Citation
Genetic and functional analysis of susceptibility to lupus in B6.NZMc7 congenic and subcongenic mice

Material Information

Title:
Genetic and functional analysis of susceptibility to lupus in B6.NZMc7 congenic and subcongenic mice
Creator:
Yu, Ying
Publication Date:

Subjects

Subjects / Keywords:
Antibodies ( jstor )
Autoantibodies ( jstor )
B lymphocytes ( jstor )
Chromosomes ( jstor )
Diseases ( jstor )
Genetic loci ( jstor )
Glomerulonephritis ( jstor )
Lupus ( jstor )
Mice ( jstor )
Systemic lupus erythematosus ( jstor )

Record Information

Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
29772609 ( ALEPH )
51174010 ( OCLC )

Downloads

This item has the following downloads:


Full Text










GENETIC AND FUNCTIONAL ANALYSIS OF SUSCEPTIBILITY
TO LUPUS IN B6.NZMc7 CONGENIC AND SUBCONGENIC MICE












By

YING YU















A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY


UNIVERSITY OF FLORIDA


1998































This dissertation is dedicated
to my daughters
Jenny Yu
Julia Yu













ACKNOWLEDGMENTS


I would like to thank the chairman of my committee, Dr. Edward Wakeland, for

his valuable instruction and encouragement in helping me finish my project. I am also

grateful to my committee members, Drs. Mark Atkinson, Phil Laipis, Joel Schiffenbauer,

and Jin Xiong She, for their helpful discussion and guidance.

I also thank Drs. Laurence Morel and Chandra Mohan, for their initiation of the

project and experiments and helpful advice. I thank Dr. Mohan for help with my

dissertation and discussion. I also appreciate help from Dr. Byron Croker with histology.

I thank Jocelyn Tulsian for daily mouse care. I thank Karen Achey for help with

sequencing TGF-B. I would like to extend my special thanks to Drs. sally Litherland and

Christy Myrick for help with my dissertation.

I have enjoyed my friendship with other members of the Wakeland lab, especially

Nana Tian, Christy Myrick, Alicia Deng, Ping Yang, Guangling Wang, Eric Liang and

Kim Blenman. They have enriched my life immeasurably for the past six years. I want to

thank my mother for her encouragement and support. Lastly, I am grateful to my

husband, Fangshu Yu, for his understanding and encouraging, and for his help and love

throughout the years.














TABLE OF CONTENTS


p....


ACKNOWLEDGMENTS ...................................................................... iii

ABSTRACT ....................................................................................................................... vi

CHAPTERS

1 INTRODUCTION ............................................................................................... 1

Systemic Lupus Erythematosus (SLE) Overview ................................................ 1
The Causes of Human Systemic Lupus Erythematosus ................................. 2
New Zealand Black (NZB), New Zealand White (NZW), and New
Zealand Mixed (NZM) Mice .................................................................... 5
Genetic Analysis of Susceptibility to SLE in Murine Models ....................... 6
The Contribution of MHC and Non-MHC Genes to Murine Lupus
Susceptibility .......................................................................................... 10
Inheritance of SLE Susceptibility as a Threshold Liability ............................... 11
B Cell Activation and Tolerance in Lupus ................................................... 12
The Role of CD4 T Cells in the Pathogenesis of SLE ................................. 14
Autoantibody Production and Lupus Nephritis ............................................ 16
Rationale for This Study ............................................................................... 17

2 MATERIALS AND METHODS ................................................................. 20

M ice ................................................................................................................... 20
Genotypic Analysis ...................................................................................... 21
Measurement of Antibodies .......................................................................... 22
Flow Cytometric Assay .................................................................................. 23
T Cell Proliferation Assay ............................................................................ 24
Immunization ............................................................................................... 25
Histology ...................................................................................................... 26
Sequencing TGF-fl Coding Region ............................................................... 26
Statistics ........................................................................................................ 27










3 GENETIC DISSECTION OF PATHOGENESIS OF SLE: SLE3 ON
MURINE CHROMOSOME 7 LEADS TO A BROAD, LOW-
GRAD E AUTOIM M UNITY ................................................................. 29

Introduction .................................................................................................... 29
Results ................................................................................................................ 32
Discussion ...................................................................................................... 39

4 GENETIC DISSECTION OF SLE PATHOGENESIS:
SLE3 HAS TWO SEPARATE LOCI THAT INTERACT
SYNERGISTICALLY ............................................................................. 71

Introduction .................................................................................................... 71
Results ................................................................................................................ 74
Discussion ...................................................................................................... 78

5 SUM M ARY ..................................................................................................... 107

LIST OF REFEREN CES ................................................................................................. 112

BIOGRAPHICAL SKETCH ........................................................................................... 127













Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

GENETIC AND FUNCTIONAL ANALYSIS OF SUSCEPTIBILITY
TO LUPUS IN B6.NZMc7 CONGENIC AND SUBCONGENIC MICE


By

Ying Yu

December, 1998


Chairman: Edward K. Wakeland, Ph. D.
Major Department: Pathology, Immunology and Laboratory Medicine


This study dissects the complex traits of lupus by constructing and analyzing

B6.NZMc7 congenic and subcongenic mice that bear the whole or part of NZM2410-

derived lupus susceptibility interval Sle3.

B6.NZMc7 mice had high serum IgG and IgM levels and generated spontaneous

IgM antibodies against a variety of antigens, suggesting polyclonal B cell activation.

These mice produced IgG anti-nuclear antibodies (ANA) starting at an early age. The

autoantibody titers were lower than parental NZM2410 and penetrance of this phenotype

was approximately 70%. There was no difference between male and female mice in IgG

ANA production. The humoral autoimmune phenotypes were also expressed in

heterozygous mice with delayed onset and decreased penetrance, suggesting that SLE

susceptibility is inherited in a dominant and allele-dose dependent fashion.

vi









One important finding is that Sle3, by itself, can lead to the development of

glomerulonephritis (GN). B6.NZMc7 mice developed chronic GN at a late age with about

40% penetrance. The presence of anti-dsDNA and GN was not strongly correlated. Two

out of nine GN positive animals did not produce IgG anti-DNA or anti-chromatin

autoantibodies. Other specific autoantibodies may be related to GN, and this needs further

investigation.

The underlying immunological abnormalities were also examined in these mice.

Young B6.NZMc7 mice (1-3 month) were used with age- and sex-matched C57BL/6J

(B6) mice as controls. B6.NZMc7 mice exhibited a high percentage of CD4 T cells and

an increased CD4:CD8 T cell ratio in both the spleen and lymph node. A high proportion

of CD4 T cells were activated and expressed the activation marker CD69. These CD4 T

cells expanded prominently in vitro when stimulated with anti-CD3. B6.NZMc7 mice

also showed heightened lymphocyte proliferative responses to anti-CD3 and IL-2 and

exhibited reduced activation-induced T cell death. Consistent with these results in vitro,

B6.NZMc7 mice exhibited high immune responsiveness in vivo when they were

challenged with the T-dependent antigen DNP-KLH. These results suggest that Sle3

mainly impacts T cell activation, proliferation, and apoptosis.

Two subcogenic mouse strains were also generated, one carrying the centromeric

end (B6.NZMc7c) and the other carrying the telomeric end (B6.NZMc7t) of Sle3. The

mice from both the subcongenic strains had polyclonal B cell activation, however, they

produced very low levels of IgG ANA. Penetrance of IgG ANA production is about 20%

in the subcongenic mice, compared with 70% in B6.NZMc7. These results indicate both









loci are required in IgG ANA production. Only B6.NZMc7t mice showed T cell

hyperactivity, which suggests that the gene affecting T cell function is located on the

telomeric end of Sle3. Both strains developed chronic GN, but severity is less compared

to B6.NZMc7. These results suggest that at least two susceptibility genes are present in

the Sle3 interval and that these two genes interact synergistically to cause the

autoimmune phenotypes expressed in B6.NZMc7.














CHAPTER 1
INTRODUCTION


Systemic Lupus Erythematosus (SLE) Overview



SLE is a common, chronic autoimmune disease. It is estimated that over half to

three quarters of a million people suffer from it in the United States. The clinical features

of SLE are very unique. It is a multisystemic disease with the potential to involve

multiple organs, including the skin, joints, serosal surfaces, kidney, heart, lungs, and

central nervous system. The clinical manifestations are extremely diverse depending

largely on which organ system, or systems, is affected. It is variable ranging from skin

rash and joint pain with a mild systemic illness to a fulminant presentation with life-

threatening involvement of the important organs such as kidney (reviewed in refs.1, 2).

SLE occurs mostly in females, and the female to male ratio is about 9:1.

The production of autoantibodies against a spectrum of nuclear antigens is the

hallmark of SLE both in humans and mice. The deposition of circulating antigen-

antibody complexes along the vascular basement membranes of various target organs is

one of the notable pathologic features. However, the mere presence of the autoantibody

does not necessarily lead to autoimmune disease, other immunologic abnormalities are

needed to develop full-blown clinical autoimmune disease.









No single cause has yet been identified, although genetic, environmental and

stochastic factors contribute to the altered immune state (1). The major focus of SLE

research is to understand its cause. It is hoped that the basic and clinical research will

elucidate a plausible etiology, will give direction to disease prevention, and will provide

more specific treatment of the disease.



The Causes of Human Systemic Lupus Ervthematosus



It is well documented that genetic factors are key elements involved in

susceptibility to SLE (3-7, reviewed in Refs 8-9). SLE is concordant in 57% of

monozygotic twin and 5% of dizygotic twins (10) which strongly supports the hypothesis

of a multifactorial etiology with incomplete penetrance, but the characteristics of the

inherited susceptibility factors are not known. Available data indicate the involvement of

multiple genes (10-18). The expression of such genes could involve variables influencing

immune responses, immune regulation, complement, and/or immunoglobulin levels.

Studies of SLE in humans have found several genetic markers associated with

SLE: major histocompatibility complex (MHC) class I allele, B8; MHC class II alleles,

DR2, DR3, DQwl; MHC class III alleles, C4A null phenotype, C2 deficiency.

A significant association of SLE with a particular MHC allele has been

determined. Increased frequencies of MHC class II DR2 or DR3 alleles are associated

with SLE in Caucasian patients (15-18). Further studies indicated the extended haplotype

Al-B8-DR3 is associated with SLE susceptibility (19). Griffing et al. demonstrated that










67% of SLE patients with anti-dsDNA antibodies were DR3 (20). The role of MHC class

II antigens in the pathogenesis of SLE is unknown. Two potential mechanisms are of

particular interest: (a) selective presentation of foreign or self-antigenic peptides by the

polymorphic regions of MHC class II molecules; (b) negative and positive selection of T

cells by MHC class II molecules during maturation in the thymus.

Inherited deficiencies of several complement components have been associated

with lupus-like illnesses. The most common is a deficiency of the second and fourth

components of complement (C2, C4) (11-14). The class III, or complement, region of the

human MHC is located between the class I (B, C, A) and class II (DP, DQ, DR) regions

on the short arm of chromosome 6. The four complement structural genes in this cluster

are C4A, C4B, factor B, and C2. These four components are required for activation of the

complement pathways, C4 and C2 for the classical and factor B for the alternative

pathway. One of the major biological functions of these early components of the classical

pathway, C4 and C2, is to process immune complexes. Complement system dysfunction

may contribute to impaired clearance of immune complexes (21-23).

Non-MHC linked genes were also suggested from studies of two very interesting

families with multiple instances of undifferentiated autoimmune disease and no relation

with any HLA haplotype (24). A comprehensive linkage analysis has not yet been

reported in humans to show which specific chromosomes and regions are involved. The

nature of non-MHC genes in SLE is unknown.

Lupus is a polygenic disease with added contributions from environmental and

stochastic variance. The fact that the concordance rate in identical twins is not 100% can









be used to estimate environmental and stochastic contribution (25-27). Inheritance and

the expression of susceptibility genes predispose individuals to the development of

phenotypes, but phenotypic expression requires triggering from environmental and

stochastic events. Several environmental factors including ultraviolet light, bacterial and

viral infections, and drugs are capable of inducing or exacerbating lupus. Random events

in the development of the immune system, such as the generation of T cell receptor

(TCR) repertoire, also play a role in the generation of SLE-like syndrome. It is speculated

that these factors may act through different mechanisms to alter immune function.

Susceptibility to SLE is inherited as a complex trait characterized by incomplete

concordance of phenotype and genotype. Several features of the disease make genetic

analysis of SLE susceptibility in humans very difficult. First, in a family, not all

individuals who have the same inherited susceptibility alleles manifest disease

(incomplete penetrance). Second, in different families, different sets of susceptibility

alleles may produce identical phenotypes (genetic heterogeneity). Third, several

susceptibility alleles may be required for fully expressing certain phenotypes (polygenic

inheritance).

Development of animal models for this disease can be advantagous for elucidating

the pathogenic mechanisms of the disease and will help studies in human SLE. Animals

can be bred in large quantities and manipulated for genetic analysis. They can also be

maintained in the same facility, thereby minimizing environmental factors.










New Zealand Black (NZB). New Zealand White (NZW), and New Zealand Mixed
(NZM) Mice



Several inbred mouse strains that spontaneously develop a disease similar to

human SLE have been important models (1). Over the past three decades, extensive

studies of these murine models, particularly in the area of molecular genetics, have

provided a great deal of information to help our understanding of the disease. They have

also lead us to a better understanding of human SLE and brought us closer to the ultimate

goal of unraveling the mystery of autoimmune diseases.

The mouse strains that have been extensively studied include (NZB X NZW)F1,

(NZB X SWR)F1, BXSB, and MRL-lpr/lpr (28). These strains produce high levels of

antinuclear antibodies (ANAs) and develop lupus-like glomerulonephritis (GN). The New

Zealand black (NZB) (H-2d) strain was initially bred for coat color by M. Bielschowsky

at the University of Otago Medical School in New Zealand (29). The genetic background

of this strain is unknown. NZB mice develop a disease state characterized by an

autoimmune hemolytic anemia (28, 30-31). The lupus-like nephritis is less severe in NZB

mice than in its hybrids. NZB mice produce ANAs, but not high levels of IgG antibodies

to double stranded DNA (dsDNA) or histones. The New Zealand White (NZW) (H-2z)

strain was developed by Hall at the Otago Medical School Animal Breeding Station (31),

and its genetic background is also unknown. NZW mice are, for the most part,

phenotypically normal. (NZB X NZW)F1 hybrid mice, first described by Helyer and

Howie (32), develope florid renal dysfunction and failure similar to human lupus










nephritis. The hybrid mice also develop autoantibodies to a number of nuclear

components including ssDNA, dsDNA, histone and chromatin. The F 1 hybrids of NZB

and NZW provided the first experimental model of human SLE and have been studied

extensively by a large number of investigators. Other two murine strains that also

spontaneously develop a SLE-like syndrome are MRL and BXSB. They were developed

by Murphy and Roths at the Jackson Laboratory (33-34). Addition of these strains has

greatly enhanced the potential value of murine SLE as an experimental model and has

broadened our understanding of autoimmunity.

The New Zealand Mixed (NZM)(H-2z) strains were produced and characterized

by Rudofsky (35). They are a collection of inbred strains derived from selective

inbreeding of progeny from a cross between NZB and NZW mice. These strains have

inherited various genomic segments from the two parental strains, express a board

spectrum of SLE-related autoimmune phenotypes and show different susceptibilities to

lupus. One strain, NZM2410, produces high levels of IgG autoantibodies to nuclear

antigens as early as 4-6 months of age and develops severe lupus-like renal disease in

both sexes.



Genetic Analysis of Susceptibility to SLE in Murine Models




Analysis of autoimmune phenotypes and lupus-like renal disease in (NZB X

NZW) Fl, F2 and backcrosses between NZB and NZW mice illustrates the genetic










complexity and polygenic inheritance of the disease. Earlier genetic studies had

limitations and were not able to assign chromosomal locations of susceptibility genes,

however, these classic studies still provide valuable data. Braverman (36) crossed NZB

and NZW and observed varying severities of renal histopathological changes in the F2

mice, which suggested the involvement of multiple genes from both NZB and NZW.

Knight & Adams (37-38) performed (NZB X NZW)F1 X NZW and (NZB X NZW)F1 X

NZW backcrosses and concluded that NZB contributes a single dominant gene and NZW

contributes two genes to the development of severe renal disease and death. These

investigators also concluded that one of the two NZW genes might be linked to the MHC.

Shirai and colleagues studied the genetics of (NZB X NZW)F1 traits using backcross

analyses and suggested that two dominant genes from NZB and one dominant gene from

NZW contribute to the formation of gp70-anti-gp7O immune complexes (39). Kotzin and

colleagues reported one dominant gene from NZW contributes to renal disease and

suggested a strong correlation between the NZW MHC haplotype, H-2z, and the

phenotype (40-41). Hirose and coworkers extended these observations by constructing

NZB (H-2d) and NZW (H-2z) congenic strains with the reciprocal H-2 and comparing

(NZB.H-2z X NZW)F 1 and (NZB X NZW.H-2d) F I to original (NZB X NZW)F 1. Their

results suggested that heterozygosity at the MHC might be required for disease

development (42). From these studies, two to three genes from NZB and one to two genes

from NZW were estimated to contribute to the disease. The number of genes involved

could be dependant on the particular trait or traits examined as well as the genetic

background.










Recent advances in molecular biology techniques have provided new means to

screen the whole genome for susceptibility loci and to assess the involvement of available

candidate genes. The identification of large numbers of highly polymorphic simple

sequence repeats spaced throughout the genome provide the basis for mapping studies

(43-45). The polymerase chain reaction (PCR) method makes it possible to genotype

large numbers of animals (46), and the development of sophisticated computer programs

makes data analysis quick and accurate. These techniques permit the identification of

multiple loci contributing to a given trait without requiring preexisting knowledge of

candidate loci or their positions. Several groups have used these tools to perform genome-

wide searches and to identify susceptibility loci responsible for lupus nephritis and a

variety of lupus-associated autoimmune phenotypes.

Studies of the (MRL-Ipr X CAST/EI)F1 X MRL-lpr backcross mice identified

two loci associated with renal disease, Lrdml on chromosome 7 and Lrdm2 on

chromosome 12 (47). The study of (NZB X NZW)F2 intercross mice by Kono et al. (48)

identified eight susceptibility loci (Lbwl to -8 on chromosomes 17, 4-7, 18, 1, and

11 respectively) associated with anti-chromatin autoantibody production (Lbwl, Lbw7,

Lbw8), GN (Lbw], Lbw2, Lbw6), and/or mortality (Lbwl-6). Drake et al. investigated

NZB contribution to lupus-like renal disease. Their work with (NZB X NZW)Fl X NZB

backcross showed that a single NZB locus (nbal) on chromosome 4 was associated with

renal disease and death (49). This group also performed genetic analysis in (NZB X

SM/J)F1 X NZW mice and found six NZB loci (on chromosomes 1, 4, 7, 10, 13, 19)

contributing to renal disease (50). They confirmed two loci previously identified (nbal on










chromosome 4, and nba2 on chromosome 1) and detected two new loci (on chromosomes

11 and 14) in a (BALB.H2Z X NZB)F1 X NZB cross (51).

Morel et al. (52) identified three susceptibility intervals and the MHC locus

associated with GN in the NZB/W-derived NZM2410 lupus-prone strain backcrossed to

B6. The three susceptibility loci are Slel on the telomeric end of chromosome 1, Sle2 on

the centromeric end of chromosome 4, and Sle3 on the centromeric end of chromosome 7.

Genetic analysis indicated several ways in which susceptibility genes could influence

overall disease threshold liability in lupus. First, each of these susceptibility alleles

independently contributed to the overall GN susceptibility in an additive fashion, which is

commonly described as a threshold of genetic liability. Second, several susceptibility

alleles are needed to express high frequency of GN, but none of these alleles are

absolutely required. This is an important feature of a polygenic disease. Third, although

the mice express an identical array of susceptibility genes, the proportion of NZM2410

mice developing GN and penetrance of GN increased with age, indicating that the

expression of complex traits requires "triggering events" (53).

In summary, genetic mapping studies have identified 22 susceptibility loci that are

linked to autoimmune phenotypes of lupus. These studies illustrate the complexity of the

genetics of SLE. Within each cross, some loci were associated with a single distinct

phenotype, suggesting they may act on different pathways and contribute specific

component phenotypes to disease susceptibility. Some loci contributed to multiple

phenotypes, suggesting they play roles in a common pathway linked to multiple

phenotypes. Interestingly, susceptibility loci on chromosome 1, 4, and 7 have been









reported by three groups in different crosses, indicating these susceptibility genes may be

common to the lupus pathogenesis in NZB and NZW strains. The number and location of

genes detected are different depending on which affected strains and resistant strains are

used and how they are crossed. This difference may represent the epistatic interactions of

susceptibility genes, resistance genes, and background genes. Clear demonstration of the

nature of each locus and the relationship between loci would require the production of

congenic strains carrying different single loci and polycongenic strains.



The Contribution of MHC and Non-MHC Genes to Murine Lupus Susceptibility




The contribution of certain MHC alleles to lupus susceptibility has been well

documented both in human and mouse models. Such an association is reasonable because

autoimmune diseases are T cell dependent and all T cell mediated responses are MHC

restricted. The MHC may affect predisposition to autoimmune disease by shaping the T

cell receptor repertoire, selecting and presenting peptide to T cells. In studies with crosses

of NZB X NZW or NZB X SWR mice, heterozygosity at the MHC (H-2/ or H-2/q)

conferred greater susceptibility to lupus than homozygous parental haplotypes (54-57).

Antibodies to class II molecules can prevent the development of the disease (58). Further

support for MHC class II as a disease predisposing molecule derives from a report in

which a well-studied I-AmI2 3 chain mutation was bred onto the NZB background (59).

NZB mice congenic for this class II mutation (NZB.H-2m'2) developed anti-dsDNA









antibodies and lupus-like renal disease, similar to (NZB X NZW)F1 mice, whereas NZB

mice congenic for H-2b (NZB.H-2b) did not express any signs of autoimmune disease.

The I-AP sequences of H-2"2 and H-2b differ only three amino acids in the peptide-

binding groove at positions 67, 70, and 71. This three amino acid substitution within the

MHC class II molecule is capable of altering the NZB phenotype to one of severe lupus-

like renal disease. It has been hypothesized that the novel hybrid MHC class II molecules

generated by a and P chains from different haplotype to pair contribute to autoimmunity

(60).

Although the MHC has a major impact on lupus susceptibility, it is not required

and insufficient by itself for the development of the disease. Association of H-2Z with the

disease is imperfect: 14% of heterozygous H-2z backcross mice did not develop the

disease, whereas 12% of homozygous H-2d backcross mice did (61). NZB mice crossed

with normal background BALB/c mice congenic for H-2' do not develop disease (62).

This work illustrates that both MHC and non-MHC genes are required. Genome-wide

searches using microsatellite-defined chromosomal maps have identified multiple non-

MHC loci responsible for predisposing to lupus.



Inheritance of SLE Susceptibility as a Threshold Liability



The SLE is a polygenic disease requiring multiple genes. How multiple genes

interact to cause a disease susceptibility phenotype is not known. Data from a (NZM2410

X B6)F1 X NZM2410 backcross showed that the increase in GN frequency correlated









with an increase in the number of susceptibility loci carried by individual progeny (52).

These results suggest that the disease is inherited as a threshold of genetic liability. This

conclusion is supported by work done by other groups using different backcrosses to

study lupus (50), diabetes (63), and experimental allergic encephalomyelitis (64-65). The

threshold liability hypothesis is based on the concept that several disease susceptibility

genes contribute equally to the overall liability of developing disease and that the

probability and onset of an individual developing disease is proportional to the number of

susceptibility genes inherited. We further demonstrated this relationship by analysis of

three congenic strains that contain only one susceptibility locus from NZM2410 (66).

Each congenic strain expressed distinctly different component phenotypes and multiple

genes were necessary to obtain full expression of SLE.



B Cell Activation and Tolerance in Lupus




The primary function of B lymphocytes is to make antibodies against components

of foreign organisms. Self-reactive B cells are eliminated at multiple checkpoints along

the B cell lineage (reviewed in ref. 67). Each of these checkpoints has triggering

thresholds that impose limits on the extent of tolerance. This is a kind of balance system.

On the one side, such limits ensure that a sufficient fraction of the repertoire is preserved

to mount rapid and effective antibody responses to foreign antigens. On the other side, the

same limits increase the risk of autoimmune disease. A variety of events, either










exogenous or endogenous, could tip the delicate balance so that harmful autoreactivity is

the outcome. If this imbalance is permanent, chronic autoimmune phenomena such as

SLE may occur.

The fundamental event in the pathogenesis of lupus is B cell hyperactivity, which

is responsible for the hypergammaglobulinemia, spontaneous polyclonal antibody

production, and secretion of various autoantibodies (68). Polyclonal B cell activation is

the earliest and most common immunological abnormality of NZB, (NZB X NZW)F1,

and other lupus-prone strains preceding the pathogenic autoimmune response (69-71).

The pathogenic autoantibody-producing B cells are driven by self-antigens (reviewed in

ref. 72). This subset of B cells are clonally expanded and their immunoglobulin genes are

modified by somatic mutation. IgG autoantibody production in lupus is selective for

certain self-antigens and there is strong evidence that B cells are intrinsically defective in

murine lupus-prone mice. SCID mice populated with long-term pre-B cells from (NZB X

NZW)F1 mice, but not those populated with (B6 X DBA/2)Fl pre-B cells, developed

hypergammaglobulinemia and increased IgM and IgG autoantibodies to nuclear antigens,

and 20% of these animals also developed mild nephritis (73). Further studies using pre-B

cell lines derived from the parental NZB and NZW strains suggest that B-lineage cells

from both NZB and NZW parental strains manifest abnormalities associated with the

development of lupus-like disease (74).

It is understandable that errors in central or peripheral tolerance at the T or B cell

level can cause systemic autoimmune disease. However there is scant evidence for

defects in B cell tolerance in New Zealand mice (75). Studies indicate that potentially










pathogenic B cells are part of the peripheral repertoire and they can be expanded by graft-

versus-host reactions (76-77). Normal animals can generate autoantibody responses after

immunization with self-peptides (78-80). Thus, defects in central B cell tolerance are

unlikely to be necessary to allow for lupus-like autoantibody production. On the other

hand, defects in the regulation of B cell apoptosis have the potential to lead to

development of autoreactive B cells and increase autoantibody production. There are

some reports of a defect in B cell apoptosis induction in New Zealand mice (81-82). The

importance of this factor in pathogenesis of the disease needs further study.



The Role of CD4 T Cells in the Pathogenesis of SLE




The association of SLE with particular MHC class I alleles, class switching, and

affinity maturation of autoantibody production in this disease strongly suggest that CD4

T cells are important in pathogenesis of the disease. Evidence for the involvement of CD4

T cells includes: the autoinimune condition of (NZB X NZW)Fl mice is improved

following treatment with anti-CD4 antibodies (83); both T and B cells are needed in order

to induce anti-dsDNA IgG synthesis (84); the incidence of lupus nephritis is delayed and

reduced after blocking T cell-B cell interaction (85). Certain CD4 T cells have been

shown to drive pathogenic B cells to selectively secrete anti-DNA autoantibodies in

murine models and in humans (86-89). The major subclass of pathogenic anti-DNA

autoantibodies is IgG2a and IgG2b which is also consistent with CD4 T cell help.










Although an anti-DNA response is the hallmark of lupus, efforts to induce such

autoantibodies by immunization with native (n) DNA have generally been unsuccessful.

The determinants of autoreactive CD4 T cells may reside on different molecules. CD4 T

cell clones specific for anti-nDNA antibody induction were shown to proliferate in the

presence of nucleosomes but not their constituent nDNA or histones (90). These CD4 T

cells may be specific for nucleosomes. Thus, for anti-nDNA antibody induction, CD4 T

cells may provide intermolecular help to anti-DNA specific B cells via the binding of

nucleosomes or other protein-DNA complexes.

Loss of central or peripheral T cell tolerance will cause systemic autoimmune

disease. Studies in lupus mice have suggested that high affinity responses to self-antigens

are tolerated in the thymus and normal thymic deletion of superantigen reactive V3-

bearing T cells have been observed (91-92). T cells specific for dominant determinants of

self-antigens are deleted efficiently in thymus, but T cells directed to cryptic self-

determinants may escape tolerance induction and be part of the normal peripheral T cell

repertoire (reviewed in ref. 93). Therefore, abnormal presentation of cryptic self-

determinants in the periphery or a defect in peripheral T cell tolerance in lupus could

activate autoimmune T cells.










Autoantibody Production and Lupus Nephritis




The hallmark of SLE in human and murine models is elevated serum levels of

antibodies to nuclear antigens. There is substantial evidence that anti-dsDNA antibodies

play an important role in the pathogenesis of renal disease in lupus mice. First, anti-DNA

autoantibodies are found concentrated in kidney elutes. Second, monoclonal anti-DNA

antibodies derived from lupus prone mice form glomerular immune deposits and induce

different structural and functional abnormalities in vivo after transfer into normal or

preautoimmune mice (94). Third, mouse IgG anti-DNA autoantibodies can bind to

isolated perfused kidney and induce kidney dysfunction (95). Fourth, genetic studies of

lupus mice have shown a direct relationship between anti-DNA antibody level, GN, and

mortality (96). However, not all anti-DNA autoantibodies are pathogenic. The cationic

charge, isotype, and cryoprecipitability will determine the pathogenic potential of anti-

DNA antibodies (97).

The pathogenic anti-DNA antibodies induce end-organ damage by tw

mechanisms (98). One is that anti-DNA antobodies directly or indirectly bind to the

glomerulus via heparan sulfates, the major glycosaminoglycan constituent of the

glomerular basement membrane (99-10 1). Another is that anti-DNA antobodies first form

immune complexes and then deposit onto anionic sites on glomerular basement

membrane (102-104).









Although most studies have focused only on anti-DNA antibodies in the cause of

lupus nephritis, considerable evidence indicates that autoantibodies to non-DNA antigens

are also important. Genetic studies have suggested a pathogenic role for autoantibodies to

the endogenous retroviral glycoprotein (gp70) and gp70-anti-gp7O immune complexes in

the (NZB X NZW)Fl model (105). Relatively large amounts of the retroviral

glycoprotein gp70 circulate in the blood of both lupus and non-lupus mice, but only lupus

strains spontaneously produce autoantibodies against this molecule and contain gp70-

anti-gp70 complexes in their serum (106). However, studies on sublines of MRL/lpr mice

specifically bred for low gp70 levels indicated that autoimmune disease, including GN, is

essentially unchanged (107). Thus, although gp70-anti-gp7O deposits may be involved in

the pathogenesis of lupus nephritis, they appear not to be necessary.



Rationale for This Study



SLE is a common, chronic disease. It is estimated that over half to three quarters

of a million people suffer from it in the United States alone, while in other parts of the

globe the numbers are even higher (108). The cause of SLE is unknown. The central

thrust of SLE research is to understand its cause, especially genetic predisposition. If

genes contributing to the susceptibility of SLE can been identified: (a) people with high

risk could be screened and those with susceptibility genes could be started on

preventative therapies, (b) diagnosis will be more easy and accurate, (c) treatment will be










specific according to individual genetic defects, and (d) it will help us understand the

fundamental immunology of self and non-self discrimination.

Because the inheritance of SLE is complex, identification of genes involved in

SLE susceptibility in outbred human populations will be very difficult. Animal models,

such as (NZB X NZW)F1, readily allow experimental crosses to identify susceptibility

genes. Genetic studies in murine models will help to identify SLE susceptibility genes in

humans by comparing the syntenic regions of human and mouse chromosomes and by

providing information about pathogenic pathways.

Success has been made in the identification of genes responsible for simple

Mendelian traits wherein identification is fairly straightforward: linkage analysis,

positional cloning, and detection of mutation (109). Yet many of the most important

medical conditions including heart disease, hypertension, diabetes, asthma, SLE, and

cancer are inherited as complex polygenic traits. The geneticist's challenge is now to

tease apart the multifactorial causes of these diseases.

Our lab focuses on studies of SLE using the lupus-prone murine model

NZM2410. The approaches and strategy used are reviewed by Wakeland (53). We have

identified three intervals (Slel on chromosome 1, Sle2 on chromosome 4, and Sle3 on

chromosome 7) and MHC locus, which confer strong susceptibility to GN (52).

Questions to be answered include what phenotypes each locus contributes, what is the

nature of each susceptibility gene, and how different loci interact with each other. We

analyzed congenic mice to address these questions. This research focuses on Sle3, the

lupus susceptibility interval on murine chromosome 7. B6.NZMc7 is one of four










congenic mouse strains. It carries the Sle3 interval on a resistant B6 background. Genetic

and phenotypic analysis was performed in B6.NZMc7 mice, including serologic studies,

cellular immunology studies, and histology studies (Chapter 3) to define the contribution

of Sle3 by itself and to explore the underlying mechanism by which Sle3 contributes to

lupus. Sle3 is a large interval (about 38 cM) and linkage studies suggest two susceptibility

loci may present in this interval. To explore this possibility, we produced two

subcongenic mouse strains bearing the centromeric end (B6.NZMc7c) or the telomeric

end (B6.NZMc7t) of Sle3 on a resistant B6 background (Chapter 4). These subcongenic

lines were characterized serologically, immunologically, and histologically for the

disease.














CHAPTER 2
MATERIALS AND METHODS


Mice



All mice used in this study were bred and maintained under conventional

conditions in our colony in the University of Florida Department of Animal Resources.

Breeding pairs of C57BL/6J (B6) were originally obtained from the Jackson Laboratory

and NZM2410 breeders were obtained from the Wadsworth Center for Laboratory and

Research, New York State Department of Health (Albany, New York). Both male and

female mice were used for all experiments. Animals were age- and sex-matched for all

experiments.

The B6.NZMc7 congenic strain bearing the Sle3 susceptibility interval on

chromosome 7 was one of four congenic strains generated (110). Figure 2-1 is a

schematic picture showing the breeding strategy used for the production of congenic

mice. Briefly, B6 was chosen as a resistant strain. NZM2410 was backcrossed six

successive times to B6. At each generation, progeny were selected using three simple

sequence repeats (SSR) markers (Ckmm, D7Mit69, D7Mit7O) on chromosome 7 to

maintain the Sle3 interval and two to three other markers per chromosome to minimize

background genes contamination. Finally, the mice were intercrossed to obtain the

homozygous Sle3 interval.







21

The B6.NZMc7c and B6.NZMc7t subcongenic mouse strains were produced by

crossing B6.NZMc7 heterozygotes to B6 to generate a series of recombinants.

Genotyping was performed in these recombinant progeny using SSR markers covering

the Sle3 interval. Two subintervals were chosed, one contains the centromeric end of Sle3

(from ckmm to D7Mit1 54), and other contains the telomeric end of Sle3 (from D7Mit69

to D7Mit 147). Progeny bearing these two subintervals were crossed to B6 again to

generate more animals with these specific recombinations. Finally, mice bearing these

heterozygous intervals were intercrossed to produce mice that were homozygous for these

smaller intervals.



Genotvpic Analysis



Genomic DNA was isolated from mouse tail biopsies by standard

phenol:chloroform extraction. Primers flanking SSR were purchased from Research

Genetics (Huntsville, Ala.) or synthesized at the University of Florida. Polymerase chain

reaction (PCR) technique was used for genotyping. Genomic DNA (100ng) was

amplified in 20 ul reactions with 200 nM paired primers, 0.2 mM dNTPs, and 0.75 U of

Taq DNA polymerase in a standard incubation buffer containing 50 mM MgCI2.

Amplifications were carried out in a Perkin-Elmer/Cetus 9600 thermal cycler under the

following conditions: I cycle at 940 C for 2 min; 35 cycles at 94o for 30 sec, 50-620 C for

30 sec, and 720 for 30 sec; 1 cycle at 72 0 C for 7 min. The PCR products were detected

using 5% agarose gels containing ethidium bromide. Optimal annealing temperature was







22

determined for each primer pair. Each mouse was scored as NZM2410 homozygous, B6

homozygous, or heterozygous for each locus genotyped.



Measurement of Antibodies



Serum was collected bimonthly starting at two mo. of age by tail bleeding. Serum

was tested against a panel of antigens including dsDNA, ssDNA, chromatin or

histone/DNA complex, histone, DNP-KLH, and thyroglobulin using ELISA as previously

described (66,90). Briefly, Immulon II plates (Dynatech, Chantilly, VA) were coated with

each of following antigens: calf thymus dsDNA (50ug/ml); ssDNA (50ug/ml); chromatin

(lug/ml) (prepared as previous described in ref. 111); total histone (1Oug/ml); bovine

thyroglobulin (10ug/ml); DNP-KLH (lug/ml (Sigma Chemical Co., St. Louis, MO). The

plates were blocked with blocking buffer (3%BSA, 0.1%gelatin, 3mM EDTA in PBS).

Serum from test animals was diluted 1:100 and incubated on these plates for two hours.

Specific antibodies were detected using alkaline phosphatase-conjugated goat anti-mouse

IgG or IgM (Boehringer Mannheim) and pNPP substrate. Optical density (OD) values

were obtained with an automated spectrophotometer at 405 nM. All samples were run in

duplicate. To allow for interassay comparisons, OD values were converted to a relative

unit scale (U/ml) in reference to a standard curve obtained with serial dilutions of a

NZM2410 positive serum added in each ELISA plate. Alternatively, the results are

expressed as individual percentage (%OD) (i.e., the ratio of the absorbance from the test

sample divided by the absorbance of 3 mo B6 pooled serum x 100) (112). Positive









sample serum was defined as having antibody titers above the mean titers plus two

standard deviation of five 10-12 mo-old B6 samples on the same plate.

Serum total IgG and IgM were measured using a sandwich ELISA. Briefly,

Immulon I plates (Dynatech, Chantilly, VA) were coated with capture antibodies, anti-

mouse IgM and IgG (Boehringer Mannheim), and blocked with blocking buffer described

above. IgG or IgM standards (Cappel Research) and 1:100 dilution of serum were added

for two hours. Detection of antibodies was as described above.



Flow Cytometric Assay



Flow cytometric analysis (FACS) was performed as described previously (85). All

primary antibodies were obtained from Pharmingen (San Diego, CA) and used at pre-

titrated dilution. Single cell suspensions of the spleen and lymph nodes were prepared by

gently mincing the tissues in a serum-free DMEM using the frosted ends of two sterile

glass slide. Lysis of erythrocytes was made in hypotonic, buffered ammonium chloride

solution. Bone marrow cells were obtained by washing the cells out of the femur with a

needle mounted on a 1-ml syringe. Peritoneal cells were obtained by lavage of the

peritoneal cavity with the serum-free DMEM using a 3-ml syringe. Cell surface Fc

receptors were first blocked with staining medium (PBS, 5% horse serum, 0.05% azide)

containing 10% normal rabbit serum. Cells were then stained on ice with optimized

amounts of FITC, phycoerythrin, or biotin-conjugated primary monoclonal antibodies

diluted in staining medium for 30 min. Following two washes, biotin conjugated









antibodies were revealed using streptavidin-PE (Gibco BRL, Grand Island, NY) or

streptavidin-Quantum Red (Sigma Chemicals, St.Louis, MO). Cell staining was analyzed

using a FACScan (Becton-Dickinson, San Jose, CA). Dead cells were excluded on the

basis of scatter characteristics and propidium iodide uptake and 10,000 events were

acquired per sample. Data were analyzed using Lysis II software (Becton-Dickinson).

Anti-IgM-PE was obtained from Catag (South San Francisco, CA). PE-coupled

anti-I-A (M5/114) was purchased from Boehringer Mannheim (Indianapolis, IN). The

following dye- or -biotin-coupled antibodies were obtained from PharMingen (San

Diego, CA): CD4 (RM4-5), CD5 (53-7.3), CD8 (Ly-2), CD25 (7D4), CD80/B7-1 (16-

1OAI).



T Cell Proliferation Assay



1 x 106 erythrocytes-depleted spleen cells/well were cultured in 200 pl

Dulbecco's modified Eagle's medium (DMEM), supplemented with 10% heat-inactivated

horse serum, 0.1mM nonessential amino acids, lmM sodium pyruvate, 10 mM Hepes,

0.05 mM 2-ME, lOug/ml gentamicin, and anti-bacterial/anti-mycotic (ABAM) in flat-

bottomed 96-well tissue culture plates (Costar Corp.). Cells were stimulated with anti-

CD3 (1Oug/ml, lug/ml, or 0.1ug/ml) or rIL-2 (20U/ml, 1OU/ml, or 5Umi) for 24h, 72h,

120h. 1 tiCi of [3H] thymidine in 25.d culture medium was added to each well at 18h

before harvesting. Incorporated thymidine was measured by using standard liquid










scintillation counting techniques. Mean standard error of mean (SEM) of triplicate

samples was presented.

To assess CD4 and CD8 T cell proliferation in vitro, splenocytes were cultured at

1 x 106 cells/ 200ul DMEM as described above with anti-CD3 (lug/ml) for 24h, 48h, 72h.

The cells were counted, stained with FITC-anti-CD4 and PE-anti-CD8. FACS analysis

was performed as described above. The number of CD4 and CD8 T cells was determined

by total counted cells /ml multiplied by the percentage of CD4 and CD8 T cells.




Immunization



B6 and B6.NZMc7 mice (Four to six per group, 2mo old, sex matched) were

injected intraperitoneally with DNP-KLH (100 ug/mouse; Calbiochem, La Jolla, CA) in

complete Freund's adjuvant (CFA) and boosted two weeks later with same dose of DNP-

KLH in incomplete Freund's adjuvant. Serum was collected before immunization (dO),

14 days after first immunization (d14), and 7 and 30 days after the booster (d21, d51).

Immunized mice were assessed for serum anti-hapten titers using ELISA. Serum was

diluted 500, 2500, 12500, 62500 fold in PBS containing 2% BSA and incubated on DNP-

BSA (Calbiochem, La Jolla, CA) coated Immulon II plates. Detection of antibodies was

as described above. Antibody activity is expressed as OD.










Histology



Mice were sacrificed at 12mo of age. Thymus, lung, heart, liver, lymph node,

spleen, and kidney were fixed in 10% neutral buffered formalin and embedded in

paraffin. Sections were cut, placed on slides, and stained with hemotoxylin, eosin, and

periodic acid-Schiff. Multiple sections from control and experimental strains were

examined by light microscopy for indication of inflammation and tissue damage in a

blind fashion. Glomerulonephritis (GN) was scored from 0 to 4, in which 1 = < 10% of

glomeruli affected; 2 = 11-25% of glomeruli affected; 3 = 26 50% of glomeruli affected;

and 4 = >50% of glomeruli affected. Control B6 mice had scores of 0 and 1. Glomerular

lesions were classified as mesangiopathic (M) and capillary hyaline (H). The H lesion

was considered more severe than the M lesion.



