Citation
The zooarchaeology of Charlotte Harbor's prehistoric maritime adaptation

Material Information

Title:
The zooarchaeology of Charlotte Harbor's prehistoric maritime adaptation
Creator:
Walker, Karen Jo
Publication Date:

Subjects

Subjects / Keywords:
Eggshells ( jstor )
Fish ( jstor )
Keys ( jstor )
Meats ( jstor )
Oysters ( jstor )
Salinity ( jstor )
Sharks ( jstor )
Snails ( jstor )
Software applications ( jstor )
Vertebrates ( jstor )

Record Information

Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
29668226 ( ALEPH )
29176651 ( OCLC )

Downloads

This item has the following downloads:


Full Text











THE ZOOARCHAEOLOGY OF CHARLOTTE HARBOR'S
PREHISTORIC MARITIME ADAPTATION:
SPATIAL AND TEMPORAL PERSPECTIVES













By

KAREN JO WALKER


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1992

































Copyright 1992

by

Karen Jo Walker














ACKNOWLEDGMENTS

Much appreciation is extended to William Marquardt,

Elizabeth Wing, and Stephen Hale for the opportunity to

become involved in the southwest Florida research. The

collection and analysis of the Cash Mound, Useppa Island,

Josslyn Island, and Buck Key samples were funded by the

National Science Foundation. The Big Mound Key samples were

collected and provided by George Luer. Elizabeth Wing

provided much guidance and use of her lab, curation space,

comparative collection, and computers. Thanks go to Nina

Borremans, Laura Kozuch, and Guy Prentice for the initial

analysis of samples A-2-4 from Useppa, B-2-9 from Buck Key,

and A-l-4 from Josslyn, respectively. Laura Kozuch and

Cherry Fitzgerald also assisted with other samples.

I am indebted to reviewers of an early draft of this

dissertation. They include Kurt Auffenburg, Robert Edic,

Barbara Hoffman, Robert Knight, Elise LeCompte-Baer, George

Luer, William Marquardt, Jerald Milanich, Claudine Payne,

Irv Quitmyer, Elizabeth Reitz, Randal Walker, and Randolph

Widmer. The dissertation has further benefitted from

discussions or correspondence with Nina Borremans, Joel

Gunn, William Marquardt, Irv Quitmyer, Donna Ruhl, Frank

Stapor, and William Tanner.


iii








Corbett Torrence drafted Figure 1 (also used in Figures

7 and 16). Merald Clark produced the final versions of

Figures 2, 3, 6, 8, 9, and 10. He also illustrated the

fishing net in Figure 19 and put together the pie chart

figures, 7 and 16. Jim Wagner drafted Figures 4, 5, 11, 12,

14, and 15. In addition, he illustrated the fish in Figures

17 and 18. Scott Swan produced Figure 13. Claudine Payne,

Irv Quitmyer, Becky Saunders, and Sam Chapman contributed

computer expertise in the final production (i.e.,

translation of software programs) of Appendices A and B.

It is with great gratitude that I acknowledge the

members of my supervisory committee. Michael Moseley,

Elizabeth Wing, Jerald Milanich, Clay Montague, and Rhodes

Fairbridge have given me much guidance during the

dissertation process. I further thank Professor Fairbridge

of Columbia University and NASA-Goddard Institute for Space

Studies for going out of his way to attend my final

examination and afterwards to visit the Pineland Site in Lee

County. Carole Mclvor of the Department of Forest Resources

and Conservation generously came to my rescue when it became

clear that Clay Montague could not attend the final

examination. In addition to my committee, I have had the

good fortune to benefit from the advice, perspective, and

encouragement of William Marquardt, director of the

Southwest Florida Project.















TABLE OF CONTENTS

page

ACKNOWLEDGMENTS........................................ iii

LIST OF TABLES........................................ viii

LIST OF FIGURES............................. ............ .. .. xi

ABSTRACT..... ................................ ...... ...... . .xiii

CHAPTERS

1 INTRODUCTION.................................... ... 1

The Maritime Calusa of Charlotte Harbor..............1
The Lagging Maritime Perspective.................... 5
Research Goal and Objectives........................ 8
Sample Context and Excavation...................... 12
Big Mound Key ..................................... 14
Cash Mound............... ........... .......... ... 15
Useppa Island........................... ......... 16
Josslyn Island................................... 16
Buck Key Shell Midden............................ 18
Zooarchaeological Methods.......................... 19
Sample Processing................................ 19
Identification and Quantification................. 21
Sample Size....................... ............... 23
Food vs. Commensals............................... 25
Sources of Bias.................................... 25
Comparative Dietary Contribution.................. 28

2 A SPATIAL PERSPECTIVE ON RESOURCE HETEROGENEITY.... 53

The Present-day Charlotte Harbor Estuarine
Ecosystem............ ........................ . 53
The Present-day Estuarine Gradient.................. 57
Distribution of Vertebrates........................ 60
Distribution of Invertebrates...................... 64
Inferred Local Distribution of Resources in
Prehistory................................. ...... 68
Big Mound Key................................... 70
Cash Mound............._ ..... ... .. ...................... 71
Useppa Island............... ... ................. .72
Josslyn Island...................................73









Buck Key Shell Midden.......................... 74
Inferred Regional Distribution of Resources in
Prehistory ....................................... 75

3 A TEMPORAL PERSPECTIVE ON RESOURCE HETEROGENEITY...88

Environmental Continuity and Change................ 88
Potential Short-term Environmental Change..........90
Freezes, Red Tides, and Storms ................... 90
Seasonal Variability............................. 92
Potential Medium-term Environmental Change.........94
Climatic and Sea Level Variability............... 94
Inlet Dynamics.................................... 95
Potential Long-term Environmental Change.......... 96
Climatic Variability .............................96
Sea Level Variability ............................ 98
Inlet Dynamics .................................. 104
Estuarine-Marine Zooarchaeological Fauna as Proxy
Data.................................... ........ 105
Interpretive Potential and Time Resolution......105
Temporal Zooarchaeological Assemblages.......... 113
Effective Scale and Zooarchaeological
Potential.................................... 134

4 INTEGRATING SPATIAL AND TEMPORAL PERSPECTIVES..... 152

Zooarchaeological Patterns at the Local Scale.....152
Big Mound Key................................... 152
Cash Mound................................... 154
Useppa Island............................ 156
Josslyn Island .................................. 157
Buck Key Shell Midden....................... 158
Exploitation Patterns at the Regional Scale.......161
An Aquatic Exploitation .........................161
Fishing, Gathering, and Hunting Technology......165
Hypotheses for Variation in Fishing Artifacts...177

5 SUMMARY AND CONCLUSIONS ........................... 180

APPENDICES

A ZOOARCHAEOLOGICAL DATA TABLES ..................... 205

Big Mound Key...................................... 206
Cash Mound.........................................217
Useppa Island...................................... 225
Josslyn Island..................................... 228
Buck Key Shell Midden.............................. 240

B AQUATIC VERTEBRATES & INVERTEBRATES BY
ARCHAEOLOGICAL SITE AND MODERN HABITAT.......... 251









REFERENCES .............................................. 256

BIOGRAPHICAL SKETCH.................................... 276


vii














LIST OF TABLES


table page

1 Generalized Cultural Chronology for the
Caloosahatchee Area.................................. 31

2 Zooarchaeological Samples Included in the
Charlotte Harbor Study............................. 33

3 Summary of Zooarchaeological Data Included in
the Charlotte Harbor Study .......................... 35

4 Regression Values for Minimum Meat Weight
Estimations ......................................... 37

5 Regression Values for Maximum Meat Weight
Estimations........................................... 39

6 Non-regression Values for Maximum Meat
Weight Estimations.................................. 41

7 Oscillating Holocene Sea Level Curves Based on
Beach Ridge Data for the Charlotte Harbor and Gulf
of Mexico Regions................................... 138

8 Relative MNI Percentages of Eastern Oyster
(EO), Crested Oyster (CO), Crown Conch (CC), and
Ribbed Mussel (RM) for Cash Mound Samples A-l-4,
A-l-8, A-l-17, and A-l-20......................... 139

9 Intersite Comparison of Hardhead Catfish
Totals............................................. 189

10 Comparison of Terrestrial and Aquatic Animal
Food Resources by Percentage ....................... 190

11 Ranking of Bony Fishes by Maximum Meat
Weight ............................................. 191

12 Archaeological Remains of Sharks by Minimum
Number of Individuals (MNI) ........................ 192

13 Distribution of Archaeological Pinfish and
Associates by Minimum Number of Individuals (MNI)..193


viii









14 Mesh Sizes of Key Marco Net Cordage................ 194

15 Distribution of Archaeological Mullet
(Mugil spp.) ...................................... 195

16 Archaeological Terrestrial Fauna by Minimum
Number of Individuals (MNI) ....................... 196

A-i Faunal Analysis, Big Mound Key, 8CH10,
Charlotte County, Florida, May 1982 Sample, U.2/S.3,
NW Quad. Layer 11................................. 206

A-2 Faunal Analysis, Big Mound Key, 8CH10,
Charlotte County, Florida, August 1982 Sample,
U.1/S.4, Layer 8b................................. 209

A-3 Faunal Analysis, Big Mound Key, 8CH10,
Charlotte County, Florida, August 1982 Sample,
U.1/S.4, Layer 7....................................212

A-4 Faunal Analysis, Big Mound Key, 8CH10,
Charlotte County, Florida, November 1982 Sample,
U.1/S.4, NW Quad. Layer 2.......................... 215

A-5 Faunal Analysis, Cash Mound, 8CH38,
Charlotte County, Florida, June 1985 Sample, Test
A-l, Level 4 ....................................... 217

A-6 Faunal Analysis, Cash Mound, 8CH38,
Charlotte County, Florida, June 1985 Sample, Test
A-l, Level 8...................................... 219

A-7 Faunal Analysis, Cash Mound, 8CH38,
Charlotte County, Florida, June 1985 Sample, Test
A-l, Level 17 ...................................... 221

A-8 Faunal Analysis, Cash Mound, 8CH38,
Charlotte County, Florida, June 1985 Sample, Test
A-l, Level 20 ......................................223

A-9 Faunal Analysis, Useppa Island, 8LL51, Lee
County, Florida, Aug./Sept. 1985 Sample, Test A-4,
Level 2............................................ 225

A-10 Faunal Analysis, Josslyn Island, 8LL32,
Lee County, Florida, March 1985 Sample, Test A-l,
Level 4 (1/2 volume sample)........................ 228

A-11 Faunal Analysis, Josslyn Island, 8LL32,
Lee County, Florida, March 1985 Sample, Test A-l,
Level 12 ........................... ......... ..... .. 231









A-12 Faunal Analysis, Josslyn Island, 8LL32,
Lee County, Florida, March 1985 Sample, Test A-l,
Level 22........................................... 234

A-13 Faunal Analysis, Josslyn Island, 8LL32,
Lee County, Florida, March 1985 Sample, Test A-I,
Level 32....... ......... ......................... 237

A-14 Faunal Analysis, Buck Key Shell Midden,
8LL722, Lee County, Florida, March 1986 Sample, Test
B-2, Level 5...................................... 240

A-15 Faunal Analysis, Buck Key Shell Midden,
8LL722, Lee County, Florida, March 1986 Sample, Test
B-2, Level 9................... .... ... ........... 243

A-16 Faunal Analysis, Buck Key Shell Midden,
8LL722, Lee County, Florida, March 1986 Sample, Test
A-2, Level 6/7............ ........................ 246

A-17 Faunal Analysis, Buck Key Shell Midden,
8LL722, Lee County, Florida, March 1986 Sample, Test
A-2, Level 11 ............................. ......... 249

B-1 Aquatic Vertebrates by Archaeological Site
and Modern Habitat................................. ...252

B-2 Aquatic Invertebrates by Archaeological
Site and Modern Habitat............................. 254














LIST OF FIGURES


figure page

1 Map of the Charlotte Harbor Study Area with
Geographical Features and Archaeological Site
Locations Mentioned in the Text: (1) Solana Site;
(2) Big Mound Key; (3) Cash Mound; (4) Useppa
Island; (5) Pineland Site; (6) Josslyn Island; (7)
Buck Key Shell Midden; and (8) Wightman Site........44

2 The Distribution of Charlotte Harbor
Zooarchaeological Vertebrate Samples by Number of
Taxa and Minimum Number of Individuals (MNI).
Numbers Refer to the List Given in Table 2..........46

3 The Distribution of Charlotte Harbor
Zooarchaeological Invertebrate Samples by Number of
Taxa and Minimum Number of Individuals (MNI).
Numbers Refer to the List Given in Table 2..........48

4 Comparative Percentages of Zooarchaeological
Estimated Minimum Edible Meat Weights by Site and
Animal Group (Based on Data Presented in Appendix
A) .................................................. 50

5 Comparative Percentages of Zooarchaeological
Estimated Maximum Edible Meat Weights by Site and
Animal Group (Based on Data Presented in Appendix
A) ................................ .... .......... 52

6 Monthly Salinity Profiles of Four Aquatic
Locations in the Northern Part of the Charlotte
Harbor Estuarine Complex Illustrating the Fresh to
Salt Water Gradient (Data are after Wang and Raney
1971:18) ........................................... 81

7 Comparative Percentages of Zooarchaeological
MNI by Site Representing Exploited Habitats (Based
On Data Presented in Appendix A) .................... 83

8 Thoracic Vertebrae Widths of Bony Fishes as
an Indicator of Overall Fish Size for Cash Mound,
Josslyn Island, and Buck Key ........................ 85









9 A Schematic Illustration of the Relationship
between Aquatic Vertebrates and Invertebrates
Recovered from the Five Study Sites and the
Estuarine Gradient (Based on the Detailed Data
Presented in Appendix B)........................... 87

10 Mean Sea-Level Curve for Southwest Florida
Proposed by Stapor et al. Based on Geochronology,
Geomorphology, and the Elevation of Beach Ridge
Sets Making Up the Barrier Islands (After Stapor
et al. 1991:Figure 14) ............................. 141

11 Comparative Percentages of Zooarchaeological
Food MNI, Minimum Meat Weight, and Maximum Meat
Weight by Provenience for the Josslyn Island Faunal
Samples (Based on Data Presented in Appendix A) .... 143

12 Comparative Percentages of Zooarchaeological
Food MNI, Minimum Meat Weight, and Maximum Meat
Weight by Provenience for the Cash Mound Faunal
Samples (Based on Data Presented in Appendix A) .... 145

13 The Variation Based on Percentage of MNI of
Selected Species -- Eastern Oyster, Crested Oyster,
Ribbed Mussel, and Crown Conch -- from Cash Mound
Samples A-l-20, A-l-17, and A-l-8 Dating to A.D.
150 to A.D. 270 and A-l-4 Dating to A.D. 680.......147

14 Comparative Percentages of Zooarchaeological
Food MNI, Minimum Meat Weight, and Maximum Meat
Weight by Provenience for the Big Mound Key Faunal
Samples (Based on Data Presented in Appendix A) .... 149

15 Comparative Percentages of Zooarchaeological
Food MNI, Minimum Meat Weight, and Maximum Meat
Weight by Provenience for the Buck Key Faunal
Samples (Based on Data Presented in Appendix A) .... 151

16 Intersite Variability of Approximated Subsistence
Activity Based on MNI of Exploited Animals......... 198

17 Adult Pinfish, Lagodon rhomboides, and its
Atlas and Premaxilla Bones........................ 200

18 Adult Pigfish, Orthopristis chrysoptera, and
its Atlas and Premaxilla Bones.................... 202

19 Artist's Conception of a Prehistoric Gill Net for
Nearshore Shallow-Water Fishing in the Charlotte
Harbor Area Based on Archaeological Net Remains
from the Key Marco Site............................ 204


xii


















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

THE ZOOARCHAEOLOGY OF CHARLOTTE HARBOR'S PREHISTORIC
MARITIME ADAPTATION: SPATIAL AND TEMPORAL PERSPECTIVES


By


Karen Jo Walker


December, 1992


Chairman: Michael E. Moseley
Major Department: Anthropology

Much discussion involving prehistoric, complex,

maritime fisher-gatherer-hunter societies centers on whether

or not the natural environments inhabited by these peoples

were productive and stable enough to account for the

cultural complexity. In the case of southwest Florida's

maritime Calusa and their predecessors, addressing this

issue first requires a multi-scalar understanding of spatial

and temporal environmental context. This is because, like

any environment, coastal southwest Florida (specifically the

Charlotte Harbor estuarine system) is characterized by

habitat heterogeneity in space and geophysical dynamism

xiii








through time. This dissertation establishes the needed

contextual framework essential for properly addressing the

broader question of productivity, stability, and complexity.

Zooarchaeological remains provide an important proxy

data set for the purpose of modeling Charlotte Harbor's

spatial and temporal estuarine paleoenvironments at multiple

scales. It is argued that estuarine archaeofauna can serve

as paleoecological data, albeit with limitations. The

analysis of fine-screened bulk samples from five sites

variously located within the Charlotte Harbor estuarine

system forms the data base of the modeling exercise. These

midden materials date from 600 B.C. to A.D. 1400, spanning

the Caloosahatchee I through III archaeological periods.

Central to the model is an estuarine gradient analysis

using salinity as the primary organizing variable for

understanding the distribution of living fauna. The spatial

focus is on both local (site) and regional (Charlotte

Harbor) scales. From a temporal perspective, short-,

medium-, and long-term forms of environmental variation are

defined in terms of potential alteration of the estuarine

gradient. Proposed zooarchaeological signatures of such

multi-scalar alteration that were explored among the

Charlotte Harbor data lead to the conclusion that medium-

and long-term sea-level fluctuations and inlet dynamics are

most likely to have affected human subsistence. For the

Charlotte Harbor samples presented here, sea-level


xiv









fluctuations of .9 to 1.8 m above (50 B.C. to A.D. 450) and

below (A.D. 550 to A.D. 850) present sea level produce

signatures of an altered estuarine gradient but more

supportive evidence is necessary to resolve the temporal

scale.

The integration of spatial and temporal perspectives at

both local and regional scales demonstrates the potential of

zooarchaeological inference and advances the hypothesis that

exploitation technology reflects the modeled environmental

context.














CHAPTER 1

INTRODUCTION

The Maritime Calusa of Charlotte Harbor

The center of the world for much of the Calusa

population in the sixteenth century was southwest Florida's

highly productive Charlotte Harbor estuarine system (Figure

1). It was reported in 1564 "that the [Calusa] king was

held in great reverence by his subjects and that he made

them believe that his sorceries and spells were the reason

why the earth brought forth her fruit" (Laudonnibre

1975:110). The quote implies that the continued

productivity and stability of the natural world (i.e.,

Charlotte Harbor) were integral to the maintenance of the

Calusa paramount chief's authority.

Environmental productivity and stability may have been

particularly crucial factors for the culturally complex

Calusa because they apparently did not rely on agricultural

products (Goggin and Sturtevant 1964:183-184; Marquardt

1986:63, 1987:100, 1988:162-169; Milanich and Fairbanks

1980:243-244; Widmer 1988:224-250). Instead, as suggested

by various Spanish reports and the existence of enormous

shell middens, estuarine/marine foods appear to have been








2

the primary subsistence focus of these sedentary coastal

residents.

The term "maritime" is used in this dissertation to

describe a situation adjacent to the sea (i.e., marine

waters). Although Charlotte Harbor is technically an

estuarine environment rather than one of strictly marine

waters (i.e., 35 ppt salinity), the estuarine adaptation in

prehistory is viewed here as a specialized type of the

broader maritime cultural pattern (see Yesner 1980:728).

Furthermore, much of the inshore waters, such as those of

Pine Island Sound (Figure 1), maintain high salinities of

28.5 to 32.8 ppt (Alberts et al. 1969:1). Additionally,

most species of "estuarine" fish exploited by Charlotte

Harbor's prehistoric inhabitants at some point in their life

cycles migrate to marine waters. These estuarine/marine

fishes composed the bulk of the aboriginal protein intake as

indicated by zooarchaeological data (Fradkin 1976; Massaro

n.d.; Milanich et al. 1984).

Several modern researchers (Goggin and Sturtevant 1964;

Hann 1991; Lewis 1978; Marquardt 1986, 1987, 1988; Widmer

1988) have drawn on the Spanish writings of Fontaneda

(1945), Solis de Merds (1923), Rogel (Vargas Ugarte 1935),

and others, to synthesize the ethnohistory of the sixteenth-

century Calusa. Marquardt (1987:99-100) points out that

although the elite-dominated, tributary Calusa are usually

referred to as a chiefdomm" by archaeologists, it could be








3

argued that the society was an "early state" (Claessen

1978:538-580) or a "weak tribute-based state" (Gailey and

Patterson 1988:79) based on Spanish accounts. The

ethnohistoric sources specifically indicate that the Calusa

were nonagricultural and to date no evidence to the contrary

has been produced (Milanich 1987; Scarry and Newsom 1992;

for one opposing view see Dobyns 1983:126-130).

Wild plant foods, mostly in the form of fleshy fruits,

have been identified archaeologically. They include

hackberry, cocoplum, seagrape, mastic, prickly pear, cabbage

palm, saw palmetto, and hog plum (Scarry and Newsom 1992).

Scarry and Newsom (1992) document the virtual year-round

availability of the various fruits. The recently excavated

waterlogged samples (A.D. 200) from the Pineland Site

Complex on Pine Island are already adding to the list of

archaeological fruits (Newsom, personal communication,

1992).

Scarry and Newsom (1992) argue against the likelihood

of grain crops (maize and starchy seeds) being important in

prehistoric southwest Florida. Their experience has shown

that wherever maize is a subsistence base, cob remains have

been recovered in some number. Maize cob remains have never

been found in south Florida. Although corn pollen has been

identified at the Fort Center Site near Lake Okeechobee

(Sears 1982:120), Johnson (1990:210) argues that the soils

in question could not have supported maize cultivation. The









4

starchy seeds that are identified in the Charlotte Harbor

samples are not of the cultivated varieties that are

important in the prehistoric Midwest and Midsouth of the

United States (Scarry and Newsom 1992).

The Spanish chroniclers relate that the Calusa obtained

a wild plant root from interior south Florida for the

purpose of making a bread. In light of the non-

preservability of root remains and the absence of a

byproduct (unlike the case of maize cobs), the importance of

this food category remains open to debate. It has been

suggested that cut shark teeth found at the Fort Center and

Granada sites may have been used to create grater boards for

processing edible roots (Hale 1984:184; Kozuch 1991). To

date, the bread root described by the Spanish has not been

satisfactorily identified (Hann 1986).

The cultural history of the Calusa as an ethnic entity

remains unclear--whether they developed in the Charlotte

Harbor area (Widmer 1988) or originated from the Okeechobee

Basin of interior south Florida (Milanich and Fairbanks

1980:181). Furthermore, the emergence of Calusa complexity

may well have been a late phenomenon triggered by the

influx of sixteenth-century material goods into the

aboriginal economic system (Marquardt 1991).

Thus, we do not know if the ethnohistoric record is

appropriate for Charlotte Harbor temporal contexts other

than the protohistoric and historic Calusa. Conversely, nor








5

do we know if archaeological data from prehistoric sites are

appropriate for application to the protohistoric/historic

Calusa of the Spanish documents. Until population centers

such as the Pineland Site Complex are excavated to produce

ample data, both artifactual and subsistence, from

stratified contexts, archaeologists will not be able to

determine Calusa origins or the mechanisms that led to the

emergence of their complexity. And without an understanding

of the spatial and temporal paleoenvironmental context, we

cannot adequately evaluate the role of any perceived

subsistence change in the Charlotte Harbor region.

The LaQgging Maritime Perspective

The notion that maritime societies could develop

complex social and political formations without the benefit

of crop agriculture has long been debated, especially in the

case of coastal Peru (e.g., Moseley 1975; Moseley and

Feldman 1988; Osborn 1977; Wilson 1981). Prehistoric,

nonagricultural, complex peoples are indeed associated with

maritime settings in various locales of the world (e.g.,

North American Northwest Coast, southern California, coastal

Peru, southwest Florida, Norway and Sweden). This

association is increasingly being acknowledged by

researchers as theoretical biases inherent in unilinear

evolutionist schemes are broken down (Moseley and Feldman

1988). Unilinear evolutionists exaggerate the role of crop

agriculture as the primary cultural mechanism in the








6

emergence of complexity. As a result, evolutionary models

are colored by a terrestrial perspective, even when the

focus is on coastal cultures.

In Florida archaeology, symptoms of this terrestrial

bias include inappropriate recovery methods, untested

seasonal settlement models, and uncritical artifact

interpretation (see Russo 1991; Walker 1991; Walker and

Marquardt 1992). Until the 1960s, Florida archaeologists

believed that prehistoric coastal peoples subsisted

primarily on deer and small mammals, supplemented in times

of dietary stress by shellfish and fish. The application of

fine-screen recovery techniques by zooarchaeologists (e.g.,

Milanich et al. 1984) has revealed instead that fish, often

relatively small ones caught in nets, were the main

component of the native diet and were far more important

than terrestrial mammals.

Untested settlement models that depict coastal peoples

solely as seasonal residents also have been challenged

recently. Russo (1991) demonstrates that as early as the

Middle Archaic, people in southwest Florida lived year-round

on the coast and built purposeful mounds. A third symptom

of the terrestrial bias is a failure to recognize maritime-

related artifacts despite the obvious coastal association

and an available body of pertinent evidence (Walker 1991,

1992; Walker and Marquardt 1992).








7

There is little that argues against an estuarine/marine

food base for the Calusa and much that argues for it.

Widmer (1988) convincingly calls for an unusually high

productivity in Charlotte Harbor's estuarine/marine

environment--a year-round productivity capable of supporting

a large, sedentary, prehistoric human population. However,

as with any economic system, we cannot assume that these

estuarine/marine food resources relied upon in prehistory

remained uniformly productive and stable through space and

time for any given region. Limited by the available data,

Widmer's environmental context for the Calusa primarily

operates at broad regional (all of the southwest Florida

coastline) and temporal scales (e.g., he chooses the

traditional sea-level models). We must understand the

spatial variability of estuarine/marine resources at smaller

scales of analysis, as well as the impact of high-intensity

storms, freezes, and longer-term inlet and sea level-

dynamics in order to evaluate prehistoric human-environment

relationships.

The question then becomes how to investigate Charlotte

Harbor's environment, its fluctuations, and its relationship

to prehistoric human inhabitants through space and time.

Zooarchaeological evidence (i.e., vertebrate and

invertebrate skeletal remains) represents an analytic medium

of great relevance to this question. Archaeofauna can serve

as a paleoecological data set if we make the assumption that








8

animal foods were procured within close proximity to the

site where the skeletal remains are recovered by

archaeologists.

Research Goal and Objectives

The goal of this research is to employ regional

baseline zooarchaeological data to initiate a spatial and

temporal study of human-environment relationships in

prehistoric Charlotte Harbor. Such understanding is also

the goal of environmental archaeology (Butzer 1982; Evans

1978), a pursuit for which zooarchaeology is only one avenue

of inquiry. Zooarchaeological remains associated with

sedentary, coastal fisher-gatherer-hunter groups such as the

Charlotte Harbor people constitute a valid proxy data base

from which to begin to model paleoenvironments and the human

responses to them through space and time.

Independent, supportive data are essential to such

model-building (Dincauze 1987:318; King and Graham

1981:136-137; Rhoads and Lutz 1980:7, 11-12). Consequently,

data from estuarine ecological, climatic, and geological

research are drawn on. The Charlotte Harbor study,

nonetheless, is preliminary and hypotheses remain to be

tested and modified with new data sets.

Logically, one cannot truly "reconstruct" a

paleoenvironment (Dincauze 1987:292), but one can construct

a model of a past environment at a specified spatial and

temporal scale. Because of the interactive and








9

interdependent nature of environments, circularity in

reasoning, at times, becomes practically unavoidable in this

endeavor (Dincauze 1987:291-292). Despite this drawback,

the present study holds promise for research in the

Charlotte Harbor region.

The nature of model-building is to generalize (Levins

1966:421-422) for heuristic or operative purposes. In the

Charlotte Harbor model, it is necessary to simplify

environmental variation so that archaeologists can ask and

answer questions at a scale of, say, 100- to 200-year

increments (congruent with radiocarbon dating). In other

words, the goal, where possible, is to obtain data sets that

mediate potential short- and medium-term variation due to

intraannual and year-to-year change; for example, the

spatial perspective is based, with one exception, on

"averaged" site samples. However, intraannual and

year-to-year discontinuities do require careful

consideration when temporal interpretations are inferred.

Awareness of environmental continuity and change in

space and time at multiple scales should eventually allow

Charlotte Harbor archaeologists to focus on hypotheses more

specific to cultural change. In other words, we cannot make

valid inferences about cultural change based on faunal

patterns if we fail to recognize operative environmental

parameters at specific spatial and temporal scales. This is

because Charlotte Harbor is characterized by habitat








10

heterogeneity in its spatial distribution and by geophysical

dynamism through time; both attributes are typical of most

environmental systems. It is these operative factors that

dictate the comparability of intersite and intrasite

zooarchaeological samples and provide context for

human-environment relationships.

To illustrate, within a region such as Charlotte Harbor

a zooarchaeological assemblage from one site may be very

different from that of another site due to differences

(i.e., qualitative or quantitative) in the habitats that

surround each site. Therefore, between sites an assemblage

from one time period may be different from that of another

period because of a difference in location rather than a

diachronic cultural change. Within a site, an assemblage

from one time period may be different from one of another

time period due to a geophysical change such as a

fluctuation in sea level or the creation/closing of a nearby

ocean inlet rather than a diachronic cultural change.

This is not meant to imply that sociohistorical factors

were absent from Charlotte Harbor's prehistoric trajectory

of fauna use. For example, an apparent diachronic,

intrasite variation could be simply explained by variation

in site deposits (e.g., midden versus domestic floor) based

on patterning of artifacts, post holes, etc. Clearly, human

agency introduces a complex web of variables that interact

with the biotic and physical environments. We can begin to








11

identify this complexity only through familiarity with

environmental context.

In this dissertation, it is proposed that Charlotte

Harbor's recent estuarine paleoenvironment can be modeled

from perspectives of both space and time at local and

regional scales. Such a model, with continued adjustments,

can serve as a comparative base by which to measure

human-environment interaction. The approach used here

hinges on the existence of a prehistoric faunal exploitation

pattern that focuses on nearby resources. This pattern is

typical of maritime populations (Yesner 1980:730), and it is

established that the Charlotte Harbor zooarchaeological data

also reflect this strategy.

The Charlotte Harbor model-building exercise consists

of the following five objectives: (1) the spatial modeling

of modern estuarine heterogeneity via a gradient analysis;

(2) the spatial modeling of prehistoric estuarine

heterogeneity (using independent zooarchaeological data)

also via a gradient analysis, which serves as a test of

environmental comparability between present and past; (3 and

4) the overlay of potential short-, medium-, and long-term

temporal variation onto each of these two gradient models;

(5) the integration of the spatial and temporal dimensions

at both local and regional scales.









12

Sample Context and Excavation

The study has as its research universe the Charlotte

Harbor estuarine ecosystem, called here simply "Charlotte

Harbor." It is broadly defined as the subtropical coastal

area extending from Charlotte Harbor proper in the north to

Estero Bay in the south (Figure 1). For the purposes of

this study, then, the greater Charlotte Harbor area

constitutes a "region" (south Florida is also a region,

although broader in scale). The Charlotte Harbor region is

an arbitrary delineation based on a coastal ecosystem and

thus serves only as a starting point toward the

understanding of human-environment relationships in a

"dynamic region" (Marquardt and Crumley 1987:7-9). For

example, the rough chop of waters separating the Pine Island

Sound and Charlotte Harbor-Cape Haze areas (Figure 1) may

have represented a more realistic cultural boundary in the

prehistoric past. Point locations (e.g., archaeological

sites) within the region constitute "localities." The study

focuses on these two spatial scales, designated by Dincauze

(1987:261-262) as "mesoscale" (regional) and "microscale"

(local).

Although the cultural history of southwestern Florida

extends to the Early Paleoindian period, the time frame

under study in this dissertation is limited to approximately

600 B.C. to A.D. 1400, encompassing Caloosahatchee I through

IV periods (Table 1). The 2000-year span falls within








13

Dincauze's (1987:262) "mesoscale" temporal classification

and Butzer's (1982:24) "third order" scale of climatic

variability. Within these temporal scales, others of a

finer resolution also are recognized from which meaning is

inferred; any such scale is termed an "effective scale"

(Marquardt and Crumley 1987:2, 16; Marquardt 1985:69-70).

The use of effective scale as an organizing concept is

essential to a temporal study of the Charlotte Harbor

region. Short-term (i.e., from one day to one year),

medium-term (i.e., year-to-year), and long-term (i.e., one

hundred to several hundreds of years) effective scales in

the dynamics of the region's paleoenvironmental variation

are recognized in this study.

Excavation, volumetric, and chronological data for the

samples used in this study are presented in Table 2. All

samples exhibit good preservation owing to the predominant

calcium carbonate matrix of shell and bone. Samples were

selected on the basis of stratigraphic context. The four

Big Mound Key (8CH10) samples, excavated by George Luer in

1982 (Luer 1986:143), are from a large stratified pit

located at the summit of West Mound. Thirteen additional

samples are from column levels measuring 50 cm x 50 cm x 10

cm, excavated under the direction of William Marquardt and

the author in 1985 and 1986. For these samples from Cash

Mound (8CH38), Useppa Island (8LL51), Josslyn Island

(8LL32), and Buck Key Shell Midden (8LL722), designations









14

such as "A-l," "A-2," etc. indicate the excavation unit, and

the third number refers to the vertical level (e.g., "A-l-4"

is the fourth vertical level of Test Unit A-l).

A total of 206,474 bone and shell specimens were

identified in the seventeen samples. A total of 22,557

minimum number of individuals (hereafter "MNI") were

calculated. Table 3 presents a summary of these data,

broken down by sample and vertebrates versus invertebrates.

Species-specific data for all seventeen samples are

presented in Appendix A.

Big Mound Key. 8CH10

Located on the southwestern shoreline of the Cape Haze

Peninsula in Charlotte County (Figure 1), Big Mound Key is a

7 m-high shell mound complex that extends over a 15 ha area.

It is possible that the mound complex was constructed in a

spider-like effigy form. Archaeological work at Big Mound

Key has been limited but the site seems to have been

occupied since ca. A.D. 200 and possibly earlier (Luer

1986:105-106). During a site visit in the 1950s, the

Bullens (Bullen and Bullen 1956:50-51) collected Leon-

Jefferson and olive jar sherds indicating a seventeenth-

century occupation.

A large portion of Big Mound Key was intensively

bulldozed in the 1970s by treasure hunters. Along one of

the linear cuts, George Luer documented and excavated a

large pit containing stratified midden (see Marquardt








15

1992b:Figure 29), dating to ca. A.D. 800 (Table 2). He

collected several bulk samples for archaeobiological

analyses. Four of these were selected for inclusion in this

dissertation (Tables 2 and 3; Appendix A). Other associated

research includes Cordell (1992), Marquardt (1992b), Scarry

and Newsom (1992), and Upchurch et al. (1992).

Cash Mound. 8CH38

Cash Mound, situated in Turtle Bay (Figure 1), was

probably first inhabited during a low sea-level stand and

later became surrounded by water when sea level rose. It is

a large midden/mound site rising to more than 6 m in height

and measuring 200 m long by 125 m wide. Portions of the

site have been damaged by treasure hunters, "shell-

borrowing" activities, and storms. The Bullens excavated at

Cash Mound in 1954 (Bullen and Bullen 1956), representing

the first and only professional work here until recently

(see Marquardt 1992b).

Marquardt profiled an eroded face of a portion of

midden/mound and removed twenty-two 50 x 50 x 10 column

level samples for study. Four levels were radiocarbon-dated

to A.D. 270 60, A.D. 190 80, A.D. 150 90 (these three

are Caloosahatchee I period), and A.D. 680 70

(Caloosahatchee II period) (Table 2). These four samples

were chosen for zooarchaeological analysis (Tables 2 and 3;

Appendix A). Associated research includes that of Cordell








16

(1992), Marquardt (1992b, 1992c), Scarry and Newsom (1992),

and Walker (1992).

Useppa Island. 8LL51

Useppa Island is located on the estuarine side of Cayo

Costa, south of Boca Grande Pass (Figure 1). Useppa

Island's eastern edge exists as a roughly 6 m-high

Pleistocene dune remnant (Stapor et al. 1991; Upchurch et

al. 1992). Archaeological deposits on Useppa are extensive

and date as far back as 3675 B.C. Sites on Useppa were

first tested by J. T. Milanich and J. Chapman (Milanich et

al. 1984); they excavated in several locations on the island

in 1979 and 1980, demonstrating occupations from the Archaic

through the 19th century.

Marquardt's (1992b) more recent excavation in the

Collier Inn locality has produced a similar timespan of

shell midden and burial deposits. A single column level

sample, A-4-2, from this work was chosen for

zooarchaeological study (Tables 2 and 3; Appendix A). It

radiocarbon dates to 570 60 B.C. (Terminal

Archaic/Caloosahatchee I). Associated studies include those

of Cordell (1992), Hansinger (1992), Marquardt (1992b,

1992c), Quitmyer and Jones (1992), and Scarry and Newsom

(1992).

Josslvn Island. 8LL32

Three of Josslyn's 19.4 hectares (Figure 1) are

comprised of shell midden/mounds that reach a maximum








17

elevation of 6.02 meters above sea level and, according to

Frank Hamilton Cushing (1897:337), courts and waterways.

Except for Cushing's brief 1895 investigation of one of the

"courts," Josslyn's archaeological deposits have received

little attention until the Florida Museum of Natural

History's recent involvement (Marquardt 1984, 1992a).

Josslyn's dense growths of red, black, and white

mangroves, trees of buttonwood, stopper, strangler fig, and

gumbo limbo are typical of coastal southwest Florida's

native subtropical vegetation. Geological coring has

demonstrated that the archaeological portion of Josslyn is

the oldest part of the island (Upchurch et al. 1992).

Futhermore, the lowest 65 cm (more or less, depending on the

tide) of midden is today submerged under water (Marquardt

1992b). These two pieces of information suggest a lower sea

level at the time of Josslyn's earliest occupation at circa

130 B.C., if not earlier.

In 1985, an extensive vertical profile was cleaned in a

deep looter's trench (Marquardt 1992b). From this area,

designated as operation A-l, thirty-eight 50 x 50 x 10 cm

column levels were removed for intensive analyses. Four of

these levels, dating to 130 90 B.C., 120 70 B.C. (both

Caloosahatchee I), A.D. 820 70 (Caloosahatchee IIB), and

A.D. 1200 60 (Caloosahatchee IIB/III), were chosen for

zooarchaeological study (Tables 2 and 3; Appendix A). The

inundated midden/mound base (described above) was not dated,









18

but a radiocarbon date was obtained from just above the

water line (see Table 2, #13). Associated studies of this

Josslyn context appear in Cordell (1992), Marquardt (1992b,

1992c), Quitmyer and Jones (1992), Scarry and Newsom (1992),

and Walker (1992).

Buck Key Shell Midden. 8LL722

Located along the northeastern shoreline of the island

of Buck Key, the Buck Key Shell Midden consists of low

"mounds" (no higher than 3 m) of shell, bone, and

artifactual debris, surrounded by red and black mangroves

(Figure 1). The middens appear to be undisturbed and have

not been investigated professionally until the 1985 work

(see Marquardt 1992b). Buck Key is today nestled behind

Captiva Island in bay waters, but originally was formed as a

barrier island between about 1,200 and 1,500 years ago

(Stapor et al. 1987:167, 169).

The Buck Key Shell Midden and its associated sand

burial mound, 8LL55, have been radiocarbon-dated to A.D.

1040-1350 (Table 2). Test A-l, placed in the shell midden

site, was excavated to 140 cm below surface (Marquardt

1992b). Test A-2, adjacent to A-l, was a 50 x 50 column

sample, excavated in ten levels. Two samples from this

column were selected for zooarchaeological analysis (Tables

2 and 3; Appendix A). Two samples originated from Test B in

the same manner (Tables 2 and 3; Appendix A). Associated

studies include Cordell (1992), Hutchinson (1992), Marquardt








19

(1992b, 1992c), Scarry and Newsom (1992), Upchurch et al.

(1992), and Walker (1992).

Zooarchaeolocical Methods

Sample Processing

Initially, entire levels were processed and analyzed,

but as our study progressed we found that in some cases

lesser volumes produced just as representative a data set

based on Wing and Brown's (1979:118-119) technique of

comparing number of species with minimum number of

individuals. Volumetric variation among other samples

(Table 2) is due to the varying quantity of large gastropod

shells which, once excavated, do not pack as tightly as

other midden remains.

The midden samples were water-floated in a 1.60 mm

(1/16") mesh box screen to recover botanical remains. After

slow air drying, the heavy fraction was sorted through a

series of geological sieves corresponding to 6.35 mm (1/4"),

2.00 mm (1/13"), and 1.60 mm (1/16") mesh sizes. The 6.35

mm vertebrate and invertebrate fragments were sorted,

identified, and quantified. The 2.00 mm vertebrate material

was sorted, identified, and quantified whereas the

invertebrate remains were subsampled by weight to determine

proportions only for the major classes (e.g., Gastropoda,

Bivalvia). This method allowed the inclusion of a minimum

meat weight estimate for unidentified 2.00 mm-screened

molluscan remains (category "Mollusca" in Appendix B).









20

Wing and Quitmyer (1985:49-58) dramatically demonstrate

the importance of fine-screen data recovery when dealing

with estuarine environments. The present study suggests

that a 2.00 mm mesh is an efficient screen size for the

objectives of the Charlotte Harbor study and that relatively

little diagnostic (below Class) material is found in the

1.60 mm-screened sample. Nevertheless, weight of the 1.60

mm-screened remains is essential if minimum meat estimates

are to be calculated. This has been done, again, by method

of proportion, sorting a 5% (by weight) subsample to

determine its major components. Thus, the unidentified

"Vertebrata (predominantly fish)" and "Mollusca" categories

include 6.35 mm, 2.00 mm, and 1.60 mm bone and shell

weights, respectively. Only 6.35 mm and 2.00 mm fauna

appear in all other quantifications.

Although I chose 6.35 mm and 2.00 mm screen sizes for

complete identification and MNI quantification of

invertebrates and vertebrates, respectively, I emphasize

that smaller screen sizes may be necessary to address

questions that I have not included in the present study.

Valuable invertebrate seasonality information, for example,

can be lost even through screen mesh as small as 1.60 mm.

For any particular environmental locale and set of research

questions, selection of screen size must be considered

carefully.








21

Identification and Quantification

Specimens were identified using the comparative

collections of Zooarchaeology and Malacology, both located

at the Florida Museum of Natural History, Gainesville,

Florida. Scientific nomenclature and common names follow

general laboratory usage in 1986 for mammals, birds,

reptiles, and crustacea: Robins et al. (1980) for fishes,

Abbott (1974) for molluscs. Results of identification and

quantification for each of the seventeen samples are

presented in Appendix B. Fragment count and description,

fragment weight, and linear measurements are the three types

of primary data recorded in this study. Fragments of all

taxa were counted except for unidentified "Vertebrata" and

"Mollusca" (Appendix B, footnote b). In addition, counts of

unsided oyster and mussel valve fragments for Cash Mound

were of such magnitude that quantification other than shell

weight was impractical and would have served no purpose

(Appendix B, footnote e). Fragment weight was recorded,

providing the basis for minimum edible meat weight

estimates. Along with descriptive data concerning the

identification of specimens, linear measurements (in mm)

were taken for maximum meat estimations and other specific

purposes. Measurements followed the guidelines illustrated

in Quitmyer (1985:42-48) for vertebrates and invertebrates.

Secondary data include MNI, minimum edible meat

estimates, and maximum edible meat estimates. Standard








22

procedure was followed for calculating MNI by cultural unit,

comparing element side with age, size, and sex (Grayson

1984:27-48; Wing and Brown 1979:123). Edible meat weight

represented by bone and shell remains is presented as a

range, using a "minimum" and a "maximum" prediction

(Quitmyer 1985:38). Edible meat weight is here defined as

only the muscle tissue, with skin, viscera, and bone

subtracted. These predictions are made by establishing

allometric correlations between skeletal weight and meat

weight and between linear dimension and meat weight by using

least-squares regression (Casteel 1974; Hale et al. 1987;

Quitmyer 1985:37-38; Reitz et al. 1987:305; Wing and Brown

1979:127). These scaling methods are referred to as

skeletal mass allometry (using skeletal weight) and

dimensional allometry (using linear measurements) and employ

the allometric equation (Schmidt-Nielsen 1985:15; Simpson et

al. 1960:397):

y = aXb

log Y = log a + b (log X).

Tables A-l and A-2 list regression values for the

y-intercept and slope, based on data recorded at the Florida

Museum of Natural History. Table A-3 presents methods by

which maximum meat weights were estimated when regression

values were not available. These estimates were made by a

one-to-one size comparison with a modern specimen having a

known meat weight, or by using an average of known weights









23

if an archaeological specimen could not be matched to a

modern one. All values used in this study date to 1987 or

earlier and are subject to constant updating.

Throughout the Charlotte Harbor study, interpretive

emphasis is placed on the technique of Minimum Number of

Individuals (MNI). The primary quantitative objective of

the zooarchaeologist is to measure relative abundance of

species, but all methods used to do so are inherently flawed

to some degree. There are no perfect sampling or

quantitative procedures by which to analyze faunal remains

(Grayson 1984; Jackson 1989; Wing and Brown 1979). However,

it is my opinion that much of the current critical

assessment of the MNI technique (see Grayson 1984) is not

applicable to the study of maritime settings. Because of

the nature of estuarine/marine fauna and the technology used

for their exploitation, I believe that MNI units are very

appropriate measurements for Charlotte Harbor's faunal

remains.

Sample Size

Adequacy of sample size can be assessed by determining

the point of diminishing returns, that is, when few new

species are added to the faunal list (Wing and Brown

1979:118-119). I have attempted such an assessment for the

southwest Florida study area by comparing number of taxa to

MNI for each 2.00 mm (1/13") screened sample (Figures A-l

and A-2).








24

Figure A-I illustrates the distribution of vertebrate

samples. An MNI of 150 is the point of diminishing returns.

In other words, few new species are added once one has

identified ca. 150 individual animals. Most of the samples

show a relatively high species diversity. Following this

guide, ten samples may be considered less than

representative. However, because my methodology emphasizes

the combined treatment of vertebrates and invertebrates, a

second graph has been constructed to convey sample size

adequacy (Figure A-2).

Two curves emerge. The higher curve represents highly

diversified samples, all but one meeting the criterion of

600 MNI. The lower curve represents distinct types of

samples, all from the Cash Mound column (samples #5, #6, #7,

and #8). The Cash Mound pattern may suggest a specialized

area of the site (see text for discussion). The position of

sample #4 (Big Mound Key, Layer 2) on the graph also

suggests a specialized assemblage. Although the point of

diminishing returns is not known for this lower curve

(broken line), samples are probably well beyond where it

would occur. The sizes of these five samples, then, are

more than adequate within their own contextual realm. Data

of this kind are important for any region of study, for they

can be used as a guideline for future faunal analyses.










Food vs. Commensals

General criteria for deciding what was or was not eaten

are based on species, size, quantity of individuals, and

archaeological context. All vertebrate species identified

are assumed to have been eaten. Small barnacles and many

forms of small gastropod and bivalve animals were surely not

consumed, at least in the middens sampled. There was little

archaeological evidence for dense deposits of small

gastropod or bivalve shells. It is clear from experimental

midden research (Wing and Quitmyer 1992) that many creatures

make their way to the middens attached to larger host

species. Often small bivalve specimens were found with both

valves intact, or shells were water worn. Thus, certain

species were not included in the dietary analysis (Appendix

B, footnote c). However, occasional distinct assemblages

warranted inclusion. For example, the cross-barred venus

(Chione cancellata) at Useppa Island (Table B-9) and spotted

slipper shell (Crepidula maculosa) at Buck Key (Table B-16)

were of such size and quantity to suggest purposeful

collection.

Sources of Bias

Preservation problems relating to fragment counts and

weights are numerous and uncontrollable (Grayson 1984:21-22;

Wing and Brown 1979:121-123). The effects of scavengers and

differential preservation due to depositional conditions,

bone/shell condition, or bone/shell structure are difficult








26

and often impossible to assess. Results of a midden

experiment by Wing and Quitmyer (1992) suggest that

post-deposition losses of fish bones occur in shell middens.

Equally disconcerting are the endless undetectable

socio-cultural activities that determine archaeological

faunal patterns. One problem associated with massive,

complex shell mound sites is the taphonomic distinction

between primary and secondary midden deposits. Based on

test unit location, stratigraphy, and radiocarbon dates, I

believe that the midden samples in the present study

represent primary deposits.

As is often the case, it is the absence or infrequent

occurrence of expected species that puzzles the

zooarchaeologist. There are four examples of fish that are

today abundant in the Charlotte Harbor area but are either

missing or infrequent in the shell midden samples of the

present study. The significance of mullet (Mugil spp.) in

southwest Florida prehistory is a matter of concern (Goggin

and Sturtevant 1964:185; Marquardt 1986:66). Although a

mullet fishery is reported in the ethnohistoric literature

(L6pez de Velasco 1894:163; Weddle 1985:22) and the fish are

abundant today, relatively few bones are recovered from

sites, often only thoracic vertebrae. Whether the

explanation is one of sampling, preservation, environmental

change, or cultural practice should be investigated.









27

In addition to mullet, three more species are

conspicuously rare or absent from the faunal samples, based

on Wang and Raney's modern survey (1971:54): the bay

anchovy (Anchoa mitchilli); the silver jenny (Eucinostomus

gula); and the spadefish (Chaetodipterous faber). The first

two are fishes in the same small size class as the

killifishes (Fundulus spp.), a genus identified among the

midden remains. Perhaps these were eaten whole, and perhaps

the fibrous structure of spadefish bones prevented

preservation of this species. Hypotheses such as these

should be tested.

The nature of column sampling has inherent problems

related to intrasite (horizontal) representativeness. An

additional concern is the comparability of the Big Mound Key

feature, a large midden-filled pit, to the general midden

samples taken from all other sites. The validity of

comparison may or may not depend on the unknown function of

the large pit. I postulate that the pit's primary purpose

was something other than garbage disposal and that the food

remains were deposited secondarily, representing a sample

similar to general midden areas. This should be tested with

future excavation at Big Mound Key.

Several basic problems that plague scaling techniques

when applied to archaeofauna are discussed elsewhere

(Grayson 1984; Jackson 1989; Wing and Brown 1979).

Additionally, many species-specific regression values are








28

not yet available for both minimum and maximum estimates.

Recently, Grayson (1984:172-174) has argued that only the

dimensional allometric method of meat weight prediction is

valid for zooarchaeological purposes. Despite this

controversy, allometric scaling, used as a method for

predicting animal body weights (extended to meat weight for

this study), has been tested and shown to produce the most

accurate results of currently employed techniques to

estimate biomass (Casteel 1978:71-77; Wing and Brown

1979:130-131).

Another example of bias in the meat-weight estimation

method stems from frequent low MNI counts for invertebrates

in relation to fragment weight. For certain species (e.g.,

eastern oyster, lightning whelk, banded tulip, Florida horse

conch), this is seemingly due to a high degree of

fragmentation, shell structure, and density, or perhaps to a

limited size range used in scaling modern specimens.

Sometimes the resulting maximum estimate for these animals

is lower than the minimum estimate (Appendix B, footnote f).

Comparative Dietary Contribution

Minimum and maximum edible-meat weights were estimated

(discussed above) for all 17 faunal samples to provide a

range of meat potential for each animal (Appendix B).

Figures A-3 and A-4 summarize these results by site,

combining intrasite data. Bony fishes (Osteichthyes) stand

out as the primary contributors to the aboriginal diet based








29

on both minimum and maximum meat estimates. Although the I

importance of gathering shellfish is dramatically evidenced

by massive shell mounds dotting the landscape and

quantitatively supported by MNI figures, its role is

considerably diminished when viewed from a dietary

perspective (Figures A-3 and A-4).

Nutritional analysis has shown that, gram for gram,

shellfish contains substantially less protein and fat and

fewer calories than fish and mammals (Parmalee and Klippel

1974:431). Cash Mound's 84% MNI and 58% minimum meat of

oysters and mussels (Figure A-3), respectively, are reduced

to a paltry 8% when maximum meat is estimated (Figure A-4).

The predominance of meat contribution derived from fishing

activities is underscored when the meat of sharks and rays

(Chondrichthyes) is added to the bony fish category. This

is most evident in the Buck Key samples where 81% of the

minimum meat estimate results from fishing (Figure A-3).

Sharks and rays are represented in all site samples,

with the Useppa Island sample showing a high minimum meat

weight estimate of 25% (Figure A-3). The work of Milanich

et al. (1984) at Useppa also showed an abundance of shark

remains. As do the remains of white-tailed deer, the

appearance of adult sharks in midden samples implies

butchering and village distribution of meat. However, most

shark individuals in the study samples are juveniles.








30

Whereas reptiles and mammals generally represent a

negligible portion of the diet based on estimates of minimum

meat, they can be significant contributors if the maximum

meat estimates of large individuals are considered. When

the maximum meat of one sea turtle is estimated, its dietary

importance in the Big Mound Key samples becomes 19% and for

the Buck Key samples, 13% (Figure A-4). However, the high

mammal maximum meat percentage of 30% for the Big Mound Key

samples (Figure A-4) may be misleading. The deer bones

recovered from the four sampled strata in the short-lived

refuse pit possibly represent a single deer--1 MNI instead

of 4--which would substantially reduce the meat percentage.











Table 1. Generalized Cultural Chronology for
the Caloosahatchee Area (adapted from
Marquardt 1992b and Cordell 1992).


Date Period Some Diagnostic Artifacts


A.D. 1500-
1750


A.D. 1350-
1500



A.D. 1200-
1350


A.D. 800(?)-
1200


A.D. 650-
800(?)



500 B.C.-
A.D. 650


1200 B.C.-
500


2000 B.C.-
1200 B.C.



5000 B.C.-
2000 B.C.


Caloosahatchee V



Caloosahatchee IV




Caloosahatchee III



Caloosahatchee IIB


Caloosahatchee IIA




Caloosahatchee I



Terminal Archaic
("Transitional")


Late Archaic




Middle Archaic


European artifacts (e.g.,
metal, beads, olive jar
sherds)

Safety Harbor, Glades
Tooled, and Pinellas
Plain pottery; Belle
Glade Plain diminishes

St. Johns Check Stamped,
Englewood ceramics; Belle
Glade Plain prominent

Belle Glade Red present;
Belle Glade Plain
prominent

Beginning of Belle Glade
Plain and SPCB ceramics;
Glades Red; thinner
ceramics

Thick sand-tempered plain
pottery with round and
chamfered lips

Fiber-tempered pottery;
semi-fiber-tempered
pottery

Orange Plain, Orange
Incised, Perico Incised,
Perico Plain, St. Johns
Plain; steatite

Coastal sites, but no
ceramics; broad-stemmed
bifaces, e.g., Newnan;
mortuary ponds












Table 1--continued.


Date Period Some Diagnostic Artifacts


6500 B.C.-
5000 B.C.




8500 B.C.-
6500 B.C.




11500 B.C.-
8500 B.C.


Early Archaic





Late Paleoindian


Early Paleoindian


Sites on coastal dune
ridges ca. 5000 B.C.;
earlier coastal sites
probably inundated by
rising sea level

Dalton and Bolen bifaces,
bone points, non-
returning boomerang,
socketed wooden point,
oak mortar, atlati spur

Only wooden tools known











Table 2. Zooarchaeological Samples Included in
the Charlotte Harbor Study.


Site Name Sample Sample Vol. C-14 Date
and Number Provenience Type (m3) (uncalib.)


1. Big Mound Key
(8CH10)

2. Big Mound Key
(8CH10)


3. Big Mound Key
(8CH10)


4. Big Mound Key
(8CH10)


5. Cash Mound
(8CH38)


6. Cash Mound
(8CH38)


7. Cash Mound
(8CH38)


8. Cash Mound
(8CH38)


9. Useppa Island
(8LL51)


10. Josslyn Island
(8LL32)


11. Josslyn Island
(8LL32)


Layer 11


Layer 8b


Layer 7


Layer 2(1)b


A-l-4


A-l-8


A-l-17


A-l-20


A-4-2


A-l-12(13)b


pit'


pit"


pit"


pit"


column
level


column
level


column
level


column
level


column
level


column
level


.009


.009


.014


A.D.86080
UM-2685
Charcoal

A.D.87070
UM-2679
Shell


.014 A.D.880+140
UM-2676
Charcoal


.018



.020



.024


.023


.018



.009


column .028
level


A.D.68070
Beta-16281
Shell

A.D.15090
Beta-16280
Shell

A.D.19080
Beta-16279
Shell

A.D.27060
Beta-16278
Shell

57060B.C.
Beta-38495
Shell

A.D.120060
Beta-17332
Shell

A.D.82070
Beta-17333
Shell












Table 2--continued.


Site Name Sample Sample Vol. C-14 Date
and Number Provenience Type (m3) (uncalib.)


12. Josslyn Island A-1-22(23)b column .028 12070B.C.
(8LL32) level Beta-17334
Shell

13. Josslyn Island A-1-32(33)b column .028 13090B.C.
(8LL32) level Beta-17335
Shell

14. Buck Key Mid. B-2-5 column .018 A.D.135080
(8LL722) level Beta-16283
Shell

15. Buck Key Mid. B-2-9 column .025 A.D.125060
(8LL722) level Beta-16282
Shell

16. Buck Key Mid. A-2-6/7 column .023 A.D.133070
(8LL722) level Beta-16285
Shell

17. Buck Key Mid. A-2-11(9)b column .023 A.D.104080
(8LL722) level Beta-16287
Shell

a Luer 1986b.
b Level in parentheses is source of radiocarbon date.











Table 3. Summary of Zooarchaeological Data Included
in the Charlotte Harbor Study.


Number of Minimum
Identifiable Number of
Sample Fragments Individuals


Big Mound Key Layer 11
Vertebrates 8501 150
Invertebrates 4083 595

Big Mound Key Layer 8b
Vertebrates 8200 168
Invertebrates 5560 820

Big Mound Key Layer 7
Vertebrates 6000 98
Invertebrates 5832 1094

Big Mound Key Layer 2
Vertebrates 705 32
Invertebrates 4628 1564

Cash Mound A-l-4
Vertebrates 5953 246
Invertebrates 4864 1032

Cash Mound A-l-8
Vertebrates 2239 75
Invertebrates 5682 2821

Cash Mound A-1-17
Vertebrates 1995 69
Invertebrates 3112 1429

Cash Mound A-l-20
Vertebrates 2022 42
Invertebrates 4993 2531

Useppa Island A-4-2
Vertebrata 4937 208
Invertebrata 5685 895

Josslyn Island A-1-4 (1/2 vol.)
Vertebrata 9374 231
Invertebrata 5225 596











Table 3--continued.


Josslyn Island A-1-12
Vertebrata 14732 451
Invertebrata 13062 1021

Josslyn Island A-1-22
Vertebrata 6541 257
Invertebrata 6156 1209

Josslyn Island A-l-32
Vertebrata 13928 384
Invertebrata 7656 1110

Buck Key Shell Midden B-2-5
Vertebrata 11865 220
Invertebrata 5430 467

Buck Key Shell Midden B-2-9
Vertebrata 9793 153
Invertebrata 2809 241

Buck Key Shell Midden A-2-6/7
Vertebrata 3332 66
Invertebrata 5511 1476

Buck Key Shell Midden A-2-11
Vertebrata 1801 46
Invertebrata 4268 760


Total 206474 22557


Total


206474


22557











Table 4. Regression Values for Minimum Meat
Weight Estimations.

Taxon N Log Slope
a b r2


Mammaliaa 40 1.41 0.81 0.91
Aves' 39 1.24 0.84 0.98
Serpentes" 14 1.06 0.94 0.98
Testudines' 9 1.65 0.53 0.74
Siren spp." 15 2.50 0.52 0.82
Carcharhinidae (vertebra wt.)b 48 2.35 0.88 0.98
Carcharhinidae (total wt.)c 11 0.94 1.38 0.98
Sphyrnidae (vertebra wt.) 18 1.91 0.99 0.96
Sphyrnidae (total wt.)c 20 1.88 1.03 0.98
Lamniformes (vertebra wt.)b 68 2.27 0.89 0.95
Lamniformes (total wt.)c 80 2.27 0.93 0.96
Rajiformes (total wt.)" 12 2.61 0.89 0.95
Osteichthyesd 80 1.34 0.90 0.96
Crustacea (Callinectes)a 11 0.99 0.82 0.58
Strombus alatusc 26 -0.68 0.88 0.86
Polinices duplicatusc 16 0.38 0.55 0.81
Melongena corona 100 -0.43 0.88 0.79
Busycon contrariumc 100 -0.75 1.14 0.91
Fasciolaria hunteriac 21 -0.86 1.35 0.98
Fasciolaria tulipac 26 0.11 1.00 0.94
Pleuroploca giganteac 42 -0.71 1.15 0.99
Gastropodac 135 -0.16 0.92 0.89
Geukensia demissac 100 -0.22 0.80 0.86
Crassostrea virginica (left)c 100 -0.59 0.97 0.96
Crassostrea virginica (right)c100 -0.31 0.96 0.97
Crassostrea virginica (total)c100 -0.77 0.97 0.97
Polymesoda carolinianac 40 0.01 0.83 0.85
Mercenaria campechiensisc 30 -0.51 0.86 0.96
Bivalviac 80 0.02 0.68 0.83











Table 4--continued.


Note: Regression formula:


a Source:
b Source:
c Source:
d Source:


transformed log
where




Quitmyer 1985
Fitzgerald 1986
Hale et al. n.d
Hale and Walker


Y = aXb
Y = log a + b(log X)
y = weight of meat in grams
x = bone, shell, or exoskeleton
in grams
a = y intercept
b = slope



1986











Table 5. Regression Values for Maximum Meat
Weight Estimations.


Taxon N Log Slope r2
Measurement"
a b


Carcharhinidaeb
Sphyrnidaeb
Lamniformesb
Rajiformesc
Lepisosteus spp.c
Siluriformesc
Carangidaec
Sparidaec
Sciaenidaec
Pleuronectiformesc
Osteichthyesc
Strombus alatusd
Polinices duplicatusd

Melongena corona

Busycon contrariumd

Fasciolaria hunteriad

Fasciolaria tulipad

Pleuroploca gigantead
Gastropodad
Geukensia demissad
Crassostrea virginicad
Polymesoda carolinianad


Mercenaria campechiensi

Bivalviad


48 0.93
18 0.39
68 0.84
12 1.40
9 0.91
8 0.98
17 0.68
13 0.75
35 0.74
14 0.53
99 0.70
26 -5.09
16 -1.47
16 -2.97
100 -4.83
100 -3.98
100 -5.84
100 -5.40
21 -5.23
21 -5.29
26 -2.97
26 -1.15
42 -5.62
80 -3.19
100 -3.62
100 -3.80
40 -3.26
0d30 -4.02
30 -1.04
135 -2.16


2.55
2.80
2.57
2.26
2.57
1.80
2.83
2.73
2.34
2.95
2.57
3.10
1.57
2.47
3.10
2.94
3.43
3.30
3.27
3.71
2.24
1.60
3.31
2.31
2.30
2.21
2.68
2.80
2.12
1.80


0.93
0.96
0.91
0.83
0.96
0.86
0.98
0.98
0.93
0.97
0.98
0.83
0.80
0.86
0.83
0.85
0.92
0.93
0.96
0.96
0.89
0.79
0.99
0.94
0.87
0.90
0.90
0.94
0.93
0.72


Vertebra wd
Vertebra wd
Vertebra wd
Vertebra wd
Vertebra wd
Vertebra wd
Atlas wd
Atlas wd
Atlas wd
Atlas wd
Alas/vert. i
Shell ht
Shell ht
Aperture ht
Shell ht
Aperture ht
Shell ht
Aperture ht
Shell ht
Aperture ht
Shell ht
Aperture ht
Shell ht
Shell ht
Valve lg
Lt valve lg
Valve lg
Valve lg
Hinge wd
Valve lg









40

Table 5--continued.

Note: Regression formula:
Y = aXb
transformed log Y = log a + b(log X)
where Y = meat weight in grams
X = linear measurement (mm)
a = y intercept
b = slope
a Measurements follow those described and illustrated in
Quitmyer 1985 and Hale et al. n.d.
b Source: Fitzgerald 1986
c Source: Quitmyer 1985
d Source: Hale et al. n.d.












Table 6. Nonregression Values for Maximum Meat
Weight Estimations.


Taxon N Weight Estimate (gm)


Odocoileus virginianusa
Procyon lotorb
Sigmodon hispidusb
Cricetidaeb
Parulidaeb
Anatidaeb
Casmerodius albusb
Colubridaeb
Serpentesb
Chelydra serpentinab
Kinosternon spp.b
Terrapene carolinab
Pseudemys sp.c
Gopherus polyphemusb
Chelonidaeb
Testudinesb
Siren lacertinab
Rana spp.b
Lepisosteus spp.b
Bagre marinus"
Ariopsis felisb
Opsanus spp.b
Ogcocephalidaeb
Fundulus spp.b
Mycteroperca microlepisb
Carangidaeb
Lutjanus spp.b
Eucinostomus spp.b
Haemulon spp.1
A. probatocephalusb
Sciaenidaeb
Sparisoma spp.b
Sphyraenidae"
Sphyraenidae/Scombridae
Paralichthys albiguttab
Ostraciidaeb
Sphoeroides spengilerib
Chilomycterus schoepfib
Decapoda"
G. demissa granosissimab
Pinnidaeb
Other molluscad


1 or
1
9
1
1 or
4
30
58
1
1 or
1
1
3
8
42
1
2
13
9
26
4
2
1
1
1 or
1
6
1
1
1
1
17
31
1
4
1
3

1
30
1


23595.10(x)
14 comparative or 2164.22(x)
47.00
134.00(x)
6.80
7 comparative or 380.68(x)
461.98(x)
139.50(x)
145.40(x)
123.30
15 comparative or 89.06(x)
comparative var.
2268.00
1815.33(x)
19154.25(x)
631.31(x)
comparative var.
232.50(x)
957.13(x)
507.71(x)
199.90(x)
206.48(x)
179.50(X)
33.74


comparative
11 comparative or
comparative

comparative
comparative
comparative
comparative


comparative

comparative




comparative


var.
3180.07(x)
var.
29.82(x)
var.
var.
var.
var.
3884.71(X)
3901.38(x)
var.
74.33(x)
var.
184.37(x)
83.40(x)
2.15
23.73(x)
var.









42

Table 6--continued.


a Quitmyer 1985
b Florida Museum of Natural History Collections
c Nietschmann 1973:165
d Most other molluscan species required the comparative
method when fragmentation precluded measurements.






























Figure 1. Map of the Charlotte Harbor Study Area
with Geographical Features and Archaeological
Site Locations Mentioned in the Text: (1) Solana
Site; (2) Big Mound Key; (3) Cash Mound; (4) Useppa
Island; (5) Pineland; (6) Josslyn Island; (7) Buck Key
Shell Midden; and (8) Wightman Site.















































Q
I :

, Q


z


dOC4 GRANDE PASS
I


&,)NO PASS


S C A L E



0 10 KM


SOURCE FLORIDA ATLAS 8 GAZETEER



























Figure 2. The Distribution of Charlotte Harbor
Zooarchaeological Vertebrate Samples by Number of
Taxa and Minimum Number of Individuals (MNI).
Numbers Refer to the List Given in Table 2.










46

















40


.l 2 .1211
30- 03 01. 91.12oi

9
o,, 0l. .5 *13


0 *86
0 20


z
.8
0




0 100 200 300 400 500 600

Minimum Number of Individuals




























Figure 3. The Distribution of Charlotte Harbor
Zooarchaeological Invertebrate Samples by Number of
Taxa and Minimum Number of Individuals (MNI).
Numbers Refer to the List Given in Table 2.






















































) 1200 1600 2000 2400
Minimum Number of Individuals




























Figure 4. Comparative Percentages of Zooarchaeological
Estimated Minimum Edible Meat Weights by Site and
Animal Group (Based on Data Presented in Appendix A).





















Big Mound Key


Josslyn Island

.2:::::49:.


Cash Mound











Buck Key






3
.....T.....


Useppa Island


KEY
MI Bony fishes
RL: Marine snails
I !Sharks, rays,etc.
^ Marine bivalves
= Mammals
STurtles/Amphibians
E Crabs
-l Other




























Figure 5. Comparative Percentages of Zooarchaeological
Estimated Maximum Edible Meat Weights by Site and
Animal Group (Based on Data Presented in Appendix A).





















Big Mound Key


KEY
U3 Bony fishes
I3 Marine snails
El Sharks, rays, etc.
IMM Marine bivalves
iI Mammals
rl Turtles
j Amphibians
E Crabs
ii Birds


Cash Mound














CHAPTER 2

A SPATIAL PERSPECTIVE ON RESOURCE HETEROGENEITY

The Present-day Charlotte Harbor Estuarine Ecosystem

An examination of the present-day natural environment

of the Charlotte Harbor area, along with western society's

recent impact on that environment, is a necessary first step

toward understanding past situations. A spatial model of

today's environment serves as a beginning standard for

paleoenvironmental modeling.

In the Charlotte Harbor region, three major rivers,

extensive inshore lagoons, salt marshes, mangrove forests,

and a series of barrier islands compose a complex and

dynamic estuarine ecosystem of an unusually high level of

biological production (Taylor 1974:207). Comp and Seaman

(1985:337) generally define estuaries as "semi-enclosed

bodies of water that (1) have a free connection with the

sea, (2) receive freshwater inflow through both overland

runoff and defined sources such as rivers, creeks, and

springs, and (3) contain a measurable salinity gradient."

The Peace and Myakka rivers converge to form the Charlotte

Harbor estuary proper, while to the south, the

Caloosahatchee River empties into San Carlos Bay, forming

the second major estuary (Figure 1). To the west, barrier








54

islands "enclose" these bodies of water, thus defining the

greater estuarine system at a regional scale. The two major

openings to the Gulf are Boca Grande Pass and San Carlos

Bay; secondary inlets are Blind, Redfish, Captiva, and

Gasparilla Passes.

Terrestrial ecological communities in the region

include mangrove forest, salt marsh, coastal strand, salt

barren, sabal-juniper hammock, oak-persea hammock, and pine

woods (Taylor 1974:210). Of these, the mangrove community

is most closely associated with the estuarine complex.

Mangrove forests extend over 22,927 ha in the study

area and are largely structured by zones of red (Rhizophora

mangle), black (Avicennia germinans), and white

(Laguncularia racemosa) mangrove varieties (Harris et al.

1983:129; Taylor 1974:210). The salt-tolerant red mangrove

dominates the water's edge throughout the estuarine system.

As one moves inland, the black and white varieties become

mixed with buttonwood (Conocarpus erectus) and other plant

species (Odum et al. 1982:2). Mammals using mangrove

forests feed on fruits, berries, insects, small reptiles,

seeds, mast, crabs, grasses, fish, bird eggs, mussels, and

other mammals. The white-tailed deer is the only mammal

known to include mangrove leaves in its diet (Odum et al.

1982:143-144).

The mangrove fringe (primarily red) and inshore

seagrass (primarily turtle grasses) meadow are the two most








55

productive habitats in the estuarine complex. Of lesser

productivity are the oyster bar, the littoral zone, and the

open Gulf water. The distribution and interrelationships of

all these habitats and their animal components largely

define the ecological structure of the estuarine complex.

Mangrove and seagrass ecosystems are among the most

productive biological systems in the world, even rivaling

agriculture (Odum et al. 1982:19; Zieman 1982:1). These two

estuarine plant groups produce enormous amounts of

leaf/blade detritus, supporting extensive aquatic food webs.

In addition, they provide protection from predators for many

fish and invertebrate species, particularly while in their

juvenile stages. They are closely interrelated, the

seagrass areas often extending right up to mangrove

shorelines (Odum et al. 1982:50).

Seagrasses of the Charlotte Harbor area have not been

adequately studied (Estevez et al. 1984:S-22) even though

today they account for 23,682 ha (Harris et al. 1983:133).

Primarily occurring in broad shallow-water "meadows," turtle

grasses (Thalassia testudinum and Halophila engelmanni),

shoal grass (Halodule wrightii), widgeon grass (Ruppia

maritima), and manatee grass (Syringodium filiforme) are the

five common seagrass varieties (Taylor 1974:210; Zieman

1982:8). These have slightly different salinity

requirements, with the turtle grasses being the most

abundant and forming the most expansive meadows. These








56

meadows support great densities of sessile and migratory

molluscs, as well as fishes and crabs that spend all or part

of their life cycles there. In addition, large predator

species frequent the inshore grasses in search of food.

If the present-day environment of Charlotte Harbor is

to be used as an analogy for the interpretation of its past

environment, we must be aware of change resulting from

modern human activity. The widely cited loss of scallop

populations due to reduced salinities and increased

turbidity as a result of causeway construction is a familiar

example (Estevez et al. 1984:PM90-PM91). More important for

our purposes, 9,904 ha of seagrasses (29%) and 128 ha of

oyster bar communities (39%) have disappeared from the

region since 1945 (Haddad and Harris 1985:668; Haddad and

Hoffman 1986:175). Researchers (Haddad and Hoffman

1986:184; Harris et al. 1983:134) attribute the startling

losses to the combined effects of dredging for the

Intracoastal Waterway, construction of the Sanibel causeway,

channeling of the Caloosahatchee River, and upland

pollution. Finally, as early as 1884, the natural flow of

the Caloosahatchee River was changed when the waterway was

linked to Lake Okeechobee (Gunter and Hall 1965:4).

A modern reduction in habitats translates into a

reduction of biological productivity. Thus, acknowledgement

of the existence of a prehistoric biotic productivity that

was much greater than that of today (at least at certain








57

times) is critical to our understanding of that past

environment.

The Present-day Estuarine Gradient

The ecological concept of an environmental gradient

(King and Graham 1981:129) is useful when applied to

estuarine situations for the purpose of determining faunal

distribution and abundance (Boesch 1977; Wells 1961).

Analysis of the estuarine gradient involves the recognition

of different ecological zones or communities ranging from

fresh to oceanic water and the extent to which different

aquatic species inhabit these areas (Boesch 1977:245; Odum

et al. 1982:51, 57). The zones and their associated faunal

assemblages have no sharp boundaries in space. Rather, they

exist as a graded continuum at the regional scale. The

habitat categories nonetheless allow description, and thus

an operative understanding of the heterogeneous distribution

of fauna along the estuarine gradient.

Although numerous limiting factors are involved in

gradient distributions of estuarine fauna, average salinity

is prominent among them (Boesch 1977:246; Wells 1961:239)

and provides a useful organizational tool at one or more

effective scales. For example, the oyster bed or bar

community (i.e., oysters and all associate fauna) exhibits a

certain range along the estuarine (regional) gradient;

within that range (also a continuum, in reality), point

locations can be classified as low-, mid-, or high-salinity








58

oyster bars. The distribution of associate fauna will vary

according to the designation (Wells 1961).

Unfortunately, there is no published gradient study of

Charlotte Harbor aquatic biota. However, based upon what is

available for the area and comparative data from other

estuarine environments, an informal model of Charlotte

Harbor's modern distribution of aquatic vertebrate and

invertebrate fauna for archaeological purposes is attempted

here. Because mobility patterns of vertebrates and

invertebrates are dramatically different, these two groups

are described separately. The descriptions are not meant to

be comprehensive; instead they emphasize animals whose

remains are commonly found in prehistoric human middens.

Figure 6 illustrates monthly salinity profiles that

closely typify the salinity gradient of the northern project

area. These data are from Wang and Raney (1971:18) and

represent readings taken at four of their collection

stations (numbers 33, 29, 13, and 15), chosen to illustrate

the general gradient moving from near-freshwater (Peace

River) to oceanic (Boca Grande Pass) conditions. Salinity

readings for Pine Island Sound show variance depending on

proximity to Captiva Pass, Redfish Pass, or Blind Pass (Wang

and Raney 1971:18). Additionally, Alberts and his

colleagues (1969:1) report that the Gasparilla Sound and

Pine Island Sound waters maintain marine salinities ranging

from 28.5 to 32.8 ppt. Similarly, the San Carlos Bay area









59

generally ranges from 25.0 to 35.0 ppt (Gunter and Hall

1969:5).

Tidal stages and thus vertical stratification should be

considered for any given estuarine location because there

can be great salinity differences between ebb and flood

position, and bottom and top waters (Estevez et al.

1984:CH113-CH118). However, tides in the Charlotte Harbor

area are of a mixed diurnal and semi-diurnal type with an

average amplitude of only about 0.60 m (Estevez et al.

1984:CH96). The implication of such a microtidal pattern is

that daily fluctuations in salinity are minor compared to

most of the world's estuaries. This is advantageous for

gradient modeling at a scale useful to archaeologists. The

fact that most sites are associated with very shallow waters

(0.3 to 1.2 meters) further mediates vertical salinity

differences for the archaeologist.

Figure 6 exhibits a pattern of seasonal salinity

fluctuation for the 1968-1969 period. Based on rainfall

data for 1965 through 1969 (Joyner and Sutcliffe 1976, cited

in Estevez et al. 1984:CH17), the only departure from an

average yearly pattern is the heavy March rain, shown in

Figure 6 as lowered salinities at all four stations.

In addition, wind shifts can result in substantial

salinity fluctuations along the gradient for intervals of

hours up to days. Periodic deviations from the average

pattern, whether daily, seasonal, or of several years








60

duration, imply short- or medium-term alterations in faunal

distribution and/or productivity.

Distribution of Vertebrates

Literature concerning aquatic vertebrate communities

(primarily fishes) in mangrove environments is readily

available (e.g., Odumn et al. 1982) and several systematic

fish studies exist for Charlotte Harbor (see Estevez et al.

1984; Taylor 1974:213). In particular, Gunter and Hall

(1969) and Wang and Raney (1971) present a data base useful

for archaeological research.

To describe the distribution of vertebrates, four

mangrove/fish community designations are borrowed from Odum

et al. (1982:50-51) and a fifth classification is added to

complete the salinity gradient. These are: (1) mangrove

basin; (2) mangrove-fringed streams; (3) mangrove-fringed

estuarine bays and lagoons; (4) mangrove-fringed oceanic

bays and lagoons; and, (5) the littoral zone and Gulf

waters. Types 3 and 4 are associated with seagrass meadows.

Type 1 is a backwater area, largely of freshwater

content, supporting species such as killifishes (Family

Cyprinodontidae), the greater siren (Siren lacertina), frogs

(Rana spp.), and freshwater turtles. The area immediately

to the north of Big Mound Key (8CH10) is an example of a

mangrove basin (Figure 1). These areas are known generally

to exhibit low species diversity, but sometimes high

densities of fishes do occur (Odum et al. 1982:50).








61

Type 2 includes major tributaries (e.g., Myakka, Peace,

and Caloosahatchee rivers), small streams (e.g., Whidden

Creek, Alligator Creek), and associated pools. These

streams are tidal-influenced, have sparse grass beds, and

show seasonal variance in terms of salinity and, thus,

species composition (Odum et al. 1982:52; Wang and Raney

1971). During rainy months, such as March and July (see

Figure 6, Peace River line), freshwater fishes sometimes

move into the estuary. Examples include Florida gar

(Lepisosteus platyrhincos), sunfishes (Lepomis spp.),

freshwater catfishes (Family Ictaluridae), and the

largemouth bass (Micropterus salmoides) (Estevez et al.

1984:PR342-PR354; Gunter and Hall 1969:20, 23, 31).

Conversely, marine predatory fishes such as needlefishes

(Family Belonidae), jacks (Family Carangidae), and stingrays

(Family Dasyatidae) invade the tidal streams in search of

food during dry periods (Odum et al. 1982:52). Fishes such

as the black mullet (Mugil cephalus), gray snapper (Lutjanus

griseus), sheepshead (Archosargus probatocephaIus), spotted

seatrout (Cynoscion nebulosus), red drum or "redfish"

(Sciaenops ocellatus), and silver perch (Bairdiella

chrysoura) use tidal streams and pools only as juveniles

(Gunter and Hall 1969; Odum et al. 1982:52). Most of these

species are represented in Charlotte Harbor's streams during

some part of the year (Wang and Raney 1971).








62

Environment Types 3 and 4 combine extensive mangrove

shorelines and seagrass meadows. The relationship between

these two habitats in terms of faunal use is unclear (Zieman

1982:75), perhaps due to the proximity of the two. Types 3

and 4 range higher in salinity than 1 and 2 (see Figure 6,

Charlotte Harbor and Bokeelia lines), exhibit coarser,

sandier sediments, and support a greater abundance and

diversity of fish assemblages.

In the Charlotte Harbor system, examples of Type 3,

estuarine bays and lagoons, are Turtle Bay, Bull Bay,

Matlacha Pass, and the eastern part of Pine Island Sound.

The oceanic bays, Type 4, tend to have the clearest water,

the highest salinities of inshore waters, and perhaps the

highest species diversity. Examples include San Carlos Bay,

Gasparilla Sound, and the inshore lagoons of Pine Island

Sound behind Blind, Redfish, and Captiva Passes. Because of

the configuration of the Charlotte Harbor system, it is

difficult to separate the species of Types 3 and 4 and so I

describe them as one unit.

Species such as pipefishes and seahorses (Family

Syngnathidae), gobies (Gobiidae), and the inshore lizard

fish (Synodus foetens) spend their entire life cycles within

the grassbeds. A second group of fishes largely uses the

meadows as a nursery ground, spending their juvenile life

stages in the nurturing grass habitat. Spotted seatrout,

spot (Leiostomus xanthurus), silver perch, red drum, pigfish








63

(Orthopristis chrysoptera), pinfish (Lagodon rhomboides),

sheepshead, and gag grouper (Mycteroperca microlepis) are

all common to abundant fishes among the grassbeds (Zieman

1982:50). Adults commonly inhabit the mangrove fringe. In

addition, anchovies are known to concentrate in seagrasses,

especially while juveniles (Carr and Adams 1973:515).

Wang and Raney (1971:22-23; 24) report that three

species of anchovy (Anchoa mitchilli, Anchoa hepsetus, and

Anchoa cubana) and the hardhead catfish (Ariopsis fells)

frequent grass flats but are abundant in all parts of the

Charlotte Harbor system. Pinfish, although densely

associated with seagrasses in juvenile and adult forms, have

a variable habitat distribution (Darcy 1985:3-6). Mullet

aggregate on a seasonal basis in grass areas, feeding

directly on grass blades (Zieman 1982:64) among other plant

and animal materials. Larger, predatory fishes such as

sharks (Lamniformes), barracudas (Family Sphyraenidae), and

jacks occasionally migrate inshore to feed in the

mangrove/grass bays.

Type 5 includes littoral zones of the barrier islands

(e.g., Sanibel, Captiva, Cayo Costa, and Gasparilla),

oceanic passes (e.g., Gasparilla, Boca Grande, Captiva,

Redfish, Blind), and open Gulf waters. Most fishes that are

primarily associated with these areas also frequent the

oceanic and estuarine bays. Examples are numerous sharks

(Hoese and Moore 1977:107-116; Larson 1980:81-95), jewfish








64

(Epinephelus itajara), sawfish (Pristis spp.), Florida

pompano (Trachinotus carolinus), large jacks, Spanish

mackerel (Scomberomorus maculatus), barracuda, and whiting

(Menticirrhus spp.) (Hoese and Moore 1977; Wang and Raney

1971).

Distribution of Invertebrates

Little systematic survey of aquatic invertebrates has

been undertaken in the Charlotte Harbor study area (see

Virnstein 1987:Figure 1). Based on comparative literature

and my own field observations, five zones were chosen to

examine invertebrates (primarily molluscs) along the

salinity gradient. These are (1) tidal stream; (2)

estuarine mangrove edge; (3) oyster bed; (4) seagrass

meadow; and, (5) littoral/Gulf. The classifications are

largely related to the limited mobility of aquatic molluscs.

As with the vertebrate categories, all types overlap,

creating a continuum of distribution.

Few marine invertebrates are known to venture far into

the tidal streams (Wells 1961:262) and these are highly

mobile animals that spend a small percentage of their life

cycle there. The blue crab (Callinectes sapidus), for

instance, travels upstream to the tidal-influenced marshes

where mating occurs, and returns to the estuarine bays and

later to the Gulf (Durako et al. 1985:250-251). Beds of the

marsh clam, Rangia cuneata, are associated with the Myakka

and Peace rivers (Woodburn 1965:6), as well as the








65

Caloosahatchee (Gunter and Hall 1969:63-64). Other than the

blue crab, the marsh clam, and mangrove prop root/mud flat

communities of small gastropods and bivalves, little is

known about invertebrates in upper tidal streams (Estevez et

al. 1984:CH160-CH163).

Type 2, for present purposes, is limited to areas of

the mangrove-fringed lower tidal streams and estuarine

locations. Molluscs commonly associated with mangrove prop

roots and adjacent intertidal muds include the eastern

oyster (Crassostrea virginica), Atlantic ribbed mussel

(Geukensia demissa granosissima), eastern white

slipper-shell (Crepidula plana), Gulf oyster drill

(Urosalpinx perrugata), scorched mussel (Brachidontes

exustus), worm-shell (Turritella spp.), crown conch

(Melongena corona), semiplicate dove-shell (Anachis

semiplicata), Atlantic bubble (Bulla striata), broad-ribbed

cardita (Carditamera floridana), coffee melampus (Melampus

coffeus), and several ceriths (Cerithium spp.) (Abbott 1974;

Odum et al. 1982:48-49). The mangrove tree crab (Aratus

pisonii) is an abundant resident.

Oyster bed communities (Type 3) are important and

frequent features in some parts of the Charlotte Harbor

estuarine system (Woodburn 1965). Turtle Bay, Bull Bay,

Matlacha Pass, and San Carlos Bay are examples of such

areas. The eastern oyster is well adapted to estuarine

situations, tolerating constant salinity fluctuations









66

(Butler 1954:479). It is most productive in mid- to

low-salinity estuarine waters because predators, such as

oyster drills (Urosalpinx spp.) and odostomes (e.g., Boonea

impressa), require somewhat saltier waters (Wells 1961:239,

249-250).

Oyster bars support a large variety of fauna in and

among both live and dead shells by providing a hard and

protective substrate as well as a food resource. Community

profiles constructed in a North Carolina study by Wells

(1961:252) demonstrate varying species composition and a

decrease in diversity as one approaches fresh water. In

southwest Florida, the common crown conch is abundantly

associated with oyster bars. Experiments have shown that

this animal prefers salinities of 20 ppt and above but

tolerates 15.2 to 12.8 ppt for short periods (Hathaway and

Woodburn 1961:49). Other common organisms of the bar

community are the crested oyster (Ostrea equestris),

barnacles (Balanus spp.), scorched mussel, odostomes, boring

sponges (Cliona spp.), oyster drills, common jingle shell

(Anomia simplex), and slipper shells (Crepidula spp.)

(Butler 1954:486; Wells 1961:249-250; Southwest Florida

Project field observations). Migratory predators other than

the crown conch include whelks (Busycon spp.), black drum

(Pogonias cromis), stingrays, and blue crabs (Butler

1954:486; Carriker 1951; Galtsoff 1964:435, 439).








67

Shallow-water seagrass meadows, the fourth type,

provide extensive habitat areas for numerous mobile and

sessile molluscs. The abundance of invertebrates surpasses

even the fishes in areas of heavy shoal and turtle grasses

(Zieman 1982:49). Common gastropods include the lightning

whelk (Busycon contrarium), Say's pear whelk (Busycon

spiratum pyruloides), true tulip (Fasciolaria tulipa),

Florida horse conch (Pleuroploca gigantea), crown conch

(especially juveniles), fly-specked cerith (Cerithium

muscarum), dove shells (Anachis spp.), Atlantic modulus

(Modulus modulus), and lunar dove-shell (Mitrella lunata).

Bivalves such as southern quahog clam (Mercenaria

campechiensis), rigid pen shell (Atrina rigida), and

cross-barred venus are often embedded in large numbers in

the grass bottoms. Other organisms include pink shrimp

(Penaeus duorarum), corals (e.g., Manicimia areolata,

Porites furcata), hermit crabs (Pagurus spp.), and sea

urchins (e.g., Lytechinus variegatus, Tripneustes

ventricosus) (Zieman 1982:45-49). Although no studies are

known, it is presumed that seagrass invertebrate composition

varies along the salinity gradient in much the same manner

as the oyster bed community.

A number of species of invertebrates appear to be

restricted to the beach zone and Gulf waters. Others,

although preferring habitats in these areas, are also found

in the oceanic and estuarine bays. These two groups








68

comprise the fifth invertebrate category. Representative

animals include sunray venus (Macrocallista nimbosa),

southern surf clam (Spisula solidissima similis), stone crab

(Menippe mercenaria), sand dollars (Family Scutellidae), and

many small gastropods and bivalves (Abbott 1974; Wang and

Raney 1971:21).

It is emphasized that the foregoing vertebrate and

invertebrate divisions can usefully illustrate rough

segments of the salinity gradient. In reality, no species

restricts itself to these artificial types. Nonetheless,

the types allow an operable description of the continuum.

Future biological studies in Charlotte Harbor will improve

this brief descriptive distribution model.

Inferred Local Distribution of Resources in Prehistory

That present-day Charlotte Harbor is heterogeneous has

been established and its spatial variability conceptualized

in terms of abstract habitat categories. However, this

model cannot be projected directly into the past without

independent confirmation. If one assumes that the

prehistoric people targeted resources near their habitations

and that faunal evidence found at a site represents animals

processed or consumed at that site, then zooarchaeological

data can be used to test whether the spatial variability of

the present was also characteristic of the past.

Seventeen samples of archaeological fauna from five

sites Big Mound Key, Cash Mound, Useppa Island, Josslyn









69

Island, and Buck Key Shell Midden (Figure 1) were selected

for zooarchaeological study. The sites are located in

various parts of the greater Charlotte Harbor estuarine

system representing the area of greatest site density and

therefore do not cover the entire range of local

environmental settings. Valuable additions, for example,

would be faunal assemblages from sites located in Estero Bay

and at the mouths of and along the Caloosahatchee, Peace,

and Myakka rivers.

For modeling purposes, it is assumed that the samples

generally are from primary deposits and that they are

representative of site middens. The lack of intrasite

horizontal sampling need not be viewed as debilitating to a

study that serves as a regional baseline, one that is

subject to continual modification with each addition of new

data.

Composite site data (i.e., combined level data within a

site, thus combining time periods), with the exception of

Useppa Island, provide the basis for zooarchaeological

spatial interpretation. The composite data sets are

presented in the text only in summarized form. However,

they are generated from raw data, all of which are presented

in Appendix A. Composite data for Big Mound Key, Cash

Mound, and Josslyn Island consist of four levels each. The

Useppa fauna is from only one level, A-4-2. The Buck Key

composite includes two Test B levels, B-2-5 and B-2-9.








70

Each present-day local setting of the five

archaeological sites is described below in concert with

summarized results of zooarchaeological analyses. It is

assumed that archaeofaunal data (Appendix A) represent the

faunal exploitation by prehistoric human occupants of each

site. For composite data sets, then, these

zooarchaeological data can be translated into inferred local

distribution of resources, summarized in Figure 7. The data

for Useppa are only tentatively offered as representative of

that site due to the availability of only one sample.

Big Mound Key. 8CH10

Big Mound Key today is situated at the mouth of Whidden

Creek, a stream that drains parts of the Cape Haze wetlands

(Figure 1). Patches of shallow seagrass (0.3 to 0.9 m depth

at mean low tide) occur among small mangrove islands to the

south and west in Gasparilla Sound. Oysters concentrate

around the many small mangrove islands in the sound and

adjacent bays (Woodburn 1965:24-25). Directly north of the

site is Boggess Hole, a large estuarine "pond." Farther

west are the barrier islands, Gasparilla and Little

Gasparilla, separated from each other by the shallow (0.3 m

deep at mean low water) Gasparilla Pass.

Fauna from each of these areas are represented in the

Big Mound Key archaeological samples (Appendix A, Tables A-l

through A-4; Figure 7). Cotton rat, raccoon, white-tailed

deer, and box turtle are all common to mangrove forests and








71

palmetto/pine forests. The presence of the greater siren,

snapping turtle (Chelydra serpentina), mud turtle

(Kinosternon spp.), and frogs suggests exploitation of a

freshwater environment. The ribbed mussel is the primary

mangrove edge mollusc, representing 15% of total Minimum

Number of Individuals (MNI) (Figure 7). These bivalves are

found today imbedded in swampy areas of black mangrove such

as on the western side of Big Mound Key. The

mangrove/seagrass habitat category is represented by 36% MNI

(Figure 7), largely consisting of three fishes pinfishh;

toadfish, Opsanus spp.; and killifish) and a host of

invertebrates (Tables A-l through A-4). Unlike other site

archaeofaunas, Big Mound Key contains a significant number

of the shark eye snail, Polinices duplicatus. The oyster

bed community contributes approximately 34% of the sample

(Figure 7). Finally, several vertebrate and invertebrate

species preferring oceanic waters (11%) are included in the

assemblage.

Cash Mound. 8CH38

Cash Mound is situated in Turtle Bay (Figure 1), an

area with water depths of 0.6 to 1.8 m at mean low tide and

rich in productive oyster beds (Woodburn 1965:23-24).

Seagrasses occur in the immediate vicinity and freshwater

marshes exist inland to the north.

The only terrestrial fauna recorded in the

archaeological samples (Tables A-5 through A-8) is raccoon









72

and an unidentified large mammal (presumably deer). The

oyster bed community constitutes 38% of the sample (Figure

7). Ribbed mussels, probably collected from intertidal

mangrove swamps, follow with 36%. Other mangrove edge

invertebrates occur, but in small numbers.

Hardhead catfish and pinfish, both common to

mangrove/seagrass areas, are the only fishes that occur in

abundance in the samples. The mangrove/seagrass habitat is

represented by only 9% MNI (Figure 7) of the faunal samples.

Cash Mound's faunal assemblage reflects a limited

exploitation strategy compared to the other four study

sites.

Useppa Island. 8LL51

Estuarine waters surrounding Useppa Island today vary

from 0.3 to 3.9 m deep at mean low tide. The area is

influenced to some degree by Boca Grande Pass (10 m at mean

low tide) but more by Captiva Pass (5.7 m at mean low tide)

due to the northward movement of currents in Pine Island

Sound (Figure 1). Seagrass and oyster habitats in the

vicinity have decreased in area due to modern human impact,

particularly the dredging of the Intracoastal Waterway.

Mangrove/seagrass and oyster habitats were heavily

exploited by Useppa's inhabitants of ca. 570 B.C. (Figure

7). The five most abundant fishes in the sample are

hardhead catfish, pinfish, pigfish, spotted seatrout, and

striped burrfish (Chilomycterus schoepfi), all common to the









73

mangrove/seagrass habitat (Table A-9). Oysters and their

associates are prominently represented with 46% MNI (Figure

7). The cross-barred venus is present in high numbers

compared to other site samples (Table A-9). The cotton rat,

white-tailed deer, and gopher tortoise also are present in

the archaeological sample.

Josslyn Island. 8LL32

Josslyn Island is located a short distance west of Pine

Island (Figure 1) and is surrounded by extensive and

extremely shallow beds of seagrass. Water depths are 0.3 to

0.6 m at mean low tide in all directions. This situation is

reflected in the faunal samples (Tables A-10 through A-13),

as these mangrove-fringed grass meadows are represented by

68% of the total MNI (Figure 7). Nine fishes are abundant

(more than 20 MNI). The top four fishes are pinfish,

pigfish, silver perch, and hardhead catfish. Josslyn

exhibits the greatest invertebrate diversity of all the

sites (composite total of 67 taxa). These results attest to

the high productivity of the seagrass habitat (Zieman

1982:49).

Although oysters and their associates comprise 19% of

the samples (Figure 7), today only one small oyster

community is observed in the Josslyn environs. Aquatic

birds such as red-breasted merganser (Mergus serrator), bay

ducks (Aythya spp.), and other ducks (Family Anatidae) favor

shallow seagrass meadows and also appear in the midden









74

fauna. Terrestrial areas such as mangrove forests,

marshlands, and palmetto/pine flatlands are represented by

the cotton rat, raccoon, white-tailed deer, warbler, box

turtle, and skink.

Buck Key Shell Midden. 8LL722

Buck Key is located to the east of and adjacent to

Captiva Island (Figure 1). Buck Key Shell Midden is on the

eastern shore of the island. Of the five study sites, it is

the one closest to the open Gulf, the southern portion of

the island presently bordering shallow Blind Pass (0.0 m at

mean low tide). Surrounding the island, water depths vary

from 0.1 to 2.1 m at mean low tide, and seagrass meadows lie

to the east and north. Also to the north are the deeper

ocean-influenced waters of Redfish Pass (2.1 to 10.0 m at

mean low tide).

Mangrove/seagrass fauna are predominant (62%) in the

archaeological samples (Tables A-14 through A-17; Figure 7).

The littoral/Gulf areas follow with 17% (Figure 7).

Hardhead catfish, sheepshead, silver perch, pinfish, and

striped burrfish, all common seagrass fishes, are abundant

in the midden samples. A random sample of Buck Key fish

vertebrae, relative to samples from Cash Mound and Josslyn

Island (Figure 8), reflects the proximity of Buck Key to an

ocean inlet during prehistoric occupation. There is broad

overlap in the three samples, however, a larger proportion

of the Buck Key measurements are over 3.5 mm. Because of








75

the geographic constriction of inlet waters, tidal cycling,

and daily movements of fish, the density of larger,

predatory fishes is greater at inlet locations.

Whelks, conchs, and tulips are abundant. Fishes and

molluscs with high-salinity preferences identified from the

midden include a host of sharks, gag grouper, red snapper

(Lutjanus campechanus), sea robin (Prionotus spp.),

barracuda, whiting, lettered olive (Oliva sayana), tellin

(Tellina spp.), coquina (Donax variabilis), stone crab, and

southern surf clam. Stone crabs favor the estuarine side of

oceanic passes as well as Gulf waters. Productive oyster

beds are not known in the immediate area today but small,

scattered beds have been noted on the east side of Buck Key

close to the mangrove shoreline.

Inferred Regional Distribution of Resources in Prehistory

Just as the present-day estuarine faunal distribution

can be modeled in terms of a gradient, so can the

heterogeneity observed in the zooarchaeological assemblages

described above. Establishing such a "zooarchaeological

gradient" involves two procedures. First, complete lists of

aquatic vertebrates (Appendix B, Table B-l) and

invertebrates (Table B-2) represented in the archaeofaunal

assemblages of Appendix A are compiled. The species are

then roughly seriated by their known preference for the

established habitat categories so that the listings in








76

Appendix B follow a salinity progression, or gradient, from

freshwater to oceanic water.

It is stressed again that the gradient concept treats

faunal distribution as a continuum in that it recognizes

great overlap in use of a variety of habitats by aquatic

fauna. An appropriate system of graphic symbols

representing known "preference" illustrates this point

(Appendix B). For example, sharks are depicted as generally

occurring in the inshore mangrove/seagrass habitats

("estuarine and oceanic mangrove" areas) as well as on the

Gulf shelf, but "prefer" the latter environment (Table B-l).

Figure 9 is a schematic illustration of the gradient

distribution based on the procedure just discussed and

presented (in detail) in Appendix B. The pattern is

informative. It clearly indicates (by the great overlap in

bars) that the estuarine and oceanic vertebrates

(predominantly fishes) represented by zooarchaeological

remains are highly mobile compared to the invertebrate fauna

(predominantly molluscs). The high mobility of fishes is

due to numerous factors including their free-swimming

nature, life-cycle behavior, daily salinity tolerances, and

feeding habits (Comp and Seaman 1985:359; Day et al.

1989:400-417; Lewis et al. 1985:307-309). Invertebrate

remains, as suggested by Figure 9, are even more

environmentally informative than fish because the animals








77

generally are not as mobile and often are restricted to very

specific salinity ranges along the gradient.

The second procedure of the gradient analysis presents

a zooarchaeological species distribution by site and

abundance. Appropriate symbols are used for variation in

abundance based on MNI (Appendix B). For this exercise

only, adjustments were made to the Useppa MNI (representing

only one column level as opposed to four levels for other

sites) to make them more comparable to the other site MNI

counts. The site distributions are illustrated along with

the habitat preference seriation (discussed above) for the

vertebrates (Table B-l) and the invertebrates (Table B-2).

From resulting site patterns it can be inferred from

the species distribution that all five study sites were

primarily associated with mangrove-fringed estuarine and

oceanic bay (including seagrass meadows) environments.

However, within this generalized pattern, intersite

differences based on habitat proximity (e.g., of marshes and

ocean inlets) and abundance (e.g., of seagrass meadow) can

be detected in the distribution patterns.

For example, some Big Mound Key fauna appear at the

low-salinity end of the gradient (see Table B-l), perhaps

due to the proximity of Cape Haze's freshwater marshes

rather than a riverine situation. This site sample also

contains fauna that suggest a high-salinity range and high

fish diversity (thirty-one species from the four samples),









78

reflecting the proximity of Gasparilla Pass (Figure 1; see

Wang and Raney 1971:54). The Cash Mound sample reflects a

setting of low- to mid-salinity based on the high level of

oyster exploitation and low diversity of fishes

(twenty-three species from the four samples).

Useppa and Josslyn islands fall into the mid- to

high-salinity range, with decreasing oyster beds and

increasing densities of seagrass meadow (Appendix B). These

site midden samples, particularly those of Josslyn, produced

the greatest abundance of seagrass fishes. A total of

thirty-one fish species was identified from the four Josslyn

samples.

The Buck Key faunal remains indicate the highest MNI of

animals from littoral/Gulf areas, placing Buck Key nearest

the high-salinity end of the estuarine scale. The

prehistoric ecological setting for Buck Key may have been

similar to the oceanic bay situation of Odum and colleagues

(1982:56), supporting a greater diversity of fishes than do

other environments. Of the five study sites, indeed, the

Buck Key faunal remains (B-2-5, Table A-14) produced the

highest number of taxa for both vertebrate (37) and

invertebrate (49) groups for any single sample. Looking at

Buck Key's four samples as a unit, a total of 40 fish

species was identified.

As a descriptive tool, a gradient analysis breaks down

a complex environment such as Charlotte Harbor into









79

understandable segments that archaeologists can relate to

prehistoric human adaptation. Salinity, used here roughly

to define those segments for Charlotte Harbor, is of course

only one of many variables determining faunal distribution

along an estuarine gradient. It is, however, perhaps the

most appropriate analytic factor for archaeological work

because for any given point location, the salinity regime is

reflected in zooarchaeological assemblages (particularly

true of molluscan remains).






























Figure 6. Monthly Salinity Profiles of Four Aquatic

Locations in the Northern Part of the Charlotte Harbor

Estuarine Complex Illustrating the Fresh to Salt Water

Gradient (Data are after Wang and Raney 1971:18).












































t */\.,, ./*
// \../
\ /i


\. /


/"'. /"


o.... ............... ....


./-- ." \ / '
/ \/"
/ \ .i
.\ /
\/






-- Boca Grande Pass
-- Bokeelia
........... Charlotte Harbor
..-. Peace River


JUN JU AU SE OC NO DE JA FE MA APMA


401 1--


30




20
0
0
~._ 20

C,
10



10


I I I I I


I I


I I


u JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY































Figure 7. Comparative Percentages of Zooarchaeological

MNI by Site Representing Exploited Habitats (Based

on Data Presented in Appendix A).












83









'4N






CAPE HAZE K
^ PENINSULA






C, (


Big Mound Key ,
-- r 0 e


" ; / ^

S CHA
BOCA GRANDE PASS
Cash Mound S I
38









~"r "'" ":; -'5^
C,





IVA
05










199 vD. S$ bl
6(z

Usoppa Island 6 \S ^ 6 r
















//' "'X ^



S%0' 7-,
49 a~REFS. PASS C

Josslyn Island aU
497-




S~0~UCK








S C A L E


1 Mangrove/Seagrass Oyster Bed
Barnacle I Litloral/Gulf


0 I o .


MN


34


Mangrove Edge
Other


































Figure 8. Thoracic Vertebrae Widths of Bony Fishes as an

Indicator of Overall Fish Size for Cash Mound, Josslyn

Island, and Buck Key.








85
















20- CASH MOUND
: i ll~lllllll .. .. .._________
10.

20- JOSSLYN ISLAND

00 . IIlJ.,III I ui... .. ._.. I
10 -


20- BUCK KEY
10:
ollI m.
0[ .l.lI III II IIIII. .... -- .... .. ..-..
1 2 3 4 5 6 7 8
FISH VERTEBRA WIDTH (mm)




Full Text
114
beds (due to invasion of high-salinity predators). The
procurement emphasis at 570 B.C. was on established eastern
oysters and lagoonal fishes (e.g., pinfish, catfish) (Figure
7; Table A-9). Thus, there is the suggestion of an average
salinity slightly lower than that of today for 570 B.C.
Useppa Island. The overall rarity of invertebrates
requiring high salinities and large predatory fishes in
Useppa's 570 B.C. sample (Table A-9; Appendix B) supports
the mid-salinity inference.
At the long-term scale, sea level fluctuation and inlet
dynamics have the greatest bearing on Useppa's
paleoenvironment. One hypothesis that would account for the
570 B.C. lower salinity is a slightly lower mean sea level
than that of the present. Both Stapor et al. (1991;Figure
14) and Tanner (1991) document a small drop (.3 to .9 m, or
1 to 3 ft) in sea level during this time. Shifting inlet
locations associated with the southern half of Cayo Costa,
however, might also explain the mid-salinity waters.
There is no suggestion in the faunal remains that
Useppa's local environment was influenced significantly by
an adjacent inlet. Herwitz's (1977) Platt Pass must not
have existed during this particular occupation period of
Useppa Island because if open it would have allowed
high-salinity waters into the Useppa locale. If the
estimate of Stapor et al. (1991:827) is correct, Captiva
Pass did not exist at this time either, further restricting


165
dependent on the other two factors, intraregional site
location and magnitude of fluctuation. Cash Mound's
location and time period of deposits make it ideally suited
to the detection of a sea-level change that surely affected
exploitation patterns of the entire region.
During a high sea-level stand as hypothesized by Stapor
et al. (1987, 1991) and Tanner (1991) for the period 50 B.C.
to A.D. 450, estuarine fauna would have altered their
distribution patterns, in turn altering human patterns of
their exploitation. The subsequent drop to below present
levels for the period of A.D. 450 to ca. A.D. 800 would
again alter the patterns put into place by the previous high
stand of water. One can visualize it as a basin where the
saline wedge moves west to east, then east to west while the
waters rise, inundating the immediate shorelines, then later
recede, exposing "new" intertidal flats. Signature midden
fauna are those whose behavior is sensitive to salinity,
water depth, and in some cases food supply.
Fishing. Gathering, and Hunting Technology
The collections of subsistence artifacts are small, and
therfore discussion of technology is restricted to general
(regional) statements until archaeologists increase these
samples. Nonetheless, the spatial and temporal analyses of
my study allow formulation of hypotheses concerning
interregional and intraregional variation. These are
offered in the next section.


37
Table 4. Regression Values for Minimum Meat
Weight Estimations.
Taxon
N
Log
a
Slope
b
r2
Mammalia8
40
1.41
0.81
0.91
Aves8
39
1.24
0.84
0.98
Serpentes8
14
1.06
0.94
0.98
Testudines8
9
1.65
0.53
0.74
Siren spp.8
15
2.50
0.52
0.82
Carcharhinidae (vertebra wt.)
b 48
2.35
0.88
0.98
Carcharhinidae (total wt.)c
11
0.94
1.38
0.98
Sphyrnidae (vertebra wt.)b
18
1.91
0.99
0.96
Sphyrnidae (total wt.)c
20
1.88
1.03
0.98
Lamniformes (vertebra wt.)b
68
2.27
0.89
0.95
Lamniformes (total wt.)c
80
2.27
0.93
0.96
Rajiformes (total wt.)8
12
2.61
0.89
0.95
Osteichthyesd
80
1.34
0.90
0.96
Crustacea (Callinectes)8
11
0.99
0.82
0.58
Strombus alatusc
26
-0.68
0.88
0.86
Polinices duplicatusc
16
0.38
0.55
0.81
Melongena coronac
100
-0.43
0.88
0.79
Busycon contrariumc
100
-0.75
1.14
0.91
Fasciolaria hunteriac
21
-0.86
1.35
0.98
Fasciolaria tulipac
26
0.11
1.00
0.94
Pleuroploca giganteac
42
-0.71
1.15
0.99
Gastropodac
135
-0.16
0.92
0.89
Geukensia demissac
100
-0.22
0.80
0.86
Crassostrea virginica (left)c
100
-0.59
0.97
0.96
Crassostrea virginica (right)
c100
-0.31
0.96
0.97
Crassostrea virginica (total)
c100
-0.77
0.97
0.97
Polymesoda carolinianac
40
0.01
0.83
0.85
Mercenaria campechiensisc
30
-0.51
0.86
0.96
Bivalviac
80
0.02
0.68
0.83


FREQUENCY
85
FISH VERTEBRA WIDTH (mm)


154
1986; Luer et al. 1986). On a more specific scale, one
stratum, 8b, contains a large number (107 MNI) of shark eye
or moon snails (Table A-2), and one stratum, 11, contains
the only abundance (57 MNI) of scallops (Table A-l). These
infrequent abundances may be due to the behavior of the
animals. Layer 8b contains a fused radiale and proximal
cntrale bone of what was probably a large Atlantic green
sea turtle (cf. Chelonia mydas mydas), estimated to have
weighed close to 270 kg (600 lbs) and to have had a carapace
length of 131 cm (4.25 feet). This animal alone accounts
for 40% of the estimated maximum meat weight for this
sample. Green sea turtles could have been easily procured
when nesting on beaches in May and June and have been known
to enter estuarine waters.
The patterns observed in the Big Mound Key materials
indicate that both high and low salinity areas of the
estuarine gradient were exploited (Appendix B). This is
corresponds with the site's present-day location (Figure 1)
near both marine and freshwater habitats. The emphasis,
however, is on marine fauna. Overall, the archaeofauna of
the Big Mound Key samples suggests that the A.D. 860-880
environment of the surrounding area was similar to today's,
including the presence of an inlet such as Gasparilla Pass.
Cash Mound. 8CH38
Radiocarbon dates for the lower three samples (A-l-20,
A-l-17, and A-l-8) at Cash Mound overlap in time, A.D. 150


149
Food MNI%
Minimum Meat Weight %
Mam Bir Tur Amp S+R Fish Cra Sna Biv
Maximum Meat Weight X
70 -
60 -
50 -
40 -
30 -
20 .
to -
TI -m I
1-43, -rfl
Mam
Bir Tur Amp
S+R
Fish Cra
Key
Mam
Bir
Mammals
Birds
m
Layer 11
Tur
Turtles
i i
Layer 8b
Amp
Amphibians
S+R
Sharks, rays.etc.

Fish
Bony Fishes
Layer 7
Cra
Crabs
Sna
Marine Snails
EH
Layer 2
Biv
Marine Bivalves
Mam Bir Tur Amp S+R Fish Cra Sna Biv


Table B-2. Aquatic Invertebrates by Archaeological Site and Modern Habitat.
Taxon
Common Name
B. Mound
Key 8CH10
Cash
8CH38
Polymesoda martima
(Florida marsh clam)


Geukensia demissa granosissima
(Atlantic ribbed mussel)


Bal anus spp.
(barnacle)


Polymesoda caroliniana
(Carolina marsh clam)
Melampus coffeus
(coffee melampus)

Cerithidea scalariformis
(ladder horn shell)

Enhilara minima
(false cerith)

Spiroglyphus irregularis
(irregular worm shell)
Decapoda
(crabs)

Urosalpinx tampaensis
(Tampa drill)

Diodora cayenensis
(Cayenne keyhole limpet)

Diodorinae
(keyhole limpets)
Callinectes spp.
(blue crabs, Gulf crab, etc.)


Nassanus spp.
(nassa)
Nassarius vibex
(common eastern nassa)


Urosalpinx perrugata
(Gulf oyster drill)


Brachidontes spp.
(mussel)


Crassostrea virginica
(eastern oyster)


Brachidontes exustus
(scorched mussel)

Ostrea equestris
(crested oyster)


Odostomia impressa
(impressed odostome)

Melongena corona
(common crown conch)


Cantharus multangulus
(false drill)
Carditamera floridana
(broad-ribbed cardita)


Crepidula plana
(eastern white slipper shell)


Turritelidae/V ermetidae
(worm-shells)


Busycon contrarium
(lightning whelk)


Anachis semiplicata
(semplicate dove-shell)

Bulla striata
(common Atlantic bubble)
Urosalpinx cinerea
(Atlantic oyster drill)
Crepidula aculeata
(thorny slipper-shell)

Fasciolaria hunteria
(banded tulip)


Phyllonotus pomum
(apple murex)

Vermicularia spp.
(worm-shell)
Fasciolar ia tulipa
(true tulip)

Fasciolar ia spp.
(tulip shell)


Anomia simplex
(common jingle shell)

Olivella pusilla
(verysmall dwarf olive)
Eupleura sulcidentata
(sharp-ribbed drill)
Eupleura spp.
(drill)
Strombus alatus
(Florida fighting conch)

Busycon spiratum py rulo ides
(Say's pear whelk)


Polinices duplicatus
(shark eye)


Marginella apicina
(common Atlantic marginella)
Useppa
8LL51
Josslyn
8LL32
Buck Key
8LL722
Tidal
Stream
Mangrove Q r Bed Seagrass Littor/Gulf
Edge J Meadow
254


200
2.2mm 12.1mm
atlas premaxilla


71
palmetto/pine forests. The presence of the greater siren,
snapping turtle (Chelydra serpentina), mud turtle
(Kinosternon spp.), and frogs suggests exploitation of a
freshwater environment. The ribbed mussel is the primary
mangrove edge mollusc, representing 15% of total Minimum
Number of Individuals (MNI) (Figure 7). These bivalves are
found today imbedded in swampy areas of black mangrove such
as on the western side of Big Mound Key. The
mangrove/seagrass habitat category is represented by 36% MNI
(Figure 7), largely consisting of three fishes (pinfish;
toadfish, Opsanus spp.; and killifish) and a host of
invertebrates (Tables A-l through A-4). Unlike other site
archaeofanas, Big Mound Key contains a significant number
of the shark eye snail, Polinices duplicatus. The oyster
bed community contributes approximately 34% of the sample
(Figure 7). Finally, several vertebrate and invertebrate
species preferring oceanic waters (11%) are included in the
assemblage.
Cash Mound. 8CH38
Cash Mound is situated in Turtle Bay (Figure 1), an
area with water depths of 0.6 to 1.8 m at mean low tide and
rich in productive oyster beds (Woodburn 1965:23-24).
Seagrasses occur in the immediate vicinity and freshwater
marshes exist inland to the north.
The only terrestrial fauna recorded in the
archaeological samples (Tables A-5 through A-8) is raccoon


269
Osborn, Alan J.
1977 Strandloopers, Mermaids, and Other Fairy Tales:
Ecological Determinants of Marine Resource Utilization-
-The Peruvian Case. In For Theory Building in
Archaeology, edited by L. R. Binford, pp. 157-205.
Academic Press, New York.
Parmalee, Paul W. and Walter E. Klippel
1974 Freshwater Mussels as a Prehistoric Food Resource.
American Antiquity 39(3):421-434.
Perlmutter, Martin A.
1982 The Recognition and Reconstruction of Storm
Sedimentation in the Nearshore, Southwest Florida.
Ph.D. dissertation, Department of Marine Geology and
Geophysics, University of Miami, Coral Gables, Florida.
Prentice, Guy
1986 An Analysis of the Faunal Material from Test A,
Level 4 of the Josslyn Island Site. Manuscript on
file, Department of Anthropology, Florida Museum of
Natural History, Gainesville.
Puffer, Elton L. and William K. Emerson
1953 The Molluscan Community of the Oyster Reef Biotope
on the Central Texas Coast. Journal of Paleontology
27(4):537-544.
Quitmyer, Irvy R.
1985 Zooarchaeological Methods for the Analysis of Shell
Middens at Kings Bay. In Aboriginal Subsistence and
Settlement Archaeology of the Kings Bay Locality, vol.
2: Zooarchaeology, edited by W. H. Adams, pp. 33-48.
Department of Anthropology, Reports of Investigations
No. 2. University of Florida, Gainesville.
Quitmyer, Irvy R. and Douglas S. Jones
1992 Calendars of the Coast: Seasonal Growth Increment
Patterns in Shell of Modern and Archaeological Southern
Quahogs, Mercenaria campechiensis, from Charlotte
Harbor, Florida. In Culture and Environment in the
Domain of the Calusa, edited by W. H. Marguardt, pp.
247-264. Monograph 1, Institute of Archaeology and
Paleoenvironmental Studies, Florida Museum of Natural
History, Gainesville.
Reitz, Elizabeth J., Irvy R. Quitmyer, H. Stephen Hale,
Sylvia J. Scudder, and Elizabeth S. Wing
1987 Application of Allometry to Zooarchaeology.
American Antiquity 52(2):304-317.


Ill
variability. However, two conditions must be met. First,
individual samples that make up the composite assemblages
must be reasonably contemporaneous (+/- 100 years). Second,
individual samples must be aggregated either on an intrasite
basis or minimally be from sites with similar habitat
settings. In other words, the researcher needs many
radiocarbon-dated samples from comparable habitats to begin
a diachronic study.
In the present study, there are not enough samples to
create temporal, composite faunal assemblages for all time
periods that are represented. In the absence of these
composites, temporal interpretations based on single faunal
samples are considered only as hypotheses to be tested when
more comparable samples become available. With this in
mind, then, the question becomes whether or not single
samples of archaeofauna reflect (see Ingram et al. 1981:10)
the estuarine variability at any degree of reliability at
short-, medium-, and long-term scales.
Detection of short-term, isolated environmental changes
in archaeological middens is unlikely due to the rapid
recovery of fishes, discussed above. A possible exception
is hurricanes of great magnitude or the occurrence of
multiple hurricanes in a single season. The creation of a
new inlet by hurricane forces in the locale of a given site
would be an easy change to detect with archaeofauna because
the salinity regime would be altered significantly. Because


Table A-4. Faunal Analysis, Big Mound Key, 8CH10, Charlotte County, Florida, November 1982 Sample, U.1/S.4
NW Quad, Layer 2.
Species
Common Name
Number of
Identifiable
Fragments
X
of
Total
MNI
X
of
Total
Bone/Shell
Weight
(grains)
X
of
Total
Minimum
Meat Wt.
Estimate
X
of
Total
Maximum
Meat Wt.
Estimate
X
of
Total
Mammalia (small)
(small mammals)
1
0.02
1
0.06
0.01
0.00
0.62
0.02
(d)
(d)
Total Mammalia
(mammals)
1
0.02
1
0.06
0.01
0.00
0.62
0.02
0.00
0.00
Anatidae
(ducks)
3
0.06
1
0.06
0.21
0.00
4.69
0.14
380.68
1.38
Aves (medium)
(medium-sized birds)
1
0.02
(a)
(a)
0.04
0.00
1.16
0.03
(a)
(a)
Total Aves
(birds)
4
0.08
1
0.06
0.25
0.00
5.85
0.17
380.68
1.38
Testudines
(turtles)
4
0.08
2
0.13
1.53
0.03
55.96
1.61
1262.62
4.59
Total Reptilia
(reptiles)
4
0.08
2
0.13
1.53
0.03
55.96
1.61
1262.62
4.59
Siren lacertlna
(greater siren)
2
0.04
1
0.02
0.18
0.00
129.64
3.73
604.60
2.20
Total Amphibia
(amphibians)
2
0.04
1
0.02
0.18
0.00
129.64
3.73
604.60
2.20
Carcharhlnuo llmbatua
(blacktip shark)
1
0.02
1
0.06
1.93
0.04
400.01
11.52
18835.29
68.47
Lamniformes
(sharks)
2
0.04
1
0.06
0.01
0.00
2.57
0.07
58.35
0.21
Total Chondrichthyes
(cartilaginous fishes)
3
0.06
2
0.13
1.94
0.04
402.58
11.60
18893.64
68.68
Brevoortla spp.
(menhaden)
1
0.02
1
0.06
0.01
0.00
0.35
0.01
31.55
0.11 M
Clupeidae
(herrings)
10
0.19
(a)
(a)
0.05
0.00
1.48
0.04
(a)
(.) Ui
Arlopala fella
(hardhead catfish)
9
0.17
1
0.06
0.43
0.01
10.24
0.29
199.90
0.73
Ariidae
(sea catfishes)
2
0.04
(a)
(a)
0.05
0.00
1.48
0.04
(a)
(a)
Opaanua spp.
(toadfish)
13
0.24
4
0.25
0.61
0.01
14.02
0.40
212.82
0.77
Strongylura spp.
(needlefish)
2
0.04
1
0.06
0.02
0.00
0.65
0.02
77.33
0.28
Fundulua spp.
(killifiah)
68
1.28
11
0.69
0.48
0.01
11.30
0.33
371.10
1.35
cf. Chloroacombrua chxyaurua
(Atlantic bumper)
1
0.02
1
0.06
0.03
0.00
0.93
0.03
99.59
0.36
Archoaargua probatocephalua
(sheepshead)
2
0.04
1
0.06
0.46
0.01
10.88
0.31
803.80
2.92
Lagodon rhomboldea
(pinfish)
14
0.26
2
0.13
0.09
0.00
2.51
0.07
67.47
0.25
Balrdlella chryaoura
(silver perch)
1
0.02
1
0.06
tr
0.00
0.00
0.00
81.50
0.30
Cynoaclon spp.
(seatrout)
2
0.04
1
0.06
0.65
0.01
14.85
0.43
237.46
0.86
Sclaenopa ocellatua
(red drum)
1
0.02
1
0.06
0.16
0.00
4.20
0.12
1002.00
3.64
Osteichthyes
(bony fishes)
565
10.59
(a)
(a)
4.10
0.08
77.89
2.24
(a)
(a)
Total Osteichthyes
(bony fishes)
691
12.96
25
1.57
7.14
0.13
150.78
4.34
3184.52
11.58
Vertebrate (predominantly fish)
(backboned animals)
(b)
(b)
(a)
(a)
17.45
0.33
227.36
6.55
(a)
(a)
Total Vertebrate
(backboned animals)
705
13.22
32
2.01
28.50
0.54
972.79
28.02
24326.06
88.42
=====================================
aaaa
======== aaa
======
===========
=========
========== aa
=======
========= ==
=======
=========
=======
Balanua spp.
(barnacle)
483
9.06
411
25.75
61.30
1.16
(a)
(a)
(o)
(a)
Menlppe mercenaria
(stone crab)
160
3.00
3
0.19
34.18
0.64
176.89
5.09
250.20
0.91
Total Crustacea
(aquatic arthropods)
643
12.06
414
25.94
95.48
1.80
176.89
5.09
250.20
0.91
Modulua modulus
(Atlantic modulus)
3
0.06
3
0.19
1.18
0.02
(o)
(o)
(e)
(a)
Crepldula aculeata
(thorny slipper-shell)
8
0.15
8
0.50
1.27
0.02
(c)
(o)
(c)
Crepldula plana
(eastern white siipper-shel1)
2
0.04
2
0.13
0.14
0.00
(o)
(c)
(c)
(o)
Crepldula spp.
(siipper-shell)
1
0.02
1
0.06
0.05
0.00
(a)
(o)
(o)
(o)
Strombua alatua
(Florida fighting conch)
3
0.06
1
0.06
17.86
0.34
2.64
0.08
6.12
0.02


257
Caldwell, David K.
1957 The Biology and Systematics of the Pinfish, Lagodon
rhomboides (Linnaeus). Bulletin of the Florida State
Museum, Biological Sciences 2(6):77-173. University of
Florida, Gainesville.
1959 Notes on the Crown Conch, Melongena corona.
Nautilus 72(4):117-122.
Carr, William E. S. and Clayton A. Adams
1973 Food Habits of Juvenile Marine Fishes Occupying
Seagrass Beds in the Estuarine Zone Near Crystal River,
Florida. Transactions of the American Fisheries
Society 102(3):511-540.
Carriker, Melbourne Romaine
1951 Observations on the Penetration of Tightly Closing
Bivalves by Busycon and Other Predators. Ecology
32(1):73-83.
Casteel, Richard W.
1974 A Method for Estimation of Live Weight of Fish from
the Size of Skeletal Remains. American Antiquity
39:94-97.
1978 Faunal Assemblages and the "Wiegemethode" or Weight
Method. Journal of Field Archaeology 5(l):71-77.
Claessen, Henri J. M.
1978 The Early State: A Structural Approach. In The
Early State, edited by H. J. M. Claessen and P.
Skalnik, pp. 533-596. Mouton, The Hague.
Clark, J. A., W. E. Farrell, and W. R. Peltier
1978 Global Changes in Sea Level: A Numerical
Calculation. Quaternary Research 9:265-287.
Clark, J. A. and C. S. Lingle
1979 Predicted Sea Level Changes (18,000 Years B.P. to
Present) Caused by Late-Glacial Retreat of the
Antarctic Ice Sheet. Quaternary Research 11:279-298.
Comp, G. S. and W. Seaman, Jr.
1985 Estuarine Habitat and Fishery Resources of Florida.
In Florida Aquatic Habitat and Fishery Resources,
edited by W. Seaman, Jr., pp. 337-435. Florida
Chapter of American Fisheries Society, Kissimmee,
Florida.


123
some time and a significant seaward shift in the salinity
gradient would occur. These events would result in lowered
salinities in Turtle Bay (but within the conch's tolerance
range) and an increase in the crown conch population.
From a long-term scalar perspective, this last scenario
is supported by the sea-level curves proposed by Missimer
(1973) and Stapor et al. (1987; 1991) for the Charlotte
Harbor area and by Tanner (1991) for the entire Gulf of
Mexico (summarized in Table 7). The three high-salinity
Cash Mound samples dating to A.D. 150 to 270 fall within the
hypothesized period of higher sea level, 50 B.C. to A.D.
450. The most recent sample, dating to A.D. 680 and
indicating a relatively lowered salinity, falls within the
hypothesized low stand of A.D. 450 to A.D. 850/950.
The Cash Mound samples indicate a salinity fluctuation
relative to each other. Unfortunately, no systematic
present-day salinity records are reported for Turtle Bay;
just the observation by Wang and Raney (1971:6) that waters
are of "low salinities." My personal observations are that
crested oyster is rare in the Cash Mound area and that crown
conchs are common but not particularly abundant (this, of
course would vary with the intraannual rain pattern). In
January of 1991, I had the opportunity to examine the
stratification of interior portions of Cash Mound at several
locations. These midden areas exhibited a distinct stratum
of heavy concentrations of crown conchs including an


50
Josslyn Island
Buck Key
Big Mound Key
Cash Mound
Useppa Island
KEY
Bony fishes
Marine snails
Sharks, rays,etc.
Marine bivalves
Mammals
Turtles/Amphibians
Crabs
Other


127
naturally-placed deposit of sand and shell that both Stapor
(personal communication 1991) and this researcher,
hypothesize to be associated with a high sea-level stand.
The crown conch shells are associated with the time when
Wightman was reoccupied (i.e., when water levels fell
again). A sample of juvenile crown conch shells sent for
radiocarbon analysis resulted in a date of A.D. 660 +/- 60.
The implication from the range of radiocarbon dates
(ca. A.D. 400 to 700) associated with the various lines of
evidence is that the environmental event that resulted in a
population increase of crown conchs and possibly whelks
probably occurred on a long-term time scale. Further, the
event was at least regional in that evidence is found in the
northern, central, and southern parts of the study area.
The event correlates with Missimer (1973:25-27), Stapor et
al. (1991), and Tanner's (1991) low sea level stand of A.D.
450 to A.D. 750/850 (Table 7) and sea level appears to be
the most likely environmental variable to explain the
archaeofaunal patterns.
The A-l-12 sample from Josslyn Island radiocarbon-dates
to A.D. 820 (Table 2) and quantification (Figure 11; Table
A-ll) indicates an intensive exploitation of the surrounding
seagrass fauna similar to the earlier two Josslyn samples.
Generally, the faunal assemblage represents water salinities
very similar to those of the present. Today the mean annual
salinity has been recorded at 32 ppt (Wang and Raney


56
meadows support great densities of sessile and migratory
molluscs, as well as fishes and crabs that spend all or part
of their life cycles there. In addition, large predator
species frequent the inshore grasses in search of food.
If the present-day environment of Charlotte Harbor is
to be used as an analogy for the interpretation of its past
environment, we must be aware of change resulting from
modern human activity. The widely cited loss of scallop
populations due to reduced salinities and increased
turbidity as a result of causeway construction is a familiar
example (Estevez et al. 1984:PM90-PM91). More important for
our purposes, 9,904 ha of seagrasses (29%) and 128 ha of
oyster bar communities (39%) have disappeared from the
region since 1945 (Haddad and Harris 1985:668; Haddad and
Hoffman 1986:175). Researchers (Haddad and Hoffman
1986:184; Harris et al. 1983:134) attribute the startling
losses to the combined effects of dredging for the
Intracoastal Waterway, construction of the Sanibel causeway,
channeling of the Caloosahatchee River, and upland
pollution. Finally, as early as 1884, the natural flow of
the Caloosahatchee River was changed when the waterway was
linked to Lake Okeechobee (Gunter and Hall 1965:4).
A modern reduction in habitats translates into a
reduction of biological productivity. Thus, acknowledgement
of the existence of a prehistoric biotic productivity that
was much greater than that of today (at least at certain


178
sites associated with relatively deeper, faster-moving
waters (near inlets or narrow channels) should exhibit a
different, characteristic set of artifacts.
To test these assertions, one needs significant sample
sizes of provenienced and dated fishing artifacts at the
local scale (i.e., the site level). These samples do not
exist at this time. However, at the interregional scale,
the artifacts that do exist can be lumped together by area.
The Charlotte Harbor area is dramatically different
geophysically from the Ten Thousand Islands coastline to the
south. Charlotte Harbor is characterized by shallow, calm
waters due to a large meadow area enclosed by a protected
barrier island chain, while the Ten Thousand Islands region
is characterized by relatively deeper and faster waters due
to the many constricted channels that cut among the islands.
Furthermore, many of the sites have nearly direct access to
the open Gulf.
It has been shown that the length (and presumably the
weight) of shell columella fishing sinkers is significantly
greater in the Ten Thousand Islands region than in Charlotte
Harbor and have suggested that it is because of the
environmental differences just cited above (Walker 1991).
In other words, deeper, faster-moving waters require larger
and heavier fishing sinkers.
Temporal analyses of fishing artifacts must also await
increased sample sizes; there is some suggestion of


90
paleoenvironmental perspective, the Charlotte Harbor
zooarchaeological fauna are examined following a
chronological order from the earliest samples to the latest.
Uncalibrated radiocarbon dates are used in order to
facilitate comparison with the findings of Holocene
geologists (see below).
Potential Short-term Environmental Change
"Short-term" is defined as time intervals ranging from
one day to intraannual seasons. Environmental change at
this scale for Charlotte Harbor includes isolated
"singularities" such as freezes, red tides, and storms, as
well as normal seasonal fluctuations. In terms of
atmospheric circulation, this is the scale of weather as
opposed to the broader climate.
Freezes. Red Tides, and Storms
Freezes and red tides are disruptive but infrequent
events in Charlotte Harbor (Estevez 1984:R61). However, the
frequency of freezes, resulting in massive kills of
subtropical fish (Storey 1937; Storey and Gudger 1936), may
have fluctuated in the past responding to warm and cool
climatic intervals. Red tides, resulting in fish kills and
shellfish contamination, may have been even more infrequent
in the past (see Estevez 1984:R61). Environmental recovery
from these two disturbances, at least in terms of faunal use
by humans, is rapid, occurring within two to three weeks
(e.g., Storey and Gudger 1936:644).


120
(Caldwell 1959:121; Hathaway 1958:193-194; Hathaway and
Woodburn 1961:60, 64; Menzel and Nichy 1958:136). However,
these conclusions are biased toward a focus on productive,
healthy oystersin other words, crown conchs do little
damage to today's commercial industry.
Of great relevance here, the crown conch's abundance is
often associated with poorly-producing intertidal oyster
bars (Hathaway and Woodburn 1961:45, 60, 64). Crown conchs
attack oysters that already are weakened by natural
environmental stresses such as summer high temperatures
(Hathaway 1958:193; Hathaway and Woodburn 1961:60-61; Tabb
and Manning 1961:577) or abnormally prolonged exposure.
Exposure of oysters can be caused by too crowded a bar
population or by a periodic lowering of water level.
The Cash Mound A.D. 680 sample indicates a substantial
increase in crown conch MNI over the earlier three samples.
This pattern does not appear to be related to salinity
because of the crown conch's wide salinity range, 20 to 32
ppt (Hathaway and Woodburn 1961:49). Rather, the pattern of
the crown conch may reflect a predator-prey relationship
with the eastern oyster. By the time the A.D. 680 midden
was deposited the crown conch population had reached a very
competitive level (Table 8; Figure 13).
An increase in the crown conch as oyster predator would
imply that the oysters had been stressed environmentally.
It might also imply that more food became available for


204


Table A-l--continued.
Number of
%
%
Bone/Shell
X
Minimum
X
Maximum
X
Identifiable
of
MNI
of
Weight
of
Meat Wt.
of
Meat Wt.
of
Species
Common Name
Fragments
Total
Total
(grams)
Total
Estimate
Total
Estimate
Total
Bracbldontea spp.
(mussel)
2
0.02
2
0.27
0.15
0.00
(a)
(c)
Oeukenela domlaaa granoalaalma
(Atlantic ribbed mussel)
451
3.58
64
8.59
96.21
1.62
23.55
0.37
137.60
0.26
Pinnidae
(pen shells)
29
0.23
2
0.27
8.44
0.14
4.46
0.07
47.46
0.09
Argopee ten spp.
(scallop)
313
2.49
57
7.65
713.23
11.99
91.56
1.42
436.62
0.83
Pectinidae/Cardiidae
(seallops/cockles)
218
1.73
(a)
(a)
72.11
1.21
19.22
0.30
(a)
(a)
Anomla almplex
(common jingle shell)
6
0.05
4
0.54
3.13
0.05
(a)
(a)
(c)
Oatrea equeatrla
(crested oyster)
47
0.37
36
4.83
21.16
0.36
(o)
(o)
(o)
(O)
Craaaoatrea vlrglnlca
(eastern oyster)
330
2.62
70
9.40
557.28
9.37
77.79
1.21
53.17(f)
0.10
Ostreidae
(oysters)
215
1.71
(a)
(a)
52.22
9.37
7.88
0.12
(a)
(a)
Cardltamera florldana
(broad-ribbed cardita)
1
0.01
1
0.13
1.50
0.03
(o)
(o)
(o)
Trachycardlum egmontlanum
(prickly cockle)
2
0.02
2
0.27
23.86
0.40
9.05
0.14
16.26
0.03
Dlnocardlum robuatum vanhynlngl
(Van Hyning's cockle)
4
0.03
2
0.27
19.78
0.33
7.96
0.12
59.21
0.11
Mactridae/Veneridae
(surf clams/venus clams)
62
0.49
(a)
(a)
67.12
1.13
18.30
0.28
(a)
(a)
Polymeaoda martima
(Florida marsh clam)
5
0.04
3
0.40
0.67
0.01
(o)
(o)
(o)
Marcenarla campecblenala
(southern quahog)
12
0.10
2
0.27
86.45
1.45
14.25
0.22
138.84
0.27
Cblone cancellata
(cross-barred venus)
1
0.01
1
0.13
0.29
0.00
(o>
(e>
(o)
Anomalocardla auberlana
(pointed venus)
1
0.01
1
0.13
0.14
0.00
(o)
(o)
(o)
(o)
Macrocall lata nlmboaa
(sunray venus)
10
0.08
5
0.67
28.83
0.48
10.29
0.16
125.92
0.24
Bivalvia
(oysters, clams, eta.)
7
0.06
(a)
(a)
1.82
0.03
1.57
0.02
(a)
(a)
Total Bivalvia
(oysters, clams, etc.)
1716
13.64
252
33.83
1754.39
29.48
285.88
4.45
1015.08
1.94
Mollusca
(snails and bivalves)
(b)
(b)
(a)
(a)
1884.83
31.68
382.95
5.96
(a)
(a)
Total Mollusca
(snails and bivalves)
4043
32.13
585
78.52
5603.92
94.18
1342.04
20.88
2255.56
*-31NJ
Total Invertebrata (animals without backbones) 4083 32.45 595 79.87 5615.61 94.38 1418.82 22.07 2672.56 5.10
TOTAL SAMPLE (vertebrates*invertebrates) 12584 100.00 745 100.00 5950.27 100.00 6427.86 100.00 52364.18 100.00
208


A-12 Faunal Analysis, Josslyn Island, 8LL32,
Lee County, Florida, March 1985 Sample, Test A-l,
Level 22 234
A-13 Faunal Analysis, Josslyn Island, 8LL32,
Lee County, Florida, March 1985 Sample, Test A-l,
Level 32 237
A-14 Faunal Analysis, Buck Key Shell Midden,
8LL722, Lee County, Florida, March 1986 Sample, Test
B-2 Level 5 240
A-15 Faunal Analysis, Buck Key Shell Midden,
8LL722, Lee County, Florida, March 1986 Sample, Test
B-2, Level 9 243
A-16 Faunal Analysis, Buck Key Shell Midden,
8LL722, Lee County, Florida, March 1986 Sample, Test
A-2 Level 6/7 246
A-17 Faunal Analysis, Buck Key Shell Midden,
8LL722, Lee County, Florida, March 1986 Sample, Test
A-2, Level 11 249
B-l Aquatic Vertebrates by Archaeological Site
and Modern Habitat 252
B-2 Aquatic Invertebrates by Archaeological
Site and Modern Habitat 254
x


58
oyster bars. The distribution of associate fauna will vary
according to the designation (Wells 1961).
Unfortunately, there is no published gradient study of
Charlotte Harbor aquatic biota. However, based upon what is
available for the area and comparative data from other
estuarine environments, an informal model of Charlotte
Harbor's modern distribution of aquatic vertebrate and
invertebrate fauna for archaeological purposes is attempted
here. Because mobility patterns of vertebrates and
invertebrates are dramatically different, these two groups
are described separately. The descriptions are not meant to
be comprehensive; instead they emphasize animals whose
remains are commonly found in prehistoric human middens.
Figure 6 illustrates monthly salinity profiles that
closely typify the salinity gradient of the northern project
area. These data are from Wang and Raney (1971:18) and
represent readings taken at four of their collection
stations (numbers 33, 29, 13, and 15), chosen to illustrate
the general gradient moving from near-freshwater (Peace
River) to oceanic (Boca Grande Pass) conditions. Salinity
readings for Pine Island Sound show variance depending on
proximity to Captiva Pass, Redfish Pass, or Blind Pass (Wang
and Raney 1971:18). Additionally, Alberts and his
colleagues (1969:1) report that the Gasparilla Sound and
Pine Island Sound waters maintain marine salinities ranging
from 28.5 to 32.8 ppt. Similarly, the San Carlos Bay area


189
Table 9. Intersite Comparison of Hardhead
Catfish Totals.
Site
MNI
Number of
Samples
Big Mound Key
16
4
Cash Mound
106
4
Useppa Island
40
1
Josslyn Island
62
4
Buck Key
129
4


93
between the months of June and September (Taylor 1974:206).
Consequently, the salinity gradient fluctuates with this
rainfall pattern, producing a responsive faunal
distribution. However, in a North Carolina estuary, Wells
(1961:250-251) found that under normal annual rainfall
patterns the great majority of oyster bar epibionts are
present year-round, suggesting little seasonal change in
distribution of that segment of the fauna.
Extremes of rainfall (flood or drought) can decrease
productivity of certain resources, particularly that of the
sessile oyster. Unusually prolonged (30 days or more) heavy
river discharge (flood conditions) can push the water's
salinity below the oyster's tolerance, resulting in its
death (Allen and Turner 1989), while extended periods of
high salinity due to drought increase the frequency of
predation and disease (see Woodburn 1965:14 for an example
of abnormally high salinities due to drought). Wang and
Raney (1971:51) found that especially heavy rainfall such as
was recorded for July, 1968-1969 (see lowered salinities,
Figure 6), correlated with a decreased availability of
fishes.
Medium- or long-term cooling or warming trends may have
altered the normal seasonal rainfall pattern. For example,
one study suggests that during past cool periods such as the
Little Ice Age, mean January precipitation in south Florida
may have increased by 25% while summer precipitation


Figure 5. Comparative Percentages of Zooarchaeological
Estimated Maximum Edible Meat Weights by Site and
Animal Group (Based on Data Presented in Appendix A).


21
Identification and Quantification
Specimens were identified using the comparative
collections of Zooarchaeology and Malacology, both located
at the Florida Museum of Natural History, Gainesville,
Florida. Scientific nomenclature and common names follow
general laboratory usage in 1986 for mammals, birds,
reptiles, and Crustacea: Robins et al. (1980) for fishes,
Abbott (1974) for molluscs. Results of identification and
guantification for each of the seventeen samples are
presented in Appendix B. Fragment count and description,
fragment weight, and linear measurements are the three types
of primary data recorded in this study. Fragments of all
taxa were counted except for unidentified "Vertebrata" and
"Mollusca" (Appendix B, footnote b). In addition, counts of
unsided oyster and mussel valve fragments for Cash Mound
were of such magnitude that quantification other than shell
weight was impractical and would have served no purpose
(Appendix B, footnote e). Fragment weight was recorded,
providing the basis for minimum edible meat weight
estimates. Along with descriptive data concerning the
identification of specimens, linear measurements (in mm)
were taken for maximum meat estimations and other specific
purposes. Measurements followed the guidelines illustrated
in Quitmyer (1985:42-48) for vertebrates and invertebrates.
Secondary data include MNI, minimum edible meat
estimates, and maximum edible meat estimates. Standard


62
Environment Types 3 and 4 combine extensive mangrove
shorelines and seagrass meadows. The relationship between
these two habitats in terms of faunal use is unclear (Zieman
1982:75), perhaps due to the proximity of the two. Types 3
and 4 range higher in salinity than 1 and 2 (see Figure 6,
Charlotte Harbor and Bokeelia lines), exhibit coarser,
sandier sediments, and support a greater abundance and
diversity of fish assemblages.
In the Charlotte Harbor system, examples of Type 3,
estuarine bays and lagoons, are Turtle Bay, Bull Bay,
Matlacha Pass, and the eastern part of Pine Island Sound.
The oceanic bays, Type 4, tend to have the clearest water,
the highest salinities of inshore waters, and perhaps the
highest species diversity. Examples include San Carlos Bay,
Gasparilla Sound, and the inshore lagoons of Pine Island
Sound behind Blind, Redfish, and Captiva Passes. Because of
the configuration of the Charlotte Harbor system, it is
difficult to separate the species of Types 3 and 4 and so I
describe them as one unit.
Species such as pipefishes and seahorses (Family
Syngnathidae), gobies (Gobiidae), and the inshore lizard
fish (Synodus foetens) spend their entire life cycles within
the grassbeds. A second group of fishes largely uses the
meadows as a nursery ground, spending their juvenile life
stages in the nurturing grass habitat. Spotted seatrout,
spot (Leiostomus xanthurus), silver perch, red drum, pigfish


Table A-12--continued
Number of
%
%
Bone/Shell
%
Minimum
%
Maximum
%
Identifiable
of
MNI
of
Weight
of
Meat Wt.
of
Meat Wt.
of
Species
Common Name
Fragments
Total
Total
(grams)
Total
Estimate
Total
Estimate
Total
Nuculana acuta
(pointed nut clam)
2
0.02
1
0.07
0.01
0.00
(a)
(o)
(o)
Anadara transversa
(transverse ark)
10
0.08
6
0.41
6.42
0.07
3.70
0.03
7.72
0.01
Noetia ponderosa
(ponderous ark)
2
0.02
1
0.07
15.05
0.16
6.61
0.05
36.62
0.05
Oeukenela domlssa granoaiaaima
(Atlantic ribbed mussel)
42
0.33
8
0.55
5.82
0.06
2.49
0.02
17.2
0.02
Pinnidae
(pen shells)
192
1.51
1
0.07
34.41
0.36
11.61
0.09
23 .73
0.03
Argopecten spp.
(scallop)
48
0.38
5
0.34
29.57
0.31
10.46
0.08
36.40
0.05
Pectinidae/Cardiidae
(scallops/cockles)
227
1.79
(a)
()
60.16
0.64
16.98
0.13
(a)
(a)
Pllcatula glbboaa
(kitten's paw)
3
0.02
2
0.14
1.03
0.01
(c)
(a)
Oatrea equeatrla
(crested oyster)
43
0.34
28
1.91
18.90
0.20
(c)
(o)
(o)
Craaaoatrea vlrglnlca
(eastern oyster)
430
3.39
126
8.59
1161.30
12.31
158.25
1.24
100.67(f)
0.14
Ostreidae
(oysters)
(43
5.06
(a)
(a)
277.90
2.95
32.55
0.26
(a)
(a)
CardlCamera florldana
(broad-ribbed cardita)
6
0.05
3
0.20
2.75
0.03
(a)
(a)
(o)
(o)
Trachycardlum spp.
(cockle)
2
0.02
1
0.07
0.47
0.00
0.63
0.00
3.85
0.01
Dlnocardlum robuaturn vanhynlngl
(Van Hyning's cockle)
5
0.04
1
0.07
13.40
0.14
6.11
0.05
33.86
0.05
Splaula aolldlaalma almilla
(southern surf clam)
454
3.58
24
1.64
431.93
4.58
65.06
0.51
258.82
0.35
Donax varlabllla
(coquina)
1
0.01
1
0.07
0.12
0.00
(c)
(o)
(o)
(a)
Polymeaoda martima
(Florida marsh clam)
21
0.17
16
1.09
3.58
0.04
2.98
0.02
25.27
0.03
Hercenarla campechlenala
(southern quahog)
138
1.09
3
0.20
1329.65
14.10
148.13
1.16
95.19(f)
0.13
Chlone cancellata
(cross-barred venus)
10
0.08
5
0.34
6.88
0.07
(o)
(o)
(a)
Macrocalllata nimbooa
(sunray venus)
80
0.63
4
0.27
92.10
0.98
22.70
0.18
110.50
0.15
Total Bivalvia
(bivalves)
2359
18.58
236
16.10
3491.45
37.02
488.26
3.83
749.83
1.01
Mollusca
(snails and bivalves)
(b)
(b)
(a)
(a)
2241.99
23.77
848.48
6.65
(a)
(a)
Total Mollusca
(snails and bivalves)
5926
46.67
1127
76.88
8826.70
93.58
2727.29
21.39
5843.55
7.87
Desmotichia
(sea urchins)
34
0.27
1
0.07
0.45
0.00
(d)
(d)
(d)
(d)
Soutellida
(sand dollars)
2
0.02
1
0.07
0.28
0.00
(o)
(o)
Madreporaria
(hard corals)
4
0.03
1
0.07
11.81
0.13
(c)
(o)
(c)
(o)
Total Invertebrata
(animals without backbones)
6156
48.48
1209
82.47
8863.30
93.97
2786.75
21.86
6260.55
8.43
S== = C3=S
=========
===========
==========
=========
=========
=========
=========
=======
TOTAL SAMPLE
(vertebrates+invertebrates)
12697
100.00
1466
100.00
9432.42
100.00
12750.30
100.00
74260.69
100.00
236


166
The study of contemporary and archaeological faunal
communities and their associated habitats has suggested an
intensive aboriginal exploitation of each site's immediate
surroundings (Figures 7 and 16; Appendixes A and B). Study
of these communities on a fine scale further illuminates
midden characteristics. Midden species composition, for
example, can serve as an indicator of subsistence
technology.
Prehistoric use of the mass-capture technique of net
fishing can be inferred by examining the present-day ecology
of fishes in concert with archaeological species
composition. For example, it is known that the abundant
pinfish's preferred habitat is seagrass meadow (e.g., Darcy
1985:1, 5). In addition, the pigfish (grunt) and silver
perch commonly school with the pinfish, but in lesser
numbers (Caldwell 1957:130, 145; Durako et al. 1985:243-245;
Wang and Raney 1971). Table 13 presents the archaeological
distribution by MNI of these three schooling fishes; the
ratio of pinfish to pigfish to perch is about 9:2:1. Of all
the study sites, Josslyn contains the greatest abundance of
all three species, a reflection of the expansive, shallow
seagrass meadows surrounding the island today.
Pinfish is the dominant species of the three in all
samples (Table 13), consistent with the present-day
ecological situation. The pigfish is often the second most
abundant fish of the school assemblage. These two important


261
Gledhill, B. Bender, and M. Larsen, pp. 77-90. George
Allen and Unwin, London.
Galli, Gianni
1989 Is Holocene Storm-Generated Stratification in
Florida Bay a Reflection of Solar Storm Cycles?
Palaeogeography, Palaeoclimatology, Palaeoecology
76:169-185.
Galtsoff, Paul S.
1964 The American Oyster Crassostrea virginica Gmelin.
U.S. Fish and Wildlife Service Fishery Bulletin
64:1-480. Washington, D.C.
Galtsoff, Paul S. and Arthur S. Merrill
1962 Notes on Shell Morphology, Growth, and Distribution
of Ostrea equestris Say. Bulletin of Marine Science of
the Gulf and Caribbean 12(2):234-244.
Gentry, R. Cecil
1984 Hurricanes in South Florida. In Environments of
South Florida: Present and Past II, edited by P. J.
Gleason, pp. 510-519. Miami Geological Society, Coral
Gables, Florida.
Gilliland, Marion S.
1975 The Material Culture of Key Marco, Florida.
University Presses of Florida, Gainesville.
Glassow, Michael A. and Larry R. Wilcoxon
1988 Coastal Adaptations Near Point Conception,
California, With Particular Regard to Shellfish
Exploitation. American Antiquity 53:36-51.
Goggin, John M. and William T. Sturtevant
1964 The Calusa: A Stratified Non-agricultural Society
(with notes on sibling marriage). In Explorations in
Cultural Anthropology: Essays in Honor of George Peter
Murdock, edited by W. Goodenough, pp. 179-219.
McGraw-Hill, New York.
Grayson, Donald K.
1984 Quantitative Zooarchaeology: Topics in the Analysis
of Archaeological Faunas. Academic Press, Orlando.
Griffin, John W.
1988 The Archeology of Everglades National Park: A
Synthesis. National Park Service, Southeastern
Archeological Center, Tallahassee, Florida.


