EXW HDV\ WR UHPRYH &RPSRXQGV ZKLFK H[KLELW WKHVH TXDOLWLHV PRVW HIILFLHQWO\ DUH G\HV VXFK DV IOXRUHVFHLQ DQG SKHQRWKLD]LQH GHULYDWLYHV IODYLQV FHUWDLQ SRUSK\ULQV DQG SRO\F\FOLF DURPDWLF K\GURFDUERQV )RRWH f )RU WKH SXUSRVHV RI ZDWHU WUHDWPHQW WKH ODWWHU WZR DUH WRR WR[LF KRZHYHU WKH RWKHUV DUH DFFHSWDEOH 7KH VHQVLWL]HUV ZKLFK KDYH VKRZQ WKH PRVW SURPLVH IRU ERWK GLVLQIHFWLRQ DQG GHWR[LILFDWLRQ DQG ZKLFK ZHUH HYDOXDWHG IRU WKLV UHVHDUFK DUH PHWK\OHQH EOXH DQG URVH EHQJDO 7KHVH G\HV KDYH EHHQ IRXQG WR EH UHODWLYHO\ HDVLO\ UHPRYHG E\ SUHFLSLWDWLRQ ZLWK EHQWRQLWH FOD\ $FKHU DQG 5RVHQWKDO f 7KH 6RODU 5HVRXUFH 7KH VXQ FDQ EH PRGHOHG DV D EODFNERG\ ZLWK D VWHDG\VWDWH WHPSHUDWXUH RI UDGLDWLQJ DSSUR[LPDWHO\ [ n :P IURP LWV VXUIDFH :LHGHU f 7KH LQWHQVLW\ RI WKH VXQfV UDGLDWLRQ RQ DQ REMHFW LV LQYHUVHO\ UHODWHG WR WKH VTXDUH RI LWV GLVWDQFH IURP WKH VXQ +VLHK f 6LQFH WKH GLVWDQFH RI WKH HDUWK IURP WKH VXQ YDULHV WKURXJKRXW WKH \HDU WKH DPRXQW RI VXQOLJKW UHDFKLQJ WKH DWPRVSKHUH RI WKH HDUWK LV QRW FRQVWDQW +RZHYHU D YDOXH WHUPHG WKH 6RODU FRQVWDQW ,VF LV WKH DPRXQW RI VRODU UDGLDWLRQ UHDFKLQJ D VXUIDFH QRUPDO WR WKH UD\V RI VXQ RXWVLGH WKH HDUWKfV DWPRVSKHUH DW D PHDQ HDUWKVXQ GLVWDQFH RI [ P +VLHK f %DVHG RQ PHDVXUHPHQWV WKH HVWDEOLVKHG YDOXH RI WKH 6RODU FRQVWDQW LV :P 5DQGDOO DQG %LUG f 6RODU UDGLDWLRQ UHDFKLQJ WKH DWPRVSKHUH RI WKH HDUWK HPLWV HQHUJLHV RI ZDYHOHQJWKV IURP JDPPD WR UDGLR ZLWK PRVW RI

PAGE 31

LW FRQFHQWUDWHG LQ WKH YLVLEOH UHJLRQ 7KH VSHFWUDO GLVWULEXWLRQ RI WKH VRODU UDGLDWLRQ RXWVLGH WKH HDUWKfV DWPRVSKHUH LV JLYHQ LQ 7DEOH 7DEOH 6SHFWUDO 'LVWULEXWLRQ RI 6RODU 5DGLDWLRQ :DYHOHQJWK SPf b RI 7RWDO JDPPD WR XOWUDYLROHWf YLVLEOHf QHDU LQIUDUHGf rr LQIUDUHG WR UDGLRf 6RXUFH 7KHNDHNDUD f 7KH DPRXQW RI VRODU UDGLDWLRQ DOVR UHIHUUHG WR DV LQVRODWLRQ DYDLODEOH DW WKH HDUWKfV VXUIDFH DW D JLYHQ WLPH LV GHSHQGHQW RQ WKH SUHYDLOLQJ FOLPDWLF FRQGLWLRQV WKH OHYHO RI DWPRVSKHULF SROOXWLRQ DQG WKH DQJOH DW ZKLFK WKH VXQ VWULNHV WKH VXUIDFH +VLHK f 6FDWWHULQJ DQG DEVRUSWLRQ RI UDGLDWLRQ GXH WR WKH SUHVHQFH RI R]RQH JDV PROHFXOHV SDUWLFXODWH PDWWHU DQG ZDWHU YDSRU LQFOXGLQJ FORXGVf DFFRXQW IRU D VLJQLILFDQW UHGXFWLRQ LQ WKH VRODU UDGLDWLRQ LQFLGHQW RQ WKH HDUWKfV VXUIDFH %DUU\ DQG &KRUOH\ f 7KH SDWK OHQJWK RI WKH VRODU UDGLDWLRQ LQ WKH DWPRVSKHUH ZKLFK FKDQJHV ZLWK WKH WLPH RI GD\ DQG ODWLWXGH GHWHUPLQHV WKH DPRXQW RI H[WLQFWLRQ RI UDGLDWLRQ E\ WKHVH SDUDPHWHUV +VLHK f $SSUR[LPDWHO\ b RI WKH VRODU UDGLDWLRQ UHDFKLQJ WKH HDUWKfV VXUIDFH LV LQ WKH XOWUDYLROHW ZDYHOHQJWK UDQJH *RVZDPL f 7KH UHPDLQGHU RI LQFLGHQW UDGLDWLRQ LV LQ WKH YLVLEOH DQG QHDU LQIUDUHG UDQJH 8VLQJ KLVWRULFDO ZHDWKHU GDWD WKH GLUHFW EHDP LQFLGHQW UDGLDWLRQ IRU D JLYHQ ORFDWLRQ LQ VSDFH DQG WLPH FDQ EH FDOFXODWHG ZLWK UHDVRQDEOH DFFXUDF\ 5DQGDOO DQG %LUG f

PAGE 32

7KH SKRWRFKHPLFDO R[LGDWLRQ SURFHVV LV JRYHUQHG E\ WKH DEVRUSWLRQ RI OLJKW ZLWKLQ WKH ZDYHOHQJWK RI HIIHFWLYHQHVV RI WKH FDWDO\VW RU VHQVLWL]HU XVHG )RU WKH 7L SKRWRFDWDO\WLF SURFHVV WKH XOWUDYLROHW SDUW RI WKH VSHFWUXP ZDYHOHQJWKV EHORZ DERXW QP LV WKH PRVW FULWLFDO *RVZDPL f 7KLV SURFHVV WKHUHIRUH LV ZHOO VXLWHG IRU DUHDV ZKHUH FORXGLQHVV SUHYDLOV DV WKH XOWUDYLROHW OLJKW LV RIWHQ SUHVHQW ERWK DV VFDWWHUHG DQG GLUHFW EHDP UDGLDWLRQ 3KRWRVHQVLWL]DWLRQ ZRUNV ZLWK YLVLEOH OLJKW ZKLFK LV WKH JUHDWHU SDUW RI GLUHFW EHDP LQFLGHQW UDGLDWLRQ 7KH VHQVLWL]HUV HYDOXDWHG LQ WKLV ZRUN PHWK\OHQH EOXH DQG URVH EHQJDO DUH PRVW HIIHFWLYH LQ WKH EOXH a QPf DQG UHG a QPf UDQJHV UHVSHFWLYHO\ $FKHU DQG -XYHQ f 5HVHDUFK 2EMHFWLYHV 7KHUH H[LVWV D QHHG IRU UHVHDUFK DW DOO OHYHOV WDLORUHG WR DGGUHVV WKH QHHGV RI VPDOOHU DQG SRVVLEO\ OHVVHU GHYHORSHG FRPPXQLWLHV 7KH GLUHFW WUDQVIHU RI WHFKQRORJ\ IURP RQH FRPPXQLW\ WR DQRWKHU LV RQH RI WKH VROXWLRQV +RZHYHU LW FDQQRW VHUYH DV D UHSODFHPHQW IRU WKH GHYHORSPHQW RI UHJLRQDO DQG FRPPXQLW\ VSHFLILF WHFKQRORJ\ WR VROYH UHJLRQDO DQG FRPPXQLW\ VSHFLILF SUREOHPV ,Q RUGHU IRU WKLV PRUH ORFDOL]HG WHFKQRORJ\ GHYHORSPHQW WR RFFXU KRZHYHU WKH LQIRUPDWLRQ EDVH PXVW EH H[SDQGHG 2QH SULPDU\ PHWKRG IRU WKH DSSURSULDWH H[SDQVLRQ RI WKH LQIRUPDWLRQ EDVH LV WKH FRQGXFWLRQ RI UHVHDUFK ZKLFK LV PRUH IRFXVHG RQ WKH QHHGV VSHFLILF WR WKHVH FRPPXQLWLHV 7KH LQYHVWLJDWLRQ RI EDVLF WHFKQLTXHV WHFKQRORJLHV DQG SURFHVVHV ZKLFK

PAGE 33

PD\ GLIIHU IURP WKH PDLQVWUHDP LV NH\ WR WKH SURYLVLRQ RI WRROV QHFHVVDU\ IRU WKH DGYDQFHPHQW DQG GHYHORSPHQW RI DOO FRPPXQLWLHV 7KH UHVHDUFK UHSRUWHG KHUHLQ LV DQ HIIRUW WR DGG VRPH NQRZOHGJH WR WKDW LQIRUPDWLRQ EDVH DQG DGGUHVVHV WZR NH\ DUHDV RI SKRWRFKHPLFDO WHFKQRORJ\ f VLPXOWDQHRXV WUHDWPHQW RI FKHPLFDO DQG PLFURELRORJLFDO SROOXWDQWV f FRPSDUDWLYH HIILFDFLHV RI SKRWRVHQVLWL]DWLRQ SKRWRFDWDO\VLV DQG FRPELQHG SKRWRVHQVLWL]DWLRQ DQG SKRWRFDWDO\VLV :KLOH WKH UHVHDUFK UHSRUWHG KHUHLQ LV QRW D VROXWLRQ WR WKH SUREOHP RI ZDWHU VXSSO\ LW LV DQWLFLSDWHG WKDW WKH NQRZOHGJH GHULYHG IURP WKLV UHVHDUFK FRXOG EH DSSOLHG WR DFFHSW RU UHMHFW RQH RSWLRQ SKRWRFKHPLFDO WUHDWPHQW DV D SDUWLDO VROXWLRQ ,Q WKH SURFHVV RI FUHDWLQJ D EHWWHU UHDOLW\ WKH EHVW WKDW RQH FDQ ZLVK IRU LV RSWLRQV DQG WKH LQIRUPDWLRQ WR DGHTXDWHO\ HYDOXDWH WKRVH RSWLRQV

PAGE 34

&+$37(5 5(9,(: 2) 62/$5 %$6(' :$7(5 75($70(17 7KH XVH RI VXQOLJKW IRU ZDWHU WUHDWPHQW LV QRW D UHFHQW SKHQRPHQRQ 'RFXPHQWHG HYLGHQFH IRU VRODU GLVWLOODWLRQ V\VWHPV H[LVWV DV IDU EDFN DV ZKHQ $UDE DOFKHPLVWV XVHG JODVV YHVVHOV DQG FRQFDYH PLUURUV WR GLVWLOO ZDWHU 0DOLN HW DO f +RZHYHU WHFKQRORJLHV IRU VRODU EDVHG ZDWHU WUHDWPHQW KDYH FKDQJHG GUDPDWLFDOO\ LQ UHFHQW \HDUV 7KH GHYHORSPHQW RI SKRWRFKHPLFDO WHFKQRORJLHV KDYH VLJQLILFDQWO\ H[SDQGHG WKH DSSOLFDWLRQ SRWHQWLDO IRU VRODU EDVHG ZDWHU WUHDWPHQW SURFHVVHV :KDW IROORZV LV DQ H[SORUDWLRQ RI WKH YDULRXV PHWKRGV RI ZDWHU WUHDWPHQW ZKLFK XVH VRODU HQHUJ\ DV WKH SULPDU\ GULYHU DQG D UHYLHZ RI WKH FXUUHQW VWDWH RI UHODWHG UHVHDUFK 6RODU EDVHG ZDWHU WUHDWPHQW SURFHVVHV FDQ EH URXJKO\ FDWHJRUL]HG DV HLWKHU SK\VLFDO RU FKHPLFDO 3K\VLFDO SURFHVVHV DUH WKRVH SURFHVVHV ZKLFK XVH WKH VXQ DV D VRXUFH RI KHDW HQHUJ\ 'LVWLOODWLRQ DQG KHDW SDVWHXUL]DWLRQ IDOO LQWR WKH SK\VLFDO SURFHVV FDWHJRU\ 7KH FKHPLFDO SURFHVVHV DUH WKRVH ZKLFK LQYROYH D FKHPLFDO UHDFWLRQ HLWKHU GLUHFWO\ RU LQGLUHFWO\ LQGXFHG E\ OLJKW 7KHVH SKRWRO\WLF SURFHVVHV LQFOXGH XOWUDYLROHW GLVLQIHFWLRQ DQG D QXPEHU RI SKRWRFKHPLFDO SURFHVVHV

PAGE 35

3K\VLFDO 3URFHVVHV 'LVWLOODWLRQ 3URFHVVHV 7KH PRVW VWXGLHG VRODU EDVHG ZDWHU WUHDWPHQW SURFHVV LV GHVDOLQDWLRQ E\ GLVWLOODWLRQ 6RODU GLVWLOODWLRQ LQYROYHV WKH XVH RI VXQOLJKW WR HYDSRUDWH VDOLQH RU EUDFNLVK ZDWHU IRU WKH SXUSRVH RI FROOHFWLQJ WKH GHVDOLQDWHG FRQGHQVDWH 7ZR DSSURDFKHV KDYH EHHQ WDNHQ LQ WKH GHYHORSPHQW RI VRODU GLVWLOODWLRQ XQLWV 7KH ILUVW DQG PRUH FRQYHQWLRQDO LQYROYHV WKH GLUHFW DEVRUSWLRQ RI VRODU HQHUJ\ E\ VDOLQH ZDWHU FDOOHG SDVVLYH VRODU GLVWLOODWLRQ 7KH VHFRQG DFWLYH VRODU GLVWLOODWLRQ LV VLPLODU WR D VWDQGDUG FKHPLFDO GLVWLOODWLRQ SURFHVV XVLQJ VXQOLJKW DV WKH KHDW HQHUJ\ VRXUFH IRU LQGLUHFW KHDWLQJ RI WKH ZDWHU ,Q WKLV W\SH RI XQLW HYDSRUDWLRQ LV LQ D FHQWUDOL]HG IDFLOLW\ 0DOLN HW DO 5DMYDQVKL f 3DVVLYH GLVWLOODWLRQ 3DVVLYH VRODU GLVWLOODWLRQ LV HDVLO\ XQGHUVWRRG ZKHQ FRPSDUHG WR WKH QDWXUDO SURFHVV RI WKH K\GURORJLF F\FOH ,Q WKH K\GURORJLF F\FOH WKH VXQ SURYLGHV HQHUJ\ ZKLFK ZDUPV WKH ZDWHU RI WKH RFHDQV DQG RWKHU ODUJH ZDWHU ERGLHV FDXVLQJ HYDSRUDWLRQ &RQYHFWLYH ZLQG HQHUJ\ WUDQVSRUWV WKLV YDSRU LQWR WKH DWPRVSKHUH ZKHUH LW FRQGHQVHV DQG SURGXFHV SUHFLSLWDWLRQ 7KH SUHFLSLWDWLRQ HLWKHU GLUHFWO\ DV UDLQ RU LQGLUHFWO\ DV PHOWHG VQRZ UHFKDUJHV IUHVK ZDWHU VRXUFHV ODNHV ULYHUV VWUHDPV XQGHUJURXQG VSULQJV DQG JURXQGZDWHU DTXLIHUV 7KH VRODU GLVWLOODWLRQ SURFHVV LV D VLPXODWLRQ RI WKLV SURFHVV LQ PDQXIDFWXUHG IDFLOLWLHV 7KH VXQ ZDUPV WKH FROOHFWHG ERG\ RI VDOLQH RU EUDFNLVK ZDWHU DQG FDXVHV HYDSRUDWLRQ 7KH ZDWHU YDSRU LV FDUULHG E\

PAGE 36

FRQYHFWLYH ZLQGV LQGXFHG E\ WKH DSSURSULDWH FRQVWUXFWLRQ DQG XSRQ FRROLQJ WKH YDSRU FRQGHQVHV DV SXUH GLVWLOOHG ZDWHU 7KH FRQYHQWLRQDO GHVLJQ IRU SDVVLYH GLVWLOODWLRQ V\VWHPV LV WKH EDVLQ W\SH VRODU VWLOO )LJXUH f 7KH ERWWRP VXUIDFH RI WKH EDVLQ LV EODFN WR HQKDQFH WKH DEVRUSWLRQ RI UDGLDWLRQ E\ WKH VDOLQH RU EUDFNLVK ZDWHU VXSSOLHG HLWKHU FRQWLQXRXVO\ RU EDWFKZLVH 0DOLN HW DO 5DMYDQVKL f 7KH EDVLQ LV FRYHUHG ZLWK D WUDQVSDUHQW DLU WLJKW FRYHU ZKLFK VORSHV GRZQZDUG WR IDFLOLWDWH WUDQVSRUW RI WKH FRQGHQVDWH DV D WKLQ ILOP LQWR D FROOHFWLRQ WURXJK 0DOLN HW DO 5DMYDQVKL f 6RODU UDGLDWLRQ SHQHWUDWHV WKH FRYHU JHQHUDOO\ JODVV RU SODVWLF DQG LV DEVRUEHG E\ WKH ZDWHU ZDUPLQJ LW WR LQGXFH HYDSRUDWLRQ 7KH WHPSHUDWXUH GLIIHUHQWLDO EHWZHHQ WKH FRYHU ZKLFK GRHV QRW DEVRUE PXFK UDGLDWLRQ DQG WKH ZDWHU VXUIDFH OHDGV WR DLU FRQYHFWLRQ FXUUHQWV ZKLFK PRYH WKH ZDWHU YDSRU WR WKH XQGHUVLGH RI WKH FRYHU 7KH FRRO WHPSHUDWXUHV RI WKH EDVLQ FRYHU UHODWLYH WR WKH ZDWHU WHPSHUDWXUH FDXVH FRQGHQVDWLRQ DQG WKH ZDWHU IRUPV D WKLQ ILOP ZKLFK LV FROOHFWHG YLD WURXJKV %DVLQ VWLOOV FDQ EH HLWKHU VKDOORZ RU GHHS GHSHQGLQJ XSRQ WKH GHVLJQ DQG RSHUDWLRQDO UHTXLUHPHQWV 6KDOORZ EDVLQV VWLOOV KDYH ZDWHU GHSWKV UDQJLQJ IURP FP LQf WR FP LQf DQG GHHS EDVLQ VWLOO ZDWHU GHSWKV UDQJH DQ\ZKHUH IURP RYHU FP LQf XS WR FP IWf 5DMYDQVKL f 7KH ILUVW PRGHUQ FRPPHUFLDO VRODU VWLOO ZDV LQVWDOOHG LQ LQ WKH QRUWKHUQ SDUW RI &KLOH GHVLJQHG E\ 6ZHGLVK HQJLQHHU &DUORV :LOVRQ 7KH JODVV FRYHUHG EDVLQ W\SH VRODU VWLOO ZDV P DQG RSHUDWHG IRU PDQ\ \HDUV WUHDWLQJ IHHGZDWHU ZLWK D VDOLQLW\ RI SSP +RZH DQG 7OLHPDW 0DOLN HW DO f :RUN FRQGXFWHG DW WKH 8QLYHUVLW\ RI &DOLIRUQLDnV

PAGE 37

(QJLQHHULQJ )LHOG 6WDWLRQ LQ 5LFKPRQG &DOLIRUQLD FRQFHQWUDWHG RQ UHGXFLQJ FDSLWDO FRVWV DQG LPSURYLQJ HIILFLHQF\ RI WKH EDVLQ VWLOO E\ FKDQJLQJ WKH JHRPHWULF FRQILJXUDWLRQ 'HVLJQV WHVWHG LQFOXGHG D FLUFXODU VWLOO VHYHUDO WURXJK W\SH VWLOOV ZLWK URXQGHG RU YVKDSH ERWWRPV DQG VWDLUVWHSSHG VWLOOV 7KH JHQHUDO FRQFOXVLRQ RI WKLV ZRUN ZDV WKDW WKH EDVLQ W\SH VRODU VWLOOV ZHUH QRW HFRQRPLFDOO\ FRPSHWLWLYH LQ DQ\ RI WKH WHVWHG FRQILJXUDWLRQV +RZH DQG 7OLHPDW f 6RODU 5DGLDWLRQ )LJXUH &RQYHQWLRQDO 3DVVLYH 6RODU %DVLQ 6WLOO $IWHU 0DOLN HW DO DQG 5DMYDQVKL f $W WKH 8QLYHUVLW\ RI )ORULGDnV 6RODU (QHUJ\ DQG (QHUJ\ &RQYHUVLRQ /DERUDWRU\ 5DMYDQVKL f HYDOXDWHG WKH HIILFDF\ RI G\HV DV D PHDQV RI LQFUHDVLQJ WKH HIILFLHQF\ RI VRODU GLVWLOODWLRQ 8VLQJ GHHS EDVLQ VWLOOV KH DGGHG G\H WR VDOLQH ZDWHU WR LQFUHDVH UDGLDWLRQ DEVRUSWLRQ DQG DOWHU WKH KHDW

PAGE 38

WUDQVIHU UDWH 7KUHH G\HV EODFN QDSWK\ODPLQH UHG FDUPRLVLQH DQG D GDUN JUHHQ PL[WXUH ZHUH XVHG 7KH ZDWHU WUHDWHG ZLWK XS WR SSP G\H KDG DQ LQFUHDVHG RXWSXW RI DV PXFK DV b RQ FOHDU GD\V KRZHYHU QR LQFUHDVH LQ RXWSXW ZDV REVHUYHG ZLWK WKH G\HV RQ FRPSOHWHO\ FORXG\ GD\V %RWK WKH UHG DQG JUHHQ G\HV GHJUDGHG ZKHQ H[SRVHG WR VXQOLJKW KRZHYHU WKH EODFN G\H ZKLFK DOVR H[KLELWHG WKH ODUJHVW LQFUHDVH LQ HYDSRUDWLRQ UDWH GLG QRW YLVLEO\ GHJUDGH ZLWK H[SRVXUH WR VXQOLJKW 2WKHU UHVHDUFK KDV IRFXVHG RQ GHYHORSLQJ DQG LPSURYLQJ WKH FRQYHQWLRQDO EDVLQ W\SH SDVVLYH VWLOO :KDW HPHUJHG ZDV WKH WLOWHG WUD\ VRODU VWLOO ZLFN VRODU VWLOOV DQG GRXEOH EDVLQ VWLOOV $O.DUDJKRXOL DQG 0LQDVLDQ +LJD]\ +RZH DQG 7OLHPDW 0DOLN HW DO f 7KH WLOWHG WUD\ VRODU VWLOO LV D YDULDWLRQ RI WKH EDVLQ W\SH VRODU VWLOO LQ ZKLFK WKH EDVLQ LV EURNHQ LQWR D VHULHV RI QDUURZ VWULSV DUUDQJHG OLNH VWHSV (DFK VWULS LV RQ D GLIIHUHQW HOHYDWLRQ EULQJLQJ WKH ZDWHU VXUIDFH PXFK FORVHU WR WKH WUDQVSDUHQW FRYHU DQG LQFUHDVLQJ WKH RSHUDWLQJ HIILFLHQF\ *HQHUDOO\ WKHVH W\SHV RI VWLOOV KDYH YHU\ VKDOORZ EDVLQV :KLOH WKH HIILFLHQF\ LV LQFUHDVHG VR LV WKH FDSLWDO FRVW PDNLQJ WKLV W\SH RI VWLOO LQIHDVLEOH IRU FRPPHUFLDOL]DWLRQ +RZH DQG 7OLHPDW f :LFN VWLOO GHVLJQV XWLOL]H DQ DEVRUEHQW PDWHULDO ZLFNLQJf XVXDOO\ EODFN WR DEVRUE UDGLDWLRQ DV D IDFLQJ RQ D JODVV FRYHUHG LQFOLQHG SODQH 6DOLQH ZDWHU LV LQWURGXFHG DORQJ WKH XSSHU HGJH RI WKH LQFOLQHG SODQH DQG WULFNOHV GRZQ VDWXUDWLQJ WKH ZLFNLQJ 7KH SULPDU\ GLIILFXOW\ ZLWK WKLV GHVLJQ LV DQ LQDELOLW\ WR PDLQWDLQ D XQLIRUPO\ ZHW VXUIDFH +RZH DQG 7OLHPDW f

PAGE 39

'RXEOH EDVLQ VWLOOV XWLOL]H WKH ODWHQW KHDW RI WKH FRQGHQVLQJ ZDWHU YDSRU WKHUHE\ LQFUHDVLQJ WKH GDLO\ \LHOG RYHU WKH FRQYHQWLRQDO EDVLQ GHVLJQ 7KH GRXEOH EDVLQ VWLOO KDV WZR WUDQVSDUHQW FRYHUV 7KH LQQHU JODVV FRYHU DFWV DV D VHFRQG YHU\ VKDOORZ EDVLQ ZLWK ZDWHU UXQQLQJ RYHU LW OLNH D WKLQ ILOP IURP D SLSH LQ WKH FHQWHU 7KH KHDW IURP WKH ZDWHU FRQGHQVLQJ RQ WKH XQGHUVLGH RI WKH ORZHU EDVLQ FRYHU LV XVHG WR DLG YDSRUL]DWLRQ RI WKH ZDWHU RQ WKH WRSVLGH ZKLFK WKHQ FRQGHQVHV RQ WKH XSSHU FRYHU 7KH GLVWLOOHG ZDWHU LV GUDLQHG DQG FROOHFWHG IURP WKH XQGHUVLGH RI ERWK WUDQVSDUHQW FRYHUV 0DOLN HW DO f 'XULQJ :RUOG :DU ,, 'U 0DULD 7HONHV GHVLJQHG DQ LQIODWHG SODVWLF VWLOO IRU XVH ZLWK WKH OLIH UDIWV RI WKH 8QLWHG 6WDWHV DUPHG IRUFHV +RZH DQG 7OLHPDW f 7KH GHVLJQ ZDV VLPLODU WR WKH EDVLQ VWLOO KRZHYHU LW XWLOL]HG D VDWXUDWHG VSRQJH DV WKH DEVRUSWLRQ PHGLD DQG WKH HQWLUH DVVHPEO\ ZDV GHVLJQHG WR IORDW RQ WRS RI WKH ZDWHU 'LVWLOODWH ZDV FROOHFWHG LQ D ERWWOH DW WKH ERWWRP RI WKH XQLW 7KHVH W\SHV RI VWLOOV ZHUH UHIHUUHG WR DV IORDWLQJ VSRQJH VRODU VWLOOV DQG UHSRUWHGO\ RYHU RI WKHP ZHUH SURGXFHG GXULQJ WKH ZDU +RZH DQG 7OLHPDW f +LJD]\ f UHSRUWHG RQ WKH GHVLJQ DQG SHUIRUPDQFH RI D IORDWLQJ VSRQJH VRODU VWLOO IRU GHVDOLQDWLRQ RI VHD ZDWHU 7KH VWLOO GHVLJQ ZDV EDVHG RQ WKH RULJLQDO GHVLJQ E\ 7HONHV ,Q +LJD]\nV GHVLJQ ZDWHU ZDV SXPSHG LQWR WKH ERWWRP RI WKH VWLOO DQG FRQVWLWXWHG WKH ERWWRP OD\HU $ERYH WKDW OD\HU ZDV D SODVWLF VSRQJH FRYHUHG ZLWK D EODFN FORWK ZKLFK ZDV ZKHUH WKH UDGLDWLRQ ZDV DEVRUEHG DQG WKHQ WUDQVIHUUHG E\ FRQGXFWLRQ WR WKH VHD ZDWHU +H H[DPLQHG WZR VWLOO GHVLJQV D VLQJOH VORSHG FRYHU ZKLFK XVHG PLUURUV WR LQFUHDVH WKH UDGLDWLRQ DEVRUSWLRQ DUHD DQG GRXEOH VORSHG FRYHU HYDOXDWLQJ

PAGE 40

WKH SDUDPHWHUV RI LQVRODWLRQ LQWHQVLW\ WHPSHUDWXUH DQG WKH VSRQJH SURSHUWLHV WKLFNQHVV DQG GHQVLW\f 7KH SULPDU\ LPSURYHPHQW RI WKLV V\VWHP RYHU 7HONHnV ZDV WKDW WKH XVH RI SODVWLF SDUWV HOLPLQDWHG WKH SUREOHP RI FRUURVLRQ +LJD]\fV H[SHULPHQWV ZHUH FRQGXFWHG XVLQJ WDS ZDWHU DQG LW ZDV QRW LQGLFDWHG ZKHWKHU VDOWV ZHUH DGGHG WR VLPXODWH WKH VDOLQH HQYLURQPHQW SURGXFHG E\ VHD ZDWHU DOWKRXJK WKH SK\VLFDO DQG EHKDYLRUDO SURSHUWLHV ZHUH YHU\ VLPLODU 7KH GHVLJQ KDG QR SURYLVLRQV IRU GUDLQDJH RI VHD ZDWHU RU SHULRGLF UHPRYDO RI WKH VDOWV IURP WKH VWLOO DQG RU WKH VSRQJH DQG HYHQWXDOO\ SUREOHPV PLJKW UHVXOW IURP VDOW DFFXPXODWLRQ $O.DUDJKRXOL DQG 0LQDVLDQ f GHYHORSHG D QHZ W\SH RI SDVVLYH VRODU VWLOO XVLQJ D IORDWLQJZLFN DQG FRPSDUHG WKH VWLOO WR FRQYHQWLRQDO EDVLQ VRODU VWLOO DQG WKH WLOWHG ZLFN VRODU VWLOO 7KH\ DOVR LQWURGXFHG D]LPXWK DQG DOWLWXGH WUDFNLQJ WR LQFUHDVH WKH LQFLGHQW VRODU UDGLDWLRQ RQ WKH VWLOO 7KH IORDWLQJ ZLFN VWLOO ZDV D FRQYHQWLRQDO EDVLQ W\SH VRODU VWLOO ZKLFK FRQWDLQHG D EODFNHQHG MXWH ZLFN IORDWHG RQ D SRO\VW\UHQH VKHHW 7KH XQLW IORDWHG QR PRUH WKDQ FP DERYH WKH VWLOO ZDWHU OHYHO 7KH EHQHILW RI WKH IORDWLQJ ZLFN VWLOO ZDV GXH WR WKH FDSLOODU\ DFWLRQ RI WKH MXWH FORWK ZKLFK ZDV SUHSDUHG LQ D FRUUXJDWHG VKDSH WR UHVWULFW VDOW DFFXPXODWLRQ WR WKH XSSHU SDUWV 7KH VWLOOV XVHG IRU FRPSDULVRQ ZHUH PDGH ZLWK WKH VDPH PDWHULDOV DQG VLPLODU VW\OH WR WKH IORDWLQJ ZLFN IRU GLUHFW FRPSDULVRQ 7KH IORDWLQJ ZLFN VRODU VWLOO KDG D KLJKHU RXWSXW WKDQ WKH RWKHU VWLOOV ZLWK ZKLFK LW ZDV FRPSDUHG 7KH XVH RI D FRUUXJDWHG VKDSH VROYHG WKH SUREOHP RI VFDOH IRUPDWLRQ DQG GXH WR WKH FDSLOODU\ DFWLRQ RI MXWH FORWK WKH ZLFN VWD\HG XQLIRUPO\ ZHW &RQVHTXHQWO\ LQ WKH VXPPHU PRQWKV WKH IORDWLQJ ZLFN VWLOO KDG D

PAGE 41

KLJKHU RXWSXW YHUVXV FRPSDUDEOH SHUIRUPDQFH ZLWK WKH ZLFN VWLOO GXULQJ WKH FRROHU PRQWKV 7UDFNLQJ LQFUHDVHG WKH RXWSXW RQ DOO RI WKH VWLOOV EXW ZDV SDUWLFXODUO\ LPSUHVVLYH ZLWK WKH IORDWLQJ ZLFN VWLOO DOPRVW GRXEOLQJ WKH SHUIRUPDQFH ZLWKRXW WUDFNLQJ DQG KDYLQJ DW OHDVW b KLJKHU RXWSXW WKDQ WKH FRQYHQWLRQDO EDVLQ VWLOO ZLWK WUDFNLQJ $O.DUDJKRXOL DQG 0LQDVLDQ f 6RODU GLVWLOODWLRQ WHFKQRORJ\ LV IDLUO\ ZHOO HVWDEOLVKHG DQG KDV SURYHQ XVHIXO IRU VPDOO VFDOH GHVDOLQDWLRQ RI ZDWHU +RZHYHU UHVHDUFK KDV QRW DGYDQFHG WR WKH SRLQW ZKHUH ODUJH VFDOH SURFHVVHV DUH HFRQRPLFDOO\ FRPSHWLWLYH ZLWK PRUH FRQYHQWLRQDO PHWKRGV RI GLVWLOODWLRQ $FWLYH GLVWLOODWLRQ $FWLYH VRODU VWLOOV DUH WKRVH V\VWHPV LQ ZKLFK WKH VXQfV HQHUJ\ LV FDSWXUHG H[WHUQDO WR WKH GLVWLOODWLRQ V\VWHP HLWKHU DV WKHUPDO HQHUJ\ RU SKRWRYROWDLF HOHFWULFDO HQHUJ\ XVHG WR JHQHUDWH KHDW ,Q ERWK FDVHV WKH JHQHUDWHG KHDW LV WKHQ DSSOLHG WR WKH GLVWLOODWLRQ XQLW 7KH\ FDQ RSHUDWH LQ FRQMXQFWLRQ ZLWK WKH FRQYHQWLRQDO EDVLQ VWLOO RU WKH\ FDQ EH GHVLJQHG OLNH D FRQYHQWLRQDO IODVK GLVWLOODWLRQ XQLW )LJXUH VKRZV D VWDQGDUG VFKHPDWLF IRU DQ DFWLYH VRODU VWLOO ZKLFK XVHV D VRODU FROOHFWRU DQG PXOWLVWDJH IODVK GLVWLOODWLRQ 3UDVDG DQG 7LZDUL f FRQGXFWHG D WKHUPDO DQDO\VLV RI D FRQFHQWUDWRUDVVLVWHG VRODU GLVWLOODWLRQ XQLW WR RSWLPL]H WKH LQFOLQDWLRQ RI WKH JODVV FRYHU 7KH\ GHWHUPLQHG WKDW WKH DQJOH RI LQFOLQDWLRQ KDG DQ HIIHFW RQ WKH \LHOG RI WKLV DFWLYH VRODU GLVWLOODWLRQ V\VWHP ZLWK DQ LQFUHDVH LQ \LHOG ZKLFK FRUUHVSRQGHG WR DQ LQFUHDVH LQ WKH DQJOH RI LQFOLQDWLRQ )RU WKH FOLPDWLF FRQGLWLRQV VWXGLHG 'HOKL ,QGLD ODWLWXGH r 1 ORQJLWXGH r (f DQ

PAGE 42

DQJOH RI r ZDV IRXQG WR EH RSWLPDO 7KH LQFUHDVHG DQJOH DOVR OHG WR D GHFUHDVH LQ RSHUDWLQJ WHPSHUDWXUHV DQG HYDSRUDWLYH KHDW ORVVHV 6RODU 5DGLDWLRQ )LJXUH 6FKHPDWLF RI )ODVK 'LVWLOODWLRQ 8VLQJ 6RODU &ROOHFWRU $IWHU 0DOLN HW DO f )DUZDWL f FRQGXFWHG D FRPSDULVRQ RI D PXOWLVWDJH IODVK GLVWLOODWLRQ V\VWHP XVLQJ VRODU HQHUJ\ LQSXW ZLWK IODW SODWH YHUVXV FRPSRXQG SDUDEROLF FROOHFWRU &3&f V\VWHPV 7KH FRQGLWLRQV XVHG IRU HYDOXDWLRQ ZHUH PRQWKO\ DYHUDJH FOLPDWLF FRQGLWLRQV IRU %HQJKD]L /LE\D %RWK FROOHFWRUV KDG DQ DSHUWXUH DUHD RI RQH VTXDUH PHWHU 7KH FRPSRXQG SDUDEROLF FROOHFWRU ZDV DEOH WR DFKLHYH D KLJKHU ZDWHU WHPSHUDWXUH IRU HQWU\ LQWR WKH IODVK GLVWLOODWLRQ V\VWHP r& YV r&f DQG D ODUJHU PRQWKO\ DYHUDJH GDLO\ RXWSXW ZLWK PD[LPD RI OLWHUV IRU WKH &3& DQG OLWHUV IRU WKH IODW SODWH FROOHFWRU V\VWHP LQ WKH PRQWK RI $XJXVW %RWK V\VWHPV RSHUDWHG ZLWK DX[LOLDU\ KHDWHUV 8VLQJ WKH VRODU FROOHFWRUV DORQH WKH &3& KDG D PD[LPXP PRQWKO\ DYHUDJH GDLO\ GLVWLOODWH RXWSXW RI DURXQG OLWHUV DQG WKH IODW SODWH FROOHFWRU RQH RI DERXW OLWHUV .XPDU DQG 7LZDUL f FRPSDUHG SHUIRUPDQFH RI IODW SODWH FROOHFWRU VRODU GLVWLOODWLRQ V\VWHPV LQ VHYHUDO RSHUDWLQJ PRGHV 7KH\

PAGE 43

H[DPLQHG WKH V\VWHPV ZLWK DQG ZLWKRXW IORZ RYHU WKH JODVV FRYHU RSHUDWLQJ LQ DFWLYH YHUVXV SDVVLYH PRGH DQG LQ GRXEOH HIIHFW SDVVLYH PRGH LH VHFRQG JODVV FRYHU ZLWK ZDWHU IORZ RYHU WKH FRYHU FORVHVW WR WKH EDVLQf 7KH\ IRXQG WKDW ZDWHU IORZ RYHU WKH JODVV FRYHU JDYH WKH KLJKHVW \LHOG DV WKLV GHFUHDVHG WKH FRQGHQVDWLRQ VXUIDFH WHPSHUDWXUH DQG XWLOL]HG WKH ODWHQW KHDW RI FRQGHQVDWLRQ SURYLGLQJ DGGLWLRQDO GLVWLOODWLRQ 7KH V\VWHP ZDV D VLQJOH EDVLQ VRODU VWLOO PDGH RI ILEHUUHLQIRUFHG SODVWLF FRXSOHG ZLWK D IODW SODWH FROOHFWRU DQG ZDV UHDOO\ D K\EULG RI WKH SDVVLYH DQG DFWLYH V\VWHP 7KH GRXEOH HIIHFW PRGH GLG QRW HQKDQFH SHUIRUPDQFH EHFDXVH RI WKH GLIILFXOW\ RI PDLQWDLQLQJ ORZ DQG XQLIRUP IORZ UDWHV RYHU WKH JODVV FRYHU 7HVWV ZHUH UXQ ZLWK P DUHD RI FRYHU DQG FROOHFWRU 2Q DYHUDJH WKH DFWLYH PRGH ZLWK ZDWHU IORZ \LHOGHG OLWHUV SHU GD\ WKH SDVVLYH PRGH \LHOGHG OLWHUV SHU GD\ DQG WKH DFWLYH ZLWKRXW ZDWHU IORZ \LHOGHG OLWHUV SHU GD\ 6LQJ DQG 7LZDUL f HYDOXDWHG DQG FRPSDUHG WKH \LHOGV DQG WKHUPDO HIILFLHQFLHV RI WKRVH W\SHV RI VRODU VWLOOV UHFRPPHQGHG IRU UXUDO RU XUEDQ DSSOLFDWLRQV 7KH W\SHV RI VWLOOV HYDOXDWHG ZHUH f SDVVLYH VLQJOH EDVLQ f SDVVLYH GRXEOH EDVLQ f PXOWLZLFN VLQJOH EDVLQ f PXOWLZLFN GRXEOH EDVLQ f DFWLYH VLQJOH EDVLQ DQG f DFWLYH GRXEOH EDVLQ $V DQWLFLSDWHG WKH GRXEOH EDVLQ VWLOOV RXWSHUIRUPHG WKH VLQJOH EDVLQ FRXQWHUSDUWV LQ ERWK GDLO\ \LHOG DQG WKHUPDO HIILFLHQF\ 2I WKH V\VWHPV VWXGLHG WKH DFWLYH GRXEOH EDVLQ KDG WKH KLJKHVW \LHOG ZKLOH WKH PXOWLZLFN GRXEOH EDVLQ KDG WKH EHVW WKHUPDO HIILFLHQF\ +RZHYHU WKH XVH RI WKH GRXEOH EDVLQ ZDV QRW UHFRPPHQGHG ZLWK KLJK VDOLQLW\ IHHGZDWHU SSPf 7KH PXOWLZLFN VLQJOH EDVLQ ZDV VXJJHVWHG IRU PRGHUDWH VDOLQLW\