Sequencing TGF-A3 Coding Region



Total RNA was extracted from liver of B6.NZMc7 and B6 mice using a total

RNA isolation Kit (Ambion, Austin, Texas). cDNA was obtained by reverse-

transcriptase-PCR using random primers and total RNA. For sequencing the TGF-fi gene,

five pairs of overlapping primers were designed according to published mouse sequence

from Genebank to amplify 1.6kb of cDNA. Two mice were used from each strain and

PCR was performed as described above. Five segments of PCR products from each

mouse were cloned using a TA cloning kit (Invitrogen Corp., San Diego, CA).







27

Sequencing of two independent clones from each segment was performed in both

directions on an AB 1373 automated sequencer (Applied Biosystems, Foster City, CA).



Statistics



A nonpaired Student's t-test was used to determine statistical significance of

quantitative data and a chi-square test was used for qualitative data.











Production of Congenic Strains


C57BI/6


bb
C57BI/6


N1 (50% B6)




N2 (75% B6)



N3 (87.5% B6)




N4 (93.8% B6)


nb bb C57BI/6




b bb C57BI/6




nb bb




nb


N7 (99.2% B6)


nb


nb


I! I ''



nn nn nb nb bb


Congenic Strain

Figure 2-1. Illustration of the breeding strategy used in the construction of congenic
mouse strains (N=breeding generation; m=NZM2410 allele; b=B6 allele). In
parentheses is the average percentage of the mouse genome that should be B6-derived.


NZM


nn













CHAPTER 3
GENETIC DISSECTION OF PATHOGENESIS OF SLE: SLE3 ON MURINE
CHROMOSOME 7 LEADS TO A BROAD, LOW-GRADE AUTOIMMUNITY



Introduction



SLE is a prototypic autoimmune disease characterized by the involvement of

multiple organ systems and females preponderance. The disease is strikingly

heterogeneous with regard to organ patterns, severity, clinical course, genetic variable,

and immunologic expressions (reviewed in refs. 1, 2). Although the etiology of SLE is

unclear, a combination of genetic factors, environmental factors, and stochastic events are

required to produce disease (reviewed in refs. 8, 9). The disease is a consequence of

processes involving loss of immune tolerance, pathogenic autoantibody production, and

tissue destruction mediated by direct autoantibody binding and/or the deposition of

immune complexes. The production of autoantibodies against nuclear antigens is the

hallmark of SLE.

The analysis of etiopathogenesis of SLE in humans is very difficult due to

polygenic control of the disease, low penetrance, heterogeneity, and non-organ specific

nature of this disease. Several inbred mouse strains that spontaneously develop disease

similar to human SLE have been important models for elucidating the pathogenesis of the

disease (28). (NZB X NZW)F l is the first and most intensively studied model. More than









90% of female (NZB X NZW)F1 mice develop severe lupus nephritis and die of renal

failure (30). These mice also produce high level autoantibodies against a number of

nuclear components. The New Zealand Mixed (NZM) strains are newer inbred strains

derived from selective inbreeding of progeny from crosses between NZB and NZW mice

(35). A total of 27 NZM strains were produced. These strains have inherited various

genomic segments from the two parental strains and they are all homozygous for the

NZW histocompatibility (H-2) haplotype (Ku, Au, Sz, DM). The genetic differences among

these strains lead to phenotypic differences in disease expression. The NZM2410 strain

produces high levels of IgG autoantibodies to nuclear antigens as early as four to six

months of age and develops severe lupus-like renal disease in both sexes.

Dr. Morel performed interval mapping in a (NZM2410 X B6) X NZM2410

backcross using highly polymorphic simple sequence repeats (SSRs) as genetic markers.

Three susceptibility intervals and MHC locus on chromosome 17 were identified as

conferring susceptibility to acute GN. The three intervals are Slel, on the telomeric end of

chromosome 1; Sle2, on the centromeric end of chromosome 4; and Sie3, on the

centromeric end of chromosome 7 (52). Similar regions have also been found to confer

SLE susceptibility in (NZB X NZW)F1 (48,50). Genetic analysis suggested that the

disease susceptibility is inherited as a multifactorial threshold liability. First, none of

these four loci are required for the development of acute GN. Second, each susceptibility

locus independently contributes to the overall incidence of GN with a relative small

effect. Third, at least three susceptibility alleles are required in order to express a high

level of GN.







31

Although interval mapping has provided information about the numbers and

chromosomal locations of the genes responsible for autoimmunity in NZM2410, it has

provided little about the nature of the component phenotypes contributed by each

susceptibility gene and it is not productive for finely mapping genes. The approach we

used following interval mapping was to move the four susceptibility intervals from

NZM2410 to the resistant strain B6 background using a speed congenic technique

(110,113). This congenic approach, which originated from the Nobel Prize-winning

studies of histocompatibility by George Snell (114-115), is designed to dissect a complex

trait into its component genetic elements and allow for the fine mapping,, and

identification and characterization of each gene. This approach has been used in the

genetic analysis of insulin-dependent diabetes in the NOD mouse, where either resistance

intervals were bred to a susceptible background (116-118) or susceptible intervals were

bred to a resistant background (119).

We recently produced a collection of B6 congenic strains bearing the individual

lupus susceptibility intervals from NZM24 10. Here we report the detailed analysis of the

B6.NZMc7 congenic strain and the component phenotypes expressed by Sle3. Sle3 is

likely a major susceptibility locus leading to pathogenesis of lupus because this locus

leads to two major phenotypes, ANA production and GN, and because this locus was

found in multiple SLE-related crosses (reviewed in ref. 120). To understand the role of

Sle3 in the pathogenesis of SLE, we examined spontaneous IgM and IgG responses to

self-nuclear antigens and foreign antigens in these mice from 2 to 12 months of age, and

examined in vivo immune responses to antigenic challenge in 2 month old B6.NZMc7.










We performed the surface phenotypic and functional analyses of lymphoid cells from the

spleen, peritoneal cavity, bone marrow, and lymph node in these mice to determine the

nature of possible lymphocyte defects leading to autoantibody production. The results

indicate that Sle3 profoundly affects T cell activation, proliferation, and subset

distribution at an early age, which may lead to production of polyclonal IgM and IgG and

anti-nuclear autoantibodies. T cell changes in B6.NZMc7 mice compared to B6 are

heightened CD4:CD8 T cell ratio, increased CD69+CD4 T cells in both the spleen and

lymph node, increased lymphocyte proliferation and CD4 T cell expansion in response to

anti-CD3 stimulation in vitro, and increased in vivo immune response to T-dependent

antigens. B cells from the spleen and lymph node of B6.NZMc7 mice did not differ from

those of B6 in number, B cells subset (B 1 vs. B2 cells), or function (B cell proliferation

in vitro). B6.NZMc7 mice showed some characteristics of B cell hyperactivity including

elevated serum IgM levels, polyclonal IgM, and high expression of some B cell surface

markers at a late age. Finally, Sle3 leads to autoantibody-mediated GN.



Results




Thirty-six B6.NZMc7 congenic mice were initially obtained. These mice differed

genetically from B6 at the three selecting loci for the Sle3 interval, an unknown number

of unselected flanking loci, and unlinked contaminating loci (probability 0.78%). To

define the NZM2410 interval and to establish a congenic line, thirteen marker loci on







33

chromosome 7 were used to map the termini of the congenic interval and to identify

recombination. The mice were grouped according to their genotype (Figure 3-1). Fifteen

mice from group 1 that carry about 30 cM of chromosome 7 from NZM2410 were chosen

as the founders of the congenic strain and used to continue breeding. These mice and their

progeny were used for phenotypic studies. The autoimmune phenotypes expressed in both

homozygous and heterozygous B6.NZMc7 mice were identified by comparison with age-

matched B6 controls. All animals were housed in identical conditions and bled bimonthly

beginning at 2 months of age for autoantibody analysis..

B6.NZMc7 mice have hypergammaglobulinemia and spontaneous polyclonal B

cell activation. As the most common immunological abnormalities in lupus mice,

hypergammaglobulinemia and spontaneous polyclonal B cell activation were first

examined using total serum IgM and IgG levels and spontaneous IgM antibody

production to four antigens: histone, ss DNA, bovine thyroglobulin, DNP-KLH.

B6.NZMc7 mice had significantly high levels of total serum IgM (Figure 3-2, panel A)

and IgG (Figure 3-3) compared with B6 at 9 months of age (p< 0.0001). Elevated IgM

levels started at 5 months of age and were found in both homozygous and heterozygous

mice (Figure 3-2, panel B). These mice also spontaneously produced IgM

polyclonal/polyreactive antibodies against the four antigens at 5 months and this

increased with age (Table 3-1). The penetrance of polyclonal IgM is 85% in 9 months

B6.NZMc7 (percentage of positive mice who produced IgM antibodies against two or

more of these four antigens). These mice were also tested for spontaneous IgG antibodies

to the same four antigens, and penetrance was 64% at 9 months of age.







34

B6.NZMc7 mice spontaneously produce IgG anti-nuclear autoantibodies (ANA).

The presence of IgG antibodies against a variety of nuclear antigens is the characteristic

of SLE in both humans and mouse models. NZM2410 produce high levels of ANA at an

early age. To determine if Sle3 by itself can lead to this phenotype and to determine the

antibody characteristics of B6.NZMc7 compared with NZM2410, we quantified IgG

autoantibodies to four nuclear antigens (ssDNA, dsDNA, histone, chromatin or

DNA/histone complex) bimonthly from 2 to 12 month old. B6.NZMc7 produced IgG

autoantibodies against these four nuclear antigens starting at 2 months of age (p<0.01),

especially anti-DNA and anti-chromatin antibodies (Figure 3-4). The titers were much

lower in the congenic mice compared to NZM2410 (data not shown) and the average

titers did not increase with age. This phenotype is dominant with slightly decreased levels

and delayed onset in heterozygous B6.NZMc7. Penetrance of IgG ANA, as shown in

Table 3-2, is about 60-80% and does not typically increase with age unlike what is seen

in B6.NZMcl mice (L Morel, personal communication). After analyzing individual mice,

we found IgG ANA titers in some B6.NZMc7 mice to wax and wane from 2 to 12

months (Figure 3-5). Autoantibody levels did not stay positive for long in these mice and

quickly dropped, which may be due to tissue deposition of antibodies. Waxing and

Waning of IgG ANA has also been reported in many SLE patients (121).

The fact that SLE is preponderant among women during their reproductive life

implies that sex hormones have a role in the pathogenesis of autoinmunity in humans.

Sex hormone manipulation experiments in lupus-prone murine strains also show that

female sex hormones facilitate the development of autoimmunity (122-123). After









detailed analysis of serology data comparing male and female B6.NZMc7 congenic mice,

we found that there was no gender bias in titer or frequency of autoantibodies against any

autoantigens from 5 to 12 months (p>0.05).

B6.NZMc7 mice exhibit a high immune response to DNP-KLH. To test immune

system function before disease onset or in the very early stage of the disease, 2 months

old B6.NZMc7 mice and B6 control mice were challenged in vivo with a T-dependent

antigen, DNP-KLH. IgM and IgG anti-DNP antibodies were measured before

immunization (dO), 14 days after first immunization (d14, primary immune response), 7

days after the booster (d21, secondary immune response), and at d51. B6.NZMc7 mice

showed high primary and secondary IgM anti-DNP immune responses (p < 0.05) (Figure

3-6), high secondary IgG anti-DNP immune responses (p < 0.01) (Figure 3-7), and anti-

DNP antibodies were remained longer compared with B6. This experiment indicates that

the genetic defects in B6.NZMc7 mice lead to a hyper-immune activation status and may

involve both B and T cell compartments.

To define abnormalities in the B and T cell compartments, cell surface molecule

expression, cell function and subset distributions of B and T cell were investigated.

Sle3 affects T cell subopulations. To explore the impact of Sle3 on T cells, cell

subpopulations were first investigated via surface marker expression. In order to define

primary defects, our studies focused on young B6.NZMc7 mice (1-3 month). Summary of

FACS analysis results is presented in Table 3. The results indicate that the CD4:CD8 T

cell ratio was significantly increased in both the spleen and lymph node of B6.NZMc7

mice compared to B6 (Figure 3-8). There was no difference between males and females







36

(p > 0.05). High proportions of spleen CD4 T cells expressed the activation marker CD69

(p < 0.01) indicating the activation of CD4 T cell in the early stages of disease. This

effect was not seen in the lymph nodes. There was no difference in the expression of L-

selectin between B6.NZMc7 and B6 T cells.

Hyper responsiveness of CD4 T cells in vitro. To study CD4 and CD8 cell

response to stimulation in vitro, spleen cells were cultured with anti-CD3 (1 ug/ml) for

various times, stained with anti-CD4 and anti-CD8, and analyzed using flow cytometry.

The results are shown in Figure 3-9. Before culture (data not shown) and at 24 hours post

culture, CD4 and CD8 cell numbers were not significantly different between B6.NZMc7

and B6. However, the absolute numbers of CD4 T cells were higher in B6.NZMc7 mice

than in B6 at 48 and 72 hours of culture. In contrast to CD4 cells, the numbers of CD8

cells were less in B6.NZMc7 mice. The decrease of CD4 cell numbers both in

B6.NZMc7 and B6 mice at 72 hours of culture was observed. This may be due to the low

concentration of anti-CD3 used, since there is no such decrease of CD4 cell numbers in

experiments using 2.5 ug/ml anti-CD3 stimulation combined with anti-CD28 (C Mohan,

personal communication). Figure 3-10 shows 2D dot plots of flow cytometry of this

experiment. Percentage of CD4 cells was higher in B6.NZMc7 than in B6 after 48 hours

of culture (49% vs. 33%). This increased expansion of CD4 T cells in B6.NZMc7 may be

due to a high proportion of activated CD4 T cells, high responsiveness of CD4 T cells, or

reduced apoptosis of CD4 T cells. Indeed, B6.NZMc7 T cells also exhibited reduced

activation-induced T cell death (data not shown).







37

Sle3 impacts T cell proliferation. The extent of lymphocyte proliferation in 2

month B6.NZMc7 mice was also examined using 3H-thymidine incorporation assay in

spleen cell culture with graded doses of anti-CD3 or rIL-2 for 72 hours compared with

B6. As shown in Figure 3-11, B6.NZMc7 mice exhibited heightened proliferative

responses to anti-CD3 and rIL-2. The data suggest that T cells from B6.NZMc7 have an

early CD3-mediated T-cell activation aberration.

Sle3 and B cell compartment. There were no significant differences between

B6.NZMc7 and B6 in B cell numbers and B cell subsets (BI vs. B2 cells). In 9 to12

months old B6.NZMc7 mice, I-A (MHC class II molecular), B7-1 (costimulatory

molecular) expressions on B cell surface were high (data not shown), which indicated that

high proportions of B6.NZMc7 B cells were activated in the late stage of disease. There

was also no significant difference in vitro B cell proliferation responses to LPS and anti-

IgM between B6 and the congenic mice (data not shown).

Sle3 leads to low incidence of glomerulonephritis (GN). B6.NZMc7 mice

survive for at least 12 months with no obvious proteinuria. The kidney histology was

examined in one year old B6.NZMc7 and B6 mice. The total frequency of GN was about

40% in B6.NZMc7 homozygous mice and 7 % in heterozygous mice (scored 2 and up)

(Figure 3-12). Severe GN (scored 3 to 4, more than 25-50% of glomeruli being affected)

was only seen in 20% of the homozygous mice. GN was seen in both males and females

with no sex bias. Two distinct types of GN were present in these animals. One was

hypercellular and the other showed large intracapillary hyaline deposits with minimal









cellularity. As a control, one year old B6 had few pathological changes (scored 1 or less

than 1).

Detailed data analysis was performed to define the role of anti-dsDNA

autoantibodies in the pathogenesis of GN. The results showed no strong relationship

between titers or onset of the antibodies and GN. Two out of nine GN positive animals

were negative for both anti-dsDNA and anti-chromatin autoantibodies.

Histological analysis of the spleen, lymph node, lung, and liver showed lymphoid

hyperplasias with one out of 33 samples having a lymphoma.

Sequence analysis of candidate gene: transforming growth factor-beta (TGF-,) in

B6.NZMc7. TGF-/3 is a potent immunoregulatory molecule. Although it can both

suppress and enhance immune cell functions in vitro (124-126), most evidence suggests

that it is a natural immunosuppressor (127-130). TGF-/3 knockout mice exhibited a

wasting syndrome accompanied by multifocal lymphoid infiltrates in the heart, lungs,

salivary glands, and other organs (131-132). They also showed SLE-like autoimmune

serology (133). TGF-,/is located within the Sle3 interval of murine chromosome 7, which

makes it a good candidate gene. Primers were designed to amplify 1.5kb previously

published mRNA of TGF-/3 coding region (134). RT-PCR showed that TGF-f3 was

expressed in the spleen and kidney (data not shown). The sequence of TGF-fl was not

polymorphic between B6.NZMc7 and B6 (data not shown). No conclusive data was

obtained in expression assays. Further studies are needed to establish if TGF-/3 is

involved in SLE pathogenesis.












Discussion




The genetic basis of lupus is very complex, involving contributions from multiple

genes. To identify these genes, interval mapping was performed, and three susceptibility

intervals and one locus were identified: Slel on chromosome 1, Sle2 on chromosome 4,

Sle3 on chromosome 7, and the MHC locus on chromosome 17 in (NZM2410 X B6)F I X

NZM2410 backcross (52). The phenotypes in the progeny reflect the epistatic interaction

of these multiple genes. We believe that each susceptibility interval plays a unique role in

the initiation of pathogenesis. Separating each susceptibility interval was achieved using

a congenic breeding approach in which each interval bearing individual susceptibility

gene or genes from NZM2410 was moved to the resistant B6 background by repeated

backcross and selection (113). B6 and B6 congenic for Slel, Sle2, or Sle3 have same

MHC and background genes except for the selected genomic segment derived from

NZM2410. We successfully produced four congenic strains and genetically dissected the

phenotypes associated with each susceptibility interval. Slel on murine chromosome 1

leads the loss of tolerance to the H2A/H2B/DNA sub-nucleosome with little or no kidney

damage (135). Sle2 on murine chromosome 4 leads to B cell hyperactivity with no IgG

autoantibodies or nephritis (136). Here we present detailed phenotypic analysis of Sle3 on

murine chromosome 7 and explore the nature of possible lymphoid cell defects causing

the appearance of autoantibodies.







40

B6.NZMc7 showed generalized immune dysfunction. These animals exhibited

hypergammaglobulinemia and polyclonal B cell activation. This phenotype is a most

common immunological abnormality among murine lupus models (137-139). Intrinsic B

cell defects were suggested by the finding of an enhanced in vitro responsiveness of these

B cells to LPS and conventional antigens, and by several cell transfer experiments (73-74,

140-143). The mechanisms underlying polyclonal B cell activation in B6.NZMc7 are not

clear. These mice did not show differences in B cell number, B cell activation or

proliferation in vitro responses to LPS and anti-IgM. Polyclonal B cell activation is

known to accelerate autoimmune disease. This is supported by the strong association of

this phenotype with disease development in the various murine lupus models (70), by the

report that it can accelerate mortality, autoantibody level, and by GN in lupus-prone but

not in normal mice (144).

IgG anti-nuclear autoantibody production is a hallmark of SLE both in humans

and mouse models. Sle3 by itself leads to IgG anti-nuclear autoantibody production

starting at an early age. Autoantibody titers in B6.NZMc7 were lower than in the parental

NZM2410 indicating the requirement of other genes for high level IgG ANA production.

IgG ANA level in B6.NZMc7 was not constant and uniquely waxed and waned from 2 to

12 months of age. The causes of this are unknown. A possible explanation is that the

antibodies and antigens form immune-complexes and deposit in tissues including kidney.

One of the most interesting features is that Sle3 leads to development of GN. In

contrast to acute GN in parental NZM2410, B6.NZMc7 developed chronic GN with

relatively low penetrance, and no apparent proteinuria. Two types of GN were observed,







41

one was hypercellular and the other was large intracapillary hyaline deposit with minimal

cellularity, whereas in NZM2410 GN showed a mixture of these two types. These

observations suggest that the gene(s) in the Sle3 interval may play a key role in mediating

development of GN in NZM2410 and the other gene(s) may act to accelerate GN. This

conclusion has been confirmed by the study of double congenic mice containing Slel and

Sle3 (C Mohan, L Morel, unpublished observations). B6.NZMclc7 double congenic mice

developed acute GN with high penetrance, as seen in NZM2410. The genes causing

kidney damage can potentially act on different points of the pathogenic pathways. For

example, genes may enhance the production of pathogenic autoantibodies, impact

clearance of immune complexes, facilitate binding of autoantibodies or immune

complexes to kidney, and increased the sensitivity of the kidney to damage.

It has been reported that anti-DNA antibodies have pathogenic potential (94-97),

however, our study does not find a strong correlation between IgG anti-dsDNA and GN

in B6.NZMc7. Two out of nine GN positive mice fail to produce anti-dsDNA or anti-

chromatin autoantibodies. One possibility is that GN is caused by autoantibodies against

other antigens. Further studies are in progress to search for other autoantibodies such as

antibodies to the endogenous viral protein, gp70 and to small nuclear ribonucleoproteins.

Another possibility is that titers of autoantibodies in these two mice are low and that

tissue deposition of the autoantibodies makes it serum negative in these two mice.

IgG ANA production can be triggered by specific autoantigens and can be the

result of polyclonal B cell activation. There is a report that polyclonal B cell activation

alone does not lead to IgG ANA production (136). Increasing evidence suggests that









autoantibodies appear to be the products of autoantigen-driven immune responses (145-

149) characterized by IgG class switching, somatic mutation, and clonal expansion of

lupus B cells. This pathogenic autoantibody production in both spontaneous and

experimentally induced SLE is T helper (Th) cell dependent and Th cells are

predominantly CD4 positive (84,87-89). The studies of using anti-CD4 monoclonal

antibody to deplete or block the activation of CD4 T cells further demonstrate a

requirement for this subset in lupus development in mouse models (150-153). These T

cells may be polyclonally activated (154 -155) or autoantigen-specific (156-157).

Both B and T cell defects can lead to the overproduction of pathogenic

autoantibodies. This study indicates that Sle3 mainly impacts T cell function. First,

development of autoinmune disease in young B6.NZMc7 mice was accompanied by an

increased percentage of CD4 T cells and an increased CD4:CD8 T cell ratio in both the

spleen and lymph node. However there was no significant difference found in total T cell

numbers between young B6.NZMc7 and B6 mice (data not shown). Second, a high

percentage of CD4 T cells in B6.NZMc7 was activated and expressed activation marker

CD69. When cultured with anti-CD3 in vitro, CD4 T cells expanded preferentially. Total

lymphocytes also showed heightened proliferative responses to anti-CD3 and IL-2

stimulation. Hyper responsiveness was further demonstrated by in vivo T-dependent

antigen DNP-KLH challenge assays. B6.NZMc7 showed heightened primary and

secondary immune responses to DNP. Third, B6.NZMc7 CD4 T cells exhibited reduced

activation-induced T cell death. In addition, preliminary data from bone marrow transfer

assays showed expression of a high CD4:CD8 T cell ratio can be transferred by









B6.NZMc7 bone marrow to B6 recipients (E. Sobel, unpublished observations). Taken

together, these results suggest intrinsic T cell defects are present in B6.NZMc7 congenic

mice.

CD4 T cells can augment IgG ANA production. They can provide cognate help,

which augments antigen-specific B cells via gp39 and CD40 transducing a second signal

for B cell growth and differentiation (85), and non-antigen-specific help, which augment

any bystander B cells through providing B cell growth and differentiation cytokines (87).

The autoantigen-nonspecific T cell help may promote generalized humoral autoinimunity,

such as hypergammaglobulinemia and autoantibody production, but autoantigen-specific

T cell help is required to maturing such autoimmune responses to causing end-organ

disease (158). T cell hyperactivity in B6.NZMc7 may provide both autoantigen-specific

and autoantigen-nonspecific help for autoantibody production and immune complex-

associated end-organ disease.

We can not make a conclusion about B cell abnormalities in this study. Polyclonal

B cell activation, IgG ANA production, and high primary and secondary immune

responses in vivo may indicate possible B cell abnormalities and lead to the loss of

tolerance to nuclear antigens in B6.NZMc7. It is unclear whether these observations are

due to intrinsic B cell defects or normal B cell responses to abnormal environment factors

including T cell hyperactivity, or both. Pre-B cell transfer experiments are in progress and

will help to address this question.

The humoral phenotypes and nephritis were found in both B6.NZMc7

homozygous and heterozygous mice, with delayed onset and less severity as well as







44

decreased penetrance in heterozygotes. This result indicates the mode of inheritance is

dominant and in an allele dose-dependent fashion. Further studies are needed to

determine the mode of inheritance of cellular defects identified here.

This study demonstrates that B6.NZMc7 bearing SIe3 exhibit complex and

multifaceted phenotypes which are different from B6.NZMcl and B6.NZMc4. Sle3

contributes to lupus susceptibility in NZM2410 predominantly by impacting T cell

activation and proliferation leading to the low grade IgG ANA production and lupus

nephritis. The phenotypes in B6.NZMc7 are less pronounced than these in NZM2410.

The relative complex phenotypes may reflect the presence of two or more SLE-

susceptibility genes within this interval. This possibility has been suggested by the

presence of two peaks in genetic linkage studies on backcross mice (52) and further

supported by results from linkage studies in intercross mice (159). To explore this

possibility, we separated the telomeric and centromeric peaks within the Sle3 interval by

generating two subcongenic strains. Detailed analysis of these subcongenic mice is

presented in Chapter 4.

TGF-f is a potential candidate gene located in the SIe3 interval. The coding region

of this gene has been sequenced and it was found that there is no consistent sequence

polymorphism between B6.NZMc7 and B6. Further studies are needed to determine if

there are any differences in expression levels of this gene.









1 2 3 4 5 6 7 8 9
D7MIT178 2.3 0 0 11 )1 1"0 10 EJ 00 0 0 0
CKMM 4 0j N Nm 11 U m1 C ] E C 0
D7MIT76 4.6 ** ** 1)1) 10i:] 101 ImDJI U U 0
D7MIT154 5 U mu mi 11) E 0 13 N
D7MITl14 9.8 mm so N 111 11 ) D 1m ) U N ID EJ
D7MIT155 11.2 NNE E* Ern m U ujj Em* I 10 10 i]
D7MIT25 14.3 0 N E E No mE on *0 Ir 10 1 E i
D7MIT69 17.8 N* mm No EnE U N U E
D7MIT158 18.9 N E N 0 E E E N N N E MEN U N U
P 23.4 mmm mm mm mm m mmm N E
D7MIT70 23.8 E** N 0 N M mom 0 U U
D7MIT31 34.1 *** 100 ml 0 N lU 3)3) N)E3) U[ I 0 I
D7MIT68 50.6 [ [ [ 00 00 00 00 0) OD E r 3I 0

numbers of mice 2 7 6 3 3 1 1 1 1 1 2 2 1 2 1 1 1

Fig 3-1. Genotypes of the 36 original B6.NZMc7 congenic mice. Thirteen markers coving the Sle3 interval,
(indicated on the left) were used to genotype each animal. The distance of each marker to the centrimeric end is
shown in the second column and is expressed in units of centiMorgan (cM). Black boxes represent mice typed as
NZM24 10 homozygotes, white boxes, mice typed as B6 homozygotes, half black boxes represent heterozygous
mice. Mice from group 1 were used as founders for breeding all B6.NZMc7 mice used in this study.


Marker loci cM


Group

























Figure 3-2. Total serum IgG and IgM in 9 month old mice. High levels of serum IgG and IgM were
observed in B6.NZMc7 homozygous mice (black dot) compared with B6 (white triangle). Each dot
represents an individual mouse. Horizontal line is mean value.






















oo3Wa 40.o


o 30D




AA
1A A

AA
0 0

B6 B6.NZMc7hom. B6 B6.NZMcThom.
n=10 a=21 n=1O n-21
























Figure 3-3. Kinetics of total serum IgM levels in B6.NZMc7 homozygous mice. There is no significant
difference between B6.NZMc7 homozygotes (black dot, all groups n=23, 2 mo group, n=13) and
heterozygotes (white dot, n=5-7). Horizontal lines are mean values. Each dot represents an individual
mouse.










600-

500-

400-

300-

S200-

" 100-
0


00
* 0


0


o 0
0: 2


Age (months)


0













Table 3-1. Spontaneous production of IgM antibodies against a panel of four antigens in B6.NZMc7 homozygotes
compared with age-matched B6.

5 mo 7 mo 9 mo 11-12 mo
g B6 B6.NZMc7 B6 B6.NZMc7 B6 B6.NZMc7 B6 B6.NZMc7



ssDNA 10825a 342-+114*b 14232 359104* 141+0.32 356120" 16564 473-157"

Histone 131-34 357116* 14524 26547* 15135 294075* 14358 394136*

Thyroglobulin 170089 605318* 29198 1179749* 417251 1012-684* 397184 1545991"

DNP-KLH 105019 284095* 18341 32084* 21763 374145* 22390 433163*

a All data expressed as mean % OD standard error of mean (SEM). % OD is the ratio of the sample OD divided by the OD
of normal B6 pooled serum x 100 (112). The number of mice tested is 14 B6, and 34 B6.NZMc7.
b represents student's t test significance, p < 0.001.
























Figure 3-4. IgG anti-dsDNA and anti-chromatin autoantibody production in 2 to 12 month old B6.NZMc7
mice. B6.NZMc7 homozygous mice (black dot, all groups n=23, 2 mo group, n=13) produce both anti-
dsDNA and anti-chromatin antibodies starting at 2 mo of age (p<0.001). The phenotypes are also found in
B6.NZMc7 heterozygous mice (white dot, n=8) with slightly low titers. Significant difference was
detected in B6.NZMc7 homozygous and heterozygous mice compared with B6 (white triangle, n=8)
Horizontal lines represent mean values.












A5


4.

3-

2.


I I I I I I -- I


B
140

120

.100.

4so,
C 0
< n
C 0
A.


A


Hi
S
'S


Age (months)


Age (months)


A


0 0
o c


S
I
S
II
0

4?


v 6

0 % I: to
~~ML-10 0


12 2 5 7 9 11


12I I I 7I
12 2 5 7 9 11












Table 3-2. Penetrance of IgG anti-nuclear autoantibody production in B6.NZMc7.


2 mo 5 mo 7 mo 9 mo 11-12 mo

Antigen B6.NZMc7 B6.NZMc7 B6.NZMc7 B6.NZMc7 B6.NZMc7
hom.b het. hom. het. hom. het. hom. het. hom. het.

dsDNA 17%c NDd 37% 10% 45% 17% 39% 28% 74% 65%

ssDNA 33% ND 40% 5% 64% 21% 73% 22% 82% 65%

Chromatin 17% ND 26% 5% 61% 50% 45% 44% 41% 65%

Histone 33% ND 40% 10% 24% 17% 55% 17% 44% 50%

N_ 12 35 20 33 24 33 18 34 20

a Number of mice tested.
b Homozygous (hom.)B6.NZMc7, heterozygous (het.) mice.
c Percentage of positive mice. The mouse is counted as positive if its antibody titers are above the levels of mean plus 2 standard
deviation found in six 12 mo old B6 mice assayed on the same plate.
d ND: not determined.
























Figure 3-5. Waxing and waning nature of anti-ANA production in B6.NZMc7 mice. Each line represents
an individual mouse. A total of 8 mice were selected from 23 mice tested from 2 to 12 months of age for
anti-dsDNA at the same ELISA plate. The horizontal line represents mean plus 2 standard deviation serum
antibody levels present in ten 12 month old B6 mice. Levels of antibody above this line are considered
positive.










d



z

I
* -


11


Age (months)


3-


2-


iEli UUUMMi EM I
























Figure 3-6. Immune responses to T-dependent antigen DNP-KLH in vivo. A) IgM anti-DNP antibody
production before immunization, 14 days after primary immunization, 7 and 30 days after boosted
injection (d21, and d5 1) at serum dilutions of 1:500 in B6.NZmc7 mice (white dots, dashed line) and age-
sex-matched B6 (black dots, solid line). B) IgM anti-DNP antibodies at day 51 at different serum dilutions.
Data are from one of three independent experiments, and each dot is expressed as mean OD plus standard
deviation from five B6.NZMc7 or B6 mice. *, p <0.05; **, p<0.01.













A B
3.5*


2.5 ".
o'2 -" _""

1.5





0 14 21 51 -
I in 500 1 in 2500 1 in 12500 1 in 62500


Serum dilton


Time (Days)
























Figure 3-7. Immune responses in vivo to T-dependent antigen DNP-KLH. A) IgG anti-DNP antibody
production before immunization, 14 days after primary immunization, 7 and 30 days after boosted
injection (d21,d51) at serum dilution of 1:12500 in B6.NZMc7 mice (white dots, dashed line) and age-
sex-matched B6 (black dots). B) IgG anti-DNP antibodies at day 51 at different serum dilutions. Data are
from one of three independent experiments, and each dot is expressed as mean OD plus standard deviation
from five B6.NZMc7 or B6 mice. *, p < 0.05; **, p < 0.01











A
B3




2 t








14 21 51 0 I I
I i 500 1 in 2500 1in 12500 1 in 62500
Time (Days) Serum dilution












Table 3-3. Summary of FACS analysis of T cells in B6.NZMc7 mice compared with age matched B6.



1-3 mo mice 1-3 mo mice

Spleen Lymph node
B6 B6.NZMc7 B6 B6.NZMc7
n-26 n-24 n-16 n-9

%CD4 T cells 17.452.97a 20.16+2.7**b 26.104.71 35.676.23***

%CD8 T cells 11.732.48 11.192.22 24.575.89 24.415.83

CD4:CD8 T cell ratio 1.510.16 1.860.42*** 1.12+0.33 1.540.45*

CD69+CD4 T cells 16.49.3 238** 2416 1513


" All data expressed as mean standard deviation (SD).
b represent student t test significance, p < 0.05; **, p < 0.01; ***, p <0.001.
























Figure 3-8. Spleen and lymph node CD4:CD8 T cell ratio in 1 to 3 month B6.NZMc7 mice. There was
no difference between males and females.Data is pooled from 10 independent experiments, for each test,
age- and sex- matched mice were used and B6 mice included. The results are presented as mean plus
standard deviation. *, p < 0.05, ***, p < 0.001.











N=24


N--9


N=26

T


B6 B6.NZMc7


Spleen


N=16

I


B6 B6.NZMc7

Lymph node


C









QO
























Figure 3-9 B6.NZMc7 spleen CD4 and CD8 T cells expansion after anti-CD3 (1 ug/ml) stimulation in
vitro. Black bars are B6, white bars are B6.NZMc7. The mean value of duplicates is presented. Data
represent one of three independent experiments. All mice are age- and sex-matched. Cell numbers were
calculated using FACS data and cell counting.






180,000

150,000

120,000

90,000

60,000

30,000

0


24


CD4 cells


48


CD8 cells


72


I1r


24


48


Culture Time (hours)


;N


72


[-
























Figure 3-10. Plots show increased percentage CD4 cells in splenic lymphocytes cultured with anti-CD3
(1 ug/ml) for 24h, 48h, and 72h from B6.NZMc7 compared with age-matched B6. This experiment is
representative of three independent experiments.









Oh 24h 48h 72h

11 70 42.9- 5f
PM in

1793 ftB6
S 17.93 33.46 .32.44


C D 8 .32.6 *. 346

N i'
B6.NZMc7
~19.75 204 44694





CD4
:.7.2._.': .'. : !'' .0 ",' '- i3 .6 =.
























Figure 3-11. Lymphocyte proliferation assay. Splenocytes 1 x 106 were culture with graded doses of anti-
CD3 (panel A) or rIL-2 (panel B) for 72h. Lymphocyte proliferation was measured by 3H-thymidine
incorporation which added in the last 18 h of culture. Dashed line represents B6.NZMc7, solid line age-
and sex-matched B6. Each bar represents mean cpm (counts per minute)standard error of mean (SEM)
incorporated by triplicate cultures. This experiment is representative of 3 independent experiments.
* p <0.05, ** p < 0.001














** **l
0 0em


0.1 1

Anti-CD3 (ug/ml)


9,0001


M 6,000-


.C ,11

iftft
o.U


* J


5 10
rIL-2 (U/ml)


30,000-

25,000-

20,000-
I-
= 15,000-
lsooo



5,000-

0
























Figure 3-12. The frequency of GN in B6.NZMc7 homozygous (hom) and heterozygous (het) for the Sle3
interval. GN was graded according to percent of glomeruli affected (grade 1 to 4) and the morphological
pattern of nephritis (H= hyaline, M= mesangiopathic).











45%-


z

0 30%

-2GN
1 3+4H GN
15%



0%
B6NZMc7 horn. B6.NZMc7 het.
n=22 n=16














CHAPTER 4
GENETIC DISSECTION OF SLE PATHOGENESIS:
SLE3 HAS TWO SEPARATE LOCI THAT INTERACT SYNERGISTICALLY


Introduction



SLE is a prototypic systemic autoimmune disease characterized by production of

autoantibodies against a spectrum of nuclear antigens and autoantibody-mediated organ

damages especially kidney damage. The cause of disease is unclear. The genetic factors

and environmental factors as well as stochastic factors contribute to the altered immune

state (1). Identification of underlying gene mutations or allelic variants that affect the

function of genes and an understanding of their functional consequences will impact the

diagnosis, treatment, and prevention of SLE.

Several inbred mouse strains that spontaneously develop a disease similar to

human SLE are important models (1). The most-studied is the F1 hybrid of NZB and

NZW. New Zealand Mixed (NZM) are inbred strains derived from selective inbreeding of

progeny from a cross between NZB and NZW (35). A total of 27 NZM strains were

produced. These strains have inherited various genomic segments of the two parental

strains and are homozygous at the histocompatibility (H-2) locus for the NZW haplotype

(Ku, Au, SZ, Dz). The genetic differences among these strains lead to phenotypic

differences in disease expression. NZM2410 is a strain that produces high levels of IgG









autoantibodies to nuclear antigens as early as 4 to 6 months of age and develops severe

lupus-like renal disease in both sexes. A genome scan was performed in the backcross

progeny of NZM2410 and B6 to identify the chromosomal locations of susceptibility

genes (52). Three susceptibility intervals and the MHC locus were found to confer acute

GN susceptibility. The three intervals were: Slel, in the telomeric end of chromosome 1;

Sle2, in the centromeric end of chromosome 4; Sle3, in the centromeric end of

chromosome 7. Similar regions have also been identified in NZB X NZW crosses (48,50,

reviewed in ref. 160). Although these linkage studies have provided important

information about the chromosomal locations of susceptibility genes and the inheritance

of the disease, they tell us little about the role of each gene in the pathogenesis of lupus

and they are not productive for fine mapping. The construction of congenic strains is a

good approach to address these issues. The susceptibility intervals from the susceptible

donor strain are introduced into the genome of the resistant recipient strain by repetitive

backcross of the donor strain to the recipient (113). We recently generated a collection of

B6 congenic strains bearing the individual lupus susceptibility intervals from NZM2410.

Thus, by comparing B6 and the B6 congenic strains differing only for the specific

chromosomal segments, we are able to characterize the phenotypes contributed to disease

pathogenesis by each susceptibility interval. Interestingly, these congenic strains exhibit

different serological and immunological abnormalities and varying susceptibility to

nephritis (66,135-136).

Detailed analysis of B6.NZMc7 bearing the Sle3 interval is presented in Chapter

3. In summary, our results indicate that Sle3 profoundly affects T cell activation,







73


proliferation, differentiation, and apoptosis. B6.NZMc7 mice had increased CD4:CD8 T

cell ratios and increased CD69+CD4+ T cells in both the spleen and lymph node. They

showed heightened lymphocyte proliferation and CD4 T cell expansion in response to

anti-CD3 stimulation in vitro and increased in vivo immune responses to T-dependent

antigens. CD4 T cells exhibited reduced activation-induced cell death. B6.NZMc7 spleen

and lymph node B cells did not differ from B6 in number, B cells subset (BI vs. B2

cells), or functional analysis (B cell proliferation in vitro). However, B6.NZMc7 mice

showed high serum IgM and IgG levels, high polyclonal IgM antibodies, and high

expressions of some B cell surface markers in a late age. Finally, Sle3 lead to

autoantibody-mediated GN. The relatively complex phenotypes in B6.NZMc7 suggest

the presence of two or more SLE-susceptibility loci within this interval. This possibility

has also been suggested by the presence of two peaks in our genetic linkage studies on

backcross (52) and intercross mice (159).

Here we explore this possibility by generating two subcongenic strains bearing the

telomeric or the centromeric peaks of Sle3. The construction of B6.NZMc7c and

B6.NZMc7t subcongenic strains was described in Chapter 2. B6.NZMc7c contains the

centromeric end of Sle3 and B6.NZMc7t contains the telomeric end of Sic3. These strains

were analyzed for their serological phenotypes, evidence of GN, and T cell phenotypes

compared to B6 and the parental B6.NZMc7 strain. Results suggest that Sle3 has at least

two separate susceptibility loci that interact in a synergistic way to cause polyclonal B

cell activation, IgG ANA production, and development of GN. However, increased

CD4:CD8 T cell ratios and increased CD4 T cell expansions in vitro as well as the










heightened T cell proliferations in vitro were seen only in the mice carrying the telomeric

end of Sle3.



Results




Dense linkage map of SSR markers on murine chromosome 7 covering the Sle3

interval. In order to produce the subcongenic mouse strains and finely map susceptibility

loci, a precise map of SSR markers is very important. Ninty-six (NZM2410 X B6)Fl X

NZM2410 backcross and 144 F2 intercross progeny representing approximately 400

meiosis were genotyped using 25 markers covering the Sle3 interval on murine

chromosome 7. The map of SSR markers was constructed using MAPMARKER

computer software (161). As shown in Figure 4-1, the order and genetic distances

between markers that we obtained were mostly in agreement with published data (162).

However, one marker order difference was observed. The marker D7Mit69 was proximal

to D7Mit8l and D7Mitl58 in our map, but distal to these markers in the published map.

We also defined the order of 12 markers (underlined in Figure 4-1), which could not be

separated due to the small number of mice genotyped in the construction of published

map. This SSR marker map is helpful in determining recombination sites during

production of the subcongenic strains.

Generating the subcongenic strains was described in Chapter 2. As shown in

Figure 4-1, B6.NZMc7c contains the centromeric end of Sle3 with NZM2410-derived







75

alleles from marker ckmnm (4 cM) to D7Mit154 (5 cM). B6.NZMc7t contains the

telomeric end of Sle3 with NZM2410-derived alleles from marker D7Mit69 (17.8 cM) to

D7Mitl47 (30.6 cM).