265
Kuehn, D. W.
1980 Offshore Transgressive Peat Deposits of Southwest
Florida: Evidence of a Late Holocene Rise of Sea
Level. M.S. thesis, Department of Geology,
Pennsylvania State University, University Park.
Lamb, H. H.
1977 Climate History and the Future. Methuen, London,
and Princeton University Press.
Lampl, Linda L.
1986 Feeding the People from Generation to Generation:
An Ethnography of the Pine Island Fishermen. Report
submitted to Gulf and South Atlantic Fisheries
Development Foundation, Inc., Tampa, Florida.
Larson, Lewis H.
1980 Aboriginal Subsistence Technology on the
Southeastern Coastal Plain During the Late Prehistoric
Period. University Presses of Florida, Gainesville.
Laudonnire, Ren de
1975 Three Voyages. Translated by C. E. Bennett.
University Presses of Florida, Gainesville.
Levins, Richard
1966 The Strategy of Model Building in Population
Biology. American Scientist 54(4):421-431.
Lewis, Clifford M.
1978 The Calusa. In Tacachale: Essays on the Indians of
Florida and Southeastern Georgia during the Historic
Period, edited by J. T. Milanich and S. Proctor, pp.
19-49. University Presses of Florida, Gainesville.
Lewis, R. R., III, R. G. Gilmore, Jr., D. W. Crewz, and W.
E. Odum
1985 Mangrove Habitat and Fishery Resources of Florida.
In Florida Aquatic Habitat and Fishery Resources,
edited by W. Seaman, Jr., pp. 281-336. Florida
Chapter, American Fisheries Society, Kissimmee,
Florida.
Libert, L., A. Maucorps, and L. Innes
1987 Mending of Fish Nets. 2nd ed. Fishing News Books
Ltd., Surrey, England.
Lpez de Velasco, J.
1894 Geografa y Descripcin Universal de las Indias,
Recopilada por el Cosmografo-cronista Juan Lpez de
Velasco desde el Ao de 1571 al de 1574...con adicines


126
population increase. If intertidal areas increased due to a
lowered water level, this may have increased the food supply
for whelks also. Although it is believed that whelks
primarily feed on bivalves (Kent 1983:103-104), they may
increase the number of crown conchs in their diet when the
opportunity presents itself (see Kent 1983:104), thus the
whelk population may have been benefitting from a higher
crown conch population as well as stressed oysters.
This whelk hypothesis can be tested at any of the sites
in Pine Island Sound, representing the greatest area of
whelk habitat (I am reminded of the great deposits of whelk
shells, without other sediment, in some parts of Josslyn
Island; these have not been radiocarbon-dated). In the same
vein, Milanich et al. (1984:278, 284, 287) document a
significant increase in whelk numbers in a Useppa Island
stratum estimated to date around A.D. 700.
Finally, new information comes from the Wightman Site,
8LL54, located on Sanibel Island (Figure 1). The site is
located adjacent to the high Wulfert beach ridge set
documented by Stapor et al. (1991:Figure 12). The Southwest
Florida Project briefly reopened the site in March of 1991
prior to construction of a private home and sampled portions
of the lower strata earlier documented by Wilson (1982) and
Fradkin (1976). Overlooked by the earlier researchers is a
stratum of crown conch shells, including an abundance of
juvenile specimens, that directly overlies a


72
and an unidentified large mammal (presumably deer). The
oyster bed community constitutes 38% of the sample (Figure
7). Ribbed mussels, probably collected from intertidal
mangrove swamps, follow with 36%. Other mangrove edge
invertebrates occur, but in small numbers.
Hardhead catfish and pinfish, both common to
mangrove/seagrass areas, are the only fishes that occur in
abundance in the samples. The mangrove/seagrass habitat is
represented by only 9% MNI (Figure 7) of the faunal samples.
Cash Mound's faunal assemblage reflects a limited
exploitation strategy compared to the other four study
sites.
Useppa Island. 8LL51
Estuarine waters surrounding Useppa Island today vary
from 0.3 to 3.9 m deep at mean low tide. The area is
influenced to some degree by Boca Grande Pass (10 m at mean
low tide) but more by Captiva Pass (5.7 m at mean low tide)
due to the northward movement of currents in Pine Island
Sound (Figure 1). Seagrass and oyster habitats in the
vicinity have decreased in area due to modern human impact,
particularly the dredging of the Intracoastal Waterway.
Mangrove/seagrass and oyster habitats were heavily
exploited by Useppa's inhabitants of ca. 570 B.C. (Figure
7). The five most abundant fishes in the sample are
hardhead catfish, pinfish, pigfish, spotted seatrout, and
striped burrfish (Chilomycterus schoepfi), all common to the


183
An understanding of site location within the context of
a regional gradient is crucial because of Charlotte Harbor's
spatial heterogeneity. An analyst should not expect to
detect a given region-wide change at any site in the
estuarine system. Sites near the high-salinity end of the
gradient generally have little potential to reflect
sea-level change, but great potential to reflect inlet
changes. Sites within the more quiet and protected
estuarine bays and lagoons have great potential to reflect
sea-level change, but little potential to reflect inlet
changes.
At the finest level of analytic resolution, magnitude
of variation is important. The Charlotte Harbor
zooarchaeological assemblages suggest that long-term
sea-level oscillations of less than .9m (3 feet) may not
produce perceptible archaeofaunal signatures. This should
be further tested, however. Signatures for oscillations
from .9 to 1.8 m (3 to 6 feet) were proposed, based on the
Cash Mound assemblages and supporting independent data.
It is suggested that the .9 to 1.8 m magnitude of
sea-level fluctuation translates beyond prehistoric human
subsistence change in the Charlotte Harbor region, affecting
settlement patterns as well. At a regional scale, inlet
changes may not have been as important as sea-level
fluctuations because the greatest density of Charlotte
Harbor's sites is in the estuarine bays and lagoons, not in


CHAPTER 2
A SPATIAL PERSPECTIVE ON RESOURCE HETEROGENEITY
The Present-dav Charlotte Harbor Estuarine Ecosystem
An examination of the present-day natural environment
of the Charlotte Harbor area, along with western society's
recent impact on that environment, is a necessary first step
toward understanding past situations. A spatial model of
today's environment serves as a beginning standard for
paleoenvironmental modeling.
In the Charlotte Harbor region, three major rivers,
extensive inshore lagoons, salt marshes, mangrove forests,
and a series of barrier islands compose a complex and
dynamic estuarine ecosystem of an unusually high level of
biological production (Taylor 1974:207). Comp and Seaman
(1985:337) generally define estuaries as "semi-enclosed
bodies of water that (1) have a free connection with the
sea, (2) receive freshwater inflow through both overland
runoff and defined sources such as rivers, creeks, and
springs, and (3) contain a measurable salinity gradient."
The Peace and Myakka rivers converge to form the Charlotte
Harbor estuary proper, while to the south, the
Caloosahatchee River empties into San Carlos Bay, forming
the second major estuary (Figure 1). To the west, barrier
53


143
Food MNI% Minimum Meat Weight %
Maximum Meat Weight %
Key
Warn
Mammals
Level
4
Bir
Birds
Tur
Turtles

Amp
Amphibians
Level
12
S+R
Sharks, rays.etc.

Fish
Bony Fishes
Level
22
Cra
Crabs
Sna
Marine Snails
on
Level
32
Biv
Marine Bivalves


97
(e.g., Fairbridge 1976, 1992; Ingram et al. 1981; Wendland
and Bryson 1974) are well known. Clearly, such global
long-term climatic trends should affect Charlotte Harbor's
faunal distribution due primarily to variable sea levels
(e.g., variability in the salinity gradient at the scale of
several hundred year intervals).
A difficulty, however, lies in the great geographic
variation due to lags in response time and other variables.
One important variable, for example, is that
tropical/subtropical latitudes are impacted far less by
temperature fluctuations compared to higher latitudes (Lamb
1977; Fairbridge 1992). One must therefore obtain local
climate data for any particular human-environmental
reconstruction of the past (Dincauze 1987:299; Ingram et al.
1981:11). Unfortunately, the subtropical region of south
Florida is severely lacking in climatic studies based on
relatively dependable data such as tree rings and pollen.
Geographically, the closest study is that of Watts (1971)
for south Georgia and the central Florida peninsula but even
this study is not appropriate for use here because its time
resolution is too large.
Of relevance here, Sanchez and Kutzbach (1974) suggest
that an American subtropic-tropic cooling trend beginning in
1960 might be used to infer low-latitude climatic conditions
for earlier but similar cool intervals of the Holocene. In
particular, the drop in mean annual temperatures observed


38
Table 4continued.
Note: Regression formula:
Y = aXb
transformed log Y = log a + b(log X)
where y = weight of meat in grams
x = bone, shell, or exoskeleton
in grams
a = y intercept
b = slope
a Source: Quitmyer 1985
b Source: Fitzgerald 1986
c Source: Hale et al. n.d.
d Source: Hale and Walker 1986


Polinices duplica tus
(shark eye)
1
Melongena corona
(common crown conch)
580
Bueycon contrariun
(lightning whelk)
92
Bueycon apratum pyruloldee
(Say's pear whelk)
119
Total Me Iongenidas
(crown conchs)
791
Naeaarlua vbex
(common eastern nasaa)
1
Fmaciolaria llllum hunt aria
(banded tulip)
776
Faeciolaria tulipa
(true tulip)
21
Faaciolaria spp.
(tulip shell)
29
Total rasciolariidae
(tulip shells)
826
Gastropoda (medium marine)
(medium-sized marine snails)
276
Total Marine Gastropoda
(marine snails)
1912
Anadara spp.
(rk)
1
Brachidontao exustus
(scorched mussel)
4
Geukanaia demleea granoalaaima
(Atlantic ribbed mussel)
757|
Pinnidae
(pen shells)
575
Pteriidae
(wing and pearl oysters)
2
Pectinidae
(scallops)
1
Plicatula gibboaa
(kitten's paw)
3
Anomia simplex
(common jingle shell)
7
Oatraa equeetria
(crested oyster)
544
Craaaoatrea virginica
(eastern oyster)
31
Ostraidas
(oysters)
109
Carditamera flordana
(broad-ribbed cardita)
8
Spiaula aolidiaalma almilla
(southern surf clam)
1
Anomalocardia auberlana
(pointed venue)
2
Macrocalllata nimbosa
(sunray venus)
1
Bivalvia
(oysters, clams, etc.)
23
Total Bivalvia
(oysters, clams, etc.)
2069
Mollusca
(snails and bivalves)
(b)
Total Molluaca
(snails and bivalves)
3981
Madreporaria
(hard corals)
4
Total Invertebrata
(animals without backbones)
4628
TOTAL SAMPLE
5333
(vertebratestinvertebrates)
0.02
1
0.06
18.40
0.35
11.69
0.34
6.62(f)
0.02
10.88
146
9.15
759.39
14.31
128.67
3.71
336.84
1.22
1.73
24
1.50
525.51
9.90
227.44
6.55
145.68(f)
0.53
2.23
48
3.01
327.19
6.17
140.09
4.03
427.68
1.55
14.83
218
13.66
1612.09
30.38
496.20
14 .29
910.20
3.31
0.02
1
0.06
0.07
0.00
()
(<=

14.55
136
8.52
826.76
15.58
1225.68
35.30
420.24(f)
1.53
0.39
7
0.44
136.85
2.58
173.92
5.01
293.75
1.07
0.54
(>
()
25.51
0.48
11.05
0.32
(>
<)
15.49
143
8.96
989.12
18.64
1410.65
40.63
713.99
2.60
5.18
()
()
66.15
1.25
32.29
0.93
(i
<)
35. 85
378
23.68
2706.33
51.01
1953.47
56.26
1636.93
5.95
0.02
1
0.06
0.04
0.00
(o)
(c)
0.08
2
0.13
0.32
0.01

(o)
(o)
(o)
14.19
381
23.87
796.55
15.01
127.95
3.69
819.15
2.98
10.78
15
0.94
125.00
2.36
27.95
0.81
355.95
1.29
0.04
1
0.06
1.04
0.02
1.07
0.03
4.79
0.02
0.02
1
0.06
0.49
0.01
0.64
0.02
8.27
0.03
0.06
2
0.13
0.77
0.01
(C)
(O)
(c>
0.13
2
0.13
2.42
0.05
(O

(o)
10.20
351
21.99
191.37
3.61
(c)
(O)
0.58
6
0.38
43.20
0.81
6.56
0.19
78.03
0.28
2.04
()
()
15.99
0.81
6.89
0.20
<>
()
0.15
5
0.31
5.40
0.10
(c)
(O)
(O)
<> to
0. 02
1
0.06
0.62
0.01
0.75
0.02
11.42
0.04 t-i
0.04
2
0.13
0.64
0.01


(o)
<> (T\
0.02
1
0.06
2.01
0.04
1.68
0.05
19.95
0.07
0.43
()
()
9.37
0.18
4.79
0.14
<>
()
38.80
771
48.31
1195.23
22.53
178.28
5.13
1297.56
4.72
(b)
()
<)
1279.11
24.11
190.50
5.49
<)
(i
74.65
1149
71.99
5180.67
97.64
2322.25
66.89
2934.49
10.67
0.08
1
0.06
0.98
0.02
(o>
<)
(o)
86.78
1564
97.99
5277.13
99.46
2499.14
71.98
3184.69
11.58
100.00
1596
100.00
5305.63
100.00
3471.93
100.00
27510.75
100.00
216


109
This situation offers the zooarchaeologist potential
intraestuarine, temporal salinity indicators, at least for
those sites that contain a large percentage of eastern
oyster in their middens. Unfortunately, no systematic
distribution study of living molluscs exists for Charlotte
Harbor. The North Carolina study, however, includes species
whose zoogeographic ranges extend to the Gulf of Mexico
(Wells 1961:240, 249-250). The most notable of these in
terms of abundance and well-defined salinity tolerance is
the crested oyster, Ostrea equestris (Galtsoff 1964:12;
Galtsoff and Merrill 1962; Hofstetter 1959:1-2), whose
optimum salinity seems to be 32 ppt or higher and whose
lower limit is generally between 28 and 29 ppt (Wells
1961:249, 253). At the high-salinity end of the estuarine
gradient, crested oysters become so abundant that they
replace the eastern oyster (Galtsoff 1964:406).
Diachronic paleoenvironmental reconstruction based on
proxy fauna hinges on whether or not the short-, medium-,
and long-term environmental changes have recognizable and
distinguishable zooarchaeological signatures. This
determination clearly is hampered by the inability to
determine the length of time it took to deposit any one
zooarchaeological midden sample. In shell middens, if a
large deposit of generally unbroken shells is free of
sediment, it can be inferred that the shells accumulated
relatively rapidly. If layers of dense sediment occur, it


179
variation between Archaic and later periods. Any future
attempt at temporal analyses of subsistence-related
artifacts should take into account the estuarine spatial and
temporal environmental variation that has been established
in this dissertation. Variation in subsistence technology
may well be related to spatial heterogeneity or to
geophysical dynamism (e.g., inlet changes or sea-level
fluctuations).


168
objects has been identified as saffron-plum, Bumelia sp., a
lightweight wood (Lee Newsom, personal communication 1988).
Such wood would not be appropriate as a pestle. This type
of net, illustrated in Figure 19, would have been relatively
snag-free, making effective gill (larger meshes) or seine
(smaller meshes) nets (Robert D. Knight, personal
communication 1985).
Many perforated arc shells have been recovered from the
five study sites but with no other direct evidence of nets
preserved. Important indirect artifactual evidence,
however, occurs in the form of shell and bone net mesh
gauges used to manufacture the fishing nets. These have
been recovered from two of the study sites, Josslyn Island
and Cash Mound. The Key Marco collection contains several
wooden examples and numerous shell and bone gauges (Walker
1991). Pineland has also produced several shell and bone
examples (Walker 1991).
The shell and bone gauges from these sites and a few
others fall into seven width categories (Walker 1991). The
width of the gauge corresponds to the desired bar length
(Libert, Maucorps, and Innes 1987:3-4) or to one side of the
mesh (measured inside the knots). Doubled, this measurement
equals the mesh "opening" (Klust 1982:147), called the
"stretch" by contemporary fisherfolk. It is this
measurement that determines the fish size to be targeted.
In reality, mesh bar measurements can vary slightly from the


9
interdependent nature of environments, circularity in
reasoning, at times, becomes practically unavoidable in this
endeavor (Dincauze 1987:291-292). Despite this drawback,
the present study holds promise for research in the
Charlotte Harbor region.
The nature of model-building is to generalize (Levins
1966:421-422) for heuristic or operative purposes. In the
Charlotte Harbor model, it is necessary to simplify
environmental variation so that archaeologists can ask and
answer guestions at a scale of, say, 100- to 200-year
increments (congruent with radiocarbon dating). In other
words, the goal, where possible, is to obtain data sets that
mediate potential short- and medium-term variation due to
intraannual and year-to-year change; for example, the
spatial perspective is based, with one exception, on
"averaged" site samples. However, intraannual and
year-to-year discontinuities do require careful
consideration when temporal interpretations are inferred.
Awareness of environmental continuity and change in
space and time at multiple scales should eventually allow
Charlotte Harbor archaeologists to focus on hypotheses more
specific to cultural change. In other words, we cannot make
valid inferences about cultural change based on faunal
patterns if we fail to recognize operative environmental
parameters at specific spatial and temporal scales. This is
because Charlotte Harbor is characterized by habitat


188
Archaeobotanical data can provide a vegetation profile,
albeit incomplete, for any given site at any given time
period. Assuming that people would not travel far for fuel
wood, charred wood fragments from a particular coastal site
may have potential to provide signatures of sea-level
change, especially in the case of sites located on small
estuarine islands. Fluctuating use of pine (dry) and
mangrove (wet) may reveal patterns of relevance to huricane
and sea-level episodes.
As a final note, it is emphasized that if the operative
environmental forces are understood in an organized and
systematic manner, then cultural notions such as
overexploitation of resources, technological innovation, and
subsistence intensification can be tested within the
appropriate context and thus validly recognized. Attention
to scalar context, both spatial and temporal will lead to an
avoidance of lumping data that represent heterogenous
regions and multiple temporal events. It is hoped that this
multiscalar study represents a beginning toward a contextual
understanding for coastal southwest Florida and that it
stimulates further research.


263
Archaeology and Paleoenvironmental Studies, Florida
Museum of Natural History, Gainesville.
Harris, B. A., K. D. Haddad, K. A. Steidinger, J. A. Huff,
and M. Y. Hedgepeth
1983 Assessment of Fisheries Habitat: Charlotte Harbor
and Lake Worth, Florida. Florida Department of Natural
Resources, St. Petersburg, Florida.
Harvey, Judson
1979 Beach Processes and Inlet Dynamics in a Barrier
Island Chain, Southwest Florida. Publication No. 22.
New College Environmental Studies Program, University
of South Florida, Sarasota.
Hathaway, Ralph R.
1958 The Crown Conch Melongena corona Gmelin; Its Habits,
Sex Ratios, and Possible Relations to the Oyster.
Proceedings of the National Shell fisheries Association
48:189-194.
Hathaway, Ralph R. and Kenneth D. Woodburn
1961 Studies on the Crown Conch Melongena corona Gmelin.
Bulletin of Marine Science of the Gulf and Caribbean
11(1):45-65.
Herwitz, Stanley
1977 The Natural History of Cayo-Costa Island.
Publication No. 14. New College Environmental Studies
Program, University of South Florida, Sarasota.
Hoese, H. Dickson and Richard H. Moore
1977 Fishes of the Gulf of Mexico, Texas, Louisiana, and
Adjacent Waters. Texas A & M University Press, College
Station.
Hofstetter, Robert P.
1959 The Texas Oyster Fishery. Bulletin No. 40. Texas
Game and Fish Commission, Austin.
Hopkins, Sewell H.
1956 Notes on the Boring Sponges in Gulf Coast Estuaries
and Their Relation to Salinity. Bulletin of Marine
Science of the Gulf and Caribbean 6(l):44-58.
Hutchinson, Dale L.
1992 Prehistoric Burials from Buck Key. In Culture and
Environment in the Domain of the Calusa, edited by W.
H. Marquardt, pp. 411-422. Monograph 1, Institute of
Archaeology and Paleoenvironmental Studies, Florida
Museum of Natural History, Gainesville.


48


163
Sessile molluscs, such as oysters, mussels, clams, and pen
shells, are today uncommon in the vicinity of Josslyn.
Fished individuals dominate only one chart, that of Buck Key
(47% MNI), the site closest to an inlet. Overall, Big Mound
Key samples demonstrate a well diversified menu of animal
foods whereas Cash Mound exhibits a highly specific
activity, that of gathering oysters and mussels (84% MNI).
Maximum meat weight rankings for the top ten bony
(i.e., excludes sharks and rays) fishes at each site show
that hardhead catfish provided the greatest quantities in
the Cash Mound, Useppa Island, and Buck Key samples, and was
second highest for the Josslyn samples (Table 11).
Estimates of catfish meat weight is comparatively small in
the samples from Big Mound Key. Pinfish prevail in the
Josslyn Island samples, reflecting exploitation of the
site's surrounding expansive seagrass meadows. Also, the
lack of large, predaceous fishes among the Josslyn ranking
is indicative of the site's distance away from deeper waters
and inlets.
Despite low MNI (Appendix A), large fishes such as
jacks (primarily crevalle jack), barracudas/mackerels, black
drum, and snook can represent important components to the
human diet (Table 11). These fishes are most noticeable in
the Big Mound Key and Buck Key rankings, reflecting their
close proximity to ocean inlets. Also supportive of the
large, predatory fish/nearby inlet association is the


267
1992 [Edited by] Culture and Environment in the Domain of
the Calusa. Monograph 1, Institute of Archaeology and
Paleoenvironmental Studies, Florida Museum of Natural
History, University of Florida, Gainesville.
1992a Recent Archaeological and Paleoenvironmental
Investigations in Southwest Florida. In Culture and
Environment in the Domain of the Calusa, edited by W.
H. Marquardt, pp. 9-57. Monograph 1, Institute of
Archaeology and Paleoenvironmental Studies, Florida
Museum of Natural History, Gainesville.
1992b Shell Artifacts from the Caloosahatchee Area. In
Culture and Environment in the Domain of the Calusa,
edited by W. H. Marquardt, pp. 191-227. Monograph 1,
Institute of Archaeology and Paleoenvironmental
Studies, Florida Museum of Natural History,
Gainesville.
Marquardt, William H. and Carole L. Crumley
1987 Theoretical Issues in the Analysis of Spatial
Patterning. In Regional Dynamics: Burgundian
Landscapes in Historical Perspective, edited by C. L.
Crumley and W. H. Marquardt, pp. 1-18. Academic Press,
San Diego.
Menzel, R. Winston and Fred E. Nichy
1958 Studies of the Distribution and Feeding Habits of
Some Oyster Predators in Alligator Harbor, Florida.
Bulletin of Marine Science of the Gulf and Caribbean
8(2):125-145.
Milanich, Jerald T.
1987 Corn and Calusa: De Soto and Demography. In
Coasts, Plain and Deserts, Essays in Honor of Reynold
J. Rupp, edited by Sylvia W. Gaines, pp. 173-184.
Arizona State University Anthropological Research
Papers No. 38. Tempe.
Milanich, Jerald T., Jefferson Chapman, Ann S. Cordell, H.
Stephen Hale, and Rochelle A. Marrinan
1984 Prehistoric Development of Calusa Society in
Southwest Florida: Excavations on Useppa Island. In
Perspectives on Gulf Coast Prehistory, edited by D. D.
Davis, pp. 258-314. University Presses of Florida,
Gainesville.
Milanich, Jerald T., and Charles H. Fairbanks
1980 Florida Archaeology. Academic Press, New York.


198
GASPARILLA PASS
Buck Key
Z3 Gathering snails
H Crabbing
L__J Gathering bivalves
IIIIII Other
M N
Big Mound Key
y
CHfi
BOCA GRANDE PASS
Cash Mound
Useppa Island
54
CAPTIVA PASS
REDFlSH PASS
o
Josslyn Island
^53 ^
CARLOS
BUCK
_ KEY
Blind pass
Fishing


Tetraodontidae
(puffers)
2
N
o
o
<)
<)
0.04
0.00
1.22
0.02
<)
<>
Chllomycterue echoepf1
(atripad burrfish)
2
0.02
2
0.16
0.65
0.01
14.96
0.22
362.10
0.90
Dlodontldaa
(burr and porcupine fishes)
1
0.01
<)
<>
0.01
0.00
0.35
0.01
()
<)
Osteichthyes
(bony fishes)
5043
46.62
(>
<)
182.22
0.66
2370.19
34.90
()
(*>
Total Osteichthyes
(bony fishes)
5882
54.3 8
239
18.70
217.17
2.27
2998.19
44.15
33859.93
84.32
Vartabrata (predominantly fish)
(backboned animals)
<*>>
()
(*)
141.25
1.47
1875.91
27.62
<)
(
Total Vartabrata
(backboned animals)
5953
55.03
246
19.25
363.57
3.80
5340.23
78.63
37954.21
94.52
Balanus app.
(barnacle)
<0
0.55
18
1.41
7.19
0.08
(O)
(o)
(o)
Dacapoda
(crabs)
1
0.01
1
0.08
0.11
0.00
1.60
0.02
83.40
0.21
Total Cruatacaa
(aquatic arthropods)
61
0.56
19
1.49
7.30
0.08
1.60
0.02
83.40
0.21
Modulus modulus
(Atlantic modulus)
1
0.01
1
0.08
0.12
0.00
(o)
Cerlthldea scalariformls
(ladder horn shall)
5
0.05
5
0.39
0.28
0.00
(o)
(O
(O)
Csrithiurn musearum
(fly-apackad carith)
10
0.09
10
0.78
0.76
0.01
(O)
(O)
Crsplduls app.
(slipper-shell)
9
0.08
9
0.70
0.66
0.01
(o)
(O)
(C)
(o)
Polinices duplicstus
(shark aye)
57
0.53
10
0.78
42.98
0.45
18.60
0.27
34.58
0.09
Urosalpinx perrugata
(Gulf oyatar drill)
1
0.01
1
0.08
0.20
0.00
(O)
(>
Uro salpinx/He longan a
(oyster drill/crown conch)
72
0.67
31
2.43
14.61
0.15
(C)
(o>
A achis lafresnayl
(wall-ribbed dove-shell)
3
0.03
3
0.23
0.23
0.00
(Ol
(O)
(c)
(O
Melongena corona
(common crown conch)
1995
18.44
305
23.87
1468.92
15.34
233.12
3.43
786.12
1.96
Bueycon contrarium
(lightning whelk)
15
0.14
2
0.16
68.18
0.71
22.14
0.33
30.14
0.08
Bueycon spiratum pyruloides
(Say's pear whelk)
10
71.63
3
0.23
15.52
0.16
8.53
0.13
31.83
0.08
Naesarius vibex
(common eastern nassa)
1
0.01
1
0.08
0.15
0.00
(O)
(o)
(c)
(O
Fasciolaria lilium hunter la
(banded tulip)
47
0.43
10
0.78
25.98
0.27
11.32
0.17
476.15
1.19
Marginalia app.
(marginalia)
1
0.01
1
0.08
0.09
0.00
(o)
(c)

Gastropoda (medium marina)
(medium-sized marina snails)
879
8.13
<)
<)
181.41
1.89
81.52
1.20
<)
()
Total Marina Gaatropoda
(marina snails)
3106
28.71
392
30.67
1820.09
19.00
375.23
5.53
1358.82
3.38
Euglandina rosea
(rosy euglandina)
6
0.06
1
0.08
1.40
0.01
(o)
(O)
(o)
(c)
Polygyra app.
(polygyr.)
10
0.09
9
0.70
0.21
0.00
(O)
(c)
(c)
(C)
Total Tarraatrial Gaatropoda
(terrestrial snails)
16
0.15
10
0.78
1.61
0.02
(C)
<>
(c)
(O)
Geukenela demiasa granos!asima
(Atlantic ribbed mussel)
47J(.)
4.37
246
19.25
316.60
3.31
61.12
0.90
528.90
1.32
Argopecten app.
(scallop)
1
0.01
1
0.08
0.21
0.00
0.36
0.01
12.10
0.03
Pactinidaa/Cardiidaa
(scallops/cockles)
6
0.06
()
()
2.10
0.02
1.73
0.03
(
(>
Crasaoatrea virginica
(eastern oyster)
X117(*>
10.33
343
26.84
2671.00
27.89
665.03
9.79
130.34(f)
0.32
Cardltamera floridana
(broad-ribbed cardita)
12
0.11
4
0.31
9.02
0.09
(O)
()
(o)
Dinocardlum robus turn vanhynlngl
(Van Hyning's cockle)
3
0.03
2
0.16
9.14
0.10
4.70
0.07
36.97
0.09
Splsula solldlssima almilla
(southern surf clam)
1
0.01
1
0.08
0.28
0.00
0.35
0.01
8.30
0.02
Polymeeoda martima
(Florida marsh clam)
23
0.21
9
0.70
5.45
0.06
3.31
0.05
9.25
0.02
Mercenaria campechlensls
(southern quahog)
17
0.16
1
0.08
188.05
1.96
27.73
0.41
32.42
0.08
Anomalocardla auberlana
(pointed venus)
6
0.06
4
0.31
1.57
0.02
(o)
(o)
(o)
Bivalvia
(oysters, clams, etc.)
22
0.20
()
(>
10.16
0.11
5.06
0.00
<)
(*)
Total Bivalvia
(bivalves)
1681
15.54
611
47.81
3213.58
33.55
769.39
11.33
758.28
1.89
Molluaca(predominantly bivalve)
(snails and bivalves)
(b)
<>
<>
4172.31
43.56
305.02
4.49
<)
()
Total Molluaca
(snails and bivalves)
4803
44.40
1013
79.26
9207.59
96.13
1449.64
21.35
2117.10
5.27
Total Invartabrata
(animals without backbones)
4864
44.97
1032
80.75
9214.89
96.20
1451.24
21.37
2200.50
5.48
TOTAL SAMPLE
(vertebrates-f invertebrates)
10817
100.00
1278
100.00
9578.46
100.00
6791.47
100.00
40154.71
100.00
218


174
fish using the composite hooks, it is more likely that these
fishhooks were adapted for trolling in relatively deeper
waters (Tartaglia 1976:99), particularly in the vicinity of
the ocean passes. Worldwide, fishing with simple throat
gorges is commonly associated with quiet, shallow waters
(Tartaglia 1976:105) similar to those of the Charlotte
Harbor region (Walker 1991). This type of hook is designed
for the capture of fish that swallow their food whole rather
than nibble it.
The technology of shark fishing in the aboriginal
Southeast has been a focus of discussion among
archaeologists (Kozuch 1991; Larson 1980:82-86; Widmer
1986b; Wing and Loucks 1983:324). The Charlotte Harbor
samples include nine shark species (Appendix A; Table 12),
all of which are known to feed in inshore waters (Hoese and
Moore 1977; Odum et al. 1982; Wang and Raney 1971). The
zooarchaeological specimens indicate that the majority of
these sharks were juveniles. These individuals may have
been caught in inshore tidal weirs, as Larson suggests
(1980:99), or netted inadvertently in the shallow waters.
Buck Key and Big Mound Key, located closest to ocean inlets,
exhibit the highest MNI of sharks, as noted earlier (Table
12). This may reflect a more aggressive exploitation,
perhaps using baited, large wooden hooks and lines for
capture and a club for the kill, or a rope noose method
(Kozuch 1991; Widmer 1986b: 247).


113
Temporal Zooarchaeological Assemblages
The following examination of zooarchaeological samples
is arranged chronologically rather than by site. The time
range is from 570 B.C. to A.D. 1350. The samples are placed
within their spatial context, established earlier in this
study, in effect comparing the single faunal assemblages to
the modern gradient model. A match would imply a local
environment very similar to that of the present-day one.
Changes in state or condition would imply environmental
change in which case the potential factors discussed above
are considered and offered as explanatory hypotheses.
The Useppa sample, A-4-2, radiocarbon-dates to 570 B.C.
(Table 2), making it the earliest zooarchaeological
assemblage in the present study. Useppa Island is located
in western Pine Island Sound (Figure 1). Quantification
(Figure 7; Table A-9) indicates that oysters were important
to the diet of the island's inhabitants and that they and
associated invertebrates reflect mid-salinity water
conditions.
The crested oyster to eastern oyster ratio based on MNI
is 1:26 (Table A-9). The low numbers of crested oyster,
which require conditions of high salinity (28 35+ ppt),
suggest that salinities around Useppa were near the lower
end of the animal's salinity range, 28 to 29 ppt.
Salinities today in the area average 31 ppt or more (Wang
and Raney 1971:18), too high for productive eastern oyster


115
high-salinity waters from the Useppa area. However, Herwitz
(1977:70) notes evidence of another old pass, unnamed, at
the southern end of Cayo Costa that probably preceded
Captiva Pass. Even if this inlet existed, it would have
allowed the entry of high-salinity waters to the south of
the Useppa area, as Captiva Pass does today.
For an archaeological site located so near to the
ever-changing barrier island chain, we cannot know which
long-term factors were most influential. Perhaps both
sea-level and inlet forces were important. We can, however,
safely infer that Useppa Island ca. 570 B.C. was not under
the influence of an open Platt Pass. A final possibility is
that Useppa's local environment, including its relationship
with the various inlets on Cayo Costa, was like today's and
that a medium-term freshening of area waters resulted in the
pattern of oyster bed fauna.
The oldest two Josslyn (Figure 1) samples, A-l-32 and
A-l-22, radiocarbon-date to 130 B.C. and 120 B.C.,
respectively (Table 2). The archaeofauna from each of these
samples document an intensive exploitation of the
shallow-water, seagrass-meadow habitat with much less
importance placed on oyster bars (Figure 7; Figure 11; Table
A-10). This picture is congruent with the present local
environment of Josslyn, where mean annual salinities average
32 ppt (Wang and Raney 1971:18). Eastern oyster communities
are not common in present-day Pine Island Sound due to


UNIVERSITY OF FLORIDA
3 1262 08557 2062


Table A-16--continued
Number of
%
%
Bone/Shell
%
Minimum
Maximum
%
Identifiable
of
MNI
of
Weight
of
Meat Wt.
of
Meat Wt.
of
Species
Common Name
Fragments
Total
Total
(grams)
Total
Estimate
Total
Estimate
Total
Mollusca
(snails and bivalves)
(b)
(b)
(a)
(a)
7019.18
49.19
822.85
8.76
(a)
(a)
Total Mollusca
(snails and bivalves)
5198
58.78
1333
86.45
13734.06
96.26
2861.05
30.46
7781.88
26.69
Desmotichia
(sea urchins)
91
1.03
1
0.06
2.35
0.02
(d)
(d)
Scutellida
(sand dollars)
1
0.01
1
0.06
1.86
0.01
(o)
(a)
(o)
Total Invertebrata
(animals without backbones)
5511
62.32
1476
95.72
13795.20
96.69
2993.52
31.87
8032.08
27.55
TOTAL SAMPLE
(vertebrates*invertebrates)
8843
100.00
1542
100.00
14268.10
100.00
9393.34
100.00
29152.12
100.00
248


258
Cordell, Ann S.
1992 Technological Investigation of Pottery Variability
in Southwest Florida. In Culture and Environment in
the Domain of the Calusa, edited by W. H. Marquardt,
pp. 105-189. Monograph 1, Institute of Archaeology and
Paleoenvirorunental Studies, Florida Museum of Natural
History, Gainesville.
Craighead, Frank C., and Vernon C. Gilbert
1962 The Effects of Hurricane Donna on the Vegetation of
Southern Florida. The Quarterly Journal of the Florida
Academy of Sciences 25(l):2-28.
Cushing, Frank H.
1897 Exploration of Ancient Key Dweller Remains on the
Gulf Coast of Florida. Proceedings of the American
Philosophical Society 35(153):329-448.
Dalby Jr., James E.
1989 Predation of Ascidians by Melongena corona
(Neogastropoda: Melongenidae) in the Northern Gulf of
Mexico. Bulletin of Marine Science 45(3) :708-712.
Darcy, George H.
1985 Synopsis of Biological Data on the Pinfish, Lagodon
rhomboides (Pisces: Sparidae). FAO Fisheries Synopsis
No. 141. U.S. Department of Commerce, Washington, D.C.
Davis, Richard A., Jr., Stephen C. Knowles, and Michael J.
Bland
1989 Role of Hurricanes in the Holocene Stratigraphy of
Estuaries: Examples from the Gulf Coast of Florida.
Journal of Sedimentary Petrology 59(6):1052-1061.
Day, John W., Jr., Charles A. S. Hall, W. Michael Kemp, and
Alejandro Ynez-Arancibia
1989 Estuarine Ecology. John Wiley & Sons, New York.
Dean, Jeffrey S., Robert C. Euler, George J. Gumerman, Fred
Plog, Richard H. Hevly, and Thor N.V. Karlstrom
1985 Human Behavior, Demography, and Paleoenvironment on
the Colorado Plateaus. American Antiquity
50(3):537-554.
Denton, George H. and Wibjrn Karln
1973 Holocene Climatic VariationsTheir Pattern and
Possible Cause. Quaternary Research 3:155-205.


Figure 3. The Distribution of Charlotte Harbor
Zooarchaeological Invertebrate Samples by Number of
Taxa and Minimum Number of Individuals (MNI).
Numbers Refer to the List Given in Table 2.


159
recovered. Unit B-2 produced the largest vertebrate faunal
samples from the Buck Key Shell Midden site, totaling 373
MNI (Tables A-14 and A-15). Sample B-2-5 exhibits the
highest diversity (taxonomic richness) of all 17 samples in
the Charlotte Harbor study, with 37 vertebrate and 49
invertebrate taxa (Table A-14). The B-2 radiocarbon dates
are A.D. 1250 and A.D. 1350 (Table 2). The following
description of results is based on analysis of the two
samples from B-2.
Based on the archaeofauna, the inhabitants of Buck Key
used resources found in mangrove/seagrass (62% MNI),
littoral/ Gulf (17% MNI), and oyster bed (13% MNI) habitats
(Figure 7). Adjacent to Blind Pass and separated from
Captiva Island by the narrow Roosevelt Channel, Buck Key is
today the closest to the open Gulf waters of all five study
sites. Fish vertebrae widths (Figure 8) for Cash Mound,
Josslyn Island, and Buck Key suggest that larger individuals
were caught in the vicinity of Buck Key. In addition, the
highest number of sharks, of all the sites, occurs in the
Buck Key Midden samples (Table 12).
Fishes accounts for 47% of total MNI, a higher
percentage than at the other four study sites (Figure 16).
Most abundant are hardhead catfish, pinfish, striped
burrfish, sheepshead, and silver perch. In addition to
these, snook, jack, seatrout, red and black drum, and mullet
were important meat sources (Appendix A). Gathering


26
and often impossible to assess. Results of a midden
experiment by Wing and Quitmyer (1992) suggest that
post-deposition losses of fish bones occur in shell middens.
Equally disconcerting are the endless undetectable
socio-cultural activities that determine archaeological
faunal patterns. One problem associated with massive,
complex shell mound sites is the taphonomic distinction
between primary and secondary midden deposits. Based on
test unit location, stratigraphy, and radiocarbon dates, I
believe that the midden samples in the present study
represent primary deposits.
As is often the case, it is the absence or infrequent
occurrence of expected species that puzzles the
zooarchaeologist. There are four examples of fish that are
today abundant in the Charlotte Harbor area but are either
missing or infrequent in the shell midden samples of the
present study. The significance of mullet (Mugil spp.) in
southwest Florida prehistory is a matter of concern (Goggin
and Sturtevant 1964:185; Marquardt 1986:66). Although a
mullet fishery is reported in the ethnohistoric literature
(Lpez de Velasco 1894:163; Weddle 1985:22) and the fish are
abundant today, relatively few bones are recovered from
sites, often only thoracic vertebrae. Whether the
explanation is one of sampling, preservation, environmental
change, or cultural practice should be investigated.


108
that described in the above section, one may have to use a
finer analytic scale.
The oyster bar community (i.e., oysters and all
associated species) is thus of special importance to
estuarine paleoenvironmental interpretation. The presence
of oyster bars can suggest the presence of estuarine
conditions. The oyster's wide salinity range, 5 to 35 ppt,
theoretically can cover essentially the entire gradient
however, the extremes are tolerated only for brief periods.
At a finer resolution, the species composition of the bar
community at a given time and place reflects a much more
restricted salinity range within the estuarine context (Day
et al. 1989:348; Wells 1961).
It is the epibionts associated with the oyster in the
bar community that allow a fine-tuning of salinity
interpretations (Wells 1961:239, 249-250, 252). Organisms
such as boring sponges (Cliona spp.), crested oyster (Ostrea
equestris), slipper shells (Crepidula spp.), etc. are
reliable indicators of salinity changes (Galtsoff and
Merrill 1962; Hopkins 1956; Puffer and Emerson 1953; Wells
1961). Clusters of oysters transported by humans, even if
culled at the bar, must have maintained some degree of their
community integrity because the shells of many of these
associated organisms entered the zooarchaeological record
firmly attached to host Crassostrea oyster shells (Appendix
A) .


95
between warm trends and the increase of major storm (winter
storms and hurricanes) activity in south Florida (Galli
1989). Mean annual sea level also fluctuates (within
roughly a 10 cm range) over time at this scale and appears
to be related to solar activity (Galli 1989:180).
Inlet Dynamics
In the Charlotte Harbor barrier island chain,
present-day inlets include Gasparilla Pass, Boca Grande
Pass, Captiva Pass, Redfish Pass, and Blind Pass (Figure 1).
For the most part, these inlets exist today under natural
conditions (i.e., no human-made jetty systems).
Most coastal inlets exist in a constant state of
change. The dynamic nature of inlets primarily results from
the geophysical processes of onshore transport, longshore
transport, and storm breaching of sediments. Thus, sands
associated with inlets can be perceived as "migrating"
deposits as they erode or accrete. At multiple time scales,
cyclical closing and opening of an inlet can alter local
salinity conditions in the lagoon, affecting aquatic faunal
distribution. Also, inlets provide entry and exit avenues
for large, predatory marine fishes (e.g., sharks). Although
a single hurricane can create an inlet, the resulting change
of nearby water conditions and access takes effect at
medium- to long-term scales.
At the medium-term scale many inlets would have
migrated. This is best illustrated at Blind Pass, which has


202
2.5mm 8.8mm
atlas premaxilla


Table A-2--continued
Number of
%
\
Bone/Shell
\
Minimum
%
Maximum
%
Identifiable
of
KNI
of
Weight
of
Meat Wt.
of
Meat Wt.
of
Species
Common Name
Fragments
Total
Total
(grams)
Total
Estimate
Total
Estimate
Total
Gastropoda (medium marine)
(medium-sized marine snails)
770
5.60
(a)
(a)
249.03
3.67
109.04
1.06
(a)
(a)
Total Marine Gastropoda
(marine snails)
3222
23.42
466
47.17
2827.48
41.63
620.85
6.04
2260.23
1.99
Anadara transversa
(transverse ark)
29
0.21
24
2.43
11.26
0.17
5.42
0.08
24.52
0.36
Noatla pondero*a
(ponderous ark)
6
0.04
3
0.30
61.43
0.90
17.23
0.25
28.40
0.42
Brachldontes exustus
(scorched mussel)
10
0.07
6
0.61
1.02
0.02
(a)
(o)
(e)
Oeukensla demises granosleelma
(Atlantic ribbed mussel)
1305
9.48
117
11.84
281.62
4.15
55.65
0.54
251.53
0.22
Pinnidae
(pen shells)
54
0.39
4
0.40
11.38
0.17
5.46
0.05
94.92
0.08
Argopecten spp.
(saallop)
3
0.02
3
0.30
12.13
0.18
5.71
0.06
14.88
0.01
Peotinidae
(scallops)
23
0.17
()
(a)
17.44
0.26
7.31
0.07
(a)
(a)
Pllcatula glbbosa
(kitten's paw)
3
0.02
3
0.30
1.84
0.03
(a)
(a)
Anomla simplex
(common jingle shell)
80
0.58
28
2.83
25.08
0.37
(o)
(o)
(o)
Ootrea equestrls
(crested oyster)
5
0.47
33
3.34
17.87
0.26
(o)
(o)
(o)
Crassoatree vlrglnlca
(eastern oyster)
410
2.98
57
5.77
497.98
7.33
69.77
0.68
58.30(f)
0.05
Ostreidae
(oysters)
22
0.16
(a)
(a)
4.55
7.33
2.93
0.03
(a)
(a)
Parvlluclna multlllneeta
(many-lined lucina)
1
0.01
1
0.10
0.15
0.07
(a)
(o)
(c)
Codakla spp.
(lucina)
1
0.01
1
0.10
0.12
0.00
(a)
(o)
(a)
Cmrdltamere florldana
(broad-ribbed cardita)
22
0.16
11
1.11
6.71
0.10
(a)
(a)
Trachycardlum egmontlanum
(prickly cockle)
2
0.01
1
0.10
1.30
0.02
1.25
0.01
6.86
0.01
Dlnocardlum robusturn vanhynlngl
(Van Hyning's cockle)
2
0.01
1
0.10
1.90
0.03
1.61
0.02
25.76
0.02
Polymesoda maritime
(Florida marsh clam)
6
0.04
5
0.51
1.75
0.03
1.53
0.01
3.37
0.00
Mercenaria campechlensls
(southern quahog)
20
0.15
8
0.81
368.71
5.43
49.37
0.48
202.55
0.18
Cblone cancellata
(cross-barred venus)
3
0.02
3
0.30
0.53
0.01

(a)
(a)
(a)
Anomalocardla auberlana
(pointed venus)
8
0.06
6
0.61
2.63
0.04
(o)
(a)
(o)
Macrocall lota nimbosa
(sunray venus)
94
0.68
5
0.51
94.42
1.39
23.09
0.22
75.70
0.07
Bivalvia
(oysters, clams, eta.)
56
0.41
(a)
(a)
11.33
0.17
5.45
0.05
(a)
(a)
Total Bivalvia
(oysters, clams, eta.)
2225
16.17
320
32.39
1433.15
21.10
251.78
2.45
786.79
0.69
Mollusca
(snails and bivalves)
(b)
(b)
(a)
(a)
2038.28
30.01
601.88
5.85
(a)
(a)
Total Mollusca
(snails and bivalves)
5447
39.59
786
79.55
6298.91
92.74
1474.51
14.34
3047.02
2.68
Madreporaria
(hard corals)
1
0.01
1
0.10
0.76
0.01
(o)
(o)
Total Invertebrate
(animals without backbones)
5560
40.41
820
83.00
6333.08
93.24
1657.26
16.11
3797.62
3.34
TOTAL SAMPLB
(vertebrate s+ invertebrates)
13760
100.00
988
100.00
6791.96
100.00
10284.85
100.00
113734.64
100.00
211


12
Sample Context and Excavation
The study has as its research universe the Charlotte
Harbor estuarine ecosystem, called here simply "Charlotte
Harbor." It is broadly defined as the subtropical coastal
area extending from Charlotte Harbor proper in the north to
Estero Bay in the south (Figure 1). For the purposes of
this study, then, the greater Charlotte Harbor area
constitutes a "region" (south Florida is also a region,
although broader in scale). The Charlotte Harbor region is
an arbitrary delineation based on a coastal ecosystem and
thus serves only as a starting point toward the
understanding of human-environment relationships in a
"dynamic region" (Marquardt and Crumley 1987:7-9). For
example, the rough chop of waters separating the Pine Island
Sound and Charlotte Harbor-Cape Haze areas (Figure 1) may
have represented a more realistic cultural boundary in the
prehistoric past. Point locations (e.g., archaeological
sites) within the region constitute "localities." The study
focuses on these two spatial scales, designated by Dincauze
(1987:261-262) as "mesoscale" (regional) and "microscale"
(local) .
Although the cultural history of southwestern Florida
extends to the Early Paleoindian period, the time frame
under study in this dissertation is limited to approximately
600 B.C. to A.D. 1400, encompassing Caloosahatchee I through
IV periods (Table 1). The 2000-year span falls within


134
Buck Key's western shoreline. The absence of a discernible
salinity change also supports this situation.
Neither of these two fourteenth-century samples exhibit
evidence of a drop in sea level as hypothesized by Stapor et
al. (1991) and Tanner (1991) beginning A.D. 1450 and A.D.
1150/1250 (Table 7). Either Stapor et al.'s estimate is
closer to the mark and Buck Key was occupied and abandoned
before the onset of the Little Ice Age era, or the
archaeofauna is not sensitive enough to detect a
small-magnitude drop (.3 to .6 m or 1 to 2 ft below
present) in sea level at the high-salinity end of the
estuarine gradient. Either could be the case.
Effective Scale and Zooarchaeoloaical Potential
At what effective scale(s) did estuarine variability
alter the basic subsistence menu and overall strategies in
the evolutionary history of the Charlotte Harbor people? We
are now better prepared to answer this question because we
have a clearer understanding of the potential of
estuarine/marine zooarchaeological remains as proxy data for
paleoenvironmental modeling. Based on preceding analyses,
the potential of archaeofauna as proxy paleoenvironmental
data is related to three considerations. These are temporal
scale of environmental variation, intraregional site
location, and magnitude of the variation.
Archaeologists, by the nature of the radiocarbon-dating
technique, are forced to work at the long-term scale. With


117
Suggestive of a lower sea level for ca. 120/130 B.C.
(sample A-l-32) and earlier is a recorded submergence of the
lowest levels of the Josslyn excavation. Below A-l-38, the
midden continued another 60 cm (about 2 ft) below water
table. Subsidence of midden deposits may account for some
of this submergence but it would be minimal because the
substrate is sandy and would have supported the midden
weight. Still, in an area as shallow as that where Josslyn
is located, all of the submergence does not seem to be
accounted for without pointing to a post-midden rise in sea
level from a level lower (i.e., Stapor et al. and Tanner's
low stand prior to 150/50 B.C.) than that of the present.
Data from vibracores taken in other areas of Josslyn Island
suggest to Upchurch et al. (1992) that some portions of the
middens were deposited in shallow water, as a result of the
prograding site. An alternative explanation for the
submerged midden would be a small-scale sea-level
fluctuation.
Radiocarbon dates for the lower three Cash Mound
samples, A-l-20, A-l-17, and A-l-8, overlap in time, ranging
from A.D. 150 to A.D. 270 (Table 2). The fourth and
uppermost sample, A-l-4, dates to several hundred years
later, A.D. 680. Turtle Bay, where Cash Mound is located
(Figure 1), is today an area of mid- to low-salinity
(isolated readings of 21.8 ppt for December, 1968 and 22.2
ppt for November, 1968) waters (Wang and Raney 1971:6,


175
Archaeological (Cushing 1897:36) and ethnohistorical
(Dickinson 1985:34) support exists for stable, ocean-going
vessels, but this type of water craft need not have been
associated with fishing. Offshore shark fishing cannot be
ruled out for aboriginal Charlotte Harbor, but to date there
is no evidence for it.
Shellfish gathering surely required a simpler
technology than that for fishing. A gatherer might need a
probing or digging implement to locate imbedded bivalves or
a pounding tool for use in breaking oysters free from a
clutch. Wooden tools could have served as digging
implements and shell hammers or pounders would have provided
culling tools. The practice of culling an oyster clutch at
the collection site is suggested by the infrequent midden
occurrence of shells that were gathered dead. For mobile
gastropods and free-swimming scallops, one might need no
tool at all. Blue crabs could have been collected in basket
traps, but based on the paucity of their archaeological
remains, they probably were collected incidentally rather
than targeted. Stone crabs, probably collected by hand (Don
Cyzewski, personal communication 1985; Larson 1980:79-80),
were abundant only in the Buck Key midden samples (Appendix
A) .
Perhaps the most important piece of "equipment"
associated with shellfishing was the container. Wing and
Brown (1979:94) state that "when viewed from the standpoint


266
e ilustracines, por Don Justo Zaragosa.
Establecimiento Tipogrfico de Fortanet, Madrid.
Lowrie, Allen and Rhodes W. Fairbridge
1991 Role of Eustasy in Holocene Mississippi Delta-lobe
Switching. GCSSEPM Foundation Twelfth Annual Research
Conference, Gulf Coast Section, pp.111-115.
Luer, George M.
1986Some Interesting Archaeological Occurrences of
Quahog Shells on the Gulf Coast of Central and Southern
Florida. In Shells and Archaeology in Southern
Florida, edited by G. Luer, pp. 125-159. Florida
Anthropological Society, Publication 12, Tallahassee.
Luer, G., D. Allerton, D. Hazeltine, R. Hatfield, and D.
Hood
1986 Whelk Shell Tool Blanks from Big Mound Key (8CH10),
Charlotte County, Florida: With Notes on Certain Whelk
Shell Tools. In Shells and Archaeology in Southern
Florida, edited by G. Luer, pp. 92-124. Florida
Anthropological Society, Publication 12. Tallahassee.
Marquardt, William H.
1984 The Josslyn Island Mound and its Role in the
Investigation of Southwest Florida's Past. Florida
State Museum, Department of Anthropology, Miscellaneous
Project Report Series 22. Gainesville.
1985 Complexity and Scale in the Study of
Fisher-Gatherer-Hunters: An Example from the Eastern
United States. In Prehistoric Hunter-Gatherers: The
Emergence of Cultural Complexity, edited by T. D. Price
and J. A. Brown, pp. 59-98. Academic Press, Orlando.
1986 The Development of Cultural Complexity in Southwest
Florida: Elements of a Critique. Southeastern
Archaeology 5:63-70.
1987 The Calusa Social Formation in Protohistoric South
Florida. In Power Relations and State Formation,
edited by T. C. Patterson and C. W. Gailey, pp. 98-116.
American Anthropological Association, Washington, D.C.
1988 Politics and Production Among the Calusa of South
Florida. In Hunters and Gatherers, vol. 1: History,
Evolution, and Social Change in Hunting and Gathering
Societies, edited by T. Ingold, D. Riches, and J.
Woodburn, pp. 161-188. Berg Publishers, London.
1991 Introduction. Missions to the Calusa. University
of Florida Press, Gainesville.


40
Table 5continued.
Note: Regression formula:
Y = aXb
transformed log Y = log a + b(log X)
where Y = meat weight in grams
X = linear measurement (mm)
a = y intercept
b = slope
a Measurements follow those described and illustrated in
Quitmyer 1985 and Hale et al. n.d.
b Source: Fitzgerald 1986
c Source: Quitmyer 1985
d Source: Hale et al. n.d.


Table A-3
Layer 7.
Faunal Analysis, Big Mound Key, 8CH10, Charlotte County, Florida, August 1982 Sample, U.1/S.4
Number of
%
Bone/Shell
\
Minimum
Maximum
%
Identifiable
of
MNI
of
Weight
of
Meat Wt.
of
Meat Wt.
of
Species
Common Name
Fragments
Total
Total
(flr)
Total
Estimate
Total
Estimate
Total
Mammalia (medium)
(medium-sized mammals)
8
0.07
1
0.08
1.93
0.02
43.78
0.81
3821.06
10.61
Mammalia (large)
(large mammals)
11
0.09
1
0.08
7.57
0.09
132.46
2.46
23595.1
65.50
Total Mammalia
(mammals)
19
0.16
2
0.17
9.50
0.11
2.00
0.04
9.50
0.03
Aves (small)
(small birds)
2
0.02
(a)
(a)
0.06
0.00
1.64
0.03
(a)
(a)
Anatidae
(duoks)
1
0.01
1
0.08
0.21
0.00
4.68
0.09
481.40
1.34
Aves (medium)
(medium-sized birds)
2
0.02
(a)
(a)
0.28
0.00
5.97
0.11
(a)
(a)
Total Aves
(birds)
5
0.04
1
0.08
0.55
0.01
12.29
0.23
481.40
1.34
Serpentea
(snakes)
1
0.01
1
0.08
0.05
0.00
0.69
0.01
139.50
0.39
Testudnea
(turtles)
40
0.34
2
0.17
8.53
0.10
139.13
2.58
1262.62
3.51
Total Reptilia
(reptiles)
41
0.35
3
0.25
8.58
0.10
139.82
2.59
1402.12
3.89
Siren lacertlna
(greater siren)
2
0.02
1
0.08
0.61
0.01
244.55
4.53
731.20
2.03
Total Amphibia
(amphibians)
2
0.02
1
0.01
0.61
0.01
244.55
4.53
731.20
2.03
Sphryna tlburo
(bonnet he ad shark)
1
0.01
1
0.08
0.74
0.01
59.89
1.11
1735.55
4.82
Lamniformes
(sharks)
3
0.03
1
0.08
0.05
0.00
12.91
0.24
537.98
1.49
Rhinobatidae
(guitarfishes)
1
0.01
1
0.08
0.02
0.00
12.53
0.23
181.67
0.50
Daayatla sp.
(stingray)
12
0.10
1
0.08
0.10
0.00
52.48
0.97
1551.69
4.31
Total Chondrichthyes
(cartilaginous fishes)
17
0.14
4
0.34
0.91
0.01
137.81
2.55
4006.89
11.12
Zlopa saurus
(ladyfish)
10
0.08
1
0.08
0.32
0.00
7.85
0.15
611.16
1.70
Clupeidae
(herrings)
251
2.12
6
0.50
1.13
0.01
24.42
0.45
161.64
0.45
Bagre marlnua
(gafftopsail catfish)
22
0.19
3
0.25
3.48
0.04
67.21
1.25
1523.13
4.23
Arlopala fella
(hardhead catfish)
38
0.32
3
0.25
3.78
0.05
72.40
1.34
599.70
1.66
Ariidae
(sea oatfiahes)
47
0.40
()
(a)
3.24
0.04
63.02
1.17
(a)
(a)
Opaanua spp.
(toadfish)
38
0.32
5
0.42
1.45
0.02
30.57
0.57
1032.40
2.87
Strongylura spp.
(needlefish)
8
0.07
2
0.17
0.51
0.01
11.94
0.22
167.04
0.46
Fundulua spp.
(killifish)
48
0.41
15
1.26
0.52
0.01
12.15
0.23
40.95
0.11
Mycteroperca ml crol opia
(9a)
1
0.01
1
0.08
0.05
0.00
1.48
0.03
141.70
0.39
Mycteroperca spp.
(grouper/gag)
2
0.02
1
0.08
1.30
0.02
27.70
0.51
1910.32
5.30
Serranidae
(sea basses)
1
0.01
(a)
(a)
0.05
0.00
1.48
0.03
(a)
(a)
Caranx blppoa
(crevalle jack)
1
0.01
1
0.08
1.80
0.02
37.13
0.69
9750.00
27.07
Carangidae
(jacks)
5
0.04
1
0.08
1.48
0.02
31.13
0.58
1981.59
5.50
Lutjanua campecbanua
(red snapper)
2
0.02
1
0.08
0.12
0.00
3.25
0.06
172.20
0.48
Lutjanua spp.
(snapper)
2
0.02
(a)
(a)
0.02
0.00
0.65
0.01
(a)
(a)
Orthoprlatla cbryaoptera
(pigfish)
16
0.14
4
0.34
0.25
0.00
6.28
0.12
239.72
0.67
Archoaargua probatocephalua
(sheepshead)
1
0.01
1
0.08
0.02
0.00
0.65
0.01
723.18
2.01
Lagodon rhomboldea
(pinfish)
164
1.39
27
2.27
1.51
0.02
31.70
0.59
466.56
1.30
Sparidae
(porgies)
4
0.03
(a)
(a)
0.21
0.00
5.37
0.10
(a)
(a)
Total Sparidae
(porgies)
169
1.43
28
2.35
1.74
0.02
37.72
0.70
1189.74
3.30
Balrdlella chryaoura
(silver perch)
15
0.13
5
0.42
0.33
0.00
8.07
0.15
225.40
0.63
Cynoaclon nebuloaua
(spotted seatrout)
2
0.02
2
0.17
0.01
0.00
0.35
0.01
148.30
0.41
212


147
-e-
Eastern Oyster
Crown Conch
* Crested Oyster
's Ribbed Mussel


CHAPTER 1
INTRODUCTION
The Maritime Calusa of Charlotte Harbor
The center of the world for much of the Calusa
population in the sixteenth century was southwest Florida's
highly productive Charlotte Harbor estuarine system (Figure
1). It was reported in 1564 "that the [Calusa] king was
held in great reverence by his subjects and that he made
them believe that his sorceries and spells were the reason
why the earth brought forth her fruit (Laudonnire
1975:110). The quote implies that the continued
productivity and stability of the natural world (i.e.,
Charlotte Harbor) were integral to the maintenance of the
Calusa paramount chief's authority.
Environmental productivity and stability may have been
particularly crucial factors for the culturally complex
Calusa because they apparently did not rely on agricultural
products (Goggin and Sturtevant 1964:183-184; Marquardt
1986:63, 1987:100, 1988:162-169; Milanich and Fairbanks
1980:243-244; Widmer 1988:224-250). Instead, as suggested
by various Spanish reports and the existence of enormous
shell middens, estuarine/marine foods appear to have been
1


20
Wing and Quitmyer (1985:49-58) dramatically demonstrate
the importance of fine-screen data recovery when dealing
with estuarine environments. The present study suggests
that a 2.00 mm mesh is an efficient screen size for the
objectives of the Charlotte Harbor study and that relatively
little diagnostic (below Class) material is found in the
1.60 mm-screened sample. Nevertheless, weight of the 1.60
mm-screened remains is essential if minimum meat estimates
are to be calculated. This has been done, again, by method
of proportion, sorting a 5% (by weight) subsample to
determine its major components. Thus, the unidentified
"Vertebrata (predominantly fish)" and "Mollusca" categories
include 6.35 mm, 2.00 mm, and 1.60 mm bone and shell
weights, respectively. Only 6.35 mm and 2.00 mm fauna
appear in all other quantifications.
Although I chose 6.35 mm and 2.00 mm screen sizes for
complete identification and MNI quantification of
invertebrates and vertebrates, respectively, I emphasize
that smaller screen sizes may be necessary to address
questions that I have not included in the present study.
Valuable invertebrate seasonality information, for example,
can be lost even through screen mesh as small as 1.60 mm.
For any particular environmental locale and set of research
questions, selection of screen size must be considered
carefully.


69
Island, and Buck Key Shell Midden (Figure 1) were selected
for zooarchaeological study. The sites are located in
various parts of the greater Charlotte Harbor estuarine
system representing the area of greatest site density and
therefore do not cover the entire range of local
environmental settings. Valuable additions, for example,
would be faunal assemblages from sites located in Estero Bay
and at the mouths of and along the Caloosahatchee, Peace,
and Myakka rivers.
For modeling purposes, it is assumed that the samples
generally are from primary deposits and that they are
representative of site middens. The lack of intrasite
horizontal sampling need not be viewed as debilitating to a
study that serves as a regional baseline, one that is
subject to continual modification with each addition of new
data.
Composite site data (i.e., combined level data within a
site, thus combining time periods), with the exception of
Useppa Island, provide the basis for zooarchaeological
spatial interpretation. The composite data sets are
presented in the text only in summarized form. However,
they are generated from raw data, all of which are presented
in Appendix A. Composite data for Big Mound Key, Cash
Mound, and Josslyn Island consist of four levels each. The
Useppa fauna is from only one level, A-4-2. The Buck Key
composite includes two Test B levels, B-2-5 and B-2-9.


70
Each present-day local setting of the five
archaeological sites is described below in concert with
summarized results of zooarchaeological analyses. It is
assumed that archaeofaunal data (Appendix A) represent the
faunal exploitation by prehistoric human occupants of each
site. For composite data sets, then, these
zooarchaeological data can be translated into inferred local
distribution of resources, summarized in Figure 7. The data
for Useppa are only tentatively offered as representative of
that site due to the availability of only one sample.
Big Mound Key, 8CH10
Big Mound Key today is situated at the mouth of Whidden
Creek, a stream that drains parts of the Cape Haze wetlands
(Figure 1). Patches of shallow seagrass (0.3 to 0.9 m depth
at mean low tide) occur among small mangrove islands to the
south and west in Gasparilla Sound. Oysters concentrate
around the many small mangrove islands in the sound and
adjacent bays (Woodburn 1965:24-25). Directly north of the
site is Boggess Hole, a large estuarine "pond." Farther
west are the barrier islands, Gasparilla and Little
Gasparilla, separated from each other by the shallow (0.3 m
deep at mean low water) Gasparilla Pass.
Fauna from each of these areas are represented in the
Big Mound Key archaeological samples (Appendix A, Tables A-l
through A-4; Figure 7). Cotton rat, raccoon, white-tailed
deer, and box turtle are all common to mangrove forests and


REFERENCES 256
BIOGRAPHICAL SKETCH 276
vii


129
the samples to suggest that Big Mound Key's A.D. 860 A.D.
880 paleoenvironment was different from that of today. This
includes the inference that Gasparilla Pass existed in some
form.
The earliest Buck Key archaeofaunal sample, A-2-11, has
a radiocarbon-date of A.D. 1040 (Table 2). The inferred
exploitation focus was on the bay area to the east of the
island; marine gastropods were emphasized (Figure 15; Table
A-17). A high crested oyster to eastern oyster ratio, 1:2,
exists, and along with a relative abundance of slipper
shells and surf clams reflects high-salinity waters just as
are present today.
Today, Buck Key is located adjacent to Captiva Island
(Figure 1). It is a relict barrier island, its northern end
dating to A.D. 750 based on a beach ridge set (Stapor et al.
1991:827). The remainder of the island is older. Beach
ridge sets comprising the southern half of Captiva Island
have been dated to A.D. 1350 or later (Stapor et al.
1991:830). During the A.D. 1040 occupation of Buck Key,
then, this island would have stood as a portion of the
barrier chain. Both Stapor et al. (1991) and Tanner (1991)
indicate that the sea level began to rise to ca. .3m (1 ft)
above present levels ca. A.D. 850 from the previous low of
roughly .6m (2 ft) below present levels (Table 7). The
A.D. 1040 occupation falls within this high sea-level
episode. Although both of these situations represent


15
1992b:Figure 29), dating to ca. A.D. 800 (Table 2). He
collected several bulk samples for archaeobiological
analyses. Four of these were selected for inclusion in this
dissertation (Tables 2 and 3; Appendix A). Other associated
research includes Cordell (1992), Marquardt (1992b), Scarry
and Newsom (1992), and Upchurch et al. (1992).
Cash Mound. 8CH38
Cash Mound, situated in Turtle Bay (Figure 1), was
probably first inhabited during a low sea-level stand and
later became surrounded by water when sea level rose. It is
a large midden/mound site rising to more than 6 m in height
and measuring 200 m long by 125 m wide. Portions of the
site have been damaged by treasure hunters, "shell-
borrowing activities, and storms. The Bullens excavated at
Cash Mound in 1954 (Bullen and Bullen 1956), representing
the first and only professional work here until recently
(see Marquardt 1992b).
Marquardt profiled an eroded face of a portion of
midden/mound and removed twenty-two 50 x 50 x 10 column
level samples for study. Four levels were radiocarbon-dated
to A.D. 270 60, A.D. 190 + 80, A.D. 150 90 (these three
are Caloosahatchee I period), and A.D. 680 + 70
(Caloosahatchee II period) (Table 2). These four samples
were chosen for zooarchaeological analysis (Tables 2 and 3;
Appendix A). Associated research includes that of Cordell


184
the oceanic bays and lagoons where inlet changes would have
their greatest impact. Geophysical implications of a .9 to
1.8 m (3 to 6 foot) rise from a low stand .6m (2 feet)
below present include a change in faunal distribution,
inundation of shorelines, a rise in water table, and barrier
island growth. The implication of a .9 to 1.8 m (3 to 6
foot) drop in water (again to a low stand .6m [2 feet]
below present) is a reversal of at least the first two of
those conditions. In addition, a sea-level fall of such a
magnitude (3 to 6 feet) may imply a change in abundances of
certain estuarine/marine animal species.
In the last section of this dissertation, the spatial
and temporal perspectives were integrated at the local and
regional scales. First, the individual site descriptions
served as syntheses of meaning that had been inferred from
zooarchaeological assemblages, still emphasizing each site's
regional context. In the second part, exploitation patterns
at the regional scale were explored, but beyond
zooarchaeological analyses such a study is limited by the
lack of systematically collected fishing artifacts at the
local scale. It was hypothesized that such collections,
when they become available, will illustrate spatial and
temporal distributions that are analogous to those patterns
that have been demonstrated in this dissertation. This is
based on the world-wide pattern that fishing technology is
adapted to environments at local and regional scales.


75
the geographic constriction of inlet waters, tidal cycling,
and daily movements of fish, the density of larger,
predatory fishes is greater at inlet locations.
Whelks, conchs, and tulips are abundant. Fishes and
molluscs with high-salinity preferences identified from the
midden include a host of sharks, gag grouper, red snapper
(Lutjanus campechanus), sea robin (Prionotus spp.),
barracuda, whiting, lettered olive (Oliva sayana), tellin
(Tellina spp.), coguina (Donax variabilis), stone crab, and
southern surf clam. Stone crabs favor the estuarine side of
oceanic passes as well as Gulf waters. Productive oyster
beds are not known in the immediate area today but small,
scattered beds have been noted on the east side of Buck Key
close to the mangrove shoreline.
Inferred Regional Distribution of Resources in Prehistory
Just as the present-day estuarine faunal distribution
can be modeled in terms of a gradient, so can the
heterogeneity observed in the zooarchaeological assemblages
described above. Establishing such a "zooarchaeological
gradient" involves two procedures. First, complete lists of
aquatic vertebrates (Appendix B, Table B-l) and
invertebrates (Table B-2) represented in the archaeofaunal
assemblages of Appendix A are compiled. The species are
then roughly seriated by their known preference for the
established habitat categories so that the listings in


Table A-15--continued.
Number of
*
X
Bone/She11
%
Minimum
X
Maximum
X
Identifiable
of
MNI
of
Weight
of
Meat Wt.
of
Meat Wt.
of
Species
Common Name
Fragments
Total
Total
(grama)
Total
Estimate
Total
Estimate
Total
Anada ra transversa
3
0.02
3
0.76
0.77
0.01
0.87
0.00
2.77
0.00
Noetla ponderosa
(ponderous ark)
9
0.07
5
1.27
47.90
0.45
14.54
0.07
29.90
0.04
Bracbldontea ezustus
(scorched mussel)
2
0.02
1
0.25
0.14
0.00
(c)
(o)
(O)
Atrlna spp.
(pen shell)
53
0.42
1
0.25
15.43
0.14
6.72
0.03
23.73
0.03
Peatinidae/Card1Idas
(scallops/cockles)
21
0.17
(a)
(a)
5.50
0.05
3.33
0.01
(a)
(a)
Anomla simplex
(common jingle shell)
5
0.04
1
0.25
0.25
0.00
(o)
(o)
(o)
(o)
Ostrea equestrls
(crested oyster)
26
0.21
11
2.79
6.69
0.06
(O)
(c)
(o)
Crassostrea vlrglnlca
(eastern oyster)
299
2.37
60
15.23
479.71
4.49
67.30
0.30
48.60(f)
0.06
Ostreidae
(oysters)
144
1.14
()
(a)
34.95
0.33
11.73
0.05
(o)
(o)
Dlnocardlum robustum vanhynlngl
(Van Hyningi's cockle)
12
0.10
2
0.51
41.79
0.39
13.25
0.06
39.19
0.05
Spisula solldlsslrna almilla
(southern surf clam)
152
1.21
33
8.38
227.14
2.12
41.99
0.19
396.66
0.49
Cblone cancellata
(crossed-barred venus)
7
0.06
3
0.76
1.32
0.01
(c>
(o)
Mercenaria campecblensls
(southern quahog)
14
0.11
2
0.51
103.62
0.97
16.64
0.07
36.42
0.04
Macrocall lata nimbosa
(sunray venus)
5
0.04
2
0.51
14.84
0.14
6.55
0.03
44.80
0.05
Bivalvia
(oysters, clams, etc.)
1454
11.54
(a)
(a)
629.68
5.89
84.11
0.38
(a)
(a)
Total Bivalvia
(bivalves)
2206
17.51
124
31.47
1609.73
15.05
267.03
1.20
622.07
0.76
Mollusca
(snails and bivalves)
(b)
(b)
(a)
(a)
1634.08
15.28
337.70
1.52
(a)
(a)
Total Mollusca
(snails and bivalves)
2658
21.09
222
56.35
9400.62
87.9 0
3917.12
17.63
2492.67
3.05
Desmotichia
(sea urchins)
59
0.47
1
0.25
1.08
0.01
(d)
(d)
(d)
(d)
Scutellida
(sand dollars)
1
0.01
1
0.25
0.10
0.00
(c)
(c)
Total Invertebrata
(animals without backbones)
2809
22.29
241
61.17
9443.20
88.29
4134.47
18.61
3076.47
3.77
============ =
========
===========
=========
========== ==
====>>
========= ==
=======
=========
=======
TOTAL SAMPLE
(vertebrates*invertebrates)
12602
100.00
394
100.00
10695.13
100.00
22218.65
100.00
81620.44
100.00
245


155
to 270, while the latest sample (A-l-4) dates several
hundred years later to A.D. 680 (Table 2). Totals of 12,209
vertebrate and 18,651 invertebrate bone and shell fragments
were analyzed from the Cash Mound column, representing 425
vertebrate MNI and 7,813 invertebrate MNI (Tables A-5
through A-8). Overall, Cash Mound shows the lowest species
diversity, with an average of only 18 vertebrates and 24
invertebrates. It is probable that the samples were taken
from a specialized site area, one used for oyster and mussel
processing. Faunal specimens collected on the surface of
the eroding beach indicate a greater diversity of
vertebrates than that seen in the samples discussed here.
Habitats represented in the samples are oyster bed (38%
MNI), mangrove edge (36% MNI), and mangrove/seagrass (9%
MNI) (Figure 7). If barnacles are added to the oyster bar
category, where they most likely originated, the proportion
of individuals from oyster bar habitats increases to 54%.
Gathering oysters and ribbed mussels together accounts for
84% of all animal MNI (Figure 16). However, these two
bivalve species constitute only 8% to 58% of total estimated
meat (Figures 5 and 4, respectively). Fishes, primarily
hardhead catfish, comprise 38 to 64 percent of the total
meat estimate (Figures 5 and 4, respectively). Samples
A-l-4, A-l-8, and A-l-17 contain an abundance of young
hardhead catfishes, suggesting spring deposits (Wang and


23
if an archaeological specimen could not be matched to a
modern one. All values used in this study date to 1987 or
earlier and are subject to constant updating.
Throughout the Charlotte Harbor study, interpretive
emphasis is placed on the technique of Minimum Number of
Individuals (MNI). The primary quantitative objective of
the zooarchaeologist is to measure relative abundance of
species, but all methods used to do so are inherently flawed
to some degree. There are no perfect sampling or
quantitative procedures by which to analyze faunal remains
(Grayson 1984; Jackson 1989; Wing and Brown 1979). However,
it is my opinion that much of the current critical
assessment of the MNI technique (see Grayson 1984) is not
applicable to the study of maritime settings. Because of
the nature of estuarine/marine fauna and the technology used
for their exploitation, I believe that MNI units are very
appropriate measurements for Charlotte Harbor's faunal
remains.
Sample Size
Adequacy of sample size can be assessed by determining
the point of diminishing returns, that is, when few new
species are added to the faunal list (Wing and Brown
1979:118-119). I have attempted such an assessment for the
southwest Florida study area by comparing number of taxa to
MNI for each 2.00 mm (1/13") screened sample (Figures A-l
and A-2).


7
There is little that argues against an estuarine/marine
food base for the Calusa and much that argues for it.
Widmer (1988) convincingly calls for an unusually high
productivity in Charlotte Harbor's estuarine/marine
environmenta year-round productivity capable of supporting
a large, sedentary, prehistoric human population. However,
as with any economic system, we cannot assume that these
estuarine/marine food resources relied upon in prehistory
remained uniformly productive and stable through space and
time for any given region. Limited by the available data,
Widmer's environmental context for the Calusa primarily
operates at broad regional (all of the southwest Florida
coastline) and temporal scales (e.g., he chooses the
traditional sea-level models). We must understand the
spatial variability of estuarine/marine resources at smaller
scales of analysis, as well as the impact of high-intensity
storms, freezes, and longer-term inlet and sea level-
dynamics in order to evaluate prehistoric human-environment
relationships.
The question then becomes how to investigate Charlotte
Harbor's environment, its fluctuations, and its relationship
to prehistoric human inhabitants through space and time.
Zooarchaeological evidence (i.e., vertebrate and
invertebrate skeletal remains) represents an analytic medium
of great relevance to this question. Archaeofauna can serve
as a paleoecological data set if we make the assumption that


161
open in some form at the time of prehistoric human
occupation. Additionally, there is no indication that sea
level differed from that of the present, ca. A.D. 1050 to
A.D. 1350; it may not be possible to recognize signatures
due to Buck Key's location at the high end of the salinity
gradient.
Exploitation Patterns at the Regional Scale
An Aquatic Exploitation
Fontaneda (1945:31), writing around 1575, described the
Calusa as "great anglers" who "at no time lack fresh fish."
Solis de Mers (1923:148) related that Menndez, during a
meeting with Carlos in 1566, was served "many kinds of very
good fish, roasted and broiled; and oysters, raw, boiled and
roasted, without anything else." A later document, dated
1675, describes Florida Indians and says of the Calusa:
"those from the Carlos (coast) are great divers and
fishermen" (Archivo General de Indias:Santo Domingo 151).
A comparison of terrestrial and aquatic animals
represented in the middens by MNI and meat weight totals
(composite site data) shows an overwhelming exploitation of
aquatic foods, thus supporting the ethnohistoric
documentation of fish and shellfish use in the Charlotte
Harbor region (Table 10). Within this apparent regional
homogeneity of a dominant aquatic exploitation, however,
there exists the intersite heterogeneity that reflects
intraestuarine ecological variation.


136
The greatest potential for detection of past sea-level
fluctuations lies in the archaeofauna of sites located in
the "true" estuarine areas of the salinity gradient; this
likely also applies to sites at the river mouths (e.g., the
Solana site, Widmer 1986a) but none were included in the
present study. These are areas where the greatest mixing of
waters and the greatest abundance of eastern oyster,
lightning and pear whelk, and crown conch occur. They
include oyster grounds such as the Cape Haze Peninsula area
and Matlacha Pass (Figure 1) and gastropod habitat such as
the vast seagrass and intertidal flats of Pine Island Sound,
particularly the eastern portion, distant from tidal inlets.
If no environmental change is reflected in the various
archaeofaunal assemblages, one may infer that estuarine
variability was not of magnitudes necessary to impact human
procurement of aquatic resources. Of the long-term
sea-level fluctuations, the Charlotte Harbor archaeofaunal
analyses suggest that rises and falls of .3 to .9 m (1 to 3
feet) may not have significantly altered collection
strategies. Rises and falls of .9 to 1.8 m (3 to 6 feet),
however, do appear to have a degree of influence on
procurement strategies. The sea-level rise beginning at
150/50 B.C. and extending to A.D. 400/450 is one of a 1.2 to
1.8 m (4 to 6 foot) magnitude; the water apparently rose
from a low of .6m (2 feet) below present to a high of .9 to
1.2 m (3 to 4 feet) above present. The magnitude of the


I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
Chair
Professor of Anthropology
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
bpfK.^. ulW
Eliza^th S. Wing
Professor of Anthropology
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy
.aid T. Milanich
of Anthropology
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
Clay/L. Montague
Associate Processor of
Environmental
Engineering Sciences


39
Table 5. Regression Values for Maximum Meat
Weight Estimations.
Taxon
Measurement8
N
Log
a
Slope
b
r2
Carcharhinidaeb
48
0.93
2.55
0.93
Vertebra
wd
Sphyrnidaeb
18
0.39
2.80
0.96
Vertebra
wd
Lamniformesb
68
0.84
2.57
0.91
Vertebra
wd
Rajiformesc
12
1.40
2.26
0.83
Vertebra
wd
Lepisosteus spp.c
9
0.91
2.57
0.96
Vertebra
wd
Siluriformesc
8
0.98
1.80
0.86
Vertebra
wd
Carangidaec
17
0.68
2.83
0.98
Atlas wd
Sparidaec
13
0.75
2.73
0.98
Atlas wd
Sciaenidaec
35
0.74
2.34
0.93
Atlas wd
Pleuronectiformesc
14
0.53
2.95
0.97
Atlas wd
Osteichthyesc
99
0.70
2.57
0.98
Alas/vert, wd
Strombus alatusd
26
-5.09
3.10
0.83
Shell ht
Polinices duplicatusd
16
-1.47
1.57
0.80
Shell ht
16
-2.97
2.47
0.86
Aperture
ht
Melongena coronad
100
-4.83
3.10
0.83
Shell ht
100
-3.98
2.94
0.85
Aperture
ht
Busycon contrariumd
100
-5.84
3.43
0.92
Shell ht
100
-5.40
3.30
0.93
Aperture
ht
Fasciolaria hunteriad
21
-5.23
3.27
0.96
Shell ht
21
-5.29
3.71
0.96
Aperture
ht
Fasciolaria tulipad
26
-2.97
2.24
0.89
Shell ht
26
-1.15
1.60
0.79
Aperture
ht
Pleuroploca gigantead
42
-5.62
3.31
0.99
Shell ht
Gastropodad
80
-3.19
2.31
0.94
Shell ht
Geukensia demissad
100
-3.62
2.30
0.87
Valve lg
Crassostrea virginicad
100
-3.80
2.21
0.90
Lt valve
ig
Polymesoda carolinianad
40
-3.26
2.68
0.90
Valve lg
Mercenaria campechiensisa30
-4.02
2.80
0.94
Valve lg
30
-1.04
2.12
0.93
Hinge wd
Bivalviad
135
-2.16
1.80
0.72
Valve lg


Figure 2. The Distribution of Charlotte Harbor
Zooarchaeological Vertebrate Samples by Number of
Taxa and Minimum Number of Individuals (MNI).
Numbers Refer to the List Given in Table 2.


194
Table 14. Mesh Sizes of Key Marco Net Cordage.
Mesh bar
(mm) (in)
Mesh
(mm)
Opening
(in)
Associations
FlaMNH
Catalog #
30
(1 1/4")
60
(2 1/2")
_
40548
30
(1 1/4")
60
(2 1/2")
2 pierced arcs
40550
30
(1 1/4")
60
(2 1/2")

40541
30
(1 1/4")
60
(2 1/2")
-
no #
30
(1 1/4)
60
(2 1/2")
-
40552
35
(1 3/8")
70
(2 3/4")

40568
40
(1 1/2)
80
(3")
float peg
40551
45
(1 3/4")
90
(3 1/2")

40540
45
(1 3/4")
90
(3 1/2")

40543
50
(2")
100
(4")

50546
50
(2")
100
(4")
-
40540
55
(2 1/8")
110
(4 1/4")
-
40547
60
(2 3/8")
120
(4 3/4")

no #
60
(2 3/8")
120
(4 3/4")
-
40985
60
(2 3/8")
120
(4 3/4")
gourd fragments
40586
a Column one after Gilliland 1975:244.


270
Rhoads, D. C. and R. A. Lutz
1980 Skeletal Records of Environmental Change. In
Skeletal Growth of Aquatic Organisms, edited by D. C.
Rhoads and R. A. Lutz, pp. 1-19. Plenum Press, New
York.
Robbin, Daniel M.
1984 A New Holocene Sea Level Curve for the Upper Keys
and Florida Reef Tract. In Environments of South
Florida Present and Past II, edited by P. J. Gleason,
pp. 437-458. Miami Geological Society, Coral Gables,
Florida.
Robins, C. Richard
1957 Effects of Storms on the Shallow-Water Fish Fauna of
Southern Florida with New Records of Fishes from
Florida. Bulletin of Marine Science of the Gulf and
Caribbean 7(3):266-275.
Robins, C. Richard, Reeve M. Bailey, Carl E. Bond, James R.
Brooker, Ernest A. Lachner, Robert N. Lea, and W. B. Scott
1980 A List of Common and Scientific Names of Fishes from
the United States and Canada. 4th ed. Special
Publication No. 12. American Fisheries Society,
Bethesda, Maryland.
Rupp, Reynold J.
1979 The Archaeology of Drowned Terrestrial Sites: A
Preliminary Report. Bureau of Historic Sites and
Properties Bulletin No. 6:35-45.
Russo, Michael
1991a Archaic Sedentism on the Florida Coast: A Case
Study from Horr's Island. Ph.D. Dissertation.
Department of Anthropology, University of Florida,
Gainesville. University Microfilms International.
1991b A Method for the Measurement of Season and Duration
of Oyster Collection: Two Case Studies from the
Prehistoric South-east U.S. Coast. Journal of
Archaeological Science 18:205-221.
Sails, Roy A.
1989 To Catch A Fish: Some Limitations on Prehistoric
Fishing in Southern California with Special Reference
to Native Plant Fiber Fishing Line. Journal of
Ethnobiology, 9:173-199.


Modulus modulus
Cerithium muscarum
Crepidula maulosa
Conus jaspideus
Conus spp.
Anadara transversa
Anadara floridana
Noetia ponderosa
Atrina spp.
Pinnidae
Argopecten spp.
Trachycardium egmontianum
Dinocardium robustum vanhyningi
Mercenaria campechiensis
Cerithium atratum
Crepidula fornicata
Anachis lafresnayi
Pleuroploca gigantea
Chione cancellata
Menippe mercenaria
Erato maugeriae
Columbella rusticoides
Columbella spp.
Crepidula convexa
Marginella hartleyanum
Turbonilla conradi
Turbonilla spp.
Pteriidae
Plicatula gibbosa
Lucina nassula
Cerithium lutosum
Desmotichia
Marcocallista nimbosa
Spisula solidissima similis
Anomalocardia auberiana
Seila adamsi
Nuculana acuta
Donax varibilis
Truncatella pulchella
Scutellida
Triphora spp.
Crassinella lunulata
Madreporaria
Parvilucina multilineata
Tellina spp.
Diplodonta spp.
Codakia spp.
Nuculana spp.
Terebra floridana
Oliva sayana
(Atlantic modulus)
(fly-specked cerith)
(spotted slipper-shell)
(jasper cone)
(cone shell)
(transverse ark)
(cut-ribbed ark)
(ponderous ark)
(pen shell)
(pen shells)
(scallop)
(prickly cockle)
(Van Hyning's cockle)
(southern quahog)
(Florida cerith)
(Atlantic slipper-shell)
(well-ribbed dove-shell)
(Florida horse conch)
(cross-barred venus)
(stone crab)
(mauger's erato)
(rusty dove-shell)
(dove-shell)
(convex slipper-shell)
(Hartley's marginella)
(Conrad's turbonille)
(turbonille)
(wing and pearl oysters)
(kitten's paw)
(woven lucina)
(dwarf cerith)
(sea urchins)
(sunray venus)
(southern surf clam)
(pointed venus)
(Adams' miniature cerith)
(pointed nut clam)
(coquina shell)
(beautiful truncatella)
(sand dollars)
(triphora)
(lunate crassinella)
(hard corals)
(many-lined lucina)
(tellin)
(diplodon)
(lucina)
(nut clam)
(Florida auger)
(lettered olive)



Primary sources: Abbott 1974; Odum et al. 1982; Zieman 1982.

*





255


Table Bl. Aquatic Vertebrates by Archaeological
Taxon
Siren lacertina
Rana spp.
Chelydra serpentina
Kinosternon spp.
Gobiomorus dormator
Casmerodius albus
Lepisosteus spp.
Fundulus spp.
Pseudemys spp.
Brevoortia spp.
Carcharhinus leucas
Bagre marinus
Dasyatis spp.
Dasyalidae
Flops saurus
Ariopsis felis
Opsanus spp.
Strongylura spp.
Caranx hippos
Lutjanus grseas
Eucinostomus spp.
Orlhopristis chrysoptera
Diplodus holbrooki
Lagodon rhomboides
Archosargus probalocephalus
Bairdiclla chrysoura
Cynoscion arenarius
Cynoscion nebulosas
Cynoscion regalis
Leiostomus xanthurus
Chilomycterus schoepfi
Micropogonias undulatus
Pogonias cromis
Scienops ocellalus
Mugil spp.
Sphoeroides spp.
Paralichthys spp.
Sphoeroides spengleri
Menticirrhus spp.
Sphyraenidae/Scombridae
Ostraciidae
Paralichthys albigulta
Mergus serralor
Centropomis sp.
Carcharhinus plumbeus
Common Name
(greater siren)
(frog)
(snapping turtle)
(mud turtle)
(bigmouth sleeper)
(gTeat egret)
(gar)
(killifish)
(cooter)
(menhaden)
(bull shark)
(gafftopsail catfish)
(stingray)
(stingrays)
(ladyfish)
(hardhead catfish)
(toadfish)
(needlefish)
(crevalle jack)
(gray snapper)
(mojarra/silver jenny)
(pigfish)
(spottail pinfish)
(pinfish)
(sheepshead)
(silver perch)
(sand sea trout)
(spotted sea trout)
(weakfish)
(spot)
(striped burrfish)
(Atlantic croaker)
(black drum)
(red drum)
(mullet)
(puffer)
(flounder)
(bandtail puffer)
(whiting)
(barracudas/mackerels)
(boxfishes)
(gulf flounder)
(red-breasted merganser)
(snook)
(sandbar shark)
B. Mound Cash
Key 8CH10 8CH38
Site and Modern Habitat.
Useppa Josslyn Buck Key Mangrove Mangrove Mangrove Mangrove .,
8LL51 8LL32 8LL722 Basin Stream Estuary Oceanic r U






13
Dincauze's (1987:262) "mesoscale" temporal classification
and Butzer's (1982:24) "third order" scale of climatic
variability. Within these temporal scales, others of a
finer resolution also are recognized from which meaning is
inferred; any such scale is termed an "effective scale"
(Marquardt and Crumley 1987:2, 16; Marquardt 1985:69-70).
The use of effective scale as an organizing concept is
essential to a temporal study of the Charlotte Harbor
region. Short-term (i.e., from one day to one year),
medium-term (i.e., year-to-year), and long-term (i.e., one
hundred to several hundreds of years) effective scales in
the dynamics of the region's paleoenvironmental variation
are recognized in this study.
Excavation, volumetric, and chronological data for the
samples used in this study are presented in Table 2. All
samples exhibit good preservation owing to the predominant
calcium carbonate matrix of shell and bone. Samples were
selected on the basis of stratigraphic context. The four
Big Mound Key (8CH10) samples, excavated by George Luer in
1982 (Luer 1986:143), are from a large stratified pit
located at the summit of West Mound. Thirteen additional
samples are from column levels measuring 50 cm x 50 cm x 10
cm, excavated under the direction of William Marquardt and
the author in 1985 and 1986. For these samples from Cash
Mound (8CH38), Useppa Island (8LL51), Josslyn Island
(8LL32), and Buck Key Shell Midden (8LL722), designations


TABLE OF CONTENTS
page
ACKNOWLEDGMENTS iii
LIST OF TABLES viii
LIST OF FIGURES xi
ABSTRACT xiii
CHAPTERS
1 INTRODUCTION 1
The Maritime Calusa of Charlotte Harbor 1
The Lagging Maritime Perspective 5
Research Goal and Objectives 8
Sample Context and Excavation 12
Big Mound Key 14
Cash Mound 15
Useppa Island 16
Josslyn Island 16
Buck Key Shell Midden 18
Zooarchaeological Methods 19
Sample Processing 19
Identification and Quantification 21
Sample Size 23
Food vs. Commensals 25
Sources of Bias ...25
Comparative Dietary Contribution 28
2 A SPATIAL PERSPECTIVE ON RESOURCE HETEROGENEITY.... 53
The Present-day Charlotte Harbor Estuarine
Ecosystem 53
The Present-day Estuarine Gradient 57
Distribution of Vertebrates 60
Distribution of Invertebrates 64
Inferred Local Distribution of Resources in
Prehistory 68
Big Mound Key 70
Cash Mound 71
Useppa Island 72
Josslyn Island 73
v


61
Type 2 includes major tributaries (e.g., Myakka, Peace,
and Caloosahatchee rivers), small streams (e.g., Whidden
Creek, Alligator Creek), and associated pools. These
streams are tidal-influenced, have sparse grass beds, and
show seasonal variance in terms of salinity and, thus,
species composition (Odum et al. 1982:52; Wang and Raney
1971) During rainy months, such as March and July (see
Figure 6, Peace River line), freshwater fishes sometimes
move into the estuary. Examples include Florida gar
(Lepisosteus platyrhincos), sunfishes (Lepomis spp.),
freshwater catfishes (Family Ictaluridae), and the
largemouth bass (Micropterus salmoides) (Estevez et al.
1984:PR342-PR354; Gunter and Hall 1969:20, 23, 31).
Conversely, marine predatory fishes such as needlefishes
(Family Belonidae), jacks (Family Carangidae), and stingrays
(Family Dasyatidae) invade the tidal streams in search of
food during dry periods (Odum et al. 1982:52). Fishes such
as the black mullet (Mugil cephalus), gray snapper (Lutjanus
griseus), sheepshead (Archosargus probatocephalus), spotted
seatrout (Cynoscion nebulosus) red drum or "redfish"
(Sciaenops ocellatus), and silver perch (Bairdiella
chrysoura) use tidal streams and pools only as juveniles
(Gunter and Hall 1969; Odum et al. 1982:52). Most of these
species are represented in Charlotte Harbor's streams during
some part of the year (Wang and Raney 1971).


262
Gunn, Joel and Richard E. W. Adams
1981 Climatic Change, Culture, and Civilization in North
America. World Archaeology 13(1):87-100.
Gunter, Gordon and Gordon E. Hall
1965 A Biological Investigation of the Caloosahatchee
Estuary of Florida. Gulf Research Reports 2(1):1-71.
Gunter, Gordon and R. Winston Menzel
1957 The Crown Conch, Melongena corona, as a Predator
Upon the Virginia Oyster. The Nautilus 70(3):84-87.
Haddad, Kenneth D. and Barbara A. Harris
1985 Use of Remote Sensing to Assess Estuarine Habitats.
Proceedings of the Fourth Symposium on Coastal and
Ocean Management "Coastal Zone '85". ASCE/Baltimore,
MD, July 30-August 1, 1985.
Haddad, Kenneth D. and Barbara A. Hoffman
1986 Charlotte Harbor Habitat Assessment. In Managing
Cumulative Effects in Florida Wetlands, Environmental
Studies Program, New College, University of South
Florida, pp. 175-192. Publication No. 38. Sarasota.
Hale, H. Stephen
1985 A Predictive Model of Settlement and Subsistence
Patterns for the Charlotte Harbor/Pine Island Sound
Estuaries, Southwest Florida, Based on Sea Level
Fluctuation. Paper presented November 7, 1985, at the
42nd Southeastern Archaeological Conference,
Birmingham, Alabama.
Hale, H. Stephen, Irvy Quitmyer, and Sylvia Scudder
1987 Methods for Estimating Edible Meat Weights for
Faunal Remains from Sites in the Southeastern United
States. Manuscript on file, Department of
Anthropology, Florida Museum of Natural History,
Gainesville.
Hann, John H.
1986 The Use and Processing of Plants by Indians of
Spanish Florida. Southeastern Archaeology 5:91-102.
1991 Missions to the Calusa. University of Florida
Press, Gainesville.
Hansinger, Michael J.
1992 Skeletal and Dental Analysis of Burials from the
Collier Inn Site, Useppa Island. In Culture and
Environment in the Domain of the Calusa, edited by W.
H. Marquardt, pp. 403-409. Monograph 1, Institute of


81


LIST OF FIGURES
figure page
1 Map of the Charlotte Harbor Study Area with
Geographical Features and Archaeological Site
Locations Mentioned in the Text: (1) Solana Site;
(2) Big Mound Key; (3) Cash Mound; (4) Useppa
Island; (5) Pineland Site; (6) Josslyn Island; (7)
Buck Key Shell Midden; and (8) Wightman Site 44
2 The Distribution of Charlotte Harbor
Zooarchaeological Vertebrate Samples by Number of
Taxa and Minimum Number of Individuals (MNI).
Numbers Refer to the List Given in Table 2 46
3 The Distribution of Charlotte Harbor
Zooarchaeological Invertebrate Samples by Number of
Taxa and Minimum Number of Individuals (MNI).
Numbers Refer to the List Given in Table 2 48
4 Comparative Percentages of Zooarchaeological
Estimated Minimum Edible Meat Weights by Site and
Animal Group (Based on Data Presented in Appendix
A) 50
5 Comparative Percentages of Zooarchaeological
Estimated Maximum Edible Meat Weights by Site and
Animal Group (Based on Data Presented in Appendix
A) 52
6 Monthly Salinity Profiles of Four Aquatic
Locations in the Northern Part of the Charlotte
Harbor Estuarine Complex Illustrating the Fresh to
Salt Water Gradient (Data are after Wang and Raney
1971:18) 81
7 Comparative Percentages of Zooarchaeological
MNI by Site Representing Exploited Habitats (Based
On Data Presented in Appendix A) 83
8 Thoracic Vertebrae Widths of Bony Fishes as
an Indicator of Overall Fish Size for Cash Mound,
Josslyn Island, and Buck Key 85
xi


Table A-9--continued
3pecl.es
Common Name
Number of
Identifiable
Fragments
%
of
Total
MNI
%
of
Total
Bone/shell
Height
(grams)
%
of
Total
Minimum
Meat Wt
Estimate
%
. of
Total
Maximum
Meat Ht.
Estimate
*
of
Total
Oeukenala demlsaa granooiaalma
(Atlantic ribbed mussel)
1
0.01
1
0.09
tr
0.00
0.00
0.00
0.23
0.00
Mytllldae
(mussels)
4
0.04
(a)
(a)
0.29
0.00
0.45
0.00
(a)
(a)
Plnnldae
(pen shells)
86
0.81
1
0.09
22.97
0.25
8.81
0.09
23.73
0.03
Argopecten spp.
(scallop)
20
0.19
10
0.91
31.36
0.35
10.90
0.11
79.91
0.11
PecCan spp.
(zigzag scallop, etc.)
9
0.08
8
0.73
38.84
0.43
12.61
0.13
89.92
0.13
Peatinidae
(seallops)
172
1.62
17
1.54
110.12
1.22
25.63
0.27
146.40
0.21
Pectlnldae/Cardlldae
(scallops/cookies)
675
6.35
1
0.09
205.63
2.28
39.24
0.41
13.22(f)
0.02
Plloatulldae/Ostreldae
(cat's paws/oysters)
3
0.03
(a)
(a)
1.00
0.01
1.04
0.01
(a)
(a)
Oetrea equeatrla
(crested oyster)
34
0.32
15
1.36
36.47
0.40
(O)
(O)
(a)
(o)
Craaaoatrea vlrginica
(eastern oyster)
923
8.69
397
35.99
1873.28
20.76
251.28
2.63
285.84
0.41
Ostreldae
(oysters)
1543
14.53
()
(a)
921.63
10.22
126.54
1.33
(a)
(a)
Cardltamera florldana
(broad-ribbed cardlta)
21
0.20
12
1.09
18.40
0.20
5.00
0.05
20.83
0.03
Trachycardlurn egmontlanum
(prickly cockle)
1
0.01
1
0.09
0.98
0.01
1.03
0.01
6.98
0.01
Trachycardlum spp.
(cockles)
29
0.27
4
0.36
37.59
0.42
12.33
0.13
38.41
0.06
Splaula Bolldlaalma almilla
(southern surf clam)
2
0.02
1
0.09
1.14
0.01
1.14
0.01
11.25
0.02
Polymeaoda martima
(Florida marsh clam)
1
0.01
1
0.09
0.18
0.00
0.32
0.00
0.30
0.00
Mercenaria campee hienale
(southern quahog)
158
1.49
13
1.18
1804.03
20.00
192.37
2.02
434.59
0.62
Chlone cancel lata
(cross-barred venus)
315
2.97
92
8.34
237.90
2.64
43.33
0.45
211.6
0.30
Macrocalllata nimbosa
(sunray venus)
2
0.02
2
0.18
4.81
0.05
3.04
0.03
52.61
0.08
Bivalvia (small)
(small bivalves)
a
0.08
3
0.27
1.49
0.02
(o)

(o)
(o)
Bivalvia (medium)
(medium-sized bivalves)
200
1.88
()
(a)
67.40
0.75
18.35
0.19
(a)
(a)
Total Bivalvia
(bivalves)
4220
39.73
586
53.13
5470.18
60.64
771.83
8.09
1451.91
2.08
Mollusca
(snails and bivalves)
(b)
(b)
(a)
(a)
1752.07
19.42
332.82
3.49
(a)
(a)
Total Mollusca
(snails and bivalves)
5679
53.46
892
80.87
8555.23
94.83
1482.95
15.54
2623.34
3.77
Desmotiehla
(sea urchins)
1
0.01
1
0.09
0.05
0.00
(d)
(d)
(d)
(d)
Total Invertebrata
(animals without backbones)
5685
53.52
895
81.14
8556.06
94.84
1487.75
15.59
2706.74
3.89
=2=====================================
======332,23 2=3
2==,,=
===========
========.
.==222222. ==
==22=32
=33=22=2=
2222222=2
=========
rOTAL SAMPLE
(vertebrates^invertebrates)
10622
100.00
1103
100.00
9021.36
100.00
9543.93
100.00
69669.43
100.00
227


Figure 6. Monthly Salinity Profiles of Four Aquatic
Locations in the Northern Part of the Charlotte Harbor
Estuarine Complex Illustrating the Fresh to Salt Water
Gradient (Data are after Wang and Raney 1971:18).


Menticirrhus spp.
(whiting)
1
0.01
1
0.08
0.49
0.01
71.51
1.33
550.40
1.53
Total Sciaenidae
(drums)
20
0.17
9
0.76
0.85
0.01
80.58
1.49
1072.40
2.98
Mugil spp.
(mullet)
1
0.01
1
0.08
0.08
0.00
2.25
0.04
449.70
1.25
Sphyraenidae/Scombridae
(barracudas/mackerels)
4
0.03
1
0.08
0.06
0.00
1.74
0.03
3901.38
10.83
Chilomyctarus schoepfi
(atriped burrfish)
5
0.04
4
0.34
0.35
0.00
8.51
0.16
184.37
0.51
Diodontidae
(burr and porcupine fishes)
24
0.20
()
()
0.25
0.00
6.28
0.12
()
()
Oateichthyes
(bony fishes)
5201
43.96
(i
()
37.14
0.45
566.05
10.49
()
(>
Total Oateichthyes
(bony fiahes)
59 IS
50.00
87
7.30
59.97
0.72
1101.79
20.42
25129.14
69.76
Vertabrata (predominantly fiah)
(backboned animals)

(b)
()
(A)
130.79
1.57
1757.59
32.58
<>
()
Total Vartabrata
(backboned animals)
6000
50.71
98
8.22
210.91
2.53
3395.85
62.94
31760.25
88.17
Balanua app.
(barnacle)
62
0.52
54
4.53
14.54
0.17
(o>
()
Callinactaa app.
(blue crabs, Gulf crab, ate.)
11
0.09
4
0.34
3.52
0.04
27.43
0.51
333.60
0.93
Manippa mercenaria
(stone crab)
44
0.37
5
0.42
8.37
0.10
55.80
1.03
417.00
1.16
Dacapoda
(crabs)
35
0.30
()
(>
1.89
0.02
16.4 7
0.31
(A)
()
Total Cruatacaa
(aquatic arthropods)
152
1.28
63
5.29
28.32
0.34
99.70
1.85
750.60
2.08
Turritella app.
(worm-shell)
1
0.01
1
0.08
0.30
0.00
(O
(c)

Modulua modulua
(Atlantic modulus)
1
0.01
1
0.08
0.11
0.00
(o)
(c)

Cerithiura muacarum
(fly-specked carith)
1
0.01
1
0.08
0.22
0.00
(<=>
(O)
(O
Cerithium app.
(carith)
2
0.02
2
0.17
1.01
0.01
(c)
(o)
(O)
Crapidula aoulaata
(thorny alippar-shell)
4
0.03
4
0.34
1.40
0.02
<)
(O)
Crepidula plana
(eastern white slipper-shell)
9
0.08
9
0.76
1.07
0.01
(O)
(c)
Crapidula app.
( a Upper-aha 11)
10
0.08
10
0.84
4.97
0.06

(o)
(o)
(O)
Strombus alatua
(Florida fighting conch)
59
0.50
26
2.18
1394.94
16.72
120.16
2.23
252.77
0.70
Polinicaa duplicatua
(shark aye)
6
0.05
5
0.42
31.01
0.37
16.11
0.30
27.25
0.08
O
Phyllonotua pomum
(apple murex)
8
0.07
3
0.25
27.47
0.33
14.41
0.27
35.88
o.io
Uroaalpinx parrugata
(Gulf oyster drill)
1
0.01
1
0.08
0.65
0.01
(c>
(o)
(o>
<> oj
Malongana corona
(common crown conch)
14 04
11.87
291
24.41
1398.27
16.76
220.21
4.08
611.10
1.70
Bueycon contrarium
(lightning whelk)
180
1.52
38
3.19
618.34
7.41
274.32
5.08
263.29
0.73
Buaycon apiratum pyruloidea
(Say's pear whelk)
80
0.68
48
4.03
313.36
3.76
134.65
2.50
475.20
1.32
Total Malonganidaa
(crown concha)
1664
14.06
377
31.63
2329.97
27.92
629.18
11.66
1349.59
3.75
Faaciolaria liliura huntaria
(banded tulip)
345
2.92
75
6.29
249.32
2.99
241.85
4.48
204.00
0.57
Faaciolaria tulipa
(true tulip)
18
0.15
14
1.17
142.00
1.70
180.46
3.34
710.36
1.97
Faaciolaria app.
(tulip shall)
64
0.54
19
1.59
52.64
0.63
29.45
0.55
51.68
0.14
Plauroploca gigantaa
(Florida horse conch)
4
0.03
3
0.25
151.89
1.82
62.16
1.15
276.76
0.77
Total Faaciolariidaa
(tulip shells)
431
3.64
111
9.31
595.85
7.14
513.92
9.53
1242.80
3.45
Marginalia hartlayanum
(Hartley's marginalia)
1
0.01
1
0.08
0.14
0.00
(

(C)
(o)
Gaatropoda (medium marina)
(medium-sized marine snails)
329
2.78
(
()
108.45
1.30
50.83
0.94
(
()
Total Marina Gaatropoda
(marine snails)
2527
21.36
552
46.31
4497.56
53.90
1344.61
24.92
2908.29
8.07
Euglandina roaaa
(rosy euglandina)
1
0.01
1
0.08
0.07
0.00
(C)
(e)
(c)
Total Tarraatrial Gaatropoda
(terrestrial snails)
1
0.01
1
0.08
0.07
0.00
0.00
0.00
0.00
0.00
Anadara tranavaraa
(transverse ark)
8
0.07
7
0.59
2.84
0.03
2.12
0.03
7.98
0.10
Noatia ponderosa
(ponderous ark)
1
0.01
1
0.08
31.81
0.38
11.00
0.13
8.16
0.10
213


LIST OF TABLES
table page
1 Generalized Cultural Chronology for the
Caloosahatchee Area 31
2 Zooarchaeological Samples Included in the
Charlotte Harbor Study 33
3 Summary of Zooarchaeological Data Included in
the Charlotte Harbor Study 35
4 Regression Values for Minimum Meat Weight
Estimations 37
5 Regression Values for Maximum Meat Weight
Estimations 39
6 Non-regression Values for Maximum Meat
Weight Estimations 41
7 Oscillating Holocene Sea Level Curves Based on
Beach Ridge Data for the Charlotte Harbor and Gulf
of Mexico Regions 138
8 Relative MNI Percentages of Eastern Oyster
(EO), Crested Oyster (CO), Crown Conch (CC) and
Ribbed Mussel (RM) for Cash Mound Samples A-l-4,
A-l-8 A-l-17 and A-l-20 139
9 Intersite Comparison of Hardhead Catfish
Totals 189
10 Comparison of Terrestrial and Aquatic Animal
Food Resources by Percentage 190
11 Ranking of Bony Fishes by Maximum Meat
Weight 191
12 Archaeological Remains of Sharks by Minimum
Number of Individuals (MNI) 192
13 Distribution of Archaeological Pinfish and
Associates by Minimum Number of Individuals (MNI)..193
viii


101
peats (e.g., Robbin 1984; Scholl and Stuiver 1967) and beach
ridges (e.g., Missimer 1973; Stapor et al. 1987, 1991;
Stapor and Tanner 1977; Tanner 1991). The peat data-based
studies have produced smooth curves and the beach ridge
studies support oscillating curves.
The nature of peat deposits is such that researchers
using them often are unable to detect a fluctuating Holocene
sea level of subtle proportions, say within 1 to 2 meters
either way of present sea level (Fairbridge 1984; Stapor et
al. 1991:815-816). Recent work, however, examines peats in
relation to small-scale fluctuations (Lowrie and Fairbridge
1991). Dating beach deposits, while resulting in multiple
episodes of sea level rises and falls, has its own set of
methodological problems (Stapor et al. 1987:152,
1991:815-816). It seems that fine resolution of sea-level
variability at the effective scale of several centuries (my
"long-term" scale) would understandably require geophysical
methods different from those used to construct the smooth
curves. Even those who present continuous-rise curves for
Florida's west coast (e.g., Scholl and Stuiver 1967:451)
suggest that low-amplitude fluctuations may have existed but
that they are difficult, if not impossible, to detect in
their Holocene record (see Widmer 1988:167-169, 186-187).
Yet it is precisely such subtle sea-level change on regional
(e.g., Gulf of Mexico) and local (e.g., southwest Florida)
spatial scales that is of anthropological relevance because


Oceanic
Mangrove Basin
Mangrove Stream
Mangrove Estuary
Mangrove Oceanic
Littoral/ Gulf
Tidal Stream
Mangrove Edge
Oyater Bed
Seagrass Meadow
Littoral/ Gulf


Table A-6
8.
Faunal Analysis, Cash Mound, 8CH38, Charlotte County, Florida, June 1985 Sample, Test A-l, Level
SpecieB
Common Name
Number of
Identifiable
Fragments
%
of
Total
MNI
%
of
Total
Bone/Shell
Weight
(grams)
%
of
Total
Minimum
Meat Wt.
Estimate
%
of
Total
Maximum
Meat Wt.
Estimate
%
of
Total
Mammalia (medium)
(medium-sized mammals)
6
0.08
1
0.03
0.95
0.01
24.66
0.51
(d)
(d)
Total Mammalia
(mammals)
6
0.08
1
0.03
0.95
0.01
24.66
0.51
0.00
0.00
Anatldae
(ducks)
1
0.01
1
0.03
0.24
0.00
5.24
0.11
241.50
1.18
Aves (medium)
(medium-sized birds)
2
0.03
(a)
(a)
0.23
0.00
5.06
0.10
(a)
(a)
Total Aves
(birds)
3
0.04
1
0.03
0.47
0.00
10.30
0.09
241.50
1.18
Klnoatornon spp.
(mud turtle)
2
0.03
1
0.03
0.24
0.00
20.97
0.43
1230.14
5.99
Testudlnes
(turtles)
8
0.10
1
0.03
2.42
0.02
71.36
1.47
631.31
3.07
Total Reptllla
(reptiles)
10
0.13
2
0.07
1.24
0.01
92.33
1.90
1861.45
9.06
Carcharhlnua laucas
(bull shark)
1
0.01
1
0.03
0.05
0.00
15.99
0.33
688.46
3.35
Carcharhlnus plumbaus
(sandbar shark)
4
0.05
1
0.03
2.70
0.02
540.97
11.11
646.79
3.15
Lamnlformes
(sharks)
1
0.01
(a)
(a)
0.01
0.00
4.09
0.08
(a)
(a)
Rajlformes
(rays)
96
1.21
1
0.03
1.23
0.01
489.80
10.06
230.46(f)
1.12
Total Chondrlchthyes
(cartilaginous fishes)
102
1.29
3
0.10
3.99
0.03
1050.85
21.59
1565.71
7.62
Clupeldae
(herrings)
13
0.16
1
0.03
0.06
0.00
1.76
0.04
430.85
J-10 to
Bagra marlnua
(gafftopsall catfish)
2
0.03
1
0.03
0.11
0.00
3.03
0.06
693.20
3.37 ¡-j
Arlopals falls
(hardhead catfish)
133
1.68
26
0.90
7.13
0.05
128.76
2.65
5197.40
25.29 ^
Arlldae
(sea catflshes)
87
1.10
(a)
(a)
4.29
0.03
81.56
1.68
(a)
(a)
Total Arlldae
(sea catflshes)
222
2.80
27
0.93
11.53
0.08
213.35
4.38
5890.60
28.66
Opsanus spp.
(toadflsh)
3
0.04
2
0.07
0.25
0.00
6.34
0.13
398.03
1.94
Strongylura spp.
(needlefish)
6
0.08
1
0.03
0.07
0.00
2.02
0.04
56.78
0.28
Carangidae
(jacks)
10
0.13
1
0.03
1.40
0.01
29.81
0.61
1078.00
5.25
LutJanus grlsaus
(gray snapper)
1
0.01
1
0.03
0.01
0.00
0.35
0.01
193.60
0.94
Orthoprlstls chryooptara
(plgflsh)
3
0.04
3
0.10
0.03
0.00
0.94
0.02
85.01
0.41
Archosargus probatocaphalus
(sheepshead)
15
0.19
2
0.07
0.57
0.00
13.29
0.27
361.60
1.76
Lagodon rhomboldas
(plnflsh)
5
0.06
4
0.14
0.02
0.00
0.65
0.01
79.37
0.39
Sparldae
(porgie.)
4
0.05
3
0.10
0.01
0.00
0.35
0.01
65.28
0.32
Total Sparldae
(porgle)
24
0.30
9
0.31
0.60
0.00
14.29
0.29
506.25
2.46
Balrdlalla chrysoura
(silver perch)
10
0.13
2
0.07
0.38
0.00
9.23
0.19
192.62
0.94
Cynoaclon nabulosus
(spotted seatrout)
4
0.05
1
0.03
0.49
0.00
11.60
0.24
1214.20
5.91
Cynosclon spp.
(aeatrout)
1
0.01
1
0.03
0.11
0.00
3.03
0.06
148.30
0.72
Mlcropogonlaa undulatua
(Atlantic croaker)
1
0.01
1
0.03
0.30
0.00
7.47
0.15
179.20
0.87
Pogonlas cromla
(black drum)
1
0.01
1
0.03
0.62
0.00
14.34
0.29
481.20
2.34
Sclaenldae
(drums)
24
0.30
14
0.48
0.14
0.00
3.76
0.08
216.00
1.05
Total Sclaenldae
(drums)
41
0.52
20
0.69
2.04
0.01
49.43
1.02
2431.52
11.83
Sparlsoma spp.
(parrotfish)
1
0.01
1
0.03
0.05
0.00
1.49
0.03
95.80
0.47
Mug11 spp.
(mullet)
1
0.01
1
0.03
0.06
0.00
1.76
0.04
366.50
1.78
Parallchthya spp.
(flounder)
6
0.08
1
0.03
0.54
0.00
12.66
0.26
1135.00
5.52
Ostelchthyes
(bony fishes)
1787
22.56
(a)
(a)
20.91
0.66
338.64
6.96
(a)
(a)
Total Ostelchthyes
(bony fishes)
2118
26.74
68
2.35
37.55
0.27
672.84
13.82
12667.94
61.64
219


110
may inferred that the deposit accumulated slowly. It is not
known how rapidly or how slowly.
Even paleontologists have had only minimal success at
estimating sedimentation rates and this is usually at time
scales of relatively great magnitude (thousands of years)
(e.g., Dingus 1984; Dingus and Sadler 1982). Archaeologists
are forced to think at time scales defined by the
statistical nature of the carbon-14 dating technique. At
the 95% confidence level (two standard deviations), a given
radiocarbon date can range +/- 100 years or more, i.e., the
"long-term" scale of this dissertation.
Dincauze (1987:298) notes that faunal remains have not
been used to their potential in Americanist
paleoenvironmental reconstructions at intraregional scales.
It is likely that the complexities of multiple forcing
variables coupled with the difficulty of time resolution (of
midden samples) accounts for this situation. For example,
if a given sample from a specific site in the Cape Haze area
indicates a higher salinity condition than what is expected
for that area (based on present-day conditions), how can we
decide whether the cause was a decrease in rainfall during
one year, a drought lasting several years, or a long-term
sea-level rise?
It is possible to overcome this dilemma by limiting
research questions to the long-term scale, using composite
faunal assemblages to mediate short- and medium-term


103
evidence from a core that water levels fell about ,6m (2
ft) below present levels ca. 1400 B.P. (A.D. 550).
From a 2000 to 1500 B.P. high stand to a 1500 to
1100/1000 B.P. low stand, water levels may have dropped .9
to 1.5 m (3 to 5 ft) following Stapor et al. (1991) or 2.1
to 2.7 m (7 to 9 ft) following Missimer (1973). Beach
ridges suggest that the sea began to rise again around 1100
to 1000 B.P. (A.D. 850 to 950), this time to an elevation
equalling that of the present (Stapor et al. 1991). Sea
level began to fall again around 500 B.P. (A.D. 1450), again
to .3 to ,6m below present mean sea level (Stapor et al.
1991). The third rise observed in the beach ridge patterns
is that which has been occurring over the past 100 to 150
years.
The Charlotte Harbor curves are in line with Tanner's
(1991) recent compilation of a curve for the Gulf of Mexico
region. Tanner's work at St. Vincent Island and Dog Island
along the coast of the Florida panhandle is based on
granulometric analyses of quartz sand samples taken from
beach ridges. Evidence of sea-level fluctuations similar
(at least in part) to the Gulf of Mexico comes from the
Mediterranean (Sneh and Klein 1984), west Africa (Einsele et
al. 1974), and Denmark (Tanner 1991). The first two areas,
interestingly, are located in Clark and his colleagues'
(1978) Zone III, along with the Gulf of Mexico.


119
inlets of the barrier island chain and yet the high-salinity
crested oyster occurs in significant numbers in the A.D. 150
to A.D. 270 samples. Since the three high-salinity samples
overlap in time and span a deposit 130 cm thick, medium-term
environmental change (e.g., a drought of several years) can
be reasonably eliminated as an explanation. A mean sea
level higher than that of the present, with concomitant
increased average salinities for Turtle Bay, could explain
the variation observed in the Cash Mound samples.
A fluctuation in water level might also explain the
A.D. 150 A.D. 270 abundance and subsequent A.D. 680
decline in numbers of ribbed mussel (Table 8; Figure 13). A
rise in waters (e.g., A.D. 150 A.D. 270) might have
resulted in an increase in Cape Haze's brackish wetland
area, providing more habitat for this sessile bivalve. A
fall in water levels (e.g., A.D. 680) may have resulted in
decreased marsh habitat.
The predominantly intertidal common crown conch also
offers a telling pattern in the Cash Mound samples (Table 8;
Figure 13). The scavenging crown conch voraciously feeds on
many different living organisms as well as decaying flesh
and other detrital material (Dalby 1989:709; Gunter and
Menzel 1957:86-87; Hathaway and Woodburn 1961:53,64; Menzel
and Nichy 1958:136; Tabb and Manning 1961:577). Included in
this diet is the eastern oyster. Researchers now agree that
the crown conch is not a "serious" predator to oysters


102
these oscillations can directly influence coastal patterns
of human settlement and subsistence.
Two Holocene sea-level curves have been hypothesized
for the Charlotte Harbor area; they are based on the study
of barrier beach ridges and are incomplete (Missimer 1973;
Stapor et al. 1987, 1991). The Charlotte Harbor
reconstruction includes five fluctuations identified through
the study and radiocarbon-dating of barrier island
beach-ridge sets: three rises and two falls in water level
beginning 2000 B.P. (50 B.C.) (Stapor et al. 1987:149, 186).
For archaeologists, these episodes represent a major
advancement over sea-level models suggested for the area by
Widmer (1988) and Hale (1985), and support earlier
suggestions by archaeologists that sea level may have been
higher than at present for a portion of the Late Holocene
(Griffin 1988; Walker 1987; Widmer 1986a, 1988).
Specifically, Stapor et al. (1987, 1991) interpret
beach-ridge sets to indicate a rise in water levels
beginning circa 2000 B.P. (50 B.C.) and reaching a high
stand of perhaps .6 to .9 m (2 to 3 ft) above present sea
level (Figure 10). Earlier, Missimer (1973:92, 95) had
proposed a high stand of 1.5 to 2.1 m (5 to 7 ft) above
present sea level for the same time period. Sea level began
to drop around 1500 B.P. (A.D. 450), falling to .3 to .6 m
(1 to 2 ft) below present sea level. Missimer provides


Table A-7
17 .
Faunal Analysis, Cash Mound, 8CH38, Charlotte County, Florida, June 1985 Sample, Test A-l, Level
Species
Common Name
Number of
Identifiable
Fragments
%
of
Total
MNI
%
of
Total
Bone/She11
Weight
(grams)
of
Total
Minimum
Meat Wt.
Estimate
*
of
Total
Maximum
Meat Wt.
Estimate
%
of
Total
Mammalia (large)
(large mammals cf. deer)
2
0.04
1
0.07
1.15
0.01
28.73
0.37
23535.10
u. 1
51
Total Mammalia
(mammals)
2
0.04
1
0.07
1.15
0.01
28.73
0.37
23535.10
55.87
Testudnea
(turtles)
3
0.06
1
0.07
1.87
0.01
62.24
2.11
631.31
1.43
Total Reptilia
(reptiles)
3
0.06
1
0.07
1.87
0.01
62.24
2.11
631.31
1.43
Carcbarblnua spp.
(requiem shark)
1
0.02
1
0.07
0.18
0.00
43.54
1.68
785.10
1.86
Raj 1 formes
(rays)
15
0.23
2
0.13
0.73
0.00
307.86
10.42
586.04(f)
1.33
Total Chondrichthyes
(cartilaginous fishes)
1
0.31
3
0.20
0.31
0.01
357.40
12.10
1371.14
3.25
Clupeidae
(herrings)
67
1.31
2
0.13
0.35
0.00
8.58
0.23
51.07
0.12
Arlopal a falla
(hardhead catfish)
138
2.70
38
2.54
6.26
0.04
114.55
3.88
7536.20
17.33
Ariidae
(sea catfishes)
163
3.31
(a)
(a)
3.87
0.02
74.35
2.52
(a)
(a)
Total Ariidae
(sea catfishes)
307
6.01
38
2.54
10.13
0.06
188.30
6.33
7536.20
17.33
Opaanua spp.
(toadfish)
3
0.06
2
0.13
0.36
0.00
8.80
0.30
427.30
1.01
Orthoprlatla chryaoptera
(pigflsh)
1
0.02
1
0.07
0.01
0.00
0.35
0.01
27.38
0.07
Archoaargua probatocaphalua
(sheepshead)
8
0.16
2
0.13
0.81
0.01
18.23
0.62
3258.30
7.72
Lagodon rhombolda a
(pinfish)
14
0.27
3
0.60
0.07
0.00
2.02
0.07
286.05
0.68
Sparidae
(porgles)
3
0.06
3
0.20
0.02
0.00
0.65
0.02
68.88
0.16
Total Sparidae
(porgies)
25
0.43
14
0.33
0.30
0.01
20.30
0.71
3613.23
8.56
Balrdlalla cbryaoura
(silver perch)
1
0.02
1
0.07
0.04
0.00
1.22
0.04
48.60
0.12
Cynoaclon nabuloaua
(spotted seatrout)
2
0.04
1
0.07
0.50
0.00
11.82
0.40
654.40
1.55
Cynoaclon regalia
(summer seatrout)
1
0.02
1
0.07
0.22
0.00
5.65
0.13
654.40
1.55
Cynoaclon spp.
(seatrout)
2
0.04
2
0.13
0.45
0.00
10.75
0.36
360.40
2.27
Micropogonias undulatua
(Atlantia croaker)
1
0.02
1
0.07
0.17
0.00
4.48
0.15
121.10
0.23
Sciaenidae
(drums)
1
0.02
(a)
(a)
0.01
0.00
0.35
0.01
(a)
(a)
Total Sciaenidae
(dnm.)
8
0.16
6
0.40
1.33
0.01
34.27
1.16
2438.30
5.78
Spheroldea apanglarl
(bandtall puffer)
1
0.02
1
0.07
0.03
0.00
0.34
0.03
46.60
0.11
Osteichthyes
(bony fishes)
1566
30.66
1
0.07
15.70
0.34
261.74
8.86
38.02(f)
0.03
Total Oateichthyes
(bony fishes)
1374
38.65
64
4.27
28.86
0.18
524.13
17.74
14211.32
33.65
Vertebrata (predominantly fish)
(backboned animals)
(b)
(b)
(a)
(a)
26.03
0.16
413.16
13.33
(a)
(a)
Total Vertebrata
(backboned animals)
1335
33.06
63
4.61
32.73
0.21
1385.72
46.31
33803.47
34.27
Bal anua spp.
(barnacle)
53
1.16
37
2.47
6.34
0.04
(c)
(c)
(a)
(o)
Calllnectea spp.
(blue crabs, Oulf crab, etc.)
11
0.22
3
0.20
2.68
0.02
21.33
0.74
250.20
0.53
Decapoda
(crabs)
17
0.33
(a)
(a)
0.80
0.01
8.14
0.28
(a)
(a)
Total Crustacea
(aquatic arthropods)
87
1.70
40
2.67
10.42
0.07
30.07
1.02
250.20
0.53
Carltbldaa acalarlformla
(ladder horn shell)
6
0.12
6
0.40
0.56
0.00
(o)
(O)
(c)
(o)
Crapldula plana
(eastern white slipper-shell)
8
0.16
8
0.53
0.87
0.01
(c)
(c)
(a)
(a)
221


CHAPTER 5
SUMMARY AND CONCLUSIONS
The goal of this dissertation has been to initiate a
multi-scalar, contextual understanding of prehistoric
human-environment relationships in the Charlotte Harbor
estuarine region. At the heart of this endeavor is the
recognition and organization of existing environmental
heterogeneity and geophysical dynamics from both spatial and
temporal perspectives. In the absence of this context,
archaeologists are in danger of making cultural
interpretations without the benefit of knowing the operative
environmental variables. These are the variables that
maintained or altered the estuarine/marine productivity and
stability that was so critical to the subsistence base of
the Calusa and their predecessors.

The concept of scale as a method of organizing both
present-day and past environments was adopted. Spatially,
the focus was on local and regional scales. Temporally,
short-, medium-, and long-term scales were defined. The
paleoenvironmental proxy data set chosen was the
zooarchaeological remains from sites representing various
estuarine locations within Charlotte Harbor. These faunal
remains provide a valid analytic medium. Using intrasite
180


Copyright 1992
by
Karen Jo Walker


105
Estuarine/Marine Zooarchaeoloaical Fauna as Proxy Data
Interpretive Potential and Time Resolution
Because of the spatial relationship between the
estuarine salinity gradient and the distribution of
estuarine fauna, the continual variation of the gradient
through time would have been a major determinant of
estuarine animals available to prehistoric residents of any
given site location. Ideally, then, a site faunal
assemblage should reflect any change in the paleosalinity
gradient (using the present-day gradient as a comparative
standard) that might occur.
Shellfish are appropriate for the detection of
paleosalinity conditions because living molluscs generally
exhibit limited mobility; different species are restricted
to specific salinity ranges along the estuarine gradient
(see Figure 9 and Appendix B). Sessile bivalves present the
most reliable indicators of all because of their stationary
nature. Aquatic molluscan species collected in the vicinity
of a given site will reflect the salinity range of
surrounding waters. In the present-day Charlotte Harbor
system, the greatest density of oyster communities occurs in
locations around Cape Haze, Charlotte Harbor (proper),
Matlacha Pass, and the mouth of the Caloosahatchee River
(Figure 1) (Woodburn 1965). In these areas, shell midden
sites exhibit great quantities of oyster shell, thus
reflecting the present-day distribution of bars.


30
Whereas reptiles and mammals generally represent a
negligible portion of the diet based on estimates of minimum
meat, they can be significant contributors if the maximum
meat estimates of large individuals are considered. When
the maximum meat of one sea turtle is estimated, its dietary
importance in the Big Mound Key samples becomes 19% and for
the Buck Key samples, 13% (Figure A-4). However, the high
mammal maximum meat percentage of 30% for the Big Mound Key
samples (Figure A-4) may be misleading. The deer bones
recovered from the four sampled strata in the short-lived
refuse pit possibly represent a single deer1 MNI instead
of 4which would substantially reduce the meat percentage.


14
such as "A-l," "A-2," etc. indicate the excavation unit, and
the third number refers to the vertical level (e.g., "A-l-4"
is the fourth vertical level of Test Unit A-l).
A total of 206,474 bone and shell specimens were
identified in the seventeen samples. A total of 22,557
minimum number of individuals (hereafter "MNI") were
calculated. Table 3 presents a summary of these data,
broken down by sample and vertebrates versus invertebrates.
Species-specific data for all seventeen samples are
presented in Appendix A.
Bio Mound Key, 8CH10
Located on the southwestern shoreline of the Cape Haze
Peninsula in Charlotte County (Figure 1), Big Mound Key is a
7 m-high shell mound complex that extends over a 15 ha area.
It is possible that the mound complex was constructed in a
spider-like effigy form. Archaeological work at Big Mound
Key has been limited but the site seems to have been
occupied since ca. A.D. 200 and possibly earlier (Luer
1986:105-106). During a site visit in the 1950s, the
Bullens (Bullen and Bullen 1956:50-51) collected Leon-
Jefferson and olive jar sherds indicating a seventeenth-
century occupation.
A large portion of Big Mound Key was intensively
bulldozed in the 1970s by treasure hunters. Along one of
the linear cuts, George Luer documented and excavated a
large pit containing stratified midden (see Marquardt


Table A-3--continued
Number of
%
%
Bone/Shell
%
Minimum
%
Maximum
*
Identifiable
of
MNI
of
Weight
of
Meat Wt.
of
Meat Wt.
of
Species
Common Name
Fragments
Total
Total
(jr)
Total
Estimate
Total
Estimate
Total
Bracbldontea exugtua
(scorched mussel)
7
0.06
6
0.50
1.35
0.02
(a)

Qeukenala demlooa granoalaalma
(Atlantia ribbed mussel)
240
2.03
128
10.74
95.44
1.14
23.40
0.43
273.92
0.76
Mytllldae
(mussels)
994
8.40
(a)
(a)
201.11
2.41
42.49
0.79
(a)
(a)
Pinnidae
(pen shells)
76
0.64
2
0.17
27.21
0.33
9.89
0.18
47.46
0.13
Argopee ten spp.
(scallop)
5
0.04
3
0.25
24.02
0.29
9.09
0.17
18.75
0.05
Peotinidae
(scallops)
6
0.05
3
0.25
5.73
0.07
3.42
0.06
18.75
0.05
Poetlnidae/Card11dae
(scallops/cockles)
20
0.17
(a)
(a)
9.10
0.11
4.69
0.09
(a)
(a)
Anomla simplex
(common jingle shell)
86
0.73
75
6.29
22.78
0.27
(a)
(O)
(o)
(o)
Oatrea equeotrla
(crested oyster)
130
1.10
65
5.45
40.77
0.49
(c)
(o)
(o)
(o)
Craaaoatrea vlrglnlca
(eastern oyster)
885
7.48
165
13.84
1400.98
16.79
189.73
3.52
82.50(f)
0.23
Ostreldae
(oysters)
74
0.63
(a)
(a)
18.51
16.79
2.88
0.05
(a)
(a)
Cardltamera florldana
(broad-ribbed cardlta)
7
0.06
4
0.34
1.43
0.02
(C)
(c)
(o)
(c)
Trachycardlum egmontlanum
(prickly cockle)
4
0.03
1
0.08
5.69
0.07
3.41
0.06
3.46
0.01
Splaula aolldlsaima almilla
(southern surf clam)
24
0.20
2
0.17
52.43
0.63
15.47
0.29
28.20
0.08
Tollina spp.
(tellln)
1
0.01
1
0.08
0.05
0.00
(e)
(e)
(c)
(o)
Donax varlabllla
(coquina)
1
0.01
1
0.08
0.20
0.00
(o)
(o)
(a)
(a)
Mercenaria campechlenala
(southern quahog)
3
0.03
3
0.25
104.03
1.25
16.70
0.31
113.73
0.32
Cblone cancel lata
(cross-barred venus)
14
0.12
7
0.59
8.00
0.10
(c)
(o)
(o)
Anomalocardla auberlana
(pointed venus)
1
0.01
1
0.08
0.14
0.00
(o)
(c)
(o)
(o)
Venerldae
(venus clams)
1
0.01
1
0.08
0.15
0.00
(o)
(O)
(a)
(c)
Bivalvla
(oysters, clams, etc.)
482
4.07
(a)
(a)
135.30
1.62
29.50
0.55
(a)
(a)
Total Bivalvla
(oysters, clams, etc.)
3070
25.95
476
39.93
2189.07
26.24
363.79
6.74
602.91
1.67
Mollusca
(snails and bivalves)
(b)
(b)
(a)
(a)
1415.11
16.96
191.04
3.54
(a)
(a)
Total Mollusca
(snails and bivalves)
5597
47.30
1028
86.24
8101.74
97.10
1899.44
35.21
3511.20
9 .75
Desmotichia
(sea urchins)
73
0.62
1
0.08
2.03
0.02
(d)
(d)
(d)
(d)
Echlnodermata
(echinoderms)
10
0.08
2
0.17
1.05
0.01
(C)
(o)
(o)
Total Invertebrata
(animals without backbones)
5832
49.29
1094
91.78
8133.14
97.47
1999.14
37.06
4261.80
11.83
TOTAL SAMPLE
(vert ebrates-f invertebrates)
11832
100.00
1192
100.00
8344.05
100.00
5394.99
100.00
36022.05
100.00
214


173
A great variety of bone points and grooved stone and
shell weights are recovered from southwest Florida's coastal
sites. These versatile and often recycled artifacts are
believed to be primary components of a sophisticated
hook-and-line and spear-fishing technology (Walker 1991).
Bone points made from mammal bone functioned as spear or
leister points, points for barbless, composite fishhooks,
and simple throat gorges. Stone weights are considered to
be fishing line sinkers. Shell columella weights were used
as line sinkers or doubled in function as line sinker and
composite-hook shank (Walker 1991). Leisters or spears
would have been useful in the shallow seagrass flats for
procuring bottom dwellers such as flounder and sting ray.
Dickinson (1985:13) describes a southeast Florida coast
Indian who one morning in 1699 adeptly speared many fish at
an inlet.
The composite-hook technology probably was designed for
the capture of striking, carnivorous fishes that could not
be netted profitably. This might have been due to the lack
of tensile strength in the palm-fiber nets (Sails 1989).
Today, fisherfolk who once used cotton nets in Charlotte
Harbor report that red drum ("redfish") and seatrouts
routinely damaged their nets, resulting in escape (Edic
1991). Fast-swimming predators, such as crevalle jack, can
escape the nets and thus may have been caught by hook and
line. Although the grass meadows may have been trolled for


158
The high productivity of this ecosystem is evident in the
prehistoric gathering of marine snails (53%) and fishing,
mostly for small schooling fishes (31%) (Figure 16).
Lightning whelk, pear whelk, banded tulip, crown conch, and
other less abundant snails account for only 6% to 22% of
meat (Figures 5 and 4, respectively).
Pinfish, pigfish, silver perch, and hardhead catfish
are the most abundant Josslyn fishes. In addition, dusky
shark, sandbar shark, seatrout, sheepshead, red drum, and
toadfish contribute to the 53% to 59% meat estimate for
fishes (Tables 5 and 4, respectively). Fishes and snails
are prominent in all four Josslyn samples with only a small
increase of fishes in A-l-12 and A-l-4 (Figure 11). Sample
A-l-32 includes a large collection, 179 MNI, of scallops
(Table A-13). Overall, the four Josslyn faunal samples
suggest that water conditions at the respective times of
midden deposit were much the same as those of today.
Buck Key Shell Midden. 8LL722
Samples were analyzed from two test excavation units,
A-2 and B-2. Totals of 26,791 vertebrate and 18,018
invertebrate bone and shell fragments were analyzed,
representing 485 vertebrate MNI and 2,944 invertebrate MNI
(Tables A-14 A-17). The A-2 samples, A-2-6/7 and A-2-11,
radiocarbon-date to A.D. 1040 and A.D. 1330, respectively
(Table 2). These two unit A-2 samples differ in character
from the B-2 fauna in that fewer fish remains were


Mlcropogonlaa undulatus
(Atlantic croaker)
1
0.01
1
0.09
0.17
0.00
4.44
0.05
143.70
0.21
Pogonias cromle
(black drum)
43
0.40
1
0.09
6.06
0.07
110.72
1.16
481.20
0.69
Sclaenops ocellatus
(red drum)
1
0.01
1
0.09
0.24
0.00
6.05
0.06
431.60
0.62
Sciaenidae
(drums)
7
0.07
()
()
0.63
0.01
14.44
0.15
(A)
()
Total Sciaanldaa
(druna)
79
0.74
21
1.90
12.80
0.14
245.03
2.57
9097.65
13.06
Sphoaroldas app.
(puffer fiah)
2
0.02
1
0.09
0.09
0.00
2.51
0.03
71.30
0.10
Chllomyctarus schoapf1
(atriped burrfiah)
22
0.21
10
0.91
5.45
0.06
173.78
1.82
1691.00
2.43
Diodontida
(burr and porcupine fiahes)
10
0.09
<)
<>
0.14
0.00
3.73
0.04
(A)
()
Osteichthyea
(bony fiahea)
3563
33.54
10
0.91
29.42
0.33
458.96
4.81
551.60
0.79
Total Oataiohthyaa
(bony fiahea)
4796
45.15
190
17.23
110.67
1.23
1929.45
20.22
30256.04
43.43
Vartabrata (pradominantly fiah)
(backboned anmala)
(b)
()
()
315.36
3.50
3440.94
36.05
(A)
(A)
Total Vartabrata
(backboned animala)
4937
46.48
208
1.96
465.30
5.16
8056.18
84.41
66962.69
96.11
Balanua app.
(barnacle)
3
0.03
1
0.09
0.36
0.00
(O)
(o)
(C)
Dacapoda
(eraba)
2
0.02
1
0.09
0.42
0.00
4.80
0.05
83.4
0.12
Total Cruataoaa
(aquatic arthropods)
5
0.05
2
0.18
0.78
0.01
4.80
0.05
83.40
0.12
Splroglyphus lrragularim
(irregular worm-shell)
44
0.41
1
0.09
46.91
0.52
(O)
(O
Modulus modulus
(Atlantic modulus)
1
0.01
1
0.09
0.17
0.00
(O)
(o)

(c)
Carlthlum muscarum
(fly-specked cerith)
2
0.02
2
0.18
0.41
0.00
(O)
(O)
Crapldula aculeata
(spiny slipper-shell)
2
0.02
2
0.18
0.85
0.01
(O)
(O)
(o)
(c)
Crapldula plana
(eastern white slipper-ahell)
1
0.01
1
0.09
2.07
0.02
(O)
(O)
(O)
(c)
Crapldula app.
(slipper-shell)
4
0.04
4
0.36
1.77
0.02
<)
(o>
(O)
(i
Strombus alatua
(Florida fighting conch)
4
0.04
3
0.27
103.59
1.15
12.32
0.13
19.59
0.03
Polnicas dupllcatus
(shark eye)
7
0.07
6
0.54
7.91
0.09
7.36
0.08
33.16
0.05
Phyllonotus pomum
(apple murex)
14
0.13
3
0.27
11.43
0.13
6.44
0.07
13.86
0.02
Uroaalplnx parrugata
(Gulf oyster drill)
25
0.24
18
1.63
6.20
0.07
<>
(C)
(<=
Malongana corona
(common crown conch)
269
2.53
110
9.97
256.43
2.84
49.48
0.52
298.10
0.43
Busycon contrarlum
(lightning whelk)
317
2.98
36
3.26
485.63
5.38
93.26
0.98
207.86
0.30
Busycon apiraturn pyruloldaa
(Say's pear whelk)
80
0.75
33
2.99
67.61
0.75
32.94
0.35
300.62
0.43
Total Malonganidaa
(crown concha)
666
6.27
179
16.23
809.67
8.98
175.68
1.84
806.58
1.16
Naaaarlus ap.
(nassa)
1
0.01
1
0.09
0.11
0.00

)
(O)
(O
Fasclolarla llllum hunt aria
(banded tulip)
66
0.62
12
1.09
49.59
0.55
3.11
0.03
28.43
0.04
Fasciolar la tulipa
(true tulip)
17
0.16
5
0.45
41.37
0.46
52.65
0.55
125.33
0.18
Fasclolarla app.
(tulip shell)
66
0.62
54
4.90
71.67
0.79
44.73
0.47
127.94
0.18
Plauroploca gigantaa
(Florida horse conch)
4
0.04
1
0.09
3.81
0.04
0.91
0.01
16.54
0.02
Total Faaciolariidaa
(tulip shells)
153
1.44
72
6.53
166.44
1.84
101.40
1.06
298.24
0.43
Conus app.
(cone shell)
2
0.02
2
0.18
9.08
0.10
5.22
0.05
(d|
<<*>
Gastropoda (amall marina)
(small marine snails)
1
0.01
1
0.09
0.11
0.00
( (O)
(O)
(o)
Gaatropoda (medium marina)
(stadium-a izad marine anails)
511
4.81
(>
(i
153.38
1.70
69.88
0.73
()
(
Total Marina Gaatropoda
(marine anaila)
1438
13.54
296
26.84
1320.10
14.63
378.30
3.96
1171.43
1.68
Cuglandlna rosaa
(rosy euglandina)
18
0.17
7
0.63
12.74
0.14
(C)
(c)
(O
(O)
Polygyra app.
(polyqyr.)
3
0.03
3
0.27
0.14
0.00
(o)
()

Total Tarraatrial Gaatropoda
(tarraatrial anails)
21
0.20
10
0.91
12.88
0.14
0.00
0.00
0.00
0.00
Anadara tranavarsa
7
0.07
5
0.45
6.99
0.08
3.92
0.04
14.76
0.02
Noatla ponderosa
(ponderous ark)
6
0.06
2
0.18
47.68
0.53
14.50
0.15
21.33
0.03
Gaukansla damlssa granoslsalma
(Atlantia ribbed mussel)
1
0.01
1
0.09
tr
0.00
0.00
0.00
0.23
0.00
226


79
understandable segments that archaeologists can relate to
prehistoric human adaptation. Salinity, used here roughly
to define those segments for Charlotte Harbor, is of course
only one of many variables determining faunal distribution
along an estuarine gradient. It is, however, perhaps the
most appropriate analytic factor for archaeological work
because for any given point location, the salinity regime is
reflected in zooarchaeological assemblages (particularly
true of molluscan remains).


60
duration, imply short- or medium-term alterations in faunal
distribution and/or productivity.
Distribution of Vertebrates
Literature concerning aquatic vertebrate communities
(primarily fishes) in mangrove environments is readily
available (e.g., Odum et al. 1982) and several systematic
fish studies exist for Charlotte Harbor (see Estevez et al.
1984; Taylor 1974:213). In particular, Gunter and Hall
(1969) and Wang and Raney (1971) present a data base useful
for archaeological research.
To describe the distribution of vertebrates, four
mangrove/fish community designations are borrowed from Odum
et al. (1982:50-51) and a fifth classification is added to
complete the salinity gradient. These are: (1) mangrove
basin; (2) mangrove-fringed streams; (3) mangrove-fringed
estuarine bays and lagoons; (4) mangrove-fringed oceanic
bays and lagoons; and, (5) the littoral zone and Gulf
waters. Types 3 and 4 are associated with seagrass meadows.
Type 1 is a backwater area, largely of freshwater
content, supporting species such as killifishes (Family
Cyprinodontidae), the greater siren (Siren lacertina), frogs
(Rana spp.), and freshwater turtles. The area immediately
to the north of Big Mound Key (8CH10) is an example of a
mangrove basin (Figure 1). These areas are known generally
to exhibit low species diversity, but sometimes high
densities of fishes do occur (Odum et al. 1982:50).


