Citation
Poly(amide-graft-acrylate) interfacial compounds

Material Information

Title:
Poly(amide-graft-acrylate) interfacial compounds
Creator:
Zamora, Michael Perez, 1970-
Publication Date:
Language:
English
Physical Description:
xiv, 182 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Acrylates ( jstor )
Anhydrides ( jstor )
Copolymerization ( jstor )
Copolymers ( jstor )
Methacrylates ( jstor )
Monomers ( jstor )
Polymerization ( jstor )
Polymers ( jstor )
Stock transfer ( jstor )
Teeth ( jstor )
Dissertations, Academic -- Materials Science and Engineering -- UF ( lcsh )
Materials Science and Engineering thesis, Ph.D ( lcsh )
City of Gainesville ( local )
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph.D.)--University of Florida, 1997.
Bibliography:
Includes bibliographical references (leaves 173-180).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Michael Perez Zamora.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
028641781 ( ALEPH )
38854827 ( OCLC )

Downloads

This item has the following downloads:


Full Text













POLY(AMIDE-GRAFT-ACRYLATE) INTERFACIAL COMPOUNDS


By

MICHAEL PEREZ ZAMORA

























A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1997







































This dissertation is dedicated to all those who supported me
emotionally, physically, and financially throughout my
seemingly endless years of education; especially my wife
Karen, my parents Pablo and Sylvia, and my grandmother
Bella; and to the loving memory of Oscar Zamora and Manuel
Leon.

















ACKNOWLEG[IE[ITS


I cannot express enough gratitude and appreciation to

my advisor and doctoral committee chairman, Dr. Anthony

Brennan, for his years of teaching, guidance and support in

areas that extended well beyond my academic endeavors. I

would also like to express sincere thanks to the members of

my supervisory committee for their advice and teaching: Dr.

Jim Adair, Dr. Chris Batich, Dr. Eugene Goldberg, and Dr.

Ken Wagener.

I consider this experience substantially enriched by

the support of my colleagues. Whether there was

collaboration, debate or simply encouragement, it would have

been endlessly more difficult without the following: Dr.

Michael Antonell, Dr. Drew Amery, Craig Habeger, Jeff

Kerchner, Dr. James Marotta, Jeremy Mehlem, Dr. Rodrigo

Orefice, Luxsamee Plangsmangas, Mark Schwarz, and Dr. Chris

Widenhouse.

Special thanks are extended to Arthur Gavrin for his

assistance with NMR spectroscopy and for the lively

discussions in his short time here, and Ananth Naman and Dr.

Rob Chodelka for their unwavering support and friendship. I

would be remiss not to mention Jesse Arnold and Tom Miller,

my colleagues of five years with whom I have grown, matured,











and learned. I will forever be appreciative of our

continuous discussions, debates, and collaboration as well

as their undying support.
















TABLE OF CONTENTS


ACKNOWLEDGMENTS ......................................... iii

LIST OF TABLES ......................................... viii

LIST OF FIGURES .......................................... ix

ABSTRACT ................................................ xiii

1. INTRODUCTION ................ ................................ 1
1.1. Poly(amide-g-acrylate) Graft Copolymers ............ 1
1.1.1. Macromonomers ................................... 1
1.1.2. Addition-Condensation Graft Copolymers ........ 3
1.1.3. Applications .................................... 4
1.2. Offsetting Polymerization Shrinkage in Dental
Resins through the Incorporation of Maleic
Anhydride ............................................ 5

2. BACKGROUND ............................................. 7
2.1. Graft Copolymers ..................................... 8
2.1.1. Synthetic Routes to Graft Copolymers .......... 8
2.1.1.1. Anionically polymerized macromonomers..... 9
2.1.1.2. Macromonomers through chain transfer
functionalization ................................. 9
2.1.1.3. Modeling chain transfer reaction ......... 15
2.1.2. Polyamide Addition-Condensation Multiphase
Copolymers ......................................... 19
2.1.2.1. Poly(amide-b-olefin) block copolymers.... 19
2.1.2.2. Poly(amide-g-olefin) graft copolymers.... 28
2.2. Polymerization Shrinkage in Dental Composites..... 35
2.2.1. History of Dental Composites ................. 36
2.2.2. Reduction of Polymerization Shrinkage in
Dental Resins ..................................... 39
2.2.3. Use of Anhydrides in Dental Applications ..... 41
2.2.4. Filler Modification in the Reduction of
Overall Composite Shrinkage....................... 42

3. MATERIALS AND METHODS ................................... 44
3.1. Materials .......................................... 44
3.1.1. Macromonomer Reactants ...................... 44
3.1.2. Graft Copolymer Reactants .................... 45
3.1.3. Dental Monomers ............................... 45
3.2. Methods ........................................... 46










3.2.1. Synthesis and Characterization of
Macromonomers....................................... 46
3.2.2. Synthesis and Characterization of Graft
Copolymers ........................................... 49
3.2.3. Synthesis and Characterization of Anhydride
Modified Dental Resins............................ 52

4. RESULTS AND DISCUSSION ....... ...................... .... 55
4.1. Synthesis and Characterization of Amino Acid-
terminated Poly(acrylate) Macromonomers using
Chain Transfer Chemistry ........................... 55
4.1.1. Determination of an Appropriate Solvent
System............................................. 59
4.1.2. Preliminary Studies of the Effectiveness of
Cysteine as a Chain Transfer Agent in the
Polymerization of Butyl Acrylate................... 61
4.1.3. Determination of Chain Transfer Constant of
Cysteine in the Synthesis of Amino Acid-
terminated Poly(butyl acrylate) Macromonomers..... 75
4.1.4. Cysteine Chain Transfer in the Synthesis of
Amino Acid-terminated Poly(methyl
methacrylate:octafluoropentyl methacrylate)
Macromonomers..................................... 88
4.2. Polyamide-g-poly(acrylate) graft copolymers
from Amino Acid-terminated Macromonomers ............ 99
4.2.1. Synthesis of Poly(amide-g-butyl acrylate) .... 99
4.2.2. Characterization of Graft Copolymers ........ 104
4.2.3. Blends of Graft Copolymers with Nylon 6 ..... 139
4.3. Offsetting Polymerization Shrinkage in Dental
Resins through the Incorporation of Maleic
Anhydride .......................................... 144
4.3.1. Copolymer Compositions ..................... 146
4.3.2. Copolymer Characterization .................. 149

5. SUMMARY AND CONCLUSIONS ............................... 158
5.1. Chain Transfer Functionalization of
Poly(acrylates) and Poly(methacrylates) ............ 161
5.1.1. Conclusions for Preliminary Evaluation of
Cysteine Chain Transfer Agent .................... 161
5.1.2 Conclusions for Synthesis and
Characterization of Amino Acid-terminated
Poly(butyl acrylate) ............................ 162
5.1.3 Conclusions for Synthesis and
Characterization of Amino Acid-terminated
Poly(MMA-co-OFPMA) ................................ 162
5.2. Graft Copolymerizations of Macromonomers with
Polyamide Precursors ................................ 163
5.2.1. Conclusions for Synthesis of Poly(amide-g-
acrylate) Graft Copolymers. ...................... 164










5.2.2. Conclusions for Characterization of
Poly(amide-g-acrylate) Graft Copolymers.......... 165
5.2.3. Conclusions for Mechanical Properties of
Nylon 6/Graft Copolymer Blends.................... 166
5.3. Offsetting Polymerization Shrinkage in
Poly(dimethacrylate) Dental Resins ................. 166
5.3.1. Conclusions for Characterization of Maleic
Anhydride-containing Dental Resins................ 167
5.3.2. Conclusions for Synthesis and
Characterization of Anhydride Copolymer with
PEMA ............................................. 168

6. FUTURE WORK ............ .................... .. .. ... 169
6.1. Macromonomers and Graft Copolymers................ 169
6.1.1. Macromonomer Work .......................... 169
6.1.2. Graft Copolymers ............................. 170
6.2. Anhydride-containing Dental Resins................ 171

LIST OF REFERENCES ....................................... 173

BIOGRAPHICAL SKETCH ...................................... 181













LIST OF TABLES


TABLE page


4.1 Solvent determination for monomer and chain
transfer agent ....................... .................. 60

4.2 Percent functionalization versus molar mass for
poly(butyl acrylate) macromonomers.. ................. 87

4.3 Molar mass values of fluoroacrylate copolymers from
GPC .. ................................................ 91

4.4 Percent weight loss from Soxhiet extraction for
polyamide graft copolymers ......................... 105

4.5 Chemical composition of purified graft copolymers from
elemental analysis and NMR ......................... 137

4.6 Inherent viscosities of polyamide graft copolymers. 138

4.7 Tensile properties of nylon 6 blends ............... 140

4.8 Experimental matrix of dental monomer compositions. 148

4.9 PEMA-maleic anhydride monomer compositions. ........ 149

4.10 EWC of maleic anhydride dental resins. ............. 150

4.11 Residual weight gain, anhydride incorporation and post
polymerization expansion of maleic anhydride dental
resins ............................................... 151

4.12 Glass transition temperatures and composition of PEMA-
maleic anhydride copolymers ........................ 155

4.13 Molar mass averages from GPC for PEMA-anhydride
copolymers ........................................... .157


viii



















LIST OF FIGURES


Figure page


1.1 Schematic illustration of general graft copolymer
structure ........................................... 1

2.1. Mechanism of functionalization using chain transfer
agents ............................................. 11

2.2. Schematic illustration of utilized chain transfer
agents and macromonomers thereof. ................... 16

2.3. Mechanism of block copolymer formation through
sequential polymerizations of vinyl monomer and
isocyanates .. ........................................ 21

2.4. Reaction schematic for macroinitiator formation and
subsequent anionic block polymerization of caprolactam.
. .. . . . . .. 2 3

2.5 Reaction schematic of block copolymerization initiated
by nitrosated polyamide macroinitiators. ............ 25

2.6 Reaction schematic of AIBN containing polyamide and
block copolymer thereof ............................ 27

2.7 Reaction schematic of in situ graft copolymer formation
from glycidyl methacrylate copolymers. .............. 31

2.8 Reaction schematic of in situ graft copolymer formation
from maleic anhydride modified polyolefins copolymers..
. . . .. . . .. 33

2.9 Mechanism of ring opening polymerization of spiro
orthocarbonate monomers ............................ 40

4.1. Mechanism of functionalization using chain transfer
reactions .. .......................................... 57

4.2 Schematic of ideal amino acid functionalization during
polymerization of butyl acrylate. ................... 62












4.3 GPC results of preliminary butyl acrylate
polymerizations ... .................................... 64

4.4 DSC trace of side product .. ......................... 66

4.5 FTIR spectra of side product of cysteine modified
P (BA ) .............................................. 67

4.6 Comparison of FTIR spectra of side product with butyl
acrylate monomer..................................... 68

4.7 Reaction pathway of cysteine with acrylates. ........ 69

4.8 Structure and elemental analysis of side product. ... 70

4.9 Side reaction preventing complete chain transfer. ... 73

4.10 Effect of acidification on chain transfer
functionalization of poly(butyl acrylate). .......... 76

4.11 GPC results of polymerizations of butyl acrylate
varying cysteine concentrations. .................... 80

4.12 Mayo plot for chain transfer constant determination for
cysteine:butyl acrylate system ...................... 81

4.13 FTIR spectra of poly(butyl acrylate) and cysteine end-
capped p(BA) macromonomer. Macromonomer is the
1.2kg/mol p(BA) synthesized using 1000:64:1 butyl
acrylate:cysteine:AIBN mole ratio .................... 83

4.14 'H-NMR spectra of neat poly(butyl acrylate) ......... 84

4.15 'H-NMR spectra of 1.2kg/mol cysteine modified
poly(butyl acrylate) ................................ 85

4.16 13C-NMR spectra of 1.2kg/mol cysteine modified
poly(butyl acrylate) ................................ 86

4.17 Chemical structure of fluoroacrylate copolymer. ..... 90

4.18 GPC result of chain transfer polymerizations of
fluoroacrylate copolymers .. ......................... 91

4.19 Comparison of effectiveness of chain transfer for p(BA)
and fluoroacrylate copolymer ........................ 93

4.20 1H-NMR spectra of '1MA-OFPMA macromonomer ............ 95












4.21 Mayo plot for chain transfer constant determination for
cysteine:MMA-co-OFPMA system ........................ 96

4.22 FTIR spectra of MMA-OFPMA copolymers.. ............... 98

4.23 Amide-acrylate graft copolymer structure. .......... 100

4.24 Triphenyl phosphite driven amide formation. ........ 102

4.25 Synthesized graft copolymer compositions. .......... 103

4.26 Molar mass distributions of dissolved polymer in THF
extractant solution of 33PABA-g-66BA (refractive index
detector) .... ....................................... 107

4.27 UV spectra of dissolved polymer in THF extractant
solution of 33PABA-g-66BA from GPC-UV.. ............. 108

4.28 Molar mass distributions of dissolved polymer in THF
extractant solution of 33PhDAA-g-66BA (refractive index
detector) ............................................ 110

4.29 UV spectra of dissolved polymer in THF extractant
solution of 33PhDAA-g-66BA from GPC-UV.. ............ 112

4.30 Molar mass distributions of dissolved polymer
in THF extractant solution of 10PhDAA-g-90BA
(refractive index detector) ....................... 113

4.31 UV spectra of dissolved polymer in THF extractant
solution of 10PhDAA-g-90BA from GPC-UV.. ............ 114

4.32 Molar mass distributions of dissolved polymer in THF
extractant solution of 33PhDAA-g-66FA (refractive index
detector) .... ....................................... 116

4.33 UV spectra of dissolved polymer in THF extractant
solution of 33PhDAA-g-66FA from GPC-UV.. ............ 117

4.34 Molar mass distributions of dissolved polymer in THF
extractant solution of 33PhDAA-g-66UBA (refractive
index detector) ..................................... .119

4.35 UV spectra of dissolved polymer in THF extractant
solution of 33PhDAA-g-66UBA from GPC-UV.. ........... 120

4.36 Transmission FTIR spectra of 66PABA-g-33BAx graft
copolymer .... ........................................ 122

4.37 Transmission FTIR spectra of 33PABA-g-66BAx graft
copolymer .... ........................................ 123













4.38 Transmission FTIR spectra of 33PhDAA-g-66BAx graft
copolymer .... ......................................... 125
4.39 Transmission FTIR spectra of 10PhDAA-g-90BAx graft
copolymer .... ......................................... 126

4.40 Transmission FTIR spectra of poly(butyl acrylate)
grafted polyamides ... ............................... 128

4.41 Transmission FTIR spectra of 10PhDAA-g-90BAx graft
copolymer .... ......................................... 129

4.42 'H-NMR spectra of 66PABA-g-33BAx.. .................. 131

4.43 'H-NMR spectra of 33PABA-g-66BAx.. .................. 132

4.44 'H-NMR spectra of PhDAA homopolyamide.. ............. 133

4.45 1H-NMR spectra of 33PhDAA-g-66BAx.. ................. 134

4.46 1H-NMR spectra of 10PhDAA-g-90BAx.. ................. 135

4.47 1H-NMR spectra of 33PhDAA-g-66FAx.. ................. 136

4.48 TG/DTA analysis of 33PhDAA-g-66BA graft copolymer and
PhDAA homopolyamide ................................. 142

4.49 DSC analysis of 33PhDAA-g-66BA graft copolymer and
PhDAA homopolyamide ................................. 143

4.50 Chemical structures of methacrylate and anhydride
monomers for dental applications.. .................. 147

4.51 TG/DTA of anhydride modified dental resin .......... 153

4.52 FTIR spectra of poly(PEMA) and poly(60PEMA-co-40maleic
anhydride) .......................................... 154










Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy


POLY(AMIDE-GRAFT-ACRYLATE) INTERFACIAL COMPOUNDS

By

Michael Perez Zamora

December, 1997

Chairman: Dr. Anthony B. Brennan
Major Department: Materials Science and Engineering


Graft copolymers with segments of dissimilar

chemistries have been shown to be useful in a variety of

applications as surfactants, compatibilizers, impact

modifiers, and surface modifiers. The most common route to

well defined graft copolymers is through the use of

macromonomers, polymers containing a reactive functionality

and thus capable of further polymerization. However, the

majority of the studies thus far have focused on the

synthesis of macromonomers capable of reacting with vinyl

monomers to form graft copolymers.

This study focused on the synthesis of macromonomers

capable of participating in condensation polymerizations. A

chain transfer functionalization method was utilized.

Cysteine was evaluated as a chain transfer agent for the

synthesis of amino acid functionalized poly(acrylate) and

poly(methacrylate) macromonomers. Low molar mass,

functionalized macromonomers were produced. These

macromonomers were proven to be capable of reacting with


xiii











amide precursors to form poly(amide-g-acrylate) graft

copolymers.

Macromonomers and graft copolymers were characterized

by gel permeation chromatography (GPC), Fourier transform

infrared spectroscopy (FTIR), nuclear magnetic resonance

(NMR) spectroscopy, elemental analysis (EA), inductively

coupled plasma (ICP), and differential scanning calorimetry

(DSC).

The second part of this research involved

poly(dimethacrylate) dental restorative materials.

Volumetric shrinkage during the cure of these resins results

in a poor interface between the resin and the remaining

tooth structure, limiting the lifetime of these materials.

Cyclic anhydrides were incorporated into common monomer

compositions used in dental applications. Volume expansion

from the ring opening hydrolysis of these anhydrides was

shown to be feasible.

The modified dental resins were characterized by

swelling, extraction and ultraviolet spectroscopy (UV), and

density measurements. Linear polymers designed to model the

crosslinked dental resins were characterized by FTIR, GPC,

and DSC.


xiv
















CHAPTER 1
INTRODUCTION


1.1. Poly(amide-g-acrylate) Graft Copolymers


Graft copolymers are macromolecules composed of

chemically dissimilar segments in a branched architecture

(Figure 1.1). They have been studied and utilized in a

variety of applications because of their ability to combine

the properties of their individual segments.



A A A A


Figure 1.1 Schematic illustration of general graft
copolymer structure.


1.1.1.Macromonomers


The most prevalent synthetic route to well defined

graft copolymers is through the use of macromonomers, low











molar mass polymers containing a polymerizable end group. A

review of the literature has shown that current studies,

including those within this laboratory, have concentrated on

synthesizing macromonomers which contain a residual

unsaturation at one end. Therefore, they are generally

polymerizable only with addition type monomers through a

free radical mechanism. Because the macromonomers

themselves are generally synthesized through either anionic

or free radical polymerization in the presence of a

functionalizing agent, the resulting graft copolymers which

can be synthesized through this method are generally limited

to addition-addition graft copolymers.

It was the objective of the first part of this study to

synthesize condensation polymerizable macromonomers,

specifically amino acid terminated macromonomers, capable of

reacting with amino acids in the synthesis of polyamide

graft copolymers. An amino acid functionality is preferred

over other end groups such as diacids or diamines due to the

inherent stoichiometry that it provides. This stoichiometry

is required in the condensation graft reaction to insure the

highest degree of polymerization possible.

The approach taken in this study involves the free

radical polymerization of acrylate and methacrylate monomers

in the presence of a functional chain transfer agent.

Mercaptans, compounds containing a sulfur-hydrogen bond, are

commonly used in chain transfer reactions. In fact,

mercaptans are commonly used to control molecular weight in











commercial polymerization reactors. Cysteine, a naturally

occurring amino acid, contains the sulfhydryl group required

for mercaptan chain transfer reactions. The addition of

cysteine, if effective as a chain transfer agent, would

result in an amino acid functionality.


l.l.2.Addition-Condensation Graft Copolymers


There are few reports of well defined polyamide graft

copolymers with addition polymers such as poly(acrylates) or

poly(methacrylates). Most studies of amide graft

copolymerizations with addition polymers involve either the

in situ formation of graft copolymers in polymer blends or

radiation induced surface graft techniques. Although

effective for their intended applications, neither method

produces a well defined graft copolymer that can be isolated

and studied.

The objective of the second part of this research was

to evaluate the ability of the previously synthesized

macromonomers to participate in a condensation

polymerization of polyamide precursors. If successful, the

resulting structure would be a poly(amide-g-acrylate) graft

copolymer.

The properties of the synthesized macromonomers and

graft copolymers were characterized by a variety of

techniques including GPC, FTIR spectroscopy, NMR











spectroscopy, UV spectroscopy, elemental analysis, ICP, and

DSC.


1.1.3.Applications


One of the most common applications of graft copolymers

is their use as compatibilizers. The appropriate graft

copolymer has been shown to migrate to the interface between

two dissimilar materials, reducing interfacial tension and

increasing the bonding at the interface.

The initial motivation for the study of polyamide-

polyacrylate graft copolymers came from the field of

dentistry. The new class of dental restorative composites,

better known as 'fillings' consist of a crosslinked

dimethacrylate matrix surrounding glass particles. The

failure of dental restorative composites, and poor

performance as compared to amalgam restorations, is

generally attributed to a poor interface. Although the

glass-resin interface has been studied extensively, the

source of failure is usually the interface between the

composite restoration and the remaining tooth structure.

Two of the main sources of this poor interface are

1) poor bonding between the exposed tooth structure,

composed of hydrophilic proteinaceous dentin tubules

and the hydrophobic dimethacrylate composite and

2) the polymerization shrinkage during composite cure

causing the restoration to pull away from the remaining











tooth structure. This leads to marginal leakage, the

infiltration of saliva and bacteria under the

restoration, which can lead to the secondary caries.

The macromonomer and graft copolymer work was targeted to

determine the ability to synthesize a copolymer capable of

interacting with both the hydrophobic methacrylate and

hydrophilic dentin structure at the tooth-restoration

interface. Although the synthesized amide-acrylate graft

copolymers were not tested in such a system and their

aromatic structures may not make them suitable for this

application, the feasibility of synthesizing the desired

structures has been evaluated.


1.2. Offsetting Polymerization Shrinkage in Dental Resins
through the Incorporation of Maleic Anhydride


The last part of this research addresses the

polymerization shrinkage problem in these dental resins.

This shrinkage is inherent to the free radical

polymerization of the multifunctional methacrylate resins

used in the dental composites. The volumetric shrinkage is

due to the reduction in molar volume, or spacing between

monomer units, that occurs when vinyl compounds are

polymerized. Polymerization shrinkage creates both a weak

interface between the tooth structure and the restoration as

well as residual stresses within the composite structure,

leading to premature failure in the restoration.











There are many research programs focused on different

chemical structures and processes that will reduce

polymerization shrinkage. Although various methods and

different monomers have been studied to alleviate this

problem, no solution to date has been discovered that

eliminates shrinkage without significantly altering the cure

and mechanical properties of the resin.

The goal of this study was to demonstrate that we can

offset the polymerization shrinkage of common dimethacrylate

resins without significantly changing the comonomer

structures through the copolymerization with maleic

anhydride. When maleic anhydride (MA) is ring opened by

hydrolysis to maleic acid, there is a corresponding

theoretical 10% increase in molar volume.

The properties of the anhydride-methacrylate

copolymers, including the ability of the anhydride to offset

the polymerization shrinkage, were characterized by

swelling, extraction and ultraviolet spectroscopy (UV), and

density measurements, FTIR, GPC, and DSC.
















CHAPTER 2
BACKGROUND



The first section of this chapter addresses how our

study of amino acid-terminated poly(acrylate) macromonomers

and poly(amide-g-acrylate) graft copolymers fits within the

massive amount of literature on the synthesis and

characterization of multiphase copolymers. An overview of

graft copolymers is given, followed by a description of the

methodology and limitations of common synthetic routes as

they relate to synthesizing addition-condensation graft

copolymers. This is followed by an analysis of other

studies concentrating specifically on polyamide graft and

block copolymers.

As was mentioned previously, the initial motivation for

amide-acrylate graft copolymers comes from the field of

dental materials. Specifically, the failure of dental

restorative materials at the tooth-resin interface is of

concern. It was mentioned that one of the main causes of

this failure is the cure shrinkage of these resins during

application, causing the resin to pull away from the tooth

surface. The second part of this chapter addresses the

problem of polymerization shrinkage in dental resins, and











analyzes the approaches described in the literature to

alleviate this problem.


2.1. Graft Copolymers


Graft and block multiphase copolymers have received an

increasing amount of attention over the past twenty years.

They have been shown to possess desirable combinations of

physical and chemical properties that allow them to be

useful in a variety of applications (Nos77, Pei86, Nat88,

Tan90, Zha90, Pei94) including blend compatibilizers,

surfactants, impact modifiers, and surface modifiers.

All of the applications mentioned take advantage of the

individual properties of chemically dissimilar segments.

Most of these depend on the ability of these copolymers to

act at a particular interface. For example, these

copolymers can be added to a blend of two immiscible

homopolymers that have affinities for the individual

segments of the multiphase copolymer. The copolymer

migrates to the interface between the two phases (Shu90),

reducing the interfacial tension (Gai8O, Ana89) and thus

enhancing the strength of the interface (Fay82, Bro89,

Cre89).


2.1.l.Synthetic Routes to Graft Copolymers


One of the most widely used methods of synthesizing

multiphase copolymers is through sequential anionic block











copolymerization (Has83). But the number of monomers that

can be polymerized anionically is limited due to unwanted

side reactions (Has83). The stringent polymerization

conditions required for the anionic polymerization of

certain monomers (Nos77) also limits its applicability.

These limitations severely reduce the applicability of this

route to a wide variety of combinations of block segments.

In order to expand the possible combinations of monomers

used as the two phases, graft copolymerizations have been

investigated (Mei73).

2.1.1.l.Anionically polymerized macromonomers

One of the most prevalent and reliable synthetic routes

to graft copolymers is through the use of macromonomers

(Cor84, Rem84b, Muh87, Mei90, Pei94). Macromonomers are end

functional macromolecules capable of further polymerization

(Rem84a). They are generally synthesized through the

anionic polymerization of a monomer followed by reaction of

the living anion with an end capping agent such as

methacryloyl chloride, producing a methacrylate or vinyl

terminated macromonomer (Mas82, Sch82, Ham84, Sch84a,

Sch84b, Cam85, Cam86, Gna87, Gna88). Once again,

application of this synthetic procedure is limited in scope

due to monomer restrictions in anionic polymerizations.

2.1.1.2.Macromonomers through chain transfer
functionalization

A more versatile route to macromonomers involves the

free radical polymerization of a monomer in the presence of











a functional chain transfer agent (Ito77). Functionalized

mercaptans are commonly used. Mercaptans are compounds

containing a sulfhydryl, -SH, functional group. They are

commonly used to control molecular weight in commercial

polymerization reactors (Ros82).

The mechanism by which functionalization can occur is

depicted in Figure 2.1. Steps 1 and 2 are typical process

of free radical initiation. When exposed to heat, the AIBN

breaks down into free radicals and nitrogen gas is evolved.

The AIBN radicals can thus initiate the polymerization of

vinyl compounds. If there is no chain transfer agent

present, the polymerization continues until termination by

disproportionation or combination occur. In the presence of

a mercaptan, termination can occur through chain transfer.

The hydrogen from the sulfhydryl group of the mercaptan

is readily extractable. A propagating polymer chain can

thus react with the mercaptan (Step 3), terminating

propagation and leaving a sulfur radical on the mercaptan.

If the concentration of mercaptan is high, the mercaptan

itself can react with the AIBN radical (Step 4), also giving

a sulfur radical. The resulting sulfur radical can then

initiate the free radical polymerization of a vinyl monomer

(Step 5).

If the mercaptan contains hydroxyl or carboxylic acid

functional groups (R'), the initiating sulfur radical

introduces functionality to one end of the macromolecule.

The growing functionalized polymer radical can again react










AIBN


C -N=N --CH A
I CH3 -=N H3
CH 3 H 3


2 CH 3-- +
CH3


C N monomer polymerization
2 CH3-C. +3= ---- -----1 .
CH3 R


3 V...... + H:S-R'


C N mercaptan
4 CH3-- N + H:S-R'
CH3

5 R'S.- + -
R

6 R' + H:S-R'


...----------a ..-.- + RS .


Q NN
--- CH 3- H +
CH3


R'S.


- R' +


Figure 2.1 Mechanism of functionalization using chain
transfer agents.











with the mercaptan (Step 6) yielding a terminated

functionalized chain and another molecule of sulfur radical

which can react with more monomer (Step 5) to form a

reaction loop. The effectiveness of functionalization is

dependent on the chain transfer constant of the mercaptan as

well as the relative concentrations of mercaptan, monomer,

and free radical initiator (Tsu91). The AIBN concentration

is kept extremely low relative to the chain transfer agent

to minimize the number of chains initiated by the AIBN. Any

chains initiated by AIBN will be non-functionalized (see

Steps 2 and 3).

The advantage of this chain transfer method is that it

can be used with a wide variety of vinyl monomer systems.

Macromonomers composed of any monomer which can be

polymerized free radically should be able to be synthesized

using this method. Also, macromonomers which themselves are

random copolymers also become feasible.

The resulting functionalized macromolecule can be

utilized in two different ways. As with the anionic

macromonomers, the resulting hydroxyl or carboxylic acid

monofunctionality can be converted to a methacrylate or

vinyl functionality for further polymerization with vinyl

monomers (Alb86, Che91, Tsu91). Chen and Jones (Che91) have

synthesized hydroxyl functionalized polyacrylates using

mercaptoethanol as the chain transfer agent. Similarly,

Albrecht and Wunderlich (Alb86) have synthesized hydroxyl

terminated PMMA with Mw of 6500- 23000 g/mole. Both studies











have indicated that high levels of functionalization are

realized. The hydroxyl group in each case was converted to

a vinyl functionality through reaction with isocyanatoethyl

methacrylate. Tsukahara et al. (Tsu91) have synthesized

carboxylic terminated PMMA using mercaptoacetic acid as the

chain transfer agent. The acid functionality was reacted

with glycidyl methacrylate to produce methacrylate end

capped PMMA.

These routes produce methacrylate terminated polymers

which can be subsequently polymerized with a vinyl monomer

similarly to the anionically polymerized macromonomer. In

order to synthesize graft copolymers, these macromonomers

are dissolved in a solution containing a different vinyl

monomer as well as a free radical initiator. Graft

copolymers of a wide range of monomers can be synthesized in

this fashion (Che91). But this macromonomer chemistry has

generated graft copolymers mostly limited to vinyl-vinyl

type systems (Nai92).

The functionalized amine, hydroxyl or carboxylic acid

terminated macromonomer can also be used without the vinyl

functionalization by direct coupling with other condensable

terminated macromonomers to form block copolymers (Imi84).

For example, amine-terminated poly(methacrylates) and

polystyrene have been synthesized using mercaptoethyl

ammonium chloride as the chain transfer agent (Imi84,

DeB73). Block copolymers of these macromolecules with

carboxylic acid terminated polymers were synthesized by a











coupling reaction. However, due to the monofunctionality of

the macromonomer, coupling produced only very low molar mass

A-B type block copolymers.

Another interesting use of chain transfer agents for

graft copolymerization is one developed by Moraes et al.

(Mor96). They modified an ethylene-vinyl acetate (EVA)

copolymer by hydrolysis and subsequent esterification with

mercaptoacetic acid. This produced a sulfhydryl containing

polymer backbone. In essence, this is a polymeric chain

transfer agent. Methyl methacrylate (Mor96) and styrene

(Bar96) were polymerized in the presence of the mercapto-

modified EVA to give poly(EVA-g-methyl methacrylate) and

poly(EVA-g-styrene) graft copolymers.

Again, the described macromonomers and graft copolymers

have been mostly limited to addition-addition copolymers.

There are only a few cases in which addition type

macromonomers have been graft copolymerized with

condensation type monomers (Yam8l, Chu82, Chu84, Chu88a).

In order for the macromonomers to be capable of undergoing

condensation reactions in the production of graft

copolymers, they must be difunctional. This does not imply

that each end of the polymer is functionalized. Instead, one

end of the polymer contains a difunctional reactive group.

Only two research groups have reported the synthesis of

difunctional macromonomers using chain transfer agents.

Nair (Nai92) has demonstrated the free radical chain

transfer polymerization of styrene and various acrylates in











the presence of mercaptosuccinic acid. Dicarboxylic acid

terminated polymers were synthesized in a range of molecular

weights from 1 to 10 kg/mole and were shown to be highly

functionalized.

Yamashita et al. (Yam81, Chu82, Chu84, Chu88a) carried

out brief studies on the preparation of dicarboxylic acid as

well as dihydroxyl functional macromonomers of various

methacrylate monomers. They also employed mercaptosuccinic

acid as well as thioglycerol in the macromonomer

preparation. The structures and resulting macromonomer

structures for each of the chain transfer agents discussed

are illustrated in Figure 2.2.

The work by Yamashita is the most closely related to

our synthetic approach: the evaluation of cysteine as a

chain transfer agent in the synthesis of amino acid

terminated macromonomers. Our survey of the literature

found no mention of amino acid terminated macromonomers.

2.1.1.3.Modeling chain transfer reaction

The first step in the use of chain transfer agents is

the determination of the chain transfer constant. Knowledge

of the chain transfer constant allows us to predict such

critical variables as molar mass and functionality (Nai92).

The chain transfer constant can be determined using the Mayo

model (Ros82, Nai92). The variation of the degree of

polymerization for a free radical chain transfer

polymerization is given by














Monofunctional Chain Transfer Agents


CH3
2 -


0
HS-CH2-Q-OH

HS-CH2-CH2-OH --


CH
AW W......W..OOH
reactive methacrylate
--------OH -


HS-CH2-CH2-NH2:HCI N ------NH2


Difunctional Chain Transfer Agents


OH
HO-CH2-CH2-CH2-OH .. .
SH OH

0 0 COOH
HO-QC-CH2-CH2-C-OH s ...-----.---.-
H ..OOH



Figure 2.2 Schematic illustration of utilized chain
transfer agents and macromonomers thereof.











I k, FR, [S
I k Y [](2.1)
P k ~ Is]
DP,, [ +Ci


where Cs = Chain transfer constant = ktransfer/kp

[S]= Chain transfer agent concentration
[M]= Monomer concentration
DPn= Degree of polymerization
kt,kp,Rp= rate constant for termination,

propagation, and the rate of polymerization
respectively.


The degree of polymerization in the absence of chain
transfer to transfer agent, DPno, can be described by
equation 2.2 where


1 (k, RP
___j k 2 2'f (2.2)



Substituting this value in equation 2.1 gives us the Mayo
equation (2.3) for prediction of the chain transfer constant
where


1 1 [S]
+Cs[ (2.3)
DP,, DP,,o [M]


This equation is valid only when the initiator
concentration is low. By synthesizing a series of polymers
with different ratios of chain transfer agent to monomer, a










Mayo plot can be used to determine the Cs. Knowledge of the

Cs for a particular system enables one to adjust the

reactant concentrations in order to target a specific molar

mass polymer.

The Mayo model can also be used to predict the

functionality of the polymer obtained. If we multiply both

sides of equation 2.3 by DPn, we get


DP,, [ IS]
1= +DPCs (2.4)
DP,,o [M



where the two terms on the right represent the fraction of

unfunctionalized and functionalized chains. If the value of

Cs and therefore the rate of chain transfer is high,

termination occurs primarily by chain transfer and high

rates of functionalization are expected. The extent of

functionalization also increases with increasing mercaptan

content. If a lower concentration of chain transfer agent

is used or if a lower value of Cs is observed, the

probability of termination through other methods such as

disproportionation or combination increases. As other

termination mechanisms become more prevalent, the extent of

functionalization decreases.

It is important to note the limitations of the Mayo

model. This model is valid only under certain assumptions

(Ath77, Nai92). The first of these is that chain transfer

occurs exclusively to the chain transfer agent. In











practice, however, some chain transfer to solvent and

initiator is generally observed. Also, these values, as in

the case of copolymer reactivity ratios, are valid at

instantaneous conditions. In other words, low conversions

are desired in order to limit the composition drift between

the monomer and chain transfer agent. With these

assumptions in mind, determined values of Cs and predicted

functionalities are only estimates or theoretical

predictions assuming ideal conditions.


2.1.2.Polyamide Addition-Condensation Multiphase Copolymers


A variety of polyamide containing graft and block

copolymers are described in the literature. Our specific

interest lies in the ability to graft or block copolymerize

polyamides with addition polymers such as methacrylates and

other olefinic monomers. Several approaches have been taken

in the synthesis of these structures. The benefits and

limitations of each approach are described herein.

2.1.2.l.Poly(amide-b-olefin) block copolymers

Anionic block copolymerizations. The first evidence in

the literature of block or graft copolymerizations of vinyl

monomers with polyamide were found in the patent literature

(Fur63, Bak65, God69). The synthetic approach taken in

these investigation involved the sequential anionic

polymerization of a vinyl monomer and an isocyanate.

Specifically, Godfrey (God69) showed that anionically











polymerized 'living' polystyrene, polyisoprene, and

poly(methyl methacrylate) could initiate the polymerization

of butyl isocyanate. The resulting product can be thought

of as a N-butyl nylon 1-b-olefin block copolymer. The

mechanism of block copolymerization is illustrated in Figure

2.3. High molar mass block copolymers were formed with

polydispersities ranging from 1.2 to 1.6. Although this

reaction was successful, the choice of polyamide in this

synthesis is limited due to the isocyanate precursors. All

block copolymers involving isocyanates will form nylon 1

type polyamides. Also, the choice of olefinic monomer is

also limited to the previously mentioned limitations of

anionic polymerizations.

Macroinitiators for lactam polymerization. The

majority of the literature concerning polyamide block

copolymers involves the anionic copolymerization of

caprolactam (Pet79, Ste82, Bor88, Mou93, YnM94), the

precursor to nylon 6. The first step in these

copolymerizations is the synthesis of polymeric

macroinitiators from the desired vinyl monomer. The end

group must be suitable for the initiation of the anionic

polymerization of caprolactam. The most recent example

involves the block copolymerization of amine-terminated

butadiene nitrile copolymer (ATBN) with caprolactam (YnM94).

The amine group is reacted with terephthaloyl biscaprolactam

to form a polymeric activator. Upon addition to a













Anionic 'living' polymer
Bu--(CH-CH-)-CH2-CH:-Li
R R


BirxLi


isocyanate
0
&=N 1


Amide-Vinyl
block copolymer


Bu--(CH2-CH),-CH2-CH:-Li +
R ~ R


Figure 2.3 Mechanism of block copolymer formation through
sequential polymerizations of vinyl monomer and
isocyanates.











caprolactam solution containing additional initiator, A-B-A

type block copolymers are formed with a ATBN center block.

The molar masses of the resulting copolymers were not

evaluated. Studies of the block copolymers concentrated on

their microstructure and mechanical properties.

Similar block copolymerizations were run using ester

terminated polystyrene and isocyanate terminated

polybutadiene (Pet79) and isocyanate terminated

polyisobutylene (Won82). Both end groups can react with

caprolactam to form a macroinitiator for the polymerization

of nylon 6. A schematic of this macroinitiator formation

and block copolymerization is illustrated in Figure 2.4.

Spectroscopic evidence of A-B block copolymer structure is

shown. However, significanthomopolymer formation, i.e., >

30%, was observed due to coupling reactions between two

functionalized macroinitiator molecules.

Although some success has been demonstrated using the

macroinitiator method, several limitations exist. One

limitation of this approach is that this mechanism is

restricted to the polymerization of lactam based polyamides.

More importantly, Stehlicek (Ste77) and Hergenrother (Her74)

have reported that synthetic approaches that employ the

anionic polymerization of lactams activated by

macroinitiators are handicapped by the occurrence of side

reactions that may yield insoluble, crosslinked product.














Hydroxyl terminated Hexamethylene diisocyanate
polymer


0 0
+ (=N-.(CH2-)6_N4=


Isocyanate terminated
polymer


0 0
1 c- _)CH2_H-CH.0-.9-NH-(CH2)6-N =J
A


0 0
2 -CH2-CHxO--!-NH-(CH2)6--N = +



Caprolactam terminated
o polymer o o
3 -("CH2--CH -C-NH-(CH2)6-NH---N-2
v (^2-)


Caprolactam
o
NH-- --



Nylon 6 block copolymer
o ^^o
0 NaHi
+ NH-(!! 4H2-CH);(NH-(CH2)5-(!!-y
(H2") A


Figure 2.4 Reaction schematic for macroinitiator formation
and subsequent anionic block polymerization of
caprolactam.


1--fCH2--CH-)OH
l{x











Functional polyamide macroinitiators. The synthetic

routes for block copolymerization previously described

utilize anionic polymerization methods. One interesting

twist on the macroinitiator method is to synthesize

polyamide macroinitiators (Cra80, Cra82, Den89). These

polyamides contain functional groups which, under

stimulation from light or heat, can dissociate into

macroradicals. Thus, these macroinitiators are capable of

initiating the free radical polymerization of vinyl

monomers.

Two distinct routes have been reported. The first

(Cra80, Cra82) involves the modification of aliphatic

polyamides such as nylon 6 and nylon 6,10. The reaction

schematic for polyamide modification and subsequent block

copolymerization is illustrated in Figure 2.5. The

secondary amines in the polyamides can be nitrosated using a

variety of nitrosating agents including nitrous acid and

dinitrogen trioxide. The resulting N-nitrosoamines can

rearrange to form a diazo linkage. Diazo compounds are well

known as free radical initiators (Ros82). The polyamide can

then, under exposure to heat (Cra8O) or light (Cra82),

decompose into macroradicals and initiate the polymerization

of olefinic monomers. Block copolymers of nylon 6 and nylon

6,10 with MMA, styrene, vinyl acetate and styrene-

acrylonitrile have been synthesized by this method.

The second route to polyamide macroinitiators (Den89)

also involves the introduction of dissociative azo linkages.



















Aliphatic polyamide
o o
H20
-,-NH m-... -NH-- + N203 --



I

0 0
2 N-N(NO) -N(NO)




C) 0


Nitrosated polyamide
0 o
-w-N(NO)..-.m'-m -N(NO)-


Diazo ester modified polyamide
o o
--)-N=N .m.A..... --O-N=N--




Polyamide macroinitiators


0 0
3 C-O-N =N---c-0-N=N- -... "-
-N2, -CO2


Olefinic
monomer


A-B and A-B-A


amide-olefm block copolymer
Nylon Olefin Olefin Nylon Olefin
================= q- :::::::::::::::::::::::::


Figure 2.5


Reaction schematic of block copolymerization
initiated by nitrosated polyamide
macroinitiators.











The difference is that the azo linkages are introduced

during the polyamide synthesis. Denizligil showed that

dinitriles can react with formaldehyde in the presence of

strong acids to form a polyamide. The reaction schematic is

illustrated in Figure 2.6.

Specifically, AIBN was copolymerized with formaldehyde

in the presence of sulfuric acid. AIBN is of interest

because it has both dinitrile functionality as well as a

labile azo functionality which can decompose to free

radicals under heat. The resulting polyamide was used to

initiate the polymerization of MMA and styrene in a

DMSO/methylene chloride solvent system.

Although block copolymers were formed by both processes

outline above, no account was given as to the extent of

degradation of the polyamide. These polyamide

macroinitiators function only through their ability to

degrade. That is, block copolymerization occurs through the

chain scission of the polyamide. The extent of chain

scission, especially in the AIBN based polyamide which has a

very low molar mass between azo groups, could severely deter

application of this process.

Coupling of low molar mass reactive polymers. The

synthesis of block copolymers from the coupling reaction of

prepolymerized polyamide and polyolefin with reactive end

groups has also been investigated (Mas79, Ima84, Kim92).

Synthetically, this is the least complicated method of block

copolymer synthesis. For example, Imanishi has reacted




















Azo functional polyamide
AIBN
CH3 CH3 0 0 CH3 CH,
1 1 11 H2SO4 1t I 1 1H
N cC--N=N-C-C=N + HCH g -- NH2-C--C-N=N-I-- -NH-CH2
CH3 CH3 CH3 CH3


0 CH3 CH3,
II! I t 1|
2 {-NH2--C-N =N -C--N-_CH24 __A
CH3 CH3 -N2



Olefinic
monomer


3 Polyamide macroinitiator


Polyamide macroinitiator






A-B-A
block copolymer
Olefin Amide Olefin
ANMMWVMMWWWiW


Figure 2.6 Reaction schematic of AIBN containing polyamide
and block copolymer thereof.











amine terminated polystyrene with terminally haloacetylated

polyamides to produce a polystyrene-polyamide block

copolymer. Although some block copolymer is formed using

this type of coupling reaction, this method is characterized

by the highest level of homopolymer contamination and

product heterogeneity.

2.1.2.2.Poly(amide-g-olefin) graft copolymers

The majority of the literature on amide-olefin graft

copolymers in concerned with one of two topics- the grafting

of vinyl monomers onto polyamide substrates through high

energy processes or the formation of in situ graft

copolymers at the interface of polymer blends.

Grafting onto polyamide substrates. Various methods

have been used to graft olefinic polymer chains off the

backbone of prepolymerized polyamides. The method most

often and most recently employed is through the use of high

energy processes such as UV irradiation (Bog93, You95) ,

severe oxidation/peroxidation (Ela92, Buc96a, Buc96b),

gamma irradiation (Mue93, Mis96), and plasma grafting

(You95, Lee97).

In all of these cases, grafting is surface directed.

Polyamide fibers, films, and membranes are subjected to some

form of radiation or oxidation. High energy processes are

used in order to form radical or ions at the polyamide

surface. These radicals can initiate the polymerization of

vinyl monomers to form a grafted surface.










The majority of these studies involve the grafting of

hydrophilic monomers such as acrylic acid and acrylamide

onto polyamide surfaces. One exception is the study by

Elangovan (Ela92) which has shown the grafting of PMMA onto

wool fibers through the oxidation and subsequent redox

initiation of MMA. This was done to improve the acid and

alkali resistance of the fibers. Various other applications

for these types of graft copolymers have been targeted

including the production of pH responsive membranes (You95,

Lee97, Mis96), antibacterial fibers (Buc96a, Buc96b), and

new media for affinity chromatography (Mue93).

These processes are useful for their intended

application, i.e., surface directed grafting. Well defined,

isolatable graft copolymers are not synthesized by this

method. In fact, radiation grafting is usually accompanied

by significant crosslinking at the substrate surface as well

as in the graft copolymer layer (Arn97).

In situ graft copolymers. As mentioned previously,

graft and block copolymers can be added as a compatibilizer

to immiscible polymer blends in order to improve the overall

blend mechanical properties. To this effect, the greatest

concentration of research in the synthesis of amide-olefin

graft copolymers is in the area of melt compatibilization.

This method may also be the most industrially applicable due

to the simplicity of the process as compared to the more

elaborate and labor intensive block copolymerization

methods.










Graft copolymers can be formed in situ, during the melt

blending of polyamides and polyolefins, if the polyolefin is

functionalized with a reactive group. Specific examples

include the modification of polyolefins with maleic

anhydride (Maj92, Osh92, Mod93, WuC93, Maj94a, Maj94b,

Gon95a, Gon95b, Gon95c, Sea95), glycidyl methacrylate

(Chi96) and oxazoline (Bec96).

Glycidyl methacrylate and oxazoline have been copolymerized

with styrene. These copolymers have been blended with

polystyrene and nylon 6 to compatibilize the blend. The

randomly dispersed oxazoline and epoxide functionalities

within the styrene copolymer can react, during melt

processing, with amine end groups from the polyamide. This

results in a polyamide-g-polystyrene at the blend interface.

Both studies (Chi96, Bec96) show reduced phase size in the

blend as well as improved mechanical properties. A schematic

of this reaction is illustrated in Figure 2.7.

The most widespread use of the in situ technique for

polyamides graft copolymers involves maleic anhydride

modified polyolefins. Immiscible polyamide blends with

polyethylene, polypropylene, and S-B-S block copolymers have

been compatibilized using maleic anhydride (Maj92, Osh92,

Gon95a, Gon95b). In general, polyolefins such as

polyethylene can be modified by grafting of maleic anhydride

in the presence of free radical initiators (Sea95). The

resulting anhydride functionality on the polyolefin can

react with polyamide end groups at high temperatures during



















Poly(styrene-co-glycidyl methacrylate) Nylon 6
CH3 0
+ NH2-jCH2)5-4C-NH---)
(H H +x Iy extrusion
=o + polystyrene







Poly(styrene-graft-nylon 6) + unreacted nylon 6 + polystyrene


CH3
+CH2-CHt-CH2-Q*
&==o

6H2

CH-OH
CH2
H



Nylon 6


Figure 2.7


compatibilized blend


PS

Polystyrene


Nylon 6


Nylon 6


Reaction schematic of in situ graft copolymer
formation from glycidyl methacrylate copolymers.










extrusion of the blend. A schematic of this reaction is

illustrated in Figure 2.8.

The synthesis and application of in situ polyamide

graft copolymers has been shown to be extremely effective at

improving the phase dispersion within a variety of polymer

blends. However, these graft copolymers have not been

isolated and studied separate from the blend. This is due

in part to the crosslinking that can occur during the graft

reaction (Sea95) due to reaction of both ends of some

polyamide chains.

Macromonomer approach to amide-olefin graft copolymers.

Previous work in the area of a macromonomer approach to

polyamide graft copolymer synthesis is of particular

interest. Free radical routes such as chain transfer

functionalization offer more flexibility in monomer

selection than anionic macromonomer synthesis. However, as

mentioned previously, most of the previous work using either

macromonomer method has been directed at the synthesis of

vinyl terminated polyolefins and thus addition-addition

graft copolymers.

In order to synthesize graft copolymers from polyolefin

macromonomers, the macromonomer must contain a difunctional,

condensable end group. For the synthesis of polyamide graft

copolymers, these functional groups must be composed of acid

or amine functionalities. Only Yamashita et al. (Yam8l,

Chu82, Chu84, Chu88a) have reported the graft













Maleated high density
polyethylene (HDPE)


Nylon 6
V A
+ NH2-jCH2)5-C-NH-)-
Y extrusion
+ HDPE


2 Poly(ethylene-graft-nylon 6) + unreacted nylon 6 + HDPE


compatibilized blend


HDPE

HDPE


Nylon 6


Nylon 6


Figure 2.8 Reaction schematic of in situ graft copolymer
formation from maleic anhydride modified
polyolefins.


-(-CH2-CH-)t-CH2-CH-""--MW
CH-CH2
I \
0=7 =o
NH OH



SNylon 6











copolymerizations of such macromonomers, dicarboxylic acid

terminated poly(methacrylates), with polyamide precursors.

They employed mercaptosuccinic acid (Figure 2.2) as a

chain transfer agent in the preparation of PMMA and

poly(hydroxyethyl methacrylate) macromonomers.

Macromonomers were copolymerized with aromatic diamines and

diacids to form graft copolymers. One limitation of this

approach is the stoichiometry. The degree of polymerization

in condensation reactions is controlled primarily by

conversion and stoichiometry as defined by Caruthers'

equation (Ros82):


l+r
DP, (2.5)



where r is the stoichiometric ratio of reactive functional

groups. This equation is valid under the assumption of

complete conversion.

Determining the relative concentrations of amine and

carboxylic acid groups is complicated by the introduction of

macromonomers. The amount of dicarboxylic acid added in the

reaction by Yamashita must be reduced to account for the

acid end groups on the polymer and determining the exact

amount of dicarboxylic acid becomes complicated.

Macromonomers with built in stoichiometry, that is, with one

amine and one carboxylic acid group, would be preferred.

The precise stoichiometry of amino acid terminated











macromonomers becomes especially beneficial either for

grafting with amino acids or for maximizing of graft

copolymer molar mass.

Also, only high Tg poly(methacrylate) difunctional

macromonomers were synthesized. There is no evidence in the

literature of these type of graft copolymers containing a

low Tg rubbery phase as investigated in this study.

An interesting twist on the macromonomer approach to

amide-olefin graft copolymers was developed by Izawa et al.

(Iza93). They synthesized vinyl functionalized polyamide

macromonomers which could be free radically polymerized with

vinyl monomers. A polycondensation of aromatic amino acids

was run in the presence of methacrylic acid and p-

carboxystyrene chain terminators. Complete consumption of

the macromonomers during the free radical graft

copolymerization with MMA revealed almost complete

functionalization in the macromonomers. Although this

method resulted in vinyl functionalized chains, the molar

mass of these macromonomers is about 600g/mol. This low

molar mass can be explained by the stoichiometric imbalance

caused by addition of the end capping agent.


2.2. Polymerization Shrinkage in Dental Composites


Polymer based dental composites are replacing amalgam

as the material of choice for dental restorations. The

major drive toward the use of polymer based systems is based











on the aesthetics of the restoration. Composites compare

favorably with silver amalgam in this aspect. However, the

acceptance of composites is hampered by certain property

limitations. The evolution of developments in these

materials is described below.


2.2.l.History of Dental Composites


The evolution of dental composites represents a logical

sequence of developments based upon current technologies

well known to the non dental community. The first acrylic

filling materials were used at the time when polymer science

was a young immature science whose growth was largely due to

World War II and the need for synthetic rubber and a non

breakable canopy for fighter planes. The early polymer

based restoratives, based on methyl methacrylate monomer,

exhibited large volumetric shrinkage, low mechanical

strength, a high propensity for staining, high wear rates,

marginal leakage and inflammatory tissue responses. None of

the first generation materials had sufficient strength or

adhesion to tooth structures to withstand the rigorous

forces of oral function.