Both loci lead to h)pergammaglobulinemia and spontaneous Dolyclonal B cell

activation. The mice from both subcongenic strains showed generalized immune

hyperactivity like parental B6.NZMc7 mice. They had high total serum IgG and IgM

levels compared with B6 at 9 months of age (Figure 4-2). They showed high polyclonal

IgM antibodies against ssDNA, histone, DNP-KLH, thyroglobulin at 5 months of age

(Figure 4-3) as well as at 7, 9, and 12 months of age (data not shown). However, titers of

polyclonal IgM antibodies were lower than B6.NZMc7. Consistent with low antibody

titer, the penetrance of polyclonal IgM was lower also and there was little polyclonal IgG

antibody production in either of the subcongenic strains (Figure 4-4). These results

suggest that both loci can independently cause a low-grade polyclonal B cell activation,

but they need to interact synergistically in generating the pronounced phenotypes seen in

B6.NZMc7.

Both loci are required for IgG ANA production. B6.NZMc7 mice spontaneously

produce IgG antibodies against a broad spectrum of antigens, including nuclear and non-

nuclear antigens. This phenotype was also examined in mice bearing the subintervals. As

shown in Table 4-1, the frequency of IgG autoantibody production to a panel of four

nuclear antigens was very low. For example, the frequency of anti-dsDNA at 12 months

is about 13% in B6.NZMc7c, and 32% in B6.NZMc7t compared to 74% in B6.NZMc7.

Titers of IgG autoantibodies in both the subcongenic strains were also much lower







76

compared with B6.NZMc7 at 7 months of age (Figure 4-5) as well as at 9 and 12 months

of age (data not shown). In summary, neither locus by itself on B6 background is

sufficient to drive spontaneous IgG ANA production.

Responses of subcongenic mice to DNP-KLH challenge. As described above,

both the subcongenic strains spontaneously produced IgM antibodies to nuclear and non-

nuclear antigens, but they spontaneously produced little IgG autoantibodies. To further

assess immune responses, we challenged these mice in vivo with DNP-KLH. IgM and

IgG anti-DNP antibodies were examined before immunization, primary immune

response, secondary immune response, and duration of the response. In contrast with

B6.NZMc7 mice that produced high IgM anti-DNP antibodies, there was no significant

difference in the IgM anti-DNP antibody levels between the subcongenic strains and B6

(p>0.05). However, the IgM anti-DNP antibodies lasted longer in B6.NZMc7t (p<0.01)

(Figure 4-6, panel A), which could be seen from serum dilution 1:500 to 1:62500 (Figure

4-6, panel B). A high IgG anti-DNP secondary response was observed in B6.NZMc7t

(p<0.01), which was also seen in B6.NZMc7. The IgG anti-DNP antibodies lasted longer

in both the subcongenic strains compared with B6 (p<0.01) (Figure 4-7).

B6.NZMc7t exhibited increased CD4:CD8 T cell ratios. To define T cell

abnormalities in the subcongenic strains, we first examined the T cell surface marker

expression using flow cytometry. Table 4-2 summarizes the results of FACS analysis.

B6.NZMc7t mice showed increased percentages of CD4 T cells and increased CD4:CD8

T cell ratios in both the spleen and lymph node (Figure 4-8), with similar findings in







77

B6.NZMc7 (data not shown). A high percentage of splenic CD4 T cells in B6.NZMc7t

expressed activation marker CD69 (p < 0.01).

CD4 T cells from B6.NZMc7t exhibit high expansion in vitro. We also

examined absolute CD4 and CD8 T cell numbers after splenocytes from both the

subcongenic strains were stimulated with anti-CD3 in vitro. Consistent with increased

CD4 T cells in vivo, the absolute numbers of CD4 T cells were also increased in vitro in

B6.NZMc7t (Figure 4-9, panel A). Although CD4 T cell numbers were higher in

B6.NZMc7t compared with B6 and B6.NZMc7c, CD4 T cell numbers were even more

significantly increased after 48h of culture. A small drop of cell numbers in 72h culture

was noticed in B6.NZMc7 (Chapter 3), and also seen in B6.NZMc7t, probably due to

reasons discussed in Chapter 3. In contrast, CD8 cells were highly expanded in both B6

and B6.NZMc7c compared to B6.NZMc7t (Figure 4-9, panel B).Figure 4-10 shows the

change of percentage CD4 and CD8 T cells in 2D-dot-plot from the same experiment.

These results further demonstrate that the telomeric end of Sle3 impacts T cell function.

The telomeric subinterval also impacts lymphocyte proliferation. T cell

hyperactivity is an important phenotype in B6.NZMc7 mice and is believed to play a

important role in driving B cell autoantibody production. We therefore examined T cell

proliferation in subcongenic mice using a 3H-thymidine incorporation assay. T cells from

B6.NZMc7t exhibited an increased stimulation index (counts per minute in stimulated

cultures divided counts per minute in unstimulated cultures) in response to anti-CD3 (10

ug/ml) and IL-2 (10 U/ml) in vitro (Figure 4-11). T cells had higher responses to anti-

CD3 than to IL-2. The heightened proliferative responses to these stimuli may be due to







78

increased numbers of activated T cells, increased signal transduction, or reduced

apoptosis.

Both loci lead to a low incidence of glomerulonephritis (GN). The subcongenic

mice were sacrificed at 12 months for kidney histology. As shown in Figure 4-12,

surprisingly, the total frequency of GN (scored 2 and above) in both homozygous

subcongenic mice is as high as that in parental B6.NZMc7 (about 45%). However, the

overall severity of GN was less in the subcongenic strains compared with B6.NZMc7.

Both the subcongenic strains exhibited the mesangiopathic glomerular lesions that were

less severe than the hyaline lesions in B6.NZMc7. There was no sex bias in GN

frequency. GN was correlated with the production of autoantibodies against at least one

of four nuclear antigens, but not strongly correlated with the titers and onset of

autoantibody production (data not shown).



Discussion



Although significant volumes of data describing many humoral and cellular

abnormalities in murine lupus mice have been generated in the past three decades, the

genetic defects causing these abnormalities have not been determined. Although genetic

linkage studies have identified at least nine different loci to confer lupus susceptibility

(163), contribution and nature of each locus in the pathogenesis of abnormalities need to

be defined. Our approach to address these questions is via the production and analysis of









congenic strains bearing individual loci. From studies of B6.NZMc7 (Chapter 3), we

found Sle3 on murine chromosome 7 impacted T cell function, led to polyclonal B cell

activation, IgG ANA production, and lupus nephritis. In this study, we further dissected

the complex traits of B6.NZMc7 by generating two subcongenic strains and analyzing

their phenotypes.

We found that two subintervals both loci within Sle3 could lead to spontaneous

polyclonal B cell activation by themselves. These phenotypes are also observed in B6

mice congenic for the Sle2 interval on chromosome 4 (B6.NZMc4) (136). These

observations suggest that polyclonal B cell activation is a basic abnormality in murine

lupus and contributes to the pathogenesis of IgG ANA and lupus nephritis. Since

B6.NZMc4 mice have polyclonal B cell activation and lack IgG ANAs and nephritis,

polyclonal B cell activation alone is not sufficient for their autoimmune phenotypes.

The penetrance of autoantibodies against the four nuclear antigens decreased

dramatically in both subcongenic strains compared with B6.NZMc7, which indicates

requirement of both loci. The total GN frequency in the subcongenic strains is same as in

the parental strain, but the severity is reduced. These results further confirme our

hypothesis that SLE is inherited as a threshold liability (53) requiring multiple

susceptibility genes to cause high penetrance of phenotypes. This feature also makes the

further narrowing of subintervals very difficult.

GN is associated with IgG autoantibody production against four nuclear antigens

in both the subcongenic strains. We believe the conclusion is also true in parental

B6.NZMc7 mice because immunoflorescence assas of B6.NZMc7 kidneys showed the









presence of antibodies and complements in kidney (data not shown). Our experiments can

not define the specificity of autoantibodies causing GN.

The susceptibility genes causing the humoral autoinimune responses in the

subcongenic strains could impact T cell function, B cell function, or both. In a previous

study, we demonstrated that Sle3 primarily impacts T cell function, which may drive

lupus B cell activation and production of autoantibodies. To map this gene(s), we

performed the same sets of experiments on the subcongenic strains. We found that

B6.NZMc7t mice exhibited increased CD4:CD8 T cell ratios, higher IgG immune

responsiveness to the T-dependent antigen, heightened T cell proliferative responses to

anti-CD3 and IL-2. These findings suggest this gene(s) may locate in the telomeric end of

Sle3. B6.NZMc7t mice contain the disease gene(s), but fail to produce the same level of

IgG ANA as B6.NZMc7 indicating requirement of the gene(s) from the centromeric end

of Sle3 to augment these phenotypes.

B6.NZMc7c mice showed no obvious T cell functional aberrations. The

underlying mechanism for polyclonal B cell activation and lower level IgG ANA

production is not clear. It could be due to B cell dysfunction, subtle T cell function

changes, or both. Further detailed studies are needed.

This study successfully dissects the complex traits associated with Sle3 and

identifies the existence of at least two loci in the Sle3 interval. The experimental findings

indicate that both loci are required to generate certain levels of humoral autoinimunity

and severe lupus nephritis, but only the telomeric locus impacts T cell activation,

proliferation, and differentiation.
























Figure 4-1 A map of simple sequence repeat (SSR) markers on murine chromosome 7 covering the Sle3
interval. The map was constructed using MAPMAKER software according to 400 meiosis. NZM2410-
derived susceptibility intervals (white bars) in B6.NZMc7 and the two subcongenic strains are showed,
lines represent B6-derived alleles. The distances from each marker to the centromere were expressed in
cM (centiMorgan).








cM
2.3
4.9-
5



9.8
11.2
11.4
11.8
13.2
14.3


17.8
18.7
18.9
20.1
20.3- -
22
22.2
23.4
23.8

30.6
30.9
31.1


D7Mitl78
ckmm
D7Mit76
D7Mit56
D7Mitl54

D7Mitll4
~D7Mitl55


--"'' D7Mit78 D7Mit79
u)7Mit54
D7Mit25

-D7Mit69
-D7Mit8l
7Mit158 I D7Mit83
--------D7Mit85 D7Mitl45


D7Mitl76

D7Mit70


D7Mitl47
D7Mit93

-------- D7Mit3l


D7Mitl59


D7Mitl8l
D7Mitl62


h B6.NZMc7c







B6.NZMc7


B6.NZMc7t
























Figure 4-2. Total serum IgG and IgM level in 9 month subcongenic strains compared with B6.NZMc7.
Each dot represents individual mouse. Horizontal line is mean value.
















12W0












A


4W



3w


20


E

11W


I


I. I I I
136 B6.NZIW7 IKNEkc D6T JNZbc7t
FI0 v=21 0=24 32


0


w
.11*


AA
A--
AA


I I I

96 BNDOh? B6IQi. k7c B6.NDk7t
3=10 m721 v=24 1=25
























Figure 4-3. Polyclonal IgM antibodies against a panel of four antigens in 5 month old subcongenic strains
compared with B6 and B6.NZMc7. A similar data pattern is also seen in 7, 9, and 12 month old mice from
these four strains with increased titers. Antibody titer is expressed as %OD (detailed definition in Methods
and Materials). Data is presented as mean and standard deviation. p < 0.05, ** p < 0.01, *** p < 0.001.





800 0 B6 n=14
U B6.NZMc7c n=35
EJ B6.NZMc7t n=30
C U B6.NZMc7 n=34
'600-
o **

~400
*** ***


200 *

00
o 0 .....
ssDNA Histone DNP-KLH Thyroglobulin
























Figure 4-4. Penetrance of IgM and IgG polyclonal antibody production in 9 month old subcongenic mice
compared with parental B6.NZMc7. The mouse was counted as positive if it produced antibodies above
the mean plus 2 SD often B6 to any two of four antigens (ssDNA, histone, DNP-KLH, thyroglobulin).








90% l B6.NZMc7c n=24
B6.NZMc7t n=28
U B6.NZMc7 n=33

60%



30%





Polyclonal IgM Polyclonal IgG




00
00












Table 4-1. Penetrance of IgG anti-nuclear autoantibody production in B6.NZMc7c and B6.NZMc7t homozygous mice.


5 mo 7 mo 9 mo 11-12 mo
Antigen
c7c c7t c7c c7t c7c c7t c7c c7t

dsDNA 3%b 9% 8% 24% 0% 21% 13% 32%

ssDNA 12% 12% 4% 8% 8% 11% 13% 27%

dsDNA/histone 3% 3% 15% 8% 25% 18% 8% 23%

Histone 3% 3% 15% 8% 4% 7% 17% 23%

Na 33 34 26 25 24 28 24 22

a Number of mice tested.
b Percentage of positive mice. A mouse is counted as positive if its antibody titers are above the levels of mean plus 2 standard
deviations in six 12 month old B6 mice assayed on same plate.























Figure 4-5. IgG autoantibody production against a panel of four nuclear antigens in 7 month homozygous
and heterozygous subcongenic mice compared with B6.NZMc7 and B6. The data is expressed as % OD
detailedl definition in Methods and Materials). Horizontal lines indicate the mean value of antibody titers.













dsDNA 450 dsDNA/histone
250
400 0
0 o S 0
2 350
0 0 030 0
200300-
150 0

IS 14250.
00
ic o o 2@@s
100O 200- 0
0 0ft 0 0
so + -+-- rg ,,, 7 10o0- o

15 so0
500





3oo ssDNA

0 3 Histone

250

IS0 200 0
e 0
0 00
100. AA 1 100

a0 0

A 00
50 ,0 __ _

0
B6 B6.NZMc7 B6.NZIc7c B6.NZMk7t
horn. ht. hon. heL hon, het B6 B6.NZMc7 B6.NZMc7c B6.NZMc7t
n-25 n=33 n--24 n=20 n=30 n=21 n=31 horn. het hom het hom. het
n=25 n=33 n-24 n=20 n=30 n=21 n=31
























Figure 4-6. Immune responses to T-dependent antigen DNP-KLH in vivo. A) IgM anti-DNP antibody
production before immunization (dO), 14 days after primary immunization (d14), 7 and 30 days after boost
(d21 and d5 1) at Serum dilution of 1:500 in B6.NZmc7c mice (white dots with dashed line), B6.NZMc7t
mice (white triangles), and age- and sex-matched B6 (black dots). B) IgM anti-DNP antibodies on 5 Idays
at different serum dilutions. Data is from one of three independent experiments, and each dot is expressed
as mean OD and standard deviation of five animals. *, p < 0.05; **, p < 0.01.




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EH9FY1EG8_88STU2 INGEST_TIME 2014-07-18T20:38:58Z PACKAGE AA00022312_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

*(1(7,& $1' )81&7,21$/ $1$/<6,6 2) 686&(37,%,/,7< 72 /8386 ,1 %1=0F &21*(1,& $1' 68%&21*(1,& 0,&( %\ <,1*<8 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

7KLV GLVVHUWDWLRQ LV GHGLFDWHG WR P\ GDXJKWHUV -HQQ\
PAGE 3

$&.12:/('*0(176 ZRXOG OLNH WR WKDQN WKH FKDLUPDQ RI P\ FRPPLWWHH 'U (GZDUG :DNHODQG IRU KLV YDOXDEOH LQVWUXFWLRQ DQG HQFRXUDJHPHQW LQ KHOSLQJ PH ILQLVK P\ SURMHFW DP DOVR JUDWHIXO WR P\ FRPPLWWHH PHPEHUV 'UV 0DUN $WNLQVRQ 3KLO /DLSLV -RHO 6FKLIIHQEDXHU DQG -LQ ;LRQJ 6KH IRU WKHLU KHOSIXO GLVFXVVLRQ DQG JXLGDQFH DOVR WKDQN 'UV /DXUHQFH 0RUHO DQG &KDQGUD 0RKDQ IRU WKHLU LQLWLDWLRQ RI WKH SURMHFW DQG H[SHULPHQWV DQG KHOSIXO DGYLFH WKDQN 'U 0RKDQ IRU KHOS ZLWK P\ GLVVHUWDWLRQ DQG GLVFXVVLRQ DOVR DSSUHFLDWH KHOS IURP 'U %\URQ &URNHU ZLWK KLVWRORJ\ WKDQN -RFHO\Q 7XOVLDQ IRU GDLO\ PRXVH FDUH WKDQN .DUHQ $FKH\ IRU KHOS ZLWK VHTXHQFLQJ 7*)% ZRXOG OLNH WR H[WHQG P\ VSHFLDO WKDQNV WR 'UV VDOO\ /LWKHUODQG DQG &KULVW\ 0\ULFN IRU KHOS ZLWK P\ GLVVHUWDWLRQ KDYH HQMR\HG P\ IULHQGVKLS ZLWK RWKHU PHPEHUV RI WKH :DNHODQG ODE HVSHFLDOO\ 1DQD 7LDQ &KULVW\ 0\ULFN $OLFLD 'HQJ 3LQJ
PAGE 4

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 LLL $%675$&7 YL &+$37(56 ,1752'8&7,21 6\VWHPLF /XSXV (U\WKHPDWRVXV 6/(f 2YHUYLHZ 7KH &DXVHV RI +XPDQ 6\VWHPLF /XSXV (U\WKHPDWRVXV 1HZ =HDODQG %ODFN 1=%f 1HZ =HDODQG :KLWH 1=:f DQG 1HZ =HDODQG 0L[HG 1=0f 0LFH *HQHWLF $QDO\VLV RI 6XVFHSWLELOLW\ WR 6/( LQ 0XULQH 0RGHOV 7KH &RQWULEXWLRQ RI 0+& DQG 1RQ0+& *HQHV WR 0XULQH /XSXV 6XVFHSWLELOLW\ ,QKHULWDQFH RI 6/( 6XVFHSWLELOLW\ DV D 7KUHVKROG /LDELOLW\ % &HOO $FWLYDWLRQ DQG 7ROHUDQFH LQ /XSXV 7KH 5ROH RI &' 7 &HOOV LQ WKH 3DWKRJHQHVLV RI 6/( $XWRDQWLERG\ 3URGXFWLRQ DQG /XSXV 1HSKULWLV 5DWLRQDOH IRU 7KLV 6WXG\ 0$7(5,$/6 $1' 0(7+2'6 0LFH *HQRW\SLF $QDO\VLV 0HDVXUHPHQW RI $QWLERGLHV )ORZ &\WRPHWULF $VVD\ 7 &HOO 3UROLIHUDWLRQ $VVD\ ,PPXQL]DWLRQ +LVWRORJ\ 6HTXHQFLQJ 7*)IL &RGLQJ 5HJLRQ 6WDWLVWLFV ,9

PAGE 5

*(1(7,& ',66(&7,21 2) 3$7+2*(1(6,6 2) 6/( 6/( 21 085,1( &+5202620( /($'6 72 $ %52$' /2: *5$'( $872,0081,7< ,QWURGXFWLRQ 5HVXOWV 'LVFXVVLRQ *(1(7,& ',66(&7,21 2) 6/( 3$7+2*(1(6,6 6/( +$6 7:2 6(3$5$7( /2&, 7+$7 ,17(5$&7 6<1(5*,67,& $//< ,QWURGXFWLRQ 5HVXOWV 'LVFXVVLRQ 6800$5< /,67 2) 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+

PAGE 6

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ *(1(7,& $1' )81&7,21$/ $1$/<6,6 2) 686&(37,%,/,7< 72 /8386 ,1 %1=0F &21*(1,& $1' 68%&21*(1,& 0,&( %\
PAGE 7

2QH LPSRUWDQW ILQGLQJ LV WKDW 6OH E\ LWVHOI FDQ OHDG WR WKH GHYHORSPHQW RI JORPHUXORQHSKULWLV *1f %1=0F PLFH GHYHORSHG FKURQLF *1 DW D ODWH DJH ZLWK DERXW b SHQHWUDQFH 7KH SUHVHQFH RI DQWLGV'1$ DQG *1 ZDV QRW VWURQJO\ FRUUHODWHG 7ZR RXW RI QLQH *1 SRVLWLYH DQLPDOV GLG QRW SURGXFH ,J* DQWL'1$ RU DQWLFKURPDWLQ DXWRDQWLERGLHV 2WKHU VSHFLILF DXWRDQWLERGLHV PD\ EH UHODWHG WR *1 DQG WKLV QHHGV IXUWKHU LQYHVWLJDWLRQ 7KH XQGHUO\LQJ LPPXQRORJLFDO DEQRUPDOLWLHV ZHUH DOVR H[DPLQHG LQ WKHVH PLFH
PAGE 8

ORFL DUH UHTXLUHG LQ ,J* $1$ SURGXFWLRQ 2QO\ %1=0FW PLFH VKRZHG 7 FHOO K\SHUDFWLYLW\ ZKLFK VXJJHVWV WKDW WKH JHQH DIIHFWLQJ 7 FHOO IXQFWLRQ LV ORFDWHG RQ WKH WHORPHULF HQG RI 6OH %RWK VWUDLQV GHYHORSHG FKURQLF *1 EXW VHYHULW\ LV OHVV FRPSDUHG WR %1=0F 7KHVH UHVXOWV VXJJHVW WKDW DW OHDVW WZR VXVFHSWLELOLW\ JHQHV DUH SUHVHQW LQ WKH 6OH LQWHUYDO DQG WKDW WKHVH WZR JHQHV LQWHUDFW V\QHUJLVWLFDOO\ WR FDXVH WKH DXWRLPPXQH SKHQRW\SHV H[SUHVVHG LQ %1=0F 9OOO

PAGE 9

&+$37(5 ,1752'8&7,21 6\VWHPLF /XSXV (U\WKHPDWRVXV ,6/(, 2YHUYLHZ 6/( LV D FRPPRQ FKURQLF DXWRLPPXQH GLVHDVH ,W LV HVWLPDWHG WKDW RYHU KDOI WR WKUHH TXDUWHUV RI D PLOOLRQ SHRSOH VXIIHU IURP LW LQ WKH 8QLWHG 6WDWHV 7KH FOLQLFDO IHDWXUHV RI 6/( DUH YHU\ XQLTXH ,W LV D PXOWLV\VWHPLF GLVHDVH ZLWK WKH SRWHQWLDO WR LQYROYH PXOWLSOH RUJDQV LQFOXGLQJ WKH VNLQ MRLQWV VHURVDO VXUIDFHV NLGQH\ KHDUW OXQJV DQG FHQWUDO QHUYRXV V\VWHP 7KH FOLQLFDO PDQLIHVWDWLRQV DUH H[WUHPHO\ GLYHUVH GHSHQGLQJ ODUJHO\ RQ ZKLFK RUJDQ V\VWHP RU V\VWHPV LV DIIHFWHG ,W LV YDULDEOH UDQJLQJ IURP VNLQ UDVK DQG MRLQW SDLQ ZLWK D PLOG V\VWHPLF LOOQHVV WR D IXOPLQDQW SUHVHQWDWLRQ ZLWK OLIH WKUHDWHQLQJ LQYROYHPHQW RI WKH LPSRUWDQW RUJDQV VXFK DV NLGQH\ UHYLHZHG LQ UHIVO f 6/( RFFXUV PRVWO\ LQ IHPDOHV DQG WKH IHPDOH WR PDOH UDWLR LV DERXW 7KH SURGXFWLRQ RI DXWRDQWLERGLHV DJDLQVW D VSHFWUXP RI QXFOHDU DQWLJHQV LV WKH KDOOPDUN RI 6/( ERWK LQ KXPDQV DQG PLFH 7KH GHSRVLWLRQ RI FLUFXODWLQJ DQWLJHQ DQWLERG\ FRPSOH[HV DORQJ WKH YDVFXODU EDVHPHQW PHPEUDQHV RI YDULRXV WDUJHW RUJDQV LV RQH RI WKH QRWDEOH SDWKRORJLF IHDWXUHV +RZHYHU WKH PHUH SUHVHQFH RI WKH DXWRDQWLERG\ GRHV QRW QHFHVVDULO\ OHDG WR DXWRLPPXQH GLVHDVH RWKHU LPPXQRORJLF DEQRUPDOLWLHV DUH QHHGHG WR GHYHORS IXOOEORZQ FOLQLFDO DXWRLPPXQH GLVHDVH

PAGE 10

1R VLQJOH FDXVH KDV \HW EHHQ LGHQWLILHG DOWKRXJK JHQHWLF HQYLURQPHQWDO DQG VWRFKDVWLF IDFWRUV FRQWULEXWH WR WKH DOWHUHG LPPXQH VWDWH f 7KH PDMRU IRFXV RI 6/( UHVHDUFK LV WR XQGHUVWDQG LWV FDXVH ,W LV KRSHG WKDW WKH EDVLF DQG FOLQLFDO UHVHDUFK ZLOO HOXFLGDWH D SODXVLEOH HWLRORJ\ ZLOO JLYH GLUHFWLRQ WR GLVHDVH SUHYHQWLRQ DQG ZLOO SURYLGH PRUH VSHFLILF WUHDWPHQW RI WKH GLVHDVH 7KH &DXVHV RI +XPDQ 6\VWHPLF /XSXV (U\WKHPDWRVXV ,W LV ZHOO GRFXPHQWHG WKDW JHQHWLF IDFWRUV DUH NH\ HOHPHQWV LQYROYHG LQ VXVFHSWLELOLW\ WR 6/( UHYLHZHG LQ 5HIV f 6/( LV FRQFRUGDQW LQ b RI PRQR]\JRWLF WZLQ DQG b RI GL]\JRWLF WZLQV f ZKLFK VWURQJO\ VXSSRUWV WKH K\SRWKHVLV RI D PXOWLIDFWRULDO HWLRORJ\ ZLWK LQFRPSOHWH SHQHWUDQFH EXW WKH FKDUDFWHULVWLFV RI WKH LQKHULWHG VXVFHSWLELOLW\ IDFWRUV DUH QRW NQRZQ $YDLODEOH GDWD LQGLFDWH WKH LQYROYHPHQW RI PXOWLSOH JHQHV f 7KH H[SUHVVLRQ RI VXFK JHQHV FRXOG LQYROYH YDULDEOHV LQIOXHQFLQJ LPPXQH UHVSRQVHV LPPXQH UHJXODWLRQ FRPSOHPHQW DQGRU LPPXQRJOREXOLQ OHYHOV 6WXGLHV RI 6/( LQ KXPDQV KDYH IRXQG VHYHUDO JHQHWLF PDUNHUV DVVRFLDWHG ZLWK 6/( PDMRU KLVWRFRPSDWLELOLW\ FRPSOH[ 0+&f FODVV DOOHOH % 0+& FODVV ,, DOOHOHV '5 '5 '4ZO 0+& FODVV ,,, DOOHOHV &$ QXOO SKHQRW\SH & GHILFLHQF\ $ VLJQLILFDQW DVVRFLDWLRQ RI 6/( ZLWK D SDUWLFXODU 0+& DOOHOH KDV EHHQ GHWHUPLQHG ,QFUHDVHG IUHTXHQFLHV RI 0+& FODVV ,, '5 RU '5 DOOHOHV DUH DVVRFLDWHG ZLWK 6/( LQ &DXFDVLDQ SDWLHQWV f )XUWKHU VWXGLHV LQGLFDWHG WKH H[WHQGHG KDSORW\SH $%'5 LV DVVRFLDWHG ZLWK 6/( VXVFHSWLELOLW\ f *ULIIPJ HW DO GHPRQVWUDWHG WKDW

PAGE 11

b RI 6/( SDWLHQWV ZLWK DQWLGV'1$ DQWLERGLHV ZHUH '5 f 7KH UROH RI 0+& FODVV ,, DQWLJHQV LQ WKH SDWKRJHQHVLV RI 6/( LV XQNQRZQ 7ZR SRWHQWLDO PHFKDQLVPV DUH RI SDUWLFXODU LQWHUHVW Df VHOHFWLYH SUHVHQWDWLRQ RI IRUHLJQ RU VHOIDQWLJHQLF SHSWLGHV E\ WKH SRO\PRUSKLF UHJLRQV RI 0+& FODVV ,, PROHFXOHV Ef QHJDWLYH DQG SRVLWLYH VHOHFWLRQ RI 7 FHOOV E\ 0+& FODVV ,, PROHFXOHV GXULQJ PDWXUDWLRQ LQ WKH WK\PXV ,QKHULWHG GHILFLHQFLHV RI VHYHUDO FRPSOHPHQW FRPSRQHQWV KDYH EHHQ DVVRFLDWHG ZLWK OXSXVOLNH LOOQHVVHV 7KH PRVW FRPPRQ LV D GHILFLHQF\ RI WKH VHFRQG DQG IRXUWK FRPSRQHQWV RI FRPSOHPHQW & &f f 7KH FODVV ,,, RU FRPSOHPHQW UHJLRQ RI WKH KXPDQ 0+& LV ORFDWHG EHWZHHQ WKH FODVV % & $f DQG FODVV ,, '3 '4 '5f UHJLRQV RQ WKH VKRUW DUP RI FKURPRVRPH 7KH IRXU FRPSOHPHQW VWUXFWXUDO JHQHV LQ WKLV FOXVWHU DUH &$ &% IDFWRU % DQG & 7KHVH IRXU FRPSRQHQWV DUH UHTXLUHG IRU DFWLYDWLRQ RI WKH FRPSOHPHQW SDWKZD\V & DQG & IRU WKH FODVVLFDO DQG IDFWRU % IRU WKH DOWHUQDWLYH SDWKZD\ 2QH RI WKH PDMRU ELRORJLFDO IXQFWLRQV RI WKHVH HDUO\ FRPSRQHQWV RI WKH FODVVLFDO SDWKZD\ & DQG & LV WR SURFHVV LPPXQH FRPSOH[HV &RPSOHPHQW V\VWHP G\VIXQFWLRQ PD\ FRQWULEXWH WR LPSDLUHG FOHDUDQFH RI LPPXQH FRPSOH[HV f 1RQ0+& OLQNHG JHQHV ZHUH DOVR VXJJHVWHG IURP VWXGLHV RI WZR YHU\ LQWHUHVWLQJ IDPLOLHV ZLWK PXOWLSOH LQVWDQFHV RI XQGLIIHUHQWLDWHG DXWRLPPXQH GLVHDVH DQG QR UHODWLRQ ZLWK DQ\ +/$ KDSORW\SH f $ FRPSUHKHQVLYH OLQNDJH DQDO\VLV KDV QRW \HW EHHQ UHSRUWHG LQ KXPDQV WR VKRZ ZKLFK VSHFLILF FKURPRVRPHV DQG UHJLRQV DUH LQYROYHG 7KH QDWXUH RI QRQ0+& JHQHV LQ 6/( LV XQNQRZQ /XSXV LV D SRO\JHQLF GLVHDVH ZLWK DGGHG FRQWULEXWLRQV IURP HQYLURQPHQWDO DQG VWRFKDVWLF YDULDQFH 7KH IDFW WKDW WKH FRQFRUGDQFH UDWH LQ LGHQWLFDO WZLQV LV QRW b FDQ

PAGE 12

EH XVHG WR HVWLPDWH HQYLURQPHQWDO DQG VWRFKDVWLF FRQWULEXWLRQ f ,QKHULWDQFH DQG WKH H[SUHVVLRQ RI VXVFHSWLELOLW\ JHQHV SUHGLVSRVH LQGLYLGXDOV WR WKH GHYHORSPHQW RI SKHQRW\SHV EXW SKHQRW\SLF H[SUHVVLRQ UHTXLUHV WULJJHULQJ IURP HQYLURQPHQWDO DQG VWRFKDVWLF HYHQWV 6HYHUDO HQYLURQPHQWDO IDFWRUV LQFOXGLQJ XOWUDYLROHW OLJKW EDFWHULDO DQG YLUDO LQIHFWLRQV DQG GUXJV DUH FDSDEOH RI LQGXFLQJ RU H[DFHUEDWLQJ OXSXV 5DQGRP HYHQWV LQ WKH GHYHORSPHQW RI WKH LPPXQH V\VWHP VXFK DV WKH JHQHUDWLRQ RI 7 FHOO UHFHSWRU 7&5f UHSHUWRLUH DOVR SOD\ D UROH LQ WKH JHQHUDWLRQ RI 6/(OLNH V\QGURPH ,W LV VSHFXODWHG WKDW WKHVH IDFWRUV PD\ DFW WKURXJK GLIIHUHQW PHFKDQLVPV WR DOWHU LPPXQH IXQFWLRQ 6XVFHSWLELOLW\ WR 6/( LV LQKHULWHG DV D FRPSOH[ WUDLW FKDUDFWHUL]HG E\ LQFRPSOHWH FRQFRUGDQFH RI SKHQRW\SH DQG JHQRW\SH 6HYHUDO IHDWXUHV RI WKH GLVHDVH PDNH JHQHWLF DQDO\VLV RI 6/( VXVFHSWLELOLW\ LQ KXPDQV YHU\ GLIILFXOW )LUVW LQ D IDPLO\ QRW DOO LQGLYLGXDOV ZKR KDYH WKH VDPH LQKHULWHG VXVFHSWLELOLW\ DOOHOHV PDQLIHVW GLVHDVH LQFRPSOHWH SHQHWUDQFHf 6HFRQG LQ GLIIHUHQW IDPLOLHV GLIIHUHQW VHWV RI VXVFHSWLELOLW\ DOOHOHV PD\ SURGXFH LGHQWLFDO SKHQRW\SHV JHQHWLF KHWHURJHQHLW\f 7KLUG VHYHUDO VXVFHSWLELOLW\ DOOHOHV PD\ EH UHTXLUHG IRU IXOO\ H[SUHVVLQJ FHUWDLQ SKHQRW\SHV SRO\JHQLF LQKHULWDQFHf 'HYHORSPHQW RI DQLPDO PRGHOV IRU WKLV GLVHDVH FDQ EH DGYDQWDJRXV IRU HOXFLGDWLQJ WKH SDWKRJHQLF PHFKDQLVPV RI WKH GLVHDVH DQG ZLOO KHOS VWXGLHV LQ KXPDQ 6/( $QLPDOV FDQ EH EUHG LQ ODUJH TXDQWLWLHV DQG PDQLSXODWHG IRU JHQHWLF DQDO\VLV 7KH\ FDQ DOVR EH PDLQWDLQHG LQ WKH VDPH IDFLOLW\ WKHUHE\ PLQLPL]LQJ HQYLURQPHQWDO IDFWRUV

PAGE 13

1HZ =HDODQG %ODFN I1=%7 1HZ =HDODQG :KLWH 1=:f DQG 1HZ =HDODQG 0L[HG 1=0I 0LFH 6HYHUDO LQEUHG PRXVH VWUDLQV WKDW VSRQWDQHRXVO\ GHYHORS D GLVHDVH VLPLODU WR KXPDQ 6/( KDYH EHHQ LPSRUWDQW PRGHOV f 2YHU WKH SDVW WKUHH GHFDGHV H[WHQVLYH VWXGLHV RI WKHVH PXULQH PRGHOV SDUWLFXODUO\ LQ WKH DUHD RI PROHFXODU JHQHWLFV KDYH SURYLGHG D JUHDW GHDO RI LQIRUPDWLRQ WR KHOS RXU XQGHUVWDQGLQJ RI WKH GLVHDVH 7KH\ KDYH DOVR OHDG XV WR D EHWWHU XQGHUVWDQGLQJ RI KXPDQ 6/( DQG EURXJKW XV FORVHU WR WKH XOWLPDWH JRDO RI XQUDYHOLQJ WKH P\VWHU\ RI DXWRLPPXQH GLVHDVHV 7KH PRXVH VWUDLQV WKDW KDYH EHHQ H[WHQVLYHO\ VWXGLHG LQFOXGH 1=% ; 1=:f) 1=% ; 6:5f) %;6% DQG 05/OSUOSU f 7KHVH VWUDLQV SURGXFH KLJK OHYHOV RI DQWLQXFOHDU DQWLERGLHV $1$Vf DQG GHYHORS OXSXVOLNH JORPHUXORQHSKULWLV *1f 7KH 1HZ =HDODQG EODFN 1=%f +Gf VWUDLQ ZDV LQLWLDOO\ EUHG IRU FRDW FRORU E\ 0 %LHOVFKRZVN\ DW WKH 8QLYHUVLW\ RI 2WDJR 0HGLFDO 6FKRRO LQ 1HZ =HDODQG f 7KH JHQHWLF EDFNJURXQG RI WKLV VWUDLQ LV XQNQRZQ 1=% PLFH GHYHORS D GLVHDVH VWDWH FKDUDFWHUL]HG E\ DQ DXWRLPPXQH KHPRO\WLF DQHPLD f 7KH OXSXVOLNH QHSKULWLV LV OHVV VHYHUH LQ 1=% PLFH WKDQ LQ LWV K\EULGV 1=% PLFH SURGXFH $1$V EXW QRW KLJK OHYHOV RI ,J* DQWLERGLHV WR GRXEOH VWUDQGHG '1$ GV'1$f RU KLVWRQHV 7KH 1HZ =HDODQG :KLWH 1=:f +=f VWUDLQ ZDV GHYHORSHG E\ +DOO DW WKH 2WDJR 0HGLFDO 6FKRRO $QLPDO %UHHGLQJ 6WDWLRQ f DQG LWV JHQHWLF EDFNJURXQG LV DOVR XQNQRZQ 1=: PLFH DUH IRU WKH PRVW SDUW SKHQRW\SLFDOO\ QRUPDO 1=% ; 1=:f) K\EULG PLFH ILUVW GHVFULEHG E\ +HO\HU DQG +RZLH f GHYHORSH IORULG UHQDO G\VIXQFWLRQ DQG IDLOXUH VLPLODU WR KXPDQ OXSXV

PAGE 14

QHSKULWLV 7KH K\EULG PLFH DOVR GHYHORS DXWRDQWLERGLHV WR D QXPEHU RI QXFOHDU FRPSRQHQWV LQFOXGLQJ VV'1$ GV'1$ KLVWRQH DQG FKURPDWLQ 7KH ), K\EULGV RI 1=% DQG 1=: SURYLGHG WKH ILUVW H[SHULPHQWDO PRGHO RI KXPDQ 6/( DQG KDYH EHHQ VWXGLHG H[WHQVLYHO\ E\ D ODUJH QXPEHU RI LQYHVWLJDWRUV 2WKHU WZR PXULQH VWUDLQV WKDW DOVR VSRQWDQHRXVO\ GHYHORS D 6/(OLNH V\QGURPH DUH 05/ DQG %;6% 7KH\ ZHUH GHYHORSHG E\ 0XUSK\ DQG 5RWKV DW WKH -DFNVRQ /DERUDWRU\ f $GGLWLRQ RI WKHVH VWUDLQV KDV JUHDWO\ HQKDQFHG WKH SRWHQWLDO YDOXH RI PXULQH 6/( DV DQ H[SHULPHQWDO PRGHO DQG KDV EURDGHQHG RXU XQGHUVWDQGLQJ RI DXWRLPPXQLW\ 7KH 1HZ =HDODQG 0L[HG 1=0f+=f VWUDLQV ZHUH SURGXFHG DQG FKDUDFWHUL]HG E\ 5XGRIVN\ f 7KH\ DUH D FROOHFWLRQ RI LQEUHG VWUDLQV GHULYHG IURP VHOHFWLYH LQEUHHGLQJ RI SURJHQ\ IURP D FURVV EHWZHHQ 1=% DQG 1=: PLFH 7KHVH VWUDLQV KDYH LQKHULWHG YDULRXV JHQRPLF VHJPHQWV IURP WKH WZR SDUHQWDO VWUDLQV H[SUHVV D ERDUG VSHFWUXP RI 6/(UHODWHG DXWRLPPXQH SKHQRW\SHV DQG VKRZ GLIIHUHQW VXVFHSWLELOLWLHV WR OXSXV 2QH VWUDLQ 1=0 SURGXFHV KLJK OHYHOV RI ,J* DXWRDQWLERGLHV WR QXFOHDU DQWLJHQV DV HDUO\ DV PRQWKV RI DJH DQG GHYHORSV VHYHUH OXSXVOLNH UHQDO GLVHDVH LQ ERWK VH[HV *HQHWLF $QDO\VLV RI 6XVFHSWLELOLW\ WR 6/( LQ 0XULQH 0RGHOV $QDO\VLV RI DXWRLPPXQH SKHQRW\SHV DQG OXSXVOLNH UHQDO GLVHDVH LQ 1=% ; 1=:f ), ) DQG EDFNFURVVHV EHWZHHQ 1=% DQG 1=: PLFH LOOXVWUDWHV WKH JHQHWLF

PAGE 15

FRPSOH[LW\ DQG SRO\JHQLF LQKHULWDQFH RI WKH GLVHDVH (DUOLHU JHQHWLF VWXGLHV KDG OLPLWDWLRQV DQG ZHUH QRW DEOH WR DVVLJQ FKURPRVRPDO ORFDWLRQV RI VXVFHSWLELOLW\ JHQHV KRZHYHU WKHVH FODVVLF VWXGLHV VWLOO SURYLGH YDOXDEOH GDWD %UDYHUPDQ f FURVVHG 1=% DQG 1=: DQG REVHUYHG YDU\LQJ VHYHULWLHV RI UHQDO KLVWRSDWKRORJLFDO FKDQJHV LQ WKH ) PLFH ZKLFK VXJJHVWHG WKH LQYROYHPHQW RI PXOWLSOH JHQHV IURP ERWK 1=% DQG 1=: .QLJKW t $GDPV f SHUIRUPHG 1=% ; 1=:f) ; 1=: DQG 1=% ; 1=:f) ; 1=: EDFNFURVVHV DQG FRQFOXGHG WKDW 1=% FRQWULEXWHV D VLQJOH GRPLQDQW JHQH DQG 1=: FRQWULEXWHV WZR JHQHV WR WKH GHYHORSPHQW RI VHYHUH UHQDO GLVHDVH DQG GHDWK 7KHVH LQYHVWLJDWRUV DOVR FRQFOXGHG WKDW RQH RI WKH WZR 1=: JHQHV PLJKW EH OLQNHG WR WKH 0+& 6KLUDL DQG FROOHDJXHV VWXGLHG WKH JHQHWLFV RI 1=% ; 1=:f) WUDLWV XVLQJ EDFNFURVV DQDO\VHV DQG VXJJHVWHG WKDW WZR GRPLQDQW JHQHV IURP 1=% DQG RQH GRPLQDQW JHQH IURP 1=: FRQWULEXWH WR WKH IRUPDWLRQ RI JSDQWLJS LPPXQH FRPSOH[HV f .RW]LQ DQG FROOHDJXHV UHSRUWHG RQH GRPLQDQW JHQH IURP 1=: FRQWULEXWHV WR UHQDO GLVHDVH DQG VXJJHVWHG D VWURQJ FRUUHODWLRQ EHWZHHQ WKH 1=: 0+& KDSORW\SH += DQG WKH SKHQRW\SH f +LURVH DQG FRZRUNHUV H[WHQGHG WKHVH REVHUYDWLRQV E\ FRQVWUXFWLQJ 1=% +Gf DQG 1=: +=f FRQJHQLH VWUDLQV ZLWK WKH UHFLSURFDO + DQG FRPSDULQJ 1=%+= ; 1=:f) DQG 1=% ; 1=:+Gf ), WR RULJLQDO 1=% ; 1=:f) 7KHLU UHVXOWV VXJJHVWHG WKDW KHWHUR]\JRVLW\ DW WKH 0+& PLJKW EH UHTXLUHG IRU GLVHDVH GHYHORSPHQW f )URP WKHVH VWXGLHV WZR WR WKUHH JHQHV IURP 1=% DQG RQH WR WZR JHQHV IURP 1=: ZHUH HVWLPDWHG WR FRQWULEXWH WR WKH GLVHDVH 7KH QXPEHU RI JHQHV LQYROYHG FRXOG EH GHSHQGDQW RQ WKH SDUWLFXODU WUDLW RU WUDLWV H[DPLQHG DV ZHOO DV WKH JHQHWLF EDFNJURXQG