Sparidae/Sciaenidae
(porgies/ drums)
4 06
2.35
<>
<>
9.84
0.11
171.28
0.72
()
<)
Bairdiolla chryaoura
(silver perch)
84
0.49
16
2.33
2.92
0.03
57.39
0.24
786.47
0.88
CynoBclon aranarlua
(sand seatrout)
4
0.02
3
0.44
0.97
0.01
21.29
0.09
248.72
0.28
Cynoaclon nabuloaua
(spotted seatrout)
10
0.06
6
0.87
5.73
0.06
105.28
0.44
5677.80
6.38
Cynoaclon spp.
(seatrout)
12
0.07
3
0.44
1.90
0.02
38.98
0.16
654.40
0.73
Laloatomue xanthurua
(pot)
2
0.01
2
0.29
0.03
0.00
0.93
0.00
127.50
0.14
Mantlcirrhue spp.
(whiting)
1
0.01
1
0.15
0.09
0.00
2.51
0.01
239.30
0.27
Pogonlaa cromle
(black drum)
3
0.02
2
0.29
0.71
0.01
16.07
0.07
1187.00
1.33
Sclaenops ocallatua
(red drum)
20
0.12
5
0.73
9.03
0.10
158.53
0.67
1577.00
1.77
Soiaanidae
(drums)
4
0.02
()
()
0.44
0.00
10.45
0.04
(
<)
Total Sciaanidaa
(drums)
140
0.81
38
5.53
21.82
0.25
411.43
1.73
10498.19
11.79
Chaatodlptarue fabar
(spadefish)
1
0.01
1
0.15
0.01
0.00
0.35
0.00
19.60
0.02
Mugll app.
(mullet)
99
0.57
10
1.46
12.51
0.14
212.58
0.89
8278.38
9.30
Sphyraenidae
(barracudas)
7
0.04
1
0.15
0.04
0.00
1.21
0.01
3884.71
4.36
Prlonotue spp.
(sea robin)
1
0.01
1
0.15
0.04
0.00
1.21
0.01
107.79
0.12
Parallchthya spp.
(flounder)
2
0.01
1
0.15
0.12
0.00
3.25
0.01
531.94
0.60
Bothldaa
(left-handed flatfishes)
6
0.03
()
()
0.56
0.01
12.98
0.05
()
<>
Ostraciidas
(trunkfishes)
38
0.22
1
0.15
0.64
0.01
14.64
0.06
71.52
0.08
Sphoaroldae apanglarl
(bandtail puffer)
1
0.15
1
0.15
0.15
0.00
3.97
0.02
71.30
0.08
Chlloaycterua achoapfi
(striped burrfish)
31
0.18
12
1.75
8.92
0.10
156.79
0.66
923.88
1.04
Diodontidas
(burr and porcupine fishes)
229
1.32
<)
(i
2.64
0.03
52.42
0.22
()
<>
Ostaiohthyes
(bony fishes)
6936
40.10
()
(M
85.99
0.97
1205.04
5.07
(
()
Total Osteichthyes
(bony fishes)
11681
67.54
213
31.00
386.61
4.36
5832.35
24.52
56581.00
63.54
Vertsbrata (predominantly fish)
(backboned animals)
)
(*
(>
<)
1099.22
12.41
11939.23
50.20
(
<)
Total Vertebrata
(animals with backbones)
11865
68.60
220
32.02
1533.47
17.31
21477.12
90.30
85084.33
95.54
Balanua spp.
(barnacle)
109
0.63
64
9.32
11.38
0.13
(<*>
(O)
(o)
Manippa marcanarla
(stone crab)
1327
7.67
25
3.64
300.06
3.39
1050.29
4.42
2085.00
2.34
Total Crustacea
(aquatic arthropods)
1436
8.30
89
12.95
311.44
3.52
1050.29
4.42
2085.00
2.34
Turritelidae/Vermetidae
(worm-shell)
1
0.01
1
0.15
3.19
0.04
(O)
(c)
Modulus modulus
(Atlantic modulus)
5
0.03
5
0.73
0.85
0.01
<>
<>
(O)
<>
Carlthlua muscarum
(fly-specked cerith)
4
0.02
4
0.58
0.33
0.00
<>
(O)
(O)
(O)
Carlthlum lutoeum
(dwarf cerith)
22
0.13
22
3.20
2.22
0.03
(o)
(O)
(C)
(O)
Crapldula aculaata
(spiny slipper-shell)
23
0.13
23
3.35
3.95
0.04
(O)
(O)
>
(O)
Crapldula spp.
(slipper-shell)
38
0.22
38
5.53
20.29
0.23

(C)
<>
Stroatbus alatua
(Florida fighting conch)
138
0.80
52
7.57
2626.17
29.64
209.14
0.88
404.50
0.45
Erato maugarlaa
(mauger's erato)
1
0.01
1
0.15
0.04
0.00
(o)
(c)
(C)
Pollnlcaa dupllcatue
(shark eye)
1
0.01
1
0.15
0.03
0.00
<=)
(O)
(c)
(o)
Phyllonotua pom urn
(apple murex)
1
0.01
1
0.15
0.41
0.00

(c)
(c)
(>
Uroaalplnx parrugata
(Gulf oyster drill)
5
0.03
5
0.73
0.71
0.01
(o)
(O)
()
(O)
Anachls aamlpllcata
(semiplicate dove-shell)
1
0.01
1
0.15
0.03
0.00
(O)
()
(C)
(C)
Anacbla spp.
(dove-shell)
1
0.01
1
0.15
0.02
0.00
(=)
(O)
(O)
Malongana corona
(common crown conch)
5
0.03
2
0.29
3.00
0.03
0.99
0.00
3.88
0.00
Buaycon contrarlum
(lightning whelk)
109
0.63
23
3.35
750.37
8.47
341.45
1.44
215.74(f)
0.24
Buaycon aplratum pyruloldaa
(Say's pear whelk)
17
0.10
6
0.87
26.06
0.29
13.73
0.06
78.06
0.09
Total Melongenidae
(crown concha)
131
0.76
31
4.51
779.43
8.80
356.17
1.50
297.68
0.33
Nassarius vibax
(common eastern nassa)
5
0.03
5
0.73
0.52
0.01
(c)
(c)
Faaciolaria 1111um huntarla
(banded tulip)
3
0.02
2
0.29
1.72
0.02
0.29
0.00
8.30
0.01
Fasclolarla tulipa
(true tulip)
6
0.03
2
0. 29
13.62
0.15
17.36
0.07
80.08
0.09
Famclolarla spp.
(tulip shell)
4
0.02
2
0.29
2.37
0.03
0.44
0.00
8.30
0.01
241


83


68
comprise the fifth invertebrate category. Representative
animals include sunray venus (Macrocallista nimbosa),
southern surf clam (Spisula solidissima similis), stone crab
(Menippe mercenaria), sand dollars (Family Scutellidae), and
many small gastropods and bivalves (Abbott 1974; Wang and
Raney 1971:21) .
It is emphasized that the foregoing vertebrate and
invertebrate divisions can usefully illustrate rough
segments of the salinity gradient. In reality, no species
restricts itself to these artificial types. Nonetheless,
the types allow an operable description of the continuum.
Future biological studies in Charlotte Harbor will improve
this brief descriptive distribution model.
Inferred Local Distribution of Resources in Prehistory
That present-day Charlotte Harbor is heterogeneous has
been established and its spatial variability conceptualized
in terms of abstract habitat categories. However, this
model cannot be projected directly into the past without
independent confirmation. If one assumes that the
prehistoric people targeted resources near their habitations
and that faunal evidence found at a site represents animals
processed or consumed at that site, then zooarchaeological
data can be used to test whether the spatial variability of
the present was also characteristic of the past.
Seventeen samples of archaeological fauna from five
sites Big Mound Key, Cash Mound, Useppa Island, Josslyn


42
Table 6continued.
a Quitmyer 1985
b Florida Museum of Natural History Collections
c Nietschmann 1973:165
d Most other molluscan species required the comparative
method when fragmentation precluded measurements.


116
relatively high salinities. The A-l-22 increase (relative
to the stratigraphically lower A-l-32 sample) of oysters and
their associates suggests a slight lowering of salinities to
a level that would allow a development of oyster bars in an
area where today there are essentially none. Supportive of
this is the lack of a proportional increase in the
high-salinity crested oyster, which would be expected in
waters of 32 ppt salinity.
Thus, the two faunal assemblages suggest that
conditions very similar to today's existed ca. 120/130 B.C.
in the Josslyn locale but that slightly lowered salinities
may have been a possibility during the A-l-22 occupation.
If the latter were the case, we can again invoke long-term
environmental factors but not with any precision. The
unnamed Cayo Costa pass may have been open during this time
but it is far enough away from Josslyn that its infilling
(partial or complete) may not have been a factor. A lower
sea level such as Stapor et al. (1991:Figure 14) and Tanner
(1991) hypothesize (Table 7) for this period may explain the
A-l-22 pattern, but the possibility of a medium-term
extended wet period confuses the picture. Missimer
(1973:68) and Tanner (1991:585) place the beginning of the
subsequent Wulfert sea-level rise at 2100 B.P. (150 B.C.).
The two Josslyn samples (A-l-22 and A-l-32) may represent
this transition state, resulting in environmental signatures
closely resembling that of the present.


153
61% of meat weight estimate (Figures 5 and 4, respectively)
contribution. Crown conch, ribbed mussel, banded tulip, and
eastern oyster are the most abundant shellfish species
(Appendix A). Killifish, pinfish, and toadfish are the most
numerous bony fishes. Sharks of the families Carcharhinidae
and Sphrynidae occur in low numbers in all four strata of
the pit. Two samples, 11 and 8b, indicate an importance of
white-tailed deer to the diet (however, see methods
discussion).
Hardhead catfish is unimportant in the four Big Mound
Key samples compared to the other four sites (Table 9);
this may be indicating a cultural preference because this
species is ubiquitous elsewhere and there is no reason for
catfish to be absent from the Big Mound Key area.
Additionally, the meaty scallops, deer, sea turtle, shark,
jack, and gag grouper are unusually substantial (Appendix A)
and may further suggest that these midden samples represent
a controlled access to certain foodstuffs. On the other
hand, these occurrences may be explained simply by the
site's proximity to Gasparilla Pass and the pinelands of
Cape Haze.
Comparison of the four strata shows a decrease in fish
MNI over time (Figure 14), but the significance of this is
probably negligible because this material was deposited in a
pit or depression within a short span of time judging from
radiocarbon dates, profile drawings, and descriptions (Luer


33
Table 2. Zooarchaeological Samples Included in
the Charlotte Harbor Study.
Site Name
and Number
Sample
Provenience
Sample
Type
Vol.
(m3)
C-14 Date
(uncalib.)
1. Big Mound Key
(8CH10)
Layer 11
pit8
. 009
-
2. Big Mound Key
(8CH10)
Layer 8b
pit8
.009
A.D.860+80
UM-2685
Charcoal
3. Big Mound Key
(8CH10)
Layer 7
pit8
.014
A.D.870+70
UM-2679
Shell
4. Big Mound Key
(8CH10)
Layer 2(l)b
pit8
.014
A.D.880+140
UM-2676
Charcoal
5. Cash Mound
(8CH38)
A-l-4
column
level
.018
A.D.680+70
Beta-16281
Shell
6. Cash Mound
(8CH38)
A-l-8
column
level
.020
A.D.150+90
Beta-16280
Shell
7. Cash Mound
(8CH38)
A-l-17
column
level
.024
A.D.190+80
Beta-16279
Shell
8. Cash Mound
(8CH38)
A-l-20
column
level
.023
A.D.270+60
Beta-16278
Shell
9. Useppa Island
(8LL51)
A-4-2
column
level
.018
570+60B.C.
Beta-38495
Shell
10. Josslyn Island
(8LL32)
A-l-4(5)b
column
level
.009
A.D.1200+60
Beta-17332
Shell
11. Josslyn Island
(8LL32)
A-l-12(13)b
column
level
.028
A.D.820+70
Beta-17333
Shell


Table A-ll--continued.
Species
Common Name
Number of
Identifiable
Fragments
%
of
Total
MNI
%
of
Total
Bone/Shell
Weight
(grams)
%
of
Total
Minimum
Meat Wt.
Estimate
\
of
Total
Maximum
Meat Wt.
Estimate
%
of
Total
Total Marine Gastropoda
(marine snails)
11080
39.86
634
43.07
9884.44
47.27
5094.43
24.51
4192.93
5.57
Polygyra spp.
(polygyra)
2
0.01
2
0.14
0.10
0.00
(o)
(o)
(c)
(o)
Total Terrestrial Gastropoda
(terrestrial snails)
2
0.01
2
0.14
0.10
0.00
0.00
0.00
0.00
0.00
Noetla ponderosa
(ponderous ark)
3
0.01
3
0.20
49.10
0.23
14.79
0.07
30 .43
0.04
Arcidae
(ark shells)
5
0.02
(a)
(a)
7.20
0.03
4.00
0.02
(a)
(a)
Oeukenala demlaaa granoalaalma
(Atlantic ribbed mussel)
310
1.12
29
1.97
71.40
0.34
18.55
0.09
62.35
0.00
Mytllldae
(mussels)
45
0.16
(a)
(a)
12.19
0.06
4.50
0.02
(a)
(a)
Plnnidae
(pen shells)
53
0.19
3
0.20
23.40
0.11
8.93
0.04
71.20
0.09
crystal (of. Plnnidae)
(recrystalized pen shell)
33
0.12
(a)
(a)
12.6 0
0.06
(c)
(e)
(o)
(o)
Argopecten sp.
(scallop)
20
0.07
4
0.27
28.00
0.13
10.09
0.05
19.01
0.03
Pectinidae
(seallops)
21
0.08
(a)
(a)
10.50
0.05
5.17
0.02
(a)
(a)
Pectinidae/Cardiidae
(seallops/cockles)
138
0.50
(a)
(a)
58.3 0
0.28
16.62
0.08
(a)
(a)
Pllcatula glbboaa
(kitten's paw)
1
0.00
1
0.07
2.10
0.01
(o)
(a)
(o>
(e)
Oatrea equeatrla
(crested oyster)
29
0.10
14
0.95
12.33
0.06
(o)
(c)
(e)
(o)
Craaaoatrea vlrglnlca
(eastern oyster)
103
0.37
31
2.11
137.25
0.66
30.35
0.15
16.37(f)
0.02
Ostreidae
(oysters)
48
0.17
(a)
(a)
16.98
0.08
7.28
0.04
(a)
(a)
Luclna naaaula
(woven lucina)
2
0.01
2
0.14
0.20
0.00
(o)
(o)
(o)
(o)
CardlCamera florldana
(broad-ribbed cardita)
24
0.09
8
0.54
10.50
0.05
(o)
(o)
(c)
(o)
Trachycardlum egmontianum
(prickly cockle)
7
0.03
1
0.07
7.50
0.04
4.38
0.02
5.42
0.01
Dlnocardlurn robuatum vanbynlngl
(Van Hyning's cockle)
137
0.49
5
0.34
368.30
1.76
58.36
0.28
126.18
0.17
Splaula aolldlaalma almilla
(southern surf clam)
3
0.01
3
0.20
8.10
0.04
4.33
0.02
23.52
0.03
Polymeaoda martima
(Florida marsh clam)
36
0.13
20
1.36
3.80
0.02
3.13
0.02
13.53
0.02
Mercenaria campechlenala
(southern quahog)
116
0.42
4
0.27
646.90
3.09
79.91
0.38
224.40
0.30
Cblone cancellata
(cross-barred venus)
3
0.01
3
0.20
3.60
0.02
(e)
(a)
(o)
Anomalocardla auberlana
(pointed venus)
4
0.01
3
0.20
0.50
0.00
(o)
(o)
(o)
(o)
Macrocall lata nlmboaa
(flunray venus)
7
0.03
5
0.34
15.80
0.08
6.83
0.03
33.30
0.04
Bivalvia
(oysters, clams, etc.)
226
0.81
(a)
(a)
79.50
0.38
20.54
0.10
(a)
(a)
Total Bivalvia
(bivalves)
1374
4.94
139
9.44
1586.05
7.59
297.76
1.43
625.71
0.83
Mollusca
(snails and bivalves)
(b)

(a)
(a)
8513.73
40.72
1556.02
7.49
(a)
(a)
Total Mollusca
(snails and bivalves)
12456
44.82
775
52.65
19984.32
95.57
6948.21
33.42
4818.64
6.41
Desmotichia
(sea urchins)
7
0.03
1
0.07
0.40
0.00
(d)
(d)
(d)
(d)
Total Invertebrata
(animals without backbones)
13062
47.00
1021
69.36
20123.49
96.24
7401.07
35.60
5485.84
7.29
TOTAL SAMPLE
(vert ebratea-t invertebrates)
27794
100.00
1472
100.00
20909.61
100.00
20788.26
100.00
75227.11
100.00
233


182
The third and fourth objectives focused on the overlay
of temporal variation onto the present-day and past spatial
patterns. The potential variation that can alter an
estuarine gradient at short-, medium-, and long-term scales
was explored. Then the likelihood of archaeofauna as
signatures of this multi-scalar variation and discussed
several possibilities, including fish size and the small
epibionts associated with oyster bars that occur
incidentally in middens, was examined. Their potential as
archaeofaunal signatures of change is promising. The
zooarchaeological samples from the five Charlotte Harbor
sites were studied for evidence of continuity and change
using the proposed faunal signatures.
The above process allowed an evaluation of archaeofauna
as proxy paleoenvironmental data for Charlotte Harbor. It
was concluded that its potential for modeling depends on
three factors: temporal scale of environmental variation,
intraregional site location, and magnitude of variation. It
also was determined that certain medium- and long-term
forces (sea-level fluctuations and inlet dynamics) are most
likely to result in archaeological signatures and therefore
to result in subsistence change. However, acknowledging the
distinctions between the two time scales is difficult and
requires a body of independent data for resolution,
particularly in the absence of numerous coeval
zooarchaeological assemblages.


162
Intraregional variation of approximated subsistence
activity based on MNI of exploited animals is illustrated in
Figure 16. The charts are not intended to imply effort time
or expended energy; this would be a much more complex
analysis (e.g., Glassow and Wilcoxon 1988). For example,
large numbers of fish individuals may be collected in only
one brief net load while the same number of mollusc
individuals may represent several hours of gathering.
However, technology may balance procurement cost
differences. Much time and energy would be required for the
manufacture and maintenance of nets, line, hooks, and
sinkers needed for fishing, whereas comparatively little
time would be needed to make shellfish gathering implements
such as a probing stick, whelk pounder, pecking tool, or
container.
Figure 16 is instructive only in showing MNI in general
fishing, gathering, and hunting terms. Hunting (land and
aquatic mammals, aquatic birds) is not significant in any of
the five composite samples, suggesting that it was not an
important activity on a daily basis. The time required for
travel, the hunt itself, and transport may have far exceeded
that for fishing and shellfishing.
As in the habitat summaries (Figure 7), the activity
charts (Figure 16) closely correspond to present-day
immediate surroundings for each site. For example, Josslyn
Island exhibits the lowest percentage of gathering bivalves.


17
elevation of 6.02 meters above sea level and, according to
Frank Hamilton Cushing (1897:337), courts and waterways.
Except for Cushing's brief 1895 investigation of one of the
"courts, Josslyn's archaeological deposits have received
little attention until the Florida Museum of Natural
History's recent involvement (Marquardt 1984, 1992a).
Josslyn's dense growths of red, black, and white
mangroves, trees of buttonwood, stopper, strangler fig, and
gumbo limbo are typical of coastal southwest Florida's
native subtropical vegetation. Geological coring has
demonstrated that the archaeological portion of Josslyn is
the oldest part of the island (Upchurch et al. 1992).
Futhermore, the lowest 65 cm (more or less, depending on the
tide) of midden is today submerged under water (Marquardt
1992b). These two pieces of information suggest a lower sea
level at the time of Josslyn's earliest occupation at circa
130 B.C., if not earlier.
In 1985, an extensive vertical profile was cleaned in a
deep looter's trench (Marquardt 1992b). From this area,
designated as operation A-l, thirty-eight 50 x 50 x 10 cm
column levels were removed for intensive analyses. Four of
these levels, dating to 130 + 90 B.C., 120 + 70 B.C. (both
Caloosahatchee I), A.D. 820 + 70 (Caloosahatchee IIB) and
A.D. 1200 60 (Caloosahatchee IIB/III), were chosen for
zooarchaeological study (Tables 2 and 3; Appendix A). The
inundated midden/mound base (described above) was not dated,


171
represent over 60% of all fish species trawled in Charlotte
Harbor in at least five months of the year, yet no anchovy
specimens were identified in the midden samples.
Wang and Raney used trawling nets of 6.35 mm and 12.7
mm (1/4" and 1/2" bar length), that is, 12.7 mm and 25.4 mm
mesh openings (1/2" and 1" openings) whereas the smallest
Key Marco mesh is a 60 mm opening (Table 14) and the
smallest mesh gauge would have produced 30 mm openings
(Walker 1991). Anchovies have small girths and rarely
exceed 70 mm in length (Hoese and Moore 1977:42, 137; Wang
and Raney 1971:22-23); they could probably escape a net with
30 mm openings, perhaps explaining their archaeological
absence. Of related interest is the general lack of
diagnostic (above taxon level of Class) faunal remains in
the 1.60 mm screen fraction (see methods discussion). In
sum, this suggests a general prehistoric use of nets with no
smaller than 30 mm mesh openings. Cushing (1897:38)
describes "fine meshed, square dip nets" similar to ones
known from the North American Northwest Coast (e.g., Stewart
1977:88-91) for the Key Marco site, but he provides no mesh
measurement. Today remains of these dip nets apparently do
not exist in the Florida Museum of Natural History's Key
Marco cordage collection. Such nets may have been used to
catch bait fish.
Alternate explanations for the lack of evidence for
general use of fine-meshed (less than 30 mm) nets might be


Table A-5. Faunal Analysis, Cash Mound,
4 .
8CH38,
Charlotte County,
Florida,
June
1985 Sample,
Test A-1i
, Level
Number of
%
%
Bone/Shell
%
Minimum
%
Maximum
%
Identifiable of
MNI
of
Weight
of
Meat Wt.
of
Meat Wt.
of
Species
Common Name
Fragments
Total
Total
(grams)
Total
Estimate
Total
Estimate
Total
Procyon lot or
(raccoon)
2
0.02
1
0.08
0.26
0.00
8.63
0.13
2164.22
5.39
Mammalia (medium)
(medium-sized mammals)
3
0.03
(a)
(a)
0.89
0.01
23.39
0.34
(a)
(a)
Total Mammalia
(mammals)
0.05
1
0.08
1.15
0.01
32.02
0.47
2164.22
5.39
Anatidae
(ducks)
2
0.02
1
0.08
0.73
0.01
13.34
0.20
481.40
1.20
Aves (medium)
(medium-sized birds)
1
0.01
(a)
(a)
0.08
0.00
2.08
0.03
(a)
(a)
Total Aves
(birds)
3
0.03
1
0.08
0.81
0.01
15.42
0.03
481.40
1.20
Testudlnes
(turtles)
8
0.07
1
0.08
0.98
0.01
44.19
0.65
631.31
1.57
Colubridae
(colubrlds)
8
0.07
1
0.08
0.05
0.00
0.68
0.01
139.50
0.35
Total Reptilla
(reptiles)
16
0.15
2
0.16
2.00
0.02
44.87
0.66
770.81
1.92
cf. Carcbarhlnus plumbous
(sandbar shark)
1
0.01
1
0.08
0.02
0.00
7.12
0.10
56.45
0.14
Carcharhlnus spp.
(requiem shark)
14
0.13
1
0.08
0.73
0.01
170.51
2.51
411.74
1.03
Rajlformes
(rays)
32
0.30
1
0.08
0.44
0.00
196.19
2.89
209.66(f)
0.52
Total Chondrlchthyes
(cartilaginous fishes)
47
0.43
3
0.23
1.19
0.01
373.82
5.50
677.85
1.69
Brovoortla spp.
(menhaden)
3
0.03
1
0.08
0.02
0.00
0.65
0.01
41.70
0.10
Clupeldae
(herrings)
5
0.05
(a)
(a)
0.02
0.00
0.65
0.01
(a)
(a)
Bagre marlnus
(gafftopsall catfish)
1
0.01
1
0.08
0.17
0.00
4.48
0.07
693.20
1.73
Arlopala fells
(hardhead catfish)
230
2.13
37
2.90
16.29
0.17
270.57
3.98
7396.30
18.42
Arlldae
(sea catflshes)
398
3.68
103
8.06
12.85
0.13
218.62
3.22
17762.02
44.23
Total Arlldae
(sea catflshes)
629
5.81
141
11.03
29.31
0.31
493.67
7.27
25851.52
64.38
Opsanus spp.
(toadflsh)
3
0.03
1
0.08
0.11
0.00
3.03
0.04
206.48
0.51
Strongylura spp.
(needlefish)
2
0.02
1
0.08
0.08
0.00
2.28
0.03
146.56
0.36
Fundulus spp.
(kllllflsh)
11
0.10
3
0.23
0.14
0.00
3.73
0.05
24.03
0.06
Caranx hippos
(crevalle jack)
1
0.01
1
0.08
0.09
0.00
2.53
0.04
2220.00
5.53
Carangldae
(jacks)
8
0.07
(a)
(a)
0.22
0.00
5.65
0.08
(a)
(a)
Ortboprlstls chrysoptera
(pigfish)
6
0.06
4
0.31
0.07
0.00
2.02
0.03
161.08
0.40
Arcbosargus probatocephalus
(sheepshead)
29
0.27
4
0.31
0.89
0.01
19.84
0.29
114.23
0.28
Lagodon rhomboids a
(plnflsh)
76
0.70
41
3.21
0.46
0.00
10.96
0.16
736.15
1.83
Sparldae
(porgles)
20
0.18
20
1.56
0.13
0.00
3.52
0.05
648.58
1.62
Total Sparldae
(porgles)
125
1.16
65
5.09
1.48
0.02
34.32
0.51
1498.96
3.73
Sparldae/Sclaenldae
(porgles/drums)
4
0.04
(a)
(a)
0.06
0.00
1.76
0.03
(a)
(a)
Balrdlella chrysoura
(silver perch)
6
0.06
3
0.23
0.17
0.00
4.48
0.07
257.47
0.64
Cynoaclon nebulosus
(spotted seatrout)
2
0.02
1
0.08
0.97
0.01
21.44
0.32
1119.56
2.79
Cynosclon spp.
(seatrout)
3
0.03
2
0.16
1.09
0.01
23.81
0.35
1253.30
3.12
Pogonlas cromla
(black drum)
9
0.08
1
0.08
0.19
0.00
4.95
0.07
130.20
0.32
Sciaenldae
(drums)
15
0.14
11
0.86
0.10
0.00
2.78
0.04
198.57
0.49
Total Sciaenldae
(drums)
35
0.32
18
1.41
2.52
0.03
57.4 6
0.85
2959.10
7.37
Parallchthya spp.
(flounder)
1
0.01
1
0.08
0.03
0.00
0.94
0.01
317.10
0.79
Spberoldes spongier1
(bandtail puffer)
1
0.01
1
0.08
0.10
0.00
2.78
0.04
71.30
0.18
217


145
Food MNI% Minimum Meat Weight %
Maximum Meat Weight%
Key
Mam
Bir
Mammals
Birds
Level 4
Tur
S+R
Turtles
Sharks.rays.eto

Level 8
Fish
Bony Fishes

Cra
Crabs
Level 17
Sna
Marine Snails
Biv
Marine Bivalves
m
Level 20


118
30-31). Turtle Bay is known for its many productive eastern
oyster communities (Woodburn 1965:24). Cash Mound's
archaeofaunal samples mirror this density with an abundance
of oyster shells (Figure 12; Tables A-5 A-8). Table 8 and
Figure 13 present MNI data (taken from Tables A-5 through A-
8) for the eastern oyster, crested oyster, common crown
conch, and ribbed mussel for each of the four Cash Mound
samples. A high crested oyster to eastern oyster ratio
(1:2) characterizes the A.D. 270 Cash Mound sample (A-l-20),
suggesting a relatively high salinity for Turtle Bay during
that time period. Samples A-l-17 and A-l-8 (A.D. 190/150)
also exhibit higher ratios (both 1:5) than would be expected
for Turtle Bay. The A.D. 680 sample, A-l-4, contains no
crested oyster specimens (despite the occurrence of at least
343 eastern oysters), indicating water conditions too low in
salinity for their presence (i.e., generally less than 28
ppt) .
Possibly supportive of a salinity variation for the
A.D. 150/270 to 680 period are similar decreases in slipper
shells (Crepidula) and barnacles (Balanus) (Tables A-5 A-
8). However, these specimens would have to be identified to
species to confirm salinity tolerances. Also of interest is
the appearance in Level A-l-8 of a parrotfish, Sparisoma sp.
(Table A-6), usually found in high-salinity waters.
Turtle Bay (Figure 1) today is a well-protected, guiet
estuarine bay of low salinity. It has no close access to


18
but a radiocarbon date was obtained from just above the
water line (see Table 2, #13). Associated studies of this
Josslyn context appear in Cordell (1992), Marquardt (1992b,
1992c), Quitmyer and Jones (1992), Scarry and Newsom (1992),
and Walker (1992).
Buck Kev Shell Midden. 8LL722
Located along the northeastern shoreline of the island
of Buck Key, the Buck Key Shell Midden consists of low
"mounds" (no higher than 3 m) of shell, bone, and
artifactual debris, surrounded by red and black mangroves
(Figure 1). The middens appear to be undisturbed and have
not been investigated professionally until the 1985 work
(see Marquardt 1992b). Buck Key is today nestled behind
Captiva Island in bay waters, but originally was formed as a
barrier island between about 1,200 and 1,500 years ago
(Stapor et al. 1987:167, 169).
The Buck Key Shell Midden and its associated sand
burial mound, 8LL55, have been radiocarbon-dated to A.D.
1040-1350 (Table 2). Test A-l, placed in the shell midden
site, was excavated to 140 cm below surface (Marquardt
1992b). Test A-2, adjacent to A-l, was a 50 x 50 column
sample, excavated in ten levels. Two samples from this
column were selected for zooarchaeological analysis (Tables
2 and 3; Appendix A). Two samples originated from Test B in
the same manner (Tables 2 and 3; Appendix A). Associated
studies include Cordell (1992), Hutchinson (1992), Marquardt


16
(1992), Marquardt (1992b, 1992c), Scarry and Newsom (1992),
and Walker (1992).
Useppa Island. 8LL51
Useppa Island is located on the estuarine side of Cayo
Costa, south of Boca Grande Pass (Figure 1). Useppa
Island's eastern edge exists as a roughly 6 m-high
Pleistocene dune remnant (Stapor et al. 1991; Upchurch et
al. 1992). Archaeological deposits on Useppa are extensive
and date as far back as 3675 B.C. Sites on Useppa were
first tested by J. T. Milanich and J. Chapman (Milanich et
al. 1984); they excavated in several locations on the island
in 1979 and 1980, demonstrating occupations from the Archaic
through the 19th century.
Marquardt's (1992b) more recent excavation in the
Collier Inn locality has produced a similar timespan of
shell midden and burial deposits. A single column level
sample, A-4-2, from this work was chosen for
zooarchaeological study (Tables 2 and 3; Appendix A). It
radiocarbon dates to 570 + 60 B.C. (Terminal
Archaic/Caloosahatchee I). Associated studies include those
of Cordell (1992), Hansinger (1992), Marquardt (1992b,
1992c), Quitmyer and Jones (1992), and Scarry and Newsom
(1992) .
Josslvn Island. 8LL32
Three of Josslyn's 19.4 hectares (Figure 1) are
comprised of shell midden/mounds that reach a maximum


19
(1992b, 1992c), Scarry and Newsom (1992), Upchurch et al.
(1992), and Walker (1992).
Zooarchaeoloqical Methods
Sample Processing
Initially, entire levels were processed and analyzed,
but as our study progressed we found that in some cases
lesser volumes produced just as representative a data set
based on Wing and Brown's (1979:118-119) technique of
comparing number of species with minimum number of
individuals. Volumetric variation among other samples
(Table 2) is due to the varying quantity of large gastropod
shells which, once excavated, do not pack as tightly as
other midden remains.
The midden samples were water-floated in a 1.60 mm
(1/16") mesh box screen to recover botanical remains. After
slow air drying, the heavy fraction was sorted through a
series of geological sieves corresponding to 6.35 mm (1/4"),
2.00 mm (1/13"), and 1.60 mm (1/16") mesh sizes. The 6.35
mm vertebrate and invertebrate fragments were sorted,
identified, and quantified. The 2.00 mm vertebrate material
was sorted, identified, and quantified whereas the
invertebrate remains were subsampled by weight to determine
proportions only for the major classes (e.g., Gastropoda,
Bivalvia). This method allowed the inclusion of a minimum
meat weight estimate for unidentified 2.00 mm-screened
molluscan remains (category "Mollusca" in Appendix B).


104
Although the sea-level record for the Gulf of Mexico
continues to be debated and is far from complete, the
oscillating curves of Tanner (1991), Missimer (1973), and
Stapor and his colleagues (1987, 1991) demand consideration
by archaeologists. A few suggestions of archaeological
evidence for such sea-level variability have been advanced
for coastal southwest Florida (Griffin 1988; Walker 1987;
Widmer 1986a, 1988).
Inlet Dynamics
Large inlets can stabilize naturally for long periods
of time, at the scale of centuries (Bruun 1990:817). Boca
Grande Pass (Figure 1) is today the primary outlet for the
northern part of the study area. This large, deep (15.5 m)
inlet is likely a former river valley.
The creation of Captiva Pass (Figure 1) due to
storm-breaching has been estimated to have occurred between
A.D. 650 and 1350 (Stapor et al. 1987:167). The inlet has
been maintained since that time. The age estimation is
based on the truncation of radiocarbon-dated beach ridges.
The lateral variability through time represented by
long-term inlet dynamics translates into variation of the
salinity gradient and points of marine-to-estuarine
movement. The effect on local aquatic faunal distribution
should be significant as noted under medium-term change.


67
Shallow-water seagrass meadows, the fourth type,
provide extensive habitat areas for numerous mobile and
sessile molluscs. The abundance of invertebrates surpasses
even the fishes in areas of heavy shoal and turtle grasses
(Zieman 1982:49). Common gastropods include the lightning
whelk (Busycon contrarium), Say's pear whelk (Busycon
spiratum pyruloides), true tulip (Fasciolaria tulipa),
Florida horse conch (Pleuroploca gigantea), crown conch
(especially juveniles), fly-specked cerith (Cerithium
muscarum), dove shells (Anachis spp.), Atlantic modulus
(Modulus modulus), and lunar dove-shell (Mitrella lunata).
Bivalves such as southern quahog clam (Mercenaria
campechiensis), rigid pen shell (Atrina rgida), and
cross-barred venus are often embedded in large numbers in
the grass bottoms. Other organisms include pink shrimp
(Penaeus duorarum), corals (e.g., Manicimia areolata,
Porites furcata), hermit crabs (Pagurus spp.), and sea
urchins (e.g., Lytechinus variegatus, Tripneustes
ventricosus) (Zieman 1982:45-49). Although no studies are
known, it is presumed that seagrass invertebrate composition
varies along the salinity gradient in much the same manner
as the oyster bed community.
A number of species of invertebrates appear to be
restricted to the beach zone and Gulf waters. Others,
although preferring habitats in these areas, are also found
in the oceanic and estuarine bays. These two groups


172
that these nets were made with wooden gauges (i.e.,
artifacts that did not preserve), and that small fishes such
as the bay anchovy do not appear in the middens because the
bones did not preserve or the fishes were eaten whole or
processed into meal. Future work at sites containing
waterlogged middens (i.e., the preservation of wooden gauges
and anchovy bones) may allow the testing of these
possibilities.
Tidal enclosures, perhaps constructed of cabbage palm
stems and fronds, may have been employed by the Calusa and
their predecessors (see Cushing 1897:38-39; Robert D.
Knight, personal communication 1987), but no archaeological
or ethnohistoric support exists for them. Additionally,
little or no zooarchaeological distinction would occur
between netted species assemblages and those caught in tidal
traps. Las Casas, writing about 1509, states that "the
Cuban Indians [Jagua Bay] served the mariners [Ocampo and
crew] partridge and mullet fish, which they took, as easily
as from an aquarium, from sea corrals of woven reeds stuck
in the bay's mud bottom" (Weddle 1985:22). Other
ethnohistoric references describe an extensive use of tidal
impoundments by the Timucua of the St. Johns River area
(Larson 1980:121). If historic contact with Cuban and
Timucuan groups was as common as is thought (Marquardt 1987,
1988), then surely the Charlotte Harbor groups were at least
familiar with this technology.


Vertebrate (predominantly fish)
(backboned animals)
(b)
(b)
<)
<)
31.86
0.23
477.42
9.81
<)
<)
Total Vertebrata
(backboned animals)
2239
28.27
75
2.59
76.06
0.55
2328.40
47.84
16336.60
79.49
Balanus spp.
(barnacle)
1196
15.10
750
25.90
205.39
1.48
(<=>
(c)
(c)
Calllnactae spp.
(blue crabs, Gulf crab, etc.)
23
0.29
5
0.17
6.97
0.05
48.02
0.99
417.00
2.03
Manlppa marcenarla
(stone crab)
1
0.01
1
0.03
0.60
0.00
6.43
0.13
83.40
0.41
Decapoda
(crabs)
37
0.47
1
0.03
5.09
0.04
37.11
0.76
83.40
0.41
Total Crustaoea
(aquatic arthropods)
1257
15.87
757
26.14
218.05
1.57
91.56
1.88
583.80
2.84
Vermlcularla spp.
(worm-shell)
3
0.04
1
0.03
0.43
0.00
(C)
(C)
(C)
<>
Carlthldaa spp.
(horn shells)
1
0.01
1
0.03
0.02
0.00
(c)
(O)
Ceritblum nusctruia
(fly-specked cerith)
7
0.09
7
0.24
0.37
0.00
(C)
Salla adama1
(Adams' miniature cerith)
2
0.03
2
0.07
0.02
0.00
(o)
(C)
(c)
(c)
Crepldula fornlcata
(Atlantic slipper-shell)
1
0.01
1
0.03
0.12
0.00
(c)
(C)
(c)
(C)
Crapldula spp.
(slipper-shell)
37
0.47
37
1.28
4.88
0.04
(o)
(O)
(o)
<)
Pollnlcaa dupllcatua
(shark eye)
4
0.05
1
0.03
4.12
0.03
5.15
0.11
4.60
0.02
Uroaalplnx parrugata
(Gulf oyster drill)
19
0.24
12
0.41
4.89
0.04
(o)
(O)
(c)
Malongana corona
(common crown conch)
173
2.18
97
3.35
667.79
4.81
114.74
2.36
259.53
1.26
Naaaarlua vlbax
(common eastern nassa)
1
0.01
1
0.03
0.13
0.00
(c)
(C)
(C)
Faaclolarla spp.
(tulip shells)
2
0.03
1
0.03
0.60
0.00
0.07
0.00
4.06
0.02
Plauroploca gigantea
(Florida horse conch)
1
0.01
1
0.03
6.29
0.05
1.61
0.03
108.47
0.53
Marginalia spp.
(marginalia)
4
0.05
4
0.14
0.61
0.00
(C)
(c)
(c)
(O)
Odoatomla lmpraeaa
(impressed odostome)
8
0.10
8
0.28
0.04
0.00
(O)
(c)
(o)
(O)
Gastropoda (medium marine)
(medium-sized marine snails)
109
1.38
<)
<>
23.82
0.17
3 .91
0.08
()
<)
Total Harine Gastropoda
(marine snails)
372
4.70
174
6.01
714.13
5.15
125.48
2.58
376.66
1.83
Polygyra spp.
(poiygyr.)
13
0.16
12
0.41
0.25
0.00
(O)
(O)
(c)
(c)
Total Terrestrial Gastropoda
(terrestrial snails)
13
0.16
12
0.41
0.25
0.00
0.00
0.00
0.00
0.00
Brachldontea spp.
(mussel)
92
1.16
50
1.73
4.18
0.03
(c)
(C)
(O)
Gaukanala demises granoelaalma
(Atlantic ribbed mussel)
1875(e)
23.67
958
33.08
972.68
7.01
150.14
3.08
2059.70
10.02
Argopactan spp.
(scallop)
1
0.01
1
0.03
0.54
0.00
0.69
0.01
12.06
0.06
Peotinidae/Cardiidae
(sea Hops/cock le s)
12
0.15
1
0.03
8.81
0.06
4.59
0.09

Omtraa aquaatrla
(crested oyster)
258(.)
3.26
135
4.66
80.13
0.58

Craaaoatraa vlrglnlca
(eastern oyster)
1647(e)
20.79
687
23.72
7115.82
51.29
1791.29
36.80
996.15(f)
4.85
Ostre id ae
(oysters)
(c)
(o)
()
()
29.52
0.21
10.46
0.21
()
(i
Cardltamara florldana
(broad-ribbed cardita)
19
0.24
5
0.17
16.37
0.12
(O)
(c)
Spleula aolldlealaa almilla
(southern surf clam)
1
0.01
1
0.03
4.51
0.03
2.91
0.06
8.62
0.04
Polyneaoda martima
(Florida marsh clam)
73
0.92
38
1.31
22.73
0.16
13.88
0.29
45.71
0.22
Marcenarla campachlanalm
(southern quahog)
30
0.38
2
0.07
148.60
1.07
22.66
0.47
132.55
0.64
Bivalvia
(oysters, clams, etc.)
32
0.40
()
<)
15.77
0.11
6.82
0.14
o
()
Total Bivalvia
(bivalves)
4040
51.00
1878
64.85
8419.66
60.69
2003.44
41.16
3254.79
15.84
Molluscs (predominantly bivalve)
(snails and bivalves)
(b)
(b)
<)
()
4444.65
32.04
318.45
6.54
()
()
Total Molluscs
(snails and bivalves)
4425
55.86
2064
71.27
13578.69
97.88
2447.37
50.28
3631.45
17.67
Total Invertebrata
(animals without backbones)
56 82
71.73
2821
97.41
13796.74
99.45
2538.93
52.16
4215.25
20.51
*******
TOTAL SAMPLE
(vertebrates-finvertebrates)
7921
100.00
2896
100.00
13872.80
100.00
4867.33
100.00
20551.85
100.00
220


192
Table 12. Archaeological Remains of Sharks by MNI.
Big
Mound
Cash
Useppa
Josslyn
Buck
Shark Taxon
Key
Mound
Island8
Island
Key
Lamniformes
2
2
3
(unident, shark)
Carcharhinidae
2
2
3
(unident. Carcharhinid)
Carcharhinus acronotus
1
(blacknose shark)
Carcharhinus leucas
1
_
(bull shark)
Carcharhinus limbatus
2
_
_
(blacktip)
Carcharhinus obscurus
mm
_
1
_
(dusky shark)
Carcharhinus plumbeus
_
2

1

(sandbar shark)
Galeocerdo cuvieri
_
1

(tiger shark)
Negaprion brevirostris


1
(lemon shark)
Rhizoprionodon terraenovae
1
_
1

3
(Atlantic sharpnose shark)
Sphyrna tiburo
3


2
4
(bonnethead shark)
Total MNI
10
5
3
8
12
a Only one sample from Useppa was analyzed compared to four
from each of the other study sites. Ginglymostoma cirratum
(nurse shark), Galeocerdo cuvieri, Sphyrna spp., and
Rhizoprionodon terraenovae were identified in a previous
Useppa study (Milanich et al. 1984:274).


125
closer to A.D. 400 rather than Stapor et al. (1991) and
Tanner's (1991) A.D. 450 (Table 7). Griffin (1988:231, 235)
records a stratum of crown conch shells that is sandwiched
between an in situ oyster bar and a later shell midden at
the coastal Everglades site of Onion Key, 8M049. He
believes the oyster bar formed during the period of
sea-level rise coincident with Widmer's rise recorded at
Solana (Widmer 1986a). If so, then the abundance of crown
conchs may represent a collection made during the subsequent
sea-level drop, A.D. 450 [400?] to A.D. 850 (i.e., the
oysters gradually became exposed and weakened, resulting in
an increase in conch predators).
At the Pineland Site, 8LL33 (Figure 1), recent
excavations by the Southwest Florida Project encountered a
thin stratum of exclusively juvenile crown conch shells. A
sample of these was radiocarbon-dated to A.D. 510 +/- 70.
Few oyster bars occur in the Pineland area due to relatively
high salinities. Instead, Pineland is associated with vast
seagrass and intertidal flat environments; these are the
habitats of the living juvenile crown conch.
The conch shell stratum at Pineland is sandwiched
between massive deposits of largely lightning and pear
whelks with essentially no sandy sediment or vertebrate
faunal remains and very few artifacts. These deposits are
contemporaneous with the crown conch and were rapidly laid
down. Probably, the crown conch was not alone in its


Figure 13. The Variation Based on Percentage of MNI of
Selected Species Eastern Oyster, Crested Oyster,
Ribbed Mussel, and Crown Conch from Cash Mound
Samples A-l-20, A-l-17, and A-l-8 Dating to A.D. 150
to A.D. 270 and A-l-4 Dating to A.D. 680.


22
procedure was followed for calculating MNI by cultural unit,
comparing element side with age, size, and sex (Grayson
1984:27-48; Wing and Brown 1979:123). Edible meat weight
represented by bone and shell remains is presented as a
range, using a "minimum and a "maximum" prediction
(Quitmyer 1985:38). Edible meat weight is here defined as
only the muscle tissue, with skin, viscera, and bone
subtracted. These predictions are made by establishing
allometric correlations between skeletal weight and meat
weight and between linear dimension and meat weight by using
least-sguares regression (Casteel 1974; Hale et al. 1987;
Quitmyer 1985:37-38; Reitz et al. 1987:305; Wing and Brown
1979:127). These scaling methods are referred to as
skeletal mass allometry (using skeletal weight) and
dimensional allometry (using linear measurements) and employ
the allometric equation (Schmidt-Nielsen 1985:15; Simpson et
al. 1960:397):
Y = aXb
log Y = log a + b (log X).
Tables A-l and A-2 list regression values for the
y-intercept and slope, based on data recorded at the Florida
Museum of Natural History. Table A-3 presents methods by
which maximum meat weights were estimated when regression
values were not available. These estimates were made by a
one-to-one size comparison with a modern specimen having a
known meat weight, or by using an average of known weights


Balrdlella chryaoura
(ailver perch)
23
0.17
3
0.30
0.35
0.01
8.51
0.08
108.55
0.10
Cynoaclon nebuloaua
(apotted aeatrout)
8
0.06
2
0.20
2.11
0.03
42.84
0.42
1868.60
1.64
Cynoacion spp.
(aeatrout)
5
0.04
2
0.20
0.39
0.01
9.38
0.09
187.40
0.16
Pogonlaa cromla
(black drum)
2
0.01
2
0.20
1.04
0.02
22.66
0.22
1074.70
0.94
Sclaenopa ocellatus
(rad drum)
4
0.03
2
0.20
1.42
0.02
29.99
0.29
1467.82
1.29
Sciaenidae
(druma)
10
0.07
<)
<)
0.20
0.00
5.14
0.05
<>
()
Total Sciaenidae
(drums)
52
0.38
11
1.11
5.51
0.08
118.52
1.15
4707.07
4.14
Mugil app.
(mullat)
25
0.18
3
0.30
0.58
0.01
13.4 0
0.13
240.91
0.21
Sphyraenidae/Scombridae
(barracudas/mackerels)
4
0.03
1
0.10
.03
0.00
0.93
0.01
3901.38
3.43
Parallchthya app.
(flounder)
7
0.05
1
0.10
0.21
0.00
5.37
0.05
133.22
0.12
Diodontidae
(burr and porcupine fishes)
4
0.03
1
0.10
0.05
0.00
1.48
0.01
184.37
0.16
Osteichthyes
(bony fiahea)
493
47.19
2
0.20
76.37
1.12
1083.01
10.53
29.76(f)
0.03
Total Oataichthyaa
(bony fiahea)
8043
58.45
155
15.69
118.27
1.74
1911.25
18.58
19933.36
17.53
Vartabrata (predominantly fiah)
(backboned animals)

<>
()
274.49
4.04
3388.25
32.94
()
(A)
Total Vartabrata
(backboned animals)
8200
59.59
168
17.00
458.88
6.76
8627.59
83.89
109937.02
96.66
Balaoua app.
(barnacle)
26
0.19
24
2.43
4.79
0.07
<>
(O
(C)
Calllnactea app.
(blue eraba, Gulf crab, ate.)
18
0.13
5
0.51
5.00
0.07
36.57
0.36
417.00
0.37
Menlppe marcenarla
(atone crab)
26
0.19
4
0.40
16.54
0.24
97.54
0.95
333.60
0.29
Dacapoda
(crabs)
42
0.31
()
(i
7.08
0.10
48.64
0.47
()
()
Total Cruatacea
(aquatic arthropods)
112
0.81
33
3.34
33.41
0.49
182.75
1.78
750.60
0.66
cf. Varmlcularla fargol
(Fargo's worm shall)
2
0.01
2
0.20
0.19
0.00

(O)
(c)
<>
Turrita1idae/Vermetidae
(worm shells)
2
0.01
1
0.10
0.69
0.01
(o)
(e)
()
Diodora cayananala
(Cayenne keyhole limpet)
2
0.01
2
0.20
0.35
0.01
1)
(c)
(O
Modulus modulus
(Atlantic modulus)
8
0.06
8
0.81
1.81
0.03
<)
(c)
Batlllarla minima
(falsa carith)
1
0.01
1
0.10
0.14
0.00
(C)
(c)
(O)
Carithlujb app.
(oarith)
25
0.18
25
2.53
3.73
0.05
(>
(C)
Crapldula convexa
(convex slipper-shell)
2
0.01
2
0.20
0.15
0.00
(O)
(c)

(O)
Crepldula plana
(aaatarn white slipper-shell)
5
0.04
5
0.51
0.40
0.01
()
(o)

(O)
Crapldula app.
(slipper-shell)
15
0.11
15
1.52
5.19
0.08
(O)
(C)
()
Strombua alatua
(Florida fighting conch)
435
3.16
31
3.14
835.46
12.30
76.69
0.75
276.83
0.24
Polinices duplica tus
(shark eye)
05
4.40
107
10.83
472.43
6.96
69.13
0.67
326.31
0.29
Uroaalplnx perrugata
(Gulf oyster drill)
5
0.04
5
0.51
0.96
0.01
(0)
(o)
(O)
Uroaalplnx tampaenala
(Tampa drill)
1
0.01
1
0.10
0.28
0.00
(O)
(C)
Anachla aemlpllcata
(semiplicate dove shell)
16
0.12
16
1.62
1.14
0.02
(O)
(O)
(O)
(O)
Melongena corona
(common crown conch)
984
7.15
189
19.13
707.51
10.42
120.90
1.18
287.28
0.25
Buaycon contrarlum
(lightning whelk)
145
1.05
12
1.21
293.61
4.32
117.08
1.14
718.62
0.63
Buaycon aplratum pyruloldea
(Say's pear whelk)
15
0.11
4
0.40
7.55
0.11
4.40
0.04
27.41
0.02
Total Melongenidae
(crown concha)
1144
8.31
205
20.75
1008.67
14.85
242.38
2.36
1033.31
0.91
Naaearlua vlbex
(common eastern nassa)
14
0.10
14
1.42
2.42
0.04
<>
(o)
(O)
(>
Faaclolarla llllum hunterla
(banded tulip)
110
0.80
17
1.72
49.83
0.73
27.35
0.27
38.34
0.03
raeclolarla tulipa
(true tulip)
13
0.09
2
0.20
19.60
0.29
24.97
0.24
83.60
0.07
Faaclolarla app.
(tulip shell)
22
0.16
3
0.30
16.24
0.24
5.99
0.06
6.78
0.01
Pleuroploca gigantea
(Florida horse conch)
23
0.17
2
0.20
158.56
2.33
65.30
0.63
495.06
0.44
Total raaciolariidaa
(tulip shells)
168
1.22
24
2.43
244.23
3.60
123.61
1.20
623.78
0.55
Marginalia app.
(marginalia)
1
0.01
1
0.10
0.12
0.00
(C)
(c)
(C)
Melampua coffeua
(coffee melampus)
1
0.01
1
0.10
0.09
0.00
(e)
210


Crapldula epp.
Pollnlcaa dupllcmtum
Uroaalplnx parrugata
Malongana corona
Naaaarium vlbax
raaclolarla lili un huntarla
Marginalia mpp.
Gastropoda (medium marine)
Total Marine Gastropoda
Polygyra epp.
Total Terrestrial Gastropoda
Brachldontaa epp.
Gaukanala demises granoalaalMa
Mytllldae
Argopactan spp.
Oatraa aquaatrla
Craaaoatraa vlrglnlca
Ostreidae
Cardltamara florldana
Polymaaoda martima
Marcenarla campachlanala
Total Bivalvia
Molluscs (predominantly bivalve)
Total Mollusca
Desisotichia
Total Invertebrata
TOTAL SAMPLE
(slipper-shell) 12
(shark eye) 26
(Gulf oyster drill) 17
(common crown conch) 223
(common eastern naesa) 2
(banded tulip) 2
(marginalia) 2
(medium-sized marine snails) 105
(marine snails) 403
(polygyr*) 2
(terrestrial snails) 2
(mussel) 2
(Atlantic ribbed mussel) 1673(e)
(U...1.) (O)
(scallop) 9
(crested oyster) 75(e)
(eastern oyster) 681(e)
(oyster) 155(e)
(broad-ribbed cardita) 9
(Florida marsh clam) 2
(southern quahog) 2
(bivalves) 2606
(snails and bivalves) (b)
(snails and bivalves) 3013
(sea urchin) 12
(animals without backbones) 3112
5107
(vertebrates+invertebrates)
0.23
12
0.80
1.02
0.01
(c)
(c)
(c)
(C)
0.51
6
0.40
17.05
0.11
11.21
0.38
16.99
0.04
0.33
9
o
o
o
4.16
0.03
(c)
(C)
(c)
4.37
31
2.07
158.77
0.99
32.45
1.10
101.16
0.24
0.04
2
0.13
0.06
0.00
(c)
(o)
(O)
0.04
2
0.13
9.65
0.06
2.96
0.10
9.17
0.02
0.04
2
0.13
0.24
0.00
(C)
<<*)
(O)
2.06
<)
()
38.73
0.24
19.75
0.67
(>
<
7.89
78
5.21
231.11
1.45
66.37
2.25
127.34
0.30
0.04
2
0.13
0.07
0.00
(c)
(O
(O)
(o)
0.04
2
0.13
0.07
0.00
0.00
0.00
0.00
0.00
w
o
o
2
0.13
0.19
0.00
(c)
(c)
(O)
32.76
861
57.48
489.63
3.06
86.66
2.93
1851.15
4.36
(o)
<>
()
2927.00
18.32
239.58
8.11
()
(i
0.18
1
0.07
7.62
0.05
4.23
0.14
5.66
0.01
1.47
51
3.40
19.65
0.12
(e)
(c)
(c)
(
13.33
274
18.29
1618.61
11.36
511.60
17.32
120.56(f)
0.29
3.04
113
7.54
426.32
2.67
64.48
2.18
9.72(0
0.12
0.18
3
0.20
3.63
0.02
(o)
()
(O)
w
o
o
2
0.13
0.29
0.00
0.37
0.01
1.15
0.00
0.04
1
0.07
88.59
0.55
14.55
0.49
14.64
0.04
51.07
1308
87.32
5761.93
36.18
921.67
31.20
2043.06
4.84
(b)
()
(
9924.41
62.10
550.45
18.63
()
()
59.00
1388
92.66
15937.52
99.73
1538.49
52.08
2170.42
5.14
0.23
1
0.07
0.11
0.00
(<*>
(<*)
(<*)
<<*
60.94
1429
95.39
15946.05
99.79
1568.56
53.09
2420.62
5.73
100.00
1498
100.00
15960.84
100.00
2954.26
100.00
42230.09
100.00
222


112
no (mollusc) species-specific data, with the exception of
eastern oysters, are available in the literature, it remains
unclear for how long faunal populations and distributions
would be impacted by multiple hurricanes and what signatures
might present themselves in a zooarchaeological sample.
Another short-term change of interest is that from
season to season. Seasonal periods can certainly be
detected in subtropical shell middens through the use of
methods such as intraspecies growth analyses (e.g., Russo
1991). However, time resolution is not a concern in these
studies, that usually deal with the question of human
sedentism. One sample could represent multiple years of
seasons. The identification of single seasonal signatures
(not to be confused with the studies just mentioned) in
subtropical middens is possible, but unlikely due to the
mixed nature of midden deposits and the subtlety of
subtropical seasons.
The greatest difficulty in interpreting change using
single archaeofaunal samples lies in distinguishing between
medium- and long-term variability. It may be impossible to
do so if such samples are considered in isolation. However,
taken together, multiple single samples at the broader scale
of the Charlotte Harbor region may provide an opportunity to
detect patterns and discontinuities suggestive of either
medium- or long-term environmental change. This approach is
illustrated in the following section.


170
(Table 15). Interestingly, the Buck Key sample, B-2-5,
contains the largest concentration of mullet bones (mostly
vertebrae) of the five study sites (Table 15). It is
possible that mullet were simply one component in an overall
diversified fishing economy and that Lpez de Velasco's
observation focuses on mullet because it is a fish with
which he was familiar. The diversity of fishes and the
abundance of small fishes such as the pinfish in the
archaeofaunal samples, as well as the predominance of small
net mesh gauges, argues for this explanation.
Wherever mullet is found archaeologically, with the
exception of wet sites, it is the distinctive thoracic
vertebrae that are recovered and rarely the skull elements.
This raises the question as to whether the scarcity of
mullet bones is due to cultural practice (as suggested by
Widmer 1988:245) or lack of preservation. It is a common
notion that fishes such as jacks and mullet may not preserve
well because of their oiliness, but this has not been
tested. Perhaps Goggin and Sturtevant (1964; also see
Marquardt 1986:66) overemphasized mullet in the Calusa
fishery due to inherent observational biases of both the
sixteenth and twentieth-century varieties.
The absence of certain fishes from the faunal remains
may provide additional clues to net mesh sizes. For
example, Wang and Raney (1971:52) report that anchovies,
primarily the bay anchovy, Anchoa mitchilli, numerically


Figure 19. Artist's Conception of a Prehistoric Gill
Net for Nearshore Shallow-Water Fishing in the
Charlotte Harbor Area Based on Archaeological Net
Remains from the Key Marco Site.



PAGE 1

7+( =22$5&+$(2/2*< 2) &+$5/277( +$5%25n6 35(+,6725,& 0$5,7,0( $'$37$7,21 63$7,$/ $1' 7(0325$/ 3(563(&7,9(6 %\ .$5(1 -2 :$/.(5 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

&RS\ULJKW E\ .DUHQ -R :DONHU

PAGE 3

$&.12:/('*0(176 0XFK DSSUHFLDWLRQ LV H[WHQGHG WR :LOOLDP 0DUTXDUGW (OL]DEHWK :LQJ DQG 6WHSKHQ +DOH IRU WKH RSSRUWXQLW\ WR EHFRPH LQYROYHG LQ WKH VRXWKZHVW )ORULGD UHVHDUFK 7KH FROOHFWLRQ DQG DQDO\VLV RI WKH &DVK 0RXQG 8VHSSD ,VODQG -RVVO\Q ,VODQG DQG %XFN .H\ VDPSOHV ZHUH IXQGHG E\ WKH 1DWLRQDO 6FLHQFH )RXQGDWLRQ 7KH %LJ 0RXQG .H\ VDPSOHV ZHUH FROOHFWHG DQG SURYLGHG E\ *HRUJH /XHU (OL]DEHWK :LQJ SURYLGHG PXFK JXLGDQFH DQG XVH RI KHU ODE FXUDWLRQ VSDFH FRPSDUDWLYH FROOHFWLRQ DQG FRPSXWHUV 7KDQNV JR WR 1LQD %RUUHPDQV /DXUD .R]XFK DQG *X\ 3UHQWLFH IRU WKH LQLWLDO DQDO\VLV RI VDPSOHV $ IURP 8VHSSD % IURP %XFN .H\ DQG $O IURP -RVVO\Q UHVSHFWLYHO\ /DXUD .R]XFK DQG &KHUU\ )LW]JHUDOG DOVR DVVLVWHG ZLWK RWKHU VDPSOHV DP LQGHEWHG WR UHYLHZHUV RI DQ HDUO\ GUDIW RI WKLV GLVVHUWDWLRQ 7KH\ LQFOXGH .XUW $XIIHQEXUJ 5REHUW (GLF %DUEDUD +RIIPDQ 5REHUW .QLJKW (OLVH /H&RPSWH%DHU *HRUJH /XHU :LOOLDP 0DUTXDUGW -HUDOG 0LODQLFK &ODXGLQH 3D\QH ,UY 4XLWP\HU (OL]DEHWK 5HLW] 5DQGDO :DONHU DQG 5DQGROSK :LGPHU 7KH GLVVHUWDWLRQ KDV IXUWKHU EHQHILWWHG IURP GLVFXVVLRQV RU FRUUHVSRQGHQFH ZLWK 1LQD %RUUHPDQV -RHO *XQQ :LOOLDP 0DUTXDUGW ,UY 4XLWP\HU 'RQQD 5XKO )UDQN 6WDSRU DQG :LOOLDP 7DQQHU LLL

PAGE 4

&RUEHWW 7RUUHQFH GUDIWHG )LJXUH DOVR XVHG LQ )LJXUHV DQG f 0HUDOG &ODUN SURGXFHG WKH ILQDO YHUVLRQV RI )LJXUHV DQG +H DOVR LOOXVWUDWHG WKH ILVKLQJ QHW LQ )LJXUH DQG SXW WRJHWKHU WKH SLH FKDUW ILJXUHV DQG -LP :DJQHU GUDIWHG )LJXUHV DQG ,Q DGGLWLRQ KH LOOXVWUDWHG WKH ILVK LQ )LJXUHV DQG 6FRWW 6ZDQ SURGXFHG )LJXUH &ODXGLQH 3D\QH ,UY 4XLWP\HU %HFN\ 6DXQGHUV DQG 6DP &KDSPDQ FRQWULEXWHG FRPSXWHU H[SHUWLVH LQ WKH ILQDO SURGXFWLRQ LH WUDQVODWLRQ RI VRIWZDUH SURJUDPVf RI $SSHQGLFHV $ DQG % ,W LV ZLWK JUHDW JUDWLWXGH WKDW DFNQRZOHGJH WKH PHPEHUV RI P\ VXSHUYLVRU\ FRPPLWWHH 0LFKDHO 0RVHOH\ (OL]DEHWK :LQJ -HUDOG 0LODQLFK &OD\ 0RQWDJXH DQG 5KRGHV )DLUEULGJH KDYH JLYHQ PH PXFK JXLGDQFH GXULQJ WKH GLVVHUWDWLRQ SURFHVV IXUWKHU WKDQN 3URIHVVRU )DLUEULGJH RI &ROXPELD 8QLYHUVLW\ DQG 1$6$*RGGDUG ,QVWLWXWH IRU 6SDFH 6WXGLHV IRU JRLQJ RXW RI KLV ZD\ WR DWWHQG P\ ILQDO H[DPLQDWLRQ DQG DIWHUZDUGV WR YLVLW WKH 3LQHODQG 6LWH LQ /HH &RXQW\ &DUROH 0FOYRU RI WKH 'HSDUWPHQW RI )RUHVW 5HVRXUFHV DQG &RQVHUYDWLRQ JHQHURXVO\ FDPH WR P\ UHVFXH ZKHQ LW EHFDPH FOHDU WKDW &OD\ 0RQWDJXH FRXOG QRW DWWHQG WKH ILQDO H[DPLQDWLRQ ,Q DGGLWLRQ WR P\ FRPPLWWHH KDYH KDG WKH JRRG IRUWXQH WR EHQHILW IURP WKH DGYLFH SHUVSHFWLYH DQG HQFRXUDJHPHQW RI :LOOLDP 0DUTXDUGW GLUHFWRU RI WKH 6RXWKZHVW )ORULGD 3URMHFW LY

PAGE 5

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 LLL /,67 2) 7$%/(6 YLLL /,67 2) ),*85(6 [L $%675$&7 [LLL &+$37(56 ,1752'8&7,21 7KH 0DULWLPH &DOXVD RI &KDUORWWH +DUERU 7KH /DJJLQJ 0DULWLPH 3HUVSHFWLYH 5HVHDUFK *RDO DQG 2EMHFWLYHV 6DPSOH &RQWH[W DQG ([FDYDWLRQ %LJ 0RXQG .H\ &DVK 0RXQG 8VHSSD ,VODQG -RVVO\Q ,VODQG %XFN .H\ 6KHOO 0LGGHQ =RRDUFKDHRORJLFDO 0HWKRGV 6DPSOH 3URFHVVLQJ ,GHQWLILFDWLRQ DQG 4XDQWLILFDWLRQ 6DPSOH 6L]H )RRG YV &RPPHQVDOV 6RXUFHV RI %LDV &RPSDUDWLYH 'LHWDU\ &RQWULEXWLRQ $ 63$7,$/ 3(563(&7,9( 21 5(6285&( +(7(52*(1(,7< 7KH 3UHVHQWGD\ &KDUORWWH +DUERU (VWXDULQH (FRV\VWHP 7KH 3UHVHQWGD\ (VWXDULQH *UDGLHQW 'LVWULEXWLRQ RI 9HUWHEUDWHV 'LVWULEXWLRQ RI ,QYHUWHEUDWHV ,QIHUUHG /RFDO 'LVWULEXWLRQ RI 5HVRXUFHV LQ 3UHKLVWRU\ %LJ 0RXQG .H\ &DVK 0RXQG 8VHSSD ,VODQG -RVVO\Q ,VODQG Y

PAGE 6

%XFN .H\ 6KHOO 0LGGHQ ,QIHUUHG 5HJLRQDO 'LVWULEXWLRQ RI 5HVRXUFHV LQ 3UHKLVWRU\ $ 7(0325$/ 3(563(&7,9( 21 5(6285&( +(7(52*(1(,7< (QYLURQPHQWDO &RQWLQXLW\ DQG &KDQJH 3RWHQWLDO 6KRUWWHUP (QYLURQPHQWDO &KDQJH )UHH]HV 5HG 7LGHV DQG 6WRUPV 6HDVRQDO 9DULDELOLW\ 3RWHQWLDO 0HGLXPWHUP (QYLURQPHQWDO &KDQJH &OLPDWLF DQG 6HD /HYHO 9DULDELOLW\ ,QOHW '\QDPLFV 3RWHQWLDO /RQJWHUP (QYLURQPHQWDO &KDQJH &OLPDWLF 9DULDELOLW\ 6HD /HYHO 9DULDELOLW\ ,QOHW '\QDPLFV (VWXDULQH0DULQH =RRDUFKDHRORJLFDO )DXQD DV 3UR[\ 'DWD ,QWHUSUHWLYH 3RWHQWLDO DQG 7LPH 5HVROXWLRQ 7HPSRUDO =RRDUFKDHRORJLFDO $VVHPEODJHV (IIHFWLYH 6FDOH DQG =RRDUFKDHRORJLFDO 3RWHQWLDO ,17(*5$7,1* 63$7,$/ $1' 7(0325$/ 3(563(&7,9(6 =RRDUFKDHRORJLFDO 3DWWHUQV DW WKH /RFDO 6FDOH %LJ 0RXQG .H\ &DVK 0RXQG 8VHSSD ,VODQG -RVVO\Q ,VODQG %XFN .H\ 6KHOO 0LGGHQ ([SORLWDWLRQ 3DWWHUQV DW WKH 5HJLRQDO 6FDOH $Q $TXDWLF ([SORLWDWLRQ )LVKLQJ *DWKHULQJ DQG +XQWLQJ 7HFKQRORJ\ +\SRWKHVHV IRU 9DULDWLRQ LQ )LVKLQJ $UWLIDFWV 6800$5< $1' &21&/86,216 $33(1',&(6 $ =22$5&+$(2/2*,&$/ '$7$ 7$%/(6 %LJ 0RXQG .H\ &DVK 0RXQG 8VHSSD ,VODQG -RVVO\Q ,VODQG %XFN .H\ 6KHOO 0LGGHQ % $48$7,& 9(57(%5$7(6 t ,19(57(%5$7(6 %< $5&+$(2/2*,&$/ 6,7( $1' 02'(51 +$%,7$7 YL

PAGE 7

5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ YLL

PAGE 8

/,67 2) 7$%/(6 WDEOH SDJH *HQHUDOL]HG &XOWXUDO &KURQRORJ\ IRU WKH &DORRVDKDWFKHH $UHD =RRDUFKDHRORJLFDO 6DPSOHV ,QFOXGHG LQ WKH &KDUORWWH +DUERU 6WXG\ 6XPPDU\ RI =RRDUFKDHRORJLFDO 'DWD ,QFOXGHG LQ WKH &KDUORWWH +DUERU 6WXG\ 5HJUHVVLRQ 9DOXHV IRU 0LQLPXP 0HDW :HLJKW (VWLPDWLRQV 5HJUHVVLRQ 9DOXHV IRU 0D[LPXP 0HDW :HLJKW (VWLPDWLRQV 1RQUHJUHVVLRQ 9DOXHV IRU 0D[LPXP 0HDW :HLJKW (VWLPDWLRQV 2VFLOODWLQJ +RORFHQH 6HD /HYHO &XUYHV %DVHG RQ %HDFK 5LGJH 'DWD IRU WKH &KDUORWWH +DUERU DQG *XOI RI 0H[LFR 5HJLRQV 5HODWLYH 01, 3HUFHQWDJHV RI (DVWHUQ 2\VWHU (2f &UHVWHG 2\VWHU &2f &URZQ &RQFK &&f DQG 5LEEHG 0XVVHO 50f IRU &DVK 0RXQG 6DPSOHV $O $O $O DQG $O ,QWHUVLWH &RPSDULVRQ RI +DUGKHDG &DWILVK 7RWDOV &RPSDULVRQ RI 7HUUHVWULDO DQG $TXDWLF $QLPDO )RRG 5HVRXUFHV E\ 3HUFHQWDJH 5DQNLQJ RI %RQ\ )LVKHV E\ 0D[LPXP 0HDW :HLJKW $UFKDHRORJLFDO 5HPDLQV RI 6KDUNV E\ 0LQLPXP 1XPEHU RI ,QGLYLGXDOV 01,f 'LVWULEXWLRQ RI $UFKDHRORJLFDO 3LQILVK DQG $VVRFLDWHV E\ 0LQLPXP 1XPEHU RI ,QGLYLGXDOV 01,f YLLL

PAGE 9

0HVK 6L]HV RI .H\ 0DUFR 1HW &RUGDJH 'LVWULEXWLRQ RI $UFKDHRORJLFDO 0XOOHW 0XJLO VSSf $UFKDHRORJLFDO 7HUUHVWULDO )DXQD E\ 0LQLPXP 1XPEHU RI ,QGLYLGXDOV 01,f $f§ )DXQDO $QDO\VLV %LJ 0RXQG .H\ &+ &KDUORWWH &RXQW\ )ORULGD 0D\ 6DPSOH 86 1: 4XDG /D\HU $ )DXQDO $QDO\VLV %LJ 0RXQG .H\ &+ &KDUORWWH &RXQW\ )ORULGD $XJXVW 6DPSOH 86 /D\HU E $ )DXQDO $QDO\VLV %LJ 0RXQG .H\ &+ &KDUORWWH &RXQW\ )ORULGD $XJXVW 6DPSOH 86 /D\HU $ )DXQDO $QDO\VLV %LJ 0RXQG .H\ &+ &KDUORWWH &RXQW\ )ORULGD 1RYHPEHU 6DPSOH 86 1: 4XDG /D\HU $ )DXQDO $QDO\VLV &DVK 0RXQG &+ &KDUORWWH &RXQW\ )ORULGD -XQH 6DPSOH 7HVW $O /HYHO $ )DXQDO $QDO\VLV &DVK 0RXQG &+ &KDUORWWH &RXQW\ )ORULGD -XQH 6DPSOH 7HVW $O /HYHO $ )DXQDO $QDO\VLV &DVK 0RXQG &+ &KDUORWWH &RXQW\ )ORULGD -XQH 6DPSOH 7HVW $O /HYHO $ )DXQDO $QDO\VLV &DVK 0RXQG &+ &KDUORWWH &RXQW\ )ORULGD -XQH 6DPSOH 7HVW $O /HYHO $ )DXQDO $QDO\VLV 8VHSSD ,VODQG // /HH &RXQW\ )ORULGD $XJ6HSW 6DPSOH 7HVW $ /HYHO $f§ )DXQDO $QDO\VLV -RVVO\Q ,VODQG // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW $O /HYHO YROXPH VDPSOHf $OO )DXQDO $QDO\VLV -RVVO\Q ,VODQG // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW $O /HYHO L[

PAGE 10

$ )DXQDO $QDO\VLV -RVVO\Q ,VODQG // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW $O /HYHO $ )DXQDO $QDO\VLV -RVVO\Q ,VODQG // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW $O /HYHO $ )DXQDO $QDO\VLV %XFN .H\ 6KHOO 0LGGHQ // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW % /HYHO $ )DXQDO $QDO\VLV %XFN .H\ 6KHOO 0LGGHQ // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW % /HYHO $ )DXQDO $QDO\VLV %XFN .H\ 6KHOO 0LGGHQ // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW $ /HYHO $ )DXQDO $QDO\VLV %XFN .H\ 6KHOO 0LGGHQ // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW $ /HYHO %O $TXDWLF 9HUWHEUDWHV E\ $UFKDHRORJLFDO 6LWH DQG 0RGHUQ +DELWDW % $TXDWLF ,QYHUWHEUDWHV E\ $UFKDHRORJLFDO 6LWH DQG 0RGHUQ +DELWDW [

PAGE 11

/,67 2) ),*85(6 ILJXUH SDJH 0DS RI WKH &KDUORWWH +DUERU 6WXG\ $UHD ZLWK *HRJUDSKLFDO )HDWXUHV DQG $UFKDHRORJLFDO 6LWH /RFDWLRQV 0HQWLRQHG LQ WKH 7H[W f 6RODQD 6LWH f %LJ 0RXQG .H\ f &DVK 0RXQG f 8VHSSD ,VODQG f 3LQHODQG 6LWH f -RVVO\Q ,VODQG f %XFN .H\ 6KHOO 0LGGHQ DQG f :LJKWPDQ 6LWH 7KH 'LVWULEXWLRQ RI &KDUORWWH +DUERU =RRDUFKDHRORJLFDO 9HUWHEUDWH 6DPSOHV E\ 1XPEHU RI 7D[D DQG 0LQLPXP 1XPEHU RI ,QGLYLGXDOV 01,f 1XPEHUV 5HIHU WR WKH /LVW *LYHQ LQ 7DEOH 7KH 'LVWULEXWLRQ RI &KDUORWWH +DUERU =RRDUFKDHRORJLFDO ,QYHUWHEUDWH 6DPSOHV E\ 1XPEHU RI 7D[D DQG 0LQLPXP 1XPEHU RI ,QGLYLGXDOV 01,f 1XPEHUV 5HIHU WR WKH /LVW *LYHQ LQ 7DEOH &RPSDUDWLYH 3HUFHQWDJHV RI =RRDUFKDHRORJLFDO (VWLPDWHG 0LQLPXP (GLEOH 0HDW :HLJKWV E\ 6LWH DQG $QLPDO *URXS %DVHG RQ 'DWD 3UHVHQWHG LQ $SSHQGL[ $f &RPSDUDWLYH 3HUFHQWDJHV RI =RRDUFKDHRORJLFDO (VWLPDWHG 0D[LPXP (GLEOH 0HDW :HLJKWV E\ 6LWH DQG $QLPDO *URXS %DVHG RQ 'DWD 3UHVHQWHG LQ $SSHQGL[ $f 0RQWKO\ 6DOLQLW\ 3URILOHV RI )RXU $TXDWLF /RFDWLRQV LQ WKH 1RUWKHUQ 3DUW RI WKH &KDUORWWH +DUERU (VWXDULQH &RPSOH[ ,OOXVWUDWLQJ WKH )UHVK WR 6DOW :DWHU *UDGLHQW 'DWD DUH DIWHU :DQJ DQG 5DQH\ f &RPSDUDWLYH 3HUFHQWDJHV RI =RRDUFKDHRORJLFDO 01, E\ 6LWH 5HSUHVHQWLQJ ([SORLWHG +DELWDWV %DVHG 2Q 'DWD 3UHVHQWHG LQ $SSHQGL[ $f 7KRUDFLF 9HUWHEUDH :LGWKV RI %RQ\ )LVKHV DV DQ ,QGLFDWRU RI 2YHUDOO )LVK 6L]H IRU &DVK 0RXQG -RVVO\Q ,VODQG DQG %XFN .H\ [L

PAGE 12

$ 6FKHPDWLF ,OOXVWUDWLRQ RI WKH 5HODWLRQVKLS EHWZHHQ $TXDWLF 9HUWHEUDWHV DQG ,QYHUWHEUDWHV 5HFRYHUHG IURP WKH )LYH 6WXG\ 6LWHV DQG WKH (VWXDULQH *UDGLHQW %DVHG RQ WKH 'HWDLOHG 'DWD 3UHVHQWHG LQ $SSHQGL[ %f 0HDQ 6HD/HYHO &XUYH IRU 6RXWKZHVW )ORULGD 3URSRVHG E\ 6WDSRU HW DO %DVHG RQ *HRFKURQRORJ\ *HRPRUSKRORJ\ DQG WKH (OHYDWLRQ RI %HDFK 5LGJH 6HWV 0DNLQJ 8S WKH %DUULHU ,VODQGV $IWHU 6WDSRU HW DO )LJXUH f &RPSDUDWLYH 3HUFHQWDJHV RI =RRDUFKDHRORJLFDO )RRG 01, 0LQLPXP 0HDW :HLJKW DQG 0D[LPXP 0HDW :HLJKW E\ 3URYHQLHQFH IRU WKH -RVVO\Q ,VODQG )DXQDO 6DPSOHV %DVHG RQ 'DWD 3UHVHQWHG LQ $SSHQGL[ $f &RPSDUDWLYH 3HUFHQWDJHV RI =RRDUFKDHRORJLFDO )RRG 01, 0LQLPXP 0HDW :HLJKW DQG 0D[LPXP 0HDW :HLJKW E\ 3URYHQLHQFH IRU WKH &DVK 0RXQG )DXQDO 6DPSOHV %DVHG RQ 'DWD 3UHVHQWHG LQ $SSHQGL[ $f 7KH 9DULDWLRQ %DVHG RQ 3HUFHQWDJH RI 01, RI 6HOHFWHG 6SHFLHV f§ (DVWHUQ 2\VWHU &UHVWHG 2\VWHU 5LEEHG 0XVVHO DQG &URZQ &RQFK f§ IURP &DVK 0RXQG 6DPSOHV $O $O DQG $O 'DWLQJ WR $' WR $' DQG $O 'DWLQJ WR $' &RPSDUDWLYH 3HUFHQWDJHV RI =RRDUFKDHRORJLFDO )RRG 01, 0LQLPXP 0HDW :HLJKW DQG 0D[LPXP 0HDW :HLJKW E\ 3URYHQLHQFH IRU WKH %LJ 0RXQG .H\ )DXQDO 6DPSOHV %DVHG RQ 'DWD 3UHVHQWHG LQ $SSHQGL[ $f &RPSDUDWLYH 3HUFHQWDJHV RI =RRDUFKDHRORJLFDO )RRG 01, 0LQLPXP 0HDW :HLJKW DQG 0D[LPXP 0HDW :HLJKW E\ 3URYHQLHQFH IRU WKH %XFN .H\ )DXQDO 6DPSOHV %DVHG RQ 'DWD 3UHVHQWHG LQ $SSHQGL[ $f ,QWHUVLWH 9DULDELOLW\ RI $SSUR[LPDWHG 6XEVLVWHQFH $FWLYLW\ %DVHG RQ 01, RI ([SORLWHG $QLPDOV $GXOW 3LQILVK /DJRGRQ UKRPERLGHV DQG LWV $WODV DQG 3UHPD[LOOD %RQHV $GXOW 3LJILVK 2UWKRSULVWLV FKU\VRSWHUD DQG LWV $WODV DQG 3UHPD[LOOD %RQHV $UWLVWnV &RQFHSWLRQ RI D 3UHKLVWRULF *LOO 1HW IRU 1HDUVKRUH 6KDOORZ:DWHU )LVKLQJ LQ WKH &KDUORWWH +DUERU $UHD %DVHG RQ $UFKDHRORJLFDO 1HW 5HPDLQV IURP WKH .H\ 0DUFR 6LWH [LL

PAGE 13

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 7+( =22$5&+$(2/2*< 2) &+$5/277( +$5%25n6 35(+,6725,& 0$5,7,0( $'$37$7,21 63$7,$/ $1' 7(0325$/ 3(563(&7,9(6 %\ .DUHQ -R :DONHU 'HFHPEHU &KDLUPDQ 0LFKDHO ( 0RVHOH\ 0DMRU 'HSDUWPHQW $QWKURSRORJ\ 0XFK GLVFXVVLRQ LQYROYLQJ SUHKLVWRULF FRPSOH[ PDULWLPH ILVKHUJDWKHUHUKXQWHU VRFLHWLHV FHQWHUV RQ ZKHWKHU RU QRW WKH QDWXUDO HQYLURQPHQWV LQKDELWHG E\ WKHVH SHRSOHV ZHUH SURGXFWLYH DQG VWDEOH HQRXJK WR DFFRXQW IRU WKH FXOWXUDO FRPSOH[LW\ ,Q WKH FDVH RI VRXWKZHVW )ORULGDnV PDULWLPH &DOXVD DQG WKHLU SUHGHFHVVRUV DGGUHVVLQJ WKLV LVVXH ILUVW UHTXLUHV D PXOWLVFDODU XQGHUVWDQGLQJ RI VSDWLDO DQG WHPSRUDO HQYLURQPHQWDO FRQWH[W 7KLV LV EHFDXVH OLNH DQ\ HQYLURQPHQW FRDVWDO VRXWKZHVW )ORULGD VSHFLILFDOO\ WKH &KDUORWWH +DUERU HVWXDULQH V\VWHPf LV FKDUDFWHUL]HG E\ KDELWDW KHWHURJHQHLW\ LQ VSDFH DQG JHRSK\VLFDO G\QDPLVP [LLL

PAGE 14

WKURXJK WLPH 7KLV GLVVHUWDWLRQ HVWDEOLVKHV WKH QHHGHG FRQWH[WXDO IUDPHZRUN HVVHQWLDO IRU SURSHUO\ DGGUHVVLQJ WKH EURDGHU TXHVWLRQ RI SURGXFWLYLW\ VWDELOLW\ DQG FRPSOH[LW\ =RRDUFKDHRORJLFDO UHPDLQV SURYLGH DQ LPSRUWDQW SUR[\ GDWD VHW IRU WKH SXUSRVH RI PRGHOLQJ &KDUORWWH +DUERUnV VSDWLDO DQG WHPSRUDO HVWXDULQH SDOHRHQYLURQPHQWV DW PXOWLSOH VFDOHV ,W LV DUJXHG WKDW HVWXDULQH DUFKDHRIDXQD FDQ VHUYH DV SDOHRHFRORJLFDO GDWD DOEHLW ZLWK OLPLWDWLRQV 7KH DQDO\VLV RI ILQHVFUHHQHG EXON VDPSOHV IURP ILYH VLWHV YDULRXVO\ ORFDWHG ZLWKLQ WKH &KDUORWWH +DUERU HVWXDULQH V\VWHP IRUPV WKH GDWD EDVH RI WKH PRGHOLQJ H[HUFLVH 7KHVH PLGGHQ PDWHULDOV GDWH IURP %& WR $' VSDQQLQJ WKH &DORRVDKDWFKHH WKURXJK ,,, DUFKDHRORJLFDO SHULRGV &HQWUDO WR WKH PRGHO LV DQ HVWXDULQH JUDGLHQW DQDO\VLV XVLQJ VDOLQLW\ DV WKH SULPDU\ RUJDQL]LQJ YDULDEOH IRU XQGHUVWDQGLQJ WKH GLVWULEXWLRQ RI OLYLQJ IDXQD 7KH VSDWLDO IRFXV LV RQ ERWK ORFDO VLWHf DQG UHJLRQDO &KDUORWWH +DUERUf VFDOHV )URP D WHPSRUDO SHUVSHFWLYH VKRUW PHGLXP DQG ORQJWHUP IRUPV RI HQYLURQPHQWDO YDULDWLRQ DUH GHILQHG LQ WHUPV RI SRWHQWLDO DOWHUDWLRQ RI WKH HVWXDULQH JUDGLHQW 3URSRVHG ]RRDUFKDHRORJLFDO VLJQDWXUHV RI VXFK PXOWLVFDODU DOWHUDWLRQ WKDW ZHUH H[SORUHG DPRQJ WKH &KDUORWWH +DUERU GDWD OHDG WR WKH FRQFOXVLRQ WKDW PHGLXP DQG ORQJWHUP VHDOHYHO IOXFWXDWLRQV DQG LQOHW G\QDPLFV DUH PRVW OLNHO\ WR KDYH DIIHFWHG KXPDQ VXEVLVWHQFH )RU WKH &KDUORWWH +DUERU VDPSOHV SUHVHQWHG KHUH VHDOHYHO [LY

PAGE 15

IOXFWXDWLRQV RI WR P DERYH %& WR $' f DQG EHORZ $' WR $' f SUHVHQW VHD OHYHO SURGXFH VLJQDWXUHV RI DQ DOWHUHG HVWXDULQH JUDGLHQW EXW PRUH VXSSRUWLYH HYLGHQFH LV QHFHVVDU\ WR UHVROYH WKH WHPSRUDO VFDOH 7KH LQWHJUDWLRQ RI VSDWLDO DQG WHPSRUDO SHUVSHFWLYHV DW ERWK ORFDO DQG UHJLRQDO VFDOHV GHPRQVWUDWHV WKH SRWHQWLDO RI ]RRDUFKDHRORJLFDO LQIHUHQFH DQG DGYDQFHV WKH K\SRWKHVLV WKDW H[SORLWDWLRQ WHFKQRORJ\ UHIOHFWV WKH PRGHOHG HQYLURQPHQWDO FRQWH[W [Y

PAGE 16

&+$37(5 ,1752'8&7,21 7KH 0DULWLPH &DOXVD RI &KDUORWWH +DUERU 7KH FHQWHU RI WKH ZRUOG IRU PXFK RI WKH &DOXVD SRSXODWLRQ LQ WKH VL[WHHQWK FHQWXU\ ZDV VRXWKZHVW )ORULGDnV KLJKO\ SURGXFWLYH &KDUORWWH +DUERU HVWXDULQH V\VWHP )LJXUH f ,W ZDV UHSRUWHG LQ WKDW WKH >&DOXVD@ NLQJ ZDV KHOG LQ JUHDW UHYHUHQFH E\ KLV VXEMHFWV DQG WKDW KH PDGH WKHP EHOLHYH WKDW KLV VRUFHULHV DQG VSHOOV ZHUH WKH UHDVRQ ZK\ WKH HDUWK EURXJKW IRUWK KHU IUXLWf /DXGRQQLUH f 7KH TXRWH LPSOLHV WKDW WKH FRQWLQXHG SURGXFWLYLW\ DQG VWDELOLW\ RI WKH QDWXUDO ZRUOG LH &KDUORWWH +DUERUf ZHUH LQWHJUDO WR WKH PDLQWHQDQFH RI WKH &DOXVD SDUDPRXQW FKLHInV DXWKRULW\ (QYLURQPHQWDO SURGXFWLYLW\ DQG VWDELOLW\ PD\ KDYH EHHQ SDUWLFXODUO\ FUXFLDO IDFWRUV IRU WKH FXOWXUDOO\ FRPSOH[ &DOXVD EHFDXVH WKH\ DSSDUHQWO\ GLG QRW UHO\ RQ DJULFXOWXUDO SURGXFWV *RJJLQ DQG 6WXUWHYDQW 0DUTXDUGW 0LODQLFK DQG )DLUEDQNV :LGPHU f ,QVWHDG DV VXJJHVWHG E\ YDULRXV 6SDQLVK UHSRUWV DQG WKH H[LVWHQFH RI HQRUPRXV VKHOO PLGGHQV HVWXDULQHPDULQH IRRGV DSSHDU WR KDYH EHHQ

PAGE 17

WKH SULPDU\ VXEVLVWHQFH IRFXV RI WKHVH VHGHQWDU\ FRDVWDO UHVLGHQWV 7KH WHUP PDULWLPHf LV XVHG LQ WKLV GLVVHUWDWLRQ WR GHVFULEH D VLWXDWLRQ DGMDFHQW WR WKH VHD LH PDULQH ZDWHUVf $OWKRXJK &KDUORWWH +DUERU LV WHFKQLFDOO\ DQ HVWXDULQH HQYLURQPHQW UDWKHU WKDQ RQH RI VWULFWO\ PDULQH ZDWHUV LH SSW VDOLQLW\f WKH HVWXDULQH DGDSWDWLRQ LQ SUHKLVWRU\ LV YLHZHG KHUH DV D VSHFLDOL]HG W\SH RI WKH EURDGHU PDULWLPH FXOWXUDO SDWWHUQ VHH
PAGE 18

DUJXHG WKDW WKH VRFLHW\ ZDV DQ HDUO\ VWDWH &ODHVVHQ f RU D ZHDN WULEXWHEDVHG VWDWH *DLOH\ DQG 3DWWHUVRQ f EDVHG RQ 6SDQLVK DFFRXQWV 7KH HWKQRKLVWRULF VRXUFHV VSHFLILFDOO\ LQGLFDWH WKDW WKH &DOXVD ZHUH QRQDJULFXOWXUDO DQG WR GDWH QR HYLGHQFH WR WKH FRQWUDU\ KDV EHHQ SURGXFHG 0LODQLFK 6FDUU\ DQG 1HZVRP IRU RQH RSSRVLQJ YLHZ VHH 'RE\QV f :LOG SODQW IRRGV PRVWO\ LQ WKH IRUP RI IOHVK\ IUXLWV KDYH EHHQ LGHQWLILHG DUFKDHRORJLFDOO\ 7KH\ LQFOXGH KDFNEHUU\ FRFRSOXP VHDJUDSH PDVWLF SULFNO\ SHDU FDEEDJH SDOP VDZ SDOPHWWR DQG KRJ SOXP 6FDUU\ DQG 1HZVRP f 6FDUU\ DQG 1HZVRP f GRFXPHQW WKH YLUWXDO \HDUURXQG DYDLODELOLW\ RI WKH YDULRXV IUXLWV 7KH UHFHQWO\ H[FDYDWHG ZDWHUORJJHG VDPSOHV $' f IURP WKH 3LQHODQG 6LWH &RPSOH[ RQ 3LQH ,VODQG DUH DOUHDG\ DGGLQJ WR WKH OLVW RI DUFKDHRORJLFDO IUXLWV 1HZVRP SHUVRQDO FRPPXQLFDWLRQ f 6FDUU\ DQG 1HZVRP f DUJXH DJDLQVW WKH OLNHOLKRRG RI JUDLQ FURSV PDL]H DQG VWDUFK\ VHHGVf EHLQJ LPSRUWDQW LQ SUHKLVWRULF VRXWKZHVW )ORULGD 7KHLU H[SHULHQFH KDV VKRZQ WKDW ZKHUHYHU PDL]H LV D VXEVLVWHQFH EDVH FRE UHPDLQV KDYH EHHQ UHFRYHUHG LQ VRPH QXPEHU 0DL]H FRE UHPDLQV KDYH QHYHU EHHQ IRXQG LQ VRXWK )ORULGD $OWKRXJK FRUQ SROOHQ KDV EHHQ LGHQWLILHG DW WKH )RUW &HQWHU 6LWH QHDU /DNH 2NHHFKREHH 6HDUV f -RKQVRQ f DUJXHV WKDW WKH VRLOV LQ TXHVWLRQ FRXOG QRW KDYH VXSSRUWHG PDL]H FXOWLYDWLRQ 7KH

PAGE 19

VWDUFK\ VHHGV WKDW DUH LGHQWLILHG LQ WKH &KDUORWWH +DUERU VDPSOHV DUH QRW RI WKH FXOWLYDWHG YDULHWLHV WKDW DUH LPSRUWDQW LQ WKH SUHKLVWRULF 0LGZHVW DQG 0LGVRXWK RI WKH 8QLWHG 6WDWHV 6FDUU\ DQG 1HZVRP f 7KH 6SDQLVK FKURQLFOHUV UHODWH WKDW WKH &DOXVD REWDLQHG D ZLOG SODQW URRW IURP LQWHULRU VRXWK )ORULGD IRU WKH SXUSRVH RI PDNLQJ D EUHDG ,Q OLJKW RI WKH QRQ SUHVHUYDELOLW\ RI URRW UHPDLQV DQG WKH DEVHQFH RI D E\SURGXFW XQOLNH WKH FDVH RI PDL]H FREVf WKH LPSRUWDQFH RI WKLV IRRG FDWHJRU\ UHPDLQV RSHQ WR GHEDWH ,W KDV EHHQ VXJJHVWHG WKDW FXW VKDUN WHHWK IRXQG DW WKH )RUW &HQWHU DQG *UDQDGD VLWHV PD\ KDYH EHHQ XVHG WR FUHDWH JUDWHU ERDUGV IRU SURFHVVLQJ HGLEOH URRWV +DOH .R]XFK f 7R GDWH WKH EUHDG URRW GHVFULEHG E\ WKH 6SDQLVK KDV QRW EHHQ VDWLVIDFWRULO\ LGHQWLILHG +DQQ f 7KH FXOWXUDO KLVWRU\ RI WKH &DOXVD DV DQ HWKQLF HQWLW\ UHPDLQV XQFOHDUf§ZKHWKHU WKH\ GHYHORSHG LQ WKH &KDUORWWH +DUERU DUHD :LGPHU f RU RULJLQDWHG IURP WKH 2NHHFKREHH %DVLQ RI LQWHULRU VRXWK )ORULGD 0LODQLFK DQG )DLUEDQNV f )XUWKHUPRUH WKH HPHUJHQFH RI &DOXVD FRPSOH[LW\ PD\ ZHOO KDYH EHHQ D ODWH SKHQRQPHQRQ WULJJHUHG E\ WKH LQIOX[ RI VL[WHHQWKFHQWXU\ PDWHULDO JRRGV LQWR WKH DERULJLQDO HFRQRPLF V\VWHP 0DUTXDUGW f 7KXV ZH GR QRW NQRZ LI WKH HWKQRKLVWRULF UHFRUG LV DSSURSULDWH IRU &KDUORWWH +DUERU WHPSRUDO FRQWH[WV RWKHU WKDQ WKH SURWRKLVWRULF DQG KLVWRULF &DOXVD &RQYHUVHO\ QRU W

PAGE 20

GR ZH NQRZ LI DUFKDHRORJLFDO GDWD IURP SUHKLVWRULF VLWHV DUH DSSURSULDWH IRU DSSOLFDWLRQ WR WKH SURWRKLVWRULFKLVWRULF &DOXVD RI WKH 6SDQLVK GRFXPHQWV 8QWLO SRSXODWLRQ FHQWHUV VXFK DV WKH 3LQHODQG 6LWH &RPSOH[ DUH H[FDYDWHG WR SURGXFH DPSOH GDWD ERWK DUWLIDFWXDO DQG VXEVLVWHQFH IURP VWUDWLILHG FRQWH[WV DUFKDHRORJLVWV ZLOO QRW EH DEOH WR GHWHUPLQH &DOXVD RULJLQV RU WKH PHFKDQLVPV WKDW OHG WR WKH HPHUJHQFH RI WKHLU FRPSOH[LW\ $QG ZLWKRXW DQ XQGHUVWDQGLQJ RI WKH VSDWLDO DQG WHPSRUDO SDOHRHQYLURQPHQWDO FRQWH[W ZH FDQQRW DGHTXDWHO\ HYDOXDWH WKH UROH RI DQ\ SHUFHLYHG VXEVLVWHQFH FKDQJH LQ WKH &KDUORWWH +DUERU UHJLRQ 7KH /DJJLQJ 0DULWLPH 3HUVSHFWLYH 7KH QRWLRQ WKDW PDULWLPH VRFLHWLHV FRXOG GHYHORS FRPSOH[ VRFLDO DQG SROLWLFDO IRUPDWLRQV ZLWKRXW WKH EHQHILW RI FURS DJULFXOWXUH KDV ORQJ EHHQ GHEDWHG HVSHFLDOO\ LQ WKH FDVH RI FRDVWDO 3HUX HJ 0RVHOH\ 0RVHOH\ DQG )HOGPDQ 2VERUQ :LOVRQ f 3UHKLVWRULF QRQDJULFXOWXUDO FRPSOH[ SHRSOHV DUH LQGHHG DVVRFLDWHG ZLWK PDULWLPH VHWWLQJV LQ YDULRXV ORFDOHV RI WKH ZRUOG HJ 1RUWK $PHULFDQ 1RUWKZHVW &RDVW VRXWKHUQ &DOLIRUQLD FRDVWDO 3HUX VRXWKZHVW )ORULGD 1RUZD\ DQG 6ZHGHQf 7KLV DVVRFLDWLRQ LV LQFUHDVLQJO\ EHLQJ DFNQRZOHGJHG E\ UHVHDUFKHUV DV WKHRUHWLFDO ELDVHV LQKHUHQW LQ XQLOLQHDU HYROXWLRQLVW VFKHPHV DUH EURNHQ GRZQ 0RVHOH\ DQG )HOGPDQ f 8QLOLQHDU HYROXWLRQLVWV H[DJJHUDWH WKH UROH RI FURS DJULFXOWXUH DV WKH SULPDU\ FXOWXUDO PHFKDQLVP LQ WKH

PAGE 21

HPHUJHQFH RI FRPSOH[LW\ $V D UHVXOW HYROXWLRQDU\ PRGHOV DUH FRORUHG E\ D WHUUHVWULDO SHUVSHFWLYH HYHQ ZKHQ WKH IRFXV LV RQ FRDVWDO FXOWXUHV ,Q )ORULGD DUFKDHRORJ\ V\PSWRPV RI WKLV WHUUHVWULDO ELDV LQFOXGH LQDSSURSULDWH UHFRYHU\ PHWKRGV XQWHVWHG VHDVRQDO VHWWOHPHQW PRGHOV DQG XQFULWLFDO DUWLIDFW LQWHUSUHWDWLRQ VHH 5XVVR :DONHU :DONHU DQG 0DUTXDUGW f 8QWLO WKH V )ORULGD DUFKDHRORJLVWV EHOLHYHG WKDW SUHKLVWRULF FRDVWDO SHRSOHV VXEVLVWHG SULPDULO\ RQ GHHU DQG VPDOO PDPPDOV VXSSOHPHQWHG LQ WLPHV RI GLHWDU\ VWUHVV E\ VKHOOILVK DQG ILVK 7KH DSSOLFDWLRQ RI ILQHVFUHHQ UHFRYHU\ WHFKQLTXHV E\ ]RRDUFKDHRORJLVWV HJ 0LODQLFK HW DO f KDV UHYHDOHG LQVWHDG WKDW ILVK RIWHQ UHODWLYHO\ VPDOO RQHV FDXJKW LQ QHWV ZHUH WKH PDLQ FRPSRQHQW RI WKH QDWLYH GLHW DQG ZHUH IDU PRUH LPSRUWDQW WKDQ WHUUHVWULDO PDPPDOV 8QWHVWHG VHWWOHPHQW PRGHOV WKDW GHSLFW FRDVWDO SHRSOHV VROHO\ DV VHDVRQDO UHVLGHQWV DOVR KDYH EHHQ FKDOOHQJHG UHFHQWO\ 5XVVR f GHPRQVWUDWHV WKDW DV HDUO\ DV WKH 0LGGOH $UFKDLF SHRSOH LQ VRXWKZHVW )ORULGD OLYHG \HDUURXQG RQ WKH FRDVW DQG EXLOW SXUSRVHIXO PRXQGV $ WKLUG V\PSWRP RI WKH WHUUHVWULDO ELDV LV D IDLOXUH WR UHFRJQL]H PDULWLPH UHODWHG DUWLIDFWV GHVSLWH WKH REYLRXV FRDVWDO DVVRFLDWLRQ DQG DQ DYDLODEOH ERG\ RI SHUWLQHQW HYLGHQFH :DONHU :DONHU DQG 0DUTXDUGW f

PAGE 22

7KHUH LV OLWWOH WKDW DUJXHV DJDLQVW DQ HVWXDULQHPDULQH IRRG EDVH IRU WKH &DOXVD DQG PXFK WKDW DUJXHV IRU LW :LGPHU f FRQYLQFLQJO\ FDOOV IRU DQ XQXVXDOO\ KLJK SURGXFWLYLW\ LQ &KDUORWWH +DUERUnV HVWXDULQHPDULQH HQYLURQPHQWf§D \HDUURXQG SURGXFWLYLW\ FDSDEOH RI VXSSRUWLQJ D ODUJH VHGHQWDU\ SUHKLVWRULF KXPDQ SRSXODWLRQ +RZHYHU DV ZLWK DQ\ HFRQRPLF V\VWHP ZH FDQQRW DVVXPH WKDW WKHVH HVWXDULQHPDULQH IRRG UHVRXUFHV UHOLHG XSRQ LQ SUHKLVWRU\ UHPDLQHG XQLIRUPO\ SURGXFWLYH DQG VWDEOH WKURXJK VSDFH DQG WLPH IRU DQ\ JLYHQ UHJLRQ /LPLWHG E\ WKH DYDLODEOH GDWD :LGPHUnV HQYLURQPHQWDO FRQWH[W IRU WKH &DOXVD SULPDULO\ RSHUDWHV DW EURDG UHJLRQDO DOO RI WKH VRXWKZHVW )ORULGD FRDVWOLQHf DQG WHPSRUDO VFDOHV HJ KH FKRRVHV WKH WUDGLWLRQDO VHDOHYHO PRGHOVf :H PXVW XQGHUVWDQG WKH VSDWLDO YDULDELOLW\ RI HVWXDULQHPDULQH UHVRXUFHV DW VPDOOHU VFDOHV RI DQDO\VLV DV ZHOO DV WKH LPSDFW RI KLJKLQWHQVLW\ VWRUPV IUHH]HV DQG ORQJHUWHUP LQOHW DQG VHD OHYHO G\QDPLFV LQ RUGHU WR HYDOXDWH SUHKLVWRULF KXPDQHQYLURQPHQW UHODWLRQVKLSV 7KH TXHVWLRQ WKHQ EHFRPHV KRZ WR LQYHVWLJDWH &KDUORWWH +DUERUnV HQYLURQPHQW LWV IOXFWXDWLRQV DQG LWV UHODWLRQVKLS WR SUHKLVWRULF KXPDQ LQKDELWDQWV WKURXJK VSDFH DQG WLPH =RRDUFKDHRORJLFDO HYLGHQFH LH YHUWHEUDWH DQG LQYHUWHEUDWH VNHOHWDO UHPDLQVf UHSUHVHQWV DQ DQDO\WLF PHGLXP RI JUHDW UHOHYDQFH WR WKLV TXHVWLRQ $UFKDHRIDXQD FDQ VHUYH DV D SDOHRHFRORJLFDO GDWD VHW LI ZH PDNH WKH DVVXPSWLRQ WKDW

PAGE 23

DQLPDO IRRGV ZHUH SURFXUHG ZLWKLQ FORVH SUR[LPLW\ WR WKH VLWH ZKHUH WKH VNHOHWDO UHPDLQV DUH UHFRYHUHG E\ DUFKDHRORJLVWV 5HVHDUFK *RDO DQG 2EMHFWLYHV 7KH JRDO RI WKLV UHVHDUFK LV WR HPSOR\ UHJLRQDO EDVHOLQH ]RRDUFKDHRORJLFDO GDWD WR LQLWLDWH D VSDWLDO DQG WHPSRUDO VWXG\ RI KXPDQHQYLURQPHQW UHODWLRQVKLSV LQ SUHKLVWRULF &KDUORWWH +DUERU 6XFK XQGHUVWDQGLQJ LV DOVR WKH JRDO RI HQYLURQPHQWDO DUFKDHRORJ\ %XW]HU (YDQV f D SXUVXLW IRU ZKLFK ]RRDUFKDHRORJ\ LV RQO\ RQH DYHQXH RI LQTXLU\ =RRDUFKDHRORJLFDO UHPDLQV DVVRFLDWHG ZLWK VHGHQWDU\ FRDVWDO ILVKHUJDWKHUHUKXQWHU JURXSV VXFK DV WKH &KDUORWWH +DUERU SHRSOH FRQVWLWXWH D YDOLG SUR[\ GDWD EDVH IURP ZKLFK WR EHJLQ WR PRGHO SDOHRHQYLURQPHQWV DQG WKH KXPDQ UHVSRQVHV WR WKHP WKURXJK VSDFH DQG WLPH ,QGHSHQGHQW VXSSRUWLYH GDWD DUH HVVHQWLDO WR VXFK PRGHOEXLOGLQJ 'LQFDX]H .LQJ DQG *UDKDP 5KRDGV DQG /XW] f &RQVHTXHQWO\ GDWD IURP HVWXDULQH HFRORJLFDO FOLPDWLF DQG JHRORJLFDO UHVHDUFK DUH GUDZQ RQ 7KH &KDUORWWH +DUERU VWXG\ QRQHWKHOHVV LV SUHOLPLQDU\ DQG K\SRWKHVHV UHPDLQ WR EH WHVWHG DQG PRGLILHG ZLWK QHZ GDWD VHWV /RJLFDOO\ RQH FDQQRW WUXO\ UHFRQVWUXFW D SDOHRHQYLURQPHQW 'LQFDX]H f EXW RQH FDQ FRQVWUXFW D PRGHO RI D SDVW HQYLURQPHQW DW D VSHFLILHG VSDWLDO DQG WHPSRUDO VFDOH %HFDXVH RI WKH LQWHUDFWLYH DQG

PAGE 24

LQWHUGHSHQGHQW QDWXUH RI HQYLURQPHQWV FLUFXODULW\ LQ UHDVRQLQJ DW WLPHV EHFRPHV SUDFWLFDOO\ XQDYRLGDEOH LQ WKLV HQGHDYRU 'LQFDX]H f 'HVSLWH WKLV GUDZEDFN WKH SUHVHQW VWXG\ KROGV SURPLVH IRU UHVHDUFK LQ WKH &KDUORWWH +DUERU UHJLRQ 7KH QDWXUH RI PRGHOEXLOGLQJ LV WR JHQHUDOL]H /HYLQV f IRU KHXULVWLF RU RSHUDWLYH SXUSRVHV ,Q WKH &KDUORWWH +DUERU PRGHO LW LV QHFHVVDU\ WR VLPSOLI\ HQYLURQPHQWDO YDULDWLRQ VR WKDW DUFKDHRORJLVWV FDQ DVN DQG DQVZHU JXHVWLRQV DW D VFDOH RI VD\ WR \HDU LQFUHPHQWV FRQJUXHQW ZLWK UDGLRFDUERQ GDWLQJf ,Q RWKHU ZRUGV WKH JRDO ZKHUH SRVVLEOH LV WR REWDLQ GDWD VHWV WKDW PHGLDWH SRWHQWLDO VKRUW DQG PHGLXPWHUP YDULDWLRQ GXH WR LQWUDDQQXDO DQG \HDUWR\HDU FKDQJH IRU H[DPSOH WKH VSDWLDO SHUVSHFWLYH LV EDVHG ZLWK RQH H[FHSWLRQ RQ DYHUDJHG VLWH VDPSOHV +RZHYHU LQWUDDQQXDO DQG \HDUWR\HDU GLVFRQWLQXLWLHV GR UHTXLUH FDUHIXO FRQVLGHUDWLRQ ZKHQ WHPSRUDO LQWHUSUHWDWLRQV DUH LQIHUUHG $ZDUHQHVV RI HQYLURQPHQWDO FRQWLQXLW\ DQG FKDQJH LQ VSDFH DQG WLPH DW PXOWLSOH VFDOHV VKRXOG HYHQWXDOO\ DOORZ &KDUORWWH +DUERU DUFKDHRORJLVWV WR IRFXV RQ K\SRWKHVHV PRUH VSHFLILF WR FXOWXUDO FKDQJH ,Q RWKHU ZRUGV ZH FDQQRW PDNH YDOLG LQIHUHQFHV DERXW FXOWXUDO FKDQJH EDVHG RQ IDXQDO SDWWHUQV LI ZH IDLO WR UHFRJQL]H RSHUDWLYH HQYLURQPHQWDO SDUDPHWHUV DW VSHFLILF VSDWLDO DQG WHPSRUDO VFDOHV 7KLV LV EHFDXVH &KDUORWWH +DUERU LV FKDUDFWHUL]HG E\ KDELWDW

PAGE 25

KHWHURJHQHLW\ LQ LWV VSDWLDO GLVWULEXWLRQ DQG E\ JHRSK\VLFDO G\QDPLVP WKURXJK WLPH ERWK DWWULEXWHV DUH W\SLFDO RI PRVW HQYLURQPHQWDO V\VWHPV ,W LV WKHVH RSHUDWLYH IDFWRUV WKDW GLFWDWH WKH FRPSDUDELOLW\ RI LQWHUVLWH DQG LQWUDVLWH ]RRDUFKDHRORJLFDO VDPSOHV DQG SURYLGH FRQWH[W IRU KXPDQHQYLURQPHQW UHODWLRQVKLSV 7R LOOXVWUDWH ZLWKLQ D UHJLRQ VXFK DV &KDUORWWH +DUERU D ]RRDUFKDHRORJLFDO DVVHPEODJH IURP RQH VLWH PD\ EH YHU\ GLIIHUHQW IURP WKDW RI DQRWKHU VLWH GXH WR GLIIHUHQFHV LH TXDOLWDWLYH RU TXDQWLWDWLYHf LQ WKH KDELWDWV WKDW VXUURXQG HDFK VLWH 7KHUHIRUH EHWZHHQ VLWHV DQ DVVHPEODJH IURP RQH WLPH SHULRG PD\ EH GLIIHUHQW IURP WKDW RI DQRWKHU SHULRG EHFDXVH RI D GLIIHUHQFH LQ ORFDWLRQ UDWKHU WKDQ D GLDFKURQLF FXOWXUDO FKDQJH :LWKLQ D VLWH DQ DVVHPEODJH IURP RQH WLPH SHULRG PD\ EH GLIIHUHQW IURP RQH RI DQRWKHU WLPH SHULRG GXH WR D JHRSK\VLFDO FKDQJH VXFK DV D IOXFWXDWLRQ LQ VHD OHYHO RU WKH FUHDWLRQFORVLQJ RI D QHDUE\ RFHDQ LQOHW UDWKHU WKDQ D GLDFKURQLF FXOWXUDO FKDQJH 7KLV LV QRW PHDQW WR LPSO\ WKDW VRFLRKLVWRULFDO IDFWRUV ZHUH DEVHQW IURP &KDUORWWH +DUERUnV SUHKLVWRULF WUDMHFWRU\ RI IDXQD XVH )RU H[DPSOH DQ DSSDUHQW GLDFKURQLF LQWUDVLWH YDULDWLRQ FRXOG EH VLPSO\ H[SODLQHG E\ YDULDWLRQ LQ VLWH GHSRVLWV HJ PLGGHQ YHUVXV GRPHVWLF IORRUf EDVHG RQ SDWWHUQLQJ RI DUWLIDFWV SRVW KROHV HWF &OHDUO\ KXPDQ DJHQF\ LQWURGXFHV D FRPSOH[ ZHE RI YDULDEOHV WKDW LQWHUDFW ZLWK WKH ELRWLF DQG SK\VLFDO HQYLURQPHQWV :H FDQ EHJLQ WR

PAGE 26

LGHQWLI\ WKLV FRPSOH[LW\ RQO\ WKURXJK IDPLOLDULW\ ZLWK HQYLURQPHQWDO FRQWH[W ,Q WKLV GLVVHUWDWLRQ LW LV SURSRVHG WKDW &KDUORWWH +DUERUnV UHFHQW HVWXDULQH SDOHRHQYLURQPHQW FDQ EH PRGHOHG IURP SHUVSHFWLYHV RI ERWK VSDFH DQG WLPH DW ORFDO DQG UHJLRQDO VFDOHV 6XFK D PRGHO ZLWK FRQWLQXHG DGMXVWPHQWV FDQ VHUYH DV D FRPSDUDWLYH EDVH E\ ZKLFK WR PHDVXUH KXPDQHQYLURQPHQW LQWHUDFWLRQ 7KH DSSURDFK XVHG KHUH KLQJHV RQ WKH H[LVWHQFH RI D SUHKLVWRULF IDXQDO H[SORLWDWLRQ SDWWHUQ WKDW IRFXVHV RQ QHDUE\ UHVRXUFHV 7KLV SDWWHUQ LV W\SLFDO RI PDULWLPH SRSXODWLRQV
PAGE 27

6DPSOH &RQWH[W DQG ([FDYDWLRQ 7KH VWXG\ KDV DV LWV UHVHDUFK XQLYHUVH WKH &KDUORWWH +DUERU HVWXDULQH HFRV\VWHP FDOOHG KHUH VLPSO\ &KDUORWWH +DUERU ,W LV EURDGO\ GHILQHG DV WKH VXEWURSLFDO FRDVWDO DUHD H[WHQGLQJ IURP &KDUORWWH +DUERU SURSHU LQ WKH QRUWK WR (VWHUR %D\ LQ WKH VRXWK )LJXUH f )RU WKH SXUSRVHV RI WKLV VWXG\ WKHQ WKH JUHDWHU &KDUORWWH +DUERU DUHD FRQVWLWXWHV D UHJLRQ VRXWK )ORULGD LV DOVR D UHJLRQ DOWKRXJK EURDGHU LQ VFDOHf 7KH &KDUORWWH +DUERU UHJLRQ LV DQ DUELWUDU\ GHOLQHDWLRQ EDVHG RQ D FRDVWDO HFRV\VWHP DQG WKXV VHUYHV RQO\ DV D VWDUWLQJ SRLQW WRZDUG WKH XQGHUVWDQGLQJ RI KXPDQHQYLURQPHQW UHODWLRQVKLSV LQ D G\QDPLF UHJLRQ 0DUTXDUGW DQG &UXPOH\ f )RU H[DPSOH WKH URXJK FKRS RI ZDWHUV VHSDUDWLQJ WKH 3LQH ,VODQG 6RXQG DQG &KDUORWWH +DUERU&DSH +D]H DUHDV )LJXUH f PD\ KDYH UHSUHVHQWHG D PRUH UHDOLVWLF FXOWXUDO ERXQGDU\ LQ WKH SUHKLVWRULF SDVW 3RLQW ORFDWLRQV HJ DUFKDHRORJLFDO VLWHVf ZLWKLQ WKH UHJLRQ FRQVWLWXWH ORFDOLWLHV 7KH VWXG\ IRFXVHV RQ WKHVH WZR VSDWLDO VFDOHV GHVLJQDWHG E\ 'LQFDX]H f DV PHVRVFDOH UHJLRQDOf DQG PLFURVFDOH ORFDOf $OWKRXJK WKH FXOWXUDO KLVWRU\ RI VRXWKZHVWHUQ )ORULGD H[WHQGV WR WKH (DUO\ 3DOHRLQGLDQ SHULRG WKH WLPH IUDPH XQGHU VWXG\ LQ WKLV GLVVHUWDWLRQ LV OLPLWHG WR DSSUR[LPDWHO\ %& WR $' HQFRPSDVVLQJ &DORRVDKDWFKHH WKURXJK ,9 SHULRGV 7DEOH f 7KH \HDU VSDQ IDOOV ZLWKLQ

PAGE 28

'LQFDX]HnV f PHVRVFDOH WHPSRUDO FODVVLILFDWLRQ DQG %XW]HUnV f WKLUG RUGHU VFDOH RI FOLPDWLF YDULDELOLW\ :LWKLQ WKHVH WHPSRUDO VFDOHV RWKHUV RI D ILQHU UHVROXWLRQ DOVR DUH UHFRJQL]HG IURP ZKLFK PHDQLQJ LV LQIHUUHG DQ\ VXFK VFDOH LV WHUPHG DQ HIIHFWLYH VFDOH 0DUTXDUGW DQG &UXPOH\ 0DUTXDUGW f 7KH XVH RI HIIHFWLYH VFDOH DV DQ RUJDQL]LQJ FRQFHSW LV HVVHQWLDO WR D WHPSRUDO VWXG\ RI WKH &KDUORWWH +DUERU UHJLRQ 6KRUWWHUP LH IURP RQH GD\ WR RQH \HDUf PHGLXPWHUP LH \HDUWR\HDUf DQG ORQJWHUP LH RQH KXQGUHG WR VHYHUDO KXQGUHGV RI \HDUVf HIIHFWLYH VFDOHV LQ WKH G\QDPLFV RI WKH UHJLRQnV SDOHRHQYLURQPHQWDO YDULDWLRQ DUH UHFRJQL]HG LQ WKLV VWXG\ ([FDYDWLRQ YROXPHWULF DQG FKURQRORJLFDO GDWD IRU WKH VDPSOHV XVHG LQ WKLV VWXG\ DUH SUHVHQWHG LQ 7DEOH $OO VDPSOHV H[KLELW JRRG SUHVHUYDWLRQ RZLQJ WR WKH SUHGRPLQDQW FDOFLXP FDUERQDWH PDWUL[ RI VKHOO DQG ERQH 6DPSOHV ZHUH VHOHFWHG RQ WKH EDVLV RI VWUDWLJUDSKLF FRQWH[W 7KH IRXU %LJ 0RXQG .H\ &+f VDPSOHV H[FDYDWHG E\ *HRUJH /XHU LQ /XHU f DUH IURP D ODUJH VWUDWLILHG SLW ORFDWHG DW WKH VXPPLW RI :HVW 0RXQG 7KLUWHHQ DGGLWLRQDO VDPSOHV DUH IURP FROXPQ OHYHOV PHDVXULQJ FP [ FP [ FP H[FDYDWHG XQGHU WKH GLUHFWLRQ RI :LOOLDP 0DUTXDUGW DQG WKH DXWKRU LQ DQG )RU WKHVH VDPSOHV IURP &DVK 0RXQG &+f 8VHSSD ,VODQG //f -RVVO\Q ,VODQG //f DQG %XFN .H\ 6KHOO 0LGGHQ //f GHVLJQDWLRQV

PAGE 29

VXFK DV $O $ HWF LQGLFDWH WKH H[FDYDWLRQ XQLW DQG WKH WKLUG QXPEHU UHIHUV WR WKH YHUWLFDO OHYHO HJ $O LV WKH IRXUWK YHUWLFDO OHYHO RI 7HVW 8QLW $Of $ WRWDO RI ERQH DQG VKHOO VSHFLPHQV ZHUH LGHQWLILHG LQ WKH VHYHQWHHQ VDPSOHV $ WRWDO RI PLQLPXP QXPEHU RI LQGLYLGXDOV KHUHDIWHU 01,f ZHUH FDOFXODWHG 7DEOH SUHVHQWV D VXPPDU\ RI WKHVH GDWD EURNHQ GRZQ E\ VDPSOH DQG YHUWHEUDWHV YHUVXV LQYHUWHEUDWHV 6SHFLHVVSHFLILF GDWD IRU DOO VHYHQWHHQ VDPSOHV DUH SUHVHQWHG LQ $SSHQGL[ $ %LR 0RXQG .H\ &+ /RFDWHG RQ WKH VRXWKZHVWHUQ VKRUHOLQH RI WKH &DSH +D]H 3HQLQVXOD LQ &KDUORWWH &RXQW\ )LJXUH f %LJ 0RXQG .H\ LV D PKLJK VKHOO PRXQG FRPSOH[ WKDW H[WHQGV RYHU D KD DUHD ,W LV SRVVLEOH WKDW WKH PRXQG FRPSOH[ ZDV FRQVWUXFWHG LQ D VSLGHUOLNH HIILJ\ IRUP $UFKDHRORJLFDO ZRUN DW %LJ 0RXQG .H\ KDV EHHQ OLPLWHG EXW WKH VLWH VHHPV WR KDYH EHHQ RFFXSLHG VLQFH FD $' DQG SRVVLEO\ HDUOLHU /XHU f 'XULQJ D VLWH YLVLW LQ WKH V WKH %XOOHQV %XOOHQ DQG %XOOHQ f FROOHFWHG /HRQ -HIIHUVRQ DQG ROLYH MDU VKHUGV LQGLFDWLQJ D VHYHQWHHQWK FHQWXU\ RFFXSDWLRQ $ ODUJH SRUWLRQ RI %LJ 0RXQG .H\ ZDV LQWHQVLYHO\ EXOOGR]HG LQ WKH V E\ WUHDVXUH KXQWHUV $ORQJ RQH RI WKH OLQHDU FXWV *HRUJH /XHU GRFXPHQWHG DQG H[FDYDWHG D ODUJH SLW FRQWDLQLQJ VWUDWLILHG PLGGHQ VHH 0DUTXDUGW

PAGE 30

E)LJXUH f GDWLQJ WR FD $' 7DEOH f +H FROOHFWHG VHYHUDO EXON VDPSOHV IRU DUFKDHRELRORJLFDO DQDO\VHV )RXU RI WKHVH ZHUH VHOHFWHG IRU LQFOXVLRQ LQ WKLV GLVVHUWDWLRQ 7DEOHV DQG $SSHQGL[ $f 2WKHU DVVRFLDWHG UHVHDUFK LQFOXGHV &RUGHOO f 0DUTXDUGW Ef 6FDUU\ DQG 1HZVRP f DQG 8SFKXUFK HW DO f &DVK 0RXQG &+ &DVK 0RXQG VLWXDWHG LQ 7XUWOH %D\ )LJXUH f ZDV SUREDEO\ ILUVW LQKDELWHG GXULQJ D ORZ VHDOHYHO VWDQG DQG ODWHU EHFDPH VXUURXQGHG E\ ZDWHU ZKHQ VHD OHYHO URVH ,W LV D ODUJH PLGGHQPRXQG VLWH ULVLQJ WR PRUH WKDQ P LQ KHLJKW DQG PHDVXULQJ P ORQJ E\ P ZLGH 3RUWLRQV RI WKH VLWH KDYH EHHQ GDPDJHG E\ WUHDVXUH KXQWHUV VKHOO ERUURZLQJf DFWLYLWLHV DQG VWRUPV 7KH %XOOHQV H[FDYDWHG DW &DVK 0RXQG LQ %XOOHQ DQG %XOOHQ f UHSUHVHQWLQJ WKH ILUVW DQG RQO\ SURIHVVLRQDO ZRUN KHUH XQWLO UHFHQWO\ VHH 0DUTXDUGW Ef 0DUTXDUGW SURILOHG DQ HURGHG IDFH RI D SRUWLRQ RI PLGGHQPRXQG DQG UHPRYHG WZHQW\WZR [ [ FROXPQ OHYHO VDPSOHV IRU VWXG\ )RXU OHYHOV ZHUH UDGLRFDUERQGDWHG WR $' s $' $' s WKHVH WKUHH DUH &DORRVDKDWFKHH SHULRGf DQG $' &DORRVDKDWFKHH ,, SHULRGf 7DEOH f 7KHVH IRXU VDPSOHV ZHUH FKRVHQ IRU ]RRDUFKDHRORJLFDO DQDO\VLV 7DEOHV DQG $SSHQGL[ $f $VVRFLDWHG UHVHDUFK LQFOXGHV WKDW RI &RUGHOO

PAGE 31

f 0DUTXDUGW E Ff 6FDUU\ DQG 1HZVRP f DQG :DONHU f 8VHSSD ,VODQG // 8VHSSD ,VODQG LV ORFDWHG RQ WKH HVWXDULQH VLGH RI &D\R &RVWD VRXWK RI %RFD *UDQGH 3DVV )LJXUH f 8VHSSD ,VODQGnV HDVWHUQ HGJH H[LVWV DV D URXJKO\ PKLJK 3OHLVWRFHQH GXQH UHPQDQW 6WDSRU HW DO 8SFKXUFK HW DO f $UFKDHRORJLFDO GHSRVLWV RQ 8VHSSD DUH H[WHQVLYH DQG GDWH DV IDU EDFN DV %& 6LWHV RQ 8VHSSD ZHUH ILUVW WHVWHG E\ 7 0LODQLFK DQG &KDSPDQ 0LODQLFK HW DO f WKH\ H[FDYDWHG LQ VHYHUDO ORFDWLRQV RQ WKH LVODQG LQ DQG GHPRQVWUDWLQJ RFFXSDWLRQV IURP WKH $UFKDLF WKURXJK WKH WK FHQWXU\ 0DUTXDUGWnV Ef PRUH UHFHQW H[FDYDWLRQ LQ WKH &ROOLHU ,QQ ORFDOLW\ KDV SURGXFHG D VLPLODU WLPHVSDQ RI VKHOO PLGGHQ DQG EXULDO GHSRVLWV $ VLQJOH FROXPQ OHYHO VDPSOH $ IURP WKLV ZRUN ZDV FKRVHQ IRU ]RRDUFKDHRORJLFDO VWXG\ 7DEOHV DQG $SSHQGL[ $f ,W UDGLRFDUERQ GDWHV WR %& 7HUPLQDO $UFKDLF&DORRVDKDWFKHH ,f $VVRFLDWHG VWXGLHV LQFOXGH WKRVH RI &RUGHOO f +DQVLQJHU f 0DUTXDUGW E Ff 4XLWP\HU DQG -RQHV f DQG 6FDUU\ DQG 1HZVRP f -RVVOYQ ,VODQG // 7KUHH RI -RVVO\QnV KHFWDUHV )LJXUH f DUH FRPSULVHG RI VKHOO PLGGHQPRXQGV WKDW UHDFK D PD[LPXP

PAGE 32

HOHYDWLRQ RI PHWHUV DERYH VHD OHYHO DQG DFFRUGLQJ WR )UDQN +DPLOWRQ &XVKLQJ f FRXUWV DQG ZDWHUZD\V ([FHSW IRU &XVKLQJnV EULHI LQYHVWLJDWLRQ RI RQH RI WKH FRXUWVf -RVVO\QnV DUFKDHRORJLFDO GHSRVLWV KDYH UHFHLYHG OLWWOH DWWHQWLRQ XQWLO WKH )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\nV UHFHQW LQYROYHPHQW 0DUTXDUGW Df -RVVO\QnV GHQVH JURZWKV RI UHG EODFN DQG ZKLWH PDQJURYHV WUHHV RI EXWWRQZRRG VWRSSHU VWUDQJOHU ILJ DQG JXPER OLPER DUH W\SLFDO RI FRDVWDO VRXWKZHVW )ORULGDnV QDWLYH VXEWURSLFDO YHJHWDWLRQ *HRORJLFDO FRULQJ KDV GHPRQVWUDWHG WKDW WKH DUFKDHRORJLFDO SRUWLRQ RI -RVVO\Q LV WKH ROGHVW SDUW RI WKH LVODQG 8SFKXUFK HW DO f )XWKHUPRUH WKH ORZHVW FP PRUH RU OHVV GHSHQGLQJ RQ WKH WLGHf RI PLGGHQ LV WRGD\ VXEPHUJHG XQGHU ZDWHU 0DUTXDUGW Ef 7KHVH WZR SLHFHV RI LQIRUPDWLRQ VXJJHVW D ORZHU VHD OHYHO DW WKH WLPH RI -RVVO\QnV HDUOLHVW RFFXSDWLRQ DW FLUFD %& LI QRW HDUOLHU ,Q DQ H[WHQVLYH YHUWLFDO SURILOH ZDV FOHDQHG LQ D GHHS ORRWHUnV WUHQFK 0DUTXDUGW Ef )URP WKLV DUHD GHVLJQDWHG DV RSHUDWLRQ $O WKLUW\HLJKW [ [ FP FROXPQ OHYHOV ZHUH UHPRYHG IRU LQWHQVLYH DQDO\VHV )RXU RI WKHVH OHYHOV GDWLQJ WR %& %& ERWK &DORRVDKDWFKHH ,f $' &DORRVDKDWFKHH ,,%f DQG $' s &DORRVDKDWFKHH ,,%,,,f ZHUH FKRVHQ IRU ]RRDUFKDHRORJLFDO VWXG\ 7DEOHV DQG $SSHQGL[ $f 7KH LQXQGDWHG PLGGHQPRXQG EDVH GHVFULEHG DERYHf ZDV QRW GDWHG

PAGE 33

EXW D UDGLRFDUERQ GDWH ZDV REWDLQHG IURP MXVW DERYH WKH ZDWHU OLQH VHH 7DEOH f $VVRFLDWHG VWXGLHV RI WKLV -RVVO\Q FRQWH[W DSSHDU LQ &RUGHOO f 0DUTXDUGW E Ff 4XLWP\HU DQG -RQHV f 6FDUU\ DQG 1HZVRP f DQG :DONHU f %XFN .HY 6KHOO 0LGGHQ // /RFDWHG DORQJ WKH QRUWKHDVWHUQ VKRUHOLQH RI WKH LVODQG RI %XFN .H\ WKH %XFN .H\ 6KHOO 0LGGHQ FRQVLVWV RI ORZ PRXQGV QR KLJKHU WKDQ Pf RI VKHOO ERQH DQG DUWLIDFWXDO GHEULV VXUURXQGHG E\ UHG DQG EODFN PDQJURYHV )LJXUH f 7KH PLGGHQV DSSHDU WR EH XQGLVWXUEHG DQG KDYH QRW EHHQ LQYHVWLJDWHG SURIHVVLRQDOO\ XQWLO WKH ZRUN VHH 0DUTXDUGW Ef %XFN .H\ LV WRGD\ QHVWOHG EHKLQG &DSWLYD ,VODQG LQ ED\ ZDWHUV EXW RULJLQDOO\ ZDV IRUPHG DV D EDUULHU LVODQG EHWZHHQ DERXW DQG \HDUV DJR 6WDSRU HW DO f 7KH %XFN .H\ 6KHOO 0LGGHQ DQG LWV DVVRFLDWHG VDQG EXULDO PRXQG // KDYH EHHQ UDGLRFDUERQGDWHG WR $' 7DEOH f 7HVW $O SODFHG LQ WKH VKHOO PLGGHQ VLWH ZDV H[FDYDWHG WR FP EHORZ VXUIDFH 0DUTXDUGW Ef 7HVW $ DGMDFHQW WR $O ZDV D [ FROXPQ VDPSOH H[FDYDWHG LQ WHQ OHYHOV 7ZR VDPSOHV IURP WKLV FROXPQ ZHUH VHOHFWHG IRU ]RRDUFKDHRORJLFDO DQDO\VLV 7DEOHV DQG $SSHQGL[ $f 7ZR VDPSOHV RULJLQDWHG IURP 7HVW % LQ WKH VDPH PDQQHU 7DEOHV DQG $SSHQGL[ $f $VVRFLDWHG VWXGLHV LQFOXGH &RUGHOO f +XWFKLQVRQ f 0DUTXDUGW

PAGE 34

E Ff 6FDUU\ DQG 1HZVRP f 8SFKXUFK HW DO f DQG :DONHU f =RRDUFKDHRORTLFDO 0HWKRGV 6DPSOH 3URFHVVLQJ ,QLWLDOO\ HQWLUH OHYHOV ZHUH SURFHVVHG DQG DQDO\]HG EXW DV RXU VWXG\ SURJUHVVHG ZH IRXQG WKDW LQ VRPH FDVHV OHVVHU YROXPHV SURGXFHG MXVW DV UHSUHVHQWDWLYH D GDWD VHW EDVHG RQ :LQJ DQG %URZQnV f WHFKQLTXH RI FRPSDULQJ QXPEHU RI VSHFLHV ZLWK PLQLPXP QXPEHU RI LQGLYLGXDOV 9ROXPHWULF YDULDWLRQ DPRQJ RWKHU VDPSOHV 7DEOH f LV GXH WR WKH YDU\LQJ TXDQWLW\ RI ODUJH JDVWURSRG VKHOOV ZKLFK RQFH H[FDYDWHG GR QRW SDFN DV WLJKWO\ DV RWKHU PLGGHQ UHPDLQV 7KH PLGGHQ VDPSOHV ZHUH ZDWHUIORDWHG LQ D PP f PHVK ER[ VFUHHQ WR UHFRYHU ERWDQLFDO UHPDLQV $IWHU VORZ DLU GU\LQJ WKH KHDY\ IUDFWLRQ ZDV VRUWHG WKURXJK D VHULHV RI JHRORJLFDO VLHYHV FRUUHVSRQGLQJ WR PP f PP f DQG PP f PHVK VL]HV 7KH PP YHUWHEUDWH DQG LQYHUWHEUDWH IUDJPHQWV ZHUH VRUWHG LGHQWLILHG DQG TXDQWLILHG 7KH PP YHUWHEUDWH PDWHULDO ZDV VRUWHG LGHQWLILHG DQG TXDQWLILHG ZKHUHDV WKH LQYHUWHEUDWH UHPDLQV ZHUH VXEVDPSOHG E\ ZHLJKW WR GHWHUPLQH SURSRUWLRQV RQO\ IRU WKH PDMRU FODVVHV HJ *DVWURSRGD %LYDOYLDf 7KLV PHWKRG DOORZHG WKH LQFOXVLRQ RI D PLQLPXP PHDW ZHLJKW HVWLPDWH IRU XQLGHQWLILHG PPVFUHHQHG PROOXVFDQ UHPDLQV FDWHJRU\ 0ROOXVFD LQ $SSHQGL[ %f

PAGE 35

:LQJ DQG 4XLWP\HU f GUDPDWLFDOO\ GHPRQVWUDWH WKH LPSRUWDQFH RI ILQHVFUHHQ GDWD UHFRYHU\ ZKHQ GHDOLQJ ZLWK HVWXDULQH HQYLURQPHQWV 7KH SUHVHQW VWXG\ VXJJHVWV WKDW D PP PHVK LV DQ HIILFLHQW VFUHHQ VL]H IRU WKH REMHFWLYHV RI WKH &KDUORWWH +DUERU VWXG\ DQG WKDW UHODWLYHO\ OLWWOH GLDJQRVWLF EHORZ &ODVVf PDWHULDO LV IRXQG LQ WKH PPVFUHHQHG VDPSOH 1HYHUWKHOHVV ZHLJKW RI WKH PPVFUHHQHG UHPDLQV LV HVVHQWLDO LI PLQLPXP PHDW HVWLPDWHV DUH WR EH FDOFXODWHG 7KLV KDV EHHQ GRQH DJDLQ E\ PHWKRG RI SURSRUWLRQ VRUWLQJ D b E\ ZHLJKWf VXEVDPSOH WR GHWHUPLQH LWV PDMRU FRPSRQHQWV 7KXV WKH XQLGHQWLILHG 9HUWHEUDWD SUHGRPLQDQWO\ ILVKf DQG 0ROOXVFD FDWHJRULHV LQFOXGH PP PP DQG PP ERQH DQG VKHOO ZHLJKWV UHVSHFWLYHO\ 2QO\ PP DQG PP IDXQD DSSHDU LQ DOO RWKHU TXDQWLILFDWLRQV $OWKRXJK FKRVH PP DQG PP VFUHHQ VL]HV IRU FRPSOHWH LGHQWLILFDWLRQ DQG 01, TXDQWLILFDWLRQ RI LQYHUWHEUDWHV DQG YHUWHEUDWHV UHVSHFWLYHO\ HPSKDVL]H WKDW VPDOOHU VFUHHQ VL]HV PD\ EH QHFHVVDU\ WR DGGUHVV TXHVWLRQV WKDW KDYH QRW LQFOXGHG LQ WKH SUHVHQW VWXG\ 9DOXDEOH LQYHUWHEUDWH VHDVRQDOLW\ LQIRUPDWLRQ IRU H[DPSOH FDQ EH ORVW HYHQ WKURXJK VFUHHQ PHVK DV VPDOO DV PP )RU DQ\ SDUWLFXODU HQYLURQPHQWDO ORFDOH DQG VHW RI UHVHDUFK TXHVWLRQV VHOHFWLRQ RI VFUHHQ VL]H PXVW EH FRQVLGHUHG FDUHIXOO\

PAGE 36

,GHQWLILFDWLRQ DQG 4XDQWLILFDWLRQ 6SHFLPHQV ZHUH LGHQWLILHG XVLQJ WKH FRPSDUDWLYH FROOHFWLRQV RI =RRDUFKDHRORJ\ DQG 0DODFRORJ\ ERWK ORFDWHG DW WKH )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ *DLQHVYLOOH )ORULGD 6FLHQWLILF QRPHQFODWXUH DQG FRPPRQ QDPHV IROORZ JHQHUDO ODERUDWRU\ XVDJH LQ IRU PDPPDOV ELUGV UHSWLOHV DQG &UXVWDFHD 5RELQV HW DO f IRU ILVKHV $EERWW f IRU PROOXVFV 5HVXOWV RI LGHQWLILFDWLRQ DQG JXDQWLILFDWLRQ IRU HDFK RI WKH VHYHQWHHQ VDPSOHV DUH SUHVHQWHG LQ $SSHQGL[ % )UDJPHQW FRXQW DQG GHVFULSWLRQ IUDJPHQW ZHLJKW DQG OLQHDU PHDVXUHPHQWV DUH WKH WKUHH W\SHV RI SULPDU\ GDWD UHFRUGHG LQ WKLV VWXG\ )UDJPHQWV RI DOO WD[D ZHUH FRXQWHG H[FHSW IRU XQLGHQWLILHG 9HUWHEUDWD DQG 0ROOXVFD $SSHQGL[ % IRRWQRWH Ef ,Q DGGLWLRQ FRXQWV RI XQVLGHG R\VWHU DQG PXVVHO YDOYH IUDJPHQWV IRU &DVK 0RXQG ZHUH RI VXFK PDJQLWXGH WKDW TXDQWLILFDWLRQ RWKHU WKDQ VKHOO ZHLJKW ZDV LPSUDFWLFDO DQG ZRXOG KDYH VHUYHG QR SXUSRVH $SSHQGL[ % IRRWQRWH Hf )UDJPHQW ZHLJKW ZDV UHFRUGHG SURYLGLQJ WKH EDVLV IRU PLQLPXP HGLEOH PHDW ZHLJKW HVWLPDWHV $ORQJ ZLWK GHVFULSWLYH GDWD FRQFHUQLQJ WKH LGHQWLILFDWLRQ RI VSHFLPHQV OLQHDU PHDVXUHPHQWV LQ PPf ZHUH WDNHQ IRU PD[LPXP PHDW HVWLPDWLRQV DQG RWKHU VSHFLILF SXUSRVHV 0HDVXUHPHQWV IROORZHG WKH JXLGHOLQHV LOOXVWUDWHG LQ 4XLWP\HU f IRU YHUWHEUDWHV DQG LQYHUWHEUDWHV 6HFRQGDU\ GDWD LQFOXGH 01, PLQLPXP HGLEOH PHDW HVWLPDWHV DQG PD[LPXP HGLEOH PHDW HVWLPDWHV 6WDQGDUG

PAGE 37

SURFHGXUH ZDV IROORZHG IRU FDOFXODWLQJ 01, E\ FXOWXUDO XQLW FRPSDULQJ HOHPHQW VLGH ZLWK DJH VL]H DQG VH[ *UD\VRQ :LQJ DQG %URZQ f (GLEOH PHDW ZHLJKW UHSUHVHQWHG E\ ERQH DQG VKHOO UHPDLQV LV SUHVHQWHG DV D UDQJH XVLQJ D PLQLPXPf DQG D PD[LPXP SUHGLFWLRQ 4XLWP\HU f (GLEOH PHDW ZHLJKW LV KHUH GHILQHG DV RQO\ WKH PXVFOH WLVVXH ZLWK VNLQ YLVFHUD DQG ERQH VXEWUDFWHG 7KHVH SUHGLFWLRQV DUH PDGH E\ HVWDEOLVKLQJ DOORPHWULF FRUUHODWLRQV EHWZHHQ VNHOHWDO ZHLJKW DQG PHDW ZHLJKW DQG EHWZHHQ OLQHDU GLPHQVLRQ DQG PHDW ZHLJKW E\ XVLQJ OHDVWVJXDUHV UHJUHVVLRQ &DVWHHO +DOH HW DO 4XLWP\HU 5HLW] HW DO :LQJ DQG %URZQ f 7KHVH VFDOLQJ PHWKRGV DUH UHIHUUHG WR DV VNHOHWDO PDVV DOORPHWU\ XVLQJ VNHOHWDO ZHLJKWf DQG GLPHQVLRQDO DOORPHWU\ XVLQJ OLQHDU PHDVXUHPHQWVf DQG HPSOR\ WKH DOORPHWULF HTXDWLRQ 6FKPLGW1LHOVHQ 6LPSVRQ HW DO f < D;E ORJ < ORJ D E ORJ ;f 7DEOHV $O DQG $ OLVW UHJUHVVLRQ YDOXHV IRU WKH \LQWHUFHSW DQG VORSH EDVHG RQ GDWD UHFRUGHG DW WKH )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ 7DEOH $ SUHVHQWV PHWKRGV E\ ZKLFK PD[LPXP PHDW ZHLJKWV ZHUH HVWLPDWHG ZKHQ UHJUHVVLRQ YDOXHV ZHUH QRW DYDLODEOH 7KHVH HVWLPDWHV ZHUH PDGH E\ D RQHWRRQH VL]H FRPSDULVRQ ZLWK D PRGHUQ VSHFLPHQ KDYLQJ D NQRZQ PHDW ZHLJKW RU E\ XVLQJ DQ DYHUDJH RI NQRZQ ZHLJKWV

PAGE 38

LI DQ DUFKDHRORJLFDO VSHFLPHQ FRXOG QRW EH PDWFKHG WR D PRGHUQ RQH $OO YDOXHV XVHG LQ WKLV VWXG\ GDWH WR RU HDUOLHU DQG DUH VXEMHFW WR FRQVWDQW XSGDWLQJ 7KURXJKRXW WKH &KDUORWWH +DUERU VWXG\ LQWHUSUHWLYH HPSKDVLV LV SODFHG RQ WKH WHFKQLTXH RI 0LQLPXP 1XPEHU RI ,QGLYLGXDOV 01,f 7KH SULPDU\ TXDQWLWDWLYH REMHFWLYH RI WKH ]RRDUFKDHRORJLVW LV WR PHDVXUH UHODWLYH DEXQGDQFH RI VSHFLHV EXW DOO PHWKRGV XVHG WR GR VR DUH LQKHUHQWO\ IODZHG WR VRPH GHJUHH 7KHUH DUH QR SHUIHFW VDPSOLQJ RU TXDQWLWDWLYH SURFHGXUHV E\ ZKLFK WR DQDO\]H IDXQDO UHPDLQV *UD\VRQ -DFNVRQ :LQJ DQG %URZQ f +RZHYHU LW LV P\ RSLQLRQ WKDW PXFK RI WKH FXUUHQW FULWLFDO DVVHVVPHQW RI WKH 01, WHFKQLTXH VHH *UD\VRQ f LV QRW DSSOLFDEOH WR WKH VWXG\ RI PDULWLPH VHWWLQJV %HFDXVH RI WKH QDWXUH RI HVWXDULQHPDULQH IDXQD DQG WKH WHFKQRORJ\ XVHG IRU WKHLU H[SORLWDWLRQ EHOLHYH WKDW 01, XQLWV DUH YHU\ DSSURSULDWH PHDVXUHPHQWV IRU &KDUORWWH +DUERUnV IDXQDO UHPDLQV 6DPSOH 6L]H $GHTXDF\ RI VDPSOH VL]H FDQ EH DVVHVVHG E\ GHWHUPLQLQJ WKH SRLQW RI GLPLQLVKLQJ UHWXUQV WKDW LV ZKHQ IHZ QHZ VSHFLHV DUH DGGHG WR WKH IDXQDO OLVW :LQJ DQG %URZQ f KDYH DWWHPSWHG VXFK DQ DVVHVVPHQW IRU WKH VRXWKZHVW )ORULGD VWXG\ DUHD E\ FRPSDULQJ QXPEHU RI WD[D WR 01, IRU HDFK PP f VFUHHQHG VDPSOH )LJXUHV $O DQG $f

PAGE 39

)LJXUH $O LOOXVWUDWHV WKH GLVWULEXWLRQ RI YHUWHEUDWH VDPSOHV $Q 01, RI LV WKH SRLQW RI GLPLQLVKLQJ UHWXUQV ,Q RWKHU ZRUGV IHZ QHZ VSHFLHV DUH DGGHG RQFH RQH KDV LGHQWLILHG FD LQGLYLGXDO DQLPDOV 0RVW RI WKH VDPSOHV VKRZ D UHODWLYHO\ KLJK VSHFLHV GLYHUVLW\ )ROORZLQJ WKLV JXLGH WHQ VDPSOHV PD\ EH FRQVLGHUHG OHVV WKDQ UHSUHVHQWDWLYH +RZHYHU EHFDXVH P\ PHWKRGRORJ\ HPSKDVL]HV WKH FRPELQHG WUHDWPHQW RI YHUWHEUDWHV DQG LQYHUWHEUDWHV D VHFRQG JUDSK KDV EHHQ FRQVWUXFWHG WR FRQYH\ VDPSOH VL]H DGHJXDF\ )LJXUH $f 7ZR FXUYHV HPHUJH 7KH KLJKHU FXUYH UHSUHVHQWV KLJKO\ GLYHUVLILHG VDPSOHV DOO EXW RQH PHHWLQJ WKH FULWHULRQ RI 01, 7KH ORZHU FXUYH UHSUHVHQWV GLVWLQFW W\SHV RI VDPSOHV DOO IURP WKH &DVK 0RXQG FROXPQ VDPSOHV DQG f 7KH &DVK 0RXQG SDWWHUQ PD\ VXJJHVW D VSHFLDOL]HG DUHD RI WKH VLWH VHH WH[W IRU GLVFXVVLRQf 7KH SRVLWLRQ RI VDPSOH %LJ 0RXQG .H\ /D\HU f RQ WKH JUDSK DOVR VXJJHVWV D VSHFLDOL]HG DVVHPEODJH $OWKRXJK WKH SRLQW RI GLPLQLVKLQJ UHWXUQV LV QRW NQRZQ IRU WKLV ORZHU FXUYH EURNHQ OLQHf VDPSOHV DUH SUREDEO\ ZHOO EH\RQG ZKHUH LW ZRXOG RFFXU 7KH VL]HV RI WKHVH ILYH VDPSOHV WKHQ DUH PRUH WKDQ DGHJXDWH ZLWKLQ WKHLU RZQ FRQWH[WXDO UHDOP 'DWD RI WKLV NLQG DUH LPSRUWDQW IRU DQ\ UHJLRQ RI VWXG\ IRU WKH\ FDQ EH XVHG DV D JXLGHOLQH IRU IXWXUH IDXQDO DQDO\VHV

PAGE 40

)RRG YV &RPPHQVDOV *HQHUDO FULWHULD IRU GHFLGLQJ ZKDW ZDV RU ZDV QRW HDWHQ DUH EDVHG RQ VSHFLHV VL]H TXDQWLW\ RI LQGLYLGXDOV DQG DUFKDHRORJLFDO FRQWH[W $OO YHUWHEUDWH VSHFLHV LGHQWLILHG DUH DVVXPHG WR KDYH EHHQ HDWHQ 6PDOO EDUQDFOHV DQG PDQ\ IRUPV RI VPDOO JDVWURSRG DQG ELYDOYH DQLPDOV ZHUH VXUHO\ QRW FRQVXPHG DW OHDVW LQ WKH PLGGHQV VDPSOHG 7KHUH ZDV OLWWOH DUFKDHRORJLFDO HYLGHQFH IRU GHQVH GHSRVLWV RI VPDOO JDVWURSRG RU ELYDOYH VKHOOV ,W LV FOHDU IURP H[SHULPHQWDO PLGGHQ UHVHDUFK :LQJ DQG 4XLWP\HU f WKDW PDQ\ FUHDWXUHV PDNH WKHLU ZD\ WR WKH PLGGHQV DWWDFKHG WR ODUJHU KRVW VSHFLHV 2IWHQ VPDOO ELYDOYH VSHFLPHQV ZHUH IRXQG ZLWK ERWK YDOYHV LQWDFW RU VKHOOV ZHUH ZDWHU ZRUQ 7KXV FHUWDLQ VSHFLHV ZHUH QRW LQFOXGHG LQ WKH GLHWDU\ DQDO\VLV $SSHQGL[ % IRRWQRWH Ff +RZHYHU RFFDVLRQDO GLVWLQFW DVVHPEODJHV ZDUUDQWHG LQFOXVLRQ )RU H[DPSOH WKH FURVVEDUUHG YHQXV &KLRQH FDQFHOODWDf DW 8VHSSD ,VODQG 7DEOH %f DQG VSRWWHG VOLSSHU VKHOO &UHSLGXOD PDFXORVDf DW %XFN .H\ 7DEOH %f ZHUH RI VXFK VL]H DQG TXDQWLW\ WR VXJJHVW SXUSRVHIXO FROOHFWLRQ 6RXUFHV RI %LDV 3UHVHUYDWLRQ SUREOHPV UHODWLQJ WR IUDJPHQW FRXQWV DQG ZHLJKWV DUH QXPHURXV DQG XQFRQWUROODEOH *UD\VRQ :LQJ DQG %URZQ f 7KH HIIHFWV RI VFDYHQJHUV DQG GLIIHUHQWLDO SUHVHUYDWLRQ GXH WR GHSRVLWLRQDO FRQGLWLRQV ERQHVKHOO FRQGLWLRQ RU ERQHVKHOO VWUXFWXUH DUH GLIILFXOW

PAGE 41

DQG RIWHQ LPSRVVLEOH WR DVVHVV 5HVXOWV RI D PLGGHQ H[SHULPHQW E\ :LQJ DQG 4XLWP\HU f VXJJHVW WKDW SRVWGHSRVLWLRQ ORVVHV RI ILVK ERQHV RFFXU LQ VKHOO PLGGHQV (TXDOO\ GLVFRQFHUWLQJ DUH WKH HQGOHVV XQGHWHFWDEOH VRFLRFXOWXUDO DFWLYLWLHV WKDW GHWHUPLQH DUFKDHRORJLFDO IDXQDO SDWWHUQV 2QH SUREOHP DVVRFLDWHG ZLWK PDVVLYH FRPSOH[ VKHOO PRXQG VLWHV LV WKH WDSKRQRPLF GLVWLQFWLRQ EHWZHHQ SULPDU\ DQG VHFRQGDU\ PLGGHQ GHSRVLWV %DVHG RQ WHVW XQLW ORFDWLRQ VWUDWLJUDSK\ DQG UDGLRFDUERQ GDWHV EHOLHYH WKDW WKH PLGGHQ VDPSOHV LQ WKH SUHVHQW VWXG\ UHSUHVHQW SULPDU\ GHSRVLWV $V LV RIWHQ WKH FDVH LW LV WKH DEVHQFH RU LQIUHTXHQW RFFXUUHQFH RI H[SHFWHG VSHFLHV WKDW SX]]OHV WKH ]RRDUFKDHRORJLVW 7KHUH DUH IRXU H[DPSOHV RI ILVK WKDW DUH WRGD\ DEXQGDQW LQ WKH &KDUORWWH +DUERU DUHD EXW DUH HLWKHU PLVVLQJ RU LQIUHTXHQW LQ WKH VKHOO PLGGHQ VDPSOHV RI WKH SUHVHQW VWXG\ 7KH VLJQLILFDQFH RI PXOOHW 0XJLO VSSf LQ VRXWKZHVW )ORULGD SUHKLVWRU\ LV D PDWWHU RI FRQFHUQ *RJJLQ DQG 6WXUWHYDQW 0DUTXDUGW f $OWKRXJK D PXOOHW ILVKHU\ LV UHSRUWHG LQ WKH HWKQRKLVWRULF OLWHUDWXUH /SH] GH 9HODVFR :HGGOH f DQG WKH ILVK DUH DEXQGDQW WRGD\ UHODWLYHO\ IHZ ERQHV DUH UHFRYHUHG IURP VLWHV RIWHQ RQO\ WKRUDFLF YHUWHEUDH :KHWKHU WKH H[SODQDWLRQ LV RQH RI VDPSOLQJ SUHVHUYDWLRQ HQYLURQPHQWDO FKDQJH RU FXOWXUDO SUDFWLFH VKRXOG EH LQYHVWLJDWHG

PAGE 42

,Q DGGLWLRQ WR PXOOHW WKUHH PRUH VSHFLHV DUH FRQVSLFXRXVO\ UDUH RU DEVHQW IURP WKH IDXQDO VDPSOHV EDVHG RQ :DQJ DQG 5DQH\nV PRGHUQ VXUYH\ f WKH ED\ DQFKRY\ $QFKRD PLWFKLOOLf WKH VLOYHU MHQQ\ (XFLQRVWRPXV JXODf DQG WKH VSDGHILVK &KDHWRGLSWHURXV IDEHUf 7KH ILUVW WZR DUH ILVKHV LQ WKH VDPH VPDOO VL]H FODVV DV WKH NLOOLILVKHV )XQGXOXV VSSf D JHQXV LGHQWLILHG DPRQJ WKH PLGGHQ UHPDLQV 3HUKDSV WKHVH ZHUH HDWHQ ZKROH DQG SHUKDSV WKH ILEURXV VWUXFWXUH RI VSDGHILVK ERQHV SUHYHQWHG SUHVHUYDWLRQ RI WKLV VSHFLHV +\SRWKHVHV VXFK DV WKHVH VKRXOG EH WHVWHG 7KH QDWXUH RI FROXPQ VDPSOLQJ KDV LQKHUHQW SUREOHPV UHODWHG WR LQWUDVLWH KRUL]RQWDOf UHSUHVHQWDWLYHQHVV $Q DGGLWLRQDO FRQFHUQ LV WKH FRPSDUDELOLW\ RI WKH %LJ 0RXQG .H\ IHDWXUH D ODUJH PLGGHQILOOHG SLW WR WKH JHQHUDO PLGGHQ VDPSOHV WDNHQ IURP DOO RWKHU VLWHV 7KH YDOLGLW\ RI FRPSDULVRQ PD\ RU PD\ QRW GHSHQG RQ WKH XQNQRZQ IXQFWLRQ RI WKH ODUJH SLW SRVWXODWH WKDW WKH SLWnV SULPDU\ SXUSRVH ZDV VRPHWKLQJ RWKHU WKDQ JDUEDJH GLVSRVDO DQG WKDW WKH IRRG UHPDLQV ZHUH GHSRVLWHG VHFRQGDULO\ UHSUHVHQWLQJ D VDPSOH VLPLODU WR JHQHUDO PLGGHQ DUHDV 7KLV VKRXOG EH WHVWHG ZLWK IXWXUH H[FDYDWLRQ DW %LJ 0RXQG .H\ 6HYHUDO EDVLF SUREOHPV WKDW SODJXH VFDOLQJ WHFKQLJXHV ZKHQ DSSOLHG WR DUFKDHRIDXQD DUH GLVFXVVHG HOVHZKHUH *UD\VRQ -DFNVRQ :LQJ DQG %URZQ f $GGLWLRQDOO\ PDQ\ VSHFLHVVSHFLILF UHJUHVVLRQ YDOXHV DUH

PAGE 43

QRW \HW DYDLODEOH IRU ERWK PLQLPXP DQG PD[LPXP HVWLPDWHV 5HFHQWO\ *UD\VRQ f KDV DUJXHG WKDW RQO\ WKH GLPHQVLRQDO DOORPHWULF PHWKRG RI PHDW ZHLJKW SUHGLFWLRQ LV YDOLG IRU ]RRDUFKDHRORJLFDO SXUSRVHV 'HVSLWH WKLV FRQWURYHUV\ DOORPHWULF VFDOLQJ XVHG DV D PHWKRG IRU SUHGLFWLQJ DQLPDO ERG\ ZHLJKWV H[WHQGHG WR PHDW ZHLJKW IRU WKLV VWXG\f KDV EHHQ WHVWHG DQG VKRZQ WR SURGXFH WKH PRVW DFFXUDWH UHVXOWV RI FXUUHQWO\ HPSOR\HG WHFKQLTXHV WR HVWLPDWH ELRPDVV &DVWHHO :LQJ DQG %URZQ f $QRWKHU H[DPSOH RI ELDV LQ WKH PHDWZHLJKW HVWLPDWLRQ PHWKRG VWHPV IURP IUHTXHQW ORZ 01, FRXQWV IRU LQYHUWHEUDWHV LQ UHODWLRQ WR IUDJPHQW ZHLJKW )RU FHUWDLQ VSHFLHV HJ HDVWHUQ R\VWHU OLJKWQLQJ ZKHON EDQGHG WXOLS )ORULGD KRUVH FRQFKf WKLV LV VHHPLQJO\ GXH WR D KLJK GHJUHH RI IUDJPHQWDWLRQ VKHOO VWUXFWXUH DQG GHQVLW\ RU SHUKDSV WR D OLPLWHG VL]H UDQJH XVHG LQ VFDOLQJ PRGHUQ VSHFLPHQV 6RPHWLPHV WKH UHVXOWLQJ PD[LPXP HVWLPDWH IRU WKHVH DQLPDOV LV ORZHU WKDQ WKH PLQLPXP HVWLPDWH $SSHQGL[ % IRRWQRWH If &RPSDUDWLYH 'LHWDU\ &RQWULEXWLRQ 0LQLPXP DQG PD[LPXP HGLEOHPHDW ZHLJKWV ZHUH HVWLPDWHG GLVFXVVHG DERYHf IRU DOO IDXQDO VDPSOHV WR SURYLGH D UDQJH RI PHDW SRWHQWLDO IRU HDFK DQLPDO $SSHQGL[ %f )LJXUHV $ DQG $ VXPPDUL]H WKHVH UHVXOWV E\ VLWH FRPELQLQJ LQWUDVLWH GDWD %RQ\ ILVKHV 2VWHLFKWK\HVf VWDQG RXW DV WKH SULPDU\ FRQWULEXWRUV WR WKH DERULJLQDO GLHW EDVHG

PAGE 44

RQ ERWK PLQLPXP DQG PD[LPXP PHDW HVWLPDWHV $OWKRXJK WKH LPSRUWDQFH RI JDWKHULQJ VKHOOILVK LV GUDPDWLFDOO\ HYLGHQFHG E\ PDVVLYH VKHOO PRXQGV GRWWLQJ WKH ODQGVFDSH DQG JXDQWLWDWLYHO\ VXSSRUWHG E\ 01, ILJXUHV LWV UROH LV FRQVLGHUDEO\ GLPLQLVKHG ZKHQ YLHZHG IURP D GLHWDU\ SHUVSHFWLYH )LJXUHV $ DQG $f 1XWULWLRQDO DQDO\VLV KDV VKRZQ WKDW JUDP IRU JUDP VKHOOILVK FRQWDLQV VXEVWDQWLDOO\ OHVV SURWHLQ DQG IDW DQG IHZHU FDORULHV WKDQ ILVK DQG PDPPDOV 3DUPDOHH DQG .OLSSHO f &DVK 0RXQGnV b 01, DQG b PLQLPXP PHDW RI R\VWHUV DQG PXVVHOV )LJXUH $f UHVSHFWLYHO\ DUH UHGXFHG WR D SDOWU\ b ZKHQ PD[LPXP PHDW LV HVWLPDWHG )LJXUH $f 7KH SUHGRPLQDQFH RI PHDW FRQWULEXWLRQ GHULYHG IURP ILVKLQJ DFWLYLWLHV LV XQGHUVFRUHG ZKHQ WKH PHDW RI VKDUNV DQG UD\V &KRQGULFKWK\HVf LV DGGHG WR WKH ERQ\ ILVK FDWHJRU\ 7KLV LV PRVW HYLGHQW LQ WKH %XFN .H\ VDPSOHV ZKHUH b RI WKH PLQLPXP PHDW HVWLPDWH UHVXOWV IURP ILVKLQJ )LJXUH $f 6KDUNV DQG UD\V DUH UHSUHVHQWHG LQ DOO VLWH VDPSOHV ZLWK WKH 8VHSSD ,VODQG VDPSOH VKRZLQJ D KLJK PLQLPXP PHDW ZHLJKW HVWLPDWH RI b )LJXUH $f 7KH ZRUN RI 0LODQLFK HW DO f DW 8VHSSD DOVR VKRZHG DQ DEXQGDQFH RI VKDUN UHPDLQV $V GR WKH UHPDLQV RI ZKLWHWDLOHG GHHU WKH DSSHDUDQFH RI DGXOW VKDUNV LQ PLGGHQ VDPSOHV LPSOLHV EXWFKHULQJ DQG YLOODJH GLVWULEXWLRQ RI PHDW +RZHYHU PRVW VKDUN LQGLYLGXDOV LQ WKH VWXG\ VDPSOHV DUH MXYHQLOHV

PAGE 45

:KHUHDV UHSWLOHV DQG PDPPDOV JHQHUDOO\ UHSUHVHQW D QHJOLJLEOH SRUWLRQ RI WKH GLHW EDVHG RQ HVWLPDWHV RI PLQLPXP PHDW WKH\ FDQ EH VLJQLILFDQW FRQWULEXWRUV LI WKH PD[LPXP PHDW HVWLPDWHV RI ODUJH LQGLYLGXDOV DUH FRQVLGHUHG :KHQ WKH PD[LPXP PHDW RI RQH VHD WXUWOH LV HVWLPDWHG LWV GLHWDU\ LPSRUWDQFH LQ WKH %LJ 0RXQG .H\ VDPSOHV EHFRPHV b DQG IRU WKH %XFN .H\ VDPSOHV b )LJXUH $f +RZHYHU WKH KLJK PDPPDO PD[LPXP PHDW SHUFHQWDJH RI b IRU WKH %LJ 0RXQG .H\ VDPSOHV )LJXUH $f PD\ EH PLVOHDGLQJ 7KH GHHU ERQHV UHFRYHUHG IURP WKH IRXU VDPSOHG VWUDWD LQ WKH VKRUWOLYHG UHIXVH SLW SRVVLEO\ UHSUHVHQW D VLQJOH GHHUf§ 01, LQVWHDG RI f§ZKLFK ZRXOG VXEVWDQWLDOO\ UHGXFH WKH PHDW SHUFHQWDJH

PAGE 46

7DEOH *HQHUDOL]HG &XOWXUDO &KURQRORJ\ IRU WKH &DORRVDKDWFKHH $UHD DGDSWHG IURP 0DUTXDUGW E DQG &RUGHOO f 'DWH 3HULRG 6RPH 'LDJQRVWLF $UWLIDFWV $ &DORRVDKDWFKHH 9 (XURSHDQ DUWLIDFWV HJ PHWDO EHDGV ROLYH MDU VKHUGVf $ &DORRVDKDWFKHH ,9 6DIHW\ +DUERU *ODGHV 7RROHG DQG 3LQHOODV 3ODLQ SRWWHU\ %HOOH *ODGH 3ODLQ GLPLQLVKHV $' &DORRVDKDWFKHH ,,, 6W -RKQV &KHFN 6WDPSHG (QJOHZRRG FHUDPLFV %HOOH *ODGH 3ODLQ SURPLQHQW $ "f &DORRVDKDWFKHH ,,% %HOOH *ODGH 5HG SUHVHQW %HOOH *ODGH 3ODLQ SURPLQHQW $' "f &DORRVDKDWFKHH ,,$ %HJLQQLQJ RI %HOOH *ODGH 3ODLQ DQG 63&% FHUDPLFV *ODGHV 5HG WKLQQHU FHUDPLFV $' %& &DORRVDKDWFKHH 7KLFN VDQGWHPSHUHG SODLQ SRWWHU\ ZLWK URXQG DQG FKDPIHUHG OLSV %& 7HUPLQDO $UFKDLF 7UDQVLWLRQDOf )LEHUWHPSHUHG SRWWHU\ VHPLILEHUWHPSHUHG SRWWHU\ %& %& /DWH $UFKDLF 2UDQJH 3ODLQ 2UDQJH ,QFLVHG 3HULFR ,QFLVHG 3HULFR 3ODLQ 6W -RKQV 3ODLQ VWHDWLWH %& %& 0LGGOH $UFKDLF &RDVWDO VLWHV EXW QR FHUDPLFV EURDGVWHPPHG ELIDFHV HJ 1HZQDQ PRUWXDU\ SRQGV

PAGE 47

7DEOH f§FRQWLQXHG 'DWH 3HULRG 6RPH 'LDJQRVWLF $UWLIDFWV %& (DUO\ $UFKDLF 6LWHV RQ FRDVWDO GXQH %& ULGJHV FD %& HDUOLHU FRDVWDO VLWHV SUREDEO\ LQXQGDWHG E\ ULVLQJ VHD OHYHO %& /DWH 3DOHRLQGLDQ 'DOWRQ DQG %ROHQ ELIDFHV %& ERQH SRLQWV QRQn UHWXUQLQJ ERRPHUDQJ VRFNHWHG ZRRGHQ SRLQW RDN PRUWDU DWODWO VSXU L %& %& (DUO\ 3DOHRLQGLDQ 2QO\ ZRRGHQ WRROV NQRZQ

PAGE 48

7DEOH =RRDUFKDHRORJLFDO 6DPSOHV ,QFOXGHG LQ WKH &KDUORWWH +DUERU 6WXG\ 6LWH 1DPH DQG 1XPEHU 6DPSOH 3URYHQLHQFH 6DPSOH 7\SH 9RO Pf & 'DWH XQFDOLEf %LJ 0RXQG .H\ &+f /D\HU SLW %LJ 0RXQG .H\ &+f /D\HU E SLW $' 80 &KDUFRDO %LJ 0RXQG .H\ &+f /D\HU SLW $' 80 6KHOO %LJ 0RXQG .H\ &+f /D\HU OfE SLW $' 80 &KDUFRDO &DVK 0RXQG &+f $O FROXPQ OHYHO $' %HWD 6KHOO &DVK 0RXQG &+f $O FROXPQ OHYHO $' %HWD 6KHOO &DVK 0RXQG &+f $O FROXPQ OHYHO $' %HWD 6KHOO &DVK 0RXQG &+f $O FROXPQ OHYHO $' %HWD 6KHOO 8VHSSD ,VODQG //f $ FROXPQ OHYHO %& %HWD 6KHOO -RVVO\Q ,VODQG //f $OfE FROXPQ OHYHO $' %HWD 6KHOO -RVVO\Q ,VODQG //f $OfE FROXPQ OHYHO $' %HWD 6KHOO

PAGE 49

7DEOH f§FRQWLQXHG 6LWH 1DPH DQG 1XPEHU 6DPSOH 3URYHQLHQFH 6DPSOH 7\SH 9RO Pf & 'DWH XQFDOLEf -RVVO\Q ,VODQG //f $OfE FROXPQ OHYHO %& %HWD 6KHOO -RVVO\Q ,VODQG //f $OfE FROXPQ OHYHO %& %HWD 6KHOO %XFN .H\ 0LG //f % FROXPQ OHYHO $' %HWD 6KHOO %XFN .H\ 0LG //f % FROXPQ OHYHO $' %HWD 6KHOO %XFN .H\ 0LG //f $ FROXPQ OHYHO $' %HWD 6KHOO %XFN .H\ 0LG //f $fE FROXPQ OHYHO $' %HWD 6KHOO D E /XHU E /HYHO LQ SDUHQWKHVHV LV VRXUFH RI UDGLRFDUERQ GDWH

PAGE 50

7DEOH 6XPPDU\ RI =RRDUFKDHRORJLFDO 'DWD ,QFOXGHG LQ WKH &KDUORWWH +DUERU 6WXG\ 6DPSOH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV 0LQLPXP 1XPEHU RI ,QGLYLGXDOV %LJ 0RXQG .H\ /D\HU 9HUWHEUDWHV ,QYHUWHEUDWHV %LJ 0RXQG .H\ /D\HU E 9HUWHEUDWHV ,QYHUWHEUDWHV %LJ 0RXQG .H\ /D\HU 9HUWHEUDWHV ,QYHUWHEUDWHV %LJ 0RXQG .H\ /D\HU 9HUWHEUDWHV ,QYHUWHEUDWHV &DVK 0RXQG $O 9HUWHEUDWHV ,QYHUWHEUDWHV &DVK 0RXQG $O 9HUWHEUDWHV ,QYHUWHEUDWHV &DVK 0RXQG $O 9HUWHEUDWHV ,QYHUWHEUDWHV &DVK 0RXQG $O 9HUWHEUDWHV ,QYHUWHEUDWHV 8VHSSD ,VODQG $ 9HUWHEUDWD ,QYHUWHEUDWD -RVVO\Q ,VODQG $O YROf 9HUWHEUDWD ,QYHUWHEUDWD

PAGE 51

7DEOH f§FRQWLQXHG -RVVO\Q ,VODQG $O 9HUWHEUDWD ,QYHUWHEUDWD -RVVO\Q ,VODQG $O 9HUWHEUDWD ,QYHUWHEUDWD -RVVO\Q ,VODQG $O 9HUWHEUDWD ,QYHUWHEUDWD %XFN .H\ 6KHOO 0LGGHQ 9HUWHEUDWD ,QYHUWHEUDWD % %XFN .H\ 6KHOO 0LGGHQ 9HUWHEUDWD ,QYHUWHEUDWD % %XFN .H\ 6KHOO 0LGGHQ 9HUWHEUDWD ,QYHUWHEUDWD $ %XFN .H\ 6KHOO 0LGGHQ 9HUWHEUDWD ,QYHUWHEUDWD $ 7RWDO

PAGE 52

7DEOH 5HJUHVVLRQ 9DOXHV IRU 0LQLPXP 0HDW :HLJKW (VWLPDWLRQV 7D[RQ 1 /RJ D 6ORSH E U 0DPPDOLD $YHV 6HUSHQWHV 7HVWXGLQHV 6LUHQ VSS &DUFKDUKLQLGDH YHUWHEUD ZWf E &DUFKDUKLQLGDH WRWDO ZWfF 6SK\UQLGDH YHUWHEUD ZWfE 6SK\UQLGDH WRWDO ZWfF /DPQLIRUPHV YHUWHEUD ZWfE /DPQLIRUPHV WRWDO ZWfF 5DMLIRUPHV WRWDO ZWf 2VWHLFKWK\HVG &UXVWDFHD &DOOLQHFWHVf 6WURPEXV DODWXVF 3ROLQLFHV GXSOLFDWXVF 0HORQJHQD FRURQDF %XV\FRQ FRQWUDULXPF )DVFLRODULD KXQWHULDF )DVFLRODULD WXOLSDF 3OHXURSORFD JLJDQWHDF *DVWURSRGDF *HXNHQVLD GHPLVVDF &UDVVRVWUHD YLUJLQLFD OHIWfF &UDVVRVWUHD YLUJLQLFD ULJKWf F &UDVVRVWUHD YLUJLQLFD WRWDOf F 3RO\PHVRGD FDUROLQLDQDF 0HUFHQDULD FDPSHFKLHQVLVF %LYDOYLDF

PAGE 53

7DEOH f§FRQWLQXHG 1RWH 5HJUHVVLRQ IRUPXOD < D;E WUDQVIRUPHG ORJ < ORJ D EORJ ;f ZKHUH \ ZHLJKW RI PHDW LQ JUDPV [ ERQH VKHOO RU H[RVNHOHWRQ LQ JUDPV D \ LQWHUFHSW E VORSH D 6RXUFH 4XLWP\HU E 6RXUFH )LW]JHUDOG F 6RXUFH +DOH HW DO QG G 6RXUFH +DOH DQG :DONHU

PAGE 54

7DEOH 5HJUHVVLRQ 9DOXHV IRU 0D[LPXP 0HDW :HLJKW (VWLPDWLRQV 7D[RQ 0HDVXUHPHQW 1 /RJ D 6ORSH E U &DUFKDUKLQLGDHE 9HUWHEUD ZG 6SK\UQLGDHE 9HUWHEUD ZG /DPQLIRUPHVE 9HUWHEUD ZG 5DMLIRUPHVF 9HUWHEUD ZG /HSLVRVWHXV VSSF 9HUWHEUD ZG 6LOXULIRUPHVF 9HUWHEUD ZG &DUDQJLGDHF $WODV ZG 6SDULGDHF $WODV ZG 6FLDHQLGDHF $WODV ZG 3OHXURQHFWLIRUPHVF $WODV ZG 2VWHLFKWK\HVF $ODVYHUW ZG 6WURPEXV DODWXVG 6KHOO KW 3ROLQLFHV GXSOLFDWXVG 6KHOO KW $SHUWXUH KW 0HORQJHQD FRURQDG 6KHOO KW $SHUWXUH KW %XV\FRQ FRQWUDULXPG 6KHOO KW $SHUWXUH KW )DVFLRODULD KXQWHULDG 6KHOO KW $SHUWXUH KW )DVFLRODULD WXOLSDG 6KHOO KW $SHUWXUH KW 3OHXURSORFD JLJDQWHDG 6KHOO KW *DVWURSRGDG 6KHOO KW *HXNHQVLD GHPLVVDG 9DOYH OJ &UDVVRVWUHD YLUJLQLFDG /W YDOYH LJ 3RO\PHVRGD FDUROLQLDQDG 9DOYH OJ 0HUFHQDULD FDPSHFKLHQVLVD 9DOYH OJ +LQJH ZG %LYDOYLDG 9DOYH OJ

PAGE 55

7DEOH f§FRQWLQXHG 1RWH 5HJUHVVLRQ IRUPXOD < D;E WUDQVIRUPHG ORJ < ORJ D EORJ ;f ZKHUH < PHDW ZHLJKW LQ JUDPV ; OLQHDU PHDVXUHPHQW PPf D \ LQWHUFHSW E VORSH D 0HDVXUHPHQWV IROORZ WKRVH GHVFULEHG DQG LOOXVWUDWHG LQ 4XLWP\HU DQG +DOH HW DO QG E 6RXUFH )LW]JHUDOG F 6RXUFH 4XLWP\HU G 6RXUFH +DOH HW DO QG

PAGE 56

7DEOH 1RQUHJUHVVLRQ 9DOXHV IRU 0D[LPXP 0HDW :HLJKW (VWLPDWLRQV 7D[RQ 1 :HLJKW (VWLPDWH JPf 2GRFRLOHXV YLUJLQLDQXVD [f 3URF\RQ ORWRUr RU FRPSDUDWLYH RU [f 6LJPRGRQ KLVSLGXVE &ULFHWLGDHE [f 3DUXOLGDHE $QDWLGDHE RU FRPSDUDWLYH RU [f &DVPHURGLXV DOEXVE [f &ROXEULGDHE [f 6HUSHQWHVE [f &KHO\GUD VHUSHQWLQDE .LQRVWHUQRQ VSSE RU FRPSDUDWLYH RU [f 7HUUDSHQH &DUROLQDE FRPSDUDWLYH YDU 3VHXGHP\V VSF *RSKHUXV SRO\SKHPXVE ;f &KHORQLGDHE ;f 7HVWXGLQHVE [f 6LUHQ ODFHUWLQDE FRPSDUDWLYH YDU 5DQD VSSE [f /HSLVRVWHXV VSSE [f %DJUH PDULQXVE [f $ULRSVLV IHOLVE [f 2SVDQXV VSSE ;f 2JFRFHSKDOLGDHE [f )XQGXOXV VSSE 0\FWHURSHUFD PLFUROHSLVE FRPSDUDWLYH YDU &DUDQJLGDHE RU FRPSDUDWLYH RU [f /XWMDQXV VSSE FRPSDUDWLYH YDU (XFLQRVWRPXV VSSE [f +DHPXORQ VSSE FRPSDUDWLYH YDU $ SUREDWRFHSKDOXVE FRPSDUDWLYH YDU 6FLDHQLGDHE FRPSDUDWLYH YDU 6SDULVRPD VSSE FRPSDUDWLYH YDU 6SK\UDHQLGDH [f 6SK\UDHQLGDH6FRPEULGDH [f 3DUDOLFKWK\V DOELJXWWDE FRPSDUDWLYH YDU 2VWUDFLLGDHE [f 6SKRHURLGHV VSHQJOHULE FRPSDUDWLYH YDU &KLORP\FWHUXV VFKRHSILE [f 'HFDSRGDp [f GHPLVVD JUDQRVLVVLPDE 3LQQLGDH ;f 2WKHU PROOXVFDG FRPSDUDWLYH YDU

PAGE 57

7DEOH f§FRQWLQXHG D 4XLWP\HU E )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ &ROOHFWLRQV F 1LHWVFKPDQQ G 0RVW RWKHU PROOXVFDQ VSHFLHV UHTXLUHG WKH FRPSDUDWLYH PHWKRG ZKHQ IUDJPHQWDWLRQ SUHFOXGHG PHDVXUHPHQWV

PAGE 58

)LJXUH 0DS RI WKH &KDUORWWH +DUERU 6WXG\ $UHD ZLWK *HRJUDSKLFDO )HDWXUHV DQG $UFKDHRORJLFDO 6LWH /RFDWLRQV 0HQWLRQHG LQ WKH 7H[W f 6RODQD 6LWH f %LJ 0RXQG .H\ f &DVK 0RXQG f 8VHSSD ,VODQG f 3LQHODQG f -RVVO\Q ,VODQG f %XFN .H\ 6KHOO 0LGGHQ DQG f :LJKWPDQ 6LWH

PAGE 60

)LJXUH 7KH 'LVWULEXWLRQ RI &KDUORWWH +DUERU =RRDUFKDHRORJLFDO 9HUWHEUDWH 6DPSOHV E\ 1XPEHU RI 7D[D DQG 0LQLPXP 1XPEHU RI ,QGLYLGXDOV 01,f 1XPEHUV 5HIHU WR WKH /LVW *LYHQ LQ 7DEOH

PAGE 62

)LJXUH 7KH 'LVWULEXWLRQ RI &KDUORWWH +DUERU =RRDUFKDHRORJLFDO ,QYHUWHEUDWH 6DPSOHV E\ 1XPEHU RI 7D[D DQG 0LQLPXP 1XPEHU RI ,QGLYLGXDOV 01,f 1XPEHUV 5HIHU WR WKH /LVW *LYHQ LQ 7DEOH

PAGE 64

)LJXUH &RPSDUDWLYH 3HUFHQWDJHV RI =RRDUFKDHRORJLFDO (VWLPDWHG 0LQLPXP (GLEOH 0HDW :HLJKWV E\ 6LWH DQG $QLPDO *URXS %DVHG RQ 'DWD 3UHVHQWHG LQ $SSHQGL[ $f

PAGE 65

-RVVO\Q ,VODQG %XFN .H\ %LJ 0RXQG .H\ &DVK 0RXQG 8VHSSD ,VODQG .(< %RQ\ ILVKHV 0DULQH VQDLOV 6KDUNV UD\VHWF 0DULQH ELYDOYHV 0DPPDOV 7XUWOHV$PSKLELDQV &UDEV 2WKHU

PAGE 66

)LJXUH &RPSDUDWLYH 3HUFHQWDJHV RI =RRDUFKDHRORJLFDO (VWLPDWHG 0D[LPXP (GLEOH 0HDW :HLJKWV E\ 6LWH DQG $QLPDO *URXS %DVHG RQ 'DWD 3UHVHQWHG LQ $SSHQGL[ $f

PAGE 67

%LJ 0RXQG .H\ &DVK 0RXQG 8VHSSD ,VODQG -RVVO\Q ,VODQG %XFN .H\ .(< %RQ\ ILVKHV 0DULQH VQDLOV 6KDUNV UD\VHWF LOO 0DULQH ELYDOYHV 0DPPDOV [MBL7XUWOHV 66M $PSKLELDQV 6 &UDEV = %LUGV

PAGE 68

&+$37(5 $ 63$7,$/ 3(563(&7,9( 21 5(6285&( +(7(52*(1(,7< 7KH 3UHVHQWGDY &KDUORWWH +DUERU (VWXDULQH (FRV\VWHP $Q H[DPLQDWLRQ RI WKH SUHVHQWGD\ QDWXUDO HQYLURQPHQW RI WKH &KDUORWWH +DUERU DUHD DORQJ ZLWK ZHVWHUQ VRFLHW\nV UHFHQW LPSDFW RQ WKDW HQYLURQPHQW LV D QHFHVVDU\ ILUVW VWHS WRZDUG XQGHUVWDQGLQJ SDVW VLWXDWLRQV $ VSDWLDO PRGHO RI WRGD\nV HQYLURQPHQW VHUYHV DV D EHJLQQLQJ VWDQGDUG IRU SDOHRHQYLURQPHQWDO PRGHOLQJ ,Q WKH &KDUORWWH +DUERU UHJLRQ WKUHH PDMRU ULYHUV H[WHQVLYH LQVKRUH ODJRRQV VDOW PDUVKHV PDQJURYH IRUHVWV DQG D VHULHV RI EDUULHU LVODQGV FRPSRVH D FRPSOH[ DQG G\QDPLF HVWXDULQH HFRV\VWHP RI DQ XQXVXDOO\ KLJK OHYHO RI ELRORJLFDO SURGXFWLRQ 7D\ORU f &RPS DQG 6HDPDQ f JHQHUDOO\ GHILQH HVWXDULHV DV VHPLHQFORVHG ERGLHV RI ZDWHU WKDW f KDYH D IUHH FRQQHFWLRQ ZLWK WKH VHD f UHFHLYH IUHVKZDWHU LQIORZ WKURXJK ERWK RYHUODQG UXQRII DQG GHILQHG VRXUFHV VXFK DV ULYHUV FUHHNV DQG VSULQJV DQG f FRQWDLQ D PHDVXUDEOH VDOLQLW\ JUDGLHQW 7KH 3HDFH DQG 0\DNND ULYHUV FRQYHUJH WR IRUP WKH &KDUORWWH +DUERU HVWXDU\ SURSHU ZKLOH WR WKH VRXWK WKH &DORRVDKDWFKHH 5LYHU HPSWLHV LQWR 6DQ &DUORV %D\ IRUPLQJ WKH VHFRQG PDMRU HVWXDU\ )LJXUH f 7R WKH ZHVW EDUULHU

PAGE 69

LVODQGV HQFORVH WKHVH ERGLHV RI ZDWHU WKXV GHILQLQJ WKH JUHDWHU HVWXDULQH V\VWHP DW D UHJLRQDO VFDOH 7KH WZR PDMRU RSHQLQJV WR WKH *XOI DUH %RFD *UDQGH 3DVV DQG 6DQ &DUORV %D\ VHFRQGDU\ LQOHWV DUH %OLQG 5HGILVK &DSWLYD DQG *DVSDULOOD 3DVVHV 7HUUHVWULDO HFRORJLFDO FRPPXQLWLHV LQ WKH UHJLRQ LQFOXGH PDQJURYH IRUHVW VDOW PDUVK FRDVWDO VWUDQG VDOW EDUUHQ VDEDOMXQLSHU KDPPRFN RDNSHUVHD KDPPRFN DQG SLQH ZRRGV 7D\ORU f 2I WKHVH WKH PDQJURYH FRPPXQLW\ LV PRVW FORVHO\ DVVRFLDWHG ZLWK WKH HVWXDULQH FRPSOH[ 0DQJURYH IRUHVWV H[WHQG RYHU KD LQ WKH VWXG\ DUHD DQG DUH ODUJHO\ VWUXFWXUHG E\ ]RQHV RI UHG 5KL]RSKRUD PDQJOHf EODFN $YLFHQQLD JHUPLQDQVf DQG ZKLWH /DJXQFXODULD UDFHPRVDf PDQJURYH YDULHWLHV +DUULV HW DO 7D\ORU f 7KH VDOWWROHUDQW UHG PDQJURYH GRPLQDWHV WKH ZDWHUnV HGJH WKURXJKRXW WKH HVWXDULQH V\VWHP $V RQH PRYHV LQODQG WKH EODFN DQG ZKLWH YDULHWLHV EHFRPH PL[HG ZLWK EXWWRQZRRG &RQRFDUSXV HUHFWXVf DQG RWKHU SODQW VSHFLHV 2GXP HW DO f 0DPPDOV XVLQJ PDQJURYH IRUHVWV IHHG RQ IUXLWV EHUULHV LQVHFWV VPDOO UHSWLOHV VHHGV PDVW FUDEV JUDVVHV ILVK ELUG HJJV PXVVHOV DQG RWKHU PDPPDOV 7KH ZKLWHWDLOHG GHHU LV WKH RQO\ PDPPDO NQRZQ WR LQFOXGH PDQJURYH OHDYHV LQ LWV GLHW 2GXP HW DO f 7KH PDQJURYH IULQJH SULPDULO\ UHGf DQG LQVKRUH VHDJUDVV SULPDULO\ WXUWOH JUDVVHVf PHDGRZ DUH WKH WZR PRVW

PAGE 70

SURGXFWLYH KDELWDWV LQ WKH HVWXDULQH FRPSOH[ 2I OHVVHU SURGXFWLYLW\ DUH WKH R\VWHU EDU WKH OLWWRUDO ]RQH DQG WKH RSHQ *XOI ZDWHU 7KH GLVWULEXWLRQ DQG LQWHUUHODWLRQVKLSV RI DOO WKHVH KDELWDWV DQG WKHLU DQLPDO FRPSRQHQWV ODUJHO\ GHILQH WKH HFRORJLFDO VWUXFWXUH RI WKH HVWXDULQH FRPSOH[ 0DQJURYH DQG VHDJUDVV HFRV\VWHPV DUH DPRQJ WKH PRVW SURGXFWLYH ELRORJLFDO V\VWHPV LQ WKH ZRUOG HYHQ ULYDOLQJ DJULFXOWXUH 2GXP HW DO =LHPDQ f 7KHVH WZR HVWXDULQH SODQW JURXSV SURGXFH HQRUPRXV DPRXQWV RI OHDIEODGH GHWULWXV VXSSRUWLQJ H[WHQVLYH DTXDWLF IRRG ZHEV ,Q DGGLWLRQ WKH\ SURYLGH SURWHFWLRQ IURP SUHGDWRUV IRU PDQ\ ILVK DQG LQYHUWHEUDWH VSHFLHV SDUWLFXODUO\ ZKLOH LQ WKHLU MXYHQLOH VWDJHV 7KH\ DUH FORVHO\ LQWHUUHODWHG WKH VHDJUDVV DUHDV RIWHQ H[WHQGLQJ ULJKW XS WR PDQJURYH VKRUHOLQHV 2GXP HW DO f 6HDJUDVVHV RI WKH &KDUORWWH +DUERU DUHD KDYH QRW EHHQ DGHTXDWHO\ VWXGLHG (VWHYH] HW DO 6f HYHQ WKRXJK WRGD\ WKH\ DFFRXQW IRU KD +DUULV HW DO f 3ULPDULO\ RFFXUULQJ LQ EURDG VKDOORZZDWHU PHDGRZVf WXUWOH JUDVVHV 7KDODVVLD WHVWXGLQXP DQG +DORSKLOD HQJHOPDQQLf VKRDO JUDVV +DORGXOH ZULJKWLLf ZLGJHRQ JUDVV 5XSSLD PDUWLPDf DQG PDQDWHH JUDVV 6\ULQJRGLXP ILOLIRUPHf DUH WKH ILYH FRPPRQ VHDJUDVV YDULHWLHV 7D\ORU =LHPDQ f 7KHVH KDYH VOLJKWO\ GLIIHUHQW VDOLQLW\ UHTXLUHPHQWV ZLWK WKH WXUWOH JUDVVHV EHLQJ WKH PRVW DEXQGDQW DQG IRUPLQJ WKH PRVW H[SDQVLYH PHDGRZV 7KHVH

PAGE 71

PHDGRZV VXSSRUW JUHDW GHQVLWLHV RI VHVVLOH DQG PLJUDWRU\ PROOXVFV DV ZHOO DV ILVKHV DQG FUDEV WKDW VSHQG DOO RU SDUW RI WKHLU OLIH F\FOHV WKHUH ,Q DGGLWLRQ ODUJH SUHGDWRU VSHFLHV IUHTXHQW WKH LQVKRUH JUDVVHV LQ VHDUFK RI IRRG ,I WKH SUHVHQWGD\ HQYLURQPHQW RI &KDUORWWH +DUERU LV WR EH XVHG DV DQ DQDORJ\ IRU WKH LQWHUSUHWDWLRQ RI LWV SDVW HQYLURQPHQW ZH PXVW EH DZDUH RI FKDQJH UHVXOWLQJ IURP PRGHUQ KXPDQ DFWLYLW\ 7KH ZLGHO\ FLWHG ORVV RI VFDOORS SRSXODWLRQV GXH WR UHGXFHG VDOLQLWLHV DQG LQFUHDVHG WXUELGLW\ DV D UHVXOW RI FDXVHZD\ FRQVWUXFWLRQ LV D IDPLOLDU H[DPSOH (VWHYH] HW DO 3030f 0RUH LPSRUWDQW IRU RXU SXUSRVHV KD RI VHDJUDVVHV bf DQG KD RI R\VWHU EDU FRPPXQLWLHV bf KDYH GLVDSSHDUHG IURP WKH UHJLRQ VLQFH +DGGDG DQG +DUULV +DGGDG DQG +RIIPDQ f 5HVHDUFKHUV +DGGDG DQG +RIIPDQ +DUULV HW DO f DWWULEXWH WKH VWDUWOLQJ ORVVHV WR WKH FRPELQHG HIIHFWV RI GUHGJLQJ IRU WKH ,QWUDFRDVWDO :DWHUZD\ FRQVWUXFWLRQ RI WKH 6DQLEHO FDXVHZD\ FKDQQHOLQJ RI WKH &DORRVDKDWFKHH 5LYHU DQG XSODQG SROOXWLRQ )LQDOO\ DV HDUO\ DV WKH QDWXUDO IORZ RI WKH &DORRVDKDWFKHH 5LYHU ZDV FKDQJHG ZKHQ WKH ZDWHUZD\ ZDV OLQNHG WR /DNH 2NHHFKREHH *XQWHU DQG +DOO f $ PRGHUQ UHGXFWLRQ LQ KDELWDWV WUDQVODWHV LQWR D UHGXFWLRQ RI ELRORJLFDO SURGXFWLYLW\ 7KXV DFNQRZOHGJHPHQW RI WKH H[LVWHQFH RI D SUHKLVWRULF ELRWLF SURGXFWLYLW\ WKDW ZDV PXFK JUHDWHU WKDQ WKDW RI WRGD\ DW OHDVW DW FHUWDLQ

PAGE 72

WLPHVf LV FULWLFDO WR RXU XQGHUVWDQGLQJ RI WKDW SDVW HQYLURQPHQW 7KH 3UHVHQWGDY (VWXDULQH *UDGLHQW 7KH HFRORJLFDO FRQFHSW RI DQ HQYLURQPHQWDO JUDGLHQW .LQJ DQG *UDKDP f LV XVHIXO ZKHQ DSSOLHG WR HVWXDULQH VLWXDWLRQV IRU WKH SXUSRVH RI GHWHUPLQLQJ IDXQDO GLVWULEXWLRQ DQG DEXQGDQFH %RHVFK :HOOV f $QDO\VLV RI WKH HVWXDULQH JUDGLHQW LQYROYHV WKH UHFRJQLWLRQ RI GLIIHUHQW HFRORJLFDO ]RQHV RU FRPPXQLWLHV UDQJLQJ IURP IUHVK WR RFHDQLF ZDWHU DQG WKH H[WHQW WR ZKLFK GLIIHUHQW DTXDWLF VSHFLHV LQKDELW WKHVH DUHDV %RHVFK 2GXP HW DO f 7KH ]RQHV DQG WKHLU DVVRFLDWHG IDXQDO DVVHPEODJHV KDYH QR VKDUS ERXQGDULHV LQ VSDFH 5DWKHU WKH\ H[LVW DV D JUDGHG FRQWLQXXP DW WKH UHJLRQDO VFDOH 7KH KDELWDW FDWHJRULHV QRQHWKHOHVV DOORZ GHVFULSWLRQ DQG WKXV DQ RSHUDWLYH XQGHUVWDQGLQJ RI WKH KHWHURJHQHRXV GLVWULEXWLRQ RI IDXQD DORQJ WKH HVWXDULQH JUDGLHQW $OWKRXJK QXPHURXV OLPLWLQJ IDFWRUV DUH LQYROYHG LQ JUDGLHQW GLVWULEXWLRQV RI HVWXDULQH IDXQD DYHUDJH VDOLQLW\ LV SURPLQHQW DPRQJ WKHP %RHVFK :HOOV f DQG SURYLGHV D XVHIXO RUJDQL]DWLRQDO WRRO DW RQH RU PRUH HIIHFWLYH VFDOHV )RU H[DPSOH WKH R\VWHU EHG RU EDU FRPPXQLW\ LH R\VWHUV DQG DOO DVVRFLDWH IDXQDf H[KLELWV D FHUWDLQ UDQJH DORQJ WKH HVWXDULQH UHJLRQDOf JUDGLHQW ZLWKLQ WKDW UDQJH DOVR D FRQWLQXXP LQ UHDOLW\f SRLQW ORFDWLRQV FDQ EH FODVVLILHG DV ORZ PLG RU KLJKVDOLQLW\

PAGE 73

R\VWHU EDUV 7KH GLVWULEXWLRQ RI DVVRFLDWH IDXQD ZLOO YDU\ DFFRUGLQJ WR WKH GHVLJQDWLRQ :HOOV f 8QIRUWXQDWHO\ WKHUH LV QR SXEOLVKHG JUDGLHQW VWXG\ RI &KDUORWWH +DUERU DTXDWLF ELRWD +RZHYHU EDVHG XSRQ ZKDW LV DYDLODEOH IRU WKH DUHD DQG FRPSDUDWLYH GDWD IURP RWKHU HVWXDULQH HQYLURQPHQWV DQ LQIRUPDO PRGHO RI &KDUORWWH +DUERUnV PRGHUQ GLVWULEXWLRQ RI DTXDWLF YHUWHEUDWH DQG LQYHUWHEUDWH IDXQD IRU DUFKDHRORJLFDO SXUSRVHV LV DWWHPSWHG KHUH %HFDXVH PRELOLW\ SDWWHUQV RI YHUWHEUDWHV DQG LQYHUWHEUDWHV DUH GUDPDWLFDOO\ GLIIHUHQW WKHVH WZR JURXSV DUH GHVFULEHG VHSDUDWHO\ 7KH GHVFULSWLRQV DUH QRW PHDQW WR EH FRPSUHKHQVLYH LQVWHDG WKH\ HPSKDVL]H DQLPDOV ZKRVH UHPDLQV DUH FRPPRQO\ IRXQG LQ SUHKLVWRULF KXPDQ PLGGHQV )LJXUH LOOXVWUDWHV PRQWKO\ VDOLQLW\ SURILOHV WKDW FORVHO\ W\SLI\ WKH VDOLQLW\ JUDGLHQW RI WKH QRUWKHUQ SURMHFW DUHD 7KHVH GDWD DUH IURP :DQJ DQG 5DQH\ f DQG UHSUHVHQW UHDGLQJV WDNHQ DW IRXU RI WKHLU FROOHFWLRQ VWDWLRQV QXPEHUV DQG f FKRVHQ WR LOOXVWUDWH WKH JHQHUDO JUDGLHQW PRYLQJ IURP QHDUIUHVKZDWHU 3HDFH 5LYHUf WR RFHDQLF %RFD *UDQGH 3DVVf FRQGLWLRQV 6DOLQLW\ UHDGLQJV IRU 3LQH ,VODQG 6RXQG VKRZ YDULDQFH GHSHQGLQJ RQ SUR[LPLW\ WR &DSWLYD 3DVV 5HGILVK 3DVV RU %OLQG 3DVV :DQJ DQG 5DQH\ f $GGLWLRQDOO\ $OEHUWV DQG KLV FROOHDJXHV f UHSRUW WKDW WKH *DVSDULOOD 6RXQG DQG 3LQH ,VODQG 6RXQG ZDWHUV PDLQWDLQ PDULQH VDOLQLWLHV UDQJLQJ IURP WR SSW 6LPLODUO\ WKH 6DQ &DUORV %D\ DUHD

PAGE 74

JHQHUDOO\ UDQJHV IURP WR SSW *XQWHU DQG +DOO f 7LGDO VWDJHV DQG WKXV YHUWLFDO VWUDWLILFDWLRQ VKRXOG EH FRQVLGHUHG IRU DQ\ JLYHQ HVWXDULQH ORFDWLRQ EHFDXVH WKHUH FDQ EH JUHDW VDOLQLW\ GLIIHUHQFHV EHWZHHQ HEE DQG IORRG SRVLWLRQ DQG ERWWRP DQG WRS ZDWHUV (VWHYH] HW DO &+&+f +RZHYHU WLGHV LQ WKH &KDUORWWH +DUERU DUHD DUH RI D PL[HG GLXUQDO DQG VHPLGLXUQDO W\SH ZLWK DQ DYHUDJH DPSOLWXGH RI RQO\ DERXW P (VWHYH] HW DO &+f 7KH LPSOLFDWLRQ RI VXFK D PLFURWLGDO SDWWHUQ LV WKDW GDLO\ IOXFWXDWLRQV LQ VDOLQLW\ DUH PLQRU FRPSDUHG WR PRVW RI WKH ZRUOGnV HVWXDULHV 7KLV LV DGYDQWDJHRXV IRU JUDGLHQW PRGHOLQJ DW D VFDOH XVHIXO WR DUFKDHRORJLVWV 7KH IDFW WKDW PRVW VLWHV DUH DVVRFLDWHG ZLWK YHU\ VKDOORZ ZDWHUV WR PHWHUVf IXUWKHU PHGLDWHV YHUWLFDO VDOLQLW\ GLIIHUHQFHV IRU WKH DUFKDHRORJLVW )LJXUH H[KLELWV D SDWWHUQ RI VHDVRQDO VDOLQLW\ IOXFWXDWLRQ IRU WKH SHULRG %DVHG RQ UDLQIDOO GDWD IRU WKURXJK -R\QHU DQG 6XWFOLIIH FLWHG LQ (VWHYH] HW DO &+f WKH RQO\ GHSDUWXUH IURP DQ DYHUDJH \HDUO\ SDWWHUQ LV WKH KHDY\ 0DUFK UDLQ VKRZQ LQ )LJXUH DV ORZHUHG VDOLQLWLHV DW DOO IRXU VWDWLRQV ,Q DGGLWLRQ ZLQG VKLIWV FDQ UHVXOW LQ VXEVWDQWLDO VDOLQLW\ IOXFWXDWLRQV DORQJ WKH JUDGLHQW IRU LQWHUYDOV RI KRXUV XS WR GD\V 3HULRGLF GHYLDWLRQV IURP WKH DYHUDJH SDWWHUQ ZKHWKHU GDLO\ VHDVRQDO RU RI VHYHUDO \HDUV

PAGE 75

GXUDWLRQ LPSO\ VKRUW RU PHGLXPWHUP DOWHUDWLRQV LQ IDXQDO GLVWULEXWLRQ DQGRU SURGXFWLYLW\ 'LVWULEXWLRQ RI 9HUWHEUDWHV /LWHUDWXUH FRQFHUQLQJ DTXDWLF YHUWHEUDWH FRPPXQLWLHV SULPDULO\ ILVKHVf LQ PDQJURYH HQYLURQPHQWV LV UHDGLO\ DYDLODEOH HJ 2GXP HW DO f DQG VHYHUDO V\VWHPDWLF ILVK VWXGLHV H[LVW IRU &KDUORWWH +DUERU VHH (VWHYH] HW DO 7D\ORU f ,Q SDUWLFXODU *XQWHU DQG +DOO f DQG :DQJ DQG 5DQH\ f SUHVHQW D GDWD EDVH XVHIXO IRU DUFKDHRORJLFDO UHVHDUFK 7R GHVFULEH WKH GLVWULEXWLRQ RI YHUWHEUDWHV IRXU PDQJURYHILVK FRPPXQLW\ GHVLJQDWLRQV DUH ERUURZHG IURP 2GXP HW DO f DQG D ILIWK FODVVLILFDWLRQ LV DGGHG WR FRPSOHWH WKH VDOLQLW\ JUDGLHQW 7KHVH DUH f PDQJURYH EDVLQ f PDQJURYHIULQJHG VWUHDPV f PDQJURYHIULQJHG HVWXDULQH ED\V DQG ODJRRQV f PDQJURYHIULQJHG RFHDQLF ED\V DQG ODJRRQV DQG f WKH OLWWRUDO ]RQH DQG *XOI ZDWHUV 7\SHV DQG DUH DVVRFLDWHG ZLWK VHDJUDVV PHDGRZV 7\SH LV D EDFNZDWHU DUHD ODUJHO\ RI IUHVKZDWHU FRQWHQW VXSSRUWLQJ VSHFLHV VXFK DV NLOOLILVKHV )DPLO\ &\SULQRGRQWLGDHf WKH JUHDWHU VLUHQ 6LUHQ ODFHUWLQDf IURJV 5DQD VSSf DQG IUHVKZDWHU WXUWOHV 7KH DUHD LPPHGLDWHO\ WR WKH QRUWK RI %LJ 0RXQG .H\ &+f LV DQ H[DPSOH RI D PDQJURYH EDVLQ )LJXUH f 7KHVH DUHDV DUH NQRZQ JHQHUDOO\ WR H[KLELW ORZ VSHFLHV GLYHUVLW\ EXW VRPHWLPHV KLJK GHQVLWLHV RI ILVKHV GR RFFXU 2GXP HW DO f

PAGE 76

7\SH LQFOXGHV PDMRU WULEXWDULHV HJ 0\DNND 3HDFH DQG &DORRVDKDWFKHH ULYHUVf VPDOO VWUHDPV HJ :KLGGHQ &UHHN $OOLJDWRU &UHHNf DQG DVVRFLDWHG SRROV 7KHVH VWUHDPV DUH WLGDOLQIOXHQFHG KDYH VSDUVH JUDVV EHGV DQG VKRZ VHDVRQDO YDULDQFH LQ WHUPV RI VDOLQLW\ DQG WKXV VSHFLHV FRPSRVLWLRQ 2GXP HW DO :DQJ DQG 5DQH\ f 'XULQJ UDLQ\ PRQWKV VXFK DV 0DUFK DQG -XO\ VHH )LJXUH 3HDFH 5LYHU OLQHf IUHVKZDWHU ILVKHV VRPHWLPHV PRYH LQWR WKH HVWXDU\ ([DPSOHV LQFOXGH )ORULGD JDU /HSLVRVWHXV SODW\UKLQFRVf VXQILVKHV /HSRPLV VSSf IUHVKZDWHU FDWILVKHV )DPLO\ ,FWDOXULGDHf DQG WKH ODUJHPRXWK EDVV 0LFURSWHUXV VDOPRLGHVf (VWHYH] HW DO 3535 *XQWHU DQG +DOO f &RQYHUVHO\ PDULQH SUHGDWRU\ ILVKHV VXFK DV QHHGOHILVKHV )DPLO\ %HORQLGDHf MDFNV )DPLO\ &DUDQJLGDHf DQG VWLQJUD\V )DPLO\ 'DV\DWLGDHf LQYDGH WKH WLGDO VWUHDPV LQ VHDUFK RI IRRG GXULQJ GU\ SHULRGV 2GXP HW DO f )LVKHV VXFK DV WKH EODFN PXOOHW 0XJLO FHSKDOXVf JUD\ VQDSSHU /XWMDQXV JULVHXVf VKHHSVKHDG $UFKRVDUJXV SUREDWRFHSKDOXVf VSRWWHG VHDWURXW &\QRVFLRQ QHEXORVXVf UHG GUXP RU UHGILVK 6FLDHQRSV RFHOODWXVf DQG VLOYHU SHUFK %DLUGLHOOD FKU\VRXUDf XVH WLGDO VWUHDPV DQG SRROV RQO\ DV MXYHQLOHV *XQWHU DQG +DOO 2GXP HW DO f 0RVW RI WKHVH VSHFLHV DUH UHSUHVHQWHG LQ &KDUORWWH +DUERUnV VWUHDPV GXULQJ VRPH SDUW RI WKH \HDU :DQJ DQG 5DQH\ f

PAGE 77

(QYLURQPHQW 7\SHV DQG FRPELQH H[WHQVLYH PDQJURYH VKRUHOLQHV DQG VHDJUDVV PHDGRZV 7KH UHODWLRQVKLS EHWZHHQ WKHVH WZR KDELWDWV LQ WHUPV RI IDXQDO XVH LV XQFOHDU =LHPDQ f SHUKDSV GXH WR WKH SUR[LPLW\ RI WKH WZR 7\SHV DQG UDQJH KLJKHU LQ VDOLQLW\ WKDQ DQG VHH )LJXUH &KDUORWWH +DUERU DQG %RNHHOLD OLQHVf H[KLELW FRDUVHU VDQGLHU VHGLPHQWV DQG VXSSRUW D JUHDWHU DEXQGDQFH DQG GLYHUVLW\ RI ILVK DVVHPEODJHV ,Q WKH &KDUORWWH +DUERU V\VWHP H[DPSOHV RI 7\SH HVWXDULQH ED\V DQG ODJRRQV DUH 7XUWOH %D\ %XOO %D\ 0DWODFKD 3DVV DQG WKH HDVWHUQ SDUW RI 3LQH ,VODQG 6RXQG 7KH RFHDQLF ED\V 7\SH WHQG WR KDYH WKH FOHDUHVW ZDWHU WKH KLJKHVW VDOLQLWLHV RI LQVKRUH ZDWHUV DQG SHUKDSV WKH KLJKHVW VSHFLHV GLYHUVLW\ ([DPSOHV LQFOXGH 6DQ &DUORV %D\ *DVSDULOOD 6RXQG DQG WKH LQVKRUH ODJRRQV RI 3LQH ,VODQG 6RXQG EHKLQG %OLQG 5HGILVK DQG &DSWLYD 3DVVHV %HFDXVH RI WKH FRQILJXUDWLRQ RI WKH &KDUORWWH +DUERU V\VWHP LW LV GLIILFXOW WR VHSDUDWH WKH VSHFLHV RI 7\SHV DQG DQG VR GHVFULEH WKHP DV RQH XQLW 6SHFLHV VXFK DV SLSHILVKHV DQG VHDKRUVHV )DPLO\ 6\QJQDWKLGDHf JRELHV *RELLGDHf DQG WKH LQVKRUH OL]DUG ILVK 6\QRGXV IRHWHQVf VSHQG WKHLU HQWLUH OLIH F\FOHV ZLWKLQ WKH JUDVVEHGV $ VHFRQG JURXS RI ILVKHV ODUJHO\ XVHV WKH PHDGRZV DV D QXUVHU\ JURXQG VSHQGLQJ WKHLU MXYHQLOH OLIH VWDJHV LQ WKH QXUWXULQJ JUDVV KDELWDW 6SRWWHG VHDWURXW VSRW /HLRVWRPXV [DQWKXUXVf VLOYHU SHUFK UHG GUXP SLJILVK

PAGE 78

2UWKRSULVWLV FKU\VRSWHUDf SLQILVK /DJRGRQ UKRPERLGHVf VKHHSVKHDG DQG JDJ JURXSHU 0\FWHURSHUFD PLFUROHSLVf DUH DOO FRPPRQ WR DEXQGDQW ILVKHV DPRQJ WKH JUDVVEHGV =LHPDQ f $GXOWV FRPPRQO\ LQKDELW WKH PDQJURYH IULQJH ,Q DGGLWLRQ DQFKRYLHV DUH NQRZQ WR FRQFHQWUDWH LQ VHDJUDVVHV HVSHFLDOO\ ZKLOH MXYHQLOHV &DUU DQG $GDPV f :DQJ DQG 5DQH\ f UHSRUW WKDW WKUHH VSHFLHV RI DQFKRY\ $QFKRD PLWFKLOOL $QFKRD KHSVHWXV DQG $QFKRD FXEDQDf DQG WKH KDUGKHDG FDWILVK $ULRSVLV IHOLVf IUHTXHQW JUDVV IODWV EXW DUH DEXQGDQW LQ DOO SDUWV RI WKH &KDUORWWH +DUERU V\VWHP 3LQILVK DOWKRXJK GHQVHO\ DVVRFLDWHG ZLWK VHDJUDVVHV LQ MXYHQLOH DQG DGXOW IRUPV KDYH D YDULDEOH KDELWDW GLVWULEXWLRQ 'DUF\ f 0XOOHW DJJUHJDWH RQ D VHDVRQDO EDVLV LQ JUDVV DUHDV IHHGLQJ GLUHFWO\ RQ JUDVV EODGHV =LHPDQ f DPRQJ RWKHU SODQW DQG DQLPDO PDWHULDOV /DUJHU SUHGDWRU\ ILVKHV VXFK DV VKDUNV /DPQLIRUPHVf EDUUDFXGDV )DPLO\ 6SK\UDHQLGDHf DQG MDFNV RFFDVLRQDOO\ PLJUDWH LQVKRUH WR IHHG LQ WKH PDQJURYHJUDVV ED\V 7\SH LQFOXGHV OLWWRUDO ]RQHV RI WKH EDUULHU LVODQGV HJ 6DQLEHO &DSWLYD &D\R &RVWD DQG *DVSDULOODf RFHDQLF SDVVHV HJ *DVSDULOOD %RFD *UDQGH &DSWLYD 5HGILVK %OLQGf DQG RSHQ *XOI ZDWHUV 0RVW ILVKHV WKDW DUH SULPDULO\ DVVRFLDWHG ZLWK WKHVH DUHDV DOVR IUHTXHQW WKH RFHDQLF DQG HVWXDULQH ED\V ([DPSOHV DUH QXPHURXV VKDUNV +RHVH DQG 0RRUH /DUVRQ f MHZILVK

PAGE 79

(SLQHSKHOXV LWDMDUDf VDZILVK 3ULVWLV VSSf )ORULGD SRPSDQR 7UDFKLQRWXV FDUROLQXVf ODUJH MDFNV 6SDQLVK PDFNHUHO 6FRPEHURPRUXV PDFXODWXVf EDUUDFXGD DQG ZKLWLQJ 0HQWLFLUUKXV VSSf +RHVH DQG 0RRUH :DQJ DQG 5DQH\ f 'LVWULEXWLRQ RI ,QYHUWHEUDWHV /LWWOH V\VWHPDWLF VXUYH\ RI DTXDWLF LQYHUWHEUDWHV KDV EHHQ XQGHUWDNHQ LQ WKH &KDUORWWH +DUERU VWXG\ DUHD VHH 9LUQVWHLQ )LJXUH f %DVHG RQ FRPSDUDWLYH OLWHUDWXUH DQG P\ RZQ ILHOG REVHUYDWLRQV ILYH ]RQHV ZHUH FKRVHQ WR H[DPLQH LQYHUWHEUDWHV SULPDULO\ PROOXVFVf DORQJ WKH VDOLQLW\ JUDGLHQW 7KHVH DUH f WLGDO VWUHDP f HVWXDULQH PDQJURYH HGJH f R\VWHU EHG f VHDJUDVV PHDGRZ DQG f OLWWRUDO*XOI 7KH FODVVLILFDWLRQV DUH ODUJHO\ UHODWHG WR WKH OLPLWHG PRELOLW\ RI DTXDWLF PROOXVFV $V ZLWK WKH YHUWHEUDWH FDWHJRULHV DOO W\SHV RYHUODS FUHDWLQJ D FRQWLQXXP RI GLVWULEXWLRQ )HZ PDULQH LQYHUWHEUDWHV DUH NQRZQ WR YHQWXUH IDU LQWR WKH WLGDO VWUHDPV :HOOV f DQG WKHVH DUH KLJKO\ PRELOH DQLPDOV WKDW VSHQG D VPDOO SHUFHQWDJH RI WKHLU OLIH F\FOH WKHUH 7KH EOXH FUDE &DOOLQHFWHV VDSLGXVf IRU LQVWDQFH WUDYHOV XSVWUHDP WR WKH WLGDOLQIOXHQFHG PDUVKHV ZKHUH PDWLQJ RFFXUV DQG UHWXUQV WR WKH HVWXDULQH ED\V DQG ODWHU WR WKH *XOI 'XUDNR HW DO f %HGV RI WKH PDUVK FODP 5DQJLD FXQHDWD DUH DVVRFLDWHG ZLWK WKH 0\DNND DQG 3HDFH ULYHUV :RRGEXUQ f DV ZHOO DV WKH

PAGE 80

&DORRVDKDWFKHH *XQWHU DQG +DOO f 2WKHU WKDQ WKH EOXH FUDE WKH PDUVK FODP DQG PDQJURYH SURS URRWPXG IODW FRPPXQLWLHV RI VPDOO JDVWURSRGV DQG ELYDOYHV OLWWOH LV NQRZQ DERXW LQYHUWHEUDWHV LQ XSSHU WLGDO VWUHDPV (VWHYH] HW DO &+&+f 7\SH IRU SUHVHQW SXUSRVHV LV OLPLWHG WR DUHDV RI WKH PDQJURYHIULQJHG ORZHU WLGDO VWUHDPV DQG HVWXDULQH ORFDWLRQV 0ROOXVFV FRPPRQO\ DVVRFLDWHG ZLWK PDQJURYH SURS URRWV DQG DGMDFHQW LQWHUWLGDO PXGV LQFOXGH WKH HDVWHUQ R\VWHU &UDVVRVWUHD YLUJLQLFDf $WODQWLF ULEEHG PXVVHO *HXNHQVLD GHPLVVD JUDQRVLVVLPDf HDVWHUQ ZKLWH VOLSSHUVKHOO &UHSLGXOD SODQDf *XOI R\VWHU GULOO 8URVDOSLQ[ SHUUXJDWDf VFRUFKHG PXVVHO %UDFKLGRQWHV H[XVWXVf ZRUPVKHOO 7XUULWHOOD VSSf FURZQ FRQFK 0HORQJHQD FRURQDf VHPLSOLFDWH GRYHVKHOO $QDFKLV VHPLSOLFDWDf $WODQWLF EXEEOH %XOOD VWULDWDf EURDGULEEHG FDUGLWD &DUGLWDPHUD IORULGDQDf FRIIHH PHODPSXV 0HODPSXV FRIIHXVf DQG VHYHUDO FHULWKV &HULWKLXP VSSf $EERWW 2GXP HW DO f 7KH PDQJURYH WUHH FUDE $UDWXV SLVRQLLf LV DQ DEXQGDQW UHVLGHQW 2\VWHU EHG FRPPXQLWLHV 7\SH f DUH LPSRUWDQW DQG IUHJXHQW IHDWXUHV LQ VRPH SDUWV RI WKH &KDUORWWH +DUERU HVWXDULQH V\VWHP :RRGEXUQ f 7XUWOH %D\ %XOO %D\ 0DWODFKD 3DVV DQG 6DQ &DUORV %D\ DUH H[DPSOHV RI VXFK DUHDV 7KH HDVWHUQ R\VWHU LV ZHOO DGDSWHG WR HVWXDULQH VLWXDWLRQV WROHUDWLQJ FRQVWDQW VDOLQLW\ IOXFWXDWLRQV

PAGE 81

%XWOHU f ,W LV PRVW SURGXFWLYH LQ PLG WR ORZVDOLQLW\ HVWXDULQH ZDWHUV EHFDXVH SUHGDWRUV VXFK DV R\VWHU GULOOV 8URVDOSLQ[ VSSf DQG RGRVWRPHV HJ %RRQHD LPSUHVVDf UHTXLUH VRPHZKDW VDOWLHU ZDWHUV :HOOV f 2\VWHU EDUV VXSSRUW D ODUJH YDULHW\ RI IDXQD LQ DQG DPRQJ ERWK OLYH DQG GHDG VKHOOV E\ SURYLGLQJ D KDUG DQG SURWHFWLYH VXEVWUDWH DV ZHOO DV D IRRG UHVRXUFH &RPPXQLW\ SURILOHV FRQVWUXFWHG LQ D 1RUWK &DUROLQD VWXG\ E\ :HOOV f GHPRQVWUDWH YDU\LQJ VSHFLHV FRPSRVLWLRQ DQG D GHFUHDVH LQ GLYHUVLW\ DV RQH DSSURDFKHV IUHVK ZDWHU ,Q VRXWKZHVW )ORULGD WKH FRPPRQ FURZQ FRQFK LV DEXQGDQWO\ DVVRFLDWHG ZLWK R\VWHU EDUV ([SHULPHQWV KDYH VKRZQ WKDW WKLV DQLPDO SUHIHUV VDOLQLWLHV RI SSW DQG DERYH EXW WROHUDWHV WR SSW IRU VKRUW SHULRGV +DWKDZD\ DQG :RRGEXUQ f 2WKHU FRPPRQ RUJDQLVPV RI WKH EDU FRPPXQLW\ DUH WKH FUHVWHG R\VWHU 2VWUHD HTXHVWULVf EDUQDFOHV %DODQXV VSSf VFRUFKHG PXVVHO RGRVWRPHV ERULQJ VSRQJHV &OLRQD VSSf R\VWHU GULOOV FRPPRQ MLQJOH VKHOO $QRPLD VLPSOH[f DQG VOLSSHU VKHOOV &UHSLGXOD VSSf %XWOHU :HOOV 6RXWKZHVW )ORULGD 3URMHFW ILHOG REVHUYDWLRQVf 0LJUDWRU\ SUHGDWRUV RWKHU WKDQ WKH FURZQ FRQFK LQFOXGH ZKHONV %XV\FRQ VSSf EODFN GUXP 3RJRQLDV FURPLVf VWLQJUD\V DQG EOXH FUDEV %XWOHU &DUULNHU *DOWVRII f

PAGE 82

6KDOORZZDWHU VHDJUDVV PHDGRZV WKH IRXUWK W\SH SURYLGH H[WHQVLYH KDELWDW DUHDV IRU QXPHURXV PRELOH DQG VHVVLOH PROOXVFV 7KH DEXQGDQFH RI LQYHUWHEUDWHV VXUSDVVHV HYHQ WKH ILVKHV LQ DUHDV RI KHDY\ VKRDO DQG WXUWOH JUDVVHV =LHPDQ f &RPPRQ JDVWURSRGV LQFOXGH WKH OLJKWQLQJ ZKHON %XV\FRQ FRQWUDULXPf 6D\nV SHDU ZKHON %XV\FRQ VSLUDWXP S\UXORLGHVf WUXH WXOLS )DVFLRODULD WXOLSDf )ORULGD KRUVH FRQFK 3OHXURSORFD JLJDQWHDf FURZQ FRQFK HVSHFLDOO\ MXYHQLOHVf IO\VSHFNHG FHULWK &HULWKLXP PXVFDUXPf GRYH VKHOOV $QDFKLV VSSf $WODQWLF PRGXOXV 0RGXOXV PRGXOXVf DQG OXQDU GRYHVKHOO 0LWUHOOD OXQDWDf %LYDOYHV VXFK DV VRXWKHUQ TXDKRJ FODP 0HUFHQDULD FDPSHFKLHQVLVf ULJLG SHQ VKHOO $WULQD UJLGDf DQG FURVVEDUUHG YHQXV DUH RIWHQ HPEHGGHG LQ ODUJH QXPEHUV LQ WKH JUDVV ERWWRPV 2WKHU RUJDQLVPV LQFOXGH SLQN VKULPS 3HQDHXV GXRUDUXPf FRUDOV HJ 0DQLFLPLD DUHRODWD 3RULWHV IXUFDWDf KHUPLW FUDEV 3DJXUXV VSSf DQG VHD XUFKLQV HJ /\WHFKLQXV YDULHJDWXV 7ULSQHXVWHV YHQWULFRVXVf =LHPDQ f $OWKRXJK QR VWXGLHV DUH NQRZQ LW LV SUHVXPHG WKDW VHDJUDVV LQYHUWHEUDWH FRPSRVLWLRQ YDULHV DORQJ WKH VDOLQLW\ JUDGLHQW LQ PXFK WKH VDPH PDQQHU DV WKH R\VWHU EHG FRPPXQLW\ $ QXPEHU RI VSHFLHV RI LQYHUWHEUDWHV DSSHDU WR EH UHVWULFWHG WR WKH EHDFK ]RQH DQG *XOI ZDWHUV 2WKHUV DOWKRXJK SUHIHUULQJ KDELWDWV LQ WKHVH DUHDV DUH DOVR IRXQG LQ WKH RFHDQLF DQG HVWXDULQH ED\V 7KHVH WZR JURXSV

PAGE 83

FRPSULVH WKH ILIWK LQYHUWHEUDWH FDWHJRU\ 5HSUHVHQWDWLYH DQLPDOV LQFOXGH VXQUD\ YHQXV 0DFURFDOOLVWD QLPERVDf VRXWKHUQ VXUI FODP 6SLVXOD VROLGLVVLPD VLPLOLVf VWRQH FUDE 0HQLSSH PHUFHQDULDf VDQG GROODUV )DPLO\ 6FXWHOOLGDHf DQG PDQ\ VPDOO JDVWURSRGV DQG ELYDOYHV $EERWW :DQJ DQG 5DQH\ f ,W LV HPSKDVL]HG WKDW WKH IRUHJRLQJ YHUWHEUDWH DQG LQYHUWHEUDWH GLYLVLRQV FDQ XVHIXOO\ LOOXVWUDWH URXJK VHJPHQWV RI WKH VDOLQLW\ JUDGLHQW ,Q UHDOLW\ QR VSHFLHV UHVWULFWV LWVHOI WR WKHVH DUWLILFLDO W\SHV 1RQHWKHOHVV WKH W\SHV DOORZ DQ RSHUDEOH GHVFULSWLRQ RI WKH FRQWLQXXP )XWXUH ELRORJLFDO VWXGLHV LQ &KDUORWWH +DUERU ZLOO LPSURYH WKLV EULHI GHVFULSWLYH GLVWULEXWLRQ PRGHO ,QIHUUHG /RFDO 'LVWULEXWLRQ RI 5HVRXUFHV LQ 3UHKLVWRU\ 7KDW SUHVHQWGD\ &KDUORWWH +DUERU LV KHWHURJHQHRXV KDV EHHQ HVWDEOLVKHG DQG LWV VSDWLDO YDULDELOLW\ FRQFHSWXDOL]HG LQ WHUPV RI DEVWUDFW KDELWDW FDWHJRULHV +RZHYHU WKLV PRGHO FDQQRW EH SURMHFWHG GLUHFWO\ LQWR WKH SDVW ZLWKRXW LQGHSHQGHQW FRQILUPDWLRQ ,I RQH DVVXPHV WKDW WKH SUHKLVWRULF SHRSOH WDUJHWHG UHVRXUFHV QHDU WKHLU KDELWDWLRQV DQG WKDW IDXQDO HYLGHQFH IRXQG DW D VLWH UHSUHVHQWV DQLPDOV SURFHVVHG RU FRQVXPHG DW WKDW VLWH WKHQ ]RRDUFKDHRORJLFDO GDWD FDQ EH XVHG WR WHVW ZKHWKHU WKH VSDWLDO YDULDELOLW\ RI WKH SUHVHQW ZDV DOVR FKDUDFWHULVWLF RI WKH SDVW 6HYHQWHHQ VDPSOHV RI DUFKDHRORJLFDO IDXQD IURP ILYH VLWHV f§ %LJ 0RXQG .H\ &DVK 0RXQG 8VHSSD ,VODQG -RVVO\Q

PAGE 84

,VODQG DQG %XFN .H\ 6KHOO 0LGGHQ )LJXUH f f§ ZHUH VHOHFWHG IRU ]RRDUFKDHRORJLFDO VWXG\ 7KH VLWHV DUH ORFDWHG LQ YDULRXV SDUWV RI WKH JUHDWHU &KDUORWWH +DUERU HVWXDULQH V\VWHP UHSUHVHQWLQJ WKH DUHD RI JUHDWHVW VLWH GHQVLW\ DQG WKHUHIRUH GR QRW FRYHU WKH HQWLUH UDQJH RI ORFDO HQYLURQPHQWDO VHWWLQJV 9DOXDEOH DGGLWLRQV IRU H[DPSOH ZRXOG EH IDXQDO DVVHPEODJHV IURP VLWHV ORFDWHG LQ (VWHUR %D\ DQG DW WKH PRXWKV RI DQG DORQJ WKH &DORRVDKDWFKHH 3HDFH DQG 0\DNND ULYHUV )RU PRGHOLQJ SXUSRVHV LW LV DVVXPHG WKDW WKH VDPSOHV JHQHUDOO\ DUH IURP SULPDU\ GHSRVLWV DQG WKDW WKH\ DUH UHSUHVHQWDWLYH RI VLWH PLGGHQV 7KH ODFN RI LQWUDVLWH KRUL]RQWDO VDPSOLQJ QHHG QRW EH YLHZHG DV GHELOLWDWLQJ WR D VWXG\ WKDW VHUYHV DV D UHJLRQDO EDVHOLQH RQH WKDW LV VXEMHFW WR FRQWLQXDO PRGLILFDWLRQ ZLWK HDFK DGGLWLRQ RI QHZ GDWD &RPSRVLWH VLWH GDWD LH FRPELQHG OHYHO GDWD ZLWKLQ D VLWH WKXV FRPELQLQJ WLPH SHULRGVf ZLWK WKH H[FHSWLRQ RI 8VHSSD ,VODQG SURYLGH WKH EDVLV IRU ]RRDUFKDHRORJLFDO VSDWLDO LQWHUSUHWDWLRQ 7KH FRPSRVLWH GDWD VHWV DUH SUHVHQWHG LQ WKH WH[W RQO\ LQ VXPPDUL]HG IRUP +RZHYHU WKH\ DUH JHQHUDWHG IURP UDZ GDWD DOO RI ZKLFK DUH SUHVHQWHG LQ $SSHQGL[ $ &RPSRVLWH GDWD IRU %LJ 0RXQG .H\ &DVK 0RXQG DQG -RVVO\Q ,VODQG FRQVLVW RI IRXU OHYHOV HDFK 7KH 8VHSSD IDXQD LV IURP RQO\ RQH OHYHO $ 7KH %XFN .H\ FRPSRVLWH LQFOXGHV WZR 7HVW % OHYHOV % DQG %

PAGE 85

(DFK SUHVHQWGD\ ORFDO VHWWLQJ RI WKH ILYH DUFKDHRORJLFDO VLWHV LV GHVFULEHG EHORZ LQ FRQFHUW ZLWK VXPPDUL]HG UHVXOWV RI ]RRDUFKDHRORJLFDO DQDO\VHV ,W LV DVVXPHG WKDW DUFKDHRIDXQDO GDWD $SSHQGL[ $f UHSUHVHQW WKH IDXQDO H[SORLWDWLRQ E\ SUHKLVWRULF KXPDQ RFFXSDQWV RI HDFK VLWH )RU FRPSRVLWH GDWD VHWV WKHQ WKHVH ]RRDUFKDHRORJLFDO GDWD FDQ EH WUDQVODWHG LQWR LQIHUUHG ORFDO GLVWULEXWLRQ RI UHVRXUFHV VXPPDUL]HG LQ )LJXUH 7KH GDWD IRU 8VHSSD DUH RQO\ WHQWDWLYHO\ RIIHUHG DV UHSUHVHQWDWLYH RI WKDW VLWH GXH WR WKH DYDLODELOLW\ RI RQO\ RQH VDPSOH %LJ 0RXQG .H\ &+ %LJ 0RXQG .H\ WRGD\ LV VLWXDWHG DW WKH PRXWK RI :KLGGHQ &UHHN D VWUHDP WKDW GUDLQV SDUWV RI WKH &DSH +D]H ZHWODQGV )LJXUH f 3DWFKHV RI VKDOORZ VHDJUDVV WR P GHSWK DW PHDQ ORZ WLGHf RFFXU DPRQJ VPDOO PDQJURYH LVODQGV WR WKH VRXWK DQG ZHVW LQ *DVSDULOOD 6RXQG 2\VWHUV FRQFHQWUDWH DURXQG WKH PDQ\ VPDOO PDQJURYH LVODQGV LQ WKH VRXQG DQG DGMDFHQW ED\V :RRGEXUQ f 'LUHFWO\ QRUWK RI WKH VLWH LV %RJJHVV +ROH D ODUJH HVWXDULQH SRQG )DUWKHU ZHVW DUH WKH EDUULHU LVODQGV *DVSDULOOD DQG /LWWOH *DVSDULOOD VHSDUDWHG IURP HDFK RWKHU E\ WKH VKDOORZ P GHHS DW PHDQ ORZ ZDWHUf *DVSDULOOD 3DVV )DXQD IURP HDFK RI WKHVH DUHDV DUH UHSUHVHQWHG LQ WKH %LJ 0RXQG .H\ DUFKDHRORJLFDO VDPSOHV $SSHQGL[ $ 7DEOHV $O WKURXJK $ )LJXUH f &RWWRQ UDW UDFFRRQ ZKLWHWDLOHG GHHU DQG ER[ WXUWOH DUH DOO FRPPRQ WR PDQJURYH IRUHVWV DQG

PAGE 86

SDOPHWWRSLQH IRUHVWV 7KH SUHVHQFH RI WKH JUHDWHU VLUHQ VQDSSLQJ WXUWOH &KHO\GUD VHUSHQWLQDf PXG WXUWOH .LQRVWHUQRQ VSSf DQG IURJV VXJJHVWV H[SORLWDWLRQ RI D IUHVKZDWHU HQYLURQPHQW 7KH ULEEHG PXVVHO LV WKH SULPDU\ PDQJURYH HGJH PROOXVF UHSUHVHQWLQJ b RI WRWDO 0LQLPXP 1XPEHU RI ,QGLYLGXDOV 01,f )LJXUH f 7KHVH ELYDOYHV DUH IRXQG WRGD\ LPEHGGHG LQ VZDPS\ DUHDV RI EODFN PDQJURYH VXFK DV RQ WKH ZHVWHUQ VLGH RI %LJ 0RXQG .H\ 7KH PDQJURYHVHDJUDVV KDELWDW FDWHJRU\ LV UHSUHVHQWHG E\ b 01, )LJXUH f ODUJHO\ FRQVLVWLQJ RI WKUHH ILVKHV SLQILVK WRDGILVK 2SVDQXV VSS DQG NLOOLILVKf DQG D KRVW RI LQYHUWHEUDWHV 7DEOHV $O WKURXJK $f 8QOLNH RWKHU VLWH DUFKDHRIDQDV %LJ 0RXQG .H\ FRQWDLQV D VLJQLILFDQW QXPEHU RI WKH VKDUN H\H VQDLO 3ROLQLFHV GXSOLFDWXV 7KH R\VWHU EHG FRPPXQLW\ FRQWULEXWHV DSSUR[LPDWHO\ b RI WKH VDPSOH )LJXUH f )LQDOO\ VHYHUDO YHUWHEUDWH DQG LQYHUWHEUDWH VSHFLHV SUHIHUULQJ RFHDQLF ZDWHUV bf DUH LQFOXGHG LQ WKH DVVHPEODJH &DVK 0RXQG &+ &DVK 0RXQG LV VLWXDWHG LQ 7XUWOH %D\ )LJXUH f DQ DUHD ZLWK ZDWHU GHSWKV RI WR P DW PHDQ ORZ WLGH DQG ULFK LQ SURGXFWLYH R\VWHU EHGV :RRGEXUQ f 6HDJUDVVHV RFFXU LQ WKH LPPHGLDWH YLFLQLW\ DQG IUHVKZDWHU PDUVKHV H[LVW LQODQG WR WKH QRUWK 7KH RQO\ WHUUHVWULDO IDXQD UHFRUGHG LQ WKH DUFKDHRORJLFDO VDPSOHV 7DEOHV $ WKURXJK $f LV UDFFRRQ

PAGE 87

DQG DQ XQLGHQWLILHG ODUJH PDPPDO SUHVXPDEO\ GHHUf 7KH R\VWHU EHG FRPPXQLW\ FRQVWLWXWHV b RI WKH VDPSOH )LJXUH f 5LEEHG PXVVHOV SUREDEO\ FROOHFWHG IURP LQWHUWLGDO PDQJURYH VZDPSV IROORZ ZLWK b 2WKHU PDQJURYH HGJH LQYHUWHEUDWHV RFFXU EXW LQ VPDOO QXPEHUV +DUGKHDG FDWILVK DQG SLQILVK ERWK FRPPRQ WR PDQJURYHVHDJUDVV DUHDV DUH WKH RQO\ ILVKHV WKDW RFFXU LQ DEXQGDQFH LQ WKH VDPSOHV 7KH PDQJURYHVHDJUDVV KDELWDW LV UHSUHVHQWHG E\ RQO\ b 01, )LJXUH f RI WKH IDXQDO VDPSOHV &DVK 0RXQGnV IDXQDO DVVHPEODJH UHIOHFWV D OLPLWHG H[SORLWDWLRQ VWUDWHJ\ FRPSDUHG WR WKH RWKHU IRXU VWXG\ VLWHV 8VHSSD ,VODQG // (VWXDULQH ZDWHUV VXUURXQGLQJ 8VHSSD ,VODQG WRGD\ YDU\ IURP WR P GHHS DW PHDQ ORZ WLGH 7KH DUHD LV LQIOXHQFHG WR VRPH GHJUHH E\ %RFD *UDQGH 3DVV P DW PHDQ ORZ WLGHf EXW PRUH E\ &DSWLYD 3DVV P DW PHDQ ORZ WLGHf GXH WR WKH QRUWKZDUG PRYHPHQW RI FXUUHQWV LQ 3LQH ,VODQG 6RXQG )LJXUH f 6HDJUDVV DQG R\VWHU KDELWDWV LQ WKH YLFLQLW\ KDYH GHFUHDVHG LQ DUHD GXH WR PRGHUQ KXPDQ LPSDFW SDUWLFXODUO\ WKH GUHGJLQJ RI WKH ,QWUDFRDVWDO :DWHUZD\ 0DQJURYHVHDJUDVV DQG R\VWHU KDELWDWV ZHUH KHDYLO\ H[SORLWHG E\ 8VHSSDnV LQKDELWDQWV RI FD %& )LJXUH f 7KH ILYH PRVW DEXQGDQW ILVKHV LQ WKH VDPSOH DUH KDUGKHDG FDWILVK SLQILVK SLJILVK VSRWWHG VHDWURXW DQG VWULSHG EXUUILVK &KLORP\FWHUXV VFKRHSILf DOO FRPPRQ WR WKH

PAGE 88

PDQJURYHVHDJUDVV KDELWDW 7DEOH $f 2\VWHUV DQG WKHLU DVVRFLDWHV DUH SURPLQHQWO\ UHSUHVHQWHG ZLWK b 01, )LJXUH f 7KH FURVVEDUUHG YHQXV LV SUHVHQW LQ KLJK QXPEHUV FRPSDUHG WR RWKHU VLWH VDPSOHV 7DEOH $f 7KH FRWWRQ UDW ZKLWHWDLOHG GHHU DQG JRSKHU WRUWRLVH DOVR DUH SUHVHQW LQ WKH DUFKDHRORJLFDO VDPSOH -RVVOYQ ,VODQG // -RVVO\Q ,VODQG LV ORFDWHG D VKRUW GLVWDQFH ZHVW RI 3LQH ,VODQG )LJXUH f DQG LV VXUURXQGHG E\ H[WHQVLYH DQG H[WUHPHO\ VKDOORZ EHGV RI VHDJUDVV :DWHU GHSWKV DUH WR P DW PHDQ ORZ WLGH LQ DOO GLUHFWLRQV 7KLV VLWXDWLRQ LV UHIOHFWHG LQ WKH IDXQDO VDPSOHV 7DEOHV $ WKURXJK $f DV WKHVH PDQJURYHIULQJHG JUDVV PHDGRZV DUH UHSUHVHQWHG E\ b RI WKH WRWDO 01, )LJXUH f 1LQH ILVKHV DUH DEXQGDQW PRUH WKDQ 01,f 7KH WRS IRXU ILVKHV DUH SLQILVK SLJILVK VLOYHU SHUFK DQG KDUGKHDG FDWILVK -RVVO\Q H[KLELWV WKH JUHDWHVW LQYHUWHEUDWH GLYHUVLW\ RI DOO WKH VLWHV FRPSRVLWH WRWDO RI WD[Df 7KHVH UHVXOWV DWWHVW WR WKH KLJK SURGXFWLYLW\ RI WKH VHDJUDVV KDELWDW =LHPDQ f $OWKRXJK R\VWHUV DQG WKHLU DVVRFLDWHV FRPSULVH b RI WKH VDPSOHV )LJXUH f WRGD\ RQO\ RQH VPDOO R\VWHU FRPPXQLW\ LV REVHUYHG LQ WKH -RVVO\Q HQYLURQV $TXDWLF ELUGV VXFK DV UHGEUHDVWHG PHUJDQVHU 0HUJXV VHUUDWRUf ED\ GXFNV $\WK\D VSSf DQG RWKHU GXFNV )DPLO\ $QDWLGDHf IDYRU VKDOORZ VHDJUDVV PHDGRZV DQG DOVR DSSHDU LQ WKH PLGGHQ

PAGE 89

IDXQD 7HUUHVWULDO DUHDV VXFK DV PDQJURYH IRUHVWV PDUVKODQGV DQG SDOPHWWRSLQH IODWODQGV DUH UHSUHVHQWHG E\ WKH FRWWRQ UDW UDFFRRQ ZKLWHWDLOHG GHHU ZDUEOHU ER[ WXUWOH DQG VNLQN %XFN .HY 6KHOO 0LGGHQ // %XFN .H\ LV ORFDWHG WR WKH HDVW RI DQG DGMDFHQW WR &DSWLYD ,VODQG )LJXUH f %XFN .H\ 6KHOO 0LGGHQ LV RQ WKH HDVWHUQ VKRUH RI WKH LVODQG 2I WKH ILYH VWXG\ VLWHV LW LV WKH RQH FORVHVW WR WKH RSHQ *XOI WKH VRXWKHUQ SRUWLRQ RI WKH LVODQG SUHVHQWO\ ERUGHULQJ VKDOORZ %OLQG 3DVV P DW PHDQ ORZ WLGHf 6XUURXQGLQJ WKH LVODQG ZDWHU GHSWKV YDU\ IURP WR P DW PHDQ ORZ WLGH DQG VHDJUDVV PHDGRZV OLH WR WKH HDVW DQG QRUWK $OVR WR WKH QRUWK DUH WKH GHHSHU RFHDQLQIOXHQFHG ZDWHUV RI 5HGILVK 3DVV WR P DW PHDQ ORZ WLGHf 0DQJURYHVHDJUDVV IDXQD DUH SUHGRPLQDQW bf LQ WKH DUFKDHRORJLFDO VDPSOHV 7DEOHV $ WKURXJK $ )LJXUH f 7KH OLWWRUDO*XOI DUHDV IROORZ ZLWK b )LJXUH f +DUGKHDG FDWILVK VKHHSVKHDG VLOYHU SHUFK SLQILVK DQG VWULSHG EXUUILVK DOO FRPPRQ VHDJUDVV ILVKHV DUH DEXQGDQW LQ WKH PLGGHQ VDPSOHV $ UDQGRP VDPSOH RI %XFN .H\ ILVK YHUWHEUDH UHODWLYH WR VDPSOHV IURP &DVK 0RXQG DQG -RVVO\Q ,VODQG )LJXUH f UHIOHFWV WKH SUR[LPLW\ RI %XFN .H\ WR DQ RFHDQ LQOHW GXULQJ SUHKLVWRULF RFFXSDWLRQ 7KHUH LV EURDG RYHUODS LQ WKH WKUHH VDPSOHV KRZHYHU D ODUJHU SURSRUWLRQ RI WKH %XFN .H\ PHDVXUHPHQWV DUH RYHU PP %HFDXVH RI

PAGE 90

WKH JHRJUDSKLF FRQVWULFWLRQ RI LQOHW ZDWHUV WLGDO F\FOLQJ DQG GDLO\ PRYHPHQWV RI ILVK WKH GHQVLW\ RI ODUJHU SUHGDWRU\ ILVKHV LV JUHDWHU DW LQOHW ORFDWLRQV :KHONV FRQFKV DQG WXOLSV DUH DEXQGDQW )LVKHV DQG PROOXVFV ZLWK KLJKVDOLQLW\ SUHIHUHQFHV LGHQWLILHG IURP WKH PLGGHQ LQFOXGH D KRVW RI VKDUNV JDJ JURXSHU UHG VQDSSHU /XWMDQXV FDPSHFKDQXVf VHD URELQ 3ULRQRWXV VSSf EDUUDFXGD ZKLWLQJ OHWWHUHG ROLYH 2OLYD VD\DQDf WHOOLQ 7HOOLQD VSSf FRJXLQD 'RQD[ YDULDELOLVf VWRQH FUDE DQG VRXWKHUQ VXUI FODP 6WRQH FUDEV IDYRU WKH HVWXDULQH VLGH RI RFHDQLF SDVVHV DV ZHOO DV *XOI ZDWHUV 3URGXFWLYH R\VWHU EHGV DUH QRW NQRZQ LQ WKH LPPHGLDWH DUHD WRGD\ EXW VPDOO VFDWWHUHG EHGV KDYH EHHQ QRWHG RQ WKH HDVW VLGH RI %XFN .H\ FORVH WR WKH PDQJURYH VKRUHOLQH ,QIHUUHG 5HJLRQDO 'LVWULEXWLRQ RI 5HVRXUFHV LQ 3UHKLVWRU\ -XVW DV WKH SUHVHQWGD\ HVWXDULQH IDXQDO GLVWULEXWLRQ FDQ EH PRGHOHG LQ WHUPV RI D JUDGLHQW VR FDQ WKH KHWHURJHQHLW\ REVHUYHG LQ WKH ]RRDUFKDHRORJLFDO DVVHPEODJHV GHVFULEHG DERYH (VWDEOLVKLQJ VXFK D ]RRDUFKDHRORJLFDO JUDGLHQW LQYROYHV WZR SURFHGXUHV )LUVW FRPSOHWH OLVWV RI DTXDWLF YHUWHEUDWHV $SSHQGL[ % 7DEOH %Of DQG LQYHUWHEUDWHV 7DEOH %f UHSUHVHQWHG LQ WKH DUFKDHRIDXQDO DVVHPEODJHV RI $SSHQGL[ $ DUH FRPSLOHG 7KH VSHFLHV DUH WKHQ URXJKO\ VHULDWHG E\ WKHLU NQRZQ SUHIHUHQFH IRU WKH HVWDEOLVKHG KDELWDW FDWHJRULHV VR WKDW WKH OLVWLQJV LQ

PAGE 91

$SSHQGL[ % IROORZ D VDOLQLW\ SURJUHVVLRQ RU JUDGLHQW IURP IUHVKZDWHU WR RFHDQLF ZDWHU ,W LV VWUHVVHG DJDLQ WKDW WKH JUDGLHQW FRQFHSW WUHDWV IDXQDO GLVWULEXWLRQ DV D FRQWLQXXP LQ WKDW LW UHFRJQL]HV JUHDW RYHUODS LQ XVH RI D YDULHW\ RI KDELWDWV E\ DTXDWLF IDXQD $Q DSSURSULDWH V\VWHP RI JUDSKLF V\PEROV UHSUHVHQWLQJ NQRZQ SUHIHUHQFHf LOOXVWUDWHV WKLV SRLQW $SSHQGL[ %f )RU H[DPSOH VKDUNV DUH GHSLFWHG DV JHQHUDOO\ RFFXUULQJ LQ WKH LQVKRUH PDQJURYHVHDJUDVV KDELWDWV HVWXDULQH DQG RFHDQLF PDQJURYH DUHDVf DV ZHOO DV RQ WKH *XOI VKHOI EXW SUHIHU WKH ODWWHU HQYLURQPHQW 7DEOH %Of )LJXUH LV D VFKHPDWLF LOOXVWUDWLRQ RI WKH JUDGLHQW GLVWULEXWLRQ EDVHG RQ WKH SURFHGXUH MXVW GLVFXVVHG DQG SUHVHQWHG LQ GHWDLOf LQ $SSHQGL[ % 7KH SDWWHUQ LV LQIRUPDWLYH ,W FOHDUO\ LQGLFDWHV E\ WKH JUHDW RYHUODS LQ EDUVf WKDW WKH HVWXDULQH DQG RFHDQLF YHUWHEUDWHV SUHGRPLQDQWO\ ILVKHVf UHSUHVHQWHG E\ ]RRDUFKDHRORJLFDO UHPDLQV DUH KLJKO\ PRELOH FRPSDUHG WR WKH LQYHUWHEUDWH IDXQD SUHGRPLQDQWO\ PROOXVFVf 7KH KLJK PRELOLW\ RI ILVKHV LV GXH WR QXPHURXV IDFWRUV LQFOXGLQJ WKHLU IUHHVZLPPLQJ QDWXUH OLIHF\FOH EHKDYLRU GDLO\ VDOLQLW\ WROHUDQFHV DQG IHHGLQJ KDELWV &RPS DQG 6HDPDQ 'D\ HW DO /HZLV HW DO f ,QYHUWHEUDWH UHPDLQV DV VXJJHVWHG E\ )LJXUH DUH HYHQ PRUH HQYLURQPHQWDOO\ LQIRUPDWLYH WKDQ ILVK EHFDXVH WKH DQLPDOV

PAGE 92

JHQHUDOO\ DUH QRW DV PRELOH DQG RIWHQ DUH UHVWULFWHG WR YHU\ VSHFLILF VDOLQLW\ UDQJHV DORQJ WKH JUDGLHQW 7KH VHFRQG SURFHGXUH RI WKH JUDGLHQW DQDO\VLV SUHVHQWV D ]RRDUFKDHRORJLFDO VSHFLHV GLVWULEXWLRQ E\ VLWH DQG DEXQGDQFH $SSURSULDWH V\PEROV DUH XVHG IRU YDULDWLRQ LQ DEXQGDQFH EDVHG RQ 01, $SSHQGL[ %f )RU WKLV H[HUFLVH RQO\ DGMXVWPHQWV ZHUH PDGH WR WKH 8VHSSD 01, UHSUHVHQWLQJ RQO\ RQH FROXPQ OHYHO DV RSSRVHG WR IRXU OHYHOV IRU RWKHU VLWHVf WR PDNH WKHP PRUH FRPSDUDEOH WR WKH RWKHU VLWH 01, FRXQWV 7KH VLWH GLVWULEXWLRQV DUH LOOXVWUDWHG DORQJ ZLWK WKH KDELWDW SUHIHUHQFH VHULDWLRQ GLVFXVVHG DERYHf IRU WKH YHUWHEUDWHV 7DEOH %Of DQG WKH LQYHUWHEUDWHV 7DEOH %f )URP UHVXOWLQJ VLWH SDWWHUQV LW FDQ EH LQIHUUHG IURP WKH VSHFLHV GLVWULEXWLRQ WKDW DOO ILYH VWXG\ VLWHV ZHUH SULPDULO\ DVVRFLDWHG ZLWK PDQJURYHIULQJHG HVWXDULQH DQG RFHDQLF ED\ LQFOXGLQJ VHDJUDVV PHDGRZVf HQYLURQPHQWV +RZHYHU ZLWKLQ WKLV JHQHUDOL]HG SDWWHUQ LQWHUVLWH GLIIHUHQFHV EDVHG RQ KDELWDW SUR[LPLW\ HJ RI PDUVKHV DQG RFHDQ LQOHWVf DQG DEXQGDQFH HJ RI VHDJUDVV PHDGRZf FDQ EH GHWHFWHG LQ WKH GLVWULEXWLRQ SDWWHUQV )RU H[DPSOH VRPH %LJ 0RXQG .H\ IDXQD DSSHDU DW WKH ORZVDOLQLW\ HQG RI WKH JUDGLHQW VHH 7DEOH %Of SHUKDSV GXH WR WKH SUR[LPLW\ RI &DSH +D]HnV IUHVKZDWHU PDUVKHV UDWKHU WKDQ D ULYHULQH VLWXDWLRQ 7KLV VLWH VDPSOH DOVR FRQWDLQV IDXQD WKDW VXJJHVW D KLJKVDOLQLW\ UDQJH DQG KLJK ILVK GLYHUVLW\ WKLUW\RQH VSHFLHV IURP WKH IRXU VDPSOHVf

PAGE 93

UHIOHFWLQJ WKH SUR[LPLW\ RI *DVSDULOOD 3DVV )LJXUH VHH :DQJ DQG 5DQH\ f 7KH &DVK 0RXQG VDPSOH UHIOHFWV D VHWWLQJ RI ORZ WR PLGVDOLQLW\ EDVHG RQ WKH KLJK OHYHO RI R\VWHU H[SORLWDWLRQ DQG ORZ GLYHUVLW\ RI ILVKHV WZHQW\WKUHH VSHFLHV IURP WKH IRXU VDPSOHVf 8VHSSD DQG -RVVO\Q LVODQGV IDOO LQWR WKH PLG WR KLJKVDOLQLW\ UDQJH ZLWK GHFUHDVLQJ R\VWHU EHGV DQG LQFUHDVLQJ GHQVLWLHV RI VHDJUDVV PHDGRZ $SSHQGL[ %f 7KHVH VLWH PLGGHQ VDPSOHV SDUWLFXODUO\ WKRVH RI -RVVO\Q SURGXFHG WKH JUHDWHVW DEXQGDQFH RI VHDJUDVV ILVKHV $ WRWDO RI WKLUW\RQH ILVK VSHFLHV ZDV LGHQWLILHG IURP WKH IRXU -RVVO\Q VDPSOHV 7KH %XFN .H\ IDXQDO UHPDLQV LQGLFDWH WKH KLJKHVW 01, RI DQLPDOV IURP OLWWRUDO*XOI DUHDV SODFLQJ %XFN .H\ QHDUHVW WKH KLJKVDOLQLW\ HQG RI WKH HVWXDULQH VFDOH 7KH SUHKLVWRULF HFRORJLFDO VHWWLQJ IRU %XFN .H\ PD\ KDYH EHHQ VLPLODU WR WKH RFHDQLF ED\ VLWXDWLRQ RI 2GXP DQG FROOHDJXHV f VXSSRUWLQJ D JUHDWHU GLYHUVLW\ RI ILVKHV WKDQ GR RWKHU HQYLURQPHQWV 2I WKH ILYH VWXG\ VLWHV LQGHHG WKH %XFN .H\ IDXQDO UHPDLQV % 7DEOH $f SURGXFHG WKH KLJKHVW QXPEHU RI WD[D IRU ERWK YHUWHEUDWH f DQG LQYHUWHEUDWH f JURXSV IRU DQ\ VLQJOH VDPSOH /RRNLQJ DW %XFN .H\nV IRXU VDPSOHV DV D XQLW D WRWDO RI ILVK VSHFLHV ZDV LGHQWLILHG $V D GHVFULSWLYH WRRO D JUDGLHQW DQDO\VLV EUHDNV GRZQ D FRPSOH[ HQYLURQPHQW VXFK DV &KDUORWWH +DUERU LQWR

PAGE 94

XQGHUVWDQGDEOH VHJPHQWV WKDW DUFKDHRORJLVWV FDQ UHODWH WR SUHKLVWRULF KXPDQ DGDSWDWLRQ 6DOLQLW\ XVHG KHUH URXJKO\ WR GHILQH WKRVH VHJPHQWV IRU &KDUORWWH +DUERU LV RI FRXUVH RQO\ RQH RI PDQ\ YDULDEOHV GHWHUPLQLQJ IDXQDO GLVWULEXWLRQ DORQJ DQ HVWXDULQH JUDGLHQW ,W LV KRZHYHU SHUKDSV WKH PRVW DSSURSULDWH DQDO\WLF IDFWRU IRU DUFKDHRORJLFDO ZRUN EHFDXVH IRU DQ\ JLYHQ SRLQW ORFDWLRQ WKH VDOLQLW\ UHJLPH LV UHIOHFWHG LQ ]RRDUFKDHRORJLFDO DVVHPEODJHV SDUWLFXODUO\ WUXH RI PROOXVFDQ UHPDLQVf

PAGE 95

)LJXUH 0RQWKO\ 6DOLQLW\ 3URILOHV RI )RXU $TXDWLF /RFDWLRQV LQ WKH 1RUWKHUQ 3DUW RI WKH &KDUORWWH +DUERU (VWXDULQH &RPSOH[ ,OOXVWUDWLQJ WKH )UHVK WR 6DOW :DWHU *UDGLHQW 'DWD DUH DIWHU :DQJ DQG 5DQH\ f

PAGE 97

)LJXUH &RPSDUDWLYH 3HUFHQWDJHV RI =RRDUFKDHRORJLFDO 01, E\ 6LWH 5HSUHVHQWLQJ ([SORLWHG +DELWDWV %DVHG RQ 'DWD 3UHVHQWHG LQ $SSHQGL[ $f

PAGE 99

)LJXUH 7KRUDFLF 9HUWHEUDH :LGWKV RI %RQ\ )LVKHV DV DQ ,QGLFDWRU RI 2YHUDOO )LVK 6L]H IRU &DVK 0RXQG -RVVO\Q ,VODQG DQG %XFN .H\

PAGE 100

)5(48(1&< ),6+ 9(57(%5$ :,'7+ PPf

PAGE 101

)LJXUH $ 6FKHPDWLF ,OOXVWUDWLRQ RI WKH 5HODWLRQVKLS EHWZHHQ $TXDWLF 9HUWHEUDWHV DQG ,QYHUWHEUDWHV 5HFRYHUHG IURP WKH )LYH 6WXG\ 6LWHV DQG WKH (VWXDULQH *UDGLHQW %DVHG RQ WKH 'HWDLOHG 'DWD 3UHVHQWHG LQ $SSHQGL[ %f

PAGE 102

2FHDQLF 0DQJURYH %DVLQ 0DQJURYH 6WUHDP 0DQJURYH (VWXDU\ 0DQJURYH 2FHDQLF /LWWRUDO *XOI 7LGDO 6WUHDP 0DQJURYH (GJH 2\DWHU %HG 6HDJUDVV 0HDGRZ /LWWRUDO *XOI

PAGE 103

&+$37(5 $ 7(0325$/ 3(563(&7,9( 21 5(6285&( +(7(52*(1(,7< (QYLURQPHQWDO &RQWLQXLW\ DQG &KDQJH 7KH WLPHOHVV PRGHO RI VSDWLDO UHVRXUFH KHWHURJHQHLW\ IRU &KDUORWWH +DUERU SUHVHQWHG DERYH SURYLGHV D KHXULVWLF FRQWH[W IRU UHFRJQLWLRQ RI HQYLURQPHQWDO FRQWLQXLW\ DQG FKDQJH LQ SUHKLVWRU\ 7KH QRWLRQV RI FRQWLQXLW\f DQG FKDQJH DUH GHSHQGHQW RQ WKH HIIHFWLYH VFDOH $W QDUURZ VFDOHV WKRVH RI GDLO\ WR VHDVRQDO WLPH SHULRGV FRQWLQXLW\ PD\ EH SHUFHLYHG DV QRQH[LVWHQW ,Q RWKHU ZRUGV FKDQJH LV WKH QRUP $W EURDGHU VFDOHV RI VHYHUDO KXQGUHGV RI \HDUV RQH FDQ SHUFHLYH PXOWLSOH SHULRGV RI FRQWLQXLW\ LQWHUVSHUVHG ZLWK SHULRGV RI FKDQJH )RU WKH SXUSRVHV RI WKLV VWXG\ FKDQJHV RI IDXQDO VWDWH LH LQFUHDVHV RU GHFUHDVHV LQ WKH NLQGV RI DQLPDOV LQ D ORFDOHf DQG IDXQDO FRQGLWLRQ LH LQFUHDVHV RU GHFUHDVHV LQ WKH DEXQGDQFH RI DQLPDOV LQ D ORFDOHf FRQVWLWXWH VLJQDWXUHV RI HQYLURQPHQWDO FKDQJH 'LQFDX]H f 6XFK VLJQDWXUHV LQ DQ HVWXDULQH HQYLURQPHQW VKRXOG EH DQWLFLSDWHG EHFDXVH RI WKH G\QDPLF QDWXUH RI HVWXDULHV KHQFH RI KHWHURJHQHRXV IRRG UHVRXUFHVf WKURXJK WLPH H[LVWLQJ DW VFDOHV UDQJLQJ IURP VLQJOHGD\ SHULRGV WR WUHQGV RI VHYHUDO KXQGUHG \HDUV ,Q WKLV VHFWLRQ WKHQ WKH

PAGE 104

SRWHQWLDO RI &KDUORWWH +DUERUnV ]RRDUFKDHRORJLFDO HVWXDULQHPDULQH IDXQD WR VHUYH DV GDWD WKDW SURYLGH LQGLUHFW PHDVXUHV RI JHRSK\VLFDO FKDQJH LV H[DPLQHG 7KLV LV GRQH LQ WKUHH VWHSV )LUVW SRWHQWLDO FDXVDO IDFWRUV RI FKDQJH LQ WKH DYDLODELOLW\ RI IDXQD IRU KXPDQ XVH DUH H[SORUHG 7KHVH JHRSK\VLFDO IDFWRUV XOWLPDWHO\ VWHP IURP FOLPDWLF YDULDWLRQ REVHUYDEOH DW PXOWLSOH VFDOHV &OLPDWH LV FRQVLGHUHG E\ KLVWRULFDO VFLHQWLVWV IRFXVVHG RQ WKH 4XDWHUQDU\ SHULRG WR EH WKH IRUFLQJ YDULDEOH WKDW LV PRVW LQGHSHQGHQW RI DOO RWKHU HQYLURQPHQWDO IDFWRUV 'LQFDX]H f &OLPDWLF YDULDWLRQ DW GLIIHUHQW VFDOHV LV K\SRWKHVL]HG WR KDYH LQIOXHQFHG SDVW KXPDQ EHKDYLRU IRU PDQ\ RWKHU JHRJUDSKLF DUHDV HJ 'HDQ HW DO )RODQ HW DO *XQQ DQG $GDPV ,QJUDP HW DO 0RRUH f ,Q WKLV GLVVHUWDWLRQ SRWHQWLDO IDFWRUV DUH GLVFXVVHG XQGHU VKRUW PHGLXP DQG ORQJWHUP VFDODU FODVVLILFDWLRQV RI HQYLURQPHQWDO FKDQJH $OWKRXJK JOREDO FOLPDWLF YDULDELOLW\ GULYHV RWKHU HQYLURQPHQWDO V\VWHPV LW GRHV VR YDULDEO\ GHSHQGLQJ RQ D KRVW RI ORFDO IDFWRUV IRU DQ\ SDUWLFXODU JHRJUDSKLF DUHD )RU WKLV UHDVRQ WKH FKDQJH FODVVLILFDWLRQV DUH IXUWKHU GLYLGHG LQWR JHRSK\VLFDO WRSLFV DSSURSULDWH IRU WKH &KDUORWWH +DUERU HQYLURQPHQW 6HFRQG WKH LQWHUSUHWLYH SRWHQWLDO RI ]RRDUFKDHRORJLFDO DVVHPEODJHV DV SDOHRHQYLURQPHQWDO GDWD LV GLVFXVVHG LQ OLJKW RI WKH SUREOHP RI WLPH UHVROXWLRQ 7KLUG IURP D

PAGE 105

SDOHRHQYLURQPHQWDO SHUVSHFWLYH WKH &KDUORWWH +DUERU ]RRDUFKDHRORJLFDO IDXQD DUH H[DPLQHG IROORZLQJ D FKURQRORJLFDO RUGHU IURP WKH HDUOLHVW VDPSOHV WR WKH ODWHVW 8QFDOLEUDWHG UDGLRFDUERQ GDWHV DUH XVHG LQ RUGHU WR IDFLOLWDWH FRPSDULVRQ ZLWK WKH ILQGLQJV RI +RORFHQH JHRORJLVWV VHH EHORZf 3RWHQWLDO 6KRUWWHUP (QYLURQPHQWDO &KDQJH 6KRUWWHUP LV GHILQHG DV WLPH LQWHUYDOV UDQJLQJ IURP RQH GD\ WR LQWUDDQQXDO VHDVRQV (QYLURQPHQWDO FKDQJH DW WKLV VFDOH IRU &KDUORWWH +DUERU LQFOXGHV LVRODWHG VLQJXODULWLHV VXFK DV IUHH]HV UHG WLGHV DQG VWRUPV DV ZHOO DV QRUPDO VHDVRQDO IOXFWXDWLRQV ,Q WHUPV RI DWPRVSKHULF FLUFXODWLRQ WKLV LV WKH VFDOH RI ZHDWKHU DV RSSRVHG WR WKH EURDGHU FOLPDWH )UHH]HV 5HG 7LGHV DQG 6WRUPV )UHH]HV DQG UHG WLGHV DUH GLVUXSWLYH EXW LQIUHTXHQW HYHQWV LQ &KDUORWWH +DUERU (VWHYH] 5f +RZHYHU WKH IUHTXHQF\ RI IUHH]HV UHVXOWLQJ LQ PDVVLYH NLOOV RI VXEWURSLFDO ILVK 6WRUH\ 6WRUH\ DQG *XGJHU f PD\ KDYH IOXFWXDWHG LQ WKH SDVW UHVSRQGLQJ WR ZDUP DQG FRRO FOLPDWLF LQWHUYDOV 5HG WLGHV UHVXOWLQJ LQ ILVK NLOOV DQG VKHOOILVK FRQWDPLQDWLRQ PD\ KDYH EHHQ HYHQ PRUH LQIUHTXHQW LQ WKH SDVW VHH (VWHYH] 5f (QYLURQPHQWDO UHFRYHU\ IURP WKHVH WZR GLVWXUEDQFHV DW OHDVW LQ WHUPV RI IDXQDO XVH E\ KXPDQV LV UDSLG RFFXUULQJ ZLWKLQ WZR WR WKUHH ZHHNV HJ 6WRUH\ DQG *XGJHU f

PAGE 106

/RZLQWHQVLW\ VWRUPV DUH D SDUW RI QRUPDO GDLO\ DQG VHDVRQDO DWPRVSKHULF SURFHVVHV VR WKDW WKHVH GLVFRQWLQXLWLHV DORQJ ZLWK IUHH]HV DQG UHG WLGHV FRXOG EH HDVLO\ EXIIHUHG E\ VWRUHG VXUSOXVHV RI SUHVHUYHG ILVK $ IUHH]H RU UHG WLGH FRXOG DFWXDOO\ VXSSO\ WKH QHHGHG VXUSOXV LI ILVK ZHUH TXLFNO\ JDWKHUHG ZKHQ LQLWLDOO\ QXPEHG E\ FROG ZDWHUV RU DVSK\[LDWHG E\ UHG WLGH (GLF 6WRU\ DQG *XGJHU f +LJKLQWHQVLW\ VWRUPV RU KXUULFDQHV DQG WKHLU DVVRFLDWHG ZLQGV VWRUP VXUJHV DQG UDLQV FDQ KDYH VLJQLILFDQW LPSDFW *HQWU\ f RQ D QRUPDOO\ ORZHQHUJ\ PLFURWLGDO FRDVWDO DUHD VXFK DV &KDUORWWH +DUERU 7KH EUXQW RI WKH KLJKHQHUJ\ GLVWXUEDQFH WKRXJK LV XVXDOO\ ERUQH E\ WKH SURWHFWLYH EDUULHU LVODQG FKDLQ 0DMRU KXUULFDQHV ZLWK VXUJHV JUHDWHU WKDQ P LQ KHLJKWf KRZHYHU FDQ UHVXOW LQ D VXEVWDQWLDO VHGLPHQWDU\ LPSDFW RQ HQFORVHG HVWXDULQH ED\V 'DYLV HW DO *DOOL 3HUOPXWWHU f (IIHFWV UHODWLQJ WR DTXDWLF IDXQDO GLVWULEXWLRQ LQFOXGH DOWHUDWLRQ RI WKH QRUPDO VDOLQLW\ JUDGLHQW LQFUHDVHG WXUELGLW\ R[\JHQ GHSOHWLRQ GLVUXSWLRQ RI VXEVWUDWHV DQG VHDJUDVVHV GHVWUXFWLRQ RI PDQJURYH IRUHVWV GLVSODFHG LPEHGGHG PROOXVFV DQG GHVWUXFWLRQ RI R\VWHU EDUV &UDLJKHDG DQG *LOEHUW 5RELQV 7DEE DQG -RQHV 7KRPDV HW DO f 0DVV PRUWDOLW\ RI ERWK YHUWHEUDWH DQG LQYHUWHEUDWH DQLPDOV RFFXUV $ SRVWVWRUP PDVV PRUWDOLW\ RI

PAGE 107

ILVK GXH WR R[\JHQGHSOHWHG ZDWHUV 7DEE DQG -RQHV f PLJKW KDYH VXSSOLHG D VKRUWWHUP IRRG VXUSOXV LQ D PDQQHU VLPLODU WR WKH IUHH]H DQG UHG WLGH VLWXDWLRQV 3RVWKXUULFDQH REVHUYDWLRQV VXJJHVW WKDW DGYHUVH FRQGLWLRQV DUH WHPSRUDU\ WKH VDOLQLW\ JUDGLHQW UHWXUQV WR QRUPDO ZLWKLQ VL[ ZHHNV 7DEE DQG -RQHV f VHDJUDVVHV UHJHQHUDWH UDSLGO\ GXH WR D IDVW JURZWK UDWH 7KRPDV HW DO f DQG ILVK UHWXUQ ZLWKLQ DV OLWWOH DV WZR ZHHNV EHJLQQLQJ ZLWK WKH DSSHDUDQFH RI WKH ORZ R[\JHQWROHUDQW VHD FDWILVK 7DEE DQG -RQHV f 0XOWLSOH KXUULFDQHV RFFXUULQJ LQ TXLFN VXFFHVVLRQ RQ WKH RWKHU KDQG FDQ UHVXOW LQ D VXEVWDQWLDOO\ OHQJWKHQHG UHFRYHU\ WLPH :HOOV f 6HDVRQDO 9DULDELOLW\ &KDUORWWH +DUERU IDOOV ZLWKLQ .RSSHQnV WURSLFDO ZHWDQGGU\ RU $Z FODVVLILFDWLRQ GHILQHG E\ D FRRO PRQWK WHPSHUDWXUH DYHUDJH RI DW OHDVW r & 2OLYHU DQG +LGRUH f 8QOLNH WHPSHUDWH DUHDV WR WKH QRUWK VHDVRQDO PLJUDWLRQ RI &KDUORWWH +DUERU IDXQD GXH WR WHPSHUDWXUH YDULDWLRQ LV PLQLPDO :DQJ DQG 5DQH\ f GRFXPHQW IRU f D GHFUHDVH LQ RYHUDOO ILVK DYDLODELOLW\ GXULQJ -DQXDU\ DQG )HEUXDU\ FRRO WHPSHUDWXUHV LH ZKHQ DLU DQG ZDWHU WHPSHUDWXUHV UHDFK r & DQG EHORZf 7KH GRPLQDQW YDULDWLRQ WKURXJKRXW WKH \HDU LV WKH IOXFWXDWLRQ LQ SUHFLSLWDWLRQ 0RUH WKDQ b XVXDOO\ IDOOV

PAGE 108

EHWZHHQ WKH PRQWKV RI -XQH DQG 6HSWHPEHU 7D\ORU f &RQVHTXHQWO\ WKH VDOLQLW\ JUDGLHQW IOXFWXDWHV ZLWK WKLV UDLQIDOO SDWWHUQ SURGXFLQJ D UHVSRQVLYH IDXQDO GLVWULEXWLRQ +RZHYHU LQ D 1RUWK &DUROLQD HVWXDU\ :HOOV f IRXQG WKDW XQGHU QRUPDO DQQXDO UDLQIDOO SDWWHUQV WKH JUHDW PDMRULW\ RI R\VWHU EDU HSLELRQWV DUH SUHVHQW \HDUURXQG VXJJHVWLQJ OLWWOH VHDVRQDO FKDQJH LQ GLVWULEXWLRQ RI WKDW VHJPHQW RI WKH IDXQD ([WUHPHV RI UDLQIDOO IORRG RU GURXJKWf FDQ GHFUHDVH SURGXFWLYLW\ RI FHUWDLQ UHVRXUFHV SDUWLFXODUO\ WKDW RI WKH VHVVLOH R\VWHU 8QXVXDOO\ SURORQJHG GD\V RU PRUHf KHDY\ ULYHU GLVFKDUJH IORRG FRQGLWLRQVf FDQ SXVK WKH ZDWHUnV VDOLQLW\ EHORZ WKH R\VWHUnV WROHUDQFH UHVXOWLQJ LQ LWV GHDWK $OOHQ DQG 7XUQHU f ZKLOH H[WHQGHG SHULRGV RI KLJK VDOLQLW\ GXH WR GURXJKW LQFUHDVH WKH IUHTXHQF\ RI SUHGDWLRQ DQG GLVHDVH VHH :RRGEXUQ IRU DQ H[DPSOH RI DEQRUPDOO\ KLJK VDOLQLWLHV GXH WR GURXJKWf :DQJ DQG 5DQH\ f IRXQG WKDW HVSHFLDOO\ KHDY\ UDLQIDOO VXFK DV ZDV UHFRUGHG IRU -XO\ VHH ORZHUHG VDOLQLWLHV )LJXUH f FRUUHODWHG ZLWK D GHFUHDVHG DYDLODELOLW\ RI ILVKHV 0HGLXP RU ORQJWHUP FRROLQJ RU ZDUPLQJ WUHQGV PD\ KDYH DOWHUHG WKH QRUPDO VHDVRQDO UDLQIDOO SDWWHUQ )RU H[DPSOH RQH VWXG\ VXJJHVWV WKDW GXULQJ SDVW FRRO SHULRGV VXFK DV WKH /LWWOH ,FH $JH PHDQ -DQXDU\ SUHFLSLWDWLRQ LQ VRXWK )ORULGD PD\ KDYH LQFUHDVHG E\ b ZKLOH VXPPHU SUHFLSLWDWLRQ

PAGE 109

GHFUHDVHG E\ D VLPLODU DPRXQW 6DQFKH] DQG .XW]EDFK )LJXUH f 7KH VDPH LQWUDDQQXDO DOWHUDWLRQ LV VXJJHVWHG IRU WKH
PAGE 110

EHWZHHQ ZDUP WUHQGV DQG WKH LQFUHDVH RI PDMRU VWRUP ZLQWHU VWRUPV DQG KXUULFDQHVf DFWLYLW\ LQ VRXWK )ORULGD *DOOL f 0HDQ DQQXDO VHD OHYHO DOVR IOXFWXDWHV ZLWKLQ URXJKO\ D FP UDQJHf RYHU WLPH DW WKLV VFDOH DQG DSSHDUV WR EH UHODWHG WR VRODU DFWLYLW\ *DOOL f ,QOHW '\QDPLFV ,Q WKH &KDUORWWH +DUERU EDUULHU LVODQG FKDLQ SUHVHQWGD\ LQOHWV LQFOXGH *DVSDULOOD 3DVV %RFD *UDQGH 3DVV &DSWLYD 3DVV 5HGILVK 3DVV DQG %OLQG 3DVV )LJXUH f )RU WKH PRVW SDUW WKHVH LQOHWV H[LVW WRGD\ XQGHU QDWXUDO FRQGLWLRQV LH QR KXPDQPDGH MHWW\ V\VWHPVf 0RVW FRDVWDO LQOHWV H[LVW LQ D FRQVWDQW VWDWH RI FKDQJH 7KH G\QDPLF QDWXUH RI LQOHWV SULPDULO\ UHVXOWV IURP WKH JHRSK\VLFDO SURFHVVHV RI RQVKRUH WUDQVSRUW ORQJVKRUH WUDQVSRUW DQG VWRUP EUHDFKLQJ RI VHGLPHQWV 7KXV VDQGV DVVRFLDWHG ZLWK LQOHWV FDQ EH SHUFHLYHG DV PLJUDWLQJ GHSRVLWV DV WKH\ HURGH RU DFFUHWH $W PXOWLSOH WLPH VFDOHV F\FOLFDO FORVLQJ DQG RSHQLQJ RI DQ LQOHW FDQ DOWHU ORFDO VDOLQLW\ FRQGLWLRQV LQ WKH ODJRRQ DIIHFWLQJ DTXDWLF IDXQDO GLVWULEXWLRQ $OVR LQOHWV SURYLGH HQWU\ DQG H[LW DYHQXHV IRU ODUJH SUHGDWRU\ PDULQH ILVKHV HJ VKDUNVf $OWKRXJK D VLQJOH KXUULFDQH FDQ FUHDWH DQ LQOHW WKH UHVXOWLQJ FKDQJH RI QHDUE\ ZDWHU FRQGLWLRQV DQG DFFHVV WDNHV HIIHFW DW PHGLXP WR ORQJWHUP VFDOHV $W WKH PHGLXPWHUP VFDOH PDQ\ LQOHWV ZRXOG KDYH PLJUDWHG 7KLV LV EHVW LOOXVWUDWHG DW %OLQG 3DVV ZKLFK KDV

PAGE 111

PLJUDWHG DFWLYHO\ LQ UHFHQW KLVWRU\ +DUYH\ 0LVVLPHU f DQG SUHVXPDEO\ LQ SUHKLVWRU\ DV ZHOO *DVSDULOOD 3DVV LV DOVR FRQVLGHUHG WR EH XQVWDEOH GXH WR D VKLIWLQJ FKDQQHO %UXXQ f $Q ROG LQOHW 3DFNDUG 3DVV ORFDWHG PLGZD\ DORQJ 1RUWK &DSWLYD ,VODQG LV QRZ FORVHG DQG REVFXUHG E\ DFFUHWLRQ RI PLJUDWLQJ VHGLPHQWV +DUYH\ f 5HGILVK 3DVV )LJXUH f ZDV RSHQHG GXULQJ D KXUULFDQH (VWHYH] 30 +DUYH\ f FUHDWLQJ D P ZLGH LQOHW +HUZLW] f UHSRUWV WKDW E\ 5HGILVK 3DVV DOUHDG\ KDG QDUURZHG WR D P RSHQLQJ GXH WR DFFUHWLRQ RQ WKH VRXWKHUQ HQG RI 1RUWK &DSWLYD ,VODQG 7KH SUH KLVWRU\ RI WKLV LQOHW LV XQNQRZQ %RFD *UDQGH &DSWLYD DQG 3ODWW 3DVVHV DUH GLVFXVVHG XQGHU ORQJWHUP FKDQJH EHORZ 3RWHQWLDO /RQJWHUP (QYLURQPHQWDO &KDQJH /RQJWHUP LV GHILQHG E\ WLPH LQWHUYDOV UDQJLQJ IURP RQH KXQGUHG WR VHYHUDO KXQGUHG \HDUV $W WKLV VFDOH VLJQLILFDQW IDFWRUV LQ HVWXDULQH IDXQDO GLVWULEXWLRQ DUH FOLPDWLF YDULDELOLW\ LQOHW G\QDPLFV DQG VHDOHYHO IOXFWXDWLRQV &OLPDWLF 9DULDELOLW\ 7KDW F\FOLFDO ZDUPLQJ DQG FRROLQJ WUHQGV KDYH RFFXUUHG DW WKLV WLPH VFDOH GXULQJ WKH +RORFHQH (SRFK HJ 'HQWRQ DQG .DUOQ )DLUEULGJH /RZULH DQG )DLUEULGJH 0LOOHU f DQG WKDW WKH\ LPSDFWHG KXPDQ EHKDYLRU

PAGE 112

HJ )DLUEULGJH ,QJUDP HW DO :HQGODQG DQG %U\VRQ f DUH ZHOO NQRZQ &OHDUO\ VXFK JOREDO ORQJWHUP FOLPDWLF WUHQGV VKRXOG DIIHFW &KDUORWWH +DUERUnV IDXQDO GLVWULEXWLRQ GXH SULPDULO\ WR YDULDEOH VHD OHYHOV HJ YDULDELOLW\ LQ WKH VDOLQLW\ JUDGLHQW DW WKH VFDOH RI VHYHUDO KXQGUHG \HDU LQWHUYDOVf $ GLIILFXOW\ KRZHYHU OLHV LQ WKH JUHDW JHRJUDSKLF YDULDWLRQ GXH WR ODJV LQ UHVSRQVH WLPH DQG RWKHU YDULDEOHV 2QH LPSRUWDQW YDULDEOH IRU H[DPSOH LV WKDW WURSLFDOVXEWURSLFDO ODWLWXGHV DUH LPSDFWHG IDU OHVV E\ WHPSHUDWXUH IOXFWXDWLRQV FRPSDUHG WR KLJKHU ODWLWXGHV /DPE )DLUEULGJH f 2QH PXVW WKHUHIRUH REWDLQ ORFDO FOLPDWH GDWD IRU DQ\ SDUWLFXODU KXPDQHQYLURQPHQWDO UHFRQVWUXFWLRQ RI WKH SDVW 'LQFDX]H ,QJUDP HW DO f 8QIRUWXQDWHO\ WKH VXEWURSLFDO UHJLRQ RI VRXWK )ORULGD LV VHYHUHO\ ODFNLQJ LQ FOLPDWLF VWXGLHV EDVHG RQ UHODWLYHO\ GHSHQGDEOH GDWD VXFK DV WUHH ULQJV DQG SROOHQ *HRJUDSKLFDOO\ WKH FORVHVW VWXG\ LV WKDW RI :DWWV f IRU VRXWK *HRUJLD DQG WKH FHQWUDO )ORULGD SHQLQVXOD EXW HYHQ WKLV VWXG\ LV QRW DSSURSULDWH IRU XVH KHUH EHFDXVH LWV WLPH UHVROXWLRQ LV WRR ODUJH 2I UHOHYDQFH KHUH 6DQFKH] DQG .XW]EDFK f VXJJHVW WKDW DQ $PHULFDQ VXEWURSLFWURSLF FRROLQJ WUHQG EHJLQQLQJ LQ PLJKW EH XVHG WR LQIHU ORZODWLWXGH FOLPDWLF FRQGLWLRQV IRU HDUOLHU EXW VLPLODU FRRO LQWHUYDOV RI WKH +RORFHQH ,Q SDUWLFXODU WKH GURS LQ PHDQ DQQXDO WHPSHUDWXUHV REVHUYHG

PAGE 113

GXULQJ WKH V LV VHHQ DV DQDORJRXV WR WKH /LWWOH ,FH $JH RI WKH VHYHQWHHQWK WKURXJK QLQHWHHQWK FHQWXULHV 6DQFKH] DQG .XW]EDFK f %DVHG RQ LQVWUXPHQWDO WHPSHUDWXUH DQG SUHFLSLWDWLRQ UHFRUGV IRU WKH WR SHULRG FRPSDUHG ZLWK WKH WR SHULRG WKH DXWKRUV FRQFOXGH WKDW WKH FKDQJH WR D FRROHU FOLPDWH UHSUHVHQWV D VRXWKZDUG VKLIW RI WKH FOLPDWLF SDWWHUQ WKDW KDG EHHQ HVWDEOLVKHG GXULQJ WKH \HDUV WR +RZHYHU VRXWK )ORULGD PD\ KDYH EHHQ OLWWOH DIIHFWHG E\ /LWWOH ,FH $JH WHPSHUDWXUH DQG SUHFLSLWDWLRQ FKDQJHV EHFDXVH SHQLQVXODU )ORULGDnV SUHYDLOLQJ HDVWHUO\ ZLQG SDWWHUQ SUREDEO\ ZDV QRW DOWHUHG FI 6DQFKH] DQG .XW]EDFK )LJXUHV DQG :LOOLDP 7DQQHU SHUVRQDO FRPPXQLFDWLRQ f 7KH PDSV JHQHUDWHG E\ 6DQFKH] DQG .XW]EDFK IRU WKH FRRO V )LJXUHV DQG f LQGLFDWH WKDW VRXWK )ORULGD ZRXOG KDYH H[SHULHQFHG DQ DQQXDO WHPSHUDWXUH GHFUHDVH RI RQO\ r DQG WKDW HVVHQWLDOO\ QR FKDQJH LQ WRWDO DQQXDO SUHFLSLWDWLRQ ZRXOG KDYH RFFXUUHG XQGHU WKHVH VOLJKW FRROLQJ FRQGLWLRQV $QRWKHU FRQVLGHUDWLRQ LV WKDW DQ LQFUHDVHG IUHTXHQF\ RI ZLQWHUVHDVRQ VWRUPV IURP WKH QRUWKZHVW LPSO\LQJ D FKDQJH LQ ZLQG SDWWHUQf FRXOG DOWHU PHDQ VHD OHYHO 6HD/HYHO 9DULDELOLW\ 5HVHDUFK FRQFHUQLQJ +RORFHQH VHDOHYHO FKDQJH RIWHQ LV WUHDWHG ZLWKLQ 4XDWHUQDU\ FRQWH[WV DQG WKXV IRFXVHV DW EURDG WLPH UHVROXWLRQV LH LQFUHPHQWV RI D WKRXVDQG RU

PAGE 114

PRUH \HDUVf )HZHU UHVHDUFKHUV DWWHPSW WLPH LQFUHPHQWV RI RQH WR VHYHUDO FHQWXULHV P\ ORQJWHUP VFDOH LQ WKH SUHVHQW VWXG\f $W ERWK WKRXVDQG\HDU DQG KXQGUHG\HDU UHVROXWLRQV VHDOHYHO YDULDELOLW\ LV WKHRUHWLFDOO\ WKH UHVSRQVH WR DOWHUQDWLQJ HXVWDWLF SHULRGV RI JODFLDWLRQ DQG JODFLDO PHOWLQJ GXH WR YDULDWLRQ LQ JOREDO VRODU UDGLDWLRQ %ULHIO\ WZR VFKRROV RI WKRXJKW FKDUDFWHUL]H WKH UHVHDUFK RI WKRVH ZKRVH JRDO LW LV WR FRQVWUXFW D VLQJOH ZRUOGZLGH VHDOHYHO PRGHO WKHVH DUH WKH FXUYHUV DQG WKH VPRRWKHUV &XUYHUV IHHO WKDW VHD OHYHO KDV IOXFWXDWHG DERYH DQG EHORZ SUHVHQW PHDQ VHD OHYHO QXPHURXV WLPHV GXULQJ WKH +RORFHQH UHVXOWLQJ LQ DQ RYHUDOO ULVH HJ )DLUEULGJH 0UQHU f 7KHVH VPDOO RVFLOODWLRQV FDQ HVSHFLDOO\ EH GHWHFWHG VXEVHTXHQW WR WKH WLPH ZKHQ WKH WUDQVJUHVVLYH UDWH VXEVWDQWLDOO\ VORZHG HVWLPDWHG WR EH FD %3 )DLUEULGJH f 6PRRWKHUV SHUFHLYH WKDW VHD OHYHO KDV FRQWLQXRXVO\ ULVHQ DW VORZLQJ UDWHV DQG KDV QHYHU EHHQ KLJKHU WKDQ LW LV WRGD\ HJ 6FKROO DQG 6WXLYHU 6KHSDUG f 7KHVH UHVHDUFKHUV XVH VWDWLVWLFDO VPRRWKLQJ WHFKQLTXHV WR DFKLHYH WKHLU FRQWLQXRXV FXUYHV ,Q RWKHU ZRUGV WKH\ YLHZ VPDOO LQ DPSOLWXGH DQG WLPHf VHDOHYHO RVFLOODWLRQV DV GDWD HUURUV .XHKQ f /HQJWK\ UHYLHZV RI WKLV FRQWURYHUV\ DUH SUHVHQWHG HOVHZKHUH .XHKQ :LGPHU f

PAGE 115

*HRORJLVWV KDYH UHFRJQL]HG LQ UHFHQW GHFDGHV WKDW GLIIHUHQW FRDVWOLQHV DURXQG WKH ZRUOG H[SHULHQFH YDU\LQJ VHDOHYHO KLVWRULHV RZLQJ WR YDULDWLRQ LQ ORFDO IRUFLQJ YDULDEOHV %ORRP )DLUEULGJH f $W OHDVW RQH JURXS RI UHVHDUFKHUV KRZHYHU KDV SURSRVHG D SUHGLFWLYH PRGHO RI EURDG JHRJUDSKLF WUHQGV WKDW LV UHOHYDQW IRU WLPH VSDQV RI JUHDWHU WKDQ \HDUV &ODUN HW DO &ODUN DQG /LQJOH f )RU H[DPSOH WKHLU =RQH ,,, LQFOXGHV WKH *XOI RI 0H[LFR WKH QRUWKHUQ SRUWLRQ RI $IULFDnV ZHVW FRDVW WKH 0HGLWHUUDQHDQ 6HD DQG D SRUWLRQ RI WKH QRUWKHDVWHUQ 3DFLILF 2FHDQ f§ ORFDWLRQV WKDW VKRXOG H[SHULHQFH VLPLODU UHVSRQVHV WR JOREDO VHD OHYHO FKDQJH 1RQHWKHOHVV LW KDV EHFRPH FOHDU WR DUFKDHRORJLVWV WKDW WKH VFDOHV VSDWLDO DQG WHPSRUDOf ZLWK ZKLFK WKH\ ZRUN UHTXLUH WKH FRQVWUXFWLRQ RI UHODWLYH UHJLRQDO RU HYHQ ORFDOf VHDOHYHO FXUYHV DV D UHVXOW RI JHRJUDSKLF YDULDWLRQ LQ WHFWRQLF LVRVWDWLF VHGLPHQWDU\ DQG ORFDO PHWHRURORJLFDO IRUFHV %ORRP &ODUN HW DO .HOORJJ f 5HODWLYH +RORFHQH FXUYHV KDYH EHHQ FRQVWUXFWHG IRU WKH WHFWRQLFDOO\ VWDEOH DQG ORZ ZDYHHQHUJ\ *XOI FRDVW RI )ORULGD IRU WKH SHULRG VXEVHTXHQW WR %3 $V LV WUXH HYHU\ZKHUH HOVH LQ WKH ZRUOG WKHVH FXUYHV DQG WKH PHWKRGV XVHG LQ WKHLU FRQVWUXFWLRQ DUH KLJKO\ FRQWURYHUVLDO 7KH\ PLUURU WKH WZRVFKRRO GLYLVLRQ GHVFULEHG DERYH )ORULGD *XOI VHDOHYHO FXUYHV DUH SULPDULO\ EDVHG RQ UDGLRFDUERQn GDWLQJ RI WZR YHU\ GLIIHUHQW NLQGV RI VHGLPHQWV PDQJURYH

PAGE 116

SHDWV HJ 5REELQ 6FKROO DQG 6WXLYHU f DQG EHDFK ULGJHV HJ 0LVVLPHU 6WDSRU HW DO 6WDSRU DQG 7DQQHU 7DQQHU f 7KH SHDW GDWDEDVHG VWXGLHV KDYH SURGXFHG VPRRWK FXUYHV DQG WKH EHDFK ULGJH VWXGLHV VXSSRUW RVFLOODWLQJ FXUYHV 7KH QDWXUH RI SHDW GHSRVLWV LV VXFK WKDW UHVHDUFKHUV XVLQJ WKHP RIWHQ DUH XQDEOH WR GHWHFW D IOXFWXDWLQJ +RORFHQH VHD OHYHO RI VXEWOH SURSRUWLRQV VD\ ZLWKLQ WR PHWHUV HLWKHU ZD\ RI SUHVHQW VHD OHYHO )DLUEULGJH 6WDSRU HW DO f 5HFHQW ZRUN KRZHYHU H[DPLQHV SHDWV LQ UHODWLRQ WR VPDOOVFDOH IOXFWXDWLRQV /RZULH DQG )DLUEULGJH f 'DWLQJ EHDFK GHSRVLWV ZKLOH UHVXOWLQJ LQ PXOWLSOH HSLVRGHV RI VHD OHYHO ULVHV DQG IDOOV KDV LWV RZQ VHW RI PHWKRGRORJLFDO SUREOHPV 6WDSRU HW DO f ,W VHHPV WKDW ILQH UHVROXWLRQ RI VHDOHYHO YDULDELOLW\ DW WKH HIIHFWLYH VFDOH RI VHYHUDO FHQWXULHV P\ ORQJWHUP VFDOHf ZRXOG XQGHUVWDQGDEO\ UHTXLUH JHRSK\VLFDO PHWKRGV GLIIHUHQW IURP WKRVH XVHG WR FRQVWUXFW WKH VPRRWK FXUYHV (YHQ WKRVH ZKR SUHVHQW FRQWLQXRXVULVH FXUYHV IRU )ORULGDnV ZHVW FRDVW HJ 6FKROO DQG 6WXLYHU f VXJJHVW WKDW ORZDPSOLWXGH IOXFWXDWLRQV PD\ KDYH H[LVWHG EXW WKDW WKH\ DUH GLIILFXOW LI QRW LPSRVVLEOH WR GHWHFW LQ WKHLU +RORFHQH UHFRUG VHH :LGPHU f
PAGE 117

WKHVH RVFLOODWLRQV FDQ GLUHFWO\ LQIOXHQFH FRDVWDO SDWWHUQV RI KXPDQ VHWWOHPHQW DQG VXEVLVWHQFH 7ZR +RORFHQH VHDOHYHO FXUYHV KDYH EHHQ K\SRWKHVL]HG IRU WKH &KDUORWWH +DUERU DUHD WKH\ DUH EDVHG RQ WKH VWXG\ RI EDUULHU EHDFK ULGJHV DQG DUH LQFRPSOHWH 0LVVLPHU 6WDSRU HW DO f 7KH &KDUORWWH +DUERU UHFRQVWUXFWLRQ LQFOXGHV ILYH IOXFWXDWLRQV LGHQWLILHG WKURXJK WKH VWXG\ DQG UDGLRFDUERQGDWLQJ RI EDUULHU LVODQG EHDFKULGJH VHWV WKUHH ULVHV DQG WZR IDOOV LQ ZDWHU OHYHO EHJLQQLQJ %3 %&f 6WDSRU HW DO f )RU DUFKDHRORJLVWV WKHVH HSLVRGHV UHSUHVHQW D PDMRU DGYDQFHPHQW RYHU VHDOHYHO PRGHOV VXJJHVWHG IRU WKH DUHD E\ :LGPHU f DQG +DOH f DQG VXSSRUW HDUOLHU VXJJHVWLRQV E\ DUFKDHRORJLVWV WKDW VHD OHYHO PD\ KDYH EHHQ KLJKHU WKDQ DW SUHVHQW IRU D SRUWLRQ RI WKH /DWH +RORFHQH *ULIILQ :DONHU :LGPHU D f 6SHFLILFDOO\ 6WDSRU HW DO f LQWHUSUHW EHDFKULGJH VHWV WR LQGLFDWH D ULVH LQ ZDWHU OHYHOV EHJLQQLQJ FLUFD %3 %&f DQG UHDFKLQJ D KLJK VWDQG RI SHUKDSV WR P WR IWf DERYH SUHVHQW VHD OHYHO )LJXUH f (DUOLHU 0LVVLPHU f KDG SURSRVHG D KLJK VWDQG RI WR P WR IWf DERYH SUHVHQW VHD OHYHO IRU WKH VDPH WLPH SHULRG 6HD OHYHO EHJDQ WR GURS DURXQG %3 $' f IDOOLQJ WR WR P WR IWf EHORZ SUHVHQW VHD OHYHO 0LVVLPHU SURYLGHV

PAGE 118

HYLGHQFH IURP D FRUH WKDW ZDWHU OHYHOV IHOO DERXW P IWf EHORZ SUHVHQW OHYHOV FD %3 $' f )URP D WR %3 KLJK VWDQG WR D WR %3 ORZ VWDQG ZDWHU OHYHOV PD\ KDYH GURSSHG WR P WR IWf IROORZLQJ 6WDSRU HW DO f RU WR P WR IWf IROORZLQJ 0LVVLPHU f %HDFK ULGJHV VXJJHVW WKDW WKH VHD EHJDQ WR ULVH DJDLQ DURXQG WR %3 $' WR f WKLV WLPH WR DQ HOHYDWLRQ HTXDOOLQJ WKDW RI WKH SUHVHQW 6WDSRU HW DO f 6HD OHYHO EHJDQ WR IDOO DJDLQ DURXQG %3 $' f DJDLQ WR WR P EHORZ SUHVHQW PHDQ VHD OHYHO 6WDSRU HW DO f 7KH WKLUG ULVH REVHUYHG LQ WKH EHDFK ULGJH SDWWHUQV LV WKDW ZKLFK KDV EHHQ RFFXUULQJ RYHU WKH SDVW WR \HDUV 7KH &KDUORWWH +DUERU FXUYHV DUH LQ OLQH ZLWK 7DQQHUnV f UHFHQW FRPSLODWLRQ RI D FXUYH IRU WKH *XOI RI 0H[LFR UHJLRQ 7DQQHUnV ZRUN DW 6W 9LQFHQW ,VODQG DQG 'RJ ,VODQG DORQJ WKH FRDVW RI WKH )ORULGD SDQKDQGOH LV EDVHG RQ JUDQXORPHWULF DQDO\VHV RI TXDUW] VDQG VDPSOHV WDNHQ IURP EHDFK ULGJHV (YLGHQFH RI VHDOHYHO IOXFWXDWLRQV VLPLODU DW OHDVW LQ SDUWf WR WKH *XOI RI 0H[LFR FRPHV IURP WKH 0HGLWHUUDQHDQ 6QHK DQG .OHLQ f ZHVW $IULFD (LQVHOH HW DO f DQG 'HQPDUN 7DQQHU f 7KH ILUVW WZR DUHDV LQWHUHVWLQJO\ DUH ORFDWHG LQ &ODUN DQG KLV FROOHDJXHVn f =RQH ,,, DORQJ ZLWK WKH *XOI RI 0H[LFR

PAGE 119

$OWKRXJK WKH VHDOHYHO UHFRUG IRU WKH *XOI RI 0H[LFR FRQWLQXHV WR EH GHEDWHG DQG LV IDU IURP FRPSOHWH WKH RVFLOODWLQJ FXUYHV RI 7DQQHU f 0LVVLPHU f DQG 6WDSRU DQG KLV FROOHDJXHV f GHPDQG FRQVLGHUDWLRQ E\ DUFKDHRORJLVWV $ IHZ VXJJHVWLRQV RI DUFKDHRORJLFDO HYLGHQFH IRU VXFK VHDOHYHO YDULDELOLW\ KDYH EHHQ DGYDQFHG IRU FRDVWDO VRXWKZHVW )ORULGD *ULIILQ :DONHU :LGPHU D f ,QOHW '\QDPLFV /DUJH LQOHWV FDQ VWDELOL]H QDWXUDOO\ IRU ORQJ SHULRGV RI WLPH DW WKH VFDOH RI FHQWXULHV %UXXQ f %RFD *UDQGH 3DVV )LJXUH f LV WRGD\ WKH SULPDU\ RXWOHW IRU WKH QRUWKHUQ SDUW RI WKH VWXG\ DUHD 7KLV ODUJH GHHS Pf LQOHW LV OLNHO\ D IRUPHU ULYHU YDOOH\ 7KH FUHDWLRQ RI &DSWLYD 3DVV )LJXUH f GXH WR VWRUPEUHDFKLQJ KDV EHHQ HVWLPDWHG WR KDYH RFFXUUHG EHWZHHQ $' DQG 6WDSRU HW DO f 7KH LQOHW KDV EHHQ PDLQWDLQHG VLQFH WKDW WLPH 7KH DJH HVWLPDWLRQ LV EDVHG RQ WKH WUXQFDWLRQ RI UDGLRFDUERQGDWHG EHDFK ULGJHV 7KH ODWHUDO YDULDELOLW\ WKURXJK WLPH UHSUHVHQWHG E\ ORQJWHUP LQOHW G\QDPLFV WUDQVODWHV LQWR YDULDWLRQ RI WKH VDOLQLW\ JUDGLHQW DQG SRLQWV RI PDULQHWRHVWXDULQH PRYHPHQW 7KH HIIHFW RQ ORFDO DTXDWLF IDXQDO GLVWULEXWLRQ VKRXOG EH VLJQLILFDQW DV QRWHG XQGHU PHGLXPWHUP FKDQJH

PAGE 120

(VWXDULQH0DULQH =RRDUFKDHRORDLFDO )DXQD DV 3UR[\ 'DWD ,QWHUSUHWLYH 3RWHQWLDO DQG 7LPH 5HVROXWLRQ %HFDXVH RI WKH VSDWLDO UHODWLRQVKLS EHWZHHQ WKH HVWXDULQH VDOLQLW\ JUDGLHQW DQG WKH GLVWULEXWLRQ RI HVWXDULQH IDXQD WKH FRQWLQXDO YDULDWLRQ RI WKH JUDGLHQW WKURXJK WLPH ZRXOG KDYH EHHQ D PDMRU GHWHUPLQDQW RI HVWXDULQH DQLPDOV DYDLODEOH WR SUHKLVWRULF UHVLGHQWV RI DQ\ JLYHQ VLWH ORFDWLRQ ,GHDOO\ WKHQ D VLWH IDXQDO DVVHPEODJH VKRXOG UHIOHFW DQ\ FKDQJH LQ WKH SDOHRVDOLQLW\ JUDGLHQW XVLQJ WKH SUHVHQWGD\ JUDGLHQW DV D FRPSDUDWLYH VWDQGDUGf WKDW PLJKW RFFXU 6KHOOILVK DUH DSSURSULDWH IRU WKH GHWHFWLRQ RI SDOHRVDOLQLW\ FRQGLWLRQV EHFDXVH OLYLQJ PROOXVFV JHQHUDOO\ H[KLELW OLPLWHG PRELOLW\ GLIIHUHQW VSHFLHV DUH UHVWULFWHG WR VSHFLILF VDOLQLW\ UDQJHV DORQJ WKH HVWXDULQH JUDGLHQW VHH )LJXUH DQG $SSHQGL[ %f 6HVVLOH ELYDOYHV SUHVHQW WKH PRVW UHOLDEOH LQGLFDWRUV RI DOO EHFDXVH RI WKHLU VWDWLRQDU\ QDWXUH $TXDWLF PROOXVFDQ VSHFLHV FROOHFWHG LQ WKH YLFLQLW\ RI D JLYHQ VLWH ZLOO UHIOHFW WKH VDOLQLW\ UDQJH RI VXUURXQGLQJ ZDWHUV ,Q WKH SUHVHQWGD\ &KDUORWWH +DUERU V\VWHP WKH JUHDWHVW GHQVLW\ RI R\VWHU FRPPXQLWLHV RFFXUV LQ ORFDWLRQV DURXQG &DSH +D]H &KDUORWWH +DUERU SURSHUf 0DWODFKD 3DVV DQG WKH PRXWK RI WKH &DORRVDKDWFKHH 5LYHU )LJXUH f :RRGEXUQ f ,Q WKHVH DUHDV VKHOO PLGGHQ VLWHV H[KLELW JUHDW TXDQWLWLHV RI R\VWHU VKHOO WKXV UHIOHFWLQJ WKH SUHVHQWGD\ GLVWULEXWLRQ RI EDUV

PAGE 121

%HFDXVH RI WKH ODFN RI GLUHFW LQIOX[ RI IUHVKZDWHU LQWR 3LQH ,VODQG 6RXQG 3LQH ,VODQG IXQFWLRQV DV D EDUULHUf VDOLQLWLHV DUH KLJKHU WKHUH DQG VHDJUDVV PHDGRZV DUH H[WHQVLYH 2\VWHU EDUV DUH QHJOLJLEOH RU DEVHQW JDVWURSRG SRSXODWLRQV DUH GHQVH 0LGGHQV LQ 3LQH ,VODQG 6RXQG UHIOHFW WKLV PROOXVFDQ GLVWULEXWLRQ 0LGGHQV LQ ZHVWHUQ 3LQH ,VODQG 6RXQG HVSHFLDOO\ WKRVH QHDU LQOHWV GRFXPHQW D SUHGRPLQDQFH RI KLJK VDOLQLW\ VSHFLHV DV ZHOO DV KLJKHU GLYHUVLWLHV GXULQJ WKH WLPHV ZKHQ LQOHWV ZHUH SUHVHQWf %HFDXVH RI WKHLU JUHDW PRELOLW\ DQG OHVV UHVWULFWHG VDOLQLW\ UDQJHV ILVKHV DUH LQGLFDWLYH RI JUDGLHQW SRVLWLRQ WR D OHVVHU GHJUHH WKDQ PROOXVFV +RZHYHU VRPH ILVKHV HJ VKDUNV DQG RWKHU ODUJH SUHGDWRUVf GHSHQGLQJ RQ WKHLU DEXQGDQFH LQ VLWHV DUH XVHIXO LQ GHWHUPLQLQJ WKH SUHVHQFH RU DEVHQFH RI QHDUE\ LQOHWV WKH KLJKVDOLQLW\ HQG RI WKH FRQWLQXXPf 7KH LPSRUWDQW NH\ KHUH LV UHODWLYH DEXQGDQFH >'LQFDX]HnV f FKDQJH LQ FRQGLWLRQ@ /DUJH SUHGDFHRXV PDULQH ILVKHV IRU H[DPSOH QRUPDOO\ IUHTXHQW WKH VKDOORZ ODJRRQV LQ VHDUFK RI SUH\ VR RQH ZRXOG H[SHFW WR ILQG VRPH RI WKHLU UHPDLQV LQ VLWH PLGGHQV ORFDWHG LQ WKRVH VKDOORZ ODJRRQ DUHDV +RZHYHU D ODUJH DEXQGDQFH RI 01, UHSUHVHQWHG E\ WKHVH UHPDLQV ZRXOG EH H[SHFWHG LI DQ LQOHW LV ORFDWHG QHDUE\ EHFDXVH LW LV DW WKLV IHDWXUH ZKHUH WKHVH ILVKHV ZRXOG EH FRQVWULFWHG LQ WKHLU GLVWULEXWLRQ DW WKH FKDQJH RI WLGHVf DQG WKXV HDV\ SUH\ IRU KXPDQV

PAGE 122

,W LV UHDVRQHG WKDW ILVKLQJ IRU ODUJH ILVKHV UHIOHFWHG LQ WKH IDXQDO DVVHPEODJH DV D ODUJH 01, DQG GLYHUVLW\ RI VSHFLHVf ZRXOG PRUH OLNHO\ RFFXU ZKHUH WKHVH DQLPDOV ZHUH IRUFHG E\ WKH ERXQGDULHV RI DQ LQOHWf WR DJJUHJDWH UDWKHU WKDQ LQ DQ HQYLURQPHQW EURDG VHDJUDVV PHDGRZVf ZKHUH WKH\ ZRXOG GLVSHUVH IRU IHHGLQJ SXUSRVHV 0LGGHQV ORFDWHG QHDU LQOHWV UHIOHFW WKLV SDWWHUQ 7KH RWKHU FRPSRQHQW RI WKH SLVFLQH JUDGLHQW SDWWHUQ LV WKH JHQHUDO SUHIHUHQFH RI MXYHQLOH ILVKHV DQG VPDOO VSHFLHV IRU WKH SURWHFWLYH VKDOORZZDWHU PDQJURYH DQG VHDJUDVV KDELWDWV DQG WKHLU DYRLGDQFH RI LQOHWV 0LGGHQV ORFDWHG QHDU RU VXUURXQGHG E\ WKHVH H[WHQVLYH VKDOORZZDWHU KDELWDWV UHIOHFW DQ DEXQGDQFH RI VPDOO DQG MXYHQLOH ILVKHV DQG LQIUHTXHQW ODUJH ILVKHV $W WKH H[WUHPHV RI WKH VDOLQLW\ JUDGLHQWf§WKH IUHVKZDWHU DQG RFHDQLF HQYLURQPHQWVf§LQWHUVLWH DUFKDHRIDXQDO DVVHPEODJHV DUH HDVLO\ GLVWLQJXLVKHG ,W IROORZV WKDW XQGHU HQYLURQPHQWDO FKDQJH VWDWH RU FRQGLWLRQf VLWHV DW WKH JUDGLHQW H[WUHPHV ZRXOG KROG WKH JUHDWHVW SRWHQWLDO IRU GHWHFWLRQ RI WKDW FKDQJH LH WKH IDXQD DW WKHVH SRLQWV ZRXOG EH WKH PRVW VHQVLWLYH WR FKDQJHf $W WKH VDPH HIIHFWLYH VFDOH LH IRRGV WKDW ZHUH HDWHQ E\ VLWH LQKDELWDQWVf LQWHUVLWH DUFKDHRIDXQDO DVVHPEODJHV UHSUHVHQWLQJ WKH HVWXDULQH HQYLURQPHQW WKDW IDOOV EHWZHHQ WKH WZR H[WUHPHV PD\ DSSHDU YHU\ VLPLODU 7R DWWHPSW GHWHFWLRQ RI SRWHQWLDO HQYLURQPHQWDO YDULDELOLW\ VXFK DV

PAGE 123

WKDW GHVFULEHG LQ WKH DERYH VHFWLRQ RQH PD\ KDYH WR XVH D ILQHU DQDO\WLF VFDOH 7KH R\VWHU EDU FRPPXQLW\ LH R\VWHUV DQG DOO DVVRFLDWHG VSHFLHVf LV WKXV RI VSHFLDO LPSRUWDQFH WR HVWXDULQH SDOHRHQYLURQPHQWDO LQWHUSUHWDWLRQ 7KH SUHVHQFH RI R\VWHU EDUV FDQ VXJJHVW WKH SUHVHQFH RI HVWXDULQH FRQGLWLRQV 7KH R\VWHUnV ZLGH VDOLQLW\ UDQJH WR SSW WKHRUHWLFDOO\ FDQ FRYHU HVVHQWLDOO\ WKH HQWLUH JUDGLHQW KRZHYHU WKH H[WUHPHV DUH WROHUDWHG RQO\ IRU EULHI SHULRGV $W D ILQHU UHVROXWLRQ WKH VSHFLHV FRPSRVLWLRQ RI WKH EDU FRPPXQLW\ DW D JLYHQ WLPH DQG SODFH UHIOHFWV D PXFK PRUH UHVWULFWHG VDOLQLW\ UDQJH ZLWKLQ WKH HVWXDULQH FRQWH[W 'D\ HW DO :HOOV f ,W LV WKH HSLELRQWV DVVRFLDWHG ZLWK WKH R\VWHU LQ WKH EDU FRPPXQLW\ WKDW DOORZ D ILQHWXQLQJ RI VDOLQLW\ LQWHUSUHWDWLRQV :HOOV f 2UJDQLVPV VXFK DV ERULQJ VSRQJHV &OLRQD VSSf FUHVWHG R\VWHU 2VWUHD HTXHVWULVf VOLSSHU VKHOOV &UHSLGXOD VSSf HWF DUH UHOLDEOH LQGLFDWRUV RI VDOLQLW\ FKDQJHV *DOWVRII DQG 0HUULOO +RSNLQV 3XIIHU DQG (PHUVRQ :HOOV f &OXVWHUV RI R\VWHUV WUDQVSRUWHG E\ KXPDQV HYHQ LI FXOOHG DW WKH EDU PXVW KDYH PDLQWDLQHG VRPH GHJUHH RI WKHLU FRPPXQLW\ LQWHJULW\ EHFDXVH WKH VKHOOV RI PDQ\ RI WKHVH DVVRFLDWHG RUJDQLVPV HQWHUHG WKH ]RRDUFKDHRORJLFDO UHFRUG ILUPO\ DWWDFKHG WR KRVW &UDVVRVWUHD R\VWHU VKHOOV $SSHQGL[ $f

PAGE 124

7KLV VLWXDWLRQ RIIHUV WKH ]RRDUFKDHRORJLVW SRWHQWLDO LQWUDHVWXDULQH WHPSRUDO VDOLQLW\ LQGLFDWRUV DW OHDVW IRU WKRVH VLWHV WKDW FRQWDLQ D ODUJH SHUFHQWDJH RI HDVWHUQ R\VWHU LQ WKHLU PLGGHQV 8QIRUWXQDWHO\ QR V\VWHPDWLF GLVWULEXWLRQ VWXG\ RI OLYLQJ PROOXVFV H[LVWV IRU &KDUORWWH +DUERU 7KH 1RUWK &DUROLQD VWXG\ KRZHYHU LQFOXGHV VSHFLHV ZKRVH ]RRJHRJUDSKLF UDQJHV H[WHQG WR WKH *XOI RI 0H[LFR :HOOV f 7KH PRVW QRWDEOH RI WKHVH LQ WHUPV RI DEXQGDQFH DQG ZHOOGHILQHG VDOLQLW\ WROHUDQFH LV WKH FUHVWHG R\VWHU 2VWUHD HTXHVWULV *DOWVRII *DOWVRII DQG 0HUULOO +RIVWHWWHU f ZKRVH RSWLPXP VDOLQLW\ VHHPV WR EH SSW RU KLJKHU DQG ZKRVH ORZHU OLPLW LV JHQHUDOO\ EHWZHHQ DQG SSW :HOOV f $W WKH KLJKVDOLQLW\ HQG RI WKH HVWXDULQH JUDGLHQW FUHVWHG R\VWHUV EHFRPH VR DEXQGDQW WKDW WKH\ UHSODFH WKH HDVWHUQ R\VWHU *DOWVRII f 'LDFKURQLF SDOHRHQYLURQPHQWDO UHFRQVWUXFWLRQ EDVHG RQ SUR[\ IDXQD KLQJHV RQ ZKHWKHU RU QRW WKH VKRUW PHGLXP DQG ORQJWHUP HQYLURQPHQWDO FKDQJHV KDYH UHFRJQL]DEOH DQG GLVWLQJXLVKDEOH ]RRDUFKDHRORJLFDO VLJQDWXUHV 7KLV GHWHUPLQDWLRQ FOHDUO\ LV KDPSHUHG E\ WKH LQDELOLW\ WR GHWHUPLQH WKH OHQJWK RI WLPH LW WRRN WR GHSRVLW DQ\ RQH ]RRDUFKDHRORJLFDO PLGGHQ VDPSOH ,Q VKHOO PLGGHQV LI D ODUJH GHSRVLW RI JHQHUDOO\ XQEURNHQ VKHOOV LV IUHH RI VHGLPHQW LW FDQ EH LQIHUUHG WKDW WKH VKHOOV DFFXPXODWHG UHODWLYHO\ UDSLGO\ ,I OD\HUV RI GHQVH VHGLPHQW RFFXU LW

PAGE 125

PD\ LQIHUUHG WKDW WKH GHSRVLW DFFXPXODWHG VORZO\ ,W LV QRW NQRZQ KRZ UDSLGO\ RU KRZ VORZO\ (YHQ SDOHRQWRORJLVWV KDYH KDG RQO\ PLQLPDO VXFFHVV DW HVWLPDWLQJ VHGLPHQWDWLRQ UDWHV DQG WKLV LV XVXDOO\ DW WLPH VFDOHV RI UHODWLYHO\ JUHDW PDJQLWXGH WKRXVDQGV RI \HDUVf HJ 'LQJXV 'LQJXV DQG 6DGOHU f $UFKDHRORJLVWV DUH IRUFHG WR WKLQN DW WLPH VFDOHV GHILQHG E\ WKH VWDWLVWLFDO QDWXUH RI WKH FDUERQ GDWLQJ WHFKQLTXH $W WKH b FRQILGHQFH OHYHO WZR VWDQGDUG GHYLDWLRQVf D JLYHQ UDGLRFDUERQ GDWH FDQ UDQJH \HDUV RU PRUH LH WKH ORQJWHUP VFDOH RI WKLV GLVVHUWDWLRQ 'LQFDX]H f QRWHV WKDW IDXQDO UHPDLQV KDYH QRW EHHQ XVHG WR WKHLU SRWHQWLDO LQ $PHULFDQLVW SDOHRHQYLURQPHQWDO UHFRQVWUXFWLRQV DW LQWUDUHJLRQDO VFDOHV ,W LV OLNHO\ WKDW WKH FRPSOH[LWLHV RI PXOWLSOH IRUFLQJ YDULDEOHV FRXSOHG ZLWK WKH GLIILFXOW\ RI WLPH UHVROXWLRQ RI PLGGHQ VDPSOHVf DFFRXQWV IRU WKLV VLWXDWLRQ )RU H[DPSOH LI D JLYHQ VDPSOH IURP D VSHFLILF VLWH LQ WKH &DSH +D]H DUHD LQGLFDWHV D KLJKHU VDOLQLW\ FRQGLWLRQ WKDQ ZKDW LV H[SHFWHG IRU WKDW DUHD EDVHG RQ SUHVHQWGD\ FRQGLWLRQVf KRZ FDQ ZH GHFLGH ZKHWKHU WKH FDXVH ZDV D GHFUHDVH LQ UDLQIDOO GXULQJ RQH \HDU D GURXJKW ODVWLQJ VHYHUDO \HDUV RU D ORQJWHUP VHDOHYHO ULVH" ,W LV SRVVLEOH WR RYHUFRPH WKLV GLOHPPD E\ OLPLWLQJ UHVHDUFK TXHVWLRQV WR WKH ORQJWHUP VFDOH XVLQJ FRPSRVLWH IDXQDO DVVHPEODJHV WR PHGLDWH VKRUW DQG PHGLXPWHUP

PAGE 126

,OO YDULDELOLW\ +RZHYHU WZR FRQGLWLRQV PXVW EH PHW )LUVW LQGLYLGXDO VDPSOHV WKDW PDNH XS WKH FRPSRVLWH DVVHPEODJHV PXVW EH UHDVRQDEO\ FRQWHPSRUDQHRXV \HDUVf 6HFRQG LQGLYLGXDO VDPSOHV PXVW EH DJJUHJDWHG HLWKHU RQ DQ LQWUDVLWH EDVLV RU PLQLPDOO\ EH IURP VLWHV ZLWK VLPLODU KDELWDW VHWWLQJV ,Q RWKHU ZRUGV WKH UHVHDUFKHU QHHGV PDQ\ UDGLRFDUERQGDWHG VDPSOHV IURP FRPSDUDEOH KDELWDWV WR EHJLQ D GLDFKURQLF VWXG\ ,Q WKH SUHVHQW VWXG\ WKHUH DUH QRW HQRXJK VDPSOHV WR FUHDWH WHPSRUDO FRPSRVLWH IDXQDO DVVHPEODJHV IRU DOO WLPH SHULRGV WKDW DUH UHSUHVHQWHG ,Q WKH DEVHQFH RI WKHVH FRPSRVLWHV WHPSRUDO LQWHUSUHWDWLRQV EDVHG RQ VLQJOH IDXQDO VDPSOHV DUH FRQVLGHUHG RQO\ DV K\SRWKHVHV WR EH WHVWHG ZKHQ PRUH FRPSDUDEOH VDPSOHV EHFRPH DYDLODEOH :LWK WKLV LQ PLQG WKHQ WKH TXHVWLRQ EHFRPHV ZKHWKHU RU QRW VLQJOH VDPSOHV RI DUFKDHRIDXQD UHIOHFW VHH ,QJUDP HW DO f WKH HVWXDULQH YDULDELOLW\ DW DQ\ GHJUHH RI UHOLDELOLW\ DW VKRUW PHGLXP DQG ORQJWHUP VFDOHV 'HWHFWLRQ RI VKRUWWHUP LVRODWHG HQYLURQPHQWDO FKDQJHV LQ DUFKDHRORJLFDO PLGGHQV LV XQOLNHO\ GXH WR WKH UDSLG UHFRYHU\ RI ILVKHV GLVFXVVHG DERYH $ SRVVLEOH H[FHSWLRQ LV KXUULFDQHV RI JUHDW PDJQLWXGH RU WKH RFFXUUHQFH RI PXOWLSOH KXUULFDQHV LQ D VLQJOH VHDVRQ 7KH FUHDWLRQ RI D QHZ LQOHW E\ KXUULFDQH IRUFHV LQ WKH ORFDOH RI D JLYHQ VLWH ZRXOG EH DQ HDV\ FKDQJH WR GHWHFW ZLWK DUFKDHRIDXQD EHFDXVH WKH VDOLQLW\ UHJLPH ZRXOG EH DOWHUHG VLJQLILFDQWO\ %HFDXVH

PAGE 127

QR PROOXVFf VSHFLHVVSHFLILF GDWD ZLWK WKH H[FHSWLRQ RI HDVWHUQ R\VWHUV DUH DYDLODEOH LQ WKH OLWHUDWXUH LW UHPDLQV XQFOHDU IRU KRZ ORQJ IDXQDO SRSXODWLRQV DQG GLVWULEXWLRQV ZRXOG EH LPSDFWHG E\ PXOWLSOH KXUULFDQHV DQG ZKDW VLJQDWXUHV PLJKW SUHVHQW WKHPVHOYHV LQ D ]RRDUFKDHRORJLFDO VDPSOH $QRWKHU VKRUWWHUP FKDQJH RI LQWHUHVW LV WKDW IURP VHDVRQ WR VHDVRQ 6HDVRQDO SHULRGV FDQ FHUWDLQO\ EH GHWHFWHG LQ VXEWURSLFDO VKHOO PLGGHQV WKURXJK WKH XVH RI PHWKRGV VXFK DV LQWUDVSHFLHV JURZWK DQDO\VHV HJ 5XVVR f +RZHYHU WLPH UHVROXWLRQ LV QRW D FRQFHUQ LQ WKHVH VWXGLHV WKDW XVXDOO\ GHDO ZLWK WKH TXHVWLRQ RI KXPDQ VHGHQWLVP 2QH VDPSOH FRXOG UHSUHVHQW PXOWLSOH \HDUV RI VHDVRQV 7KH LGHQWLILFDWLRQ RI VLQJOH VHDVRQDO VLJQDWXUHV QRW WR EH FRQIXVHG ZLWK WKH VWXGLHV MXVW PHQWLRQHGf LQ VXEWURSLFDO PLGGHQV LV SRVVLEOH EXW XQOLNHO\ GXH WR WKH PL[HG QDWXUH RI PLGGHQ GHSRVLWV DQG WKH VXEWOHW\ RI VXEWURSLFDO VHDVRQV 7KH JUHDWHVW GLIILFXOW\ LQ LQWHUSUHWLQJ FKDQJH XVLQJ VLQJOH DUFKDHRIDXQDO VDPSOHV OLHV LQ GLVWLQJXLVKLQJ EHWZHHQ PHGLXP DQG ORQJWHUP YDULDELOLW\ ,W PD\ EH LPSRVVLEOH WR GR VR LI VXFK VDPSOHV DUH FRQVLGHUHG LQ LVRODWLRQ +RZHYHU WDNHQ WRJHWKHU PXOWLSOH VLQJOH VDPSOHV DW WKH EURDGHU VFDOH RI WKH &KDUORWWH +DUERU UHJLRQ PD\ SURYLGH DQ RSSRUWXQLW\ WR GHWHFW SDWWHUQV DQG GLVFRQWLQXLWLHV VXJJHVWLYH RI HLWKHU PHGLXP RU ORQJWHUP HQYLURQPHQWDO FKDQJH 7KLV DSSURDFK LV LOOXVWUDWHG LQ WKH IROORZLQJ VHFWLRQ

PAGE 128

7HPSRUDO =RRDUFKDHRORJLFDO $VVHPEODJHV 7KH IROORZLQJ H[DPLQDWLRQ RI ]RRDUFKDHRORJLFDO VDPSOHV LV DUUDQJHG FKURQRORJLFDOO\ UDWKHU WKDQ E\ VLWH 7KH WLPH UDQJH LV IURP %& WR $' 7KH VDPSOHV DUH SODFHG ZLWKLQ WKHLU VSDWLDO FRQWH[W HVWDEOLVKHG HDUOLHU LQ WKLV VWXG\ LQ HIIHFW FRPSDULQJ WKH VLQJOH IDXQDO DVVHPEODJHV WR WKH PRGHUQ JUDGLHQW PRGHO $ PDWFK ZRXOG LPSO\ D ORFDO HQYLURQPHQW YHU\ VLPLODU WR WKDW RI WKH SUHVHQWGD\ RQH &KDQJHV LQ VWDWH RU FRQGLWLRQ ZRXOG LPSO\ HQYLURQPHQWDO FKDQJH LQ ZKLFK FDVH WKH SRWHQWLDO IDFWRUV GLVFXVVHG DERYH DUH FRQVLGHUHG DQG RIIHUHG DV H[SODQDWRU\ K\SRWKHVHV 7KH 8VHSSD VDPSOH $ UDGLRFDUERQGDWHV WR %& 7DEOH f PDNLQJ LW WKH HDUOLHVW ]RRDUFKDHRORJLFDO DVVHPEODJH LQ WKH SUHVHQW VWXG\ 8VHSSD ,VODQG LV ORFDWHG LQ ZHVWHUQ 3LQH ,VODQG 6RXQG )LJXUH f 4XDQWLILFDWLRQ )LJXUH 7DEOH $f LQGLFDWHV WKDW R\VWHUV ZHUH LPSRUWDQW WR WKH GLHW RI WKH LVODQGnV LQKDELWDQWV DQG WKDW WKH\ DQG DVVRFLDWHG LQYHUWHEUDWHV UHIOHFW PLGVDOLQLW\ ZDWHU FRQGLWLRQV 7KH FUHVWHG R\VWHU WR HDVWHUQ R\VWHU UDWLR EDVHG RQ 01, LV 7DEOH $f 7KH ORZ QXPEHUV RI FUHVWHG R\VWHU ZKLFK UHTXLUH FRQGLWLRQV RI KLJK VDOLQLW\ SSWf VXJJHVW WKDW VDOLQLWLHV DURXQG 8VHSSD ZHUH QHDU WKH ORZHU HQG RI WKH DQLPDOnV VDOLQLW\ UDQJH WR SSW 6DOLQLWLHV WRGD\ LQ WKH DUHD DYHUDJH SSW RU PRUH :DQJ DQG 5DQH\ f WRR KLJK IRU SURGXFWLYH HDVWHUQ R\VWHU

PAGE 129

EHGV GXH WR LQYDVLRQ RI KLJKVDOLQLW\ SUHGDWRUVf 7KH SURFXUHPHQW HPSKDVLV DW %& ZDV RQ HVWDEOLVKHG HDVWHUQ R\VWHUV DQG ODJRRQDO ILVKHV HJ SLQILVK FDWILVKf )LJXUH 7DEOH $f 7KXV WKHUH LV WKH VXJJHVWLRQ RI DQ DYHUDJH VDOLQLW\ VOLJKWO\ ORZHU WKDQ WKDW RI WRGD\ IRU %& 8VHSSD ,VODQG 7KH RYHUDOO UDULW\ RI LQYHUWHEUDWHV UHTXLULQJ KLJK VDOLQLWLHV DQG ODUJH SUHGDWRU\ ILVKHV LQ 8VHSSDnV %& VDPSOH 7DEOH $ $SSHQGL[ %f VXSSRUWV WKH PLGVDOLQLW\ LQIHUHQFH $W WKH ORQJWHUP VFDOH VHD OHYHO IOXFWXDWLRQ DQG LQOHW G\QDPLFV KDYH WKH JUHDWHVW EHDULQJ RQ 8VHSSDnV SDOHRHQYLURQPHQW 2QH K\SRWKHVLV WKDW ZRXOG DFFRXQW IRU WKH %& ORZHU VDOLQLW\ LV D VOLJKWO\ ORZHU PHDQ VHD OHYHO WKDQ WKDW RI WKH SUHVHQW %RWK 6WDSRU HW DO )LJXUH f DQG 7DQQHU f GRFXPHQW D VPDOO GURS WR P RU WR IWf LQ VHD OHYHO GXULQJ WKLV WLPH 6KLIWLQJ LQOHW ORFDWLRQV DVVRFLDWHG ZLWK WKH VRXWKHUQ KDOI RI &D\R &RVWD KRZHYHU PLJKW DOVR H[SODLQ WKH PLGVDOLQLW\ ZDWHUV 7KHUH LV QR VXJJHVWLRQ LQ WKH IDXQDO UHPDLQV WKDW 8VHSSDnV ORFDO HQYLURQPHQW ZDV LQIOXHQFHG VLJQLILFDQWO\ E\ DQ DGMDFHQW LQOHW +HUZLW]nV f 3ODWW 3DVV PXVW QRW KDYH H[LVWHG GXULQJ WKLV SDUWLFXODU RFFXSDWLRQ SHULRG RI 8VHSSD ,VODQG EHFDXVH LI RSHQ LW ZRXOG KDYH DOORZHG KLJKVDOLQLW\ ZDWHUV LQWR WKH 8VHSSD ORFDOH ,I WKH HVWLPDWH RI 6WDSRU HW DO f LV FRUUHFW &DSWLYD 3DVV GLG QRW H[LVW DW WKLV WLPH HLWKHU IXUWKHU UHVWULFWLQJ

PAGE 130

KLJKVDOLQLW\ ZDWHUV IURP WKH 8VHSSD DUHD +RZHYHU +HUZLW] f QRWHV HYLGHQFH RI DQRWKHU ROG SDVV XQQDPHG DW WKH VRXWKHUQ HQG RI &D\R &RVWD WKDW SUREDEO\ SUHFHGHG &DSWLYD 3DVV (YHQ LI WKLV LQOHW H[LVWHG LW ZRXOG KDYH DOORZHG WKH HQWU\ RI KLJKVDOLQLW\ ZDWHUV WR WKH VRXWK RI WKH 8VHSSD DUHD DV &DSWLYD 3DVV GRHV WRGD\ )RU DQ DUFKDHRORJLFDO VLWH ORFDWHG VR QHDU WR WKH HYHUFKDQJLQJ EDUULHU LVODQG FKDLQ ZH FDQQRW NQRZ ZKLFK ORQJWHUP IDFWRUV ZHUH PRVW LQIOXHQWLDO 3HUKDSV ERWK VHDOHYHO DQG LQOHW IRUFHV ZHUH LPSRUWDQW :H FDQ KRZHYHU VDIHO\ LQIHU WKDW 8VHSSD ,VODQG FD %& ZDV QRW XQGHU WKH LQIOXHQFH RI DQ RSHQ 3ODWW 3DVV $ ILQDO SRVVLELOLW\ LV WKDW 8VHSSDnV ORFDO HQYLURQPHQW LQFOXGLQJ LWV UHODWLRQVKLS ZLWK WKH YDULRXV LQOHWV RQ &D\R &RVWD ZDV OLNH WRGD\nV DQG WKDW D PHGLXPWHUP IUHVKHQLQJ RI DUHD ZDWHUV UHVXOWHG LQ WKH SDWWHUQ RI R\VWHU EHG IDXQD 7KH ROGHVW WZR -RVVO\Q )LJXUH f VDPSOHV $O DQG $O UDGLRFDUERQGDWH WR %& DQG %& UHVSHFWLYHO\ 7DEOH f 7KH DUFKDHRIDXQD IURP HDFK RI WKHVH VDPSOHV GRFXPHQW DQ LQWHQVLYH H[SORLWDWLRQ RI WKH VKDOORZZDWHU VHDJUDVVPHDGRZ KDELWDW ZLWK PXFK OHVV LPSRUWDQFH SODFHG RQ R\VWHU EDUV )LJXUH )LJXUH 7DEOH $f 7KLV SLFWXUH LV FRQJUXHQW ZLWK WKH SUHVHQW ORFDO HQYLURQPHQW RI -RVVO\Q ZKHUH PHDQ DQQXDO VDOLQLWLHV DYHUDJH SSW :DQJ DQG 5DQH\ f (DVWHUQ R\VWHU FRPPXQLWLHV DUH QRW FRPPRQ LQ SUHVHQWGD\ 3LQH ,VODQG 6RXQG GXH WR

PAGE 131

UHODWLYHO\ KLJK VDOLQLWLHV 7KH $O LQFUHDVH UHODWLYH WR WKH VWUDWLJUDSKLFDOO\ ORZHU $O VDPSOHf RI R\VWHUV DQG WKHLU DVVRFLDWHV VXJJHVWV D VOLJKW ORZHULQJ RI VDOLQLWLHV WR D OHYHO WKDW ZRXOG DOORZ D GHYHORSPHQW RI R\VWHU EDUV LQ DQ DUHD ZKHUH WRGD\ WKHUH DUH HVVHQWLDOO\ QRQH 6XSSRUWLYH RI WKLV LV WKH ODFN RI D SURSRUWLRQDO LQFUHDVH LQ WKH KLJKVDOLQLW\ FUHVWHG R\VWHU ZKLFK ZRXOG EH H[SHFWHG LQ ZDWHUV RI SSW VDOLQLW\ 7KXV WKH WZR IDXQDO DVVHPEODJHV VXJJHVW WKDW FRQGLWLRQV YHU\ VLPLODU WR WRGD\nV H[LVWHG FD %& LQ WKH -RVVO\Q ORFDOH EXW WKDW VOLJKWO\ ORZHUHG VDOLQLWLHV PD\ KDYH EHHQ D SRVVLELOLW\ GXULQJ WKH $O RFFXSDWLRQ ,I WKH ODWWHU ZHUH WKH FDVH ZH FDQ DJDLQ LQYRNH ORQJWHUP HQYLURQPHQWDO IDFWRUV EXW QRW ZLWK DQ\ SUHFLVLRQ 7KH XQQDPHG &D\R &RVWD SDVV PD\ KDYH EHHQ RSHQ GXULQJ WKLV WLPH EXW LW LV IDU HQRXJK DZD\ IURP -RVVO\Q WKDW LWV LQILOOLQJ SDUWLDO RU FRPSOHWHf PD\ QRW KDYH EHHQ D IDFWRU $ ORZHU VHD OHYHO VXFK DV 6WDSRU HW DO )LJXUH f DQG 7DQQHU f K\SRWKHVL]H 7DEOH f IRU WKLV SHULRG PD\ H[SODLQ WKH $O SDWWHUQ EXW WKH SRVVLELOLW\ RI D PHGLXPWHUP H[WHQGHG ZHW SHULRG FRQIXVHV WKH SLFWXUH 0LVVLPHU f DQG 7DQQHU f SODFH WKH EHJLQQLQJ RI WKH VXEVHTXHQW :XOIHUW VHDOHYHO ULVH DW %3 %&f 7KH WZR -RVVO\Q VDPSOHV $O DQG $Of PD\ UHSUHVHQW WKLV WUDQVLWLRQ VWDWH UHVXOWLQJ LQ HQYLURQPHQWDO VLJQDWXUHV FORVHO\ UHVHPEOLQJ WKDW RI WKH SUHVHQW

PAGE 132

6XJJHVWLYH RI D ORZHU VHD OHYHO IRU FD %& VDPSOH $Of DQG HDUOLHU LV D UHFRUGHG VXEPHUJHQFH RI WKH ORZHVW OHYHOV RI WKH -RVVO\Q H[FDYDWLRQ %HORZ $O WKH PLGGHQ FRQWLQXHG DQRWKHU FP DERXW IWf EHORZ ZDWHU WDEOH 6XEVLGHQFH RI PLGGHQ GHSRVLWV PD\ DFFRXQW IRU VRPH RI WKLV VXEPHUJHQFH EXW LW ZRXOG EH PLQLPDO EHFDXVH WKH VXEVWUDWH LV VDQG\ DQG ZRXOG KDYH VXSSRUWHG WKH PLGGHQ ZHLJKW 6WLOO LQ DQ DUHD DV VKDOORZ DV WKDW ZKHUH -RVVO\Q LV ORFDWHG DOO RI WKH VXEPHUJHQFH GRHV QRW VHHP WR EH DFFRXQWHG IRU ZLWKRXW SRLQWLQJ WR D SRVWPLGGHQ ULVH LQ VHD OHYHO IURP D OHYHO ORZHU LH 6WDSRU HW DO DQG 7DQQHUnV ORZ VWDQG SULRU WR %&f WKDQ WKDW RI WKH SUHVHQW 'DWD IURP YLEUDFRUHV WDNHQ LQ RWKHU DUHDV RI -RVVO\Q ,VODQG VXJJHVW WR 8SFKXUFK HW DO f WKDW VRPH SRUWLRQV RI WKH PLGGHQV ZHUH GHSRVLWHG LQ VKDOORZ ZDWHU DV D UHVXOW RI WKH SURJUDGLQJ VLWH $Q DOWHUQDWLYH H[SODQDWLRQ IRU WKH VXEPHUJHG PLGGHQ ZRXOG EH D VPDOOVFDOH VHDOHYHO IOXFWXDWLRQ 5DGLRFDUERQ GDWHV IRU WKH ORZHU WKUHH &DVK 0RXQG VDPSOHV $O $O DQG $O RYHUODS LQ WLPH UDQJLQJ IURP $' WR $' 7DEOH f 7KH IRXUWK DQG XSSHUPRVW VDPSOH $O GDWHV WR VHYHUDO KXQGUHG \HDUV ODWHU $' 7XUWOH %D\ ZKHUH &DVK 0RXQG LV ORFDWHG )LJXUH f LV WRGD\ DQ DUHD RI PLG WR ORZVDOLQLW\ LVRODWHG UHDGLQJV RI SSW IRU 'HFHPEHU DQG SSW IRU 1RYHPEHU f ZDWHUV :DQJ DQG 5DQH\

PAGE 133

f 7XUWOH %D\ LV NQRZQ IRU LWV PDQ\ SURGXFWLYH HDVWHUQ R\VWHU FRPPXQLWLHV :RRGEXUQ f &DVK 0RXQGnV DUFKDHRIDXQDO VDPSOHV PLUURU WKLV GHQVLW\ ZLWK DQ DEXQGDQFH RI R\VWHU VKHOOV )LJXUH 7DEOHV $ $f 7DEOH DQG )LJXUH SUHVHQW 01, GDWD WDNHQ IURP 7DEOHV $ WKURXJK $ f IRU WKH HDVWHUQ R\VWHU FUHVWHG R\VWHU FRPPRQ FURZQ FRQFK DQG ULEEHG PXVVHO IRU HDFK RI WKH IRXU &DVK 0RXQG VDPSOHV $ KLJK FUHVWHG R\VWHU WR HDVWHUQ R\VWHU UDWLR f FKDUDFWHUL]HV WKH $' &DVK 0RXQG VDPSOH $Of VXJJHVWLQJ D UHODWLYHO\ KLJK VDOLQLW\ IRU 7XUWOH %D\ GXULQJ WKDW WLPH SHULRG 6DPSOHV $O DQG $O $' f DOVR H[KLELW KLJKHU UDWLRV ERWK f WKDQ ZRXOG EH H[SHFWHG IRU 7XUWOH %D\ 7KH $' VDPSOH $O FRQWDLQV QR FUHVWHG R\VWHU VSHFLPHQV GHVSLWH WKH RFFXUUHQFH RI DW OHDVW HDVWHUQ R\VWHUVf LQGLFDWLQJ ZDWHU FRQGLWLRQV WRR ORZ LQ VDOLQLW\ IRU WKHLU SUHVHQFH LH JHQHUDOO\ OHVV WKDQ SSWf 3RVVLEO\ VXSSRUWLYH RI D VDOLQLW\ YDULDWLRQ IRU WKH $' WR SHULRG DUH VLPLODU GHFUHDVHV LQ VOLSSHU VKHOOV &UHSLGXODf DQG EDUQDFOHV %DODQXVf 7DEOHV $ $ f +RZHYHU WKHVH VSHFLPHQV ZRXOG KDYH WR EH LGHQWLILHG WR VSHFLHV WR FRQILUP VDOLQLW\ WROHUDQFHV $OVR RI LQWHUHVW LV WKH DSSHDUDQFH LQ /HYHO $O RI D SDUURWILVK 6SDULVRPD VS 7DEOH $f XVXDOO\ IRXQG LQ KLJKVDOLQLW\ ZDWHUV 7XUWOH %D\ )LJXUH f WRGD\ LV D ZHOOSURWHFWHG JXLHW HVWXDULQH ED\ RI ORZ VDOLQLW\ ,W KDV QR FORVH DFFHVV WR

PAGE 134

LQOHWV RI WKH EDUULHU LVODQG FKDLQ DQG \HW WKH KLJKVDOLQLW\ FUHVWHG R\VWHU RFFXUV LQ VLJQLILFDQW QXPEHUV LQ WKH $' WR $' VDPSOHV 6LQFH WKH WKUHH KLJKVDOLQLW\ VDPSOHV RYHUODS LQ WLPH DQG VSDQ D GHSRVLW FP WKLFN PHGLXPWHUP HQYLURQPHQWDO FKDQJH HJ D GURXJKW RI VHYHUDO \HDUVf FDQ EH UHDVRQDEO\ HOLPLQDWHG DV DQ H[SODQDWLRQ $ PHDQ VHD OHYHO KLJKHU WKDQ WKDW RI WKH SUHVHQW ZLWK FRQFRPLWDQW LQFUHDVHG DYHUDJH VDOLQLWLHV IRU 7XUWOH %D\ FRXOG H[SODLQ WKH YDULDWLRQ REVHUYHG LQ WKH &DVK 0RXQG VDPSOHV $ IOXFWXDWLRQ LQ ZDWHU OHYHO PLJKW DOVR H[SODLQ WKH $' $' DEXQGDQFH DQG VXEVHTXHQW $' GHFOLQH LQ QXPEHUV RI ULEEHG PXVVHO 7DEOH )LJXUH f $ ULVH LQ ZDWHUV HJ $' $' f PLJKW KDYH UHVXOWHG LQ DQ LQFUHDVH LQ &DSH +D]HnV EUDFNLVK ZHWODQG DUHD SURYLGLQJ PRUH KDELWDW IRU WKLV VHVVLOH ELYDOYH $ IDOO LQ ZDWHU OHYHOV HJ $' f PD\ KDYH UHVXOWHG LQ GHFUHDVHG PDUVK KDELWDW 7KH SUHGRPLQDQWO\ LQWHUWLGDO FRPPRQ FURZQ FRQFK DOVR RIIHUV D WHOOLQJ SDWWHUQ LQ WKH &DVK 0RXQG VDPSOHV 7DEOH )LJXUH f 7KH VFDYHQJLQJ FURZQ FRQFK YRUDFLRXVO\ IHHGV RQ PDQ\ GLIIHUHQW OLYLQJ RUJDQLVPV DV ZHOO DV GHFD\LQJ IOHVK DQG RWKHU GHWULWDO PDWHULDO 'DOE\ *XQWHU DQG 0HQ]HO +DWKDZD\ DQG :RRGEXUQ 0HQ]HO DQG 1LFK\ 7DEE DQG 0DQQLQJ f ,QFOXGHG LQ WKLV GLHW LV WKH HDVWHUQ R\VWHU 5HVHDUFKHUV QRZ DJUHH WKDW WKH FURZQ FRQFK LV QRW D VHULRXV SUHGDWRU WR R\VWHUV

PAGE 135

&DOGZHOO +DWKDZD\ +DWKDZD\ DQG :RRGEXUQ 0HQ]HO DQG 1LFK\ f +RZHYHU WKHVH FRQFOXVLRQV DUH ELDVHG WRZDUG D IRFXV RQ SURGXFWLYH KHDOWK\ R\VWHUVf§LQ RWKHU ZRUGV FURZQ FRQFKV GR OLWWOH GDPDJH WR WRGD\nV FRPPHUFLDO LQGXVWU\ 2I JUHDW UHOHYDQFH KHUH WKH FURZQ FRQFKnV DEXQGDQFH LV RIWHQ DVVRFLDWHG ZLWK SRRUO\SURGXFLQJ LQWHUWLGDO R\VWHU EDUV +DWKDZD\ DQG :RRGEXUQ f &URZQ FRQFKV DWWDFN R\VWHUV WKDW DOUHDG\ DUH ZHDNHQHG E\ QDWXUDO HQYLURQPHQWDO VWUHVVHV VXFK DV VXPPHU KLJK WHPSHUDWXUHV +DWKDZD\ +DWKDZD\ DQG :RRGEXUQ 7DEE DQG 0DQQLQJ f RU DEQRUPDOO\ SURORQJHG H[SRVXUH ([SRVXUH RI R\VWHUV FDQ EH FDXVHG E\ WRR FURZGHG D EDU SRSXODWLRQ RU E\ D SHULRGLF ORZHULQJ RI ZDWHU OHYHO 7KH &DVK 0RXQG $' VDPSOH LQGLFDWHV D VXEVWDQWLDO LQFUHDVH LQ FURZQ FRQFK 01, RYHU WKH HDUOLHU WKUHH VDPSOHV 7KLV SDWWHUQ GRHV QRW DSSHDU WR EH UHODWHG WR VDOLQLW\ EHFDXVH RI WKH FURZQ FRQFKnV ZLGH VDOLQLW\ UDQJH WR SSW +DWKDZD\ DQG :RRGEXUQ f 5DWKHU WKH SDWWHUQ RI WKH FURZQ FRQFK PD\ UHIOHFW D SUHGDWRUSUH\ UHODWLRQVKLS ZLWK WKH HDVWHUQ R\VWHU %\ WKH WLPH WKH $' PLGGHQ ZDV GHSRVLWHG WKH FURZQ FRQFK SRSXODWLRQ KDG UHDFKHG D YHU\ FRPSHWLWLYH OHYHO 7DEOH )LJXUH f $Q LQFUHDVH LQ WKH FURZQ FRQFK DV R\VWHU SUHGDWRU ZRXOG LPSO\ WKDW WKH R\VWHUV KDG EHHQ VWUHVVHG HQYLURQPHQWDOO\ ,W PLJKW DOVR LPSO\ WKDW PRUH IRRG EHFDPH DYDLODEOH IRU

PAGE 136

MXYHQLOH FURZQ FRQFKV ZKR SUHIHU D YHU\ GLIIHUHQW KDELWDW DQG WKXV IHHGLQJ EHKDYLRU 6WXGLHV VKRZ WKDW MXYHQLOH FURZQ FRQFKV OLYH LQ WKH VHDJUDVV IODWV DQG LQWHUWLGDO PXGIODWV DQG PRYH WR R\VWHU EDUV RQO\ ZKHQ WKH\ UHDFK PDWXULW\ &DOGZHOO 'LQHW] +DWKDZD\ :RRGEXU\ f 3UHVXPDEO\ MXYHQLOH FRQFKV IHHG RQ GHWULWXV DQG VPDOO VHDJUDVV PROOXVFV DOWKRXJK WKLV KDV QRW EHHQ PDGH H[SOLFLW E\ H[SHULPHQWDWLRQ :KDW W\SH RI HQYLURQPHQWDO VWUHVV WKHQ FDQ DFFRXQW IRU DQ LQFUHDVHG IRRG VXSSO\ IRU ERWK MXYHQLOH DQG DGXOW FURZQ FRQFKV DV ZHOO DV WKH GHFUHDVHG VDOLQLWLHV WKDW DUH LQGLFDWHG E\ WKH FUHVWHG R\VWHU DQG RWKHU DQLPDOV LQ WKH $' VDPSOH" $ PDMRU KXUULFDQH FRPSDUDEOH WR V 'RQQD LV D SRVVLELOLW\ $Q LQIOX[ RI KHDY\ UDLQV ZRXOG ORZHU HVWXDULQH VDOLQLWLHV 'HVWUXFWLRQ RI VHDJUDVVHV DQG R\VWHU EDUV LV D FRPPRQ UHVXOW RI ODUJH KXUULFDQHV LQ DGGLWLRQ WR JHQHUDO PDVV PRUWDOLW\ RI YHUWHEUDWHV DQG LQYHUWHEUDWHV ,I WKH\ WKHPVHOYHV VXUYLYHG WKH LPSDFW FURZQ FRQFKV ZRXOG EH WKH OLNHO\ RSSRUWXQLVW EHFDXVH RI WKHLU VFDYHQJLQJ QDWXUH /LNH WKH FDWILVK FURZQ FRQFKV ZRXOG QRW EH GHWHUUHG E\ R[\JHQGHSOHWHG WXUELG ZDWHU FRQGLWLRQV VHH +DWKDZD\ DQG :RRGEXUQ f $ VKRUWWHUP SRSXODWLRQ LQFUHDVH RI FURZQ FRQFKV LV IHDVLEOH DOWKRXJK VXFK D UHVSRQVH KDV QRW EHHQ QRWHG LQ SRVWKXUULFDQH UHSRUWV 7KHVH UHSRUWV KRZHYHU UDUHO\ PHQWLRQ VKHOOILVK ZLWK WKH H[FHSWLRQ RI WKH

PAGE 137

FRPPHUFLDOO\LPSRUWDQW R\VWHU 0RUHRYHU WKH PDVVLYH KXUULFDQH RI FD $' GRFXPHQWHG IRU WKH 6DUDVRWD DUHD 'DYLV HW DO f H[LVWV DV D WHPSWLQJ FRUUHODWH WR WKH $' VDPSOH $UJXLQJ DJDLQVW WKH KXUULFDQH K\SRWKHVLV KRZHYHU LV WKH HQRUPRXV LQFUHDVH LQ IUHVKZDWHU UXQRII ZKLFK ZRXOG EH GHWULPHQWDO WR FURZQ FRQFKV RU DW OHDVW UHVXOW LQ WKHLU PLJUDWLRQ WR PRUH VDOLQH ZDWHUV $ VKRUWWHUP VHDVRQDOf RU PHGLXPWHUP PXOWLSOH \HDUVf H[WHQGHG UDLQ\ SHULRG FRXOG DFFRXQW IRU WKH ORZHUHG VDOLQLWLHV EXW VDOLQLWLHV ZRXOG KDYH WR EH YHU\ ORZ EHIRUH R\VWHUV ZRXOG EH VWUHVVHG VHH $OOHQ DQG 7XUQHU f ,I VDOLQLWLHV ZHUH WKLV ORZ WKHQ DV LQ WKH DERYH H[DPSOH FURZQ FRQFKV FRXOG QRW VXUYLYH PXFK OHVV WKULYH $ WKLUG SRVVLELOLW\ LV D ORZHULQJ RI PHDQ VHD OHYHO 7KLV FRXOG KDYH RFFXUUHG DW HLWKHU D PHGLXP RU ORQJWHUP VFDOH 6LQFH ZH DUH GHDOLQJ ZLWK RQO\ D VLQJOH VDPSOH $O $' f WKH PHGLXPWHUP VFDOH FDQQRW EH HDVLO\ UXOHG RXW $W HLWKHU VFDOH VXFK YDULDWLRQ ZRXOG KDYH DIIHFWHG WKH ZKROH RI )ORULGDnV VRXWKZHVW FRDVW DQG SHUKDSV RWKHU FRDVWOLQHV RI WKH *XOI RI 0H[LFR DV ZHOO ,QWHUWLGDO R\VWHU EDUV WKDW KDG EHHQ HVWDEOLVKHG DW D KLJKHU ZDWHU OHYHO ZRXOG JUDGXDOO\ EHFRPH H[SRVHG PRUH IUHTXHQWO\ DQG IRU ORQJHU GXUDWLRQV DV ZDWHUV EHJDQ VORZO\ WR UHFHGH 7KLV ZRXOG UHVXOW LQ D UHDG\ VXSSO\ RI ZHDNHQHG R\VWHUV ,I WKH PDJQLWXGH RI WKH VHDOHYHO IDOO ZHUH ODUJH HQRXJK WKH FURZQ FRQFKnV IRRG VXSSO\ ZRXOG EH DEXQGDQW IRU

PAGE 138

VRPH WLPH DQG D VLJQLILFDQW VHDZDUG VKLIW LQ WKH VDOLQLW\ JUDGLHQW ZRXOG RFFXU 7KHVH HYHQWV ZRXOG UHVXOW LQ ORZHUHG VDOLQLWLHV LQ 7XUWOH %D\ EXW ZLWKLQ WKH FRQFKnV WROHUDQFH UDQJHf DQG DQ LQFUHDVH LQ WKH FURZQ FRQFK SRSXODWLRQ )URP D ORQJWHUP VFDODU SHUVSHFWLYH WKLV ODVW VFHQDULR LV VXSSRUWHG E\ WKH VHDOHYHO FXUYHV SURSRVHG E\ 0LVVLPHU f DQG 6WDSRU HW DO f IRU WKH &KDUORWWH +DUERU DUHD DQG E\ 7DQQHU f IRU WKH HQWLUH *XOI RI 0H[LFR VXPPDUL]HG LQ 7DEOH f 7KH WKUHH KLJKVDOLQLW\ &DVK 0RXQG VDPSOHV GDWLQJ WR $' WR IDOO ZLWKLQ WKH K\SRWKHVL]HG SHULRG RI KLJKHU VHD OHYHO %& WR $' 7KH PRVW UHFHQW VDPSOH GDWLQJ WR $' DQG LQGLFDWLQJ D UHODWLYHO\ ORZHUHG VDOLQLW\ IDOOV ZLWKLQ WKH K\SRWKHVL]HG ORZ VWDQG RI $' WR $' 7KH &DVK 0RXQG VDPSOHV LQGLFDWH D VDOLQLW\ IOXFWXDWLRQ UHODWLYH WR HDFK RWKHU 8QIRUWXQDWHO\ QR V\VWHPDWLF SUHVHQWGD\ VDOLQLW\ UHFRUGV DUH UHSRUWHG IRU 7XUWOH %D\ MXVW WKH REVHUYDWLRQ E\ :DQJ DQG 5DQH\ f WKDW ZDWHUV DUH RI ORZ VDOLQLWLHV 0\ SHUVRQDO REVHUYDWLRQV DUH WKDW FUHVWHG R\VWHU LV UDUH LQ WKH &DVK 0RXQG DUHD DQG WKDW FURZQ FRQFKV DUH FRPPRQ EXW QRW SDUWLFXODUO\ DEXQGDQW WKLV RI FRXUVH ZRXOG YDU\ ZLWK WKH LQWUDDQQXDO UDLQ SDWWHUQf ,Q -DQXDU\ RI KDG WKH RSSRUWXQLW\ WR H[DPLQH WKH VWUDWLILFDWLRQ RI LQWHULRU SRUWLRQV RI &DVK 0RXQG DW VHYHUDO ORFDWLRQV 7KHVH PLGGHQ DUHDV H[KLELWHG D GLVWLQFW VWUDWXP RI KHDY\ FRQFHQWUDWLRQV RI FURZQ FRQFKV LQFOXGLQJ DQ

PAGE 139

DEXQGDQFH RI MXYHQLOH VKHOOV $ VDPSOH RI WKHVH MXYHQLOH VKHOOV ZDV UHPRYHG DQG VHQW IRU UDGLRFDUERQ DQDO\VLV DV D WHVW RI WKH FURZQ FRQFKORZ VWDQG DVVRFLDWLRQ 7KH UHVXOW ZDV $' FORVH WR WKH K\SRWKHVL]HG ORZ VWDQG GDWH UDQJH RI FD $' WR 6LQFH D PHGLXPWHUP VDOLQLW\ YDULDWLRQ FDQQRW EH GLVFRXQWHG IRU WKH $' VDPSOH LQIRUPDWLRQ IURP FRQWHPSRUDQHRXV PLGGHQV IURP RXWVLGH RI WKH SUHVHQW VWXG\ DUH DSSURSULDWH :LGPHU Df DUJXHV IRU D VL[W\FPKLJKHU ZDWHU OHYHO DW FD $' EDVHG RQ H[FDYDWLRQV RI EDUQDFOHHQFUXVWHG SRVW PROGV DW WKH 6RODQD VLWH &+ ORFDWHG RQ D VPDOO 3HDFH 5LYHU WULEXWDU\ )LJXUH f :LGPHU DOVR GHVFULEHV D KHDY\ GLHWDU\ GHSHQGHQFH RQ WKH FURZQ FRQFK DW WKH 6RODQD VLWH ,I VDOLQLWLHV LQ WKH 6RODQD DUHD ZHUH KLJK HQRXJK WR DFFRPPRGDWH WKH FURZQ FRQFK DV WKH\ DSSDUHQWO\ ZHUH D KLJKHU VHD OHYHO ZRXOG KDYH SXVKHG WKH VDOW ZHGJH XS WR WKH PRXWK RI WKH 3HDFH 5LYHU 7RGD\ RQO\ LQ WKH GU\ ZLQWHU -DQXDU\ DQG )HEUXDU\f GR VDOLQLWLHV UHDFK HYHQ DV KLJK DV SSW LQ WKLV DUHD 7KLV LV WKH PLQLPXP RI WKH FRQFKnV DFWLYH VDOLQLW\ UDQJH 6LQFH 6RODQD ZDV GDWHG QHDU WKH HQG RI WKH K\SRWKHVL]HG KLJK VWDQG WKH FURZQ FRQFKV KHUH PD\ LQGLFDWH WKH VWDUW RI UHFHGLQJ ZDWHUV ,I WKH DVVRFLDWLRQ EHWZHHQ WKH FURZQ FRQFK DEXQGDQFH DQG VHDOHYHO ORZ VWDQG LV YDOLG WKLV 6RODQD RFFXSDWLRQ DQG WKH $' &DVK 0RXQG GDWH PD\ GRFXPHQW WKH VHDOHYHO GURS

PAGE 140

FORVHU WR $' UDWKHU WKDQ 6WDSRU HW DO f DQG 7DQQHUnV f $' 7DEOH f *ULIILQ f UHFRUGV D VWUDWXP RI FURZQ FRQFK VKHOOV WKDW LV VDQGZLFKHG EHWZHHQ DQ LQ VLWX R\VWHU EDU DQG D ODWHU VKHOO PLGGHQ DW WKH FRDVWDO (YHUJODGHV VLWH RI 2QLRQ .H\ 0 +H EHOLHYHV WKH R\VWHU EDU IRUPHG GXULQJ WKH SHULRG RI VHDOHYHO ULVH FRLQFLGHQW ZLWK :LGPHUnV ULVH UHFRUGHG DW 6RODQD :LGPHU Df ,I VR WKHQ WKH DEXQGDQFH RI FURZQ FRQFKV PD\ UHSUHVHQW D FROOHFWLRQ PDGH GXULQJ WKH VXEVHTXHQW VHDOHYHO GURS $' >"@ WR $' LH WKH R\VWHUV JUDGXDOO\ EHFDPH H[SRVHG DQG ZHDNHQHG UHVXOWLQJ LQ DQ LQFUHDVH LQ FRQFK SUHGDWRUVf $W WKH 3LQHODQG 6LWH // )LJXUH f UHFHQW H[FDYDWLRQV E\ WKH 6RXWKZHVW )ORULGD 3URMHFW HQFRXQWHUHG D WKLQ VWUDWXP RI H[FOXVLYHO\ MXYHQLOH FURZQ FRQFK VKHOOV $ VDPSOH RI WKHVH ZDV UDGLRFDUERQGDWHG WR $' )HZ R\VWHU EDUV RFFXU LQ WKH 3LQHODQG DUHD GXH WR UHODWLYHO\ KLJK VDOLQLWLHV ,QVWHDG 3LQHODQG LV DVVRFLDWHG ZLWK YDVW VHDJUDVV DQG LQWHUWLGDO IODW HQYLURQPHQWV WKHVH DUH WKH KDELWDWV RI WKH OLYLQJ MXYHQLOH FURZQ FRQFK 7KH FRQFK VKHOO VWUDWXP DW 3LQHODQG LV VDQGZLFKHG EHWZHHQ PDVVLYH GHSRVLWV RI ODUJHO\ OLJKWQLQJ DQG SHDU ZKHONV ZLWK HVVHQWLDOO\ QR VDQG\ VHGLPHQW RU YHUWHEUDWH IDXQDO UHPDLQV DQG YHU\ IHZ DUWLIDFWV 7KHVH GHSRVLWV DUH FRQWHPSRUDQHRXV ZLWK WKH FURZQ FRQFK DQG ZHUH UDSLGO\ ODLG GRZQ 3UREDEO\ WKH FURZQ FRQFK ZDV QRW DORQH LQ LWV

PAGE 141

SRSXODWLRQ LQFUHDVH ,I LQWHUWLGDO DUHDV LQFUHDVHG GXH WR D ORZHUHG ZDWHU OHYHO WKLV PD\ KDYH LQFUHDVHG WKH IRRG VXSSO\ IRU ZKHONV DOVR $OWKRXJK LW LV EHOLHYHG WKDW ZKHONV SULPDULO\ IHHG RQ ELYDOYHV .HQW f WKH\ PD\ LQFUHDVH WKH QXPEHU RI FURZQ FRQFKV LQ WKHLU GLHW ZKHQ WKH RSSRUWXQLW\ SUHVHQWV LWVHOI VHH .HQW f WKXV WKH ZKHON SRSXODWLRQ PD\ KDYH EHHQ EHQHILWWLQJ IURP D KLJKHU FURZQ FRQFK SRSXODWLRQ DV ZHOO DV VWUHVVHG R\VWHUV 7KLV ZKHON K\SRWKHVLV FDQ EH WHVWHG DW DQ\ RI WKH VLWHV LQ 3LQH ,VODQG 6RXQG UHSUHVHQWLQJ WKH JUHDWHVW DUHD RI ZKHON KDELWDW DP UHPLQGHG RI WKH JUHDW GHSRVLWV RI ZKHON VKHOOV ZLWKRXW RWKHU VHGLPHQW LQ VRPH SDUWV RI -RVVO\Q ,VODQG WKHVH KDYH QRW EHHQ UDGLRFDUERQGDWHGf ,Q WKH VDPH YHLQ 0LODQLFK HW DO f GRFXPHQW D VLJQLILFDQW LQFUHDVH LQ ZKHON QXPEHUV LQ D 8VHSSD ,VODQG VWUDWXP HVWLPDWHG WR GDWH DURXQG $' )LQDOO\ QHZ LQIRUPDWLRQ FRPHV IURP WKH :LJKWPDQ 6LWH // ORFDWHG RQ 6DQLEHO ,VODQG )LJXUH f 7KH VLWH LV ORFDWHG DGMDFHQW WR WKH KLJK :XOIHUW EHDFK ULGJH VHW GRFXPHQWHG E\ 6WDSRU HW DO )LJXUH f 7KH 6RXWKZHVW )ORULGD 3URMHFW EULHIO\ UHRSHQHG WKH VLWH LQ 0DUFK RI SULRU WR FRQVWUXFWLRQ RI D SULYDWH KRPH DQG VDPSOHG SRUWLRQV RI WKH ORZHU VWUDWD HDUOLHU GRFXPHQWHG E\ :LOVRQ f DQG )UDGNLQ f 2YHUORRNHG E\ WKH HDUOLHU UHVHDUFKHUV LV D VWUDWXP RI FURZQ FRQFK VKHOOV LQFOXGLQJ DQ DEXQGDQFH RI MXYHQLOH VSHFLPHQV WKDW GLUHFWO\ RYHUOLHV D

PAGE 142

QDWXUDOO\SODFHG GHSRVLW RI VDQG DQG VKHOO WKDW ERWK 6WDSRU SHUVRQDO FRPPXQLFDWLRQ f DQG WKLV UHVHDUFKHU K\SRWKHVL]H WR EH DVVRFLDWHG ZLWK D KLJK VHDOHYHO VWDQG 7KH FURZQ FRQFK VKHOOV DUH DVVRFLDWHG ZLWK WKH WLPH ZKHQ :LJKWPDQ ZDV UHRFFXSLHG LH ZKHQ ZDWHU OHYHOV IHOO DJDLQf $ VDPSOH RI MXYHQLOH FURZQ FRQFK VKHOOV VHQW IRU UDGLRFDUERQ DQDO\VLV UHVXOWHG LQ D GDWH RI $' 7KH LPSOLFDWLRQ IURP WKH UDQJH RI UDGLRFDUERQ GDWHV FD $' WR f DVVRFLDWHG ZLWK WKH YDULRXV OLQHV RI HYLGHQFH LV WKDW WKH HQYLURQPHQWDO HYHQW WKDW UHVXOWHG LQ D SRSXODWLRQ LQFUHDVH RI FURZQ FRQFKV DQG SRVVLEO\ ZKHONV SUREDEO\ RFFXUUHG RQ D ORQJWHUP WLPH VFDOH )XUWKHU WKH HYHQW ZDV DW OHDVW UHJLRQDO LQ WKDW HYLGHQFH LV IRXQG LQ WKH QRUWKHUQ FHQWUDO DQG VRXWKHUQ SDUWV RI WKH VWXG\ DUHD 7KH HYHQW FRUUHODWHV ZLWK 0LVVLPHU f 6WDSRU HW DO f DQG 7DQQHUnV f ORZ VHD OHYHO VWDQG RI $' WR $' 7DEOH f DQG VHD OHYHO DSSHDUV WR EH WKH PRVW OLNHO\ HQYLURQPHQWDO YDULDEOH WR H[SODLQ WKH DUFKDHRIDXQDO SDWWHUQV 7KH $O VDPSOH IURP -RVVO\Q ,VODQG UDGLRFDUERQGDWHV WR $' 7DEOH f DQG TXDQWLILFDWLRQ )LJXUH 7DEOH $OOf LQGLFDWHV DQ LQWHQVLYH H[SORLWDWLRQ RI WKH VXUURXQGLQJ VHDJUDVV IDXQD VLPLODU WR WKH HDUOLHU WZR -RVVO\Q VDPSOHV *HQHUDOO\ WKH IDXQDO DVVHPEODJH UHSUHVHQWV ZDWHU VDOLQLWLHV YHU\ VLPLODU WR WKRVH RI WKH SUHVHQW 7RGD\ WKH PHDQ DQQXDO VDOLQLW\ KDV EHHQ UHFRUGHG DW SSW :DQJ DQG 5DQH\

PAGE 143

f 7KH FUHVWHG R\VWHU WR HDVWHUQ R\VWHU UDWLR LV DERXW FRPSDUDEOH WR WKH UDWLR RI WKHVH WZR VSHFLHV RFFXULQJ ZLWK SUHVHQW VDOLQLWLHV (DVWHUQ R\VWHUV DUH UHSUHVHQWHG E\ D WRWDO RI RQO\ 01, ,Q VXP EDVHG RQ LQIHUHQFH IURP WKH DUFKDHRIDXQD -RVVO\QnV $' HQYLURQPHQW ZDV VLPLODU WR WKH SUHVHQWGD\ RQH 7KH $' -RVVO\Q VDPSOH FRUUHVSRQGV WR 6WDSRU DQG FROOHDJXHVn $' ULVH LQ VHD OHYHO D ULVH WKDW SUREDEO\ FRQWLQXHG XQWLO D KHLJKW FRPSDUDEOH WR WKDW RI WKH SUHVHQW ZDV DWWDLQHG 7DQQHU f SODFHV WKH ULVH D OLWWOH HDUOLHU FD $' 7DEOH f ,I WKHLU PRGHOV DUH YDOLG RQH ZRXOG H[SHFW -RVVO\QnV SDOHRHQYLURQPHQW RI $' WR EH VLPLODU WR WKDW RI WKH SUHVHQW &RQWHPSRUDQHRXV ZLWK WKH -RVVO\Q $O VDPSOH DUH WKH IRXU VDPSOHV IURP %LJ 0RXQG .H\ /D\HUV E DQG WKDW KDYH D QDUURZ UDQJH RI UDGLRFDUERQ GDWHV IURP $' WR $' 7DEOH /D\HU ZDV QRW GDWHG EXW LV FORVHO\ DVVRFLDWHG ZLWK WKH RWKHUVf 2ZLQJ WR WKH VLWHnV MX[WDSRVLWLRQ EHWZHHQ D KLJK VDOLQLW\ *DVSDULOOD 6RXQG DW WR SSWf DTXDWLF DUHD DQG D EUDFNLVK WR ORZVDOLQLW\ ZHWODQG DUHD )LJXUH f WKH IDXQDO DVVHPEODJHV )LJXUH 7DEOHV $O $f VSDQ WKH HQWLUH VDOLQLW\ JUDGLHQW $SSHQGL[ %f %HFDXVH RI WKLV GLYHUVLW\ GHWHFWLRQ RI HQYLURQPHQWDO FKDQJH VLJQDWXUHV EDVHG RQ %LJ 0RXQG .H\ DUFKDHRIDXQD PD\ EH YHU\ GLIILFXOW XQOHVV WKH FKDQJH LV RI D ODUJH HQRXJK PDJQLWXGH 7KHUH LV OLWWOH LQIRUPDWLRQ LQ

PAGE 144

WKH VDPSOHV WR VXJJHVW WKDW %LJ 0RXQG .H\nV $' $' SDOHRHQYLURQPHQW ZDV GLIIHUHQW IURP WKDW RI WRGD\ 7KLV LQFOXGHV WKH LQIHUHQFH WKDW *DVSDULOOD 3DVV H[LVWHG LQ VRPH IRUP 7KH HDUOLHVW %XFN .H\ DUFKDHRIDXQDO VDPSOH $ KDV D UDGLRFDUERQGDWH RI $' 7DEOH f 7KH LQIHUUHG H[SORLWDWLRQ IRFXV ZDV RQ WKH ED\ DUHD WR WKH HDVW RI WKH LVODQG PDULQH JDVWURSRGV ZHUH HPSKDVL]HG )LJXUH 7DEOH $f $ KLJK FUHVWHG R\VWHU WR HDVWHUQ R\VWHU UDWLR H[LVWV DQG DORQJ ZLWK D UHODWLYH DEXQGDQFH RI VOLSSHU VKHOOV DQG VXUI FODPV UHIOHFWV KLJKVDOLQLW\ ZDWHUV MXVW DV DUH SUHVHQW WRGD\ 7RGD\ %XFN .H\ LV ORFDWHG DGMDFHQW WR &DSWLYD ,VODQG )LJXUH f ,W LV D UHOLFW EDUULHU LVODQG LWV QRUWKHUQ HQG GDWLQJ WR $' EDVHG RQ D EHDFK ULGJH VHW 6WDSRU HW DO f 7KH UHPDLQGHU RI WKH LVODQG LV ROGHU %HDFK ULGJH VHWV FRPSULVLQJ WKH VRXWKHUQ KDOI RI &DSWLYD ,VODQG KDYH EHHQ GDWHG WR $' RU ODWHU 6WDSRU HW DO f 'XULQJ WKH $' RFFXSDWLRQ RI %XFN .H\ WKHQ WKLV LVODQG ZRXOG KDYH VWRRG DV D SRUWLRQ RI WKH EDUULHU FKDLQ %RWK 6WDSRU HW DO f DQG 7DQQHU f LQGLFDWH WKDW WKH VHD OHYHO EHJDQ WR ULVH WR FD P IWf DERYH SUHVHQW OHYHOV FD $' IURP WKH SUHYLRXV ORZ RI URXJKO\ P IWf EHORZ SUHVHQW OHYHOV 7DEOH f 7KH $' RFFXSDWLRQ IDOOV ZLWKLQ WKLV KLJK VHDOHYHO HSLVRGH $OWKRXJK ERWK RI WKHVH VLWXDWLRQV UHSUHVHQW

PAGE 145

VLJQLILFDQW HQYLURQPHQWDO FKDQJH LQ WKH SDVW QHLWKHU KDV D UHFRJQL]DEOH VLJQDWXUH LQ WKH $' DUFKDHRIDXQD 7KH PRVW UHFHQW -RVVO\Q DUFKDHRIDXQDO VDPSOH $O UDGLRFDUERQGDWHV WR $' 7DEOH f DQG LV VLPLODU LQ FKDUDFWHU )LJXUH 7DEOH $ 3UHQWLFH f WR WKH DUFKDHRIDXQD RI WKH HDUOLHU -RVVO\Q VDPSOHV 2\VWHUV ZHUH RI QHJOLJLEOH LPSRUWDQFH ZKLOH WKH VKDOORZ VHDJUDVV PHDGRZV ZHUH H[SORLWHG LQWHQVLYHO\ IRU PDULQH JDVWURSRGV DQG ERQ\ ILVKHV SDUWLFXODUO\ WKH VFKRROV RI SLQILVK SLJILVK DQG SHUFK 7KH UDWLR RI FUHVWHG R\VWHU WR HDVWHUQ R\VWHU LV KLJK LQGLFDWLQJ KLJK VDOLQLWLHV DQG UHSUHVHQWLQJ DQ LQFUHDVH LQ UDWLR RYHU WKH ROGHU WKUHH -RVVO\Q VDPSOHV $O $O DQG $O DQG f 2QH PLJKW LQIHU D VDOLQLW\ FKDQJH LQFUHDVHf KHUH EXW RWKHU FRPPHQVDO GDWD GR QRW VXSSRUW LW 0RUHRYHU WKH R\VWHU VDPSOHV DUH YHU\ VPDOOf§ FUHVWHG R\VWHU WR HDVWHUQ R\VWHU 01,f§ SRVVLEO\ UHSUHVHQWLQJ D VLQJOH FOXWFK 2Q WKH EDVLV RI WKH DUFKDHRIDXQD LW LV LQIHUUHG WKDW -RVVO\QnV $' HQYLURQPHQW GLG QRW GLIIHU VLJQLILFDQWO\ IURP WKDW RI WKH SUHVHQW 7KH VHDOHYHO PRGHOV RI 6WDSRU HW DO f DQG 7DQQHU f GLIIHU D OLWWOH IRU WKH SHULRG IURP $' WR WKH SUHVHQW 7DEOH f %RWK LQGLFDWH D ULVH LQ VHD OHYHO FD $' EXW 6WDSRU HW DO UHFRUG WKH VXEVHTXHQW IDOO DW FD $' ZKHUHDV 7DQQHU SODFHV WKH IDOO HDUOLHU EHWZHHQ $' DQG ,Q DQ\ FDVH HLWKHU WKH VHD

PAGE 146

OHYHO FD $' ZDV WKH VDPH DV WRGD\nV RU -RVVO\QnV DUFKDHRIDXQDO UHPDLQV DUH QRW VHQVLWLYH HQRXJK WR GHWHFW D ULVH RI ORZ PDJQLWXGH URXJKO\ P RU IWf VXFK LV GRFXPHQWHG E\ WKH EHDFK ULGJH VHWV 7KH ODWWHU LV SUREDEO\ WKH FDVH &RQWHPSRUDQHRXV ZLWK WKH -RVVO\Q $O VDPSOH LV WKH %XFN .H\ % VDPSOH .R]XFK f ZKLFK UDGLRFDUERQGDWHV WR $' 7DEOH f 7KLV VDPSOH GLIIHUV IURP WKH %XFN .H\ $ VDPSOH LQ WKDW LWV IDXQDO UHPDLQV UHIOHFW D PXFK JUHDWHU HPSKDVLV RQ ILVKLQJ )LJXUH 7DEOH $f 7KH ODUJH GLYHUVLW\ RI DTXDWLF YHUWHEUDWHV VSHFLHV LQFOXGLQJ VHD WXUWOHf LQ WKH VDPSOH LPSOLHV D KLJKVDOLQLW\ HQYLURQPHQW MXVW DV H[LVWV WRGD\ LQ WKH %XFN .H\ DUHD 7KH VL]H RI WKH ILVK )LJXUH f UHSUHVHQWHG LQ WKH VDPSOH VXJJHVWV D ILVKLQJ IRFXV DW RU QHDU DQ LQOHW 7RGD\ %OLQG 3DVV LV WKH QHDUHVW LQOHW WR WKH VKHOO PLGGHQV RQ %XFN .H\ )LJXUH f ,Q WKH DEVHQFH SUH$' f RI WKH VRXWKHUQ KDOI RI &DSWLYD ,VODQG WKHUH ZRXOG KDYH H[LVWHG D PXFK FORVHU VLJQLILFDQW LQOHW RII WKH QRUWKZHVWHUQ VKRUHOLQH RI %XFN .H\ %OLQG 3DVV ZRXOG QRW KDYH H[LVWHG DW OHDVW QRW LQ LWV SUHVHQW IRUP $JDLQ 7DQQHU f DQG 6WDSRU HW DOnV f VHDOHYHO ULVH RI $' WR $' RU $' UHVSHFWLYHO\ 7DEOH f LV QRW SHUFHSWLEOH LQ WKH DUFKDHRIDXQD ,W PD\ EH WKDW WKH PDJQLWXGH RI WKLV ULVH WR P WR IWf ZDV WRR VPDOO WR DIIHFW DTXDWLF IDXQD DW WKH KLJKVDOLQLW\ HQG RI

PAGE 147

WKH JUDGLHQW 1HLWKHU FDQ WKH RQVHW RI WKH /LWWOH ,FH $JH VHD IOXFWXDWLRQ D ORZ ZDWHU OHYHO RI VLPLODU PDJQLWXGHf ZKLFK 7DQQHU f HVWLPDWHV WR EHJLQ DURXQG $' 7DEOH f EH GHWHFWHG LQ WKH DUFKDHRIDXQDO VDPSOHV 7KH WZR \RXQJHVW %XFN .H\ PLGGHQ VDPSOHV $ DQG % UDGLRFDUERQGDWH WR $' DQG $' UHVSHFWLYHO\ 7DEOH f 7KH $ VDPSOH FORVHO\ UHVHPEOHV WKH $ $' f VDPSOH DOWKRXJK $ VKRZV DQ HYHQ JUHDWHU HPSKDVLV RQ PDULQH JDVWURSRGV LQ WHUPV RI IRRG 01, )LJXUH 7DEOH $f 7KH FUHVWHG R\VWHU WR HDVWHUQ R\VWHU UDWLR LV KLJK 6OLSSHU VKHOOV DUH DOVR DEXQGDQW DQG WKH\ DUH RI VXFK ODUJH VL]HV WKDW WKH\ PD\ KDYH EHHQ XVHG IRU IRRG 6XUI FODP LV DOVR SUHVHQW LQ DEXQGDQFH 7KHVH VDPH KLJKVDOLQLW\ VSHFLHV DUH FRPPRQ LQ WKH RWKHU WKUHH %XFN .H\ VDPSOHV 7DEOHV $ $ $f RQO\ LQ OHVVHU TXDQWLWLHV 7KH GLIIHUHQFH WKHQ PD\ UHIOHFW D YDULDWLRQ LQ GHQVLW\ RI VKHOO DPRQJ WKH IRXU VDPSOHV DV RSSRVHG WR D VDOLQLW\ FKDQJH LH DQ LQFUHDVH LQ VDOLQLW\f 6DPSOH % $' f LV VLPLODU LQ FKDUDFWHU WR WKH % VDPSOH $' f LQ WKDW ILVK UHPDLQV GRPLQDWH WKH IDXQDO DVVHPEODJHV )LJXUH 7DEOH f +HUH DTXDWLF YHUWHEUDWHV DOO ILVKf WRWDO VSHFLHV 7DEOH $f WKH JUHDWHVW GLYHUVLW\ RI DQ\ VLQJOH VDPSOH $V LQ % WKLV GLYHUVLW\ DQG WKH ODUJH VL]H RI ERQ\ ILVKHV )LJXUH f

PAGE 148

VXJJHVW WKH SUHVHQFH RI DQ LQOHW $V LQ WKH RWKHU WKUHH %XFN .H\ VDPSOHV KLJK VDOLQLW\ ZDWHUV DUH LQGLFDWHG E\ WKH % DVVHPEODJH $OWKRXJK FRQWHPSRUDQHRXV ZLWK WKH $ VDPSOH $' f WKH % $' f KLJKVDOLQLW\ PROOXVFV 7DEOH $f GR QRW VKRZ WKH VDPH KLJK 01, FRXQWV DV WKRVH RI $ 2YHUDOO WKH IRXU %XFN .H\ VDPSOHV VXJJHVW D FRQWLQXLW\ RI KLJKVDOLQLW\ ZDWHUV LQ WKH ORFDOH $V GLVFXVVHG HDUOLHU LQ WKLV VWXG\ WKH GLIIHUHQFH LQ WKH ILVKLQJ WR VKHOOILVKLQJ UHODWLRQVKLS EHWZHHQ WKH $ H[FDYDWLRQ DQG WKH % H[FDYDWLRQ FOHDUO\ UHIOHFWV DQ LQWUDVLWH VSDWLDO YDULDWLRQ LQ GHSRVLW FKDUDFWHU 6WDSRU DQG KLV FROOHDJXHVn f HVWLPDWH RI $' IRU WKH HDUOLHVW SRVVLEOH DJH RI WKH VRXWKHUQ KDOI RI &DSWLYD ,VODQG LV UHOHYDQW KHUH )URP $' %f WR $' %f WKH LQKDELWDQWV RI %XFN .H\ PXVW KDYH KDG DFFHVV WR D QHDUE\ RSHQ LQOHW )LVKLQJ IURP WKH EHDFK ZRXOG QRW KDYH EHHQ DV FRVWHIIHFWLYH DQG WKHUH LV QR FRQFOXVLYH HYLGHQFH IRU RIIVKRUH ILVKLQJ 7KH SURSRVHG SDOHRLQOHW RII %XFN .H\nV QRUWKZHVWHUQ VKRUHOLQH LV VWLOO WKH PRVW IHDVLEOH SRVVLELOLW\ 3DUWLDO VRXWKZDUG SURJUDGDWLRQ RI VHGLPHQWV FHUWDLQO\ FRXOG KDYH RFFXUUHG GXULQJ RFFXSDWLRQ ZLWK D SRUWLRQ RI SUHVHQWGD\ 5RRVHYHOW &KDQQHO WKH ZDWHUZD\ QRZ VHSDUDWLQJ %XFN .H\ IURP &DSWLYD ,VODQGf VHUYLQJ DV DQ LQOHW $W DQ\ UDWH WKH DUFKDHRIDXQD VXJJHVW WKDW E\ $' VHGLPHQWV RI VRXWKHUQ &DSWLYD KDG QRW \HW IRUPHG D FRPSOHWH EDUULHU SDUDOOHOLQJ DQG JRLQJ EH\RQGf

PAGE 149

%XFN .H\nV ZHVWHUQ VKRUHOLQH 7KH DEVHQFH RI D GLVFHUQLEOH VDOLQLW\ FKDQJH DOVR VXSSRUWV WKLV VLWXDWLRQ 1HLWKHU RI WKHVH WZR IRXUWHHQWKFHQWXU\ VDPSOHV H[KLELW HYLGHQFH RI D GURS LQ VHD OHYHO DV K\SRWKHVL]HG E\ 6WDSRU HW DO f DQG 7DQQHU f EHJLQQLQJ $' DQG $' 7DEOH f (LWKHU 6WDSRU HW DOnV HVWLPDWH LV FORVHU WR WKH PDUN DQG %XFN .H\ ZDV RFFXSLHG DQG DEDQGRQHG EHIRUH WKH RQVHW RI WKH /LWWOH ,FH $JH HUD RU WKH DUFKDHRIDXQD LV QRW VHQVLWLYH HQRXJK WR GHWHFW D VPDOOPDJQLWXGH GURS WR P RU WR IW EHORZ SUHVHQWf LQ VHD OHYHO DW WKH KLJKVDOLQLW\ HQG RI WKH HVWXDULQH JUDGLHQW (LWKHU FRXOG EH WKH FDVH (IIHFWLYH 6FDOH DQG =RRDUFKDHRORDLFDO 3RWHQWLDO $W ZKDW HIIHFWLYH VFDOHVf GLG HVWXDULQH YDULDELOLW\ DOWHU WKH EDVLF VXEVLVWHQFH PHQX DQG RYHUDOO VWUDWHJLHV LQ WKH HYROXWLRQDU\ KLVWRU\ RI WKH &KDUORWWH +DUERU SHRSOH" :H DUH QRZ EHWWHU SUHSDUHG WR DQVZHU WKLV TXHVWLRQ EHFDXVH ZH KDYH D FOHDUHU XQGHUVWDQGLQJ RI WKH SRWHQWLDO RI HVWXDULQHPDULQH ]RRDUFKDHRORJLFDO UHPDLQV DV SUR[\ GDWD IRU SDOHRHQYLURQPHQWDO PRGHOLQJ %DVHG RQ SUHFHGLQJ DQDO\VHV WKH SRWHQWLDO RI DUFKDHRIDXQD DV SUR[\ SDOHRHQYLURQPHQWDO GDWD LV UHODWHG WR WKUHH FRQVLGHUDWLRQV 7KHVH DUH WHPSRUDO VFDOH RI HQYLURQPHQWDO YDULDWLRQ LQWUDUHJLRQDO VLWH ORFDWLRQ DQG PDJQLWXGH RI WKH YDULDWLRQ $UFKDHRORJLVWV E\ WKH QDWXUH RI WKH UDGLRFDUERQGDWLQJ WHFKQLTXH DUH IRUFHG WR ZRUN DW WKH ORQJWHUP VFDOH :LWK

PAGE 150

WKH SRVVLEOH H[FHSWLRQ RI D PDMRU KXUULFDQH LW LV XQOLNHO\ WKDW VKRUWWHUP HQYLURQPHQWDO FKDQJH FDQ EH LGHQWLILHG LQ PLGGHQ DUFKDHRIDXQD EHFDXVH UHFRYHU\ LV VR UDSLG 7KXV ZLWK RQH H[FHSWLRQ ZH FDQ HOLPLQDWH WKLV WHPSRUDO VFDOH DV D SRWHQWLDO H[SODQDWRU\ IDFWRU %XW PHGLXPWHUP FKDQJH FDQ UHSUHVHQW YDULDWLRQ RQ D VFDOH WKDW PD\ DIIHFW FROOHFWLRQ VWUDWHJLHV DQG FDQ HDVLO\ EH FRQIXVHG ZLWK ORQJWHUP FKDQJH ZKHQ DWWHPSWLQJ WR LGHQWLI\ DUFKDHRIDXQDO VLJQDWXUHV RI WKH ODWWHU EDVHG RQ VLQJOH VDPSOHV 7KLV DQDO\WLF EDUULHU FDQ EH RYHUFRPH LI WKHUH H[LVWV VXSSRUWLQJ LQGHSHQGHQW GDWD LQFOXGLQJ FRQWHPSRUDQHRXV EXW DW D ORQJWHUP UDQJHf LQWUDVLWH DQG LQWHUVLWH DUFKDHRIDXQDO DVVHPEODJHV DV ZHOO DV JHRSK\VLFDO HYLGHQFH ,QWUDUHJLRQDO VLWH ORFDWLRQ LV D FULWLFDO IDFWRU LQ WKH SRWHQWLDO RI DUFKDHRIDXQD DV SDOHRHQYLURQPHQWDO FKDQJH LQGLFDWRUV )DXQDO DVVHPEODJHV IURP VLWHV VLWXDWHG QHDU WKH RFHDQ HQG RI WKH VDOLQLW\ JUDGLHQW DOORZ LQIHUHQFH RI LQOHW SUHVHQFH RU DEVHQFH $UFKDHRIDXQD IURP WKHVH DUHDV KDYH OLWWOH SRWHQWLDO WR GHWHFW ORQJWHUP VHDOHYHO IOXFWXDWLRQV KRZHYHU EHFDXVH RI IDLUO\ FRQVWDQW RYHUDOO KLJKVDOLQLW\ ZDWHUV ,I D VDOLQLW\ FKDQJH LV GHWHFWHG LW ZRXOG PRUH OLNHO\ EH DVVRFLDWHG ZLWK LQOHW G\QDPLFV $Q H[FHSWLRQ PD\ EH 6DQLEHO ,VODQG ZKRVH JUHDWHU ODQG PDVV SURYLGHV VRPH SURWHFWHG ED\VLGH DUHDV WKDW RIIHU D EHWWHU PHGLXP IRU GHWHFWLRQ RI VHD OHYHOUHODWHG VDOLQLW\ YDULDWLRQ LH R\VWHU EDUVf

PAGE 151

7KH JUHDWHVW SRWHQWLDO IRU GHWHFWLRQ RI SDVW VHDOHYHO IOXFWXDWLRQV OLHV LQ WKH DUFKDHRIDXQD RI VLWHV ORFDWHG LQ WKH WUXH HVWXDULQH DUHDV RI WKH VDOLQLW\ JUDGLHQW WKLV OLNHO\ DOVR DSSOLHV WR VLWHV DW WKH ULYHU PRXWKV HJ WKH 6RODQD VLWH :LGPHU Df EXW QRQH ZHUH LQFOXGHG LQ WKH SUHVHQW VWXG\ 7KHVH DUH DUHDV ZKHUH WKH JUHDWHVW PL[LQJ RI ZDWHUV DQG WKH JUHDWHVW DEXQGDQFH RI HDVWHUQ R\VWHU OLJKWQLQJ DQG SHDU ZKHON DQG FURZQ FRQFK RFFXU 7KH\ LQFOXGH R\VWHU JURXQGV VXFK DV WKH &DSH +D]H 3HQLQVXOD DUHD DQG 0DWODFKD 3DVV )LJXUH f DQG JDVWURSRG KDELWDW VXFK DV WKH YDVW VHDJUDVV DQG LQWHUWLGDO IODWV RI 3LQH ,VODQG 6RXQG SDUWLFXODUO\ WKH HDVWHUQ SRUWLRQ GLVWDQW IURP WLGDO LQOHWV ,I QR HQYLURQPHQWDO FKDQJH LV UHIOHFWHG LQ WKH YDULRXV DUFKDHRIDXQDO DVVHPEODJHV RQH PD\ LQIHU WKDW HVWXDULQH YDULDELOLW\ ZDV QRW RI PDJQLWXGHV QHFHVVDU\ WR LPSDFW KXPDQ SURFXUHPHQW RI DTXDWLF UHVRXUFHV 2I WKH ORQJWHUP VHDOHYHO IOXFWXDWLRQV WKH &KDUORWWH +DUERU DUFKDHRIDXQDO DQDO\VHV VXJJHVW WKDW ULVHV DQG IDOOV RI WR P WR IHHWf PD\ QRW KDYH VLJQLILFDQWO\ DOWHUHG FROOHFWLRQ VWUDWHJLHV 5LVHV DQG IDOOV RI WR P WR IHHWf KRZHYHU GR DSSHDU WR KDYH D GHJUHH RI LQIOXHQFH RQ SURFXUHPHQW VWUDWHJLHV 7KH VHDOHYHO ULVH EHJLQQLQJ DW %& DQG H[WHQGLQJ WR $' LV RQH RI D WR P WR IRRWf PDJQLWXGH WKH ZDWHU DSSDUHQWO\ URVH IURP D ORZ RI P IHHWf EHORZ SUHVHQW WR D KLJK RI WR P WR IHHWf DERYH SUHVHQW 7KH PDJQLWXGH RI WKH

PAGE 152

VXEVHTXHQW $' IDOO DSSUR[LPDWHV WKDW RI WKH HDUOLHU ULVH 7KLV PDJQLWXGH RI VHDOHYHO FKDQJH RIIHUV WKH EHVW SRWHQWLDO IRU ]RRDUFKDHRORJLFDO VLJQDWXUHV LQ &KDUORWWH +DUERUnV HVWXDULQHPDULQH DUFKDHRIDXQD

PAGE 153

7DEOH 2VFLOODWLQJ +RORFHQH 6HD /HYHO &XUYHV %DVHG RQ %HDFK 5LGJH 'DWD IRU WKH &KDUORWWH +DUERU DQG *XOI RI 0H[LFR 5HJLRQV &KDUORWWH +DUERU 6WDSRU HW DO f 5LVH %3 %& )DOO %3 $' 5LVH %3 $' )DOO %3 $' 5LVH %3 WR SUHVHQW $' WR SUHVHQW 6DQLEHO ,VODQG 0LVVLPHU f 5LVH %3 %& )DOO E\ %3 $' *XOI RI 0H[LFR 3RVWJODFLDO KLJK %3 %& )DOO EHIRUH %3 EHIRUH %& 5LVH %3 %& )DOO %3 %& 5LVH %3 %&$' )DOO %3 $' 5LVH %3 $' )DOO %3 $' 5LVH %3 $'

PAGE 154

7DEOH 5HODWLYH 01, 3HUFHQWDJHV RI (DVWHUQ 2\VWHU (2f &UHVWHG 2\VWHU &2f &URZQ &RQFK &&f DQG 5LEEHG 0XVVHO 50f IRU &DVK $O 0RXQG DQG $ 6DPSOHV $ &2 + (2 b &2 b && b 50 b 7RWDO $O $O $O $O

PAGE 155

)LJXUH 0HDQ 6HD/HYHO &XUYH IRU 6RXWKZHVW )ORULGD 3URSRVHG E\ 6WDSRU HW DO %DVHG RQ *HRFKURQRORJ\ *HRPRUSKRORJ\ DQG WKH (OHYDWLRQ RI %HDFK 5LGJH 6HWV 0DNLQJ 8S WKH %DUULHU ,VODQGV $IWHU 6WDSRU HW DO )LJXUH f

PAGE 156

0HDQ 6HD /HYHO 0HWHUV %3 %3 %&f %&f %3 %3 $' f $' f )HHW

PAGE 157

)LJXUH &RPSDUDWLYH 3HUFHQWDJHV RI =RRDUFKDHRORJLFDO )RRG 01, 0LQLPXP 0HDW :HLJKW DQG 0D[LPXP 0HDW :HLJKW E\ 3URYHQLHQFH IRU WKH -RVVO\Q ,VODQG )DXQDO 6DPSOHV %DVHG RQ 'DWD 3UHVHQWHG LQ $SSHQGL[ $f

PAGE 158

)RRG 01,b 0LQLPXP 0HDW :HLJKW b 0D[LPXP 0HDW :HLJKW b .H\ :DUQ 0DPPDOV /HYHO %LU %LUGV 7XU 7XUWOHV Â’ $PS $PSKLELDQV /HYHO 65 6KDUNV UD\VHWF Â’ )LVK %RQ\ )LVKHV /HYHO &UD &UDEV 6QD 0DULQH 6QDLOV RQ /HYHO %LY 0DULQH %LYDOYHV

PAGE 159

)LJXUH &RPSDUDWLYH 3HUFHQWDJHV RI =RRDUFKDHRORJLFDO )RRG 01, 0LQLPXP 0HDW :HLJKW DQG 0D[LPXP 0HDW :HLJKW E\ 3URYHQLHQFH IRU WKH &DVK 0RXQG )DXQDO 6DPSOHV %DVHG RQ 'DWD 3UHVHQWHG LQ $SSHQGL[ $f

PAGE 160

)RRG 01,b 0LQLPXP 0HDW :HLJKW b 0D[LPXP 0HDW :HLJKWb .H\ 0DP %LU 0DPPDOV %LUGV /HYHO 7XU 65 7XUWOHV 6KDUNVUD\VHWR Â’ /HYHO )LVK %RQ\ )LVKHV Â’ &UD &UDEV /HYHO 6QD 0DULQH 6QDLOV %LY 0DULQH %LYDOYHV P /HYHO

PAGE 161

)LJXUH 7KH 9DULDWLRQ %DVHG RQ 3HUFHQWDJH RI 01, RI 6HOHFWHG 6SHFLHV f§ (DVWHUQ 2\VWHU &UHVWHG 2\VWHU 5LEEHG 0XVVHO DQG &URZQ &RQFK f§ IURP &DVK 0RXQG 6DPSOHV $O $O DQG $O 'DWLQJ WR $' WR $' DQG $O 'DWLQJ WR $'

PAGE 162

H (DVWHUQ 2\VWHU &URZQ &RQFK ‘rf§ &UHVWHG 2\VWHU nVf§ 5LEEHG 0XVVHO

PAGE 163

)LJXUH &RPSDUDWLYH 3HUFHQWDJHV RI =RRDUFKDHRORJLFDO )RRG 01, 0LQLPXP 0HDW :HLJKW DQG 0D[LPXP 0HDW :HLJKW E\ 3URYHQLHQFH IRU WKH %LJ 0RXQG .H\ )DXQDO 6DPSOHV %DVHG RQ 'DWD 3UHVHQWHG LQ $SSHQGL[ $f

PAGE 164

)RRG 01,b 0LQLPXP 0HDW :HLJKW b 0DP %LU 7XU $PS 65 )LVK &UD 6QD %LY 0D[LPXP 0HDW :HLJKW ; WR 7, }P mUIO 0DP %LU 7XU $PS 65 )LVK &UD .H\ 0DP %LU 0DPPDOV %LUGV P /D\HU 7XU 7XUWOHV L L /D\HU E $PS $PSKLELDQV 65 6KDUNV UD\VHWF Â’ )LVK %RQ\ )LVKHV /D\HU &UD &UDEV 6QD 0DULQH 6QDLOV (+ /D\HU %LY 0DULQH %LYDOYHV 0DP %LU 7XU $PS 65 )LVK &UD 6QD %LY

PAGE 165

)LJXUH &RPSDUDWLYH 3HUFHQWDJHV RI =RRDUFKDHRORJLFDO )RRG 01, 0LQLPXP 0HDW :HLJKW DQG 0D[LPXP 0HDW :HLJKW E\ 3URYHQLHQFH IRU WKH %XFN .H\ )DXQDO 6DPSOHV %DVHG RQ 'DWD 3UHVHQWHG LQ $SSHQGL[ $f

PAGE 166

)RRG 01,b 0LQLPXP 0HDW :HLJKW b 0D[LPXP 0HDW :HLJKW b .H\ 0DP %LU 0DPPDOV %LUGV ‘ /HYHO 7XU $PS 7XUWOHV $PSKLELDQV /HYHO 65 6KDUNVUD\VHWF ’ )LVK %RQ\ )LVKHV /HYHO &UD &UDEV 6QD 0DULQH 6QDLOV /HYHO %LY 0DULQH %LYDOYHV

PAGE 167

&+$37(5 ,17(*5$7,1* 63$7,$/ $1' 7(0325$/ 3(563(&7,9(6 =RRDUFKDHRORDLFDO 3DWWHUQV DW WKH /RFDO 6FDOH %LJ 0RXQG .H\ &+ )RXU VWUDWD IURP D ODUJH SLW IHDWXUH ORFDWHG DW WKH VXPPLW RI :HVW 0RXQG /XHU f SURGXFHG D WRWDO RI YHUWHEUDWH DQG LQYHUWHEUDWH LGHQWLILHG DW OHDVW WR &ODVVf ERQH DQG VKHOO IUDJPHQWV DORQJ ZLWK YHUWHEUDWH 01, DQG LQYHUWHEUDWH 01, 7DEOHV $O $ f 5DGLRFDUERQ GDWHV UDQJH IURP $' WR $' 7DEOH f /D\HU E 7DEOH $f H[KLELWV WKH JUHDWHVW DQLPDO GLYHUVLW\ ZLWK YHUWHEUDWH WD[D DQG LQYHUWHEUDWH WD[D UHSUHVHQWHG )DXQDO UHPDLQV FKDUDFWHUL]H H[SORLWHG KDELWDWV DV b PDQJURYH DQG VHDJUDVV b R\VWHU EHG b PDQJURYH HGJH DQG b OLWWRUDO*XOI )LJXUH f ,Q DGGLWLRQ WKH DSSHDUDQFH RI ODUJHO\ IUHVKZDWHU VSHFLHV VXFK DV JUHDWHU VLUHQ IURJ DQG VQDSSLQJ WXUWOH VXJJHVWV WKDW D IUHVKZDWHU UHVRXUFH ZDV XVHG $SSHQGL[ $f 2YHUDOO JDWKHULQJ VQDLOV DQG ELYDOYHV DFFRXQWV IRU PRVW RI WKH IRRG 01, bf GHSRVLWHG LQ WKH SLW )LJXUH f ZKLOH RQO\ b WR b RI PHDW ZHLJKW )LJXUHV DQG UHVSHFWLYHO\f LV FRQWULEXWHG WR WKH GLHW E\ WKHVH VKHOOILVK )LVKHV FRQVWLWXWH b RI WRWDO 01, )LJXUH f DQG b WR

PAGE 168

b RI PHDW ZHLJKW HVWLPDWH )LJXUHV DQG UHVSHFWLYHO\f FRQWULEXWLRQ &URZQ FRQFK ULEEHG PXVVHO EDQGHG WXOLS DQG HDVWHUQ R\VWHU DUH WKH PRVW DEXQGDQW VKHOOILVK VSHFLHV $SSHQGL[ $f .LOOLILVK SLQILVK DQG WRDGILVK DUH WKH PRVW QXPHURXV ERQ\ ILVKHV 6KDUNV RI WKH IDPLOLHV &DUFKDUKLQLGDH DQG 6SKU\QLGDH RFFXU LQ ORZ QXPEHUV LQ DOO IRXU VWUDWD RI WKH SLW 7ZR VDPSOHV DQG E LQGLFDWH DQ LPSRUWDQFH RI ZKLWHWDLOHG GHHU WR WKH GLHW KRZHYHU VHH PHWKRGV GLVFXVVLRQf +DUGKHDG FDWILVK LV XQLPSRUWDQW LQ WKH IRXU %LJ 0RXQG .H\ VDPSOHV FRPSDUHG WR WKH RWKHU IRXU VLWHV 7DEOH f WKLV PD\ EH LQGLFDWLQJ D FXOWXUDO SUHIHUHQFH EHFDXVH WKLV VSHFLHV LV XELTXLWRXV HOVHZKHUH DQG WKHUH LV QR UHDVRQ IRU FDWILVK WR EH DEVHQW IURP WKH %LJ 0RXQG .H\ DUHD $GGLWLRQDOO\ WKH PHDW\ VFDOORSV GHHU VHD WXUWOH VKDUN MDFN DQG JDJ JURXSHU DUH XQXVXDOO\ VXEVWDQWLDO $SSHQGL[ $f DQG PD\ IXUWKHU VXJJHVW WKDW WKHVH PLGGHQ VDPSOHV UHSUHVHQW D FRQWUROOHG DFFHVV WR FHUWDLQ IRRGVWXIIV 2Q WKH RWKHU KDQG WKHVH RFFXUUHQFHV PD\ EH H[SODLQHG VLPSO\ E\ WKH VLWHnV SUR[LPLW\ WR *DVSDULOOD 3DVV DQG WKH SLQHODQGV RI &DSH +D]H &RPSDULVRQ RI WKH IRXU VWUDWD VKRZV D GHFUHDVH LQ ILVK 01, RYHU WLPH )LJXUH f EXW WKH VLJQLILFDQFH RI WKLV LV SUREDEO\ QHJOLJLEOH EHFDXVH WKLV PDWHULDO ZDV GHSRVLWHG LQ D SLW RU GHSUHVVLRQ ZLWKLQ D VKRUW VSDQ RI WLPH MXGJLQJ IURP UDGLRFDUERQ GDWHV SURILOH GUDZLQJV DQG GHVFULSWLRQV /XHU

PAGE 169

/XHU HW DO f 2Q D PRUH VSHFLILF VFDOH RQH VWUDWXP E FRQWDLQV D ODUJH QXPEHU 01,f RI VKDUN H\H RU PRRQ VQDLOV 7DEOH $f DQG RQH VWUDWXP FRQWDLQV WKH RQO\ DEXQGDQFH 01,f RI VFDOORSV 7DEOH $Of 7KHVH LQIUHTXHQW DEXQGDQFHV PD\ EH GXH WR WKH EHKDYLRU RI WKH DQLPDOV /D\HU E FRQWDLQV D IXVHG UDGLDOH DQG SUR[LPDO FQWUDOH ERQH RI ZKDW ZDV SUREDEO\ D ODUJH $WODQWLF JUHHQ VHD WXUWOH FI &KHORQLD P\GDV P\GDVf HVWLPDWHG WR KDYH ZHLJKHG FORVH WR NJ OEVf DQG WR KDYH KDG D FDUDSDFH OHQJWK RI FP IHHWf 7KLV DQLPDO DORQH DFFRXQWV IRU b RI WKH HVWLPDWHG PD[LPXP PHDW ZHLJKW IRU WKLV VDPSOH *UHHQ VHD WXUWOHV FRXOG KDYH EHHQ HDVLO\ SURFXUHG ZKHQ QHVWLQJ RQ EHDFKHV LQ 0D\ DQG -XQH DQG KDYH EHHQ NQRZQ WR HQWHU HVWXDULQH ZDWHUV 7KH SDWWHUQV REVHUYHG LQ WKH %LJ 0RXQG .H\ PDWHULDOV LQGLFDWH WKDW ERWK KLJK DQG ORZ VDOLQLW\ DUHDV RI WKH HVWXDULQH JUDGLHQW ZHUH H[SORLWHG $SSHQGL[ %f 7KLV LV FRUUHVSRQGV ZLWK WKH VLWHnV SUHVHQWGD\ ORFDWLRQ )LJXUH f QHDU ERWK PDULQH DQG IUHVKZDWHU KDELWDWV 7KH HPSKDVLV KRZHYHU LV RQ PDULQH IDXQD 2YHUDOO WKH DUFKDHRIDXQD RI WKH %LJ 0RXQG .H\ VDPSOHV VXJJHVWV WKDW WKH $' HQYLURQPHQW RI WKH VXUURXQGLQJ DUHD ZDV VLPLODU WR WRGD\nV LQFOXGLQJ WKH SUHVHQFH RI DQ LQOHW VXFK DV *DVSDULOOD 3DVV &DVK 0RXQG &+ 5DGLRFDUERQ GDWHV IRU WKH ORZHU WKUHH VDPSOHV $O $O DQG $Of DW &DVK 0RXQG RYHUODS LQ WLPH $'

PAGE 170

WR ZKLOH WKH ODWHVW VDPSOH $Of GDWHV VHYHUDO KXQGUHG \HDUV ODWHU WR $' 7DEOH f 7RWDOV RI YHUWHEUDWH DQG LQYHUWHEUDWH ERQH DQG VKHOO IUDJPHQWV ZHUH DQDO\]HG IURP WKH &DVK 0RXQG FROXPQ UHSUHVHQWLQJ YHUWHEUDWH 01, DQG LQYHUWHEUDWH 01, 7DEOHV $ WKURXJK $f 2YHUDOO &DVK 0RXQG VKRZV WKH ORZHVW VSHFLHV GLYHUVLW\ ZLWK DQ DYHUDJH RI RQO\ YHUWHEUDWHV DQG LQYHUWHEUDWHV ,W LV SUREDEOH WKDW WKH VDPSOHV ZHUH WDNHQ IURP D VSHFLDOL]HG VLWH DUHD RQH XVHG IRU R\VWHU DQG PXVVHO SURFHVVLQJ )DXQDO VSHFLPHQV FROOHFWHG RQ WKH VXUIDFH RI WKH HURGLQJ EHDFK LQGLFDWH D JUHDWHU GLYHUVLW\ RI YHUWHEUDWHV WKDQ WKDW VHHQ LQ WKH VDPSOHV GLVFXVVHG KHUH +DELWDWV UHSUHVHQWHG LQ WKH VDPSOHV DUH R\VWHU EHG b 01,f PDQJURYH HGJH b 01,f DQG PDQJURYHVHDJUDVV b 01,f )LJXUH f ,I EDUQDFOHV DUH DGGHG WR WKH R\VWHU EDU FDWHJRU\ ZKHUH WKH\ PRVW OLNHO\ RULJLQDWHG WKH SURSRUWLRQ RI LQGLYLGXDOV IURP R\VWHU EDU KDELWDWV LQFUHDVHV WR b *DWKHULQJ R\VWHUV DQG ULEEHG PXVVHOV WRJHWKHU DFFRXQWV IRU b RI DOO DQLPDO 01, )LJXUH f +RZHYHU WKHVH WZR ELYDOYH VSHFLHV FRQVWLWXWH RQO\ b WR b RI WRWDO HVWLPDWHG PHDW )LJXUHV DQG UHVSHFWLYHO\f )LVKHV SULPDULO\ KDUGKHDG FDWILVK FRPSULVH WR SHUFHQW RI WKH WRWDO PHDW HVWLPDWH )LJXUHV DQG UHVSHFWLYHO\f 6DPSOHV $O $O DQG $O FRQWDLQ DQ DEXQGDQFH RI \RXQJ KDUGKHDG FDWILVKHV VXJJHVWLQJ VSULQJ GHSRVLWV :DQJ DQG

PAGE 171

5DQH\ $SSHQGL[ $f 6DPSOH $O KDV RQO\ D VPDOO VDPSOH 01,f RI FDWILVK ZLWK WKUHH MXYHQLOHV SUHVHQW 7KH VDOLQLW\ UHJLPH UHSUHVHQWHG E\ $O $' f PROOXVFV GLIIHUV PDUNHGO\ IURP WKDW RI WKH HDUOLHU WKUHH VDPSOHV 6DPSOH $O DOVR VKRZV D GHFUHDVH LQ R\VWHU SURGXFWLYLW\ DORQJ ZLWK DQ LQFUHDVH LQ WKH SUHGDWRU\ FURZQ FRQFK 7KLV VFHQDULR LV FRQVLVWHQW ZLWK D ORZHUHG VHD OHYHO EHJLQQLQJ FLUFD $' DV K\SRWKHVL]HG E\ 6WDSRU HW DO f 8VHSSD ,VODQG // 2QH VDPSOH $ IURP 8VHSSD ,VODQG ZDV DQDO\]HG ,W LQFOXGHG YHUWHEUDWH DQG LQYHUWHEUDWH ERQH DQG VKHOO IUDJPHQWV UHSUHVHQWLQJ YHUWHEUDWH 01, DQG LQYHUWHEUDWH 01, 7DEOH $f 7ZHQW\ILYH YHUWHEUDWH WD[D DQG LQYHUWHEUDWH WD[D ZHUH LGHQWLILHG $ UDGLRFDUERQ GDWH RI %& ZDV REWDLQHG IRU WKH VDPSOH 7DEOH f )RUW\QLQH SHUFHQW RI WKH LQGLYLGXDOV ZHUH IURP R\VWHU EHGV DQG IRUW\VL[ SHUFHQW ZHUH IURP PDQJURYHVHDJUDVV KDELWDWV )LJXUH f *DWKHULQJ ELYDOYHV bf DQG VQDLOV bf DFFRXQWV IRU WKH PDMRU SRUWLRQ RI 01, LQ WKH VDPSOH ZLWK ILVKLQJ bf PDNLQJ XS WKH EDODQFH )LJXUH f )LVKHV LQ FRQWUDVW FRQWULEXWHV b WR b RI WKH WRWDO PHDW HVWLPDWHV )LJXUHV DQG UHVSHFWLYHO\f $OWKRXJK R\VWHU FURVVEDUUHG YHQXV FURZQ FRQFK WXOLS VKHOOV SLQILVK DQG KDUGKHDG FDWILVK RFFXU LQ ODUJH QXPEHUV WKH LQIUHTXHQW VKDUNV UD\V MDFNV VHDWURXW VKHHSVKHDG DQG VWULSHG

PAGE 172

EXUUILVK DOVR DFFRXQW IRU VL]DEOH PHDW SRUWLRQV $SSHQGL[ $f 7KH GDWD IURP WKLV RQH VDPSOH VXJJHVW WKDW 8VHSSDnV HQYLURQPHQWDO VHWWLQJ DW %& ZDV VLPLODU WR WKDW RI WKH SUHVHQW 7KH VHD OHYHO PD\ KDYH EHHQ VOLJKWO\ ORZHU EDVHG RQ WKH R\VWHU EDU VSHFLHV FRPSRVLWLRQ EXW WKH GDWD DUH QRW FRQYLQFLQJ 7KH GDWD GR KRZHYHU LQGLFDWH WKDW QR RFHDQ LQOHW H[LVWHG LQ WKH LPPHGLDWH YLFLQLW\ RI 8VHSSD ,VODQG ZKHQ WKH $ IDXQDO UHPDLQV HQWHUHG LQWR WKH PLGGHQ -RVVOYQ ,VODQG // )DXQDO VDPSOHV $O DQG $O UDGLRFDUERQGDWH WR %& DQG %& 7DEOH f 6DPSOHV $O DQG $O GDWH WR $' DQG $' UHVSHFWLYHO\ 7DEOH f 2YHUDOO YHUWHEUDWH DQG LQYHUWHEUDWH ERQH DQG VKHOO IUDJPHQWV ZHUH DQDO\]HG IURP WKH IRXU VDPSOHV (VWLPDWHV RI 01, DUH YHUWHEUDWHV DQG LQYHUWHEUDWHV 7DEOHV $ WKURXJK $f 0LGGHQ IDXQDO UHPDLQV DW -RVVO\Q DUH VR GHQVH WKDW KDOI WKH YROXPH RI VDPSOH $O ZDV IRXQG WR SURGXFH DV UHSUHVHQWDWLYH D VDPSOH DV WKDW RI D ZKROH VDPSOH VHH $SSHQGL[ $f ,Q DGGLWLRQ WKH -RVVO\Q VDPSOHV GLVSOD\ D KLJK VSHFLHV GLYHUVLW\ WD[RQRPLF ULFKQHVVf ZLWK DQ DYHUDJH RI YHUWHEUDWHV DQG LQYHUWHEUDWHV 6L[W\HLJKW SHUFHQW RI WKH DUFKDHRIDXQD LQGLFDWHV XVH RI PDQJURYHVHDJUDVV PHDGRZ KDELWDWV )LJXUH f ([WHQVLYH VKDOORZ VHDJUDVV PHDGRZV VXUURXQG WKH LVODQG HYHQ WRGD\

PAGE 173

7KH KLJK SURGXFWLYLW\ RI WKLV HFRV\VWHP LV HYLGHQW LQ WKH SUHKLVWRULF JDWKHULQJ RI PDULQH VQDLOV bf DQG ILVKLQJ PRVWO\ IRU VPDOO VFKRROLQJ ILVKHV bf )LJXUH f /LJKWQLQJ ZKHON SHDU ZKHON EDQGHG WXOLS FURZQ FRQFK DQG RWKHU OHVV DEXQGDQW VQDLOV DFFRXQW IRU RQO\ b WR b RI PHDW )LJXUHV DQG UHVSHFWLYHO\f 3LQILVK SLJILVK VLOYHU SHUFK DQG KDUGKHDG FDWILVK DUH WKH PRVW DEXQGDQW -RVVO\Q ILVKHV ,Q DGGLWLRQ GXVN\ VKDUN VDQGEDU VKDUN VHDWURXW VKHHSVKHDG UHG GUXP DQG WRDGILVK FRQWULEXWH WR WKH b WR b PHDW HVWLPDWH IRU ILVKHV 7DEOHV DQG UHVSHFWLYHO\f )LVKHV DQG VQDLOV DUH SURPLQHQW LQ DOO IRXU -RVVO\Q VDPSOHV ZLWK RQO\ D VPDOO LQFUHDVH RI ILVKHV LQ $O DQG $O )LJXUH f 6DPSOH $O LQFOXGHV D ODUJH FROOHFWLRQ 01, RI VFDOORSV 7DEOH $f 2YHUDOO WKH IRXU -RVVO\Q IDXQDO VDPSOHV VXJJHVW WKDW ZDWHU FRQGLWLRQV DW WKH UHVSHFWLYH WLPHV RI PLGGHQ GHSRVLW ZHUH PXFK WKH VDPH DV WKRVH RI WRGD\ %XFN .H\ 6KHOO 0LGGHQ // 6DPSOHV ZHUH DQDO\]HG IURP WZR WHVW H[FDYDWLRQ XQLWV $ DQG % 7RWDOV RI YHUWHEUDWH DQG LQYHUWHEUDWH ERQH DQG VKHOO IUDJPHQWV ZHUH DQDO\]HG UHSUHVHQWLQJ YHUWHEUDWH 01, DQG LQYHUWHEUDWH 01, 7DEOHV $ $f 7KH $ VDPSOHV $ DQG $ UDGLRFDUERQGDWH WR $' DQG $' UHVSHFWLYHO\ 7DEOH f 7KHVH WZR XQLW $ VDPSOHV GLIIHU LQ FKDUDFWHU IURP WKH % IDXQD LQ WKDW IHZHU ILVK UHPDLQV ZHUH

PAGE 174

UHFRYHUHG 8QLW % SURGXFHG WKH ODUJHVW YHUWHEUDWH IDXQDO VDPSOHV IURP WKH %XFN .H\ 6KHOO 0LGGHQ VLWH WRWDOLQJ 01, 7DEOHV $ DQG $f 6DPSOH % H[KLELWV WKH KLJKHVW GLYHUVLW\ WD[RQRPLF ULFKQHVVf RI DOO VDPSOHV LQ WKH &KDUORWWH +DUERU VWXG\ ZLWK YHUWHEUDWH DQG LQYHUWHEUDWH WD[D 7DEOH $f 7KH % UDGLRFDUERQ GDWHV DUH $' DQG $' 7DEOH f 7KH IROORZLQJ GHVFULSWLRQ RI UHVXOWV LV EDVHG RQ DQDO\VLV RI WKH WZR VDPSOHV IURP % %DVHG RQ WKH DUFKDHRIDXQD WKH LQKDELWDQWV RI %XFN .H\ XVHG UHVRXUFHV IRXQG LQ PDQJURYHVHDJUDVV b 01,f OLWWRUDO *XOI b 01,f DQG R\VWHU EHG b 01,f KDELWDWV )LJXUH f $GMDFHQW WR %OLQG 3DVV DQG VHSDUDWHG IURP &DSWLYD ,VODQG E\ WKH QDUURZ 5RRVHYHOW &KDQQHO %XFN .H\ LV WRGD\ WKH FORVHVW WR WKH RSHQ *XOI ZDWHUV RI DOO ILYH VWXG\ VLWHV )LVK YHUWHEUDH ZLGWKV )LJXUH f IRU &DVK 0RXQG -RVVO\Q ,VODQG DQG %XFN .H\ VXJJHVW WKDW ODUJHU LQGLYLGXDOV ZHUH FDXJKW LQ WKH YLFLQLW\ RI %XFN .H\ ,Q DGGLWLRQ WKH KLJKHVW QXPEHU RI VKDUNV RI DOO WKH VLWHV RFFXUV LQ WKH %XFN .H\ 0LGGHQ VDPSOHV 7DEOH f )LVKHV DFFRXQWV IRU b RI WRWDO 01, D KLJKHU SHUFHQWDJH WKDQ DW WKH RWKHU IRXU VWXG\ VLWHV )LJXUH f 0RVW DEXQGDQW DUH KDUGKHDG FDWILVK SLQILVK VWULSHG EXUUILVK VKHHSVKHDG DQG VLOYHU SHUFK ,Q DGGLWLRQ WR WKHVH VQRRN MDFN VHDWURXW UHG DQG EODFN GUXP DQG PXOOHW ZHUH LPSRUWDQW PHDW VRXUFHV $SSHQGL[ $f *DWKHULQJ

PAGE 175

ELYDOYHV SULPDULO\ VXUI FODP DQG R\VWHU DFFRXQWV IRU b RI WRWDO IDXQDO 01, ZKLOH b RI WRWDO IDXQDO 01, UHVXOWHG IURP JDWKHULQJ PDULQH VQDLOV )LJXUH f &RPSDUHG ZLWK WKH RWKHU IRXU VWXG\ VLWHV FUDEELQJ SDUWLFXODUO\ WKH SURFXUHPHQW RI VWRQH FUDEV ZDV VRPHZKDW LPSRUWDQW DW %XFN .H\ ZLWK D b 01, )LJXUH f 7KHVH ELYDOYHV VQDLOV DQG FUDEV FRQVWLWXWH RQO\ b WR b RI PHDW FRQWULEXWLRQ ZKHUHDV ILVKHV FRPSULVH b WR b )LJXUHV DQG f 0DPPDOV DQG VHD WXUWOHV &KHORQLLGDHf DUH DGGLWLRQDO LPSRUWDQW PHDW VRXUFHV 7KH UHFRYHU\ RI WKUHH VPDOO QDWXUDO SHDUOV IURP % .R]XFK f LV QRWDEOH FRQVLGHULQJ )RQWDQHGDnV f VWDWHPHQW WKDW WKH &KDUORWWH +DUERU DUHD LV D ODUJH FRXQWU\ ULFK LQ SHDUOV 2YHUDOO WKH WZR $ VDPSOHV DUH VLPLODU WR HDFK RWKHU DV DUH WKH WZR % VDPSOHV 7KH IRXU VDPSOHV WDNHQ IURP WZR GLIIHUHQW PLGGHQ DUHDV LQGLFDWH WZR GLIIHUHQW W\SHV RI PLGGHQ GHSRVLWV +RZHYHU ERWK VHWV RI UHVXOWV FRUUHVSRQG ZLWK %XFN .H\nV VXUURXQGLQJ HQYLURQPHQW 7KH GLIIHUHQFH LQ WKH WZR PLGGHQ DUHDV LV RQH RI YDU\LQJ TXDQWLWLHV RI VSHFLHV DV RSSRVHG WR NLQGV 7KUHH VDPSOHV $ % DQG % UDQJH LQ GDWH IURP $' WR $' 7DEOH f 7KH IRXUWK VDPSOH $ GDWHV WR FD $' 7DEOH f RU HDUOLHU EXW QR VLJQLILFDQW FKURQRORJLFDO SDWWHUQ LQ WKH IDXQDO UHPDLQV LV DSSDUHQW )LJXUH f 7KH KLJKVDOLQLW\ UHTXLUHPHQWV RI PXFK RI WKH %XFN .H\ DUFKDHRIDXQD LQGLFDWH WKDW D QHDUE\ LQOHW PXVW KDYH EHHQ

PAGE 176

RSHQ LQ VRPH IRUP DW WKH WLPH RI SUHKLVWRULF KXPDQ RFFXSDWLRQ $GGLWLRQDOO\ WKHUH LV QR LQGLFDWLRQ WKDW VHD OHYHO GLIIHUHG IURP WKDW RI WKH SUHVHQW FD $' WR $' LW PD\ QRW EH SRVVLEOH WR UHFRJQL]H VLJQDWXUHV GXH WR %XFN .H\nV ORFDWLRQ DW WKH KLJK HQG RI WKH VDOLQLW\ JUDGLHQW ([SORLWDWLRQ 3DWWHUQV DW WKH 5HJLRQDO 6FDOH $Q $TXDWLF ([SORLWDWLRQ )RQWDQHGD f ZULWLQJ DURXQG GHVFULEHG WKH &DOXVD DV JUHDW DQJOHUV ZKR DW QR WLPH ODFN IUHVK ILVK 6ROLV GH 0HU£V f UHODWHG WKDW 0HQQGH] GXULQJ D PHHWLQJ ZLWK &DUORV LQ ZDV VHUYHG PDQ\ NLQGV RI YHU\ JRRG ILVK URDVWHG DQG EURLOHG DQG R\VWHUV UDZ ERLOHG DQG URDVWHG ZLWKRXW DQ\WKLQJ HOVH $ ODWHU GRFXPHQW GDWHG GHVFULEHV )ORULGD ,QGLDQV DQG VD\V RI WKH &DOXVD WKRVH IURP WKH &DUORV FRDVWf DUH JUHDW GLYHUV DQG ILVKHUPHQ $UFKLYR *HQHUDO GH ,QGLDV6DQWR 'RPLQJR f $ FRPSDULVRQ RI WHUUHVWULDO DQG DTXDWLF DQLPDOV UHSUHVHQWHG LQ WKH PLGGHQV E\ 01, DQG PHDW ZHLJKW WRWDOV FRPSRVLWH VLWH GDWDf VKRZV DQ RYHUZKHOPLQJ H[SORLWDWLRQ RI DTXDWLF IRRGV WKXV VXSSRUWLQJ WKH HWKQRKLVWRULF GRFXPHQWDWLRQ RI ILVK DQG VKHOOILVK XVH LQ WKH &KDUORWWH +DUERU UHJLRQ 7DEOH f :LWKLQ WKLV DSSDUHQW UHJLRQDO KRPRJHQHLW\ RI D GRPLQDQW DTXDWLF H[SORLWDWLRQ KRZHYHU WKHUH H[LVWV WKH LQWHUVLWH KHWHURJHQHLW\ WKDW UHIOHFWV LQWUDHVWXDULQH HFRORJLFDO YDULDWLRQ

PAGE 177

,QWUDUHJLRQDO YDULDWLRQ RI DSSUR[LPDWHG VXEVLVWHQFH DFWLYLW\ EDVHG RQ 01, RI H[SORLWHG DQLPDOV LV LOOXVWUDWHG LQ )LJXUH 7KH FKDUWV DUH QRW LQWHQGHG WR LPSO\ HIIRUW WLPH RU H[SHQGHG HQHUJ\ WKLV ZRXOG EH D PXFK PRUH FRPSOH[ DQDO\VLV HJ *ODVVRZ DQG :LOFR[RQ f )RU H[DPSOH ODUJH QXPEHUV RI ILVK LQGLYLGXDOV PD\ EH FROOHFWHG LQ RQO\ RQH EULHI QHW ORDG ZKLOH WKH VDPH QXPEHU RI PROOXVF LQGLYLGXDOV PD\ UHSUHVHQW VHYHUDO KRXUV RI JDWKHULQJ +RZHYHU WHFKQRORJ\ PD\ EDODQFH SURFXUHPHQW FRVW GLIIHUHQFHV 0XFK WLPH DQG HQHUJ\ ZRXOG EH UHTXLUHG IRU WKH PDQXIDFWXUH DQG PDLQWHQDQFH RI QHWV OLQH KRRNV DQG VLQNHUV QHHGHG IRU ILVKLQJ ZKHUHDV FRPSDUDWLYHO\ OLWWOH WLPH ZRXOG EH QHHGHG WR PDNH VKHOOILVK JDWKHULQJ LPSOHPHQWV VXFK DV D SURELQJ VWLFN ZKHON SRXQGHU SHFNLQJ WRRO RU FRQWDLQHU )LJXUH LV LQVWUXFWLYH RQO\ LQ VKRZLQJ 01, LQ JHQHUDO ILVKLQJ JDWKHULQJ DQG KXQWLQJ WHUPV +XQWLQJ ODQG DQG DTXDWLF PDPPDOV DTXDWLF ELUGVf LV QRW VLJQLILFDQW LQ DQ\ RI WKH ILYH FRPSRVLWH VDPSOHV VXJJHVWLQJ WKDW LW ZDV QRW DQ LPSRUWDQW DFWLYLW\ RQ D GDLO\ EDVLV 7KH WLPH UHTXLUHG IRU WUDYHO WKH KXQW LWVHOI DQG WUDQVSRUW PD\ KDYH IDU H[FHHGHG WKDW IRU ILVKLQJ DQG VKHOOILVKLQJ $V LQ WKH KDELWDW VXPPDULHV )LJXUH f WKH DFWLYLW\ FKDUWV )LJXUH f FORVHO\ FRUUHVSRQG WR SUHVHQWGD\ LPPHGLDWH VXUURXQGLQJV IRU HDFK VLWH )RU H[DPSOH -RVVO\Q ,VODQG H[KLELWV WKH ORZHVW SHUFHQWDJH RI JDWKHULQJ ELYDOYHV

PAGE 178

6HVVLOH PROOXVFV VXFK DV R\VWHUV PXVVHOV FODPV DQG SHQ VKHOOV DUH WRGD\ XQFRPPRQ LQ WKH YLFLQLW\ RI -RVVO\Q )LVKHG LQGLYLGXDOV GRPLQDWH RQO\ RQH FKDUW WKDW RI %XFN .H\ b 01,f WKH VLWH FORVHVW WR DQ LQOHW 2YHUDOO %LJ 0RXQG .H\ VDPSOHV GHPRQVWUDWH D ZHOO GLYHUVLILHG PHQX RI DQLPDO IRRGV ZKHUHDV &DVK 0RXQG H[KLELWV D KLJKO\ VSHFLILF DFWLYLW\ WKDW RI JDWKHULQJ R\VWHUV DQG PXVVHOV b 01,f 0D[LPXP PHDW ZHLJKW UDQNLQJV IRU WKH WRS WHQ ERQ\ LH H[FOXGHV VKDUNV DQG UD\Vf ILVKHV DW HDFK VLWH VKRZ WKDW KDUGKHDG FDWILVK SURYLGHG WKH JUHDWHVW TXDQWLWLHV LQ WKH &DVK 0RXQG 8VHSSD ,VODQG DQG %XFN .H\ VDPSOHV DQG ZDV VHFRQG KLJKHVW IRU WKH -RVVO\Q VDPSOHV 7DEOH f (VWLPDWHV RI FDWILVK PHDW ZHLJKW LV FRPSDUDWLYHO\ VPDOO LQ WKH VDPSOHV IURP %LJ 0RXQG .H\ 3LQILVK SUHYDLO LQ WKH -RVVO\Q ,VODQG VDPSOHV UHIOHFWLQJ H[SORLWDWLRQ RI WKH VLWHnV VXUURXQGLQJ H[SDQVLYH VHDJUDVV PHDGRZV $OVR WKH ODFN RI ODUJH SUHGDFHRXV ILVKHV DPRQJ WKH -RVVO\Q UDQNLQJ LV LQGLFDWLYH RI WKH VLWHnV GLVWDQFH DZD\ IURP GHHSHU ZDWHUV DQG LQOHWV 'HVSLWH ORZ 01, $SSHQGL[ $f ODUJH ILVKHV VXFK DV MDFNV SULPDULO\ FUHYDOOH MDFNf EDUUDFXGDVPDFNHUHOV EODFN GUXP DQG VQRRN FDQ UHSUHVHQW LPSRUWDQW FRPSRQHQWV WR WKH KXPDQ GLHW 7DEOH f 7KHVH ILVKHV DUH PRVW QRWLFHDEOH LQ WKH %LJ 0RXQG .H\ DQG %XFN .H\ UDQNLQJV UHIOHFWLQJ WKHLU FORVH SUR[LPLW\ WR RFHDQ LQOHWV $OVR VXSSRUWLYH RI WKH ODUJH SUHGDWRU\ ILVKQHDUE\ LQOHW DVVRFLDWLRQ LV WKH

PAGE 179

LQWUDUHJLRQDO GLVWULEXWLRQ RI VKDUN 01, VXPPDUL]HG LQ 7DEOH %LJ 0RXQG .H\ DQG %XFN .H\ VKRZ WKH JUHDWHVW 01, DJDLQ UHIOHFWLQJ WKHLU FORVH SUR[LPLW\ WR RFHDQ LQOHWV )DXQDO FRPPXQLWLHV UHSUHVHQWHG LQ WKH DUFKDHRORJLFDO PLGGHQV $SSHQGL[HV $ DQG %f LQGLFDWH WKDW JDWKHULQJ ORFDWLRQV VXFK DV R\VWHU EDUV DQG ILVKLQJ DUHDV VXFK DV VHDJUDVV PHDGRZV ZHUH H[SORLWHG LQ D JHQHUDOL]HG PDQQHU )RU H[DPSOH SUHGDWRUV VXFK DV WKH FRPPRQ FURZQ FRQFK ZHUH JDWKHUHG DORQJ ZLWK WKH WDUJHWHG R\VWHU LH R\VWHU VKHOOV DUH SUHGRPLQDQW DPRQJ WKH IDXQDO UHPDLQV UHSUHVHQWLQJ WKH EDU FRPPXQLW\f 6HLQH QHW DVVHPEODJHV IURP WKH VHDJUDVV IODWV SURYLGHG WKH RFFDVLRQDO EOXH FUDE DQG SUHGDWRU\ ILVK DV ZHOO DV WDUJHWHG VFKRROLQJ ILVKHV LH WKH VFKRROLQJ ILVKHV DUH SUHGRPLQDQW LQ WKH IDXQDO UHPDLQVf 0RUH VHOHFWLYH ILVKLQJ ZDV SHUIRUPHG ZLWK WKH XVH RI WKURDW JRUJHV VSHDUV RU OHLVWHUV FRPSRVLWH KRRNV DQG JLOO QHWV 7KH ODWWHU WZR W\SHV RI JHDU ZHUH GHVLJQHG IRU LQVKRUH DQG LQOHW ZDWHUV WKDW DUH UHODWLYHO\ GHHSHU WKDQ WKH IODWV (DUOLHU LQ WKLV GLVVHUWDWLRQ LW ZDV HVWDEOLVKHG WKDW WKH GHWHFWDELOLW\ RI HQYLURQPHQWDO FKDQJH VLJQDWXUHV GHSHQGV RQ WKH WHPSRUDO VFDOH RI WKH YDULDWLRQ VLWH ORFDWLRQ DQG PDJQLWXGH RI YDULDWLRQ $W D UHJLRQDO VFDOH LH D FKDQJH WKDW ZRXOG DIIHFW UHJLRQDO H[SORLWDWLRQ SDWWHUQV DV D ZKROHf WKH IRUP RI HQYLURQPHQWDO FKDQJH WKDW PRVW OLNHO\ ZRXOG SURGXFH FKDQJH VLJQDWXUHV LQ WKH DUFKDHRIDXQDO UHFRUG LV ORQJWHUP VHDOHYHO IOXFWXDWLRQ (YHQ VR GHWHFWLRQ LV

PAGE 180

GHSHQGHQW RQ WKH RWKHU WZR IDFWRUV LQWUDUHJLRQDO VLWH ORFDWLRQ DQG PDJQLWXGH RI IOXFWXDWLRQ &DVK 0RXQGnV ORFDWLRQ DQG WLPH SHULRG RI GHSRVLWV PDNH LW LGHDOO\ VXLWHG WR WKH GHWHFWLRQ RI D VHDOHYHO FKDQJH WKDW VXUHO\ DIIHFWHG H[SORLWDWLRQ SDWWHUQV RI WKH HQWLUH UHJLRQ 'XULQJ D KLJK VHDOHYHO VWDQG DV K\SRWKHVL]HG E\ 6WDSRU HW DO f DQG 7DQQHU f IRU WKH SHULRG %& WR $' HVWXDULQH IDXQD ZRXOG KDYH DOWHUHG WKHLU GLVWULEXWLRQ SDWWHUQV LQ WXUQ DOWHULQJ KXPDQ SDWWHUQV RI WKHLU H[SORLWDWLRQ 7KH VXEVHTXHQW GURS WR EHORZ SUHVHQW OHYHOV IRU WKH SHULRG RI $' WR FD $' ZRXOG DJDLQ DOWHU WKH SDWWHUQV SXW LQWR SODFH E\ WKH SUHYLRXV KLJK VWDQG RI ZDWHU 2QH FDQ YLVXDOL]H LW DV D EDVLQ ZKHUH WKH VDOLQH ZHGJH PRYHV ZHVW WR HDVW WKHQ HDVW WR ZHVW ZKLOH WKH ZDWHUV ULVH LQXQGDWLQJ WKH LPPHGLDWH VKRUHOLQHV WKHQ ODWHU UHFHGH H[SRVLQJ QHZ LQWHUWLGDO IODWV 6LJQDWXUH PLGGHQ IDXQD DUH WKRVH ZKRVH EHKDYLRU LV VHQVLWLYH WR VDOLQLW\ ZDWHU GHSWK DQG LQ VRPH FDVHV IRRG VXSSO\ )LVKLQJ *DWKHULQJ DQG +XQWLQJ 7HFKQRORJ\ 7KH FROOHFWLRQV RI VXEVLVWHQFH DUWLIDFWV DUH VPDOO DQG WKHUIRUH GLVFXVVLRQ RI WHFKQRORJ\ LV UHVWULFWHG WR JHQHUDO UHJLRQDOf VWDWHPHQWV XQWLO DUFKDHRORJLVWV LQFUHDVH WKHVH VDPSOHV 1RQHWKHOHVV WKH VSDWLDO DQG WHPSRUDO DQDO\VHV RI P\ VWXG\ DOORZ IRUPXODWLRQ RI K\SRWKHVHV FRQFHUQLQJ LQWHUUHJLRQDO DQG LQWUDUHJLRQDO YDULDWLRQ 7KHVH DUH RIIHUHG LQ WKH QH[W VHFWLRQ

PAGE 181

7KH VWXG\ RI FRQWHPSRUDU\ DQG DUFKDHRORJLFDO IDXQDO FRPPXQLWLHV DQG WKHLU DVVRFLDWHG KDELWDWV KDV VXJJHVWHG DQ LQWHQVLYH DERULJLQDO H[SORLWDWLRQ RI HDFK VLWHnV LPPHGLDWH VXUURXQGLQJV )LJXUHV DQG $SSHQGL[HV $ DQG %f 6WXG\ RI WKHVH FRPPXQLWLHV RQ D ILQH VFDOH IXUWKHU LOOXPLQDWHV PLGGHQ FKDUDFWHULVWLFV 0LGGHQ VSHFLHV FRPSRVLWLRQ IRU H[DPSOH FDQ VHUYH DV DQ LQGLFDWRU RI VXEVLVWHQFH WHFKQRORJ\ 3UHKLVWRULF XVH RI WKH PDVVFDSWXUH WHFKQLTXH RI QHW ILVKLQJ FDQ EH LQIHUUHG E\ H[DPLQLQJ WKH SUHVHQWGD\ HFRORJ\ RI ILVKHV LQ FRQFHUW ZLWK DUFKDHRORJLFDO VSHFLHV FRPSRVLWLRQ )RU H[DPSOH LW LV NQRZQ WKDW WKH DEXQGDQW SLQILVKnV SUHIHUUHG KDELWDW LV VHDJUDVV PHDGRZ HJ 'DUF\ f ,Q DGGLWLRQ WKH SLJILVK JUXQWf DQG VLOYHU SHUFK FRPPRQO\ VFKRRO ZLWK WKH SLQILVK EXW LQ OHVVHU QXPEHUV &DOGZHOO 'XUDNR HW DO :DQJ DQG 5DQH\ f 7DEOH SUHVHQWV WKH DUFKDHRORJLFDO GLVWULEXWLRQ E\ 01, RI WKHVH WKUHH VFKRROLQJ ILVKHV WKH UDWLR RI SLQILVK WR SLJILVK WR SHUFK LV DERXW 2I DOO WKH VWXG\ VLWHV -RVVO\Q FRQWDLQV WKH JUHDWHVW DEXQGDQFH RI DOO WKUHH VSHFLHV D UHIOHFWLRQ RI WKH H[SDQVLYH VKDOORZ VHDJUDVV PHDGRZV VXUURXQGLQJ WKH LVODQG WRGD\ 3LQILVK LV WKH GRPLQDQW VSHFLHV RI WKH WKUHH LQ DOO VDPSOHV 7DEOH f FRQVLVWHQW ZLWK WKH SUHVHQWGD\ HFRORJLFDO VLWXDWLRQ 7KH SLJILVK LV RIWHQ WKH VHFRQG PRVW DEXQGDQW ILVK RI WKH VFKRRO DVVHPEODJH 7KHVH WZR LPSRUWDQW

PAGE 182

ILVKHV DQG WKHLU DWODV DQG SUHPD[LOOD HOHPHQWV DUH LOOXVWUDWHG LQ )LJXUHV DQG WKH WZR ERQHV DUH DEVHQW LQ WKH f VFUHHQV EXW DEXQGDQW LQ WKH ILQH VFUHHQV 7KH VLPLODULW\ RI WKH DUFKDHRIDXQDO SDWWHUQ WR WKH SUHVHQWGD\ RQH VXJJHVWV WKDW WKH ILVKHV ZHUH FDXJKW HQ PDVVH ZLWKLQ WKH VHDJUDVV PHDGRZV (WKQRKLVWRULF DQG DUFKDHRORJLFDO VXSSRUW H[LVWV IRU WKH XVH RI QHWV LQ VRXWKZHVW )ORULGD /SH] GH 9HODVFR FLWHG E\ *RJJLQ DQG 6WXUWHYDQW f ZULWLQJ DURXQG VWDWHG WKDW LQ &KDUORWWH +DUERU WKHUH ZDV D JUHDW ILVKHU\ RI PXOOHW OLFLDVf ZKLFK WKH\ >WKH ,QGLDQV@ FDWFK LQ QHWV DV LQ 6SDLQ 7KH FRUGDJH FROOHFWLRQ H[FDYDWHG IURP WKH PXFN RI WKH .H\ 0DUFR VLWH LQFOXGHV QHW SUREDEO\ PDGH RI SDOP ILEHUf IUDJPHQWV ZLWK IORDW SHJV *LOOLODQG 3ODWH f PDGH RI F\SUHVV 7D[RGLXP VS /HH 1HZVRP SHUVRQDO FRPPXQLFDWLRQ f DWWDFKHG DORQJ WKH WRS PDUJLQ DFWLQJ DV D FRUN OLQH 3LHUFHG DUF 1RHWLD SRQGHURVD VKHOOV DW WKH ERWWRP VXSSO\ D OHDG OLQH *LOOLODQG 3ODWH f 7KH ERZOLQJSLQ VKDSHG ZRRGHQ REMHFWV IURP .H\ 0DUFR ORQJ GHVFULEHG DV SHVWOHV *LOOLODQG 3ODWH f PLJKW LQVWHDG KDYH EHHQ XVHG DV HQG QHW IORDWV 6WHZDUW f LOOXVWUDWHV D VLPLODU H[DPSOH IURP WKH $PHULFDQ 1RUWKZHVW &RDVW 7KHVH REMHFWV PD\ KDYH IXQFWLRQHG WKH VDPH DV WKH ERWWOH JRXUG /DJHQDULD VLFHUDULDf IORDWV IRXQG DW .H\ 0DUFR *LOOLODQG 3ODWH f 7KH ZRRG RI RQH RI WKHVH

PAGE 183

REMHFWV KDV EHHQ LGHQWLILHG DV VDIIURQSOXP %XPHOLD VS D OLJKWZHLJKW ZRRG /HH 1HZVRP SHUVRQDO FRPPXQLFDWLRQ f 6XFK ZRRG ZRXOG QRW EH DSSURSULDWH DV D SHVWOH 7KLV W\SH RI QHW LOOXVWUDWHG LQ )LJXUH ZRXOG KDYH EHHQ UHODWLYHO\ VQDJIUHH PDNLQJ HIIHFWLYH JLOO ODUJHU PHVKHVf RU VHLQH VPDOOHU PHVKHVf QHWV 5REHUW .QLJKW SHUVRQDO FRPPXQLFDWLRQ f 0DQ\ SHUIRUDWHG DUF VKHOOV KDYH EHHQ UHFRYHUHG IURP WKH ILYH VWXG\ VLWHV EXW ZLWK QR RWKHU GLUHFW HYLGHQFH RI QHWV SUHVHUYHG ,PSRUWDQW LQGLUHFW DUWLIDFWXDO HYLGHQFH KRZHYHU RFFXUV LQ WKH IRUP RI VKHOO DQG ERQH QHW PHVK JDXJHV XVHG WR PDQXIDFWXUH WKH ILVKLQJ QHWV 7KHVH KDYH EHHQ UHFRYHUHG IURP WZR RI WKH VWXG\ VLWHV -RVVO\Q ,VODQG DQG &DVK 0RXQG 7KH .H\ 0DUFR FROOHFWLRQ FRQWDLQV VHYHUDO ZRRGHQ H[DPSOHV DQG QXPHURXV VKHOO DQG ERQH JDXJHV :DONHU f 3LQHODQG KDV DOVR SURGXFHG VHYHUDO VKHOO DQG ERQH H[DPSOHV :DONHU f 7KH VKHOO DQG ERQH JDXJHV IURP WKHVH VLWHV DQG D IHZ RWKHUV IDOO LQWR VHYHQ ZLGWK FDWHJRULHV :DONHU f 7KH ZLGWK RI WKH JDXJH FRUUHVSRQGV WR WKH GHVLUHG EDU OHQJWK /LEHUW 0DXFRUSV DQG ,QQHV f RU WR RQH VLGH RI WKH PHVK PHDVXUHG LQVLGH WKH NQRWVf 'RXEOHG WKLV PHDVXUHPHQW HTXDOV WKH PHVK RSHQLQJ .OXVW f FDOOHG WKH VWUHWFK E\ FRQWHPSRUDU\ ILVKHUIRON ,W LV WKLV PHDVXUHPHQW WKDW GHWHUPLQHV WKH ILVK VL]H WR EH WDUJHWHG ,Q UHDOLW\ PHVK EDU PHDVXUHPHQWV FDQ YDU\ VOLJKWO\ IURP WKH

PAGE 184

VL]H RI WKH JDXJH XVHG WR SURGXFH WKH QHWWLQJ GXH WR ZHWWLQJ ZKLOH LQ XVH .OXVW f DQG LQ WKH FDVH RI .H\ 0DUFRnV QHWWLQJ SRVVLEOH VKULQNDJH RYHU WKH GHFDGHV VLQFH LWV H[FDYDWLRQ 7DEOH SUHVHQWV PHVK EDU DQG RSHQLQJf PHDVXUHPHQWV IRU WKH .H\ 0DUFR QHW IUDJPHQWV LOOXVWUDWLQJ WKH YDULDWLRQ LQ VL]HV XVHG DW WKLV VLWH 7RGD\ &KDUORWWH +DUERUnV ILVKHUIRON VHOHFWLYHO\ JLOOQHW WKH ORZWURSKLF EODFN PXOOHW 0XJLO FXUHPDf E\ XVLQJ PHVKHV WKDW YDU\ ZLWK WKH ILVKnV VL]H WKURXJKRXW LWV OLIH F\FOH (GLF /DPSO 5REHUW .QLJKW SHUVRQDO FRPPXQLFDWLRQ f 7KH PHVK RSHQLQJV UDQJH IURP PP ff LQ WKH VXPPHU WR PP f LQ WKH ZLQWHU VSDZQLQJ VHDVRQ (GLF f 7KH VL]HV RI ERWK WKH DUFKDHRORJLFDO QHW PHVK JDXJHV :DONHU f DQG WKH .H\ 0DUFR QHW VSHFLPHQV 7DEOH f LPSO\ QHW PHVK RSHQLQJV XS WR PP KRZHYHU WKH JUHDWHU QXPEHU RI JDXJHV HPSKDVL]HV WKH XVH RI QHWV ZLWK PXFK VPDOOHU PHVK RSHQLQJV :DONHU f *DXJHV LQGLFDWH WKH XVH RI QHWV ZLWK RSHQLQJV DV VPDOO DV PP EXW WKH ODUJHVW JURXS RI VSHFLPHQV Q f IDOOV LQWR WKH PP f RSHQLQJ FDWHJRU\ 7KHUH LV QR UHDVRQ WR EHOLHYH WKDW PXOOHW ZHUH QRW DEXQGDQW DQG HFRQRPLFDOO\ LPSRUWDQW LQ WKH SUHKLVWRULF VHWWLQJ RI &KDUORWWH +DUERU \HW IHZ PXOOHW UHPDLQV DUH UHFRYHUHG IURP DUFKDHRORJLFDO VLWHV 7KLV LV WKH FDVH ZLWK ERWK SUHYLRXV ]RRDUFKDHRORJLFDO ZRUN LQ WKH DUHD HJ )UDGNLQ 0LODQLFK HW DO f DQG WKH SUHVHQW VWXG\

PAGE 185

7DEOH f ,QWHUHVWLQJO\ WKH %XFN .H\ VDPSOH % FRQWDLQV WKH ODUJHVW FRQFHQWUDWLRQ RI PXOOHW ERQHV PRVWO\ YHUWHEUDHf RI WKH ILYH VWXG\ VLWHV 7DEOH f ,W LV SRVVLEOH WKDW PXOOHW ZHUH VLPSO\ RQH FRPSRQHQW LQ DQ RYHUDOO GLYHUVLILHG ILVKLQJ HFRQRP\ DQG WKDW /SH] GH 9HODVFRnV REVHUYDWLRQ IRFXVHV RQ PXOOHW EHFDXVH LW LV D ILVK ZLWK ZKLFK KH ZDV IDPLOLDU 7KH GLYHUVLW\ RI ILVKHV DQG WKH DEXQGDQFH RI VPDOO ILVKHV VXFK DV WKH SLQILVK LQ WKH DUFKDHRIDXQDO VDPSOHV DV ZHOO DV WKH SUHGRPLQDQFH RI VPDOO QHW PHVK JDXJHV DUJXHV IRU WKLV H[SODQDWLRQ :KHUHYHU PXOOHW LV IRXQG DUFKDHRORJLFDOO\ ZLWK WKH H[FHSWLRQ RI ZHW VLWHV LW LV WKH GLVWLQFWLYH WKRUDFLF YHUWHEUDH WKDW DUH UHFRYHUHG DQG UDUHO\ WKH VNXOO HOHPHQWV 7KLV UDLVHV WKH TXHVWLRQ DV WR ZKHWKHU WKH VFDUFLW\ RI PXOOHW ERQHV LV GXH WR FXOWXUDO SUDFWLFH DV VXJJHVWHG E\ :LGPHU f RU ODFN RI SUHVHUYDWLRQ ,W LV D FRPPRQ QRWLRQ WKDW ILVKHV VXFK DV MDFNV DQG PXOOHW PD\ QRW SUHVHUYH ZHOO EHFDXVH RI WKHLU RLOLQHVV EXW WKLV KDV QRW EHHQ WHVWHG 3HUKDSV *RJJLQ DQG 6WXUWHYDQW DOVR VHH 0DUTXDUGW f RYHUHPSKDVL]HG PXOOHW LQ WKH &DOXVD ILVKHU\ GXH WR LQKHUHQW REVHUYDWLRQDO ELDVHV RI ERWK WKH VL[WHHQWK DQG WZHQWLHWKFHQWXU\ YDULHWLHV 7KH DEVHQFH RI FHUWDLQ ILVKHV IURP WKH IDXQDO UHPDLQV PD\ SURYLGH DGGLWLRQDO FOXHV WR QHW PHVK VL]HV )RU H[DPSOH :DQJ DQG 5DQH\ f UHSRUW WKDW DQFKRYLHV SULPDULO\ WKH ED\ DQFKRY\ $QFKRD PLWFKLOOL QXPHULFDOO\

PAGE 186

UHSUHVHQW RYHU b RI DOO ILVK VSHFLHV WUDZOHG LQ &KDUORWWH +DUERU LQ DW OHDVW ILYH PRQWKV RI WKH \HDU \HW QR DQFKRY\ VSHFLPHQV ZHUH LGHQWLILHG LQ WKH PLGGHQ VDPSOHV :DQJ DQG 5DQH\ XVHG WUDZOLQJ QHWV RI PP DQG PP DQG EDU OHQJWKf WKDW LV PP DQG PP PHVK RSHQLQJV DQG RSHQLQJVf ZKHUHDV WKH VPDOOHVW .H\ 0DUFR PHVK LV D PP RSHQLQJ 7DEOH f DQG WKH VPDOOHVW PHVK JDXJH ZRXOG KDYH SURGXFHG PP RSHQLQJV :DONHU f $QFKRYLHV KDYH VPDOO JLUWKV DQG UDUHO\ H[FHHG PP LQ OHQJWK +RHVH DQG 0RRUH :DQJ DQG 5DQH\ f WKH\ FRXOG SUREDEO\ HVFDSH D QHW ZLWK PP RSHQLQJV SHUKDSV H[SODLQLQJ WKHLU DUFKDHRORJLFDO DEVHQFH 2I UHODWHG LQWHUHVW LV WKH JHQHUDO ODFN RI GLDJQRVWLF DERYH WD[RQ OHYHO RI &ODVVf IDXQDO UHPDLQV LQ WKH PP VFUHHQ IUDFWLRQ VHH PHWKRGV GLVFXVVLRQf ,Q VXP WKLV VXJJHVWV D JHQHUDO SUHKLVWRULF XVH RI QHWV ZLWK QR VPDOOHU WKDQ PP PHVK RSHQLQJV &XVKLQJ f GHVFULEHV ILQH PHVKHG VTXDUH GLS QHWV VLPLODU WR RQHV NQRZQ IURP WKH 1RUWK $PHULFDQ 1RUWKZHVW &RDVW HJ 6WHZDUW f IRU WKH .H\ 0DUFR VLWH EXW KH SURYLGHV QR PHVK PHDVXUHPHQW 7RGD\ UHPDLQV RI WKHVH GLS QHWV DSSDUHQWO\ GR QRW H[LVW LQ WKH )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\nV .H\ 0DUFR FRUGDJH FROOHFWLRQ 6XFK QHWV PD\ KDYH EHHQ XVHG WR FDWFK EDLW ILVK $OWHUQDWH H[SODQDWLRQV IRU WKH ODFN RI HYLGHQFH IRU JHQHUDO XVH RI ILQHPHVKHG OHVV WKDQ PPf QHWV PLJKW EH

PAGE 187

WKDW WKHVH QHWV ZHUH PDGH ZLWK ZRRGHQ JDXJHV LH DUWLIDFWV WKDW GLG QRW SUHVHUYHf DQG WKDW VPDOO ILVKHV VXFK DV WKH ED\ DQFKRY\ GR QRW DSSHDU LQ WKH PLGGHQV EHFDXVH WKH ERQHV GLG QRW SUHVHUYH RU WKH ILVKHV ZHUH HDWHQ ZKROH RU SURFHVVHG LQWR PHDO )XWXUH ZRUN DW VLWHV FRQWDLQLQJ ZDWHUORJJHG PLGGHQV LH WKH SUHVHUYDWLRQ RI ZRRGHQ JDXJHV DQG DQFKRY\ ERQHVf PD\ DOORZ WKH WHVWLQJ RI WKHVH SRVVLELOLWLHV 7LGDO HQFORVXUHV SHUKDSV FRQVWUXFWHG RI FDEEDJH SDOP VWHPV DQG IURQGV PD\ KDYH EHHQ HPSOR\HG E\ WKH &DOXVD DQG WKHLU SUHGHFHVVRUV VHH &XVKLQJ 5REHUW .QLJKW SHUVRQDO FRPPXQLFDWLRQ f EXW QR DUFKDHRORJLFDO RU HWKQRKLVWRULF VXSSRUW H[LVWV IRU WKHP $GGLWLRQDOO\ OLWWOH RU QR ]RRDUFKDHRORJLFDO GLVWLQFWLRQ ZRXOG RFFXU EHWZHHQ QHWWHG VSHFLHV DVVHPEODJHV DQG WKRVH FDXJKW LQ WLGDO WUDSV /DV &DVDV ZULWLQJ DERXW VWDWHV WKDW WKH &XEDQ ,QGLDQV >-DJXD %D\@ VHUYHG WKH PDULQHUV >2FDPSR DQG FUHZ@ SDUWULGJH DQG PXOOHW ILVK ZKLFK WKH\ WRRN DV HDVLO\ DV IURP DQ DTXDULXP IURP VHD FRUUDOV RI ZRYHQ UHHGV VWXFN LQ WKH ED\nV PXG ERWWRP :HGGOH f 2WKHU HWKQRKLVWRULF UHIHUHQFHV GHVFULEH DQ H[WHQVLYH XVH RI WLGDO LPSRXQGPHQWV E\ WKH 7LPXFXD RI WKH 6W -RKQV 5LYHU DUHD /DUVRQ f ,I KLVWRULF FRQWDFW ZLWK &XEDQ DQG 7LPXFXDQ JURXSV ZDV DV FRPPRQ DV LV WKRXJKW 0DUTXDUGW f WKHQ VXUHO\ WKH &KDUORWWH +DUERU JURXSV ZHUH DW OHDVW IDPLOLDU ZLWK WKLV WHFKQRORJ\

PAGE 188

$ JUHDW YDULHW\ RI ERQH SRLQWV DQG JURRYHG VWRQH DQG VKHOO ZHLJKWV DUH UHFRYHUHG IURP VRXWKZHVW )ORULGDnV FRDVWDO VLWHV 7KHVH YHUVDWLOH DQG RIWHQ UHF\FOHG DUWLIDFWV DUH EHOLHYHG WR EH SULPDU\ FRPSRQHQWV RI D VRSKLVWLFDWHG KRRNDQGOLQH DQG VSHDUILVKLQJ WHFKQRORJ\ :DONHU f %RQH SRLQWV PDGH IURP PDPPDO ERQH IXQFWLRQHG DV VSHDU RU OHLVWHU SRLQWV SRLQWV IRU EDUEOHVV FRPSRVLWH ILVKKRRNV DQG VLPSOH WKURDW JRUJHV 6WRQH ZHLJKWV DUH FRQVLGHUHG WR EH ILVKLQJ OLQH VLQNHUV 6KHOO FROXPHOOD ZHLJKWV ZHUH XVHG DV OLQH VLQNHUV RU GRXEOHG LQ IXQFWLRQ DV OLQH VLQNHU DQG FRPSRVLWHKRRN VKDQN :DONHU f /HLVWHUV RU VSHDUV ZRXOG KDYH EHHQ XVHIXO LQ WKH VKDOORZ VHDJUDVV IODWV IRU SURFXULQJ ERWWRP GZHOOHUV VXFK DV IORXQGHU DQG VWLQJ UD\ 'LFNLQVRQ f GHVFULEHV D VRXWKHDVW )ORULGD FRDVW ,QGLDQ ZKR RQH PRUQLQJ LQ DGHSWO\ VSHDUHG PDQ\ ILVK DW DQ LQOHW 7KH FRPSRVLWHKRRN WHFKQRORJ\ SUREDEO\ ZDV GHVLJQHG IRU WKH FDSWXUH RI VWULNLQJ FDUQLYRURXV ILVKHV WKDW FRXOG QRW EH QHWWHG SURILWDEO\ 7KLV PLJKW KDYH EHHQ GXH WR WKH ODFN RI WHQVLOH VWUHQJWK LQ WKH SDOPILEHU QHWV 6DLOV f 7RGD\ ILVKHUIRON ZKR RQFH XVHG FRWWRQ QHWV LQ &KDUORWWH +DUERU UHSRUW WKDW UHG GUXP UHGILVKf DQG VHDWURXWV URXWLQHO\ GDPDJHG WKHLU QHWV UHVXOWLQJ LQ HVFDSH (GLF f )DVWVZLPPLQJ SUHGDWRUV VXFK DV FUHYDOOH MDFN FDQ HVFDSH WKH QHWV DQG WKXV PD\ KDYH EHHQ FDXJKW E\ KRRN DQG OLQH $OWKRXJK WKH JUDVV PHDGRZV PD\ KDYH EHHQ WUROOHG IRU

PAGE 189

ILVK XVLQJ WKH FRPSRVLWH KRRNV LW LV PRUH OLNHO\ WKDW WKHVH ILVKKRRNV ZHUH DGDSWHG IRU WUROOLQJ LQ UHODWLYHO\ GHHSHU ZDWHUV 7DUWDJOLD f SDUWLFXODUO\ LQ WKH YLFLQLW\ RI WKH RFHDQ SDVVHV :RUOGZLGH ILVKLQJ ZLWK VLPSOH WKURDW JRUJHV LV FRPPRQO\ DVVRFLDWHG ZLWK TXLHW VKDOORZ ZDWHUV 7DUWDJOLD f VLPLODU WR WKRVH RI WKH &KDUORWWH +DUERU UHJLRQ :DONHU f 7KLV W\SH RI KRRN LV GHVLJQHG IRU WKH FDSWXUH RI ILVK WKDW VZDOORZ WKHLU IRRG ZKROH UDWKHU WKDQ QLEEOH LW 7KH WHFKQRORJ\ RI VKDUN ILVKLQJ LQ WKH DERULJLQDO 6RXWKHDVW KDV EHHQ D IRFXV RI GLVFXVVLRQ DPRQJ DUFKDHRORJLVWV .R]XFK /DUVRQ :LGPHU E :LQJ DQG /RXFNV f 7KH &KDUORWWH +DUERU VDPSOHV LQFOXGH QLQH VKDUN VSHFLHV $SSHQGL[ $ 7DEOH f DOO RI ZKLFK DUH NQRZQ WR IHHG LQ LQVKRUH ZDWHUV +RHVH DQG 0RRUH 2GXP HW DO :DQJ DQG 5DQH\ f 7KH ]RRDUFKDHRORJLFDO VSHFLPHQV LQGLFDWH WKDW WKH PDMRULW\ RI WKHVH VKDUNV ZHUH MXYHQLOHV 7KHVH LQGLYLGXDOV PD\ KDYH EHHQ FDXJKW LQ LQVKRUH WLGDO ZHLUV DV /DUVRQ VXJJHVWV f RU QHWWHG LQDGYHUWHQWO\ LQ WKH VKDOORZ ZDWHUV %XFN .H\ DQG %LJ 0RXQG .H\ ORFDWHG FORVHVW WR RFHDQ LQOHWV H[KLELW WKH KLJKHVW 01, RI VKDUNV DV QRWHG HDUOLHU 7DEOH f 7KLV PD\ UHIOHFW D PRUH DJJUHVVLYH H[SORLWDWLRQ SHUKDSV XVLQJ EDLWHG ODUJH ZRRGHQ KRRNV DQG OLQHV IRU FDSWXUH DQG D FOXE IRU WKH NLOO RU D URSH QRRVH PHWKRG .R]XFK :LGPHU E f

PAGE 190

$UFKDHRORJLFDO &XVKLQJ f DQG HWKQRKLVWRULFDO 'LFNLQVRQ f VXSSRUW H[LVWV IRU VWDEOH RFHDQJRLQJ YHVVHOV EXW WKLV W\SH RI ZDWHU FUDIW QHHG QRW KDYH EHHQ DVVRFLDWHG ZLWK ILVKLQJ 2IIVKRUH VKDUN ILVKLQJ FDQQRW EH UXOHG RXW IRU DERULJLQDO &KDUORWWH +DUERU EXW WR GDWH WKHUH LV QR HYLGHQFH IRU LW 6KHOOILVK JDWKHULQJ VXUHO\ UHTXLUHG D VLPSOHU WHFKQRORJ\ WKDQ WKDW IRU ILVKLQJ $ JDWKHUHU PLJKW QHHG D SURELQJ RU GLJJLQJ LPSOHPHQW WR ORFDWH LPEHGGHG ELYDOYHV RU D SRXQGLQJ WRRO IRU XVH LQ EUHDNLQJ R\VWHUV IUHH IURP D FOXWFK :RRGHQ WRROV FRXOG KDYH VHUYHG DV GLJJLQJ LPSOHPHQWV DQG VKHOO KDPPHUV RU SRXQGHUV ZRXOG KDYH SURYLGHG FXOOLQJ WRROV 7KH SUDFWLFH RI FXOOLQJ DQ R\VWHU FOXWFK DW WKH FROOHFWLRQ VLWH LV VXJJHVWHG E\ WKH LQIUHTXHQW PLGGHQ RFFXUUHQFH RI VKHOOV WKDW ZHUH JDWKHUHG GHDG )RU PRELOH JDVWURSRGV DQG IUHHVZLPPLQJ VFDOORSV RQH PLJKW QHHG QR WRRO DW DOO %OXH FUDEV FRXOG KDYH EHHQ FROOHFWHG LQ EDVNHW WUDSV EXW EDVHG RQ WKH SDXFLW\ RI WKHLU DUFKDHRORJLFDO UHPDLQV WKH\ SUREDEO\ ZHUH FROOHFWHG LQFLGHQWDOO\ UDWKHU WKDQ WDUJHWHG 6WRQH FUDEV SUREDEO\ FROOHFWHG E\ KDQG 'RQ &\]HZVNL SHUVRQDO FRPPXQLFDWLRQ /DUVRQ f ZHUH DEXQGDQW RQO\ LQ WKH %XFN .H\ PLGGHQ VDPSOHV $SSHQGL[ $f 3HUKDSV WKH PRVW LPSRUWDQW SLHFH RI HTXLSPHQW DVVRFLDWHG ZLWK VKHOOILVKLQJ ZDV WKH FRQWDLQHU :LQJ DQG %URZQ f VWDWH WKDW ZKHQ YLHZHG IURP WKH VWDQGSRLQW

PAGE 191

RI QHW HQHUJ\ JDWKHULQJ LV SURKLELWLYHO\ FRVWO\ ZLWKRXW WKH XVH RI D FRQWDLQHU ZKLFK PDNHV LW SRVVLEOH WR UHGXFH WKH QXPEHU RI WULSV EHWZHHQ WKH IRRG VRXUFH DQG WKH KRPHf &RQVWUXFWLRQ WHFKQLTXHV RI SODWWLQJ ZHDYLQJ EDVNHWU\ DQG QHWWLQJ DUH DOO NQRZQ IURP WKH .H\ 0DUFR H[FDYDWLRQ &XVKLQJ f DQG ZRXOG SURGXFH VXLWDEOH VKHOOILVK FRQWDLQHUV &XVKLQJ f GHVFULEHV D IRXUSO\ SODWWHG FRQWDLQHU IOH[LEOH DQG FRPSUHVVLEOH \HW VSULQJ\ D SRVVLELOLW\ IRU FROOHFWLQJ DQG WUDQVSRUWLQJ KHDY\ VKHOOILVK ,QWHQVLYH JDWKHULQJ H[FXUVLRQV PLJKW KDYH UHTXLUHG FDQRHV DV SULPDU\ RU VHFRQGDU\ FRQWDLQHUV &XVKLQJnV VDLORUV LQWHUSUHWHG RQH .H\ 0DUFR WR\ FDQRH DV KDYLQJ D IRUP IRU WKH EHDULQJ RYHU VKRDOV RI KHDY\ ORDGV RU EXUGHQV &XVKLQJ f %LUG UHPDLQV PRVWO\ RI GLYLQJ GXFNV RFFXU LQ VPDOO QXPEHUV LQ WKH PLGGHQ VDPSOHV $SSHQGL[ $f 0HWKRGV RI WKHLU FDSWXUH PD\ KDYH LQFOXGHG WKH XVH RI ERODV EDLWHG ERQH WKURDW JRUJHV RU VOLQJ VKRWV RU PD\ KDYH LQYROYHG QLJKWVWDONLQJ RI URRVWV RU QHW HQWUDSPHQW /LPHVWRQH EDOOV IRXQG WKURXJKRXW WKH VWXG\ DUHD FRXOG KDYH VHUYHG DV EROD ZHLJKWV 7KH -RVVO\Q ,VODQG PLGGHQ IRU H[DPSOH FRQWDLQHG D VWRQH EDOO LQ DVVRFLDWLRQ ZLWK QXPHURXV GXFN ERQHV 7HVW $f %LSRLQWHG ERQH SRLQWV DOVR RFFXUULQJ LQ WKLV FRQWH[W FRXOG KDYH EHHQ EDLWHG XVHG DV WKURDW JRUJHV DQG HYHQ VHW SXUSRVHO\ IRU WKH FDSWXUH RI GXFNV VHH 7DUWDJOLD f

PAGE 192

:KLWHWDLOHG GHHU UHPDLQV ZHUH UHFRYHUHG IURP IRXU RI WKH ILYH VWXG\ VLWHV 7DEOH $SSHQGL[ $f 7KH ILIWK VLWH &DVK 0RXQG VKRZV HYLGHQFH RI PXFK GHHU ERQH EXW LQ DUHDV RWKHU WKDQ WKDW VDPSOHG ,W LV WUDGLWLRQDOO\ WKRXJKW WKDW ZKLWHWDLOHG GHHU ZDV KXQWHG E\ VRXWK )ORULGDnV QDWLYH $PHULFDQV ZLWK ERQHWLSSHG DUURZV DQG DWODWOV RU ERZV (WKQRKLVWRULF VRXUFHV GRFXPHQW WKH SUHVHQFH RI WKH ERZ DQG DUURZ DPRQJ WKH &DOXVD =XELOODJD f EXW GR QRW VSHFLI\ WKH PDWHULDO RI WKH VKDIW RU WKH SRLQW 2Q WKH RWKHU KDQG D EXQGOH RI FRPSOHWH DUURZV PDGH RI ZRRGHQ RU FDQH VKDIWV DQG SRLQWHG ZLWK D KDUG ZRRG ZHUH GLVFRYHUHG LQ WKH .H\ 0DUFR VLWH PXFN E\ &XVKLQJ f 7HUUHVWULDO DQLPDOV RWKHU WKDQ GHHU DUH UHSUHVHQWHG RQO\ LQIUHTXHQWO\ LQ WKH DUFKDHRIDXQDO VDPSOHV 7DEOH f +\SRWKHVHV IRU 9DULDWLRQ LQ )LVKLQJ $UWLIDFWV 7KH VWUDWHJ\ IRU DQDO\VLV RI ILVKLQJ DUWLIDFWV IURP WKH &KDUORWWH +DUERU DUHD VKRXOG EH DQDORJRXV WR WKH DQDO\VHV RI IDXQDO UHPDLQV DV SUHVHQWHG LQ WKLV VWXG\ )LUVW LW LV FULWLFDO WR XQGHUVWDQG VSDWLDO SDWWHUQV RI DUWLIDFW GLVWULEXWLRQ DW WKH LQWUDUHJLRQDO VFDOH EHIRUH DWWHPSWLQJ WR XQGHUVWDQG WHPSRUDO WUHQGV 6HFRQG WKH JUDGLHQW RI KDELWDWV DJDLQ LV H[SHFWHG WR VHUYH DV WKH PDMRU GHWHUPLQDQW RI GLVWULEXWLRQ ZLWKLQ D JLYHQ HVWXDULQH V\VWHP RU UHJLRQ )RU H[DPSOH VLWHV DVVRFLDWHG ZLWK VKDOORZ TXLHW ZDWHUV LH FDOP HVWXDULQH ODJRRQVf VKRXOG KDYH ILVKLQJ DUWLIDFWV DSSURSULDWH WR WKHVH HQYLURQPHQWDO FRQGLWLRQV &RQYHUVHO\

PAGE 193

VLWHV DVVRFLDWHG ZLWK UHODWLYHO\ GHHSHU IDVWHUPRYLQJ ZDWHUV QHDU LQOHWV RU QDUURZ FKDQQHOVf VKRXOG H[KLELW D GLIIHUHQW FKDUDFWHULVWLF VHW RI DUWLIDFWV 7R WHVW WKHVH DVVHUWLRQV RQH QHHGV VLJQLILFDQW VDPSOH VL]HV RI SURYHQLHQFHG DQG GDWHG ILVKLQJ DUWLIDFWV DW WKH ORFDO VFDOH LH WKH VLWH OHYHOf 7KHVH VDPSOHV GR QRW H[LVW DW WKLV WLPH +RZHYHU DW WKH LQWHUUHJLRQDO VFDOH WKH DUWLIDFWV WKDW GR H[LVW FDQ EH OXPSHG WRJHWKHU E\ DUHD 7KH &KDUORWWH +DUERU DUHD LV GUDPDWLFDOO\ GLIIHUHQW JHRSK\VLFDOO\ IURP WKH 7HQ 7KRXVDQG ,VODQGV FRDVWOLQH WR WKH VRXWK &KDUORWWH +DUERU LV FKDUDFWHUL]HG E\ VKDOORZ FDOP ZDWHUV GXH WR D ODUJH PHDGRZ DUHD HQFORVHG E\ D SURWHFWHG EDUULHU LVODQG FKDLQ ZKLOH WKH 7HQ 7KRXVDQG ,VODQGV UHJLRQ LV FKDUDFWHUL]HG E\ UHODWLYHO\ GHHSHU DQG IDVWHU ZDWHUV GXH WR WKH PDQ\ FRQVWULFWHG FKDQQHOV WKDW FXW DPRQJ WKH LVODQGV )XUWKHUPRUH PDQ\ RI WKH VLWHV KDYH QHDUO\ GLUHFW DFFHVV WR WKH RSHQ *XOI ,W KDV EHHQ VKRZQ WKDW WKH OHQJWK DQG SUHVXPDEO\ WKH ZHLJKWf RI VKHOO FROXPHOOD ILVKLQJ VLQNHUV LV VLJQLILFDQWO\ JUHDWHU LQ WKH 7HQ 7KRXVDQG ,VODQGV UHJLRQ WKDQ LQ &KDUORWWH +DUERU DQG KDYH VXJJHVWHG WKDW LW LV EHFDXVH RI WKH HQYLURQPHQWDO GLIIHUHQFHV MXVW FLWHG DERYH :DONHU f ,Q RWKHU ZRUGV GHHSHU IDVWHUPRYLQJ ZDWHUV UHTXLUH ODUJHU DQG KHDYLHU ILVKLQJ VLQNHUV 7HPSRUDO DQDO\VHV RI ILVKLQJ DUWLIDFWV PXVW DOVR DZDLW LQFUHDVHG VDPSOH VL]HV WKHUH LV VRPH VXJJHVWLRQ RI

PAGE 194

YDULDWLRQ EHWZHHQ $UFKDLF DQG ODWHU SHULRGV $Q\ IXWXUH DWWHPSW DW WHPSRUDO DQDO\VHV RI VXEVLVWHQFHUHODWHG DUWLIDFWV VKRXOG WDNH LQWR DFFRXQW WKH HVWXDULQH VSDWLDO DQG WHPSRUDO HQYLURQPHQWDO YDULDWLRQ WKDW KDV EHHQ HVWDEOLVKHG LQ WKLV GLVVHUWDWLRQ 9DULDWLRQ LQ VXEVLVWHQFH WHFKQRORJ\ PD\ ZHOO EH UHODWHG WR VSDWLDO KHWHURJHQHLW\ RU WR JHRSK\VLFDO G\QDPLVP HJ LQOHW FKDQJHV RU VHDOHYHO IOXFWXDWLRQVf

PAGE 195

&+$37(5 6800$5< $1' &21&/86,216 7KH JRDO RI WKLV GLVVHUWDWLRQ KDV EHHQ WR LQLWLDWH D PXOWLVFDODU FRQWH[WXDO XQGHUVWDQGLQJ RI SUHKLVWRULF KXPDQHQYLURQPHQW UHODWLRQVKLSV LQ WKH &KDUORWWH +DUERU HVWXDULQH UHJLRQ $W WKH KHDUW RI WKLV HQGHDYRU LV WKH UHFRJQLWLRQ DQG RUJDQL]DWLRQ RI H[LVWLQJ HQYLURQPHQWDO KHWHURJHQHLW\ DQG JHRSK\VLFDO G\QDPLFV IURP ERWK VSDWLDO DQG WHPSRUDO SHUVSHFWLYHV ,Q WKH DEVHQFH RI WKLV FRQWH[W DUFKDHRORJLVWV DUH LQ GDQJHU RI PDNLQJ FXOWXUDO LQWHUSUHWDWLRQV ZLWKRXW WKH EHQHILW RI NQRZLQJ WKH RSHUDWLYH HQYLURQPHQWDO YDULDEOHV 7KHVH DUH WKH YDULDEOHV WKDW PDLQWDLQHG RU DOWHUHG WKH HVWXDULQHPDULQH SURGXFWLYLW\ DQG VWDELOLW\ WKDW ZDV VR FULWLFDO WR WKH VXEVLVWHQFH EDVH RI WKH &DOXVD DQG WKHLU SUHGHFHVVRUV } 7KH FRQFHSW RI VFDOH DV D PHWKRG RI RUJDQL]LQJ ERWK SUHVHQWGD\ DQG SDVW HQYLURQPHQWV ZDV DGRSWHG 6SDWLDOO\ WKH IRFXV ZDV RQ ORFDO DQG UHJLRQDO VFDOHV 7HPSRUDOO\ VKRUW PHGLXP DQG ORQJWHUP VFDOHV ZHUH GHILQHG 7KH SDOHRHQYLURQPHQWDO SUR[\ GDWD VHW FKRVHQ ZDV WKH ]RRDUFKDHRORJLFDO UHPDLQV IURP VLWHV UHSUHVHQWLQJ YDULRXV HVWXDULQH ORFDWLRQV ZLWKLQ &KDUORWWH +DUERU 7KHVH IDXQDO UHPDLQV SURYLGH D YDOLG DQDO\WLF PHGLXP 8VLQJ LQWUDVLWH

PAGE 196

FRPSRVLWH GDWD VHWV WKH IDXQDO SDWWHUQV SURSRUWLRQDOO\ FRUUHODWH ZLWK HDFK VLWHnV SUHVHQWGD\ VXUURXQGLQJV LPSO\LQJ WKDW DUFKDHRIDXQDO UHPDLQV GR DFFXUDWHO\ UHIOHFW ORFDO SDOHRHFRORJLFDO VLWXDWLRQV LQ WKH &KDUORWWH +DUERU HVWXDULQH V\VWHP 7KH ILUVW WZR REMHFWLYHV LQYROYHG WKH LQIRUPDO PRGHOLQJ RI LQWUDUHJLRQDO VSDWLDO SDWWHUQLQJ RI HVWXDULQH IDXQD ILUVW RI WKH SUHVHQW DQG WKHQ WKH SDVW 7KLV ZDV DFKLHYHG WKURXJK WKH XVH RI WKH JUDGLHQW FRQFHSW ZKLFK DOORZV D KHXULVWLF EUHDNGRZQ RI WKH UHJLRQ LQWR PDQDJHDEOH HFRORJLFDO XQLWV 6DOLQLW\ ZDV XVHG DV WKH SULPDU\ YDULDEOH GHWHUPLQLQJ IDXQDO GLVWULEXWLRQ DORQJ WKH JUDGLHQW 2UJDQL]LQJ IDXQD E\ JUDGLHQW LOOXVWUDWHV WKH OLPLWHG PRELOLW\ RI DTXDWLF LQYHUWHEUDWHV FRPSDUHG WR YHUWHEUDWHV LQGLFDWLQJ WKH IRUPHUnV JUHDWHU VHQVLWLYLW\ WR JHRJUDSKLF YDULDWLRQ LQ VDOLQLW\ DQG WKHUHIRUH WKHLU JUHDWHU SRWHQWLDO DV LQGLFDWRUV RI FKDQJH 7KLV SURFHGXUH ZRXOG EH VWUHQJWKHQHG LI SUHVHQWGD\ PROOXVFDQ VXUYH\V VSHFLILF WR &KDUORWWH +DUERU ZHUH DYDLODEOH 1RQHWKHOHVV WKH PRGHO DSSHDUV WR EH HIIHFWLYH GHPRQVWUDWLQJ JUHDW KDELWDW KHWHURJHQHLW\ ZLWKLQ &KDUORWWH +DUERU LQ ERWK WKH SUHVHQW DQG WKH SDVW 7KLV UHFRJQLWLRQ DQG RUJDQL]DWLRQ OD\V WKH JURXQGZRUN IRU XQGHUVWDQGLQJ WKH SRWHQWLDO RI HVWXDULQH DUFKDHRIDXQD LQ LQIHUULQJ FRQWLQXLW\ DQG FKDQJH

PAGE 197

7KH WKLUG DQG IRXUWK REMHFWLYHV IRFXVHG RQ WKH RYHUOD\ RI WHPSRUDO YDULDWLRQ RQWR WKH SUHVHQWGD\ DQG SDVW VSDWLDO SDWWHUQV 7KH SRWHQWLDO YDULDWLRQ WKDW FDQ DOWHU DQ HVWXDULQH JUDGLHQW DW VKRUW PHGLXP DQG ORQJWHUP VFDOHV ZDV H[SORUHG 7KHQ WKH OLNHOLKRRG RI DUFKDHRIDXQD DV VLJQDWXUHV RI WKLV PXOWLVFDODU YDULDWLRQ DQG GLVFXVVHG VHYHUDO SRVVLELOLWLHV LQFOXGLQJ ILVK VL]H DQG WKH VPDOO HSLELRQWV DVVRFLDWHG ZLWK R\VWHU EDUV WKDW RFFXU LQFLGHQWDOO\ LQ PLGGHQV ZDV H[DPLQHG 7KHLU SRWHQWLDO DV DUFKDHRIDXQDO VLJQDWXUHV RI FKDQJH LV SURPLVLQJ 7KH ]RRDUFKDHRORJLFDO VDPSOHV IURP WKH ILYH &KDUORWWH +DUERU VLWHV ZHUH VWXGLHG IRU HYLGHQFH RI FRQWLQXLW\ DQG FKDQJH XVLQJ WKH SURSRVHG IDXQDO VLJQDWXUHV 7KH DERYH SURFHVV DOORZHG DQ HYDOXDWLRQ RI DUFKDHRIDXQD DV SUR[\ SDOHRHQYLURQPHQWDO GDWD IRU &KDUORWWH +DUERU ,W ZDV FRQFOXGHG WKDW LWV SRWHQWLDO IRU PRGHOLQJ GHSHQGV RQ WKUHH IDFWRUV WHPSRUDO VFDOH RI HQYLURQPHQWDO YDULDWLRQ LQWUDUHJLRQDO VLWH ORFDWLRQ DQG PDJQLWXGH RI YDULDWLRQ ,W DOVR ZDV GHWHUPLQHG WKDW FHUWDLQ PHGLXP DQG ORQJWHUP IRUFHV VHDOHYHO IOXFWXDWLRQV DQG LQOHW G\QDPLFVf DUH PRVW OLNHO\ WR UHVXOW LQ DUFKDHRORJLFDO VLJQDWXUHV DQG WKHUHIRUH WR UHVXOW LQ VXEVLVWHQFH FKDQJH +RZHYHU DFNQRZOHGJLQJ WKH GLVWLQFWLRQV EHWZHHQ WKH WZR WLPH VFDOHV LV GLIILFXOW DQG UHTXLUHV D ERG\ RI LQGHSHQGHQW GDWD IRU UHVROXWLRQ SDUWLFXODUO\ LQ WKH DEVHQFH RI QXPHURXV FRHYDO ]RRDUFKDHRORJLFDO DVVHPEODJHV

PAGE 198

$Q XQGHUVWDQGLQJ RI VLWH ORFDWLRQ ZLWKLQ WKH FRQWH[W RI D UHJLRQDO JUDGLHQW LV FUXFLDO EHFDXVH RI &KDUORWWH +DUERUnV VSDWLDO KHWHURJHQHLW\ $Q DQDO\VW VKRXOG QRW H[SHFW WR GHWHFW D JLYHQ UHJLRQZLGH FKDQJH DW DQ\ VLWH LQ WKH HVWXDULQH V\VWHP 6LWHV QHDU WKH KLJKVDOLQLW\ HQG RI WKH JUDGLHQW JHQHUDOO\ KDYH OLWWOH SRWHQWLDO WR UHIOHFW VHDOHYHO FKDQJH EXW JUHDW SRWHQWLDO WR UHIOHFW LQOHW FKDQJHV 6LWHV ZLWKLQ WKH PRUH TXLHW DQG SURWHFWHG HVWXDULQH ED\V DQG ODJRRQV KDYH JUHDW SRWHQWLDO WR UHIOHFW VHDOHYHO FKDQJH EXW OLWWOH SRWHQWLDO WR UHIOHFW LQOHW FKDQJHV $W WKH ILQHVW OHYHO RI DQDO\WLF UHVROXWLRQ PDJQLWXGH RI YDULDWLRQ LV LPSRUWDQW 7KH &KDUORWWH +DUERU ]RRDUFKDHRORJLFDO DVVHPEODJHV VXJJHVW WKDW ORQJWHUP VHDOHYHO RVFLOODWLRQV RI OHVV WKDQ P IHHWf PD\ QRW SURGXFH SHUFHSWLEOH DUFKDHRIDXQDO VLJQDWXUHV 7KLV VKRXOG EH IXUWKHU WHVWHG KRZHYHU 6LJQDWXUHV IRU RVFLOODWLRQV IURP WR P WR IHHWf ZHUH SURSRVHG EDVHG RQ WKH &DVK 0RXQG DVVHPEODJHV DQG VXSSRUWLQJ LQGHSHQGHQW GDWD ,W LV VXJJHVWHG WKDW WKH WR P PDJQLWXGH RI VHDOHYHO IOXFWXDWLRQ WUDQVODWHV EH\RQG SUHKLVWRULF KXPDQ VXEVLVWHQFH FKDQJH LQ WKH &KDUORWWH +DUERU UHJLRQ DIIHFWLQJ VHWWOHPHQW SDWWHUQV DV ZHOO $W D UHJLRQDO VFDOH LQOHW FKDQJHV PD\ QRW KDYH EHHQ DV LPSRUWDQW DV VHDOHYHO IOXFWXDWLRQV EHFDXVH WKH JUHDWHVW GHQVLW\ RI &KDUORWWH +DUERUnV VLWHV LV LQ WKH HVWXDULQH ED\V DQG ODJRRQV QRW LQ

PAGE 199

WKH RFHDQLF ED\V DQG ODJRRQV ZKHUH LQOHW FKDQJHV ZRXOG KDYH WKHLU JUHDWHVW LPSDFW *HRSK\VLFDO LPSOLFDWLRQV RI D WR P WR IRRWf ULVH IURP D ORZ VWDQG P IHHWf EHORZ SUHVHQW LQFOXGH D FKDQJH LQ IDXQDO GLVWULEXWLRQ LQXQGDWLRQ RI VKRUHOLQHV D ULVH LQ ZDWHU WDEOH DQG EDUULHU LVODQG JURZWK 7KH LPSOLFDWLRQ RI D WR P WR IRRWf GURS LQ ZDWHU DJDLQ WR D ORZ VWDQG P > IHHW@ EHORZ SUHVHQWf LV D UHYHUVDO RI DW OHDVW WKH ILUVW WZR RI WKRVH FRQGLWLRQV ,Q DGGLWLRQ D VHDOHYHO IDOO RI VXFK D PDJQLWXGH WR IHHWf PD\ LPSO\ D FKDQJH LQ DEXQGDQFHV RI FHUWDLQ HVWXDULQHPDULQH DQLPDO VSHFLHV ,Q WKH ODVW VHFWLRQ RI WKLV GLVVHUWDWLRQ WKH VSDWLDO DQG WHPSRUDO SHUVSHFWLYHV ZHUH LQWHJUDWHG DW WKH ORFDO DQG UHJLRQDO VFDOHV )LUVW WKH LQGLYLGXDO VLWH GHVFULSWLRQV VHUYHG DV V\QWKHVHV RI PHDQLQJ WKDW KDG EHHQ LQIHUUHG IURP ]RRDUFKDHRORJLFDO DVVHPEODJHV VWLOO HPSKDVL]LQJ HDFK VLWHnV UHJLRQDO FRQWH[W ,Q WKH VHFRQG SDUW H[SORLWDWLRQ SDWWHUQV DW WKH UHJLRQDO VFDOH ZHUH H[SORUHG EXW EH\RQG ]RRDUFKDHRORJLFDO DQDO\VHV VXFK D VWXG\ LV OLPLWHG E\ WKH ODFN RI V\VWHPDWLFDOO\ FROOHFWHG ILVKLQJ DUWLIDFWV DW WKH ORFDO VFDOH ,W ZDV K\SRWKHVL]HG WKDW VXFK FROOHFWLRQV ZKHQ WKH\ EHFRPH DYDLODEOH ZLOO LOOXVWUDWH VSDWLDO DQG WHPSRUDO GLVWULEXWLRQV WKDW DUH DQDORJRXV WR WKRVH SDWWHUQV WKDW KDYH EHHQ GHPRQVWUDWHG LQ WKLV GLVVHUWDWLRQ 7KLV LV EDVHG RQ WKH ZRUOGZLGH SDWWHUQ WKDW ILVKLQJ WHFKQRORJ\ LV DGDSWHG WR HQYLURQPHQWV DW ORFDO DQG UHJLRQDO VFDOHV

PAGE 200

,I FXOWXUDO DGDSWDWLRQ WR PXOWLVFDODU HVWXDULQHPDULQH YDULDWLRQ ZDV FRQVWDQW DV LW DSSHDUV WR KDYH EHHQ WKHQ PXOWLVFDODU FKDQJH ZDV WKH QRUP LQ WKH OLYHV RI &KDUORWWH +DUERUnV SUHKLVWRULF UHVLGHQWV
PAGE 201

6WURQJ KXUULFDQHV KDYH WKH SRWHQWLDO WR GHSRVLW HVWXDULQHPDULQH VHGLPHQWV RQWR FRDVWDO ODQG ZKHWKHU LW EH D EDUULHU LVODQG DQ HVWXDULQH LVODQG RU WKH PDLQODQG HJ :LJKWPDQ 6LWH 3LQHODQG 6LWHf ,Q DGGLWLRQ WR XSURRWHG ELYDOYHV DQG RWKHU OLYLQJ IDXQD VDQG DQG VHDJUDVVHV FDQ EH GHSRVLWHG XSRQ WKH ODQG VXUIDFH ,I WKDW VXUIDFH LV RU ZDV UHFHQWO\ RFFXSLHG E\ KXPDQV WKHQ VFDWWHUHG ZLWKLQ WKDW VWUDWXP RI GHSRVLWLRQ VKRXOG EH FXOWXUDO GHEULV 6LJQDWXUHV IRU VHDOHYHO ORZ VWDQGV H[LVW LQ WKH IRUP RI VXEPHUJHG PLGGHQV $V QRWHG HDUOLHU LQ WKLV GLVVHUWDWLRQ WKH HVWXDULQHPDULQH VHGLPHQWV RI &KDUORWWH +DUERU DUH VXFK WKDW WKH\ VXSSRUW VKHOO PLGGHQVPRXQGV ZLWKRXW VLJQLILFDQW FRPSDFWLRQ $UFKDHRORJLVWV DUH DFFXVWRPHG WR WKLQNLQJ WKDW RQO\ $UFKDLF RU HDUOLHUf PLGGHQV DUH VXEPHUJHG EHQHDWK WRGD\nV VHD OHYHO ZKHQ LQ IDFW PLGGHQV RI VPDOOVFDOH ORZ VWDQGV ODWHU LQ WLPH DOVR EHFDPH LQXQGDWHG ,Q &KDUORWWH +DUERU HJ -RVVO\Q ,VODQG 3LQHODQG 6LWH &DVK 0RXQG &DOXVD ,VODQGf DQG HOVHZKHUH HJ WKH %& 9HQLFH %HDFK 6LWH 5XSS f VXEPHUJHG PLGGHQV GDWH WR WKH 6DQLEHO ORZ VWDQG XQNQRZQ EHJLQQLQJ XS WR FLUFD %& 6WDSRU HW DO f DQGRU WKH %XFN .H\ ORZ VWDQG FLUFD $' WR $' 6WDSRU HW DO f 7KHUH DUH QR VXEPHUJHG PLGGHQV WKDW GDWH WR WKH :XOIHUW KLJK VWDQG FLUFD WR $' f RU WKH /D &RVWD KLJK VWDQG FLUFD $' WR $' f 6WDSRU HW

PAGE 202

DO f 7KH IOXFWXDWLQJ UHODWLYH VHDOHYHO PRGHOV FDQ DFFRXQW IRU WKLV SDWWHUQ RI VXEPHUJHG PLGGHQV 7KH VWUDWLILFDWLRQ RI VHDOHYHO KLJK VWDQGV PD\ LQYROYH VLJQDWXUHV RI WKUHH GLIIHUHQW NLQGV LQXQGDWLRQ FKDQJH LQ VHWWOHPHQW DQG HQJLQHHUHG IHDWXUHV 0DLQODQG DQG LQVXODU VLWHV LQXQGDWHG E\ ULVLQJ ZDWHUV VKRXOG H[KLELW D GHSRVLW RI VHGLPHQWV RYHU WKH FXOWXUDO PLGGHQ ,W LV XQFOHDU KRZ WKLV NLQG RI VWUDWXP FDQ EH GLIIHUHQWLDWHG IURP RQH WKDW LV GHSRVLWHG E\ D KXUULFDQH HJ :LJKWPDQ 6LWH 6RODQD 6LWHf $ IXUWKHU SRVVLELOLW\ LV WKH IRUPDWLRQ RI D EHDFK ULGJH LQ UHODWLRQ WR DUFKDHRORJLFDO VLWHV HJ 3LQHODQG 6LWHf $ FKDQJH LQ VHWWOHPHQW PLJKW UHVXOW IURP ULVLQJ ZDWHUV 2QH SRVVLELOLW\ LV WKH FRQVWUXFWLRQ RI UDLVHG KRXVHV RYHU WKH ZDWHU DORQJ WKH VKRUHOLQH HJ 3LQHODQG 6LWH 6RODQD 6LWHf $OWHUQDWLYHO\ LQKDELWDQWV VLPSO\ PD\ KDYH PRYHG KRUL]RQWDOO\ WR KLJKHU DQG GULHU JURXQG $ WKLUG VHW RI SRWHQWLDO VLJQDWXUHV IRU VHDOHYHO KLJK VWDQGV LQYROYHV KXPDQO\ HQJLQHHUHG EURDGVFDOH SURMHFWV )RU H[DPSOH DW OHDVW WZR JHRORJLVWV 6WDSRU DQG 7DQQHU ERWK SHUVRQDO FRPPXQLFDWLRQ f VXJJHVW WKDW WKH FDQDO //f DW 3LQHODQG FRXOG QRW KDYH RSHUDWHG DV VXFK ZLWKRXW D VHD OHYHO WKDW ZDV KLJKHU WKDQ WKDW DW SUHVHQW LPSO\LQJ LWV FRQVWUXFWLRQ GXULQJ WKH :XOIHUW RU SRVVLEO\ /D &RVWD KLJK VWDQGV &RQVWUXFWHG EUHDNZDWHUV DOVR PLJKW EH D FRQVLGHUDWLRQ DW ODUJH VLWHV $QRWKHU SRWHQWLDO VLJQDWXUH RI ULVLQJ ZDWHU OHYHOV LV PRXQGEXLOGLQJ

PAGE 203

$UFKDHRERWDQLFDO GDWD FDQ SURYLGH D YHJHWDWLRQ SURILOH DOEHLW LQFRPSOHWH IRU DQ\ JLYHQ VLWH DW DQ\ JLYHQ WLPH SHULRG $VVXPLQJ WKDW SHRSOH ZRXOG QRW WUDYHO IDU IRU IXHO ZRRG FKDUUHG ZRRG IUDJPHQWV IURP D SDUWLFXODU FRDVWDO VLWH PD\ KDYH SRWHQWLDO WR SURYLGH VLJQDWXUHV RI VHDOHYHO FKDQJH HVSHFLDOO\ LQ WKH FDVH RI VLWHV ORFDWHG RQ VPDOO HVWXDULQH LVODQGV )OXFWXDWLQJ XVH RI SLQH GU\f DQG PDQJURYH ZHWf PD\ UHYHDO SDWWHUQV RI UHOHYDQFH WR KXULFDQH DQG VHDOHYHO HSLVRGHV $V D ILQDO QRWH LW LV HPSKDVL]HG WKDW LI WKH RSHUDWLYH HQYLURQPHQWDO IRUFHV DUH XQGHUVWRRG LQ DQ RUJDQL]HG DQG V\VWHPDWLF PDQQHU WKHQ FXOWXUDO QRWLRQV VXFK DV RYHUH[SORLWDWLRQ RI UHVRXUFHV WHFKQRORJLFDO LQQRYDWLRQ DQG VXEVLVWHQFH LQWHQVLILFDWLRQ FDQ EH WHVWHG ZLWKLQ WKH DSSURSULDWH FRQWH[W DQG WKXV YDOLGO\ UHFRJQL]HG $WWHQWLRQ WR VFDODU FRQWH[W ERWK VSDWLDO DQG WHPSRUDO ZLOO OHDG WR DQ DYRLGDQFH RI OXPSLQJ GDWD WKDW UHSUHVHQW KHWHURJHQRXV UHJLRQV DQG PXOWLSOH WHPSRUDO HYHQWV ,W LV KRSHG WKDW WKLV PXOWLVFDODU VWXG\ UHSUHVHQWV D EHJLQQLQJ WRZDUG D FRQWH[WXDO XQGHUVWDQGLQJ IRU FRDVWDO VRXWKZHVW )ORULGD DQG WKDW LW VWLPXODWHV IXUWKHU UHVHDUFK

PAGE 204

7DEOH ,QWHUVLWH &RPSDULVRQ RI +DUGKHDG &DWILVK 7RWDOV 6LWH 01, 1XPEHU RI 6DPSOHV %LJ 0RXQG .H\ &DVK 0RXQG 8VHSSD ,VODQG -RVVO\Q ,VODQG %XFN .H\

PAGE 205

7DEOH &RPSDULVRQ RI 7HUUHVWULDO DQG $TXDWLF $QLPDO )RRG 5HVRXUFHV E\ 3HUFHQWDJH 5HVRXUFH %LJ 0RXQG .H\ &DVK 0RXQG 8VHSSD ,VODQG -RVVO\Q ,VODQG %XFN .H\ 7HUUHVWULDO 01, $TXDWLF 01, 7HUUHVWULDO 0LQ 0W:WE $TXDWLF 0LQ 0W:W 7HUUHVWULDO 0D[ 0W:WF $TXDWLF 0D[ 0W:W 01, 0LQLPXP 1XPEHU RI ,QGLYLGXDOV E 0LQ 0W:W 0LQLPXP 0HDW :HLJKW F 0D[ 0W:W 0D[LPXP 0HDW :HLJKW

PAGE 206

7DEOH 5DQNLQJ RI %RQ\ )LVKHV E\ 0D[LPXP 0HDW :HLJKW %LJ 0RXQG .H\ &DVK 0RXQG 8VHSSD ,VODQG -RVVO\Q ,VODQG %XFN .H\ MDFN KDUGKHDG FDWILVK KDUGKHDG FDWILVK SLQILVK KDUGKHDG FDWILVK EDUUDFXGD PDFNHUHO VKHHSVKHDG VSRWWHG WURXW KDUGKHDG FDWILVK VKHHSVKHDG UHGILVK VSRWWHG WURXW MDFN VSRWWHG WURXW VQRRN WRDGILVK MDFN SLQILVK SLJILVK PXOOHW VSRWWHG WURXW IORXQGHU VKHHSVKHDG VKHHSVKHDG EDUUDFXGD PDFNHUHO SLQILVK SLQILVK EXUUILVK UHG GUXP JDIIWRSVDLO FDWILVK KDUGKHDG FDWILVK JDIIWRSVDLO FDWILVK WRDGILVK WRDGILVK MDFN JDIIWRSVDLO FDWILVK WRDGILVK SLJILVK IORXQGHU VSRWWHG WURXW NLOOLILVK EXUUILVK JDIIWRSVDLO FDWILVK EXUUILVK EODFN GUXP VKHHSVKHDG VXPPHU WURXW EODFN GUXP VDQG WURXW UHG GUXP

PAGE 207

7DEOH $UFKDHRORJLFDO 5HPDLQV RI 6KDUNV E\ 01, %LJ 0RXQG &DVK 8VHSSD -RVVO\Q %XFN 6KDUN 7D[RQ .H\ 0RXQG ,VODQG ,VODQG .H\ /DPQLIRUPHV XQLGHQW VKDUNf &DUFKDUKLQLGDH XQLGHQW &DUFKDUKLQLGf &DUFKDUKLQXV DFURQRWXV EODFNQRVH VKDUNf &DUFKDUKLQXV OHXFDV B EXOO VKDUNf &DUFKDUKLQXV OLPEDWXV B B EODFNWLSf &DUFKDUKLQXV REVFXUXV PP B B GXVN\ VKDUNf &DUFKDUKLQXV SOXPEHXV B f§ f§ VDQGEDU VKDUNf *DOHRFHUGR FXYLHUL B f§ WLJHU VKDUNf 1HJDSULRQ EUHYLURVWULV f§ f OHPRQ VKDUNf 5KL]RSULRQRGRQ WHUUDHQRYDH B f§ $WODQWLF VKDUSQRVH VKDUNf 6SK\UQD WLEXUR f§ f§ ERQQHWKHDG VKDUNf 7RWDO 01, D 2QO\ RQH VDPSOH IURP 8VHSSD ZDV DQDO\]HG FRPSDUHG WR IRXU IURP HDFK RI WKH RWKHU VWXG\ VLWHV *LQJO\PRVWRPD FLUUDWXP QXUVH VKDUNf *DOHRFHUGR FXYLHUL 6SK\UQD VSS DQG 5KL]RSULRQRGRQ WHUUDHQRYDH ZHUH LGHQWLILHG LQ D SUHYLRXV 8VHSSD VWXG\ 0LODQLFK HW DO f

PAGE 208

7DEOH 'LVWULEXWLRQ RI $UFKDHRORJLFDO 3LQILVK DQG $VVRFLDWHV E\ 01, 6LWH 6DPSOH 3LQILVK 3LJILVK 3HUFK %LJ 0RXQG .H\ /D\HU /D\HU E /D\HU /D\HU &DVK 0RXQG $O $O $O $O 8VHSSD ,VODQG $ -RVVO\Q ,VODQG $O $O $O $O %XFN .H\ $ $ % %

PAGE 209

7DEOH 0HVK 6L]HV RI .H\ 0DUFR 1HW &RUGDJH 0HVK EDUp PPf LQf 0HVK PPf 2SHQLQJ LQf $VVRFLDWLRQV )OD01+ &DWDORJ f f B f f SLHUFHG DUFV f f f§ f f QR ff f f f f§ ff f IORDW SHJ f f f§ f f f§ f f f§ f f f f f f f§ QR f f f f JRXUG IUDJPHQWV D &ROXPQ RQH DIWHU *LOOLODQG

PAGE 210

7DEOH 'LVWULEXWLRQ RI $UFKDHRORJLFDO 0XOOHW 0XJLO VSSf 6LWH 6DPSOH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV 01, 0D[LPXP 0HDW :HLJKW b %LJ 0RXQG .H\ /D\HU /D\HU E /D\HU /D\HU &DVK 0RXQG $O $O $O $O 8VHSSD ,VODQG 1 -RVVO\Q ,VODQG $O $O $O $O %XFN .H\ % % $ $

PAGE 211

7DEOH $UFKDHRORJLFDO 7HUUHVWULDO )DXQD E\ 01, %LJ 0RXQG &DVK 8VHSSD -RVVO\Q %XFN 7D[RQ .H\ 0RXQG ,VODQG ,VODQG .H\ 6LJPRGRQ KLVSLGXV &ULFHWLGDH 0DPPDOLD VPDOOf 3URF\RQ ORWRU 0DPPDOLD PHGVL]HGf 2GRFRLOHXV YLUJLQLDQXV 0DPPDOLD ODUJHf 3DUXOLGDH &ROXEULGDH 6HUSHQWHV 7HUUHSHQH &DUROLQD *RSKHUXV SRO\SKHPXV 6FLQFLGDH

PAGE 212

)LJXUH ,QWHUVLWH 9DULDELOLW\ RI $SSUR[LPDWHG 6XEVLVWHQFH $FWLYLW\ %DVHG RQ 01, RI ([SORLWHG $QLPDOV

PAGE 213

*$63$5,//$ 3$66 %XFN .H\ = *DWKHULQJ VQDLOV + &UDEELQJ /BB*DWKHULQJ ELYDOYHV ,,,,,, 2WKHU 0 1 %LJ 0RXQG .H\ \ &+IL %2&$ *5$1'( 3$66 &DVK 0RXQG 8VHSSD ,VODQG &$37,9$ 3$66 5(')O6+ 3$66 R -RVVO\Q ,VODQG A A &$5/26 %8&. B .(< %OLQG SDVV )LVKLQJ

PAGE 214

)LJXUH $GXOW 3LQILVK /DJRGRQ UKRPERLGHV DQG LWV $WODV DQG 3UHPD[LOOD %RQHV

PAGE 215

PP PP DWODV SUHPD[LOOD

PAGE 216

)LJXUH $GXOW 3LJILVK 2UWKRSULVWLV FKU\VRSWHUD DQG LWV $WODV DQG 3UHPD[LOOD %RQHV

PAGE 217

PP PP DWODV SUHPD[LOOD

PAGE 218

)LJXUH $UWLVWnV &RQFHSWLRQ RI D 3UHKLVWRULF *LOO 1HW IRU 1HDUVKRUH 6KDOORZ:DWHU )LVKLQJ LQ WKH &KDUORWWH +DUERU $UHD %DVHG RQ $UFKDHRORJLFDO 1HW 5HPDLQV IURP WKH .H\ 0DUFR 6LWH

PAGE 220

$33(1',; $ =$5&+$(2/2*,&$/ '$7$ 7$%/(6 .H\ WR )RUPDW DQG )RRWQRWHV RI $SSHQGL[ $ )DPLO\ *HQXV VSHFLHV ,GHQWLILFDWLRQV ZHUH PDGH WR WKH ORZHVW WD[RQ SRVVLEOH IRU H[DPSOH 6HUUDQLGDH 0\FWHURSHUFD VSS 0\FWHURSHUFD PLFUROHSLV 7RWDO )DPLO\ QO\ WKH DEXQGDQW IDPLOLHV DUH VXEWRWDOHG $ OLQH LV VNLSSHG ZKHQ WKH IROORZLQJ VSHFLHV DUH WR EH VXEWRWDOHG 7RWDO &ODVV )RU H[DPSOH 0DPPDOLD *DVWURSRGD 7RWDO 3K\OXP )RU H[DPSOH 0ROOXVFD 7RWDO 9HUWHEUDWD $OWKRXJK ,QYHUWHEUDWD LV DQ ,QYHUWHEUDWD REVROHWH GLYLVLRQ LW LV XVHG KHUH IRU FRQYHQLHQFH )RRWQRWHV Df %RQHVKHOO HOHPHQWV IURP IDPLO\ DQG FODVV OHYHO LGHQWLILFDWLRQV DUH QRW XVHG LQ FDOFXODWLQJ 01, XQOHVV LW LV FHUWDLQ WKDW WKH HOHPHQWV DUH QRW UHSUHVHQWHG E\ DQ\ RI WKH VSHFLHV RU JHQXV OHYHO LQGLYLGXDOV 7KLV HOLPLQDWHV WKH SRVVLELOLW\ RI FRXQWLQJ LQGLYLGXDOV PRUH WKDQ RQFH Ef )UDJPHQWV XQLGHQWLILDEOH WR FODVV ZHUH QRW FRXQWHG Ff 6SHFLHV ZDV QRW LQFOXGHG LQ VXEVLVWHQFH TXDQWLILFDWLRQ Gf 1R PHWKRG ZDV DYDLODEOH IRU HVWLPDWLQJ PHDW ZHLJKW Hf 2QO\ VLGHG YDOYHV ZHUH FRXQWHG If 6HH GLVFXVVLRQ RI ]RRDUFKDHRORJLFDO PHWKRGV IRU H[SODQDWLRQ RI WKLV VLWXDWLRQ ZKHUH WKH PLQLPXP ZHLJKW H[FHHGV WKH PD[LPXP ZHLJKW

PAGE 221

7DEOH $O )DXQDO $QDO\VLV %LJ 0RXQG .H\ 4XDG /D\HU &+ &KDUORWWH &RXQW\ )ORULGD 0D\ 6DPSOH 86 1: 1XPEHU RI r ? %RQH6KHOO b 0LQLPXP 0D[LPXP b ,GHQWILDEOH RI 01, RI :HLJKW RI 0HDW :W RI 0HDW :W RI 6SHFLHV &RPPRQ 1DPH )UDJPHQWV 7RWDO 7RWDO JUDPVf 7RWDO (VWLPDWH 7RWDO (VWLPDWH 7RWDO 3URF\RQ ORW RU UDFFRRQf 2GRFRLOHXD 9LUJLQLDQXD ZKLWHWDLOHG GHHUf 0DPPDOLD PDPPDOVf ff Df Df Df 7RWDO 0DPPDOLD PDPPDOVf $QDWOGDH GXFNVf $YDD PHGLXPf PHGLXPVL]HG ELUGVf Df Df Df Df 7RWDO $YHD EOUGDf D .LQRDWHUQRQ DSS PXG WXUWOHf 7HDWXGOQHD WXUWOHVf ff Df Df Df 7RWDO 5HSWOOOD UHSWLOHVf 6LUHQ ODFHUWLQD 5DQD DSS IURJf Gf Gf 7RWDO $PSKLELD DPSKLELDQVf &DUFKDUKLQOGDH UHTXLHP VKDUNVf 6SKU\QD WLEXUR ERQQHWKHDG VKDUNf /DPQOIRUPHV VKDUNVf Df Df Df Df 7RWDO &KRQGUOFKWK\HD FDUWLODJLQRXV ILVKHVf %UHYRRUWLD DSS PHQKDGHQf &OXSHOGDH KHUULQJVf Df Df Df Df %DJUH PDULQXD JDIIWRSVDOO FDWILVKf $ULRSDLD IHOOD KDUGKHDG FDWILVKf $UOOGDH VHD FDWIOVKHVf m 2SDDQXD DSS WRDGILVKf 6WURQJ\OXUD DSS QHHGOHILVKf )XQGXOXD DSS NOOOOILVKf 0\FWHURSHUFD PLFUROHSLD %r%f &DUDQ[ KOSSRD FUHYDOOH MDFNf &DUDQJLGDH -DFNrf Df Df Df Df /XWMDQXD JULDHXD JUD\ VQDSSHUf %XFLQRDWRPXD DSS PRMDUUDVLOYHU -HQQ\f WU 2UWKRSULDWLD FKU\DRSWHUD SOJILVKf 3RPDGDV\OGDH6SDUOGDH JUXQWVSRUJLHVf Df Df Df Df $UFKRDDUJXD SUREDWRFHSEDOXD VKHHSVKHDGf /DJRGRQ UKRPEROGHD SLQI,VKf 6SDUOGDH SRUJOHDf Df Df Df Df 7RWDO 6SDUOGDH SRUJLHVf 6SDUOGDH6FODHQOGDH SRUJLHVGUXPVf Df Df Df Df %DLUGLHOOD FEU\DRXUD VLOYHU SHUFKf &\QRDFLRQ QHEXORDXD VSRWWHG VHDWURXWf

PAGE 222

&\QRDFORQ VSS 6FLDHQRSD RFHOODWXH fmfWURXWf UHG GUXPf 7RWDO 6FLDHQLGDH GUXPVf 0XJOO VSS 6SK\UDHQLGDH6FRPEULGDH *RELRPRUXV GRUPOWRU 3DUDOOFKWK\D VSS 6SKRH URLGHD HSHQJOHUO &KOORP\FWDFXD HFKRHSIO 'LRGRQWLGDH 2VWHLFKWK\HV PXOOHWf EDUUDFXGDVPDFNHUHOVf ELJPRXWK VOHHSHUf IORXQGHUf EDQGWDLO SXIIHUf VWULSHG EXUUILVKf EXUU DQG SRUFXSLQH ILVKHVf ERQ\ ILVKHVf 7RWDO 2VWHLFKWK\HV ERQ\ ILVKHVf 9HUWHEUDWH SUHGRPLQDQWO\ ILVKf EDFNERQHG DQLPDOVf 7RWDO 9HUWHEUDWH EDFNERQHG DQLPDOVf %DODQXD VSS &DOOOQHFWHH VSS 0HQOSSH PDUFHQDUOD 'HFDSRGD EDUQDFOHf EOXH FUDEV *XOI FUDE HWFf VWRQH FUDEf FUDEVf 7RWDO &UXVWDFHD DTXDWLF DUWKURSRGVf 0RGXOXV PRGXOXV &HUOWKOXP PXDFDUXP &DUOWKLXP VSS &UHSOGXOD SODQD &UHSOGXOD VSS VWURPEXD DODWXD 3ROLQLFHV GXSOOFDWXD 3K\OORQRWYD SRP XUQ 8URDDOSOQ[ VSS $WODQWLF PRGXOXVf IO\VSHFNHG FHULWKf FHUOWKf HDVWHUQ ZKLWH VOLSSHUVKHOOf VOLSSHUVKHOOf 7ORULGD ILJKWLQJ FRQFKf VKDUN H\Hf DSSOH PXUH[f R\VWHU GULOOf +HORQJHQD FRURQD %XH\FRQ FRQWUDUOXP %XH\FRQ HSOUDWXP S\UXOROGHV FRPPRQ FURZQ FRQFKf OLJKWQLQJ ZKHONf 6D\nV SHDU ZKHONf 7RWDO +HORQJHQLGDH FURZQ FRQRKVf 1DVHDUOXV YOEH[ FRPPRQ HDVWHUQ QDVVDf )DHFORODUOD XP KXQWHUOD )DHFORODUOD WXOLSD )DHFORODUOD VSS 3OHXURSORFD JLJDQWHD EDQGHG WXOLSf WUXH WXOLSf WXOLS VKHOOf UORULGV KRUVH FRQFKf 7RWDO )DVFLRODULLGDH WXOLS VKHOOVf 0DUJLQDOLD VSS *DVWURSRGD PHGLXP PDULQHf PDUJLQHOOVf PHGLXPVL]HG PDULQH VQDLOVf 7RWDO 0DULQH *DVWURSRGD PDULQH VQDLOVf 3RO\J\UD VSS SRO\J\Urf 7RWDO 7HUUHVWULDO *DVWURSRGD WHUUHVWULDO VQDLOVf WHUUHVWULDO VQDLOVf WU Gf mM} mL ff f} fL fL ff ff ff Ef Ef m ff ff f! Ff &f Rf 2f f! ff fL f! Ff F! Ff R! Ff F! &f Ff Ff Ff RO rf Ff Ff R! Rf Ff Ff &f &! 1! R_ &f Rf Hf 2 ArIf k! Rf Rf Rf If Ff F} Rf 2f f! ff ff ff ,W Rf 2f m! 2f

PAGE 223

7DEOH $OFRQWLQXHG 1XPEHU RI b b %RQH6KHOO ; 0LQLPXP ; 0D[LPXP ; ,GHQWLILDEOH RI 01, RI :HLJKW RI 0HDW :W RI 0HDW :W RI 6SHFLHV &RPPRQ 1DPH )UDJPHQWV 7RWDO 7RWDO JUDPVf 7RWDO (VWLPDWH 7RWDO (VWLPDWH 7RWDO %UDFEOGRQWHD VSS PXVVHOf Hf Ff Df Ff 2HXNHQHOD GRPODDD JUDQRDODDOPD $WODQWLF ULEEHG PXVVHOf 3LQQLGDH SHQ VKHOOVf $UJRSHH WHQ VSS VFDOORSf 3HFWLQLGDH&DUGLLGDH VHDOORSVFRFNOHVf Df Df Df Df $QRPOD DOPSOH[ FRPPRQ MLQJOH VKHOOf Rf Df Df Ff 2DWUHD HTXHDWUOD FUHVWHG R\VWHUf Rf Rf Rf 2f &UDDDRDWUHD YOUJOQOFD HDVWHUQ R\VWHUf If 2VWUHLGDH R\VWHUVf Df Df Df Df &DUGOWDPHUD IORUOGDQD EURDGULEEHG FDUGLWDf Rf Rf Rf Rf 7UDFK\FDUGOXP HJPRQWODQXP SULFNO\ FRFNOHf 'OQRFDUGOXP UREXDWXP YDQK\QOQJO 9DQ +\QLQJnV FRFNOHf 0DFWULGDH9HQHULGDH VXUI FODPVYHQXV FODPVf Df Df Df Df 3RO\PHDRGD PDUWLPD )ORULGD PDUVK FODPf Rf Rf Rf Rf 0DUFHQDUOD FDPSHFEOHQDOD VRXWKHUQ TXDKRJf &EORQH FDQFHOODWD FURVVEDUUHG YHQXVf R! Rf H! Rf $QRPDORFDUGOD DXEHUODQD SRLQWHG YHQXVf Rf Rf Rf Rf 0DFURFDOO ODWD QOPERDD VXQUD\ YHQXVf %LYDOYLD R\VWHUV FODPV HWDf Df Df Df Df 7RWDO %LYDOYLD R\VWHUV FODPV HWFf 0ROOXVFD VQDLOV DQG ELYDOYHVf Ef Ef Df Df Df Df 7RWDO 0ROOXVFD VQDLOV DQG ELYDOYHVf r17RWDO ,QYHUWHEUDWD DQLPDOV ZLWKRXW EDFNERQHVf 727$/ 6$03/( YHUWHEUDWHVrLQYHUWHEUDWHVf

PAGE 224

7DEOH $ )DXQDO $QDO\VLV %LJ 0RXQG .H\ &+ &KDUORWWH &RXQW\ )ORULGD $XJXVW 6DPSOH 86 /D\HU E 6SHFLHr &RPPRQ 1DPH 1XPEHU RI ,GHQWOILDEOH )UDJPHQWV b RI 7RWDO .1, b RI 7RWDO %RQH6KHO :HLJKW JUDPVf b RI 7RWDO 0LQLPXP 0HDW :W (VWLPDWH RI 7RWDO 0D[LPXP 0HDW :W (VWLPDWH b RI 7RWDO 6OJPRGRQ KODSOGXr KODSOG FRWWRQ UDWf 2GRFROOHXD YOUJOQODQXD ZKLWHWDLOHG GHHUf 0DPPDOLD ODUJHf ODUJH PDPPDO‘f Df Df Df Df 0DPPDOLD PDPPDO Df Df Df Df Df 7RWDO 0DPPDOLD PDPPDOff m $QDWOGDH GXFNrf $YHD PHGLXPf PHGLXPr UHG EOUGDf Df Df Df Df 7RWDO $YHr EOUGDf &KHO\GUD VHUSHQWLQD DQDSSOQJ WXUWOHf .OQRHWHUQRQ DSS PXG WXUWOHf 7HUUDSHQH &DUROLQD ER[ WXUWOHf F I &KH RQO D P\ GD R P\ GD D $WODQWLF JUHHQ WXUWOHf 7HrWXGOQHr WXUWOHrf m ff Df Df Df 7RWDO 5HSWLOOD UHSWLOHrf 6LUHQ ODFHUWOQD JUHDWHU HOUHQf 7RWDO $PSKLELD DPSKLELDQrf &DUFKDUKOQXD PEDWXD EODFNWOS VKDUNf 5KO[RSUORQRGRQ WHUUDHQRYDD $WODQWLF DKDUSQRDH VKDUNf &DUFKDUKLQOGDH 6SKU\QD WOEXUR ERQQHWKHDG VKDUNf /DPQOIRUPHr VKDUNVf Df Df Df Df 7RWDO &KRQGUOFKWK\Hr FDUWLODJLQRXV ILVKHVf /HSODRDWHXD DS JmWf (ORSD DDXUXD ODG\ILVKf %UHYRRUWOD DSS PHQKDGHQf &OXSHOGDH KHUULQJVf %DJUH PDUOPLD JDIIWRSVDOO FDWILVKf $UORSDOD IHOOD KDUGKHDG FDWILVKf $UOOGDH VHD FDWIOVKHVf 2SDDQXD DSS WRDGIOVKf 2JFRFHSKDOOGDH EDWILVKHVf WU 6WURQJ\OXUD DSS QHHGOHILVKf )XQGXOXV DSS NOOOOIOVKf 0\FWHURSHUFD POFUROHSOD JmV! &DUDQ[ KOSSRD FUHYDOOH MDFNf &DUDQJOGDH MDFNVf Df Df Df Df 2UWKRSUODWOD FEU\DRSWHUD SOJIOVKf 3RPDGDD\OGDH6SDUOGDH JUXQW DSRUJOHDf $UFKRDDUJXD SUREDWRFHSEDOXD DKHHSDKHDGf /DJRGRQ UERPEROGHD SOQIOVKf SRUDOHDf m} } m m,6 2W6 7RWDO 6SDULGDH

PAGE 225

%DOUGOHOOD FKU\DRXUD DLOYHU SHUFKf &\QRDFORQ QHEXORDXD DSRWWHG DHDWURXWf &\QRDFLRQ VSS DHDWURXWf 3RJRQODD FURPOD EODFN GUXPf 6FODHQRSD RFHOODWXV UDG GUXPf 6FLDHQLGDH GUXPDf ff ff f! ff 7RWDO 6FLDHQLGDH GUXPVf 0XJLO DSS PXOODWf 6SK\UDHQLGDH6FRPEULGDH EDUUDFXGDVPDFNHUHOVf 3DUDOOFKWK\D DSS IORXQGHUf 'LRGRQWLGDH EXUU DQG SRUFXSLQH ILVKHVf 2VWHLFKWK\HV ERQ\ ILDKHDf f If 7RWDO 2DWDLFKWK\DD ERQ\ ILDKHDf 9DUWDEUDWD SUHGRPLQDQWO\ ILDKf EDFNERQHG DQLPDOVf Ef E! f! ff ff $f 7RWDO 9DUWDEUDWD EDFNERQHG DQLPDOVf %DODRXD DSS EDUQDFOHf Rf r! 2 &f &DOOOQDFWHD DSS EOXH HUDED *XOI FUDE DWHf 0HQOSSH PDUFHQDUOD DWRQH FUDEf 'DFDSRGD FUDEVf ff mL ff ff 7RWDO &UXDWDFHD DTXDWLF DUWKURSRGVf FI 9DUPOFXODUOD IDUJRO )DUJRnV ZRUP VKDOOf &! 2f Ff }! 7XUULWDLGDH9HUPHWLGDH ZRUP VKHOOVf Rf Ff Hf ff 'LRGRUD FD\DQDQDOD &D\HQQH NH\KROH OLPSHWf }f Ff 2 Rf 0RGXOXV PRGXOXV $WODQWLF PRGXOXVf rf Ff Ff &f %DWOOODUOD PLQLPD IDOVD FDULWKf &f Rf Ff 2f &DULWKOXME DSS RDULWKf r! Rf Rf &f &UDSOGXOD FRQYH[D FRQYH[ VOLSSHUVKHOOf 2f Ff &! 2f &UHSOGXOD SODQD DDDWDUQ ZKLWH VOLSSHUVKHOOf rf Rf R! 2f &UDSOGXOD DSS VOLSSHUVKHOOf 2f &f &f rf 6WURPEXD DODWXD )ORULGD ILJKWLQJ FRQFKf 3ROLQLFHV GXSOLFD WXV VKDUN H\Hf f 8URDDOSOQ[ SHUUXJDWD *XOI R\VWHU GULOOf f Rf Rf 2f 8URDDOSOQ[ WDPSDHQDOD 7DPSD GULOOf &f 2f &f Rf $QDFKOD DHPOSOOFDWD VHPLSOLFDWH GRYH VKHOOf 2f 2f 2f 2f 0HORQJHQD FRURQD FRPPRQ FURZQ FRQFKf %XD\FRQ FRQWUDUOXP OLJKWQLQJ ZKHONf %XD\FRQ DSOUDWXP S\UXOROGHD 6D\nV SHDU ZKHONf 7RWDO 0HORQJHQLGDH FURZQ FRQFKDf 1DDHDUOXD YOEH[ FRPPRQ HDVWHUQ QDVVDf r! Rf 2f r! )DDFORODUOD OOOOXP KXQWHUOD EDQGHG WXOLSf UDHFORODUOD WXOLSD WUXH WXOLSf )DDFORODUOD DSS WXOLS VKHOOf 3OHXURSORFD JLJDQWHD )ORULGD KRUVH FRQFKf 7RWDO UDDFLRODULLGDD WXOLS VKHOOVf 0DUJLQDOLD DSS PDUJLQDOLDf &f Ff Ff &f 0HODPSXD FRIIHXD FRIIHH PHODPSXVf Ff Hf Ff Ff

PAGE 226

7DEOH $FRQWLQXHG 1XPEHU RI b ? %RQH6KHOO ? 0LQLPXP b 0D[LPXP b ,GHQWLILDEOH RI .1, RI :HLJKW RI 0HDW :W RI 0HDW :W RI 6SHFLHV &RPPRQ 1DPH )UDJPHQWV 7RWDO 7RWDO JUDPVf 7RWDO (VWLPDWH 7RWDO (VWLPDWH 7RWDO *DVWURSRGD PHGLXP PDULQHf PHGLXPVL]HG PDULQH VQDLOVf Df Df Df Df 7RWDO 0DULQH *DVWURSRGD PDULQH VQDLOVf $QDGDUD WUDQVYHUVD WUDQVYHUVH DUNf 1RDWOD SRQGHURrD SRQGHURXV DUNf %UDFKOGRQWHV H[XVWXV VFRUFKHG PXVVHOf Df Rf Hf Rf 2HXNHQVOD GHPLVHV JUDQRVOHHOPD $WODQWLF ULEEHG PXVVHOf 3LQQLGDH SHQ VKHOOVf $UJRSHFWHQ VSS VDDOORSf 3HRWLQLGDH VFDOORSVf ff Df Df Df 3OOFDWXOD JOEERVD NLWWHQnV SDZf Df Rf Df Rf $QRPOD VLPSOH[ FRPPRQ MLQJOH VKHOOf Rf Rf Rf Ff 2RWUHD HTXHVWUOV FUHVWHG R\VWHUf m Rf Rf Rf Rf &UDVVRDWUHH YOUJOQOFD HDVWHUQ R\VWHUf If 2VWUHLGDH R\VWHUVf Df Df Df Df 3DUYOOXFOQD PXOWOOOQHHWD PDQ\OLQHG OXFLQDf Df Rf Rf Ff &RGDNOD VSS OXFLQDf Df Rf Df Rf &PUGOWDPHUH IORUOGDQD EURDGULEEHG FDUGLWDf Rf Rf Df Df 7UDFK\FDUGOXP HJPRQWODQXP SULFNO\ FRFNOHf 'OQRFDUGOXP UREXVWXUQ YDQK\QOQJO 9DQ +\QLQJnV FRFNOHf 3RO\PHVRGD PDULWLPH )ORULGD PDUVK FODPf 0HUFHQDULD FDPSHFKOHQVOV VRXWKHUQ TXDKRJf &EORQH FDQFHOODWD FURVVEDUUHG YHQXVf F! Df Df Df $QRPDORFDUGOD DXEHUODQD SRLQWHG YHQXVf Hf Rf Df Rf 0DFURFDOO ORWD QLPERVD VXQUD\ YHQXVf %LYDOYLD R\VWHUV FODPV HWDf Df Df Df Df 7RWDO %LYDOYLD R\VWHUV FODPV HWDf 0ROOXVFD VQDLOV DQG ELYDOYHVf Ef Ef Df Df Df Df 7RWDO 0ROOXVFD VQDLOV DQG ELYDOYHVf 0DGUHSRUDULD KDUG FRUDOVf Rf Rf Rf Rf 7RWDO ,QYHUWHEUDWH DQLPDOV ZLWKRXW EDFNERQHVf 727$/ 6$03/% YHUWHEUDWH V LQYHUWHEUDWHVf

PAGE 227

7DEOH $ /D\HU )DXQDO $QDO\VLV %LJ 0RXQG .H\ &+ &KDUORWWH &RXQW\ )ORULGD $XJXVW 6DPSOH 86 1XPEHU RI b %RQH6KHOO ? 0LQLPXP 0D[LPXP b ,GHQWLILDEOH RI 01, RI :HLJKW RI 0HDW :W RI 0HDW :W RI 6SHFLHV &RPPRQ 1DPH )UDJPHQWV 7RWDO 7RWDO IOUf 7RWDO (VWLPDWH 7RWDO (VWLPDWH 7RWDO 0DPPDOLD PHGLXPf PHGLXPVL]HG PDPPDOVf 0DPPDOLD ODUJHf ODUJH PDPPDOVf 7RWDO 0DPPDOLD PDPPDOVf $YHV VPDOOf VPDOO ELUGVf Df Df Df Df $QDWLGDH GXRNVf $YHV PHGLXPf PHGLXPVL]HG ELUGVf Df Df Df Df 7RWDO $YHV ELUGVf 6HUSHQWHD VQDNHVf 7HVWXGQHD WXUWOHVf 7RWDO 5HSWLOLD UHSWLOHVf 6LUHQ ODFHUWOQD JUHDWHU VLUHQf 7RWDO $PSKLELD DPSKLELDQVf 6SKU\QD WOEXUR ERQQHW KH DG VKDUNf /DPQLIRUPHV VKDUNVf 5KLQREDWLGDH JXLWDUILVKHVf 'DD\DWOD VS VWLQJUD\f 7RWDO &KRQGULFKWK\HV FDUWLODJLQRXV ILVKHVf =ORSD VDXUXV ODG\ILVKf &OXSHLGDH KHUULQJVf %DJUH PDUOQXD JDIIWRSVDLO FDWILVKf $UORSDOD IHOOD KDUGKHDG FDWILVKf $ULLGDH VHD RDWILDKHVf ff Df Df Df 2SDDQXD VSS WRDGILVKf 6WURQJ\OXUD VSS QHHGOHILVKf )XQGXOXD VSS NLOOLILVKf 0\FWHURSHUFD PO FURO RSLD mDf 0\FWHURSHUFD VSS JURXSHUJDJf 6HUUDQLGDH VHD EDVVHVf Df Df Df Df &DUDQ[ EOSSRD FUHYDOOH MDFNf &DUDQJLGDH MDFNVf /XWMDQXD FDPSHFEDQXD UHG VQDSSHUf /XWMDQXD VSS VQDSSHUf Df Df Df Df 2UWKRSUODWOD FEU\DRSWHUD SLJILVKf $UFKRDDUJXD SUREDWRFHSKDOXD VKHHSVKHDGf /DJRGRQ UKRPEROGHD SLQILVKf 6SDULGDH SRUJLHVf Df Df Df Df 7RWDO 6SDULGDH SRUJLHVf %DOUGOHOOD FKU\DRXUD VLOYHU SHUFKf &\QRDFORQ QHEXORDXD VSRWWHG VHDWURXWf

PAGE 228

0HQWLFLUUKXV VSS ZKLWLQJf 7RWDO 6FLDHQLGDH GUXPVf 0XJLO VSS PXOOHWf 6SK\UDHQLGDH6FRPEULGDH EDUUDFXGDVPDFNHUHOVf &KLORP\FWDUXV VFKRHSIL DWULSHG EXUUILVKf 'LRGRQWLGDH EXUU DQG SRUFXSLQH ILVKHVf ff ff ff ff 2DWHLFKWK\HV ERQ\ ILVKHVf mL ff ff f! 7RWDO 2DWHLFKWK\HV ERQ\ ILDKHVf ,6 9HUWDEUDWD SUHGRPLQDQWO\ ILDKf EDFNERQHG DQLPDOVf E! Ef ff $f f! ff 7RWDO 9DUWDEUDWD EDFNERQHG DQLPDOVf %DODQXD DSS EDUQDFOHf Rf R! Rf rf &DOOLQDFWDD DSS EOXH FUDEV *XOI FUDE DWHf 0DQLSSD PHUFHQDULD VWRQH FUDEf 'DFDSRGD FUDEVf ff }! $f ff 7RWDO &UXDWDFDD DTXDWLF DUWKURSRGVf 7XUULWHOOD DSS ZRUPVKHOOf Rf 2 Ff &! 0RGXOXD PRGXOXD $WODQWLF PRGXOXVf &f Rf Ff &! &HULWKLXUD PXDFDUXP IO\VSHFNHG FDULWKf 2f 2 &HULWKLXP DSS FDULWKf Ff Rf Rf 2f &UDSLGXOD DRXODDWD WKRUQ\ DOLSSDUVKHOOf }f Rf Rf 2f &UHSLGXOD SODQD HDVWHUQ ZKLWH VOLSSHUVKHOOf 2f Ff Rf &f &UDSLGXOD DSS D 8SSHUDKD f &! Rf Rf 2f 6WURPEXV DODWXD )ORULGD ILJKWLQJ FRQFKf 3ROLQLFDD GXSOLFDWXD VKDUN D\Hf 2 3K\OORQRWXD SRPXP DSSOH PXUH[f RLR 8URDDOSLQ[ SDUUXJDWD *XOI R\VWHU GULOOf F! Rf R! r! RM 0DORQJDQD FRURQD FRPPRQ FURZQ FRQFKf %XH\FRQ FRQWUDULXP OLJKWQLQJ ZKHONf %XD\FRQ DSLUDWXP S\UXORLGHD 6D\nV SHDU ZKHONf 7RWDO 0DORQJDQLGDD FURZQ FRQFKDf )DDFLRODULD OLOLXUD KXQWDULD EDQGHG WXOLSf )DDFLRODULD WXOLSD WUXH WXOLSf )DDFLRODULD DSS WXOLS VKDOOf 3ODXURSORFD JLJDQWDD )ORULGD KRUVH FRQFKf 7RWDO )DDFLRODULLGDD WXOLS VKHOOVf 0DUJLQDOLD KDUWOD\DQXP +DUWOH\nV PDUJLQDOLDf m} R! &f Rf *DDWURSRGD PHGLXP PDULQDf PHGLXPVL]HG PDULQH VQDLOVf f} ff f} ff 7RWDO 0DULQD *DDWURSRGD PDULQH VQDLOVf (XJODQGLQD URDDD URV\ HXJODQGLQDf &f Ff Hf Ff 7RWDO 7DUUDDWULDO *DDWURSRGD WHUUHVWULDO VQDLOVf $QDGDUD WUDQDYDUDD WUDQVYHUVH DUNf 1RDWLD SRQGHURVD SRQGHURXV DUNf

PAGE 229

7DEOH $FRQWLQXHG 1XPEHU RI b b %RQH6KHOO b 0LQLPXP b 0D[LPXP r ,GHQWLILDEOH RI 01, RI :HLJKW RI 0HDW :W RI 0HDW :W RI 6SHFLHV &RPPRQ 1DPH )UDJPHQWV 7RWDO 7RWDO MUf 7RWDO (VWLPDWH 7RWDO (VWLPDWH 7RWDO %UDFEOGRQWHD H[XJWXD VFRUFKHG PXVVHOf Hf Rf Df R! 4HXNHQDOD GHPORRD JUDQRDODDOPD $WODQWLD ULEEHG PXVVHOf 0\WOOOGDH PXVVHOVf Df Df Df Df 3LQQLGDH SHQ VKHOOVf $UJRSHH WHQ VSS VFDOORSf 3HRWLQLGDH VFDOORSVf 3RHWOQLGDH&DUGGDH VFDOORSVFRFNOHVf Df Df Df Df $QRPOD VLPSOH[ FRPPRQ MLQJOH VKHOOf Df 2f Rf Rf 2DWUHD HTXHRWUOD FUHVWHG R\VWHUf Ff Rf Rf Rf &UDDDRDWUHD YOUJOQOFD HDVWHUQ R\VWHUf If 2VWUHOGDH R\VWHUVf Df Df Df Df &DUGOWDPHUD IORUOGDQD EURDGULEEHG FDUGOWDf &f Ff Rf Ff 7UDFK\FDUGOXP HJPRQWODQXP SULFNO\ FRFNOHf 6SODXOD DROOGOVDLPD DOPLOOD VRXWKHUQ VXUI FODPf 7ROOLQD VSS WHOOOQf Hf Hf Ff Rf 'RQD[ YDUODEOOOD FRTXLQDf Rf Rf Df Df 0HUFHQDULD FDPSHFKOHQDOD VRXWKHUQ TXDKRJf &EORQH FDQFHO ODWD FURVVEDUUHG YHQXVf Ff Rf Rf Rf $QRPDORFDUGOD DXEHUODQD SRLQWHG YHQXVf Rf Ff Rf Rf 9HQHUOGDH YHQXV FODPVf Rf 2f Df Ff %LYDOYOD R\VWHUV FODPV HWFf Df Df Df Df 7RWDO %LYDOYOD R\VWHUV FODPV HWFf 0ROOXVFD VQDLOV DQG ELYDOYHVf Ef Ef Df Df Df Df 7RWDO 0ROOXVFD VQDLOV DQG ELYDOYHVf 'HVPRWLFKLD VHD XUFKLQVf Gf Gf Gf Gf (FKOQRGHUPDWD HFKLQRGHUPVf &f Rf Rf Rf 7RWDO ,QYHUWHEUDWD DQLPDOV ZLWKRXW EDFNERQHVf 727$/ 6$03/( YHUW HEUDWHVI LQYHUWHEUDWHVf

PAGE 230

7DEOH $ )DXQDO $QDO\VLV %LJ 0RXQG .H\ &+ &KDUORWWH &RXQW\ )ORULGD 1RYHPEHU 6DPSOH 86 1: 4XDG /D\HU 6SHFLHV &RPPRQ 1DPH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV ; RI 7RWDO 01, ; RI 7RWDO %RQH6KHOO :HLJKW JUDLQVf ; RI 7RWDO 0LQLPXP 0HDW :W (VWLPDWH ; RI 7RWDO 0D[LPXP 0HDW :W (VWLPDWH ; RI 7RWDO 0DPPDOLD VPDOOf VPDOO PDPPDOVf Gf Gf 7RWDO 0DPPDOLD PDPPDOVf $QDWLGDH GXFNVf $YHV PHGLXPf PHGLXPVL]HG ELUGVf Df Df Df Df 7RWDO $YHV ELUGVf 7HVWXGLQHV WXUWOHVf 7RWDO 5HSWLOLD UHSWLOHVf 6LUHQ ODFHUWOQD JUHDWHU VLUHQf 7RWDO $PSKLELD DPSKLELDQVf &DUFKDUKOQXR OOPEDWXD EODFNWLS VKDUNf /DPQLIRUPHV VKDUNVf 7RWDO &KRQGULFKWK\HV FDUWLODJLQRXV ILVKHVf %UHYRRUWOD VSS PHQKDGHQf 0 &OXSHLGDH KHUULQJVf Df Df Df f 8L $UORSDOD IHOOD KDUGKHDG FDWILVKf $ULLGDH VHD FDWILVKHVf Df Df Df Df 2SDDQXD VSS WRDGILVKf 6WURQJ\OXUD VSS QHHGOHILVKf )XQGXOXD VSS NLOOLILDKf FI &KORURDFRPEUXD FK[\DXUXD $WODQWLF EXPSHUf $UFKRDDUJXD SUREDWRFHSKDOXD VKHHSVKHDGf /DJRGRQ UKRPEROGHD SLQILVKf %DOUGOHOOD FKU\DRXUD VLOYHU SHUFKf WU &\QRDFORQ VSS VHDWURXWf 6FODHQRSD RFHOODWXD UHG GUXPf 2VWHLFKWK\HV ERQ\ ILVKHVf Df Df Df Df 7RWDO 2VWHLFKWK\HV ERQ\ ILVKHVf 9HUWHEUDWH SUHGRPLQDQWO\ ILVKf EDFNERQHG DQLPDOVf Ef Ef Df Df Df Df 7RWDO 9HUWHEUDWH EDFNERQHG DQLPDOVf DDDD DDD DD %DODQXD VSS EDUQDFOHf Df Df Rf Df 0HQOSSH PHUFHQDULD VWRQH FUDEf 7RWDO &UXVWDFHD DTXDWLF DUWKURSRGVf 0RGXOXD PRGXOXV $WODQWLF PRGXOXVf Rf Rf Hf Df &UHSOGXOD DFXOHDWD WKRUQ\ VOLSSHUVKHOOf Ff Rf Rf Ff &UHSOGXOD SODQD HDVWHUQ ZKLWH VLLSSHUVKHOf Rf Ff Ff Rf &UHSOGXOD VSS VLLSSHUVKHOOf Df Rf Rf Rf 6WURPEXD DODWXD )ORULGD ILJKWLQJ FRQFKf

PAGE 231

3ROLQLFHV GXSOLFD WXV VKDUN H\Hf 0HORQJHQD FRURQD FRPPRQ FURZQ FRQFKf %XH\FRQ FRQWUDULXQ OLJKWQLQJ ZKHONf %XH\FRQ DSUDWXP S\UXOROGHH 6D\nV SHDU ZKHONf 7RWDO 0H ,RQJHQLGDV FURZQ FRQFKVf 1DHDDUOXD YEH[ FRPPRQ HDVWHUQ QDVDDf )PDFLRODULD OOOOXP KXQW DULD EDQGHG WXOLSf )DHFLRODULD WXOLSD WUXH WXOLSf )DDFLRODULD VSS WXOLS VKHOOf 7RWDO UDVFLRODULLGDH WXOLS VKHOOVf *DVWURSRGD PHGLXP PDULQHf PHGLXPVL]HG PDULQH VQDLOVf 7RWDO 0DULQH *DVWURSRGD PDULQH VQDLOVf $QDGDUD VSS }UNf %UDFKLGRQWDR H[XVWXV VFRUFKHG PXVVHOf *HXNDQDLD GHPOHHD JUDQRDODDLPD $WODQWLF ULEEHG PXVVHOf 3LQQLGDH SHQ VKHOOVf 3WHULLGDH ZLQJ DQG SHDUO R\VWHUVf 3HFWLQLGDH VFDOORSVf 3OLFDWXOD JLEERDD NLWWHQnV SDZf $QRPLD VLPSOH[ FRPPRQ MLQJOH VKHOOf 2DWUDD HTXHHWULD FUHVWHG R\VWHUf &UDDDRDWUHD YLUJLQLFD HDVWHUQ R\VWHUf 2VWUDLGDV R\VWHUVf &DUGLWDPHUD IORUGDQD EURDGULEEHG FDUGLWDf 6SLDXOD DROLGLDDOPD DOPLOOD VRXWKHUQ VXUI FODPf $QRPDORFDUGLD DXEHUODQD SRLQWHG YHQXHf 0DFURFDOOODWD QLPERVD VXQUD\ YHQXVf %LYDOYLD R\VWHUV FODPV HWFf 7RWDO %LYDOYLD R\VWHUV FODPV HWFf 0ROOXVFD VQDLOV DQG ELYDOYHVf Ef 7RWDO 0ROOXDFD VQDLOV DQG ELYDOYHVf 0DGUHSRUDULD KDUG FRUDOVf 7RWDO ,QYHUWHEUDWD DQLPDOV ZLWKRXW EDFNERQHVf 727$/ 6$03/( YHUWHEUDWHVWLQYHUWHEUDWHVf If If Rf rf } R! If f! ff f! ff ff ff mL ff Rf Rf Rf Ff F! Rf Rf Rf Ff &f 2f F! Ff 2 R! Rf Rf Ff 2f Rf ff ff f! ff Ff 2f 2f r! WR WL R! R! Rf r! 7? ff ff f! ff Ef ff ff ff fL R! rf Rf Rf

PAGE 232

7DEOH $ )DXQDO $QDO\VLV &DVK 0RXQG &+ &KDUORWWH &RXQW\ )ORULGD -XQH 6DPSOH 7HVW $L /HYHO 1XPEHU RI b b %RQH6KHOO b 0LQLPXP b 0D[LPXP b ,GHQWLILDEOH RI 01, RI :HLJKW RI 0HDW :W RI 0HDW :W RI 6SHFLHV &RPPRQ 1DPH )UDJPHQWV 7RWDO 7RWDO JUDPVf 7RWDO (VWLPDWH 7RWDO (VWLPDWH 7RWDO 3URF\RQ ORW RU UDFFRRQf 0DPPDOLD PHGLXPf PHGLXPVL]HG PDPPDOVf Df Df Df Df 7RWDO 0DPPDOLD PDPPDOVf $QDWLGDH GXFNVf $YHV PHGLXPf PHGLXPVL]HG ELUGVf Df Df Df Df 7RWDO $YHV ELUGVf 7HVWXGOQHV WXUWOHVf &ROXEULGDH FROXEUOGVf 7RWDO 5HSWLOOD UHSWLOHVf FI &DUFEDUKOQXV SOXPERXV VDQGEDU VKDUNf &DUFKDUKOQXV VSS UHTXLHP VKDUNf 5DMOIRUPHV UD\Vf If 7RWDO &KRQGUOFKWK\HV FDUWLODJLQRXV ILVKHVf %URYRRUWOD VSS PHQKDGHQf &OXSHOGDH KHUULQJVf Df Df Df Df %DJUH PDUOQXV JDIIWRSVDOO FDWILVKf $UORSDOD IHOOV KDUGKHDG FDWILVKf $UOOGDH VHD FDWIOVKHVf 7RWDO $UOOGDH VHD FDWIOVKHVf 2SVDQXV VSS WRDGIOVKf 6WURQJ\OXUD VSS QHHGOHILVKf )XQGXOXV VSS NOOOOIOVKf &DUDQ[ KLSSRV FUHYDOOH MDFNf &DUDQJOGDH MDFNVf Df Df Df Df 2UWERSUOVWOV FKU\VRSWHUD SLJILVKf $UFERVDUJXV SUREDWRFHSKDOXV VKHHSVKHDGf /DJRGRQ UKRPERLGV D SOQIOVKf 6SDUOGDH SRUJOHVf 7RWDO 6SDUOGDH SRUJOHVf 6SDUOGDH6FODHQOGDH SRUJOHVGUXPVf Df Df Df Df %DOUGOHOOD FKU\VRXUD VLOYHU SHUFKf &\QRDFORQ QHEXORVXV VSRWWHG VHDWURXWf &\QRVFORQ VSS VHDWURXWf 3RJRQODV FURPOD EODFN GUXPf 6FLDHQOGDH GUXPVf 7RWDO 6FLDHQOGDH GUXPVf 3DUDOOFKWK\D VSS IORXQGHUf 6SEHUROGHV VSRQJLHU EDQGWDLO SXIIHUf

PAGE 233

7HWUDRGRQWLGDH SXIIHUVf 1 R R ff ff ff f! &KOORP\FWHUXH HFKRHSI DWULSDG EXUUILVKf 'ORGRQWOGDD EXUU DQG SRUFXSLQH ILVKHVf ff }! ff }f 2VWHLFKWK\HV ERQ\ ILVKHVf f! }f ff r! 7RWDO 2VWHLFKWK\HV ERQ\ ILVKHVf 9DUWDEUDWD SUHGRPLQDQWO\ ILVKf EDFNERQHG DQLPDOVf r!! Ef ff rf ff }} 7RWDO 9DUWDEUDWD EDFNERQHG DQLPDOVf %DODQXV DSS EDUQDFOHf Rf 2f Rf Rf 'DFDSRGD FUDEVf 7RWDO &UXDWDFDD DTXDWLF DUWKURSRGVf 0RGXOXV PRGXOXV $WODQWLF PRGXOXVf Rf Rf &f Rf &HUOWKOGHD VFDODULIRUPOV ODGGHU KRUQ VKDOOf Rf 2 2f Ff &VULWKLXUQ PXVHDUXP IO\DSDFNDG FDULWKf 2f Rf 2f Rf &UVSOGXOV DSS VOLSSHUVKHOOf Rf 2f &f Rf 3ROLQLFHV GXSOLFVWXV VKDUN D\Hf 8URVDOSLQ[ SHUUXJDWD *XOI R\DWDU GULOOf 2f Rf m! Rf 8UR VDOSLQ[+H ORQJDQ D R\VWHU GULOOFURZQ FRQFKf &f &f R! Ff $ DFKLV ODIUHVQD\O ZDOOULEEHG GRYHVKHOOf 2O 2f Ff 2 0HORQJHQD FRURQD FRPPRQ FURZQ FRQFKf %XH\FRQ FRQWUDULXP OLJKWQLQJ ZKHONf %XH\FRQ VSLUDWXP S\UXORLGHV 6D\nV SHDU ZKHONf 1DHVDULXV YLEH[ FRPPRQ HDVWHUQ QDVVDf 2f Rf Ff 2 )DVFLRODULD OLOLXP KXQWHU OD EDQGHG WXOLSf 0DUJLQDOLD DSS PDUJLQDOLDf Rf Rf Ff H! *DVWURSRGD PHGLXP PDULQDf PHGLXPVL]HG PDULQD VQDLOVf ff ff }f ff 7RWDO 0DULQD *DDWURSRGD PDULQD VQDLOVf (XJODQGLQD URVHD URV\ HXJODQGLQDf Rf 2f Rf Ff 3RO\J\UD DSS SRO\J\Uf 2f Ff Ff &f 7RWDO 7DUUDDWULDO *DDWURSRGD WHUUHVWULDO VQDLOVf &f r! Ff 2f *HXNHQHOD GHPLDVD JUDQRVDVLPD $WODQWLF ULEEHG PXVVHOf -f $UJRSHFWHQ DSS VFDOORSf 3DFWLQLGDD&DUGLLGDD VFDOORSVFRFNOHVf ff ff f} f! &UDVDRDWUHD YLUJLQLFD HDVWHUQ R\VWHUf ;r! If &DUGOWDPHUD IORULGDQD EURDGULEEHG FDUGLWDf 2f rf Ff Rf 'LQRFDUGOXP UREXV WXUQ YDQK\QOQJO 9DQ +\QLQJnV FRFNOHf 6SOVXOD VROOGOVVLPD DOPLOOD VRXWKHUQ VXUI FODPf 3RO\PHHRGD PDUWLPD )ORULGD PDUVK FODPf 0HUFHQDULD FDPSHFKOHQVOV VRXWKHUQ TXDKRJf $QRPDORFDUGOD DXEHUODQD SRLQWHG YHQXVf Rf Rf Rf Rf %LYDOYLD R\VWHUV FODPV HWFf ff f! ff rf 7RWDO %LYDOYLD ELYDOYHVf 0ROOXDFDSUHGRPLQDQWO\ ELYDOYHf VQDLOV DQG ELYDOYHVf Ef Ef f! f! ff ff 7RWDO 0ROOXDFD VQDLOV DQG ELYDOYHVf 7RWDO ,QYDUWDEUDWD DQLPDOV ZLWKRXW EDFNERQHVf 727$/ 6$03/( YHUWHEUDWHVI LQYHUWHEUDWHVf

PAGE 234

7DEOH $ )DXQDO $QDO\VLV &DVK 0RXQG &+ &KDUORWWH &RXQW\ )ORULGD -XQH 6DPSOH 7HVW $O /HYHO 6SHFLH% &RPPRQ 1DPH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV b RI 7RWDO 01, b RI 7RWDO %RQH6KHOO :HLJKW JUDPVf b RI 7RWDO 0LQLPXP 0HDW :W (VWLPDWH b RI 7RWDO 0D[LPXP 0HDW :W (VWLPDWH b RI 7RWDO 0DPPDOLD PHGLXPf PHGLXPVL]HG PDPPDOVf Gf Gf 7RWDO 0DPPDOLD PDPPDOVf $QDWOGDH GXFNVf $YHV PHGLXPf PHGLXPVL]HG ELUGVf Df Df Df Df 7RWDO $YHV ELUGVf .OQRDWRUQRQ VSS PXG WXUWOHf 7HVWXGOQHV WXUWOHVf 7RWDO 5HSWOOOD UHSWLOHVf &DUFKDUKOQXD ODXFDV EXOO VKDUNf &DUFKDUKOQXV SOXPEDXV VDQGEDU VKDUNf /DPQOIRUPHV VKDUNVf Df Df Df Df 5DMOIRUPHV UD\Vf If 7RWDO &KRQGUOFKWK\HV FDUWLODJLQRXV ILVKHVf &OXSHOGDH KHUULQJVf WR %DJUD PDUOQXD JDIIWRSVDOO FDWILVKf cM $UORSDOV IDOOV KDUGKHDG FDWILVKf A $UOOGDH VHD FDWIOVKHVf Df Df Df Df 7RWDO $UOOGDH VHD FDWIOVKHVf 2SVDQXV VSS WRDGIOVKf 6WURQJ\OXUD VSS QHHGOHILVKf &DUDQJLGDH MDFNVf /XW-DQXV JUOVDXV JUD\ VQDSSHUf 2UWKRSUOVWOV FKU\RRSWDUD SOJIOVKf $UFKRVDUJXV SUREDWRFDSKDOXV VKHHSVKHDGf /DJRGRQ UKRPEROGDV SOQIOVKf 6SDUOGDH SRUJLHf 7RWDO 6SDUOGDH SRUJOH}f %DOUGODOOD FKU\VRXUD VLOYHU SHUFKf &\QRDFORQ QDEXORVXV VSRWWHG VHDWURXWf &\QRVFORQ VSS DHDWURXWf 0OFURSRJRQODD XQGXODWXD $WODQWLF FURDNHUf 3RJRQODV FURPOD EODFN GUXPf 6FODHQOGDH GUXPVf 7RWDO 6FODHQOGDH GUXPVf 6SDUOVRPD VSS SDUURWILVKf 0XJ VSS PXOOHWf 3DUDOOFKWK\D VSS IORXQGHUf 2VWHOFKWK\HV ERQ\ ILVKHVf Df Df Df Df 7RWDO 2VWHOFKWK\HV ERQ\ ILVKHVf

PAGE 235

9HUWHEUDWH SUHGRPLQDQWO\ ILVKf EDFNERQHG DQLPDOVf Ef Ef ff ff ff ff 7RWDO 9HUWHEUDWD EDFNERQHG DQLPDOVf %DODQXV VSS EDUQDFOHf Ff Ff &f &DOOOQDFWDH VSS EOXH FUDEV *XOI FUDE HWFf 0DQOSSD PDUFHQDUOD VWRQH FUDEf 'HFDSRGD FUDEVf 7RWDO &UXVWDRHD DTXDWLF DUWKURSRGVf 9HUPOFXODUOD VSS ZRUPVKHOOf &f &f &f }! &DUOWKOGDD VSS KRUQ VKHOOVf Rf Rf Ff 2f &HULWEOXP QXVFWUXLD IO\VSHFNHG FHULWKf Ff &f Rf &f 6DOOD DGDPD $GDPVn PLQLDWXUH FHULWKf Rf &f Ff Ff &UHSOGXOD IRUQOFDWD $WODQWLF VOLSSHUVKHOOf Ff &f Ff &f &UDSOGXOD VSS VOLSSHUVKHOOf Rf 2f Rf rf 3ROOQOFDD GXSOOFDWXD VKDUN H\Hf 8URDDOSOQ[ SDUUXJDWD *XOI R\VWHU GULOOf Rf 2f Ff Rf 0DORQJDQD FRURQD FRPPRQ FURZQ FRQFKf 1DDDDUOXD YOED[ FRPPRQ HDVWHUQ QDVVDf Ff &f Ff &f )DDFORODUOD VSS WXOLS VKHOOVf 3ODXURSORFD JLJDQWHD )ORULGD KRUVH FRQFKf 0DUJLQDOLD VSS PDUJLQDOLDf &f Ff Ff 2f 2GRDWRPOD OPSUDHDD LPSUHVVHG RGRVWRPHf 2f Ff Rf 2f *DVWURSRGD PHGLXP PDULQHf PHGLXPVL]HG PDULQH VQDLOVf ff m! ff ff 7RWDO +DULQH *DVWURSRGD PDULQH VQDLOVf 3RO\J\UD VSS SRL\J\Uf 2f 2f Ff Ff 7RWDO 7HUUHVWULDO *DVWURSRGD WHUUHVWULDO VQDLOVf %UDFKOGRQWHD VSS PXVVHOf &f Ff &f 2f *DXNDQDOD GHPLVHV JUDQRHODDOPD $WODQWLF ULEEHG PXVVHOf Hf $UJRSDFWDQ VSS VFDOORSf 3HRWLQLGDH&DUGLLGDH VHD +RSVFRFN OH Vf G! Gf 2PWUDD DTXDDWUOD FUHVWHG R\VWHUf f Ff R! Rf Rf &UDDDRDWUDD YOUJOQOFD HDVWHUQ R\VWHUf Hf If 2VWUH LG DH R\VWHUVf Ff Rf }f ff ff mL &DUGOWDPDUD IORUOGDQD EURDGULEEHG FDUGLWDf &f &f 2f Ff 6SOHXOD DROOGOHDODD DOPLOOD VRXWKHUQ VXUI FODPf 3RO\QHDRGD PDUWLPD )ORULGD PDUVK FODPf 0DUFHQDUOD FDPSDFKODQDOP VRXWKHUQ TXDKRJf %LYDOYLD R\VWHUV FODPV HWFf ff ff R ff 7RWDO %LYDOYLD ELYDOYHVf 0ROOXVFV SUHGRPLQDQWO\ ELYDOYHf VQDLOV DQG ELYDOYHVf Ef Ef ff ff ff ff 7RWDO 0ROOXVFV VQDLOV DQG ELYDOYHVf 7RWDO ,QYHUWHEUDWD DQLPDOV ZLWKRXW EDFNERQHVf rrrrrrr 727$/ 6$03/( YHUWHEUDWHVILQYHUWHEUDWHVf

PAGE 236

7DEOH $ )DXQDO $QDO\VLV &DVK 0RXQG &+ &KDUORWWH &RXQW\ )ORULGD -XQH 6DPSOH 7HVW $O /HYHO 6SHFLHV &RPPRQ 1DPH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV b RI 7RWDO 01, b RI 7RWDO %RQH6KH :HLJKW JUDPVf RI 7RWDO 0LQLPXP 0HDW :W (VWLPDWH r RI 7RWDO 0D[LPXP 0HDW :W (VWLPDWH b RI 7RWDO 0DPPDOLD ODUJHf ODUJH PDPPDOV FI GHHUf X 7RWDO 0DPPDOLD PDPPDOVf 7HVWXGQHD WXUWOHVf 7RWDO 5HSWLOLD UHSWLOHVf &DUFEDUEOQXD VSS UHTXLHP VKDUNf 5DM IRUPHV UD\Vf If 7RWDO &KRQGULFKWK\HV FDUWLODJLQRXV ILVKHVf m &OXSHLGDH KHUULQJVf $UORSDO D IDOOD KDUGKHDG FDWILVKf $ULLGDH VHD FDWILVKHVf Df Df Df Df 7RWDO $ULLGDH VHD FDWILVKHVf 2SDDQXD VSS WRDGILVKf 2UWKRSUODWOD FKU\DRSWHUD SLJIOVKf $UFKRDDUJXD SUREDWRFDSKDOXD VKHHSVKHDGf /DJRGRQ UKRPEROGD D SLQILVKf 6SDULGDH SRUJOHVf 7RWDO 6SDULGDH SRUJLHVf %DOUGODOOD FEU\DRXUD VLOYHU SHUFKf &\QRDFORQ QDEXORDXD VSRWWHG VHDWURXWf &\QRDFORQ UHJDOLD VXPPHU VHDWURXWf &\QRDFORQ VSS VHDWURXWf 0LFURSRJRQLDV XQGXODWXD $WODQWLD FURDNHUf 6FLDHQLGDH GUXPVf Df Df Df Df 7RWDO 6FLDHQLGDH GQPf 6SKHUROGHD DSDQJODUO EDQGWDOO SXIIHUf 2VWHLFKWK\HV ERQ\ ILVKHVf If 7RWDO 2DWHLFKWK\HV ERQ\ ILVKHVf 9HUWHEUDWD SUHGRPLQDQWO\ ILVKf EDFNERQHG DQLPDOVf Ef Ef Df Df Df Df 7RWDO 9HUWHEUDWD EDFNERQHG DQLPDOVf %DO DQXD VSS EDUQDFOHf Ff Ff Df Rf &DOOOQHFWHD VSS EOXH FUDEV 2XOI FUDE HWFf 'HFDSRGD FUDEVf Df Df Df Df 7RWDO &UXVWDFHD DTXDWLF DUWKURSRGVf &DUOWEOGDD DFDODUOIRUPOD ODGGHU KRUQ VKHOOf Rf 2f Ff Rf &UDSOGXOD SODQD HDVWHUQ ZKLWH VOLSSHUVKHOOf Ff Ff Df Df

PAGE 237

&UDSOGXOD HSS 3ROOQOFDD GXSOOFPWXP 8URDDOSOQ[ SDUUXJDWD 0DORQJDQD FRURQD 1DDDDULXP YOED[ UDDFORODUOD OLOL XQ KXQWDUOD 0DUJLQDOLD PSS *DVWURSRGD PHGLXP PDULQHf 7RWDO 0DULQH *DVWURSRGD 3RO\J\UD HSS 7RWDO 7HUUHVWULDO *DVWURSRGD %UDFKOGRQWDD HSS *DXNDQDOD GHPLVHV JUDQRDODDO0D 0\WOOOGDH $UJRSDFWDQ VSS 2DWUDD DTXDDWUOD &UDDDRDWUDD YOUJOQOFD 2VWUHLGDH &DUGOWDPDUD IORUOGDQD 3RO\PDDRGD PDUWLPD 0DUFHQDUOD FDPSDFKODQDOD 7RWDO %LYDOYLD 0ROOXVFV SUHGRPLQDQWO\ ELYDOYHf 7RWDO 0ROOXVFD 'HVLVRWLFKLD 7RWDO ,QYHUWHEUDWD 727$/ 6$03/( VOLSSHUVKHOOf VKDUN H\Hf *XOI R\VWHU GULOOf FRPPRQ FURZQ FRQFKf FRPPRQ HDVWHUQ QDHVDf EDQGHG WXOLSf PDUJLQDOLDf PHGLXPVL]HG PDULQH VQDLOVf PDULQH VQDLOVf SRO\J\Urf WHUUHVWULDO VQDLOVf PXVVHOf $WODQWLF ULEEHG PXVVHOf Hf ‘8f 2f VFDOORSf FUHVWHG R\VWHUf Hf HDVWHUQ R\VWHUf Hf R\VWHUf Hf EURDGULEEHG FDUGLWDf )ORULGD PDUVK FODPf VRXWKHUQ TXDKRJf ELYDOYHVf VQDLOV DQG ELYDOYHVf Ef VQDLOV DQG ELYDOYHVf VHD XUFKLQf DQLPDOV ZLWKRXW EDFNERQHVf YHUWHEUDWHVLQYHUWHEUDWHVf Ff Ff Ff &f R mR R Ff &f Ff Ff Ff Ff Rf 2f &f Ff rf 2f ff ff f! f} Ff 2 2f Rf Z R R Ff Ff Ff 2f Rf f! ff ff fL Hf Ff Ff m} If m Rf mf 2f Ff Z R R Ef ff f} ff ff r! rf rf r}

PAGE 238

7DEOH $ )DXQDO $QDO\VLV &DVK 0RXQG &+ &KDUORWWH &RXQW\ )ORULGD -XQH 6DPSOH 7HVW $O /HYHO 6SHFLHV 'DV\DWLGDH 7RWDO &KRQGULFKWK\HV %UHYRRUWOD VSS &OXSHLGDH $UORSDOV IDOOD $ULLGDH 7RWDO $ULLGDH 2SVDQXV VSS 6WURQJ\OXUD VSS 2UWKRSUODWOD FKU\DRSWHUD $UFKRRDUJXV SUREDWRFHSKDOXD /DJRGRQ UKRPERLGV D 6SDULGDH 7RWDO 6SDULGDH %DOUGOHOOD FKU\RRXUD 6FLDHQLGDH 7RWDO 6FLDHQLGDH 3DUDOOFKWE\D VSS &KOORD\FWDUXD DFKRHSI 2VWHLFKWK\HV 7RWDO 2VWHLDKWK\HV 9HUWHEUDWH SUHGRPLQDQWO\ ILVKf 7RWDO 9HUWHEUDWH %DO DQXD VSS &VOOOQHFWHD VSS 7RWDO &UXVWDFHD 0RGXOXV PRGXOXV &HUOWEOXP VWUDWXP &UHSOGXOD IRUQOFDWD &UHSOGXOD VSS 3ROLQLFHV GXSOOFDWXV 8URVDOSOQ[ SHUUXJDWD 0HORQJHQD FRURQD %XV\FRQ FRQWUDUOXP %XR\FRQ DSLUDWXUQ S\UXOROGHD 7RWDO 0HORQJHQLGDH )DDFORODUOD OOOOXP KXQWHUOD &RPPRQ 1DPH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV ? RI 7RWDO 01, r RI 7RWDO %RQH6KHOO +HLJKW JUDPVf ? RI 7RWDO 0LQLPXP 0HDW +W (VWLPDWH b RI 7RWDO 0D[LPXP 0HDW +W (VWLPDWH RI 7RWDO UD\Vf If FDUWLODJLQRXV ILVKHVf PHQKDGHQf KHUULQJVf Df Df Df Df KDUGKHDG FDWILVKf VHD FDWILVKHVf VHD FDWILVKHVf WRDGILVKf QHHGOHILVKf SLJILVKf VKHHSKHDGf SLQILVKf SRUJLHVf Df Df Df Df SRUJLHVf VLOYHU SHUFKf GUXPVf Df Df Df Df GUXPVf IORXQGHUf VWULSHG EXUUILVKf ERQ\ ILVKHVf Df Df Df Df ERQ\ ILVKHVf EDFKERQHG DQLPDOVf Ef Ef Df Df Df Df EDFNERQHG DQLPDOVf EDUQDFOHf Rf Rf Rf Rf EOXH FUDEV 4XOI FUDE HWF f LR DTXDWLF DUWKURSRGVf $WODQWLF PRGXOXVf Rf Rf Rf Df )ORULGD FHULWKf Df Rf Rf Hf $WODQWLF VOLSSHUVKHOOf Rf Rf Rf Rf VOLSSHUVKHOOf Df Df Rf Ff VKDUN H\Hf Hf Df Rf Rf 4XOI R\VWHU GULOOf Ff Rf Rf Rf FRPPRQ FURZQ FRQFKf OLJKWQLQJ ZKHONf 6D\nV SHDU ZKHONf FURZQ FRQFKVf EDQGHG WXOLSf

PAGE 239

UDDFORODUOD ESS WXOLS VKHOOVf 0DUJLQHOOD VSS PDUJLQDOLDf Ff 2f Ff Ff *DVWURSRGD PHGLXP PDULQDf PHGLXPVL]HG PDULQD VQDLOVf ff ff }! ff 7RWDO 0DULQD *DVWURSRGD PDULQD VQDLOVf 3RO\J\UD VSS SRO\J\Uf Rf Ff Ff Rf 7RWDO 7DUUDVWULDO *DVWURSRGD VQDLOVf *DXNDQDOD GHPLPDD JUDQRDLDDLPD $WODQWLF ULEEHG PXVVHOf Hf 0\WLOLGDH PXVVHOVf mf! ff ff f! ff 2DWUDD DJXDDWULD FUHVWHG R\VWHUf m ff r! 2f r! 2f &UDDDRDWUDD YOUJOQOFD HDVWHUQ R\VWHUf m}ff If 2VWUDLGDD R\VWHUVf ff ff f! ff fL ff &DUGLWDPHUD IORULGDQD EURDGULEEHG FDUGLWDf Ff 2f 2f Rf &DUGLLGDD FRFNOHVf 3RO\PHHRGD PDUWLPD )ORULGD PDUVK FODPf 0DURDQDUOD FDPSDFKODQDOD VRXWKHUQ TXDKRJf %LYDOYLD R\VWHUV FODPV VWRf ff f! ff ff 7RWDO %LYDOYLD ELYDOYHVf +ROOXVFD SUHGRPLQDQWO\ ELYDOYHf VQDLOV DQG ELYDOYHVf Ef E! f} f! ff f! 7RWDO +ROOXVFD VQDLOV DQG ELYDOYHVf 'HVPRWLFKLD VHD XUFKLQf Gf G! Gf r! 0DGUHSRUDULD KDUG FRUDOf &f r! Rf Rf 7RWDO ,QYDUWDEUDWD DQLPDOV ZLWKRXW EDFNERQHVf 727$/ $03/( YHUWHEUDWHVLQYHUWHEUDWHVf

PAGE 240

7DEOH $ )DXQDO $QDO\VLV 8VHSSD ,VODQG /HYHO // /HH &RXQW\ )ORULGD $XJ 6HSW 6DPSOH 7HVW f 6SHFLHV &RPPRQ 1DPH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV b RI 7RWDO 01, b RI 7RWDO %RQHVKHOO b :HLJKW RI JUDPVf 7RWDO 0LQLPXP 0HDW :W (VWLPDWH r RI 7RWDO 0D[LPXP 0HDW :W (VWLPDWH ; RI 7RWDO 6OJPRGRQ KODSOGXD KLVSLG FRWWRQ UDWf 0DPPDOLD VPDOOf VPDOO PDPPDOVf Gf Gf RI 2GRFROODXD YOUJOQODQXD ZKLWHWDLOHG GHHUf 0DPPDOLD ODUJHf ODUJH PDPPDOVf Df Df Df Df 7RWDO 0DPPDOLD PDPPDOVf $YHV PHGLXPf PHGLXPVL]HG ELUGVf 7RWDO $YHV ELUGVf &ROXEULGDH RROXEULGVf 2RSKDUXD SRO\SKHPXD JRSKHU WRUWRLVHf 7HVWXGQHD WXUWOHVf 7RWDO 5HSWLOLD UHSWLOHVf 5KO]RSUORQRGRQ WDUUDDDRYDH $WODQWLF VKDUSQRVH VKDUNf /DPQLIRUPHV VKDUNVf $DWREDWXD QDUOQDUO VSRWWHG HDJOH UD\f 0\OLREDWLGDH HDJOH UD\Vf ff Df Df Df 'DD\DWLGDH VWLQJUD\Vf 5DMLIRUPHV VNDWHV DQG UD\V HWFf &KRQGULFKWK\HD FDUWLODJLQRXV ILVKHVf Df Df Df Df 7RWDO &KRQGULFKWK\HD FDUWLODJLQRXV ILVKHVf %UDYRRUWOD VSS PHQKDGHQf &OXSHLGDH KHUULQJVf 7RWDO &OXSHLGDH KHUULQJVf %DJUD PDULDXV JDIIWRSVDLO FDWILVKf $UORSDOD IDOOD KDUGKHDG FDWILVKf $ULLGDH VHD FDWILVKHVf 7RWDO $ULLGDH VHD FDWILVKHVf 2SDDQXD VSS WRDGILVKf 2JFRFHSKDOLGDH EDWILVKHVf &DUDQJLGDH -RNf 2UWERSUODWOD FKU\DRSWDUD SOMIOKf $UFKRDDUJXD SUREDWRFHSKDOXD VKHHSVKHDGf /DJRGRQ UKRPERLGV D SOQILVKf 6SDULGDH SRUJLHVf 7RWDO 6SDULGDH SRUJLHVf 6SDULGDH6FLDHQOGDH SRUJLHVGUXPVf Df Df Df Df %DOUGODOOD FKU\DRXUD VLOYHU SHUFKf &\QRDFORQ QHEXORDXH VSRWWHG VHDWURXWf &\QRDFORQ VSS VHDWURXWf Gf Gf /DORDWRPX% [DQWKXUXD SRWf

PAGE 241

0OFURSRJRQODD XQGXODWXV $WODQWLF FURDNHUf 3RJRQLDV FURPOH EODFN GUXPf 6FODHQRSV RFHOODWXV UHG GUXPf 6FLDHQLGDH GUXPVf ff ff $f ff 7RWDO 6FLDDQOGDD GUXQDf 6SKRDUROGDV DSS SXIIHU ILDKf &KOORP\FWDUXV VFKRDSI DWULSHG EXUUILDKf 'LRGRQWLGDm EXUU DQG SRUFXSLQH ILDKHVf ff }! $f ff 2VWHLFKWK\HD ERQ\ ILDKHDf 7RWDO 2DWDLRKWK\DD ERQ\ ILDKHDf 9DUWDEUDWD SUDGRPLQDQWO\ ILDKf EDFNERQHG DQPDODf Ef Ef ff ff $f $f 7RWDO 9DUWDEUDWD EDFNERQHG DQLPDODf %DODQXD DSS EDUQDFOHf Rf 2f Rf &f 'DFDSRGD HUDEDf 7RWDO &UXDWDRDD DTXDWLF DUWKURSRGVf 6SOURJO\SKXV OUUDJXODULP LUUHJXODU ZRUPVKHOOf &f 2f Rf 2 0RGXOXV PRGXOXV $WODQWLF PRGXOXVf 2f Rf &! Ff &DUOWKOXP PXVFDUXP IO\VSHFNHG FHULWKf 2f 2f rO Rf &UDSOGXOD DFXOHDWD VSLQ\ VOLSSHUVKHOOf 2f 2f Rf Ff &UDSOGXOD SODQD HDVWHUQ ZKLWH VOLSSHUDKHOOf 2f 2f 2f Ff &UDSOGXOD DSS VOLSSHUVKHOOf rf R! 2f rL 6WURPEXV DODWXD )ORULGD ILJKWLQJ FRQFKf 3ROQLFDV GXSOOFDWXV VKDUN H\Hf 3K\OORQRWXV SRPXP DSSOH PXUH[f 8URDDOSOQ[ SDUUXJDWD *XOI R\VWHU GULOOf }! Rf &f } 0DORQJDQD FRURQD FRPPRQ FURZQ FRQFKf %XV\FRQ FRQWUDUOXP OLJKWQLQJ ZKHONf %XV\FRQ DSLUDWXUQ S\UXOROGDD 6D\nV SHDU ZKHONf 7RWDO 0DORQJDQLGDD FURZQ FRQFKDf 1DDDDUOXV DS QDVVDf R! m‘f 2f 2 )DVFORODUOD OOOOXP KXQW DULD EDQGHG WXOLSf )DVFLRODU OD WXOLSD WUXH WXOLSf )DVFORODUOD DSS WXOLS VKHOOf 3ODXURSORFD JLJDQWDD )ORULGD KRUVH FRQFKf 7RWDO )DDFLRODULLGDD WXOLS VKHOOVf &RQXV DSS FRQH VKHOOf G_ r! *DVWURSRGD DPDOO PDULQDf VPDOO PDULQH VQDLOVf Mf 2f 2f Rf *DDWURSRGD PHGLXP PDULQDf VWDGLXPD L]DG PDULQH DQDLOVf f! fL ff f} 7RWDO 0DULQD *DDWURSRGD PDULQH DQDLODf &XJODQGOQD URVDD URV\ HXJODQGLQDf &f Ff 2 2f 3RO\J\UD DSS SRO\T\Uf Rf rf H! Ff 7RWDO 7DUUDDWULDO *DDWURSRGD WDUUDDWULDO DQDLOVf $QDGDUD WUDQDYDUVD 1RDWOD SRQGHURVD SRQGHURXV DUNf *DXNDQVOD GDPOVVD JUDQRVOVDOPD $WODQWLD ULEEHG PXVVHOf WU

PAGE 242

7DEOH $FRQWLQXHG SHFOHV &RPPRQ 1DPH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV b RI 7RWDO 01, b RI 7RWDO %RQHVKHOO +HLJKW JUDPVf b RI 7RWDO 0LQLPXP 0HDW :W (VWLPDWH b RI 7RWDO 0D[LPXP 0HDW +W (VWLPDWH r RI 7RWDO 2HXNHQDOD GHPOVDD JUDQRRLDDOPD $WODQWLF ULEEHG PXVVHOf WU 0\WOOOGDH PXVVHOVf Df Df Df Df 3OQQOGDH SHQ VKHOOVf $UJRSHFWHQ VSS VFDOORSf 3HF&DQ VSS ]LJ]DJ VFDOORS HWFf 3HDWLQLGDH VHDOORSVf 3HFWOQOGDH&DUGOOGDH VFDOORSVFRRNLHVf If 3OORDWXOOGDH2VWUHOGDH FDWnV SDZVR\VWHUVf Df Df Df Df 2HWUHD HTXHDWUOD FUHVWHG R\VWHUf 2f 2f Df Rf &UDDDRDWUHD YOUJLQLFD HDVWHUQ R\VWHUf 2VWUHOGDH R\VWHUVf ff Df Df Df &DUGOWDPHUD IORUOGDQD EURDGULEEHG FDUGOWDf 7UDFK\FDUGOXUQ HJPRQWODQXP SULFNO\ FRFNOHf 7UDFK\FDUGOXP VSS FRFNOHVf 6SODXOD %ROOGODDOPD DOPLOOD VRXWKHUQ VXUI FODPf 3RO\PHDRGD PDUWLPD )ORULGD PDUVK FODPf 0HUFHQDULD FDPSHH KLHQDOH VRXWKHUQ TXDKRJf &KORQH FDQFHO ODWD FURVVEDUUHG YHQXVf 0DFURFDOOODWD QLPERVD VXQUD\ YHQXVf %LYDOYLD VPDOOf VPDOO ELYDOYHVf D Rf R! Rf Rf %LYDOYLD PHGLXPf PHGLXPVL]HG ELYDOYHVf ff Df Df Df 7RWDO %LYDOYLD ELYDOYHVf 0ROOXVFD VQDLOV DQG ELYDOYHVf Ef Ef Df Df Df Df 7RWDO 0ROOXVFD VQDLOV DQG ELYDOYHVf 'HVPRWLHKOD VHD XUFKLQVf Gf Gf Gf Gf 7RWDO ,QYHUWHEUDWD DQLPDOV ZLWKRXW EDFNERQHVf U27$/ 6$03/( YHUWHEUDWHVALQYHUWHEUDWHVf

PAGE 243

7DEOH $ )DXQDO $QDO\VLV -RVVO\Q ,VODQG // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW $O /HYHO 9 YROXPH VDPSOHf 1XPEHU RI b b %RQD6KDOO b 0LQLPXP ? 0D[LPXP b ,GHQWLILDEOH RI 01, RI :HLJKW RI 0HDW :W RI 0HDW :W RI 6SHFLHD &RPPRQ 1DPH )UDJPHQWD 7RWDO 7RWDO JUDPDf 7RWDO (DWLPDWH 7RWDO (DWLPDWH 7RWDO $\WK\D DSS ED\ GXFNf $QDWLGDH GXDNDf Df Df Df Df $YDD PHGLXPf PDGLXPDL]DG ELUGDf Df Df Df Df 7RWDO $YDD ELUGDf 3DHXGHP\D DS FRRWDUf 7RWDO 5DSWLOLD UDSWLODDf &DUFKDUKLQLGDH UHTXLHP DKDUNDf 6SK\UQD WOEXUR ERQQHWKHDG DKDUNf 5KOQREDWXD OHQW,JOQRDXD $WODQWLF JXLWDUILDKf 'DD\DWOD DSS DWLQJUD\f 7RWDO &KRQGULFKWK\DD FDUW ODJLQRXD ILDKHDf %ORSD DDXUXD ODG\ILDKf %UHYRRUWOD DSS PHQKDGHQf %DJUH PDUOQXD JDIIWRSDDOO FDWILDKf $UORSDOD IHOOD KDUGKHDG FDWeLDKf $UOLGDD VHD FDWILDKHVf Df Df Df Df 7RWDO $UOLGDD DDD FDWILDKHDf 2SDDQXD DSS WRDGILVKf 6WURQJ\OXUD DSS QHHGOHILDKf 7\ORDXUXD FURFRGOOXD KRXQGeDKf m' Gf %DORQLGDD QHHGOHeLHKHDf Df Df Df Df )XQGXOXD DSS NLOOLILDKf &DUDQ[ DSS MDFNf &KORURDFRPEUXD FEU\DXUYD $WODQWLF EXPSHUf /XWMDQXD DSS DQDSSDUf 2UWKRSUODWOD FEU\DRSWHUD SLJILDKf $UFKRDDUJXD SUREDWRFHSKDOXD DKDHSDKHDGf 'OSORGXD EROEURRNO DSRWWDLO SLQILDKf Gf Gf /DJRGRQ UKRPEROGR D SLQWLDKf 6SDULGDD SRUJLDDf 7RWDO 6SDULGDD SRUJLDDf %DOUGOHOOD FKU\DRXUD VLOYHU SDUFKf &\QRDFORQ DUHQDUOXD DDQG VHDWURXWf &\QRDFORQ DSS %HDW URXWf Df Df Df Df /DLRDWRPXD [DQWKXUXD HSRWf 6FODHQRSD RFHOODWXD UDG GUXPf 7RWDO 6RLDDQLGDD GUXPDf PXOOHWf IORXQGHUf 0XJOO DSS 3DUDOOFKWK\D DSS

PAGE 244

6SKRDURLGDH HSHQJODUL EDQGWDLO SXIIDUf &KLORP\FWDUXD %FKRHSIL VWULSHG EXUUILVKf 'LRGRQWLGDH EXUU DQG SRUFXSLQH ILVKHVf 2DWDLFKWK\DD ERQ\ ILVKHVf ff f! ff }f 7RWDO 2DWDLRKWK\DD ERQ\ ILVKHVf 9DUWDEUDWD SUHGRPLQDQWO\ ILVKf EDFNERQHG DQLPDOVf Ef Ef ff f! f! ff 7RWDO 9DUWDEUDWD EDFNERQHG DQLPDOVf %DODQXD DSS EDUQDFOHf Rf r! &! Ff &DOOOQHFWDD DSS EOXH HUDED *XOI FUDE DWHf 0DQLSSD PDUFHQDUD VWRQH FUDEf 'DFDSRGD HUDEDf }f ff r! }} 7RWDO &UXDWDRDD DTXDWLF DUWKURSRGVf 7UXQFDWDOOD SXOFKDOOD EHDXWLIXO WUXQFDWHOODf Rf R! Rf 2f 9HUP$FXODUD DSS ZRUPVKHOOf Rf Rf &f R! 0RGXOXV PRGXOXD $WODQWLF PRGXOXVf Rf 2f Rf Rf &HULWKOXP DWUDWXP )ORULGD FDULWKf 2f 2f Rf 2f &UHSOGXOD IRUQOFDWD $WODQWLF DOLSSDUDKDOOf &f 2f R! 2f &UDSLGXOD DFXODDWD WKRUQ\ DOLSSDUDKDOOf Q R R 2f 2f Ff &f 1DWLFLGDH PRRQ VKHOOVf R R R 2f Rf 2f &! 8URDDOSLQ[ FLQDUDD $WODQWLF R\VWHU GULOOf &f 2f 2f &f 8URPDOSLQ[ SHUUXJDWD *XOI R\DWDU GULOOf 2f 2f 2f 2f (XSODXUD DXOFOGHQWDWD VKDUSULEEHG GULOOf 2f 2f 2f &f &ROXPED D PDUFDWRULD FRPPRQ GRYHDKHOOf &f rf &! 2f $DFKLV ODIUHDQD\O ZDOOULEEHG GRYHVKHOOf &f rO &f H! &DQWKDUXD PXOWDQJXOXD IDOVD GULOOf 2f r! 2f Ff 0DORQJDQD FRURQD FRPPRQ FURZQ FRQFKf %XD\FRQ FRQWUDUOXP OLJKWQLQJ ZKHONf %XH\FRQ DSLUD WXUQ S\UXOROGDD 6D\nV SHDU ZKHONf 7RWDO 0HORQJHQLGDH FURZQ FRQFKDf 1DDVDUOXD DS QDVDDf 2f Ff 2f 2f )DDFORODUOP OLOLXP KXQWHUOD EDQGHG WXOLSf )DDFORODUOD WXOLSD WUXH WXOLSf )DPFLRODULD DSS WXOLS VKDOOf 3O%XURSORFD JLJDQWHD )ORULGD KRUVH FRQFKf 7RWDO )DDFLRODULLGDD WXOLS DKHOOVf 2OLYHOOD SXHLOOD YDU\ VPDOO GZDUI ROLYHf Rf Rf &f 2f 0DUJLQDOLD DSLFLQD FRPPRQ $WODQWLF PDUJLQDOLDf mf &_ 2f 2f 0DUJLQDOLD DSS PDUJLQDOLDf &f 2f 2f 2f &RQXD MDDSLGHX% MDDSDU FRQHf 2f &f &_ 2f 7XUERQLOOD FRQUDGL &RQUDGnV WXUERQLOODf 2f 2f 2f 2f 0DODPSXD FRIIDXD FRIIHH PDODPSXDf &f 2f 2f 2f *DDWURSRGD PHGLXP PDULQDf PHGLXPDL]DG PDULQD VQDLOf ff f} f! ff 7RWDO 0DULQD *DDWURSRGD PDULQD VQDLOVf %XJODQGLQD URVHD URV\ HXJODQGLQDf &f 2f Rf 2f 3RO\J\UD DSS SRO\T\Uf Rf Rf 2f 2f 7RWDO 7DUUDDWULDO *DDWURSRGD WHUUHVWULDO DQDLODf FXWULEEHG DUNf $QDGDUD IORUOGDQD

PAGE 245

7DEOH $FRQWLQXHG 1XPEHU RI b b %RQH6KHOO b 0LQLPXP r 0D[LPXP b ,GHQWLILDEOH RI 01, RI :HLJKW RI 0HDW :W RI 0HDW :W RI 6SHFLHV &RPPRQ 1DPH )UDJPHQWV 7RWDO 7RWDO J UDPVf 7RWDO (VWLPDWH 7RWDO (VWLPDWH 7RWDO $QDGDUD IORUOGDQD FXWULEEHG DUNf %UDFKOGRQWRR D[XDWXD VFRUFKHG PXVVHOf 2HXNHQDOD GRPODDD JUDQRDODDOPD $WODQWLF ULEEHG PXVVHOf Df Rf Rf Rf 0\WLOOGDH PXVVHOVf ff $f $f $f 3LQQLGDH SHQ VKHOOVf $UJRSDFWDQ VSS VFDOORSf 2DW[DD DTXDDWUOD FUHVWHG R\VWHUf Hf Rf Df Rf &UDDDRDWUDD YLUJLQFD HDVWHUQ R\VWHUf 2VWUHLGDH R\VWHUVf $f $f $f $f /XFOQD QDDDXOD ZRYHQ OXFLQDf Rf R! Df 2f &DUGOWDPDUD IORUOGDQD EURDGULEEHG FDUGLWDf Rf Df Rf 2f &UDDDOQDOOD OXQXODWD OXQDWH FUDVVLQHOODf Ff Rf Rf 2f 'OQRFDUGOXP UREXDWXUQ YDQK\QOQJO 9DQ +\QLQJnV FRFNOHf 3RO\PDDRGD FDUROOQODQD &DUROLQD PDUVK FODPf 3RO\PDDRGD PDUO WLPD )ORULGD PDUVK FODPf 0DUFHQDUOD FDPSHHKL DQDO D VRXWKHUQ TXDKRJf &EORQD FDQFDOODWD FURVVEDUUHG YHQXVf Rf Rf Rf Rf 0DFURFDOOODWD QOPERDD VXQUD\ YHQXVf %LYDOYLD R\VWHUV FODPV HWFf $f $f $f $f 7RWDO %LYDOYLD ELYDOYHVf 0ROOXVFD VQDLOV DQG ELYDOYHVf Ef Ef $f $f $f $f 7RWDO 0ROOXVFD VQDLOV DQG ELYDOYHVf 'HVPRWLFKLD VHD XUFKLQVf Gf Gf Gf Gf 7RWDO ,QYHUWHEUDWD DQLPDOV ZLWKRXW EDFNERQHVf 727$/ 6$03/( YHUWHEUDWHVrLQYHUWHEUDWHVf

PAGE 246

7DEOH $OO )DXQDO $QDO\VLV -RVVO\Q ,VODQG // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW $O /HYHO /DV &RPPRQ 1DPH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV b RI 7RWDO 01, b RI 7RWDO %RQH6KH :HLJKW JUDPVf b RI 7RWDO 0LQLPXP 0HDW :W (VWLPDWH ? RI 7RWDO 0D[LPXP 0HDW :W (VWLPDWH ; RI 7RWDO &UORDWLGDD PODHf 0DPPDOLD VPDOOf VPDOO PDPPDOVf Df Df Df Df 3URF\R' ORWRU UDFFRRQf 0DPPDOLD PHGLXPf PHGLXPVL]HG PDPPDOVf ff Df Df Df 0DPPDOLD ODUJHf ODUJH PDPPDOV FO GHHUf 0DPPDOLD PDPPDOVf Df Df Df Df 7RWDO 0DPPDOLD PDPPDOVf $\WK\D VSS ED\ GXFNf 0DUJYD %DUUDWRU UHGEUHDVWHG PHUJDQVHUf $QDWOGDH GXFNVf $YHV PHGLXPf PHGLXPVL]HG ELUGVf Df Df Df Df 7RWDO $YHV ELUGVf 7HVWXGQHD WXUWOHVf 6FOQFOGDH VNOQNVf Gf Gf Gf Gf 7RWDO 5HSWOOOD UHSWLOHVf &DUFKDUKOQXD REDFXUXD GXVN\ VKDUNf &DUFEDUEOQXD SOXPEDXD VDQGEDU VKDUNf 4DODRFHUGR FXYODUO WLJHU VKDUNf &DURKDUKOQOGDH UHTXLHP VKDUNVf Df Df Df Df 6SK\UQD WOEXUR ERQQHWKHDG VKDUNf 5DM IRUPHV UD\Vf If 7RWDO &KRQGUOFKWK\HV FDUWLODJLQRXV ILVKHVf %UDYRRUWOD VSS PHQKDGHQf &OXSHOGDH KHUULQJVf Df Df Df Df %DJUH PDULQXV JDIIWRSVDOO FDWILVKf $UORSDOD IDOOD KDUGKHDG FDWILVKf $UOOGDH VHD FDWIOVKHVf Df Df Df Df 7RWDO $UOOGDH VHD FDWIOVKHVf 2SDDQXD VSS WRDGIOVKf 6WURQJ\OXUD VSS QHHGOHILVKf )XQGXOXD VSS NOOOLIOVKf &EORURDFRPEUXD FEU\DXUXD $WODQWLD EXPSHUf RI &DUDQJOGDH MDFNVf +DDPXORQ VSS JUXQWf 2UWKRSUODWOD FKU\DRSWDUD SOJIOVKf 7RWDO +DHPXOOGDH JUXQWVf $UFERDDUJXH SUREDWRFDSKDOXD VKHHSVKHDGf /DJRGRQ UERPEROGDD SOQIOVKf 6SDULGDH SRUJLHVf SRUJLHVf 26 7RWDO 6SDULGDH

PAGE 247

%DOUGOHOOD FKU\VRXUD VLOYHU SHUFKf &\QRPFORQ DUDDUXV VDQG VHDWURXWf &\QRVFORQ VSS VHDWURXWf /HORVWRPXH [DQWKXUXH mSRWf 6FODHQRSH RFHOODWX} UHG GUXPf 6FLDDQLGDD GUXPVf ff ff ff $ f 7RWDO 6FLDDQLGDD GUXPVf 3DUDOOFEWE\V VSS IORXQGHUf 6SERHUROGHV VSS SXIIHU ILVKf &KLORP\FWHUXr VFKRHSIL VWULSHG EXUUILVKf 2VWDLFKWK\DV ERQ\ ILVKHVf ff ff ff ff 7RWDO 2VWDLFKWK\DV ERQ\ ILVKHVf 9DUWDEUDWD SUHGRPLQDQWO\ ILVKf EDFNERQHG DQLPDOVf E! r!! ff ff f! ff 7RWDO 9DUWDEUDWD EDFNERQHG DQLPDOVf %DODQXV VSS EDUQDFOHf Rf &f Ff Rf &DOOOQHFWHV VSS EOXH FUDEV *XOI FUDE DWHf 0HQOSSH PHUFHQDULD VWRQH FUDEf 'DFDSRGD FUDEVf ff ff $f ff 7RWDO &UXVWDFDD DTXDWLF DUWKURSRGVf 6SOURJO\SKXD LUUHJXODUOH LUUHJXODU ZRUPVKHOOf 2f Rf Ff Rf 'ORGRUD FD\HQHQPOP &D\HQQH NH\KROH OLPSHWf &f Rf 2f 2f 0RGXOXV PRGXOXV $WODQWLF PRGXOXVf Ff r! R! 2f &HUOWKOXP DWUDWXP )ORULGD FDULWKf 2f Rf 2f 2f &UHSOGXOD IRUQOFDWD $WODQWLF VOLSSHUVKHOOf &f 2f &f 2W &UHSOGXOD FRQYH[D FRQYH[ VOLSSDUVKDOOf f Rf }f &f &UHSOGXOD DFXOHDWD WKRUQ\ VOLSSDUVKDOOf 2f 2f }} 2f &UHSOGXOD SODQD HDVWHUQ ZKLWH VOLSSHUVKHOOf &f F! &! 2f &UHSOGXOD VSS VOLSSDUVKDOOf 2f Rf &f &f 3ROLQLFHV GXSOOFDWXV VKDUN H\Hf 3K\OORQRWXV SRPXP DSSOH PXUH[f 8URVDOSOQ[ SHUUXJDWD *XOI R\VWHU GULOOf 2f R! R! Rf &ROXPED D UXDWOFROGHV UXVW\ GRYHVKHOOf 2f &! Rf Ff $QDFEOV ODIUHVQD\O ZDOOULEEHG GRYHVKHOOf 2f RO 2f 2O 0HORQJHQD FRURQD FRPPRQ FURZQ RRQFKf %XV\FRQ FRQWUDUOXP OLJKWQLQJ ZKHONf If %XV\FRQ DSLUD WXUQ S\UXOROGHV 6D\nV SHDU ZKHONf 7RWDO +DORQJDQLGDD FURZQ FRQFKVf 1DVVDUOXV YLEH[ FRPPRQ HDVWHUQ QDVVDf Rf 2f Rf 2f )DVFORODUOD OLOL XQ KXQWVUOD EDQGHG WXOLSf If UDVFORODUOD WXOLSD WUXH WXOLSf UDVFORODUOD VSS WXOLS VKDOOf 3OHXURSORFD JLJDQWHD )ORULGD KRUVH FRQFKf If 7RWDO )DVRORODULLGDD WXOLS VKHOOVf 0DUJLQDOLD VSS PDUJLQDOLDf Rf Rf 2f Rf *DVWURSRGD VPDOO PDULQDf VPDOO PDULQD VQDLOVf ff ff f} ff *DVWURSRGD PHGLXP PDULQDf PHGLXPVL]HG PDULQH VQDLOVf ff }f ff }f *DVWURSRGD ODUJH PDULQDf KRUVH FRQFKVZKHONVf ff f! $f ff 7RWDO +DULQD *DVWURSRGD PDULQD VQDLOVf

PAGE 248

7DEOH $OOFRQWLQXHG 6SHFLHV &RPPRQ 1DPH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV b RI 7RWDO 01, b RI 7RWDO %RQH6KHOO :HLJKW JUDPVf b RI 7RWDO 0LQLPXP 0HDW :W (VWLPDWH ? RI 7RWDO 0D[LPXP 0HDW :W (VWLPDWH b RI 7RWDO 7RWDO 0DULQH *DVWURSRGD PDULQH VQDLOVf 3RO\J\UD VSS SRO\J\UDf Rf Rf Ff Rf 7RWDO 7HUUHVWULDO *DVWURSRGD WHUUHVWULDO VQDLOVf 1RHWOD SRQGHURVD SRQGHURXV DUNf $UFLGDH DUN VKHOOVf Df Df Df Df 2HXNHQDOD GHPODDD JUDQRDODDOPD $WODQWLF ULEEHG PXVVHOf 0\WOOOGDH PXVVHOVf Df Df Df Df 3OQQLGDH SHQ VKHOOVf FU\VWDO RI 3OQQLGDHf UHFU\VWDOL]HG SHQ VKHOOf Df Df Ff Hf Rf Rf $UJRSHFWHQ VS VFDOORSf 3HFWLQLGDH VHDOORSVf Df Df Df Df 3HFWLQLGDH&DUGLLGDH VHDOORSVFRFNOHVf Df Df Df Df 3OOFDWXOD JOEERDD NLWWHQnV SDZf Rf Df R! Hf 2DWUHD HTXHDWUOD FUHVWHG R\VWHUf Rf Ff Hf Rf &UDDDRDWUHD YOUJOQOFD HDVWHUQ R\VWHUf If 2VWUHLGDH R\VWHUVf Df Df Df Df /XFOQD QDDDXOD ZRYHQ OXFLQDf Rf Rf Rf Rf &DUGO&DPHUD IORUOGDQD EURDGULEEHG FDUGLWDf Rf Rf Ff Rf 7UDFK\FDUGOXP HJPRQWLDQXP SULFNO\ FRFNOHf 'OQRFDUGOXUQ UREXDWXP YDQE\QOQJO 9DQ +\QLQJnV FRFNOHf 6SODXOD DROOGODDOPD DOPLOOD VRXWKHUQ VXUI FODPf 3RO\PHDRGD PDUWLPD )ORULGD PDUVK FODPf 0HUFHQDULD FDPSHFKOHQDOD VRXWKHUQ TXDKRJf &EORQH FDQFHOODWD FURVVEDUUHG YHQXVf Hf Df Rf Rf $QRPDORFDUGOD DXEHUODQD SRLQWHG YHQXVf Rf Rf Rf Rf 0DFURFDOO ODWD QOPERDD IOXQUD\ YHQXVf %LYDOYLD R\VWHUV FODPV HWFf Df Df Df Df 7RWDO %LYDOYLD ELYDOYHVf 0ROOXVFD VQDLOV DQG ELYDOYHVf Ef E! Df Df Df Df 7RWDO 0ROOXVFD VQDLOV DQG ELYDOYHVf 'HVPRWLFKLD VHD XUFKLQVf Gf Gf Gf Gf 7RWDO ,QYHUWHEUDWD DQLPDOV ZLWKRXW EDFNERQHVf 727$/ 6$03/( YHUW HEUDWHDW LQYHUWHEUDWHVf

PAGE 249

7DEOH $ )DXQDO $QDO\VLV -RVVO\Q ,VODQG // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW $O /HYHO &RPPRQ 1DPH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV b RI 7RWDO 01, b RI 7RWDO %RQH6KHOO :HLJKW JUDPVf b RI 7RWDO 0LQLPXP 0HDW :W (VWLPDWH b RI 7RWDO 0D[LPXP 0HDW :W (VWLPDWH b RI 7RWDO 6OJPRGRQ KODSOGXD KLVSLG FRWWRQ UDWf 0DPPDOLD VPDOOf VPDOO PDPPDOVf Df Df Df Df 2GRFROOHXD YOUJOQODQXD ZKLWHWDLOHG GHHUf 7RWDO 0DPPDOLD PDPPDOVf 3DUXOLGDH ZDUEOHUVf $YHV PHGLXPf PHGLXPVL]HG ELUGVf 7RWDO $YHV ELUGVf 6HUSHQWHH VQDNHVf &KHO\GUD DHUSHQWOQD VQDSSLQJ WXUWOHf .OQRDWHUQRQ VSS PXG WXUWOHf 7HUUDSHQH &DUROLQD ER[ WXUWOHf 3DHXGHP\D VS FRRWHUf 7HVWXGQHD WXUWOHVf Df Df Df Df 7RWDO 5HSWLOLD UHSWLOHVf &DUFKDUKOQXD VSS UHTXLHP VKDUNf 'DD\DWOD VSS VWLQJUD\f 7RWDO &KRQGULFKWK\HV FDUWLODJLQRXV ILVKHVf %ORSD DDXUXD ODG\ILVKf %UHYRRUWOD VSS PHQKDGHQf &OXSHLGDH KHUULQJVf Df Df Df Df 7RWDO &OXSHLGDH KHUULQJVf %DJUR PDUOQXD JDIIWRSVDLO FDWILVKf $UORSDOD IHOOD KDUGKHDG FDWILVKf $ULLGDH VHD FDWIOVKHVf Df Df Df Df 7RWDO $ULLGDH VHD FDWIOVKHVf 2SDDQXD VSS WRDGILVKf 6WURQJ\OXUD VSS QHHGOHILVKf )XQGXOXD VSS NLOOLILVKf &DUDQ[ KOSSRD FUHYDOOH MDFNf &KORURDFRPEUXD FKU\DXUXD $WODQWLF EXPSHUf &DUDQJLGDH MDFNVf Df Df Df Df 2UWKRSUODWOD FKU\DRSWHUD SLJILVKf 3RPDGDV\LGDH6SDULGDH JUXQWVSRUJLHVf $UFKRDDUJXD SUREDWRFHSKDOXD VKHHSVKHDGf /DJRGRQ UKRPEROGHD SLQILVKf 6SDULGDH SRUJLHVf 7RWDO 6SDULGDH SRUJLHVf %DOUGOHOOD FEU\DRXUD VLOYHU SHUFKf &\QRDFORQ VSS VHDWURXWf

PAGE 250

/HLRHWRPXH [DQWKXUXD SRW, R R r! 6FODHQRSV RFHOODWXV UHG GUXPf 7RWDO 6FLDHQLGDH GUXPVf 0XJ DSS PXOOHWf 3PUPOOFKWK\% DSS IORXQGHUf 6SKRmUROGHH DSS SXIIHU ILVKf &KOORP\FWRUXD HFKRHSIO VWULSHG EXUUILVKf 2VWHLFKWK\HV ERQ\ ILDKHVf f! ff ff f} 7RWDO 2VWDLFKWE\DD ERQ\ ILVKHVf 9DUWDEUDWD SUHGRPLQDQWO\ ILVKf EDFNERQHG DQLPDOVf Ef Ef ff f! ff }f 7RWDO 9DUWDEUDWD EDFNERQHG DQLPDOVf %DODQXI DSS EDUQDFOHf Rf &! }f &f &DOOOQHFWHV DSS EOXH FUDEV *XOI FUDE HWFf 0HQOSSH PHUFHQDULD VWRQH FUDEf 'HFDSRGD HUDEDf f! ff mL ff 7RWDO &UXVWDFHD DTXDWLF DUWKURSRGVf 7UXQFDWHOOD SXOFKHOOD EHDXWLIXO WUXQFDWHOODf f R! Rf F! 6SOURJO\SKX% ,UUHJXODUE LUUHJXODU ZRUPVKHOOf Ff r! Rf r! 0RGXOXV PRGXOXV $WODQWLF PRGXOXVf m! rO Ff Hf &HUOWKOXP VWUDWXP )ORULGD FDULWKf Ff R! Rf R! 7UOSKRUD DS WULSKRUDf Ff m! Ff Rf &UHSOGXOD IRUQOFDWD $WODQWLF VOLSSHUVKHOOf 2 r! r! 2f &UVSOGXOD FRQYH[D FRQYH[ VOLSSHUVKHOOf Ff &! Rf rO &UHSOGXOD SODQD HDVWHUQ ZKLWH VOLSSHUVKHOOf Rf 2f } rf &UHSOGXOD VSS VOLSSHUVKHOOf 2f 2f m Ff 6WURPEXV DODWXD )ORULGD ILJKWLQJ FRQFKf 3ROLQLFHV GXSOOFDWX% VKDUN H\Hf If 8URVDOSOQ[ SHUUXJDWD *XOI R\VWHU GULOOf Rf 2 WRf 2f $DFKLV ODIUHVQD\O ZHOOULEEHG GRYHVKHOOf Rf Rf 2f Rf 0HORQJHQD FRURQD FRPPRQ FURZQ FRQFKf %XV\RRQ FRQWUDUOXP OLJKWQLQJ ZKHONf %XV\FRQ VSOUDWXP S\UXOROGHV D\nV SHDU ZKHONf 7RWDO 0HORQJHQLGDH FURZQ FRQFKDf 1DVVDUOXV YOEH[ FRPPRQ HDVWHUQ QDVVDf 2f Rf 2f F! 3DVFORODUOD XUQ KXQWHUOD EDQGHG WXOLSf If )DHFORODUOD WXOLSD WUXH WXOLSf )DPFORODUOD VSS WXOLS VKHOOf 3OHXURSORFD JLJDQWHD )ORULGD KRUVH FRQFKf 7RWDO )DVFLRODULLGDH WXOLS VKHOOVf 0DUJLQDOLD VSS PDUJLQDOLDf Ff r! }! Rf &RQXV -DVSOGHXV MDVSHU FRQHf Ff 2f R! WR %XOOV VWULDWD FRPPRQ $WODQWLF EXEEOHf R! 2f 2f 2f *DVWURSRGD PHGLXP PDULQDf PHGLXPVL]HG PDULQH VQDLOVf f! ff ff ff 7RWDO 0DULQD *DVWURSRGD PDULQH VQDLOVf (XJODQGOQD URDHD URV\ HXJODQGLQDf Ff 2f Ff Rf 3RO\J\UD VSS SRO\J\Uf Rf Rf Ff 2f 7RWDO 7HUUHVWULDO *DVWURSRGD WHUUHVWULDO VQDLOVf

PAGE 251

7DEOH $FRQWLQXHG 1XPEHU RI b b %RQH6KHOO b 0LQLPXP b 0D[LPXP b ,GHQWLILDEOH RI 01, RI :HLJKW RI 0HDW :W RI 0HDW :W RI 6SHFLHV &RPPRQ 1DPH )UDJPHQWV 7RWDO 7RWDO JUDPVf 7RWDO (VWLPDWH 7RWDO (VWLPDWH 7RWDO 1XFXODQD DFXWD SRLQWHG QXW FODPf Ff Df Rf Rf $QDGDUD WUDQVYHUVD WUDQVYHUVH DUNf 1RHWLD SRQGHURVD SRQGHURXV DUNf 2HXNHQHOD GRPOVVD JUDQRDLDDLPD $WODQWLF ULEEHG PXVVHOf 3LQQLGDH SHQ VKHOOVf $UJRSHFWHQ VSS VFDOORSf 3HFWLQLGDH&DUGLLGDH VFDOORSVFRFNOHVf Df ff Df Df 3OOFDWXOD JOEERDD NLWWHQnV SDZf Ff Df Hf Rf 2DWUHD HTXHDWUOD FUHVWHG R\VWHUf Ff Rf Ff Rf &UDDDRDWUHD YOUJOQOFD HDVWHUQ R\VWHUf If 2VWUHLGDH R\VWHUVf Df Df Df Df &DUGO&DPHUD IORUOGDQD EURDGULEEHG FDUGLWDf Df Df Rf Rf 7UDFK\FDUGOXP VSS FRFNOHf 'OQRFDUGOXP UREXDWXUQ YDQK\QOQJO 9DQ +\QLQJnV FRFNOHf 6SODXOD DROOGODDOPD DOPLOOD VRXWKHUQ VXUI FODPf 'RQD[ YDUODEOOOD FRTXLQDf Ff Rf Rf Df 3RO\PHDRGD PDUWLPD )ORULGD PDUVK FODPf +HUFHQDUOD FDPSHFKOHQDOD VRXWKHUQ TXDKRJf If &KORQH FDQFHOODWD FURVVEDUUHG YHQXVf Rf Rf Rf Df 0DFURFDOOODWD QLPERRD VXQUD\ YHQXVf 7RWDO %LYDOYLD ELYDOYHVf 0ROOXVFD VQDLOV DQG ELYDOYHVf Ef Ef Df Df Df Df 7RWDO 0ROOXVFD VQDLOV DQG ELYDOYHVf 'HVPRWLFKLD VHD XUFKLQVf Gf Gf Gf Gf 6RXWHOOLGD VDQG GROODUVf Rf Rf Rf Rf 0DGUHSRUDULD KDUG FRUDOVf Ff Rf Ff Rf 7RWDO ,QYHUWHEUDWD DQLPDOV ZLWKRXW EDFNERQHVf }6 & 6} 727$/ 6$03/( YHUWHEUDWHVLQYHUWHEUDWHVf

PAGE 252

7DEOH $ )DXQDO $QDO\VLV -RVVO\Q ,VODQG // /HH &RXQW\ )ORULGD 0D\ 6DPSOH 7HVW $O /HYHO 6SHFLHV &RPPRQ 1DPH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV b RI 7RWDO 01, b RI 7RWDO %RQH6KHOO :HLJKW JUDPVf b RI 7RWDO 0LQLPXP 0HDW :W (VWLPDWH b RI 7RWDO 0D[LPXP 0HDW :W (VWLPDWH b RI 7RWDO 2GRFROOHXV YOUJOQODQXD ZKLWHWDLOHG GHHUf 7RWDO 0DPPDOLD PDPPDOVf $YHD PHGLXPf PHGLXPVL]HG ELUGVf 7RWDO $YHV ELUGVf 3DHXGHP\D VS FRRWHUf 7RWDO 5HSWLOLD UHSWLOHVf 'DD\DWOD VSS VWLQJUD\f 7RWDO &KRQGULFKWK\HV FDUWLODJLQRXV ILVKHVf /HSODRDWHXD VS JDUf (ORSD %DXUXD ODG\ILVKf %UDYRRUWOD VSS PHQKDGHQf &OXSHLGDH KHUULQJVf 7RWDO &OXSHLGDH KHUULQJVf $UORSDOD IHOOD VHD FDWILVKf $ULLGDH VHD FDWILVKHVf Df Df Df Df 7RWDO $ULLGDH VHD FDWILVKHVf 2SDDQXD VSS WRDGILVKf 6WURQJ\OXUD VSS QHHGOHILVKf )XQGXOXD VSS NLOOLILVKf /XWMDQXD VSS VQDSSHUf e8&LF2W2-'8 %33r PRMDUUDVLOYHU MHQQ\f 2UWKRSUODWOD FKU\DRSWHUD SLJILVKf 3RPDGDV\LGDH6SDULGDH JUXQWVSRUJLHVf /DJRGRQ UKRPEROGHD SLQILVKf $UFKRDDUJXH SUREDWRFHSKDOXD VKHHSVKHDGf 6SDULGDH SRUJLHVf 7RWDO 6SDULGDH SRUJLHVf %DOUGOHOOD FEU\DRXUD VLOYHU SHUFKf &\QRDFORQ VSS VHDWURXWf /HORDWRPXD [DQWEXUXD DSRWf 6FODHQRSD RFHOODWXD UHG GUXPf 6FLDHQLGDH GUXPVf Df Df Df Df 7RWDO 6FLDHQLGDH GUXPVf 3DUDOOFKWK\D VSS IORXQGHUf 6SERHUROGHD VS SXIIHU ILVKf &KOORP\FWHUXD DFKRHSIO VWULSHG EXUUILVKf

PAGE 253

2VWHLFKWK\HV ERQ\ ILDKHDf ff ff ff ff 7RWDO 2VWHLFKWK\HV ERQ\ ILVKHVf 9DUWHEUDWD SUHGRPLQDQWO\ ILVKf EDFNERQHG DQLPDOVf E! Ef ff f! ff ff 7RWDO 9DUWHEUDWD EDFNERQHG DQLPDOVf f+ R R ? %VOVDXV VSS EDUQDFOHf Rf 2f R! &f &VOOORVFWVV DSS EOXH FUDEV *XOI FUDE HWFf 0VQOSSV PVUFVDVUOD DWRQH FUDEf 'HFDSRGD HUDEDf ff f! ff ff 7RWDO &UXVWDFHD DTXDWLF DUWKURSRGVf 6SOURJO\SKXV LUUHJXODULV LUUHJXODU ZRUPVKHOOf R! r! Ff Rf 0RGXOXV PRGXOXV $WODQWLF PRGXOXVf Rf Hf Rf Rf &VUOWEOXP VWUDWXP )ORULGD FHULWKf Rf 2f Ff Rf &UVSOGXOV IRUQORVWP $WODQWLF DOLSSHUDKHOOf &f Ff Rf Rf &UVSOGXOV FRQYH[D FRQYH[ DOLSSHUDKHOOf &f Rf Rf Rf &UVSOGXOV DFXOHDWH WKRUQ\ VOLSSHUVKHOOf 2f rf &f 2f &UVSOGXOV SLVRV HDVWHUQ ZKLWH DOLSSHUDKHOOf rf 2f 2f &! &UVSOGXOV DSS DOLSSHUDKHOOf &f R! 2f &f 3ROORLFDV GXSOOFVWXV VKDUN H\Hf 3K\OORQRWXD SRPXP DSSOH PXUH[f 8URVVOSOR[ SVUUXJVWV *XOI R\VWHU GULOOf Rf Rf Ff Ff $RVFKOV OVIUVVRV\O ZHOOULEEHG GRYHVKHOOf 2f Rf &! Rf 0VORRJVRV FRURRV FRPPRQ FURZQ FRQFKf %XV\FRR FRRWUVUOXP OLJKWQLQJ ZKHONf %XV\FRR VSOUVWXP S\UXOROGVV 6D\nV SHDU ZKHONf 7RWDO +HORQJHQLGDH FURZQ FRQFKDf 1VVVVUOXV YOEV[ FRPPRQ HDVWHUQ QDVVDf &_ 2f Rf Rf )VVFOROVUOV XP KXRWVUOV EDQGHG WXOLSf If )DVFLRODU OD WXOLSD WUXH WXOLSf )VVFOROVUOV DSS WXOLS VKHOOf 3OVXURSORFV JOJVRWVV )ORULGD KRUVH FRQFKf 7RWDO )DDFLRODULLGDH WXOLS VKHOOVf 0DUJLQDOLD DSS PDUJLQDOLDf rf Rf rL Rf &RRXV MVVSOGVXV MDVSHU FRQHf R! mf rL R! *DDWURSRGD PHGLXP PDULQHf PHGLXPVL]HG PDULQH VQDLOVf fL ff f! ‘! 7RWDO 0DULQH *DDWURSRGD PDULQH VQDLOVf 1RVWOV SRRGVURVV SRQGHURXV DUNf *VXNVQVOV GVDOVVV JUVQRVOVVOPV $WODQWLF ULEEHG PXVVHOf 0\WLOLGDH PXVVHOVf ff }f f! f} 3LQQLGDH SHQ VKHOOVf $UJRSVFWVR DSS VFDOORSf 3HFWLQLGDH&DUGLLGDH VFDOORSVFRFNOHVf ff ff }f L!f 3OOFVWXOV JOEERVV NLWWHQnV SDZf 2f Rf Ff Rf $RRPOV VLPSOH[ FRPPRQ MLQJOH VKHOOf 2f rf Ff F! 2VWUDV VTXVVWUOV FUHVWHG R\VWHUf &! rL &f &f &UVVVRVWUVV YOUJOROFV HDVWHUQ R\VWHUf If 2DWUHLGHD R\VWHUVf ff ff }f ff /XFLDV DVVVXOV ZRYHQ OXFLQDf Rf Ff 2f Rf &VUGOWVPVUV eORUOGVDV EURDGULEEHG FDUGLWDf Rf Ff &f Rf 7UVFK\FVUGOXP HJPRDWOVDXP SULFNO\ FRFNOHf 7UVFK\FVUGOXP DSS FRFNOHf

PAGE 254

7DEOH $FRQWLQXHG 1XPEHU RI b r %RQH6KHOO b 0LQLPXP b 0D[LPXP b ,GHQWLILDEOH RI 01, RI :HLJKW RI 0HDW :W RI 0HDW :W RI 6SHFLHV &RPPRQ 1DPH )UDJPHQWV 7RWDO 7RWDO JUDPVf 7RWDO (VWLPDWH 7RWDO (VWLPDWH 7RWDO 3RO\PHDRGD PDUWLPD )ORULGD PDUVK FODPf 0HUFHQDULD FDPSHFKOHQDOD VRXWKHUQ TXDKRJf &KL RQH FDQFHOODWD FURVVEDUUHG YHQXVf Rf Rf Df Rf $QRPDORFDUGOD DXEHUODQD SRLQWHG YHQXVf Ff Df Rf Rf 6SODXOD DROOGODDOPD DOPLOOD VRXWKHUQ VXUI FODPf 9HQHULGDH YHQXV FODPVf Df Rf Rf Rf %LYDOYLD ELYDOYHVf Df Df Df Df 7RWDO %LYDOYLD R\VWHUV FODPV HWFf 0ROOXVFD VQDLOV DQG ELYDOYHVf Ef Ef Df Df Df Df 7RWDO 0ROOXVFD VQDLOV DQG ELYDOYHVf 6FXWHOOLGD VDQG GROODUVf R R Rf Df Rf Rf 0DGUHSRUDULD KDUG FRUDOVf Rf Rf Rf Df 7RWDO ,QYHUWHEUDWD DQLPDOV ZLWKRXW EDFNERQHVf 727$/ 6$03/( YHUWHEUDWHVLQYHUWHEUDWHVf

PAGE 255

7DEOH $ /HYHO )DXQDO $QDO\VLV %XFN .H\ 6KHOO 0LGGHQ // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW % 1XPEHU RI b b %RQH6KHOO b 0LQLPXP b 0D[LPXP b ,GHQWLILDEOH RI 01, RI :HLJKW RI 0HDW :W RI 0HDW :W RI 6SHFLHV &RPPRQ 1DPH )UDJPHQWV 7RWDO 7RWDO JUDPVf 7RWDO (VWLPDWH 7RWDO (VWLPDWH 7RWDO 2GRFRLOHXD YOUJOQODQXD ZKLWHWDLOHG GHHUf 0DPPDOLD ODUJHf ODUJH PDPPDOVf Df Df Df Df 7RWDO 0DPPDOLD PDPPDOVf 7HVWXGQHD WXUWOHVf 7RWDO 5HSWLOLD UHSWLOHVf &DUFEDUEOQXD DFURQRWXD EODFNQRVH VKDUNf 5KO]RSUORQRGRQ WDUUDDQRYDH $WODQWLF VKDUSQRVH VKDUNf &DUFKDUKLQLGDH UHTXLHP VKDUNVf Df Df Df Df 6SK\UQD WOEXUR ERQQHWKHDG VKDUNf 6SK\UQLGDH KDPPHUKHDG VKDUNVf Df Df Df Df /DPQLIRUPHV VKDUNVf Df Df Df Df 7RWDO /DPQLIRUPHV VKDUNVf 5DMLIRUPHV VNDWHV UD\V HWFf &KRQGULFKWK\HV FDUWLODJLQRXV ILVKHVf Df Df Gf Gf Df Df 7RWDO &KRQGULFKWK\HV FDUWLODJLQRXV ILVKHVf %ORSD DDXUXD ODG\ILVKf %UHYRRUWOD VSS PHQKDGHQf &OXSHLGDH KHUULQJVf %DJUH PDUOQXD JDIIWRSVDLO FDWILVKf $UORSDOD IHOOD KDUGKHDG FDWILVKf $ULLGDH VHD FDWILVKHVf Df Df Df Df 7RWDO $ULLGDH VHD DDWILVKHVf 2SDDQXD VSS WRDG ILVKf 6WURQJ\OXUD VSS QHHGOHILVKf 2JFRFHSKDOLGDH EDW ILVKHVf &HQWURSRPXD VSS VQRRNf 0\F W H URSH UF D VSS JURXSHUJDJf &DUDQ[ KOSSRD FUHYDOOH MDFNf &EORURDFRPELUXD FKU\DXUXD $WODQWLF EXPSHUf &DUDQJLGDH MDFNVf Df Df Df Df 7RWDO &DUDQJLGDH MDFNVf /XWMDQXD JUODHXD JUD\ VQDSSHUf /XWMDQLGDH VQDSSHUVf 2UWKRSUODWOD FKU\DRSWHUD SLJILVKf 3RPDGDV\LGDH JUXQWVf 3RPDGDV\LGDH6SDULGDH JUXQWVSRUJLHVf Df Df Df Df $UFKRDDUJXD SUREDWRFHSKDOXD VKHHSVKHDGf /DJRGRQ UKRPEROGHD SLQILVKf 6SDULGDH SRUJLHVf Df Df Df Df 7RWDO 6SDULGDH SRUJLHVf

PAGE 256

6SDULGDH6FLDHQLGDH SRUJLHV GUXPVf f! f! }f }f %DLUGLROOD FKU\DRXUD VLOYHU SHUFKf &\QR%FORQ DUDQDUOXD VDQG VHDWURXWf &\QRDFORQ QDEXORDXD VSRWWHG VHDWURXWf &\QRDFORQ VSS VHDWURXWf /DORDWRPXH [DQWKXUXD }SRWf 0DQWOFLUUKXH VSS ZKLWLQJf 3RJRQODD FURPOH EODFN GUXPf 6FODHQRSV RFDOODWXD UHG GUXPf 6RLDDQLGDH GUXPVf ff ff f} ff 7RWDO 6FLDDQLGDD GUXPVf &KDDWRGOSWDUXH IDEDU VSDGHILVKf 0XJOO DSS PXOOHWf 6SK\UDHQLGDH EDUUDFXGDVf 3UORQRWXH VSS VHD URELQf 3DUDOOFKWK\D VSS IORXQGHUf %RWKOGDD OHIWKDQGHG IODWILVKHVf ff }f ff f! 2VWUDFLLGDV WUXQNILVKHVf 6SKRDUROGDH DSDQJODUO EDQGWDLO SXIIHUf &KOORD\FWHUXD DFKRDSIL VWULSHG EXUUILVKf 'LRGRQWLGDV EXUU DQG SRUFXSLQH ILVKHVf ff }L ff f! 2VWDLRKWK\HV ERQ\ ILVKHVf }f m0 }} ff 7RWDO 2VWHLFKWK\HV ERQ\ ILVKHVf 9HUWVEUDWD SUHGRPLQDQWO\ ILVKf EDFNERQHG DQLPDOVf N!f r} f! ff f} ff 7RWDO 9HUWHEUDWD DQLPDOV ZLWK EDFNERQHVf %DODQXD VSS EDUQDFOHf r! 2f &f Rf 0DQLSSD PDUFDQDUOD VWRQH FUDEf 7RWDO &UXVWDFHD DTXDWLF DUWKURSRGVf 7XUULWHOLGDH9HUPHWLGDH ZRUPVKHOOf Rf Rf 2f Ff 0RGXOXV PRGXOXV $WODQWLF PRGXOXVf }! m! 2f r! &DUOWKOXD PXVFDUXP IO\VSHFNHG FHULWKf r! 2f 2f 2f &DUOWKOXP OXWRHXP GZDUI FHULWKf Rf 2f &f 2f &UDSOGXOD DFXODDWD VSLQ\ VOLSSHUVKHOOf 2f 2f m‘! 2f &UDSOGXOD VSS VOLSSHUVKHOOf R! &f Rf r! 6WURDWEXV DODWXD )ORULGD ILJKWLQJ FRQFKf (UDWR PDXJDUODD PDXJHUnV HUDWRf Rf Ff &f Rf 3ROOQOFDD GXSOOFDWXH VKDUN H\Hf f 2f Ff Rf 3K\OORQRWXD SRP XUQ DSSOH PXUH[f R! Ff Ff }! 8URDDOSOQ[ SDUUXJDWD *XOI R\VWHU GULOOf Rf 2f rf 2f $QDFKOV DDPOSOOFDWD VHPLSOLFDWH GRYHVKHOOf 2f rf &f &f $QDFEOD VSS GRYHVKHOOf &f f 2f 2f 0DORQJDQD FRURQD FRPPRQ FURZQ FRQFKf %XD\FRQ FRQWUDUOXP OLJKWQLQJ ZKHONf If %XD\FRQ DSOUDWXP S\UXOROGDD 6D\nV SHDU ZKHONf 7RWDO 0HORQJHQLGDH FURZQ FRQFKDf 1DVVDULXV YLED[ FRPPRQ HDVWHUQ QDVVDf Rf Ff Ff Rf )DDFLRODULD XP KXQWDUOD EDQGHG WXOLSf )DVFORODUOD WXOLSD WUXH WXOLSf )DPFORODUOD VSS WXOLS VKHOOf

PAGE 257

7DEOH $FRQWLQXHG 1XPEHU RI b b %RQH6KH ? 0LQLPXP b 0D[LPXP b ,GHQWLILDEOH RI 01, RI :HLJKW RI 0HDW :W RI 0HDW :W RI 6SHFLHV &RPPRQ 1DPH )UDJPHQWV 7RWDO 7RWDO JUDPVf 7RWDO (VWLPDWH 7RWDO (VWLPDWH 7RWDO 3OHXURSORFD JLJDQWHD )ORULGD KRUVH FRQFKf 7RWDO 3DVFLRODULLGDH WXOLS VKHOOVf 2OLYD DD\DQD OHWWHUHG ROLYHf 2OOYHOOD SXODOOOD YHU\ VPDOO GZDUI ROLYHf Ff Rf Rf Rf 0DUJLQDOLD VSS PDUJLQDOLDf Rf 2f Rf Rf 7HUHEUD IORUOGDQD )ORULGD DXJHUf 2f &f Df Df 7XUERQOOOD VSS WXUERQLOOHf 2f 2f Ff Df 0HODPSXD FRIIHXR FRIIHH PHODPSXVf 2f 2f Rf Rf *DVWURSRGD PHGLXP PDULQHf PHGLXPVL]HG PDULQH VQDLOVf Df Df Df Df 7RWDO 0DULQH *DVWURSRGD PDULQH VQDLOVf 6XFXODQD VSS QXW FODPf Rf Ff Df Rf $QDGDUD WUDQVYHUVD WUDQVYHUVH DUNf 1RHWOD SRQGHURVD SRQGHURXV DUNf %UDFKOGRQWHD H[XDWXD VFRUFKHG PXVVHOf Rf Rf Ff Rf 2HXNHQDOD GHPODDD JUDQRDODDOPD $WODQWLF ULEEHG PXVVHOf 0\WLOLGDH PXVVHOVf Df Df Df Df 3LQQLGDH SHQ VKHOOVf 3HFWLQLGDH VFDOORSVf 3HFWLQLGDH&DUGLLGDH VHDOORSVFRFNOHVf Df Df Df Df 3OOFDWXOD JOEERDD NLWWHQnV SDZf F! Rf Rf Df FI $QRPOD VLPSOH[ FRPPRQ MLQJOH VKHOOf Rf Rf Rf Rf 2DWUHD HTXHDWUOH FUHVWHG R\VWHUf R! Rf Rf Rf &UDRDRDWUHH YOUJOQOFD HDVWHUQ R\VWHUf If 2VWUHLGDH R\VWHUVf Df Df &f Rf &RGDNOD VSS OXFLQDf R! R! Df Df /XFOQD VSS OXFLQDf Rf Rf Rf Rf 'OSORGRQWD VSS GLSORGRQf Rf 2f Rf Rf &DUGOWDPHUD IORUOGDQD EURDGULEEHG FDUGLWDf 7UDFE\FDUGOXP DJPRQWODQXP SULFNO\ FRFNOHf 'OQRFDUGOXUQ UREXV WXUQ YDQK\QOQJO 9DQ +\QLQJLnV FRFNOHf 6SODXOD HROOGODDOPD DOPLOOD VRXWKHUQ VXUI FODPf 'RQD[ YDUODEOOOD FRTXLQD VKHOOf 2f 2f Rf Df 0HUFHQDULD FDPSHFKOHQDOD VRXWKHUQ TXDKRJf &KL RQH FDQFHOODWD FURVVEDUUHG YHQXVf 0DFURFDOOODWD QLPERVD VXQUD\ YHQXVf 9HQHULGDH YHQXV FODPVf Df Rf Rf Df %LYDOYLD R\VWHUV FODPV HWFf Df Df Df Df 7RWDO %LYDOYLD ELYDOYHVf 0ROOXVFD VQDLOV DQG ELYDOYHVf Ef Ef Df Df Df Df 7RWDO 0ROOXVFD VQDLOV DQG ELYDOYHVf 'HVPRWLFKLD VHD XUFKLQVf Gf Gf Gf Gf 7RWDO ,QYHUWHEUDWD DQLPDOV ZLWKRXW EDFNERQHVf !L 60LeVVVV6VDVVVVVVVVVV%V r (f%66 rrrr 727$/ 6$03/( YHUWHEUDWHVLQYHUWHEUDWHVf

PAGE 258

7DEOH $ )DXQDO $QDO\VLV %XFN .H\ /HYHO 6KHOO 0LGGHQ // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW 6SDFDV &RPPRQ 1DPH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV b RI 7RWDO 01, RI 7RWDO %RQH6KHOO :HLJKW JUDPVf b RI 7RWDO 0LQLPXP 0HDW :W (VWLPDWH b RI 7RWDO 0D[LPXP 0HDW :W (VWLPDWH r RI 7RWDO $Q£WLGDV GXFNVf $YDV PHGLXPVL]HG ELUGVf Df Df Df Df 7RWDO $YHV ELUGVf 2RSKDUXD SRO\SKHPXR JRSKHU WRUWRLVHf &KDORQLGDD VHD WXUWOHVf 7RWDO 5DSWLOLD UHSWLOHVf 1RJDSUORQ EUHYOURRWUOD OHPRQ VKDUNf 5KO]RSUORQRGRQ WDUUDHQRYDH $WODQWLF VKDUSQRVH VKDUNf &DUFKDUKLQLGDH UHTXLHP VKDUNVf Df Df Df Df 6SE\UQD WOEXUR ERQQHWKHDG VKDUNf /DPQL IRUPDV VKDUNVf Df Df Df Df 7RWDO /DPQLIRUPDV VKDUNVf 'DD\DWOD VSS VWLQJUD\f 5DMD VSS VNDWHf 5DM IRUPDV VNDWHV UD\V HWFf Df Df Df Df &KRQGULFKWK\HV FDUWLODJLQRXV ILVKHVf Df Df Gf G! Df Df 7RWDO &KRQGULFKWK\HV FDUWLODJLQRXV ILVKHVf %UHYRRUWOD VSS PHQKDGHQf %DJUR PDULQXV JDIIWRSVDLO FDWILVKf $UO RSDO D IROLD KDUGKHDG FDWILVKf $ULLGDD VHD FDWILVKHVf 7RWDO $ULLGDD VHD FDWILVKHVf 2SDDQXD VSS WRDG ILVKf %DW UDDKRLGLGDH WRDG ILVKHVf Df Df Df Df 2JFRFHSKDO,GDD EDW ILVKHVf &HQWURSRPXD VSS VQRRNf .\RWR URSD UF D PO FURO RS OD }f &DUDQ[ KOSSRD FUHYDOOH MDFNf &DUDQ[ VSS MDFNf Df Df Df Df &KORURDFRPEUXP FEU\DXUXD $WODQWLF EXPSHUf &DUDQJLGDD -DFNf Df Df Df Df 7RWDO &DUDQJLGDD MDFNVf /XWMDQXD FDPSRFKDQXD UHG VQDSSHUf /XWMDQXD JUODRXD JUD\ VQDSSHUf /XWMDQXD VSS VQDSSHUf Df Df Df Df 2UWERSUODWOD FKU\DRSWRUD SLJILVKf 3RPDGDV\LGDD6SDULGDD JUXQWVSRUJLHVf Df Df Df Df $UFKRDDUJXD SURED WRFRSKDOXD VKHHSVKHDGf /DJRGRQ UKRPEROGR D SLQILVKf 6SDULGDD SRUJLHVf Df Df Df Df SRUJLHVf 7RWDO 6SDULGDD

PAGE 259

6SDULGDH6FLDHQLGDH SRUJLHVGUXPVf }f ff ff ff %DOUGOHOOD FKU\HRXUD VLOYHU SHUFKf &\QRVFORQ QHEXORVXV VSRWWHG VHDWURXWf &\QRRFORQ FI QHEXORHXD VSRWWHG VHDWURXWf &\Q2%FORQ VSS VHDWURXWf ff ff WU rf }f 3RJRQLD% FURPOH EODFN GUXPf 6FODHQRSH RFHOODWXV UDG GUXPf 6FLDVQLGDV GUXPVf f! }! f! fL 7RWDO 6FLDVQLGDV GUXPVf 0XJ VSS PXOOHWf 6SK\UDVQLGDV6FRPEULGDH EDUUDFXGDVPDFNVUVOVf 3PUDOOFKWK\H DOEOJXWWD JXOI IORXQGHUf 3DUDOOFKWK\D VSS IORXQGHUf ff ‘! }! ff %RWKLGDV OHIWKDQGHG IODWILVKHVf ff ff f! mL &KOORD\FWHUX% HFKRHSI VWULSHG EXUUILVKf 'LRGRQW,GDV EXUU DQG SRUFXSLQH ILVKHVf ff f! f} 2VWVLFKWK\VV ERQ\ ILVKHVf ff ff }! }L 7RWDO 2VWVLFKWK\VV ERQ\ ILVKHVf 9VUWVEUDWD SUHGRPLQDQWO\ ILVKf EDFNERQHG DQLPDOVf Ef Ef ff ff ff }f 7RWDO 9VUWVEUDWD DQLPDOV ZLWK EDFNERQHVf %POPQX% VSS EDUQDFOHf r! &f Ff Ff &DOOOQHFWHD VSS EOXH FUDEV *XOI FUDE HWFf 0DQOSSP PDUFHQDUOD VWRQH FUDEf 'VFDSRGD FUDEVf 7RWDO &UXVWDFVD DTXDWLF DUWKURSRGVf 9VUPVWLGDV ZRUQVKHOOf Rf Ff &f R! &HULWEOGHD VSS KRUQVKHOOf mf Ff &f &! &UHSOGXOD VSS VOLSSHUVKHOOf Rf 2f &f &f WURPEXV DODWXD )ORULGD ILJKWLQJ FRQFKf 3ROLQLFHQ GXSOOFDWXD VKDUN H\Hf 3K\OORQRW8% SRPXUQ DSSOH PXUH[f 8UR%DOSOQ[ SHUUXJDWD *XOI R\VWHU GULOOf Ff 2f Ff Rf 0HORQJHQD FRURQD FRPPRQ FURZQ FRQFKf %XD\FRQ RRQWUDUOXP OLJKWQLQJ ZKHONf If %XD\FRQ DSLUDWXP S\UXOROGHD 6D\nV SHDU ZKHONf 7RWDO 0VORQJVQLGDV FURZQ FRQFKVf )DDFORODUOD WXOLSD WUXH WXOLSf 7DVRLRODULD VSS WXOLS VKHOOf 7RWDO )DVFLRODULLGDV WXOLS VKHOOVf 2GRDWRPOD ,PSUHVVr LPSUHVVHG RGRVWRPHf Rf Rf Ff rL *DVWURSRGD PVGLXP PDULQDf ‘WHGLXPVL]HG PDULQH VQDLOVf f! f! ff ff 7RWDO +DULQD *DVWURSRGD PDULQH VQDLOVf 3RO\J\UD VSS SRL\T\Uf Ff 2f Ff Rf WHUUHVWULDO VQDLOVf 7RWDO 7VUUVVWULDO *DVWURSRGD

PAGE 260

7DEOH $FRQWLQXHG 1XPEHU RI r ; %RQH6KH b 0LQLPXP ; 0D[LPXP ; ,GHQWLILDEOH RI 01, RI :HLJKW RI 0HDW :W RI 0HDW :W RI 6SHFLHV &RPPRQ 1DPH )UDJPHQWV 7RWDO 7RWDO JUDPDf 7RWDO (VWLPDWH 7RWDO (VWLPDWH 7RWDO $QDGD UD WUDQVYHUVD 1RHWOD SRQGHURVD SRQGHURXV DUNf %UDFEOGRQWHD H]XVWXV VFRUFKHG PXVVHOf Rf Ff Rf 2f $WUOQD VSS SHQ VKHOOf 3HDWLQLGDH&DUG,GDV VFDOORSVFRFNOHVf Df Df Df Df $QRPOD VLPSOH[ FRPPRQ MLQJOH VKHOOf Rf Rf Rf Rf 2VWUHD HTXHVWUOV FUHVWHG R\VWHUf Rf 2f Ff Rf &UDVVRVWUHD YOUJOQOFD HDVWHUQ R\VWHUf If 2VWUHLGDH R\VWHUVf ff Df Rf Rf 'OQRFDUGOXP UREXVWXP YDQK\QOQJO 9DQ +\QLQJLnV FRFNOHf 6SLVXOD VROOGOVVOUQD DOPLOOD VRXWKHUQ VXUI FODPf &EORQH FDQFHOODWD FURVVHGEDUUHG YHQXVf Rf Rf F! Rf 0HUFHQDULD FDPSHFEOHQVOV VRXWKHUQ TXDKRJf 0DFURFDOO ODWD QLPERVD VXQUD\ YHQXVf %LYDOYLD R\VWHUV FODPV HWFf Df Df Df Df 7RWDO %LYDOYLD ELYDOYHVf 0ROOXVFD VQDLOV DQG ELYDOYHVf Ef Ef Df Df Df Df 7RWDO 0ROOXVFD VQDLOV DQG ELYDOYHVf 'HVPRWLFKLD VHD XUFKLQVf Gf Gf Gf Gf 6FXWHOOLGD VDQG GROODUVf Rf Rf Ff Ff 7RWDO ,QYHUWHEUDWD DQLPDOV ZLWKRXW EDFNERQHVf !m! 727$/ 6$03/( YHUWHEUDWHVrLQYHUWHEUDWHVf

PAGE 261

7DEOH $ )DXQDO $QDO\VLV %XFN .H\ 6KHOO 0LGGHQ // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW $ /HYHO 6SHFLHV &RPPRQ 1DPH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV 9 RI 7RWDO 01, b RI 7RWDO %RQH6KHOO :HLJKW JUDPVf b RI 7RWDO 0LQLPXP 0HDW :W (VWLPDWH b RI 7RWDO 0D[LPXP 0HDW :W (VWLPDWH RI 7RWDO 6OJPRGRQ KODSOGXD KLVSLG FRWWRQ UDWf 7RWDO 0DPPDOV PDPPDOVf &DDPHURGOXD DOEXD FRPPRQ HJUHWf 7RWDO $YHV ELUGVf 6SK\UQD WOEXUR ERQQHWKHDG VKDUNf 6SK\UQLGDH KDPPHUKHDG VKDUNVf Df Df 75 Df Df /DPQLIRUPHV VKDUNVf 5DMLIRUPDV VNDWHV UD\V HWFf 7RWDO &KRQGUOFKWK\DV FDUWLODJLQRXV ILVKHVf &OXSDLGDH KHUULQJVf $UORSDOV IHOOD KDUGKHDG FDWILVKf $ULLGDH VHD FDWILVKHVf ff Df Df Df 7RWDO $ULLGDH VHD FDWILVKHVf 6WURQJ\OXUH VSS QHHGOHILVKf &DUDQ[ KLSSR D FUHYDOOH MDFNf &DUDQJLGDH MDFNVf Df Df Df Df 2UWKRSUODWD FEU\DRSWHUD SLJILVKf $UFKRRDUJXD SUREDWRFHSKDOXD VKHHSVKHDGf /DJRGRQ UERPEROGD V SLQILVKf 6SDULGDH6FLDHQLGDH SRUJLHVGUXPVf Df Df Df Df %DOUGOHOOD FEU\DRXUD VLOYHU SHUFKf /HORDWRPXD [DQWKXUXD VSRWf 3RJRQODD FURPOR EODFN GUXPf 6FODHQRSD RFHOODWXD UHG GUXPf 0XJ VSS PXOOHWf 6SK\UDHQLGDH6FRPEULGDH EDUUDFXGDVPDFNHUHOVf RI 3DUDOODKWE\D VSS IORXQGHUf 2VWUDDLLGDH ER]ILVKHVf 6SERHUROGHD VSS SXIIHUf &KOORP\FWHUXD DDERHSIO VWULSHG EXUUILVKf 'LRGRQWLGDD EXUU DQG SRUFXSLQH ILVKHVf Df Df Df Df 2VWHLFKWK\HV ERQ\ ILVKHVf Df Df Df Df 7RWDO 2VWHLFKWK\HV ERQ\ ILVKHVf 9HUWHEUDWD SUHGRPLQDQWO\ ILVKf EDFNERQHG DQLPDOVf Ef Ef Df Df Df Df 7RWDO 9HUWHEUDWD DQLPDOV ZLWK EDFNERQHVf r D %DO DQXD VSS EDUQDFOHf Rf Rf Rf Ff 0HQOSSH PHUFHQDULD VWRQH FUDEf 'HFDSRGD FUDEVf Df Df Df Df 7RWDO &UXVWDFHD DTXDWLF DUWKURSRGVf

PAGE 262

7XUULWHOLGDH9HPHWLGDk 'LRGRULQDH 0RGXOXV PRGXOXV &VUOWKOXP PXVFVUXP &VULWKLXP OXWRVXP FI &UVSLGXOV PDFXORVD &UVSOGXOD DFXOVDWD &UVSLGXOV VSS 6WURPEXV DODWXV 3ROQLFDV GXSOOFDWXV 3K\OORQRWXV SRPXP 8URVDOSLQ[ SDUUXJDWD 8URVDOSOQ[0DORQJDQD (XSODXUD DSS 0DORQJDQD FRURQD %XV\FRQ FRQWUDUOXP %XV\FRQ VSOUDWXP S\UXOROGDV 7RWDO +HORQJHQLGDH 1DVVDULXV YLED[ )DVFLRODU LV OOOOXP KXQWDUD )DVFLRODULD DSS FI 3ODXURSORFD JLJDQWDV 7RWDO )DDFLRODULLGDD 2OLYD VD\DQD 0DUJLQDOLD EDUWOD\DQXP 7XUERQLOOD DSS *DDWURSRGD PHGLXP PDULQDf 7RWDO +DULQD *DDWURSRGD $QDGDUD WUDQVYDUVD 1RDWLD SRQGDURVD %UDFKLGRQWDD D[XVWXV )LQQLGDD 3DFWLQLGDD )DRWLQLGDD&DUGLLGDD 3OLFDWXOD JLEERVD $QRPLD VLPSOH[ 2VWUDD DTXDDWULV &UDVVRVWUDD 9LUJLQLRV 2DWUDLGDD /XF LQV QDVVXOD 'LSORGRQWD DSS &DUGWDPDUD IORULGD QV 7UDFE\FDUGLXP DSS 'LQRFDUGLXUQ UREXVWXP YDQK\QLQJL 6SLVXOD VROLGLVVLPD DLPLOLV 'RQD[ YDULDEOOOV 0DUFHQDUOD FDPSDFKODQVOV &EORQD FDQFDOODWD 0DFURFD LVWD QLPERVD %LYDOYLD %LYDOYLDSUHGRPLQDQWO\ 6SLDXODf 7RWDO %LYDOYLD ZRPDKHOODf NH\KROH OLPSHWVf $WODQWLF PRGXOXVf IO\VSHFNHG FHULWKf GZDUI FHULWKf VSRWWHG VOLSSHUDKHOOf WKRUQ\ VOLSSHUVKHOOf VOLSSHUVKDOOf )ORULGD ILJKWLQJ FRQFKf VKDUN D\Df DSSOH PXUH[f *XOI R\VWHU GULOOf R\VWHU GULOOFURZQ FRQFKf GULOOf FRPPRQ FURZQ FRQFKf OLJKWQLQJ ZKHONf D\nV SHDU ZKHONf FURZQ FRQFKDf FRPPRQ HDVWHUQ QDVVDf EDQGHG WXOLSf WXOLS VKHOOf )ORULGD KRUVH FRQFKf WXOLS VKHOOVf OHWWHUHG ROLYHf +DUWOH\nV PDUJLQDOLDf WXUERQLOODf PHGLXPVL]HG PDULQH VQDLOVf PDULQH VQDLOVf WUDQVYHUVH DUNf SRQGHURXV DUNf VFRUFKHG PXVVHOf SHQ VKHOOVf VFDOORSVf VFDOORSVFRFNOHVf NLWWHQnV SDZf FRPPRQ MLQJOH VKHOOf FUHVWHG R\VWHUf HDVWHUQ R\VWHUf R\VWHUVf ZRYHQ OXFLQDf GLSORGRQf EURDGULEEHG FDUGLWDf FRFNOHf 9DQ +\QLQJnV FRFNOHf VRXWKHUQ VXUI FODPf FRTXLQD VKHOOf VRXWKHUQ TXDKRJf FURVVEDUUHG YHQXVf VXQUD\ YHQXVf R\VWHUV FODPV HWFf ELYDOYHVf Ff Rf 2f 2 Ff Ff Ff Rf Ff 2f Ff F! Ff &f &f Ff Ff 2f &f 2 Rf rL &f Rf R! R! Ff Ff Ff 2f Rf Rf Rf Ff Rf Rf If Rf Ff Ff Rf Ff Rf Rf 2 ff }L ff ff R! R! rL Rf ff ff mf f! rf 2f Rf f r! Rf r! r! If f! $f 2f R! 2f R! 2f 2f &f rf R_ 2f 2f Rf Hf 2f Rf Rf r! rf 2f Rf Rf Mf Rf R! r!f Ef ff $f ff ff ELYDOYHVf

PAGE 263

7DEOH $FRQWLQXHG 1XPEHU RI b b %RQH6KHOO b 0LQLPXP 0D[LPXP b ,GHQWLILDEOH RI 01, RI :HLJKW RI 0HDW :W RI 0HDW :W RI 6SHFLHV &RPPRQ 1DPH )UDJPHQWV 7RWDO 7RWDO JUDPVf 7RWDO (VWLPDWH 7RWDO (VWLPDWH 7RWDO 0ROOXVFD VQDLOV DQG ELYDOYHVf Ef Ef Df Df Df Df 7RWDO 0ROOXVFD VQDLOV DQG ELYDOYHVf 'HVPRWLFKLD VHD XUFKLQVf Gf Gf Gf Gf 6FXWHOOLGD VDQG GROODUVf Rf Rf Df Rf 7RWDO ,QYHUWHEUDWD DQLPDOV ZLWKRXW EDFNERQHVf 727$/ 6$03/( YHUWHEUDWHVrLQYHUWHEUDWHVf

PAGE 264

7DEOH $ )DXQDO $QDO\VLV %XFN .H\ 6KHOO 0LGGHQ // /HH &RXQW\ )ORULGD 0DUFK 6DPSOH 7HVW $ /HYHO 6SHFLHV &RPPRQ 1DPH 1XPEHU RI ,GHQWLILDEOH )UDJPHQWV RI 7RWDO 01, r RI 7RWDO %RQH6KHOO :HLJKW JUDPVf RI 7RWDO 0LQLPXP 0HDW :W (VWLPDWH b RI 7RWDO 0D[LPXP 0HDW :W (VWLPDWH b RI 7RWDO 0DPPDOLD PHGLXPVL ]HGf PHGLXPVL]HG PDPPDOf 7RWDO 0DPPDOLD PDPPDOVf 6SK\UQD WOEXUR ERQQHWKHDG VKDUNf /DPQLIRUPHV VKDUNVf 5KLQREDWLGDH JXLWDUILVKHVf 5DMLIRUPHV VNDWHV UD\V HWFf 7RWDO &KRQGULFKWK\HD FDUWLODJLQRXV ILVKHVf %UHYRRUWOD VSS PHQKDGHQf &OXSHLGDH KHUULQJVf %DJUH PDUOQXD JDIIWRSVDLO FDWILVKf $UORSDOD IHOOD KDUGKHDG FDWILVKf $ULLGDH VHD FDWILVKHVf 2SDDQXD VSS WRDGILVKf 2JFRFHSKDOLGDH EDW ILVKHVf )XQGXOXD VSS NLOOLILDKf &HQWURSRPXD VSS VQRRNf Gf Gf &DUDQJLGDH MDFNVf 2UWERSUODWOD FKU\DRSWDUD SLJILVKf $UFKRDDUJXD SUREDWRFHSKDOXD VKHHSVKHDGf /DJRGRQ UKRPEROGHD SLQILVKf %DOUGOHOOD FEU\DRXUD VLOYHU SHUFKf &\QRDFORQ UHJDOLD ZHDNILVKf &\QRDFORQ VSS VHDWURXWf 3RJRQODD FURPOD EODFN GUXPf 0XJ VSS PXOOHWf 6SK\UDHQLGDH6FRPEULGDH PDFNHUHOVEDUUDFXGDVf 3DUDOOFKWK\D VSS IORXQGHUf 2VWUDRLLGDH WUXQNILVKHVf &EOORP\FWHUXD DFKRHSIO VWULSHG EXUUILVKf 'LRGRQWLGDH EXUU DQG SRUFXSLQH ILVKHVf Df Df Df Df 2VWHLFKWK\HV ERQ\ ILVKHVf Df Df Df Df 7RWDO 2VWHLDKWK\HV ERQ\ ILVKHVf 9HUWHEUDWD SUHGRPLQDQWO\ ILVKf EDFNERQHG DQLPDOVf Ef Ef Df Df Df Df 7RWDO 9HUWHEUDWD EDFNERQHG DQLPDOVf r r %DO DQXD VSS EDUQDFOHf Rf Rf Rf Rf &DOOOQHFWHD VSS EOXH FUDEV 4XOI FUDE HWFf 0HQOSSH PHUFHQDULD VWRQH FUDEf 'HRDSRGD FUDEVf Df Df Df Df 7RWDO &UXVWDFHD DTXDWLF DUWKURSRGVf &UHSOGXOD DFXOHDWD WKRUQ\ VOLSSHUVKHOOf Ff Rf Rf 2f &UHSOGXOD SODQD HDVWHUQ ZKLWH VOLSSHUVKHOOf Ff Rf Rf 2f &UHSOGXOD VSS VOLSSHUVKHOOf Gf Gf 6WURPEXD DODWXD )ORULGD ILJKWLQJ FRQFKf

PAGE 265

3ROLQLFHV GXSOOFDWXH VKDUN D\Hf 8URVDOSOQ[ SHUUXJDWD *XOI R\VWHU GULOOf Ff Ff Ff &f 0HORQJHQD FRURQD FRPPRQ FURZQ FRQFKf %XP\FRQ FRQWUDUOXP OLJKWQLQJ ZKHONf If %XP\FRQ DSLUDWXP S\UXOROGHV 6D\nV SHDU ZKHONf 7RWDO 0HORQJHQLGDH FURZQ FRQFKVf 1DVVDUOXD YOEH[ FRPPRQ HDVWHUQ QDVVDf Ff 2f R! &f UDDRORODUOD OOOOXP KXQWHU OD EDQGHG WXOLSf )DDRORODUOD WXOLSD WUXH WXOLSf UDDRORODUOD DSS WXOLS VKDOOf 3OHXURSORFD JLJDQWHD )ORULGD KRUVH FRQFKf 7RWDO UDDFLRODULLGDD WXOLS VKHOOVf 2OLYD DD\DQD OHWWHUHG ROLYHf *DVWURSRGD VPDOO PDULQDf VPDOO PDULQD VQDLOVf $f ff $f ff *DVWURSRGD PDGLXP PDULQDf PHGLXPVL]HG PDULQD VQDLOVf ff ff ff ff *DVWURSRGD ODUJD PDULQDf ZKHONVKRUVH FRQFKVf ff ff ff $f 7RWDO 0DULQD *DVWURSRGD PDULQD VQDLOVf 3RO\J\UD VSS SRO\J\Uf r! Ff Rf Rf 7RWDO 7DUUDVWULDO *DVWURSRGD WHUUHVWULDO VQDLOVf $QDGDUD WUDQVYHUVD WUDQVYHUVH DUNf $QDGDUD VSS DUNf Rf Ff R! Ff 1RHWOD SRQGHURVD SRQGHURXV DUNf $ UH LG DD& DUGL LG DD DUNVFRFNOHVf Gf Gf %UDRKOGRQWHD H[XVWXV VFRUFKHG PXVVHOf R! Ff Rf R! *HXNHQVOD GHDOHVD JUDQRDOVVODD $WODQWLF ULEEHG PXVVHOf 3LQQLGDH SDQ VKDOOf $UJRSHFWHQ VSS VFDOORSf 3HFWLQLGDH VFDOORSVf ff fL f! $f $QRPOD VLPSOH[ FRPPRQ MLQJOH VKDOOf LrL 2f 2f Rf 2VWUHD HTXHVWUOD FUHVWHG R\VWHUf Rf 2f 2f Ff &UDVVRVWUHD YOUJOQOFD HDVWHUQ R\VWHUf If 2VWUDLGDV R\VWHUVf ff mL f! ff &DUGOWDPHUD IORUOGDQD EURDGULEEHG FDUGLWDf Rf 2f 2f &O 6SOVXOD VROOGOVVOPD DOPLOOD VRXWKHUQ VXUI FODPf 7HOOOQD VSS WHOOLQf Ff Rf Rf 2f 0HUFHQDULD FDPSHFKOHQVOV VRXWKV UQ TXDKRJf &KORQH FDQFHOODWD FURVVEDUUHG YHQXVf 2f 2f Ff 9DQDULGDD YHQXV FODPVf rf 2f 2f R! %LYDOYLD R\VWHUV FODPV HWFf f! }! ff ff 7RWDO %LYDOYLD ELYDOYHVf 0ROOXVRD VQDLOV DQG ELYDOYHVf E_ Ef ff ff f! $f 7RWDO 0ROOXVFD VQDLOV DQG ELYDOYHVf 'VVPRWLFKLD VHD XUFKLQVf G! Gf Gf Gf (FKLQRGDUPDWD HFKLQRGHUPVf ff ff Gf Gf rf m! 0DGUDSRUDULD KDUG FRUDOVf Ff 2f Rf &f 7RWDO ,QYDUWDEUDWD DQLPDOV ZLWKRXW EDFNERQHVf 727$/ $03/( YHUWHEUDWHVALQYHUWHEUDWHVf

PAGE 266

$33(1',; % $48$7,& 9(57(%5$7(6 $1' ,19(57(%5$7(6 %< $5&+$(2/2*,&$/ 6,7( $1' 02'(51 +$%,7$7

PAGE 267

7DEOH %O $TXDWLF 9HUWHEUDWHV E\ $UFKDHRORJLFDO 7D[RQ 6LUHQ ODFHUWLQD 5DQD VSS &KHO\GUD VHUSHQWLQD .LQRVWHUQRQ VSS *RELRPRUXV GRUPDWRU &DVPHURGLXV DOEXV /HSLVRVWHXV VSS )XQGXOXV VSS 3VHXGHP\V VSS %UHYRRUWLD VSS &DUFKDUKLQXV OHXFDV %DJUH PDULQXV 'DV\DWLV VSS 'DV\DOLGDH )ORSV VDXUXV $ULRSVLV IHOLV 2SVDQXV VSS 6WURQJ\OXUD VSS &DUDQ[ KLSSRV /XWMDQXV JUVHDV (XFLQRVWRPXV VSS 2UOKRSULVWLV FKU\VRSWHUD 'LSORGXV KROEURRNL /DJRGRQ UKRPERLGHV $UFKRVDUJXV SUREDORFHSKDOXV %DLUGLFOOD FKU\VRXUD &\QRVFLRQ DUHQDULXV &\QRVFLRQ QHEXORVDV &\QRVFLRQ UHJDOLV /HLRVWRPXV [DQWKXUXV &KLORP\FWHUXV VFKRHSIL 0LFURSRJRQLDV XQGXODWXV 3RJRQLDV FURPLV 6FLHQRSV RFHOODOXV 0XJLO VSS 6SKRHURLGHV VSS 3DUDOLFKWK\V VSS 6SKRHURLGHV VSHQJOHUL 0HQWLFLUUKXV VSS 6SK\UDHQLGDH6FRPEULGDH 2VWUDFLLGDH 3DUDOLFKWK\V DOELJXOWD 0HUJXV VHUUDORU &HQWURSRPLV VS &DUFKDUKLQXV SOXPEHXV &RPPRQ 1DPH JUHDWHU VLUHQf IURJf VQDSSLQJ WXUWOHf PXG WXUWOHf ELJPRXWK VOHHSHUf J7HDW HJUHWf JDUf NLOOLILVKf FRRWHUf PHQKDGHQf EXOO VKDUNf JDIIWRSVDLO FDWILVKf VWLQJUD\f VWLQJUD\Vf ODG\ILVKf KDUGKHDG FDWILVKf WRDGILVKf QHHGOHILVKf FUHYDOOH MDFNf JUD\ VQDSSHUf PRMDUUDVLOYHU MHQQ\f SLJILVKf VSRWWDLO SLQILVKf SLQILVKf VKHHSVKHDGf VLOYHU SHUFKf VDQG VHD WURXWf VSRWWHG VHD WURXWf ZHDNILVKf VSRWf VWULSHG EXUUILVKf $WODQWLF FURDNHUf EODFN GUXPf UHG GUXPf PXOOHWf SXIIHUf IORXQGHUf EDQGWDLO SXIIHUf ZKLWLQJf EDUUDFXGDVPDFNHUHOVf ER[ILVKHVf JXOI IORXQGHUf UHGEUHDVWHG PHUJDQVHUf VQRRNf VDQGEDU VKDUNf % 0RXQG &DVK .H\ &+ &+ 6LWH DQG 0RGHUQ +DELWDW 8VHSSD -RVVO\Q %XFN .H\ 0DQJURYH 0DQJURYH 0DQJURYH 0DQJURYH // // // %DVLQ 6WUHDP (VWXDU\ 2FHDQLF rU 8 £ £ £

PAGE 268

6SK\UDHQLGDH EDUUDFXGDVf $\WK\D VSS ED\ GXFNf 3ULRQRWXV VSS VHDURELQf $QDWLGDH GXFNVf f 1HJDSULRQ EUHYLURVWULV OHPRQ VKDUNf &DUFKDUKLQXV REVFXUXV GXVN\ VKDUNf &KORURVFRPEUXV FKU\VXUXV $WODQWLF EXPSHUf f &DUFKDUKLQXV OLPEDWXV EODFNWLS VKDUNf f *DOHRFHUGR FXYLHUL WLJHU VKDUNf 5KL]RSULRQGRQ WHUUDHQRYDH $WODQWLF VKDUSQRVH VKDUNf f 5KLQREDWXV OHQWLJLQRVXV $WODQWLF JXLWDUILVKf $HWREDWXV QDULQDUL VSRWWHG HDJOH UD\f 6SK\UQD WLEXUR ERQQHWKHDG VKDUNf f 2JFRFHSKDOLGDH EDWILVKHVf f +DHPXORQ VSS JUXQWf 5KLQREDWLGDH JXLWDUILVKHVf f 7\ORVXUXV FURFRGLOXV KRXQG ILVKf 0\FWHURSHUFD PLFUROHSLV JDJf f 6SDULVRPD VSS SDUURWILVKf 5DMLIRUPHV VNDWHV UD\V HWFf /XWMDQXV FDPSHFKDQXV UHG VQDSSHUf f 5DMD VSS VNDWHVf &KDHWRGLSWHUXV IDEHU $WODQWLF VSDGHILVKf &KHORQLGDH VHD WXUWOHVf &DUFKDUKLQXV DFURQRWXV EODFNQRVH VKDUNf 3ULPDU\ VRXUFHV 2GXPHWDO :DQJ DQG 5DQH\ +RHVH DQG 0RRUH

PAGE 269

7DEOH % $TXDWLF ,QYHUWHEUDWHV E\ $UFKDHRORJLFDO 6LWH DQG 0RGHUQ +DELWDW 7D[RQ &RPPRQ 1DPH % 0RXQG .H\ &+ &DVK &+ 3RO\PHVRGD PDUWLPD )ORULGD PDUVK FODPf f f *HXNHQVLD GHPLVVD JUDQRVLVVLPD $WODQWLF ULEEHG PXVVHOf f f %DO DQXV VSS EDUQDFOHf f f 3RO\PHVRGD FDUROLQLDQD &DUROLQD PDUVK FODPf 0HODPSXV FRIIHXV FRIIHH PHODPSXVf f &HULWKLGHD VFDODULIRUPLV ODGGHU KRUQ VKHOOf f (QKLODUD PLQLPD IDOVH FHULWKf f 6SLURJO\SKXV LUUHJXODULV LUUHJXODU ZRUP VKHOOf 'HFDSRGD FUDEVf f 8URVDOSLQ[ WDPSDHQVLV 7DPSD GULOOf f 'LRGRUD FD\HQHQVLV &D\HQQH NH\KROH OLPSHWf f 'LRGRULQDH NH\KROH OLPSHWVf &DOOLQHFWHV VSS EOXH FUDEV *XOI FUDE HWFf f f 1DVVDQXV VSS QDVVDf 1DVVDULXV YLEH[ FRPPRQ HDVWHUQ QDVVDf f f 8URVDOSLQ[ SHUUXJDWD *XOI R\VWHU GULOOf f f %UDFKLGRQWHV VSS PXVVHOf f f &UDVVRVWUHD YLUJLQLFD HDVWHUQ R\VWHUf f f %UDFKLGRQWHV H[XVWXV VFRUFKHG PXVVHOf f 2VWUHD HTXHVWULV FUHVWHG R\VWHUf f f 2GRVWRPLD LPSUHVVD LPSUHVVHG RGRVWRPHf f 0HORQJHQD FRURQD FRPPRQ FURZQ FRQFKf f f &DQWKDUXV PXOWDQJXOXV IDOVH GULOOf &DUGLWDPHUD IORULGDQD EURDGULEEHG FDUGLWDf f f &UHSLGXOD SODQD HDVWHUQ ZKLWH VOLSSHU VKHOOf f f 7XUULWHOLGDH9 HUPHWLGDH ZRUPVKHOOVf f f %XV\FRQ FRQWUDULXP OLJKWQLQJ ZKHONf f f $QDFKLV VHPLSOLFDWD VHPSOLFDWH GRYHVKHOOf f %XOOD VWULDWD FRPPRQ $WODQWLF EXEEOHf 8URVDOSLQ[ FLQHUHD $WODQWLF R\VWHU GULOOf &UHSLGXOD DFXOHDWD WKRUQ\ VOLSSHUVKHOOf f )DVFLRODULD KXQWHULD EDQGHG WXOLSf f f 3K\OORQRWXV SRPXP DSSOH PXUH[f f 9HUPLFXODULD VSS ZRUPVKHOOf )DVFLRODU LD WXOLSD WUXH WXOLSf f )DVFLRODU LD VSS WXOLS VKHOOf f f $QRPLD VLPSOH[ FRPPRQ MLQJOH VKHOOf f 2OLYHOOD SXVLOOD YHU\VPDOO GZDUI ROLYHf (XSOHXUD VXOFLGHQWDWD VKDUSULEEHG GULOOf (XSOHXUD VSS GULOOf 6WURPEXV DODWXV )ORULGD ILJKWLQJ FRQFKf f %XV\FRQ VSLUDWXP S\ UXOR LGHV 6D\nV SHDU ZKHONf f f 3ROLQLFHV GXSOLFDWXV VKDUN H\Hf f f 0DUJLQHOOD DSLFLQD FRPPRQ $WODQWLF PDUJLQHOODf 8VHSSD // -RVVO\Q // %XFN .H\ // 7LGDO 6WUHDP 0DQJURYH 4 U %HG 6HDJUDVV /LWWRU*XOI (GJH 0HDGRZ

PAGE 270

0RGXOXV PRGXOXV &HULWKLXP PXVFDUXP &UHSLGXOD PDXORVD &RQXV MDVSLGHXV &RQXV VSS $QDGDUD WUDQVYHUVD $QDGDUD IORULGDQD 1RHWLD SRQGHURVD $WULQD VSS 3LQQLGDH $UJRSHFWHQ VSS 7UDFK\FDUGLXP HJPRQWLDQXP 'LQRFDUGLXP UREXVWXP YDQK\QLQJL 0HUFHQDULD FDPSHFKLHQVLV &HULWKLXP DWUDWXP &UHSLGXOD IRUQLFDWD $QDFKLV ODIUHVQD\L 3OHXURSORFD JLJDQWHD &KLRQH FDQFHOODWD 0HQLSSH PHUFHQDULD (UDWR PDXJHULDH &ROXPEHOOD UXVWLFRLGHV &ROXPEHOOD VSS &UHSLGXOD FRQYH[D 0DUJLQHOOD KDUWOH\DQXP 7XUERQLOOD FRQUDGL 7XUERQLOOD VSS 3WHULLGDH 3OLFDWXOD JLEERVD /XFLQD QDVVXOD &HULWKLXP OXWRVXP 'HVPRWLFKLD 0DUFRFDOOLVWD QLPERVD 6SLVXOD VROLGLVVLPD VLPLOLV $QRPDORFDUGLD DXEHULDQD 6HLOD DGDPVL 1XFXODQD DFXWD 'RQD[ YDULELOLV 7UXQFDWHOOD SXOFKHOOD 6FXWHOOLGD 7ULSKRUD VSS &UDVVLQHOOD OXQXODWD 0DGUHSRUDULD 3DUYLOXFLQD PXOWLOLQHDWD 7HOOLQD VSS 'LSORGRQWD VSS &RGDNLD VSS 1XFXODQD VSS 7HUHEUD IORULGDQD 2OLYD VD\DQD $WODQWLF PRGXOXVf IO\VSHFNHG FHULWKf VSRWWHG VOLSSHUVKHOOf MDVSHU FRQHf FRQH VKHOOf WUDQVYHUVH DUNf FXWULEEHG DUNf SRQGHURXV DUNf SHQ VKHOOf SHQ VKHOOVf VFDOORSf SULFNO\ FRFNOHf 9DQ +\QLQJnV FRFNOHf VRXWKHUQ TXDKRJf )ORULGD FHULWKf $WODQWLF VOLSSHUVKHOOf ZHOOULEEHG GRYHVKHOOf )ORULGD KRUVH FRQFKf FURVVEDUUHG YHQXVf VWRQH FUDEf PDXJHUnV HUDWRf UXVW\ GRYHVKHOOf GRYHVKHOOf FRQYH[ VOLSSHUVKHOOf +DUWOH\nV PDUJLQHOODf &RQUDGnV WXUERQLOOHf WXUERQLOOHf ZLQJ DQG SHDUO R\VWHUVf NLWWHQnV SDZf ZRYHQ OXFLQDf GZDUI FHULWKf VHD XUFKLQVf VXQUD\ YHQXVf VRXWKHUQ VXUI FODPf SRLQWHG YHQXVf $GDPVn PLQLDWXUH FHULWKf SRLQWHG QXW FODPf FRTXLQD VKHOOf EHDXWLIXO WUXQFDWHOODf VDQG GROODUVf WULSKRUDf OXQDWH FUDVVLQHOODf KDUG FRUDOVf PDQ\OLQHG OXFLQDf WHOOLQf GLSORGRQf OXFLQDf QXW FODPf )ORULGD DXJHUf OHWWHUHG ROLYHf f f f f f f f f f 3ULPDU\ VRXUFHV $EERWW 2GXP HW DO =LHPDQ f f ff f f f ffmfff f f f ffff ffffffr f fff £ £ £ £ £

PAGE 271

5()(5(1&(6 &,7(' $EERWW 5 7XFNHU $PHULFDQ 6HDVKHOOV 7KH 0DULQH 0ROOXVFD RI WKH $WODQWLF DQG 3DFLILF &RDVWV RI 1RUWK $PHULFD QG HG 9DQ 1RVWUDQG 5HLQKROG &RPSDQ\ 1HZ
PAGE 272

&DOGZHOO 'DYLG 7KH %LRORJ\ DQG 6\VWHPDWLFV RI WKH 3LQILVK /DJRGRQ UKRPERLGHV /LQQDHXVf %XOOHWLQ RI WKH )ORULGD 6WDWH 0XVHXP %LRORJLFDO 6FLHQFHV f 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH 1RWHV RQ WKH &URZQ &RQFK 0HORQJHQD FRURQD 1DXWLOXV f &DUU :LOOLDP ( 6 DQG &OD\WRQ $ $GDPV )RRG +DELWV RI -XYHQLOH 0DULQH )LVKHV 2FFXS\LQJ 6HDJUDVV %HGV LQ WKH (VWXDULQH =RQH 1HDU &U\VWDO 5LYHU )ORULGD 7UDQVDFWLRQV RI WKH $PHULFDQ )LVKHULHV 6RFLHW\ f &DUULNHU 0HOERXUQH 5RPDLQH 2EVHUYDWLRQV RQ WKH 3HQHWUDWLRQ RI 7LJKWO\ &ORVLQJ %LYDOYHV E\ %XV\FRQ DQG 2WKHU 3UHGDWRUV (FRORJ\ f &DVWHHO 5LFKDUG : $ 0HWKRG IRU (VWLPDWLRQ RI /LYH :HLJKW RI )LVK IURP WKH 6L]H RI 6NHOHWDO 5HPDLQV $PHULFDQ $QWLTXLW\ )DXQDO $VVHPEODJHV DQG WKH :LHJHPHWKRGH RU :HLJKW 0HWKRG -RXUQDO RI )LHOG $UFKDHRORJ\ Of &ODHVVHQ +HQUL 0 7KH (DUO\ 6WDWH $ 6WUXFWXUDO $SSURDFK ,Q 7KH (DUO\ 6WDWH HGLWHG E\ + 0 &ODHVVHQ DQG 3 6NDOQLN SS 0RXWRQ 7KH +DJXH &ODUN $ : ( )DUUHOO DQG : 5 3HOWLHU *OREDO &KDQJHV LQ 6HD /HYHO $ 1XPHULFDO &DOFXODWLRQ 4XDWHUQDU\ 5HVHDUFK &ODUN $ DQG & 6 /LQJOH 3UHGLFWHG 6HD /HYHO &KDQJHV
PAGE 273

&RUGHOO $QQ 6 7HFKQRORJLFDO ,QYHVWLJDWLRQ RI 3RWWHU\ 9DULDELOLW\ LQ 6RXWKZHVW )ORULGD ,Q &XOWXUH DQG (QYLURQPHQW LQ WKH 'RPDLQ RI WKH &DOXVD HGLWHG E\ : + 0DUTXDUGW SS 0RQRJUDSK ,QVWLWXWH RI $UFKDHRORJ\ DQG 3DOHRHQYLURUXQHQWDO 6WXGLHV )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ *DLQHVYLOOH &UDLJKHDG )UDQN & DQG 9HUQRQ & *LOEHUW 7KH (IIHFWV RI +XUULFDQH 'RQQD RQ WKH 9HJHWDWLRQ RI 6RXWKHUQ )ORULGD 7KH 4XDUWHUO\ -RXUQDO RI WKH )ORULGD $FDGHP\ RI 6FLHQFHV Of &XVKLQJ )UDQN + ([SORUDWLRQ RI $QFLHQW .H\ 'ZHOOHU 5HPDLQV RQ WKH *XOI &RDVW RI )ORULGD 3URFHHGLQJV RI WKH $PHULFDQ 3KLORVRSKLFDO 6RFLHW\ f 'DOE\ -U -DPHV ( 3UHGDWLRQ RI $VFLGLDQV E\ 0HORQJHQD FRURQD 1HRJDVWURSRGD 0HORQJHQLGDHf LQ WKH 1RUWKHUQ *XOI RI 0H[LFR %XOOHWLQ RI 0DULQH 6FLHQFH f 'DUF\ *HRUJH + 6\QRSVLV RI %LRORJLFDO 'DWD RQ WKH 3LQILVK /DJRGRQ UKRPERLGHV 3LVFHV 6SDULGDHf )$2 )LVKHULHV 6\QRSVLV 1R 86 'HSDUWPHQW RI &RPPHUFH :DVKLQJWRQ '& 'DYLV 5LFKDUG $ -U 6WHSKHQ & .QRZOHV DQG 0LFKDHO %ODQG 5ROH RI +XUULFDQHV LQ WKH +RORFHQH 6WUDWLJUDSK\ RI (VWXDULHV ([DPSOHV IURP WKH *XOI &RDVW RI )ORULGD -RXUQDO RI 6HGLPHQWDU\ 3HWURORJ\ f 'D\ -RKQ : -U &KDUOHV $ 6 +DOO : 0LFKDHO .HPS DQG $OHMDQGUR <£QH]$UDQFLELD (VWXDULQH (FRORJ\ -RKQ :LOH\ t 6RQV 1HZ
PAGE 274

'LFNLQVRQ -RQDWKDQ -RQDWKDQ 'LFNLQVRQnV -RXUQDO RU *RGnV 3URWHFWLQJ 3URYLGHQFH EHLQJ WKH 1DUUDWLYH RI D -RXUQH\ IURP 3RUW 5R\DO LQ -DPDLFD WR 3KLODGHOSKLD $XJXVW WR $SULO )ORULGD &ODVVLFV /LEUDU\ 3RUW 6DOHUQR )ORULGD 'LQFDX]H 'HQD ) 6WUDWHJLHV IRU 3DOHRHQYLURQPHQWDO 5HFRQVWUXFWLRQ LQ $UFKDHRORJ\ ,Q $GYDQFHV LQ $UFKDHRORJLFDO 0HWKRG DQG 7KHRU\ YRO HGLWHG E\ 0LFKDHO % 6FKLIIHU SS $FDGHPLF 3UHVV 6DQ 'LHJR 'LQHW] %DUEDUD ,QWUDVSHFLILF 6L]H 'LVWULEXWLRQ RI WKH &URZQ &RQFKV 0HORQJHQD FRURQD *PHOLQ =RQDWLRQ RQ D /RZ (QHUJ\ %HDFK 06 WKHVLV 'HSDUWPHQW RI =RRORJ\ 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH 'LQJXV / (IIHFWV RI 6WUDWLJUDSKLF &RPSOHWHQHVV RQ ,QWHUSUHWDWLRQV RI ([WLQFWLRQ 5DWHV $FURVV WKH &UHWDFHRXV7HUWLDU\ %RXQGDU\ 3DOHRELRORJ\ 'LQJXV / DQG 3 0 6DGOHU 7KH (IIHFWV RI 6WUDWLJUDSKLF &RPSOHWHQHVV RQ (VWLPDWHV RI (YROXWLRQDU\ 5DWHV 6\VWHPDWLF =RRORJ\ 'RE\QV +HQU\ ) 7KHLU 1XPEHU %HFRPH 7KLQQHG 8QLYHUVLW\ RI 7HQQHVVHH 3UHVV .QR[YLOOH 7HQQHVVHH 'XUDNR 0 $ %URZGHU : / .UXF]\QVNL & % 6XEUDKPDQ\DP DQG 5 ( 7XUQHU 6DOW 0DUVK +DELWDW DQG )LVKHU\ 5HVRXUFHV RI )ORULGD ,Q )ORULGD $TXDWLF +DELWDW DQG )LVKHU\ 5HVRXUFHV HGLWHG E\ : 6HDPDQ -U SS )ORULGD &KDSWHU $PHULFDQ )LVKHULHV 6RFLHW\ .LVVLPPHH )ORULGD (GLF 5REHUW ) )ORULGD )LVKHUIRON 7UDQVFULSWV RI RUDO KLVWRU\ LQWHUYLHZV RQ ILOH 'HSDUWPHQW RI $QWKURSRORJ\ )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ *DLQHVYLOOH (LQVHOH +HUP DQG + 8 6FKZDU] 6HD /HYHO )OXFWXDWLRQ 'XULQJ WKH 3DVW
PAGE 275

(VWHYH] ( ( 0LOOHU DQG 0RUULV &KDUORWWH +DUERU (VWXDULQH (FRV\VWHP &RPSOH[ DQG WKH 3HDFH 5LYHU $ 5HYLHZ RI 6FLHQWLILF ,QIRUPDWLRQ 5HSRUW WR 6RXWKZHVW )ORULGD 5HJLRQDO 3ODQQLQJ &RXQFLO E\ 0RWH 0DULQH /DERUDWRU\ 6DUDVRWD )ORULGD (YDQV $Q ,QWURGXFWLRQ WR (QYLURQPHQWDO $UFKDHRORJ\ &RUQHOO 8QLYHUVLW\ 3UHVV ,WKDFD 1HZ
PAGE 276

*OHGKLOO % %HQGHU DQG 0 /DUVHQ SS *HRUJH $OOHQ DQG 8QZLQ /RQGRQ *DOOL *LDQQL ,V +RORFHQH 6WRUP*HQHUDWHG 6WUDWLILFDWLRQ LQ )ORULGD %D\ D 5HIOHFWLRQ RI 6RODU 6WRUP &\FOHV" 3DODHRJHRJUDSK\ 3DODHRFOLPDWRORJ\ 3DODHRHFRORJ\ *DOWVRII 3DXO 6 7KH $PHULFDQ 2\VWHU &UDVVRVWUHD YLUJLQLFD *PHOLQ 86 )LVK DQG :LOGOLIH 6HUYLFH )LVKHU\ %XOOHWLQ :DVKLQJWRQ '& *DOWVRII 3DXO 6 DQG $UWKXU 6 0HUULOO 1RWHV RQ 6KHOO 0RUSKRORJ\ *URZWK DQG 'LVWULEXWLRQ RI 2VWUHD HTXHVWULV 6D\ %XOOHWLQ RI 0DULQH 6FLHQFH RI WKH *XOI DQG &DULEEHDQ f *HQWU\ 5 &HFLO +XUULFDQHV LQ 6RXWK )ORULGD ,Q (QYLURQPHQWV RI 6RXWK )ORULGD 3UHVHQW DQG 3DVW ,, HGLWHG E\ 3 *OHDVRQ SS 0LDPL *HRORJLFDO 6RFLHW\ &RUDO *DEOHV )ORULGD *LOOLODQG 0DULRQ 6 7KH 0DWHULDO &XOWXUH RI .H\ 0DUFR )ORULGD 8QLYHUVLW\ 3UHVVHV RI )ORULGD *DLQHVYLOOH *ODVVRZ 0LFKDHO $ DQG /DUU\ 5 :LOFR[RQ &RDVWDO $GDSWDWLRQV 1HDU 3RLQW &RQFHSWLRQ &DOLIRUQLD :LWK 3DUWLFXODU 5HJDUG WR 6KHOOILVK ([SORLWDWLRQ $PHULFDQ $QWLTXLW\ *RJJLQ -RKQ 0 DQG :LOOLDP 7 6WXUWHYDQW 7KH &DOXVD $ 6WUDWLILHG 1RQDJULFXOWXUDO 6RFLHW\ ZLWK QRWHV RQ VLEOLQJ PDUULDJHf ,Q ([SORUDWLRQV LQ &XOWXUDO $QWKURSRORJ\ (VVD\V LQ +RQRU RI *HRUJH 3HWHU 0XUGRFN HGLWHG E\ : *RRGHQRXJK SS 0F*UDZ+LOO 1HZ
PAGE 277

*XQQ -RHO DQG 5LFKDUG ( : $GDPV &OLPDWLF &KDQJH &XOWXUH DQG &LYLOL]DWLRQ LQ 1RUWK $PHULFD :RUOG $UFKDHRORJ\ f *XQWHU *RUGRQ DQG *RUGRQ ( +DOO $ %LRORJLFDO ,QYHVWLJDWLRQ RI WKH &DORRVDKDWFKHH (VWXDU\ RI )ORULGD *XOI 5HVHDUFK 5HSRUWV f *XQWHU *RUGRQ DQG 5 :LQVWRQ 0HQ]HO 7KH &URZQ &RQFK 0HORQJHQD FRURQD DV D 3UHGDWRU 8SRQ WKH 9LUJLQLD 2\VWHU 7KH 1DXWLOXV f +DGGDG .HQQHWK DQG %DUEDUD $ +DUULV 8VH RI 5HPRWH 6HQVLQJ WR $VVHVV (VWXDULQH +DELWDWV 3URFHHGLQJV RI WKH )RXUWK 6\PSRVLXP RQ &RDVWDO DQG 2FHDQ 0DQDJHPHQW &RDVWDO =RQH n $6&(%DOWLPRUH 0' -XO\ $XJXVW +DGGDG .HQQHWK DQG %DUEDUD $ +RIIPDQ &KDUORWWH +DUERU +DELWDW $VVHVVPHQW ,Q 0DQDJLQJ &XPXODWLYH (IIHFWV LQ )ORULGD :HWODQGV (QYLURQPHQWDO 6WXGLHV 3URJUDP 1HZ &ROOHJH 8QLYHUVLW\ RI 6RXWK )ORULGD SS 3XEOLFDWLRQ 1R 6DUDVRWD +DOH + 6WHSKHQ $ 3UHGLFWLYH 0RGHO RI 6HWWOHPHQW DQG 6XEVLVWHQFH 3DWWHUQV IRU WKH &KDUORWWH +DUERU3LQH ,VODQG 6RXQG (VWXDULHV 6RXWKZHVW )ORULGD %DVHG RQ 6HD /HYHO )OXFWXDWLRQ 3DSHU SUHVHQWHG 1RYHPEHU DW WKH QG 6RXWKHDVWHUQ $UFKDHRORJLFDO &RQIHUHQFH %LUPLQJKDP $ODEDPD +DOH + 6WHSKHQ ,UY\ 4XLWP\HU DQG 6\OYLD 6FXGGHU 0HWKRGV IRU (VWLPDWLQJ (GLEOH 0HDW :HLJKWV IRU )DXQDO 5HPDLQV IURP 6LWHV LQ WKH 6RXWKHDVWHUQ 8QLWHG 6WDWHV 0DQXVFULSW RQ ILOH 'HSDUWPHQW RI $QWKURSRORJ\ )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ *DLQHVYLOOH +DQQ -RKQ + 7KH 8VH DQG 3URFHVVLQJ RI 3ODQWV E\ ,QGLDQV RI 6SDQLVK )ORULGD 6RXWKHDVWHUQ $UFKDHRORJ\ 0LVVLRQV WR WKH &DOXVD 8QLYHUVLW\ RI )ORULGD 3UHVV *DLQHVYLOOH +DQVLQJHU 0LFKDHO 6NHOHWDO DQG 'HQWDO $QDO\VLV RI %XULDOV IURP WKH &ROOLHU ,QQ 6LWH 8VHSSD ,VODQG ,Q &XOWXUH DQG (QYLURQPHQW LQ WKH 'RPDLQ RI WKH &DOXVD HGLWHG E\ : + 0DUTXDUGW SS 0RQRJUDSK ,QVWLWXWH RI

PAGE 278

$UFKDHRORJ\ DQG 3DOHRHQYLURQPHQWDO 6WXGLHV )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ *DLQHVYLOOH +DUULV % $ +DGGDG $ 6WHLGLQJHU $ +XII DQG 0 < +HGJHSHWK $VVHVVPHQW RI )LVKHULHV +DELWDW &KDUORWWH +DUERU DQG /DNH :RUWK )ORULGD )ORULGD 'HSDUWPHQW RI 1DWXUDO 5HVRXUFHV 6W 3HWHUVEXUJ )ORULGD +DUYH\ -XGVRQ %HDFK 3URFHVVHV DQG ,QOHW '\QDPLFV LQ D %DUULHU ,VODQG &KDLQ 6RXWKZHVW )ORULGD 3XEOLFDWLRQ 1R 1HZ &ROOHJH (QYLURQPHQWDO 6WXGLHV 3URJUDP 8QLYHUVLW\ RI 6RXWK )ORULGD 6DUDVRWD +DWKDZD\ 5DOSK 5 7KH &URZQ &RQFK 0HORQJHQD FRURQD *PHOLQ ,WV +DELWV 6H[ 5DWLRV DQG 3RVVLEOH 5HODWLRQV WR WKH 2\VWHU 3URFHHGLQJV RI WKH 1DWLRQDO 6KHOO ILVKHULHV $VVRFLDWLRQ +DWKDZD\ 5DOSK 5 DQG .HQQHWK :RRGEXUQ 6WXGLHV RQ WKH &URZQ &RQFK 0HORQJHQD FRURQD *PHOLQ %XOOHWLQ RI 0DULQH 6FLHQFH RI WKH *XOI DQG &DULEEHDQ f +HUZLW] 6WDQOH\ 7KH 1DWXUDO +LVWRU\ RI &D\R&RVWD ,VODQG 3XEOLFDWLRQ 1R 1HZ &ROOHJH (QYLURQPHQWDO 6WXGLHV 3URJUDP 8QLYHUVLW\ RI 6RXWK )ORULGD 6DUDVRWD +RHVH + 'LFNVRQ DQG 5LFKDUG + 0RRUH )LVKHV RI WKH *XOI RI 0H[LFR 7H[DV /RXLVLDQD DQG $GMDFHQW :DWHUV 7H[DV $ t 0 8QLYHUVLW\ 3UHVV &ROOHJH 6WDWLRQ +RIVWHWWHU 5REHUW 3 7KH 7H[DV 2\VWHU )LVKHU\ %XOOHWLQ 1R 7H[DV *DPH DQG )LVK &RPPLVVLRQ $XVWLQ +RSNLQV 6HZHOO + 1RWHV RQ WKH %RULQJ 6SRQJHV LQ *XOI &RDVW (VWXDULHV DQG 7KHLU 5HODWLRQ WR 6DOLQLW\ %XOOHWLQ RI 0DULQH 6FLHQFH RI WKH *XOI DQG &DULEEHDQ Of +XWFKLQVRQ 'DOH / 3UHKLVWRULF %XULDOV IURP %XFN .H\ ,Q &XOWXUH DQG (QYLURQPHQW LQ WKH 'RPDLQ RI WKH &DOXVD HGLWHG E\ : + 0DUTXDUGW SS 0RQRJUDSK ,QVWLWXWH RI $UFKDHRORJ\ DQG 3DOHRHQYLURQPHQWDO 6WXGLHV )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ *DLQHVYLOOH

PAGE 279

,QJUDP 0 )DUPHU DQG 7 0 / :LJOH\ 3DVW &OLPDWHV DQG 7KHLU ,PSDFW RQ 0DQ $ 5HYLHZ ,Q &OLPDWH DQG +LVWRU\ 6WXGLHV LQ 3DVW &OLPDWHV DQG 7KHLU ,PSDFW RQ 0DQ HGLWHG E\ 7 0 / :LJOH\ 0 ,QJUDP DQG )DUPHU SS &DPEULGJH 8QLYHUVLW\ 3UHVV &DPEULGJH -DFNVRQ + (GZLQ 7KH 7URXEOH ZLWK 7UDQVIRUPDWLRQV (IIHFWV RI 6DPSOH 6L]H DQG 6DPSOH &RPSRVLWLRQ RQ 0HDW :HLJKW (VWLPDWHV %DVHG RQ 6NHOHWDO 0DVV $OORPHWU\ -RXUQDO RI $UFKDHRORJLFDO 6FLHQFH -RKQVRQ :LOOLDP 7KH 5ROH RI 0DL]H LQ 6RXWK )ORULGD $ERULJLQDO 6RFLHWLHV $Q 2YHUYLHZ 7KH )ORULGD $QWKURSRORJLVW f .HOORJJ 'RXJODV & 3UREOHPV LQ WKH 8VH RI 6HD/HYHO 'DWD IRU $UFKDHRORJLFDO 5HFRQVWUXFWLRQV ,Q +RORFHQH +XPDQ (FRORJ\ LQ 1RUWKHDVWHUQ 1RUWK $PHULFD HGLWHG E\ 3 1LFKRODV SS 3OHQXP 3UHVV 1HZ
PAGE 280

.XHKQ : 2IIVKRUH 7UDQVJUHVVLYH 3HDW 'HSRVLWV RI 6RXWKZHVW )ORULGD (YLGHQFH RI D /DWH +RORFHQH 5LVH RI 6HD /HYHO 06 WKHVLV 'HSDUWPHQW RI *HRORJ\ 3HQQV\OYDQLD 6WDWH 8QLYHUVLW\ 8QLYHUVLW\ 3DUN /DPE + + &OLPDWH +LVWRU\ DQG WKH )XWXUH 0HWKXHQ /RQGRQ DQG 3ULQFHWRQ 8QLYHUVLW\ 3UHVV /DPSO /LQGD / )HHGLQJ WKH 3HRSOH IURP *HQHUDWLRQ WR *HQHUDWLRQ $Q (WKQRJUDSK\ RI WKH 3LQH ,VODQG )LVKHUPHQ 5HSRUW VXEPLWWHG WR *XOI DQG 6RXWK $WODQWLF )LVKHULHV 'HYHORSPHQW )RXQGDWLRQ ,QF 7DPSD )ORULGD /DUVRQ /HZLV + $ERULJLQDO 6XEVLVWHQFH 7HFKQRORJ\ RQ WKH 6RXWKHDVWHUQ &RDVWDO 3ODLQ 'XULQJ WKH /DWH 3UHKLVWRULF 3HULRG 8QLYHUVLW\ 3UHVVHV RI )ORULGD *DLQHVYLOOH /DXGRQQLUH 5HQ GH 7KUHH 9R\DJHV 7UDQVODWHG E\ & ( %HQQHWW 8QLYHUVLW\ 3UHVVHV RI )ORULGD *DLQHVYLOOH /HYLQV 5LFKDUG 7KH 6WUDWHJ\ RI 0RGHO %XLOGLQJ LQ 3RSXODWLRQ %LRORJ\ $PHULFDQ 6FLHQWLVW f /HZLV &OLIIRUG 0 7KH &DOXVD ,Q 7DFDFKDOH (VVD\V RQ WKH ,QGLDQV RI )ORULGD DQG 6RXWKHDVWHUQ *HRUJLD GXULQJ WKH +LVWRULF 3HULRG HGLWHG E\ 7 0LODQLFK DQG 6 3URFWRU SS 8QLYHUVLW\ 3UHVVHV RI )ORULGD *DLQHVYLOOH /HZLV 5 5 ,,, 5 *LOPRUH -U : &UHZ] DQG : ( 2GXP 0DQJURYH +DELWDW DQG )LVKHU\ 5HVRXUFHV RI )ORULGD ,Q )ORULGD $TXDWLF +DELWDW DQG )LVKHU\ 5HVRXUFHV HGLWHG E\ : 6HDPDQ -U SS )ORULGD &KDSWHU $PHULFDQ )LVKHULHV 6RFLHW\ .LVVLPPHH )ORULGD /LEHUW / $ 0DXFRUSV DQG / ,QQHV 0HQGLQJ RI )LVK 1HWV QG HG )LVKLQJ 1HZV %RRNV /WG 6XUUH\ (QJODQG /SH] GH 9HODVFR *HRJUDID \ 'HVFULSFLQ 8QLYHUVDO GH ODV ,QGLDV 5HFRSLODGD SRU HO &RVPRJUDIRFURQLVWD -XDQ /SH] GH 9HODVFR GHVGH HO $R GH DO GH FRQ DGLFLQHV

PAGE 281

H LOXVWUDFLQHV SRU 'RQ -XVWR =DUDJRVD (VWDEOHFLPLHQWR 7LSRJU£ILFR GH )RUWDQHW 0DGULG /RZULH $OOHQ DQG 5KRGHV : )DLUEULGJH 5ROH RI (XVWDV\ LQ +RORFHQH 0LVVLVVLSSL 'HOWDOREH 6ZLWFKLQJ *&66(30 )RXQGDWLRQ 7ZHOIWK $QQXDO 5HVHDUFK &RQIHUHQFH *XOI &RDVW 6HFWLRQ SS /XHU *HRUJH 0 6RPH ,QWHUHVWLQJ $UFKDHRORJLFDO 2FFXUUHQFHV RI 4XDKRJ 6KHOOV RQ WKH *XOI &RDVW RI &HQWUDO DQG 6RXWKHUQ )ORULGD ,Q 6KHOOV DQG $UFKDHRORJ\ LQ 6RXWKHUQ )ORULGD HGLWHG E\ /XHU SS )ORULGD $QWKURSRORJLFDO 6RFLHW\ 3XEOLFDWLRQ 7DOODKDVVHH /XHU $OOHUWRQ +D]HOWLQH 5 +DWILHOG DQG +RRG :KHON 6KHOO 7RRO %ODQNV IURP %LJ 0RXQG .H\ &+f &KDUORWWH &RXQW\ )ORULGD :LWK 1RWHV RQ &HUWDLQ :KHON 6KHOO 7RROV ,Q 6KHOOV DQG $UFKDHRORJ\ LQ 6RXWKHUQ )ORULGD HGLWHG E\ /XHU SS )ORULGD $QWKURSRORJLFDO 6RFLHW\ 3XEOLFDWLRQ 7DOODKDVVHH 0DUTXDUGW :LOOLDP + 7KH -RVVO\Q ,VODQG 0RXQG DQG LWV 5ROH LQ WKH ,QYHVWLJDWLRQ RI 6RXWKZHVW )ORULGDnV 3DVW )ORULGD 6WDWH 0XVHXP 'HSDUWPHQW RI $QWKURSRORJ\ 0LVFHOODQHRXV 3URMHFW 5HSRUW 6HULHV *DLQHVYLOOH &RPSOH[LW\ DQG 6FDOH LQ WKH 6WXG\ RI )LVKHU*DWKHUHU+XQWHUV $Q ([DPSOH IURP WKH (DVWHUQ 8QLWHG 6WDWHV ,Q 3UHKLVWRULF +XQWHU*DWKHUHUV 7KH (PHUJHQFH RI &XOWXUDO &RPSOH[LW\ HGLWHG E\ 7 3ULFH DQG $ %URZQ SS $FDGHPLF 3UHVV 2UODQGR 7KH 'HYHORSPHQW RI &XOWXUDO &RPSOH[LW\ LQ 6RXWKZHVW )ORULGD (OHPHQWV RI D &ULWLTXH 6RXWKHDVWHUQ $UFKDHRORJ\ 7KH &DOXVD 6RFLDO )RUPDWLRQ LQ 3URWRKLVWRULF 6RXWK )ORULGD ,Q 3RZHU 5HODWLRQV DQG 6WDWH )RUPDWLRQ HGLWHG E\ 7 & 3DWWHUVRQ DQG & : *DLOH\ SS $PHULFDQ $QWKURSRORJLFDO $VVRFLDWLRQ :DVKLQJWRQ '& 3ROLWLFV DQG 3URGXFWLRQ $PRQJ WKH &DOXVD RI 6RXWK )ORULGD ,Q +XQWHUV DQG *DWKHUHUV YRO +LVWRU\ (YROXWLRQ DQG 6RFLDO &KDQJH LQ +XQWLQJ DQG *DWKHULQJ 6RFLHWLHV HGLWHG E\ 7 ,QJROG 5LFKHV DQG :RRGEXUQ SS %HUJ 3XEOLVKHUV /RQGRQ ,QWURGXFWLRQ 0LVVLRQV WR WKH &DOXVD 8QLYHUVLW\ RI )ORULGD 3UHVV *DLQHVYLOOH

PAGE 282

>(GLWHG E\@ &XOWXUH DQG (QYLURQPHQW LQ WKH 'RPDLQ RI WKH &DOXVD 0RQRJUDSK ,QVWLWXWH RI $UFKDHRORJ\ DQG 3DOHRHQYLURQPHQWDO 6WXGLHV )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH D 5HFHQW $UFKDHRORJLFDO DQG 3DOHRHQYLURQPHQWDO ,QYHVWLJDWLRQV LQ 6RXWKZHVW )ORULGD ,Q &XOWXUH DQG (QYLURQPHQW LQ WKH 'RPDLQ RI WKH &DOXVD HGLWHG E\ : + 0DUTXDUGW SS 0RQRJUDSK ,QVWLWXWH RI $UFKDHRORJ\ DQG 3DOHRHQYLURQPHQWDO 6WXGLHV )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ *DLQHVYLOOH E 6KHOO $UWLIDFWV IURP WKH &DORRVDKDWFKHH $UHD ,Q &XOWXUH DQG (QYLURQPHQW LQ WKH 'RPDLQ RI WKH &DOXVD HGLWHG E\ : + 0DUTXDUGW SS 0RQRJUDSK ,QVWLWXWH RI $UFKDHRORJ\ DQG 3DOHRHQYLURQPHQWDO 6WXGLHV )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ *DLQHVYLOOH 0DUTXDUGW :LOOLDP + DQG &DUROH / &UXPOH\ 7KHRUHWLFDO ,VVXHV LQ WKH $QDO\VLV RI 6SDWLDO 3DWWHUQLQJ ,Q 5HJLRQDO '\QDPLFV %XUJXQGLDQ /DQGVFDSHV LQ +LVWRULFDO 3HUVSHFWLYH HGLWHG E\ & / &UXPOH\ DQG : + 0DUTXDUGW SS $FDGHPLF 3UHVV 6DQ 'LHJR 0HQ]HO 5 :LQVWRQ DQG )UHG ( 1LFK\ 6WXGLHV RI WKH 'LVWULEXWLRQ DQG )HHGLQJ +DELWV RI 6RPH 2\VWHU 3UHGDWRUV LQ $OOLJDWRU +DUERU )ORULGD %XOOHWLQ RI 0DULQH 6FLHQFH RI WKH *XOI DQG &DULEEHDQ f 0LODQLFK -HUDOG 7 &RUQ DQG &DOXVD 'H 6RWR DQG 'HPRJUDSK\ ,Q &RDVWV 3ODLQ DQG 'HVHUWV (VVD\V LQ +RQRU RI 5H\QROG 5XSS HGLWHG E\ 6\OYLD : *DLQHV SS $UL]RQD 6WDWH 8QLYHUVLW\ $QWKURSRORJLFDO 5HVHDUFK 3DSHUV 1R 7HPSH 0LODQLFK -HUDOG 7 -HIIHUVRQ &KDSPDQ $QQ 6 &RUGHOO + 6WHSKHQ +DOH DQG 5RFKHOOH $ 0DUULQDQ 3UHKLVWRULF 'HYHORSPHQW RI &DOXVD 6RFLHW\ LQ 6RXWKZHVW )ORULGD ([FDYDWLRQV RQ 8VHSSD ,VODQG ,Q 3HUVSHFWLYHV RQ *XOI &RDVW 3UHKLVWRU\ HGLWHG E\ ' 'DYLV SS 8QLYHUVLW\ 3UHVVHV RI )ORULGD *DLQHVYLOOH 0LODQLFK -HUDOG 7 DQG &KDUOHV + )DLUEDQNV )ORULGD $UFKDHRORJ\ $FDGHPLF 3UHVV 1HZ
PAGE 283

0LOOHU *LIIRUG + /DWH 4XDWHUQDU\ *ODFLDO DQG &OLPDWLF +LVWRU\ RI 1RUWKHUQ &XPEHUODQG 3HQLQVXOD %DIILQ ,VODQG 1:7 &DQDGD 4XDWHUQDU\ 5HVHDUFK 0LVVLPHU 7 7KH 'HSRVLWLRQDO +LVWRU\ RI 6DQLEHO ,VODQG )ORULGD 06 WKHVLV 'HSDUWPHQW RI *HRORJ\ )ORULGD 6WDWH 8QLYHUVLW\ 7DOODKDVVHH 0RRUH -HUU\ &XOWXUDO 5HVSRQVHV WR (QYLURQPHQWDO &DWDVWURSKHV 3RVW(O 1LR 6XEVLVWHQFH RQ WKH 3UHKLVWRULF 1RUWK &RDVW RI 3HUX /DWLQ $PHULFDQ $QWLTXLW\ Of 0RUQHU 1 $ 7KH /DWH 4XDWHUQDU\ +LVWRU\ RI .DWWHJDW 6HD DQG 6ZHGLVK :HVW &RDVW 'HJODFLDWLRQ 6KRUHOHYHO 'LVSODFHPHQW &KURQRORJ\ ,VRVWDV\ DQG (XVWDF\ 6YHULJHV *HRORJLVND 8QGHUVNQLQ 6HULHV & QR 0RVHOH\ 0LFKDHO ( 7KH 0DULWLPH )RXQGDWLRQV RI $QGHDQ &LYLOL]DWLRQ %HQMDPLQ&XPPLQJV 3XEOLVKLQJ &RPSDQ\ 0HQOR 3DUN &DOLIRUQLD 0RVHOH\ 0LFKDHO ( DQG 5REHUW $ )HOGPDQ )LVKLQJ )DUPLQJ DQG WKH )RXQGDWLRQV RI $QGHDQ &LYLOLVDWLRQ ,Q 7KH $UFKDHRORJ\ RI 3UHKLVWRULF &RDVWOLQHV HGLWHG E\ %DLOH\ DQG 3DUNLQJWRQ SS &DPEULGJH 8QLYHUVLW\ 3UHVV &DPEULGJH 1LHWVFKPDQQ %HUQDUG %HWZHHQ /DQG DQG :DWHU 7KH 6XEVLVWHQFH (FRORJ\ RI WKH 0LVNLWR ,QGLDQV (DVWHUQ 1LFDUDJXD 6HPLQDU 3UHVV 1HZ
PAGE 284

2VERUQ $ODQ 6WUDQGORRSHUV 0HUPDLGV DQG 2WKHU )DLU\ 7DOHV (FRORJLFDO 'HWHUPLQDQWV RI 0DULQH 5HVRXUFH 8WLOL]DWLRQ 7KH 3HUXYLDQ &DVH ,Q )RU 7KHRU\ %XLOGLQJ LQ $UFKDHRORJ\ HGLWHG E\ / 5 %LQIRUG SS $FDGHPLF 3UHVV 1HZ
PAGE 285

5KRDGV & DQG 5 $ /XW] 6NHOHWDO 5HFRUGV RI (QYLURQPHQWDO &KDQJH ,Q 6NHOHWDO *URZWK RI $TXDWLF 2UJDQLVPV HGLWHG E\ & 5KRDGV DQG 5 $ /XW] SS 3OHQXP 3UHVV 1HZ
PAGE 286

6DQFKH] : $ DQG ( .XW]EDFK &OLPDWH RI WKH $PHULFDQ 7URSLFV DQG 6XEWURSLFV LQ WKH V DQG 3RVVLEOH &RPSDULVRQV ZLWK &OLPDWLF 9DULDWLRQV RI WKH /DVW 0LOOHQQLXP 4XDWHUQDU\ 5HVHDUFK 6FDUU\ & 0DUJDUHW DQG /HH $ 1HZVRP $UFKDHRERWDQLFDO 5HVHDUFK LQ WKH &DOXVD +HDUWODQG ,Q &XOWXUH DQG (QYLURQPHQW LQ WKH 'RPDLQ RI WKH &DOXVD HGLWHG E\ : + 0DUTXDUGW SS 0RQRJUDSK ,QVWLWXWH RI $UFKDHRORJ\ DQG 3DOHRHQYLURQPHQWDO 6WXGLHV )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ *DLQHVYLOOH 6FKPLGW1LHOVHQ .QXW 6FDOLQJ :K\ LV $QLPDO 6L]H VR ,PSRUWDQW" &DPEULGJH 8QLYHUVLW\ 3UHVV &DPEULGJH 6FKROO : DQG 0 6WXLYHU 5HFHQW 6XEPHUJHQFH RI 6RXWKHUQ )ORULGD $ &RPSDULVRQ :LWK $GMDFHQW &RDVWV DQG 2WKHU (XVWDWLF 'DWD *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ 6HDUV (OVLH 2n5 3ROOHQ $QDO\VLV ,Q )RUW &HQWHU DQ $UFKDHRORJLFDO 6LWH LQ WKH /DNH 2NHHFKREHH %DVLQ 8QLYHUVLW\ 3UHVVHV RI )ORULGD *DLQHVYLOOH 6KHSDUG ) 3 7KLUW\ILYH 7KRXVDQG
PAGE 287

6WDSRU )UDQN : -U 7KRPDV 0DWKHZV DQG )RQGD ( /LQGIRUV.HDUQV (SLVRGLF %DUULHU ,VODQG *URZWK LQ 6RXWKZHVW )ORULGD $ 5HVSRQVH WR )OXFWXDWLQJ +RORFHQH 6HD /HYHO" 0LDPL *HRORJLFDO 6RFLHW\ 0HPRLU %DUULHU,VODQG 3URJUDGDWLRQ DQG +RORFHQH 6HD/HYHO +LVWRU\ LQ 6RXWKZHVW )ORULGD -RXUQDO RI &RDVWDO 5HVHDUFK f 6WDSRU ) : -U DQG : ) 7DQQHU /DWH +RORFHQH 0HDQ 6HD /HYHO 'DWD IURP 6W 9LQFHQW ,VODQG DQG WKH 6KDSH RI WKH /DWH +RORFHQH 0HDQ 6HD /HYHO &XUYH ,Q &RDVWDO 6HGLPHQWRORJ\ HGLWHG E\ : ) 7DQQHU SS 'HSDUWPHQW RI *HRORJ\ )ORULGD 6WDWH 8QLYHUVLW\ 7DOODKDVVHH 6WHZDUW +LODU\ ,QGLDQ )LVKLQJ (DUO\ 0HWKRGV RQ WKH 1RUWKZHVW &RDVW 8QLYHUVLW\ RI :DVKLQJWRQ 3UHVV 6HDWWOH DQG /RQGRQ 6WRUH\ 0DUJDUHW 7KH 5HODWLRQ %HWZHHQ 1RUPDO 5DQJH DQG 0RUWDOLW\ RI )LVKHV 'XH WR &ROG DW 6DQLEHO ,VODQG )ORULGD (FRORJ\ f 6WRUH\ 0DUJDUHW DQG ( : *XGJHU 0RUWDOLW\ RI )LVKHV 'XH WR &ROG DW 6DQLEHO ,VODQG )ORULGD (FRORJ\ f 7DEE 'XUELQ & DQG $OEHUW & -RQHV (IIHFW RI +XUULFDQH 'RQQD RQ WKH $TXDWLF )DXQD RI 1RUWK )ORULGD %D\ $PHULFDQ )LVKHULHV 6RFLHW\ 7UDQVDFWLRQV f 7DEE 'XUELQ & DQG 5D\PRQG % 0DQQLQJ $ &KHFNOLVW RI WKH )ORUD DQG )DXQD RI 1RUWKHUQ )ORULGD %D\ DQG $GMDFHQW %UDFNLVK :DWHUV RI WKH )ORULGD 0DLQODQG &ROOHFWHG 'XULQJ WKH 3HULRG -XO\ 7KURXJK 6HSWHPEHU %XOOHWLQ RI 0DULQH 6FLHQFH RI WKH *XOI DQG &DULEEHDQ f 7DQQHU :LOOLDP ) 7KH *XOI RI 0H[LFR /DWH +RORFHQH 6HD /HYHO &XUYH DQG 5LYHU 'HOWD +LVWRU\ *XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV 7UDQVDFWLRQV

PAGE 288

7DUWDJOLD /RXLV -DPHV 3UHKLVWRULF 0DULWLPH $GDSWDWLRQV LQ 6RXWKHUQ &DOLIRUQLD 3K' GLVVHUWDWLRQ 'HSDUWPHQW RI $QWKURSRORJ\ 8QLYHUVLW\ RI &DOLIRUQLD /RV $QJHOHV 8QLYHUVLW\ 0LFURILOPV $QQ $UERU 0LFKLJDQ 7D\ORU -RKQ / 7KH &KDUORWWH +DUERU (VWXDULQH 6\VWHP )ORULGD 6FLHQWLVW f 7KRPDV /RZHOO 3 'RQDOG 5 0RRUH DQG 5REHUW & :RUN (IIHFWV RI +XUULFDQH 'RQQD RQ WKH 7XUWOH *UDVV %HGV RI %LVFD\QH %D\ )ORULGD %XOOHWLQ RI 0DULQH 6FLHQFH RI WKH *XOI DQG &DULEEHDQ f 8SFKXUFK 6DP % 3OLQ\ -HZHOO ,9 DQG (ULF 'HKDYHQ 6WUDWLJUDSK\ RI ,QGLDQ 0RXQGV LQ WKH &KDUORWWH +DUERU $UHD )ORULGD 6HDOHYHO 5LVH DQG 3DOHRHQYLURQPHQWV ,Q &XOWXUH DQG (QYLURQPHQW LQ WKH 'RPDLQ RI WKH &DOXVD HGLWHG E\ : + 0DUTXDUGW SS 0RQRJUDSK ,QVWLWXWH RI $UFKDHRORJ\ DQG 3DOHRHQYLURQPHQWDO 6WXGLHV )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ *DLQHVYLOOH 9LUQVWHLQ 5REHUW : 6HDJUDVVDVVRFLDWHG ,QYHUWHEUDWH &RPPXQLWLHV RI WKH 6RXWKHDVWHUQ 86$ $ 5HYLHZ ,Q 3URFHHGLQJV RI WKH 6\PSRVLXP RQ 6XEWURSLFDO7URSLFDO 6HDJUDVVHV RI WKH 6RXWKHDVWHUQ 8QLWHG 6WDWHV HGLWHG E\ 0 'XUDNR 5 & 3KLOOLSV DQG 5 5 /HZLV ,,, SS )ORULGD 0DULQH 5HVHDUFK 3XEOLFDWLRQV 1R )ORULGD 'HSDUWPHQW RI 1DWXUDO 5HVRXUFHV 7DOODKDVVHH :DONHU .DUHQ -R &KDUORWWH +DUERU 0DULWLPH $GDSWDWLRQ 6\QFKURQLF DQG 'LDFKURQLF 9DULDWLRQ 3DSHU SUHVHQWHG DW WKH WK 6RXWKHDVWHUQ $UFKDHRORJLFDO &RQIHUHQFH &KDUOHVWRQ 6RXWK &DUROLQD $UWLIDFWV RI D )LVK\ 1DWXUH 6RXWKZHVW )ORULGDnV 3UHKLVWRULF 0DULQH )LVKLQJ 7HFKQRORJ\ 0V VXEPLWWHG IRU SXEOLFDWLRQ %RQH $UWLIDFWV IURP -RVVO\Q ,VODQG %XFN .H\ 6KHOO 0LGGHQ DQG &DVK 0RXQG $ 3UHOLPLQDU\ $VVHVVPHQW IRU WKH &DORRVDKDWFKHH $UHD ,Q &XOWXUH DQG (QYLURQPHQW LQ WKH 'RPDLQ RI WKH &DOXVD HGLWHG E\ : + 0DUTXDUGW SS 0RQRJUDSK ,QVWLWXWH RI $UFKDHRORJ\ DQG 3DOHRHQYLURQPHQWDO 6WXGLHV )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ *DLQHVYLOOH

PAGE 289

:DONHU .DUHQ -R DQG :LOOLDP + 0DUTXDUGW 7KH /DJJLQJ 0DULWLPH 3HUVSHFWLYH LQ (DVWHUQ 1RUWK $PHULFDQ $UFKDHRORJ\ 3DSHU SUHVHQWHG DW WKH 6RFLHW\ IRU +LVWRULFDO $UFKDHRORJ\ .LQJVWRQ -DPDLFD :DQJ -RKQVRQ & 6 DQG (GZDUG & 5DQH\ 'LVWULEXWLRQ DQG )OXFWXDWLRQV LQ WKH )LVK )DXQD RI WKH &KDUORWWH +DUERU (VWXDU\ )ORULGD &KDUORWWH +DUERU (VWXDULQH 6WXGLHV 0RWH 0DULQH /DERUDWRU\ 1HZ &LW\ ,VODQG 6DUDVRWD )ORULGD :DWWV : $ 3RVWJODFLDO DQG ,QWHUJODFLDO 9HJHWDWLRQ +LVWRU\ RI 6RXWKHUQ *HRUJLD DQG &HQWUDO )ORULGD (FRORJ\ f :HGGOH 5 6 6SDQLVK 6HD 7KH *XOI RI 0H[LFR LQ 1RUWK $PHULFDQ 'LVFRYHU\ 7H[DV $ t 0 8QLYHUVLW\ 3UHVV &ROOHJH 6WDWLRQ :HOOV +DUU\ : 7KH )DXQD RI 2\VWHU %HGV ZLWK 6SHFLDO 5HIHUHQFH WR WKH 6DOLQLW\ )DFWRU (FRORJLFDO 0RQRJUDSKV f :HQGODQG :D\QH 0 DQG 5HLG $ %U\VRQ 'DWLQJ &OLPDWLF (SLVRGHV RI WKH +RORFHQH 4XDWHUQDU\ 5HVHDUFK :LGPHU 5DQGROSK D 3UHKLVWRULF (VWXDULQH $GDSWDWLRQ DW WKH 6RODQD 6LWH &KDUORWWH &RXQW\ )ORULGD )ORULGD 'LYLVLRQ RI $UFKLYHV +LVWRU\ DQG 5HFRUGV 0DQDJHPHQW %XUHDX RI $UFKDHRORJLFDO 5HVHDUFK 7DOODKDVVHH )ORULGD E 6RFLRSROLWLFDO ,PSOLFDWLRQV RI 2IIVKRUH )LVKLQJ LQ $ERULJLQDO 6RXWKHDVW )ORULGD 7KH )ORULGD $QWKURSRORJLVW f 7KH (YROXWLRQ RI WKH &DOXVD $ 1RQDJULFXOWXUDO &KLHIGRP RQ WKH 6RXWKZHVW )ORULGD &RDVW 7KH 8QLYHUVLW\ RI $ODEDPD 3UHVV 7XVFDORRVD DQG /RQGRQ :LOVRQ &KDUOHV 7KH ,QGLDQ 3UHVHQFH $UFKHRORJ\ RI 6DQLEHO &DSWLYD DQG $GMDFHQW ,VODQGV LQ 3LQH ,VODQG 6RXQG 6DQLEHO&DSWLYD &RQVHUYDWLRQ )RXQGDWLRQ 6DQLEHO )ORULGD

PAGE 290

:LOVRQ 'DYLG 2I 0DL]H DQG 0HQ $ &ULWLTXH RI WKH 0DULWLPH +\SRWKHVLV RI 6WDWH 2ULJLQV RQ WKH &RDVW RI 3HUX $PHULFDQ $QWKURSRORJLVW f :LQJ (OL]DEHWK 6 DQG $QWRLQHWWH % %URZQ 3DOHRQXWULWLRQ 0HWKRG DQG 7KHRU\ LQ 3UHKLVWRULF )RRGZD\V $FDGHPLF 3UHVV 1HZ
PAGE 291

%,2*5$3+,&$/ 6.(7&+ .DUHQ -R :DONHU UHFHLYHG KHU KLJK VFKRRO DQG XQGHUJUDGXDWH FROOHJH HGXFDWLRQ LQ $WKHQV *HRUJLD DFKLHYLQJ KHU %$ LQ DQWKURSRORJ\ IURP WKH 8QLYHUVLW\ RI *HRUJLD LQ 6KH ZDV LQYROYHG LQ FRQWUDFW DUFKDHRORJ\ IRU D QXPEHU RI \HDUV EHIRUH HQWHULQJ JUDGXDWH VFKRRO 6KH UHFHLYHG KHU 0$ LQ DQWKURSRORJ\ ZLWK D VSHFLDOL]DWLRQ LQ KLVWRULFDO DUFKDHRORJ\ IURP WKH 8QLYHUVLW\ RI )ORULGD LQ

PAGE 292

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ &KDLU 3URIHVVRU RI $QWKURSRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ ESI.A XO: (OL]DAWK 6 :LQJ 3URIHVVRU RI $QWKURSRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ DLG 7 0LODQLFK RI $QWKURSRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ &OD\/ 0RQWDJXH $VVRFLDWH 3URFHVVRU RI (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV

PAGE 293

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5KRGHV : )DLUEULGJH 3URIHVVRU RI *HRORJ\ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI $QWKURSRORJ\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ *UDGXDWH 6FKRRO

PAGE 294

81,9(56,7< 2) )/25,'$


Figure 9. A Schematic Illustration of the Relationship
between Aquatic Vertebrates and Invertebrates Recovered
from the Five Study Sites and the Estuarine Gradient
(Based on the Detailed Data Presented in Appendix B).


Figure 1. Map of the Charlotte Harbor Study Area
with Geographical Features and Archaeological
Site Locations Mentioned in the Text: (1) Solana
Site; (2) Big Mound Key; (3) Cash Mound; (4) Useppa
Island; (5) Pineland; (6) Josslyn Island; (7) Buck Key
Shell Midden; and (8) Wightman Site.


35
Table 3. Summary of Zooarchaeological Data Included
in the Charlotte Harbor Study.
Sample
Number of
Identifiable
Fragments
Minimum
Number of
Individuals
Big Mound Key Layer
11
Vertebrates
8501
150
Invertebrates
4083
595
Big Mound Key Layer
8b
Vertebrates
8200
168
Invertebrates
5560
820
Big Mound Key Layer
7
Vertebrates
6000
98
Invertebrates
5832
1094
Big Mound Key Layer
2
Vertebrates
705
32
Invertebrates
4628
1564
Cash Mound A-l-4
Vertebrates
5953
246
Invertebrates
4864
1032
Cash Mound A-l-8
Vertebrates
2239
75
Invertebrates
5682
2821
Cash Mound A-l-17
Vertebrates
1995
69
Invertebrates
3112
1429
Cash Mound A-l-20
Vertebrates
2022
42
Invertebrates
4993
2531
Useppa Island A-4-2
Vertebrata
4937
208
Invertebrata
5685
895
Josslyn Island A-l-4
(1/2
vol.)
Vertebrata
9374
231
Invertebrata
5225
596


Leioetomue xanthurua
(.potI
10
0.08
9
0.61
o
o
*>
0.00
2.53
0.02
215.62
0.29
Sclaenops ocellatus
(red drum)
4
0.03
3
0.20
0.97
0.01
21.44
0.17
768.00
1.03
Total Sciaenidae
(drums)
65
0.51
29
1.98
5.69
0.06
115.03
0.90
4001.56
5.39
Mug11 app.
(mullet)
2
0.02
1
0.07
0.33
0.00
8.13
0.06
556.50
0.75
PmrmllchthyB app.
(flounder)
3
0.02
1
0.07
0.17
0.00
4.48
0.04
383.86
0.52
Sphoroldee app.
(puffer fish)
2
0.02
2
0.14
0.11
0.00
3.03
0.02
135.40
0.18
Chllomyctorua echoepfl
(striped burrfish)
11
0.09
6
0.41
2.18
0.02
44.39
0.35
1086.30
1.46
Osteichthyes
(bony fiahes)
5435
42.81
<>
()
48.39
0.51
719.85
5.65
()
(
Total Ostaichtbyaa
(bony fishes)
6494
51.15
246
16.78
83.96
0.89
1411.17
11.07
22173.10
29.86
Vartabrata (predominantly fish)
(backboned animals)
()
(>
459.33
4.87
7885.12
61.84
()
()
Total Vartabrata
(backboned animals)
6541
51.52
257
17.53
569.12
6.03
9963.55
78.14
68000.14
91.57
Balanuf app.
(barnacle)
151
1.19
74
5.05
16.71
0.18

<)
(C)
Calllnectes app.
(blue crabs, Gulf crab, etc.)
29
0.23
4
0.27
4.60
0.05
34.16
0.27
333.60
0.45
Menlppe mercenaria
(stone crab)
4
0.00
1
0.07
1.65
0.02
14.73
0.12
83.40
0.11
Decapoda
(eraba)
10
0.08
(>
()
1.10
0.01
10.57
0.08
(i
()
Total Crustacea
(aquatic arthropods)
190
1.50
79
5.39
24.06
0.26
59.46
0.47
417.00
0.56
Truncatella pulchella
(beautiful truncatella)
7
0.06
7
0.48
0.20
0.00
(<5)

(o)
(c>
SplroglyphuB Irregular1b
(irregular worm-shell)
58
0.46
1
0.07
44.80
0.47
(c)
(>
(o)
(>
Modulus modulus
(Atlantic modulus)
7
0.06
7
0.48
1.40
0.01
<>
(c)
(e)
Cerlthlum stratum
(Florida carith)
35
0.28
30
2.05
2.80
0.03
(o>
(o)
(o>
Trlphora ap.
(triphora)
1
0. 01
1
0.07
0.05
0.00
(c)
<>
(o)
Crepldula fornlcata
(Atlantic slipper-shell)
4
0.03
4
0.27
7.43
0.08
(O
<>
<>
(O)
Crspldula convexa
(convex slipper-shell)
4
0.03
4
0.27
1.26
0.01
(c)
(C>
Crepldula plana
(eastern white slipper-shell)
4
0.03
4
0.27
0.27
0.00
(o)
(O)
<)
Crepldula spp.
(slipper-shell)
2
0.02
2
0.14
0.12
0.00
(O)
(O)
(1
(c)
Strombus alatua
(Florida fighting conch)
2
0.02
1
0.07
1.20
0.01
.25
0.00
6.90
0.01
Polinices dupllcatuB
(shark eye)
4
0.03
4
0.27
11.55
0.12
9.06
0.07
2.77(f)
0.00
Urosalplnx perrugata
(Gulf oyster drill)
6
0.05
6
0.41
2.30
0.02
(O
to)
(O)
Aachis lafresnayl
(well-ribbed dove-shell)
3
0.02
3
0.20
0.32
0.00
(o)
(O)
(o)
Melongena corona
(common crown conch)
647
5.10
330
22.51
551.50
5.85
97.09
0.76
628.25
0.85
Busyoon contrarlum
(lightning whelk)
649
5.11
201
13.71
1405.38
14.90
724.08
5.68
784.26
1.06
Busycon splratum pyruloldes
(6ay's pear whelk)
338
2.66
134
9.14
330.09
3.50
141.23
1.11
1579.86
2.13
Total Melongenidae
(crown concha)
1634
12.87
665
45.36
2286.97
24.25
962.40
7.55
2992.37
4.03
Nassarlus vlbex
(common eastern nassa)
2
0.02
2
0.14
0.30
0.00
(O)
(o)
(O)

Pasclolarla 1111 urn hunterla
(banded tulip)
141
1.11
31
2.11
87.30
0.93
58.42
0.46
51.81(f)
0.07
Faeclolarla tulipa
(true tulip)
33
0.26
15
1.02
64.10
0.68
111.01
0.87
1436.10
1.93
Famclolarla spp.
(tulip shell)
187
1.47
72
4.91
92.00
0.98
43.71
0.34
246.55
0.33
Pleuroploca gigantea
(Florida horse conch)
5
0.04
2
0.14
167.25
1.77
69.42
0.54
357.22
0.48
Total Fasciolariidae
(tulip shells)
366
2.88
120
8.19
410.65
4.35
282.56
2.22
2091.68
2.82
Marginalia spp.
(marginalia)
7
0.06
7
0.48
0.57
0.01
<>
<>
Conus Jaspldeus
(jasper cone)
1
0.01
1
0.07
0.05
0.00
(O)
(o>
to
Bulls striata
(common Atlantic bubble)
1
0.01
1
0.07
0.05
0.00

(O)
(O)
(O)
Gastropoda (medium marina)
(medium-sized marine snails)
1386
10.92
<>
()
317.50
3.37
136.28
1.07
()
()
Total Marina Gastropoda
(marine snails)
3534
27.83
870
59.35
3089.79
32.76
1390.55
10.91
5093.72
6.86
Euglandlna roaea
(rosy euglandina)
1
0.01
1
0.07
3.04
0.03
(c)
(O)
Polygyra spp.
(polygyr.)
32
0.25
20
1.36
0.43
0.00
(O)
Total Terrestrial Gastropoda
(terrestrial snails)
33
0.26
21
1.43
3.47
0.04
0.00
0.00
0.00
0.00
235


Buck Key Shell Midden 74
Inferred Regional Distribution of Resources in
Prehistory 75
3 A TEMPORAL PERSPECTIVE ON RESOURCE HETEROGENEITY 88
Environmental Continuity and Change 88
Potential Short-term Environmental Change 90
Freezes, Red Tides, and Storms 90
Seasonal Variability 92
Potential Medium-term Environmental Change 94
Climatic and Sea Level Variability 94
Inlet Dynamics 95
Potential Long-term Environmental Change 96
Climatic Variability 96
Sea Level Variability 98
Inlet Dynamics 104
Estuarine-Marine Zooarchaeological Fauna as Proxy
Data 105
Interpretive Potential and Time Resolution 105
Temporal Zooarchaeological Assemblages 113
Effective Scale and Zooarchaeological
Potential 134
4 INTEGRATING SPATIAL AND TEMPORAL PERSPECTIVES 152
Zooarchaeological Patterns at the Local Scale 152
Big Mound Key 152
Cash Mound 154
Useppa Island 156
Josslyn Island 157
Buck Key Shell Midden 158
Exploitation Patterns at the Regional Scale 161
An Aquatic Exploitation 161
Fishing, Gathering, and Hunting Technology 165
Hypotheses for Variation in Fishing Artifacts...177
5 SUMMARY AND CONCLUSIONS 180
APPENDICES
A ZOOARCHAEOLOGICAL DATA TABLES 205
Big Mound Key 206
Cash Mound 217
Useppa Island 225
Josslyn Island 228
Buck Key Shell Midden 240
B AQUATIC VERTEBRATES & INVERTEBRATES BY
ARCHAEOLOGICAL SITE AND MODERN HABITAT 251
vi


Corbett Torrence drafted Figure 1 (also used in Figures
7 and 16). Merald Clark produced the final versions of
Figures 2, 3, 6, 8, 9, and 10. He also illustrated the
fishing net in Figure 19 and put together the pie chart
figures, 7 and 16. Jim Wagner drafted Figures 4, 5, 11, 12,
14, and 15. In addition, he illustrated the fish in Figures
17 and 18. Scott Swan produced Figure 13. Claudine Payne,
Irv Quitmyer, Becky Saunders, and Sam Chapman contributed
computer expertise in the final production (i.e.,
translation of software programs) of Appendices A and B.
It is with great gratitude that I acknowledge the
members of my supervisory committee. Michael Moseley,
Elizabeth Wing, Jerald Milanich, Clay Montague, and Rhodes
Fairbridge have given me much guidance during the
dissertation process. I further thank Professor Fairbridge
of Columbia University and NASA-Goddard Institute for Space
Studies for going out of his way to attend my final
examination and afterwards to visit the Pineland Site in Lee
County. Carole Mclvor of the Department of Forest Resources
and Conservation generously came to my rescue when it became
clear that Clay Montague could not attend the final
examination. In addition to my committee, I have had the
good fortune to benefit from the advice, perspective, and
encouragement of William Marquardt, director of the
Southwest Florida Project.
iv


98
during the 1960s is seen as analogous to the "Little Ice
Age" of the seventeenth through nineteenth centuries
(Sanchez and Kutzbach 1974:128). Based on instrumental
temperature and precipitation records for the 1931 to 1960
period compared with the 1961 to 1970 period, the authors
conclude that the change to a cooler climate represents a
southward shift of the climatic pattern that had been
established during the years 1931 to 1960.
However, south Florida may have been little affected by
Little Ice Age temperature and precipitation changes because
peninsular Florida's prevailing easterly wind pattern
probably was not altered (cf. Sanchez and Kutzbach
1974:Figures 1 and 2; William Tanner, personal communication
1991). The maps generated by Sanchez and Kutzbach for the
cool 1960s (1974:Figures 1 and 2) indicate that south
Florida would have experienced an annual temperature
decrease of only 1/2 and that essentially no change in
total annual precipitation would have occurred under these
slight cooling conditions. Another consideration is that an
increased frequency of winter-season storms from the
northwest (implying a change in wind pattern) could alter
mean sea level.
Sea-Level Variability
Research concerning Holocene sea-level change often is
treated within Quaternary contexts and thus, focuses at
broad time resolutions (i.e.,
increments of a thousand or


Polinices dupllcatue
(shark aye)
6
0.10
2
0.25
30.61
0.29
15.45
0.24
7.02
0.02
Urosalplnx perrugata
(Gulf oyster drill)
6
0.10
6
0.74
2.46
0.02
(c)
(c)
(C)
Melongena corona
(common crown conch)
138
2.27
46
5.71
247.82
2.32
48.02
0.74
84.64
0.29
Bumycon contrarlum
(lightning whelk)
258
4.25
68
8.44
5014.75
46.88
2980.87
45.73
1213.12(f)
4.20
Bumycon apiratum pyruloldes
(Say's pear whelk)
28
0.46
16
1.99
137.18
1.28
63.08
0.97
209.60
0.73
Total Melongenidae
(crown conchs)
424
6.99
130
16.13
5399.75
50.48
3091.97
47.43
1507.36
5.22
Nassarlua vlbex
(common eastern nassa)
2
0.03
2
0.25
0.40
0.00
(c)
(O)

raaololarla llllum hunter la
(banded tulip)
113
1.86
26
3.23
95.99
0.90
66.43
1.02
75.40
0.26
Faaololarla tulipa
(true tulip)
12
0.20
8
0.99
179.53
1.68
228.09
3.50
269.36
0.93
raaololarla app.
(tulip shall)
30
0.49
1
0.12
11.51
0.11
3.76
0.06
2.90
0.01
Pleuroploca gigantea
(Florida horse conch)
4
0.07
4
0.50
873.03
8.16
462.14
7.09
1247.27
4.32
Total raaciolariidaa
(tulip shells)
159
2.62
39
4.84
1160.06
10.85
760.42
11.67
1594.93
5.52
Oliva aayana
(lettered olive)
1
0.02
1
0.12
9.27
0.09
5.32
0.08
3.90
0.01
Gastropoda (small marina)
(small marina snails)
1
0.02
(A)
()
0.51
0.00
.37
0.01
(A)
()
Gastropoda (madium marina)
(medium-sized marina snails)
98
1.61
()
()
32.96
0.31
17.03
0.26
()
<)
Gastropoda (larga marina)
(whelks/horse conchs)
52
0.86
()
()
77.58
0.73
37.38
0.57
()
(A)
Total Marina Gastropoda
(marina snails)
915
15.08
310
38.46
6982.89
65.28
3972.74
60.94
3223.45
11.16
Polygyra spp.
(polygyr.)
1
0.02
1
0.12
0.03
0.00
<>
(c)
Total Tarrastrial Gastropoda
(terrestrial snails)
1
0.02
1
0.12
0.03
0.00
0.00
0.00
0.00
0.00
Anadara transversa
(transverse ark)
6
0.10
5
0.62
1.32
0.01
1.26
0.02
4.39
0.02
Anadara spp.
(ark)
1
0.02
1
0.12
0.18
0.00
(c)
(o>
Noetla ponderosa
(ponderous ark)
12
0.20
8
0.99
141.99
1.33
30.49
0.47
54.61
0.19
A re id aa/C ardi id aa
(arks/cockles)
8
0.13
1
0.12
2.91
0.03
2.16
0.03
(d)
(d)
Braohldontea exustus
(scorched mussel)
63
1.04
30
3.72
7.48
0.07

(c)
(o>
Geukensla dealesa granoalsslaa
(Atlantic ribbed mussel)
32
0.53
3
0.37
7.61
0.07
3.09
0.05
6.45
0.02
Pinnidae
(pan shall)
539
8.88
10
1.24
114.61
1.07
26.35
0.40
237.30
0.82
Argopecten spp.
(scallop)
14
0.23
4
0.50
35.82
0.33
11.93
0.18
30.43
0.11
Pectinidae
(scallops)
1
0.02
()
(i
0.12
0.00
0.25
0.00
<>
(A)
Anomla simplex
(common jingle shall)
10
0.16
4
0.50
3.37
0.03
ii
(O)
(O)
Ostrea equestrla
(crested oyster)
107
1.76
65
8.06
40.33
0.38
(o)
(O)
(O)
(c)
Crassostrea vlrglnlca
(eastern oyster)
603
9.94
110
13.65
815.17
7.62
112.38
1.72
49.50(f)
0.17
Ostraidas
(oysters)
60
0.99
()
(i
8.73
0.08
4.56
0.07
(>
()
Cardltamera florldana
(broad-ribbed cardita)
3
0.05
2
0.25
0.79
0.01
(O)
(O)
(Cl
Splsula solldlsslma almilla
(southern surf clam)
560
9.23
35
4.34
666.20
6.23
87.40
1.34
437.33
1.51
Telllna spp.
(tellin)
1
0.02
1
0.12
0.10
0.00
(c)
(o)
(o)
(O)
Mercenaria campechlensls
(souths rn quahog)
14
0.23
4
0.50
291.12
2.72
40.32
0.62
156.03
0.54
Chlone cancellata
(cross-barred venus)
10
0.16
7
0.87
10.87
0.10
(O)
(O)
Vanaridaa
(venus clams)
1
0.02
1
0.12
0.12
0.00
<)
(O)
(O)

Bivalvia
(oysters, clams, etc.)
13
0.21
(>
<>
2.38
0.02
1.88
0.03
()
()
Total Bivalvia
(bivalves)
2058
33.91
291
36.10
2151.22
20.11
322.07
4.94
976.04
3.38
Mollusoa
(snails and bivalves)
()
()
1277.00
11.94
154.13
2.36
(>
(A)
Total Mollusca
(snails and bivalves)
2974
49.00
602
74.69
10411.14
97.33
4448.94
68.25
4199.49
14.54
Dssmotichia
(sea urchins)
943
15.54
1
0.12
17.00
0.16

(d)
(d)
(d)
Echinodarmata
(echinoderms)
27
0.44
()
()
2.73
0.03
(d)
(<*)
(<>
Madraporaria
(hard corals)
2
0.03
1
0.12
0.04
0.00
(c)
(O)
(o)
Total Invartabrata
(animals without backbones)
4268
70.32
760
94.29
10532.86
98.47
4816.91
73.90
4616.49
15.98
TOTAL 8AMPLE
(vertebratesinvertebrates)
6069
100.00
806
100.00
10696.30
100.00
6518.58
100.00
28884.49
100.00
250


10
heterogeneity in its spatial distribution and by geophysical
dynamism through time; both attributes are typical of most
environmental systems. It is these operative factors that
dictate the comparability of intersite and intrasite
zooarchaeological samples and provide context for
human-environment relationships.
To illustrate, within a region such as Charlotte Harbor
a zooarchaeological assemblage from one site may be very
different from that of another site due to differences
(i.e., qualitative or quantitative) in the habitats that
surround each site. Therefore, between sites an assemblage
from one time period may be different from that of another
period because of a difference in location rather than a
diachronic cultural change. Within a site, an assemblage
from one time period may be different from one of another
time period due to a geophysical change such as a
fluctuation in sea level or the creation/closing of a nearby
ocean inlet rather than a diachronic cultural change.
This is not meant to imply that sociohistorical factors
were absent from Charlotte Harbor's prehistoric trajectory
of fauna use. For example, an apparent diachronic,
intrasite variation could be simply explained by variation
in site deposits (e.g., midden versus domestic floor) based
on patterning of artifacts, post holes, etc. Clearly, human
agency introduces a complex web of variables that interact
with the biotic and physical environments. We can begin to


25
Food vs. Commensals
General criteria for deciding what was or was not eaten
are based on species, size, quantity of individuals, and
archaeological context. All vertebrate species identified
are assumed to have been eaten. Small barnacles and many
forms of small gastropod and bivalve animals were surely not
consumed, at least in the middens sampled. There was little
archaeological evidence for dense deposits of small
gastropod or bivalve shells. It is clear from experimental
midden research (Wing and Quitmyer 1992) that many creatures
make their way to the middens attached to larger host
species. Often small bivalve specimens were found with both
valves intact, or shells were water worn. Thus, certain
species were not included in the dietary analysis (Appendix
B, footnote c). However, occasional distinct assemblages
warranted inclusion. For example, the cross-barred venus
(Chione cancellata) at Useppa Island (Table B-9) and spotted
slipper shell (Crepidula maculosa) at Buck Key (Table B-16)
were of such size and quantity to suggest purposeful
collection.
Sources of Bias
Preservation problems relating to fragment counts and
weights are numerous and uncontrollable (Grayson 1984:21-22;
Wing and Brown 1979:121-123). The effects of scavengers and
differential preservation due to depositional conditions,
bone/shell condition, or bone/shell structure are difficult


94
decreased by a similar amount (Sanchez and Kutzbach
1974:Figure 3). The same intraannual alteration is
suggested for the Yuctan peninsula where Folan and his
colleagues (1983:464-467) consider this to have possible
links to Mayan population movements.
Potential Medium-term Environmental Change
Year-to-year precipitation, temperature, and sea-level
variability as well as tidal inlet dynamics fall into this
category.
Climatic and Sea Level Variability
Climatic variability over periods up to a decade
undoubtedly impacted estuarine faunal distribution.
Year-to-year variability such as clusters of several dry or
wet years in southwest Florida (Widmer 1988:102) would
affect salinity gradients for intervals of time long enough
to alter faunal distribution (particularly the molluscs).
In the same manner as noted under short-term change, sessile
mollusc populations may have been most affected by such
variability while fishes and mobile molluscs would simply
have moved with the gradient.
Medium-term cooling and warming trends may also have
affected faunal resources. Cooling trends may have meant an
increased frequency in freezes. A 1/2 degree cooling of
annual temperatures in south Florida would not have impacted
annual precipitation (Sanchez and Kutzbach 1974:Figure 1).
At least one researcher sees a significant correlation


THE ZOOARCHAEOLOGY OF CHARLOTTE HARBOR'S
PREHISTORIC MARITIME ADAPTATION:
SPATIAL AND TEMPORAL PERSPECTIVES
By
KAREN JO WALKER
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1992


65
Caloosahatchee (Gunter and Hall 1969:63-64). Other than the
blue crab, the marsh clam, and mangrove prop root/mud flat
communities of small gastropods and bivalves, little is
known about invertebrates in upper tidal streams (Estevez et
al. 1984:CH160-CH163).
Type 2, for present purposes, is limited to areas of
the mangrove-fringed lower tidal streams and estuarine
locations. Molluscs commonly associated with mangrove prop
roots and adjacent intertidal muds include the eastern
oyster (Crassostrea virginica), Atlantic ribbed mussel
(Geukensia demissa granosissima), eastern white
slipper-shell (Crepidula plana), Gulf oyster drill
(Urosalpinx perrugata), scorched mussel (Brachidontes
exustus), worm-shell (Turritella spp.), crown conch
(Melongena corona), semiplicate dove-shell (Anachis
semiplicata), Atlantic bubble (Bulla striata), broad-ribbed
cardita (Carditamera floridana), coffee melampus (Melampus
coffeus), and several ceriths (Cerithium spp.) (Abbott 1974;
Odum et al. 1982:48-49). The mangrove tree crab (Aratus
pisonii) is an abundant resident.
Oyster bed communities (Type 3) are important and
freguent features in some parts of the Charlotte Harbor
estuarine system (Woodburn 1965). Turtle Bay, Bull Bay,
Matlacha Pass, and San Carlos Bay are examples of such
areas. The eastern oyster is well adapted to estuarine
situations, tolerating constant salinity fluctuations


Mean Sea Level
Meters
141
3000 B.P. 2000 B.P.
(1050 B.C.) (50 B.C.)
1000 B.P. 0 B.P.
(A.D. 950) (A.D. 1950)
Feet


4
starchy seeds that are identified in the Charlotte Harbor
samples are not of the cultivated varieties that are
important in the prehistoric Midwest and Midsouth of the
United States (Scarry and Newsom 1992).
The Spanish chroniclers relate that the Calusa obtained
a wild plant root from interior south Florida for the
purpose of making a bread. In light of the non-
preservability of root remains and the absence of a
byproduct (unlike the case of maize cobs), the importance of
this food category remains open to debate. It has been
suggested that cut shark teeth found at the Fort Center and
Granada sites may have been used to create grater boards for
processing edible roots (Hale 1984:184; Kozuch 1991). To
date, the bread root described by the Spanish has not been
satisfactorily identified (Hann 1986).
The cultural history of the Calusa as an ethnic entity
remains unclearwhether they developed in the Charlotte
Harbor area (Widmer 1988) or originated from the Okeechobee
Basin of interior south Florida (Milanich and Fairbanks
1980:181). Furthermore, the emergence of Calusa complexity
may well have been a late phenonmenon triggered by the
influx of sixteenth-century material goods into the
aboriginal economic system (Marquardt 1991).
Thus, we do not know if the ethnohistoric record is
appropriate for Charlotte Harbor temporal contexts other
than the protohistoric and historic Calusa. Conversely, nor
t


Table A-9. Faunal Analysis, Useppa Island,
Level 2.
8LL51, Lee County
/
Florida
, Aug.
/Sept.
1985
Sample
, Test
I
1
<
Species
Common Name
Number of
Identifiable
Fragments
%
of
Total
MNI
%
of
Total
Bone/shell %
Weight of
(grams) Total
Minimum
Meat Wt
Estimate
*
. of
Total
Maximum
Meat Wt.
Estimate
X
of
Total
Slgmodon hlapldua
(hispid cotton rat)
7
0.07
1
0.09
0.63
0.01
17.68
0.19
34.00
0.05
Mammalia (small)
(small mammals)
5
0.05
2
0.10
0.32
0.00
10.21
0.11
(d)
(d)
of. Odocollaua vlrglnlanua
(white-tailed deer)
3
0.03
1
0.09
5.11
0.06
96.34
1.01
23595.10
33.87
Mammalia (large)
(large mammals)
26
0.24
(a)
(a)
18.43
0.20
27.32
0.29
(a)
(a)
Total Mammalia
(mammals)
41
0.39
4
0.36
24.49
0.27
151.55
1.59
23629.10
33.92
Aves (medium)
(medium-sized birds)
24
0.23
2
0.18
2.43
0.03
36.64
0.30
761.36
1.09
Total Aves
(birds)
24
0.23
2
0.18
2.43
0.03
36.64
0.38
761.36
1.09
Colubridae
(oolubrids)
3
0.03
2
0.16
0.17
0.00
2.17
0.02
279.00
0.40
Oopharua polyphemua
(gopher tortoise)
5
0.05
1
0.09
0.90
0.01
42.24
0.44
1815.33
2.61
Testudnea
(turtles)
10
0.09
3
0.27
3.07
0.03
00.94
0.85
1929.78
2.77
Total Reptilia
(reptiles)
18
0.17
6
0.54
4.14
0.05
125.35
1.31
4024.11
5.78
Rhlzoprlonodon tarraaaovae
(Atlantic sharpnose shark)
4
0.04
1
0.09
2.44
0.03
494.72
5.18
2066.61
4.11
Lamniformes
(sharks)
27
0.25
2
0.18
1.52
0.02
274.86
2.80
516.91
0.74
Aatobatua narlnarl
(spotted eagle ray)
1
0.01
1
0.09
0.36
0.00
164.10
1.72
2799.62
4.02
Myliobatidae
(eagle rays)
1
0.01
()
(a)
0.25
0.00
118.62
1.24
(a)
(a)
Daayatidae
(stingrays)
23
0.22
1
0.09
3.42
0.04
1216.98
12.75
1540.94
2.21
Rajiformes
(skates and rays, etc.)
1
0.01
1
0.09
0.20
0.00
97.26
1.02
568.00
0.82
Chondrichthyea
(cartilaginous fishes)
1
0.01
(a)
(a)
0.02
0.00
5.71
0.06
(a)
(a)
Total Chondrichthyea
(cartilaginous fishes)
50
0.55
6
0.54
8.21
0.09
2372.25
24.86
8292.00
11.90
Bravoortla spp.
(menhaden)
2
0.02
1
0.09
0.03
0.00
0.93
0.01
212.82
0.31
Clupeidae
(herrings)
41
0.39
1
0.09
0.24
0.00
6.06
0.06
32.97
0.05
Total Clupeidae
(herrings)
43
0.40
2
0.18
0.27
0.00
6.99
0.07
245.79
0.35
Bagra mariaus
(gafftopsail catfish)
21
0.20
1
0.09
3.24
0.04
63.02
0.66
507.71
0.73
Arlopala falla
(hardhead catfish)
651
6.13
40
3.63
39.35
0.44
596.28
6.25
7996.00
11.48
Ariidae
(sea catfishes)
139
1.31
12
1.09
9.06
0.10
159.01
1.67
1028.40
1.40
Total Ariidae
(sea catfishes)
611
7.64
53
4.01
51.65
0.57
010.31
8.57
9532.11
13.60
Opaanua spp.
(toadfish)
9
0.08
4
0.36
0.61
0.01
14.02
0.15
825.92
1.19
Ogcocephalidae
(batfishes)
1
0.01
1
0.09
0.01
0.00
0.35
0.00
179.50
0.26
Carangidae
7
0.07
1
0.09
3.93
0.04
74.90
0.79
3180.07
4.56
Ortboprlatla chryaoptara
(pljfl.h)
24
0.23
15
1.36
0.38
0.00
9.16
0.10
573.76
0.02
Archoaargua probatocephalua
(sheepshead)
14
0.13
2
0.18
2.37
0.03
47.56
0.50
1869.70
2.60
Lagodon rhomboids a
(plnfish)
120
1.13
69
6.26
1.27
0.01
27.13
0.28
2432.75
3.49
Sparidae
(porgies)
5
0.05
1
0.09
0.11
0.00
3.00
0.03
4.89
0.01
Total Sparidae
(porgies)
139
1.31
72
6.53
3.75
0.04
77.69
0.01
4307.34
6.10
Sparidae/Sciaenldae
(porgies/drums)
86
0.81
(a)
(a)
2.17
0.02
43.94
0.46
(a)
(a)
Balrdlalla chryaoura
(silver perch)
8
0.08
5
0.45
0.23
0.00
5.03
0.06
201.89
0.29
Cynoaclon nebuloaue
(spotted seatrout)
15
0.14
11
1.00
5.16
0.06
95.00
1.00
7830.00
11.24
Cynoaclon spp.
(seatrout)
3
0.03
1
0.09
0.30
0.00
7.40
0.08
(d)
(d)
LaloatomuB xanthurua
("pot)
1
0.01
1
0.09
0.01
0.00
0.35
0.00
9.26
0.01
225


131
level ca. A.D. 1200 was the same as today's or Josslyn's
archaeofaunal remains are not sensitive enough to detect a
rise of low magnitude (roughly .3 m or 1 ft) such is
documented by the beach ridge sets. The latter is probably
the case.
Contemporaneous with the Josslyn A-l-4 sample is the
Buck Key B-2-9 sample (Kozuch 1986), which radiocarbon-dates
to A.D. 1250 (Table 2). This sample differs from the Buck
Key A-2-11 sample in that its faunal remains reflect a much
greater emphasis on fishing (Figure 15; Table A-15). The
large diversity of aquatic vertebrates (28 species,
including sea turtle) in the sample implies a high-salinity
environment just as exists today in the Buck Key area. The
size of the fish (Figure 8) represented in the sample
suggests a fishing focus at or near an inlet.
Today, Blind Pass is the nearest inlet to the shell
middens on Buck Key (Figure 1). In the absence (pre-A.D.
1350) of the southern half of Captiva Island, there would
have existed a much closer, significant inlet off the
northwestern shoreline of Buck Key. Blind Pass would not
have existed, at least not in its present form. Again,
Tanner (1991) and Stapor et al.'s (1991) sea-level rise of
A.D. 850 to A.D. 1150/1250 or A.D. 1450, respectively (Table
7), is not perceptible in the archaeofauna. It may be that
the magnitude of this rise, .3 to .6 m (1 to 2 ft), was too
small to affect aquatic fauna at the high-salinity end of


24
Figure A-l illustrates the distribution of vertebrate
samples. An MNI of 150 is the point of diminishing returns.
In other words, few new species are added once one has
identified ca. 150 individual animals. Most of the samples
show a relatively high species diversity. Following this
guide, ten samples may be considered less than
representative. However, because my methodology emphasizes
the combined treatment of vertebrates and invertebrates, a
second graph has been constructed to convey sample size
adeguacy (Figure A-2).
Two curves emerge. The higher curve represents highly
diversified samples, all but one meeting the criterion of
600 MNI. The lower curve represents distinct types of
samples, all from the Cash Mound column (samples #5, #6, #7,
and #8). The Cash Mound pattern may suggest a specialized
area of the site (see text for discussion). The position of
sample #4 (Big Mound Key, Layer 2) on the graph also
suggests a specialized assemblage. Although the point of
diminishing returns is not known for this lower curve
(broken line), samples are probably well beyond where it
would occur. The sizes of these five samples, then, are
more than adeguate within their own contextual realm. Data
of this kind are important for any region of study, for they
can be used as a guideline for future faunal analyses.


164
intraregional distribution of shark MNI summarized in Table
12. Big Mound Key and Buck Key show the greatest MNI, again
reflecting their close proximity to ocean inlets.
Faunal communities represented in the archaeological
middens (Appendixes A and B) indicate that gathering
locations such as oyster bars and fishing areas such as
seagrass meadows were exploited in a generalized manner.
For example, predators such as the common crown conch were
gathered along with the targeted oyster (i.e., oyster shells
are predominant among the faunal remains representing the
bar community). Seine net assemblages from the seagrass
flats provided the occasional blue crab and predatory fish
as well as targeted schooling fishes (i.e., the schooling
fishes are predominant in the faunal remains). More
selective fishing was performed with the use of throat
gorges, spears or leisters, composite hooks, and gill nets.
The latter two types of gear were designed for inshore and
inlet waters that are relatively deeper than the flats.
Earlier in this dissertation, it was established that
the detectability of environmental change signatures depends
on the temporal scale of the variation, site location, and
magnitude of variation. At a regional scale (i.e., a change
that would affect regional exploitation patterns as a
whole), the form of environmental change that most likely
would produce change signatures in the archaeofaunal record
is long-term sea-level fluctuation. Even so, detection is


46


REFERENCES CITED
Abbott, R. Tucker
1974 American Seashells: The Marine Mollusca of the
Atlantic and Pacific Coasts of North America. 2nd ed.
Van Nostrand Reinhold Company, New York.
Alberts, James, Albert Hanke, and Robert Harriss
1969 Studies on the Geochemistry and Hydrography of the
Charlotte Harbor Estuary. Charlotte Harbor Estuarine
Studies, Progress Report No. 1. Sarasota, Florida.
Allen, Robert L. and R. Eugene Turner
1989 Environmental Influences on the Oyster Industry
Along the West Coast of Florida. Journal of Shellfish
Research 8(1):95-104.
Bloom, Arthur L.
1983 Sea Level and Coastal Changes. In Late Quaternary
Environments of the United States, vol. 2, edited by H.
E. Wright, Jr., pp. 42-51. Minneapolis.
Boesch, Donald F.
1977 A New Look at the Zonation of Benthos along the
Estuarine Gradient. In Ecology of Marine Benthos,
edited by B. C. Coull, pp. 245-266. University of
South Carolina Press, Columbia.
Bruun, Per
1990 Port Engineering, volume 2: Harbor Transportation,
Fishing Ports, Sediment Transport, Geomorphology,
Inlets, and Dredging, 4th ed. Gulf Publishing Company,
Houston.
Butler, Phillip A.
1954 Summary of Our Knowledge of the Oyster in the Gulf
of Mexico. In Gulf of Mexico: Its Origin, Waters, and
Marine Life, pp. 479-489. Fishery Bulletin 89, U.S.
Fish and Wildlife Service, vol. 55. Washington, D.C.
Butzer, Karl W.
1982 Archaeology as Human Ecology. Cambridge University
Press, Cambridge.
256


64
(Epinephelus itajara), sawfish (Pristis spp.), Florida
pompano (Trachinotus carolinus), large jacks, Spanish
mackerel (Scomberomorus maculatus), barracuda, and whiting
(Menticirrhus spp.) (Hoese and Moore 1977; Wang and Raney
1971).
Distribution of Invertebrates
Little systematic survey of aquatic invertebrates has
been undertaken in the Charlotte Harbor study area (see
Virnstein 1987:Figure 1). Based on comparative literature
and my own field observations, five zones were chosen to
examine invertebrates (primarily molluscs) along the
salinity gradient. These are (1) tidal stream; (2)
estuarine mangrove edge; (3) oyster bed; (4) seagrass
meadow; and, (5) littoral/Gulf. The classifications are
largely related to the limited mobility of aquatic molluscs.
As with the vertebrate categories, all types overlap,
creating a continuum of distribution.
Few marine invertebrates are known to venture far into
the tidal streams (Wells 1961:262) and these are highly
mobile animals that spend a small percentage of their life
cycle there. The blue crab (Callinectes sapidus), for
instance, travels upstream to the tidal-influenced marshes
where mating occurs, and returns to the estuarine bays and
later to the Gulf (Durako et al. 1985:250-251). Beds of the
marsh clam, Rangia cuneata, are associated with the Myakka
and Peace rivers (Woodburn 1965:6), as well as the


121
juvenile crown conchs who prefer a very different habitat,
and thus feeding behavior. Studies show that juvenile crown
conchs live in the seagrass flats and intertidal mudflats
and move to oyster bars only when they reach maturity
(Caldwell 1959:117; Dinetz 1982; Hathaway 1958:191; Woodbury
1986). Presumably, juvenile conchs feed on detritus and
small seagrass molluscs although this has not been made
explicit by experimentation.
What type of environmental stress, then, can account
for an increased food supply for both juvenile and adult
crown conchs as well as the decreased salinities that are
indicated by the crested oyster and other animals in the
A.D. 680 sample? A major hurricane comparable to 1960s
Donna is a possibility. An influx of heavy rains would
lower estuarine salinities. Destruction of seagrasses and
oyster bars is a common result of large hurricanes in
addition to general mass mortality of vertebrates and
invertebrates. If they themselves survived the impact,
crown conchs would be the likely opportunist because of
their scavenging nature. Like the catfish, crown conchs
would not be deterred by oxygen-depleted, turbid water
conditions (see Hathaway and Woodburn 1961:60).
A short-term population increase of crown conchs is
feasible although such a response has not been noted in
post-hurricane reports. These reports, however, rarely
mention shellfish with the exception of the


92
fish due to oxygen-depleted waters (Tabb and Jones 1962:377)
might have supplied a short-term food surplus in a manner
similar to the freeze and red tide situations.
Post-hurricane observations suggest that adverse
conditions are temporary; the salinity gradient returns to
normal within six weeks (Tabb and Jones 1962:376),
seagrasses regenerate rapidly due to a fast growth rate
(Thomas et al. 1961:196), and fish return within as little
as two weeks beginning with the appearance of the low
oxygen-tolerant sea catfish (Tabb and Jones 1962:378).
Multiple hurricanes occurring in quick succession, on the
other hand, can result in a substantially lengthened
recovery time (Wells 1961:253-255).
Seasonal Variability
Charlotte Harbor falls within Koppen's "tropical
wet-and-dry" or "Aw" classification defined by a cool month
temperature average of at least 18 C (Oliver and Hidore
1984:186-187, 189). Unlike temperate areas to the north,
seasonal migration of Charlotte Harbor fauna due to
temperature variation is minimal. Wang and Raney (1971:51)
document (for 1968-1969) a decrease in overall fish
availability during January and February cool temperatures
(i.e, when air and water temperatures reach 20 C and
below).
The dominant variation throughout the year is the
fluctuation in precipitation. More than 60% usually falls


157
burrfish also account for sizable meat portions (Appendix
A) .
The data from this one sample suggest that Useppa's
environmental setting at 570 B.C. was similar to that of the
present. The sea level may have been slightly lower based
on the oyster bar species composition, but the data are not
convincing. The data do, however, indicate that no ocean
inlet existed in the immediate vicinity of Useppa Island
when the A-4-2 faunal remains entered into the midden.
Josslvn Island. 8LL32
Faunal samples A-l-32 and A-l-22 radiocarbon-date to
130 B.C. and 120 B.C. (Table 2). Samples A-l-12 and A-l-4
date to A.D. 820 and A.D. 1200, respectively (Table 2).
Overall, 44,575 vertebrate and 32,099 invertebrate bone and
shell fragments were analyzed from the four samples.
Estimates of MNI are 1,323 vertebrates and 3,936
invertebrates (Tables A-10 through A-13). Midden faunal
remains at Josslyn are so dense that half the volume of
sample A-l-4 was found to produce as representative a sample
as that of a whole sample (see Appendix A). In addition,
the Josslyn samples display a high species diversity
("taxonomic richness") with an average of 29 vertebrates and
45 invertebrates.
Sixty-eight percent of the archaeofauna indicates use
of mangrove/seagrass meadow habitats (Figure 7). Extensive
shallow seagrass meadows surround the island even today.


through time. This dissertation establishes the needed
contextual framework essential for properly addressing the
broader question of productivity, stability, and complexity.
Zooarchaeological remains provide an important proxy
data set for the purpose of modeling Charlotte Harbor's
spatial and temporal estuarine paleoenvironments at multiple
scales. It is argued that estuarine archaeofauna can serve
as paleoecological data, albeit with limitations. The
analysis of fine-screened bulk samples from five sites
variously located within the Charlotte Harbor estuarine
system forms the data base of the modeling exercise. These
midden materials date from 600 B.C. to A.D. 1400, spanning
the Caloosahatchee I through III archaeological periods.
Central to the model is an estuarine gradient analysis
using salinity as the primary organizing variable for
understanding the distribution of living fauna. The spatial
focus is on both local (site) and regional (Charlotte
Harbor) scales. From a temporal perspective, short-,
medium-, and long-term forms of environmental variation are
defined in terms of potential alteration of the estuarine
gradient. Proposed zooarchaeological signatures of such
multi-scalar alteration that were explored among the
Charlotte Harbor data lead to the conclusion that medium-
and long-term sea-level fluctuations and inlet dynamics are
most likely to have affected human subsistence. For the
Charlotte Harbor samples presented here, sea-level
xiv


63
(Orthopristis chrysoptera), pinfish (Lagodon rhomboides),
sheepshead, and gag grouper (Mycteroperca microlepis) are
all common to abundant fishes among the grassbeds (Zieman
1982:50). Adults commonly inhabit the mangrove fringe. In
addition, anchovies are known to concentrate in seagrasses,
especially while juveniles (Carr and Adams 1973:515).
Wang and Raney (1971:22-23; 24) report that three
species of anchovy (Anchoa mitchilli, Anchoa hepsetus, and
Anchoa cubana) and the hardhead catfish (Ariopsis felis)
frequent grass flats but are abundant in all parts of the
Charlotte Harbor system. Pinfish, although densely
associated with seagrasses in juvenile and adult forms, have
a variable habitat distribution (Darcy 1985:3-6). Mullet
aggregate on a seasonal basis in grass areas, feeding
directly on grass blades (Zieman 1982:64) among other plant
and animal materials. Larger, predatory fishes such as
sharks (Lamniformes), barracudas (Family Sphyraenidae), and
jacks occasionally migrate inshore to feed in the
mangrove/grass bays.
Type 5 includes littoral zones of the barrier islands
(e.g., Sanibel, Captiva, Cayo Costa, and Gasparilla),
oceanic passes (e.g., Gasparilla, Boca Grande, Captiva,
Redfish, Blind), and open Gulf waters. Most fishes that are
primarily associated with these areas also frequent the
oceanic and estuarine bays. Examples are numerous sharks
(Hoese and Moore 1977:107-116; Larson 1980:81-95), jewfish


Figure 15. Comparative Percentages of Zooarchaeological
Food MNI, Minimum Meat Weight, and Maximum Meat Weight
by Provenience for the Buck Key Faunal Samples
(Based on Data Presented in Appendix A).


Figure 11. Comparative Percentages of Zooarchaeological
Food MNI, Minimum Meat Weight, and Maximum Meat Weight
by Provenience for the Josslyn Island Faunal Samples
(Based on Data Presented in Appendix A).


Figure 12. Comparative Percentages of Zooarchaeological
Food MNI, Minimum Meat Weight, and Maximum Meat Weight
by Provenience for the Cash Mound Faunal Samples
(Based on Data Presented in Appendix A).


124
abundance of juvenile shells. A sample of these juvenile
shells was removed and sent for radiocarbon analysis as a
test of the crown conch/low stand association. The result
was A.D. 420 +/- 60, close to the hypothesized low stand
date range of ca. A.D. 450 to 850/950.
Since a medium-term salinity variation cannot be
discounted for the A.D. 680 sample, information from
contemporaneous middens from outside of the present study
are appropriate. Widmer (1986a) argues for a
sixty-cm-higher water level at ca. A.D. 400 based on
excavations of barnacle-encrusted post molds at the Solana
site, 8CH67, located on a small Peace River tributary
(Figure 1).
Widmer also describes a heavy dietary dependence on the
crown conch at the Solana site. If salinities in the Solana
area were high enough to accommodate the crown conch, as
they apparently were, a higher sea level would have pushed
the salt wedge up to the mouth of the Peace River. Today,
only in the dry winter (January and February) do salinities
reach even as high as 20 ppt in this area. This is the
minimum of the conch's active salinity range. Since Solana
was dated near the end of the hypothesized high stand, the
crown conchs here may indicate the start of receding waters.
If the association between the crown conch abundance and
sea-level low stand is valid, this Solana occupation and the
A.D. 420 Cash Mound date may document the sea-level drop


Table A-15. Faunal Analysis, Buck Key
2, Level 9.
Shell Midden,
8LL722,
Lee
County
, Florida,
March 1986 Sample,
Test
Spacas
Common Name
Number of
Identifiable
Fragments
%
of
Total
MNI
of
Total
Bone/Shell
Weight
(grams)
%
of
Total
Minimum
Meat Wt.
Estimate
%
of
Total
Maximum
Meat Wt.
Estimate
*
of
Total
Antidas
(ducks)
2
0.02
2
0.51
0.63
0.01
11.79
0.05
902.70
1.11
Avas
(medium-sized birds)
1
0.01
(a)
(a)
0.01
0.00
0.36
0.00
(a)
(a)
Total Aves
(birds)
3
0.02
2
0.51
0.64
0.01
12.15
0.05
902.70
1.11
Oopharua polyphemuo
(gopher tortoise)
2
0.02
1
0.25
0.01
0.00
3.89
0.02
1815.33
2.22
Chalonidaa
(sea turtles)
9
0.07
1
0.25
6.19
0.06
117.38
0.53
19154.25
23.47
Total Raptilia
(reptiles)
11
0.09
2
0.51
6.20
0.06
121.27
0.55
20969.58
25.69
Nogaprlon brevlrootrla
(lemon shark)
6
0.05
1
0.25
0.24
0.00
1.22
0.01
1167.20
1.43
Rhlzoprlonodon tarraenovae
(Atlantic sharpnose shark)
1
0.01
1
0.25
0.95
0.01
215.14
0.97
223.14
0.27
Carcharhinidae
(requiem sharks)
11
0.09
(a)
(a)
4.25
0.04
807.42
3.63
(a)
(a)
Spbyrna tlburo
(bonnethead shark)
27
0.21
1
0.25
15.03
0.14
1181.87
5.32
2077.08
2.54
Lamni formas
(sharks)
140
1.11
(a)
(a)
5.99
0.06
592.79
2.67
(a)
(a)
Total Lamniformas
(sharks)
185
1.47
3
0.76
26.46
0.25
2798.44
12.6 0
3467.42
4.25
Daayatla spp.
(stingray)
3
0.02
1
0.25
0.38
0.00
172.19
0.77
2340.72
2.87
Raja spp.
(skate)
1
0.01
1
0.25
0.01
0.00
6.76
0.03
618.18
0.76
Raj 1formas
(skates, rays, etc.)
17
0.13
(a)
(a)
0.34
0.00
155.96
0.70
(a)
(a)
Chondrichthyes
(cartilaginous fishes)
43
0.34
(a)
(a)
1.48
0.01
(d)
(d>
(a)
(a)
Total Chondrichthyes
(cartilaginous fishes)
249
1.98
5
1.27
28.67
0.27
3133.35
14.10
6426.32
7.87
Brevoortla spp.
(menhaden)
161
1.28
7
1.78
0.70
0.01
15.87
0.07
64.30
0.08
Bagro marinus
(gafftopsail catfish)
36
0.29
8
2.03
11.90
0.11
203.23
0.91
4626.40
5.67
Arl opal a folia
(hardhead catfish)
1001
7.94
43
10.91
65.26
0.61
940.12
4.23
8595.70
10.53
Ariidaa
(sea catfishes)
703
5.58
12
3.05
36.71
0.34
560.15
2.52
4669.20
5.72
Total Ariidaa
(sea catfishes)
1740
13.81
63
15.99
113.87
1.06
1703.50
7.67
17891.30
21.92
Opaanua spp.
(toad fish)
4
0.03
2
0.51
0.29
0.00
7.18
0.03
587.11
0.72
Bat raahoididae
(toad fishes)
2
0.02
(a)
(a)
0.07
0.00
2.00
0.01
(a)
(a)
OgcocephalIdaa
(bat fishes)
52
0.41
1
0.25
0.34
0.00
8.29
0.04
179.50
0.22
Centropomua spp.
(snook)
2
0.02
1
0.25
2.28
0.02
45.93
0.21
5743.18
7.04
Kyoto ropa rc a ml crol op la
<83)
2
0.02
2
0.51
0.10
0.00
2.75
0.01
141.70
0.17
Caranx hlppoa
(crevalle jack)
4
0.03
2
0.51
0.50
0.00
11.72
0.05
2156.00
2.64
Caranx spp.
(jack)
17
0.13
(a)
(a)
9.36
0.09
163.74
0.74
(a)
(a)
Chloroacombrum cbryaurua
(Atlantic bumper)
12
0.10
2
0.51
0.28
0.00
6.96
0.03
97.18
0.12
Carangidaa
(Jack.)
6
0.05
(a)
(a)
0.89
0.01
19.70
0.09
(a)
(a)
Total Carangidaa
(jacks)
39
0.31
4
1.02
11.03
0.10
202.12
0.91
2253.18
2.76
Lutjanua campochanua
(red snapper)
1
0.01
1
0.25
0.02
0.00
0.65
0.00
172.20
0.21
Lutjanua grlaoua
(gray snapper)
12
0.10
4
1.02
0.50
0.00
11.72
0.05
779.60
0.96
Lutjanua spp.
(snapper)
8
0.06
(a)
(a)
0.33
0.00
8.07
0.04
(a)
(a)
Ortboprlatla chryaoptora
(pigfish)
5
0.04
4
1.02
0.12
0.00
3.25
0.01
424.45
0.52
Pomadasyidaa/Sparidaa
(grunts/porgies)
62
0.49
(a)
(a)
0.61
0.01
14.02
0.06
(a)
(a)
Archoaargua proba tocophalua
(sheepshead)
274
2.17
11
2.79
35.46
0.33
542.96
2.44
8442.06
10.34
Lagodon rhomboldo a
(pinfish)
34
0.27
17
4.31
0.51
0.00
11.93
0.05
964.61
1.18
Sparidaa
(porgies)
15
0.12
(a)
(a)
2.57
0.02
51.16
0.23
(a)
(a)
(porgies) 323 2.56 28 7.11 38.54 0.36 606.05 2.73 9406.67 11.52
Total Sparidaa
243


32
Table 1continued.
Date
Period Some Diagnostic Artifacts
6500
B.C.-
Early Archaic
Sites on coastal dune
5000
B.C.
ridges ca. 5000 B.C.;
earlier coastal sites
probably inundated by
rising sea level
8500
B.C.-
Late Paleoindian
Dalton and Bolen bifaces,
6500
B.C.
bone points, non
returning boomerang,
socketed wooden point,
oak mortar, atlatl spur
11500
8500
i B.C.-
B.C.
Early Paleoindian
Only wooden tools known


Table A-10--continued
Number of
%
%
Bone/Shell
%
Minimum
*
Maximum
%
Identifiable
of
MNI
of
Weight
of
Meat Wt
. of
Meat Wt.
of
Species
Common Name
Fragments
Total
Total
(g rams)
Total
Estimate
Total
Estimate
Total
Anadara florldana
(cut-ribbed ark)
1
0.01
1
0.12
0.02
0.00
0.07
0.00
0.28
0.00
Brachldontoo axuatua
(scorched mussel)
5
0.03
4
0.48
0.24
0.00
2.32
0.03
6.56
0.03
Oeukenala domlaaa granoalaalma
(Atlantic ribbed mussel)
7
0.05
5
0.60
5.32
0.10
(a)
(o)
(o)
Mytilldae
(mussels)
60
0.41
()
(A)
7.41
0.14
3.02
0.03
(A)
(A)
Pinnidae
(pen shells)
30
0.21
2
0.24
19.41
0.36
7.86
0.09
263.89
1.01
Argopactan spp.
(scallop)
15
0.10
4
0.48
19.59
0.36
7.63
0.09
29.12
0.11
Oatxaa aquaatrla
(crested oyster)
53
0.36
26
3.14
20.00
0.37
(e)
(o)
(a)
(o)
Craaaoatraa virgin!ca
(eastern oyster)
4
0.03
3
0.36
4.67
0.09
0.76
0.01
3.89
0.01
Ostreidae
(oysters)
28
0.19
(A)
(A)
7.23
0.13
5.23
0.06
(A)
(A)
Luclna naaaula
(woven lucina)
4
0.03
4
0.48
0.47
0.01
(o)

(a)
(O)
Cardltamara florldana
(broad-ribbed cardita)
20
0.14
8
0.97
10.07
0.19
(o)
(a)
(o)
(O)
Craaalnalla lunulata
(lunate crassinella)
1
0.01
1
0.12
0.05
0.00
(c)
(o)
(o)
(O)
Dlnocardlum robuaturn vanhynlngl
(Van Hyning's cockle)
2
0.01
2
0.24
3.49
0.06
2.44
0.03
22.93
0.09
Polymaaoda carollnlana
(Carolina marsh clam)
4
0.03
4
0.48
8.53
0.16
4.49
0.05
12.00
0.05
Polymaaoda marl tima
(Florida marsh clam)
69
0.47
40
4.84
2.76
0.05
2.08
0.02
15.20
0.06
Marcenarla campeehi anal a
(southern quahog)
21
0.14
2
0.24
90.80
1.67
14.86
0.17
175.35
0.67
Cblona cancallata
(cross-barred venus)
5
0.03
3
0.36
0.25
0.00
(o)
(o)
(o)
Macrocalllata nlmboaa
(sunray venus)
14
0.10
2
0.24
68.75
1.27
18.60
0.21
42.05
0.16
Bivalvia
(oysters, clams, etc.)
51
0.35
(A)
(A)
20.73
0.38
8.22
0.09
(A)
(A)
Total Bivalvia
(bivalves)
394
2.70
111
13.42
289.79
5.34
77.58
0.88
571.27
2.18
Mollusca
(snails and bivalves)
(b)
(b)
(A)
(A)
2750.42
50 .72
1029.75
11.66
(A)
(A)
Total Mollusca
(snails and bivalves)
4889
33.49
553
66.87
4945.21
91.19
1955.74
22.14
1877.96
7.18
Desmotichia
(sea urchins)
38
0.26
1
0.12
0.46
0.01
(d)
(d)
(d)
(d)
Total Invertebrata
(animals without backbones)
5225
35.79
596
72.07
4984.96
91.93
2172.05
24.59
2294.96
8.77
TOTAL SAMPLE
(vertebrates*invertebrates)
14599
100.00
827
100.00
5422.72
100.00
8832.32
100.00
26165.82
100.00
230


raaclolarla bpp.
(tulip shells)
1
0.01
1
0.04
0.65
0.01
0.08
0.00
4.15
0.04
Marginella spp.
(marginalia)
3
0.04
3
0.12
1.01
0.01
(c)
(O)
(c)
(c)
Gastropoda (medium marina)
(medium-sized marina snails)
124
1.77
()
<)
45.24
0.36
22.78
0.18
<>
()
Total Marina Gastropoda
(marina snails)
469
6.69
159
6.18
553.28
4.39
117.93
0.92
193.56
2.02
Polygyra spp.
(polygyr.)
21
0.30
21
0.82
0.38
0.00
(o)
Total Tarrastrial Gastropoda
(snails)
21
0.30
21
0.82
0.38
0.00
0.00
0.00
0.00
0.00
Gaukanala demimaa granoaiaaima
(Atlantic ribbed mussel)
1759(e)
25.07
892
34.67
1870.83
14.85
253.49
1.97
1917.80
20.03
Mytilidae
(mussels)
(>
0.30
()
()
169.08
1.34
34.34
0.27
(>
<)
Oatraa aguaatria
(crested oyster)
02()
8.58
343
13.33
265.35
2.11
<>
(O)
<>
(O)
Craaaoatraa vlrglnlca
(eastern oyster)
!()
20.51
598
23.24
4511.33
35.81
10277.22
80.01
398.04(f)
4.16
Ostraidaa
(oysters)
()
()
<>
<)
588.70
4.67
215.62
1.68
(i
()
Carditamera floridana
(broad-ribbed cardita)
7
0.10
5
0.19
3.33
0.03
(O)
(O)
Cardiidaa
(cockles)
2
0.03
2
0.08
1.33
0.01
1.27
0.01
1.79
0.02
Polymeeoda martima
(Florida marsh clam)
16
0.23
11
0.43
3.65
0.03
3.02
0.02
9.97
0.10
Maroanarla campachlanala
(southern quahog)
5
0.07
3
0.12
29.84
0.24
5.73
0.04
99.04
1.03
Bivalvia
(oysters, clams, sto.)
6
0.09
<)
<>
3.76
0.03
2.57
0.02
()
<)
Total Bivalvia
(bivalves)
3857
54.98
1854
72.06
7447.20
59.11
10793.26
84.03
2426.64
25.35
Hollusca (predominantly bivalve)
(snails and bivalves)
(b)

(
(>
4440.29
35.24
318.24
2.48
()
(>
Total Hollusca
(snails and bivalves)
4347
61.97
2034
79.05
12441.15
98.75
11229.43
87.42
2620.20
27.37
Desmotichia
(sea urchin)
3
0.04
1
0.04
0.02
0.00
(d>
(d)
(<*>
Madreporaria
(hard coral)
1
0.01
1
0.04
0.20
0.00
(C)
<>
(o)
Total Invartabrata
(animals without backbones)
4993
71.18
2531
98.37
12557.50
99.67
11243.42
87.53
2703.60
28.24
TOTAL 8AMPLE
(vertebrates+invertebrates)
7015
100.00
2573
100.00
12598.53
100.00
12844.96
100.00
9573.74
100.00
224


259
Dickinson, Jonathan
1985 Jonathan Dickinson's Journal or God's Protecting
Providence, being the Narrative of a Journey from Port
Royal in Jamaica to Philadelphia, August 23, 1696 to
April 1, 1697. Florida Classics Library, Port Salerno,
Florida.
Dincauze, Dena F.
1987 Strategies for Paleoenvironmental Reconstruction in
Archaeology. In Advances in Archaeological Method and
Theory, vol. 11, edited by Michael B. Schiffer, pp.
255-336. Academic Press, San Diego.
Dinetz, Barbara J.
1982 Intraspecific Size Distribution of the Crown Conchs,
Melongena corona Gmelin: Zonation on a Low Energy
Beach. M.S. thesis, Department of Zoology, University
of Florida, Gainesville.
Dingus, L.
1984 Effects of Stratigraphic Completeness on
Interpretations of Extinction Rates Across the
Cretaceous-Tertiary Boundary. Paleobiology 10:420-438.
Dingus, L. and P. M. Sadler
1982 The Effects of Stratigraphic Completeness on
Estimates of Evolutionary Rates. Systematic Zoology
31:400-412.
Dobyns, Henry F.
1983 Their Number Become Thinned. University of
Tennessee Press, Knoxville, Tennessee.
Durako, M. J., J. A. Browder, W. L. Kruczynski, C. B.
Subrahmanyam, and R. E. Turner
1985 Salt Marsh Habitat and Fishery Resources of Florida.
In Florida Aquatic Habitat and Fishery Resources,
edited by W. Seaman, Jr., pp. 189-280. Florida
Chapter, American Fisheries Society, Kissimmee,
Florida.
Edic, Robert F.
1991 Florida Fisherfolk. Transcripts of oral history
interviews on file, Department of Anthropology, Florida
Museum of Natural History, Gainesville.
Einsele, G., D. Herm, and H. U. Schwarz
1974 Sea Level Fluctuation During the Past 6000 Yr at the
Coast of Mauritania. Quaternary Research 4:282-289.


27
In addition to mullet, three more species are
conspicuously rare or absent from the faunal samples, based
on Wang and Raney's modern survey (1971:54): the bay
anchovy (Anchoa mitchilli); the silver jenny (Eucinostomus
gula); and the spadefish (Chaetodipterous faber). The first
two are fishes in the same small size class as the
killifishes (Fundulus spp.), a genus identified among the
midden remains. Perhaps these were eaten whole, and perhaps
the fibrous structure of spadefish bones prevented
preservation of this species. Hypotheses such as these
should be tested.
The nature of column sampling has inherent problems
related to intrasite (horizontal) representativeness. An
additional concern is the comparability of the Big Mound Key
feature, a large midden-filled pit, to the general midden
samples taken from all other sites. The validity of
comparison may or may not depend on the unknown function of
the large pit. I postulate that the pit's primary purpose
was something other than garbage disposal and that the food
remains were deposited secondarily, representing a sample
similar to general midden areas. This should be tested with
future excavation at Big Mound Key.
Several basic problems that plague scaling technigues
when applied to archaeofauna are discussed elsewhere
(Grayson 1984; Jackson 1989; Wing and Brown 1979).
Additionally, many species-specific regression values are


Cynoaclon spp.
Sciaenopa ocellatue
(trout)
(red drum)
Total Sciaenidae
(drums)
Mugll spp.
Sphyraenidae/Scombridae
Gobiomorus dormltor
Parallchthya spp.
Sphoe roidea epenglerl
Chllomyctacua echoepfl
Diodontidae
Osteichthyes
(mullet)
(barracudas/mackerels)
(bigmouth sleeper)
(flounder)
(bandtail puffer)
(striped burrfish)
(burr and porcupine fishes)
(bony fishes)
Total Osteichthyes
(bony fishes)
Vertebrate (predominantly fish)
(backboned animals)
Total Vertebrate
(backboned animals)
Balanua spp.
Calllnectee spp.
Menlppe marcenarla
Decapoda
(barnacle)
(blue crabs, Gulf crab, etc.)
(stone crab)
(crabs)
Total Crustacea
(aquatic arthropods)
Modulus modulus
Cerlthlum muacarum
Carlthium spp.
Crepldula plana
Crepldula spp.
strombua alatua
Polinices dupllcatua
Phyllonotva pom urn
Uroaalplnx spp.
(Atlantic modulus)
(fly-specked cerith)
(cerlth)
(eastern white slipper-shell)
(slipper-shell)
(Tlorida fighting conch)
(shark eye)
(apple murex)
(oyster drill)
Helongena corona
Bueycon contrarlum
Bueycon eplratum pyruloldes
(common crown conch)
(lightning whelk)
(Say's pear whelk)
Total Helongenidae
(crown conohs)
Nasearlus vlbex
(common eastern nassa)
Faeclolarla 1111um hunterla
Faeclolarla tulipa
Faeclolarla spp.
Pleuroploca gigantea
(banded tulip)
(true tulip)
(tulip shell)
(rlorids horse conch)
Total Fasciolariidae
(tulip shells)
Marginalia spp.
Gastropoda (medium marine)
(marginells)
(medium-sized marine snails)
Total Marine Gastropoda
(marine snails)
Polygyra spp.
(polygyr*)
Total Terrestrial Gastropoda
(terrestrial snails)
(terrestrial snails)
5
0.04
3
0.40
0.77
0.01
17.29
0.27
1130.50
2.16
5
0.04
2
0.27
0.57
0.01
13.19
0.21
2019.42
3.86
66
0.54
19
2.55
2.47
0.04
56.11
0.87
5025.66
9.60
3
0.02
2
0.27
0.14
0.00
3.73
0.06
575.94
1.10
1
0.01
1
0.13
tr
0.00
0.00
0.00
3901.38
7.45
1
0.01
1
0.13
0.02
0.00
0.65
0.01
(d)
j
11
0.09
1
0.13
0.53
0.01
12.36
0.19
445.95
0.85
2
0.02
2
0.27
0.17
0.00
4.44
0.07
142.60
0.27
3
0.02
2
0.27
0.51
0.01
11.94
0.19
368.74
0.70
9
0.07
(i
<)
0.09
0.00
2.51
0.04
<
(i
7450
59.20
(i
()
72.20
1.21
1029.64
16.02
()
()
6441
<7.08
142
19.06
103.98
1.75
1658.60
25.80
20305.52
38.78
(b)
(0
<)
217.55
3.66
2767.88
43.06
<)
<>
6501
<7.55
150
20.13
334.<<
5.62
5009.04
77.93
49691.62
94.90
7
0.0<
5
0.67
1.10
0.02
(c)
(C)
(O)
6
0.05
2
0.27
1.23
0.02
11.56
0.18
166.60
0.32
22
0.17
3
0.40
8.48
0.14
56.4 0
0.88
250.20
0.48
5
0.04
<>
<)
0.88
0.01
8.80
0.14
(i
(>
40
0.32
10
1.34
11.69
0.20
76.78
1.19
417.00
0.60
4
0.03
4
0.54
1.12
0.02

(c)

6
0.05
6
0.81
0.99
0.02

2
0.02
2
0.27
0.60
0.01
<)
1
0.01
1
0.13
0.05
0.00
(c)
(o>
(o)
20
0.16
20
2.68
3.61
0.06
(c)
(c)
(C>
170
1.35
23
3.09
<16.79
10.37
58.79
0.91
156.50
0.30
6
0.05
5
0.67
11.77
0.20
9.15
0.14
24.27
0.05
1
0.01
1
0. 13
0.18
0.00
0.14
0.00
4.92
0.01 N>
2
0.02
2
0.27
0.69
0.01
(C)
(e) O
^*J
442
3.51
112
15.03
347.66
5.84
<4.68
1.01
201.20
0.38
149
1.18
14
1.68
241.80
4.40
102.73
1.60
79.28(f)
0.15
30
0.24
21
2.82
85.04
1.43
40.66
0.63
240.58
0.46
<21
4.93
147
19.73
<94.50
11.47
208.07
3.24
521.06
1.00
2
0.02
2
0.27
0.33
0.01
<>
(o)
454
3.<2
82
11.01
160.26
2.69
132.96
2.07
176.62
0.34
7
0.06
2
0.27
5.39
0.09
6.86
0.11
41.71
0.08
115
0.91
33
4.43
72.81
1.22
92.61
1.44
70.95(f)
0.14
2
0.02
1
0.13
43.27
0.73
14.72
0.23
244.45
0.47
580
4. < 1
118
15.64
281.73
4.73
247.17
3.85
533.73
1.02
1
0.01
1
0.13
0.11
0.00
(c)
(o)
(O)
910
7.23
<>
()
352.20
5.92
149.89
2.33
()
<)
232<
It.48
332
44.56
1964.67
33.02
<73.21
10.47
1240.48
2.37
1
0.01
1
0.13
0.03
0.00
(O)
(>
(O)
1
0.01
1
0.13
0.03
0.00
0.00
0.00
0.00
0.00
207


Table A-12
22 .
Faunal Analysis, Josslyn Island, 8LL32, Lee County, Florida, March 1985 Sample, Test A-l, Level
Common Name
Number of
Identifiable
Fragments
%
of
Total
MNI
%
of
Total
Bone/Shell
Weight
(grams)
%
of
Total
Minimum
Meat Wt.
Estimate
%
of
Total
Maximum
Meat Wt.
Estimate
%
of
Total
Slgmodon hlapldua
(hispid cotton rat)
3
0.02
1
0.07
0.31
0.00
9.95
0.08
47.00
0.06
Mammalia (small)
(small mammals)
3
0.02
(a)
(a)
0.08
0.00
3.32
0.03
(a)
(a)
Odocolleua vlrglnlanua
(white-tailed deer)
5
0.04
1
0.07
19.69
0.21
287.30
2.25
23595.10
31.77
Total Mammalia
(mammals)
11
0.09
2
0.14
20.08
0.21
300.57
2.36
23642.10
31.84
Parulidae
(warblers)
1
0.01
1
0.07
0.01
0.00
0.36
0.00
6.80
0.01
Aves (medium)
(medium-sized birds)
1
0.01
1
0.07
0.31
0.00
6.50
0.05
661.20
0.89
Total Aves
(birds)
2
0.02
2
0.14
0.32
0.00
6.86
0.05
668.00
0.90
Serpentee
(snakes)
3
0.02
1
0.07
0.09
0.00
1.19
0.01
145.40
0.20
Chelydra aerpentlna
(snapping turtle)
1
0.01
1
0.07
0.30
0.00
23.59
0.19
123.30
0.17
Klnoaternon spp.
(mud turtle)
2
0.02
1
0.07
0.22
0.00
20.02
0.16
48.43
0.07
Terrapene Carolina
(box turtle)
1
0.01
1
0.07
2.09
0.02
66.02
0.52
210.20
0.28
Paeudemya sp.
(cooter)
1
0.01
1
0.07
0.71
0.01
37.25
0.29
2268.00
3.05
Testudnea
(turtles)
11
0.09
(a)
(a)
1.47
0.02
54.79
0.43
(a)
(a)
Total Reptilia
(reptiles)
19
0.15
5
0.34
4.88
0.05
202.86
1.59
2795.33
3.76
Carcharhlnua spp.
(requiem shark)
2
0.02
1
0.07
0.21
0.00
1.01
0.01
18000.00
24.24
Daayatla spp.
(stingray)
13
0.10
1
0.07
0.34
0.00
155.96
1.22
721.61
0.97
Total Chondrichthyes
(cartilaginous fishes)
15
0.12
2
0.14
0.55
0.01
156.97
1.23
18721.61
25.21
Blopa aaurua
(ladyfish)
15
0.12
1
0.07
0.18
0.00
4.72
0.04
172.17
0.23
Brevoortla spp.
(menhaden)
17
0.13
4
0.27
0.18
0.00
4.72
0.04
367.16
0.49
Clupeidae
(herrings)
166
1.31
(a)
(a)
0.90
0.01
20.04
0.16
(a)
(a)
Total Clupeidae
(herrings)
183
1.44
4
0.27
1.08
0.01
24.76
0.19
367.16
0.49
Bagro marlnua
(gafftopsail catfish)
6
0.05
1
0.07
0.41
0.00
9.89
0.08
578.30
0.78
Arlopala fella
(hardhead catfish)
213
1.68
21
1.43
11.68
0.12
200.64
1.57
4197.90
5.65
Ariidae
(sea catflshes)
123
0.97
(a)
(a)
4.42
0.05
83.78
0.66
(a)
(a)
Total Ariidae
(sea catflshes)
342
2.69
22
1.50
16.51
0.18
294.31
2.31
4776.20
6.43
Opaanua spp.
(toadfish)
9
0.07
2
0.14
1.13
0.01
24.59
0.19
434.93
0.59
Strongylura spp.
(needlefish)
12
0.09
1
0.07
0.14
0.00
3.76
0.03
38.88
0.05
Fundulua spp.
(killifish)
6
0.05
3
0.20
0.07
0.00
1.99
0.02
101.22
0.14
Caranx hlppoa
(crevalle jack)
2
0.02
1
0.07
0.14
0.00
3.76
0.03
2282.00
3.07
Chloroacombrua chryaurua
(Atlantic bumper)
1
0.01
1
0.07
0.02
0.00
0.65
0.01
38.02
0.05
Carangidae
(jacks)
4
0.03
(a)
(a)
0.48
0.01
11.39
0.09
(a)
(a)
Orthoprlatla chryaoptera
(pigfish)
102
0.80
64
4.37
0.77
0.01
17.42
0.14
2329.30
3.14
Pomadasyidae/Sparidae
(grunts/porgies)
37
0.29
26
1.77
0.25
0.00
6.34
0.05
1168.86
1.57
Archoaargua probatocephalua
(sheepshead)
91
0.72
3
0.20
5.11
0.05
95.44
0.75
1601.01
2.16
Lagodon rhomboldea
(pinfish)
151
1.19
70
4.77
1.08
0.01
23.61
0.19
2429.57
3.27
Sparidae
(porgies)
21
0.17
9
0.61
0.13
0.00
3.52
0.03
270.16
0.36
Total Sparidae
(porgies)
263
2.07
82
5.59
6.32
0.07
122.57
0.96
4300.74
5.79
Balrdlella cbryaoura
(silver perch)
35
0.28
10
0.68
0.61
0.01
14.13
0.11
273.80
0.37
Cynoaclon spp.
(seatrout)
16
0.13
7
0.48
4.02
0.04
76.93
0.60
2744.14
3.70
234


APPENDIX A
Z00ARCHAEOLOGICAL DATA TABLES
Key to Format and Footnotes of Appendix A.
Family, Genus, species :Identifications were made to the
lowest taxon possible, for example:
Serranidae; Mycteroperca spp.;
Mycteroperca microlepis.
Total Family :0nly the abundant families are
subtotaled. A line is skipped when
the following species are to be
subtotaled.
Total Class
:For example, Mammalia; Gastropoda.
Total Phylum
:For example, Mollusca.
Total Vertebrata/ :Although "Invertebrata" is an
Invertebrata obsolete division, it is used here for
convenience.
Footnotes:
a) Bone/shell elements from family and class level
identifications are not used in calculating MNI unless it is
certain that the elements are not represented by any of the
species or genus level individuals. This eliminates the
possibility of counting individuals more than once.
b) Fragments unidentifiable to class were not counted.
c) Species was not included in subsistence quantification.
d) No method was available for estimating meat weight.
e) Only sided valves were counted.
f) See discussion of zooarchaeological methods for explanation
of this situation, where the minimum weight exceeds the
maximum weight.
205


Figure 4. Comparative Percentages of Zooarchaeological
Estimated Minimum Edible Meat Weights by Site and
Animal Group (Based on Data Presented in Appendix A).


273
Tartaglia, Louis James
1976 Prehistoric Maritime Adaptations in Southern
California. Ph.D. dissertation, Department of
Anthropology, University of California, Los Angeles.
University Microfilms, Ann Arbor, Michigan.
Taylor, John L.
1974 The Charlotte Harbor Estuarine System. Florida
Scientist 37 (4):205-216.
Thomas, Lowell P., Donald R. Moore, and Robert C. Work
1961 Effects of Hurricane Donna on the Turtle Grass Beds
of Biscayne Bay, Florida. Bulletin of Marine Science
of the Gulf and Caribbean 11(2):192-197.
Upchurch, Sam B., Pliny Jewell IV, and Eric Dehaven
1992 Stratigraphy of Indian "Mounds" in the Charlotte
Harbor Area, Florida: Sea-level Rise and
Paleoenvironments. In Culture and Environment in the
Domain of the Calusa, edited by W. H. Marquardt, pp.
59-103. Monograph 1, Institute of Archaeology and
Paleoenvironmental Studies, Florida Museum of Natural
History, Gainesville.
Virnstein, Robert W.
1987 Seagrass-associated Invertebrate Communities of the
Southeastern U.S.A.: A Review. In Proceedings of the
Symposium on Subtropical-Tropical Seagrasses of the
Southeastern United States, edited by M. J. Durako, R.
C. Phillips, and R. R. Lewis III, pp. 89-116. Florida
Marine Research Publications No. 42. Florida
Department of Natural Resources, Tallahassee.
Walker, Karen Jo
1987 Charlotte Harbor Maritime Adaptation: Synchronic
and Diachronic Variation. Paper presented at the 44th
Southeastern Archaeological Conference, Charleston,
South Carolina.
1991 Artifacts of a Fishy Nature: Southwest Florida's
Prehistoric Marine Fishing Technology. Ms. submitted
for publication.
1992 Bone Artifacts from Josslyn Island, Buck Key Shell
Midden, and Cash Mound: A Preliminary Assessment for
the Caloosahatchee Area. In Culture and Environment in
the Domain of the Calusa, edited by W. H. Marquardt,
pp. 229-246. Monograph 1, Institute of Archaeology and
Paleoenvironmental Studies, Florida Museum of Natural
History, Gainesville.


100
Geologists have recognized in recent decades that
different coastlines around the world experience varying
sea-level histories owing to variation in local forcing
variables (Bloom 1983; Fairbridge 1992). At least one group
of researchers, however, has proposed a predictive model of
broad geographic trends that is relevant for time spans of
greater than 1000 years (Clark et al. 1978; Clark and Lingle
1979). For example, their Zone III includes the Gulf of
Mexico, the northern portion of Africa's west coast, the
Mediterranean Sea, and a portion of the northeastern Pacific
Ocean locations that should experience similar responses
to global sea level change. Nonetheless, it has become
clear to archaeologists that the scales (spatial and
temporal) with which they work require the construction of
"relative" (regional or even local) sea-level curves as a
result of geographic variation in tectonic, isostatic,
sedimentary, and local meteorological forces (Bloom 1983:43;
Clark et al. 1978:286; Kellogg 1988:84-85).
Relative Holocene curves have been constructed for the
tectonically stable and low wave-energy Gulf coast of
Florida for the period subsequent to 5000 B.P. As is true
everywhere else in the world, these curves and the methods
used in their construction are highly controversial. They
mirror the two-school division described above. Florida
Gulf sea-level curves are primarily based on radiocarbon
dating of two very different kinds of sediments, mangrove


135
the possible exception of a major hurricane, it is unlikely
that short-term environmental change can be identified in
midden archaeofauna because recovery is so rapid. Thus,
with one exception we can eliminate this temporal scale as a
potential explanatory factor. But medium-term change can
represent variation on a scale that may affect collection
strategies and can easily be confused with long-term change
when attempting to identify archaeofaunal signatures of the
latter based on single samples. This analytic barrier can
be overcome if there exists supporting independent data
including contemporaneous (but at a long-term range)
intrasite and intersite archaeofaunal assemblages, as well
as geophysical evidence.
Intraregional site location is a critical factor in the
potential of archaeofauna as paleoenvironmental change
indicators. Faunal assemblages from sites situated near the
ocean end of the salinity gradient allow inference of inlet
presence or absence. Archaeofauna from these areas have
little potential to detect long-term sea-level fluctuations,
however, because of fairly constant overall high-salinity
waters. If a salinity change is detected, it would more
likely be associated with inlet dynamics. An exception may
be Sanibel Island, whose greater land mass provides some
protected bay-side areas that offer a better medium for
detection of sea level-related salinity variation (i.e.,
oyster bars).


122
commercially-important oyster. Moreover, the massive
hurricane of ca. A.D. 630 documented for the Sarasota area
(Davis et al. 1989) exists as a tempting correlate to the
A.D. 680 sample. Arguing against the hurricane hypothesis,
however, is the enormous increase in freshwater runoff which
would be detrimental to crown conchs or at least result in
their migration to more saline waters.
A short-term (seasonal) or medium-term (multiple years)
extended rainy period could account for the lowered
salinities but salinities would have to be very low before
oysters would be stressed (see Allen and Turner 1989). If
salinities were this low, then as in the above example,
crown conchs could not survive, much less thrive.
A third possibility is a lowering of mean sea level.
This could have occurred at either a medium- or long-term
scale. Since we are dealing with only a single sample
(A-l-4, A.D. 680), the medium-term scale cannot be easily
ruled out. At either scale, such variation would have
affected the whole of Florida's southwest coast and perhaps
other coastlines of the Gulf of Mexico as well. Intertidal
oyster bars that had been established at a higher water
level would gradually become exposed more frequently and for
longer durations as waters began slowly to recede. This
would result in a ready supply of weakened oysters.
If the magnitude of the sea-level fall were large
enough, the crown conch's food supply would be abundant for


264
Ingram, M. J., G. Farmer, and T. M. L. Wigley
1981 Past Climates and Their Impact on Man: A Review.
In Climate and History: Studies in Past Climates and
Their Impact on Man, edited by T. M. L. Wigley, M. J.
Ingram, and G. Farmer, pp. 3-50. Cambridge University
Press, Cambridge.
Jackson, H. Edwin
1989The Trouble with Transformations: Effects of Sample
Size and Sample Composition on Meat Weight Estimates
Based on Skeletal Mass Allometry. Journal of
Archaeological Science 16:601-610.
Johnson, William G.
1990The Role of Maize in South Florida Aboriginal
Societies: An Overview. The Florida Anthropologist 43
(3):209-214.
Kellogg, Douglas C.
1988 Problems in the Use of Sea-Level Data for
Archaeological Reconstructions. In Holocene Human
Ecology in Northeastern North America, edited by G. P.
Nicholas, pp. 81-104. Plenum Press, New York.
Kent, Bretton W.
1983 Diet Expansion of Busycon contrarium in the Absence
of Triplofusus giganteus (Gastropoda: Buccinacea). The
Nautilus 97(3):103-104.
King, Frances B. and Russell W. Graham
1981 Effects of Ecological and Paleoecological Patterns
on Subsistence and Paleoenvironmental Reconstructions.
American Antiquity 46(1):128-142.
Klust, Gerhard
1982 Netting Materials for Fishing Gear. Fishing News
Books Ltd., Surrey, England.
Kozuch, Laura
1986 Faunal Analysis from Buck Key Shell Midden, Column
Sample from Test B, Level 9. Manuscript on file,
Department of Anthropology, Florida Museum of Natural
History, Gainesville.
1991Use of Shark Products by Prehistoric Peoples in
South Florida. M.A. thesis, Department of
Anthropology, University of Florida, Gainesville.


BIOGRAPHICAL SKETCH
Karen Jo Walker received her high school and
undergraduate college education in Athens, Georgia,
achieving her B.A. in anthropology from the University of
Georgia in 1978. She was involved in contract archaeology
for a number of years before entering graduate school. She
received her M.A. in anthropology with a specialization in
historical archaeology from the University of Florida in
1988.
276


fluctuations of .9 to 1.8 m above (50 B.C. to A.D. 450) and
below (A.D. 550 to A.D. 850) present sea level produce
signatures of an altered estuarine gradient but more
supportive evidence is necessary to resolve the temporal
scale.
The integration of spatial and temporal perspectives at
both local and regional scales demonstrates the potential of
zooarchaeological inference and advances the hypothesis that
exploitation technology reflects the modeled environmental
context.
xv


186
Strong hurricanes have the potential to deposit
estuarine/marine sediments onto coastal land whether it be a
barrier island, an estuarine island, or the mainland (e.g.,
Wightman Site, Pineland Site). In addition to uprooted
bivalves and other living fauna, sand and seagrasses can be
deposited upon the land surface. If that surface is or was
recently occupied by humans, then scattered within that
stratum of deposition should be cultural debris.
Signatures for sea-level low stands exist in the form
of submerged middens. As noted earlier in this
dissertation, the estuarine/marine sediments of Charlotte
Harbor are such that they support shell middens/mounds
without significant compaction. Archaeologists are
accustomed to thinking that only Archaic (or earlier)
middens are submerged beneath today's sea level when in fact
middens of small-scale low stands later in time also became
inundated. In Charlotte Harbor (e.g., Josslyn Island,
Pineland Site, Cash Mound, Calusa Island) and elsewhere
(e.g., the 31 + 85 B.C. Venice Beach Site, Rupp 1979:38,
42) submerged middens date to the Sanibel I low stand
(unknown beginning, up to circa 50 B.C., Stapor et al. 1991)
and/or the Buck Key low stand (circa A.D. 500 to A.D. 750,
Stapor et al. 1991). There are no submerged middens that
date to the Wulfert high stand (circa 0 to A.D. 400) or the
La Costa high stand (circa A.D. 900 to A.D. 1400) (Stapor et


Figure 14. Comparative Percentages of Zooarchaeological
Food MNI, Minimum Meat Weight, and Maximum Meat Weight
by Provenience for the Big Mound Key Faunal Samples
(Based on Data Presented in Appendix A).


130
significant environmental change in the past, neither has a
recognizable signature in the A.D. 1040 archaeofauna.
The most recent Josslyn archaeofaunal sample, A-l-4,
radiocarbon-dates to A.D. 1200 (Table 2) and is similar in
character (Figure 11; Table A-10; Prentice 1986) to the
archaeofauna of the earlier Josslyn samples. Oysters were
of negligible importance, while the shallow seagrass meadows
were exploited intensively for marine gastropods and bony
fishes, particularly the schools of pinfish, pigfish, and
perch. The ratio of crested oyster to eastern oyster is
high, 9:1, indicating high salinities and representing an
increase in ratio over the older three Josslyn samples,
A-l-12, A-l-22, and A-l-32 (1:2, 1:4, and 1:1). One might
infer a salinity change (increase) here but other commensal
data do not support it. Moreover, the oyster samples are
very small26 crested oyster to 3 eastern oyster MNI
possibly representing a single clutch. On the basis of the
archaeofauna, it is inferred that Josslyn's A.D. 1200
environment did not differ significantly from that of the
present.
The sea-level models of Stapor et al. (1987, 1991) and
Tanner (1991) differ a little for the period from A.D. 850
to the present (Table 7). Both indicate a rise in sea level
ca. A.D. 850 but Stapor et al. record the subsequent fall at
ca. A.D. 1450 whereas Tanner places the fall earlier,
between A.D. 1150 and 1250. In any case, either the sea


52
Big Mound Key
Cash Mound
Useppa Island
Josslyn Island
Buck Key
KEY
1111 111 Bony fishes
Marine snails
Sharks, rays,etc.
ill Marine bivalves
I Mammals
xj_iJ Turtles
SSj Amphibians
S3 Crabs
Z3 Birds


Sphyraenidae
(barracudas)
Aythya spp.
(bay duck)
Prionotus spp.
(searobin)
Anatidae
(ducks)

Negaprion brevirostris
(lemon shark)
Carcharhinus obscurus
(dusky shark)
Chloroscombrus chrysurus
(Atlantic bumper)

Carcharhinus limbatus
(blacktip shark)

Galeocerdo cuvieri
(tiger shark)
Rhizopriondon terraenovae
(Atlantic sharpnose shark)

Rhinobatus lentiginosus
(Atlantic guitarfish)
Aetobatus narinari
(spotted eagle ray)
Sphyrna tiburo
(bonnethead shark)

Ogcocephalidae
(batfishes)

Haemulon spp.
(grunt)
Rhinobatidae
(guitarfishes)

Tylosurus crocodilus
(hound fish)
Mycteroperca microlepis
(gag)

Sparisoma spp.
(parrotfish)
Rajiformes
(skates, rays, etc.)
Lutjanus campechanus
(red snapper)

Raja spp.
(skates)
Chaetodipterus faber
(Atlantic spadefish)
Chelonidae
(sea turtles)
Carcharhinus acronotus
(blacknose shark)
Primary sources: Odumetal. 1982; Wang and Raney 1971; Hoese and Moore 1977.
253


29
on both minimum and maximum meat estimates. Although the
importance of gathering shellfish is dramatically evidenced
by massive shell mounds dotting the landscape and
guantitatively supported by MNI figures, its role is
considerably diminished when viewed from a dietary
perspective (Figures A-3 and A-4).
Nutritional analysis has shown that, gram for gram,
shellfish contains substantially less protein and fat and
fewer calories than fish and mammals (Parmalee and Klippel
1974:431). Cash Mound's 84% MNI and 58% minimum meat of
oysters and mussels (Figure A-3), respectively, are reduced
to a paltry 8% when maximum meat is estimated (Figure A-4).
The predominance of meat contribution derived from fishing
activities is underscored when the meat of sharks and rays
(Chondrichthyes) is added to the bony fish category. This
is most evident in the Buck Key samples where 81% of the
minimum meat estimate results from fishing (Figure A-3).
Sharks and rays are represented in all site samples,
with the Useppa Island sample showing a high minimum meat
weight estimate of 25% (Figure A-3). The work of Milanich
et al. (1984) at Useppa also showed an abundance of shark
remains. As do the remains of white-tailed deer, the
appearance of adult sharks in midden samples implies
butchering and village distribution of meat. However, most
shark individuals in the study samples are juveniles.


176
of net energy, gathering is prohibitively costly without the
use of a container which makes it possible to reduce the
number of trips between the food source and the home.
Construction techniques of platting, weaving, basketry, and
netting are all known from the Key Marco excavation (Cushing
1897:35) and would produce suitable shellfish containers.
Cushing (1897:35) describes a four-ply platted container,
"flexible and compressible yet springy," a possibility for
collecting and transporting heavy shellfish. Intensive
gathering excursions might have required canoes as primary
or secondary containers. Cushing's sailors interpreted one
Key Marco toy canoe as having a form "for the bearing over
shoals of heavy loads or burdens" (Cushing 1897:36). Bird
remains, mostly of diving ducks, occur in small numbers in
the midden samples (Appendix A). Methods of their capture
may have included the use of bolas, baited bone throat
gorges, or sling shots, or may have involved night-stalking
of roosts or net entrapment. Limestone balls found
throughout the study area could have served as bola weights.
The Josslyn Island midden, for example, contained a stone
ball in association with numerous duck bones (Test A-2).
Bipointed bone points, also occurring in this context, could
have been baited, used as throat gorges, and even set
purposely for the capture of ducks (see Tartaglia
1976:105-106).


137
subsequent A.D. 400/450 fall approximates that of the
earlier rise. This magnitude of sea-level change offers the
best potential for zooarchaeological signatures in Charlotte
Harbor's estuarine/marine archaeofauna.


Table A-13. Faunal Analysis, Josslyn Island
32.
, 8LL32,
Lee
County,
Florida, May
1985
Sample,
Test A-l,
Level
Species
Common Name
Number of
Identifiable
Fragments
%
of
Total
MNI
%
of
Total
Bone/Shell
Weight
(grams)
%
of
Total
Minimum
Meat Wt.
Estimate
%
of
Total
Maximum
Meat Wt.
Estimate
%
of
Total
Odocolleus vlrglnlanua
(white-tailed deer)
1
0.00
1
0.07
9.85
0.09
163.94
1.51
23595.10
43.72
Total Mammalia
(mammals)
1
0.00
1
0.07
9.85
0.09
163.94
1.51
23595.10
43.72
Avea (medium)
(medium-sized birds)
1
0.00
1
0.07
0.09
0.00
2.29
0.02
241.50
0.45
Total Aves
(birds)
1
0.00
1
0.07
0.09
0.00
2.29
0.02
241.50
0.45
Paeudemya sp.
(cooter)
3
0.01
1
0.07
17.0 0
0.16
200.51
1.84
2268.00
4.20
Total Reptilia
(reptiles)
3
0.01
1
0.07
17.0 0
0.16
200.51
1.84
2268.00
4.20
Daayatla spp.
(stingray)
33
0.15
1
0.07
0.93
0.01
381.90
3.51
449.83
0.83
Total Chondrichthyes
(cartilaginous fishes)
33
0.15
1
0.07
0.93
0.01
381.90
3.51
449.83
0.83
Leplaoateua sp.
(gar)
1
0.00
1
0.07
0.11
0.00
3.03
0.03
957.13
1.77
Elopa Baurua
(ladyfish)
2
0.01
1
0.07
0.03
0.00
0.94
0.01
121.30
0.22
Bravoortla spp.
(menhaden)
23
0.11
6
0.40
0.25
0.00
6.34
0.06
742.80
1.38
Clupeidae
(herrings)
879
4.07
12
0.80
3.71
0.03
71.58
0.66
1485.60
2.75
Total Clupeidae
(herrings)
902
4.18
18
1.20
3.96
0.04
77.92
0.72
2228.40
4.13
Arlopala fella
(sea catfish)
76
0.35
11
0.74
5.40
0.05
100.30
0.92
2198.90
4.07
Ariidae
(sea catfishes)
111
0.51
(a)
(a)
3.30
0.03
64.43
0.59
(a)
(a)
Total Ariidae
(sea catfishes)
187
0.87
11
0.74
8.70
0.08
164.73
1.51
2198.90
4.07
Opaanua spp.
(toadfish)
30
0.14
7
0.47
1.66
0.02
34.74
0.32
1125.97
2.09
Strongylura spp.
(needlefish)
44
0.20
1
0.07
1.44
0.01
30.58
0.28
77.33
0.14
Fundulua spp.
(killifish)
23
0.11
9
0.60
0.43
0.00
10.24
0.09
303.66
0.56
Lutjanua spp.
(snapper)
1
0.00
1
0.07
0.01
0.00
0.35
0.00
42.62
0.08
£UCicO0tOJDU0 BPP*
(mojarra/silver jenny)
5
0.02
4
0.27
0.03
0.00
0.94
0.01
44.42
0.08
Orthoprlatla chryaoptera
(pigfish)
93
0.43
71
4.75
0.94
0.01
20.84
0.19
2009.33
3.72
Pomadasyidae/Sparidae
(grunts/porgies)
35
0.16
35
2.34
0.22
0.00
5.65
0.05
774.13
1.43
Lagodon rhomboldea
(pinfish)
271
1.26
147
9.84
2.17
0.02
44.20
0.41
3136.86
5.81
Archoaargue probatocephalua
(sheepshead)
59
0.27
2
0.13
3.36
0.03
65.48
0.60
1862.80
3.45
Sparidae
(porgies)
40
0.19
8
0.54
0.40
0.00
9.67
0.09
78.52
0.15
Total Sparidae
(porgies)
370
1.71
157
10.51
5.93
0.06
119.35
1.10
5078.18
9.41
Balrdlella cbryaoura
(silver perch)
120
0.56
35
2.34
3.66
0.03
70.71
0.65
1339.43
2.48
Cynoaclon spp.
(seatrout)
16
0.07
11
0.74
3.07
0.03
60.38
0.56
4096.03
7.59
Leloatomua xantburua
(apot)
12
0.06
12
0.80
0.08
0.00
2.28
0.02
260.84
0.48
Sclaenopa ocellatua
(red drum)
11
0.05
3
0.20
4.52
0.04
85.48
0.79
768.00
1.42
Sciaenidae
(drums)
3
0.01
(a)
(a)
0.10
0.00
2.78
0.03
(a)
(a)
Total Sciaenidae
(drums)
162
0.75
61
4.08
11.43
0.75
221.63
2.04
6464.30
11.98
Parallchthya spp.
(flounder)
5
0.02
1
0.02
0.29
0.00
7.24
0.07
368.20
0.68
Spboeroldea sp.
(puffer fish)
1
0.00
1
0.07
0.03
0.00
0.94
0.01
46.60
0.09
Chllomycterua achoepfl
(striped burrfish)
3
0.01
1
0.07
0.41
0.00
9.89
0.09
181.05
0.34
237


34
Table 2continued.
Site Name
and Number
Sample
Provenience
Sample
Type
Vol.
(m3)
C-14 Date
(uncalib.)
12.
Josslyn Island
(8LL32)
A-l-22(23)b
column
level
.028
120+70B.C.
Beta-17334
Shell
13.
Josslyn Island
(8LL32)
A-l-32(33)b
column
level
.028
130+90B.C.
Beta-17335
Shell
14.
Buck Key Mid.
(8LL722)
B-2-5
column
level
.018
A.D.1350+80
Beta-16283
Shell
15.
Buck Key Mid.
(8LL722)
B-2-9
column
level
.025
A.D.1250+60
Beta-16282
Shell
16.
Buck Key Mid.
(8LL722)
A-2-6/7
column
level
.023
A.D.133 0+7 0
Beta-16285
Shell
17.
Buck Key Mid.
(8LL722)
A-2-11(9)b
column
level
.023
A.D.1040+80
Beta-16287
Shell
a
b
Luer 1986b.
Level in parentheses is source of radiocarbon date


Table A-14--continued
Number of
%
%
Bone/She11
\
Minimum
%
Maximum
%
Identifiable
of
MNI
of
Weight
of
Meat Wt.
of
Meat Wt.
of
Species
Common Name
Fragments
Total
Total
(grams)
Total
Estimate
Total
Estimate
Total
Pleuroploca gigantea
(Florida horse conch)
19
0.11
3
0.44
136.97
1.55
55.21
0.23
152.39
0.17
Total Pasciolariidae
(tulip shells)
32
0.19
9
1.31
154.68
1.75
73.30
0.31
249.07
0.28
Oliva aayana
(lettered olive)
1
0.01
1
0.15
29.83
0.34
15.54
0.07
12.44
0.01
Ollvella pulallla
(very small dwarf olive)
9
0.05
9
1.31
0.24
0.00
(c)
(o)
(o)
Marginalia spp.
(marginalia)
1
0.01
1
0.15
0.09
0.00
(o)
(O)
(o)
(o)
Terebra florldana
(Florida auger)
1
0.01
1
0.15
0.30
0.00
(O)
(C)
(a)
(a)
Turbonllla spp.
(turbonille)
3
0.02
3
0.44
0.02
0.00
(O)
(O)
(c)
(a)
Melampua coffeuo
(coffee melampus)
4
0.02
4
0.58
0.80
0.01
(O)
(O)
(o)
(o)
Gastropoda (medium marine)
(medium-sized marine snails)
519
3.00
(a)
(a)
340.28
3.84
145.23
0.61
(a)
(a)
Total Marine Gastropoda
(marine snails)
947
5.48
219
31.88
3964.43
44.75
799.38
3.36
963.69
1.08
Suculana spp.
(nut clam)
3
0.02
3
0.44
0.06
0.00
(o)
(c)
(a)
(o)
Anadara transversa
(transverse ark)
7
0.04
6
0.87
0.93
0.01
0.99
0.00
3.37
0.00
Noetla ponderosa
(ponderous ark)
9
0.05
6
0.87
33.05
0.37
11.29
0.05
23.15
0.03
Brachldontea exuatua
(scorched mussel)
4
0.02
4
0.58
0.29
0.00
(o)
(o)
(c)
(o)
Oeukenala demlaaa granoalaalma
(Atlantic ribbed mussel)
17
0.10
3
0.44
3.69
0.04
1.73
0.01
6.39
0.01
Mytilidae
(mussels)
7
0.04
(a)
(a)
0.33
0.00
0.49
0.00
(a)
(a)
Pinnidae
(pen shells)
120
0.69
2
0.29
36.89
0.42
12.17
0.05
11.95
0.01
Pectinidae
(scallops)
13
0.08
4
0.58
40.33
0.46
12.93
0.05
22.36
0.03
Pectinidae/Cardiidae
(seallops/cockles)
35
0.20
(a)
(a)
9.28
0.10
4.75
0.02
(a)
(a)
Pllcatula glbboaa
(kitten's paw)
3
0.02
3
0.44
0.34
0.00
(c>
(o)
(o)
(a)
cf. Anomla simplex
(common jingle shell)
23
0.13
6
0.87
5.33
0.06
(o)
(o)
(o)
(o)
Oatrea equeatrle
(crested oyster)
89
0.51
34
4.95
20.20
0.23
(o>
(o)
(o)
(o)
Craoaoatree vlrglnlca
(eastern oyster)
37
0.21
10
1.46
67.52
0.76
10.10
0.04
6.74(f)
0.01
Ostreidae
(oysters)
103
0.60
(a)
(a)
32.16
0.36
4.93
0.02
(C)
(o)
Codakla spp.
(lucina)
3
0.02
3
0.44
0.18
0.00
(o>
(o>
(a)
(a)
Luclna spp.
(lucina)
2
0.01
2
0.29
0.02
0.00
(o)
(o)
(o)
Dlplodonta spp.
(diplodon)
4
0.02
4
0.58
0.11
0.00
(o)
(O)
(o)
(o)
Cardltamera florldana
(broad-ribbed cardita)
4
0.02
2
0.29
3.18
0.04
2.29
0.01
4.07
0.00
Tracbycardlum agmontlanum
(prickly cockle)
2
0.01
1
0.15
3.01
0.03
2.21
0.01
6.73
0.01
Dlnocardlurn robus turn vanhynlngl
(Van Hyningi's cockle)
11
0.06
1
0.15
15.26
0.17
6.67
0.03
22.86
0.03
Splaula eolldlaalma almilla
(southern surf clam)
225
1.30
43
6.26
391.62
4.42
60.86
0.26
604.15
0.68
Donax varlabllla
(coquina shell)
7
0.04
5
0.73
0.89
0.01
(O)
(O)
(o)
(a)
Mercenaria campechlenala
(southern quahog)
35
0.20
5
0.73
269.38
3.04
37 .73
0.16
143.1
0.16
Chi one cancellata
(cross-barred venus)
13
0.08
5
0.73
5.34
0.06
1.85
0.01
5.58
0.01
Macrocalllata nimbosa
(sunray venus)
3
0.02
3
0.44
6.22
0.07
3.62
0.02
59.61
0.07
Veneridae
(venus clams)
3
0.02
3
0.44
0.25
0.00
(a)
(o)
(o)
(a)
Bivalvia
(oysters, clams, etc.)
2045
11.82
(a)
(a)
890.45
10.05
106.50
0.45
(a)
(a)
Total Bivalvia
(bivalves)
2827
16.35
158
23.00
1836.31
20.73
281.11
1.18
920.06
1.03
Mollusca
(snails and bivalves)
(b)
(b)
(a)
(a)
1206.65
13.62
175.35
0.74
(a)
(a)
Total Mollusca
(snails and bivalves)
3774
21.82
377
54.88
7007.39
79.09
1255.84
5.28
1883.75
2.12
Desmotichia
(sea urchins)
220
1.27
1
0.15
7.21
0.08
(d)
(d)
(d)
(d)
Total Invertebrata
(animals without backbones)
5430
31.40
467
67.98
7326.04
82.6 9
2306.13
9.70
3968.75
4.46
>i = =SMi£s::ss:s8S8s:assssss:ssssB:s=::
888,888,8888 8.
*
E,"BSS
======= = = = ==
===****
=========
=========
=========
=======
TOTAL SAMPLE
(vertebrates+invertebrates)
17295
100.00
687
100.00
8859.51
100.00
23783.25
100.00
89053.08
100.00
242


91
Low-intensity storms are a part of normal daily and
seasonal atmospheric processes, so that these
discontinuities along with freezes and red tides could be
easily buffered by stored surpluses of preserved fish. A
freeze or red tide could actually supply the needed surplus
if fish were quickly gathered when initially numbed by cold
waters or asphyxiated by red tide (Edic 1991; Story and
Gudger 1936:643).
High-intensity storms, or hurricanes, and their
associated winds, storm surges, and rains can have
significant impact (Gentry 1984:512-513) on a normally
low-energy, microtidal coastal area such as Charlotte
Harbor. The brunt of the high-energy disturbance, though,
is usually borne by the protective barrier island chain.
Major hurricanes (with surges greater than 2 m in height),
however, can result in a substantial sedimentary impact on
enclosed estuarine bays (Davis et al. 1989; Galli 1989;
Perlmutter 1982).
Effects relating to aquatic faunal distribution include
alteration of the normal salinity gradient, increased
turbidity, oxygen depletion, disruption of substrates and
seagrasses, destruction of mangrove forests, displaced
imbedded molluscs, and destruction of oyster bars (Craighead
and Gilbert 1962; Robins 1957; Tabb and Jones 1962; Thomas
et al. 1961). Mass mortality of both vertebrate and
invertebrate animals occurs. A post-storm mass mortality of


54
islands "enclose" these bodies of water, thus defining the
greater estuarine system at a regional scale. The two major
openings to the Gulf are Boca Grande Pass and San Carlos
Bay; secondary inlets are Blind, Redfish, Captiva, and
Gasparilla Passes.
Terrestrial ecological communities in the region
include mangrove forest, salt marsh, coastal strand, salt
barren, sabal-juniper hammock, oak-persea hammock, and pine
woods (Taylor 1974:210). Of these, the mangrove community
is most closely associated with the estuarine complex.
Mangrove forests extend over 22,927 ha in the study
area and are largely structured by zones of red (Rhizophora
mangle), black (Avicennia germinans), and white
(Laguncularia racemosa) mangrove varieties (Harris et al.
1983:129; Taylor 1974:210). The salt-tolerant red mangrove
dominates the water's edge throughout the estuarine system.
As one moves inland, the black and white varieties become
mixed with buttonwood (Conocarpus erectus) and other plant
species (Odum et al. 1982:2). Mammals using mangrove
forests feed on fruits, berries, insects, small reptiles,
seeds, mast, crabs, grasses, fish, bird eggs, mussels, and
other mammals. The white-tailed deer is the only mammal
known to include mangrove leaves in its diet (Odum et al.
1982:143-144).
The mangrove fringe (primarily red) and inshore
seagrass (primarily turtle grasses) meadow are the two most


11
identify this complexity only through familiarity with
environmental context.
In this dissertation, it is proposed that Charlotte
Harbor's recent estuarine paleoenvironment can be modeled
from perspectives of both space and time at local and
regional scales. Such a model, with continued adjustments,
can serve as a comparative base by which to measure
human-environment interaction. The approach used here
hinges on the existence of a prehistoric faunal exploitation
pattern that focuses on nearby resources. This pattern is
typical of maritime populations (Yesner 1980:730), and it is
established that the Charlotte Harbor zooarchaeological data
also reflect this strategy.
The Charlotte Harbor model-building exercise consists
of the following five objectives: (1) the spatial modeling
of modern estuarine heterogeneity via a gradient analysis;
(2) the spatial modeling of prehistoric estuarine
heterogeneity (using independent zooarchaeological data)
also via a gradient analysis, which serves as a test of
environmental comparability between present and past; (3 and
4) the overlay of potential short-, medium-, and long-term
temporal variation onto each of these two gradient models;
(5) the integration of the spatial and temporal dimensions
at both local and regional scales.


160
bivalves, primarily surf clam and oyster, accounts for 26%
of total faunal MNI while 22% of total faunal MNI resulted
from gathering marine snails (Figure 16). Compared with the
other four study sites, crabbing, particularly the
procurement of stone crabs, was somewhat important at Buck
Key with a 4% MNI (Figure 16). These bivalves, snails, and
crabs constitute only 4% to 14% of meat contribution whereas
fishes comprise 69% to 81% (Figures 5 and 4). Mammals and
sea turtles (Cheloniidae) are additional important meat
sources. The recovery of three small natural pearls from
B-2-9 (Kozuch 1986:15-16) is notable considering Fontaneda's
(1945:31) statement that the Charlotte Harbor area "is a
large country, rich in pearls."
Overall, the two A-2 samples are similar to each other,
as are the two B-2 samples. The four samples taken from two
different midden areas indicate two different types of
midden deposits. However, both sets of results correspond
with Buck Key's surrounding environment. The difference in
the two midden areas is one of varying quantities of species
as opposed to kinds. Three samples, A-2-6/7, B-2-5, and
B-2-9, range in date from A.D. 1250 to A.D. 1350 (Table 2).
The fourth sample, A-2-11, dates to ca. A.D. 1050 (Table 2)
or earlier but no significant chronological pattern in the
faunal remains is apparent (Figure 15).
The high-salinity requirements of much of the Buck Key
archaeofauna indicate that a nearby inlet must have been


31
Table 1. Generalized Cultural Chronology for
the Caloosahatchee Area (adapted from
Marquardt 1992b and Cordell 1992).
Date
Period
Some Diagnostic Artifacts
A. D.
1500-
1750
Caloosahatchee
V
European artifacts (e.g.,
metal, beads, olive jar
sherds)
A. D.
1350-
1500
Caloosahatchee
IV
Safety Harbor, Glades
Tooled, and Pinellas
Plain pottery; Belle
Glade Plain diminishes
A.D.
1200-
1350
Caloosahatchee
III
St. Johns Check Stamped,
Englewood ceramics; Belle
Glade Plain prominent
A. D.
800 (?) -
1200
Caloosahatchee
IIB
Belle Glade Red present;
Belle Glade Plain
prominent
A.D.
650-
800 (?)
Caloosahatchee
IIA
Beginning of Belle Glade
Plain and SPCB ceramics;
Glades Red; thinner
ceramics
500 :
A.D.
B.C.-
650
Caloosahatchee
I
Thick sand-tempered plain
pottery with round and
chamfered lips
1200
500
B.C.-
Terminal Archaic
("Transitional")
Fiber-tempered pottery;
semi-fiber-tempered
pottery
2000
1200
B.C.-
B.C.
Late Archaic
Orange Plain, Orange
Incised, Perico Incised,
Perico Plain, St. Johns
Plain; steatite
5000
2000
B.C.-
B.C.
Middle Archaic
Coastal sites, but no
ceramics; broad-stemmed
bifaces, e.g., Newnan;
mortuary ponds


76
Appendix B follow a salinity progression, or gradient, from
freshwater to oceanic water.
It is stressed again that the gradient concept treats
faunal distribution as a continuum in that it recognizes
great overlap in use of a variety of habitats by aquatic
fauna. An appropriate system of graphic symbols
representing known "preference illustrates this point
(Appendix B). For example, sharks are depicted as generally
occurring in the inshore mangrove/seagrass habitats
("estuarine and oceanic mangrove" areas) as well as on the
Gulf shelf, but "prefer" the latter environment (Table B-l).
Figure 9 is a schematic illustration of the gradient
distribution based on the procedure just discussed and
presented (in detail) in Appendix B. The pattern is
informative. It clearly indicates (by the great overlap in
bars) that the estuarine and oceanic vertebrates
(predominantly fishes) represented by zooarchaeological
remains are highly mobile compared to the invertebrate fauna
(predominantly molluscs). The high mobility of fishes is
due to numerous factors including their free-swimming
nature, life-cycle behavior, daily salinity tolerances, and
feeding habits (Comp and Seaman 1985:359; Day et al.
1989:400-417; Lewis et al. 1985:307-309). Invertebrate
remains, as suggested by Figure 9, are even more
environmentally informative than fish because the animals


2
the primary subsistence focus of these sedentary coastal
residents.
The term "maritime is used in this dissertation to
describe a situation adjacent to the sea (i.e., marine
waters). Although Charlotte Harbor is technically an
estuarine environment rather than one of strictly marine
waters (i.e., 35 ppt salinity), the estuarine adaptation in
prehistory is viewed here as a specialized type of the
broader maritime cultural pattern (see Yesner 1980:728).
Furthermore, much of the inshore waters, such as those of
Pine Island Sound (Figure 1), maintain high salinities of
28.5 to 32.8 ppt (Alberts et al. 1969:1). Additionally,
most species of "estuarine" fish exploited by Charlotte
Harbor's prehistoric inhabitants at some point in their life
cycles migrate to marine waters. These estuarine/marine
fishes composed the bulk of the aboriginal protein intake as
indicated by zooarchaeological data (Fradkin 1976; Massaro
n.d.; Milanich et al. 1984).
Several modern researchers (Goggin and Sturtevant 1964;
Hann 1991; Lewis 1978; Marquardt 1986, 1987, 1988; Widmer
1988) have drawn on the Spanish writings of Fontaneda
(1945), Solis de Mers (1923), Rogel (Vargas Ugarte 1935),
and others, to synthesize the ethnohistory of the sixteenth-
century Calusa. Marquardt (1987:99-100) points out that
although the elite-dominated, tributary Calusa are usually
referred to as a "chiefdom" by archaeologists, it could be


260
Estevez, E. D., J. E. Miller, and J. Morris
1984 Charlotte Harbor Estuarine Ecosystem Complex and the
Peace River, A Review of Scientific Information.
Report to Southwest Florida Regional Planning Council
by Mote Marine Laboratory, Sarasota, Florida.
Evans, J. G.
1978 An Introduction to Environmental Archaeology.
Cornell University Press, Ithaca, New York.
Fairbridge, Rhodes W.
1961 Eustatic Change in Sea Level. In Physics and
Chemistry of the Earth, vol. 4, edited by L. H. Ahrens,
F. Press, K. Raukawa, and S. K. Runcorn, pp. 99-185.
Pergamon Press, New York.
1976 Shellfish-Eating Preceramic Indians in Coastal
Brazil. Science 191:353-359.
1984 The Holocene Sea Level Record in South Florida. In
Environments of South Florida Present and Past II,
edited by P. J. Gleason, pp. 427-436. Miami Geological
Society, Coral Gables, Florida.
1992 Holocene Marine Coastal Evolution of the United
States. Quaternary Coasts of the United States:
Marine and Lacustrine Systems, pp.9-20. SEPM Special
Publication No. 48.
Folan, William J., Joel Gunn, Jack D. Eaton, and Robert W.
Patch
1983 Paleoclimatological Patterning in Southern
Mesoamerica. Journal of Field Archaeology 10:453-468.
Fontaneda, Do. d'Escalante
1945 Memoir of Do. d'Escalante Fontaneda Respecting
Florida, Written in Spain, about the Year 1575.
Translated by B. Smith, with editorial comments by D.
0. True. Glades House, Coral Gables, Florida.
Fradkin, Arlene
1976 The Wightman Site: A Study of Prehistoric Culture
and Environment on Sanibel Island, Lee County, Florida.
M.A. Thesis, Department of Anthropology, University of
Florida, Gainesville.
Gailey, Christine W. and Thomas C. Patterson
1988 State Formation and Uneven Development. In State
and Society: The Emergence and Development of Social
Hierarchy and Political Centralisation, edited by J.


ACKNOWLEDGMENTS
Much appreciation is extended to William Marquardt,
Elizabeth Wing, and Stephen Hale for the opportunity to
become involved in the southwest Florida research. The
collection and analysis of the Cash Mound, Useppa Island,
Josslyn Island, and Buck Key samples were funded by the
National Science Foundation. The Big Mound Key samples were
collected and provided by George Luer. Elizabeth Wing
provided much guidance and use of her lab, curation space,
comparative collection, and computers. Thanks go to Nina
Borremans, Laura Kozuch, and Guy Prentice for the initial
analysis of samples A-2-4 from Useppa, B-2-9 from Buck Key,
and A-l-4 from Josslyn, respectively. Laura Kozuch and
Cherry Fitzgerald also assisted with other samples.
I am indebted to reviewers of an early draft of this
dissertation. They include Kurt Auffenburg, Robert Edic,
Barbara Hoffman, Robert Knight, Elise LeCompte-Baer, George
Luer, William Marquardt, Jerald Milanich, Claudine Payne,
Irv Quitmyer, Elizabeth Reitz, Randal Walker, and Randolph
Widmer. The dissertation has further benefitted from
discussions or correspondence with Nina Borremans, Joel
Gunn, William Marquardt, Irv Quitmyer, Donna Ruhl, Frank
Stapor, and William Tanner.
iii


Osteichthyes
(bony fiahea)
12026
55.72
<)
()
89.32
0.83
1248.78
11.48
()
()
Total Osteichthyes
(bony fishes)
13890
64.35
380
25.44
124.94
1.16
1957.79
18.00
22021.52
40.80
Vartebrata (predominantly fish)
(backboned animals)

()
(>
251.41
2.34
4014.33
36.91
()
<)
Total Vartebrata
(backboned animals)
13928
64.53
3 84
25.70
404.22
3.76
6720.76
61.79
48575.95
H
o
o
<7\
Bslsaus spp.
(barnacle)
7
0.03
4
0.27
0.98
0.01
(o)
(O)

(C)
Cslllosctss app.
(blue crabs. Gulf crab, etc.)
8
0.04
2
0.13
2.92
0.03
23.53
0.22
166.80
0.31
Msnlpps msrcsasrla
(atone crab)
3
0.01
1
0.07
2.43
0.02
20.24
0.19
83.40
0.15
Decapoda
(eraba)
35
0.16
()
(>
4.73
0.04
34.95
0.32
()
()
Total Crustacea
(aquatic arthropods)
53
0.25
7
0.47
11.06
0.10
78.72
0.72
250.20
0.46
Splroglyphus irregularis
(irregular worm-shell)
5
0.02
1
0.07
1.91
0.02

<>
(c)
Modulus modulus
(Atlantic modulus)
75
0.35
73
4.89
12.93
0.12
(o)
(e)
(o)
Csrltblum stratum
(Florida cerith)
28
0.13
28
1.87
3.93
0.04
(O)
(c)
(o)
Crsplduls fornlostm
(Atlantic alipper-ahell)
4
0.02
4
0.27
2.85
0.03
(C)
(o)
Crsplduls convexa
(convex alipper-ahell)
8
0.04
8
0.54
0.69
0.01
(C)
(o)
(o)
Crsplduls aculeate
(thorny slipper-shell)
1
0.00
1
0.07
0.75
0.01
(O)
()
(C)
(O)
Crsplduls pisos
(eastern white alipper-ahell)
3
0.01
3
0.20
0.33
0.00
<)
(O)
(O)

Crsplduls app.
(alipper-ahell)
9
0.04
9
0.60
0.51
0.00
(C)

(O)
(C)
Polloicas dupllcstus
(shark eye)
2
0.01
2
0.13
3.53
0.03
4.73
0.04
34.80
0.06
Phyllonotua pomum
(apple murex)
4
0.02
2
0.13
43.00
0.40
21.74
0.20
32.80
0.06
Urosslplox psrrugsts
(Gulf oyster drill)
29
0.13
26
1.74
6.45
0.06
(o)
(o)
(c)
Aoschls lsfrssosyl
(well-ribbed dove-shell)
3
0.01
3
0.20
0.35
0.00
(O)
(o)

(o)
Msloogsos coroos
(common crown conch)
746
3.46
196
13.12
875.50
8.15
145.83
1.34
404.09
0.75
Busycoo cootrsrlum
(lightning whelk)
4 03
1.87
66
4.42
996.30
9.27
471.80
4.34
394.55
0.73
Busycoo splrstum pyruloldss
(Say's pear whelk)
362
1.68
118
7.90
905.50
8.43
356.66
3.28
1375.02
2.55
Total Helongenidae
(crown concha)
1511
7.00
380
25.44
2777.30
25.85
974.29
8.96
2173.66
4.03
Nssssrlus vlbsx
(common eastern nassa)
17
0.08
17
1.14
2.85
0.03
(O)
(o)
Fssclolsrls 1111um huotsrls
(banded tulip)
569
2.64
122
8.17
616.00
5.73
822.93
7.57
309.55(f)
0.57
Fasciolar la tulipa
(true tulip)
99
0.46
19
1.27
410.80
3.82
521.40
4.79
668.80
1.24
Fssclolsrls app.
(tulip shell)
198
0.92
80
5.35
113.50
1.06
83.34
0.77
192.03
0.36
Plsuroplocs glgsotss
(Florida horse conch)
3
0.01
1
0.07
4.10
0.04
0.99
0.01
20.83
0.04
Total Faaciolariidae
(tulip shells)
869
4.03
222
14.86
1144.40
10.65
1428.66
13.13
1191.21
2.21
Marginalia app.
(marginalia)
14
0.06
14
0.94
1.51
0.01
()
Coous jsspldsus
(jasper cone)
2
0.01
2
0.13
0.30
0.00

()
(i

Gaatropoda (medium marine)
(medium-sized marine snails)
1802
8.35
(i
<)
378.49
3.52
160.14
1.47
(>
(>
Total Marine Gaatropoda
(marine snails)
4386
20.32
795
53.21
4382.08
40.78
2589.56
23.81
3432.47
6.36
Nostls poodsross
(ponderous ark)
2
0.01
2
0.13
31.15
0.29
10.85
0.10
17.78
0.03
Gsuksnsls dsalsss grsnoslsslms
(Atlantic ribbed mussel)
32
0.15
3
0.20
4.40
0.04
1.99
0.02
6.45
0.01
Mytilidae
(mussels)
3
0.01
()
()
0.83
0.01
0.53
0.00
<>
(
Pinnidae
(pen shells)
21
0.10
1
0.07
3.00
0.03
2.20
0.02
23.73
0.04
Argopsctso app.
(scallop)
877
4.06
179
11.98
2126.19
19.79
192.69
1.77
1413.53
2.62
Pectinidae/Cardiidae
(scallops/cockles)
1748
8.10
()
()
655.76
6.10
86.46
0.79
<)
i>)
Pllcstuls glbboss
(kitten's paw)
2
0.01
2
0.13
1.53
0.01
(O)
Aoomls simplex
(common jingle shell)
8
0.04
2
0.13
1.72
0.02
(O)
<)
(c>
Ostras squsstrls
(crested oyster)
41
0.19
25
1.67
7.00
0.07

(i
(C)
Crsssostrss vlrglolcs
(eastern oyster)
105
0.49
31
2.07
183.10
1.70
40.12
0.37
15.13(f)
0.03
Oatreidea
(oysters)
211
0.98
<)
()
68.90
0.64
15.57
0.14
()
<)
Lucias asssuls
(woven lucina)
5
0.02
3
0.20
0.45
0.00
(O)
Csrdltsmsrs £lorldsas
(broad-ribbed cardita)
74
0.34
29
1.94
24.89
0.23
(c)
Trschycsrdlum egmoatlsaum
(prickly cockle)
4
0.02
1
0.07
6 .70
0.06
3.81
0.04
4.80
0.01
Trschycsrdlum app.
(cockle)
1
0.00
1
0.07
0.20
0.00
0.35
0.00
5.42
0.01
238


44


Table A-2. Faunal Analysis, Big Mound Key, 8CH10, Charlotte County, Florida, August 1982 Sample, U.1/S.4,
Layer 8b.
Specie*
Common Name
Number of
Identlfiable
Fragments
%
of
Total
KNI
%
of
Total
Bone/Shel1
Weight
(grams)
%
of
Total
Minimum
Meat Wt.
Estimate
of
Total
Maximum
Meat Wt.
Estimate
%
of
Total
Slgmodon hlapldu*
(hlapld cotton rat)
3
0.02
1
0.10
0.12
0.00
4.42
0.04
47.00
0.04
Odocolleua vlrglnlanua
(white-tailed deer)
3
0.02
1
0.10
4.54
0.07
87.85
0.85
23595.10
20.75
Mammalia (large)
(large mammal)
15
0.11
(a)
(a)
15.99
0.24
242.73
2.34
(a)
(a)
Mammalia
(mammal a)
24
0.17
(a)
(a)
2.47
0.04
54.95
0.55
(a)
(a)
Total Mammalia
(mammal)
5
0.33
2
0.20
23.34
0.34
392.15
3.81
23642.10
20.79
Anatldae
(duck*)
8
0.04
2
0.20
1.20
0.02
20.25
0.20
722.90
0.64
Avea (medium)
(medium-*1 red blrda)
5
0.04
(a)
(a)
0.29
0.00
4.14
0.04
(a)
(a)
Total Ave*
(blrda)
13
0.09
2
0.20
1.49
0.02
24.39
0.24
722.90
0.64
Chelydra serpentina
(anapplng turtle)
3
0.02
1
0.10
3.33
0.05
84.51
0.82
123.30
0.11
Klnoeternon app.
(mud turtle)
3
0.02
1
0.10
0.51
0.01
31.24
0.30
89.06
0.08
Terrapene Carolina
(box turtle)
2
0.01
1
0.10
7.12
0.10
124.42
1.23
210.20
0.18
c f Che 1 onl a my da o my da a
(Atlantic green turtle)
1
0.01
1
0.10
5.28
0.08
107.89
1.05
45400.00
39.92
Te*tudlne*
(turtle*)
9
0.34
()
(a)
13.14
0.19
174.93
1.70
(a)
(a)
Total Reptilla
(reptile*)
58
0.42
4
0.40
29.38
0.43
525.01
5.10
45822.56
40.29
Siren lacertlna
(greater elren)
11
0.08
1
0.10
1.94
0.03
444.33
4.34
672.00
0.59
Total Amphibia
(amphibian*)
11
0.08
1
0.01
1.94
0.03
444.33
4.34
672.00
0.59
Carcharhlnua 11mbatua
(blacktlp shark)
5
0.04
1
0.10
3.43
0.05
702.50
4.83
7742.95
6.81
Rhlxoprlonodon terraenovaa
(Atlantic aharpnoae shark)
5
0.04
1
0.10
3.54
0.05
490.53
4 .71
4471.26
3.93
Carcharhinldae
4
0.03
1
0.10
1.79
0.03
374.35
3.44
5576.31
4.90
Sphryna tlburo
(bonnethead shark)
1
0.01
1
0.10
0.18
0.00
14.77
0.14
1353.58
1.19
Lamnlforme*
(sharks)
15
0.11
(a)
(a)
0.81
0.01
154.04
1.50
(a)
(a)
Total Chondrlchthye*
(cartilaginous fishes)
30
0.22
4
0.40
9.97
0.15
1938.21
18.85
19144.10
16.83
Leplaoateua ap.
(gt)
1
0.01
1
0.10
0.07
0.00
2.00
0.02
957.13
0.84
Elopa aaurua
(ladyfish)
19
0.14
1
0.10
0.37
0.01
8.94
0.09
381.66
0.34
Brevoortla app.
(menhaden)
17
0.12
3
0.30
0.13
0.00
3.49
0.03
611.18
0.54
Clupeldae
(herrings)
355
2.58
5
0.51
1.52
0.02
31.89
0.31
1018.63
0.90
Bagre marlmia
(gafftopsall catfish)
15
0.11
1
0.10
1.25
0.02
24.74
0.24
507.71
0.45
Arlopala fella
(hardhead catfish)
110
0.80
4
0.41
8.29
0.12
144.79
1.43
1199.40
1.05
Arlldae
(sea catflshes)
79
0.57
1
0.10
4.34
0.04
82.33
0.80
199.90
0.18
Opaanua app.
(toadflsh)
84
0.41
7
0.71
4.74
0.07
88.7 4
0.86
859.33
0.76
Ogcocephalldae
(batfishes)
1
0.01
1
0.10
tr
0.00
0.00
0.00
179.50
0.16
Strongylura app.
(needlefish)
47
0.34
2
0.20
1.81
0.03
37.32
0.36
219.33
0.19
Fundulus app.
(kllllflsh)
244
1.93
50
5.04
2.81
0.04
55.44
0.54
1686.84
1.48
Mycteroperca mlcrolepla
(gs>
2
0.01
2
0.20
0.92
0.01
20.30
0.20
283.40
0.25
Caranx hlppoa
(crevalle jack)
4
0.03
3
0.30
1.21
0.02
25.97
0.25
1020.41
0.90
Carangldae
(jacks)
42
0.45
(a)
(a)
4.33
0.04
81.82
0.80
(a)
(a)
Orthoprlatla cbryaoptera
(plgflsh)
12
0.09
3
0.30
0.14
0.00
4.20
0.04
261.79
0.23
Pomadaayldae/Sparldae
(grunt a/porglea)
15
0.11
9
0.91
0.08
0.00
2.25
0.02
245.03
0.22
Archoaargua probatocepbalua
(aheepahead)
10
0.07
2
0.20
0.53
0.01
12.54
0.12
329.70
0.29
Lagodon rbomboldea
(plnflsh)
359
2.41
39
3.95
2.94
0.04
57.74
0.56
775.71
0.68
(poralea) 3 2. 1 .IS 3.47 0.05 70.30 O.tS 1105.41 0.37
Total Sparidae
209


139
Table 8. Relative MNI Percentages of Eastern Oyster (EO),
Crested Oyster (CO), Crown Conch (CC), and Ribbed
Mussel
(RM)
for Cash
A-l-17,
Mound
and A
Samples A-
-1-20.
1-4,
CO
H
1
<
EO
%
CO
%
CC
%
RM
%
Total
A-l-4
343
38
0
0
305
34
246
28
894
A-l-8
687
37
135
7
97
5
958
51
1877
A-l-17
274
23
51
4
31
3
861
71
1217
A-l-20
598
32
343
18
36
2
892
48
1869


73
mangrove/seagrass habitat (Table A-9). Oysters and their
associates are prominently represented with 46% MNI (Figure
7). The cross-barred venus is present in high numbers
compared to other site samples (Table A-9). The cotton rat,
white-tailed deer, and gopher tortoise also are present in
the archaeological sample.
Josslvn Island. 8LL32
Josslyn Island is located a short distance west of Pine
Island (Figure 1) and is surrounded by extensive and
extremely shallow beds of seagrass. Water depths are 0.3 to
0.6 m at mean low tide in all directions. This situation is
reflected in the faunal samples (Tables A-10 through A-13),
as these mangrove-fringed grass meadows are represented by
68% of the total MNI (Figure 7). Nine fishes are abundant
(more than 20 MNI). The top four fishes are pinfish,
pigfish, silver perch, and hardhead catfish. Josslyn
exhibits the greatest invertebrate diversity of all the
sites (composite total of 67 taxa). These results attest to
the high productivity of the seagrass habitat (Zieman
1982:49).
Although oysters and their associates comprise 19% of
the samples (Figure 7), today only one small oyster
community is observed in the Josslyn environs. Aquatic
birds such as red-breasted merganser (Mergus serrator), bay
ducks (Aythya spp.), and other ducks (Family Anatidae) favor
shallow seagrass meadows and also appear in the midden


Figure 10. Mean Sea-Level Curve for Southwest Florida
Proposed by Stapor et al. Based on Geochronology,
Geomorphology, and the Elevation of Beach Ridge Sets
Making Up the Barrier Islands (After Stapor et al.
1991:Figure 14).


5
do we know if archaeological data from prehistoric sites are
appropriate for application to the protohistoric/historic
Calusa of the Spanish documents. Until population centers
such as the Pineland Site Complex are excavated to produce
ample data, both artifactual and subsistence, from
stratified contexts, archaeologists will not be able to
determine Calusa origins or the mechanisms that led to the
emergence of their complexity. And without an understanding
of the spatial and temporal paleoenvironmental context, we
cannot adequately evaluate the role of any perceived
subsistence change in the Charlotte Harbor region.
The Lagging Maritime Perspective
The notion that maritime societies could develop
complex social and political formations without the benefit
of crop agriculture has long been debated, especially in the
case of coastal Peru (e.g., Moseley 1975; Moseley and
Feldman 1988; Osborn 1977; Wilson 1981). Prehistoric,
nonagricultural, complex peoples are indeed associated with
maritime settings in various locales of the world (e.g.,
North American Northwest Coast, southern California, coastal
Peru, southwest Florida, Norway and Sweden). This
association is increasingly being acknowledged by
researchers as theoretical biases inherent in unilinear
evolutionist schemes are broken down (Moseley and Feldman
1988). Unilinear evolutionists exaggerate the role of crop
agriculture as the primary cultural mechanism in the


275
Wilson, David J.
1981 Of Maize and Men: A Critique of the Maritime
Hypothesis of State Origins on the Coast of Peru.
American Anthropologist 83(1):93-120.
Wing, Elizabeth S. and Antoinette B. Brown
1979 Paleonutrition: Method and Theory in Prehistoric
Foodways. Academic Press, New York.
Wing, Elizabeth S. and L. Jill Loucks
1983 Granada Site Faunal Analysis. In Archaeology and
History of the Granada Site, vol. 1: Excavations at the
Granada Site, edited by J. Griffin, pp. 259-345.
Florida Division of Archives, History, and Records
Management, Tallahassee.
Wing, Elizabeth S. and Irvy R. Quitmyer
1985 Screen Size for Optimal Data Recovery: A Case
Study. In Aboriginal Subsistence and Settlement
Archaeology of the Kings Bay Locality, vol. 2:
Zooarchaeology, edited by W. H. Adams, pp. 49-58.
Reports of Investigations No. 2. Department of
Anthropology, University of Florida, Gainesville.
Woodburn, Kenneth D.
1965 Clams and Oysters in Charlotte County and Vicinity.
Florida Board of Conservation Marine Base, St.
Petersburg, Florida. Mimeographed manuscript in
possession of author.
Woodbury, Barbara D.
1986 The Role of Growth, Predation, and Habitat Selection
in the Population Distribution of the Crown Conch,
Melongena corona Gmelin. Journal of Experimental
Marine Biology and Ecology 97:1-12.
Yesner, David R.
1980 Maritime Hunter-Gatherers: Ecology and Prehistory.
Current Anthropology 21(6):727-750.
Zieman, Joseph C.
1982 The Ecology of the Seagrasses of South Florida: A
Community Profile. FWS/OBS 82/25. U.S. Fish and
Wildlife Service, Office of Biological Services,
Washington, D.C.
Zubillaga, Felix
1946 Monumenta Antiquae Floridae (1566-1572). Monumenta
Histrica Societatis Iesu 69; Monumenta Missionum
Societatis Iesu 3. Rome.


74
fauna. Terrestrial areas such as mangrove forests,
marshlands, and palmetto/pine flatlands are represented by
the cotton rat, raccoon, white-tailed deer, warbler, box
turtle, and skink.
Buck Kev Shell Midden. 8LL722
Buck Key is located to the east of and adjacent to
Captiva Island (Figure 1). Buck Key Shell Midden is on the
eastern shore of the island. Of the five study sites, it is
the one closest to the open Gulf, the southern portion of
the island presently bordering shallow Blind Pass (0.0 m at
mean low tide). Surrounding the island, water depths vary
from 0.1 to 2.1 m at mean low tide, and seagrass meadows lie
to the east and north. Also to the north are the deeper
ocean-influenced waters of Redfish Pass (2.1 to 10.0 m at
mean low tide).
Mangrove/seagrass fauna are predominant (62%) in the
archaeological samples (Tables A-14 through A-17; Figure 7).
The littoral/Gulf areas follow with 17% (Figure 7).
Hardhead catfish, sheepshead, silver perch, pinfish, and
striped burrfish, all common seagrass fishes, are abundant
in the midden samples. A random sample of Buck Key fish
vertebrae, relative to samples from Cash Mound and Josslyn
Island (Figure 8), reflects the proximity of Buck Key to an
ocean inlet during prehistoric occupation. There is broad
overlap in the three samples, however, a larger proportion
of the Buck Key measurements are over 3.5 mm. Because of


57
times) is critical to our understanding of that past
environment.
The Present-dav Estuarine Gradient
The ecological concept of an environmental gradient
(King and Graham 1981:129) is useful when applied to
estuarine situations for the purpose of determining faunal
distribution and abundance (Boesch 1977; Wells 1961).
Analysis of the estuarine gradient involves the recognition
of different ecological zones or communities ranging from
fresh to oceanic water and the extent to which different
aquatic species inhabit these areas (Boesch 1977:245; Odum
et al. 1982:51, 57). The zones and their associated faunal
assemblages have no sharp boundaries in space. Rather, they
exist as a graded continuum at the regional scale. The
habitat categories nonetheless allow description, and thus
an operative understanding of the heterogeneous distribution
of fauna along the estuarine gradient.
Although numerous limiting factors are involved in
gradient distributions of estuarine fauna, average salinity
is prominent among them (Boesch 1977:246; Wells 1961:239)
and provides a useful organizational tool at one or more
effective scales. For example, the oyster bed or bar
community (i.e., oysters and all associate fauna) exhibits a
certain range along the estuarine (regional) gradient;
within that range (also a continuum, in reality), point
locations can be classified as low-, mid-, or high-salinity


169
size of the gauge used to produce the netting due to wetting
while in use (Klust 1982:147) and in the case of Key Marco's
netting, possible shrinkage over the decades since its
excavation. Table 14 presents mesh (bar and opening)
measurements for the Key Marco net fragments, illustrating
the variation in sizes used at this site.
Today, Charlotte Harbor's fisherfolk selectively
gill-net the low-trophic black mullet (Mugil curema) by
using meshes that vary with the fish's size throughout its
life cycle (Edic 1991; Lampl 1986:23; Robert D. Knight,
personal communication 1985). The mesh openings range from
76 mm (3) in the summer to 114 mm (4 1/2") in the winter
spawning season (Edic 1991). The sizes of both the
archaeological net mesh gauges (Walker 1991) and the Key
Marco net specimens (Table 14) imply net mesh openings up to
120 mm, however, the greater number of gauges emphasizes the
use of nets with much smaller mesh openings (Walker 1991).
Gauges indicate the use of nets with openings as small as 30
mm but the largest group of specimens (n = 10) falls into
the 38 mm (1 1/2") opening category.
There is no reason to believe that mullet were not
abundant and economically important in the prehistoric
setting of Charlotte Harbor, yet few mullet remains are
recovered from archaeological sites. This is the case with
both previous zooarchaeological work in the area (e.g.,
Fradkin 1976; Milanich et al. 1984) and the present study


Balrdlella chrysoura
(silver perch)
29
0.10
19
1.29
0.83
0.00
18.63
0.09
688.00
0.91
Cynomclon araar!us
(sand seatrout)
1
0.00
1
0.07
0.05
0.00
1.49
0.01
148.30
0.20
Cynosclon spp.
(seatrout)
13
0.05
4
0.27
2.49
0.01
50.02
0.24
771.70
1.03
Lelostomue xanthurue
(pot)
5
0.02
5
0.34
0.01
0.00
0.35
0.00
107.70
0.14
Sclaenope ocellatu
(red drum)
24
0.09
3
0.20
4.29
0.02
81.56
0.39
1681.05
2.23
Sciaanidaa
(drums)
1
0.00
()
()
0.18
0.00
4.72
0.02
()
( A )
Total Sciaanidaa
(drums)
73
0.26
32
2.17
7.85
0.04
156.77
0.75
3396.75
4.52
Parallcbtbys spp.
(flounder)
21
0.08
1
0.07
0.62
0.00
14.34
0.07
178.00
0.24
Spboeroldes spp.
(puffer fish)
3
0.01
1
0.07
0.17
0.00
4.48
0.02
66.20
0.09
Chilomycteru* schoepfi
(striped burrfish)
11
0.04
6
0.41
5.67
0.03
104.79
0.50
1086.30
1.44
Ostaichthyas
(bony fishes)
12934
46.54
()
()
156.18
0.75
2063.44
9.93
()
()
Total Ostaichthyas
(bony fishes)
14388
51.77
431
29.28
217.34
1.04
3158.91
15.20
25396.15
33.76
Vartabrata (predominantly fish)
(backboned animals)

(*>>
()
()
485.80
2.32
5702.80
27.43
<>
()
Total Vartabrata
(backboned animals)
14732
53.00
451
30.64
786.12
3.76
13387.19
64.40
69741.27
92.71
Balanus spp.
(barnacle)
328
1.18
237
16.10
52.20
0.25
(o)
(C)
(c)
Calllnectes spp.
(blue crabs. Gulf crab, ate.)
44
0.16
6
0.41
12.80
0.06
79.05
0.38
500.40
0.67
Menlppe mercenaria
(stone crab)
26
0.09
2
0.14
25.40
0.12
138.66
0.67
166.80
0.22
Dacapoda
(crabs)
201
0.72
()
()
48.37
0.23
235.15
1.13
(A)
()
Total Crustacaa
(aquatic arthropods)
599
2.16
245
16.64
138.77
0.66
452.86
2.18
667.20
0.89
Splroglyphua irregularle
(irregular worm-shell)
3
0.01
1
0.07
0.22
0.00
(O)
Dlodora cayenenmlm
(Cayenne keyhole limpet)
5
0.02
2
0.14
0.90
0.00
(C)
(O)
(O)
Modulus modulus
(Atlantic modulus)
12
0.04
10
0.68
2.90
0.01
(c)
(<*>

(O)
Cerlthlum atratum
(Florida carith)
19
0.07
17
1.15
4.40
0.02
(O)
(o)
(O)
(O)
Crepldula fornlcata
(Atlantic slipper-shell)
6
0.02
6
0.41
3.50
0.02
(O)
(Ot
Crepldula convexa
(convex slippar-shall)
11
0.04
11
0.75
1.30
0.01
(<5)
(o)
()
Crepldula aculeata
(thorny slippar-shall)
5
0.02
5
0.34
0.95
0.00
(O)
(O)
<
(O)
Crepldula plana
(eastern white slipper-shell)
2
0.01
2
0.14
0.45
0.00
(C)
(c>
(C>
(O)
Crepldula spp.
(slippar-shall)
16
0.06
16
1.09
1.80
0.01
(O)
(o)
(C)
(C)
Polinices dupllcatus
(shark eye)
4
0.01
3
0.20
7.90
0.04
7.36
0.04
2.92
0.00
Phyllonotus pomum
(apple murex)
4
0.01
1
0.07
7.70
0.04
4.48
0.02
9.49
0.01
Urosalplnx perrugata
(Gulf oyster drill)
61
0.22
56
3.80
19.00
0.09
(O)


(o)
Columba 11 a ruatlcoldes
(rusty dove-shell)
2
0.01
2
0.14
0.78
0.00
(O)
(C>
(c)
Anacbls lafresnayl
(wall-ribbed dove-shell)
4
0.01
4
0.27
0.30
0.00
(O)
(ol
(O)
(Ol
Melongena corona
(common crown oonch)
591
2.13
83
5.64
553.31
2.65
97.37
0.47
299.45
0.40
Busycon contrarlum
(lightning whelk)
1611
5.80
145
9.85
3845.29
18.39
2201.92
10.59
543.84(f)
0.72
Busycon apira turn pyruloldes
(Say's pear whelk)
236
0.85
69
4.69
324.58
1.55
139.07
0.67
1373.10
1.83
Total Halonganidaa
(crown conchs)
2438
8.77
297
20.18
4723.18
22.59
2438.36
11.73
2216.39
2.95
Nassarlus vibex
(common eastern nassa)
1
0.00
1
0.07
0.09
0.00
(O)
(o)
(O)
Fasclolarla lili un huntsrla
(banded tulip)
250
0.90
93
6.32
273.45
1.31
274.08
1.32
229.99(f)
0.31
rasclolarla tulipa
(true tulip)
17
0.06
3
0.20
65.00
0.31
82.68
0.40
178.32
0.24
rasclolarla spp.
(tulip shall)
217
0.78
90
6.11
146.55
0.70
117.80
0.57
1323.00
1.76
Pleuroploca gigantea
(Florida horse conch)
411
1.48
8
0.54
1958.24
9.37
1167.45
5.62
232.82(f)
0.31
Total Fasololariidaa
(tulip shells)
895
3.22
194
13.18
2443.24
11.68
1642.01
7.90
1964.13
2.61
Marginalia spp.
(marginalia)
6
0.02
6
0.41
0.45
0.00
(O)
Gastropoda (small marina)
(small marina snails)
1
0.00
()
()
0.18
0.00
0.14
0.00
(
()
Gastropoda (medium marina)
(medium-sized marine snails)
7419
26.69
()
()
2134.60
10.21
783.72
3.77
()
()
Gastropoda (large marina)
(horse conchs/whelks)
166
0.60
()
<>
530.60
2.54
218.36
1.05
(A)
()
11080 39.86 634 43.07 9884.44 47.27 5094.43 24.51 4192.93 5.57
Total Harina Gastropoda
(marina snails)
232


28
not yet available for both minimum and maximum estimates.
Recently, Grayson (1984:172-174) has argued that only the
dimensional allometric method of meat weight prediction is
valid for zooarchaeological purposes. Despite this
controversy, allometric scaling, used as a method for
predicting animal body weights (extended to meat weight for
this study), has been tested and shown to produce the most
accurate results of currently employed techniques to
estimate biomass (Casteel 1978:71-77; Wing and Brown
1979:130-131).
Another example of bias in the meat-weight estimation
method stems from frequent low MNI counts for invertebrates
in relation to fragment weight. For certain species (e.g.,
eastern oyster, lightning whelk, banded tulip, Florida horse
conch), this is seemingly due to a high degree of
fragmentation, shell structure, and density, or perhaps to a
limited size range used in scaling modern specimens.
Sometimes the resulting maximum estimate for these animals
is lower than the minimum estimate (Appendix B, footnote f).
Comparative Dietary Contribution
Minimum and maximum edible-meat weights were estimated
(discussed above) for all 17 faunal samples to provide a
range of meat potential for each animal (Appendix B).
Figures A-3 and A-4 summarize these results by site,
combining intrasite data. Bony fishes (Osteichthyes) stand
out as the primary contributors to the aboriginal diet based


133
suggest the presence of an inlet. As in the other three
Buck Key samples, high salinity waters are indicated by the
B-2-5 assemblage. Although contemporaneous with the A-2-6/7
sample (A.D. 1330), the B-2-5 (A.D. 1350) high-salinity
molluscs (Table A-14) do not show the same high MNI counts
as those of A-2-6/7. Overall, the four Buck Key samples
suggest a continuity of high-salinity waters in the locale.
As discussed earlier in this study, the difference in the
fishing to shellfishing relationship between the A
excavation and the B excavation clearly reflects an
intrasite spatial variation in deposit character.
Stapor and his colleagues' (1991:830) estimate of A.D.
1350 for the earliest possible age of the southern half of
Captiva Island is relevant here. From A.D. 1250 (B-2-9) to
A.D. 1350 (B-2-5) the inhabitants of Buck Key must have had
access to a nearby open inlet. Fishing from the beach would
not have been as cost-effective and there is no conclusive
evidence for offshore fishing. The proposed "paleoinlet"
off Buck Key's northwestern shoreline is still the most
feasible possibility. Partial southward progradation of
sediments certainly could have occurred during occupation
with a portion of present-day Roosevelt Channel (the
waterway now separating Buck Key from Captiva Island)
serving as an inlet. At any rate, the archaeofauna suggest
that by A.D. 1350 sediments of southern Captiva had not yet
formed a complete barrier paralleling (and going beyond)


Figure 7. Comparative Percentages of Zooarchaeological
MNI by Site Representing Exploited Habitats (Based
on Data Presented in Appendix A).


106
Because of the lack of direct influx of freshwater into
Pine Island Sound (Pine Island functions as a barrier),
salinities are higher there and seagrass meadows are
extensive. Oyster bars are negligible or absent; gastropod
populations are dense. Middens in Pine Island Sound reflect
this molluscan distribution. Middens in western Pine Island
Sound, especially those near inlets, document a predominance
of high salinity species as well as higher diversities
(during the times when inlets were present).
Because of their great mobility and less restricted
salinity ranges, fishes are indicative of gradient position
to a lesser degree than molluscs. However, some fishes
(e.g., sharks and other large predators), depending on their
abundance in sites, are useful in determining the presence
or absence of nearby inlets (the high-salinity end of the
continuum). The important key here is relative abundance
[Dincauze's (1987:260) "change in condition"]. Large
predaceous marine fishes, for example, normally frequent the
shallow lagoons in search of prey, so one would expect to
find some of their remains in site middens located in those
shallow lagoon areas. However, a large abundance of MNI
represented by these remains would be expected if an inlet
is located nearby because it is at this feature where these
fishes would be constricted in their distribution (at the
change of tides), and thus easy prey for humans.


196
Table 16. Archaeological Terrestrial Fauna by MNI.
Big
Mound Cash Useppa Josslyn Buck
Taxon Key Mound Island Island Key
Sigmodon hispidus 1
Cricetidae
Mammalia (small) 1
Procyon lotor 1
Mammalia (med-sized) 1
Odocoileus virginianus 2
Mammalia (large) 1
Parulidae
Colubridae
Serpentes 1
Terrepene Carolina 1
Gopherus polyphemus
Scincidae
1
1
1
1
2
1
2
1
1
1
2
2
1
1
1
1
1
1
1
1
3


55
productive habitats in the estuarine complex. Of lesser
productivity are the oyster bar, the littoral zone, and the
open Gulf water. The distribution and interrelationships of
all these habitats and their animal components largely
define the ecological structure of the estuarine complex.
Mangrove and seagrass ecosystems are among the most
productive biological systems in the world, even rivaling
agriculture (Odum et al. 1982:19; Zieman 1982:1). These two
estuarine plant groups produce enormous amounts of
leaf/blade detritus, supporting extensive aquatic food webs.
In addition, they provide protection from predators for many
fish and invertebrate species, particularly while in their
juvenile stages. They are closely interrelated, the
seagrass areas often extending right up to mangrove
shorelines (Odum et al. 1982:50).
Seagrasses of the Charlotte Harbor area have not been
adequately studied (Estevez et al. 1984:S-22) even though
today they account for 23,682 ha (Harris et al. 1983:133).
Primarily occurring in broad shallow-water "meadows, turtle
grasses (Thalassia testudinum and Halophila engelmanni),
shoal grass (Halodule wrightii), widgeon grass (Ruppia
martima), and manatee grass (Syringodium filiforme) are the
five common seagrass varieties (Taylor 1974:210; Zieman
1982:8). These have slightly different salinity
requirements, with the turtle grasses being the most
abundant and forming the most expansive meadows. These


6
emergence of complexity. As a result, evolutionary models
are colored by a terrestrial perspective, even when the
focus is on coastal cultures.
In Florida archaeology, symptoms of this terrestrial
bias include inappropriate recovery methods, untested
seasonal settlement models, and uncritical artifact
interpretation (see Russo 1991; Walker 1991; Walker and
Marquardt 1992). Until the 1960s, Florida archaeologists
believed that prehistoric coastal peoples subsisted
primarily on deer and small mammals, supplemented in times
of dietary stress by shellfish and fish. The application of
fine-screen recovery techniques by zooarchaeologists (e.g.,
Milanich et al. 1984) has revealed instead that fish, often
relatively small ones caught in nets, were the main
component of the native diet and were far more important
than terrestrial mammals.
Untested settlement models that depict coastal peoples
solely as seasonal residents also have been challenged
recently. Russo (1991) demonstrates that as early as the
Middle Archaic, people in southwest Florida lived year-round
on the coast and built purposeful mounds. A third symptom
of the terrestrial bias is a failure to recognize maritime-
related artifacts despite the obvious coastal association
and an available body of pertinent evidence (Walker 1991,
1992; Walker and Marquardt 1992).


187
al. 1991). The fluctuating relative sea-level models can
account for this pattern of submerged middens.
The stratification of sea-level high stands may involve
signatures of three different kinds: inundation, change in
settlement, and engineered features. Mainland and insular
sites inundated by rising waters should exhibit a deposit of
sediments over the cultural midden. It is unclear how this
kind of stratum can be differentiated from one that is
deposited by a hurricane (e.g., Wightman Site, Solana Site).
A further possibility is the formation of a beach ridge in
relation to archaeological sites (e.g., Pineland Site).
A change in settlement might result from rising waters.
One possibility is the construction of raised houses over
the water along the shoreline (e.g., Pineland Site, Solana
Site). Alternatively, inhabitants simply may have moved
horizontally to higher and drier ground.
A third set of potential signatures for sea-level high
stands involves humanly engineered broad-scale projects.
For example, at least two geologists, Stapor and Tanner
(both, personal communication, 1992), suggest that the canal
(8LL34) at Pineland could not have operated as such without
a sea level that was higher than that at present, implying
its construction during the Wulfert or possibly La Costa
high stands. Constructed breakwaters also might be a
consideration at large sites. Another potential signature
of rising water levels is mound-building.


151
Food MNI%
Minimum Meat Weight %
Maximum Meat Weight %
Key
Mam
Bir
Mammals
Birds
1
Level 617
Tur
Amp
Turtles
Amphibians
1 1
Level 11
S+R
Sharks.rays.etc

Fish
Bony Fishes
Level 5
Cra
Crabs
Sna
Marine Snails
Level 9
Biv
Marine Bivalves


41
Table 6. Nonregression Values for Maximum Meat
Weight Estimations.
Taxon
N
Weight Estimate (gm)
Odocoileus virginianusa
23595.10(x)
Procyon lotor*3
1
or
14
comparative
or 2164.22(x)
Sigmodon hispidusb
1
47.00
Cricetidaeb
9
134.00(x)
Parulidaeb
1
6.80
Anatidaeb
1
or
7
comparative
or 380.68(x)
Casmerodius albusb
4
461.98(x)
Colubridaeb
30
139.50(x)
Serpentesb
58
145.40(x)
Chelydra serpentinab
1
123.30
Kinosternon spp.b
1
or
15
comparative
or 89.06(x)
Terrapene Carolinab
1
comparative
var.
Pseudemys sp.c
1
2268.00
Gopherus polyphemusb
3
1815.33(X)
Chelonidaeb
8
19154.25(X)
Testudinesb
42
631.31(x)
Siren lacertinab
1
comparative
var.
Rana spp.b
2
232.50(x)
Lepisosteus spp.b
13
957.13(x)
Bagre marinusb
9
507.71(x)
Ariopsis felisb
26
199.90(x)
Opsanus spp.b
4
206.48(X)
Ogcocephalidaeb
2
179.50(x)
Fundulus spp.b
1
33.74
Mycteroperca microlepisb
1
comparative
var.
Carangidaeb
1
or
11
comparative
or 3180.07(x)
Lutjanus spp.b
1
comparative
var.
Eucinostomus spp.b
6
29.82(x)
Haemulon spp.b
1
comparative
var.
A. probatocephalusb
1
comparative
var.
Sciaenidaeb
1
comparative
var.
Sparisoma spp.b
1
comparative
var.
Sphyraenidae6
17
3884.71(x)
Sphyraenidae/Scombridae
31
3901.38(x)
Paralichthys albiguttab
1
comparative
var.
Ostraciidaeb
4
74.33(x)
Sphoeroides spenglerib
1
comparative
var.
Chilomycterus schoepfib
3
184.37(x)
Decapoda
-
83.40(x)
G. demissa granosissimab
1
2.15
Pinnidae6
30
23.73(X)
Other molluscad
1
comparative
var.


268
Miller, Gifford H.
1973 Late Quaternary Glacial and Climatic History of
Northern Cumberland Peninsula, Baffin Island, N.W.T.,
Canada. Quaternary Research 3:561-583.
Missimer, T.
1973 The Depositional History of Sanibel Island, Florida.
M.S. thesis, Department of Geology, Florida State
University, Tallahassee.
Moore, Jerry D.
1991 Cultural Responses to Environmental Catastrophes:
Post-El Nio Subsistence on the Prehistoric North Coast
of Peru. Latin American Antiquity 2(l):27-47.
Morner, N. A.
1969 The Late Quaternary History of Kattegat Sea and
Swedish West Coast. Deglaciation, Shorelevel
Displacement Chronology, Isostasy and Eustacy.
Sveriges Geologiska Undersknin, Series C, no. 640.
Moseley, Michael E.
1975 The Maritime Foundations of Andean Civilization.
Benjamin/Cummings Publishing Company, Menlo Park,
California.
Moseley, Michael E. and Robert A. Feldman
1988 Fishing, Farming, and the Foundations of Andean
Civilisation. In The Archaeology of Prehistoric
Coastlines, edited by G. Bailey and J. Parkington, pp.
122-131. Cambridge University Press, Cambridge.
Nietschmann, Bernard
1973 Between Land and Water: The Subsistence Ecology of
the Miskito Indians, Eastern Nicaragua. Seminar Press,
New York.
Odum, W. E., C. C. Mclvor, and T. J. Smith, III
1982 The Ecology of the Mangroves of South Florida: A
Community Profile. FES/OBS 81-24. U.S. Fish and
Wildlife Service, Office of Biological Services,
Washington, D.C.
Oliver, John E. and John J. Hidore
1984 Climatology: An Introduction. Charles E. Merrill
Publishing Company, Columbus, Ohio.


8
animal foods were procured within close proximity to the
site where the skeletal remains are recovered by
archaeologists.
Research Goal and Objectives
The goal of this research is to employ regional
baseline zooarchaeological data to initiate a spatial and
temporal study of human-environment relationships in
prehistoric Charlotte Harbor. Such understanding is also
the goal of environmental archaeology (Butzer 1982; Evans
1978), a pursuit for which zooarchaeology is only one avenue
of inquiry. Zooarchaeological remains associated with
sedentary, coastal fisher-gatherer-hunter groups such as the
Charlotte Harbor people constitute a valid proxy data base
from which to begin to model paleoenvironments and the human
responses to them through space and time.
Independent, supportive data are essential to such
model-building (Dincauze 1987:318; King and Graham
1981:136-137; Rhoads and Lutz 1980:7, 11-12). Consequently,
data from estuarine ecological, climatic, and geological
research are drawn on. The Charlotte Harbor study,
nonetheless, is preliminary and hypotheses remain to be
tested and modified with new data sets.
Logically, one cannot truly "reconstruct" a
paleoenvironment (Dincauze 1987:292), but one can construct
a model of a past environment at a specified spatial and
temporal scale. Because of the interactive and


3
argued that the society was an "early state" (Claessen
1978:538-580) or a "weak tribute-based state" (Gailey and
Patterson 1988:79) based on Spanish accounts. The
ethnohistoric sources specifically indicate that the Calusa
were nonagricultural and to date no evidence to the contrary
has been produced (Milanich 1987; Scarry and Newsom 1992;
for one opposing view see Dobyns 1983:126-130).
Wild plant foods, mostly in the form of fleshy fruits,
have been identified archaeologically. They include
hackberry, cocoplum, seagrape, mastic, prickly pear, cabbage
palm, saw palmetto, and hog plum (Scarry and Newsom 1992) .
Scarry and Newsom (1992) document the virtual year-round
availability of the various fruits. The recently excavated
waterlogged samples (A.D. 200) from the Pineland Site
Complex on Pine Island are already adding to the list of
archaeological fruits (Newsom, personal communication,
1992) .
Scarry and Newsom (1992) argue against the likelihood
of grain crops (maize and starchy seeds) being important in
prehistoric southwest Florida. Their experience has shown
that wherever maize is a subsistence base, cob remains have
been recovered in some number. Maize cob remains have never
been found in south Florida. Although corn pollen has been
identified at the Fort Center Site near Lake Okeechobee
(Sears 1982:120), Johnson (1990:210) argues that the soils
in question could not have supported maize cultivation. The


Table A-8
20.
Faunal Analysis, Cash Mound, 8CH38, Charlotte County, Florida, June 1985 Sample, Test A-l, Level
Species
Dasyatidae
Total Chondrichthyes
Brevoortla spp.
Clupeidae
Arlopals falla
Ariidae
Total Ariidae
Opsanus spp.
Strongylura spp.
Orthoprlatla chryaoptera
Archooargus probatocephalua
Lagodon rhomboids a
Sparidae
Total Sparidae
Balrdlella chryooura
Sciaenidae
Total Sciaenidae
Parallchtbya spp.
Chlloayctarua achoepf1
Osteichthyes
Total Osteiahthyes
Vertebrate (predominantly fish)
Total Vertebrate
Bal anua spp.
Cslllnectea spp.
Total Crustacea
Modulus modulus
Cerltblum stratum
Crepldula fornlcata
Crepldula spp.
Polinices dupllcatus
Urosalplnx perrugata
Melongena corona
Busycon contrarlum
Buoycon apiraturn pyruloldea
Total Melongenidae
Faaclolarla llllum hunterla
Common Name
Number of
Identifiable
Fragments
\
of
Total
MNI
*
of
Total
Bone/Shell
Height
(grams)
\
of
Total
Minimum
Meat Ht.
Estimate
%
of
Total
Maximum
Meat Ht.
Estimate
of
Total
(rays)
65
0.93
1
0.04
1.01
0.01
411.00
3.20
240.17(f)
2.51
(cartilaginous fishes)
65
0.93
1
0.04
1.01
0.01
411.00
3.20
240.17
2.51
(menhaden)
2
0.03
1
0.04
0.02
0.00
0.65
0.01
30.45
0.32
(herrings)
8
0.11
(a)
(a)
0.04
0.00
1.22
0.01
(a)
(a)
(hardhead catfish)
73
1.04
5
0.19
6.36
0.05
116.19
0.90
999.50
10.44
(sea catfishes)
78
1.11
6
0.23
5.16
0.04
96.28
0.75
565.55
5.91
(sea catfishes)
151
2.15
11
0.43
11.00
0.09
212.47
1.65
1565.05
16.35
(toadfish)
6
0.09
1
0.04
0.95
0.01
21.04
0.16
331.06
3.46
(needlefish)
1
0.01
1
0.04
0.01
0.00
0.35
0.00
52.81
0.55
(pigfish)
3
0.04
3
0.12
0.04
0.00
1.22
0.01
206.40
2.16
(sheep8head)
26
0.37
2
0.08
1.67
0.01
34.93
0.27
2707.20
28.28
(pinfish)
24
0.34
14
0.54
0.24
0.00
6.11
0.05
507.25
5.30
(porgies)
1
0.01
(a)
(a)
0.01
0.00
0.35
0.00
(a)
(a)
(porgies)
51
0.73
16
0.62
1.92
0.02
41.39
0.32
3214.45
33.58
(silver perch)
3
0.04
1
0.04
0.10
0.00
2.78
0.02
48.60
0.51
(drums)
41
0.58
(a)
(a)
0.36
0.00
8.80
0.07
(a)
(a)
(drums)
44
0.63
1
0.04
0.46
0.00
11.58
0.09
48.60
0.51
(flounder)
4
0.06
2
0.08
0.14
0.00
3.76
0.03
275.90
2.88
(striped burrfish)
13
0.19
5
0.19
2.61
0.02
52.18
0.41
905.25
9.46
(bony fishes)
1674
23.86
(a)
(a)
22.83
0.66
366.46
2.85
(a)
(a)
(bony fishes)
1957
27.90
41
1.59
40.02
0.32
712.32
5.55
6629.97
69.25
(bachboned animals)
(b)
(b)
(a)
(a)
30.70
0.24
478.22
3.72
(a)
(a)
(backboned animals)
2022
28.82
42
1.63
41.03
0.33
1601.54
12.47
6870.14
71.76
(barnacle)
633
9.02
495
19.24
114.58
0.91
(o)
(blue crabs, Qulf crab, etc.
) io
0.14
1
0.04
1.55
0.01
13.99
0.11
83.40
0.87
(aquatic arthropods)
643
9.17
496
19.28
116.13
0.92
13.99
0.11
83.40
0.87
(Atlantic modulus)
1
0.01
1
0.04
0.12
0.00
(o)
(a)
(Florida cerith)
10
0.14
10
0.39
0.72
0.01
(a)
(o)
(Atlantic slipper-shell)
1
0.01
1
0.04
0.12
0.00
(o)
(slipper-shell)
93
1.33
93
3.61
8.13
0.06
(a)
(a)
(c)
(shark eye)
2
0.03
2
0.08
0.84
0.01
(a)
(Qulf oyster drill)
9
0.13
9
0.35
2.96
0.02
(c)
(o)
(common crown conch)
219
3.12
36
1.40
452.55
3.59
81.59
0.64
140.11
1.46
(lightning whelk)
2
0.03
1
0.04
35.38
0.28
10.48
0.08
16.28
0.17
(Say's pear whelk)
1
0.01
1
0.04
4.79
0.04
2.90
0.02
28.87
0.30
(crown conchs)
222
3.16
38
1.48
492.72
3.91
94.97
0.74
185.26
1.94
(banded tulip)
3
0.04
1
0.04
0.77
0.01
0.10
0.00
4.15
0.04
223


Table A-ll
12.
Faunal Analysis, Josslyn Island, 8LL32, Lee County, Florida, March 1985 Sample, Test A-l, Level
Las
Common Name
Number of
Identifiable
Fragments
%
of
Total
MNI
%
of
Total
Bone/She11
Weight
(grams)
%
of
Total
Minimum
Meat Wt.
Estimate
\
of
Total
Maximum
Meat Wt.
Estimate
X
of
Total
Crloatidaa
(mlae)
8
0.03
1
0.07
0.10
0.00
3.98
0.02
34.00
0.05
Mammalia (small)
(small mammals)
1
0.00
(a)
(a)
0.07
0.00
2.98
0.01
(a)
(a)
ProcyoD lotor
(raccoon)
3
0.01
2
0.14
17.2 9
0.08
258.59
1.24
5273.00
7.01
Mammalia (medium)
(medium-sized mammals)
16
0.06
()
(a)
4.55
0.02
87.70
0.42
(a)
(a)
Mammalia (large)
(large mammals cl. deer)
2
0.01
1
0.07
7.25
0.03
127.90
0.62
23595.10
31.37
Mammalia
(mammals)
21
0.08
(a)
(a)
4.35
0.02
84.56
0.41
(a)
(a)
Total Mammalia
(mammals)
51
0.18
4
0.27
33.61
0.12
565.71
2.04
28902.10
38.42
Aythya spp.
(bay duck)
8
0.03
3
0.20
7.33
0.04
92.62
0.45
1581.00
2.10
Margva Barrator
(red-breasted merganser)
1
0.00
1
0.07
0.39
0.00
7.88
0.04
470.00
0.62
Anatldae
(ducks)
50
0.18
3
0.20
12.44
0.06
144.43
0.69
1581.00
2.10
Aves (medium)
(medium-sized birds)
73
0.26
(a)
(a)
10.57
0.05
125.96
0.61
(a)
(a)
Total Aves
(birds)
132
0.47
7
0.48
31
0.15
370.89
1.78
3632.00
4.83
Testudnea
(turtles)
2
0.01
1
0.07
0.33
0.00
24.82
0.12
631.31
0.84
Sclncldae
(sklnks)
4
0.01
3
0.20
0.04
0.00
(d)
(d)
(d)
(d)
Total Reptllla
(reptiles)
6
0.02
4
0.27
0.37
0.00
24.82
0.12
631.31
0.84
Carcharhlnua obacurua
(dusky shark)
5
0.02
1
0.07
1.55
0.01
331.44
1.59
3218.85
4.28
Carcbarblnua plumbaua
(sandbar shark)
20
0.07
1
0.07
10.71
0.05
1825.73
8.78
5801.00
7.71
Qalaocerdo cuvlarl
(tiger shark)
10
0.04
1
0.07
1.02
0.00
229.07
1.10
1059.63
1.41
Caroharhlnldae
(requiem sharks)
81
0.29
(a)
(a)
2.71
0.01
514.35
2.47
(a)
(a)
Sphyrna tlburo
(bonnethead shark)
6
0.02
1
0.07
0.72
0.00
58.29
0.28
743.34
0.99
Raj 1 formes
(rays)
33
0.12
1
0.07
1.56
0.01
605.18
2.91
356.89(f)
0.47
Total Chondrlchthyes
(cartilaginous fishes)
155
0.56
5
0.34
18.27
0.09
3564.06
17.14
11179.71
14.86
Bravoortla spp.
(menhaden)
36
0.13
9
0.61
0.43
0.00
10.32
0.05
1114.20
1.48
Clupeldae
(herrings)
151
0.54
(a)
(a)
0.71
0.00
16.19
0.08
(a)
(a)
Bagre marinus
(gafftopsall catfish)
11
0.04
1
0.07
1.10
0.01
24.00
0.12
23.00
0.03
Arlopala falla
(hardhead catfish)
263
0.95
22
1.49
27.83
0.13
437.85
2.11
4397.80
5.85
Arlldae
(sea catflshes)
166
0.60
(a)
(a)
4.80
0.02
90.22
0.43
(a)
(a)
Total Arlldae
(sea catflshes)
440
1.58
23
1.56
33.73
0.16
552.07
2.66
4420.80
5.88
Opaanua spp.
(toadflsh)
68
0.24
10
0.68
5.93
0.03
109.10
0.52
1179.37
1.57
Strongylura spp.
(needlefish)
7
0.03
1
0.07
0.26
0.00
6.57
0.03
190.82
0.25
Fundulua spp.
(kllliflsh)
7
0.03
1
0.07
0.26
0.00
6.57
0.03
190.82
0.25
Cbloroacombrua cbryaurua
(Atlantia bumper)
1
0.00
1
0.07
0.04
0.00
1.22
0.01
140.41
0.19
of. Carangldae
(jacks)
2
0.01
1
0.07
0.04
0.00
1.22
0.01
2308.00
3.07
Haamulon spp.
(grunt)
1
0.00
1
0.07
0.01
0.00
0.35
0.00
67.30
0.09
Orthoprlatla chryaoptara
(plgflsh)
37
0.13
30
2.04
0.14
0.00
3.76
0.02
1298.10
1.73
Total Haemulldae
(grunts)
38
0.14
31
2.11
0.15
0.00
4.11
0.02
1365.40
1.82
Arcboaargue probatocaphalua
(sheepshead)
33
0.12
15
1.02
0.58
0.00
13.50
0.06
542.60
0.72
Lagodon rbomboldaa
(plnflsh)
455
1.64
272
18.48
3.52
0.00
68.27
0.33
8436.99
11.22
Sparidae
(porgies)
108
0.39
27
1.83
1.20
0.01
25.95
0.12
779.49
1.04
(porgies) 596 2.16 914 21.33 5.30 0.03 107.72 0.52 9759.OS 12.97
Total Sparidae
231


Figure 18. Adult Pigfish, Orthopristis chrysoptera, and
its Atlas and Premaxilla Bones.


156
Raney 1971: Appendix A). Sample A-l-20 has only a small
sample (5 MNI) of catfish, with three juveniles present.
The salinity regime represented by A-l-4 (A.D. 680)
molluscs differs markedly from that of the earlier three
samples. Sample A-l-4 also shows a decrease in oyster
productivity along with an increase in the predatory crown
conch. This scenario is consistent with a lowered sea level
beginning circa A.D. 450, as hypothesized by Stapor et al.
(1987, 1991).
Useppa Island. 8LL51
One sample, A-4-2, from Useppa Island was analyzed. It
included 4,937 vertebrate and 5,685 invertebrate bone and
shell fragments, representing 208 vertebrate MNI and 895
invertebrate MNI (Table A-9). Twenty-five vertebrate taxa
and 37 invertebrate taxa were identified. A radiocarbon
date of 570 B.C. was obtained for the sample (Table 2).
Forty-nine percent of the individuals were from oyster beds
and forty-six percent were from mangrove/seagrass habitats
(Figure 7). Gathering bivalves (54%) and snails (26%)
accounts for the major portion of MNI in the sample, with
fishing (19%) making up the balance (Figure 16). Fishes, in
contrast, contributes 55% to 81% of the total meat estimates
(Figures 5 and 4, respectively). Although oyster,
cross-barred venus, crown conch, tulip shells, pinfish, and
hardhead catfish occur in large numbers, the infrequent
sharks, rays, jacks, seatrout, sheepshead, and striped


Figure 8. Thoracic Vertebrae Widths of Bony Fishes as an
Indicator of Overall Fish Size for Cash Mound, Josslyn
Island, and Buck Key.


271
Sanchez, W. A. and J. E. Kutzbach
1974 Climate of the American Tropics and Subtropics in
the 1960s and Possible Comparisons with Climatic
Variations of the Last Millennium. Quaternary Research
4:128-135.
Scarry, C. Margaret and Lee A. Newsom
1992 Archaeobotanical Research in the Calusa Heartland.
In Culture and Environment in the Domain of the Calusa,
edited by W. H. Marquardt, pp. 375-401. Monograph 1,
Institute of Archaeology and Paleoenvironmental
Studies, Florida Museum of Natural History,
Gainesville.
Schmidt-Nielsen, Knut
1985 Scaling: Why is Animal Size so Important?
Cambridge University Press, Cambridge.
Scholl, D. W. and M. Stuiver
1967 Recent Submergence of Southern Florida: A
Comparison With Adjacent Coasts and Other Eustatic
Data. Geological Society of America, Bulletin
78:437-454.
Sears, Elsie O'R.
1982 Pollen Analysis. In Fort Center, an Archaeological
Site in the Lake Okeechobee Basin. University Presses
of Florida, Gainesville.
Shepard, F. P.
1963 Thirty-five Thousand Years of Sea Level. In Essays
in Marine Geology in Honor of K.O. Emery, edited by T.
Clemmons, pp. 1-10. University of Southern California
Press, Los Angeles.
Simpson, George G., A. Roe, and R. C. Lewontin
1960 Quantitative Zoology. Harcourt, Brace, New York.
Sneh, Y. and M. Klein
1984 Holocene Sea Level Changes at the Coast of Dor,
Southeast Mediterranean. Science 226:831-832.
Solis de Mers, Gonzalo
1923 Pedro Menndez de Avils, Adelantado, Governor, and
Captain-General of Florida: Memorial. Translated and
notated by J. T. Conner. Florida State Historical
Society, Deland.


193
Table 13. Distribution of Archaeological Pinfish
and Associates by MNI.
Site
Sample
Pinfish
Pigfish
Perch
Big Mound Key
Layer 11
61
6
12
Layer 8b
39
3
3
Layer 7
27
4
5
Layer 2
2
0
1
Cash Mound
A-l-4
41
4
3
A-l-8
4
3
2
A-l-17
9
1
1
A-l-20
14
3
1
Useppa Island
A-4-2
69
15
5
Josslyn Island
A-l-4
134
20
4
A-l-12
272
30
19
A-l-22
70
64
10
A-l-32
147
71
35
Buck Key
A-2-6/7
4
3
3
A-2-11
2
2
6
B-2-5
40
5
16
B-2-9
17
4
5


Table A-10. Faunal Analysis, Josslyn Island, 8LL32, Lee County, Florida, March 1985 Sample, Test A-l, Level
4 (V2 volume sample).
Number of
%
%
Bona/Shall
%
Minimum
\
Maximum
%
Identifiable
of
MNI
of
Weight
of
Meat Wt.
of
Meat Wt.
of
Speciea
Common Name
Fragmenta
Total
Total
(grama)
Total
Eatimate
Total
Eatimate
Total
Aythya app.
(bay duck)
1
0.01
1
0.12
0.79
0.01
14.26
0.16
527.00
2.01
Anatidae
(duaka)
6
0.04
(a)
(a)
1.28
0.02
21.38
0.24
(a)
(a)
Avaa (medium)
(madium-aizad birda)
4
0.03
(a)
(a)
0.18
0.00
4.11
0.05
(a)
(a)
Total Avaa
(birda)
11
0.08
1
0.12
2.25
0.04
39.75
0.45
527.00
2.01
Paeudemya ap.
(cootar)
7
0.05
1
0.12
3.91
0.07
92.01
1.04
2268.00
8.67
Total Raptilia
(raptilaa)
7
0.05
1
0.12
3.91
0.07
92.01
1.04
2268.00
8.67
Carcharhinidae
(requiem aharka)
12
0.08
2
0.24
0.54
0.01
130.66
1.48
770.78
2.95
Sphyrna tlburo
(bonnethead ahark)
1
0.01
1
0.12
0.40
0.01
32.57
0.37
1381.53
5.28
Rhlnobatua lentIglnoaua
(Atlantic guitarfiah)
4
0.03
1
0.12
0.03
0.00
17.97
0.20
166.33
0.64
Daayatla app.
(atingray)
4
0.03
1
0.12
0.67
0.01
285.23
3.23
3206.25
12.25
Total Chondrichthyaa
(cart 1laginoua fiahea)
21
0.14
5
0.60
1.64
0.03
466.43
5.28
5524.89
21.11
Blopa aaurua
(ladyfiah)
9
0.06
1
0.12
0.29
0.01
7.24
0.08
241.02
0.92
Brevoortla app.
(menhaden)
5
0.03
4
0.48
0.02
0.00
0.65
0.01
165.18
0.63
Bagre marlnua
(gafftopaall catfiah)
4
0.03
2
0.24
0.26
0.00
6.56
0.07
1276.80
4.88
Arlopala fella
(hardhead cat£iah)
184
1.26
8
0.97
14.21
0.26
239.31
2.71
1599.20
6.11
Arlidaa
(sea catfiahes)
41
0.28
(a)
(a)
1.71
0.03
60.02
0.68
(a)
(a)
Total Arlidaa
(aaa catfiahea)
229
1.57
10
1.21
16.18
0.30
305.89
3.46
2876.00
10.99
Opaanua app.
(toadfish)
141
0.97
7
0.85
11.85
0.22
203.27
2.30
749.65
2.86
Strongylura app.
(needlefiah)
4
0.03
1
0.12
0.10
0.00
2.78
0.03
12.12
0.05
Tyloaurua crocodllua
(hound£1ah)
2
0.01
2
0.24
0.28
0.01
7.02
0.08
D
(d)
Balonidaa
(needle£iehea)
4
0.03
(a)
(a)
0.15
0.00
4.00
0.49
(a)
(a)
Fundulua app.
(killifiah)
14
0.10
6
0.73
0.21
0.00
5.37
0.06
202.42
0.77
Caranx app.
(jack)
23
0.16
2
0.24
1.27
0.02
27.31
0.31
254.20
0.97
Chloroacombrua cbryaurva
(Atlantic bumper)
4
0.03
2
0.24
0.05
0.00
1.49
0.02
82.40
0.31
Lutjanua app.
(anappar)
1
0.01
1
0.12
0.04
0.00
1.22
0.01
631.80
2.41
Orthoprlatla cbryaoptera
(pigfiah)
63
0.43
20
2.42
0.74
0.01
16.81
0.19
516.00
1.97
Archoaargua probatocephalua
(ahaepahead)
13
0.09
2
0.24
1.52
0.02
32.29
0.37
441.00
1.69
Dlplodua bolbrookl
(apottail pinfiah)
3
0.02
1
0.12
0.04
0.00
1.22
0.01
(d)
(d)
Lagodon rhomboldo a
(pintiah)
523
3.58
134
16.20
5.78
0.11
106.62
1.21
3090.36
11.81
Sparidaa
(porgiaa)
96
0.66
11
1.33
0.63
0.01
14.54
0.16
267.41
1.02
Total Sparidaa
(porgiaa)
622
4.26
146
17.65
6.45
0.12
122.38
1.39
3357.77
12.83
Balrdlella chryaoura
(silver parch)
10
0.07
4
0.48
0.29
0.01
7.24
0.08
146.16
0.56
Cynoaclon arenarlua
(aand seatrout)
5
0.03
3
0.36
2.46
0.05
49.48
0.56
2511.16
9.60
Cynoaclon app.
(Beat rout)
4
0.03
(a)
(a)
0.68
0.01
15.58
0.18
(a)
(a)
Laioatomua xanthurua
(epot)
3
0.02
3
0.36
0.02
0.00
0.65
0.01
30.65
0.12
Sclaenopa ocellatua
(rad drum)
2
0.01
2
0.24
0.18
0.00
48.03
0.54
512.00
1.96
Total Soiaanidaa
(druma)
24
0.16
12
1.45
3.63
0.07
120.98
1.37
3199.97
12.23
(mullet) 2 0.01 2 0.24 0.16 0.00 4.24 0.05 973.60 3.72
(flounder) 30 0.21 4 0.48 1.67 0.03 34.93 0.40 1784.14 6.82
Mugll app.
Parallchthya app
228


Sphoaroidae epenglari
(bandtail puffar)
3
0.02
2
0.24
0.20
0.00
5.19
0.06
142.60
0.54
Chilomyctarua Bchoepfi
(striped burrfish)
2
0.01
1
0.12
0.02
0.00
0.65
0.01
181.05
0.69
Diodontidae
(burr and porcupine fishes)
3
0. 02
1
0.12
0.16
0.00
4.24
0.05
181.05
0.69
Oataichthyaa
(bony fishes)
8150
55.83
()
<>
96.30
1.78
1336.15
15.13
()
()
Total Oataiohthyaa
(bony fishes)
9335
63.94
224
27.09
139.77
2.58
2211.81
25.04
15550.97
59.43
Vartabrata (predominantly fish)
(backboned animals)
(b)
(b)
()
(>
290.19
5.35
3850.27
43.59
(>
()
Total Vartabrata
(backboned animals)
9374
64.21
231
27.93
437.76
8.07
6660.27
75.41
23870.86
91.23
Balanua app.
(barnacle)
50
0.34
37
4.47
2.77
0.05
<>

(c)
Calllnectaa app.
(blue eraba. Gulf crab, ate.)
6
0.04
2
0.24
1.03
0.02
10.01
0.11
166.80
0.64
Manippa marcenara
(stone crab)
16
0.11
3
0.36
14.99
0.28
89.9 8
1.02
250.20
0.96
Dacapoda
(eraba)
226
1.55
<)
<)
20.50
0.38
116.32
1.32
(*>
(
Total Cruataoaa
(aquatic arthropods)
298
2.04
42
5.08
39.29
0.72
216.31
2.45
417.00
1.59
Truncatalla pulchalla
(beautiful truncatella)
2
0.01
2
0.24
0.03
0.00

(o)
(O)
VermAculara app.
(worm-shell)
1
0.01
1
0.12
0.75
0.01
(o)
(C)
(o>
Modulus modulua
(Atlantic modulus)
19
0.13
19
2.30
4.14
0.08
(o)
(O)
(o)
Cerithlum atratum
(Florida carith)
21
0.14
19
2.30
2.30
0.04
(O)
(O)
(O)
Crepldula fornlcata
(Atlantic alippar-ahall)
11
0.08
11
1.33
7.41
0.14
(C)
(O)
(o>
(O)
Crapidula aculaata
(thorny alippar-ahall)
7
0.05
7
0.85
1.70
n
o
o
(O)
(O)
(c)
(C)
Naticidae
(moon shells)
1
0.01
1
0.12
0.10
o
o
o
(O)
(O)
(C>
Uroaalpinx cinaraa
(Atlantic oyster drill)
12
0.08
12
1.45
2.80
0.05
(C)
(O)
(O)
(C)
Uromalpinx perrugata
(Gulf oyatar drill)
1
0.01
1
0.12
0.33
0.01
(O)
(O)
(O)
(O)
Euplaura aulcldentata
(sharp-ribbed drill)
4
0.03
4
0.48
0.24
0.00
(O)
(O)
(O)
Columba 11 a marcatoria
(common dove-ahell)
1
0.01
1
0.12
0.20
0.00
(C)
<)
(C>
(O)
Aachis lafreanayl
(wall-ribbed dove-shell)
4
0.03
4
0.48
0.32
0.01
(C)

Cantharua multangulua
(falsa drill)
3
0.02
3
0.36
1.60
0.03
(O)
(>
(O)
(c)
Malongana corona
(common crown conch)
87
0.60
19
2.30
77.62
1.43
17.2 8
0.20
41.04
0.16
Buaycon contrarlum
(lightning whelk)
695
4.76
234
28.30
619.91
11.43
274.60
3.11
669.24
2.56
Bueycon apira turn pyruloldaa
(Say's pear whelk)
86
0.59
49
5.93
52.87
0.97
61.51
0.70
381.44
1.46
Total Melongenidae
(crown concha)
868
5.95
3 02
36.52
750.40
13.84
353.39
4.00
1091.72
4.17
Naasarlua ap.
(nasaa)
14
0.10
14
1.69
1.55
0.03
(O)
(c)
(O)
(O)
Faaclolarlm lilium hunterla
(banded tulip)
7
0.05
7
0.85
5.84
0.11
7.45
0.08
27.16
0.10
Faaclolarla tulipa
(true tulip)
20
0.14
6
0.73
45.52
0.84
57.93
0.66
65.76
0.25
Famciolaria app.
(tulip shall)
3
0.02
1
0.12
0.96
0.02
0.13
0.00
0.02
0.00
PlBuroploca gigantea
(Florida horse conch)
2
0.01
1
0.12
183.75
3.39
77.33
0.88
122.03
0.47
Total Faaciolariidaa
(tulip ahells)
32
0.22
15
1.81
236.07
4.35
142.84
1.62
214.97
0.82
Olivella pueilla
(vary small dwarf olive)
15
0.10
14
1.69
0.39
0.01
(C)
(O)
Marginalia apicina
(common Atlantic marginalia)
11
0.08
11
1.33
0.59
0.01
()
(O)
(O)
Marginalia app.
(marginalia)
2
0.01
2
0.24
0.05
0.00
(C)
(O)
(O)
(O)
Conua jaapideuB
(jaapar cone)
3
0.02
3
0.36
0.19
0.00
(O)
(C)
(O)
Turbonilla conradi
(Conrad's turbonilla)
1
0. 01
1
0.12
0.04
0.00
(O)
(O)
(O)
(O)
Malampua coffaua
(coffee malampua)
2
0.01
2
0.24
0.14
0.00
(C)
(O)
(O)
(O)
Gaatropoda (medium marina)
(medium-aizad marina snail)
3468
23.76
<)
(
893.11
16.47
352.18
3.99
(>
()
Total Marina Gaatropoda
(marina snails)
4488
30.74
435
52.60
1904.06
35.11
848.41
9.61
1306.69
4.99
Buglandina rosea
(rosy euglandina)
1
0.01
1
0.12
0.83
0.02
(C)
(O)
(o)
(O)
Polygyra app.
(polyqyr.)
6
0. 04
6
0.73
0.11
0.00
(o)
(O)
(O)
Total Tarraatrial Gaatropoda
(terrestrial anaila)
7
0.05
7
0.85
0.94
0.02
0.00
0.00
0.00
0.00
(cut-ribbed ark) 1 0.01 1 0.12 0.02 0.00 0.07 0.00 0.28 0.00
Anadara florldana
229


185
If cultural adaptation to multi-scalar estuarine/marine
variation was constant, as it appears to have been, then
multi-scalar change was the norm in the lives of Charlotte
Harbor's prehistoric residents. Yet, there may have been
times when critical thresholds of change were reached, when
levels of productivity and the character of that
productivity were altered at a long-term scale. Sea-level
fluctuations of .9 to 1.8 m present good candidates for such
thresholds.
Estuarine/marine zooarchaeological data by themselves
constitute an important tool that can be used toward
understanding the spatial and temporal environmental context
of any given site. Samples generally produce abundances and
diversities of species MNI, providing valid data sets. When
combined with geophysical (e.g., the relative sea-level
models for Charlotte Harbor and the Gulf of Mexico),
geoarchaeological, and archaeobotanical signatures for any
given site, there is great potential to understand that
site's paleoenvironmental context.
Geoarchaeological signatures for paleoevironmental
fluctuations cannot be well understood without extensive
study of large village sites that exhibit great temporal
depth. At least three kinds of geoarchaeological signatures
might be recognized at such sitesthe stratification of
high-intensity storms, the stratification of sea-level low
stands, and the stratification of sea-level high stands.


I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
Rhodes W. Fairbridge
Professor of Geology
This dissertation was submitted to the Graduate Faculty
of the Department of Anthropology in the College of Liberal
Arts and Sciences and to the Graduate School and was
accepted as partial fulfillment of the requirements for the
degree of Doctor of Philosophy.
December, 1992
Dean, Graduate School


Table A-14
2, Level 5
Faunal Analysis, Buck Key Shell Midden, 8LL722, Lee County, Florida, March 1986 Sample, Test B-
Number of % % Bone/Shell % Minimum % Maximum %
Identifiable of MNI of Weight of Meat Wt. of Meat Wt. of
Species
Common Name
Fragments
Total
Total
(grams)
Total
Estimate
Total
Estimate
Total
Odocoileua vlrglnlanua
(white-tailed deer)
2
0.01
1
0.15
25.98
0.29
1842.55
7.75
23595.10
26.50
Mammalia (large)
(large mammals)
3
0.02
(a)
(a)
1.79
0.02
126.95
0.53
(a)
(a)
Total Mammalia
(mammals)
5
0.03
1
0.15
27.77
0.31
1969.50
8.28
23595.10
26.50
Testudnea
(turtles)
1
0.01
1
0.15
0.34
0.00
20.61
0.09
631.31
0.71
Total Reptilia
(reptiles)
1
0.01
1
0.15
0.34
0.00
20.61
0.09
631.31
0.71
Carcbarblnua acronotua
(blacknose shark)
1
0.01
1
0.15
0.70
0.01
29.76
0.13
639.67
0.72
Rhlzoprlonodon tarraanovae
(Atlantic sharpnose shark)
17
0.10
2
0.29
6.07
0.07
1105.99
4.65
2573.06
2.89
Carcharhinidae
(requiem sharks)
13
0.08
(a)
(a)
3.80
0.04
161.54
0.68
(a)
(a)
Sphyrna tlburo
(bonnethead shark)
20
0.12
1
0.15
3.96
0.04
207.67
0.87
807.93
0.91
Sphyrnidae
(hammerhead sharks)
15
0.09
(a)
(a)
0.14
0.00
7.45
0.03
(a)
(a)
Lamniformes
(sharks)
79
0.46
(a)
(a)
4.32
0.05
190.38
0.80
(a)
(a)
Total Lamniformes
(sharks)
145
0.84
4
0.58
18.99
0.21
1702.79
7.16
4020.66
4.51
Rajiformes
(skates, rays, etc.)
23
0.13
1
0.15
0.32
0.00
12.64
0.05
256.26
0.29
Chondrichthyes
(cartilaginous fishes)
10
0.06
(a)
(a)
0.22
0.00
(d)
(d)
(a)
(a)
Total Chondrichthyes
(cartilaginous fishes)
178
1.03
5
0.73
19.53
0.22
1715.43
7.21
4276.92
4.80
Blopa aaurua
(ladyfish)
12
0.07
4
0.58
0.21
0.00
5.37
0.02
785.48
0.88
Brevoortla spp.
(menhaden)
11
0.06
3
0.44
0.10
0.00
2.75
0.01
91.33
0.10
Clupeidae
(herrings)
251
1.45
2
0.29
1.07
0.01
23.25
0.10
60.89
0.07
Bagre marlnua
(gafftopsail catfish)
14
0.08
3
0.44
1.57
0.02
32.83
0.14
2050.90
2.30
Arlopala fella
(hardhead catfish)
1392
8.05
53
7.71
103.47
1.17
1423.42
5.98
10594.70
11.90
Ariidae
(sea catfishes)
1397
8.08
(a)
(a)
54.32
0.61
797.00
3.35
(a)
(a)
Total Ariidae
(sea aatfishes)
2803
16.21
56
8.15
159.36
1.80
2253.25
9.47
12645.60
14.20
Opaanua spp.
(toad fish)
53
0.31
6
0.87
4.46
0.05
84.02
0.35
603.98
0.68
Strongylura spp.
(needlefish)
2
0.01
1
0.00
0.17
0.00
4.44
0.02
378.94
0.00
Ogcocephalidae
(bat fishes)
68
0.39
1
0.15
0.55
0.01
12.77
0.05
179.50
0.20
Centropomua spp.
(snook)
5
0.03
1
0.15
11.78
0.13
201.39
0.85
5652.77
6.35
Myc t e rope rc a spp.
(grouper/gag)
5
0.03
2
0