The next generation of restorative materials were

composites. The composites were based upon the

incorporation of glass particles into the resin. The glass

particles increased the mechanical strength and abrasion

resistance and reduced total volumetric shrinkage simply by











reducing the content of resin in the restoration. In

addition to the development of the composite materials, a

new reactive methacrylate type monomer was developed by

Bowen (Bow62). Bowen's studies with epoxide resins led to a

pivotal combination of the mechanical properties of the

epoxy resin with the fast reacting methacrylate resin in the

form of BisGMA. The first BisGM.A systems introduced were

polymerized by the chemical process wherein benzoyl peroxide

is combined with a tertiary amine to form free radicals at

room temperature. Later numerous variations of the light

cured systems were introduced to the spectrum of dental

materials including both UV and visible light activated

materials. The UV light was scattered by the filler

particles in the composites and thus the depth of cure was

limited. The visible light activated restorations could

achieve a greater depth of cure and thus have become the

main system.

In addition to the change in cure mechanism, numerous

examples of modifications to the BisGMA structure and

synthesis of other reactive methacrylate monomers (Lee89,

Kaw89, Joh89, Ven93) have been reported. Most of the

modifications involve either elimination of the hydroxyl

group or modifications through esterifications or

substitution with urethane groups. There are slight

improvements in both wet and dry properties as a result of

modifications to BisGMA, however usually the differences are











not significant and many manufacturers still rely on the

BisGMA monomer for their dental composites.

The failure of these dental composites, and poor

lifetime performance as compared to amalgam restorations, is

generally attributed to a poor interfacial properties

(Sod91). Although the glass-resin interface has been

studied extensively, the failure is usually attributed to

the interface between the composite restoration and the

remaining tooth structure.

Two of the main sources of this poor interface are as

follows:

1) the polymerization shrinkage during composite cure

causing the restoration to pull away from the remaining

tooth structure (Bau82).

2) poor bonding between the exposed tooth structure,

composed of hydrophilic proteinacebus dentin tubules,

and the hydrophobic dimethacrylate composite (Sod91).

The volumetric shrinkage is due to the reduction in

molar volume that occurs as vinyl monomers move from Vander

Waals distances to covalent bond distances during

polymerization. Volumetric shrinkage leads to poor marginal

adaptation to the tooth structure which causes marginal

leakage and recurrence of caries (Bra86). Also, excessive

stresses are generated in the restoration which create

failures in both the remaining tooth structure and or the

restoration depending upon the geometry of the restoration

(Dav91). Shrinkage in current BisGMA based composite ranges











from 1 to 6 volume % (Sul93). Variation may be attributed

more to different glass loadings and varying levels of

conversions than to any major resin development.


2.2.2.Reduction of Polymerization Shrinkage in Dental Resins


There are many research programs focused on different

chemical structures and processes that will reduce

polymerization shrinkage (Bra92, Bye92, Sta91, Liu90). The

main thrust in dentistry has been the spiro orthocarbonate

(SOC) based systems which are the result of early pioneering

work by Bailey (Bai72). The spiro orthocarbonate reaction

involves a cationic dual ring opening mechanism which

increases the molar volume of the polymer compared to that

of the monomer. A general reaction schematic of spiro

orthocarbonate polymerization is shown in Figure 2.9.

Although zero shrinkage resins can be produced, deficiencies

with this ring opening system include the slow cure

kinetics, the inability to reduce shrinkage under non-ideal

conditions and cost of the reactive monomer (Bra92, Bye92).

Typically, dental restorations can be cured within a few

minutes whereas the spiro orthocarbonates are very slow

reacting.

These systems do provide some insight as to a logical

step in the evolution of dental restoratives. The ring

opening polymerization kinetics may be too slow, however,












SOC monomer

R-9 0: R



o
R R

R R


ationic initiator
+


propagation
R -o 0 R
R-XD-R


Poly(SOQC
o
0

x
R


Figure 2.9 Mechanism of ring opening polymerization of
spiro orthocarbonate monomers.











the ring opening mechanism does provide a net increase in

molar volume.

The objective of this study is to determine if the

combination of the rapid kinetics of the methacrylate resin

with the ring opening of anhydride structures can be used to

minimize the polymerization shrinkage. Specifically, cyclic

anhydride functionality in the form of maleic anhydride was

be incorporated into the dental restorative based upon

propoxylated BisGMA resin.


2.2.3.Use of Anhydrides in Dental Applications


Anhydrides have received some attention in dental

applications. However, the anhydride is used as part of a

bonding agent and generally the ring opened form is

generally present at the time of application.

Peutzfeldt and Asmussen (Peu91) have shown that the

addition of maleic anhydride to dentin bonding agents can

increase the mechanical properties by nearly 300% when

combined with a secondary amine containing monomer such as

urethane dimethacrylate. Their studies demonstrate the

ability of the maleic anhydride to increase mechanical

properties, however, they fail to isolate the ring opening

mechanism. By mixing maleic anhydride and other anhydrides

with the primary amine or a hydroxyl containing monomer such

as hydroxyethyl methacrylate (HEMA), either an amide linkage

or an ester linkage is formed. Thus, the ring opening










occurs prior to the polymerization reaction and hence has no

influence on the volumetric shrinkage.

Another example of the use of the anhydride structure

in dental restorative materials is 4-META or 4-

methacryloxyethyltrimellitate. Normally this reactive

component is supplied in the dicarboxylic acid form and thus

has no influence on polymerization shrinkage. It is however

very effective in promoting adhesion to the enamel structure

as well as numerous other substrates (Nak80). The

dicarboxylic acid structure of the 4-META monomer enhances

the wetting or spread of the resin onto the tooth structure

by lowering the surface energy of the exposed structure.


2.2.4.Filler Modification in the Reduction of Overall
Composite Shrinkage


Methods involving reactions of the composite

reinforcing phase have been evaluated as a possible method

of offsetting polymerization shrinkage in dental composites.

Liu et al. (Liu90) have used ammonia modified

montmorillonite (MMT) as the reinforcing phase in BisGMA

composites. At temperatures between 45 and 80C, gaseous

ammonia is released. The gas remains trapped within the

reinforcing phase and causes dilation of the montmorillonite

particles.

Liu et al. have shown that polymerization shrinkage can

be completely offset using this method in cold cure systems.

However, this process has not been extended to directly







43



placed dental restorations. One possible reason is that the

1NIT functions due to the heat rise within the composite

system that elevates the composite temperature. The heat

rise in experimental systems using larger volumes of resin

may be greater than the heat rise seen in actual dental

restorations.
















CHAPTER 3
MATERIALS AND METHODS


3.1. Materials



3.1.1.Macromonomer Reactants


Monomers used in the macromonomer synthesis included

butyl acrylate, methyl methacrylate, and octafluoropentyl

methacrylate. The monomers were obtained from Aldrich

Chemical Co. All were purified by fractional vacuum

distillation (l-2mm Hg) and the middle 80% was collected.

All monomers were stored under dry nitrogen over molecular

sieves.

The functionalizing agent used for the chain transfer

polymerization was cysteine. Cysteine was also obtained

from Aldrich and was used as received. Extreme care was

taken to keep the cysteine stored under a dry nitrogen purge

in order to prevent oxidation to cystine, the disulfide

product of the oxidation.

The solvents in the macromonomer synthesis, HPLC grade

tetrahydrofuran (Fisher), ACS grade ethanol (Fisher) and

UltrapureTM water were used as received. HCl was also used

in the reaction. It was obtained from Adlrich as a ION HC1

solution and diluted as required. Azobisisobutyronitrile











(AIBN) initiator was obtained from Kodak and purified by

recrystallization from ethanol.


3.1.2.Graft Copolymer Reactants


Catalysts for the condensation polymerization,

triphenyl phosphite and LiCl, were obtained from Aldrich and

use without further purification. Care was taken to keep

both of these hygroscopic chemical dry. They were stored

under dry nitrogen and only opened within a drybox.

Pyridine and N-methyl pyrrolidone were used as solvents

in the graft copolymerization of the macromonomers with

polyamide precursors. Anhydrous pyridine was purchased from

Aldrich and kept continuously under dry nitrogen. Peptide

synthesis grade N-methyl pyrrolidone (NMP) was obtained from

Fisher, purified by distillation, and stored over molecular

sieves.

The amide precursors used in this study, p-aminobenzoic

acid (ABA), adipic acid (AA), and p-phenylenediamine (PhD),

were obtained from Aldrich. ABA was used without further

purification. AA was recrystallized from ethanol-water and

PhD was recrystallized from ether.


3.1.3.Dental Monomers


Monomers used in the modification of dental resins

included propoxylated Bisphenol A glycidyl methacrylate

(pBisGMA), triethyleneglycol dimethacrylate (TEGDMA), 2-










phenylethyl methacrylate (PEMA), and maleic anhydride (MA)

All methacrylate monomers were obtained from Polysciences

Inc. Maleic anhydride in the form of briquettes were

obtained from Aldrich.

TEGDMA and pBisGMA were purified by passing acetone

solutions through Aldrich inhibitor removal columns,

followed by evaporation at reduced pressure to remove the

acetone. PEMA was fractionally vacuum distilled and maleic

anhydride was recrystallized from benzene. AIBN initiator

was purified by recrystallization from ethanol.


3.2. Methods



3.2.1.Synthesis and Characterization of Macromonomers


Synthetic procedure. Monomer concentrations in the

polymerizations were maintained constant at 16wt.%. AIBN

concentrations also remained constant at 0.1 mole % of the

monomer concentration. Cysteine levels were varied in order

to determine its affect on the polymerization of acrylates

and methacrylates.

In a typical polymerization, cysteine was dissolved in

the prescribed amount of 1ON HC1 in a 200ml roundbottom

flask equipped with a magnetic stirrer. Water and THF were

then added in concentrations yielding a 50g solution of

96.5/3/0.5 ratio, by weight, THF/water/HCl. 10g of monomer

were added and the desired AIBN concentration was then










dissolved in the reaction mixture. A reflux condenser was

attached to the flask. The reaction setup was then placed in

a glycerin bath at 65C and run for 6 hours under constant

stirring. The isolation and purification of the various

macromonomers synthesized is described in the corresponding

results section 4.1.2, 4.1.3, and 4.1.4.

Characterization of macromonomers. The molar mass

distributions of the synthesized macromonomers were

characterized by GPC using a Waters HPLC system including a

Waters 600 Fluid Delivery Systems, a Waters 717 Autosampler,

and a Waters 410 Differential Refractometer detector. Four

Phenomenex crosslinked polystyrene columns with pore sizes

of 105, 104, 500, and 100A were used in series. The flow

rate was 0.4ml/min. Sample concentrations were

approximately 0.25% in HPLC grade THF. The injection volume

was 50ptl. All molar mass values were calculated using a

polystyrene calibration curve. Anionically polymerized

polystyrene standards were obtained from Polymer

Laboratories.

Transmission FTIR spectra of macromonomers were

collected using a Nicolet 20SX spectrometer. 128 scans were

collected for each sample at a resolution of 4cm-. All

liquids were run between KRS-5 crystals. Solids were run in

transmission with KBr.

NMR spectroscopy was performed using a 300MHz Gemini.

The solvent used for macromonomer characterization was










deuterated chloroform. TMS was used as an internal

standard. 64 acquisitions were collected for each sample.

Elemental analysis for determination of C, H and N

content was run on an Eager 200.

ICP was run in order to determine the functionalization

efficiency of the macromonomer synthesis. A Perkin Elmer

Plasma 40 Emission Spectrometer was used and a wavelength of

180.73nm was monitored. This wavelength was used to

determine the sulfur content of the polymer. A sulfur

standard was obtained from Fisher and diluted using

volumetric flasks.

Sample preparation for ICP involved making a 0.5 wt.%

solution of the macromonomer in a 96/4 mixture, by weight,

of water/triton X. Triton X was used as a surfactant in

order to stabilize the emulsion of the poly(butyl acrylate)

in water. Only the liquid, low Tg, macromonomers could be

analyzed by this method. Stable emulsion of high Tg

methacrylate copolymers could not be obtained.

Sulfur content was determined in ppm in solution.

Using the value of sulfur concentration in combination with

the molar mass values we can calculate the extent of

functionalization. The following is an example of one of

these calculations. One mole of 2.6kg/mol poly(butyl

acrylate), from GPC analysis, in which every chain is end

capped by one mercaptan chain transfer agent residue will

contain one mole of sulfur or 32g. Therefore, 32/2600 or

1.23 wt.%. If the prepared solution contains 0.5 wt.%










macromonomer, the solution should contain 0.005*0.0123=

62ppm of sulfur. Again, if every chain were functionalized,

we should measure a sulfur concentration of 62ppm. Instead

a concentration of 46ppm was measured. From this we

estimate that 46/62 or 75% of all chains contain one sulfur

molecule or 75% are functionalized.

DSC analysis was performed using a Seiko DSC 220

interfaced with a Seiko 6500H Rheostation. The analysis was

performed at heating rate of 10C/min under a continuous

flow, 10Oml/min, of dry nitrogen gas. On average, 10 mg

samples were analyzed in crimped aluminum pans versus an

inert sapphire reference.


3.2.2.Synthesis and Characterization of Graft Copolymers


Synthetic procedure. Stoichiometric molar

concentrations of amine and carboxylic acid groups were used

with a total amount of reactants equal to 5mmol. Triphenyl

phosphite was added at a 1:1 mole ratio of TPP:carboxylic

acid groups. The amount of LiCl added was kept constant

throughout as was the type and amount of solvent used.

In a typical polymerization, 1.37g of 2.6 kg/mol p(BA)

macromonomer (0.53 mmol), 0.241g (2.24 mmol) p-

phenylenediamine, 0.326g (2.24 mmol) adipic acid, 1.55g TPP

(Smmol), and 0.09g LiCl were dissolved in 30ml of an 80/20

NMP/pyridine solution in a 100ml flask. All mass readings

and component mixing was performed in a drybox. The










reaction mixture was then heated at 100C for 4 hours. The

resulting polymer, a tacky light brown solid, was obtained

almost quantitatively by precipitation in an excess of 50/50

water/methanol nonsolvent, filtered, washed with methanol

and dried overnight under vacuum at 40C.

Characterization of graft copolymers. Purification of

the graft copolymers was done by Soxhlet extraction using

HPLC grade THF. This was done in order to remove any

homopolymer which may result from unfunctionalized

macromonomers. Samples ranging from 0.8-l.Og were extracted

to constant weight using a Whatman cellulose extraction

thimble.

The extractant solutions were diluted to appropriate

concentrations for GPC analysis. The level of dilution

required was dependent on the amount of material extracted.

GPC was run with simultaneous detection using the

differential refractometer described previously as well as a

Waters 996 Photodiode Array UV detector. This detector

allows one to get a full UV scan at each elution time. This

affords the ability to determine structural differences

between UV absorbing fractions within the solution. All

other testing conditions were identical to those for

characterization of macromonomers.

Transmission FTIR spectra of the graft copolymers were

collected using KBr with collection parameters equivalent to

those described previously.










Elemental analysis and DSC methods were identical to

those used in macromonomer characterization.

The only difference in the NMR spectroscopy from that

of the macromonomer was the solvent employed. Deuterated

sulfuric acid was used as the solvent and the solvent peak

from residual undeuterated acid was used as an internal

standard.

The synthesized graft copolymers were blended with

commercial extrusion grade Nylon 6 from BASF and with blends

of Nylon 6 with 65kg/mol poly(butyl acrylate) synthesized in

this laboratory. Initial attempts were made to blend the

polymers by dissolution in dichloroacteic acid followed by

coprecipitation in methanol. After vigorously drying the

resulting powders, films were compression molded at 230C.

This method was abandoned when the pure nylon 6 prepared in

this manner showed severe embrittlement. Either residual

acid caused degradation or the dissolution-precipitation

step removed a stabilizer.

The materials were then mixed in the solid state. In

order to get the most homogeneous mixture of graft copolymer

with Nylon 6 and graft copolymer with Nylon 6/Poly(butyl

acrylate), the samples were mixed at cryogenic temperatures.

A SPEX 6200 Freezer Mill was used at maximum impact

frequency with the sample immersed in liquid nitrogen. All

samples were milled for 8 minutes. The resulting powders

were homogeneous in appearance. All blends were compression

molded at 230C between Teflon coated polyimide films and











allowed to cool in the mold. The resulting films were

approximately 0.2mm thick.

Tensile properties of the films were measured using an

Instron 1122 equipped with an 890 Newton load cell at

ambient conditions. Five samples were tested for each

material according to ASTM D638M.


3.2.3.Synthesis and Characterization of Anhydride Modified
Dental Resins


Synthesis and sample preparation. An experimental

matrix was prepared composed of varying anhydride, pBisGMA,

and TEGDMA concentrations. Dental resin samples were

prepared by dissolving the maleic anhydride in the dental

methacrylate monomer compositions. 0.4 wt.% AIBN initiator

was added to the solution. The resulting viscous solutions

were transferred to a 2mm thick mold. The mold consisted of

two glass plates lined with Teflon coated polyimide film

and a fluoropolymer elastomeric tubing to keep the solution

in the mold. The solutions were cured under a dry nitrogen

atmosphere at 75C for 12 hours followed by a postcure at

160C for 2 hours.

Linear copolymers of maleic anhydride with phenylethyl

methacrylate were synthesized in bulk. The desired

anhydride amount was dissolved in PEMA in a 15ml glass test

tube and 0.4 wt.% AIBN was added. The solution was purged

with dry nitrogen, sealed, and polymerized at 75C for 4

hours. The resulting polymer was isolated by dissolution in











chloroform and precipitation in ether. Samples were filterd

and dried overnight under vacuum at 40C.

Characterization of anhydride copolymers. Equilibrium

water content was measured using Ultrapure water. Samples

were approximately 2mm x 5mm x 10mm. Samples were placed in

an incubator at 37C until a constant weight was reached.

The swelling solution was then changed, adding fresh

Ultrapure water and weight again monitored to insure all

unreacted anhydride has been extracted. On average

equilibrium was reached after 1-2 weeks.

All weights were measured using a Denver Instruments A-

200DS with readings taken to the fifth decimal place.

Density measurements were taken using a Mettler 33360

Density determination apparatus in combination with the

Denver Instruments scale. The Archimedes' method was used

and measurements ere taken at 25C using Ultrapure water.

All samples were re-weighed after testing to insure that the

time scale of these measurements were insufficient to allow

the samples to absorb water.

UV absorption spectroscopy was run on the extractant

solutions in order to monitor the extraction of maleic

anhydride. Actually, any extracted anhydride would be

extracted as maleic acid due to hydrolysis. A calibration

curve for absorbance versus concentration was made using

standards. Standards were prepared in the expected

concentration range by hydrolyzing and dissolving maleic

anhydride in Ultrapure water. A wavelength of 274nm was











used. Thus, by monitoring the absorbance at 274nm of the

extractant solutions, concentrations of maleic acid could be

determined. Knowing the volume of water used in the

swelling experiments, we can calculate the mass of maleic

anhydride extracted. Assuming all free anhydride was

extracted, the anhydride not extracted is assumed to be

incorporated.

GPC, FTIR, and DSC of the linear maleic anhydride

copolymers were run with parameters as described in the

characterization of the polyamide graft copolymers.
















CHAPTER 4
RESULTS AND DISCUSSION


4.1. Synthesis and Characterization of Amino Acid-terminated
Poly(acrylate) Macromonomers using Chain Transfer
Chemistry


The most prevalent synthetic route to well defined

graft copolymers is through the use of macromonomers, low

molar mass polymers containing a polymerizable end group. A

review of the literature has shown that current studies,

including those within this laboratory, have concentrated on

synthesizing macromonomers which are polymerizable through a

vinyl functionality. That is, they are polymerizable only

with addition type monomers through a free radical

mechanism. Because the macromonomers themselves are

generally synthesized through either anionic or free radical

polymerization in the presence of a functionalizing agent,

the resulting graft copolymers which can be synthesized

through this method are generally limited to addition-

addition graft copolymers such as poly(styrene-graft-

acrylate), poly(acrylate-graft-methacrylate), etc...

It was the objective of this study to synthesize

condensation polymerizable macromonomers, specifically amino

acid terminated macromonomers, capable of reacting with

amine and carboxylic acid groups in the synthesis of











polyamide graft copolymers. An amino acid functionality is

preferred over other end groups such as diacids or diamines

due to the inherent stoichiometry that it provides. This

stoichiometry is required in the condensation graft reaction

to insure the highest degree of polymerization possible.

The approach taken in this study involves the free

radical polymerization of a vinyl monomer in the presence of

a functional chain transfer agent (Ito77). Mercaptans,

compounds containing a sulfur-hydrogen bond, are commonly

used in chain transfer reactions. In fact, mercaptans are

commonly used to control molecular weight in commercial

polymerization reactors (Ros82).

The mechanism by which functionalization can occur is

depicted in Figure 4.1. Steps 1 and 2 are typical processes

of free radical initiation. When exposed to heat, the AIBN

breaks down into free radicals and nitrogen gas is evolved.

The AIBN radicals can thus initiate the polymerization of

vinyl compounds. If there is no chain transfer agent

present, the polymerization continues until termination by

disproportionation or combination occur. In the presence of

a mercaptan or other chain transfer agent, termination can

occur through chain transfer. The hydrogen from the

sulfhydryl group of the mercaptan is readily extractable. A

propagating polymer chain can thus react with the mercaptan

(Step 3), terminating propagation and leaving a sulfur

radical on the mercaptan. If the concentration of mercaptan











AIBN
C, -N C=, N
I CH3-,-N=N -CH3 3
CH 3 CH 3


__C=N
2 CH3- +
CH 3


monomer polymerization
i ---


3 o---- ... + H:S-R'


CN mercaptan
4 CH 3 + H:S-R'
CH 3

5 R'S.- + -- B


6 R' -- + H:S-R'


-------- I- + R'S


--- CH3- H + R'S.
CH 3


Figure 4.1. Mechanism of functionalization using chain
transfer reactions.


CH3


---IN R' ---------------+ R'S.










is high, the mercaptan itself can react with the AIBN

radical (Step 4), also giving a sulfur radical. The

resulting sulfur radical can then initiate the free radical

polymerization of a vinyl monomer (Step 5).

If the mercaptan contains hydroxyl or carboxylic acid

functional groups (R'), the initiating sulfur radical

introduces functionality to one end of the macromolecule.

The growing functionalized polymer radical can again react

with the mercaptan (Step 6) yielding a terminated

functionalized chain and another molecule of sulfur radical

which can react with more monomer (Step 5) to form a

reaction loop. The effectiveness of functionalization is

dependent on the chain transfer constant of the mercaptan as

well as the relative concentrations of mercaptan and free

radical initiator (Tsu91). The AIBN concentration is kept

extremely low relative to the chain transfer agent to

minimize the number of chains initiated by the AIBN. Any

chains initiated by AIBN will be non-functionalized (see

Steps 2 and 3).

Cysteine, a naturally occurring amino acid containing a

sulfhydryl functional group, was evaluated as a chain

transfer agent in the polymerization of acrylates and

methacrylates. If cysteine were to act as an effective

chain transfer agent, it would provide the desired amino

acid functionality.

Specifically, poly(butyl acrylate) and poly(methyl

methacrylate-co-octafluoropentyl methacrylate) macromonomers











were synthesized in the presence of cysteine. Poly(butyl

acrylate) was chosen because it has a very low glass

transition temperature, -54C (Bra89), and therefore any

graft copolymers containing it may be used as rubber

modifiers. The fluoroacrylate copolymer was chosen because,

due to the low surface energy of fluoropolymers in general,

graft copolymers could be utilized as surface modifiers.


4.1.1.Determination of an Appropriate Solvent System


A common solvent for both the monomer, either butyl

acrylate or the fluoroacrylate-MMA mixture, and the cysteine

chain transfer agent must be identified in order to insure a

homogeneous solution during polymerization. Cysteine is a

crystalline powder insoluble in common organic solvents.

Solubility tests in the approximate concentrations required

for synthesis of a 3kg/mole macromonomers were performed.

As is shown in Table 4.1, at the appropriate concentrations,

cysteine is insoluble in some common organic solvents which

are suitable for the polymerization of butyl acrylate. Also

butyl acrylate is completely immiscible with water, quickly

separating into two layers.










TABLE 4.1 Solvent determination for monomer and chain
transfer agent


_____Toluene THF DMF Ethanol n-Butanol H20

Cysteine i i i i i s


Butyl s s s s s i
acrylate__________________________________
Concentration of cysteine= 0.03g/5g solvent. Concentration of monomer=
lg/5g solvent. i= insoluble, s=soluble.


Because of the strong H-bonding interactions within the

amino acid, it appeared to be necessary to add H20 to

disrupt crystalline structure. Cysteine was then pre-

dissolved in water at high concentrations prior to the

addition of THF. This method was successful in keeping

cysteine dissolved in a THF/water mixture. One of two

things generally occurred upon the addition of butyl

acrylate. Either the concentration of water was too high to

allow the butyl acrylate to dissolve, or the concentration

was too low to prevent the precipitation of cysteine upon

the addition of the acrylate monomer. It was determined,

after much trial and error, that ethanol could be added in

low concentrations in order to stabilize the

THF/water/cysteine/butyl acrylate solution. The ethanol was

effective in preventing the butyl acrylate from forming a

second phase. The composition of the solvent system used

was a 80/10/10 ratio, by weight, of THF/EtOH/H20. The

monomer concentration was 15 wt.%.










4.1.2.Preliminary Studies of the Effectiveness of Cysteine
as a Chain Transfer Agent in the Polymerization of Butyl
Acrylate


The synthesis of poly(butyl acrylate) in the presence

of cysteine was carried out using the solvent system

described above. Figure 4.2 depicts the desired amino acid

functionality of the macromonomer. The

monomer:cysteine:AIBN molar ratio used was 1000:30:1. The

AIBN concentration must be kept low in order to minimize the

number of chains initiated by AIBN. As stated previously,

any chains initiated by the AIBN initiator and not the chain

transfer agent will be in effect 'dead' chains. That is,

they will lack the desired amino acid functionality. The

polymerization was run under nitrogen at 65C for 7 hours.

A control polymerization was also run under the identical

conditions in the absence of the cysteine chain transfer

agent. The resulting polymers were isolated by rotary

evaporation under vacuum at 40C. Due its low glass

transition temperature, poly(butyl acrylate) is virtually

impossible to isolate by precipitation in a non-solvent.

The reaction product of the control reaction was a clear,

extremely tacky, viscous material with a yellowish haze.

The cysteine modified product was very similar with the

exception of the presence of a white precipitate dispersed

within the poly(butyl acrylate). This precipitate could be

separated from the polymer by dissolving the poly(butyl













butyl acrylate

CH2=CH
-o +


8H2
&H2
&H2
&3H


cysteine
0
NH2-CH---OH


IH
0.2 wt % AIBN
65C, 7 hrs.
THF: EtOH :H20


0
NH2Z-CH---OH
&2




Poly(butyl acrylate)


Figure 4.2 Schematic of ideal amino acid functionalization
during polymerization of butyl acrylate.










acrylate) in THF. The precipitate was insoluble in THF and

could therefore be collected by filtration.

Gel permeation chromatography of p(BA). Molar mass

averages and distributions were measured using GPC in order

to determine the effectiveness of chain transfer. Chain

transfer should significantly reduce the molar mass of the

resulting polymer. If cysteine were to have a chain

transfer constant equivalent to other commonly studied

mercaptans, it should drastically decrease the molar mass of

p(BA) when compared to a neat polymerizaion. For example,

similar concentrations of mercaptoethanol chain transfer

agent have been used in this laboratory in the synthesis of

hydroxyl terminated poly(styrene-acrylonitrile). Using the

Mayo equation described in section 2.1.1.3, we can calculate

that mercaptoethanol (chain transfer constant=l.1 (Zam95))

would yield an oligomer with a molar mass of @4kg/mol.

The molar mass distributions of the control and

cysteine modified P(BA) are shown in Figure 4.3. The number

average molar mass (Mn) for the control sample was 63kg/mol,

with a polydispersity index of 2.9. The product of the

cysteine modified polymerization has an Mn= 19kg/mol. The

molar mass was reduced, but not as much as would be expected

if efficient chain transfer occurred. Also, the cysteine

modified P(BA) has a much broader distribution, with a

polydispersity index of 4.8.

Analysis of GPC data. In order to properly explain

these results, the presence of the side product of the


















/


I:


Log MW



Figure 4.3 GPC results of preliminary butyl acrylate
polymerizations.


- -- -neat Poly(butyl acrylate)
Mn=63Kg/mol Mw=186Kg/mol
PDI=2.9
............. PBA-cysteine pH=6.7
Mn=19Kg/mol Mw=91Kg/mol
PDI=4.8


I
1











cysteine reaction must be explained. The side product, with

a melting point of @ 196C, was determined to be crystalline

by DTA (Figure 4.4). The FTIR spectra of this product,

shown in Figure 4.5, shows the presence of a ester carbonyl

at 1740cm-1. The broad absorption from 3400 to 2400cm-1

suggests the presence of a carboxylic acid functionality.

Figure 4.6 shows the same spectra of the side product,

focusing on the area from 1800 to 1500cm-1, as compared to

butyl acrylate monomer. The side product does not have the

sharp absorbance at 1640cm-1 associated with the vinyl

functionality in the butyl acrylate monomer. There is a

broader absorption centered around 1580cm-1 which is

representative of an amine functional group.

Upon investigation of the literature for possible

explanations of this side reaction of cysteine, a study by

Friedman et al. (Fri65) was found in which they investigated

possible blocking agents for sulfhydryl groups in proteins.

They showed that acrylates, in aqueous conditions, can react

with cysteine through the sulfhydryl group. The S:H

functional group can ionize under basic conditions into a

sulfur anion according to their reaction pathway (Figure

4.7). The sulfur anion then attacks the vinyl group of the

acrylate. The resulting carbanion is immediately capped by

a proton in the aqueous solution.









2-


0-


-2-


-4-


-6-


-8-


-10-


-12


Tm=196C


i I I
0 50 100


I I I I I
150 200 250 300 350 400
Temperature (C)


Figure 4.4 DTA trace of side product.










1.0



0.8



0.6-



0.4



0.2



0.0
4000 3000 2000 1000
Wavenumbers (cm-1)


Figure 4.5


FTIR spectra of side product of cysteine
modified P(BA).











Side product of cysteine reaction
Samine


1.0



0.8



0.6



0.4


0.0
1800 1700 1600 1500
Wavenumbers (cm-1)


Figure 4.6 Comparison of FTIR spectra of side product with
butyl acrylate monomer.


ester


Butyl acrylate
monomer


C=C
I












RSH +H20 RS- + H30+

RS- + CH2=CH-COOR RS-CH2-CH-COOR

RS-CH2-CH-COOR + H30+ RS-CH2-CH2-COOR + H20

Figure 4.7 Reaction pathway of cysteine with acrylates.



When butyl acrylate is used, the product formed is

S-carbobutoxyethylcysteine (Figure 4.8). According to

Friedman, this compound has a melting point of 194-195C,

which is in good correlation to the Tm of the side product,

i.e., 196C. Elemental analysis of the side product

confirmed the correct chemical formula for S-

carbobutoxyethylcysteine (Figure 4.8).

In order to minimize or eliminate this side reaction,

we must understand why it is occurring. In an aqueous

solution, the ionization of the sulfhydryl group is an

equilibrium reaction. It is the anionic form of cysteine

which can react with butyl acrylate to form the side

product. This equilibrium reaction has a pKa associated

with it and therefore the relative concentrations of ionized

to unionized species are influenced by the pH of the

solution as governed by the Henderson-Hasselbach equation,

(Is l
pH = pKa + log( ) (4.1)


where [S-] is the concentration of sulfur anion and [SH] is

the concentration of the unionized sulfhydryl group. The pKa







S-Carbobutoxyethylcysteine

NFH-CH--OH

6H2
6H2

6=o
6
ICH2)3
CH3b

Calculated wt.% for Co10H19N04S:
C, 48.19; H, 7.63; N, 5.62
Found:
C, 48.47; H, 7.65; N, 5.51

Figure 4.8 Structure and elemental analysis of side
product.











of the sulfhydryl group of cysteine is 8.3 (Voe90). In

order to determine the relative concentration of ionized

cysteine, the pH of the THF/EtOH/H20/butyl acrylate/cysteine

solution was then measured. The pH of the solution, 6.7, is

below the pKa. Using equation 4.1, we can then determine

that approximately 3% of the cysteine at a pH of 6.7 is

present in the ionized form and therefore 3% is capable of

reacting with butyl acrylate in the side reaction.

If the effective concentration of chain transfer agent

were only being reduced by 3%, we would expect that there

would be sufficient unionized active cysteine to

significantly affect the molar mass of the poly(butyl

acrylate). Again, in these chain transfer polymerizations,

the molar mass is governed by the chain transfer constant as

well as the relative concentrations of monomer, chain

transfer agent, and free radical initiator. A 5% decrease in

cysteine concentration would indicate that instead of a

1000:32:1 monomer:cysteine:AIBN molar ratio, we would be

working with a 1000:31:1 molar ratio which should still

significantly decrease the molar mass of the poly(butyl

acrylate). One would expect a 5kg/mole instead of 4kg/mole

macromonomer.

The final mixture of products in this reaction depends

upon the relative rates of cysteine consumption in the chain

transfer reaction and the side reaction. Friedman has shown

that the reaction between the sulfur anion and acrylates

occurs almost instantaneously (Fri65). On the other hand,











the polymerization of butyl acrylate occurs over a period of

hours. The ionized cysteine is thus consumed at a higher

rate than unionized cysteine. The desire for equilibrium in

the ionization reaction (Figure 4.9) drives the reaction

further to the right which leads to further ionization of

cysteine and thus formation of more side product. Over

time, the unionized cysteine concentration decreases until

there is no cysteine present to cause chain transfer.

The unexpected GPC results shown previously in Figure

4.3 can now then be explained. At the early stages of the

polymerization of poly(butyl acrylate), unionized cysteine

is present at relatively high concentrations and low molar

mass macromonomer is being produced. As time goes on, the

cysteine concentration relative to butyl acrylate is

decreasing leading to less termination through chain

transfer and therefore larger molar masses. By the end of

the reaction, all of the cysteine has been consumed by the

side reaction and high molar mass poly(butyl acrylate) is

being formed. This would explain the extremely broad molar

mass distribution observed in the GPC analysis. More

pertinent than the actual molar mass values is that in the

absence of cysteine, initiation will come mainly from the

AIBN and termination will occur by disproportionation

(Bra89), leading to high molar mass unfunctionalized chains.

Prevention of undesired side reaction. It is clear

that in order to achieve complete chain transfer and







0 0
II pKa=8.3 II
NH2-CH-C-OH NH2-CH-C-OH
CH2 CH2
SH I
SH b:-.


Sbutyl acrylate

Chain transfer
functionalization


0
II
NH2-CH-C-OH

i:H c
Jc;H
C=0
(CH2)3
tH3


+ H+


y butyl acrylate


3-Carbobutoxyethyl-
:ysteine


Figure 4.9 Side reaction preventing complete chain
transfer.











therefore produce highly functionalized macromonomers, side

reactions must be reduced or eliminated. In order to

prevent the formation of S-carbobutoxyethylcysteine, we must

prevent the ionization of cysteine. By acidifying the

polymerization solution, the initial concentration of sulfur

anion can be virtually eliminated. For example, again using

equation 4.1, if we were to acidify the polymerization

solution to a pH of 1, the concentration of ionized cysteine

would be reduced from 5% to 50 parts per billion. Although

this ionized cysteine will still form the byproduct, the

effective concentration of unionized cysteine will remain

the dominant species.

A new reaction was run under similar conditions to the

previous cysteine modified polymerization with the addition

of hydrochloric acid. The addition of HCl facilitated the

dissolution of cysteine. In fact, a homogeneous

polymerization solution could be achieved in a solvent

system containing 96.5/3/0.5 weight ratio THF/water/HCl.

Because the concentration of water could be significantly

reduced, the addition of ethanol was not necessary to keep

the butyl acrylate monomer in solution. The pH of the

reaction mixture was reduced to -0.76 and the reaction again

was run for 7 hours at 65C. At this pH, only lppb of

cysteine is present in the ionized form.

The resulting solution was neutralized with pyridine.

Pyridine hydrochloride immediately began to precipitate and

was filtered out. The poly(butyl acrylate) solution was











evaporated to dryness under vacuum at 40C. The product

yield was 52% of theoretical. Again a yellowish viscous

liquid was isolated. The most significant visual difference

between this product and those of the previous reaction was

the much lower viscosity, evidence of lower molar mass

polymer. Also there was no evidence of the formation of the

S-carbobutoxyethylcysteine.

GPC was run on the isolated product. Figure 4.10 shows

the effect of acidification on the molar mass distribution

of poly(butyl acrylate). The concentration of cysteine was

identical to that in the previous reaction. Yet, the molar

mass and polydispersity of the poly(butyl acrylate) was

significantly reduced, i.e., with an Mn of 2.6kg/mol and a

polydispersity index of 2.3. The addition of HC1 allowed

cysteine to participate in the chain transfer reaction. As

was stated previously, if cysteine were to behave as

effectively as other mercaptan chain transfer agents, a

molar mass of 4kg/mol would be expected.


4.1.3.Determination of Chain Transfer Constant of Cysteine
in the Synthesis of Amino Acid- terminated Poly(butyl
acrylate) Macromonomers


The first step in the use of chain transfer agents is

the determination of the chain transfer constant. Knowledge

of the chain transfer constant allows us to predict critical

variables such as molar mass and functionality (Nai92). The

chain transfer constant can be determined using the Mayo
















neat Poly(butyl acrylate)
Mn=63Kg/mol Mw=186Kg/mol
PDI=2.9
PBA-cysteine pH=6.7
Mn=19Kg/mol Mw=91Kg/mol
PDI=4.8
PBA-cysteine:HCI pH=-0.76
Mn=2.6Kg/mol Mw=6.1Kg/mol
1 ___ P D I= 2 .3_ _



*-/ \\

) I \ ""
(C, I..
C
I ,/ \ \... .


0 I II
7 6 5 4 3 2
Log MW


Figure 4.10 Effect of acidification on chain transfer
functionalization of poly(butyl acrylate).










model (Ros82). The variation of the degree of polymerization

in a free radical chain transfer polymerization is given by


1Pr k __Y +Cs [S] (4.2)




where Cs = Chain transfer constant

[S]= Chain transfer agent concentration

[M]= Monomer concentration

DPn= Degree of polymerization

kt,kp,Rp= rate constant for termination,

propagation, and the rate of polymerization

respectively.


The degree of polymerization in the absence of chain

transfer, DPno, can be described by equation 4.3 where




DP ~o [[2 (4.3)



Substituting this value in equation 4.2 gives us the Mayo

equation (4.4) for prediction of the chain transfer constant

where


1 1 [S]
+Cs[- (4.4)
DPn DPno ]










This equation is valid only when the initiator

concentration is low. By synthesizing a series of polymers

with different ratios of chain transfer agent to monomer, a

Mayo plot (Tsu91) can be used to determine Cs to prove that

cysteine is an effective chain transfer agent.

The Mayo model can also be used to predict the

functionality of the polymer obtained. If we multiply both

sides of equation 4.4 by DPn, we get


~DP,, IS]
SDP,, +DP,,Cs[] (4.5)
DPp10 [M]

where the two terms on the right represent the fraction of

unfunctionalized and functionalized chains.

Synthesis. Butyl acrylate:cysteine:AIBN mole ratios of

1000:64:1, 1000:32:1, 1000:16:1, 1000:0:1, were polymerized

in a THF/H20/HC1 solvent system identical to that previously

described in section 4.1.2. The only difference was in the

purification. After isolation, the polymers were extracted

with UltrapureTM water in order to remove any traces of

unreacted cysteine or AIBN.

GPC results. Molar mass distributions are shown in

Figure 4.11. The Mn systematically decreases as the

relative concentration of chain transfer agent is increased.

The Mn of the neat poly(butyl acrylate) was 65kg/mol with a

polydispersity index is 3.0. The Mn at the highest

concentration of cysteine was 1.3kg/mol. The










polydispersities of the reactions in which cysteine is

present are all significantly lower, i.e., around 2.0.

A Mayo plot of the GPC data is depicted in Figure 4.12.

Referring back to equation 4.4, we can plot the relative

concentration of chain transfer agent to monomer, [S]/[M],

versus the inverse of the number average degree on

polymerization. After performing a regression on the data,

the slope of the line is the chain transfer constant, Cs.

The chain transfer constant



Cs= r/kP (4.6)




where ktr is the rate constant for chain transfer. A larger

chain transfer constant indicates increasing termination by

chain transfer and thus the effectiveness of the chain

transfer agent in participating in the polymerization. The

chain transfer constant calculated for the butyl

acrylate:cysteine system was 1.49. Reported Cs values for

other mercaptans are generally between 0.8 and 1.2. As

stated previously, we have studied mercaptoethanol as a

chain transfer agent and found a Cs of 1.1. Thus, cysteine

is an extremely effective chain transfer agent in the

polymerization of poly(butyl acrylate).

Spectroscopic characterization. FTIR was run in order

to observe any differences in structure between the neat

poly(butyl acrylate) and the product of the cysteine














40 1000:64 BA:cyste
1000:3264 BA:cyste
-.o.-1000:32 BA:cyste
...... 1000:16 BA:cyste
-~- neat PBA
30


20
E

10




7 6 5 4 3 2
log (MW)


Figure 4.11 GPC results of polymerizations of butyl
acrylate varying cysteine concentrations.












12

10 1/DPn= 1/DPno+ Cs[S]/[M]

8 Cs=1.49
V r2 0.99 I
0
T- 6
x
a 4
ST = 65
2 THF/H20/HCI
[AIBN] = 0.2 wt %
0 S : Cysteine


0 1 2 3 4 5 6 7

[S]/[M] x 102


Figure 4.12 Mayo plot for chain transfer constant
determination for cysteine:butyl acrylate
system.










modified polymerizations. Spectroscopic determination and

quantification of amino acid functional groups is

complicated by the low end group concentration relative to

p(BA).

The only difference in the FTIR spectra of the lowest

molar mass poly(butyl acrylate) macromonomer (1.2kg/mol) and

the neat poly(butyl acrylate) (Figure 4.13). The only

significant difference between the two spectra was the low

intensity broad absorption from 3400-2400cm'-. This was

attributed the carboxylic acid from the cysteine end group.

NMR spectroscopy was used in an attempt to better prove

the presence of the amino acid end-group. A comparison of

the 'H-NMR spectra of neat poly(butyl acrylate) (Fig 4.14)

and the 1.2kg/mol macromonomer (Fig 4.15) reveals the

presence of two very small, broad peaks around 6 2.8 and 3.3

for the macromonomer. The chemical shift values are equal

to the predicted shifts of the methylene and methine protons

from the cysteine end-group (Sil91). Again, the peaks are

very low in intensity due to the low end group

concentration. The 13C-NMR spectra of the low molar mass

macromonomer is shown in Figure 4.16. All peaks can be

assigned to that of poly(butyl acrylate) with the exception

of a small peak at 6 31.8 which is assigned to the C-S-R

carbon.

TCP was used to determine the sulfur concentration in

the p(BA). As described in section 3.2.1, this value in













1.0 -



0.8



0.6



0.4 -"


Poly(butyl acrylate)


0.2:i1f
0.2 Amino acid
Terminated
P(BA)
0.0-
4000 3000 2000 1000
Wavenumbers (cm-1)


Figure 4.13


FTIR spectra of poly(butyl acrylate) and
cysteine end-capped p(BA) macromonomer.
Macromonomer is the 1.2kg/mol p(BA)
synthesized using 1000:64:1 butyl
acrylate:cysteine:AIBN mole ratio.







f e
4CH2-CH-)- a TMS
I x
C-O
I
0
I
CH2 d
I

CH2 b
OH3 a
C
b
d




4e3 2 1 ppm

4 3 2 1 0 PPM1


1H-NMR spectra of neat poly(butyl acrylate).


Figure 4.14








TMS


OH
I
U- 9 f e
hC -CH2-S-CH2-CH-)-
h x
NH2 C-0O

0

CH2d

CH2C

CH2 b
IH3 a
CH3a



d




egA

h g A /


I I I tI I I I l II I I I I


4


1 0 ppm


Figure 4.15 'H-NMR spectra of 1.2kg/mol cysteine modidied
poly(butyl acrylate).





180 160 140 120 100 80


)DCI3


h _g f
CH-CH2--SCH2-CH4-
I x
NH2 e C-0O
I
0
I
d CH2

C CH2
b CH2


a CH3





e

,t, li lu.,., .L AL IL JI ,I d ,iu h. ,. ,Ll d. q i ,, I. .. ..


SHI BM n I lr llvll I' iff~all l i .llVifJlmir I' I ,' I I r 1, jl
^ "'n 'A6 1 .'1 1T[ j -


60 40 20


Figure 4.16 13C-NMR spectra of 1.2kg/mol cysteine modified
poly(butyl acrylate).


OH
0=I
O=u


a






TMS


0 ppm


lj.l Jl .l .l. _l. t .1


h

f

HL




Full Text

PAGE 1

32/<$0,'(*5$)7$&5
PAGE 2

7KLV GLVVHUWDWLRQ LV GHGLFDWHG WR DOO WKRVH ZKR VXSSRUWHG PH HPRWLRQDOO\ SK\VLFDOO\ DQG ILQDQFLDOO\ WKURXJKRXW P\ VHHPLQJO\ HQGOHVV \HDUV RI HGXFDWLRQ HVSHFLDOO\ P\ ZLIH .DUHQ P\ SDUHQWV 3DEOR DQG 6\OYLD DQG P\ JUDQGPRWKHU %HOOD DQG WR WKH ORYLQJ PHPRU\ RI 2VFDU =DPRUD DQG 0DQXHO /HRQ

PAGE 3

$&.12:/('*0(176 FDQQRW H[SUHVV HQRXJK JUDWLWXGH DQG DSSUHFLDWLRQ WR P\ DGYLVRU DQG GRFWRUDO FRPPLWWHH FKDLUPDQ 'U $QWKRQ\ %UHQQDQ IRU KLV \HDUV RI WHDFKLQJ JXLGDQFH DQG VXSSRUW LQ DUHDV WKDW H[WHQGHG ZHOO EH\RQG P\ DFDGHPLF HQGHDYRUV ZRXOG DOVR OLNH WR H[SUHVV VLQFHUH WKDQNV WR WKH PHPEHUV RI P\ VXSHUYLVRU\ FRPPLWWHH IRU WKHLU DGYLFH DQG WHDFKLQJ 'U -LP $GDLU 'U &KULV %DWLFK 'U (XJHQH *ROGEHUJ DQG 'U .HQ :DJHQHU FRQVLGHU WKLV H[SHULHQFH VXEVWDQWLDOO\ HQULFKHG E\ WKH VXSSRUW RI P\ FROOHDJXHV :KHWKHU WKHUH ZDV FROODERUDWLRQ GHEDWH RU VLPSO\ HQFRXUDJHPHQW LW ZRXOG KDYH EHHQ HQGOHVVO\ PRUH GLIILFXOW ZLWKRXW WKH IROORZLQJ 'U 0LFKDHO $QWRQHOO 'U 'UHZ $PHU\ &UDLJ +DEHJHU -HII .HUFKQHU 'U -DPHV 0DURWWD -HUHP\ 0HKOHP 'U 5RGULJR 2UHILFH /X[VDPHH 3ODQJVPDQJDV 0DUN 6FKZDU] DQG 'U &KULV :LGHQKRXVH 6SHFLDO WKDQNV DUH H[WHQGHG WR $UWKXU *DYULQ IRU KLV DVVLVWDQFH ZLWK 105 VSHFWURVFRS\ DQG IRU WKH OLYHO\ GLVFXVVLRQV LQ KLV VKRUW WLPH KHUH DQG $QDQWK “DPDQ DQG 'U 5RE &KRGHOND IRU WKHLU XQZDYHULQJ VXSSRUW DQG IULHQGVKLS ZRXOG EH UHPLVV QRW WR PHQWLRQ -HVVH $UQROG DQG 7RP 0LOOHU P\ FROOHDJXHV RI ILYH \HDUV ZLWK ZKRP KDYH JURZQ PDWXUHG LQ

PAGE 4

DQG OHDUQHG ZLOO IRUHYHU EH DSSUHFLDWLYH RI RXU FRQWLQXRXV GLVFXVVLRQV GHEDWHV DQG FROODERUDWLRQ DV ZHOO DV WKHLU XQG\LQJ VXSSRUW ,9

PAGE 5

7$%/( 2) &217(176 $&.12:/('*0(176 LLL /,67 2) 7$%/(6 YLLL /,67 2) ),*85(6 L[ $%675$&7 [LLL ,1752'8&7,21 3RO\ DPLGHJDFU\ODWHf *UDIW &RSRO\PHUV 0DFURPRQRPHUV $GGLWLRQ&RQGHQVDWLRQ *UDIW &RSRO\PHUV $SSOLFDWLRQV 2IIVHWWLQJ 3RO\PHUL]DWLRQ 6KULQNDJH LQ 'HQWDO 5HVLQV WKURXJK WKH ,QFRUSRUDWLRQ RI 0DOHLF $QK\GULGH %$&.*5281' *UDIW &RSRO\PHUV 6\QWKHWLF 5RXWHV WR *UDIW &RSRO\PHUV $QLRQLFDOO\ SRO\PHUL]HG PDFURPRQRPHUV 0DFURPRQRPHUV WKURXJK FKDLQ WUDQVIHU IXQFWLRQDOL]DWLRQ 0RGHOLQJ FKDLQ WUDQVIHU UHDFWLRQ 3RO\DPLGH $GGLWLRQ&RQGHQVDWLRQ 0XOWLSKDVH &RSRO\PHUV 3RO\DPLGHEROHILQf EORFN FRSRO\PHUV 3RO\DPLGHJROHILQf JUDIW FRSRO\PHUV 3RO\PHUL]DWLRQ 6KULQNDJH LQ 'HQWDO &RPSRVLWHV +LVWRU\ RI 'HQWDO &RPSRVLWHV 5HGXFWLRQ RI 3RO\PHUL]DWLRQ 6KULQNDJH LQ 'HQWDO 5HVLQV 8VH RI $QK\GULGHV LQ 'HQWDO $SSOLFDWLRQV )LOOHU 0RGLILFDWLRQ LQ WKH 5HGXFWLRQ RI 2YHUDOO &RPSRVLWH 6KULQNDJH 0$7(5,$/6 $1' 0(7+2'6 0DWHULDOV 0DFURPRQRPHU 5HDFWDQWV *UDIW &RSRO\PHU 5HDFWDQWV 'HQWDO 0RQRPHUV 0HWKRGV Y

PAGE 6

6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI 0DFURPRQRPHUV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI *UDIW &RSRO\PHUV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI $QK\GULGH 0RGLILHG 'HQWDO 5HVLQV 5(68/76 $1' ',6&866,21 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI $PLQR $FLG WHUPLQDWHG 3RO\DFU\ODWHf 0DFURPRQRPHUV XVLQJ &KDLQ 7UDQVIHU &KHPLVWU\ 'HWHUPLQDWLRQ RI DQ $SSURSULDWH 6ROYHQW 6\VWHP 3UHOLPLQDU\ 6WXGLHV RI WKH (IIHFWLYHQHVV RI &\VWHLQH DV D &KDLQ 7UDQVIHU $JHQW LQ WKH 3RO\PHUL]DWLRQ RI %XW\O $FU\ODWH 'HWHUPLQDWLRQ RI &KDLQ 7UDQVIHU &RQVWDQW RI &\VWHLQH LQ WKH 6\QWKHVLV RI $PLQR $FLG WHUPLQDWHG 3RO\EXW\O DFU\ODWHf 0DFURPRQRPHUV &\VWHLQH &KDLQ 7UDQVIHU LQ WKH 6\QWKHVLV RI $PLQR $FLGWHUPLQDWHG 3RO\PHWK\O PHWKDFU\ODWHRFWDIOXRURSHQW\O PHWKDFU\ODWHf 0DFURPRQRPHUV 3RO\DPLGHJSRO\DFU\ODWHf JUDIW FRSRO\PHUV IURP $PLQR $FLGWHUPLQDWHG 0DFURPRQRPHUV 6\QWKHVLV RI 3RO\DPLGHJEXW\O DFU\ODWHf &KDUDFWHUL]DWLRQ RI *UDIW &RSRO\PHUV %OHQGV RI *UDIW &RSRO\PHUV ZLWK 1\ORQ 2IIVHWWLQJ 3RO\PHUL]DWLRQ 6KULQNDJH LQ 'HQWDO 5HVLQV WKURXJK WKH ,QFRUSRUDWLRQ RI 0DOHLF $QK\GULGH &RSRO\PHU &RPSRVLWLRQV &RSRO\PHU &KDUDFWHUL]DWLRQ 6800$5< $1' &21&/86,216 &KDLQ 7UDQVIHU )XQFWLRQDOL]DWLRQ RI 3RO\DFU\ODWHVf DQG 3RO\PHWKDFU\ODWHVf &RQFOXVLRQV IRU 3UHOLPLQDU\ (YDOXDWLRQ RI &\VWHLQH &KDLQ 7UDQVIHU $JHQW &RQFOXVLRQV IRU 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI $PLQR $FLGWHUPLQDWHG 3RO\EXW\O DFU\ODWHf &RQFOXVLRQV IRU 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI $PLQR $FLGWHUPLQDWHG 3RO\00$FR2)30$f *UDIW &RSRO\PHUL]DWLRQV RI 0DFURPRQRPHUV ZLWK 3RO\DPLGH 3UHFXUVRUV &RQFOXVLRQV IRU 6\QWKHVLV RI 3RO\DPLGHJ DFU\ODWHf *UDIW &RSRO\PHUV 9,