PAGE 16

5HFHQW DGYDQFHV LQ PROHFXODU ELRORJ\ WHFKQLTXHV KDYH SURYLGHG QHZ PHDQV WR VFUHHQ WKH ZKROH JHQRPH IRU VXVFHSWLELOLW\ ORFL DQG WR DVVHVV WKH LQYROYHPHQW RI DYDLODEOH FDQGLGDWH JHQHV 7KH LGHQWLILFDWLRQ RI ODUJH QXPEHUV RI KLJKO\ SRO\PRUSKLF VLPSOH VHTXHQFH UHSHDWV VSDFHG WKURXJKRXW WKH JHQRPH SURYLGH WKH EDVLV IRU PDSSLQJ VWXGLHV f 7KH SRO\PHUDVH FKDLQ UHDFWLRQ 3&5f PHWKRG PDNHV LW SRVVLEOH WR JHQRW\SH ODUJH QXPEHUV RI DQLPDOV f DQG WKH GHYHORSPHQW RI VRSKLVWLFDWHG FRPSXWHU SURJUDPV PDNHV GDWD DQDO\VLV TXLFN DQG DFFXUDWH 7KHVH WHFKQLTXHV SHUPLW WKH LGHQWLILFDWLRQ RI PXOWLSOH ORFL FRQWULEXWLQJ WR D JLYHQ WUDLW ZLWKRXW UHTXLULQJ SUHH[LVWLQJ NQRZOHGJH RI FDQGLGDWH ORFL RU WKHLU SRVLWLRQV 6HYHUDO JURXSV KDYH XVHG WKHVH WRROV WR SHUIRUP JHQRPHn ZLGH VHDUFKHV DQG WR LGHQWLI\ VXVFHSWLELOLW\ ORFL UHVSRQVLEOH IRU OXSXV QHSKULWLV DQG D YDULHW\ RI OXSXVDVVRFLDWHG DXWRLPPXQH SKHQRW\SHV 6WXGLHV RI WKH 05/OSU ; &$67(,f) ; 05/OSU EDFNFURVV PLFH LGHQWLILHG WZR ORFL DVVRFLDWHG ZLWK UHQDO GLVHDVH /UGPO RQ FKURPRVRPH DQG /UGP RQ FKURPRVRPH f 7KH VWXG\ RI 1=% ; 1=:f) LQWHUFURVV PLFH E\ .RQR HW DO f LGHQWLILHG HLJKW VXVFHSWLELOLW\ ORFL /EZO WR RQ FKURPRVRPHV DQG UHVSHFWLYHO\f DVVRFLDWHG ZLWK DQWLFKURPDWLQ DXWRDQWLERG\ SURGXFWLRQ ^/EZO /EZ /EZf *1 ^/EZO /EZ /EZf DQGRU PRUWDOLW\ ^/EZOf 'UDNH HW DO LQYHVWLJDWHG 1=% FRQWULEXWLRQ WR OXSXVOLNH UHQDO GLVHDVH 7KHLU ZRUN ZLWK 1=% ; 1=:f) ; 1=% EDFNFURVV VKRZHG WKDW D VLQJOH 1=% ORFXV QEDOf RQ FKURPRVRPH ZDV DVVRFLDWHG ZLWK UHQDO GLVHDVH DQG GHDWK f 7KLV JURXS DOVR SHUIRUPHG JHQHWLF DQDO\VLV LQ 1=% ; 60-f) ; 1=: PLFH DQG IRXQG VL[ 1=% ORFL RQ FKURPRVRPHV f FRQWULEXWLQJ WR UHQDO GLVHDVH f 7KH\ FRQILUPHG WZR ORFL SUHYLRXVO\ LGHQWLILHG ^QEDO RQ

PAGE 17

FKURPRVRPH DQG QED RQ FKURPRVRPH f DQG GHWHFWHG WZR QHZ ORFL RQ FKURPRVRPHV DQG f LQ D %$/%+= ; 1=%f) ; 1=% FURVV f 0RUHO HW DO f LGHQWLILHG WKUHH VXVFHSWLELOLW\ LQWHUYDOV DQG WKH 0+& ORFXV DVVRFLDWHG ZLWK *1 LQ WKH 1=%:GHULYHG 1=0 OXSXVSURQH VWUDLQ EDFNFURVVHG WR % 7KH WKUHH VXVFHSWLELOLW\ ORFL DUH 6OHO RQ WKH WHORPHULF HQG RI FKURPRVRPH 6OH RQ WKH FHQWURPHULF HQG RI FKURPRVRPH DQG 6OH RQ WKH FHQWURPHULF HQG RI FKURPRVRPH *HQHWLF DQDO\VLV LQGLFDWHG VHYHUDO ZD\V LQ ZKLFK VXVFHSWLELOLW\ JHQHV FRXOG LQIOXHQFH RYHUDOO GLVHDVH WKUHVKROG OLDELOLW\ LQ OXSXV )LUVW HDFK RI WKHVH VXVFHSWLELOLW\ DOOHOHV LQGHSHQGHQWO\ FRQWULEXWHG WR WKH RYHUDOO *1 VXVFHSWLELOLW\ LQ DQ DGGLWLYH IDVKLRQ ZKLFK LV FRPPRQO\ GHVFULEHG DV D WKUHVKROG RI JHQHWLF OLDELOLW\ 6HFRQG VHYHUDO VXVFHSWLELOLW\ DOOHOHV DUH QHHGHG WR H[SUHVV KLJK IUHTXHQF\ RI *1 EXW QRQH RI WKHVH DOOHOHV DUH DEVROXWHO\ UHTXLUHG 7KLV LV DQ LPSRUWDQW IHDWXUH RI D SRO\JHQLF GLVHDVH 7KLUG DOWKRXJK WKH PLFH H[SUHVV DQ LGHQWLFDO DUUD\ RI VXVFHSWLELOLW\ JHQHV WKH SURSRUWLRQ RI 1=0 PLFH GHYHORSLQJ *1 DQG SHQHWUDQFH RI *1 LQFUHDVHG ZLWK DJH LQGLFDWLQJ WKDW WKH H[SUHVVLRQ RI FRPSOH[ WUDLWV UHTXLUHV fWULJJHULQJ HYHQWVf f ,Q VXPPDU\ JHQHWLF PDSSLQJ VWXGLHV KDYH LGHQWLILHG VXVFHSWLELOLW\ ORFL WKDW DUH OLQNHG WR DXWRLPPXQH SKHQRW\SHV RI OXSXV 7KHVH VWXGLHV LOOXVWUDWH WKH FRPSOH[LW\ RI WKH JHQHWLFV RI 6/( :LWKLQ HDFK FURVV VRPH ORFL ZHUH DVVRFLDWHG ZLWK D VLQJOH GLVWLQFW SKHQRW\SH VXJJHVWLQJ WKH\ PD\ DFW RQ GLIIHUHQW SDWKZD\V DQG FRQWULEXWH VSHFLILF FRPSRQHQW SKHQRW\SHV WR GLVHDVH VXVFHSWLELOLW\ 6RPH ORFL FRQWULEXWHG WR PXOWLSOH SKHQRW\SHV VXJJHVWLQJ WKH\ SOD\ UROHV LQ D FRPPRQ SDWKZD\ OLQNHG WR PXOWLSOH SKHQRW\SHV ,QWHUHVWLQJO\ VXVFHSWLELOLW\ ORFL RQ FKURPRVRPH DQG KDYH EHHQ

PAGE 18

UHSRUWHG E\ WKUHH JURXSV LQ GLIIHUHQW FURVVHV LQGLFDWLQJ WKHVH VXVFHSWLELOLW\ JHQHV PD\ EH FRPPRQ WR WKH OXSXV SDWKRJHQHVLV LQ 1=% DQG 1=: VWUDLQV 7KH QXPEHU DQG ORFDWLRQ RI JHQHV GHWHFWHG DUH GLIIHUHQW GHSHQGLQJ RQ ZKLFK DIIHFWHG VWUDLQV DQG UHVLVWDQW VWUDLQV DUH XVHG DQG KRZ WKH\ DUH FURVVHG 7KLV GLIIHUHQFH PD\ UHSUHVHQW WKH HSLVWDWLF LQWHUDFWLRQV RI VXVFHSWLELOLW\ JHQHV UHVLVWDQFH JHQHV DQG EDFNJURXQG JHQHV &OHDU GHPRQVWUDWLRQ RI WKH QDWXUH RI HDFK ORFXV DQG WKH UHODWLRQVKLS EHWZHHQ ORFL ZRXOG UHTXLUH WKH SURGXFWLRQ RI FRQJHQLH VWUDLQV FDUU\LQJ GLIIHUHQW VLQJOH ORFL DQG SRO\FRQJHQLF VWUDLQV 7KH &RQWULEXWLRQ RI 0+& DQG 1RQ0+& *HQHV WR 0XULQH /XSXV 6XVFHSWLELOLW\ 7KH FRQWULEXWLRQ RI FHUWDLQ 0+& DOOHOHV WR OXSXV VXVFHSWLELOLW\ KDV EHHQ ZHOO GRFXPHQWHG ERWK LQ KXPDQ DQG PRXVH PRGHOV 6XFK DQ DVVRFLDWLRQ LV UHDVRQDEOH EHFDXVH DXWRLPPXQH GLVHDVHV DUH 7 FHOO GHSHQGHQW DQG DOO 7 FHOO PHGLDWHG UHVSRQVHV DUH 0+& UHVWULFWHG 7KH 0+& PD\ DIIHFW SUHGLVSRVLWLRQ WR DXWRLPPXQH GLVHDVH E\ VKDSLQJ WKH 7 FHOO UHFHSWRU UHSHUWRLUH VHOHFWLQJ DQG SUHVHQWLQJ SHSWLGH WR 7 FHOOV ,Q VWXGLHV ZLWK FURVVHV RI 1=% ; 1=: RU 1=% ; 6:5 PLFH KHWHUR]\JRVLW\ DW WKH 0+& +G] RU +OAf FRQIHUUHG JUHDWHU VXVFHSWLELOLW\ WR OXSXV WKDQ KRPR]\JRXV SDUHQWDO KDSORW\SHV f $QWLERGLHV WR FODVV ,, PROHFXOHV FDQ SUHYHQW WKH GHYHORSPHQW RI WKH GLVHDVH f )XUWKHU VXSSRUW IRU 0+& FODVV ,, DV D GLVHDVH SUHGLVSRVLQJ PROHFXOH GHULYHV IURP D UHSRUW LQ ZKLFK D ZHOOVWXGLHG ,$EP S FKDLQ PXWDWLRQ ZDV EUHG RQWR WKH 1=% EDFNJURXQG f 1=% PLFH FRQJHQLH IRU WKLV FODVV ,, PXWDWLRQ 1=%+EPf GHYHORSHG DQWLGV'1$

PAGE 19

DQWLERGLHV DQG OXSXVOLNH UHQDO GLVHDVH VLPLODU WR 1=% ; 1=:f) PLFH ZKHUHDV 1=% PLFH FRQJHQLH IRU +E 1=%+Ef GLG QRW H[SUHVV DQ\ VLJQV RI DXWRLPPXQH GLVHDVH 7KH ,$3 VHTXHQFHV RI +EP DQG +E GLIIHU RQO\ WKUHH DPLQR DFLGV LQ WKH SHSWLGHn ELQGLQJ JURRYH DW SRVLWLRQV DQG 7KLV WKUHH DPLQR DFLG VXEVWLWXWLRQ ZLWKLQ WKH 0+& FODVV ,, PROHFXOH LV FDSDEOH RI DOWHULQJ WKH 1=% SKHQRW\SH WR RQH RI VHYHUH OXSXVn OLNH UHQDO GLVHDVH ,W KDV EHHQ K\SRWKHVL]HG WKDW WKH QRYHO K\EULG 0+& FODVV ,, PROHFXOHV JHQHUDWHG E\ D DQG S FKDLQV IURP GLIIHUHQW KDSORW\SH WR SDLU FRQWULEXWH WR DXWRLPPXQLW\ f $OWKRXJK WKH 0+& KDV D PDMRU LPSDFW RQ OXSXV VXVFHSWLELOLW\ LW LV QRW UHTXLUHG DQG LQVXIILFLHQW E\ LWVHOI IRU WKH GHYHORSPHQW RI WKH GLVHDVH $VVRFLDWLRQ RI +G] ZLWK WKH GLVHDVH LV LPSHUIHFW b RI KHWHUR]\JRXV +G] EDFNFURVV PLFH GLG QRW GHYHORS WKH GLVHDVH ZKHUHDV b RI KRPR]\JRXV +GG EDFNFURVV PLFH GLG f 1=% PLFH FURVVHG ZLWK QRUPDO EDFNJURXQG %$/%F PLFH FRQJHQLH IRU += GR QRW GHYHORS GLVHDVH f 7KLV ZRUN LOOXVWUDWHV WKDW ERWK 0+& DQG QRQ0+& JHQHV DUH UHTXLUHG *HQRPHZLGH VHDUFKHV XVLQJ PLFURVDWHOOLWHGHIPHG FKURPRVRPDO PDSV KDYH LGHQWLILHG PXOWLSOH QRQ 0+& ORFL UHVSRQVLEOH IRU SUHGLVSRVLQJ WR OXSXV ,QKHULWDQFH RI 6/( 6XVFHSWLELOLW\ DV D 7KUHVKROG /LDELOLW\ 7KH 6/( LV D SRO\JHQLF GLVHDVH UHTXLULQJ PXOWLSOH JHQHV +RZ PXOWLSOH JHQHV LQWHUDFW WR FDXVH D GLVHDVH VXVFHSWLELOLW\ SKHQRW\SH LV QRW NQRZQ 'DWD IURP D 1=0 ; %f) ; 1=0 EDFNFURVV VKRZHG WKDW WKH LQFUHDVH LQ *1 IUHTXHQF\ FRUUHODWHG

PAGE 20

ZLWK DQ LQFUHDVH LQ WKH QXPEHU RI VXVFHSWLELOLW\ ORFL FDUULHG E\ LQGLYLGXDO SURJHQ\ f 7KHVH UHVXOWV VXJJHVW WKDW WKH GLVHDVH LV LQKHULWHG DV D WKUHVKROG RI JHQHWLF OLDELOLW\ 7KLV FRQFOXVLRQ LV VXSSRUWHG E\ ZRUN GRQH E\ RWKHU JURXSV XVLQJ GLIIHUHQW EDFNFURVVHV WR VWXG\ OXSXV f GLDEHWHV f DQG H[SHULPHQWDO DOOHUJLF HQFHSKDORP\HOLWLV f 7KH WKUHVKROG OLDELOLW\ K\SRWKHVLV LV EDVHG RQ WKH FRQFHSW WKDW VHYHUDO GLVHDVH VXVFHSWLELOLW\ JHQHV FRQWULEXWH HTXDOO\ WR WKH RYHUDOO OLDELOLW\ RI GHYHORSLQJ GLVHDVH DQG WKDW WKH SUREDELOLW\ DQG RQVHW RI DQ LQGLYLGXDO GHYHORSLQJ GLVHDVH LV SURSRUWLRQDO WR WKH QXPEHU RI VXVFHSWLELOLW\ JHQHV LQKHULWHG :H IXUWKHU GHPRQVWUDWHG WKLV UHODWLRQVKLS E\ DQDO\VLV RI WKUHH FRQJHQLH VWUDLQV WKDW FRQWDLQ RQO\ RQH VXVFHSWLELOLW\ ORFXV IURP 1=0 f (DFK FRQJHQLH VWUDLQ H[SUHVVHG GLVWLQFWO\ GLIIHUHQW FRPSRQHQW SKHQRW\SHV DQG PXOWLSOH JHQHV ZHUH QHFHVVDU\ WR REWDLQ IXOO H[SUHVVLRQ RI 6/( % &HOO $FWLYDWLRQ DQG 7ROHUDQFH LQ /XSXV 7KH SULPDU\ IXQFWLRQ RI % O\PSKRF\WHV LV WR PDNH DQWLERGLHV DJDLQVW FRPSRQHQWV RI IRUHLJQ RUJDQLVPV 6HOIUHDFWLYH % FHOOV DUH HOLPLQDWHG DW PXOWLSOH FKHFNSRLQWV DORQJ WKH % FHOO OLQHDJH UHYLHZHG LQ UHI f (DFK RI WKHVH FKHFNSRLQWV KDV WULJJHULQJ WKUHVKROGV WKDW LPSRVH OLPLWV RQ WKH H[WHQW RI WROHUDQFH 7KLV LV D NLQG RI EDODQFH V\VWHP 2Q WKH RQH VLGH VXFK OLPLWV HQVXUH WKDW D VXIILFLHQW IUDFWLRQ RI WKH UHSHUWRLUH LV SUHVHUYHG WR PRXQW UDSLG DQG HIIHFWLYH DQWLERG\ UHVSRQVHV WR IRUHLJQ DQWLJHQV 2Q WKH RWKHU VLGH WKH VDPH OLPLWV LQFUHDVH WKH ULVN RI DXWRLPPXQH GLVHDVH $ YDULHW\ RI HYHQWV HLWKHU

PAGE 21

H[RJHQRXV RU HQGRJHQRXV FRXOG WLS WKH GHOLFDWH EDODQFH VR WKDW KDUPIXO DXWRUHDFWLYLW\ LV WKH RXWFRPH ,I WKLV LPEDODQFH LV SHUPDQHQW FKURQLF DXWRLPPXQH SKHQRPHQD VXFK DV 6/( PD\ RFFXU 7KH IXQGDPHQWDO HYHQW LQ WKH SDWKRJHQHVLV RI OXSXV LV % FHOO K\SHUDFWLYLW\ ZKLFK LV UHVSRQVLEOH IRU WKH K\SHUJDPPDJOREXOLQHPLD VSRQWDQHRXV SRO\FORQDO DQWLERG\ SURGXFWLRQ DQG VHFUHWLRQ RI YDULRXV DXWRDQWLERGLHV f 3RO\FORQDO % FHOO DFWLYDWLRQ LV WKH HDUOLHVW DQG PRVW FRPPRQ LPPXQRORJLFDO DEQRUPDOLW\ RI 1=% 1=% ; 1=:f) DQG RWKHU OXSXVSURQH VWUDLQV SUHFHGLQJ WKH SDWKRJHQLF DXWRLPPXQH UHVSRQVH f 7KH SDWKRJHQLF DXWRDQWLERG\SURGXFLQJ % FHOOV DUH GULYHQ E\ VHOIDQWLJHQV UHYLHZHG LQ UHI f 7KLV VXEVHW RI % FHOOV DUH FORQDOO\ H[SDQGHG DQG WKHLU LPPXQRJOREXOLQ JHQHV DUH PRGLILHG E\ VRPDWLF PXWDWLRQ ,J* DXWRDQWLERG\ SURGXFWLRQ LQ OXSXV LV VHOHFWLYH IRU FHUWDLQ VHOIDQWLJHQV DQG WKHUH LV VWURQJ HYLGHQFH WKDW % FHOOV DUH LQWULQVLFDOO\ GHIHFWLYH LQ PXULQH OXSXVSURQH PLFH 6&,' PLFH SRSXODWHG ZLWK ORQJWHUP SUH% FHOOV IURP 1=% ; 1=:f) PLFH EXW QRW WKRVH SRSXODWHG ZLWK % ; '%$f) SUH% FHOOV GHYHORSHG K\SHUJDPPDJOREXOLQHPLD DQG LQFUHDVHG ,J0 DQG ,J* DXWRDQWLERGLHV WR QXFOHDU DQWLJHQV DQG b RI WKHVH DQLPDOV DOVR GHYHORSHG PLOG QHSKULWLV f )XUWKHU VWXGLHV XVLQJ SUH% FHOO OLQHV GHULYHG IURP WKH SDUHQWDO 1=% DQG 1=: VWUDLQV VXJJHVW WKDW %OLQHDJH FHOOV IURP ERWK 1=% DQG 1=: SDUHQWDO VWUDLQV PDQLIHVW DEQRUPDOLWLHV DVVRFLDWHG ZLWK WKH GHYHORSPHQW RI OXSXVOLNH GLVHDVH f ,W LV XQGHUVWDQGDEOH WKDW HUURUV LQ FHQWUDO RU SHULSKHUDO WROHUDQFH DW WKH 7 RU % FHOO OHYHO FDQ FDXVH V\VWHPLF DXWRLPPXQH GLVHDVH +RZHYHU WKHUH LV VFDQW HYLGHQFH IRU GHIHFWV LQ % FHOO WROHUDQFH LQ 1HZ =HDODQG PLFH f 6WXGLHV LQGLFDWH WKDW SRWHQWLDOO\

PAGE 22

SDWKRJHQLF % FHOOV DUH SDUW RI WKH SHULSKHUDO UHSHUWRLUH DQG WKH\ FDQ EH H[SDQGHG E\ JUDIW YHUVXVKRVW UHDFWLRQV f 1RUPDO DQLPDOV FDQ JHQHUDWH DXWRDQWLERG\ UHVSRQVHV DIWHU LPPXQL]DWLRQ ZLWK VHOISHSWLGHV f 7KXV GHIHFWV LQ FHQWUDO % FHOO WROHUDQFH DUH XQOLNHO\ WR EH QHFHVVDU\ WR DOORZ IRU OXSXVOLNH DXWRDQWLERG\ SURGXFWLRQ 2Q WKH RWKHU KDQG GHIHFWV LQ WKH UHJXODWLRQ RI % FHOO DSRSWRVLV KDYH WKH SRWHQWLDO WR OHDG WR GHYHORSPHQW RI DXWRUHDFWLYH % FHOOV DQG LQFUHDVH DXWRDQWLERG\ SURGXFWLRQ 7KHUH DUH VRPH UHSRUWV RI D GHIHFW LQ % FHOO DSRSWRVLV LQGXFWLRQ LQ 1HZ =HDODQG PLFH f 7KH LPSRUWDQFH RI WKLV IDFWRU LQ SDWKRJHQHVLV RI WKH GLVHDVH QHHGV IXUWKHU VWXG\ 7KH 5ROH RI &' 7 &HOOV LQ WKH 3DWKRJHQHVLV RI 6/( 7KH DVVRFLDWLRQ RI 6/( ZLWK SDUWLFXODU 0+& FODVV ,, DOOHOHV FODVV VZLWFKLQJ DQG DIILQLW\ PDWXUDWLRQ RI DXWRDQWLERG\ SURGXFWLRQ LQ WKLV GLVHDVH VWURQJO\ VXJJHVW WKDW &' 7 FHOOV DUH LPSRUWDQW LQ SDWKRJHQHVLV RI WKH GLVHDVH (YLGHQFH IRU WKH LQYROYHPHQW RI &' 7 FHOOV LQFOXGHV WKH DXWRLPPXQH FRQGLWLRQ RI 1=% ; 1=:f) PLFH LV LPSURYHG IROORZLQJ WUHDWPHQW ZLWK DQWL&' DQWLERGLHV f ERWK 7 DQG % FHOOV DUH QHHGHG LQ RUGHU WR LQGXFH DQWLGV'1$ ,J* V\QWKHVLV f WKH LQFLGHQFH RI OXSXV QHSKULWLV LV GHOD\HG DQG UHGXFHG DIWHU EORFNLQJ 7 FHOO% FHOO LQWHUDFWLRQ f &HUWDLQ &' 7 FHOOV KDYH EHHQ VKRZQ WR GULYH SDWKRJHQLF % FHOOV WR VHOHFWLYHO\ VHFUHWH DQWL'1$ DXWRDQWLERGLHV LQ PXULQH PRGHOV DQG LQ KXPDQV f 7KH PDMRU VXEFODVV RI SDWKRJHQLF DQWL'1$ DXWRDQWLERGLHV LV ,J*D DQG ,J*E ZKLFK LV DOVR FRQVLVWHQW ZLWK &' 7 FHOO KHOS

PAGE 23

$OWKRXJK DQ DQWL'1$ UHVSRQVH LV WKH KDOOPDUN RI OXSXV HIIRUWV WR LQGXFH VXFK DXWRDQWLERGLHV E\ LPPXQL]DWLRQ ZLWK QDWLYH Qf '1$ KDYH JHQHUDOO\ EHHQ XQVXFFHVVIXO 7KH GHWHUPLQDQWV RI DXWRUHDFWLYH &' 7 FHOOV PD\ UHVLGH RQ GLIIHUHQW PROHFXOHV &' 7 FHOO FORQHV VSHFLILF IRU DQWLQ'1$ DQWLERG\ LQGXFWLRQ ZHUH VKRZQ WR SUROLIHUDWH LQ WKH SUHVHQFH RI QXFOHRVRPHV EXW QRW WKHLU FRQVWLWXHQW Q'1$ RU KLVWRQHV f 7KHVH &' 7 FHOOV PD\ EH VSHFLILF IRU QXFOHRVRPHV 7KXV IRU DQWLQ'1$ DQWLERG\ LQGXFWLRQ &' 7 FHOOV PD\ SURYLGH LQWHUPROHFXODU KHOS WR DQWL'1$ VSHFLILF % FHOOV YLD WKH ELQGLQJ RI QXFOHRVRPHV RU RWKHU SURWHLQ'1$ FRPSOH[HV /RVV RI FHQWUDO RU SHULSKHUDO 7 FHOO WROHUDQFH ZLOO FDXVH V\VWHPLF DXWRLPPXQH GLVHDVH 6WXGLHV LQ OXSXV PLFH KDYH VXJJHVWHG WKDW KLJK DIILQLW\ UHVSRQVHV WR VHOIDQWLJHQV DUH WROHUDWHG LQ WKH WK\PXV DQG QRUPDO WK\PLF GHOHWLRQ RI VXSHUDQWLJHQ UHDFWLYH 9Sr EHDULQJ 7 FHOOV KDYH EHHQ REVHUYHG f 7 FHOOV VSHFLILF IRU GRPLQDQW GHWHUPLQDQWV RI VHOIDQWLJHQV DUH GHOHWHG HIILFLHQWO\ LQ WK\PXV EXW 7 FHOOV GLUHFWHG WR FU\SWLF VHOIn GHWHUPLQDQWV PD\ HVFDSH WROHUDQFH LQGXFWLRQ DQG EH SDUW RI WKH QRUPDO SHULSKHUDO 7 FHOO UHSHUWRLUH UHYLHZHG LQ UHI f 7KHUHIRUH DEQRUPDO SUHVHQWDWLRQ RI FU\SWLF VHOIn GHWHUPLQDQWV LQ WKH SHULSKHU\ RU D GHIHFW LQ SHULSKHUDO 7 FHOO WROHUDQFH LQ OXSXV FRXOG DFWLYDWH DXWRLPPXQH 7 FHOOV

PAGE 24

$XWRDQWLERGY 3URGXFWLRQ DQG /XSXV 1HSKULWLV 7KH KDOOPDUN RI 6/( LQ KXPDQ DQG PXULQH PRGHOV LV HOHYDWHG VHUXP OHYHOV RI DQWLERGLHV WR QXFOHDU DQWLJHQV 7KHUH LV VXEVWDQWLDO HYLGHQFH WKDW DQWLGV'1$ DQWLERGLHV SOD\ DQ LPSRUWDQW UROH LQ WKH SDWKRJHQHVLV RI UHQDO GLVHDVH LQ OXSXV PLFH )LUVW DQWL'1$ DXWRDQWLERGLHV DUH IRXQG FRQFHQWUDWHG LQ NLGQH\ HOXWHV 6HFRQG PRQRFORQDO DQWL'1$ DQWLERGLHV GHULYHG IURP OXSXV SURQH PLFH IRUP JORPHUXODU LPPXQH GHSRVLWV DQG LQGXFH GLIIHUHQW VWUXFWXUDO DQG IXQFWLRQDO DEQRUPDOLWLHV LQ YLYR DIWHU WUDQVIHU LQWR QRUPDO RU SUHDXWRLPPXQH PLFH f 7KLUG PRXVH ,J* DQWL'1$ DXWRDQWLERGLHV FDQ ELQG WR LVRODWHG SHUIXVHG NLGQH\ DQG LQGXFH NLGQH\ G\VIXQFWLRQ f )RXUWK JHQHWLF VWXGLHV RI OXSXV PLFH KDYH VKRZQ D GLUHFW UHODWLRQVKLS EHWZHHQ DQWL'1$ DQWLERG\ OHYHO *1 DQG PRUWDOLW\ f +RZHYHU QRW DOO DQWL'1$ DXWRDQWLERGLHV DUH SDWKRJHQLF 7KH FDWLRQLF FKDUJH LVRW\SH DQG FU\RSUHFLSLWDELOLW\ ZLOO GHWHUPLQH WKH SDWKRJHQLF SRWHQWLDO RI DQWL '1$ DQWLERGLHV f 7KH SDWKRJHQLF DQWL'1$ DQWLERGLHV LQGXFH HQGRUJDQ GDPDJH E\ WZ PHFKDQLVPV f 2QH LV WKDW DQWL'1$ DQWRERGLHV GLUHFWO\ RU LQGLUHFWO\ ELQG WR WKH JORPHUXOXV YLD KHSDUDQ VXOIDWHV WKH PDMRU JO\FRVDPLQRJO\FDQ FRQVWLWXHQW RI WKH JORPHUXODU EDVHPHQW PHPEUDQH f $QRWKHU LV WKDW DQWL'1$ DQWRERGLHV ILUVW IRUP LPPXQH FRPSOH[HV DQG WKHQ GHSRVLW RQWR DQLRQLF VLWHV RQ JORPHUXODU EDVHPHQW PHPEUDQH f

PAGE 25

$OWKRXJK PRVW VWXGLHV KDYH IRFXVHG RQO\ RQ DQWL'1$ DQWLERGLHV LQ WKH FDXVH RI OXSXV QHSKULWLV FRQVLGHUDEOH HYLGHQFH LQGLFDWHV WKDW DXWRDQWLERGLHV WR QRQ'1$ DQWLJHQV DUH DOVR LPSRUWDQW *HQHWLF VWXGLHV KDYH VXJJHVWHG D SDWKRJHQLF UROH IRU DXWRDQWLERGLHV WR WKH HQGRJHQRXV UHWURYLUDO JO\FRSURWHLQ JSf DQG JSDQWLJS LPPXQH FRPSOH[HV LQ WKH 1=% ; 1=:f) PRGHO f 5HODWLYHO\ ODUJH DPRXQWV RI WKH UHWURYLUDO JO\FRSURWHLQ JS FLUFXODWH LQ WKH EORRG RI ERWK OXSXV DQG QRQOXSXV PLFH EXW RQO\ OXSXV VWUDLQV VSRQWDQHRXVO\ SURGXFH DXWRDQWLERGLHV DJDLQVW WKLV PROHFXOH DQG FRQWDLQ JS DQWLJS FRPSOH[HV LQ WKHLU VHUXP f +RZHYHU VWXGLHV RQ VXEOLQHV RI 05/OSU PLFH VSHFLILFDOO\ EUHG IRU ORZ JS OHYHOV LQGLFDWHG WKDW DXWRLPPXQH GLVHDVH LQFOXGLQJ *1 LV HVVHQWLDOO\ XQFKDQJHG f 7KXV DOWKRXJK JSDQWLJS GHSRVLWV PD\ EH LQYROYHG LQ WKH SDWKRJHQHVLV RI OXSXV QHSKULWLV WKH\ DSSHDU QRW WR EH QHFHVVDU\ 5DWLRQDOH IRU 7KLV 6WXG\ 6/( LV D FRPPRQ FKURQLF GLVHDVH ,W LV HVWLPDWHG WKDW RYHU KDOI WR WKUHH TXDUWHUV RI D PLOOLRQ SHRSOH VXIIHU IURP LW LQ WKH 8QLWHG 6WDWHV DORQH ZKLOH LQ RWKHU SDUWV RI WKH JOREH WKH QXPEHUV DUH HYHQ KLJKHU f 7KH FDXVH RI 6/( LV XQNQRZQ 7KH FHQWUDO WKUXVW RI 6/( UHVHDUFK LV WR XQGHUVWDQG LWV FDXVH HVSHFLDOO\ JHQHWLF SUHGLVSRVLWLRQ ,I JHQHV FRQWULEXWLQJ WR WKH VXVFHSWLELOLW\ RI 6/( FDQ EHHQ LGHQWLILHG Df SHRSOH ZLWK KLJK ULVN FRXOG EH VFUHHQHG DQG WKRVH ZLWK VXVFHSWLELOLW\ JHQHV FRXOG EH VWDUWHG RQ SUHYHQWDWLYH WKHUDSLHV Ef GLDJQRVLV ZLOO EH PRUH HDV\ DQG DFFXUDWH Ff WUHDWPHQW ZLOO EH

PAGE 26

VSHFLILF DFFRUGLQJ WR LQGLYLGXDO JHQHWLF GHIHFWV DQG Gf LW ZLOO KHOS XV XQGHUVWDQG WKH IXQGDPHQWDO LPPXQRORJ\ RI VHOI DQG QRQVHOI GLVFULPLQDWLRQ %HFDXVH WKH LQKHULWDQFH RI 6/( LV FRPSOH[ LGHQWLILFDWLRQ RI JHQHV LQYROYHG LQ 6/( VXVFHSWLELOLW\ LQ RXWEUHG KXPDQ SRSXODWLRQV ZLOO EH YHU\ GLIILFXOW $QLPDO PRGHOV VXFK DV 1=% ; 1=:f) UHDGLO\ DOORZ H[SHULPHQWDO FURVVHV WR LGHQWLI\ VXVFHSWLELOLW\ JHQHV *HQHWLF VWXGLHV LQ PXULQH PRGHOV ZLOO KHOS WR LGHQWLI\ 6/( VXVFHSWLELOLW\ JHQHV LQ KXPDQV E\ FRPSDULQJ WKH V\QWHQLF UHJLRQV RI KXPDQ DQG PRXVH FKURPRVRPHV DQG E\ SURYLGLQJ LQIRUPDWLRQ DERXW SDWKRJHQLF SDWKZD\V 6XFFHVV KDV EHHQ PDGH LQ WKH LGHQWLILFDWLRQ RI JHQHV UHVSRQVLEOH IRU VLPSOH 0HQGHOLDQ WUDLWV ZKHUHLQ LGHQWLILFDWLRQ LV IDLUO\ VWUDLJKWIRUZDUG OLQNDJH DQDO\VLV SRVLWLRQDO FORQLQJ DQG GHWHFWLRQ RI PXWDWLRQ f
PAGE 27

FRQJHQLH PRXVH VWUDLQV ,W FDUULHV WKH 6OH LQWHUYDO RQ D UHVLVWDQW % EDFNJURXQG *HQHWLF DQG SKHQRW\SLF DQDO\VLV ZDV SHUIRUPHG LQ %1=0F PLFH LQFOXGLQJ VHURORJLF VWXGLHV FHOOXODU LPPXQRORJ\ VWXGLHV DQG KLVWRORJ\ VWXGLHV &KDSWHU f WR GHILQH WKH FRQWULEXWLRQ RI 6OH E\ LWVHOI DQG WR H[SORUH WKH XQGHUO\LQJ PHFKDQLVP E\ ZKLFK 6OH FRQWULEXWHV WR OXSXV 6OH LV D ODUJH LQWHUYDO DERXW F0f DQG OLQNDJH VWXGLHV VXJJHVW WZR VXVFHSWLELOLW\ ORFL PD\ SUHVHQW LQ WKLV LQWHUYDO 7R H[SORUH WKLV SRVVLELOLW\ ZH SURGXFHG WZR VXEFRQJHQLF PRXVH VWUDLQV EHDULQJ WKH FHQWURPHULF HQG %1=0FFf RU WKH WHORPHULF HQG %1=0FWf RI 6OH RQ D UHVLVWDQW % EDFNJURXQG &KDSWHU f 7KHVH VXEFRQJHQLF OLQHV ZHUH FKDUDFWHUL]HG VHURORJLFDOO\ LPPXQRORJLFDOO\ DQG KLVWRORJLFDOO\ IRU WKH GLVHDVH

PAGE 28

&+$37(5 0$7(5,$/6 $1' 0(7+2'6 0LFH $OO PLFH XVHG LQ WKLV VWXG\ ZHUH EUHG DQG PDLQWDLQHG XQGHU FRQYHQWLRQDO FRQGLWLRQV LQ RXU FRORQ\ LQ WKH 8QLYHUVLW\ RI )ORULGD 'HSDUWPHQW RI $QLPDO 5HVRXUFHV %UHHGLQJ SDLUV RI &%/%f ZHUH RULJLQDOO\ REWDLQHG IURP WKH -DFNVRQ /DERUDWRU\ DQG 1=0 EUHHGHUV ZHUH REWDLQHG IURP WKH :DGVZRUWK &HQWHU IRU /DERUDWRU\ DQG 5HVHDUFK 1HZ
PAGE 29

7KH %1=0FF DQG %1=0FW VXEFRQJHQLF PRXVH VWUDLQV ZHUH SURGXFHG E\ FURVVLQJ %1=0F KHWHUR]\JRWHV WR % WR JHQHUDWH D VHULHV RI UHFRPELQDQWV *HQRW\SLQJ ZDV SHUIRUPHG LQ WKHVH UHFRPELQDQW SURJHQ\ XVLQJ 665 PDUNHUV FRYHULQJ WKH 6OH LQWHUYDO 7ZR VXELQWHUYDOV ZHUH FKRVHG RQH FRQWDLQV WKH FHQWURPHULF HQG RI 6OH IURP FNPP WR '0LWOf DQG RWKHU FRQWDLQV WKH WHORPHULF HQG RI 6OH IURP '0LW WR '0LW f 3URJHQ\ EHDULQJ WKHVH WZR VXELQWHUYDOV ZHUH FURVVHG WR % DJDLQ WR JHQHUDWH PRUH DQLPDOV ZLWK WKHVH VSHFLILF UHFRPELQDWLRQV )LQDOO\ PLFH EHDULQJ WKHVH KHWHUR]\JRXV LQWHUYDOV ZHUH LQWHUFURVVHG WR SURGXFH PLFH WKDW ZHUH KRPR]\JRXV IRU WKHVH VPDOOHU LQWHUYDOV *HQRW\SLF $QDO\VLV *HQRPLF '1$ ZDV LVRODWHG IURP PRXVH WDLO ELRSVLHV E\ VWDQGDUG SKHQRO[KORURIRUP H[WUDFWLRQ 3ULPHUV IODQNLQJ 665 ZHUH SXUFKDVHG IURP 5HVHDUFK *HQHWLFV +XQWVYLOOH $ODf RU V\QWKHVL]HG DW WKH 8QLYHUVLW\ RI )ORULGD 3RO\PHUDVH FKDLQ UHDFWLRQ 3&5f WHFKQLTXH ZDV XVHG IRU JHQRW\SLQJ *HQRPLF '1$ O22QJf ZDV DPSOLILHG LQ XO UHDFWLRQV ZLWK Q0 SDLUHG SULPHUV P0 G173V DQG 8 RI 7DT '1$ SRO\PHUDVH LQ D VWDQGDUG LQFXEDWLRQ EXIIHU FRQWDLQLQJ P0 0J&O $PSOLILFDWLRQV ZHUH FDUULHG RXW LQ D 3HUNLQ(OPHU&HWXV WKHUPDO F\FOHU XQGHU WKH IROORZLQJ FRQGLWLRQV F\FOH DW r & IRU PLQ F\FOHV DW r IRU VHF r & IRU VHF DQG r IRU VHF F\FOH DW & IRU PLQ 7KH 3&5 SURGXFWV ZHUH GHWHFWHG XVLQJ b DJDURVH JHOV FRQWDLQLQJ HWKLGLXP EURPLGH 2SWLPDO DQQHDOLQJ WHPSHUDWXUH ZDV

PAGE 30

GHWHUPLQHG IRU HDFK SULPHU SDLU (DFK PRXVH ZDV VFRUHG DV 1=0 KRPR]\JRXV % KRPR]\JRXV RU KHWHUR]\JRXV IRU HDFK ORFXV JHQRW\SHG 0HDVXUHPHQW RI $QWLERGLHV 6HUXP ZDV FROOHFWHG ELPRQWKO\ VWDUWLQJ DW WZR PR RI DJH E\ WDLO EOHHGLQJ 6HUXP ZDV WHVWHG DJDLQVW D SDQHO RI DQWLJHQV LQFOXGLQJ GV'1$ VV'1$ FKURPDWLQ RU KLVWRQH'1$ FRPSOH[ KLVWRQH '13./+ DQG WK\URJOREXOLQ XVLQJ (/,6$ DV SUHYLRXVO\ GHVFULEHG f %ULHIO\ ,PPXORQ ,, SODWHV '\QDWHFK &KDQWLOO\ 9$f ZHUH FRDWHG ZLWK HDFK RI IROORZLQJ DQWLJHQV FDOI WK\PXV GV'1$ XJPOf VV'1$ XJPOf FKURPDWLQ OXJPOf SUHSDUHG DV SUHYLRXV GHVFULEHG LQ UHI ,OOf WRWDO KLVWRQH XJPOf ERYLQH WK\URJOREXOLQ XJPOf '13./+ OXJPO 6LJPD &KHPLFDO &R 6W /RXLV 02f 7KH SODWHV ZHUH EORFNHG ZLWK EORFNLQJ EXIIHU b%6$ bJHODWLQ P0 ('7$ LQ 3%6f 6HUXP IURP WHVW DQLPDOV ZDV GLOXWHG DQG LQFXEDWHG RQ WKHVH SODWHV IRU WZR KRXUV 6SHFLILF DQWLERGLHV ZHUH GHWHFWHG XVLQJ DONDOLQH SKRVSKDWDVHFRQMXJDWHG JRDW DQWLPRXVH ,J* RU ,J0 %RHKULQJHU 0DQQKHLPf DQG S133 VXEVWUDWH 2SWLFDO GHQVLW\ 2'f YDOXHV ZHUH REWDLQHG ZLWK DQ DXWRPDWHG VSHFWURSKRWRPHWHU DW Q0 $OO VDPSOHV ZHUH UXQ LQ GXSOLFDWH 7R DOORZ IRU LQWHUDVVD\ FRPSDULVRQV 2' YDOXHV ZHUH FRQYHUWHG WR D UHODWLYH XQLW VFDOH 8POf LQ UHIHUHQFH WR D VWDQGDUG FXUYH REWDLQHG ZLWK VHULDO GLOXWLRQV RI D 1=0 SRVLWLYH VHUXP DGGHG LQ HDFK (/,6$ SODWH $OWHUQDWLYHO\ WKH UHVXOWV DUH H[SUHVVHG DV LQGLYLGXDO SHUFHQWDJH b2'f LH WKH UDWLR RI WKH DEVRUEDQFH IURP WKH WHVW VDPSOH GLYLGHG E\ WKH DEVRUEDQFH RI PR % SRROHG VHUXP [ f f 3RVLWLYH