PAGE 44

SSPf DQG WKH GRXEOH EDVLQ GHVLJQV ZHUH RQO\ UHFRPPHQGHG LI WHFKQLFDO SHUVRQQHO ZHUH QRW UHDGLO\ DYDLODEOH 3DVWHXUL]DWLRQ 3URFHVVHV 3DVWHXUL]DWLRQ RU WKHUPDO GLVLQIHFWLRQ LV WKH DSSOLFDWLRQ RI KHDW IRU D VSHFLILHG WLPH LQ RUGHU WR GHVWUR\ KDUPIXO PLFURRUJDQLVPV 3DUNHU f 7KH SDVWHXUL]DWLRQ SURFHVV LV EHVW NQRZQ IRU LWfV XVH LQ WKH IRRG DQG EHYHUDJH LQGXVWU\ SDUWLFXODUO\ IRU WKH SDVWHXUL]DWLRQ RI PLON 5HFHQWO\ WKLV WHFKQRORJ\ KDV EHHQ H[DPLQHG IRU LWfV XVH IRU GULQNLQJ ZDWHU ,Q RUGHU WR VWHULOL]H ZDWHU E\ SDVWHXUL]DWLRQ WKH ZDWHU PXVW EH KHDWHG WR D WHPSHUDWXUH RI r& r)f IRU D PLQLPXP RI VHFRQGV &KHUHPLVLQRII HW DO f 3DVWHXUL]DWLRQ FDQ EH REWDLQHG DW ORZHU WHPSHUDWXUHV DV ORZ DV r& r)f KRZHYHU WKH UHTXLUHG UHVLGHQFH WLPH LQFUHDVHV VLJQLILFDQWO\ DV WKH WHPSHUDWXUH LV UHGXFHG &LRFKHWWL DQG 0HWFDOI -R\FH HW DO f 7KH ORZHU WHPSHUDWXUHV DUH DWWDLQDEOH E\ VRODU KHDWLQJ 2QH SULPDU\ EHQHILW RI WKHUPDO GLVLQIHFWLRQ RYHU WKH SKRWRR[LGDWLRQ SURFHVV LV WKDW OLJKW SHQHWUDWLRQ LV QRW UHTXLUHG WKHUHE\ PDNLQJ LW HIIHFWLYH LQ KLJK WXUELGLW\ ZDWHU $QGUHDWWD HW DO f UHYLHZHG WKH XVH RI SDVWHXUL]DWLRQ GHYLFHV LQ WKH GHYHORSLQJ ZRUOG ZLWK UHIHUHQFH WR VHYHUDO GLIIHUHQW VW\OHV RI V\VWHPV 7KH VRODU ER[ FRRNHU VRODU SXGGOHV DQG IORZ WKURXJK V\VWHPV VLPLODU WR VRODU KRW ZDWHU KHDWHUV KDYH DOO EHHQ XVHG DV SDVWHXUL]HUV 7KH VRODU ER[ FRRNHU XVHG DV D SDVWHXUL]HU LV WKH OHDVW H[SHQVLYH EXW DOVR WKH PRVW XQUHOLDEOH $ PHWKRG IRU HQVXULQJ WKDW WKH DSSURSULDWH WHPSHUDWXUH KDV EHHQ UHDFKHG LV UHTXLUHG DQG VRPHWLPHV GLIILFXOW WR YHULI\

PAGE 45

$QRWKHU GUDZEDFN LV WKDW LW LV VWULFWO\ D EDWFK PHWKRG VR WKH ZDWHU LV QRW DYDLODEOH WKURXJKRXW WKH GD\ $QGUHDWWD HW DO f $ IORZ WKURXJK GHYLFH FDQ EH PDQXIDFWXUHG XVLQJ UHDGLO\ DYDLODEOH PDWHULDOV VXFK DV DQ DXWRPRELOH UDGLDWRU WKHUPRVWDW YDOYH DQG EODFN SDLQWHG WXELQJ 7KH GHVLJQ LV D VLPSOH KHDW H[FKDQJHU DQG VHYHUDO GHVLJQ YDULDWLRQV KDYH EHHQ WHVWHG )ODW FRQILJXUDWLRQV KDYH EHHQ GHPRQVWUDWHG WR EH PRUH HIIHFWLYH WKDQ WXEXODU YDULHWLHV DOWKRXJK WKH WXEH H[FKDQJHU PD\ EH VLPSOHU WR FRQVWUXFW 7KH WHPSHUDWXUH FRQWURO LV YHU\ LPSRUWDQW DQG WKH GHVLJQ LV FULWLFDO LQ RUGHU WR KDYH WKH DSSURSULDWH UHVLGHQFH WLPH 7KH SULPDU\ EHQHILWV RI WKH IORZ WKURXJK SDVWHXUL]HU DUH WKH DYDLODELOLW\ RI ZDWHU WKURXJKRXW WKH GD\ HDVLHU FRQWURO DQG DELOLW\ WR SURFHVV ODUJHU TXDQWLWLHV RI ZDWHU $QGUHDWWD HW DO f 7KH VRODU SXGGOH LV D ORZ FRVW ODUJH DUHD GHYLFH ,W UHVHPEOHV D VRODU EDVLQ VWLOO LQ WKDW WKHUH LV D WURXJK DQG D FRYHU RI FOHDU SODVWLF KRZHYHU VLQFH WKH ZDWHU LV QRW VDOLQH WKHUH LV QR QHHG WR VHSDUDWH WKH FRQGHQVDWH IURP WKH ZDWHU LQ WKH SXGGOH )RU WKH SXGGOH GHWHUPLQLQJ WKDW WKH DSSURSULDWH ZDWHU WHPSHUDWXUH DQG UHVLGHQFH WLPH LV UHDFKHG LV GLIILFXOW $QGUHDWWD HW DO f &LRFKHWWL t 0HWFDOI f HYDOXDWHG WKH XVH RI D VRODU ER[ FRRNHU 6%&f IRU SDVWHXUL]DWLRQ RI ZDWHU 7KH\ IRXQG WKDW WHPSHUDWXUHV IRU PLON SDVWHXUL]DWLRQ r&f IRU VHYHUDO KRXUV ZHUH VXIILFLHQW WR NLOO PRVW ZDWHUERUQH SDWKRJHQV LQFOXGLQJ YLUXVHV 9HUWLFDO WHPSHUDWXUH GLIIHUHQWLDOV ZHUH IRXQG ZLWKLQ FRQWDLQHUV DQG WKH SRVLWLRQ RI ERWK WKH MXJ LQ WKH 6%& DQG WKH 6%& LWVHOI KDG D VLJQLILFDQW HIIHFW RQ WHPSHUDWXUH DQG FRQVHTXHQWO\ VWHULOL]DWLRQ 7HVWV ZHUH FRQGXFWHG LQ QRUWKHUQ &DOLIRUQLD

PAGE 46

DQG UHTXLUHG WHPSHUDWXUHV IRU SDVWHXUL]DWLRQ ZHUH UHDFKHG IRU DSSUR[LPDWHO\ VL[ PRQWKV RI WKH \HDU IURP PLG0DUFK WKURXJK PLG 6HSWHPEHU -R\FH HWDO f LQYHVWLJDWHG WKH WKHUPDO FRQWULEXWLRQ RI VXQOLJKW WR WKH LQDFWLYDWLRQ RI IHFDO FROLIRUPV ZLWK ERWK RQVLWH WHVWLQJ DQG ODERUDWRU\ VLPXODWLRQV 7KHLU UHVHDUFK ZDV IRFXVHG RQ WKH XVH RI SDVWHXUL]DWLRQ IRU KRXVHKROG V\VWHPV 8VLQJ WUDQVSDUHQW OLWHU SODVWLF ERWWOHV RI WKH W\SH XVHG IRU FDUERQDWHG EHYHUDJHV WKH ZDWHU ZDV KHDWHG WR D WHPSHUDWXUH RI DERXW r& WKH VDPH WHPSHUDWXUH UHFRUGHG IRU OLWHU ERWWOHV RI ZDWHU LQ IXOO VXQVKLQH LQ .HQ\D ODWLWXGH rf6 ORQJLWXGH rf(f &RPSOHWH GLVLQIHFWLRQ ZDV REWDLQHG DIWHU KRXUV DW r& %XUFK DQG 7KRPDV f HYDOXDWHG WKH IHDVLELOLW\ RI VRODU SDVWHXUL]DWLRQ IRU ZDWHU WUHDWPHQW LQ GHYHORSLQJ FRPPXQLWLHV FRPSDULQJ LW ZLWK RWKHU WHFKQRORJLHV WUDGLWLRQDOO\ HPSOR\HG LQ WKDW DUHQD 7KH\ FRQFOXGHG WKDW VRODU SDVWHXUL]DWLRQ SUHFHGHG E\ URXJKLQJ ILOWUDWLRQ IRU KLJK WXUELGLW\ ZDWHU ZDV QRW HFRQRPLFDOO\ FRPSHWLWLYH ZKHQ FRPSDUHG ZLWK VORZ VDQG ILOWUDWLRQ FKORULQDWLRQ DQG 89 GLVLQIHFWLRQ +RZHYHU LW ZDV WKH PRVW HIIHFWLYH RI WKH IRXU IRU D EURDG VSHFWUXP RI PLFURELRORJLFDO FRQWDPLQDQWV DQG KDG WKH ORZHVW PDLQWHQDQFH UHTXLUHPHQWV )ORZ WKURXJK VRODU SDVWHXUL]DWLRQ ZDV VOLJKWO\ OHVV FRVWO\ WKDQ H[LVWLQJ EDWFK SURFHVVHV DQG WKH FRVW FRXOG EH UHGXFHG PRUH ZLWK WKH XVH RI D WKLQILOP SRO\PHU V\VWHP FXUUHQWO\ XQGHU VWXG\ %XUFK DQG 7KRPDV f 6RODU SDVWHXUL]DWLRQ LV QRW D IHDVLEOH PHWKRG IRU ODUJH ZDWHU SXULILFDWLRQ V\VWHPV KRZHYHU LW VKRZV FOHDU SURPLVH IRU VPDOO UHPRWH FRPPXQLWLHV KRXVHKROG QHHGV RU HPHUJHQF\ VLWXDWLRQV LQ DUHDV ZLWK

PAGE 47

VHYHUDO KRXUV RI VXQVKLQH WKURXJKRXW WKH GD\ 3DVWHXUL]DWLRQ KDV WKH EHQHILW RI SURYLGLQJ GLVLQIHFWLRQ UHJDUGOHVV RI WKH WXUELGLW\ RI WKH ZDWHU 2QH PDMRU KXUGOH LV WKH LQHIIHFWLYHQHVV RQ FORXG\ GD\V ZKLFK PD\ EH FLUFXPYHQWHG E\ KDYLQJ VWRUDJH DYDLODEOH DQG SXULI\LQJ ODUJHU TXDQWLWLHV RI ZDWHU RQ FOHDU GD\V IRU FORXG\ GD\ XVH 3KRWR 3URFHVVHV ([SHULPHQWV RQ WKH HIIHFW RI VXQOLJKW RQ PLFURRUJDQLVPV ZHUH FRQGXFWHG DV HDUO\ DV WKH ODWH WK FHQWXU\ 'RZQHV DQG %ORXQW f REVHUYHG WKH GLVDSSHDUDQFH RI WXUELGLW\ DV DQ LQGLFDWLRQ RI WKH SUHVHQFH RU DEVHQFH RI PLFURRUJDQLVPV IURP DFLGLF XULQH SODFHG LQ VXQOLJKW IRU VHYHUDO KRXUV 6LQFH WKDW WLPH PXFK KDV EHHQ OHDUQHG DERXW WKH HIIHFW RI OLJKW VSHFLILFDOO\ XOWUDYLROHW UDGLDWLRQ RQ WKH LQDFWLYDWLRQ RI PLFURRUJDQLVPV ,Q WKH HDUO\ V GLUHFW SKRWRO\VLV E\ XOWUDYLROHW 89f UDGLDWLRQ ZDV XVHG IRU GLVLQIHFWLRQ RI SRWDEOH ZDWHU :ROIH f :KLOH WKLV PHWKRG ZDV DEDQGRQHG LQ IDYRU RI FKORULQDWLRQ SUREOHPV ZLWK FKORULQH GLVLQIHFWLRQ E\n SURGXFWV KDYH HQFRXUDJHG UHVHDUFKHUV WR WDNH DQRWKHU ORRN DW 89 5HFHQW VWXGLHV RQ WKH XVH RI 89 IRU GULQNLQJ ZDWHU KDYH SURYHQ PRUH VXFFHVVIXO 6ODGH HW DO :ROIH f 'LUHFW SKRWRO\VLV KRZHYHU RQO\ DIIHFWV WKRVH VSHFLHV ZKLFK FDQ GLUHFWO\ DEVRUE OLJKW SULPDULO\ PLFURRUJDQLVPV ,QGLUHFW SKRWRO\VLV SKRWRVHQVLWL]DWLRQ RU SKRWRFDWDO\VLV SURYLGHV DQRWKHU DOWHUQDWLYH :KHQ H[SRVHG WR OLJKW RI WKH DSSURSULDWH ZDYHOHQJWK WKH SKRWRVHQVLWL]HU RU SKRWRFDWDO\VW JHQHUDWHV D UHDFWLYH VSHFLHV VXFK DV D K\GUR[\O UDGLFDO RU SHUR[\ UDGLFDO ZKLFK VXEVHTXHQWO\ UHDFWV ZLWK WKH

PAGE 48

FRQWDPLQDQW VSHFLHV 7KLV RSHQV D PXFK ZLGHU UDQJH RI FRQWDPLQDQWV WR GHVWUXFWLRQ E\ SKRWRFKHPLFDO PHDQV DQG FUHDWHV WKH SRVVLELOLW\ RI VLPXOWDQHRXV GHVWUXFWLRQ RI PLFURELRORJLFDO DQG FKHPLFDO FRQWDPLQDQWV 6RODU 'LVLQIHFWLRQ 6RODU GLVLQIHFWLRQ LV GLUHFW SKRWRO\VLV E\ UDGLDWLRQ IURP WKH XOWUDYLROHW VSHFWUXP ZDYHOHQJWKV VKRUWHU WKDQ QPf VRPHWLPHV UHIHUUHG WR DV SKRWRG\QDPLF LQDFWLYDWLRQ $FUD HW DO KDYH XVHG VXQOLJKW IRU VPDOO VFDOH GLVLQIHFWLRQ RI GULQNLQJ ZDWHU E\ GLUHFW SKRWRO\VLV RI PLFURELRORJLFDO FRQWDPLQDQWV $FUD HW DO f SRVWXODWHG WKDW D PLQLPXP VRODU 89$ LQWHQVLW\ RI :P ZDV UHTXLUHG IRU b LQDFWLYDWLRQ RI IHFDO FROLIRUP EDVHG RQ ILHOG WHVWLQJ RI VRODU GLVLQIHFWLRQ UHDFWRUV 7KH UHVLGHQFH WLPH UHTXLUHG WR UHDFK WKHVH OHYHOV RI LQDFWLYDWLRQ UDQJHG IURP PLQXWHV WR KRXUV GHSHQGLQJ RQ WKH PLFURRUJDQLVP $FUD HW DO f 7KH GDWD LQGLFDWHG WKDW D ORQJHU UHVLGHQFH WLPH DFKLHYHG E\ UHFLUFXODWLRQ ORZHU IORZ UDWHV RU LQFUHDVHG UHDFWRU YROXPH FRXOG DOVR OHDG WR LQDFWLYDWLRQ $FUD HW DO f 7KH\ IRXQG WKDW EDFWHULDO GHVWUXFWLRQ ZVD H[SRQHQWLDO DV D IXQFWLRQ RI VRODU 89$ LQWHQVLW\ DQG WLPH 7KH PDMRU SUREOHP HQFRXQWHUHG ZDV WKH JURZWK RI SK\WRSODQNWRQ LQ WKH UHDFWRU $FUD HW DO f ,Q VWXGLHV IRU WKH LQDFWLYDWLRQ RI (VFKHULFKLD FROL LQ VXQOLJKW 6KDK HW DO f IRXQG WKDW WKH UDWH RI LQDFWLYDWLRQ ZDV UHODWHG WR WKH LQLWLDO FRORQ\ GHQVLW\ $W YHU\ KLJK LQLWLDO GHQVLWLHV RI ( FROL LQDFWLYDWLRQ ZDV QRW VXIILFLHQW IRU SURYLVLRQ RI VDIH GULQNLQJ ZDWHU 62',6 $ K\EULG WHFKQRORJ\ ZKLFK FRPELQHG WKH EHQHILWV RI 89 GLVLQIHFWLRQ DQG KHDW SDVWHXUL]DWLRQ ZDV SURSRVHG E\ 6RPPHU HW DO f :LWK WKH

PAGE 49

62',6 UHDFWRUV ZDWHU ZDV KHDWHG WR D WHPSHUDWXUH RI r& DQG VXEMHFWHG WR VRODU 89$ SURYLGLQJ ERWK WKHUPDO DQG 89 GLVLQIHFWLRQ &RPSOHWH LQDFWLYDWLRQ RI IHFDO FROLIRUP LQ KRXUV ZDV UHSRUWHG HYHQ RQ FRPSOHWHO\ FORXG\ GD\V 7KH K\EULG WHFKQRORJ\ ZDV PRUH HIIHFWLYH RQ WKH SDUWO\ FORXG\ WR FRPSOHWHO\ RYHUFDVW GD\V ZKHQ FRPSDUHG WR SDVWHXUL]DWLRQ DORQH DW r& +DORVRO 7KH KDORVRO SURFHVV LV D FRPELQDWLRQ RI WKH XVH RI KDORJHQV DQG VXQOLJKW GHYHORSHG DW WKH $PHULFDQ 8QLYHUVLW\ LQ %HLUXW /HEDQRQ LQ WKH ODWH V WR HDUO\ V 7KH SURFHVV LQYROYHV WUHDWPHQW ZLWK ODUJH GRVHV RI VRGLXP K\SRFKORULWH RU LRGLQH VROXWLRQV IROORZHG E\ H[SRVXUH WR UDGLDWLRQ 7KH LQWHQGHG EHQHILW LV GLVLQIHFWLRQ RI VPDOO YROXPHV RI KHDYLO\ SROOXWHG ZDWHU IROORZHG E\ WKH UHPRYDO RI H[FHVV KDORJHQV IRU WDVWH DQG RGRU FRQWURO $FUD HW DO f 3KRWRFDWDOYVLV 7KH PRVW FRPPRQO\ VWXGLHG LQGLUHFW SKRWRO\VLV UHDFWLRQ IRU ZDWHU DQG ZDVWHZDWHU WUHDWPHQW LV SKRWRFDWDO\VLV XVLQJ WLWDQLXP GLR[LGH 7L DV D FDWDO\VW /DERUDWRU\ SLORW DQG ILHOG VWXGLHV KDYH GHPRQVWUDWHG 7L FDWDO\]HG SKRWRGHJUDGDWLRQ RI D ZLGH UDQJH RI RUJDQLF FKHPLFDOV 7DEOH f LQFOXGLQJ DOFRKROV DOGHK\GHV DONDQHV DONHQHV DPLQHV DURPDWLFV FDUER[\OLF DFLGV GLR[LQV G\HV IXHO FRQVWLWXHQWV KDORJHQDWHG K\GURFDUERQV KHUELFLGHV NHWRQHV PHUFDSWDQV SHVWLFLGHV SRO\FKORULQDWHG ELSKHQ\OV VROYHQWV VXUIDFWDQWV DQG WKLRHWKHUV $LWKDO HW DO 'DV HW DO (OOLV *RVZDPL DQG -RWVKL /HJULQL HW DO 0LOOV HW DO 2OOLV =KDQJ HW DO Ef 6HYHUDO UHVHDUFKHUV KDYH

PAGE 50

GHPRQVWUDWHG WKH LQDFWLYDWLRQ RI PLFURRUJDQLVPV LQ ZDWHU E\ 7L SKRWRFDWDO\VLV 7DEOH f 7DEOH ([DPSOHV RI 3KRWRFDWDO\WLF 7UHDWPHQW RI :DWHU DQG :DVWHZDWHU n:9n9A9$9$n$9$9$n9$:$99:L:$:99O9:$:99$9999$9$999n:9: ,19(67,*$7256f &RQWDPLQDQW Vf &DWDO\VW L/RZ HW DO f c$PLQHV 7L L$EGXOODK HW DO f $QLOLQH 7L L*RVZDPL HW DO f DQG •EHUJ f L%HQ]HQH 7ROXHQH (WK\OEHQ]HQH 7L ;\OHQH %DUEHQL HW DO f &KORULQDWHG $URPDWLFV _7L Q c0DWWKHZV f &KORULQDWHG %HQ]HQHV 7L L c$KPHG DQG 2OOLV f +VLDR HW DO cf 0DWWKHZV f 1JX\HQ DQG c2OOLV f 2OOLV f 3UXGHQ DQG c2OOLV Df DQG 3UXGHQ DQG 2OOLV L+DORJHQDWHG +\GURFDUERQV c6ROYHQWV 7+0V 7&( HWFf I7L M Ef M M +DUDGD HW DO f c2UJDQRSKRVSKRURXV ,QVHFWLFLGHV 7L3W $(NDEL HW DO f *RVZDPL HW DO L DQG /L HW DO f SKHQROV t &KORURSKHQROV 7L L3HOL]]HWWL HW DO f SRO\FKORULQDWHG 'LR[LQV DQG 3RO\FKORULQDWHG %LSKHQ\OV 7L =Q2 &G6 7L3W t )H LL L0DLOODUG'XSX\ HW DO f 3\ULGLQH 7L2 L3HOL]]HWWL HW DO f 67ULD]LQH +HUELFLGHV 7L2D L 3HOL]]HWWL HW DO f 6XUIDFWDQWV f7L ? 3KRWRVHQVLWL]DWLRQ 7KH ERG\ RI OLWHUDWXUH RQ WKH XVH RI SKRWRVHQVLWL]DWLRQ IRU ZDWHU DQGRU ZDVWHZDWHU LV PXFK OHVV H[WHQVLYH WKDQ WKDW IRU SKRWRFDWDO\VLV ZLWK 7L 0RVW RI WKH ZRUN ZLWK UHJDUG WR PLFURRUJDQLVPV KDV EHHQ GRQH LQ WKH PHGLFDO ILHOG 7UDWQ\HN HW DO f +RZHYHU VRPH ZRUN RQ YLUXV LQDFWLYDWLRQ DQG ZDVWHZDWHU WUHDWPHQW ZDV FRQGXFWHG LQ WKH HDUO\ V *HUED HW DO D *HUED HW DO E +REEV HW DO 6DUJHQW DQG 6DQNV f 5HFHQWO\ UHVHDUFKHUV KDYH LQYHVWLJDWHG WKH XVH RI LPPRELOL]HG VHQVLWL]HUV IRU FROLIRUP GHVWUXFWLRQ 6DYLQR DQG $QJHOL f

PAGE 51

7DEOH ([DPSOHV RI 3KRWRFDWDO\WLF 7UHDWPHQW RI :DWHU DQG :DVWHZDWHU :9999999n99 6SHFLDO YYYYYYYYYYYYYYYYYY :0$IYXXX\YXZXXXZ0 YYYYYYYYYYYYYYYY\YYYYYYYY ,QYHVWLJDWRU Vf %ORFN HW DO f &RQWDPLQDQWV f \ _(VFKHULFKLD FROL 6HUUDGD PDUFHVFHQV ,UHODQG HW DO f :HL (VFKHULFKLD FROL HW DO f DQG =KDQJ HW M ‘‘9999n99999n$99n9999999 &DWDO\VW &RQGLWLRQV f 7L 0DWVXQDJD HW DO f (VFKHULFKLD FROL 99$:9999999:99 7L ,PPRELOL]HG PHPEUDQH 0DWVXQDJD HW DO f (VFKHULFKLD FROL /DFWREDFLOOXV 7LF\SW 3W /RDGHG DFLGRSKLOXV 6DFFKDURP\FFHV FDWDO\VW &HUHYLVLDH V 3DWHO f %DFLOOXV VWHDURWKHUPRSKLOXV 7L VSRUHV (VFKHULFKLD FROL 0LFURFRFFXV OXWHXV 3VHXGRPRQDV DHUXJLQRVD 6HUUDGD PDUFHVFHQV 6WDSK\ORFRFFXV DXUHXV 6DLWR HW DO f 6WUHSWRFRFFXV VREULQXV 6MRJUHQ DQG 6LHUND fEDFWHULRSKDJH 06 7L2 $GGLWLRQ RI ,URQ L 7KH UHPDLQGHU RI WKH ZRUN RQ ZDVWHZDWHU WUHDWPHQW KDV EHHQ FRQGXFWHG E\ RQO\ D IHZ UHVHDUFKHUV ZRUNLQJ LQ FRQFHUW 7KHLU LQYHVWLJDWLRQV RQ WKH WUHDWPHQW RI ZDVWHZDWHU DQG VHZDJH HIIOXHQWV XVLQJ PHWK\OHQH EOXH DQG URVH EHQJDO KDYH VKRZQ WKDW WKH WHFKQRORJ\ ZDV YLDEOH LQ ODERUDWRU\ SLORW DQG ILHOG VFDOH GHPRQVWUDWLRQV $FKHU $FKHU HW DO $FKHU HW DO $FKHU DQG -XYHQ $FKHU DQG 5RVHQWKDO (LVHQEHUJ HW DO D (LVHQEHUJ HW DO (LVHQEHUJ HW DO f ,Q DGGLWLRQ WR WKH PLFURELRORJLFDO FRQWDPLQDQWV WKLV ZRUN DGGUHVVHG ZDVWHZDWHU DQG WKH VSHFLILF LQGXVWULDO FRQWDPLQDQW EURPDFLO LQGLFDWLQJ VRPH YLDELOLW\ IRU VLPXOWDQHRXV WUHDWPHQW 7KH XVH RI IODYLQV ZDV GHPRQVWUDWHG IRU WKH GHVWUXFWLRQ RI KHUELFLGHV DQG RWKHU RUJDQLFV VXFK DV SKHQRO DQG DQLOLQH /DUVRQ HW DO /DUVRQ HW DO 6FKODXFK f $ EULHI VXPPDU\ RI ZRUN LQ WKLV DUHD LV VKRZQ LQ 7DEOH

PAGE 52

7DEOH 6XPPDU\ RI 3KRWRVHQVLWL]HG 7UHDWPHQW RI :DWHU DQG :DVWHZDWHU fYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY L ,QYHVWLJDWRU Vf &RQWDPLQDQWV 6HQVLWL]HU V f &RQGLWLRQV R[LGDWLRQ SRQG L$FKHU DQG -XYHQ (VFKHULFKLD FROL 0% 5% cLVHZDJH ZDWHU L$FKHU HW DW IHFDO FROLIRUP 0% ,SLORW SODQW VHZDJH I HQWHURFRFFL FROLIRUPV LHIIOXHQWV SROLR YLUXVHV ,*HUED HW DO Df DQG L*HUED HW DO Ef FROLIRUP t SROLR YLUXV 0% AVHQVLWL]HG IRU K LM L+REEVHWDO FROLIRUP t SROLR YLUXV 0% L6DYLQR DQG $QJHOL ( FROL 0% 5% HRVLQ c,PPRELOL]HG G\HV L L%XUNKDUG DQG *XWK f 7ULD]LQH +HUELFLGHV $FHWRQH ? c&URVE\ DQG :RQJ f 7 5LERIODYLQ t $FHWRQH c+DGGHQ HW DO f DQG SFUHVRO SKHQRO 0% UKRGDPLQH KLJK S+ f L6DUJHQW DQG 6DQNV f QHXWUDO UHG 5% PDODFKLWH JUHHQ KHPDWRSRUSK\ULQ' /K\GURFKORULGH DFULGLQH RUDQJH t RWKHUV I ? f e f /DUVRQ HW DO DQLOLQH t SKHQROV 5LERIODYLQ 5)f M6FKODXFK 7ULD]LQH +HUELFLGHV 0% 5) M L$FKHU DQG 5RVHQWKDO IHFDO FROLIRUP &2' 0% 5% EHUDWHG VHZDJH 0%$6 $IIOXHQWV L$FKHU 2UJDQLFV ( FROL EDFWHULRSKDJHV SROLR YLUXV t DOJDH 0% t 5%$OJDH EDFWHULD t YLUXVHVf cZDVWHZDWHU L$FKHU HW DO f VHFRQGDU\ HIIOXHQW 0% cZDVWHZDWHU M(LVHQEHUJ HW DO FROLIRUP t EURPDFLO cVHFRQGDU\ VHZDJH $IIOXHQW 6XPPDU\ ,Q WHUPV RI HIIHFWLYHQHVV WKH SKRWRFKHPLFDO SURFHVVHV DUH SUHIHUDEOH IRU RYHUDOO ZDWHU WUHDWPHQW WR ERWK WKH SK\VLFDO SURFHVVHV DQG VWUDLJKW VRODU GLVLQIHFWLRQ ZLWK WKH H[FHSWLRQ RI GHVDOLQDWLRQ ZLWK ZKLFK LW LV QRW FRPSDUDEOH 7KHVH SURFHVVHV DUH HIIHFWLYH RQ ERWK PLFURELRORJLFDO FRQWDPLQDQWV DV ZHOO DV RQ D ZLGH UDQJH RI FKHPLFDO FRQWDPLQDQWV +RZHYHU LQ RUGHU IRU WKHVH PHWKRGV WR EH FRPPHUFLDOO\ YLDEOH RQ D ODUJH VFDOH DGGLWLRQDO UHVHDUFK PXVW EH FRQGXFWHG 7KHUH DUH WKUHH SULPDU\

PAGE 53

DUHDV ZKHUH HIIRUWV VKRXOG EH FRQFHQWUDWHG VHSDUDWLRQ RI WKH SKRWRFKHPLFDO IURP WKH ZDWHU LQFOXGLQJ LPPRELOL]DWLRQ HOXFLGDWLRQ RI KDUPIXO LQWHUPHGLDWHV LQ OLHX RI FRPSOHWH PLQHUDOL]DWLRQ DQG GHYHORSPHQW RI FRVW HIILFLHQW RU RSWLPDO RSHUDWLQJ SDUDPHWHUV )RU GLVLQIHFWLRQ WKH SKRWRFKHPLFDO SURFHVVHV FRPSDUH IDYRUDEO\ WR VRODU GLVLQIHFWLRQ SDVWHXUL]DWLRQ 62',6 DQG KDORVRO $Q\ RI WKHVH SURFHVV FDQ EH YLHZHG DV DSSURSULDWH SDUWLFXODUO\ IRU KRXVHKROG RU VPDOO FRPPXQLW\ DSSOLFDWLRQV ,Q ORFDWLRQV ZKHUH VXQVKLQH LV LQ ODUJH VXSSO\ DQG WHFKQLFDOO\ WUDLQHG SHUVRQQHO DQG IRVVLO IXHOV DUH LQ VKRUWHU VXSSO\ WKH XVH RI VRODU EDVHG SURFHVVHV IRU WUHDWPHQW RI ZDWHU PD\ SURYH WR EH D VDWLVIDFWRU\ DOWHUQDWLYH

PAGE 54

&+$37(5 (;3(5,0(17$/ '(6,*1 $1' 0(7+2'6 &KRLFH RI ([SHULPHQWDO 3DUDPHWHUV 7KH SHUIRUPDQFH RI D SKRWRFKHPLFDO UHDFWRU V\VWHP LV DIIHFWHG E\ D P\ULDG RI YDULDEOHV RQO\ D IHZ RI ZKLFK FDQ EH FRQWUROOHG :KLOH WKH FKRLFH RI SKRWRUHDFWDQW DQG WKH DYDLODELOLW\ RI OLJKW RI WKH DSSURSULDWH ZDYHOHQJWK UDQJH DUH WKH WZR PRVW FULWLFDO YDULDEOHV WKHUH DUH RWKHU PRUH VXEWOH FKDQJHV LQ UHDFWLRQ FRQGLWLRQV WKDW HQKDQFH RU GHJUDGH WKH UHDFWLRQ HIILFLHQF\ %RWK WKH FRQFHQWUDWLRQ DQG WKH SK\VLFDO IRUP RI WKH FDWDO\VW RU VHQVLWL]HU KDYH D PDUNHG LQIOXHQFH RQ WKH HIILFDF\ RI D JLYHQ UHDFWRU 0DWWKHZV :\QHVV HW DO f %H\RQG WKRVH IDFWRUV DOUHDG\ PHQWLRQHG S+ WKH SUHVHQFH RU DEVHQFH RI GLVVROYHG R[\JHQ UHDFWRU GHVLJQ DQG WKH QDWXUH RI WKH FRQWDPLQDQWV H[KLELW WKH PRVW VLJQLILFDQW HIIHFW RQ SURFHVV UHDFWLRQ UDWHV $FKHU HW DO %HGIRUG HW DO +DGGHQ HW DO .DZDJXFKL DQG )XUX\D f 'HYHORSPHQW RI WKH H[SHULPHQWDO GHVLJQ ZDV SUHGLFDWHG RQ DQDO\VLV RI UHSRUWHG ZRUN DQG SUHOLPLQDU\ H[SHULPHQWV LQ FRQVLGHUDWLRQ RI WKH DIRUHPHQWLRQHG YDULDEOHV 7KH FKRLFHV PDGH IRU WKH UHVHDUFK UHSRUWHG KHUHLQ UHJDUGLQJ HDFK SDUDPHWHU ZHUH QRWHG DW WKH HQG RI WKH DSSOLFDEOH VHFWLRQ

PAGE 55

&RQWDPLQDQWV 6RPH XQLTXH SUREOHPV LGHQWLILHG ZLWK JURXQGZDWHU WKURXJKRXW WKH 8QLWHG 6WDWHV 9LUJLQ ,VODQGV 869,f VHUYHG DV D EDVLV IRU WKH VHOHFWLRQ RI FRQWDPLQDQWV IRU WKLV VWXG\ 8VHG DV VRXUFH IRU GULQNLQJ ZDWHU PXFK RI WKH 869, JURXQGZDWHU LV FKHPLFDOO\ FRQWDPLQDWHG ZLWK OLJKW K\GURFDUERQV IURP OHDNLQJ IXHO WDQNV ,Q DGGLWLRQ GXH WR OHDNDJH IURP XQGHUJURXQG VHZHUDJH WKH PLFURELRORJLFDO FRQWDPLQDWLRQ LV UDWKHU H[WHQVLYH $ VWXG\ RI 869, ZDWHUV IRXQG PLFURELRORJLFDO FRQWDPLQDWLRQ LQ WKH IRUP RI 6WUHSWRFRFFXV .OHEVLHOOD $FLQHWREDFWHU VSS (QWHUREDFWHU 3VHXGRPRQDV 6DOPRQHOOD DQG (VFKHULFKLD FROL &DQR\ DQG 5QXGVHQ f 7R VLPXODWH FRQWDPLQDWLRQ IURP OHDNLQJ IXHO WDQNV EHQ]HQH WROXHQH DQG [\OHQH ZHUH XVHG DV FKHPLFDO FRQWDPLQDQWV ( FROL 6HUUDWLD PDUFHVFHQV DQG 3VHXGRPRQDV DHUXJLQRVD ZHUH XVHG DV PLFURELRORJLFDO FRQWDPLQDQWV LQGLFDWLYH RI WKH FRQWDPLQDWLRQ LGHQWLILHG E\ &DQR\ DQG .QXGVHQ f DQG ZKDW PLJKW EH SUHVHQW IURP OHDNLQJ VHZHUDJH &DWDO\VW &KRLFH $ QXPEHU RI VHPLFRQGXFWLQJ PDWHULDOV KDYH EHHQ WHVWHG IRU XVH DV SKRWRFDWDO\VWV LQ ZDWHU DQG ZDVWHZDWHU WUHDWPHQW ,Q RUGHU IRU D PDWHULDO WR EH HIIHFWLYH IRU VRODU SKRWRFDWDO\WLF ZDWHU WUHDWPHQW LW PXVW EH SKRWRDFWLYH DEOH WR XVH YLVLEOH DQGRU QHDU 89 OLJKW ELRORJLFDOO\ DQG FKHPLFDOO\ LQHUW VWDEOH XQGHU LUUDGLDWLRQ LQH[SHQVLYH DQG QRQWR[LF WR KXPDQV DQG DTXDWLF RUJDQLVPV &DUH\ DQG 2OLYHU 0LOOV HW DO f )URP SULYDWH FRQYHUVDWLRQ ZLWK %UXFH *UHHQ RI &DUULEHDQ ,QIUDWHFK ,ELG

PAGE 56

6HYHUDO UHVHDUFKHUV KDYH WHVWHG VHPLFRQGXFWRUV IRU SKRWRDFWLYLW\ LQFOXGLQJ EDULXP WLWDQDWH %D7L2D FDGPLXP VXOILGH &G6 WXQJVWHQ R[LGH : WLWDQLXP GLR[LGH 7L ]LQF R[LGH =Q2 DQG ]LQF VXOILGH =Q6 %ODNH f 2Q WKH ZKROH 7L LV PRUH DFWLYH WKDQ WKH RWKHUV %ODNH f %DUEHQL HW DO f HYDOXDWHG IRXU RWKHU VHPLFRQGXFWRU R[LGHV UHODWLYH WR 7L IRU WKH SKRWRFDWDO\WLF GHJUDGDWLRQ RI SHQWDFKORURSKHQRO DQG IRXQG SKRWRFDWDO\VLV WR EH WKH PRVW HIILFLHQW ,Q VWXGLHV RI WKH GHVWUXFWLRQ RI GLFKORUREHQ]HQH XVLQJ =Q2 : SODWLQL]HG 7L DQG XQWUHDWHG 7L WKH 7L SKRWRFDWDO\]HG VDPSOHV UHDFWHG IDVWHU 3HOL]]HWWL HW DO f &DUH\ DQG 2OLYHU f HYDOXDWHG VHYHUDO VHPLFRQGXFWRU R[LGHV IRU VWDELOLW\ XQGHU LUUDGLDWLRQ LQ QHXWUDO DTXHRXV VROXWLRQ 7DEOH f 2I WKH VHPLFRQGXFWRUV WHVWHG RQO\ WKRVH FRQWDLQLQJ WLWDQLXP ZHUH IRXQG WR EH SKRWRVWDEOH :LWK DQ RSWLFDO EDQG JDS RI H9 &G6 LV KLJKO\ SKRWRDFWLYH DQG H[FLWHG E\ YLVLEOH OLJKW DSSHDULQJ WR EH DWWUDFWLYH DV D SKRWRFDWDO\VW +RZHYHU DV LV W\SLFDO IRU VHPLFRQGXFWRUV ZKLFK DEVRUE YLVLEOH OLJKW LW LV QRW SKRWRVWDEOH DQG WHQGV WRZDUG SKRWRDQRGLF FRUURVLRQ 'DYLV DQG +XDQJ 0LOOV HW DO f ,Q WKH FDVH RI FDGPLXP VXOILGH WKLV OHDGV WR WKH SUHFLSLWDWLRQ RI XQGHVLUDEOH DQG XOWLPDWHO\ WR[LF FRPSRXQGV DV VKRZQ LQ HTXDWLRQ &G6 K &G 6L f &RQVLGHULQJ DOO RI WKH HYLGHQFH 7L VHHPV WR EH WKH PRVW GHVLUDEOH IRU SKRWRFDWDO\WLF SURFHVVHV WR GDWH 7L LQ DQDWDVH IRUP LV WKH PRVW

PAGE 57

FRPPRQO\ XVHG GXH WR LWV FKHPLFDO VWDELOLW\ UHDG\ DYDLODELOLW\ DQG SKRWRDFWLYLW\ %ODNH =KDQJ HW DO Ef 7DEOH 3KRWRVWDELOLW\ RI 6HPLFRQGXFWRU 2[LGHV 7HVWHG E\ &DUH\ DQG 2OLYHU f 6HPLFRQGXFWRU 3KRWRVWDEOH %D7L \HV &D7L \HV 0J7L \HV 6U7L \HV 7L DQDWDVHf \HV 7L UXWLOHf \HV YR QR =Q2 QR =Q7L \HV 7KHUH KDYH EHHQ D QXPEHU RI HIIRUWV WR LQFUHDVH WKH HIILFLHQF\ RI 7L E\ VXUIDFH PRGLILFDWLRQ RI WKH FDWDO\VW RU VXEVWLWXWLRQ GRSLQJ /RDGLQJ RI WKH 7L VXUIDFH ZLWK QREOH PHWDOV KDV EHHQ XVHG WR HQKDQFH HOHFWURQ WUDQVIHU SURGXFWLRQ RI K\GUR[\O UDGLFDOVf DQG WR SURORQJ WKH OLIH RI WKH R[LGDWLRQ VLWH DW WKH H[WHULRU VXUIDFH %ODNH =KDQJ HW DO Ef 6LOYHUORDGLQJ RI DQDWDVH 7L LQFUHDVHV WKH HIILFLHQF\ IRU WKH GHVWUXFWLRQ RI FKORURIRUP DQG XUHD E\ b DQG b UHVSHFWLYHO\ .RQGR DQG -DUGLP f 2WKHU PHWDOV XVHG IRU VXUIDFH PRGLILFDWLRQ DUH 3W 5K &X 1L DQG 3G :KLOH WKHVH PHWDOV KDYH EHHQ VKRZQ WR LQFUHDVH HIILFLHQF\ WKH FRVW DQG FRPSOH[LW\ RI WKH VXUIDFH GHSRVLWLRQ SURFHVV DUH SURKLELWLYH IRU XVH LQ PRVW FRPPXQLWLHV 6XEVWLWXWLRQ GRSLQJ RI 7L SUHVHQWV WKH VDPH GLIILFXOW\ )RU WKHVH UHDVRQV DQDWDVH 7L 'HJXVVD 3 ZDV XVHG IRU WKLV UHVHDUFK &KRLFH RI 3KRWRVHQVLWL]HU ,Q DGGLWLRQ WR WKH FKHPLFDO FULWHULD RXWOLQHG SUHYLRXVO\ IRU SKRWRVHQVLWL]HUV WKH\ PXVW DOVR EH LQH[SHQVLYH DQG QRQWR[LF 0HWK\OHQH