PAGE 7

&RQFOXVLRQV IRU &KDUDFWHUL]DWLRQ RI 3RO\ DPLGHJDFU\ODWHf *UDIW &RSRO\PHUV &RQFOXVLRQV IRU 0HFKDQLFDO 3URSHUWLHV RI 1\ORQ *UDIW &RSRO\PHU %OHQGV 2IIVHWWLQJ 3RO\PHUL]DWLRQ 6KULQNDJH LQ 3RO\GLPHWKDFU\ODWHf 'HQWDO 5HVLQV &RQFOXVLRQV IRU &KDUDFWHUL]DWLRQ RI 0DOHLF $QK\GULGHFRQWDLQLQJ 'HQWDO 5HVLQV &RQFOXVLRQV IRU 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI $QK\GULGH &RSRO\PHU ZLWK 3(0$ )8785( :25. 0DFURPRQRPHUV DQG *UDIW &RSRO\PHUV 0DFURPRQRPHU :RUN *UDIW &RSRO\PHUV $QK\GULGHFRQWDLQLQJ 'HQWDO 5HVLQV /,67 2) 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ YLL

PAGE 8

/,67 2) 7$%/(6 7$%/( 3DH 6ROYHQW GHWHUPLQDWLRQ IRU PRQRPHU DQG FKDLQ WUDQVIHU DJHQW 3HUFHQW IXQFWLRQDOL]DWLRQ YHUVXV PRODU PDVV IRU SRO\ EXW\O DFU\ODWHf PDFURPRQRPHUV 0RODU PDVV YDOXHV RI IOXRURDFU\ODWH FRSRO\PHUV IURP *3& 3HUFHQW ZHLJKW ORVV IURP 6R[KOHW H[WUDFWLRQ IRU SRO\DPLGH JUDIW FRSRO\PHUV &KHPLFDO FRPSRVLWLRQ RI SXULILHG JUDIW FRSRO\PHUV IURP HOHPHQWDO DQDO\VLV DQG 105 ,QKHUHQW YLVFRVLWLHV RI SRO\DPLGH JUDIW FRSRO\PHUV 7HQVLOH SURSHUWLHV RI Q\ORQ EOHQGV ([SHULPHQWDO PDWUL[ RI GHQWDO PRQRPHU FRPSRVLWLRQV 3(0$PDOHLF DQK\GULGH PRQRPHU FRPSRVLWLRQV (:& RI PDOHLF DQK\GULGH GHQWDO UHVLQV 5HVLGXDO ZHLJKW JDLQ DQK\GULGH LQFRUSRUDWLRQ DQG SRVW SRO\PHUL]DWLRQ H[SDQVLRQ RI PDOHLF DQK\GULGH GHQWDO UHVLQV *ODVV WUDQVLWLRQ WHPSHUDWXUHV DQG FRPSRVLWLRQ RI 3(0$ PDOHLF DQK\GULGH FRSRO\PHUV 0RODU PDVV DYHUDJHV IURP *3& IRU 3(0$DQK\GULGH FRSRO\PHUV YLLL

PAGE 9

/,67 2) ),*85(6 )LJXUH SDJH 6FKHPDWLF LOOXVWUDWLRQ RI JHQHUDO JUDIW FRSRO\PHU VWUXFWXUH 0HFKDQLVP RI IXQFWLRQDOL]DWLRQ XVLQJ FKDLQ WUDQVIHU DJHQWV 6FKHPDWLF LOOXVWUDWLRQ RI XWLOL]HG FKDLQ WUDQVIHU DJHQWV DQG PDFURPRQRPHUV WKHUHRI 0HFKDQLVP RI EORFN FRSRO\PHU IRUPDWLRQ WKURXJK VHTXHQWLDO SRO\PHUL]DWLRQV RI YLQ\O PRQRPHU DQG LVRF\DQDWHV 5HDFWLRQ VFKHPDWLF IRU PDFURLQLWLDWRU IRUPDWLRQ DQG VXEVHTXHQW DQLRQLF EORFN SRO\PHUL]DWLRQ RI FDSURODFWDP 5HDFWLRQ VFKHPDWLF RI EORFN FRSRO\PHUL]DWLRQ LQLWLDWHG E\ QLWURVDWHG SRO\DPLGH PDFURLQLWLDWRUV 5HDFWLRQ VFKHPDWLF RI $,%1 FRQWDLQLQJ SRO\DPLGH DQG EORFN FRSRO\PHU WKHUHRI 5HDFWLRQ VFKHPDWLF RI LQ VLWX JUDIW FRSRO\PHU IRUPDWLRQ IURP JO\FLG\O PHWKDFU\ODWH FRSRO\PHUV 5HDFWLRQ VFKHPDWLF RI LQ VLWX JUDIW FRSRO\PHU IRUPDWLRQ IURP PDOHLF DQK\GULGH PRGLILHG SRO\ROHILQV FRSRO\PHUV 0HFKDQLVP RI ULQJ RSHQLQJ SRO\PHUL]DWLRQ RI VSLUR RUWKRFDUERQDWH PRQRPHUV 0HFKDQLVP RI IXQFWLRQDOL]DWLRQ XVLQJ FKDLQ WUDQVIHU UHDFWLRQV 6FKHPDWLF RI LGHDO DPLQR DFLG IXQFWLRQDOL]DWLRQ GXULQJ SRO\PHUL]DWLRQ RI EXW\O DFU\ODWH ,;

PAGE 10

*3& UHVXOWV RI SUHOLPLQDU\ EXW\O DFU\ODWH SRO\PHUL]DWLRQV '6& WUDFH RI VLGH SURGXFW )7,5 VSHFWUD RI VLGH SURGXFW RI F\VWHLQH PRGLILHG 3 %$f &RPSDULVRQ RI )7,5 VSHFWUD RI VLGH SURGXFW ZLWK EXW\O DFU\ODWH PRQRPHU 5HDFWLRQ SDWKZD\ RI F\VWHLQH ZLWK DFU\ODWHV 6WUXFWXUH DQG HOHPHQWDO DQDO\VLV RI VLGH SURGXFW 6LGH UHDFWLRQ SUHYHQWLQJ FRPSOHWH FKDLQ WUDQVIHU (IIHFW RI DFLGLILFDWLRQ RQ FKDLQ WUDQVIHU IXQFWLRQDOL]DWLRQ RI SRO\EXW\O DFU\ODWHf *3& UHVXOWV RI SRO\PHUL]DWLRQV RI EXW\O DFU\ODWH YDU\LQJ F\VWHLQH FRQFHQWUDWLRQV 0D\R SORW IRU FKDLQ WUDQVIHU FRQVWDQW GHWHUPLQDWLRQ IRU F\VWHLQH EXW\O DFU\ODWH V\VWHP )7,5 VSHFWUD RI SRO\EXW\O DFU\ODWHf DQG F\VWHLQH HQG FDSSHG S%$f PDFURPRQRPHU 0DFURPRQRPHU LV WKH NJPRO S%$f V\QWKHVL]HG XVLQJ EXW\O DFU\ODWH F\VWHLQH $,%1 PROH UDWLR +105 VSHFWUD RI QHDW SRO\EXW\O DFU\ODWHf +105 VSHFWUD RI NJPRO F\VWHLQH PRGLILHG SRO\EXW\O DFU\ODWHf &105 VSHFWUD RI NJPRO F\VWHLQH PRGLILHG SRO\EXW\O DFU\ODWHf &KHPLFDO VWUXFWXUH RI IOXRURDFU\ODWH FRSRO\PHU *3& UHVXOW RI FKDLQ WUDQVIHU SRO\PHUL]DWLRQV RI IOXRURDFU\ODWH FRSRO\PHUV &RPSDULVRQ RI HIIHFWLYHQHVV RI FKDLQ WUDQVIHU IRU S%$f DQG IOXRURDFU\ODWH FRSRO\PHU +105 VSHFWUD RI 00$2)30$ PDFURPRQRPHU [

PAGE 11

0D\R SORW IRU FKDLQ WUDQVIHU FRQVWDQW GHWHUPLQDWLRQ IRU F\VWHLQH 00$FR2)30$ V\VWHP )7,5 VSHFWUD RI 00$2)30$ FRSRO\PHUV $PLGHDFU\ODWH JUDIW FRSRO\PHU VWUXFWXUH 7ULSKHQ\O SKRVSKLWH GULYHQ DPLGH IRUPDWLRQ 6\QWKHVL]HG JUDIW FRSRO\PHU FRPSRVLWLRQV 0RODU PDVV GLVWULEXWLRQV RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3$%$J%$ UHIUDFWLYH LQGH[ GHWHFWRUf 89 VSHFWUD RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3$%$J%$ IURP *3&89 0RODU PDVV GLVWULEXWLRQV RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J%$ UHIUDFWLYH LQGH[ GHWHFWRUf 89 VSHFWUD RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J%$ IURP *3&89 0RODU PDVV GLVWULEXWLRQV RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J%$ UHIUDFWLYH LQGH[ GHWHFWRUf 89 VSHFWUD RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J %$ IURP *3&89 0RODU PDVV GLVWULEXWLRQV RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J)$ UHIUDFWLYH LQGH[ GHWHFWRUf 89 VSHFWUD RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J)$ IURP *3&89 0RODU PDVV GLVWULEXWLRQV RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J8%$ UHIUDFWLYH LQGH[ GHWHFWRUf 89 VSHFWUD RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J8%$ IURP *3&89 7UDQVPLVVLRQ )7,5 VSHFWUD RI 3$%$J%$[ JUDIW FRSRO\PHU 7UDQVPLVVLRQ )7,5 VSHFWUD RI 3$%$J%$[ JUDIW FRSRO\PHU

PAGE 12

7UDQVPLVVLRQ )7,5 VSHFWUD RI 3K'$$J%$[ JUDIW FRSRO\PHU 7UDQVPLVVLRQ )7,5 VSHFWUD RI 3K'$$J%$[ JUDIW FRSRO\PHU 7UDQVPLVVLRQ )7,5 VSHFWUD RI SRO\EXW\O DFU\ODWHf JUDIWHG SRO\DPLGHV 7UDQVPLVVLRQ )7,5 VSHFWUD RI 3K'$$J%$[ JUDIW FRSRO\PHU +105 VSHFWUD RI 3$%$J%$[ +105 VSHFWUD RI 3$%$J%$[ +105 VSHFWUD RI 3K'$$ KRPRSRO\DPLGH +105 VSHFWUD RI 3K'$$J%$[ +105 VSHFWUD RI 3K'$$J%$[ +105 VSHFWUD RI 3K'$$J)$[ 7*'7$ DQDO\VLV RI 3K'$$J%$ JUDIW FRSRO\PHU DQG 3K'$$ KRPRSRO\DPLGH '6& DQDO\VLV RI 3K'$$J%$ JUDIW FRSRO\PHU DQG 3K'$$ KRPRSRO\DPLGH &KHPLFDO VWUXFWXUHV RI PHWKDFU\ODWH DQG DQK\GULGH PRQRPHUV IRU GHQWDO DSSOLFDWLRQV 7*'7$ RI DQK\GULGH PRGLILHG GHQWDO UHVLQ )7,5 VSHFWUD RI SRO\3(0$f DQG SRO\3(0$&22PDOHLF DQK\GULGHf [LL

PAGE 13

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 32/<$0,'(*5$)7$&5
PAGE 14

DPLGH SUHFXUVRUV WR IRUP SRO\DPLGHJDFU\ODWHf JUDIW FRSRO\PHUV 0DFURPRQRPHUV DQG JUDIW FRSRO\PHUV ZHUH FKDUDFWHUL]HG E\ JHO SHUPHDWLRQ FKURPDWRJUDSK\ *3&f )RXULHU WUDQVIRUP LQIUDUHG VSHFWURVFRS\ )7,5f QXFOHDU PDJQHWLF UHVRQDQFH 105f VSHFWURVFRS\ HOHPHQWDO DQDO\VLV ($f LQGXFWLYHO\ FRXSOHG SODVPD ,&3f DQG GLIIHUHQWLDO VFDQQLQJ FDORULPHWU\ '6&f 7KH VHFRQG SDUW RI WKLV UHVHDUFK LQYROYHG SRO\GLPHWKDFU\ODWHf GHQWDO UHVWRUDWLYH PDWHULDOV 9ROXPHWULF VKULQNDJH GXULQJ WKH FXUH RI WKHVH UHVLQV UHVXOWV LQ D SRRU LQWHUIDFH EHWZHHQ WKH UHVLQ DQG WKH UHPDLQLQJ WRRWK VWUXFWXUH OLPLWLQJ WKH OLIHWLPH RI WKHVH PDWHULDOV &\FOLF DQK\GULGHV ZHUH LQFRUSRUDWHG LQWR FRPPRQ PRQRPHU FRPSRVLWLRQV XVHG LQ GHQWDO DSSOLFDWLRQV 9ROXPH H[SDQVLRQ IURP WKH ULQJ RSHQLQJ K\GURO\VLV RI WKHVH DQK\GULGHV ZDV VKRZQ WR EH IHDVLEOH 7KH PRGLILHG GHQWDO UHVLQV ZHUH FKDUDFWHUL]HG E\ VZHOOLQJ H[WUDFWLRQ DQG XOWUDYLROHW VSHFWURVFRS\ 89f DQG GHQVLW\ PHDVXUHPHQWV /LQHDU SRO\PHUV GHVLJQHG WR PRGHO WKH FURVVOLQNHG GHQWDO UHVLQV ZHUH FKDUDFWHUL]HG E\ )7,5 *3& DQG '6& ;,9

PAGE 15

&+$37(5 ,1752'8&7,21 3RO\DPLGHJDFU\ODWHf *UDIW &RSRO\PHUV *UDIW FRSRO\PHUV DUH PDFURPROHFXOHV FRPSRVHG RI FKHPLFDOO\ GLVVLPLODU VHJPHQWV LQ D EUDQFKHG DUFKLWHFWXUH )LJXUH f 7KH\ KDYH EHHQ VWXGLHG DQG XWLOL]HG LQ D YDULHW\ RI DSSOLFDWLRQV EHFDXVH RI WKHLU DELOLW\ WR FRPELQH WKH SURSHUWLHV RI WKHLU LQGLYLGXDO VHJPHQWV $ $ $ $ )LJXUH 6FKHPDWLF LOOXVWUDWLRQ RI JHQHUDO JUDIW FRSRO\PHU VWUXFWXUH 0DFURPRQRPHUV 7KH PRVW SUHYDOHQW V\QWKHWLF URXWH WR ZHOO GHILQHG JUDIW FRSRO\PHUV LV WKURXJK WKH XVH RI PDFURPRQRPHUV ORZ

PAGE 16

PRODU PDVV SRO\PHUV FRQWDLQLQJ D SRO\PHUL]DEOH HQG JURXS $ UHYLHZ RI WKH OLWHUDWXUH KDV VKRZQ WKDW FXUUHQW VWXGLHV LQFOXGLQJ WKRVH ZLWKLQ WKLV ODERUDWRU\ KDYH FRQFHQWUDWHG RQ V\QWKHVL]LQJ PDFURPRQRPHUV ZKLFK FRQWDLQ D UHVLGXDO XQVDWXUDWLRQ DW RQH HQG 7KHUHIRUH WKH\ DUH JHQHUDOO\ SRO\PHUL]DEOH RQO\ ZLWK DGGLWLRQ W\SH PRQRPHUV WKURXJK D IUHH UDGLFDO PHFKDQLVP %HFDXVH WKH PDFURPRQRPHUV WKHPVHOYHV DUH JHQHUDOO\ V\QWKHVL]HG WKURXJK HLWKHU DQLRQLF RU IUHH UDGLFDO SRO\PHUL]DWLRQ LQ WKH SUHVHQFH RI D IXQFWLRQDOL]LQJ DJHQW WKH UHVXOWLQJ JUDIW FRSRO\PHUV ZKLFK FDQ EH V\QWKHVL]HG WKURXJK WKLV PHWKRG DUH JHQHUDOO\ OLPLWHG WR DGGLWLRQDGGLWLRQ JUDIW FRSRO\PHUV ,W ZDV WKH REMHFWLYH RI WKH ILUVW SDUW RI WKLV VWXG\ WR V\QWKHVL]H FRQGHQVDWLRQ SRO\PHUL]DEOH PDFURPRQRPHUV VSHFLILFDOO\ DPLQR DFLG WHUPLQDWHG PDFURPRQRPHUV FDSDEOH RI UHDFWLQJ ZLWK DPLQR DFLGV LQ WKH V\QWKHVLV RI SRO\DPLGH JUDIW FRSRO\PHUV $Q DPLQR DFLG IXQFWLRQDOLW\ LV SUHIHUUHG RYHU RWKHU HQG JURXSV VXFK DV GLDFLGV RU GLDPLQHV GXH WR WKH LQKHUHQW VWRLFKLRPHWU\ WKDW LW SURYLGHV 7KLV VWRLFKLRPHWU\ LV UHTXLUHG LQ WKH FRQGHQVDWLRQ JUDIW UHDFWLRQ WR LQVXUH WKH KLJKHVW GHJUHH RI SRO\PHUL]DWLRQ SRVVLEOH 7KH DSSURDFK WDNHQ LQ WKLV VWXG\ LQYROYHV WKH IUHH UDGLFDO SRO\PHUL]DWLRQ RI DFU\ODWH DQG PHWKDFU\ODWH PRQRPHUV LQ WKH SUHVHQFH RI D IXQFWLRQDO FKDLQ WUDQVIHU DJHQW 0HUFDSWDQV FRPSRXQGV FRQWDLQLQJ D VXOIXUK\GURJHQ ERQG DUH FRPPRQO\ XVHG LQ FKDLQ WUDQVIHU UHDFWLRQV ,Q IDFW PHUFDSWDQV DUH FRPPRQO\ XVHG WR FRQWURO PROHFXODU ZHLJKW LQ

PAGE 17

FRPPHUFLDO SRO\PHUL]DWLRQ UHDFWRUV &\VWHLQH D QDWXUDOO\ RFFXUULQJ DPLQR DFLG FRQWDLQV WKH VXOIK\GU\O JURXS UHTXLUHG IRU PHUFDSWDQ FKDLQ WUDQVIHU UHDFWLRQV 7KH DGGLWLRQ RI F\VWHLQH LI HIIHFWLYH DV D FKDLQ WUDQVIHU DJHQW ZRXOG UHVXOW LQ DQ DPLQR DFLG IXQFWLRQDOLW\ $GGLWLRQ&RQGHQVDWLRQ *UDIW &RSRO\PHUV 7KHUH DUH IHZ UHSRUWV RI ZHOO GHILQHG SRO\DPLGH JUDIW FRSRO\PHUV ZLWK DGGLWLRQ SRO\PHUV VXFK DV SRO\DFU\ODWHVf RU SRO\PHWKDFU\ODWHVf 0RVW VWXGLHV RI DPLGH JUDIW FRSRO\PHUL]DWLRQV ZLWK DGGLWLRQ SRO\PHUV LQYROYH HLWKHU WKH LQ VLWX IRUPDWLRQ RI JUDIW FRSRO\PHUV LQ SRO\PHU EOHQGV RU UDGLDWLRQ LQGXFHG VXUIDFH JUDIW WHFKQLTXHV $OWKRXJK HIIHFWLYH IRU WKHLU LQWHQGHG DSSOLFDWLRQV QHLWKHU PHWKRG SURGXFHV D ZHOO GHILQHG JUDIW FRSRO\PHU WKDW FDQ EH LVRODWHG DQG VWXGLHG 7KH REMHFWLYH RI WKH VHFRQG SDUW RI WKLV UHVHDUFK ZDV WR HYDOXDWH WKH DELOLW\ RI WKH SUHYLRXVO\ V\QWKHVL]HG PDFURPRQRPHUV WR SDUWLFLSDWH LQ D FRQGHQVDWLRQ SRO\PHUL]DWLRQ RI SRO\DPLGH SUHFXUVRUV ,I VXFFHVVIXO WKH UHVXOWLQJ VWUXFWXUH ZRXOG EH D SRO\DPLGHJDFU\ODWHf JUDIW FRSRO\PHU 7KH SURSHUWLHV RI WKH V\QWKHVL]HG PDFURPRQRPHUV DQG JUDIW FRSRO\PHUV ZHUH FKDUDFWHUL]HG E\ D YDULHW\ RI WHFKQLTXHV LQFOXGLQJ *3& )7,5 VSHFWURVFRS\ 105

PAGE 18

VSHFWURVFRS\ 89 VSHFWURVFRS\ HOHPHQWDO DQDO\VLV ,&3 DQG '6& $SSOLFDWLRQV 2QH RI WKH PRVW FRPPRQ DSSOLFDWLRQV RI JUDIW FRSRO\PHUV LV WKHLU XVH DV FRPSDWLELOL]HUV 7KH DSSURSULDWH JUDIW FRSRO\PHU KDV EHHQ VKRZQ WR PLJUDWH WR WKH LQWHUIDFH EHWZHHQ WZR GLVVLPLODU PDWHULDOV UHGXFLQJ LQWHUIDFLDO WHQVLRQ DQG LQFUHDVLQJ WKH ERQGLQJ DW WKH LQWHUIDFH 7KH LQLWLDO PRWLYDWLRQ IRU WKH VWXG\ RI SRO\DPLGH SRO\DFU\ODWH JUDIW FRSRO\PHUV FDPH IURP WKH ILHOG RI GHQWLVWU\ 7KH QHZ FODVV RI GHQWDO UHVWRUDWLYH FRPSRVLWHV EHWWHU NQRZQ DV nILOOLQJVn FRQVLVW RI D FURVVOLQNHG GLPHWKDFU\ODWH PDWUL[ VXUURXQGLQJ JODVV SDUWLFOHV 7KH IDLOXUH RI GHQWDO UHVWRUDWLYH FRPSRVLWHV DQG SRRU SHUIRUPDQFH DV FRPSDUHG WR DPDOJDP UHVWRUDWLRQV LV JHQHUDOO\ DWWULEXWHG WR D SRRU LQWHUIDFH $OWKRXJK WKH JODVVUHVLQ LQWHUIDFH KDV EHHQ VWXGLHG H[WHQVLYHO\ WKH VRXUFH RI IDLOXUH LV XVXDOO\ WKH LQWHUIDFH EHWZHHQ WKH FRPSRVLWH UHVWRUDWLRQ DQG WKH UHPDLQLQJ WRRWK VWUXFWXUH 7ZR RI WKH PDLQ VRXUFHV RI WKLV SRRU LQWHUIDFH DUH f SRRU ERQGLQJ EHWZHHQ WKH H[SRVHG WRRWK VWUXFWXUH FRPSRVHG RI K\GURSKLOLF SURWHLQDFHRXV GHQWLQ WXEXOHV DQG WKH K\GURSKRELF GLPHWKDFU\ODWH FRPSRVLWH DQG WKH SRO\PHUL]DWLRQ VKULQNDJH GXULQJ FRPSRVLWH FXUH FDXVLQJ WKH UHVWRUDWLRQ WR SXOO DZD\ IURP WKH UHPDLQLQJ f

PAGE 19

WRRWK VWUXFWXUH 7KLV OHDGV WR PDUJLQDO OHDNDJH WKH LQILOWUDWLRQ RI VDOLYD DQG EDFWHULD XQGHU WKH UHVWRUDWLRQ ZKLFK FDQ OHDG WR WKH VHFRQGDU\ FDULHV 7KH PDFURPRQRPHU DQG JUDIW FRSRO\PHU ZRUN ZDV WDUJHWHG WR GHWHUPLQH WKH DELOLW\ WR V\QWKHVL]H D FRSRO\PHU FDSDEOH RI LQWHUDFWLQJ ZLWK ERWK WKH K\GURSKRELF PHWKDFU\ODWH DQG K\GURSKLOLF GHQWLQ VWUXFWXUH DW WKH WRRWKUHVWRUDWLRQ LQWHUIDFH $OWKRXJK WKH V\QWKHVL]HG DPLGHDFU\ODWH JUDIW FRSRO\PHUV ZHUH QRW WHVWHG LQ VXFK D V\VWHP DQG WKHLU DURPDWLF VWUXFWXUHV PD\ QRW PDNH WKHP VXLWDEOH IRU WKLV DSSOLFDWLRQ WKH IHDVLELOLW\ RI V\QWKHVL]LQJ WKH GHVLUHG VWUXFWXUHV KDV EHHQ HYDOXDWHG 2IIVHWWLQJ 3RO\PHUL]DWLRQ 6KULQNDJH LQ 'HQWDO 5HVLQV WKURXJK WKH ,QFRUSRUDWLRQ RI 0DOHLF $QK\GULGH 7KH ODVW SDUW RI WKLV UHVHDUFK DGGUHVVHV WKH SRO\PHUL]DWLRQ VKULQNDJH SUREOHP LQ WKHVH GHQWDO UHVLQV 7KLV VKULQNDJH LV LQKHUHQW WR WKH IUHH UDGLFDO SRO\PHUL]DWLRQ RI WKH PXOWLIXQFWLRQDO PHWKDFU\ODWH UHVLQV XVHG LQ WKH GHQWDO FRPSRVLWHV 7KH YROXPHWULF VKULQNDJH LV GXH WR WKH UHGXFWLRQ LQ PRODU YROXPH RU VSDFLQJ EHWZHHQ PRQRPHU XQLWV WKDW RFFXUV ZKHQ YLQ\O FRPSRXQGV DUH SRO\PHUL]HG 3RO\PHUL]DWLRQ VKULQNDJH FUHDWHV ERWK D ZHDN LQWHUIDFH EHWZHHQ WKH WRRWK VWUXFWXUH DQG WKH UHVWRUDWLRQ DV ZHOO DV UHVLGXDO VWUHVVHV ZLWKLQ WKH FRPSRVLWH VWUXFWXUH OHDGLQJ WR SUHPDWXUH IDLOXUH LQ WKH UHVWRUDWLRQ

PAGE 20

7KHUH DUH PDQ\ UHVHDUFK SURJUDPV IRFXVHG RQ GLIIHUHQW FKHPLFDO VWUXFWXUHV DQG SURFHVVHV WKDW ZLOO UHGXFH SRO\PHUL]DWLRQ VKULQNDJH $OWKRXJK YDULRXV PHWKRGV DQG GLIIHUHQW PRQRPHUV KDYH EHHQ VWXGLHG WR DOOHYLDWH WKLV SUREOHP QR VROXWLRQ WR GDWH KDV EHHQ GLVFRYHUHG WKDW HOLPLQDWHV VKULQNDJH ZLWKRXW VLJQLILFDQWO\ DOWHULQJ WKH FXUH DQG PHFKDQLFDO SURSHUWLHV RI WKH UHVLQ 7KH JRDO RI WKLV VWXG\ ZDV WR GHPRQVWUDWH WKDW ZH FDQ RIIVHW WKH SRO\PHUL]DWLRQ VKULQNDJH RI FRPPRQ GLPHWKDFU\ODWH UHVLQV ZLWKRXW VLJQLILFDQWO\ FKDQJLQJ WKH FRPRQRPHU VWUXFWXUHV WKURXJK WKH FRSRO\PHUL]DWLRQ ZLWK PDOHLF DQK\GULGH :KHQ PDOHLF DQK\GULGH 0$f LV ULQJ RSHQHG E\ K\GURO\VLV WR PDOHLF DFLG WKHUH LV D FRUUHVSRQGLQJ WKHRUHWLFDO b LQFUHDVH LQ PRODU YROXPH 7KH SURSHUWLHV RI WKH DQK\GULGHPHWKDFU\ODWH FRSRO\PHUV LQFOXGLQJ WKH DELOLW\ RI WKH DQK\GULGH WR RIIVHW WKH SRO\PHUL]DWLRQ VKULQNDJH ZHUH FKDUDFWHUL]HG E\ VZHOOLQJ H[WUDFWLRQ DQG XOWUDYLROHW VSHFWURVFRS\ 89f DQG GHQVLW\ PHDVXUHPHQWV )7,5 *3& DQG '6&

PAGE 21

&+$37(5 %$&.*5281' 7KH ILUVW VHFWLRQ RI WKLV FKDSWHU DGGUHVVHV KRZ RXU VWXG\ RI DPLQR DFLGWHUPLQDWHG SRO\DFU\ODWHf PDFURPRQRPHUV DQG SRO\DPLGHJDFU\ODWHf JUDIW FRSRO\PHUV ILWV ZLWKLQ WKH PDVVLYH DPRXQW RI OLWHUDWXUH RQ WKH V\QWKHVLV DQG FKDUDFWHUL]DWLRQ RI PXOWLSKDVH FRSRO\PHUV $Q RYHUYLHZ RI JUDIW FRSRO\PHUV LV JLYHQ IROORZHG E\ D GHVFULSWLRQ RI WKH PHWKRGRORJ\ DQG OLPLWDWLRQV RI FRPPRQ V\QWKHWLF URXWHV DV WKH\ UHODWH WR V\QWKHVL]LQJ DGGLWLRQFRQGHQVDWLRQ JUDIW FRSRO\PHUV 7KLV LV IROORZHG E\ DQ DQDO\VLV RI RWKHU VWXGLHV FRQFHQWUDWLQJ VSHFLILFDOO\ RQ SRO\DPLGH JUDIW DQG EORFN FRSRO\PHUV $V ZDV PHQWLRQHG SUHYLRXVO\ WKH LQLWLDO PRWLYDWLRQ IRU DPLGHDFU\ODWH JUDIW FRSRO\PHUV FRPHV IURP WKH ILHOG RI GHQWDO PDWHULDOV 6SHFLILFDOO\ WKH IDLOXUH RI GHQWDO UHVWRUDWLYH PDWHULDOV DW WKH WRRWKUHVLQ LQWHUIDFH LV RI FRQFHUQ ,W ZDV PHQWLRQHG WKDW RQH RI WKH PDLQ FDXVHV RI WKLV IDLOXUH LV WKH FXUH VKULQNDJH RI WKHVH UHVLQV GXULQJ DSSOLFDWLRQ FDXVLQJ WKH UHVLQ WR SXOO DZD\ IURP WKH WRRWK VXUIDFH 7KH VHFRQG SDUW RI WKLV FKDSWHU DGGUHVVHV WKH SUREOHP RI SRO\PHUL]DWLRQ VKULQNDJH LQ GHQWDO UHVLQV DQG

PAGE 22

DQDO\]HV WKH DSSURDFKHV GHVFULEHG LQ WKH OLWHUDWXUH WR DOOHYLDWH WKLV SUREOHP *UDIW &RSRO\PHUV *UDIW DQG EORFN PXOWLSKDVH FRSRO\PHUV KDYH UHFHLYHG DQ LQFUHDVLQJ DPRXQW RI DWWHQWLRQ RYHU WKH SDVW WZHQW\ \HDUV 7KH\ KDYH EHHQ VKRZQ WR SRVVHVV GHVLUDEOH FRPELQDWLRQV RI SK\VLFDO DQG FKHPLFDO SURSHUWLHV WKDW DOORZ WKHP WR EH XVHIXO LQ D YDULHW\ RI DSSOLFDWLRQV 1RV 3HL 1DW 7DQ =KD 3HLf LQFOXGLQJ EOHQG FRPSDWLELOL]HUV VXUIDFWDQWV LPSDFW PRGLILHUV DQG VXUIDFH PRGLILHUV $OO RI WKH DSSOLFDWLRQV PHQWLRQHG WDNH DGYDQWDJH RI WKH LQGLYLGXDO SURSHUWLHV RI FKHPLFDOO\ GLVVLPLODU VHJPHQWV 0RVW RI WKHVH GHSHQG RQ WKH DELOLW\ RI WKHVH FRSRO\PHUV WR DFW DW D SDUWLFXODU LQWHUIDFH )RU H[DPSOH WKHVH FRSRO\PHUV FDQ EH DGGHG WR D EOHQG RI WZR LPPLVFLEOH KRPRSRO\PHUV WKDW KDYH DIILQLWLHV IRU WKH LQGLYLGXDO VHJPHQWV RI WKH PXOWLSKDVH FRSRO\PHU 7KH FRSRO\PHU PLJUDWHV WR WKH LQWHUIDFH EHWZHHQ WKH WZR SKDVHV 6KXf UHGXFLQJ WKH LQWHUIDFLDO WHQVLRQ *DL $QDf DQG WKXV HQKDQFLQJ WKH VWUHQJWK RI WKH LQWHUIDFH )D\ %UR &UH f 6\QWKHWLF 5RXWHV WR *UDIW &RSRO\PHUV 2QH RI WKH PRVW ZLGHO\ XVHG PHWKRGV RI V\QWKHVL]LQJ PXOWLSKDVH FRSRO\PHUV LV WKURXJK VHTXHQWLDO DQLRQLF EORFN

PAGE 23

FRSRO\PHUL]DWLRQ +DVf %XW WKH QXPEHU RI PRQRPHUV WKDW FDQ EH SRO\PHUL]HG DQLRQLFDOO\ LV OLPLWHG GXH WR XQZDQWHG VLGH UHDFWLRQV +DVf 7KH VWULQJHQW SRO\PHUL]DWLRQ FRQGLWLRQV UHTXLUHG IRU WKH DQLRQLF SRO\PHUL]DWLRQ RI FHUWDLQ PRQRPHUV 1RVf DOVR OLPLWV LWV DSSOLFDELOLW\ 7KHVH OLPLWDWLRQV VHYHUHO\ UHGXFH WKH DSSOLFDELOLW\ RI WKLV URXWH WR D ZLGH YDULHW\ RI FRPELQDWLRQV RI EORFN VHJPHQWV ,Q RUGHU WR H[SDQG WKH SRVVLEOH FRPELQDWLRQV RI PRQRPHUV XVHG DV WKH WZR SKDVHV JUDIW FRSRO\PHUL]DWLRQV KDYH EHHQ LQYHVWLJDWHG 0HLf $QLRQLFDOO\ SRO\PHUL]HG PDFURPRQRPHUV 2QH RI WKH PRVW SUHYDOHQW DQG UHOLDEOH V\QWKHWLF URXWHV WR JUDIW FRSRO\PHUV LV WKURXJK WKH XVH RI PDFURPRQRPHUV &RU 5HPE 0XK 0HL 3HLf 0DFURPRQRPHUV DUH HQG IXQFWLRQDO PDFURPROHFXOHV FDSDEOH RI IXUWKHU SRO\PHUL]DWLRQ 5HPDf 7KH\ DUH JHQHUDOO\ V\QWKHVL]HG WKURXJK WKH DQLRQLF SRO\PHUL]DWLRQ RI D PRQRPHU IROORZHG E\ UHDFWLRQ RI WKH OLYLQJ DQLRQ ZLWK DQ HQG FDSSLQJ DJHQW VXFK DV PHWKDFU\OR\O FKORULGH SURGXFLQJ D PHWKDFU\ODWH RU YLQ\O WHUPLQDWHG PDFURPRQRPHU 0DV 6FK +DP 6FKD 6FKE &DP &DP *QD *QDf 2QFH DJDLQ DSSOLFDWLRQ RI WKLV V\QWKHWLF SURFHGXUH LV OLPLWHG LQ VFRSH GXH WR PRQRPHU UHVWULFWLRQV LQ DQLRQLF SRO\PHUL]DWLRQV 0DFURPRQRPHUV WKURXJK FKDLQ WUDQVIHU IXQFWLRQDOL]DWLRQ $ PRUH YHUVDWLOH URXWH WR PDFURPRQRPHUV LQYROYHV WKH IUHH UDGLFDO SRO\PHUL]DWLRQ RI D PRQRPHU LQ WKH SUHVHQFH RI

PAGE 24

D IXQFWLRQDO FKDLQ WUDQVIHU DJHQW ,WRf )XQFWLRQDOL]HG PHUFDSWDQV DUH FRPPRQO\ XVHG 0HUFDSWDQV DUH FRPSRXQGV FRQWDLQLQJ D VXOIK\GU\O 6+ IXQFWLRQDO JURXS 7KH\ DUH FRPPRQO\ XVHG WR FRQWURO PROHFXODU ZHLJKW LQ FRPPHUFLDO SRO\PHUL]DWLRQ UHDFWRUV 5RVf 7KH PHFKDQLVP E\ ZKLFK IXQFWLRQDOL]DWLRQ FDQ RFFXU LV GHSLFWHG LQ )LJXUH 6WHSV DQG DUH W\SLFDO SURFHVV RI IUHH UDGLFDO LQLWLDWLRQ :KHQ H[SRVHG WR KHDW WKH $,%1 EUHDNV GRZQ LQWR IUHH UDGLFDOV DQG QLWURJHQ JDV LV HYROYHG 7KH $,%1 UDGLFDOV FDQ WKXV LQLWLDWH WKH SRO\PHUL]DWLRQ RI YLQ\O FRPSRXQGV ,I WKHUH LV QR FKDLQ WUDQVIHU DJHQW SUHVHQW WKH SRO\PHUL]DWLRQ FRQWLQXHV XQWLO WHUPLQDWLRQ E\ GLVSURSRUWLRQDWLRQ RU FRPELQDWLRQ RFFXU ,Q WKH SUHVHQFH RI D PHUFDSWDQ WHUPLQDWLRQ FDQ RFFXU WKURXJK FKDLQ WUDQVIHU 7KH K\GURJHQ IURP WKH VXOIK\GU\O JURXS RI WKH PHUFDSWDQ LV UHDGLO\ H[WUDFWDEOH $ SURSDJDWLQJ SRO\PHU FKDLQ FDQ WKXV UHDFW ZLWK WKH PHUFDSWDQ 6WHS f WHUPLQDWLQJ SURSDJDWLRQ DQG OHDYLQJ D VXOIXU UDGLFDO RQ WKH PHUFDSWDQ ,I WKH FRQFHQWUDWLRQ RI PHUFDSWDQ LV KLJK WKH PHUFDSWDQ LWVHOI FDQ UHDFW ZLWK WKH $,%1 UDGLFDO 6WHS f DOVR JLYLQJ D VXOIXU UDGLFDO 7KH UHVXOWLQJ VXOIXU UDGLFDO FDQ WKHQ LQLWLDWH WKH IUHH UDGLFDO SRO\PHUL]DWLRQ RI D YLQ\O PRQRPHU 6WHS f ,I WKH PHUFDSWDQ FRQWDLQV K\GUR[\O RU FDUER[\OLF DFLG IXQFWLRQDO JURXSV 5nf WKH LQLWLDWLQJ VXOIXU UDGLFDO LQWURGXFHV IXQFWLRQDOLW\ WR RQH HQG RI WKH PDFURPROHFXOH 7KH JURZLQJ IXQFWLRQDOL]HG SRO\PHU UDGLFDO FDQ DJDLQ UHDFW

PAGE 25

a )LJXUH $,%1 &+f§4 1 FK PRQRPHU SRO\PHUL]DWLRQ f +65n 5n6 f U 1 PHUFDSWDQ &+" + 6 5f &+ &A1 FK f§FK UnV FK 5n6 5f 5n +65n 5n 5n6 0HFKDQLVP RI IXQFWLRQDOL]DWLRQ XVLQJ FKDLQ WUDQVIHU DJHQWV

PAGE 26

ZLWK WKH PHUFDSWDQ 6WHS f \LHOGLQJ D WHUPLQDWHG IXQFWLRQDOL]HG FKDLQ DQG DQRWKHU PROHFXOH RI VXOIXU UDGLFDO ZKLFK FDQ UHDFW ZLWK PRUH PRQRPHU 6WHS f WR IRUP D UHDFWLRQ ORRS 7KH HIIHFWLYHQHVV RI IXQFWLRQDOL]DWLRQ LV GHSHQGHQW RQ WKH FKDLQ WUDQVIHU FRQVWDQW RI WKH PHUFDSWDQ DV ZHOO DV WKH UHODWLYH FRQFHQWUDWLRQV RI PHUFDSWDQ PRQRPHU DQG IUHH UDGLFDO LQLWLDWRU 7VXf 7KH $,%1 FRQFHQWUDWLRQ LV NHSW H[WUHPHO\ ORZ UHODWLYH WR WKH FKDLQ WUDQVIHU DJHQW WR PLQLPL]H WKH QXPEHU RI FKDLQV LQLWLDWHG E\ WKH $,%1 $Q\ FKDLQV LQLWLDWHG E\ $,%1 ZLOO EH QRQIXQFWLRQDOL]HG VHH 6WHSV DQG f 7KH DGYDQWDJH RI WKLV FKDLQ WUDQVIHU PHWKRG LV WKDW LW FDQ EH XVHG ZLWK D ZLGH YDULHW\ RI YLQ\O PRQRPHU V\VWHPV 0DFURPRQRPHUV FRPSRVHG RI DQ\ PRQRPHU ZKLFK FDQ EH SRO\PHUL]HG IUHH UDGLFDOO\ VKRXOG EH DEOH WR EH V\QWKHVL]HG XVLQJ WKLV PHWKRG $OVR PDFURPRQRPHUV ZKLFK WKHPVHOYHV DUH UDQGRP FRSRO\PHUV DOVR EHFRPH IHDVLEOH 7KH UHVXOWLQJ IXQFWLRQDOL]HG PDFURPROHFXOH FDQ EH XWLOL]HG LQ WZR GLIIHUHQW ZD\V $V ZLWK WKH DQLRQLF PDFURPRQRPHUV WKH UHVXOWLQJ K\GUR[\O RU FDUER[\OLF DFLG PRQRIXQFWLRQDOLW\ FDQ EH FRQYHUWHG WR D PHWKDFU\ODWH RU YLQ\O IXQFWLRQDOLW\ IRU IXUWKHU SRO\PHUL]DWLRQ ZLWK YLQ\O PRQRPHUV $OE &KH 7VXf &KHQ DQG -RQHV &KHf KDYH V\QWKHVL]HG K\GUR[\O IXQFWLRQDOL]HG SRO\DFU\ODWHV XVLQJ PHUFDSWRHWKDQRO DV WKH FKDLQ WUDQVIHU DJHQW 6LPLODUO\ $OEUHFKW DQG :XQGHUOLFK $OEf KDYH V\QWKHVL]HG K\GUR[\O WHUPLQDWHG 300$ ZLWK 0Z RI JPROH %RWK VWXGLHV

PAGE 27

KDYH LQGLFDWHG WKDW KLJK OHYHOV RI IXQFWLRQDOL]DWLRQ DUH UHDOL]HG 7KH K\GUR[\O JURXS LQ HDFK FDVH ZDV FRQYHUWHG WR D YLQ\O IXQFWLRQDOLW\ WKURXJK UHDFWLRQ ZLWK LVRF\DQDWRHWK\O PHWKDFU\ODWH 7VXNDKDUD HW DO 7VXf KDYH V\QWKHVL]HG FDUER[\OLF WHUPLQDWHG 300$ XVLQJ PHUFDSWRDFHWLF DFLG DV WKH FKDLQ WUDQVIHU DJHQW 7KH DFLG IXQFWLRQDOLW\ ZDV UHDFWHG ZLWK JO\FLG\O PHWKDFU\ODWH WR SURGXFH PHWKDFU\ODWH HQG FDSSHG 300$ 7KHVH URXWHV SURGXFH PHWKDFU\ODWH WHUPLQDWHG SRO\PHUV ZKLFK FDQ EH VXEVHTXHQWO\ SRO\PHUL]HG ZLWK D YLQ\O PRQRPHU VLPLODUO\ WR WKH DQLRQLFDOO\ SRO\PHUL]HG PDFURPRQRPHU ,Q RUGHU WR V\QWKHVL]H JUDIW FRSRO\PHUV WKHVH PDFURPRQRPHUV DUH GLVVROYHG LQ D VROXWLRQ FRQWDLQLQJ D GLIIHUHQW YLQ\O PRQRPHU DV ZHOO DV D IUHH UDGLFDO LQLWLDWRU *UDIW FRSRO\PHUV RI D ZLGH UDQJH RI PRQRPHUV FDQ EH V\QWKHVL]HG LQ WKLV IDVKLRQ &KHf %XW WKLV PDFURPRQRPHU FKHPLVWU\ KDV JHQHUDWHG JUDIW FRSRO\PHUV PRVWO\ OLPLWHG WR YLQ\OYLQ\O W\SH V\VWHPV 1DLf 7KH IXQFWLRQDOL]HG DPLQH K\GUR[\O RU FDUER[\OLF DFLG WHUPLQDWHG PDFURPRQRPHU FDQ DOVR EH XVHG ZLWKRXW WKH YLQ\O IXQFWLRQDOL]DWLRQ E\ GLUHFW FRXSOLQJ ZLWK RWKHU FRQGHQVDEOH WHUPLQDWHG PDFURPRQRPHUV WR IRUP EORFN FRSRO\PHUV ,PLf )RU H[DPSOH DPLQHWHUPLQDWHG SRO\PHWKDFU\ODWHVf DQG SRO\VW\UHQH KDYH EHHQ V\QWKHVL]HG XVLQJ PHUFDSWRHWK\O DPPRQLXP FKORULGH DV WKH FKDLQ WUDQVIHU DJHQW ,PL 'H%f %ORFN FRSRO\PHUV RI WKHVH PDFURPROHFXOHV ZLWK FDUER[\OLF DFLG WHUPLQDWHG SRO\PHUV ZHUH V\QWKHVL]HG E\ D

PAGE 28

FRXSOLQJ UHDFWLRQ +RZHYHU GXH WR WKH PRQRIXQFWLRQDOLW\ RI WKH PDFURPRQRPHU FRXSOLQJ SURGXFHG RQO\ YHU\ ORZ PRODU PDVV $% W\SH EORFN FRSRO\PHUV $QRWKHU LQWHUHVWLQJ XVH RI FKDLQ WUDQVIHU DJHQWV IRU JUDIW FRSRO\PHUL]DWLRQ LV RQH GHYHORSHG E\ 0RUDHV HW DO 0RUf 7KH\ PRGLILHG DQ HWK\OHQHYLQ\O DFHWDWH (9$f FRSRO\PHU E\ K\GURO\VLV DQG VXEVHTXHQW HVWHULILFDWLRQ ZLWK PHUFDSWRDFHWLF DFLG 7KLV SURGXFHG D VXOIK\GU\O FRQWDLQLQJ SRO\PHU EDFNERQH ,Q HVVHQFH WKLV LV D SRO\PHULF FKDLQ WUDQVIHU DJHQW 0HWK\O PHWKDFU\ODWH 0RUf DQG VW\UHQH %DUf ZHUH SRO\PHUL]HG LQ WKH SUHVHQFH RI WKH PHUFDSWR PRGLILHG (9$ WR JLYH SRO\(9$JPHWK\O PHWKDFU\ODWHf DQG SRO\(9$JVW\UHQHf JUDIW FRSRO\PHUV $JDLQ WKH GHVFULEHG PDFURPRQRPHUV DQG JUDIW FRSRO\PHUV KDYH EHHQ PRVWO\ OLPLWHG WR DGGLWLRQDGGLWLRQ FRSRO\PHUV 7KHUH DUH RQO\ D IHZ FDVHV LQ ZKLFK DGGLWLRQ W\SH PDFURPRQRPHUV KDYH EHHQ JUDIW FRSRO\PHUL]HG ZLWK FRQGHQVDWLRQ W\SH PRQRPHUV
PAGE 29

WKH SUHVHQFH RI PHUFDSWRVXFFLQLF DFLG 'LFDUER[\OLF DFLG WHUPLQDWHG SRO\PHUV ZHUH V\QWKHVL]HG LQ D UDQJH RI PROHFXODU ZHLJKWV IURP WR NJPROH DQG ZHUH VKRZQ WR EH KLJKO\ IXQFWLRQDOL]HG
PAGE 30

0RQRIXQFWLRQDO &KDLQ 7UDQVIHU $JHQWV R KVf§FK 2+ +6f§&+&+2+ FK 2 2 + UHDFWLYH PHWKDFU\ODWH 9:91090:::9:9:::96:::$:1$Y2+ +6f§&+&+1++& 'LIXQFWLRQDO &KDLQ 7UDQVIHU $JHQWV KR f§FK f§FKFK2+ + 2+ $$:$$0:$$$$$$0:$$:$$$:$$$$:$:$$$ 2+ 2 2 +2f§&+&+!f§2+ &22+ + &22+ )LJXUH 6FKHPDWLF LOOXVWUDWLRQ RI XWLOL]HG FKDLQ WUDQVIHU DJHQWV DQG PDFURPRQRPHUV WKHUHRI

PAGE 31

'3f 3$0@ &V 0 >0@ f ZKHUH &V &KDLQ WUDQVIHU FRQVWDQW N WUDQVIHU NS >6@ &KDLQ WUDQVIHU DJHQW FRQFHQWUDWLRQ >0@ 0RQRPHU FRQFHQWUDWLRQ '3Q 'HJUHH RI SRO\PHUL]DWLRQ NWINS5S UDWH FRQVWDQW IRU WHUPLQDWLRQ SURSDJDWLRQ DQG WKH UDWH RI SRO\PHUL]DWLRQ UHVSHFWLYHO\ 7KH WUDQVIHU HTXDWLRQ GHJUHH RI SRO\PHUL]DWLRQ LQ WKH DEVHQFH RI FKDLQ WR WUDQVIHU DJHQW '3QR FDQ EH GHVFULEHG E\ ZKHUH '3f 53 N.0 f 6XEVWLWXWLQJ WKLV YDOXH LQ HTXDWLRQ JLYHV XV WKH 0D\R HTXDWLRQ f IRU SUHGLFWLRQ RI WKH FKDLQ WUDQVIHU FRQVWDQW ZKHUH U Kf '3f '3 QR >0@ f 7KLV HTXDWLRQ LV YDOLG RQO\ ZKHQ WKH LQLWLDWRU FRQFHQWUDWLRQ LV ORZ %\ V\QWKHVL]LQJ D VHULHV RI SRO\PHUV ZLWK GLIIHUHQW UDWLRV RI FKDLQ WUDQVIHU DJHQW WR PRQRPHU D

PAGE 32

0D\R SORW FDQ EH XVHG WR GHWHUPLQH WKH &V .QRZOHGJH RI WKH &V IRU D SDUWLFXODU V\VWHP HQDEOHV RQH WR DGMXVW WKH UHDFWDQW FRQFHQWUDWLRQV LQ RUGHU WR WDUJHW D VSHFLILF PRODU PDVV SRO\PHU 7KH 0D\R PRGHO FDQ DOVR EH XVHG WR SUHGLFW WKH IXQFWLRQDOLW\ RI WKH SRO\PHU REWDLQHG ,I ZH PXOWLSO\ ERWK VLGHV RI HTXDWLRQ E\ '3Q ZH JHW '3f >6@ A '3f&Vc '3Q >0@ f ZKHUH WKH WZR WHUPV RQ WKH ULJKW UHSUHVHQW WKH IUDFWLRQ RI XQIXQFWLRQDOL]HG DQG IXQFWLRQDOL]HG FKDLQV ,I WKH YDOXH RI &V DQG WKHUHIRUH WKH UDWH RI FKDLQ WUDQVIHU LV KLJK WHUPLQDWLRQ RFFXUV SULPDULO\ E\ FKDLQ WUDQVIHU DQG KLJK UDWHV RI IXQFWLRQDOL]DWLRQ DUH H[SHFWHG 7KH H[WHQW RI IXQFWLRQDOL]DWLRQ DOVR LQFUHDVHV ZLWK LQFUHDVLQJ PHUFDSWDQ FRQWHQW ,I D ORZHU FRQFHQWUDWLRQ RI FKDLQ WUDQVIHU DJHQW LV XVHG RU LI D ORZHU YDOXH RI &V LV REVHUYHG WKH SUREDELOLW\ RI WHUPLQDWLRQ WKURXJK RWKHU PHWKRGV VXFK DV GLVSURSRUWLRQDWLRQ RU FRPELQDWLRQ LQFUHDVHV $V RWKHU WHUPLQDWLRQ PHFKDQLVPV EHFRPH PRUH SUHYDOHQW WKH H[WHQW RI IXQFWLRQDOL]DWLRQ GHFUHDVHV ,W LV LPSRUWDQW WR QRWH WKH OLPLWDWLRQV RI WKH 0D\R PRGHO 7KLV PRGHO LV YDOLG RQO\ XQGHU FHUWDLQ DVVXPSWLRQV $WK 1DLf 7KH ILUVW RI WKHVH LV WKDW FKDLQ WUDQVIHU RFFXUV H[FOXVLYHO\ WR WKH FKDLQ WUDQVIHU DJHQW ,Q