PAGE 31

VDPSOH VHUXP ZDV GHILQHG DV KDYLQJ DQWLERG\ WLWHUV DERYH WKH PHDQ WLWHUV SOXV WZR VWDQGDUG GHYLDWLRQ RI ILYH PRROG % VDPSOHV RQ WKH VDPH SODWH 6HUXP WRWDO ,J* DQG ,J0 ZHUH PHDVXUHG XVLQJ D VDQGZLFK (/,6$ %ULHIO\ ,PPXORQ SODWHV '\QDWHFK &KDQWLOO\ 9$f ZHUH FRDWHG ZLWK FDSWXUH DQWLERGLHV DQWLn PRXVH ,J0 DQG ,J* %RHKULQJHU 0DQQKHLPf DQG EORFNHG ZLWK EORFNLQJ EXIIHU GHVFULEHG DERYH ,J* RU ,J0 VWDQGDUGV &DSSHO 5HVHDUFKf DQG GLOXWLRQ RI VHUXP ZHUH DGGHG IRU WZR KRXUV 'HWHFWLRQ RI DQWLERGLHV ZDV DV GHVFULEHG DERYH )ORZ &\WRPHWULF $VVD\ )ORZ F\WRPHWULF DQDO\VLV )$&6f ZDV SHUIRUPHG DV GHVFULEHG SUHYLRXVO\ f $OO SULPDU\ DQWLERGLHV ZHUH REWDLQHG IURP 3KDUPLQJHQ 6DQ 'LHJR &$f DQG XVHG DW SUHn WLWUDWHG GLOXWLRQ 6LQJOH FHOO VXVSHQVLRQV RI WKH VSOHHQ DQG O\PSK QRGHV ZHUH SUHSDUHG E\ JHQWO\ PLQFLQJ WKH WLVVXHV LQ D VHUXPIUHH '0(0 XVLQJ WKH IURVWHG HQGV RI WZR VWHULOH JODVV VOLGH /\VLV RI HU\WKURF\WHV ZDV PDGH LQ K\SRWRQLF EXIIHUHG DPPRQLXP FKORULGH VROXWLRQ %RQH PDUURZ FHOOV ZHUH REWDLQHG E\ ZDVKLQJ WKH FHOOV RXW RI WKH IHPXU ZLWK D QHHGOH PRXQWHG RQ D PO V\ULQJH 3HULWRQHDO FHOOV ZHUH REWDLQHG E\ ODYDJH RI WKH SHULWRQHDO FDYLW\ ZLWK WKH VHUXPIUHH '0(0 XVLQJ D PO V\ULQJH &HOO VXUIDFH )F UHFHSWRUV ZHUH ILUVW EORFNHG ZLWK VWDLQLQJ PHGLXP 3%6 b KRUVH VHUXP b D]LGHf FRQWDLQLQJ b QRUPDO UDEELW VHUXP &HOOV ZHUH WKHQ VWDLQHG RQ LFH ZLWK RSWLPL]HG DPRXQWV RI ),7& SK\FRHU\WKULQ RU ELRWLQFRQMXJDWHG SULPDU\ PRQRFORQDO DQWLERGLHV GLOXWHG LQ VWDLQLQJ PHGLXP IRU PLQ )ROORZLQJ WZR ZDVKHV ELRWLQ FRQMXJDWHG

PAGE 32

DQWLERGLHV ZHUH UHYHDOHG XVLQJ VWUHSWDYLGLQ3( *LEFR %5/ *UDQG ,VODQG 1+@ WK\PLGLQH LQ SL FXOWXUH PHGLXP ZDV DGGHG WR HDFK ZHOO DW K EHIRUH KDUYHVWLQJ ,QFRUSRUDWHG WK\PLGLQH ZDV PHDVXUHG E\ XVLQJ VWDQGDUG OLTXLG

PAGE 33

VFLQWLOODWLRQ FRXQWLQJ WHFKQLTXHV 0HDQ s VWDQGDUG HUURU RI PHDQ 6(0f RI WULSOLFDWH VDPSOHV ZDV SUHVHQWHG 7R DVVHVV &' DQG &' 7 FHOO SUROLIHUDWLRQ LQ YLWUR VSOHQRF\WHV ZHUH FXOWXUHG DW [ FHOOV XO '0(0 DV GHVFULEHG DERYH ZLWK DQWL&' OXJPOf IRU K K K 7KH FHOOV ZHUH FRXQWHG VWDLQHG ZLWK ),7&DQWL&' DQG 3(DQWL&' )$&6 DQDO\VLV ZDV SHUIRUPHG DV GHVFULEHG DERYH 7KH QXPEHU RI &' DQG &' 7 FHOOV ZDV GHWHUPLQHG E\ WRWDO FRXQWHG FHOOV PO PXOWLSOLHG E\ WKH SHUFHQWDJH RI &' DQG &' 7 FHOOV ,PPXQL]DWLRQ % DQG %1=0F PLFH )RXU WR VL[ SHU JURXS PR ROG VH[ PDWFKHGf ZHUH LQMHFWHG LQWUDSHULWRQHDOO\ ZLWK '13./+ XJPRXVH &DOELRFKHP /D -ROOD &$f LQ FRPSOHWH )UHXQGfV DGMXYDQW &)$f DQG ERRVWHG WZR ZHHNV ODWHU ZLWK VDPH GRVH RI '13 ./+ LQ LQFRPSOHWH )UHXQGfV DGMXYDQW 6HUXP ZDV FROOHFWHG EHIRUH LPPXQL]DWLRQ G2f GD\V DIWHU ILUVW LPPXQL]DWLRQ GO f DQG DQG GD\V DIWHU WKH ERRVWHU G Gf ,PPXQL]HG PLFH ZHUH DVVHVVHG IRU VHUXP DQWLKDSWHQ WLWHUV XVLQJ (/,6$ 6HUXP ZDV GLOXWHG IROG LQ 3%6 FRQWDLQLQJ b %6$ DQG LQFXEDWHG RQ '13 %6$ &DOELRFKHP /D -ROOD &$f FRDWHG ,PPXORQ ,, SODWHV 'HWHFWLRQ RI DQWLERGLHV ZDV DV GHVFULEHG DERYH $QWLERG\ DFWLYLW\ LV H[SUHVVHG DV 2'

PAGE 34

+LVWRORJ\ 0LFH ZHUH VDFULILFHG DW PR RI DJH 7K\PXV OXQJ KHDUW OLYHU O\PSK QRGH VSOHHQ DQG NLGQH\ ZHUH IL[HG LQ b QHXWUDO EXIIHUHG IRUPDOLQ DQG HPEHGGHG LQ SDUDIILQ 6HFWLRQV ZHUH FXW SODFHG RQ VOLGHV DQG VWDLQHG ZLWK KHPRWR[\OLQ HRVLQ DQG SHULRGLF DFLG6FKLII 0XOWLSOH VHFWLRQV IURP FRQWURO DQG H[SHULPHQWDO VWUDLQV ZHUH H[DPLQHG E\ OLJKW PLFURVFRS\ IRU LQGLFDWLRQ RI LQIODPPDWLRQ DQG WLVVXH GDPDJH LQ D EOLQG IDVKLRQ *ORPHUXORQHSKULWLV *1f ZDV VFRUHG IURP WR LQ ZKLFK b RI JORPHUXOL DIIHFWHG b RI JORPHUXOL DIIHFWHG b RI JORPHUXOL DIIHFWHG DQG !b RI JORPHUXOL DIIHFWHG &RQWURO % PLFH KDG VFRUHV RI DQG *ORPHUXODU OHVLRQV ZHUH FODVVLILHG DV PHVDQJLRSDWKLF 0f DQG FDSLOODU\ K\DOLQH +f 7KH + OHVLRQ ZDV FRQVLGHUHG PRUH VHYHUH WKDQ WKH 0 OHVLRQ 6HTXHQFLQJ 7*)IW &RGLQJ 5HJLRQ 7RWDO 51$ ZDV H[WUDFWHG IURP OLYHU RI %1=0F DQG % PLFH XVLQJ D WRWDO 51$ LVRODWLRQ .LW $PELRQ $XVWLQ 7H[DVf F'1$ ZDV REWDLQHG E\ UHYHUVH WUDQVFULSWDVH3&5 XVLQJ UDQGRP SULPHUV DQG WRWDO 51$ )RU VHTXHQFLQJ WKH 7*)IW JHQH ILYH SDLUV RI RYHUODSSLQJ SULPHUV ZHUH GHVLJQHG DFFRUGLQJ WR SXEOLVKHG PRXVH VHTXHQFH IURP *HQHEDQN WR DPSOLI\ NE RI F'1$ 7ZR PLFH ZHUH XVHG IURP HDFK VWUDLQ DQG 3&5 ZDV SHUIRUPHG DV GHVFULEHG DERYH )LYH VHJPHQWV RI 3&5 SURGXFWV IURP HDFK PRXVH ZHUH FORQHG XVLQJ D 7$ FORQLQJ NLW ,QYLWURJHQ &RUS 6DQ 'LHJR &$f

PAGE 35

6HTXHQFLQJ RI WZR LQGHSHQGHQW FORQHV IURP HDFK VHJPHQW ZDV SHUIRUPHG LQ ERWK GLUHFWLRQV RQ DQ $% DXWRPDWHG VHTXHQFHU $SSOLHG %LRV\VWHPV )RVWHU &LW\ &$f 6WDWLVWLFV $ QRQSDLUHG 6WXGHQWfV WWHVW ZDV XVHG WR GHWHUPLQH VWDWLVWLFDO VLJQLILFDQFH RI TXDQWLWDWLYH GDWD DQG D FKLVTXDUH WHVW ZDV XVHG IRU TXDOLWDWLYH GDWD

PAGE 36

3URGXFWLRQ RI &RQJHQLH 6WUDLQV 1=0 &%, 1 b %f 1 b %f 1 b %f 1 b %f &RQJHQLH 6WUDLQ )LJXUH ,OOXVWUDWLRQ RI WKH EUHHGLQJ VWUDWHJ\ XVHG LQ WKH FRQVWUXFWLRQ RI FRQJHQLH PRXVH VWUDLQV 1 EUHHGLQJ JHQHUDWLRQ P 1=0 DOOHOH E % DOOHOHf ,Q SDUHQWKHVHV LV WKH DYHUDJH SHUFHQWDJH RI WKH PRXVH JHQRPH WKDW VKRXOG EH %GHULYHG

PAGE 37

&+$37(5 *(1(7,& ',66(&7,21 2) 3$7+2*(1(6,6 2) 6/( 6/( 21 085,1( &+5202620( /($'6 72 $ %52$' /2:*5$'( $872,0081,7< ,QWURGXFWLRQ 6/( LV D SURWRW\SLF DXWRLPPXQH GLVHDVH FKDUDFWHUL]HG E\ WKH LQYROYHPHQW RI PXOWLSOH RUJDQ V\VWHPV DQG IHPDOHV SUHSRQGHUDQFH 7KH GLVHDVH LV VWULNLQJO\ KHWHURJHQHRXV ZLWK UHJDUG WR RUJDQ SDWWHUQV VHYHULW\ FOLQLFDO FRXUVH JHQHWLF YDULDEOH DQG LPPXQRORJLF H[SUHVVLRQV UHYLHZHG LQ UHIV f $OWKRXJK WKH HWLRORJ\ RI 6/( LV XQFOHDU D FRPELQDWLRQ RI JHQHWLF IDFWRUV HQYLURQPHQWDO IDFWRUV DQG VWRFKDVWLF HYHQWV DUH UHTXLUHG WR SURGXFH GLVHDVH UHYLHZHG LQ UHIV f 7KH GLVHDVH LV D FRQVHTXHQFH RI SURFHVVHV LQYROYLQJ ORVV RI LPPXQH WROHUDQFH SDWKRJHQLF DXWRDQWLERG\ SURGXFWLRQ DQG WLVVXH GHVWUXFWLRQ PHGLDWHG E\ GLUHFW DXWRDQWLERG\ ELQGLQJ DQGRU WKH GHSRVLWLRQ RI LPPXQH FRPSOH[HV 7KH SURGXFWLRQ RI DXWRDQWLERGLHV DJDLQVW QXFOHDU DQWLJHQV LV WKH KDOOPDUN RI 6/( 7KH DQDO\VLV RI HWLRSDWKRJHQHVLV RI 6/( LQ KXPDQV LV YHU\ GLIILFXOW GXH WR SRO\JHQLF FRQWURO RI WKH GLVHDVH ORZ SHQHWUDQFH KHWHURJHQHLW\ DQG QRQRUJDQ VSHFLILF QDWXUH RI WKLV GLVHDVH 6HYHUDO LQEUHG PRXVH VWUDLQV WKDW VSRQWDQHRXVO\ GHYHORS GLVHDVH VLPLODU WR KXPDQ 6/( KDYH EHHQ LPSRUWDQW PRGHOV IRU HOXFLGDWLQJ WKH SDWKRJHQHVLV RI WKH GLVHDVH f 1=% ; 1=:f) LV WKH ILUVW DQG PRVW LQWHQVLYHO\ VWXGLHG PRGHO 0RUH WKDQ

PAGE 38

b RI IHPDOH 1=% ; 1=:f) PLFH GHYHORS VHYHUH OXSXV QHSKULWLV DQG GLH RI UHQDO IDLOXUH f 7KHVH PLFH DOVR SURGXFH KLJK OHYHO DXWRDQWLERGLHV DJDLQVW D QXPEHU RI QXFOHDU FRPSRQHQWV 7KH 1HZ =HDODQG 0L[HG 1=0f VWUDLQV DUH QHZHU LQEUHG VWUDLQV GHULYHG IURP VHOHFWLYH LQEUHHGLQJ RI SURJHQ\ IURP FURVVHV EHWZHHQ 1=% DQG 1=: PLFH f $ WRWDO RI 1=0 VWUDLQV ZHUH SURGXFHG 7KHVH VWUDLQV KDYH LQKHULWHG YDULRXV JHQRPLF VHJPHQWV IURP WKH WZR SDUHQWDO VWUDLQV DQG WKH\ DUH DOO KRPR]\JRXV IRU WKH 1=: KLVWRFRPSDWLELOLW\ +f KDSORW\SH .X $X 6] ']f 7KH JHQHWLF GLIIHUHQFHV DPRQJ WKHVH VWUDLQV OHDG WR SKHQRW\SLF GLIIHUHQFHV LQ GLVHDVH H[SUHVVLRQ 7KH 1=0 VWUDLQ SURGXFHV KLJK OHYHOV RI ,J* DXWRDQWLERGLHV WR QXFOHDU DQWLJHQV DV HDUO\ DV IRXU WR VL[ PRQWKV RI DJH DQG GHYHORSV VHYHUH OXSXVOLNH UHQDO GLVHDVH LQ ERWK VH[HV 'U 0RUHO SHUIRUPHG LQWHUYDO PDSSLQJ LQ D 1=0 ; %f ; 1=0 EDFNFURVV XVLQJ KLJKO\ SRO\PRUSKLF VLPSOH VHTXHQFH UHSHDWV 665Vf DV JHQHWLF PDUNHUV 7KUHH VXVFHSWLELOLW\ LQWHUYDOV DQG 0+& ORFXV RQ FKURPRVRPH ZHUH LGHQWLILHG DV FRQIHUULQJ VXVFHSWLELOLW\ WR DFXWH *1 7KH WKUHH LQWHUYDOV DUH 6OHO RQ WKH WHORPHULF HQG RI FKURPRVRPH 6OH RQ WKH FHQWURPHULF HQG RI FKURPRVRPH DQG 6OH RQ WKH FHQWURPHULF HQG RI FKURPRVRPH f 6LPLODU UHJLRQV KDYH DOVR EHHQ IRXQG WR FRQIHU 6/( VXVFHSWLELOLW\ LQ 1=% ; 1=:f) f *HQHWLF DQDO\VLV VXJJHVWHG WKDW WKH GLVHDVH VXVFHSWLELOLW\ LV LQKHULWHG DV D PXOWLIDFWRULDO WKUHVKROG OLDELOLW\ )LUVW QRQH RI WKHVH IRXU ORFL DUH UHTXLUHG IRU WKH GHYHORSPHQW RI DFXWH *1 6HFRQG HDFK VXVFHSWLELOLW\ ORFXV LQGHSHQGHQWO\ FRQWULEXWHV WR WKH RYHUDOO LQFLGHQFH RI *1 ZLWK D UHODWLYH VPDOO HIIHFW 7KLUG DW OHDVW WKUHH VXVFHSWLELOLW\ DOOHOHV DUH UHTXLUHG LQ RUGHU WR H[SUHVV D KLJK OHYHO RI *1

PAGE 39

$OWKRXJK LQWHUYDO PDSSLQJ KDV SURYLGHG LQIRUPDWLRQ DERXW WKH QXPEHUV DQG FKURPRVRPDO ORFDWLRQV RI WKH JHQHV UHVSRQVLEOH IRU DXWRLPPXQLW\ LQ 1=0 LW KDV SURYLGHG OLWWOH DERXW WKH QDWXUH RI WKH FRPSRQHQW SKHQRW\SHV FRQWULEXWHG E\ HDFK VXVFHSWLELOLW\ JHQH DQG LW LV QRW SURGXFWLYH IRU ILQHO\ PDSSLQJ JHQHV 7KH DSSURDFK ZH XVHG IROORZLQJ LQWHUYDO PDSSLQJ ZDV WR PRYH WKH IRXU VXVFHSWLELOLW\ LQWHUYDOV IURP 1=0 WR WKH UHVLVWDQW VWUDLQ % EDFNJURXQG XVLQJ D VSHHG FRQJHQLH WHFKQLTXH f 7KLV FRQJHQLH DSSURDFK ZKLFK RULJLQDWHG IURP WKH 1REHO 3UL]HZLQQLQJ VWXGLHV RI KLVWRFRPSDWLELOLW\ E\ *HRUJH 6QHOO f LV GHVLJQHG WR GLVVHFW D FRPSOH[ WUDLW LQWR LWV FRPSRQHQW JHQHWLF HOHPHQWV DQG DOORZ IRU WKH ILQH PDSSLQJ DQG LGHQWLILFDWLRQ DQG FKDUDFWHUL]DWLRQ RI HDFK JHQH 7KLV DSSURDFK KDV EHHQ XVHG LQ WKH JHQHWLF DQDO\VLV RI LQVXOLQGHSHQGHQW GLDEHWHV LQ WKH 12' PRXVH ZKHUH HLWKHU UHVLVWDQFH LQWHUYDOV ZHUH EUHG WR D VXVFHSWLEOH EDFNJURXQG f RU VXVFHSWLEOH LQWHUYDOV ZHUH EUHG WR D UHVLVWDQW EDFNJURXQG f :H UHFHQWO\ SURGXFHG D FROOHFWLRQ RI % FRQJHQLH VWUDLQV EHDULQJ WKH LQGLYLGXDO OXSXV VXVFHSWLELOLW\ LQWHUYDOV IURP 1=0 +HUH ZH UHSRUW WKH GHWDLOHG DQDO\VLV RI WKH %1=0F FRQJHQLH VWUDLQ DQG WKH FRPSRQHQW SKHQRW\SHV H[SUHVVHG E\ 6OH 6OH LV OLNHO\ D PDMRU VXVFHSWLELOLW\ ORFXV OHDGLQJ WR SDWKRJHQHVLV RI OXSXV EHFDXVH WKLV ORFXV OHDGV WR WZR PDMRU SKHQRW\SHV $1$ SURGXFWLRQ DQG *1 DQG EHFDXVH WKLV ORFXV ZDV IRXQG LQ PXOWLSOH 6/(UHODWHG FURVVHV UHYLHZHG LQ UHI f 7R XQGHUVWDQG WKH UROH RI 6OH LQ WKH SDWKRJHQHVLV RI 6/( ZH H[DPLQHG VSRQWDQHRXV ,J0 DQG ,J* UHVSRQVHV WR VHOIQXFOHDU DQWLJHQV DQG IRUHLJQ DQWLJHQV LQ WKHVH PLFH IURP WR PRQWKV RI DJH DQG H[DPLQHG LQ YLYR LPPXQH UHVSRQVHV WR DQWLJHQLF FKDOOHQJH LQ PRQWK ROG %1=0F

PAGE 40

:H SHUIRUPHG WKH VXUIDFH SKHQRW\SLF DQG IXQFWLRQDO DQDO\VHV RI O\PSKRLG FHOOV IURP WKH VSOHHQ SHULWRQHDO FDYLW\ ERQH PDUURZ DQG O\PSK QRGH LQ WKHVH PLFH WR GHWHUPLQH WKH QDWXUH RI SRVVLEOH O\PSKRF\WH GHIHFWV OHDGLQJ WR DXWRDQWLERG\ SURGXFWLRQ 7KH UHVXOWV LQGLFDWH WKDW 6OH SURIRXQGO\ DIIHFWV 7 FHOO DFWLYDWLRQ SUROLIHUDWLRQ DQG VXEVHW GLVWULEXWLRQ DW DQ HDUO\ DJH ZKLFK PD\ OHDG WR SURGXFWLRQ RI SRO\FORQDO ,J0 DQG ,J* DQG DQWLQXFOHDU DXWRDQWLERGLHV 7 FHOO FKDQJHV LQ %1=0F PLFH FRPSDUHG WR % DUH KHLJKWHQHG &'&' 7 FHOO UDWLR LQFUHDVHG &'&' 7 FHOOV LQ ERWK WKH VSOHHQ DQG O\PSK QRGH LQFUHDVHG O\PSKRF\WH SUROLIHUDWLRQ DQG &' 7 FHOO H[SDQVLRQ LQ UHVSRQVH WR DQWL&' VWLPXODWLRQ LQ YLWUR DQG LQFUHDVHG LQ YLYR LPPXQH UHVSRQVH WR 7GHSHQGHQW DQWLJHQV % FHOOV IURP WKH VSOHHQ DQG O\PSK QRGH RI %1=0F PLFH GLG QRW GLIIHU IURP WKRVH RI % LQ QXPEHU % FHOOV VXEVHW % YV % FHOOVf RU IXQFWLRQ % FHOO SUROLIHUDWLRQ LQ YLWURf %1=0F PLFH VKRZHG VRPH FKDUDFWHULVWLFV RI % FHOO K\SHUDFWLYLW\ LQFOXGLQJ HOHYDWHG VHUXP ,J0 OHYHOV SRO\FORQDO ,J0 DQG KLJK H[SUHVVLRQ RI VRPH % FHOO VXUIDFH PDUNHUV DW D ODWH DJH )LQDOO\ 6OH OHDGV WR DXWRDQWLERG\PHGLDWHG *1 5HVXOWV 7KLUW\VL[ %1=0F FRQJHQLH PLFH ZHUH LQLWLDOO\ REWDLQHG 7KHVH PLFH GLIIHUHG JHQHWLFDOO\ IURP % DW WKH WKUHH VHOHFWLQJ ORFL IRU WKH 6OH LQWHUYDO DQ XQNQRZQ QXPEHU RI XQVHOHFWHG IODQNLQJ ORFL DQG XQOLQNHG FRQWDPLQDWLQJ ORFL SUREDELOLW\ bf 7R GHILQH WKH 1=0 LQWHUYDO DQG WR HVWDEOLVK D FRQJHQLH OLQH WKLUWHHQ PDUNHU ORFL RQ

PAGE 41

FKURPRVRPH ZHUH XVHG WR PDS WKH WHUPLQL RI WKH FRQJHQLH LQWHUYDO DQG WR LGHQWLI\ UHFRPELQDWLRQ 7KH PLFH ZHUH JURXSHG DFFRUGLQJ WR WKHLU JHQRW\SH )LJXUH f )LIWHHQ PLFH IURP JURXS WKDW FDUU\ DERXW F0 RI FKURPRVRPH IURP 1=0 ZHUH FKRVHQ DV WKH IRXQGHUV RI WKH FRQJHQLH VWUDLQ DQG XVHG WR FRQWLQXH EUHHGLQJ 7KHVH PLFH DQG WKHLU SURJHQ\ ZHUH XVHG IRU SKHQRW\SLF VWXGLHV 7KH DXWRLPPXQH SKHQRW\SHV H[SUHVVHG LQ ERWK KRPR]\JRXV DQG KHWHUR]\JRXV %1=0F PLFH ZHUH LGHQWLILHG E\ FRPSDULVRQ ZLWK DJH PDWFKHG % FRQWUROV $OO DQLPDOV ZHUH KRXVHG LQ LGHQWLFDO FRQGLWLRQV DQG EOHG ELPRQWKO\ EHJLQQLQJ DW PRQWKV RI DJH IRU DXWRDQWLERG\ DQDO\VLV %1=0F PLFH KDYH K\SHUJDPPDJOREXOLQHPLD DQG VSRQWDQHRXV SRO\FORQDO % FHOO DFWLYDWLRQ $V WKH PRVW FRPPRQ LPPXQRORJLFDO DEQRUPDOLWLHV LQ OXSXV PLFH K\SHUJDPPDJOREXOLQHPLD DQG VSRQWDQHRXV SRO\FORQDO % FHOO DFWLYDWLRQ ZHUH ILUVW H[DPLQHG XVLQJ WRWDO VHUXP ,J0 DQG ,J* OHYHOV DQG VSRQWDQHRXV ,J0 DQWLERG\ SURGXFWLRQ WR IRXU DQWLJHQV KLVWRQH VV '1$ ERYLQH WK\URJOREXOLQ '13./+ %1=0F PLFH KDG VLJQLILFDQWO\ KLJK OHYHOV RI WRWDO VHUXP ,J0 )LJXUH SDQHO $f DQG ,J* )LJXUH f FRPSDUHG ZLWK % DW PRQWKV RI DJH S f (OHYDWHG ,J0 OHYHOV VWDUWHG DW PRQWKV RI DJH DQG ZHUH IRXQG LQ ERWK KRPR]\JRXV DQG KHWHUR]\JRXV PLFH )LJXUH SDQHO %f 7KHVH PLFH DOVR VSRQWDQHRXVO\ SURGXFHG ,J0 SRO\FORQDOSRO\UHDFWLYH DQWLERGLHV DJDLQVW WKH IRXU DQWLJHQV DW PRQWKV DQG WKLV LQFUHDVHG ZLWK DJH 7DEOH f 7KH SHQHWUDQFH RI SRO\FORQDO ,J0 LV b LQ PRQWKV %1=0F SHUFHQWDJH RI SRVLWLYH PLFH ZKR SURGXFHG ,J0 DQWLERGLHV DJDLQVW WZR RU PRUH RI WKHVH IRXU DQWLJHQVf 7KHVH PLFH ZHUH DOVR WHVWHG IRU VSRQWDQHRXV ,J* DQWLERGLHV WR WKH VDPH IRXU DQWLJHQV DQG SHQHWUDQFH ZDV b DW PRQWKV RI DJH

PAGE 42

%1=0F PLFH VSRQWDQHRXVO\ SURGXFH ,J* DQWLQXFOHDU DXWRDQWLERGLHV 7$1$f 7KH SUHVHQFH RI ,J* DQWLERGLHV DJDLQVW D YDULHW\ RI QXFOHDU DQWLJHQV LV WKH FKDUDFWHULVWLF RI 6/( LQ ERWK KXPDQV DQG PRXVH PRGHOV 1=0 SURGXFH KLJK OHYHOV RI $1$ DW DQ HDUO\ DJH 7R GHWHUPLQH LI 6OH E\ LWVHOI FDQ OHDG WR WKLV SKHQRW\SH DQG WR GHWHUPLQH WKH DQWLERG\ FKDUDFWHULVWLFV RI %1=0F FRPSDUHG ZLWK 1=0 ZH TXDQWLILHG ,J* DXWRDQWLERGLHV WR IRXU QXFOHDU DQWLJHQV VV'1$ GV'1$ KLVWRQH FKURPDWLQ RU '1$KLVWRQH FRPSOH[f ELPRQWKO\ IURP WR PRQWK ROG %1=0F SURGXFHG ,J* DXWRDQWLERGLHV DJDLQVW WKHVH IRXU QXFOHDU DQWLJHQV VWDUWLQJ DW PRQWKV RI DJH Sf HVSHFLDOO\ DQWL'1$ DQG DQWLFKURPDWLQ DQWLERGLHV )LJXUH f 7KH WLWHUV ZHUH PXFK ORZHU LQ WKH FRQJHQLH PLFH FRPSDUHG WR 1=0 GDWD QRW VKRZQf DQG WKH DYHUDJH WLWHUV GLG QRW LQFUHDVH ZLWK DJH 7KLV SKHQRW\SH LV GRPLQDQW ZLWK VOLJKWO\ GHFUHDVHG OHYHOV DQG GHOD\HG RQVHW LQ KHWHUR]\JRXV %1=0F 3HQHWUDQFH RI ,J* $1$ DV VKRZQ LQ 7DEOH LV DERXW b DQG GRHV QRW W\SLFDOO\ LQFUHDVH ZLWK DJH XQOLNH ZKDW LV VHHQ LQ %1=0FO PLFH / 0RUHO SHUVRQDO FRPPXQLFDWLRQf $IWHU DQDO\]LQJ LQGLYLGXDO PLFH ZH IRXQG ,J* $1$ WLWHUV LQ VRPH %1=0F PLFH WR ZD[ DQG ZDQH IURP WR PRQWKV )LJXUH f $XWRDQWLERG\ OHYHOV GLG QRW VWD\ SRVLWLYH IRU ORQJ LQ WKHVH PLFH DQG TXLFNO\ GURSSHG ZKLFK PD\ EH GXH WR WLVVXH GHSRVLWLRQ RI DQWLERGLHV :D[LQJ DQG :DQLQJ RI ,J* $1$ KDV DOVR EHHQ UHSRUWHG LQ PDQ\ 6/( SDWLHQWV f 7KH IDFW WKDW 6/( LV SUHSRQGHUDQW DPRQJ ZRPHQ GXULQJ WKHLU UHSURGXFWLYH OLIH LPSOLHV WKDW VH[ KRUPRQHV KDYH D UROH LQ WKH SDWKRJHQHVLV RI DXWRLPPXQLW\ LQ KXPDQV 6H[ KRUPRQH PDQLSXODWLRQ H[SHULPHQWV LQ OXSXVSURQH PXULQH VWUDLQV DOVR VKRZ WKDW IHPDOH VH[ KRUPRQHV IDFLOLWDWH WKH GHYHORSPHQW RI DXWRLPPXQLW\ f $IWHU

PAGE 43

GHWDLOHG DQDO\VLV RI VHURORJ\ GDWD FRPSDULQJ PDOH DQG IHPDOH %1=0F FRQJHQLH PLFH ZH IRXQG WKDW WKHUH ZDV QR JHQGHU ELDV LQ WLWHU RU IUHTXHQF\ RI DXWRDQWLERGLHV DJDLQVW DQ\ DXWRDQWLJHQV IURP WR PRQWKV S!f %1=0F PLFH H[KLELW D KLJK LPPXQH UHVSRQVH WR '13./+ 7R WHVW LPPXQH V\VWHP IXQFWLRQ EHIRUH GLVHDVH RQVHW RU LQ WKH YHU\ HDUO\ VWDJH RI WKH GLVHDVH PRQWKV ROG %1=0F PLFH DQG % FRQWURO PLFH ZHUH FKDOOHQJHG LQ YLYR ZLWK D 7GHSHQGHQW DQWLJHQ '13./+ ,J0 DQG ,J* DQWL'13 DQWLERGLHV ZHUH PHDVXUHG EHIRUH LPPXQL]DWLRQ G2f GD\V DIWHU ILUVW LPPXQL]DWLRQ GO SULPDU\ LPPXQH UHVSRQVHf GD\V DIWHU WKH ERRVWHU G VHFRQGDU\ LPPXQH UHVSRQVHf DQG DW G %1=0F PLFH VKRZHG KLJK SULPDU\ DQG VHFRQGDU\ ,J0 DQWL'13 LPPXQH UHVSRQVHV S f )LJXUH f KLJK VHFRQGDU\ ,J* DQWL'13 LPPXQH UHVSRQVHV S f )LJXUH f DQG DQWL '13 DQWLERGLHV ZHUH UHPDLQHG ORQJHU FRPSDUHG ZLWK % 7KLV H[SHULPHQW LQGLFDWHV WKDW WKH JHQHWLF GHIHFWV LQ %1=0F PLFH OHDG WR D K\SHULPPXQH DFWLYDWLRQ VWDWXV DQG PD\ LQYROYH ERWK % DQG 7 FHOO FRPSDUWPHQWV 7R GHILQH DEQRUPDOLWLHV LQ WKH % DQG 7 FHOO FRPSDUWPHQWV FHOO VXUIDFH PROHFXOH H[SUHVVLRQ FHOO IXQFWLRQ DQG VXEVHW GLVWULEXWLRQV RI % DQG 7 FHOO ZHUH LQYHVWLJDWHG 6OH DIIHFWV 7 FHOO VXESRSXODWLRQV 7R H[SORUH WKH LPSDFW RI 6OH RQ 7 FHOOV FHOO VXESRSXODWLRQV ZHUH ILUVW LQYHVWLJDWHG YLD VXUIDFH PDUNHU H[SUHVVLRQ ,Q RUGHU WR GHILQH SULPDU\ GHIHFWV RXU VWXGLHV IRFXVHG RQ \RXQJ %1=0F PLFH PRQWKf 6XPPDU\ RI )$&6 DQDO\VLV UHVXOWV LV SUHVHQWHG LQ 7DEOH 7KH UHVXOWV LQGLFDWH WKDW WKH &'&' 7 FHOO UDWLR ZDV VLJQLILFDQWO\ LQFUHDVHG LQ ERWK WKH VSOHHQ DQG O\PSK QRGH RI %1=0F PLFH FRPSDUHG WR % )LJXUH f 7KHUH ZDV QR GLIIHUHQFH EHWZHHQ PDOHV DQG IHPDOHV

PAGE 44

S f +LJK SURSRUWLRQV RI VSOHHQ &' 7 FHOOV H[SUHVVHG WKH DFWLYDWLRQ PDUNHU &' S f LQGLFDWLQJ WKH DFWLYDWLRQ RI &' 7 FHOO LQ WKH HDUO\ VWDJHV RI GLVHDVH 7KLV HIIHFW ZDV QRW VHHQ LQ WKH O\PSK QRGHV 7KHUH ZDV QR GLIIHUHQFH LQ WKH H[SUHVVLRQ RI / VHOHFWLQ EHWZHHQ %1=0F DQG % 7 FHOOV +\SHU UHVSRQVLYHQHVV RI &' 7 FHOOV LQ YLWUR 7R VWXG\ &' DQG &' FHOO UHVSRQVH WR VWLPXODWLRQ LQ YLWUR VSOHHQ FHOOV ZHUH FXOWXUHG ZLWK DQWL&' XJPOf IRU YDULRXV WLPHV VWDLQHG ZLWK DQWL&' DQG DQWL&' DQG DQDO\]HG XVLQJ IORZ F\WRPHWU\ 7KH UHVXOWV DUH VKRZQ LQ )LJXUH %HIRUH FXOWXUH GDWD QRW VKRZQf DQG DW KRXUV SRVW FXOWXUH &' DQG &' FHOO QXPEHUV ZHUH QRW VLJQLILFDQWO\ GLIIHUHQW EHWZHHQ %1=0F DQG % +RZHYHU WKH DEVROXWH QXPEHUV RI &' 7 FHOOV ZHUH KLJKHU LQ %1=0F PLFH WKDQ LQ % DW DQG KRXUV RI FXOWXUH ,Q FRQWUDVW WR &' FHOOV WKH QXPEHUV RI &' FHOOV ZHUH OHVV LQ %1=0F PLFH 7KH GHFUHDVH RI &' FHOO QXPEHUV ERWK LQ %1=0F DQG % PLFH DW KRXUV RI FXOWXUH ZDV REVHUYHG 7KLV PD\ EH GXH WR WKH ORZ FRQFHQWUDWLRQ RI DQWL&' XVHG VLQFH WKHUH LV QR VXFK GHFUHDVH RI &' FHOO QXPEHUV LQ H[SHULPHQWV XVLQJ XJPO DQWL&' VWLPXODWLRQ FRPELQHG ZLWK DQWL&' & 0RKDQ SHUVRQDO FRPPXQLFDWLRQf )LJXUH VKRZV GRW SORWV RI IORZ F\WRPHWU\ RI WKLV H[SHULPHQW 3HUFHQWDJH RI &' FHOOV ZDV KLJKHU LQ %1=0F WKDQ LQ % DIWHU KRXUV RI FXOWXUH b YV bf 7KLV LQFUHDVHG H[SDQVLRQ RI &' 7 FHOOV LQ %1=0F PD\ EH GXH WR D KLJK SURSRUWLRQ RI DFWLYDWHG &' 7 FHOOV KLJK UHVSRQVLYHQHVV RI &' 7 FHOOV RU UHGXFHG DSRSWRVLV RI &' 7 FHOOV ,QGHHG %1=0F 7 FHOOV DOVR H[KLELWHG UHGXFHG DFWLYDWLRQLQGXFHG 7 FHOO GHDWK GDWD QRW VKRZQf

PAGE 45

6OH6 LPSDFWV 7 FHOO SUROLIHUDWLRQ 7KH H[WHQW RI O\PSKRF\WH SUROLIHUDWLRQ LQ PRQWK %1=0F PLFH ZDV DOVR H[DPLQHG XVLQJ +WK\PLGLQH LQFRUSRUDWLRQ DVVD\ LQ VSOHHQ FHOO FXOWXUH ZLWK JUDGHG GRVHV RI DQWL&' RU U,/ IRU KRXUV FRPSDUHG ZLWK % $V VKRZQ LQ )LJXUH %1=0F PLFH H[KLELWHG KHLJKWHQHG SUROLIHUDWLYH UHVSRQVHV WR DQWL&' DQG U,/ 7KH GDWD VXJJHVW WKDW 7 FHOOV IURP %1=0F KDYH DQ HDUO\ &'PHGLDWHG 7FHOO DFWLYDWLRQ DEHUUDWLRQ 6OH DQG % FHOO FRPSDUWPHQW 7KHUH ZHUH QR VLJQLILFDQW GLIIHUHQFHV EHWZHHQ %1=0F DQG % LQ % FHOO QXPEHUV DQG % FHOO VXEVHWV % YV % FHOOVf ,Q WR PRQWKV ROG %1=0F PLFH ,$ 0+& FODVV ,, PROHFXODUf % FRVWLPXODWRU\ PROHFXODUf H[SUHVVLRQV RQ % FHOO VXUIDFH ZHUH KLJK GDWD QRW VKRZQf ZKLFK LQGLFDWHG WKDW KLJK SURSRUWLRQV RI %1=0F % FHOOV ZHUH DFWLYDWHG LQ WKH ODWH VWDJH RI GLVHDVH 7KHUH ZDV DOVR QR VLJQLILFDQW GLIIHUHQFH LQ YLWUR % FHOO SUROLIHUDWLRQ UHVSRQVHV WR /36 DQG DQWL ,J0 EHWZHHQ % DQG WKH FRQJHQLH PLFH GDWD QRW VKRZQf 6OH OHDGV WR ORZ LQFLGHQFH RI JORPHUXORQHSKULWLV *1f %1=0F PLFH VXUYLYH IRU DW OHDVW PRQWKV ZLWK QR REYLRXV SURWHLQXULD 7KH NLGQH\ KLVWRORJ\ ZDV H[DPLQHG LQ RQH \HDU ROG %1=0F DQG % PLFH 7KH WRWDO IUHTXHQF\ RI *1 ZDV DERXW b LQ %1=0F KRPR]\JRXV PLFH DQG b LQ KHWHUR]\JRXV PLFH VFRUHG DQG XSf )LJXUH f 6HYHUH *1 VFRUHG WR PRUH WKDQ b RI JORPHUXOL EHLQJ DIIHFWHGf ZDV RQO\ VHHQ LQ b RI WKH KRPR]\JRXV PLFH *1 ZDV VHHQ LQ ERWK PDOHV DQG IHPDOHV ZLWK QR VH[ ELDV 7ZR GLVWLQFW W\SHV RI *1 ZHUH SUHVHQW LQ WKHVH DQLPDOV 2QH ZDV K\SHUFHOOXODU DQG WKH RWKHU VKRZHG ODUJH LQWUDFDSLOODU\ K\DOLQH GHSRVLWV ZLWK PLQLPDO

PAGE 46

FHOOXODULW\ $V D FRQWURO RQH \HDU ROG % KDG IHZ SDWKRORJLFDO FKDQJHV VFRUHG RU OHVV WKDQ f 'HWDLOHG GDWD DQDO\VLV ZDV SHUIRUPHG WR GHILQH WKH UROH RI DQWLGV'1$ DXWRDQWLERGLHV LQ WKH SDWKRJHQHVLV RI *1 7KH UHVXOWV VKRZHG QR VWURQJ UHODWLRQVKLS EHWZHHQ WLWHUV RU RQVHW RI WKH DQWLERGLHV DQG *1 7ZR RXW RI QLQH *1 SRVLWLYH DQLPDOV ZHUH QHJDWLYH IRU ERWK DQWLGV'1$ DQG DQWLFKURPDWLQ DXWRDQWLERGLHV +LVWRORJLFDO DQDO\VLV RI WKH VSOHHQ O\PSK QRGH OXQJ DQG OLYHU VKRZHG O\PSKRLG K\SHUSODVLDV ZLWK RQH RXW RI VDPSOHV KDYLQJ D O\PSKRPD 6HTXHQFH DQDO\VLV RI FDQGLGDWH JHQH WUDQVIRUPLQJ JURZWK IDFWRUEHWD 7*)3f LQ %1=0F 7*)3 LV D SRWHQW LPPXQRUHJXODWRU\ PROHFXOH $OWKRXJK LW FDQ ERWK VXSSUHVV DQG HQKDQFH LPPXQH FHOO IXQFWLRQV LQ YLWUR f PRVW HYLGHQFH VXJJHVWV WKDW LW LV D QDWXUDO LPPXQRVXSSUHVVRU f 7*)3 NQRFNRXW PLFH H[KLELWHG D ZDVWLQJ V\QGURPH DFFRPSDQLHG E\ PXOWLIRFDO O\PSKRLG LQILOWUDWHV LQ WKH KHDUW OXQJV VDOLYDU\ JODQGV DQG RWKHU RUJDQV f 7KH\ DOVR VKRZHG 6/(OLNH DXWRLPPXQH VHURORJ\ f 7*)3 LV ORFDWHG ZLWKLQ WKH 6OH LQWHUYDO RI PXULQH FKURPRVRPH ZKLFK PDNHV LW D JRRG FDQGLGDWH JHQH 3ULPHUV ZHUH GHVLJQHG WR DPSOLI\ NE SUHYLRXVO\ SXEOLVKHG P51$ RI 7*)3 FRGLQJ UHJLRQ f 573&5 VKRZHG WKDW 7*)3 ZDV H[SUHVVHG LQ WKH VSOHHQ DQG NLGQH\ GDWD QRW VKRZQf 7KH VHTXHQFH RI 7*)3 ZDV QRW SRO\PRUSKLF EHWZHHQ %1=0F DQG % GDWD QRW VKRZQf 1R FRQFOXVLYH GDWD ZDV REWDLQHG LQ H[SUHVVLRQ DVVD\V )XUWKHU VWXGLHV DUH QHHGHG WR HVWDEOLVK LI 7*)3 LV LQYROYHG LQ 6/( SDWKRJHQHVLV