PAGE 58

EOXH LV WKH SKRWRVHQVLWL]HU FRPPRQO\ XVHG LQ ZDWHU WUHDWPHQW UHVHDUFK ,W LV SUHIHUUHG EHFDXVH LW LV LQH[SHQVLYH DEVRUEV SUHIHUHQWLDOO\ DW QP D ZDYHOHQJWK ZKLFK HDVLO\ SHQHWUDWHV ZDVWHZDWHU HIIOXHQW DQG KDV D YHU\ ORZ WR[LFLW\ 0HWK\OHQH EOXH LV DGPLQLVWHUHG RUDOO\ LQ KXPDQV IRU PHGLFLQDO SXUSRVHV *HUED HW DO E +REEV HW DO f 0DUWLQ DQG 3HUH]&UXHW f HYDOXDWHG D QXPEHU RI G\HV IRU VXLWDELOLW\ DV VHQVLWL]HUV 8VLQJ VWHULOH VHD ZDWHU ZLWK D VDOLQLW\ RI SSW WZHOYH G\HV ZHUH VWXGLHG IRU DEVRUSWLRQ WHQGHQF\ E\ FODPV 0HUFHQDULD PHUFHQDULDf DQG SKRWRG\QDPLF DFWLRQ DJDLQVW (VFKHULFKLD FROL 2I WKH GR]HQ G\HV WHVWHG ILYH ZHUH FRQVLGHUHG VXLWDEOH IRU IXUWKHU WHVWLQJ E\ 0DUWLQ DQG 3HUH]&UXHW DQG URVH EHQJDO VKRZHG WKH PRVW SURPLVH 7DEOH VKRZV WKH RUGHU RI HIIHFWLYHQHVV RI VHOHFWHG G\HV DJDLQVW ( FROL DV GHWHUPLQHG E\ 0DUWLQ DQG 3HUH]&UXHW f 2WKHU UHVHDUFKHUV KDYH IRXQG PHWK\OHQH EOXH WR EH WKH SUHIHUUHG G\H VHQVLWL]HU DOWKRXJK URVH EHQJDO VHHPV WR ZRUN DOPRVW DV ZHOO XQGHU PRVW FLUFXPVWDQFHV $FKHU DQG 5RVHQWKDO *HUED HW DO E 6DUJHQW DQG 6DQNV 6DYLQR DQG $QJHOL f 6HYHUDO UHVHDUFKHUV /DUVRQ HW DO 0RSSHU DQG =LND 6FKODXFK f KDYH LQYHVWLJDWHG WKH XVH RI IODYLQ VHQVLWL]HUV 7KHLU UHVHDUFK VXJJHVWV WKDW ULERIODYLQ DQG OXPLFKURPH DUH ERWK JRRG SKRWRVHQVLWL]HUV $FHWRQH LV WKH RQH RWKHU SKRWRVHQVLWL]HU ZKLFK VHHPV WR KDYH JLYHQ JRRG UHVXOWV IRU ZDWHU WUHDWPHQW ,Q WHVWV IRU WKH SKRWRGHFRPSRVLWLRQ RI WKH KHUELFLGH WULFKORURSKHQR[\DFHWLF DFLG 7f ERWK DFHWRQH DQG ULERIODYLQ VKRZHG SURPLVH &URVE\ DQG :RQJ f %XUNKDUG DQG *XWK

PAGE 59

f DOVR IRXQG DFHWRQH HIIHFWLYH IRU WKH SKRWRGHJUDGDWLRQ RI WULD]LQH KHUELFLGHV +RZHYHU DFHWRQH LV NQRZQ WR FDXVH V\VWHPLF HIIHFWV ZKHQ LQJHVWHG E\ KXPDQV 6D[ DQG /HZLV f %DVHG RQ WKLV LQIRUPDWLRQ LW DSSHDUV WKDW WKH UHVHDUFK RI SKRWRVHQVLWL]HUV LV OHVV FRQFOXVLYH WKDQ WKDW IRU SKRWRFDWDO\VWV ZDUUDQWLQJ IXUWKHU WHVWLQJ 7KHUHIRUH ERWK PHWK\OHQH EOXH DQG URVH EHQJDO ZHUH VHOHFWHG IRU IXUWKHU HYDOXDWLRQ 5HDFWRU 'HVLJQ 7KH RYHUZKHOPLQJ PDMRULW\ RI WKH UHVHDUFK RQ UHDFWRU GHVLJQ IRU SKRWRFKHPLFDO ZDWHU WUHDWPHQW KDV EHHQ FRQGXFWHG IRU VHPLFRQGXFWRU SKRWRFDWDO\VLV SULPDULO\ ZLWK 7L %ODNH f +RZHYHU VLQFH WKH UHDFWLRQV IROORZ VLPLODU PHFKDQLVPV WKH VDPH SULQFLSOHV VKRXOG DSSO\ WR ERWK SKRWRFDWDO\VLV DQG SKRWRVHQVLWL]DWLRQ 7KH WZR PDMRU UHDFWRU RSWLRQV DUH UHDFWRUV XVLQJ FDWDO\VW VXVSHQGHG LQ VOXUU\ RU WKRVH LQ ZKLFK D IL[HG VXSSRUWHG FDWDO\VW LV HPSOR\HG %ODNH f :KLOH WKH EXON RI WKH UHVHDUFK IRU ZDWHU DQG ZDVWHZDWHU WUHDWPHQW KDV EHHQ FRQGXFWHG XVLQJ VOXUULHV RI WLWDQLXP GLR[LGH WKHUH KDV DOVR EHHQ D JUHDW GHDO RI UHVHDUFK LQ WKH DUHD RI LPPRELOL]LQJ WKH FDWDO\VW XVLQJ D QXPEHU RI GLIIHUHQW PHGLD ZLWK YDU\LQJ UHVXOWV %ODNH f %HQHILWV IRU WKH XVH RI VXSSRUWHG FDWDO\VW DUH WKH HOLPLQDWLRQ RI WKH QHHG IRU VHSDUDWLRQ DQG UHFRYHU\ RI WKH FDWDO\VW DQG D SRVVLEOH LQFUHDVH LQ WKH UHDFWLRQ UDWH =KDQJ HW DO Ef 5HVHDUFKHUV DW WKH 8QLYHUVLW\ RI )ORULGD WHVWHG ERWK IODW SODWH SKRWRUHDFWRUV :\QHVV HW DO f DQG VKDOORZ SRQG UHDFWRUV %HGIRUG HW DO

PAGE 60

f IRU WKH GHVWUXFWLRQ RI FKORURSKHQRO &3f XVLQJ 7L DGKHUHG WR ILEHUJODVV PHVK 7KH\ IRXQG WKDW WKH VDPH UHDFWRU V\VWHPV SHUIRUPHG EHWWHU ZLWK WKH VOXUU\ FDWDO\VW WKDQ ZLWK WKH ILEHUJODVV PHVK )RU WKH IODW SODWH FRQILJXUDWLRQ UHDFWLRQ UDWHV ZHUH WZR WR ILYH WLPHV IDVWHU :\QHVV HW DO f 7DEOH 2UGHU RI (IIHFWLYHQHVV RI '\HV DW n 0 &RQFHQWUDWLRQ RQ ( &ROL $IWHU +RXUV ([SRVXUH WR /LJKW DW 5RRP 7HPSHUDWXUH '\H /LJKW ,QWHQVLW\ S(P VHF ( FROL FRORQ\ FRYHUDJH LQ TXDGUDQW DUHDVD PHDQ s 6' &RQWURO E s s s s &RQWURO F s s s s 5RVH %HQJDO (U\WKURVLQH s (RVLQ
PAGE 61

=KDQJ HW DO f FRPSDUHG WKH SHUIRUPDQFH RI D QXPEHU RI GLIIHUHQW RSWLPL]HG FDWDO\VW VXSSRUW RSWLRQV ZLWK 7L VOXUU\ XVLQJ D IODW SODWH UHDFWRU FRQILJXUDWLRQ 2I WKRVH VXSSRUWV WHVWHG DOO H[FHSW JODVV EHDGV SHUIRUPHG DV ZHOO DV RU VOLJKWO\ EHWWHU WKDQ WKH VOXUU\ ZLWK VLOLFD JHO SHUIRUPLQJ EHVW +RIVWDGOHU f HYDOXDWHG WLWDQLXP GLR[LGHFRDWHG IXVHGVLOLFD JODVV ILEHUV IRU WKH GHJUDGDWLRQ RI &3 DQG UHSRUWHG GHJUDGDWLRQ UDWHV WLPHV KLJKHU WKDQ ZLWK 7L VOXUU\ 6RPH RWKHU VLOLFD EDVHG VXSSRUWV ZKLFK KDYH EHHQ HYDOXDWHG ZHUH FRDWHG VDQG 0DWWKHZV f DQG JODVV /X HW DO f 0DWWKHZV IRXQG WKDW VXVSHQVLRQV RI 7L FRDWHG VDQGV ZHUH PXFK HDVLHU WR GHDO ZLWK LQ WHUPV RI VHSDUDWLRQ EXW ZHUH PDVV WUDQVIHU OLPLWHG 7KH ZRUN E\ /X HW DO XVLQJ 7L VXSSRUWHG RQ WKH LQQHU VXUIDFH RI D JODVV WXEH UHDFWRU LQGLFDWHG WKH SRVVLELOLW\ RI FDWDO\VW UHXVH )R[ HW DO f H[DPLQHG WKH HIIHFW RI ]HROLWH VXSSRUWHG 7L DQG 7L SLOODUHG FOD\V RQ WKH GHJUDGDWLRQ RI DOFRKROV DQG IRXQG D VOLJKW GHFUHDVH LQ SKRWRDFWLYLW\ UHODWLYH WR 7L VOXUU\ 0DWVXQDJD HW DO f IRXQG 7L VXSSRUWHG RQ DQ DFHW\OFHOOXORVH PHPEUDQH WR EH HIIHFWLYH IRU WKH GHVWUXFWLRQ RI (VFKHULFKLD FROL 2WKHU VXSSRUWV WHVWHG IRU 7L ZHUH DFWLYDWHG FDUERQ 8FKLGD HW DO f FHUDPLF PHPEUDQHV $JXDGR HW DO f ZRRG FKLSV %HUU\ DQG 0XHOOHU f PHWDO SRO\PHU DQG WKLQ ILOPV %ODNH f 6RPH UHVHDUFK KDV DOVR EHHQ FRQGXFWHG RQ WKH LPPRELOL]DWLRQ RI SKRWRVHQVLWL]HUV 6DYLQR DQG $QJHOL f H[DPLQHG WKH HIIHFWLYHQHVV RI PHWK\OHQH EOXH URVH EHQJDO DQG HRVLQ RQ SRO\VW\UHQH EHDGV DQG

PAGE 62

PHWK\OHQH EOXH RQ JUDQXODU DFWLYDWHG FDUERQ VLOLFD JHO DQG ;$' SRO\VW\UHQH UHVLQf 7KH\ IRXQG WKDW DOO RI WKH LPPRELOL]HG G\HV ZHUH HIIHFWLYH IRU WKH GHVWUXFWLRQ RI (VFKHULFKLD FROL EXW PHWK\OHQH EOXH RQ DFWLYDWHG FDUERQ ZDV WKH PRVW HIIHFWLYH .HHSLQJ WKH LQLWLDO FULWHULD LQ PLQG HDVH RI XVH DQG ORZ RSHUDWLRQDO DQG FDSLWDO FRVW D QXPEHU RI UHDFWRU GHVLJQV ZHUH TXLFNO\ UXOHG RXW 7KH PHWKRGV IRU LPPRELOL]LQJ FDWDO\VW DOO UHTXLUH IDLUO\ H[WHQVLYH SUHSDUDWLRQ LQFOXGLQJ SUHFLSLWDWLRQ DQG FDOFLQDWLRQ LQ DOPRVW DOO FDVHV 7KHUHIRUH WKH FXUUHQW UHVHDUFK ZDV FRQGXFWHG XVLQJ VXVSHQGHG 7L DQG GLVVROYHG VHQVLWL]HUV 7KH TXHVWLRQ RI WKH IHDVLELOLW\ RI LPPRELOL]HG FDWDO\VW DQGRU VHQVLWL]HU ZDV OHIW IRU DQRWKHU VWXG\ 7KHUH DUH D QXPEHU RI RSWLRQV DYDLODEOH IRU WKH VSHFLILF GHVLJQ RI D UHDFWRU XVLQJ VOXUU\ FDWDO\VW ,Q FRPSXWHU VLPXODWLRQV RI WKH GHVWUXFWLRQ RI 7&( LQ EDWFK IODW SODWH DQG SDUDEROLF UHDFWRUV IODW SODWH UHDFWRUV \LHOGHG D ODUJHU WUHDWPHQW YROXPH WKDQ GLG WKH FRQFHQWUDWLQJ DQG RQHD[LV WUDFNLQJ SDUDEROLF UHDFWRUV 6DOWLHO HW DO f :\QHVV HW DO f IRXQG WKDW IODW SODWH UHDFWRUV ZHUH HIIHFWLYH IRU FKHPLFDO SKRWRGHJUDGDWLRQ ZLWK VXVSHQVLRQV RI WLWDQLXP GLR[LGH %HGIRUG HW DO f IRXQG WKDW WKH VKDOORZ SRQG FRQILJXUDWLRQ ZDV HIIHFWLYH IRU WKH GHVWUXFWLRQ RI &3 7KLV PLQLPDOLVW FRQILJXUDWLRQ LV DWWUDFWLYH EHFDXVH RI LWV SRWHQWLDO IRU ORZ FDSLWDO DQG PDLQWHQDQFH FRVWV )RU SKRWRVHQVLWL]DWLRQ WKH UHDFWRUV KDYH PRUH FORVHO\ UHVHPEOHG FKHPLFDO UHDFWRUV 3OXJIORZ UHDFWRUV ZHUH VXFFHVVIXOO\ WHVWHG IRU WKH WUHDWPHQW RI VHFRQGDU\ HIIOXHQW (LVHQEHUJ HW DO f DQG FRQWLQXRXV IORZ UHDFWRUV VKRZHG SURPLVH LQ WKH VHQVLWL]HG SKRWRGHJUDGDWLRQ RI

PAGE 63

FKORURSKHQROV /L HW DO f $FKHU HW DO f VXFFHVVIXOO\ XVHG D VHULHV RI WDQN UHDFWRUV ZKLFK ZHUH VLPLODU WR WKH VKDOORZ SRQG FRQILJXUDWLRQ HYDOXDWHG E\ %HGIRUG HW DO f 7KH ODERUDWRU\ UHDFWRUV IRU WKLV VWXG\ ZHUH GHVLJQHG WR PLPLF WKH VKDOORZ SRQG FRQILJXUDWLRQ (+ 7L LV VLJQLILFDQWO\ DIIHFWHG E\ WKH S+ RI WKH DTXHRXV VROXWLRQ LQ ZKLFK LW LV VXVSHQGHG 3DUWLFOH VL]H DQG FKDUJH DQG WKH SRVLWLRQ RI WKH YDOHQFH DQG FRQGXFWLRQ EDQGV DUH DOO D IXQFWLRQ RI WKH S+ RI WKH VROXWLRQ 0LOOV HW DO f %ORFN HW DO f IRXQG D QHXWUDO WR DFLGLF S+ UDQJH EHVW IRU WKH 7L SKRWRFDWDO\]HG LQDFWLYDWLRQ RI EDFWHULD $ QXPEHU RI UHVHDUFKHUV KDYH LQYHVWLJDWHG WKH HIIHFWV RI S+ RQ WKH SKRWRFDWDO\WLF GHJUDGDWLRQ UDWH RI RUJDQLFV LQ DTXHRXV VXVSHQVLRQV %DKQHPDQQ HW DO *OD]H HW DO E .DZDJXFKL DQG )XUX\D 0DWWKHZV 7VHQJ DQG +XDQJ 7VHQJ DQG +XDQJ 9LGDO HW DO f .DZDJXFKL DQG )XUX\D f UHSRUWHG DQ LQFUHDVH LQ SKRWRFDWDO\WLF HIIHFW LQ DFLGLF VROXWLRQ 7KH JHQHUDO FRQVHQVXV LV WKDW S+ KDV OLWWOH QR PRUH WKDQ RQH RUGHU RI PDJQLWXGHf HIIHFW RQ WKH UHDFWLRQ UDWH EXW WKDW QHXWUDO S+ SURYLGHV WKH PRVW HIILFLHQW GHJUDGDWLRQ 2WKHU DSSDUHQW S+ HIIHFWV DUH DWWULEXWHG WR DQLRQLF HIIHFWV IURP FKHPLFDOV XVHG IRU S+ FRQWURO :KLOH S+ ZDV QRW D PDMRU IDFWRU LQ WKH SKRWRFDWDO\WLF UHDFWLRQV LW ZDV QHFHVVDU\ WR VHHN DQ RSWLPXP S+ IRU WKH VLPXOWDQHRXV WUHDWPHQW RI FKHPLFDO DQG PLFURELRORJLFDO FRQWDPLQDQWV ,Q WKH UHVHDUFK UHSRUWHG KHUHLQ SKRWRFDWDO\WLF H[SHULPHQWV ZHUH FRQGXFWHG DW QHXWUDO DQG DFLGLF S+

PAGE 64

3KRWRVHQVLWL]DWLRQ LV PXFK PRUH S+ GHSHQGHQW ,Q VWXGLHV RI PHWK\OHQH EOXH SKRWRGLVLQIHFWLRQ SURFHVVHV S+ YDOXHV UDQJLQJ IURP WR ZHUH IRXQG WR EH RSWLPXP $FKHU HW DO $FKHU HW DO *HUED HW DO E 0HOQLFN HW DO f 7KH VDPH S+ GHSHQGHQFH ZDV VHHQ ZLWK PHWK\OHQH EOXH DQG URVH EHQJDO IRU WKH SKRWRGHJUDGDWLRQ RI RUJDQLF FKHPLFDOV +DGGHQ HW DO /L HW DO f ,Q SKRWRVHQVLWL]DWLRQ RI EURPDFLO XVLQJ PHWK\OHQH EOXH DQG URVH EHQJDO UHDFWLRQ UDWHV LQFUHDVHG DV S+ YDOXHV LQFUHDVHG ZLWK WKH KLJKHVW UDWHV DW S+ (LVHQEHUJ HW DO (LVHQEHUJ HW DO f %DVHG RQ WKLV LQIRUPDWLRQ WKH VHQVLWL]HU H[SHULPHQWV IRU WKLV UHVHDUFK ZHUH FRQGXFWHG LQ QHXWUDO DQG EDVLF HQYLURQPHQWV &DWDOYVW6HQVLWL]HU &RQFHQWUDWLRQ 7KH FRQFHQWUDWLRQ RI WKH SKRWRFDWDO\VW DQG SKRWRVHQVLWL]HU QHHGHG WR EH RSWLPL]HG LQ RUGHU WR REWDLQ PHDQLQJIXO FRPSDULVRQ GDWD $Q RSWLPXP RI b 7L FRQFHQWUDWLRQ ZDV IRXQG WR EH HIIHFWLYH IRU %7(; E\ *RVZDPL HW DO f DQG •EHUJ f 3DWHO f DQG %ORFN HW DO f IRXQG WKDW b 7L FRQFHQWUDWLRQ ZRUNHG EHVW IRU WKH SKRWRFDWDO\WLF GHVWUXFWLRQ RI EDFWHULD 7KHUHIRUH D UDQJH RI 7L FRQFHQWUDWLRQV IURP b WR b ZHUH WHVWHG LQ WKH ODERUDWRU\ LQ RUGHU WR RSWLPL]H WKH FRQFHQWUDWLRQ IRU VLPXOWDQHRXV SKRWRFDWDO\VLV ,Q SLORW SODQW VWXGLHV (LVHQEHUJ HW DO f IRXQG WKDW FRQFHQWUDWLRQ RI PHWK\OHQH EOXH UDQJLQJ IURP WR PJ ZHUH VXIILFLHQW IRU WKH SKRWRR[LGDWLRQ RI EURPDFLO $FKHU DQG -XYHQ f FRQGXFWHG SKRWRVHQVLWL]DWLRQ H[SHULPHQWV ZLWK VHZDJH HIIOXHQW DQG UHSRUWHG DQ LQFUHDVH LQ WKH GHVWUXFWLRQ RI FROLIRUPV ZLWK D FRUUHVSRQGLQJ LQFUHDVH LQ

PAGE 65

PHWK\OHQH EOXH FRQFHQWUDWLRQ XS WR PJ +RZHYHU LQ SLORW SODQW VWXGLHV VPDOOHU FRQFHQWUDWLRQV OHVV WKDQ PJf ZHUH HIIHFWLYH $FKHU HW DO f DQG FRQFHQWUDWLRQV KLJKHU WKDQ PJ PHWK\OHQH EOXH KLQGHUHG OLJKW SHQHWUDWLRQ $FKHU DQG 5RVHQWKDO f 7KH SKRWRVHQVLWL]DWLRQ VFUHHQLQJ H[SHULPHQWV IRU WKLV UHVHDUFK ZHUH FRQGXFWHG DW VHYHUDO OHYHOV RI FRQFHQWUDWLRQ UDQJLQJ IURP PJ WR PJ /DE4UDWRU\ ([SHULPHQWDO 'HVLJQ ,Q WKLV UHVHDUFK IXOO IDFWRULDO GHVLJQV ZHUH XVHG IRU ERWK WKH SKRWRFDWDO\WLF DQG SKRWRVHQVLWL]DWLRQ H[SHULPHQWV :KLOH WKH GHVLJQV GLIIHUHG VOLJKWO\ WKH SDUDPHWHUV WHVWHG ZHUH WKH VDPH FDWDO\VWVHQVLWL]HU FRQFHQWUDWLRQ S+ DQG OLJKW $ WZR GLPHQVLRQDO FRQWURO ZDV LPEHGGHG LQ WKH H[SHULPHQWDO GHVLJQ E\ ZD\ RI WKH GDUN H[SHULPHQWV DQG WKH OHYHO ZLWK QR SKRWRFKHPLFDO )RU WKH SKRWRFDWDO\WLF H[SHULPHQW IRXU OHYHOV RI FDWDO\VW FRQFHQWUDWLRQ WZR OHYHOV RI S+ WZR OHYHOV RI OLJKW DQG UHGXQGDQW UHDFWRUV ZHUH XVHG DV VKRZQ LQ 7DEOH )RU HDFK RI WKH WZR G\H VHQVLWL]HUV WHVWHG PHWK\OHQH EOXH DQG URVH EHQJDO ILYH OHYHOV RI VHQVLWL]HU FRQFHQWUDWLRQ WZR OHYHOV RI S+ DQG WZR OHYHOV RI OLJKW ZHUH XVHG DV VKRZQ LQ 7DEOH 7KH SKRWRFDWDO\WLF H[SHULPHQWV ZHUH UHSHDWHG WZLFH DQG WKH SKRWRVHQVLWL]DWLRQ H[SHULPHQWV ZHUH UHSHDWHG WKUHH WLPHV ,Q WKH FRPELQDWLRQ H[SHULPHQWV QR S+ DGMXVWPHQWV ZHUH PDGH 7KH H[SHULPHQWV ZHUH FRQGXFWHG ZLWK PJ/ PHWK\OHQH EOXH DQG b 7L &RQWUROV IRU WKLV H[SHULPHQWV ZHUH QR SKRWRFKHPLFDOV 7L RQO\ DQG PHWK\OHQH EOXH RQO\ 7KH IXOO GHVLJQ UHSHDWHG WKUHH WLPHV LV VKRZQ LQ 7DEOH

PAGE 66

7DEOH 'HVLJQ IRU 7L 3KRWRFDWDO\WLF /DE ([SHULPHQWV 7UHDWPHQW 2QH 7UHDWPHQW 7ZR &RQWDPLQDQWV %7‹; DQG %DFWHULD %7‹; DQG %DFWHULD /LJKW 1RQH 1RQH S+ 1HXWUDO sf $FLG sf 7L &RQFHQWUDWLRQ 1RQH b b! c bU 1RQH > b b b &RQWDPLQDQWV %7(; DQG %DFWHULD %7‹; DQG %DFWHULD /LJKW 89 /DPSV # :P 9 /DPSV # :P S+ 1HXWUDO sf $FLG sf 7L &RQFHQWUDWLRQ 1RQH M b b ••b 1RQH L b ? b L b 7DEOH 'HVLJQ IRU 3KRWRVHQVLWL]DWLRQ /DE ([SHULPHQWV 7UHDWPHQW 2QH 7UHDWPHQW 7ZR 99$9:9$999999$:9:9999$99999n:$:$9$:$99$9$99:99$99:::99999999999$:999999999999:9999 &RQWDPLQDQWV %7(; DQG %DFWHULD %7(; DQG %DFWHULD /LJKW 1RQH 1RQH S+ %DVLF sf %DVLF sn f '\H &RQH PJ/ 1RQH 1RQH &RQWDPLQDQWV %7(; DQG %DFWHULD %7(; DQG %DFWHULD /LJKW 6XQOLJKW 6XQOLJKW S+ %DVLF sf %DVLF sf '\H &RQH PJ/ 1RQH ? L 1RQH L 7DEOH 'HVLJQ IRU &RPELQDWLRQ /DE ([SHULPHQWV 7UHDWPHQW 2QH &RQWDPLQDQWV %7‹; DQG %DFWHULD 7UHDWPHQW 7ZR %7(; DQG %DFWHULD /LJKW YYY$YYYYZYZMYAYYYYYZYYYZYYZY\Y 1RQH 1RQH 3KRWRFKHPLFDO L 1RQH b 7L• PJ/ 0% %RWK 1RQHb 7L2M PJ/ 0% %RWK ‘YYYYYYDYYYYYYYYYYYYYYYYYYYYYYYYYYD?YDYYYYYYYYYYYYYYYDYYYYYY$YYDYYYYAAAAAAA 0DWHULDOV DQG 0HWKRGV 5HDFWLRQ 9HVVHOV 7KH SKRWRFDWDO\VLV UHDFWLRQ YHVVHOV ZHUH FRYHUHG 3\UH[ GLVKHV )LJXUH f ZKLFK DOORZHG OLJKW WUDQVPLVVLRQ DERYH ZDYHOHQJWKV RI ;

PAGE 67

QP WKH VKRUWHVW ZDYHOHQJWK WKDW UHDFKHV WKH HDUWKfV VXUIDFH IURP WKH VXQ +VLHK f 7KLV ILOWHUHG RXW WKH JHUPLFLGDO HIIHFWV RI WKH XOWUDYLROHW OLJKW ZKLFK ZRXOG QRW EH SUHVHQW LQ QDWXUDOO\ RFFXUULQJ VXQOLJKW :DWHU OLQH )LJXUH 7L 5HDFWLRQ 9HVVHO ,Q RUGHU WR HOLPLQDWH SUREOHPV RI DLU VWULSSLQJ DQG HQVXUH WKDW WKH UHDFWRU ZDV DLUWLJKW D VOLJKWO\ PRGLILHG YHUVLRQ RI WKH SKRWRFDWDO\WLF UHDFWLRQ YHVVHO ZDV XVHG IRU ERWK SKRWRVHQVLWL]DWLRQ DQG WKH FRPELQDWLRQ H[SHULPHQWV 7KH UHDFWRU ZDV HTXLSSHG ZLWK D JODVV EORZQ VDPSOLQJ SRUW SOXJJHG ZLWK D EXW\O UXEEHU VHSWXP DQG VHDOHG ZLWK SDUDILOP )LJXUH f 7KH UHDFWRUV ZHUH ILOOHG WR WKH ULP RI WKH YHVVHO LQ RUGHU WR PLQLPL]H KHDG VSDFH %DFWHULDO ,QRFXODWLRQ &XOWXUHV ZHUH SUHSDUHG XVLQJ WU\SWLFDVH VR\ EURWK QXWULHQW DQG LQFXEDWHG IRU KRXUV DW r& 7KUHH VHULDO GLOXWLRQV RI ZHUH

PAGE 68

SUHSDUHG XVLQJ GLVWLOOHG GHLRQL]HG ZDWHU 3KRWRFDWDO\WLF UHDFWRUV ZHUH LQRFXODWHG ZLWK SL RI ( FROL SL RI 6HUUDWLD PDUFHVFHQV DQG _LO RI 3VHXGRPRQDV DHUXJLQRVD XVLQJ WKH QG GLOXWLRQ RI HDFK FXOWXUH 6DPSOH SRUW ZLWK VHSWXP )LJXUH 3KRWRVHQVLWL]DWLRQ 5HDFWLRQ 9HVVHO 2QO\ ( FROL ZDV XVHG IRU SKRWRVHQVLWL]DWLRQ H[SHULPHQWV DQG WKH UHDFWRUV ZHUH LQRFXODWHG ZLWK _LO RI WKH ILUVW GLOXWLRQ RI WKH FXOWXUH ,Q DOO FDVHV WKH WKLUG GLOXWLRQ ZDV XVHG WR FRQILUP WKDW WKH FXOWXUHV ZHUH YLDEOH 7KLV SURFHGXUH LV VKRZQ JUDSKLFDOO\ LQ )LJXUH )LJXUH *UDSKLFDO 5HSUHVHQWDWLRQ RI %DFWHULDO ,QRFXODWLRQ

PAGE 69

4 $ ,QLWLDO EDFWHULDO GHQVLWLHV LQ WKH UHDFWRUV UDQJHG IURP WR FRORQLHV SHU PO ZLWK PRVW YDOXHV IDOOLQJ DURXQG [ FRORQLHV SHU PO %DFWHULD ZHUH REWDLQHG IURP $PHULFDQ 7\SH &XOWXUH &ROOHFWLRQ $7&&f 5HDFWRU &KDPEHU 7KH UHDFWRU FKDPEHU ZDV XVHG IRU DOO RI WKH SKRWRFDWDO\WLF H[SHULPHQWV DQG WKH GDUN H[SHULPHQWV IRU SKRWRVHQVLWL]DWLRQ 7KH FKDPEHU ZDV D PHWDO ER[ HTXLSSHG ZLWK XOWUDYLROHW ORZSUHVVXUH PHUFXU\ ODPSV DQG SDLQWHG LQ IODW EODFN )LJXUH f 7KH ODPSV ZHUH SXUFKDVHG IURP 6RXWKHUQ 1HZ (QJODQG 8OWUDYLROHW PRGHO 535 7KH GHVLJQ RXWSXW RI WKH ODPSV ZDV $ 5HDFWRUV ZHUH SODFHG DSSUR[LPDWHO\ FP IURP WKH OLJKW VRXUFH DW ZKLFK SRLQW WKH XOWUDYLROHW LUUDGLDWLRQ PHDVXUHG ZDV :P ([WHUQDO OLJKW ZDV EORFNHG YLD D KLQJHG PHWDO GRRU ZKLFK ILW VQXJO\ RYHU WKH FKDPEHU 7KH ODPSV ZHUH WXUQHG RII IRU WKH GDUN H[SHULPHQWV 3KRWRFDWDOYVLV 5HDFWRU 6HWXS 7KH UHDFWRUV ZHUH ORDGHG ZLWK GHLRQL]HG GLVWLOOHG DQG S+ DGMXVWHG ZDWHU DQG D FRPELQDWLRQ RI EDFWHULRORJLFDO DQG YRODWLOH RUJDQLF FKHPLFDO 92&f FRQWDPLQDQWV IRU D WRWDO YROXPH RI PO 7KH FKHPLFDO FRQWDPLQDQWV ZHUH DSSUR[LPDWHO\ SSP HDFK RI EHQ]HQH WROXHQH DQG PL[HG [\OHQHV UHIHUUHG WR DV %7(; DQG WKH EDFWHULDO VSHFLHV ZHUH (VFKHULFKLD FROL 3VHXGRPRQDV DHUXJLQRVD DQG 6HUUDWLD PDUFHVFHQV 5HGXQGDQW UHDFWRUV ZHUH SODFHG IRU WZR WR IRXU KRXUV LQ D UHDFWRU FKDPEHU HLWKHU ZLWK RU ZLWKRXW OLJKW

PAGE 70

)LJXUH 8OWUDYLROHW /LJKW DQG 'DUN 5HDFWRU &KDPEHU $V VKRZQ LQ 7DEOH IRXU 7L FRQFHQWUDWLRQV ZHUH XVHG IRU WKH H[SHULPHQWV b b b DQG QRQH 7KH FDWDO\VW XVHG ZDV 'HJXVVD 3 7KH ZDWHU ZDV DGMXVWHG WR DQ DFLG S+ s f DQG D QHXWUDO S+ s f ZLWK K\GURFKORULF DFLG DQG VRGLXP K\GUR[LGH $IWHU S+ DGMXVWPHQW WKH ZDWHU ZDV DXWRFODYHG WR UHPRYH DQ\ PLFURELRORJLFDO FRQWDPLQDWLRQ 7KH PO UHDFWRUV ZHUH LOOXPLQDWHG IRU WR KRXUV LQ WKH UHDFWRU FKDPEHU 3KRWRFDWDOYVLV 6DPSOLQJ DQG $QDO\VLV 6DPSOHV IRU FKHPLFDO DQDO\VLV ZHUH WDNHQ SULRU WR LUUDGLDWLRQ DIWHU PLQXWHV PLQXWHV PLQXWHV DQG RQH KRXU RI LUUDGLDWLRQ DQG DW WKH VDPH WLPH LQWHUYDOV LQ WKH GDUN FKDPEHU 6DPSOHV ZHUH WDNHQ ZLWK D VWHULOH V\ULQJH DQG SODFHG GLUHFWO\ LQWR DPEHU ERURVLOLFDWH VFUHZ FDS YLDOV ZLWK 7HIORQU0 VHSWD DQG UHIULJHUDWHG XQWLO DQDO\VLV 7KH VDPSOHV ZHUH DQDO\]HG E\ D PRGLILFDWLRQ RI WKH (3$ SXUJH DQG WUDS PHWKRG XVLQJ DQ 65

PAGE 71

JDV FKURPDWRJUDSK ZLWK 3,' GHWHFWRU $EHHO HW DO %HOODU DQG /LFKWHQEHU •EHUJ f 7KH PHWKRG XVHG ZDV VHQVLWLYH WR D ORZ FRQFHQWUDWLRQ RI DERXW SSE IRU WKH FRPSRQHQWV LQ TXHVWLRQ )RU HYDOXDWLRQ RI GLVLQIHFWLRQ HIILFDF\ GXSOLFDWH SHWUL GLVKHV FRQWDLQLQJ SODWH FRXQW DJDU QXWULHQW ZHUH LQRFXODWHG ZLWK SL IURP HDFK UHDFWRU 7ZR UHSOLFDWHV ZHUH WDNHQ DW DQG PLQXWHV \LHOGLQJ IRXU FRXQWV IRU HDFK VHW RI FRQGLWLRQV SHU H[SHULPHQW 7KH LQRFXODWHG SODWHV ZHUH VSUHDG DQG LQFXEDWHG IRU KRXUV DW r& $IWHU KRXUV WKH QXPEHU RI EDFWHULDO FRORQLHV RQ HDFK SODWH ZHUH FRXQWHG 3KRWRVHQVLWL]DWLRQ 5HDFWRU 6HWXS 7KH UHDFWRUV ZHUH ORDGHG ZLWK GHLRQL]HG GLVWLOOHG S+ DGMXVWHG ZDWHU DQG D FRPELQDWLRQ RI EDFWHULRORJLFDO DQG YRODWLOH RUJDQLF FKHPLFDO 92&f FRQWDPLQDQWV WR WKH WRS RI WKH FRQWDLQHU D WRWDO YROXPH RI DSSUR[LPDWHO\ PO 7KH FKHPLFDO FRQWDPLQDQWV ZHUH DSSUR[LPDWHO\ SSP EHQ]HQH DQG SSP WROXHQH UHIHUUHG WR DV %7(; DQG WKH EDFWHULDO VSHFLHV ZDV (VFKHULFKLD FROL DV QRWHG DERYH 7KH UHDFWRUV ZHUH SODFHG HLWKHU LQ VXQOLJKW RU LQ D FORVHG GDUN UHDFWRU FKDPEHU )LJXUH f IRU IRXU KRXUV DQG FRQVWDQWO\ DJLWDWHG ZLWK D PDJQHWLF VWLUUHU $V RXWOLQHG LQ 7DEOH ILYH VHQVLWL]HU FRQFHQWUDWLRQV RI HLWKHU PHWK\OHQH EOXH RU URVH EHQJDO ZHUH XVHG IRU WKH H[SHULPHQWV PJ PJ PJ PJ DQG QRQH %RWK WKH PHWK\OHQH EOXH DQG WKH URVH EHQJDO ZHUH SXUFKDVHG IURP )LVKHU 6FLHQWLILF 7KH ZDWHU ZDV DGMXVWHG WR D QHXWUDO S+ s f DQG D EDVLF S+ s f XVLQJ VRGLXP K\GUR[LGH $IWHU S+ DGMXVWPHQW WKH ZDWHU ZDV DXWRFODYHG WR UHPRYH DQ\ PLFURELRORJLFDO FRQWDPLQDWLRQ

PAGE 72

3KRWRVHQVLWL]DWLRQ 6DPSOLQJ DQG $QDO\VLV $ VWHULOL]HG PO V\ULQJH ZDV XVHG IRU WDNLQJ VDPSOHV YLD WKH VDPSOH SRUW 6DPSOHV ZHUH WDNHQ DW DQG PLQXWHV E\ VWHULOL]HG V\ULQJH DQG WUDQVIHUUHG LQWR DPEHU ERURVLOLFDWH VFUHZ FDS YLDOV ZLWK 7HIORQr1 VHSWD DQG UHIULJHUDWHG LQ D VWDQGDUG FRPPHUFLDO UHIULJHUDWLRQ XQLW XQWLO WKH\ ZHUH DQDO\]HG )RU HYDOXDWLRQ RI GLVLQIHFWLRQ HIILFDF\ SHWUL GLVKHV FRQWDLQLQJ SODWH FRXQW DJDU QXWULHQW ZHUH LQRFXODWHG LQ WULSOLFDWH ZLWK _LO IURP HDFK VDPSOH 7KUHH UHSOLFDWHV ZHUH WDNHQ SHU VDPSOH 7KH LQRFXODWHG SODWHV ZHUH VSUHDG DQG LQFXEDWHG IRU KRXUV DW r& $IWHU KRXUV WKH QXPEHU RI EDFWHULDO FRORQLHV RQ HDFK SODWH ZHUH FRXQWHG &KHPLFDO DQDO\VLV ZDV WKH VDPH DV WKDW XVHG IRU 7L SKRWRFDWDO\VLV &RPELQDWLRQ ([SHULPHQWDO 6HWXS 6DPSOLQJ DQG $QDO\VLV 7KH VHWXS VDPSOLQJ DQG DQDO\VHV IRU WKH FRPELQDWLRQ H[SHULPHQWV ZHUH YHU\ VLPLODU WR WKDW RI WKH SKRWRVHQVLWL]DWLRQ H[SHULPHQWV 7KH UHDFWRUV ZHUH ORDGHG ZLWK GHLRQL]HG GLVWLOOHG ZDWHU DQG D FRPELQDWLRQ RI EDFWHULRORJLFDO DQG YRODWLOH RUJDQLF FKHPLFDO 92&f FRQWDPLQDQWV WR WKH WRS RI WKH FRQWDLQHU D WRWDO YROXPH RI DSSUR[LPDWHO\ PO 7KH FKHPLFDO FRQWDPLQDQWV ZHUH DSSUR[LPDWHO\ SSP EHQ]HQH DQG SSP WROXHQH UHIHUUHG WR DV %7(; DQG WKH EDFWHULDO VSHFLHV ZDV (VFKHULFKLD FROL DV QRWHG DERYH 7KH UHDFWRUV ZHUH SODFHG HLWKHU LQ VXQOLJKW RU LQ D FORVHG GDUN UHDFWRU FKDPEHU )LJXUH f IRU RQH KRXU DQG FRQVWDQWO\ DJLWDWHG ZLWK D PDJQHWLF VWLUUHU $V RXWOLQHG LQ 7DEOH IRXU SKRWRFKHPLFDO FRQFHQWUDWLRQV RI PHWK\OHQH EOXH DQGRU 7L ZHUH XVHG IRU WKH H[SHULPHQWV QR

PAGE 73

SKRWRFKHPLFDO b 7L PJ PHWK\OHQH EOXH DQG b 7L DQG PJ PHWK\OHQH EOXH $ VWHULOL]HG PO V\ULQJH ZDV XVHG IRU WDNLQJ VDPSOHV YLD WKH VDPSOH SRUW 6DPSOHV ZHUH WDNHQ DW LQWR DPEHU JODVV VFUHZ FDS YLDOV ZLWK 7HIORQr1 VHSWD 7KH VDPSOHV ZHUH UHIULJHUDWHG LQ D VWDQGDUG FRPPHUFLDO UHIULJHUDWLRQ XQLW XQWLO WKH\ ZHUH DQDO\]HG )RU HYDOXDWLRQ RI GLVLQIHFWLRQ HIILFDF\ SHWUL GLVKHV FRQWDLQLQJ SODWH FRXQW DJDU QXWULHQW ZHUH LQRFXODWHG ZLWK SL IURP HDFK VDPSOH 7KUHH UHSOLFDWHV ZHUH WDNHQ SHU VDPSOH 7KH LQRFXODWHG SODWHV ZHUH VSUHDG DQG LQFXEDWHG IRU KRXUV DW r& $IWHU KRXUV WKH QXPEHU RI EDFWHULDO FRORQLHV RQ HDFK SODWH ZHUH FRXQWHG &KHPLFDO DQDO\VLV ZDV WKH VDPH DV WKDW XVHG IRU 7L SKRWRFDWDO\VLV ([SHULPHQWV IRU &RQILUPDWLRQ RI 3UHYLRXV :RUN ZLWK %URPDFLO 2QH VHW RI H[SHULPHQWV ZDV FRQGXFWHG WR FRQILUP WKH SUHYLRXV ZRUN ZLWK SKRWRVHQVLWL]HUV LQ ZKLFK PHWK\OHQH EOXH ZDV XVHG IRU WKH GHVWUXFWLRQ RI EURPDFLO LQ ZDVWHZDWHU 'XSOLFDWH SKRWRVHQVLWL]DWLRQ UHDFWLRQ YHVVHOV )LJXUH f ZHUH ORDGHG ZLWK DSSUR[LPDWHO\ SSE EURPDFLO PJ/ PHWK\OHQH EOXH DQG GHLRQL]HG ZDWHU $IWHU LUUDGLDWLRQ LQ VXQOLJKW IRU IRXU KRXUV WKH UHDFWRU FRQWHQWV ZHUH DQDO\]HG E\ *&06 7KH EURPDFLO XVHG IRU WKH H[SHULPHQWV ZDV WHFK JUDGH REWDLQHG IURP ( 'X3RQW GH 1HPRXUV DQG &RPSDQ\ ,QF

PAGE 74

&+$37(5 5(68/76 $1' ',6&866,21 7KH UHVXOWV RI ODERUDWRU\ H[SHULPHQWV DUH SUHVHQWHG DQG GLVFXVVHG LQ WKLV FKDSWHU 7KH UHVXOWV DUH GLYLGHG E\ H[SHULPHQW W\SH G\H SKRWRVHQVLWL]DWLRQ 7L SKRWRFDWDO\VLV DQG FRPELQDWLRQ H[SHULPHQWV $ JHQHUDO GLVFXVVLRQ LV SUHVHQWHG DW WKH HQG RI WKH FKDSWHU 5DZ GDWD IRU DOO H[SHULPHQWV DUH FRQWDLQHG LQ $SSHQGL[ $ 'YH 3KRWRVHQVLWL]DWLRQ /DERUDWRU\ H[SHULPHQWV ZHUH FRQGXFWHG WR GHWHUPLQH WKH HIIHFWV RI G\H FRQFHQWUDWLRQ DQG S+ RQ WKH GHVWUXFWLRQ UDWH RI (VFKHULFKLD FROL DQG DURPDWLF K\GURFDUERQV EHQ]HQH DQG WROXHQHf LQ VXQOLJKW $V GHVFULEHG LQ &KDSWHU WKH H[SHULPHQWV ZHUH FRQGXFWHG ZLWK WKH IROORZLQJ WUHDWPHQWV f PHWK\OHQH EOXH 0%f DQG URVH EHQJDO 5%f f VXQOLJKW DQG GDUN f S+ DQG S+ f DQG PJ/ RI G\H ,Q RUGHU WR HQVXUH UHSURGXFLELOLW\ RI WKH UHVXOWV HDFK VHW RI H[SHULPHQWV ZDV FRQGXFWHG WKUHH WLPHV $ FRPSOHWH VHW RI H[SHULPHQWV ZDV UHSUHVHQWHG E\ RQH UHDFWRU IRU HDFK RI WKH VHWV RI FRQGLWLRQV KLJKOLJKWHG DERYH IRU D WRWDO RI UHDFWRUV SHU VHW )LYH UHDFWRUV ZHUH UXQ DW D WLPH HDFK UHDFWRU FRQWDLQLQJ D GLIIHUHQW FRQFHQWUDWLRQ RI D VLQJOH G\H HLWKHU PHWK\OHQH EOXH RU URVH EHQJDOf ZLWK DOO RWKHU SDUDPHWHUV WKH VDPH

PAGE 75

6DPSOHV ZHUH WDNHQ IURP HDFK UHDFWRU DW DQG PLQXWHV DQG UHIULJHUDWHG LPPHGLDWHO\ 7KUHH UHSOLFDWHV ZHUH SODWHG IURP HDFK VDPSOH IRU PLFURELRORJLFDO DQDO\VLV 7KH UHPDLQGHU RI WKH DQG PLQXWH VDPSOHV ZDV UHIULJHUDWHG DQG VDYHG IRU FKHPLFDO DQDO\VLV )RU WKH H[SHULPHQWV FRQGXFWHG LQ VXQOLJKW WKH OLJKW ZDV PHDVXUHG DQG UHFRUGHG RYHU WKH GXUDWLRQ RI WKH H[SHULPHQW DQG UDQJHG IURP :P WR :P 7KH DYHUDJH WRWDO LQVRODWLRQ LQFLGHQW VRODU UDGLDWLRQf PHDVXUHG LQ HDFK H[SHULPHQW LV JLYHQ LQ 7DEOH DQG JUDSKV RI WKH WRWDO LQVRODWLRQ DUH VKRZQ LQ $SSHQGL[ % 7DEOH ,QVRODWLRQ 0HDVXUHPHQWV IURP '\H 6HQVLWL]DWLRQ ([SHULPHQWV 6HW &RQGLWLRQV ,QVRODWLRQ :P 0HWK\OHQH %OXH S+ 0HWK\OHQH %OXH S+ 5RVH %HQJDO S+ 5RVH %HQJDO S+ 0HWK\OHQH %OXH S+ 0HWK\OHQH %OXH S+ 5RVH %HQJDO S+ 5RVH %HQJDO S+ 0HWK\OHQH %OXH S+ 0HWK\OHQH %OXH S+ 5RVH %HQJDO S+ ?YYYYYYDYYYYYYYYYYYYYYYYYYDZ?YYYYYYYYYY 5RVH %HQJDO S+ ([SHULPHQWDO VHWV ZHUH FRQGXFWHG RQ GLIIHUHQW GD\V DQG WKRXJK HIIRUWV ZHUH PDGH WR PLQLPL]H WKH GLIIHUHQFHV EHWZHHQ VHWV ERWK VRODU LQVRODWLRQ DQG LQLWLDO FRQWDPLQDQW FRQFHQWUDWLRQV GLG YDU\ IURP RQH VHW WR DQRWKHU 7KH PHDQ VWDQGDUG GHYLDWLRQ DQG UDQJH RI WKHVH SDUDPHWHUV IRU DOO H[SHULPHQWV DUH VKRZQ LQ 7DEOH

PAGE 76

7DEOH 'HVFULSWLYH 6WDWLVWLFV RI 0HDVXUHG 'DWD IRU DOO ([SHULPHQWV 0% 3DUDPHWHU 0HDQ 6WG'HY 0LQ 0D[ 6XQOLJKW :P 6XQOLJKW S+ :P 6XQOLJKW S+ :P ,QLWLDO &ROLIRUP 'HQVLW\ FIX/ [ ,QLWLDO %HQ]HQH FRQFHQWUDWLRQ SSE ,QLWLDO 7ROXHQH FRQFHQWUDWLRQ SSE 5% 3DUDPHWHU 0HDQ 6WG'HY 0LQ 0D[ 6XQOLJKW :P 6XQOLJKW S+ :P 6XQOLJKW S+ :P ,QLWLDO &ROLIRUP 'HQVLW\ FIX/ [ ,QLWLDO %HQ]HQH FRQFHQWUDWLRQ SSE ,QLWLDO 7ROXHQH FRQFHQWUDWLRQ SSE 7KH GDWD DV ZHOO DV WKH LPSDFW RI HDFK RI WKH PHDVXUHG DQG FRQWUROOHG SDUDPHWHUV DUH H[SORUHG LQ PRUH GHWDLO EHORZ DQG UHVXOWV DUH FRPSDUHG ZLWK WKH ZRUN RI (LVHQEHUJ HW DO E $FKHU HW DO f DQG $FKHU HW DO f IRU WKH SKRWRVHQVLWL]HG GLVLQIHFWLRQ DQG EURPDFLO GHVWUXFWLRQ LQ VHFRQGDU\ WUHDWHG ZDVWHZDWHU HIIOXHQW *HQHUDO &RPPHQWV $ERXW ([SHULPHQWDO 'DWD 7KH DYHUDJH VWDQGDUG GHYLDWLRQ RI WKH GLVLQIHFWLRQ GDWD ZDV b IRU PHWK\OHQH EOXH H[SHULPHQWV DQG b IRU URVH EHQJDO H[SHULPHQWV 7DEOH f 3ODWHV RQ ZKLFK WKH FRORQLHV ZHUH QRW LQGLYLGXDOO\ LGHQWLILDEOH DQG WKRVH ZLWK VHYHUH FRQWDPLQDWLRQ ZHUH QRW FRXQWHG ZKLFK UHVXOWHG LQ WKH ORVV RI DSSUR[LPDWHO\ b RI WKH SODWHV LQ D JLYHQ H[SHULPHQWDO VHW 'XH WR FRQWDPLQDWLRQ RI WKH LQFXEDWRU DOO RI WKH SODWHV IURP WKH VXQOLJKW S+ PHWK\OHQH EOXH H[SHULPHQW LQ VHW QXPEHU WZR KDG WR EH GLVFDUGHG ,Q D IHZ LQVWDQFHV WKH VDPSOHV ZHUH GURSSHG DQG EURNHQ EHIRUH WKH\ FRXOG EH SODWHG

PAGE 77

7KH LQLWLDO W f GLVLQIHFWLRQ VDPSOHV IRU WKH GDUN S+ URVH EHQJDO H[SHULPHQW LQ VHW QXPEHU RQH ZHUH DEQRUPDOO\ WKRXJK FRQVLVWHQWO\ ORZ 7KH ORZ YDOXHV ZHUH DWWULEXWHG WR QRW DOORZLQJ WLPH IRU DGHTXDWH PL[LQJ LQ WKH UHDFWRUV SULRU WR GUDZLQJ WKH ILUVW VDPSOH 6LQFH WKH YDOXHV ZHUH FRQVLVWHQW IURP RQH UHDFWRU WR WKH QH[W WKH GDWD FRXOG QRW EH WUHDWHG DV RXWOLHUV EXW DFFRPPRGDWLRQV ZHUH UHTXLUHG IRU DFFXUDWH LQWHUSUHWDWLRQ )RU WKLV VHW RI GDWD WKH IUDFWLRQDO VXUYLYDO YDOXHV ZHUH FDOFXODWHG XVLQJ WKH PLQXWH LQVWHDG RI WKH ]HUR PLQXWH VDPSOHV 7KH DYHUDJH VWDQGDUG GHYLDWLRQV RI WKH GHWR[LILFDWLRQ GDWD ZHUH b RU OHVV RI WKH DYHUDJH YDOXHV DV VKRZQ LQ 7DEOH 6DPSOH ORVV IRU GHWR[LILFDWLRQ RFFXUUHG ZKHQ WKH VDPSOH ZDV GURSSHG DQG EURNHQ SULRU WR DQDO\VLV ZKLFK RFFXUUHG WZLFH LQ H[SHULPHQWDO VHW QXPEHU WKUHH 7KH VDPSOHV RQ HLWKHU VLGH RI WKH GURSSHG VDPSOH 6JR ZHUH DQDO\]HG DQG WKH VDPSOH YDOXH IRU WKH GHVLUHG WLPH ZDV LQWHUSRODWHG :KHQ WKH GURSSHG VDPSOH ZDV DQ LQLWLDO VDPSOH WKH PLQXWH VDPSOH ZDV VXEVWLWXWHG &KHPLFDO VDPSOHV ZHUH JHQHUDOO\ DQDO\]HG ZLWKLQ WZR ZHHNV RI WKH H[SHULPHQW 7DEOH $YHUDJH 6WDQGDUG 'HYLDWLRQV IRU DOO '\H 3KRWRVHQVLWL]DWLRQ ([SHULPHQWV %HQ]HQH SSEf 7ROXHQH SSEf ( &ROL 6WG'HY $YJ 6WG'HY $YJ b RI WRWDO 0HWK\OHQH %OXH 5RVH %HQJDO

PAGE 78

6WDWLVWLFDO 7UHDWPHQW RI WKH 'DWD 0LFURVRIW ([FHO YHUVLRQ IRU WKH 0DFLQWRVK ZDV XVHG IRU VWDWLVWLFDO DQDO\VLV RI WKH GDWD )RU WKH PRUH FRPPRQ FDOFXODWLRQV LQFOXGLQJ OHDVW VTXDUHV OLQHDU UHJUHVVLRQ WKH IXQFWLRQV DYDLODEOH LQ WKH VRIWZDUH SDFNDJH ZHUH XVHG $OO RWKHU YDOXHV ZHUH FDOFXODWHG XVLQJ WKH HTXDWLRQV DV QRWHG WKURXJKRXW WKLV VHFWLRQ 6LQFH WKH VDPSOH VL]HV ZHUH JHQHUDOO\ VPDOO OHVV WKDQ f WKH HQWLUH SRSXODWLRQV ZHUH XVHG WR FDOFXODWH VWDQGDUG GHYLDWLRQ IURP (TXDWLRQ 6' f )RU GLVLQIHFWLRQ GDWD DQDO\VLV WKH IUDFWLRQDO VXUYLYDO DQG SHUFHQW GHVWUXFWLRQ RI FRORQ\ IRUPLQJ XQLWV FIXf ZHUH XVHG IRU UHSRUWLQJ DQG DQDO\]LQJ WKH GDWD 7KH YDOXHV XVHG IRU GLVLQIHFWLRQ GDWD DQDO\VLV ZHUH REWDLQHG E\ WDNLQJ WKH DYHUDJH RI WKH SODWHV IRU HDFK VDPSOH FROOHFWHG ZLWKLQ DQ H[SHULPHQWDO VHW FDOFXODWLQJ IUDFWLRQDO VXUYLYDO RU b GHVWUXFWLRQf DQG DYHUDJLQJ WKRVH YDOXHV DFURVV H[SHULPHQWV IRU XVH 7KH GDWD REWDLQHG LQ WKLV ZD\ IRU PHWK\OHQH EOXH DW PLQXWHV DUH VKRZQ LQ 7DEOH ,Q VLWXDWLRQV ZKHUH FDOFXODWLRQV UHVXOWHG LQ D QHJDWLYH SHUFHQW GHVWUXFWLRQ WKH SHUFHQW GHVWUXFWLRQ ZDV VHW WR ]HUR ,Q VRPH LQVWDQFHV WKH IUDFWLRQDO VXUYLYDO H[FHHGHG VSHFLILFDOO\ WKH GDWD IURP WKH GDUN S+ URVH EHQJDO H[SHULPHQW LQ VHW RQH )RU WKDW GDWD VHW WKH IUDFWLRQDO VXUYLYDO ZDV FDOFXODWHG UHODWLYH WR WKH PLQXWH VDPSOHV LH IUDFWLRQDO VXUYLYDO 1W1

PAGE 79

7DEOH 0HDQ )UDFWLRQDO 6XUYLYDO s bf RI ( FROL # W PLQXWHV LQ 0% ([SHULPHQWV 6HW 7 6XQOLJKW S+ RR 6XQOLJKW S+ 'DUN S+ 'DUN S+n &RQWURO $YHUDJH \YZYY$b:$:YYYYYYY\!YY PJ/ f‘‘99999999n9n99999f9999 :99:9$:9r9f:99:9r9$:::$ DRRR M I L $YHUDJH PJ/ $YHUDJH PJ/ $YHUDJH 'HWR[LILFDWLRQ GDWD ZHUH WUHDWHG LQ D VLPLODU PDQQHU 7KH FRQFHQWUDWLRQ GDWD DV SDUWV SHU ELOOLRQ SSEf IRU HDFK H[SHULPHQWDO VHW ZHUH QRUPDOL]HG WR WKH LQLWLDO FRQFHQWUDWLRQ &W&f 7KH QRUPDOL]HG YDOXHV ZHUH DYHUDJHG DFURVV H[SHULPHQWDO VHWV 6LQFH RQO\ RQH GDWD YDOXH H[LVWHG SHU VDPSOH IRU HDFK H[SHULPHQWDO VHW VWDQGDUG GHYLDWLRQV ZHUH FDOFXODWHG DFURVV VHWV RQO\ 2XWOLHUV ZHUH LGHQWLILHG XVLQJ WKH $670 UHFRPPHQGHG FULWHULRQ IRU VLQJOH VDPSOHV $670 f ZKLFK XVHV WKH IROORZLQJ WHVW 7 [r}f_V f 7KH FULWLFDO YDOXH RI 7Q LV D IXQFWLRQ RI WKH QXPEHU RI REVHUYDWLRQV DQG LV REWDLQHG IURP D WDEOH $670 f 8VLQJ WKLV FULWHULRQ RQH YDOXH ZDV IRXQG WR EH DQ RXWOLHU DW D VLJQLILFDQFH OHYHO RI b b IRU WROXHQHf DQG

PAGE 80

VXEVHTXHQWO\ GLVFDUGHG 7KH RXWO\LQJ VDPSOH WKH PLQXWH PJ/ VDPSOH IURP 5% GDUN S+ LQ H[SHULPHQWDO VHW QXPEHU WZR ZDV WKRXJKW WR KDYH EHHQ SRRUO\ FDSSHG UHVXOWLQJ LQ YRODWLOL]DWLRQ RI WKH VDPSOH SULRU WR DQDO\VLV 7KH GDWD ZHUH YLHZHG LQ VHYHUDO ZD\V $Q LQLWLDO REVHUYDWLRQ ZDV FRQGXFWHG IRU WKH GHWHFWLRQ RI WUHQGV DQG WR GHWHUPLQH LI WKH GHVLUHG HIIHFW ZDV DFKLHYHG 7KHVH WUHQGV ZHUH GLVSOD\HG DV D IXQFWLRQ RI WLPH IRU DOO RI WKH DYHUDJH YDOXHV DV [\ VFDWWHU SORWV ,I WUHQGV RI WKH GHVLUHG HIIHFW GHVWUXFWLRQ RI FRQWDPLQDQWV ZLWK WLPH ZHUH GHWHFWHG WKH GDWD ZHUH DQDO\]HG IXUWKHU IRU WKH LPSDFW RI VSHFLILF SDUDPHWHUV RQ WKH ILQDO UHVXOWV DV GHVFULEHG EHORZ $QDO\VLV RI 0HDQV $120f ZDV DSSOLHG WR REWDLQ D VWDWLVWLFDO VQDSVKRW RI WKH HIIHFW RI VSHFLILF SDUDPHWHUV RQ WKH RXWFRPH ,Q WKLV PHWKRG PHDQ YDOXHV DQG VWDWLVWLFDO GHYLDWLRQV ZHUH XVHG WR FODULI\ WKH VLJQLILFDQFH RI HDFK SDUDPHWHU 7KH $120 LV D YDULDWLRQ RQ D SURFHVV FRQWURO FKDUW DQG DOORZV IRU WKH H[SORUDWRU\ DQDO\VLV RI VHYHUDO SDUDPHWHUV VLPXOWDQHRXVO\ 0DVRQ HW DO f $ UHODWLYHO\ FRQVHUYDWLYH DOHYHO RI ZDV FKRVHQ WR PLQLPL]H WKH SUREDELOLW\ RI IDOVH DODUPV $ VPDOOHU DOHYHO ZDV QRW GHVLUDEOH DV LW PLJKW KDYH UHVXOWHG LQ PLVVHG VLJQDOV DQG ZRXOG EH LQDSSURSULDWH IRU WKLV W\SH RI H[SORUDWRU\ DQDO\VLV :KHHOHU f 7KH 3RROHG 9DULDQFH (VWLPDWRU ZDV XVHG IRU GHWHUPLQDWLRQ RI (VWLPDWHG 6' ;f DV VKRZQ EHORZ 'HFLVLRQ OLPLWV IRU WKH $120 FKDUWV ZHUH FDOFXODWHG XVLQJ WKH IROORZLQJ HTXDWLRQV :KHHOHU f

PAGE 81

(VWLPDWHG 6' ;f f RU YY (VWLPDWHG 6' ;f (VWLPDWHG 6' ;ff f 8'/; ; + (VWLPDWHG 6' ;} f /'/; ; + (VWLPDWHG 6' ;ff f ZKHUH V VWDQGDUG GHYLDWLRQ RI ; ; DYHUDJH RI REVHUYDWLRQV LQ D VXEJURXS V DYHUDJH YDULDQFH RI ; Q QXPEHU RI REVHUYDWLRQV SHU VXEJURXS ; JUDQG DYHUDJH RI DOO REVHUYDWLRQV + $120 FULWLFDO YDOXH DW D VHOHFWHG D IURP WDEOH :KHHOHU f 8'/; XSSHU GHFLVLRQ OLPLW DQG /'/; ORZHU GHFLVLRQ OLPLW $YHUDJHV ZKLFK ZHUH RXWVLGH RI WKH GHFLVLRQ OLPLWV ZHUH FRQVLGHUHG WR EH VWDWLVWLFDOO\ VLJQLILFDQW DQG WKRVH SDUDPHWHUV ZHUH GHWHUPLQHG WR EH LQIOXHQWLDO ,Q VRPH LQVWDQFHV WKH GDWD ZHUH JUDSKLFDOO\ UHSUHVHQWHG )RU WKLV DQDO\VLV GDWD ZHUH VLPSO\ FDWHJRUL]HG DFFRUGLQJ WR WKH SDUDPHWHUV RI LQWHUHVW DQG VWDQGDUG GHYLDWLRQ DQG PHDQ YDOXHV ZHUH FDOFXODWHG XVLQJ WKH 0LFURVRIW ([FHO IXQFWLRQV 7KHVH YDOXHV ZHUH WKHQ FKDUWHG HLWKHU DV VFDWWHU SORWV RU EDU FKDUWV :KHUH DSSURSULDWH OHDVW VTXDUHV OLQHDU

PAGE 82

UHJUHVVLRQ DOVR XVLQJ 0LFURVRIW ([FHO ZDV SHUIRUPHG WR LGHQWLI\ VSHFLILF WUHQGV DQG UHODWLRQVKLSV :KHUH FOHDU GHVWUXFWLRQ RI FRQWDPLQDQWV ZDV VHHQ NLQHWLFV ZHUH FRQVLGHUHG 5HVXOWV ZHUH ILWWHG WR ILUVW RUGHU NLQHWLF HTXDWLRQV DQG H[SHULPHQWDO UHDFWLRQ UDWH FRQVWDQWV ZHUH REWDLQHG IRU FRPSDULVRQ WR SXEOLVKHG GDWD 7KLV LQIRUPDWLRQ LV SUHVHQWHG LQ WKH VHFWLRQ RQ NLQHWLF FRQVLGHUDWLRQV ZKLFK LQFOXGHV NLQHWLF GDWD IRU DOO UHOHYDQW H[SHULPHQWDO VHWV 3UHVHQWDWLRQ RI 5HVXOWV DQG ,GHQWLILFDWLRQ RI *HQHUDO 7UHQGV :KLOH GLVLQIHFWLRQ LQ WKH SUHVHQFH RI DURPDWLF K\GURFDUERQV ZDV DFKLHYHG ZLWK ERWK URVH EHQJDO DQG PHWK\OHQH EOXH VLPXOWDQHRXV GHWR[LILFDWLRQ ZDV QRW REVHUYHG ZLWK HLWKHU G\H 8QGHU WKH FRQGLWLRQV WHVWHG WKH SUHVHQFH RI 0% LQFUHDVHG WKH GLVLQIHFWLRQ UDWH RI ZDWHU FRQWDPLQDWHG ZLWK ( FROL RYHU VXQOLJKW DORQH 0% SKRWRVHQVLWL]HG GLVLQIHFWLRQ DW S+ )LJXUH ODf DSSHDUV WR EH VOLJKWO\ PRUH HIIHFWLYH WKDQ 0% SKRWRVHQVLWL]HG GLVLQIHFWLRQ DW S+ $W S+ DOO 0% FRQFHQWUDWLRQV UHVXOWHG LQ DW OHDVW D b FROLIRUP UHGXFWLRQ DIWHU WKLUW\ PLQXWHV RI LUUDGLDWLRQ FRPSDUHG WR b UHGXFWLRQ ZLWK VXQOLJKW DORQH :LWK PJ/ 0% FRPSOHWH FROLIRUP GHVWUXFWLRQ ZDV DFKLHYHG DIWHU RQO\ ILYH PLQXWHV RI LUUDGLDWLRQ 1R FROLIRUPV DSSHDUHG LQ DQ\ RI WKH VDPSOHV WDNHQ DIWHU LUUDGLDWLRQ EHJDQ 7KH LQWHQVLW\ RI VXQOLJKW LQ WKHVH H[SHULPHQWV UDQJHG IURP WR :P 'HVWUXFWLRQ DW S+ ZDV QRW TXLWH DV GUDPDWLF )LJXUH OEf 7KH FROLIRUP UHGXFWLRQ DIWHU PLQXWHV UDQJHG IURP b ZLWK PJ/ 0% WR b ZLWK PJ/ 0% &RPSDUDWLYHO\ RQO\ D b UHGXFWLRQ ZDV DWWDLQHG

PAGE 83

ZLWK VXQOLJKW DORQH 7KH LQWHQVLW\ RI VXQOLJKW UDQJHG IURP :P WR :P 'LIIHUHQFHV EHWZHHQ S+ DQG S+ FDQQRW EH DWWULEXWHG WR GLIIHUHQFHV LQ OLJKW LQWHQVLW\ VLQFH DV VKRZQ LQ 7DEOHV DQG WKH LQWHQVLW\ ZDV JUHDWHU LQ WKH S+ H[SHULPHQWV HYHQ WKRXJK OHVV UHGXFWLRQ ZDV DFKLHYHG 7KH GLIIHUHQFH LQ YDOXHV IRU FRQWURO UHDFWRUV ZRXOG OHDG RQH WR FRQFOXGH WKDW DQ\ S+ HIIHFW ZDV D IXQFWLRQ RI WKH JHQHUDO GLVLQIHFWLRQ PHFKDQLVP UDWKHU WKDQ RI WKH SKRWRVHQVLWL]DWLRQ SURFHVV VSHFLILFDOO\ Df } &RQWURO f§%f§ PJ/ $ PJ/ f§;f§ PJ/ ; PJ/ )LJXUH 0% 'HVWUXFWLRQ RI ( FROL LQ 6XQOLJKW Df S+ :P Ef S+ ,DYJ :P

PAGE 84

,Q WKH SUHVHQFH RI DW OHDVW PJ/ 0% DQG VXQOLJKW :Pf FRPSOHWH GLVLQIHFWLRQ RFFXUUHG ZLWKLQ WR PLQXWHV +RZHYHU LQ WKH DEVHQFH RI 0% ZLWK WKH VDPH LQWHQVLW\ VXQOLJKW FRPSOHWH GLVLQIHFWLRQ UHTXLUHG DW OHDVW PLQXWHV )LJXUH f &RPSOHWH GLVLQIHFWLRQ GLG QRW RFFXU DW DOO LQ WKH GDUN DOWKRXJK D b FROLIRUP UHGXFWLRQ ZDV REVHUYHG ZLWK PJ/ 0% LQ WKH GDUN 0HDQ IUDFWLRQDO YDOXHV IRU WKH PHWK\OHQH EOXH H[SHULPHQWV DUH SUHVHQWHG LQ 7DEOH Df f§A1R 0% 6XQOLJKW $ PJ/ 0% 6XQOLJKW r 1R 0% 'DUN f;fPJ/ 0% 'DUN Ef cf§Af§1R 0% 6XQOLJKW $ PJ/ 6XQOLJKW_ 3 1R 0% 'DUN ;a PJ/ 'DUN )LJXUH 'HVWUXFWLRQ RI ( FROL LQ VXQOLJKW ZLWK PJ/ 0% Df S+ ,DYJ :P DQG Ef S+ ,DYJ :P

PAGE 85

7DEOH 0HDQ )UDFWLRQDO 6XUYLYDO sbf RI ( FROL LQ 0% ([SHULPHQWV &RQWURO 6XQOLJKW S+ 6XQOLJKW S+ 'DUN S+ 'DUN S+ 11R QQ 1R1 11 1 1R 121 PJ/ QQ 11 11 11 1L1 11 PJ/ QQ QQ 1F1 1JR1R 1 1R 1 1 PJ/ QQ QQ QQ 1VR1R QQ 1R1 PJ/ QQ QQ 11 QQ 11 1T1T 9::99b999:::r9 5RVH EHQJDO ZDV OHVV HIIHFWLYH IRU SKRWRFKHPLFDO GLVLQIHFWLRQ WKDQ ZDV 0% 7KH SUHVHQFH RI 5% KDG OLWWOH LI DQ\ SRVLWLYH HIIHFW RQ WKH GLVLQIHFWLRQ UDWH RYHU VXQOLJKW DORQH DOWKRXJK WKH H[SHULPHQWV DW S+ DSSHDUHG WR H[KLELW VRPH SKRWRFKHPLFDO GLVLQIHFWLRQ )LJXUH Df ,Q WKH H[SHULPHQWV FRQGXFWHG DW S+ )LJXUH Ef 5% KDG QR SRVLWLYH HIIHFW RQ GLVLQIHFWLRQ RYHU VXQOLJKW DORQH &ROLIRUP UHGXFWLRQ RI

PAGE 86

JUHDWHU WKDQ b ZDV REVHUYHG E\ PLQXWHV LQ VXQOLJKW DORQH KRZHYHU LQ WKH SUHVHQFH RI 5% WKH VDPH FROLIRUP UHGXFWLRQ ZDV QRW HYLGHQW XQWLO WKH PLQXWH VDPSOHV ZLWK PJ/ 5% DQG WKH PLQXWH VDPSOHV IRU DOO RWKHU 5% FRQFHQWUDWLRQV &ROLIRUP UHGXFWLRQ ZDV DERXW WKH VDPH E\ PLQXWHV UHJDUGOHVV RI WKH 5% FRQFHQWUDWLRQ ZLWK D ORZ RI b IRU PJ/ 5% DQG D KLJK RI b ZLWK PJ/ 5% 7KH FRQWURO VXQOLJKW DORQH KDG D FROLIRUP UHGXFWLRQ RI b 7KH GLIIHUHQFHV DUH QRW VLJQLILFDQW DV DOO YDOXHV IDOO ZLWKLQ WKH DYHUDJH VWDQGDUG GHYLDWLRQ RI b 7KH DYHUDJH LQWHQVLW\ RI VXQOLJKW LQ WKHVH H[SHULPHQWV UDQJHG IURP WR :P $V ZDV HYLGHQFHG LQ WKH H[SHULPHQWV ZLWK 0% GLVLQIHFWLRQ DSSHDUHG WR EH OHVV HIIHFWLYH DW WKH QHXWUDO S+ YDOXH RI )LJXUH Df 7KH H[FHSWLRQ ZDV ZLWK WKH KLJKHU FRQFHQWUDWLRQV RI 5% DQG PJ/ )LJXUH f ZKHUH FROLIRUP UHGXFWLRQV E\ PLQXWHV ZHUH b DQG b UHVSHFWLYHO\ ,Q FRPSDULVRQ FROLIRUP UHGXFWLRQ LQ VXQOLJKW DORQH :Pf E\ PLQXWHV ZDV b b ZLWK PJ/ 5% DQG b ZLWK PJ/ 5% 0HDQ YDOXHV IRU WKH IUDFWLRQDO VXUYLYDO RI ( FROL LQ WKH URVH EHQJDO H[SHULPHQWV DUH VKRZQ LQ 7DEOH :KLOH VRPH UHGXFWLRQ LQ ERWK EHQ]HQH DQG WROXHQH FRQFHQWUDWLRQ ZDV REVHUYHG ZLWK ERWK G\HV XQGHU HYHU\ VHW RI FRQGLWLRQV WKHUH ZDV D VXEVWDQWLDO DPRXQW RI FRQWDPLQDQW SSEf UHPDLQLQJ LQ WKH ZDWHU 7DEOHV DQG f DIWHU IRXU KRXUV ,QLWLDO FRQFHQWUDWLRQV UDQJHG IURP SSE DV VKRZQ LQ 7DEOH )LJXUHV WR VKRZ WKH FRQFHQWUDWLRQ RI EHQ]HQH DQG WROXHQH DV D IXQFWLRQ RI WLPH DW YDULRXV G\H FRQFHQWUDWLRQV

PAGE 87

b b b L b R b b 6 b D6 b b b b Df b 7 b b b R b b £ b VH b b b WL b L R Ef )LJXUH 5% 'HVWUXFWLRQ RI ( FROL LQ 6XQOLJKW Df S+ :P Ef S+ ,DYJ :P 7LPH PLQXWHVf &RQWURO PJ/ PJ/ PJ/ PJ/ 7LPH PLQXWHVf &RQWURO PJ/ PJ/ PJ/ PJ/ 7KH H[SHULPHQWDO YDOXHV IRU ERWK EHQ]HQH DQG WROXHQH LQ 0% VKRZHG IDLUO\ FRQVLVWHQW UHGXFWLRQV ZLWK QRUPDOL]HG FRQFHQWUDWLRQV UDQJLQJ IURP WR DIWHU IRXU KRXUV %RWK WKH JUHDWHVW DQG VPDOOHVW UHGXFWLRQV FRUUHVSRQGHG WR FRQWURO UHDFWRUV VXQOLJKW DW S+ DQG GDUN DW S+ UHVSHFWLYHO\

PAGE 88

Df 7LPH PLQXWHVf f§A “R 5% 6XQOLJKW f§; PJ/ 5% 6XQOLJKW 2 1R 5% 'DUN f§ PJ/ 'DUN Ef 7LPH PLQXWHVf f§Af§1R 5% 6XQOLJKW f§rf§ PJ/ 5% 6XQOLJKW 2 1R 5% 'DUN & PJ/ 5% 'DUN )LJXUH 5% 'HVWUXFWLRQ RI ( FROL DW S+ ,DYJ :P Df PJ/ 5% DQG Ef PJ/ 5% ([DPLQDWLRQ RI WKH QRUPDOL]HG GDWD 7DEOHV DQG f GLG QRW \LHOG D GLIIHUHQW FRQFOXVLRQ 1HLWKHU FKHPLFDO FRQWDPLQDQW H[KLELWHG D VXEVWDQWLDO GLIIHUHQFH LQ EHKDYLRU EHWZHHQ FRQWURO DQG QRQFRQWURO UHDFWRUV LQ HLWKHU 0% RU 5% H[SHULPHQWV DV VHHQ IURP )LJXUHV WR ,Q 5% H[SHULPHQWV UHGXFWLRQV UDQJLQJ IURP b WR b IRU EHQ]HQH DQG b WR b IRU WROXHQH LQ VXQOLJKW ZHUH REVHUYHG 2QH UHDFWRU WKH GDUN FRQWURO UHDFWRU DW S+ H[KLELWHG QR UHGXFWLRQ DW DOO +RZHYHU VLQFH WKH RWKHU FRQWUROV ERWK LQ VXQOLJKW DQG LQ GDUN KDG GHVWUXFWLRQ UDWHV

PAGE 89

ZKLFK ZHUH LQ WKH PLGGOH RI WKH UDQJH IRU WKH QRQFRQWURO UHDFWRUV WKLV FDQQRW EH FRQVLGHUHG DQ LQGLFDWLRQ WKDW SKRWRFKHPLFDO DFWLRQ WRRN SODFH 7DEOH 0HDQ )UDFWLRQDO 6XUYLYDO sbf RI ( FROL LQ 5% ([SHULPHQWV &RQWURO 6XQOLJKW S+ 6XQOLJKW S+ 'DUN S+ 'DUN S+ QQ QQ 11 1HR1R QQ 11 PJ/ QQ QQ 112 11 11 1R1 PJ/ QQf QQ QQ QfQX 1LT1R 11 PJ/ QQ QQ 11 1HR1 1LR1 11 LE PJ/ QQ QQ 1X1 QQ 11 11

PAGE 90

7DEOH %HQ]HQH sf DQG 7ROXHQH sf &RQFHQWUDWLRQV SSEf LQ 0% ([SHULPHQWV EHQ]HQHnn 7LPH PLQf 6XQOLJKW S+ 6XQOLJKW S+ 'DUN S+ 'DUN S+ &RQWURO PJ/ PJ/ PJ/ PJ/ 72/8(1( 7LPH PLQf 6XQOLJKW S+ 6XQOLJKW S+ 'DUN S+ 'DUN S+ &RQWURO PJ/ PJ/ PJ/ PJ/ 7KH JUHDWHVW DSSDUHQW UHGXFWLRQV VHHPHG WR FRUUHVSRQG WR KLJKHU LQLWLDO FRQFHQWUDWLRQV DQG H[SRVXUH WR VXQOLJKW 7KLV W\SH RI EHKDYLRU ZRXOG EH FRQVLVWHQW ZLWK EHQ]HQH DQG WROXHQH EHLQJ WUDSSHG LQ WKH YDSRU VSDFH DERYH WKH ZDWHU OLQH $OWKRXJK KHDG VSDFH ZDV NHSW WR D PLQLPXP DV WKH VDPSOHV ZHUH GUDZQ IURP WKH UHDFWRU KHDG VSDFH LQFUHDVHG 7KRXJK WHPSHUDWXUH ZDV QRW D FRQVLVWHQWO\ PHDVXUHG SDUDPHWHU DQ LQFUHDVH LQ WHPSHUDWXUH ZDV REVHUYHG SUREDEO\ GXH WR VXQOLJKW DQG IULFWLRQ

PAGE 91

IURP WKH PDJQHWLF VWLUUHUV 7KH FRPELQDWLRQ RI WHPSHUDWXUH DQG KHDG VSDFH LQFUHDVH ZRXOG QHFHVVDULO\ OHDG WR YRODWLOL]DWLRQ RI WKH FKHPLFDO FRQWDPLQDQWV LQ WKH YDSRU VSDFH 6SRW WHPSHUDWXUH FKHFNV ZLWK WHPSHUDWXUH VWULSV RQ WKH RXWVLGH UHDFWRU JODVV \LHOGHG YDOXHV LQ H[FHVV RI r) LQ VXQOLJKW 7DEOH %HQ]HQH s f DQG 7ROXHQH s f &RQFHQWUDWLRQV SSEf LQ 5% ([SHULPHQWV %(1=(1( 7LPH PLQf 6XQOLJKW S+ 6XQOLJKW S+ 'DUN S+ 'DUN S+ &RQWURO PJ/ PJ/ PJ/ PJ/ 72/8(1( 7LPH PLQf 6XQOLJKW S+ 6XQOLJKW S+ 'DUN S+ 'DUN S+ &RQWURO PJ/ PJ/ PJ/ PJ/

PAGE 92

Df f§2f§ &RQWURO f§;f§ PJ/ ; PJ/ 2f§ PJ/ $ PJ/ f5HIHUHQFHG WR LQWHUQDO VWDQGDUG FKORUREHQ]HQH Ef —f§&RQWURO 4f§ PJ/ f$f§ PJ/ f;f§ PJ/ r PJ/ 7LPH PLQXWHVf f5HIHUHQFHG WR LQWHUQDO VWDQGDUG FKORUREHQ]HQH )LJXUH %HQ]HQH &RQFHQWUDWLRQ DV D )XQFWLRQ RI 7LPH DQG 0% &RQFHQWUDWLRQ LQ 6XQOLJKW Df S+ :P Ef S+ ,DYJ :P