PAGE 33

SUDFWLFH KRZHYHU VRPH FKDLQ WUDQVIHU WR VROYHQW DQG LQLWLDWRU LV JHQHUDOO\ REVHUYHG $OVR WKHVH YDOXHV DV LQ WKH FDVH RI FRSRO\PHU UHDFWLYLW\ UDWLRV DUH YDOLG DW LQVWDQWDQHRXV FRQGLWLRQV ,Q RWKHU ZRUGV ORZ FRQYHUVLRQV DUH GHVLUHG LQ RUGHU WR OLPLW WKH FRPSRVLWLRQ GULIW EHWZHHQ WKH PRQRPHU DQG FKDLQ WUDQVIHU DJHQW :LWK WKHVH DVVXPSWLRQV LQ PLQG GHWHUPLQHG YDOXHV RI &V DQG SUHGLFWHG IXQFWLRQDOLWLHV DUH RQO\ HVWLPDWHV RU WKHRUHWLFDO SUHGLFWLRQV DVVXPLQJ LGHDO FRQGLWLRQV 3RO\DPLGH $GGLWLRQ&RQGHQVDWLRQ 0XOWLSKDVH &RSRO\PHUV $ YDULHW\ RI SRO\DPLGH FRQWDLQLQJ JUDIW DQG EORFN FRSRO\PHUV DUH GHVFULEHG LQ WKH OLWHUDWXUH 2XU VSHFLILF LQWHUHVW OLHV LQ WKH DELOLW\ WR JUDIW RU EORFN FRSRO\PHUL]H SRO\DPLGHV ZLWK DGGLWLRQ SRO\PHUV VXFK DV PHWKDFU\ODWHV DQG RWKHU ROHILQLF PRQRPHUV 6HYHUDO DSSURDFKHV KDYH EHHQ WDNHQ LQ WKH V\QWKHVLV RI WKHVH VWUXFWXUHV 7KH EHQHILWV DQG OLPLWDWLRQV RI HDFK DSSURDFK DUH GHVFULEHG KHUHLQ 3RO\DPLGHEROHILQf EORFN FRSRO\PHUV $QLRQLF EORFN FRSRO\PHUL]DWLRQV 7KH ILUVW HYLGHQFH LQ WKH OLWHUDWXUH RI EORFN RU JUDIW FRSRO\PHUL]DWLRQV RI YLQ\O PRQRPHUV ZLWK SRO\DPLGH ZHUH IRXQG LQ WKH SDWHQW OLWHUDWXUH )XU %DN *RGf 7KH V\QWKHWLF DSSURDFK WDNHQ LQ WKHVH LQYHVWLJDWLRQ LQYROYHG WKH VHTXHQWLDO DQLRQLF SRO\PHUL]DWLRQ RI D YLQ\O PRQRPHU DQG DQ LVRF\DQDWH 6SHFLILFDOO\ *RGIUH\ *RGf VKRZHG WKDW DQLRQLFDOO\

PAGE 34

SRO\PHUL]HG nOLYLQJn SRO\VW\UHQH SRO\LVRSUHQH DQG SRO\PHWK\O PHWKDFU\ODWHf FRXOG LQLWLDWH WKH SRO\PHUL]DWLRQ RI EXW\O LVRF\DQDWH 7KH UHVXOWLQJ SURGXFW FDQ EH WKRXJKW RI DV D 1EXW\O Q\ORQ EROHILQ EORFN FRSRO\PHU 7KH PHFKDQLVP RI EORFN FRSRO\PHUL]DWLRQ LV LOOXVWUDWHG LQ )LJXUH +LJK PRODU PDVV EORFN FRSRO\PHUV ZHUH IRUPHG ZLWK SRO\GLVSHUVLWLHV UDQJLQJ IURP WR $OWKRXJK WKLV UHDFWLRQ ZDV VXFFHVVIXO WKH FKRLFH RI SRO\DPLGH LQ WKLV V\QWKHVLV LV OLPLWHG GXH WR WKH LVRF\DQDWH SUHFXUVRUV $OO EORFN FRSRO\PHUV LQYROYLQJ LVRF\DQDWHV ZLOO IRUP Q\ORQ W\SH SRO\DPLGHV $OVR WKH FKRLFH RI ROHILQLF PRQRPHU LV DOVR OLPLWHG WR WKH SUHYLRXVO\ PHQWLRQHG OLPLWDWLRQV RI DQLRQLF SRO\PHUL]DWLRQV 0DFURLQLWLDWRUV IRU ODFWDP SRO\PHUL]DWLRQ 7KH PDMRULW\ RI WKH OLWHUDWXUH FRQFHUQLQJ SRO\DPLGH EORFN FRSRO\PHUV LQYROYHV WKH DQLRQLF FRSRO\PHUL]DWLRQ RI FDSURODFWDP 3HW 6WH %RU 0RX
PAGE 35

$QLRQLF nOLYLQJn SRO\PHU %X /L 5 %Xf§&+&+f[&+&+ /L 5 5 %Xf§&+&+f[&+&+ /L 5 5 LVRF\DQDWH 2 ! 1 ‘ 5 $PLGH9LQ\O EORFN FRSRO\PHU U2 ,, Kf§&+&1 5 [ U \ )LJXUH 0HFKDQLVP RI EORFN FRSRO\PHU IRUPDWLRQ WKURXJK VHTXHQWLDO SRO\PHUL]DWLRQV RI YLQ\O PRQRPHU DQG LVRF\DQDWHV

PAGE 36

FDSURODFWDP VROXWLRQ FRQWDLQLQJ DGGLWLRQDO LQLWLDWRU $%$ W\SH EORFN FRSRO\PHUV DUH IRUPHG ZLWK D $7%1 FHQWHU EORFN 7KH PRODU PDVVHV RI WKH UHVXOWLQJ FRSRO\PHUV ZHUH QRW HYDOXDWHG 6WXGLHV RI WKH EORFN FRSRO\PHUV FRQFHQWUDWHG RQ WKHLU PLFURVWUXFWXUH DQG PHFKDQLFDO SURSHUWLHV 6LPLODU EORFN FRSRO\PHUL]DWLRQV ZHUH UXQ XVLQJ HVWHU WHUPLQDWHG SRO\VW\UHQH DQG LVRF\DQDWH WHUPLQDWHG SRO\EXWDGLHQH 3HWf DQG LVRF\DQDWH WHUPLQDWHG SRO\LVREXW\OHQH :RQf %RWK HQG JURXSV FDQ UHDFW ZLWK FDSURODFWDP WR IRUP D PDFURLQLWLDWRU IRU WKH SRO\PHUL]DWLRQ RI Q\ORQ $ VFKHPDWLF RI WKLV PDFURLQLWLDWRU IRUPDWLRQ DQG EORFN FRSRO\PHUL]DWLRQ LV LOOXVWUDWHG LQ )LJXUH 6SHFWURVFRSLF HYLGHQFH RI $% EORFN FRSRO\PHU VWUXFWXUH LV VKRZQ +RZHYHU VLJQLILFDQWKRPRSRO\PHU IRUPDWLRQ LH b ZDV REVHUYHG GXH WR FRXSOLQJ UHDFWLRQV EHWZHHQ WZR IXQFWLRQDOL]HG PDFURLQLWLDWRU PROHFXOHV $OWKRXJK VRPH VXFFHVV KDV EHHQ GHPRQVWUDWHG XVLQJ WKH PDFURLQLWLDWRU PHWKRG VHYHUDO OLPLWDWLRQV H[LVW 2QH OLPLWDWLRQ RI WKLV DSSURDFK LV WKDW WKLV PHFKDQLVP LV UHVWULFWHG WR WKH SRO\PHUL]DWLRQ RI ODFWDP EDVHG SRO\DPLGHV 0RUH LPSRUWDQWO\ 6WHKOLFHN 6WHf DQG +HUJHQURWKHU +HUf KDYH UHSRUWHG WKDW V\QWKHWLF DSSURDFKHV WKDW HPSOR\ WKH DQLRQLF SRO\PHUL]DWLRQ RI ODFWDPV DFWLYDWHG E\ PDFURLQLWLDWRUV DUH KDQGLFDSSHG E\ WKH RFFXUUHQFH RI VLGH UHDFWLRQV WKDW PD\ \LHOG LQVROXEOH FURVVOLQNHG SURGXFW

PAGE 37

+\GUR[\O WHUPLQDWHG +H[DPHWK\OHQH GLLVRF\DQDWH SRO\PHU R R F 1f§&+f1 & eFKf§FKfRK ,VRF\DQDWH WHUPLQDWHG SRO\PHU R R $F Kf§FK Gr1+ FKfQ $ U R R I&+f§&+A2!r1+&+f1 A $ [ &DSURODFWDP R 1+f§ &K6V &DSURODFWDP WHUPLQDWHG R 3Rn\PHU R R A&+f§&+A2\1+&+f1+ \f§Qf§A $ : f 1+f§ KLtV 1D+ 1\ORQ EORFN FRSRO\PHU R A+]&+A1+W&WV $ )LJXUH 5HDFWLRQ VFKHPDWLF IRU PDFURLQLWLDWRU IRUPDWLRQ DQG VXEVHTXHQW DQLRQLF EORFN SRO\PHUL]DWLRQ RI FDSURODFWDP

PAGE 38

)XQFWLRQDO SRO\DPLGH PDFURLQLWLDWRUV 7KH V\QWKHWLF URXWHV IRU EORFN FRSRO\PHUL]DWLRQ SUHYLRXVO\ GHVFULEHG XWLOL]H DQLRQLF SRO\PHUL]DWLRQ PHWKRGV 2QH LQWHUHVWLQJ WZLVW RQ WKH PDFURLQLWLDWRU PHWKRG LV WR V\QWKHVL]H SRO\DPLGH PDFURLQLWLDWRUV &UD &UD 'HQf 7KHVH SRO\DPLGHV FRQWDLQ IXQFWLRQDO JURXSV ZKLFK XQGHU VWLPXODWLRQ IURP OLJKW RU KHDW FDQ GLVVRFLDWH LQWR PDFURUDGLFDOV 7KXV WKHVH PDFURLQLWLDWRUV DUH FDSDEOH RI LQLWLDWLQJ WKH IUHH UDGLFDO SRO\PHUL]DWLRQ RI YLQ\O PRQRPHUV 7ZR GLVWLQFW URXWHV KDYH EHHQ UHSRUWHG 7KH ILUVW &UD &UDf LQYROYHV WKH PRGLILFDWLRQ RI DOLSKDWLF SRO\DPLGHV VXFK DV Q\ORQ DQG Q\ORQ 7KH UHDFWLRQ VFKHPDWLF IRU SRO\DPLGH PRGLILFDWLRQ DQG VXEVHTXHQW EORFN FRSRO\PHUL]DWLRQ LV LOOXVWUDWHG LQ )LJXUH 7KH VHFRQGDU\ DPLQHV LQ WKH SRO\DPLGHV FDQ EH QLWURVDWHG XVLQJ D YDULHW\ RI QLWURVDWLQJ DJHQWV LQFOXGLQJ QLWURXV DFLG DQG GLQLWURJHQ WULR[LGH 7KH UHVXOWLQJ 1QLWURVRDPLQHV FDQ UHDUUDQJH WR IRUP D GLD]R OLQNDJH 'LD]R FRPSRXQGV DUH ZHOO NQRZQ DV IUHH UDGLFDO LQLWLDWRUV 5RVf 7KH SRO\DPLGH FDQ WKHQ XQGHU H[SRVXUH WR KHDW &UDf RU OLJKW &UDf GHFRPSRVH LQWR PDFURUDGLFDOV DQG LQLWLDWH WKH SRO\PHUL]DWLRQ RI ROHILQLF PRQRPHUV %ORFN FRSRO\PHUV RI Q\ORQ DQG Q\ORQ ZLWK 00$ VW\UHQH YLQ\O DFHWDWH DQG VW\UHQH DFU\ORQLWULOH KDYH EHHQ V\QWKHVL]HG E\ WKLV PHWKRG 7KH VHFRQG URXWH WR SRO\DPLGH PDFURLQLWLDWRUV 'HQf DOVR LQYROYHV WKH LQWURGXFWLRQ RI GLVVRFLDWLYH D]R OLQNDJHV

PAGE 39

$OLSKDWLF SRO\DPLGH 1LWURVDWHG SRO\DPLGH R R > n ? c @ 0: QR r f§112 f§112f R R DZA f§112fAZZLnnZAZrZnZnnYI 112f 'LD]R HVWHU PRGLILHG SRO\DPLGH R R aA1 1 1 1 rrrrr R ,, &f§1 1r ,, r& f§f§1 1f§ 3RO\DPLGH PDFURLQLWLDWRUV $ Q FR Yr ‘ rrrrrrrrrrrrrrrrr f 2OHILQLF PRQRPHU $% DQG $%$ X f f M DPLGHROHILQ EORFN FRSRO\PHU 1\ORQ 2OHILQ 2OHILQ 1\ORQ 2OHILQ )LJXUH 5HDFWLRQ VFKHPDWLF RI EORFN FRSRO\PHUL]DWLRQ LQLWLDWHG E\ QLWURVDWHG SRO\DPLGH PDFURLQLWLDWRUV

PAGE 40

7KH GLIIHUHQFH LV WKDW WKH D]R OLQNDJHV DUH LQWURGXFHG GXULQJ WKH SRO\DPLGH V\QWKHVLV 'HQL]OLJLO VKRZHG WKDW GLQLWULOHV FDQ UHDFW ZLWK IRUPDOGHK\GH LQ WKH SUHVHQFH RI VWURQJ DFLGV WR IRUP D SRO\DPLGH 7KH UHDFWLRQ VFKHPDWLF LV LOOXVWUDWHG LQ )LJXUH 6SHFLILFDOO\ $,%1 ZDV FRSRO\PHUL]HG ZLWK IRUPDOGHK\GH LQ WKH SUHVHQFH RI VXOIXULF DFLG $,%1 LV RI LQWHUHVW EHFDXVH LW KDV ERWK GLQLWULOH IXQFWLRQDOLW\ DV ZHOO DV D ODELOH D]R IXQFWLRQDOLW\ ZKLFK FDQ GHFRPSRVH WR IUHH UDGLFDOV XQGHU KHDW 7KH UHVXOWLQJ SRO\DPLGH ZDV XVHG WR LQLWLDWH WKH SRO\PHUL]DWLRQ RI 00$ DQG VW\UHQH LQ D '062PHWK\OHQH FKORULGH VROYHQW V\VWHP $OWKRXJK EORFN FRSRO\PHUV ZHUH IRUPHG E\ ERWK SURFHVVHV RXWOLQH DERYH QR DFFRXQW ZDV JLYHQ DV WR WKH H[WHQW RI GHJUDGDWLRQ RI WKH SRO\DPLGH 7KHVH SRO\DPLGH PDFURLQLWLDWRUV IXQFWLRQ RQO\ WKURXJK WKHLU DELOLW\ WR GHJUDGH 7KDW LV EORFN FRSRO\PHUL]DWLRQ RFFXUV WKURXJK WKH FKDLQ VFLVVLRQ RI WKH SRO\DPLGH 7KH H[WHQW RI FKDLQ VFLVVLRQ HVSHFLDOO\ LQ WKH $,%1 EDVHG SRO\DPLGH ZKLFK KDV D YHU\ ORZ PRODU PDVV EHWZHHQ D]R JURXSV FRXOG VHYHUHO\ GHWHU DSSOLFDWLRQ RI WKLV SURFHVV &RXSOLQJ RI ORZ PRODU PDVV UHDFWLYH SRO\PHUV 7KH V\QWKHVLV RI EORFN FRSRO\PHUV IURP WKH FRXSOLQJ UHDFWLRQ RI SUHSRO\PHUL]HG SRO\DPLGH DQG SRO\ROHILQ ZLWK UHDFWLYH HQG JURXSV KDV DOVR EHHQ LQYHVWLJDWHG 0DV ,PD .LPf 6\QWKHWLFDOO\ WKLV LV WKH OHDVW FRPSOLFDWHG PHWKRG RI EORFN FRSRO\PHU V\QWKHVLV )RU H[DPSOH ,PDQLVKL KDV UHDFWHG

PAGE 41

1VV& $,%1 FK Wf§1 1 ‘ &+ FK Q R ,, +&+ +6 &+ $]R IXQFWLRQDO SRO\DPLGH R &+ &+ 1+f§&f§&f§1f§1 FK FK QKFK n[ R FK FK R ,, , f§1+f§&f§&f§1 1 f§& ? FK FK f§1+&+UM 3RO\DPLGH PDFURLQLWLDWRU Q 2OHIPLF PRQRPHU 3RO\DPLGH PDFURLQLWLDWRU $%$ EORFN FRSRO\PHU 2OHILQ $PLGH 2OHILQ )LJXUH 5HDFWLRQ VFKHPDWLF RI $,%1 FRQWDLQLQJ SRO\DPLGH DQG EORFN FRSRO\PHU WKHUHRI

PAGE 42

DPLQH WHUPLQDWHG SRO\VW\UHQH ZLWK WHUPLQDOO\ KDORDFHW\ODWHG SRO\DPLGHV WR SURGXFH D SRO\VW\UHQHSRO\DPLGH EORFN FRSRO\PHU $OWKRXJK VRPH EORFN FRSRO\PHU LV IRUPHG XVLQJ WKLV W\SH RI FRXSOLQJ UHDFWLRQ WKLV PHWKRG LV FKDUDFWHUL]HG E\ WKH KLJKHVW OHYHO RI KRPRSRO\PHU FRQWDPLQDWLRQ DQG SURGXFW KHWHURJHQHLW\ 3RO\DPLGHJROHILQf JUDIW FRSRO\PHUV 7KH PDMRULW\ RI WKH OLWHUDWXUH RQ DPLGHROHILQ JUDIW FRSRO\PHUV LQ FRQFHUQHG ZLWK RQH RI WZR WRSLFV WKH JUDIWLQJ RI YLQ\O PRQRPHUV RQWR SRO\DPLGH VXEVWUDWHV WKURXJK KLJK HQHUJ\ SURFHVVHV RU WKH IRUPDWLRQ RI LQ VLWX JUDIW FRSRO\PHUV DW WKH LQWHUIDFH RI SRO\PHU EOHQGV *UDIWLQJ RQWR SRO\DPLGH VXEVWUDWHV 9DULRXV PHWKRGV KDYH EHHQ XVHG WR JUDIW ROHILQLF SRO\PHU FKDLQV RII WKH EDFNERQH RI SUHSRO\PHUL]HG SRO\DPLGHV 7KH PHWKRG PRVW RIWHQ DQG PRVW UHFHQWO\ HPSOR\HG LV WKURXJK WKH XVH RI KLJK HQHUJ\ SURFHVVHV VXFK DV 89 LUUDGLDWLRQ %RJ
PAGE 43

7KH PDMRULW\ RI WKHVH VWXGLHV LQYROYH WKH JUDIWLQJ RI K\GURSKLOLF PRQRPHUV VXFK DV DFU\OLF DFLG DQG DFU\ODPLGH RQWR SRO\DPLGH VXUIDFHV 2QH H[FHSWLRQ LV WKH VWXG\ E\ (ODQJRYDQ (ODf ZKLFK KDV VKRZQ WKH JUDIWLQJ RI 300$ RQWR ZRRO ILEHUV WKURXJK WKH R[LGDWLRQ DQG VXEVHTXHQW UHGR[ LQLWLDWLRQ RI 00$ 7KLV ZDV GRQH WR LPSURYH WKH DFLG DQG DONDOL UHVLVWDQFH RI WKH ILEHUV 9DULRXV RWKHU DSSOLFDWLRQV IRU WKHVH W\SHV RI JUDIW FRSRO\PHUV KDYH EHHQ WDUJHWHG LQFOXGLQJ WKH SURGXFWLRQ RI S+ UHVSRQVLYH PHPEUDQHV
PAGE 44

*UDIW FRSRO\PHUV FDQ EH IRUPHG LQ VLWX GXULQJ WKH PHOW EOHQGLQJ RI SRO\DPLGHV DQG SRO\ROHILQV LI WKH SRO\ROHILQ LV IXQFWLRQDOL]HG ZLWK D UHDFWLYH JURXS 6SHFLILF H[DPSOHV LQFOXGH WKH PRGLILFDWLRQ RI SRO\ROHILQV ZLWK PDOHLF DQK\GULGH 0DM 2VK 0RG :X& 0DMD 0DME *RQD *RQE *RQF 6HDf JO\FLG\O PHWKDFU\ODWH &KLf DQG R[D]ROLQH %HFf *O\FLG\O PHWKDFU\ODWH DQG R[D]ROLQH KDYH EHHQ FRSRO\PHUL]HG ZLWK VW\UHQH 7KHVH FRSRO\PHUV KDYH EHHQ EOHQGHG ZLWK SRO\VW\UHQH DQG Q\ORQ WR FRPSDWLELOL]H WKH EOHQG 7KH UDQGRPO\ GLVSHUVHG R[D]ROLQH DQG HSR[LGH IXQFWLRQDOLWLHV ZLWKLQ WKH VW\UHQH FRSRO\PHU FDQ UHDFW GXULQJ PHOW SURFHVVLQJ ZLWK DPLQH HQG JURXSV IURP WKH SRO\DPLGH 7KLV UHVXOWV LQ D SRO\DPLGHJSRO\VW\UHQH DW WKH EOHQG LQWHUIDFH %RWK VWXGLHV &KL %HFf VKRZ UHGXFHG SKDVH VL]H LQ WKH EOHQG DV ZHOO DV LPSURYHG PHFKDQLFDO SURSHUWLHV $ VFKHPDWLF RI WKLV UHDFWLRQ LV LOOXVWUDWHG LQ )LJXUH 7KH PRVW ZLGHVSUHDG XVH RI WKH LQ VLWX WHFKQLTXH IRU SRO\DPLGHV JUDIW FRSRO\PHUV LQYROYHV PDOHLF DQK\GULGH PRGLILHG SRO\ROHILQV ,PPLVFLEOH SRO\DPLGH EOHQGV ZLWK SRO\HWK\OHQH SRO\SURS\OHQH DQG 6%6 EORFN FRSRO\PHUV KDYH EHHQ FRPSDWLELOL]HG XVLQJ PDOHLF DQK\GULGH 0DM 2VK *RQD *RQEf ,Q JHQHUDO SRO\ROHILQV VXFK DV SRO\HWK\OHQH FDQ EH PRGLILHG E\ JUDIWLQJ RI PDOHLF DQK\GULGH LQ WKH SUHVHQFH RI IUHH UDGLFDO LQLWLDWRUV 6HDf 7KH UHVXOWLQJ DQK\GULGH IXQFWLRQDOLW\ RQ WKH SRO\ROHILQ FDQ UHDFW ZLWK SRO\DPLGH HQG JURXSV DW KLJK WHPSHUDWXUHV GXULQJ

PAGE 45

1\ORQ R QKAFKfQKA $ H[WUXVLRQ SRO\VW\UHQH 3RO\VW\UHQHJUDIWQ\ORQ f XQUHDFWHG Q\ORQ SRO\VW\UHQH FRPSDWLELOL]HG EOHQG )LJXUH 5HDFWLRQ VFKHPDWLF RI LQ VLWX JUDIW FRSRO\PHU IRUPDWLRQ IURP JO\FLG\O PHWKDFU\ODWH FRSRO\PHUV

PAGE 46

H[WUXVLRQ RI WKH EOHQG $ VFKHPDWLF RI WKLV UHDFWLRQ LV LOOXVWUDWHG LQ )LJXUH 7KH V\QWKHVLV DQG DSSOLFDWLRQ RI LQ VLWX SRO\DPLGH JUDIW FRSRO\PHUV KDV EHHQ VKRZQ WR EH H[WUHPHO\ HIIHFWLYH DW LPSURYLQJ WKH SKDVH GLVSHUVLRQ ZLWKLQ D YDULHW\ RI SRO\PHU EOHQGV +RZHYHU WKHVH JUDIW FRSRO\PHUV KDYH QRW EHHQ LVRODWHG DQG VWXGLHG VHSDUDWH IURP WKH EOHQG 7KLV LV GXH LQ SDUW WR WKH FURVVOLQNLQJ WKDW FDQ RFFXU GXULQJ WKH JUDIW UHDFWLRQ 6HDf GXH WR UHDFWLRQ RI ERWK HQGV RI VRPH SRO\DPLGH FKDLQV 0DFURPRQRPHU DSSURDFK WR DPLGHROHILQ JUDIW FRSRO\PHUV 3UHYLRXV ZRUN LQ WKH DUHD RI D PDFURPRQRPHU DSSURDFK WR SRO\DPLGH JUDIW FRSRO\PHU V\QWKHVLV LV RI SDUWLFXODU LQWHUHVW )UHH UDGLFDO URXWHV VXFK DV FKDLQ WUDQVIHU IXQFWLRQDOL]DWLRQ RIIHU PRUH IOH[LELOLW\ LQ PRQRPHU VHOHFWLRQ WKDQ DQLRQLF PDFURPRQRPHU V\QWKHVLV +RZHYHU DV PHQWLRQHG SUHYLRXVO\ PRVW RI WKH SUHYLRXV ZRUN XVLQJ HLWKHU PDFURPRQRPHU PHWKRG KDV EHHQ GLUHFWHG DW WKH V\QWKHVLV RI YLQ\O WHUPLQDWHG SRO\ROHILQV DQG WKXV DGGLWLRQDGGLWLRQ JUDIW FRSRO\PHUV ,Q RUGHU WR V\QWKHVL]H JUDIW FRSRO\PHUV IURP SRO\ROHILQ PDFURPRQRPHUV WKH PDFURPRQRPHU PXVW FRQWDLQ D GLIXQFWLRQDO FRQGHQVDEOH HQG JURXS )RU WKH V\QWKHVLV RI SRO\DPLGH JUDIW FRSRO\PHUV WKHVH IXQFWLRQDO JURXSV PXVW EH FRPSRVHG RI DFLG RU DPLQH IXQFWLRQDOLWLHV 2QO\
PAGE 47

0DOHDWHG KLJK GHQVLW\ SRO\HWK\OHQH +'3(f 1\ORQ R A 1+I&+ff§&f§ \ H[WUXVLRQ +'3( 3RO\HWK\OHQHJUDIWQ\ORQ f XQUHDFWHG Q\ORQ +'3( e&+f§&+A\ &+f§&+ &+f§&+ ? R F F R 1+ 2+ 1\ORQ FRPSDWLELOL]HG EOHQG +'3( +'3( )LJXUH 5HDFWLRQ VFKHPDWLF RI LQ VLWX JUDIW FRSRO\PHU IRUPDWLRQ IURP PDOHLF DQK\GULGH PRGLILHG SRO\ROHILQV

PAGE 48

FRSRO\PHUL]DWLRQV RI VXFK PDFURPRQRPHUV GLFDUER[\OLF DFLG WHUPLQDWHG SRO\PHWKDFU\ODWHVf ZLWK SRO\DPLGH SUHFXUVRUV 7KH\ HPSOR\HG PHUFDSWRVXFFLQLF DFLG )LJXUH f DV D FKDLQ WUDQVIHU DJHQW LQ WKH SUHSDUDWLRQ RI 300$ DQG SRO\K\GUR[\HWK\O PHWKDFU\ODWHf PDFURPRQRPHUV 0DFURPRQRPHUV ZHUH FRSRO\PHUL]HG ZLWK DURPDWLF GLDPLQHV DQG GLDFLGV WR IRUP JUDIW FRSRO\PHUV 2QH OLPLWDWLRQ RI WKLV DSSURDFK LV WKH VWRLFKLRPHWU\ 7KH GHJUHH RI SRO\PHUL]DWLRQ LQ FRQGHQVDWLRQ UHDFWLRQV LV FRQWUROOHG SULPDULO\ E\ FRQYHUVLRQ DQG VWRLFKLRPHWU\ DV GHILQHG E\ &DUXWKHUVn HTXDWLRQ 5RVf '3 r U U f ZKHUH U LV WKH VWRLFKLRPHWULF UDWLR RI UHDFWLYH IXQFWLRQDO JURXSV 7KLV HTXDWLRQ LV YDOLG XQGHU WKH DVVXPSWLRQ RI FRPSOHWH FRQYHUVLRQ 'HWHUPLQLQJ WKH UHODWLYH FRQFHQWUDWLRQV RI DPLQH DQG FDUER[\OLF DFLG JURXSV LV FRPSOLFDWHG E\ WKH LQWURGXFWLRQ RI PDFURPRQRPHUV 7KH DPRXQW RI GLFDUER[\OLF DFLG DGGHG LQ WKH UHDFWLRQ E\
PAGE 49

PDFURPRQRPHUV EHFRPHV HVSHFLDOO\ EHQHILFLDO HLWKHU IRU JUDIWLQJ ZLWK DPLQR DFLGV RU IRU PD[LPL]LQJ RI JUDIW FRSRO\PHU PRODU PDVV $OVR RQO\ KLJK 7J SRO\PHWKDFU\ODWHf GLIXQFWLRQDO PDFURPRQRPHUV ZHUH V\QWKHVL]HG 7KHUH LV QR HYLGHQFH LQ WKH OLWHUDWXUH RI WKHVH W\SH RI JUDIW FRSRO\PHUV FRQWDLQLQJ D ORZ 7J UXEEHU\ SKDVH DV LQYHVWLJDWHG LQ WKLV VWXG\ $Q LQWHUHVWLQJ WZLVW RQ WKH PDFURPRQRPHU DSSURDFK WR DPLGHROHILQ JUDIW FRSRO\PHUV ZDV GHYHORSHG E\ ,]DZD HW DO ,]Df 7KH\ V\QWKHVL]HG YLQ\O IXQFWLRQDOL]HG SRO\DPLGH PDFURPRQRPHUV ZKLFK FRXOG EH IUHH UDGLFDOO\ SRO\PHUL]HG ZLWK YLQ\O PRQRPHUV $ SRO\FRQGHQVDWLRQ RI DURPDWLF DPLQR DFLGV ZDV UXQ LQ WKH SUHVHQFH RI PHWKDFU\OLF DFLG DQG S FDUER[\VW\UHQH FKDLQ WHUPLQDWRUV &RPSOHWH FRQVXPSWLRQ RI WKH PDFURPRQRPHUV GXULQJ WKH IUHH UDGLFDO JUDIW FRSRO\PHUL]DWLRQ ZLWK 00$ UHYHDOHG DOPRVW FRPSOHWH IXQFWLRQDOL]DWLRQ LQ WKH PDFURPRQRPHUV $OWKRXJK WKLV PHWKRG UHVXOWHG LQ YLQ\O IXQFWLRQDOL]HG FKDLQV WKH PRODU PDVV RI WKHVH PDFURPRQRPHUV LV DERXW JPRO 7KLV ORZ PRODU PDVV FDQ EH H[SODLQHG E\ WKH VWRLFKLRPHWULF LPEDODQFH FDXVHG E\ DGGLWLRQ RI WKH HQG FDSSLQJ DJHQW 3RO\PHUL]DWLRQ 6KULQNDJH LQ 'HQWDO &RPSRVLWHV 3RO\PHU EDVHG GHQWDO FRPSRVLWHV DUH UHSODFLQJ DPDOJDP DV WKH PDWHULDO RI FKRLFH IRU GHQWDO UHVWRUDWLRQV 7KH PDMRU GULYH WRZDUG WKH XVH RI SRO\PHU EDVHG V\VWHPV LV EDVHG

PAGE 50

RQ WKH DHVWKHWLFV RI WKH UHVWRUDWLRQ &RPSRVLWHV FRPSDUH IDYRUDEO\ ZLWK VLOYHU DPDOJDP LQ WKLV DVSHFW +RZHYHU WKH DFFHSWDQFH RI FRPSRVLWHV LV KDPSHUHG E\ FHUWDLQ SURSHUW\ OLPLWDWLRQV 7KH HYROXWLRQ RI GHYHORSPHQWV LQ WKHVH PDWHULDOV LV GHVFULEHG EHORZ +LVWRU\ RI 'HQWDO &RPSRVLWHV 7KH HYROXWLRQ RI GHQWDO FRPSRVLWHV UHSUHVHQWV D ORJLFDO VHTXHQFH RI GHYHORSPHQWV EDVHG XSRQ FXUUHQW WHFKQRORJLHV ZHOO NQRZQ WR WKH QRQ GHQWDO FRPPXQLW\ 7KH ILUVW DFU\OLF ILOOLQJ PDWHULDOV ZHUH XVHG DW WKH WLPH ZKHQ SRO\PHU VFLHQFH ZDV D \RXQJ LPPDWXUH VFLHQFH ZKRVH JURZWK ZDV ODUJHO\ GXH WR :RUOG :DU ,, DQG WKH QHHG IRU V\QWKHWLF UXEEHU DQG D QRQ EUHDNDEOH FDQRS\ IRU ILJKWHU SODQHV 7KH HDUO\ SRO\PHU EDVHG UHVWRUDWLYHV EDVHG RQ PHWK\O PHWKDFU\ODWH PRQRPHU H[KLELWHG ODUJH YROXPHWULF VKULQNDJH ORZ PHFKDQLFDO VWUHQJWK D KLJK SURSHQVLW\ IRU VWDLQLQJ KLJK ZHDU UDWHV PDUJLQDO OHDNDJH DQG LQIODPPDWRU\ WLVVXH UHVSRQVHV 1RQH RI WKH ILUVW JHQHUDWLRQ PDWHULDOV KDG VXIILFLHQW VWUHQJWK RU DGKHVLRQ WR WRRWK VWUXFWXUHV WR ZLWKVWDQG WKH ULJRURXV IRUFHV RI RUDO IXQFWLRQ 7KH QH[W JHQHUDWLRQ RI UHVWRUDWLYH PDWHULDOV ZHUH FRPSRVLWHV 7KH FRPSRVLWHV ZHUH EDVHG XSRQ WKH LQFRUSRUDWLRQ RI JODVV SDUWLFOHV LQWR WKH UHVLQ 7KH JODVV SDUWLFOHV LQFUHDVHG WKH PHFKDQLFDO VWUHQJWK DQG DEUDVLRQ UHVLVWDQFH DQG UHGXFHG WRWDO YROXPHWULF VKULQNDJH VLPSO\ E\

PAGE 51

UHGXFLQJ WKH FRQWHQW RI UHVLQ LQ WKH UHVWRUDWLRQ ,Q DGGLWLRQ WR WKH GHYHORSPHQW RI WKH FRPSRVLWH PDWHULDOV D QHZ UHDFWLYH PHWKDFU\ODWH W\SH PRQRPHU ZDV GHYHORSHG E\ %RZHQ %RZf %RZHQnV VWXGLHV ZLWK HSR[LGH UHVLQV OHG WR D SLYRWDO FRPELQDWLRQ RI WKH PHFKDQLFDO SURSHUWLHV RI WKH HSR[\ UHVLQ ZLWK WKH IDVW UHDFWLQJ PHWKDFU\ODWH UHVLQ LQ WKH IRUP RI %LV*0$ 7KH ILUVW %LV*0$ V\VWHPV LQWURGXFHG ZHUH SRO\PHUL]HG E\ WKH FKHPLFDO SURFHVV ZKHUHLQ EHQ]R\O SHUR[LGH LV FRPELQHG ZLWK D WHUWLDU\ DPLQH WR IRUP IUHH UDGLFDOV DW URRP WHPSHUDWXUH /DWHU QXPHURXV YDULDWLRQV RI WKH OLJKW FXUHG V\VWHPV ZHUH LQWURGXFHG WR WKH VSHFWUXP RI GHQWDO PDWHULDOV LQFOXGLQJ ERWK 89 DQG YLVLEOH OLJKW DFWLYDWHG PDWHULDOV 7KH 89 OLJKW ZDV VFDWWHUHG E\ WKH ILOOHU SDUWLFOHV LQ WKH FRPSRVLWHV DQG WKXV WKH GHSWK RI FXUH ZDV OLPLWHG 7KH YLVLEOH OLJKW DFWLYDWHG UHVWRUDWLRQV FRXOG DFKLHYH D JUHDWHU GHSWK RI FXUH DQG WKXV KDYH EHFRPH WKH PDLQ V\VWHP ,Q DGGLWLRQ WR WKH FKDQJH LQ FXUH PHFKDQLVP QXPHURXV H[DPSOHV RI PRGLILFDWLRQV WR WKH %LV*0$ VWUXFWXUH DQG V\QWKHVLV RI RWKHU UHDFWLYH PHWKDFU\ODWH PRQRPHUV /HH .DZ -RK 9HQf KDYH EHHQ UHSRUWHG 0RVW RI WKH PRGLILFDWLRQV LQYROYH HLWKHU HOLPLQDWLRQ RI WKH K\GUR[\O JURXS RU PRGLILFDWLRQV WKURXJK HVWHULILFDWLRQV RU VXEVWLWXWLRQ ZLWK XUHWKDQH JURXSV 7KHUH DUH VOLJKW LPSURYHPHQWV LQ ERWK ZHW DQG GU\ SURSHUWLHV DV D UHVXOW RI PRGLILFDWLRQV WR %LV*0$ KRZHYHU XVXDOO\ WKH GLIIHUHQFHV DUH

PAGE 52

QRW VLJQLILFDQW DQG PDQ\ PDQXIDFWXUHUV VWLOO UHO\ RQ WKH %LV*0$ PRQRPHU IRU WKHLU GHQWDO FRPSRVLWHV 7KH IDLOXUH RI WKHVH GHQWDO FRPSRVLWHV DQG SRRU OLIHWLPH SHUIRUPDQFH DV FRPSDUHG WR DPDOJDP UHVWRUDWLRQV LV JHQHUDOO\ DWWULEXWHG WR D SRRU LQWHUIDFLDO SURSHUWLHV 6RGf $OWKRXJK WKH JODVVUHVLQ LQWHUIDFH KDV EHHQ VWXGLHG H[WHQVLYHO\ WKH IDLOXUH LV XVXDOO\ DWWULEXWHG WR WKH LQWHUIDFH EHWZHHQ WKH FRPSRVLWH UHVWRUDWLRQ DQG WKH UHPDLQLQJ WRRWK VWUXFWXUH 7ZR RI WKH PDLQ VRXUFHV RI WKLV SRRU LQWHUIDFH DUH DV IROORZV f WKH SRO\PHUL]DWLRQ VKULQNDJH GXULQJ FRPSRVLWH FXUH FDXVLQJ WKH UHVWRUDWLRQ WR SXOO DZD\ IURP WKH UHPDLQLQJ WRRWK VWUXFWXUH %DXf f SRRU ERQGLQJ EHWZHHQ WKH H[SRVHG WRRWK VWUXFWXUH FRPSRVHG RI K\GURSKLOLF SURWHLQDFHRXV GHQWLQ WXEXOHV DQG WKH K\GURSKRELF GLPHWKDFU\ODWH FRPSRVLWH 6RGf 7KH YROXPHWULF VKULQNDJH LV GXH WR WKH UHGXFWLRQ LQ PRODU YROXPH WKDW RFFXUV DV YLQ\O PRQRPHUV PRYH IURP 9DQGHU :DDOV GLVWDQFHV WR FRYDOHQW ERQG GLVWDQFHV GXULQJ SRO\PHUL]DWLRQ 9ROXPHWULF VKULQNDJH OHDGV WR SRRU PDUJLQDO DGDSWDWLRQ WR WKH WRRWK VWUXFWXUH ZKLFK FDXVHV PDUJLQDO OHDNDJH DQG UHFXUUHQFH RI FDULHV %UDf $OVR H[FHVVLYH VWUHVVHV DUH JHQHUDWHG LQ WKH UHVWRUDWLRQ ZKLFK FUHDWH IDLOXUHV LQ ERWK WKH UHPDLQLQJ WRRWK VWUXFWXUH DQG RU WKH UHVWRUDWLRQ GHSHQGLQJ XSRQ WKH JHRPHWU\ RI WKH UHVWRUDWLRQ 'DYf 6KULQNDJH LQ FXUUHQW %LV*0$ EDVHG FRPSRVLWH UDQJHV

PAGE 53

IURP WR YROXPH b 6XOf 9DULDWLRQ PD\ EH DWWULEXWHG PRUH WR GLIIHUHQW JODVV ORDGLQJV DQG YDU\LQJ OHYHOV RI FRQYHUVLRQV WKDQ WR DQ\ PDMRU UHVLQ GHYHORSPHQW 5HGXFWLRQ RI 3RO\PHUL]DWLRQ 6KULQNDJH LQ 'HQWDO 5HVLQV 7KHUH DUH PDQ\ UHVHDUFK SURJUDPV IRFXVHG RQ GLIIHUHQW FKHPLFDO VWUXFWXUHV DQG SURFHVVHV WKDW ZLOO UHGXFH SRO\PHUL]DWLRQ VKULQNDJH %UD %\H 6WD /LXf 7KH PDLQ WKUXVW LQ GHQWLVWU\ KDV EHHQ WKH VSLUR RUWKRFDUERQDWH 62&f EDVHG V\VWHPV ZKLFK DUH WKH UHVXOW RI HDUO\ SLRQHHULQJ ZRUN E\ %DLOH\ %DLf 7KH VSLUR RUWKRFDUERQDWH UHDFWLRQ LQYROYHV D FDWLRQLF GXDO ULQJ RSHQLQJ PHFKDQLVP ZKLFK LQFUHDVHV WKH PRODU YROXPH RI WKH SRO\PHU FRPSDUHG WR WKDW RI WKH PRQRPHU $ JHQHUDO UHDFWLRQ VFKHPDWLF RI VSLUR RUWKRFDUERQDWH SRO\PHUL]DWLRQ LV VKRZQ LQ )LJXUH $OWKRXJK ]HUR VKULQNDJH UHVLQV FDQ EH SURGXFHG GHILFLHQFLHV ZLWK WKLV ULQJ RSHQLQJ V\VWHP LQFOXGH WKH VORZ FXUH NLQHWLFV WKH LQDELOLW\ WR UHGXFH VKULQNDJH XQGHU QRQLGHDO FRQGLWLRQV DQG FRVW RI WKH UHDFWLYH PRQRPHU %UD %\Hf 7\SLFDOO\ GHQWDO UHVWRUDWLRQV FDQ EH FXUHG ZLWKLQ D IHZ PLQXWHV ZKHUHDV WKH VSLUR RUWKRFDUERQDWHV DUH YHU\ VORZ UHDFWLQJ 7KHVH V\VWHPV GR SURYLGH VRPH LQVLJKW DV WR D ORJLFDO VWHS LQ WKH HYROXWLRQ RI GHQWDO UHVWRUDWLYHV 7KH ULQJ RSHQLQJ SRO\PHUL]DWLRQ NLQHWLFV PD\ EH WRR VORZ KRZHYHU

PAGE 54

62& PRQRPHU 3RO\62&f )LJXUH 0HFKDQLVP RI ULQJ RSHQLQJ SRO\PHUL]DWLRQ RI VSLUR RUWKRFDUERQDWH PRQRPHUV

PAGE 55

WKH ULQJ RSHQLQJ PHFKDQLVP GRHV SURYLGH D QHW LQFUHDVH LQ PRODU YROXPH 7KH REMHFWLYH RI WKLV VWXG\ LV WR GHWHUPLQH LI WKH FRPELQDWLRQ RI WKH UDSLG NLQHWLFV RI WKH PHWKDFU\ODWH UHVLQ ZLWK WKH ULQJ RSHQLQJ RI DQK\GULGH VWUXFWXUHV FDQ EH XVHG WR PLQLPL]H WKH SRO\PHUL]DWLRQ VKULQNDJH 6SHFLILFDOO\ F\FOLF DQK\GULGH IXQFWLRQDOLW\ LQ WKH IRUP RI PDOHLF DQK\GULGH ZDV EH LQFRUSRUDWHG LQWR WKH GHQWDO UHVWRUDWLYH EDVHG XSRQ SURSR[\ODWHG %LV*0$ UHVLQ 8VH RI $QK\GULGHV LQ 'HQWDO $SSOLFDWLRQV $QK\GULGHV KDYH UHFHLYHG VRPH DWWHQWLRQ LQ GHQWDO DSSOLFDWLRQV +RZHYHU WKH DQK\GULGH LV XVHG DV SDUW RI D ERQGLQJ DJHQW DQG JHQHUDOO\ WKH ULQJ RSHQHG IRUP LV JHQHUDOO\ SUHVHQW DW WKH WLPH RI DSSOLFDWLRQ 3HXW]IHOGW DQG $VPXVVHQ 3HXf KDYH VKRZQ WKDW WKH DGGLWLRQ RI PDOHLF DQK\GULGH WR GHQWLQ ERQGLQJ DJHQWV FDQ LQFUHDVH WKH PHFKDQLFDO SURSHUWLHV E\ QHDUO\ b ZKHQ FRPELQHG ZLWK D VHFRQGDU\ DPLQH FRQWDLQLQJ PRQRPHU VXFK DV XUHWKDQH GLPHWKDFU\ODWH 7KHLU VWXGLHV GHPRQVWUDWH WKH DELOLW\ RI WKH PDOHLF DQK\GULGH WR LQFUHDVH PHFKDQLFDO SURSHUWLHV KRZHYHU WKH\ IDLO WR LVRODWH WKH ULQJ RSHQLQJ PHFKDQLVP %\ PL[LQJ PDOHLF DQK\GULGH DQG RWKHU DQK\GULGHV ZLWK WKH SULPDU\ DPLQH RU D K\GUR[\O FRQWDLQLQJ PRQRPHU VXFK DV K\GUR[\HWK\O PHWKDFU\ODWH +(0$f HLWKHU DQ DPLGH OLQNDJH RU DQ HVWHU OLQNDJH LV IRUPHG 7KXV WKH ULQJ RSHQLQJ

PAGE 56

RFFXUV SULRU WR WKH SRO\PHUL]DWLRQ UHDFWLRQ DQG KHQFH KDV QR LQIOXHQFH RQ WKH YROXPHWULF VKULQNDJH $QRWKHU H[DPSOH RI WKH XVH RI WKH DQK\GULGH VWUXFWXUH LQ GHQWDO UHVWRUDWLYH PDWHULDOV LV 0(7$ RU PHWKDFU\OR[\HWK\OWULPHOOLWDWH 1RUPDOO\ WKLV UHDFWLYH FRPSRQHQW LV VXSSOLHG LQ WKH GLFDUER[\OLF DFLG IRUP DQG WKXV KDV QR LQIOXHQFH RQ SRO\PHUL]DWLRQ VKULQNDJH ,W LV KRZHYHU YHU\ HIIHFWLYH LQ SURPRWLQJ DGKHVLRQ WR WKH HQDPHO VWUXFWXUH DV ZHOO DV QXPHURXV RWKHU VXEVWUDWHV 1DNf 7KH GLFDUER[\OLF DFLG VWUXFWXUH RI WKH 0(7$ PRQRPHU HQKDQFHV WKH ZHWWLQJ RU VSUHDG RI WKH UHVLQ RQWR WKH WRRWK VWUXFWXUH E\ ORZHULQJ WKH VXUIDFH HQHUJ\ RI WKH H[SRVHG VWUXFWXUH )LOOHU 0RGLILFDWLRQ LQ WKH 5HGXFWLRQ RI 2YHUDOO &RPSRVLWH 6KULQNDJH 0HWKRGV LQYROYLQJ UHDFWLRQV RI WKH FRPSRVLWH UHLQIRUFLQJ SKDVH KDYH EHHQ HYDOXDWHG DV D SRVVLEOH PHWKRG RI RIIVHWWLQJ SRO\PHUL]DWLRQ VKULQNDJH LQ GHQWDO FRPSRVLWHV /LX HW DO /LXf KDYH XVHG DPPRQLD PRGLILHG PRQWPRULOORQLWH 007f DV WKH UHLQIRUFLQJ SKDVH LQ %LV*0$ FRPSRVLWHV $W WHPSHUDWXUHV EHWZHHQ DQG r& JDVHRXV DPPRQLD LV UHOHDVHG 7KH JDV UHPDLQV WUDSSHG ZLWKLQ WKH UHLQIRUFLQJ SKDVH DQG FDXVHV GLODWLRQ RI WKH PRQWPRULOORQLWH SDUWLFOHV /LX HW DO KDYH VKRZQ WKDW SRO\PHUL]DWLRQ VKULQNDJH FDQ EH FRPSOHWHO\ RIIVHW XVLQJ WKLV PHWKRG LQ FROG FXUH V\VWHPV +RZHYHU WKLV SURFHVV KDV QRW EHHQ H[WHQGHG WR GLUHFWO\

PAGE 57

SODFHG GHQWDO UHVWRUDWLRQV 2QH SRVVLEOH UHDVRQ LV WKDW WKH 007 IXQFWLRQV GXH WR WKH KHDW ULVH ZLWKLQ WKH FRPSRVLWH V\VWHP WKDW HOHYDWHV WKH FRPSRVLWH WHPSHUDWXUH 7KH KHDW ULVH LQ H[SHULPHQWDO V\VWHPV XVLQJ ODUJHU YROXPHV RI UHVLQ PD\ EH JUHDWHU WKDQ WKH KHDW ULVH VHHQ LQ DFWXDO GHQWDO UHVWRUDWLRQV

PAGE 58

&+$37(5 0$7(5,$/6 $1' 0(7+2'6 0DWHULDOV 0DFURPRQRPHU 5HDFWDQWV 0RQRPHUV XVHG LQ WKH PDFURPRQRPHU V\QWKHVLV LQFOXGHG EXW\O DFU\ODWH PHWK\O PHWKDFU\ODWH DQG RFWDIOXRURSHQW\O PHWKDFU\ODWH 7KH PRQRPHUV ZHUH REWDLQHG IURP $OGULFK &KHPLFDO &R $OO ZHUH SXULILHG E\ IUDFWLRQDO YDFXXP GLVWLOODWLRQ OPP +Jf DQG WKH PLGGOH b ZDV FROOHFWHG $OO PRQRPHUV ZHUH VWRUHG XQGHU GU\ QLWURJHQ RYHU PROHFXODU VLHYHV 7KH IXQFWLRQDOL]LQJ DJHQW XVHG IRU WKH FKDLQ WUDQVIHU SRO\PHUL]DWLRQ ZDV F\VWHLQH &\VWHLQH ZDV DOVR REWDLQHG IURP $OGULFK DQG ZDV XVHG DV UHFHLYHG ([WUHPH FDUH ZDV WDNHQ WR NHHS WKH F\VWHLQH VWRUHG XQGHU D GU\ QLWURJHQ SXUJH LQ RUGHU WR SUHYHQW R[LGDWLRQ WR F\VWLQH WKH GLVXOILGH SURGXFW RI WKH R[LGDWLRQ 7KH VROYHQWV LQ WKH PDFURPRQRPHU V\QWKHVLV +3/& JUDGH WHWUDK\GURIXUDQ )LVKHUf $&6 JUDGH HWKDQRO )LVKHUf DQG 8OWUDSXUHr1 ZDWHU ZHUH XVHG DV UHFHLYHG +& ZDV DOVR XVHG LQ WKH UHDFWLRQ ,W ZDV REWDLQHG IURP $GOULFK DV D ,21 +& VROXWLRQ DQG GLOXWHG DV UHJXLUHG $]RELVLVREXW\URQLWULOH

PAGE 59

$,%1f LQLWLDWRU ZDV REWDLQHG IURP .RGDN DQG SXULILHG E\ UHFU\VWDOOL]DWLRQ IURP HWKDQRO *UDIW &RSRO\PHU 5HDFWDQWV &DWDO\VWV IRU WKH FRQGHQVDWLRQ SRO\PHUL]DWLRQ WULSKHQ\O SKRVSKLWH DQG /L&O ZHUH REWDLQHG IURP $OGULFK DQG XVH ZLWKRXW IXUWKHU SXULILFDWLRQ &DUH ZDV WDNHQ WR NHHS ERWK RI WKHVH K\JURVFRSLF FKHPLFDO GU\ 7KH\ ZHUH VWRUHG XQGHU GU\ QLWURJHQ DQG RQO\ RSHQHG ZLWKLQ D GU\ER[ 3\ULGLQH DQG 1PHWK\O S\UUROLGRQH ZHUH XVHG DV VROYHQWV LQ WKH JUDIW FRSRO\PHUL]DWLRQ RI WKH PDFURPRQRPHUV ZLWK SRO\DPLGH SUHFXUVRUV $QK\GURXV S\ULGLQH ZDV SXUFKDVHG IURP $OGULFK DQG NHSW FRQWLQXRXVO\ XQGHU GU\ QLWURJHQ 3HSWLGH V\QWKHVLV JUDGH 1PHWK\O S\UUROLGRQH 103f ZDV REWDLQHG IURP )LVKHU SXULILHG E\ GLVWLOODWLRQ DQG VWRUHG RYHU PROHFXODU VLHYHV 7KH DPLGH SUHFXUVRUV XVHG LQ WKLV VWXG\ SDPLQREHQ]RLF DFLG $%$f DGLSLF DFLG $$f DQG SSKHQ\OHQHGLDPLQH 3K'f ZHUH REWDLQHG IURP $OGULFK $%$ ZDV XVHG ZLWKRXW IXUWKHU SXULILFDWLRQ $$ ZDV UHFU\VWDOOL]HG IURP HWKDQROZDWHU DQG 3K' ZDV UHFU\VWDOOL]HG IURP HWKHU 'HQWDO 0RQRPHUV 0RQRPHUV XVHG LQ WKH PRGLILFDWLRQ RI GHQWDO UHVLQV LQFOXGHG SURSR[\ODWHG %LVSKHQRO $ JO\FLG\O PHWKDFU\ODWH S%LV*0$f WULHWK\OHQHJO\FRO GLPHWKDFU\ODWH 7(*'0$f