PAGE 47

'LVFXVVLRQ 7KH JHQHWLF EDVLV RI OXSXV LV YHU\ FRPSOH[ LQYROYLQJ FRQWULEXWLRQV IURP PXOWLSOH JHQHV 7R LGHQWLI\ WKHVH JHQHV LQWHUYDO PDSSLQJ ZDV SHUIRUPHG DQG WKUHH VXVFHSWLELOLW\ LQWHUYDOV DQG RQH ORFXV ZHUH LGHQWLILHG 6OHO RQ FKURPRVRPH 6OH RQ FKURPRVRPH 6OH RQ FKURPRVRPH DQG WKH 0+& ORFXV RQ FKURPRVRPH LQ 1=0 ; %f) ; 1=0 EDFNFURVV f 7KH SKHQRW\SHV LQ WKH SURJHQ\ UHIOHFW WKH HSLVWDWLF LQWHUDFWLRQ RI WKHVH PXOWLSOH JHQHV :H EHOLHYH WKDW HDFK VXVFHSWLELOLW\ LQWHUYDO SOD\V D XQLTXH UROH LQ WKH LQLWLDWLRQ RI SDWKRJHQHVLV 6HSDUDWLQJ HDFK VXVFHSWLELOLW\ LQWHUYDO ZDV DFKLHYHG XVLQJ D FRQJHQLH EUHHGLQJ DSSURDFK LQ ZKLFK HDFK LQWHUYDO EHDULQJ LQGLYLGXDO VXVFHSWLELOLW\ JHQH RU JHQHV IURP 1=0 ZDV PRYHG WR WKH UHVLVWDQW % EDFNJURXQG E\ UHSHDWHG EDFNFURVV DQG VHOHFWLRQ f % DQG % FRQJHQLH IRU 6OHO 6OH RU 6OH KDYH VDPH 0+& DQG EDFNJURXQG JHQHV H[FHSW IRU WKH VHOHFWHG JHQRPLF VHJPHQW GHULYHG IURP 1=0 :H VXFFHVVIXOO\ SURGXFHG IRXU FRQJHQLH VWUDLQV DQG JHQHWLFDOO\ GLVVHFWHG WKH SKHQRW\SHV DVVRFLDWHG ZLWK HDFK VXVFHSWLELOLW\ LQWHUYDO 6OHO RQ PXULQH FKURPRVRPH OHDGV WKH ORVV RI WROHUDQFH WR WKH +$+%'1$ VXEQXFOHRVRPH ZLWK OLWWOH RU QR NLGQH\ GDPDJH f 6OH RQ PXULQH FKURPRVRPH OHDGV WR % FHOO K\SHUDFWLYLW\ ZLWK QR ,J* DXWRDQWLERGLHV RU QHSKULWLV f +HUH ZH SUHVHQW GHWDLOHG SKHQRW\SLF DQDO\VLV RI 6OH RQ PXULQH FKURPRVRPH DQG H[SORUH WKH QDWXUH RI SRVVLEOH O\PSKRLG FHOO GHIHFWV FDXVLQJ WKH DSSHDUDQFH RI DXWRDQWLERGLHV

PAGE 48

%1=0F VKRZHG JHQHUDOL]HG LPPXQH G\VIXQFWLRQ 7KHVH DQLPDOV H[KLELWHG K\SHUJDPPDJOREXOLQHPLD DQG SRO\FORQDO % FHOO DFWLYDWLRQ 7KLV SKHQRW\SH LV D PRVW FRPPRQ LPPXQRORJLFDO DEQRUPDOLW\ DPRQJ PXULQH OXSXV PRGHOV f ,QWULQVLF % FHOO GHIHFWV ZHUH VXJJHVWHG E\ WKH ILQGLQJ RI DQ HQKDQFHG LQ YLWUR UHVSRQVLYHQHVV RI WKHVH % FHOOV WR /36 DQG FRQYHQWLRQDO DQWLJHQV DQG E\ VHYHUDO FHOO WUDQVIHU H[SHULPHQWV f 7KH PHFKDQLVPV XQGHUO\LQJ SRO\FORQDO % FHOO DFWLYDWLRQ LQ %1=0F DUH QRW FOHDU 7KHVH PLFH GLG QRW VKRZ GLIIHUHQFHV LQ % FHOO QXPEHU % FHOO DFWLYDWLRQ RU SUROLIHUDWLRQ LQ YLWUR UHVSRQVHV WR /36 DQG DQWL,J0 3RO\FORQDO % FHOO DFWLYDWLRQ LV NQRZQ WR DFFHOHUDWH DXWRLPPXQH GLVHDVH 7KLV LV VXSSRUWHG E\ WKH VWURQJ DVVRFLDWLRQ RI WKLV SKHQRW\SH ZLWK GLVHDVH GHYHORSPHQW LQ WKH YDULRXV PXULQH OXSXV PRGHOV f E\ WKH UHSRUW WKDW LW FDQ DFFHOHUDWH PRUWDOLW\ DXWRDQWLERG\ OHYHO DQG E\ *1 LQ OXSXVSURQH EXW QRW LQ QRUPDO PLFH f ,J* DQWLQXFOHDU DXWRDQWLERG\ SURGXFWLRQ LV D KDOOPDUN RI 6/( ERWK LQ KXPDQV DQG PRXVH PRGHOV 6OH E\ LWVHOI OHDGV WR ,J* DQWLQXFOHDU DXWRDQWLERG\ SURGXFWLRQ VWDUWLQJ DW DQ HDUO\ DJH $XWRDQWLERG\ WLWHUV LQ %1=0F ZHUH ORZHU WKDQ LQ WKH SDUHQWDO 1=0 LQGLFDWLQJ WKH UHTXLUHPHQW RI RWKHU JHQHV IRU KLJK OHYHO ,J* $1$ SURGXFWLRQ ,J* $1$ OHYHO LQ %1=0F ZDV QRW FRQVWDQW DQG XQLTXHO\ ZD[HG DQG ZDQHG IURP WR PRQWKV RI DJH 7KH FDXVHV RI WKLV DUH XQNQRZQ $ SRVVLEOH H[SODQDWLRQ LV WKDW WKH DQWLERGLHV DQG DQWLJHQV IRUP LPPXQHFRPSOH[HV DQG GHSRVLW LQ WLVVXHV LQFOXGLQJ NLGQH\ 2QH RI WKH PRVW LQWHUHVWLQJ IHDWXUHV LV WKDW 6OH OHDGV WR GHYHORSPHQW RI *1 ,Q FRQWUDVW WR DFXWH *1 LQ SDUHQWDO 1=0 %1=0F GHYHORSHG FKURQLF *1 ZLWK UHODWLYHO\ ORZ SHQHWUDQFH DQG QR DSSDUHQW SURWHLQXULD 7ZR W\SHV RI *1 ZHUH REVHUYHG

PAGE 49

RQH ZDV K\SHUFHOOXODU DQG WKH RWKHU ZDV ODUJH LQWUDFDSLOODU\ K\DOLQH GHSRVLW ZLWK PLQLPDO FHOOXODULW\ ZKHUHDV LQ 1=0 *1 VKRZHG D PL[WXUH RI WKHVH WZR W\SHV 7KHVH REVHUYDWLRQV VXJJHVW WKDW WKH JHQHVf LQ WKH 6OH LQWHUYDO PD\ SOD\ D NH\ UROH LQ PHGLDWLQJ GHYHORSPHQW RI *1 LQ 1=0 DQG WKH RWKHU JHQHVf PD\ DFW WR DFFHOHUDWH *1 7KLV FRQFOXVLRQ KDV EHHQ FRQILUPHG E\ WKH VWXG\ RI GRXEOH FRQJHQLH PLFH FRQWDLQLQJ 6OHO DQG 6OH & 0RKDQ / 0RUHO XQSXEOLVKHG REVHUYDWLRQVf %1=0FOF GRXEOH FRQJHQLH PLFH GHYHORSHG DFXWH *1 ZLWK KLJK SHQHWUDQFH DV VHHQ LQ 1=0 7KH JHQHV FDXVLQJ NLGQH\ GDPDJH FDQ SRWHQWLDOO\ DFW RQ GLIIHUHQW SRLQWV RI WKH SDWKRJHQLF SDWKZD\V )RU H[DPSOH JHQHV PD\ HQKDQFH WKH SURGXFWLRQ RI SDWKRJHQLF DXWRDQWLERGLHV LPSDFW FOHDUDQFH RI LPPXQH FRPSOH[HV IDFLOLWDWH ELQGLQJ RI DXWRDQWLERGLHV RU LPPXQH FRPSOH[HV WR NLGQH\ DQG LQFUHDVHG WKH VHQVLWLYLW\ RI WKH NLGQH\ WR GDPDJH ,W KDV EHHQ UHSRUWHG WKDW DQWL'1$ DQWLERGLHV KDYH SDWKRJHQLF SRWHQWLDO f KRZHYHU RXU VWXG\ GRHV QRW ILQG D VWURQJ FRUUHODWLRQ EHWZHHQ ,J* DQWLGV'1$ DQG *1 LQ %1=0F 7ZR RXW RI QLQH *1 SRVLWLYH PLFH IDLO WR SURGXFH DQWLGV'1$ RU DQWLn FKURPDWLQ DXWRDQWLERGLHV 2QH SRVVLELOLW\ LV WKDW *1 LV FDXVHG E\ DXWRDQWLERGLHV DJDLQVW RWKHU DQWLJHQV )XUWKHU VWXGLHV DUH LQ SURJUHVV WR VHDUFK IRU RWKHU DXWRDQWLERGLHV VXFK DV DQWLERGLHV WR WKH HQGRJHQRXV YLUDO SURWHLQ JS DQG WR VPDOO QXFOHDU ULERQXFOHRSURWHLQV $QRWKHU SRVVLELOLW\ LV WKDW WLWHUV RI DXWRDQWLERGLHV LQ WKHVH WZR PLFH DUH ORZ DQG WKDW WLVVXH GHSRVLWLRQ RI WKH DXWRDQWLERGLHV PDNHV LW VHUXP QHJDWLYH LQ WKHVH WZR PLFH ,J* $1$ SURGXFWLRQ FDQ EH WULJJHUHG E\ VSHFLILF DXWRDQWLJHQV DQG FDQ EH WKH UHVXOW RI SRO\FORQDO % FHOO DFWLYDWLRQ 7KHUH LV D UHSRUW WKDW SRO\FORQDO % FHOO DFWLYDWLRQ DORQH GRHV QRW OHDG WR ,J* $1$ SURGXFWLRQ f ,QFUHDVLQJ HYLGHQFH VXJJHVWV WKDW

PAGE 50

DXWRDQWLERGLHV DSSHDU WR EH WKH SURGXFWV RI DXWRDQWLJHQGULYHQ LPPXQH UHVSRQVHV f FKDUDFWHUL]HG E\ ,J* FODVV VZLWFKLQJ VRPDWLF PXWDWLRQ DQG FORQDO H[SDQVLRQ RI OXSXV % FHOOV 7KLV SDWKRJHQLF DXWRDQWLERG\ SURGXFWLRQ LQ ERWK VSRQWDQHRXV DQG H[SHULPHQWDOO\ LQGXFHG 6/( LV 7 KHOSHU 7Kf FHOO GHSHQGHQW DQG 7K FHOOV DUH SUHGRPLQDQWO\ &' SRVLWLYH f 7KH VWXGLHV RI XVLQJ DQWL&' PRQRFORQDO DQWLERG\ WR GHSOHWH RU EORFN WKH DFWLYDWLRQ RI &' 7 FHOOV IXUWKHU GHPRQVWUDWH D UHTXLUHPHQW IRU WKLV VXEVHW LQ OXSXV GHYHORSPHQW LQ PRXVH PRGHOV f 7KHVH 7 FHOOV PD\ EH SRO\FORQDOO\ DFWLYDWHG f RU DXWRDQWLJHQVSHFLILF f %RWK % DQG 7 FHOO GHIHFWV FDQ OHDG WR WKH RYHUSURGXFWLRQ RI SDWKRJHQLF DXWRDQWLERGLHV 7KLV VWXG\ LQGLFDWHV WKDW 6OH PDLQO\ LPSDFWV 7 FHOO IXQFWLRQ )LUVW GHYHORSPHQW RI DXWRLPPXQH GLVHDVH LQ \RXQJ %1=0F PLFH ZDV DFFRPSDQLHG E\ DQ LQFUHDVHG SHUFHQWDJH RI &' 7 FHOOV DQG DQ LQFUHDVHG &'&' 7 FHOO UDWLR LQ ERWK WKH VSOHHQ DQG O\PSK QRGH +RZHYHU WKHUH ZDV QR VLJQLILFDQW GLIIHUHQFH IRXQG LQ WRWDO 7 FHOO QXPEHUV EHWZHHQ \RXQJ %1=0F DQG % PLFH GDWD QRW VKRZQf 6HFRQG D KLJK SHUFHQWDJH RI &' 7 FHOOV LQ %1=0F ZDV DFWLYDWHG DQG H[SUHVVHG DFWLYDWLRQ PDUNHU &' :KHQ FXOWXUHG ZLWK DQWL&' LQ YLWUR &' 7 FHOOV H[SDQGHG SUHIHUHQWLDOO\ 7RWDO O\PSKRF\WHV DOVR VKRZHG KHLJKWHQHG SUROLIHUDWLYH UHVSRQVHV WR DQWL&' DQG ,/ VWLPXODWLRQ +\SHU UHVSRQVLYHQHVV ZDV IXUWKHU GHPRQVWUDWHG E\ LQ YLYR 7GHSHQGHQW DQWLJHQ '13./+ FKDOOHQJH DVVD\V %1=0F VKRZHG KHLJKWHQHG SULPDU\ DQG VHFRQGDU\ LPPXQH UHVSRQVHV WR '13 7KLUG %1=0F &' 7 FHOOV H[KLELWHG UHGXFHG DFWLYDWLRQLQGXFHG 7 FHOO GHDWK ,Q DGGLWLRQ SUHOLPLQDU\ GDWD IURP ERQH PDUURZ WUDQVIHU DVVD\V VKRZHG H[SUHVVLRQ RI D KLJK &'&' 7 FHOO UDWLR FDQ EH WUDQVIHUUHG E\

PAGE 51

%1=0F ERQH PDUURZ WR % UHFLSLHQWV ( 6REHO XQSXEOLVKHG REVHUYDWLRQVf 7DNHQ WRJHWKHU WKHVH UHVXOWV VXJJHVW LQWULQVLF 7 FHOO GHIHFWV DUH SUHVHQW LQ %1=0F FRQJHQLH PLFH &' 7 FHOOV FDQ DXJPHQW ,J* $1$ SURGXFWLRQ 7KH\ FDQ SURYLGH FRJQDWH KHOS ZKLFK DXJPHQWV DQWLJHQVSHFLILF % FHOOV YLD JS DQG &' WUDQVGXFLQJ D VHFRQG VLJQDO IRU % FHOO JURZWK DQG GLIIHUHQWLDWLRQ f DQG QRQDQWLJHQVSHFLILF KHOS ZKLFK DXJPHQW DQ\ E\VWDQGHU % FHOOV WKURXJK SURYLGLQJ % FHOO JURZWK DQG GLIIHUHQWLDWLRQ F\WRNLQHV f 7KH DXWRDQWLJHQQRQVSHFLILF 7 FHOO KHOS PD\ SURPRWH JHQHUDOL]HG KXPRUDO DXWRLPPXQLW\ VXFK DV K\SHUJDPPDJOREXOLQHPLD DQG DXWRDQWLERG\ SURGXFWLRQ EXW DXWRDQWLJHQVSHFLILF 7 FHOO KHOS LV UHTXLUHG WR PDWXULQJ VXFK DXWRLPPXQH UHVSRQVHV WR FDXVLQJ HQGRUJDQ GLVHDVH f 7 FHOO K\SHUDFWLYLW\ LQ %1=0F PD\ SURYLGH ERWK DXWRDQWLJHQVSHFLILF DQG DXWRDQWLJHQQRQVSHFLILF KHOS IRU DXWRDQWLERG\ SURGXFWLRQ DQG LPPXQH FRPSOH[ DVVRFLDWHG HQGRUJDQ GLVHDVH :H FDQ QRW PDNH D FRQFOXVLRQ DERXW % FHOO DEQRUPDOLWLHV LQ WKLV VWXG\ 3RO\FORQDO % FHOO DFWLYDWLRQ ,J* $1$ SURGXFWLRQ DQG KLJK SULPDU\ DQG VHFRQGDU\ LPPXQH UHVSRQVHV LQ YLYR PD\ LQGLFDWH SRVVLEOH % FHOO DEQRUPDOLWLHV DQG OHDG WR WKH ORVV RI WROHUDQFH WR QXFOHDU DQWLJHQV LQ %1=0F ,W LV XQFOHDU ZKHWKHU WKHVH REVHUYDWLRQV DUH GXH WR LQWULQVLF % FHOO GHIHFWV RU QRUPDO % FHOO UHVSRQVHV WR DEQRUPDO HQYLURQPHQW IDFWRUV LQFOXGLQJ 7 FHOO K\SHUDFWLYLW\ RU ERWK 3UH% FHOO WUDQVIHU H[SHULPHQWV DUH LQ SURJUHVV DQG ZLOO KHOS WR DGGUHVV WKLV TXHVWLRQ 7KH KXPRUDO SKHQRW\SHV DQG QHSKULWLV ZHUH IRXQG LQ ERWK %1=0F KRPR]\JRXV DQG KHWHUR]\JRXV PLFH ZLWK GHOD\HG RQVHW DQG OHVV VHYHULW\ DV ZHOO DV

PAGE 52

GHFUHDVHG SHQHWUDQFH LQ KHWHUR]\JRWHV 7KLV UHVXOW LQGLFDWHV WKH PRGH RI LQKHULWDQFH LV GRPLQDQW DQG LQ DQ DOOHOH GRVHGHSHQGHQW IDVKLRQ )XUWKHU VWXGLHV DUH QHHGHG WR GHWHUPLQH WKH PRGH RI LQKHULWDQFH RI FHOOXODU GHIHFWV LGHQWLILHG KHUH 7KLV VWXG\ GHPRQVWUDWHV WKDW %1=0F EHDULQJ 6OH H[KLELW FRPSOH[ DQG PXOWLIDFHWHG SKHQRW\SHV ZKLFK DUH GLIIHUHQW IURP %1=0FO DQG %1=0F 6OH FRQWULEXWHV WR OXSXV VXVFHSWLELOLW\ LQ 1=0 SUHGRPLQDQWO\ E\ LPSDFWLQJ 7 FHOO DFWLYDWLRQ DQG SUROLIHUDWLRQ OHDGLQJ WR WKH ORZ JUDGH ,J* $1$ SURGXFWLRQ DQG OXSXV QHSKULWLV 7KH SKHQRW\SHV LQ %1=0F DUH OHVV SURQRXQFHG WKDQ WKHVH LQ 1=0 7KH UHODWLYH FRPSOH[ SKHQRW\SHV PD\ UHIOHFW WKH SUHVHQFH RI WZR RU PRUH 6/( VXVFHSWLELOLW\ JHQHV ZLWKLQ WKLV LQWHUYDO 7KLV SRVVLELOLW\ KDV EHHQ VXJJHVWHG E\ WKH SUHVHQFH RI WZR SHDNV LQ JHQHWLF OLQNDJH VWXGLHV RQ EDFNFURVV PLFH f DQG IXUWKHU VXSSRUWHG E\ UHVXOWV IURP OLQNDJH VWXGLHV LQ LQWHUFURVV PLFH f 7R H[SORUH WKLV SRVVLELOLW\ ZH VHSDUDWHG WKH WHORPHULF DQG FHQWURPHULF SHDNV ZLWKLQ WKH 6OH LQWHUYDO E\ JHQHUDWLQJ WZR VXEFRQJHQLF VWUDLQV 'HWDLOHG DQDO\VLV RI WKHVH VXEFRQJHQLF PLFH LV SUHVHQWHG LQ &KDSWHU 7*)LV D SRWHQWLDO FDQGLGDWH JHQH ORFDWHG LQ WKH 6OH LQWHUYDO 7KH FRGLQJ UHJLRQ RI WKLV JHQH KDV EHHQ VHTXHQFHG DQG LW ZDV IRXQG WKDW WKHUH LV QR FRQVLVWHQW VHTXHQFH SRO\PRUSKLVP EHWZHHQ %1=0F DQG % )XUWKHU VWXGLHV DUH QHHGHG WR GHWHUPLQH LI WKHUH DUH DQ\ GLIIHUHQFHV LQ H[SUHVVLRQ OHYHOV RI WKLV JHQH

PAGE 53

0DUNHU ORFL F0 *URXS '0,7 ‘ ( ’ ( ’ ( ( ( ’ ( ’ ( ’ ’ ’ ’ ’ &.00 ‘ ‘ ‘ ‘ ‘ ( ( ( ( ( ( ( ( ( ‘ ‘ ’ '0,7 ‘ ‘ ‘ ‘ ‘ ( ( ( ( ( ( ( ( ( ‘ ‘ ’ '0,7 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ( ( ( ( ( ( ( ‘ ‘ ( '0,7 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ( ( ( ( ( ( ( ‘ ( ( '0,7 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ( ( ( ( ( ( ( ( '0,7 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ( ( ( ( ( ( '0,7 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ '0,7 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 3 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ '0,7 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ '0,7 ‘ ‘ ‘ ( ( ( ‘ ‘ ‘ ( ( ( ‘ ( ‘ ‘ '0,7 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ( ( ( ( ’ QXPEHUV RI PLFH )LJ *HQRW\SHV RI WKH RULJLQDO %1=0F FRQJHQLH PLFH 7KLUWHHQ PDUNHUV FRYLQJ WKH 6OH LQWHUYDO LQGLFDWHG RQ WKH OHIWf ZHUH XVHG WR JHQRW\SH HDFK DQLPD/ 7KH GLVWDQFH RI HDFK PDUNHU WR WKH FHQWULPHULH HQG LV VKRZQ LQ WKH VHFRQG FROXPQ DQG LV H[SUHVVHG LQ XQLWV RI FHQWL0RUJDQ F0f %ODFN ER[HV UHSUHVHQW PLFH W\SHG DV 1=0 KRPR]\JRWHV ZKLWH ER[HV PLFH W\SHG DV % KRPR]\JRWHV KDOI EODFN ER[HV UHSUHVHQW KHWHUR]\JRXV PLFH 0LFH IURP JURXS ZHUH XVHG DV IRXQGHUV IRU EUHHGLQJ DOO %1=0F PLFH XVHG LQ WKLV VWXG\

PAGE 54

)LJXUH 7RWDO VHUXP ,J* DQG ,J0 LQ PRQWK ROG PLFH +LJK OHYHOV RI VHUXP ,J* DQG ,J0 ZHUH REVHUYHG LQ %1=0F KRPR]\JRXV PLFH EODFN GRWf FRPSDUHG ZLWK % ZKLWH WULDQJOHf (DFK GRW UHSUHVHQWV DQ LQGLYLGXDO PRXVH +RUL]RQWDO OLQH LV PHDQ YDOXH

PAGE 55

7RWDO VHUXP ,J* XJ PLf 7RWDO VHUXP ,J0 XJPOf

PAGE 56

)LJXUH .LQHWLFV RI WRWDO VHUXP ,J0 OHYHOV LQ %1=0F KRPR]\JRXV PLFH 7KHUH LV QR VLJQLILFDQW GLIIHUHQFH EHWZHHQ %1=0F KRPR]\JRWHV EODFN GRW DOO JURXSV Q PR JURXS Q f DQG KHWHUR]\JRWHV ZKLWH GRW Q f +RUL]RQWDO OLQHV DUH PHDQ YDOXHV (DFK GRW UHSUHVHQWV DQ LQGLYLGXDO PRXVH

PAGE 57

7RWDO VHUXP ,J0 XJPOf Lf§ 1! 8! A -L 2 2 2 2 2 R R R R R R 22 2

PAGE 58

7DEOH 6SRQWDQHRXV SURGXFWLRQ RI ,J0 DQWLERGLHV DJDLQVW D SDQHO RI IRXU DQWLJHQV LQ %1=0F KRPR]\JRWHV FRPSDUHG ZLWK DJHPDWFKHG % $QWLJHQ % PR %1=0F % PR %1=0F % PR %1=0F % PR %1=0F VV'1$ sD srE s sr 8 sr s sr +LVWRQH s sr s sr s sr s sr 7K\URJOREXOLQ s sr s sr s sr s sr '13./+ s sr s sr s sr s sr D $OO GDWD H[SUHVVHG DV PHDQ b 2' s VWDQGDUG HUURU RI PHDQ 6(0f b 2' LV WKH UDWLR RI WKH VDPSOH 2' GLYLGHG E\ WKH 2' RI QRUPDO % SRROHG VHUXP [ f 7KH QXPEHU RI PLFH WHVWHG LV % DQG %1=0F E r UHSUHVHQWV VWXGHQWfV W WHVW VLJQLILFDQFH S R

PAGE 59

)LJXUH ,J* DQWLGV'1$ DQG DQWLFKURPDWLQ DXWRDQWLERG\ SURGXFWLRQ LQ WR PRQWK ROG %1=0F PLFH %1=0F KRPR]\JRXV PLFH EODFN GRW DOO JURXSV Q PR JURXS Q f SURGXFH ERWK DQWL GV'1$ DQG DQWLFKURPDWLQ DQWLERGLHV VWDUWLQJ DW PR RI DJH Sf 7KH SKHQRW\SHV DUH DOVR IRXQG LQ %1=0F KHWHUR]\JRXV PLFH ZKLWH GRW Q f ZLWK VOLJKWO\ ORZ WLWHUV 6LJQLILFDQW GLIIHUHQFH ZDV GHWHFWHG LQ %1=0F KRPR]\JRXV DQG KHWHUR]\JRXV PLFH FRPSDUHG ZLWK % ZKLWH WULDQJOH Q f +RUL]RQWDO OLQHV UHSUHVHQW PHDQ YDOXHV

PAGE 60

%

PAGE 61

7DEOH 3HQHWUDQFH RI ,J* DQWLQXFOHDU DXWRDQWLERG\ SURGXFWLRQ LQ %1=0F $QWLJHQ PR %1=0F KRPE KHW PR %1=0F KRUQ KHW PR %1=0F KRUQ KHW PR %1=0F KRUQ KHW PR %1=0F KRUQ KHW GV'1$ bF 1'G b b b b b b b b VV'1$ b 1' b b b b b b b b &KURPDWLQ b 1' b b b b b b b b +LVWRQH b 1' b b b b b b b b 1r D 1XPEHU RI PLFH WHVWHG E +RPR]\JRXV KRPf%1=0F KHWHUR]\JRXV KHWf PLFH F 3HUFHQWDJH RI SRVLWLYH PLFH 7KH PRXVH LV FRXQWHG DV SRVLWLYH LI LWV DQWLERG\ WLWHUV DUH DERYH WKH OHYHOV RI PHDQ SOXV VWDQGDUG GHYLDWLRQ IRXQG LQ VL[ PR ROG % PLFH DVVD\HG RQ WKH VDPH SODWH G 1' QRW GHWHUPLQHG

PAGE 62

)LJXUH :D[LQJ DQG ZDQLQJ QDWXUH RI DQWL$1$ SURGXFWLRQ LQ %1=0F PLFH (DFK OLQH UHSUHVHQWV DQ LQGLYLGXDO PRXVH $ WRWDO RI PLFH ZHUH VHOHFWHG IURP PLFH WHVWHG IURP WR PRQWKV RI DJH IRU DQWLGV'1$ DW WKH VDPH (/,6$ SODWH 7KH KRUL]RQWDO OLQH UHSUHVHQWV PHDQ SOXV VWDQGDUG GHYLDWLRQ VHUXP DQWLERG\ OHYHOV SUHVHQW LQ WHQ PRQWK ROG % PLFH /HYHOV RI DQWLERG\ DERYH WKLV OLQH DUH FRQVLGHUHG SRVLWLYH

PAGE 64

)LJXUH ,PPXQH UHVSRQVHV WR 7GHSHQGHQW DQWLJHQ '13./+ LQ YLYR $f ,J0 DQWL'13 DQWLERG\ SURGXFWLRQ EHIRUH LPPXQL]DWLRQ GD\V DIWHU SULPDU\ LPPXQL]DWLRQ DQG GD\V DIWHU ERRVWHG LQMHFWLRQ G DQG Gf DW VHUXP GLOXWLRQV RI LQ %1=PF PLFH ZKLWH GRWV GDVKHG OLQHf DQG DJH VH[PDWFKHG % EODFN GRWV VROLG OLQHf %f ,J0 DQWL'13 DQWLERGLHV DW GD\ DW GLIIHUHQW VHUXP GLOXWLRQV 'DWD DUH IURP RQH RI WKUHH LQGHSHQGHQW H[SHULPHQWV DQG HDFK GRW LV H[SUHVVHG DV PHDQ 2' SOXV VWDQGDUG GHYLDWLRQ IURP ILYH %1=0F RU % PLFH r S rr S

PAGE 65

$ 7LPH 'D\Vf ,J0 DQWL'13 2'f % LQ LQ LQ LQ 6HUXP GLOXWLRQ f-

PAGE 66

)LJXUH ,PPXQH UHVSRQVHV LQ YLYR WR 7GHSHQGHQW DQWLJHQ '13./+ $f ,J* DQWL'13 DQWLERG\ SURGXFWLRQ EHIRUH LPPXQL]DWLRQ GD\V DIWHU SULPDU\ LPPXQL]DWLRQ DQG GD\V DIWHU ERRVWHG LQMHFWLRQ GGf DW VHUXP GLOXWLRQ RI LQ %1=0F PLFH ZKLWH GRWV GDVKHG OLQHf DQG DJH VH[PDWFKHG % EODFN GRWVf %f ,J* DQWL'13 DQWLERGLHV DW GD\ DW GLIIHUHQW VHUXP GLOXWLRQV 'DWD DUH IURP RQH RI WKUHH LQGHSHQGHQW H[SHULPHQWV DQG HDFK GRW LV H[SUHVVHG DV PHDQ 2' SOXV VWDQGDUG GHYLDWLRQ IURP ILYH %1=0F RU % PLFH r S rr S

PAGE 67

$ 6HUXP GLOXWLRQ 92

PAGE 68

7DEOH 6XPPDU\ RI )$&6 DQDO\VLV RI 7 FHOOV LQ %1=0F PLFH FRPSDUHG ZLWK DJH PDWFKHG % PR PLFH PR PLFH 6SOHHQ /\PSK QRGH % Q %1=0F Q % Q %1=0F Q b&' 7 FHOOV sD srrE L srrr b&' 7 FHOOV s s s L &'&' 7 FHOO UDWLR srrr s Lr &'&' 7 FHOOV s srr s D $OO GDWD H[SUHVVHG DV PHDQ s VWDQGDUG GHYLDWLRQ 6'f E r UHSUHVHQW VWXGHQW W WHVW VLJQLILFDQFH S rrS rrrS

PAGE 69

)LJXUH 6SOHHQ DQG O\PSK QRGH &'&' 7 FHOO UDWLR LQ WR PRQWK %1=0F PLFH 7KHUH ZDV QR GLIIHUHQFH EHWZHHQ PDOHV DQG IHPDOHV'DWD LV SRROHG IURP LQGHSHQGHQW H[SHULPHQWV IRU HDFK WHVW DJH DQG VH[ PDWFKHG PLFH ZHUH XVHG DQG % PLFH LQFOXGHG 7KH UHVXOWV DUH SUHVHQWHG DV PHDQ SOXV VWDQGDUG GHYLDWLRQ r S rrr S

PAGE 70

% %1=0F 6SOHHQ 1 r 1 % %1=0F /\PSK QRGH

PAGE 71

)LJXUH %1=0F VSOHHQ &' DQG &' 7 FHOOV H[SDQVLRQ DIWHU DQWL&' XJPOf VWLPXODWLRQ LQ YLWUR %ODFN EDUV DUH % ZKLWH EDUV DUH %1=0F 7KH PHDQ YDOXH RI GXSOLFDWHV LV SUHVHQWHG 'DWD UHSUHVHQW RQH RI WKUHH LQGHSHQGHQW H[SHULPHQWV $OO PLFH DUH DJH DQG VH[PDWFKHG &HOO QXPEHUV ZHUH FDOFXODWHG XVLQJ )$&6 GDWD DQG FHOO FRXQWLQJ

PAGE 72

&HOO QXPEHU L &' FHOOV &' FHOOV &XOWXUH 7LPH KRXUVf

PAGE 73

)LJXUH 3ORWV VKRZ LQFUHDVHG SHUFHQWDJH &' FHOOV LQ VSOHQLF O\PSKRF\WHV FXOWXUHG ZLWK DQWL&' XJPOf IRU K K DQG K IURP %1=0F FRPSDUHG ZLWK DJHPDWFKHG % 7KLV H[SHULPHQW LV UHSUHVHQWDWLYH RI WKUHH LQGHSHQGHQW H[SHULPHQWV

PAGE 74

2K K K K &' ff f n frn f f f Y n-f fff +VO fn ffO,6.n f f f : n 7R 7LUA MILL -‹3 n`‘‘‘ ‘bn W,Mnf ?9 Y nf n U Y"f f f f Z 9} UI f Rr ‘c+Yn f nMMcccc f VM_f ,/ 9Rr r ‘‘ ‘f ‘ f§LnSR I ‘ ‘ f /L Lr -IH ‘AHU ‘f f :Of R P n9L f ff 2 ,1 2 f /? r f f W r L f 9A Y U : 666Sn f‘cIH 2 -tL f N ‘ }nL &' % %1=0F 4? 2V

PAGE 75

)LJXUH /\PSKRF\WH SUROLIHUDWLRQ DVVD\ 6SOHQRF\WHV [ ZHUH FXOWXUH ZLWK JUDGHG GRVHV RI DQWL &' SDQHO $f RU U,/ SDQHO %f IRU K /\PSKRF\WH SUROLIHUDWLRQ ZDV PHDVXUHG E\ +WK\PLGLQH LQFRUSRUDWLRQ ZKLFK DGGHG LQ WKH ODVW K RI FXOWXUH 'DVKHG OLQH UHSUHVHQWV %1=0F VROLG OLQH DJH DQG VH[PDWFKHG % (DFK EDU UHSUHVHQWV PHDQ FSP FRXQWV SHU PLQXWHfsVWDQGDUG HUURU RI PHDQ 6(0f LQFRUSRUDWHG E\ WULSOLFDWH FXOWXUHV 7KLV H[SHULPHQW LV UHSUHVHQWDWLYH RI LQGHSHQGHQW H[SHULPHQWV r S rr S

PAGE 76

7K\PLGLQH LQFRUSRUDWLRQ FSPf 7K\PLGLQH LQFRUSRUDWLRQ FSPf 21 YR

PAGE 77

)LJXUH 7KH IUHTXHQF\ RI *1 LQ %1=0F KRPR]\JRXV KRPf DQG KHWHUR]\JRXV KHWf IRU WKH 6OH LQWHUYDO *1 ZDV JUDGHG DFFRUGLQJ WR SHUFHQW RI JORPHUXOL DIIHFWHG JUDGH WR f DQG WKH PRUSKRORJLFDO SDWWHUQ RI QHSKULWLV + K\DOLQH 0 PHVDQJLRSDWKLFf

PAGE 78

)UHTXHQF\ RI *1 /

PAGE 79

&+$37(5 *(1(7,& ',66(&7,21 2) 6/( 3$7+2*(1(6,6 6/( +$6 7:2 6(3$5$7( /2&, 7+$7 ,17(5$&7 6<1(5*,67,&$//< ,QWURGXFWLRQ 6/( LV D SURWRW\SLF V\VWHPLF DXWRLPPXQH GLVHDVH FKDUDFWHUL]HG E\ SURGXFWLRQ RI DXWRDQWLERGLHV DJDLQVW D VSHFWUXP RI QXFOHDU DQWLJHQV DQG DXWRDQWLERG\PHGLDWHG RUJDQ GDPDJHV HVSHFLDOO\ NLGQH\ GDPDJH 7KH FDXVH RI GLVHDVH LV XQFOHDU 7KH JHQHWLF IDFWRUV DQG HQYLURQPHQWDO IDFWRUV DV ZHOO DV VWRFKDVWLF IDFWRUV FRQWULEXWH WR WKH DOWHUHG LPPXQH VWDWH f ,GHQWLILFDWLRQ RI XQGHUO\LQJ JHQH PXWDWLRQV RU DOOHOLF YDULDQWV WKDW DIIHFW WKH IXQFWLRQ RI JHQHV DQG DQ XQGHUVWDQGLQJ RI WKHLU IXQFWLRQDO FRQVHTXHQFHV ZLOO LPSDFW WKH GLDJQRVLV WUHDWPHQW DQG SUHYHQWLRQ RI 6/( 6HYHUDO LQEUHG PRXVH VWUDLQV WKDW VSRQWDQHRXVO\ GHYHORS D GLVHDVH VLPLODU WR KXPDQ 6/( DUH LPSRUWDQW PRGHOV f 7KH PRVWVWXGLHG LV WKH ), K\EULG RI 1=% DQG 1=: 1HZ =HDODQG 0L[HG 1=0f DUH LQEUHG VWUDLQV GHULYHG IURP VHOHFWLYH LQEUHHGLQJ RI SURJHQ\ IURP D FURVV EHWZHHQ 1=% DQG 1=: f $ WRWDO RI 1=0 VWUDLQV ZHUH SURGXFHG 7KHVH VWUDLQV KDYH LQKHULWHG YDULRXV JHQRPLF VHJPHQWV RI WKH WZR SDUHQWDO VWUDLQV DQG DUH KRPR]\JRXV DW WKH KLVWRFRPSDWLELOLW\ +f ORFXV IRU WKH 1=: KDSORW\SH .X $X 6] ']f 7KH JHQHWLF GLIIHUHQFHV DPRQJ WKHVH VWUDLQV OHDG WR SKHQRW\SLF GLIIHUHQFHV LQ GLVHDVH H[SUHVVLRQ 1=0 LV D VWUDLQ WKDW SURGXFHV KLJK OHYHOV RI ,J*

PAGE 80

DXWRDQWLERGLHV WR QXFOHDU DQWLJHQV DV HDUO\ DV WR PRQWKV RI DJH DQG GHYHORSV VHYHUH OXSXVOLNH UHQDO GLVHDVH LQ ERWK VH[HV $ JHQRPH VFDQ ZDV SHUIRUPHG LQ WKH EDFNFURVV SURJHQ\ RI 1=0 DQG % WR LGHQWLI\ WKH FKURPRVRPDO ORFDWLRQV RI VXVFHSWLELOLW\ JHQHV f 7KUHH VXVFHSWLELOLW\ LQWHUYDOV DQG WKH 0+& ORFXV ZHUH IRXQG WR FRQIHU DFXWH *1 VXVFHSWLELOLW\ 7KH WKUHH LQWHUYDOV ZHUH 6OHO LQ WKH WHORPHULF HQG RI FKURPRVRPH 6OH LQ WKH FHQWURPHULF HQG RI FKURPRVRPH 6OH LQ WKH FHQWURPHULF HQG RI FKURPRVRPH 6LPLODU UHJLRQV KDYH DOVR EHHQ LGHQWLILHG LQ 1=% ; 1=: FURVVHV UHYLHZHG LQ UHI f $OWKRXJK WKHVH OLQNDJH VWXGLHV KDYH SURYLGHG LPSRUWDQW LQIRUPDWLRQ DERXW WKH FKURPRVRPDO ORFDWLRQV RI VXVFHSWLELOLW\ JHQHV DQG WKH LQKHULWDQFH RI WKH GLVHDVH WKH\ WHOO XV OLWWOH DERXW WKH UROH RI HDFK JHQH LQ WKH SDWKRJHQHVLV RI OXSXV DQG WKH\ DUH QRW SURGXFWLYH IRU ILQH PDSSLQJ 7KH FRQVWUXFWLRQ RI FRQJHQLH VWUDLQV LV D JRRG DSSURDFK WR DGGUHVV WKHVH LVVXHV 7KH VXVFHSWLELOLW\ LQWHUYDOV IURP WKH VXVFHSWLEOH GRQRU VWUDLQ DUH LQWURGXFHG LQWR WKH JHQRPH RI WKH UHVLVWDQW UHFLSLHQW VWUDLQ E\ UHSHWLWLYH EDFNFURVV RI WKH GRQRU VWUDLQ WR WKH UHFLSLHQW f :H UHFHQWO\ JHQHUDWHG D FROOHFWLRQ RI % FRQJHQLH VWUDLQV EHDULQJ WKH LQGLYLGXDO OXSXV VXVFHSWLELOLW\ LQWHUYDOV IURP 1=0 7KXV E\ FRPSDULQJ % DQG WKH % FRQJHQLH VWUDLQV GLIIHULQJ RQO\ IRU WKH VSHFLILF FKURPRVRPDO VHJPHQWV ZH DUH DEOH WR FKDUDFWHUL]H WKH SKHQRW\SHV FRQWULEXWHG WR GLVHDVH SDWKRJHQHVLV E\ HDFK VXVFHSWLELOLW\ LQWHUYDO ,QWHUHVWLQJO\ WKHVH FRQJHQLH VWUDLQV H[KLELW GLIIHUHQW VHURORJLFDO DQG LPPXQRORJLFDO DEQRUPDOLWLHV DQG YDU\LQJ VXVFHSWLELOLW\ WR QHSKULWLV f 'HWDLOHG DQDO\VLV RI %1=0F EHDULQJ WKH 6OH LQWHUYDO LV SUHVHQWHG LQ &KDSWHU ,Q VXPPDU\ RXU UHVXOWV LQGLFDWH WKDW 6OH SURIRXQGO\ DIIHFWV 7 FHOO DFWLYDWLRQ