PAGE 93

Ef &RQWURO PJ/ PJ/ PJ/ PJ/ 7LPH PLQXWHVf f5HIHUHQFHG WR LQWHUQDO VWDQGDUG FKORUREHQ]HQH )LJXUH 7ROXHQH &RQFHQWUDWLRQ DV D )XQFWLRQ RI 7LPH DQG 0% &RQFHQWUDWLRQ LQ 6XQOLJKW Df S+ :P Ef S+ ,DYJ :P

PAGE 94

Df &RQWURO PJ/ PJ/ PJ/ PJ/ 7LPH PLQXWHVf f5HIHUHQFHG WR LQWHUQDO VWDQGDUG FKORUREHQ]HQH Ef f§2f§ &RQWURO f§f§ PJ/ $ PJ/ PJ/ PJ/ f5HIHUHQFHG WR LQWHUQDO 7LPH PLQXWHVf VWDQGDUG FKORUREHQ]HQH )LJXUH %HQ]HQH &RQFHQWUDWLRQ DV D )XQFWLRQ RI 7LPH DQG 5% &RQFHQWUDWLRQ LQ 6XQOLJKW Df S+ :P Ef S+ ,DYJ :P

PAGE 95

Df &RQWURO PJ/ PJ/ PJ/ PJ/ 7LPH PLQXWHVf f5HIHUHQFHG WR LQWHUQDO VWDQGDUG FKORUREHQ]HQH Ef f§—f§&RQWURO PJ/ —f§ PJ/ f§;f§ PJ/ ; PJ/ 7LPH PLQXWHVf f5HIHUHQFHG WR LQWHUQDO VWDQGDUG FKORUREHQ]HQH )LJXUH 7ROXHQH &RQFHQWUDWLRQ DV D )XQFWLRQ RI 7LPH DQG 5% &RQFHQWUDWLRQ LQ 6XQOLJKW Df S+ :P Ef S+ ,DYJ :P

PAGE 96

7DEOH 1RUPDOL]HG %HQ]HQH sf DQG 7ROXHQH s f &RQFHQWUDWLRQ LQ 0% ([SHULPHQWV %(1=(1( 6XQOLJKW S+ 6XQOLJKW S+ 'DUN SOO 'DUN S+ &RQWURO 1HL1R 1L1R PJ/ QQ 1nR1 PJ/ 1P1R QQ PJ/ 1D1R 1fR1T PJ/ 1D1R 11R 72/8(1( 6XQOLJKW S+ 6XQOLJKW S+ 'DUN S+ 'DUN S+ &RQWURO 1HR1 1LT1 PJ/ QQ QQ PJ/ QQ 1R1 PJ/ 11 1R1R PJ/ 1HR1 11

PAGE 97

7DEOH 1RUPDOL]HG %HQ]HQH sf DQG 7ROXHQH sf &RQFHQWUDWLRQ LQ 5% ([SHULPHQWV %(1=(1( 6XQOLJKW S+ 6XQOLJKW S+ 'DUN S+ 'DUN S+ &RQWURO 1J\1\ 1R1 PJ/ 1J\1\ 1,1 PJ/ QQ PJ/ 1HR1 11 PJ/ 1J\1 QQ 72/8(1( 6XQOLJKW S+ 6XQOLJKW S+ 'DUN S+ 'DUN S+ &RQWURO QQ 1L1 PJ/ 1J\1\ 11\ PJ/ 1J\1\ 11\ PJ/ 1J\1\ 1A1\ PJ/ 1 JR1\ 11\ 9999?999n99$9$999999999n9 bZbYYZYZYYYrYYrYYZYYYZY 999999999999999999999999999n999999999999999999

PAGE 98

Df 7LPH PLQXWHVf r 5HIHUHQFHG WR LQWHUQDO VWDQGDUG FKORUREHQ]HQH 2 1R 0% 6XQOLJKW 2 PJ/ 6XQOLJKW f§2f§1R 0% 'DUN f§,f§ PJ/ 'DUN Ef U Y r 5HIHUHQFHG WR LQWHUQDO 7LPH PLQXWHVf VWDQGDUG FKORUREHQ]HQH ‘2f§ 1R 0% 6XQOLJKW f§%f§ PJ/ 6XQOLJKW 2f§1R 0% 6XQOLJKW f§,f§ PJ/ 'DUN )LJXUH 1RUPDOL]HG %HQ]HQH &RQFHQWUDWLRQ LQ 6XQOLJKW ZLWK PJ/ 0% Df S+ ,DYJ :P Ef S+ ,DYJ :P

PAGE 99

Df $ 1R 0% 6XQOLJKW PJ/ 6XQOLJKW ; 1R 0% 'DUN $ PJ/ 'DUN Ef r 5HIHUHQFHG WR LQWHUQDO 7LPH PLQXWHVf VWDQGDUG FKORUREHQ]HQH 2 1R 0% 6XQOLJKW PJ/ 6XQOLJKW f§1R 0% 'DUN f§,f§ PJ/ 'DUN )LJXUH 1RUPDOL]HG 7ROXHQH &RQFHQWUDWLRQ LQ 6XQOLJKW ZLWK PJ/ 0% Df S+ ,DYJ :P Ef S+ ,DYJ :P

PAGE 100

Df 7LPH PLQXWHVf f5HIHUHQFHG WR LQWHUQDO VWDQGDUG FKORUREHQ]HQH f§ 2 1R 0% 6XQOLJKW % PJ/ 6XQOLJKW f§kf§1R 0% 'DUN f§,f§ PJ/ 'DUN Ef 7LPH PLQXWHVf f5HIHUHQFHG WR LQWHUQDO VWDQGDUG FKORUREHQ]HQH f§kf§1R 0% 'DUN f§f§ PJ/ 6XQOLJKW f§2f§ 1R 0% 'DUN 3 PJ/ 'DUN )LJXUH 1RUPDOL]HG %HQ]HQH &RQFHQWUDWLRQ LQ 6XQOLJKW ZLWK PJ/ 5% Df S+ ,DYJ :P Ef S+ ,DYJ :P

PAGE 101

Df 1R 0% 6XQOLJKW 1R 0% 'DUN PJ/ 6XQOLJKW PJ/ 'DUN Ef f5HIHUHQFHG WR LQWHUQDO 7LPH PLQXWHVf VIFPGDUG FKORUREHQ]HQH 1R 0% 6XQOLJKW 1R 0% 'DUN f§,f§ PJ/ 6XQOLJKW f§%f§ PJ/ 'DUN )LJXUH 1RUPDOL]HG 7ROXHQH &RQFHQWUDWLRQ LQ 6XQOLJKW ZLWK PJ/ 5% Df S+ ,DYJ :P Ef S+ ,DYJ :P 'DWD $QDO\VLV EY $120 ,QLWLDO REVHUYDWLRQ RI WKH GLVLQIHFWLRQ GDWD IRU G\H SKRWRVHQVLWL]DWLRQ VXJJHVWHG WKDW SKRWRFKHPLFDO GHVWUXFWLRQ PD\ KDYH WDNHQ SODFH 7KHUHIRUH WKHVH GDWD ZHUH VHOHFWHG IRU DGGLWLRQDO DQDO\VLV E\ $120 7KH IUDFWLRQDO VXUYLYDO RI FRORQ\ IRUPLQJ HPLWV HIXf DIWHU PLQXWHV PLQXWHV DQG PLQXWHV ZHUH DOO DQDO\]HG LQ WKLV PDQQHU IRU ERWK 0% DQG 5% H[SHULPHQWV $Q DOHYHO RI ZDV XVHG IRU DOO GDWD SUHVHQWHG $120 ZDV XVHG WR H[DPLQH WKH FRQWUROOHG SDUDPHWHUV IRU WKH H[SHULPHQWV SUHVHQFH RU DEVHQFH RI VXQOLJKW S+ OHYHO DQG G\H

PAGE 102

FRQFHQWUDWLRQ 7KH SUHVHQFH DQG DEVHQFH RI VXQOLJKW DSSHDUHG WR EH WKH PRVW VLJQLILFDQW IDFWRU LQ ERWK 0% DQG 5% H[SHULPHQWV EDVHG XSRQ WKH $120 *UDQG DYHUDJHV ZHUH FDOFXODWHG VHSDUDWHO\ IRU WKH 0% DQG 5% GDWD DW DQG PLQXWHV XVLQJ IUDFWLRQDO VXUYLYDO RI FIX 7KH JUDQG DYHUDJHV FDOFXODWHG IRU 0% H[SHULPHQWV ZHUH sf sf DQG sf IRU DQG PLQXWHV UHVSHFWLYHO\ %RWK WKH JUDQG DYHUDJHV DQG DYHUDJH VWDQGDUG GHYLDWLRQV ZHUH VOLJKWO\ KLJKHU IRU WKH 5% H[SHULPHQWV ZLWK JUDQG DYHUDJH YDOXHV RI sf sf DQG sf UHVSHFWLYHO\ IRU DQG PLQXWHV 7KH JHQHUDO YDOXHV FDOFXODWHG IRU XVH LQ $120 DUH JLYHQ LQ 7DEOH 7DEOH &DOFXODWHG $120 9DOXHV IRU '\H 3KRWRVHQVLWL]HG 'LVLQIHFWLRQ 6DPSOH 6HW *UDQG $YHUDJH ; $YJ 6WG 'HY $YJ 5DQJH (VWLPDWHG 6';f 5% # W PLQXWHV 5% # W PLQXWHV 5% # W PLQXWHV 0% # W PLQXWHV 0% # W PLQXWHV 0% # W PLQXWHV (IIHFW RI 6XQOLJKW 7KH GDWD IURP HDFK VDPSOH VHW DQG PLQXWHVf ZHUH VHSDUDWHG LQWR WZR VXEJURXSV EDVHG RQ WKH DEVHQFH DQG SUHVHQFH RI VXQOLJKW 7KLV JDYH DQ Q YDOXH RI VDPSOHV SHU VXEJURXS DQG D N YDOXH RI VXEJURXSV IRU HDFK VDPSOH VHW 7KH Q DQG N YDOXHV ZHUH XVHG WR GHWHUPLQH WKH GHJUHHV RI IUHHGRP Y ELDV FRUUHFWLRQ IDFWRU F/ DQG VXEVHTXHQWO\ $120 FULWLFDO YDOXH + IURP WKH ELDV FRUUHFWLRQ IDFWRU DQG FULWLFDO YDOXHV WDEOHV :KHHOHU

PAGE 103

f 7KH FRUUHVSRQGLQJ YDOXHV ZHUH Y G DQG IRU DQ D + 7KHVH YDOXHV DORQJ ZLWK WKH YDOXHV LQ 7DEOH ZHUH XVHG WR GHWHUPLQH WKH GHFLVLRQ OLPLWV DV VKRZQ LQ (TXDWLRQV WR )RU HDFK VXEJURXS LQ WKLV FDVH VXQOLJKW DQG GDUN DQ DYHUDJH ZDV FDOFXODWHG DQG SORWWHG RQ D FKDUW ZLWK WKH GHFLVLRQ OLPLWV 7KH VXEJURXS DYHUDJHV IRU VXQOLJKW LQ ERWK WKH 0% DQG 5% H[SHULPHQWV DUH VKRZQ LQ 7DEOH $V QRWHG SUHYLRXVO\ D VXEJURXS DYHUDJH RXWVLGH RI WKH GHFLVLRQ OLPLWV LQGLFDWHG D SDUDPHWHU ZDV VWDWLVWLFDOO\ VLJQLILFDQW $V VKRZQ EHORZ WKH DEVHQFH RU SUHVHQFH RI VXQOLJKW ZDV IRXQG WR EH VWDWLVWLFDOO\ VLJQLILFDQW LQ DOO FDVHV WHVWHG IRU ERWK 0% )LJXUH f DQG 5% )LJXUH f H[SHULPHQWV 7DEOH 6XQOLJKW 6XEJURXS $YHUDJHV IRU '\H 3KRWRVHQVLWL]HG 'LVLQIHFWLRQ 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI ( FROL 0% 6XEJURXS 6XQOLJKW :Pf 'DUN ; 6 5 ; 6 5 W PLQXWHV W PLQXWHV W PLQXWHV 5% 6XEJURXS 6XQOLJKW :Pf 'DUN ; 6 5 ; 6 5 W PLQXWHV W PLQXWHV W PLQXWHV

PAGE 104

Df )LJXUH 6LJQLILFDQFH RI 6XQOLJKW %DVHG RQ $120 LQ 0% ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV

PAGE 105

Df L 8'/ !'DUN *UDQG $YF $PP ar1,= /'/ r  :P! = 8'/[EDU /'/[EDU *DYJ f§f§ff§/LJKW@ 8'/ A'DUN I *UDQG $YF /'/ :Pf Ef Ff 8'/[EDU /'/[EDU *DYJ A /LJKW M )LJXUH 6LJQLILFDQFH RI 6XQOLJKW %DVHG RQ $120 LQ 5% ([SHULPHQWV Df 0LQXWHV Ef 0LQWXHV Ff 0LQXWHV

PAGE 106

(IIHFW RI S+ $V ZDV GRQH IRU HYDOXDWLRQ RI WKH HIIHFW RI VXQOLJKW WKH GDWD IURP HDFK VDPSOH VHW DQG PLQXWHVf ZHUH VHSDUDWHG LQWR WZR VXEJURXSV EDVHG XSRQ WKH S+ YDOXH RI RU 6LQFH N DQG Q ZHUH WKH VDPH DQG WKH VDPH DOHYHO ZDV XVHG WKH YDOXHV IRU Y G DQG + ZHUH DOVR WKH VDPH $JDLQ WKHVH YDOXHV DORQJ ZLWK WKH YDOXHV LQ 7DEOH ZHUH XVHG WR GHWHUPLQH WKH GHFLVLRQ OLPLWV DV VKRZQ LQ (TXDWLRQV WR )RU HDFK VXEJURXS LQ WKLV FDVH S+ DQG S+ DQ DYHUDJH ZDV FDOFXODWHG DQG SORWWHG RQ D FKDUW ZLWK WKH GHFLVLRQ OLPLWV 7KH VXEJURXS DYHUDJHV IRU S+ DUH VKRZQ LQ 7DEOH $120 FKDUWV DUH VKRZQ LQ )LJXUHV DQG 7DEOH S+ 6XEJURXS $YHUDJHV IRU '\H 3KRWRVHQVLWL]HG 'LVLQIHFWLRQ 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI ( FROL 0% 6XEJURXS S+ S+ ; 6 5 ; 6 5 W PLQXWHV W PLQXWHV W PLQXWHV 5% 6XEJURXS S+ 3+ ; V 5 ; 6 5 W PLQXWHV W PLQXWHV W PLQXWHV

PAGE 107

R ] ,7f = Df L 8'/ R RR -Dr1L$YDB X 77 ;S+ /'/ 8'/[EDU /'/[EDU *DYJ f§;f§S+ Ef 8'/ R V -M+ S+ *UDQG $YJ ] ;I!+ a a" ‘ /'/ 8'/[EDU /'/[EDU *DYJ f§;f§S5O Ff )LJXUH 6LJQLILFDQFH RI S+ %DVHG RQ $120 LQ 0% ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV 8'/ A;S+ ;WI+ *UDQG $YJ 7/'/ 8'/ ;S+ *UDQG $YJ 7' /'/ 8'/[EDU /'/[EDU *DYJ f§;f§S+-

PAGE 108

8'/[EDU /'/[EDU *DYJ f§;f§S+M )LJXUH 6LJQLILFDQFH RI S+ %DVHG RQ $120 LQ 5% ([SHULPHQWV Df 0LQWXHV Ef 0LQXWHV Ff 0LQXWHV

PAGE 109

,W LV FOHDU WKDW S+ ZDV VWDWLVWLFDOO\ LQVLJQLILFDQW LQ 0% H[SHULPHQWV 7KLV ZDV LQFRQVLVWHQW ZLWK WKH ILQGLQJV RI (LVHQEHUJ HW DO f ZKR UHSRUWHG D YHU\ VWURQJ FRUUHODWLRQ ZLWK S+ YDOXHV DQG PRUH HIILFLHQW 0% LQDFWLYDWLRQ DW D EDVLF S+ 7KH $120 WHVWV ZHUH VRPHZKDW LQFRQFOXVLYH IRU 5% H[SHULPHQWV 7KH GDWD VXJJHVWHG WKDW D QHXWUDO S+ RI ZDV VOLJKWO\ PRUH HIIHFWLYH IRU GLVLQIHFWLRQ WKDQ WKH EDVLF S+ RI KRZHYHU VLQFH WKH DOHYHO XVHG IRU GHWHUPLQDWLRQ RI FULWLFDO YDOXHV ZDV LW ZDV SRVVLEOH WKDW WKH VLJQDOV ZHUH IDOVH DQG WKHUHIRUH QRW VLJQLILFDQW (IIHFW RI 'YH &RQFHQWUDWLRQ )RU HYDOXDWLRQ RI WKH HIIHFW RI WKH FRQFHQWUDWLRQ RI 0% DQG 5% WKH GDWD IURP HDFK VDPSOH VHW DQG PLQXWHVf ZHUH VHSDUDWHG LQWR ILYH VXEJURXSV EDVHG XSRQ WKH FRQFHQWUDWLRQ RI G\H 7KLV JDYH DQ Q YDOXH RI VDPSOHV SHU VXEJURXS DQG D N YDOXH RI VXEJURXSV IRU HDFK VDPSOH VHW 7KH Q DQG N YDOXHV ZHUH XVHG WR GHWHUPLQH WKH GHJUHHV RI IUHHGRP Y ELDV FRUUHFWLRQ IDFWRU Gr DQG VXEVHTXHQWO\ $120 FULWLFDO YDOXH + IURP WKH ELDV FRUUHFWLRQ IDFWRU DQG FULWLFDO YDOXHV WDEOHV :KHHOHU f 7KH FRUUHVSRQGLQJ YDOXHV ZHUH Y G DQG IRU DQ D + 7KHVH YDOXHV DORQJ ZLWK WKH YDOXHV LQ 7DEOH ZHUH XVHG WR GHWHUPLQH WKH GHFLVLRQ OLPLWV DV VKRZQ LQ (TXDWLRQV WR )RU HDFK VXEJURXS DQ DYHUDJH ZDV FDOFXODWHG DQG SORWWHG RQ D FKDUW ZLWK WKH GHFLVLRQ OLPLWV 7KH VXEJURXS DYHUDJHV IRU G\H FRQFHQWUDWLRQV LQ ERWK WKH 0% DQG 5% H[SHULPHQWV DUH VKRZQ LQ 7DEOH $V VKRZQ LQ )LJXUH VLJQDOV ZHUH REWDLQHG IRU WKH FRQWURO UHDFWRU RQ WKH XSSHU VLGH

PAGE 110

DQG IRU DQG PJ/ RI 0% RQ WKH ORZHU VLGH LQGLFDWLQJ WKDW WKH DEVHQFH RU SUHVHQFH RI 0% ZDV VLJQLILFDQW DW ERWK DQG PLQXWHV +RZHYHU E\ PLQXWHV )LJXUH Ff WKH SUHVHQFH RI 0% ZDV QR ORQJHU RI VLJQLILFDQFH DQG GLVLQIHFWLRQ LQ VXQOLJKW DORQH ZDV MXVW DV HIIHFWLYH 7KH SUHVHQFH RI 5% KRZHYHU LQ DQ\ FRQFHQWUDWLRQ GLG QRW DSSHDU WR GLIIHU VLJQLILFDQWO\ IURP WKH DEVHQFH RI 5% VXJJHVWLQJ WKDW LW QHLWKHU HQKDQFHG QRU GHWUDFWHG IURP WKH SKRWRO\WLF GLVLQIHFWLRQ )LJXUH f 6LQFH 0% FRQFHQWUDWLRQ GLVSOD\HG VRPH VLJQLILFDQFH HDFK RI WKH VXEJURXS DYHUDJHV DW PLQXWHV ZDV SORWWHG DJDLQVW WKH FRQWURO DQG WKH KLJK FRQFHQWUDWLRQ PJ/f WR GHWHUPLQH WKH PLQLPXP VLJQLILFDQW FRQFHQWUDWLRQ 7KHVH FRPELQDWLRQV DOORZHG IRU WKH GHWHUPLQDWLRQ RI RSWLPXP FRQFHQWUDWLRQ UDQJH IRU WKH IDVWHVW GLVLQIHFWLRQ 7KHUH ZHUH DJDLQ WZR VXEJURXSV IRU D N RI ZLWK WKH Q YDOXH VDPSOHV SHU VXEJURXSf UHPDLQLQJ DW 7KH FRUUHVSRQGLQJ WDEOH YDOXHV ZHUH Y F/!n DQG IRU DQ D + 7DEOH '\H &RQFHQWUDWLRQ 6XEJURXS $YHUDJHV LQ 'LVLQIHFWLRQ ([SHULPHQWV 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI ( &ROL 0% &WUO PJ/ PJ/ PJ/ PJ/ ; 6 5 ; 6 5 ; 6 5 ; 6 5 ; 6 5 5% &WUO PJ/ PJ/ PJ/ PJ/ ; 6 5 ; 6 5 ; 6 5 ; 6 5 ; 6 5

PAGE 111

Df Ef )LJXUH 6WDWLVWLFDO 6LJQLILFDQFH RI 0% &RQFHQWUDWLRQ %DVHG RQ $120 RQ 'LVLQIHFWLRQ LQ 6XQOLJKW Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV

PAGE 112

)LJXUH 6WDWLVWLFDO 6LJQLILFDQFH RI 5% &RQFHQWUDWLRQ %DVHG RQ $120 RQ 'LVLQIHFWLRQ LQ 6XQOLJKW Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV

PAGE 113

$V QRWHG SUHYLRXVO\ D VXEJURXS DYHUDJH RXWVLGH RI WKH GHFLVLRQ OLPLWV LQGLFDWHG D SDUDPHWHU ZDV VWDWLVWLFDOO\ VLJQLILFDQW :KHQ DOO RI WKH 0% FRQFHQWUDWLRQV ZHUH FRQVLGHUHG WKH SUHVHQFH RI DW OHDVW PJ/ 0% VKRZHG VLJQLILFDQFH XS WR PLQXWHV %\ PLQXWHV WKH SUHVHQFH RI 0% QR ORQJHU KDG DQ LPSDFW RQ WKH GHVWUXFWLRQ RI ( FROL 7KH SUHVHQFH RI 5% ZDV QRW VLJQLILFDQW LQ DQ\ LQVWDQFH DV ZDV DQWLFLSDWHG IURP WKH LQLWLDO REVHUYDWLRQV ,Q RUGHU WR GHWHUPLQH WKH PLQLPXP HIIHFWLYH 0% FRQFHQWUDWLRQ WKH PLQXWH VXEJURXS DYHUDJHV ZHUH SORWWHG DJDLQVW WKH FRQWURO DQG WKHQ VHOHFWLYHO\ DJDLQVW HDFK RWKHU (YHU\ FRQFHQWUDWLRQ VKRZHG VLJQLILFDQFH UHODWLYH WR WKH FRQWURO VXJJHVWLQJ WKDW DOO FRQFHQWUDWLRQV FRQWULEXWH WR SKRWRG\QDPLF DFWLRQ :KHQ H[DPLQHG UHODWLYH WR PJ/ DOO FRQFHQWUDWLRQV H[FHSW PJ/ VKRZHG D VLJQLILFDQW GLIIHUHQFH VXJJHVWLQJ WKDW DQ LQFUHDVH LQ HIIHFWLYHQHVV RFFXUUHG ZLWK LQFUHDVHV LQ 0% FRQFHQWUDWLRQ XS PJ/ )LJXUH &RPSDULVRQ RI 'LVLQIHFWLRQ (IILFDF\ RI &RQWURO DQG PJ / 0% LQ 6XQOLJKW DW PLQXWHV %DVHG RQ $120

PAGE 114

8'/[EDU /'/[EDU *DYJ f§’f§0% &RQH )LJXUH &RPSDULVRQ RI 'LVLQIHFWLRQ (IILFDF\ RI &RQWURO DQG PJ/ 0% LQ 6XQOLJKW DW PLQXWHV %DVHG RQ $120 )LJXUH &RPSDULVRQ RI 'LVLQIHFWLRQ (IILFDF\ RI &RQWURO DQG PJ/ 0% LQ 6XQOLJKW DW PLQXWHV %DVHG RQ $120

PAGE 115

)LJXUH &RPSDULVRQ RI 'LVLQIHFWLRQ (IILFDF\ RI &RQWURO DQG PJ/ 0% LQ 6XQOLJKW DW PLQXWHV %DVHG RQ $120 = '/[EDU /'/[EDU *DYJ f§;f§0% &RQH )LJXUH &RPSDULVRQ RI 'LVLQIHFWLRQ (IILFDF\ RI PJ / DQG PJ/ 0% LQ 6XQOLJKW DW PLQXWHV %DVHG RQ $120 8'/ ? PJ/ *UDQG $YJ /'/ ; PJ/

PAGE 116

r ] 8'/ PJ/ *UDQG $YJ L PU /'/ ; PJ/ 8'/[EDU /'/[EDU *DYJ f§;f§0% &RQH )LJXUH &RPSDULVRQ RI 'LVLQIHFWLRQ (IILFDF\ RI PJ / DQG PJ/ 0% LQ 6XQOLJKW DW PLQXWHV %DVHG RQ $120 R ] '/[EDU /'/[EDU *DYJf§;f§0% &RQHn )LJXUH &RPSDULVRQ RI 'LVLQIHFWLRQ (IILFDF\ RI PJ / DQG PJ/ 0% LQ 6XQOLJKW DW PLQXWHV %DVHG RQ $120 :KHQ WKH GDWD ZHUH YLHZHG JUDSKLFDOO\ )LJXUH f D VLJQLILFDQW FRUUHODWLRQ ZDV VHHQ EHWZHHQ WKH FRQFHQWUDWLRQ RI 0% DQG GLVLQIHFWLRQ ZKLFK ZDV FRQILUPHG E\ OLQHDU UHJUHVVLRQ $W WKH WHVWHG FRQFHQWUDWLRQV DQ LQFUHDVH LQ WKH 0% FRQFHQWUDWLRQ OHG WR D GLUHFW LQFUHDVH LQ WKH HIIHFWLYHQHVV RI GLVLQIHFWLRQ ZLWK WLPH 7KH VWURQJHVW FRUUHODWLRQ ZDV IRXQG ZLWK WKH 0% FRQFHQWUDWLRQ DQG OQ1W1f $ OLQHDU ILW JDYH DQ U RI ZLWK SYDOXHV RI 8'/ ; PJ/ *UDQG $YeB ;, PJ/ '87n /'/

PAGE 117

DQG IRU WKH LQWHUFHSW DQG VORSH UHVSHFWLYHO\ IRU W PLQXWHV )LJXUH f $FKHU DQG -XYHQ f UHSRUWHG WKDW DQ LQFUHDVH LQ 0% FRQFHQWUDWLRQ IURP WR PJ/ FDXVHG DQ LQFUHDVH LQ WKH LQDFWLYDWLRQ RI FROLIRUP LQ ERWK VHZDJH ZDWHU DQG WDS ZDWHU LQ VXQOLJKW 7KH\ DOVR UHSRUWHG WKDW PJ/ RI 5% ZDV UHTXLUHG WR DFKLHYH WKH VDPH GLVLQIHFWLRQ HIIHFW DV PJ/ 0% DOWKRXJK QR UHODWLRQVKLS RI 5% FRQFHQWUDWLRQ DQG GLVLQIHFWLRQ ZDV UHSRUWHG 7KH UHVXOWV IRXQG LQ WKLV H[SHULPHQW ZHUH FRQVLVWHQW ZLWK WKRVH UHSRUWHG E\ $FKHU DQG -XYHQ f ZLWK UHJDUG WR GHVWUXFWLRQ RI ( &ROL E\ 0% )LJXUH )UDFWLRQDO 6XUYLYDO RI ( FROL LQ VXQOLJKW DW W PLQXWHV DV D )XQFWLRQ RI 0% &RQFHQWUDWLRQ %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ (IIHFW RI ,QLWLDO &ROLIRUP 'HQVLW\ $V VKRZQ LQ 7DEOH WKH LQLWLDO FROLIRUP GHQVLW\ YDULHG EURDGO\ EHWZHHQ H[SHULPHQWV 7KH YDULDWLRQV VHHQ DFURVV H[SHULPHQWV ZHUH DOVR SUHVHQW WKRXJK WR D OHVVHU H[WHQW ZLWKLQ HDFK H[SHULPHQWDO VHW

PAGE 118

$QDO\VLV RI WKH GDWD LQGLFDWHG QR VLJQLILFDQW FRUUHODWLRQ RI LQLWLDO FROLIRUP GHQVLW\ ZLWK IUDFWLRQDO VXUYLYDO 1W1f DW WLPH W IRU HLWKHU G\H 7KH W\SLFDO UHODWLRQVKLS EDVHG RQ WKH PHDQ YDOXHV IURP DOO H[SHULPHQWV LV VKRZQ IRU ERWK 0% )LJXUH f DQG 5% )LJXUH f )LJXUH /HDVW 6TXDUHV 5HJUHVVLRQ RI 1DWXUDO /RJDULWKP RI )UDFWLRQDO 6XUYLYDO RI ( FROL DV D )XQFWLRQ RI 0% &RQFHQWUDWLRQ DW W 0LQXWHV SYDOXHV IRU LQWHUFHSW DQG FRHIILFLHQW DUH DQG UHVSHFWLYHO\f )LJXUH ,QLWLDO &RORQ\ &RXQW YV )UDFWLRQDO 6XUYLYDO RI ( FROL DW W 0LQXWHV IRU 0% ([SHULPHQWV

PAGE 119

)LJXUH ,QLWLDO &RORQ\ &RXQW YV )UDFWLRQDO 6XUYLYDO RI ( FROL DW W 0LQXWHV LQ 5% ([SHULPHQWV &RUUHODWLRQ RI LQLWLDO FROLIRUP GHQVLW\ ZLWK GLVLQIHFWLRQ UDWH KDV QRW EHHQ UHSRUWHG LQ WKH OLWHUDWXUH IRU G\H SKRWRVHQVLWL]DWLRQ 7KH LQGLFDWLRQ IURP WKH UHVXOWV RI WKHVH H[SHULPHQWV ZDV WKDW QR WUXH FRUUHODWLRQ H[LVWV 7KLV LV FRQVLVWHQW ZLWK WKH ILQGLQJV RI 7L SKRWRFDWDO\VLV UHSRUWHG LQ WKLV FKDSWHU 5HDFWRU (IILFDF\ $IWHU QXPHURXV LWHUDWLRQV RI UHDFWRU FRQILJXUDWLRQV ZLWK QR HYLGHQFH RI GHVWUXFWLRQ RI FKHPLFDO FRQWDPLQDQWV WKH TXHVWLRQ RI WKH HIIHFWLYHQHVV RI WKH UHDFWRU DQGRU UHDFWLRQ SURFHVV DURVH ([DPLQDWLRQ RI WKH SUREOHP OHG WR VHYHUDO SRVVLELOLWLHV IRU LQHIIHFWLYHQHVV RI WKH UHDFWRU RU UHDFWLRQ SURFHVV f G\H FRQFHQWUDWLRQV ZHUH QRW FRQVLVWHQW ZLWK SUHYLRXV ZRUN f UHDFWRU ZDV QRW WUDQVSDUHQW WR OLJKW RI DSSURSULDWH ZDYHOHQJWKV f G\H XVHG ZDV QRW SKRWRDFWLYH

PAGE 120

&RQVLVWHQF\ ZLWK SUHYLRXV ZRUN ,Q RUGHU WR SURYLGH FRQILGHQFH LQ WKH UHDFWRU V\VWHP D VHW RI H[SHULPHQWV ZDV FRQGXFWHG ZKLFK UHSURGXFHG UHVXOWV IRXQG LQ WKH OLWHUDWXUH (LVHQEHUJ HW DO f ZHUH DEOH WR GHVWUR\ EURPDFLO LQ ZDVWHZDWHU ZLWK 0% LQ VXQOLJKW XQGHU D YDULHW\ RI S+ FRQGLWLRQV XVLQJ VHYHUDO 0% FRQFHQWUDWLRQV :KLOH WKHVH H[SHULPHQWV GLG QRW DWWHPSW WR GXSOLFDWH WKH ZRUN FRQGXFWHG E\ (LVHQEHUJ HW DO WKHUH ZDV D GHVLUH WR HQVXUH WKDW VLPLODU UHVXOWV FRXOG EH REWDLQHG XVLQJ WKH SKRWRVHQVLWL]DWLRQ UHDFWRU GHVLJQ 3KRWRVHQVLWL]DWLRQ RI ZDWHU FRQWDLQLQJ EURPDFLO ZLWK PJ/ 0% UHVXOWHG LQ D b UHGXFWLRQ IURP SSE sf WR SSE sf DIWHU IRXU KRXUV RI LUUDGLDWLRQ LQ VXQOLJKW YHUVXV D b UHGXFWLRQ WR SSE IRU WKH FRQWURO UHDFWRU ZLWK QR 0% 7UDQVSDUHQF\ RI UHDFWRU 'LVLQIHFWLRQ RI ( FROL RFFXUUHG LQ DOO UHDFWRUV WHVWHG LQ WKH VXQOLJKW EXW QRW LQ WKH UHDFWRUV WHVWHG LQ WKH GDUN LQ ERWK WKH 0% DQG 5% H[SHULPHQWV 7KLV GLVLQIHFWLRQ RFFXUUHG DOEHLW DW GLIIHUHQW UDWHV ERWK LQ WKH SUHVHQFH DQG DEVHQFH RI G\H :HUH WKH UHDFWRUV QRW WUDQVSDUHQW WR VXQOLJKW WKHUH ZRXOG KDYH EHHQ QR GLIIHUHQFH LQ GLVLQIHFWLRQ EHWZHHQ WKH UHDFWRUV UXQ LQ VXQOLJKW DQG WKRVH KHOG LQ WKH GDUN FKDPEHU 3KRWRDFWLYLW\ RI G\HV 2EVHUYDWLRQ RI WKH UHDFWRUV LQ VXQOLJKW SURYLGHG YLVXDO HYLGHQFH RI WKH SKRWRDFWLYLW\ RI WKH G\HV 0HWK\OHQH EOXH DQG WR D OHVVHU H[WHQW URVH EHQJDO EHJDQ WR VHOIGHVWUXFW LQ VXQOLJKW 7KH GLVDSSHDUDQFH RI WKH G\H VXJJHVWHG FOHDUO\ WKDW WKH G\H ZDV SKRWRDFWLYH DV WKLV ZDV WKH EHKDYLRU DQWLFLSDWHG E\ WKH SKRWRDFWLYH G\H 6FKODXFK f ,QGHHG WKH IDFW WKDW WKH G\H ZRXOG

PAGE 121

HYHQWXDOO\ UHDFW ZLWK LWVHOI ZDV RQH RI WKH IHDWXUHV ZKLFK PDGH LW DWWUDFWLYH DV D ZDWHU WUHDWPHQW SKRWRFKHPLFDO 6XPPDU\ 2I WKH V\VWHPV WHVWHG LQ WKHVH H[SHULPHQWV SKRWRVHQVLWL]HG GLVLQIHFWLRQ ZLWK PHWK\OHQH EOXH ZDV WKH RQO\ SURFHVV ZKLFK \LHOGHG SRVLWLYH UHVXOWV :KLOH GLVLQIHFWLRQ GLG RFFXU LQ WKH SUHVHQFH RI URVH EHQJDO LW GLG QRW HQKDQFH WKH UHDFWLRQ WR DQ\ GHJUHH 7KHUH ZHUH QR LQGLFDWLRQV DW DOO WKDW SKRWRVHQVLWL]DWLRQ RFFXUUHG ZLWK UHVSHFW WR WKH FKHPLFDO FRQWDPLQDQWV ZLWK HLWKHU PHWK\OHQH EOXH RU URVH EHQJDO &RQVHTXHQWO\ ZLWK WKH H[FHSWLRQ RI PHWK\OHQH EOXH SKRWRVHQVLWL]HG GLVLQIHFWLRQ WKHVH SURFHVVHV GLG QRW VKRZ SURPLVH IRU DSSOLFDWLRQ ,QLWLDO UHVXOWV LQGLFDWH SURPLVH IRU PHWK\OHQH EOXH GLVLQIHFWLRQ KRZHYHU EHIRUH WKH SURFHVV LV YLDEOH DGGLWLRQDO DSSOLFDWLRQ VSHFLILF UHVHDUFK LV UHTXLUHG 7KH SRVLWLYH DVSHFWV ZHUH S+ DQG GRVDJH RI 0% 6LQFH S+ ZDV QRW D VLJQLILFDQW IDFWRU QR DGMXVWPHQWV ZRXOG EH UHTXLUHG IRU XVH RI 0% DV D GLVLQIHFWDQW :KLOH GRVDJH ZDV RI VRPH LPSRUWDQFH LW ZRXOG QRW UHTXLUH WLJKW FRQWURO 2QH GUDZEDFN WR WKH XVH RI 0% DV D GLVLQIHFWDQW IRU GULQNLQJ ZDWHU ZDV WKH SUHVHQFH RI FRORU :KLOH DOO RI WKH 0% GLVDSSHDUHG IURP UHDFWRUV DW WKH ORZHU GRVDJHV E\ WKH HQG RI D IRXU KRXU H[SHULPHQW VRPH VOLJKW FRORU ZDV VWLOO YLVLEOH DW WKH KLJKHU GRVDJHV DQG PJ/f 7KH FRORU LQ WKH ZDWHU ZRXOG OLNHO\ EH D GHWHUUHQW IRU XVH DV GULQNLQJ ZDWHU SDUWLFXODUO\ LI WKH ZDWHU ZDV FOHDU SULRU WR WUHDWPHQW ,Q PRVW FXOWXUHV WKHUH LV DQ H[SHFWDWLRQ WKDW LQJHVWHG VXEVWDQFHV EH YLVXDOO\ DSSHDOLQJ LQFOXGLQJ FRORUOHVV ZDWHU

PAGE 122

0RVW LPSRUWDQWO\ KRZHYHU LQ RUGHU IRU WKLV SURFHVV WR EH GHWHUPLQHG IHDVLEOH IRU DSSOLFDWLRQ LW PXVW EH WHVWHG RYHU D PXFK EURDGHU UDQJH RI PLFURELRORJLFDO FRQWDPLQDQWV 6LWH VSHFLILF WHVWLQJ LV D PXVW DV VSHFLHV PD\ GLIIHU IURP RQH ORFDOH WR WKH RWKHU $GGLWLRQDOO\ WKH SURFHVV ZRXOG QHHG WR EH WHVWHG IRU LQDFWLYDWLRQ RI YLUXVHV DQG F\VWV :KLOH WKH DGGLWLRQ RI 0% GLG LQFUHDVH WKH UDWH RI GLVLQIHFWLRQ RYHU VXQOLJKW DORQH WKH DGYDQWDJH PD\ QRW EH HQRXJK WR MXVWLI\ WKH DGGLWLRQ RI D IRUHLJQ VXEVWDQFH LQWR D GULQNLQJ ZDWHU V\VWHP QR PDWWHU KRZ EHQLJQ 3KRWRFDWDOYVLV ZLWK 7LWDQLXP 'LR[LGH /DERUDWRU\ H[SHULPHQWV ZHUH FRQGXFWHG WR GHWHUPLQH WKH HIIHFWV RI 7L FRQFHQWUDWLRQ DQG S+ RQ WKH GHVWUXFWLRQ RI EDFWHULD (VFKHULFKLD FROL 3VHXGRPRQDV DHUXJLQRVD DQG 6HUUDWLD PDUFHVFHQVf DQG DURPDWLF K\GURFDUERQV EHQ]HQH WROXHQH DQG [\OHQHf XQGHU 89 OLJKW $V GHVFULEHG LQ &KDSWHU WKH H[SHULPHQWV ZHUH FRQGXFWHG XQGHU WKH IROORZLQJ FRQGLWLRQV f 89 ODPSV DQG GDUN f S+ DQG S+ f DQG b 7L ,QLWLDOO\ WZR H[SHULPHQWDO VHWV ZHUH FRQGXFWHG WR HQVXUH UHSURGXFLELOLW\ RI WKH UHVXOWV $ FRPSOHWH VHW RI H[SHULPHQWV ZHUH UHSUHVHQWHG E\ WZR UHDFWRUV IRU HDFK RI WKH VHWV RI FRQGLWLRQV KLJKOLJKWHG DERYH IRU D WRWDO RI UHDFWRUV SHU VHW (LJKW UHDFWRUV ZHUH UXQ DW D WLPH HYHU\ WZR UHDFWRUV FRQWDLQLQJ D GLIIHUHQW FRQFHQWUDWLRQ RI 7L ZLWK DOO RWKHU SDUDPHWHUV WKH VDPH $ WKLUG VHW ZDV FRQGXFWHG WR FROOHFW DGGLWLRQDO

PAGE 123

FKHPLFDO DQDO\VLV GDWD KRZHYHU QR PLFURELRORJLFDO GDWD ZHUH FROOHFWHG IURP WKLV VHW 7KH FKHPLFDO DQDO\VLV UHVXOWV ZHUH UHSRUWHG IURP WKH ILQDO VHW DQG WKH GLVLQIHFWLRQ UHVXOWV ZHUH UHSRUWHG IURP WKH ILUVW WZR VHWV ,Q WKH ILUVW H[SHULPHQWDO VHW VDPSOHV ZHUH WDNHQ GLUHFWO\ RQWR DJDU SODWHV IURP HDFK UHDFWRU DW WLPH LQWHUYDOV RI DQG PLQXWHV 7ZR UHSOLFDWHV ZHUH SODWHG IURP HDFK VDPSOH IRU LPPHGLDWH PLFURELRORJLFDO DQDO\VLV $ VHFRQG VDPSOH ZDV WDNHQ DW DQG PLQXWHV GLUHFWO\ LQWR KHDGVSDFH YLDOV UHIULJHUDWHG DQG VDYHG IRU FKHPLFDO DQDO\VLV ,Q WKH VHFRQG H[SHULPHQWDO VHW VDPSOHV ZHUH WDNHQ IURP WKH UHDFWRU DW WLPH LQWHUYDOV RI DQG PLQXWHV ZLWK WKH VDPH WUHDWPHQW DV VWDWHG DERYH 7KH VDPSOHV IRU FKHPLFDO DQDO\VLV ZHUH WDNHQ DW DQG PLQXWHV GLUHFWO\ LQWR KHDGVSDFH YLDOV UHIULJHUDWHG DQG VDYHG IRU FKHPLFDO DQDO\VLV 7KH WKLUG VHW RI H[SHULPHQWV ZDV FRQGXFWHG EHFDXVH FRPSOHWH GHVWUXFWLRQ RI DOO FKHPLFDO FRPSRQHQWV ZDV REVHUYHG LQ DOPRVW DOO RI WKH VHFRQG VDPSOHV LQ HDFK RI WKH ILUVW WZR H[SHULPHQWDO VHWV PDNLQJ WUHQG GHWHFWLRQ LPSRVVLEOH 6DPSOHV ZHUH WDNHQ DW DQG PLQXWHV DQG UHIULJHUDWHG LPPHGLDWHO\ )RU WKH H[SHULPHQWV FRQGXFWHG XQGHU 89 ODPSV WKH ODPS LQWHQVLW\ ZDV PHDVXUHG DQG UHFRUGHG LQ WKH OLJKW FKDPEHU WR EH DSSUR[LPDWHO\ :P ZKHQ WKH FKDPEHU GRRU ZDV FORVHG 7KH GDUN H[SHULPHQWV ZHUH FRQGXFWHG LQ WKH VDPH FKDPEHU ZLWK WKH OLJKWV WXUQHG RII 'LVLQIHFWLRQ UHVXOWV ZHUH UHSRUWHG DV DJJUHJDWH FRORQ\ IRUPLQJ XQLWV DQG IUDFWLRQDO VXUYLYDO RI WRWDO EDFWHULRORJLFDO FRORQLHV IRU DOO VSHFLHV SUHVHQW 5HVXOWV IRU GHWR[LILFDWLRQ RI DURPDWLF K\GURFDUERQ FRPSRXQGV

PAGE 124

ZHUH UHSRUWHG E\ LQGLYLGXDO FRPSRQHQW ZLWK WKH H[FHSWLRQ RI P[\OHQH DQG S[\OHQH 7KH WZR LVRPHUV HOXWHG WRR FORVHO\ IRU VHSDUDWH SHDN LGHQWLILFDWLRQ WKHUHIRUH WKH UHVXOWV ZHUH UHSRUWHG DV RQH FRPSRQHQW 7KH GDWD DV ZHOO DV WKH LPSDFW RI HDFK RI WKH PHDVXUHG DQG FRQWUROOHG SDUDPHWHUV DUH H[SORUHG LQ PRUH GHWDLO EHORZ DQG UHVXOWV DUH FRPSDUHG ZLWK SXEOLVKHG GDWD RQ 7L SKRWRFDWDO\VLV RI %7(; DQG 7L SKRWRFDWDO\]HG GLVLQIHFWLRQ *HQHUDO &RPPHQWV $ERXW ([SHULPHQWDO 'DWD 7KH DYHUDJH VWDQGDUG GHYLDWLRQ RI WKH GLVLQIHFWLRQ GDWD ZDV b DV FDOFXODWHG IURP IUDFWLRQDO VXUYLYDO YDOXHV 3ODWHV RQ ZKLFK WKH FRORQLHV ZHUH QRW LQGLYLGXDOO\ LGHQWLILDEOH DQG WKRVH ZLWK VHYHUH FRQWDPLQDWLRQ ZHUH QRW FRXQWHG ZKLFK UHVXOWHG LQ WKH ORVV RI DSSUR[LPDWHO\ b RI WKH SODWHV LQ D JLYHQ H[SHULPHQWDO VHW 7KH GLIILFXOWLHV HQFRXQWHUHG LQ PLFURELRORJLFDO DQDO\VLV WKDW UHVXOWHG LQ VXFK D KLJK ORVV UDWH DQG ODUJH VWDQGDUG GHYLDWLRQ ZHUH DWWULEXWHG WR WKUHH IDFWRUV f XVH RI PL[HG FXOWXUHV f H[WUHPHO\ KLJK LQLWLDO FRORQ\ GHQVLWLHV DQG f LQH[SHULHQFH RI WKH H[SHULPHQWHU LQ PLFURELRORJLFDO WHFKQLTXHV ,Q WKH ILUVW H[SHULPHQWDO VHW YHU\ IHZ YDOXHV ZHUH REWDLQHG IURP WKH LQWHUPHGLDWH VDPSOHV DW DQG PLQXWHV 7KH FRORQ\ GHQVLWLHV ZHUH PXFK WRR KLJK IRU GLIIHUHQWLDWLRQ RI WKH GDWD 7KH DYHUDJH VWDQGDUG GHYLDWLRQV RI WKH GHWR[LILFDWLRQ GDWD UDQJHG IURP b RI WKH DYHUDJH YDOXHV ZLWK R;\OHQH KDYLQJ WKH KLJKHVW 1R VDPSOH ORVV RFFXUUHG IRU GHWR[LILFDWLRQ &KHPLFDO VDPSOHV ZHUH DQDO\]HG ZLWKLQ DSSUR[LPDWHO\ WZR ZHHNV RI WKH H[SHULPHQW

PAGE 125

6WDWLVWLFDO 7UHDWPHQW RI WKH 'DWD 7KH GDWD ZHUH WUHDWHG DV RXWOLQHG SUHYLRXVO\ LQ WKH VHFWLRQ RQ G\H SKRWRVHQVLWL]DWLRQ 1R VSHFLILF DGMXVWPHQWV ZHUH UHTXLUHG IRU WKH 7L GLVLQIHFWLRQ GDWD ZLWK WKH H[FHSWLRQ RI QRUPDOL]LQJ QHJDWLYH SHUFHQWDJHV RI GHVWUXFWLRQ WR ]HUR 7KHUH ZHUH WZR VDPSOHV LQ FKHPLFDO GDWD WKRXJKW WR EH RXWOLHUV KRZHYHU VLQFH RQO\ WZR UHSOLFDWHV H[LVWHG RXWOLHU GHWHFWLRQ ZDV QRW SRVVLEOH 3UHVHQWDWLRQ RI 5HVXOWV DQG ,GHQWLILFDWLRQ RI *HQHUDO 7UHQGV 7L SKRWRFDWDO\VLV ZDV HIIHFWLYH IRU VLPXOWDQHRXV GHWR[LILFDWLRQ RI DURPDWLF K\GURFDUERQV DQG GLVLQIHFWLRQ RI WKH PL[HG EDFWHULDO VSHFLHV WHVWHG RYHU D UDQJH RI FRQGLWLRQV 7KH PRVW GHVWUXFWLRQ RI ERWK EDFWHULRORJLFDO DQG FKHPLFDO FRQWDPLQDQWV RFFXUUHG LQ WKH SUHVHQFH RI 89 OLJKW ZLWK b 7L KRZHYHU GLVLQIHFWLRQ VHHPHG WR EH PRUH HIIHFWLYH DW D S+ RI DQG GHWR[LILFDWLRQ DSSHDUHG WR IDUH EHWWHU DW S+ &RPSOHWH GLVLQIHFWLRQ ZDV DFKLHYHG LQ RQH KRXU ZLWK b 7L DW S+ &RPSOHWH GLVLQIHFWLRQ ZLWKLQ RQH KRXU ZDV QRW REVHUYHG LQ DQ\ RWKHU UHDFWRU ZKHUH SKRWRFDWDO\WLF GHVWUXFWLRQ RI FIX UDQJHG IURP b ZLWK b 7L DW S+ WR b REVHUYHG ZLWK ERWK b DW S+ )LJXUH Df DQG b 7L DW S+ )LJXUH Ef &RPSOHWH GLVLQIHFWLRQ ZDV DFKLHYHG E\ IRXU KRXUV ZLWK ERWK b DQG b 7L DW S+ /HVV WKDQ b UHGXFWLRQ RI FIX ZDV DWWDLQHG LQ WKH FRQWURO UHDFWRUV E\ IRXU KRXUV RI LUUDGLDWLRQ XQGHU WKH 89 ODPSV DQG QR SHUVLVWHQW GHVWUXFWLRQ ZDV REVHUYHG LQ WKH GDUN UHDFWRUV HLWKHU ZLWK RU ZLWKRXW 7L 7KH GDWD DUH SUHVHQWHG DV PHDQ IUDFWLRQDO VXUYLYDO RI EDFWHULD LQ 7DEOH

PAGE 126

Df ( &2 UD F R fF UD 7LPH PLQXWHVf b f§f§ b b b Ef 7L2 &RQH b b b b )LJXUH 7L 3KRWRFDWDO\WLF 'LVLQIHFWLRQ LQ 89 /LJKW :Pf (UURU %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ Df S+ Ef S+ 7KH SUHVHQFH RI 7L LQ UHDFWRUV LUUDGLDWHG XQGHU XOWUDYLROHW ODPSV UHVXOWHG LQ VRPH GHVWUXFWLRQ RI DOO RI WKH DURPDWLF K\GURFDUERQV WHVWHG DW DOO FRQFHQWUDWLRQV 3KRWRFDWDO\WLF GHVWUXFWLRQ RI DOO RI WKH FRPSRQHQWV WR EHORZ WKH GHWHFWDEOH OLPLWV ZDV REVHUYHG LQ RQH UHDFWRU UHDFWRU E\ PLQXWHV 7KLV UHDFWRU FRQWDLQHG b 7L DQG ZDWHU DGMXVWHG WR D S+ RI )LJXUH LV D JUDSKLFDO UHSUHVHQWDWLRQ RI WKLV UHDFWRU DQG LWV UHGXQGDQW UHDFWRU UHDFWRU f ZKLFK ZDV WUHDWHG ZLWK WKH VDPH FRQGLWLRQV $Q H[DPLQDWLRQ RI 7DEOH VKRZV WKDW SKRWRFDWDO\WLF GHWR[LILFDWLRQ WRRN SODFH XQGHU DOO FRQGLWLRQV KRZHYHU E\ PLQXWHV RQO\ b

PAGE 127

GHVWUXFWLRQ RI EHQ]HQH ZDV VHHQ ZLWK b 7L DW S+ DQG RQO\ b DW S+ )LJXUH f 7KHVH YDOXHV DUH IDLUO\ FRQVLVWHQW IRU DOO RI WKH FRPSRQHQWV DV VKRZQ LQ )LJXUHV DQG 9LUWXDOO\ QR GHVWUXFWLRQ RI DQ\ RI WKH FRPSRQHQWV LQ WKH DEVHQFH RI 7L RU LQ WKH DEVHQFH RI OLJKW ZDV REVHUYHG 7DEOH 0HDQ )UDFWLRQDO 6XUYLYDO RI %DFWHULD LQ 7L ([SHULPHQWV 89 /LJKW S+ 89 /LJKW S+ 'DUN S+ 'DUN S+ &RQWURO 0HDQ 6WG 'HY 0HDQ 6WG 'HY 0HDQ 6WG 'HY 0HDQ 6WG 'HY QQ 11 1 1R 11 11 b 7L 11 11 1RR1R 11 1 T1 b 7L QQ 11 1 IL1 T 1 1R 11 b 7L2 1L1 11 1HR1R 11 B 1T1T ‘‘YYYYYYYYYYr ‘YYYYYYYYYYYY f99999n999999 9999999999

PAGE 128

7DEOH 0HDQ &RQFHQWUDWLRQ RI %7(; SSEf LQ 7L ([SHULPHQWV 9::99999999999A\99999$9$::999$9$9999999999999999999999999$9:99999:$99999999999999 %(1=(1( 89 /LJKW S+ 89 /LJKW S+ 'DUN S+ 'DUN S+ b WR $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY PLQ 3 PLQ L PLQ PLQ PLQ b 7L2 M $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY 2PLQ  PLQ PLQ 6 PLQ PLQ b 7L2 I $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY PLQ PLQ PLQ PLQ PLQ / m b 7L2 $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY PLQ c PLQ PLQ PLQ M PLQ L 72/8(1( 89 /LJKW S+ 89 /LJKW S+ 'DUN S+ 'DUN S+ b 7L2 @ M $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY PLQ PLQ PLQ ? PLQ  PLQ b 7L $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY PLQ PLQ PLQ PLQ PP b 7L2 $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY PLQ PLQ PLQ PLQ A PLQ b 7L2 M $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY $YJ 6WG 'HY 2PLQ PLQ PLQ PLQ PLQ

PAGE 129

7DEOH FRQWLQXHG 0t3;
PAGE 130

7LPH PLQXWHVf 5HDFWRU D 5HDFWRU )LJXUH 'HVWUXFWLRQ RI %HQ]HQH LQ 5HDFWRUV DQG DV D )XQFWLRQ RI 7LPH 5HDFWRUV &RQWDLQHG b 7L DQG ZHUH ,UUDGLDWHG IRU PLQXWHV XQGHU 89 /DPSV :Pf Df 7L &RQH f§ff§&RQWURO rb f§$f§b ;b Ef R 7LPH PLQXWHVf )LJXUH %HQ]HQH &RQFHQWUDWLRQ LQ 89 /LJKW :Pf DV D )XQFWLRQ RI 7LPH DQG 7L &RQFHQWUDWLRQ (UURU %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ Df S+ Ef S+

PAGE 131

,OO Df 7L &RQH &RQWURO f§b f§$f§b rb Ef 7L &RQH &RQWURO b b b )LJXUH 7ROXHQH &RQFHQWUDWLRQ LQ 89 /LJKW :Pf DV D )XQFWLRQ RI 7LPH DQG 7L &RQFHQWUDWLRQ (UURU %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ Df S+ Ef S+ ,QLWLDO REVHUYDWLRQ RI ERWK WKH GLVLQIHFWLRQ DQG GHWR[LILFDWLRQ GDWD IRU 7L SKRWRFDWDO\VLV VXJJHVWHG WKDW WKH SURFHVV GLVSOD\HG VRPH HIILFDF\ 7KHUHIRUH WKHVH GDWD ZHUH VHOHFWHG IRU DGGLWLRQDO DQDO\VLV E\ $120 )RU GLVLQIHFWLRQ WKH IUDFWLRQDO VXUYLYDO RI FRORQ\ IRUPLQJ XQLWV DIWHU PLQXWHV ZHUH VHOHFWHG 7KH QRUPDOL]HG FRQFHQWUDWLRQV RI EHQ]HQH DQG WROXHQH DIWHU DQG PLQXWHV ZHUH XVHG IRU WKH GHWR[LILFDWLRQ $120 $Q DOHYHO RI ZDV VHOHFWHG IRU DOO RI WKH GDWD SUHVHQWHG

PAGE 132

Df 7c &RQH f§2 &RQWURO } b f§IWf§b r b )LJXUH PtS ;\OHQH &RQFHQWUDWLRQ LQ 89 /LJKW :Pf DV D )XQFWLRQ RI 7LPH DQG 7L &RQFHQWUDWLRQ (UURU %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ Df S+ Ef S+ 'DWD $QDO\VLV EY $120 $120 ZDV XVHG WR H[DPLQH WKH FRQWUROOHG SDUDPHWHUV IRU WKH H[SHULPHQWV SUHVHQFH RU DEVHQFH RI 89 OLJKW S+ OHYHO DQG 7L FRQFHQWUDWLRQ %DVHG XSRQ WKH $120 WKH SUHVHQFH DQG DEVHQFH RI OLJKW DQG WKH FRQFHQWUDWLRQ RI ERWK ZHUH GHHPHG VLJQLILFDQW IDFWRUV IRU ERWK GLVLQIHFWLRQ DQG GHWR[LILFDWLRQ 7KH JUDQG DYHUDJH FDOFXODWHG IRU EDFWHULD DV IUDFWLRQDO VXUYLYDO ZDV sf 7KH JUDQG DYHUDJHV FDOFXODWHG IRU EHQ]HQH ZHUH

PAGE 133

sf DQG sf IRU DQG PLQXWHV UHVSHFWLYHO\ 7KH UHVSHFWLYH YDOXHV IRU WROXHQH IRU DQG PLQXWHV ZHUH s f DQG sf 7KH JHQHUDO YDOXHV FDOFXODWHG IRU XVH LQ $120 DUH JLYHQ LQ 7DEOH 7DEOH &DOFXODWHG $120 9DOXHV IRU 7L 3KRWRFDWDO\VLV *UDQG $YHUDJH ; $YJ 6WG 'HY $YJ 5DQJH (VWLPDWHG 6';f %DFWHULD # W PLQ %HQ]HQH # W PLQ %HQ]HQH # W PLQ 7ROXHQH # W PLQ 7ROXHQH #W PLQ (IIHFW RI /LJKW 89 OLJKW ZDV PHDVXUHG LQ WKH ODE H[SHULPHQWV WR EH DSSUR[LPDWHO\ :P D YDOXH VOLJKWO\ OHVV WKDQ WKH PHDVXUHG YDOXHV RI 89 OLJKW DYDLODEOH RQ D FOHDU GD\ 7KHUHIRUH WKH GDWD JDWKHUHG LQ WKH ODERUDWRU\ H[SHULPHQWV XQGHU 89 OLJKW FDQ EH H[WUDSRODWHG WR VXQOLJKW 3DWHO f DQG :HL HW DO f UHSRUWHG GLVLQIHFWLRQ HIILFDF\ LQ VXQOLJKW WR EH JUHDWHU WKDQ LQ 89 OLJKW 7KH GDWD IURP HDFK RI WKH VDPSOH VHWV ZHUH VHSDUDWHG LQWR WZR VXEJURXSV EDVHG XSRQ WKH DEVHQFH DQG SUHVHQFH RI OLJKW 7KLV JDYH DQ Q YDOXH RI VDPSOHV SHU VXEJURXS DQG D N YDOXH RI VXEJURXSV IRU HDFK VDPSOH VHW 7KH Q DQG N YDOXHV ZHUH XVHG WR GHWHUPLQH WKH GHJUHHV RI IUHHGRP Y ELDV FRUUHFWLRQ IDFWRU Gf DQG VXEVHTXHQWO\ WKH $120 FULWLFDO YDOXH + IURP WKH ELDV FRUUHFWLRQ IDFWRU DQG FULWLFDO YDOXHV WDEOHV :KHHOHU f 7KH FRUUHVSRQGLQJ YDOXHV ZHUH Y G DQG IRU DQ D

PAGE 134

+ 7KHVH YDOXHV DORQJ ZLWK WKH YDOXHV LQ 7DEOH ZHUH XVHG WR GHWHUPLQH WKH GHFLVLRQ OLPLWV XVLQJ (TXDWLRQV WR )RU HDFK VXEJURXS LQ WKLV FDVH 89 OLJKW DQG GDUN DQ DYHUDJH ZDV FDOFXODWHG DQG SORWWHG RQ D FKDUW ZLWK WKH GHFLVLRQ OLPLWV 7KH VXEJURXS DYHUDJHV DUH VKRZQ LQ 7DEOH $V QRWHG SUHYLRXVO\ D VXEJURXS DYHUDJH RXWVLGH RI WKH GHFLVLRQ OLPLWV LQGLFDWHG D SDUDPHWHU ZDV VWDWLVWLFDOO\ VLJQLILFDQW $V VKRZQ EHORZ WKH DEVHQFH RU SUHVHQFH RI OLJKW ZDV IRXQG WR EH VWDWLVWLFDOO\ VLJQLILFDQW IRU ERWK GLVLQIHFWLRQ DQG GHWR[LILFDWLRQ 7DEOH 89 /LJKW 6XEJURXS $YHUDJHV IRU 7L 3KRWRFDWDO\VLV 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI %DFWHULD DQG 1RUPDOL]HG &KHPLFDO &RQFHQWUDWLRQ 6XEJURXS 89 /LJKW :Pf 'DUN ; 6 5 ; 6 5 %DFWHULD # W PLQ %HQ]HQH # W PLQ %HQ]HQH # W PLQ 7ROXHQH # W PLQ 7ROXHQH # W PLQ $V GHPRQVWUDWHG E\ WKH $120 FKDUW )LJXUH f WKH SUHVHQFH RI 89 OLJKW KDG DQ DSSUHFLDEOH LPSDFW RQ GLVLQIHFWLRQ 7KLV UHODWLRQVKLS LV VKRZQ JUDSKLFDOO\ LQ )LJXUH $V VKRZQ LQ 7DEOH WKHUH ZDV VRPH GHVWUXFWLRQ RI EDFWHULD LQ WKH SUHVHQFH RI OLJKW DQG WKH DEVHQFH RI 7L ZLWK 11 YDOXHV RI sf DQG sf IRU S+ DQG S+ UHVSHFWLYHO\ 7KLV ZDV QRW XQH[SHFWHG DV WKH EDFWHULFLGDO HIIHFWV RI ERWK 89 OLJKW 2OLYHU DQG &DUH\ 6HYHULQ HW DO :ROIH f DQG VXQOLJKW $FUD HW DO )XMLRND DQG

PAGE 135

1DULNDZD *DPHVRQ DQG 6D[RQ f LQ DTXHRXV V\VWHPV KDYH EHHQ GHPRQVWUDWHG )LJXUH 6LJQLILFDQFH RI 89 /LJKW :Pf %DVHG RQ $120 RQ %DFWHULD LQ 7L ([SHULPHQWV DW 0LQXWHV Ef )LJXUH 6LJQLILFDQFH RI 89 /LJKW :Pf %DVHG RQ $120 RQ %HQ]HQH LQ 7L ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV

PAGE 136

)LJXUH 6LJQLILFDQFH RI 89 /LJKW :Pf %DVHG RQ $120 RQ 7ROXHQH LQ 7L ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV 89 /LJKW 'DUN )LJXUH (IIHFW RI 89 /LJKW :Pf RQ )UDFWLRQDO 6XUYLYDO RI %DFWHULD LQ $OO 5HDFWRUV LQ 7L ([SHULPHQWV %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ

PAGE 137

(IIHFW RI S+ $V ZDV GRQH IRU HYDOXDWLRQ RI WKH HIIHFW RI VXQOLJKW WKH GDWD IURP HDFK VDPSOH VHW ZHUH VHSDUDWHG LQWR WZR VXEJURXSV EDVHG XSRQ WKH S+ YDOXH RI RU 6LQFH N DQG Q ZHUH WKH VDPH DQG WKH VDPH DOHYHO ZDV XVHG WKH YDOXHV IRU Y Gr DQG + ZHUH DOVR WKH VDPH $JDLQ WKHVH YDOXHV DORQJ ZLWK WKH YDOXHV LQ 7DEOH ZHUH XVHG WR GHWHUPLQH WKH GHFLVLRQ OLPLWV XVLQJ (TXDWLRQV WR )RU HDFK VXEJURXS LQ WKLV FDVH S+ DQG S+ DQ DYHUDJH ZDV FDOFXODWHG DQG SORWWHG RQ D FKDUW ZLWK WKH GHFLVLRQ OLPLWV 7KH VXEJURXS DYHUDJHV IRU S+ DUH VKRZQ LQ 7DEOH DQG WKH $120 FKDUWV DUH VKRZQ LQ )LJXUHV WR 7DEOH S+ 6XEJURXS $YHUDJHV IRU 7L 3KRWRFDWDO\VLV 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI %DFWHULD DQG 1RUPDOL]HG &KHPLFDO &RQFHQWUDWLRQ 6XEJURXS S+ S+ ; V 5 ; 6 5 %DFWHULD # W PLQ %HQ]HQH # W PLQ %HQ]HQH # W PLQ 7ROXHQH # W PLQ 7ROXHQH # W PLQ

PAGE 138

Q 8'/ A S+ *UDQG $YJ = S+ /'/ 8'/[EDU /'/[EDU *DYJ f§Af§S+ )LJXUH 6LJQLILFDQFH RI S+ %DVHG RQ $120 WR %DFWHULD 'HVWUXFWLRQ LQ 7L ([SHULPHQWV DW 0LQXWHV $120 GHPRQVWUDWHG WKDW DW WKH OHYHOV WHVWHG S+ KDG QR VLJQLILFDQW HIIHFW RQ WKH GHVWUXFWLRQ UDWH RI WKH PL[HG EDFWHULD VSHFLHV ( FROL 3VHXGRPRQDV DHUXJLQRVD DQG 6HUUDWLD PDUFHVFHQV 7KHVH ILQGLQJV DUH FRQVLVWHQW ZLWK WKH ILQGLQJV RI %ORFN HW DO f ZKR VWXGLHG WKH HIIHFW RI S+ RQ WKH LQDFWLYDWLRQ RI 6HUUDWLD PDUFHVFHQV DQG UHSRUWHG WKDW DFLGLF DQG QHXWUDO S+ YDOXHV IURP KDG QR SHUFHSWLEOH LPSDFW RQ GLVLQIHFWLRQ HIILFDF\ ([DPLQDWLRQ RI WKH FKDUWV DERYH VXJJHVWHG WKDW $120 WHVWV ZHUH VRPHZKDW LQFRQFOXVLYH IRU GHWR[LILFDWLRQ 7KH GDWD VXJJHVWHG WKDW S+ FRXOG EH VWDWLVWLFDOO\ VLJQLILFDQW KRZHYHU WKH SUR[LPLW\ RI VXEJURXS DYHUDJHV SDUWLFXODUO\ DW PLQXWHV WR WKH GHFLVLRQ OLPLWV LQGLFDWHG D QHHG IRU FDXWLRQ :LWK DQ DOHYHO RI YDOXHV FORVH WR WKH GHFLVLRQ OLPLWV ZHUH SRVVLEO\ IDOVH VLJQDOV 7KH DFLG S+ RI DSSHDUHG WR EH VOLJKWO\ PRUH HIIHFWLYH WKDQ WKH QHXWUDO S+ RI $V VKRZQ DERYH WKHUH ZDV D VOLJKW GLIIHUHQFH EHWZHHQ WKH PHDQ QRUPDOL]HG FRQFHQWUDWLRQV RI %7(; FRPSRQHQWV DIWHU PLQXWHV DQG

PAGE 139

PLQXWHV :KLOH WKH VLJQLILFDQFH RI WKLV ZDV QRW FRQFOXVLYH WKH GDWD ZHUH FRQVLVWHQW ZLWK YDOXHV UHSRUWHG E\ .DZDJXFKL DQG )XUX\D f ZKR IRXQG WKDW ZDV DQ RSWLPXP S+ IRU WKH 7L SKRWRFDWDO\]HG GHJUDGDWLRQ RI FKORUREHQ]HQH 2 R _f§ 8'/[EDU /'/[EDU *DYJ A /LJKW 8'/ \rS+ f S+ *URQG $YJ f§ k6 /'/ A L 8'/[EDU /'/[EDU *DYJ f§A /LJKWa_ Ef )LJXUH 6LJQLILFDQFH RI S+ %DVHG RQ $120 WR %HQ]HQH 'HVWUXFWLRQ LQ 7L ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV 7KH FRQFHQWUDWLRQ RI 7L DSSHDUHG WR KDYH D VLJQLILFDQW LPSDFW RQ GLVLQIHFWLRQ ,Q RUGHU WR FODULI\ WKH PHDQLQJ RI WKH GLIIHUHQFHV VHHQ ZLWK 7L FRQFHQWUDWLRQ $120 WHVWV ZHUH SHUIRUPHG IRU EDFWHULD DW PLQXWHV DQG EHQ]HQH DQG WROXHQH DW DQG PLQXWHV 7KH GDWD ZHUH GLYLGHG LQWR IRXU VXEJURXSV EDVHG XSRQ WKH FRQFHQWUDWLRQ RI 7L 7KLV JDYH DQ Q YDOXH RI VDPSOHV SHU VXEJURXS DQG D N YDOXH RI VXEJURXSV IRU HDFK

PAGE 140

VDPSOH VHW 7KH Q DQG N YDOXHV ZHUH XVHG WR GHWHUPLQH Y Gf DQG + IURP WKH DSSURSULDWH WDEOHV :KHHOHU f 7KH FRUUHVSRQGLQJ YDOXHV ZHUH Y G DQG IRU DQ D + 7KHVH YDOXHV DORQJ ZLWK WKH YDOXHV IURP 7DEOH ZHUH XVHG WR GHWHUPLQH WKH GHFLVLRQ OLPLWV XVLQJ (TXDWLRQV WR 2 2 8'/[EDU /'/[EDU *DYJ f§ /LJKW@ Df R R J R f§8'/[EDU /'/[EDU *DYJ f§/LJKWO Ef )LJXUH 6LJQLILFDQFH RI S+ %DVHG RQ $120 WR 7ROXHQH 'HVWUXFWLRQ LQ 7L ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV (IIHFW RI 7L2f &RQFHQWUDWLRQ )RU HDFK VXEJURXS DQ DYHUDJH ZDV FDOFXODWHG DQG SORWWHG RQ D FKDUW ZLWK WKH GHFLVLRQ OLPLWV 7KH FDOFXODWHG VXEJURXS DYHUDJHV DUH VKRZQ LQ 7DEOH DQG WKH $120 FKDUWV DUH VKRZQ LQ )LJXUHV WR 8'/ A3+ /'/ 9S+

PAGE 141

7DEOH 7L &RQFHQWUDWLRQ 6XEJURXS $YHUDJHV IRU 'LVLQIHFWLRQ 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI %DFWHULD DQG 1RUPDOL]HG &KHPLFDO &RQFHQWUDWLRQ 6XEJURXS &RQWURO b 7L2 b 7L2 b 7L ; 6 5 ; 6 5 ; 6 5 ; 6 5 %DFWHULD W PLQ # %HQ]HQH W PLQ # %HQ]HQH W PLQ # 7ROXHQH W PLQ # 7ROXHQH W PLQ # )LJXUH 6LJQLILFDQFH RI 7L &RQFHQWUDWLRQ %DVHG RQ $120 RQ %DFWHULD LQ 3KRWRFDWDO\VLV ([SHULPHQWV DW 0LQXWHV 6LQFH 7L FRQFHQWUDWLRQ GLVSOD\HG VRPH VLJQLILFDQFH IRU ERWK GLVLQIHFWLRQ DQG GHWR[LILFDWLRQ WKH VXEJURXS DYHUDJHV ZHUH SORWWHG DJDLQVW WKH FRQWURO DQG WKH WZR FRQFHQWUDWLRQV ZKLFK ZHUH FORVHVW WRJHWKHU DJDLQVW HDFK RWKHU WR GHWHUPLQH WKH PLQLPXP VLJQLILFDQW FRQFHQWUDWLRQ 7KHVH FRPELQDWLRQV DOORZHG IRU WKH GHWHUPLQDWLRQ RI WKH RSWLPXP FRQFHQWUDWLRQ UDQJH IRU WKH IDVWHVW GHVWUXFWLRQ 7KHUH ZHUH DJDLQ WZR VXEJURXSV IRU D N RI ZLWK WKH Q YDOXH VDPSOHV SHU VXEJURXSf UHPDLQLQJ DW 7KH

PAGE 142

FRUUHVSRQGLQJ WDEOH YDOXHV ZHUH Y Gf DQG IRU DQ D + )LJXUH 6LJQLILFDQFH RI 7L &RQFHQWUDWLRQ %DVHG RQ $120 RQ %HQ]HQH LQ 3KRWRFDWDO\VLV ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV

PAGE 143

)LJXUH 6LJQLILFDQFH RI 7L &RQFHQWUDWLRQ %DVHG RQ $120 RQ 7ROXHQH LQ 3KRWRFDWDO\VLV ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV ([DPLQDWLRQ RI WKH $120 FKDUWV )LJXUHV WR f LQGLFDWHG WKDW ZKLOH WKHUH ZDV QR VLJQLILFDQW GLIIHUHQFH EHWZHHQ b 7L DQG b 7L IRU HLWKHU GLVLQIHFWLRQ RU GHWR[LILFDWLRQ ERWK FRQFHQWUDWLRQV ZHUH PRUH HIIHFWLYH WKDQ b DQG QR 7L 7KLV ZDV FRQVLVWHQW ZLWK WKH LQLWLDO WUHQGV REVHUYHG ZKHUHLQ b ZDV REVHUYHG WR EH WKH PRVW HIIHFWLYH FRQFHQWUDWLRQ

PAGE 144

8'/[EDU /'/[EDU *DYJ f§’f§7L &RQH )LJXUH &RPSDULVRQ RI &RQWURO YV b 7L RQ 3KRWRFDWDO\WLF 'LVLQIHFWLRQ DW 0LQXWHV %DVHG RQ $120 8'/[EDU /'/[EDU *DYJ f§7c &RQH )LJXUH &RPSDULVRQ RI &RQWURO YV b 7L RQ 3KRWRFDWDO\WLF 'LVLQIHFWLRQ DW 0LQXWHV %DVHG RQ $120

PAGE 145

8'/[EDU /'/[EDU *DYJ f§’f§7L &RQH )LJXUH &RPSDULVRQ RI &RQWURO YV b 7L RQ 3KRWRFDWDO\WLF 'LVLQIHFWLRQ DW 0LQXWHV %DVHG RQ $120  b 8'/ ‘ZQQAp} f /'/ 8'/[EDU *DYJ /'/[EDU 7L &RQH )LJXUH &RPSDULVRQ RI b YV b 7L RQ 3KRWRFDWDO\WLF 'LVLQIHFWLRQ DW 0LQXWHV %DVHG RQ $120

PAGE 146

8'/[EDU /'/[EDU *DYJ f§’f§7L &RQH )LJXUH &RPSDULVRQ RI &RQWURO YV b 7L RQ 3KRWRFDWDO\WLF 'HVWUXFWLRQ RI %HQ]HQH DW 0LQXWHV %DVHG RQ $120 )LJXUH &RPSDULVRQ RI &RQWURO YV b 7L RQ 3KRWRFDWDO\WLF 'HVWUXFWLRQ RI %HQ]HQH DW 0LQXWHV %DVHG RQ $120

PAGE 147

_ 8'/ &/1R 7L f $ ? *UDQG $YF A 2 1 77 b /'/ 8'/[EDU /'/[EDU *DYJ f§’f§7c &RQH )LJXUH &RPSDULVRQ RI &RQWURO YV b 7L RQ 3KRWRFDWDO\WLF 'HVWUXFWLRQ RI %HQ]HQH DW 0LQXWHV %DVHG RQ $120 8'/[EDU *DYJ ,'/[EDU 7 &RQH )LJXUH &RPSDULVRQ RI b YV b 7L RQ 3KRWRFDWDO\WLF 'HVWUXFWLRQ RI %HQ]HQH DW 0LQXWHV %DVHG RQ $120 7KH GLVLQIHFWLRQ UHVXOWV RI WKLV VWXG\ ZHUH FRPSDUHG ZLWK WKRVH UHSRUWHG E\ 3DWHO f %ORFN HW DO f DQG :HL HW DO f 7KH ODWWHU WZR VWXGLHV ERWK UHSRUWHG WKDW D FRQFHQWUDWLRQ RI b 7L2] ZDV RSWLPXP IRU GHVWUXFWLRQ RI 6HUUDWLD PDUFHVFHQV DQG (VFKHULFKLD FROL 3DWHO IRXQG WKDW FRQVLVWHQW LQDFWLYDWLRQ RI 6HUUDWLD PDUFHVFHQV DQG 3VHXGRPRQDV DHUXJLQRVD ERWK LQ VXQOLJKW DQG 89 OLJKW ZDV DFKLHYHG ZLWK D 7L FRQFHQWUDWLRQ RI b

PAGE 148

7KH VXSHULRU HIIHFWLYHQHVV RI b DQG b 7L RYHU b 7L FRQFHQWUDWLRQV IRU GHWR[LILFDWLRQ RI %7(; ZDV QRW DQWLFLSDWHG DV RWKHUV KDYH IRXQG b 7L WR EH WKH RSWLPXP FRQFHQWUDWLRQ IRU WKH GHVWUXFWLRQ RI %7(; *RVZDPL HW DO •EHUJ f ,W LV FRQFHLYDEOH WKDW WKH SUHVHQFH RI EDFWHULD KDG VRPH LQIOXHQFH RQ OLJKW SHQHWUDWLRQ VXFK WKDW OLJKW SHQHWUDWLRQ DW WKH KLJKHU OHYHOV RI 7L ZDV QRW DV VWURQJ ([SHULPHQWV ZRXOG QHHG WR EH GHVLJQHG WR FRQVLGHU WKH HIIHFW RI WKH WXUELGLW\ RI WKH ZDWHU LQ RUGHU WR SURYH WKLV 0XOWLSOH 3DUDPHWHU (IIHFWV (YDOXDWLRQ RI WKH HIIHFWV RI PXOWLSOH SDUDPHWHUV KHOSHG WR FODULI\ WKH UROH SOD\HG E\ HDFK 7L 89 OLJKW DQG S+f RQ WKH GHVWUXFWLRQ RI WKH WHVWHG FRPSRQHQWV :KHQ DOO SDUDPHWHUV ZHUH FRQVLGHUHG WRJHWKHU LW DSSHDUHG WKDW WKH PRVW HIIHFWLYH WUHDWPHQW IRU ERWK GLVLQIHFWLRQ 7DEOH f DQG GHWR[LILFDWLRQ 7DEOH f FRQVLVWHG RI SKRWRFDWDO\VLV ZLWK b 7L DW D S+ RI )LJXUHV DQG VKRZ WKH HIIHFWV RI OLJKW DQG S+ WRJHWKHU RQ IUDFWLRQDO VXUYLYDO RI EDFWHULD DQG WKH GHVWUXFWLRQ RI EHQ]HQH $V ZDV VKRZQ E\ WKH $120 KRZHYHU WKH LPSDFW RI WKH S+ ZDV QRW VLJQLILFDQW DQG WKH b DQG b 7L FRQFHQWUDWLRQV GR QRW SURGXFH VLJQLILFDQWO\ GLIIHUHQW HIIHFWV 7DEOH 0HDQ 9DOXHV IRU )UDFWLRQDO 6XUYLYDO DV D )XQFWLRQ RI /LJKW S+ DQG 7L &RQFHQWUDWLRQ DW W 0LQXWHV 7L2 &RQFHQWUDWLRQ /LJKW S+ /LJKW S+ 'DUN S+ 'DUN S+ b b b b

PAGE 149

7DEOH 0HDQ 1RUPDOL]HG %HQ]HQH &RQFHQWUDWLRQ $IWHU 0LQXWHV LQ 7L ([SHULPHQWV &RQFHQWUDWLRQ /LJKW S+ /LJKW S+ 'DUN S+ 'DUN S+ b b b b (IIHFW RI ,QLWLDO &RORQ\ 'HQVLW\ RQ 'LVLQIHFWLRQ 7KH ODUJH UDQJH [ FIX/f DQG DYHUDJH VWDQGDUG GHYLDWLRQ bf RI WKH LQLWLDO EDFWHULDO FRORQ\ GHQVLW\ 7DEOH f UHTXLUHG WKH H[SORUDWLRQ RI LWV LPSDFW RQ GLVLQIHFWLRQ 1R OLQHDU RU ORJDULWKPLF UHODWLRQVKLS ZDV IRXQG IRU LQLWLDO EDFWHULDO FRORQ\ GHQVLW\ ZLWK IUDFWLRQDO VXUYLYDO $ OLQHDU UHJUHVVLRQ DQDO\VLV RI LQLWLDO FRORQ\ GHQVLW\ ZLWK 11 \LHOGHG DQ U RI DW D b FRQILGHQFH OHYHO DQG D SYDOXH RI )RU OQ11f DV D IXQFWLRQ RI LQLWLDO FRORQ\ GHQVLW\ OHDVW VTXDUHV OLQHDU UHJUHVVLRQ DW D b FRQILGHQFH OHYHO \LHOGHG DQ U RI ZLWK D SYDOXH RI 1R WUHQG ZDV GLVFHUQLEOH E\ JUDSKLFDO H[DPLQDWLRQ RI WKH GDWD HLWKHU )LJXUH VKRZV WKH UHODWLRQVKLS EHWZHHQ LQLWLDO FRORQ\ GHQVLW\ DQG 11 XVLQJ GDWD IURP LQGLYLGXDO UHDFWRUV 7KH ILQGLQJ RI QR FRUUHODWLRQ RI IUDFWLRQDO VXUYLYDO UDWHV ZLWK LQLWLDO FRORQ\ GHQVLW\ ZDV LQ DFFRUG ZLWK UHVXOWV UHSRUWHG E\ /L HW DO f ZKR FRPSDUHG WKH GHVWUXFWLRQ RI ( FROL IRU WZR GLIIHUHQW LQLWLDO FROLIRUP GHQVLWLHV / DQG / DQG IRXQG RQO\ D VOLJKWO\ KLJKHU GHVWUXFWLRQ UDWH ZLWK WKH ORZHU LQLWLDO GHQVLW\ DQG QR GLIIHUHQFH DIWHU RQH KRXU

PAGE 150

)LJXUH )UDFWLRQDO 6XUYLYDO RI %DFWHULD DV D )XQFWLRQ RI 89 /LJKW :Pf DQG S+ LQ 7L ([SHULPHQWV %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ 89 89 'DUN 'DUN /LJKW /LJKW S+ S+ S+ S+ )LJXUH (IIHFW RI 89 /LJKW :Pf DQG S+ RQ WKH 'HVWUXFWLRQ RI %HQ]HQH LQ 7L ([SHULPHQWV %DUV DUH 2QH 6WDQGDUG 'HYLDWLRQ 7DEOH 'HVFULSWLYH 6WDWLVWLFV IRU ,QLWLDO &RORQ\ 'HQVLW\ LQ 7L ([SHULPHQWV 3DUDPHWHU 0HDQ 6WG 'HY 0LQ 0D[ ,QLWLDO %DFWHULD 'HQVLW\ FIX/ [

PAGE 151

2WKHU (IIHFWV 7KHUH ZHUH WZR RWKHU HIIHFWV ZKLFK PHULWHG PHQWLRQ DOWKRXJK WKH H[SHULPHQWV ZHUH QRW GHVLJQHG WR DFFRXQW IRU WKHP VSHFLILFDOO\ %RWK WKH SUHVHQFH RI PXOWLSOH EDFWHULD VSHFLHV DQG WKH FRPELQDWLRQ RI EDFWHULD DQG 92&V ZHUH OLNHO\ WR KDYH KDG VRPH LPSDFW RQ ERWK GLVLQIHFWLRQ DQG GHWR[LILFDWLRQ )LJXUH ,QLWLDO &RORQ\ &RXQW YV )UDFWLRQDO 6XUYLYDO RI %DFWHULD DW W 0LQXWHV IRU 7L 3KRWRFDWDO\VLV ,QWHUDFWLRQ EHWZHHQ WKH EDFWHULD DQG WKH 92&V ZDV YHU\ OLNHO\ DV WKH %7(; FRXOG VHUYH DV D VXEVWUDWH IRU WKH EDFWHULD FDXVLQJ WKH RUJDQLVPV WR PXOWLSO\ 6SHFLILFDOO\ 3 DHUXJLQRVD KDV EHHQ XVHG VXFFHVVIXOO\ WR GHJUDGH SHQWDFKORURSKHQRO 3UHPDODWKD DQG 6XVHHOD 5DMDNXPDU f 3UHYLRXV SKRWRFDWDO\WLF GLVLQIHFWLRQ ZRUN %ORFN HW DO ,UHODQG HW DO 3DWHO :HL HW DO f H[DPLQHG WKH GHVWUXFWLRQ RI LQGLYLGXDO EDFWHULD VSHFLHV 7KH ORQJHU UHDFWLRQ WLPHV H[SHULHQFHG LQ WKLV VWXG\ FRXOG EH D IXQFWLRQ RI WKH SUHVHQFH RI PXOWLSOH EDFWHULD VSHFLHV

PAGE 152

+RZHYHU DV WKH H[SHULPHQWV ZHUH QRW GHVLJQHG WR GLVFHUQ WKLV DGGLWLRQDO ZRUN ZRXOG QHHG WR EH GRQH LQ RUGHU WR FRQILUP WKLV 3KRWRFDWDO\VLV YV $LU 6WULSSLQJ 7KH FKHPLFDO FRQWDPLQDQWV %7(;f DUH YHU\ YRODWLOH DQG WKHUHIRUH VXEMHFW WR DLU VWULSSLQJ 7KH V\VWHP WHVWHG LQ WKHVH H[SHULPHQWV 7L SKRWRFDWDO\VLV \LHOGHG SRVLWLYH UHVXOWV DW DOO FRQGLWLRQV WHVWHG &RQVHTXHQWO\ WKH SURFHVV VKRZV SURPLVH IRU DSSOLFDWLRQ LQ VPDOO FRPPXQLWLHV +RZHYHU DV HYLGHQFHG E\ WKH HIILFDF\ RI WKH SKRWRVHQVLWL]DWLRQ SURFHVV IRU WKH GHVWUXFWLRQ RI EURPDFLO FRXSOHG ZLWK LWV LQHIIHFWLYHQHVV IRU WKH GHVWUXFWLRQ RI EHQ]HQH DQG WROXHQH LW LV FULWLFDO WKDW DQ\ V\VWHP EH WHVWHG IRU WKH VSHFLILF FRQWDPLQDQWV RI D ZDWHU VRXUFH 7DEOH f ,Q RUGHU WR GHWHUPLQH KRZ PXFK LI DQ\ RI WKH %7(; UHGXFWLRQ ZDV GXH WR DLU VWULSSLQJ GDUN FRQWURO H[SHULPHQWV ZHUH FRQGXFWHG $V VKRZQ LQ )LJXUHV DQG WKHUH ZDV HVVHQWLDOO\ QR UHGXFWLRQ REVHUYHG LQ DQ\ RI WKH %7(; FRPSRQHQWV GXULQJ WKH GDUN H[SHULPHQWV ZLWK 7L DW HLWKHU S+ YDOXH 7KH DSSDUHQW GHFUHDVH DW PLQXWHV IRU S+ )LJXUH f ZDV ZLWKLQ WKH VWDQGDUG GHYLDWLRQ RI b DQG HYLGHQFH RI HUURU HQFRXQWHUHG LQ VDPSOLQJ DQG DQDO\VLV 7KH SUHFDXWLRQV WDNHQ WR OLPLW DLU VWULSSLQJ PLQLPDO KHDGVSDFH DQG SDUDILOP VHDOLQJ RI WKH UHDFWRU ZHUH VXIILFLHQW WR DOOHYLDWH WUDQVIHU RI WKH FKHPLFDO FRQWDPLQDQWV WR WKH DWPRVSKHUH 7KH UHVXOWV UHSRUWHG KHUHLQ ZHUH FRQVLVWHQW ZLWK UHVXOWV UHSRUWHG IURP RXWGRRU SLORW VFDOH H[SHULPHQWV FRQGXFWHG E\ •EHUJ f DQG 0DGDEKXVKL f %RWK UHSRUWHG OHVV WKDQ b UHGXFWLRQ LQ GDUN WHVWV •EHUJ GLG UHSRUW RQ RQH GDUN WHVW ZKLFK UHVXOWHG LQ DQ b UHGXFWLRQ RI DOO %7(; FRPSRQHQWV KRZHYHU WKH WHVW

PAGE 153

ZDV FRQGXFWHG ZLWK D ODUJH DLU VSDFH DERYH WKH ZDWHU ZKHUHLQ D OLWHU WDQN ZDV ILOOHG ZLWK RQO\ OLWHUV RI ZDWHU 7KH V\VWHP WHVWHG LQ WKHVH H[SHULPHQWV 7L SKRWRFDWDO\VLV \LHOGHG SRVLWLYH UHVXOWV DW DOO FRQGLWLRQV WHVWHG &RQVHTXHQWO\ WKH SURFHVV VKRZV SURPLVH IRU DSSOLFDWLRQ LQ VPDOO FRPPXQLWLHV +RZHYHU DV HYLGHQFHG E\ WKH HIILFDF\ RI WKH SKRWRVHQVLWL]DWLRQ SURFHVV IRU WKH GHVWUXFWLRQ RI EURPDFLO FRXSOHG ZLWK LWV LQHIIHFWLYHQHVV IRU WKH GHVWUXFWLRQ RI EHQ]HQH DQG WROXHQH LW LV FULWLFDO WKDW DQ\ V\VWHP EH WHVWHG IRU WKH VSHFLILF FRQWDPLQDQWV RI D ZDWHU VRXUFH 7DEOH 9DSRU 3UHVVXUH 9DOXHV IRU %7(; FRPSRQHQWV &RPSRQHQW 9DSRU 3UHVVXUH k r& PP +JM %RLOLQJ 3RLQW # DWP %HQ]HQH 7ROXHQH R;\OHQH P;\OHQH S;\OHQH \ 7LPH PLQXWHVf )LJXUH 1RUPDOL]HG &RQFHQWUDWLRQV RI %7(; &RPSRQHQWV LQ S+ 'DUN ([SHULPHQWV ZLWK b 7L %HQ]HQH 7ROXHQH Pt S;\ OH QH R;\OHQH

PAGE 154

f§Af§%HQ]HQH f§%f§7ROXHQH f§tf§ PtS;\OHQH R;\OHQH )LJXUH 1RUPDOL]HG &RQFHQWUDWLRQV RI %7(; &RPSRQHQWV LQ S+ 'DUN ([SHULPHQWV ZLWK b 7L 6XPPDU\ ([DPLQDWLRQ RI WKH FRQGLWLRQV XQGHU ZKLFK 7L SKRWRFDWDO\VLV ZDV PRVW HIIHFWLYH EULQJV XS WZR DVSHFWV IRU FRQVLGHUDWLRQ 2Q WKH SRVLWLYH VLGH S+ ZDV QRW D VLJQLILFDQW IDFWRU DQG QR S+ DGMXVWPHQWV ZRXOG EH UHTXLUHG 7KH VSHFLILFLW\ RI WKH FRQFHQWUDWLRQ RI 7L KRZHYHU LV D GLVDGYDQWDJH IRU WKH DSSOLFDWLRQV FRQVLGHUHG KHUH 7KH GRVDJH RI 7L PXVW EH IDLUO\ WLJKWO\ FRQWUROOHG DV WRR PXFK FRXOG UHVXOW LQ LQKLELWLRQ RI WKH SKRWRFDWDO\WLF UHDFWLRQ +RZHYHU WKH ORZ 7L GRVDJH UHTXLUHPHQWV GR RIIHU DQ DGYDQWDJH LQ WKDW RSHUDWLRQDO FRVWV DUH PLQLPL]HG ,Q RUGHU IRU WKLV SURFHVV WR EH GHWHUPLQHG IHDVLEOH IRU DSSOLFDWLRQ WZR DUHDV RI UHVHDUFK VKRXOG EH DGGUHVVHG )LUVW WKH LVVXH RI LPPRELOL]DWLRQ RU VHSDUDWLRQ RI WKH FDWDO\VW DQG DVVRFLDWHG FRVW PXVW EH H[DPLQHG 7KLV PD\ EH DFFRPSOLVKHG YLD WKH XVH RI D VPDOO ILOWHU KRZHYHU VXFK D V\VWHP VKRXOG EH WHVWHG 6HFRQGO\ WKH V\VWHP PXVW EH WHVWHG RYHU D PXFK EURDGHU UDQJH RI PLFURELRORJLFDO DQG FKHPLFDO FRQWDPLQDQWV

PAGE 155

LQFOXGLQJ YLUXVHV 6LWH VSHFLILF WHVWLQJ LV D PXVW DV PLFURELRORJLFDO VSHFLHV PD\ GLIIHU IURP RQH ORFDOH WR WKH RWKHU 7L2 3KRWRFDWDOYVLV &RPELQHG :LWK 0HWK\OHQH %OXH 6HYHUDO H[SHULPHQWV ZHUH FRQGXFWHG XVLQJ ERWK 7L DQG 0% 7KHVH FRPELQDWLRQ H[SHULPHQWV ZHUH FRQGXFWHG LQ RUGHU WR GHWHUPLQH LI WKH XVH RI D G\H LQ FRPELQDWLRQ ZLWK 7L ZRXOG HQKDQFH WKH SKRWRFKHPLFDO SURFHVV E\ H[WHQGLQJ WKH UDQJH RI SKRWRQV DYDLODEOH IRU SKRWRFKHPLFDO UHDFWLRQ ,Q RUGHU WR HQVXUH UHSURGXFLELOLW\ RI WKH UHVXOWV HDFK VHW RI H[SHULPHQWV ZDV FRQGXFWHG WKUHH WLPHV )RXU UHDFWRUV ZHUH UXQ DW D WLPH HDFK UHDFWRU FRQWDLQLQJ HLWKHU QR SKRWRFKHPLFDO b 7L PJ/ 0% RU D FRPELQDWLRQ RI b 7L DQG PJ/ 0% $ FRPSOHWH VHW RI H[SHULPHQWV ZDV GHILQHG DV WZR JURXSV RI IRXU UHDFWRUV RQH JURXS LQ VXQOLJKW DQG RQH JURXS LQ WKH GDUN 6DPSOHV ZHUH WDNHQ IURP HDFK UHDFWRU DW WLPH LQWHUYDOV RI PLQXWHV DQG UHIULJHUDWHG LPPHGLDWHO\ 7KUHH UHSOLFDWHV IURP HDFK VDPSOH ZHUH SODWHG IRU PLFURELRORJLFDO DQDO\VLV 7KH UHPDLQGHU RI WKH DQG PLQXWH VDPSOHV ZDV UHIULJHUDWHG DQG VDYHG IRU FKHPLFDO DQDO\VLV )RU WKH H[SHULPHQWV FRQGXFWHG LQ VXQOLJKW ERWK WKH WRWDO LQVRODWLRQ DQG WKH 89 OLJKW LQWHQVLW\ ZHUH PHDVXUHG DQG UHFRUGHG RYHU WKH GXUDWLRQ RI WKH H[SHULPHQW 7RWDO LQVRODWLRQ UDQJHG IURP :P WR :P DQG WKH WRWDO 89 LQWHQVLW\ PHDVXUHPHQWV UDQJHG IURP WR :P 7KH UHFRUGHU ZDV MDPPHG IRU DSSUR[LPDWHO\ WKH ODVW KDOI KRXU RI WKH VHW WKUHH H[SHULPHQW 9DOXHV IRU WKDW SRUWLRQ RI WKH H[SHULPHQW ZHUH HVWLPDWHG EDVHG RQ PHDVXUHPHQWV EHIRUH WKH UHFRUGHU MDPPHG DQG WKH PD[LPXP

PAGE 156

DQG PLQLPXP YDOXHV GXULQJ WKLV WLPH SHULRG DV GHWHUPLQHG E\ WKH KLJK DQG ORZ RI WKH SHQ PDUNVf 7KH DYHUDJH WRWDO LQVRODWLRQ PHDVXUHG LQ HDFK H[SHULPHQW LV JLYHQ LQ 7DEOH DQG JUDSKV RI WKH WRWDO LQVRODWLRQ DUH VKRZQ LQ $SSHQGL[ % 7DEOH 0HDVXUHG 6XQOLJKW ,QWHQVLW\ LQ &RPELQDWLRQ ([SHULPHQWV 6HW 7RWDO $YJ ,QVRODWLRQ :P 7RWDO $YJ 89 :P *HQHUDO &RPPHQWV $ERXW ([SHULPHQWDO 'DWD 7KH DYHUDJH VWDQGDUG GHYLDWLRQ RI WKH GLVLQIHFWLRQ GDWD ZDV b 3ODWHV RQ ZKLFK WKH FRORQLHV ZHUH QRW LQGLYLGXDOO\ LGHQWLILDEOH DQG WKRVH ZLWK VHYHUH FRQWDPLQDWLRQ ZHUH QRW FRXQWHG ZKLFK UHVXOWHG LQ WKH ORVV RI b RI WKH SODWHV LQ D JLYHQ H[SHULPHQWDO VHW 7KH DYHUDJH VWDQGDUG GHYLDWLRQV RI WKH GHWR[LILFDWLRQ GDWD ZHUH PXFK KLJKHU WKDQ LQ HLWKHU RI WKH RWKHU H[SHULPHQWDO JURXSV b IRU EHQ]HQH DQG b IRU WROXHQH +RZHYHU ZKHQ QRUPDOL]HG FRQFHQWUDWLRQV ZHUH XVHG WKH DYHUDJH VWDQGDUG GHYLDWLRQ ZDV ORZHU b IRU EHQ]HQH DQG b IRU WROXHQH DOWKRXJK WKH\ VWLOO H[FHHGHG WKH YDOXHV RI WKH RWKHU WZR H[SHULPHQWDO JURXSV 7KH DYHUDJH VWDQGDUG GHYLDWLRQ YDOXHV DUH JLYHQ LQ 7DEOH 6DPSOH ORVV IRU GHWR[LILFDWLRQ RFFXUUHG ZKHQ WKH VDPSOH ZDV GURSSHG DQG EURNHQ SULRU WR DQDO\VLV ZKLFK RFFXUUHG RQFH LQ H[SHULPHQWDO VHW QXPEHU RQH 7KH GURSSHG VDPSOH ZDV DQ LQLWLDO VDPSOH DQG WKH

PAGE 157

PLQXWH VDPSOH ZDV VXEVWLWXWHG &KHPLFDO VDPSOHV ZHUH JHQHUDOO\ DQDO\]HG ZLWKLQ WZR ZHHNV RI WKH H[SHULPHQW 7DEOH $YHUDJH 6WDQGDUG 'HYLDWLRQV IRU DOO &RPELQDWLRQ ([SHULPHQWV %HQ]HQH SSEf 7ROXHQH SSEf ( &ROL FIX [ .A/ 6WG'HY $YJ 6WG'HY $YJ 6WG'HY $YJ 5DZ 'DWD 1RUPDOL]HG 'DWD 6WDWLVWLFDO 7UHDWPHQW RI WKH 'DWD 7KH GDWD ZHUH WUHDWHG DV RXWOLQHG LQ WKH VHFWLRQ RQ G\H SKRWRVHQVLWL]DWLRQ 1R VSHFLILF DGMXVWPHQWV ZHUH UHTXLUHG IRU WKH GDWD ZLWK WKH H[FHSWLRQ RI QRUPDOL]LQJ QHJDWLYH SHUFHQWDJHV RI GHVWUXFWLRQ WR ]HUR 1R RXWOLHUV ZHUH REVHUYHG 'LVLQIHFWLRQ 6LQFH ERWK 0% DQG 7L LQFUHDVHG WKH HIILFLHQF\ RI GLVLQIHFWLRQ RI ( FROL EDFWHULD RYHU VXQOLJKW RU 89 OLJKW DORQH LW ZDV DQWLFLSDWHG WKDW WKH FRPELQDWLRQ ZRXOG EH EHWWHU WKDQ HLWKHU DORQH +RZHYHU DV VKRZQ LQ )LJXUH WKHUH ZDV OLWWOH GLIIHUHQFH EHWZHHQ XVLQJ 7L DORQH 0% DORQH RU D FRPELQDWLRQ RI 7L DQG 0% 7KH XVH RI D SKRWRFKHPLFDO KRZHYHU GLG LPSURYH GLVLQIHFWLRQ RYHU VXQOLJKW DORQH 7DEOH f ,Q WKH SUHVHQFH RI 0% HLWKHU ZLWK RU ZLWKRXW 7L WKHUH ZDV D b FROLIRUP UHGXFWLRQ ZLWKLQ PLQXWHV DQG FRPSOHWH GLVLQIHFWLRQ ZLWKLQ PLQXWHV $ FROLIRUP UHGXFWLRQ RI b ZDV UHDFKHG E\ PLQXWHV ZLWK 7L DQG QRW XQWLO PLQXWHV LQ VXQOLJKW DORQH 7RWDO GLVLQIHFWLRQ ZDV QRW REVHUYHG XQWLO WKH PLQXWH VDPSOHV ZLWK 7L DQG PLQXWHV LQ VXQOLJKW DORQH

PAGE 158

7KH GDWD ZHUH DQDO\]HG E\ $120 DV RXWOLQHG SUHYLRXVO\f WR GHWHUPLQH WKH HIIHFW RI VXQOLJKW DQG SKRWRFKHPLFDOV RQ GLVLQIHFWLRQ 7KH IUDFWLRQDO VXUYLYDO DW DQG PLQXWHV ZHUH DQDO\]HG LQ WKLV PDQQHU 7KH JUDQG DYHUDJH YDOXHV IRU ( FROL GHVWUXFWLRQ DW DQG PLQXWHV ZHUH sf sf sf UHVSHFWLYHO\ 7KH JHQHUDO YDOXHV IRU WKH $120 DUH VKRZQ LQ 7DEOH )RU GHWHUPLQDWLRQ RI WKH HIIHFW RI VXQOLJKW WKH VDPSOH VHWV ZHUH GLYLGHG LQWR WZR VXEJURXSV N f ZLWK WZHOYH REVHUYDWLRQV SHU VXEJURXS Q f 7KH FRUUHVSRQGLQJ WDEOH YDOXHV ZHUH Y G DQG IRU D + 7KHVH YDOXHV DORQJ ZLWK WKH YDOXHV LQ 7DEOH ZHUH XVHG WR GHWHUPLQH WKH GHFLVLRQ OLPLWV XVLQJ (TXDWLRQV WR 7KH FDOFXODWHG VXEJURXS DYHUDJHV VKRZQ LQ 7DEOH ZHUH WKHQ SORWWHG RQ D FKDUW ZLWK WKH GHFLVLRQ OLPLWV DQG WKH VLJQLILFDQFH RI WKH SUHVHQFH RI VXQOLJKW ZDV GHWHUPLQHG $V DQWLFLSDWHG WKH SUHVHQFH RU DEVHQFH RI VXQOLJKW ZDV D VWDWLVWLFDOO\ VLJQLILFDQW IDFWRU LQ DOO RI WKH VDPSOH VHWV DV VKRZQ LQ )LJXUH )LJXUH 'HVWUXFWLRQ RI ( FROL LQ 6XQOLJKW O7W$YJ :P ,89L $YJ :Pf LQ &RPELQDWLRQ ([SHULPHQWV

PAGE 159

7DEOH 0HDQ )UDFWLRQDO 6XUYLYDO sbf RI ( &ROL LQ &RPELQDWLRQ ([SHULPHQWV &RQWURO 6DPSOHV b 7L 6XQOLJKW 'DUN 6XQOLJKW 'DUN QQ QQ 11 1HR1R QQ PJ/ 0% b 7L t PJ/ 0% 6XQOLJKW 'DUN 6XQOLJKW 'DUN QQ QQ 11 1HR1R QQ 7DEOH &DOFXODWHG $120 9DOXHV IRU &RPELQDWLRQ ([SHULPHQWV 6DPSOH 6HW *UDQG $YHUDJH ; $YJ 6WG 'HY $YJ 5DQJH (VWLPDWHG 6';f ( FROL # W PLQXWHV ( FROL # W PLQXWHV ( FROL # W PLQXWHV %HQ]HQH # W PLQXWHV %HQ]HQH # W PLQXWHV 7ROXHQH # W PLQXWHV 7ROXHQH # PLQXWHV 7DEOH 6XQOLJKW 6XEJURXS $YHUDJHV IRU &RPELQHG ([SHULPHQWV 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI %DFWHULD DQG 1RUPDOL]HG &KHPLFDO &RQFHQWUDWLRQ 6XQOLJKW :QLE 'DUN 9:::: ; V 5 ; V 5 ( FROL # W PLQXWHV ( FROL # W PLQXWHV ( FROL # W PLQXWHV %HQ]HQH # W PLQXWHV %HQ]HQH # W PLQXWHV 7ROXHQH # W PLQXWHV 7ROXHQH # W PLQXWHV

PAGE 160

,Q RUGHU WR FODULI\ WKH LPSDFW RI WKH SKRWRFKHPLFDOV RQ GLVLQIHFWLRQ $120 ZDV SHUIRUPHG 7KH GDWD ZHUH GLYLGHG LQWR IRXU VXEJURXSV EDVHG RQ WKH SKRWRFKHPLFDO XVHG LQ WKH UHDFWRU 7KLV JDYH DQ Q YDOXH RI VDPSOHV SHU VXEJURXS DQG D N YDOXH RI VXEJURXSV IRU HDFK VDPSOH VHW 7KH FRUUHVSRQGLQJ WDEOH YDOXHV ZHUH Y G DQG IRU D + 7KHVH YDOXHV DORQJ ZLWK WKH YDOXHV LQ 7DEOH ZHUH XVHG WR GHWHUPLQH WKH GHFLVLRQ OLPLWV XVLQJ (TXDWLRQV WR 7KH FDOFXODWHG VXEJURXS DYHUDJHV 7DEOH f ZHUH SORWWHG RQ D FKDUW ZLWK WKH GHFLVLRQ OLPLWV DQG WKH VLJQLILFDQFH RI SKRWRFKHPLFDOV ZDV GHWHUPLQHG 7KH SUHVHQFH RU DEVHQFH RI SKRWRFKHPLFDO ZDV D VWDWLVWLFDOO\ VLJQLILFDQW IDFWRU LQ DOO RI WKH VDPSOH VHWV DV VKRZQ LQ )LJXUH 7DEOH 3KRWRFKHPLFDO 6XEJURXS $YHUDJHV IRU &RPELQDWLRQ ([SHULPHQWV 9DOXHV DUH )UDFWLRQDO 6XUYLYDO RI ( FROL DQG 1RUPDOL]HG &KHPLFDO &RQFHQWUDWLRQ &RQWURO b 7L2 PJ/ 0% %RWK ; 6 5 ; 6 5 ; 6 5 ; 6 5 ( FROL # W PLQ ( FROL # W PLQ ( FROL # W PLQ %HQ]HQH # W PLQ %HQ]HQH # W PLQ 7ROXHQH # W PLQ 7ROXHQH # W PLQ ,Q RUGHU WR GLVFHUQ LI WKHUH ZDV DQ\ GLIIHUHQWLDWLRQ LQ WKH WUHDWPHQWV WKH GLIIHUHQW SKRWRFKHPLFDO VXEJURXS DYHUDJHV ZHUH SORWWHG DJDLQVW HDFK RWKHU 7KH QHZ GHFLVLRQ OLPLWV ZHUH EDVHG RQ D N RI DQG DQ Q RI ZKLFK FKDQJHG WKH WDEOH YDOXHV WR Y Gr DQG IRU D + 7KH SORWWHG VXEJURXS DYHUDJHV DUH VKRZQ LQ )LJXUHV WR

PAGE 161

Df 8'/[ f§f§/'/[ *DYJ f§+f§/LJKW Ef ‘8'/[ /'/[ *DYJ 0f§/LJKW )LJXUH 6LJQLILFDQFH RI 6XQOLJKW ,URWL $YJ :P ,89L $YJ :Pf RQ ( FROL 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV

PAGE 162

7KH $120 GHPRQVWUDWHG FOHDUO\ ZKDW WKH JUDSKLFDO GLVSOD\ RI WKH GDWD VXJJHVWHG 7KHUH ZDV QR VWDWLVWLFDOO\ VLJQLILFDQW GLIIHUHQFH EHWZHHQ WKH XVH RI 0% 7L RU D FRPELQDWLRQ RI WKH WZR LQ SKRWRFKHPLFDO GLVLQIHFWLRQ 'HWR[LILFDWLRQ 7KH DGGLWLRQ RI 0% WR WKH 7L SKRWRFDWDO\]HG UHDFWLRQ DSSHDUHG WR KDYH DQ LQKLELWRU\ HIIHFW RQ GHWR[LILFDWLRQ $IWHU PLQXWHV LQ VXQOLJKW ,nURW $YJ :PA $YJ :Pf UHDFWRUV GRVHG ZLWK b 7L VKRZHG D b UHGXFWLRQ RI EHQ]HQH DQG D UHGXFWLRQ RI WROXHQH EHORZ GHWHFWDEOH OLPLWV )LJXUH f +RZHYHU ZKHQ b 7L ZDV FRPELQHG ZLWK PJ/ 0% DQG H[SRVHG WR WKH VDPH LQWHQVLW\ VXQOLJKW IRU PLQXWHV RQO\ D b DQG b UHGXFWLRQ LQ EHQ]HQH DQG WROXHQH UHVSHFWLYHO\ ZDV REVHUYHG 7KH PHDQ FRQFHQWUDWLRQV RI ERWK EHQ]HQH DQG WROXHQH LQ WKH FRPELQDWLRQ H[SHULPHQWV DUH VKRZQ LQ 7DEOH :KLOH WKH FRQFOXVLRQV VHHPHG WR EH FOHDU DQ $120 ZDV SHUIRUPHG WR FODULI\ WKH GLVWLQFWLRQ EHWZHHQ WKH XVH RI 7L DORQH DQG WKH FRPELQDWLRQ RI 7L DQG 0% 7KH GDWD ZHUH GLYLGHG LQWR IRXU VXEJURXSV DV RXWOLQHG DERYH LQ WKH GLVLQIHFWLRQ VHFWLRQ ZLWK WKH VDPH YDOXHV XVHG IRU FDOFXODWLRQ RI GHFLVLRQ OLPLWV IRU ERWK IRXU VXEJURXSV DQG WZR VXEJURXSV 7KH VXEJURXS DYHUDJHV DUH VKRZQ LQ 7DEOH 6HOHFWHG $120 FKDUWV DUH VKRZQ DV )LJXUHV WR

PAGE 163

Df 8'/[EDU /'/[EDU *DYJ f§’Af§3KRWRFKHPLFDO Ef 8'/[EDU /'/[EDU *DYJ f§’f§3KRWRFKHPLFDO )LJXUH 6LJQLILFDQFH RI 3KRWRFKHPLFDO RQ ( FROL 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV

PAGE 164

Df Ef Ff 8'/ 8'/[EDU /'/[EDU *DYJ f§2 3KRWRFKHPLFDO )LJXUH 6LJQLILFDQFH RI 7L YV 0% RQ ( FROL 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV

PAGE 165

Df 8'/[EDU /'/[EDU *DYJ f§2f§3KRWRFKHPLFDO Ef )LJXUH 6LJQLILFDQFH RI 7L YV %RWK RQ ( FROL 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQW Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV

PAGE 166

] 8'/ 0% ’ *UDQG $YT %RWK /'/ Df 8'/[EDU /'/[EDU *DYJ f§’f§3KRWRFKHPLFDO Ef R A ] 8'/[EDU /'/[EDU *DYJ f§’f§3KRWRFKHPLFDO 8'/ 0% *UDQG $YJ %RWK & /'/ )LJXUH 6LJQLILFDQFH RI 0% YV %RWK RQ ( FROL 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV Ff 0LQXWHV

PAGE 167

Ef )LJXUH 1RUPDOL]HG &RQFHQWUDWLRQ DV D )XQFWLRQ RI 7LPH LQ &RPELQDWLRQ ([SHULPHQWV ,7RW $YJ :P ,XY! $YJ :P Df %HQ]HQH Ef 7ROXHQH 7DEOH 0HDQ &RQFHQWUDWLRQ SSEf RI %HQ]HQH sf DQG 7ROXHQH sf LQ &RPELQDWLRQ ([SHULPHQWV 7RW $YJ :P ,XY$YJ :P %HQ]HQH 6XQOLJKW 'DUN 6XQOLJKW 'DUN 7LPH PLQf &RQWURO b 7L PJ/ 0% %RWK 7ROXHQH 6XQOLJKW 'DUN 6XQOLJKW 'DUN 7LPH PLQf &RQWURO b 7L PJ/ 0% %RWK •

PAGE 168

Df 8'/[EDU /'/[EDU *DYJ f§Rf§3KRWRFKHPLFDO )LJXUH 6LJQLILFDQFH RI 3KRWRFKHPLFDO RQ %HQ]HQH 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV

PAGE 169

Df Ef 8'/[EDU *DYJ /'/[EDU 3KRWRFKHPLFDO )LJXUH 6LJQLILFDQFH RI 3KRWRFKHPLFDO RQ 7ROXHQH 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV

PAGE 170

Df 8'/[EDU /'/[EDU *DYJ f§’f§3KRWRFKHPLFDO )LJXUH 6LJQLILFDQFH RI 7L YV %RWK RQ %HQ]HQH 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV

PAGE 171

Ef 2 V 2 U f 8'/ rO%RWK *UDQG $YJ /'/ 8'/[EDU *DYJ /'/[EDU 3KRWRFKHPLFDO )LJXUH 6LJQLILFDQFH RI 7L YV %RWK RQ 7ROXHQH 'HVWUXFWLRQ %DVHG RQ $120 LQ &RPELQDWLRQ ([SHULPHQWV Df 0LQXWHV Ef 0LQXWHV ([DPLQDWLRQ RI WKH $120 FKDUWV VKRZHG WKDW GLIIHUHQFHV EHWZHHQ FRQWURO DQG 7L ZHUH QRW DSSDUHQW XQWLO PLQXWHV )LJXUHV DQG f %\ PLQXWHV WKHUH ZDV D VWDWLVWLFDOO\ VLJQLILFDQW GLIIHUHQFH EHWZHHQ WKH UHDFWRUV ZKLFK FRQWDLQHG 7L RQO\ DQG ERWK WKH FRQWURO UHDFWRUV DQG WKH UHDFWRUV FRQWDLQLQJ RQO\ 0% 7KH LQKLELWRU\ HIIHFW RI 0% LQ WKH FRPELQDWLRQ UHDFWRU ZDV HYLGHQW IRU EHQ]HQH E\ PLQXWHV )LJXUH f WKRXJK QRW IRU WROXHQH )LJXUH f

PAGE 172

6XPPDU\ 7KH XVH RI G\H LQ FRQMXQFWLRQ ZLWK 7L GLG QRW HQKDQFH WKH SKRWRFKHPLFDO SURFHVV IRU HLWKHU GLVLQIHFWLRQ RU GHWR[LILFDWLRQ :KLOH LW KDG QR DSSDUHQW HIIHFW LQ WKH GLVLQIHFWLRQ UHDFWLRQV WKH G\H DFWHG DV DQ LQKLELWRU\ DJHQW LQ WKH GHWR[LILFDWLRQ SURFHVV 7KH UHGXFWLRQ RI HIILFDF\ ZLWK WKH DGGLWLRQ RI 0% ZDV SRVVLEO\ GXH WR VFDYHQJLQJ RI K\GUR[\O UDGLFDOV E\ WKH 0% :KLOH WKLV KDV QRW EHHQ UHSRUWHG IRU 0% VFDYHQJLQJ KDV EHHQ UHSRUWHG IRU RWKHU R[LGL]LQJ DJHQWV VXFK DV K\GURJHQ SHUR[LGH %ODNH f .LQHWLF &RQVLGHUDWLRQV )RU D TXDQWLWDWLYH FRPSDULVRQ RI H[SHULPHQWDO FRQGLWLRQV H[SHULPHQWDO UHDFWLRQ UDWH FRQVWDQWV N ZHUH FDOFXODWHG XVLQJ WKH ILUVW RUGHU UHDFWLRQ UDWH HTXDWLRQ VKRZQ EHORZ 5DWH FRQVWDQWV DUH SUHVHQWHG RQO\ IRU WKRVH H[SHULPHQWV LQ ZKLFK GHVWUXFWLRQ RI FRQWDPLQDQWV RFFXUUHG OQ&&\&f NW f ZKHUH & ,QLWLDO FRQFHQWUDWLRQ RU FRORQ\ GHQVLW\f & &RQFHQWUDWLRQ RU FRORQ\ GHQVLW\f DW WLPH W W WLPH LQ PLQXWHV N FDOFXODWHG UDWH FRQVWDQW PLQf 'HWR[LILFDWLRQ ([SHULPHQWDO ILUVW RUGHU UDWH FRQVWDQWV DUH SUHVHQWHG IRU WKH GHVWUXFWLRQ RI EHQ]HQH WROXHQH DQG [\OHQH LVRPHUV E\ 7L SKRWRFDWDO\VLV LQ 89 OLJKW 7L SKRWRFDWDO\VLV LQ VXQOLJKW DQG WKH XVH RI 7L SKRWRFDWDO\VLV FRPELQHG ZLWK 0% 7KH FDOFXODWHG UDWH FRQVWDQWV DUH VKRZQ LQ 7DEOH

PAGE 173

7KH KLJKHU UDWH FRQVWDQWV FRUUHVSRQG WR IDVWHU UHDFWLRQ WLPH )RU 7L SKRWRFDWDO\VLV WKH IDVWHVW UHDFWLRQ UDWH N PLQnf ZDV REVHUYHG LQ UHDFWRUV LOOXPLQDWHG E\ 89 ODPSV :Pf ZKLFK FRQWDLQHG b 7L DQG ZDWHU DGMXVWHG WR S+ 7DEOH ([SHULPHQWDO )LUVW 2UGHU 5DWH &RQVWDQWV PLQnf IRU 7L 3KRWRFDWDO\WLF ([SHULPHQWV 89 /LJKW :Pf # S+ %HQ]HQH 7ROXHQH PtS;\OHQH R;\OHQH b 7L b 7L b 7L 89 /LJKW :Pf # S+ %HQ]HQH 7ROXHQH PtS;\OHQH R;\OHQH b 7L b 7L b 7L 6XQOLJKW LWRWDY. :P $89 $YJ :Pf S+ ZDV QRW PHDVXUHG b 7L 1$ 1$ b 7L4 t PJ/ 0% 1 $ 1$ 7KH FDOFXODWHG ILUVWRUGHU UHDFWLRQ UDWH FRQVWDQWV ZHUH FRQVLVWHQW ZLWK WKH SUHYLRXV DQDO\VLV RI WKH GDWD ZKHUHLQ b 7L ZDV IRXQG WR EH PRVW HIIHFWLYH WKRXJK QRW VLJQLILFDQWO\ GLIIHUHQW IURP b 7L 7KH UDWH FRQVWDQWV REWDLQHG LQ WKHVH H[SHULPHQWV ZHUH FRQVLVWHQW ZLWK WKRVH UHSRUWHG E\ 0DGDEKXVKL f IRU LQGRRU WHVWV DW D VOLJKWO\ KLJKHU 89 LQWHQVLW\ :Pf DQG b 7L +H UHSRUWHG YDOXHV UDQJLQJ IURP IRU S;\OHQH DQG YDOXHV RI IRU DOO RWKHU FRPSRQHQWV 7KH YDOXHV IRU KLV RXWGRRU WHVWV DOVR FRPSDUHG IDYRUDEO\ WR WKH YDOXH REWDLQHG LQ WKLV H[SHULPHQW +H UHSRUWHG D FRQVLVWHQW YDOXH RI N PLQn ZLWK A DYJ :P DQG b 7LFRPSDUHG WR PLQn LQ VXQOLJKW A DYJ :Pf ZLWK b 7L LQ WKLV VWXG\

PAGE 174

'LVLQIHFWLRQ :KLOH UHDFWLRQ UDWH FRQVWDQWV DV D IXQFWLRQ RI WLPH KDYH QRW EHHQ UHSRUWHG IRU SKRWRFKHPLFDO GLVLQIHFWLRQ VRPH RI WKH UHSRUWHG UHVXOWV KDYH DSSHDUHG WR IROORZ ILUVW RUGHU NLQHWLFV ZLWK WLPH %ORFN HW DO f 0RVW RI WKH GDWD ILW ZHOO WR ILUVWRUGHU UHDFWLRQ UDWH NLQHWLFV DV VKRZQ LQ 7DEOH 6HYHUDO JUDSKLFDO H[DPSOHV DUH JLYHQ LQ )LJXUHV WR 7KHVH UHVXOWV FDQ EH XVHG DV D EDVLV IRU FRPSDULVRQ RI WKH SURFHVVHV VWXGLHG LQ WKLV UHVHDUFK 7DEOH &RUUHODWLRQ 6WDWLVWLFV IRU /HDVW 6TXDUHV /LQHDU 5HJUHVVLRQ RI .LQHWLF 'DWD &RQILGHQFH /HYHO LV b 9 /LAU" :UA7# S+ 89 /LJKW :Pf # S+" 3 SYDOXH U SYDOXH b 7L b 7L b 7L 6XQOLJKW :Pf # S+ 6XQOLJKW :Pf # S+ PJ/ 0% PJ/ 0% PJ/ 0% 1 $ 1 $ PJ/ 0% 1$ 1$ PJ/ 0% 1 $ 1 $ 1 $ 1$ 6XQOLJKW :Pf # S+ 6XQOLJKW :Pf # S+ PJ/ 5% PJ/ 5% PJ/ 5% PJ/ 5% PJ/ 5%

PAGE 175

)LJXUH /HDVW 6TXDUHV /LQHDU 5HJUHVVLRQ RI )LUVW 2UGHU 5DWH (TXDWLRQ IRU 'LVLQIHFWLRQ LQ 89 /LJKW :Pf ZLWK b 7L DQG S+ U SYDOXH )LJXUH /HDVW 6TXDUHV /LQHDU 5HJUHVVLRQ RI )LUVW 2UGHU 5DWH (TXDWLRQ IRU 'LVLQIHFWLRQ LQ 89 /LJKW :Pf ZLWK b 7L DQG S+ U SYDOXH

PAGE 176

)LJXUH /HDVW 6TXDUHV /LQHDU 5HJUHVVLRQ RI )LUVW 2UGHU 5DWH (TXDWLRQ IRU 'LVLQIHFWLRQ LQ 6XQOLJKW :Pf ZLWK QR SKRWRFKHPLFDO DQG S+ U SYDOXH )LJXUH /HDVW 6TXDUHV /LQHDU 5HJUHVVLRQ RI )LUVW 2UGHU 5DWH (TXDWLRQ IRU 'LVLQIHFWLRQ LQ 6XQOLJKW :Pf ZLWK PJ/ 5% DQG S+ U SYDOXH 7DEOH LV D FRPSDULVRQ RI WKH H[SHULPHQWDO ILUVW RUGHU UDWH FRQVWDQWV N IRU DOO RI WKH GLVLQIHFWLRQ H[SHULPHQW VHWV :KHUH QR YDOXHV ZHUH UHSRUWHG WKH UHDFWLRQV RFFXUUHG WRR TXLFNO\ WR DFFXUDWHO\ FDOFXODWH D UDWH FRQVWDQW ([DPLQDWLRQ RI WKH H[SHULPHQWDO UDWH FRQVWDQWV JDYH D KLHUDUFK\ RI SURFHVVHV IRU GLVLQIHFWLRQ 7KH ODUJHVW UDWH FRQVWDQW

PAGE 177

FRUUHVSRQGLQJ WR WKH IDVWHVW UHDFWLRQ WLPH PLQ ZDV LQ WKH UHDFWRUV FRQWDLQLQJ PJ/ 0% DW S+ ZLWK PJ/ 0% FRPLQJ LQ D FORVH VHFRQG DW PLQn ,W LV LPSRUWDQW WR QRWH WKDW YDOXHV FRXOG QRW EH FDOFXODWHG IRU WKH RWKHU FRQFHQWUDWLRQV RI 0% EHFDXVH WKH UHDFWLRQV RFFXUUHG WRR TXLFNO\ WR FROOHFW HQRXJK GDWD IRU GHWHUPLQDWLRQ RI UDWH FRQVWDQWV 7KH FDOFXODWHG UDWH FRQVWDQWV IRU DOO RWKHU FRQGLWLRQV ZHUH VLPLODU LQ YDOXH UDQJLQJ IURP PLQn 7DEOH )LUVW 2UGHU 5DWH &RQVWDQWV IRU $OO 3KRWRFKHPLFDO 'LVLQIHFWLRQ ([SHULPHQWV L9 /LJKW :Pf # S+ 89 /LJKW :Pf # S+ b 7L b 7L b 7L 6XQOLJKW :Pf # S+ 6XQOLJKW :Pf # S+ PJ/ 0% PJ/ 0% PJ/ 0% 1 $ PJ/ 0% 1 $ PJ/ 0% 1 $ 1 $ 6XQOLJKW :Pf # S+ 6XQOLJKW :Pf # S+ PJ/ 5% PJ/ 5% PJ/ 5% PJ/ 5% PJ/ 5% 9999$9$9n??9?99999999n9n99n :9999$9999:A9$9$A999n99999999999999999999999999 *HQHUDO 6XPPDU\ RI 5HVXOWV 7KH RQO\ SURFHVV ZKLFK ZDV HIIHFWLYH IRU GHVWUXFWLRQ RI DOO RI WKH FRQWDPLQDQWV ZDV 7L SKRWRFDWDO\VLV $ TXDQWLWDWLYH FRPSDULVRQ RI WKH H[SHULPHQWDO VHWV SHUIRUPHG LQ WKLV VWXG\ LV VKRZQ LQ 7DEOH

PAGE 178

7DEOH 7LPH WR &RPSOHWH 'HVWUXFWLRQ E\ 3KRWRFKHPLFDO 7UHDWPHQW 3KRWRFKHPLFDO /LJKW S+ %HQ]HQH 'HVWUXFWLRQ %DFWHULD 'HVWUXFWLRQ PJ/ 0% 6XQOLJKW :P b PLQf PLQ PJ/ 0% 6XQOLJKW :P] b PLQf PLQ PJ/ 0% 6XQOLJKW :P b PLQf PLQ PJ/ 0% 6XQOLJKW :P b PLQf PLQ PJ/ 0% 6XQOLJKW :P b PLQf PLQ PJ/ 0% 6XQOLJKW :P b PLQf PLQ PJ/ 0% 6XQOLJKW :P b PLQf PLQ PJ/ 0% 6XQOLJKW :P b PLQf PLQ PJ/ 0% 6XQOLJKW :P b PLQf PLQ PJ/ 5% 6XQOLJKW :P b PLQf b PLQf PJ/ 5% 6XQOLJKW :P b PLQf PLQ PJ/ 5% 6XQOLJKW :P b PLQf PLQ PJ/ 5% 6XQOLJKW :P b PLQf PLQ PJ/ 5% 6XQOLJKW :P b PLQf PLQ PJ/ 5% 6XQOLJKW :P b PLQf PLQ PJ/ 5% 6XQOLJKW :P b PLQf PLQ b 7L 89 :P b PLQf PLQ b 7L 89 :P b PLQf b PLQf b 7L 89 :P b PLQf b PLQf b 7L 89 :P PLQ PLQ b 7L 89 :P b PLQf PLQ b 7L 89 :P b PLQf b PLQf b 7L 6XQOLJKW ORO A :P Q P b PLQf PLQ 7L t0% 6XQOLJKW ORW A :P Q P b PLQf PLQ 1RWHV YDOXHV LQ f LQGLFDWH PD[LPXP GHVWUXFWLRQ DFKLHYHG E\ WLPH LQGLFDWHG QP QRW PHDVXUHG ,Q DOPRVW DOO SURFHVVHV LQ ZKLFK GHVWUXFWLRQ ZDV REVHUYHG WKH NH\ IDFWRUV ZHUH f WKH DEVHQFH DQG SUHVHQFH RI OLJKW f WKH DEVHQFH DQG SUHVHQFH RI SKRWRFKHPLFDO DQG f WKH FRQFHQWUDWLRQ RI SKRWRFKHPLFDO 7KH RQH H[FHSWLRQ ZDV LQ 5RVH %HQJDO GLVLQIHFWLRQ H[SHULPHQWV ZKHUHLQ QHLWKHU OLJKW QRU SKRWRFKHPLFDO KDG DQ\ HIIHFW 7KH VLJQLILFDQFH RI WKHVH WZR SDUDPHWHUV ZDV LQGLFDWLYH RI SKRWRFKHPLFDO DFWLRQ 0LQLPDO S+ HIIHFWV ZHUH REVHUYHG LQ GLVLQIHFWLRQ ZLWK URVH EHQJDO 7KH ODFN RI HIIHFW RI 5% FRQFHQWUDWLRQ RQ GLVLQIHFWLRQ LQ WKHVH H[SHULPHQWV LQGLFDWHV WKDW QR SKRWRFKHPLFDO UHDFWLRQ RFFXUUHG ZLWK 5%

PAGE 179

&+$37(5 6800$5< $1' &21&/86,216 6XPPDU\ /DERUDWRU\ VFDOH VWXGLHV ZHUH FRQGXFWHG WR DVVHVV WKH SRWHQWLDO IRU VRODU SKRWRFKHPLVWU\ WR VHUYH DV D IHDVLEOH WHFKQRORJ\ IRU GULQNLQJ ZDWHU WUHDWPHQW 7KH REMHFWLYHV GHILQHG IRU WKH UHVHDUFK ZHUH WR f DVVHVV WKH DELOLW\ RI SKRWRFKHPLFDO SURFHVVHV WR HIIHFW VLPXOWDQHRXV WUHDWPHQW RI FKHPLFDO DQG PLFURELRORJLFDO SROOXWDQWV DQG f WR FRPSDUH HIILFDFLHV RI SKRWRVHQVLWL]DWLRQ SKRWRFDWDO\VLV DQG FRPELQHG SKRWRVHQVLWL]DWLRQ DQG SKRWRFDWDO\VLV 3URFHVV (IILFDF\ &RPSDULVRQ IRU 6LPXOWDQHRXV 7UHDWPHQW 7KH WKUHH SURFHVVHV LQYHVWLJDWHG ZHUH f KHWHURJHQHRXV 7L SKRWRFDWDO\VLV f KRPRJHQHRXV G\H SKRWRVHQVLWL]DWLRQ ZLWK PHWK\OHQH EOXH DQG URVH EHQJDO DQG f D FRPELQDWLRQ RI WKH KHWHURJHQHRXV DQG KRPRJHQHRXV SURFHVV ZLWK 7L DQG PHWK\OHQH EOXH 2I WKH WKUHH SURFHVVHV RQO\ RQH 7L SKRWRFDWDO\VLV VXFFHVVIXOO\ GHPRQVWUDWHG VLPXOWDQHRXV GHWR[LILFDWLRQ DQG GLVLQIHFWLRQ RI WKH FRPSRQHQWV WHVWHG 7KH G\H VHQVLWL]DWLRQ SURFHVV ZLWK PHWK\OHQH EOXH DFKLHYHG GLVLQIHFWLRQ EXW GLG QRW DFKLHYH GHVWUXFWLRQ RI WKH FKHPLFDO FRQWDPLQDQWV WHVWHG :KHQ WKH WKUHH SURFHVVHV ZHUH FRPSDUHG GLUHFWO\ LQ WKH FRPELQDWLRQ H[SHULPHQWVf WKHUH ZHUH QR GLIIHUHQFHV LQ GLVLQIHFWLRQ

PAGE 180

HIILFDF\ +RZHYHU WKH 7L SKRWRFDWDO\WLF SURFHVV ZDV VLJQLILFDQWO\ PRUH HIIHFWLYH IRU GHWR[LILFDWLRQ 'ULQNLQJ :DWHU 4XDOLW\ :KHUH SKRWRFKHPLFDO DFWLRQ RFFXUUHG LQ WKH V\VWHPV VWXGLHG WKH FRQWDPLQDQWV HLWKHU ZHUH UHGXFHG RU GHPRQVWUDWHG FOHDU SRWHQWLDO IRU UHGXFWLRQ EHORZ VWDQGDUG ZDWHU TXDOLW\ SDUDPHWHUV 7KH 7L SKRWRFDWDO\WLF SURFHVV ZDV DEOH WR PHHW RU H[FHHG WKH 86 (3$ PD[LPXP FRQWDPLQDQW OHYHO IRU EHQ]HQH RI SSE .DZDPXUD f 7KH UHTXLUHPHQWV IRU WROXHQH SSPf DQG FRPELQHG [\OHQHV SSPf ZHUH KLJKHU WKDQ WKH VWDUWLQJ SRLQW RI WKLV VWXG\ %RWK 0% SKRWRVHQVLWL]DWLRQ DQG 7L SKRWRFDWDO\VLV H[FHHGHG WKH UHTXLUHPHQWV IRU WRWDO FROLIRUP UHGXFWLRQ RI b RI LQLWLDO FIX UHPDLQLQJ 7KHVH UHVXOWV LQGLFDWHG WKDW IRU WKLV W\SH RI FRQWDPLQDQW D SKRWRFKHPLFDO V\VWHP FRXOG HDVLO\ EH GHVLJQHG WR PHHW WKH :+2 GULQNLQJ ZDWHU TXDOLW\ JXLGHOLQHV ZKLFK DUH OHVV VWULQJHQW WKDQ WKH 86 (3$ JXLGHOLQHV &RQFOXVLRQV )URP WKHVH VWXGLHV LW ZDV FRQFOXGHG WKDW WKH XVH RI VRODU SKRWRFKHPLFDO WHFKQRORJ\ KDV SRWHQWLDO IRU GULQNLQJ ZDWHU WUHDWPHQW XQGHU FHUWDLQ FRQGLWLRQV 6SHFLILF FRQFOXVLRQV DUH DV IROORZV f 7L SKRWRFDWDO\VLV LV WHFKQLFDOO\ IHDVLEOH IRU VLPXOWDQHRXV GLVLQIHFWLRQ DQG GHWR[LILFDWLRQ ZKHQ WKH FRQWDPLQDQWV DUH ZHOO LGHQWLILHG

PAGE 181

f '\H SKRWRVHQVLWL]DWLRQ LV QRW DQ HIIHFWLYH WUHDWPHQW IRU VLPXOWDQHRXV GLVLQIHFWLRQ DQG GHWR[LILFDWLRQ RI DURPDWLF K\GURFDUERQV f 7KH DGGLWLRQ RI G\H GRHV QRW HQKDQFH WKH 7L SKRWRFDWDO\WLF UHDFWLRQ IRU HLWKHU GLVLQIHFWLRQ RU WKH GHVWUXFWLRQ RI %7(; f 7L SKRWRFDWDO\VLV LQ VXQOLJKW DQG XQGHU 89 OLJKW FDQ PHHW :+2 GULQNLQJ ZDWHU VWDQGDUGV IRU GLVLQIHFWLRQ DQG %7(; GHVWUXFWLRQ f %RWK 7L SKRWRFDWDO\VLV DQG 0% SKRWRVHQVLWL]DWLRQ H[KLELW SRWHQWLDO DV D VPDOO VFDOH GLVLQIHFWDQW IRU UXUDO RU SHUL XUEDQ DSSOLFDWLRQV f 3KRWRFKHPLFDO WHFKQRORJ\ PD\ EH PRUH DSSURSULDWH IRU WUHDWPHQW RI ZDVWHZDWHU RU FRQWDPLQDWHG ZDWHU WKDQ VSHFLILFDOO\ IRU GULQNLQJ ZDWHU 5HFRPPHQGDWLRQV IRU )XWXUH :RUN 7KH IROORZLQJ UHFRPPHQGDWLRQV DUH PDGH IRU IXWXUH ZRUN IRU SKRWRFKHPLFDO WHFKQRORJ\ f 'HYHORSPHQW RI LQH[SHQVLYH WHFKQRORJ\ IRU WKH VHSDUDWLRQ RU LPPRELOL]DWLRQ RI FDWDO\VW f 7HVWLQJ RI WKH WHFKQRORJ\ RQ D EURDGHU UDQJH RI ERWK PLFURELRORJLFDO DQG FKHPLFDO FRQWDPLQDQWV LQFOXGLQJ YLUXVHV f 'HWHUPLQDWLRQ RI UHODWLYH HIIHFWLYHQHVV RI GLVLQIHFWLRQ WHFKRORJ\ RQ VSHFLILF PLFURELRORJLFDO VSHFLHV

PAGE 182

f ([SORUDWLRQ RI D FRQWLQXRXV SKRWRFKHPLFDO VXSSO\ IRU SKRWRVHQVLWL]DWLRQ f $QDO\VLV IRU GHVWUXFWLRQ RI VHQVLWL]HU LQ SKRWRVHQVLWL]DWLRQ f $QDO\VLV IRU LQWHUPHGLDWH IRUPDWLRQ LQ ERWK SKRWRFDWDO\VLV DQG SKRWRVHQVLWL]DWLRQ

PAGE 183

5()(5(1&(6 $EGXOODK 0 .& /RZ DQG 5 0DWWKHZV f(IIHFWV RI &RPPRQ ,QRUJDQLF $QLRQV RQ 5DWHV RI 3KRWRFDWDO\WLF 2[LGDWLRQ RI 2UJDQLF &DUERQ 2YHU ,OOXPLQDWHG 7LWDQLXP 'LR[LGHf -RXUQDO RI 3K\VLFDO &KHPLVWU\ f $EHHO 6 0 $ 9LFNHUV DQG 'HFNHU f7UHQGV LQ 3XUJH DQG 7UDSf -RXUQDO RI &KURPDWRJUDSKLF 6FLHQFH $XJXVW f $FKHU $ f6XQOLJKW 3KRWRR[LGDWLRQ RI 2UJDQLF 3ROOXWDQWV LQ :DVWHZDWHUf :DWHU 6FLHQFH DQG 7HFKQRORJ\ f $FKHU $ ( )LVFKHU DQG < 0DQRU f6XQOLJKW 'LVLQIHFWLRQ RI 'RPHVWLF (IIOXHQW IRU $JULFXOWXUDO 8VHf :DWHU 5HVHDUFK f $FKHU $ ( )LVFKHU 5 =HOOHQJKHU DQG < 0DQRU f3KRWRFKHPLFDO 'LVLQIHFWLRQ RI (IIOXHQWV 3LORW 3ODQW 6WXGLHVf :DWHU 5HVHDUFK f $FKHU $ DQG % -XYHQ f'HVWUXFWLRQ RI &ROLIRUPV LQ :DWHU DQG 6HZDJH :DWHU E\ '\H6HQVLWL]HG 3KRWRR[LGDWLRQf $SSOLHG DQG (QYLURQPHQWDO 0LFURELRORJ\ f $FKHU $ DQG 5RVHQWKDO f'\HVHQVLWL]HG 3KRWRR[LGDWLRQ $ 1HZ $SSURDFK WR WKH 7UHDWPHQW RI 2UJDQLF 0DWWHU LQ 6HZDJH (IIOXHQWVf :DWHU 5HVHDUFK f $FUD $ 0 -XUGL + 0XnDOOHP < .DUDKDJRSLDQ DQG = 5DIIRXO :DWHU 'LVLQIHFWLRQ EY 6RODU 5DGLDWLRQ $VVHVVPHQW DQG $SSOLFDWLRQ 2WWDZD 2QWDULR &DQDGD ,QWHUQDWLRQDO 'HYHORSPHQW 5HVHDUFK &HQWUH $JXDGR 0 $ 0 $ $QGHUVRQ DQG & +LOO -U f,QIOXHQFH RI /LJKW ,QWHQVLW\ DQG 0HPEUDQH 3URSHUWLHV RQ WKH 3KRWRFDWDO\WLF 'HJUDGDWLRQ RI )RUPLF $FLG RYHU 72 &HUDPLF 0HPEUDQHVf -RXUQDO RI 0ROHFXODU &DWDO\VLV f $KPHG 6 DQG ) 2OOLV f6RODU 3KRWRDVVLVWHG &DWDO\WLF 'HFRPSRVLWLRQ RI WKH &KORULQDWHG +\GURFDUERQV 7ULFKORURHWK\OHQH DQG 7ULFKORURPHWKDQHf 6RODU (QHUJ\ f

PAGE 184

$LWKDO 8 6 7 0 $PLQDEKDYL DQG 6 6 6KXNOD f3KRWRPLFURHOHFWURFKHPLFDO 'HWR[LILFDWLRQ RI +D]DUGRXV 0DWHULDOVf -RXUQDO RI +D]DUGRXV 0DWHULDOV f $O(NDEL + 1 6HUSRQH ( 3HOL]]HWWL & 0LQHUR 0 $ )R[ DQG 5 % 'UDSHU f.LQHWLF 6WXGLHV LQ +HWHURJHQHRXV 3KRWRFDWDO\VLV 7L 0HGLDWHG 'HJUDGDWLRQ RI &KORURSKHQRO $ORQH DQG LQ D 7KUHH &RPSRQHQHW 0L[WXUH RI &KORURSKHQRO 'LFKORURSKHQRO DQG 7ULFKORURSKHQRO LQ $LU(TXLODEUDWHG $TXHRXV 0HGLDf /DQJPXLU f $O.DUDJKRXOL $ $ DQG $ 1 0LQDVLDQ f$ )ORDWLQJ:LFN 7\SH 6RODU 6WLOO 7HFKQLFDO 1RWHff 5HQHZDEOH (QHUJ\ f $QGUHDWWD 7
PAGE 185

%HOODU 7 $ DQG /LFKWHQEHU f'HWHUPLQLQJ 9RODWLOH 2UJDQLFV DW 0LFURJUDPSHU/LWHU /HYHOV E\ *DV &KURPDWRJUDSK\f -RXUQDO RI WKH $PHULFDQ :DWHU :RUNV $VVRFLDWLRQ 'HFHPEHU f %HUU\ 5 DQG 0 5 0XHOOHU f3KRWRFDWDO\WLF 'HFRPSRVLWLRQ RI &UXGH 2LO 6OLFNV 8VLQJ 72 RQ D )ORDWLQJ 6XEVWUDWHf 0LFURFKHPLFDO -RXUQDO f %ODNH 0 %LEOLRJUDSK\ RI :RUN RQ WKH 3KRWRFDWDO\WLF 5HPRYDO RI +D]DUGRXV &RPSRXQGV IURP :DWHU DQG $LU 15(/73 1DWLRQDO 5HQHZDEOH (QHUJ\ /DERUDWRU\ %RXOGHU &2 7HFKQLFDO 5HSRUW %ODNH 0 :HEE & 7XUFKL DQG 0DJULQL f.LQHWLF DQG 0HFKDQLVWLF 2YHUYLHZ RI 7LSKRWRFDWDO\]HG 2[LGDWLRQ 5HDFWLRQV LQ $TXHRXV 6ROXWLRQf 6RODU (QHUJ\ 0DWHULDOV f %ORFN 6 6 9 3 6HQJ DQG < *RVZDPL f&KHPLFDOO\ (QKDQFHG 6XQOLJKW IRU .LOOLQJ %DFWHULDf -RXUQDO RI 6RODU (QHUJ\ (QJLQHHULQJ )HEUXDU\ f %XUFK DQG ( 7KRPDV f:DWHU 'LVLQIHFWLRQ IRU 'HYHORSLQJ &RXQWULHV DQG 3RWHQWLDO IRU 6RODU 7KHUPDO 3DVWHXUL]DWLRQf ,Q ,QWHUQDWLRQDO 6RODU (QHUJ\ 6RFLHW\ LQ .RUHD %XUNKDUG 1 DQG $ *XWK f3KRWRGHJUDGDWLRQ RI $WUD]LQH $WUDWRQ DQG $PHWU\QH LQ $TXHRXV 6ROXWLRQ ZLWK $FHWRQH DV D 3KRWRVHQVLWLVHUf 3HVWLFLGH 6FLHQFH f &DQR\ 1 DQG $ .QXGVHQ :DWHUERUQH 3DWKRJHQV RI WKH 8 6 9LUJLQ ,VODQGV 7HFKQLFDO 5HSRUW 1R &DULEEHDQ 5HVHDUFK ,QVWLWXWH &ROOHJH RI WKH 9LUJLQ ,VODQGV 3URMHFW 5HSRUW &DUH\ + DQG % 2OLYHU f7KH 3KRWRFKHPLFDO 7UHDWPHQW RI :DVWHZDWHU E\ 8OWUDYLROHW ,UUDGLDWLRQ RI 6HPLFRQGXFWRUVf :DWHU 3ROOXWLRQ 5HVHDUFK -RXUQDO RI &DQDGD f &DUVRQ 5 6LOHQW 6SULQJ %RVWRQ 0$ +RXJKWRQ 0LIOLQ &KHUHPLVLQRII 1 3 3 1 &KHUHPLVLQRII DQG 5 % 7UDWWQHU &KHPLFDO DQG 1RQFKHPLFDO 'LVLQIHFWLRQ $QQ $UERU 0, $QQ $UERU 6FLHQFH &KULVWPDV f7KH ,QWHUQDWLRQDO 'ULQNLQJ :DWHU 6XSSO\ DQG 6DQLWDWLRQ 'HFDGH DQG %H\RQGf ,Q 6XSSO\LQJ :DWHU DQG 6DYLQJ WKH (QYLURQPHQW IRU 6L[ %LOOLRQ 3HRSOH HGV 8 3 6LQJK DQG 2 +HOZLJ 1HZ
PAGE 186

&LRFKHWWL DQG 5 + 0HWFDOI f3DVWHXUL]DWLRQ RI 1DWXUDOO\ &RQWDPLQDWHG :DWHU ZLWK 6RODU (QHUJ\f $SSOLHG DQG (QYLURQPHQWDO 0LFURELRORJ\ f &ODUN 6 : f.H\ ,VVXHV IRU 5HJXODWLQJ 'LVLQIHFWLRQ %\SURGXFWVf ,Q 5HJXODWLQJ 'ULQNLQJ :DWHU 4XDOLW\ HGV & *LOEHUW ( DQG ( &DODEUHVH %RFD 5DWRQ )/ /HZLV 3XEOLVKHUV &URVE\ DQG $ 6 :RQJ f3KRWRGHFRPSRVLWLRQ RI 7ULFKORURSKHQR[\DFHWLF $FLG 7f LQ :DWHUf -RXUQDO RI $JULFXOWXUDO DQG )RRG &KHPLVWU\ f 'DV 6 0 0XQHHU DQG 5 *RSSLGDV f3KRWRFDWDO\WLF 'HJUDGDWLRQ RI :DVWHZDWHU 3ROOXWDQWV 7LWDQLXPGLR[LGHPHGLDWHG 2[LGDWLRQ RI 3RO\QXFOHDU $URPDWLF +\GURFDUERQVf -RXUQDO RI 3KRWRFKHPLVWU\ DQG 3KRWRELRORJY $ &KHPLVWU\ f 'DYLV $ 3 DQG & 3 +XDQJ f7KH 3KRWRFDWDO\WLF 2[LGDWLRQ RI 6XOIXU &RQWDLQLQJ 2UJDQLF &RPSRXQGV 8VLQJ &DGPLXP 6XOILGH DQG WKH (IIHFW RQ &G6 3KRWRFRUURVLRQf :DWHU 5HVHDUFK f 'RZQHV $ DQG 7 3 %OXQW f5HVHDUFKHV RQ WKH (IIHFW RI /LJKW XSRQ %DFWHULD DQG 2WKHU 2UJDQLVPVf 3URFHHGLQJV RI WKH 5RYDO 6RFLHW\ RI /RQGRQ f 'URVWH 5 / DQG ) ( 0F-XQNLQ f6LPSOH :DWHU 7UHDWPHQW 0HWKRGVf ,Q :DWHU 6XSSO\ DQG 6DQLWDWLRQ ,Q 'HYHORSLQJ &RXQWULHV HGV ( 6FKLOOHU DQG 5 / 'URVWH $QQ $UERU 0, $QQ $UERU 6FLHQFH 3XEOLVKHUV (LVHQEHUJ 7 1 ( 0LGGOHEURRN DQG 9 $GDPV f6HQVLWL]HG 3KRWRR[LGDWLRQ IRU :DVWHZDWHU 'LVLQIHFWLRQ DQG 'HWR[LILFDWLRQf :DWHU 6FLHQFH DQG 7HFKQRORJ\ 5LR Df (LVHQEHUJ 7 1 ( 0LGGOHEURRNV DQG 9 $GDPV f'\H 6HQVLWL]HG 3KRWRR[LGDWLRQ RI %URPDFLO LQ :DVWHZDWHUf ,Q WK ,QGXVWULDO :DVWH &RQIHUHQFH 3XUGXH 8QLYHUVLW\ 0DY LQ :HVW /DID\HWWH ,QGLDQD %XWWHUZRUWKV (LVHQEHUJ 7 1 ( 0LGGOHEURRNV DQG 9 $GDPV f6HQVLWL]HG 3KRWRR[LGDWLRQ RI %URPDFLO 3LORW %HQFK DQG /DERUDWRU\ 6FDOH 6WXGLHVf ,Q QG ,QGXVWULDO :DVWH &RQIHUHQFH 3XUGXH 8QLYHUVLW\ 0DY :HVW /DID\HWWH ,QGLDQD /HZLV 3XEOLVKHUV (LVHQEHUJ 7 1 ( 0LGGOHEURRNV 9 $GDPV $ $FKHU DQG 6 6DOW]PDQ 8VH RI 6RODU (QHUJ\ IRU :DVWHZDWHU 'LVLQIHFWLRQ IRU &URS ,UULJDWLRQ E

PAGE 187

(OOLV 9 f:DWHU 'LVLQIHFWLRQ $ 5HYLHZ ZLWK 6RPH &RQVLGHUDWLRQ RI WKH 5HTXLUHPHQWV RI WKH 7KLUG :RUOGf &ULWLFDO 5HYLHZV LQ (QYLURQPHQWDO &RQWURO f )DUZDWL 0 $ f7KHRUHWLFDO 6WXG\ RI 0XOWL6WDJH )ODVK 'LVWLOODWLRQ 8VLQJ 6RODU (QHUJ\f (QHUJ\ f )RRWH & 6 f0HFKDQLVPV RI 3KRWRVHQVLWL]HG 2[LGDWLRQf 6FLHQFH f )R[ 0 $ ( 'RDQ DQG 0 7 'XOD\ f7KH (IIHFW RI WKH ,QHUW 6XSSRUW RQ 5HODWLYH 3KRWRFDWDO\WLF $FWLYLW\ LQ WKH 2[LGDWHLYH 'HFRPSRVLWLRQ RI $OFRKROV RQ ,UUDGLDWHG 7LWDQLXP 'LR[LGH &RPSRVLWHVf 5HVHDUFK RQ &KHPLFDO ,QWHUPHGLDWHV f )XMLRND 5 6 DQG 2 7 1DULNDZD f(IIHFW RI 6XQOLJKW RQ (QXPHUDWLRQ RI ,QGLFDWRU %DFWHULD 8QGHU )LHOG &RQGLWLRQVf $SSOLHG DQG (QYLURQPHQWDO 0LFURELRORJ\ f *DPHVRQ $ / + DQG 5 6D[RQ f)LHOG 6WXGLHV RQ (IIHFW RI 'D\OLJKW RQ 0RUWDOLW\ RI &ROLIRUP %DFWHULDf :DWHU 5HVHDUFK f *HUED & 3 & :DOOLV DQG / 0HOQLFN f$SSOLFDWLRQ RI 3KRWRG\QDPLF 2[LGDWLRQ WR WKH 'LVLQIHFWLRQ RI 7DSZDWHU 6HDZDWHU DQG 6HZDJH &RQWDPLQDWHG ZLWK 3ROLRYLUXVf 3KRWRFKHPLVWU\ DQG 3KRWRELRORJY Df *HUED & 3 & :DOOLV DQG / 0HOQLFN f'LVLQIHFWLRQ RI :DVWHZDWHU E\ 3KRWRG\QDPLF $FWLRQf -RXUQDO RI WKH :DWHU 3ROOXWLRQ &RQWURO )HGHUDWLRQ Ef *OD]H : + % $QGHOPDQ 5 %XOO 5 % &RQROO\ & +HUW] 5 +RRG DQG 5 $ 3HJUDP f'HWHUPLQLQJ +HDOWK 5LVNV $VVRFLDWHG :LWK 'LVLQIHFWDQWV DQG 'LVLQIHFWLRQ %\SURGXFWV 5HVHDUFK 1HHGVf -RXUQDO RI WKH $PHULFDQ :DWHU :RUNV $VVRFLDWLRQ Df *OD]H : + ) .HQQHNH DQG / )HUU\ f&KORULQDWHG %\SURGXFWV IURP WKH 7L0HGLDWHG 3KRWRGHJUDGDWLRQ RI 7ULFKORURHWK\OHQH DQG 7HWUDFKORURHWK\OHQH LQ :DWHUf (QYLURQPHQWDO 6FLHQFH t 7HFKQRORJ\ Ef *RVZDPL < f(QJLQHHULQJ RI 6RODU 3KRWRFDWDO\WLF 'HWR[LILFDWLRQ DQG 'LVLQIHFWLRQ 3URFHVVHVf ,Q $GYDQFHV LQ 6RODU (QHUJ\ $Q $QQXDO 5HYLHZ RI 5HVHDUFK DQG 'HYHORSPHQW HG : %RHU %RXOGHU &2 $PHULFDQ 6RODU (QHUJ\ 6RFLHW\ *RVZDPL < DQG & -RWVKL $ 5HYLHZ RI 89 5DGLDWLRQ %DVHG 7UHDWPHQW RI :DVWHZDWHU 8QLYHUVLW\ RI )ORULGD

PAGE 188

*RVZDPL < .ODXVQHU 3 :\QHVV $ 0DUWLQ 0DWKXU 6FKDQ]H & 7XUFKL DQG ( 0DUFKDQG 6RODU 3KRWRFDWDOYWLF 7UHDWPHQW RI *URXQGZDWHU DW 7\QGDOO $)% )LHOG 7HVW 5HVXOWV 8QLYHUVLW\ RI )ORULGD 8)0(6((&/ +DGGHQ 3 / 5 5 +LOO -HIIUH\6PLWK ( / 0F'RQDOG 5 5REHUWV DQG $ 5 :HUQLQFN f3KRWRR[LGDWLRQ RI 2UJDQLF 3ROOXWDQWV LQ $TXHRXV 6\VWHPVf 3RVWHU 3UHVHQWDWLRQ DW $GYDQFHG 2[LGDWLRQ 7HFKQRORJLHV $27Vf +DUDGD 7 +LVDQDJD DQG 7DQDND f3KRWRFDWDO\WLF 'HJUDGDWLRQ RI 2UJDQRSKRVSKRURXV ,QVHFWLFLGHV LQ $TXHRXV 6HPLFRQGXFWRU 6XVSHQVLRQVf :DWHU 5HVHDUFK f +D]HQ 7 & DQG $ 7RUDQ]RV f7URSLFDO 6RXUFH :DWHUf ,Q 'ULQNLQJ :DWHU 0LFURELRORJ\ HG $ 0F)HWHUV 1HZ
PAGE 189

-R\FH 7 0 0F*XLJDQ 0 (OPRUH0HHJDQ DQG 5 0 &RQUR\ f,QDFWLYDWLRQ RI )HFDO %DFWHULD LQ 'ULQNLQJ :DWHU E\ 6RODU +HDWLQJf $SSOLHG DQG (QYLURQPHQWDO 0LFURELRORJ\ f .DZDJXFKL + DQG 0 )XUX\D f3KRWRGHJUDGDWLRQ RI 0RQRFKORUREHQ]HQH LQ 7LWDQLXP 'LR[LGH $TXHRXV 6XVSHQVLRQVf &KHPRVSKHUH f .DZDPXUD 6 ,QWHJUDWHG 'HVLJQ RI :DWHU 7UHDWPHQW )DFLOLWLHV 1HZ
PAGE 190

6XSSRUWHG RQ *ODVVf -RXUQDO RI 3KRWRFKHPLVWU\ DQG 3KRWRELRORJY $ &KHPLVWU\ f 0DGDEKXVKL 6 f'HYHORSPHQW RI D 6RODU 3KRWRFDWDO\WLF 7UHDWPHQW )DFLOLW\ IRU &RQWDPLQDWHG *URXQG :DWHUf 0DVWHU RI 6FLHQFH 7KHVLV 8QLYHUVLW\ RI )ORULGD 0DLOODUG'XSX\ & & *XLOODUG + &RXUERQ DQG 3 3LFKDW f.LQHWLFV DQG 3URGXFWV RI WKH 7L! 3KRWRFDWDO\WLF 'HJUDGDWLRQ RI 3\ULGLQH LQ :DWHUf (QYLURQPHQWDO 6FLHQFH DQG 7HFKQRORJ\ f 0DOLN 0 $ 6 1 7LZDUL $ .XPDU DQG 0 6 6RGKD 6RODU 'LVWLOODWLRQ 2[IRUG 3HUDPRQ 3UHVV 0DUWLQ ) DQG 0 3HUH]&UXHW f3UHSDUDWLRQ RI 6WHULOH 6HDZDWHU 7KURXJK 3KRWRG\QDPLF $FWLRQ 3UHOLPLQDU\ 6FUHHQLQJ 6WXGLHVf )ORULGD 6FLHQWLVW f 0DVRQ 5 / 5 ) *XQVW DQG / +HVV 6WDWLVWLFDO 'HVLJQ DQG $QDO\VLV RI ([SHULPHQWV ZLWK DSSOLFDWLRQV WR HQJLQHHULQJ DQG VFLHQFH :LOH\ 6HULHV LQ 3UREDELOLW\ DQG 0DWKHPDWLFDO 6WDWLVWLFV HGV 9 %DUQHWW 5 $ %UDGOH\ 6 +XQWHU .HQGDOO 5 0LOOHU -U $ ) 0 6PLWK 6 0 6WLJOHU DQG 6 :DWVRQ 1HZ
PAGE 191

0LOOV $ 5 + 'DYLHV DQG :RUVOH\ f:DWHU 3XULILFDWLRQ E\ 6HPLFRQGXFWRU 3KRWRFDWDO\VLVf &KHPLFDO 6RFLHW\ 5HYLHZV f 0RSSHU DQG 5 =LND f1DWXUDO 3KRWRVHQVLWL]HUV LQ 6HD :DWHU 5LERIODYLQ DQG ,WV %UHDNGRZQ 3URGXFWVf ,Q 3KRWRFKHPLVWU\ RI (QYLURQPHQWDO $TXDWLF 6\VWHPV HGV 5 =LND DQG : &RRSHU :DVKLQJWRQ '& $PHULFDQ &KHPLFDO 6RFLHW\ 0RVHU 5 + f&ULWLFDO ,VVXHV LQ 5HJXODWLQJ 0LFUREHV DQG 'LVLQIHFWLRQ %\ 3URGXFWVf ,Q 5HJXODWLQJ 'ULQNLQJ :DWHU 4XDOLW\ LQ %RFD 5DWRQ )/ HGLWHG E\ & *LOEHUW ( DQG ( &DODEUHVH /HZLV 3XEOLVKHUV 1JX\HQ 7 DQG ) 2OOLV f&RPSOHWH +HWHURJHQHRXVO\ 3KRWRFDWDO\]HG 7UDQVIRUPDWLRQ RI DQG 'LEURPRHWKDQH WR & DQG +%Uf -RXUQDO RI 3K\VLFDO &KHPLVWU\ f •EHUJ 9 f3KRWRFDWDO\WLF 'HWR[LILFDWLRQ RI :DWHU &RQWDLQLQJ 9RODWLOH 2UJDQLF &RPSRXQGVf 0DVWHU RI 6FLHQFH 7KHVLV .XQJO 7HNQLVND +JVNRODQ 5R\DO ,QVWLWXWH RI 7HFKQRORJ\f 2OLYHU % DQG + &DUH\ f3KRWRGHJUDGDWLRQ RI :DVWHV DQG 3ROOXWDQWV LQ $TXDWLF (QYLURQPHQWf ,Q +RPRJHQHRXV DQG +HWHURJHQHRXV 3KRWRFDWDOYVLV HGV ( 3HOL]]HWWL DQG 1 6HUSRQH 'RUGUHFKW 5HLGHO 3XEOLVKLQJ &RPSDQ\ 2OLYHU / DQG + &DUH\ f8OWUDYLROHW GLVLQIHFWLRQ DQ DOWHUQDWLYH WR FKORULQDWLRQf -RXUQDO :DWHU 3ROOXWLRQ &RQWURO )HGHUDWLRQ f 2OOLV ) f&RQWDPLQDQW 'HJUDGDWLRQ LQ :DWHUf (QYLURQPHQWDO 6FLHQFH DQG 7HFKQRORJ\ f 2OOLV ) f+HWHURJHQHRXV 3KRWRFDWDO\VLV IRU :DWHU 3XULILFDWLRQ 3URVSHFWV DQG 3UREOHPVf ,Q +RPRJHQHRXV DQG +HWHURJHQHRXV 3KRWRFDWDOYVLV HGV ( 3HOL]]HWWL DQG 1 6HUSRQH 'RUGUHFKW 5HLGHO 3XEOLVKLQJ &RPSDQ\ 2OOLV ) ( 3HOL]]HWWL DQG 1 6HUSRQH f+HWHURJHQHRXV 3KRWRFDWDO\VLV LQ WKH (QYLURQPHQW $SSOLFDWLRQ WR :DWHU 3XULILFDWLRQf ,Q 3KRWRFDWDOYVLV )XQGDPHQWDOV DQG $SSOLFDWLRQV HGV 1 6HUSRQH DQG ( 3HOL]]HWWL 1HZ
PAGE 192

3DWHO % f7KH $QWLPLFURELDO (IIHFW RI &DWDO\]HG 6RODU 5DGLDWLRQf 0DVWHU RI 6FLHQFH 7KHVLV 8QLYHUVLW\ RI )ORULGD 3HOL]]HWWL ( 0 %RUJDUHOOR & 0LQHUR ( 3UDPDXUR ( %RUJDUHOOR DQG 1 6HUSRQH f3KRWRFDWDO\WLF 'HJUDGDWLRQ RI 3ROFKORULQDWHG 'LR[LQV DQG 3RO\FKORULQDWHG %LSKHQ\OV LQ $TXHRXV 6XVSHQVLRQV RI 6HPLFRQGXFWRUV ,UUDGLDWHG ZLWK 6LPXODWHG 6RODU /LJKWf &KHPRVSKHUH f 3HOL]]HWWL ( 9 0DXULQR & 0LQHUR 9 &DUOLQ ( 3UDPDXUR 2 =HUELQDWL DQG 0 / 7RVDWR f3KRWRFDWDO\WLF 'HJUDGDWLRQ RI $WUL]LQH DQG 2WKHU V7ULD]LQH +HUELFLGHVf (QYLURQPHQWDO 6FLHQFH DQG 7HFKQRORJ\ f 3HOL]]HWWL ( & 0LQHUR 9 0DXULQR $ 6FODIDQL DQG + +LGDND f3KRWRFDWDO\WLF 'HJUDGDWLRQ RI 1RQ