PAGE 60

SKHQ\OHWK\O PHWKDFU\ODWH 3(0$f DQG PDOHLF DQK\GULGH 0$f $OO PHWKDFU\ODWH PRQRPHUV ZHUH REWDLQHG IURP 3RO\VFLHQFHV ,QF 0DOHLF DQK\GULGH LQ WKH IRUP RI EULTXHWWHV ZHUH REWDLQHG IURP $OGULFK 7(*'0$ DQG S%LV*0$ ZHUH SXULILHG E\ SDVVLQJ DFHWRQH VROXWLRQV WKURXJK $OGULFK LQKLELWRU UHPRYDO FROXPQV IROORZHG E\ HYDSRUDWLRQ DW UHGXFHG SUHVVXUH WR UHPRYH WKH DFHWRQH 3(0$ ZDV IUDFWLRQDOO\ YDFXXP GLVWLOOHG DQG PDOHLF DQK\GULGH ZDV UHFU\VWDOOL]HG IURP EHQ]HQH $,%1 LQLWLDWRU ZDV SXULILHG E\ UHFU\VWDOOL]DWLRQ IURP HWKDQRO 0HWKRGV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI 0DFURPRQRPHUV 6\QWKHWLF SURFHGXUH 0RQRPHU FRQFHQWUDWLRQV LQ WKH SRO\PHUL]DWLRQV ZHUH PDLQWDLQHG FRQVWDQW DW ZWb $,%1 FRQFHQWUDWLRQV DOVR UHPDLQHG FRQVWDQW DW PROH b RI WKH PRQRPHU FRQFHQWUDWLRQ &\VWHLQH OHYHOV ZHUH YDULHG LQ RUGHU WR GHWHUPLQH LWV DIIHFW RQ WKH SRO\PHUL]DWLRQ RI DFU\ODWHV DQG PHWKDFU\ODWHV ,Q D W\SLFDO SRO\PHUL]DWLRQ F\VWHLQH ZDV GLVVROYHG LQ WKH SUHVFULEHG DPRXQW RI ,21 +& LQ D PO URXQGERWWRP IODVN HTXLSSHG ZLWK D PDJQHWLF VWLUUHU :DWHU DQG 7+) ZHUH WKHQ DGGHG LQ FRQFHQWUDWLRQV \LHOGLQJ D J VROXWLRQ RI UDWLR E\ ZHLJKW 7+)ZDWHU+&O O2J RI PRQRPHU ZHUH DGGHG DQG WKH GHVLUHG $,%1 FRQFHQWUDWLRQ ZDV WKHQ

PAGE 61

GLVVROYHG LQ WKH UHDFWLRQ PL[WXUH $ UHIOX[ FRQGHQVHU ZDV DWWDFKHG WR WKH IODVN 7KH UHDFWLRQ VHWXS ZDV WKHQ SODFHG LQ D JO\FHULQ EDWK DW r& DQG UXQ IRU KRXUV XQGHU FRQVWDQW VWLUULQJ 7KH LVRODWLRQ DQG SXULILFDWLRQ RI WKH YDULRXV PDFURPRQRPHUV V\QWKHVL]HG LV GHVFULEHG LQ WKH FRUUHVSRQGLQJ UHVXOWV VHFWLRQ DQG &KDUDFWHUL]DWLRQ RI PDFURPRQRPHUV 7KH PRODU PDVV GLVWULEXWLRQV RI WKH V\QWKHVL]HG PDFURPRQRPHUV ZHUH FKDUDFWHUL]HG E\ *3& XVLQJ D :DWHUV +3/& V\VWHP LQFOXGLQJ D :DWHUV )OXLG 'HOLYHU\ 6\VWHPV D :DWHUV $XWRVDPSOHU DQG D :DWHUV 'LIIHUHQWLDO 5HIUDFWRPHWHU GHWHFWRU )RXU 3KHQRPHQH[ FURVVOLQNHG SRO\VW\UHQH FROXPQV ZLWK SRUH VL]HV RI DQG $r ZHUH XVHG LQ VHULHV 7KH IORZ UDWH ZDV POPLQ 6DPSOH FRQFHQWUDWLRQV ZHUH DSSUR[LPDWHO\ b LQ +3/& JUDGH 7+) 7KH LQMHFWLRQ YROXPH ZDV -O $OO PRODU PDVV YDOXHV ZHUH FDOFXODWHG XVLQJ D SRO\VW\UHQH FDOLEUDWLRQ FXUYH $QLRQLFDOO\ SRO\PHUL]HG SRO\VW\UHQH VWDQGDUGV ZHUH REWDLQHG IURP 3RO\PHU /DERUDWRULHV 7UDQVPLVVLRQ )7,5 VSHFWUD RI PDFURPRQRPHUV ZHUH FROOHFWHG XVLQJ D 1LFROHW 6; VSHFWURPHWHU VFDQV ZHUH FROOHFWHG IRU HDFK VDPSOH DW D UHVROXWLRQ RI FP $OO OLTXLGV ZHUH UXQ EHWZHHQ .56 FU\VWDOV 6ROLGV ZHUH UXQ LQ WUDQVPLVVLRQ ZLWK .%U 105 VSHFWURVFRS\ ZDV SHUIRUPHG XVLQJ D 0+] *HPLQL 7KH VROYHQW XVHG IRU PDFURPRQRPHU FKDUDFWHUL]DWLRQ ZDV

PAGE 62

GHXWHUDWHG FKORURIRUP 706 ZDV XVHG DV DQ LQWHUQDO VWDQGDUG DFTXLVLWLRQV ZHUH FROOHFWHG IRU HDFK VDPSOH (OHPHQWDO DQDO\VLV IRU GHWHUPLQDWLRQ RI & + DQG 1 FRQWHQW ZDV UXQ RQ DQ (DJHU ,&3 ZDV UXQ LQ RUGHU WR GHWHUPLQH WKH IXQFWLRQDOL]DWLRQ HIILFLHQF\ RI WKH PDFURPRQRPHU V\QWKHVLV $ 3HUNLQ (OPHU 3ODVPD (PLVVLRQ 6SHFWURPHWHU ZDV XVHG DQG D ZDYHOHQJWK RI QP ZDV PRQLWRUHG 7KLV ZDYHOHQJWK ZDV XVHG WR GHWHUPLQH WKH VXOIXU FRQWHQW RI WKH SRO\PHU $ VXOIXU VWDQGDUG ZDV REWDLQHG IURP )LVKHU DQG GLOXWHG XVLQJ YROXPHWULF IODVNV 6DPSOH SUHSDUDWLRQ IRU ,&3 LQYROYHG PDNLQJ D ZWb VROXWLRQ RI WKH PDFURPRQRPHU LQ D PL[WXUH E\ ZHLJKW RI ZDWHUWULWRQ ; 7ULWRQ ; ZDV XVHG DV D VXUIDFWDQW LQ RUGHU WR VWDELOL]H WKH HPXOVLRQ RI WKH SRO\EXW\O DFU\ODWHf LQ ZDWHU 2QO\ WKH OLTXLG ORZ 7J PDFURPRQRPHUV FRXOG EH DQDO\]HG E\ WKLV PHWKRG 6WDEOH HPXOVLRQ RI KLJK 7J PHWKDFU\ODWH FRSRO\PHUV FRXOG QRW EH REWDLQHG 6XOIXU FRQWHQW ZDV GHWHUPLQHG LQ SSP LQ VROXWLRQ 8VLQJ WKH YDOXH RI VXOIXU FRQFHQWUDWLRQ LQ FRPELQDWLRQ ZLWK WKH PRODU PDVV YDOXHV ZH FDQ FDOFXODWH WKH H[WHQW RI IXQFWLRQDOL]DWLRQ 7KH IROORZLQJ LV DQ H[DPSOH RI RQH RI WKHVH FDOFXODWLRQV 2QH PROH RI NJPRO SRO\EXW\O DFU\ODWHf IURP *3& DQDO\VLV LQ ZKLFK HYHU\ FKDLQ LV HQG FDSSHG E\ RQH PHUFDSWDQ FKDLQ WUDQVIHU DJHQW UHVLGXH ZLOO FRQWDLQ RQH PROH RI VXOIXU RU J 7KHUHIRUH RU ZWb ,I WKH SUHSDUHG VROXWLRQ FRQWDLQV ZWb

PAGE 63

PDFURPRQRPHU WKH VROXWLRQ VKRXOG FRQWDLQ r SSP RI VXOIXU $JDLQ LI HYHU\ FKDLQ ZHUH IXQFWLRQDOL]HG ZH VKRXOG PHDVXUH D VXOIXU FRQFHQWUDWLRQ RI SSP ,QVWHDG D FRQFHQWUDWLRQ RI SSP ZDV PHDVXUHG )URP WKLV ZH HVWLPDWH WKDW RU b RI DOO FKDLQV FRQWDLQ RQH VXOIXU PROHFXOH RU b DUH IXQFWLRQDOL]HG '6& DQDO\VLV ZDV SHUIRUPHG XVLQJ D 6HLNR '6& LQWHUIDFHG ZLWK D 6HLNR + 5KHRVWDWLRQ 7KH DQDO\VLV ZDV SHUIRUPHG DW KHDWLQJ UDWH RI r&PLQ XQGHU D FRQWLQXRXV IORZ POPLQ RI GU\ QLWURJHQ JDV 2Q DYHUDJH PJ VDPSOHV ZHUH DQDO\]HG LQ FULPSHG DOXPLQXP SDQV YHUVXV DQ LQHUW VDSSKLUH UHIHUHQFH 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI *UDIW &RSRO\PHUV 6\QWKHWLF SURFHGXUH 6WRLFKLRPHWULF PRODU FRQFHQWUDWLRQV RI DPLQH DQG FDUER[\OLF DFLG JURXSV ZHUH XVHG ZLWK D WRWDO DPRXQW RI UHDFWDQWV HTXDO WR PPRO 7ULSKHQ\O SKRVSKLWH ZDV DGGHG DW D PROH UDWLR RI 733FDUER[\OLF DFLG JURXSV 7KH DPRXQW RI /L&O DGGHG ZDV NHSW FRQVWDQW WKURXJKRXW DV ZDV WKH W\SH DQG DPRXQW RI VROYHQW XVHG ,Q D W\SLFDO SRO\PHUL]DWLRQ J RI NJPRO S%$f PDFURPRQRPHU PPROf J PPROf S SKHQ\OHQHGLDPLQH J PPROf DGLSLF DFLG J 733 PPROf DQG J /L&O ZHUH GLVVROYHG LQ PO RI DQ 103S\ULGLQH VROXWLRQ LQ D PO IODVN $OO PDVV UHDGLQJV DQG FRPSRQHQW PL[LQJ ZDV SHUIRUPHG LQ D GU\ER[ 7KH

PAGE 64

UHDFWLRQ PL[WXUH ZDV WKHQ KHDWHG DW r& IRU KRXUV 7KH UHVXOWLQJ SRO\PHU D WDFN\ OLJKW EURZQ VROLG ZDV REWDLQHG DOPRVW TXDQWLWDWLYHO\ E\ SUHFLSLWDWLRQ LQ DQ H[FHVV RI ZDWHUPHWKDQRO QRQVROYHQW ILOWHUHG ZDVKHG ZLWK PHWKDQRO DQG GULHG RYHUQLJKW XQGHU YDFXXP DW r& &KDUDFWHUL]DWLRQ RI JUDIW FRSRO\PHUV 3XULILFDWLRQ RI WKH JUDIW FRSRO\PHUV ZDV GRQH E\ 6R[KOHW H[WUDFWLRQ XVLQJ +3/& JUDGH 7+) 7KLV ZDV GRQH LQ RUGHU WR UHPRYH DQ\ KRPRSRO\PHU ZKLFK PD\ UHVXOW IURP XQIXQFWLRQDOL]HG PDFURPRQRPHUV 6DPSOHV UDQJLQJ IURP J ZHUH H[WUDFWHG WR FRQVWDQW ZHLJKW XVLQJ D :KDWPDQ FHOOXORVH H[WUDFWLRQ WKLPEOH 7KH H[WUDFWDQW VROXWLRQV ZHUH GLOXWHG WR DSSURSULDWH FRQFHQWUDWLRQV IRU *3& DQDO\VLV 7KH OHYHO RI GLOXWLRQ UHTXLUHG ZDV GHSHQGHQW RQ WKH DPRXQW RI PDWHULDO H[WUDFWHG *3& ZDV UXQ ZLWK VLPXOWDQHRXV GHWHFWLRQ XVLQJ WKH GLIIHUHQWLDO UHIUDFWRPHWHU GHVFULEHG SUHYLRXVO\ DV ZHOO DV D :DWHUV 3KRWRGLRGH $UUD\ 89 GHWHFWRU 7KLV GHWHFWRU DOORZV RQH WR JHW D IXOO 89 VFDQ DW HDFK HOXWLRQ WLPH 7KLV DIIRUGV WKH DELOLW\ WR GHWHUPLQH VWUXFWXUDO GLIIHUHQFHV EHWZHHQ 89 DEVRUELQJ IUDFWLRQV ZLWKLQ WKH VROXWLRQ $OO RWKHU WHVWLQJ FRQGLWLRQV ZHUH LGHQWLFDO WR WKRVH IRU FKDUDFWHUL]DWLRQ RI PDFURPRQRPHUV 7UDQVPLVVLRQ )7,5 VSHFWUD RI WKH JUDIW FRSRO\PHUV ZHUH FROOHFWHG XVLQJ .%U ZLWK FROOHFWLRQ SDUDPHWHUV HTXLYDOHQW WR WKRVH GHVFULEHG SUHYLRXVO\

PAGE 65

(OHPHQWDO DQDO\VLV DQG '6& PHWKRGV ZHUH LGHQWLFDO WR WKRVH XVHG LQ PDFURPRQRPHU FKDUDFWHUL]DWLRQ 7KH RQO\ GLIIHUHQFH LQ WKH 105 VSHFWURVFRS\ IURP WKDW RI WKH PDFURPRQRPHU ZDV WKH VROYHQW HPSOR\HG 'HXWHUDWHG VXOIXULF DFLG ZDV XVHG DV WKH VROYHQW DQG WKH VROYHQW SHDN IURP UHVLGXDO XQGHXWHUDWHG DFLG ZDV XVHG DV DQ LQWHUQDO VWDQGDUG 7KH V\QWKHVL]HG JUDIW FRSRO\PHUV ZHUH EOHQGHG ZLWK FRPPHUFLDO H[WUXVLRQ JUDGH 1\ORQ IURP %$6) DQG ZLWK EOHQGV RI 1\ORQ ZLWK NJPRO SRO\EXW\O DFU\ODWHf V\QWKHVL]HG LQ WKLV ODERUDWRU\ ,QLWLDO DWWHPSWV ZHUH PDGH WR EOHQG WKH SRO\PHUV E\ GLVVROXWLRQ LQ GLFKORURDFWHLF DFLG IROORZHG E\ FRSUHFLSLWDWLRQ LQ PHWKDQRO $IWHU YLJRURXVO\ GU\LQJ WKH UHVXOWLQJ SRZGHUV ILOPV ZHUH FRPSUHVVLRQ PROGHG DW r& 7KLV PHWKRG ZDV DEDQGRQHG ZKHQ WKH SXUH Q\ORQ SUHSDUHG LQ WKLV PDQQHU VKRZHG VHYHUH HPEULWWOHPHQW (LWKHU UHVLGXDO DFLG FDXVHG GHJUDGDWLRQ RU WKH GLVVROXWLRQSUHFLSLWDWLRQ VWHS UHPRYHG D VWDELOL]HU 7KH PDWHULDOV ZHUH WKHQ PL[HG LQ WKH VROLG VWDWH ,Q RUGHU WR JHW WKH PRVW KRPRJHQHRXV PL[WXUH RI JUDIW FRSRO\PHU ZLWK 1\ORQ DQG JUDIW FRSRO\PHU ZLWK 1\ORQ 3RO\EXW\O DFU\ODWHf WKH VDPSOHV ZHUH PL[HG DW FU\RJHQLF WHPSHUDWXUHV $ 63(; )UHH]HU 0LOO ZDV XVHG DW PD[LPXP LPSDFW IUHTXHQF\ ZLWK WKH VDPSOH LPPHUVHG LQ OLTXLG QLWURJHQ $OO VDPSOHV ZHUH PLOOHG IRU PLQXWHV 7KH UHVXOWLQJ SRZGHUV ZHUH KRPRJHQHRXV LQ DSSHDUDQFH $OO EOHQGV ZHUH FRPSUHVVLRQ PROGHG DW r& EHWZHHQ 7HIORQp FRDWHG SRO\LPLGH ILOPV DQG

PAGE 66

DOORZHG WR FRRO LQ WKH PROG 7KH UHVXOWLQJ ILOPV ZHUH DSSUR[LPDWHO\ PP WKLFN 7HQVLOH SURSHUWLHV RI WKH ILOPV ZHUH PHDVXUHG XVLQJ DQ ,QVWURQ HTXLSSHG ZLWK DQ 1HZWRQ ORDG FHOO DW DPELHQW FRQGLWLRQV )LYH VDPSOHV ZHUH WHVWHG IRU HDFK PDWHULDO DFFRUGLQJ WR $670 '0 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI $QK\GULGH 0RGLILHG 'HQWDO 5HVLQV 6\QWKHVLV DQG VDPSOH SUHSDUDWLRQ $Q H[SHULPHQWDO PDWUL[ ZDV SUHSDUHG FRPSRVHG RI YDU\LQJ DQK\GULGH S%LV*0$ DQG 7(*'0$ FRQFHQWUDWLRQV 'HQWDO UHVLQ VDPSOHV ZHUH SUHSDUHG E\ GLVVROYLQJ WKH PDOHLF DQK\GULGH LQ WKH GHQWDO PHWKDFU\ODWH PRQRPHU FRPSRVLWLRQV ZWb $,%1 LQLWLDWRU ZDV DGGHG WR WKH VROXWLRQ 7KH UHVXOWLQJ YLVFRXV VROXWLRQV ZHUH WUDQVIHUUHG WR D PP WKLFN PROG 7KH PROG FRQVLVWHG RI WZR JODVV SODWHV OLQHG ZLWK 7HIORQp FRDWHG SRO\LPLGH ILOP DQG D IOXRURSRO\PHU HODVWRPHULF WXELQJ WR NHHS WKH VROXWLRQ LQ WKH PROG 7KH VROXWLRQV ZHUH FXUHG XQGHU D GU\ QLWURJHQ DWPRVSKHUH DW r& IRU KRXUV IROORZHG E\ D SRVWFXUH DW r& IRU KRXUV /LQHDU FRSRO\PHUV RI PDOHLF DQK\GULGH ZLWK SKHQ\OHWK\O PHWKDFU\ODWH ZHUH V\QWKHVL]HG LQ EXON 7KH GHVLUHG DQK\GULGH DPRXQW ZDV GLVVROYHG LQ 3(0$ LQ D PO JODVV WHVW WXEH DQG ZWb $,%1 ZDV DGGHG 7KH VROXWLRQ ZDV SXUJHG ZLWK GU\ QLWURJHQ VHDOHG DQG SRO\PHUL]HG DW r& IRU KRXUV 7KH UHVXOWLQJ SRO\PHU ZDV LVRODWHG E\ GLVVROXWLRQ LQ

PAGE 67

FKORURIRUP DQG SUHFLSLWDWLRQ LQ HWKHU 6DPSOHV ZHUH ILOWHUG DQG GULHG RYHUQLJKW XQGHU YDFXXP DW r& &KDUDFWHUL]DWLRQ RI DQK\GULGH FRSRO\PHUV (TXLOLEULXP ZDWHU FRQWHQW ZDV PHDVXUHG XVLQJ 8OWUDSXUH ZDWHU 6DPSOHV ZHUH DSSUR[LPDWHO\ PP [ PP [ PP 6DPSOHV ZHUH SODFHG LQ DQ LQFXEDWRU DW r& XQWLO D FRQVWDQW ZHLJKW ZDV UHDFKHG 7KH VZHOOLQJ VROXWLRQ ZDV WKHQ FKDQJHG DGGLQJ IUHVK 8OWUDSXUH ZDWHU DQG ZHLJKW DJDLQ PRQLWRUHG WR LQVXUH DOO XQUHDFWHG DQK\GULGH KDV EHHQ H[WUDFWHG 2Q DYHUDJH HTXLOLEULXP ZDV UHDFKHG DIWHU ZHHNV $OO ZHLJKWV ZHUH PHDVXUHG XVLQJ D 'HQYHU ,QVWUXPHQWV $ '6 ZLWK UHDGLQJV WDNHQ WR WKH ILIWK GHFLPDO SODFH 'HQVLW\ PHDVXUHPHQWV ZHUH WDNHQ XVLQJ D 0HWWOHU 'HQVLW\ GHWHUPLQDWLRQ DSSDUDWXV LQ FRPELQDWLRQ ZLWK WKH 'HQYHU ,QVWUXPHQWV VFDOH 7KH $UFKLPHGHVn PHWKRG ZDV XVHG DQG PHDVXUHPHQWV HUH WDNHQ DW r& XVLQJ 8OWUDSXUHp ZDWHU $OO VDPSOHV ZHUH UHZHLJKHG DIWHU WHVWLQJ WR LQVXUH WKDW WKH WLPH VFDOH RI WKHVH PHDVXUHPHQWV ZHUH LQVXIILFLHQW WR DOORZ WKH VDPSOHV WR DEVRUE ZDWHU 89 DEVRUSWLRQ VSHFWURVFRS\ ZDV UXQ RQ WKH H[WUDFWDQW VROXWLRQV LQ RUGHU WR PRQLWRU WKH H[WUDFWLRQ RI PDOHLF DQK\GULGH $FWXDOO\ DQ\ H[WUDFWHG DQK\GULGH ZRXOG EH H[WUDFWHG DV PDOHLF DFLG GXH WR K\GURO\VLV $ FDOLEUDWLRQ FXUYH IRU DEVRUEDQFH YHUVXV FRQFHQWUDWLRQ ZDV PDGH XVLQJ VWDQGDUGV 6WDQGDUGV ZHUH SUHSDUHG LQ WKH H[SHFWHG FRQFHQWUDWLRQ UDQJH E\ K\GURO\]LQJ DQG GLVVROYLQJ PDOHLF DQK\GULGH LQ 8OWUDSXUHp ZDWHU $ ZDYHOHQJWK RI QP ZDV

PAGE 68

XVHG 7KXV E\ PRQLWRULQJ WKH DEVRUEDQFH DW QP RI WKH H[WUDFWDQW VROXWLRQV FRQFHQWUDWLRQV RI PDOHLF DFLG FRXOG EH GHWHUPLQHG .QRZLQJ WKH YROXPH RI ZDWHU XVHG LQ WKH VZHOOLQJ H[SHULPHQWV ZH FDQ FDOFXODWH WKH PDVV RI PDOHLF DQK\GULGH H[WUDFWHG $VVXPLQJ DOO IUHH DQK\GULGH ZDV H[WUDFWHG WKH DQK\GULGH QRW H[WUDFWHG LV DVVXPHG WR EH LQFRUSRUDWHG *3& )7,5 DQG '6& RI WKH OLQHDU PDOHLF DQK\GULGH FRSRO\PHUV ZHUH UXQ ZLWK SDUDPHWHUV DV GHVFULEHG LQ WKH FKDUDFWHUL]DWLRQ RI WKH SRO\DPLGH JUDIW FRSRO\PHUV

PAGE 69

&+$37(5 5(68/76 $1' ',6&866,21 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI $PLQR $FLGWHUPLQDWHG 3RO\DFU\ODWHf 0DFURPRQRPHUV XVLQJ &KDLQ 7UDQVIHU &KHPLVWU\ 7KH PRVW SUHYDOHQW V\QWKHWLF URXWH WR ZHOO GHILQHG JUDIW FRSRO\PHUV LV WKURXJK WKH XVH RI PDFURPRQRPHUV ORZ PRODU PDVV SRO\PHUV FRQWDLQLQJ D SRO\PHUL]DEOH HQG JURXS $ UHYLHZ RI WKH OLWHUDWXUH KDV VKRZQ WKDW FXUUHQW VWXGLHV LQFOXGLQJ WKRVH ZLWKLQ WKLV ODERUDWRU\ KDYH FRQFHQWUDWHG RQ V\QWKHVL]LQJ PDFURPRQRPHUV ZKLFK DUH SRO\PHUL]DEOH WKURXJK D YLQ\O IXQFWLRQDOLW\ 7KDW LV WKH\ DUH SRO\PHUL]DEOH RQO\ ZLWK DGGLWLRQ W\SH PRQRPHUV WKURXJK D IUHH UDGLFDO PHFKDQLVP %HFDXVH WKH PDFURPRQRPHUV WKHPVHOYHV DUH JHQHUDOO\ V\QWKHVL]HG WKURXJK HLWKHU DQLRQLF RU IUHH UDGLFDO SRO\PHUL]DWLRQ LQ WKH SUHVHQFH RI D IXQFWLRQDOL]LQJ DJHQW WKH UHVXOWLQJ JUDIW FRSRO\PHUV ZKLFK FDQ EH V\QWKHVL]HG WKURXJK WKLV PHWKRG DUH JHQHUDOO\ OLPLWHG WR DGGLWLRQ DGGLWLRQ JUDIW FRSRO\PHUV VXFK DV SRO\VW\UHQHJUDIW DFU\ODWHf SRO\DFU\ODWHJUDIWPHWKDFU\ODWHf HWF ,W ZDV WKH REMHFWLYH RI WKLV VWXG\ WR V\QWKHVL]H FRQGHQVDWLRQ SRO\PHUL]DEOH PDFURPRQRPHUV VSHFLILFDOO\ DPLQR DFLG WHUPLQDWHG PDFURPRQRPHUV FDSDEOH RI UHDFWLQJ ZLWK DPLQH DQG FDUER[\OLF DFLG JURXSV LQ WKH V\QWKHVLV RI

PAGE 70

SRO\DPLGH JUDIW FRSRO\PHUV $Q DPLQR DFLG IXQFWLRQDOLW\ LV SUHIHUUHG RYHU RWKHU HQG JURXSV VXFK DV GLDFLGV RU GLDPLQHV GXH WR WKH LQKHUHQW VWRLFKLRPHWU\ WKDW LW SURYLGHV 7KLV VWRLFKLRPHWU\ LV UHTXLUHG LQ WKH FRQGHQVDWLRQ JUDIW UHDFWLRQ WR LQVXUH WKH KLJKHVW GHJUHH RI SRO\PHUL]DWLRQ SRVVLEOH 7KH DSSURDFK WDNHQ LQ WKLV VWXG\ LQYROYHV WKH IUHH UDGLFDO SRO\PHUL]DWLRQ RI D YLQ\O PRQRPHU LQ WKH SUHVHQFH RI D IXQFWLRQDO FKDLQ WUDQVIHU DJHQW ,WRf 0HUFDSWDQV FRPSRXQGV FRQWDLQLQJ D VXOIXUK\GURJHQ ERQG DUH FRPPRQO\ XVHG LQ FKDLQ WUDQVIHU UHDFWLRQV ,Q IDFW PHUFDSWDQV DUH FRPPRQO\ XVHG WR FRQWURO PROHFXODU ZHLJKW LQ FRPPHUFLDO SRO\PHUL]DWLRQ UHDFWRUV 5RVf 7KH PHFKDQLVP E\ ZKLFK IXQFWLRQDOL]DWLRQ FDQ RFFXU LV GHSLFWHG LQ )LJXUH 6WHSV DQG DUH W\SLFDO SURFHVVHV RI IUHH UDGLFDO LQLWLDWLRQ :KHQ H[SRVHG WR KHDW WKH $,%1 EUHDNV GRZQ LQWR IUHH UDGLFDOV DQG QLWURJHQ JDV LV HYROYHG 7KH $,%1 UDGLFDOV FDQ WKXV LQLWLDWH WKH SRO\PHUL]DWLRQ RI YLQ\O FRPSRXQGV ,I WKHUH LV QR FKDLQ WUDQVIHU DJHQW SUHVHQW WKH SRO\PHUL]DWLRQ FRQWLQXHV XQWLO WHUPLQDWLRQ E\ GLVSURSRUWLRQDWLRQ RU FRPELQDWLRQ RFFXU ,Q WKH SUHVHQFH RI D PHUFDSWDQ RU RWKHU FKDLQ WUDQVIHU DJHQW WHUPLQDWLRQ FDQ RFFXU WKURXJK FKDLQ WUDQVIHU 7KH K\GURJHQ IURP WKH VXOIK\GU\O JURXS RI WKH PHUFDSWDQ LV UHDGLO\ H[WUDFWDEOH $ SURSDJDWLQJ SRO\PHU FKDLQ FDQ WKXV UHDFW ZLWK WKH PHUFDSWDQ 6WHS f WHUPLQDWLQJ SURSDJDWLRQ DQG OHDYLQJ D VXOIXU UDGLFDO RQ WKH PHUFDSWDQ ,I WKH FRQFHQWUDWLRQ RI PHUFDSWDQ

PAGE 71

)LJXUH $,%1 &+A 1 FK PRQRPHU SRO\PHUL]DWLRQ f +65f 5n6 f PHUFDSWDQ + 6f§5n FK f§K 5V FK 5n6r 5f +65n 5n 5n6r 0HFKDQLVP RI IXQFWLRQDOL]DWLRQ XVLQJ FKDLQ WUDQVIHU UHDFWLRQV

PAGE 72

LV KLJK WKH PHUFDSWDQ LWVHOI FDQ UHDFW ZLWK WKH $,%1 UDGLFDO 6WHS f DOVR JLYLQJ D VXOIXU UDGLFDO 7KH UHVXOWLQJ VXOIXU UDGLFDO FDQ WKHQ LQLWLDWH WKH IUHH UDGLFDO SRO\PHUL]DWLRQ RI D YLQ\O PRQRPHU 6WHS f ,I WKH PHUFDSWDQ FRQWDLQV K\GUR[\O RU FDUER[\OLF DFLG IXQFWLRQDO JURXSV 5nf WKH LQLWLDWLQJ VXOIXU UDGLFDO LQWURGXFHV IXQFWLRQDOLW\ WR RQH HQG RI WKH PDFURPROHFXOH 7KH JURZLQJ IXQFWLRQDOL]HG SRO\PHU UDGLFDO FDQ DJDLQ UHDFW ZLWK WKH PHUFDSWDQ 6WHS f \LHOGLQJ D WHUPLQDWHG IXQFWLRQDOL]HG FKDLQ DQG DQRWKHU PROHFXOH RI VXOIXU UDGLFDO ZKLFK FDQ UHDFW ZLWK PRUH PRQRPHU 6WHS f WR IRUP D UHDFWLRQ ORRS 7KH HIIHFWLYHQHVV RI IXQFWLRQDOL]DWLRQ LV GHSHQGHQW RQ WKH FKDLQ WUDQVIHU FRQVWDQW RI WKH PHUFDSWDQ DV ZHOO DV WKH UHODWLYH FRQFHQWUDWLRQV RI PHUFDSWDQ DQG IUHH UDGLFDO LQLWLDWRU 7VXf 7KH $,%1 FRQFHQWUDWLRQ LV NHSW H[WUHPHO\ ORZ UHODWLYH WR WKH FKDLQ WUDQVIHU DJHQW WR PLQLPL]H WKH QXPEHU RI FKDLQV LQLWLDWHG E\ WKH $,%1 $Q\ FKDLQV LQLWLDWHG E\ $,%1 ZLOO EH QRQIXQFWLRQDOL]HG VHH 6WHSV DQG f &\VWHLQH D QDWXUDOO\ RFFXUULQJ DPLQR DFLG FRQWDLQLQJ D VXOIK\GU\O IXQFWLRQDO JURXS ZDV HYDOXDWHG DV D FKDLQ WUDQVIHU DJHQW LQ WKH SRO\PHUL]DWLRQ RI DFU\ODWHV DQG PHWKDFU\ODWHV ,I F\VWHLQH ZHUH WR DFW DV DQ HIIHFWLYH FKDLQ WUDQVIHU DJHQW LW ZRXOG SURYLGH WKH GHVLUHG DPLQR DFLG IXQFWLRQDOLW\ 6SHFLILFDOO\ SRO\EXW\O DFU\ODWHf DQG SRO\PHWK\O PHWKDFU\ODWHFRRFWDIOXRURSHQW\O PHWKDFU\ODWHf PDFURPRQRPHUV

PAGE 73

ZHUH V\QWKHVL]HG LQ WKH SUHVHQFH RI F\VWHLQH 3RO\EXW\O DFU\ODWHf ZDV FKRVHQ EHFDXVH LW KDV D YHU\ ORZ JODVV WUDQVLWLRQ WHPSHUDWXUH r& %UDf DQG WKHUHIRUH DQ\ JUDIW FRSRO\PHUV FRQWDLQLQJ LW PD\ EH XVHG DV UXEEHU PRGLILHUV 7KH IOXRURDFU\ODWH FRSRO\PHU ZDV FKRVHQ EHFDXVH GXH WR WKH ORZ VXUIDFH HQHUJ\ RI IOXRURSRO\PHUV LQ JHQHUDO JUDIW FRSRO\PHUV FRXOG EH XWLOL]HG DV VXUIDFH PRGLILHUV 'HWHUPLQDWLRQ RI DQ $SSURSULDWH 6ROYHQW 6\VWHP $ FRPPRQ VROYHQW IRU ERWK WKH PRQRPHU HLWKHU EXW\O DFU\ODWH RU WKH IOXRURDFU\ODWH00$ PL[WXUH DQG WKH F\VWHLQH FKDLQ WUDQVIHU DJHQW PXVW EH LGHQWLILHG LQ RUGHU WR LQVXUH D KRPRJHQHRXV VROXWLRQ GXULQJ SRO\PHUL]DWLRQ &\VWHLQH LV D FU\VWDOOLQH SRZGHU LQVROXEOH LQ FRPPRQ RUJDQLF VROYHQWV 6ROXELOLW\ WHVWV LQ WKH DSSUR[LPDWH FRQFHQWUDWLRQV UHTXLUHG IRU V\QWKHVLV RI D NJPROH PDFURPRQRPHUV ZHUH SHUIRUPHG $V LV VKRZQ LQ 7DEOH DW WKH DSSURSULDWH FRQFHQWUDWLRQV F\VWHLQH LV LQVROXEOH LQ VRPH FRPPRQ RUJDQLF VROYHQWV ZKLFK DUH VXLWDEOH IRU WKH SRO\PHUL]DWLRQ RI EXW\O DFU\ODWH $OVR EXW\O DFU\ODWH LV FRPSOHWHO\ LPPLVFLEOH ZLWK ZDWHU TXLFNO\ VHSDUDWLQJ LQWR WZR OD\HUV

PAGE 74

7$%/( 6ROYHQW GHWHUPLQDWLRQ IRU PRQRPHU DQG FKDLQ WUDQVIHU DJHQW 7ROXHQH 7+) '0) (WKDQRO Q%XWDQRO KR &\VWHLQH L L L L L V %XW\O V V V V V L DFU\ODWH &RQFHQWUDWLRQ RI F\VWHLQH JJ VROYHQW &RQFHQWUDWLRQ RI PRQRPHU OJJ VROYHQW L LQVROXEOH V VROXEOH %HFDXVH RI WKH VWURQJ +ERQGLQJ LQWHUDFWLRQV ZLWKLQ WKH DPLQR DFLG LW DSSHDUHG WR EH QHFHVVDU\ WR DGG +2 WR GLVUXSW FU\VWDOOLQH VWUXFWXUH &\VWHLQH ZDV WKHQ SUHn GLVVROYHG LQ ZDWHU DW KLJK FRQFHQWUDWLRQV SULRU WR WKH DGGLWLRQ RI 7+) 7KLV PHWKRG ZDV VXFFHVVIXO LQ NHHSLQJ F\VWHLQH GLVVROYHG LQ D 7+)ZDWHU PL[WXUH 2QH RI WZR WKLQJV JHQHUDOO\ RFFXUUHG XSRQ WKH DGGLWLRQ RI EXW\O DFU\ODWH (LWKHU WKH FRQFHQWUDWLRQ RI ZDWHU ZDV WRR KLJK WR DOORZ WKH EXW\O DFU\ODWH WR GLVVROYH RU WKH FRQFHQWUDWLRQ ZDV WRR ORZ WR SUHYHQW WKH SUHFLSLWDWLRQ RI F\VWHLQH XSRQ WKH DGGLWLRQ RI WKH DFU\ODWH PRQRPHU ,W ZDV GHWHUPLQHG DIWHU PXFK WULDO DQG HUURU WKDW HWKDQRO FRXOG EH DGGHG LQ ORZ FRQFHQWUDWLRQV LQ RUGHU WR VWDELOL]H WKH 7+)ZDWHUF\VWHLQHEXW\O DFU\ODWH VROXWLRQ 7KH HWKDQRO ZDV HIIHFWLYH LQ SUHYHQWLQJ WKH EXW\O DFU\ODWH IURP IRUPLQJ D VHFRQG SKDVH 7KH FRPSRVLWLRQ RI WKH VROYHQW V\VWHP XVHG ZDV D UDWLR E\ ZHLJKW RI 7+)(W++ 7KH PRQRPHU FRQFHQWUDWLRQ ZDV ZWb

PAGE 75

3UHOLPLQDU\ 6WXGLHV RI WKH (IIHFWLYHQHVV RI &\VWHLQH DV D &KDLQ 7UDQVIHU $JHQW LQ WKH 3RO\PHUL]DWLRQ RI %XW\O $FU\ODWH 7KH V\QWKHVLV RI SRO\EXW\O DFU\ODWHf LQ WKH SUHVHQFH RI F\VWHLQH ZDV FDUULHG RXW XVLQJ WKH VROYHQW V\VWHP GHVFULEHG DERYH )LJXUH GHSLFWV WKH GHVLUHG DPLQR DFLG IXQFWLRQDOLW\ RI WKH PDFURPRQRPHU 7KH PRQRPHUF\VWHLQH$,%1 PRODU UDWLR XVHG ZDV 7KH $,%1 FRQFHQWUDWLRQ PXVW EH NHSW ORZ LQ RUGHU WR PLQLPL]H WKH QXPEHU RI FKDLQV LQLWLDWHG E\ $,%1 $V VWDWHG SUHYLRXVO\ DQ\ FKDLQV LQLWLDWHG E\ WKH $,%1 LQLWLDWRU DQG QRW WKH FKDLQ WUDQVIHU DJHQW ZLOO EH LQ HIIHFW nGHDGn FKDLQV 7KDW LV WKH\ ZLOO ODFN WKH GHVLUHG DPLQR DFLG IXQFWLRQDOLW\ 7KH SRO\PHUL]DWLRQ ZDV UXQ XQGHU QLWURJHQ DW r& IRU KRXUV $ FRQWURO SRO\PHUL]DWLRQ ZDV DOVR UXQ XQGHU WKH LGHQWLFDO FRQGLWLRQV LQ WKH DEVHQFH RI WKH F\VWHLQH FKDLQ WUDQVIHU DJHQW 7KH UHVXOWLQJ SRO\PHUV ZHUH LVRODWHG E\ URWDU\ HYDSRUDWLRQ XQGHU YDFXXP DW r& 'XH LWV ORZ JODVV WUDQVLWLRQ WHPSHUDWXUH SRO\EXW\O DFU\ODWHf LV YLUWXDOO\ LPSRVVLEOH WR LVRODWH E\ SUHFLSLWDWLRQ LQ D QRQVROYHQW 7KH UHDFWLRQ SURGXFW RI WKH FRQWURO UHDFWLRQ ZDV D FOHDU H[WUHPHO\ WDFN\ YLVFRXV PDWHULDO ZLWK D \HOORZLVK KD]H 7KH F\VWHLQH PRGLILHG SURGXFW ZDV YHU\ VLPLODU ZLWK WKH H[FHSWLRQ RI WKH SUHVHQFH RI D ZKLWH SUHFLSLWDWH GLVSHUVHG ZLWKLQ WKH SRO\EXW\O DFU\ODWHf 7KLV SUHFLSLWDWH FRXOG EH VHSDUDWHG IURP WKH SRO\PHU E\ GLVVROYLQJ WKH SRO\EXW\O

PAGE 76

EXW\O DFU\ODWH F\VWHLQH R 1+R&KKW2+ + ZW b $,%1 W r& KUV 7+) (W2+ + 2 1+f§&+f§2+ K 3RO\EXW\O DFU\ODWHf )LJXUH 6FKHPDWLF RI LGHDO DPLQR DFLG IXQFWLRQDOL]DWLRQ GXULQJ SRO\PHUL]DWLRQ RI EXW\O DFU\ODWH

PAGE 77

DFU\ODWHf LQ 7+) 7KH SUHFLSLWDWH ZDV LQVROXEOH LQ 7+) DQG FRXOG WKHUHIRUH EH FROOHFWHG E\ ILOWUDWLRQ *HO SHUPHDWLRQ FKURPDWRJUDSK\ RI S%$f 0RODU PDVV DYHUDJHV DQG GLVWULEXWLRQV ZHUH PHDVXUHG XVLQJ *3& LQ RUGHU WR GHWHUPLQH WKH HIIHFWLYHQHVV RI FKDLQ WUDQVIHU &KDLQ WUDQVIHU VKRXOG VLJQLILFDQWO\ UHGXFH WKH PRODU PDVV RI WKH UHVXOWLQJ SRO\PHU ,I F\VWHLQH ZHUH WR KDYH D FKDLQ WUDQVIHU FRQVWDQW HTXLYDOHQW WR RWKHU FRPPRQO\ VWXGLHG PHUFDSWDQV LW VKRXOG GUDVWLFDOO\ GHFUHDVH WKH PRODU PDVV RI S%$f ZKHQ FRPSDUHG WR D QHDW SRO\PHUL]DLRQ )RU H[DPSOH VLPLODU FRQFHQWUDWLRQV RI PHUFDSWRHWKDQRO FKDLQ WUDQVIHU DJHQW KDYH EHHQ XVHG LQ WKLV ODERUDWRU\ LQ WKH V\QWKHVLV RI K\GUR[\O WHUPLQDWHG SRO\VW\UHQHDFU\ORQLWULOHf 8VLQJ WKH 0D\R HTXDWLRQ GHVFULEHG LQ VHFWLRQ ZH FDQ FDOFXODWH WKDW PHUFDSWRHWKDQRO FKDLQ WUDQVIHU FRQVWDQW OO =DPff ZRXOG \LHOG DQ ROLJRPHU ZLWK D PRODU PDVV RI #NJPRO 7KH PRODU PDVV GLVWULEXWLRQV RI WKH FRQWURO DQG F\VWHLQH PRGLILHG 3%$f DUH VKRZQ LQ )LJXUH 7KH QXPEHU DYHUDJH PRODU PDVV 0Qf IRU WKH FRQWURO VDPSOH ZDV NJPRO ZLWK D SRO\GLVSHUVLW\ LQGH[ RI 7KH SURGXFW RI WKH F\VWHLQH PRGLILHG SRO\PHUL]DWLRQ KDV DQ 0Q NJPRO 7KH PRODU PDVV ZDV UHGXFHG EXW QRW DV PXFK DV ZRXOG EH H[SHFWHG LI HIILFLHQW FKDLQ WUDQVIHU RFFXUUHG $OVR WKH F\VWHLQH PRGLILHG 3%$f KDV D PXFK EURDGHU GLVWULEXWLRQ ZLWK D SRO\GLVSHUVLW\ LQGH[ RI $QDO\VLV RI *3& GDWD ,Q RUGHU WR SURSHUO\ H[SODLQ WKHVH UHVXOWV WKH SUHVHQFH RI WKH VLGH SURGXFW RI WKH

PAGE 78

F F F QHDW 3RO\EXW\O DFU\ODWHf 0Q .JPRO 0Z .JPRO 3', 3%$F\VWHLQH S+ 0Q .JPRO 0Z .JPRO 3', 7 /RJ 0: )LJXUH *3& UHVXOWV RI SUHOLPLQDU\ EXW\O DFU\ODWH SRO\PHUL]DWLRQV

PAGE 79

F\VWHLQH UHDFWLRQ PXVW EH H[SODLQHG 7KH VLGH SURGXFW ZLWK D PHOWLQJ SRLQW RI # r& ZDV GHWHUPLQHG WR EH FU\VWDOOLQH E\ '7$ )LJXUH f 7KH )7,5 VSHFWUD RI WKLV SURGXFW VKRZQ LQ )LJXUH VKRZV WKH SUHVHQFH RI D HVWHU FDUERQ\O DW FP 7KH EURDG DEVRUSWLRQ IURP WR FP VXJJHVWV WKH SUHVHQFH RI D FDUER[\OLF DFLG IXQFWLRQDOLW\ )LJXUH VKRZV WKH VDPH VSHFWUD RI WKH VLGH SURGXFW IRFXVLQJ RQ WKH DUHD IURP WR FPn DV FRPSDUHG WR EXW\O DFU\ODWH PRQRPHU 7KH VLGH SURGXFW GRHV QRW KDYH WKH VKDUS DEVRUEDQFH DW FPn DVVRFLDWHG ZLWK WKH YLQ\O IXQFWLRQDOLW\ LQ WKH EXW\O DFU\ODWH PRQRPHU 7KHUH LV D EURDGHU DEVRUSWLRQ FHQWHUHG DURXQG FPn ZKLFK LV UHSUHVHQWDWLYH RI DQ DPLQH IXQFWLRQDO JURXS 8SRQ LQYHVWLJDWLRQ RI WKH OLWHUDWXUH IRU SRVVLEOH H[SODQDWLRQV RI WKLV VLGH UHDFWLRQ RI F\VWHLQH D VWXG\ E\ )ULHGPDQ HW DO )ULf ZDV IRXQG LQ ZKLFK WKH\ LQYHVWLJDWHG SRVVLEOH EORFNLQJ DJHQWV IRU VXOIK\GU\O JURXSV LQ SURWHLQV 7KH\ VKRZHG WKDW DFU\ODWHV LQ DTXHRXV FRQGLWLRQV FDQ UHDFW ZLWK F\VWHLQH WKURXJK WKH VXOIK\GU\O JURXS 7KH 6+ IXQFWLRQDO JURXS FDQ LRQL]H XQGHU EDVLF FRQGLWLRQV LQWR D VXOIXU DQLRQ DFFRUGLQJ WR WKHLU UHDFWLRQ SDWKZD\ )LJXUH f 7KH VXOIXU DQLRQ WKHQ DWWDFNV WKH YLQ\O JURXS RI WKH DFU\ODWH 7KH UHVXOWLQJ FDUEDQLRQ LV LPPHGLDWHO\ FDSSHG E\ D SURWRQ LQ WKH DTXHRXV VROXWLRQ

PAGE 80

7HPSHUDWXUH r&f )LJXUH '7$ WUDFH RI VLGH SURGXFW

PAGE 81

$EVRUEDQFH :DYHQXPEHUV FPf )LJXUH )7,5 VSHFWUD RI VLGH SURGXFW RI F\VWHLQH PRGLILHG 3%$f

PAGE 82

$EVRUEDQFH L 6LGH SURGXFW RI F\VWHLQH UHDFWLRQ :DYHQXPEHUV FPf )LJXUH &RPSDULVRQ RI )7,5 VSHFWUD RI VLGH SURGXFW ZLWK EXW\O DFU\ODWH PRQRPHU

PAGE 83

56+ + f§ 56 + 56 &+f§&+&225 f§A 56f§&+f§&+&225 56f§&+f§&+f§&225 + f§A 56f§&+Rf§&+f§&225 + )LJXUH 5HDFWLRQ SDWKZD\ RI F\VWHLQH ZLWK DFU\ODWHV :KHQ EXW\O DFU\ODWH LV XVHG WKH SURGXFW IRUPHG LV 6FDUEREXWR[\HWK\OF\VWHLQH )LJXUH f $FFRUGLQJ WR )ULHGPDQ WKLV FRPSRXQG KDV D PHOWLQJ SRLQW RI r& ZKLFK LV LQ JRRG FRUUHODWLRQ WR WKH 7P RI WKH VLGH SURGXFW LH r& (OHPHQWDO DQDO\VLV RI WKH VLGH SURGXFW FRQILUPHG WKH FRUUHFW FKHPLFDO IRUPXOD IRU 6 FDUEREXWR[\HWK\OF\VWHLQH )LJXUH f ,Q RUGHU WR PLQLPL]H RU HOLPLQDWH WKLV VLGH UHDFWLRQ ZH PXVW XQGHUVWDQG ZK\ LW LV RFFXUULQJ ,Q DQ DTXHRXV VROXWLRQ WKH LRQL]DWLRQ RI WKH VXOIK\GU\O JURXS LV DQ HTXLOLEULXP UHDFWLRQ ,W LV WKH DQLRQLF IRUP RI F\VWHLQH ZKLFK FDQ UHDFW ZLWK EXW\O DFU\ODWH WR IRUP WKH VLGH SURGXFW 7KLV HTXLOLEULXP UHDFWLRQ KDV D S.D DVVRFLDWHG ZLWK LW DQG WKHUHIRUH WKH UHODWLYH FRQFHQWUDWLRQV RI LRQL]HG WR XQLRQL]HG VSHFLHV DUH LQIOXHQFHG E\ WKH S+ RI WKH VROXWLRQ DV JRYHUQHG E\ WKH +HQGHUVRQ+DVVHOEDFK HTXDWLRQ S+ S.D ORJ >VM? >6+@f ZKHUH >6@ LV WKH FRQFHQWUDWLRQ RI VXOIXU DQLRQ DQG f >6+@ LV WKH FRQFHQWUDWLRQ RI WKH XQLRQL]HG VXOIK\GU\O JURXS 7KH S.D

PAGE 84

6&DUEREXWR[\HWK\OF\VWHLQH 1,IH&+&2+ •+ •+ •+ • • &+f &+ &DOFXODWHG ZWb IRU &+126 & + 1 )RXQG & + 1 )LJXUH 6WUXFWXUH DQG HOHPHQWDO DQDO\VLV RI VLGH SURGXFW

PAGE 85

RI WKH VXOIK\GU\O JURXS RI F\VWHLQH LV 9RHf ,Q RUGHU WR GHWHUPLQH WKH UHODWLYH FRQFHQWUDWLRQ RI LRQL]HG F\VWHLQH WKH S+ RI WKH 7+)(W2++EXW\O DFU\ODWHF\VWHLQH VROXWLRQ ZDV WKHQ PHDVXUHG 7KH S+ RI WKH VROXWLRQ LV EHORZ WKH S.D 8VLQJ HTXDWLRQ ZH FDQ WKHQ GHWHUPLQH WKDW DSSUR[LPDWHO\ b RI WKH F\VWHLQH DW D S+ RI LV SUHVHQW LQ WKH LRQL]HG IRUP DQG WKHUHIRUH b LV FDSDEOH RI UHDFWLQJ ZLWK EXW\O DFU\ODWH LQ WKH VLGH UHDFWLRQ ,I WKH HIIHFWLYH FRQFHQWUDWLRQ RI FKDLQ WUDQVIHU DJHQW ZHUH RQO\ EHLQJ UHGXFHG E\ b ZH ZRXOG H[SHFW WKDW WKHUH ZRXOG EH VXIILFLHQW XQLRQL]HG DFWLYH F\VWHLQH WR VLJQLILFDQWO\ DIIHFW WKH PRODU PDVV RI WKH SRO\EXW\O DFU\ODWHf $JDLQ LQ WKHVH FKDLQ WUDQVIHU SRO\PHUL]DWLRQV WKH PRODU PDVV LV JRYHUQHG E\ WKH FKDLQ WUDQVIHU FRQVWDQW DV ZHOO DV WKH UHODWLYH FRQFHQWUDWLRQV RI PRQRPHU FKDLQ WUDQVIHU DJHQW DQG IUHH UDGLFDO LQLWLDWRU $ b GHFUHDVH LQ F\VWHLQH FRQFHQWUDWLRQ ZRXOG LQGLFDWH WKDW LQVWHDG RI D PRQRPHUF\VWHLQH$,%1 PRODU UDWLR ZH ZRXOG EH ZRUNLQJ ZLWK D PRODU UDWLR ZKLFK VKRXOG VWLOO VLJQLILFDQWO\ GHFUHDVH WKH PRODU PDVV RI WKH SRO\EXW\O DFU\ODWHf 2QH ZRXOG H[SHFW D NJPROH LQVWHDG RI NJPROH PDFURPRQRPHU 7KH ILQDO PL[WXUH RI SURGXFWV LQ WKLV UHDFWLRQ GHSHQGV XSRQ WKH UHODWLYH UDWHV RI F\VWHLQH FRQVXPSWLRQ LQ WKH FKDLQ WUDQVIHU UHDFWLRQ DQG WKH VLGH UHDFWLRQ )ULHGPDQ KDV VKRZQ WKDW WKH UHDFWLRQ EHWZHHQ WKH VXOIXU DQLRQ DQG DFU\ODWHV RFFXUV DOPRVW LQVWDQWDQHRXVO\ )ULf 2Q WKH RWKHU KDQG

PAGE 86

WKH SRO\PHUL]DWLRQ RI EXW\O DFU\ODWH RFFXUV RYHU D SHULRG RI KRXUV 7KH LRQL]HG F\VWHLQH LV WKXV FRQVXPHG DW D KLJKHU UDWH WKDQ XQLRQL]HG F\VWHLQH 7KH GHVLUH IRU HTXLOLEULXP LQ WKH LRQL]DWLRQ UHDFWLRQ )LJXUH f GULYHV WKH UHDFWLRQ IXUWKHU WR WKH ULJKW ZKLFK OHDGV WR IXUWKHU LRQL]DWLRQ RI F\VWHLQH DQG WKXV IRUPDWLRQ RI PRUH VLGH SURGXFW 2YHU WLPH WKH XQLRQL]HG F\VWHLQH FRQFHQWUDWLRQ GHFUHDVHV XQWLO WKHUH LV QR F\VWHLQH SUHVHQW WR FDXVH FKDLQ WUDQVIHU 7KH XQH[SHFWHG *3& UHVXOWV VKRZQ SUHYLRXVO\ LQ )LJXUH FDQ QRZ WKHQ EH H[SODLQHG $W WKH HDUO\ VWDJHV RI WKH SRO\PHUL]DWLRQ RI SRO\EXW\O DFU\ODWHf XQLRQL]HG F\VWHLQH LV SUHVHQW DW UHODWLYHO\ KLJK FRQFHQWUDWLRQV DQG ORZ PRODU PDVV PDFURPRQRPHU LV EHLQJ SURGXFHG $V WLPH JRHV RQ WKH F\VWHLQH FRQFHQWUDWLRQ UHODWLYH WR EXW\O DFU\ODWH LV GHFUHDVLQJ OHDGLQJ WR OHVV WHUPLQDWLRQ WKURXJK FKDLQ WUDQVIHU DQG WKHUHIRUH ODUJHU PRODU PDVVHV %\ WKH HQG RI WKH UHDFWLRQ DOO RI WKH F\VWHLQH KDV EHHQ FRQVXPHG E\ WKH VLGH UHDFWLRQ DQG KLJK PRODU PDVV SRO\EXW\O DFU\ODWHf LV EHLQJ IRUPHG 7KLV ZRXOG H[SODLQ WKH H[WUHPHO\ EURDG PRODU PDVV GLVWULEXWLRQ REVHUYHG LQ WKH *3& DQDO\VLV 0RUH SHUWLQHQW WKDQ WKH DFWXDO PRODU PDVV YDOXHV LV WKDW LQ WKH DEVHQFH RI F\VWHLQH LQLWLDWLRQ ZLOO FRPH PDLQO\ IURP WKH $,%1 DQG WHUPLQDWLRQ ZLOO RFFXU E\ GLVSURSRUWLRQDWLRQ %UDf OHDGLQJ WR KLJK PRODU PDVV XQIXQFWLRQDOL]HG FKDLQV 3UHYHQWLRQ RI XQGHVLUHG VLGH UHDFWLRQ ,W LV FOHDU WKDW LQ RUGHU WR DFKLHYH FRPSOHWH FKDLQ WUDQVIHU DQG

PAGE 87

2 1+f§&+&f§2+ &+ 6+ 2 S.D U A 1+f§&+&f§2+ FK 6B + EXW\O DFU\ODWH &KDLQ WUDQVIHU IXQFWLRQDOL]DWLRQ EXW\O DFU\ODWH 6&DUEREXWR[\HWK\O F\VWHLQH )LJXUH 6LGH UHDFWLRQ SUHYHQWLQJ FRPSOHWH FKDLQ WUDQVIHU

PAGE 88

WKHUHIRUH SURGXFH KLJKO\ IXQFWLRQDOL]HG PDFURPRQRPHUV VLGH UHDFWLRQV PXVW EH UHGXFHG RU HOLPLQDWHG ,Q RUGHU WR SUHYHQW WKH IRUPDWLRQ RI 6FDUEREXWR[\HWK\OF\VWHLQH ZH PXVW SUHYHQW WKH LRQL]DWLRQ RI F\VWHLQH %\ DFLGLI\LQJ WKH SRO\PHUL]DWLRQ VROXWLRQ WKH LQLWLDO FRQFHQWUDWLRQ RI VXOIXU DQLRQ FDQ EH YLUWXDOO\ HOLPLQDWHG )RU H[DPSOH DJDLQ XVLQJ HTXDWLRQ LI ZH ZHUH WR DFLGLI\ WKH SRO\PHUL]DWLRQ VROXWLRQ WR D S+ RI WKH FRQFHQWUDWLRQ RI LRQL]HG F\VWHLQH ZRXOG EH UHGXFHG IURP b WR SDUWV SHU ELOOLRQ $OWKRXJK WKLV LRQL]HG F\VWHLQH ZLOO VWLOO IRUP WKH E\SURGXFW WKH HIIHFWLYH FRQFHQWUDWLRQ RI XQLRQL]HG F\VWHLQH ZLOO UHPDLQ WKH GRPLQDQW VSHFLHV $ QHZ UHDFWLRQ ZDV UXQ XQGHU VLPLODU FRQGLWLRQV WR WKH SUHYLRXV F\VWHLQH PRGLILHG SRO\PHUL]DWLRQ ZLWK WKH DGGLWLRQ RI K\GURFKORULF DFLG 7KH DGGLWLRQ RI +& IDFLOLWDWHG WKH GLVVROXWLRQ RI F\VWHLQH ,Q IDFW D KRPRJHQHRXV SRO\PHUL]DWLRQ VROXWLRQ FRXOG EH DFKLHYHG LQ D VROYHQW V\VWHP FRQWDLQLQJ ZHLJKW UDWLR 7+)ZDWHU+&O %HFDXVH WKH FRQFHQWUDWLRQ RI ZDWHU FRXOG EH VLJQLILFDQWO\ UHGXFHG WKH DGGLWLRQ RI HWKDQRO ZDV QRW QHFHVVDU\ WR NHHS WKH EXW\O DFU\ODWH PRQRPHU LQ VROXWLRQ 7KH S+ RI WKH UHDFWLRQ PL[WXUH ZDV UHGXFHG WR DQG WKH UHDFWLRQ DJDLQ ZDV UXQ IRU KRXUV DW r& $W WKLV S+ RQO\ OSSE RI F\VWHLQH LV SUHVHQW LQ WKH LRQL]HG IRUP 7KH UHVXOWLQJ VROXWLRQ ZDV QHXWUDOL]HG ZLWK S\ULGLQH 3\ULGLQH K\GURFKORULGH LPPHGLDWHO\ EHJDQ WR SUHFLSLWDWH DQG ZDV ILOWHUHG RXW 7KH SRO\EXW\O DFU\ODWHf VROXWLRQ ZDV

PAGE 89

HYDSRUDWHG WR GU\QHVV XQGHU YDFXXP DW r& 7KH SURGXFW \LHOG ZDV b RI WKHRUHWLFDO $JDLQ D \HOORZLVK YLVFRXV OLTXLG ZDV LVRODWHG 7KH PRVW VLJQLILFDQW YLVXDO GLIIHUHQFH EHWZHHQ WKLV SURGXFW DQG WKRVH RI WKH SUHYLRXV UHDFWLRQ ZDV WKH PXFK ORZHU YLVFRVLW\ HYLGHQFH RI ORZHU PRODU PDVV SRO\PHU $OVR WKHUH ZDV QR HYLGHQFH RI WKH IRUPDWLRQ RI WKH 6FDUEREXWR[\HWK\OF\VWHLQH *3& ZDV UXQ RQ WKH LVRODWHG SURGXFW )LJXUH VKRZV WKH HIIHFW RI DFLGLILFDWLRQ RQ WKH PRODU PDVV GLVWULEXWLRQ RI SRO\EXW\O DFU\ODWHf 7KH FRQFHQWUDWLRQ RI F\VWHLQH ZDV LGHQWLFDO WR WKDW LQ WKH SUHYLRXV UHDFWLRQ
PAGE 90

QHDW 3RO\EXW\O DFU\ODWHf 0Q .JPRO 0Z .JPRO 3', 3%$F\VWHLQH S+ 0Q .JPRO 0Z .JPRO 3', 3%$F\VWHLQH+&, S+ 0Q .JPRO 0Z .JPRO 3', L U /RJ 0: )LJXUH (IIHFW RI DFLGLILFDWLRQ RQ FKDLQ WUDQVIHU IXQFWLRQDOL]DWLRQ RI SRO\EXW\O DFU\ODWHf

PAGE 91

PRGHO 5RVf 7KH YDULDWLRQ RI WKH GHJUHH RI SRO\PHUL]DWLRQ LQ D IUHH UDGLFDO FKDLQ WUDQVIHU SRO\PHUL]DWLRQ LV JLYHQ E\ '3f N 5Q N U 9 S >0I &V 0 >0@ f ZKHUH &V &KDLQ WUDQVIHU FRQVWDQW >6@ &KDLQ WUDQVIHU DJHQW FRQFHQWUDWLRQ >0@ 0RQRPHU FRQFHQWUDWLRQ '3Q 'HJUHH RI SRO\PHUL]DWLRQ NWNS5S UDWH FRQVWDQW IRU WHUPLQDWLRQ SURSDJDWLRQ DQG WKH UDWH RI SRO\PHUL]DWLRQ UHVSHFWLYHO\ 7KH GHJUHH RI SRO\PHUL]DWLRQ LQ WKH DEVHQFH RI FKDLQ WUDQVIHU '3QR FDQ EH GHVFULEHG E\ HTXDWLRQ ZKHUH '3f 5S N I }A ?.S >0@ f 6XEVWLWXWLQJ WKLV YDOXH LQ HTXDWLRQ JLYHV XV WKH 0D\R HTXDWLRQ f IRU SUHGLFWLRQ RI WKH FKDLQ WUDQVIHU FRQVWDQW ZKHUH -B BB M U >V@ '3 f '3 QR 6>0@ f

PAGE 92

7KLV HTXDWLRQ LV YDOLG RQO\ ZKHQ WKH LQLWLDWRU FRQFHQWUDWLRQ LV ORZ %\ V\QWKHVL]LQJ D VHULHV RI SRO\PHUV ZLWK GLIIHUHQW UDWLRV RI FKDLQ WUDQVIHU DJHQW WR PRQRPHU D 0D\R SORW 7VXf FDQ EH XVHG WR GHWHUPLQH &V WR SURYH WKDW F\VWHLQH LV DQ HIIHFWLYH FKDLQ WUDQVIHU DJHQW 7KH 0D\R PRGHO FDQ DOVR EH XVHG WR SUHGLFW WKH IXQFWLRQDOLW\ RI WKH SRO\PHU REWDLQHG ,I ZH PXOWLSO\ ERWK VLGHV RI HTXDWLRQ E\ '3Q ZH JHW '3Q f§ >6@ M/ '3f&VWf§Mc '3fR >0@ f ZKHUH WKH WZR WHUPV RQ WKH ULJKW UHSUHVHQW WKH IUDFWLRQ RI XQIXQFWLRQDOL]HG DQG IXQFWLRQDOL]HG FKDLQV 6\QWKHVLV %XW\O DFU\ODWHF\VWHLQH$,%1 PROH UDWLRV RI ZHUH SRO\PHUL]HG LQ D 7+)+2+&, VROYHQW V\VWHP LGHQWLFDO WR WKDW SUHYLRXVO\ GHVFULEHG LQ VHFWLRQ 7KH RQO\ GLIIHUHQFH ZDV LQ WKH SXULILFDWLRQ $IWHU LVRODWLRQ WKH SRO\PHUV ZHUH H[WUDFWHG ZLWK 8OWUDSXUHr1 ZDWHU LQ RUGHU WR UHPRYH DQ\ WUDFHV RI XQUHDFWHG F\VWHLQH RU $,%1 *3& UHVXOWV 0RODU PDVV GLVWULEXWLRQV DUH VKRZQ LQ )LJXUH 7KH 0Q V\VWHPDWLFDOO\ GHFUHDVHV DV WKH UHODWLYH FRQFHQWUDWLRQ RI FKDLQ WUDQVIHU DJHQW LV LQFUHDVHG 7KH 0Q RI WKH QHDW SRO\EXW\O DFU\ODWHf ZDV NJPRO ZLWK D SRO\GLVSHUVLW\ LQGH[ LV 7KH 0Q DW WKH KLJKHVW FRQFHQWUDWLRQ RI F\VWHLQH ZDV NJPRO 7KH

PAGE 93

SRO\GLVSHUVLWLHV RI WKH UHDFWLRQV LQ ZKLFK F\VWHLQH LV SUHVHQW DUH DOO VLJQLILFDQWO\ ORZHU LH DURXQG $ 0D\R SORW RI WKH *3& GDWD LV GHSLFWHG LQ )LJXUH 5HIHUULQJ EDFN WR HTXDWLRQ ZH FDQ SORW WKH UHODWLYH FRQFHQWUDWLRQ RI FKDLQ WUDQVIHU DJHQW WR PRQRPHU >6@>0@ YHUVXV WKH LQYHUVH RI WKH QXPEHU DYHUDJH GHJUHH RQ SRO\PHUL]DWLRQ $IWHU SHUIRUPLQJ D UHJUHVVLRQ RQ WKH GDWD WKH VORSH RI WKH OLQH LV WKH FKDLQ WUDQVIHU FRQVWDQW &V 7KH FKDLQ WUDQVIHU FRQVWDQW f ZKHUH NWU LV WKH UDWH FRQVWDQW IRU FKDLQ WUDQVIHU $ ODUJHU FKDLQ WUDQVIHU FRQVWDQW LQGLFDWHV LQFUHDVLQJ WHUPLQDWLRQ E\ FKDLQ WUDQVIHU DQG WKXV WKH HIIHFWLYHQHVV RI WKH FKDLQ WUDQVIHU DJHQW LQ SDUWLFLSDWLQJ LQ WKH SRO\PHUL]DWLRQ 7KH FKDLQ WUDQVIHU FRQVWDQW FDOFXODWHG IRU WKH EXW\O DFU\ODWHF\VWHLQH V\VWHP ZDV 5HSRUWHG &V YDOXHV IRU RWKHU PHUFDSWDQV DUH JHQHUDOO\ EHWZHHQ DQG $V VWDWHG SUHYLRXVO\ ZH KDYH VWXGLHG PHUFDSWRHWKDQRO DV D FKDLQ WUDQVIHU DJHQW DQG IRXQG D &V RI 7KXV F\VWHLQH LV DQ H[WUHPHO\ HIIHFWLYH FKDLQ WUDQVIHU DJHQW LQ WKH SRO\PHUL]DWLRQ RI SRO\EXW\O DFU\ODWHf 6SHFWURVFRSLF FKDUDFWHUL]DWLRQ )7,5 ZDV UXQ LQ RUGHU WR REVHUYH DQ\ GLIIHUHQFHV LQ VWUXFWXUH EHWZHHQ WKH QHDW SRO\EXW\O DFU\ODWHf DQG WKH SURGXFW RI WKH F\VWHLQH

PAGE 94

! ( ORJ 0:f )LJXUH *3& UHVXOWV RI SRO\PHUL]DWLRQV RI EXW\O DFU\ODWH YDU\LQJ F\VWHLQH FRQFHQWUDWLRQV

PAGE 95

)LJXUH 0D\R SORW IRU FKDLQ WUDQVIHU FRQVWDQW GHWHUPLQDWLRQ IRU F\VWHLQHEXW\O DFU\ODWH V\VWHP

PAGE 96

PRGLILHG SRO\PHUL]DWLRQV 6SHFWURVFRSLF GHWHUPLQDWLRQ DQG TXDQWLILFDWLRQ RI DPLQR DFLG IXQFWLRQDO JURXSV LV FRPSOLFDWHG E\ WKH ORZ HQG JURXS FRQFHQWUDWLRQ UHODWLYH WR 3 %$f 7KH RQO\ GLIIHUHQFH LQ WKH )7,5 VSHFWUD RI WKH ORZHVW PRODU PDVV SRO\EXW\O DFU\ODWHf PDFURPRQRPHU NJPROf DQG WKH QHDW SRO\EXW\O DFU\ODWHf )LJXUH f 7KH RQO\ VLJQLILFDQW GLIIHUHQFH EHWZHHQ WKH WZR VSHFWUD ZDV WKH ORZ LQWHQVLW\ EURDG DEVRUSWLRQ IURP FPf 7KLV ZDV DWWULEXWHG WKH FDUER[\OLF DFLG IURP WKH F\VWHLQH HQG JURXS 105 VSHFWURVFRS\ ZDV XVHG LQ DQ DWWHPSW WR EHWWHU SURYH WKH SUHVHQFH RI WKH DPLQR DFLG HQGJURXS $ FRPSDULVRQ RI WKH +105 VSHFWUD RI QHDW SRO\EXW\O DFU\ODWHf )LJ f DQG WKH NJPRO PDFURPRQRPHU )LJ f UHYHDOV WKH SUHVHQFH RI WZR YHU\ VPDOO EURDG SHDNV DURXQG DQG IRU WKH PDFURPRQRPHU 7KH FKHPLFDO VKLIW YDOXHV DUH HTXDO WR WKH SUHGLFWHG VKLIWV RI WKH PHWK\OHQH DQG PHWKLQH SURWRQV IURP WKH F\VWHLQH HQGJURXS 6f $JDLQ WKH SHDNV DUH YHU\ ORZ LQ LQWHQVLW\ GXH WR WKH ORZ HQG JURXS FRQFHQWUDWLRQ 7KH &105 VSHFWUD RI WKH ORZ PRODU PDVV PDFURPRQRPHU LV VKRZQ LQ )LJXUH $OO SHDNV FDQ EH DVVLJQHG WR WKDW RI SRO\EXW\O DFU\ODWHf ZLWK WKH H[FHSWLRQ RI D VPDOO SHDN DW ZKLFK LV DVVLJQHG WR WKH &65 FDUERQ ,&3 ZDV XVHG WR GHWHUPLQH WKH VXOIXU FRQFHQWUDWLRQ LQ WKH S%$f $V GHVFULEHG LQ VHFWLRQ WKLV YDOXH LQ

PAGE 97

$EVRUEDQFH :DYHQXPEHUV FPf )LJXUH )7,5 VSHFWUD RI SRO\EXW\O DFU\ODWHf DQG F\VWHLQH HQGFDSSHG S%$f PDFURPRQRPHU 0DFURPRQRPHU LV WKH NJPRO S%$f V\QWKHVL]HG XVLQJ EXW\O DFU\ODWHF\VWHLQH$,%1 PROH UDWLR

PAGE 98

I H

PAGE 99

706 )LJXUH +105 VSHFWUD RI NJPRO F\VWHLQH PRGLGLHG SRO\EXW\O DFU\ODWHf

PAGE 100

2+ & &+&+VIF+&+A 1+ H F R R G FK F FK E FK D &+ LO XL /LDLLLLLL/LOL OLL L LO M LLG &'&, QA : :77LnZIO n-Ln7 ML I LZLL NL8N$DOANL£/OA‹-OOOLO£NLXL L/-‹8OXO8O 2 SSP &105 VSHFWUD RI NJPRO F\VWHLQH PRGLGILHG SRO\EXW\O DFU\ODWHf )LJXUH

PAGE 101

FRPELQDWLRQ ZLWK WKH PHDVXUHG PRODU PDVV YDOXHV DOORZV XV WR HVWLPDWH WKH SHUFHQW IXQFWLRQDOL]DWLRQ 7DEOH f 7$%/( 3HUFHQW IXQFWLRQDOL]DWLRQ YHUVXV PRODU PDVV IRU SRO\EXW\O DFU\ODWHf PDFURPRQRPHUV >60@ 0Q b IXQFWLRQDOL]DWLRQ 3UHGLFWHG b [ .JPROHf ,&3 6 FRQHf IXQFWLRQDOL]DWLRQr s s s r )XQFWLRQDOL]DWLRQ O'3Q'SQR GHULYHG IURP HTXDWLRQ >60@ UHODWLYH PRODU FRQFHQWUDWLRQ RI F\VWHLQH WR EXW\O DFU\ODWH $V WKH FRQFHQWUDWLRQ RI F\VWHLQH ZDV LQFUHDVHG WKH SHUFHQW IXQFWLRQDOL]DWLRQ RI FKDLQV LQFUHDVHV XS WR b IRU WKH ORZHVW PRODU PDVV VDPSOH 7KLV WUHQG RI LQFUHDVLQJ IXQFWLRQDOL]DWLRQ ZLWK LQFUHDVLQJ F\VWHLQH FRQFHQWUDWLRQ DOVR KHOG IRU WKH SUHGLFWHG IXQFWLRQDOLWLHV IURP WKH 0D\R PRGHO 7KLV ZRXOG LPSO\ WKDW FKDLQ WUDQVIHU GRPLQDWHV WKH WHUPLQDWLRQ SURFHVV DV WKH FKDLQ WUDQVIHU DJHQW FRQFHQWUDWLRQ LQFUHDVHV $OVR WKH SUREDELOLW\ RI LQLWLDWLRQ E\ DQ $,%1 UDGLFDO YHUVXV D PHUFDSWR VXOIXU UDGLFDO GHFUHDVHV 7KH GLIIHUHQFHV LQ WKH SUHGLFWHG DQG H[SHULPHQWDO IXQFWLRQDOLWLHV PD\ EH DFFRXQWHG IRU E\ H[SHULPHQWDO

PAGE 102

PHWKRGRORJ\ XVHG WR PHDVXUH WKHVH YDOXHV $V VWDWHG SUHYLRXVO\ LQ VHFWLRQ WKHVH YDOXHV DUH FDOFXODWHG XQGHU WKH DVVXPSWLRQ WKDW WKH PRODU PDVVHV PHDVXUHG E\ *3& DUH DEVROXWH ZKHUH LQ IDFW WKHVH YDOXHV DUH UHODWLYH WR SRO\VW\UHQH VWDQGDUGV ,Q RWKHU ZRUGV RXU PHDVXUHG PRODU PDVV LV WKH PRODU PDVV RI WKH SRO\VW\UHQH VWDQGDUG ZKRVH K\GURG\QDPLF YROXPH LV HTXDO WR RXU VDPSOH 1RQHWKHOHVV EHFDXVH RI VLPLODU VROXELOLW\ SDUDPHWHUV PRQRPHU PRODU PDVVHV DQG EDFNERQH FKHPLVWU\ IRU SRO\VW\UHQHf DQG SRO\EXW\O DFU\ODWHf WKHVH HVWLPDWHV VKRXOG EH UHDVRQDEO\ DFFXUDWH ,W PXVW EH QRWHG WKDW WKH YDOXHV SUHGLFWHG E\ WKH 0D\R PRGHO DUH DOVR HVWLPDWHV FDOFXODWHG XQGHU WKH DVVXPSWLRQ RI LGHDO FRQGLWLRQV ,W LV UHDVRQDEOH WR DVVXPH WKDW WKH VXOIXU FRQWHQW PHDVXUHG E\ ,&3 IRU WKH PDFURPRQRPHU LV SUHVHQW GXH WR WKH F\VWHLQH HQGJURXS ,I WKLV LV WKH FDVH WKHQ IRU HYHU\ PROH RI VXOIXU ZH KDYH D PROH RI DPLQR DFLG 7KHUHIRUH ZH DUH HVWLPDWLQJ WKDW EHWZHHQ DQG b RI DOO FKDLQV SRVVHVV WKH DPLQR DFLG IXQFWLRQDOLW\ DQG WKHUHIRUH WKH DELOLW\ SDUWLFLSDWH LQ D FRQGHQVDWLRQ UHDFWLRQ &\VWHLQH &KDLQ 7UDQVIHU LQ WKH 6\QWKHVLV RI $PLQR $FLGWHUPLQDWHG 3RO\PHWK\O PHWKDFU\ODWHRFWDIOXRURSHQW\O PHWKDFU\ODWHf 0DFURPRQRPHUV )OXRURDFU\ODWH FRSRO\PHUV ZHUH DOVR SRO\PHUL]HG LQ WKH SUHVHQFH RI F\VWHLQH LQ RUGHU WR SURGXFH DPLQR DFLG WHUPLQDWHG IOXRURSRO\PHUV )OXRURSRO\PHUV DUH NQRZQ IRU

PAGE 103

WKHLU ORZ VXUIDFH HQHUJ\ 7KH\ KDYH EHHQ EOHQGHG ZLWK PRUH K\GURSKLOLF SRO\PHUV WR UHGXFH WKHLU PRLVWXUH DEVRUSWLRQ ,I IOXRURSRO\PHUV FRXOG EH V\QWKHVL]HG ZKLFK ZHUH FDSDEOH RI JUDIWLQJ LQWR D SRO\DPLGH EDFNERQH ZH FRXOG HQYLVLRQ WKLV JUDIW FRSRO\PHU FRXOG EH XVHG DV D SRWHQWLDO VXUIDFH PRGLILHU IRU SRO\DPLGHV 7KH IOXRURSRO\PHU FKRVHQ LQ WKLV VWXG\ LV RFWDIOXRURSHQW\O PHWKDFU\ODWH 2)30$f %HFDXVH RI FRQFHUQ RYHU WKH VROXELOLW\ RI D KRPRSRO\PHU RI 2)30$ LQ WKH JUDIW FRSRO\PHUL]DWLRQ UHDFWLRQ FRSRO\PHUV RI WKLV IOXRURDFU\ODWH ZLWK PHWK\O PHWKDFU\ODWH 00$f ZHUH V\QWKHVL]HG 7KH FRSRO\PHU VWUXFWXUH LV GHSLFWHG LQ )LJXUH 7KH 00$ WR 2)30$ PRQRPHU PRODU PDVVHV RI DQG JPRO UHVSHFWLYHO\ ZHUH PL[HG LQ D ZHLJKW UDWLR WR \LHOG D PROH UDWLR RI 00$2)30$ 0RQRPHUF\VWHLQH$,%1 PROH UDWLRV RI ZHUH SRO\PHUL]HG LQ D 7+)++& VROYHQW V\VWHP 3RO\PHUL]DWLRQ FRQGLWLRQV DQG VROYHQW FRPSRVLWLRQ ZHUH LGHQWLFDO WR WKRVH LQ VHFWLRQ 7KH RQO\ GLIIHUHQFH FDPH LQ WKH LVRODWLRQ RI WKH SURGXFW 7KH FRSRO\PHUV ZKLFK ZHUH LVRODWHG E\ SUHFLSLWDWLRQ LQ D ; H[FHVV RI PHWKDQRO ZHUH ILOWHUHG DQG GULHG RYHUQLJKW XQGHU YDFXXP DW r& $ ZKLWH SUHFLSLWDWH ZDV LVRODWHG DQG WKHQ JURXQG LQWR D SRZGHU *3& UHVXOWV 0RODU PDVV GLVWULEXWLRQV RI WKH WKUHH FRSRO\PHUV DUH VKRZQ LQ )LJXUH DQG WKH PRODU PDVV DYHUDJHV DUH WDEXODWHG LQ 7DEOH 0Q YDOXHV GHFUHDVH

PAGE 104

3RO\PHWK\O PHWKDFU\ODWHFRRFWDIOXRURSHQW\O PHWKDFU\ODWHf FK FK I&+ &&+ &A F R F R FK +&+ +f§&f§) A7f R Q Q )f§&f§) L ) )LJXUH &KHPLFDO VWUXFWXUH RI IOXRURDFU\ODWH FRSRO\PHU

PAGE 105

PRQRPHUF\VWHLQH$,%1 PRQRPHUF\VWHLQH$,%1 PRQRPHUF\VWHLQH$,%1 )LJXUH *3& UHVXOW RI FKDLQ WUDQVIHU SRO\PHUL]DWLRQV RI IOXRURDFU\ODWH FRSRO\PHUV 7$%/( 0RODU PDVV YDOXHV RI IOXRURDFU\ODWH FRSRO\PHUV IURP *3& >0@>6@>$,%1@ 0Q NJPROf 0Z NJPROf 3', 0 PRQRPHU 6 F\VWHLQH

PAGE 106

IURP NJPRO LQ WKH QHDW SRO\PHUL]DWLRQ WR DQG NJPROH LQ WKH SUHVHQFH RI YDU\LQJ DPRXQWV RI F\VWHLQH 7KH PRODU PDVV GLVWULEXWLRQV DOVR DUH QDUURZHU ZLWK SRO\GLVSHUVLWLHV JRLQJ IURP LQ WKH QHDW VDPSOH WR LQ WKH F\VWHLQH PRGLILHG SRO\PHUL]DWLRQV $OWKRXJK WKH SUHVHQFH RI WKH F\VWHLQH FKDLQ WUDQVIHU DJHQW FDXVHV D GHFUHDVH LQ PRODU PDVV LW GRHV VR WR D PXFK ORZHU H[WHQW WKDQ LQ WKH SUHYLRXV EXW\O DFU\ODWH SRO\PHUL]DWLRQV )LJXUH VKRZV D FRPSDULVRQ RI WKH HIIHFW RI F\VWHLQH RQ WKH SRO\PHUL]DWLRQV RI EXW\O DFU\ODWH DQG 00$2)30$ %RWK GLVWULEXWLRQV VKRZQ DUH IRU WKH PROH UDWLRV RI PRQRPHUF\VWHLQH$,%1 ,W LV HYLGHQW WKDW UDWH RI FKDLQ WUDQVIHU LQ WKH IOXRURDFU\ODWH SRO\PHUL]DWLRQ LV VXEVWDQWLDOO\ ORZHU WKDQ WKDW LQ WKH EXW\O DFU\ODWH UHDFWLRQ ,Q RUGHU WR TXDQWLI\ WKLV GHFUHDVH LQ FKDLQ WUDQVIHU WKH FKDLQ WUDQVIHU FRQVWDQW IRU WKH F\VWHLQHIOXRURDFU\ODWH V\VWHP PXVW EH GHWHUPLQHG ,Q RUGHU WR JHQHUDWH D 0D\R SORW IRU WKLV UHDFWLRQ WKH GHJUHH RI SRO\PHUL]DWLRQ IRU WKH SRO\00$2)30$f PXVW EH FDOFXODWHG IURP WKH *3& GDWD %XW WKH DFWXDO FRPSRVLWLRQ RI WKH FRSRO\PHU LQ WHUPV RI PROH SHUFHQW 00$ DQG 2)30$ LV QRW NQRZQ DQG WKXV WKH DYHUDJH PRQRPHU PRODU PDVV DQG WKXV WKH GHJUHH RI SRO\PHUL]DWLRQ FDQQRW EH FDOFXODWHG 'XH WR SRVVLEOH GLIIHUHQFHV LQ IUHH UDGLFDO UHDFWLYLW\ UDWLRV WKH FRPSRVLWLRQ RI WKH SRO\PHU LV QRW H[SHFWHG WR EH HTXLYDOHQW WKH PRQRPHU IHHG FRPSRVLWLRQ

PAGE 107

)LJXUH &RPSDULVRQ RI HIIHFWLYHQHVV RI FKDLQ WUDQVIHU IRU S%$f DQG IOXRURDFU\ODWH FRSRO\PHU

PAGE 108

105 VSHFWURVFRS\ ZDV XVHG WR GHWHUPLQH WKH FRPRQRPHU GLVWULEXWLRQ LQ WKH IOXRURDFU\ODWH FRSRO\PHU 7KH VSHFWUD IRU WKH FRSRO\PHU LV VKRZQ LQ )LJXUH 7KH PROH SHUFHQW IOXRURDFU\ODWH ZDV FDOFXODWHG IURP WKH LQWHJUDO UDWLR RI 2&+ DW a IURP WKH 2)30$ WR WKH 2&+ SURWRQV DW a IRU 00$ $OWKRXJK WKH IHHG PROH UDWLR ZDV 00$2)30$ WKH FRSRO\PHU FRPSRVLWLRQ ZDV FORVHU WR ZLWK PROH b 00$ 105 ZDV UXQ RQ DOO WKUHH FRSRO\PHUV DQG QR GLIIHUHQFH LQ FRSRO\PHU FRPSRVLWLRQ ZDV REVHUYHG *LYHQ WKH FRPSRVLWLRQ RI WKH 00$2)30$ FRSRO\PHUV ZH FDQ FDOFXODWH DQ DYHUDJH PRQRPHU PRODU PDVV DQG WKXV WKH GHJUHH RI SRO\PHUL]DWLRQ RI RXU FRSRO\PHU VHULHV 7KLV DOORZV XV WR JHQHUDWH D 0D\R SORW VKRZQ LQ )LJXUH IRU WKH FRSRO\PHUL]DWLRQ RI 00$2)30$ LQ WKH SUHVHQFH RI F\VWHLQH 7KH FKDLQ WUDQVIHU FRQVWDQW IRU WKLV UHDFWLRQ KDV EHHQ FDOFXODWHG WR EH VLJQLILFDQWO\ ORZHU WKDQ WKH FKDLQ WUDQVIHU FRQVWDQW IRU WKH EXW\O DFU\ODWH SRO\PHUL]DWLRQ 7KH FDXVH RI WKH GLIIHUHQFHV EHWZHHQ WKH WZR PD\ EH GXH WR WKH ORZHU UHDFWLYLW\ RI PHWKDFU\ODWHV YHUVXV DFU\ODWHV 1DLf 1DLU KDV UHSRUWHG WKDW GHJUDGDWLYH FKDLQ WUDQVIHU LQ OHVV UHDFWLYH PRQRPHUV 7KDW LV WKH UDWH RI SRO\PHUL]DWLRQ GHFUHDVHV ZLWK LQFUHDVLQJ FRQFHQWUDWLRQ RI PHUFDSWDQV 1DLU DWWULEXWHV WKLV WR WKH PXWXDO GHVWUXFWLRQ RI VXOIXU UDGLFDOV E\ FRPELQDWLRQ WR IRUP GLVXOILGHV DQG WR VORZ UHLQLWLDWLRQ E\ WKH VXOIXU UDGLFDO

PAGE 109

Ff F )LJXUH +105 VSHFWUD RI 00$2)30$ PDFURPRQRPHU

PAGE 110

'3[ )LJXUH 0D\R SORW IRU FKDLQ WUDQVIHU FRQVWDQW GHWHUPLQDWLRQ IRU F\VWHLQH00$FR2)30$ V\VWHP

PAGE 111

&RQFOXVLYH HYLGHQFH RI WKH SUHVHQFH RI WKH DPLQR DFLG IXQFWLRQDOLW\ RQ WKHVH FRSRO\PHUV ZDV QRW REVHUYHG LQ WKH 105 VSHFWUD RI WKH ORZHVW 0Q FRSRO\PHU )LJXUH f $OVR WKH )7,5 VSHFWUD RI WKH QHDW 00$2)30$ FRSRO\PHU DQG WKDW SRO\PHUL]HG DW WKH KLJKHVW F\VWHLQH FRQFHQWUDWLRQ VKRZQ LQ )LJXUH GLVSOD\ QR REVHUYDEOH GLIIHUHQFHV ,W PXVW EH QRWHG WKDW EHFDXVH WKH PRODU PDVV YDOXHV RI WKH IOXRURDFU\ODWH FRSRO\PHUV DUH VXEVWDQWLDOO\ KLJKHU WKDQ WKH SRO\EXW\O DFU\ODWHf PDFURPRQRPHUV WKH UHODWLYH FRQFHQWUDWLRQ RI HQG JURXSV LV VXEVWDQWLDOO\ ORZHU DQG WKHUHIRUH PRUH GLIILFXOW WR GHWHFW $OVR ,&3 FRXOG QRW EH XVHG WR GHWHUPLQH VXOIXU FRQFHQWUDWLRQ EHFDXVH VWDEOH DTXHRXV HPXOVLRQV FRXOG QRW EH PDGH 7KLV FRXOG EH GXH WR ERWK WKH K\GURSKRELFLW\ RI WKH FRSRO\PHU DV ZHOO DV WKH KLJKHU JODVV WUDQVLWLRQ WHPSHUDWXUH FRPSDUHG WR WKH S%$f 7KH RQO\ YDOXHV RI IXQFWLRQDOLW\ DYDLODEOH DUH WKRVH SUHGLFWHG E\ WKH 0D\R PRGHO DQG b IRU WKH WZR 00$FR 2)30$ PDFURPRQRPHUV 7KHVH YDOXHV VLJQLILFDQWO\ ORZHU WKDQ WKH SUHGLFWHG IXQFWLRQDOLW\ RI WKH S%$f PDFURPRQRPHUV IURP 7DEOH &RQFOXVLYH SURRI RI IXQFWLRQDOLW\ ZLOO EH GHWHUPLQHG E\ WKH FRSRO\PHUV DELOLW\ WR UHDFW LQ D FRQGHQVDWLRQ JUDIWLQJ UHDFWLRQ

PAGE 112

$EVRUEDQFH )LJXUH )7,5 VSHFWUD RI 00$2)30$ FRSRO\PHUV

PAGE 113

3RO\DPLGHJDFU\ODWHf *UDIW &RSRO\PHUV IURP $PLQR $FLGWHUPLQDWHG 0DFURPRQRPHUV 0RVW RI WKH PDFURPRQRPHUV GHVFULEHG LQ WKH OLWHUDWXUH FRQWDLQ XQVDWXUDWHG HQGJURXSV DOORZLQJ IRU JUDIW FRSRO\PHUL]DWLRQV 7KHUHIRUH WKH PDMRULW\ RI WKH VWXGLHV LQYROYLQJ WKH JUDIW FRSRO\PHUL]DWLRQ RI PDFURPRQRPHUV KDYH FRQFHQWUDWHG RQ WKH IUHH UDGLFDO JUDIW SRO\PHUL]DWLRQ RI YLQ\O PRQRPHUV 7KLV VWXG\ LV IRFXVHG RQ WKH FRQGHQVDWLRQ JUDIW FRSRO\PHUL]DWLRQ RI WKH SUHYLRXVO\ V\QWKHVL]HG SRO\DFU\ODWHf DQG SRO\PHWKDFU\ODWHf PDFURPRQRPHUV ZLWK SRO\DPLGH SUHFXUVRUV 6\QWKHVLV RI 3RO\DPLGHJEXW\O DFU\ODWHf $ JHQHUDO UHDFWLRQ VFKHPDWLF LV LOOXVWUDWHG LQ )LJXUH 7KH DPLQR DFLG IXQFWLRQDOLW\ RI WKH SRO\EXW\O DFU\ODWHf UHDFWV ZLWK WKH VSHFLILHG DPLQR DFLG LQ D FRQGHQVDWLRQ UHDFWLRQ SURGXFLQJ DQ DPLGHDFU\ODWH JUDIW FRSRO\PHU DQG ZDWHU 7KH SRO\DPLGH JUDIW FRSRO\PHU V\QWKHVLV ZDV FDUULHG RXW LQ D VROYHQW V\VWHP RULJLQDOO\ GHYHORSHG E\ +LJDVKL +LJD +LJE +LJFf IRU WKH VROXWLRQ SRO\PHUL]DWLRQ RI KLJK PRODU PDVV SRO\DPLGHV 7KLV SRO\PHUL]DWLRQ RI GLDFLGV DQG GLDPLQHV ZDV UXQ LQ DQ 103S\ULGLQH FRVROYHQW PL[WXUH LQ WKH SUHVHQFH RI WULSKHQ\O SKRVSKLWH 733f DQG /L&O 7KH S\ULGLQH DLGV LQ WKH GLVVROXWLRQ RI WKH DPLQR DFLG

PAGE 114

QK R Mf§&22+ 1+5f§Ff§2+ &+ 6 3RO\EXW\O DFU\ODWHf 3RO\DPLGH )LJXUH $PLGHDFU\ODWH JUDIW FRSRO\PHU VWUXFWXUH

PAGE 115

UHDFWDQWV 7ULSKHQ\O SKRVSKLWH FDWDO\]HV WKH SRO\PHUL]DWLRQ E\ UHDFWLQJ ZLWK WKH DFLGV DQG DPLQHV WR UHPRYH ZDWHU IURP WKH FRQGHQVDWLRQ /L&O IDFLOLWDWHV WKH UHDFWLRQ RI WKH WULSKHQ\O SKRVSKLWH 7KH FRQGHQVDWLRQ PHFKDQLVP DV SURSRVHG E\ +LJDVKL LV LOOXVWUDWHG LQ )LJXUH 7ULSKHQ\O SKRVSKLWH UHDFWV ZLWK /L&O WR IRUP D WULSKHQ\O SKRVSKRQLXP VDOW 6WHS f 7KH SKRVSKRQLXP VDOW WKHQ UHDFWV ZLWK D FDUER[\OLF DFLG WR IRUP D GLSKHQ\O SKRVSKRQLXP FDWLRQ DQG D SKHQROLF DQLRQ 6WHS f $Q DPLQH FDQ WKHQ DWWDFN WKH FDUER[\OLF DFLG SURGXFLQJ DQ DPLGH OLQNDJH GLSKHQ\O SKRVSKLWH DQG SKHQRO 6WHS f 6\QWKHVLV 7KH V\QWKHVL]HG JUDIW FRSRO\PHU FRPSRVLWLRQV DUH VKRZQ LQ )LJXUH 7ZR GLIIHUHQW SRO\DPLGH FRPSRVLWLRQV D ZKROO\ DURPDWLF SRO\DPLQREHQ]RLF DFLGf 3$%$f DQG DQ DURPDWLFDOLSKDWLF SRO\SKHQ\OHQH GLDPLQHFRDGLSLF DFLGf 3K'$$f ZHUH KRPRSRO\PHUL]HG DQG JUDIW FRSRO\PHUL]HG LQ YDU\LQJ UDWLRV ZLWK D NJPRO DPLQR DFLGWHUPLQDWHG SRO\EXW\O DFU\ODWHf PDFURPRQRPHU $ FRQWURO UHDFWLRQ ZDV UXQ LQ ZKLFK D NJPRO XQIXQFWLRQDOL]HG SRO\EXW\O DFU\ODWHf ZDV VXEVWLWXWHG IRU WKH ORZ PRODU PDVV SRO\EXW\O DFU\ODWHf PDFURPRQRPHU 7KLV XQIXQFWLRQDOL]HG S%$f ZDV V\QWKHVL]HG XVLQJ D EXW\O PHUFDSWDQ FKDLQ WUDQVIHU DJHQW ZKLFK VKRXOG UHVXOW LQ DQ XQUHDFWLYH EXW\O HQG JURXS 3K'$$ ZDV DOVR SRO\PHUL]HG LQ WKH SUHVHQFH RI D NJPRO SRO\00$FR2)30$f PDFURPRQRPHU

PAGE 116

)LJXUH 7ULSKHQ\O SKRVSKLWH GULYHQ DPLGH IRUPDWLRQ

PAGE 117

3RO\DPLGH 0DFURPRQRPHU SUHFXUVRUV W\SHf ZHLJKW bf ? f§ R +2&I 9QK 3%$f NJPROH 3%$f NJPROH QKf§9QK +2&&+f&2+ f§ 3%$f NJPROH 3%$f NJPROH S00$FR2)30$f NJPROH S%$f QRQIXQFWLRQDOL]HG NJPROH 6DPSOH ,' 3$%$ 3$%$J%$ 3$%$J%$ 3K'$$ 3K'$$J% $ 3K'$$J%$ 3K'$$J)$ 3K'$$J8% $ )LJXUH 6\QWKHVL]HG JUDIW FRSRO\PHU FRPSRVLWLRQV

PAGE 118

,Q D W\SLFDO UHDFWLRQ J RI NJPRO S%$f PDFURPRQRPHU PPROf J PPROf S SKHQ\OHQHGLDPLQH J PPROf DGLSLF DFLG J 733 PPROf DQG J /L&O ZHUH GLVVROYHG LQ PO RI DQ 103S\ULGLQH VROXWLRQ DQG KHDWHG DW r& IRU KRXUV 7KH UHVXOWLQJ SRO\PHU D WDFN\ OLJKW EURZQ VROLG ZDV REWDLQHG DOPRVW TXDQWLWDWLYHO\ E\ SUHFLSLWDWLRQ LQ DQ H[FHVV RI ZDWHUPHWKDQRO QRQVROYHQW ILOWHUHG ZDVKHG ZLWK PHWKDQRO DQG GULHG RYHUQLJKW XQGHU YDFXXP DW r& 7KH PRODU FRQFHQWUDWLRQ RI DPLGH SUHFXUVRUV DQG FDWDO\VWV ZHUH NHSW FRQVWDQW IRU DOO SRO\PHUL]DWLRQV 7KH 3$%$ FRQWDLQLQJ SRO\DPLGHV ZHUH LQVROXEOH LQ DOO FRPPRQ RUJDQLF VROYHQWV 7KRVH WULHG LQFOXGHG 7+) '0) GLFKORURDFHWLF DFLG DQG WULIOXRURDFHWLF DFLG 7KH RQO\ VROYHQW IRXQG IRU ERWK WKH 3$%$ KRPRSRO\PHU DQG FRSRO\PHU ZDV FRQFHQWUDWHG VXOIXULF DFLG 7KLV LV QRW VXUSULVLQJ JLYHQ WKH VLPLODULW\ RI WKH DURPDWLF VWUXFWXUH LQ 3$%$ WR .HYODUp SRO\DPLGHV 3K'$$ KRPRSRO\PHU DQG FRSRO\PHUV ZHUH VROXEOH LQ ERWK GLFKORURDFWHLF DFLG DQG FRQFHQWUDWHG VXOIXULF DFLG &KDUDFWHUL]DWLRQ RI *UDIW &RSRO\PHUV 6R[KOHW H[WUDFWLRQ RI JUDIW FRSRO\PHUV $OO SRO\DPLGH KRPRSRO\PHUV DQG JUDIW FRSRO\PHUV ZHUH 6R[KOHW H[WUDFWHG ZLWK +3/& JUDGH 7+) DQ H[FHOOHQW VROYHQW IRU DQ\ XQUHDFWHG DFU\ODWH RU PHWKDFU\ODWH PDFURPRQRPHU *UDIWHG SRO\DPLGHV

PAGE 119

GLVSOD\HG VLJQLILFDQW VZHOOLQJ LQ WKH 7+) VROXWLRQ :HLJKW ORVV GXULQJ H[WUDFWLRQ LV VKRZQ LQ 7DEOH 7$%/( 3HUFHQW ZHLJKW ORVV IURP 6R[KOHW H[WUDFWLRQ IRU SRO\DPLGH JUDIW FRSRO\PHUV 3RO\DPLGH *UDIW &RSRO\PHU b :HLJKW ORVV 3$%$ 3$%$J%$ QRW PHDVXUHG 3$%$J%$ 3K'$$ 3K'$$J%$ 3K'$$J%$ 3K'$$J)$ 3K'$$J8%$ 7KH SRO\DPLGH KRPRSRO\PHUV GLVSOD\ QHJOLJLEOH ZHLJKW ORVV GXULQJ H[WUDFWLRQ ZKHUHDV WKH JUDIW FRSRO\PHUV ORVW EHWZHHQ DQG ZHLJKW b GXULQJ H[WUDFWLRQ 3K'$$J)$ VKRZV D PXFK KLJKHU ZHLJKW ORVV WKDQ WKH FRUUHVSRQGLQJ S%$f JUDIW FRSRO\PHUV 7KLV FRXOG EH DWWULEXWHG WR WKH XQIXQFWLRQDOL]HG FKDLQV GXH WR WKH ORZHU FKDLQ WUDQVIHU FRQVWDQW DQG WKXV ORZHU HIILFLHQF\ RI IXQFWLRQDOL]DWLRQ LQ WKH SRO\PHUL]DWLRQ RI WKH IOXRURDFU\ODWH PDFURPRQRPHU ,Q WKH FRQWURO SRO\PHUL]DWLRQ WKH ZHLJKW ORVV DOPRVW JXDQWLWDWLYHO\ PDWFKHV WKH DPRXQW RI XQIXQFWLRQDOL]HG S%$f DGGHG WR WKH UHDFWLRQ 7KLV ZRXOG LQGLFDWH WKDW WKH XQIXQFWLRQDOL]HG S%$f LV QRW FDSDEOH RI UHDFWLQJ ZLWK WKH

PAGE 120

DPLGH SUHFXUVRUV LQ D JUDIW FRSRO\PHUL]DWLRQ 7KHUHIRUH DQ\ LQFRUSRUDWLRQ RI WKH S%$f PDFURPRQRPHUV FDQ EH DWWULEXWHG WR DPLQR DFLG IXQFWLRQDOLW\ 'XH WR WKH VLJQLILFDQW ZHLJKW ORVV GXULQJ H[WUDFWLRQ RI WKH PDFURPRQRPHUJUDIWHG SRO\DPLGHV LW ZRXOG LQLWLDOO\ DSSHDU WKDW D ODUJH IUDFWLRQ RI PDFURPRQRPHUV DUH XQIXQFWLRQDOL]HG DQG WKHUHIRUH FDQQRW SDUWLFLSDWH LQ WKH FRQGHQVDWLRQ SRO\PHUL]DWLRQ *3& ZDV UXQ RQ WKH H[WUDFWHG VROXWLRQV DQG )7,5 VSHFWUD FROOHFWHG RI WKH SUH DQG SRVW H[WUDFWHG JUDIW SRO\DPLGHV LQ WR RUGHU EHWWHU H[SODLQ WKH 6R[KOHW UHVXOWV *3& UHVXOWV )LJXUH VKRZV FRPSDULVRQ RI WKH PRODU PDVV GLVWULEXWLRQV IURP WKH UHIUDFWLYH LQGH[ GHWHFWRUf RI WKH H[WUDFWHG IUDFWLRQ RI WKH 3$%$J3%$ JUDIW FRSRO\PHU DQG WKH RULJLQDO S%$f PDFURPRQRPHU 7KH H[WUDFWHG IUDFWLRQ LV QRW SXUHO\ XQUHDFWHG PDFURPRQRPHU 7KH GLVWULEXWLRQ LV ELPRGDO ZLWK D KLJK PRODU PDVV FRPSRQHQW DW DSSUR[LPDWHO\ NJPRO DQG D ORZ PRODU PDVV IUDFWLRQ QHDU WKH RULJLQDO PDFURPRQRPHU PRODU PDVV 7KH *3& GDWD ZDV DOVR FROOHFWHG XVLQJ D SKRWRGLRGH DUUD\ GHWHFWRU PHDVXULQJ 89 DEVRUSWLRQ 7KH 89 VSHFWUD IURP QP IRU WKH KLJK DQG ORZ PRODU PDVV FRPSRQHQWV LQ WKH H[WUDFWHG VROXWLRQ FDQ EH VHHQ LQ )LJXUH 7KH VSHFWUD FDQ EH FRPSDUHG ZLWK WKDW RI WKH RULJLQDO PDFURPRQRPHU 3%$f VKRZV D VLQJOH DEVRUEDQFH FHQWHUHG DURXQG QP FKDUDFWHULVWLF RI WKH Q f§} Wr WUDQVLWLRQV RI FDUERQ\O FRQWDLQLQJ FRPSRXQGV 6LOf

PAGE 121

P9 )LJXUH 0RODU PDVV GLVWULEXWLRQV RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3$%$J%$ UHIUDFWLYH LQGH[ GHWHFWRUf

PAGE 122

$8 QP )LJXUH 89 VSHFWUD RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3$%$J%$ IURP *3& 89

PAGE 123

%RWK WKH KLJK DQG ORZ PRODU PDVV FRPSRQHQWV LQ WKH H[WUDFWDQW VROXWLRQ FRQWDLQ WZR DEVRUEDQFHV RQH DURXQG QP DQG WKH RWKHU FHQWHUHG DW QP 7KLV VHFRQG DEVRUSWLRQ FDQ EH DVVLJQHG WR WKH Q f§! Qr WUDQVLWLRQ W\SLFDO RI FRQMXJDWHG DURPDWLF FRPSRXQGV 7KLV WUDQVLWLRQ LV LQGLFDWLYH RI WKH SUHVHQFH RI DURPDWLF SRO\DPLGH VHJPHQWV ,Q RWKHU ZRUGV QHLWKHU RI WKH FRPSRQHQWV LQ WKH H[WUDFWDQW VROXWLRQ FDQ EH DWWULEXWHG WR SXUHO\ XQUHDFWHG SRO\EXW\O DFU\ODWHf PDFURPRQRPHU 7KH KLJK PRODU PDVV FRPSRQHQW FDQ WKHUHIRUH EH LQWHUSUHWHG DV DPLGHDFU\ODWH JUDIW FRSRO\PHU 7KLV PD\ EH DWWULEXWHG HLWKHU WR OLPLWHG VROXELOLW\ RI RXU XQH[WUDFWHG SURGXFW LQ 7+) RU WR D KLJKHU ORFDO GLVWULEXWLRQ RI SRO\EXW\O DFU\ODWHf LQ WKLV IUDFWLRQ ZKLFK GHWHUPLQHV LWV VROXELOLW\ 7KH SUHVHQFH RI DURPDWLF 89 DEVRUSWLRQ LQ WKH ORZ PRODU PDVV FRPSRQHQW ZLWK DQ DYHUDJH PRODU PDVV VLPLODU WR WKDW RI WKH RULJLQDO PDFURPRQRPHU LV PRUH GLIILFXOW WR LQWHUSUHW ,W LV EHOLHYHG WKDW WKLV IUDFWLRQ LV D PL[WXUH RI XQUHDFWHG S%$f PDFURPRQRPHU GXH WR XQIXQFWLRQDOL]HG FKDLQV DV ZHOO DV YHU\ ORZ PRODU PDVV JUDIW FRSRO\PHU LQ ZKLFK WKH DPLQR DFLG WHUPLQDWHG PDFURPRQRPHU KDV UHDFWHG ZLWK RQO\ D IHZ PRQRPHU XQLWV RI SDPLQREHQ]RLF DFLG 6LPLODU UHVXOWV ZHUH REWDLQHG IRU WKH DURPDWLF DOLSKDWLF 3K'$$ JUDIW FRSRO\PHUV )LJXUH VKRZV FRPSDULVRQ RI WKH PRODU PDVV GLVWULEXWLRQ RI WKH H[WUDFWHG IUDFWLRQ RI WKH 3K'$$J3%$ JUDIW FRSRO\PHU DQG WKH RULJLQDO S%$f PDFURPRQRPHU 7KH H[WUDFWHG IUDFWLRQ DJDLQ