PAGE 81

SUROLIHUDWLRQ GLIIHUHQWLDWLRQ DQG DSRSWRVLV %1=0F PLFH KDG LQFUHDVHG &'&' 7 FHOO UDWLRV DQG LQFUHDVHG &'&' 7 FHOOV LQ ERWK WKH VSOHHQ DQG O\PSK QRGH 7KH\ VKRZHG KHLJKWHQHG O\PSKRF\WH SUROLIHUDWLRQ DQG &' 7 FHOO H[SDQVLRQ LQ UHVSRQVH WR DQWL&' VWLPXODWLRQ LQ YLWUR DQG LQFUHDVHG LQ YLYR LPPXQH UHVSRQVHV WR 7GHSHQGHQW DQWLJHQV &' 7 FHOOV H[KLELWHG UHGXFHG DFWLYDWLRQLQGXFHG FHOO GHDWK %1=0F VSOHHQ DQG O\PSK QRGH % FHOOV GLG QRW GLIIHU IURP % LQ QXPEHU % FHOOV VXEVHW % YV % FHOOVf RU IXQFWLRQDO DQDO\VLV % FHOO SUROLIHUDWLRQ LQ YLWURf +RZHYHU %1=0F PLFH VKRZHG KLJK VHUXP ,J0 DQG ,J* OHYHOV KLJK SRO\FORQDO ,J0 DQWLERGLHV DQG KLJK H[SUHVVLRQV RI VRPH % FHOO VXUIDFH PDUNHUV LQ D ODWH DJH )LQDOO\ 6OH OHDG WR DXWRDQWLERG\PHGLDWHG *1 7KH UHODWLYHO\ FRPSOH[ SKHQRW\SHV LQ %1=0F VXJJHVW WKH SUHVHQFH RI WZR RU PRUH 6/(VXVFHSWLELOLW\ ORFL ZLWKLQ WKLV LQWHUYDO 7KLV SRVVLELOLW\ KDV DOVR EHHQ VXJJHVWHG E\ WKH SUHVHQFH RI WZR SHDNV LQ RXU JHQHWLF OLQNDJH VWXGLHV RQ EDFNFURVV f DQG LQWHUFURVV PLFH f +HUH ZH H[SORUH WKLV SRVVLELOLW\ E\ JHQHUDWLQJ WZR VXEFRQJHQLF VWUDLQV EHDULQJ WKH WHORPHULF RU WKH FHQWURPHULF SHDNV RI 6OH 7KH FRQVWUXFWLRQ RI %1=0FF DQG %1=0FW VXEFRQJHQLF VWUDLQV ZDV GHVFULEHG LQ &KDSWHU %1=0FF FRQWDLQV WKH FHQWURPHULF HQG RI 6OH DQG %1=0FW FRQWDLQV WKH WHORPHULF HQG RI 6OH 7KHVH VWUDLQV ZHUH DQDO\]HG IRU WKHLU VHURORJLFDO SKHQRW\SHV HYLGHQFH RI *1 DQG 7 FHOO SKHQRW\SHV FRPSDUHG WR % DQG WKH SDUHQWDO %1=0F VWUDLQ 5HVXOWV VXJJHVW WKDW 6OH KDV DW OHDVW WZR VHSDUDWH VXVFHSWLELOLW\ ORFL WKDW LQWHUDFW LQ D V\QHUJLVWLF ZD\ WR FDXVH SRO\FORQDO % FHOO DFWLYDWLRQ ,J* $1$ SURGXFWLRQ DQG GHYHORSPHQW RI *1 +RZHYHU LQFUHDVHG &'&' 7 FHOO UDWLRV DQG LQFUHDVHG &' 7 FHOO H[SDQVLRQV LQ YLWUR DV ZHOO DV WKH

PAGE 82

KHLJKWHQHG 7 FHOO SUROLIHUDWLRQV LQ YLWUR ZHUH VHHQ RQO\ LQ WKH PLFH FDUU\LQJ WKH WHORPHULF HQG RI 6OH 5HVXOWV 'HQVH OLQNDJH PDS RI 665 PDUNHUV RQ PXULQH FKURPRVRPH FRYHULQJ WKH 6OH LQWHUYDO ,Q RUGHU WR SURGXFH WKH VXEFRQJHQLF PRXVH VWUDLQV DQG ILQHO\ PDS VXVFHSWLELOLW\ ORFL D SUHFLVH PDS RI 665 PDUNHUV LV YHU\ LPSRUWDQW 1LQW\VL[ 1=0 ; %f) ; 1=0 EDFNFURVV DQG ) LQWHUFURVV SURJHQ\ UHSUHVHQWLQJ DSSUR[LPDWHO\ PHLRVLV ZHUH JHQRW\SHG XVLQJ PDUNHUV FRYHULQJ WKH 6OH LQWHUYDO RQ PXULQH FKURPRVRPH 7KH PDS RI 665 PDUNHUV ZDV FRQVWUXFWHG XVLQJ 0$30$5.(5 FRPSXWHU VRIWZDUH f $V VKRZQ LQ )LJXUH WKH RUGHU DQG JHQHWLF GLVWDQFHV EHWZHHQ PDUNHUV WKDW ZH REWDLQHG ZHUH PRVWO\ LQ DJUHHPHQW ZLWK SXEOLVKHG GDWD f +RZHYHU RQH PDUNHU RUGHU GLIIHUHQFH ZDV REVHUYHG 7KH PDUNHU '0LW ZDV SUR[LPDO WR '0LW DQG '0LWO LQ RXU PDS EXW GLVWDO WR WKHVH PDUNHUV LQ WKH SXEOLVKHG PDS :H DOVR GHILQHG WKH RUGHU RI PDUNHUV XQGHUOLQHG LQ )LJXUH f ZKLFK FRXOG QRW EH VHSDUDWHG GXH WR WKH VPDOO QXPEHU RI PLFH JHQRW\SHG LQ WKH FRQVWUXFWLRQ RI SXEOLVKHG PDS 7KLV 665 PDUNHU PDS LV KHOSIXO LQ GHWHUPLQLQJ UHFRPELQDWLRQ VLWHV GXULQJ SURGXFWLRQ RI WKH VXEFRQJHQLF VWUDLQV *HQHUDWLQJ WKH VXEFRQJHQLF VWUDLQV ZDV GHVFULEHG LQ &KDSWHU $V VKRZQ LQ )LJXUH %1=0FF FRQWDLQV WKH FHQWURPHULF HQG RI 6OH ZLWK 1=0GHULYHG

PAGE 83

DOOHOHV IURP PDUNHU FNPP F0f WR '08 F0f %1=0FW FRQWDLQV WKH WHORPHULF HQG RI 6OH ZLWK 1=0GHULYHG DOOHOHV IURP PDUNHU '0LW F0f WR '08 F0f %RWK ORFL OHDG WR K\SHUJDPPDJOREXOLQHPLD DQG VSRQWDQHRXV SRO\FORQDO % FHOO DFWLYDWLRQ 7KH PLFH IURP ERWK VXEFRQJHQLF VWUDLQV VKRZHG JHQHUDOL]HG LPPXQH K\SHUDFWLYLW\ OLNH SDUHQWDO %1=0F PLFH 7KH\ KDG KLJK WRWDO VHUXP ,J* DQG ,J0 OHYHOV FRPSDUHG ZLWK % DW PRQWKV RI DJH )LJXUH f 7KH\ VKRZHG KLJK SRO\FORQDO ,J0 DQWLERGLHV DJDLQVW VV'1$ KLVWRQH '13./+ WK\URJOREXOLQ DW PRQWKV RI DJH )LJXUH f DV ZHOO DV DW DQG PRQWKV RI DJH GDWD QRW VKRZQf +RZHYHU WLWHUV RI SRO\FORQDO ,J0 DQWLERGLHV ZHUH ORZHU WKDQ %1=0F &RQVLVWHQW ZLWK ORZ DQWLERG\ WLWHU WKH SHQHWUDQFH RI SRO\FORQDO ,J0 ZDV ORZHU DOVR DQG WKHUH ZDV OLWWOH SRO\FORQDO ,J* DQWLERG\ SURGXFWLRQ LQ HLWKHU RI WKH VXEFRQJHQLF VWUDLQV )LJXUH f 7KHVH UHVXOWV VXJJHVW WKDW ERWK ORFL FDQ LQGHSHQGHQWO\ FDXVH D ORZJUDGH SRO\FORQDO % FHOO DFWLYDWLRQ EXW WKH\ QHHG WR LQWHUDFW V\QHUJLVWLFDOO\ LQ JHQHUDWLQJ WKH SURQRXQFHG SKHQRW\SHV VHHQ LQ %1=0F %RWK ORFL DUH UHTXLUHG IRU ,J* $1$ SURGXFWLRQ %1=0F PLFH VSRQWDQHRXVO\ SURGXFH ,J* DQWLERGLHV DJDLQVW D EURDG VSHFWUXP RI DQWLJHQV LQFOXGLQJ QXFOHDU DQG QRQn QXFOHDU DQWLJHQV 7KLV SKHQRW\SH ZDV DOVR H[DPLQHG LQ PLFH EHDULQJ WKH VXELQWHUYDOV $V VKRZQ LQ 7DEOH WKH IUHTXHQF\ RI ,J* DXWRDQWLERG\ SURGXFWLRQ WR D SDQHO RI IRXU QXFOHDU DQWLJHQV ZDV YHU\ ORZ )RU H[DPSOH WKH IUHTXHQF\ RI DQWLGV'1$ DW PRQWKV LV DERXW b LQ %1=0FF DQG b LQ %1=0FW FRPSDUHG WR b LQ %1=0F 7LWHUV RI ,J* DXWRDQWLERGLHV LQ ERWK WKH VXEFRQJHQLF VWUDLQV ZHUH DOVR PXFK ORZHU

PAGE 84

FRPSDUHG ZLWK %1=0F DW PRQWKV RI DJH )LJXUH f DV ZHOO DV DW DQG PRQWKV RI DJH GDWD QRW VKRZQf ,Q VXPPDU\ QHLWKHU ORFXV E\ LWVHOI RQ % EDFNJURXQG LV VXIILFLHQW WR GULYH VSRQWDQHRXV ,J* $1$ SURGXFWLRQ 5HVSRQVHV RI VXEFRQJHQLF PLFH WR '13./+ FKDOOHQJH $V GHVFULEHG DERYH ERWK WKH VXEFRQJHQLF VWUDLQV VSRQWDQHRXVO\ SURGXFHG ,J0 DQWLERGLHV WR QXFOHDU DQG QRQn QXFOHDU DQWLJHQV EXW WKH\ VSRQWDQHRXVO\ SURGXFHG OLWWOH ,J* DXWRDQWLERGLHV 7R IXUWKHU DVVHVV LPPXQH UHVSRQVHV ZH FKDOOHQJHG WKHVH PLFH LQ YLYR ZLWK '13./+ ,J0 DQG ,J* DQWL'13 DQWLERGLHV ZHUH H[DPLQHG EHIRUH LPPXQL]DWLRQ SULPDU\ LPPXQH UHVSRQVH VHFRQGDU\ LPPXQH UHVSRQVH DQG GXUDWLRQ RI WKH UHVSRQVH ,Q FRQWUDVW ZLWK %1=0F PLFH WKDW SURGXFHG KLJK ,J0 DQWL'13 DQWLERGLHV WKHUH ZDV QR VLJQLILFDQW GLIIHUHQFH LQ WKH ,J0 DQWL'13 DQWLERG\ OHYHOV EHWZHHQ WKH VXEFRQJHQLF VWUDLQV DQG % S!f +RZHYHU WKH ,J0 DQWL'13 DQWLERGLHV ODVWHG ORQJHU LQ %1=0FW Sf )LJXUH SDQHO $f ZKLFK FRXOG EH VHHQ IURP VHUXP GLOXWLRQ WR )LJXUH SDQHO %f $ KLJK ,J* DQWL'13 VHFRQGDU\ UHVSRQVH ZDV REVHUYHG LQ %1=0FW Sf ZKLFK ZDV DOVR VHHQ LQ %1=0F 7KH ,J* DQWL'13 DQWLERGLHV ODVWHG ORQJHU LQ ERWK WKH VXEFRQJHQLF VWUDLQV FRPSDUHG ZLWK % Sf )LJXUH f %1=0FW H[KLELWHG LQFUHDVHG &'&' 7 FHOO UDWLRV 7R GHILQH 7 FHOO DEQRUPDOLWLHV LQ WKH VXEFRQJHQLF VWUDLQV ZH ILUVW H[DPLQHG WKH 7 FHOO VXUIDFH PDUNHU H[SUHVVLRQ XVLQJ IORZ F\WRPHWU\ 7DEOH VXPPDUL]HV WKH UHVXOWV RI )$&6 DQDO\VLV %1=0FW PLFH VKRZHG LQFUHDVHG SHUFHQWDJHV RI &' 7 FHOOV DQG LQFUHDVHG &'&' 7 FHOO UDWLRV LQ ERWK WKH VSOHHQ DQG O\PSK QRGH )LJXUH f ZLWK VLPLODU ILQGLQJV LQ

PAGE 85

%1=0F GDWD QRW VKRZQf $ KLJK SHUFHQWDJH RI VSOHQLF &' 7 FHOOV LQ %1=0FW H[SUHVVHG DFWLYDWLRQ PDUNHU &' S f &' 7 FHOOV IURP %1=0FW H[KLELW KLJK H[SDQVLRQ LQ YLWUR :H DOVR H[DPLQHG DEVROXWH &' DQG &' 7 FHOO QXPEHUV DIWHU VSOHQRF\WHV IURP ERWK WKH VXEFRQJHQLF VWUDLQV ZHUH VWLPXODWHG ZLWK DQWL&' LQ YLWUR &RQVLVWHQW ZLWK LQFUHDVHG &' 7 FHOOV LQ YLYR WKH DEVROXWH QXPEHUV RI &' 7 FHOOV ZHUH DOVR LQFUHDVHG LQ YLWUR LQ %1=0FW )LJXUH SDQHO $f $OWKRXJK &' 7 FHOO QXPEHUV ZHUH KLJKHU LQ %1=0FW FRPSDUHG ZLWK % DQG %1=0FF &' 7 FHOO QXPEHUV ZHUH HYHQ PRUH VLJQLILFDQWO\ LQFUHDVHG DIWHU K RI FXOWXUH $ VPDOO GURS RI FHOO QXPEHUV LQ K FXOWXUH ZDV QRWLFHG LQ %1=0F &KDSWHU f DQG DOVR VHHQ LQ %1=0FW SUREDEO\ GXH WR UHDVRQV GLVFXVVHG LQ &KDSWHU ,Q FRQWUDVW &' FHOOV ZHUH KLJKO\ H[SDQGHG LQ ERWK % DQG %1=0FF FRPSDUHG WR %1=0FW )LJXUH SDQHO %f)LJXUH VKRZV WKH FKDQJH RI SHUFHQWDJH &' DQG &' 7 FHOOV LQ 'GRWSORW IURP WKH VDPH H[SHULPHQW 7KHVH UHVXOWV IXUWKHU GHPRQVWUDWH WKDW WKH WHORPHULF HQG RI 6OH LPSDFWV 7 FHOO IXQFWLRQ 7KH WHORPHULF VXELQWHUYDO DOVR LPSDFWV O\PSKRF\WH SUROLIHUDWLRQ 7 FHOO K\SHUDFWLYLW\ LV DQ LPSRUWDQW SKHQRW\SH LQ %1=0F PLFH DQG LV EHOLHYHG WR SOD\ D LPSRUWDQW UROH LQ GULYLQJ % FHOO DXWRDQWLERG\ SURGXFWLRQ :H WKHUHIRUH H[DPLQHG 7 FHOO SUROLIHUDWLRQ LQ VXEFRQJHQLF PLFH XVLQJ D +WK\PLGLQH LQFRUSRUDWLRQ DVVD\ 7 FHOOV IURP %1=0FW H[KLELWHG DQ LQFUHDVHG VWLPXODWLRQ LQGH[ FRXQWV SHU PLQXWH LQ VWLPXODWHG FXOWXUHV GLYLGHG FRXQWV SHU PLQXWH LQ XQVWLPXODWHG FXOWXUHVf LQ UHVSRQVH WR DQWL&' XJPOf DQG ,/ 8POf LQ YLWUR )LJXUH f 7 FHOOV KDG KLJKHU UHVSRQVHV WR DQWL &' WKDQ WR ,/ 7KH KHLJKWHQHG SUROLIHUDWLYH UHVSRQVHV WR WKHVH VWLPXOL PD\ EH GXH WR

PAGE 86

LQFUHDVHG QXPEHUV RI DFWLYDWHG 7 FHOOV LQFUHDVHG VLJQDO WUDQVGXFWLRQ RU UHGXFHG DSRSWRVLV %RWK ORFL OHDG WR D ORZ LQFLGHQFH RI JORPHUXORQHSKULWLV *1f 7KH VXEFRQJHQLF PLFH ZHUH VDFULILFHG DW PRQWKV IRU NLGQH\ KLVWRORJ\ $V VKRZQ LQ )LJXUH VXUSULVLQJO\ WKH WRWDO IUHTXHQF\ RI *1 VFRUHG DQG DERYHf LQ ERWK KRPR]\JRXV VXEFRQJHQLF PLFH LV DV KLJK DV WKDW LQ SDUHQWDO %1=0F DERXW bf +RZHYHU WKH RYHUDOO VHYHULW\ RI *1 ZDV OHVV LQ WKH VXEFRQJHQLF VWUDLQV FRPSDUHG ZLWK %1=0F %RWK WKH VXEFRQJHQLF VWUDLQV H[KLELWHG WKH PHVDQJLRSDWKLF JORPHUXODU OHVLRQV WKDW ZHUH OHVV VHYHUH WKDQ WKH K\DOLQH OHVLRQV LQ %1=0F 7KHUH ZDV QR VH[ ELDV LQ *1 IUHTXHQF\ *1 ZDV FRUUHODWHG ZLWK WKH SURGXFWLRQ RI DXWRDQWLERGLHV DJDLQVW DW OHDVW RQH RI IRXU QXFOHDU DQWLJHQV EXW QRW VWURQJO\ FRUUHODWHG ZLWK WKH WLWHUV DQG RQVHW RI DXWRDQWLERG\ SURGXFWLRQ GDWD QRW VKRZQf 'LVFXVVLRQ $OWKRXJK VLJQLILFDQW YROXPHV RI GDWD GHVFULELQJ PDQ\ KXPRUDO DQG FHOOXODU DEQRUPDOLWLHV LQ PXULQH OXSXV PLFH KDYH EHHQ JHQHUDWHG LQ WKH SDVW WKUHH GHFDGHV WKH JHQHWLF GHIHFWV FDXVLQJ WKHVH DEQRUPDOLWLHV KDYH QRW EHHQ GHWHUPLQHG $OWKRXJK JHQHWLF OLQNDJH VWXGLHV KDYH LGHQWLILHG DW OHDVW QLQH GLIIHUHQW ORFL WR FRQIHU OXSXV VXVFHSWLELOLW\ f FRQWULEXWLRQ DQG QDWXUH RI HDFK ORFXV LQ WKH SDWKRJHQHVLV RI DEQRUPDOLWLHV QHHG WR EH GHILQHG 2XU DSSURDFK WR DGGUHVV WKHVH TXHVWLRQV LV YLD WKH SURGXFWLRQ DQG DQDO\VLV RI

PAGE 87

FRQJHQLH VWUDLQV EHDULQJ LQGLYLGXDO ORFL )URP VWXGLHV RI %1=0F &KDSWHU f ZH IRXQG 6OH RQ PXULQH FKURPRVRPH LPSDFWHG 7 FHOO IXQFWLRQ OHG WR SRO\FORQDO % FHOO DFWLYDWLRQ ,J* $1$ SURGXFWLRQ DQG OXSXV QHSKULWLV ,Q WKLV VWXG\ ZH IXUWKHU GLVVHFWHG WKH FRPSOH[ WUDLWV RI %1=0F E\ JHQHUDWLQJ WZR VXEFRQJHQLF VWUDLQV DQG DQDO\]LQJ WKHLU SKHQRW\SHV :H IRXQG WKDW WZR VXELQWHUYDOV ERWK ORFL ZLWKLQ 6OH FRXOG OHDG WR VSRQWDQHRXV SRO\FORQDO % FHOO DFWLYDWLRQ E\ WKHPVHOYHV 7KHVH SKHQRW\SHV DUH DOVR REVHUYHG LQ % PLFH FRQJHQLH IRU WKH 6OH LQWHUYDO RQ FKURPRVRPH %1=0Ff f 7KHVH REVHUYDWLRQV VXJJHVW WKDW SRO\FORQDO % FHOO DFWLYDWLRQ LV D EDVLF DEQRUPDOLW\ LQ PXULQH OXSXV DQG FRQWULEXWHV WR WKH SDWKRJHQHVLV RI ,J* $1$ DQG OXSXV QHSKULWLV 6LQFH %1=0F PLFH KDYH SRO\FORQDO % FHOO DFWLYDWLRQ DQG ODFN ,J* $1$V DQG QHSKULWLV SRO\FORQDO % FHOO DFWLYDWLRQ DORQH LV QRW VXIILFLHQW IRU WKHLU DXWRLPPXQH SKHQRW\SHV 7KH SHQHWUDQFH RI DXWRDQWLERGLHV DJDLQVW WKH IRXU QXFOHDU DQWLJHQV GHFUHDVHG GUDPDWLFDOO\ LQ ERWK VXEFRQJHQLF VWUDLQV FRPSDUHG ZLWK %1=0F ZKLFK LQGLFDWHV UHTXLUHPHQW RI ERWK ORFL 7KH WRWDO *1 IUHTXHQF\ LQ WKH VXEFRQJHQLF VWUDLQV LV VDPH DV LQ WKH SDUHQWDO VWUDLQ EXW WKH VHYHULW\ LV UHGXFHG 7KHVH UHVXOWV IXUWKHU FRQILUPH RXU K\SRWKHVLV WKDW 6/( LV LQKHULWHG DV D WKUHVKROG OLDELOLW\ f UHTXLULQJ PXOWLSOH VXVFHSWLELOLW\ JHQHV WR FDXVH KLJK SHQHWUDQFH RI SKHQRW\SHV 7KLV IHDWXUH DOVR PDNHV WKH IXUWKHU QDUURZLQJ RI VXELQWHUYDOV YHU\ GLIILFXOW *1 LV DVVRFLDWHG ZLWK ,J* DXWRDQWLERG\ SURGXFWLRQ DJDLQVW IRXU QXFOHDU DQWLJHQV LQ ERWK WKH VXEFRQJHQLF VWUDLQV :H EHOLHYH WKH FRQFOXVLRQ LV DOVR WUXH LQ SDUHQWDO %1=0F PLFH EHFDXVH LPPXQRIORUHVFHQFH DVVDV RI %1=0F NLGQH\V VKRZHG WKH

PAGE 88

SUHVHQFH RI DQWLERGLHV DQG FRPSOHPHQWV LQ NLGQH\ GDWD QRW VKRZQf 2XU H[SHULPHQWV FDQ QRW GHILQH WKH VSHFLILFLW\ RI DXWRDQWLERGLHV FDXVLQJ *1 7KH VXVFHSWLELOLW\ JHQHV FDXVLQJ WKH KXPRUDO DXWRLPPXQH UHVSRQVHV LQ WKH VXEFRQJHQLF VWUDLQV FRXOG LPSDFW 7 FHOO IXQFWLRQ % FHOO IXQFWLRQ RU ERWK ,Q D SUHYLRXV VWXG\ ZH GHPRQVWUDWHG WKDW 6OH6 SULPDULO\ LPSDFWV 7 FHOO IXQFWLRQ ZKLFK PD\ GULYH OXSXV % FHOO DFWLYDWLRQ DQG SURGXFWLRQ RI DXWRDQWLERGLHV 7R PDS WKLV JHQHVf ZH SHUIRUPHG WKH VDPH VHWV RI H[SHULPHQWV RQ WKH VXEFRQJHQLF VWUDLQV :H IRXQG WKDW %1=0FW PLFH H[KLELWHG LQFUHDVHG &'&' 7 FHOO UDWLRV KLJKHU ,J* LPPXQH UHVSRQVLYHQHVV WR WKH 7GHSHQGHQW DQWLJHQ KHLJKWHQHG 7 FHOO SUROLIHUDWLYH UHVSRQVHV WR DQWL&' DQG ,/ 7KHVH ILQGLQJV VXJJHVW WKLV JHQHVf PD\ ORFDWH LQ WKH WHORPHULF HQG RI 6OH %1=0FW PLFH FRQWDLQ WKH GLVHDVH JHQHVf EXW IDLO WR SURGXFH WKH VDPH OHYHO RI ,J* $1$ DV %1=0F LQGLFDWLQJ UHTXLUHPHQW RI WKH JHQHVf IURP WKH FHQWURPHULF HQG RI 6OH WR DXJPHQW WKHVH SKHQRW\SHV %1=0FF PLFH VKRZHG QR REYLRXV 7 FHOO IXQFWLRQDO DEHUUDWLRQV 7KH XQGHUO\LQJ PHFKDQLVP IRU SRO\FORQDO % FHOO DFWLYDWLRQ DQG ORZHU OHYHO ,J* $1$ SURGXFWLRQ LV QRW FOHDU ,W FRXOG EH GXH WR % FHOO G\VIXQFWLRQ VXEWOH 7 FHOO IXQFWLRQ FKDQJHV RU ERWK )XUWKHU GHWDLOHG VWXGLHV DUH QHHGHG 7KLV VWXG\ VXFFHVVIXOO\ GLVVHFWV WKH FRPSOH[ WUDLWV DVVRFLDWHG ZLWK 6OH DQG LGHQWLILHV WKH H[LVWHQFH RI DW OHDVW WZR ORFL LQ WKH 6OH LQWHUYDO 7KH H[SHULPHQWDO ILQGLQJV LQGLFDWH WKDW ERWK ORFL DUH UHTXLUHG WR JHQHUDWH FHUWDLQ OHYHOV RI KXPRUDO DXWRLPPXQLW\ DQG VHYHUH OXSXV QHSKULWLV EXW RQO\ WKH WHORPHULF ORFXV LPSDFWV 7 FHOO DFWLYDWLRQ SUROLIHUDWLRQ DQG GLIIHUHQWLDWLRQ

PAGE 89

)LJXUH $ PDS RI VLPSOH VHTXHQFH UHSHDW 665f PDUNHUV RQ PXULQH FKURPRVRPH FRYHULQJ WKH 6OH LQWHUYDO 7KH PDS ZDV FRQVWUXFWHG XVLQJ 0$30$.(5 VRIWZDUH DFFRUGLQJ WR PHLRVLV 1=0 GHULYHG VXVFHSWLELOLW\ LQWHUYDOV ZKLWH EDUVf LQ %1=0F DQG WKH WZR VXEFRQJHQLF VWUDLQV DUH VKRZHG OLQHV UHSUHVHQW %GHULYHG DOOHOHV 7KH GLVWDQFHV IURP HDFK PDUNHU WR WKH FHQWURPHUH ZHUH H[SUHVVHG LQ F0 FHQWL0RUJDQf

PAGE 90

'08 FNPP '0LW '0 '0LWO '0+ '0LWO '0LW '0 '0LWO '0LW %1=0FF @ %1=0F %1=0FW RR

PAGE 91

)LJXUH 7RWDO VHUXP ,J* DQG ,J0 OHYHO LQ PRQWK VXEFRQJHQLF VWUDLQV FRPSDUHG ZLWK %1=0F (DFK GRW UHSUHVHQWV LQGLYLGXDO PRXVH +RUL]RQWDO OLQH LV PHDQ YDOXH

PAGE 92

7RWDO 6HUXP ,J* XJPOf

PAGE 93

)LJXUH 3RO\FORQDO ,J0 DQWLERGLHV DJDLQVW D SDQHO RI IRXU DQWLJHQV LQ PRQWK ROG VXEFRQJHQLF VWUDLQV FRPSDUHG ZLWK % DQG %1=0F $ VLPLODU GDWD SDWWHUQ LV DOVR VHHQ LQ DQG PRQWK ROG PLFH IURP WKHVH IRXU VWUDLQV ZLWK LQFUHDVHG WLWHUV $QWLERG\ WLWHU LV H[SUHVVHG DV b2' GHWDLOHG GHILQLWLRQ LQ 0HWKRGV DQG 0DWHULDOVf 'DWD LV SUHVHQWHG DV PHDQ DQG VWDQGDUG GHYLDWLRQ r S rr S rrr S

PAGE 94

r r r D % Q ‘ %1=0FF Q ’ %1=0FW Q ‘ %1=0F Q rrr rrr Frr rr VV'1$ +LVWRQH '13./+ 7K\URJOREXOLQ RR RV

PAGE 95

)LJXUH 3HQHWUDQFH RI ,J0 DQG ,J* SRO\FORQDO DQWLERG\ SURGXFWLRQ LQ PRQWK ROG VXEFRQJHQLF PLFH FRPSDUHG ZLWK SDUHQWDO %1=0F 7KH PRXVH ZDV FRXQWHG DV SRVLWLYH LI LW SURGXFHG DQWLERGLHV DERYH WKH PHDQ SOXV 6' RI WHQ % WR DQ\ WZR RI IRXU DQWLJHQV VV'1$ KLVWRQH '13./+ WK\URJOREXOLQf

PAGE 96

SRVLWLYH PLFH 3RO\FORQDO ,J0 ’ %1=0FF Q ‘ %1=0FW Q ‘ %1=0F Q 3RO\FORQDO ,J*

PAGE 97

7DEOH 3HQHWUDQFH RI ,J* DQWLQXFOHDU DXWRDQWLERG\ SURGXFWLRQ LQ %1=0FF DQG %1=0FW KRPR]\JRXV PLFH $QWLJHQ FF PR FW FF PR FW FF PR FW FF PR FW GV'1$ bE b b b b b b b VV'1$ b b b b b b b b GV'1$KLVWRQH b b b b b b b b +LVWRQH b b b b b b b b 1r D 1XPEHU RI PLFH WHVWHG E 3HUFHQWDJH RI SRVLWLYH PLFH $ PRXVH LV FRXQWHG DV SRVLWLYH LI LWV DQWLERG\ WLWHUV DUH DERYH WKH OHYHOV RI PHDQ SOXV VWDQGDUG GHYLDWLRQV LQ VL[ PRQWK ROG % PLFH DVVD\HG RQ VDPH SODWH RR YR

PAGE 98

)LJXUH ,J* DXWRDQWLERG\ SURGXFWLRQ DJDLQVW D SDQHO RI IRXU QXFOHDU DQWLJHQV LQ PRQWK KRPR]\JRXV DQG KHWHUR]\JRXV VXEFRQJHQLF PLFH FRPSDUHG ZLWK %1=0F DQG % 7KH GDWD LV H[SUHVVHG DV b 2' GHWDLOHGO GHILQLWLRQ LQ 0HWKRGV DQG 0DWHULDOVf +RUL]RQWDO OLQHV LQGLFDWH WKH PHDQ YDOXH RI DQWLERG\ WLWHUV

PAGE 99

b 2' QPf GV'1$ % %1=0F %1=0FF %1=0FW KRP KHW KRP KHW KRP KHW Q Q Q Q Q Q Q b2' QPf b2' QPf % %1=0F %1=0FF %1=0FW KRP KHW KRP KHW KRP KHW Q Q Q Q Q Q LL F

PAGE 100

)LJXUH ,PPXQH UHVSRQVHV WR 7GHSHQGHQW DQWLJHQ '13./+ LQ YLYR $f ,J0 DQWL'13 DQWLERG\ SURGXFWLRQ EHIRUH LPPXQL]DWLRQ G2f GD\V DIWHU SULPDU\ LPPXQL]DWLRQ GOf DQG GD\V DIWHU ERRVW GDQG Gf DW 6HUXP GLOXWLRQ RI LQ %1=PFF PLFH ZKLWH GRWV ZLWK GDVKHG OLQHf %1=0FW PLFH ZKLWH WULDQJOHVf DQG DJH DQG VH[PDWFKHG % EODFN GRWVf %f ,J0 DQWL'13 DQWLERGLHV RQ GD\V DW GLIIHUHQW VHUXP GLOXWLRQV 'DWD LV IURP RQH RI WKUHH LQGHSHQGHQW H[SHULPHQWV DQG HDFK GRW LV H[SUHVVHG DV PHDQ 2' DQG VWDQGDUG GHYLDWLRQ RI ILYH DQLPDOV r S rr S

PAGE 101

7LPH 'D\Vf 6HUXP GLOXWLRQ 9V2 /K!

PAGE 102

)LJXUH ,PPXQH UHVSRQVHV WR 7 GHSHQGHQW DQWLJHQ '13./+ LQ YLYR $f ,J* DQWL'13 DQWLERG\ SURGXFWLRQ EHIRUH LPPXQL]DWLRQ G2f GD\V DIWHU SULPDU\ LPPXQL]DWLRQ GOf DQG GD\V DIWHU ERRVW GDQG Gf DW VHUXP GLOXWLRQ RI LQ %1=0FF PLFH ZKLWH GRWV GDVKHG OLQHf %1=0FW PLFH ZKLWH WULDQJOHVf DQG DJH DQG VH[PDWFKHG % EODFN GRWVf %f ,J* DQWL'13 DQWLERGLHV DW GD\ DW GLIIHUHQW VHUXP GLOXWLRQV 'DWD LV IURP RQH RI WKUHH LQGHSHQGHQW H[SHULPHQWV DQG HDFK GRW LV H[SUHVVHG DV PHDQ 2' DQG VWDQGDUG GHYLDWLRQ IURP ILYH DQLPDOV r S rr S

PAGE 103

2 7LPH 'D\Vf % 6HUXP GLOXWLRQ VR

PAGE 104

7DEOH 6XPPDU\ RI )$&6 DQDO\VLV GDWD RI 7 FHOOV LQ %1=0FF DQG PRQWK ROG %1=0FW VXEFRQJHQLF PLFH DQG DJH PDWFKHG % % 6SOHHQ %1=0FF %1=0FW % /\PSK 1RGH %1=0FF %1=0FW b&'7 FHOOV L L LrE L L Lrrr b&'7 FHOOV L OOLOO IWW L IWW &'&' 7 FHOO UDWLR IWs rrr r L r &'&'7 FHOOV L L srr 1r D $OO GDWD H[SUHVVHG DV PHDQ s VWDQGDUG GHYLDWLRQ 6'f E r UHSUHVHQW VWXGHQW W WHVW VLJQLILFDQW S rr S rrr S F 1XPEHU RI PLFH WHVWHG Y2 21

PAGE 105

)LJXUH 6SOHHQ DQG O\PSK QRGH &'&' 7 FHOO UDWLRV LQ WR PRQWK %1=0FF DQG %1=0FW VXEFRQJHQLF PLFH 7KHUH LV QR VLJQLILFDQW GLIIHUHQFH EHWZHHQ PDOHV DQG IHPDOHV 'DWD LV SRROHG IURP H[SHULPHQWV )RU HDFK H[SHULPHQW $OO DQLPDOV ZHUH DJH DQG VH[ PDWFKHG DQG % XVHG DV FRQWURO 7KH GDWD SUHVHQWHG DV PHDQ SOXV VWDQGDUG GHYLDWLRQ r S rrr S

PAGE 106

4 8 f f 4 8 1 6SOHHQ ‘ % ‘ %1=0FF ’ %1=0FW /\QSK QRGH

PAGE 107

)LJXUH 6SOHHQ &' DQG &' 7 FHOO H[SDQVLRQ DIWHU DQWL&' XJPOf VWLPXODWLRQ LQ YLWUR 7KH GDWD DUH SUHVHQWHG DV PHDQ RI WKH DEVROXWH QXPEHU RI &' DQG &' FHOOV LQ GXSOLFDWHG VDPSOHV IURP % EDFN GRW DQG VROLG OLQHf %1==0FF EDFN WULDQJOH ZLWK GDVKHG OLQHf %1=0FW ZKLWH GRWf 7KH UHVXOWV UHSUHVHQW RQH RI WKUHH LQGHSHQGHQW H[SHULPHQWV 7KH PLFH DUH DJH DQG VH[PDWFKHG &HOO QXPEHU DUH FDOFXODWHG XVLQJ )$&6 GDWD DQG FHOO FRXQWLQJ

PAGE 108

$ &XOWXUH 7LPH +RXUVf % &XOWXUH 7LPH +RXUVf R R

PAGE 109

)LJXUH 'SORWV VKRZV UHODWLYH LQFUHDVH LQ WKH SHUFHQWDJH RI &' FHOOV RI VSOHQLF O\PSKRF\WHV FXOWXUH ZLWK DQWL&' XJPOf IRU K K DQG K LQ %1=0FF %1=0FW DQG DJHPDWFKHG % 7KLV H[SHULPHQW LV UHSUHVHQWDWLYH RI WKUHH LQGHSHQGHQW H[SHULPHQWV

PAGE 110

K K K

PAGE 111

)LJXUH /\PSKRF\WH SUROLIHUDWLRQ DVVD\ 6SOHQRF\WHV [ ZHUH FXOWXUH ZLWK DQWL&' XJPOf RU U,/ 8POf IRU K /\PSKRF\WH SUROLIHUDWLRQ ZDV PHDVXUHG E\ +WK\PLGLQH LQFRUSRUDWLRQ DGGHG GXULQJ WKH ODVW K RI FXOWXUH (DFK EDU UHSUHVHQWV PHDQ s VWDQGDUG HUURU RI PHDQ 6(0f VWLPXODWLRQ LQGH[ FSP LQ VWLPXODWHG FXOWXUHV GLYLGHG E\ FSP LQ XQVWLPXODWHG FXOWXUHVf LQ WULSOLFDWH FXOWXUHV 7KLV H[SHULPHQW LV UHSUHVHQWDWLYH RI WKUHH LQGHSHQGHQW H[SHULPHQWV r S rr S

PAGE 112

r $QWL&' XJPOf ‘ % ’ %1=0FF ’ %1=0FW U,/ 8POf

PAGE 113

)LJXUH 7KH IUHTXHQF\ RI *1 LQ VXEFRQJHQLF KRPR]\JRXV KRPf DQG KHWHUR]\JRXV KHWf PLFH FRPSDUHG ZLWK SDUHQWDO %1=0F *1 ZDV JUDGHG DFFRUGLQJ WR SHUFHQWDJH RI JORPHUXOL DIIHFWHG VFRUH WR GHWDLOHG GHVFULSWLRQ LQ &KDSWHU f DQG JORPHUXODU OHVLRQV + +\DOLQH 0 0HVDQJLRSDWKLF + LV PRUH VHYHUH WKDQ 0f

PAGE 114

b Q b %1=0F KRP KHW Q Q %1=0FF KRP KHW Q Q OO ’ *1 ’ 0 *1 ‘ + *1 %1=0FW KRP KHW Q OO Q

PAGE 115

&+$37(5 6800$5< 7KLV VWXG\ GLVVHFWV WKH FRPSOH[ WUDLWV RI OXSXV E\ FRQVWUXFWLQJ DQG DQDO\]LQJ %1=0F FRQJHQLH PLFH WKDW EHDU 6OH RQH RI WKH IRXU 6/( VXVFHSWLELOLW\ ORFL LGHQWLILHG LQ 1=0 7KLV VWXG\ DOVR SHUIRUPV IXUWKHU GLVVHFWLRQ RI WKH 6OH LQWHUYDO E\ FRQVWUXFWLQJ DQG DQDO\]LQJ WZR VXEFRQJHQLF VWUDLQV %1=0FF DQG %1=0FW %\ FRPSDULQJ ZLWK DJH DQG VH[PDWFKHG % ZH LGHQWLILHG WKH SDWKRJHQLF FRQWULEXWLRQV RI 6OH E\ LWVHOI RQ D % EDFNJURXQG DQG LGHQWLILHG WKH SUHVHQFH RI DW OHDVW WZR ORFL ZLWKLQ WKH 6OH LQWHUYDO %1=0F PLFH KDG K\SHUJDPPDJOREXOLQHPLD DQG VSRQWDQHRXV SRO\FORQDO % FHOO DFWLYDWLRQ 7KH\ SURGXFHG ,J* DXWRDQWLERGLHV DJDLQVW IRXU QXFOHDU DQWLJHQV GV'1$ VV'1$ KLVWRQH DQG FKURPDWLQ ,J* $1$V RFFXUUHG DW DQ HDUO\ DJH DQG WKHQ ZD[HG DQG ZDQHG IURP WR PRQWKV SRVVLEO\ UHIOHFWLQJ WLVVXH GHSRVLWLRQ $XWRDQWLERG\ WLWHUV ZHUH ORZHU FRPSDUHG ZLWK SDUHQWDO 1=0 7KH SHQHWUDQFH RI ,J* $1$ ZDV DERXW b 7KHUH ZDV QR VLJQLILFDQW GLIIHUHQFH EHWZHHQ PDOH DQG IHPDOH PLFH LQ WLWHUV DQG SHQHWUDQFH RI ,J* $1$V ZKLFK DJUHHV ZLWK REVHUYDWLRQV LQ SDUHQWDO 1=0 7KLV SKHQRW\SH ZDV DOVR REVHUYHG LQ ERWK KRPR]\JRXV DQG KHWHUR]\JRXV %1=0F ZLWK GHOD\HG RQVHW DQG GHFUHDVHG SHQHWUDQFH LQ WKH KHWHUR]\JRXV PLFH

PAGE 116

7KH LPPXQRORJLFDO DEQRUPDOLWLHV FDXVHG E\ 6OH ZHUH DOVR H[DPLQHG DQG WKH UROH RI WKHVH DEQRUPDOLWLHV LQ WKH SDWKRJHQHVLV RI OXSXV ZDV DVVHVVHG
PAGE 117

SHQHWUDQFH DQG VHYHULW\ DUH PXFK ORZHU WKDQ 1=0 6HFRQG 7 FHOO K\SHUDFWLYLW\ SOD\V D FUXFLDO UROH LQ WKH SDWKRJHQHVLV RI OXSXV LQ %1=0F FRQJHQLH PLFH 7KHVH 7 FHOOV PD\ SURYLGH H[FHVVLYH KHOS WR % FHOOV IRU SURGXFLQJ DQWLERGLHV LQ JHQHUDO DQG SDWKRJHQLF DXWRDQWLERGLHV VSHFLILFDOO\ 0XOWLSOH SKHQRW\SHV LQ %1=0F PD\ VXJJHVW WKH SUHVHQFH RI WZR RU PRUH VXVFHSWLELOLW\ JHQHV ZKLFK LV DOVR VXSSRUWHG E\ OLQNDJH VWXGLHV RQ EDFNFURVV DQG LQWHUFURVV PLFH 7ZR VXEFRQJHQLF VWUDLQV RQH FDUU\LQJ WKH FHQWURPHULF HQG DQG WKH RWKHU FDUU\LQJ WKH WHORPHULF HQG RI 6OH ZHUH FRQVWUXFWHG 'HWDLOHG DQDO\VLV RI SKHQRW\SHV ZDV SHUIRUPHG 6HYHUDO LQWHUHVWLQJ ILQGLQJV ZHUH LOOXVWUDWHG LQ WKLV VWXG\ )LUVW VXVFHSWLELOLW\ JHQHV LQ ERWK VXELQWHUYDOV FDQ FDXVH K\SHUJDPPDJOREXOLQHPLD DQG SRO\FORQDO % FHOO DFWLYDWLRQ 6HFRQG ERWK ORFL DUH UHTXLUHG WR SURGXFH ,J* DQWLQXFOHDU DXWRDQWLERGLHV 7KH SHQHWUDQFH RI ,J* $1$ SURGXFWLRQ LQ WKH VXEFRQJHQLF PLFH ZDV DERXW b FRPSDUHG ZLWK b LQ %1=0F 7KLUG WKH JHQHVf ZKLFK OHDGV WR 7 FHOO K\SHUDFWLYLW\ KLJK SUROLIHUDWLRQ DQG KLJK &'&' 7 FHOO UDWLRV PDSSHG WR WKH WHORPHULF HQG RI 6OH )LQDOO\ ERWK ORFL OHG WR D b SHQHWUDQFH RI OXSXV QHSKULWLV FRPSDUDEOH WR WKH LQFLGHQFH LQ %1=0F +RZHYHU WKH VHYHULW\ RI OXSXV QHSKULWLV ZDV OHVV LQ WZR VXEFRQJHQLF VWUDLQV WKDQ LQ %1=0F 7KHVH ILQGLQJV IXUWKHU FRQILUP RXU K\SRWKHVLV WKDW 6/( LV LQKHULWHG DV D WKUHVKROG OLDELOLW\ 7KH UHVXOWV RI WKLV VWXG\ VXJJHVW WKDW DW OHDVW WZR VXVFHSWLELOLW\ JHQHV DUH SUHVHQW LQ WKH 6OH LQWHUYDO 7KHVH WZR JHQHV LQWHUDFW LQ D V\QHUJLVWLF ZD\ WR FDXVH WKH DXWRLPPXQH SKHQRW\SHV H[SUHVVHG LQ %1=0F 7KH WHORPHULF JHQHVf PDLQO\ LPSDFWV

PAGE 118

7 FHOO IXQFWLRQ 7KH KXPRUDO DXWRLPPXQH SKHQRW\SHV ZHUH PRUH SURQRXQFHG LQ %1=0FW WKDQ LQ %1=0FF 7KLV VWXG\ GHPRQVWUDWHV WKDW WKH FRQJHQLH VWUDWHJ\ LV WKH RSWLPDO ZD\ WR JHQHWLFDOO\ GLVVHFW SRO\JHQLF WUDLWV WR VLQJOH JHQH SKHQRW\SHV &RQJHQLH VWUDLQV SURYLGH XVHIXO WRROV WR GHILQH WKH FRQWULEXWLRQ RI HDFK LQGLYLGXDO ORFXV WR VHDUFK FDQGLGDWH JHQHV DQG WR ILQH PDSSLQJ JHQHV )XUWKHUPRUH E\ PDNLQJ GRXEOH DQG WULSOH FRQJHQLH VWUDLQV ZH DUH DEOH WR VWXG\ WKH LQWHUDFWLRQ EHWZHHQ ORFL DQG WR REWDLQ D EHWWHU XQGHUVWDQGLQJ RI GLVHDVH PHFKDQLVPV DQG SDWKRJHQLF SDWKZD\V 6LQFH SHQHWUDQFH DQG OHYHOV RI WKH SKHQRW\SHV H[SUHVVHG LQ %1=0F DQG WKH VXEFRQJHQLF VWUDLQV GHSHQG RQ WKH QXPEHU RI VXVFHSWLELOLW\ JHQHV LW EHFRPHV UDWKHU GLIILFXOW WR IXUWKHU QDUURZ WKH LQWHUYDO E\ PDNLQJ UHFRPELQDQW FRQJHQLH PLFH $OWHUQDWLYHO\ DQDO\]LQJ GLIIHUHQWLDO H[SUHVVLRQ RI JHQHV EHWZHHQ WKH OXSXVSURQH FRQJHQLH DQG QRUPDO PLFH PD\ VKHG OLJKW RQ SDWKRJHQLF ELRFKHPLFDO SDWKZD\V ,Q WKH IXWXUH ZH ZLOO IXUWKHU WHVW DXWRDQWLERGLHV IRU WKHLU VSHFLILFLWLHV SRO\FORQDO RU SRO\UHDFWLYH QDWXUHV DQG WKH SDWKRJHQHVLV E\ PDNLQJ DQG DQDO\]LQJ % FHOO K\EULGRPDV 7KLV ZLOO KHOS WR HOXFLGDWH WKH FRUUHODWLRQ EHWZHHQ DXWRDQWLERGLHV DQG OXSXV QHSKULWLV XVLQJ PRQRFORQDO DQWLERGLHV REWDLQHG IURP WKHVH K\EULGRPDV :H ZLOO H[DPLQH 7 FHOO VSHFLILFLW\ E\ PDNLQJ DQG DQDO\]LQJ 7 FHOO OLQHV :H ZLOO VWXG\ WKH VLJQDO WUDQVGXFWLRQ V\VWHPV RI ERWK 7 DQG % FHOOV LQ FRQJHQLH DQG VXEFRQJHQLF PLFH :H ZLOO FRQWLQXH RXU JHQHWLF VWXG\ E\ FRQVWUXFW GRXEOH FRQJHQLH DQG WULSOH FRQJHQLH VWUDLQV FRQWDLQLQJ FRPELQDWLRQV RI 6OHO 6OH 6OH DQG 0+& ORFXV WR VWXG\ WKH LQWHUDFWLRQ

PAGE 119

,OO DPRQJ WKHVH VXVFHSWLELOLW\ ORFL 7KH HYHQWXDO JRDO RI WKLV UHVHDUFK LV WR LGHQWLI\ WKH GLVHDVH JHQHV DQG WR XQGHUVWDQG WKHLU FRQWULEXWLQJ WR OXSXV

PAGE 120

/,67 2) 5()(5(1&(6 7KHRILORSRXORV $1 f 0XULQH PRGHOV RI OXSXV ,Q 6\VWHPLF /XSXV (U\WKHPDWRVXV 5* /DKLWD HGf 1HZ
PAGE 121

&KULVWLDQVHQ )7 'DZNLQV 5/ 8NR f &RPSOHPHQW DOORW\SLQJ LQ 6/( DVVRFLDWLRQ ZLWK &$ QXOO $XVW 1= 0HG )LHOGHU $+/ :DOSRUW 0%DWFKHORU -5 f )DPLO\ VWXG\ RI WKH PDMRU KLVWRFRPSDWLELOLW\ FRPSOH[ LQ SDWLHQWV ZLWK V\VWHPLF OXSXV HU\WKHPDWRVXV LPSRUWDQFH RI QXOO DOOHOHV RI &$ DQG &% LQ GHWHUPLQLQJ GLVHDVH VXVFHSWLELOLW\ %U 0HG $UQHWW )& 0RXOGV -0 f +/$ FODVV ,,, PROHFXOHV DQG DXWRLPPXQH UKHXPDWLF GLVHDVHV &OLQ ([S 5KHXPDWRO 5HLQHUWVHQ -/ .OLSSHO -+ -RKQVRQ $+ f %O\PSKRF\WH DOORDQWLJHQV DVVRFLDWHG ZLWK V\VWHPLF OXSXV HU\WKHPDWRVXV 1 (QJO 0HG *LERIVN\ $ :LQFKHVWHU 53DWDUUR\R 0 f 'LVHDVH DVVLRFLDWLRQ RI WKH ,DOLNH KXPDQ DOORDQWLJHQV FRQWUDVWLQJ SDWWHUQV LQ UKHXPDWRLG DUWKULWLV DQG V\VWHPLF OXSXV HU\WKHPDWRVXV ([S 0HG *LERIVN\ $ :LQFKHVWHU 5+DQVHQ f &RQWUDVWLQJ SDWWHUQV RI QHZHU KLVWRFRPSDWLELOLW\ GHWHUPLQDQWV LQ SDWLHQWV ZLWK UKHXPDWRLG DUWKULWLV DQG V\VWHPLF OXSXV HU\WKHPDWRVXV $UWKULWLV 5KHXP 6, +DUWXQJ )RQWDQD $ .ODU 0 f $VVRFLDWLRQ RI FODVV ,, DQG ,,, 0+& JHQH SURGXFWV ZLWK V\VWHPLF OXSXV HU\WKHPDWRVXV 5HVXOWV RI D &HQWUDO (XURSHDQ PXOWLFHQWHU VWXG\ 5KHXPDWRO ,QW :RUUDOO -* 6QDLWK 0/ %DWFKHORU -5 ,VHQEHUJ '$ f 6/( D UKHXPDWRORJLFDO YLHZ $QDO\VLV RI WKH FOLQLFDO IHDWXUHV VHURORJ\ DQG LPPXQRJHQHWLFV RI 6/( SDWLHQWV GXULQJ ORQJWHUP IROORZXS 4 0HG *ULIIPJ :/ 0RRUH 6 /LWKUD +6 f $VVRFLDWLRQV RI WKH DQWLERGLHV WR QDWLYH '1$ ZLWK +/$'5Z D SRVVLEOH PDMRU KLVWRFRPSDWLELOLW\ OLQNHG KXPDQ LPPXQH UHVSRQVH JHQH ([S 0HG 6FKLIIHUOL -$ 3HWHUV '. f &RPSOHPHQW WKH LPPXQHFRPSOH[ ODWWLFH DQG WKH SDWKRSK\VLRORJ\ RI FRPSOHPHQWGHILFLHQF\ V\QGURPHV /DQFHW $WNLQVRQ -3 f &RPSOHPHQW GHILFLHQF\ SUHGLVSRVLQJ IDFWRU WR DXWRLPPXQH V\QGURPHV &OLQ ([S 5KHXPDWRO V 6FKLIIHUOL -$ 7D\ORU 53 f 3K\VLRORJLFDO DQG SDWKRORJLFDO DVSHFWV RI FLUFXODWLQJ LPPXQH FRPSOH[HV .LGQH\ ,QW

PAGE 122

$UQHWW )& 5HYHLOOH -' :LOVRQ 5: f 6\VWHPLF OXSXV HU\WKHPDWRVXV FXUUHQW VWDWH RI WKH JHQHWLF K\SRWKHVLV 6HPLQ $UWK 5KHXP %ORFN 65 /RFNVKLQ 0' :LQILHOG -% f ,PPXQRORJLF REVHUYDWLRQV RQ VHWV RI WZLQV HLWKHU FRQFRUGDQW RU GLVFRUGDQW IRU 6/( $UWKULWLV 5KHXP %ORFN 65 :LQILHOG -% /RFNVKLQ 0' f 7ZLQ VWXGLHV LQ V\VWHPLF OXSXV HU\WKHPDWRVXV D UHYLHZ RI WKH OLWHUDWXUH DQG SUHVHQWDWLRQ RI DGGLWLRQDO VHWV $P 0HG $UQHWW )& 6FKXOPDQ /( f 6WXGLHV LQ IDPLOLDO V\VWHPLF OXSXV HU\WKHPDWRVXV 0HGLFLQH 7KHRILORSRXORV $1 'L[RQ )f 0XULQH PRGHOV RI V\VWHPLF OXSXV HU\WKHPDWRVXV $GY ,PPXQRO %LHOVFKRZVN\ 0 +HO\HU )+RZLH -% f 6SRQWDQHRXV DQHPLD LQ PLFH RI WKH 1=%% VWUDLQ 3URF 8QLY 2WDJR 0HG 6FKRRO +RZLH -% +HO\HU )f 7KH LPPXQRORJ\ DQG SDWKRORJ\ RI 1=% PLFH $GY ,PPXQRO %LHOVFKRZVN\ 0 *RRGDOO &0 f 2ULJLQ RI LQEUHG 1= PRXVH VWUDLQ &DQFHU 5HV +HO\HU %+RZLH -% f 5HQDO GLVHDVH DVVRFLDWHG ZLWK SRVLWLYH OXSXV HU\WKHPDWRVXV LQ FURVVEUHG VWUDLQV RI PLFH 1DWXUH 0XUSK\ (' 5RWKV -% f $XWRLPPXQLW\ DQG O\PSKRSUROLIHUDWLRQ ,QGXFWLRQ E\ PXWDQW JHQH OSU DQG DFFHOHUDWLRQ E\ D PDOHDVVRFLDWHG IDFWRU LQ VWUDLQ %;6% PLFH ,Q *HQHWLF FRQWURO RI DXWRLPPXQH GLVHDVH 5RVH 15 %LJD]]L 3( :DUQHU 1/ HGVf (OVHYLHU1RUWK +ROODQG 1HZ
PAGE 123

%UDYHUPDQ ,0 f 6WXG\ RI DXWRLPPXQH GLVHDVH LQ 1HZ =HDODQG PLFH *HQHWLF IHDWXUHV DQG QDWXUDO KLVWRU\ RI 1=% 1=< 1=: VWUDLQV DQG 1=%1=: K\EULGV ,QYHVW 'HUPDWRO .QLJKW -* $GDPV '' 3XUYHV +' f 7KH JHQHWLF FRQWULEXWLRQ RI WKH 1=% PRXVH WR WKH UHQDO GLVHDVH RI WKH 1=%[1=: K\EULG &OLQ ([S ,PPXQR .QLJKW -* $GDPV '' f 7KUHH JHQHV IRU OXSXV QHSKULWLV LQ 1=%[1=: PLFH ([S 0HG 0DUX\DPD 1 )XUXNDZD ) 1DNDL < 6DVDNL < 2KWD 2]DNL 6 +LURVH 6 6KLUDL 7 f *HQHWLF VWXGLHV RI DXWRLPPXQLW\ LQ 1HZ =HDODQG PLFH ,9 &RQWULEXWLRQ RI 1=% DQG 1=: JHQHV WR WKH VSRQWDQHRXV RFFXUUHQFH RI UHWURYLUDO JS LPPXQH FRPSOH[HV LQ 1=%[1=:f)O K\EULG DQG WKH FRUUHODWLRQ WR UHQDO GLVHDVH ,PPXQRO .RW]LQ %/ 3DOPHU ( f 7KH FRQWULEXWLRQ RI 1=: JHQHV WR OXSXVOLNH GLVHDVH LQ 1=%[1=:f)O PLFH ([S 0HG %DEFRFN 6. $SSHO 9% 6FKLII 0 3DOPHU ( .RW]LQ %/ f *HQHWLF DQDO\VLV RI WKH LPSHUIHFW DVVRFLDWLRQ RI + KDSORW\SH ZLWK OXSXVOLNH DXWRLPPXQH GLVHDVH 3URF 1DWO $FDG 6FL 86$ +LURVH 6 8HGD 1RJXFKL 2NDGD 7 6HNLJDZD 6DWR + 6KLUDL 7 f 5HTXLUHPHQW RI + KHWHUR]\JRVLW\ IRU DXWRLPPXQLW\ LQ 1=% [ 1=:f) K\EULG PLFH (XU ,PPXQRO /DQGHU (6 %RWVWHLQ f 0DSSLQJ PHQGHOLDQ IDFWRUV XQGHUO\LQJ TXDQWLWDWLYH WUDLWV XVLQJ 5)/3 OLQNDJH PDSV *HQHWLFV /DQGHU (6 6FKRUN 1f *HQHWLF GLVVHFWLRQ RI FRPSOH[ WUDLWV 6FLHQFH 'LHWULFK :) 0LOOHU -& 6WHHQ 5* 0HUFKDQW 0 'DPURQ 1DKI 5 *URVV $ -R\FH '& :HVVHO 0 'UHGJH 5' 0DUTXLV $ 6WHLQ /' *RRGPDQ 1 3DJH '& /DQGHU (6 f $ JHQHWLF PDS RI WKH PRXVH ZLWK VLPSOH VHTXHQFH OHQJWK SRO\PRUSKLVP 1DWXUH *HQHW /RYH -0 .QLJKW $0 0D$OHHU 0$ 7RGG -$ f 7RZDUGV FRQVWUXFWLRQ RI D KLJK UHVROXWLRQ PDS RI WKH PRXVH JHQRPH XVLQJ 3&5DQDO\VHG PLFURVDWHOOLWHV 1XFOHLF $FLG 5HV :DWVRQ 0/ 5DR -. *LONHVRQ *6 5XL] 3 (LFKHU (0 3LVHWVN\ '6 0DWVX]DZD $ 5RFKHOOH -0 6HOGLQ 0) f *HQHWLF DQDO\VLV RI 05/OSU PLFH UHODWLRQVKLS RI WKH

PAGE 124

)DV DSRSWRVLV JHQH WR GLVHDVH PDQLIHVWDWLRQV DQG UHQDO GLVHDVHPRGLI\LQJ ORFL ([S 0HG .RQR '+ %XUOLQJDPH 5: 2ZHQV '* .XUDPRFKL $ %DOGHUDV 56 %DORPHQRV 7KHRILORSRXORV $1 f /XSXV VXVFHSWLELOLW\ ORFL LQ 1HZ =HDODQG PLFH 3URF 1DWO $FDG6FL 86$ 'UDNH &* %DEFRN 6. 3DOPHU ( .RW]LQ %. f *HQHWLF DQDO\VLV RI WKH 1=% FRQWULEXWLRQ WR OXSXV OLNH DXWRLPPXQH GLVHDVH 3URF 1DWO $FDG 6FL 86$ 'UDNH &* 5R]]R 6+LUVFKIHOG +) 6PDPZRUDZRQJ 13 3DOPHU ( .RW]LQ %. f $QDO\VLV RI WKH 1=% FRQWULEXWLRQ WR OXSXVOLNH UHQDO GLVHDVH 0XOWLSOH JHQHV WKDW RSHUDWH LQ D WKUHVKROG PDQQHU ,PPXQRO 5R]]R 69\VH 7'UDNH &* .RW]LQ %/ f (IIHFW RI JHQHWLF EDFNJURXQG RQ WKH FRQWULEXWLRQ RI 1HZ =HDODQG %ODFN ORFL WR DXWRLPPXQH OXSXV QHSKULWLV 3URF 1DWO $FDG6FL 86$ 0RUHO / 5XGRIVN\ 8+ /RQJPDWH -$ 6FKLIIHQEDXHU :DNHODQG (. f 3RO\JHQHWLF FRQWURO RI VXVFHSWLELOLW\ WR PXULQH V\VWHPLF OXSXV HU\WKHPDWRVXV ,PPXQLW\ :DNHODQG :. 0RUHO / 0RKDQ &
PAGE 125

&KLDQJ %/ %HDUHU ( $QVDUL $ 'RUVKNLQG *HUVKZLQ 0( f 7KH %0 PXWDWLRQ DQG DXWRDQWLERGLHV WR GV'1$ LQ 1=%+EPO PLFH ,PPXQRO 1\JDUG 15 0F&DUWK\ '0 6FKLIIHQEDXHU 6FKZDUW] %' f 0L[HG KDSORW\SHV DQG DXWRLPPXQLW\ ,PPXQRO 7RGD\ %DEFRFN 6. $SSHO 9% 6FKLII 0 3DOPHU ( .RW]LQ %/ f *HQHWLF DQDO\VLV RI WKH LPSHUIHFW DVVRFLDWLRQ RI + KDSORW\SH ZLWK OXSXVOLNH DXWRLPPXQH GLVHDVH 3URF 1DWO $FDG 6FL 86$ 7KHRILORSRXORV $1 f LQ 7KH PROHFXODU SDWKRORJ\ RI DXWRLPPXQH GLVHDVH %RQD &$ 6LPLQRYLWFK =DQHWWL 0 7KHRILORSRXORV $1 HGVf +DUZRRG $FDGHPLF 3XEOLVKHUV SS 0F$OHHU 0$ 5HLIVQ\GHU 3 3DOPHU 60 3URFKD]ND 0 /RYH -0 &RSHPDQ -% 3RZHOO (( 5RGULJXHV 15 3ULQV -3 6HUUH]H '9 'H/DUDWR 1+ :LFNHU /6 3HWHUVRQ /% 6FKRUN 17RGG -$ /HLWHU (+ f &URVVHV RI 12' PLFH ZLWK WKH UHODWHG 121 VWUDLQ $ SRO\JHQLF PRGHO IRU W\SH GLDEHWHV 'LDEHWHV 6XQGYDOO 0 -LUKROW
PAGE 126

.OLQPDQ 6WHLQEHUJ $' f 6\VWHPLF DXWRLPPXQH GLVHDVH DULVHV IURP SRO\FORQDO % FHOO DFWLYDWLRQ ([S 0HG 0HULQR 5 ,ZDPRWR 0 )RVVDWL / ,]XL f 3RO\FORQDO % FHOO DFWLYDWLRQ DULVHV IURP GLIIHUHQW PHFKDQLVPV LQ OXSXVSURQH 1=%[1=:f)O DQG 05/0SMOSUOSU PLFH ,PPXQRO 'LDPRQG % .DW] -% 3DXO ( $UDQRZ & /XVWJDUWHQ 6FKDUII 0' f 7KH UROH RI VRPDWLF PXWDWLRQ LQ WKH SDWKRJHQLF DQWL'1$ UHVSSRQVH $QQX 5HY ,PPXQRO 5HLQLQJHU / 5DGDV]NLHZLH] 7 .RVFR 0 0HOFKHUV ) 5ROLQN $* f 'HYHORSPHQW RI DXWRLPPXQH GLVHDVH LQ 6&,' PLFH SRSXODWHG ZLWK ORQJWHUP LQ YLWUR SUROLIHUDWLQJ 1=%[1=:f)O SUH% FHOOV ([S 0HG 5HLQLQJHU / :LQNOHU 7+ .DOEHUHU &3 -RXUGDQ 0 0HOFKHUV ) 5ROLQN $* f ,QWULQVLF % FHOO GHIHFWV LQ 1=% DQG 1=: PLFH FRQWULEXWH WR V\VWHPLF OXSXV HU\WKHPDWRVXV LQ 1=%[1=:f)O PLFH ([S 0HG 6HUHDU] (( 'DWWD 6. f 0HFKDQLVPV RI DXWRLPPXQL]DWLRQ 3HUVSHFWLYH IURP WKH PLGV &XUU 2SLQ ,PPXQRO 6KHIQHU 5 .OHLQHU 7XUNHQ $ 3DSD]LDQ / 'LDPRQG % f $ QRYHO FODVV RI DQWL'1$ DQWLERGLHV LGHQWLILHG LQ %$/%F PLFH ([S 0HG *OHLFKPDQQ ( YDQ (OYHQ (+ YDQ GHU 9HHQ -3: f $ V\VWHPLF OXSX HU\WKHPDWRVXV 6/(f OLNH GLVHDVH LQGXFHG E\ DEQRUPDO 7% FHOO FRRSHUDWLRQ 3UHIHUHQWLDO IRUPDWLRQ RI DXWRDQWLERGLHV FKDUDFWHULVWLF RI 6/( (XU ,PPXQRO %RFNHQVWHGW /. *HH 50DPXOD 0f 6HOI SHSWLGHV LQ WKH LQLWLDWLRQ RI OXSXV DXWRLPPXQLW\ ,PPXQRO 7RSIHU ) *RUGRQ 7 0F&OXVNH\ f ,QWUD DQG LQWHUPROHFXODU VSUHDGLQJ RI DXWRLPPXQLW\ LQYROYLQJ WKH QXFOHDU VHOIDQWLJHQV /D 66%f DQG 5R 66$f 3URF 1DWO $FDG 6FL 86$ -DPHV -$ *URVV 7 6FRILHOG 5+ +DUOH\ -% f ,PPXQRJOREXOLQ HSLWRSH VSUHDGLQJ DQG DXWRLPPXQH GLVHDVH DIWHU SHSWLGH LPPXQL]DWLRQ 6P %% GHULYHG 333*0533 DQG 333*,5*3 LQGXFH VSOLFHRVRPH DXWRLPPXQLW\ ([S 0HG

PAGE 127

7VXEDWD 7 0XUDNDPL 0 +RQMR 7 f $QWLJHQUHFHSWRU FURVVOLQNLQJ LQGXFHV SHULWRQHDO %FHOO DSRSWRVLV LQ QRUPDO EXW QRW DXWRLPPXQLW\SURQH PLFH &XUU %LRO .R]RQR < .RW]LQ %/ +ROHUV 90 f 5HVWLQJ % FHOOV IURP 1HZ =HDODQG %ODFN PLFH GHPRQVWUDWH D GHIHFW LQ DSRSWRVLV LQGXFWLRQ IROORZLQJ VXUIDFH ,J0 OLJDWLRQ ,PPXQRO :RIV\ 6HDPHQ :( f 5HYHUVDO RI DGYDQFHG PXULQH OXSXV LQ 1=%1=: ), PLFH E\ WUHDWPHQW ZLWK PRQRFORQDO DQWLERG\ WR /7 ,PPXQRO 'DWWD 6. 3DWHO + %HUU\ f ,QGXFWLRQ RI D FDWLRQLF VKLIW LQ ,J* DQWL'1$ DXWRDQWLERGLHV 5ROH RI 7 KHOSHU FHOOV ZLWK FODVVLFDO DQG QRYHO SKHQRW\SHV LQ WKUHH PXULQH PRGHOV RI OXSXV QHSKULWLV ([S 0HG 0RKDQ & 6KL < /DPDQ -' 'DWWD 6. f ,QWHUDFWLRQ EHWZHHQ &' DQG LWV OLJDQG JS LQ WKH GHYHORSPHQW RI PXULQH OXSXV QHSKULWLV ,PPXQRO 6KLYDNXPDU 6 7VRNRV *& 'DWWD 6. f 7 FHOO UHFHSWRU DS H[SUHVVLQJ GRXEOH QHJDWLYH &'&'f DQG &' 7 KHOSHU FHOOV LQ KXPDQV DXJPHQW WKH SURGXFWLRQ RI SDWKRJHQLF DQWL'1$ DXWRDQWLERGLHV DVVRFLDWHG ZLWK OXSXV QHSKULWLV ,PPXQRO $QGR '* 6HUFDU] (( +DKQ %+ f 0HFKDQLVPV RI 7 DQG % FHOO FROODERUDWLRQ LQ WKH LQ YLWUR SURGXFWLRQ RI DQWL'1$ DQWLERGLHV LQ WKH 1=%1=:) PXULQH 6/( PRGHOV ,PPXQRO 1DLNL 0 &KLDQJ %/ &DZOH\ $QVDUL $ 5R]]R 6.RW]LQ %/ =ORWQLN $ *HUVKZLQ 0( f *HQHUDWLRQ DQG FKDUDFWHUL]DWLRQ RI FORQHG KHOSHU 7 FHOO OLQHV IRU DQWL'1$ UHVSRQVHV LQ 1=%+EP PLFH ,PPXQRO 0XUDNDPL 0 .XPDJDL 6 6XJLWD 0 ,ZDL ,PXUD + f ,QYLWUR LQGXFWLRQ RI ,J* DQWL'1$ DQWLERG\ IURP KLJKGHQVLW\ %FHOOV RI V\VWHPLF OXSXV HU\WKHPDWRVXV SDWLHQWV E\ DQ +/$'5 UHVWULFWHG 7 FHOO FORQH &OLQ ([S ,PPXQRO 0RKDQ & $GDPV 6 6WDQQLN 9 'DWWD 6. f 1XFOHRVRPH $ PDMRU LPPXQRJHQ IRU SDWKRJHQLF DXWRDQWLERG\LQGXFLQJ 7 FHOOV RI OXSXV ([S 0HG +HUURQ /5 (LVHQEHUJ 5$ 5RSHU ( .DNNDQDLDK 91 &RKHQ 3/ .RW]LQ %/ f 6HOHFWLRQ RI WKH 7 FHOO UHFHSWRU UHSHUWRLUH LQ OSU PLFH ,PPXQRO .RW]LQ %/ .DSSOHU -: 0DUUDFN 3& +HUURQ /5 f 7 FHOO WROHUDQFH WR VHOI DQWLJHQV LQ 1HZ =HDODQG K\EULG PLFH ZLWK OXSXV OLNH GLVHDVH ,PPXQRO

PAGE 128

6HUFDU] (( /HKPDQQ 39 $PHWDQL $ %HQLFKRX 0LOOHU $ 0RXGJLOO f 'RPLQDPFH DQG FU\SWLFLW\ RI 7 FHOO DQWLJHQLF GHWHUPLQDQWV $QQX 5HY ,PPXQRO 9ODKDNRV '9 )RVWHU 0+ $GDPV 6 8FFL $$ %DUUHWW .'DWWD 6. 0DGLR 03 f 0RQRFORQDO DQWL'1$ DQWLERGLHV GHULYHG IURP OXSXVSURQH PLFH IRUP LPPXQH GHSRVLWV DW GLVWLQFW JORPHUXODU ORFDWLRQV DQG LQGXFH GLIIHUHQW VWUXFWXUDO DQG IXQFWLRQDO DEQRUPDOLWLHV LQ YLYR .LGQH\ ,QW 5D] ( %UH]LV 0 5RVHQPD ( (LODW f $QWL'1$ DQWLERGLHV ELQG GLUHFWO\ WR UHQDO DQWLJHQV DQG LQGXFH NLGQH\ G\VIXQFWLRQ LQ WKH LVRODWHG SHUIXVHG UDW NLGQH\ ,PPXQRO
PAGE 129

7HUPDDW 50 $VVPDQQ .-0 'LMNPDQ +%30 YDQ *RPSHO ) 6PHHQN 5-7 %HUGHQ -+0 f $QWL'1$ DQWLERGLHV FDQ ELQG WR JORPHUXOXV YLD WZR GLVWLQFW PHFKDQLVPV .LGQH\ ,QW ,]XL 6 0F&RQDKH\ 3&ODUN -3 +DQJ /0 +DUD 'L[RQ )f 5HWURYLUDO JS LPPXQH FRPSOH[HV LQ 1=% [ 1=: ) PLFH ZLWK PXULQH OXSXV QHSKULWLV ([S 0HG ,]XL 6 0F&RQDKH\ 37KHRILORSRXORV $1 'L[RQ )f $VVRFLDWLRQ RI FLUFXODWLQJ UHWURYLUDO JSDQWLJS LPPXQH FRPSOH[HV ZLWK PXULQH V\VWHPLF OXSXV HU\WKHPDWRVXV ([S 0HG $QGUHZV +DQJ /0 7KHRILORSRXORV $1 'L[RQ )f /DFN RI UHODWLRQVKLS EHWZHHQ VHUXP JS OHYHO DQG WKH VHYHULW\ RI V\VWHPLF OXSXV HU\WKHPDWRVXV LQ 05/ PLFH ([S 0HG /DKLWD 5* f ,QWURGXFWLRQ ,Q 6\VWHPLF /XSXV (U\WKHPDWRVXV 5* /DKLWD HGf 1HZ
PAGE 130

3URFKD]ND 0 6HUUH]H '9 :RUWKHQ 60 /HLWHU (+ f *HQHWLF FRQWURO RI GLDEHWRJHQHVLV LQ 12'/W PLFH GHYHORSPHQW DQG DQDO\VLV RI FRQJHQLH VWRFNV 'LDEHWHV :LFNHU /6 7RGG -$ 3ULQV -% 3RGROLQ 3/ 5HQMLOLDQ 53HWHUVRQ /% f 5HVLVWDQFH DOOHOHV DW WZR QRQPDMRU KLVWRFRPSDWLELOLW\ FRPSOH[OLQNHG LQVXOLQ GHSHQGHQW GLDEHWHV ORFL RQ FKURPRVRPH ,GG DQG ,GGO2 SURWHFW QRQREHVH GLDEHWLF PLFH IURP GLDEHWHV ([S 0HG 6HUUH]H '9 3URFKD]ND 0 5HLIVQ\GHU 3&%ULGJHHW 00 /HLWHU (+ f 8VH RI UHFRPELQDQW FRQJHQLH DQG FRQJHQLH VWUDLQV RI 12' PLFH WR LGHQWLI\ D QHZ LQVXOLQ GHSHQGHQW GLDEHWHV UHVLVWDQFH JHQH ([S 0HG
PAGE 131

JURZWK IDFWRU % LV D SRWHQW LPPXQRVXSSUHVVLYH DJHQW WKDW LQKLELWV ,/GHSHQGHQW O\PSKRF\WH SUROLIHUDWLRQ ,PPXQRO 6DVDNL + 3ROODUG 5% 6FKPLWW 6X]XNL ) f 7UDQVIRUPLQJ JURZWK IDFWRUEHWD LQ WKH UHJXODWLRQ RI WKH LPPXQH UHVSRQVH &OLQ ,PPXQRO ,PPXQRSDWKRO %UDQGHV 0( $OOHQ -% 2JDZD < :DKO 60 f 7UDQVIRUPLQJ JURZWK IDFWRU % VXSSUHVVHV DFXWH DQG FKURQLF DUWKULWLV LQ H[SHULPHQWDO DQLPDOV &OLQ ,QYHVW .XUXYLOOD $3 6KDK 5 +RFKZDOG *0 /LJJLWW +' 3DOODGLQR 0$ f 3URWHFWLYH HIIHFW RI WUDQVIRUPLQJ JURZWK IDFWRU IOO RQ H[SHULPHQWDO DXWRLPPXQH GLVHDVHV LQ PLFH 3URF 1DWO $FDG 6FL 86$ 6KXOO 00 2UPVE\ .LHU $% 3DZORZVNL 6 'LHEROG 5
PAGE 132

-\RQRXFKL + .LQFDGH 3: f 3UHFRFLRXV DQG HQKDQFHG IXQFWLRQDO PDWXUDWLRQ RI % OLQHDJH FHOOV LQ 1HZ =HDODQG EODFN PLFH GXULQJ HPEU\RQLF GHYHORSPHQW ([S 0HG &RKHQ 3/ =LII 0 f $EQRUPDO SRO\FORQDO % FHOO DFWLYDWLRQ LQ 1=%1=: ), PLFH ,PPXQRO 7KHRILORSRXORV $1 6KDZOHU '/ (LVHQEHUJ 5$ 'L[RQ )f 6SOHQLF LPPXQRJOREXOLQVHFUHWLQJ FHOOV DQG WKHLU UHJXODWLRQ LQ DXWRLPPXQH PLFH ([S 0HG -\RQRXFKL + .LQFDGH 3: *RRG 5$ *HUVKZLQ 0( f % O\PSKRF\WH OLQHDJH FHOOV LQ QHZERUQ DQG YHU\ \RXQJ 1=% PLFH HYLGHQFH IRU UHJXODWRU\ GLVRUGHUV DIIHFWLQJ % FHOO IRUPDWLRQ ,PPXQRO 3HUNLQV '/ *ODVHU 50 0DKRQ &$ 0LFKDHOVRQ 5RWKVWHLQ $0 f (YLGHQFH IRU DQ LQWULQVLF % FHOO GHIHFW LQ OSUOSU PLFH DSSDUHQW LQ QHRQDWDO FKLPHUDV ,PPXQRO 6REHO (6 .DWDJLUL 7 .DWDJLQ 0RUULV 6& &RKHQ 3/ (LVHQEHUJ 5$ f $Q LQWULQVLF % FHOO GHIHFW LV UHTXLUHG IRU WKH SURGXFWLRQ RI DXWRDQWLERGLHV LQ WKH OSU PRGHO RI PXULQH V\VWHPLF DXWRLPPXQHLW\ ([S 0HG +DQJ /0 6ODFN -+ $PXQGVRQ & f ,QGXFWLRQ RI PXULQH DXWRLPPXQH GLVHDVH E\ FKURQLF SRO\FORQDO % FHOO DFWLYDWLRQ ([S 0HG 7UHSLFFKLR : -U %DUUHWW .+ f (OHYHQ 05/OSUOSU DQWL'1$ DXWRDQWLERGLHV DUH HQFRGHG E\ JHQHV IURP IRXU 9+ JHQH IDPLOLHV D SRWHQWLDOO\ ELDVHG XVDJH RI 9+ JHQHV ,PPXQRO 6KORPFKLN 0$XFRLQ $+ 3LVHWVN\ '6 :LHJHUW 0* f 6WUXFWXUH DQG IXQFWLRQ RI DQWL'1$ DXWRDQWLERGLHV GHULYHG IURP D VLQJOH DXWRLPPXQH PRXVH 3URF 1DWO $FDG 6FL 86$ 0DULRQ 71 %RWKZHOO $/ %ULOHV '( -DQHZD\ &$ -U f ,J* DQWL'1$ DXWRDQWLERGLHV ZLWKLQ DQ LQGLYLGXDO DXWRLPPXQH PRXVH DUH WKH SURGXFWV RI FORQDO VHOHFWLRQ ,PPXQRO 6KORPFKLN 00DVFHOOL 0 6KDQ + 5DGLH 0= 3LVHWVN\ 0DUVKDN5RWKVWHLQ $ :HLJHUW 0 f $QWL'1$ DQWLERGLHV IURP DXWRLPPXQH PLFH DULVH E\ FORQDO H[SDQVLRQ DQG VRPDWLF PXWDWLRQ ([S 0HG

PAGE 133

0DULRQ 71 7LOOPDQ '0 -RX 17 f ,QWHUFORQDO DQG LQWUDFORQDO GLYHUVLW\ DPRQJ DQWL'1$ DQWLERGLHV IURP DQ 1=% [ 1=:f) PRXVH ,PPXQRO :RIV\ 6HDPDQ :( f 6XFFHVVIXO WUHDWPHQW RI DXWRLPPXQLW\ LQ 1=%1=: ), PLFH ZLWK PRQRFORQDO DQWLERG\ WR /7 ([S 0HG :RIV\ f $GPLQLVWUDWLRQ RI PRQRFORQDO DQWL7 FHOO DQWLERGLHV UHWDUGV PXULQH OXSXV LQ %;6% PLFH ,PPXQRO 6DQWRUR 73RUWDQRYD -3 .RW]LQ %/ f 7KH FRQWULEXWLRQ RI /7 7 FHOOV WR O\PSKRSUROLIHUDWLRQ DQG DXWRDQWLERG\ SURGXFWLRQ LQ 05/OSUOSU PLFH ([S 0HG &RQQROO\ 5RXELQLDQ -5 :RIV\ f 'HYHORSPHQW RI PXULQH OXSXV LQ &' GHSOHWHG 1=%1=: PLFH VXVWDLQHG LQKLELWLRQ RI UHVLGXDO &'7 FHOOV LV UHTXLUHG WR VXSSUHVV DXWRLPPXQLW\ ,PPXQRO 5R]]R 6'UDNH &* &KLDQJ %/ *HUVKZLQ 0( .RW]LQ %/ f (YLGHQFH IRU SRO\FORQDO 7 FHOO DFWLYDWLRQ LQ PXULQH PRGHOV RI V\VWHPLF OXSXV HU\WKHPDWRVXV ,PPXQRO /HZLV *LRUJL -9 :DUQHU 1/ f )ORZ F\WRPHWU\ DQDO\VLV RI 7 FHOOV DQG FRQWLQXRXV 7FHOO OLQHV IURP DXWRLPPXQH 05/ PLFH 1DWXUH .DOL\DSHUXPDO $ 0RKDQ & :X : 'DWWD 6. f 1XFOHRVRPDO SHSWLGH HSLWRSHV IRU QHSKULWLVLQGXFLQJ 7 KHOSHU FHOOV RI PXULQH OXSXV ([S 0HG &URZ 0. 'HO*LXGLFH $* =HKHEDXHU -% /DZVRQ -/ %URW 1 :HLVVEDFK + (ONRQ .% f $XWRDQWLJHQVSHFLILF 7 FHOO SUROLIHUDWLRQ LQGXFHG E\ WKH ULERVRPDO 3 SURWHLQ LQ SDWLHQWV ZLWK V\VWHPLF OXSXV HU\WKHPDWRVXV &OLQ ,QYHVW 3HQJ 6/ )DWHQHMDG 6 &UDIW f ,QGXFWLRQ RI QRQSDWKRORJLF KXPRUDO DXWRLPPXQLW\ LQ OXSXVSURQH PLFH E\ D FODVV ,,UHVWULFWHG WUDQVJHQLF DIL 7 FHOO 6HSDUDWLRQ RI DXWRDQWLJHQVSHFLILF DQG QRQVSHFLILF KHOS ,PPXQRO 0RUHO / 0RKDQ &
PAGE 134

/DQGHU (6 *UHHQ 3 $EUDKDPVRQ %DUORZ $ 'DO\ 0/LQFROQ 6( 1HZEXUJ / f 0$30$.(5 DQ LQWHUDFWLYH FRPSXWHU SDFNDJH IRU FRQVWUXFWLQJ SULPDU\ JHQHWLF OLQNDJH PDSV RI H[SHULPHQWDO DQG QDWXUDO SRSXODWLRQV *HQRPLFV 0RXVH *HQRPH 'DWDEDVH f ZZZLQIRUPDWLFVLD[RUJ 9\VH 77RGG -$ f *HQHWLF DQDO\VLV RI DXWRLPPXQH GLVHDVH &HOO

PAGE 135

%,2*5$3+,&$/ 6.(7&+
PAGE 136

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ (GZDUG :DNHODQG &KDLU 3URIHVVRU RI 3DWKRORJ\ ,PPXQRORJ\ DQG /DERUDWRU\ 0HGLFLQH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $VVRFLDWH 3URIHVVRU RI 3DWKRORJ\ ,PPXQRORJ\ DQG /DERUDWRU\ 0HGLFLQH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3KLOLS /DLSL 3URIHVVRU RI ELRFKHPLVWU\ DQG 0ROHFXODU %LRORJ\

PAGE 137

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $VVRFLDWH 3URIHVVRU RI 0ROHFXODU *HQHWLFV DQG 0LFURELRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $VVRFLDWH 3URIHVVRU RI 3DWKRORJ\ ,PPXQRORJ\ DQG /DERUDWRU\ 0HGLFLQH 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI 0HGLFLQH DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ &ROOHJH RI 0HGLFLQH 'HDQ *UDGXDWH 6FKRRO

PAGE 138

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EH3H3940Y_Y4LD3N INGEST_TIME 2014-06-24T20:42:11Z PACKAGE AA00022312_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES