Citation
Multiparametric optimization of four-bar and six-bar linkages

Material Information

Title:
Multiparametric optimization of four-bar and six-bar linkages
Creator:
Spitznagel, Kim Loring, 1952-
Publication Date:
Language:
English
Physical Description:
vii, 240 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Curvature ( jstor )
Design engineering ( jstor )
Design optimization ( jstor )
Dyadic relations ( jstor )
Engineering ( jstor )
Kinetics ( jstor )
Mechanical transmission ( jstor )
Mechanism design ( jstor )
Necessary conditions ( jstor )
Objective functions ( jstor )
Dissertations, Academic -- Mechanical Engineering -- UF
Links and link-motion ( lcsh )
Mechanical Engineering thesis Ph.D
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis--University of Florida.
Bibliography:
Bibliography: leaves 228-239.
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Kim Loring Spitznagel.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
022737260 ( ALEPH )
04942749 ( OCLC )

Downloads

This item has the following downloads:


Full Text


















MULTIPARAMETRIC OPTIMIZATION OF
FOUR-BAR AND SIX-BAR LINKAGES










By

KIM LORING SPITZNAGEL










A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE
UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY













UNIVERSITY OF FLORIDA 1978
































Copyright 1978

by

Kim Loring Spitznagel














ACKNOWLEDGMENTS



I wish to express my gratitude to Professor Delbert Tesar for his guidance and support throughout my graduate studies. My academic endeavors have benefited most from his contributions.

Much appreciation is due to Dr. John M. Vance, Dr. George N. Sandor, Dr. Ralph G. Selfridge, Dr. Martin A. Eisenberg and Dr. Sanjay G. Dhande for their reviewing efforts, suggestions, and especially for their respective influences on my professional development.

I am grateful for the support and aid of my friends and peers, particularly Ms. Barbara Mihatov and Mr. John Elliott. I am also indebted to Ms. Lois Rudloff for her patience and persistance while typing this dissertation.

Finally, my heartfelt thanks go to my family for their tolerance, support and encouragement.















TABLE OF CONTENTS

Page

ACKNOWLEDGI4ENTS . . . . . . . . iii

ABSTRACT . . . . . . . . . . vi


CHAPTER

I INTRODUCTION . . . . . . 1

II A PHILOSOPHY FOR LINKAGE DESIGN AND
OPTIMIZATION . . . . . . . 16

A. Control of Parameters . . . 16 B. The Optimization Procedure . . 17
C. Previous Use of the "Grid"
Philosophy . . . . . . 20

III SOLVABLE PROBLEMS . . . . . 23

A. Linkage Types . . . . . 23
B. Modes of Rotational Cyclicity . 27 C. Motion Specification Types . 35

IV SYNTHESIS OF LINKAGE SOLUTIONS . 39

A. The Four Tools of Synthesis . . 39
B. Coordination of the Tools of
Synthesis . . . . . . 61
C. Grid Dimensions . . . . . 65
D. Dependent Syntheses . . . . 66

V THE NECESSARY CONDITIONS . . . 71

A. Four-Bar Necessary Conditions . 71 B. Six-Bar Necessary Conditions . 99 VI THE DESIRABLE CONDITIONS . . . 104

A. The Desirable Conditions . . 104 B. The Objective Function . . . 108






i. V










Page

vii PROGRAMMING FOR FOUR-BAR AND SIX-BAR
OPTIMIZATION . . . . . . . 113

A. Philosophy of Program
Modularity * * * * * 113
B. Control of Input/Output . . . 116 VIII RECOMMENDATIONS AND CONCLUSIONS . . 120

A. Recommendations . . . . . 120
B. Conclusions . . . . . . 124


APPENDIX

A PROBLEM TYPES AND SOLUTION
LINKAGES . . . . . . . . 125

B MODES OF CYCLICITY AND NECESSARY
CONDITION PROCEDURES . . . . . 149

C PROGRAM MODULES . . . . . . 175

D SAMPLE PROGRAMS . . . . . . 212


BIBLIOGRAPHY . . . . . . . . . 228

BIOGRAPHICAL SKETCH . . . . . . . 240


























v









Abstract of Dissertation Presented to the Graduate Council of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy




MULTIPARAMETRIC OPTIMIZATION OF FOUR-BAR
AND SIX-BAR LINKAGES



By



Kim Loring Spitznayel

December, 1978

Chairman: Delbert Tesar
Major Department: Mechanical Engineering

An approach for four-bar and six-bar linkage optimization relative to numerous design criteria is presented. A linkage solution set is synthesized through an analytical combination of curvature transform theory, inversion, Robert's cognates and angular cognates under the specification of one of twelve possible types of motion specification. Evaluations are made first on the basis of necessary conditions, and then on the basis of assigned weighting factors and design zones relative to the optimization criteria. Subsequent expansions and refinements through resynthesis about the best linkages are used to approach an optimum solution.

The detailed design for an interactive computer program to implement the analytics is presented and discussed. The,





Vi










appendices include synthesis procedures, necessary condition evaluations, program module tables and sample programs.




























Chaiviiran























Vi1













CHAPTER I
INTRODUCTION



The level of interest in the application of optimization methods to mechanism design seems to be rising exponentially, with the great majority of effort coming from the past decade. The ultimate goals are means to achieve mechanism designs which are globally optimum relative to all pertinent criteria.

Some early attempts to optimize were those of da Vinci (1452-1519) and Newton (1642-1727), who were both involved in specific mechanical design problems, and made modifications of previous designs in order to enhance their performances. Galileo developed a rational mechanical optimization in 1638 by creating an algorithm for the form of a bent beam for uniform strength.

The advent of the differential calculus was fundamental to the development of many modern optimization techniques. The introduction of elegant evaluations of maxima and minima of differentiable functions eliminated the need for discrete evaluations of these functions.

The development of variational techniques is largely credited to Bernoulli, Lagrange and Euler. Chebyshev's [1] involvement in straight-line linkage design led him to develop his well known "Chebyshev polynomials"and optimality



1





2



criteria. In 1847, Cauchy [21 contributed the "steepest descent" method.

The German and Russian involvement in mechanism design over the past two centuries produced some extremely sophisticated graphical techniques for design. A graphical approach to four-bar optimization with respect to the transmission angle criterion was presented by Alt [31 in

1925.

The next fundamental influence on optimization was the development of the digital computer. Previously infeasible approaches to optimization became practical and the fields of mechanism design and optimization both changed directions. The birth of modern optimization can probably be credited to the work of Dantzig [41 in the early 1940's, whose work in linear programming included the development of the Simplex method.

In 1948 Svoboda [5] introduced his computational synthesis method of "successive approximations," and in 1954 Levitskii and Shakvazian [6] introduced a method to optimize spatial slider-cranks and crank-rockers on the basis of a set of linear equations from a finite'number of precision points.

The work of Freudenstein [7-11] in the latter part of the 1950's formed the basis for modern linkage design procedures. In 1959 Freudenstein and Sandor [10;11] used an IBM 650 and complex number theory to synthesize path-generating mechanisms, and Freudenstein [9] developed a





3



procedure to optimally approximate a given function using the precision points as design variables.

In the mid 1960's the mechanical design field began to feel the real impact of modern optimization theory, which involved numerical methods initially developed to solve management science and control system problems. Initial application to mechanical designs was primarily in the fields of structural mechanics and aeronautics, but mechanism design was not far behind. The development of such high level languages as Fortran, Algol, APL and Basic have made the use of the computer much simpler, more effective and less system dependent for the engineering community.

A general expression for the linkage optimization problem is:


Minimize Objective Function F(x)

where x = (xVx 2 . x p

Subject to:

Inequality constraints hk(x) < 0; k=l to m Equality constraints e i (x) = 0; j=l to n


A condition for the existence of an optimization problem is that the number of design parameters must exceed the number of constraining equations, in order to ensure the existence of "free" parameters.





4



The objective function may represent the deviation

between actual and ideal linkage performance, which may be a measure of prescribed path error ("structural error"), dynamic imbalances, error due to elasticity, or some weighted combination of errors relative to pertinent criteria.

Equality constraints have the effect of narrowing the scope of the optimization problem by reducing the number of free parameters. They commonly take the form of a synthesis step in which a linkage solution set is generated to satisfy prescribed precision points or positions.

Inequality constraints may take the form of design constraints placed on available linkage characteristics, such as link length maxima or minima, range of acceptable transmission angles, or geometric bounds on pivot locations or coupler motions.

The range of possible formulations of the linkage optimization problem is extremely large due to the highly variant sets of 1) linkage applications and 2) optimization criteria. It is highly desirable to organize the available approaches in order to get a feel for what is available, help classify past and present efforts, and perhaps enhance decisions in future efforts. Figure 1-1 shows such a representation.

Esthetically, a closed-form approach is preferred for any problem, but the inherently complex and nonlinear










LINKAGE
OPTIMIZATION



CLOSEDFORM ITERATIVE
METHODS METHODS








ALGEBRAIC RANDOM UNCONSTRAINED CONSTRAINED DIRECT
METHODS SEARCH MINIMIZATION MINIMIZATION METHODS
AND SORT


FOigur I I-. VLinaEe OIptiizi MIt.h
JCN.GAIET JIT PEAT GADETPO.








Figure 1-1. Linkage Optimization Methods





6



linkage problem makes the optimization analytics somewhat difficult to implement. Algebraic approaches, generally limited to small-scale problems, are rarely attempted. Sutherland [12] has developed mixed exact-approximate position synthesis in which some points are matched exactly using Burmester theory, and the objective function contains the least-squares error of approximation of additional precision points. Solutions to the resulting equations can be closed form or iterative depending on the order of magnitude of the problem. Bagci and Lee [13], Bagci [141, and Bhatia and Bagci[151 have developed and expanded on a linear superposition technique in which the error of the loop-closure equations of the linkage system is minimized by partitioning these equations into dyadic loop equations which are linear in terms of the system unknowns.

Random searches are direct and somewhat exhaustive, generally encompassing a synthesis step to generate a large representation of a linkage solution set for a particular problem, and then a rating and sorting step to locate the "best" linkage within this set. As early as 1962, Roth, Sandor and Freudenstein [161 used this approach by generating four-bar linkages satisfying path specifications, and then rating them according to some design criteria (primarily transmission angle). Later Nolle [171 used a random search for function generating linkages. In





7



1968 Tomas [18] discussed the treatment of linkage synthesis as a nonlinear programming problem, and employed the optimization random-search method of Garrett and Hall [19]. Eschenbach and Tesar [20] generated a

large set of linkages computationally and then ranked them according to numerous design criteria, the latter making use of limit design zones and design criterion weights. Two and three function problems are handled under the consideration of ten to twelve criteria acting as sequential filters. Eisenstein and Hall [21] approached the optimization of two-degree-of-freedom function generators by generating a small number of "good" designs, and then generating linkages around these to find a "best" design. Spherical four-bar path generators are handled by Sridher and Torfason [22], who synthesize on four precision points, and then search for the linkage which minimizes the maximum deviation from the prescribed path between the precision points using a random sequential search. The author [23] and the author and Tesar [24] have "grid refinement" technique for four-bars which involves generating two-dimensional discrete representations of the solution set for four coplanar positions, ranking or eliminating these using a weighted design criteria formulation, and then restarting by generating a new "grid" in the most favorable region. Most of the previously mentioned approaches, as well as the iterative methods, can guarantee true global optimization for convex functions only rarely the case in a linkage problem.









By far most of the emphasis in linkage optimization

has been towards the iterative methods. These methods involve "mathematical" (or "numerical") programming techniques which may be (in order of increasing complexity) linear, quadratic, geometric or dynamic. man techniques exist, Figure 1-1 showing only those used more commonly in linkage applications.

Constrained minimization techniques involve minimization of the objective function in the absence of inequality constraints, and are generally based on a "stepping" iteration, where each "new" step is a function of the location of the "old" step and some formulation of a new direction and step size.

The methods of Powell [25,26] involve unidirectional orthogonal searches to find local minima for each iteration. It is most applicable for problems with non-differentiable objective functions. Suh and Mecklenburg [271 have used Powell's method to operate on matrix-derived objective functions and constraints for spatial mechanisms.

The conjugate gradient technique bears some resemblance to Cauchy's "steepest descent" method but is much more efficient. Unfortunately, convergence degrades as the optimiia are reached or when the objective function has complicated features or "ridges." Fletcher and Reeves [281 introduced this method in 1964, and later Rees Jones and Rooney [29] employed this method for motion analysis using





9



an analog computer. Nect-i [301 also used an analog simulation, using a combined relaxation and gradient modification of the conjugate gradient approach to circumvent the problem of instability near the optimum. Six-bar function generators were optimized by Chen and Dalsania [31) by applying a least-squares gradient method.

Newton's method in its unmodified form is not often

used for linkage problems, largely due to difficulties associated with the selection of initial guesses. One application for this method was found by Rose and Sandor [321, who minimize structural error of four-bar function generators by equalizing error between precision points and at the ends of the specified range. The resulting formulation produces ten nonlinear differential equations to which Newton's method is applied to find a solution.

The so-called "quasi-Newton" method, also called the "variable metric" method, is basically a gradient technique which involves the formulation of a differential matrix which approximates the Hessian as the minimum is reached. Davidson, Fletcher and Powell [331 introduced this method in 1963, and Mclaine-Cross [341 used it in 1969 to optimize a crank-rocker four-bar to generate solar declination. This formulation, which involved five nonlinear differential equations, allowed for some error tolerance at the precision points. Optimization of mechanisms with flexible links was discussed by Sevak and





10



McLarnan [351 by using the variable metric. Conte, George, Mayne and Sadler (361 optimized with respect to dynamic criteria such as shaking force, input torque fluctuation, shaking moment and bearing reactions, using a penalty function in conjunction with the variable metric.

A fourth unconstrained minimization approach, the

Newton-Raphson method, is very efficient in terms of convergence, but requires formulation of the Hessian of the objective function at each iteration step. Han [371 used this method in 1966 for general mechanism optimization.

All of the unconstrained minimization formulations except for Powell's method require evaluation of the objective function's differential, but finite difference methods are generally applicable.

The second class of iterative methods are the constrained methods using unconstrained minimization. Generally, this means some modification is made to an unconstrained minimization technique to allow the inclusion of inequality constraints. One approach is a simple change of variable which will inherently disallow violation of specified inequalities, but linkage problems are usually too complex for this approach.

Penalty functions are often used to apply constraints to unconstrained minimization techniques. The interior penalty function introduced by Fiacco and McCormick [38-40] has received quite a lot of attention recently. It is









sometimes called the Sequence of Unconstrained Minimization Technique (SUMT). Fox and Willmert [41] used this technique to optimize a four-bar path-generating linkage using a least-squares error approach. Tranquilla [42] used this method to optimize a four-bar under the geometric couplerpoint constraints. Spatial mechanisms were considered by Gupta [43] with constraints on closure, mobility and transmissability. Bakthavachala and Kimbrell [44] considered four-bar path generator optimization under clearance, tolerance, transmission angle and link size considerations. Conte, George, Mayne and Sadler [36] used the SUMT for optimization with respect to dynamic criteria. Alizade, Mohan Rao and Sandor [45,46] have considered optimization with respect to structural error for two-degree-of-freedom spatial function generators and offset slider-crank path generators. Alizade, Novruzbekov and Sandor [47] then went on to four-bar function generators with consideration of link length and transmission angle inequality constraints. Kramer and Sandor [48] and Kramer [491 introduced the use of a new type of approximate motion specification in conjunction with an interior penalty function in order to optimally approximate a specified motion. Mariante and Willmert [501 used the interior penalty function to synthesize and optimize a complex convertible top linkage.

Direct methods and linearization methods are used to





12



deal explicitly with inequality constraints. This group includes the method of feasible directions introduced by Zoutendijk, the gradient projection method, and the extensions of Dantzig's simplex method. Fielding and Zanini [51,521 have discussed the use of modified Simplex methods and considered the optimization of an industrial packaging machine. Also, Youssef, Oldham and Maunder [53] have used the modified simplex to optimize multi-loop linkages with respect to path error, link length and transmission angle.

The use of variational methods for linkage problems can be traced back to the early work of Freudenstein [9] which later received attention from McLarnan [54], who attempts to minimize structural error by requiring the derivatives at the precision positions to be zero. Huang, Sebesta and Soni [55] and Prasad and Bagci [561 have had more recent applications of variational methods.

Other iterative methods have been introduced by Huang [571, who introduces the concept of sensitivity coefficients, and Lee and Freudenstein [58] and Datseris and Freudenstein [59], who develop the application of Lin's heuristic method (originally developed for the communications field) to mechanism optimization. Moradi and Pappas [60] have developed a "boundary tracking" algorithm for general mathematical programming problems.

Most of the papers discussed so far have dealt primarily with optimization with respect to motion error. If





13



another criterion is to be considered, it is generally related to transmission angle. Lin [61], Hamid and Soni [62,63], Shoup, Staffer and Weatherford [64], Freudenstein and Primrose [65], Sutherland and Roth [66], Bagci [671, and Savage and Suchora [68] have all dealt with optimization relative to transmission angle. Optimization with respect to dynamic criteria is also a field of interest, with contributions coming from Tomas [691, Benedict and Tesar [70], Berkof and Lowen [71,72], Conte, George, Mayne and Sadler [36], Tepper and Lowen [73], Sadler [74], Elliot and Tesar [75], and Sandler [76]. Optimization of more general mechanical systems such as planetary gear reducers and a shaping mechanism are discussed by Golinski [771, and Osman, Sankar and Dukkipati [78] have treated optimization of transmission gears. Optimization using the least-squares method of Gauss has been done by Chi-Yeh [79] and Mansour and Osman [80]. In 1971 Bagci and Prasad [81] and Bagci and Parekh [82] dealt with optimization schemes for coplanar and spherical four-bar and six-bars used for rigid body guidance. Speckhart [831 used minimum weight and the cost criterion as his objective function. Khan, Thornton and Willmert have developed "optimality criterion techniques" for minimizing weight in linkages subject to restrictions in stress and natural frequency [84] and stress and deformation [85]. Rao and Ambekar [86] optimized spherical RRRR function generators, and Sallam and





14




Lindholm [87] optimized six-bar Watt-i function generators. Hobson and Torf son [88] introduced a theoretical method which involves analysis of the centrodes of specified motion.

Graphic synthesis and analysis packages have been developed and bear some consideration in any discussion of linkage optimization due to their high level of human/ computer interaction, which allows convenient adjustment of representations of "good" designs to achieve "better" designs. Reed and Garrett [891 and Smith and Reed [90] have introduced IMAGE (Interactive Mechanism Analysis through Graphic Exchange) and Ricci [911 has introduced SPACEBAR. Perhaps the most powerful is KINSYN III, introduced by Rubel and Kaufman [92]. All of these employ high-level graphics coupled with linkage synthesis and analysis routines.

The linkage optimization problem has been discussed on a philosophical level by Johnson [933, who discusses stimulants and aids for creativity, such as a building block approach, and systematics of linkages and circuit diagrams. Srivastava and Newcombe [94] introduce a multifactor objective function including such things as pivot location, bearing load limitations, displacement, velocity or acceleration constraints and Grashof constraints. Sutherland and Siddall [95] also use a multifactor objective function with inverse utilics for spherical function





15



and path generators. Fox [961 describes the state of the art of mathematical programming as applied to the optimization of mechanical components such as springs, shafts and bearings. Oderfeld [97], Starr [98] and Chohan [991 have all presented philosophical discussions of optimization of mechanisms with respect to multiple parameters, with emphasis on ordering of design priorities.

Other literature surveys dealing with mechanism optimization have been presented (in chronological order) by Lindholm [100], Seireg [101] Fox and Gupta [1021, Chen [1031 and Root and Ragsdell [104].

The "philosophical" papers [93-99] effectively point the way towards the future.. A major concern involves met hods of achieving globally optimal mechanism designs which accomodate conflicting design requirements. Nearly all of the mechanism optimization schemes to date optimize with respect to one or two parameters. An enormous spectrum of mechanism applications exist, and a large number of criteria by which the overall quality of mechanism solution must be evaluated also exists. To thedesign engineer, who must be concerned with a mechanism's total functionality, true mechanism optimization must involve a significant number of these parameters.















CHAPTER II
A PHILOSOPHY FOR LINKAGE DESIGN AND OPTIMIZATION



A. Control of Parameters


In any optimization process, control of the number

of free parameters is a primary consideration for linkage problems, where desired motions are specified at a finite number of precision positions, the number of free parameters is determined by the simple relation:

p = q F

where p = number of free (optimization) parameters. q = number of parameters provided by a solution linkage. = number of "Precision positions" -k.

F = number of functional relations defining each precision position. which states that the number of free parameters after synthesis equals the number of parameters provided by the solution linlage minus the number of parameters used to satisfy the precision positions. For a given motion




16





17



specification type (which defines F), one should create a balance between solution linkage type (which defines q) and number of precision positions (which defines z) in order to describe ad equately the desired motion and still leave an acceptable number of free parameters for optimization (between one and three free parameters is desirable).

Naturally there is no guarantee that a design procedure will exist for every combination of qF and R. For example, one cannot expect to satisfy a large number of precision positions simply by using a sufficiently complex linkage.

In this work twelve types of motion are considered, and for each of these at four specified positionsan acceptable number of free parameters is generated by using either a four-bar linkage or one of the six-bar linkages. The synthesis procedures for the solution linkages are well known and have been collected and organized by Tesar (1051.



B. The Optimization Procedure


A synthesis, analysis and resynthesis loop is sufficient as a basis for optimization, and generally allows one to take advantage of the knowledge and insight provided by kinematic synthesis techniques, unlike the more rigid and forceful numerical approaches. The synthesis/





18



analysis/resynthesis loop to be used for this work is shown in Figure 2-1.

The input to the synthesis step is the precision position description of the desired motion, hereafter termed the motion specification set. A sequence of kinematic synthesis algorithms will produce the output, solution set of likgso antd ,12, or c

(depending upon q, F and k for the particular problem).

Unfortunately, the analytics used in the synthesis process are not sufficient to guarantee that all ( or indeed, any) of the generated linkages will satisfy the specified motion without falling into one or more of a number of physical pitfalls of real linkages, any one of which can make a linkage useless as a solution to the specified problem. For this reason a "necessary condition" step is required. The necessary conditions depend upon the motion specification type, the linkage solution type, and the means by which the linkage is driven. The linkage solution set is mapped onto linear (1-dimensional), rectangular (2-dimensional) or cubic (3-dimensional) spaces, depending upon the magnitude of the solution set space. These representations, termed "grids" due to their discrete, arrayed nature, form the operating environment for all subsequent optimization procedures. Through evaluation of appropriate necessary conditions, portions of the grid representing acceptable linkage solutions are determined and presented to the designer.




19






S Y n thesis (D I (D


Necessary Conditions




Desirable Conditions



Figure 2-1 The computational steps of a Synthesis/Analysis/
Resynthesis Linkage optimization





20



The third step, evaluation of "desirable conditions," is where the "quality" of the surviving solution linkages is determined by the user-defined objective function. A desirable condition can be any criterion by which a designer might qualitatively judge a linkage. The grid is passed through these desirable conditions sequentially, and for each one grid "topology" is re-evaluated. This procedure is known as sequential filtering. Some linkages may perform so poorly relative to one or more of these criteria as to be unacceptable, and will therefore be rejected.

The result is a grid of solution linkagesin which a portion or portions contain acceptable linkages, with scores indicating relative overall quality.



C. Previous Use of the "Grid" Philosophy


The optimization philosophy employing sequential filtering was first implemented by computer by Eschenbach and Tesar [201 in 1969 for crank-rocker four-bars satisfying specified coplanar motion for four positions. A very large solution set (-62,000 linkages) was passed through the necessary and desirable conditions in a single pass, the optimum linkage possessing the best surviving score. An improvement on this approach was later made by the author [231 and the author and Tesar [241 by introducing the





21.



concept, of grid expansion. Grid expansion is a refinement technique by which the three steps of synthesis, necessary condition evaluation and desirable condition evaluation become part of a continuous loop. A region on the grid about the linkages of higher quality is selected, and resynthesis is performed to generate a new grid with a more finely discretized representation (a conceptual magnification) about the selected region. Two or three passes through the loop is generally sufficient.

Due to the typically high attrition of solution

linkages in the first pass through the necessary conditions and the high computational expense of the desirable condition analysis relative to the necessary condition analysis, a further improvement can be had by looping back just after the necessary conditions on the first pass (as shown in Figure 2-1). Because desirable conditions are not evaluated initially relatively finely discretized grid can be used on this first pass. All of these techniques are employed in the author's thesis program package SOFBAL (Synthesis and Optimization of Four BAr Linkages), which is capable of synthesizing and optimizing all types of four-bar linkagesfor general coplanar motion.

This successful philosophy is retained for this work,

but now twelve types of motion specification are considered. In the next chapter these motion specification types and





22



the solution linkage types are presented and discussed. Subsequent chapters will treat in detail the analytics behind the steps of synthesis, necessary condition evaluation and desirable condition evaluation.














CHAPTER III
SOLVABLE PROBLEMS



The previous chapter described an optimization philosophy upon which the efforts of this work are based. In this chapter the range of problems which are solvable using this philosophy (and subsequently developed analytics) is discussed. The range of solvable problems is defined by the three concepts of linkage type, mode of rotational cyclicity and motion specification type.



A. Linkage Types


The simplest non-linear mechanism is the four-bar

linkage, as shown in Figure 3-1a. It possesses one degree of freedom after one of its links has been grounded, and is conceptually identical in all of its inversions, i.e., regardless of which link is grounded. The four-bar provides eight free parameters.

Two types of single-degree of freedom six-bar chain exist, the Stephenson and the Watt, as shown in Figure 3-lbc. They are both composed of two ternary links and four binary links, and have different conceptual inversions, as shown in Figures 3-2 and 3-3. Each one provides





23






24





B 3 C



2 4



A D
1

a. The Four-Bar Chain


D 4 C

5
G
B
1
6

2

F
3
b. The Stephenson Six-Bar Chain



C 4 H

3 5
B F

1 6


A 2
c. The Watt Six-Bar Chain



Figure 3-1 Four-Bar and Six-Bar Chains






25







D 4 C


15

6 B
/H
:C~25


F 3 A

a. The Stephenson 1


D 4 C
5


1 B





F 3 A
b. The Stephenson 2


D 4 C

5

1 G





F tA
3
c. The Stephenscn 3


Figure 3-2 Inversions of the Stephenson Six-Bar Chain






26












C 4 H


3 5


B F
D

6

1

A 2 G

a The Watt 1





C 4 H


3 5


B F

D
6



A G
2

b. The Watt 2






Figure 3-3 Inversions of the Watt Chain





27



fourteen free parameters. A "Stephenson 1" is produced if link 1 or 6 of the Stephenson chain is grounded, a "Stephenson 2" if link 2 or 5 is grounded, and a "Stephenson 3" if link 3 or 4 is grounded. A "Watt-l" results from grounding link 1, 3, 5 or 6 of a Watt chain, and a "Watt 2" if link 2 or 4 is grounded. These are available linkage solutions to the problems in this work, and the notation introduced in Figure 3-1 will be adhered to.

Other simple linkages exist, such as the slider-crank and inverted slider-crank four-bars, the geared five-bars and six-bars with sliders and oscillating blocks. They have less general applicability and except for the geared five-bar are simply subsets of the linkages already under consideration.



B. Modes of Rotational Cyclicity


A linkage chain can have a number of distinct types of motion depending upon linkage geometry and the nature of the input drive. These motion characteristic types are hereafter termed "modes of rotational cyclicity."

The possible modes of rotational cyclicity are displayed for the four-bar chain in Figure 3-4, and for the six-bar chains in Figures 3-5 and 3-6. The information in these figures is central to this work. This unfortunate




28



2 4 2 4
3 3


2 4 2 4







1 i 1
3 3

24 4 2 4
3 3

2 4 2 4

1 1 4
44
43 3


3 2 4 3 2 4


1 1
I4 2 4





3 Notation:


3 2 4
1 / Driven
/ Link
2 4 /

1 Complete Incomplete
Relative Relative
Link Link
Rotation Rotation


Figure 3-4 Modes of Rotational Cyclicity of the Four-Bar
Chain




29



Stephenson Six-Bars With No Cyclic Links

4

K5 A& Any pair of links
+ may be driven (15
1 6 t distinct possi2 bilities)
3


Stephenson Six-Bars With CyclIic Links









































Figure 3-5 Modes of Rotational Cyclicity of the
Stephenson Six-Bar Chain





30

Watt Six-Bars With No Cyclic Links
4
5 Any pair of links
+may be driven (15 distinct possi1 6 bilities)
2

Watt Six-Bars With Cyclic Links









































Figure 3-6 Modes of Rotational Cyclicity of the
Watt Six-Bar Chain





31



and exhaustive analysis is necessary because the nature of the necessary condition analysis depends upon the mode of cyclicity. For example, the pivots within a linkage solution at which change point positions (i.e. adjacent link collinearities) can be tolerated depe nds upon how the linkage is driven.

For our purposes it often becomes useful to consider each chain as free in space with two links driven -- one taking the place of the previously grounded link. In essence, the grounding and driving of links becomes conceptually identical and interchangeable.

At this point a restriction is made in order to eliminate modes of cyclicity for which special knowledge of velocities and system inertias are needed to define motions through change point positions. It will be assumed that when links with two cyclic pivots exist in a chain, one of these links and an adjacent link are driven.

This restriction eliminates from further consideration linkages such as the rocker-driven crank-rocker with complete crank rotation, and the Grashof double-rocker with complete coupler rotation. These linkages must rely upon link momenta or switching of inputs to maintain continuous motion, and are beyond the consideration of this work.

Any given four-bar or six-bar problem will have a

subset of the possible modes of cyclicity, depending upon the grounded link and the conceptual equivalence or





32



non-equivalence of links (a function of motion specification type). As an example, the four-bar solution to the two-link chain problem (Figure 3-7) has seven modes of cyclicity. Modes number 3 and 4 would otherwise be identical except that constraint links 2 and 4 are not conceptually the same due to the nature of the motion specifications: link 2 is contained within the motion specifications, link 4 is not. The same is true for modes 5 and 6. The necessary condition analyses will depend upon 1) required Grashof type for those modes which include cyclic links, and 2) the pivots which are not allowed to pass change points. For example, in mode number 6 a change point is permissible at pivots A, C and D,-but not at B, regardless of Grashof type. These considerations are presented in detail in Chapter V.

Figure 3-8 shows some examples of modes of rotational cyclicity which are unacceptable or geometrically impossible. Figures 3-8a and 3-8b might represent the cyclic coupler-driven Grashof double rocker and the cyclic rockerdriven crank-rocker, respectively, which have already been discussed. In Figure 3-8c, control of motion through the change points of pivots r and s is impossible. The motion shown for the six-bar linkages of Figures 3-8d and 3-8f simply cannot exist, and the motion shown for the Watt six-bar linkages of Figure 3-8e would require a linkage with very unusual geometry and an external control of motion for both four-bar chains.





33


Problem Solution



33



A D

Applicable Nodes of Rotational Cyclicity


2(2)




































Figure 3-7 Applicable Modes of Rotational Cyclicity of the
Four-Bar Solution to the Two-Link Chain Problem





34



B 3 C




22
2 4


A D
B 3 C
(a)
2 4

D
A 1 D

5 (b)
A 6 B
2
FA
(c) D 4 C

1 G6 B
2
F C4k 3 C 4 H (d)
3 \5
B -F


A -2

(e) c 4

15
B D F

A~ 42


(f)


Figure 3-8 Some Unacceptable Modes of Rotational Cyclicity




35



C. Motion Specification Types


The types of coplanar problems which are solvable and optimizable using the procedures developed in this work are shown in Figure 3-9. The first and second problems, coplanar path and motion syntheses, are the subject of most linkage optimization efforts.

1) Path Synthesis. The motion of a point is guided by attaching the point to the coupler of an appropriate four-bar linkage.

2) Motion Synthesis. The motion of a body is guided by attaching the body to the coupler of an appropriate four-bar linkage.

3) Angular Coordination of a Two-Link Chain. The angular motion oil two connected bodies, one of which is connected to ground, is controlled by attaching these bodies to an appropriate four-bar linkage.

4) Angular Coordination of Two-Cranks. The angular motions of two unconnected bodies, both of which are connected to a common ground, are coordinated by attaching these bodies to an appropriate four-bar linkage.

5) Path-Crank Coordination. The motion of a point is coordinated with the rotation of a body connected to ground by attaching the point and body to an appropriate four-bar linkage.

6) Angular Coordination of Three-Link Chain. The





36







I.) 2.) 3.) Angular Coordination
Path Synthesis Coplanor Motion of Two- Link
Synthesis Choir






4.)C5a) 6.)
4.) Angular Coordin- Path Crank Angular Coordination
otion of Two Coordination of Three Link Chain
Cranks




7)
7.)Angular Coordin- .) Angular Coordin- 9.) Angular Coordination motion of a Croank and action of Three Cranks of Three Adjacent Planes
a Two Link Chain 1





IO.) Coplanar Molion I.) Copranar Motion- 12.) Point Path Point Path
Synt hcsis of Two Crank Coordination Coordinated with Two
Adjocent Planes C



Fiure 3-9 Tes of Motion SCrecifications ns
ILI






Figure 3-9 Types of Motion Specifications





37



motion of three bodies connected in a chain (one connected to ground), is guided by attaching these bodies to the links of an appropriate six-bar linkage.

7) Angular Coordination of a Crank and a Two-Link

Chain. The motion of two connected bodies (one connected to ground) is coordinated with the rotation of another body which is connected to ground by attaching these bodies to the links of an appropriate six-bar linkage.

8) Angular Coordination of Three-Cranks. The rotation of three non-adjacent bodies, all connected to ground, is coordinated by attaching these bodies to the links of an appropriate six-bar linkage.

9) Angular Coordination of Three Adjacent Planes. The motion of two non-adjacent bodies and a third body which is connected to ground and to which the first two bodies are connected, is controlled by attaching these bodies to the appropriate links of an appropriate six-bar linkage.

10) Coplanar Motion.._Synthesis of Two Adjacent Planes. The general motion of two connected bodies is controlled by attaching these bodies to the links of an appropriate six-bar linkage.

11) Coplanar Motion Crank Coordination. The

motion of a body is coordinated with the rotation of a body connected to ground by attaching these bodies to the links of an appropriate six-bar linkage.





38



12) Point Path Coordinated with Two Cranks. The motion of a point and the rotation of two non-adjacent bodies which are connected to a common ground are coordinated by attaching the point and two bodies to the links of an appropriate six-bar linkage.

These problems and their possible linkage solutions are presented in the charts of Appendix A. The steps involved in an actual synthesis procedure are discussed in Chapter IV. Examples of synthesis procedures and necessary condition procedures are presented in Appendix B, and the necessary conditions will be discussed in detail in Chapter V.














CHAPTER IV
SYNTHESIS OF LINKAGE SOLUTIONS



In the last chapter the types of problems under consideration were presented (Figure 3-9). The synthesis solution to each consisted of attaching these bodies with specified motions to the links of an "appropriate" linkage. The means by which this "appropriate" linkage is found is the subject of this chapter.



A. The Four Tools ofSynthesis


The synthesis procedure for the problems shown in Figure 3-9 depends on the problem type and the solution linkage type. In each case some combination of four synthesis techniques is employed. These techniques are termed the."four tools of synthesis" and are depicted graphically in Figure 4-1.


1.) Synthesis Tool #1. The Curvature Transform

Probably the single most important concept in the

field of kinematic synthesis is the curvature transform. All of the synthesis procedures used in this work will use this tool of synthesis at least once to generate constraint links (which maybe-operated upon by the other tools of




39




40










\3/

















CURVATURE TRANSFORM PATH COGNATES
ANGULAR COGNATES INVERSION






0

I '



I --"







Figure 4-1 The Four Tools of Synthesis





41



synthesis) in order to produce a functional linkage. For the first three problems the curvature transform alone is sufficient.

Since no linkage provides an infinite number of design parameters the number of functional motion specifications must be finite. If the precision positions are specified in such a way that an independent parameter, such as the coupler angle, undergoes a finite displacement between positions, the specifications are termed finitely separated positions. These are shown for a plane in coplanar motion in Figure 4-2a.

Finitely separated position synthesis of four-bars

was first done by Burmester [106] in 1888, using graphical techniques for five positions. In 1964 the problem was solved analytically by Bottema [107] and Primrose, Freudenstein and Sandor [108].

If higher order derivatives of motion at a precision position are specified, they are referred to as infinitesimally separated positions (ISP) as depicted by the conceptual combination of positions in Figure 4-2b. Mueller 11091, Allievi [110], Krause [111], Wolford [112] and Veldkamp [113] performed graphical studies of infinitesimally separated positions for five positions.

Mixtures of finitely separated positions and inf initesimally separated positions are termed multiply separated positions (MSP) (Figure 4-2c). The unified theory for MSP was developed by Tesar [114] in 1967.








E=0,1, 2,3,4







b, Infinitesimally Separated Positions (ISP)






2 E



a. Finitely Separated Positions c. Multiply Separated Positions
(FSP) (MSP)
Figure 4-2 Finitely, Infinitesimally and Multiply Separated Positions





43



All of the previously mentioned work involving ISP

and MSP involved geometric derivatives, where the independent parameter is the angular orientation of the body. The specifiable higher-order motions are consequently geometric (slope, curvature, inflection, etc.). In 1974 Myklebust [115] presented a unified theory making dynamic (i.e., time dependent) higher order properties specifiable. This is termed "time state synthesis." For the four-bar problems the dynamic properties are equivalent to the geometric properties, but for a six-bar linkage the use of an equivalent independent parameter for the decoupled subsections of a linkage solution is a necessity. Use of time state synthesis allows true "kinematic synthesis" to be carried out, as conditions can be prescribed for position and its time derivatives (velocity,acceleration, etc.) or combination of inertia and momenta effects, up to the fourth order.

Formulation of the curvature transform

Consider the moving plane in Figure 4-3 where motion

is described by the coordinates a~, and y. E is the fixed ref eZence with orthogonal coordinates U and V attached to it, and E is the moving reference with orthogonal coordinates u and v attached. They are related by the "coordinate transform":

U = u cos y -vsin y+ a
(4.1)
V = u CosY -v Cos Y+~




44















V





JE














Fixed Plane U









Figure 4-3 Parameters Relating Fixed and Moving Planes




45




and the "inverse coordinate transform":


u = (U-a) cos y + (V-3) sin y
(4.2)
v = (V-a) cos y (U-a) sin (


The constrained motion of E can be described in

terms of two functional relationships. Letting y be the independent parameter, let a = f1(Y) and a = f2(y). Links with moving pivots attached to E and fixed pivots attached to E might constitute physical constraints. If so, the functional description of the circular motion of a moving pivot (attached at say, point A in E) relative to E can take the form F(U,V) = 0. Combining this with the coordinate transform (4.1), the constraint equation can be represented by:


F = f (u,v,a,a.y,Q0,QIQ2 . .) 0

where Qi's are constants. For finitely separated specifications of the motion of plane E the above constraint equation takes the form:


F. f (u,v,Cjj, jy,Q,Q,Q2 ... ) = 0 j = 0,1,2 . .


For infinitesimally separated positions this relationship takes the form:

dk
F d [f(u,v,CC,,y,Q0,Q1Q2* .. )] = 0
k k




46




For multiply separated positions these two expressions would be mixed. Now, the circular constraint equation can be expressed as:


Q0(U 2+V2 ) + 2Q1U + 2Q2V + Q3 = 0


For a point A on plane E whose path describes a circle for multiply separated positions, this condition will take the form:


g.(UV) = dkQ0(U 2+V 2) + 2Q1U + 2Q2V + Q3] = 0 (4.3)
dYk =
Y=


If the zeroth position (go=O) is subtracted, these equations will reduce to: k 2 22 2
G (U,V) = -go= d kQ0(U +V -U0V 2 + 2Q(UU
dYk (4.4)

+ 2Q2 (Vv0)]l = 0 Y=Yk


for Z = 1,2,3

and coefficient Q3 is eliminated.

Now, if the specifications are normalized so that

O0 = 0 = Y0 = 0, then U0=u and V0=v. Substituting the coordinate transform into (4.4): U 2+V 2_u2v2 2 + 2+u(2ccosy+2 siny)+v(2 cosy-2asiny)





47



and the generalized circular constraint function (divided by 2) takes the form: Gz = dk Q0 (X 2 2)+ u(ccosY+6sinY) + u(-asinY+cosY))
dYk 2

+ Q1(u(cosY-1) usinY +0) + Q2(usinY

+ u(cosY-1) + 8)] = 0

Y=Y

which may be written as:


G = Q0(A09 + uAi + vA2Z) + QZ (uA3Z + VA4Z + A5)

+ Q2(uA49, + vA3Z + A 6Z) =0 (4.5)

k = 1,2. . .


where Am coefficients are listed in Table 4-1. They are a function of the motion specifications only.

Now, let:


D = A0t + uAlZ + vA2Z E = uA3 VA4 + A5Z F = uA4 + vA3 + A6P


and the constraint equations now take the form:


G = QODY + QE + Q2F9 = 0 (4.6)





48



For 4L4SP motion specifications (k 1,2,3):


QO D1 + Q 1E 1 + Q 2F 1 = 0 QO D2 + Q 1 E2 + Q 2F 2 = 0 QO D3 + Q 1E 3 + Q 2 F3 = 0


The matrix


D1 1 1

D2 E2 F2 (4.7)

D3 E3 F3


must be singular if the constraint equations are to

be meaningful since these equations are linear and homogeneous with respect to Q01 Q1 and Q 2'

If this matrix (4.7) is expanded, the result is a cubic in terms of E coordinates u and v. This is the circlee point cubic" and represents the locus of permissable moving pivot locations on E.

The formulation for time state specification synthesis is quite similar. Equation (4.3) will now take the form:


GP d k [Q (U 2+V 2)+2QU + 2Q2 v+Q 3 1 = 0 (4.8)
d tkI
t=t9

for k. = 0,1,2





49



and the A 'z s in equation 4.5 will be replaced by timestate motion coefficients termed D 'ils. The D 'PZ s are listed in Table 4-2.

In time-state synthesis y becomes a dependent parameter, but the D 'zIs reduce to A 'z s by replacing independent parameter t by y so that:


t-~y d tY ~ dL k 1; d ky = 0 k>l
dt dy dt k dy k


and the time-state synthesis formulation reduces to the geometric synthesis formulation.



2.) Synthesis Tool #2. Inversion

The inversion concept essentially involves a change

of reference. Two basic types of inversion are of interest. In the first, the motions of planes N and M (Figure 4-4) are defined relative to a fixed plane R, the reference is to be changed to plane N, and the motion of plane M. relative to plane N is to be defined (formulations #1, 2 and 3, below). In the second type of inversion the motion of N is defined relative to fixed plane R, the motion of plane M is defined relative to plane N, and the motion of M relative to R is to be defined (formulations #4, 5 and 6, below).

Motion specifications for the two planes which have

some ISP content must share a common independent parameter,





50




















n r

n nI
r r




I\n
mI \\
I
I m \



n j I r Ir
nj I r n













Figure 4-4 Inversion Notation





51



or have a defined relationship between independent parameters. The types of motion specification sets which correspond to the formulations that follow are displayed in Table 4-3.

a.) Inversion formulation number 1.

Given: Motion of N relative to R; M relative to R.

Find: Motion of M relative to N ( for R0 reference ).
Independent parameter for given MSP: time t.

Independent parameter for derived MSP: time t.



(k) n (k)r
a m = Sk cos C + Tk sin C + a n0


(k)n (k)r
_mj =-Sk sin C + Tk cos C + 3nO


(k)n (k)r (k)r (k)r ]-mj Y mj- Y nj + nO


Where: j = FSP counter,
(k)
k = ISP counter ( for example, for k=2, a = a ).

so A r r0 mj nj


T B r r
T0 = mj nj



= ,r r
nj -nO





52




S =A + BC
1
6*
T1 = -AC + B





S2 = -2AC AC + B BC


*2 **
T = A AC + 2BC + BC
2




.... *2 + * "3 **
S = A 3ACC 3AC2 + 3BC + 3BC BC + BC
3


T = 1B 3BCC 3BC 3AC 3AC + A AC
3




b.) Inversion formulation number 2.

Given: Motions of N relative to R; M relative to R.

Find: Motion of M relative to N ( for R0 reference ).

Independent parameter for given MSP: yr
n
Independent parameter for derived MSP: y
m

This formulation is identical to that of (2a), except that the dots in the S and Tk formulations should be replaced with primes ('), and now A', A", A", B', B", B"'and C', C", and C"'must be defined.





53




r ,. n
Let a n an; an dyr ;etc. (same for 13n and y~ n


d ,r
a *r a *
an a~m i etc. (same for1 andy )



Now,


a, a,
A'/ m n f





A" =n 2' n 3 m
1), (y'
in m



(a"'/- a".) (/ -) 2 + (a" a" (3 y"(y
A"= m n in i n M

1-(a/ a') (3y"/2 + y ""(y' )
in n in in i (y' 5



B', B//, B"'are similar (substitute a3's for a's )



C/= 1






(ym





54






-y"(y' 1) + 2
C "" = m

(y -5



c.) Inversion formulation number 3.

Given: Motions of N relative to R; M relative to R.

Find: Motion of M relative to N ( for R0 reference ).

Independent parameter for given MSP: yr, yr must be

related ).

Independent parameter for derived MSP: n



Again, this formulation is identical to that of (2a),

except that the dots in the Sk and Tk formulations should be replaced with primes ('), and now A', A", A', B*, B", B", C', C"' and C" must be defined.

d~r
r / n
Let an =X n a =n ; etc. ( same for n and y

d~r

am a m da y etc. ( same for and y
M m m dr m m

dyr 2 r
dn n
Ynm r Ynm r2 ;etc.
dYm dym




The formulations for A', A", A"', B', B" and B"'are

equivalent to those of section (2b), under the above notation, except that y yn Ym y/ etc., and C', C1" and C"/ must
M nm m nm





55



be redefined.



Now,
C nm
1 ynm
nm



C, = nm
1C




'(1 y/ ) + 3y"2
Gnm nm nm
C _
2
(1 Y)




d.) Inversion formulation number 4.

Given: Motions of N relative to R, M relative to N.

Find: Motion of M relative to R.

Independent parameter for given MSP: time t.

Independent parameter for derived MSP: time t.




(k) r (k)
r r
Smj = S cos C T sin C + a
-m] k k nj


(k) r (k)
r r
S= Sk sin C + Tk cos C + nj


(k) r (k) (k)
r m Y m + Y nj
mj mijn





56




Where,

s n
0 mj

C r
n Ynj
0 mj




on n r
s 1 Ct mj amjynj



T n Or + ; n
1 mjynj mj




#on n --r n or 2
s 2 Ot mj 2 mi ni mjynj amjynj


0.
n r n *or n r 2+ n
T 2 2a mi ni + a mi Yni mj ni mj




--on ..n Or on -or n ... r on Or 2
s 3 =ct mj 3 mjynj 3 mjynj mj y n3 3a mj y nj

n or r n or 3
3a mi y ni ni + mjynj



*on *r on or 2 n *or r n -or
T 3 = 30C mjynj 3 mjynj 3a mi Yni ni + 3a mjynj

n or 3 n I *or ...n
ot mj'ynj + a mjynj + m 3





57



e.) Inversion formulation number 5.

Given: Motions of N relative to R, M relative to N.

Find: Motion of M relative to R.
rIndependent parameter for given MSP:y
Independent parameter for given MSP:yn
Independent parameter for derived MSP: yr



This formulation is identical to that of (2d), except

that the dots in the Sk and Tk formulations should be

replaced with primes (').


der
Let a a ; n; etc. ( same for and y )
n Ln n r n n
dy
n
da n
am a ; a d ; etc. ( same for 8m and y
m m m rmm
n

Now,
Now, dan a /
n m m
a
m dy 1 + y
m m


a'(l + ym) a'y
/'n m- m m
m /3
am( + ym)
m


(1 + 2y' + 2) a"(y' + 2y" + 2y"y' + y2)
a =m m m m m m mm

+ a'y"/(2y' 1)
mm m

(1 + Y)5


'n "nd
6 h and are similar ( substitute B's for a's).
m m m





58




_r 1

I
r Ym

"r -Yi//
Yn i+y/) 3



3 y y (1 + Ym)
r = i m in
Yn (1+ y)5




f.) Inversion formulation number 6.

Given: Motions of N relative to R, M relative to N.

Find: Motion of M relative to R.

Independent parameters for given MSP: yr, yn ( must be

related).

Independent parameter for derived MSP: yr



This formulation is identical to that of (2d), except

that the dots in the S k and Tk formulations should be replaced with primes (').


dar
r / n
Let a = n a -- ; etc. ( same for 8and
n n n dy rnn dan
inn
a dy ; etc. ( same for am dyM dyr y r
yn Y/ dyn-dn etc.
Ymn n ;n mn dyn 2 ;ec
dm dm





59



/ In
The formulatiortM for ,n and their derivatives are

equivalent to those of section (2c), under the above notation, except that y mn' m Ym'/ etc.
M mn m mn Now,
Y
Ir Ymn
Yn =
mn



"r Ymn
= (ly 3
(I + Y/)
mn


"' (1 + y' )- 3y, 2
Ym n Ymn ) mn
Yn +Y 5
Y 5
( +mn





3.) Synthesis Tool #3. Path Cognates

The Roberts- Chebyshev theorem states that three different coplanar four-bar mechanisms will trace identical coupler-curves. An example is shown in Figure 4-5b, where coupler point e has the same motion whether carried by four-bar O1dfO2, four-bar OlgjO3 or four-bar 02 hkO3. An additional property is that the angular parameters of those links with identical hash marks in Figure 4-5b are identical for any reachable position or position derivative of point e.

These properties can be used to solve the problem of










60
V










U


a. Prescribed Path,and Input Crank 03



k
e


g h

d



b. Robert's Cognates

Figure 4-5 Use of Path Cognates to Solve the PathCrank Coordination Problem





61



path-crank coordination (Figure 4-5a). The synthesis procedure is: 1) specify the motion of coupler def by using the translation of point e and the rotation 0, use the curvature transform to synthesize four-bar 0 1 dfO 2" and find its path cognate 0 lgj03 or 02 hk03 Either cognate will coordinate the rotation of a crank parameter 0 (attached to link 0 1 d or 0 2 h) with the motion of point e (attached to coupler link gej or hek, respectively).


4.) Synthesis Tool #4. Angular Cognates

Consider the parallelogram formed by links BCD and

BCID in Figure A-6c. Regardless of the motion of point B (guided by crank AB for this example) the angular parameters of links BC and CID are identical. So too for links BC' and CD. Figure 4-6 outlines the use of the concept of angular cognates to solve a crank-coordination problem. The second angular parameter 0 2 is used to define the motion of coupler plane BC, the curvature transform is used to find a second constraint link CD, and the angular cognate of dyad BCD is taken to provide solution linkage ABCID.



B. Coordination of the Tools of Synthesis


Appendix A contains tables of linkage solutions and recommended synthesis procedures for each of the twelve problem types. These synthesis procedures consist entirely




62








a. Input Output Crank3







I 4D



b. Curvature Transform









C' e C
e2~ee



c. Angular Cognate



Figure 4-6 Use of Angular Cognates to Solve the
Function Generation Problem





63


of appropriate combinations of the four tools of synthesis just presented, and are generally not unique for any given problem type and linkage solution.

A Stephenson 2 solution to problem number twelve is shown in Figure 4-7. The synthesis procedure utilizes the tools of inversion, path cognates, and (as always) the curvature transform. The procedure begins with a combination of the translational motion specifications of point e and the rotational motion specifications of crank K to create a new motion specification set describing general coplanar motion (Figure 4-7a). Operating on these specifications with the curvature transform will produce constraint links as shown in Figure 4-7b (actually a set of constraint links is produced). Operating on this preliminary linkage solution with path cognate analytics will produce constraint links 7' and 5. These constraint links will move the coupler, link 4, in a way such that coupler point e will move on its specified path in coordination with the specified angular motion of crank link 5. Now, the motion specifications exist for links 4', 5 and 3 relative to fixed link 2. Changing the reference to link 3, it is possible through inversion analytics to define a new motion specification set for plane 4 relative to 3 (Figure 4-7d). Operating on these motion specifications with the curvature transform produces constraint links 1 and 6, with the circle point cubic defining pivots D and G and the




64

e
D 4 C
Jz

35 5 F 3 A
STEPHENSON I


\(a) (b) f3

+ CURVATURE e
e TRANSFORM


+
PATH
COGNATES

e C (d) (c)
e55 3
4' B 5
B
2 INVERSION + 7' '2

A A
+
CURVATURE
TRANSFORM
e (e) (f) e
D 4 C D 4 C
5 5
SB (+ REINVERSION)i B
3 2
F A F A


Figure 4-7 A Stephenson-2 Solution to Point/Path
Coordination with Two Cranks




65



center point cubic defining pivots F and H. A conceptual reinversion (which requires no computational activity) produces a Stephenson 2 six-bar linkage which satisfies the motion sQecifications.



C. Grid Dimension


If 4MSP motion specifications are used, every operation involving a curvature transform generates an infinity of constraint links. If one constraint link is to be selected from this set, a one dimensional grid is required to discretely represent the solution set. Likewise, if two constraint links are to be selected from the set, the grid will have two dimensions. A curvature transform followed by a path cognate operation will generate (2) twodimensional grids, since each four-bar (which occupies a place on a two-dimensional grid) has two path cognates, a "left" cognate and a "right" cognate.

The example discussed in the last section produces two (2) two-dimensional grids representing link 5 and 71 and another two-dimensional grid representing links 1 and

6. The total, if these grids are combined, is two (2) four-dimensional grids. This problem lies at one extreme of the problems considered in this work. The opposite extreme occurs for problem Vs 3 and 4, whose entire linkage solution sets can be represented by one-dimensional grids. The nature of the component grids is a




66



function of problem type and linkage solution, but the shape of the overall grid is a function of problem type alone.



D. Dependent Syntheses


The previous example demonstrates an undesirable

property which will be hereafter termed "dependent syntheses." Essentially, this property exists whenever a synthesis procedure involves two (or more) curvature transform operations in such a way that the order in which they are performed cannot be switched. In the previous example, the second curvature transform uses the motion specifications of plane 4, which does not exist until plane 4 has been generated by (among other things) the first curvature transform. Thus, every plane 4 generated by the first synthesis will have a unique motion specification set for the second synthesis to operate upon.

This property greatly complicates subsequent analysis and optimization steps, and at this point these difficulties are circumvented by performing a complete optimization on the results of one portion of a dependent synthesis before proceeding to the second synthesis (see Appendix D, problem 12).

Fortunately, not all six-bar synthesis procedures

involve dependent syntheses. In fact, all of the problems





67



except number twelve can be solved by at least one linkage solution without dependent syntheses. These solutions must be considered to be the more desirable from a computational standpoint, and are indicated *in Appendix A with the t symbol.










Table 4-1. Motion Coefficients, Am



k A Oz A l A2Z A 3Z A~ 4ZA5 ,


0 cxX 2 Cos y. -ax. sin y. Cos y.-l sin y. a. .

+ sin yj +i Cos y.

1 a~!6S (cx + Cos y. ($!~-a.)-Cos yj sin yj Cos y. ax!

+(r3!-ct!) sin y. -(Ox!+. sin yj 2 (Ux6) +N%) (X "+otO
0 0~2x -l00x

3 3cx6co+3F13" Ot 1 -Ncx 1 -3%-30t I 0 -1 a i 1




For k > 2, the position j=0, is assumed as the initial position. When k. j

a 0 =30 =Y0 = 0. The primes denote derivatives with respect to y.












Table 4-2. Motion Coefficients, D mt



k D D 3 P4 D 5 D 6


0 cosf 4- S i. nY P -cosy --,A Cos Y C' i'( sinY .-sinY
2 0 0 j- j

0 c 0 SY 0 0 S i rl"f 0 0 CDSYO-kl 0 S in'f 0 L (-,-tj0-y) siny Y) silly -YS. Ln ;cosy

+ + cosy

1*6*) Giny -25y) siri,( 3 i n y Sin'(
+ 2 +2 2 COSY
Cosy +(-.,ty-2uy- y +13 2 COS-,, 4COS y

:-,LL t 3 + 01 c ;% 3,*,'Y* 3 3,, y) z; i- n,( (-3yy)sin),
3 Y S I n Y -6y-3al -36y) s in-,, +(-3y'f)C0SY +(-y ty)cosy

+ .y 3 4 y

+ 0 3 3,x+3 6-j 11,T 3 3,; 3 1!' 6)cosy





70




Table 4-3

Related Motion Specification Sets for Two Planes M and N (2ISP)


(Notation: Figure 4-4)


Inversion Formulation #1 Inversion Formulation #4
(Independent parameter t) (Independent parameter t)
Plane N: Plane M: Plane N: Plane M:
r r r r r r r r r n n n
an n Yn a Yi n n'n n am' m m


dar d r dy r dar d r dy d r d fr dyr dan d n dn
n n n dm m m n n m minm
dt' dt' dt dt' dt' dt dt' dt' dt dt' dt' dt


Inversion Formulation #2 Inversion Formulation #5

(Independent parameter r (Independent parameter r
coupler angle y) coupler angle y)
Plane N: Plane M: Plane N: Plane M:
r r r r r r r r r n n n
an' n n am' m m an n Y n m' m m

r r r r r r r n dam dy
da dB da dr dy da dB da d$ dy
n n m m m n n II m in
r I 1
r r r r r r r d r dy
dy r ddy r ddy r ddy r dy rdy
n n n n n n n n n n


Inversion Formulation #3 Inversion Formulation #6
(Independent parameters (Independent parameters
coupler angles Yr Y m (related)) coupler angles yn' ym (related))
n' nni
Plane N: Plane M: Other Plane N: Plane M: Other
r r r r r r r r n n


dor dr dr dr dyr dr dpr dA n dBn dyr
n n in in n n n in in n
rr r dy I, n, n1
d'fdyr dy dyr dy dy d 1' d dym
n n m m m n n m m i














CHAPTER V
THE NECESSARY CONDITIONS



Linkages generated through the use of the kinematic

synthesis techniques of Chapter IV are definitely capable of satisfying the specified positions. Unfortunately, the analytics presented there take no consideration of linkage performance in positions other than those specified. Real linkages may fall into a number of physical pitfalls, any one of which is sufficient to eliminate the linkage as a viable solution to the specified motion problem. The analytics now presented are for "Inecessary conditions"I which must be satisfied before a given solution linkage can be considered for further optimization analysis. The conditions which apply to a given problem are dependent upon the solution linkage type, the means by which the linkage is to be driven and the nature of its motion (i.e., mode of cyclicity). It is primarily because of the dependence of the necessary conditions upon mode of cyclicity that the concept of the latter has been developed.



A. Fuur-Bar Necessary Conditions


1.) Order

It is entirely possible that a linkage solution will




71





72



satisfy the specified positions in an improper sequence,

-as displayed in Figure 5-1 for a four-bar linkage. Six possible orders exist for 4FSP:


0 1 2 3 0 1 3 2 0 2 1 3

0 3 2 1 0 2 3 1 0 3 1 2


Only those on the left would be acceptable, assuming the linkages can be driven in either direction.

Fortunately, relatively few linkages are eliminated by order considerations. First of all, motion specifications placed in a relatively smooth and continuous sequence tend to be satisfied naturally. Secondly, the specified cases with higher ISP content diminish the order problem. Finally, problems which have motions coordinated with a crank automatically satisfy specified orders.

The most direct way to analyze order is to use the method of Modler [1161, which divides the circle point cubic into segments which represent constraint links of the same order. These segments are delimited by the image poles and the Ball point. This is a powerful tool for graphical analysis, but for discrete computational analysis it is simpler and more direct to inspect exhaustively the sequence at specified positions of all constraint links.


2.) The Grashof Criterion

A four-bar chain may have either zero pivots with complete rotation, or two adjacent pivots with complete




73


0




2











a. Improper Position Sequence


















21v/
b. Order Analysis Crank Rocker)
Figure 5-1 Order





74



rotation. The latter situation occurs if the linkage satisfies the Grashof condition:


kZ+ s < p+ q

where

Z= length of longest link

s = length of shortest link p,q = length of other two links Grounded four-bar chains which satisfy this relationship are known as "Grashof four-bars," and take the forms shown in Figure 5-2 a,b,c. They are simply different inversions of one another, and are generally more useful than non-Grashof linkages. The crank-rocker, for example, can be used to generate an arbitrary shape with a coupler point while its crank is driven continuously, and the drag-link is often used for continuous function generation. In a Grashof four-bar only those pivots which are cyclic will ever enter change points.

The non-Grashof four-bars take only one form (regardless of inversion), the non-Grashof double-rocker. This type of linkage tends to dominate a linkage solution grid generated through the curvature transform, but has the unfortunate property of being able to reach "change points" (discussed in next section) at any of its pivots. Control of linkage motion through these change points requires special considerations.




75











(a) CRANK-ROCKER






(b) DRAG-LINK






(c) GRASHOF DOUBLE -ROCKER







(d) NON- GRASHOF DOUBLE- ROCKER



Figure 5-2 Four-Bar Grashof Types





76



3.) Branching and Change Points

A change point for a given pivot is that position at which attached links become collinear. This position, which might lie between specified positions, may or may not be acceptable depending upon the nature of the linkage and how it is driven.


a.) Dyad change points

In most cases change points in the dyad of a Stephenson or Watt six-bar indicate simultaneous disconnection (or a limit in motion of the rest of the linkage, Figure 5-3b). At this point the dyad could pass from one dyad "type" (relative angular orientation, Figure 5-2c) to the other. One generally wishes to verify that the specified positions are satisfied while the dyad maintains its type, although one exception is that of the cyclic dyad-driven six-bar linkage (Figure 5-3d).

There are two times at which dyad type can be checked. If both links of the dyad are defined by the motion specifications, such as the Stephenson 3 solution to a three-link chain problem (dyad links 2 and 5 are the first two links of the chain), it is a simple matter to simply check the motion specifications before synthesis. More often, however, one of the two links of the dyad is generated in the synthesis procedure, and dyad-type must be checked during necessary condition analysis.






77














2 0/
I







2 5

2
5/
d5

































Figure 5-3 Dyad Change Points





78



b.) Change points in four-bar chains

All of the solution linkages can be considered as

single four-bar chains, a combination of four-bar chains and dyads, or a combination of two four-bar chains. A detailed analysis of change points within four-bar chains is therefore very worthwhile. It involves considerations of both synthesis procedure and mode of cyclicity.

If a four-bar chain (or any Grashof type) is driven as shown in Figure 5-4a through a change point at the indicated pivot, the dyad portion of the chain connected to this pivot may go into either type. This is beyond the direct control of the driven members. If specified positions are to be satisfied in a positive manner, such a change point must be avoided. Similarly, four-bar chains driven through opposite links (Figure 5-4b) cannot tolerate change points at any pivots, for the same reason.

It may be assumed that at least one of the links in the chain has been synthesized through use of the curvature transform. Waldron [117, 1181 has developed graphical techniques which operate directly on Burmester cubics, identifying sections which represent usable constraint links (for four-bar chains) on the basis of change-point considerations. These techniques are used extensively in the necessary condition analysis of this work, so detailed descriptions now follow.

i.) Determination of"permissible links. Let the name





79








4W













































Figure 5-4 Change Point Considerations in a
Four-Bar Chain





80



"trailer" signify constraint links with limited rotation at the moving pivot and the name "rocker" signify constraint links with limited rotation at the fixed pivot (Figure 5-5). For example, the follower of a crank-rocker four-bar is both a trailer and a rocker, but a constraint link of a drag-link four bar is a trailer only. Trailers

def ined by circle- and center-point cubics which have moving pivot rotation less than 7T for the 4MSP are termed "permissible". The first technique of Waldron is used to determine sections of the circle point cubic which represent permissible constraint links.

Let T.. be the rotation of the coupler relative to

the constraint link in moving from positions i to j. This angle will be defined between -Tr and N, clockwise positive. Let n denote the position with the smallest or most negative value of T., so that it defines one end of the angular
13
range. if T nj is > 0 for all possible values of j, the angular range must be less than T. If it can be established that for some value k, T jk is always either positive or negative, the constraint link under consideration must be permissible.

The following property can be used to find the sign of 'Y jk :

A line through the image pole P.. and
13
circle point A bisects the angle if ij
(see Figure 5-6a).

This property applies to any T ik' where k is another position, so the angle T jk can be found from:




81









Limited relative rotation at the moving pivot a. Trailer











Limited relative rotation at the fixed pivot b. "Rocker


Figure 5-5 Trailer and Rocker




82







2
Pii

p Image pole for positions i,j SkOa
a.








-y A jk

jk2 2 1Ik Ij
(Vij Yik) '
2 Pik


Oa
b.


Figure 5-6 Determination of Relative Moving Pivot
Rotation for 2FSP





83



T jk = -(T 13 T ik) (see Figure 5-6b)
2 2


Now the location of circle points with positive and negative values of the T in terms of P!. and P! (Figure 5-7c) jk 1] 1k
can be determined by using the property:

The three lines through diametral
points and a third point on a circle
will define a right triangle.

For circle points lying on the right side of P! P! and ii 1k
outside the circle, 0 < T jk /2 < ff/2, so that 0 < T jk < 7T and for circle points on the same side but inside the circle, 7T/2 < T jk /2 < R (Figure 5-7a). On the opposite side of P! P! the signs will be reversed. Figure 5-7b
ii ik
shows this construction overplayed onto the corresponding circle point curve.

Two values of i could be chosen: the only requirement is that i be distinct from j and k. Interestingly enough, if evaluations were made using both possible values of i some spaces in the plane would have conflicting signs, but the circle point cubic will occupy none of these spaces. Another interesting property is that the signs will not change as the circle point cubic passes through an image pole, but will change as the circle point cubic crosses the circle or line segment singly.

The portions of the circle point cubic which represent permissible constraint links will be defined by those pottions for which all the components of any of the strings





84





4Pij












0.



+ Circle Point
+Curve /






















b.



Figure 5-7 Determination of Permissible Trailers for 2FSP





85


T 01, T 02 T 03

T 10, T 12' T 13 T 20' T 21' T 23 T 30' T 31' T 33

have the same sign.

ii.) Determination of "compatible" links. A "compatible" constraint link is one which can be used in combination with a permissible constraint link so that the 4MSP will be satisfied on the same branch. The previous analysis is used to eliminate portions of the cubic which represent constraint links which will definitely pass through a change point at the moving pivot while satisfying the 4MSP (regardless of the other constraint link chosen). A permissible constraint link which has been selected from a portion of the permissible circle point cubic might still pass through a change point if coupled with an "incompatible" constraint link.

Let 0 a A be a selected permissible constraint link. Figure 5-8a shows one in the four positions in which the motion specifications are satisfied. T 03 defines the relative coupler rotation in reaching position j from position

0. Figure 5-9b shows 0 a A in the zeroth position with angles -T 01, f 02 and -T 03 drawn through point A. In this example, -T 01 and -11' 03 represent the extremes of the angular range. Now, if a circle point representing a possible second constraint link lies in region Z, it must cross




86












IQ~~2 A01,- Position of

=0 -point A when coupler is in
00 specified pos.

a.






Fgr -5 C t C










b,
Figure 5-8 Determination of, compatible Constraints





87



line 0 a A to reach the extremal positions. As this happens a change point occurs at point A. Therefore, the portions of the circle point cubic which lie in the Z regions represent constraint links which are incompatible with the selected permissible link.

It is quite possible that the circle point cubic will not pass into the compatible regions denoted by Y. If so, another permissible link must be selected. Note that the Y regions disappear altogether for nonpermissible links, having no possibility of finding compatible constraint links.


c.) General branching analyses of four-barchains in sixbar linkages

Displayed in the left-hand column of Figure 5-9 are

the possible forms of four-bar chain which may be needed as all or part (for a six-bar) of a linkage solution. The chains on the right are the different inversions in which the chain on the left may actually be synthesized. It is necessary to treat these inversions as they stand. A number of "necessary condition procedures" have been developed to handle the range of possible synthesis inversions. (The conditions under which order considerations can be ignored have been discussed in part A of this chapter).






Necessary
Condition
Procedure



case
FinalForm: As Synthesized:
NCA NOPO NCPA NCPC




IbaI Id
NCPB NCPA NCPC NCPA






NPD NCPD NCPG NCPG





___________ lMa Mlb Mlc flld
NCPH NCPH NOPH NOPH





I~ lb WVc




Figure 5-9 Necessary Condition Procedures for
Four-Bar Chains





89



Necessary Condition Procedure A (for cases Ia, Ic, Ib and IId)1) Choose a follower-constraint-link to be a
trailer/rocker.
2) Choose a crank-constraint-link of proper order
which is compatible with the follower.
3) Test Grashof type for a crank-rocker.

Necessary Condition Procedure B (for cases Ib and IIa)1) Choose a constraint link to be a trailer of
proper order.
2) Choose another constraint link to be a trailer
which is compatible with the first link.
3) Test Grashof type for a drag-link.

Necessary Condition Procedure C (for cases Id and IIc)1) Invert to change reference to the coupler link,
i.e. generate the motion specifications of the
fixed plane relative to the moving plane, interchange the circle-point and center-point
cubic curves, etc.
2) Follow procedure B.

Necessary Condition Procedure D (for case IIIa)1) Choose a follower-constraint-link to be a
trailer.
2) Choose a crank-constraint-link of proper order
which is compatible with the follower.

Necessary Condition Procedure G (for case IIIc)1) Invert to change reference to the coupler link.
2) Follow procedure D.

Necessary Condition Procedure H (for cases IVa,b, c and d)1) Choose a constraint link which is a trailer
of proper order.
2) Choose a second constraint link which is a
trailer which is compatible with the first
link.
3) Check mutual compatibility.
4) Invert to change reference to the coupler link.
5) Repeat 1), 2) and 3) (no need to check order
again).





90



In some cases, tests for order and trailer/rocker are unnecessary if Grashof type are known, but are included because they improve the chances of producing a desired Grashof type. The Grashof type test is relatively expensive computationally because constraint link combinations, not just single constraint links, are under evaluation. d.) Analysis of branching in path-cognates

For motion specification types #5 and #12 (Figure 3-9) four-bar chains are produced by performing a curvature transform followed by a generation of path cognate fourbars.

We assume four-bar I in Figure 5-10b ha's been produced by the curvature transform and its path cognates, four-bars II and III, are to be usable as all or part of a linkage solution. What tests can be made on four-bar I. to ensure proper performance relative to change points in four-bars II and III? This question is central to establishing practical necessary condition analyses for path-cognate problems.

A study of four-bar II will now be made in detail. All comments made hereafter regarding "left" cognate four-bar II also apply to "right" cognate four-bar III. The modes of cyclicity which II may take are shown in Figure 5-12. Each of these modes will involve a separate analysis (necessary condition procedures I N) to be performed on four-bar I

-to ensure proper performance in II.




91


V

e(Ue,Ve)








U


a. Prescribed Path,and Input Crank


03






lll
k
I
e


9 h

f
.02 '01

b. Robert's Cognates

Figure 5-10 Use of Path Cognates to Solve the PathCrank Coordination Problem





92



Necessary condition procedures I N take advantage of some unusual properties of the "cognate 10-bar" (Figure 5-l0b):

i.) A cognate 10-bar will be made up of one of three sets of three four-bars: either three drag-links, three non-Grashof double-rockers, or a Grashof double-rocker and two crank-rockers.

ii.) When 0 3 in four-bar II is at a change point, 0 2 in four-bar I is also at a change point.

iii.) When g in four-bar II is at a change point, d in four-bar I is also at a change point.

iv.) When 0 1 in four-bar II is at a change point, links df and 0 1l02 in four-bar I become parallel.

v.) When j in four-bar II is at a change point, links

0 1d and 0 2f in four-bar I become parallel.

Proof of (ii): Referring to Figure 5-13a,


11 101021


Now, from [105;79j


Z' =AXe ia(27) and R=Xe (R 0)

Therefore, when Y and K coincide, and R' will also coincide, and change points will occur simultaneously in four-bar I at 0 2 and in four-bar II at 0 3.





93



Proof of (iii): Referring to Figure 5-13b,


c(x + + + (D Bx + e 2 7T


A A because 0lged is a parallelogram,

A = 0 at simultaneous change

points for g in four-bar II and d in four-bar I.

Proof of (iv): Referring to Figure 5-13c, it follows from path-cognate property (ii) that change points occur simultaneously at 01in four-bar II and at 0 2 in four-bar III. In this position 0 2h and 0 203 become collinear. Therefore 6 2' + 0 = lG and 0 Te+ Oa3

where e refers to "the angle of ..

Since 02 hef is a parallelogram, fe and UF2 are prl lel. It follows that:



0-102 df 6' 1


Proof of (v): Referring to Figure 5-13d, it follows from path cognate property (iii) that pivot j in four-bar II and pivot k in four-bar III will pass through change points simultaneously. In this position 0 3j and 03q are collinear, as are 0 3k and O H- Due to the parallelograms and similar triangles, it follows:

ge and ehare collinear and

ge 0Old and eh 11 0 2f 0d 11 02f




Full Text
166
Problem #9
Angular Coordina
tion of Throe Ad
jacent Planes
Linkage Solution Synthesis Procedure
1) CURVATURE TRANS
FORM to find 1.
2) CURVATURE TRANS
FORM to find 6.
WATT 2
Pivots IT,C,D
prespecified
Modes of Cyclicity
Necessary Condition Procedures
a)
Necessary Condition
cedure D for 1234.
Pro
b)
Necessary Condition
cedure D for 2456.
Pro
a)
Necessary
Condition Pro-
cedure II
for
1234 .
b)
Necessary
Condition Pro-
cedure D
for
2456 .
a)
Necessary
Condition Pro-
cedure D
for
1234.
b)
Necessary
Condition Pro-
cedure D
for
2456.
a)
Nocoss.
ary Condition
Pro-
cedure
A for 1234.
b)
Nocoss;
ary Condition
Pro-
cedure
D for 2456.
c)
Verify
Connection of
56


235
75. Elliott, J., and D. Tesar, "The theory of torque,
shaking force, and shaking moment balancing of four-
link mechanisms," Journal of Engineering for Industry,
Trans ASME, Series B, Volume 99, No. 3, August 1977,
p. 715.
76. Sandler, B.A., "The use of a random algorithm for
dynamic optimization of mechanisms," Journal of
Engineering for Industry, ASME Paper No. 76-WA/DE-22,
1976.
77. Golinski, J., "Optimal synthesis problems solved by
means of non-linear programming and random methods,"
Journal of Mechanisms, Volume 5, No. 3, 1970,
pp. 287-309.
78. Osman, M.O.M., S. Sankar, and R.V.Dukkipati, "De
sign synthesis of a multi-speed machine tool gear
transmission using multiparametric optimization,"
Journal of Mechanical Design, Trans ASME, Volume
100, April 1978, pp. 303-10.
79. Chi-Yeh, H., "A general method for the optimum
design of mechanisms," Journal of Mechanisms,
Volume 1, 1966, pp. 301-13.
80. Mansour, W.M., and M.O.M. Osman, "The method of
residues for the.synthesis of coupler curve generat
ing mechanisms," ASME Paper 70-Mech-53.
81. Bagci, C., and K.N. Prasad, "Minimum error synthesis
of plane mechanisms for rigid body guidance," Journal
of Engineering for Industry, Trans ASME, Volume 91, No.l
February 1971.
82. Bagci, C., and K.C. Parekh, "Minimum error synthesis
of the spherical four-bar and Watt's type spherical
six-bar mechanisms," Communications of the Third
World Congress on the Theory of Machines and Mech
anisms, Volume C, Paper No. 1, Dubrovnik, Yugoslavia,
1971.
83. Speckhart, F.H., "Calculation of tolerance based on
a minimum cost approach," Journal of Engineering
for Industry, Trans ASME, Series B, Volume 94, No. 2,
May 1972, pp. 447-53.
84. Khan, M.R., W.A. Thornton, and K.D. Willmert, "Op
timality criterion techniques applied to nechanical
design, Journal of Mechanical Design, Trans ASME,
Volume 100, April 1978, pp. 319-327.


36
Figure 3-9
Types of Motion Specifications


204
Module Chart 27
Name Link length Ratio (Desirable Condition)
Label DLKLNRT
Description
Evaluates the solution set
of linkages on the basis of
link length ratio. User
specifies links of interest.
+(03) (02) DLKNRT (11) ,( 12) (I ) ....
where:
(1^) = Previous scoring grid.
(I.), (I_); (I .) (I_);... = Constraint link
pivots (1 pair =
1 link).
(0^) = Output scoring grid, cumulative.
(O2) = Output scoring grid, this condition
only. Optional.


31
and exhaustive analysis is necessary because the nature
of the necessary condition analysis depends upon the mode
of cyclicity. For example, the pivots within a linkage
solution at which change point positions (i.e. adjacent
link collinearities) can be tolerated depends upon how
the linkage is driven.
For our purposes it often becomes useful to consider
each chain as free in space with two links driven -- one
taking the place of the previously grounded link. In es
sence, the grounding and driving of links becomes concep
tually identical and interchangeable.
At this point a restriction is made in order to elim
inate modes of cyclicity for which special knowledge of
velocities and system inertias are needed to define mo
tions through change point positions. It will be assumed
that when links with two cyclic pivots exist in a chain,
one of these links and an adjacent link are driven.
This restriction eliminates from further considera
tion linkages such as the rocker-driven crank-rocker with
complete crank rotation, and the Grashof double-rocker with
complete coupler rotation. These linkages must rely upon
link momenta or switching of inputs to maintain continuous
motion, and are beyond the consideration of this work.
Any given four-bar or six-bar problem will have a
subset of the possible modes of cyclicity, depending upon
the grounded link and the conceptual equivalence or


147
b.) Crank J
Point f
Crank K
Point e
-> Link 3 and
= Pivot B.
* Link 2 .
on Link 6.
CURVATURE TRANSFORM and PATH
COGNATES to find 2,6, dummy 7
INVERSION to 2.
CURVATURE TRANSFORM to find 4
INVERSION to 4.
CURVATURE TRANSFORM to find 5
[4MSP Grid:L,R 2-D, +(2)xl-D]
Watt 2 Link 2 is grounded.
Crank J -* Link 1 and
Point f = Pivot A..
Crank K Link 4 .
Point e on Link 5.
[4MSP Grid:L,R2-D,+1-D]
* CURVATURE TRANSFORM and PATH
COGNATES to find 6,4.
INVERSION to 1.
CURVATURE TRANSFORM to find 3
Stephenson 1 Link 1 is grounded.
Crank
J
Link 4 and
CURVATURE
TRANSFORM
and PATH
Crank
K
->-
Link 3 .
COGNATES to find 4,
dummy 7'.
Point
g
=
Pivot F.
INVERSION
to 3 .
Point
e
on Link 5.
CURVATURE
TRANSFORM
to find 6
CURVATURE
TRANSFORM
to find 2
[4MSP Grid
:L,R 2-D,
+(2)xl-D]
Stephenson 2
i _
Link 2 is
grounded.
a. )
Crank
J
->
Link 3 and
CURVATURE
TRANSFORM
and PATH
Point
f
Pivot A.
COGNATES to find H,
dummy 7 '.
Crank
K
->
Link 5.
INVERSION
to 3 .
Point
e
on
i Link 4.
CURVATURE
TRANSFORM
to find
1 ,6 .
[4MSP Grid
:L,R 2-D,
+2-D]
b.)
Crank
J
-y
Link 3.
CURVATURE
TRANSFORM
and PATH
Crank
K
-y
Link 5 and
COGNATES to find 3 ,
dummy 7 '.
Point
g
=
Pivot B.
INVERSION
to 5 .
Point
e
on
i Link 1.
CURVATURE
TRANSFORM
to find 4
INVERSION
to 3 .
CURVATURE
TRANSFORM
to find 6
I 4MSP Grid
:L,R 2-D,
+ (2)xl-D]


154
Probleni_lf 3
Angular Coordi
nation of a Two-
Link Chain
Linkage SoluLion
Pivots pre
specified .
Synthesis Procedure
1) CURVATURE
TRANSFORM
to find 4 .
Necessary Condition Procedures
s
a) Necessary Condition Pro
cedure D for 1234.
a) Necessary Condition Pro
cedure H for 1234.
a) Necessary Condition Pro
cedure D for 1234.
a) Necessary Condition Pro
cedure A for 1234.


20
The third step, evaluation of "desirable conditions,"
is where the "quality" of the surviving solution linkages
is determined by the user-defined objective function.
A desirable condition can be any criterion by which a
designer might qualitatively judge a linkage. The grid
is passed through these desirable conditions sequentially,
and for each one grid "topology" is re-evaluated. This
procedure is known as sequential filtering. Some link
ages may perform so poorly relative to one or more of
these criteria as to be unacceptable, and will there
fore be rejected.
The result is a grid of solution linkages in which a
portion or portions contain acceptable linkages, with
scores indicating relative overall quality.
C. Previous Use of the "Grid" Philosophy
The optimization philosophy employing sequential fil
tering was first implemented by computer by Eschenbach and
Tesar [20] in 1969 for crank-rocker four-bars satisfying
specified coplanar motion for four positions. A very large
solution set (~62,000 linkages) was passed through the
necessary and desirable conditions in a single pass, the
optimum linkage possessing the best surviving score. An
improvement on this approach was later made by the author
[23] and the author and Tesar [24] by introducing the


Ill
p2
Figure 6-1 Desirable Condition Scoring Curves


207
(O^) = Output scoring grid, cumulative
(all desirable conditions).
(O2) (O-j) ... = Output scoring grids, sepa
rate conditions. Optional


115
coordinating linkage synthesis and optimization, cam syn
thesis and analysis, mechanism shaking force, shaking moment
and torque balancing, spring, energy and dashpot synthesis,
dynamic analysis and eventually spatial and spherical
analytics. Just to meet the goals of synthesis and opti
mization, however, the package must be capable of handling
the analytics for an estimated 500 different problem/link
age/mode of cyclicity combinations.
A most feasible, practical, flexible and marketable
approach to the optimization package and its proposed ex
pansion can be based on a programming technique used by
Pollock [123] for a dynamic linkage analysis package. The
package consists of a pool of modules of equivalent pro
gram hierarchy from which a user can select and coordinate
those needed for a particular application.
The optimization package has been broken up into such
a pool of modules (Table 7-1) consisting of an input and
output module for each computational block, five synthe
sis modules, fourteen necessary condition modules, four
desirable condition modules and four general support rou
tines. The function and input/output of each module is
presented in Appendix C.
The advantages of the Pollock approach to program
structure pertain to both the optimization package and its
proposed expansion:
1.) A central control program is not necessary. The


152
a) Necessary Condition Proce
dure H for 1234.
a) Necessary Condition Proce
dure A for 1234.
a) Noor'ksary Condition Proce
dure' H Cor 1234.


6
linkage problem makes the optimization analytics somewhat
difficult to implement. Algebraic approaches, generally
limited to small-scale problems, are rarely attempted.
Sutherland [12] has developed mixed exact-approximate po
sition synthesis in which some points are matched exactly
using Burmester theory, and the objective function con
tains the least-squares error of approximation of addi
tional precision points. Solutions to the resulting equa
tions can be closed form or iterative depending on the
order of magnitude of the problem. Bagci and Lee [13],
Bagci [14], and Bhatia and Bagci[15] have developed and
expanded on a linear superposition technique in which the
error of the loop-closure equations of the linkage system
is minimized by partitioning these equations into dyadic
loop equations which are linear in terms of the system
unknowns.
Random searches are direct and somewhat exhaustive,
generally encompassing a synthesis step to generate a
large representation of a linkage solution set for a par
ticular problem, and then a rating and sorting step to
locate the "best" linkage within this set. As early as
1962,Roth, Sandor and Freudenstein [16] used this approach
by generating four-bar linkages satisfying path specifica
tions, and then rating them according to some design
criteria (primarily transmission angle). Later Nolle [17]
used a random search for function generating linkages. In


230
22. Sridher, B.N. and L.E. Torfason, "Optimization of
spherical four-bar path generators," ASME Paper
70-Mech-46, 1970.
23. Spitznagel, K., "Near-global optimum of synthesized
four-bar mechanisms by interactive use of weighted
kinematic sequential filters," M.S. Thesis, Univer
sity of Florida, 1975.
24. Spitznagel, K. and D. Tesar, "Multiparametric op
timization of four-bar linkages," to be presented
at the ASME Design Engrg. Tech. Conf., Minneapolis,
Minn., September 24-27, 1978.
25. Powell, M.J.D., "A Method for minimizing a sum of
squares of non-linear functions without calculating
derivatives," Computer Journal, Volume 7, 19 64 ,
pp. 155-62.
26. Powell, M.J.D., "An efficient method for finding the
minimum of a function of several variables without
calculating derivatives," Computer Journal, Volume 7,
No., 4, 1964, pp. 303-07.
27. Suh, C.H. and A.W. Mecklenburg, "Optimal design of
mechanisms with the use of matricies and least
squares," Mechanisms and Machine Theory, Volume 8,
No. 4, Winter, 1973, pp. 479-95.
28. Fletcher, R., and C.M. Reeves, "Function minimization
by conjugate gradients," Computer Journal, Volume 7,
1964, pp. 149-54.
29. Rees Jones, J., and G.T. Rooney, "Motion analysis of
rigid link mechanisms by gradient optimization on the
analogue computer," Journal of Mechanisms, Volume 5,
1970, pp. 191-201.
30. Nechi, J.A., "A relaxation and gradient combination
applied to the computer simulation of a plane four-
bar chain," Journal of Engineering for Industry,
Trans ASME, Series B, Volume 93, No. 1, Feburary
1971, pp. 113-19.
31. Chen, F.Y., and V. Dalsania, "Optimal synthesis of
planar six-link chains using least-squares gradient
search," Trans Canadian Soc. of Mechanical Engineers,
Volume 1, No. 1, March, 1972, pp. 31-36.
32. Rose, R., and GkSandor, "Direct analytical synthesis
of four-bar function generator with optimal structural
error," Journal of Engineering for Industry, Trans
ASME, Series B, Volume 95, No. 2, May, 1973.


67
except number twelve can be solved by at least one linkage
solution without dependent syntheses. These solutions must
be considered to be the more desirable from a computational
standpoint, and are indicated in Appendix A with the t
symbol.


77
(a)
/
/
/
r
(b)
(d)
Figure 5-3 Dyad Change Points


82
2
Figure 5-6 Determination of Relative Moving Pivot
Rotation for 2FSP


219
Program Chart 5
Problem if 5 Path Coordination
with a Crank.
Linkage Solution Four-Bar
Mode of Cyclicity #5
FOUR-BAR
Synthesis Procedure
1) CURVATURE TRANSFORM and
PATH COGNATES to find
2, 4.
Necessary Condition Procedure
1) Necessary Condition Pro
cedure J for 1234.
Sample Program
VPROB5FBMODE5
[1] INITIAL
[2] -* 31 SYNINP
[3] 32 33 34 35 SCRVTRN 31
[4] -> 36 37 38 39 SPTHCOG 31 32 33 34 35
[5]
->
NECINP
[6]
40
NCPJ 31+ 18
[7]
->
NECOUT 40
[8]
-V
41
DESINP
40
[9]
->
41
DPVTLCA
41
[10]
->
41
DLKLNRT
41
[11]
-V
41
DLKSIZE
41
[12]
41
DESDYAD
41
1,
[13]
-V
DESOUT 41
V
37
36
38
39
36
38
36
37
38
39
3 7
39
38
39
36
37 0 0 0 0
\6
Files
31)
4MSP(3/1)
32)
pivot B'
33)
pivot A'
34)
pivot C
35)
pivot D'
36)
pivot B
37)
pivot A
38)
pivot C
39)
pivot D
40)
NC Grid(2x4)
41)
DC Grid (2x4)


184
Module Chart 7
Name Angular Cognate (Synthesis Tool)
Label SANGCOG
Description
Generates the angular cog
nate of dyad abc.
,,->(01) SANGCOG (I1) (I2) (I3) "
where:
(1^) = pivot a
d2) = pivot b
(1^) = pivot c
(0^) = pivot b'


124
B. Conclusions
A unified approach to the design and optimization of
four-bar and six-bar linkages has been presented. By iso
lating and defining the synthesis procedures and necessary
condition procedures required (Appendix A,B), optimization
relative to a broad range of design criteria can be per
formed .
A computational design based on a pool of modules of
equivalent program hierarchy (Appendix C) has been devel
oped and presented. The optimization routine for a par
ticular problem is created through an appropriate coordina
tion of these modules, as displayed by the examples of
Appendix L).
Hopefully, the analytical and computational methodol
ogy introduced herein will provide the impetus for future
efforts towards practical mechanism design and optimiza
tion.


197
Module Chart 20
Name Necessary Condition Procedure L
Label NCPL
Description
Evaluates synthesized four
bar I on the basis of change-
point considerations within
path cognate four-bars II and
III as shown. Generates a
necessary condition grid
(2x2-D) indicating acceptable
cognates.
APL Call
where:
,'->(01) NCPL (I-L) (I2) /
d1), d2)
d3}' d4)
d5),d6)
d7), d8)
(ox)
= link dO.
= link fO.
link gO^ (and h02)
link jO^ (and KO^)
Output grid.


This dissertation was submitted to the Graduate Faculty
of the College of Engineering and to the Graduate Council,
and was accepted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy.
December, 1978
(Tt
V-4C // C/l
Dean, College of Engineering
Dean, Graduate School


222
Program Chart 8
Problem #8 Angular Coordination
of Three Cranks.
Linkage Solution Watt 2
Mode of Cyclicity #2
Synthesis Procedure
1)
INVERSION
to 4.
2)
CURVATURE
find 3.
TRANSFORM
to
3)
CURVATURE
find 5.
TRANSFORM
to
Necessary Condition Procedure
1)
Necessary Condition
cedure H for 1234.
Pro-
2)
Necessary Condition
cedure D for 2456.
Pro-
Sample Program
Files
VPROB8WATT2MODE2
(1]
-4-
INITIAL
(2]
-V
31 34 SYNINP
[3]
-V
32 40 SYNINP
(4)
->
33 35 SYNINP
[5]
-*
41 SINVERT 31
32
1
[6]
-V
42 SINVERT 33
32
1
(7]
-V
34 40 39 38 SCRVTRN
41
34
40
(8]
-V
35 40 36 37 SCRVTRN
42
35
40
[9]
-V
SYNOUT 39 38
34
40
[10]
V
SYNOUT 36 37
35
40
[11]
-V
NECINP
[12]
-V
43 NCPH 39 38
34
40
[13]
-V
4 4 NC.PD 3 6 3 7
35
40
[14]
-V
NECOUT 43 44
[15]
V
45 DES INP 43
44
[16]
-4-
45 DPVTLCA 45
34
39
38
40
36
35
[17]
- V
45 DI.KLNRT 45
37
40
38
40
[18]
V
45 DLKSIZE 45
37
38
[19]
-4
45 DESDYAD 45
39
34
38
40
37
36
31
2,
i 6
[20]-* DESOUT 45 V
31) 4MSP (1/2)
32) 4MSP (4/2)
33) 4MSP (6/2)
34) pivot A
35) pivot G
36) pivot F
37) pivot H
38) pivot c
39) pivot B
40) pivot F
41) 4MSP (1/4)
42) 4 MSP (6/4)
43) NC Grid (3)
44) NC Grid (5)
45) DC Grid (3,5)


28
Figure 3
3
1
Notation:
*
/ Driven
/ Link
0
Complete
Relative
Link
Rotation
Incomplete
Relative
Link
Rotation
4 Modes of Rotational Cyclicity of the Four-Bar
Chain


202
Modulo Chart 25
Name Desirable Condition Input
Label DESINP
Description
Given a grid of acceptable
linkages from the necessary
conditions, a scoring grid is
initialized and placed in
files.
Necessary
Condition
0 r i d
AFL Call
"-MC^) DESINP (I ) (I2)
where:
(1^), (I2) .... = Necessary condition grids,
(If more than one, combines
them).
(01) = Initialized scoring grid for desir
able conditions.


238
108. Primrose, E.J.F., F. Freudenstein, and G.N. Sandor,
"Finite Burnester theory in Plane Kinematics,"
Journal of Applied Mechanisms, Volume 31, Series E,
1964, pp. 683-693.
109. Mueller, R., "Papers on geometrical theory of motion"
(translated by D. Tesar, et al.), Special Report
No. 21, Kansas Engineering Experiment, Manhattan,
Kansas, June 1960.
110. Allievi, L., "Cinemtica della biella piaa,"
Giannini and Figli, Naples, Italy, 1895.
111. Krause, M., "Analysis der ebener bewegung," Walter
de Gruyter, Berlin, 1920.
112. Wolford, J.C., "An analytical method for locating
the Burmester points for five infinitesimally sepa
rated positions," Journal of Applied Mechanics,
Volume 25, Trans ASME, Series E, 1960, pp. 182-87.
113. Veldkamp, G.R., Curvature Theory in Plane Kinematics,
Dissertation, Walters Groningen, Delft, 1963.
114. Tesar, D., J.W. Sparks, and W.T. Walters, "Multiply
separated position synthesis: part 1 point syn
thesis, part 2 function generation," Transactions
of the Tenth Conference on Mechanisms, Georgia
Institute of Technology, Atlanta, Georgia, 1968.
115. Myklebust, A., "Synthesis of multi-link mechanisms
for dynamic specifications," Ph.D Dissertation,
University of Florida, 1974. (Diss. Abstract #75-16426),
116. Modler, K.H., "Reihenfolge der homologen puntke,"
Maschinenbautechuck, Volume 21, 1972, pp. 258-65.
117. Waldron, K.J., "Range of joint rotation in planar
four-bar synthesis for finitely separated positions:
part 1 the multiple branch problem," ASME Paper
No. 74-DET-108, Design Engineering Technical Con
ference, New York, N.Y., October 5-9, 1974.
118. Waldron, K.J., "Range of joint rotation in planar
four-bar synthesis of finitely separated positions:
part 2 elimination of unwanted Grashof configura
tions," ASME Paper No. 74-DET-109, Design Engineer
ing Technical Conference, New York, N.Y., October
5-9, 1974.


90
In some cases, tests for order and trailer/rocker are
unnecessary if Grashof type are known, but are included be
cause they improve the chances of producing a desired Gras
hof type. The Grashof type test is relatively expensive
computationally because constraint link combinations, not
just single constraint links, are under evaluation.
d.) Analysis of branching in path-cognates
For motion specification types #5 and #12 (Figure 3-9)
four-bar chains are produced by performing a curvature
transform followed by a generation of path cognate four-
bars .
We assume four-bar I in Figure 5-IDb has been produced
by the curvature transform and its path cognates, four-bars
II and III, are to be usable as all or part of a linkage
solution. What tests can be made on four-bar I. to ensure
proper performance relative to change points in four-bars
II and III? This question is central to establishing
practical necessary condition analyses for path-cognate
problems.
A study of four-bar II will now be made in detail. All
comments made hereafter regarding "left" cognate four-bar
II also apply to "right" cognate four-bar III. The modes of
cyclicity which II may take are shown in Figure 5-12. Each
of these modes will involve a separate analysis (necessary
condition procedures I N) to be performed on four-bar I
to ensure proper performance in II.


210
Module Chart 32
Name Analyze
Label ANALYZE
Description
Given a crank in zeroth
position, 4MSP of coupler,
generates 4MSP of rotating
crank.
APL Call
,,-v(01) ANALYZE (I x) (12 ) (13) "
where:
(1^),(I2) = moving, fixed pivots of crank
in zeroth position.
(1^) = 4MSP of coupler.
(0^) = 4MSP of crank.


232
45. Alizade, R.I., A.V. Mohan Rao, and G.N. Sandor,
"Optimum synthesis of two-degree-of-freedom planar
and spatial function generating mechanisms using the
penalty function approach," ASME Paper No. 74-DET-51,
1974.
46. Alizade, R.I., A.V. Mohan Rao, and G.N. Sandor,
"Optimum synthesis of four-bar and offset slider-
crank planar and spatial mechanisms using the penalty
function approach with inequality and equality con
straints," ASME Paper No. 74-DET-30, 1974.
47. Alizade, R.I., I.G. Novruzbekov, and G.N. Sandor,
"Optimization of four-bar function generating mech
anisms using penalty functions with inequality and
equality constraints," Mechanism and Machine Theory,
Volume 10, 1975, pp. 327-36.
48. Kramer, S.N., and G.N. Sandor, "Selective precision
synthesis: a general method of optimization for
planar mechanisms," ASME Paper No. 74-DET-68, J,
Eng. Ind., Transactions of the ASME, Volume 97, Series
B, No. 2, May 1975, pp. 689-701.
49. Kramer, S.N., "Using the selective precision synthesis
technique to optimize planar mechanisms," Fourth
Applied Mechanisms Conference, November 3-5, 1975,
Oklahoma State University, Stillwater, Oklahoma.
50. Mariante, W. and K.D. Willmert, "Optimum design of
a complex planar mechanism," ASME Paper No. 76-DET-47,
Trans ASME, 1976.
51. Fielding, J.B., and J.C. Zanini, "The assessment of
an optimization technique used for the design of a
packaging machine," Proceedings of IFTOMM, Interna
tional Symposium, Machines and Mechanisms, Univer
sity Research Work and Its Application to Industry,
1974, p. 315.
52. Fielding, B.J.and J.C. Zanini, "Coplanar synthesis
using an optimisation technique," Fourth World
Congress on the Theory of Mach, and Mech., September
8-12, 1975, pp. 387-92.
53. Youssef, A.H., K. Oldham, and L. Maunder, "Optimal
kinematic synthesis of planar linkage mechanisms,"
Fourth World Congress on the Theory of Mach, and
Mech., University of Newcastle upon Tyne, England,
September 8-12, 1975, pp. 393-98.


52

S1= A + BC

Tx = -AC + B

S2= -2AC AC + B BC

T2 = A AC + 2BC + BC
S3= A 3ACC 3AC2 + 3BC + 3BC BC3 + BC*
T3 = B 3BCC 3BC2 3AC 3AC + AC3 AC*
b.) Inversion formulation number 2.
Given: Motions of N relative to R; M relative to R.
Find: Motion of M relative to N ( for Rq reference ).
Independent parameter for given MSP: yn
Independent parameter for derived MSP:
This formulation is identical to that of (2a), except
that the dots in the S^ and formulations should be re
placed with primes ('), and now A', A", A"', B' B", B"' and
CC", and C'"must be defined.


103
position. If the chain is cyclically driven through a dyad
link 2 or 5, the linkage is driven through the four-bar
chain's full range of possible motion between dyad dis
connections. A third possibility occurs if the chain is
cyclically driven through a four-bar chain link, in which
case the entire linkage is driven through a complete cycle.


139
Problem #9: ANGULAR COORDINATION OF THREE ADJACENT PLANES
The coplanar motions
of planes J and K
are coordinated with
the rotation of L.
SOLUTION LINKAGES
WATT
D 4 C
Watt 1 Link 1 is grounded.
Synthesis Procedures
Plane J -v
Point e =
Plane K *
Point f =
Plane L =
Point g =
Link 4 and
Pivot D.
Link 6 and
Pivot G.
Link 2 and
Pivot A.
1 CURVATURE TRANSFORM to find 3
INVERSION to 6.
CURVATURE TRANSFORM to find 5
[4MSP Grid: (2)xl-Dj


133
Problem #6: ANGULAR COORDINATION OF A THREE-LINK CHAIN
The coplanar motion
of planes J and K and
crank L are coordi
nated. '
SOLUTION LINKAGES
WATT
D 4 C
Watt 1 -
a.) Plane
Point
Plane
Point
C rank
Point
Link 1 is
J -v Link
e = Pivot
K = Link
f = Pivot
L = Link
g = Pivot
grounded.
5 and
F.
6 and
G.
2 and
A.
b.) Plane J
Point e
Plane K
Point f
Crank L
Point g
Link 5 and
Pivot H.
Link 4 and
Pivot C.
Link 3 and
Pivot B.
Synthesis Procedures
INVERSION to 2.
CURVATURE TRANSFORM to find 4
INVERSION to 1.
CURVATURE TRANSFORM to find 3
l4MSP Grid:(2)xl-D]
CURVATURE TRANSFORM to find 2
INVERSION to 2.
CURVATURE TRANSFORM to find 6
t 4MSP Grid: (2)xl-Dj


I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality,
as a dissertation for the degree of Doctor of Philosophy.
Delbert Tesar, Chairman
Professor of Engineering
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality,
as a dissertation for the degree of Doctor of Philosophy.
c_John M. Vance
Associate Professor of Engineering
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality,
as a dissertation for the degree .of Doctor of Philosophy.
George N. Sandor
Professor of Engineering
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality,
as a dissertation for the degree of Doctor of Philosophy.
Ralph G. Selfri^ge
Professor of Mathematics
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality,
as a dissertation for the degree of Doctor of Philosophy.
>2
/
X
Martin A. Eisenberg
/Professor of Engineering
/


155
a) Necessary Condition Pro
cedure A for 1234.
a) Necessary Condition Pro
cedure B for 1234 .
a) Necessary Condition Pro
cedure B for 1234 .


CHAPTER VI
THE DESIRABLE CONDITIONS
Chapter IV presented the synthesis procedures by which
linkage solution sets of one to four dimensions are gen
erated. The necessary conditions, which serve to eliminate
from the linkage solution set those linkages with some un
acceptable physical characteristics, were treated in Chap
ter V. Now the desirable conditions, which serve to sort
and rank the remaining linkages relative to a user-defined
objective function, will be discussed. These conditions
constitute the final step in the synthesis/analysis/resyn
thesis loop by which optimization occurs.
A desirable condition may be any criterion by which
the quality of a linkage solutiom may be judged. The range
of application for linkages is enormous, and so too is the
range of possible desirable conditions. Nine generally use
ful desirable conditions have been considered for this work.
A. The Desirable Conditions
1.) Pivot Location
In many applications the designer has restrictions
related to moving pivot locations or mounting locations
relative to the moving bodies. Depending on the problem
type and the linkage solution type selected, some of the
104


Module Chart 33
Name Analyze Path-Cognate
Label ANLZPCG
Description
Given 4MSP of coupler of a
synthesized four-bar and pivot
locations in the zeroth posi
tion of one of its path cog
nates, generates (3) sets of
4MSP representing motion of
path cognate's links.
APL Call
"-MOj.) (02) (03) ANLZPCG (I1) (I2) (I3) (I4) (I5) "
where:
(V
=
4 MSP
of coupler of four-
u2)
=
g in
zeroth position.
d3)
=
CL in zeroth position.
(V
=
j in
zeroth position.
a5)
=
0^ in zeroth position.
(Oj.)
=
4MSP
of g01
(0?)
=
4MSP
of Jg
,03>
=
4MSP
la
44
0


81
a. "Trailer"
Figure 5-5 Trailer and Rocker


186
Module Chart 9
Name Necessary Condition Input
Label NECINP
Description
Presently has no function, is re
tained only for reasons of consistency
and possible use in future expansion.
APL Call
"-NECINP"


233
54. McLarnan, C.W., "On linkage synthesis with minimum
error," Journal of Mechanisms, Volume 3, 1968,
pp. 101-105.
55. Huang, M., H.R. Sebesta and A.H. Soni, "Design of
linkages using dynamic simulation and optimization
techniques," ASME Paper No. 72-Mech-84, 1972.
56. Prasad, K.N., and C. Bagci, "Minimum error synthesis
of multiloop plane mechanisms for rigid body
guidance," Journal of Engineering for Industry, Trans
ASME, Series B, Volume 96, No. 1, 1974, pp. 107-16.
57. Huang, M., "Optimal design of linkages using sensi
tivity coefficients," ASME Paper No. 74-DET-59,
1974 .
58. Lee, T.W., and F. Freudenstein, "Heuristic combina
torial optimization in the kinematic design of mech
anisms: Part 1 theory; part 2 applications,"
ASME Paper No. 76-DET-25, Trans ASME, 1976.
59. Datseris, P. and F. Freudenstein, "Optimum synthesis
of mechanisms using heuristics for decomposition and
search," to be presented at the ASME Design Engrg.
Tech. Conf., Minneapolis, Minn., September 24-27,
1978.
60. Moradi, J.Y. and M. Pappas, "A boundary tracking al
gorithm for constrained nonlinear problems," Journal
of Mechanical Design, Trans ASME, Volume 100 April
1978, pp. 292-296.
61. Lin, Y.L., "Use of computer methods to facilitate
synthesis of four-bar mechanisms processing specific
minimum transmission angles," ASME Paper 70-DE-ll,
1970.
62. Hamid, S., and A.H. Soni, "Design of an RSSR crank-
rocker mechanism for optimum force transmission"
Proceedings of Second Appl. Mechanisms Conference,
Oklahoma State University, 1971, Paper No. 17.
63. Hamid, S., and H.A. Soni, "Design of a space-crank
RSSP mechanism with optimum force transmission,"
ASME Paper No. 72-Mech-82, 1972.
64. Shoup, T.E., J.R. Steffer, and R.E. Weatherford,
"Design of spatial mechanisms for optimal load
transmission," ASME Paper No. 72-Mech-88, 1972.


Use of Appendix C
Appendix C is intended to serve as a guide to the pro
gram modules needed to perform the analytics presented in
this work. Each chart contains a module's functional de
scription and input/output. As such Appendix C could serve
as an outline for a program package on nearly any system
providing adequate storage. At the present time the pack
age is probably most effectively implemented in interactive
APL, and the subroutine calls, "go-tos" and input/output
conventions used are those of APL.
Here the flow of data between modules utilizes user-
specified files with the restriction that file numbers 1 to
30 are reserved for operating storage. Occasionally a
module's specified file arguments are not entirely appli
cable (usually for four-bar applications using four/six-
bar routines), in which case reference should be made to
file zero. Once an optimization routine has been created
and module I/O coordinated, all human/computer interfacing
is interactive and handled by each module independently.
176


74
rotation. The latter situation occurs if the linkage
satisfies the Grashof condition:
¡L + s < p + q
where
Z = length of longest link
s = length of shortest link
p,q = length of other two links
Grounded four-bar chains which satisfy this relation
ship are known as "Grashof four-bars," and take the forms
shown in Figure 5-2 a,b,c. They are simply different in
versions of one another, and are generally more useful than
non-Grashof linkages. The crank-rocker, for example, can
be used to generate an arbitrary shape with a coupler
point while its crank is driven continuously, and the
drag-link is often used for continuous function genera
tion. In a Grashof four-bar only those pivots which are
cyclic will ever enter change points.
The non-Grashof four-bars take only one form (regard
less of inversion), the non-Grashof double-rocker. This
type of linkage tends to dominate a linkage solution grid
generated through the curvature transform, but has the un
fortunate property of being able to reach "change points"
(discussed in next section) at any of its pivots. Control
of linkage motion through these change points requires
special considerations.


189
Modulo Chart 12
Name Necessary Condition Procedure B
Label NCPB
B
/
c
U/
*
*
A
Description
Evaluates four-bar chains
on the basis of change-point
considerations for the case
shown. Creates a necessary
condition grid indicating ac
ceptable linkages.
APL Call
where:
,,-(01) NCPB (I1) (I2) (I3) (I4) "
, d2)
(i3>'(i4>
Pivots of first constraint link
(moving, fixed pivots).
Pivots of second constraint link
(moving, fixed pivot).
(o1)
= Output grid.


194
Module Chart 17
Name Necessary Condition Procedure I
Label NCPI
Description
Evaluates synthesized four
bar I on the basis of change-
point considerations within
path cognate four-bars II and
III as shown. Generates a
necessary condition grid
(2x2-D) indicating acceptable
cognates.
APL Call
"* (01) NCPI
(I1) (I2) .... (Ig) "
where:
d1), d2)
d3), d4)
d5),(i6)
(I 7) (Ig)
= link dO^
= link fC>2
= link gO^ (and hC^)
= link jO^ (and KO^)
(0^) = Output grid.


APPENDIX A
PROBLEM TYPES AND SOLUTION LINKAGES


118
5) With the use of the program charts of Appendix
C, coordinate input and output files between modules.
These modules are completely compatible with existing
Pollock dyad-analysis routines and any others following a
similar input/output format. For example, an optimization
routine could be immediately followed by a dyad-analysis
routine within the same program to perform a detailed
dynamic analysis of the optimal linkage.


132
Problem #5: PATH COORDINATION WITH A CRANK
The coplanar motion
of point e is coor
dinated with the ro
tation of crank J.
SOLUTION LINKAGE
Four-Bar
Synthesis Procedure
Link 1 is
Point e +
Crank J =
Point f =
grounded
Link 3.
Link 2.
Pivot A.
*.i.
CURVATURE TRANSFORM and
PATH COGNATES to find
2.4
[4MSP Grid: L,R 2-D]


102
as the g-function (i.e., relative angular velocity) of
link 2 relative to 3 approaches zero and link 2 comes to
a halt. On either side of this position ^2/3 assumes op
posite values. If dyad link 5 is the driven member in the
original Stephenson 2, a critical position occurs when g^^
approaches zero. In either case, the specified positions
must be satisfied without the linkage passing through a
critical position.
4.) Encirclement and Non-encirclement
In a Stephenson chain, if the coupler point C encir
cles point A, as shown in the example of Figure 5-14c,
pivots C and A both have complete relative rotation. If
encirclement does not occur (and the chain is not cyclicly
dyad driven), pivots C and A will have only relative rota
tion. In either case the dyad will not change type.
Either of these motion characteristics (or its exclusion)
may be desirable in a particular application.
The necessary conditions connection, disconnection,
g-function reversal, encirclement and non-encirclement are
evaluated simultaneously during a single dyad-based motion
analysis. The range through which the Watt 2 or Stephenson
3 inversion of the six-bar linkage is driven depends upon
the mode of cyclicity. If the mode of cyclicity involves
no links with complete rotation, the linkage will be driven
in small increments from the zeroth to the third specified


44
Figure 4-3 Parameters Relating Fixed and Moving Planes


123
Other subsets of allowable modes of cyclicity can and
should be defined and compiled, like those of Figures 3-4,
3-5 and 3-6 for the geometric restrictions. For example,
there might be "dynamic" restrictions, "two-input" restric
tions, and so on.
4.) Multiple Modes of Cyclicity
In putting together the computational modules of Ap
pendix C for a particular problem, the user is constrained
to select a single mode of cyclicity in order to define the
appropriate necessary condition procedure. For many appli
cations more than one of the available modes of cyclicity
would be of interest.
It is sufficient to generate separate necessary con
dition grids for each of the selected modes of cyclicity,
and combine these at the appropriate times (generally, be
fore the necessary condition output, or the necessary con
dition dyad routine). The present modules have this capa
bility (NECOUT and NECDYAD of Appendix C).
A better approach would consider the minimum range of
conditions to be satisfied, and generate a single necessary
condition procedure for the selected modes of cyclicity.
This would be considerably more efficient due to the elim
ination of computational duplications at overlapping grid
regions.


Table 7-1
Program Modules
Synthesis
Necessary Conditions
SYNINP
SYNOUT
NECINP
NECOUT
SCRVTRN
SINVERT
SPTHCOG
SANGCOG
SDYDTYP
NCPA
NCPB
NCPC
NCPD
NCPG
NCPH
NCPI
Support Routines
NCPJ
NCPK
INITIAL
ANALYZE
ANLZPCG
EXTRACT
NCPL
NCPM
NCPN
NDYDTYP
NECDYAD
Connection,
Disconnection
g-fn. reversal,
Encirclement,
Non-encirclement
Desirable Conditions
DESINP
DESOUT
DPVTLCA
DLKLNRT
DLKSIZE
DESDYAD
Overall Boundary,
g-function
Vh-function
hrms-function
VTorque
Shock Level
119


99
Necessary Condition Procedure N.
1) Perform necessary condition procedure L on
four-bar I to indicate change points at g in cog
nate II and h in cognate III.
2) Invert coupler and ground,swap constraint
links in I, and execute necessary condition pro
cedure L again, to indicate change points at 0^
in cognates II and III.
3) Execute necessary condition procedure M on
four-bar I to indicate change points at j in cog
nate II or K in cognate III.
4) Test the distance of d and f relative to O-jC^
for the specified positions. If the "altitude" of
d is always less or greater, no change points will
occur at 0^ in cognate II or 02 in cognate III.
B. Six-bar Necessary Conditions
The necessary conditions presented thus far are suf
ficient for the necessary condition analysis of four-bar
linkages and the constituent parts (i.e., dyads and four-
bars) of six-bar linkages. Several conditions involving
the combination of these parts into complete six-bar
linkages are still needed.
1.) Dyad Connection
The fact that a six-bar linkage is capable of reach
ing specified positions without change point or order dif
ficulties is not enough to ensure non-disconnection of a
linkage member while moving between the specified positions.
Conceptually one can imagine a four-bar linkage whose
coupler pivot passes outside (or inside) of the bounds of
possible motion of dyad pivot q (Figure 5-14a). Verifica
tion of this condition is made using a dyad-based analy
sis of the entire linkage at discrete intervals.


64
+
PATH
COGNATES
Figure 4-7 A Stephenson-2 Solution to Point/Path
Coordination with Two Cranks


89
Necessary Condition Procedure A (for cases la, Ic,
lib and Ild)-
1) Choose a follower-constraint-link to be a
trailer/rocker.
2) Choose a crank-constraint-link of proper order
which is compatible with the follower.
3) Test Grashof type for a crank-rocker.
Necessary Condition Procedure B (for cases lb and Ila)-
1) Choose a constraint link to be a trailer of
proper order.
2) Choose another constraint link to be a trailer
which is compatible with the first link.
3) Test Grashof type for a drag-link.
Necessary Condition Procedure C (for cases Id and IIc)-
1) Invert to change reference to the coupler link,
i.e. generate the motion specifications of the
fixed plane relative to the moving plane, in
terchange the circle-point and center-point
cubic curves, etc.
2) Follow procedure B.
Necessary Condition Procedure D (for case Illa)-
1) Choose a follower-constraint-link to be a
trailer.
2) Choose a crank-constraint-link of proper order
which is compatible with the follower.
Necessary Condition Procedure G (for case IIIc)-
1) Invert to change reference to the coupler link.
2) Follow procedure D.
Necessary Condition Procedure H (for cases IVa,b,
c and d)-
1) Choose a constraint link which is a trailer
of proper order.
2) Choose a second constraint link which is a
trailer which is compatible with the first
link.
3) Check mutual compatibility.
4) Invert to change reference to the coupler link.
5) Repeat 1), 2) and 3) (no need to check order
again).


108
9.) Overall Boundary
This condition is used to rank solution linkages
relative to overall space required. Some designs will
place "soft" constraints on working volumes in the form
of preferred regions, while others may have "hard" ab
solute restrictions created by other system components.
B. The Objective Function
The linkages which have survived to the desirable
conditions are ordered using some user-defined objective
function. This function may take the form:
N = ENk = EWkSk (6.1)
k k
k = 1,2,3 . .
where N represents a cumulative score attached to a par
ticular linkage, k is the desirable condition counter,
Nk is a linkage score for condition k, Wk is a weight
signifying relative importance of condition k, and Sk is
a score signifying performance of the linkage relative to
condition k.
The weighting factor Wk is set by the designer, who
must make this decision relative to the application using
his own experience and judgement. In this work both
weights and scores may be assigned within a range of 0
to 10. A weight of 10 signifies a condition of primary


12
deal explicitly with inequality constraints. This group in
cludes the method of feasible directions introduced by Zouten-
dijk, the gradient projection method, and the extensions of
Dantzig's simplex method. Fielding and Zanini [51,52] have
discussed the use of modified Simplex methods and consid
ered the optimization of an industrial packaging machine.
Also, Youssef, Oldham and Maunder [53] have used the mod
ified Simplex to optimize multi-loop linkages with respect
to path error, link length and transmission angle.
The use of variational methods for linkage problems
can be traced back to the early work of Freudenstein [9]
which later received attention from McLarnan [54], who at
tempts to minimize structural error by requiring the
derivatives at the precision positions to be zero. Huang,
Sebesta and Soni [55] and Prasad and Bagci [56] have had
more recent applications of variational methods.
Other iterative methods have been introduced by Huang
[57], who introduces the concept of sensitivity coeffi
cients, and Lee and Freudenstein [58] and Datseris and
Freudenstein [59], who develop the application of Lin's
heuristic method (originally developed for the communica
tions field) to mechanism optimization. Moradi and Pappas
[60] have developed a "boundary tracking" algorithm for
general mathematical programming problems.
Most of the papers discussed so far have dealt pri
marily with optimization with respect to motion error. If


231
33. Fletcher, R., and M.J.D. Powell, "A rapidly conver
gent descent method for minimization," The Computer
Journal, Volume 6, 1963, pp. 163-168.
34. Mclaine-Cross, I.L., "A numerical method of Chebychev
optimum linkage design," Journal of Mechanisms,
Volume 4, 1969, pp. 31-41.
35. Sevak, N.M. and C.W. McLarnan, "Optimal synthesis of
flexible link mechanisms with large static deflec
tions," ASME Paper No. 74-DET-83, 1974.
36. Conte, F.L., G.R. George, R.W. Mayne, and J.P. Sadler,
Optimum mechanism design combining kinematic and
dynamic force considerations," ASME Paper No.
74-DET-55, 1974.
37. Han, C.Y., "A general method for the optimum design
of mechanisms," Journal of Mechanisms, Volume 1,
No. 4, 1966, pp. 301-13.
38. Fiacco, A.V. and G.P. McCormick, "Programming under
nonlinear constraints by unconstrained minimization;
A primal-dual method," RACTD-96, Bethesda, Maryland:
The Research Analysis Corporation, September, 1963.
39. Fiacco, A.V. and G.P. McCormick, "Computational
algorithm for the sequential unconstrained minimiza
tion for nonlinear programming," Management Science,
Volume 10, 1964, pp. 601-17.
40. Fiacco, A.V. and G.P. McCormick, Nonlinear Program
ming: Sequential Unconstrained Minimization Tech
niques, New York: Wiley, 1968.
41. Fox, R.L., and K.D. Willmert, "Optimum design of
curve generating linkage with inequality constraints,"
Journal of Engineering for Industry, Trans ASME,
Series B, Volume 89, No. 1, February 1967, pp. 144-52.
42. Tranquilla, M., "Optimum design of a four-bar linkage
whose coupler path has specified extremes," ASME Paper
No. 7l-Vibr-109, 1971.
43. Gupta, V., "Computer aided synthesis of mechanisms
using non-linear programming," Journal of Engineer
ing for Industry, Trans ASME, Series B, Volume 95,
No. 7, February 1973, pp. 339-44.
44. Bakthavachala, N., and J.T. Kimbrell, "Optimum syn
thesis of path-generating four-bar mechanisms," ASME
Paper No. 74-DET-6, 1974.


CHAPTER VIII
RECOMMENDATIONS AND CONCLUSIONS
There are several logical extensions of the presented
work. For the most part, they involve expansions of the
underlying theories to reduce the levels of constraint in
the choices of motion specification type and solution link
age type.
A. Recommendations
1.) Alternate Synthesis Procedures
As has been previously mentioned, it is desirable to
keep the number of free parameters to 1, 2 or 3. With con
ventional 4MSP synthesis procedures (Chapter IV, Appendix A)
this range is exceeded for problems #1 and #12. In problem
#1 the number of free parameters is five, but is reduced to
two by arbitrarily selected coupler angles in the motion
specifications set. The number of free parameters in prob
lem #12 is four, resulting in a four-dimensional grid and
escalated computational complexity and cost.
All of the synthesis procedures presented in Chapter IV
and Appendix A involve at least one application of the first
tool of synthesis, the curvature transform, for 4MSP. Al
ternate synthesis procedures have been developed which allow
120


25
D 4 C
D 4 C
b. The Stephenson 2
D 4 C
c. The Stephenson 3
Figure 3-2 Inversions of the Stephenson Six-Bar Chain


7
1968 Tomas [18] discussed the treatment of linkage syn
thesis as a nonlinear programming problem, and employed
the optimization random-search method of Garrett
and Hall [19]. Eschenbach and Tesar [20] generated a
large set of linkages computationally and then ranked
them according to numerous design criteria, the latter
making use of limit design zones and design criterion
weights. Two and three function problems are handled
under the consideration of ten to twelve criteria acting
as sequential filters. Eisenstein and Hall [21] approached
the optimization of two-degree-of-freedom function gener
ators by generating a small number of "good" designs, and
then generating linkages around these to find a "best"
design. Spherical four-bar path generators are handled
by Sridher and Torfason [22], who synthesize on four pre
cision points, and then search for the linkage which min
imizes the maximum deviation from the prescribed path be
tween the precision points using a random sequential
search. The author [23] and the author and Tesar [24]
have "grid refinement" technique for four-bars which in
volves generating two-dimensional discrete representa
tions of the solution set for four coplanar positions,
ranking or eliminating these using a weighted design cri
teria formulation, and then restarting by generating a
new "grid" in the most favorable region. Most of the pre
viously mentioned approaches, as well as the iterative
methods, can guarantee true global optimization for convex
functions only rarely the case in a linkage problem.


50
Figure 4-4 Inversion Notation


223
P_rogram Char L 9
Problem H 9 Angular Coordination
of Three Adjacent Pianos.
Linkage Solution Watt 2
Mode of Cyclicity #9
Synthesis Procedure
1) CURVATURE TRANSFORM to
find 1.
2) CURVATURE TRANSFORM to
find 6.
Necessary Condition Procedure
1) Necessary Condition Pro
cedure B for 1234.
2) Necessary Condition Pro
cedure A for 2456.
Sample Program
VPROB9WATT2MODE9
[1] -> INITIAL
[2] -* 31 4 0 SYNINP
[3] 32 38 SYNINP
[4] -> 33 37 SYNINP
[5] 38 40 34 39 SCRVTRN 32 38 40
[6] 37 40 36 35 SCRVTRN 33 37 40
[7] - SYNOUT 34 39 38 40
[8] -*> SYNOUT 36 35 37 40
[9] NECINP
[ 10] -* 41 NCTB 34 39 38 40
[11] > 4 2 NCPA 36 35 37 40
[12]- NECOUT 41 42
[13]
4 3
DESINP
4 1
42
[14]
4 3
DPVTLCA
43
3 4
35
3 6
37
38
[15]
4 3
DF.KLNRT
4 3
37
36
3 4
3 9
[16] *
43
UI.KS I ZE
4 3
38
4 0
37
40
39
35
[171
43
DCSDYAD
4 3
34
39
38
40
37
36
35
0
1 ,
i 6
[18] DESOUT 4 3
Files
31)
4MSP (4/2)
32)
4MSP (3/2)
33)
4MS P (5/2)
34)
pivot A
35)
pivot G
36)
pivot F
37)
pivot H
38)
pivot C
39)
pivot B
40)
pivot D
41)
NC Grid (1)
42)
NC Grid (6)
43)
DC Grid (1,6)


178
Module Chart 1
Name Initialize
Label INITIAL
Description
Creates and initializes
files, and collects informa
tion related to problem type.
First module of every program.
APL Call
If
-INITIAL"


216
Program Chart 2
Problem If 2 Motion Synthesis,
Linkage Solution Four-Bar
Mode of Cyclicity # 2
Synthesis Procedure
1) CURVATURE TRANSFORM to
find 2; 4.
FOUR-BAR
Necessary Condition Procedure
1) Necessary Condition Pro
cedure B for 1234,
Sample Problem
VPROB2FBMODE4
Files
[1]
->
INITIAL
[2]
-V
31
SYNINP
[3]
35
32 34 33 SCRVTRN
31
[4]
SYNOUT 35
32
34
33
[5]
-V
NECINP
[6]
->
36
NCPB 35
32
34
33
[7]
-*-
NECOUT 36
[8]
->-
37
DESINP
36
[9]
->
37
DPVTLCA
37
32
35
34
(10)
-y
37
DLKLNRT
37
34
33
35
ill J
37
DLKSIZE
37
32
33
3 5
[12]
-y
37
DESDYAD
37
3 5
32
34
31
1,
i 6
[13]
>
DESOUT 37V
31)
4MSP(3/1)
32)
pivot
A
33)
pivot
D
34)
pivot
C
35)
pivot
B
36)
NC Gri
.d ( 4x2)
37)
DC Grid(4x2)
33
32
34
33 0 0 0


182
Mod ul c Ch art 5
Name Inversion (Synthesis Tool)
Label SINVERT
Description
Generates a new 4MSP set
representing a change of ref
erence .
Case HI Given N relative to
R, M relative to R, generate
M relative to N.
Case it 2 Given N relative to
R, M relative to N, generate
M relative to R.
Case ft 3 Given M relative to
R, generate R relative to M.
APL Call
SINVERT (1^ (I2) (I3) "
where:
(1^) = 4MSP associated with M.
(I2) = 4MSP associated with N.
1^ = 1,2 or 3, case number
(0,) = Generated 4MSP set (M relative to
1) N or 2) R,or 3) R relative to N).


83
Y., (y. V.. )
3k = _il
2 2 2
(see Figure 5-6b)
Now the location of circle points with positive and nega-
>
ik
tive values of the in terms of P^ and P!v (Figure 5-7c)
can be determined by using the property:
The three lines through diametral
points and a third point on a circle
will define a right triangle.
For circle points lying on the right side of P|jP|^ and
outside the circle, 0 < V ^/2 < tt/2, so that 0 < < 77
and for circle points on the same side but inside the
circle, tt/2 < V.,/2 < tt (Figure 5-7a) On the opposite
3 K
side of P|jP|^ the signs will be reversed. Figure 5-7b
shows this construction overlayed onto the corresponding
circle point curve.
Two values of i could be chosen: the only requirement
is that i be distinct from j and k. Interestingly enough,
if evaluations were made using both possible values of i
some spaces in the plane would have conflicting signs, but
the circle point cubic will occupy none of these spaces.
Another interesting property is that the signs will not
change as the circle point cubic passes through an image
pole, but will change as the circle point cubic crosses the
circle or line segment singly.
The portions of the circle point cubic which represent
permissible constraint links will be defined by those por
tions for which all the components of any of the strings


TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS iii
ABSTRACT vi
CHAPTER
I INTRODUCTION 1
II A PHILOSOPHY FOR LINKAGE DESIGN AND
OPTIMIZATION 16
A. Control of Parameters 16
B. The Optimization Procedure .... 17
C. Previous Use of the "Grid"
Philosophy 20
III SOLVABLE PROBLEMS 23
A. Linkage Types 23
B. Modes of Rotational Cyclicity ... 27
C. Motion Specification Types .... 35
IV SYNTHESIS OF LINKAGE SOLUTIONS .... 39
A. The Four Tools of Synthesis .... 39
B. Coordination of the Tools of
Synthesis 61
C. Grid Dimensions 65
D. Dependent Syntheses 66
V THE NECESSARY CONDITIONS 71
A. Four-Bar Necessary Conditions ... 71
B. Six-Bar Necessary Conditions ... 99
VI THE DESIRABLE CONDITIONS 104
A. The Desirable Conditions 104
B. The Objective Function 108
IV


34
Figure 3-8 Some Unacceptable Modes of Rotational Cyclicity


234
65. Freudenstein, F., and E.J.F. Primrose, "The clas
sical transmission angle problem," Conference Proc.
on Mechanisms, Paper No. C96/72, The Institution of
Mechanical Engineers, London, 1972, pp. 105-10.
66. Sutherland, G., and B. Roth, "A transmission index
for spatial mechanisms," Journal of Engineering for
Industry, Trans ASME, Series B, Volume 95, No. 2,
May 1973, pp. 589-97.
67. Bagci, C., "Design of spherical crank-rocker mech
anism with optimal transmission, "Journal of Engi
neering for Industry, Trans ASME, Series B, Volume
95, No. 2, May 1973, pp. 577-83.
68. Savage, M., and D.H. Suchora, "Optimal design of
four-bar crank mechanisms with prescribed extreme
velocity ratios," ASME Paper No. 73-WA/DE-13, 1973.
69. Tomas, J., "Optimum seeking methods applied to a
problem of dynamic synthesis in a loom," Journal of
Mechanisms, Volume 5, No. 4, 1970, pp. 495-504.
70. Benedict, C.E. and D. Tesar, "Optimal torque balance
for a complex stamping and indexing machine," ASME
Paper No. 70-Mech-82, 1970.
71. Lowen, G.G., and-R.S. Berkof, "Determination of
force-balanced four-bar linkages with optimum shak
ing moment characteristics," Journal of Engineering
for Industry, Trans ASME, Series B, Volume 93, No. 1,
February 1971, pp. 39-46.
72. Berkof, R.S., and G.G. Lowen, "Theory of shaking
moment optimization of force-balanced four-bar
linkages," Journal of Engineering for Industry,
Trans ASME, Series B, Volume 93, No. 1, February
1971, pp. 53-60.
73. Tepper, F.R., and G.G. Lowen, "Shaking force opti
mization of four-bar linkages with adjustable con
straints on ground bearing forces," ASME Paper No.
74-DET-53, 1974.
74. Sadler, J.D., "Balancing of six-bar linkages by non
linear programming," Fourth World Congress on the
Theory of Mach, and Mech., September 8-12, 1975,
pp. 139-44.


209
Module Chart 31
Name Extract
Label EXTRACT
Description
Allows user to select a
particular linkage frotn a
grid; compresses pivot files
to represent only the selected
linkage. Useful for dependent
synthesis problems.
APL Call
-EXTRACT (I.)"
where:
(1^) = Scoring grid (previously outputted)


188
Modu_l_o _Char I; 11
Nano Necessary
Label NCPA
Condition
Procedure A
Description
Evaluates four-bar chains
on the basis of change-point
considerations for the case
shown. Creates a necessary
condition grid indicating ac
ceptable linkages.
APL Call
where
"-*(0^ NCPA
(11) (12) (13) 14) (15) "
(Il) d2)
(i3), d4)
Pivots of first constraint link
(moving, fixed pivots).
Pivots of second constraint link
(moving, fixed pivots).
1 or 2, identifies constraint
link with change-point restric
tions .
(CL ) = Output grid.


200
Modulo Chart: 23
Name Necessary Condition Dyad Analysis
Label NECDYAD
Description
Performs a dyad-based
analysis, evaluates the solu
tion set of linkages on the
basis of:
- Connection
- Disconnection
- Encirclement
- Non-encirclement
- g-function reversal
"-(C^) NECDYAD .
where:
For six-bars,
Stephenson 3
or Watt 2
inversion.
(I1),(I2) = Crank pivots (moving,fixed)
(13) (I4) = Follower pivots (moving, fixed)
(1^) (Ig) (1^) = Dyad pivots ( = 0 for four-bar)
(Ig) = MSP set, coupler or crank relative to
ground. (Can be 0 if Ig = 1)
Ig = Mode of drive.
= 1 for cyclic drive.
= 2 from position 0 to 3.
= 3 through range of disconnection.
I^q+ = Necessary conditions
= 1 for Connection
= 2 for Disconnection (TTlT
- 3 for Disconnection drpTg
= 4 for Encirclement
- 5 for Non-encirclement.
= 6 for g-function reversal
relative to Igl7).
= 7 for g-function reversal
relative to I_I_) .
O /
(O^) = Output grid.
short)
short)
(Ground
(Ve


APPENDIX D
SAMPLE PROGRAMS


143
Problem #11: COPLANAR MOTION COORDINATED WITH A CRANK
The coplanar motion
of Plane K is coordi
nated with the rota
tion of crank J.
SOLUTION LINKAGES
C 4 H
WATT
Watt 1 Link 1 is grounded
Synthesis Procedures
Crank
J
Link 2 and
INVERSION
to 2 .
Point
e =
Pivot A.
CURVATURE
TRANSFORM
to
find
Plane
K -
Link 5.
4,6.
INVERSION
to 1 .
CURVATURE
TRANSFORM
to
find
3
[ 4MSP Grid
1: 2-D+l-D]
C rank
J -
Link 3 and
INVERSION
to 3.
Pn.i n t
o =
Pivot B.
CURVATURE
TRANSFORM
to
f i nd
4
Plane
K >
Link S.
INVERSION
to 1 .
CURVATURE
TRANSFORM
to
find
2
INVERSION
to 2.
CURVATURE
TRANSFORM
to
find
6
[4MSP Grid:(3)xl-D]


27
fourteen free parameters. A "Stephenson 1" is produced
if link 1 or 6 of the Stephenson chain is grounded, a
"Stephenson 2" if link 2 or 5 is grounded, and a
"Stephenson 3" if link 3 or 4 is grounded. A "Watt-1"
results from grounding link 1, 3, 5 or 6 of a Watt chain,
and a "Watt 2" if link 2 or 4 is grounded. These are
available linkage solutions to the problems in this work,
and the notation introduced in Figure 3-1 will be adhered
to.
Other simple linkages exist, such as the slider-crank
and inverted slider-crank four-bars, the geared five-bars
and six-bars with sliders and oscillating blocks. They
have less general applicability and except for the geared
five-bar are simply subsets of the linkages already under
consideration.
B. Modes of Rotational Cyclicity
A linkage chain can have a number of distinct types
of motion depending upon linkage geometry and the nature
of the input drive. These motion characteristic types
are hereafter termed "modes of rotational cyclicity."
The possible modes of rotational cyclicity are dis
played for the four-bar chain in Figure 3-4, and for the
six-bar chains in Figures 3-5 and 3-6. The information in
these figures is central to this work. This unfortunate


Mt* Vo'0
a o^'


30
Watt Six-Bars With No Cyclic Links
4
Any pair of links
may be driven (15
distinct possi
bilities )
Watt Six-Bars With Cyclic Links
Figure 3-6 Modes of Rotational Cyclicity of the
Watt Six-Bar Chain


221
Program Chart 7
D -
^V.4^ ~
Problem if I Angular Coordination
of a Crank and a Two-Link Chain.
Linkage Solution Stephenson 1
Mode of Cyclicity H9
1
s
s
J _
J 1 3 ^A
STEPHENSON i
Synthesis Procedure
Necessary
Condition Procedure
1) INVERSION to 4.
1) Necessary Condition
2) CURVATURE TRANSFORM to
find 6.
Dyad Type (25).
2) Necessary Condition Pro-
3) CURVATURE TRANSFORM to
find 5.
cedure
3) Verify
4) Verify
A for 1346
Connection of 25.
Encirclement (AC).
Sample Program
VPROB7STEPH1MODE9
[1] INITIAL
[2]
-V
31
34 SYNINP
[3]
-V
32
35 SYNINP
[4]
-V
33
38 SYNINP
[5]
-+
41
SINVERT 33
31
1
[6]
-V
42
SINVERT 33
32
1
[7]
-V
34
38 40 38 SCRVTRN
41
34
38
[8]
->
36
37 SCRVTRN
42
(9)
-V
SYNOUT 40 39
34
38
[10]
-V
SYNOUT 36 37
[11]
NECINP
[12]
V
44
NDYDTYP 37
36
35
1
[13]
-4-
4 3
NCFA 40 39
3 4
38
1
[14]
-V
45
NECDYAD 34
38
40
39
35
t
36
37
41
1
1
4
[15]
-V
NECOUT 45
[16]
- V
4 6
DESNT 45
[37]
V
4 6
DPVTLCA 46
35
36
37
38
34 39 40
[18]
46
47 DLKLNRT
45
36
37
36
35
[19]
V
46
DLKSIZE 46
35
3 4
37
38
[20]
-V
46
DESDYAD 46
34
38
40
39
t
35
36
37
41
1,
i 6
(21]

DESOUT 46 V
Files
31) 4MSP (3/1)
32) 4MSP (2/1)
33) 4 MSP (4/1)
34) pivot F
35) pivot A
36) pivot B
37) pivot C
38) pivot D
39) pivot G
40) pivot B
41) 4 MSP (3/4)
42) 4MSP (2/4)
43) NC Grid (6)
44) NCGrid (5)
45) NC Grid(6,5)
46) DC Grid (6,5)
47) DC Grid (LLR
only)


72
satisfy the specified positions in an improper sequence,
as displayed in Figure 5-1 for a four-bar linkage. Six
possible orders exist for 4FSP:
0123 0132 0213
0321 0231 0312
Only those on the left would be acceptable, assuming the
linkages can be driven in either direction.
Fortunately, relatively few linkages are eliminated
by order considerations. First of all, motion specifica
tions placed in a relatively smooth and continuous se
quence tend to be satisfied naturally. Secondly, the
specified cases with higher ISP content diminish the order
problem. Finally, problems which have motions coordinated
with a crank automatically satisfy specified orders.
The most direct way to analyze order is to use the
method of Modler [116], which divides the circle point
cubic into segments which represent constraint links of
the same order. These segments are delimited by the image
poles and the Ball point. This is a powerful tool for
graphical analysis, but for discrete computational analysis
it is simpler and more direct to inspect exhaustively the
sequence at specified positions of all constraint links.
2.) The Grashof Criterion
A four-bar chain may have either zero pivots with com
plete rotation, or two adjacent pivots with complete


76
3.) Branching and Change Points
A change point for a given pivot is that position at
which attached links become collinear. This position,
which might lie between specified positions, may or may
not be acceptable depending upon the nature of the linkage
and how it is driven.
a.) Dyad change points
In most cases change points in the dyad of a Stephen
son or Watt six-bar indicate simultaneous disconnection
(or a limit in motion of the rest of the linkage, Figure
5-3b). At this point the dyad could pass from one dyad
"type" (relative angular orientation, Figure 5-2c) to the
other. One generally wishes to verify that the specified
positions are satisfied while the dyad maintains its type,
although one exception is that of the cyclic dyad-driven
six-bar linkage (Figure 5-3d).
There are two times at which dyad type can be checked.
If both links of the dyad are defined by the motion specifi
cations, such as the Stephenson 3 solution to a three-link
chain problem (dyad links 2 and 5 are the first two links
of the chain), it is a simple matter to simply check the
motion specifications before synthesis. More often, how
ever, one of the two links of the dyad is generated in the
synthesis procedure, and dyad-type must be checked during
necessary condition analysis.


151
"find 2"
INVERSION
Motion of link B is derivable for
4MSP, even though (if B is ternary)
link shape may not yet be com
pletely definable.
to 3" 3 is the new reference link.


174
a) Necessary Condition Pro
cedure I for 2456.
b) Necessary Condition Pro
cedure C for 1234.
a) Necessary Condition Pro
cedure I for 2456.
b) Necessary Condition Pro
cedure A for 1234.
a) Necessary Condition Pro
cedure I for 2456.
b) Necessary Condition Pro
cedure A for 1234.
a) Necessary Condition Pro
cedure K for 2456.
b) Necessary Condition Pro
cedure C for 1234.
a) Necessary Condition Pro
cedure K for 2456.
b) Necessary Condition Pro
cedure C for 1234.


Use of Appendix B
Each part of Appendix B contains a problem type, a
linkage solution and a corresponding synthesis procedure.
The solutions have been selected so as to show at least
one example of a solution for every type of solution linkage.
The contents of Appendix B are designed to provide a
guide for the writing of the necessary condition part of
an optimization program, for all twelve problem types. For
an implicit understanding of the procedures, the reader is
referred to Chapter 5.
Notation
Driven link.
The links attached to the circled pivot may
have complete relative rotation.
The links attached to the pivot cannot have
complete relative rotation.
The pivot may not pass through a change point.
Link is synthesized and selected from a
circle point cubic curve.
"CURVATURE TRANSFORM" Tools of synthesis are capitalized.
150


229
12. Sutherland, G.H., "Mixed exact-approximate planar
mechanism position synthesis," Trans ASME, ASME Paper
No. 76-DET-29, 1976.
13. Bagci, C., and I.P.J. Lee, "Optimum synthesis of plane
mechanisms for the generation of paths and rigid-body
positions via the linear superposition technique,"
ASME Paper No. 74-DET-10, 1974.
14. Bagci, C., "Optimum synthesis of planar function
generators by the linear partition of the dyadic loop
equations," Mechanism and Machine Theory, Volume 11,
1976, pp. 33-46.
15. Bhatia, D.H., and C. Bagci, "Optimum synthesis of
multiloop planar mechanisms for the generation of
paths and rigid-body positions by the linear parti
tion of design equations," Trans ASME, February
1977, pp. 116-23.
16. Roth, B., G.N. Sandor, and F. Freudenstein, "Synthesis
of four-bar path generating mechanisms with optimum
transmission characteristics," Transactions of the
Seventh Conference on Mechanisms, Purdue University,
October, 1962.
17. Nolle, H., "On capability of four bar mechanisms as
function generators," Trans Instu. Engrs. Australia,
Mech. and Chem. Eng., VMC-3, No. 2, November 1967,
pp. 259-68.
18. Tomas, J., "The synthesis of mechanisms as a nonlinear
programming problem," Journal of Mechanisms, Volume 3,
1968, pp. 119-30.
19. Garrett, R.E., and A.S. Hall, "Optimal synthesis of
randomly generated linkages," Journal of Engineering
for Industry, Trans ASME, Series B, Volume 90, No. 3,
August 1968, pp. 475-80.
20. Eschenbach, P.W., and D. Tesar, "Optimization of four-
bar linkages satisfying four generalized coplanar po
sitions," Journal of Engineering for Industry, Trans
ASME, Series B, Volume 91, No. 1, February 1969,
pp. 75-82.
21. Eisenstein, I., and A.S. Hall, "Synthesis of Randomly
generated two-degree-of-freedom plane linkages for
function generation," Proceedings of the Second Inter
national Congress on the Theory of Machines and Mech
anisms, Poland, 1969, pp. 300-08.


45
and the "inverse coordinate transform":
u = (U-a) cos y + (V-$) sin y
(4.2)
v = (V-6) cos y (U-a) sin y
The constrained motion of E can be described in
terms of two functional relationships. Letting y be the
independent parameter, let a = f-^(y) and 6 = f2(y). Links
with moving pivots attached to E and fixed pivots attached
to £ might constitute physical constraints. If so, the
functional description of the circular motion of a mov
ing pivot (attached at say, point A in E) relative to £
can take the form F(U,V) = 0. Combining this with the co
ordinate transform (4.1), the constraint equation can be
represented by:
F = f (u,v,a,B.y,Q0,Q1,Q2 . .) = 0
where 's are constants. For finitely separated speci
fications of the motion of plane E the above constraint
equation takes the form:
Fj = f (u,v,aj,8j,Yj,Qq,Q1,Q2 ....)= 0
j = 0,1,2 . .
For infinitesimally separated positions this rela
tionship takes the form:
F = d_ [f(u,v,o,Bfy,Q ,Q1,Q2. .
k dYk
. .) ] = 0


140
Watt
2 -
Link 2 is grounded.
Plane
J
Link 3 and
+* CURVATURE
TRANSFORM
to
find 1
Point
e
=
Pivot C.
CURVATURE
TRANSFORM
to
find 6
Plane
K
-v
Link 5 and
Point
f
=
Pivot H.
[4MSP Grid
[: (2)xl-D]
Plane
L
=
Link 4 and
Point
g
=
Pivot D.
Stephenson 1 Link 1
is grounded.
Plane
j
->
Link 6 and
CURVATURE
TRANSFORM
to
find 4
Point
e
=
Pivot H.
INVERSION
to 2.
Plane
K
->
Link 2 and
CURVATURE
TRANSFORM
to
find 5
Point
f
=
Pivot A.
Plane
L
=
Link 3 and
[4MSP Grid
:(2)xl-D]
Point
g
=
Pivot F.
Stephenson 2 Link 2
is grounded.
Plane
j
Link 1 and
INVERSION
to 1.
Point
e
=
Pivot F.
CURVATURE
TRANSFORM
to
get 4 .
Plane
K
-*
Link 6 and
INVERSION
to 2.
Point
f
=
Pivot H.
CURVATURE
TRANSFORM
to
get 5.
Plane
L
=
Link 3 and
Point
g
=
Pivot A.
[4MSP Grid
: (2)xl-D]


148
Stephenson 3 Link 3 is grounded.
a.) Crank J ->- Link 1 and
Point f = Pivot F.
Crank K -> Link 2.
Point e on Link 5.
b. ) Crank J -* Link 1.
Crank k ^ Link 2 and
Point g = Pivot
Point e on Link 4.
CURVATURE TRANSFORM and PATH
COGNATES to find 2, dummy 7'.
INVERSION to 1.
CURVATURE TRANSFORM to find 4.
INVERSION to 3.
CURVATURE TRANSFORM to find 6.
[4MSP GRID: L,R 2-D, + (2)xl-D]
CURVATURE TRANSFORM and PATH
COGNATES to find 1,6.
INVERSION to 2.
CURVATURE TRANSFORM to find 5.
[4MSP Grid: L,R 2-D, +1-D]


158
a) Necessary Condition Pro
cedure J for 1234.
a) Necessary Condition Pro
cedure K for 1234.
a) Necessary Condition Pro
cedure K for 1234.


21
concept of grid expansion. Grid expansion is a refine
ment technique by which the three steps of synthesis,
necessary condition evaluation and desirable condition
evaluation become part of a continuous loop. A region on
the grid about the linkages of higher quality is selected,
and resynthesis is performed to generate a new grid with
a more finely discretized representation (a conceptual
magnification) about the selected region. Two or three
passes through the loop is generally sufficient.
Due to the typically high attrition of solution
linkages in the first pass through the necessary condi
tions and the high computational expense of the desirable
condition analysis relative to the necessary condition
analysis, a further improvement can be had by looping
back just after the necessary conditions on the first
pass (as shown in Figure 2-1). Because desirable condi
tions are not evaluated initially,a relatively finely
discretized grid can be used on this first pass. All of
these techniques are employed in the author's thesis
program package SOFBAL (Synthesis and Optimization of
Four BAr Linkages), which is capable of synthesizing and
optimizing all types of four-bar linkages for general co-
planar motion.
This successful philosophy is retained for this work,
but now twelve types of motion specification are considered.
In the next chapter these motion specification types and


Table 4-2
Motion Coefficients, D
m£
k
uo
2
D 3
U4
U5
0
(fi .cosY .t'ii s
J ] 3
inY )
3
(0.cosY.-a sinY )
3 3 3 3
cos 1.-cosY0
3 ^
sinY -sinY.
3 0
aj"o 3j
-(VOSV30
sinY )
o
-(3ocosYo"aosinYo)
L
uj. v 3
(-atf-ty) siny
(-a-By)siny
-ysiny
YCOSY
a 8
+ (a * fs y) c o s y
+(-ay+6)cosy
,
ii L 3 ti B
9
(-uy-2ay-3y2
i
i B)siny
4 1 #
(ay2-u-Sy-23y)siny

-ysinY

-y 2siny
mm
a £
+ {-ay 2 f,x+3y+23'() cosy
+ (-ay-2ay-0y J+B) cosy

-y 2cosy
+ycos y
3
3'iataf 3.s + bd
, M *
(ay 5-ay-3ay-3uy
, -
-3yy-j3y + 0)siny
(3ayy+3ay2-afy
- t y 3 0 y J B y > smy
# *
(y J-yJ siny
+(~3yy)cosy
*
(-3y y)siny
+ (-Y + Y> cosy
a B

( 3uyy-3ay 2
i
+u-3y
14* M
+ (uy a 3c*y 3uY

+By+33a+33y) cost

-3 ty y-3fty HJ) cos y


157
Modes
1)
of Cyclicity
Necessary Condition Procedures
a) Necessary Condition Pro
cedure M for 1234.
a) Necessary Condition Pro
cedure N for 1234,
a) Necessary Condition Pro
cedure L for 1234.
4)
a) Necessary Condition Pro
cedure I for 1234.


183
Module Chart 6
Name Path Cognate (Synthesis Tool)
Label SPTHCOG
Description
Given a four-bar (I),
generates path-cognate four
bars II and III.
APL Call
,,->(o1), (o2), (o3), (o4)
SPTHCOG (IJL) (I2) (I3) (I4) (I5) "
where:
(I.) = 4MSP
d2), d3) =
(o1),(o2) =
(03),(04) =
of def (identifies e)
link dO^ pivots
link f02 pivots
gO^ (and h02)
j03 (and K03)


1UO
Modes of Cyclicity Necessary Condition Procedures
1)
*
a) Necessary Condition Dyad
Type (25).
b) Necessary Condition Pro
cedure D for 1346.
c) Verify Connection of 25.
a) Necessary Condition Dyad
Type (25) .
b) Necessary Condition Pro
cedure H for 1346.
c) Verify Connection of 25.
a) Necessary Condition Dyad
Type (25 ) .
b) Necessary Condition Pro
cedure H for 1346.
c) Verify Connection of 25.
d) Verify Non-q-function Re
versal (2 relative to 3).
a) Necessary Condition Dyad
Type (25).
b) Necessary Condition Pro
cedure H for 1346.
c) Verify Connection of 25.


11
sometimes called the Sequence of Unconstrained Minimization
Technique (SUMT). Fox and Willmert [41] used this tech
nique to optimize a four-bar path-generating linkage using
a least-squares error approach. Tranquilla [42] used this
method to optimize a four-bar under the geometric coupler-
point constraints. Spatial mechanisms were considered by
Gupta [43] with constraints on closure, mobility and trans-
missability. Bakthavachala and Kimbrell [44] considered
four-bar path generator optimization under clearance,
tolerance, transmission angle and link size considera
tions. Conte, George, Mayne and Sadler [36] used the SUMT
for optimization with respect to dynamic criteria. Alizade,
Mohan Rao and Sandor [45,46] have considered optimization
with respect to structural error for two-degree-of-freedom
spatial function generators and offset slider-crank path
generators. Alizade, Novruzbekov and Sandor [47] then
went on to four-bar function generators with consideration
of link length and transmission angle inequality con
straints. Kramer and Sandor [48] and Kramer [49] intro
duced the use of a new type of approximate motion specifica
tion in conjunction with an interior penalty function in
order to optimally approximate a specified motion.
Mariante and Willmert [50] used the interior penalty func
tion to synthesize and optimize a complex convertible top
linkage.
Direct methods and linearization methods are used to


192
Module Chart 15
None Necessary Condition Procedure G
Label NCPG
Description
Evaluates four-bar chains
on the basis of change-point
considerations for the case
shown. Creates a necessary
condition grid indicating ac
ceptable linkages.
APL Call
where
(0 x) NCPG
(ix) d2) (i3) d4) d5)"
d1), d2)
d3), d4)
Pivots of first constraint link
(moving, fixed pivots).
Pivots of second constraint link
(moving, fixed pivots).
1 or 2, identifies constraint
link with change-point restric
tions.
(o1)
= Output grid.


29
Stephenson Six-Bars With No Cyclic Links
Any pair of links
may be driven (15
distinct possi
bilities)
Figure 3-5 Modes of Rotational Cyclicity of the
Stephenson Six-Bar Chain


237
96. Fox, R.L., "Optimization applied to mechanisms and
mechanical components," ASME AMD Volume 7, 1974,
for meet. New York, N.Y., November 17-21, 1974.
97. Odenfeld, J., "On optimum synthesis of machines,"
Fourth World Congress on the Theory of Mach, and
Mech., University of Newcastle upon Tyne, England,
September 8-13, 1975.
98. Starr, P.J., "Optimization and the design process:
similarities, differences, and needs," Fourth Ap
plied Mechanisms Conference, University of Chicago,
Ill., November 3-5, 1975.
99. Chohan, S.M., "Optimizing designs of machines and
mechanisms by functional approach," ASME Paper
No. 76-DET-15, Trans ASME, 1976.
^OO. Lindholm, J.C., "Synthesis and optimization of four-
bar and six-bar mechanisms literature survey,"
Second Applied Mechanisms Conference, Oklahoma State
University, Stillwater, Oklahoma, November, 1971.
101. Seireg, A., "A survey of optimization of mechanical
design," Journal of Engineering for Industry, Trans
ASME, Series B, Volume 94, No. 2, 1972, pp. 495-99.
102. Fox, R.L., and K.C. Gupta, "Optimization technology
as applied to mechanism design," Journal of Engineer
ing for Industry, Trans ASME Series B, Volume 95,
No. 2, May 1973, pp. 657-62.
103. Chen, F.Y., "A survey of computer use in mechanism
analysis and synthesis," First Des. Eng. Tech. Conf.,
New York, N.Y., October 5-9, 1974.
104. Root, R.R., and K.M. Ragsdell, "A survey of optimiza
tion methods applied to the design of mechanisms,"
ASME Paper No. 75-DET-95, Trans ASME, August ]976,
pp. 1036-1041.
105. Tesar, D., "Design methods for four, five aid six
bar linkage systems," class notes, University of
Florida, Gainesville, FI., January, 1973.
106. Burmester, L., "Lehrbuch der kinematik," A. Felix,
Leipzig, 1888.
Bottema, 0., "On the determination of Burmester points
for five positions of a moving plane," Proceedings,
Koninklijke Nederlandse Akademic van Wettenschappen,
Series A,67, 1968, pp. 310-318.
107.


APPENDIX B
MODES OF CYCLICITY AND
NECESSARY CONDITION PROCEDURES


Module Chart 30
Name Desirable Condition Output
Label DESOUT
OUTPUT
Description
Outputs scoring grid from
desirable condition analysis.
Collects expansion input for
the selected portion of the
grid.
APL Call
"-DESOUT (I ) (I ) . .
where:
(1^), (12) = Scoring grids to be displayed.
(If more than one, add them).


165
a) Necessary Condition Pro
cedure B for 1234.
b) Necessary Condition Pro
cedure B for 2456.
a) Necessary Condition Pro
cedure A for 1234.
b) Necessary Condition Pro
cedure A for 2456.
a) Necessary Condition Pro
cedure A for 1234 .
b) Necessary Condition Pro
cedure A for 2456.
a) Necessary Condition Pro
cedure A for 1234 .
b) Necessary Condition Pro
cedure B for 2456 .
9)
a) Necessary Condition Pro
cedure A for 1234.
b) Necessary Condition Pro
cedure B for 2456.


51
or have a defined relationship between independent param
eters. The types of motion specification sets which cor
respond to the formulations that follow are displayed in
Table 4-3.
a.) Inversion formulation number 1.
Given: Motion of N relative to R; M relative to R.
Find: Motion of M relative to N ( for RQ reference ).
Independent parameter for given MSP: time t.
Independent parameter for derived MSP: time t.
(k) (k)
an- = S. cos C + T. sin C + a rri
m3 k k nO
(k).
n
mj
(k)r
S, sin C + T. cos C + S A
k k nO
oon (k)r Y Y Y + Y
mj mj nj 1 nO
Where: j = FSP counter,
(k)
k = ISP counter ( for example, for k=2, a = a )
T0 = B
c =
r
a .
r
- a .
m3
n3
er.
- er.
m3
03
r
r
Ynj
Yn0


191
Module Cha_rt _14
Name Necessary Condition Procedure D
Label NCPD
Description
Evaluates four-bar chains
on the basis of change-point
considerations for the case
shown. Creates a necessary
condition grid indicating ac
ceptable linkages.
APL Call
o
t
NCPD
d1) d2) d3) (i4) d5)"
where:
(Ij_) /
<12> -
Pivots of first constraint link
(moving, fixed pivots).
d3)'
II
M
Pivots of second constraint link
(moving, fixed pivots).
*5 =
1 or 2, identifies constraint
link with change-point restric
tions .
O
t*
11
Output grid.


185
Module Chart 8
Name Synthesis Output
Label SYNOUT
Description
Displays 4MSP set, gener
ated cubics, focus, Ball point,
inverse Ball point, axes.
OUTPUT
APL Call
"+SYNOUT (I1),(I2),(I3),(I4)"
where:
dx), d2) = Circle, center points of first
constraints.
d3), d4) = Circle, center points of second
constraints. (Optional for
Stephenson dyad links).


LINKAGE
OPTIMIZATION
Figure 1-1. Linkage Optimization Methods


236
85. Thornton, W.A., K.D. Willmert, and M.R. Khan, "Mech
anism optimization via optimality criterion tech
niques," to be presented at the ASME Design Engrg.
Tech. Conf., Minneapolis, Minn., September 24-27,
1978 .
86. Rao, S.S., and A.G. Ambekar, "Optimum design of
spherical 4-R function generating mechanisms," Mech
and Mach. Theory, Volume 9, No. 3, Autumn 1974,
pp. 405-410.
87. Sallam, M.M., and J.C. Lindholm, "Procedure to syn
thesize and optimize the six-bar Watt-1 mechanism
for function generation," ASME Paper No. 74-DET-18,
1974.
88. Hobson, Douglas A., and L.E. Torfason, "Computer
optimization of polycentric prosthetic knee mecha
nisms." U.S. Veterans Adm. Dep. Med. Surg. Bull.
n 10-23, Spring 1975, pp. 187-201.
89. Reed, W.S., and R.E. Garrett, "A graphical man/com
puter interface for the design of planar mechanisms
First Design Eng. Tech. Conf., New York, N.Y.,
October 5-9, 1974, pp. 85-91.
90. Smith, W.D., and W.S. Reed, "Interactive mechanism
optimization employing computer graphics," Fourth
World Congress on the Theory of Mach, and Mech.,
University of Newcastle upon Tyne, England, Septem
ber 8-12, 1975, pp. 627-632.
91. Ricci, R.J., "SPACEBAR: kinematic design by com
puter graphics," Computer Aided Design, Volume 8,
No. 4, October 1976, pp. 219-26.
92. Rubel, A.J. and R.E. Kaufman, "KINSYN III: a new
human-engineered system for interactive computer-
aided design of planar linkages," ASME Paper No.
76-DET-48, Trans ASME, 1976 .
93. Johnson, R.C., "Optimum design by synthesis," ASME
Paper No. 70-DE-8 for meet. May 11-14, 1970, p. 11.
94. Srivastava, A.K., and W.R. Newcombe, "Synthesis of
coupler curves multifactor optimization methods,"
ASME Paper No. 73-WA/DE-14, 1973, p. 7.
95. Sutherland, G., and S. Siddall, "Dimensional syn
thesis of linkages by multifactor optimization,"
Mech. and Machine Theory, Volume 9, 1974.


2
criteria. In 1847, Cauchy [2] contributed the "steepest
descent" method.
The German and Russian involvement in mechanism de
sign over the past two centuries produced some extremely
sophisticated graphical techniques for design. A graph
ical approach to four-bar optimization with respect to the
transmission angle criterion was presented by Alt [3] in
1925.
The next fundamental influence on optimization was
the development of the digital computer. Previously in
feasible approaches to optimization became practical and
the fields of mechanism design and optimization both changed
directions. The birth of modern optimization can probably
be credited to the work of Dantzig [4] in the early 1940's,
whose work in linear programming included the development
of the Simplex method.
In 1948 Svoboda [5] introduced his computational syn
thesis method of "successive approximations," and in 1954
Levitskii and Shakvazian [6] introduced a method to opti
mize spatial slider-cranks and crank-rockers on the basis
of a set of linear equations from a finite number of pre
cision points.
The work of Freudenstein [7-11] in the latter part of
the 1950's formed the basis for modern linkage design pro
cedures. In 1959 Freudenstein and Sandor [10;11] used an
IBM 650 and complex number theory to synthesize path-gen
erating mechanisms, and Freudenstein [9] developed a


112
One-dimensional desirable conditions (e.g., link lengths)
will have single-dimensional regions. Two-dimensional
desirable conditions (e.g., pivot locations) will have
two-dimensional regions, and these regions may now take
the form of circles or rectangles.


CHAPTER II
A PHILOSOPHY FOR LINKAGE DESIGN
AND OPTIMIZATION
A. Control of Parameters
In any optimization process, control of the number
of free parameters is a primary consideration for linkage
problems, where desired motions are specified at a finite
number of precision positions, the number of free param
eters is determined by the simple relation:
p = q F£
where p = number of free (optimiza
tion) parameters,
q = number of parameters pro-
, vided by a solution linkage.
£ = number of "precision posi
tions" £ .
F = number of functional
relations defining each
precision position.
which states that the number of free parameters after
synthesis equals the number of parameters provided by the
solution linkage minus the number of parameters used to
satisfy the precision positions. For a given motion
16


79
Figure 5-4 Change Point Considerations in a
Four-Bar Chain


49
and the A^'s in equation 4.5 will be replaced by time-
state motion coefficients termed D 's. The D 's are
mi. mi,
listed in Table 4-2.
In time-state synthesis y becomes a dependent param
eter, but the D^^'s reduce to A^'s by replacing indepen
dent parameter t by y so that:
t->y ; dy_ dY
dt dy
-.k ,k
i.
^.4-k a k
dt dy
0
k>l
and the time-state synthesis formulation reduces to the
geometric synthesis formulation.
2.) Synthesis Tool #2. Inversion
The inversion concept essentially involves a change
of reference. Two basic types of inversion are of interest.
In the first, the motions of planes N and M (Figure 4-4)
are defined relative to a fixed plane R, the reference is
to be changed to plane N, and the motion of plane M rela
tive to plane N is to be defined (formulations #1, 2 and 3,
below). In the second type of inversion the motion of N
is defined relative to fixed plane R, the motion of plane
M is defined relative to plane N, and the motion of M
relative to R is to be defined (formulations #4, 5 and 6,
below).
Motion specifications for the two planes which have
some ISP content must share a common independent parameter,


APPENDIX C
PROGRAM MODULES


162
6)
7)
8)
9)
10)
a) Necessary Condition Dyad
Type (25).
b) Necessary Condition Pro
cedure II Cor 1346.
c) Verily Connection of 25.
a) Necessary Condition Dyad
Type (25).
b) Necessary Condition Pro
cedure A for 1346.
c) Verify Connection of 25.
d) Verify Non-encirclement
(AC) .
a) Necessary Condition Dyad
Type (25 ) .
b) Necessary Condition Pro
cedure A for 1346.
c) Verify Connection of 25.
d) Verify Non-encirclement
(AC ) .
a) Necessary Condition Dyad
Type (25).
b) Necessary Condition Pro
cedure A for 1346.
c) Verify Connection of 25.
d) Verify Encirclement (AC).
a) Necessary Condition Dyad
Type (25 ) .
b) Necessary Condition Pro
cedure A for 1346,
c) Verify Connection of 25.
d) Verify Encirclement (AC).
a) Necessary Condition Dyad
Type (25).
b) Necessary Condition Pro
cedure C for 1346.
c) Verify Connection of 25.
d) Verify Non-encirclement
(AC) .


70
Table 4-3
Related Motion Specification Sets for Two Planes M and N (2ISP)
(Notation: Figure 4-4)
Inversion Formulation #1
Inversion Formulation #4
(Independent
parameter t)
(Independent
parameter t)
Plane
N:
Plane M:
Plane
N :
Plane M:
r or
V Sn'
r
Yn
r nr r
a 3 Y.
m m m
r or
v v
r
Yn
n n n
am' m' Ym
dar d3r
n n
dYr
n
dc d3^ dY,^
m m m
dar dBr
n n
dYr
1 n
dan dBn dYn
m m. 1 m
dt' dt'
dt
dt' dt' dt
dt' dt'
dt
dt' dt' dt
Inversion Formulation #2
Inversion Formulation #5
(Independent parameter -
coupler angle Yn)
(Independent parameter -
coupler angle y )
Plane
N:
Plane M:
Plane
N:
Plane M:
r or
V V
r
Yn
r nr r
m' ^m' Ym
r
Yn
n Qn ,n
am' m' Ym
dar dgr
n n
r' r'
dY dY
n n
1
dm dem dYm
t r' r
dY dY dY
n n n
K K
r' r'
dY dY
n n
1
dan dBn dYn
m m m
, r' r' j r
dY dY dY
1 n n n
Inversion Formulation #3
Inversion Formulation #6
(Independent parameters -
coupler angles Y Ym (related))
Plane N:
n m
Plane M:
(Independent parameters -
coupler angles Yn Ym (related))
Other
Plane N:
Plane M:
Other
r
r r
r
r
r
r
,x
r
n
n
V
pn' Yn
%
lm'
Ym
n
n'
Yn
Um'
3m'
Ym
dar
n
dBn
n 1
dar
m
dBr
m
1
dYr
'n
drar
n
dPn
1
dan
m
d3n
m
1
dYr
n
d^n'
a r'
dy
n
a r'
dy
'm
a r'
dY
'm
dYr
m
dYn
d^'
, n'
dy
m
a
dY
m
dY
'm


98
(a) (b)
Figure 5 13 Path Cognate Change Point Derivations


156
Modes of Cyclicity
Necessary Condition Procedures
a) Necessary Condition Pro
cedure D for 1234.
a) Necessary Condition Pro
cedure II for 1234.
a) Necessary Condition Pro
cedure B for 1234.
a) Necessary Condition Pro
cedure A for 1234 .


87
line O^A to reach the extremal positions. As this happens
a change point occurs at point A. Therefore, the portions
of the circle point cubic which lie in the Z regions
represent constraint links which are incompatible with the
selected permissible link.
It is quite possible that the circle point cubic will
not pass into the compatible regions denoted by Y. If so,
another permissible link must be selected. Note that the
Y regions disappear altogether for nonpermissible links,
having no possibility of finding compatible constraint
links.
c.) General branching analyses of four-bar chains in six-
bar linkages
Displayed in the left-hand column of Figure 5-9 are
the possible forms of four-bar chain which may be needed as
all or part (for a six-bar) of a linkage solution. The
chains on the right are the different inversions in which
the chain on the left may actually be synthesized. It is
necessary to treat these inversions as they stand. A num
ber of "necessary condition procedures" have been developed
to handle the range of possible synthesis inversions. (The
conditions under which order considerations can be ignored
have been discussed in part A of this chapter).


203
Module Chart: 2£
Name Pivot Location (Desirable Condition)
Label DPVTI.CA
Description
Evaluates the solution set
of linkages on the basis of
pivot location. User speci
fies pivots of interest.
"-^(01)(02) DPVTLCA (I1),(I2)
where:
Six bars
only
'V
=
Previous scoring grid
(i2)
=
A
pivot
(I3>
=
B
pivot
=
C
pivot
(I5>
=
D
pivot
=
F
pivot
(I?)
=
G
pivot
(I8)

H
pivot
(ot)
-
Output scoring
grid, cumulative.
<2>
=
Output scoring
grid, this condition
only. Opt iona 1.


10
McLarnan [35] by using the variable metric. Conte,
George, Mayne and Sadler [36] optimized with respect to
dynamic criteria such as shaking force, input torque fluc
tuation, shaking moment and bearing reactions, using a
penalty function in conjunction with the variable metric.
A fourth unconstrained minimization approach, the
Newt-on-Raphson method, is very efficient in terms of con
vergence, but requires formulation of the Hessian of the
objective function at each iteration step. Han [37] used
this method in 1966 for general mechanism optimization.
All of the unconstrained minimization formulations
except for Powell's method require evaluation of the ob
jective function's differential, but finite difference
methods are generally applicable.
The second class of iterative methods are the con
strained methods using unconstrained minimization. Gen
erally, this means some modification is made to an uncon
strained minimization technique to allow the inclusion of
inequality constraints. One approach is a simple change
of variable which will inherently disallow violation of
specified inequalities, but linkage problems are usually
too complex for this approach.
Penalty functions are often used to apply constraints
to unconstrained minimization techniques. The interior
penalty function introduced by Fiacco and McCormick [38-40]
has received quite a lot of attention recently. It is


47
and the generalized circular constraint function (divided
by 2) takes the form:
= dk [Q0(a2+g2)+ u(cosY+BsinY) + u(-asinY+BcosY))
dY
+ (u(cosY-1) usinY +a) + Q2 (usinY
+ u(cosY-1) + 6)]
= 0
Y = Y
£
which may be written as:
G VA0i + uA + vA22> + Qi(uA3t + VA4l + A5l
+ Q2(uA4J + vA3l + A6i> = 0
(4.5)
£ = 1,2 . .
where AmP coefficients are listed in Table 4-1. They
are a function of the motion specifications only.
Now, let:
D
E
F
£
£
£
0£
uA
3£
uA
4 £
+ uA + vA
1 £
- vA4ji + A
+ vA3£ + A
2 £
5 £
6 £
and the constraint equations now take the form:
G£ Q0D£ + Q£E£ + Q2F£
0
(4.6)


227
[ / )- 'If) S INVERT 4 5 4 4 1
(1H|- 37 49 47 48 SCRVTRN 46 37 49
119)- SVNOUT 47 48 37 49
[20|- NEC IIJP
[21J- 50
NCPB 47
4 8
37
49
(22)- 51
NECDYAD
4 8
49
4 7
37
36,
38
39
0
1
1
[23]- NECOUT 51
[24]- 52
DES INP
51
[25]- 52
DPVTLCA
52
49
39
38
36 47 48 37
[26]- 52
DLKLNRT
52
36
38
48
4 9
[ 27 J- 52
DLK.S I ZE
52
36
38
4 7
48
(28]- 52
DESDYAD
52
48
49
47
37 36,
38
39
0
1,
t 6
l 2 9 J DESOUT 52 V


19
,

...
Necessary
Conditions

Desirable
Conditions
Figure 2-1 The computational steps of a Synthesis/Analysis/
Resynthesis Linkage optimization


136
Watt 2 Link 2 is grounded.
Plane
J
Link 3 and
CURVATURE
TRANSFORM
to
find
4
Point
e
=
Pivot B.
INVERT to
6.
Crank
K
=
Link 1 and
CURVATURE
TRANSFORM
to
find
5
Point
f
=
Pivot A.
Crank
L
->
Link 6 and
[4MSP Grid
(2 ) xl-D ]
Point
g
=
Pivot G.
Stephenson 1
- Link 1 is
grounded.
Plane
j
->
Link 2 and
* +
INVERSION
to 4 .
Point
e
=
Pivot A.
CURVATURE
TRANSFORM
to
find
6
Crank
K
=
Link 3 and
CURVATURE
TRANSFORM
to
find
5
Point
f
=
Pivot F.
Crank
L
Link 4 and
[4MSP Grid
:(2)xl-D]
Point
g
=
Pivot D.
Stephenson 2
i
- Link 2 is
grounded.
a.)
Plane
j
->
Link 1 and
INVERSION
to 1.
Point
e
=
Pivot F.
CURVATURE
TRANSFORM
to
find
4
Crank
K
=
Link 3 and
INVERSION
to 3.
Point
f
=
Pivot A.
CURVATURE
TRANSFORM
to
find
6
Crank
L
->
Link 5 and
Point
g
=:
Pivot B.
[4MSP Grid
.: ( 2)xl-D]
b.)
Plane
j
Link 4 and
t
INVERSION
to 3.
Point
e
=
Pivot G.
CURVATURE
TRANSFORM
to
find
Crank
K
=
Link 5 and
1,6.
Point
f
Pivot B.
Crank
L
->
Link 3 and
[4MSP Grid
: 2-D ]
Point
g
=
Pivot A.
Stephenson 3
- Link 3 is
grounded.
a.)
Plane
J
->
Link 4 and
t
CURVATURE
TRANSFORM
to
find
6
Point
e
=
Pivot D.
INVERSION
to 2.
Crank
K
=
Link 1 and
CURVATURE
TRANSFORM
to
find
5
Point
f
=
Pivot F.
Crank
L
->
Link 2 and
[4MSP Grid
:(2)xl-D]
Point
g
=
Pivot A.
b.)
Plane
J
~>
Link 5 and
INVERSION
to .1.
Point
e
=
Pivot B.
CURVATURE
TRANSFORM
to
find
4
Crank
K
=
Link 2 and
INVERSION
to 3 .
Point
f
=
Pivot A.
CURVATURE
TRANSFORM
to
find
6
Crank
L
Link 1 and
Point
g
=
Pivot F.
[4MSP Grid
: ( 2)xl-D]


177
Notation
File number of file containing data x.
APL go-to. The outputted global argument
of each module is the next line number to
be executed.
The links attached to the circled pivot may
have complete relative rotation.
A change point cannot be allowed at the
pivot.


135
Problem H7: ANGULAR COORDINATION OF A CRANK AND A TWO-
LINK CHAIN
The coplanar motion
of two-link chain JK
is coordinated with
the rotation of
crank L.
SOLUTION LINKAGES
WATT
Watt 1 Link 1 is grounded.
Synthesis Procedures
Plane J -
Point e =
Crank K =
Point f =
Crank L -
Point g =
Link 6 and
Pivot A.
Link 2 and
Pivo t A.
Link 3 and
Pivot B.
INVERSION to 2.
CURVATURE TRANSFORM to find 4
INVERSION to 6.
CURVATURE TRANSFORM to find 5
[4MSP Grid: (2)xl-D]


137
Problem #8: ANGULAR COORDINATION OF THREE CRANKS
The rotations of
cranks J,K and L
are coordinated.
SOLUTION LINKAGES
WATT
Watt 2 Link 2 is grounded.
Synthesis Procedures
Crank J *
Point e =
Crank K ->-
Point f =
Crank L -
Point g =
Link 1 and
Pivot A.
Link 4 and
Pivot D.
Link 6 and
Pivot G.
*T INVERSION to 4.
CURVATURE TRANSFORM to find 3
CURVATURE TRANSFORM to find 5
[4MSP Grid: (2)xl-D]


15
and path generators. Fox [96] describes the state of the
art of mathematical programming as applied to the optimiza
tion of mechanical components such as springs, shafts and
bearings. Oderfeld [97], Starr [98] and Chohan [99] have
all presented philosophical discussions of optimization of
mechanisms with respect to multiple parameters, with empha
sis on ordering of design priorities.
Other literature surveys dealing with mechanism op
timization have been presented (in chronological order)
by Lindholm [100], Seireg [101] Fox and Gupta [102], Chen
[103] and Root and Ragsdell [104].
The "philosophical" papers [93-99] effectively point
the way towards the future. A major concern involves
methods of achieving globally optimal mechanism designs
which accomodate conflicting design requirements. Nearly
all of the mechanism optimization schemes to date optimize
with respect to one or two parameters. An enormous spec
trum of mechanism applications exist, and a large number
of criteria by which the overall quality of mechanism
solution must be evaluated also exists. To the design engi
neer, who must be concerned with a mechanism's total func
tionality, true mechanism optimization must involve a sig
nificant number of these parameters.


199
Modulo Chart 22
Name Necessary Condition Procedure N
Label NCPN
Description
Evaluates synthesized four
bar I on the basis of change-
point considerations within
path cognate four-bars II and
III as shown. Generates a
necessary condition grid
(2x2-D) indicating acceptable
cognates.
APL Call
n-*-(o1) ncpn d1),d2), .... dg)"
where:
d1), d2)
d3), d4)
s-'V
(I7), link dO^
link fO^
link gO^ (and h02)
link jO^ (and KO^)
(0^) = Output grid.


Ib4
Problem ¡I8
Angular Coordina
tion of Three
Cranks
Solution Linkage
C 4 H
WATT 2
Pivots A,G,D
prespecified.
SyiitJesis Procedure
1) INVERSION to 4.
2) CURVATURE TRANS
FORM to find 3.
3) CURVATURE TRANS
FORM to find 5.
Modes of Cyclicity Necessary Condition Procedures
a)
Necessary
Condition
Pro
cedure
G
for
1234 .
b)
Necessary
Condition
Pro
cedure
D
for
2456.
a)
Necessary
Condition Pro-
cedure H
for
1234 .
b)
Necessary
Condition Pro-
cedure D
for
2456.
a)
Necessary
Condition Pro-
cedure D
for
1234 .
b)
Necessary
Condition Pro-
cedure D
for
2456 .
a)
Necess
ary Condition
Pro-
cedu re
C for 1234.
b)
Necess
ary Condition
Pro-
cedu re
D for 2456.
c)
Verify
Connection of
56 .
4)


131
Problem #4: ANGULAR COORDINATION OF TWO CRANKS
The rotation of
crank J is coordi
nated with the ro
tation of crank K
SOLUTION LINKAGE
FOUR-BAR
Four-Bar
Synthesis Procedure
Link 1 is
Crank J -*
Point e =
Crank K -v
Point f =
grounded.
Link 2 and
Pivot A.
Link 4 and
Pivot D.
*1 INVERSION to 2.
CURVATURE TRANSFORM TO
find 1,3.
[4MSP Grid: 1-D]


62
c. Angular Cognafs
Use of Angular Cognates to Solve the
Function Generation Problem
Figure 4-6


92
Necessary condition procedures I -> N take advantage
of some unusual properties of the "cognate 10-bar" (Fig
ure 5-10b):
i.) A cognate 10-bar will be made up of one of three
sets of three four-bars: either three drag-links, three
non-Grashof double-rockers, or a Grashof double-rocker and
two crank-rockers.
ii.) When in four-bar II is at a change point, 02
in four-bar I is also at a change point.
iii.) When g in four-bar II is at a change point, d
in four-bar I is also at a change point.
iv.) When 0^ in four-bar II is at a change point,
links df and 0^C>2 -*-n fur-frar I become parallel.
v.) When j in four-bar II is at a change point, links
O^d and C^f in four-bar I become parallel.
Proof of (ii): Referring to Figure 5-13a,
Lec A |df I |ge I j12 |
Now, from (105;79]
Z' = Aeia(Z) and R' = Aeia(R)
de
Igi
12
Therefore, when Z and R coincide, Z' and R' will also
coincide, and change points will occur simultaneously in
four-bar I at C>2 and in four-bar II at 03>


153
2)
3)
4)
a) Necessary Condition Pro
cedure H for 1234.
a) Necessary Condition Pro
cedure A for 1234.
a) Necessary Condition Pro
cedure H for 1234 .


48
For 4MSP motion specifications (Z = 1,2,3):
Vi
+
Qlfl
+
Q2Fi
= 0
v2
+
1*2
+
Q2F2
= 0
Q03
+
Qlf3
+
Q2fr3
= 0
The matrix
must be singular if the constraint equations are to
be meaningful since these equations are linear and homogen
eous with respect to Qq, and Q2.
If this matrix (4.7) is expanded, the result is a
cubic in terms of E coordinates u and v. This is the
"circle point cubic" and represents the locus of permis-
sable moving pivot locations on E.
The formulation for time state specification syn
thesis is quite similar. Equation (4.3) will now take
the form:
GJ?,
_d^[Q0(U2+V2)+2Q1U + 2Q2V+Q3]| = 0
dt*
t=t£
for = 0,1,2
(4.8)


78
b.) Change points in four-bar chains
All of the solution linkages can be considered as
single four-bar chains, a combination of four-bar chains
and dyads, or a combination of two four-bar chains. A
detailed analysis of change points within four-bar chains
is therefore very worthwhile. It involves considerations
of both synthesis procedure and mode of cyclicity.
If a four-bar chain (or any Grashof type) is driven
as shown in Figure 5-4a through a change point at the in
dicated pivot, the dyad portion of the chain connected to
this pivot may go into either type. This is beyond the
direct control of the driven members. If specified posi
tions are to be satisfied in a positive manner, such a
change point must be avoided. Similarly, four-bar chains
driven through opposite links (Figure 5-4b) cannot toler
ate change points at any pivots, for the same reason.
It may be assumed that at least one of the links in
the chain has been synthesized through use of the curva
ture transform. Waldron [117, 118] has developed graph
ical techniques which operate directly on Burmester cubics,
identifying sections which represent usable constraint
links (for four-bar chains) on the basis of change-point
considerations. These techniques are used extensively in
the necessary condition analysis of this work, so detailed
descriptions now follow.
i.) Determination of "permissible links. Let the name


Each chart in Appendix D contains a sample program
demonstrating a coordination of the modules of Appendix C
to create an optimization routine for a particular prob
lem/linkage/mode of cyclicity set. There is an example
for each of the twelve problem types, each one using an
Appendix B solution.
Three types of data are channeled between modules
through files. They are motion specification sets, pivot
coordinates and grids. The nomenclature used to represent
these quantities is explained below.
Notation
"4MSP (3/4) "
Motion specification set of four multiply
separated positions describing the motion
of plane 3 relative to plane 4.
pivot A"
The coordinates of pivot A. May repre
sent a set of pivots or a single pivot.
pivot A'"
In path-cognate problems, the pivots
generated by the curvature transform are
denoted by a prime ('), and cognate
pivots (representing solutions) are
unprimed.
213


214
NC Grid (3)
DC Grid (3,5
"36+17"
Necessary condition grid for a set of
#3 links (1-dimensional).
Desirable condition grid for sets of
#3 and #5 links (2-dimensional)-
"i7" in APL represents 1234567.
36+i7 represents 37 38 39 40 41 42 43.
APL go-to. Each module generates as
an argument the next line to be executed.
Driven link.
Cyclic pivot. Attached links have com
plete relative rotation.
A change point cannot be allowed at
this pivot.
Encircled link is synthesized using the
curvature transform (circle point cubic
shown).


33
Problem Solution
Applicable Modes of Rotational Cyclicity
Figure 3-7 Applicable Modes of Rotational Cyclicity of the
Four-Bar Solution to the Two-Link Chain Problem


41
synthesis) in order to produce a functional linkage. For
the first three problems the curvature transform alone is
sufficient.
Since no linkage provides an infinite number of design
parameters the number of functional motion specifications
must be finite. If the precision positions are specified
in such a way that an independent parameter, such as the
coupler angle, undergoes a finite displacement between po
sitions, the specifications are termed finitely separated
positions. These are shown for a plane in coplanar motion
in Figure 4-2a.
Finitely separated position synthesis of four-bars
was first done by Burmester [106] in 1888, using graphical
techniques for five positions. In 1964 the problem was
solved analytically by Bottema [107] and Primrose, Freuden-
stein and Sandor [108].
If higher order derivatives of motion at a precision
position are specified, they are referred to as infinites
imally separated positions (ISP) as depicted by the concep
tual combination of positions in Figure 4-2b. Mueller
[109], Allievi [110], Krause [111], Wolford [112] and
Veldkamp [113] performed graphical studies of infinitesi
mally separated positions for five positions.
Mixtures of finitely separated positions and infin
itesimally separated positions are termed multiply sepa
rated positions (MSP) (Figure 4-2c). The unified theory
for MSP was developed by Tesar [114] in 1967.


129
Problem #2: MOTION SYNTHESIS
The coplanar motion
of plane J is con
trolled .
SOLUTION LINKAGE
Four-Bar
Synthesis Procedure
*! CURVATURE TRANSFORM to
find 4,2.
Link 1 is grounded.
Plane J -> Link 3.
[ 4MSP Grid: 2-D]


167
7)
a) Necessary Condition Pro
cedure B for 1234.
b) Necessary Condition Pro
cedure B for 2456.
a) Necessary Condition Pro
cedure B for 1234.
b) Necessary Condition Pro
cedure B for 2456.
a) Necessary Condition Pro
cedure A for 1234 .
b) Necessary Condition Pro
cedure A for 2456 .
a) Necessary Condition Pro
cedure B for 1234.
b) Necessary Condition Pro
cedure A for 2456.
a) Necessary Condition Pro
cedure B for 1234.
b) Necessary Condition Pro
cedure A for 2456.


Page
VII PROGRAMMING FOR FOUR-BAR AND SIX-BAR
OPTIMIZATION 113
A. Philosophy of Program
Modularity 113
B. Control of Input/Output 116
VIII RECOMMENDATIONS AND CONCLUSIONS 120
A. Recommendations 120
B. Conclusions 124
APPENDIX
A PROBLEM TYPES AND SOLUTION
LINKAGES 125
B MODES OF CYCLICITY AND NECESSARY
CONDITION PROCEDURES 149
C PROGRAM MODULES 175
D SAMPLE PROGRAMS 212
BIBLIOGRAPHY 228
BIOGRAPHICAL SKETCH 240
v


17
specification type (which defines F), one should create
a balance between solution linkage type (which defines q)
and number of precision positions (which defines a) in
order to describe adequately the desired motion and still
leave an acceptable number of free parameters for optimi
zation (between one and three free parameters is desirable).
Naturally there is no guarantee that a design pro
cedure will exist for every combination of q,F and i .
For example, one cannot expect to satisfy a large number
of precision positions simply by using a sufficiently
complex linkage.
In this work twelve types of motion are considered,
and for each of these at four specified positions, an ac
ceptable number of free parameters is generated by using
either a four-bar linkage or one of the six-bar linkages.
The synthesis procedures for the solution linkages are
well known and have been collected and organized by Tesar
[105] .
B. The Optimization Procedure
A synthesis, analysis and resynthesis loop is suf
ficient as a basis for optimization, and generally allows
one to take advantage of the knowledge and insight pro
vided by kinematic synthesis techniques, unlike the more
rigid and forceful numerical approaches. The synthesis/


122
blocks. In addition, four-bars have been designated as
solution linkages for the first five problem classes, but
more complex linkages could conceivably be used to provide
more free parameters for these five classes.
3.) Alternate Modes of Cyclicity
It has been explained that the necessary condition
procedure for a particular problem depends upon the de
sired type of motion in the solution linkage, and this
dependency is the reason for the creation of the concept of
mode of cyclicity. Restrictions are made in Chapter III
which have the effect of limiting the modes of cyclicity
under consideration to those for which there need be no
supplementary knowledge of system dynamics in order to
ensure control of motion through dead-center positions.
These restrictions might be termed "geometric restrictions."
Many more modes of cyclicity are conceivable, some of
which cannot exist for physical reasons, and some of which
can exist but violate the geometric restrictions. Most of
the physically realizable modes of cyclicity can be treated
by the computational modules already presented. For exam
ple, a Grashof double-rocker with fully rotating coupler
violates the geometric restrictions and is therefore not
considered here as an acceptable mode of cyclicity, but a
designer who could control this type of mechanism in a
particular application could use Necessary Condition Pro
cedure C (NCPC, Appendix C) to design one.


240
BIOGRAPHICAL SKETCH
Kim L. Spitznagel was born July 20, 1952, in Charles
ton, West Virginia. He attended primary school in Camp
Hill, New Jersey, and York, Pennsylvania. In 1969 he be
gan studies in mechanical engineering at Lehigh Univer
sity and graduated with a Bachelor of Science in Mechan
ical Engineering in June, 1973. In September, 1973, he
began attending the University of Florida and received a
Master of Science in Engineering in December, 1975, and a
Bachelor of Science in Computer and Information Science
in March, 1978. He is a member of Pi Tau Sigma, Tau Beta
Pi and Phi Kappa Phi honorary fraternities.


ACKNOWLEDGMENTS
I wish to express my gratitude to Professor Delbert
Tesar for his guidance and support throughout my graduate
studies. My academic endeavors have benefited most from
his contributions.
Much appreciation is due to Dr. John M. Vance, Dr.
George N. Sandor, Dr. Ralph G. Selfridge, Dr. Martin A.
Eisenberg and Dr. Sanjay G. Dhande for their reviewing
efforts, suggestions, and especially for their respective
influences on my professional development.
I am grateful for the support and aid of my friends
and peers, particularly Ms. Barbara Mihatov and Mr. John
Elliott. I am also indebted to Ms. Lois Rudloff for her
patience and persistance while typing this dissertation.
Finally, my heartfelt thanks go to my family for
their tolerance, support and encouragement.
ii i


171
a) Necessary Condition Pro
cedure H for 1346.
b) Verify Disconnection of
25 (2-Short).
a) Necessary Condition Pro
cedure H for 1346.
b) Verify Disconnection of 25
(2-short).
a) Necessary Condition Pro
cedure H for 1346.
b) Verify Disconnection of 25
(5-short) .


18
analysis/resynthesis loop to be used for this work is shown
in Figure 2-1.
The input to the synthesis step is the precision
position description of the desired motion, hereafter
termed the motion specification set. A sequence of
kinematic synthesis algorithms will produce the output,
2 3
a solution set of linkages of magnitude 00 00 or 00
(depending upon q, F and £ for the particular problem).
Unfortunately, the analytics used in the synthesis
process are not sufficient to guarantee that all ( or
indeed, any) of the generated linkages will satisfy the
specified motion without falling into one or more of a
number of physical pitfalls of real linkages, any one of
which can make a linkage useless as a solution to the
specified problem. For this reason a "necessary condi
tion" step is required. The necessary conditions depend
upon the motion specification type, the linkage solution
type, and the means by which the linkage is driven. The
linkage solution set is mapped onto linear (1-dimensional),
rectangular (2-dimensional) or cubic (3-dimensional)
spaces, depending upon the magnitude of the solution set
space. These representations, termed "grids" due to their
discrete, arrayed nature, form the operating environment
for all subsequent optimization procedures. Through
evaluation of appropriate necessary conditions, portions
of the grid representing acceptable linkage solutions are
determined and presented to the designer.


96
Figure 5-11
Detection of Change Points in Cognate
Four-Bar Linkages


75
(a) CRANK-ROCKER
DOUBLE-ROCKER
(b) DRAG-LINK
DOUBLE-ROCKER
Figure 5-2 Four-Bar Grashof Types


53
Let a = a
n n
a = a
m m
da
a/ =
n
n
r
n
r
, m
a =
m r
dy
da
dy
etc. ( same for 3 and y )
n n
etc. ( same for 3 and y )
m m
m
Now,
a' a'
A' = m
y/ 1
'm
A" =
m n
(y' 1)
m
(gm an^m
A" =
K > ~ 1)1
~(a/ a/)(3y// + y "'(y' 1) )
m n 'm 'm 'm
(y 1)
'm
B', B/y, B are similar (substitute 3's for a's )
C' =
y' 1
'm
-y
c" =
m
(y' 1)
'm


109
importance and a weight of 0 signifies a condition of no
importance. A condition score of 0 signifies ideal per
formance (almost never attained) and a score of 10 delim
its the bound of acceptable performance. In this way a
linkage receives a cumulative score on a demerit system:
the linkage completing the analysis with the lowest score
is the optimum one in the solution set.
There are a number of ways to correlate score
and linkage performance. The simplest way is to use a
linear scale between ideal performance and the acceptable
limit. The score is then generated by:
Sk = 10
where P2
(6.2)
difference between ideal
and actual performance.
= difference between ideal and
unacceptable performance.
An alternative used by Eschenbach and Tesar [20] used
ranking zones in which "best", "good" and "acceptable" re
gions are defined and assigned score values. A better ap
proach was also used in the same paper, where the ratio of
actual to maximum value is operated upon by an exponent n
assigned by the designer:
P
n
S
2
k P
3
(6.3)


161
1)
2)
a) Necessary Condition Dyad
Type (25).
b) Necessary Condition Pro
cedure H for 1346
c) Verify Connection of 25.
a) Necessary Condition Dyad
Type (25).
b) Necessary Condition Pro
cedure G for 1346.
c) Verify Connection of 25.
a) Necessary Condition Dyad
Type (25).
b) Necessary Condition Pro
cedure D for 1346.
c) Verify Connection of 25.
a) Necessary Condition Dyad
Type (25).
b) Necessary Condition Pro
cedure II for 1346 .
c) Verify Connection of 25.
4)


appendices include synthesis procedures, necessary con
dition evaluations, program module tables and sample pro
grams .
vii


Use of Appendix A
Each part of Appendix A contains a drawing and brief
description of a motion specification type, a drawing
(with link and pivot notation) of solution linkage(s) and
a small section describing each possible linkage solution.
Each of these sections contains a moving-body/linkage-com
ponent match-up on the left and a corresponding synthesis
procedure on the right (other match-ups are sometimes pos
sible by switching conceptually identical bodies in the
motion specification). Synthesis procedures are generally
not unique.
The solution linkages considered here are those which
best provide an acceptable number of free parameters for
optimization after a 4MSP synthesis. Geared five-bar and
six-bar solutions to the simpler problems are not included
for more information on these types of solutions reference
[105] is recommended.
Notation
. . is attached to . ."
. . is equivalent to . .
126


190
Modulo Chari 13
Name Necessary Condition Procedure c
Label NCPC
Description
Evaluates four-bar chains
on the basis of change-point
considerations for the case
shown. Creates a necessary
condition grid indicating ac
ceptable linkages.
APL Call
where:
"-dO^ NCPC (1^ (I2) (I3) (I4) "
(I1) d2)
d3), d4)
= Pivots of first constraint link
(moving, fixed pivots).
= Pivots of second constraint link
(moving, fixed pivot).
(o1)
= Output grid.


32
non-equivalence of links (a function of motion specifica
tion type). As an example, the four-bar solution to the
two-link chain problem (Figure 3-7) has seven modes of
cyclicity. Modes number 3 and 4 would otherwise be iden
tical except that constraint links 2 and 4 are not concep
tually the same due to the nature of the motion specifica
tions: link 2 is contained within the motion specifica
tions, link 4 is not. The same is true for modes 5 and 6.
The necessary condition analyses will depend upon 1) re
quired Grashof type for those modes which include cyclic
links, and 2) the pivots which are not allowed to pass
change points. For example, in mode number 6 a change
point is permissible at pivots A, C and D, but not at B,
regardless of Grashof type. These considerations are pre
sented in detail in Chapter V.
Figure 3-8 shows some examples of modes of rotational
cyclicity which are unacceptable or geometrically impos
sible. Figures 3-8a and 3-8b might represent the cyclic
coupler-driven Grashof double rocker and the cyclic rocker-
driven crank-rocker, respectively, which have already been
discussed. In Figure 3-8c, control of motion through the
change points of pivots r and s is impossible. The motion
shown for the six-bar linkages of Figures 3-8d and 3-8f
simply cannot exist, and the motion shown for the Watt
six-bar linkages of Figure 3-8e would require a linkage
with very unusual geometry and an external control of mo
tion for both four-bar chains.


MULTIPARAMETRIC OPTIMIZATION OF
FOUR-BAR AND SIX-BAR LINKAGES
By
KIM LORING SPITZNAGEL
A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE
UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA


163
a)
Necessary Condition
Type (.25) .
Dyad
*
b)
Necessary Condition
cedure C for 1346.
Pro-
c)
Verify Connection of
25 .
d)
Verify Encirclement
(AC )
a)
Necessary Condition
Type (25).
Dyad
*
b)
Necessary Condition
cedure B for 1346.
Pro-
c)
Verify Connection of
25 .
d)
Verify Non-encirclement
(AC) .
a)
Necessary Condition
Type (25).
Dyad
*
b)
Necessary Condition
cedure B for 1346.
Pro-
c)
Verify Connection of
25 .
d)
Verify Encirclement
(AC )


180
Module Chart 3
Name Dyad Type (Synthesis)
Label SDYDTYP
Description
Evaluates type for prespe
cified dyads. Generates a
program interrupt prior to
synthesis if dyad type is in
consistent for the 4MSP's.
APL Call
"-vSDYDTYP (IJL) (I2) (I3) "
where:
(11) = 4MSP
(12) = 4MSP
(13) = 4MSP
associated with
associated with
associated with E^


58
'r
Yn =
1 + Y7
'm
"r
Yn =
_y//
'm
(1 +y')
m
///
r
Yn
n 2 n/., / ,
3y y (1 + Y )
'm |m_ 'm
(l + y')5
m
f.) Inversion formulation number 6.
Given: Motions of N relative to R, M relative to N.
Find: Motion of M relative to R.
3T n
Independent parameters for given MSP: yn/ Ym ( must be
related).
Independent parameter for derived MSP: Ym
This formulation is identical to that of (2d), except
that the dots in the S^ and T^. formulations should be replaced
with primes (').
Let
a
n
a
n
n
a = a
m m
a
n
/
a =
m
da
dy
da
r
ri
r
n
n
m
dy
dy
/ n
mn
dy
etc. ( same for 8 and y )
n 'n
etc. ( same for 8 and y )
m m
Y
// =
mn
-,2 r
d Y
1 n
dY
n 2
m
; etc.


57
e.) Inversion formulation number 5.
Given: Motions of N relative to R, M relative to N.
Find: Motion of M relative to R.
Independent parameter for given MSP:yn
2T
Independent parameter for derived MSP: ym
This formulation is identical to that of (2d), except
that the dots in the and formulations should be
replaced with primes (').
Let a
n
a
m
a
n
n
a
m
or
n
a
m
da
n
dy
da
n
n
m
dy
n
; etc.
; etc.
( same for $n and yn )
( same for 3 and ym )
m m
Now,
*n
a
m
da
n
"m
dy
m
a'
m
1 + y
/
m
n
a =
m
+ y'J -
u + Y;>3
"n a (1 + 2y/ + y' ) a" (y' + 2y" + 2y//y/ + y/ )
a = m 'm 'm m 'm m 'm'm 'm
m
+ a'Y^(2y' 1)
mm m
d + y')
m
'n "n
£ 6 and B are similar ( substitute B's for a's)
m m m


101
2.) Dyad Disconnection
In contrast to dyad connection, it may be necessary
to verify dyad disconnection. This occurs when a Stephenson
six-bar linkage is driven by means of a dyad link (Figure
5-14b). Since a dyad analysis cannot be performed on a
Stephenson chain with a dyad link as crank, it becomes
necessary to drive the dyad through the four-bar through
its full range of motion (defined by dyad disconnection)
to make sure the dyad link .is cyclic. At the same time
the four-bar is checked throughout its range of motion for
change points. One additional check of relative dyad link
length is made to ensure that the appropriate dyad link is
rotating completely.
3.) Non-g-Function Reversal
Peculiar to Stephenson 2 six-bar linkages which are
driven by one of the two links connected to ground is a
necessary condition involving the first order influence
coefficient, the g-function. It occurs because the driven
link may reach a limit in angular motion which is defined
by a higher order geometry constraint. Since it is impos
sible to analyze a Stephenson 2 directly using a dyad-
based analysis, the test is performed by inverting to
a Stephenson 3 and driving the linkage at the four-bar
chain. If ternary link 3 is the driven member in the orig
inal Stephenson 2, the offending position occurs


218
Program Chart 4
Problem #4 Angular Coordina
of Two Cranks.
Linkage Solution Four-Bar
Mode of Cyclicity #3
Synthesis Procedure
1) INVERSION to 2.
2) CURVATURE TRANSFORM to
find 3.
Necessary Condition Procedure
1) Necessary Condition Pro
cedure B for 1234.
Sample Problem
Files
VPR0B4 FBM0DE3
[1J INITIAL
[2] 31 3 3 SYNINP
[3] 32 34 SYNINP
[4] 37 SINVERT 32 31 1
15] 34 33 35 36 SCRVTRN 37
[6] SYNOUT 34 33 35 36
[7] NECINP
[8] -
38
NCPB 34
33
35
36
[9] -
NECOUT 38
[10] -v
39
DESIMP
38
[ID -
39
DPVTLCA
39
33
36
35
34
[12]--
39
DLKLNRT
39
33
34
34
35
35 36
36 33
[13]-
39
DLKSIZE
39
33
36
[14] v
39
DESDYAD
39
36
33
35
34
0 0 0
0
1,
i 6
[15]-*- DESOUT 39V
31)
4MSP (2/1)
32)
4MSP (4/1)
33)
pivot A
34)
pivot D
35)
pivot C
36)
pivot B
37)
4MSP(4/2)
38)
NC Grid(1x3)
39)
DC Grid(1x3)


142
Stephenson 1 Link 1 is grounded.
Plane
J *
Link 5.
CURVATURE
TRANSFORM
to
find
3
Plane
K ->
Link 2.
CURVATURE
TRANSFORM
to
find
4
Point
e =
Pivot B.
INVERSION
to 3 .
CURVATURE
TRANSFORM
to
find
6
[4MSP Grid
i: (3) xl-D]
Stephenson
i 2
- Link 2 is
grounded.
Plane
J ->
Link 1.
CURVATURE
TRANSFORM
to
find
3
Plane
K
Link 4.
CURVATURE
TRANSFORM
to
find
5
Point
e =
Pivot D.
INVERSION
to 3 .
CURVATURE
TRANSFORM
to
find
6
[4MSP Grid
( 3) xl-D ]
Stephenson
3
- Link 3 is
grounded.
v
Plane
J *
Link 4.
*+ CURVATURE
TRANSFORM
to
find
Plane
K >
Link 5.
1,6
Point
e =
Pivot C.
CURVATURE
TRANSFORM
to
find
2
[4MSP Grid: 2-D+l-D]


38
12) Point Path Coordinated with Two Cranks. The
motion of a point and the rotation of two non-adjacent
bodies which are connected to a common ground are coordi
nated by attaching the point and two bodies to the links
of an appropriate six-bar linkage.
These problems and their possible linkage solutions
are presented in the charts of Appendix A. The steps in
volved in an actual synthesis procedure are discussed in
Chapter IV. Examples of synthesis procedures and neces
sary condition procedures are presented in Appendix B,
and the necessary conditions will be discussed in detail
in Chapter V.


66
function of problem type and linkage solution, but the
shape of the overall grid is a function of problem type
alone.
D. Dependent Syntheses
The previous example demonstrates an undesirable
property which will be hereafter termed "dependent syn
theses." Essentially, this property exists whenever a
synthesis procedure involves two (or more) curvature trans
form operations in such a way that the order in which they
are performed cannot be switched. In the previous example,
the second curvature transform uses the motion specifica
tions of plane 4, which does not exist until plane 4 has
been generated by (among other things) the first curvature
transform. Thus, every plane 4 generated by the first
synthesis will have a unique motion specification set for
the second synthesis to operate upon.
This property greatly complicates subsequent analysis
and optimization steps, and at this point these difficul
ties are circumvented by performing a complete optimiza
tion on the results of one portion of a dependent synthe
sis before proceeding to the second synthesis (see Appen
dix D, problem 12).
Fortunately, not all six-bar synthesis procedures
involve dependent syntheses. In fact, all of the problems


56
Where,
n
a .
mj
3n
m j
C = yr.
T nJ
.n Dn *r
S, = a w 6 .Y
1 mj mj'nj
n r *n
T, = a .y + 3
1 mj'nj mj
**n *n *r nn **r n *r 2
Sn = a 23 -y 3 Y a .y .
2 mj mj'nj mjnj mj'nj
_ *r n *r 0n r 2, *n
T~ = 2a .y + a .y 3 -Y + 3
2 mj'nj mj'nj mj'nj mj
"*n
S3 a
mj
0**n *r *n **r n ***r *n *r 2
33 -Y 33 -Y B -Y 3a .Y .
mj'nj mj'nj mj nj mj'nj
n **r *r cn *r 3
3a .y .y + 3 -Y
mj nj nj mj'nj
m -,**n *r *n *r 2 oran **r r , n r
T-. = 3a .y 33 -Y 33 -Y -Y + 3a .y .
3 mj'nj mj'nj mj'nj'nj mj'nj
n *r 3 n "*r ** n
-a.y. + a y + 3
mj nj mj nj rnj


54
-y* (y 1) +
O'/// rom ro
- !>
c.) Inversion formulation number 3.
Given: Motions of N relative to R; M relative to R.
Find: Motion of M relative to N ( for Rq reference ).
Independent parameter for given MSP: Yn^ Ym ( must be
related ).
Independent parameter for derived MSP: y^
Again, this formulation is identical to that of (2a),
except that the dots in the S^ and formulations should be
replaced with primes ( ) and now A' A", A"', B' B", B'",
C' 0." and must be defined.
Let a =
n
a =
m
r ^an
a ; a' = ; etc. ( same for $ and y )
n n j r Mn 'n
n
r
; etc. ( same for 3 and y )
r m m
m
dy
da
a ; a/ =
m m
*Y,
, r j2 r
dy d y
. / t n 1 n
^nm r ^nm r2 e c*
dy
m
dy
m
The formulations for A' A", Pt", B', B" and B'" are
equivalent to those of section (2b), under the above notation,
except that Ym+ Ynm, y'->- y/_, etc., and C', C^and C^must


195
Module Chart 18
Name Necessary Condition Procedure J
Label NCPJ
Description
Evaluates synthesized four
bar I on the basis of change-
point considerations within
path cognate four-bars II and
III as shown. Generates a
necessary condition grid
(2x2-D) indicating acceptable
cognates.
APL Call
where:
(01) NCPJ
(ix), d2),
a8r
(i^, d2)
d3), d4)
d5),d6)
(I7) (Ig)
(0^
= link dO.
= link fO.
= link gO^ (and h02)
= link j02 (and KO3)
= Output grid.


141
Problem 10: DOUBLE COPLANAR SYNTHESIS OF TWO
ADJACENT PLANES
The coplanar motions
of Plane J and Plane
K (connected at pivot
e) are coordinated.
SOLUTION LINKAGES
C 4 H
WATT
Watt 1 Link 1 is grounded.
Synthesis Procedures
a.) Plane J
Plane K
Point e
- Link 4.
-* Link 5.
= Pivot H.
CURVATURE TRANSFORM to find
2,3.
INVERSION to 2-
CURVATURE TRANSFORM to find 6.
b.) Plane J
Plane K
Point e
-y Link 5.
-> I,ink 6.
= Pivot F
( 4MSP Grid: 2-D+l-D]
CURVATURE TRANSFORM to find 2.
INVERSION to 2.
CURVATURE TRANSFORM to find 4.
INVERSION to 1.
CURVATURE TRANSFORM to find 3.
( 4MSP Grid: (3)xl-D]


center point cubic defining pivots F and H. A concep
tual reinversion (which requires no computational activity)
produces a Stephenson 2 six-bar linkage which satisfies
the motion specifications.
C. Grid Dimension
If 4MSP motion specifications are used, every opera
tion involving a curvature transform generates an infinity
of constraint links. If one constraint link is to be
selected from this set, a one dimensional grid is required
to discretely represent the solution set. Likewise, if
two constraint links are to be selected from the set, the
grid will have two dimensions. A curvature transform fol
lowed by a path cognate operation will generate (2) two-
dimensional grids, since each four-bar (which occupies a
place on a two-dimensional grid) has two path cognates,
a "left" cognate and a "right" cognate.
The example discussed in the last section produces
two (2) two-dimensional grids representing link 5 and 7'
and another two-dimensional grid representing links 1 and
6. The total, if these grids are combined, is two (2)
four-dimensional grids. This problem lies at one extreme
of the problems considered in this work. The opposite
extreme occurs for problem #'s 3 and 4, whose entire
linkage solution sets can be represented by one-dimen
sional grids. The nature of the component grids is a


198
Module Chart 21
Name Necessary Condition Procedure M
Label NCPM
Description
Evaluates synthesized four
bar I on the basis of change-
point considerations within
path cognate four-bars II and
III as shown. Generates a
necessary condition grid
(2x2-D) indicating acceptable
cognates.
APL Call
"-(0^ NCPM (I1),(I2), .... (Ig)"
where:
(I1) d2)
d3), d4)
u7), d8)
= link dO^
= link f02
= link gO^ (and h02)
= link jO^ (and KO^)
(0^) = Output grid.


100

N
Figure 5 14 Dyad-Related Necessary Conditions


145
b.) Crank J -> Link 2.
Point e = Pivot A.
Plane K Link 4.
t CURVATURE TRANSFORM to find
1,6.
INVERSION to 2.
CURVATURE TRANSFORM to find 5.
[4MSP Grid:2-D+l-D]


106
filter out inferior linkages before more expensive desir
able conditions are evaluated.
The five following desirable conditions are also
geometric linkage parameters which act as indexes of the
dynamic characteristics of linkages. They are the result

of detailed studies of cam system dynamics by Tesar and
Matthew [120] and were recently applied to Geneva mech
anisms by Taat [121] and Taat and Tesar [122].
4.) g-function
The g-function is a first order geometric derivative
relating output and input motions. It is a reliable in
dicator of dynamic properties related to output veloci
ties, kinetic energies, force magnifications and input
torque requirements. For six-bar problems it often be
comes desirable to monitor the maximum values of the g-
functions of two output links.
5.) Ah
The h-function is a second order geometric derivative
relating output and input motion. It is a good predictor
of dynamic properties related to inertia forces and in
ternal deformation. Here the interest is in monitoring
peak-to-peak values.
6.) hrms
The root-mean-square of the h-function over a cycle


93
Proof of (Hi) : Referring to Figure 5-13b,
a + $ + 0 = a+ $ + 0 = 2 tt
A A B B
9 = 0 because 0,ged is a parallelogram,
_L
= 0 at simultaneous change
points for g in four-bar II and d in four-bar I.
Proof of (iv): Referring to Figure 5-13c, it follows
from path-cognate property (ii) that change points occur
simultaneously at 0^ in four-bar II and at 02 in four-bar
III. In this position C^h and 0203 become collinear.
Therefore 0^-^- + 6 = and 0^ + 6 = 0^
where 0 refers to "the angle of ..."
Since C^hef is a parallelogram, fe and O^h are paral
lel. It follows that:
80102 6df SO 12
df
Proof of (v): Referring to Figure 5-13d, it follows
from path cognate property (iii) that pivot j in four-bar
II and pivot k in four-bar III will pass through change
points simultaneously. In this position O^J and O^g are
collinear, as are O^k and O^h. Due to the parallelograms
and similar triangles, it follows:
ge and eh are collinear and
O^d and eh J J C>2f
ld II 2f
ge


225
Program Chart 11
Problem #11 Coplannr Motion
Coordinated With a Crank.
Linkage Solution Stephenson 2
Mode of Cyclicity #4
STEPHENSON 1
Synthesis Procedure
1) CURVATURE TRANSFORM to
find 5.
2) INVERSION to 3.
3) CURVATURE TRANSFORM to
find 1,6.
Sample Program
VPR0B11STEPH2MODE4
[1] -* INITIAL
[2] -* 31 SYNINP
[3] 32 34 SYNINP
[4] -* 36 3 5 SCRVTRN 31
[5] -* 40 SINVERT 32 31 1
[6] -* 3 7 3 3 38 39 SCRVTRN 4 0
[7] -* SYNOUT 3 6 3 5
[8] -> SYNOUT 37 33 38 39
[9] -* NEC INP
[10]-* 41 NDYDTYP 36 35 34 2
[11]-* 42 NCPH 37 33 38 39
[12]* 43 NECDYAD 37 33 38 39 36
35 34 40 2 1 7
[13]* NECOUT 43
Necessary Condition Procedure
1)
Necessary Condition
Type (25).
Dyad
2)
Necessary Condition
cedure H for 1346.
Pro-
3)
Verify Connection of
25.
4)
Verify non-g-function
Reversal (5/2).
Files
31)
4MSP (4 /2 )
32)
4 MSP (3/2)
33)
Pivot F
34)
pivot A
35)
pivot B
36)
pivot C
37)
pivot D
38)
pivot G
39)
pivot H
40)
4MSP (4/3)
41)
NC Grid (5)
42)
NC Grid (1,6)
43)
NC Grid (1,6,5)
44)
DC Grid (1,6,5)
[14] 44 DESINP 43
[15] 44 DPVTLCA 44 34 35 36 37 33 38 39
[16] 44 DLKLNRT 44 36 38 38 39 39 34
[17]-* 44 DLKSIZE 44 37 36 33 34
[18]-* 44 DESDYAD 44 37 33 38 39 36 35
34 40 2 i 6
[19]-* 44 DESOUT 44 V


110
This approach has the advantage that n can be chosen to
assign performance scores in a non-linear fashion within
the acceptable region. Note that 6.3 is equivalent to 6.2
when n=l and a factor of 10 is included.
The approach used in this work is the result of a
combination of these concepts and was introduced in the
author's thesis [23]. The designer is asked to specify
for each desirable condition an "ideal", "preferable" and
"acceptable" performance, to which scores of 0, 1 and 10
are attached respectively. Any linkage which falls out
side of the "acceptable" bounds is discarded. A smooth
exponential can be fitted to these performance specifica
tions and linkage scores evaluated on the basis of the ex
ponential :
S, =
Log (P3/P1)
where = difference between preferable
and ideal performance
?2 = difference between actual and
ideal performance
P^ = difference between acceptable
and ideal performance
Figure 6-1 shows scoring as a function of relative
placement of ideal, preferable and acceptable regions.


169
a) Necessary Condition Pro
cedure H for 1346.
b) Verify Disconnection of 25.
(2 short) .
a) Necessary Condition Dyad
Type (25).
b) Necessary Condition Pro
cedure A for 1346 .
c) Verify Connection of 25.
d) Verify Non-encirclement (AC).
a) Necessary Condition Dyad
Type (25 ) .
b) Necessary Condition Pro
cedure A for 1346.
c) Verify Connection of 25.
d) Verify Encirclement (AC) .
8)
a) Necessary Condition Dyad
Type (25 ) .
b) Necessary Condition Pro
cedure B for 1346 .
c) Verify Connection of 25 .
d) Verify Non-encirclement (AC) .
a) Necessary Condition Dyad
Type (25 ) .
b) Necessary Condition Pro
cedure B for 1346.
c) Verify Connection of 25.
d) Verify Encirclement (AC).


63
of appropriate combinations of the four tools of syn
thesis just presented, and are generally not unique for
any given problem type and linkage solution.
A Stephenson 2 solution to problem number twelve is
shown in Figure 4-7. The synthesis procedure utilizes
the tools of inversion, path cognates, and (as always)
the curvature transform. The procedure begins with a
combination of the translational motion specifications
of point e and the rotational motion specifications of
crank K to create a new motion specification set describ
ing general coplanar motion (Figure 4-7a). Operating on
these specifications with the curvature transform will
produce constraint links as shown in Figure 4-7b (actu
ally a set of constraint links is produced). Operating on
this preliminary linkage solution with path cognate analyt
ics will produce constraint links 7' and 5. These constraint
links will move the coupler, link 4, in a way such that
coupler point e will move on its specified path in coordi
nation with the specified angular motion of crank link 5.
Now, the motion specifications exist for links 4', 5 and 3
relative to fixed link 2. Changing the reference to link 3,
it is possible through inversion analytics to define a new
motion specification set for plane 4 relative to 3 (Figure
4-7d). Operating on these motion specifications with the cur
vature transform produces constraint links 1 and 6, with
the circle point cubic defining pivots D and G and the


172
a) Necessary Condition Pro
cedure M for 2456.
b) Necessary Condition Pro
cedure H for 1234.
a) Necessary Condition Pro
cedure M for 2456.
b) Necessary Condition Pro
cedure G for 1234.
a) Necessary Condition Pro
cedure N for 2456.
Cond'
4)


43
All of the previously mentioned work involving ISP
and MSP involved geometric derivatives, where the indepen
dent parameter is the angular orientation of the body.
The specifiable higher-order motions are consequently
geometric (slope, curvature, inflection, etc.). In 1974
Myklebust [115] presented a unified theory making dynamic
(i.e., time dependent) higher order properties specifiable.
This is termed "time state synthesis." For the four-bar
problems the dynamic properties are equivalent to the geo
metric properties, but for a six-bar linkage the use of
an equivalent independent parameter for the decoupled
subsections of a linkage solution is a necessity. Use
of time state synthesis allows true "kinematic synthesis"
to be carried out, as conditions can be prescribed for
position and its time derivatives (velocity, acceleration,
etc.) or combination of inertia and momenta effects, up
to the fourth order.
Formulation of the curvature transform
Consider the moving plane in Figure 4-3 where motion
is described by the coordinates a, 3 and y. E is the fixed
reference with orthogonal coordinates U and V attached to
it, and E is the moving reference with orthogonal coordi
nates u and v attached. They are related by the "coordi
nate transform":
U = u cos y v sin y + a
(4.1)
V = u cos Y v cos Y + B


95
Properties (ii), (iii), (iv) and (v) are represented
pictorially by Figure 5-11. With this theory, necessary
condition procedures for path cognate problems can be
created. Waldron and Stevenson [119] have performed an
analysis similar to that used in the first and third of
these procedures.
Necessary Condition Procedure I.
Follow necessary condition procedure C for
four-bar I (tests for a Grashof double-rocker) .
Path cognates II and III will be usable crank
rockers with cranks at O^g.
Necessary Condition Procedure J.
Follow necessary condition procedure A for
four-bar I (tests for a crank-rocker) If C^f
is the crank in I, four-bar II will be a usable
crank-rocker with a crank at O3j: if Opd is the
crank in I, four-bar III will be a usable crank-
rocker with a crank at O^k.
Necessary Condition Procedure K.
Follow necessary condition procedure B for four-
bar I (tests for a drag-link) Path cognates II
and III will be usable drag-links.
Necessary Condition Procedure L.
1) Perform necessary condition procedure D on
four-bar I to indicate change points at d (and
g in cognate III).
2) Perform necessary condition procedure D on
four-bar I to indicate change points at f (and h
in cognate III).
Necessary Condition Procedure M.
1) Test the distance of f and 0? relative to O.d
for the specified positions. If the "altitude" of
f is consistently lesser or greater, no change
points will occur at j in cognate II or k in
cognate III.


9
an analog computer. NechL [30] also used an analog simula
tion, using a combined relaxation and gradient modifica
tion of the conjugate gradient approach to circumvent the
problem of instability near the optimum. Six-bar func
tion generators were optimized by Chen and Dalsania [31]
by applying a least-squares gradient method.
Newton's method in its unmodified form is not often
used for linkage problems, largely due to difficulties as
sociated with the selection of initial guesses. One appli
cation for this method was found by Rose and Sandor [32],
who minimize structural error of four-bar function genera
tors by equalizing error between precision points and at
the ends of the specified range. The resulting formulation
produces ten nonlinear differential equations to which
Newton's method is applied to find a solution.
The so-called "quasi-Newton" method, also called the
"variable metric" method, is basically a gradient tech
nique which involves the formulation of a differential ma
trix which approximates the Hessian as the minimum is
reached. Davidson, Fletcher and Powell [33] introduced
this method in 1963, and Mclaine-Cross [34] used it in
1969 to optimize a crank-rocker four-bar to generate solar
declination. This formulation, which involved five non
linear differential equations, allowed for some error
tolerance at the precision points. Optimization of mech
anisms with flexible links was discussed by Sevak and


201
Module Chart 24
Name Necessary Condition Output
Label NECOUT
OUTPUT
Description
Displays grids generated by
previous necessary condition
modules. Collects expansion
input for the selected portion
of the grid.
APL Call
"+NECOUT (I ),(I ),
where:
(Ij^) (I2) .... = grids to be displayed.


91
a. Prescribed Path,and Input Crank
m
Figure 5-10 Use of Path Cognates to Solve the Path-
Crank Coordination Problem


160
a) Necessary Condition Pro
cedure H for 1234 .
b) Necessary Condition Pro
cedure H for 2456.
a) Necessary Condition Pro
cedure A for 1234.
b) Necessary Condition Pro
cedure D for 2456.
c) Verify connection of 56.
a) Necessary Condition Pro
cedure B for 1234 .
b) Necessary Condition Pro
cedure D for 2456.
c) Verify connection of 56.
a) Necessary Condition Pro
cedure B for 1234.
b) Necessary Condition Pro
cedure D for 2456.
c) Verify connection of 56.
a) Necessary Condition Pro
cedure A for 1234.
b) Necessary Condition Pro
cedure B for 2456.
a) Necessary Condition Pro
cedure A for 1234.
b) Necessary Condition Pro
cedure A for 2456.


128
Problem #1: PATH SYNTHESIS
The coplanar motion
of point e is con
trol led.
SOLUTION LINKAGE
FOUR-BAR
Moving body/Linkage Component Match
Four-Bar
Synthesis Procedure
Link 1 is grounded
Point e -* Link 3.
*t CURVATURE TRANSFORM to
find 4,2.
f 4MSP Grid: 2-0]


14
Lindholm [87] optimized six-bar Watt-1 function generators.
Hobson and Torfson [88] introduced a theoretical method
which involves analysis of the centrodes of specified
motion.
Graphic synthesis and analysis packages have been de
veloped and bear some consideration in any discussion of
linkage optimization due to their high level of human/
computer interaction, which allows convenient adjustment
of representations of "good" designs to achieve "better"
designs. Reed and Garrett [89] and Smith and Reed [90]
have introduced IMAGE (Interactive Mechanism Analysis
through Graphic Exchange) and Ricci [91] has introduced
SPACEBAR. Perhaps the most powerful is KINSYN III, intro
duced by Rubel and Kaufman [92], All of these employ
high-level graphics coupled with linkage synthesis and
analysis routines.
The linkage optimization problem has been discussed
on a philosophical level by Johnson [93], who discusses
stimulants and aids for creativity, such as a building
block approach, and systematics of linkages and circuit
diagrams. Srivastava and Newcombe [94] introduce a multi
factor objective function including such things as pivot
location, bearing load limitations, displacement, velocity
or acceleration constraints and Grashof constraints.
Sutherland and Siddall [95] also use a multifactor objec
tive function with inverse utilics for spherical function


130
Problem #3: ANGULAR COORDINATION OF A TWO LINK CHAIN
The rotation of crank
K is coordinated with
the coplanar motion
of attached link J.
SOLUTION LINKAGE
FOUR-BAR
Four-Bar
Synthesis Procedure
Link 1 is
Plane J -
Point e =
Crank K =
Point f =
grounded.
Link 3 and
Pivot B.
Link 2 and
Pivot A.
*t CURVATURE TRANSFORM to
find 4.
[4MSP Grid: 1-D]


35
C. Motion Specification Types
The types of coplanar problems which are solvable
and optimizable using the procedures developed in this
work are shown in Figure 3-9. The first and second prob
lems, coplanar path and motion syntheses, are the subject
of most linkage optimization efforts.
1) Path Synthesis. The motion of a point is guided
by attaching the point to the coupler of an appropriate
four-bar linkage.
2) Motion Synthesis. The motion of a body is guided
by attaching the body to the coupler of an appropriate
four-bar linkage.
3) Angular Coordination of a Two-Link Chain. The
angular motion of two connected bodies, one of which is
connected to ground, is controlled by attaching these
bodies to an appropriate four-bar linkage.
4) Angular Coordination of Two-Cranks. The angular
motions of two unconnected bodies, both of which are con
nected to a common ground, are coordinated by attaching
these bodies to an appropriate four-bar linkage.
5) Path-Crank Coordination. The motion of a point
is coordinated with the rotation of a body connected to
ground by attaching the point and body to an appropriate
four-bar linkage.
6) Angular Coordination of Three-Link Chain. The


85
Y
or
Y
02'
Y
03
y
10'
Y
12'
Y
13
y
20'
Y
21'
Y
23
Y ,
30'
Y
31'
Y
33
have the same sign.
ii.) Determination of "compatible" links. A "com
patible" constraint link is one which can be used in com
bination with a permissible constraint link so that the
4MSP will be satisfied on the same branch. The previous
analysis is used to eliminate portions of the cubic which
represent constraint links which will definitely pass
through a change point at the moving pivot while satisfy
ing the 4MSP (regardless of the other constraint link
chosen). A permissible constraint link which has been
selected from a portion of the permissible circle point
cubic might still pass through a change point if coupled
with an "incompatible" constraint link.
Let 0 A be a selected permissible constraint link.
cl
Figure 5-8a shows one in the four positions in which the
motion specifications are satisfied. defines the rela
m
tive coupler rotation in reaching position j from position
0. Figure 5-9b shows 0 A in the zeroth position with
angles -Y^, "^02 an<^ -^03 drawn through point A. In
this example, -Y^ and -Y ^ represent the extremes of the
angular range. Now, if a circle point representing a pos
sible second constraint link lies in region Z, it must cross


60
Figure 4
a. Prescribed Path,and Input Crank
5 Use of Path Cognates to Solve the Path-
Crank Coordination Problem


107
of operation is an indicator of system precision and in
ternal bearing loads. It is desirable to minimize the
overall root-mean-square of the h-function.
7.) Torque
The functional product of the first- and second-order
geometric derivatives throughout a cycle (gh) is indicative
of the driving torque needed to maintain a constant input.
The peak-to-peak value is predictive of speed fluctuation
or dynamic windup at the input.
8.) Input Shock Level
A combination of first-, second- and third-order geo-
2
metric derivatives given by the relationship T=gh'+(h)
is an index of shock-level felt at the input of a system.
Higher values will be indicative of increasing significance
of dynamic properties related to vibration, noise, wear
and backlash.
Desirable conditions 3+8 must rely upon a dyad-based
analysis, and are evaluated simultaneously for each solu
tion linkage. Higher-order geometric properties are eval
uated using a finite-difference differentiation of the
zeroth order motion analysis. Taking advantage of the
dyad-analysis is a final desirable condition unrelated to
system dynamics:,


61
path-crank coordination (Figure 4-5a). The synthesis
procedure is: 1) specify the motion of coupler def by
using the translation of point e and the rotation 0,
use the curvature transform to synthesize four-bar O^dfC^,
and find its path cognate O-^gjO^ or C^hkO^. Either cognate
will coordinate the rotation of a crank parameter 0
(attached to link O^d or C^h) with the motion of point e
(attached to coupler link gej or hek, respectively).
4.) Synthesis Tool #4. Angular Cognates
Consider the parallelogram formed by links BCD and
BC'D in Figure 4-6c. Regardless of the motion of point B
(guided by crank AB for this example) the angular param
eters of links BC and C'D are identical. So too for links
BC' and CD. Figure 4-6 outlines the use of the concept of
angular cognates to solve a crank-coordination problem.
The second angular parameter is used to define the mo
tion of coupler plane BC, the curvature transform is used
to find a second constraint link CD, and the angular cog
nate of dyad BCD is taken to provide solution linkage
ABC'D.
B. Coordination of the Tools of Synthesis
Appendix A contains tables of linkage solutions and
recommended synthesis procedures for each of the twelve
problem types. These synthesis procedures consist entirely


80
"trailer" signify constraint links with limited rotation
at the moving pivot and the name "rocker" signify con
straint links with limited rotation at the fixed pivot
(Figure 5-5). For example, the follower of a crank-rocker
four-bar is both a trailer and a rocker, but a constraint
link of a drag-link four bar is a trailer only. Trailers
defined by circle- and center-point cubics which have mov
ing pivot rotation less than tt for the 4MSP are termed
"permissible". The first technique of Waldron is used
to determine sections of the circle point cubic which
represent permissible constraint links.
Let be the rotation of the coupler relative to
the constraint link in moving from positions i to j. This
angle will be defined between -tt and tt, clockwise positive.
Let n denote the position with the smallest or most nega
tive value of 'h j so that it defines one end of the angular
range. If is ^ 0 for all possible values of j, the
angular range must be less than tt. If it can be estab
lished that for some value k, is always either positive
or negative, the constraint link under consideration must
be permissible.
The following property can be used to find the sign
of y
Jk
A line through the image pole P.. and
circle point A bisects the angle^ T
(see Figure 5-6a) .
This property applies to any where k is another posi
tion, so the angle 'F .. can be found from:
1K


26
C 4 H
C 4 H
Figure 3-3 Inversions of the Watt Chain


196
Module Chart 19
Name Necessary Condition Procedure K
Label NCPK
Description
Evaluates synthesized four
bar I on the basis of change-
point considerations within
path cognate four-bars II and
III as shown. Generates a
necessary condition grid
(2x2-D) indicating acceptable
cognates.
APL Call
where:
(01) NCPK
dx), d2),
d8r
d^, d2)
d3), d4)
(15), d6)
(I7),(Ig)
(ox)
= link dO,
= link fO.
= link gO^ (and h02)
= link jO^ (and KO^)
= Output grid.


3
procedure to optimally approximate a given function using
the precision points as design variables.
In the mid 1960's the mechanical design field began
to feel the real impact of modern optimization theory,
which involved numerical methods initially developed to
solve management science and control system problems.
Initial application to mechanical designs was primarily
in the fields of structural mechanics and aeronautics, but
mechanism design was not far begind. The development of
such high level languages as Fortran, Algol, APL and Basic
have made the use of the computer much simpler, more ef
fective and less system dependent for the engineering com
munity .
A general expression for the linkage optimization
problem is:
Minimize Objective Function F(x)
where x = (x.,x . ., x )
i ^ P
Subject to:
Inequality constraints h^ (x) <_ 0; k-1 to m
Equality constraints e^(x) = 0; j=l to n
A condition for the existence of an optimization prob
lem is that the number of design parameters must exceed
the number of constraining equations, in order to ensure
the existence of "free" parameters.


94
To use (iv), we wish to ensure that 0^ in four-bar II
does not pass through its change point by verifying that
link df never becomes parallel to link 0^C>2 fur-bar 1
while moving in such a way as to satisfy the four specified
positions. Every four-bar chain, regardless of Grashof
type, has two positions in which two opposite links become
parallel. The total motion of the four-bar can be concep
tually divided into two segments delimited by these crit
ical positions. The test to be performed, therefore, is
a verification that all specified positions lie on the same
motion segment.
Since pivots d and f are equidistant from a line
through 0^ and 02 at the critical positions, it follows
that throughout one motion segment d is farther away from
0^C>2 than f, and throughout another motion segment d is
closer. If the "altitude"of d is consistently closer or
farther from 0-^C>2 than f in all specified positions, then
four-bar II will not have a change point at 0^ (and four-
bar III will not have a change point at C>2) while satisfy
ing the specified positions.
To make use of (v) similar arguments can be made.
If the "altitude" of f (relative to O^d) is consistently
lesser or greater than the "altitude" of C>2 for all speci
fied positions, pivot j in cognate four-bar II and pivot
k in cognate four-bar III will not have change points in
moving through the specified positions.


=0,1,2,3,4
b. Infinitesimally Separated Positions
(ISP)
a. Finitely Separated Positions c. Multiply Separated Positions
(FSP) (MSP)
Figure 4-2 Finitely, Infinitesimally and Multiply Separated Positions
ro


37
motion of three bodies connected in a chain (one connected
to ground), is guided by attaching these bodies to the links
of an appropriate six-bar linkage.
7) Angular Coordination of a Crank and a Two-Link
Chain. The motion of two connected bodies (one connected
to ground) is coordinated with the rotation of another body
which is connected to ground by attaching these bodies to
the links of an appropriate six-bar linkage.
8) Angular Coordination of Three-Cranks. The rota
tion of three non-adjacent bodies, all connected to ground,
is coordinated by attaching these bodies to the links of
an appropriate six-bar linkage.
9) Angular Coordination of Three Adjacent Planes.
The motion of two non-adjacent bodies and a third body
which is connected to ground and to which the first two
bodies are connected, is controlled by attaching these
bodies to the appropriate links of an appropriate six-bar
linkage.
10) Coplanar Motion Synthesis of Two Adjacent Planes.
The general motion of two connected bodies is controlled
by attaching these bodies to the links of an appropriate
six-bar linkage.
11) Coplanar Motion Crank Coordination. The
motion of a body is coordinated with the rotation of a
body connected to ground by attaching these bodies to the
links of an appropriate six-bar linkage.


105
pivots may be prespecified but the location of others
will vary throughout the solution set. If some latitude
is not available in these locations the designer must re
duce his specification. Otherwise he may use the 4MSP
motion specifications and treat location of the variable
pivots as an optimization criterion.
2.) Link Length Ratio
The link length ratio is simply the length of the
longest specified link divided by the length of the short
est specified link (i.e., LLR>1) and is indicative of dynam
ic characteristics of a linkage. Previous optimization
schemes dealing with four-bar coplanar motion problems
[20,23] have automatically considered all four links in
this ratio. For six-bar problems it becomes important to
allow the designer to specify the links of particular interest.
3.) Link Size
Kinematic and dynamic characteristics may be func
tion of link sizes relative to overall motion parameters.
Again, some of the links may be prespecified, but all
problems have variable links.
The link length ratio and link size criteria are both
simple geometric linkage parameters which can provide in
sight into the dynamic characteristics of a linkage. Al
though they are not particularly reliable, they are use
ful because they are computationally inexpensive and can


179
Module Chart 2
Name Synthesis Input
Label SYNINP
Description
Interactively collects
input for synthesis routines.
APL Call
">(01) (02) SYNINP
where:
(01) = 4MSP set associated with E
(O^) = Point e. Optional, used if E rotates
as a crank and e is a prespecified
pivot.


239
119. Waldron, K.J., and E.N. Stevenson, Jr., "Elimina
tion of branch, Grashof and order defects in path-
angle generation and function generation synthesis,"
to be presented at the ASME Design Engrg. Tech. Conf.
Minneapolis, Minn., September 24-27, 1978.
120. Tesar, D., and G.K. Matthew, The Dynamic Synthesis,
Analysis and Design of Modeled Cam Systems, Lexing
ton Books, 1976.
121. Taat, M., "The fundamental development of design
procedures for a full spectrum of linkage dwell
mechanisms," PhD. Dissertation, University of
Florida, 1978.
122. Taat, M., and D. Tesar, "A new interpretation for
the dynamic phenomena associated with Geneva mech
anisms," to be presented at the ASME Design Engrg.
Tech. Conf., Minneapolis, Minn., September 24-27,1978
123. Pollock, S.F., "Dynamic model formulation programmed
for dyad based machines," M.S. Thesis, University
of Florida, 1975.
124. Sarkisyan, Y.L., K.C. Gupta, and B. Roth, "Kinematic
geometry associated with the least-square approxima
tion of a given motion," Journal of Engineering for
Industry, Trans. ASME, Series B, Vol. 95, No. 2,
May 1973, pp. 503-510.
Sutherland, G.H., "Mixed exact-approximate planar
mechanism position synthesis," Journal of Engineer
ing for Industry, Trans. ASME, paper no. 76-DET-29.
125.


CHAPTER V
THE NECESSARY CONDITIONS
Linkages generated through the use of the kinematic
synthesis techniques of Chapter IV are definitely capable
of satisfying the specified positions. Unfortunately, the
analytics presented there take no consideration of linkage
performance in positions other than those specified. Real
linkages may fall into a number of physical pitfalls, any
one of which is sufficient to eliminate the linkage as a
viable solution to the specified motion problem. The
analytics now presented are for "necessary conditions"
which must be satisfied before a given solution linkage
can be considered for further optimization analysis. The
conditions which apply to a given problem are dependent
upon the solution linkage type, the means by which the
linkage is to be driven and the nature of its motion (i.e.,
mode of cyclicity). It is primarily because of the depen
dence of the necessary conditions upon mode of cyclicity
that the concept of the latter has been developed.
A, Four-Bar Necessary Conditions
1.) Order
It is entirely possible that a linkage solution will
71


73
Figure 5-1 Order


117
1) Look through Appendix A, find the problem type
applying to his problem, and select a solution linkage
type.
2) Familiarize himself with the synthesis procedure,
select appropriate synthesis modules from Appendix C,
and outline the synthesis portion of his program:
V PROBLEM
INITIAL-,
SYNINP
SCRVTRN|
SPTHOXT
Input
Tools of Synthesis
SYNOUT } Output
3)Select from available modes of cyclicity (Appen
dix B and Chapter IV), familiarize himself with the
necessary condition analysis, and through use of Ap
pendix C write the necessary condition portion of the
program:
NECINP} Input
NCPK j
NCPA Necessary Condition Procedures
NECOUT} Output
4)Select from the available desirable condition
modules (or write his own for additional criteria)
and write the desirable condition portion of the
program:
DESINP} Input
DLKLNRT,
DESDYAD^Desirable Conditions
DESOUT} Output


220
Program Chart 6
Problem It 6 Angular Coordination
of a Three Link Chain.
Linkage Solution Watt 1
Mode of Cyclicity K8
Synthesis Procedure
Necessary Condition Procedure
1)
CURVATURE
TRANSFORM
1)
Necessary Condition
Pro-
to find 3.
cedure D for 1234.
2)
INVERSION
to 2.
2)
Necessary Condition
Pro-
3)
CURVATURE
TRANSFORM
cedure D for 2456.
to find 5,
3)
Verify connection of
56.
Sample Program
Files
VPROB6WATT1MODE8
[1]
INITIAL
[2]
-V
31
34 SYNINP
13]
-V
32
40 SYNINP
[4]
-X
33
37 SYNINP
[5]
-b
40
34 38 39 SCRVTRN
32
40
34
[6]
-b
41
SINVERT 33
31
1
[7]
-b
42
SINVERT 0
31
3
(8]
-V
37
40 36 35 SCRVTRN
41
37
40
(9]
->
SYNOUT 38 39
40
34
[10]
-b
SYNOUT 36 35
37
40
(11)
-V
NECIMP
[12]
-b
43
MCPB 38 39
40
34
(13]
4 4
MCPD 36 35
37
40
1
[14]
-V
45
NECDYAD 39
34
38
4 0
37
36
35
42
1 1
[15]
-V
NECOUT 45
1 16]
4 6
DES INP 4 5
( ) 7]

4 6
DPVTLCA 46
34
3 9
38
40
36
[18]
-b
46
DLKI.NRT 4 6
37
36
38
39
[19]
V
46
DLKSJZE 46
38
40
[20]
-V-
46
DESDYAD 46
39
34
38
40
37
36
35
42
1,
i 6
[211*- DESOUT 4 6 V
31) 4MS P (2/1)
32) 4 MSP (4/1)
33) 4 MSP (5/1)
34) pivot A
35) pivot G
36) pivot F
37) pivot H
38) pivot C
39) pivot B
40) pivot D
41) 4MSP (5/2)
42) 4MSP (1/2)
43) NC Grid (3)
44) NC GRID (6)
4 5) NC Grid (3,6)
46) DC Grid (3,6)


127
Necessary Condition Analysis covered in
Appendix B.
Independent syntheses.
"PATH COGNATES"
"find 2"
"INVERSION to 4"
Tools of synthesis are cap
italized.
Motion of Link 2 is derivable
for 4MSP, even though link
shape may not. yet be com
pletely definable (if E is a
ternary link).
4 is the new reference link.
7'
[4MSP Grid: (2)xl-D]
The apostrophe indicates that
link 7' is temporary and does
not appear on the linkage
drawing.
The grids produced by a 4MSP
synthesis and necessary con
dition analysis will take the
shape of . (here, (2)
1-dimensional grids). For
path cognate problems, "L,R
2-D" indicates that 2-dimen
sional grids for both "left"
and "right" cognates are gen
erated.


146
Problem #12: POINT PATH COORDINATION WITH TWO CRANKS
The coplanar motion
of point e and the
rotations of cranks
J and K are coordi
nated .
SOLUTION LINKAGES
WATT
Watt 1 Link 1 is grounded.
a.) Crank J -* Link 3 and
Point f = Pivot B.
Crank K ~y Link 2.
Point e on Link 5.
Synthesis Procedure£
CURVATURE TRANSFORM to find
4,6.
INVERSION to 1.
CURVATURE TRANSFORM and PATH
COGNATES to find 3.
I 4MS P Grid:L,R 2-D, and
1-0 J


217
Program Chart 3
Problem if 3 Angular Coordination
of a Two-Link Chain.
Solution Linkage Four-Bar
Mode of Cyclicity H1
B 3 *
1A
A 777 /// D
1
FOUR-BAR
Synthesis Procedure
Necessary Condition Procedure
1) CURVATURE TRANSFORM to
find 4.
1) Necessary Condition Pro
cedure D for 1234.
Sample Program
VPR0B3FBM0DE1
[1] -* INITIAL
[2] -* 31 33 SYNINP
[3] -v 32 36 SYNINP
[4] -* 36 33 35 34 SCRVTRN 32 36 33
[5] -* SYNOUT 35 34 36 33
[6] -* NECINP
[7] -* 37 NCPD 35 34 36 33 1
18] -* NECOUT 3 7
[9] 38 DESINP 37
[10]* 38 DPVTLCA 38 33 3C 35 34
[11]* 38 DLKLNRT 38 35 34 36 33
[12] 1 38 DLKSIZE 38 34 33
[13]-* 38 DESDYAD 38 36 33 35 34 ,
0 0 0 31 2, i 6
[14]- DESOUT 38V
Files
31) 4MSP(2/1)
32) 4MSP(3/1)
33) pivot A
34) pivot D
35) pivot C
36) pivot B
37) NC Grid (4)
38) DC Grid (4)


59
The f ormulatiorfS for an, 3 and
m' m
equivalent to those of section (2c),
except that y
,n
m
w
y +
'm
Y/ etc,
ran
their derivatives are
under the above notation,
Now,
n
mn
1 + Y
/
mn
Yn =
mn
(1 + Y' )
mn
"
Yn =
y'" (1 + y' )
'mn 'mn
3y" '
' mn
d + Y' )
mn
3.) Synthesis Tool #3. Path Cognates
The Roberts- Chebyshev theorem states that three dif
ferent coplanar four-bar mechanisms will trace identical
coupler-curves. An example is shown in Figure 4-5b,
where coupler point e has the same motion whether carried
by four-bar O^dfC^, four-bar C^gjO^ or four-bar C^hkO^.
An additional property is that the angular parameters of
those links with identical hash marks in Figure 4-5b are
identical for any reachable position or position deriva
tive of point e.
These properties can be used to solve the problem of


CHAPTER I
INTRODUCTION
The level of interest in the application of optimiza
tion methods to mechanism design seems to be rising expo
nentially, with the great majority of effort coming from
the past decade. The ultimate goals are means to achieve
mechanism designs which are globally optimum relative to
all pertinent criteria.
Some early attempts to optimize were those of da Vinci
(1452-1519) and Newton (1642-1727), who were both involved
in specific mechanical design problems, and made modifica
tions of previous designs in order to enhance their per
formances. Galileo developed a rational mechanical opti
mization in 1638 by creating an algorithm for the form of
a bent beam for uniform strength.
The advent of the differential calculus was fundamen
tal to the development of many modern optimization tech
niques. The introduction of elegant evaluations of maxima
and minima of differentiable functions eliminated the need
for discrete evaluations of these functions.
The development of variational techniques is largely
credited to Bernoulli, Lagrange and Euler. Chebyshev's [1]
involvement in straight-line linkage design led him to de
velop his well known "Chebyshev polynomials" and optimality
1


Copyright 1978
by
Kim Loring Spitznagel


13
another criterion is to be considered, it is generally
related to transmission angle. Lin [61], Hamid and Soni
[62,63], Shoup, Staffer and Weatherford [64], Freudenstein
and Primrose [65], Sutherland and Roth [66], Bagci [67],
and Savage and Suchora [68] have all dealt with optimiza
tion relative to transmission angle. Optimization with
respect to dynamic criteria is also a field of interest,
with contributions coming from Tomas [69], Benedict and
Tesar [70], Berkof and Lowen [71,72], Conte, George, Mayne
and Sadler [36], Tepper and Lowen [73], Sadler [74],
Elliot and Tesar [75], and Sandler [76]. Optimization of
more general mechanical systems such as planetary gear
reducers and a shaping mechanism are discussed by Golinski
[77], and Osman, Sankar and Dukkipati [78] have treated
optimization of transmission gears. Optimization using
the least-squares method of Gauss has been done by Chi-Yeh
[79] and Mansour and Osman [80]. In 1971 Bagci and Prasad
[81] and Bagci and Parekh [82] dealt with optimization
schemes for coplanar and spherical four-bar and six-bars
used for rigid body guidance. Speckhart [83] used minimum
weight and the cost criterion as his objective function.
Khan, Thornton and Willmert have developed "optimality
criterion techniques" for minimizing weight in linkages
subject to restrictions in stress and natural frequency [84]
and stress and deformation [85]. Rao and Ambekar [86] op
timized spherical RRRR function generators, and Sallam and


24
B 3 C
a. The Four-Bar Chain
D 4 C
b. The Stephenson Six-Bar Chain
C 4 H
c. The Watt Six-Bar Chain
Figure 3-1 Four-Bar and Six-Bar Chains


CHAPTER III
SOLVABLE PROBLEMS
The previous chapter described an optimization phi
losophy upon which the efforts of this work are based.
In this chapter the range of problems which are solvable
using this philosophy (and subsequently developed analytics)
is discussed. The range of solvable problems is defined by
the three concepts of linkage type, mode of rotational
cyclicity and motion specification type.
A. Linkage Types
The simplest non-linear mechanism is the four-bar
linkage, as shown in Figure 3-la. It possesses one degree
of freedom after one of its links has been grounded, and
is conceptually identical in all of its inversions, i.e.,
regardless of which link is grounded. The four-bar pro
vides eight free parameters.
Two types of single-degree of freedom six-bar chain
exist, the Stephenson and the Watt, as shown in Figure
3-lb,c. They are both composed of two ternary links and
four binary links, and have different conceptual inver
sions, as shown in Figures 3-2 and 3-3. Each one provides
23


170
2)
*
Necessary Condition Procedures
a)
Necessary Condition
Type (25).
Dyad
b)
Necessary Condition
cedure H for 1346.
Pro-
c)
Verify Connection of
25.
a)
Necessary
Condition
Dyad
Type (25)

b)
Necessary
Condition
Pro-
cedure
H
for 1346.
c)
Verify
Connection of
25-
d)
Verify
Non-ci-function Re-
versal
(2
relative to 3).
a)
Necessary
Condition
Dyad
Type (2
¡5)

b)
Necessary
Condition
Pro-
cedure
H
for 1346.
c)
Verify
Connection of
25 .
a)
Nocoss
iry
Condition
Dyad
Typo (2
5)

b)
Necessa
ir y
Condition
Pro-
codu re
II
for 1346.
c)
Verify
Connection of
25.
d)
Vorify
Not
i-cj-function Re
versa 1
(5
relative to 2) .
4)


138
Stephenson 3 Link 3 is grounded.
Crank
J
Link 1 and
INVERSION
to 1.
Point
e
=
Pivot F.
CURVATURE
TRANSFORM
to
find
4
Crank
K
->
Link 6 and
INVERSION
to 2 .
Point
f
=
Pivot H.
CURVATURE
TRANSFORM
to
find
5
Crank
L
->
Link 2 and
Point
g
=
Pivot A.
[4MSP Grid
: (2)xl-D]


173
a) Necessary Condition Pro
cedure L for 2456.
b) Necessary Condition Pro
cedure G for 1234.
6) *
a) Necessary Condition Pro
cedure M for 2456.
b) Necessary Condition Pro
cedure B for 1234.
c) Verify Connection of 56.
a) Necessary Condition Pro
cedure J for 2456.
b) Necessary Condition Pro
cedure G for 1234.
c) Verify Connection of 13.
a) Necessary Condition Pro
cedure K for 2456.
b) Necessary Condition Pro
cedure A for 1234 .
a) Necessary Condition Pro
cedure K for 2456.
b) Necessary Condition Pro
cedure A for 1234 .
f'
o
1
*
a)
Necessary Condition
cedure K for 2456 .
Pro-
/*
w*
b)
Necessary Condition
cedure A for 1234 .
Pro-
/ / /


215
Program Chart 1
Problem jf 1 Path Synthesis.
Linkage Solution Four-Bar
Mode of Cyclicity #2
Synthesis Procedure
1) CURVATURE TRANSFORM to
find 2,4.
FOUR-BAR
Necessary Condition Procedure
1) Necessary Condition Pro
cedure H for 1234.
Sample Program
VPROB1FBMODF2
Files
[1]
-V
INITIAL
31)
4MSP(3/1)
32)
pivot A
[2]
->
31 SYNINP
33)
pivot D
[3]
->
35 32 34 33 SCRVTRN
31
34)
pivot C
[ 4 J
->
SYNOUT 35 32
34 33
35)
pivot B
36)
NC Grid(4x2)
[5]
->
NECINP
37)
DC Grid(4x2)
[6]
3 6 NCPII 35 32
34 33
[7]
->-
NECOUT 36
[8]
->
37 DESINP 36
[9]
->
37 DPVTLCA 37
32 35
34 33
flO]
-V
37 DLKLNRT 37
33 34
34 35 35 32
til]
-
37 DLKSIZE 37
35 34
[ 12 J
-
37 DESDYAD 37
35 32
34 33 0 0 0 31
2
, i 6
[13]
V
DESOUT 37V


84
Figure 5-7 Determination of Permissible Trailers for 2FSP


CHAPTER IV
SYNTHESIS OF LINKAGE SOLUTIONS
In the last chapter the types of problems under con
sideration were presented (Figure 3-9). The synthesis
solution to each consisted of attaching these bodies with
specified motions to the links of an "appropriate" linkage.
The means by which this "appropriate" linkage is found is
the subject of this chapter.
A. The Four Tools of Synthesis
The synthesis procedure for the problems shown in
Figure 3-9 depends on the problem type and the solution
linkage type. In each case some combination of four syn
thesis techniques is employed. These techniques are
termed the "four tools of synthesis" and are depicted
graphically in Figure 4-1.
1.) Synthesis Tool #1. The Curvature Transform
Probably the single most important concept in the
field of kinematic synthesis is the curvature transform.
All of the synthesis procedures used in this work will use
this tool of synthesis at least once to generate constraint
links (which may be operated upon by the other tools of
39


224
Program Chart 10
Problem ¡(10 Double Coplanar Syn
thesis of Two Adjacent Planes.
Linkage Solution Stephenson 3
Mode of Cyclicity 05
STEPHENSON 3
Synthesis Procedure
Necessary Condition Procedure
1)
CURVATURE
find 1,6.
TRANSFORM
to
1)
Necessary Condition Pro
cedure H for 1346.
2)
CURVATURE
find 2.
TRANSFORM
to
2)
Verify Disconnection of
25 (2 short)
Sample Program
VPROB10STEPH3MODE5
[1] -* INITIAL
[2] -* 31 SYNINP
[3] -* 32 SYNINP
[4]
-V
37 33 38 39 SCRVTRN
31
[5]
35 34 SCRVTRN
31
[6]
->
SYNOUT 37
33
38
39
[7]
->
SYNOUT 35
34
[8]
->
NECINP
[9]
-
40 NCPH 37
33
38
39
[10]
-V
41 NECDYAD
37
33
38
39
36
35
34
31
2
2
[11]
-y
NECOUT 41
[12]
V
42 DESINP
41
[13]
-y
42 DPVTLCA
42
34
35
36
37
[14]
-y
42 DLKLNRT
42
3 6
3 5
38
39
[15]
~y
42 DLKSIZE
42
37
38
38
36
[16]
-y
42 DESDYAD
42
37
33
38
39
35
34
31
2,
t 6
[17]^ DESOUT 42 V
Files
31)
4 MSP (4/3)
32)
4MSP (5/3)
33)
pivot F
34)
pivot A
35)
pivot B
36)
pivot C
37)
pivot D
38)
pivot G
39)
pivot B
40)
NC Grid (1
41)
NC Grid(If
42)
DC Grid(l/


CHAPTER VII
PROGRAMMING FOR FOUR-BAR
AND SIX-BAR OPTIMIZATION
A. Philosophy of Program Modularity
The three major computational blocks in the synthesis/
analysis/resynthesis approach to linkage optimization and
their execution sequence (Figure 7-1) are common to the
optimization of all twelve of the motion specification
types. The difference between problems lie within these
blocks.
To gain an understanding of flexibility needed in an
all-encompassing four-bar and six-bar optimization program
package, consider that most of the motion specification
types can be solved by several types of mechanism, each
entailing separate synthesis procedures (fourty-eight com
binations of motion specification/solution linkage exist).
Every combination has four to fifteen modes of cyclicity,
each one requiring some procedure for necessary condition
evaluation (the same is true for desirable conditions to
a lesser extent).
The program package providing a computational base for
the analytics presented in this work is also intended to
serve as a foundation for a future mechanisms package
113


114
>
*
Synthesis
"...
I
Necessary
Conditions
f ,.-
Desirable
Conditions
Figure 7-1 The Computational Steps of a Synthesis/Analysis/
Resynthesis Linkage Optimization


Table 4-1. Motion Coefficients, A
m2.
k
A02
A12
A2 2
A32
A42
A52
A6 2
0
l(aj+8j)
a cos y.
3 3
-a. sin
3
Yj
cos Y -1
3
sin y
3
a .
3
B:
+3 sin y.
3 13
+3 cos
3
Yj
1
a a '. + 6 6
3D 3 3
(a + 3 ) cos y
3 3 3
(3j"otj)
cos y
3
- sin y
3
cos y
3
a
3
Bj
+ ( 3 -a ) sin y
3 3 3
- (a'. + 3 )
3 3
sin y
3
CT
00
2
(a) 2 + (3) 2
ao+*b
3"o"2a
-1
0
a"
a0
60
3
3aao+3eBo
ao -3+3Bq
-3^
3a"
Jao
0
-1
a"
0
30
For k > 2, the position j = 0, is assumed as the initial position. When 2 = j = ),
a0 = 60 = Y0 = - ^he prices denote derivatives with respect to y.
U


159
Modes of Cyclicity
Necessary Condition Procedures
a) Necessary Condition Pro
cedure D for 1234.
b) Necessary Condition Pro
cedure D for 2456.
2)
a) Necessary Condition Pro
cedure D for 1234.
b) Necessary Condition Pro
cedure D for 2456.
a) Necessary Condition Pro
cedure H for 1234.
b) Necessary Condition Pro
cedure D for 2456.
a) Necessary Condition Pro
cedure II for 12 34 .
b) Necessary Condition Pro
cedure H for 2456.


CURVATURE TRANSFORM
ANGULAR COGNATES
PATH COGNATES
INVERSION
Figure 4-1 The Four Tools of Synthesis


22
the solution linkage types are presented and discussed.
Subsequent chapters will treat in detail the analytics
behind the steps of synthesis, necessary condition evalu
ation and desirable condition evaluation.


181
Module Chart 4
Name Curvature Transform (Synthesis Tool)
Label SCRVTRN
Description
Performs a curvature trans
form, generates circle-point
and center-point cubics for a
given 4MSP.
APL Call
"-^(01) (02) (03) (04) SCRVTRN (I 1) (12 ) (13 ) "
where:
(I1) = MSP set.
= Pivots of predefined constraint
link (moving, fixed), if one
exists.
(0^) (C>2) = Moving, fixed pivots, first con
straint link.
(0 ),(0^) = Moving, fixed pivots, second con
straint link (optional for
Stephenson dyad links).


121
slightly different types of motion specifications to be made.
For example, Sarkisyan, Gupta and Roth [124] have extended
curvature transform theory to satisfy motion specifications
in a least-squares minimum-error sense. Sutherland [125]
has treated mixed exact-approximate specifications, again
making use of least-squares approximations. Kramer and
Sandor [48] have introduced "Selective Precision Synthesis
(SPS)," a technique which produces dyadic constructions of
mechanisms which satisfy "accuracy neighborhoods" about
specified pivots.
Any synthesis procedure which 1.) produces linkage
solution sets which can be mapped onto orthogonal grids
and 2.) allows resynthesis within specified regions of the
grid, can be used in the proposed optimization procedure.
The availability of alternative synthesis procedures would
enhance control of the number of optimization parameters.
2.) Alternate Solution Linkages
T
Another way to control the number of optimization
parameters is to allow the use of different types of link
ages. Synthesis procedures are presented for four-bar and
six-bar linkages, which provide eight and fourteen free
parameters respectively. Untreated here but also directly
synthesizable are the slider-crank and inverted slider-crank
(7 parameters), geared five-bar (12 parameters) and numer
ous variations of the six-bar using sliders and oscillating


97
3 ^3
Figure 5-12 Necessary Condition Procedures for
Cognate Four-Bar Linkages


REFERENCES
1. Chebyshev, P.L., Oeuvres, Volume I New York: Chelsea
Publishing Company, 1899.
2. Cauchy, A., "Method generale pour la resolution des
systems d'equationes simultanees," Comptes Rendus de
L1Academic des Sciences, Volume 25, 1847, pp. 536-38.
3. Alt, H., "Uber die totlagen des gelenkvierecks,"
Zeitshrift fur Augewandte Mathematik und Mechanik,
Volume 5, No. 1, 1925, pp. 347-54.
4. Dantzig, G.B., "Programming of independent activities,"
II, Mathematical Model, Econometrica, Volume 17, 1949,
pp. 200-11.
5. Svcboda, A., Computing Mechanisms and Linkages New
York: McGraw-Hill, 1948, pp. 154-56.
6. Levitskii, N.J., and K.K. Shakvazian, "Synthesis of
four element spatial mechanisms with lower pairs,"
Trudi Seminara po Teorri Mushin, Mekhanizmov,
Akademiia Nauk, USSR, Volume 54, No. 5, 1954.
7. Freudenstein, F., "Approximate synthesis of four bar
linkage," Trans ASME, Volume 77, August 1955, pp. 853-61.
8. Freudenstein, F., "Four-bar function generators,"
Transactions of the Fifth Conference on Mechanisms,
Purdue University, 1958, pp. 104-07.
9. Freudenstein, F. "Structural error analysis in plane
kinematic synthesis," Journal of Engineering for In
dustry Trans ASME, Series B, Volume 81, No. 1,
February 1959, pp. 15-22.
10. Freudenstein, F., and G.N. Sandor, "Synthesis of path
generating mechanisms by a programmed digital computer,"
Trans ASME, Series B, Volume 81, No. 2, May 1959,
pp. 159-68.
11. Sandor, G.N., and F. Freudenstein, "Kinematic synthesis
of path generating mechanisms by means of the IBM 650,"
IBM 650 Program Library, File No. 9-5-300, 1959.
228


46
For multiply separated positions these two expres
sions would be mixed. Now, the circular constraint
equation can be expressed as:
Q0(U2+V2) + 2Q1U + 2Q2V + Q3 = 0
For a point A on plane E whose path describes a circle
for multiply separated positions, this condition will take
the form:
g£(U,V) = dk[QQ(U2+V2) + 2Q1U + 2Q2V + Q3
dYk
= 0
(4.3)
If the zeroth position (9o=0) is subtracted, these
equations will reduce to:
G£(U,V)
%-<30 _4tQ(u2+v2"UP"V0) + 2Ql(U-U0)
dYk
(4.4)
+ 2Q2(V-Vq)]
= 0
for 2- = 1,2,3
and coefficient Q3 is eliminated.
Now, if the specifications are normalized so that
a0 = 60 = Y0 = 0/ then Uq=u and Vp=v. Substituting the
coordinate transform into (4.4):
2 2 2 2 2 2,
U +V -u -v = a +3 +u (2acosy+23siny)+v (23cosy-2ctsiny)


88
Necessary
Condition
Procedure
Case
As Synthesized:
NCPA ~NCPB* q22*
7^77 1(3
ra
NCPC
NCPB NCPA
* *
NCPA
NCPD NCPD NCPG
/* / / / ,
NCPG
me md
* *
NCPH NCPH NCPH NCPH
EZa EZb
EZc
EZd
Figure 5-9 Necessary Condition Procedures for
Four-Bar Chains


187
Module Chart 10
Name Dyad Type (Necessary Condition)
Label NDYDTYP
Description
Evaluates dyads with a syn
thesized link on the basis of
consistency of dyad type for
the 4MSP. Generates a neces
sary condition grid (1-D) in
dicating acceptable dyads.
APL Call
,,^(01) NDYDTYP (I1) (I2) (I3) '(I4) "
where:
(1^),(I^) = Pivots defining synthesized link
(1^) = Pivot defining third dyad pivot.
I. = 1 or 2, case number.
4
(Ox) = Output grid.


226
Program Chart: 12
Problem #12 Path Coordination
with Two Cranks.
Linkage Solution Watt 2
Mode of Cyclicity #6
Synthesis Procedure
Necessary Condition Procedure
1)
CURVATURE
TRANSFORM
and
PATH COGNATES to find
4 6
r
2)
INVERSION
to 1.
3)
CURVATURE
find 3#
TRANSFORM
to
1)
Necessary Condition
cedure M for 2456.
Pro-
2)
Necessary Condition
cedure B for 1234.
Pro-
3)
Verify Connection of
56 .
§ ample Progr am
Files
VPROB7WATT2MODE6
(1)
-> INITIAL
-
[2]
-*31 SYNINP
[3]
- 32 33 34 35
SCRVTRN
31
[4]
-* 36 37 38 39
SPTHCOG
31 32 33 34 35
[5]
-y
NECINP
[6]
-y
40
NCPM 31+18
[7]
-y
NECOUT 40
[8]
41
DESINP 40
[9]
->
41
DPVTLCA 41
37
39
38
36
[10]
-V
41
DLKLNRT 41
36
38
36
37
[11]
41
DLKSIZE 41
36
38
[12]
->
41
DESDYAD 41
36
37
38
39
0
0
0
2,
16
[13]
-V
DESOUT 41
[14]
- V
EXTRACT 41
[15]
-y
45
0 0 ANLZPCG
31
36
37
31
[16]
-y
44
49 SYNINP
31)
4 MSP
(4
/2)
32)
pivot
H
1
33)
pivot
D
I
34)
pivot
F
1
35)
pivot
G
1
36)
pivot
H
37)
pivot
D
38)
pivot
F
39)
pivot
G
40)
NC Gr
id
(4,
41)
DC Grid
(4,
42)
43)
44)
4MSP
(1/2)
45)
4MSP
(4/2)
46)
4 MSP
(4/1)
47)
pivot
C
48)
pivot
B
49)
pivot
A
50)
NC Gri
id
(3)
51)
NC Gri
id
(3,
52)
DC Grid
(3,



PAGE 1

08/7,3$5$0(75,& 237,0,=$7,21 2) )285%$5 $1' 6,;%$5 /,1.$*(6 %\ .,0 /25,1* 63,7=1$*(/ $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( &281&,/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

&RS\ULJKW E\ .LP /RULQJ 6SLW]QDJHO

PAGE 3

$&.12:/('*0(176 ZLVK WR H[SUHVV P\ JUDWLWXGH WR 3URIHVVRU 'HOEHUW 7HVDU IRU KLV JXLGDQFH DQG VXSSRUW WKURXJKRXW P\ JUDGXDWH VWXGLHV 0\ DFDGHPLF HQGHDYRUV KDYH EHQHILWHG PRVW IURP KLV FRQWULEXWLRQV 0XFK DSSUHFLDWLRQ LV GXH WR 'U -RKQ 0 9DQFH 'U *HRUJH 1 6DQGRU 'U 5DOSK 6HOIULGJH 'U 0DUWLQ $ (LVHQEHUJ DQG 'U 6DQMD\ 'KDQGH IRU WKHLU UHYLHZLQJ HIIRUWV VXJJHVWLRQV DQG HVSHFLDOO\ IRU WKHLU UHVSHFWLYH LQIOXHQFHV RQ P\ SURIHVVLRQDO GHYHORSPHQW DP JUDWHIXO IRU WKH VXSSRUW DQG DLG RI P\ IULHQGV DQG SHHUV SDUWLFXODUO\ 0V %DUEDUD 0LKDWRY DQG 0U -RKQ (OOLRWW DP DOVR LQGHEWHG WR 0V /RLV 5XGORII IRU KHU SDWLHQFH DQG SHUVLVWDQFH ZKLOH W\SLQJ WKLV GLVVHUWDWLRQ )LQDOO\ P\ KHDUWIHOW WKDQNV JR WR P\ IDPLO\ IRU WKHLU WROHUDQFH VXSSRUW DQG HQFRXUDJHPHQW LL L

PAGE 4

7$%/( 2) &217(176 3DJH $&.12:/('*0(176 LLL $%675$&7 YL &+$37(5 ,1752'8&7,21 ,, $ 3+,/2623+< )25 /,1.$*( '(6,*1 $1' 237,0,=$7,21 $ &RQWURO RI 3DUDPHWHUV % 7KH 2SWLPL]DWLRQ 3URFHGXUH & 3UHYLRXV 8VH RI WKH *ULG 3KLORVRSK\ ,,, 62/9$%/( 352%/(06 $ /LQNDJH 7\SHV % 0RGHV RI 5RWDWLRQDO &\FOLFLW\ & 0RWLRQ 6SHFLILFDWLRQ 7\SHV ,9 6<17+(6,6 2) /,1.$*( 62/87,216 $ 7KH )RXU 7RROV RI 6\QWKHVLV % &RRUGLQDWLRQ RI WKH 7RROV RI 6\QWKHVLV & *ULG 'LPHQVLRQV 'HSHQGHQW 6\QWKHVHV 9 7+( 1(&(66$5< &21',7,216 $ )RXU%DU 1HFHVVDU\ &RQGLWLRQV % 6L[%DU 1HFHVVDU\ &RQGLWLRQV 9, 7+( '(6,5$%/( &21',7,216 $ 7KH 'HVLUDEOH &RQGLWLRQV % 7KH 2EMHFWLYH )XQFWLRQ ,9

PAGE 5

3DJH 9,, 352*5$00,1* )25 )285%$5 $1' 6,;%$5 237,0,=$7,21 $ 3KLORVRSK\ RI 3URJUDP 0RGXODULW\ % &RQWURO RI ,QSXW2XWSXW 9,,, 5(&200(1'$7,216 $1' &21&/86,216 $ 5HFRPPHQGDWLRQV % &RQFOXVLRQV $33(1',; $ 352%/(0 7<3(6 $1' 62/87,21 /,1.$*(6 % 02'(6 2) &<&/,&,7< $1' 1(&(66$5< &21',7,21 352&('85(6 & 352*5$0 02'8/(6 6$03/( 352*5$06 %,%/,2*5$3+< %,2*5$3+,&$/ 6.(7&+ Y

PAGE 6

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 08/7,3$5$0(75,& 237,0,=$7,21 2) )285%$5 $1' 6,;%$5 /,1.$*(6 %\ .LP /RULQJ 6SLW]QDJHO 'HFHPEHU &KDLUPDQ 'HOEHUW 7HVDU 0DMRU 'HSDUWPHQW 0HFKDQLFDO (QJLQHHULQJ $Q DSSURDFK IRU IRXUEDU DQG VL[EDU OLQNDJH RSWLPL]Dn WLRQ UHODWLYH WR QXPHURXV GHVLJQ FULWHULD LV SUHVHQWHG $ OLQNDJH VROXWLRQ VHW LV V\QWKHVL]HG WKURXJK DQ DQDO\WLFDO FRPELQDWLRQ RI FXUYDWXUH WUDQVIRUP WKHRU\ LQYHUVLRQ 5REHUWnV FRJQDWHV DQG DQJXODU FRJQDWHV XQGHU WKH VSHFLILFDn WLRQ RI RQH RI WZHOYH SRVVLEOH W\SHV RI PRWLRQ VSHFLILFDWLRQ (YDOXDWLRQV DUH PDGH ILUVW RQ WKH EDVLV RI QHFHVVDU\ FRQGLn WLRQV DQG WKHQ RQ WKH EDVLV RI DVVLJQHG ZHLJKWLQJ IDFWRUV DQG GHVLJQ ]RQHV UHODWLYH WR WKH RSWLPL]DWLRQ FULWHULD 6XEVHTXHQW H[SDQVLRQV DQG UHILQHPHQWV WKURXJK UHV\QWKHVLV DERXW WKH EHVW OLQNDJHV DUH XVHG WR DSSURDFK DQ RSWLPXP VROXWLRQ 7KH GHWDLOHG GHVLJQ IRU DQ LQWHUDFWLYH FRPSXWHU SURJUDP WR LPSOHPHQW WKH DQDO\WLFV LV SUHVHQWHG DQG GLVFXVVHG 7KH YL

PAGE 7

DSSHQGLFHV LQFOXGH V\QWKHVLV SURFHGXUHV QHFHVVDU\ FRQn GLWLRQ HYDOXDWLRQV SURJUDP PRGXOH WDEOHV DQG VDPSOH SURn JUDPV YLL

PAGE 8

&+$37(5 ,1752'8&7,21 7KH OHYHO RI LQWHUHVW LQ WKH DSSOLFDWLRQ RI RSWLPL]Dn WLRQ PHWKRGV WR PHFKDQLVP GHVLJQ VHHPV WR EH ULVLQJ H[SRn QHQWLDOO\ ZLWK WKH JUHDW PDMRULW\ RI HIIRUW FRPLQJ IURP WKH SDVW GHFDGH 7KH XOWLPDWH JRDOV DUH PHDQV WR DFKLHYH PHFKDQLVP GHVLJQV ZKLFK DUH JOREDOO\ RSWLPXP UHODWLYH WR DOO SHUWLQHQW FULWHULD 6RPH HDUO\ DWWHPSWV WR RSWLPL]H ZHUH WKRVH RI GD 9LQFL f DQG 1HZWRQ f ZKR ZHUH ERWK LQYROYHG LQ VSHFLILF PHFKDQLFDO GHVLJQ SUREOHPV DQG PDGH PRGLILFDn WLRQV RI SUHYLRXV GHVLJQV LQ RUGHU WR HQKDQFH WKHLU SHUn IRUPDQFHV *DOLOHR GHYHORSHG D UDWLRQDO PHFKDQLFDO RSWLn PL]DWLRQ LQ E\ FUHDWLQJ DQ DOJRULWKP IRU WKH IRUP RI D EHQW EHDP IRU XQLIRUP VWUHQJWK 7KH DGYHQW RI WKH GLIIHUHQWLDO FDOFXOXV ZDV IXQGDPHQn WDO WR WKH GHYHORSPHQW RI PDQ\ PRGHUQ RSWLPL]DWLRQ WHFKn QLTXHV 7KH LQWURGXFWLRQ RI HOHJDQW HYDOXDWLRQV RI PD[LPD DQG PLQLPD RI GLIIHUHQWLDEOH IXQFWLRQV HOLPLQDWHG WKH QHHG IRU GLVFUHWH HYDOXDWLRQV RI WKHVH IXQFWLRQV 7KH GHYHORSPHQW RI YDULDWLRQDO WHFKQLTXHV LV ODUJHO\ FUHGLWHG WR %HUQRXOOL /DJUDQJH DQG (XOHU &KHE\VKHYnV >@ LQYROYHPHQW LQ VWUDLJKWOLQH OLQNDJH GHVLJQ OHG KLP WR GHn YHORS KLV ZHOO NQRZQ &KHE\VKHY SRO\QRPLDOV DQG RSWLPDOLW\

PAGE 9

FULWHULD ,Q &DXFK\ >@ FRQWULEXWHG WKH VWHHSHVW GHVFHQW PHWKRG 7KH *HUPDQ DQG 5XVVLDQ LQYROYHPHQW LQ PHFKDQLVP GHn VLJQ RYHU WKH SDVW WZR FHQWXULHV SURGXFHG VRPH H[WUHPHO\ VRSKLVWLFDWHG JUDSKLFDO WHFKQLTXHV IRU GHVLJQ $ JUDSKn LFDO DSSURDFK WR IRXUEDU RSWLPL]DWLRQ ZLWK UHVSHFW WR WKH WUDQVPLVVLRQ DQJOH FULWHULRQ ZDV SUHVHQWHG E\ $OW >@ LQ 7KH QH[W IXQGDPHQWDO LQIOXHQFH RQ RSWLPL]DWLRQ ZDV WKH GHYHORSPHQW RI WKH GLJLWDO FRPSXWHU 3UHYLRXVO\ LQn IHDVLEOH DSSURDFKHV WR RSWLPL]DWLRQ EHFDPH SUDFWLFDO DQG WKH ILHOGV RI PHFKDQLVP GHVLJQ DQG RSWLPL]DWLRQ ERWK FKDQJHG GLUHFWLRQV 7KH ELUWK RI PRGHUQ RSWLPL]DWLRQ FDQ SUREDEO\ EH FUHGLWHG WR WKH ZRUN RI 'DQW]LJ >@ LQ WKH HDUO\ nV ZKRVH ZRUN LQ OLQHDU SURJUDPPLQJ LQFOXGHG WKH GHYHORSPHQW RI WKH 6LPSOH[ PHWKRG ,Q 6YRERGD >@ LQWURGXFHG KLV FRPSXWDWLRQDO V\Qn WKHVLV PHWKRG RI VXFFHVVLYH DSSUR[LPDWLRQV DQG LQ /HYLWVNLL DQG 6KDNYD]LDQ >@ LQWURGXFHG D PHWKRG WR RSWLn PL]H VSDWLDO VOLGHUFUDQNV DQG FUDQNURFNHUV RQ WKH EDVLV RI D VHW RI OLQHDU HTXDWLRQV IURP D ILQLWH QXPEHU RI SUHn FLVLRQ SRLQWV 7KH ZRUN RI )UHXGHQVWHLQ >@ LQ WKH ODWWHU SDUW RI WKH nV IRUPHG WKH EDVLV IRU PRGHUQ OLQNDJH GHVLJQ SURn FHGXUHV ,Q )UHXGHQVWHLQ DQG 6DQGRU >@ XVHG DQ ,%0 DQG FRPSOH[ QXPEHU WKHRU\ WR V\QWKHVL]H SDWKJHQn HUDWLQJ PHFKDQLVPV DQG )UHXGHQVWHLQ >@ GHYHORSHG D

PAGE 10

SURFHGXUH WR RSWLPDOO\ DSSUR[LPDWH D JLYHQ IXQFWLRQ XVLQJ WKH SUHFLVLRQ SRLQWV DV GHVLJQ YDULDEOHV ,Q WKH PLG nV WKH PHFKDQLFDO GHVLJQ ILHOG EHJDQ WR IHHO WKH UHDO LPSDFW RI PRGHUQ RSWLPL]DWLRQ WKHRU\ ZKLFK LQYROYHG QXPHULFDO PHWKRGV LQLWLDOO\ GHYHORSHG WR VROYH PDQDJHPHQW VFLHQFH DQG FRQWURO V\VWHP SUREOHPV ,QLWLDO DSSOLFDWLRQ WR PHFKDQLFDO GHVLJQV ZDV SULPDULO\ LQ WKH ILHOGV RI VWUXFWXUDO PHFKDQLFV DQG DHURQDXWLFV EXW PHFKDQLVP GHVLJQ ZDV QRW IDU EHJLQG 7KH GHYHORSPHQW RI VXFK KLJK OHYHO ODQJXDJHV DV )RUWUDQ $OJRO $3/ DQG %DVLF KDYH PDGH WKH XVH RI WKH FRPSXWHU PXFK VLPSOHU PRUH HIn IHFWLYH DQG OHVV V\VWHP GHSHQGHQW IRU WKH HQJLQHHULQJ FRPn PXQLW\ $ JHQHUDO H[SUHVVLRQ IRU WKH OLQNDJH RSWLPL]DWLRQ SUREOHP LV 0LQLPL]H 2EMHFWLYH )XQFWLRQ )[f ZKHUH [ [[f [ f fL A 3 6XEMHFW WR ,QHTXDOLW\ FRQVWUDLQWV KA [f B N WR P (TXDOLW\ FRQVWUDLQWV HA[f M O WR Q $ FRQGLWLRQ IRU WKH H[LVWHQFH RI DQ RSWLPL]DWLRQ SUREn OHP LV WKDW WKH QXPEHU RI GHVLJQ SDUDPHWHUV PXVW H[FHHG WKH QXPEHU RI FRQVWUDLQLQJ HTXDWLRQV LQ RUGHU WR HQVXUH WKH H[LVWHQFH RI IUHH SDUDPHWHUV

PAGE 11

7KH REMHFWLYH IXQFWLRQ PD\ UHSUHVHQW WKH GHYLDWLRQ EHWZHHQ DFWXDO DQG LGHDO OLQNDJH SHUIRUPDQFH ZKLFK PD\ EH D PHDVXUH RI SUHVFULEHG SDWK HUURU VWUXFWXUDO HUURUf G\QDPLF LPEDODQFHV HUURU GXH WR HODVWLFLW\ RU VRPH ZHLJKWHG FRPELQDWLRQ RI HUURUV UHODWLYH WR SHUWLQHQW FULn WHULD (TXDOLW\ FRQVWUDLQWV KDYH WKH HIIHFW RI QDUURZLQJ WKH VFRSH RI WKH RSWLPL]DWLRQ SUREOHP E\ UHGXFLQJ WKH QXPEHU RI IUHH SDUDPHWHUV 7KH\ FRPPRQO\ WDNH WKH IRUP RI D V\Qn WKHVLV VWHS LQ ZKLFK D OLQNDJH VROXWLRQ VHW LV JHQHUDWHG WR VDWLVI\ SUHVFULEHG SUHFLVLRQ SRLQWV RU SRVLWLRQV ,QHTXDOLW\ FRQVWUDLQWV PD\ WDNH WKH IRUP RI GHVLJQ FRQVWUDLQWV SODFHG RQ DYDLODEOH OLQNDJH FKDUDFWHULVWLFV VXFK DV OLQN OHQJWK PD[LPD RU PLQLPD UDQJH RI DFFHSWDEOH WUDQVPLVVLRQ DQJOHV RU JHRPHWULF ERXQGV RQ SLYRW ORFDn WLRQV RU FRXSOHU PRWLRQV 7KH UDQJH RI SRVVLEOH IRUPXODWLRQV RI WKH OLQNDJH RSn WLPL]DWLRQ SUREOHP LV H[WUHPHO\ ODUJH GXH WR WKH KLJKO\ YDULDQW VHWV RI f OLQNDJH DSSOLFDWLRQV DQG f RSWLPL]Dn WLRQ FULWHULD ,W LV KLJKO\ GHVLUDEOH WR RUJDQL]H WKH DYDLODEOH DSSURDFKHV LQ RUGHU WR JHW D IHHO IRU ZKDW LV DYDLODEOH KHOS FODVVLI\ SDVW DQG SUHVHQW HIIRUWV DQG SHUKDSV HQKDQFH GHFLVLRQV LQ IXWXUH HIIRUWV )LJXUH VKRZV VXFK D UHSUHVHQWDWLRQ (VWKHWLFDOO\ D FORVHGIRUP DSSURDFK LV SUHIHUUHG IRU DQ\ SUREOHP EXW WKH LQKHUHQWO\ FRPSOH[ DQG QRQOLQHDU

PAGE 12

/,1.$*( 237,0,=$7,21 )LJXUH /LQNDJH 2SWLPL]DWLRQ 0HWKRGV

PAGE 13

OLQNDJH SUREOHP PDNHV WKH RSWLPL]DWLRQ DQDO\WLFV VRPHZKDW GLIILFXOW WR LPSOHPHQW $OJHEUDLF DSSURDFKHV JHQHUDOO\ OLPLWHG WR VPDOOVFDOH SUREOHPV DUH UDUHO\ DWWHPSWHG 6XWKHUODQG >@ KDV GHYHORSHG PL[HG H[DFWDSSUR[LPDWH SRn VLWLRQ V\QWKHVLV LQ ZKLFK VRPH SRLQWV DUH PDWFKHG H[DFWO\ XVLQJ %XUPHVWHU WKHRU\ DQG WKH REMHFWLYH IXQFWLRQ FRQn WDLQV WKH OHDVWVTXDUHV HUURU RI DSSUR[LPDWLRQ RI DGGLn WLRQDO SUHFLVLRQ SRLQWV 6ROXWLRQV WR WKH UHVXOWLQJ HTXDn WLRQV FDQ EH FORVHG IRUP RU LWHUDWLYH GHSHQGLQJ RQ WKH RUGHU RI PDJQLWXGH RI WKH SUREOHP %DJFL DQG /HH >@ %DJFL >@ DQG %KDWLD DQG %DJFL>@ KDYH GHYHORSHG DQG H[SDQGHG RQ D OLQHDU VXSHUSRVLWLRQ WHFKQLTXH LQ ZKLFK WKH HUURU RI WKH ORRSFORVXUH HTXDWLRQV RI WKH OLQNDJH V\VWHP LV PLQLPL]HG E\ SDUWLWLRQLQJ WKHVH HTXDWLRQV LQWR G\DGLF ORRS HTXDWLRQV ZKLFK DUH OLQHDU LQ WHUPV RI WKH V\VWHP XQNQRZQV 5DQGRP VHDUFKHV DUH GLUHFW DQG VRPHZKDW H[KDXVWLYH JHQHUDOO\ HQFRPSDVVLQJ D V\QWKHVLV VWHS WR JHQHUDWH D ODUJH UHSUHVHQWDWLRQ RI D OLQNDJH VROXWLRQ VHW IRU D SDUn WLFXODU SUREOHP DQG WKHQ D UDWLQJ DQG VRUWLQJ VWHS WR ORFDWH WKH EHVW OLQNDJH ZLWKLQ WKLV VHW $V HDUO\ DV 5RWK 6DQGRU DQG )UHXGHQVWHLQ >@ XVHG WKLV DSSURDFK E\ JHQHUDWLQJ IRXUEDU OLQNDJHV VDWLVI\LQJ SDWK VSHFLILFDn WLRQV DQG WKHQ UDWLQJ WKHP DFFRUGLQJ WR VRPH GHVLJQ FULWHULD SULPDULO\ WUDQVPLVVLRQ DQJOHf /DWHU 1ROOH >@ XVHG D UDQGRP VHDUFK IRU IXQFWLRQ JHQHUDWLQJ OLQNDJHV ,Q

PAGE 14

7RPDV >@ GLVFXVVHG WKH WUHDWPHQW RI OLQNDJH V\Qn WKHVLV DV D QRQOLQHDU SURJUDPPLQJ SUREOHP DQG HPSOR\HG WKH RSWLPL]DWLRQ UDQGRPVHDUFK PHWKRG RI *DUUHWW DQG +DOO >@ (VFKHQEDFK DQG 7HVDU >@ JHQHUDWHG D ODUJH VHW RI OLQNDJHV FRPSXWDWLRQDOO\ DQG WKHQ UDQNHG WKHP DFFRUGLQJ WR QXPHURXV GHVLJQ FULWHULD WKH ODWWHU PDNLQJ XVH RI OLPLW GHVLJQ ]RQHV DQG GHVLJQ FULWHULRQ ZHLJKWV 7ZR DQG WKUHH IXQFWLRQ SUREOHPV DUH KDQGOHG XQGHU WKH FRQVLGHUDWLRQ RI WHQ WR WZHOYH FULWHULD DFWLQJ DV VHTXHQWLDO ILOWHUV (LVHQVWHLQ DQG +DOO >@ DSSURDFKHG WKH RSWLPL]DWLRQ RI WZRGHJUHHRIIUHHGRP IXQFWLRQ JHQHUn DWRUV E\ JHQHUDWLQJ D VPDOO QXPEHU RI JRRG GHVLJQV DQG WKHQ JHQHUDWLQJ OLQNDJHV DURXQG WKHVH WR ILQG D EHVW GHVLJQ 6SKHULFDO IRXUEDU SDWK JHQHUDWRUV DUH KDQGOHG E\ 6ULGKHU DQG 7RUIDVRQ >@ ZKR V\QWKHVL]H RQ IRXU SUHn FLVLRQ SRLQWV DQG WKHQ VHDUFK IRU WKH OLQNDJH ZKLFK PLQn LPL]HV WKH PD[LPXP GHYLDWLRQ IURP WKH SUHVFULEHG SDWK EHn WZHHQ WKH SUHFLVLRQ SRLQWV XVLQJ D UDQGRP VHTXHQWLDO VHDUFK 7KH DXWKRU >@ DQG WKH DXWKRU DQG 7HVDU >@ KDYH JULG UHILQHPHQW WHFKQLTXH IRU IRXUEDUV ZKLFK LQn YROYHV JHQHUDWLQJ WZRGLPHQVLRQDO GLVFUHWH UHSUHVHQWDn WLRQV RI WKH VROXWLRQ VHW IRU IRXU FRSODQDU SRVLWLRQV UDQNLQJ RU HOLPLQDWLQJ WKHVH XVLQJ D ZHLJKWHG GHVLJQ FULn WHULD IRUPXODWLRQ DQG WKHQ UHVWDUWLQJ E\ JHQHUDWLQJ D QHZ JULG LQ WKH PRVW IDYRUDEOH UHJLRQ 0RVW RI WKH SUHn YLRXVO\ PHQWLRQHG DSSURDFKHV DV ZHOO DV WKH LWHUDWLYH PHWKRGV FDQ JXDUDQWHH WUXH JOREDO RSWLPL]DWLRQ IRU FRQYH[ IXQFWLRQV RQO\ UDUHO\ WKH FDVH LQ D OLQNDJH SUREOHP

PAGE 15

%\ IDU PRVW RI WKH HPSKDVLV LQ OLQNDJH RSWLPL]DWLRQ KDV EHHQ WRZDUGV WKH LWHUDWLYH PHWKRGV 7KHVH PHWKRGV LQn YROYH PDWKHPDWLFDO RU QXPHULFDOf SURJUDPPLQJ WHFKQLTXHV ZKLFK PD\ EH LQ RUGHU RI LQFUHDVLQJ FRPSOH[LW\f OLQHDU TXDGUDWLF JHRPHWULF RU G\QDPLF 0DQ\ WHFKQLTXHV H[LVW )LJXUH VKRZLQJ RQO\ WKRVH XVHG PRUH FRPPRQO\ LQ OLQNDJH DSSOLFDWLRQV &RQVWUDLQHG PLQLPL]DWLRQ WHFKQLTXHV LQYROYH PLQLPL]Dn WLRQ RI WKH REMHFWLYH IXQFWLRQ LQ WKH DEVHQFH RI LQHTXDOLW\ FRQVWUDLQWV DQG DUH JHQHUDOO\ EDVHG RQ D VWHSSLQJ LWHUDn WLRQ ZKHUH HDFK QHZ VWHS LV D IXQFWLRQ RI WKH ORFDWLRQ RI WKH ROG VWHS DQG VRPH IRUPXODWLRQ RI D QHZ GLUHFWLRQ DQG VWHS VL]H 7KH PHWKRGV RI 3RZHOO >@ LQYROYH XQLGLUHFWLRQDO RUWKRJRQDO VHDUFKHV WR ILQG ORFDO PLQLPD IRU HDFK LWHUDn WLRQ ,W LV PRVW DSSOLFDEOH IRU SUREOHPV ZLWK QRQGLI IHUHQWLDEOH REMHFWLYH IXQFWLRQV 6XK DQG 0HFNOHQEXUJ >@ KDYH XVHG 3RZHOOnV PHWKRG WR RSHUDWH RQ PDWUL[GHULYHG REMHFWLYH IXQFWLRQV DQG FRQVWUDLQWV IRU VSDWLDO PHFKDQLVPV 7KH FRQMXJDWH JUDGLHQW WHFKQLTXH EHDUV VRPH UHVHPEODQFH WR &DXFK\nV VWHHSHVW GHVFHQW PHWKRG EXW LV PXFK PRUH HIn ILFLHQW 8QIRUWXQDWHO\ FRQYHUJHQFH GHJUDGHV DV WKH RSn WLPD DUH UHDFKHG RU ZKHQ WKH REMHFWLYH IXQFWLRQ KDV FRPSOLn FDWHG IHDWXUHV RU ULGJHV )OHWFKHU DQG 5HHYHV >@ LQn WURGXFHG WKLV PHWKRG LQ DQG ODWHU 5HHV -RQHV DQG 5RRQH\ >@ HPSOR\HG WKLV PHWKRG IRU PRWLRQ DQDO\VLV XVLQJ

PAGE 16

DQ DQDORJ FRPSXWHU 1HFK/ >@ DOVR XVHG DQ DQDORJ VLPXODn WLRQ XVLQJ D FRPELQHG UHOD[DWLRQ DQG JUDGLHQW PRGLILFDn WLRQ RI WKH FRQMXJDWH JUDGLHQW DSSURDFK WR FLUFXPYHQW WKH SUREOHP RI LQVWDELOLW\ QHDU WKH RSWLPXP 6L[EDU IXQFn WLRQ JHQHUDWRUV ZHUH RSWLPL]HG E\ &KHQ DQG 'DOVDQLD >@ E\ DSSO\LQJ D OHDVWVTXDUHV JUDGLHQW PHWKRG 1HZWRQnV PHWKRG LQ LWV XQPRGLILHG IRUP LV QRW RIWHQ XVHG IRU OLQNDJH SUREOHPV ODUJHO\ GXH WR GLIILFXOWLHV DVn VRFLDWHG ZLWK WKH VHOHFWLRQ RI LQLWLDO JXHVVHV 2QH DSSOLn FDWLRQ IRU WKLV PHWKRG ZDV IRXQG E\ 5RVH DQG 6DQGRU >@ ZKR PLQLPL]H VWUXFWXUDO HUURU RI IRXUEDU IXQFWLRQ JHQHUDn WRUV E\ HTXDOL]LQJ HUURU EHWZHHQ SUHFLVLRQ SRLQWV DQG DW WKH HQGV RI WKH VSHFLILHG UDQJH 7KH UHVXOWLQJ IRUPXODWLRQ SURGXFHV WHQ QRQOLQHDU GLIIHUHQWLDO HTXDWLRQV WR ZKLFK 1HZWRQnV PHWKRG LV DSSOLHG WR ILQG D VROXWLRQ 7KH VRFDOOHG TXDVL1HZWRQ PHWKRG DOVR FDOOHG WKH YDULDEOH PHWULF PHWKRG LV EDVLFDOO\ D JUDGLHQW WHFKn QLTXH ZKLFK LQYROYHV WKH IRUPXODWLRQ RI D GLIIHUHQWLDO PDn WUL[ ZKLFK DSSUR[LPDWHV WKH +HVVLDQ DV WKH PLQLPXP LV UHDFKHG 'DYLGVRQ )OHWFKHU DQG 3RZHOO >@ LQWURGXFHG WKLV PHWKRG LQ DQG 0FODLQH&URVV >@ XVHG LW LQ WR RSWLPL]H D FUDQNURFNHU IRXUEDU WR JHQHUDWH VRODU GHFOLQDWLRQ 7KLV IRUPXODWLRQ ZKLFK LQYROYHG ILYH QRQn OLQHDU GLIIHUHQWLDO HTXDWLRQV DOORZHG IRU VRPH HUURU WROHUDQFH DW WKH SUHFLVLRQ SRLQWV 2SWLPL]DWLRQ RI PHFKn DQLVPV ZLWK IOH[LEOH OLQNV ZDV GLVFXVVHG E\ 6HYDN DQG

PAGE 17

0F/DUQDQ >@ E\ XVLQJ WKH YDULDEOH PHWULF &RQWH *HRUJH 0D\QH DQG 6DGOHU >@ RSWLPL]HG ZLWK UHVSHFW WR G\QDPLF FULWHULD VXFK DV VKDNLQJ IRUFH LQSXW WRUTXH IOXFn WXDWLRQ VKDNLQJ PRPHQW DQG EHDULQJ UHDFWLRQV XVLQJ D SHQDOW\ IXQFWLRQ LQ FRQMXQFWLRQ ZLWK WKH YDULDEOH PHWULF $ IRXUWK XQFRQVWUDLQHG PLQLPL]DWLRQ DSSURDFK WKH 1HZWRQ5DSKVRQ PHWKRG LV YHU\ HIILFLHQW LQ WHUPV RI FRQn YHUJHQFH EXW UHTXLUHV IRUPXODWLRQ RI WKH +HVVLDQ RI WKH REMHFWLYH IXQFWLRQ DW HDFK LWHUDWLRQ VWHS +DQ >@ XVHG WKLV PHWKRG LQ IRU JHQHUDO PHFKDQLVP RSWLPL]DWLRQ $OO RI WKH XQFRQVWUDLQHG PLQLPL]DWLRQ IRUPXODWLRQV H[FHSW IRU 3RZHOOnV PHWKRG UHTXLUH HYDOXDWLRQ RI WKH REn MHFWLYH IXQFWLRQnV GLIIHUHQWLDO EXW ILQLWH GLIIHUHQFH PHWKRGV DUH JHQHUDOO\ DSSOLFDEOH 7KH VHFRQG FODVV RI LWHUDWLYH PHWKRGV DUH WKH FRQn VWUDLQHG PHWKRGV XVLQJ XQFRQVWUDLQHG PLQLPL]DWLRQ *HQn HUDOO\ WKLV PHDQV VRPH PRGLILFDWLRQ LV PDGH WR DQ XQFRQn VWUDLQHG PLQLPL]DWLRQ WHFKQLTXH WR DOORZ WKH LQFOXVLRQ RI LQHTXDOLW\ FRQVWUDLQWV 2QH DSSURDFK LV D VLPSOH FKDQJH RI YDULDEOH ZKLFK ZLOO LQKHUHQWO\ GLVDOORZ YLRODWLRQ RI VSHFLILHG LQHTXDOLWLHV EXW OLQNDJH SUREOHPV DUH XVXDOO\ WRR FRPSOH[ IRU WKLV DSSURDFK 3HQDOW\ IXQFWLRQV DUH RIWHQ XVHG WR DSSO\ FRQVWUDLQWV WR XQFRQVWUDLQHG PLQLPL]DWLRQ WHFKQLTXHV 7KH LQWHULRU SHQDOW\ IXQFWLRQ LQWURGXFHG E\ )LDFFR DQG 0F&RUPLFN >@ KDV UHFHLYHG TXLWH D ORW RI DWWHQWLRQ UHFHQWO\ ,W LV

PAGE 18

VRPHWLPHV FDOOHG WKH 6HTXHQFH RI 8QFRQVWUDLQHG 0LQLPL]DWLRQ 7HFKQLTXH 6807f )R[ DQG :LOOPHUW >@ XVHG WKLV WHFKn QLTXH WR RSWLPL]H D IRXUEDU SDWKJHQHUDWLQJ OLQNDJH XVLQJ D OHDVWVTXDUHV HUURU DSSURDFK 7UDQTXLOOD >@ XVHG WKLV PHWKRG WR RSWLPL]H D IRXUEDU XQGHU WKH JHRPHWULF FRXSOHU SRLQW FRQVWUDLQWV 6SDWLDO PHFKDQLVPV ZHUH FRQVLGHUHG E\ *XSWD >@ ZLWK FRQVWUDLQWV RQ FORVXUH PRELOLW\ DQG WUDQV PLVVDELOLW\ %DNWKDYDFKDOD DQG .LPEUHOO >@ FRQVLGHUHG IRXUEDU SDWK JHQHUDWRU RSWLPL]DWLRQ XQGHU FOHDUDQFH WROHUDQFH WUDQVPLVVLRQ DQJOH DQG OLQN VL]H FRQVLGHUDn WLRQV &RQWH *HRUJH 0D\QH DQG 6DGOHU >@ XVHG WKH 6807 IRU RSWLPL]DWLRQ ZLWK UHVSHFW WR G\QDPLF FULWHULD $OL]DGH 0RKDQ 5DR DQG 6DQGRU >@ KDYH FRQVLGHUHG RSWLPL]DWLRQ ZLWK UHVSHFW WR VWUXFWXUDO HUURU IRU WZRGHJUHHRIIUHHGRP VSDWLDO IXQFWLRQ JHQHUDWRUV DQG RIIVHW VOLGHUFUDQN SDWK JHQHUDWRUV $OL]DGH 1RYUX]EHNRY DQG 6DQGRU >@ WKHQ ZHQW RQ WR IRXUEDU IXQFWLRQ JHQHUDWRUV ZLWK FRQVLGHUDWLRQ RI OLQN OHQJWK DQG WUDQVPLVVLRQ DQJOH LQHTXDOLW\ FRQn VWUDLQWV .UDPHU DQG 6DQGRU >@ DQG .UDPHU >@ LQWURn GXFHG WKH XVH RI D QHZ W\SH RI DSSUR[LPDWH PRWLRQ VSHFLILFDn WLRQ LQ FRQMXQFWLRQ ZLWK DQ LQWHULRU SHQDOW\ IXQFWLRQ LQ RUGHU WR RSWLPDOO\ DSSUR[LPDWH D VSHFLILHG PRWLRQ 0DULDQWH DQG :LOOPHUW >@ XVHG WKH LQWHULRU SHQDOW\ IXQFn WLRQ WR V\QWKHVL]H DQG RSWLPL]H D FRPSOH[ FRQYHUWLEOH WRS OLQNDJH 'LUHFW PHWKRGV DQG OLQHDUL]DWLRQ PHWKRGV DUH XVHG WR

PAGE 19

GHDO H[SOLFLWO\ ZLWK LQHTXDOLW\ FRQVWUDLQWV 7KLV JURXS LQn FOXGHV WKH PHWKRG RI IHDVLEOH GLUHFWLRQV LQWURGXFHG E\ =RXWHQ GLMN WKH JUDGLHQW SURMHFWLRQ PHWKRG DQG WKH H[WHQVLRQV RI 'DQW]LJnV VLPSOH[ PHWKRG )LHOGLQJ DQG =DQLQL >@ KDYH GLVFXVVHG WKH XVH RI PRGLILHG 6LPSOH[ PHWKRGV DQG FRQVLGn HUHG WKH RSWLPL]DWLRQ RI DQ LQGXVWULDO SDFNDJLQJ PDFKLQH $OVR @ KDYH XVHG WKH PRGn LILHG 6LPSOH[ WR RSWLPL]H PXOWLORRS OLQNDJHV ZLWK UHVSHFW WR SDWK HUURU OLQN OHQJWK DQG WUDQVPLVVLRQ DQJOH 7KH XVH RI YDULDWLRQDO PHWKRGV IRU OLQNDJH SUREOHPV FDQ EH WUDFHG EDFN WR WKH HDUO\ ZRUN RI )UHXGHQVWHLQ >@ ZKLFK ODWHU UHFHLYHG DWWHQWLRQ IURP 0F/DUQDQ >@ ZKR DWn WHPSWV WR PLQLPL]H VWUXFWXUDO HUURU E\ UHTXLULQJ WKH GHULYDWLYHV DW WKH SUHFLVLRQ SRVLWLRQV WR EH ]HUR +XDQJ 6HEHVWD DQG 6RQL >@ DQG 3UDVDG DQG %DJFL >@ KDYH KDG PRUH UHFHQW DSSOLFDWLRQV RI YDULDWLRQDO PHWKRGV 2WKHU LWHUDWLYH PHWKRGV KDYH EHHQ LQWURGXFHG E\ +XDQJ >@ ZKR LQWURGXFHV WKH FRQFHSW RI VHQVLWLYLW\ FRHIILn FLHQWV DQG /HH DQG )UHXGHQVWHLQ >@ DQG 'DWVHULV DQG )UHXGHQVWHLQ >@ ZKR GHYHORS WKH DSSOLFDWLRQ RI /LQnV KHXULVWLF PHWKRG RULJLQDOO\ GHYHORSHG IRU WKH FRPPXQLFDn WLRQV ILHOGf WR PHFKDQLVP RSWLPL]DWLRQ 0RUDGL DQG 3DSSDV >@ KDYH GHYHORSHG D ERXQGDU\ WUDFNLQJ DOJRULWKP IRU JHQHUDO PDWKHPDWLFDO SURJUDPPLQJ SUREOHPV 0RVW RI WKH SDSHUV GLVFXVVHG VR IDU KDYH GHDOW SULn PDULO\ ZLWK RSWLPL]DWLRQ ZLWK UHVSHFW WR PRWLRQ HUURU ,I

PAGE 20

DQRWKHU FULWHULRQ LV WR EH FRQVLGHUHG LW LV JHQHUDOO\ UHODWHG WR WUDQVPLVVLRQ DQJOH /LQ >@ +DPLG DQG 6RQL >@ 6KRXS 6WDIIHU DQG :HDWKHUIRUG >@ )UHXGHQVWHLQ DQG 3ULPURVH >@ 6XWKHUODQG DQG 5RWK >@ %DJFL >@ DQG 6DYDJH DQG 6XFKRUD >@ KDYH DOO GHDOW ZLWK RSWLPL]Dn WLRQ UHODWLYH WR WUDQVPLVVLRQ DQJOH 2SWLPL]DWLRQ ZLWK UHVSHFW WR G\QDPLF FULWHULD LV DOVR D ILHOG RI LQWHUHVW ZLWK FRQWULEXWLRQV FRPLQJ IURP 7RPDV >@ %HQHGLFW DQG 7HVDU >@ %HUNRI DQG /RZHQ >@ &RQWH *HRUJH 0D\QH DQG 6DGOHU >@ 7HSSHU DQG /RZHQ >@ 6DGOHU >@ (OOLRW DQG 7HVDU >@ DQG 6DQGOHU >@ 2SWLPL]DWLRQ RI PRUH JHQHUDO PHFKDQLFDO V\VWHPV VXFK DV SODQHWDU\ JHDU UHGXFHUV DQG D VKDSLQJ PHFKDQLVP DUH GLVFXVVHG E\ *ROLQVNL >@ DQG 2VPDQ 6DQNDU DQG 'XNNLSDWL >@ KDYH WUHDWHG RSWLPL]DWLRQ RI WUDQVPLVVLRQ JHDUV 2SWLPL]DWLRQ XVLQJ WKH OHDVWVTXDUHV PHWKRG RI *DXVV KDV EHHQ GRQH E\ &KL@ DQG 0DQVRXU DQG 2VPDQ >@ ,Q %DJFL DQG 3UDVDG >@ DQG %DJFL DQG 3DUHNK >@ GHDOW ZLWK RSWLPL]DWLRQ VFKHPHV IRU FRSODQDU DQG VSKHULFDO IRXUEDU DQG VL[EDUV XVHG IRU ULJLG ERG\ JXLGDQFH 6SHFNKDUW >@ XVHG PLQLPXP ZHLJKW DQG WKH FRVW FULWHULRQ DV KLV REMHFWLYH IXQFWLRQ .KDQ 7KRUQWRQ DQG :LOOPHUW KDYH GHYHORSHG RSWLPDOLW\ FULWHULRQ WHFKQLTXHV IRU PLQLPL]LQJ ZHLJKW LQ OLQNDJHV VXEMHFW WR UHVWULFWLRQV LQ VWUHVV DQG QDWXUDO IUHTXHQF\ >@ DQG VWUHVV DQG GHIRUPDWLRQ >@ 5DR DQG $PEHNDU >@ RSn WLPL]HG VSKHULFDO 5555 IXQFWLRQ JHQHUDWRUV DQG 6DOODP DQG

PAGE 21

/LQGKROP >@ RSWLPL]HG VL[EDU :DWW IXQFWLRQ JHQHUDWRUV +REVRQ DQG 7RUIVRQ >@ LQWURGXFHG D WKHRUHWLFDO PHWKRG ZKLFK LQYROYHV DQDO\VLV RI WKH FHQWURGHV RI VSHFLILHG PRWLRQ *UDSKLF V\QWKHVLV DQG DQDO\VLV SDFNDJHV KDYH EHHQ GHn YHORSHG DQG EHDU VRPH FRQVLGHUDWLRQ LQ DQ\ GLVFXVVLRQ RI OLQNDJH RSWLPL]DWLRQ GXH WR WKHLU KLJK OHYHO RI KXPDQ FRPSXWHU LQWHUDFWLRQ ZKLFK DOORZV FRQYHQLHQW DGMXVWPHQW RI UHSUHVHQWDWLRQV RI JRRG GHVLJQV WR DFKLHYH EHWWHU GHVLJQV 5HHG DQG *DUUHWW >@ DQG 6PLWK DQG 5HHG >@ KDYH LQWURGXFHG ,0$*( ,QWHUDFWLYH 0HFKDQLVP $QDO\VLV WKURXJK *UDSKLF ([FKDQJHf DQG 5LFFL >@ KDV LQWURGXFHG 63$&(%$5 3HUKDSV WKH PRVW SRZHUIXO LV .,16<1 ,,, LQWURn GXFHG E\ 5XEHO DQG .DXIPDQ >@ $OO RI WKHVH HPSOR\ KLJKOHYHO JUDSKLFV FRXSOHG ZLWK OLQNDJH V\QWKHVLV DQG DQDO\VLV URXWLQHV 7KH OLQNDJH RSWLPL]DWLRQ SUREOHP KDV EHHQ GLVFXVVHG RQ D SKLORVRSKLFDO OHYHO E\ -RKQVRQ >@ ZKR GLVFXVVHV VWLPXODQWV DQG DLGV IRU FUHDWLYLW\ VXFK DV D EXLOGLQJ EORFN DSSURDFK DQG V\VWHPDWLFV RI OLQNDJHV DQG FLUFXLW GLDJUDPV 6ULYDVWDYD DQG 1HZFRPEH >@ LQWURGXFH D PXOWLn IDFWRU REMHFWLYH IXQFWLRQ LQFOXGLQJ VXFK WKLQJV DV SLYRW ORFDWLRQ EHDULQJ ORDG OLPLWDWLRQV GLVSODFHPHQW YHORFLW\ RU DFFHOHUDWLRQ FRQVWUDLQWV DQG *UDVKRI FRQVWUDLQWV 6XWKHUODQG DQG 6LGGDOO >@ DOVR XVH D PXOWLIDFWRU REMHFn WLYH IXQFWLRQ ZLWK LQYHUVH XWLOLFV IRU VSKHULFDO IXQFWLRQ

PAGE 22

DQG SDWK JHQHUDWRUV )R[ >@ GHVFULEHV WKH VWDWH RI WKH DUW RI PDWKHPDWLFDO SURJUDPPLQJ DV DSSOLHG WR WKH RSWLPL]D WLRQ RI PHFKDQLFDO FRPSRQHQWV VXFK DV VSULQJV VKDIWV DQG EHDULQJV 2GHUIHOG >@ 6WDUU >@ DQG &KRKDQ >@ KDYH DOO SUHVHQWHG SKLORVRSKLFDO GLVFXVVLRQV RI RSWLPL]DWLRQ RI PHFKDQLVPV ZLWK UHVSHFW WR PXOWLSOH SDUDPHWHUV ZLWK HPSKD VLV RQ RUGHULQJ RI GHVLJQ SULRULWLHV 2WKHU OLWHUDWXUH VXUYH\V GHDOLQJ ZLWK PHFKDQLVP RSn WLPL]DWLRQ KDYH EHHQ SUHVHQWHG LQ FKURQRORJLFDO RUGHUf E\ /LQGKROP >@ 6HLUHJ >@ )R[ DQG *XSWD >@ &KHQ >@ DQG 5RRW DQG 5DJVGHOO >@ 7KH SKLORVRSKLFDO SDSHUV >@ HIIHFWLYHO\ SRLQW WKH ZD\ WRZDUGV WKH IXWXUH $ PDMRU FRQFHUQ LQYROYHV PHWKRGV RI DFKLHYLQJ JOREDOO\ RSWLPDO PHFKDQLVP GHVLJQV ZKLFK DFFRPRGDWH FRQIOLFWLQJ GHVLJQ UHTXLUHPHQWV 1HDUO\ DOO RI WKH PHFKDQLVP RSWLPL]DWLRQ VFKHPHV WR GDWH RSWLPL]H ZLWK UHVSHFW WR RQH RU WZR SDUDPHWHUV $Q HQRUPRXV VSHFn WUXP RI PHFKDQLVP DSSOLFDWLRQV H[LVW DQG D ODUJH QXPEHU RI FULWHULD E\ ZKLFK WKH RYHUDOO TXDOLW\ RI PHFKDQLVP VROXWLRQ PXVW EH HYDOXDWHG DOVR H[LVWV 7R WKH GHVLJQ HQJLn QHHU ZKR PXVW EH FRQFHUQHG ZLWK D PHFKDQLVPnV WRWDO IXQFn WLRQDOLW\ WUXH PHFKDQLVP RSWLPL]DWLRQ PXVW LQYROYH D VLJn QLILFDQW QXPEHU RI WKHVH SDUDPHWHUV

PAGE 23

&+$37(5 ,, $ 3+,/2623+< )25 /,1.$*( '(6,*1 $1' 237,0,=$7,21 $ &RQWURO RI 3DUDPHWHUV ,Q DQ\ RSWLPL]DWLRQ SURFHVV FRQWURO RI WKH QXPEHU RI IUHH SDUDPHWHUV LV D SULPDU\ FRQVLGHUDWLRQ IRU OLQNDJH SUREOHPV ZKHUH GHVLUHG PRWLRQV DUH VSHFLILHG DW D ILQLWH QXPEHU RI SUHFLVLRQ SRVLWLRQV WKH QXPEHU RI IUHH SDUDPn HWHUV LV GHWHUPLQHG E\ WKH VLPSOH UHODWLRQ S T )e ZKHUH S QXPEHU RI IUHH RSWLPL]Dn WLRQf SDUDPHWHUV T QXPEHU RI SDUDPHWHUV SUR YLGHG E\ D VROXWLRQ OLQNDJH e QXPEHU RI SUHFLVLRQ SRVLn WLRQV e ) QXPEHU RI IXQFWLRQDO UHODWLRQV GHILQLQJ HDFK SUHFLVLRQ SRVLWLRQ ZKLFK VWDWHV WKDW WKH QXPEHU RI IUHH SDUDPHWHUV DIWHU V\QWKHVLV HTXDOV WKH QXPEHU RI SDUDPHWHUV SURYLGHG E\ WKH VROXWLRQ OLQNDJH PLQXV WKH QXPEHU RI SDUDPHWHUV XVHG WR VDWLVI\ WKH SUHFLVLRQ SRVLWLRQV )RU D JLYHQ PRWLRQ

PAGE 24

VSHFLILFDWLRQ W\SH ZKLFK GHILQHV )f RQH VKRXOG FUHDWH D EDODQFH EHWZHHQ VROXWLRQ OLQNDJH W\SH ZKLFK GHILQHV Tf DQG QXPEHU RI SUHFLVLRQ SRVLWLRQV ZKLFK GHILQHV Df LQ RUGHU WR GHVFULEH DGHTXDWHO\ WKH GHVLUHG PRWLRQ DQG VWLOO OHDYH DQ DFFHSWDEOH QXPEHU RI IUHH SDUDPHWHUV IRU RSWLPLn ]DWLRQ EHWZHHQ RQH DQG WKUHH IUHH SDUDPHWHUV LV GHVLUDEOHf 1DWXUDOO\ WKHUH LV QR JXDUDQWHH WKDW D GHVLJQ SURn FHGXUH ZLOO H[LVW IRU HYHU\ FRPELQDWLRQ RI T) DQG L )RU H[DPSOH RQH FDQQRW H[SHFW WR VDWLVI\ D ODUJH QXPEHU RI SUHFLVLRQ SRVLWLRQV VLPSO\ E\ XVLQJ D VXIILFLHQWO\ FRPSOH[ OLQNDJH ,Q WKLV ZRUN WZHOYH W\SHV RI PRWLRQ DUH FRQVLGHUHG DQG IRU HDFK RI WKHVH DW IRXU VSHFLILHG SRVLWLRQV DQ DFn FHSWDEOH QXPEHU RI IUHH SDUDPHWHUV LV JHQHUDWHG E\ XVLQJ HLWKHU D IRXUEDU OLQNDJH RU RQH RI WKH VL[EDU OLQNDJHV 7KH V\QWKHVLV SURFHGXUHV IRU WKH VROXWLRQ OLQNDJHV DUH ZHOO NQRZQ DQG KDYH EHHQ FROOHFWHG DQG RUJDQL]HG E\ 7HVDU >@ % 7KH 2SWLPL]DWLRQ 3URFHGXUH $ V\QWKHVLV DQDO\VLV DQG UHV\QWKHVLV ORRS LV VXIn ILFLHQW DV D EDVLV IRU RSWLPL]DWLRQ DQG JHQHUDOO\ DOORZV RQH WR WDNH DGYDQWDJH RI WKH NQRZOHGJH DQG LQVLJKW SURn YLGHG E\ NLQHPDWLF V\QWKHVLV WHFKQLTXHV XQOLNH WKH PRUH ULJLG DQG IRUFHIXO QXPHULFDO DSSURDFKHV 7KH V\QWKHVLV

PAGE 25

DQDO\VLVUHV\QWKHVLV ORRS WR EH XVHG IRU WKLV ZRUN LV VKRZQ LQ )LJXUH 7KH LQSXW WR WKH V\QWKHVLV VWHS LV WKH SUHFLVLRQ SRVLWLRQ GHVFULSWLRQ RI WKH GHVLUHG PRWLRQ KHUHDIWHU WHUPHG WKH PRWLRQ VSHFLILFDWLRQ VHW $ VHTXHQFH RI NLQHPDWLF V\QWKHVLV DOJRULWKPV ZLOO SURGXFH WKH RXWSXW D VROXWLRQ VHW RI OLQNDJHV RI PDJQLWXGH RU GHSHQGLQJ XSRQ T ) DQG e IRU WKH SDUWLFXODU SUREOHPf 8QIRUWXQDWHO\ WKH DQDO\WLFV XVHG LQ WKH V\QWKHVLV SURFHVV DUH QRW VXIILFLHQW WR JXDUDQWHH WKDW DOO RU LQGHHG DQ\f RI WKH JHQHUDWHG OLQNDJHV ZLOO VDWLVI\ WKH VSHFLILHG PRWLRQ ZLWKRXW IDOOLQJ LQWR RQH RU PRUH RI D QXPEHU RI SK\VLFDO SLWIDOOV RI UHDO OLQNDJHV DQ\ RQH RI ZKLFK FDQ PDNH D OLQNDJH XVHOHVV DV D VROXWLRQ WR WKH VSHFLILHG SUREOHP )RU WKLV UHDVRQ D QHFHVVDU\ FRQGLn WLRQ VWHS LV UHTXLUHG 7KH QHFHVVDU\ FRQGLWLRQV GHSHQG XSRQ WKH PRWLRQ VSHFLILFDWLRQ W\SH WKH OLQNDJH VROXWLRQ W\SH DQG WKH PHDQV E\ ZKLFK WKH OLQNDJH LV GULYHQ 7KH OLQNDJH VROXWLRQ VHW LV PDSSHG RQWR OLQHDU GLPHQVLRQDOf UHFWDQJXODU GLPHQVLRQDOf RU FXELF GLPHQVLRQDOf VSDFHV GHSHQGLQJ XSRQ WKH PDJQLWXGH RI WKH VROXWLRQ VHW VSDFH 7KHVH UHSUHVHQWDWLRQV WHUPHG JULGV GXH WR WKHLU GLVFUHWH DUUD\HG QDWXUH IRUP WKH RSHUDWLQJ HQYLURQPHQW IRU DOO VXEVHTXHQW RSWLPL]DWLRQ SURFHGXUHV 7KURXJK HYDOXDWLRQ RI DSSURSULDWH QHFHVVDU\ FRQGLWLRQV SRUWLRQV RI WKH JULG UHSUHVHQWLQJ DFFHSWDEOH OLQNDJH VROXWLRQV DUH GHWHUPLQHG DQG SUHVHQWHG WR WKH GHVLJQHU

PAGE 26

kk k kkkk 1HFHVVDU\ &RQGLWLRQV kfkfk 'HVLUDEOH &RQGLWLRQV )LJXUH 7KH FRPSXWDWLRQDO VWHSV RI D 6\QWKHVLV$QDO\VLV 5HV\QWKHVLV /LQNDJH RSWLPL]DWLRQ

PAGE 27

7KH WKLUG VWHS HYDOXDWLRQ RI GHVLUDEOH FRQGLWLRQV LV ZKHUH WKH TXDOLW\ RI WKH VXUYLYLQJ VROXWLRQ OLQNDJHV LV GHWHUPLQHG E\ WKH XVHUGHILQHG REMHFWLYH IXQFWLRQ $ GHVLUDEOH FRQGLWLRQ FDQ EH DQ\ FULWHULRQ E\ ZKLFK D GHVLJQHU PLJKW TXDOLWDWLYHO\ MXGJH D OLQNDJH 7KH JULG LV SDVVHG WKURXJK WKHVH GHVLUDEOH FRQGLWLRQV VHTXHQWLDOO\ DQG IRU HDFK RQH JULG WRSRORJ\ LV UHHYDOXDWHG 7KLV SURFHGXUH LV NQRZQ DV VHTXHQWLDO ILOWHULQJ 6RPH OLQNn DJHV PD\ SHUIRUP VR SRRUO\ UHODWLYH WR RQH RU PRUH RI WKHVH FULWHULD DV WR EH XQDFFHSWDEOH DQG ZLOO WKHUHn IRUH EH UHMHFWHG 7KH UHVXOW LV D JULG RI VROXWLRQ OLQNDJHV LQ ZKLFK D SRUWLRQ RU SRUWLRQV FRQWDLQ DFFHSWDEOH OLQNDJHV ZLWK VFRUHV LQGLFDWLQJ UHODWLYH RYHUDOO TXDOLW\ & 3UHYLRXV 8VH RI WKH *ULG 3KLORVRSK\ 7KH RSWLPL]DWLRQ SKLORVRSK\ HPSOR\LQJ VHTXHQWLDO ILOn WHULQJ ZDV ILUVW LPSOHPHQWHG E\ FRPSXWHU E\ (VFKHQEDFK DQG 7HVDU >@ LQ IRU FUDQNURFNHU IRXUEDUV VDWLVI\LQJ VSHFLILHG FRSODQDU PRWLRQ IRU IRXU SRVLWLRQV $ YHU\ ODUJH VROXWLRQ VHW a OLQNDJHVf ZDV SDVVHG WKURXJK WKH QHFHVVDU\ DQG GHVLUDEOH FRQGLWLRQV LQ D VLQJOH SDVV WKH RSWLPXP OLQNDJH SRVVHVVLQJ WKH EHVW VXUYLYLQJ VFRUH $Q LPSURYHPHQW RQ WKLV DSSURDFK ZDV ODWHU PDGH E\ WKH DXWKRU >@ DQG WKH DXWKRU DQG 7HVDU >@ E\ LQWURGXFLQJ WKH

PAGE 28

FRQFHSW RI JULG H[SDQVLRQ *ULG H[SDQVLRQ LV D UHILQHn PHQW WHFKQLTXH E\ ZKLFK WKH WKUHH VWHSV RI V\QWKHVLV QHFHVVDU\ FRQGLWLRQ HYDOXDWLRQ DQG GHVLUDEOH FRQGLWLRQ HYDOXDWLRQ EHFRPH SDUW RI D FRQWLQXRXV ORRS $ UHJLRQ RQ WKH JULG DERXW WKH OLQNDJHV RI KLJKHU TXDOLW\ LV VHOHFWHG DQG UHV\QWKHVLV LV SHUIRUPHG WR JHQHUDWH D QHZ JULG ZLWK D PRUH ILQHO\ GLVFUHWL]HG UHSUHVHQWDWLRQ D FRQFHSWXDO PDJQLILFDWLRQf DERXW WKH VHOHFWHG UHJLRQ 7ZR RU WKUHH SDVVHV WKURXJK WKH ORRS LV JHQHUDOO\ VXIILFLHQW 'XH WR WKH W\SLFDOO\ KLJK DWWULWLRQ RI VROXWLRQ OLQNDJHV LQ WKH ILUVW SDVV WKURXJK WKH QHFHVVDU\ FRQGLn WLRQV DQG WKH KLJK FRPSXWDWLRQDO H[SHQVH RI WKH GHVLUDEOH FRQGLWLRQ DQDO\VLV UHODWLYH WR WKH QHFHVVDU\ FRQGLWLRQ DQDO\VLV D IXUWKHU LPSURYHPHQW FDQ EH KDG E\ ORRSLQJ EDFN MXVW DIWHU WKH QHFHVVDU\ FRQGLWLRQV RQ WKH ILUVW SDVV DV VKRZQ LQ )LJXUH f %HFDXVH GHVLUDEOH FRQGLn WLRQV DUH QRW HYDOXDWHG LQLWLDOO\D UHODWLYHO\ ILQHO\ GLVFUHWL]HG JULG FDQ EH XVHG RQ WKLV ILUVW SDVV $OO RI WKHVH WHFKQLTXHV DUH HPSOR\HG LQ WKH DXWKRUnV WKHVLV SURJUDP SDFNDJH 62)%$/ 6\QWKHVLV DQG 2SWLPL]DWLRQ RI )RXU %$U /LQNDJHVf ZKLFK LV FDSDEOH RI V\QWKHVL]LQJ DQG RSWLPL]LQJ DOO W\SHV RI IRXUEDU OLQNDJHV IRU JHQHUDO FR SODQDU PRWLRQ 7KLV VXFFHVVIXO SKLORVRSK\ LV UHWDLQHG IRU WKLV ZRUN EXW QRZ WZHOYH W\SHV RI PRWLRQ VSHFLILFDWLRQ DUH FRQVLGHUHG ,Q WKH QH[W FKDSWHU WKHVH PRWLRQ VSHFLILFDWLRQ W\SHV DQG

PAGE 29

WKH VROXWLRQ OLQNDJH W\SHV DUH SUHVHQWHG DQG GLVFXVVHG 6XEVHTXHQW FKDSWHUV ZLOO WUHDW LQ GHWDLO WKH DQDO\WLFV EHKLQG WKH VWHSV RI V\QWKHVLV QHFHVVDU\ FRQGLWLRQ HYDOXn DWLRQ DQG GHVLUDEOH FRQGLWLRQ HYDOXDWLRQ

PAGE 30

&+$37(5 ,,, 62/9$%/( 352%/(06 7KH SUHYLRXV FKDSWHU GHVFULEHG DQ RSWLPL]DWLRQ SKLn ORVRSK\ XSRQ ZKLFK WKH HIIRUWV RI WKLV ZRUN DUH EDVHG ,Q WKLV FKDSWHU WKH UDQJH RI SUREOHPV ZKLFK DUH VROYDEOH XVLQJ WKLV SKLORVRSK\ DQG VXEVHTXHQWO\ GHYHORSHG DQDO\WLFVf LV GLVFXVVHG 7KH UDQJH RI VROYDEOH SUREOHPV LV GHILQHG E\ WKH WKUHH FRQFHSWV RI OLQNDJH W\SH PRGH RI URWDWLRQDO F\FOLFLW\ DQG PRWLRQ VSHFLILFDWLRQ W\SH $ /LQNDJH 7\SHV 7KH VLPSOHVW QRQOLQHDU PHFKDQLVP LV WKH IRXUEDU OLQNDJH DV VKRZQ LQ )LJXUH OD ,W SRVVHVVHV RQH GHJUHH RI IUHHGRP DIWHU RQH RI LWV OLQNV KDV EHHQ JURXQGHG DQG LV FRQFHSWXDOO\ LGHQWLFDO LQ DOO RI LWV LQYHUVLRQV LH UHJDUGOHVV RI ZKLFK OLQN LV JURXQGHG 7KH IRXUEDU SURn YLGHV HLJKW IUHH SDUDPHWHUV 7ZR W\SHV RI VLQJOHGHJUHH RI IUHHGRP VL[EDU FKDLQ H[LVW WKH 6WHSKHQVRQ DQG WKH :DWW DV VKRZQ LQ )LJXUH OEF 7KH\ DUH ERWK FRPSRVHG RI WZR WHUQDU\ OLQNV DQG IRXU ELQDU\ OLQNV DQG KDYH GLIIHUHQW FRQFHSWXDO LQYHUn VLRQV DV VKRZQ LQ )LJXUHV DQG (DFK RQH SURYLGHV

PAGE 31

% & D 7KH )RXU%DU &KDLQ & E 7KH 6WHSKHQVRQ 6L[%DU &KDLQ & + F 7KH :DWW 6L[%DU &KDLQ )LJXUH )RXU%DU DQG 6L[%DU &KDLQV

PAGE 32

' & & E 7KH 6WHSKHQVRQ & F 7KH 6WHSKHQVRQ )LJXUH ,QYHUVLRQV RI WKH 6WHSKHQVRQ 6L[%DU &KDLQ

PAGE 33

& + & + )LJXUH ,QYHUVLRQV RI WKH :DWW &KDLQ

PAGE 34

IRXUWHHQ IUHH SDUDPHWHUV $ 6WHSKHQVRQ LV SURGXFHG LI OLQN RU RI WKH 6WHSKHQVRQ FKDLQ LV JURXQGHG D 6WHSKHQVRQ LI OLQN RU LV JURXQGHG DQG D 6WHSKHQVRQ LI OLQN RU LV JURXQGHG $ :DWW UHVXOWV IURP JURXQGLQJ OLQN RU RI D :DWW FKDLQ DQG D :DWW LI OLQN RU LV JURXQGHG 7KHVH DUH DYDLODEOH OLQNDJH VROXWLRQV WR WKH SUREOHPV LQ WKLV ZRUN DQG WKH QRWDWLRQ LQWURGXFHG LQ )LJXUH ZLOO EH DGKHUHG WR 2WKHU VLPSOH OLQNDJHV H[LVW VXFK DV WKH VOLGHUFUDQN DQG LQYHUWHG VOLGHUFUDQN IRXUEDUV WKH JHDUHG ILYHEDUV DQG VL[EDUV ZLWK VOLGHUV DQG RVFLOODWLQJ EORFNV 7KH\ KDYH OHVV JHQHUDO DSSOLFDELOLW\ DQG H[FHSW IRU WKH JHDUHG ILYHEDU DUH VLPSO\ VXEVHWV RI WKH OLQNDJHV DOUHDG\ XQGHU FRQVLGHUDWLRQ % 0RGHV RI 5RWDWLRQDO &\FOLFLW\ $ OLQNDJH FKDLQ FDQ KDYH D QXPEHU RI GLVWLQFW W\SHV RI PRWLRQ GHSHQGLQJ XSRQ OLQNDJH JHRPHWU\ DQG WKH QDWXUH RI WKH LQSXW GULYH 7KHVH PRWLRQ FKDUDFWHULVWLF W\SHV DUH KHUHDIWHU WHUPHG PRGHV RI URWDWLRQDO F\FOLFLW\ 7KH SRVVLEOH PRGHV RI URWDWLRQDO F\FOLFLW\ DUH GLVn SOD\HG IRU WKH IRXUEDU FKDLQ LQ )LJXUH DQG IRU WKH VL[EDU FKDLQV LQ )LJXUHV DQG 7KH LQIRUPDWLRQ LQ WKHVH ILJXUHV LV FHQWUDO WR WKLV ZRUN 7KLV XQIRUWXQDWH

PAGE 35

)LJXUH 1RWDWLRQ r 'ULYHQ /LQN &RPSOHWH 5HODWLYH /LQN 5RWDWLRQ ,QFRPSOHWH 5HODWLYH /LQN 5RWDWLRQ 0RGHV RI 5RWDWLRQDO &\FOLFLW\ RI WKH )RXU%DU &KDLQ

PAGE 36

6WHSKHQVRQ 6L[%DUV :LWK 1R &\FOLF /LQNV $Q\ SDLU RI OLQNV PD\ EH GULYHQ GLVWLQFW SRVVLn ELOLWLHVf )LJXUH 0RGHV RI 5RWDWLRQDO &\FOLFLW\ RI WKH 6WHSKHQVRQ 6L[%DU &KDLQ

PAGE 37

:DWW 6L[%DUV :LWK 1R &\FOLF /LQNV $Q\ SDLU RI OLQNV PD\ EH GULYHQ GLVWLQFW SRVVLn ELOLWLHV f :DWW 6L[%DUV :LWK &\FOLF /LQNV )LJXUH 0RGHV RI 5RWDWLRQDO &\FOLFLW\ RI WKH :DWW 6L[%DU &KDLQ

PAGE 38

DQG H[KDXVWLYH DQDO\VLV LV QHFHVVDU\ EHFDXVH WKH QDWXUH RI WKH QHFHVVDU\ FRQGLWLRQ DQDO\VLV GHSHQGV XSRQ WKH PRGH RI F\FOLFLW\ )RU H[DPSOH WKH SLYRWV ZLWKLQ D OLQNDJH VROXWLRQ DW ZKLFK FKDQJH SRLQW SRVLWLRQV LH DGMDFHQW OLQN FROOLQHDULWLHVf FDQ EH WROHUDWHG GHSHQGV XSRQ KRZ WKH OLQNDJH LV GULYHQ )RU RXU SXUSRVHV LW RIWHQ EHFRPHV XVHIXO WR FRQVLGHU HDFK FKDLQ DV IUHH LQ VSDFH ZLWK WZR OLQNV GULYHQ RQH WDNLQJ WKH SODFH RI WKH SUHYLRXVO\ JURXQGHG OLQN ,Q HVn VHQFH WKH JURXQGLQJ DQG GULYLQJ RI OLQNV EHFRPHV FRQFHSn WXDOO\ LGHQWLFDO DQG LQWHUFKDQJHDEOH $W WKLV SRLQW D UHVWULFWLRQ LV PDGH LQ RUGHU WR HOLPn LQDWH PRGHV RI F\FOLFLW\ IRU ZKLFK VSHFLDO NQRZOHGJH RI YHORFLWLHV DQG V\VWHP LQHUWLDV DUH QHHGHG WR GHILQH PRn WLRQV WKURXJK FKDQJH SRLQW SRVLWLRQV ,W ZLOO EH DVVXPHG WKDW ZKHQ OLQNV ZLWK WZR F\FOLF SLYRWV H[LVW LQ D FKDLQ RQH RI WKHVH OLQNV DQG DQ DGMDFHQW OLQN DUH GULYHQ 7KLV UHVWULFWLRQ HOLPLQDWHV IURP IXUWKHU FRQVLGHUDn WLRQ OLQNDJHV VXFK DV WKH URFNHUGULYHQ FUDQNURFNHU ZLWK FRPSOHWH FUDQN URWDWLRQ DQG WKH *UDVKRI GRXEOHURFNHU ZLWK FRPSOHWH FRXSOHU URWDWLRQ 7KHVH OLQNDJHV PXVW UHO\ XSRQ OLQN PRPHQWD RU VZLWFKLQJ RI LQSXWV WR PDLQWDLQ FRQWLQXRXV PRWLRQ DQG DUH EH\RQG WKH FRQVLGHUDWLRQ RI WKLV ZRUN $Q\ JLYHQ IRXUEDU RU VL[EDU SUREOHP ZLOO KDYH D VXEVHW RI WKH SRVVLEOH PRGHV RI F\FOLFLW\ GHSHQGLQJ XSRQ WKH JURXQGHG OLQN DQG WKH FRQFHSWXDO HTXLYDOHQFH RU

PAGE 39

QRQHTXLYDOHQFH RI OLQNV D IXQFWLRQ RI PRWLRQ VSHFLILFDn WLRQ W\SHf $V DQ H[DPSOH WKH IRXUEDU VROXWLRQ WR WKH WZROLQN FKDLQ SUREOHP )LJXUH f KDV VHYHQ PRGHV RI F\FOLFLW\ 0RGHV QXPEHU DQG ZRXOG RWKHUZLVH EH LGHQn WLFDO H[FHSW WKDW FRQVWUDLQW OLQNV DQG DUH QRW FRQFHSn WXDOO\ WKH VDPH GXH WR WKH QDWXUH RI WKH PRWLRQ VSHFLILFDn WLRQV OLQN LV FRQWDLQHG ZLWKLQ WKH PRWLRQ VSHFLILFDn WLRQV OLQN LV QRW 7KH VDPH LV WUXH IRU PRGHV DQG 7KH QHFHVVDU\ FRQGLWLRQ DQDO\VHV ZLOO GHSHQG XSRQ f UHn TXLUHG *UDVKRI W\SH IRU WKRVH PRGHV ZKLFK LQFOXGH F\FOLF OLQNV DQG f WKH SLYRWV ZKLFK DUH QRW DOORZHG WR SDVV FKDQJH SRLQWV )RU H[DPSOH LQ PRGH QXPEHU D FKDQJH SRLQW LV SHUPLVVLEOH DW SLYRWV $ & DQG EXW QRW DW % UHJDUGOHVV RI *UDVKRI W\SH 7KHVH FRQVLGHUDWLRQV DUH SUHn VHQWHG LQ GHWDLO LQ &KDSWHU 9 )LJXUH VKRZV VRPH H[DPSOHV RI PRGHV RI URWDWLRQDO F\FOLFLW\ ZKLFK DUH XQDFFHSWDEOH RU JHRPHWULFDOO\ LPSRVn VLEOH )LJXUHV D DQG E PLJKW UHSUHVHQW WKH F\FOLF FRXSOHUGULYHQ *UDVKRI GRXEOH URFNHU DQG WKH F\FOLF URFNHU GULYHQ FUDQNURFNHU UHVSHFWLYHO\ ZKLFK KDYH DOUHDG\ EHHQ GLVFXVVHG ,Q )LJXUH F FRQWURO RI PRWLRQ WKURXJK WKH FKDQJH SRLQWV RI SLYRWV U DQG V LV LPSRVVLEOH 7KH PRWLRQ VKRZQ IRU WKH VL[EDU OLQNDJHV RI )LJXUHV G DQG I VLPSO\ FDQQRW H[LVW DQG WKH PRWLRQ VKRZQ IRU WKH :DWW VL[EDU OLQNDJHV RI )LJXUH H ZRXOG UHTXLUH D OLQNDJH ZLWK YHU\ XQXVXDO JHRPHWU\ DQG DQ H[WHUQDO FRQWURO RI PRn WLRQ IRU ERWK IRXUEDU FKDLQV

PAGE 40

3UREOHP 6ROXWLRQ $SSOLFDEOH 0RGHV RI 5RWDWLRQDO &\FOLFLW\ )LJXUH $SSOLFDEOH 0RGHV RI 5RWDWLRQDO &\FOLFLW\ RI WKH )RXU%DU 6ROXWLRQ WR WKH 7ZR/LQN &KDLQ 3UREOHP

PAGE 41

)LJXUH 6RPH 8QDFFHSWDEOH 0RGHV RI 5RWDWLRQDO &\FOLFLW\

PAGE 42

& 0RWLRQ 6SHFLILFDWLRQ 7\SHV 7KH W\SHV RI FRSODQDU SUREOHPV ZKLFK DUH VROYDEOH DQG RSWLPL]DEOH XVLQJ WKH SURFHGXUHV GHYHORSHG LQ WKLV ZRUN DUH VKRZQ LQ )LJXUH 7KH ILUVW DQG VHFRQG SUREn OHPV FRSODQDU SDWK DQG PRWLRQ V\QWKHVHV DUH WKH VXEMHFW RI PRVW OLQNDJH RSWLPL]DWLRQ HIIRUWV f 3DWK 6\QWKHVLV 7KH PRWLRQ RI D SRLQW LV JXLGHG E\ DWWDFKLQJ WKH SRLQW WR WKH FRXSOHU RI DQ DSSURSULDWH IRXUEDU OLQNDJH f 0RWLRQ 6\QWKHVLV 7KH PRWLRQ RI D ERG\ LV JXLGHG E\ DWWDFKLQJ WKH ERG\ WR WKH FRXSOHU RI DQ DSSURSULDWH IRXUEDU OLQNDJH f $QJXODU &RRUGLQDWLRQ RI D 7ZR/LQN &KDLQ 7KH DQJXODU PRWLRQ RI WZR FRQQHFWHG ERGLHV RQH RI ZKLFK LV FRQQHFWHG WR JURXQG LV FRQWUROOHG E\ DWWDFKLQJ WKHVH ERGLHV WR DQ DSSURSULDWH IRXUEDU OLQNDJH f $QJXODU &RRUGLQDWLRQ RI 7ZR&UDQNV 7KH DQJXODU PRWLRQV RI WZR XQFRQQHFWHG ERGLHV ERWK RI ZKLFK DUH FRQn QHFWHG WR D FRPPRQ JURXQG DUH FRRUGLQDWHG E\ DWWDFKLQJ WKHVH ERGLHV WR DQ DSSURSULDWH IRXUEDU OLQNDJH f 3DWK&UDQN &RRUGLQDWLRQ 7KH PRWLRQ RI D SRLQW LV FRRUGLQDWHG ZLWK WKH URWDWLRQ RI D ERG\ FRQQHFWHG WR JURXQG E\ DWWDFKLQJ WKH SRLQW DQG ERG\ WR DQ DSSURSULDWH IRXUEDU OLQNDJH f $QJXODU &RRUGLQDWLRQ RI 7KUHH/LQN &KDLQ 7KH

PAGE 43

)LJXUH 7\SHV RI 0RWLRQ 6SHFLILFDWLRQV

PAGE 44

PRWLRQ RI WKUHH ERGLHV FRQQHFWHG LQ D FKDLQ RQH FRQQHFWHG WR JURXQGf LV JXLGHG E\ DWWDFKLQJ WKHVH ERGLHV WR WKH OLQNV RI DQ DSSURSULDWH VL[EDU OLQNDJH f $QJXODU &RRUGLQDWLRQ RI D &UDQN DQG D 7ZR/LQN &KDLQ 7KH PRWLRQ RI WZR FRQQHFWHG ERGLHV RQH FRQQHFWHG WR JURXQGf LV FRRUGLQDWHG ZLWK WKH URWDWLRQ RI DQRWKHU ERG\ ZKLFK LV FRQQHFWHG WR JURXQG E\ DWWDFKLQJ WKHVH ERGLHV WR WKH OLQNV RI DQ DSSURSULDWH VL[EDU OLQNDJH f $QJXODU &RRUGLQDWLRQ RI 7KUHH&UDQNV 7KH URWDn WLRQ RI WKUHH QRQDGMDFHQW ERGLHV DOO FRQQHFWHG WR JURXQG LV FRRUGLQDWHG E\ DWWDFKLQJ WKHVH ERGLHV WR WKH OLQNV RI DQ DSSURSULDWH VL[EDU OLQNDJH f $QJXODU &RRUGLQDWLRQ RI 7KUHH $GMDFHQW 3ODQHV 7KH PRWLRQ RI WZR QRQDGMDFHQW ERGLHV DQG D WKLUG ERG\ ZKLFK LV FRQQHFWHG WR JURXQG DQG WR ZKLFK WKH ILUVW WZR ERGLHV DUH FRQQHFWHG LV FRQWUROOHG E\ DWWDFKLQJ WKHVH ERGLHV WR WKH DSSURSULDWH OLQNV RI DQ DSSURSULDWH VL[EDU OLQNDJH f &RSODQDU 0RWLRQ 6\QWKHVLV RI 7ZR $GMDFHQW 3ODQHV 7KH JHQHUDO PRWLRQ RI WZR FRQQHFWHG ERGLHV LV FRQWUROOHG E\ DWWDFKLQJ WKHVH ERGLHV WR WKH OLQNV RI DQ DSSURSULDWH VL[EDU OLQNDJH f &RSODQDU 0RWLRQ &UDQN &RRUGLQDWLRQ 7KH PRWLRQ RI D ERG\ LV FRRUGLQDWHG ZLWK WKH URWDWLRQ RI D ERG\ FRQQHFWHG WR JURXQG E\ DWWDFKLQJ WKHVH ERGLHV WR WKH OLQNV RI DQ DSSURSULDWH VL[EDU OLQNDJH

PAGE 45

f 3RLQW 3DWK &RRUGLQDWHG ZLWK 7ZR &UDQNV 7KH PRWLRQ RI D SRLQW DQG WKH URWDWLRQ RI WZR QRQDGMDFHQW ERGLHV ZKLFK DUH FRQQHFWHG WR D FRPPRQ JURXQG DUH FRRUGLn QDWHG E\ DWWDFKLQJ WKH SRLQW DQG WZR ERGLHV WR WKH OLQNV RI DQ DSSURSULDWH VL[EDU OLQNDJH 7KHVH SUREOHPV DQG WKHLU SRVVLEOH OLQNDJH VROXWLRQV DUH SUHVHQWHG LQ WKH FKDUWV RI $SSHQGL[ $ 7KH VWHSV LQn YROYHG LQ DQ DFWXDO V\QWKHVLV SURFHGXUH DUH GLVFXVVHG LQ &KDSWHU ,9 ([DPSOHV RI V\QWKHVLV SURFHGXUHV DQG QHFHVn VDU\ FRQGLWLRQ SURFHGXUHV DUH SUHVHQWHG LQ $SSHQGL[ % DQG WKH QHFHVVDU\ FRQGLWLRQV ZLOO EH GLVFXVVHG LQ GHWDLO LQ &KDSWHU 9

PAGE 46

&+$37(5 ,9 6<17+(6,6 2) /,1.$*( 62/87,216 ,Q WKH ODVW FKDSWHU WKH W\SHV RI SUREOHPV XQGHU FRQn VLGHUDWLRQ ZHUH SUHVHQWHG )LJXUH f 7KH V\QWKHVLV VROXWLRQ WR HDFK FRQVLVWHG RI DWWDFKLQJ WKHVH ERGLHV ZLWK VSHFLILHG PRWLRQV WR WKH OLQNV RI DQ DSSURSULDWH OLQNDJH 7KH PHDQV E\ ZKLFK WKLV DSSURSULDWH OLQNDJH LV IRXQG LV WKH VXEMHFW RI WKLV FKDSWHU $ 7KH )RXU 7RROV RI 6\QWKHVLV 7KH V\QWKHVLV SURFHGXUH IRU WKH SUREOHPV VKRZQ LQ )LJXUH GHSHQGV RQ WKH SUREOHP W\SH DQG WKH VROXWLRQ OLQNDJH W\SH ,Q HDFK FDVH VRPH FRPELQDWLRQ RI IRXU V\Qn WKHVLV WHFKQLTXHV LV HPSOR\HG 7KHVH WHFKQLTXHV DUH WHUPHG WKH IRXU WRROV RI V\QWKHVLV DQG DUH GHSLFWHG JUDSKLFDOO\ LQ )LJXUH f 6\QWKHVLV 7RRO 7KH &XUYDWXUH 7UDQVIRUP 3UREDEO\ WKH VLQJOH PRVW LPSRUWDQW FRQFHSW LQ WKH ILHOG RI NLQHPDWLF V\QWKHVLV LV WKH FXUYDWXUH WUDQVIRUP $OO RI WKH V\QWKHVLV SURFHGXUHV XVHG LQ WKLV ZRUN ZLOO XVH WKLV WRRO RI V\QWKHVLV DW OHDVW RQFH WR JHQHUDWH FRQVWUDLQW OLQNV ZKLFK PD\ EH RSHUDWHG XSRQ E\ WKH RWKHU WRROV RI

PAGE 47

&859$785( 75$16)250 $1*8/$5 &2*1$7(6 3$7+ &2*1$7(6 ,19(56,21 )LJXUH 7KH )RXU 7RROV RI 6\QWKHVLV

PAGE 48

V\QWKHVLVf LQ RUGHU WR SURGXFH D IXQFWLRQDO OLQNDJH )RU WKH ILUVW WKUHH SUREOHPV WKH FXUYDWXUH WUDQVIRUP DORQH LV VXIILFLHQW 6LQFH QR OLQNDJH SURYLGHV DQ LQILQLWH QXPEHU RI GHVLJQ SDUDPHWHUV WKH QXPEHU RI IXQFWLRQDO PRWLRQ VSHFLILFDWLRQV PXVW EH ILQLWH ,I WKH SUHFLVLRQ SRVLWLRQV DUH VSHFLILHG LQ VXFK D ZD\ WKDW DQ LQGHSHQGHQW SDUDPHWHU VXFK DV WKH FRXSOHU DQJOH XQGHUJRHV D ILQLWH GLVSODFHPHQW EHWZHHQ SRn VLWLRQV WKH VSHFLILFDWLRQV DUH WHUPHG ILQLWHO\ VHSDUDWHG SRVLWLRQV 7KHVH DUH VKRZQ IRU D SODQH LQ FRSODQDU PRWLRQ LQ )LJXUH D )LQLWHO\ VHSDUDWHG SRVLWLRQ V\QWKHVLV RI IRXUEDUV ZDV ILUVW GRQH E\ %XUPHVWHU >@ LQ XVLQJ JUDSKLFDO WHFKQLTXHV IRU ILYH SRVLWLRQV ,Q WKH SUREOHP ZDV VROYHG DQDO\WLFDOO\ E\ %RWWHPD >@ DQG 3ULPURVH )UHXGHQ VWHLQ DQG 6DQGRU >@ ,I KLJKHU RUGHU GHULYDWLYHV RI PRWLRQ DW D SUHFLVLRQ SRVLWLRQ DUH VSHFLILHG WKH\ DUH UHIHUUHG WR DV LQILQLWHVn LPDOO\ VHSDUDWHG SRVLWLRQV ,63f DV GHSLFWHG E\ WKH FRQFHSn WXDO FRPELQDWLRQ RI SRVLWLRQV LQ )LJXUH E 0XHOOHU >@ $OOLHYL >@ .UDXVH >@ :ROIRUG >@ DQG 9HOGNDPS >@ SHUIRUPHG JUDSKLFDO VWXGLHV RI LQILQLWHVLn PDOO\ VHSDUDWHG SRVLWLRQV IRU ILYH SRVLWLRQV 0L[WXUHV RI ILQLWHO\ VHSDUDWHG SRVLWLRQV DQG LQILQn LWHVLPDOO\ VHSDUDWHG SRVLWLRQV DUH WHUPHG PXOWLSO\ VHSDn UDWHG SRVLWLRQV 063f )LJXUH Ff 7KH XQLILHG WKHRU\ IRU 063 ZDV GHYHORSHG E\ 7HVDU >@ LQ

PAGE 49

 E ,QILQLWHVLPDOO\ 6HSDUDWHG 3RVLWLRQV ,63f D )LQLWHO\ 6HSDUDWHG 3RVLWLRQV F 0XOWLSO\ 6HSDUDWHG 3RVLWLRQV )63f 063f )LJXUH )LQLWHO\ ,QILQLWHVLPDOO\ DQG 0XOWLSO\ 6HSDUDWHG 3RVLWLRQV UR

PAGE 50

$OO RI WKH SUHYLRXVO\ PHQWLRQHG ZRUN LQYROYLQJ ,63 DQG 063 LQYROYHG JHRPHWULF GHULYDWLYHV ZKHUH WKH LQGHSHQn GHQW SDUDPHWHU LV WKH DQJXODU RULHQWDWLRQ RI WKH ERG\ 7KH VSHFLILDEOH KLJKHURUGHU PRWLRQV DUH FRQVHTXHQWO\ JHRPHWULF VORSH FXUYDWXUH LQIOHFWLRQ HWFf ,Q 0\NOHEXVW >@ SUHVHQWHG D XQLILHG WKHRU\ PDNLQJ G\QDPLF LH WLPH GHSHQGHQWf KLJKHU RUGHU SURSHUWLHV VSHFLILDEOH 7KLV LV WHUPHG WLPH VWDWH V\QWKHVLV )RU WKH IRXUEDU SUREOHPV WKH G\QDPLF SURSHUWLHV DUH HTXLYDOHQW WR WKH JHRn PHWULF SURSHUWLHV EXW IRU D VL[EDU OLQNDJH WKH XVH RI DQ HTXLYDOHQW LQGHSHQGHQW SDUDPHWHU IRU WKH GHFRXSOHG VXEVHFWLRQV RI D OLQNDJH VROXWLRQ LV D QHFHVVLW\ 8VH RI WLPH VWDWH V\QWKHVLV DOORZV WUXH NLQHPDWLF V\QWKHVLV WR EH FDUULHG RXW DV FRQGLWLRQV FDQ EH SUHVFULEHG IRU SRVLWLRQ DQG LWV WLPH GHULYDWLYHV YHORFLW\ DFFHOHUDWLRQ HWFf RU FRPELQDWLRQ RI LQHUWLD DQG PRPHQWD HIIHFWV XS WR WKH IRXUWK RUGHU )RUPXODWLRQ RI WKH FXUYDWXUH WUDQVIRUP &RQVLGHU WKH PRYLQJ SODQH LQ )LJXUH ZKHUH PRWLRQ LV GHVFULEHG E\ WKH FRRUGLQDWHV D DQG \ ( LV WKH IL[HG UHIHUHQFH ZLWK RUWKRJRQDO FRRUGLQDWHV 8 DQG 9 DWWDFKHG WR LW DQG ( LV WKH PRYLQJ UHIHUHQFH ZLWK RUWKRJRQDO FRRUGLn QDWHV X DQG Y DWWDFKHG 7KH\ DUH UHODWHG E\ WKH FRRUGLn QDWH WUDQVIRUP 8 X FRV \ Y VLQ \ D f 9 X FRV < Y FRV < %

PAGE 51

)LJXUH 3DUDPHWHUV 5HODWLQJ )L[HG DQG 0RYLQJ 3ODQHV

PAGE 52

DQG WKH LQYHUVH FRRUGLQDWH WUDQVIRUP X 8Df FRV \ 9f VLQ \ f Y 9f FRV \ 8Df VLQ \ 7KH FRQVWUDLQHG PRWLRQ RI ( FDQ EH GHVFULEHG LQ WHUPV RI WZR IXQFWLRQDO UHODWLRQVKLSV /HWWLQJ \ EH WKH LQGHSHQGHQW SDUDPHWHU OHW D IA\f DQG I\f /LQNV ZLWK PRYLQJ SLYRWV DWWDFKHG WR ( DQG IL[HG SLYRWV DWWDFKHG WR e PLJKW FRQVWLWXWH SK\VLFDO FRQVWUDLQWV ,I VR WKH IXQFWLRQDO GHVFULSWLRQ RI WKH FLUFXODU PRWLRQ RI D PRYn LQJ SLYRW DWWDFKHG DW VD\ SRLQW $ LQ (f UHODWLYH WR e FDQ WDNH WKH IRUP )89f &RPELQLQJ WKLV ZLWK WKH FRn RUGLQDWH WUDQVIRUP f WKH FRQVWUDLQW HTXDWLRQ FDQ EH UHSUHVHQWHG E\ ) I XYD%\444 f ZKHUH nV DUH FRQVWDQWV )RU ILQLWHO\ VHSDUDWHG VSHFLn ILFDWLRQV RI WKH PRWLRQ RI SODQH ( WKH DERYH FRQVWUDLQW HTXDWLRQ WDNHV WKH IRUP )M I XYDMMIXYR%I\4 44 N G
PAGE 53

)RU PXOWLSO\ VHSDUDWHG SRVLWLRQV WKHVH WZR H[SUHVn VLRQV ZRXOG EH PL[HG 1RZ WKH FLUFXODU FRQVWUDLQW HTXDWLRQ FDQ EH H[SUHVVHG DV 489f 48 49 4 )RU D SRLQW $ RQ SODQH ( ZKRVH SDWK GHVFULEHV D FLUFOH IRU PXOWLSO\ VHSDUDWHG SRVLWLRQV WKLV FRQGLWLRQ ZLOO WDNH WKH IRUP Je89f GN>4489f 48 49 4 G
PAGE 54

DQG WKH JHQHUDOL]HG FLUFXODU FRQVWUDLQW IXQFWLRQ GLYLGHG E\ f WDNHV WKH IRUP GN >4DJf XmFRV<%VLQ
PAGE 55

)RU 063 PRWLRQ VSHFLILFDWLRQV = f 9L 4OIO 4)L Y rr 4) 4r 4OI 4IU 7KH PDWUL[ PXVW EH VLQJXODU LI WKH FRQVWUDLQW HTXDWLRQV DUH WR EH PHDQLQJIXO VLQFH WKHVH HTXDWLRQV DUH OLQHDU DQG KRPRJHQn HRXV ZLWK UHVSHFW WR 4T DQG 4 ,I WKLV PDWUL[ f LV H[SDQGHG WKH UHVXOW LV D FXELF LQ WHUPV RI ( FRRUGLQDWHV X DQG Y 7KLV LV WKH FLUFOH SRLQW FXELF DQG UHSUHVHQWV WKH ORFXV RI SHUPLV VDEOH PRYLQJ SLYRW ORFDWLRQV RQ ( 7KH IRUPXODWLRQ IRU WLPH VWDWH VSHFLILFDWLRQ V\Qn WKHVLV LV TXLWH VLPLODU (TXDWLRQ f ZLOO QRZ WDNH WKH IRUP *-" BGA>489f48 494@_ GWr W We IRU f

PAGE 56

DQG WKH $AnV LQ HTXDWLRQ ZLOO EH UHSODFHG E\ WLPH VWDWH PRWLRQ FRHIILFLHQWV WHUPHG nV 7KH nV DUH PL PL OLVWHG LQ 7DEOH ,Q WLPHVWDWH V\QWKHVLV \ EHFRPHV D GHSHQGHQW SDUDPn HWHU EXW WKH 'AAnV UHGXFH WR $AnV E\ UHSODFLQJ LQGHSHQn GHQW SDUDPHWHU W E\ \ VR WKDW W!\ G\B G< GW G\ N N L AN D N GW G\ N!O DQG WKH WLPHVWDWH V\QWKHVLV IRUPXODWLRQ UHGXFHV WR WKH JHRPHWULF V\QWKHVLV IRUPXODWLRQ f 6\QWKHVLV 7RRO ,QYHUVLRQ 7KH LQYHUVLRQ FRQFHSW HVVHQWLDOO\ LQYROYHV D FKDQJH RI UHIHUHQFH 7ZR EDVLF W\SHV RI LQYHUVLRQ DUH RI LQWHUHVW ,Q WKH ILUVW WKH PRWLRQV RI SODQHV 1 DQG 0 )LJXUH f DUH GHILQHG UHODWLYH WR D IL[HG SODQH 5 WKH UHIHUHQFH LV WR EH FKDQJHG WR SODQH 1 DQG WKH PRWLRQ RI SODQH 0 UHODn WLYH WR SODQH 1 LV WR EH GHILQHG IRUPXODWLRQV DQG EHORZf ,Q WKH VHFRQG W\SH RI LQYHUVLRQ WKH PRWLRQ RI 1 LV GHILQHG UHODWLYH WR IL[HG SODQH 5 WKH PRWLRQ RI SODQH 0 LV GHILQHG UHODWLYH WR SODQH 1 DQG WKH PRWLRQ RI 0 UHODWLYH WR 5 LV WR EH GHILQHG IRUPXODWLRQV DQG EHORZf 0RWLRQ VSHFLILFDWLRQV IRU WKH WZR SODQHV ZKLFK KDYH VRPH ,63 FRQWHQW PXVW VKDUH D FRPPRQ LQGHSHQGHQW SDUDPHWHU

PAGE 57

)LJXUH ,QYHUVLRQ 1RWDWLRQ

PAGE 58

RU KDYH D GHILQHG UHODWLRQVKLS EHWZHHQ LQGHSHQGHQW SDUDPn HWHUV 7KH W\SHV RI PRWLRQ VSHFLILFDWLRQ VHWV ZKLFK FRUn UHVSRQG WR WKH IRUPXODWLRQV WKDW IROORZ DUH GLVSOD\HG LQ 7DEOH Df ,QYHUVLRQ IRUPXODWLRQ QXPEHU *LYHQ 0RWLRQ RI 1 UHODWLYH WR 5 0 UHODWLYH WR 5 )LQG 0RWLRQ RI 0 UHODWLYH WR 1 IRU 54 UHIHUHQFH f ,QGHSHQGHQW SDUDPHWHU IRU JLYHQ 063 WLPH W ,QGHSHQGHQW SDUDPHWHU IRU GHULYHG 063 WLPH W Nf Nf DQ 6 FRV & 7 VLQ & D UUL f§ P N N Q2 Nf Q PM NfU ‘6 VLQ & 7 FRV & 6 $ N N Q2 RRQ NfU NLU NLU < f§ < f§ < < f§PM n PM n QM Q2 :KHUH M )63 FRXQWHU Nf N ,63 FRXQWHU IRU H[DPSOH IRU N D D f 7 % F U D U D P Q HU HU P U U
PAGE 59

f f 6 $ %& f f 7[ $& % f f ff 6 $& $& % %& f fm 7 $ $& %& %& 6 $ $&& $& %& %& %& %&r 7 % %&& %& $& $& $& $&r Ef ,QYHUVLRQ IRUPXODWLRQ QXPEHU *LYHQ 0RWLRQV RI 1 UHODWLYH WR 5 0 UHODWLYH WR 5 )LQG 0RWLRQ RI 0 UHODWLYH WR 1 IRU 5T UHIHUHQFH f ,QGHSHQGHQW SDUDPHWHU IRU JLYHQ 063 \Q ,QGHSHQGHQW SDUDPHWHU IRU GHULYHG 063 7KLV IRUPXODWLRQ LV LGHQWLFDO WR WKDW RI Df H[FHSW WKDW WKH GRWV LQ WKH 6A DQG IRUPXODWLRQV VKRXOG EH UHn SODFHG ZLWK SULPHV nf DQG QRZ $n $ $n %n % %n DQG && DQG &nPXVW EH GHILQHG

PAGE 60

/HW D D Q Q D D P P GD D Q Q U Q U f P D P U G\ GD G\ HWF VDPH IRU DQG \ f Q Q HWF VDPH IRU DQG \ f P P P 1RZ Dn Dn $n P \ nP $ P Q \n f P JP DQAP


PAGE 61

\r \ n f 2n B URP UR Ff ,QYHUVLRQ IRUPXODWLRQ QXPEHU *LYHQ 0RWLRQV RI 1 UHODWLYH WR 5 0 UHODWLYH WR 5 )LQG 0RWLRQ RI 0 UHODWLYH WR 1 IRU 5T UHIHUHQFH f ,QGHSHQGHQW SDUDPHWHU IRU JLYHQ 063
PAGE 62

EH UHGHILQHG 1RZ Fn \ QP \ n QP ,, r X O \n f n QP Fn \ \ f \ A nQP QP n QP f
PAGE 63

:KHUH Q D PM Q f P M & \U 7 Qf Q 'Q rU 6 D Z < f PM PMnQM f Q }U rQ 7 D \ f f PMnQM PM f rrQ rQ rU QQ rrU Q rU 6Q D \ ‘< D \ PM PMnQM PMfQM PMnQM B rU Q rmU Q f U f rQ 7a D \ f D \ < f f PMnQM PMnQM PMnQM PM f rQ 6 D PM rrQ rU rQ rrU fQ rrrU rQ rU < f f < f f % < f D < PMnQM PMnQM PM QM PMnQM Q rrU rU FQ rU D \ \ < f PM QM QM PMnQM P rrQ rU rQ rU RUDQ rrU }U Q f§U 7 D \ < f < < f D \ PMnQM PMnQM PMnQMnQM PMnQM Q rU Q rU rr Q D\ D \ ff PM QM PM QM UQM

PAGE 64

Hf ,QYHUVLRQ IRUPXODWLRQ QXPEHU *LYHQ 0RWLRQV RI 1 UHODWLYH WR 5 0 UHODWLYH WR 1 )LQG 0RWLRQ RI 0 UHODWLYH WR 5 ,QGHSHQGHQW SDUDPHWHU IRU JLYHQ 063\Q 7 ,QGHSHQGHQW SDUDPHWHU IRU GHULYHG 063 \P 7KLV IRUPXODWLRQ LV LGHQWLFDO WR WKDW RI Gf H[FHSW WKDW WKH GRWV LQ WKH DQG IRUPXODWLRQV VKRXOG EH UHSODFHG ZLWK SULPHV nf /HW D Q D P D Q Q D P RU Q D P GD Q G\ GD Q Q P G\ Q HWF HWF VDPH IRU Q DQG \Q f VDPH IRU DQG \P f P P 1RZ rQ D P GD Q P G\ P Dn P \ P Q D P \nX
PAGE 65

nU
PAGE 66

7KH I RUPXODWLRUI6 IRU DQ f DQG Pn P HTXLYDOHQW WR WKRVH RI VHFWLRQ Ff H[FHSW WKDW \ Q P Z \ n nP < HWF UDQ WKHLU GHULYDWLYHV DUH XQGHU WKH DERYH QRWDWLRQ 1RZ Q PQ < PQ
PAGE 67

)LJXUH D 3UHVFULEHG 3DWKDQG ,QSXW &UDQN 8VH RI 3DWK &RJQDWHV WR 6ROYH WKH 3DWK &UDQN &RRUGLQDWLRQ 3UREOHP

PAGE 68

SDWKFUDQN FRRUGLQDWLRQ )LJXUH Df 7KH V\QWKHVLV SURFHGXUH LV f VSHFLI\ WKH PRWLRQ RI FRXSOHU GHI E\ XVLQJ WKH WUDQVODWLRQ RI SRLQW H DQG WKH URWDWLRQ XVH WKH FXUYDWXUH WUDQVIRUP WR V\QWKHVL]H IRXUEDU 2AGI&A DQG ILQG LWV SDWK FRJQDWH 2AJM2A RU &AKN2A (LWKHU FRJQDWH ZLOO FRRUGLQDWH WKH URWDWLRQ RI D FUDQN SDUDPHWHU DWWDFKHG WR OLQN 2AG RU &AKf ZLWK WKH PRWLRQ RI SRLQW H DWWDFKHG WR FRXSOHU OLQN JHM RU KHN UHVSHFWLYHO\f f 6\QWKHVLV 7RRO $QJXODU &RJQDWHV &RQVLGHU WKH SDUDOOHORJUDP IRUPHG E\ OLQNV %&' DQG %&n' LQ )LJXUH F 5HJDUGOHVV RI WKH PRWLRQ RI SRLQW % JXLGHG E\ FUDQN $% IRU WKLV H[DPSOHf WKH DQJXODU SDUDPn HWHUV RI OLQNV %& DQG &n' DUH LGHQWLFDO 6R WRR IRU OLQNV %&n DQG &' )LJXUH RXWOLQHV WKH XVH RI WKH FRQFHSW RI DQJXODU FRJQDWHV WR VROYH D FUDQNFRRUGLQDWLRQ SUREOHP 7KH VHFRQG DQJXODU SDUDPHWHU LV XVHG WR GHILQH WKH PRn WLRQ RI FRXSOHU SODQH %& WKH FXUYDWXUH WUDQVIRUP LV XVHG WR ILQG D VHFRQG FRQVWUDLQW OLQN &' DQG WKH DQJXODU FRJn QDWH RI G\DG %&' LV WDNHQ WR SURYLGH VROXWLRQ OLQNDJH $%&n' % &RRUGLQDWLRQ RI WKH 7RROV RI 6\QWKHVLV $SSHQGL[ $ FRQWDLQV WDEOHV RI OLQNDJH VROXWLRQV DQG UHFRPPHQGHG V\QWKHVLV SURFHGXUHV IRU HDFK RI WKH WZHOYH SUREOHP W\SHV 7KHVH V\QWKHVLV SURFHGXUHV FRQVLVW HQWLUHO\

PAGE 69

F $QJXODU &RJQDIV 8VH RI $QJXODU &RJQDWHV WR 6ROYH WKH )XQFWLRQ *HQHUDWLRQ 3UREOHP )LJXUH

PAGE 70

RI DSSURSULDWH FRPELQDWLRQV RI WKH IRXU WRROV RI V\Qn WKHVLV MXVW SUHVHQWHG DQG DUH JHQHUDOO\ QRW XQLTXH IRU DQ\ JLYHQ SUREOHP W\SH DQG OLQNDJH VROXWLRQ $ 6WHSKHQVRQ VROXWLRQ WR SUREOHP QXPEHU WZHOYH LV VKRZQ LQ )LJXUH 7KH V\QWKHVLV SURFHGXUH XWLOL]HV WKH WRROV RI LQYHUVLRQ SDWK FRJQDWHV DQG DV DOZD\Vf WKH FXUYDWXUH WUDQVIRUP 7KH SURFHGXUH EHJLQV ZLWK D FRPELQDWLRQ RI WKH WUDQVODWLRQDO PRWLRQ VSHFLILFDWLRQV RI SRLQW H DQG WKH URWDWLRQDO PRWLRQ VSHFLILFDWLRQV RI FUDQN WR FUHDWH D QHZ PRWLRQ VSHFLILFDWLRQ VHW GHVFULEn LQJ JHQHUDO FRSODQDU PRWLRQ )LJXUH Df 2SHUDWLQJ RQ WKHVH VSHFLILFDWLRQV ZLWK WKH FXUYDWXUH WUDQVIRUP ZLOO SURGXFH FRQVWUDLQW OLQNV DV VKRZQ LQ )LJXUH E DFWXn DOO\ D VHW RI FRQVWUDLQW OLQNV LV SURGXFHGf 2SHUDWLQJ RQ WKLV SUHOLPLQDU\ OLQNDJH VROXWLRQ ZLWK SDWK FRJQDWH DQDO\Wn LFV ZLOO SURGXFH FRQVWUDLQW OLQNV n DQG 7KHVH FRQVWUDLQW OLQNV ZLOO PRYH WKH FRXSOHU OLQN LQ D ZD\ VXFK WKDW FRXSOHU SRLQW H ZLOO PRYH RQ LWV VSHFLILHG SDWK LQ FRRUGLn QDWLRQ ZLWK WKH VSHFLILHG DQJXODU PRWLRQ RI FUDQN OLQN 1RZ WKH PRWLRQ VSHFLILFDWLRQV H[LVW IRU OLQNV n DQG UHODWLYH WR IL[HG OLQN &KDQJLQJ WKH UHIHUHQFH WR OLQN LW LV SRVVLEOH WKURXJK LQYHUVLRQ DQDO\WLFV WR GHILQH D QHZ PRWLRQ VSHFLILFDWLRQ VHW IRU SODQH UHODWLYH WR )LJXUH Gf 2SHUDWLQJ RQ WKHVH PRWLRQ VSHFLILFDWLRQV ZLWK WKH FXUn YDWXUH WUDQVIRUP SURGXFHV FRQVWUDLQW OLQNV DQG ZLWK WKH FLUFOH SRLQW FXELF GHILQLQJ SLYRWV DQG DQG WKH

PAGE 71

3$7+ &2*1$7(6 )LJXUH $ 6WHSKHQVRQ 6ROXWLRQ WR 3RLQW3DWK &RRUGLQDWLRQ ZLWK 7ZR &UDQNV

PAGE 72

FHQWHU SRLQW FXELF GHILQLQJ SLYRWV ) DQG + $ FRQFHSn WXDO UHLQYHUVLRQ ZKLFK UHTXLUHV QR FRPSXWDWLRQDO DFWLYLW\f SURGXFHV D 6WHSKHQVRQ VL[EDU OLQNDJH ZKLFK VDWLVILHV WKH PRWLRQ VSHFLILFDWLRQV & *ULG 'LPHQVLRQ ,I 063 PRWLRQ VSHFLILFDWLRQV DUH XVHG HYHU\ RSHUDn WLRQ LQYROYLQJ D FXUYDWXUH WUDQVIRUP JHQHUDWHV DQ LQILQLW\ RI FRQVWUDLQW OLQNV ,I RQH FRQVWUDLQW OLQN LV WR EH VHOHFWHG IURP WKLV VHW D RQH GLPHQVLRQDO JULG LV UHTXLUHG WR GLVFUHWHO\ UHSUHVHQW WKH VROXWLRQ VHW /LNHZLVH LI WZR FRQVWUDLQW OLQNV DUH WR EH VHOHFWHG IURP WKH VHW WKH JULG ZLOO KDYH WZR GLPHQVLRQV $ FXUYDWXUH WUDQVIRUP IROn ORZHG E\ D SDWK FRJQDWH RSHUDWLRQ ZLOO JHQHUDWH f WZR GLPHQVLRQDO JULGV VLQFH HDFK IRXUEDU ZKLFK RFFXSLHV D SODFH RQ D WZRGLPHQVLRQDO JULGf KDV WZR SDWK FRJQDWHV D OHIW FRJQDWH DQG D ULJKW FRJQDWH 7KH H[DPSOH GLVFXVVHG LQ WKH ODVW VHFWLRQ SURGXFHV WZR f WZRGLPHQVLRQDO JULGV UHSUHVHQWLQJ OLQN DQG n DQG DQRWKHU WZRGLPHQVLRQDO JULG UHSUHVHQWLQJ OLQNV DQG 7KH WRWDO LI WKHVH JULGV DUH FRPELQHG LV WZR f IRXUGLPHQVLRQDO JULGV 7KLV SUREOHP OLHV DW RQH H[WUHPH RI WKH SUREOHPV FRQVLGHUHG LQ WKLV ZRUN 7KH RSSRVLWH H[WUHPH RFFXUV IRU SUREOHP nV DQG ZKRVH HQWLUH OLQNDJH VROXWLRQ VHWV FDQ EH UHSUHVHQWHG E\ RQHGLPHQn VLRQDO JULGV 7KH QDWXUH RI WKH FRPSRQHQW JULGV LV D

PAGE 73

IXQFWLRQ RI SUREOHP W\SH DQG OLQNDJH VROXWLRQ EXW WKH VKDSH RI WKH RYHUDOO JULG LV D IXQFWLRQ RI SUREOHP W\SH DORQH 'HSHQGHQW 6\QWKHVHV 7KH SUHYLRXV H[DPSOH GHPRQVWUDWHV DQ XQGHVLUDEOH SURSHUW\ ZKLFK ZLOO EH KHUHDIWHU WHUPHG GHSHQGHQW V\Qn WKHVHV (VVHQWLDOO\ WKLV SURSHUW\ H[LVWV ZKHQHYHU D V\QWKHVLV SURFHGXUH LQYROYHV WZR RU PRUHf FXUYDWXUH WUDQVn IRUP RSHUDWLRQV LQ VXFK D ZD\ WKDW WKH RUGHU LQ ZKLFK WKH\ DUH SHUIRUPHG FDQQRW EH VZLWFKHG ,Q WKH SUHYLRXV H[DPSOH WKH VHFRQG FXUYDWXUH WUDQVIRUP XVHV WKH PRWLRQ VSHFLILFDn WLRQV RI SODQH ZKLFK GRHV QRW H[LVW XQWLO SODQH KDV EHHQ JHQHUDWHG E\ DPRQJ RWKHU WKLQJVf WKH ILUVW FXUYDWXUH WUDQVIRUP 7KXV HYHU\ SODQH JHQHUDWHG E\ WKH ILUVW V\QWKHVLV ZLOO KDYH D XQLTXH PRWLRQ VSHFLILFDWLRQ VHW IRU WKH VHFRQG V\QWKHVLV WR RSHUDWH XSRQ 7KLV SURSHUW\ JUHDWO\ FRPSOLFDWHV VXEVHTXHQW DQDO\VLV DQG RSWLPL]DWLRQ VWHSV DQG DW WKLV SRLQW WKHVH GLIILFXOn WLHV DUH FLUFXPYHQWHG E\ SHUIRUPLQJ D FRPSOHWH RSWLPL]Dn WLRQ RQ WKH UHVXOWV RI RQH SRUWLRQ RI D GHSHQGHQW V\QWKHn VLV EHIRUH SURFHHGLQJ WR WKH VHFRQG V\QWKHVLV VHH $SSHQn GL[ SUREOHP f )RUWXQDWHO\ QRW DOO VL[EDU V\QWKHVLV SURFHGXUHV LQYROYH GHSHQGHQW V\QWKHVHV ,Q IDFW DOO RI WKH SUREOHPV

PAGE 74

H[FHSW QXPEHU WZHOYH FDQ EH VROYHG E\ DW OHDVW RQH OLQNDJH VROXWLRQ ZLWKRXW GHSHQGHQW V\QWKHVHV 7KHVH VROXWLRQV PXVW EH FRQVLGHUHG WR EH WKH PRUH GHVLUDEOH IURP D FRPSXWDWLRQDO VWDQGSRLQW DQG DUH LQGLFDWHG LQ $SSHQGL[ $ ZLWK WKH W V\PERO

PAGE 75

7DEOH 0RWLRQ &RHIILFLHQWV $ P N $ $ $ $ $ $ $ ODMMf D FRV \ D VLQ
PAGE 76

7DEOH 0RWLRQ &RHIILFLHQWV Pe N XR r 8 8 IL FRV< WnLL V @ LQ< f FRV
PAGE 77

7DEOH 5HODWHG 0RWLRQ 6SHFLILFDWLRQ 6HWV IRU 7ZR 3ODQHV 0 DQG 1 ,63f 1RWDWLRQ )LJXUH f ,QYHUVLRQ )RUPXODWLRQ ,QYHUVLRQ )RUPXODWLRQ ,QGHSHQGHQW SDUDPHWHU Wf ,QGHSHQGHQW SDUDPHWHU Wf 3ODQH 1 3ODQH 0 3ODQH 1 3ODQH 0 U RU 9 6Qn U
PAGE 78

&+$37(5 9 7+( 1(&(66$5< &21',7,216 /LQNDJHV JHQHUDWHG WKURXJK WKH XVH RI WKH NLQHPDWLF V\QWKHVLV WHFKQLTXHV RI &KDSWHU ,9 DUH GHILQLWHO\ FDSDEOH RI VDWLVI\LQJ WKH VSHFLILHG SRVLWLRQV 8QIRUWXQDWHO\ WKH DQDO\WLFV SUHVHQWHG WKHUH WDNH QR FRQVLGHUDWLRQ RI OLQNDJH SHUIRUPDQFH LQ SRVLWLRQV RWKHU WKDQ WKRVH VSHFLILHG 5HDO OLQNDJHV PD\ IDOO LQWR D QXPEHU RI SK\VLFDO SLWIDOOV DQ\ RQH RI ZKLFK LV VXIILFLHQW WR HOLPLQDWH WKH OLQNDJH DV D YLDEOH VROXWLRQ WR WKH VSHFLILHG PRWLRQ SUREOHP 7KH DQDO\WLFV QRZ SUHVHQWHG DUH IRU QHFHVVDU\ FRQGLWLRQV ZKLFK PXVW EH VDWLVILHG EHIRUH D JLYHQ VROXWLRQ OLQNDJH FDQ EH FRQVLGHUHG IRU IXUWKHU RSWLPL]DWLRQ DQDO\VLV 7KH FRQGLWLRQV ZKLFK DSSO\ WR D JLYHQ SUREOHP DUH GHSHQGHQW XSRQ WKH VROXWLRQ OLQNDJH W\SH WKH PHDQV E\ ZKLFK WKH OLQNDJH LV WR EH GULYHQ DQG WKH QDWXUH RI LWV PRWLRQ LH PRGH RI F\FOLFLW\f ,W LV SULPDULO\ EHFDXVH RI WKH GHSHQn GHQFH RI WKH QHFHVVDU\ FRQGLWLRQV XSRQ PRGH RI F\FOLFLW\ WKDW WKH FRQFHSW RI WKH ODWWHU KDV EHHQ GHYHORSHG $ )RXU%DU 1HFHVVDU\ &RQGLWLRQV f 2UGHU ,W LV HQWLUHO\ SRVVLEOH WKDW D OLQNDJH VROXWLRQ ZLOO

PAGE 79

VDWLVI\ WKH VSHFLILHG SRVLWLRQV LQ DQ LPSURSHU VHTXHQFH DV GLVSOD\HG LQ )LJXUH IRU D IRXUEDU OLQNDJH 6L[ SRVVLEOH RUGHUV H[LVW IRU )63 2QO\ WKRVH RQ WKH OHIW ZRXOG EH DFFHSWDEOH DVVXPLQJ WKH OLQNDJHV FDQ EH GULYHQ LQ HLWKHU GLUHFWLRQ )RUWXQDWHO\ UHODWLYHO\ IHZ OLQNDJHV DUH HOLPLQDWHG E\ RUGHU FRQVLGHUDWLRQV )LUVW RI DOO PRWLRQ VSHFLILFDn WLRQV SODFHG LQ D UHODWLYHO\ VPRRWK DQG FRQWLQXRXV VHn TXHQFH WHQG WR EH VDWLVILHG QDWXUDOO\ 6HFRQGO\ WKH VSHFLILHG FDVHV ZLWK KLJKHU ,63 FRQWHQW GLPLQLVK WKH RUGHU SUREOHP )LQDOO\ SUREOHPV ZKLFK KDYH PRWLRQV FRRUGLQDWHG ZLWK D FUDQN DXWRPDWLFDOO\ VDWLVI\ VSHFLILHG RUGHUV 7KH PRVW GLUHFW ZD\ WR DQDO\]H RUGHU LV WR XVH WKH PHWKRG RI 0RGOHU >@ ZKLFK GLYLGHV WKH FLUFOH SRLQW FXELF LQWR VHJPHQWV ZKLFK UHSUHVHQW FRQVWUDLQW OLQNV RI WKH VDPH RUGHU 7KHVH VHJPHQWV DUH GHOLPLWHG E\ WKH LPDJH SROHV DQG WKH %DOO SRLQW 7KLV LV D SRZHUIXO WRRO IRU JUDSKLFDO DQDO\VLV EXW IRU GLVFUHWH FRPSXWDWLRQDO DQDO\VLV LW LV VLPSOHU DQG PRUH GLUHFW WR LQVSHFW H[KDXVWLYHO\ WKH VHTXHQFH DW VSHFLILHG SRVLWLRQV RI DOO FRQVWUDLQW OLQNV f 7KH *UDVKRI &ULWHULRQ $ IRXUEDU FKDLQ PD\ KDYH HLWKHU ]HUR SLYRWV ZLWK FRPn SOHWH URWDWLRQ RU WZR DGMDFHQW SLYRWV ZLWK FRPSOHWH

PAGE 80

)LJXUH 2UGHU

PAGE 81

URWDWLRQ 7KH ODWWHU VLWXDWLRQ RFFXUV LI WKH OLQNDJH VDWLVILHV WKH *UDVKRI FRQGLWLRQ c/ V S T ZKHUH = OHQJWK RI ORQJHVW OLQN V OHQJWK RI VKRUWHVW OLQN ST OHQJWK RI RWKHU WZR OLQNV *URXQGHG IRXUEDU FKDLQV ZKLFK VDWLVI\ WKLV UHODWLRQn VKLS DUH NQRZQ DV *UDVKRI IRXUEDUV DQG WDNH WKH IRUPV VKRZQ LQ )LJXUH DEF 7KH\ DUH VLPSO\ GLIIHUHQW LQn YHUVLRQV RI RQH DQRWKHU DQG DUH JHQHUDOO\ PRUH XVHIXO WKDQ QRQ*UDVKRI OLQNDJHV 7KH FUDQNURFNHU IRU H[DPSOH FDQ EH XVHG WR JHQHUDWH DQ DUELWUDU\ VKDSH ZLWK D FRXSOHU SRLQW ZKLOH LWV FUDQN LV GULYHQ FRQWLQXRXVO\ DQG WKH GUDJOLQN LV RIWHQ XVHG IRU FRQWLQXRXV IXQFWLRQ JHQHUDn WLRQ ,Q D *UDVKRI IRXUEDU RQO\ WKRVH SLYRWV ZKLFK DUH F\FOLF ZLOO HYHU HQWHU FKDQJH SRLQWV 7KH QRQ*UDVKRI IRXUEDUV WDNH RQO\ RQH IRUP UHJDUGn OHVV RI LQYHUVLRQf WKH QRQ*UDVKRI GRXEOHURFNHU 7KLV W\SH RI OLQNDJH WHQGV WR GRPLQDWH D OLQNDJH VROXWLRQ JULG JHQHUDWHG WKURXJK WKH FXUYDWXUH WUDQVIRUP EXW KDV WKH XQn IRUWXQDWH SURSHUW\ RI EHLQJ DEOH WR UHDFK FKDQJH SRLQWV GLVFXVVHG LQ QH[W VHFWLRQf DW DQ\ RI LWV SLYRWV &RQWURO RI OLQNDJH PRWLRQ WKURXJK WKHVH FKDQJH SRLQWV UHTXLUHV VSHFLDO FRQVLGHUDWLRQV

PAGE 82

Df &5$1.52&.(5 '28%/(52&.(5 Ef '5$*/,1. '28%/(52&.(5 )LJXUH )RXU%DU *UDVKRI 7\SHV

PAGE 83

f %UDQFKLQJ DQG &KDQJH 3RLQWV $ FKDQJH SRLQW IRU D JLYHQ SLYRW LV WKDW SRVLWLRQ DW ZKLFK DWWDFKHG OLQNV EHFRPH FROOLQHDU 7KLV SRVLWLRQ ZKLFK PLJKW OLH EHWZHHQ VSHFLILHG SRVLWLRQV PD\ RU PD\ QRW EH DFFHSWDEOH GHSHQGLQJ XSRQ WKH QDWXUH RI WKH OLQNDJH DQG KRZ LW LV GULYHQ Df '\DG FKDQJH SRLQWV ,Q PRVW FDVHV FKDQJH SRLQWV LQ WKH G\DG RI D 6WHSKHQn VRQ RU :DWW VL[EDU LQGLFDWH VLPXOWDQHRXV GLVFRQQHFWLRQ RU D OLPLW LQ PRWLRQ RI WKH UHVW RI WKH OLQNDJH )LJXUH Ef $W WKLV SRLQW WKH G\DG FRXOG SDVV IURP RQH G\DG W\SH UHODWLYH DQJXODU RULHQWDWLRQ )LJXUH Ff WR WKH RWKHU 2QH JHQHUDOO\ ZLVKHV WR YHULI\ WKDW WKH VSHFLILHG SRVLWLRQV DUH VDWLVILHG ZKLOH WKH G\DG PDLQWDLQV LWV W\SH DOWKRXJK RQH H[FHSWLRQ LV WKDW RI WKH F\FOLF G\DGGULYHQ VL[EDU OLQNDJH )LJXUH Gf 7KHUH DUH WZR WLPHV DW ZKLFK G\DG W\SH FDQ EH FKHFNHG ,I ERWK OLQNV RI WKH G\DG DUH GHILQHG E\ WKH PRWLRQ VSHFLILn FDWLRQV VXFK DV WKH 6WHSKHQVRQ VROXWLRQ WR D WKUHHOLQN FKDLQ SUREOHP G\DG OLQNV DQG DUH WKH ILUVW WZR OLQNV RI WKH FKDLQf LW LV D VLPSOH PDWWHU WR VLPSO\ FKHFN WKH PRWLRQ VSHFLILFDWLRQV EHIRUH V\QWKHVLV 0RUH RIWHQ KRZn HYHU RQH RI WKH WZR OLQNV RI WKH G\DG LV JHQHUDWHG LQ WKH V\QWKHVLV SURFHGXUH DQG G\DGW\SH PXVW EH FKHFNHG GXULQJ QHFHVVDU\ FRQGLWLRQ DQDO\VLV

PAGE 84

Df U Ef Gf )LJXUH '\DG &KDQJH 3RLQWV

PAGE 85

Ef &KDQJH SRLQWV LQ IRXUEDU FKDLQV $OO RI WKH VROXWLRQ OLQNDJHV FDQ EH FRQVLGHUHG DV VLQJOH IRXUEDU FKDLQV D FRPELQDWLRQ RI IRXUEDU FKDLQV DQG G\DGV RU D FRPELQDWLRQ RI WZR IRXUEDU FKDLQV $ GHWDLOHG DQDO\VLV RI FKDQJH SRLQWV ZLWKLQ IRXUEDU FKDLQV LV WKHUHIRUH YHU\ ZRUWKZKLOH ,W LQYROYHV FRQVLGHUDWLRQV RI ERWK V\QWKHVLV SURFHGXUH DQG PRGH RI F\FOLFLW\ ,I D IRXUEDU FKDLQ RU DQ\ *UDVKRI W\SHf LV GULYHQ DV VKRZQ LQ )LJXUH D WKURXJK D FKDQJH SRLQW DW WKH LQn GLFDWHG SLYRW WKH G\DG SRUWLRQ RI WKH FKDLQ FRQQHFWHG WR WKLV SLYRW PD\ JR LQWR HLWKHU W\SH 7KLV LV EH\RQG WKH GLUHFW FRQWURO RI WKH GULYHQ PHPEHUV ,I VSHFLILHG SRVLn WLRQV DUH WR EH VDWLVILHG LQ D SRVLWLYH PDQQHU VXFK D FKDQJH SRLQW PXVW EH DYRLGHG 6LPLODUO\ IRXUEDU FKDLQV GULYHQ WKURXJK RSSRVLWH OLQNV )LJXUH Ef FDQQRW WROHUn DWH FKDQJH SRLQWV DW DQ\ SLYRWV IRU WKH VDPH UHDVRQ ,W PD\ EH DVVXPHG WKDW DW OHDVW RQH RI WKH OLQNV LQ WKH FKDLQ KDV EHHQ V\QWKHVL]HG WKURXJK XVH RI WKH FXUYDn WXUH WUDQVIRUP :DOGURQ > @ KDV GHYHORSHG JUDSKn LFDO WHFKQLTXHV ZKLFK RSHUDWH GLUHFWO\ RQ %XUPHVWHU FXELFV LGHQWLI\LQJ VHFWLRQV ZKLFK UHSUHVHQW XVDEOH FRQVWUDLQW OLQNV IRU IRXUEDU FKDLQVf RQ WKH EDVLV RI FKDQJHSRLQW FRQVLGHUDWLRQV 7KHVH WHFKQLTXHV DUH XVHG H[WHQVLYHO\ LQ WKH QHFHVVDU\ FRQGLWLRQ DQDO\VLV RI WKLV ZRUN VR GHWDLOHG GHVFULSWLRQV QRZ IROORZ Lf 'HWHUPLQDWLRQ RI SHUPLVVLEOH OLQNV /HW WKH QDPH

PAGE 86

)LJXUH &KDQJH 3RLQW &RQVLGHUDWLRQV LQ D )RXU%DU &KDLQ

PAGE 87

WUDLOHU VLJQLI\ FRQVWUDLQW OLQNV ZLWK OLPLWHG URWDWLRQ DW WKH PRYLQJ SLYRW DQG WKH QDPH URFNHU VLJQLI\ FRQn VWUDLQW OLQNV ZLWK OLPLWHG URWDWLRQ DW WKH IL[HG SLYRW )LJXUH f )RU H[DPSOH WKH IROORZHU RI D FUDQNURFNHU IRXUEDU LV ERWK D WUDLOHU DQG D URFNHU EXW D FRQVWUDLQW OLQN RI D GUDJOLQN IRXU EDU LV D WUDLOHU RQO\ 7UDLOHUV GHILQHG E\ FLUFOH DQG FHQWHUSRLQW FXELFV ZKLFK KDYH PRYn LQJ SLYRW URWDWLRQ OHVV WKDQ WW IRU WKH 063 DUH WHUPHG SHUPLVVLEOH 7KH ILUVW WHFKQLTXH RI :DOGURQ LV XVHG WR GHWHUPLQH VHFWLRQV RI WKH FLUFOH SRLQW FXELF ZKLFK UHSUHVHQW SHUPLVVLEOH FRQVWUDLQW OLQNV /HW EH WKH URWDWLRQ RI WKH FRXSOHU UHODWLYH WR WKH FRQVWUDLQW OLQN LQ PRYLQJ IURP SRVLWLRQV L WR M 7KLV DQJOH ZLOO EH GHILQHG EHWZHHQ WW DQG WW FORFNZLVH SRVLWLYH /HW Q GHQRWH WKH SRVLWLRQ ZLWK WKH VPDOOHVW RU PRVW QHJDn WLYH YDOXH RI nK M VR WKDW LW GHILQHV RQH HQG RI WKH DQJXODU UDQJH ,I LV A IRU DOO SRVVLEOH YDOXHV RI M WKH DQJXODU UDQJH PXVW EH OHVV WKDQ WW ,I LW FDQ EH HVWDEn OLVKHG WKDW IRU VRPH YDOXH N LV DOZD\V HLWKHU SRVLWLYH RU QHJDWLYH WKH FRQVWUDLQW OLQN XQGHU FRQVLGHUDWLRQ PXVW EH SHUPLVVLEOH 7KH IROORZLQJ SURSHUW\ FDQ EH XVHG WR ILQG WKH VLJQ RI \ f -N $ OLQH WKURXJK WKH LPDJH SROH 3 DQG FLUFOH SRLQW $ ELVHFWV WKH DQJOHA 7‘f VHH )LJXUH Df 7KLV SURSHUW\ DSSOLHV WR DQ\ ZKHUH N LV DQRWKHU SRVLn WLRQ VR WKH DQJOH n) FDQ EH IRXQG IURP .

PAGE 88

D 7UDLOHU )LJXUH 7UDLOHU DQG 5RFNHU

PAGE 89

)LJXUH 'HWHUPLQDWLRQ RI 5HODWLYH 0RYLQJ 3LYRW 5RWDWLRQ IRU )63

PAGE 90

< \ 9 f N BLO VHH )LJXUH Ef 1RZ WKH ORFDWLRQ RI FLUFOH SRLQWV ZLWK SRVLWLYH DQG QHJD f LN WLYH YDOXHV RI WKH LQ WHUPV RI 3A DQG 3Y )LJXUH Ff FDQ EH GHWHUPLQHG E\ XVLQJ WKH SURSHUW\ 7KH WKUHH OLQHV WKURXJK GLDPHWUDO SRLQWV DQG D WKLUG SRLQW RQ D FLUFOH ZLOO GHILQH D ULJKW WULDQJOH )RU FLUFOH SRLQWV O\LQJ RQ WKH ULJKW VLGH RI 3_M3_A DQG RXWVLGH WKH FLUFOH 9 A WW VR WKDW } DQG IRU FLUFOH SRLQWV RQ WKH VDPH VLGH EXW LQVLGH WKH FLUFOH WW 9 WW )LJXUH Df 2Q WKH RSSRVLWH VLGH RI 3_M3_A WKH VLJQV ZLOO EH UHYHUVHG )LJXUH E VKRZV WKLV FRQVWUXFWLRQ RYHUOD\HG RQWR WKH FRUUHVSRQGLQJ FLUFOH SRLQW FXUYH 7ZR YDOXHV RI L FRXOG EH FKRVHQ WKH RQO\ UHTXLUHPHQW LV WKDW L EH GLVWLQFW IURP M DQG N ,QWHUHVWLQJO\ HQRXJK LI HYDOXDWLRQV ZHUH PDGH XVLQJ ERWK SRVVLEOH YDOXHV RI L VRPH VSDFHV LQ WKH SODQH ZRXOG KDYH FRQIOLFWLQJ VLJQV EXW WKH FLUFOH SRLQW FXELF ZLOO RFFXS\ QRQH RI WKHVH VSDFHV $QRWKHU LQWHUHVWLQJ SURSHUW\ LV WKDW WKH VLJQV ZLOO QRW FKDQJH DV WKH FLUFOH SRLQW FXELF SDVVHV WKURXJK DQ LPDJH SROH EXW ZLOO FKDQJH DV WKH FLUFOH SRLQW FXELF FURVVHV WKH FLUFOH RU OLQH VHJPHQW VLQJO\ 7KH SRUWLRQV RI WKH FLUFOH SRLQW FXELF ZKLFK UHSUHVHQW SHUPLVVLEOH FRQVWUDLQW OLQNV ZLOO EH GHILQHG E\ WKRVH SRUn WLRQV IRU ZKLFK DOO WKH FRPSRQHQWV RI DQ\ RI WKH VWULQJV

PAGE 91

)LJXUH 'HWHUPLQDWLRQ RI 3HUPLVVLEOH 7UDLOHUV IRU )63

PAGE 92

< RU < n < \ n < n < \ n < n < < n < n < KDYH WKH VDPH VLJQ LLf 'HWHUPLQDWLRQ RI FRPSDWLEOH OLQNV $ FRPn SDWLEOH FRQVWUDLQW OLQN LV RQH ZKLFK FDQ EH XVHG LQ FRPn ELQDWLRQ ZLWK D SHUPLVVLEOH FRQVWUDLQW OLQN VR WKDW WKH 063 ZLOO EH VDWLVILHG RQ WKH VDPH EUDQFK 7KH SUHYLRXV DQDO\VLV LV XVHG WR HOLPLQDWH SRUWLRQV RI WKH FXELF ZKLFK UHSUHVHQW FRQVWUDLQW OLQNV ZKLFK ZLOO GHILQLWHO\ SDVV WKURXJK D FKDQJH SRLQW DW WKH PRYLQJ SLYRW ZKLOH VDWLVI\n LQJ WKH 063 UHJDUGOHVV RI WKH RWKHU FRQVWUDLQW OLQN FKRVHQf $ SHUPLVVLEOH FRQVWUDLQW OLQN ZKLFK KDV EHHQ VHOHFWHG IURP D SRUWLRQ RI WKH SHUPLVVLEOH FLUFOH SRLQW FXELF PLJKW VWLOO SDVV WKURXJK D FKDQJH SRLQW LI FRXSOHG ZLWK DQ LQFRPSDWLEOH FRQVWUDLQW OLQN /HW $ EH D VHOHFWHG SHUPLVVLEOH FRQVWUDLQW OLQN FO )LJXUH D VKRZV RQH LQ WKH IRXU SRVLWLRQV LQ ZKLFK WKH PRWLRQ VSHFLILFDWLRQV DUH VDWLVILHG GHILQHV WKH UHODn P WLYH FRXSOHU URWDWLRQ LQ UHDFKLQJ SRVLWLRQ M IURP SRVLWLRQ )LJXUH E VKRZV $ LQ WKH ]HURWK SRVLWLRQ ZLWK DQJOHV
PAGE 93

0Wr 9Rn D RrAn

PAGE 94

OLQH 2A$ WR UHDFK WKH H[WUHPDO SRVLWLRQV $V WKLV KDSSHQV D FKDQJH SRLQW RFFXUV DW SRLQW $ 7KHUHIRUH WKH SRUWLRQV RI WKH FLUFOH SRLQW FXELF ZKLFK OLH LQ WKH = UHJLRQV UHSUHVHQW FRQVWUDLQW OLQNV ZKLFK DUH LQFRPSDWLEOH ZLWK WKH VHOHFWHG SHUPLVVLEOH OLQN ,W LV TXLWH SRVVLEOH WKDW WKH FLUFOH SRLQW FXELF ZLOO QRW SDVV LQWR WKH FRPSDWLEOH UHJLRQV GHQRWHG E\ < ,I VR DQRWKHU SHUPLVVLEOH OLQN PXVW EH VHOHFWHG 1RWH WKDW WKH < UHJLRQV GLVDSSHDU DOWRJHWKHU IRU QRQSHUPLVVLEOH OLQNV KDYLQJ QR SRVVLELOLW\ RI ILQGLQJ FRPSDWLEOH FRQVWUDLQW OLQNV Ff *HQHUDO EUDQFKLQJ DQDO\VHV RI IRXUEDU FKDLQV LQ VL[ EDU OLQNDJHV 'LVSOD\HG LQ WKH OHIWKDQG FROXPQ RI )LJXUH DUH WKH SRVVLEOH IRUPV RI IRXUEDU FKDLQ ZKLFK PD\ EH QHHGHG DV DOO RU SDUW IRU D VL[EDUf RI D OLQNDJH VROXWLRQ 7KH FKDLQV RQ WKH ULJKW DUH WKH GLIIHUHQW LQYHUVLRQV LQ ZKLFK WKH FKDLQ RQ WKH OHIW PD\ DFWXDOO\ EH V\QWKHVL]HG ,W LV QHFHVVDU\ WR WUHDW WKHVH LQYHUVLRQV DV WKH\ VWDQG $ QXPn EHU RI QHFHVVDU\ FRQGLWLRQ SURFHGXUHV KDYH EHHQ GHYHORSHG WR KDQGOH WKH UDQJH RI SRVVLEOH V\QWKHVLV LQYHUVLRQV 7KH FRQGLWLRQV XQGHU ZKLFK RUGHU FRQVLGHUDWLRQV FDQ EH LJQRUHG KDYH EHHQ GLVFXVVHG LQ SDUW $ RI WKLV FKDSWHUf

PAGE 95

1HFHVVDU\ &RQGLWLRQ 3URFHGXUH &DVH $V 6\QWKHVL]HG 1&3$ a1&3%r Tr kA UD 1&3& 1&3% 1&3$ r r rf 1&3$ 1&3' 1&3' 1&3* r A 1&3* PH PG r r 1&3+ 1&3+ 1&3+ 1&3+ (=D (=E (=F (=G )LJXUH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUHV IRU )RXU%DU &KDLQV

PAGE 96

1HFHVVDU\ &RQGLWLRQ 3URFHGXUH $ IRU FDVHV OD ,F OLE DQG ,OGf f &KRRVH D IROORZHUFRQVWUDLQWOLQN WR EH D WUDLOHUURFNHU f &KRRVH D FUDQNFRQVWUDLQWOLQN RI SURSHU RUGHU ZKLFK LV FRPSDWLEOH ZLWK WKH IROORZHU f 7HVW *UDVKRI W\SH IRU D FUDQNURFNHU 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH % IRU FDVHV OE DQG ,ODf f &KRRVH D FRQVWUDLQW OLQN WR EH D WUDLOHU RI SURSHU RUGHU f &KRRVH DQRWKHU FRQVWUDLQW OLQN WR EH D WUDLOHU ZKLFK LV FRPSDWLEOH ZLWK WKH ILUVW OLQN f 7HVW *UDVKRI W\SH IRU D GUDJOLQN 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH & IRU FDVHV ,G DQG ,,Ff f ,QYHUW WR FKDQJH UHIHUHQFH WR WKH FRXSOHU OLQN LH JHQHUDWH WKH PRWLRQ VSHFLILFDWLRQV RI WKH IL[HG SODQH UHODWLYH WR WKH PRYLQJ SODQH LQn WHUFKDQJH WKH FLUFOHSRLQW DQG FHQWHUSRLQW FXELF FXUYHV HWF f )ROORZ SURFHGXUH % 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH IRU FDVH ,OODf f &KRRVH D IROORZHUFRQVWUDLQWOLQN WR EH D WUDLOHU f &KRRVH D FUDQNFRQVWUDLQWOLQN RI SURSHU RUGHU ZKLFK LV FRPSDWLEOH ZLWK WKH IROORZHU 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH IRU FDVH ,,,Ff f ,QYHUW WR FKDQJH UHIHUHQFH WR WKH FRXSOHU OLQN f )ROORZ SURFHGXUH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH + IRU FDVHV ,9DE F DQG Gf f &KRRVH D FRQVWUDLQW OLQN ZKLFK LV D WUDLOHU RI SURSHU RUGHU f &KRRVH D VHFRQG FRQVWUDLQW OLQN ZKLFK LV D WUDLOHU ZKLFK LV FRPSDWLEOH ZLWK WKH ILUVW OLQN f &KHFN PXWXDO FRPSDWLELOLW\ f ,QYHUW WR FKDQJH UHIHUHQFH WR WKH FRXSOHU OLQN f 5HSHDW f f DQG f QR QHHG WR FKHFN RUGHU DJDLQf

PAGE 97

,Q VRPH FDVHV WHVWV IRU RUGHU DQG WUDLOHUURFNHU DUH XQQHFHVVDU\ LI *UDVKRI W\SH DUH NQRZQ EXW DUH LQFOXGHG EHn FDXVH WKH\ LPSURYH WKH FKDQFHV RI SURGXFLQJ D GHVLUHG *UDVn KRI W\SH 7KH *UDVKRI W\SH WHVW LV UHODWLYHO\ H[SHQVLYH FRPSXWDWLRQDOO\ EHFDXVH FRQVWUDLQW OLQN FRPELQDWLRQV QRW MXVW VLQJOH FRQVWUDLQW OLQNV DUH XQGHU HYDOXDWLRQ Gf $QDO\VLV RI EUDQFKLQJ LQ SDWKFRJQDWHV )RU PRWLRQ VSHFLILFDWLRQ W\SHV DQG )LJXUH f IRXUEDU FKDLQV DUH SURGXFHG E\ SHUIRUPLQJ D FXUYDWXUH WUDQVIRUP IROORZHG E\ D JHQHUDWLRQ RI SDWK FRJQDWH IRXU EDUV :H DVVXPH IRXUEDU LQ )LJXUH ,'E KDV EHHQ SURGXFHG E\ WKH FXUYDWXUH WUDQVIRUP DQG LWV SDWK FRJQDWHV IRXUEDUV ,, DQG ,,, DUH WR EH XVDEOH DV DOO RU SDUW RI D OLQNDJH VROXWLRQ :KDW WHVWV FDQ EH PDGH RQ IRXUEDU WR HQVXUH SURSHU SHUIRUPDQFH UHODWLYH WR FKDQJH SRLQWV LQ IRXUEDUV ,, DQG ,,," 7KLV TXHVWLRQ LV FHQWUDO WR HVWDEOLVKLQJ SUDFWLFDO QHFHVVDU\ FRQGLWLRQ DQDO\VHV IRU SDWKFRJQDWH SUREOHPV $ VWXG\ RI IRXUEDU ,, ZLOO QRZ EH PDGH LQ GHWDLO $OO FRPPHQWV PDGH KHUHDIWHU UHJDUGLQJ OHIW FRJQDWH IRXUEDU ,, DOVR DSSO\ WR ULJKW FRJQDWH IRXUEDU ,,, 7KH PRGHV RI F\FOLFLW\ ZKLFK ,, PD\ WDNH DUH VKRZQ LQ )LJXUH (DFK RI WKHVH PRGHV ZLOO LQYROYH D VHSDUDWH DQDO\VLV QHFHVVDU\ FRQGLWLRQ SURFHGXUHV 1f WR EH SHUIRUPHG RQ IRXUEDU WR HQVXUH SURSHU SHUIRUPDQFH LQ ,,

PAGE 98

D 3UHVFULEHG 3DWKDQG ,QSXW &UDQN P )LJXUH 8VH RI 3DWK &RJQDWHV WR 6ROYH WKH 3DWK &UDQN &RRUGLQDWLRQ 3UREOHP

PAGE 99

1HFHVVDU\ FRQGLWLRQ SURFHGXUHV 1 WDNH DGYDQWDJH RI VRPH XQXVXDO SURSHUWLHV RI WKH FRJQDWH EDU )LJn XUH Ef Lf $ FRJQDWH EDU ZLOO EH PDGH XS RI RQH RI WKUHH VHWV RI WKUHH IRXUEDUV HLWKHU WKUHH GUDJOLQNV WKUHH QRQ*UDVKRI GRXEOHURFNHUV RU D *UDVKRI GRXEOHURFNHU DQG WZR FUDQNURFNHUV LLf :KHQ LQ IRXUEDU ,, LV DW D FKDQJH SRLQW LQ IRXUEDU LV DOVR DW D FKDQJH SRLQW LLLf :KHQ J LQ IRXUEDU ,, LV DW D FKDQJH SRLQW G LQ IRXUEDU LV DOVR DW D FKDQJH SRLQW LYf :KHQ A LQ IRXUEDU ,, LV DW D FKDQJH SRLQW OLQNV GI DQG A&! rQ IrXUIUDU EHFRPH SDUDOOHO Yf :KHQ M LQ IRXUEDU ,, LV DW D FKDQJH SRLQW OLQNV 2AG DQG &AI LQ IRXUEDU EHFRPH SDUDOOHO 3URRI RI LLf 5HIHUULQJ WR )LJXUH D ‘/HF $ _GI _JH Mrr 1RZ IURP @ =n $HLD=f DQG 5n $HLD5f GH ,JL rr 7KHUHIRUH ZKHQ = DQG 5 FRLQFLGH =n DQG 5n ZLOO DOVR FRLQFLGH DQG FKDQJH SRLQWV ZLOO RFFXU VLPXOWDQHRXVO\ LQ IRXUEDU DW &! DQG LQ IRXUEDU ,, DW !

PAGE 100

3URRI RI +Lf 5HIHUULQJ WR )LJXUH E D D WW $ $ % % EHFDXVH JHG LV D SDUDOOHORJUDP B/ DW VLPXOWDQHRXV FKDQJH SRLQWV IRU J LQ IRXUEDU ,, DQG G LQ IRXUEDU 3URRI RI LYf 5HIHUULQJ WR )LJXUH F LW IROORZV IURP SDWKFRJQDWH SURSHUW\ LLf WKDW FKDQJH SRLQWV RFFXU VLPXOWDQHRXVO\ DW A LQ IRXUEDU ,, DQG DW LQ IRXUEDU ,,, ,Q WKLV SRVLWLRQ &AK DQG EHFRPH FROOLQHDU 7KHUHIRUH AA DQG A A ZKHUH UHIHUV WR WKH DQJOH RI 6LQFH &AKHI LV D SDUDOOHORJUDP IH DQG 2AK DUH SDUDOn OHO ,W IROORZV WKDW GI n 62 rr GI 3URRI RI Yf 5HIHUULQJ WR )LJXUH G LW IROORZV IURP SDWK FRJQDWH SURSHUW\ LLLf WKDW SLYRW M LQ IRXUEDU ,, DQG SLYRW N LQ IRXUEDU ,,, ZLOO SDVV WKURXJK FKDQJH SRLQWV VLPXOWDQHRXVO\ ,Q WKLV SRVLWLRQ 2ADQG 2AJ DUH FROOLQHDU DV DUH 2AN DQG 2AK 'XH WR WKH SDUDOOHORJUDPV DQG VLPLODU WULDQJOHV LW IROORZV JH DQG HK DUH FROOLQHDU DQG 2AG DQG HK &!I ‘frOG ,, rI JH

PAGE 101

7R XVH LYf ZH ZLVK WR HQVXUH WKDW A LQ IRXUEDU ,, GRHV QRW SDVV WKURXJK LWV FKDQJH SRLQW E\ YHULI\LQJ WKDW OLQN GI QHYHU EHFRPHV SDUDOOHO WR OLQN A&! IrXUEDU ZKLOH PRYLQJ LQ VXFK D ZD\ DV WR VDWLVI\ WKH IRXU VSHFLILHG SRVLWLRQV (YHU\ IRXUEDU FKDLQ UHJDUGOHVV RI *UDVKRI W\SH KDV WZR SRVLWLRQV LQ ZKLFK WZR RSSRVLWH OLQNV EHFRPH SDUDOOHO 7KH WRWDO PRWLRQ RI WKH IRXUEDU FDQ EH FRQFHSn WXDOO\ GLYLGHG LQWR WZR VHJPHQWV GHOLPLWHG E\ WKHVH FULWn LFDO SRVLWLRQV 7KH WHVW WR EH SHUIRUPHG WKHUHIRUH LV D YHULILFDWLRQ WKDW DOO VSHFLILHG SRVLWLRQV OLH RQ WKH VDPH PRWLRQ VHJPHQW 6LQFH SLYRWV G DQG I DUH HTXLGLVWDQW IURP D OLQH WKURXJK A DQG DW WKH FULWLFDO SRVLWLRQV LW IROORZV WKDW WKURXJKRXW RQH PRWLRQ VHJPHQW G LV IDUWKHU DZD\ IURP A&! WKDQ I DQG WKURXJKRXW DQRWKHU PRWLRQ VHJPHQW G LV FORVHU ,I WKH DOWLWXGHRI G LV FRQVLVWHQWO\ FORVHU RU IDUWKHU IURP A&! WKDQ I LQ DOO VSHFLILHG SRVLWLRQV WKHQ IRXUEDU ,, ZLOO QRW KDYH D FKDQJH SRLQW DW A DQG IRXU EDU ,,, ZLOO QRW KDYH D FKDQJH SRLQW DW &!f ZKLOH VDWLVI\n LQJ WKH VSHFLILHG SRVLWLRQV 7R PDNH XVH RI Yf VLPLODU DUJXPHQWV FDQ EH PDGH ,I WKH DOWLWXGH RI I UHODWLYH WR 2AGf LV FRQVLVWHQWO\ OHVVHU RU JUHDWHU WKDQ WKH DOWLWXGH RI &! IRU DOO VSHFLn ILHG SRVLWLRQV SLYRW M LQ FRJQDWH IRXUEDU ,, DQG SLYRW N LQ FRJQDWH IRXUEDU ,,, ZLOO QRW KDYH FKDQJH SRLQWV LQ PRYLQJ WKURXJK WKH VSHFLILHG SRVLWLRQV

PAGE 102

3URSHUWLHV LLf LLLf LYf DQG Yf DUH UHSUHVHQWHG SLFWRULDOO\ E\ )LJXUH :LWK WKLV WKHRU\ QHFHVVDU\ FRQGLWLRQ SURFHGXUHV IRU SDWK FRJQDWH SUREOHPV FDQ EH FUHDWHG :DOGURQ DQG 6WHYHQVRQ >@ KDYH SHUIRUPHG DQ DQDO\VLV VLPLODU WR WKDW XVHG LQ WKH ILUVW DQG WKLUG RI WKHVH SURFHGXUHV 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH )ROORZ QHFHVVDU\ FRQGLWLRQ SURFHGXUH & IRU IRXUEDU WHVWV IRU D *UDVKRI GRXEOHURFNHUf 3DWK FRJQDWHV ,, DQG ,,, ZLOO EH XVDEOH FUDQN URFNHUV ZLWK FUDQNV DW 2AJ 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH )ROORZ QHFHVVDU\ FRQGLWLRQ SURFHGXUH $ IRU IRXUEDU WHVWV IRU D FUDQNURFNHUf ,I &AI LV WKH FUDQN LQ IRXUEDU ,, ZLOO EH D XVDEOH FUDQNURFNHU ZLWK D FUDQN DW 2M LI 2SG LV WKH FUDQN LQ IRXUEDU ,,, ZLOO EH D XVDEOH FUDQN URFNHU ZLWK D FUDQN DW 2AN 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH )ROORZ QHFHVVDU\ FRQGLWLRQ SURFHGXUH % IRU IRXU EDU WHVWV IRU D GUDJOLQNf 3DWK FRJQDWHV ,, DQG ,,, ZLOO EH XVDEOH GUDJOLQNV 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH / f 3HUIRUP QHFHVVDU\ FRQGLWLRQ SURFHGXUH RQ IRXUEDU WR LQGLFDWH FKDQJH SRLQWV DW G DQG J LQ FRJQDWH ,,,f f 3HUIRUP QHFHVVDU\ FRQGLWLRQ SURFHGXUH RQ IRXUEDU WR LQGLFDWH FKDQJH SRLQWV DW I DQG K LQ FRJQDWH ,,,f 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH 0 f 7HVW WKH GLVWDQFH RI I DQG UHODWLYH WR 2G IRU WKH VSHFLILHG SRVLWLRQV ,I WKH DOWLWXGH RI I LV FRQVLVWHQWO\ OHVVHU RU JUHDWHU QR FKDQJH SRLQWV ZLOO RFFXU DW M LQ FRJQDWH ,, RU N LQ FRJQDWH ,,,

PAGE 103

)LJXUH 'HWHFWLRQ RI &KDQJH 3RLQWV LQ &RJQDWH )RXU%DU /LQNDJHV

PAGE 104

r A )LJXUH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUHV IRU &RJQDWH )RXU%DU /LQNDJHV

PAGE 105

Df Ef )LJXUH 3DWK &RJQDWH &KDQJH 3RLQW 'HULYDWLRQV

PAGE 106

1HFHVVDU\ &RQGLWLRQ 3URFHGXUH 1 f 3HUIRUP QHFHVVDU\ FRQGLWLRQ SURFHGXUH / RQ IRXUEDU WR LQGLFDWH FKDQJH SRLQWV DW J LQ FRJn QDWH ,, DQG K LQ FRJQDWH ,,, f ,QYHUW FRXSOHU DQG JURXQGVZDS FRQVWUDLQW OLQNV LQ DQG H[HFXWH QHFHVVDU\ FRQGLWLRQ SURn FHGXUH / DJDLQ WR LQGLFDWH FKDQJH SRLQWV DW A LQ FRJQDWHV ,, DQG ,,, f ([HFXWH QHFHVVDU\ FRQGLWLRQ SURFHGXUH 0 RQ IRXUEDU WR LQGLFDWH FKDQJH SRLQWV DW M LQ FRJn QDWH ,, RU LQ FRJQDWH ,,, f 7HVW WKH GLVWDQFH RI G DQG I UHODWLYH WR 2M&A IRU WKH VSHFLILHG SRVLWLRQV ,I WKH DOWLWXGH RI G LV DOZD\V OHVV RU JUHDWHU QR FKDQJH SRLQWV ZLOO RFFXU DW A LQ FRJQDWH ,, RU LQ FRJQDWH ,,, % 6L[EDU 1HFHVVDU\ &RQGLWLRQV 7KH QHFHVVDU\ FRQGLWLRQV SUHVHQWHG WKXV IDU DUH VXIn ILFLHQW IRU WKH QHFHVVDU\ FRQGLWLRQ DQDO\VLV RI IRXUEDU OLQNDJHV DQG WKH FRQVWLWXHQW SDUWV LH G\DGV DQG IRXU EDUVf RI VL[EDU OLQNDJHV 6HYHUDO FRQGLWLRQV LQYROYLQJ WKH FRPELQDWLRQ RI WKHVH SDUWV LQWR FRPSOHWH VL[EDU OLQNDJHV DUH VWLOO QHHGHG f '\DG &RQQHFWLRQ 7KH IDFW WKDW D VL[EDU OLQNDJH LV FDSDEOH RI UHDFKn LQJ VSHFLILHG SRVLWLRQV ZLWKRXW FKDQJH SRLQW RU RUGHU GLIn ILFXOWLHV LV QRW HQRXJK WR HQVXUH QRQGLVFRQQHFWLRQ RI D OLQNDJH PHPEHU ZKLOH PRYLQJ EHWZHHQ WKH VSHFLILHG SRVLWLRQV &RQFHSWXDOO\ RQH FDQ LPDJLQH D IRXUEDU OLQNDJH ZKRVH FRXSOHU SLYRW SDVVHV RXWVLGH RU LQVLGHf RI WKH ERXQGV RI SRVVLEOH PRWLRQ RI G\DG SLYRW T )LJXUH Df 9HULILFDn WLRQ RI WKLV FRQGLWLRQ LV PDGH XVLQJ D G\DGEDVHG DQDO\n VLV RI WKH HQWLUH OLQNDJH DW GLVFUHWH LQWHUYDOV

PAGE 107

m 1 )LJXUH '\DG5HODWHG 1HFHVVDU\ &RQGLWLRQV

PAGE 108

f '\DG 'LVFRQQHFWLRQ ,Q FRQWUDVW WR G\DG FRQQHFWLRQ LW PD\ EH QHFHVVDU\ WR YHULI\ G\DG GLVFRQQHFWLRQ 7KLV RFFXUV ZKHQ D 6WHSKHQVRQ VL[EDU OLQNDJH LV GULYHQ E\ PHDQV RI D G\DG OLQN )LJXUH Ef 6LQFH D G\DG DQDO\VLV FDQQRW EH SHUIRUPHG RQ D 6WHSKHQVRQ FKDLQ ZLWK D G\DG OLQN DV FUDQN LW EHFRPHV QHFHVVDU\ WR GULYH WKH G\DG WKURXJK WKH IRXUEDU WKURXJK LWV IXOO UDQJH RI PRWLRQ GHILQHG E\ G\DG GLVFRQQHFWLRQf WR PDNH VXUH WKH G\DG OLQN LV F\FOLF $W WKH VDPH WLPH WKH IRXUEDU LV FKHFNHG WKURXJKRXW LWV UDQJH RI PRWLRQ IRU FKDQJH SRLQWV 2QH DGGLWLRQDO FKHFN RI UHODWLYH G\DG OLQN OHQJWK LV PDGH WR HQVXUH WKDW WKH DSSURSULDWH G\DG OLQN LV URWDWLQJ FRPSOHWHO\ f 1RQJ)XQFWLRQ 5HYHUVDO 3HFXOLDU WR 6WHSKHQVRQ VL[EDU OLQNDJHV ZKLFK DUH GULYHQ E\ RQH RI WKH WZR OLQNV FRQQHFWHG WR JURXQG LV D QHFHVVDU\ FRQGLWLRQ LQYROYLQJ WKH ILUVW RUGHU LQIOXHQFH FRHIILFLHQW WKH JIXQFWLRQ ,W RFFXUV EHFDXVH WKH GULYHQ OLQN PD\ UHDFK D OLPLW LQ DQJXODU PRWLRQ ZKLFK LV GHILQHG E\ D KLJKHU RUGHU JHRPHWU\ FRQVWUDLQW 6LQFH LW LV LPSRVn VLEOH WR DQDO\]H D 6WHSKHQVRQ GLUHFWO\ XVLQJ D G\DG EDVHG DQDO\VLV WKH WHVW LV SHUIRUPHG E\ LQYHUWLQJ WR D 6WHSKHQVRQ DQG GULYLQJ WKH OLQNDJH DW WKH IRXUEDU FKDLQ ,I WHUQDU\ OLQN LV WKH GULYHQ PHPEHU LQ WKH RULJn LQDO 6WHSKHQVRQ WKH RIIHQGLQJ SRVLWLRQ RFFXUV

PAGE 109

DV WKH JIXQFWLRQ LH UHODWLYH DQJXODU YHORFLW\f RI OLQN UHODWLYH WR DSSURDFKHV ]HUR DQG OLQN FRPHV WR D KDOW 2Q HLWKHU VLGH RI WKLV SRVLWLRQ A DVVXPHV RSn SRVLWH YDOXHV ,I G\DG OLQN LV WKH GULYHQ PHPEHU LQ WKH RULJLQDO 6WHSKHQVRQ D FULWLFDO SRVLWLRQ RFFXUV ZKHQ JAA DSSURDFKHV ]HUR ,Q HLWKHU FDVH WKH VSHFLILHG SRVLWLRQV PXVW EH VDWLVILHG ZLWKRXW WKH OLQNDJH SDVVLQJ WKURXJK D FULWLFDO SRVLWLRQ f (QFLUFOHPHQW DQG 1RQHQFLUFOHPHQW ,Q D 6WHSKHQVRQ FKDLQ LI WKH FRXSOHU SRLQW & HQFLUn FOHV SRLQW $ DV VKRZQ LQ WKH H[DPSOH RI )LJXUH F SLYRWV & DQG $ ERWK KDYH FRPSOHWH UHODWLYH URWDWLRQ ,I HQFLUFOHPHQW GRHV QRW RFFXU DQG WKH FKDLQ LV QRW F\FOLFO\ G\DG GULYHQf SLYRWV & DQG $ ZLOO KDYH RQO\ UHODWLYH URWDn WLRQ ,Q HLWKHU FDVH WKH G\DG ZLOO QRW FKDQJH W\SH (LWKHU RI WKHVH PRWLRQ FKDUDFWHULVWLFV RU LWV H[FOXVLRQf PD\ EH GHVLUDEOH LQ D SDUWLFXODU DSSOLFDWLRQ 7KH QHFHVVDU\ FRQGLWLRQV FRQQHFWLRQ GLVFRQQHFWLRQ JIXQFWLRQ UHYHUVDO HQFLUFOHPHQW DQG QRQHQFLUFOHPHQW DUH HYDOXDWHG VLPXOWDQHRXVO\ GXULQJ D VLQJOH G\DGEDVHG PRWLRQ DQDO\VLV 7KH UDQJH WKURXJK ZKLFK WKH :DWW RU 6WHSKHQVRQ LQYHUVLRQ RI WKH VL[EDU OLQNDJH LV GULYHQ GHSHQGV XSRQ WKH PRGH RI F\FOLFLW\ ,I WKH PRGH RI F\FOLFLW\ LQYROYHV QR OLQNV ZLWK FRPSOHWH URWDWLRQ WKH OLQNDJH ZLOO EH GULYHQ LQ VPDOO LQFUHPHQWV IURP WKH ]HURWK WR WKH WKLUG VSHFLILHG

PAGE 110

SRVLWLRQ ,I WKH FKDLQ LV F\FOLFDOO\ GULYHQ WKURXJK D G\DG OLQN RU WKH OLQNDJH LV GULYHQ WKURXJK WKH IRXUEDU FKDLQnV IXOO UDQJH RI SRVVLEOH PRWLRQ EHWZHHQ G\DG GLVn FRQQHFWLRQV $ WKLUG SRVVLELOLW\ RFFXUV LI WKH FKDLQ LV F\FOLFDOO\ GULYHQ WKURXJK D IRXUEDU FKDLQ OLQN LQ ZKLFK FDVH WKH HQWLUH OLQNDJH LV GULYHQ WKURXJK D FRPSOHWH F\FOH

PAGE 111

&+$37(5 9, 7+( '(6,5$%/( &21',7,216 &KDSWHU ,9 SUHVHQWHG WKH V\QWKHVLV SURFHGXUHV E\ ZKLFK OLQNDJH VROXWLRQ VHWV RI RQH WR IRXU GLPHQVLRQV DUH JHQn HUDWHG 7KH QHFHVVDU\ FRQGLWLRQV ZKLFK VHUYH WR HOLPLQDWH IURP WKH OLQNDJH VROXWLRQ VHW WKRVH OLQNDJHV ZLWK VRPH XQn DFFHSWDEOH SK\VLFDO FKDUDFWHULVWLFV ZHUH WUHDWHG LQ &KDSn WHU 9 1RZ WKH GHVLUDEOH FRQGLWLRQV ZKLFK VHUYH WR VRUW DQG UDQN WKH UHPDLQLQJ OLQNDJHV UHODWLYH WR D XVHUGHILQHG REMHFWLYH IXQFWLRQ ZLOO EH GLVFXVVHG 7KHVH FRQGLWLRQV FRQVWLWXWH WKH ILQDO VWHS LQ WKH V\QWKHVLVDQDO\VLVUHV\Qn WKHVLV ORRS E\ ZKLFK RSWLPL]DWLRQ RFFXUV $ GHVLUDEOH FRQGLWLRQ PD\ EH DQ\ FULWHULRQ E\ ZKLFK WKH TXDOLW\ RI D OLQNDJH VROXWLRP PD\ EH MXGJHG 7KH UDQJH RI DSSOLFDWLRQ IRU OLQNDJHV LV HQRUPRXV DQG VR WRR LV WKH UDQJH RI SRVVLEOH GHVLUDEOH FRQGLWLRQV 1LQH JHQHUDOO\ XVHn IXO GHVLUDEOH FRQGLWLRQV KDYH EHHQ FRQVLGHUHG IRU WKLV ZRUN $ 7KH 'HVLUDEOH &RQGLWLRQV f 3LYRW /RFDWLRQ ,Q PDQ\ DSSOLFDWLRQV WKH GHVLJQHU KDV UHVWULFWLRQV UHODWHG WR PRYLQJ SLYRW ORFDWLRQV RU PRXQWLQJ ORFDWLRQV UHODWLYH WR WKH PRYLQJ ERGLHV 'HSHQGLQJ RQ WKH SUREOHP W\SH DQG WKH OLQNDJH VROXWLRQ W\SH VHOHFWHG VRPH RI WKH

PAGE 112

SLYRWV PD\ EH SUHVSHFLILHG EXW WKH ORFDWLRQ RI RWKHUV ZLOO YDU\ WKURXJKRXW WKH VROXWLRQ VHW ,I VRPH ODWLWXGH LV QRW DYDLODEOH LQ WKHVH ORFDWLRQV WKH GHVLJQHU PXVW UHn GXFH KLV VSHFLILFDWLRQ 2WKHUZLVH KH PD\ XVH WKH 063 PRWLRQ VSHFLILFDWLRQV DQG WUHDW ORFDWLRQ RI WKH YDULDEOH SLYRWV DV DQ RSWLPL]DWLRQ FULWHULRQ f /LQN /HQJWK 5DWLR 7KH OLQN OHQJWK UDWLR LV VLPSO\ WKH OHQJWK RI WKH ORQJHVW VSHFLILHG OLQN GLYLGHG E\ WKH OHQJWK RI WKH VKRUWn HVW VSHFLILHG OLQN LH //5!f DQG LV LQGLFDWLYH RI G\QDPn LF FKDUDFWHULVWLFV RI D OLQNDJH 3UHYLRXV RSWLPL]DWLRQ VFKHPHV GHDOLQJ ZLWK IRXUEDU FRSODQDU PRWLRQ SUREOHPV >@ KDYH DXWRPDWLFDOO\ FRQVLGHUHG DOO IRXU OLQNV LQ WKLV UDWLR )RU VL[EDU SUREOHPV LW EHFRPHV LPSRUWDQW WR DOORZ WKH GHVLJQHU WR VSHFLI\ WKH OLQNV RI SDUWLFXODU LQWHUHVW f /LQN 6L]H .LQHPDWLF DQG G\QDPLF FKDUDFWHULVWLFV PD\ EH IXQFn WLRQ RI OLQN VL]HV UHODWLYH WR RYHUDOO PRWLRQ SDUDPHWHUV $JDLQ VRPH RI WKH OLQNV PD\ EH SUHVSHFLILHG EXW DOO SUREOHPV KDYH YDULDEOH OLQNV 7KH OLQN OHQJWK UDWLR DQG OLQN VL]H FULWHULD DUH ERWK VLPSOH JHRPHWULF OLQNDJH SDUDPHWHUV ZKLFK FDQ SURYLGH LQn VLJKW LQWR WKH G\QDPLF FKDUDFWHULVWLFV RI D OLQNDJH $On WKRXJK WKH\ DUH QRW SDUWLFXODUO\ UHOLDEOH WKH\ DUH XVHn IXO EHFDXVH WKH\ DUH FRPSXWDWLRQDOO\ LQH[SHQVLYH DQG FDQ

PAGE 113

ILOWHU RXW LQIHULRU OLQNDJHV EHIRUH PRUH H[SHQVLYH GHVLUn DEOH FRQGLWLRQV DUH HYDOXDWHG 7KH ILYH IROORZLQJ GHVLUDEOH FRQGLWLRQV DUH DOVR JHRPHWULF OLQNDJH SDUDPHWHUV ZKLFK DFW DV LQGH[HV RI WKH G\QDPLF FKDUDFWHULVWLFV RI OLQNDJHV 7KH\ DUH WKH UHVXOW } RI GHWDLOHG VWXGLHV RI FDP V\VWHP G\QDPLFV E\ 7HVDU DQG 0DWWKHZ >@ DQG ZHUH UHFHQWO\ DSSOLHG WR *HQHYD PHFKn DQLVPV E\ 7DDW >@ DQG 7DDW DQG 7HVDU >@ f JIXQFWLRQ 7KH JIXQFWLRQ LV D ILUVW RUGHU JHRPHWULF GHULYDWLYH UHODWLQJ RXWSXW DQG LQSXW PRWLRQV ,W LV D UHOLDEOH LQn GLFDWRU RI G\QDPLF SURSHUWLHV UHODWHG WR RXWSXW YHORFLn WLHV NLQHWLF HQHUJLHV IRUFH PDJQLILFDWLRQV DQG LQSXW WRUTXH UHTXLUHPHQWV )RU VL[EDU SUREOHPV LW RIWHQ EHn FRPHV GHVLUDEOH WR PRQLWRU WKH PD[LPXP YDOXHV RI WKH J IXQFWLRQV RI WZR RXWSXW OLQNV f $K 7KH KIXQFWLRQ LV D VHFRQG RUGHU JHRPHWULF GHULYDWLYH UHODWLQJ RXWSXW DQG LQSXW PRWLRQ ,W LV D JRRG SUHGLFWRU RI G\QDPLF SURSHUWLHV UHODWHG WR LQHUWLD IRUFHV DQG LQn WHUQDO GHIRUPDWLRQ +HUH WKH LQWHUHVW LV LQ PRQLWRULQJ SHDNWRSHDN YDOXHV f KUPV 7KH URRWPHDQVTXDUH RI WKH KIXQFWLRQ RYHU D F\FOH

PAGE 114

RI RSHUDWLRQ LV DQ LQGLFDWRU RI V\VWHP SUHFLVLRQ DQG LQn WHUQDO EHDULQJ ORDGV ,W LV GHVLUDEOH WR PLQLPL]H WKH RYHUDOO URRWPHDQVTXDUH RI WKH KIXQFWLRQ f 7RUTXH 7KH IXQFWLRQDO SURGXFW RI WKH ILUVW DQG VHFRQGRUGHU JHRPHWULF GHULYDWLYHV WKURXJKRXW D F\FOH JKf LV LQGLFDWLYH RI WKH GULYLQJ WRUTXH QHHGHG WR PDLQWDLQ D FRQVWDQW LQSXW 7KH SHDNWRSHDN YDOXH LV SUHGLFWLYH RI VSHHG IOXFWXDWLRQ RU G\QDPLF ZLQGXS DW WKH LQSXW f ,QSXW 6KRFN /HYHO $ FRPELQDWLRQ RI ILUVW VHFRQG DQG WKLUGRUGHU JHR PHWULF GHULYDWLYHV JLYHQ E\ WKH UHODWLRQVKLS 7 JKnKf LV DQ LQGH[ RI VKRFNOHYHO IHOW DW WKH LQSXW RI D V\VWHP +LJKHU YDOXHV ZLOO EH LQGLFDWLYH RI LQFUHDVLQJ VLJQLILFDQFH RI G\QDPLF SURSHUWLHV UHODWHG WR YLEUDWLRQ QRLVH ZHDU DQG EDFNODVK 'HVLUDEOH FRQGLWLRQV PXVW UHO\ XSRQ D G\DGEDVHG DQDO\VLV DQG DUH HYDOXDWHG VLPXOWDQHRXVO\ IRU HDFK VROXn WLRQ OLQNDJH +LJKHURUGHU JHRPHWULF SURSHUWLHV DUH HYDOn XDWHG XVLQJ D ILQLWHGLIIHUHQFH GLIIHUHQWLDWLRQ RI WKH ]HURWK RUGHU PRWLRQ DQDO\VLV 7DNLQJ DGYDQWDJH RI WKH G\DGDQDO\VLV LV D ILQDO GHVLUDEOH FRQGLWLRQ XQUHODWHG WR V\VWHP G\QDPLFV

PAGE 115

f 2YHUDOO %RXQGDU\ 7KLV FRQGLWLRQ LV XVHG WR UDQN VROXWLRQ OLQNDJHV UHODWLYH WR RYHUDOO VSDFH UHTXLUHG 6RPH GHVLJQV ZLOO SODFH VRIW FRQVWUDLQWV RQ ZRUNLQJ YROXPHV LQ WKH IRUP RI SUHIHUUHG UHJLRQV ZKLOH RWKHUV PD\ KDYH KDUG DEn VROXWH UHVWULFWLRQV FUHDWHG E\ RWKHU V\VWHP FRPSRQHQWV % 7KH 2EMHFWLYH )XQFWLRQ 7KH OLQNDJHV ZKLFK KDYH VXUYLYHG WR WKH GHVLUDEOH FRQGLWLRQV DUH RUGHUHG XVLQJ VRPH XVHUGHILQHG REMHFWLYH IXQFWLRQ 7KLV IXQFWLRQ PD\ WDNH WKH IRUP 1 (1N (:N6N f N N N ZKHUH 1 UHSUHVHQWV D FXPXODWLYH VFRUH DWWDFKHG WR D SDUn WLFXODU OLQNDJH N LV WKH GHVLUDEOH FRQGLWLRQ FRXQWHU 1N LV D OLQNDJH VFRUH IRU FRQGLWLRQ N :N LV D ZHLJKW VLJQLI\LQJ UHODWLYH LPSRUWDQFH RI FRQGLWLRQ N DQG 6N LV D VFRUH VLJQLI\LQJ SHUIRUPDQFH RI WKH OLQNDJH UHODWLYH WR FRQGLWLRQ N 7KH ZHLJKWLQJ IDFWRU :N LV VHW E\ WKH GHVLJQHU ZKR PXVW PDNH WKLV GHFLVLRQ UHODWLYH WR WKH DSSOLFDWLRQ XVLQJ KLV RZQ H[SHULHQFH DQG MXGJHPHQW ,Q WKLV ZRUN ERWK ZHLJKWV DQG VFRUHV PD\ EH DVVLJQHG ZLWKLQ D UDQJH RI WR $ ZHLJKW RI VLJQLILHV D FRQGLWLRQ RI SULPDU\

PAGE 116

LPSRUWDQFH DQG D ZHLJKW RI VLJQLILHV D FRQGLWLRQ RI QR LPSRUWDQFH $ FRQGLWLRQ VFRUH RI VLJQLILHV LGHDO SHUn IRUPDQFH DOPRVW QHYHU DWWDLQHGf DQG D VFRUH RI GHOLPn LWV WKH ERXQG RI DFFHSWDEOH SHUIRUPDQFH ,Q WKLV ZD\ D OLQNDJH UHFHLYHV D FXPXODWLYH VFRUH RQ D GHPHULW V\VWHP WKH OLQNDJH FRPSOHWLQJ WKH DQDO\VLV ZLWK WKH ORZHVW VFRUH LV WKH RSWLPXP RQH LQ WKH VROXWLRQ VHW 7KHUH DUH D QXPEHU RI ZD\V WR FRUUHODWH VFRUH DQG OLQNDJH SHUIRUPDQFH 7KH VLPSOHVW ZD\ LV WR XVH D OLQHDU VFDOH EHWZHHQ LGHDO SHUIRUPDQFH DQG WKH DFFHSWDEOH OLPLW 7KH VFRUH LV WKHQ JHQHUDWHG E\ 6N 93! ZKHUH 3 f GLIIHUHQFH EHWZHHQ LGHDO DQG DFWXDO SHUIRUPDQFH GLIIHUHQFH EHWZHHQ LGHDO DQG XQDFFHSWDEOH SHUIRUPDQFH $Q DOWHUQDWLYH XVHG E\ (VFKHQEDFK DQG 7HVDU >@ XVHG UDQNLQJ ]RQHV LQ ZKLFK EHVW JRRG DQG DFFHSWDEOH UHn JLRQV DUH GHILQHG DQG DVVLJQHG VFRUH YDOXHV $ EHWWHU DSn SURDFK ZDV DOVR XVHG LQ WKH VDPH SDSHU ZKHUH WKH UDWLR RI DFWXDO WR PD[LPXP YDOXH LV RSHUDWHG XSRQ E\ DQ H[SRQHQW Q DVVLJQHG E\ WKH GHVLJQHU 3 Q 6 N 3 f

PAGE 117

7KLV DSSURDFK KDV WKH DGYDQWDJH WKDW Q FDQ EH FKRVHQ WR DVVLJQ SHUIRUPDQFH VFRUHV LQ D QRQOLQHDU IDVKLRQ ZLWKLQ WKH DFFHSWDEOH UHJLRQ 1RWH WKDW LV HTXLYDOHQW WR ZKHQ Q O DQG D IDFWRU RI LV LQFOXGHG 7KH DSSURDFK XVHG LQ WKLV ZRUN LV WKH UHVXOW RI D FRPELQDWLRQ RI WKHVH FRQFHSWV DQG ZDV LQWURGXFHG LQ WKH DXWKRUnV WKHVLV >@ 7KH GHVLJQHU LV DVNHG WR VSHFLI\ IRU HDFK GHVLUDEOH FRQGLWLRQ DQ LGHDO SUHIHUDEOH DQG DFFHSWDEOH SHUIRUPDQFH WR ZKLFK VFRUHV RI DQG DUH DWWDFKHG UHVSHFWLYHO\ $Q\ OLQNDJH ZKLFK IDOOV RXWn VLGH RI WKH DFFHSWDEOH ERXQGV LV GLVFDUGHG $ VPRRWK H[SRQHQWLDO FDQ EH ILWWHG WR WKHVH SHUIRUPDQFH VSHFLILFDn WLRQV DQG OLQNDJH VFRUHV HYDOXDWHG RQ WKH EDVLV RI WKH H[n SRQHQWLDO 6 /RJ 33f ZKHUH GLIIHUHQFH EHWZHHQ SUHIHUDEOH DQG LGHDO SHUIRUPDQFH GLIIHUHQFH EHWZHHQ DFWXDO DQG LGHDO SHUIRUPDQFH 3A GLIIHUHQFH EHWZHHQ DFFHSWDEOH DQG LGHDO SHUIRUPDQFH )LJXUH VKRZV VFRULQJ DV D IXQFWLRQ RI UHODWLYH SODFHPHQW RI LGHDO SUHIHUDEOH DQG DFFHSWDEOH UHJLRQV

PAGE 118

,OO S )LJXUH 'HVLUDEOH &RQGLWLRQ 6FRULQJ &XUYHV

PAGE 119

2QHGLPHQVLRQDO GHVLUDEOH FRQGLWLRQV HJ OLQN OHQJWKVf ZLOO KDYH VLQJOHGLPHQVLRQDO UHJLRQV 7ZRGLPHQVLRQDO GHVLUDEOH FRQGLWLRQV HJ SLYRW ORFDWLRQVf ZLOO KDYH WZRGLPHQVLRQDO UHJLRQV DQG WKHVH UHJLRQV PD\ QRZ WDNH WKH IRUP RI FLUFOHV RU UHFWDQJOHV

PAGE 120

&+$37(5 9,, 352*5$00,1* )25 )285%$5 $1' 6,;%$5 237,0,=$7,21 $ 3KLORVRSK\ RI 3URJUDP 0RGXODULW\ 7KH WKUHH PDMRU FRPSXWDWLRQDO EORFNV LQ WKH V\QWKHVLV DQDO\VLVUHV\QWKHVLV DSSURDFK WR OLQNDJH RSWLPL]DWLRQ DQG WKHLU H[HFXWLRQ VHTXHQFH )LJXUH f DUH FRPPRQ WR WKH RSWLPL]DWLRQ RI DOO WZHOYH RI WKH PRWLRQ VSHFLILFDWLRQ W\SHV 7KH GLIIHUHQFH EHWZHHQ SUREOHPV OLH ZLWKLQ WKHVH EORFNV 7R JDLQ DQ XQGHUVWDQGLQJ RI IOH[LELOLW\ QHHGHG LQ DQ DOOHQFRPSDVVLQJ IRXUEDU DQG VL[EDU RSWLPL]DWLRQ SURJUDP SDFNDJH FRQVLGHU WKDW PRVW RI WKH PRWLRQ VSHFLILFDWLRQ W\SHV FDQ EH VROYHG E\ VHYHUDO W\SHV RI PHFKDQLVP HDFK HQWDLOLQJ VHSDUDWH V\QWKHVLV SURFHGXUHV IRXUW\HLJKW FRPn ELQDWLRQV RI PRWLRQ VSHFLILFDWLRQVROXWLRQ OLQNDJH H[LVWf (YHU\ FRPELQDWLRQ KDV IRXU WR ILIWHHQ PRGHV RI F\FOLFLW\ HDFK RQH UHTXLULQJ VRPH SURFHGXUH IRU QHFHVVDU\ FRQGLWLRQ HYDOXDWLRQ WKH VDPH LV WUXH IRU GHVLUDEOH FRQGLWLRQV WR D OHVVHU H[WHQWf 7KH SURJUDP SDFNDJH SURYLGLQJ D FRPSXWDWLRQDO EDVH IRU WKH DQDO\WLFV SUHVHQWHG LQ WKLV ZRUN LV DOVR LQWHQGHG WR VHUYH DV D IRXQGDWLRQ IRU D IXWXUH PHFKDQLVPV SDFNDJH

PAGE 121

! r 6\QWKHVLV kkkkfff k 1HFHVVDU\ &RQGLWLRQV I kkk 'HVLUDEOH &RQGLWLRQV )LJXUH 7KH &RPSXWDWLRQDO 6WHSV RI D 6\QWKHVLV$QDO\VLV 5HV\QWKHVLV /LQNDJH 2SWLPL]DWLRQ

PAGE 122

FRRUGLQDWLQJ OLQNDJH V\QWKHVLV DQG RSWLPL]DWLRQ FDP V\Qn WKHVLV DQG DQDO\VLV PHFKDQLVP VKDNLQJ IRUFH VKDNLQJ PRPHQW DQG WRUTXH EDODQFLQJ VSULQJ HQHUJ\ DQG GDVKSRW V\QWKHVLV G\QDPLF DQDO\VLV DQG HYHQWXDOO\ VSDWLDO DQG VSKHULFDO DQDO\WLFV -XVW WR PHHW WKH JRDOV RI V\QWKHVLV DQG RSWLn PL]DWLRQ KRZHYHU WKH SDFNDJH PXVW EH FDSDEOH RI KDQGOLQJ WKH DQDO\WLFV IRU DQ HVWLPDWHG GLIIHUHQW SUREOHPOLQNn DJHPRGH RI F\FOLFLW\ FRPELQDWLRQV $ PRVW IHDVLEOH SUDFWLFDO IOH[LEOH DQG PDUNHWDEOH DSSURDFK WR WKH RSWLPL]DWLRQ SDFNDJH DQG LWV SURSRVHG H[n SDQVLRQ FDQ EH EDVHG RQ D SURJUDPPLQJ WHFKQLTXH XVHG E\ 3ROORFN >@ IRU D G\QDPLF OLQNDJH DQDO\VLV SDFNDJH 7KH SDFNDJH FRQVLVWV RI D SRRO RI PRGXOHV RI HTXLYDOHQW SURn JUDP KLHUDUFK\ IURP ZKLFK D XVHU FDQ VHOHFW DQG FRRUGLQDWH WKRVH QHHGHG IRU D SDUWLFXODU DSSOLFDWLRQ 7KH RSWLPL]DWLRQ SDFNDJH KDV EHHQ EURNHQ XS LQWR VXFK D SRRO RI PRGXOHV 7DEOH f FRQVLVWLQJ RI DQ LQSXW DQG RXWSXW PRGXOH IRU HDFK FRPSXWDWLRQDO EORFN ILYH V\QWKHn VLV PRGXOHV IRXUWHHQ QHFHVVDU\ FRQGLWLRQ PRGXOHV IRXU GHVLUDEOH FRQGLWLRQ PRGXOHV DQG IRXU JHQHUDO VXSSRUW URXn WLQHV 7KH IXQFWLRQ DQG LQSXWRXWSXW RI HDFK PRGXOH LV SUHVHQWHG LQ $SSHQGL[ & 7KH DGYDQWDJHV RI WKH 3ROORFN DSSURDFK WR SURJUDP VWUXFWXUH SHUWDLQ WR ERWK WKH RSWLPL]DWLRQ SDFNDJH DQG LWV SURSRVHG H[SDQVLRQ f $ FHQWUDO FRQWURO SURJUDP LV QRW QHFHVVDU\ 7KH

PAGE 123

SDFNDJH QHYHU EHFRPHV VR ODUJH DV WR EHFRPH XQPDQDJHDEOH f 7KH XVHU GHVLJQV KLV SURJUDP IRU KLV SDUWLFXODU DSSOLFDWLRQ 7KH RQO\ PRGXOHV QHHGHG LQ KLV ZRUNVSDFH DUH WKH RQHV DFWXDOO\ H[HFXWHG 2QO\ SHUWLQHQW ,2 LV SHUIRUPHG f 7KH LQGHSHQGHQW QDWXUH RI WKH PRGXOHV SHUPLWV HDV\ H[SDQVLRQV DQG VXEVWLWXWLRQV DQG JUHDWO\ VLPSOLILHV PDLQWHQDQFH % &RQWURO RI ,QSXW2XWSXW 7KH SURMHFWHG SDFNDJH FRXOG EH LPSOHPHQWHG RQ DOPRVW DQ\ LQWHUDFWLYH V\VWHP SURYLGLQJ VXIILFLHQW PHPRU\ EXW LV YHU\ OLNHO\ PRVW FRQYHQLHQWO\ LPSOHPHQWHG LQ DQ $3/ HQn YLURQPHQW $OO IXUWKHU GLVFXVVLRQ ZLOO UHODWH WR DQ $3/ EDVHG SDFNDJH 'DWD IORZ EHWZHHQ PRGXOHV XWLOL]HV XVHUGHVLJQDWHG ILOHV DQG DOO XVHUFRPSXWHU LQWHUDFWLRQ LV LQWHUDFWLYH /LNH D 3ROORFN G\DGDQDO\VLV URXWLQH HDFK PRGXOH UHTXLUHV ILOH QXPEHUV DV LQSXW 8QOLNH D G\DGDQDO\VLV URXWLQH ZKLFK RXWSXWV GDWD LQWR ILOHV FRQFDWHQDWHG RQWR WKRVH DOUHDG\ H[LVWLQJf WKH GHVLJQHU DOVR VSHFLILHV WKH ORFDn WLRQV LQ ZKLFK RXWSXW ILOHV DUH WR EH SODFHG 2YHUZULWLQJ RI REVROHWH GDWD IURP WKH SUHYLRXV RSWLPL]DWLRQ ORRS LV QRZ SRVVLEOH DQG LQ IDFW QHFHVVDU\ $Q H[DPSOH RI D W\SLFDO SURJUDP IRU HDFK PRWLRQ VSHFLILFDWLRQ W\SH LV SUHVHQWHG LQ $SSHQGL[ 7R ZULWH VXFK SURJUDPV WKH XVHU ZRXOG

PAGE 124

f /RRN WKURXJK $SSHQGL[ $ ILQG WKH SUREOHP W\SH DSSO\LQJ WR KLV SUREOHP DQG VHOHFW D VROXWLRQ OLQNDJH W\SH f )DPLOLDUL]H KLPVHOI ZLWK WKH V\QWKHVLV SURFHGXUH VHOHFW DSSURSULDWH V\QWKHVLV PRGXOHV IURP $SSHQGL[ & DQG RXWOLQH WKH V\QWKHVLV SRUWLRQ RI KLV SURJUDP 9 352%/(0 ,1,7,$/ 6<1,13 6&59751_ 637+2;7 ,QSXW 7RROV RI 6\QWKHVLV 6<1287 ` 2XWSXW f6HOHFW IURP DYDLODEOH PRGHV RI F\FOLFLW\ $SSHQn GL[ % DQG &KDSWHU ,9f IDPLOLDUL]H KLPVHOI ZLWK WKH QHFHVVDU\ FRQGLWLRQ DQDO\VLV DQG WKURXJK XVH RI $Sn SHQGL[ & ZULWH WKH QHFHVVDU\ FRQGLWLRQ SRUWLRQ RI WKH SURJUDP 1(&,13` ,QSXW 1&3. M 1&3$ 1HFHVVDU\ &RQGLWLRQ 3URFHGXUHV 1(&287` 2XWSXW f6HOHFW IURP WKH DYDLODEOH GHVLUDEOH FRQGLWLRQ PRGXOHV RU ZULWH KLV RZQ IRU DGGLWLRQDO FULWHULDf DQG ZULWH WKH GHVLUDEOH FRQGLWLRQ SRUWLRQ RI WKH SURJUDP '(6,13` ,QSXW '/./157 '(6'<$'A'HVLUDEOH &RQGLWLRQV '(6287` 2XWSXW

PAGE 125

f :LWK WKH XVH RI WKH SURJUDP FKDUWV RI $SSHQGL[ & FRRUGLQDWH LQSXW DQG RXWSXW ILOHV EHWZHHQ PRGXOHV 7KHVH PRGXOHV DUH FRPSOHWHO\ FRPSDWLEOH ZLWK H[LVWLQJ 3ROORFN G\DGDQDO\VLV URXWLQHV DQG DQ\ RWKHUV IROORZLQJ D VLPLODU LQSXWRXWSXW IRUPDW )RU H[DPSOH DQ RSWLPL]DWLRQ URXWLQH FRXOG EH LPPHGLDWHO\ IROORZHG E\ D G\DGDQDO\VLV URXWLQH ZLWKLQ WKH VDPH SURJUDP WR SHUIRUP D GHWDLOHG G\QDPLF DQDO\VLV RI WKH RSWLPDO OLQNDJH

PAGE 126

7DEOH 3URJUDP 0RGXOHV 6\QWKHVLV 1HFHVVDU\ &RQGLWLRQV 6<1,13 6<1287 1(&,13 1(&287 6&59751 6,19(57 637+&2* 6$1*&2* 6'<'7<3 1&3$ 1&3% 1&3& 1&3' 1&3* 1&3+ 1&3, 6XSSRUW 5RXWLQHV 1&31&3. ,1,7,$/ $1$/<=( $1/=3&* (;75$&7 1&3/ 1&30 1&31 1'<'7<3 1(&'<$' &RQQHFWLRQ 'LVFRQQHFWLRQ JIQ UHYHUVDO (QFLUFOHPHQW 1RQHQFLUFOHPHQW 'HVLUDEOH &RQGLWLRQV '(6,13 '(6287 '397/&$ '/./157 '/.6,=( '(6'<$' 2YHUDOO %RXQGDU\ JIXQFWLRQ 9KIXQFWLRQ KUPVIXQFWLRQ 97RUTXH 6KRFN /HYHO

PAGE 127

&+$37(5 9,,, 5(&200(1'$7,216 $1' &21&/86,216 7KHUH DUH VHYHUDO ORJLFDO H[WHQVLRQV RI WKH SUHVHQWHG ZRUN )RU WKH PRVW SDUW WKH\ LQYROYH H[SDQVLRQV RI WKH XQGHUO\LQJ WKHRULHV WR UHGXFH WKH OHYHOV RI FRQVWUDLQW LQ WKH FKRLFHV RI PRWLRQ VSHFLILFDWLRQ W\SH DQG VROXWLRQ OLQNn DJH W\SH $ 5HFRPPHQGDWLRQV f $OWHUQDWH 6\QWKHVLV 3URFHGXUHV $V KDV EHHQ SUHYLRXVO\ PHQWLRQHG LW LV GHVLUDEOH WR NHHS WKH QXPEHU RI IUHH SDUDPHWHUV WR RU :LWK FRQn YHQWLRQDO 063 V\QWKHVLV SURFHGXUHV &KDSWHU ,9 $SSHQGL[ $f WKLV UDQJH LV H[FHHGHG IRU SUREOHPV DQG ,Q SUREOHP WKH QXPEHU RI IUHH SDUDPHWHUV LV ILYH EXW LV UHGXFHG WR WZR E\ DUELWUDULO\ VHOHFWHG FRXSOHU DQJOHV LQ WKH PRWLRQ VSHFLILFDWLRQV VHW 7KH QXPEHU RI IUHH SDUDPHWHUV LQ SUREn OHP LV IRXU UHVXOWLQJ LQ D IRXUGLPHQVLRQDO JULG DQG HVFDODWHG FRPSXWDWLRQDO FRPSOH[LW\ DQG FRVW $OO RI WKH V\QWKHVLV SURFHGXUHV SUHVHQWHG LQ &KDSWHU ,9 DQG $SSHQGL[ $ LQYROYH DW OHDVW RQH DSSOLFDWLRQ RI WKH ILUVW WRRO RI V\QWKHVLV WKH FXUYDWXUH WUDQVIRUP IRU 063 $On WHUQDWH V\QWKHVLV SURFHGXUHV KDYH EHHQ GHYHORSHG ZKLFK DOORZ

PAGE 128

VOLJKWO\ GLIIHUHQW W\SHV RI PRWLRQ VSHFLILFDWLRQV WR EH PDGH )RU H[DPSOH 6DUNLV\DQ *XSWD DQG 5RWK >@ KDYH H[WHQGHG FXUYDWXUH WUDQVIRUP WKHRU\ WR VDWLVI\ PRWLRQ VSHFLILFDWLRQV LQ D OHDVWVTXDUHV PLQLPXPHUURU VHQVH 6XWKHUODQG >@ KDV WUHDWHG PL[HG H[DFWDSSUR[LPDWH VSHFLILFDWLRQV DJDLQ PDNLQJ XVH RI OHDVWVTXDUHV DSSUR[LPDWLRQV .UDPHU DQG 6DQGRU >@ KDYH LQWURGXFHG 6HOHFWLYH 3UHFLVLRQ 6\QWKHVLV 636f D WHFKQLTXH ZKLFK SURGXFHV G\DGLF FRQVWUXFWLRQV RI PHFKDQLVPV ZKLFK VDWLVI\ DFFXUDF\ QHLJKERUKRRGV DERXW VSHFLILHG SLYRWV $Q\ V\QWKHVLV SURFHGXUH ZKLFK f SURGXFHV OLQNDJH VROXWLRQ VHWV ZKLFK FDQ EH PDSSHG RQWR RUWKRJRQDO JULGV DQG f DOORZV UHV\QWKHVLV ZLWKLQ VSHFLILHG UHJLRQV RI WKH JULG FDQ EH XVHG LQ WKH SURSRVHG RSWLPL]DWLRQ SURFHGXUH 7KH DYDLODELOLW\ RI DOWHUQDWLYH V\QWKHVLV SURFHGXUHV ZRXOG HQKDQFH FRQWURO RI WKH QXPEHU RI RSWLPL]DWLRQ SDUDPHWHUV f $OWHUQDWH 6ROXWLRQ /LQNDJHV 7 $QRWKHU ZD\ WR FRQWURO WKH QXPEHU RI RSWLPL]DWLRQ SDUDPHWHUV LV WR DOORZ WKH XVH RI GLIIHUHQW W\SHV RI OLQNn DJHV 6\QWKHVLV SURFHGXUHV DUH SUHVHQWHG IRU IRXUEDU DQG VL[EDU OLQNDJHV ZKLFK SURYLGH HLJKW DQG IRXUWHHQ IUHH SDUDPHWHUV UHVSHFWLYHO\ 8QWUHDWHG KHUH EXW DOVR GLUHFWO\ V\QWKHVL]DEOH DUH WKH VOLGHUFUDQN DQG LQYHUWHG VOLGHUFUDQN SDUDPHWHUVf JHDUHG ILYHEDU SDUDPHWHUVf DQG QXPHUn RXV YDULDWLRQV RI WKH VL[EDU XVLQJ VOLGHUV DQG RVFLOODWLQJ

PAGE 129

EORFNV ,Q DGGLWLRQ IRXUEDUV KDYH EHHQ GHVLJQDWHG DV VROXWLRQ OLQNDJHV IRU WKH ILUVW ILYH SUREOHP FODVVHV EXW PRUH FRPSOH[ OLQNDJHV FRXOG FRQFHLYDEO\ EH XVHG WR SURYLGH PRUH IUHH SDUDPHWHUV IRU WKHVH ILYH FODVVHV f $OWHUQDWH 0RGHV RI &\FOLFLW\ ,W KDV EHHQ H[SODLQHG WKDW WKH QHFHVVDU\ FRQGLWLRQ SURFHGXUH IRU D SDUWLFXODU SUREOHP GHSHQGV XSRQ WKH GHn VLUHG W\SH RI PRWLRQ LQ WKH VROXWLRQ OLQNDJH DQG WKLV GHSHQGHQF\ LV WKH UHDVRQ IRU WKH FUHDWLRQ RI WKH FRQFHSW RI PRGH RI F\FOLFLW\ 5HVWULFWLRQV DUH PDGH LQ &KDSWHU ,,, ZKLFK KDYH WKH HIIHFW RI OLPLWLQJ WKH PRGHV RI F\FOLFLW\ XQGHU FRQVLGHUDWLRQ WR WKRVH IRU ZKLFK WKHUH QHHG EH QR VXSSOHPHQWDU\ NQRZOHGJH RI V\VWHP G\QDPLFV LQ RUGHU WR HQVXUH FRQWURO RI PRWLRQ WKURXJK GHDGFHQWHU SRVLWLRQV 7KHVH UHVWULFWLRQV PLJKW EH WHUPHG JHRPHWULF UHVWULFWLRQV 0DQ\ PRUH PRGHV RI F\FOLFLW\ DUH FRQFHLYDEOH VRPH RI ZKLFK FDQQRW H[LVW IRU SK\VLFDO UHDVRQV DQG VRPH RI ZKLFK FDQ H[LVW EXW YLRODWH WKH JHRPHWULF UHVWULFWLRQV 0RVW RI WKH SK\VLFDOO\ UHDOL]DEOH PRGHV RI F\FOLFLW\ FDQ EH WUHDWHG E\ WKH FRPSXWDWLRQDO PRGXOHV DOUHDG\ SUHVHQWHG )RU H[DPn SOH D *UDVKRI GRXEOHURFNHU ZLWK IXOO\ URWDWLQJ FRXSOHU YLRODWHV WKH JHRPHWULF UHVWULFWLRQV DQG LV WKHUHIRUH QRW FRQVLGHUHG KHUH DV DQ DFFHSWDEOH PRGH RI F\FOLFLW\ EXW D GHVLJQHU ZKR FRXOG FRQWURO WKLV W\SH RI PHFKDQLVP LQ D SDUWLFXODU DSSOLFDWLRQ FRXOG XVH 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH & 1&3& $SSHQGL[ &f WR GHVLJQ RQH

PAGE 130

2WKHU VXEVHWV RI DOORZDEOH PRGHV RI F\FOLFLW\ FDQ DQG VKRXOG EH GHILQHG DQG FRPSLOHG OLNH WKRVH RI )LJXUHV DQG IRU WKH JHRPHWULF UHVWULFWLRQV )RU H[DPSOH WKHUH PLJKW EH G\QDPLF UHVWULFWLRQV WZRLQSXW UHVWULFn WLRQV DQG VR RQ f 0XOWLSOH 0RGHV RI &\FOLFLW\ ,Q SXWWLQJ WRJHWKHU WKH FRPSXWDWLRQDO PRGXOHV RI $Sn SHQGL[ & IRU D SDUWLFXODU SUREOHP WKH XVHU LV FRQVWUDLQHG WR VHOHFW D VLQJOH PRGH RI F\FOLFLW\ LQ RUGHU WR GHILQH WKH DSSURSULDWH QHFHVVDU\ FRQGLWLRQ SURFHGXUH )RU PDQ\ DSSOLn FDWLRQV PRUH WKDQ RQH RI WKH DYDLODEOH PRGHV RI F\FOLFLW\ ZRXOG EH RI LQWHUHVW ,W LV VXIILFLHQW WR JHQHUDWH VHSDUDWH QHFHVVDU\ FRQn GLWLRQ JULGV IRU HDFK RI WKH VHOHFWHG PRGHV RI F\FOLFLW\ DQG FRPELQH WKHVH DW WKH DSSURSULDWH WLPHV JHQHUDOO\ EHn IRUH WKH QHFHVVDU\ FRQGLWLRQ RXWSXW RU WKH QHFHVVDU\ FRQn GLWLRQ G\DG URXWLQHf 7KH SUHVHQW PRGXOHV KDYH WKLV FDSDn ELOLW\ 1(&287 DQG 1(&'<$' RI $SSHQGL[ &f $ EHWWHU DSSURDFK ZRXOG FRQVLGHU WKH PLQLPXP UDQJH RI FRQGLWLRQV WR EH VDWLVILHG DQG JHQHUDWH D VLQJOH QHFHVVDU\ FRQGLWLRQ SURFHGXUH IRU WKH VHOHFWHG PRGHV RI F\FOLFLW\ 7KLV ZRXOG EH FRQVLGHUDEO\ PRUH HIILFLHQW GXH WR WKH HOLPn LQDWLRQ RI FRPSXWDWLRQDO GXSOLFDWLRQV DW RYHUODSSLQJ JULG UHJLRQV

PAGE 131

% &RQFOXVLRQV $ XQLILHG DSSURDFK WR WKH GHVLJQ DQG RSWLPL]DWLRQ RI IRXUEDU DQG VL[EDU OLQNDJHV KDV EHHQ SUHVHQWHG %\ LVRn ODWLQJ DQG GHILQLQJ WKH V\QWKHVLV SURFHGXUHV DQG QHFHVVDU\ FRQGLWLRQ SURFHGXUHV UHTXLUHG $SSHQGL[ $%f RSWLPL]DWLRQ UHODWLYH WR D EURDG UDQJH RI GHVLJQ FULWHULD FDQ EH SHUn IRUPHG $ FRPSXWDWLRQDO GHVLJQ EDVHG RQ D SRRO RI PRGXOHV RI HTXLYDOHQW SURJUDP KLHUDUFK\ $SSHQGL[ &f KDV EHHQ GHYHOn RSHG DQG SUHVHQWHG 7KH RSWLPL]DWLRQ URXWLQH IRU D SDUn WLFXODU SUREOHP LV FUHDWHG WKURXJK DQ DSSURSULDWH FRRUGLQDn WLRQ RI WKHVH PRGXOHV DV GLVSOD\HG E\ WKH H[DPSOHV RI $SSHQGL[ /f +RSHIXOO\ WKH DQDO\WLFDO DQG FRPSXWDWLRQDO PHWKRGROn RJ\ LQWURGXFHG KHUHLQ ZLOO SURYLGH WKH LPSHWXV IRU IXWXUH HIIRUWV WRZDUGV SUDFWLFDO PHFKDQLVP GHVLJQ DQG RSWLPL]Dn WLRQ

PAGE 132

$33(1',; $ 352%/(0 7<3(6 $1' 62/87,21 /,1.$*(6

PAGE 133

8VH RI $SSHQGL[ $ (DFK SDUW RI $SSHQGL[ $ FRQWDLQV D GUDZLQJ DQG EULHI GHVFULSWLRQ RI D PRWLRQ VSHFLILFDWLRQ W\SH D GUDZLQJ ZLWK OLQN DQG SLYRW QRWDWLRQf RI VROXWLRQ OLQNDJHVf DQG D VPDOO VHFWLRQ GHVFULELQJ HDFK SRVVLEOH OLQNDJH VROXWLRQ (DFK RI WKHVH VHFWLRQV FRQWDLQV D PRYLQJERG\OLQNDJHFRPn SRQHQW PDWFKXS RQ WKH OHIW DQG D FRUUHVSRQGLQJ V\QWKHVLV SURFHGXUH RQ WKH ULJKW RWKHU PDWFKXSV DUH VRPHWLPHV SRVn VLEOH E\ VZLWFKLQJ FRQFHSWXDOO\ LGHQWLFDO ERGLHV LQ WKH PRWLRQ VSHFLILFDWLRQf 6\QWKHVLV SURFHGXUHV DUH JHQHUDOO\ QRW XQLTXH 7KH VROXWLRQ OLQNDJHV FRQVLGHUHG KHUH DUH WKRVH ZKLFK EHVW SURYLGH DQ DFFHSWDEOH QXPEHU RI IUHH SDUDPHWHUV IRU RSWLPL]DWLRQ DIWHU D 063 V\QWKHVLV *HDUHG ILYHEDU DQG VL[EDU VROXWLRQV WR WKH VLPSOHU SUREOHPV DUH QRW LQFOXGHG IRU PRUH LQIRUPDWLRQ RQ WKHVH W\SHV RI VROXWLRQV UHIHUHQFH >@ LV UHFRPPHQGHG 1RWDWLRQ LV DWWDFKHG WR LV HTXLYDOHQW WR

PAGE 134

1HFHVVDU\ &RQGLWLRQ $QDO\VLV FRYHUHG LQ $SSHQGL[ % ,QGHSHQGHQW V\QWKHVHV 3$7+ &2*1$7(6 ILQG ,19(56,21 WR 7RROV RI V\QWKHVLV DUH FDSn LWDOL]HG 0RWLRQ RI /LQN LV GHULYDEOH IRU 063 HYHQ WKRXJK OLQN VKDSH PD\ QRW \HW EH FRPn SOHWHO\ GHILQDEOH LI ( LV D WHUQDU\ OLQNf LV WKH QHZ UHIHUHQFH OLQN n >063 *ULG f[O'@ 7KH DSRVWURSKH LQGLFDWHV WKDW OLQN n LV WHPSRUDU\ DQG GRHV QRW DSSHDU RQ WKH OLQNDJH GUDZLQJ 7KH JULGV SURGXFHG E\ D 063 V\QWKHVLV DQG QHFHVVDU\ FRQn GLWLRQ DQDO\VLV ZLOO WDNH WKH VKDSH RI KHUH f GLPHQVLRQDO JULGVf )RU SDWK FRJQDWH SUREOHPV /5 LQGLFDWHV WKDW GLPHQn VLRQDO JULGV IRU ERWK OHIW DQG ULJKW FRJQDWHV DUH JHQn HUDWHG

PAGE 135

3UREOHP 3$7+ 6<17+(6,6 7KH FRSODQDU PRWLRQ RI SRLQW H LV FRQn WURO OHG 62/87,21 /,1.$*( )285%$5 0RYLQJ ERG\/LQNDJH &RPSRQHQW 0DWFK )RXU%DU 6\QWKHVLV 3URFHGXUH /LQN LV JURXQGHG 3RLQW H r /LQN rW &859$785( 75$16)250 WR ILQG I 063 *ULG @

PAGE 136

3UREOHP 027,21 6<17+(6,6 7KH FRSODQDU PRWLRQ RI SODQH LV FRQn WUROOHG 62/87,21 /,1.$*( )RXU%DU 6\QWKHVLV 3URFHGXUH r &859$785( 75$16)250 WR ILQG /LQN LV JURXQGHG 3ODQH /LQN > 063 *ULG '@

PAGE 137

3UREOHP $1*8/$5 &225',1$7,21 2) $ 7:2 /,1. &+$,1 7KH URWDWLRQ RI FUDQN LV FRRUGLQDWHG ZLWK WKH FRSODQDU PRWLRQ RI DWWDFKHG OLQN 62/87,21 /,1.$*( )285%$5 )RXU%DU 6\QWKHVLV 3URFHGXUH /LQN LV 3ODQH 3RLQW H &UDQN 3RLQW I JURXQGHG /LQN DQG 3LYRW % /LQN DQG 3LYRW $ rW &859$785( 75$16)250 WR ILQG >063 *ULG '@

PAGE 138

3UREOHP $1*8/$5 &225',1$7,21 2) 7:2 &5$1.6 7KH URWDWLRQ RI FUDQN LV FRRUGL QDWHG ZLWK WKH UR WDWLRQ RI FUDQN 62/87,21 /,1.$*( )285%$5 )RXU%DU 6\QWKHVLV 3URFHGXUH /LQN LV &UDQN r‘ 3RLQW H &UDQN Y 3RLQW I JURXQGHG /LQN DQG 3LYRW $ /LQN DQG 3LYRW r ,19(56,21 WR &859$785( 75$16)250 72 ILQG >063 *ULG '@

PAGE 139

3UREOHP 3$7+ &225',1$7,21 :,7+ $ &5$1. 7KH FRSODQDU PRWLRQ RI SRLQW H LV FRRUn GLQDWHG ZLWK WKH URn WDWLRQ RI FUDQN 62/87,21 /,1.$*( )RXU%DU 6\QWKHVLV 3URFHGXUH /LQN LV 3RLQW H &UDQN 3RLQW I JURXQGHG /LQN /LQN 3LYRW $ rL &859$785( 75$16)250 DQG 3$7+ &2*1$7(6 WR ILQG >063 *ULG /5 '@

PAGE 140

3UREOHP $1*8/$5 &225',1$7,21 2) $ 7+5((/,1. &+$,1 7KH FRSODQDU PRWLRQ RI SODQHV DQG DQG FUDQN / DUH FRRUGLn QDWHG n 62/87,21 /,1.$*(6 :$77 & :DWW Df 3ODQH 3RLQW 3ODQH 3RLQW & UDQN 3RLQW /LQN LV Y /LQN H 3LYRW /LQN I 3LYRW / /LQN J 3LYRW JURXQGHG DQG ) DQG DQG $ Ef 3ODQH 3RLQW H 3ODQH 3RLQW I &UDQN / 3RLQW J /LQN DQG 3LYRW + /LQN DQG 3LYRW & /LQN DQG 3LYRW % 6\QWKHVLV 3URFHGXUHV ,19(56,21 WR &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG O063 *ULGf[O'@ &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG W 063 *ULG f[O'M

PAGE 141

Ff 3ODQH /LQN DQG 3RLQW H 3LYRW + 3ODQH /LQN DQG 3RLQW I 3LYRW &UDQN / /LQN DQG 3RLQW J 3LYRW $ rW &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG >063 *ULG f[O'@ 6WHSKHQVRQ /LQN LV JURXQGHG 3ODQH \ /LQN DQG &859$785( 75$16)250 WR 3RLQW H 3LYRW % ILQG 3ODQH /LQN DQG ,19(56,21 WR 3RLQW I 3LYRW $ &859$785( 75$16)250 WR &UDQN / /LQN DQG ILQG 3RLQW J 3LYRW ) >063 *ULG O f [O'@ 6WHSKHQVRQ n ‘ /LQN LV JURXQGHG Df 3ODQH M 9 /LQN DQG W &859$785( 75$16)250 WR 3RLQW H 3LYRW ILQG 3ODQH /LQN DQG ,19(56,21 WR 3RLQW I 3LYRW ) &859$785( 75$16)250 WR &UDQN / /LQN DQG ILQG 3RLQW J 3LYRW $ >063 *ULG O f[O'@ Ef 3ODQH M 9 /LQN DQG &859$785( 75$16)250 WR 3RLQW H 3LYRW ILQG 3ODQH /LQN DQG ,19(56,21 WR 3RLQW I 3LYRW & &859$785( 75$16)250 WR &UDQN / /LQN DQG ILQG 3RLQW J 3LYRW % W 063 *ULG f[O'@ 6WHSKHQVRQ /LQN LV JURXQGHG Df 3ODQH /LQN DQG W &859$785( 75$16)250 WR 3RLQW H 3LYRW & ILQG 3ODQH /LQN DQG &859$785( 75$16)250 WR 3RLQW I 3LYRW ILQG &UDQN / /LQN DQG 3RLQW J 3LYRW ) I 063 *ULG f[O'@ Ef 3ODQH M \ /LQN DQG W &859$785( 75$16)250 WR 3RLQW H n 3LYRW & ILQG 3ODQH /LQN DQG 3RLQW I 3LYRW >063 *ULG '@ &UDQN / /LQN DQG 3RLQW J 3LYRW $

PAGE 142

3UREOHP + $1*8/$5 &225',1$7,21 2) $ &5$1. $1' $ 7:2 /,1. &+$,1 7KH FRSODQDU PRWLRQ RI WZROLQN FKDLQ -. LV FRRUGLQDWHG ZLWK WKH URWDWLRQ RI FUDQN / 62/87,21 /,1.$*(6 :$77 :DWW /LQN LV JURXQGHG 6\QWKHVLV 3URFHGXUHV 3ODQH 3RLQW H &UDQN 3RLQW I &UDQN / 3RLQW J /LQN DQG 3LYRW $ /LQN DQG 3LYR W $ /LQN DQG 3LYRW % ,19(56,21 WR &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG >063 *ULG f[O'@

PAGE 143

:DWW /LQN LV JURXQGHG 3ODQH /LQN DQG &859$785( 75$16)250 WR ILQG 3RLQW H 3LYRW % ,19(57 WR &UDQN /LQN DQG &859$785( 75$16)250 WR ILQG 3RLQW I 3LYRW $ &UDQN / /LQN DQG >063 *ULG f [O' @ 3RLQW J 3LYRW 6WHSKHQVRQ /LQN LV JURXQGHG 3ODQH M /LQN DQG r ,19(56,21 WR 3RLQW H 3LYRW $ &859$785( 75$16)250 WR ILQG &UDQN /LQN DQG &859$785( 75$16)250 WR ILQG 3RLQW I 3LYRW ) &UDQN / /LQN DQG >063 *ULG f[O'@ 3RLQW J 3LYRW 6WHSKHQVRQ L /LQN LV JURXQGHG Df 3ODQH M /LQN DQG ,19(56,21 WR 3RLQW H 3LYRW ) &859$785( 75$16)250 WR ILQG &UDQN /LQN DQG ,19(56,21 WR 3RLQW I 3LYRW $ &859$785( 75$16)250 WR ILQG &UDQN / /LQN DQG 3RLQW J 3LYRW % >063 *ULG f[O'@ Ef 3ODQH M /LQN DQG W ,19(56,21 WR 3RLQW H 3LYRW &859$785( 75$16)250 WR ILQG &UDQN /LQN DQG 3RLQW I 3LYRW % &UDQN / /LQN DQG >063 *ULG @ 3RLQW J 3LYRW $ 6WHSKHQVRQ /LQN LV JURXQGHG Df 3ODQH !‘ /LQN DQG W &859$785( 75$16)250 WR ILQG 3RLQW H 3LYRW ,19(56,21 WR &UDQN /LQN DQG &859$785( 75$16)250 WR ILQG 3RLQW I 3LYRW ) &UDQN / /LQN DQG >063 *ULG f[O'@ 3RLQW J 3LYRW $ Ef 3ODQH a! /LQN DQG ,19(56,21 WR 3RLQW H 3LYRW % &859$785( 75$16)250 WR ILQG &UDQN /LQN DQG ,19(56,21 WR 3RLQW I 3LYRW $ &859$785( 75$16)250 WR ILQG &UDQN / /LQN DQG 3RLQW J 3LYRW ) >063 *ULG f[O'@

PAGE 144

3UREOHP $1*8/$5 &225',1$7,21 2) 7+5(( &5$1.6 7KH URWDWLRQV RI FUDQNV -. DQG / DUH FRRUGLQDWHG 62/87,21 /,1.$*(6 :$77 :DWW /LQN LV JURXQGHG 6\QWKHVLV 3URFHGXUHV &UDQN fr 3RLQW H &UDQN 3RLQW I &UDQN / 3RLQW J /LQN DQG 3LYRW $ /LQN DQG 3LYRW /LQN DQG 3LYRW r7 ,19(56,21 WR &859$785( 75$16)250 WR ILQG &859$785( 75$16)250 WR ILQG >063 *ULG f[O'@

PAGE 145

6WHSKHQVRQ /LQN LV JURXQGHG &UDQN /LQN DQG ,19(56,21 WR 3RLQW H 3LYRW ) &859$785( 75$16)250 WR ILQG &UDQN /LQN DQG ,19(56,21 WR 3RLQW I 3LYRW + &859$785( 75$16)250 WR ILQG &UDQN / /LQN DQG 3RLQW J 3LYRW $ >063 *ULG f[O'@

PAGE 146

3UREOHP $1*8/$5 &225',1$7,21 2) 7+5(( $'-$&(17 3/$1(6 7KH FRSODQDU PRWLRQV RI SODQHV DQG DUH FRRUGLQDWHG ZLWK WKH URWDWLRQ RI / 62/87,21 /,1.$*(6 :$77 & :DWW /LQN LV JURXQGHG 6\QWKHVLV 3URFHGXUHV 3ODQH Y 3RLQW H 3ODQH ‘r 3RLQW I 3ODQH / 3RLQW J /LQN DQG 3LYRW /LQN DQG 3LYRW /LQN DQG 3LYRW $ &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG >063 *ULG f[O'M

PAGE 147

:DWW /LQN LV JURXQGHG 3ODQH /LQN DQG r &859$785( 75$16)250 WR ILQG 3RLQW H 3LYRW & &859$785( 75$16)250 WR ILQG 3ODQH Y /LQN DQG 3RLQW I 3LYRW + >063 *ULG > f[O'@ 3ODQH / /LQN DQG 3RLQW J 3LYRW 6WHSKHQVRQ /LQN LV JURXQGHG 3ODQH M /LQN DQG &859$785( 75$16)250 WR ILQG 3RLQW H 3LYRW + ,19(56,21 WR 3ODQH /LQN DQG &859$785( 75$16)250 WR ILQG 3RLQW I 3LYRW $ 3ODQH / /LQN DQG >063 *ULG f[O'@ 3RLQW J 3LYRW ) 6WHSKHQVRQ /LQN LV JURXQGHG 3ODQH M /LQN DQG ,19(56,21 WR 3RLQW H 3LYRW ) &859$785( 75$16)250 WR JHW 3ODQH r /LQN DQG ,19(56,21 WR 3RLQW I 3LYRW + &859$785( 75$16)250 WR JHW 3ODQH / /LQN DQG 3RLQW J 3LYRW $ >063 *ULG f[O'@

PAGE 148

3UREOHP m '28%/( &23/$1$5 6<17+(6,6 2) 7:2 $'-$&(17 3/$1(6 7KH FRSODQDU PRWLRQV RI 3ODQH DQG 3ODQH FRQQHFWHG DW SLYRW Hf DUH FRRUGLQDWHG 62/87,21 /,1.$*(6 & + :$77 :DWW /LQN LV JURXQGHG 6\QWKHVLV 3URFHGXUHV Df 3ODQH 3ODQH 3RLQW H /LQN r‘ /LQN 3LYRW + &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG Ef 3ODQH 3ODQH 3RLQW H \ /LQN !‘ ,LQN 3LYRW ) 063 *ULG 'O'@ &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG 063 *ULG f[O'@

PAGE 149

6WHSKHQVRQ /LQN LV JURXQGHG 3ODQH ‘r /LQN &859$785( 75$16)250 WR ILQG 3ODQH /LQN &859$785( 75$16)250 WR ILQG 3RLQW H 3LYRW % ,19(56,21 WR &859$785( 75$16)250 WR ILQG >063 *ULG L f [O'@ 6WHSKHQVRQ L f /LQN LV JURXQGHG 3ODQH /LQN &859$785( 75$16)250 WR ILQG 3ODQH /LQN &859$785( 75$16)250 WR ILQG 3RLQW H 3LYRW ,19(56,21 WR &859$785( 75$16)250 WR ILQG >063 *ULG f [O' @ 6WHSKHQVRQ f /LQN LV JURXQGHG Y 3ODQH fr /LQN r &859$785( 75$16)250 WR ILQG 3ODQH f! /LQN 3RLQW H 3LYRW & &859$785( 75$16)250 WR ILQG >063 *ULG 'O'@

PAGE 150

3UREOHP &23/$1$5 027,21 &225',1$7(' :,7+ $ &5$1. 7KH FRSODQDU PRWLRQ RI 3ODQH LV FRRUGL QDWHG ZLWK WKH URWDn WLRQ RI FUDQN 62/87,21 /,1.$*(6 & + :$77 :DWW /LQN LV JURXQGHG 6\QWKHVLV 3URFHGXUHV &UDQN /LQN DQG ,19(56,21 WR 3RLQW H 3LYRW $ &859$785( 75$16)250 WR ILQG 3ODQH /LQN ,19(56,21 WR &859$785( 75$16)250 WR ILQG > 063 *ULG 'O'@ & UDQN /LQN DQG ,19(56,21 WR 3QL Q W R 3LYRW % &859$785( 75$16)250 WR I L QG 3ODQH /LQN 6 ,19(56,21 WR &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG >063 *ULGf[O'@

PAGE 151

Ff &UDQN /LQN &859$785( 75$16)250 WR ILQG 3RLQW H 3LYRW % ,19(56,21 WR 3ODQH rf /LQN &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG > 063 *ULG f[O'@ :DWW /LQN LV JURXQGHG &UDQN /LQN &859$785( 75$16)250 WR ILQG 3RLQW H 3LYRW $ 3ODQH r /LQN ,19(56,21 WR &859$785( 75$16)250 WR ILQG >063 *ULG 'O'@ 6WHSKHQVRQ ‘ /LQN LV JURXQGHG &UDQN r‘ /LQN &859$785( 75$16)250 WR ILQG 3RLQW H 3LYRW ) ,19(56,21 WR 3ODQH /LQN &859$785( 75$16)250 WR ILQG &859$785( 75$16)250 WR ILQG >063 *ULG f [O'@ 6WHSKHQVRQ f /LQN ) LV JURXQGHG D f &UDQN /LQN r &859$785( 75$16)250 WR ILQG 3RLQW H 3LYRW $ ,19(56,21 WR 3ODQH }f /LQN &859$785( 75$16)250 WR ILQG >063 *ULG ''@ Ef &UDQN /LQN &859$785( 75$16)250 WR ILQG 3RLQW H 3LYRW % ,19(56,21 WR 3ODQH /LQN &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG % >063 *ULG f [O'@ 6WHSKHQVRQ L f /LQN LV JURXQGHG D f &UDQN /LQN &859$785( 75$16)250 WR ILQG 3RLQW H 3LYRW ) ,19(56,21 WR 3ODQH rf /LQN &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG >063 *ULG f[O'@

PAGE 152

Ef &UDQN /LQN 3RLQW H 3LYRW $ 3ODQH /LQN W &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG >063 *ULG'O'@

PAGE 153

3UREOHP 32,17 3$7+ &225',1$7,21 :,7+ 7:2 &5$1.6 7KH FRSODQDU PRWLRQ RI SRLQW H DQG WKH URWDWLRQV RI FUDQNV DQG DUH FRRUGLn QDWHG 62/87,21 /,1.$*(6 :$77 :DWW /LQN LV JURXQGHG Df &UDQN r‘ /LQN DQG 3RLQW I 3LYRW % &UDQN a\ /LQN 3RLQW H RQ /LQN 6\QWKHVLV 3URFHGXUHe &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 DQG 3$7+ &2*1$7(6 WR ILQG 06 3 *ULG/5 DQG -

PAGE 154

Ef &UDQN 3RLQW I &UDQN 3RLQW H /LQN DQG 3LYRW % fr /LQN RQ /LQN &859$785( 75$16)250 DQG 3$7+ &2*1$7(6 WR ILQG GXPP\ ,19(56,21 WR &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG >063 *ULG/5 f[O'@ :DWW /LQN LV JURXQGHG &UDQN rf /LQN DQG 3RLQW I 3LYRW $ &UDQN /LQN 3RLQW H RQ /LQN >063 *ULG/5''@ r &859$785( 75$16)250 DQG 3$7+ &2*1$7(6 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG 6WHSKHQVRQ /LQN LV JURXQGHG &UDQN /LQN DQG &859$785( 75$16)250 DQG 3$7+ &UDQN /LQN &2*1$7(6 WR ILQG GXPP\ n 3RLQW J 3LYRW ) ,19(56,21 WR 3RLQW H RQ /LQN &859$785( 75$16)250 WR ILQG &859$785( 75$16)250 WR ILQG >063 *ULG /5 f[O'@ 6WHSKHQVRQ L B /LQN LV JURXQGHG D f &UDQN /LQN DQG &859$785( 75$16)250 DQG 3$7+ 3RLQW I 3LYRW $ &2*1$7(6 WR ILQG + GXPP\ n &UDQN /LQN ,19(56,21 WR 3RLQW H RQ L /LQN &859$785( 75$16)250 WR ILQG >063 *ULG /5 '@ Ef &UDQN \ /LQN &859$785( 75$16)250 DQG 3$7+ &UDQN \ /LQN DQG &2*1$7(6 WR ILQG GXPP\ n 3RLQW J 3LYRW % ,19(56,21 WR 3RLQW H RQ L /LQN &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG 063 *ULG /5 f[O'@

PAGE 155

6WHSKHQVRQ /LQN LV JURXQGHG Df &UDQN /LQN DQG 3RLQW I 3LYRW ) &UDQN !‘ /LQN 3RLQW H RQ /LQN E f &UDQN r‘ /LQN &UDQN N A /LQN DQG 3RLQW J 3LYRW 3RLQW H RQ /LQN &859$785( 75$16)250 DQG 3$7+ &2*1$7(6 WR ILQG GXPP\ n ,19(56,21 WR &859$785( 75$16)250 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG >063 *5,' /5 f[O'@ &859$785( 75$16)250 DQG 3$7+ &2*1$7(6 WR ILQG ,19(56,21 WR &859$785( 75$16)250 WR ILQG >063 *ULG /5 '@

PAGE 156

$33(1',; % 02'(6 2) &<&/,&,7< $1' 1(&(66$5< &21',7,21 352&('85(6

PAGE 157

8VH RI $SSHQGL[ % (DFK SDUW RI $SSHQGL[ % FRQWDLQV D SUREOHP W\SH D OLQNDJH VROXWLRQ DQG D FRUUHVSRQGLQJ V\QWKHVLV SURFHGXUH 7KH VROXWLRQV KDYH EHHQ VHOHFWHG VR DV WR VKRZ DW OHDVW RQH H[DPSOH RI D VROXWLRQ IRU HYHU\ W\SH RI VROXWLRQ OLQNDJH 7KH FRQWHQWV RI $SSHQGL[ % DUH GHVLJQHG WR SURYLGH D JXLGH IRU WKH ZULWLQJ RI WKH QHFHVVDU\ FRQGLWLRQ SDUW RI DQ RSWLPL]DWLRQ SURJUDP IRU DOO WZHOYH SUREOHP W\SHV )RU DQ LPSOLFLW XQGHUVWDQGLQJ RI WKH SURFHGXUHV WKH UHDGHU LV UHIHUUHG WR &KDSWHU 1RWDWLRQ 'ULYHQ OLQN 7KH OLQNV DWWDFKHG WR WKH FLUFOHG SLYRW PD\ KDYH FRPSOHWH UHODWLYH URWDWLRQ 7KH OLQNV DWWDFKHG WR WKH SLYRW FDQQRW KDYH FRPSOHWH UHODWLYH URWDWLRQ 7KH SLYRW PD\ QRW SDVV WKURXJK D FKDQJH SRLQW /LQN LV V\QWKHVL]HG DQG VHOHFWHG IURP D FLUFOH SRLQW FXELF FXUYH &859$785( 75$16)250 7RROV RI V\QWKHVLV DUH FDSLWDOL]HG

PAGE 158

ILQG ,19(56,21 0RWLRQ RI OLQN % LV GHULYDEOH IRU 063 HYHQ WKRXJK LI % LV WHUQDU\f OLQN VKDSH PD\ QRW \HW EH FRPn SOHWHO\ GHILQDEOH WR LV WKH QHZ UHIHUHQFH OLQN

PAGE 159

Df 1HFHVVDU\ &RQGLWLRQ 3URFHn GXUH + IRU Df 1HFHVVDU\ &RQGLWLRQ 3URFHn GXUH $ IRU Df 1RRUnNVDU\ &RQGLWLRQ 3URFHn GXUHn + &RU

PAGE 160

f f f Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU

PAGE 161

3UREOHQLBOI $QJXODU &RRUGLn QDWLRQ RI D 7ZR /LQN &KDLQ /LQNDJH 6ROX/LRQ 3LYRWV SUHn VSHFLILHG 6\QWKHVLV 3URFHGXUH f &859$785( 75$16)250 WR ILQG 1HFHVVDU\ &RQGLWLRQ 3URFHGXUHV V Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU

PAGE 162

Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU

PAGE 163

0RGHV RI &\FOLFLW\ 1HFHVVDU\ &RQGLWLRQ 3URFHGXUHV Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH ,, IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU

PAGE 164

0RGHV f RI &\FOLFLW\ 1HFHVVDU\ &RQGLWLRQ 3URFHGXUHV Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH 0 IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH 1 IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH / IRU f Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU

PAGE 165

Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU

PAGE 166

0RGHV RI &\FOLFLW\ 1HFHVVDU\ &RQGLWLRQ 3URFHGXUHV Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU f Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH ,, IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU

PAGE 167

Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ff 9HULI\ FRQQHFWLRQ RI Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ff 9HULI\ FRQQHFWLRQ RI Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ff 9HULI\ FRQQHFWLRQ RI Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU

PAGE 168

f f Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU Ff 9HULI\ &RQQHFWLRQ RI Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ff 9HULI\ &RQQHFWLRQ RI Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ff 9HULI\ &RQQHFWLRQ RI Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH ,, IRU Ff 9HULI\ &RQQHFWLRQ RI f

PAGE 169

f f f f f Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH ,, &RU Ff 9HULO\ &RQQHFWLRQ RI Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Ff 9HULI\ &RQQHFWLRQ RI Gf 9HULI\ 1RQHQFLUFOHPHQW $&f Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Ff 9HULI\ &RQQHFWLRQ RI Gf 9HULI\ 1RQHQFLUFOHPHQW $& f Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Ff 9HULI\ &RQQHFWLRQ RI Gf 9HULI\ (QFLUFOHPHQW $&f Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Ff 9HULI\ &RQQHFWLRQ RI Gf 9HULI\ (QFLUFOHPHQW $&f Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH & IRU Ff 9HULI\ &RQQHFWLRQ RI Gf 9HULI\ 1RQHQFLUFOHPHQW $&f

PAGE 170

Df 1HFHVVDU\ &RQGLWLRQ 7\SH f '\DG r Ef 1HFHVVDU\ &RQGLWLRQ FHGXUH & IRU 3UR Ff 9HULI\ &RQQHFWLRQ RI Gf 9HULI\ (QFLUFOHPHQW $& f Df 1HFHVVDU\ &RQGLWLRQ 7\SH f '\DG r Ef 1HFHVVDU\ &RQGLWLRQ FHGXUH % IRU 3UR Ff 9HULI\ &RQQHFWLRQ RI Gf 9HULI\ 1RQHQFLUFOHPHQW $&f Df 1HFHVVDU\ &RQGLWLRQ 7\SH f '\DG r Ef 1HFHVVDU\ &RQGLWLRQ FHGXUH % IRU 3UR Ff 9HULI\ &RQQHFWLRQ RI Gf 9HULI\ (QFLUFOHPHQW $& f

PAGE 171

,E 3UREOHP c, $QJXODU &RRUGLQDn WLRQ RI 7KUHH &UDQNV 6ROXWLRQ /LQNDJH & + :$77 3LYRWV $*' SUHVSHFLILHG 6\LLW-HVLV 3URFHGXUH f ,19(56,21 WR f &859$785( 75$16n )250 WR ILQG f &859$785( 75$16n )250 WR ILQG 0RGHV RI &\FOLFLW\ 1HFHVVDU\ &RQGLWLRQ 3URFHGXUHV Df 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH IRU Ef 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH IRU Df 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH + IRU Ef 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH IRU Df 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH IRU Ef 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH IRU Df 1HFHVV DU\ &RQGLWLRQ 3UR FHGX UH & IRU Ef 1HFHVV DU\ &RQGLWLRQ 3UR FHGX UH IRU Ff 9HULI\ &RQQHFWLRQ RI f

PAGE 172

Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU f Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU

PAGE 173

3UREOHP $QJXODU &RRUGLQDn WLRQ RI 7KURH $Gn MDFHQW 3ODQHV /LQNDJH 6ROXWLRQ 6\QWKHVLV 3URFHGXUH f &859$785( 75$16n )250 WR ILQG f &859$785( 75$16n )250 WR ILQG :$77 3LYRWV ,7&' SUHVSHFLILHG 0RGHV RI &\FOLFLW\ 1HFHVVDU\ &RQGLWLRQ 3URFHGXUHV Df 1HFHVVDU\ &RQGLWLRQ FHGXUH IRU 3UR Ef 1HFHVVDU\ &RQGLWLRQ FHGXUH IRU 3UR Df 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH ,, IRU Ef 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH IRU Df 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH IRU Ef 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH IRU Df 1RFRVV DU\ &RQGLWLRQ 3UR FHGXUH $ IRU Ef 1RFRVV DU\ &RQGLWLRQ 3UR FHGXUH IRU Ff 9HULI\ &RQQHFWLRQ RI f

PAGE 174

f Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU

PAGE 175

82 0RGHV RI &\FOLFLW\ 1HFHVVDU\ &RQGLWLRQ 3URFHGXUHV f r Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ff 9HULI\ &RQQHFWLRQ RI Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU Ff 9HULI\ &RQQHFWLRQ RI Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU Ff 9HULI\ &RQQHFWLRQ RI Gf 9HULI\ 1RQTIXQFWLRQ 5Hn YHUVDO UHODWLYH WR f Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU Ff 9HULI\ &RQQHFWLRQ RI

PAGE 176

Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU Ef 9HULI\ 'LVFRQQHFWLRQ RI VKRUWf Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Ff 9HULI\ &RQQHFWLRQ RI Gf 9HULI\ 1RQHQFLUFOHPHQW $&f Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Ff 9HULI\ &RQQHFWLRQ RI Gf 9HULI\ (QFLUFOHPHQW $&f f Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Ff 9HULI\ &RQQHFWLRQ RI Gf 9HULI\ 1RQHQFLUFOHPHQW $&f Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Ff 9HULI\ &RQQHFWLRQ RI Gf 9HULI\ (QFLUFOHPHQW $&f

PAGE 177

f r 1HFHVVDU\ &RQGLWLRQ 3URFHGXUHV Df 1HFHVVDU\ &RQGLWLRQ 7\SH f '\DG Ef 1HFHVVDU\ &RQGLWLRQ FHGXUH + IRU 3UR Ff 9HULI\ &RQQHFWLRQ RI Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH f f Ef 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH + IRU Ff 9HULI\ &RQQHFWLRQ RI Gf 9HULI\ 1RQFLIXQFWLRQ 5H YHUVDO UHODWLYH WR f Df 1HFHVVDU\ &RQGLWLRQ '\DG 7\SH cf f Ef 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH + IRU Ff 9HULI\ &RQQHFWLRQ RI Df 1RFRVV LU\ &RQGLWLRQ '\DG 7\SR f f Ef 1HFHVVD LU \ &RQGLWLRQ 3UR FRGX UH ,, IRU Ff 9HULI\ &RQQHFWLRQ RI Gf 9RULI\ 1RW LFMIXQFWLRQ 5Hn YHUVD UHODWLYH WR f f

PAGE 178

Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU Ef 9HULI\ 'LVFRQQHFWLRQ RI 6KRUWf Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU Ef 9HULI\ 'LVFRQQHFWLRQ RI VKRUWf Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU Ef 9HULI\ 'LVFRQQHFWLRQ RI VKRUWf

PAGE 179

Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH 0 IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH 0 IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH 1 IRU &RQGnf f

PAGE 180

Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH / IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU f r Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH 0 IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU Ff 9HULI\ &RQQHFWLRQ RI Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ff 9HULI\ &RQQHFWLRQ RI Df 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH IRU Ef 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH $ IRU Df 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH IRU Ef 1HFHVVDU\ &RQGLWLRQ 3UR FHGXUH $ IRU If§n R r Df 1HFHVVDU\ &RQGLWLRQ FHGXUH IRU 3UR r Zr Ef 1HFHVVDU\ &RQGLWLRQ FHGXUH $ IRU 3UR

PAGE 181

Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH & IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH & IRU Df 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU Ef 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH & IRU

PAGE 182

$33(1',; & 352*5$0 02'8/(6

PAGE 183

8VH RI $SSHQGL[ & $SSHQGL[ & LV LQWHQGHG WR VHUYH DV D JXLGH WR WKH SURn JUDP PRGXOHV QHHGHG WR SHUIRUP WKH DQDO\WLFV SUHVHQWHG LQ WKLV ZRUN (DFK FKDUW FRQWDLQV D PRGXOHnV IXQFWLRQDO GHn VFULSWLRQ DQG LQSXWRXWSXW $V VXFK $SSHQGL[ & FRXOG VHUYH DV DQ RXWOLQH IRU D SURJUDP SDFNDJH RQ QHDUO\ DQ\ V\VWHP SURYLGLQJ DGHTXDWH VWRUDJH $W WKH SUHVHQW WLPH WKH SDFNn DJH LV SUREDEO\ PRVW HIIHFWLYHO\ LPSOHPHQWHG LQ LQWHUDFWLYH $3/ DQG WKH VXEURXWLQH FDOOV JRWRV DQG LQSXWRXWSXW FRQYHQWLRQV XVHG DUH WKRVH RI $3/ +HUH WKH IORZ RI GDWD EHWZHHQ PRGXOHV XWLOL]HV XVHU VSHFLILHG ILOHV ZLWK WKH UHVWULFWLRQ WKDW ILOH QXPEHUV WR DUH UHVHUYHG IRU RSHUDWLQJ VWRUDJH 2FFDVLRQDOO\ D PRGXOHnV VSHFLILHG ILOH DUJXPHQWV DUH QRW HQWLUHO\ DSSOLn FDEOH XVXDOO\ IRU IRXUEDU DSSOLFDWLRQV XVLQJ IRXUVL[ EDU URXWLQHVf LQ ZKLFK FDVH UHIHUHQFH VKRXOG EH PDGH WR ILOH ]HUR 2QFH DQ RSWLPL]DWLRQ URXWLQH KDV EHHQ FUHDWHG DQG PRGXOH ,2 FRRUGLQDWHG DOO KXPDQFRPSXWHU LQWHUIDFLQJ LV LQWHUDFWLYH DQG KDQGOHG E\ HDFK PRGXOH LQGHSHQGHQWO\

PAGE 184

1RWDWLRQ )LOH QXPEHU RI ILOH FRQWDLQLQJ GDWD [ $3/ JRWR 7KH RXWSXWWHG JOREDO DUJXPHQW RI HDFK PRGXOH LV WKH QH[W OLQH QXPEHU WR EH H[HFXWHG 7KH OLQNV DWWDFKHG WR WKH FLUFOHG SLYRW PD\ KDYH FRPSOHWH UHODWLYH URWDWLRQ $ FKDQJH SRLQW FDQQRW EH DOORZHG DW WKH SLYRW

PAGE 185

0RGXOH &KDUW 1DPH ,QLWLDOL]H /DEHO ,1,7,$/ 'HVFULSWLRQ &UHDWHV DQG LQLWLDOL]HV ILOHV DQG FROOHFWV LQIRUPDn WLRQ UHODWHG WR SUREOHP W\SH )LUVW PRGXOH RI HYHU\ SURJUDP $3/ &DOO ,I ,1,7,$/

PAGE 186

0RGXOH &KDUW 1DPH 6\QWKHVLV ,QSXW /DEHO 6<1,13 'HVFULSWLRQ ,QWHUDFWLYHO\ FROOHFWV LQSXW IRU V\QWKHVLV URXWLQHV $3/ &DOO f!f f 6<1,13 ZKHUH f 063 VHW DVVRFLDWHG ZLWK ( 2Af 3RLQW H 2SWLRQDO XVHG LI ( URWDWHV DV D FUDQN DQG H LV D SUHVSHFLILHG SLYRW

PAGE 187

0RGXOH &KDUW 1DPH '\DG 7\SH 6\QWKHVLVf /DEHO 6'<'7<3 'HVFULSWLRQ (YDOXDWHV W\SH IRU SUHVSH FLILHG G\DGV *HQHUDWHV D SURJUDP LQWHUUXSW SULRU WR V\QWKHVLV LI G\DG W\SH LV LQ FRQVLVWHQW IRU WKH 063nV $3/ &DOO Y6'<'7<3 ,-/f ,f ,f ZKHUH f 063 f 063 f 063 DVVRFLDWHG ZLWK DVVRFLDWHG ZLWK DVVRFLDWHG ZLWK (A

PAGE 188

0RGXOH &KDUW 1DPH &XUYDWXUH 7UDQVIRUP 6\QWKHVLV 7RROf /DEHO 6&59751 'HVFULSWLRQ 3HUIRUPV D FXUYDWXUH WUDQV IRUP JHQHUDWHV FLUFOHSRLQW DQG FHQWHUSRLQW FXELFV IRU D JLYHQ 063 $3/ &DOO Af f f f 6&59751 f f f ZKHUH ,f 063 VHW 3LYRWV RI SUHGHILQHG FRQVWUDLQW OLQN PRYLQJ IL[HGf LI RQH H[LVWV Af &!f 0RYLQJ IL[HG SLYRWV ILUVW FRQn VWUDLQW OLQN fAf 0RYLQJ IL[HG SLYRWV VHFRQG FRQn VWUDLQW OLQN RSWLRQDO IRU 6WHSKHQVRQ G\DG OLQNVf

PAGE 189

0RG XO F &K DUW 1DPH ,QYHUVLRQ 6\QWKHVLV 7RROf /DEHO 6,19(57 'HVFULSWLRQ *HQHUDWHV D QHZ 063 VHW UHSUHVHQWLQJ D FKDQJH RI UHIn HUHQFH &DVH +, *LYHQ 1 UHODWLYH WR 5 0 UHODWLYH WR 5 JHQHUDWH 0 UHODWLYH WR 1 &DVH LW *LYHQ 1 UHODWLYH WR 5 0 UHODWLYH WR 1 JHQHUDWH 0 UHODWLYH WR 5 &DVH IW *LYHQ 0 UHODWLYH WR 5 JHQHUDWH 5 UHODWLYH WR 0 $3/ &DOO 6,19(57 A ,f ,f ZKHUH Af 063 DVVRFLDWHG ZLWK 0 ,f 063 DVVRFLDWHG ZLWK 1 A RU FDVH QXPEHU f *HQHUDWHG 063 VHW 0 UHODWLYH WR f 1 RU f 5RU f 5 UHODWLYH WR 1f

PAGE 190

0RGXOH &KDUW 1DPH 3DWK &RJQDWH 6\QWKHVLV 7RROf /DEHO 637+&2* 'HVFULSWLRQ *LYHQ D IRXUEDU ,f JHQHUDWHV SDWKFRJQDWH IRXU EDUV ,, DQG ,,, $3/ &DOO !Rf Rf Rf Rf 637+&2* ,-/f ,f ,f ,f ,f ZKHUH ,f 063 Gf Gf 9n9 RfRf ff RI GHI LGHQWLILHV Hf OLQN G2A SLYRWV OLQN I SLYRWV J2A DQG Kf M DQG .f

PAGE 191

0RGXOH &KDUW 1DPH $QJXODU &RJQDWH 6\QWKHVLV 7RROf /DEHO 6$1*&2* 'HVFULSWLRQ *HQHUDWHV WKH DQJXODU FRJn QDWH RI G\DG DEF !f 6$1*&2* ,f ,f ,f ZKHUH Af SLYRW D Gf SLYRW E Af SLYRW F Af SLYRW En

PAGE 192

0RGXOH &KDUW 1DPH 6\QWKHVLV 2XWSXW /DEHO 6<1287 'HVFULSWLRQ 'LVSOD\V 063 VHW JHQHUn DWHG FXELFV IRFXV %DOO SRLQW LQYHUVH %DOO SRLQW D[HV 287387 $3/ &DOO 6<1287 ,f,f,f,f ZKHUH G[f Gf &LUFOH FHQWHU SRLQWV RI ILUVW FRQVWUDLQWV Gf Gf &LUFOH FHQWHU SRLQWV RI VHFRQG FRQVWUDLQWV 2SWLRQDO IRU 6WHSKHQVRQ G\DG OLQNVf

PAGE 193

0RGXOH &KDUW 1DPH 1HFHVVDU\ &RQGLWLRQ ,QSXW /DEHO 1(&,13 'HVFULSWLRQ 3UHVHQWO\ KDV QR IXQFWLRQ LV UHn WDLQHG RQO\ IRU UHDVRQV RI FRQVLVWHQF\ DQG SRVVLEOH XVH LQ IXWXUH H[SDQVLRQ $3/ &DOO 1(&,13

PAGE 194

0RGXOH &KDUW 1DPH '\DG 7\SH 1HFHVVDU\ &RQGLWLRQf /DEHO 1'<'7<3 'HVFULSWLRQ (YDOXDWHV G\DGV ZLWK D V\Q WKHVL]HG OLQN RQ WKH EDVLV RI FRQVLVWHQF\ RI G\DG W\SH IRU WKH 063 *HQHUDWHV D QHFHVn VDU\ FRQGLWLRQ JULG 'f LQn GLFDWLQJ DFFHSWDEOH G\DGV $3/ &DOO Af 1'<'7<3 ,f ,f ,f n,f ZKHUH Af,Af 3LYRWV GHILQLQJ V\QWKHVL]HG OLQN Af 3LYRW GHILQLQJ WKLUG G\DG SLYRW RU FDVH QXPEHU 2[f 2XWSXW JULG

PAGE 195

0RGXBOBR B&KDU 1DQR 1HFHVVDU\ /DEHO 1&3$ &RQGLWLRQ 3URFHGXUH $ 'HVFULSWLRQ (YDOXDWHV IRXUEDU FKDLQV RQ WKH EDVLV RI FKDQJHSRLQW FRQVLGHUDWLRQV IRU WKH FDVH VKRZQ &UHDWHV D QHFHVVDU\ FRQGLWLRQ JULG LQGLFDWLQJ DFn FHSWDEOH OLQNDJHV $3/ &DOO ZKHUH rA 1&3$ f f f f f ,Of Gf Lf Gf 3LYRWV RI ILUVW FRQVWUDLQW OLQN PRYLQJ IL[HG SLYRWVf 3LYRWV RI VHFRQG FRQVWUDLQW OLQN PRYLQJ IL[HG SLYRWVf RU LGHQWLILHV FRQVWUDLQW OLQN ZLWK FKDQJHSRLQW UHVWULFn WLRQV &/ f 2XWSXW JULG

PAGE 196

0RGXOR &KDUW 1DPH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH % /DEHO 1&3% % F 8 r r $ 'HVFULSWLRQ (YDOXDWHV IRXUEDU FKDLQV RQ WKH EDVLV RI FKDQJHSRLQW FRQVLGHUDWLRQV IRU WKH FDVH VKRZQ &UHDWHV D QHFHVVDU\ FRQGLWLRQ JULG LQGLFDWLQJ DF FHSWDEOH OLQNDJHV $3/ &DOO ZKHUH f 1&3% ,f ,f ,f ,f Gf L!nL! 3LYRWV RI ILUVW FRQVWUDLQW OLQN PRYLQJ IL[HG SLYRWVf 3LYRWV RI VHFRQG FRQVWUDLQW OLQN PRYLQJ IL[HG SLYRWf Rf 2XWSXW JULG

PAGE 197

0RGXOR &KDUL 1DPH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH F /DEHO 1&3& 'HVFULSWLRQ (YDOXDWHV IRXUEDU FKDLQV RQ WKH EDVLV RI FKDQJHSRLQW FRQVLGHUDWLRQV IRU WKH FDVH VKRZQ &UHDWHV D QHFHVVDU\ FRQGLWLRQ JULG LQGLFDWLQJ DFn FHSWDEOH OLQNDJHV $3/ &DOO ZKHUH G2A 1&3& A ,f ,f ,f ,f Gf Gf Gf 3LYRWV RI ILUVW FRQVWUDLQW OLQN PRYLQJ IL[HG SLYRWVf 3LYRWV RI VHFRQG FRQVWUDLQW OLQN PRYLQJ IL[HG SLYRWf Rf 2XWSXW JULG

PAGE 198

0RGXOH &KDBUW B 1DPH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH /DEHO 1&3' 'HVFULSWLRQ (YDOXDWHV IRXUEDU FKDLQV RQ WKH EDVLV RI FKDQJHSRLQW FRQVLGHUDWLRQV IRU WKH FDVH VKRZQ &UHDWHV D QHFHVVDU\ FRQGLWLRQ JULG LQGLFDWLQJ DFn FHSWDEOH OLQNDJHV $3/ &DOO R W 1&3' Gf Gf Gf Lf Gf ZKHUH ,MBf 3LYRWV RI ILUVW FRQVWUDLQW OLQN PRYLQJ IL[HG SLYRWVf Gfn ,, 0 3LYRWV RI VHFRQG FRQVWUDLQW OLQN PRYLQJ IL[HG SLYRWVf r RU LGHQWLILHV FRQVWUDLQW OLQN ZLWK FKDQJHSRLQW UHVWULFn WLRQV 2 Wf§r 2XWSXW JULG

PAGE 199

0RGXOH &KDUW 1RQH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH /DEHO 1&3* 'HVFULSWLRQ (YDOXDWHV IRXUEDU FKDLQV RQ WKH EDVLV RI FKDQJHSRLQW FRQVLGHUDWLRQV IRU WKH FDVH VKRZQ &UHDWHV D QHFHVVDU\ FRQGLWLRQ JULG LQGLFDWLQJ DFn FHSWDEOH OLQNDJHV $3/ &DOO ZKHUH [f 1&3* L[f Gf Lf Gf Gf Gf Gf Gf Gf 3LYRWV RI ILUVW FRQVWUDLQW OLQN PRYLQJ IL[HG SLYRWVf 3LYRWV RI VHFRQG FRQVWUDLQW OLQN PRYLQJ IL[HG SLYRWVf RU LGHQWLILHV FRQVWUDLQW OLQN ZLWK FKDQJHSRLQW UHVWULFn WLRQV Rf 2XWSXW JULG

PAGE 200

0RGXOR &KDUL 1DPH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH ,, /DEHO 1&3+ Q F A r r D QLO` 'HVFULSWLRQ (YDOXDWHV IRXUEDU FKDLQV RQ WKH EDVLV RI FKDQJHSRLQW FRQVLGHUDWLRQV IRU WKH FDVH VKRZQ &UHDWHV D QHFHVVDU\ FRQGLWLRQ JULG LQGLFDWLQJ DF FHSWDEOH OLQNDJHV $3/ &DOO rA 1&3+ A ,f ,f ,f ZKHUH A ,f 3LYRWV RI ILUVW FRQVWUDLQW OLQN PRYLQJ IL[HG SLYRWVf 3LYRWV RI VHFRQG FRQVWUDLQW OLQN PRYLQJ IL[HG SLYRWf Rf 2XWSXW JULG

PAGE 201

0RGXOH &KDUW 1DPH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH /DEHO 1&3, 'HVFULSWLRQ (YDOXDWHV V\QWKHVL]HG IRXU EDU RQ WKH EDVLV RI FKDQJH SRLQW FRQVLGHUDWLRQV ZLWKLQ SDWK FRJQDWH IRXUEDUV ,, DQG ,,, DV VKRZQ *HQHUDWHV D QHFHVVDU\ FRQGLWLRQ JULG ['f LQGLFDWLQJ DFFHSWDEOH FRJQDWHV $3/ &DOO ‘r f 1&3, ,f ,f ,Jf ZKHUH Gf Gf Gf Gf GfLf f ,Jf OLQN G2A OLQN I&! OLQN J2A DQG K&Af OLQN M2A DQG .2Af Af 2XWSXW JULG

PAGE 202

0RGXOH &KDUW 1DPH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH /DEHO 1&3'HVFULSWLRQ (YDOXDWHV V\QWKHVL]HG IRXU EDU RQ WKH EDVLV RI FKDQJH SRLQW FRQVLGHUDWLRQV ZLWKLQ SDWK FRJQDWH IRXUEDUV ,, DQG ,,, DV VKRZQ *HQHUDWHV D QHFHVVDU\ FRQGLWLRQ JULG ['f LQGLFDWLQJ DFFHSWDEOH FRJQDWHV $3/ &DOO ZKHUH ‘ f 1&3L[f Gf DU LA Gf Gf Gf GfGf ,f ,Jf A OLQN G2 OLQN I2 OLQN J2A DQG Kf OLQN M DQG .2f 2XWSXW JULG

PAGE 203

0RGXOH &KDUW 1DPH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH /DEHO 1&3. 'HVFULSWLRQ (YDOXDWHV V\QWKHVL]HG IRXU EDU RQ WKH EDVLV RI FKDQJH SRLQW FRQVLGHUDWLRQV ZLWKLQ SDWK FRJQDWH IRXUEDUV ,, DQG ,,, DV VKRZQ *HQHUDWHV D QHFHVVDU\ FRQGLWLRQ JULG ['f LQGLFDWLQJ DFFHSWDEOH FRJQDWHV $3/ &DOO ZKHUH f 1&3. G[f Gf GU GA Gf Gf Gf f Gf ,f,Jf R[f OLQN G2 OLQN I2 OLQN J2A DQG Kf OLQN M2A DQG .2Af 2XWSXW JULG

PAGE 204

0RGXOH &KDUW 1DPH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH / /DEHO 1&3/ 'HVFULSWLRQ (YDOXDWHV V\QWKHVL]HG IRXU EDU RQ WKH EDVLV RI FKDQJH SRLQW FRQVLGHUDWLRQV ZLWKLQ SDWK FRJQDWH IRXUEDUV ,, DQG ,,, DV VKRZQ *HQHUDWHV D QHFHVVDU\ FRQGLWLRQ JULG ['f LQGLFDWLQJ DFFHSWDEOH FRJQDWHV $3/ &DOO ZKHUH n!f 1&3/ ,/f ,f 9 Gf Gf G`n Gf GfGf Gf Gf R[f OLQN G2 OLQN I2 OLQN J2A DQG Kf OLQN M2A DQG .2Af 2XWSXW JULG

PAGE 205

0RGXOH &KDUW 1DPH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH 0 /DEHO 1&30 'HVFULSWLRQ (YDOXDWHV V\QWKHVL]HG IRXU EDU RQ WKH EDVLV RI FKDQJH SRLQW FRQVLGHUDWLRQV ZLWKLQ SDWK FRJQDWH IRXUEDUV ,, DQG ,,, DV VKRZQ *HQHUDWHV D QHFHVVDU\ FRQGLWLRQ JULG ['f LQGLFDWLQJ DFFHSWDEOH FRJQDWHV $3/ &DOO A 1&30 ,f,f ,Jf ZKHUH ,f Gf Gf Gf Xf Gf OLQN G2A OLQN I OLQN J2A DQG Kf OLQN M2A DQG .2Af Af 2XWSXW JULG

PAGE 206

0RGXOR &KDUW 1DPH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH 1 /DEHO 1&31 'HVFULSWLRQ (YDOXDWHV V\QWKHVL]HG IRXU EDU RQ WKH EDVLV RI FKDQJH SRLQW FRQVLGHUDWLRQV ZLWKLQ SDWK FRJQDWH IRXUEDUV ,, DQG ,,, DV VKRZQ *HQHUDWHV D QHFHVVDU\ FRQGLWLRQ JULG ['f LQGLFDWLQJ DFFHSWDEOH FRJQDWHV $3/ &DOO QrRf QFSQ GfGf GJf ZKHUH Gf Gf Gf Gf mVfn9 ,f;Jf OLQN G2A OLQN I2A OLQN J2A DQG Kf OLQN M2A DQG .2Af Af 2XWSXW JULG

PAGE 207

0RGXOR &KDUW 1DPH 1HFHVVDU\ &RQGLWLRQ '\DG $QDO\VLV /DEHO 1(&'<$' 'HVFULSWLRQ 3HUIRUPV D G\DGEDVHG DQDO\VLV HYDOXDWHV WKH VROXn WLRQ VHW RI OLQNDJHV RQ WKH EDVLV RI &RQQHFWLRQ 'LVFRQQHFWLRQ (QFLUFOHPHQW 1RQHQFLUFOHPHQW JIXQFWLRQ UHYHUVDO &Af 1(&'<$' ZKHUH )RU VL[EDUV 6WHSKHQVRQ RU :DWW LQYHUVLRQ ,f,f &UDQN SLYRWV PRYLQJIL[HGf f ,f )ROORZHU SLYRWV PRYLQJ IL[HGf Af ,Jf Af '\DG SLYRWV IRU IRXUEDUf ,Jf 063 VHW FRXSOHU RU FUDQN UHODWLYH WR JURXQG &DQ EH LI ,J f ,J 0RGH RI GULYH IRU F\FOLF GULYH IURP SRVLWLRQ WR WKURXJK UDQJH RI GLVFRQQHFWLRQ ,AT 1HFHVVDU\ FRQGLWLRQV IRU &RQQHFWLRQ IRU 'LVFRQQHFWLRQ 77O7 IRU 'LVFRQQHFWLRQ GUS7J IRU (QFLUFOHPHQW IRU 1RQHQFLUFOHPHQW IRU JIXQFWLRQ UHYHUVDO UHODWLYH WR ,JOf IRU JIXQFWLRQ UHYHUVDO UHODWLYH WR ,B,Bf 2 2Af 2XWSXW JULG VKRUWf VKRUWf *URXQG 9H

PAGE 208

0RGXOH &KDUW 1DPH 1HFHVVDU\ &RQGLWLRQ 2XWSXW /DEHO 1(&287 287387 'HVFULSWLRQ 'LVSOD\V JULGV JHQHUDWHG E\ SUHYLRXV QHFHVVDU\ FRQGLWLRQ PRGXOHV &ROOHFWV H[SDQVLRQ LQSXW IRU WKH VHOHFWHG SRUWLRQ RI WKH JULG $3/ &DOO 1(&287 f, f ZKHUH ,MAf ,f JULGV WR EH GLVSOD\HG

PAGE 209

0RGXOR &KDUW 1DPH 'HVLUDEOH &RQGLWLRQ ,QSXW /DEHO '(6,13 'HVFULSWLRQ *LYHQ D JULG RI DFFHSWDEOH OLQNDJHV IURP WKH QHFHVVDU\ FRQGLWLRQV D VFRULQJ JULG LV LQLWLDOL]HG DQG SODFHG LQ ILOHV 1HFHVVDU\ &RQGLWLRQ U L G $)/ &DOO 0&Af '(6,13 f ,f ZKHUH Af ,f 1HFHVVDU\ FRQGLWLRQ JULGV ,I PRUH WKDQ RQH FRPELQHV WKHPf f ,QLWLDOL]HG VFRULQJ JULG IRU GHVLUn DEOH FRQGLWLRQV

PAGE 210

0RGXOH &KDUW e 1DPH 3LYRW /RFDWLRQ 'HVLUDEOH &RQGLWLRQf /DEHO '397,&$ 'HVFULSWLRQ (YDOXDWHV WKH VROXWLRQ VHW RI OLQNDJHV RQ WKH EDVLV RI SLYRW ORFDWLRQ 8VHU VSHFLn ILHV SLYRWV RI LQWHUHVW Aff '397/&$ ,f,f ZKHUH 6L[ EDUV RQO\ n9 3UHYLRXV VFRULQJ JULG Lf $ SLYRW ,! % SLYRW 9 & SLYRW ,! SLYRW 9 ) SLYRW ,"f SLYRW ,f f§ + SLYRW RWf 2XWSXW VFRULQJ JULG FXPXODWLYH r! 2XWSXW VFRULQJ JULG WKLV FRQGLWLRQ RQO\ 2SW LRQD

PAGE 211

0RGXOH &KDUW 1DPH /LQN OHQJWK 5DWLR 'HVLUDEOH &RQGLWLRQf /DEHO '/./157 'HVFULSWLRQ (YDOXDWHV WKH VROXWLRQ VHW RI OLQNDJHV RQ WKH EDVLV RI OLQN OHQJWK UDWLR 8VHU VSHFLILHV OLQNV RI LQWHUHVW ff f '/.157 f f f ZKHUH Af 3UHYLRXV VFRULQJ JULG ,f ,Bf f ,Bf &RQVWUDLQW OLQN SLYRWV SDLU OLQNf Af 2XWSXW VFRULQJ JULG FXPXODWLYH 2f 2XWSXW VFRULQJ JULG WKLV FRQGLWLRQ RQO\ 2SWLRQDO

PAGE 212

0RGXOH &KDUW 1DPH /LQN 6L]H 'HVLUDEOH &RQGLWLRQf /DEHO '/.6,=( 'HVFULSWLRQ (YDOXDWHV WKH VROXWLRQ VHW RI OLQNDJHV RQ WKH EDVLV RI OLQN VL]H 8VHU VSHFLILHV OLQNV RI LQWHUHVW f0ff '/.6,=( f f ,f ZKHUH Af 3UHYLRXV VFRULQJ JULG f f ,f Ef f &RQVWUDLQW OLQN 3LYRWV SDLU OLQNf Af 2XWSXW VFRULQJ JULG FXPXODWLYH Af 2XWSXW VFRULQJ JULG WKLV FRQGLWLRQ RQO\ 2SWLRQDO

PAGE 213

0RGXOH &KDUW 1DPH 'HVLUDEOH &RQGLWLRQ '\DG $QDO\VLV /DEHO '(6'<$' 'HVFULSWLRQ 3HUIRUPV D G\DGEDVHG DQDO\VLV HYDOXDWHV WKH VROX WLRQ VHW RI OLQNDJHV RQ WKH EDVLV RI 2YHUDOO %RXQGDU\ JIXQFWLRQ $K KUPV $7RUTXH 6KRFN /HYHO $3/ &DOO Aff '(6'<$' ,AAf ZKHUH Af 3UHYLRXV VFRULQJ JULG ,fAf &UDQN SLYRWV PRYLQJ IL[HGf ,Af ,Wf )ROORZHU SLYRWV PRYLQJ IL[HGf ,Jf ,"f ,Jf '\DG SLYRWV IRU IRXUEDUf ,Jf 063 VHW FRXSOHU RU FUDQN UHODWLYH WR JURXQG PD\ EH LI ,AT f 0RGH RI GULYH IRU F\FOLF GULYH IURP SRVLWLRQ WR WKURXJK UDQJH RI GLVFRQQHFWLRQ ,M 'HVLUDEOH FRQGLWLRQV IRU 2YHUDOO ERXQGDU\ IRU JIXQFWLRQ IRU $KIXQFWLRQ IRU KUPVIXQFWLRQ IRU $7RUTXH IRU 6KRFN /HYHO IRU VL[ EDUV 6WHSKHQVRQ RI :DWW LQYHUVLRQ

PAGE 214

2Af 2XWSXW VFRULQJ JULG FXPXODWLYH DOO GHVLUDEOH FRQGLWLRQVf 2f } 2Mf 2XWSXW VFRULQJ JULGV VHSD UDWH FRQGLWLRQV 2SWLRQDO

PAGE 215

0RGXOH &KDUW 1DPH 'HVLUDEOH &RQGLWLRQ 2XWSXW /DEHO '(6287 287387 'HVFULSWLRQ 2XWSXWV VFRULQJ JULG IURP GHVLUDEOH FRQGLWLRQ DQDO\VLV &ROOHFWV H[SDQVLRQ LQSXW IRU WKH VHOHFWHG SRUWLRQ RI WKH JULG $3/ &DOO '(6287 f f ZKHUH Af fffff 6FRULQJ JULGV WR EH GLVSOD\HG ,I PRUH WKDQ RQH DGG WKHPf

PAGE 216

0RGXOH &KDUW 1DPH ([WUDFW /DEHO (;75$&7 'HVFULSWLRQ $OORZV XVHU WR VHOHFW D SDUWLFXODU OLQNDJH IURWQ D JULG FRPSUHVVHV SLYRW ILOHV WR UHSUHVHQW RQO\ WKH VHOHFWHG OLQNDJH 8VHIXO IRU GHSHQGHQW V\QWKHVLV SUREOHPV $3/ &DOO (;75$&7 ,f ZKHUH Af 6FRULQJ JULG SUHYLRXVO\ RXWSXWWHGf

PAGE 217

0RGXOH &KDUW 1DPH $QDO\]H /DEHO $1$/<=( 'HVFULSWLRQ *LYHQ D FUDQN LQ ]HURWK SRVLWLRQ 063 RI FRXSOHU JHQHUDWHV 063 RI URWDWLQJ FUDQN $3/ &DOO Yf $1$/<=( [f f f ZKHUH Af,f PRYLQJ IL[HG SLYRWV RI FUDQN LQ ]HURWK SRVLWLRQ Af 063 RI FRXSOHU Af 063 RI FUDQN

PAGE 218

0RGXOH &KDUW 1DPH $QDO\]H 3DWK&RJQDWH /DEHO $1/=3&* 'HVFULSWLRQ *LYHQ 063 RI FRXSOHU RI D V\QWKHVL]HG IRXUEDU DQG SLYRW ORFDWLRQV LQ WKH ]HURWK SRVLn WLRQ RI RQH RI LWV SDWK FRJn QDWHV JHQHUDWHV f VHWV RI 063 UHSUHVHQWLQJ PRWLRQ RI SDWK FRJQDWHnV OLQNV $3/ &DOO 02Mf f f $1/=3&* ,f ,f ,f ,f ,f ZKHUH 9 063 RI FRXSOHU RI IRXU Xf J LQ ]HURWK SRVLWLRQ Gf &/ LQ ]HURWK SRVLWLRQ 9 M LQ ]HURWK SRVLWLRQ Df A LQ ]HURWK SRVLWLRQ 2Mf 063 RI J "f 063 RI -J 063 OD

PAGE 219

$33(1',; 6$03/( 352*5$06

PAGE 220

(DFK FKDUW LQ $SSHQGL[ FRQWDLQV D VDPSOH SURJUDP GHPRQVWUDWLQJ D FRRUGLQDWLRQ RI WKH PRGXOHV RI $SSHQGL[ & WR FUHDWH DQ RSWLPL]DWLRQ URXWLQH IRU D SDUWLFXODU SUREn OHPOLQNDJHPRGH RI F\FOLFLW\ VHW 7KHUH LV DQ H[DPSOH IRU HDFK RI WKH WZHOYH SUREOHP W\SHV HDFK RQH XVLQJ DQ $SSHQGL[ % VROXWLRQ 7KUHH W\SHV RI GDWD DUH FKDQQHOHG EHWZHHQ PRGXOHV WKURXJK ILOHV 7KH\ DUH PRWLRQ VSHFLILFDWLRQ VHWV SLYRW FRRUGLQDWHV DQG JULGV 7KH QRPHQFODWXUH XVHG WR UHSUHVHQW WKHVH TXDQWLWLHV LV H[SODLQHG EHORZ 1RWDWLRQ 063 f 0RWLRQ VSHFLILFDWLRQ VHW RI IRXU PXOWLSO\ VHSDUDWHG SRVLWLRQV GHVFULELQJ WKH PRWLRQ RI SODQH UHODWLYH WR SODQH SLYRW $ 7KH FRRUGLQDWHV RI SLYRW $ 0D\ UHSUHn VHQW D VHW RI SLYRWV RU D VLQJOH SLYRW SLYRW $n ,Q SDWKFRJQDWH SUREOHPV WKH SLYRWV JHQHUDWHG E\ WKH FXUYDWXUH WUDQVIRUP DUH GHQRWHG E\ D SULPH nf DQG FRJQDWH SLYRWV UHSUHVHQWLQJ VROXWLRQVf DUH XQSULPHG

PAGE 221

1& *ULG f '& *ULG 1HFHVVDU\ FRQGLWLRQ JULG IRU D VHW RI OLQNV GLPHQVLRQDOf 'HVLUDEOH FRQGLWLRQ JULG IRU VHWV RI DQG OLQNV GLPHQVLRQDOf L LQ $3/ UHSUHVHQWV L UHSUHVHQWV $3/ JRWR (DFK PRGXOH JHQHUDWHV DV DQ DUJXPHQW WKH QH[W OLQH WR EH H[HFXWHG 'ULYHQ OLQN &\FOLF SLYRW $WWDFKHG OLQNV KDYH FRPn SOHWH UHODWLYH URWDWLRQ $ FKDQJH SRLQW FDQQRW EH DOORZHG DW WKLV SLYRW (QFLUFOHG OLQN LV V\QWKHVL]HG XVLQJ WKH FXUYDWXUH WUDQVIRUP FLUFOH SRLQW FXELF VKRZQf

PAGE 222

3URJUDP &KDUW 3UREOHP MI 3DWK 6\QWKHVLV /LQNDJH 6ROXWLRQ )RXU%DU 0RGH RI &\FOLFLW\ 6\QWKHVLV 3URFHGXUH f &859$785( 75$16)250 WR ILQG )285%$5 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH f 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU 6DPSOH 3URJUDP 9352%)%02') )LOHV >@ 9 ,1,7,$/ f 063f f SLYRW $ >@ 6<1,13 f SLYRW >@ 6&59751 f SLYRW & > 6<1287 f SLYRW % f 1& *ULG[f >@ !‘ 1(&,13 f '& *ULG[f >@ 1&3,, >@ 1(&287 >@ '(6,13 >@ '397/&$ IO2@ 9 '/./157 WLO@ '/.6,=( > '(6'<$' L >@ 9 '(6287 9

PAGE 223

3URJUDP &KDUW 3UREOHP ,I 0RWLRQ 6\QWKHVLV /LQNDJH 6ROXWLRQ )RXU%DU 0RGH RI &\FOLFLW\ 6\QWKHVLV 3URFHGXUH f &859$785( 75$16)250 WR ILQG )285%$5 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH f 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU 6DPSOH 3UREOHP 9352%)%02'( )LOHV >@ !f ,1,7,$/ >@ 9 6<1,13 >@ 6&59751 >@ 6<1287 >@ 9 1(&,13 >@ 1&3% >@ r 1(&287 >@ '(6,13 >@ '397/&$ f \ '/./157 LOO '/.6,=( >@ \ '(6'<$' L >@ '(6287 9 f 063f f SLYRW $ f SLYRW f SLYRW & f SLYRW % f 1& *UL G [f f '& *ULG[f

PAGE 224

3URJUDP &KDUW 3UREOHP LI $QJXODU &RRUGLQDWLRQ RI D 7ZR/LQN &KDLQ 6ROXWLRQ /LQNDJH )RXU%DU 0RGH RI &\FOLFLW\ + % B r $ $ r )285%$5 6\QWKHVLV 3URFHGXUH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH f &859$785( 75$16)250 WR ILQG f 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU 6DPSOH 3URJUDP 935%)%0'( >@ r ,1,7,$/ >@ r 6<1,13 >@ Y 6<1,13 >@ rf 6&59751 >@ r 6<1287 >@ r 1(&,13 >@ r 1&3' @ rf 1(&287 >@ '(6,13 >@r '397/&$ & >@r '/./157 >@ '/.6,=( >@r '(6'<$' L >@ '(6287 9 )LOHV f 063f f 063f f SLYRW $ f SLYRW f SLYRW & f SLYRW % f 1& *ULG f f '& *ULG f

PAGE 225

3URJUDP &KDUW 3UREOHP $QJXODU &RRUGLQD RI 7ZR &UDQNV /LQNDJH 6ROXWLRQ )RXU%DU 0RGH RI &\FOLFLW\ 6\QWKHVLV 3URFHGXUH f ,19(56,21 WR f &859$785( 75$16)250 WR ILQG 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH f 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU 6DPSOH 3UREOHP )LOHV 935% )%0'( >,1,7,$/ >@ 6<1,13 >@ 6<1,13 >@ 6,19(57 @ 6&59751 >@ 6<1287 >@ 1(&,13 >@ 1&3% >@ 1(&287 >@ Y '(6,03 >,' '397/&$ >@ '/./157 >@ '/.6,=( >@ Y '(6'<$' L >@r '(6287 9 f 063 f f 063 f f SLYRW $ f SLYRW f SLYRW & f SLYRW % f 063f f 1& *ULG[f f '& *ULG[f

PAGE 226

3URJUDP &KDUW 3UREOHP LI 3DWK &RRUGLQDWLRQ ZLWK D &UDQN /LQNDJH 6ROXWLRQ )RXU%DU 0RGH RI &\FOLFLW\ )285%$5 6\QWKHVLV 3URFHGXUH f &859$785( 75$16)250 DQG 3$7+ &2*1$7(6 WR ILQG 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH f 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH IRU 6DPSOH 3URJUDP 9352%)%02'( >@ ,1,7,$/ >@ r‘ 6<1,13 >@ 6&59751 >@ 637+&2* >@ 1(&,13 >@ 1&3>@ 1(&287 >@ 9 '(6,13 >@ '397/&$ >@ '/./157 >@ 9 '/.6,=( >@ '(6'<$' >@ 9 '(6287 9 ? )LOHV f 063f f SLYRW %n f SLYRW $n f SLYRW & f SLYRW 'n f SLYRW % f SLYRW $ f SLYRW & f SLYRW f 1& *ULG[f f '& *ULG [f

PAGE 227

3URJUDP &KDUW 3UREOHP ,W $QJXODU &RRUGLQDWLRQ RI D 7KUHH /LQN &KDLQ /LQNDJH 6ROXWLRQ :DWW 0RGH RI &\FOLFLW\ 6\QWKHVLV 3URFHGXUH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH f &859$785( 75$16)250 f 1HFHVVDU\ &RQGLWLRQ 3UR WR ILQG FHGXUH IRU f ,19(56,21 WR f 1HFHVVDU\ &RQGLWLRQ 3UR f &859$785( 75$16)250 FHGXUH IRU WR ILQG f 9HULI\ FRQQHFWLRQ RI 6DPSOH 3URJUDP )LOHV 9352%:$7702'( >@ ,1,7,$/ >@ 9 6<1,13 @ 9 6<1,13 >@ ; 6<1,13 >@ E 6&59751 >@ E 6,19(57 >@ E 6,19(57 @ 9 6&59751 @ !f 6<1287 >@ E 6<1287 f 9 1(&,03 >@ E 0&3% @ 0&3' >@ 9 1(&'<$' >@ 9 1(&287 @ '(6 ,13 f @ '397/&$ >@ E '/.,157 >@ f 9 '/.6-=( >@ 9 '(6'<$' L >r '(6287 9 f 06 3 f f 063 f f 063 f f SLYRW $ f SLYRW f SLYRW ) f SLYRW + f SLYRW & f SLYRW % f SLYRW f 063 f f 063 f f 1& *ULG f f 1& *5,' f f 1& *ULG f f '& *ULG f

PAGE 228

3URJUDP &KDUW A9A a 3UREOHP LI $QJXODU &RRUGLQDWLRQ RI D &UDQN DQG D 7ZR/LQN &KDLQ /LQNDJH 6ROXWLRQ 6WHSKHQVRQ 0RGH RI &\FOLFLW\ + f V V B A$ 67(3+(1621 L 6\QWKHVLV 3URFHGXUH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH f ,19(56,21 WR f 1HFHVVDU\ &RQGLWLRQ f &859$785( 75$16)250 WR ILQG '\DG 7\SH f f 1HFHVVDU\ &RQGLWLRQ 3UR f &859$785( 75$16)250 WR ILQG FHGXUH f 9HULI\ f 9HULI\ $ IRU &RQQHFWLRQ RI (QFLUFOHPHQW $&f 6DPSOH 3URJUDP 9352%67(3+02'( >@ ,1,7,$/ >@ 9 6<1,13 >@ 9 6<1,13 >@ 9 6<1,13 >@ 6,19(57 >@ 9 6,19(57 >@ 9 6&59751 >@ 6&59751 f 9 6<1287 >@ 9 6<1287 >@ 1(&,13 >@ 9 1'<'7<3 >@ 1&)$ >@ 9 1(&'<$' W >@ 9 1(&287 >@ 9 '(617 >@ 9 '397/&$ >@ '/./157 >@ 9 '/.6,=( >@ 9 '(6'<$' W L @ '(6287 9 )LOHV f 063 f f 063 f f 063 f f SLYRW ) f SLYRW $ f SLYRW % f SLYRW & f SLYRW f SLYRW f SLYRW % f 063 f f 063 f f 1& *ULG f f 1&*ULG f f 1& *ULGf f '& *ULG f f '& *ULG //5 RQO\f

PAGE 229

3URJUDP &KDUW 3UREOHP $QJXODU &RRUGLQDWLRQ RI 7KUHH &UDQNV /LQNDJH 6ROXWLRQ :DWW 0RGH RI &\FOLFLW\ 6\QWKHVLV 3URFHGXUH f ,19(56,21 WR f &859$785( ILQG 75$16)250 WR f &859$785( ILQG 75$16)250 WR 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH f 1HFHVVDU\ &RQGLWLRQ FHGXUH + IRU 3UR f 1HFHVVDU\ &RQGLWLRQ FHGXUH IRU 3UR 6DPSOH 3URJUDP )LOHV 9352%:$7702'( @ ,1,7,$/ @ 9 6<1,13 >@ 9 6<1,13 f 6<1,13 >@ rf 6,19(57 >@ 9 6,19(57 @ 9 6&59751 @ 9 6&59751 >@ 9 6<1287 >@ f§9 6<1287 >@ 9 1(&,13 >@ 9 1&3+ >@ 9 1&3' >@ 9 1(&287 >@ f 9 '(6 ,13 >@ '397/&$ >@ 9 ',./157 >@ ‘ 9 '/.6,=( >@ '(6'<$' L >@r '(6287 9 f 063 f f 063 f f 063 f f SLYRW $ f SLYRW f SLYRW ) f SLYRW + f SLYRW F f SLYRW % f SLYRW ) f 063 f f 063 f f 1& *ULG f f 1& *ULG f f '& *ULG f

PAGE 230

3BURJUDP &KDU / 3UREOHP + $QJXODU &RRUGLQDWLRQ RI 7KUHH $GMDFHQW 3LDQRV /LQNDJH 6ROXWLRQ :DWW 0RGH RI &\FOLFLW\ 6\QWKHVLV 3URFHGXUH f &859$785( 75$16)250 WR ILQG f &859$785( 75$16)250 WR ILQG 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH f 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH % IRU f 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH $ IRU 6DPSOH 3URJUDP 9352%:$7702'( >@ ,1,7,$/ >@ rf 6<1,13 >@ 6<1,13 >@ 6<1,13 >@ 6&59751 >@ 6&59751 >@ 6<1287 >@ r! 6<1287 >@ n 1(&,13 > @ rf 1&7% >@ 1&3$ >@ 1(&287 >@ f '(6,13 >@ f '397/&$ >@ } ')./157 >@ r 8,.6 =( > } '&6'<$' L >@ f '(6287 )LOHV f 063 f f 063 f f 06 3 f f SLYRW $ f SLYRW f SLYRW ) f SLYRW + f SLYRW & f SLYRW % f SLYRW f 1& *ULG f f 1& *ULG f f '& *ULG f

PAGE 231

3URJUDP &KDUW 3UREOHP c 'RXEOH &RSODQDU 6\Qn WKHVLV RI 7ZR $GMDFHQW 3ODQHV /LQNDJH 6ROXWLRQ 6WHSKHQVRQ 0RGH RI &\FOLFLW\ 67(3+(1621 6\QWKHVLV 3URFHGXUH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH f &859$785( ILQG 75$16)250 WR f 1HFHVVDU\ &RQGLWLRQ 3URn FHGXUH + IRU f &859$785( ILQG 75$16)250 WR f 9HULI\ 'LVFRQQHFWLRQ RI VKRUWf 6DPSOH 3URJUDP 9352%67(3+02'( >@ rf ,1,7,$/ >@ r 6<1,13 >@ r‘ 6<1,13 >@ 9 6&59751 >@ 6&59751 >@ 6<1287 >@ 6<1287 >@ 1(&,13 >@ 1&3+ >@ 9 1(&'<$' >@ \ 1(&287 >@ f9 '(6,13 >@ \ '397/&$ >@ \ '/./157 >@ a\ '/.6,=( >@ \ '(6'<$' W >@A '(6287 9 )LOHV f 063 f f 063 f f SLYRW ) f SLYRW $ f SLYRW % f SLYRW & f SLYRW f SLYRW f SLYRW % f 1& *ULG f 1& *ULG,I f '& *ULGO

PAGE 232

3URJUDP &KDUW 3UREOHP &RSODQQU 0RWLRQ &RRUGLQDWHG :LWK D &UDQN /LQNDJH 6ROXWLRQ 6WHSKHQVRQ 0RGH RI &\FOLFLW\ 67(3+(1621 6\QWKHVLV 3URFHGXUH f &859$785( 75$16)250 WR ILQG f ,19(56,21 WR f &859$785( 75$16)250 WR ILQG 6DPSOH 3URJUDP 935%67(3+02'( >@ r ,1,7,$/ >@ r 6<1,13 >@ 6<1,13 >@ r 6&59751 >@ r‘ 6,19(57 >@ r 6&59751 >@ r 6<1287 >@ 6<1287 >@ r 1(& ,13 >@r 1'<'7<3 >@r 1&3+ >@r 1(&'<$' >@r 1(&287 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH f 1HFHVVDU\ &RQGLWLRQ 7\SH f '\DG f 1HFHVVDU\ &RQGLWLRQ FHGXUH + IRU 3UR f 9HULI\ &RQQHFWLRQ RI f 9HULI\ QRQJIXQFWLRQ 5HYHUVDO f )LOHV f 063 f f 063 f f 3LYRW ) f SLYRW $ f SLYRW % f SLYRW & f SLYRW f SLYRW f SLYRW + f 063 f f 1& *ULG f f 1& *ULG f f 1& *ULG f f '& *ULG f >@ r '(6,13 >@ '397/&$ >@ r '/./157 >@r '/.6,=( >@r '(6'<$' L >@r '(6287 9

PAGE 233

3URJUDP &KDUW 3UREOHP 3DWK &RRUGLQDWLRQ ZLWK 7ZR &UDQNV /LQNDJH 6ROXWLRQ :DWW 0RGH RI &\FOLFLW\ 6\QWKHVLV 3URFHGXUH 1HFHVVDU\ &RQGLWLRQ 3URFHGXUH f &859$785( 75$16)250 DQG 3$7+ &2*1$7(6 WR ILQG U f ,19(56,21 WR f &859$785( ILQG 75$16)250 WR f 1HFHVVDU\ &RQGLWLRQ FHGXUH 0 IRU 3UR f 1HFHVVDU\ &RQGLWLRQ FHGXUH % IRU 3UR f 9HULI\ &RQQHFWLRQ RI i DPSOH 3URJU DP )LOHV 9352%:$7702'( f ,1,7,$/ >@ r 6<1,13 >@ 6&59751 >@ rf 637+&2* >@ \ 1(&,13 >@ \ 1&30 >@ \ 1(&287 >@ '(6,13 >@ '397/&$ >@ 9 '/./157 >@ '/.6,=( >@ '(6'<$' >@ 9 '(6287 >@ 9 (;75$&7 >@ \ $1/=3&* >@ \ 6<1,13 f 063 f f SLYRW + f SLYRW f SLYRW ) f SLYRW f SLYRW + f SLYRW f SLYRW ) f SLYRW f 1& *U LG f '& *ULG f f f 063 f f 063 f f 063 f f SLYRW & f SLYRW % f SLYRW $ f 1& *UL LG f f 1& *UL LG f '& *ULG

PAGE 234

> f n,If 6 ,19(57 +_ 6&59751 f 691287 >_ 1(& ,,-3 >1&3% f 1(&'<$' >@ 1(&287 >@ '(6 ,13 >@ '397/&$ >@ '/./157 > '/.6 =( @ '(6'<$' W O '(6287 9

PAGE 235

5()(5(1&(6 &KHE\VKHY 3/ 2HXYUHV 9ROXPH 1HZ
PAGE 236

6XWKHUODQG *+ 0L[HG H[DFWDSSUR[LPDWH SODQDU PHFKDQLVP SRVLWLRQ V\QWKHVLV 7UDQV $60( $60( 3DSHU 1R '(7 %DJFL & DQG ,3/HH 2SWLPXP V\QWKHVLV RI SODQH PHFKDQLVPV IRU WKH JHQHUDWLRQ RI SDWKV DQG ULJLGERG\ SRVLWLRQV YLD WKH OLQHDU VXSHUSRVLWLRQ WHFKQLTXH $60( 3DSHU 1R '(7 %DJFL & 2SWLPXP V\QWKHVLV RI SODQDU IXQFWLRQ JHQHUDWRUV E\ WKH OLQHDU SDUWLWLRQ RI WKH G\DGLF ORRS HTXDWLRQV 0HFKDQLVP DQG 0DFKLQH 7KHRU\ 9ROXPH SS %KDWLD '+ DQG & %DJFL 2SWLPXP V\QWKHVLV RI PXOWLORRS SODQDU PHFKDQLVPV IRU WKH JHQHUDWLRQ RI SDWKV DQG ULJLGERG\ SRVLWLRQV E\ WKH OLQHDU SDUWLn WLRQ RI GHVLJQ HTXDWLRQV 7UDQV $60( )HEUXDU\ SS 5RWK % *1 6DQGRU DQG ) )UHXGHQVWHLQ 6\QWKHVLV RI IRXUEDU SDWK JHQHUDWLQJ PHFKDQLVPV ZLWK RSWLPXP WUDQVPLVVLRQ FKDUDFWHULVWLFV 7UDQVDFWLRQV RI WKH 6HYHQWK &RQIHUHQFH RQ 0HFKDQLVPV 3XUGXH 8QLYHUVLW\ 2FWREHU 1ROOH + 2Q FDSDELOLW\ RI IRXU EDU PHFKDQLVPV DV IXQFWLRQ JHQHUDWRUV 7UDQV ,QVWX (QJUV $XVWUDOLD 0HFK DQG &KHP (QJ 90& 1R 1RYHPEHU SS 7RPDV 7KH V\QWKHVLV RI PHFKDQLVPV DV D QRQOLQHDU SURJUDPPLQJ SUREOHP -RXUQDO RI 0HFKDQLVPV 9ROXPH SS *DUUHWW 5( DQG $6 +DOO 2SWLPDO V\QWKHVLV RI UDQGRPO\ JHQHUDWHG OLQNDJHV -RXUQDO RI (QJLQHHULQJ IRU ,QGXVWU\ 7UDQV $60( 6HULHV % 9ROXPH 1R $XJXVW SS (VFKHQEDFK 3: DQG 7HVDU 2SWLPL]DWLRQ RI IRXU EDU OLQNDJHV VDWLVI\LQJ IRXU JHQHUDOL]HG FRSODQDU SRn VLWLRQV -RXUQDO RI (QJLQHHULQJ IRU ,QGXVWU\ 7UDQV $60( 6HULHV % 9ROXPH 1R )HEUXDU\ SS (LVHQVWHLQ DQG $6 +DOO 6\QWKHVLV RI 5DQGRPO\ JHQHUDWHG WZRGHJUHHRIIUHHGRP SODQH OLQNDJHV IRU IXQFWLRQ JHQHUDWLRQ 3URFHHGLQJV RI WKH 6HFRQG ,QWHUn QDWLRQDO &RQJUHVV RQ WKH 7KHRU\ RI 0DFKLQHV DQG 0HFKn DQLVPV 3RODQG SS

PAGE 237

6ULGKHU %1 DQG /( 7RUIDVRQ 2SWLPL]DWLRQ RI VSKHULFDO IRXUEDU SDWK JHQHUDWRUV $60( 3DSHU 0HFK 6SLW]QDJHO 1HDUJOREDO RSWLPXP RI V\QWKHVL]HG IRXUEDU PHFKDQLVPV E\ LQWHUDFWLYH XVH RI ZHLJKWHG NLQHPDWLF VHTXHQWLDO ILOWHUV 06 7KHVLV 8QLYHUn VLW\ RI )ORULGD 6SLW]QDJHO DQG 7HVDU 0XOWLSDUDPHWULF RSn WLPL]DWLRQ RI IRXUEDU OLQNDJHV WR EH SUHVHQWHG DW WKH $60( 'HVLJQ (QJUJ 7HFK &RQI 0LQQHDSROLV 0LQQ 6HSWHPEHU 3RZHOO 0-' $ 0HWKRG IRU PLQLPL]LQJ D VXP RI VTXDUHV RI QRQOLQHDU IXQFWLRQV ZLWKRXW FDOFXODWLQJ GHULYDWLYHV &RPSXWHU -RXUQDO 9ROXPH SS 3RZHOO 0-' $Q HIILFLHQW PHWKRG IRU ILQGLQJ WKH PLQLPXP RI D IXQFWLRQ RI VHYHUDO YDULDEOHV ZLWKRXW FDOFXODWLQJ GHULYDWLYHV &RPSXWHU -RXUQDO 9ROXPH 1R SS 6XK &+ DQG $: 0HFNOHQEXUJ 2SWLPDO GHVLJQ RI PHFKDQLVPV ZLWK WKH XVH RI PDWULFLHV DQG OHDVW VTXDUHV 0HFKDQLVPV DQG 0DFKLQH 7KHRU\ 9ROXPH 1R :LQWHU SS )OHWFKHU 5 DQG &0 5HHYHV )XQFWLRQ PLQLPL]DWLRQ E\ FRQMXJDWH JUDGLHQWV &RPSXWHU -RXUQDO 9ROXPH SS 5HHV -RQHV DQG *7 5RRQH\ 0RWLRQ DQDO\VLV RI ULJLG OLQN PHFKDQLVPV E\ JUDGLHQW RSWLPL]DWLRQ RQ WKH DQDORJXH FRPSXWHU -RXUQDO RI 0HFKDQLVPV 9ROXPH SS 1HFKL -$ $ UHOD[DWLRQ DQG JUDGLHQW FRPELQDWLRQ DSSOLHG WR WKH FRPSXWHU VLPXODWLRQ RI D SODQH IRXU EDU FKDLQ -RXUQDO RI (QJLQHHULQJ IRU ,QGXVWU\ 7UDQV $60( 6HULHV % 9ROXPH 1R )HEXUDU\ SS &KHQ )< DQG 9 'DOVDQLD 2SWLPDO V\QWKHVLV RI SODQDU VL[OLQN FKDLQV XVLQJ OHDVWVTXDUHV JUDGLHQW VHDUFK 7UDQV &DQDGLDQ 6RF RI 0HFKDQLFDO (QJLQHHUV 9ROXPH 1R 0DUFK SS 5RVH 5 DQG *N6DQGRU 'LUHFW DQDO\WLFDO V\QWKHVLV RI IRXUEDU IXQFWLRQ JHQHUDWRU ZLWK RSWLPDO VWUXFWXUDO HUURU -RXUQDO RI (QJLQHHULQJ IRU ,QGXVWU\ 7UDQV $60( 6HULHV % 9ROXPH 1R 0D\

PAGE 238

)OHWFKHU 5 DQG 0-' 3RZHOO $ UDSLGO\ FRQYHUn JHQW GHVFHQW PHWKRG IRU PLQLPL]DWLRQ 7KH &RPSXWHU -RXUQDO 9ROXPH SS 0FODLQH&URVV ,/ $ QXPHULFDO PHWKRG RI &KHE\FKHY RSWLPXP OLQNDJH GHVLJQ -RXUQDO RI 0HFKDQLVPV 9ROXPH SS 6HYDN 10 DQG &: 0F/DUQDQ 2SWLPDO V\QWKHVLV RI IOH[LEOH OLQN PHFKDQLVPV ZLWK ODUJH VWDWLF GHIOHFn WLRQV $60( 3DSHU 1R '(7 &RQWH )/ *5 *HRUJH 5: 0D\QH DQG -3 6DGOHU 2SWLPXP PHFKDQLVP GHVLJQ FRPELQLQJ NLQHPDWLF DQG G\QDPLF IRUFH FRQVLGHUDWLRQV $60( 3DSHU 1R '(7 +DQ &< $ JHQHUDO PHWKRG IRU WKH RSWLPXP GHVLJQ RI PHFKDQLVPV -RXUQDO RI 0HFKDQLVPV 9ROXPH 1R SS )LDFFR $9 DQG *3 0F&RUPLFN 3URJUDPPLQJ XQGHU QRQOLQHDU FRQVWUDLQWV E\ XQFRQVWUDLQHG PLQLPL]DWLRQ $ SULPDOGXDO PHWKRG 5$&7' %HWKHVGD 0DU\ODQG 7KH 5HVHDUFK $QDO\VLV &RUSRUDWLRQ 6HSWHPEHU )LDFFR $9 DQG *3 0F&RUPLFN &RPSXWDWLRQDO DOJRULWKP IRU WKH VHTXHQWLDO XQFRQVWUDLQHG PLQLPL]Dn WLRQ IRU QRQOLQHDU SURJUDPPLQJ 0DQDJHPHQW 6FLHQFH 9ROXPH SS )LDFFR $9 DQG *3 0F&RUPLFN 1RQOLQHDU 3URJUDPn PLQJ 6HTXHQWLDO 8QFRQVWUDLQHG 0LQLPL]DWLRQ 7HFKn QLTXHV 1HZ
PAGE 239

$OL]DGH 5, $9 0RKDQ 5DR DQG *1 6DQGRU 2SWLPXP V\QWKHVLV RI WZRGHJUHHRIIUHHGRP SODQDU DQG VSDWLDO IXQFWLRQ JHQHUDWLQJ PHFKDQLVPV XVLQJ WKH SHQDOW\ IXQFWLRQ DSSURDFK $60( 3DSHU 1R '(7 $OL]DGH 5, $9 0RKDQ 5DR DQG *1 6DQGRU 2SWLPXP V\QWKHVLV RI IRXUEDU DQG RIIVHW VOLGHU FUDQN SODQDU DQG VSDWLDO PHFKDQLVPV XVLQJ WKH SHQDOW\ IXQFWLRQ DSSURDFK ZLWK LQHTXDOLW\ DQG HTXDOLW\ FRQn VWUDLQWV $60( 3DSHU 1R '(7 $OL]DGH 5, ,* 1RYUX]EHNRY DQG *1 6DQGRU 2SWLPL]DWLRQ RI IRXUEDU IXQFWLRQ JHQHUDWLQJ PHFKn DQLVPV XVLQJ SHQDOW\ IXQFWLRQV ZLWK LQHTXDOLW\ DQG HTXDOLW\ FRQVWUDLQWV 0HFKDQLVP DQG 0DFKLQH 7KHRU\ 9ROXPH SS .UDPHU 61 DQG *1 6DQGRU 6HOHFWLYH SUHFLVLRQ V\QWKHVLV D JHQHUDO PHWKRG RI RSWLPL]DWLRQ IRU SODQDU PHFKDQLVPV $60( 3DSHU 1R '(7 (QJ ,QG 7UDQVDFWLRQV RI WKH $60( 9ROXPH 6HULHV % 1R 0D\ SS .UDPHU 61 8VLQJ WKH VHOHFWLYH SUHFLVLRQ V\QWKHVLV WHFKQLTXH WR RSWLPL]H SODQDU PHFKDQLVPV )RXUWK $SSOLHG 0HFKDQLVPV &RQIHUHQFH 1RYHPEHU 2NODKRPD 6WDWH 8QLYHUVLW\ 6WLOOZDWHU 2NODKRPD 0DULDQWH : DQG .' :LOOPHUW 2SWLPXP GHVLJQ RI D FRPSOH[ SODQDU PHFKDQLVP $60( 3DSHU 1R '(7 7UDQV $60( )LHOGLQJ -% DQG -& =DQLQL 7KH DVVHVVPHQW RI DQ RSWLPL]DWLRQ WHFKQLTXH XVHG IRU WKH GHVLJQ RI D SDFNDJLQJ PDFKLQH 3URFHHGLQJV RI ,)7200 ,QWHUQDn WLRQDO 6\PSRVLXP 0DFKLQHV DQG 0HFKDQLVPV 8QLYHUn VLW\ 5HVHDUFK :RUN DQG ,WV $SSOLFDWLRQ WR ,QGXVWU\ S )LHOGLQJ %-DQG -& =DQLQL &RSODQDU V\QWKHVLV XVLQJ DQ RSWLPLVDWLRQ WHFKQLTXH )RXUWK :RUOG &RQJUHVV RQ WKH 7KHRU\ RI 0DFK DQG 0HFK 6HSWHPEHU SS
PAGE 240

0F/DUQDQ &: 2Q OLQNDJH V\QWKHVLV ZLWK PLQLPXP HUURU -RXUQDO RI 0HFKDQLVPV 9ROXPH SS +XDQJ 0 +5 6HEHVWD DQG $+ 6RQL 'HVLJQ RI OLQNDJHV XVLQJ G\QDPLF VLPXODWLRQ DQG RSWLPL]DWLRQ WHFKQLTXHV $60( 3DSHU 1R 0HFK 3UDVDG .1 DQG & %DJFL 0LQLPXP HUURU V\QWKHVLV RI PXOWLORRS SODQH PHFKDQLVPV IRU ULJLG ERG\ JXLGDQFH -RXUQDO RI (QJLQHHULQJ IRU ,QGXVWU\ 7UDQV $60( 6HULHV % 9ROXPH 1R SS +XDQJ 0 2SWLPDO GHVLJQ RI OLQNDJHV XVLQJ VHQVLn WLYLW\ FRHIILFLHQWV $60( 3DSHU 1R '(7 /HH 7: DQG ) )UHXGHQVWHLQ +HXULVWLF FRPELQDn WRULDO RSWLPL]DWLRQ LQ WKH NLQHPDWLF GHVLJQ RI PHFKn DQLVPV 3DUW WKHRU\ SDUW DSSOLFDWLRQV $60( 3DSHU 1R '(7 7UDQV $60( 'DWVHULV 3 DQG ) )UHXGHQVWHLQ 2SWLPXP V\QWKHVLV RI PHFKDQLVPV XVLQJ KHXULVWLFV IRU GHFRPSRVLWLRQ DQG VHDUFK WR EH SUHVHQWHG DW WKH $60( 'HVLJQ (QJUJ 7HFK &RQI 0LQQHDSROLV 0LQQ 6HSWHPEHU 0RUDGL -< DQG 0 3DSSDV $ ERXQGDU\ WUDFNLQJ DOn JRULWKP IRU FRQVWUDLQHG QRQOLQHDU SUREOHPV -RXUQDO RI 0HFKDQLFDO 'HVLJQ 7UDQV $60( 9ROXPH $SULO SS /LQ
PAGE 241

)UHXGHQVWHLQ ) DQG (-) 3ULPURVH 7KH FODVn VLFDO WUDQVPLVVLRQ DQJOH SUREOHP &RQIHUHQFH 3URF RQ 0HFKDQLVPV 3DSHU 1R & 7KH ,QVWLWXWLRQ RI 0HFKDQLFDO (QJLQHHUV /RQGRQ SS 6XWKHUODQG DQG % 5RWK $ WUDQVPLVVLRQ LQGH[ IRU VSDWLDO PHFKDQLVPV -RXUQDO RI (QJLQHHULQJ IRU ,QGXVWU\ 7UDQV $60( 6HULHV % 9ROXPH 1R 0D\ SS %DJFL & 'HVLJQ RI VSKHULFDO FUDQNURFNHU PHFKn DQLVP ZLWK RSWLPDO WUDQVPLVVLRQ -RXUQDO RI (QJLn QHHULQJ IRU ,QGXVWU\ 7UDQV $60( 6HULHV % 9ROXPH 1R 0D\ SS 6DYDJH 0 DQG '+ 6XFKRUD 2SWLPDO GHVLJQ RI IRXUEDU FUDQN PHFKDQLVPV ZLWK SUHVFULEHG H[WUHPH YHORFLW\ UDWLRV $60( 3DSHU 1R :$'( 7RPDV 2SWLPXP VHHNLQJ PHWKRGV DSSOLHG WR D SUREOHP RI G\QDPLF V\QWKHVLV LQ D ORRP -RXUQDO RI 0HFKDQLVPV 9ROXPH 1R SS %HQHGLFW &( DQG 7HVDU 2SWLPDO WRUTXH EDODQFH IRU D FRPSOH[ VWDPSLQJ DQG LQGH[LQJ PDFKLQH $60( 3DSHU 1R 0HFK /RZHQ ** DQG56 %HUNRI 'HWHUPLQDWLRQ RI IRUFHEDODQFHG IRXUEDU OLQNDJHV ZLWK RSWLPXP VKDNn LQJ PRPHQW FKDUDFWHULVWLFV -RXUQDO RI (QJLQHHULQJ IRU ,QGXVWU\ 7UDQV $60( 6HULHV % 9ROXPH 1R )HEUXDU\ SS %HUNRI 56 DQG ** /RZHQ 7KHRU\ RI VKDNLQJ PRPHQW RSWLPL]DWLRQ RI IRUFHEDODQFHG IRXUEDU OLQNDJHV -RXUQDO RI (QJLQHHULQJ IRU ,QGXVWU\ 7UDQV $60( 6HULHV % 9ROXPH 1R )HEUXDU\ SS 7HSSHU )5 DQG ** /RZHQ 6KDNLQJ IRUFH RSWLn PL]DWLRQ RI IRXUEDU OLQNDJHV ZLWK DGMXVWDEOH FRQn VWUDLQWV RQ JURXQG EHDULQJ IRUFHV $60( 3DSHU 1R '(7 6DGOHU -' %DODQFLQJ RI VL[EDU OLQNDJHV E\ QRQn OLQHDU SURJUDPPLQJ )RXUWK :RUOG &RQJUHVV RQ WKH 7KHRU\ RI 0DFK DQG 0HFK 6HSWHPEHU SS

PAGE 242

(OOLRWW DQG 7HVDU 7KH WKHRU\ RI WRUTXH VKDNLQJ IRUFH DQG VKDNLQJ PRPHQW EDODQFLQJ RI IRXU OLQN PHFKDQLVPV -RXUQDO RI (QJLQHHULQJ IRU ,QGXVWU\ 7UDQV $60( 6HULHV % 9ROXPH 1R $XJXVW S 6DQGOHU %$ 7KH XVH RI D UDQGRP DOJRULWKP IRU G\QDPLF RSWLPL]DWLRQ RI PHFKDQLVPV -RXUQDO RI (QJLQHHULQJ IRU ,QGXVWU\ $60( 3DSHU 1R :$'( *ROLQVNL 2SWLPDO V\QWKHVLV SUREOHPV VROYHG E\ PHDQV RI QRQOLQHDU SURJUDPPLQJ DQG UDQGRP PHWKRGV -RXUQDO RI 0HFKDQLVPV 9ROXPH 1R SS 2VPDQ 020 6 6DQNDU DQG 59'XNNLSDWL 'Hn VLJQ V\QWKHVLV RI D PXOWLVSHHG PDFKLQH WRRO JHDU WUDQVPLVVLRQ XVLQJ PXOWLSDUDPHWULF RSWLPL]DWLRQ -RXUQDO RI 0HFKDQLFDO 'HVLJQ 7UDQV $60( 9ROXPH $SULO SS &KL
PAGE 243

7KRUQWRQ :$ .' :LOOPHUW DQG 05 .KDQ 0HFK DQLVP RSWLPL]DWLRQ YLD RSWLPDOLW\ FULWHULRQ WHFKn QLTXHV WR EH SUHVHQWHG DW WKH $60( 'HVLJQ (QJUJ 7HFK &RQI 0LQQHDSROLV 0LQQ 6HSWHPEHU 5DR 66 DQG $* $PEHNDU 2SWLPXP GHVLJQ RI VSKHULFDO 5 IXQFWLRQ JHQHUDWLQJ PHFKDQLVPV 0HFK DQG 0DFK 7KHRU\ 9ROXPH 1R $XWXPQ SS 6DOODP 00 DQG -& /LQGKROP 3URFHGXUH WR V\Qn WKHVL]H DQG RSWLPL]H WKH VL[EDU :DWW PHFKDQLVP IRU IXQFWLRQ JHQHUDWLRQ $60( 3DSHU 1R '(7 +REVRQ 'RXJODV $ DQG /( 7RUIDVRQ &RPSXWHU RSWLPL]DWLRQ RI SRO\FHQWULF SURVWKHWLF NQHH PHFKDn QLVPV 86 9HWHUDQV $GP 'HS 0HG 6XUJ %XOO Q 6SULQJ SS 5HHG :6 DQG 5( *DUUHWW $ JUDSKLFDO PDQFRPn SXWHU LQWHUIDFH IRU WKH GHVLJQ RI SODQDU PHFKDQLVPV )LUVW 'HVLJQ (QJ 7HFK &RQI 1HZ
PAGE 244

)R[ 5/ 2SWLPL]DWLRQ DSSOLHG WR PHFKDQLVPV DQG PHFKDQLFDO FRPSRQHQWV $60( $0' 9ROXPH IRU PHHW 1HZ
PAGE 245

3ULPURVH (-) ) )UHXGHQVWHLQ DQG *1 6DQGRU )LQLWH %XUQHVWHU WKHRU\ LQ 3ODQH .LQHPDWLFV -RXUQDO RI $SSOLHG 0HFKDQLVPV 9ROXPH 6HULHV ( SS 0XHOOHU 5 3DSHUV RQ JHRPHWULFDO WKHRU\ RI PRWLRQ WUDQVODWHG E\ 7HVDU HW DOf 6SHFLDO 5HSRUW 1R .DQVDV (QJLQHHULQJ ([SHULPHQW 0DQKDWWDQ .DQVDV -XQH $OOLHYL / &LQHP£WLFD GHOOD ELHOOD SLDD *LDQQLQL DQG )LJOL 1DSOHV ,WDO\ .UDXVH 0 $QDO\VLV GHU HEHQHU EHZHJXQJ :DOWHU GH *UX\WHU %HUOLQ :ROIRUG -& $Q DQDO\WLFDO PHWKRG IRU ORFDWLQJ WKH %XUPHVWHU SRLQWV IRU ILYH LQILQLWHVLPDOO\ VHSDn UDWHG SRVLWLRQV -RXUQDO RI $SSOLHG 0HFKDQLFV 9ROXPH 7UDQV $60( 6HULHV ( SS 9HOGNDPS *5 &XUYDWXUH 7KHRU\ LQ 3ODQH .LQHPDWLFV 'LVVHUWDWLRQ :DOWHUV *URQLQJHQ 'HOIW 7HVDU -: 6SDUNV DQG :7 :DOWHUV 0XOWLSO\ VHSDUDWHG SRVLWLRQ V\QWKHVLV SDUW SRLQW V\Qn WKHVLV SDUW IXQFWLRQ JHQHUDWLRQ 7UDQVDFWLRQV RI WKH 7HQWK &RQIHUHQFH RQ 0HFKDQLVPV *HRUJLD ,QVWLWXWH RI 7HFKQRORJ\ $WODQWD *HRUJLD 0\NOHEXVW $ 6\QWKHVLV RI PXOWLOLQN PHFKDQLVPV IRU G\QDPLF VSHFLILFDWLRQV 3K' 'LVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD 'LVV $EVWUDFW f 0RGOHU .+ 5HLKHQIROJH GHU KRPRORJHQ SXQWNH 0DVFKLQHQEDXWHFKXFN 9ROXPH SS :DOGURQ .5DQJH RI MRLQW URWDWLRQ LQ SODQDU IRXUEDU V\QWKHVLV IRU ILQLWHO\ VHSDUDWHG SRVLWLRQV SDUW WKH PXOWLSOH EUDQFK SUREOHP $60( 3DSHU 1R '(7 'HVLJQ (QJLQHHULQJ 7HFKQLFDO &RQn IHUHQFH 1HZ
PAGE 246

:DOGURQ .DQG (1 6WHYHQVRQ -U (OLPLQDn WLRQ RI EUDQFK *UDVKRI DQG RUGHU GHIHFWV LQ SDWK DQJOH JHQHUDWLRQ DQG IXQFWLRQ JHQHUDWLRQ V\QWKHVLV WR EH SUHVHQWHG DW WKH $60( 'HVLJQ (QJUJ 7HFK &RQI 0LQQHDSROLV 0LQQ 6HSWHPEHU 7HVDU DQG *. 0DWWKHZ 7KH '\QDPLF 6\QWKHVLV $QDO\VLV DQG 'HVLJQ RI 0RGHOHG &DP 6\VWHPV /H[LQJn WRQ %RRNV 7DDW 0 7KH IXQGDPHQWDO GHYHORSPHQW RI GHVLJQ SURFHGXUHV IRU D IXOO VSHFWUXP RI OLQNDJH GZHOO PHFKDQLVPV 3K' 'LVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD 7DDW 0 DQG 7HVDU $ QHZ LQWHUSUHWDWLRQ IRU WKH G\QDPLF SKHQRPHQD DVVRFLDWHG ZLWK *HQHYD PHFKn DQLVPV WR EH SUHVHQWHG DW WKH $60( 'HVLJQ (QJUJ 7HFK &RQI 0LQQHDSROLV 0LQQ 6HSWHPEHU 3ROORFN 6) '\QDPLF PRGHO IRUPXODWLRQ SURJUDPPHG IRU G\DG EDVHG PDFKLQHV 06 7KHVLV 8QLYHUVLW\ RI )ORULGD 6DUNLV\DQ
PAGE 247

%,2*5$3+,&$/ 6.(7&+ .LP / 6SLW]QDJHO ZDV ERUQ -XO\ LQ &KDUOHVn WRQ :HVW 9LUJLQLD +H DWWHQGHG SULPDU\ VFKRRO LQ &DPS +LOO 1HZ -HUVH\ DQG
PAGE 248

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HOEHUW 7HVDU &KDLUPDQ 3URIHVVRU RI (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ FB-RKQ 0 9DQFH $VVRFLDWH 3URIHVVRU RI (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ *HRUJH 1 6DQGRU 3URIHVVRU RI (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5DOSK 6HOIULAJH 3URIHVVRU RI 0DWKHPDWLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ ‘ ; 0DUWLQ $ (LVHQEHUJ 3URIHVVRU RI (QJLQHHULQJ

PAGE 249

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH &RXQFLO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 7W 9& &O 'HDQ &ROOHJH RI (QJLQHHULQJ 'HDQ *UDGXDWH 6FKRRO


134
c.) Plane J -> Link 5 and
Point e = Pivot H.
Plane K = Link 4 and
Point f = Pivot D.
Crank L = Link 2 and
Point g = Pivot A.
*t CURVATURE TRANSFORM to
find 3.
INVERSION to 2.
CURVATURE TRANSFORM to
find 6.
[4MSP Grid: (2)xl-D]
Stephenson 1 Link 1 is grounded.
Plane
J
-y
Link 5 and
CURVATURE
TRANSFORM
to
Point
e
=
Pivot B.
find 4.
Plane
K
=
Link 2 and
INVERSION
to 3 .
Point
f
=
Pivot A.
CURVATURE
TRANSFORM
to
Crank
L
=
Link 3 and
find 6.
Point
g
=
Pivot F.
[4MSP Grid
l: (2) xl-D]
Stephenson '
2
- Link 2 is
grounded.
a.)
Plane
j
-V
Link 4 and
t CURVATURE
TRANSFORM
to
Point
e
=
Pivot D.
find 5.
Plane
K
=
Link 1 and
INVERSION
to 3 .
Point
f
=
Pivot F.
CURVATURE
TRANSFORM
to
Crank
L
=
Link 3 and
find 6.
Point
g
=
Pivot A.
[4MSP Grid
l: (2)xl-D]
b.)
Plane
j
-V
Link 1 and
CURVATURE
TRANSFORM
to
Point
e
-
Pivot D.
find 3.
Plane
K
=
Link 4 and
INVERSION
to 4 .
Point
f
=
Pivot C.
CURVATURE
TRANSFORM
to
Crank
L
=
Link 5 and
find 6.
Point
g
=
Pivot B.
t 4MSP Grid: (2)xl-D]
Stephenson 3 Link 3 is grounded.
a.) Plane
J
Link 5 and
t CURVATURE
TRANSFORM
to
Point
e
=
Pivot C.
find 2 .
Plane
K
=
Link 4 and
CURVATURE
TRANSFORM
to
Point
f
=
Pivot D.
find 6 .
Crank
L
=
Link 1 and
Point
g
=
Pivot F.
f 4MSP Grid
:(2)xl-D]
b.) Plane
j
-y
Link 4 and
t CURVATURE
TRANSFORM
to
Point
e
' =
Pivot C.
find 1,6.
Plane
K
=
Link 5 and
Point
f
=
Pivot 3.
[4MSP Grid
: 2-D]
Crank
L
=
Link 2 and
Point
g
=
Pivot A.


116
package never becomes so large as to become unmanageable.
2.) The user designs his program for his particular
application. The only modules needed in his workspace
are the ones actually executed. Only pertinent I/O is
performed.
3.) The independent nature of the modules permits
easy expansions and substitutions, and greatly simplifies
maintenance.
B. Control of Input/Output
The projected package could be implemented on almost
any interactive system providing sufficient memory, but is
very likely most conveniently implemented in an APL en
vironment. All further discussion will relate to an APL-
based package.
Data flow between modules utilizes user-designated
files, and all user/computer interaction is interactive.
Like a Pollock dyad-analysis routine, each module requires
file numbers as input. Unlike a dyad-analysis routine
(which outputs data into files concatenated onto those
already existing), the designer also specifies the loca
tions in which output files are to be placed. Overwriting
of obsolete data from the previous optimization loop is
now possible and in fact necessary. An example of a typical
program for each motion specification type is presented in
Appendix D. To write such programs, the user would:


144
c.)
Crank
J +
Link 3.
CURVATURE
TRANSFORM
to
find
2.
Point
e =
Pivot B.
INVERSION
to 2.
Plane
K -*
Link 6.
CURVATURE
TRANSFORM
to
find
4.
INVERSION
to 4.
CURVATURE
TRANSFORM
to
find
5.
[ 4MSP Grid :
(3)xl-D]
Watt 2 Link
2 is grounded.
Crank
J +
Link 1.
CURVATURE
TRANSFORM
to
find
Point
e =
Pivot A.
4, 6.
Plane
K -*
Link 5.
INVERSION
to 1.
CURVATURE
TRANSFORM
to
find
3.
[4MSP Grid: 2-D+l-D]
Stephenson 1
- Link 1 is
grounded.
Crank
J -*
Link 3.
CURVATURE
TRANSFORM
to
find
4.
Point
e =
Pivot F.
INVERSION
to 3
Plane
K ->
Link 5.
CURVATURE
TRANSFORM
to
find
2.
CURVATURE
TRANSFORM
to
find
6.
[4MSP Grid
1: (3) xl-D]
Stephenson 2
- Link F is
grounded.
a. )
Crank
J ->
Link 3.
*+ CURVATURE
TRANSFORM
to
find
5.
Point
e =
Pivot A.
INVERSION
to 3.
Plane
K -
Link 4.
CURVATURE
TRANSFORM
to
find
1,6.
[4MSP Grid
1: 1-D+2-D]
b.)
Crank
J +
Link 5.
CURVATURE
TRANSFORM
to
find
3.
Point
e =
Pivot B.
INVERSION
to 5.
Plane
K ->
Link 1.
CURVATURE
TRANSFORM
to
find
4 .
INVERSION
to 4 .
CURVATURE
TRANSFORM
to
find
B.
[4MSP Grid
1: ( 3) xl-D]
Stephenson
i 3
- Link 3 is
grounded.
a. )
Crank
J ->
Link 1.
CURVATURE
TRANSFORM
to
find
2.
Point
e =
Pivot F.
INVERSION
to 1.
Plane
K -*
Link 5.
CURVATURE
TRANSFORM
to
find
4 .
INVERSION
to 3 .
CURVATURE
TRANSFORM
to
find
6 .
[4MSP Grid: (3)xl-D]


55
be redefined.
Now,
c' =
y /
nm
1 y '
nm
II
*
u
(l y' )3
' nm
c'" =
y (1 y / ) + 3 y ^
'nm 1 nm nm
(1 Ynm)2
nm
d.) Inversion formulation number 4.
Given: Motions of N relative to R, M relative to N
Find: Motion of M relative to R.
Independent parameter for given MSP: time t.
Independent parameter for derived MSP: time t.
00 r
a
- mj
(k) r
= S, cos C T, sin C + a
k k nj
(k)
{k)r
= S, sin C + T, cos C + 3
k k nj
(?\
- mj
(k) (k)
n r
= Y + Y
mj nj


4
The objective function may represent the deviation
between actual and ideal linkage performance, which may be
a measure of prescribed path error ("structural error"),
dynamic imbalances, error due to elasticity, or some
weighted combination of errors relative to pertinent cri
teria.
Equality constraints have the effect of narrowing the
scope of the optimization problem by reducing the number of
free parameters. They commonly take the form of a syn
thesis step in which a linkage solution set is generated
to satisfy prescribed precision points or positions.
Inequality constraints may take the form of design
constraints placed on available linkage characteristics,
such as link length maxima or minima, range of acceptable
transmission angles, or geometric bounds on pivot loca
tions or coupler motions.
The range of possible formulations of the linkage op
timization problem is extremely large due to the highly
variant sets of 1) linkage applications and 2) optimiza
tion criteria. It is highly desirable to organize the
available approaches in order to get a feel for what is
available, help classify past and present efforts, and
perhaps enhance decisions in future efforts. Figure 1-1
shows such a representation.
Esthetically, a closed-form approach is preferred for
any problem, but the inherently complex and nonlinear


193
Modulo Chari: 16
Name Necessary Condition Procedure II
Label NCPH
n
c ^
*
*
a nil}
D
Description
Evaluates four-bar chains
on the basis of change-point
considerations for the case
shown. Creates a necessary
condition grid indicating ac
ceptable linkages.
APL Call
"-*(0.^ NCPH (1^ (I2) (I3) (I4) "
where:
(1^ (I2)
= Pivots of first constraint link
(moving, fixed pivots).
= Pivots of second constraint link
(moving, fixed pivot).
(o1)
= Output grid.


Abstract of Dissertation Presented to the Graduate Council
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
MULTIPARAMETRIC OPTIMIZATION OF FOUR-BAR
AND SIX-BAR LINKAGES
By
Kim Loring Spitznagel
December, 1978
Chairman: Delbert Tesar
Major Department: Mechanical Engineering
An approach for four-bar and six-bar linkage optimiza
tion relative to numerous design criteria is presented. A
linkage solution set is synthesized through an analytical
combination of curvature transform theory, inversion,
Robert's cognates and angular cognates under the specifica
tion of one of twelve possible types of motion specification.
Evaluations are made first on the basis of necessary condi
tions, and then on the basis of assigned weighting factors
and design zones relative to the optimization criteria.
Subsequent expansions and refinements through resynthesis
about the best linkages are used to approach an optimum
solution.
The detailed design for an interactive computer program
to implement the analytics is presented and discussed. The
vi


8
By far most of the emphasis in linkage optimization
has been towards the iterative methods. These methods in
volve "mathematical" (or "numerical") programming techniques
which may be (in order of increasing complexity) linear,
quadratic, geometric or dynamic. Many techniques exist,
Figure 1-1 showing only those used more commonly in linkage
applications.
Constrained minimization techniques involve minimiza
tion of the objective function in the absence of inequality
constraints, and are generally based on a "stepping" itera
tion, where each "new" step is a function of the location
of the "old" step and some formulation of a new direction
and step size.
The methods of Powell [25,26] involve unidirectional
orthogonal searches to find local minima for each itera
tion. It is most applicable for problems with non-dif-
ferentiable objective functions. Suh and Mecklenburg [27]
have used Powell's method to operate on matrix-derived
objective functions and constraints for spatial mechanisms.
The conjugate gradient technique bears some resemblance
to Cauchy's "steepest descent" method but is much more ef
ficient. Unfortunately, convergence degrades as the op
tima are reached or when the objective function has compli
cated features or "ridges." Fletcher and Reeves [28] in
troduced this method in 1964, and later Rees Jones and
Rooney [29] employed this method for motion analysis using


206
Module Chart 29
Name Desirable Condition Dyad Analysis
Label DESDYAD
Description
Performs a dyad-based
analysis, evaluates the solu
tion set of linkages on the
basis of:
- Overall Boundary
- g-function
- Ah
- hrms
- ATorque
- Shock Level
APL Call
"^(01),(02) ... DESDYAD (I^,^), ..."
where:
(1^) = Previous scoring grid
(I2)(1^) = Crank pivots (moving, fixed)
(I^) (It-) = Follower pivots (moving, fixed)
(Ig) (I?) (Ig) = Dyad pivots (= 0 for four-bar)
(Ig) = MSP set, coupler or crank relative to
ground (may be 0 if I^q = 1)
I10 = Mode of drive.
= 1 for cyclic drive.
= 2 from position 0 to 3.
= 3 through range of disconnection.
Ij,+ = Desirable conditions
= 1 for Overall boundary
= 2 for g-function
- 3 for Ah-function
= 4 for hrms-function
= 5 for ATorque
= 6 for Shock Level
for six bars,
Stephenson 3
of Watt 2
inversion.


205
Module Chart 28
Name Link Size (Desirable Condition)
Label DLKSIZE
Description
Evaluates the solution set
of linkages on the basis of
link size. User specifies
links of interest.
"M01),(02) DLKSIZE (I ) (I ) (I3) . .
where:
(1^) = Previous scoring grid.
(I ) (I ) ; (I.) (b) ; . = Constraint link
Pivots (1 pair =
1 link)
(0^) = Output scoring grid, cumulative.
(0^) = Output scoring grid, this condition
only. Optional.