PAGE 124

)LJXUH 0RODU PDVV GLVWULEXWLRQV RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J%$ UHIUDFWLYH LQGH[ GHWHFWRUf

PAGE 125

,OO LV ELPRGDO 7KH KLJK PRODU PDVV FRPSRQHQW KDV D ODUJHU PRODU PDVV DURXQG NJPRO WKDQ WKDW LQ WKH 3$%$ JUDIW FRSRO\PHU 7KLV SHDN LV DOVR PRUH LQWHQVH WKDQ LQ WKH SUHYLRXV FDVH 7KLV PD\ EH GXH WR WKH VWUXFWXUH RI WKH SRO\DPLGH &RSRO\PHUV ZLWK 3K'$$ DQ DOLSKDWLFDURPDWLF DPLGH VKRXOG EH PRUH VROXEOH WKDQ WKH ZKROO\ DURPDWLF 3$%$ 7KH 89 VSHFWUD RI WKH DQG NJPRO FRPSRQHQWV LQ WKH H[WUDFWHG VROXWLRQ FDQ EH VHHQ LQ )LJXUH (DFK FRPSRQHQW VKRZV WZR GLVWLQFW UHJLRQV RI DEVRUEDQFH ZLWK WKH ORQJHU ZDYHOHQJWK DEVRUEDQFH FHQWHUHG DURXQG QP DWWULEXWHG WR WKH Q WFr WUDQVLWLRQ IURP WKH SKHQ\OHQH GLDPLQH XQLWV RI WKH FRSRO\PHU 7KH ORZHU ZDYHOHQJWK RI WKH WL f§! r WUDQVLWLRQ LQ FRPSDULVRQ WR WKH 3$%$ FRSRO\PHUV YV QPf LV GXH WR WKH GLIIHUHQFH LQ HOHFWURQLF VWUXFWXUH FDXVHG E\ WKH YDULDWLRQV LQ DURPDWLF VXEVWLWXWLRQ 7KH KLJKHU PRODU PDVV FRPSRQHQW RI WKH H[WUDFWLRQ GLVSOD\V D PRUH LQWHQVH DURPDWLF DEVRUSWLRQ WKDQ WKH NJPRO FRPSRQHQW LQGLFDWLYH RI D KLJKHU FRQFHQWUDWLRQ RI SRO\DPLGH LQ WKH JUDIW FRSRO\PHU 6LPLODUO\ WR WKH 3$%$ FRSRO\PHU LW LV EHOLHYHG WKDW WKH NJPRO IUDFWLRQ LV D PL[WXUH RI XQUHDFWHG S%$f PDFURPRQRPHU GXH WR XQIXQFWLRQDOL]HG FKDLQV DV ZHOO DV YHU\ ORZ PRODU PDVV JUDIW FRSRO\PHU LQ ZKLFK WKH DPLQR DFLG WHUPLQDWHG PDFURPRQRPHU KDV UHDFWHG ZLWK RQO\ D IHZ PRQRPHU XQLWV RI SKHQ\OHQHGLDPLQH DQG DGLSLF DFLG 7KH UHVXOWV IURP *3& DQDO\VLV )LJXUH f DQG 89 VSHFWURVFRS\ )LJXUH f RI WKH 3K'$$J%$

PAGE 126

$8 QP )LJXUH 89 VSHFWUD RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J%$ IURP *3&89

PAGE 127

)LJXUH 0RODU PDVV GLVWULEXWLRQV RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J%$ UHIUDFWLYH LQGH[ GHWHFWRUf

PAGE 128

$8 QP )LJXUH 89 VSHFWUD RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J%$ IURP *3&89

PAGE 129

DUH VLPLODU WR WKH RWKHU JUDIW FRSRO\PHUV 2QO\ QRWDEOH GLIIHUHQFHV EHWZHHQ WKLV VDPSOH DQG WKH 3K'$$J%$ ZLOO EH GLVFXVVHG 7KLV VDPSOH FRQWDLQV D KLJKHU UHODWLYH FRQFHQWUDWLRQ RI KLJK PRODU PDVV FRPSRQHQW WKDQ WKH 3K'$$ J%$ :LWK D KLJKHU SRO\EXW\O DFU\ODWHf IHHG FRPSRVLWLRQ WKH UHVXOWLQJ FRSRO\PHU VKRXOG EH KLJKHU LQ S%$f WKXV PDNLQJ LW PRUH VROXEOH LQ 7+) 7KLV ZRXOG KHOS WR H[SODLQ WKH LQFUHDVH LQ LQWHQVLW\ RI WKH KLJK PRODU PDVV SHDN DV ZHOO DV WKH ODUJH b ZHLJKW ORVV GXULQJ H[WUDFWLRQ b DV FRPSDUHG WR ORZHU DFU\ODWH FRQWDLQLQJ FRPSRVLWLRQV 7KH 89 VSHFWUD IROORZV VLPLODU WUHQGV ZLWK UHVSHFW WR WKH SUHYLRXVO\ GHVFULEHG JUDIW FRSRO\PHUV 7KH PRODU PDVV GLVWULEXWLRQV DQG 89 VSHFWUD RI WKH 3K'$$J)$ H[WUDFWDEOHV DUH VKRZQ LQ )LJXUHV DQG UHVSHFWLYHO\ 7KH H[WUDFWHG IUDFWLRQ LV DJDLQ ELPRGDO ZLWK D KLJK PRODU PDVV FRPSRQHQW DURXQG NJPRO 7KH UHODWLYH FRQFHQWUDWLRQ RI KLJK WR ORZ PRODU PDVV FRPSRQHQWV ZDV WKH KLJKHVW RI DOO JUDIW FRSRO\PHUL]DWLRQV 7KH VWDUWLQJ PDFURPRQRPHU PRODU PDVV IRU WKH IOXRURDFU\ODWH FRSRO\PHU NJPRO YV NJPRO IRU WKH SRO\EXW\O DFU\ODWHf JUDIW UHDFWLRQV PD\ DFFRXQW IRU WKH GLIIHUHQFH LQ PRODU PDVV DQG LQWHQVLW\ RI WKH KLJK PRODU PDVV IUDFWLRQ 7KH 89 UHVXOWV DUH VLPLODU WR WKRVH RI WKH SUHYLRXVO\ GHVFULEHG JUDIW FRSRO\PHUV 7KH PRVW VLJQLILFDQW GLIIHUHQFH LV WKH UHGXFHG LQWHQVLW\ RI WKH Q f§! Qr WUDQVLWLRQ IRU WKH ORZ PRODU PDVV IUDFWLRQ 7KLV LV GXH WR WKH KLJK PRODU PDVV RI WKH PDFURPRQRPHU 7KLV KLJKHU PRODU PDVV PDFURPRQRPHU

PAGE 130

)LJXUH 0RODU PDVV GLVWULEXWLRQV RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J)$ UHIUDFWLYH LQGH[ GHWHFWRUf

PAGE 131

QP )LJXUH 89 VSHFWUD RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J)$ IURP *3&89

PAGE 132

FDXVHG E\ OHVV HIIHFWLYH FKDLQ WUDQVIHU LQ WKH IOXRURSRO\PHU SRO\PHUL]DWLRQ VKRXOG FRQWDLQ D ODUJHU FRQFHQWUDWLRQ RI XQIXQFWLRQDOL]HG FKDLQV $V ZDV PHQWLRQHG SUHYLRXVO\ D FRQWURO SRO\PHUL]DWLRQ LQ ZKLFK 3K'$$ LV SRO\PHUL]HG LQ WKH SUHVHQFH RI DQ XQIXQFWLRQDOL]HG ORZ PRODU PDVV SRO\EXW\O DFU\ODWHf ZDV UXQ XQGHU LGHQWLFDO FRQGLWLRQV WR RWKHU JUDIWLQJ UHDFWLRQV 6DPSOH 3K'$$J8%$f 7KH PRODU PDVV GLVWULEXWLRQV )LJXUHV f RI WKH H[WUDFWDQW IURP WKLV UHDFWLRQ DQG WKH XQIXQFWLRQDOL]HG S%$f DUH QHDUO\ LGHQWLFDO 7KHUH LV DOVR QR GLIIHUHQFH LQ WKH 89 VSHFWUD )LJXUH f RI WKH WZR SRO\PHUV $V ZDV VWDWHG SUHYLRXVO\ WKH SHUFHQW ZHLJKW ORVV GXULQJ H[WUDFWLRQ ZDV DOPRVW LGHQWLFDO WR WKH LQLWLDO IHHG FRQFHQWUDWLRQ RI S%$f +HQFH WKH H[WUDFWHG IUDFWLRQ ZDV H[FOXVLYHO\ XQUHDFWHG SRO\EXW\O DFU\ODWHf ,Q RWKHU ZRUGV JUDIWLQJ RFFXUV RQO\ ZKHQ WKH SRO\EXW\O DFU\ODWHf LV DPLQR DFLGWHUPLQDWHG )7,5 UHVXOWV )7,5 VSHFWUD ZDV FROOHFWHG LQ RUGHU WR YHULI\ WKH SUHVHQFH RI ERWK WKH SRO\DPLGH DQG DFU\ODWH VHJPHQWV DQG WR PRQLWRU WKH FKDQJH LQ VWUXFWXUH EHIRUH DQG DIWHU H[WUDFWLRQ 6DPSOH GHVLJQDWLRQ ZLOO FRQWDLQ DQ n[n VLJQLI\LQJ WKDW WKH SRO\PHU KDV EHHQ SXULILHG E\ H[WUDFWLRQ )RU LQVWDQFH 3$%$J%$[ GHVLJQDWHV WKH JUDIW FRSRO\PHU WKDW KDV EHHQ SXULILHG E\ H[WUDFWLRQ DQG 3$%$J%$ LGHQWLILHV WKH QHDW SRO\PHU UHFRYHUHG GLUHFWO\ IURP WKH JUDIW FRSRO\PHUL]DWLRQ E\ SUHFLSLWDWLRQ

PAGE 133

ORJ0:f )LJXUH 0RODU PDVV GLVWULEXWLRQV RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J8%$ UHIUDFWLYH LQGH[ GHWHFWRUf

PAGE 134

$8 QP )LJXUH 9 VSHFWUD RI GLVVROYHG SRO\PHU LQ 7+) H[WUDFWDQW VROXWLRQ RI 3K'$$J8%$ IURP *3&89

PAGE 135

,Q )LJXUH WKH VSHFWUXP RI 3$%$J%$[ LV FRPSDUHG WR WKDW RI WKH PDFURPRQRPHU DQG WKH 3$%$ KRPRSRO\DPLGH $EVRUEDQFHV W\SLFDO RI DURPDWLF SRO\DPLGHV WKH 1+ VWUHWFK DW FP WKH & DPLGH VWUHWFK DW FPn DQG DQ RYHUODS RI WKH 1+ EHQG DQG & & VWUHWFK DURXQG FPn DUH REVHUYHG IRU WKH SRO\SDPLQREHQ]RLF DFLGf 3$%$f 7KH S%$f PDFURPRQRPHU GLVSOD\V GLVWLQFW DOLSKDWLF &+ VWUHWFK DEVRUSWLRQV FHQWHUHG DW FPn DV ZHOO DV WKH FKDUDFWHULVWLF & VWUHWFK IRU WKH HVWHU FDUERQ\O DW FPn 7KH SXULILHG JUDIW FRSRO\PHU 3$%$J%$[ GLVSOD\ DEVRUSWLRQV FKDUDFWHULVWLF RI ERWK WKH SRO\EXW\O DFU\ODWHf DQG WKH DURPDWLF SRO\DPLGH VHJPHQWV LQ WKH JUDIW FRSRO\PHU $FWXDO IUDFWLRQV RI HDFK SKDVH ZLOO QRW EH FDOFXODWHG XVLQJ )7,5 1LWURJHQ FRQWHQW IURP HOHPHQWDO DQDO\VLV ZDV XVHG WR GHWHUPLQH WKH DFWXDO SRO\DPLGH FRQWHQW LQ WKH JUDIW FRSRO\PHUV DQG WKHVH UHVXOWV ZLOO EH GLVFXVVHG ODWHU ,W PXVW EH QRWHG WKDW WKH VSHFWUD RI WKH XQSXULILHG QHDW 3$%$J%$ LV QRW VKRZQ EHFDXVH WKH HQWLUH VDPSOH ZDV SXULILHG E\ H[WUDFWLRQ +RZHYHU WKH VSHFWUD RI ERWK WKH SXULILHG DQG XQSXULILHG JUDIW FRSRO\PHUV ZLOO EH GLVSOD\HG IRU DOO RI WKH RWKHU FRPSRVLWLRQV )LJXUH VKRZV WKH )7,5 VSHFWUD RI 3$%$J%$ EHIRUH DQG DIWHU H[WUDFWLRQ $V H[SHFWHG WKH SRO\EXW\O DFU\ODWHf DEVRUSWLRQV DUH PRUH LQWHQVH WKDQ IRU WKH SUHYLRXV VDPSOH FRQWDLQLQJ RQO\ b SRO\EXW\O DFU\ODWHf LQ WKH IHHG $OVR WKHUH LV D YLVLEOH GHFUHDVH LQ WKH HVWHU FDUERQ\O

PAGE 136

$EVRUEDQFH )LJXUH 7UDQVPLVVLRQ )7,5 VSHFWUD RI 3$%$J%$[ JUDIW FRSRO\PHU

PAGE 137

9WHYHQXPEHUV FPf )LJXUH 7UDQVPLVVLRQ )7,5 VSHFWUD RI 3$%$J%$[ JUDIW FRSRO\PHU

PAGE 138

LQWHQVLW\ DIWHU H[WUDFWLRQ ZLWK 7+) 7KLV ZRXOG LQGLFDWH WKDW WKH PDMRULW\ RI SRO\PHU H[WUDFWHG LV HLWKHU XQUHDFWHG SRO\EXW\O DFU\ODWHf RU KLJK YROXPH IUDFWLRQ SRO\EXW\O DFU\ODWHfFRQWDLQLQJ JUDIW FRSRO\PHU 7KH VSHFWUD RI 3K'$$ LV YHU\ VLPLODU WR WKDW RI 3$%$ ZLWK FKDUDFWHULVWLF DPLGH DEVRUEDQFHV DW WKH H[SHFWHG ZDYHOHQJWKV )LJ f 7KH PDMRU GLIIHUHQFH EHWZHHQ WKH 3$%$ DQG 3K'$$ LV WKH SUHVHQFH RI DQ DOLSKDWLF &+ VWUHWFK UHJLRQ DURXQG FPn IURP WKH PHWK\OHQH JURXS LQ WKH DGLSLF DFLG VHJPHQWV 7KH VSHFWUD RI 3K'$$J3%$ DQG 3K'$$J3%$[ ERWK LQGLFDWH WKH SUHVHQFH RI S%$f E\ WKH FPn HVWHU FDUERQ\O VWUHWFK 5HIHUULQJ EDFN WR 7DEOH WKLV VDPSOH VKRZHG D b ZHLJKW ORVV GXULQJ H[WUDFWLRQ $JDLQ WKHUH LV D YLVLEOH GHFUHDVH LQ WKH HVWHU FDUERQ\O LQWHQVLW\ DIWHU H[WUDFWLRQ ZLWK 7+) LQGLFDWLQJ WKDW WKH PDMRULW\ RI SRO\PHU H[WUDFWHG ZDV HLWKHU XQUHDFWHG SRO\EXW\O DFU\ODWHf RU KLJK YROXPH IUDFWLRQ SRO\EXW\O DFU\ODWHfFRQWDLQLQJ JUDIW FRSRO\PHU 7KH )7,5 DQDO\VLV RI WKH KLJKHVW SRO\EXW\O DFU\ODWHf FRQWDLQLQJ JUDIW FRSRO\PHU 3K'$$J%$ )LJXUH f FRQWDLQV WKH VSHFWUD RI WKH QHDW JUDIW FRSRO\PHU WKH H[WUDFWHG JUDIW FRSRO\PHU DQG WKH 7+) VROXEOH H[WUDWHG IUDFWLRQ 7KH 3K'$$J%$ GLVSOD\V WKH H[SHFWHG VSHFWUD ZLWK D OHVV LQWHQVH DPLGH FDUERQ\O DEVRUSWLRQ FPnf GXH WR WKH GHFUHDVH RI DPLGH SUHFXUVRUV LQ WKH IHHG 7KH SXULILHG JUDIW FRSRO\PHU VKRZV D GHFUHDVH LQ SRO\EXW\O

PAGE 139

$EVRUEDQFH :DYHQXPEHUV FPf )LJXUH 7UDQVPLVVLRQ )7,5 VSHFWUD RI 3K'$$J%$[ JUDIW FRSRO\PHU

PAGE 140

$EVRUEDQFH )LJXUH 7UDQVPLVVLRQ )7,5 VSHFWUD RI 3K'$$J%$[ JUDIW FRSRO\PHU

PAGE 141

DFU\ODWHf DEVRUSWLRQ EXW VWLOO KDV WKH KLJKHVW FRQWHQW RI S%$f RI DOO RI WKH JUDIW FRSRO\PHUV 7KLV FDQ EH VHHQ LQ )LJXUH ZKHUH WKH VSHFWUD RI DOO RI WKH SXULILHG SRO\EXW\O DFU\ODWHf JUDIW FRSRO\PHUV DUH GLVSOD\HG $V WKH EXW\O DFU\ODWH IHHG FRQFHQWUDWLRQ LV LQFUHDVHG WKHUH LV DQ LQFUHDVH LQ WKH LQWHQVLW\ RI WKH HVWHU FDUERQ\O DEVRUSWLRQ FPf UHODWLYH WR WKH DPLGH FDUERQ\O DQG 1+ VWUHWFK 7KH ODVW VSHFWUXP LQ )LJXUH LV WKDW RI WKH 7+) VROXEOH IUDFWLRQ RI 3K'$$J%$[ *RLQJ EDFN WR 7DEOH ZWb RI 3K'$$J%$ ZDV H[WUDFWDEOH ZLWK 7+) 7KLV 7+) VROXWLRQ ZDV HYDSRUDWHG RQWR D 1D&O FU\VWDO IRU )7,5 DQDO\VLV 7KH SUHVHQFH RI WKH FPn DPLGH DOEHLW VPDOO FRUUHODWHV ZLWK WKH *3&89 UHVXOWV WKDW UHYHDOHG WKH SUHVHQFH RI SRO\DPLGH JUDIW FRSRO\PHU ZLWKLQ WKH 7+) H[WUDFWDEOH IUDFWLRQ 7KH )7,5 VSHFWUD RI WKH )$ PDFURPRQRPHU DV LOOXVWUDWHG LQ )LJXUH VKRZV LQWHQVH DEVRUSWLRQV DW FPn IRU WKH HVWHU & VWUHWFK DQG DW FPn ZKLFK LV DQ RYHUODS RI WKH & VWUHWFK RI WKH HVWHU DQG WKH &) VWUHWFK FKDUDFWHULVWLF RI IOXRURDONDQHV 7KH VSHFWUD RI WKH JUDIW FRSRO\PHU 3K'$$J)$ FRQILUPV WKH LQFRUSRUDWLRQ RI WKH )$ PDFURPRQRPHUV GXULQJ WKH JUDIW FRSRO\PHUL]DWLRQ %XW WKH IOXRURDFU\ODWH FDUERQ\O DEVRUSWLRQ GHFUHDVHV LQ LQWHQVLW\ E\ PRUH WKDQ b DIWHU 7+) H[WUDFWLRQ 7KLV GHFUHDVH ZDV PXFK OHVV VLJQLILFDQW LQ WKH VSHFWUD RI WKH 3$%$J%$ DQG 3K'$$J%$ JUDIW FRSRO\PHUV

PAGE 142

$EVRUEDQFH )LJXUH 7UDQVPLVVLRQ )7,5 VSHFWUD RI SRO\EXW\O DFU\ODWHf JUDIWHG SRO\DPLGHV

PAGE 143

$EVRUEDQFH )LJXUH 7UDQVPLVVLRQ )7,5 VSHFWUD RI 3K'$$J%$[ JUDIW FRSRO\PHU

PAGE 144

7KLV FRQILUPHG WKH UHVXOW IURP 7DEOH LQ ZKLFK WKH )$ JUDIW FRSRO\PHU VKRZV DSSUR[LPDWHO\ b KLJKHU ZHLJKW ORVV GXULQJ H[WUDFWLRQ WKDQ WKH HTXLYDOHQW %$ JUDIW FRSRO\PHUV 7KLV EHKDYLRU FDQ EH H[SODLQHG E\ WKH KLJKHU &V LQ WKH EXW\O DFU\ODWH PDFURPRQRPHU V\QWKHVLV $ KLJKHU &V OHDGV WR ORZHU PRODU PDVV DQG PRUH KLJKO\ IXQFWLRQDOL]HG PDFURPRQRPHUV ZKLFK DUH PRUH UHDGLO\ LQFRUSRUDWHG LQ WKH FRQGHQVDWLRQ JUDIWLQJ UHDFWLRQ 105 DQG HOHPHQWDO DQDO\VLV UHVXOWV 7KH FRPSRVLWLRQV RI WKH SXULILHG JUDIW FRSRO\PHUV ZHUH GHWHUPLQHG E\ HOHPHQWDO DQDO\VLV ($f XVLQJ IURP WKH QLWURJHQ FRQWHQW &RPSRVLWLRQ ZDV DOVR GHWHUPLQHG IURP WKH +105 VSHFWUD VKRZQ LQ )LJXUHV WKURXJK RI WKH JUDIW FRSRO\PHUV XVLQJ WKH LQWHJUDO UDWLRV RI DURPDWLF SURWRQV IURP WKH SRO\DPLGH WR PHWK\O SURWRQV IURP WKH SRO\DFU\ODWHf 7KH PHDVXUHG JUDIW FRSRO\PHU FKHPLFDO FRPSRVLWLRQV DUH WDEXODWHG LQ 7DEOH 7KH YDOXHV FDOFXODWHG XVLQJ 105 DUH LQ JRRG DJUHHPHQW ZLWK WKRVH IURP ($ 3RO\EXW\O DFU\ODWHf FRQWHQW YDULHV IURP WR ZWb IRU WKH JUDIW FRSRO\PHU VHULHV $V H[SHFWHG WKH SRO\EXW\O DFU\ODWHf FRQWHQW LQ WKH JUDIW FRSRO\PHU LQFUHDVHV ZLWK LQFUHDVLQJ IHHG FRQFHQWUDWLRQ 7KH UDWLR RI SRO\DFU\ODWHf FRQFHQWUDWLRQ LQ WKH FRSRO\PHU WR WKH LQLWLDO IHHG FRQFHQWUDWLRQ ZDV FDOFXODWHG DQG LV DOVR VKRZQ LQ 7DEOH 7KLV UDWLR FDQ EH VHHQ DV D

PAGE 145

L L L LL L L LL SL UQ LL L L > L 0 L L L P LL L L L LL L L QS77UL UUUUS LW SSP )LJXUH +105 VSHFWUD RI 3K'$$ KRPRSRO\DPLGH

PAGE 146

SSP )LJXUH +105 VSHFWUD RI 3K'$$J%$[

PAGE 147

MM! 1+ff§&&+f§1+A &+ L L P LL _Ln UUUS7L Q )LJXUH +105 VSHFWUD RI 3K'$$%$[

PAGE 148

SSP )LJXUH ;+105 VSHFWUD RI 3K'$$)$[

PAGE 149

+ + )LJXUH +105 VSHFWUD RI 3$%$%$[

PAGE 150

J K + + )LJXUH +105 VSHFWUD RI 3$%$%$[

PAGE 151

7$%/( &KHPLFDO FRPSRVLWLRQ RI SXULILHG JUDIW FRSRO\PHUV IURP HOHPHQWDO DQDO\VLV DQG 105 6DPSOH ,' 1LWURJHQ ^ZW bf ($ *UDIW &RSRO\PHU &RPSRVLWLRQA ZW bfr $PLGH $FU\ODWH *UDIW &RSRO\PHU &RPSRVLWLRQArp ZW bf $PLGH $FUYODWH >$FU\ODWH@ FRSRO\PHUrr >$FU\ODWH@ IHHG 3$%$J%$[ 3$%$J%$[ 3K'$$J%$[ 3K'$$J%$[ 3K'$$J)$[ &DOFXODWHG XVLQJ ZW b1 IRU 3$%$ 3K'$$ rr EDVHG XSRQ DYHUDJH RI ($ DQG 105 DFU\ODWH ZW b PHDVXUH RI b SRO\DFU\ODWHf LQFRUSRUDWLRQ 7KH YDOXHV IRU WKH SRO\EXW\O DFU\ODWHf FRQWDLQLQJ JUDIW FRSRO\PHUV EHWZHHQ WR GR QRW YDU\ JUHDWO\ ,Q RWKHU ZRUGV WKH S%$f FRQWHQW LQ WKH SXULILHG JUDIW FRSRO\PHUV LV DSSUR[LPDWHO\ WR b RI WKDW LQ WKH IHHG 7KH UHVXOW IRU WKH IOXRURDFU\ODWH JUDIW FRSRO\PHU GLIIHUV VLJQLILFDQWO\ ZLWK D FRSRO\PHU WR IHHG UDWLR RI 7KLV GHFUHDVH LQ PDFURPRQRPHU LQFRUSRUDWLRQ FDQ DJDLQ EH DWWULEXWHG WR WKH GHFUHDVH LQ PDFURPRQRPHU IXQFWLRQDOLW\ IURP LQHIILFLHQW FKDLQ WUDQVIHU IRU WKH IOXRURDFU\ODWH SRO\PHUL]DWLRQ ,QKHUHQW YLVFRVLWLHV RI JUDIW FRSRO\PHUV 7KH LQWULQVLF YLVFRVLWLHV RI WKH SRO\DPLGH JUDIW FRSRO\PHUV ZHUH PHDVXUHG LQ FRQFHQWUDWHG VXOIXULF DFLG DW D FRQFHQWUDWLRQ RI JPO 7KH UHVXOWV DUH VKRZQ LQ 7DEOH

PAGE 152

7$%/( ,QKHUHQW YLVFRVLWLHV RI SRO\DPLGH JUDIW FRSRO\PHUV 6DPSOH ,' *UDIW &RSRO\PHU &RPSRVLWLRQr ZW bf $PLGH $FU\ODWH 7OLQKrr 3$%$ 3$%$J%$[ 3$%$J%$[ 3K'$$ 3K'$$J%$[ 3K'$$J%$[ 3K'$$J)$[ rDYHUDJH RI ($ DQG 105 UHVXOWV rrPHDVXUHG LQ FRQH +6 DW r& JPO 7KH U_LQK YDOXHV RI WKH 3$%$ DQG 3K'$$ KRPRSRO\DPLGHV DUH DQG UHVSHFWLYHO\ 7KH YLVFRVLW\ GHFUHDVHV DV WKH SRO\EXW\O DFU\ODWHf FRQWHQW LQ WKH JUDIW FRSRO\PHU LQFUHDVHV 7KLV GHFUHDVH LQ YLVFRVLW\ LV QRW DV GUDPDWLF IRU WKH b )$ JUDIWHG SRO\DPLGH ZKRVH U_LQK LV VLPLODU WR WKDW RI WKH 3K'$$ KRPRSRO\DPLGH YV UHVSHFWLYHO\ %\ FRPSDULVRQ RQO\ b %$ FDXVHV D GHFUHDVH LQ WKH U_LQK RI 3$%$ IURP WR 7KHVH YLVFRVLW\ YDOXHV FDQ EH XVHG DV DQ LQGLFDWLRQ RI WKH PRODU PDVVHV RI WKH JUDIW FRSRO\DPLGHV 4XDQWLWDWLYH PRODU PDVV YDOXHV FDQQRW EH GHULYHG VLQFH WKH SUHFLVH UHODWLRQVKLS EHWZHHQ PRODU PDVV DQG YLVFRVLW\ LV QRW NQRZQ IRU WKHVH FRSRO\PHUV +RZHYHU LW KDV EHHQ VKRZQ LQ WKH

PAGE 153

FRSRO\PHUL]DWLRQ RI RWKHU DPLQR DFLGV +LJEf WKDW WKH YLVFRVLWLHV GHWHUPLQHG IRU SRO\DPLGHV V\QWKHVL]HG LQ +LJDVKLnV VROYHQW V\VWHP WUDQVODWH LQWR PRODU PDVV YDOXHV RI DSSUR[LPDWHO\ WR NJPRO %OHQGV RI *UDIW &RSRO\PHUV ZLWK 1\ORQ 3UHOLPLQDU\ H[SHULPHQWV ZHUH SHUIRUPHG LQ RUGHU WR VWXG\ WKH HIIHFW RI JUDIW FRSRO\PHU DGGLWLRQ RQ WKH PHFKDQLFDO SURSHUWLHV RI 1\ORQ %$FRQWDLQLQJ JUDIW FRSRO\PHUV ZHUH EOHQGHG ZLWK 1\ORQ *UDIW FRSRO\PHUV ZHUH DOVR DGGHG WR 1\ORQ 3RO\EXW\O DFU\ODWHf LQFRPSDWLEOH EOHQGV LQ RUGHU WR LQYHVWLJDWH WKH DELOLW\ RI WKH JUDIW FRSRO\PHU WR DFW DV D VXUIDFWDQW RU FRPSDWLELOL]HU 7KH V\QWKHVL]HG FRSRO\PHUV 3K'$$ 3K'$$J%$[ DQG 3K'$$J%$[ ZHUH EOHQGHG ZLWK 1\ORQ $OVR 3K'$$J %$[ DQG 3K'$$J%$[ ZHUH DGGHG WR DQ EOHQG RI 1\ORQ DQG NJPRO SRO\EXW\O DFU\ODWHf %OHQG DQG VDPSOH SUHSDUDWLRQ KDV EHHQ GHVFULEHG SUHYLRXVO\ VHFWLRQ f 7HQVLOH SURSHUWLHV RI DOO EOHQGV FDQ EH IRXQG LQ 7DEOH

PAGE 154

7$%/( 7HQVLOH SURSHUWLHV RI Q\ORQ EOHQGV 0DWHULDO 0RGXOXV *3Df 3URSRUWLRQDO /LPLW 6WUHVV (ORQJDWLRQ 03Df bf 6WUHVV DW )DLOXUH 03Df (ORQJDWLRQ # )DLOXUH bf 1\ORQ s s s 1 3K'$$[ s s s s 1 3K'$$J %$[ s s s s s 1 3K'$$J %$[ s s s s s 1 3%$ s s s s s 1 3%$ Z ZWb 3K'$$J %$[ s s s s s 1 3%$ Z ZWb 3K'$$J %$[ s s s s s $GGLWLRQ RI 3K'$$ WR 1\ORQ SURGXFHG DQ LQFUHDVH LQ PRGXOXV DQG D VHYHUH GHFUHDVH LQ GXFWLOLW\ 7KH PRGXOXV LQFUHDVHG IURP WR *3D ZLWK WKH DGGLWLRQ RI b 3K'$$ EXW WKH SHUFHQW HORQJDWLRQ DW IDLOXUH GHFUHDVHG IURP WR b 7KH SURSRUWLRQDO VWUHVV LQFUHDVHG IURP WR 03D XSRQ 3K'$$ DGGLWLRQ 7KH DURPDWLF SRO\DPLGH GRPDLQV EHKDYH OLNH KDUG LQFOXVLRQV ZLWKLQ WKH Q\ORQ PDWUL[ UHLQIRUFLQJ Q\ORQ DQG VHUYLQJ DV VLWHV IRU VWUHVV FRQFHQWUDWLRQ 7KLV EHKDYLRU LV SDUWO\ GXH WR WKH YLVLEO\ SRRU PL[LQJ EHWZHHQ WKH Q\ORQ DQG WKH DURPDWLF SRO\DPLGH RU JUDIW FRSRO\PHU 'LVSHUVLRQ LV SRRU DV RIIFRORUHG UHJLRQV RI EURZQ 3K'$$ DUH FOHDUO\ YLVLEOH

PAGE 155

3RRU PL[LQJ LV D UHVXOW RI WKH ODFN RI WKHUPDO WUDQVLWLRQV IRU WKH DPLGH SKDVH QRW DOORZLQJ IORZ GXULQJ FRPSUHVVLRQ PROGLQJ 7KH 7*'7$ )LJXUH f DQG '6& )LJXUH f WUDFHV RI WKH 3K'$$J%$ JUDIW FRSRO\PHU DQG 3K'$$ GLVSOD\ QR WKHUPDO WUDQVLWLRQV SULRU WR GHJUDGDWLRQ IRU WKH DPLGH SKDVH 7KH RQO\ WKHUPDO WUDQVLWLRQ REVHUYHG LV WKH JODVV WUDQVLWLRQ RI S%$f
PAGE 156

A 2 S 7HPSHUDWXUH r&f )LJXUH 7*'7$ DQDO\VLV RI 3K'$$J%$[ JUDIW FRSRO\PHU DQG 3K'$$ KRPRSRO\DPLGH '7$ X9f

PAGE 157

X: )LJXUH '6& DQDO\VLV RI 3K'$$J%$[ JUDIW FRSRO\PHU DQG 3K'$$ KRPRSRO\DPLGH

PAGE 158

VKRZQ WKDW WKHVH WZR JUDIW FRSRO\PHUV FRQWDLQ DQG b %$ UHVSHFWLYHO\ 7KH JUDIW FRSRO\PHU KDG OLWWOH HIIHFW DV D VXUIDFWDQW LQ WKH 1\ORQ SRO\EXW\O DFU\ODWHf EOHQG $JDLQ ODFN RI PL[LQJ ZRXOG SUHYHQW WKH JUDIW FRSRO\PHUV IURP PLJUDWLQJ WR WKH LQWHUIDFH EHWZHHQ WKH LPPLVFLEOH SRO\PHUV $OVR WKH SRO\EXW\O DFU\ODWHf KRPRSRO\PHU PLJUDWHG WR WKH VXUIDFH RI WKH EOHQG DQG WKXV WKH PHFKDQLFDO SURSHUWLHV RI WKHVH EOHQGV PD\ QRW EH UHSUHVHQWDWLYH RI D b S%$f FRQWHQW 7KH ILOPV KDG WR EH ZLSHG ZLWK DFHWRQH SULRU WR WHQVLOH WHVWLQJ LQ RUGHU WR DYRLG VOLSSDJH 2IIVHWWLQJ 3RO\PHUL]DWLRQ 6KULQNDJH LQ 'HQWDO 5HVLQV WKURXJK WKH ,QFRUSRUDWLRQ RI 0DOHLF $QK\GULGH 9ROXPHWULF VKULQNDJH LV D PDMRU SUREOHP LQKLELWLQJ WKH ORQJ WHUP VXFFHVV RI FXUUHQW GHQWDO UHVWRUDWLYH PDWHULDOV %DXf 7KLV VKULQNDJH LV LQKHUHQW WR WKH IUHH UDGLFDO SRO\PHUL]DWLRQ RI WKH PXOWLIXQFWLRQDO PHWKDFU\ODWH UHVLQV XVHG LQ WKH GHQWDO FRPSRVLWHV 7KH YROXPHWULF VKULQNDJH LV GXH WR WKH UHGXFWLRQ LQ PRODU YROXPH RU VSDFLQJ EHWZHHQ PRQRPHU XQLWV WKDW RFFXUV ZKHQ YLQ\O FRPSRXQGV DUH SRO\PHUL]HG 3RO\PHUL]DWLRQ VKULQNDJH FUHDWHV ERWK D ZHDN LQWHUIDFH EHWZHHQ WKH WRRWK VWUXFWXUH DQG WKH UHVWRUDWLRQ DV ZHOO DV UHVLGXDO VWUHVVHV ZLWKLQ WKH FRPSRVLWH VWUXFWXUH OHDGLQJ WR SUHPDWXUH IDLOXUH LQ WKH UHVWRUDWLRQ %UDf %LV*0$ LV WKH SUHGRPLQDQW PRQRPHU FXUUHQWO\ LQ XVH LQ GHQWDO FRPSRVLWHV $OWKRXJK WKH VKULQNDJH LV GHFUHDVHG IURP

PAGE 159

WKDW RI VLPSOH PHWKDFU\ODWHV %LV*0$ EDVHG FRPSRVLWHV VWLOO H[KLELW YROXPHWULF VKULQNDJH YDOXHV RI DURXQG b 6XOf 7KHUH KDYH EHHQ VRPH PRGLILFDWLRQV WR %LV*0$ +RZHYHU WKH GLIIHUHQFHV DUH QRW JHQHUDOO\ VLJQLILFDQW DQG PDQ\ PDQXIDFWXUHUV VWLOO UHO\ RQ WKH %LV*0$ PRQRPHU IRU WKHLU GHQWDO FRPSRVLWHV 7KHUH DUH PDQ\ UHVHDUFK SURJUDPV IRFXVHG RQ GLIIHUHQW FKHPLFDO VWUXFWXUHV DQG SURFHVVHV WKDW ZLOO UHGXFH SRO\PHUL]DWLRQ VKULQNDJH %UD %\H 6WDf 7KH PDLQ WKUXVW LQ GHQWLVWU\ KDV EHHQ WKH VSLUR RUWKRFDUERQDWH EDVHG V\VWHPV ZKLFK DUH WKH UHVXOW RI HDUO\ SLRQHHULQJ ZRUN E\ %DLOH\ %DLf 7KH VSLUR RUWKRFDUERQDWHV LQYROYH D GXDO ULQJ RSHQLQJ PHFKDQLVP ZKLFK LQFUHDVHV WKH PRODU YROXPH RI WKH SRO\PHU FRPSDUHG WR WKDW RI WKH PRQRPHU 7KH GHILFLHQF\ ZLWK WKHVH ULQJ RSHQLQJ V\VWHPV LV WKH FRVW RI WKH UHDFWLYH PRQRPHU DQG WKH VORZ NLQHWLFV 7\SLFDOO\ GHQWDO UHVWRUDWLRQV FDQ EH FXUHG ZLWKLQ D IHZ PLQXWHV ZKHUHDV WKH VSLUR RUWKRFDUERQDWHV DUH YHU\ VORZ UHDFWLQJ %UD %\Hf $OWKRXJK QRW LGHDO WKHVH V\VWHPV GR SURYLGH VRPH LQVLJKW DV WR D ORJLFDO VWHS LQ WKH HYROXWLRQ RI GHQWDO UHVWRUDWLYHV 7KH ULQJ RSHQLQJ SRO\PHUL]DWLRQ NLQHWLFV PD\ EH WRR VORZ \HW WKH ULQJ RSHQLQJ PHFKDQLVP GRHV SURYLGH D QHW LQFUHDVH LQ PRODU YROXPH 7KXV E\ FRPELQLQJ WKH IDVW NLQHWLFV RI WKH PHWKDFU\ODWH UHVLQ ZLWK WKH ULQJ RSHQLQJ UHDFWLRQV RQH PD\ UHGXFH WKH SRO\PHUL]DWLRQ VKULQNDJH 7KH IRFXV RI RXU ZRUN LV WR LQFRUSRUDWH F\FOLF DQK\GULGH IXQFWLRQDOLW\ LQWR GLPHWKDFU\ODWH QHWZRUNV :KHQ

PAGE 160

PDOHLF DQK\GULGH 0$f LV ULQJ RSHQHG E\ K\GURO\VLV WR PDOHLF DFLG WKHUH LV D FRUUHVSRQGLQJ WKHRUHWLFDO b LQFUHDVH LQ PRODU YROXPH %\ LQFRUSRUDWLQJ PDOHLF DQK\GULGH LQWR FRPPRQ GHQWDO UHVLQV VXFK DV D %LV*0$7(*'0$ V\VWHP DQG WKHQ K\GURO\]LQJ WKH DQK\GULGH ZH VKRXOG RIIVHW VRPH RI WKH VKULQNDJH DVVRFLDWHG ZLWK SRO\PHUL]DWLRQ &RSRO\PHU &RPSRVLWLRQV $ GHVLJQ VWXG\ LQFOXGLQJ WKH FRPSRVLWLRQ PDWUL[ VKRZQ LQ 7DEOH ZDV FDUULHG RXW 7KH FRPSRVLWLRQ UDQJHV DUH ZWb WULHWK\OHQHJO\FRO GLPHWKDFU\ODWH b SURSR[\ODWHG %LV*0$ S%LV*0$f DQG b PDOHLF DQK\GULGH 3URSR[\ODWHG %LV*0$ ZDV VXEVWLWXWHG IRU %LV*0$ LQ RUGHU WR DYRLG DQ\ UHDFWLRQ RI WKH DQK\GULGH ZLWK WKH SHQGDQW K\GUR[\O JURXS LQ %LV*0$ 0RQRPHU VWUXFWXUHV DUH VKRZQ LQ )LJXUH $OO VDPSOHV DERXW PP WKLFN ZHUH FXUHG EHWZHHQ JODVV SODWHV XVLQJ ZWb $,%1 DW r& IRU KRXUV IROORZHG E\ D SRVWFXUH DW r& IRU KRXUV $OWKRXJK GHQWDO FRPSRVLWHV DUH JHQHUDOO\ OLJKW FXUHG LQ DFWXDO DSSOLFDWLRQ D KHDW FXUH ZDV XVHG WR SURYLGH DQ LGHDO VWUXFWXUH ZLWK PD[LPXP FRQYHUVLRQ 0D[LPXP FRQYHUVLRQ LV GHVLUHG LQ RUGHU HOLPLQDWH WKLV DV D YDULDEOH LQ WKH DQDO\VLV RI SURSHUW\ GLIIHUHQFHV EHWZHHQ DQK\GULGH DQG QRQ DQK\GULGH VDPSOHV DQG WKXV WR SURYH WKH IHDVLELOLW\ RI WKLV DSSURDFK $OVR GXH WR WKH GLIIHULQJ UHDFWLYLW\ UDWLRV FRPPRQ LQ PDOHLF DQK\GULGHPHWKDFU\ODWH FRSRO\PHUL]DWLRQV

PAGE 161

Q &+f§&+ 3URSR[\ODWHG %LV*0$ &+ b b + 2 f§&+ff§2f§&f§&+&+ 7ULHWK\OHQHJO\FRO GLPHWKDFU\ODWH R R &+f§&+f§W 2 f§&+&+ff§+ f§&+ &+ ,KM &+ SKHQ\OHWK\O PHWKDFU\ODWH 0DOHLF DQK\GULGH FK FK FK 9 FK F F R R FK FK )LJXUH &KHPLFDO VWUXFWXUHV RI PHWKDFU\ODWH DQG DQK\GULGH PRQRPHUV IRU GHQWDO DSSOLFDWLRQV

PAGE 162

7$%/( ([SHULPHQWDO PDWUL[ RI GHQWDO PRQRPHU FRPSRVLWLRQV 6DPSOH ,' :HLJKW 7(*'0$ b LQ 0RQRPHU S%LV*0$ 0L[WXUH 0$ '0 '0 '0 '0 '0 '0 '0 %UDf KLJK FRQYHUVLRQV DUH GHVLUHG LQ RUGHU WR PD[LPL]H DQK\GULGH LQFRUSRUDWLRQ 3RO\PHUL]DWLRQV RI SKHQ\OHWK\O PHWKDFU\ODWH 3(0$f ZLWK PDOHLF DQK\GULGHV ZHUH XVHG WR PRGHO WKH GLPHWKDFU\ODWH UHDFWLRQ 7KH\ ZHUH V\QWKHVL]HG LQ EXON XVLQJ ZWb $,%1 DW r& IRU KRXUV 7KH UHVXOWLQJ SURGXFW ZDV GLVVROYHG LQ FKORURIRUP SUHFLSLWDWHG LQ HWKHU WR UHPRYH XQUHDFWHG PRQRPHU 7KH SRO\PHU ZDV WKHQ ILOWHUHG DQG GULHG XQGHU YDFXXP DW r& RYHUQLJKW :H DUH XVLQJ 3(0$ DV D OLQHDU DQDORJ RI WKH GLPHWKDFU\ODWH %LV*0$ W\SH PRQRPHUV 3(0$ FRSRO\PHUV ZLWK PDOHLF DQK\GULGH VKRXOG EH OLQHDU DQG WKHUHIRUH VROXEOH LQ FRPPRQ RUJDQLF VROYHQWV 7KHUHIRUH ZH ZLOO EH DEOH WR PRQLWRU WKH HIIHFW RI DQK\GULGH LQFRUSRUDWLRQ RQ SURSHUWLHV

PAGE 163

VXFK DV PRODU PDVV DQG JODVV WUDQVLWLRQ WHPSHUDWXUH ZKLFK DUH PRUH GLIILFXOW WR DQDO\]H LQ KLJKO\ FURVVOLQNHG VDPSOHV 3(0$ FRSRO\PHU FRPSRVLWLRQV DUH OLVWHG LQ 7DEOH 7$%/( 3(0$PDOHLF DQK\GULGH PRQRPHU FRPSRVLWLRQV 6DPSOH ,' :HLJKW b LQ 0RQRPHU 0L[WXUH SKHQ\OHWK\O PDOHLF DQK\GULGH PHWKDFU\ODWH 3(0$ 3(0$ 3(0$ 3(0$ 3(0$ &RSRO\PHU &KDUDFWHUL]DWLRQ 'LPHWKDFU\ODWH GHQWDO UHVLQV (TXLOLEULXP ZDWHU FRQWHQW (:&f ZDV PHDVXUHG JUDYLPHWULFDOO\ DQG WKH H[WUDFWLRQ RI XQUHDFWHG DQK\GULGH ZDV PRQLWRUHG XVLQJ 89 VSHFWURVFRS\ RI +2 VROXWLRQV IURP VZHOOLQJ H[SHULPHQWV 6ZROOHQ HTXLOLEUDWHG VDPSOHV ZHUH WKHQ GULHG XQGHU YDFXXP DW r& WR FRQVWDQW ZHLJKW 'HQVLW\ PHDVXUHPHQWV RI WKH RULJLQDO GU\ VDPSOHV DQG WKH SRVWK\GURO\VLV GULHG VDPSOHV ZHUH FDOFXODWHG XVLQJ $UFKLPHGHVn SULQFLSOH 7KHVH GHQVLW\ FKDQJHV DORQJ ZLWK FKDQJHV LQ VDPSOH PDVV ZHUH XVHG LQ RUGHU WR FDOFXODWH YROXPH FKDQJHV IURP K\GURO\VLV 'HWDLOV RI WKH

PAGE 164

H[SHULPHQWDO PHWKRGV DQG VXEVHTXHQW FDOFXODWLRQV GHVFULEHG DERYH KDYH EHHQ SUHYLRXVO\ GLVFXVVHG LQ VHFWLRQ 7KH UHVXOWV RI WKLV VWXG\ DUH VKRZQ LQ 7DEOHV DQG 7$%/( (:& RI PDOHLF DQK\GULGH GHQWDO UHVLQV 6DPSOH &RPSRVLWLRQ 7(*'0$S%LV*0$0$f (TXLOLEULXP +2 &RQWHQW bf 7KH GRPLQDQW IDFWRU DIIHFWLQJ WKH ZDWHU XSWDNH VKRZQ LQ 7DEOH LV WKH DQK\GULGH FRQWHQW RI WKH FRSRO\PHU 9DOXHV YDU\ IURP b IRU WKH WZR VDPSOHV ZLWK QR DQK\GULGH WR b IRU WKH WZR VDPSOHV FRQWDLQLQJ b DQK\GULGH 7KLV UHVXOW LV H[SHFWHG FRQVLGHULQJ WKH K\JURVFRSLF QDWXUH RI WKH DQK\GULGH IXQFWLRQDOLW\ DQG LWV VXVFHSWLELOLW\ WR K\GURO\VLV WR D GLDFLG $Q LQFUHDVH LQ 7(*'0$ UHODWLYH WR S%LV*0$ DOVR VHHPV WR LQFUHDVH WKH (:& EXW WR D PXFK ORZHU H[WHQW WKDQ PDOHLF DQK\GULGH 7KHVH VZROOHQ HTXLOLEUDWHG VDPSOHV ZHUH WKRURXJKO\ GULHG EDFN WR D FRQVWDQW ZHLJKW $QK\GULGH FRQWDLQLQJ

PAGE 165

VDPSOHV VKRZHG D UHVLGXDO ZHLJKW JDLQ XS WR b DV VKRZQ LQ 7DEOH 7KLV ZHLJKW JDLQ LV EHOLHYHG WR EH GXH WR K\GURO\VLV RI WKH DQK\GULGH IXQFWLRQDOLW\ 0XOWLSOH SURFHVVHV DUH RFFXUULQJ GXULQJ WKH ZDWHU XSWDNH 1RW RQO\ LV WKH K\GURO\VLV RI WKH DQK\GULGH GULYLQJ IXUWKHU ZDWHU XSWDNH EXW XQUHDFWHG PDOHLF DQK\GULGH LV EHLQJ FRQYHUWHG WR PDOHLF DFLG DQG WKHQ H[WUDFWHG IURP WKH VDPSOH 7$%/( 5HVLGXDO ZHLJKW JDLQ DQK\GULGH LQFRUSRUDWLRQ DQG SRVW SRO\PHUL]DWLRQ H[SDQVLRQ RI PDOHLF DQK\GULGH GHQWDO UHVLQV 6DPSOH &RPSRVLWLRQ 7(*'0$S%LV*0$0$ b UHVLGXDO ZHLJKW JDLQ (IILFLHQF\ RI $QK\GULGH ,QFRUSRUDWLRQr 3RVW SRO\PHUL]DWL RQ b YROXPH H[SDQVLRQrr 1$ r'HWHUPLQHG IURP WKH 89 DQDO\VLV RI + H[WUDFWLRQ VROXWLRQV rr9ROXPH FDOFXODWHG IURP PDVV DQG GHQVLW\ PHDVXUHPHQWV 89 VSHFWURVFRS\ ZDV UXQ RQ WKH VZHOOLQJ VROXWLRQV $ FDOLEUDWLRQ FXUYH IRU WKH 89 DEVRUEDQFH RI PDOHLF DFLG ZDV GHWHUPLQHG LQ RUGHU WR PHDVXUH WKH PDOHLF DFLG FRQFHQWUDWLRQ LQ WKH H[WUDFWDEOHV $OO DQK\GULGH QRW H[WUDFWHG ZDV

PAGE 166

DVVXPHG WR EH LQFRUSRUDWHG ,QFRUSRUDWLRQ HIILFLHQFLHV UDQJHG IURP WR 3RVW SRO\PHUL]DWLRQ YROXPH H[SDQVLRQV PHDVXUHG XVLQJ PDVV DQG GHQVLW\ YDOXHV RI XS WR b ZHUH FDOFXODWHG IRU DQK\GULGH FRQWDLQLQJ VDPSOHV 7KH H[SDQVLRQ LQFUHDVHV ZLWK LQFUHDVLQJ DQK\GULGH FRQFHQWUDWLRQ 7*'7$ VKRZV D VLJQLILFDQW GLIIHUHQFH LQ GHFRPSRVLWLRQ IRU DQK\GULGH FRQWDLQLQJ SRO\PHUV DV VHHQ LQ )LJXUH ,QLWLDO ZHLJKW ORVV RFFXUV DW D ORZHU WHPSHUDWXUH WKDQ WKH SXUH PHWKDFU\ODWH UHVLQV EXW WKH DQK\GULGH LQFUHDVHV WKH WKHUPDO VWDELOLW\ DW KLJKHU WHPSHUDWXUHV 7KLV LV FRQVLVWHQW ZLWK UHSRUWHG UHVXOWV RI 00$PDOHLF DQK\GULGH FRSRO\PHUV %KXf ,QFUHDVHG WKHUPDO VWDELOLW\ PD\ EH GXH WR WKH DQK\GULGH XQLW EORFNLQJ WKH nXQ]LSSLQJn GHSRO\PHUL]DWLRQ UHDFWLRQ FRPPRQ LQ SRO\PHWKDFU\ODWHVf /LQHDU SRO\3(0$FR0$f FRSRO\PHU DQDORJV )7,5 VSHFWUD ZHUH FROOHFWHG WR YHULI\ WKH SUHVHQFH RI DQK\GULGH LQ WKH VWUXFWXUH )LJXUH VKRZV WKH FRPSDULVRQ RI WKH FDUERQ\O UHJLRQ IRU SRO\SKHQ\OHWK\O PHWKDFU\ODWHf DQG D FRSRO\PHU ZLWK ZWb PDOHLF DQK\GULGH LQ WKH IHHG 7KH DEVRUSWLRQ DW FP FDQ EH DVVLJQHG WR WKH & VWUHWFK IURP WKH HVWHU FDUERQ\O LQ WKH PHWKDFU\ODWH 7KH DEVRUSWLRQ RI WKH FDUERQ\O IRU WKH DQK\GULGH LV SUHVHQW DV D GRXEOHW DW DQG FP IRU WKH DV\PPHWULF DQG V\PPHWULF & VWUHWFK

PAGE 167

7HPSHUDWXUH r&f )LJXUH 7*'7$ RI DQK\GULGH PRGLILHG GHQWDO UHVLQ

PAGE 168

$EVRUEDFH $8f )LJXUH )7,5 VSHFWUD RI SRO\3(0$f DQG SRO\3(0$FR PDOHLF DQK\GULGHf

PAGE 169

7KH UHODWLYH LQWHQVLWLHV RI WKH FP DQG FP FDUERQ\O DEVRUSWLRQV ZHUH XVHG WR FDOFXODWH WKH UDWLR RI 3(0$ WR DQK\GULGH LQ WKH ILQDO FRSRO\PHUV 7KH ILQDO FRSRO\PHU DQK\GULGH FRQWHQW DORQJ ZLWK WKH PHDVXUHG JODVV WUDQVLWLRQ WHPSHUDWXUHV DUH VKRZQ LQ 7DEOH 7KH JODVV WUDQVLWLRQ WHPSHUDWXUH RI WKH 3(0$ FRSRO\PHUV LQFUHDVHV ZLWK DQK\GULGH FRQWHQW IURP r& IRU QHDW SRO\SKHQ\OHWK\O PHWKDFU\ODWHf WR r& IRU WKH 3(0$0$ FRSRO\PHUV $FWXDOO\ WKH DQK\GULGH FRQWHQW LQ WKH IHHG ZDV ZWb EXW WKH DQK\GULGH FRQWHQW LQ WKH FRSRO\PHU LV FORVHU WR b 7$%/( *ODVV WUDQVLWLRQ WHPSHUDWXUHV DQG FRPSRVLWLRQ RI 3(0$PDOHLF DQK\GULGH FRSRO\PHUV 3RO\PHU 7Jr r&f $QK\GULGH FRQWHQWrr ZWbf 3RO\3(0$f 3RO\3(0$&20$f 3RO\3(0$&20$f 3RO\3(0$&20$f 3RO\3(0$&2 20$f r0HDVXUHG E\ '6& rr &DOFXODWHG IURP WKH UHODWLYH LQWHQVLWLHV RI WKH FPn DQG FPn FDUERQ\O DEVRUSWLRQV XVLQJ WKH PRQRPHU PL[WXUH DV D VWDQGDUG

PAGE 170

(IILFLHQF\ RI DQK\GULGH LQFRUSRUDWLRQ ZDV VLJQLILFDQWO\ ORZHU WKDQ LQ WKH GLPHWKDFU\ODWH FRSRO\PHUL]DWLRQV 7KH DQK\GULGH FRQWHQW LQ WKH 3(0$ FRSRO\PHUV LV DSSUR[LPDWHO\ b RI WKDW LQ WKH IHHG %HFDXVH RI WKH GLIIHUHQFH LQ UHDFWLYLW\ UDWLRV LQ PDOHLF DQK\GULGHPHWKDFU\ODWH FRSRO\PHUL]DWLRQV KLJK FRQYHUVLRQV DUH UHTXLUHG WR SURGXFH SRO\PHU KLJK LQ DQK\GULGH FRQWHQW &RQYHUVLRQ DQG WKHUHIRUH DQK\GULGH LQFRUSRUDWLRQ LQ WKLV V\VWHP LV H[SHFWHG WR EH ORZHU WKDQ WKDW LQ WKH GLPHWKDFU\ODWH V\VWHP GXH WR WKH ORZHU FXUH WHPSHUDWXUH DQG VKRUWHU FXUH WLPH 7KH HIIHFW RI DQK\GULGH IHHG FRQFHQWUDWLRQ RQ WKH PRODU PDVV DYHUDJHV RI WKH FRSRO\PHUV LV LOOXVWUDWHG LQ 7DEOH ,QFUHDVLQJ WKH DQK\GULGH FRQWHQW OHDGV WR D VHYHUH UHGXFWLRQ LQ WKH DYHUDJH PRODU PDVV RI WKH UHVXOWLQJ FRSRO\PHU 7KH 0Q GHFUHDVHV IURP NJPRO IRU QHDW 3(0$ WR NJPRO IRU WKH FRSRO\PHU ZLWK D 3(0$0$ IHHG UDWLR

PAGE 171

7$%/( 0RODU PDVV DYHUDJHV IURP *3& IRU 3(0$DQK\GULGH FRSRO\PHUV 3RO\PHU 0Q 0Z 3', NJPROfNJPROf 3RO\3(0$f 3RO\3(0$&20$f 3RO\3(0$&20$f 3RO\3(0$&20$f 3RO\3(0$&2 20$f

PAGE 172

&+$37(5 6800$5< $1' &21&/86,216 7KH V\QWKHVLV DQG FKDUDFWHUL]DWLRQ RI DPLQR DFLG WHUPLQDWHG SRO\DFU\ODWHf PDFURPRQRPHUV XVLQJ D F\VWHLQH FKDLQ WUDQVIHU DJHQW KDV EHHQ VWXGLHG 7KH DELOLW\ RI WKHVH PDFURPRQRPHUV WR UHDFW ZLWK DPLGH SUHFXUVRUV LQ D FRQGHQVDWLRQ JUDIW FRSRO\PHUL]DWLRQV KDV EHHQ LQYHVWLJDWHG $OWKRXJK WKH QRYHOW\ RI WKLV DSSURDFK LQ WHUPV RI PDFURPRQRPHU V\QWKHVLV FKDLQ WUDQVIHU FKHPLVWU\ DQG FRQGHQVDWLRQ JUDIW FRSRO\PHUL]DWLRQV ZLOO EH GLVFXVVHG LW LV LPSRUWDQW WR QRWH WKH PRWLYDWLRQ IRU WKLV VWXG\ $OWKRXJK DW ILUVW JODQFH WKH PDFURPRQRPHU DQG JUDIW FRSRO\PHU ZRUN GRHV QRW VHHP WR EH FORVHO\ UHODWHG WR RXU VWXGLHV RI GHQWDO UHVLQV WKH PRWLYDWLRQV IRU WKHVH VWXGLHV DUH WLHG FORVHO\ WRJHWKHU 7KH HIIRUWV RI WKLV UHVHDUFK JURXS KDYH EHHQ IRFXVHG RQ RQH PDLQ JRDO LQFUHDVLQJ WKH XQGHUVWDQGLQJ RI WKH UROH RI LQWHUIDFHV LQ FRPSRVLWHV DQG PXOWLSKDVH FRSRO\PHU V\VWHPV 7KH LQWHUIDFLDO ERQGLQJ EHWZHHQ WZR SKDVHV LV FULWLFDO LQ GHWHUPLQLQJ WKH RYHUDOO SURSHUWLHV RI FRPSRVLWH $UQf 0XFK ZRUN KDV FRQFHQWUDWHG RQ VXUIDFH PRGLILFDWLRQ LQ ILEHU DQG SDUWLFXODWH UHLQIRUFHG FRPSRVLWHV $UQ 2UHf DV ZHOO DV FRPSDWLELOL]LQJ DJHQWV LQ SRO\PHUSRO\PHU FRPSRVLWHV ZLWK

PAGE 173

WKH JRDO RI UHGXFLQJ LQWHUIDFLDO WHQVLRQ DQG LQFUHDVLQJ LQWHUIDFLDO ERQGLQJ 2QH RI WKH FRPSRVLWH V\VWHPV ZH KDYH EHHQ LQYHVWLJDWLQJ LV WKH JODVV SDUWLFXODWH UHLQIRUFHG SRO\GLPHWKDFU\ODWHf FRPPRQO\ XVHG DV GHQWDO UHVWRUDWLYH PDWHULDOV 7KH IDLOXUH RI WKHVH GHQWDO FRPSRVLWHV DQG SRRU OLIHWLPH SHUIRUPDQFH DV FRPSDUHG WR DPDOJDP UHVWRUDWLRQV LV JHQHUDOO\ DWWULEXWHG WR D SRRU LQWHUIDFH %UDf $OWKRXJK WKH JODVVUHVLQ LQWHUIDFH KDV EHHQ VWXGLHG H[WHQVLYHO\ WKH VRXUFH RI IDLOXUH LV XVXDOO\ WKH LQWHUIDFH EHWZHHQ WKH FRPSRVLWH UHVWRUDWLRQ DQG WKH UHPDLQLQJ WRRWK VWUXFWXUH 6RGf 7ZR RI WKH PDLQ VRXUFHV RI WKLV SRRU LQWHUIDFH DUH DV IROORZV f WKH SRO\PHUL]DWLRQ VKULQNDJH GXULQJ FRPSRVLWH FXUH FDXVLQJ WKH UHVWRUDWLRQ WR SXOO DZD\ IURP WKH UHPDLQLQJ WRRWK VWUXFWXUH 7KLV OHDGV WR PDUJLQDO OHDNDJH WKH LQILOWUDWLRQ RI VDOLYD DQG EDFWHULD XQGHU WKH UHVWRUDWLRQ ZKLFK FDQ OHDG WR WKH UHLQFLGHQFH RI FDULHV f SRRU ERQGLQJ EHWZHHQ WKH H[SRVHG WRRWK VWUXFWXUH FRPSRVHG RI K\GURSKLOLF SURWHLQDFHRXV GHQWLQ WXEXOHV DQG WKH K\GURSKRELF GLPHWKDFU\ODWH FRPSRVLWH ,W LV WR WKLV HIIHFW WKDW D ODUJH H[WHQW RI WKH UHVHDUFK LQ GHQWDO FRPSRVLWHV KDV IRFXVHG RQ RQH RI WZR DUHDV WKH UHGXFWLRQ RU HOLPLQDWLRQ RI SRO\PHUL]DWLRQ VKULQNDJH RU WKH HYDOXDWLRQ RI QHZ GHQWLQ ERQGLQJ DJHQWV 2QO\ RXU VWXG\ RQ RIIVHWWLQJ SRO\PHUL]DWLRQ VKULQNDJH WKURXJK WKH DGGLWLRQ RI

PAGE 174

PDOHLF DQK\GULGH GHDOV VSHFLILFDOO\ ZLWK RQH RI WKHVH SUREOHPV +RZHYHU WKH PDFURPRQRPHU DQG JUDIW FRSRO\PHU ZRUN ZDV WDUJHWHG WR GHWHUPLQH WKH DELOLW\ WR V\QWKHVL]H D FRSRO\PHU FDSDEOH RI LQWHUDFWLQJ ZLWK ERWK WKH K\GURSKRELF PHWKDFU\ODWH DQG K\GURSKLOLF GHQWLQ VWUXFWXUH DW WKH WRRWK UHVWRUDWLRQ LQWHUIDFH $OWKRXJK WKH V\QWKHVL]HG DPLGH DFU\ODWH JUDIW FRSRO\PHUV ZHUH QRW WHVWHG LQ VXFK D V\VWHP DQG WKHLU DURPDWLF VWUXFWXUHV PD\ QRW PDNH WKHP VXLWDEOH IRU WKLV DSSOLFDWLRQ WKH IHDVLELOLW\ RI V\QWKHVL]LQJ WKH GHVLUHG VWUXFWXUHV KDV EHHQ VKRZQ 7KH JURXQGZRUN KDV EHHQ ODLG WR V\QWKHVL]H DFU\ODWH JUDIW FRSRO\PHUV ZLWK RWKHU DPLQR DFLGV PRUH VXLWDEOH WR WKLV SDUWLFXODU DSSOLFDWLRQ $OWKRXJK SUHOLPLQDU\ ZRUN SHUIRUPHG KHUH VHFWLRQ f RQ WKH SRVVLEOH DSSOLFDWLRQV RI WKH V\QWKHVL]HG JUDIW FRSRO\PHUV ZDV LQFRQFOXVLYH WKHVH JUDIW FRSRO\PHUV PD\ EH XVHIXO LQ RWKHU LQWHUIDFLDO DSSOLFDWLRQV VXFK DV FRPSDWLELOL]LQJ DJHQWV LQ LPPLVFLEOH SRO\PHU EOHQGV UXEEHU PRGLILHUV DQG VXUIDFH PRGLILHUV &KDLQ 7UDQVIHU )XQFWLRQDOL]DWLRQ RI 3RO\DFU\ODWHVf DQG 3RO\PHWKDFU\ODWHVf 6WXGLHV RQ PDFURPRQRPHU V\QWKHVLV KDYH FRQFHQWUDWHG RQ WKDW RI YLQ\O IXQFWLRQDOL]HG PDFURPROHFXOHV 7KHVH PDFURPRQRPHUV DUH WKXV FDSDEOH RI FRSRO\PHUL]LQJ ZLWK RWKHU YLQ\O PRQRPHUV LQ WKH V\QWKHVLV RI DGGLWLRQDGGLWLRQ JUDIW FRSRO\PHUV 7KH QRYHOW\ RI WKH DSSURDFK WR PDFURPRQRPHU

PAGE 175

V\QWKHVLV DSSOLHG KHUHLQ OLHV LQ WKH DELOLW\ WR V\QWKHVL]H IUHH UDGLFDOO\ SRO\PHUL]HG DGGLWLRQ SRO\DFU\ODWHVf FDSDEOH RI SDUWLFLSDWLQJ LQ D FRQGHQVDWLRQ JUDIW FRSRO\PHUL]DWLRQ ZLWK SRO\DPLGHV ,W LV WKH DPLQR DFLG IXQFWLRQDOLW\ ZKLFK PDNHV WKHVH PDFURPRQRPHUV LGHDO IRU JUDIWLQJ RU ELQGLQJ WR SRO\DPLGHV RU SURWHLQV 7KH FRQFOXVLRQV IRU WKH FKDLQ WUDQVIHU IXQFWLRQDOL]DWLRQ UHDFWLRQV DUH VXPPDUL]HG EHORZ &RQFOXVLRQV IRU 3UHOLPLQDU\ (YDOXDWLRQ RI &\VWHLQH &KDLQ 7UDQVIHU $JHQW f 8QGHU QHXWUDO S+ FRQGLWLRQV WKH FKDLQ WUDQVIHU IXQFWLRQDOL]DWLRQ RI SRO\EXW\O DFU\ODWHf XVLQJ D F\VWHLQH FKDLQ WUDQVIHU DJHQW LV LQHIIHFWLYH 7KLV UHDFWLRQ SURGXFHV D SRO\PHU ZLWK D EURDG PRODU PDVV GLVWULEXWLRQ 3', DQG D KLJKHU WKDQ H[SHFWHG 0Q f &KDLQ WUDQVIHU LV LQHIILFLHQW GXH WR FRQVXPSWLRQ RI F\VWHLQH LQ DQ XQGHVLUHG VLGH UHDFWLRQ 8QGHU QHXWUDO FRQGLWLRQV b RI F\VWHLQH LV LRQL]HG 7KH VXOIXU DQLRQ FDQ UHDFW ZLWK EXW\O DFU\ODWH WR IRUP 6 FDUEREXWR[\HWK\OF\VWHLQH 7KH FRQVXPSWLRQ RI F\VWHLQH E\ WKLV VLGH UHDFWLRQ OHDGV WR D GHFUHDVH LQ HIIHFWLYH F\VWHLQH FRQFHQWUDWLRQ RYHU WLPH DQG WKHUHIRUH UHGXFHG WHUPLQDWLRQ E\ FKDLQ WUDQVIHU f 7KH IRUPDWLRQ RI WKH XQGHVLUHG VLGH SURGXFW FDQ EH YLUWXDOO\ HOLPLQDWHG E\ UHGXFLQJ WKH S+ RI WKH UHDFWLRQ $ VHYHUH UHGXFWLRQ LQ PRODU PDVV IURP

PAGE 176

HIIHFWLYH FKDLQ WUDQVIHU LV REVHUYHG XSRQ DFLGLILFDWLRQ RI WKLV UHDFWLRQ &RQFOXVLRQV IRU 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI $PLQR $FLGWHUPLQDWHG 3RO\EXW\O DFU\ODWHf f 7KH FKDLQ WUDQVIHU SRO\PHUL]DWLRQ RI EXW\O DFU\ODWH LQ WKH SUHVHQFH RI F\VWHLQH LV KLJKO\ HIIHFWLYH 7KH FDOFXODWHG FKDLQ WUDQVIHU FRQVWDQW LV KLJKHU WKDQ WKDW RI RWKHU FRPPRQ FKDLQ WUDQVIHU DJHQWV f 7KH SUHVHQFH RI DQ DPLQR DFLG IXQFWLRQDOLW\ IURP WKH F\VWHLQH HQG JURXS LV YHULILHG E\ D FRPELQDWLRQ RI )7,5 VSHFWURVFRS\ 105 ,&3 DV ZHOO DV E\ WKH DELOLW\ RI WKH PDFURPRQRPHU WR UHDFW ZLWK DPLGH SUHFXUVRUV LQ D FRQGHQVDWLRQ SRO\PHUL]DWLRQ f 3UHGLFWHG IXQFWLRQDOLWLHV XVLQJ WKH 0D\R PRGHO DUH KLJKHU WKDQ WKRVH PHDVXUHG E\ WKH ,&3*3& WHFKQLTXH 7KLV FRXOG EH GXH WR QRQLGHDO FRQGLWLRQV VXFK DV FKDLQ WUDQVIHU WR VROYHQW KLJK FRQYHUVLRQV HWF DQG FRXOG DOVR EH DIIHFWHG E\ WKH LQKHUHQW HUURU LQ IXQFWLRQDOLW\ GHWHUPLQDWLRQ XVLQJ *3& PRODU PDVV YDOXHV &RQFOXVLRQV IRU 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI $PLQR $FLGWHUPLQDWHG 3RO\00$FR2)30$f f &\VWHLQH LV QRW DV HIIHFWLYH ZLWK D FKDLQ WUDQVIHU FRQVWDQW RI LQ WKH FKDLQ WUDQVIHU FRSRO\PHUL]DWLRQ RI PHWK\O PHWKDFU\ODWH DQG RFWDIOXRURSHQW\O PHWKDFU\ODWH $W HTXLYDOHQW OHYHOV RI

PAGE 177

F\VWHLQH PXFK KLJKHU PRODU PDVVHV DUH REVHUYHG LQ WKLV UHDFWLRQ WKDQ LQ WKH S%$f SRO\PHUL]DWLRQ f 7KH GLIIHUHQFH EHWZHHQ WKHVH WZR V\VWHPV PD\ EH H[SODLQHG E\ WKH GLIIHUHQFH EHWZHHQ DFU\ODWHV DQG PHWKDFU\ODWHV 2WKHU UHVHDUFK JURXSV1$,5f KDYH REVHUYHG DOWKRXJK QRW WR VXFK D ODUJH H[WHQW ORZHU FKDLQ WUDQVIHU FRQVWDQWV IRU PHWKDFU\ODWHV 7KLV KDV EHHQ DWWULEXWHG WR WKH ORZHU UHDFWLYLW\ RI PHWKDFU\ODWHV OHDGLQJ WR GHJUDGDWLYH FKDLQ WUDQVIHU f 7KH ORZHU FKDLQ WUDQVIHU FRQVWDQW DQG VXEVHTXHQW KLJKHU PRODU PDVV OHDGV WR ORZHU SUHGLFWHG IXQFWLRQDOLWLHV ZKHQ FRPSDUHG WR S%$f PDFURPRQRPHUV )XQFWLRQDOLW\ FRXOG QRW EH GHWHUPLQHG H[SHULPHQWDOO\ GXH WR WKH KLJK PRODU PDVV DQG FRQVHTXHQW ORZ HQG JURXS FRQFHQWUDWLRQ RI WKH IOXRURSRO\PHU *UDIW &RSRO\PHUL]DWLRQV RI 0DFURPRQRPHUV ZLWK 3RO\DPLGH 3UHFXUVRUV 7KHUH DUH IHZ UHSRUWV RI ZHOO GHILQHG SRO\DPLGH JUDIW FRSRO\PHUV ZLWK DGGLWLRQ SRO\PHUV VXFK DV SRO\DFU\ODWHVf RU SRO\PHWKDFU\ODWHVf 0RVW VWXGLHV RI DPLGH JUDIW FRSRO\PHUL]DWLRQV ZLWK DGGLWLRQ SRO\PHUV LQYROYH HLWKHU WKH LQ VLWX IRUPDWLRQ RI JUDIW FRSRO\PHUV LQ SRO\PHU EOHQGV RU UDGLDWLRQ LQGXFHG VXUIDFH JUDIW WHFKQLTXHV $OWKRXJK HIIHFWLYH IRU WKHLU LQWHQGHG DSSOLFDWLRQV QHLWKHU PHWKRG SURGXFHV D ZHOO GHILQHG JUDIW FRSRO\PHU WKDW FDQ EH LVRODWHG DQG VWXGLHG

PAGE 178

7KH REMHFWLYH RI WKLV VWXG\ ZDV WR V\QWKHVL]H VXFK JUDIW FRSRO\PHUV XVLQJ DPLQR DFLG WHUPLQDWHG PDFURPRQRPHUV V\QWKHVL]HG SUHYLRXVO\ $ VXPPDU\ RI WKH FRQFOXVLRQV IRU WKH JUDIW FRSRO\PHUL]DWLRQ RI WKHVH PDFURPRQRPHUV LV OLVWHG EHORZ &RQFOXVLRQV IRU 6\QWKHVLV RI 3RO\DPLGHJDFU\ODWHf *UDIW &RSRO\PHUV f 3%$f DQG S)$f ZHUH SRO\PHUL]HG ZLWK DURPDWLF DQG DURPDWLFDOLSKDWLF DPLGH SUHFXUVRUV LQ D 323Kf FDWDO\]HG SRO\FRQGHQVDWLRQ UHDFWLRQ f 7KH SURGXFWV ZHUH H[WUDFWHG ZLWK 7+) DQG VXEVHTXHQW *3& DQDO\VLV RQ H[WUDFWDEOHV VKRZHG D ELPRGDO GLVWULEXWLRQ f *3&89 UHVXOWV LQGLFDWH WKDW ERWK FRPSRQHQWV LQ WKH H[WUDFWDEOHV FRQWDLQ DURPDWLF VHJPHQWV IURP WKH SRO\DPLGH 7KLV ZRXOG LQGLFDWH WKDW WKH 7+) VROXEOH IUDFWLRQ LV QRW FRPSRVHG RI SXUHO\ RI XQUHDFWHG RU XQIXQFWLRQDOL]HG SRO\DFU\ODWHVf EXW FRQWDLQV HLWKHU ORZ PRODU PDVV JUDIW FRSRO\PHU RU SRO\DFU\ODWHf ULFK JUDIW FRSRO\PHU f :HLJKW ORVV IURP H[WUDFWLRQ ZDV PXFK KLJKHU IRU S)$f JUDIW FRSRO\PHUV WKDQ IRU HTXLYDOHQW S%$f FRPSRVLWLRQV 7KLV FDQ EH H[SODLQHG E\ DQ LQFUHDVH LQ XQIXQFWLRQDOL]HG FKDLQV DV SUHGLFWHG E\ WKH ORZHU FKDLQ WUDQVIHU FRQVWDQW LQ WKH PDFURPRQRPHU SRO\PHUL]DWLRQ

PAGE 179

&RQFOXVLRQV IRU &KDUDFWHUL]DWLRQ RI 3RO\DPLGHJ DFU\ODWHf *UDIW &RSRO\PHUV f 7KH SUHVHQFH RI ERWK DPLGH DQG DFU\ODWH VHJPHQWV LQ WKH JUDIW FRSRO\PHU LV YHULILHG E\ )7,5 DQG 105 f $FU\ODWH FRQWHQW ZDV GHWHUPLQHG ERWK E\ 105 DQG (OHPHQWDO $QDO\VLV $FU\ODWH FRQFHQWUDWLRQ LQ WKH FRSRO\PHU LV SURSRUWLRQDO WR WKDW LQ WKH IHHG DQG YDULHG IURP WR ZWb f )RU S%$f JUDIW FRSRO\PHUV WKH FRQFHQWUDWLRQ RI S%$f LQ WKH FRSRO\PHU LV b RI WKH S%$f LQ WKH IHHG 7KLV LV GXH WR ERWK WKH SUHVHQFH RI XQIXQFWLRQDOL]HG FKDLQV DV ZHOO DV WKH VROXELOLW\ RI ORZ PRODU PDVV KLJK S%$f JUDIW FRSRO\PHU LQ WKH 7+) H[WUDFWLRQ f 7KH LQFRUSRUDWLRQ HIILFLHQF\ IRU WKH S)$f LV PXFK ORZHU b GXH WR WKH ORZHU SUHGLFWHG IXQFWLRQDOLW\ RI WKHVH PDFURPRQRPHUV 6WHULF HIIHFWV IURP WKH KLJKHU PRODU PDVV RI WKH PDFURPRQRPHU PD\ DOVR EH OLPLWLQJ WKHLU LQFRUSRUDWLRQ LQWR KLJK PRODU PDVV JUDIW FRSRO\PHU f ,QKHUHQW YLVFRVLWLHV RI JUDIW FRSRO\PHUV DUH FRQVLVWHQW ZLWK WKRVH RI SRO\DPLGHV ZLWK PRODU PDVV YDOXHV DURXQG WR NJPRO +LJEf 7KH JUDIW FRSRO\PHU YLVFRVLW\ GHFUHDVHV ZLWK LQFUHDVLQJ S%$f FRQFHQWUDWLRQ 7KH HIIHFW LV OHVV GUDPDWLF IRU JUDIW FRSRO\PHUV FRQWDLQLQJ WKH KLJKHU PRODU PDVV IORXURDFU\ODWH PDFURPRQRPHU

PAGE 180

&RQFOXVLRQV IRU 0HFKDQLFDO 3URSHUWLHV RI 1\ORQ *UDIW &RSRO\PHU %OHQGV f $GGLWLRQ RI 3K'$$ WR 1\ORQ SURGXFHV DQ LQFUHDVH LQ PRGXOXV DQG D VHYHUH GHFUHDVH LQ GXFWLOLW\ 7KH JUDIW FRSRO\PHU GRPDLQV DUH EHKDYLQJ OLNH KDUG LQFOXVLRQV ZLWKLQ WKH Q\ORQ PDWUL[ f 7KLV EHKDYLRU LV GXH WR WKH YLVLEO\ SRRU PL[LQJ EHWZHHQ WKH Q\ORQ DQG WKH 3K'$$ 3RRU PL[LQJ LV D UHVXOW RI WKH ODFN RI WKHUPDO WUDQVLWLRQV IRU WKH DPLGH SKDVH RQ WKH JUDIW FRSRO\PHU QRW DOORZLQJ IORZ GXULQJ FRPSUHVVLRQ PROGLQJ f %OHQGLQJ RI WKH JUDIW FRSRO\PHU FDXVHG D GHFUHDVH LQ DOO PHFKDQLFDO SURSHUWLHV $JDLQ PL[LQJ ZDV H[WUHPHO\ SRRU DQG GRPDLQV ZHUH FOHDUO\ YLVLEOH f 7KH JUDIW FRSRO\PHU KDG OLWWOH HIIHFW DV D VXUIDFWDQW LQ WKH 1\ORQ SRO\EXW\O DFU\ODWHf EOHQG $JDLQ ODFN RI PL[LQJ ZRXOG SUHYHQW WKH JUDIW FRSRO\PHUV IURP PLJUDWLQJ WR WKH LQWHUIDFH EHWZHHQ WKH LPPLVFLEOH SRO\PHUV 2IIVHWWLQJ 3RO\PHUL]DWLRQ 6KULQNDJH LQ 3RO\GLPHWKDFU\ODWHf 'HQWDO 5HVLQV 9ROXPHWULF VKULQNDJH LV D PDMRU SUREOHP LQKLELWLQJ WKH ORQJ WHUP VXFFHVV RI FXUUHQW GHQWDO UHVWRUDWLYH PDWHULDOV 7KLV VKULQNDJH LV LQKHUHQW WR WKH IUHH UDGLFDO SRO\PHUL]DWLRQ RI WKH PXOWLIXQFWLRQDO PHWKDFU\ODWH UHVLQV XVHG LQ WKH GHQWDO FRPSRVLWHV 3RO\PHUL]DWLRQ VKULQNDJH

PAGE 181

FUHDWHV ERWK D ZHDN LQWHUIDFH EHWZHHQ WKH WRRWK VWUXFWXUH DQG WKH UHVWRUDWLRQ DV ZHOO DV UHVLGXDO VWUHVVHV ZLWKLQ WKH FRPSRVLWH VWUXFWXUH OHDGLQJ WR SUHPDWXUH IDLOXUH LQ WKH UHVWRUDWLRQ $OWKRXJK YDULRXV PHWKRGV DQG GLIIHUHQW PRQRPHUV KDYH EHHQ VWXGLHG WR DOOHYLDWH WKLV SUREOHP QR VROXWLRQ WR GDWH KDV EHHQ GLVFRYHUHG WKDW HOLPLQDWHV VKULQNDJH ZLWKRXW VLJQLILFDQWO\ DOWHULQJ WKH FXUH DQG PHFKDQLFDO SURSHUWLHV RI WKH UHVLQ 7KH JRDO RI WKLV VWXG\ ZDV WR GHPRQVWUDWH WKDW ZH FDQ RIIVHW WKH SRO\PHUL]DWLRQ VKULQNDJH RI FRPPRQ GLPHWKDFU\ODWH UHVLQV ZLWKRXW VLJQLILFDQWO\ FKDQJLQJ WKH FRPRQRPHU VWUXFWXUHV WKURXJK WKH DGGLWLRQ RI PDOHLF DQK\GULGH 7KH FRQFOXVLRQV IRU WKLV ZRUN DUH VXPPDUL]HG EHORZ &RQFOXVLRQV IRU &KDUDFWHUL]DWLRQ RI 0DOHLF $QK\GULGH FRQWDLQLQJ 'HQWDO 5HVLQV f 0DOHLF $QK\GULGH LQFRUSRUDWLRQ LQWR KHDW FXUHG GHQWDO UHVLQV ZDV YHULILHG E\ )7,5 H[WUDFWLRQ DQG 89 VSHFWURVFRS\ (IILFLHQF\ RI LQFRUSRUDWLRQ LV EHWZHHQ DQG +LJK OHYHOV RI LQFRUSRUDWLRQ DUH GXH WR KLJK OHYHOV RI FRQYHUVLRQ H[SHFWHG IRU KLJK FXUH WHPSHUDWXUHV DQG ORQJ FXUH WLPHV f 7KH HTXLOLEULXP ZDWHU FRQWHQW RI WKH UHVLQV LV SURSRUWLRQDO WR WKH FRQFHQWUDWLRQ RI PDOHLF DQK\GULGH YDU\LQJ IURP WR b + 7KLV FDQ EH H[SODLQHG E\ WKH K\JURVFRSLF QDWXUH RI DQK\GULGH IXQFWLRQDOLWLHV DQG UHVXOWLQJ GLDFLG IXQFWLRQDOLWLHV

PAGE 182

f 0DVV DQG GHQVLW\ YDOXHV RI GU\ VDPSOHV EHIRUH DQG DIWHU H[WUDFWLRQ ZHUH PHDVXUHG LQ RUGHU WR GHWHUPLQH YROXPH FKDQJHV 9ROXPH H[SDQVLRQV RI XS WR b ZHUH PHDVXUHG IRU DQK\GULGHFRQWDLQLQJ VDPSOHV &RQFOXVLRQV IRU 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI $QK\GULGH &RSRO\PHU ZLWK 3(0$ f 0DOHLF DQK\GULGH FRSRO\PHUV ZLWK SKHQ\OHWK\O PHWKDFU\ODWH 3(0$f ZHUH V\QWKHVL]HG LQ RUGHU WR GHWHUPLQH WKH HIIHFW RI WKH DQK\GULGH RQ SURSHUWLHV PRUH UHDGLO\ PHDVXUHG LQ QRQ FURVVOLQNHG SRO\PHUV f (IILFLHQF\ RI DQK\GULGH LQFRUSRUDWLRQ ZDV VLJQLILFDQWO\ ORZHU WKDQ LQ WKH GLPHWKDFU\ODWH FRSRO\PHUL]DWLRQV UDQJLQJ IURP WR %HFDXVH RI WKH GLIIHUHQFH LQ UHDFWLYLW\ UDWLRV LQ PDOHLF DQK\GULGHPHWKDFU\ODWH FRSRO\PHUL]DWLRQV KLJK FRQYHUVLRQV DUH UHTXLUHG WR SURGXFH SRO\PHU KLJK LQ DQK\GULGH FRQWHQW &RQYHUVLRQ DQG WKHUHIRUH DQK\GULGH LQFRUSRUDWLRQ LQ WKLV V\VWHP LV H[SHFWHG WR EH ORZHU WKDQ WKDW LQ WKH GLPHWKDFU\ODWH V\VWHP GXH WR WKH ORZHU FXUH WHPSHUDWXUH DQG VKRUWHU FXUH WLPH f ,QFUHDVLQJ WKH DQK\GULGH FRQWHQW OHDGV WR D UHGXFWLRQ LQ DYHUDJH PRODU PDVV \HW D KLJKHU JODVV WUDQVLWLRQ WHPSHUDWXUH LQ WKH UHVXOWLQJ FRSRO\PHU

PAGE 183

&+$37(5 )8785( :25. 0DFURPRQRPHUV DQG *UDIW &RSRO\PHUV 7KH RYHUDOO UHVXOWV RI WKLV ZRUN LQGLFDWH WKDW JUDIW FRSRO\PHUV RI SRO\DPLGHV DQG SRO\DFU\ODWHVf FDQ EH VXFFHVVIXOO\ V\QWKHVL]HG XVLQJ F\VWHLQH HQG FDSSHG PDFURPRQRPHUV $OWKRXJK D VHULHV RI PDFURPRQRPHUV DQG JUDIW FRSRO\PHUV ZDV V\QWKHVL]HG DQG FKDUDFWHUL]HG RSWLPL]DWLRQ RI WKH LQGLYLGXDO VWHSV DQG H[WHQVLRQ RI WKLV ZRUN WR RWKHU UHDFWLRQ V\VWHPV VKRXOG EH LQYHVWLJDWHG 6XJJHVWHG IXUWKHU H[SHULPHQWV DUH RXWOLQHG EHORZ 0DFURPRQRPHU :RUN f 7KH HIIHFW RI IXUWKHU UHGXFLQJ $,%1 FRQWHQW RQ IXQFWLRQDOL]DWLRQ HIILFLHQF\ VKRXOG EH GHWHUPLQHG $V ZDV VWDWHG SUHYLRXVO\ DQ\ FKDLQV LQLWLDWHG E\ $,%1 ZLOO EH XQIXQFWLRQDOL]HG DQG UHGXFWLRQ RI $,%1 FRQFHQWUDWLRQ VKRXOG \LHOG PRUH KLJKO\ IXQFWLRQDOL]HG PDFURPRQRPHUV +RZHYHU WKLV LV H[SHFWHG WR EH DFFRPSDQLHG E\ D GURS LQ RYHUDOO FRQYHUVLRQ f 7KH PDFURPRQRPHU V\QWKHVLV FRXOG EH H[WHQGHG WR RWKHU PRQRPHUV )RU H[DPSOH FURVVOLQNHG V\VWHPV PD\ EH LQYHVWLJDWHG ,W LV H[SHFWHG WKDW DPLQR DFLG

PAGE 184

IXQFWLRQDOL]HG QHWZRUNV FRXOG EH V\QWKHVL]HG E\ WKH SRO\PHUL]DWLRQ RI GLPHWKDFU\ODWHV RU DQ\ GLYLQ\O PRQRPHU LQ WKH SUHVHQFH RI F\VWHLQH *UDIW &RSRO\PHUV f 7KH UHDFWLRQ RI DFU\ODWH PDFURPRQRPHUV ZLWK D PRUH SURFHVVDEOH SRO\DPLGH ZRXOG EH RI LQWHUHVW 7KRVH VWXGLHG KHUH ZHUH VROXEOH RQO\ LQ VWURQJ DFLGV DQG VKRZHG QR GLVWLQFW WKHUPDO WUDQVLWLRQ SULRU WR GHJUDGDWLRQ f $ PRUH VROXEOH SRO\DPLGH ZRXOG DOORZ IRU VROXWLRQ SURFHVVLQJ HLWKHU IRU EOHQGLQJ ZLWK RWKHU SRO\PHUV RU IRU PRUH SUHFLVH JUDIW FRSRO\PHU PRODU PDVV GHWHUPLQDWLRQ *3& OLJKW VFDWWHULQJf f 0RUH LPSRUWDQWO\ D SRO\DPLGH WKDW LV WKHUPDOO\ SURFHVVDEOH LV RI LQWHUHVW 7KRVH V\QWKHVL]HG LQ WKLV VWXG\ VLPLODUO\ WR RWKHU DURPDWLF SRO\DPLGHV GHJUDGH EHIRUH WKH\ PHOW WKHUHE\ FRPSOLFDWLQJ PHOW SURFHVVLQJ 0HOW SURFHVVDELOLW\ ZRXOG DOORZ IRU EOHQGLQJ ZLWK RWKHU SRO\PHUV DQG LW ZRXOG IDFLOLWDWH WKH VDPSOH SUHSDUDWLRQ IRU WKH PHFKDQLFDO WHVWLQJ RI WKH JUDIW FRSRO\PHUV f ,W KDV EHHQ UHSRUWHG WKDW DOWKRXJK WKHVH DURPDWLF SRO\DPLGHV JHQHUDOO\ GR QRW GLVSOD\ D GLVWLQFW PHOW SULRU WR GHJUDGDWLRQ WKH\ DUH VHPLFU\VWDOOLQH
PAGE 185

ZRXOG EH XVHIXO WR GHWHUPLQH WKHLU OHYHO RI FU\VWDOOLQLW\ f ,I VXFFHVVIXO WKH HIIHFW RI PDFURPRQRPHU PRODU PDVV DQG FRQWHQW RQ WKH FU\VWDOOL]DWLRQ DQG PHFKDQLFDO SURSHUWLHV RI WKH JUDIW FRSRO\PHUV ZRXOG EH RI LQWHUHVW f 7KH JUDIW FRSRO\PHUL]DWLRQ RI DFU\ODWHV ZLWK QDWXUDOO\ RFFXUULQJ DPLQR DFLGV VXFK PD\ EH RI LQWHUHVW LQ ELRORJLFDO DSSOLFDWLRQV +LJDVKL +LJEf KDV DOUHDG\ VKRZQ WKDW SRO\OHXFLQHf SRO\YDOLQHf SRO\DODQLQHf DQG SRO\SKHQ\ODODQLQHf FRXOG EH V\QWKHVL]HG LQ WKH 103 VROYHQW V\VWHP XVHG LQ WKLV VWXG\ ,Q IDFW KLJK PRODU PDVV SRO\DPLQR DFLGVf XS WR NJPRO ZHUH V\QWKHVL]HG 7KH SRO\PHUL]DWLRQ ZLWK DPLQR DFLGV LV ZKHUH F\VWHLQH WHUPLQDWHG SRO\PHUV ZLOO EH HVSHFLDOO\ EHQHILFLDO EHFDXVH RI WKH EXLOW LQ VWRLFKLRPHWU\ RI WKH DPLQR DFLG IXQFWLRQDOLW\ f 2WKHU PHWKRGV RI FRSRO\PHUL]DWLRQ RI WKHVH PDFURPRQRPHUV VKRXOG EH LQYHVWLJDWHG ,QWHUIDFLDO SRO\PHUL]DWLRQV RU EXON SRO\PHUL]DWLRQ ZLWK FDSURODFWDP IRU Q\ORQ FRSRO\PHUV PD\ EH SRVVLEOH $QK\GULGHFRQWDLQLQJ 'HQWDO 5HVLQV )XUWKHU VWXGLHV LQ WKLV UHVHDUFK JURXS RQ DQK\GULGH FRQWDLQLQJ GHQWDO UHVLQV KDV EHHQ RQJRLQJ *UD :HV 6FK 0HKf 7KH ZRUN SUHVHQWHG KHUH UHSUHVHQWV WKH LQLWLDO IRXQGDWLRQ IRU WKH RQJRLQJ VWXGLHV 7KH HIIHFW RI

PAGE 186

DQK\GULGH LQFRUSRUDWLRQ RQ PHFKDQLFDO SURSHUWLHV KDV EHHQ VWXGLHG LQ GHWDLO *UDf 7KH LQFRUSRUDWLRQ DQG PRGHOLQJ :HVf RI RWKHU DQK\GULGHV LQFOXGLQJ QDGLH PHWK\O DQK\GULGH 0HKf DQG PHWKDFU\OLF DQK\GULGH 6FKf KDV EHHQ LQYHVWLJDWHG 7KH OLJKW RU URRP WHPSHUDWXUH FXUH SRO\PHUL]DWLRQV RI WKHVH FRSRO\PHUV KDV SUHVHQWHG XQLTXH SUREOHPV ,QFRUSRUDWLRQ RI DQK\GULGH LV QRW H[WHQVLYH DV FRPSDUHG WR WKH KHDW FXUH V\VWHPV *UDf +RZHYHU VHYHUDO PHWKRGV RI LPSURYLQJ WKH LQFRUSRUDWLRQ LQWR GHQWDO UHVLQV HLWKHU WKURXJK WKH DGGLWLRQ RI SUHSRO\PHUL]HG DQK\GULGH FRSRO\PHU RU WKURXJK WKH DGGLWLRQ RI PRQRPHUV PRUH UHDFWLYH ZLWK PDOHLF DQK\GULGH VXFK DV VW\UHQH RU YLQ\O HWKHUV DUH FXUUHQWO\ XQGHU HYDOXDWLRQ

PAGE 187

/,67 2) 5()(5(1&(6 $OE $QD $WK $UQ %DL %DN %DU %DX %HF %KX %RJ %RU %RZ %UD $OEUHFKW DQG :XQGHUOLFK : $JQHZ 0DNURPRO &KHP f $QDVWDVLDGLV 6+ *DQFDU] DQG .REHUVWHLQ -7 0DFURPROHFXOHV f $WKH\ -U 5' DQG 0RVKHU :$ 3RO\P 6FL &KHP f $UQROG -3K' 'LVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD f %DLOH\ :DQG 6XQ 5/ $P &KHP 6RF 'LY 3RO\P &KHP 3RO\P 3UHSU f %DNHU :3 -U 86 3DWHQW f %DUERVD 59 6RDUHV %* DQG *RPHV $6 $SSO 3RO\P 6FL f %DXVFK -5 'H /DQJH & 'DYLGVRQ &/ 3HWHUV $ DQG 'H *HH $3URVWKHW 'HQW f %HFN 7DQ 1& 7DL 6. DQG %ULEHU 50 3RO\PHU f %KX\DQ DQG 'DVV 11 0DFURPRO 6FL &KHP $ f %RJRHYD*DFHYD 3LPRQHQNR 1< DQG 3HWURY 7H[W 5HV f %RUJJUHYH -0 DQG *D\PDQV 53RO\PHU f %RZHQ 5/ 86 3DWHQW f %UDQGUXS DQG ,PPHUJXW (+ 3RO\PHU +DQGERRN :LOH\ t 6RQV 1HZ
PAGE 188

%UD %UD %UR %XFD %XFE %\H &DP &DP &KH &KL &KX &KX &KXD &KXE &RU &UD &UD %UDQQVWRUP 0 (QGRG f %UDG\ 5 -065HY 0DFURPRO &KHP 3K\V & f %URZQ +5 0DFURPROHFXOHV f %XFKHQVND $SSO 3RO\ 6FL f %XFKHQVND $SSO 3RO\ 6FL f %\HUOH\ 7(LFN -' &KHQ *3 &KDSSHORZ && DQG 0LOOLFK ) 'HQW 0DWHU f &DPHURQ &* DQG &KLVROP 06 3RO\PHU f &DPHURQ &* DQG &KLVROP 06 3RO\PHU f &KHQ *) DQG -RQHV )1 0DFURPROHFXOHV f &KLDQJ & DQG &KDQJ ) $SSO 3RO\P 6FL f &KXMR < 7DWVXGD 7 DQG
PAGE 189

&UH &UHWRQ & +XL +&< .UDPHU (+DG]LLRDQQRX DQG %URZQ +5 %XOO $P 3K\V 6RF f 'DY 'DYLGVRQ &/ 9DQ =HJKEURHFN / DQG )HLO]HU $'HQW 5HV f 'H% 'H %RRV $* 3RO\PHU f 'HQ 'HQL]OLJLO 6 $QG
PAGE 190

+DP +DPDLGH 7 5HYLOORQ $ DQG *X\RW $ (XUR 3RO\P f +DV +DVLPRWR 7 6KLED\DPD 0 )XMLPXUD 0 DQG .DZDL + ,Q %ORFN &RSRO\PHUV 6FLHQFH DQG 7HFKQRORJ\ 0HLHU '(G 00, 3UHVV 1HZ
PAGE 191

0DM D 0DMXPGDU % .HVNNXOD + DQG 3DXO '5 $SSO 3RO\P 6FL f 0DM E 0DMXPGDU % .HVNNXOD + DQG 3DXO '5 3RO\PHU f 0DV 0DVDU % &HIHOLQ 3 DQG 6HEHQGD 3RO\ 6FL 3RO\P &KHP (G f 0DV 0DVVRQ 3 %HLQHUW )UDQWD ( DQG 5HPSS 3 3RO\P %XOO f 0HK 0HKOHP -$UQROG -6FZDU] 0: =DPRUD 03 DQG %UHQQDQ $% $P &KHP 6RF 'LY 3RO\P &KHP 3RO\P 3UHSU f 0HL 0HLHU ',Q %ORFN DQG *UDIW &RSRO\PHUV -%XUNH DQG 9 :HLVV (GV 6\UDFXVH 8QLYHUVLW\ 3UHVV 6\UDFXVH 1< f 0HL 0HLMV *) DQG 5LGGDUGR ( 0DFURPRO 6FL 0DFURPRO &KHP 3K\V & f 0LV 0LVUD %1 .DXU *XSWD $ -RKQ 9 DQG 6LQJKD $6 3RO\P t 3RO\P &RPS f 0RG 0RGLF 0DQG 3RWWLFN /$ 3RO\P (QJ 6FL f 0RU 0RUDHV 0$5 0RUHLUD $&) %DUERVD 59 DQG 6RDUHV %* 0DFURPROHFXOHV f 0RX 0RXJLQ 1 5HPSS 3 DQG *QDQRX < 3RO\P 6FL 3RO\P &KHP (G f 0XH 0XHOOHU6FKXOWH 5DG 3K\V &KHP f 0XK 0XKOEDFK DQG 3HUFHF 9 3RO\P 6FL 3RO\P &KHP (G f 1DL 1DLU &35 (XUR 3RO\P f 1DN 1DNDED\DVKL 1 DQG 0DVXKDUD ( ,Q %LRPHGLFDO 3RO\PHUVf§3RO\PHULF 0DWHULDOV DQG 3KDUPDFHXWLFDOV IRU %LRPHGLFDO 8VH (3 *ROGEHUJ DQG $ 1DNDMXPD HGV $FDGHPLF 3UHVV 1HZ
PAGE 192

1DW 1DWDQVRKQ $ 0XUDOL 5 DQG (LVHQEHUJ $ 0DNURPRO &KHP 0DFURPRO 6\PS f 1RV 1RVKD\ $ DQG 0F*UDWK -( %ORFN &RSRO\PHUV 2YHUYLHZ DQG &ULWLFDO 6XUYH\ $FDGHPLF 3UHVV 1HZ
PAGE 193

6HD 6HDGDQ 0 /DPED 0 1DUNLV 0 6LHJPDQQ $ DQG 7]XU $ 3RO\P $GY 7HFK f 6KX 6KXOO .5 .UDPHU (+DG]LLRDQQRX DQG 7DQJ : 0DFURPROHFXOHV f 6 6LOYHUVWHLQ 50 %DVVOHU *& DQG 0RUULOO 7& 6SHFWURPHWULF ,GHQWLILFDWLRQ RI 2UJDQLF &RPSRXQGV :LOH\ t 6RQV 1HZ
PAGE 194


PAGE 195

%,2*5$3+,&$/ 6.(7&+ ,Q NHHSLQJ ZLWK KLV FXUUHQW VOHHSLQJ VFKHGXOH 0LFKDHO 3HUH] =DPRUD ZDV ERUQ DW DSSUR[LPDWHO\ $0 RQ )HEUXDU\ LQ &LQFLQQDWL 2KLR WR 3DEOR DQG 6\OYLD =DPRUD DQG WR %HOOD $FRVWD KLV JUDQGPRWKHU $SSUR[LPDWHO\ QLQH \HDUV HDUOLHU 3DEOR DQG 6\OYLD HPLJUDWHG IURP &XED DQG PHW LQ 0LDPL )ORULGD 7KH\ PRYHG WR *DLQHVYLOOH )ORULGD DQG PDUULHG GXULQJ WKH WLPH 3DEOR HDUQHG KLV PDVWHUnV GHJUHH LQ FKHPLFDO HQJLQHHULQJ DW WKH 8QLYHUVLW\ RI )ORULGD DOPRVW WKLUW\ \HDUV DJR 0LFKDHO OLYHG LQ &LQFLQQDWL IRU WKUHH \HDUV EHIRUH KLV IDWKHU ZDV WUDQVIHUUHG WR 9HQH]XHOD $IWHU IRXU \HDUV LQ 9HQH]XHOD DQG ZLWK &XEDQ 6SDQLVK VSHDNLQJ SDUHQWV KH FDPH EDFN WR &LQFLQQDWL D SXUHO\ /DWLQ NLG ZKR VSRNH OLWWOH (QJOLVK 0LFKDHO DGDSWHG TXLFNO\ WR WKH $PHULFDQ ZD\ RI OLIH XSRQ H[SRVXUH WR 6HVDPH 6WUHHW UROOHUFRDVWHUV WKHPH SDUNV DQG EDVHEDOO 0LFKDHO OLYHG LQ &LQFLQQDWL XQWLO KLV IDPLO\ PRYHG WR /RQJPHDGRZ 0DVVDFKXVHWWV LQ 'XULQJ KLV WLPH LQ KLJK VFKRRO 0LFKDHO ZDV KHDYLO\ LQYROYHG LQ H[WUDFXUULFXODU DFWLYLWLHV LQFOXGLQJ EHLQJ QDPHG FDSWDLQ RI WKH YDUVLW\ VZLP DQG WHQQLV WHDPV $IWHU JUDGXDWLQJ IURP KLJK VFKRRO LQ 0LFKDHO HQUROOHG DW *HRUJHWRZQ 8QLYHUVLW\ LQ :DVKLQJWRQ '& ,W

PAGE 196

ZDV GXULQJ KLV WLPH DW *HRUJHWRZQ WKDW KH VWDUWLQJ GDWLQJ D ORQJWLPH IULHQG IURP KLJK VFKRRO GD\V WKH JLUO KH ZRXOG HYHQWXDOO\ PDUU\ .DUHQ 0RUH\ $IWHU IRXU \HDUV RI KDYLQJ HQWLUHO\ WRR PXFK IXQ 0LFKDHO ZHQW WR ZRUN DV DQ LQWHUQ DW 'X3RQW ZKHUH KH ZDV ILUVW H[SRVHG WR WKH UHDO OLIH LPSOLFDWLRQV RI ZKDW KH ZDV OHDUQLQJ DW VFKRRO 0LFKDHO JUDGXDWHG IURP *HRUJHWRZQ LQ WKH )DOO RI ZLWK D %6 LQ FKHPLVWU\ DQG UHWXUQHG WR 'X3RQW IRU DQRWKHU LQWHUQVKLS RI IRXU PRQWKV $IWHU WDNLQJ WKH VXPPHU RII WR VKDUSHQ XS KLV JROI JDPH LQ SUHSDUDWLRQ IRU JUDGXDWH VFKRRO 0LFKDHO EHJDQ KLV JUDGXDWH VWXGLHV XQGHU WKH VXSHUYLVLRQ RI 'U $QWKRQ\ %UHQQDQ DW WKH 8QLYHUVLW\ RI )ORULGD LQ *DLQHVYLOOH LQ $XJXVW 'U %UHQQDQ D SURIHVVRU RI RQO\ RQH \HDU DW WKH WLPH TXLFNO\ LQWURGXFHG 0LFKDHO WR WKH KDUVK DQG LPSRUWDQW UHDOLWLHV RI OLIH 0LFKDHO VHWWOHG LQ TXLFNO\ ZLWK WKH KHOS RI .DUHQ ZKRP KH PDUULHG DW WKH HQG RI KLV VHFRQG \HDU RI JUDGXDWH ZRUN /LIH KDV FRPH IXOO FLUFOH IRU 0LFKDHO $V KH SUHSDUHV WR HPEDUN RQ KLV QHZ FDUHHU ZLWK 3D[RQ D GLYLVLRQ RI ([[RQ &KHPLFDO &R LQ %DWRQ 5RXJH /RXLVLDQD KH DQG .DUHQ DUH OHDYLQJ *DLQHVYLOOH DOPRVW H[DFWO\ WKLUW\ \HDUV DIWHU KLV QHZO\ PDUULHG SDUHQWV 3DEOR DQG 6\OYLD OHIW LQ WKHLU SXUVXLW RI WKH $PHULFDQ GUHDP

PAGE 197

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $QWKRQ\ n%UHQQDQ &KDLU $VVRFLDWH 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ &KULVWRSKHU %DWLFK 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ (XJHQH 3Y *ROGEHUJ 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ

PAGE 198

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ W % E .HQQHWK % :DJHQHU 3URIHVVRU RI &KHPLVWU\ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKHAUHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU IIUHG 0 3KLOOLSV 'HDQ &ROOHJH RI (QJLQHHULQJ .DUHQ $ +ROEURRN 'HDQ *UDGXDWH 6FKRRO

PAGE 199

/' 81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EVTY56WZA_E0PSZD INGEST_TIME 2014-04-28T22:54:12Z PACKAGE AA00018884_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES