Citation
Species diversity and ecology of Trichoptera (Caddisflies) and Plecoptera (stoneflies) in ravine ecosystems of northern Florida

Material Information

Title:
Species diversity and ecology of Trichoptera (Caddisflies) and Plecoptera (stoneflies) in ravine ecosystems of northern Florida
Creator:
Rasmussen, Andrew K
Publication Date:
Language:
English
Physical Description:
vii, 130 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Caddisflies ( jstor )
Coastal plains ( jstor )
Ecology ( jstor )
Ecosystems ( jstor )
Fauna ( jstor )
Headwaters ( jstor )
Ravines ( jstor )
Rivers ( jstor )
Species ( jstor )
Streams ( jstor )
Caddisflies -- Florida ( lcsh )
Dissertations, Academic -- Entomology and Nematology -- UF ( lcsh )
Entomology and Nematology thesis, Ph. D ( lcsh )
Insects -- Ecology -- Florida ( lcsh )
Species diversity -- Florida ( lcsh )
Stoneflies -- Florida ( lcsh )
City of Apalachicola ( local )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 2004.
Bibliography:
Includes bibliographical references.
General Note:
Printout.
General Note:
Vita.
Statement of Responsibility:
by Andrew K. Rasmussen.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
022440881 ( ALEPH )
847496242 ( OCLC )

Downloads

This item has the following downloads:


Full Text










SPECIES DIVERSITY AND ECOLOGY OF TRICHOPTERA (CADDISFLIES) AND
PLECOPTERA STONEFLIESS) IN RAVINE ECOSYSTEMS OF NORTHERN
FLORIDA















By

ANDREW K. RASMUSSEN


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


2004




SPECIES DIVERSITY AND ECOLOGY OF TRICHOPTERA (CADDISFLIES) AND
PLECOPTERA (STONEFLIES) IN RAVINE ECOSYSTEMS OF NORTHERN
FLORIDA
By
ANDREW K. RASMUSSEN
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
2004


ACKNOWLEDGMENTS
It is with great pleasure that I acknowledge the many people who are in one way or
another connected to this study. First, I would like to recognize Dr. John Capinera and the
late Dr. William Bill Peters for their vision and dedicated efforts that helped to affiliate
the entomology program at Florida A&M University (FAMU) with that of the University
of Florida. Dr. Capinera, in his duties as department chair, helped me enormously by
providing institutional support. I am also indebted to Debbie Hall for the excellent
administrative assistance she has offered throughout my term. I thank Dr. Sunil K.
Pancholy for providing me the office and laboratory space used to conduct my research. I
express deep gratitude to Dr. Manuel Manny Pescador, my graduate committee
chairman, boss, and friend, for his confidence and generous commitment of resources to
my project. Our many insect-collecting trips were both fun and productive. Appreciation
is expressed to the following past members of my committee for their participation: Dr.
Gary Buckingham (retired), Dr. Dale Habeck (retired), and Dr. William Peters
(deceased). In addition, I thank the other present members of my graduate committee for
their committee participation and thoughtful guidance: Dr. Tom Crisman, Dr. Wills
Flowers, Dr. Michael Hubbard, and Dr. John Capinera. I am grateful to the following
friends and colleagues whose company made fieldwork the most enjoyable and
rewarding part of the project: Dick Baumann, Alex Bolques, Stephanie Davis, Dana
Denson, Laurence Donelan, Wills Flowers, Steve Harris, Michael Hubbard, Jerome
Jones, Boris Kondratieff, Peter Kovarik, Corey Lewis, Charlie OBrien, Manny Pescador,
11


Henry Rasmussen (my son), Don Ray, Bart Richard, Theresa Thom, and Annie Yan. I
gratefully acknowledge the following land managers and agencies for granting access to
their lands: park managers at Gold Head Branch and Torreya state parks; Greg Seamon
(The Nature Conservancy, Apalachicola Bluffs and Ravines Preserve); and Rick
Me White, Carl Petrick, and Dennis Teague, (Natural Resources Branch, Eglin Air Force
Base). The single biggest challenge that I faced in this study was the identification of
specimensfortunately I had the help and encouragement of excellent Trichopterists and
Plecopterists. I am deeply indebted to Steve Harris for the many ways he contributed,
including teaching me the blacklighting method used to collect adults, identifying
microcaddisfly specimens from numerous samples, and describing many of the new
species discovered during the course of the study. Other Trichopterists who generously
provided identifications and verifications were Paul Lago and Jim Glover. I express
gratitude to Dick Baumann, Stan Szczytko, and Bill Stark for identifying specimens from
some of the difficult stonefly taxa. Lastly, I express heartfelt thanks to my close friends
and family for supporting me in countless and immeasurable ways.


TABLE OF CONTENTS
page
ACKNOWLEDGMENTS
ABSTRACT vi
CHAPTER
1 INTRODUCTION 1
Biogeographic Context 1
Ravine Ecosystems of Northern Florida 8
Project Objectives and Scope 14
Description of Study Areas 15
2 TRICHOPTERA AND PLECOPTERA BIODIVERSITY SURVEY 24
Previous Work 24
Materials and Methods 27
Results and Discussion 30
3 ANALYSIS OF TRICHOPTERA COMMUNITY STRUCTURE AND
ENVIRONMENTAL RELATIONSHIPS 66
Materials and Methods 67
Results and Discussion 69
4 TRICHOPTERA AND PLECOPTERA FLIGHT SEASONALITY,
AND ADULT EMERGENCE IN A RAVINE SPRINGRUN 82
Materials and Methods 82
Results and Discussion 85
5 SUMMARY AND CONCLUSIONS 101
Ravine Biogeography 101
Trichoptera and Plecoptera Species Diversity 103
Trichoptera Community Structure and Environmental Relationships 107
Flight Seasonality and Emergence Study 110
Future Research Needs 113
IV


page
REFERENCES CITED 115
APPENDIX
A TRICHOPTERA DATA MATRIX 123
B PLECOPTERA DATA MATRIX 129
BIOGRAPHICAL SKETCH 130
v


Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
SPECIES DIVERSITY AND ECOLOGY OF TRICHOPTERA (CADDISFLIES) AND
PLECOPTERA (STONEFLIES) IN RAVINE ECOSYSTEMS OF NORTHERN
FLORIDA
By
Andrew K. Rasmussen
May 2004
Chair: Manuel L. Pescador
Major Department: Entomology and Nematology
Species diversity and ecology of insects within the orders Trichoptera (caddisflies)
and Plecoptera (stoneflies) were investigated in ravine streams of northern Florida.
Ravine ecosystems in Florida are known to support diverse biota, including northern
elements and endemic species, but little information concerning stream insects was
known. This study is the first to collect stream insects systematically from ravine
drainage networks across northern Florida. From West to East, the areas surveyed
included streams on Eglin Air Force Base, streams within the Apalachicola and
Ochlockonee river basins, and a stream located in peninsular Florida. Caddisfly and
stonefly species diversity was investigated at 29 stations along both upper- and lower
stream-reaches. Adult and immature insects were collected and identified, and these data
were used to characterize caddisfly and stonefly species diversity and adult flight
vi


seasonality. Adult emergence phenology at a ravine springrun was further investigated
using emergence traps.
The survey results, based on more than 16,500 specimen identifications, document a
diverse fauna of 138 species of Trichoptera and 23 species of Plecoptera. More than 50
species are either ravine-habitat specialists, endemic to small areas of the lower Coastal
Plain, or are disjunct from northerly geographic ranges. Sixteen species recorded are
listed by the Florida Committee on Rare and Endangered Plants and Animals as
Threatened or Rare. At least 12 caddisfly species previously unknown to science were
discovered, and 11 of these have subsequently been described and named. Steephead
ravine streams in the western panhandle contain a highly endemic fauna, and the ravine
fauna of the central panhandle streams has the strongest Appalachian affinities.
In order to quantify faunal similarities among stations, cluster analysis was
performed on the survey data for macrocaddisfly species collected at 20 stations. Based
on the resultant dendogram, 5 macrocaddisfly communities were recognized among the
streams sampled. Communities appear to be hierarchically structured according to
biogeographic region at a large scale, and by habitat factors related to stream size and
ravine type at a smaller scale. Results of detrended correspondence analysis of the same
data set supported these conclusions.
Vll


CHAPTER 1
INTRODUCTION
With a budding interest in aquatic entomology and lured by the natural beauty and
mystery of ravine springruns, I undertook an investigation into the species diversity and
ecology of aquatic insects that live in these systems. After more than 10 years of
research, I am pleased to present findings concerning 2 important aquatic insect groups:
Trichoptera and Plecoptera. The following dissertation on the topic is organized by
chapters: Chapter 1 introduces the subject matter, Chapters 2, 3, and 4 address major
research objectives, and the final chapter (Chapter 5) provides a summary of the study
and conclusions. The specific objectives of this introductory chapter are to i) provide a
biogeographic context to the study; ii) present a general characterization of ravine
ecosystems in northern Florida; iii) outline the major research objectives; and iv) describe
the study areas.
Biogeographic Context
Taxa Considered
Trichoptera and Plecoptera, commonly known as caddisflies and stoneflies,
respectively, are diverse and ecologically important orders of aquatic insects. Trichoptera
are the largest order of primarily aquatic insectsglobally containing over 11,000
nominal species and subspecies (Morse, 2003). In North America, more than 1300
caddisfly species have been reported (Morse, 2003), and approximately 200 of these are
known in Florida (Rasmussen, unpublished data). Plecoptera are a smaller order,
1


2
containing about 2000 described species worldwide (Stewart, 2003), approximately 600
species in North America (Stark et al., 1998) and 40 species in Florida (Rasmussen et al.,
2003).
Almost all caddisfly and stonefly species are confined to aquatic habitats during their
immature life stages (Wiggins, 1996; Stewart & Stark, 2002) and occur terrestrially only
during the relatively short-lived adult stage. Because of this aquatic dependence,
environmental conditions and the resources present in aquatic habitats are critical factors
influencing their biodiversity and evolutionary history; both groups are widely used by
environmental regulatory agencies as bioindicators to assess water quality. Caddisflies
and stoneflies are especially diverse and abundant in cool running-waters, where they are
often dominant members of benthic macroinvertebrate communities.
Much of the caddisfly and stonefly fauna found in eastern North America is endemic
to the region and has evolved in concert with eastern deciduous forests. This is
particularly true in headwater streams, where the caddisfly and stonefly faunas consist
largely of species ecologically adapted and confined to those habitats, as compared to
river faunas, which contain a higher percentage of widespread ecological generalists
(Ross, 1963). The ecology of benthic communities in headwater streams is intimately
linked with that of the terrestrial biomes in which they occur. Riparian forests, in
particular, have a great impact on the physical, chemical, and biological characteristics of
streamsthe degree to which is inversely related to stream size (Vannote et al., 1980). In
northern Florida and other areas of the Southeastern Coastal Plain, many caddisfly and
stonefly taxa adapted to headwater woodland streams reach their southern range-limits


3
and have discontinuous peripheral populations corresponding to the patchy distribution of
equitable habitats.
Crenobiology
Streams at their source often begin as springs. The zone that includes the spring
source and downstream springrun (springbrook) is known as the crenal zone (Ward,
1992). It represents a well-bounded area with distinct biotopethe study of which is
addressed by a branch of aquatic ecology known as crenobiology. The caddisfly and
stonefly communities investigated in this study occur largely in crenal habitats; therefore,
their study falls under the discipline of crenobiology. Groundwater feeding the ravine
streams studied in this project comes from spring boils, as well as more diffuse seepage
springs along bank areas. Together, these sources produce a springrun (rheocrene).
Crenal ecosystems are attractive to ecologists because they are discrete and relatively
stable in terms of abiotic conditions at their sources, but exhibit departures along various
environmental gradients within the springrun. Crenobiological research in large artesian
springs has resulted a number of comprehensive investigations into trophic structure and
community ecology. In peninsular Florida, 2 classic studies were carried out at Silver
Springs (Odum, 1957) and Homosassa and Weekiwachee springs (Sloan, 1956). Within
temperate eastern North America, a number of influential studies have been conducted on
smaller springruns (e.g., Minckley, 1963; Minshall, 1968; Tilly, 1968). Besides
ecologists, crenal habitats are also of interest to zoogeographers because they are refugia
for relict populations of once widespread species. On the applied side, crenobiology can
be used in the biological assessment of groundwater quality. The continued interest in
crenobiology and a trend towards focusing on invertebrate biodiversity is reflected in the


4
papers published recently in 3 large edited-works, namely, Williams and Danks (1991);
Ferrington (1995); and Botosaneanu (1998).
Northern Florida: Hot Spot of Biodiversity
As a result of many interrelated factors, areas on our planet differ greatly in terms of
biodiversity. Past and present climate, geography, and geology play major roles in
shaping biomes and component biota. Availability of water, a requirement that connects
all life, is a key resource that influences the biota characteristic of a particular place.
Generally, land areas with the greatest and most unique biological diversity he in regions
with benign climates and plentiful freshwater resources, and are geographically isolated
areas containing unique habitats with corresponding selective pressures. The panhandle
region of northern Florida satisfies all these criteria, and, not surprisingly, is a hot spot
of biodiversity considered to be among the top 5 regions of the continental United States
in terms of having the highest concentration of plant and animal species with restricted
distributions (Chaplin et al., 2000). Although the lower Coastal Plain occupied by
northern Florida is recognized for its rich biodiversity, there are still many invertebrate
groups for which little is known. It is within these groups that the vast majority of
unknown biodiversity remains to be discovered.
Floridas diverse natural setting has been characterized in many publications.
Excellent general accounts of climate, soils, and overviews of the many different aquatic
and marine ecosystems, as well as terrestrial upland systems in Florida, were provided in
Ecosystems of Florida (Meyers & Ewel, 1990). A comprehensive atlas summarizing
Floridas water resources is found in Femald and Purdum (1998), and surface water
resources as they relate to fisheries were covered in Seaman (1985). Papers detailing the


5
biodiversity of aquatic communities in Florida and the southeastern U.S. were presented
in Hackney et al. (1992). Publications focusing on the natural history of the Florida
panhandle include a general ecological characterization given by Wolfe et al. (1988), and
a thorough accounting of the natural setting and plant communities presented in Clewell
(1981).
Much of Floridas unique species diversity is documented in a series of publications
titled Rare and Endangered Biota of Florida. In these publications, the Florida
Committee on Rare and Endangered Plants and Animals (FCREPA) provides species lists
and documentation for species considered to be endangered, threatened, rare, or species-
of-special-concem within the state (Deyrup & Franz, 1994). As a result of new data
collected in this study, there are a number of additional species that are excellent
candidates for inclusion into future conservation listings; in Chapter 2 these species are
identified. It is through documenting and tracking species-at-risk that conservation efforts
will be most effective (Bossart & Carlton, 2002).
Historical Biogeography
The biogeographic history of Florida has been well documented. Publications
presenting general overviews included those of Neill (1957), James (1961), and Webb
(1990). Biogeographers concentrated to a great extent on Florida in attempting to
reconstruct the vegetational history of the Southeastern Coastal Plain during the
Pleistocene and Holocene. Important works included those of Delcourt and Delcourt
(1977; 1984), Watts (1980), Watts and Stuiver (1980), Watts et al. (1992), Platt and
Schwartz (1990), and Schwartz (1994). These studies support the assertion that the faunal
and floral composition of northern Florida has fluctuated throughout the Pleistocene and


6
Holocene in concert with climatic fluctuations and concomitant changes in temperature,
rainfall, and sea-level stands.
Major rivers draining the Southeastern Coastal Plain apparently served as important
corridors through which organisms moved in response to the climate changes
experienced during the Pleistocene and Holocene. Delcourt and Delcourt (1975; 1984)
postulated that mixed-mesophytic forest species migrated southward onto the Coastal
Plain during the late Pleistocene fostered by the moist conditions the rivers supplied to
the adjoining uplands. They concluded that dissection of these uplands into ravines with
suitable environmental conditions has resulted in the continued relict existence for many
northern plant species. By extension, this scenario can be used to account for the
distributional history of aquatic fauna associated with mixed-mesophytic forest, of which
many caddisfly and stonefly taxa are included.
It is likely that major North/South movements in biota occurred multiple times
during the various glacial and interglacial periods, suggesting that the origins of present-
day biota are multiple and complex. Hamilton and Morse (1990) investigated origins and
affinities of the caddisfly fauna of the southeastern United States and found that most
Coastal Plain endemics are more closely related to species further North and that very
few endemics have sister lineages endemic to the Coastal Plain. Hamilton and Morse
(1990, page 597) went on to infer that the endemic Southeastern Coastal Plain caddisfly
fauna had multiple origins, perhaps the result of numerous peripheral isolations of
ancestral taxa resulting from fluctuating climates and possibly associated sea level
oscillations.


7
Coastal Plain Ravines as Refugia
By affording cool-adapted or stenothermal organisms the requisite environmental
conditions for survival, ravine habitats of northern Florida are present-day and historical
refugia for organisms unable to survive the harsher conditions present in predominant
habitats of the surrounding landscape. Besides containing disjunct northern elements,
ravines are also known as areas of endemism. With enough time, populations isolated
within ravine habitat-islands can speciate as a result of founder effects and local selection
pressures. The opposite phenomenon (homeostasis) can also occur, whereby ancestral
species or species representative of relict communities are preserved. In this sense,
investigations of ravine biota can be informative in reconstructing historic faunal and
floral compositions.
Neill (1957), in discussing origins of Floridas biota, references many of the early
works that describe northern Florida biota and distinctive elements of ravine habitats.
Neill (1957, page 185), noting that both northern elements and endemics are clustered
around the Apalachicola region and western panhandle, hypothesized that many of these
species were, typical, widely ranging, Gulf Coast forms at a time when the climate was
cooler and wetter than at present. He presented as evidence for this hypothesis examples
of species that have discontinuous distributions on the Gulf Coastal Plain.
The most well known ravine-refugium within northern Florida is the Apalachicola
Bluffs and Ravines region, often referred to as Torreya in reference to a relict conifer,
Torreya taxifolia Am., that is largely confined to the region. In describing the areas
uniqueness, Hubbell et al. (1956, pages 20-21) stated:
Although physiographically it is no more than the dissected edge of the upland,
biotically it may be regarded as a small but distinctive natural region characterized


8
by its peculiar mixture of Coastal Plain and northern plants and animals, and by the
presence of a group of remarkable relic species restricted to the region. Some of its
peculiarities were pointed out by Croom as long ago as 1833-1835 and Asa Gray
(1875) made the region famous by his paper, A Pigrimage to Torreya.
J. Speed Rogers was among the earliest zoologists to characterize streams of the Torreya
ravines and to document the uniqueness of the aquatic fauna. Rogers (1933, page 25), in
his monograph describing cranefly distributions and habitats in northern Florida, wrote of
the ravines:
Small sandy bottom brooks flow along these ravines and often pass into short
swampy reaches where they wander through tangles of standing and fallen
vegetation and over deposits of rich organic silt. Near the bottom, springs and
seepage areas are common and wet rotten wood, fungi, mosses and liverworts are
abundant.
The fauna of these ravines is as surprising and interesting as their flora, for here
a number of animals reach their southernmost limits, frequently disjunct from the
remainder of their ranges. In the Amphibia, Crustacea, Odonata, Ephemerida and
Orthoptera a number of unexpected, northern species or species with distinct
northern affinities have been discovered and among the crane-flies more than a
dozen species are found that have been taken nowhere else south of the Piedmont
region.
Ravine Ecosystems of Northern Florida
When trying to understand the diversity of organisms found in a specialized habitat
more fully, it is prudent to consider the general physical, chemical, and biological
characteristics of that habitat, as they are likely to exert considerable controls on
community composition and ecology. The following discussion provides a general
backdrop to the natural settings of the ravine ecosystems studied.
Ravine Geomorphology and Distribution
The stream systems studied occur in upland areas of northern Florida where
erosional processes have dissected the uplands to create headwater ravines and valleys in
sharp contrast to the low-relief landscapes found throughout much of the Southeastern


9
Coastal Plain. Ravines are steep-walled drainage networks formed both by erosion from
surface-water runoff and groundwater spring-flow. They are found in higher elevation
landforms (>50 m above mean sea level) and are often associated with river escarpments.
Topology and geomorphologic characteristics are discussed below. An account of ravine
distribution in the Florida panhandle is provided in Wolfe et al. (1988).
Steephead ravines
In landforms having high infiltration rates and large surficial-aquifer storage
capacities, as in areas with deep deposits of coarse sands, overland surface erosion is low,
and ravine formation is controlled by groundwater processes (Schumm et al., 1995).
Under these conditions, groundwater sapping causes headward erosion of overlying
deposits to form linear valleys that have steep amphitheatre-shaped heads. Ravines of this
type are known as steepheads and were first described by Sellards and Gunter (1918).
Steepheads are considered to be a geologic formation unique to northern Florida.
Steephead drainage networks have relatively low stream-densities (ratio of channel length
to drainage area), as compared to other drainage networks (Schumm et al., 1995), and
because of permeable soils, surface drainage lines connecting the plateau and ravine
bottom are generally absent. Steephead drainage networks tend to have a trellis pattern as
a result of tributary steepheads forming perpendicular to the main drainage axis.
Headwall slope is typically 45 degrees or greater, and depth at the head is often greater
than 30 meters.
Schumm et al. (1995) suggested that steephead advance is episodic and is promoted
by loss of vegetation on upslopes or prolonged wet periods, and that movement is halted
through groundwater capture by adjacent watersheds. Contrary to the widely accepted


10
fact that steephead spring-flow emerges along a relatively impermeable confining clay
layer, Schumm et al. (1995) reported finding no paleosol or hardpan in drilling at the base
of 2 steepheads on Eglin Air Force Base. This evidence and support from experimental
studies indicate that a low permeability horizon is not a requirement for steephead
formation (Schumm et al., 1995).
Steepheads in the panhandle are distributed below the Cody scarp in an east-to-west
trending line, where it appears that late Pliocene/early Pleistocene deposits of coarse
sands formed coastal sand dunes and barrier islands during higher sea level stands. Two
areas within the Florida panhandle that possess excellent examples of steephead
complexes are in the western panhandle near the coast on the western side of Eglin Air
Force Base (southern portions of Santa Rosa and Okaloosa counties) and in the central
panhandle associated with the Apalachicola River escarpment and Sweetwater Creek
(Liberty County). Steepheads occur also in several other panhandle locations (see Means,
1975), as well at a few scattered localities on upland sand ridges of the northern Florida
peninsula.
Clayhill ravines
In rolling clay hills and along river escarpments having tightly-packed upland soils,
rainfall rates often exceed infiltration rates and scouring from surface runoff results in the
formation of what I will term clayhill ravines, a reference to the clay content of the
soils and the name given to the associated mesic upland community-type. Another term
used to describe this type of ravine is gully-eroded (see Wolfe et al., 1988; Means,
2000). The drainage networks of clayhill ravines are typically dendritic and have higher
stream densities and variability in stream flow as compared to steephead networks. Stream


11
flow fluctuation in these systems, however, is often moderated by groundwater flows
along ravine walls and bottoms in the form of small springs and diffuse seepage; thus,
substantial groundwater inputs result in many streams having permanent spring-fed
baseflows. Drainage lines generally originate along the upper slopes and form v-shaped
gullies. In areas of groundwater sapping, sharp vertical cuts of the overburden may also
occur. Slopes of clayhill ravine-heads and sidewalls are generally less than 30 degrees.
Clayhill ravines occur in upland landforms of the Florida panhandle above the Cody
scarp, where soils are primarily composed of Miocene-age elastics. Some of the most
well developed clayhill ravines lie within the Tallahassee Red Hills-Tifton Uplands
region in northern Gadsden and Leon counties of Florida and adjacent counties of
Georgia.
Plant and Animal Communities
The terrestrial plant and animal communities of ravine ecosystems in northern
Florida contain a diverse mix of northern, warm temperate, and endemic elements. An
accounting of this biodiversity is far from complete, and what is known is reported across
many publications. A general treatment of some of the distinctive and major components
of ravine flora and fauna is presented in Wolfe et al. (1988). Other publications dealing
with plant and animal communities of ravines include a biological survey of the
Apalachicola ravines by Leonard and Baker (1982) and a natural community survey of
Eglin Air Force Base by Kindell et al. (1997).
Mixed-species hardwoods are the most conspicuous component of ravine flora, and
these have been studied at a number of ravine systems across northern Florida (Clewell,
1981; White & Judd, 1985; Platt & Schwartz, 1990; Gibson, 1992; Kwit et al., 1998).


12
The very high density of different tree species occurring in ravines is accounted for by
the habitat diversity associated with gradients in elevation and soil moistureproceeding
from xeric conditions of the ridge tops down through mesic mid-slopes to the hydric
conditions of the ravine bottom. Ravine forests typically contain oaks and hickories on
upper slopes, grading into mesic hardwoods (e.g., American beech, southern magnolia,
American holly) on midslopes, and a swamp forest community (e.g., swamp bay, sweet
bay, black gum) on hydric lower-slopes and ravine bottom. In panhandle ravines, Florida
star anise is an abundant understory species growing in saturated soils around springhead
areas. Sphagnum, other mosses, liverworts, and ferns are abundant in ravine bottoms,
which typically contain rich accumulations of leaf litter and humic soils. Much of the
faunal diversity of ravine ecosystems occurs on the forest floor and is associated with the
deep layer of leaf litter and other organic matter that serves as a food base for countless
arthropods and other invertebrates, which in turn support a far lesser number of small
vertebrates (e.g., salamanders) that feed on them.
Stream Characteristics
Because of spring-flow inputs from surficial-aquifer sources, ravine streams in
northern Florida are typically perennial and rather uniform in terms of many of their
physical and chemical characteristics. In general, the streams are clear, cool, somewhat
acidic, and low in nutrients. As compared to steephead streams, clayhill ravine streams
tend to have more variable hydroperiods and episodes of high turbidity due to greater
amounts of surface runoff and scouring after rain events. In steephead drainage networks,
the high infiltration rates and storage capacity of the surrounding landform result in
minimal runoff. Steephead springruns, over relatively short distances, can have rather


13
sizeable flows. Third order steephead streams discharge water at rates as high as 100 ft3
sec'1. By comparison, the baseflows of clayhill ravine streams typically are far less, even
as 5th or 6th order streams.
As water flows downstream from the ravine head, water temperature fluctuations
increase due to ambient cooling and warming. The streams with narrow- and deep
channels, typical of steephead springruns, tend to maintain more constant temperature
conditions, as compared to the shallower and less voluminous streams in clayhill regions,
which may experience significant warming in summer. High-temperature extremes can
adversely affect organisms adapted to spring-fed woodland streams and may preclude
them from living in these systems.
Benthic organisms such as caddisflies and stoneflies find a wide range of suitable
substrates in ravine streams on which to live. The stream bottom at the ravine-head
typically contains an abundance of coarse woody debris, including leaves, sticks, and
logs. Also, ravine-head mineral substrates tend to be diverse, and there often occurs pea-
gravel, pieces of clay or marls, as well as coarse sand. The stream from the ravine head
typically arises from multiple, small spring-boils and rivulets that merge to form a main
channel that then flows through the densely vegetated ravine bottom. Numerous
depositional areas of silt and organic muck are also common in the ravine heads and
upper reaches. The stream gradient is usually not great and appears to follow the slope of
the water table in most ravines systems. Debris dams can form small waterfalls in places.
Down from the ravine head, streams may meander through mesic forest or in some
systems may flow through swamp forest within a braided channel. At 3rd order and


14
higher, streams typically have a well-defined channel with snags and undercut banks
providing much in the way of productive benthic habitats.
Project Objectives and Scope
Given the lack of information concerning Trichoptera and Plecoptera biodiversity in
ravine ecosystems in northern Florida and the high potential for these organisms to be
important and diverse biotic components of the stream ecology, the following research
objectives were set:
i) inventory species diversity of Trichoptera and Plecoptera in ravines ecosystems of
northern Florida.
ii) characterize caddisfly and stonefly species occurrences in terms of geographic
distributional patterns, species/habitat associations, and distinctive faunal elements.
iii) investigate caddisfly community structure and distributional dynamics in relation to
geographic and habitat parameters.
iv) characterize caddisfly and stonefly flight seasonality.
v) investigate emergence of adult caddisflies and stoneflies from a ravine springrun.
This study is essentially descriptive in scope and purpose. The stream systems
studied represent several major river drainages and regions of northern Florida, and the
survey points encompass ravine streams from their upper-most headwaters through lower
stream-reaches. It is the first comprehensive study to describe and compare stonefly and
caddisfly biodiversity at several different areas on the lower Coastal Plain possessing
ravine drainage networks. I wish to stress though that faunistic studies of yet-unexplored
ravines will likely uncover important new information concerning species diversity and
community structure.


15
Description of Study Areas
Caddisfly and stonefly species diversity and ecology were investigated within
northern Florida at 4 different study areas (Fig. 1-1). The areas studied span much of
northern Florida and thus represent different major drainages and regions of Florida.
Three of the study areas lie within the Florida panhandle on the Eastern Gulf Coastal
Plain: the Eglin study area within the western Florida panhandle, and the Apalachicola
and Florida A&M University (FAMU) Farm study areas within the central panhandle
region. The Gold Head
given below. physiographic provinces of Alabama, Georgia, and
Florida.


16
Eglin Study Area
The Eglin study area (Fig. 1-2), largest of the 4 study areas, is located on the western
side of Eglin Air Force Base in a region where there is an extensive steephead drainage
network incised into uplands comprised largely of xeric sandhill community containing
large tracts of longleaf pine (Pinuspalustris Mill.). The streams sampled feed 2 major
drainage basins, the Yellow River basin and the Choctawhatchee Bay basin. A wide array
of stream habitats is represented at the 12 stations sampled, ranging from small, ravine-
head springruns (Stations El, E3, E5) to lower stream segments with considerable
discharge (25-100 ft3 sec'1) (Stations E4, E8, E9, E12). Transitional in habitat between
upper steephead reaches and lower downstream reaches were middle-reach stations (E2,
E6, E7, E10, El 1). Eglins steephead streams, because of heavy spring-inputs and
relative little surface runoff due to the highly permeable sands of the area, maintain
springrun characteristics in terms of stable flow and temperature regimes and high clarity
throughout their lengths.
At middle and lower reaches on Eglins steephead streams, aquatic macrophytes are
particularly abundant, especially in wider stream-segments having relatively open
canopies. Some of the most common aquatic plants encountered along the clear and deep
springruns within the Eglin study area are Eriocaulon decangulare (L.), Juncus repens
(Michx.), Eleocharis spp., Orontium aquaticum (L.), Sagittaria spp., and Vallisneria
americana Michx (Theresa Thom, personal communication). Plants that are typically
emergent such as Eleocharis and Juncus repens (Michx.) often grow densely and
completely submerged in the clear waters. The freshwater red alga, Bactrachospermum
sp., is also very abundant at lower reaches.


Figure 1-2. Eglin study area and locations of collecting stations. The study area is located in the western portion of Eglin Air
Force Base.


18
Apalachicola Study Area
The Apalachicola study area (Fig. 1-3) is located in the central Florida panhandle on
the east-side of the upper Apalachicola River in a region known as the Apalachicola
Bluffs and Ravines, sometimes referred to simply as Torreya. The drainage network of
the region is associated with the Apalachicola/Flint river escarpment with all streams
flowing towards the lower elevations of the rivers floodplain. A well-developed drainage
network comprising both steepheads and clayhill ravines has extensively dissected the
uplands to create an area with some of the sharpest relief on the Southeastern Coastal
Plain. Fortunately, a significant portion of the study area (about 8000 hectares) is
currently either within Torreya State Park or is under the stewardship of The Nature
Conservancy. Thus, conservation efforts and the prospects of preserving the areas rich
natural history are promising.
Within the study area are many small headwater streams as well as higher magnitude
(4th-6th order) streams such as Flat, Crooked, and Sweetwater creeks. Sampling stations,
representing a wide array of stream habitats, were established at 12 locations. Steephead
ravines occur predominately within the sandhill community in the southern portion of the
study area south of the main axis of Sweetwater Creek, on which station A6 is located.
Six sampling stations were within this area, including 3 upper-reach sites (A8, A9, All),
2 stations further downstream on the springruns near where they enter the river floodplain
(A7, A10), and 1 station within a short isolated-ravine, very near to where its small
stream cascades into the Apalachicola River (A12). Within the more mesic clayhill-
uplands of the northern part of the study area, headwater reaches were sampled at 2
stations (A3, A5), and larger streams were sampled at 4 stations (Al, A2, A4, A6). The


19
larger streams, as a result of land/water interactions, generally have higher pH
(circumneutral) and more variable conductivity, turbidity, and temperature, as compared
to the headwater streams in which values for these parameters largely mirror spring-flow
inputs.
kilometers
Gadsden County
Liberty County
Apalachicola Study Area Station Localities:
' At Gadsden Co., Flat Ck. at County Rd. 270A. N303734", W8449'31
- A2 Gadsden Co., Crooked Ck. at County Rd. 270. N3034'58", W845302".
A3 Liberty Co., Rock Ck. Tributary. Torreya State Park. East side of Park Rd.
near Park entrance. N3033'42", W845648".
A4 Liberty Co.. Rock Ck.. Torreya State Park, near Rock Ck. primitive campsite.
N3034'4r', W8456'I5.
A5 Liberty Co., Sweetwater Ck. Tributary, within The Nature Conservancy
Travelers Tract, East side of County Rd. 270, just North of Sweetwater Ck.
N3031'48", W8457'53".
A6 Liberty Co., Sweetwater Ck. at County Rd. 270. N303158", W8458''03n.
A7 Liberty Co.. Beaver Dam Ck. with The Nature Conservancy Apalachicola Bluffs
and Ravines Preserve. N3029' 13", W8459'04".
A8 Liberty Co., Little Sweetwater Ck. steephead, vicinity of Jet. State Rd. 12 and
County Rd. 270, within The Nature Conservancy Apalachicola Bluffs and
Ravines Preserve. N3028'57", W8456'27.
A9 Liberty Co., Little Sweetwater Ck. (upper end), within The Nature Conservancy
Apalachicola Bluffs and Ravines Preserve. N3028'47". W8457'0r.
A10 Liberty Co., Little Sweetwater Ck. (lower end), within The Nature Conservancy
Apalachicola Bluffs and Ravines Preserve. N3028'21", W8459'08.
All Liberty Co., Kelley Branch at jeep trail crossing, within The Nature Conservancy
Bluffs and Ravines Preserve. N3028'08", W8457'51".
A12 Liberty Co., Unnamed ravine stream just North of Alum Bluff, within The
Nature Conservancy Apalachicola Bluffs and Ravines Preserve.
N3027'55", W8459'07".
Figure 1-3. Apalachicola bluffs and ravines study area and locations of collecting
stations.


20
FAMU Farm Study Area
The FAMU Farm study area (Fig. 1-4) is located in the central panhandle within
Ochlockonee River basin. The ravine system studied bisects property owned by Florida
A&M University, which serves as an agricultural research and extension center for the
university. The ravine is in a relatively natural state, and because of university ownership,
offers excellent opportunities for studies of the associated hardwood hammock and
spring-fed stream. Collecting
for the survey was conducted at
3 stations on this lst-order
stream. In addition, emergence
traps were placed over the
stream at 2 locations near
station FI. The results of the
emergence study are reported in
Chapter 4. The ravine springrun
is a headwater for Quincy
Creek, a tributary of the Little
River, and part of the larger
Ochlockonee River Basin,
which drains portions of the
central Florida panhandle and
Figure 1-4. Florida A&M University Research and
southern Georgia. The ravine is Extension Center study area and locations of
collecting stations. Map taken from USGS 7.5
relatively shallow (a 15 m) as minute Dogtown quadrangle.
meters
FAMU Research and Extension Center (REC)
Study Area Station Localities:
FI Gadsden Co.. Quincy Ck., headwater stream (upper reach),
P J FAMU REC, County Rd. 267, 7 km North of Quincy.
N3039'27", W8436'50".
F2 Gadsden Co., Quincy Ck., headwater stream (middle reach),
FAMU REC. County Rd. 267, 7 km North of Quincy.
N3039'19", W8436'51".
F3 Gadsden Co.. Quincy Ck., headwater stream (lower reach),
FAMU REC, County Rd. 267, 7 km North of Quincy.
N3039'12", W8436'56".


21
compared to sandhill steepheads, which can be over 30 meters deep. Within the ravine
hammock is a diverse mix of mainly hardwood species including deciduous trees such as
American beech (Fagus grandifolia Ehrh.), oaks (Quercus spp.) and hickories (Carya
spp.), as well as evergreen species including Magnolia spp., mountain laurel (Kalmia
latifolia L.) and Florida Star Anise (Illicium floridanum Ellis), which is the dominant
shrub species in the ravine bottom. Land use in the immediate vicinity is mainly
agricultural (planted pine and pasture) and residential.
The springrun is formed by spring flow issuing from small springs and diffuse
seepage throughout the ravine. Water is somewhat acidic (mean pH 5.6) and low in
alkalinity ( 2 mg CaCO L'1) with a mean conductivity of 39 pmhos cm"1. The water
temperatures in the upper sections of the springrun are relatively constant, maintaining a
temperature between 18.4 and 21.4C year-round. The springrun averages about 1 meter
in width and in most places is less than 10 cm deep; average water velocity is 0.3 m sec"1.
Because of shallow somewhat turbulent flows, the springrun is well oxygenated, with
oxygen levels averaging about 80% of total saturation.
Gold Head Study Area
The Gold Head study area (Fig. 1-5) is located in northeastern Florida at Mike Roess
Gold Head Branch State Park (Clay County) within the lower St Johns River basin. The
stream for which the park is named, Gold Head Branch, originates in a steephead ravine
that dissects the southeastern edge of a sand-ridge known as the Trail Ridge. The uplands
around the ravine hammock comprise primarily xeric sandhill community. White and
Judd (1985) documented an extensive flora of some 356 plant species, representing 5
communities, in the Gold Head ravine and adjacent upland. Besides Gold Head Branch,


22
CONTOUR INTERVAL 10 FEET ^
> t meters
Gold Head Branch Study Area Station Localities:
N G1 Clay Co., Gold Head Branch steephead, Mike Roess Gold Head
Branch State Park. N29<50'27"> W8l"57T4".
G2 Clay Co., Gold Head Branch, lower reach near Old Mill Site,
Mike Roess Gold Head Branch State Park. N294956", W8r5645".
Figure 1-5. Gold Head Branch study area and locations of
collecting stations. Map taken from USGS 7.5 minute Gold Head
Branch quadrangle.
other waterbodies in the area include several sinkhole and sandhill lakes. Close to the
ravine head is Sheeler Lake, a deep and very old sinkhole lake (about 24,000 yrs old) that
is a well-known and important palynological site (see Watts and Stuiver, 1980). Gold
Head Branch was sampled at 2 stations, Station G1 at the head of the ravine and Station


23
G2 near the end of the ravine just above the point at which the stream valley widens into
a delta and the stream enters a flatwoods and basin marsh before flowing into Lake
Johnson. Unlike the other ravine streams studied, Gold Head Branch terminates at a lake
and is more isolated in this sense than the other stream sites studied, which were all part
of larger stream networks. Many small spring-boils and extensive seepage occur at the
ravine head, consequently the stream rapidly gains flow within its first 50 meters. Flow
levels for Gold Head Branch, as reported in the Park Management Plan, ranged from
34,077 gallons per hour to 56,520 gallons per hour. As is typical of ravine springruns in
northern Florida, water temperature stays within a narrow range, the water is somewhat
acidic, and has low conductivity. Recent measurements taken near station G2 during
several times of year by the Florida Department of Environmental Protection ranged as
follows: pH (4.6-6.6), water temperature (17.4-23.5C), specific conductance (16-34
pmhos cm'1) (Lee Banks, personal communication).


CHAPTER 2
TRICHOPTERA AND PLECOPTERA BIODIVERSITY SURVEY
As noted in Chapter 1, ravine ecosystems in northern Florida have been well
documented in terms of their vegetation and geomorphology, but knowledge of ravine
faunas, especially aquatic insect groups, is relatively incomplete. This study, an
investigation into caddisfly and stonefly biodiversity, is the first in which aquatic insects
were systematically collected from headwater and downstream reaches of streams in
several upland areas of northern Florida that possess relatively pristine and exemplary
ravine ecosystems. The objectives of the survey were to inventory the species of
Trichoptera and Plecoptera occurring at the 4 study areas and to characterize species
occurrences in terms of geographic distributional patterns, species/habitat associations,
and distinctive faunal elements. Survey data presented in this chapter were also used for
analyzing Trichoptera community structure (Chapter 3) and characterizing caddisfly and
stonefly adult seasonality (Chapter 4).
Previous Work
Apalachicola Bluffs and Ravines
Of the areas studied, the Torreya ravines historically received the most attention
from early 20th century entomologists, probably a result of the regions botanical
peculiarities. Well known entomologists who studied the Torreya areas insect
biodiversity included Lewis Berner (Ephemeroptera), C.F. Byers and M.J. Westfall
(Odonata), T.H. Hubbell (Orthoptera), J. Speed Rodgers (Diptera:Tipulidae), and F.K.
24


25
Young (aquatic beetles). As indicated, Trichoptera and Plecoptera were not of primary
interest to early entomologists visiting the Torreya ravines; therefore, little effort was
devoted to their study. Results of early work on the insect groups that were studied and
other aquatic fauna such as crayfish and amphibians indicated that, like the flora, the
aquatic fauna shows close biogeographic affinities with the Appalachian highlands and
includes narrow-range endemics (Hubbell et al., 1956; Neill, 1957). Entomologists have
continued to be drawn to the Torreya area, and through their concerted collecting efforts,
much has been learned concerning the areas insect fauna, terrestrial insects in particular.
Aside from the Apalachicola ravines, other ravine habitats in northern Florida have not
been extensively sampled by entomologistsas a result, their insect fauna remains
relatively unknown.
Regional Surveys of Trichoptera and Plecoptera
In order to characterize the species composition and biodiversity of Trichoptera and
Plecoptera in ravine assemblages adequately, it was necessary to examine survey results
in the context of the component species geographic ranges and occurrences in other
habitats. Without this broader knowledge, the fauna of a particular habitat assemblage
cannot be described in terms of its distinctiveness, and characterization must be left to
simply presenting checklists of species occurrences. Previous and ongoing studies of
caddisfly and stonefly biodiversity within northern Florida and neighboring states have
provided much of the needed information to allow placing the survey findings into a
larger context. Comprehensive inventories of the Trichoptera fauna of Alabama (Harris et
al., 1991) and Mississippi and southeastern Louisiana (Harris et al., 1982; Holzenthal et
al., 1982; Lago et al., 1982) were particularly useful in this regard.


26
The first statewide survey for stoneflies in Florida was a checklist of 17 species
presented in Berner (1948). The records presented in Berners checklist were based on
specimens he collected during his expeditions in the 1930s to collect mayflies. Among
the stonefly records presented by Bemer are collections from the Apalachicola ravines
region, including Torreya State Park, Sweetwater Creek and Little Sweetwater Creek.
Subsequent studies of the stonefly fauna of Florida have focused mainly on larger creeks
and riversparticularly within the Blackwater, Ochlockonee, and Suwannee river
basinsnot ravine headwaters. Recent publications that summarized the stonefly fauna
of Florida include the papers of Stark and Gaufin (1979), Pescador et al. (2000), and
Rasmussen et al. (2003); of these, the last two incorporated stonefly collection data from
this study.
Through the work of various Trichopterists, the caddisfly fauna of Florida, as with
Plecoptera, is fairly well known. Statewide survey-accounts were provided by Blickle
(1962) for Hydroptilidae and by Gordon (1984) for non-hydroptilid caddisflies. Pescador
et al. (1995) provided larval keys and an updated species-checklist with distributional
data, including preliminary data from this study, on caddisflies found within the
Apalachicola ravines and FAMU Farm ravine. Light trapping I have conducted in recent
years at various waterbodies (besides ravine streams) in central and northern Florida and
southern Georgia was complementary to this study, and these data were used to compare
ravine-assemblage species composition with those of other aquatic habitats.
Of the study areas included in this survey, the Eglin area previously was sampled the
most extensively for caddisflies. Adult caddisflies were collected from several streams on
the eastern side of Eglin Air Force Base by J.F. Scheiring. The results reported in Harris


27
et al. (1982) included a number of species new to science, several of which were
subsequently described in Lago and Harris (1983; 1987) and Bueno-Soria (1981). Of the
new species found on Eglin, most are narrow-range endemicseither confined entirely to
Eglin, or occupying somewhat larger ranges that extend into other parts of the western
panhandle and adjacent coastal Alabama and Mississippi. The stream reaches sampled by
Scheiring did not include steephead or upper ravine-reaches. One-time light trapping by
B.A. Armitage and M.K. Ward along several streams (downstream reaches) on the
western side of Eglin resulted in the discovery of additional new species of
microcaddisflies, subsequently described in Harris and Armitage (1987) and Harris
(1991).
Materials and Methods
Specimen collecting. Caddisfly and stonefly adults and aquatic stages from the 29
stations were sampled using a variety of qualitative collecting methods. Because less than
50% of the caddisfly and stonefly species occurring in Florida can be identified to species
in the larval stage, collection methods targeting adults were emphasized for obtaining
species-level data. For each sampling date (Table 2-1), adults, and usually aquatic stages,
were collected. Most samples were collected in the spring when most species are present
as adults. However, at stations repeatedly sampled, summer and fall samples were also
obtained so that species emerging as adults later in the year would not be missed in the
survey. Aquatic forms were collected by aquatic dipnet from various benthic
microhabitats including rootmats, aquatic macrophytes, leaf packs, snags, and mineral
substrates. Benthic sampling consisted of taking several dipnet sweeps from
representative benthic microhabitats over a 50-m stream reach. Net samples were put in


28
white sorting pans, and specimens were field-picked, placed in 80% ethyl alcohol, and
returned to the laboratory for identification and curation. Adult stoneflies and caddisflies
were collected primarily by light trapping, but sweep netting and a beating sheet were
also occasionally employed to supplement light-trap collections and to provide a means
of collecting stonefly and caddisfly species not readily drawn to light. The beating sheet
was most useful when temperatures were low and insects were not able to escape by
flying away. Sweep netting was done during warmer times of year to capture both insects
seen flying and to capture individuals resting on riparian vegetation. Light trapping
provided the most productive means for capturing adults of most caddisflies species, as
well as many stonefly species. Light traps each consisted of a 15-watt UV-blacklight
(BioQuip Item No. 2805) placed over a white pan (30 cm x 25 cm) containing 80%
ethyl alcohol. The collecting lights were powered by lightweight 12-volt, sealed
rechargeable-batteries (Yuasa NP7-12). Traps were placed near the waters edge and
deployed for 1.5-3 hrs beginning at dusk. Typically, 2-5 traps were run on the same night
at different stations within a study area. After trapping, the contents of the pans were
poured into 0.5-gallon plastic containers and returned to the laboratory for processing. A
total of 116 light-trap collections were made.
Specimen identification. Samples were sorted and specimens identified with the aid
of a stereomicroscope (Olympus SZH). Processing of the light-trap material often
required extensive sorting, and for samples with high numbers of non-target insects such
as moths, dipterans, beetles, etc., it was first necessary to separate them from the sample.
For most caddisfly and many stonefly species, adult males were primarily used for
making species determinations. Because many species were represented by 1 or only-a-


29
few individuals, samples were not sub-sampled. However, in instances of species being
represented by several hundred or more individuals in a light-trap collection, counts were
abbreviated due to time constraints. Specimen identifications were to the lowest possible
taxonomic level, and, except for some hydroptilid collections, the number of specimens
for each species record was tallied. Immature forms and females for many genera could
not be identified to species-level and were not included in the analyses. Adult
identifications usually required examination of genitalic structures. An extensive body of
taxonomic literature was consulted, and collections housed at FAMU served as reference
material. Specimens of various taxa were sent to taxonomic specialists for identifications
or verifications. Dr. Steven Harris identified all the microcaddisfly (Hydroptilidae)
collections; Dr. Paul Lago identified a large number of hydropsychid and
polycentropodid specimens; Dr. James Glover verified identifications of Triaenodes
(Leptoceridae) species. Stonefly specialists that were consulted included Dr. Bill Stark,
Dr. Stanley Szczytko, and Dr. Richard Baumann. Synoptic voucher collections will be
deposited in the following locations: Florida A&M University Aquatic Insect Collection,
Clemson University Arthropod Collection, and in the personal collection of the author.
Descriptions of new species and deposition of type material was, or will be, detailed in
separate papers.
Data analysis. Specimen collection data from the survey were entered into a
relational database (Paradox 9.0) so that specimen data could be easily retrieved and
queried. For each species, specimen counts from collections at each sampling station
were summed and abundance data were entered into spreadsheet matrices; species
richness and abundance values were determined for the different stations and study areas.


30
Results and Discussion
The survey of ravines in northern Florida for Trichoptera and Plecoptera species
diversity revealed a diverse and interesting fauna. A summary of the number of species
and specimens identified from each station is presented in Table 2-1. Overall, more than
16,500 specimens were identified to species, and the 138 species of Trichoptera and the
23 species of Plecoptera identified represent approximately 70% and 55%, respectively,
of the total known faunas in Florida. The high species richness reflects the wide array of
high-quality habitats found within ravine drainage networks that span much of biota-rich
northern Florida.
Table 2-1. Summary of survey results (See Chapter 1 for explanation of station coding).
Trichoptera Plecoptera
"cL,
Station g
Code $
^ Sampling Dates
Species
(n)
Specimens
Identified Species
(n) (n)
Specimens
Identified
(n)
El
6
21.V.98; 27.X.98; 10.iii.98; 8.iv.99; 16.vi.99;
10.iv.01
56
912
4
8
E2
6
28.X.98; 10.iii.99; 8.iv.99; 16.vi.99; 2..00;
1 l.iv.01
41
807
1
6
E3
6
21.V.98; 27.X.98; 10.iii.99; 8.iv.99; 16.vi.99;
10.iv.01
42
454
2
9
E4
7
19.iii.98; 21.V.98; 27.X.98; 10.iii.99; 8.iv.99;
2..00; 1 l.iv.01
53
866
7
45
E5
3
27.x.98; 7.iv.99; 16.vi.99
19
409
3
12
E6
3
27.x.98; 7.iv.99; 15.vi.99
37
1038
4
7
E7
4
21.V.98; 28.X.98; 7.iv.99; 15.vi.99
56
1219
4
12
E8
1
13.xi.97
13
92
2
2
E9
6
13.xi.97; 2l.v.98; 10.iii.99; 7.iv.99; 15.vi.99;
l.xi.99
50
1680
4
9
E10
1
19.iii.98
16
100
0
0
Ell
1
19.iii.98
16
121
2
7
E12
1
19.iii.98
16
124
1
1
A1
2
18.iv.95; 7.vi.99
27
375
9
46
A2
4
18.iv.95; 20.xi.98; l.iv.99; 7.vi.99
38
343
7
75
A3
4
9.iv.98; 20.xi.98; l.iv.99; 8.vi.99
20
126
3
3
A4
4
9.iv.98; 20.xi.98; l.iv.99; 8.vi.99
25
277
3
6
A5
2
l.iv.99; 8.vi.99
14
38
5
26
A6
7
19.V.94; 18.iv.95; 24.vi.96; 9.iv.98; 20.xi.98;
l.iv.99; 7.vi.99
44
965
7
34
A7
6
19.V.94; 7.xii.94; 22.iii.95; 30.viii.95; 26.X.95;
24.vi.96
54
697
3
18
A8
2
l.iv.99; 8.vi.99
10
84
2
3
A9
5
7.xii.94; 22.iii.95; 30.viii.95; 26.X.95; 24.vi.96
36
298
7
34


31
Table 2-1. Continued.
Station
Code
Samples
(n)
Sampling Dates
Trichoptera
Specimens
Species Identified
(n) (n)
Plecoptera
Specimens
Species Identified
In)
A10
6
7.iv.94; 19.V.94; 7.X.94; 22.iii.95; 30.viii.95;
26.x.95
55
902
2
17
All
5
19.V.94; 22.iii.95; 30.viii.95; 26.x.95; 24.vi.96
42
378
6
14
A12
3
7.X.94; 22.iii.95; 26.x.95
17
282
1
4
FI
5
19.iv.94; 17.V.94; 30.iii.95; 14.ix.95; ll.xi.99
37
690
4
47
F2
5
6.V.93; 6.x.93; 17.V.94; 30.iii.95; 14.ix.95
33
270
2
2
F3
1
14.ix.95
17
34
0
0
G1
5
l.v.98; 27.vi.98; 3.X.98; 6.iii.99; 5.vi.99
28
979
2
209
G2
5
l.v.98; 27.vi.98; 3.X.98; 6.iii.99; 5.vi.99
28
1198
2
103
The following sections give an accounting of species occurrence within the study
areas, and notes are included on species geographic distribution and habitat associations;
particular attention is paid to faunal elements that are unique to, or characteristic of, the
stream habitats sampled. Species conservation status according to the Florida Committee
on Rare and Endangered Plants and Animals (FCREPA) is identified, and among the
recently discovered species, recommendations are made concerning species that should
be considered as candidates for future listing.
Faunal Elements of Special Interest
Among the stonefly and caddisfly species recorded in the survey, I recognize
approximately 50 species of special interest (Table 2-2) that represent faunal elements
distinctive of the habitats and geographic areas where they occur. Collection records for
the majority of these species suggest that the ravines surveyed contain habitats vital for
supporting local populations. These species of special interest exemplify the unique biota
found in ravine ecosystems, and their occurrences attest to the importance of ravine
habitats in supporting a distinct and diverse fauna. Species were designated as species of
special interest if they fit into one or more of the following categories: ravine crenobiont,
narrow-range endemic, disjunct, listed by FCREPA as Rare or Threatened. The


32
terminology ravine crenobiont, narrow-range endemic, and disjunct should be
defined to prevent misunderstanding. A species restricted to ravine-head springruns is
referred to as a ravine crenobiont because of its close ecological association and
confinement to ravine crenal habitats. A narrow-range endemic for this study is defined
as a species having its entire geographic range within the lower (coastal) areas of the
Southeastern Coastal Plain. A species referred to as disjunct has populations within the
study areas that are separated by considerable distances from the species main
geographic range, typically with few, if any, intervening populations on the Southeastern
Coastal Plain.
Table 2-2. Species of special interest: ravine crenobionts, narrow-range endemics,
disjuncts, and species listed by the Florida Committee on Rare and Endangered Plants
and Animals (FCREPA) as Rare (R), Threatened (T), or of Undetermined Status (U).
Species3 Study Area Ravine Narrowly Disjunct FCREPA
Occurrence Crenobiont endemic Statusb
TRICHOPTERA
Hydropsychidae
T
R
Cheumatopsyche gordonae
E
X
Cheumatopsyche petersi
E
X
Diplectrona modesta
E, A, F
X
Diplectrona sp. A
G
X
X
Philopotamidae
Chimarra falculata
E, A
X
Polycentropodidae
Cernotina truncona
G
Nyctiophylax morsei
Polycentropus clinei
E
G
X
Polycentropus floridensis
E
X
Hydroptilidae
Hydroptila apalachicola
A
X
Hydroptila bribriae
E
X
Hydroptila circangula
E
X
Hydroptila eglinensis
E
X
Hydroptila hamiltoni
E
X
Hydroptila latosa
Hydroptila lloganae
E, G
E
X
Hydroptila molsonae
E
X
Hydroptila okaloosa
E
X
Hydroptila parastrepha
E
X
Hydroptila sarahae
E
X
Neotrichia armitagei
E, G
X
Ochrotrichia apalachicola
Orthotrichia baldufi
E, A
A, F
X
R
R
X
R
R
R
X


33
Table 2-2. Continued.
Species3
Study Area
Occurrence
Ravine
Crenobiont
Narrowly
endemic
Disjunct
FCREPA
Statusb
Orthotrichia curta
G
R
Oxyethira chrysocara
G
X
Oxyethira elerobi
E
R
Oxyethira florida
E, G
X
T
Oxyethira grsea
A
X
Oxyethira kelleyi
E
X
T
Oxyethira setos a
A
R
Beraeidae
Beraea n. sp.
E
X
X
Brachycentridae
Micrasema n. sp.
E
X
Calamoceratidae
Heteroplectron americanum
E, A, F
X
X
Lepidostomatidae
Lepidostoma griseum
A
X
Lepidostoma latipenne
A
X
Lepidostoma serratum
E, F
X
X
Leptoceridae
Ceraclea dilua
E
X
Nectopsyche paludicola
E
X
U
Oecetis daytona
E, G
R
Triaenodes helo
A
X
R
Triaenodes taenia
A, F
X
X
Molannidae
Molanna blenda
E, A, F
X
X
Odontoceridae
Psilotreta frontalis
E, A, F
X
X
Sericostomatidae
Agarodes logani
F
X
X
Agarodes ziczac
E
X
T
PLECOPTERA
Leuctridae
Leuctra cottaquilla
E
X
Leuctra triloba
A, F
X
X
Perlidae
Acroneuria lycorias
E, A, F
X
Eccoptura xanthenes
A, F
X
X
Perlesa sp. A
E
?
Perlesa sp. B
E
?
Pteronarcyidae
Pteronarcys dorsata
E, A
X
a Higher classification and author names are omitted (see Tables 2-3 to 2-6).
b Conservation status taken from Deyrup and Franz (1994)
Eleven species of ravine crenobionts were recorded in the survey: 9 caddisfly species
and 2 stonefly species. Of these, 3 caddisfly species (Diplectrona sp. A, Beraea n. sp.,
Agarodes logani) appear to be narrow-range endemics. The other ravine crenobionts are


34
species that typically occur in small, cool streams of more northern latitudes. Other
species were inventoried that are not restricted to upper reaches of ravine streams, but are
narrowly endemic or have disjunct populations occurring within the stream systems
sampled. More than 25 narrowly-endemic species were recorded from the streams
surveyed; the majority (15 species) belong to the Trichoptera family Hydroptilidae. All
study areas contained narrow-range endemics, but the Eglin study area showed by far the
highest degree of endemism. Of the 92 species of caddisflies inventoried at the Eglin
stations, 22 species (24%) are narrow-range endemics. By all indications, Eglins spring-
fed streams, due to their high-quality habitats and physical isolation, are a major center of
caddisfly endemism within the Southeastern Coastal Plain. As discussed in the following
survey accounts, some narrow-range endemics appear to be restricted within the
particular study area, or possibly a single stream system, while other species occur across
somewhat larger areas. Differences in relative abundance were significant, and these
differences give some indication as to which species are most important to ecosystem
functioning. Many of the endemics listed appear to be not as common or as abundant
from outside the study area, and it seems probable that speciation occurred locally
(autochthonous endemics) and dispersal to a wider geographic area is limited due to
environmental factors. Because of restricted distributions of these species, they are
particularly vulnerable to extinction. Sixteen caddisfly species reported in the survey are
considered by the Florida Committee on Rare and Endangered Plants to be Rare or
Threatened (Deyrup & Franz, 1994). There were a number of species collected that are
disjunct from their main geographic ranges. Many of these species likely are unable to
tolerate high temperature extremes, and thus are restricted in Florida to thermally-


35
buffered steephead and clayhill ravine streams. The majority of disjuncts occur in the
central panhandle region and likely dispersed to the region from the southern
Appalachian highlands via Apalachicola-Flint-Chattahoochee watershed connections.
Survey Account of Trichoptera
Overall, 138 Trichoptera species representing 37 genera and 17 families were
identified from among the 116 samples taken at the 29 collecting stations. A total of
15,758 specimens were identified to species. The family Hydroptilidae contained the
most species (44) inventoried, followed by Leptoceridae (32), Hydropsychidae (17),
Polycentropodidae (13), Philopotamidae (5) Sericostomatidae (4), Dipeseudopsidae (3),
Brachycentridae (3), Lepidostomatidae (3), Molannidae (3), Phryganeidae (3),
Calamoceratidae (2), Limnephilidae (2), Psychomyiidae (1), Rhyacophilidae (1),
Odontoceridae (1), Beraeidae (1). Species richness for the 4 study areas was as follows:
Eglin (92 species), Apalachicola (89 species), FAMU Farm (49 species), and Gold Head
(35 species). Caddisfly faunal composition differed significantly among study areas, and
many species were recorded from only a single study area. Collections from each study
area contained the following number of species recorded solely within that particular
study area: Eglin (31 species), Apalachicola (23 species), FAMU Farm (4 species), and
Gold Head (6 species). The Trichoptera species inventory, presented in Tables 2-3 to 2-5,
is discussed below. Family subheadings and species are arranged alphabetically under
each of the 3 widely recognized Trichoptera suborders (Annulipalpia, Spicipalpia,
Integripalpia).


36
Table 2-3. Survey Summary (Trichoptera:Annulipalpia).
Species
Coll.
(n)
Speci
mens
(n)
Study Area (% of Total Specimens)
[Collection Station Number]
Dipseudopsidae
Phylocentropus carolinus Carpenter
22
49
E(14)[9];A(80)[2,5-7,10]; F(6)[l,2]
Phylocentropus lucidus (Hagen)
21
54
A(39)[2,3,7,9-12]; F(61)[l-3]
Phylocentropus placidus (Banks)
9
11
E(27)[1,2];A(73)[2,6,9,12]
Hydropsychidae
Cheumatopsyche burksi Ross
2
2
E(50)[2]; F(50)[2]
Cheumatopsyche campyla Ross
7
49
A( 100)[ 1,2,4,6,10,12]
Cheumatopsyche edista Gordon
15
39
E(8)[2,9]; A(84)[ 1 -4,6,7,10,11 ]; F(8)[l,2]
Cheumatopsyche gordonae Lago &
21
231
E(100)[l-8,10,11]
Harris
Cheumatopsyche petersi Ross et al.
16
79
E( 100)[ 1,2,4-7,9-12]
Cheumatopsyche pettiti (Banks)
25
64
E(8)[2,3,7]; A(41)[2-4, 6,7,9-12]; F(51)[l,2]
Cheumatopsyche pinaca Ross
30
1053
A(24)[ 1,2,4,6-11]; F(l)[l,2]; G(75)[l,2]
Cheumatopsyche virginica Denning
19
36
E(92)[1-4,6,7,9,10,12];A(8)[10,11]
Diplectrona modesta Banks
58
1150
E(57)[1-8];A(26)[3,7-12];F(17)[1,2]
Diplectrona sp. A
3
19
G(100)[l]
Hydropsyche betteni Ross
2
3
F(100)[2,3]
Hydropsyche decalda Ross
1
2
G(100)[l]
Hydropsyche elissoma Ross
37
212
E(72)[l-7,9-12];A(27)[2,6,7,9-ll];F(l)[l,3]
Hydropsyche incommoda Hagen
35
1003
E(0.2)[ 1,6]; A(99.7)[ 1,2,4-12]; F(0.1)[l]
Hydropsyche rossi Flint et al.
23
161
E(0.6)[7]; A(99.4)[l,2,4,6,7,10-12]
Macrostemum carotina (Banks)
10
107
E(100)[ 1-7,9]
Potamyia flava (Hagen)
8
32
A(100)[4,6,10,12]
Philopotamidae
Chimarra aterrima (Hagen)
27
152
E(24)[ 1,3,7,9]; A(31)[7,10-12]; F(4)[l,2];
G(41)[l,2]
Chimarra falculata Lago & Harris
47
472
E(89)[1-11];A(11)[7-11]
Chimarra florida Ross
26
173
E(31)[ 1 -4,6,9,12]; A(9)[5,7,9,10,12];
G(60)[l,2]
Chimarra moselyi Denning
9
56
E(82)[l,2,6,7,9]; A( 18)[ 1,2,6,12]
Chimarra obscura (Walker)
5
7
A(43)[ 1,9,11]; F(57)[l]
Polycentropodidae
Cernotina calcea Ross
1
1
E(100)[9]
Cernotina spicata Ross
1
1
A(100)[7]
Cernotina truncona Ross
1
1
G(100)[l]
Cyrnellus fraternas (Banks)
1
1
A(100)[l]
Neureclipsis crepuscularis (Walker)
10
62
E(3)[1,3];A(97)[1,6,9-12]
Neureclipsis melco Ross
13
31
E(100)[l,2,4,6,7,9,l 1]
Nyctiophylax affinis (Banks)
1
3
F(100)[2]
Nyctiophylax morsei Lago & Harris
10
34
E(100)[l-4,6,7,9]
Nyctiophylax serratus Lago & Harris
6
8
E(38)[1,7,9];A(12)[6];G(50)[2]
Polycentropus blicklei Ross &
12
27
A(11)[3,6,9];F(7)[1,2];G(82)[1,2]
Yamamoto
Polycentropus cinereus Hagen
23
64
E(48)[l-7,10]; A(38)[3,6,7,10,l 1]; F(8)[2,3];
G(6)[l,2]
Polycentropus clinei (Milne)
1
1
G(100)[2]
Polycentropus floridensis Lago & Harris
6
24
E(100)[l,2,7,9]
Psychomyiidae
Lype diversa (Banks)
71
593
E(86)f 1-121; A(13)[2,3,5-121; F(l)n,2]


37
Table 2-4. Survey Summary (Trichoptera:Spicipalpia).
Species
Coll.
(n)
Specimens Study Area (% of Total Collections)
(n)a (Collection Station Number!
Hydroptilidae
Hydroptila apalachicola Harris et al.
1
3
A(100)[10]
Hydroptila berneri Ross
1
1
A( 100)[ 10]
Hydroptila bribriae Harris
7
30
E( 100)[ 1,3,4,11]
Hydroptila circangula Harris
3
3
E( 100)[7,9,12]
Hydroptila disgalera Holzenthal & Kelley
5
8
E(80)[4,9,l 1]; A(20)[6]
Hydroptila eglinensis Harris
9
80
E(100)[ 1-5,7]
Hydroptila hamiltoni Harris
4
25
E(100)[l,4,7]
Hydroptila latosa Ross
15
25+
E(67)[ 1,3,4,8,9,11,12]; G(33)[l,2]
Hydroptila lloganae Blickle
2
2
E( 100)[ 1,4]
Hydroptila molsonae Blickle
1
1 +
E(100)[7]
Hydroptila novicula Blickle & Morse
1
1
F(100)[3]
Hydroptila okaloosa Harris
3
8
E(100)[l,7]
Hydroptila parastrepha Kelley & Harris
3
3
E(100)[4,10,11]
Hydroptila quinla Ross
22
88+
E(27)[ 1,3,4,7-9]; A(68)[l-4,6,7,9-l 1]; F(5)[l]
Hydroptila remita Blickle & Morse
14
32+
E(43)[4,6,7,10,12]; A(57)[7,9-l 1]
Hydroptila sarahae Harris
9
30
E(100)[l,2,4,6,7,9]
Hydroptila waubesiana Betten
15
135+
E(80)[2-4,6,7,9-l 1]; F(13)[l]; G(7)[2]
Mayatrichia ayama Mosely
13
13+
E(46)[4,6,7,9]; A(8)[7]; F(8)[3]; G(38)[l,2]
Neotrichia armitagei Harris
8
8+
E(25)[ 1,9]; G(75)[l,2]
Neotrichia minutisimella (Chambers)
1
7
A(100)[7]
Neotrichia vibrans Ross
1
1
A(100)[9]
Ochrotrichia apalachicola Harris et al.
2
6
E(50)[3]; A(50)[7]
Ochrotrichia confusa (Morton)
1
1
A(100)[12]
Orthotrichia aegerfasciella (Chambers)
9
11 +
E(33)[l,7]; A(33)[7,9]; F(23)[l,3]; G(11)[2]
Orthotrichia baldufi Kingsolver & Ross
2
4
A(50)[7]; F(50)[3]
Orthotrichia cristata Morton
3
36
E(34)[1];A(33)[2];F(33)[3]
Orthotrichia curta Kingsolver & Ross
2
2+
G(100)[l,2]
Oxyethira abacatia Denning
11
14+
E(37)[l,3,7]; A(27)[7,10]; F(9)[l]; G(27)[l,2]
Oxyethira chrysocara Harris
1
1
G(100)[2]
Oxyethira elerobi (Blickle)
2
4+
E(100)[4,9]
Oxyethira florida Denning
2
2+
E(50)[ 1 ]; G(50)[l]
Oxyethira glasa (Ross)
8
9+
E(25)[1,6];A(25)[10];G(50)[1,2]
Oxyethira grsea Betten
1
1
A(100)[7]
Oxyethira janella Denning
23
155+
E(26)[l,3,4,7,9]; A(44)[2,4,6,7,10,11]; F(17)[l-
3]; G(13)[l,2]
Oxyethira kelleyi Harris
13
45+
E(100)[l,3,4,7-12]
Oxyethira lumosa Ross
16
95
E(37)[l,3,4,7,9]; A(44)[3,7,10,l 1]; G(19)[l,2]
Oxyethira maya Denning
14
27+
E(36)[l,3,7,9]; A(64)[l,2,6,7,9-11]
Oxyethira novasota Ross
17
59+
E(6)[4];A(76)[2,6,7,9-11];F(18)[1,2]
Oxyethira pallida (Banks)
4
9
A(75)[ 10,11]; F(25)[3]
Oxyethira pescadori Harris & Keth
7
24
E(86)[ 1,3,4]; G(14)[[l]
Oxyethira savanniensis Kelley & Harris
6
28+
E(67)[ 1,4,6,9]; G(33)[2]
Oxyethira setosa Denning
1
1
A(100)[7]
Oxyethira verna Ross
1
1
A(100)[7]
Oxyethira zeronia Ross
10
59+
E(80)[ 1,3,4,6,7,9,10]; A(20)[ 1,2]
Rhyacophilidae
Rhyacophila Carolina Banks
34
91
E(64)[ 1 -4,7]; A(30)[3,4,7,9-12]; F(6)[l,2]
a + indicates that specimen counts were not made for 1 or more collections.
b Survey area % abundances based on total individuals.


38
Table 2-5. Survey Summary (Trichoptera:Integripalpia).
Coll.
Specimens
Study Area (% of Total Specimens)
Species
(n)
(n)
[Collection Station Number]
Beraeidae
Beraea n. sp.
3
4
E(100)[l]
Brachycentridae
Brachycentrus chelatus Ross
21
83
E(98)[2-4,6-12]; A(2)[10]
Micrasema n. sp.
27
1119
E( 100)[ 1-12]
Micrasema wataga Ross
9
33
A(9)[ 10]; G(91)[l,2]
Calamoceratidae
Anisocentropus pyraloides (Walker)
49
540
E(47)[l-9,11,12]; A(41)[l-3, 5-11]; F(12)[l,2]
Heteroplectron americanum (Walker)
19
123
E(61)[ 1-5,7]; A(37)[5,6,8,9,l 1]; F(2)[l,2]
Lepidostomatidae
Lepidostoma griseum (Banks)
4
13
A(100)[7,9-l 1]
Lepidostoma latipenne (Banks)
9
13
A(100)[3,5,7,9,ll]
Lepidostoma serratum Flint &
7
31
E(29)[l,5]; F(71)[l,2]
Wiggins
Leptoceridae
Ceraclea cancellata (Betten)
8
23
A(100)[2,4,6,7,11]
Ceraclea dilua (Hagen)
8
35
E(100)[2,4,6,7,9]
Ceraclea flava (Banks)
2
2
A(100)[l,6]
Ceraclea maclala (Banks)
19
43
E(33)[ 1,4,7,9,10,12]; A(67)[l,2,4,6,10,l 1]
Ceraclea nepha (Ross)
5
17
A(100)[2,4,6]
Ceraclea ophioderus (Ross)
1
1
A(100)[4]
Ceraclea protonepha Morse & Ross
10
133
E(l)[6]; A(99)[l,2,4-6,10]
Ceraclea resurgens (Walker)
4
13
E( 100)[2,4,12]
Ceraclea tarsipunctata (Vorhies)
9
333
A( 100) [1,2,4,6,10]
Ceraclea transversa (Hagen)
11
51
A(98)[2-6]; F(2)[l]
Leptocerus americanus (Banks)
5
22
A(55)[1,6];F(45)[1,2]
Nectopsyche candida (Hagen)
1
1
E(100)[4]
Nectopsyche exquisita (Walker)
15
79
E(18)[4,7];A(82)[1,2,6,7,9,10]
Nectopsyche paludicola Harris
40
832
E(100)[l-12]
Nectopsyche pavida (Hagen)
19
593
E(7)[2,7,9];A(2)[6,10];G(91)[1,2]
Oecetis cinerascens (Hagen)
10
20
E(15)[1,7,9];A(80)[1,2,6,11];F(5)[3]
Oecetis daytona Ross
3
3
E(67)[6,7]; G(33)[l]
Oecetis ditissa Ross
16
24
E(21)[3,4,7]; A(37)[l,7,9,10]; F(42)[l-3]
Oecetis georgia Ross
27
90
E( 19)[ 1,3,4,7,9,11]; A(17)[2,4,7,9-l 1]; F(3)[l,2];
G(61)[l,2]
Oecetis inconspicua Complex
71
875
E(69)[ 1 -9]; A(25)[l-11]; F(5)[l-3]; G(l)[l,2]
Oecetis nocturna Ross
9
10
E(10)[3]; A(80)[l,2,4,7,9,10]; F(10)[2]
Oecetis osteni Milne
15
18
E(22)[3,6,7,9]; A(61)[2,6,7,9,l 1]; F(11)[1,2];
G(6)[2]
Oecetis persimilis (Banks)
17
47
E(9)[l,4,6,9]; A(91)[l,2,4,6,7,l 1,12]
Oecetis sphyra Ross
26
572
E(62)[2,4-7,9]; A(35)[ 1,2,4-7,9-11 ]; F(3)[l,2,3]
Triaenodes aba Milne
1
1
A(100)[10]
Triaenodes helo Milne
2
4
A(100)[7,10]
Triaenodes ignitus (Walker)
50
319
E(6)[l,3,4,6,7,9]; A(45)[l-7,9-l 1]; F(4)[l-3];
G(45)[l,2]
Triaenodes n. sp.
6
6
E(100)[2-4,9]
Triaenodes ochraceus (Betten &
1
1
A(100)[10]
Mosely)
Triaenodes perna Ross
5
12
E(100)[2,6,7,9]
Triaenodes taenia Ross
4
7
A(14)[3];F(86)[1,2]
Triaenodes tardus Milne
4
6
A(100)[l,2,6]


39
Table 2-5. Continued.
Species
Coll.
(n)
Specimens
(n)
Study Area (% of Total Specimens)
(Collection Station Number]
Limnephilidae
Pycnopsyche antica (Walker)
25
287
E(45)[2-4,6-9]; A(28)[2,3,6,7,9-l 1]; F(l)[l];
G(26)[l,2]
Pycnopsyche indiana (Ross)
1
1
E(100)[2]
Molannidae
Molanna blenda Sibley
38
184
E(69)[l-5,7]; A(13)[3,7,9-l 1]; F(18)[l,2]
Molanna tryphena Betten
25
63
E(13)[2,4,6]; A(54)[5-7,10]; F(3)[2,3]; G(30)[l,2]
Molanna ulmerina Navs
7
15
E( 100)[ 1,2,6]
Odontoceridae
Psilotreta frontalis Banks
21
510
E(4)[2,5];A(17)[3,7-12];F(79)[1,2]
Phryganeidae
Banksiola concatenata (Walker)
1
1
E(100)[2]
Ptilostomis ocellifera (Walker)
2
2
E(100)[9]
Ptilostomis postica (Walker)
5
5
A(40)[4,7]; F(60)[ 1,2]
Sericostomatidae
Agarodes crassicornis (Walker)
12
61
E(78)[3,7,9,10]; A(13)[7,10,l 1]; F(2)[l]; G(7)[l]
Agarodes libalis Ross & Scott
15
248
A(29)[7,8,10,l 1]; G(71)[ 1,2]
Agarodes logani Keth & Harris
4
5
F( 100)[ 1,2]
Agarodes ziczac Ross & Scott
23
951
E(100)[ 1-7,9,12]
Suborder Annulipalpia (Table 2-3)
Family Dipseudopsidae
Three widespread eastern North American Phylocentropus species (P. carolinus, P.
lucidus, P. placidus) were recorded in the survey. Phylocentropus species were most
common within the central panhandle study areas. Phylocentropus lucidus showed the
most restricted distribution and was collected from only stations within the central
panhandle region. Larvae of P. lucidus were found in small, sandy seeps. The other 2
species occurred across a wider geographic area and array of habitat types. However, no
Phylocentropus species were collected from Gold Head Branch even though both P.
carolinus and P. placidus occur in small spring-fed streams of the northern Florida
peninsula.
Family Hydropsychidae
A total of 17 species grouped within 5 genera were inventoried. The genus
containing the greatest number of species was Cheumatopsyche (8), followed by


40
Hydropsyche (5), Diplectrona (2) and Macrostemum and Potamyia (1 species each).
Species composition and abundances at the sampling stations reflected species stream-
size preferences, as well as large-scale regional differences in the species geographic
ranges.
Genus Cheumatopsyche. Differences in Cheumatopsyche species composition at the
regional and local scales were evident. In the western panhandle region at the Eglin
stations, the 2 most abundant species were Cheumatopsyche gordonae and
Cheumatopsyche petersi, both of which have restricted distributions. Cheumatopsyche
gordonae, widespread and abundant within streams on Eglin Air Force Base, is unknown
outside this region. Accordingly, the species was listed by FCREPA as Threatened.
Cheumatopsyche petersi (listed by FCREPA as Rare) has a somewhat larger range that
includes parts of the western Florida panhandle, coastal Alabama, and Mississippi.
Results of the Eglin collecting showed that C. gordonae occurs most often in the upper-
and middle- stream reaches, while C. petersi is most abundant in larger streams and rivers
such as the Blackwater River. Cheumatopsyche virginica, a Coastal Plain species, was
also common and widespread on Eglin streams but infrequently collected from the
Apalachicola stations. Conversely, Cheumatopsyche edista, also a Coastal Plain species,
was common from the central panhandle stations but was infrequently collected from the
Eglin stations. Cheumatopsyche campyla was collected only from the Apalachicola study
area, mainly from the larger streams or at stations very near the Apalachicola River,
suggesting the rivers proximity is an important influence on the occurrence of this
species. Cheumatopsyche pinaca was taken in high numbers from larger streams of the
Apalachicola study area and also at Gold Head Branch, where the highest numbers were


41
recorded and this was the only Cheumatopsyche species collected. Cheumatopsyche
pettiti, a transcontinental species, collected at most of the central panhandle stations, was
less common on Eglin, perhaps due to abundant populations of C. gordonae and C.
petersi.
Genus Diplectrona. Diplectrona modesta accounted for the highest total
hydropsychid abundance (1150 specimens). Within the panhandle study areas, this
species was the dominant hydropsychid at steephead and upper ravine-reaches. Larvae
occurred abundantly within leaf packs and small debris-dams. Downstream from ravine-
head reaches this species became less abundant and was replaced by Cheumatopsyche
and Hydropsyche species. Adults appearing to be D. modesta were collected from the
steephead at Gold Head Branch, which is east and south of the known range for D.
modesta. However, larvae of Diplectrona collected at the steephead all possessed a head
coloration pattern different from typical larvae of D. modesta', therefore, this species was
designated Diplectrona sp. A. The coloration pattern of the head is similar to Diplectrona
rossi, which is known only from Schoolhouse Springs in Louisiana. However, the larvae
of Diplectrona sp. A have evenly curved frontoclypeal sutures unlike those of D. rossi,
which angle sharply near the anterior tentorial pits (Morse & Barr, 1990). Pupal
collections of Diplectrona sp. A may help to clarify the identity of this potential new
species.
Genus Hydropsyche. The Hydropsyche caddisflies inventoried comprise 5 species,
with 3 species (H. elissoma, H. incommoda, and H. rossi) collected in relatively high
numbers from widespread panhandle stations, as compared to the scant collections of H.
betteni and H. decalda. Hydropsyche elissoma was the dominant Hydropsyche species at


42
the Eglin stations, while the Apalachicola study area supported H. elissoma, as well as
high numbers of H. incommoda and H. rossi. Hydropsyche incommoda was very
abundant in light-trap collections at stations near the Apalachicola River, suggesting that
close proximity to the river is an important influence on the abundance of this species,
which is known to inhabit large Coastal Plain rivers. At Gold Head Branch, the only
Hydropsyche identified were 2 males of H. decalda. Hydropsyche betteni was collected
from only the FAMU Farm Stream.
Genus Macrostemum. A single species was inventoried, M. Carolina. The species is
widespread in the eastern USA and throughout much of northern Florida, but in this
survey was collected solely from Eglin streams, where it was widespread and common in
light-trap collections.
Genus Potamyia. The single North American species of this genus, Potamyia flava,
was taken in light-trap collections from several stations located near the Apalachicola
River. The species is known to inhabit large rivers, and the adults collected likely moved
from the river into nearby tributary reaches.
Family Philopotamidae
Chimarra species were significant components of the caddisfly fauna at most of the
stream reaches sampled. All five species known to occur in Florida were collected (C.
aterrima, C.falculata, C. florida, C. moselyi, C. obscura). Chimarra falculata was the
most abundant with nearly 90% of all specimens collected at stations on Eglin, where this
species of restricted distribution appears to have the highest population density. Besides
the Florida panhandle, the geographic range of C.falculata includes the lower Coastal
Plain of Mississippi and Alabama, and parts of southwestern Georgia. Chimarra florida


43
has a similar distribution, but extends its range north and east into parts of the Atlantic
Coastal Plain and the Florida peninsula. More than half the C. florida collected came
from Gold Head Branch Station 2. Of the widespread eastern North America species, C.
aterrima and C. obsura, C. aterrima was common and fairly abundant across study areas
at various sampling stations, while C. obscura was collected in low numbers from only a
few central panhandle stations. Chimarra moselyi occurred at many of the panhandle
stations, but usually in low numbers.
Family Polycentropodidae
Polycentropodidae were represented in the survey by 5 genera and 13 species.
Among these are both common and widespread species, as well as 1 disjunct occurrence
of a species never collected before in Florida and 3 restricted-range species that were
listed by FCREPA as Rare or Threatened. Seven species were each represented by fewer
than 10 individuals, and none of the polycentropodids were collected, either as adults or
larvae, in high numbers as were representatives from most of the other annulipalpian
families.
Genus Cernotina. Three species were recorded (C. calcea, C. spicata, C. truncona),
each represented by only 1 individual, indicating that Cernotina species are minor
constituents of the caddisfly fauna of ravine assemblages. Cernotina truncona is an
uncommon Southeastern Coastal Plain species listed by FCREPA as Rare. This species,
collected at Gold Head Branch, is thought to be associated with ponds and lakes and
could have entered the ravine from one of the nearby lakes.


44
Genus Cyrnellus. The collection of only a single individual of Cyrnellus fraternus
indicates that this widespread and abundant river species is an incidental constituent of
ravine assemblages.
Genus Neureclipsis. The 2 species inventoried (N. crepuscularis, N. melco) were
collected only from Eglin and Apalachicola stations. The widespread and common river
species N. crepuscularis was collected as 1 or 2 individuals from a variety of upper and
lower reach stations, but was collected in greatest abundance at station A12 near the
Apalachicola River. Within the Eglin study area, N. melco, a Southeastern endemic, was
the more common and widespread species.
Genus Nyctiophylax. Three Nyctiophylax species were inventoried (N. affinis, N.
morsel, and N. serratus ). Among these 3 species is the widespread North American
species (N. affinis), a southeastern endemic (N. serratus), and N. morsei, endemic to
small, cool streams of the western Florida panhandle and coastal Alabama. Within this
survey, N. serratus was the most widespread, occurring across the panhandle stations as
well as from Gold Head Branch. Nyctiopylax morsei was collected from a majority of
Eglin stations and overall was the most abundant Nyctiophylax species. Nyctiophylax
morsei, along with Polycentropus floridensis, form a pair of syntopic endemics unique to
the spring-fed streams on Eglin.
Genus Polycentropus. Four Polycentropus species were inventoried (P. blicklei, P.
cinereus, P. clinei, P. floridensis), and all of them have contrasting distributions.
Polycentropus cinereus, a transcontinental species, was the most widespread and
abundant in the survey. Polycentropus blicklei was also widespread, occurring in all
study areas except Eglin. It was collected most frequently and abundantly from the Gold


45
Head Branch springrun. Other collections of P. blicklei comprised only single
individuals. This species appears to be restricted in Florida to small spring-fed streams.
Also from Gold Head Branch, a single male of Polycentropus clinei was identified. This
species is mainly northeastern in distribution with disjunct populations having also been
found within Minnesota and coastal Alabama (Harris et al., 1991). However, because it
has been sparsely collected on the Coastal Plain, it is difficult to make firm inferences as
to its actual distribution. Polycentropus floridensis is endemic to spring-fed streams of
the western panhandle and coastal Alabama. It was collected from several different Eglin
streams suggesting that the species is widespread within Eglin, but not as common in
occurrence as other narrow-range endemics such as Nyctiophylax morsei,
Cheumatopsyche gordonae, Agarodes ziczac, and Nectopsyche paludicola.
Appropriately, P. floridensis was listed by FCREPA as Threatened.
Family Psychomyiidae
Lype diversa was common at most panhandle stations. In terms of number of
collections (71), it was equaled only by Oecetis inconspicua complex. In northern Florida
habitats other than small spring-fed streams, it is less common.
Suborder Spicipalpia (Table 2-4)
Family Hydroptilidae
Hydroptilidae, also known as microcaddisflies, were the most speciose (44 species
representing 6 genera) family of Trichoptera collected. The genera Hydroptila and
Oxyethira were both represented by 17 species; other genera included: Orthotrichia (4
spp.), Neotrichia (3 spp.) Ochrotrichia (2), and Mayatrichia (1 sp.). Among the
microcaddisflies collected in this study and sent to Dr. Harris for identification were 10


46
species new to science that have been subsequently described (Hydroptila apalachicola,
H. bribriae, H. eglinensis, H. hamiltoni, H. okaloosa, H. sarahae, H. sykorai,
Ochrotrichia apalachicola, Oxyethira chrysocara, 0. pescadori). Formal descriptions of
these species were provided in Harris et al. (1998), Harris (2002), and Harris and Keth
(2002). As with Integripalpia and Annulipalpia, species composition of hydroptilids
varied greatly among study areas. Narrow-range endemics were most prevalent within the
Eglin study area. Eglins cool, clear springruns with abundant vascular plants and
macroalgae provide habitat and food resources that sustain a diverse and unique
assemblage of microcaddisflies. Several of these endemic species are very similar to
more widely occurring Southeastern species (Harris, 2002), and it is likely to a large
degree that the origin of this unique fauna is due to speciation of isolated relict
populations.
Genus Hydroptila. The survey led to the discovery of a number of new species in
this large genus. Of the Hydroptila specimens sent to Dr. Harris for examination, he
discovered 7 species new to science. Five of these {H. bribriae, H. eglinensis, H.
hamiltoni, H. okaloosa, H. sarahae) appear to be endemic to streams on Eglin. The
descriptions for these species, provided in Harris (2002), were based in large part on
specimens collected as a part of this study. The aforementioned species were all collected
from more than one watershed and are probably fairly widespread in the Eglin streams, at
least on the western side of the base where the study area was located. These 5 new
species, because of their restricted distributions, should be considered for special
conservation status. Four additional species (H. circangula, H. lloganae, H. molsonae, H.
parastrepha) with restricted ranges were also collected from the Eglin study area. Of


47
these, the distributions of H. circangula and H. parastrepha encompass parts of the
western Florida panhandle and coastal Alabama. Hydroptila lloganae (known from TX,
LA, FL, and SC) and H. molsonae, a Gulf Coastal Plain species, were listed by FCREPA
as Rare. Also of note, Hydroptila latosa, a Coastal Plain species, was common within the
Eglin and Gold Head study areas but was not collected from any central panhandle
stations. Endemic to the Apalachicola study area was Hydroptila apalachicola. Described
in Harris et al. (1998), it is known from only 3 specimens collected at Little Sweetwater
Creek (Station A10). It is most similar to H. recurvata, a species endemic to the Black
Warrior system in Alabama. Overall, the most abundant Hydroptila species were 2 very
common and widespread species, H. quinla and H. waubesiana. Other relatively
common and widespread Hydroptila species inventoried included: H. berneri, H.
disgalera, H. novicula, and H. remita.
Genus Mayatrichia. Mayatrichia ayama occurred in all study areas and was most
frequently collected at lower reach stations. This species, widespread in North America,
is a common river species in Florida.
Genus Neotrichia. Three species of Neotrichia (N. armitagei, N. minutisimella, N.
vibrans) were inventoried. Neotrichia minutisimella and N. vibrans were collected from
single stations within the Apalachicola study area. Both are widely distributed over parts
of the eastern and central USA, including most of North and South Florida. Neotrichia
armitagei, on the other hand, is endemic to streams of northern Florida and adjacent
southwestern Georgia. It was described in Harris (1991) from collections made by B.J.
Armitage and M.K. Ward from streams on the western-side of Eglin Air Force Base. In


48
this study, N. armitagei was also collected from Eglin, but was most frequently collected
from Gold Head Branch where it was abundant at the lower reach (Station G2).
Genus Ochrotrichia. Two Ochrotichia species were recorded in the survey, O.
apalachicola and O. confusa, both in low numbers. Ochrotichia confusa was represented
by a single male collected at station A12, a small high-gradient ravine stream located
along the eastern bank of the Apalachicola River. Ochrotrichia apalachicola, a newly-
discovered species, was described in Harris et al. (1998) from a single male collected at
Beaver Dam Creek (Station A7). Subsequently, 5 males were identified from Station E3
of the Eglin study area. These are the only known localities for this species, which
appears to be endemic to the Florida panhandle. Ochrotricha okaloosa was not collected
in the study. This rare species, described in Harris and Armitage (1987), is known only
from the holotype collected 14 August 1985 on Eglin Air Force Base (Turkey Creek at
Base Road 233).
Genus Orthotrichia. Within this small genus, a total of 4 species (O. aegerfasciella,
O. baldufi. O. cristata, O. curta) were inventoried. All study areas were represented by at
least 2 species. The widespread and common eastern species, O. aegerfasciella, occurred
in all study areas and was the most common Orthotrichia collected. Orthotrichia cristata,
also a widespread eastern species, was represented in all panhandle study areas but was
less common (3 collections). Orthotrichia baldufi occurred only within the central
panhandle study areas. This species is northern in distribution, with scattered disjunct
populations within the Southeastern USA. Orthotrichia curta is a primarily southeastern
species and it occurred only within Gold Head study area.


49
Genus Oxyethira. The 17 species of Oxyethira identified in this survey were equaled
in species richness only by the genus Hydroptila. Narrow-range endemic Oxyethira.
species documented in the survey were O. kelleyi and O. chrysocara. Oxyethira kelleyi is
widespread and abundant in streams on the western-side of Eglin, but is unknown from
outside this area; the species was described in Harris and Armitage (1987) and was listed
by FCREPA as Threatened. Oxyethira chrysocara, recently described by Harris (2002), is
currently known from only the holotype specimen collected at Gold Head Branch
(Station G2). Additional collecting in and around the type locality is needed to pinpoint
the population center. Three species (O. grsea, O. setosa, O. verna) were recorded only
as single individuals from Beaver Dam Creek (Station A7). Oxyethira grsea is unknown
from any other Florida localities, and its occurrence on the Coastal Plain is disjunct.
Oxyethira setosa, listed by FCREPA as Rare, was previously known in Florida from one
other locality, Rocky Creek on Eglin Air Force Base. Another Threatened species, O.
florida, was recorded from collections made at 2 steephead stations, Eglin (Station El)
and Gold Head (Station Gl). Aside from these collections, the species is known in
Florida from only the type locality (Miami) and Temple Terrace near Tampa. Oxyethira
lumosa, a southeastern species, was collected within the Eglin, Apalachicola, and Gold
Head study areas. Dr. Harris closely examined these specimens, and others from northern
Florida and Coastal Plain Alabama, and discovered the presence of 2 closely-related
species, Oxyethira lumosa and a new species, O. pescadori, described in Harris and Keth
(2002). Subsequently, this new species was also identified from specimens collected by
Dr. Manuel Pescador and others in central South Carolina, suggesting that O. pescadori
may have a similar distribution to O. lumosa. Oxyethira elerobi was collected only from


50
the Eglin study area (Stations E4, E9). The species was listed by FCREPA as Rare, but I
have found additional populations from small blackwater streams in northern Florida,
suggesting that the species is more common than previously thought. Overall, the most
widespread and common Oxyethira species in all study areas was the southeastern
species O.janella. Other Oxyethira species, not already mentioned, collected at 2 or more
study areas included: O. abacatia, O. glasa, O. maya, O. novasota, O. pallida, O.
savanniensis, and O. zeronia.
Family Rhyacophilidae
Species within the genus Rhyacophila are icons of Appalachian stream biota.
Rhyacophila Carolina, unlike other Rhyacophila species, is also found in cool, spring-fed
streams of the Florida panhandle. The species was widespread within the panhandle study
areas and was most abundant at 1st-3rd order springrun reaches.
Suborder Integripalpia (Table 2-5)
Family Beraeidae
A new species within the genus Beraea was discovered within the steephead at
Station El. Adult males were light trapped on two occasions, and a female was collected
using a beating sheet. The new species will be described in a separate paper. Larvae
remain uncollected, but they probably live in mucky seepage areas within the steephead,
given that Beraea species are noted for their ecological specialization to this type of
microhabitat.
Family Brachvcentridae
The Brachycentridae surveyed included Brachycentrus chelatus, Micrasema n. sp.,
and M. wataga. Among these species were an eastern North American species (M.


51
wataga), a southeastern species (B. chelatus), and a lower Coastal Plain endemic
(Micrasema n. sp.). Brachycentrids were most abundant at lower springrun reaches
having deeper water and submerged aquatic plants. Brachycentrus chelatus was
widespread and common on Eglin, but was collected from only one station (A10) outside
this study area. Micrasema n. sp., described in a dissertation by Chapin (1978), was
widespread and abundant at the lower sampling reaches on Eglin. Larvae were found in
association with submerged macrophytes and macroalgae (Batrachospermum). In
contrast, Micrasema wataga was not collected at the Eglin stations but did occur within
the Apalachicola study area (Station A10) and at Gold Head Branch, where it was most
abundant at the downstream sampling reach (Station G2).
Family Calamoceratidae
The calamoceratid species Anisocentropus pyraloides and Heteroplectron
americanum were collected at panhandle stations, primarily from steephead and upper-
ravine reaches. Their abundance, large size, and feeding habits as detritivores and
shredders of course particulate matter (e.g., leaves), are suggestive of their ecological
importance to ecosystem functioning in these habitats. The more common A. pyraloides
occurred at all such sites; adults were often observed flying during the daytime within the
ravines. Heteroplectron americanum is more restricted in distribution, and in Florida the
species is primarily confined to ravine streams. These isolated Florida populations
probably represent relict populations of a distribution less fragmented during cooler
climate periods, as during the Pleistocene. Likely due to their warm-water intolerance,
neither species has been recorded from peninsular Florida.


52
Family Lepidostomatidae
Three Lepidostoma species were collected (L. griseum, L. latipenne, L serratum).
The Florida populations are all southern disjuncts and restricted to cool, well-shaded,
spring-fed streams. Lepidostoma griseum and L. latipenne were collected from only the
Apalachicola study area, and both species show Appalachian Highland biogeographic
affininites. Lepidstoma serratum was collected from ravine heads at the FAMU Farm and
on Eglin. The larvae were found on the undersides of chunks of clay-like material that are
most prevalent near spring-source headwall areas. Interestingly, male specimens exhibit
the same genitalic variation noted in Weaver (1988) for specimens collected from
Schoolhouse Springs in Louisiana. The fact that distant populations on the southern
Coastal Plain show the same variation and a disjunct distribution pattern suggests that
these are relict populations, possibly representing an ancestral form of the species that
was forced southward, along with deciduous forest communities, during cooler periods
associated with Pleistocene glacial advances.
Family Leptoceridae
Leptoceridae were the most diverse and abundant integripalpian family collected in
the survey, with leptocerids accounting for nearly 50% of all integripalpian specimens
identified and about 60% of all integripalpian species. Within this family, 32 species
representing 5 genera were inventoried. Species richness for each genus was: Ceraclea
(10), Oecetis (9), Triaenodes (8), Nectopsyche (4), Leptocerus (1). The majority of these
leptocerids are widespread in eastern North America as well as in Florida. However,
there are representatives within Ceraclea, Oecetis, Triaenodes, and Nectopsyche that
either have disjunct populations in Florida or are narrow-range endemics.


53
Genus Ceraclea. The Ceraclea species recorded have, in general, widespread
distributions over large parts of eastern North America. They occurred most often and in
greatest abundance at the lower-reach stations; at upper-reach ravine stations Ceraclea
species were quite uncommon. Regional differences in species composition of Ceraclea
were evident. The Apalachicola study area supported the most species (8), with C.
protonepha, C. tarsipunctata, and C. transversa being collected primarily from this
region and in the highest overall abundance. Ceraclea flava, C. nepha, and C. ophioderus
were collected only at Apalachicola stations but were less common. Ceraclea maculata
was widespread and common at both Eglin and Apalachicola stations. Ceraclea dilua
and C. resurgens were collected only from Eglin, with C. dilua being the more common.
Harris et al. (1991) reported both of these species from small streams within coastal
Alabama, and from few other Alabama localities. Neither was recorded from streams
surveyed on the eastern part of the reservation (Harris et al., 1982).
Genus Leptocerus. Leptocerus americanus was collected infrequently from a few
central panhandle stations. This species is associated with aquatic macrophytes but was
not collected as larvae or as adults at downstream stations on Eglin where aquatic
macrophytes were abundant. High stream velocities at these stations may account for the
absence since L. americanus is associated more with lentic habitats.
Genus Nectopsyche. Nectopsyche species were common and abundant at middle and
lower reaches. Within steephead- and upper-ravine reaches, Nectopsyche was generally
less abundant. Species composition and abundance varied by region. Three (N. candida,
N. exqusita, and N. pavida) of the 4 species collected range over much of eastern North
America, whereas N. paludicola is endemic to the western Florida panhandle and coastal


54
Alabama. This species was collected from all Eglin stations, often in great abundance.
Nectopsyche exquisita was the most frequently occurring species from the Apalachicola
study area. Nectopsyche pavida was collected from the Eglin and Apalachicola study
areas, but was most abundant at Gold Head Branch. Collections of this species at the
steephead station (Gl) comprised several hundred females but only 4 males, whereas the
collections downstream at station G2 showed a much more equal sex-ratio, suggesting
that females, but not males, were flying upstream. Nectopsyche candida was the least
common species with only a single specimen being identified.
Genus Oecetis. At least nine species of Oecetis were collected, and 4-8 congeners
were typically found at stations where multiple samples were collected. Most widespread
and abundant was the Oecetis inconspicua complex (likely comprising 2 or 3 different
species). Also widespread and very abundant, particularly in lower reaches, was the
southeastern species Oecetis sphyra. Oecetis georgia, another southeastern species, was
collected from all regions but in lower numbers and tended to occur most often in upper
reaches. Oecetis daytona, endemic to the Southeastern Coastal Plain and listed by
FCREPA as Rare, was collected at stations E6, E7, and Glidentified from single
males. The other Oecetis collected (O. cinerascens, O. ditissa, O. nocturna, O. osteni,
and O. persimilis) are common and widespread eastern species (Floyd, 1995) that were
collected at many of the stations.
Genus Triaenodes. Eight species of Triaenodes were documented in the survey. By
far the most widespread and common was Triaenodes ignituscollected more often and
in greater total abundance than all other Triaenodes species combined. It occurred at the
majority of stations and appeared to be ubiquitous in streams of all sizes. Larvae were


55
most frequently found among submerged rootmats of riparian vegetation. Triaenodes
ignitus is widespread and common in streams and rivers across eastern North America.
One species, T. taenia, occurred only in upper ravine-reaches within the Apalachicola
and FAMU Farm study areas. This species was previously thought to be restricted to
mountain streams in the southern Appalachians and spring-fed streams in the Piedmont of
North Carolina and Alabama (Glover, 1996). The cool-modified ravine microclimate is
probably essential for the survival of Florida populations of this Appalachian disjunct.
Four Triaenodes species (T. aba, T. helo, T. ochraceus, T. tardus) were collected only
from the Apalachicola study area. Triaenodes aba and T. tardus are widespread species
typically associated with macrophytes in lentic habitats; the occurrence of single
individuals of these 2 species indicates they do not typically occur in ravine streams. The
southeastern species T. ochraceus and the Coastal Plain species T. helo were collected
from floodplain forest stations (Station A7, A10). Glover (1996) noted that these 2
species have similar habitat preferences, both occurring on cypress roots in small streams.
Triaenodes n. sp. and Triaenodes perna were collected from several Eglin stations.
Triaenodes perna, a close relative of T. helo, ranges over much of eastern North America
and can be found in a variety of lotic and sometimes lentic habitats. Triaenodes n. sp. is
endemic to the Southeastern Coastal Plain, where it is found in small headwater streams.
This species, presently being described by Ken Manuel, was listed in Glover (1996) as
Triaenodes n. sp. A.
Family Limnephilidae
Two species within the genus Pycnopsyche (P. antica, P. indiana) were inventoried.
Pycnopsyche antica was collected from all regions and study areas and generally was


56
most abundant at middle and lower reach stations. Pycnopsyche species are typically
associated with temperate deciduous forests of eastern North America (Ross, 1963), and
their life history and biology are closely linked with that of deciduous riparian vegetation.
Pycnopsyche species are cool-adapted and in Florida restricted to well-shaded streams
with substantial groundwater inputs, hence the common and abundant occurrence of P.
antica in the streams studied. Pycnopsyche indiana occurred at only 1 station (E2). In
Florida this species has been collected at only a few widely scattered localities
(Rasmussen & Denson, 2000).
Family Molannidae
Molannids occurred commonly along the entire lengths of the streams studied. Three
species were inventoried (M. blenda, M. ulmerina, M. tryphena), all of which are
widespread over much of eastern North America. In this study, clear distinctions were
observed in species biotopes and regional distributions. Molanna blenda was collected in
greatest abundance at ravine-head reaches, while M. tryphena more typically occurred at
lower reach stations. The zonation was only evident in the panhandle where both species
are present. At Gold Head Branch, where it appears that M. blenda is absent, M. tryphena
was more abundant at the steephead reach than at the lower reach on Gold Head Branch.
It appears that M. blenda, which is noted for primarily inhabiting spring-seeps and small
spring-fed streams (Sherberger & Wallace, 1971), competitively excludes M. tryphena
from upper reaches in areas of sympatry. Molanna ulmerina was collected from the
western panhandle at only 3 stations (El, E2, E6). This species also occurs in springruns
of north-central Florida, but was not collected at Gold Head Branch.


57
Family Odontoceridae
Within Florida, Psilotreta frontalis is largely restricted to the upper reaches of ravine
streams. This species, the only odontocerid known in Florida, was most abundant from
ravine-reach stations within the central panhandle region. Both larvae and adults were
collected in large numbers at the FAMU Farm Stream. Psilotreta frontalis was collected
at only 2 stations on Eglin, and these specimens showed interesting variation in the male
genitalia, specifically in the development of the styles on segment 9. Specimens from
station E5 lacked styles, while specimens from station E2 either lacked styles, possessed
normal styles, or possessed short styles. The lack of styles was used by Denning (1948)
to distinguish P. hansoni from P. frontalis. However, Parker and Wiggins (1987), in their
revision of the genus, considered the specimens they examined lacking styles to be
unusual variants of P.frontalis, and found that in all other respects the specimens were
identical to typical P. frontalis. The variation observed in the Eglin specimens supports
the assertion that this is indeed a variable character, and not a valid basis for considering
them to be separate species. Furthermore, larvae and pupae collected at station E5 were
indistinguishable from those collected at the central panhandle stations.
Family Phryganeidae
Two genera (Banksiola, Ptilostomis) comprising 3 species (B. concatenata, P.
ocellifera, P. postica) were collected in small numbers for this family, whose members,
like Limnephilidae, are primarily northern in distribution. Banksiola concatenata and P.
ocellifera each occurred at only 1 Eglin station, while P. postica was collected on several
occasions from the FAMU Farm stations and at 2 Apalachicola stations.


58
Family Sericostomatidae
Agarodes species were found to be important components of ravine assemblages
throughout upper and lower reaches. Larvae of species within this genus are noted for
their burrowing habits and preference for spring-fed, sand-bottom streams. Four species
of Agarodes were inventoried, including 2 widespread Southeastern species (A.
crassicornis, A. libalis) and 2 narrow-range endemics (A. logani, A. ziczac). Differences
in species composition were apparent at a regional level. Agarodes crassicornis was the
only species to occur in all study areas. Agarodes libalis was collected from the
steephead springruns in the Apalachicola study area and from the Gold Head Branch
stations. Overall, this species was collected in highest numbers at the Gold Head Branch
steephead. Agarodes ziczac was restricted to the Eglin study area, where it was
widespread and collected in very high numbers. Agarodes ziczac, listed by FCREPA as
Threatened, occurs only in the western Florida panhandle. Results of this survey, and that
of Harris et al. (1982), indicated that the spring-fed headwater streams on Eglin support
the highest populations. The protection of headwater areas on the Eglin Air Force Base is
vital to long-term health of this species. Even more restricted in distribution is Agarodes
logani. This species, described by Keth and Harris (1999), is known only from specimens
collected within the ravine of the FAMU Farm Stream (Stations FI, F2). The restricted
distribution and apparent small population size suggest that this species is particularly
vulnerable to extinction. Other headwater spring-fed streams around the type locality
need to be sampled in order to better understand its distribution.


59
Survey Account of Plecoptera
The Plecoptera species inventory, presented in Table 2-6, is discussed below.
Overall, 23 species representing 6 families and 13 genera were identified from among the
116 samples taken at the 29 collecting stations. A total of 759 stonefly specimens were
identified. The family Perlidae contained the lions share of species (14), followed by
Leuctridae (4), Perlodidae (2), and Nemouridae, Taeniopterygidae, Pteronarcyidae (1
species each). Species richness for the 4 study areas was: Eglin (13 species),
Apalachicola (17 species), FAMU farm (4 species), and Gold Head (2 species). Eight
species found in the Apalachicola study area were not collected at the other study areas,
and 5 species were recorded from only Eglin study area collections. As discussed in the
survey account, the distribution of many stonefly species within and among study areas
appears to be controlled at the local scale by strict habitat requirements, and at a larger
scale by biogeographic affinities. The following account summarizes the survey results.
Family subheadings and species are arranged alphabetically under each of the 2 major
stonefly groupings, Euholognatha and Systellognatha.
Table 2-6. Survey Summary (Plecoptera).
Species
Collections
(3)
Specimens
M
Study Area (% of Total Specimens)
[Collection Station Number!
EUHOLOGNATHA
Leuctridae
Leuctra cottaquilla James
4
9
E( 100)[ 1,5,8,11]
Leuctra ferruginea (Walker)
3
3
A(100)[3,7,9]
Leuctra rickeri James
3
5
E(20)[7];G(80)[1,2]
Leuctra triloba Claassen
2
6
A(33)[11];F(67)[1]
Neumouridae
Amphinemura sp.
2
4
A(100)[5]
Taeniopterygidae
Taeniopteryx sp.
1
3
A(100)[l]
SYSTELLOGNATHA
Perlidae
Acroneuria abnormis (Newman)
1
1
E(100)[l]
Acroneuria arenosa (Pictet)
13
71
E(7)[4,6]; A(93)[ 1,2,4-6,9,11]
Acroneuria lycorias (Newman)
40
122
E(26)[4,5,7,9];A(71)[l-7,9-ll];F(:
Agnetina annulipes (Hagen)
4
9
A(100)[l]


60
Table 2-6. Continued.
Species
Collections
(n)
Specimens
(n)
Study Area (% of Total Specimens)
[Collection Station Number]
Eccoptura xanthenes (Newman)
19
49
A(22)[3,5,8,9,l 1,12]; F(78)[l]
Neoperla carlsoni Stark &
1
1
A(100)[6]
Baumann
Neoperla clymene (Newman)
17
311
E(0.4)[4]; A(0.6)[l,2]; G(99)[l,2]
Paragnetina fumosa (Banks)
6
7
E(29)[9]; A(71 )[1,2,4,6]
Paragnetina kansensis (Banks)
1
1
A(100)[9]
Perlesa placida (Hagen)
27
67
E(52)[l,3,4,6-9,11]; A(43)[l,2,5,6,9,l 1];
F(5)[l,2]
Perlesa sp. A
1
2
E(100)[5]
Perlesa sp. B
1
1
E(100)[6]
Perlinella drymo (Newman)
21
55
E(47)[l-4,6,7,9,12]; A(53)[2,6-l 1]
Perlinella zwicki Kondratieff et al.
1
1
E(100)[4]
Perlodidae
Clioperla clio (Newman)
1
1
A(100)[l]
Isoperla dicala Frison
1
9
A(100)[2]
Pteronarcyidae
Pleronarcys dorsaia (Say)
9
21
E( 14)[4]; A(86)[l,61
Group Euholognatha (Table 2-6)
Family Leuctridae
Four species of Leuctra were inventoried (Z. cottaquilla, L.ferruginea, L. rickeri, L.
triloba). Nymphs of Leuctra were sometimes locally abundant, especially in leaf packs
within upper reaches; unfortunately nymphs could not be identified to species. Therefore,
adult collections from light trapping done during the fall and early spring were used to
determine species composition. The fact that adults of Leuctra are only present in Florida
during the cool months makes them difficult to collect by light, and the low numbers
collected in light-trap samples under-represented their true abundance within ravine
habitats. Of the four species inventoried, L. cottaquilla has the most restricted
distribution. This species is endemic to the western Florida panhandle and parts of
southern Alabama and Mississippi. Within the Eglin study area, it was widespread and
collected at steephead and downstream stations. The other 3 species are widely


61
distributed in eastern North America. Leuctra triloba occurred at upper ravine-reach
stations from the Apalachicola and FAMU study areas; these Florida populations are
disjunct from its northern range. Leuctra ferruginea also occurred in both of these study
areas, and in the emergence study at the FAMU Farm Stream (see Chapter 4), both
species were found to be syntopic within a 2-m stream section covered by the emergence
trap. Leuctra rickeri was collected from the Eglin and Gold Head study areas, but not
from the central panhandle study areas.
Family Nemouridae
The neumourids were represented by only 2 collections of Amphinemura larvae
(Station A5). It is likely that these specimens belong to Amphinemura nigritta, a species
reported nearby and the only known Amphinemura species in Florida. Amphinemura
species, including A. nigritta, have a prolonged egg diapause (Stewart & Stark, 2002),
which may account for their presence in streams that temporarily go dry. Amphinemura
in Florida appears to be more characteristic of this stream-type than the permanent,
spring-fed systems that were studied.
Family Taeniopterygidae
Taeniopterygidae were represented by only 1 collection (Station Al) comprising 3
nymphs of a Taeniopteryx species. As with the other Euholognathans inventoried,
nymphs usually are not identifiable to species, hence the genus-level determination. The
nymphs likely belong to either T. lita or T. burksi, the only 2 species known to occur
within the central panhandle of Florida.


62
Group Systellognatha
Family Perlidae
Perlids were, in general, the most common stoneflies collected in the survey, and
undoubtedly they play key ecological roles as predators within the ravine ecosystems
studied. The family was represented by 14 species grouped within 7 genera. Collections
reflected a variety of distributional patterns. Some species inventoried could be
considered ecological generalists (e.g., Perlesa placida, Clioperla clio) while another
species, Eccoptura xanthenes, appears to have strict ecological requirements met only
within the environs of ravine headwaters.
Genus Acroneuria. Three Acroneuria species were inventoried (A. abnormis, A.
arenosa, A lycorias). The widespread North American species, A. abnormis, occurred at
only Station El; in Florida it is more common in rivers than from small spring-fed
streams. Acroneuria lycorias, on the other hand, was common and abundant at panhandle
stations, especially within the Apalachicola study area. The Florida panhandle
populations are disjunct from the species main-range, which encompasses much of the
northern USA and southern Canada east of the Rockies. The absence of this species from
other areas on the Southeastern Coastal Plain suggests that it, like many stonefly species,
is intolerant of high extremes in water temperature, and that panhandle ravine streams are
the key refugia supporting populations on the Southeastern Coastal Plain. Acroneuria
arenosa occurred at various panhandle stations but differs from A. lycorias in that it is
found commonly in stream habitats outside of ravine regions. Although Acroneuria
species do occur within the northern Florida peninsula, none were collected from the


63
Gold Head study area. The absence of Acroneuria from Gold Head Branch may be due to
the great abundance of Neoperla clymene.
Genus Agnetina. Nymphs of A. annulipes were collected on several occasions from
Flat Creek (Station Al). This species was absent from steephead and upper ravine-
reaches.
Genus Eccoptura. Closely related to Acroneuria, the monotypic genus is thought to
represent a specialized lineage adapted to spring-fed headwater streams (Stark & Gaufin
1976). The sole member of the genus, E. xanthenes, occurred at steephead and upper-
reach ravine stations within the Apalachicola and FAMU Farm study areas. It was
particularly abundant within the FAMU Farm ravine. Eccoptura xanthenes is common in
small, springbrooks of the southern Appalachians, and the cluster of populations
occurring in the central panhandle ravines suggests past dispersal between the 2 regions
via Apalachicola/Chattahoochee/Flint watershed connections.
Genus Neoperla. Two species were inventoried (N. carlsoni, N. clymene). Both
occur in a wide array of lotic habitats; within Florida, N. carlsoni is restricted to the
western and central panhandle, while N. clymene is widely distributed over much of
northern Florida. Collections of the 2 species within the panhandle study areas were
scant. In contrast, at Gold Head Branch, N. clymene was very abundant and the only
perlid species to occur.
Genus Paragnetina. Two species were inventoried (P. fumosa, P kansensis).
Nymphs of P. fumosa were collected at several of the larger streams within the
Apalachicola study area, and from Turkey Creek (Station E9) within the Eglin study area.
Paragnetina kansensis was represented by a single female taken from the Apalachicola


64
study area (Station A9). Neither species appears to be an important component of upper-
reach ravine assemblages.
Genus Perlesa. Nymphs of Perlesa were commonly collected at virtually all
panhandle stations sampled, but unfortunately, nymphs could not be identified to species.
Based on adult specimens, 3 species were inventoried (P. placida, Perlesa sp. A,
Perlesa sp. B). Perlesa placida, which occurs in most Florida panhandle streams and
rivers, was widespread and common from panhandle stations. Perlesa sp. A and Perlesa
sp. B were collected from the Eglin study area (Station E5 and E6, respectively). Perlesa
sp. A was represented by 2 females and Perlesa sp. B by 1 male. The specimens were
sent to Dr. Bill Stark for examination, who concluded that they likely belong to new
species, but that additional specimens are needed for further study. Because 1 collection
comprised females and the other collection was a male specimen, it is possible that the
specimens are of the same species.
Genus Perlinella. Adults of Perlinella were commonly taken in light-trap samples
from the Eglin and Apalachicola study areas. Two species were inventoried (P. drymo
and P. zwicki). Perlinella drymo was common at upper- and lower reach stations within
both Eglin and Apalachicola study areas, while P. zwicki was represented by a single
male specimen taken from Juniper Ck (Station E4). Perlinella zwicki, a Coastal Plain
endemic, more commonly occurs in shifting-sand-bottom rivers such as the Blackwater,
while Perlinella drymo, an eastern species, occurs in a wider array of habitat types,
including small headwater streams.


65
Family Perlodidae
Only 2 species of perlodids were collected, Clioperla clio and Isoperla dicala, both
from the Apalachicola study area. A larva of C. clio was collected from Flat Creek
(Station Al), and adults of I. dicala were taken from Crooked Creek (Station A2).
Clioperla clio occurs across many stream types in northern Florida but apparently is not
an important component of ravine assemblages. Isoperla dicala is rarer within the state
and is known from only a few panhandle streams and rivers.
Family Pteronarcyidae
Pteronarcys dorsata was collected at several lower-reach stations (Stations E4, Al,
A6). Larvae were collected from areas of fast flow where leaf packs accumulated on
snags. This species, widespread in North America, is restricted in Florida to clean,
unpolluted streams and rivers with fast flow. Pteronarcys dorsata did not occur in the
upper reaches of ravine streams.


CHAPTER 3
ANALYSIS OF TRICHOPTERA COMMUNITY STRUCTURE AND
ENVIRONMENTAL RELATIONSHIPS
Based on results of the biodiversity survey of ravine streams across northern Florida
(Chapter 2), it was apparent that there are significant differences in species composition
of the caddisfly and stonefly fauna among the different sampling stations. Examples of
faunal differences between stations and study areas were noted in the survey account, and
species occurrence was generally discussed in terms of species geographic distributions
and habitat associations (e.g., stream size, substrate microhabitats).
From the starting point of understanding the makeup of the stonefly and caddisfly
fauna of the various stations, additional questions can be asked such as: How similar or
different is the fauna between stations? Can the survey results be used to produce a
classification of community types, and if so, what species define a particular community?
What geographic and environmental factors best explain the faunal differences observed
among stations? In an attempt to address these questions, the survey data were analyzed
using multivariate statistical methods. The objectives of the analysis were to i) provide a
classification and description of community types based on faunal similarities between
stations; and ii) investigate key geographic and environmental factors that are predictors
of species composition.
66


67
Materials and Methods
Data Set
The faunal survey (see Chapter 2), which resulted in a rather large data set of species
occurrences and abundance values from 29 stations, was used as the starting point in this
analysis. The data set analyzed was limited to caddisfly data, with the stonefly data
excluded from the analyses because of the relatively low species diversity and small
sample-sizes. The low stonefly numbers were in part due to inherent lower diversity and
in part due to the sampling bias that resulted from the heavy reliance on light trapping,
which is ineffective for capturing many stonefly species. The data for microcaddisflies
(Family: Hydroptilidae) were excluded from the analyses because species composition
and abundance data (counts), unlike non-hydroptilid data, were not available for all
blacklight samples. The data set used was further confined to only those stations from
which at least 3 light-trap samples were collected (2 spring/summer samples, and 1 fall
sample). This requirement resulted in 9 stations being dropped from the analyses (E8,
E10-12, Al, A5, A8, A12, F3), leaving the final data set consisting of abundance values
for 72 macrocaddisfly species from 20 stations. Abundance was recorded as the total
number of individuals/species collected at each station. The data set was analyzed using 2
statistical approaches: classification and ordination. Statistical procedures were
performed using the computer software MVSP (Kovach, 1999).
Classification
Stations were classified on the basis of faunal similarity using the clustering
technique Unweighted Pair Group Mathematical Averaging (UPGMA). The purpose of
performing a cluster analysis was to measure similarity of macrocaddisfly faunas among


68
stations, and to group like faunas into a framework from which community structure and
relationships could be inferred. Similarity among stations was measured as the Spearman
rank order correlation coefficient (rs), which is computed as follows:
n
rs= 1 k=i
n
where: R\ and Ri = station pair abundance rank order; k = species abundance; n = total
number of species.
A quantitative measure (i.e., Spearmans Coefficient) was chosen over binary
(presence/absence) similarity measures (e.g., Jaccard) because species varied greatly in
relative abundance among stations; therefore, a presence/absence coding of the data
would not be sensitive to these differences. Spearman rank correlation coefficient was
used instead of other quantitative similarity measures because this procedure uses rank
order of abundance instead of raw totals for abundance. Rank ordering of abundance is
particularly useful in this study because sampling effort (e.g., number of light trap
samples) was not equal among all stations, thus species total abundance values were not
always directly comparable between stations; however, by converting abundance to a
rank order, the relative abundance rankings could be used for faunal composition
comparisons among stations. From the Spearman similarity matrix, the widely used
clustering procedure Unweighted Pair Group Mathematical Averaging (UPGMA) was
used to group stations with like caddisfly faunas into a hierarchy of nested sets. The
results of this analysis, depicted as a dendogram, are used to propose a classification
hypothesis of community structure. Community species composition was characterized
by providing a list of relative abundances for species occurring in each community.


69
Ordination
An alternative approach to classifying (clustering) station faunas into discrete
groups, which one may infer to represent ecological communities, is to consider that
species composition changes in a more continuous fashion in response to environmental
gradients (e.g., latitude/longitude, altitude, temperature, stream size). Taking this
approach, the stations were ordinated on the basis of their macrocaddisfly faunas to see if
the data were structured in such a way that can be related to environmental gradients
present within the study area. The procedure used, Detrended Correspondence Analysis
(DCA), is widely used with ecological data and has advantages over other ordination
techniques in that both species and station ordinations are produced simultaneously, and
the axes are scaled in standard deviation units that have a definite meaning (Hill &
Gauch, 1980). According to Hill (1979), samples separated by more than 4 standard
deviations will in general have no species in common. Detrended Correspondence
Analysis also is favored over other ordination techniques because it eliminates the arch
effect caused by interdependence of axis 1 and axis 2.
Results and Discussion
The results of the data analyses showed that ravine assemblages surveyed from
across northern Florida support a macrocaddisfly fauna that can be classified into distinct
communities. The communities exhibit major differences in species composition that can
be related to geographic region and habitat types. These differences in community
structure attributed to geographic and habitat factors are structured hierarchically. The
large and biogeographically diverse area encompassing the study areas acts as a
geographic template, determining to a large extent the caddisfly fauna of the 3 geographic


70
regions (i.e., western panhandle, central panhandle, peninsula). The faunas among
regions are sufficiently distinct that stations within regions were more similar to each
other, regardless of habitat factors, than to stations in other regions. Nested within this
geographic template is a habitat template that acts to further shape and define the fauna
into recognizable communities. Discussed below are results of the classification and
ordination analysis as it applies to my interpretation of community structuring.
Community Classification
The similarity matrix (Table 3-1) and UPGMA dendogram (Fig. 3-1) quantify the
degree of similarity in the macrocaddisfly faunal composition among stations. Any 2
stations can be compared by reading the similarity matrix. The dendogram illustrates the
results of the UPGMA analysis. Stations were grouped into a hierarchical framework that
is informative and useful for proposing a community classification. The dendogram
shows that the 2 highly similar (0.77) peninsular stations at the Gold Head Branch
steephead represent a distinct community showing little similarity (0.1) to stations
constituting the panhandle grouping. Likewise, within the panhandle, the Eglin steephead
streams in the western panhandle showed little similarity (0.15) to the central panhandle
station cluster. Within the central panhandle, additional groupings were evident with
large streams within the Apalachicola study area showing only slight similarity (0.27) to
small ravine-headwater streams. The ravine headwater streams, although modestly
similar (0.48), do appear to represent 2 distinct community types, corresponding to
clayhill ravine streams (0.60) and Apalachicola steephead streams (0.62). The Eglin
steephead stream portion of the dendogram suggests that the Eglin stations are not
separable into distinct communities but rather represent a single diverse community.


71
Based on this interpretation of the analysis, 5 distinct communities are recognized
within the data set: Gold Head Branch, Apalachicola Steephead Streams, Clayhill Ravine
Streams, Apalachicola Large Streams, and Eglin Steephead Streams. Community
composition is characterized in terms of what species are present and their relative
abundance (Tables 3-2 and 3-3). These parameters are also used in discussing community
diversity, in that they delimit species richness and eveness. The abundance distribution
for species constituting the different communities is shown in Figure 3-2. Data regarding
the 5 communities are summarized and discussed below.
Table 3-1. Matrix of Spearman rank abundance correlation coefficients for
macrocaddisfly data analyzed in the cluster analysis.
El
El
1
E2
E2
0.54
1
E3
E3
0.65
0.53
1
E4
E4
0.62
0.67
0.71
1
E5
E5
0.60
0.57
0.55
0.59
1
E6
E6
0.51
0.67
0.48
0.68
0.55
1
E7
E7
0.63
0.67
0.68
0.75
0.57
0.68
1
E9
E9
0.40
0.51
0.45
0.53
0.35
0.64
0.65
1
A2
A2
0.04
-0.10
0.03
0.07
0.03
0.15
0.11
0.14
1
A3
A3
0.25
0.26
0.34
0.26
0.30
0.12
0.26
-0.02
0.23
1
A4
A4
-0.05
-0.22
-0.08
-0.04
-0.15
-0.07
-0.08
-0.11
0.61
0.15
1
A6
A6
0.03
-0.09
-0.04
0.02
0.06
0.13
0.08
0.06
0.80
0.20
0.56
1
A7
A7
0.22
0.12
0.41
0.32
0.26
0.20
0.29
0.14
0.42
0.48
0.26
0.33
1
A9
A9
0.34
0.22
0.48
0.40
0.36
0.20
0.31
0.07
0.37
0.54
0.15
0.24
0.66
1
A10
A10
0.15
0.07
0.33
0.24
0.14
0.13
0.24
0.11
0.43
0.36
0.30
0.38
0.76
0.53
1
All
All
0.39
0.15
0.40
0.29
0.36
0.15
0.34
0.14
0.39
0.51
0.30
0.35
0.72
0.66
0.59
1
FI
FI
0.19
0.05
0.35
0.18
0.32
0.02
0.21
0.03
0.31
0.62
0.20
0.24
0.57
0.63
0.40
0.54
1
F2
F2
0.18
0.05
0.29
0.10
0.29
-0.04
0.13
-0.10
0.18
0.58
0.13
0.15
0.49
0.45
0.36
0.40
0.78
1
G1
G1
-0.02
-0.04
0.12
0.01
-0.12
0.05
0.07
0.09
0
0.09
0.02
0.07
0.27
0.08
0.31
0.10
0.09
0.11
1
G2
G2
0.07
0.01
0.15
0.04
-0.10
0.09
0.11
0.15
0.08
0.12
0.04
0.18
0.30
0.16
0.33
0.13
0.12
0.18
0.77
1


72
Gold Head Branch
Central Panhandle
Upper Reaches
Apalachicola Steepheads
Lower Reaches
Ravine Headwater Streams
Clayhill Ravines
Panhandle
Apalach. Large Streams
Eglln Steephead Streams
Station
G2
G1
A11
A9
A10
A7
F2
F1
A3
A4
A6
A2
E9
E5
E6
E2
E7
E4
E3
E1
1
0.04
0.2
0.36
0.52
0.68
0.84
Spearman Coefficient
Figure 3-1. Results of UPGMA cluster analysis of sampling stations using Spearmans
rank order correlation coefficient as the measure of similarity. Analysis was of the
macrocaddisfly data obtained in the survey.
Gold Head Branch
The plot (Fig. 3-2) of species abundance values indicated in Tables 3-2 and 3-3
illustrates that the macrocaddisfly community at the Gold Head Branch springrun is
structured very differently than the other communities. This community is characterized
by low species richness (n=21) and highly uneven abundance distribution, as indicated by
the short and steeply sloping line in Figure 3-2. Despite high-quality habitat of the stream
and presumed wide-breadth of niches, the community is numerically dominated by a
relative few species. In part, this can be explained by the lower caddisfly species richness
of the peninsula versus the panhandle. However, I have collected many other caddisfly
species, and also stonefly species, from small spring-fed streams in the northern


73
peninsula that I expected to also be present in Gold Head Branch. The low diversity of
the Gold Head Branch community may be due in part to the small size of the watershed
(a short ravine-springrun which ends in a lake); therefore, opportunities for species to
colonize Gold Head Branch are limited. Additionally, land use in the area related to park
development and visitor use, and previous mill operations during the 1930s that included
a dam across the stream, may have caused species extirpations. The Gold Head Branch
community does, however, contain some unique faunal elements, most notable being the
population of Diplectrona sp. A that inhabits the upper reach of the ravine head.
Protection of the steephead from human disturbance is essential to maintain the health of
this species, which is known from only this locality.
Figure 3-2. Species abundance plots for the 5 macrocaddisfly communities. Species
abundance values according to those listed in Tables 3-2 and 3-3.


74
Apalachicola steephead streams
The springruns of steephead ravines on the Nature Conservancy Preserve support a
species-rich macrocaddisfly community (54 species) that includes a number of ravine
crenobionts, narrow-range endemics, and disjuncts, as well as widespread habitat
generalists. The numerical dominance of Hydropsyche incommoda reflects the strong
influence of the Apalachicola River on this community. Despite the rivers clear faunal
influence, the communitys ravine affinity is strong with ravine crenobionts such as
Diplectrona modesta, Heteroplectron americanum, Psilotreta frontalis, and Molanna
blenda all occurring in significant numbers. Species that set this community apart include
Lepidostoma griseum, a disjunct species known from no other area of Florida. The
abundance of Hydropsyche elissoma and Chimarra falculata also distinguishes
Apalachicola steephead streams from clayhill ravine streams. The substantial
contributions of springs to the stream flows, a result of high groundwater storage capacity
of the sandhills, is likely a key factor, as these 2 species are also abundant within Eglins
steephead springruns.
Clayhill ravine streams
The 3 stations sampled at small clayhill ravine streams in the central panhandle have
a macrocaddisfly community that is somewhat less diverse both in terms of species
richness (38 species) and eveness than the other panhandle communities sampled. Ravine
crenobionts and other caddisflies associated with small spring-fed streams in the Florida
panhandle (e.g., Psilotreta frontalis, Diplectrona modesta, Anisocentropus pyraloides,
Molanna blenda, Phylocentropus lucidus, Lepidostoma serratum) are among the most
abundant species. Absent, or far less abundant, are hydropsychids typical of the large


75
streams and rivers (e.g., Hydropsyche incommoda, Cheumatopsyche pinaca,
Hydropsyche rossi). The community also contains 2 interesting elements: Agarodes
logani, a narrow-range endemic, and Triaenodes taenia, an Appalachian disjunct.
Psilotreta frontalis is especially abundant in this community.
Apalachicola large streams
The large streams of the Apalachicola Bluffs and Ravines Region have a caddisfly
community showing little similarity to headwater ravine communities. The community
has an especially diverse leptocerid component, with 6 of the 10 most abundant species
belonging to this family. In this respect, the Apalachicola large stream community more
generally reflects the warm-adapted fauna of Florida as a whole. The 2 most abundant
species included the large river species, Hydropsyche incommoda, and a habitat
generalist, Cheumatopsyche pinaca. Generally absent are ravine crenobionts and
Appalachian disjuncts, suggesting that habitat and water quality parameters such as
temperature are sufficiently different from ravine headwaters so that the structure of this
community shows little resemblance to that of the small-stream ravine communities of
the central panhandle.
Eglin steephead streams
The caddisfly community of Eglins steephead ravines and high volume springruns is
distinct and arguably contains the highest concentration of narrow-range endemic
caddisflies anywhere on the Southeastern Coastal Plain. Ravine crenobionts of this
community include species typical of other panhandle ravines such as Diplectrona
modesta, Molanna blenda, Heteroplectron americanum, Psilotreta frontalis, and
Lepidostoma serratum. In addition, to this list can be added another ravine crenobiont, a


76
new species within the genus Beraea. However, what sets the Eglin steephead stream
community most apart from the other communities are the other narrow-range endemics,
3 of which (Micrasema n. sp., Agarodes ziczac, Nectopsyche paludicola) were the most
abundant species within this community. Additional narrow-range endemics such as
Cheumatopsyche gordonae, Cheumatopsyche petersi, Nyctiophylax morsei, and
Polycentropus floridensis are important and unique components of this community,
which are not present in central panhandle or peninsular ravine ecosystems. In total, 20
species of macrocaddisflies occurred only in the Eglin steephead stream community
(Table 3-2)the other 4 communities each contained only 4 or 5 such species.
The origin and persistence of this unique community appears to be related to both
geographic and habitat factors. The large and insular area encompassing Eglins
steephead drainage networks contains enough unique stream habitat to act effectively as
an evolutionary engine driving speciation. The many narrow-range endemics found on
Eglin appear to have adapted to these rather specialized conditions to such an extent as to
limit their abilities for dispersal and colonization to widespread areas. Means (2000)
hypothesized that past sea-level changes may have acted as an isolating mechanism on
ancestral stocks of Plethodontid salamander populations in steepheads near the coast such
as those on Eglin. Means (2000) suggested that for the steephead ravines on the western
side of Eglin a slight increase in sea level (2-5 meters) would have resulted in the
embayment of the Yellow River, thus causing a saltwater barrier to isolate ancestral
salamander populations within the coastal steephead valleys. It seems plausible that this
isolating mechanism could also be a factor contributing to the areas high degree of
caddisfly endemism.


77
Table 3-2. Macrocaddisfly species composition for Gold Head and Eglin steephead
stream communities, abundance of each species given as percent of total specimens
collected. Note: denotes species recorded from only 1 community.
Gold Head Branch Eglin Steephead Streams Eglin -continued
Species (n=21)
(%)
Species (n=62)
(%)
Species
(%)
Cheumatopsyche pinaca
38.41
* Micrasema n. sp.
15.41
* Triaenodes n. sp.
0.09
Nectopsyche pavida
26.32
* Agarodes ziczac
13.51
Cheumatopsyche pettiti
0.07
Agarodes libalis
8.47
*Nectopsyche paludicola
9.79
Oecetis ditissa
0.07
Triaenodes ignitus
6.87
Diplectrona modesta
9.28
*Beraea n. sp.
0.06
Chimarra florida
5.03
Oecetis inconspicua Comp.
8.59
Oecetis osteni
0.06
Pycnopsyche antica
3.43
Type diversa
7.08
Oecetis persimilis
0.06
Chimarra aterrima
3.05
Chimarra falculata
5.42
Phylocentropus placidus
0.04
Oecetis georgia
2.66
Oecetis sphyra
5.09
Cheumatopsyche edista
0.04
Micrasema wataga
1.45
Anisocentropus pyraloides
3.52
Nyctiophylax serratus
0.04
Polycentropus blicklei
1.06
* Cheumatopsyche gordonae
3.04
Oecetis cinerascens
0.04
*Diplectrona sp. A
0.92
Hydropsyche elissoma
2.01
Hydropsyche incommoda
0.03
Molanna tryphena
0.92
Molanna blenda
1.81
Neureclipsis crepuscularis
0.03
Oecetis inconspicua Comp.
0.53
Pycnopsyche antica
1.65
Oecetis daytona
0.03
Nyctiophylax serratus
0.19
*Macrostemum Carolina
1.53
*Ptilostomis ocellifera
0.03
Polycentropus cinereus
0.19
Brachycentus chelatus
1.08
Cheumatopsyche burksi
0.01
Agarodes crassicornis
0.19
Heteroplectron americanum
1.08
Hydropsyche rossi
0.01
* Hydropsyche decalda
0.10
Rhyacophila Carolina
0.83
*Cernotina calcea
0.01
*Cernotina truncona
0.05
* Cheumatopsyche petersi
0.78
Ceraclea protonepha
0.01
* Polycentropus clinei
0.05
Chimarra florida
0.76
*Nectopsyche candida
0.01
Oecetis daytona
0.05
Agarodes crassicornis
0.67
Oecetis nocturna
0.01
Oecetis osteni
0.05
Chimarra moselyi
0.66
* Pycnopsyche indiana
0.01
Nectopsyche pavida
0.57
*Banksiola concatenata
0.01
Chimarra aterrima 0.51
*Ceraclea dilua 0.50
*Nyctiophylax morsei 0.48
*Neureclipsis melco 0.43
Polycentropus cinereus 0.43
*Polycentropus floridensis 0.34
Cheumatopsyche virginica 0.31
Psilotreta frontalis 0.30
Triaenodes ignitus 0.29
Oecetis georgia 0.23
*Molanna ulmerina 0.21
Nectopsyche exquisita 0.20
Ceraclea maculata 0.17
* Triaenodes perna 0.17
Lepidostoma serratum 0.13
* Ceraclea resurgens 0.13
Molanna tryphena 0.11
Phylocentropus carolinus 0.10


78
Table 3-3. Macrocaddisfly species composition for central panhandle communities,
abundance of each species given as percent of total specimens collected. Note: denotes
species recorded from only 1 community.
Apalach. Steephead Streams
Species (n=54) (%)
Hydropsyche incommoda
26.6
Diplectrona modesta
11.3
Anisocentropus pyraloides
7.6
Oecetis inconspicua Comp. 7.2
Hydropsyche rossi
5.8
Agarodes libalis
3.8
Pycnopsyche antica
3.5
Hydropsyche elissoma
2.9
Psilotretafrontalis
2.8
Chimarra falculata
2.5
Chimarra aterrima
2.5
Oecetis sphyra
2.0
Triaenodes ignitus
1.9
Nectopsyche exquisita
1.8
Molanna tryphena
1.7
Heteroplectron americanum 1.4
type diversa
1.2
Molanna blenda
1.1
Cheumatopsyche pinaca
1.1
Cheumatopsyche pettiti
1.0
Rhyacophila Carolina
1.0
Phylocentropus lucidas
0.9
Polycentropus cinereus
0.9
Cheumatopsyche edista
0.9
Phylocentropus carolinus
0.7
*Lepidostoma griseum
0.7
Ch imarra florida
0.6
Oecetis georgia
0.6
Oecetis ditissa
0.4
Agarodes crassicornis
0.4
Ceraclea maclala
0.3
Oecetis persimilis
0.3
Potamyia flava
0.2
Neureclipsis crepuscularis
0.2
Lepidostoma latipenne
0.2
Oecetis nocturna
0.2
*Triaenodes helo
0.2
Cheumatopsyche virginica
0.2
Micrasema wataga
0.2
Ceraclea cancellata
0.2
Oecetis osteni
0.2
Cheumatopsyche campyla
0.1
Chimarra obscura
0.1
Brachycentus chelatus
0.1
Ceraclea tarsipunctata
0.1
Phylocentropus placidas
0.1
*Cernotina spicata
0.1
Polycentropus blicklei
0.1
Ceraclea protonepha
0.1
Nectopsyche pavida
0.1
Oecetis cinerascens
0.1
* Triaenodes aba
0.1
* Triaenodes ochraceus
0.1
Ptilostomis postica
0.1
Clayhill Ravine Streams Apalach. Large Streams
Species (n=38)
(%)
Species (n=44)
(%)
Psilotreta frontalis
39.5
Hydropsyche incommoda
23.9
Diplectrona modesta
22.2
Cheumatopsyche pinaca
13.8
Anisocentropus pyraloides
7.3
Oecetis sphyra
9.2
Oecetis inconspicua Comp.
3.4
Ceraclea tarsipunctata
9.2
Molanna blenda
3.4
Ceraclea protonepha
7.9
Phylocentropus lucidus
3.2
Triaenodes ignitus
5.4
Cheumatopsyche pettiti
3.2
Oecetis inconspicua Comp.
3.4
Lype diversa
2.4
Ceraclea transversa
3.1
Lepidostoma serratum
2.1
Hydropsyche rossi
2.7
Triaenodes ignitus
1.4
Anisocentropus pyraloides
2.3
Oecetis sphyra
1.3
Oecetis persimilis
2.1
Rhyacophila Carolina
1.1
Phylocentropus carolinus
1.6
Leptocerus americanus
0.9
Nectopsyche exquisita
1.5
Oecetis ditissa
0.8
Ceraclea cancellata
1.3
Lepidostoma latipenne
0.7
Potamyia flava
1.2
* Triaenodes taenia
0.7
Ceraclea maculata
1.2
Cheumatopsyche pinaca
0.6
Lype diversa
1.1
Chimarra aterrima
0.6
* Ceraclea nepha
1.1
Polycentropus cinereus
0.6
Cheumatopsyche campyla
1.1
Cheumatopsyche edista
0.5
Cheumatopsyche edista
0.6
Pycnopsyche antica
0.5
Leptocerus americanus
0.6
* Agarodes logani
0.5
Nectopsyche pavida
0.5
Chimarra obscura
0.4
Oecetis cinerascens
0.5
Ceraclea transversa
0.4
Oecetis osteni
0.5
Phylocentropus carolinus
0.3
Pycnopsyche antica
0.5
*NyctiophyIax affinis
0.3
Phylocentropus placidus
0.4
Polycentropus blicklei
0.3
Cheumatopsyche pettiti
0.4
Oecetis georgia
0.3
Polycentropus cinereus
0.3
Ptilostomis postica
0.3
Heteroplectron americanum
0.3
* Hydropsyche betteni
0.2
Hydropsyche elissoma
0.2
Heteroplectron americanum
0.2
Chimarra moselyi
0.2
Oecetis osteni
0.2
Oecetis georgia
0.2
Cheumatopsyche burksi
0.1
Oecetis nocturna
0.2
Hydropsyche elissoma
0.1
* Triaenodes tardus
0.2
Hydropsyche incommoda
0.1
Diplectrona modesta
0.1
Oecetis nocturna
0.1
Molanna tryphena
0.1
Molanna tryphena
0.1
Phylocentropus lucidus
0.1
Agarodes crassicornis
0.1
Neureclipsis crepuscularis
0.1
Nyctiophylax serratus
0.1
Polycentropus blicklei
0.1
*Ceraclea flava
0.1
*Ceraclea ophioderus
0.1
Ptilostomis postica
0.1
Rhyacophila Carolina
0.1


79
Ordination Analysis
The results of the detrended correspondence analysis used to ordinate sampling
stations are presented in Figures 3-3 to 3-5. The first ordination (Fig. 3-3) is for all 20
stations. This analysis resulted in stations being ordinated along 5 axes with eigenvalues
of 0.65, 0.35, 0.14, 0.05, and 0.03, respectively. The stations as plotted along the first 2
axes shown in Figure 3-3 account for about 35% of the variation in the data. Because of
the presence of additional axes beyond axis 1 and 2, interpretation of the graph is rather
tenuous. However, it does appear that in general axis 1 is related to a geographic gradient
(longitude), and axis 2 is related to a stream-size gradient. This assessment is in general
agreement with the cluster analysis, wherein basal groupings corresponded with station
location within a particular region (western panhandle, eastern panhandle, and peninsula).
3.9
3.1- -
F1

F2
A
U)
c
C/3
03
0)
i
o
c
n2.3'
to
'x
<
<
O
Q 1.5
'52
0.8--
E1
A
E5
A
A3
A
E3
A
A9
A
E7
A
E4

A
A11
A
A7
A
A10
A
A6
A
A2
A
A4
A
0.0 1-
0.0 0.8
western panhandle
E9
-At
H h
1.5 2.3
DCA Axis 1
3.1
I
3.9
peninsula
y
Figure 3-3. Scatter plot of DCA ordination of 20 stations across northern
Florida. Analysis based on macrocaddisfly survey data.


80
The wide spread of the central panhandle stations along axis 1, however, indicates that
longitude alone does not explain station placement along axis 1.
In order to investigate gradients related to habitat variables more closely, the western
panhandle and central panhandle stations were separately ordinated to remove the effect
region imparts on the ordination. Both ordinations (Figs. 3-4 and 3-5) indicated that
variation between stations is largely explained in terms of a stream-size gradient. For the
ordination of Eglin stations (Fig. 3-4), axis 1 explained about 43% of the variation in
station scores. In this graph, upper reach stations are placed at one end axis 1 and Station
E9, the station with greatest discharge, at the other end; stations from middle reaches
were clustered about midway along axis 1. A similar result was obtained for the central
panhandle stations (Fig. 3-5). In this ordination, axis 1 explained about 38% of the
variation in station scores. Large stream stations were placed at one end of the axis and
ravine headwater reaches at the other end.
Results of both cluster analysis and ordination suggest that caddisfly community
composition is controlled both by geographic and habitat factors. The study areas, which
span much of northern Florida, are distant enough from one another that the geographic
ranges of many species do not include all study areas. The diverse array of component
species geographic distributions acts as a base template upon which community
composition is structured. From this template, species composition at a given site is then
fine-tuned by habitat factors related to stream size and ravine type.


81
2.2
steephead reaches
CN
w
X
<
<
o
Q
E3

E7

middle reaches
E4
A E6
A
lower reaches

E9
A
0.0 L
0.0
0.5
E2
A-
1.1 1.6
DCA Axis 1
2.2
2.7
Figure 3-4. Scatter plot of DCA ordination of steephead stream stations on
Eglin Air Force Base in the western panhandle. Analysis based on
macrocaddisfly survey data.
3.2
2.6
large streams

CM
(/)
X
<
<
O
Q
1.3-
A6
A
A10
A
0.6
ravine springruns
A11
A
A9 A3
A7 A A
F2
A
F1
A
A2
O.oX 1 1 1 1 1
0.0 0.6 1.3 1.9 2.6 3.2
DCA Axis 1
Figure 3-5. Scatter plot of DCA ordination of central panhandle stations.
Analysis based on macrocaddisfly data.


CHAPTER 4
TRICHOPTERA AND PLECOPTERA FLIGHT SEASONALITY, AND
ADULT EMERGENCE IN A RAVINE SPRINGRUN
Information regarding adult emergence and flight seasonality is of key importance to
the study of caddisfly and stonefly life histories. The adult stage is a relatively short-lived
life stage when caddisflies and stoneflies must emerge, find mates, and oviposit.
Additionally, it is during the adult stage when dispersal to new habitats is greatest.
Despite the biological importance of the adult stage, relatively little is known of the
biology of adults as compared to larvae. Because the survey resulted in large numbers of
adult collections, these data can provide important baseline data on flight seasonality for
the species and populations that were sampled. Towards this goal, collection dates were
examined and flight seasonality was characterized for various species recorded in the
survey. Additionally, species diversity and emergence phenology of caddisfies and
stoneflies inhabiting the ravine springrun at the FAMU Farm study area were investigated
using emergence traps.
Materials and Methods
Observed Flight Seasons
Flight seasonality was characterized for caddisfly and stonefly species inventoried as
a part of the biodiversity survey of ravine ecosystems in northern Florida (Chapter 2). A
description of ravine habitats and the stream systems surveyed for caddisflies and
stoneflies is presented in Chapter 1, included are maps (Figs. 1-1 to 1-5) showing the
locations of the 4 study areas and 29 sampling stations. The monthly occurrence of adult
82


83
caddisfly and stonefly species was obtained from the adult collection data obtained in the
survey. Data on monthly occurrences for each species from all 29 sampling stations were
combined and tabulated in order to give a general picture of adult flight-seasonality for
each species within the study area as a whole. Adult specimens were captured primarily
by light trapping and mainly during spring and fall. No light trapping was done during
January, February, and July. The number of light-trap samples collected in each month is
as follows: March (20), April (26), May (14), June (22), August (4), September (3),
October (15), November (8), December (4).
Emergence Study
The emergence study was conducted at the FAMU Farm study area (Fig. 1-4) within
a ravine located on the property of the Florida A&M University Research and Extension
Center in Gadsden County (see Chapter 1
for a description of the study area). Adult
aquatic insects emerging from the ravine
springrun at the FAMU Farm were
sampled using emergence traps. The
aquatic insect emergence trap used
(BioQuip Item No. 2829) (Fig. 4-1)
consisted of a 2.4-m-high tent structure
suspended over a 4 m2 area. The front and
back of the trap is cut 0.4 m shorter than
the sides so that water is able to flow
under without obstruction. The traps were
Figure 4-1. Emergence Trap 1 installed
over the FAMU farm springrun, near the
ravine head.


84
each suspended over the stream from parachute cord tied between 2 trees. The sides and
comers were staked so the bottom flaps were in contact with the stream bank on the sides
and in contact with the stream surface in the front and back, thereby preventing emergent
insects from escaping. Aquatic larvae were not confined and could move into or out from
under the traps. The tent material consisted of Lumite screen with 32 x 32 mesh (530
micron openings). Access to the inside of the trap was through a 1.2 m slit-opening
sealed with Velcro.
Two traps were deployed over the FAMU Farm ravine springrun. Trap 1 was located
about 20 meters below the base of the ravine head, and Trap 2 was placed about 70
meters below the ravine head. The composition of benthic substrate within Trap 1 was
estimated to consist of sand (45%), gravel (20%), mud/silt (15%), snags/leaf packs (15%)
and roots (5%). Substrate within Trap 2 comprised sand (65%), roots (15%), mud/silt
(10%), gravel (5%) and snags/leaf packs (5%). Trap 1 was installed 12 March 1998 and
samples collected until May 24th after which time the cord used to suspend the trap broke
due to an unknown reason, causing the trap to collapse. The trap was then reinstalled on
25 June 1998, and sampling continued for a full year until 5 July 1999. Trap 2 was
installed 31 March 1999 and deployed until 5 July 1999.
Insect samples from each trap were collected at about 10-day intervals, resulting in
41 samples from Trap 1 and 8 samples from Trap 2. Stonefly and caddisfly adults trapped
within the tent were collected by aspiration for smaller specimens and by using a soft-
touch forceps for capturing larger specimens. All specimens were placed in 80% ethyl
alcohol. Usually the insects were found resting either at the peak or on the sides and
comers of the trap. Sufficient time (usually about 25 minutes) was spent searching and


85
collecting within the tent until no additional specimens could be found. Significant
numbers of emergent insects were likely missed in sampling as a result of mortality
during sampling intervals due to spider predation and other mortality factors.
Specimen identification and data analysis. Trichoptera and Plecoptera specimens
collected from the emergence traps were identified to species in most cases. The
microcaddisflies (Family:Hydroptilidae) were identified by Dr. Steven Harris, and I
identified all other specimens. Synoptic voucher collections will be deposited at the
following collections: Florida A&M University Aquatic Insect Collection, Clemson
University Arthropod Collection, and the personal collection of the author. The
deposition of type material for Hydroptila sykorai is given in Harris (2002). For each
sample, the number of males and females of each species were recorded. Collection data
were tabulated, and emergence phenology for the most abundant species was graphed.
Results and Discussion
Observed Flight Seasons (Trichoptera)
In warm temperate climates such as found in northern Florida, adult caddisflies are
potentially present at any time of year, and as expected, specimens were collected during
all months when light trapping was conducted. Based on the monthly occurrence data
from the survey, species could be grouped into 3 flight-season categories: spring/summer
species (S), fall species (F), and those species with extended flight seasons (E) (Table 4-
1). Species with fewer than 4 occurrences were not classified as to their flight seasonality.
The highest number of species fell into the extended fight season category (68 spp.),
followed by spring/summer species (28 spp.) and fall species (1 sp.).
Spring/summer species. The 28 species in this group were collected only during the


86
spring and summer months (March-September). Some species within this grouping
appeared to be early spring species such as Ceraclea resurgens, while most species
occurred as adults throughout spring (March-May) and into the summer period (June-
September). The low number of samples collected during July, August, and September
make it difficult to determine the extent of species still present as adults during the late-
summer period.
Because sampling intensity was greatest in the spring, results from this period were
examined separately for patterns and trends in species occurrences. During the spring
light-trapping period, caddisfly species richness was highest in May with a total of 105
species being collected, April samples accounted for 96 species, followed by June (81
spp.) and March (67 spp.). Some differences were noted between major groups of
caddisflies in terms of changes in species richness throughout the spring months (Fig. 4-
2). Relatively few leptocerid species were present in March, followed by a sharp increase
in leptocerid species richness to a peak in April, and then a gradual decrease in May and
40
35
(/)
V)
Q)
C
.C
O
(/)
Q)
O
O
o.
co
30
25
20
15
10
5
0
T 1 1 1
March April May June
Month of Collection
Figure 4-2. Caddisfly species richness recorded from light trap
samples collected during spring months. Number of samples (n) for
each month as follows: March (20), April (26), May (14), June (22).


87
June samples. Hydroptilid species richness increased steadily to a peak in May, followed
by a sharp decrease in richness in the June samples. Integripalpia (other than
Leptoceridae) were present at fairly constant levels of species richness throughout the
spring, while the annulipalpians showed a gradual increase to a peak in May followed by
a gradual drop off in species richness in June samples. Most of the cool-adapted species
fall into these last 2 groups, so it is not surprising that a relatively high percentage of the
total species collected in these groups were present in the early spring when air and water
temperatures tend to be lower. Conversely, warm-adapted species prevalent within
Leptoceridae and Hyroptilidae should have a lower percent occurrence in the early spring
and increased occurrences later in the spring.
Fall species. The fall species constituted the smallest seasonality grouping. The most
conspicuous caddisfly within fall light-trap samples was Pycnopsyche antica. In all
panhandle populations sampled, adults of this species were collected from October to
December; however, members of the peninsular population at Gold Head Branch were
also collected in March, May, and June, suggesting that the life history of this population
differs in some significant way from that of the panhandle populations. Aside from
panhandle populations of Pycnopsyche antica, the only other species restricted to the fall
season was Lepidostoma griseum (collected only during October). Weaver (1988)
reported flight dates from 20 June 27 September for L. griseum across its northern
range, suggesting that the Apalachicola ravines population may emerge later in the year
than do northern populations.
Extended flight-season species. The greatest number of caddisfly species (68)
occurred as adults during both spring/summer and fall seasons. A number of underlying


88
factors may account for species exhibiting flight periods extending over a wide monthly
range. These include: bivoltine life histories, univoltine populations with separate spring
and fall cohorts, continuous generations showing no distinct cohort structure, and
different emergence phenologies between conspecific populations. An example of
differing emergence phenologies between populations appears to be the case with
Cheumatopsyche virginica, which was collected from March to June on Eglin, but was
collected during March, August, and October from the Apalachicola study area.
Psilotreta frontalis also presents a good example. This species appeared to have a narrow
period of emergence (April, May) in most populations sampled, but within some streams
in the Apalachicola study area adults also occurred in October, indicating part of the
population emerges in the fall.
Table 4-1. Monthly occurrences of adult Trichoptera collected in survey.
Species
Adult
Collections (n)
Monthly Occurrence of Adults Col
(Number of Light Tra
ected by L
p Samples
ight Trapping
Flight Season
JAN (0)
FEB (0)
MAR (20)
APR (26)
MAY (14)
JUN (22)
JUL (0)
AUG (4)
SEP (3)
OCT (15)
NOV (8)
DEC (4)
ANNULIPALPIA
Dipseudopsidae
Phylocentropus carolinus
22
X
X
X
X
X
X
X
X
E
Phylocentropus lucidus
21
X
X
X
X
X
X
X
X
E
Phylocentropus placidus
9
X
X
X
X
X
X
E
Hydropsychidae
Cheumatopsyche burksi
2
X
X

Cheumatopsyche campyla
7
X
X
X
S
Cheumatopsyche edista
15
X
X
X
X
S
Cheumatopsyche gordonae
21
X
X
X
X
X
X
E
Cheumatopsyche petersi
16
X
X
X
X
S
Cheumatopsyche pettiti
25
X
X
X
X
X
X
X
E
Cheumatopsyche pinaca
30
X
X
X
X
X
X
X
E
Cheumatopsyche virginica
19
X
X
X
X
X
X
E
Diplectrona modesta
58
X
X
X
X
X
X
X
X
E
Diplectrona sp. A
3
X
X
X
E
Hydropsyche betteni
2
X
X

Hydropsyche decalda
1
X

Hydropsyche elissoma
37
X
X
X
X
X
X
S


89
Table 4-1. Continued.
Species
Adult
Collections in)
Monthly Occurrence of Adults Col
(Number of Light Tra
ected by Light Trapping
p Samples)
Flight Season
JAN (0)
FEB (0)
MAR (20)
APR (26)
MAY (14)
JUN (22)
JUL (0)
AUG (4)
SEP (3)
OCT (15)
NOV (8)
DEC (4)
Hydropsyche incommoda
35
X
X
X
X
X
X
X
E
Hydropsyche rossi
23
X
X
X
X
X
X
E
Macrostemum carotina
10
X
X
S
Potamyia flava
8
X
X
X
X
X
E
Philopotamidae
Chimarra aterrima
27
X
X
X
X
X
X
E
Chimarra falculata
47
X
X
X
X
X
X
X
E
Chimarra florida
26
X
X
X
X
X
E
Chimarra moselyi
9
X
X
X
S
Chimarra obscura
5
X
X
X
X
X
E
Polycentropodidae
Cernotina calcea
1
X

Cernotina spicata
1
X

Cernotina truncona
1
X

Cyrnellus fratemus
1
X

Neureclipsis crepuscularis
10
X
X
X
X
X
E
Neureclipsis melco
13
X
X
X
X
X
E
Nyctiophylax affinis
1
X

Nyctiophylax morsei
10
X
X
X
S
Nyctiophylax serratus
6
X
X
X
E
Polycentropus blicklei
12
X
X
X
X
X
X
E
Polycentropus cinereus
23
X
X
X
X
X
X
E
Polycentropus clinei
1
X

Polycentropus floridensis
6
X
X
X
E
Psychomyiidae
Lype diversa
71
X
X
X
X
X
X
X
X
E
SPICIPALPIA
Hydroptilidae
Hydroptila apalachicola
1
X

Hydroptila berneri
1
X

Hydroptila bribriae
7
X
X
X
X
E
Hydroptila circangula
3
X
X

Hydroptila disgalera
5
X
X
X
S
Hydroptila eglinensis
9
X
X
X
E
Hydroptila hamiltoni
4
X
X
S
Hydroptila latosa
15
X
X
X
X
X
E
Hydroptila lloganae
2
X

Hydroptila molsonae
1
X

Hydroptila novicula
1
X

Hydroptila okaloosa
3
X
X

Hydroptila parastrepha
3
X
X

Hydroptila quinla
22
X
X
X
X
X
E
Hydroptila remita
14
X
X
X
X
X
X
E
Hydroptila sarahae
9
X
X
X
E


90
Table 4-1. Continued.
Species
Adult
Collections (n)
Monthly Occurrence of Adults Col
(Number of Light Tra
ected by Light Trapping
p Samples)
Flight Season
JAN (0)
FEB (0)
MAR (20)
APR (26)
MAY (14)
JUN (22)
JUL (0)
AUG (4)
SEP (3)
OCT (15)
NOV (8)
DEC (4)
Hydroptila waubesiana
15
X
X
X
X
X
X
X
E
Mayatrichia ayama
13
X
X
X
X
X
X
X
E
Neotrichia armitagei
8
X
X
X
X
E
Neotrichia minutisimella
1
X

Neotrichia vibrans
1
X

Ochrotrichia apalachicola
2
X

Ochrotrichia confusa
1
X

Orthotrichia aegerfasciella
9
X
X
X
X
X
X
E
Orthotrichia baldufi
2
X
X

Orthotrichia cristata
3
X
X

Orthotrichia curia
2
X

Oxyethira abacatia
11
X
X
X
S
Oxyethira chrysocara
1
X

Oxyethira elerobi
2
X

Oxyethira florida
2
X

Oxyethira glasa
8
X
X
X
X
X
E
Oxyethira grsea
1
X

Oxyethira janella
23
X
X
X
X
X
X
X
X
E
Oxyethira kelleyi
13
X
X
X
X
X
E
Oxyethira lumosa
16
X
X
X
X
X
E
Oxyethira maya
14
X
X
X
X
X
X
E
Oxyethira novasota
17
X
X
X
X
X
X
X
X
E
Oxyethira pallida
4
X
X
X
E
Oxyethira pescadori
7
X
X
X
S
Oxyethira savanniensis
6
X
X
X
X
X
E
Oxyethira setosa
1
X

Oxyethira verna
1
X

Oxyethira zeronia
10
X
X
X
X
X
X
E
Rhyacophilidae
Rhyacophila Carolina
34
X
X
X
X
X
X
X
X
E
INTEGRIPALPIA
Beraeidae
Beraea n. sp.
3
X

Brachycentridae
Brachycentrus chelatus
21
X
X
X
X
X
E
Micrasema n. sp.
27
X
X
X
X
X
X
E
Micrasema wataga
9
X
X
X
X
X
E
Calamoceratidae
Anisocentropus pyraloides
49
X
X
X
X
X
X
X
X
E
Heteroplectron americanum
19
X
X
X
X
X
X
E
Lepidostomatidae
Lepidostoma griseum
4
X
F
Lepidostoma latipenne
9
X
X
X
X
X
X
E
Lepidostoma serratum
7
X
X
X
X
X
E


91
Table 4-1. Continued.
Species
Adult
Collections (n)
Monthly Occurrence of Adults Col
(Number of Light Tra
ected by L
p Samples
ight Trapping
Flight Season
JAN (0)
FEB (0)
MAR (20)
APR (26)
MAY (14)
JUN (22)
JUL (0)
AUG (4)
SEP (3)
OCT (15)
NOV (8)
DEC (4)
Leptoceridae
Ceraclea cancellata
8
X
X
X
X
S
Ceraclea dilua
8
X
X
S
Ceraclea flava
2
X
X

Ceraclea maculata
19
X
X
X
X
S
Ceraclea nepha
5
X
s
Ceraclea ophioderus
1
X

Ceraclea protonepha
10
X
s
Ceraclea reswrgens
4
X
s
Ceraclea tarsipunctata
9
X
s
Ceraclea transversa
11
X
X
X
s
Leptocerus americanus
5
X
X
s
Nectopsyche candida
1
X

Nectopsyche exquisita
15
X
X
X
X
s
Nectopsyche paludicola
40
X
X
X
X
X
X
E
Nectopsyche pavida
19
X
X
X
X
X
E
Oecetis cinerascens
10
X
X
X
X
X
S
Oecetis daytona
3
X
X
X
E
Oecetis ditissa
16
X
X
X
X
X
X
F.
Oecetis georgia
27
X
X
X
X
X
X
E
Oecetis inconspicua Complex
71
X
X
X
X
X
X
X
X
E
Oecetis nocturna
9
X
X
X
X
X
E
Oecetis osteni
15
X
X
X
X
X
E
Oecetis persimilis
17
X
X
X
X
X
E
Oecetis sphyra
26
X
X
X
X
X
S
Triaenodes aba
1
X

Triaenodes helo
2
X

Triaenodes ignitus
50
X
X
X
X
X
X
X
X
E
Triaenodes n. sp.
6
X
X
X
S
Triaenodes ochraceus
1
X

Triaenodes perna
5
X
X
X
S
Triaenodes taenia
4
X
X
X
s
Triaenodes tardus
4
X
X
s
Limnephilidae
Pycnopsyche antica
25
X
X
X
X
X
X
E
Pycnopsyche indiana
1
X

Molannidae
Molanna blenda
38
X
X
X
X
X
X
X
X
E
Molanna tryphena
25
X
X
X
X
X
X
X
E
Molanna ulmerina
7
X
X
X
X
E
Odontoceridae
Psilotreta frontalis
21
X
X
X
X
X
E
Phryganeidae
Banksiola concatenata
1
X



92
Table 4-1. Continued.
Species
Adult
Collections (n)
Monthly Occurrence of Adults Col
(Number of Light Tra
ected by L
p Samples
ight Trapping
Flight Season
JAN (0)
FEB (0)
MAR (20)
APR (26)
MAY (14)
JUN (22)
JUL (0)
AUG (4)
SEP (3)
OCT (15)
NOV (8)
DEC (4)
Ptilostomis ocellifera
2
X
X

Ptilostomis postica
5
X
X
X
E
Sericostomatidae
Agarodes crassicornis
12
X
X
X
X
S
Agarodes libalis
15
X
X
X
X
X
E
Agarodes logani
4
X
X
X
X
E
Agarodes ziczac
23
X
X
X
X
X
E
Observed Flight Seasons (Plecoptera)
The monthly occurrences of stoneflies collected as a part of the biodiversity survey
(Table 4-2) revealed several distinct adult seasonality patterns. The Leuctra species,
members of the euholognathan groupingwhat are traditionally called the winter
stonefliesoccurred as adults only during the coolest months of the year (October-
March). It is interesting to note that not all Leuctra species typify the winter stonefly
designation in northern latitudes where a number of species typically emerge during
spring and summer. In populations of Leuctra spp. throughout northern Florida, however,
emergence is only from fall to early spring.
The Systellognatha consisted of mainly spring/summer species. The only
systellognathans collected in the fall were Neoperla clymene and Perlesa placida.
Neoperla clymene, the dominant stonefly at Gold Head Branch, occurred in spring,
summer, and fall samples but was most abundant in May and June samples. Perlesa
placida mainly occurred as adults in spring and summer, although there was one
anomalous record of a single individual collected in November. The other
systellognathans showed a narrower seasonal-range in adult occurrence. Perlinella drymo


Full Text


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EU4S84SEV_MOR2DW INGEST_TIME 2013-10-24T19:21:04Z PACKAGE AA00017655_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

63(&,(6 ',9(56,7< $1' (&2/2*< 2) 75,&+237(5$ &$'',6)/,(6f $1' 3/(&237(5$ 6721()/,(6f ,1 5$9,1( (&26<67(06 2) 1257+(51 )/25,'$ %\ $1'5(: 5$60866(1 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*0(176 ,W LV ZLWK JUHDW SOHDVXUH WKDW DFNQRZOHGJH WKH PDQ\ SHRSOH ZKR DUH LQ RQH ZD\ RU DQRWKHU FRQQHFWHG WR WKLV VWXG\ )LUVW ZRXOG OLNH WR UHFRJQL]H 'U -RKQ &DSLQHUD DQG WKH ODWH 'U :LOOLDP f%LOOf 3HWHUV IRU WKHLU YLVLRQ DQG GHGLFDWHG HIIRUWV WKDW KHOSHG WR DIILOLDWH WKH HQWRPRORJ\ SURJUDP DW )ORULGD $t0 8QLYHUVLW\ )$08f ZLWK WKDW RI WKH 8QLYHUVLW\ RI )ORULGD 'U &DSLQHUD LQ KLV GXWLHV DV GHSDUWPHQW FKDLU KHOSHG PH HQRUPRXVO\ E\ SURYLGLQJ LQVWLWXWLRQDO VXSSRUW DP DOVR LQGHEWHG WR 'HEELH +DOO IRU WKH H[FHOOHQW DGPLQLVWUDWLYH DVVLVWDQFH VKH KDV RIIHUHG WKURXJKRXW P\ WHUP WKDQN 'U 6XQLO 3DQFKRO\ IRU SURYLGLQJ PH WKH RIILFH DQG ODERUDWRU\ VSDFH XVHG WR FRQGXFW P\ UHVHDUFK H[SUHVV GHHS JUDWLWXGH WR 'U 0DQXHO f0DQQ\f 3HVFDGRU P\ JUDGXDWH FRPPLWWHH FKDLUPDQ ERVV DQG IULHQG IRU KLV FRQILGHQFH DQG JHQHURXV FRPPLWPHQW RI UHVRXUFHV WR P\ SURMHFW 2XU PDQ\ LQVHFWFROOHFWLQJ WULSV ZHUH ERWK IXQ DQG SURGXFWLYH $SSUHFLDWLRQ LV H[SUHVVHG WR WKH IROORZLQJ SDVW PHPEHUV RI P\ FRPPLWWHH IRU WKHLU SDUWLFLSDWLRQ 'U *DU\ %XFNLQJKDP UHWLUHGf 'U 'DOH +DEHFN UHWLUHGf DQG 'U :LOOLDP 3HWHUV GHFHDVHGf ,Q DGGLWLRQ WKDQN WKH RWKHU SUHVHQW PHPEHUV RI P\ JUDGXDWH FRPPLWWHH IRU WKHLU FRPPLWWHH SDUWLFLSDWLRQ DQG WKRXJKWIXO JXLGDQFH 'U 7RP &ULVPDQ 'U :LOOV )ORZHUV 'U 0LFKDHO +XEEDUG DQG 'U -RKQ &DSLQHUD DP JUDWHIXO WR WKH IROORZLQJ IULHQGV DQG FROOHDJXHV ZKRVH FRPSDQ\ PDGH ILHOGZRUN WKH PRVW HQMR\DEOH DQG UHZDUGLQJ SDUW RI WKH SURMHFW 'LFN %DXPDQQ $OH[ %ROTXHV 6WHSKDQLH 'DYLV 'DQD 'HQVRQ /DXUHQFH 'RQHODQ :LOOV )ORZHUV 6WHYH +DUULV 0LFKDHO +XEEDUG -HURPH -RQHV %RULV .RQGUDWLHII 3HWHU .RYDULN &RUH\ /HZLV &KDUOLH 2f%ULHQ 0DQQ\ 3HVFDGRU

PAGE 3

+HQU\ 5DVPXVVHQ P\ VRQf 'RQ 5D\ %DUW 5LFKDUG 7KHUHVD 7KRP DQG $QQLH
PAGE 4

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 $%675$&7 YL &+$37(5 ,1752'8&7,21 %LRJHRJUDSKLF &RQWH[W 5DYLQH (FRV\VWHPV RI 1RUWKHUQ )ORULGD 3URMHFW 2EMHFWLYHV DQG 6FRSH 'HVFULSWLRQ RI 6WXG\ $UHDV 75,&+237(5$ $1' 3/(&237(5$ %,2',9(56,7< 6859(< 3UHYLRXV :RUN 0DWHULDOV DQG 0HWKRGV 5HVXOWV DQG 'LVFXVVLRQ $1$/<6,6 2) 75,&+237(5$ &20081,7< 6758&785( $1' (19,5210(17$/ 5(/$7,216+,36 0DWHULDOV DQG 0HWKRGV 5HVXOWV DQG 'LVFXVVLRQ 75,&+237(5$ $1' 3/(&237(5$ )/,*+7 6($621$/,7< $1' $'8/7 (0(5*(1&( ,1 $ 5$9,1( 635,1*581 0DWHULDOV DQG 0HWKRGV 5HVXOWV DQG 'LVFXVVLRQ 6800$5< $1' &21&/86,216 5DYLQH %LRJHRJUDSK\ 7ULFKRSWHUD DQG 3OHFRSWHUD 6SHFLHV 'LYHUVLW\ 7ULFKRSWHUD &RPPXQLW\ 6WUXFWXUH DQG (QYLURQPHQWDO 5HODWLRQVKLSV )OLJKW 6HDVRQDOLW\ DQG (PHUJHQFH 6WXG\ )XWXUH 5HVHDUFK 1HHGV ,9

PAGE 5

SDJH 5()(5(1&(6 &,7(' $33(1',; $ 75,&+237(5$ '$7$ 0$75,; % 3/(&237(5$ '$7$ 0$75,; %,2*5$3+,&$/ 6.(7&+ Y

PAGE 6

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 63(&,(6 ',9(56,7< $1' (&2/2*< 2) 75,&+237(5$ &$'',6)/,(6f $1' 3/(&237(5$ 6721()/,(6f ,1 5$9,1( (&26<67(06 2) 1257+(51 )/25,'$ %\ $QGUHZ 5DVPXVVHQ 0D\ &KDLU 0DQXHO / 3HVFDGRU 0DMRU 'HSDUWPHQW (QWRPRORJ\ DQG 1HPDWRORJ\ 6SHFLHV GLYHUVLW\ DQG HFRORJ\ RI LQVHFWV ZLWKLQ WKH RUGHUV 7ULFKRSWHUD FDGGLVIOLHVf DQG 3OHFRSWHUD VWRQHIOLHVf ZHUH LQYHVWLJDWHG LQ UDYLQH VWUHDPV RI QRUWKHUQ )ORULGD 5DYLQH HFRV\VWHPV LQ )ORULGD DUH NQRZQ WR VXSSRUW GLYHUVH ELRWD LQFOXGLQJ QRUWKHUQ HOHPHQWV DQG HQGHPLF VSHFLHV EXW OLWWOH LQIRUPDWLRQ FRQFHUQLQJ VWUHDP LQVHFWV ZDV NQRZQ 7KLV VWXG\ LV WKH ILUVW WR FROOHFW VWUHDP LQVHFWV V\VWHPDWLFDOO\ IURP UDYLQH GUDLQDJH QHWZRUNV DFURVV QRUWKHUQ )ORULGD )URP :HVW WR (DVW WKH DUHDV VXUYH\HG LQFOXGHG VWUHDPV RQ (JOLQ $LU )RUFH %DVH VWUHDPV ZLWKLQ WKH $SDODFKLFROD DQG 2FKORFNRQHH ULYHU EDVLQV DQG D VWUHDP ORFDWHG LQ SHQLQVXODU )ORULGD &DGGLVIO\ DQG VWRQHIO\ VSHFLHV GLYHUVLW\ ZDV LQYHVWLJDWHG DW VWDWLRQV DORQJ ERWK XSSHU DQG ORZHU VWUHDPUHDFKHV $GXOW DQG LPPDWXUH LQVHFWV ZHUH FROOHFWHG DQG LGHQWLILHG DQG WKHVH GDWD ZHUH XVHG WR FKDUDFWHUL]H FDGGLVIO\ DQG VWRQHIO\ VSHFLHV GLYHUVLW\ DQG DGXOW IOLJKW YL

PAGE 7

VHDVRQDOLW\ $GXOW HPHUJHQFH SKHQRORJ\ DW D UDYLQH VSULQJUXQ ZDV IXUWKHU LQYHVWLJDWHG XVLQJ HPHUJHQFH WUDSV 7KH VXUYH\ UHVXOWV EDVHG RQ PRUH WKDQ VSHFLPHQ LGHQWLILFDWLRQV GRFXPHQW D GLYHUVH IDXQD RI VSHFLHV RI 7ULFKRSWHUD DQG VSHFLHV RI 3OHFRSWHUD 0RUH WKDQ VSHFLHV DUH HLWKHU UDYLQHKDELWDW VSHFLDOLVWV HQGHPLF WR VPDOO DUHDV RI WKH ORZHU &RDVWDO 3ODLQ RU DUH GLVMXQFW IURP QRUWKHUO\ JHRJUDSKLF UDQJHV 6L[WHHQ VSHFLHV UHFRUGHG DUH OLVWHG E\ WKH )ORULGD &RPPLWWHH RQ 5DUH DQG (QGDQJHUHG 3ODQWV DQG $QLPDOV DV 7KUHDWHQHG RU 5DUH $W OHDVW FDGGLVIO\ VSHFLHV SUHYLRXVO\ XQNQRZQ WR VFLHQFH ZHUH GLVFRYHUHG DQG RI WKHVH KDYH VXEVHTXHQWO\ EHHQ GHVFULEHG DQG QDPHG 6WHHSKHDG UDYLQH VWUHDPV LQ WKH ZHVWHUQ SDQKDQGOH FRQWDLQ D KLJKO\ HQGHPLF IDXQD DQG WKH UDYLQH IDXQD RI WKH FHQWUDO SDQKDQGOH VWUHDPV KDV WKH VWURQJHVW $SSDODFKLDQ DIILQLWLHV ,Q RUGHU WR TXDQWLI\ IDXQDO VLPLODULWLHV DPRQJ VWDWLRQV FOXVWHU DQDO\VLV ZDV SHUIRUPHG RQ WKH VXUYH\ GDWD IRU PDFURFDGGLVIO\ VSHFLHV FROOHFWHG DW VWDWLRQV %DVHG RQ WKH UHVXOWDQW GHQGRJUDP PDFURFDGGLVIO\ FRPPXQLWLHV ZHUH UHFRJQL]HG DPRQJ WKH VWUHDPV VDPSOHG &RPPXQLWLHV DSSHDU WR EH KLHUDUFKLFDOO\ VWUXFWXUHG DFFRUGLQJ WR ELRJHRJUDSKLF UHJLRQ DW D ODUJH VFDOH DQG E\ KDELWDW IDFWRUV UHODWHG WR VWUHDP VL]H DQG UDYLQH W\SH DW D VPDOOHU VFDOH 5HVXOWV RI GHWUHQGHG FRUUHVSRQGHQFH DQDO\VLV RI WKH VDPH GDWD VHW VXSSRUWHG WKHVH FRQFOXVLRQV 9OO

PAGE 8

&+$37(5 ,1752'8&7,21 :LWK D EXGGLQJ LQWHUHVW LQ DTXDWLF HQWRPRORJ\ DQG OXUHG E\ WKH QDWXUDO EHDXW\ DQG P\VWHU\ RI UDYLQH VSULQJUXQV XQGHUWRRN DQ LQYHVWLJDWLRQ LQWR WKH VSHFLHV GLYHUVLW\ DQG HFRORJ\ RI DTXDWLF LQVHFWV WKDW OLYH LQ WKHVH V\VWHPV $IWHU PRUH WKDQ \HDUV RI UHVHDUFK DP SOHDVHG WR SUHVHQW ILQGLQJV FRQFHUQLQJ LPSRUWDQW DTXDWLF LQVHFW JURXSV 7ULFKRSWHUD DQG 3OHFRSWHUD 7KH IROORZLQJ GLVVHUWDWLRQ RQ WKH WRSLF LV RUJDQL]HG E\ FKDSWHUV &KDSWHU LQWURGXFHV WKH VXEMHFW PDWWHU &KDSWHUV DQG DGGUHVV PDMRU UHVHDUFK REMHFWLYHV DQG WKH ILQDO FKDSWHU &KDSWHU f SURYLGHV D VXPPDU\ RI WKH VWXG\ DQG FRQFOXVLRQV 7KH VSHFLILF REMHFWLYHV RI WKLV LQWURGXFWRU\ FKDSWHU DUH WR Lf SURYLGH D ELRJHRJUDSKLF FRQWH[W WR WKH VWXG\ LLf SUHVHQW D JHQHUDO FKDUDFWHUL]DWLRQ RI UDYLQH HFRV\VWHPV LQ QRUWKHUQ )ORULGD LLLf RXWOLQH WKH PDMRU UHVHDUFK REMHFWLYHV DQG LYf GHVFULEH WKH VWXG\ DUHDV %LRJHRJUDSKLF &RQWH[W 7D[D &RQVLGHUHG 7ULFKRSWHUD DQG 3OHFRSWHUD FRPPRQO\ NQRZQ DV FDGGLVIOLHV DQG VWRQHIOLHV UHVSHFWLYHO\ DUH GLYHUVH DQG HFRORJLFDOO\ LPSRUWDQW RUGHUV RI DTXDWLF LQVHFWV 7ULFKRSWHUD DUH WKH ODUJHVW RUGHU RI SULPDULO\ DTXDWLF LQVHFWVf§JOREDOO\ FRQWDLQLQJ RYHU QRPLQDO VSHFLHV DQG VXEVSHFLHV 0RUVH f ,Q 1RUWK $PHULFD PRUH WKDQ FDGGLVIO\ VSHFLHV KDYH EHHQ UHSRUWHG 0RUVH f DQG DSSUR[LPDWHO\ RI WKHVH DUH NQRZQ LQ )ORULGD 5DVPXVVHQ XQSXEOLVKHG GDWDf 3OHFRSWHUD DUH D VPDOOHU RUGHU

PAGE 9

FRQWDLQLQJ DERXW GHVFULEHG VSHFLHV ZRUOGZLGH 6WHZDUW f DSSUR[LPDWHO\ VSHFLHV LQ 1RUWK $PHULFD 6WDUN HW DO f DQG VSHFLHV LQ )ORULGD 5DVPXVVHQ HW DO f $OPRVW DOO FDGGLVIO\ DQG VWRQHIO\ VSHFLHV DUH FRQILQHG WR DTXDWLF KDELWDWV GXULQJ WKHLU LPPDWXUH OLIH VWDJHV :LJJLQV 6WHZDUW t 6WDUN f DQG RFFXU WHUUHVWULDOO\ RQO\ GXULQJ WKH UHODWLYHO\ VKRUWOLYHG DGXOW VWDJH %HFDXVH RI WKLV DTXDWLF GHSHQGHQFH HQYLURQPHQWDO FRQGLWLRQV DQG WKH UHVRXUFHV SUHVHQW LQ DTXDWLF KDELWDWV DUH FULWLFDO IDFWRUV LQIOXHQFLQJ WKHLU ELRGLYHUVLW\ DQG HYROXWLRQDU\ KLVWRU\ ERWK JURXSV DUH ZLGHO\ XVHG E\ HQYLURQPHQWDO UHJXODWRU\ DJHQFLHV DV ELRLQGLFDWRUV WR DVVHVV ZDWHU TXDOLW\ &DGGLVIOLHV DQG VWRQHIOLHV DUH HVSHFLDOO\ GLYHUVH DQG DEXQGDQW LQ FRRO UXQQLQJZDWHUV ZKHUH WKH\ DUH RIWHQ GRPLQDQW PHPEHUV RI EHQWKLF PDFURLQYHUWHEUDWH FRPPXQLWLHV 0XFK RI WKH FDGGLVIO\ DQG VWRQHIO\ IDXQD IRXQG LQ HDVWHUQ 1RUWK $PHULFD LV HQGHPLF WR WKH UHJLRQ DQG KDV HYROYHG LQ FRQFHUW ZLWK HDVWHUQ GHFLGXRXV IRUHVWV 7KLV LV SDUWLFXODUO\ WUXH LQ KHDGZDWHU VWUHDPV ZKHUH WKH FDGGLVIO\ DQG VWRQHIO\ IDXQDV FRQVLVW ODUJHO\ RI VSHFLHV HFRORJLFDOO\ DGDSWHG DQG FRQILQHG WR WKRVH KDELWDWV DV FRPSDUHG WR ULYHU IDXQDV ZKLFK FRQWDLQ D KLJKHU SHUFHQWDJH RI ZLGHVSUHDG HFRORJLFDO JHQHUDOLVWV 5RVV f 7KH HFRORJ\ RI EHQWKLF FRPPXQLWLHV LQ KHDGZDWHU VWUHDPV LV LQWLPDWHO\ OLQNHG ZLWK WKDW RI WKH WHUUHVWULDO ELRPHV LQ ZKLFK WKH\ RFFXU 5LSDULDQ IRUHVWV LQ SDUWLFXODU KDYH D JUHDW LPSDFW RQ WKH SK\VLFDO FKHPLFDO DQG ELRORJLFDO FKDUDFWHULVWLFV RI VWUHDPVf§WKH GHJUHH WR ZKLFK LV LQYHUVHO\ UHODWHG WR VWUHDP VL]H 9DQQRWH HW DO f ,Q QRUWKHUQ )ORULGD DQG RWKHU DUHDV RI WKH 6RXWKHDVWHUQ &RDVWDO 3ODLQ PDQ\ FDGGLVIO\ DQG VWRQHIO\ WD[D DGDSWHG WR KHDGZDWHU ZRRGODQG VWUHDPV UHDFK WKHLU VRXWKHUQ UDQJHOLPLWV

PAGE 10

DQG KDYH GLVFRQWLQXRXV SHULSKHUDO SRSXODWLRQV FRUUHVSRQGLQJ WR WKH SDWFK\ GLVWULEXWLRQ RI HTXLWDEOH KDELWDWV &UHQRELRORJ\ 6WUHDPV DW WKHLU VRXUFH RIWHQ EHJLQ DV VSULQJV 7KH ]RQH WKDW LQFOXGHV WKH VSULQJ VRXUFH DQG GRZQVWUHDP VSULQJUXQ VSULQJEURRNf LV NQRZQ DV WKH FUHQDO ]RQH :DUG f ,W UHSUHVHQWV D ZHOOERXQGHG DUHD ZLWK GLVWLQFW ELRWRSHf§WKH VWXG\ RI ZKLFK LV DGGUHVVHG E\ D EUDQFK RI DTXDWLF HFRORJ\ NQRZQ DV FUHQRELRORJ\ 7KH FDGGLVIO\ DQG VWRQHIO\ FRPPXQLWLHV LQYHVWLJDWHG LQ WKLV VWXG\ RFFXU ODUJHO\ LQ FUHQDO KDELWDWV WKHUHIRUH WKHLU VWXG\ IDOOV XQGHU WKH GLVFLSOLQH RI FUHQRELRORJ\ *URXQGZDWHU IHHGLQJ WKH UDYLQH VWUHDPV VWXGLHG LQ WKLV SURMHFW FRPHV IURP VSULQJ ERLOV DV ZHOO DV PRUH GLIIXVH VHHSDJH VSULQJV DORQJ EDQN DUHDV 7RJHWKHU WKHVH VRXUFHV SURGXFH D VSULQJUXQ UKHRFUHQHf &UHQDO HFRV\VWHPV DUH DWWUDFWLYH WR HFRORJLVWV EHFDXVH WKH\ DUH GLVFUHWH DQG UHODWLYHO\ VWDEOH LQ WHUPV RI DELRWLF FRQGLWLRQV DW WKHLU VRXUFHV EXW H[KLELW GHSDUWXUHV DORQJ YDULRXV HQYLURQPHQWDO JUDGLHQWV ZLWKLQ WKH VSULQJUXQ &UHQRELRORJLFDO UHVHDUFK LQ ODUJH DUWHVLDQ VSULQJV KDV UHVXOWHG D QXPEHU RI FRPSUHKHQVLYH LQYHVWLJDWLRQV LQWR WURSKLF VWUXFWXUH DQG FRPPXQLW\ HFRORJ\ ,Q SHQLQVXODU )ORULGD FODVVLF VWXGLHV ZHUH FDUULHG RXW DW 6LOYHU 6SULQJV 2GXP f DQG +RPRVDVVD DQG :HHNLZDFKHH VSULQJV 6ORDQ f :LWKLQ WHPSHUDWH HDVWHUQ 1RUWK $PHULFD D QXPEHU RI LQIOXHQWLDO VWXGLHV KDYH EHHQ FRQGXFWHG RQ VPDOOHU VSULQJUXQV HJ 0LQFNOH\ 0LQVKDOO 7LOO\ f %HVLGHV HFRORJLVWV FUHQDO KDELWDWV DUH DOVR RI LQWHUHVW WR ]RRJHRJUDSKHUV EHFDXVH WKH\ DUH UHIXJLD IRU UHOLFW SRSXODWLRQV RI RQFH ZLGHVSUHDG VSHFLHV 2Q WKH DSSOLHG VLGH FUHQRELRORJ\ FDQ EH XVHG LQ WKH ELRORJLFDO DVVHVVPHQW RI JURXQGZDWHU TXDOLW\ 7KH FRQWLQXHG LQWHUHVW LQ FUHQRELRORJ\ DQG D WUHQG WRZDUGV IRFXVLQJ RQ LQYHUWHEUDWH ELRGLYHUVLW\ LV UHIOHFWHG LQ WKH

PAGE 11

SDSHUV SXEOLVKHG UHFHQWO\ LQ ODUJH HGLWHGZRUNV QDPHO\ :LOOLDPV DQG 'DQNV f )HUULQJWRQ f DQG %RWRVDQHDQX f 1RUWKHUQ )ORULGD f+RW 6SRWf RI %LRGLYHUVLW\ $V D UHVXOW RI PDQ\ LQWHUUHODWHG IDFWRUV DUHDV RQ RXU SODQHW GLIIHU JUHDWO\ LQ WHUPV RI ELRGLYHUVLW\ 3DVW DQG SUHVHQW FOLPDWH JHRJUDSK\ DQG JHRORJ\ SOD\ PDMRU UROHV LQ VKDSLQJ ELRPHV DQG FRPSRQHQW ELRWD $YDLODELOLW\ RI ZDWHU D UHTXLUHPHQW WKDW FRQQHFWV DOO OLIH LV D NH\ UHVRXUFH WKDW LQIOXHQFHV WKH ELRWD FKDUDFWHULVWLF RI D SDUWLFXODU SODFH *HQHUDOO\ ODQG DUHDV ZLWK WKH JUHDWHVW DQG PRVW XQLTXH ELRORJLFDO GLYHUVLW\ KH LQ UHJLRQV ZLWK EHQLJQ FOLPDWHV DQG SOHQWLIXO IUHVKZDWHU UHVRXUFHV DQG DUH JHRJUDSKLFDOO\ LVRODWHG DUHDV FRQWDLQLQJ XQLTXH KDELWDWV ZLWK FRUUHVSRQGLQJ VHOHFWLYH SUHVVXUHV 7KH SDQKDQGOH UHJLRQ RI QRUWKHUQ )ORULGD VDWLVILHV DOO WKHVH FULWHULD DQG QRW VXUSULVLQJO\ LV D fKRW VSRWf RI ELRGLYHUVLW\ FRQVLGHUHG WR EH DPRQJ WKH WRS UHJLRQV RI WKH FRQWLQHQWDO 8QLWHG 6WDWHV LQ WHUPV RI KDYLQJ WKH KLJKHVW FRQFHQWUDWLRQ RI SODQW DQG DQLPDO VSHFLHV ZLWK UHVWULFWHG GLVWULEXWLRQV &KDSOLQ HW DO f $OWKRXJK WKH ORZHU &RDVWDO 3ODLQ RFFXSLHG E\ QRUWKHUQ )ORULGD LV UHFRJQL]HG IRU LWV ULFK ELRGLYHUVLW\ WKHUH DUH VWLOO PDQ\ LQYHUWHEUDWH JURXSV IRU ZKLFK OLWWOH LV NQRZQ ,W LV ZLWKLQ WKHVH JURXSV WKDW WKH YDVW PDMRULW\ RI XQNQRZQ ELRGLYHUVLW\ UHPDLQV WR EH GLVFRYHUHG )ORULGDfV GLYHUVH QDWXUDO VHWWLQJ KDV EHHQ FKDUDFWHUL]HG LQ PDQ\ SXEOLFDWLRQV ([FHOOHQW JHQHUDO DFFRXQWV RI FOLPDWH VRLOV DQG RYHUYLHZV RI WKH PDQ\ GLIIHUHQW DTXDWLF DQG PDULQH HFRV\VWHPV DV ZHOO DV WHUUHVWULDO XSODQG V\VWHPV LQ )ORULGD ZHUH SURYLGHG LQ (FRV\VWHPV RI )ORULGD 0H\HUV t (ZHO f $ FRPSUHKHQVLYH DWODV VXPPDUL]LQJ )ORULGDfV ZDWHU UHVRXUFHV LV IRXQG LQ )HPDOG DQG 3XUGXP f DQG VXUIDFH ZDWHU UHVRXUFHV DV WKH\ UHODWH WR ILVKHULHV ZHUH FRYHUHG LQ 6HDPDQ f 3DSHUV GHWDLOLQJ WKH

PAGE 12

ELRGLYHUVLW\ RI DTXDWLF FRPPXQLWLHV LQ )ORULGD DQG WKH VRXWKHDVWHUQ 86 ZHUH SUHVHQWHG LQ +DFNQH\ HW DO f 3XEOLFDWLRQV IRFXVLQJ RQ WKH QDWXUDO KLVWRU\ RI WKH )ORULGD SDQKDQGOH LQFOXGH D JHQHUDO HFRORJLFDO FKDUDFWHUL]DWLRQ JLYHQ E\ :ROIH HW DO f DQG D WKRURXJK DFFRXQWLQJ RI WKH QDWXUDO VHWWLQJ DQG SODQW FRPPXQLWLHV SUHVHQWHG LQ &OHZHOO f 0XFK RI )ORULGDfV XQLTXH VSHFLHV GLYHUVLW\ LV GRFXPHQWHG LQ D VHULHV RI SXEOLFDWLRQV WLWOHG 5DUH DQG (QGDQJHUHG %LRWD RI )ORULGD ,Q WKHVH SXEOLFDWLRQV WKH )ORULGD &RPPLWWHH RQ 5DUH DQG (QGDQJHUHG 3ODQWV DQG $QLPDOV )&5(3$f SURYLGHV VSHFLHV OLVWV DQG GRFXPHQWDWLRQ IRU VSHFLHV FRQVLGHUHG WR EH HQGDQJHUHG WKUHDWHQHG UDUH RU VSHFLHV RIVSHFLDOFRQFHP ZLWKLQ WKH VWDWH 'H\UXS t )UDQ] f $V D UHVXOW RI QHZ GDWD FROOHFWHG LQ WKLV VWXG\ WKHUH DUH D QXPEHU RI DGGLWLRQDO VSHFLHV WKDW DUH H[FHOOHQW FDQGLGDWHV IRU LQFOXVLRQ LQWR IXWXUH FRQVHUYDWLRQ OLVWLQJV LQ &KDSWHU WKHVH VSHFLHV DUH LGHQWLILHG ,W LV WKURXJK GRFXPHQWLQJ DQG WUDFNLQJ VSHFLHVDWULVN WKDW FRQVHUYDWLRQ HIIRUWV ZLOO EH PRVW HIIHFWLYH %RVVDUW t &DUOWRQ f +LVWRULFDO %LRJHRJUDSK\ 7KH ELRJHRJUDSKLF KLVWRU\ RI )ORULGD KDV EHHQ ZHOO GRFXPHQWHG 3XEOLFDWLRQV SUHVHQWLQJ JHQHUDO RYHUYLHZV LQFOXGHG WKRVH RI 1HLOO f -DPHV f DQG :HEE f %LRJHRJUDSKHUV FRQFHQWUDWHG WR D JUHDW H[WHQW RQ )ORULGD LQ DWWHPSWLQJ WR UHFRQVWUXFW WKH YHJHWDWLRQDO KLVWRU\ RI WKH 6RXWKHDVWHUQ &RDVWDO 3ODLQ GXULQJ WKH 3OHLVWRFHQH DQG +RORFHQH ,PSRUWDQW ZRUNV LQFOXGHG WKRVH RI 'HOFRXUW DQG 'HOFRXUW f :DWWV f :DWWV DQG 6WXLYHU f :DWWV HW DO f 3ODWW DQG 6FKZDUW] f DQG 6FKZDUW] f 7KHVH VWXGLHV VXSSRUW WKH DVVHUWLRQ WKDW WKH IDXQDO DQG IORUDO FRPSRVLWLRQ RI QRUWKHUQ )ORULGD KDV IOXFWXDWHG WKURXJKRXW WKH 3OHLVWRFHQH DQG

PAGE 13

+RORFHQH LQ FRQFHUW ZLWK FOLPDWLF IOXFWXDWLRQV DQG FRQFRPLWDQW FKDQJHV LQ WHPSHUDWXUH UDLQIDOO DQG VHDOHYHO VWDQGV 0DMRU ULYHUV GUDLQLQJ WKH 6RXWKHDVWHUQ &RDVWDO 3ODLQ DSSDUHQWO\ VHUYHG DV LPSRUWDQW FRUULGRUV WKURXJK ZKLFK RUJDQLVPV PRYHG LQ UHVSRQVH WR WKH FOLPDWH FKDQJHV H[SHULHQFHG GXULQJ WKH 3OHLVWRFHQH DQG +RORFHQH 'HOFRXUW DQG 'HOFRXUW f SRVWXODWHG WKDW PL[HGPHVRSK\WLF IRUHVW VSHFLHV PLJUDWHG VRXWKZDUG RQWR WKH &RDVWDO 3ODLQ GXULQJ WKH ODWH 3OHLVWRFHQH IRVWHUHG E\ WKH PRLVW FRQGLWLRQV WKH ULYHUV VXSSOLHG WR WKH DGMRLQLQJ XSODQGV 7KH\ FRQFOXGHG WKDW GLVVHFWLRQ RI WKHVH XSODQGV LQWR UDYLQHV ZLWK VXLWDEOH HQYLURQPHQWDO FRQGLWLRQV KDV UHVXOWHG LQ WKH FRQWLQXHG UHOLFW H[LVWHQFH IRU PDQ\ QRUWKHUQ SODQW VSHFLHV %\ H[WHQVLRQ WKLV VFHQDULR FDQ EH XVHG WR DFFRXQW IRU WKH GLVWULEXWLRQDO KLVWRU\ RI DTXDWLF IDXQD DVVRFLDWHG ZLWK PL[HGPHVRSK\WLF IRUHVW RI ZKLFK PDQ\ FDGGLVIO\ DQG VWRQHIO\ WD[D DUH LQFOXGHG ,W LV OLNHO\ WKDW PDMRU 1RUWK6RXWK PRYHPHQWV LQ ELRWD RFFXUUHG PXOWLSOH WLPHV GXULQJ WKH YDULRXV JODFLDO DQG LQWHUJODFLDO SHULRGV VXJJHVWLQJ WKDW WKH RULJLQV RI SUHVHQW GD\ ELRWD DUH PXOWLSOH DQG FRPSOH[ +DPLOWRQ DQG 0RUVH f LQYHVWLJDWHG RULJLQV DQG DIILQLWLHV RI WKH FDGGLVIO\ IDXQD RI WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV DQG IRXQG WKDW PRVW &RDVWDO 3ODLQ HQGHPLFV DUH PRUH FORVHO\ UHODWHG WR VSHFLHV IXUWKHU 1RUWK DQG WKDW YHU\ IHZ HQGHPLFV KDYH VLVWHU OLQHDJHV HQGHPLF WR WKH &RDVWDO 3ODLQ +DPLOWRQ DQG 0RUVH SDJH f ZHQW RQ WR LQIHU WKDW fWKH HQGHPLF 6RXWKHDVWHUQ &RDVWDO 3ODLQ FDGGLVIO\ IDXQD KDG PXOWLSOH RULJLQV SHUKDSV WKH UHVXOW RI QXPHURXV SHULSKHUDO LVRODWLRQV RI DQFHVWUDO WD[D UHVXOWLQJ IURP IOXFWXDWLQJ FOLPDWHV DQG SRVVLEO\ DVVRFLDWHG VHD OHYHO RVFLOODWLRQVf

PAGE 14

&RDVWDO 3ODLQ 5DYLQHV DV 5HIXJLD %\ DIIRUGLQJ FRRODGDSWHG RU VWHQRWKHUPDO RUJDQLVPV WKH UHTXLVLWH HQYLURQPHQWDO FRQGLWLRQV IRU VXUYLYDO UDYLQH KDELWDWV RI QRUWKHUQ )ORULGD DUH SUHVHQWGD\ DQG KLVWRULFDO UHIXJLD IRU RUJDQLVPV XQDEOH WR VXUYLYH WKH KDUVKHU FRQGLWLRQV SUHVHQW LQ SUHGRPLQDQW KDELWDWV RI WKH VXUURXQGLQJ ODQGVFDSH %HVLGHV FRQWDLQLQJ GLVMXQFW QRUWKHUQ HOHPHQWV UDYLQHV DUH DOVR NQRZQ DV DUHDV RI HQGHPLVP :LWK HQRXJK WLPH SRSXODWLRQV LVRODWHG ZLWKLQ UDYLQH KDELWDWLVODQGV FDQ VSHFLDWH DV D UHVXOW RI IRXQGHU HIIHFWV DQG ORFDO VHOHFWLRQ SUHVVXUHV 7KH RSSRVLWH SKHQRPHQRQ KRPHRVWDVLVf FDQ DOVR RFFXU ZKHUHE\ DQFHVWUDO VSHFLHV RU VSHFLHV UHSUHVHQWDWLYH RI UHOLFW FRPPXQLWLHV DUH SUHVHUYHG ,Q WKLV VHQVH LQYHVWLJDWLRQV RI UDYLQH ELRWD FDQ EH LQIRUPDWLYH LQ UHFRQVWUXFWLQJ KLVWRULF IDXQDO DQG IORUDO FRPSRVLWLRQV 1HLOO f LQ GLVFXVVLQJ RULJLQV RI )ORULGDfV ELRWD UHIHUHQFHV PDQ\ RI WKH HDUO\ ZRUNV WKDW GHVFULEH QRUWKHUQ )ORULGD ELRWD DQG GLVWLQFWLYH HOHPHQWV RI UDYLQH KDELWDWV 1HLOO SDJH f QRWLQJ WKDW ERWK QRUWKHUQ HOHPHQWV DQG HQGHPLFV DUH FOXVWHUHG DURXQG WKH $SDODFKLFROD UHJLRQ DQG ZHVWHUQ SDQKDQGOH K\SRWKHVL]HG WKDW PDQ\ RI WKHVH VSHFLHV ZHUH fW\SLFDO ZLGHO\ UDQJLQJ *XOI &RDVW IRUPV DW D WLPH ZKHQ WKH FOLPDWH ZDV FRROHU DQG ZHWWHU WKDQ DW SUHVHQWf +H SUHVHQWHG DV HYLGHQFH IRU WKLV K\SRWKHVLV H[DPSOHV RI VSHFLHV WKDW KDYH GLVFRQWLQXRXV GLVWULEXWLRQV RQ WKH *XOI &RDVWDO 3ODLQ 7KH PRVW ZHOO NQRZQ UDYLQHUHIXJLXP ZLWKLQ QRUWKHUQ )ORULGD LV WKH $SDODFKLFROD %OXIIV DQG 5DYLQHV UHJLRQ RIWHQ UHIHUUHG WR DV f7RUUH\Df LQ UHIHUHQFH WR D UHOLFW FRQLIHU 7RUUH\D WD[LIROLD $P WKDW LV ODUJHO\ FRQILQHG WR WKH UHJLRQ ,Q GHVFULELQJ WKH DUHDfV XQLTXHQHVV +XEEHOO HW DO SDJHV f VWDWHG $OWKRXJK SK\VLRJUDSKLFDOO\ LW LV QR PRUH WKDQ WKH GLVVHFWHG HGJH RI WKH XSODQG ELRWLFDOO\ LW PD\ EH UHJDUGHG DV D VPDOO EXW GLVWLQFWLYH QDWXUDO UHJLRQ FKDUDFWHUL]HG

PAGE 15

E\ LWV SHFXOLDU PL[WXUH RI &RDVWDO 3ODLQ DQG QRUWKHUQ SODQWV DQG DQLPDOV DQG E\ WKH SUHVHQFH RI D JURXS RI UHPDUNDEOH UHOLF VSHFLHV UHVWULFWHG WR WKH UHJLRQ 6RPH RI LWV SHFXOLDULWLHV ZHUH SRLQWHG RXW E\ &URRP DV ORQJ DJR DV DQG $VD *UD\ f PDGH WKH UHJLRQ IDPRXV E\ KLV SDSHU f$ 3LJULPDJH WR 7RUUH\Df 6SHHG 5RJHUV ZDV DPRQJ WKH HDUOLHVW ]RRORJLVWV WR FKDUDFWHUL]H VWUHDPV RI WKH 7RUUH\D UDYLQHV DQG WR GRFXPHQW WKH XQLTXHQHVV RI WKH DTXDWLF IDXQD 5RJHUV SDJH f LQ KLV PRQRJUDSK GHVFULELQJ FUDQHIO\ GLVWULEXWLRQV DQG KDELWDWV LQ QRUWKHUQ )ORULGD ZURWH RI WKH UDYLQHV 6PDOO VDQG\ ERWWRP EURRNV IORZ DORQJ WKHVH UDYLQHV DQG RIWHQ SDVV LQWR VKRUW VZDPS\ UHDFKHV ZKHUH WKH\ ZDQGHU WKURXJK WDQJOHV RI VWDQGLQJ DQG IDOOHQ YHJHWDWLRQ DQG RYHU GHSRVLWV RI ULFK RUJDQLF VLOW 1HDU WKH ERWWRP VSULQJV DQG VHHSDJH DUHDV DUH FRPPRQ DQG ZHW URWWHQ ZRRG IXQJL PRVVHV DQG OLYHUZRUWV DUH DEXQGDQW 7KH IDXQD RI WKHVH UDYLQHV LV DV VXUSULVLQJ DQG LQWHUHVWLQJ DV WKHLU IORUD IRU KHUH D QXPEHU RI DQLPDOV UHDFK WKHLU VRXWKHUQPRVW OLPLWV IUHTXHQWO\ GLVMXQFW IURP WKH UHPDLQGHU RI WKHLU UDQJHV ,Q WKH $PSKLELD &UXVWDFHD 2GRQDWD (SKHPHULGD DQG 2UWKRSWHUD D QXPEHU RI XQH[SHFWHG QRUWKHUQ VSHFLHV RU VSHFLHV ZLWK GLVWLQFW QRUWKHUQ DIILQLWLHV KDYH EHHQ GLVFRYHUHG DQG DPRQJ WKH FUDQHIOLHV PRUH WKDQ D GR]HQ VSHFLHV DUH IRXQG WKDW KDYH EHHQ WDNHQ QRZKHUH HOVH VRXWK RI WKH 3LHGPRQW UHJLRQ 5DYLQH (FRV\VWHPV RI 1RUWKHUQ )ORULGD :KHQ WU\LQJ WR XQGHUVWDQG WKH GLYHUVLW\ RI RUJDQLVPV IRXQG LQ D VSHFLDOL]HG KDELWDW PRUH IXOO\ LW LV SUXGHQW WR FRQVLGHU WKH JHQHUDO SK\VLFDO FKHPLFDO DQG ELRORJLFDO FKDUDFWHULVWLFV RI WKDW KDELWDW DV WKH\ DUH OLNHO\ WR H[HUW FRQVLGHUDEOH FRQWUROV RQ FRPPXQLW\ FRPSRVLWLRQ DQG HFRORJ\ 7KH IROORZLQJ GLVFXVVLRQ SURYLGHV D JHQHUDO EDFNGURS WR WKH QDWXUDO VHWWLQJV RI WKH UDYLQH HFRV\VWHPV VWXGLHG 5DYLQH *HRPRUSKRORJ\ DQG 'LVWULEXWLRQ 7KH VWUHDP V\VWHPV VWXGLHG RFFXU LQ XSODQG DUHDV RI QRUWKHUQ )ORULGD ZKHUH HURVLRQDO SURFHVVHV KDYH GLVVHFWHG WKH XSODQGV WR FUHDWH KHDGZDWHU UDYLQHV DQG YDOOH\V LQ VKDUS FRQWUDVW WR WKH ORZUHOLHI ODQGVFDSHV IRXQG WKURXJKRXW PXFK RI WKH 6RXWKHDVWHUQ

PAGE 16

&RDVWDO 3ODLQ 5DYLQHV DUH VWHHSZDOOHG GUDLQDJH QHWZRUNV IRUPHG ERWK E\ HURVLRQ IURP VXUIDFHZDWHU UXQRII DQG JURXQGZDWHU VSULQJIORZ 7KH\ DUH IRXQG LQ KLJKHU HOHYDWLRQ ODQGIRUPV P DERYH PHDQ VHD OHYHOf DQG DUH RIWHQ DVVRFLDWHG ZLWK ULYHU HVFDUSPHQWV 7RSRORJ\ DQG JHRPRUSKRORJLF FKDUDFWHULVWLFV DUH GLVFXVVHG EHORZ $Q DFFRXQW RI UDYLQH GLVWULEXWLRQ LQ WKH )ORULGD SDQKDQGOH LV SURYLGHG LQ :ROIH HW DO f 6WHHSKHDG UDYLQHV ,Q ODQGIRUPV KDYLQJ KLJK LQILOWUDWLRQ UDWHV DQG ODUJH VXUILFLDODTXLIHU VWRUDJH FDSDFLWLHV DV LQ DUHDV ZLWK GHHS GHSRVLWV RI FRDUVH VDQGV RYHUODQG VXUIDFH HURVLRQ LV ORZ DQG UDYLQH IRUPDWLRQ LV FRQWUROOHG E\ JURXQGZDWHU SURFHVVHV 6FKXPP HW DO f 8QGHU WKHVH FRQGLWLRQV JURXQGZDWHU VDSSLQJ FDXVHV KHDGZDUG HURVLRQ RI RYHUO\LQJ GHSRVLWV WR IRUP OLQHDU YDOOH\V WKDW KDYH VWHHS DPSKLWKHDWUHVKDSHG KHDGV 5DYLQHV RI WKLV W\SH DUH NQRZQ DV fVWHHSKHDGVf DQG ZHUH ILUVW GHVFULEHG E\ 6HOODUGV DQG *XQWHU f 6WHHSKHDGV DUH FRQVLGHUHG WR EH D JHRORJLF IRUPDWLRQ XQLTXH WR QRUWKHUQ )ORULGD 6WHHSKHDG GUDLQDJH QHWZRUNV KDYH UHODWLYHO\ ORZ VWUHDPGHQVLWLHV UDWLR RI FKDQQHO OHQJWK WR GUDLQDJH DUHDf DV FRPSDUHG WR RWKHU GUDLQDJH QHWZRUNV 6FKXPP HW DO f DQG EHFDXVH RI SHUPHDEOH VRLOV VXUIDFH GUDLQDJH OLQHV FRQQHFWLQJ WKH SODWHDX DQG UDYLQH ERWWRP DUH JHQHUDOO\ DEVHQW 6WHHSKHDG GUDLQDJH QHWZRUNV WHQG WR KDYH D WUHOOLV SDWWHUQ DV D UHVXOW RI WULEXWDU\ VWHHSKHDGV IRUPLQJ SHUSHQGLFXODU WR WKH PDLQ GUDLQDJH D[LV +HDGZDOO VORSH LV W\SLFDOO\ GHJUHHV RU JUHDWHU DQG GHSWK DW WKH KHDG LV RIWHQ JUHDWHU WKDQ PHWHUV 6FKXPP HW DO f VXJJHVWHG WKDW VWHHSKHDG DGYDQFH LV HSLVRGLF DQG LV SURPRWHG E\ ORVV RI YHJHWDWLRQ RQ XSVORSHV RU SURORQJHG ZHW SHULRGV DQG WKDW PRYHPHQW LV KDOWHG WKURXJK JURXQGZDWHU FDSWXUH E\ DGMDFHQW ZDWHUVKHGV &RQWUDU\ WR WKH ZLGHO\ DFFHSWHG

PAGE 17

IDFW WKDW VWHHSKHDG VSULQJIORZ HPHUJHV DORQJ D UHODWLYHO\ LPSHUPHDEOH FRQILQLQJ FOD\ OD\HU 6FKXPP HW DO f UHSRUWHG ILQGLQJ QR SDOHRVRO RU KDUGSDQ LQ GULOOLQJ DW WKH EDVH RI VWHHSKHDGV RQ (JOLQ $LU )RUFH %DVH 7KLV HYLGHQFH DQG VXSSRUW IURP H[SHULPHQWDO VWXGLHV LQGLFDWH WKDW D ORZ SHUPHDELOLW\ KRUL]RQ LV QRW D UHTXLUHPHQW IRU VWHHSKHDG IRUPDWLRQ 6FKXPP HW DO f 6WHHSKHDGV LQ WKH SDQKDQGOH DUH GLVWULEXWHG EHORZ WKH &RG\ VFDUS LQ DQ HDVWWRZHVW WUHQGLQJ OLQH ZKHUH LW DSSHDUV WKDW ODWH 3OLRFHQHHDUO\ 3OHLVWRFHQH GHSRVLWV RI FRDUVH VDQGV IRUPHG FRDVWDO VDQG GXQHV DQG EDUULHU LVODQGV GXULQJ KLJKHU VHD OHYHO VWDQGV 7ZR DUHDV ZLWKLQ WKH )ORULGD SDQKDQGOH WKDW SRVVHVV H[FHOOHQW H[DPSOHV RI VWHHSKHDG FRPSOH[HV DUH LQ WKH ZHVWHUQ SDQKDQGOH QHDU WKH FRDVW RQ WKH ZHVWHUQ VLGH RI (JOLQ $LU )RUFH %DVH VRXWKHUQ SRUWLRQV RI 6DQWD 5RVD DQG 2NDORRVD FRXQWLHVf DQG LQ WKH FHQWUDO SDQKDQGOH DVVRFLDWHG ZLWK WKH $SDODFKLFROD 5LYHU HVFDUSPHQW DQG 6ZHHWZDWHU &UHHN /LEHUW\ &RXQW\f 6WHHSKHDGV RFFXU DOVR LQ VHYHUDO RWKHU SDQKDQGOH ORFDWLRQV VHH 0HDQV f DV ZHOO DW D IHZ VFDWWHUHG ORFDOLWLHV RQ XSODQG VDQG ULGJHV RI WKH QRUWKHUQ )ORULGD SHQLQVXOD &OD\KLOO UDYLQHV ,Q UROOLQJ FOD\ KLOOV DQG DORQJ ULYHU HVFDUSPHQWV KDYLQJ WLJKWO\SDFNHG XSODQG VRLOV UDLQIDOO UDWHV RIWHQ H[FHHG LQILOWUDWLRQ UDWHV DQG VFRXULQJ IURP VXUIDFH UXQRII UHVXOWV LQ WKH IRUPDWLRQ RI ZKDW ZLOO WHUP fFOD\KLOOf UDYLQHV D UHIHUHQFH WR WKH FOD\ FRQWHQW RI WKH VRLOV DQG WKH QDPH JLYHQ WR WKH DVVRFLDWHG PHVLF XSODQG FRPPXQLW\W\SH $QRWKHU WHUP XVHG WR GHVFULEH WKLV W\SH RI UDYLQH LV fJXOO\HURGHGf VHH :ROIH HW DO 0HDQV f 7KH GUDLQDJH QHWZRUNV RI FOD\KLOO UDYLQHV DUH W\SLFDOO\ GHQGULWLF DQG KDYH KLJKHU VWUHDP GHQVLWLHV DQG YDULDELOLW\ LQ VWUHDP IORZ DV FRPSDUHG WR VWHHSKHDG QHWZRUNV 6WUHDP

PAGE 18

IORZ IOXFWXDWLRQ LQ WKHVH V\VWHPV KRZHYHU LV RIWHQ PRGHUDWHG E\ JURXQGZDWHU IORZV DORQJ UDYLQH ZDOOV DQG ERWWRPV LQ WKH IRUP RI VPDOO VSULQJV DQG GLIIXVH VHHSDJH WKXV VXEVWDQWLDO JURXQGZDWHU LQSXWV UHVXOW LQ PDQ\ VWUHDPV KDYLQJ SHUPDQHQW VSULQJIHG EDVHIORZV 'UDLQDJH OLQHV JHQHUDOO\ RULJLQDWH DORQJ WKH XSSHU VORSHV DQG IRUP YVKDSHG JXOOLHV ,Q DUHDV RI JURXQGZDWHU VDSSLQJ VKDUS YHUWLFDO FXWV RI WKH RYHUEXUGHQ PD\ DOVR RFFXU 6ORSHV RI FOD\KLOO UDYLQHKHDGV DQG VLGHZDOOV DUH JHQHUDOO\ OHVV WKDQ GHJUHHV &OD\KLOO UDYLQHV RFFXU LQ XSODQG ODQGIRUPV RI WKH )ORULGD SDQKDQGOH DERYH WKH &RG\ VFDUS ZKHUH VRLOV DUH SULPDULO\ FRPSRVHG RI 0LRFHQHDJH HODVWLFV 6RPH RI WKH PRVW ZHOO GHYHORSHG FOD\KLOO UDYLQHV OLH ZLWKLQ WKH 7DOODKDVVHH 5HG +LOOV7LIWRQ 8SODQGV UHJLRQ LQ QRUWKHUQ *DGVGHQ DQG /HRQ FRXQWLHV RI )ORULGD DQG DGMDFHQW FRXQWLHV RI *HRUJLD 3ODQW DQG $QLPDO &RPPXQLWLHV 7KH WHUUHVWULDO SODQW DQG DQLPDO FRPPXQLWLHV RI UDYLQH HFRV\VWHPV LQ QRUWKHUQ )ORULGD FRQWDLQ D GLYHUVH PL[ RI QRUWKHUQ ZDUP WHPSHUDWH DQG HQGHPLF HOHPHQWV $Q DFFRXQWLQJ RI WKLV ELRGLYHUVLW\ LV IDU IURP FRPSOHWH DQG ZKDW LV NQRZQ LV UHSRUWHG DFURVV PDQ\ SXEOLFDWLRQV $ JHQHUDO WUHDWPHQW RI VRPH RI WKH GLVWLQFWLYH DQG PDMRU FRPSRQHQWV RI UDYLQH IORUD DQG IDXQD LV SUHVHQWHG LQ :ROIH HW DO f 2WKHU SXEOLFDWLRQV GHDOLQJ ZLWK SODQW DQG DQLPDO FRPPXQLWLHV RI UDYLQHV LQFOXGH D ELRORJLFDO VXUYH\ RI WKH $SDODFKLFROD UDYLQHV E\ /HRQDUG DQG %DNHU f DQG D QDWXUDO FRPPXQLW\ VXUYH\ RI (JOLQ $LU )RUFH %DVH E\ .LQGHOO HW DO f 0L[HGVSHFLHV KDUGZRRGV DUH WKH PRVW FRQVSLFXRXV FRPSRQHQW RI UDYLQH IORUD DQG WKHVH KDYH EHHQ VWXGLHG DW D QXPEHU RI UDYLQH V\VWHPV DFURVV QRUWKHUQ )ORULGD &OHZHOO :KLWH t -XGG 3ODWW t 6FKZDUW] *LEVRQ .ZLW HW DO f

PAGE 19

7KH YHU\ KLJK GHQVLW\ RI GLIIHUHQW WUHH VSHFLHV RFFXUULQJ LQ UDYLQHV LV DFFRXQWHG IRU E\ WKH KDELWDW GLYHUVLW\ DVVRFLDWHG ZLWK JUDGLHQWV LQ HOHYDWLRQ DQG VRLO PRLVWXUHf§SURFHHGLQJ IURP [HULF FRQGLWLRQV RI WKH ULGJH WRSV GRZQ WKURXJK PHVLF PLGVORSHV WR WKH K\GULF FRQGLWLRQV RI WKH UDYLQH ERWWRP 5DYLQH IRUHVWV W\SLFDOO\ FRQWDLQ RDNV DQG KLFNRULHV RQ XSSHU VORSHV JUDGLQJ LQWR PHVLF KDUGZRRGV HJ $PHULFDQ EHHFK VRXWKHUQ PDJQROLD $PHULFDQ KROO\f RQ PLGVORSHV DQG D VZDPS IRUHVW FRPPXQLW\ HJ VZDPS ED\ VZHHW ED\ EODFN JXPf RQ K\GULF ORZHUVORSHV DQG UDYLQH ERWWRP ,Q SDQKDQGOH UDYLQHV )ORULGD VWDU DQLVH LV DQ DEXQGDQW XQGHUVWRU\ VSHFLHV JURZLQJ LQ VDWXUDWHG VRLOV DURXQG VSULQJKHDG DUHDV 6SKDJQXP RWKHU PRVVHV OLYHUZRUWV DQG IHUQV DUH DEXQGDQW LQ UDYLQH ERWWRPV ZKLFK W\SLFDOO\ FRQWDLQ ULFK DFFXPXODWLRQV RI OHDI OLWWHU DQG KXPLF VRLOV 0XFK RI WKH IDXQDO GLYHUVLW\ RI UDYLQH HFRV\VWHPV RFFXUV RQ WKH IRUHVW IORRU DQG LV DVVRFLDWHG ZLWK WKH GHHS OD\HU RI OHDI OLWWHU DQG RWKHU RUJDQLF PDWWHU WKDW VHUYHV DV D IRRG EDVH IRU FRXQWOHVV DUWKURSRGV DQG RWKHU LQYHUWHEUDWHV ZKLFK LQ WXUQ VXSSRUW D IDU OHVVHU QXPEHU RI VPDOO YHUWHEUDWHV HJ VDODPDQGHUVf WKDW IHHG RQ WKHP 6WUHDP &KDUDFWHULVWLFV %HFDXVH RI VSULQJIORZ LQSXWV IURP VXUILFLDODTXLIHU VRXUFHV UDYLQH VWUHDPV LQ QRUWKHUQ )ORULGD DUH W\SLFDOO\ SHUHQQLDO DQG UDWKHU XQLIRUP LQ WHUPV RI PDQ\ RI WKHLU SK\VLFDO DQG FKHPLFDO FKDUDFWHULVWLFV ,Q JHQHUDO WKH VWUHDPV DUH FOHDU FRRO VRPHZKDW DFLGLF DQG ORZ LQ QXWULHQWV $V FRPSDUHG WR VWHHSKHDG VWUHDPV FOD\KLOO UDYLQH VWUHDPV WHQG WR KDYH PRUH YDULDEOH K\GURSHULRGV DQG HSLVRGHV RI KLJK WXUELGLW\ GXH WR JUHDWHU DPRXQWV RI VXUIDFH UXQRII DQG VFRXULQJ DIWHU UDLQ HYHQWV ,Q VWHHSKHDG GUDLQDJH QHWZRUNV WKH KLJK LQILOWUDWLRQ UDWHV DQG VWRUDJH FDSDFLW\ RI WKH VXUURXQGLQJ ODQGIRUP UHVXOW LQ PLQLPDO UXQRII 6WHHSKHDG VSULQJUXQV RYHU UHODWLYHO\ VKRUW GLVWDQFHV FDQ KDYH UDWKHU

PAGE 20

VL]HDEOH IORZV 7KLUG RUGHU VWHHSKHDG VWUHDPV GLVFKDUJH ZDWHU DW UDWHV DV KLJK DV IW VHFn %\ FRPSDULVRQ WKH EDVHIORZV RI FOD\KLOO UDYLQH VWUHDPV W\SLFDOO\ DUH IDU OHVV HYHQ DV WK RU WK RUGHU VWUHDPV $V ZDWHU IORZV GRZQVWUHDP IURP WKH UDYLQH KHDG ZDWHU WHPSHUDWXUH IOXFWXDWLRQV LQFUHDVH GXH WR DPELHQW FRROLQJ DQG ZDUPLQJ 7KH VWUHDPV ZLWK QDUURZ DQG GHHS FKDQQHOV W\SLFDO RI VWHHSKHDG VSULQJUXQV WHQG WR PDLQWDLQ PRUH FRQVWDQW WHPSHUDWXUH FRQGLWLRQV DV FRPSDUHG WR WKH VKDOORZHU DQG OHVV YROXPLQRXV VWUHDPV LQ FOD\KLOO UHJLRQV ZKLFK PD\ H[SHULHQFH VLJQLILFDQW ZDUPLQJ LQ VXPPHU +LJKWHPSHUDWXUH H[WUHPHV FDQ DGYHUVHO\ DIIHFW RUJDQLVPV DGDSWHG WR VSULQJIHG ZRRGODQG VWUHDPV DQG PD\ SUHFOXGH WKHP IURP OLYLQJ LQ WKHVH V\VWHPV %HQWKLF RUJDQLVPV VXFK DV FDGGLVIOLHV DQG VWRQHIOLHV ILQG D ZLGH UDQJH RI VXLWDEOH VXEVWUDWHV LQ UDYLQH VWUHDPV RQ ZKLFK WR OLYH 7KH VWUHDP ERWWRP DW WKH UDYLQHKHDG W\SLFDOO\ FRQWDLQV DQ DEXQGDQFH RI FRDUVH ZRRG\ GHEULV LQFOXGLQJ OHDYHV VWLFNV DQG ORJV $OVR UDYLQHKHDG PLQHUDO VXEVWUDWHV WHQG WR EH GLYHUVH DQG WKHUH RIWHQ RFFXUV SHD JUDYHO SLHFHV RI FOD\ RU PDUOV DV ZHOO DV FRDUVH VDQG 7KH VWUHDP IURP WKH UDYLQH KHDG W\SLFDOO\ DULVHV IURP PXOWLSOH VPDOO VSULQJERLOV DQG ULYXOHWV WKDW PHUJH WR IRUP D PDLQ FKDQQHO WKDW WKHQ IORZV WKURXJK WKH GHQVHO\ YHJHWDWHG UDYLQH ERWWRP 1XPHURXV GHSRVLWLRQDO DUHDV RI VLOW DQG RUJDQLF PXFN DUH DOVR FRPPRQ LQ WKH UDYLQH KHDGV DQG XSSHU UHDFKHV 7KH VWUHDP JUDGLHQW LV XVXDOO\ QRW JUHDW DQG DSSHDUV WR IROORZ WKH VORSH RI WKH ZDWHU WDEOH LQ PRVW UDYLQHV V\VWHPV 'HEULV GDPV FDQ IRUP VPDOO ZDWHUIDOOV LQ SODFHV 'RZQ IURP WKH UDYLQH KHDG VWUHDPV PD\ PHDQGHU WKURXJK PHVLF IRUHVW RU LQ VRPH V\VWHPV PD\ IORZ WKURXJK VZDPS IRUHVW ZLWKLQ D EUDLGHG FKDQQHO $W UG RUGHU DQG

PAGE 21

KLJKHU VWUHDPV W\SLFDOO\ KDYH D ZHOOGHILQHG FKDQQHO ZLWK VQDJV DQG XQGHUFXW EDQNV SURYLGLQJ PXFK LQ WKH ZD\ RI SURGXFWLYH EHQWKLF KDELWDWV 3URMHFW 2EMHFWLYHV DQG 6FRSH *LYHQ WKH ODFN RI LQIRUPDWLRQ FRQFHUQLQJ 7ULFKRSWHUD DQG 3OHFRSWHUD ELRGLYHUVLW\ LQ UDYLQH HFRV\VWHPV LQ QRUWKHUQ )ORULGD DQG WKH KLJK SRWHQWLDO IRU WKHVH RUJDQLVPV WR EH LPSRUWDQW DQG GLYHUVH ELRWLF FRPSRQHQWV RI WKH VWUHDP HFRORJ\ WKH IROORZLQJ UHVHDUFK REMHFWLYHV ZHUH VHW Lf LQYHQWRU\ VSHFLHV GLYHUVLW\ RI 7ULFKRSWHUD DQG 3OHFRSWHUD LQ UDYLQHV HFRV\VWHPV RI QRUWKHUQ )ORULGD LLf FKDUDFWHUL]H FDGGLVIO\ DQG VWRQHIO\ VSHFLHV RFFXUUHQFHV LQ WHUPV RI JHRJUDSKLF GLVWULEXWLRQDO SDWWHUQV VSHFLHVKDELWDW DVVRFLDWLRQV DQG GLVWLQFWLYH IDXQDO HOHPHQWV LLLf LQYHVWLJDWH FDGGLVIO\ FRPPXQLW\ VWUXFWXUH DQG GLVWULEXWLRQDO G\QDPLFV LQ UHODWLRQ WR JHRJUDSKLF DQG KDELWDW SDUDPHWHUV LYf FKDUDFWHUL]H FDGGLVIO\ DQG VWRQHIO\ IOLJKW VHDVRQDOLW\ Yf LQYHVWLJDWH HPHUJHQFH RI DGXOW FDGGLVIOLHV DQG VWRQHIOLHV IURP D UDYLQH VSULQJUXQ 7KLV VWXG\ LV HVVHQWLDOO\ GHVFULSWLYH LQ VFRSH DQG SXUSRVH 7KH VWUHDP V\VWHPV VWXGLHG UHSUHVHQW VHYHUDO PDMRU ULYHU GUDLQDJHV DQG UHJLRQV RI QRUWKHUQ )ORULGD DQG WKH VXUYH\ SRLQWV HQFRPSDVV UDYLQH VWUHDPV IURP WKHLU XSSHUPRVW KHDGZDWHUV WKURXJK ORZHU VWUHDPUHDFKHV ,W LV WKH ILUVW FRPSUHKHQVLYH VWXG\ WR GHVFULEH DQG FRPSDUH VWRQHIO\ DQG FDGGLVIO\ ELRGLYHUVLW\ DW VHYHUDO GLIIHUHQW DUHDV RQ WKH ORZHU &RDVWDO 3ODLQ SRVVHVVLQJ UDYLQH GUDLQDJH QHWZRUNV ZLVK WR VWUHVV WKRXJK WKDW IDXQLVWLF VWXGLHV RI \HWXQH[SORUHG UDYLQHV ZLOO OLNHO\ XQFRYHU LPSRUWDQW QHZ LQIRUPDWLRQ FRQFHUQLQJ VSHFLHV GLYHUVLW\ DQG FRPPXQLW\ VWUXFWXUH

PAGE 22

'HVFULSWLRQ RI 6WXG\ $UHDV &DGGLVIO\ DQG VWRQHIO\ VSHFLHV GLYHUVLW\ DQG HFRORJ\ ZHUH LQYHVWLJDWHG ZLWKLQ QRUWKHUQ )ORULGD DW GLIIHUHQW VWXG\ DUHDV )LJ f 7KH DUHDV VWXGLHG VSDQ PXFK RI QRUWKHUQ )ORULGD DQG WKXV UHSUHVHQW GLIIHUHQW PDMRU GUDLQDJHV DQG UHJLRQV RI )ORULGD 7KUHH RI WKH VWXG\ DUHDV OLH ZLWKLQ WKH )ORULGD SDQKDQGOH RQ WKH (DVWHUQ *XOI &RDVWDO 3ODLQ WKH (JOLQ VWXG\ DUHD ZLWKLQ WKH ZHVWHUQ )ORULGD SDQKDQGOH DQG WKH $SDODFKLFROD DQG )ORULGD $t0 8QLYHUVLW\ )$08f )DUP VWXG\ DUHDV ZLWKLQ WKH FHQWUDO SDQKDQGOH UHJLRQ 7KH *ROG +HDG JLYHQ EHORZ SK\VLRJUDSKLF SURYLQFHV RI $ODEDPD *HRUJLD DQG )ORULGD

PAGE 23

(JOLQ 6WXG\ $UHD 7KH (JOLQ VWXG\ DUHD )LJ f ODUJHVW RI WKH VWXG\ DUHDV LV ORFDWHG RQ WKH ZHVWHUQ VLGH RI (JOLQ $LU )RUFH %DVH LQ D UHJLRQ ZKHUH WKHUH LV DQ H[WHQVLYH VWHHSKHDG GUDLQDJH QHWZRUN LQFLVHG LQWR XSODQGV FRPSULVHG ODUJHO\ RI [HULF VDQGKLOO FRPPXQLW\ FRQWDLQLQJ ODUJH WUDFWV RI ORQJOHDI SLQH 3LQXVSDOXVWULV 0LOOf 7KH VWUHDPV VDPSOHG IHHG PDMRU GUDLQDJH EDVLQV WKH
PAGE 24

)LJXUH (JOLQ VWXG\ DUHD DQG ORFDWLRQV RI FROOHFWLQJ VWDWLRQV 7KH VWXG\ DUHD LV ORFDWHG LQ WKH ZHVWHUQ SRUWLRQ RI (JOLQ $LU )RUFH %DVH

PAGE 25

$SDODFKLFROD 6WXG\ $UHD 7KH $SDODFKLFROD VWXG\ DUHD )LJ f LV ORFDWHG LQ WKH FHQWUDO )ORULGD SDQKDQGOH RQ WKH HDVWVLGH RI WKH XSSHU $SDODFKLFROD 5LYHU LQ D UHJLRQ NQRZQ DV WKH $SDODFKLFROD %OXIIV DQG 5DYLQHV VRPHWLPHV UHIHUUHG WR VLPSO\ DV f7RUUH\Df 7KH GUDLQDJH QHWZRUN RI WKH UHJLRQ LV DVVRFLDWHG ZLWK WKH $SDODFKLFROD)OLQW ULYHU HVFDUSPHQW ZLWK DOO VWUHDPV IORZLQJ WRZDUGV WKH ORZHU HOHYDWLRQV RI WKH ULYHUfV IORRGSODLQ $ ZHOOGHYHORSHG GUDLQDJH QHWZRUN FRPSULVLQJ ERWK VWHHSKHDGV DQG FOD\KLOO UDYLQHV KDV H[WHQVLYHO\ GLVVHFWHG WKH XSODQGV WR FUHDWH DQ DUHD ZLWK VRPH RI WKH VKDUSHVW UHOLHI RQ WKH 6RXWKHDVWHUQ &RDVWDO 3ODLQ )RUWXQDWHO\ D VLJQLILFDQW SRUWLRQ RI WKH VWXG\ DUHD DERXW KHFWDUHVf LV FXUUHQWO\ HLWKHU ZLWKLQ 7RUUH\D 6WDWH 3DUN RU LV XQGHU WKH VWHZDUGVKLS RI 7KH 1DWXUH &RQVHUYDQF\ 7KXV FRQVHUYDWLRQ HIIRUWV DQG WKH SURVSHFWV RI SUHVHUYLQJ WKH DUHDfV ULFK QDWXUDO KLVWRU\ DUH SURPLVLQJ :LWKLQ WKH VWXG\ DUHD DUH PDQ\ VPDOO KHDGZDWHU VWUHDPV DV ZHOO DV KLJKHU PDJQLWXGH WKWK RUGHUf VWUHDPV VXFK DV )ODW &URRNHG DQG 6ZHHWZDWHU FUHHNV 6DPSOLQJ VWDWLRQV UHSUHVHQWLQJ D ZLGH DUUD\ RI VWUHDP KDELWDWV ZHUH HVWDEOLVKHG DW ORFDWLRQV 6WHHSKHDG UDYLQHV RFFXU SUHGRPLQDWHO\ ZLWKLQ WKH VDQGKLOO FRPPXQLW\ LQ WKH VRXWKHUQ SRUWLRQ RI WKH VWXG\ DUHD VRXWK RI WKH PDLQ D[LV RI 6ZHHWZDWHU &UHHN RQ ZKLFK VWDWLRQ $ LV ORFDWHG 6L[ VDPSOLQJ VWDWLRQV ZHUH ZLWKLQ WKLV DUHD LQFOXGLQJ XSSHUUHDFK VLWHV $ $ $OOf VWDWLRQV IXUWKHU GRZQVWUHDP RQ WKH VSULQJUXQV QHDU ZKHUH WKH\ HQWHU WKH ULYHU IORRGSODLQ $ $f DQG VWDWLRQ ZLWKLQ D VKRUW LVRODWHGUDYLQH YHU\ QHDU WR ZKHUH LWV VPDOO VWUHDP FDVFDGHV LQWR WKH $SDODFKLFROD 5LYHU $f :LWKLQ WKH PRUH PHVLF FOD\KLOO XSODQGV RI WKH QRUWKHUQ SDUW RI WKH VWXG\ DUHD KHDGZDWHU UHDFKHV ZHUH VDPSOHG DW VWDWLRQV $ $f DQG ODUJHU VWUHDPV ZHUH VDPSOHG DW VWDWLRQV $O $ $ $f 7KH

PAGE 26

ODUJHU VWUHDPV DV D UHVXOW RI ODQGZDWHU LQWHUDFWLRQV JHQHUDOO\ KDYH KLJKHU S+ FLUFXPQHXWUDOf DQG PRUH YDULDEOH FRQGXFWLYLW\ WXUELGLW\ DQG WHPSHUDWXUH DV FRPSDUHG WR WKH KHDGZDWHU VWUHDPV LQ ZKLFK YDOXHV IRU WKHVH SDUDPHWHUV ODUJHO\ PLUURU VSULQJIORZ LQSXWV NLORPHWHUV *DGVGHQ &RXQW\ /LEHUW\ &RXQW\ $SDODFKLFROD 6WXG\ $UHD 6WDWLRQ /RFDOLWLHV n $W *DGVGHQ &R )ODW &N DW &RXQW\ 5G $ 1r :rn $ *DGVGHQ &R &URRNHG &N DW &RXQW\ 5G 1rn :rf $ /LEHUW\ &R 5RFN &N 7ULEXWDU\ 7RUUH\D 6WDWH 3DUN (DVW VLGH RI 3DUN 5G QHDU 3DUN HQWUDQFH 1rn :rf $ /LEHUW\ &R 5RFN &N 7RUUH\D 6WDWH 3DUN QHDU 5RFN &N SULPLWLYH FDPSVLWH 1rnUn :rn,f $ /LEHUW\ &R 6ZHHWZDWHU &N 7ULEXWDU\ ZLWKLQ 7KH 1DWXUH &RQVHUYDQF\ 7UDYHOHUV 7UDFW (DVW VLGH RI &RXQW\ 5G MXVW 1RUWK RI 6ZHHWZDWHU &N 1rn :rn $ /LEHUW\ &R 6ZHHWZDWHU &N DW &RXQW\ 5G 1rf :rnnQ $ /LEHUW\ &R %HDYHU 'DP &N ZLWK 7KH 1DWXUH &RQVHUYDQF\ $SDODFKLFROD %OXIIV DQG 5DYLQHV 3UHVHUYH 1rn :rn $ /LEHUW\ &R /LWWOH 6ZHHWZDWHU &N VWHHSKHDG YLFLQLW\ RI -HW 6WDWH 5G DQG &RXQW\ 5G ZLWKLQ 7KH 1DWXUH &RQVHUYDQF\ $SDODFKLFROD %OXIIV DQG 5DYLQHV 3UHVHUYH 1rn :rnf $ /LEHUW\ &R /LWWOH 6ZHHWZDWHU &N XSSHU HQGf ZLWKLQ 7KH 1DWXUH &RQVHUYDQF\ $SDODFKLFROD %OXIIV DQG 5DYLQHV 3UHVHUYH 1rn :rnU $ /LEHUW\ &R /LWWOH 6ZHHWZDWHU &N ORZHU HQGf ZLWKLQ 7KH 1DWXUH &RQVHUYDQF\ $SDODFKLFROD %OXIIV DQG 5DYLQHV 3UHVHUYH 1rn :rnf $OO /LEHUW\ &R .HOOH\ %UDQFK DW MHHS WUDLO FURVVLQJ ZLWKLQ 7KH 1DWXUH &RQVHUYDQF\ %OXIIV DQG 5DYLQHV 3UHVHUYH 1rn :rn $ /LEHUW\ &R 8QQDPHG UDYLQH VWUHDP MXVW 1RUWK RI $OXP %OXII ZLWKLQ 7KH 1DWXUH &RQVHUYDQF\ $SDODFKLFROD %OXIIV DQG 5DYLQHV 3UHVHUYH 1rn :rn )LJXUH $SDODFKLFROD EOXIIV DQG UDYLQHV VWXG\ DUHD DQG ORFDWLRQV RI FROOHFWLQJ VWDWLRQV

PAGE 27

)$08 )DUP 6WXG\ $UHD 7KH )$08 )DUP VWXG\ DUHD )LJ f LV ORFDWHG LQ WKH FHQWUDO SDQKDQGOH ZLWKLQ 2FKORFNRQHH 5LYHU EDVLQ 7KH UDYLQH V\VWHP VWXGLHG ELVHFWV SURSHUW\ RZQHG E\ )ORULGD $t0 8QLYHUVLW\ ZKLFK VHUYHV DV DQ DJULFXOWXUDO UHVHDUFK DQG H[WHQVLRQ FHQWHU IRU WKH XQLYHUVLW\ 7KH UDYLQH LV LQ D UHODWLYHO\ QDWXUDO VWDWH DQG EHFDXVH RI XQLYHUVLW\ RZQHUVKLS RIIHUV H[FHOOHQW RSSRUWXQLWLHV IRU VWXGLHV RI WKH DVVRFLDWHG KDUGZRRG KDPPRFN DQG VSULQJIHG VWUHDP &ROOHFWLQJ IRU WKH VXUYH\ ZDV FRQGXFWHG DW VWDWLRQV RQ WKLV OVWRUGHU VWUHDP ,Q DGGLWLRQ HPHUJHQFH WUDSV ZHUH SODFHG RYHU WKH VWUHDP DW ORFDWLRQV QHDU VWDWLRQ ), 7KH UHVXOWV RI WKH HPHUJHQFH VWXG\ DUH UHSRUWHG LQ &KDSWHU 7KH UDYLQH VSULQJUXQ LV D KHDGZDWHU IRU 4XLQF\ &UHHN D WULEXWDU\ RI WKH /LWWOH 5LYHU DQG SDUW RI WKH ODUJHU 2FKORFNRQHH 5LYHU %DVLQ ZKLFK GUDLQV SRUWLRQV RI WKH FHQWUDO )ORULGD SDQKDQGOH DQG )LJXUH )ORULGD $t0 8QLYHUVLW\ 5HVHDUFK DQG VRXWKHUQ *HRUJLD 7KH UDYLQH LV ([WHQVLRQ &HQWHU VWXG\ DUHD DQG ORFDWLRQV RI FROOHFWLQJ VWDWLRQV 0DS WDNHQ IURP 86*6 UHODWLYHO\ VKDOORZ D Pf DV PLQXWH 'RJWRZQ TXDGUDQJOH PHWHUV )$08 5HVHDUFK DQG ([WHQVLRQ &HQWHU 5(&f 6WXG\ $UHD 6WDWLRQ /RFDOLWLHV ), *DGVGHQ &R 4XLQF\ &N KHDGZDWHU VWUHDP XSSHU UHDFKf 3 )$08 5(& &RXQW\ 5G NP 1RUWK RI 4XLQF\ 1rn :rn ) *DGVGHQ &R 4XLQF\ &N KHDGZDWHU VWUHDP PLGGOH UHDFKf )$08 5(& &RXQW\ 5G NP 1RUWK RI 4XLQF\ 1rn :rn ) *DGVGHQ &R 4XLQF\ &N KHDGZDWHU VWUHDP ORZHU UHDFKf )$08 5(& &RXQW\ 5G NP 1RUWK RI 4XLQF\ 1rn :rn

PAGE 28

FRPSDUHG WR VDQGKLOO VWHHSKHDGV ZKLFK FDQ EH RYHU PHWHUV GHHS :LWKLQ WKH UDYLQH KDPPRFN LV D GLYHUVH PL[ RI PDLQO\ KDUGZRRG VSHFLHV LQFOXGLQJ GHFLGXRXV WUHHV VXFK DV $PHULFDQ EHHFK )DJXV JUDQGLIROLD (KUKf RDNV 4XHUFXV VSSf DQG KLFNRULHV &DU\D VSSf DV ZHOO DV HYHUJUHHQ VSHFLHV LQFOXGLQJ 0DJQROLD VSS PRXQWDLQ ODXUHO .DOPLD ODWLIROLD /f DQG )ORULGD 6WDU $QLVH ,OOLFLXP IORULGDQXP (OOLVf ZKLFK LV WKH GRPLQDQW VKUXE VSHFLHV LQ WKH UDYLQH ERWWRP /DQG XVH LQ WKH LPPHGLDWH YLFLQLW\ LV PDLQO\ DJULFXOWXUDO SODQWHG SLQH DQG SDVWXUHf DQG UHVLGHQWLDO 7KH VSULQJUXQ LV IRUPHG E\ VSULQJ IORZ LVVXLQJ IURP VPDOO VSULQJV DQG GLIIXVH VHHSDJH WKURXJKRXW WKH UDYLQH :DWHU LV VRPHZKDW DFLGLF PHDQ S+ f DQG ORZ LQ DONDOLQLW\ } PJ &D&2 /nf ZLWK D PHDQ FRQGXFWLYLW\ RI SPKRV FP 7KH ZDWHU WHPSHUDWXUHV LQ WKH XSSHU VHFWLRQV RI WKH VSULQJUXQ DUH UHODWLYHO\ FRQVWDQW PDLQWDLQLQJ D WHPSHUDWXUH EHWZHHQ DQG r& \HDUURXQG 7KH VSULQJUXQ DYHUDJHV DERXW PHWHU LQ ZLGWK DQG LQ PRVW SODFHV LV OHVV WKDQ FP GHHS DYHUDJH ZDWHU YHORFLW\ LV P VHF %HFDXVH RI VKDOORZ VRPHZKDW WXUEXOHQW IORZV WKH VSULQJUXQ LV ZHOO R[\JHQDWHG ZLWK R[\JHQ OHYHOV DYHUDJLQJ DERXW b RI WRWDO VDWXUDWLRQ *ROG +HDG 6WXG\ $UHD 7KH *ROG +HDG VWXG\ DUHD )LJ f LV ORFDWHG LQ QRUWKHDVWHUQ )ORULGD DW 0LNH 5RHVV *ROG +HDG %UDQFK 6WDWH 3DUN &OD\ &RXQW\f ZLWKLQ WKH ORZHU 6W -RKQV 5LYHU EDVLQ 7KH VWUHDP IRU ZKLFK WKH SDUN LV QDPHG *ROG +HDG %UDQFK RULJLQDWHV LQ D VWHHSKHDG UDYLQH WKDW GLVVHFWV WKH VRXWKHDVWHUQ HGJH RI D VDQGULGJH NQRZQ DV WKH 7UDLO 5LGJH 7KH XSODQGV DURXQG WKH UDYLQH KDPPRFN FRPSULVH SULPDULO\ [HULF VDQGKLOO FRPPXQLW\ :KLWH DQG -XGG f GRFXPHQWHG DQ H[WHQVLYH IORUD RI VRPH SODQW VSHFLHV UHSUHVHQWLQJ FRPPXQLWLHV LQ WKH *ROG +HDG UDYLQH DQG DGMDFHQW XSODQG %HVLGHV *ROG +HDG %UDQFK

PAGE 29

&217285 ,17(59$/ )((7 A W PHWHUV *ROG +HDG %UDQFK 6WXG\ $UHD 6WDWLRQ /RFDOLWLHV 1 &OD\ &R *ROG +HDG %UDQFK VWHHSKHDG 0LNH 5RHVV *ROG +HDG %UDQFK 6WDWH 3DUN 1fn! :O7 &OD\ &R *ROG +HDG %UDQFK ORZHU UHDFK QHDU 2OG 0LOO 6LWH 0LNH 5RHVV *ROG +HDG %UDQFK 6WDWH 3DUN 1rf :Uf )LJXUH *ROG +HDG %UDQFK VWXG\ DUHD DQG ORFDWLRQV RI FROOHFWLQJ VWDWLRQV 0DS WDNHQ IURP 86*6 PLQXWH *ROG +HDG %UDQFK TXDGUDQJOH RWKHU ZDWHUERGLHV LQ WKH DUHD LQFOXGH VHYHUDO VLQNKROH DQG VDQGKLOO ODNHV &ORVH WR WKH UDYLQH KHDG LV 6KHHOHU /DNH D GHHS DQG YHU\ ROG VLQNKROH ODNH DERXW \UV ROGf WKDW LV D ZHOONQRZQ DQG LPSRUWDQW SDO\QRORJLFDO VLWH VHH :DWWV DQG 6WXLYHU f *ROG +HDG %UDQFK ZDV VDPSOHG DW VWDWLRQV 6WDWLRQ DW WKH KHDG RI WKH UDYLQH DQG 6WDWLRQ

PAGE 30

* QHDU WKH HQG RI WKH UDYLQH MXVW DERYH WKH SRLQW DW ZKLFK WKH VWUHDP YDOOH\ ZLGHQV LQWR D GHOWD DQG WKH VWUHDP HQWHUV D IODWZRRGV DQG EDVLQ PDUVK EHIRUH IORZLQJ LQWR /DNH -RKQVRQ 8QOLNH WKH RWKHU UDYLQH VWUHDPV VWXGLHG *ROG +HDG %UDQFK WHUPLQDWHV DW D ODNH DQG LV PRUH LVRODWHG LQ WKLV VHQVH WKDQ WKH RWKHU VWUHDP VLWHV VWXGLHG ZKLFK ZHUH DOO SDUW RI ODUJHU VWUHDP QHWZRUNV 0DQ\ VPDOO VSULQJERLOV DQG H[WHQVLYH VHHSDJH RFFXU DW WKH UDYLQH KHDG FRQVHTXHQWO\ WKH VWUHDP UDSLGO\ JDLQV IORZ ZLWKLQ LWV ILUVW PHWHUV )ORZ OHYHOV IRU *ROG +HDG %UDQFK DV UHSRUWHG LQ WKH 3DUN 0DQDJHPHQW 3ODQ UDQJHG IURP JDOORQV SHU KRXU WR JDOORQV SHU KRXU $V LV W\SLFDO RI UDYLQH VSULQJUXQV LQ QRUWKHUQ )ORULGD ZDWHU WHPSHUDWXUH VWD\V ZLWKLQ D QDUURZ UDQJH WKH ZDWHU LV VRPHZKDW DFLGLF DQG KDV ORZ FRQGXFWLYLW\ 5HFHQW PHDVXUHPHQWV WDNHQ QHDU VWDWLRQ GXULQJ VHYHUDO WLPHV RI \HDU E\ WKH )ORULGD 'HSDUWPHQW RI (QYLURQPHQWDO 3URWHFWLRQ UDQJHG DV IROORZV S+ f ZDWHU WHPSHUDWXUH r&f VSHFLILF FRQGXFWDQFH SPKRV FPnf /HH %DQNV SHUVRQDO FRPPXQLFDWLRQf

PAGE 31

&+$37(5 75,&+237(5$ $1' 3/(&237(5$ %,2',9(56,7< 6859(< $V QRWHG LQ &KDSWHU UDYLQH HFRV\VWHPV LQ QRUWKHUQ )ORULGD KDYH EHHQ ZHOO GRFXPHQWHG LQ WHUPV RI WKHLU YHJHWDWLRQ DQG JHRPRUSKRORJ\ EXW NQRZOHGJH RI UDYLQH IDXQDV HVSHFLDOO\ DTXDWLF LQVHFW JURXSV LV UHODWLYHO\ LQFRPSOHWH 7KLV VWXG\ DQ LQYHVWLJDWLRQ LQWR FDGGLVIO\ DQG VWRQHIO\ ELRGLYHUVLW\ LV WKH ILUVW LQ ZKLFK DTXDWLF LQVHFWV ZHUH V\VWHPDWLFDOO\ FROOHFWHG IURP KHDGZDWHU DQG GRZQVWUHDP UHDFKHV RI VWUHDPV LQ VHYHUDO XSODQG DUHDV RI QRUWKHUQ )ORULGD WKDW SRVVHVV UHODWLYHO\ SULVWLQH DQG H[HPSODU\ UDYLQH HFRV\VWHPV 7KH REMHFWLYHV RI WKH VXUYH\ ZHUH WR LQYHQWRU\ WKH VSHFLHV RI 7ULFKRSWHUD DQG 3OHFRSWHUD RFFXUULQJ DW WKH VWXG\ DUHDV DQG WR FKDUDFWHUL]H VSHFLHV RFFXUUHQFHV LQ WHUPV RI JHRJUDSKLF GLVWULEXWLRQDO SDWWHUQV VSHFLHVKDELWDW DVVRFLDWLRQV DQG GLVWLQFWLYH IDXQDO HOHPHQWV 6XUYH\ GDWD SUHVHQWHG LQ WKLV FKDSWHU ZHUH DOVR XVHG IRU DQDO\]LQJ 7ULFKRSWHUD FRPPXQLW\ VWUXFWXUH &KDSWHU f DQG FKDUDFWHUL]LQJ FDGGLVIO\ DQG VWRQHIO\ DGXOW VHDVRQDOLW\ &KDSWHU f 3UHYLRXV :RUN $SDODFKLFROD %OXIIV DQG 5DYLQHV 2I WKH DUHDV VWXGLHG WKH 7RUUH\D UDYLQHV KLVWRULFDOO\ UHFHLYHG WKH PRVW DWWHQWLRQ IURP HDUO\ WK FHQWXU\ HQWRPRORJLVWV SUREDEO\ D UHVXOW RI WKH UHJLRQfV ERWDQLFDO SHFXOLDULWLHV :HOO NQRZQ HQWRPRORJLVWV ZKR VWXGLHG WKH 7RUUH\D DUHDfV LQVHFW ELRGLYHUVLW\ LQFOXGHG /HZLV %HUQHU (SKHPHURSWHUDf &) %\HUV DQG 0:HVWIDOO 2GRQDWDf 7+ +XEEHOO 2UWKRSWHUDf 6SHHG 5RGJHUV 'LSWHUD7LSXOLGDHf DQG ).

PAGE 32


PAGE 33

7KH ILUVW VWDWHZLGH VXUYH\ IRU VWRQHIOLHV LQ )ORULGD ZDV D FKHFNOLVW RI VSHFLHV SUHVHQWHG LQ %HUQHU f 7KH UHFRUGV SUHVHQWHG LQ %HUQHUfV FKHFNOLVW ZHUH EDVHG RQ VSHFLPHQV KH FROOHFWHG GXULQJ KLV H[SHGLWLRQV LQ WKH fV WR FROOHFW PD\IOLHV $PRQJ WKH VWRQHIO\ UHFRUGV SUHVHQWHG E\ %HPHU DUH FROOHFWLRQV IURP WKH $SDODFKLFROD UDYLQHV UHJLRQ LQFOXGLQJ 7RUUH\D 6WDWH 3DUN 6ZHHWZDWHU &UHHN DQG /LWWOH 6ZHHWZDWHU &UHHN 6XEVHTXHQW VWXGLHV RI WKH VWRQHIO\ IDXQD RI )ORULGD KDYH IRFXVHG PDLQO\ RQ ODUJHU FUHHNV DQG ULYHUVf§SDUWLFXODUO\ ZLWKLQ WKH %ODFNZDWHU 2FKORFNRQHH DQG 6XZDQQHH ULYHU EDVLQVf§QRW UDYLQH KHDGZDWHUV 5HFHQW SXEOLFDWLRQV WKDW VXPPDUL]HG WKH VWRQHIO\ IDXQD RI )ORULGD LQFOXGH WKH SDSHUV RI 6WDUN DQG *DXILQ f 3HVFDGRU HW DO f DQG 5DVPXVVHQ HW DO f RI WKHVH WKH ODVW WZR LQFRUSRUDWHG VWRQHIO\ FROOHFWLRQ GDWD IURP WKLV VWXG\ 7KURXJK WKH ZRUN RI YDULRXV 7ULFKRSWHULVWV WKH FDGGLVIO\ IDXQD RI )ORULGD DV ZLWK 3OHFRSWHUD LV IDLUO\ ZHOO NQRZQ 6WDWHZLGH VXUYH\DFFRXQWV ZHUH SURYLGHG E\ %OLFNOH f IRU +\GURSWLOLGDH DQG E\ *RUGRQ f IRU QRQK\GURSWLOLG FDGGLVIOLHV 3HVFDGRU HW DO f SURYLGHG ODUYDO NH\V DQG DQ XSGDWHG VSHFLHVFKHFNOLVW ZLWK GLVWULEXWLRQDO GDWD LQFOXGLQJ SUHOLPLQDU\ GDWD IURP WKLV VWXG\ RQ FDGGLVIOLHV IRXQG ZLWKLQ WKH $SDODFKLFROD UDYLQHV DQG )$08 )DUP UDYLQH /LJKW WUDSSLQJ KDYH FRQGXFWHG LQ UHFHQW \HDUV DW YDULRXV ZDWHUERGLHV EHVLGHV UDYLQH VWUHDPVf LQ FHQWUDO DQG QRUWKHUQ )ORULGD DQG VRXWKHUQ *HRUJLD ZDV FRPSOHPHQWDU\ WR WKLV VWXG\ DQG WKHVH GDWD ZHUH XVHG WR FRPSDUH UDYLQHDVVHPEODJH VSHFLHV FRPSRVLWLRQ ZLWK WKRVH RI RWKHU DTXDWLF KDELWDWV 2I WKH VWXG\ DUHDV LQFOXGHG LQ WKLV VXUYH\ WKH (JOLQ DUHD SUHYLRXVO\ ZDV VDPSOHG WKH PRVW H[WHQVLYHO\ IRU FDGGLVIOLHV $GXOW FDGGLVIOLHV ZHUH FROOHFWHG IURP VHYHUDO VWUHDPV RQ WKH HDVWHUQ VLGH RI (JOLQ $LU )RUFH %DVH E\ -) 6FKHLULQJ 7KH UHVXOWV UHSRUWHG LQ +DUULV

PAGE 34

HW DO f LQFOXGHG D QXPEHU RI VSHFLHV QHZ WR VFLHQFH VHYHUDO RI ZKLFK ZHUH VXEVHTXHQWO\ GHVFULEHG LQ /DJR DQG +DUULV f DQG %XHQR6RULD f 2I WKH QHZ VSHFLHV IRXQG RQ (JOLQ PRVW DUH QDUURZUDQJH HQGHPLFVf§HLWKHU FRQILQHG HQWLUHO\ WR (JOLQ RU RFFXS\LQJ VRPHZKDW ODUJHU UDQJHV WKDW H[WHQG LQWR RWKHU SDUWV RI WKH ZHVWHUQ SDQKDQGOH DQG DGMDFHQW FRDVWDO $ODEDPD DQG 0LVVLVVLSSL 7KH VWUHDP UHDFKHV VDPSOHG E\ 6FKHLULQJ GLG QRW LQFOXGH VWHHSKHDG RU XSSHU UDYLQHUHDFKHV 2QHWLPH OLJKW WUDSSLQJ E\ %$ $UPLWDJH DQG 0. :DUG DORQJ VHYHUDO VWUHDPV GRZQVWUHDP UHDFKHVf RQ WKH ZHVWHUQ VLGH RI (JOLQ UHVXOWHG LQ WKH GLVFRYHU\ RI DGGLWLRQDO QHZ VSHFLHV RI PLFURFDGGLVIOLHV VXEVHTXHQWO\ GHVFULEHG LQ +DUULV DQG $UPLWDJH f DQG +DUULV f 0DWHULDOV DQG 0HWKRGV 6SHFLPHQ FROOHFWLQJ &DGGLVIO\ DQG VWRQHIO\ DGXOWV DQG DTXDWLF VWDJHV IURP WKH VWDWLRQV ZHUH VDPSOHG XVLQJ D YDULHW\ RI TXDOLWDWLYH FROOHFWLQJ PHWKRGV %HFDXVH OHVV WKDQ b RI WKH FDGGLVIO\ DQG VWRQHIO\ VSHFLHV RFFXUULQJ LQ )ORULGD FDQ EH LGHQWLILHG WR VSHFLHV LQ WKH ODUYDO VWDJH FROOHFWLRQ PHWKRGV WDUJHWLQJ DGXOWV ZHUH HPSKDVL]HG IRU REWDLQLQJ VSHFLHVOHYHO GDWD )RU HDFK VDPSOLQJ GDWH 7DEOH f DGXOWV DQG XVXDOO\ DTXDWLF VWDJHV ZHUH FROOHFWHG 0RVW VDPSOHV ZHUH FROOHFWHG LQ WKH VSULQJ ZKHQ PRVW VSHFLHV DUH SUHVHQW DV DGXOWV +RZHYHU DW VWDWLRQV UHSHDWHGO\ VDPSOHG VXPPHU DQG IDOO VDPSOHV ZHUH DOVR REWDLQHG VR WKDW VSHFLHV HPHUJLQJ DV DGXOWV ODWHU LQ WKH \HDU ZRXOG QRW EH PLVVHG LQ WKH VXUYH\ $TXDWLF IRUPV ZHUH FROOHFWHG E\ DTXDWLF GLSQHW IURP YDULRXV EHQWKLF PLFURKDELWDWV LQFOXGLQJ URRWPDWV DTXDWLF PDFURSK\WHV OHDI SDFNV VQDJV DQG PLQHUDO VXEVWUDWHV %HQWKLF VDPSOLQJ FRQVLVWHG RI WDNLQJ VHYHUDO GLSQHW VZHHSV IURP UHSUHVHQWDWLYH EHQWKLF PLFURKDELWDWV RYHU D P VWUHDP UHDFK 1HW VDPSOHV ZHUH SXW LQ

PAGE 35

ZKLWH VRUWLQJ SDQV DQG VSHFLPHQV ZHUH ILHOGSLFNHG SODFHG LQ b HWK\O DOFRKRO DQG UHWXUQHG WR WKH ODERUDWRU\ IRU LGHQWLILFDWLRQ DQG FXUDWLRQ $GXOW VWRQHIOLHV DQG FDGGLVIOLHV ZHUH FROOHFWHG SULPDULO\ E\ OLJKW WUDSSLQJ EXW VZHHS QHWWLQJ DQG D EHDWLQJ VKHHW ZHUH DOVR RFFDVLRQDOO\ HPSOR\HG WR VXSSOHPHQW OLJKWWUDS FROOHFWLRQV DQG WR SURYLGH D PHDQV RI FROOHFWLQJ VWRQHIO\ DQG FDGGLVIO\ VSHFLHV QRW UHDGLO\ GUDZQ WR OLJKW 7KH EHDWLQJ VKHHW ZDV PRVW XVHIXO ZKHQ WHPSHUDWXUHV ZHUH ORZ DQG LQVHFWV ZHUH QRW DEOH WR HVFDSH E\ IO\LQJ DZD\ 6ZHHS QHWWLQJ ZDV GRQH GXULQJ ZDUPHU WLPHV RI \HDU WR FDSWXUH ERWK LQVHFWV VHHQ IO\LQJ DQG WR FDSWXUH LQGLYLGXDOV UHVWLQJ RQ ULSDULDQ YHJHWDWLRQ /LJKW WUDSSLQJ SURYLGHG WKH PRVW SURGXFWLYH PHDQV IRU FDSWXULQJ DGXOWV RI PRVW FDGGLVIOLHV VSHFLHV DV ZHOO DV PDQ\ VWRQHIO\ VSHFLHV /LJKW WUDSV HDFK FRQVLVWHG RI D ZDWW 89EODFNOLJKW %LR4XLSp ,WHP 1R f SODFHG RYHU D ZKLWH SDQ FP [ FPf FRQWDLQLQJ b HWK\O DOFRKRO 7KH FROOHFWLQJ OLJKWV ZHUH SRZHUHG E\ OLJKWZHLJKW YROW VHDOHG UHFKDUJHDEOHEDWWHULHV
PAGE 36

IHZ LQGLYLGXDOV VDPSOHV ZHUH QRW VXEVDPSOHG +RZHYHU LQ LQVWDQFHV RI VSHFLHV EHLQJ UHSUHVHQWHG E\ VHYHUDO KXQGUHG RU PRUH LQGLYLGXDOV LQ D OLJKWWUDS FROOHFWLRQ FRXQWV ZHUH DEEUHYLDWHG GXH WR WLPH FRQVWUDLQWV 6SHFLPHQ LGHQWLILFDWLRQV ZHUH WR WKH ORZHVW SRVVLEOH WD[RQRPLF OHYHO DQG H[FHSW IRU VRPH K\GURSWLOLG FROOHFWLRQV WKH QXPEHU RI VSHFLPHQV IRU HDFK VSHFLHV UHFRUG ZDV WDOOLHG ,PPDWXUH IRUPV DQG IHPDOHV IRU PDQ\ JHQHUD FRXOG QRW EH LGHQWLILHG WR VSHFLHVOHYHO DQG ZHUH QRW LQFOXGHG LQ WKH DQDO\VHV $GXOW LGHQWLILFDWLRQV XVXDOO\ UHTXLUHG H[DPLQDWLRQ RI JHQLWDOLF VWUXFWXUHV $Q H[WHQVLYH ERG\ RI WD[RQRPLF OLWHUDWXUH ZDV FRQVXOWHG DQG FROOHFWLRQV KRXVHG DW )$08 VHUYHG DV UHIHUHQFH PDWHULDO 6SHFLPHQV RI YDULRXV WD[D ZHUH VHQW WR WD[RQRPLF VSHFLDOLVWV IRU LGHQWLILFDWLRQV RU YHULILFDWLRQV 'U 6WHYHQ +DUULV LGHQWLILHG DOO WKH PLFURFDGGLVIO\ +\GURSWLOLGDHf FROOHFWLRQV 'U 3DXO /DJR LGHQWLILHG D ODUJH QXPEHU RI K\GURSV\FKLG DQG SRO\FHQWURSRGLG VSHFLPHQV 'U -DPHV *ORYHU YHULILHG LGHQWLILFDWLRQV RI 7ULDHQRGHV /HSWRFHULGDHf VSHFLHV 6WRQHIO\ VSHFLDOLVWV WKDW ZHUH FRQVXOWHG LQFOXGHG 'U %LOO 6WDUN 'U 6WDQOH\ 6]F]\WNR DQG 'U 5LFKDUG %DXPDQQ 6\QRSWLF YRXFKHU FROOHFWLRQV ZLOO EH GHSRVLWHG LQ WKH IROORZLQJ ORFDWLRQV )ORULGD $t0 8QLYHUVLW\ $TXDWLF ,QVHFW &ROOHFWLRQ &OHPVRQ 8QLYHUVLW\ $UWKURSRG &ROOHFWLRQ DQG LQ WKH SHUVRQDO FROOHFWLRQ RI WKH DXWKRU 'HVFULSWLRQV RI QHZ VSHFLHV DQG GHSRVLWLRQ RI W\SH PDWHULDO ZDV RU ZLOO EH GHWDLOHG LQ VHSDUDWH SDSHUV 'DWD DQDO\VLV 6SHFLPHQ FROOHFWLRQ GDWD IURP WKH VXUYH\ ZHUH HQWHUHG LQWR D UHODWLRQDO GDWDEDVH 3DUDGR[ f VR WKDW VSHFLPHQ GDWD FRXOG EH HDVLO\ UHWULHYHG DQG TXHULHG )RU HDFK VSHFLHV VSHFLPHQ FRXQWV IURP FROOHFWLRQV DW HDFK VDPSOLQJ VWDWLRQ ZHUH VXPPHG DQG DEXQGDQFH GDWD ZHUH HQWHUHG LQWR VSUHDGVKHHW PDWULFHV VSHFLHV ULFKQHVV DQG DEXQGDQFH YDOXHV ZHUH GHWHUPLQHG IRU WKH GLIIHUHQW VWDWLRQV DQG VWXG\ DUHDV

PAGE 37

5HVXOWV DQG 'LVFXVVLRQ 7KH VXUYH\ RI UDYLQHV LQ QRUWKHUQ )ORULGD IRU 7ULFKRSWHUD DQG 3OHFRSWHUD VSHFLHV GLYHUVLW\ UHYHDOHG D GLYHUVH DQG LQWHUHVWLQJ IDXQD $ VXPPDU\ RI WKH QXPEHU RI VSHFLHV DQG VSHFLPHQV LGHQWLILHG IURP HDFK VWDWLRQ LV SUHVHQWHG LQ 7DEOH 2YHUDOO PRUH WKDQ VSHFLPHQV ZHUH LGHQWLILHG WR VSHFLHV DQG WKH VSHFLHV RI 7ULFKRSWHUD DQG WKH VSHFLHV RI 3OHFRSWHUD LGHQWLILHG UHSUHVHQW DSSUR[LPDWHO\ b DQG b UHVSHFWLYHO\ RI WKH WRWDO NQRZQ IDXQDV LQ )ORULGD 7KH KLJK VSHFLHV ULFKQHVV UHIOHFWV WKH ZLGH DUUD\ RI KLJKTXDOLW\ KDELWDWV IRXQG ZLWKLQ UDYLQH GUDLQDJH QHWZRUNV WKDW VSDQ PXFK RI ELRWDULFK QRUWKHUQ )ORULGD 7DEOH 6XPPDU\ RI VXUYH\ UHVXOWV 6HH &KDSWHU IRU H[SODQDWLRQ RI VWDWLRQ FRGLQJf 7ULFKRSWHUD 3OHFRSWHUD F/ 6WDWLRQ J &RGH A 6DPSOLQJ 'DWHV 6SHFLHV Qf 6SHFLPHQV ,GHQWLILHG 6SHFLHV Qf Qf 6SHFLPHQV ,GHQWLILHG Qf (O 9 ; LLL LY YL LY ( ; LLL LY YL  OLY ( 9 ; LLL LY YL LY ( LLL 9 ; LLL LY  OLY ( [ LY YL ( [ LY YL ( 9 ; LY YL ( [L ( [L OY LLL LY YL O[L ( LLL (OO LLL ( LLL $ LY YL $ LY [L OLY YL $ LY [L OLY YL $ LY [L OLY YL $ OLY YL $ 9 LY YL LY [L OLY YL $ 9 [LL LLL YLLL ; YL $ OLY YL $ [LL LLL YLLL ; YL

PAGE 38

7DEOH &RQWLQXHG 6WDWLRQ &RGH 6DPSOHV Qf 6DPSOLQJ 'DWHV 7ULFKRSWHUD 6SHFLPHQV 6SHFLHV ,GHQWLILHG Qf Qf 3OHFRSWHUD 6SHFLPHQV 6SHFLHV ,GHQWLILHG ,Qf $ LY 9 ; LLL YLLL [ $OO 9 LLL YLLL [ YL $ ; LLL [ ), LY 9 LLL L[ OO[L ) 9 [ 9 LLL L[ ) L[ OY YL ; LLL YL OY YL ; LLL YL 7KH IROORZLQJ VHFWLRQV JLYH DQ DFFRXQWLQJ RI VSHFLHV RFFXUUHQFH ZLWKLQ WKH VWXG\ DUHDV DQG QRWHV DUH LQFOXGHG RQ VSHFLHV JHRJUDSKLF GLVWULEXWLRQ DQG KDELWDW DVVRFLDWLRQV SDUWLFXODU DWWHQWLRQ LV SDLG WR IDXQDO HOHPHQWV WKDW DUH XQLTXH WR RU FKDUDFWHULVWLF RI WKH VWUHDP KDELWDWV VDPSOHG 6SHFLHV FRQVHUYDWLRQ VWDWXV DFFRUGLQJ WR WKH )ORULGD &RPPLWWHH RQ 5DUH DQG (QGDQJHUHG 3ODQWV DQG $QLPDOV )&5(3$f LV LGHQWLILHG DQG DPRQJ WKH UHFHQWO\ GLVFRYHUHG VSHFLHV UHFRPPHQGDWLRQV DUH PDGH FRQFHUQLQJ VSHFLHV WKDW VKRXOG EH FRQVLGHUHG DV FDQGLGDWHV IRU IXWXUH OLVWLQJ )DXQDO (OHPHQWV RI 6SHFLDO ,QWHUHVW $PRQJ WKH VWRQHIO\ DQG FDGGLVIO\ VSHFLHV UHFRUGHG LQ WKH VXUYH\ UHFRJQL]H DSSUR[LPDWHO\ VSHFLHV RI VSHFLDO LQWHUHVW 7DEOH f WKDW UHSUHVHQW IDXQDO HOHPHQWV GLVWLQFWLYH RI WKH KDELWDWV DQG JHRJUDSKLF DUHDV ZKHUH WKH\ RFFXU &ROOHFWLRQ UHFRUGV IRU WKH PDMRULW\ RI WKHVH VSHFLHV VXJJHVW WKDW WKH UDYLQHV VXUYH\HG FRQWDLQ KDELWDWV YLWDO IRU VXSSRUWLQJ ORFDO SRSXODWLRQV 7KHVH VSHFLHV RI VSHFLDO LQWHUHVW H[HPSOLI\ WKH XQLTXH ELRWD IRXQG LQ UDYLQH HFRV\VWHPV DQG WKHLU RFFXUUHQFHV DWWHVW WR WKH LPSRUWDQFH RI UDYLQH KDELWDWV LQ VXSSRUWLQJ D GLVWLQFW DQG GLYHUVH IDXQD 6SHFLHV ZHUH GHVLJQDWHG DV VSHFLHV RI VSHFLDO LQWHUHVW LI WKH\ ILW LQWR RQH RU PRUH RI WKH IROORZLQJ FDWHJRULHV UDYLQH FUHQRELRQW QDUURZUDQJH HQGHPLF GLVMXQFW OLVWHG E\ )&5(3$ DV 5DUH RU 7KUHDWHQHG 7KH

PAGE 39

WHUPLQRORJ\ fUDYLQH FUHQRELRQWf fQDUURZUDQJH HQGHPLFf DQG fGLVMXQFWf VKRXOG EH GHILQHG WR SUHYHQW PLVXQGHUVWDQGLQJ $ VSHFLHV UHVWULFWHG WR UDYLQHKHDG VSULQJUXQV LV UHIHUUHG WR DV D fUDYLQH FUHQRELRQWf EHFDXVH RI LWV FORVH HFRORJLFDO DVVRFLDWLRQ DQG FRQILQHPHQW WR UDYLQH FUHQDO KDELWDWV $ fQDUURZUDQJH HQGHPLFf IRU WKLV VWXG\ LV GHILQHG DV D VSHFLHV KDYLQJ LWV HQWLUH JHRJUDSKLF UDQJH ZLWKLQ WKH ORZHU FRDVWDOf DUHDV RI WKH 6RXWKHDVWHUQ &RDVWDO 3ODLQ $ VSHFLHV UHIHUUHG WR DV fGLVMXQFWf KDV SRSXODWLRQV ZLWKLQ WKH VWXG\ DUHDV WKDW DUH VHSDUDWHG E\ FRQVLGHUDEOH GLVWDQFHV IURP WKH VSHFLHVf PDLQ JHRJUDSKLF UDQJH W\SLFDOO\ ZLWK IHZ LI DQ\ LQWHUYHQLQJ SRSXODWLRQV RQ WKH 6RXWKHDVWHUQ &RDVWDO 3ODLQ 7DEOH 6SHFLHV RI VSHFLDO LQWHUHVW UDYLQH FUHQRELRQWV QDUURZUDQJH HQGHPLFV GLVMXQFWV DQG VSHFLHV OLVWHG E\ WKH )ORULGD &RPPLWWHH RQ 5DUH DQG (QGDQJHUHG 3ODQWV DQG $QLPDOV )&5(3$f DV 5DUH 5f 7KUHDWHQHG 7f RU RI 8QGHWHUPLQHG 6WDWXV 8f 6SHFLHV 6WXG\ $UHD 5DYLQH 1DUURZO\ 'LVMXQFW )&5(3$ 2FFXUUHQFH &UHQRELRQW HQGHPLF 6WDWXVE 75,&+237(5$ +\GURSV\FKLGDH 7 5 &KHXPDWRSV\FKH JRUGRQDH ( ; &KHXPDWRSV\FKH SHWHUVL ( ; 'LSOHFWURQD PRGHVWD ( $ ) ; 'LSOHFWURQD VS $ ; ; 3KLORSRWDPLGDH &KLPDUUD IDOFXODWD ( $ ; 3RO\FHQWURSRGLGDH &HUQRWLQD WUXQFRQD 1\FWLRSK\OD[ PRUVHL 3RO\FHQWURSXV FOLQHL ( ; 3RO\FHQWURSXV IORULGHQVLV ( ; +\GURSWLOLGDH +\GURSWLOD DSDODFKLFROD $ ; +\GURSWLOD EULEULDH ( ; +\GURSWLOD FLUFDQJXOD ( ; +\GURSWLOD HJOLQHQVLV ( ; +\GURSWLOD KDPLOWRQL ( ; +\GURSWLOD ODWRVD +\GURSWLOD OORJDQDH ( ( ; +\GURSWLOD PROVRQDH ( ; +\GURSWLOD RNDORRVD ( ; +\GURSWLOD SDUDVWUHSKD ( ; +\GURSWLOD VDUDKDH ( ; 1HRWULFKLD DUPLWDJHL ( ; 2FKURWULFKLD DSDODFKLFROD 2UWKRWULFKLD EDOGXIL ( $ $ ) ; 5 5 ; 5 5 5 ;

PAGE 40

7DEOH &RQWLQXHG 6SHFLHV 6WXG\ $UHD 2FFXUUHQFH 5DYLQH &UHQRELRQW 1DUURZO\ HQGHPLF 'LVMXQFW )&5(3$ 6WDWXVE 2UWKRWULFKLD FXUWD 5 2[\HWKLUD FKU\VRFDUD ; 2[\HWKLUD HOHUREL ( 5 2[\HWKLUD IORULGD ( ; 7 2[\HWKLUD JUVHD $ ; 2[\HWKLUD NHOOH\L ( ; 7 2[\HWKLUD VHWRV D $ 5 %HUDHLGDH %HUDHD Q VS ( ; ; %UDFK\FHQWULGDH 0LFUDVHPD Q VS ( ; &DODPRFHUDWLGDH +HWHURSOHFWURQ DPHULFDQXP ( $ ) ; ; /HSLGRVWRPDWLGDH /HSLGRVWRPD JULVHXP $ ; /HSLGRVWRPD ODWLSHQQH $ ; /HSLGRVWRPD VHUUDWXP ( ) ; ; /HSWRFHULGDH &HUDFOHD GLOXD ( ; 1HFWRSV\FKH SDOXGLFROD ( ; 8 2HFHWLV GD\WRQD ( 5 7ULDHQRGHV KHOR $ ; 5 7ULDHQRGHV WDHQLD $ ) ; ; 0RODQQLGDH 0RODQQD EOHQGD ( $ ) ; ; 2GRQWRFHULGDH 3VLORWUHWD IURQWDOLV ( $ ) ; ; 6HULFRVWRPDWLGDH $JDURGHV ORJDQL ) ; ; $JDURGHV ]LF]DF ( ; 7 3/(&237(5$ /HXFWULGDH /HXFWUD FRWWDTXLOOD ( ; /HXFWUD WULORED $ ) ; ; 3HUOLGDH $FURQHXULD O\FRULDV ( $ ) ; (FFRSWXUD [DQWKHQHV $ ) ; ; 3HUOHVD VS $ ( 3HUOHVD VS % ( 3WHURQDUF\LGDH 3WHURQDUF\V GRUVDWD ( $ ; D +LJKHU FODVVLILFDWLRQ DQG DXWKRU QDPHV DUH RPLWWHG VHH 7DEOHV WR f E &RQVHUYDWLRQ VWDWXV WDNHQ IURP 'H\UXS DQG )UDQ] f (OHYHQ VSHFLHV RI UDYLQH FUHQRELRQWV ZHUH UHFRUGHG LQ WKH VXUYH\ FDGGLVIO\ VSHFLHV DQG VWRQHIO\ VSHFLHV 2I WKHVH FDGGLVIO\ VSHFLHV 'LSOHFWURQD VS $ %HUDHD Q VS $JDURGHV ORJDQLf DSSHDU WR EH QDUURZUDQJH HQGHPLFV 7KH RWKHU UDYLQH FUHQRELRQWV DUH

PAGE 41

VSHFLHV WKDW W\SLFDOO\ RFFXU LQ VPDOO FRRO VWUHDPV RI PRUH QRUWKHUQ ODWLWXGHV 2WKHU VSHFLHV ZHUH LQYHQWRULHG WKDW DUH QRW UHVWULFWHG WR XSSHU UHDFKHV RI UDYLQH VWUHDPV EXW DUH QDUURZO\ HQGHPLF RU KDYH GLVMXQFW SRSXODWLRQV RFFXUULQJ ZLWKLQ WKH VWUHDP V\VWHPV VDPSOHG 0RUH WKDQ QDUURZO\HQGHPLF VSHFLHV ZHUH UHFRUGHG IURP WKH VWUHDPV VXUYH\HG WKH PDMRULW\ VSHFLHVf EHORQJ WR WKH 7ULFKRSWHUD IDPLO\ +\GURSWLOLGDH $OO VWXG\ DUHDV FRQWDLQHG QDUURZUDQJH HQGHPLFV EXW WKH (JOLQ VWXG\ DUHD VKRZHG E\ IDU WKH KLJKHVW GHJUHH RI HQGHPLVP 2I WKH VSHFLHV RI FDGGLVIOLHV LQYHQWRULHG DW WKH (JOLQ VWDWLRQV VSHFLHV bf DUH QDUURZUDQJH HQGHPLFV %\ DOO LQGLFDWLRQV (JOLQfV VSULQJ IHG VWUHDPV GXH WR WKHLU KLJKTXDOLW\ KDELWDWV DQG SK\VLFDO LVRODWLRQ DUH D PDMRU FHQWHU RI FDGGLVIO\ HQGHPLVP ZLWKLQ WKH 6RXWKHDVWHUQ &RDVWDO 3ODLQ $V GLVFXVVHG LQ WKH IROORZLQJ VXUYH\ DFFRXQWV VRPH QDUURZUDQJH HQGHPLFV DSSHDU WR EH UHVWULFWHG ZLWKLQ WKH SDUWLFXODU VWXG\ DUHD RU SRVVLEO\ D VLQJOH VWUHDP V\VWHP ZKLOH RWKHU VSHFLHV RFFXU DFURVV VRPHZKDW ODUJHU DUHDV 'LIIHUHQFHV LQ UHODWLYH DEXQGDQFH ZHUH VLJQLILFDQW DQG WKHVH GLIIHUHQFHV JLYH VRPH LQGLFDWLRQ DV WR ZKLFK VSHFLHV DUH PRVW LPSRUWDQW WR HFRV\VWHP IXQFWLRQLQJ 0DQ\ RI WKH HQGHPLFV OLVWHG DSSHDU WR EH QRW DV FRPPRQ RU DV DEXQGDQW IURP RXWVLGH WKH VWXG\ DUHD DQG LW VHHPV SUREDEOH WKDW VSHFLDWLRQ RFFXUUHG ORFDOO\ DXWRFKWKRQRXV HQGHPLFVf DQG GLVSHUVDO WR D ZLGHU JHRJUDSKLF DUHD LV OLPLWHG GXH WR HQYLURQPHQWDO IDFWRUV %HFDXVH RI UHVWULFWHG GLVWULEXWLRQV RI WKHVH VSHFLHV WKH\ DUH SDUWLFXODUO\ YXOQHUDEOH WR H[WLQFWLRQ 6L[WHHQ FDGGLVIO\ VSHFLHV UHSRUWHG LQ WKH VXUYH\ DUH FRQVLGHUHG E\ WKH )ORULGD &RPPLWWHH RQ 5DUH DQG (QGDQJHUHG 3ODQWV WR EH 5DUH RU 7KUHDWHQHG 'H\UXS t )UDQ] f 7KHUH ZHUH D QXPEHU RI VSHFLHV FROOHFWHG WKDW DUH GLVMXQFW IURP WKHLU PDLQ JHRJUDSKLF UDQJHV 0DQ\ RI WKHVH VSHFLHV OLNHO\ DUH XQDEOH WR WROHUDWH KLJK WHPSHUDWXUH H[WUHPHV DQG WKXV DUH UHVWULFWHG LQ )ORULGD WR WKHUPDOO\

PAGE 42

EXIIHUHG VWHHSKHDG DQG FOD\KLOO UDYLQH VWUHDPV 7KH PDMRULW\ RI GLVMXQFWV RFFXU LQ WKH FHQWUDO SDQKDQGOH UHJLRQ DQG OLNHO\ GLVSHUVHG WR WKH UHJLRQ IURP WKH VRXWKHUQ $SSDODFKLDQ KLJKODQGV YLD $SDODFKLFROD)OLQW&KDWWDKRRFKHH ZDWHUVKHG FRQQHFWLRQV 6XUYH\ $FFRXQW RI 7ULFKRSWHUD 2YHUDOO 7ULFKRSWHUD VSHFLHV UHSUHVHQWLQJ JHQHUD DQG IDPLOLHV ZHUH LGHQWLILHG IURP DPRQJ WKH VDPSOHV WDNHQ DW WKH FROOHFWLQJ VWDWLRQV $ WRWDO RI VSHFLPHQV ZHUH LGHQWLILHG WR VSHFLHV 7KH IDPLO\ +\GURSWLOLGDH FRQWDLQHG WKH PRVW VSHFLHV f LQYHQWRULHG IROORZHG E\ /HSWRFHULGDH f +\GURSV\FKLGDH f 3RO\FHQWURSRGLGDH f 3KLORSRWDPLGDH f 6HULFRVWRPDWLGDH f 'LSHVHXGRSVLGDH f %UDFK\FHQWULGDH f /HSLGRVWRPDWLGDH f 0RODQQLGDH f 3KU\JDQHLGDH f &DODPRFHUDWLGDH f /LPQHSKLOLGDH f 3V\FKRP\LLGDH f 5K\DFRSKLOLGDH f 2GRQWRFHULGDH f %HUDHLGDH f 6SHFLHV ULFKQHVV IRU WKH VWXG\ DUHDV ZDV DV IROORZV (JOLQ VSHFLHVf $SDODFKLFROD VSHFLHVf )$08 )DUP VSHFLHVf DQG *ROG +HDG VSHFLHVf &DGGLVIO\ IDXQDO FRPSRVLWLRQ GLIIHUHG VLJQLILFDQWO\ DPRQJ VWXG\ DUHDV DQG PDQ\ VSHFLHV ZHUH UHFRUGHG IURP RQO\ D VLQJOH VWXG\ DUHD &ROOHFWLRQV IURP HDFK VWXG\ DUHD FRQWDLQHG WKH IROORZLQJ QXPEHU RI VSHFLHV UHFRUGHG VROHO\ ZLWKLQ WKDW SDUWLFXODU VWXG\ DUHD (JOLQ VSHFLHVf $SDODFKLFROD VSHFLHVf )$08 )DUP VSHFLHVf DQG *ROG +HDG VSHFLHVf 7KH 7ULFKRSWHUD VSHFLHV LQYHQWRU\ SUHVHQWHG LQ 7DEOHV WR LV GLVFXVVHG EHORZ )DPLO\ VXEKHDGLQJV DQG VSHFLHV DUH DUUDQJHG DOSKDEHWLFDOO\ XQGHU HDFK RI WKH ZLGHO\ UHFRJQL]HG 7ULFKRSWHUD VXERUGHUV $QQXOLSDOSLD 6SLFLSDOSLD ,QWHJULSDOSLDf

PAGE 43

7DEOH 6XUYH\ 6XPPDU\ 7ULFKRSWHUD$QQXOLSDOSLDf 6SHFLHV &ROO Qf 6SHFL PHQV Qf 6WXG\ $UHD b RI 7RWDO 6SHFLPHQVf >&ROOHFWLRQ 6WDWLRQ 1XPEHU@ 'LSVHXGRSVLGDH 3K\ORFHQWURSXV FDUROLQXV &DUSHQWHU (f>@$f>@ )f>O@ 3K\ORFHQWURSXV OXFLGXV +DJHQf $f>@ )f>O@ 3K\ORFHQWURSXV SODFLGXV %DQNVf (f>@$f>@ +\GURSV\FKLGDH &KHXPDWRSV\FKH EXUNVL 5RVV (f>@ )f>@ &KHXPDWRSV\FKH FDPS\OD 5RVV $ f> @ &KHXPDWRSV\FKH HGLVWD *RUGRQ (f>@ $f> @ )f>O@ &KHXPDWRSV\FKH JRUGRQDH /DJR t (f>O@ +DUULV &KHXPDWRSV\FKH SHWHUVL 5RVV HW DO ( f> @ &KHXPDWRSV\FKH SHWWLWL %DQNVf (f>@ $f> @ )f>O@ &KHXPDWRSV\FKH SLQDFD 5RVV $f> @ )Of>O@ *f>O@ &KHXPDWRSV\FKH YLUJLQLFD 'HQQLQJ (f>@$f>@ 'LSOHFWURQD PRGHVWD %DQNV (f>@$f>@)f>@ 'LSOHFWURQD VS $ *f>O@ +\GURSV\FKH EHWWHQL 5RVV )f>@ +\GURSV\FKH GHFDOGD 5RVV *f>O@ +\GURSV\FKH HOLVVRPD 5RVV (f>O@$f>OO@)Of>O@ +\GURSV\FKH LQFRPPRGD +DJHQ (f> @ $f> @ )f>O@ +\GURSV\FKH URVVL )OLQW HW DO (f>@ $f>O@ 0DFURVWHPXP FDURWLQD %DQNVf (f> @ 3RWDP\LD IODYD +DJHQf $f>@ 3KLORSRWDPLGDH &KLPDUUD DWHUULPD +DJHQf (f> @ $f>@ )f>O@ *f>O@ &KLPDUUD IDOFXODWD /DJR t +DUULV (f>@$f>@ &KLPDUUD IORULGD 5RVV (f> @ $f>@ *f>O@ &KLPDUUD PRVHO\L 'HQQLQJ (f>O@ $ f> @ &KLPDUUD REVFXUD :DONHUf $f> @ )f>O@ 3RO\FHQWURSRGLGDH &HUQRWLQD FDOFHD 5RVV (f>@ &HUQRWLQD VSLFDWD 5RVV $f>@ &HUQRWLQD WUXQFRQD 5RVV *f>O@ &\UQHOOXV IUDWHUQDV %DQNVf $f>O@ 1HXUHFOLSVLV FUHSXVFXODULV :DONHUf (f>@$f>@ 1HXUHFOLSVLV PHOFR 5RVV (f>OO @ 1\FWLRSK\OD[ DIILQLV %DQNVf )f>@ 1\FWLRSK\OD[ PRUVHL /DJR t +DUULV (f>O@ 1\FWLRSK\OD[ VHUUDWXV /DJR t +DUULV (f>@$f>@*f>@ 3RO\FHQWURSXV EOLFNOHL 5RVV t $f>@)f>@*f>@ O@ $f>O @ )f>@ *f>O@ 3RO\FHQWURSXV FOLQHL 0LOQHf *f>@ 3RO\FHQWURSXV IORULGHQVLV /DJR t +DUULV (f>O@ 3V\FKRP\LLGDH /\SH GLYHUVD %DQNVf (fI $f> )OfQ@

PAGE 44

7DEOH 6XUYH\ 6XPPDU\ 7ULFKRSWHUD6SLFLSDOSLDf 6SHFLHV &ROO Qf 6SHFLPHQV 6WXG\ $UHD b RI 7RWDO &ROOHFWLRQVf QfD &ROOHFWLRQ 6WDWLRQ 1XPEHU +\GURSWLOLGDH +\GURSWLOD DSDODFKLFROD +DUULV HW DO $f>@ +\GURSWLOD EHUQHUL 5RVV $ f> @ +\GURSWLOD EULEULDH +DUULV ( f> @ +\GURSWLOD FLUFDQJXOD +DUULV ( f>@ +\GURSWLOD GLVJDOHUD +RO]HQWKDO t .HOOH\ (f>O @ $f>@ +\GURSWLOD HJOLQHQVLV +DUULV (f> @ +\GURSWLOD KDPLOWRQL +DUULV (f>O@ +\GURSWLOD ODWRVD 5RVV (f> @ *f>O@ +\GURSWLOD OORJDQDH %OLFNOH ( f> @ +\GURSWLOD PROVRQDH %OLFNOH (f>@ +\GURSWLOD QRYLFXOD %OLFNOH t 0RUVH )f>@ +\GURSWLOD RNDORRVD +DUULV (f>O@ +\GURSWLOD SDUDVWUHSKD .HOOH\ t +DUULV (f>@ +\GURSWLOD TXLQOD 5RVV (f> @ $f>OO @ )f>O@ +\GURSWLOD UHPLWD %OLFNOH t 0RUVH (f>@ $f>O @ +\GURSWLOD VDUDKDH +DUULV (f>O@ +\GURSWLOD ZDXEHVLDQD %HWWHQ (f>O @ )f>O@ *f>@ 0D\DWULFKLD D\DPD 0RVHO\ (f>@ $f>@ )f>@ *f>O@ 1HRWULFKLD DUPLWDJHL +DUULV (f> @ *f>O@ 1HRWULFKLD PLQXWLVLPHOOD &KDPEHUVf $f>@ 1HRWULFKLD YLEUDQV 5RVV $f>@ 2FKURWULFKLD DSDODFKLFROD +DUULV HW DO (f>@ $f>@ 2FKURWULFKLD FRQIXVD 0RUWRQf $f>@ 2UWKRWULFKLD DHJHUIDVFLHOOD &KDPEHUVf (f>O@ $f>@ )f>O@ *f>@ 2UWKRWULFKLD EDOGXIL .LQJVROYHU t 5RVV $f>@ )f>@ 2UWKRWULFKLD FULVWDWD 0RUWRQ (f>@$f>@)f>@ 2UWKRWULFKLD FXUWD .LQJVROYHU t 5RVV *f>O@ 2[\HWKLUD DEDFDWLD 'HQQLQJ (f>O@ $f>@ )f>O@ *f>O@ 2[\HWKLUD FKU\VRFDUD +DUULV *f>@ 2[\HWKLUD HOHUREL %OLFNOHf (f>@ 2[\HWKLUD IORULGD 'HQQLQJ (f> @ *f>O@ 2[\HWKLUD JODVD 5RVVf (f>@$f>@*f>@ 2[\HWKLUD JUVHD %HWWHQ $f>@ 2[\HWKLUD MDQHOOD 'HQQLQJ (f>O@ $f>@ )f>O @ *f>O@ 2[\HWKLUD NHOOH\L +DUULV (f>O@ 2[\HWKLUD OXPRVD 5RVV (f>O@ $f>O @ *f>O@ 2[\HWKLUD PD\D 'HQQLQJ (f>O@ $f>O@ 2[\HWKLUD QRYDVRWD 5RVV (f>@$f>@)f>@ 2[\HWKLUD SDOOLGD %DQNVf $f> @ )f>@ 2[\HWKLUD SHVFDGRUL +DUULV t .HWK (f> @ *f>>O@ 2[\HWKLUD VDYDQQLHQVLV .HOOH\ t +DUULV (f> @ *f>@ 2[\HWKLUD VHWRVD 'HQQLQJ $f>@ 2[\HWKLUD YHUQD 5RVV $f>@ 2[\HWKLUD ]HURQLD 5RVV (f> @ $f> @ 5K\DFRSKLOLGDH 5K\DFRSKLOD &DUROLQD %DQNV (f> @ $f>@ )f>O@ D LQGLFDWHV WKDW VSHFLPHQ FRXQWV ZHUH QRW PDGH IRU RU PRUH FROOHFWLRQV E 6XUYH\ DUHD b DEXQGDQFHV EDVHG RQ WRWDO LQGLYLGXDOV

PAGE 45

7DEOH 6XUYH\ 6XPPDU\ 7ULFKRSWHUD,QWHJULSDOSLDf &ROO 6SHFLPHQV 6WXG\ $UHD b RI 7RWDO 6SHFLPHQVf 6SHFLHV Qf Qf >&ROOHFWLRQ 6WDWLRQ 1XPEHU@ %HUDHLGDH %HUDHD Q VS (f>O@ %UDFK\FHQWULGDH %UDFK\FHQWUXV FKHODWXV 5RVV (f>@ $f>@ 0LFUDVHPD Q VS ( f> @ 0LFUDVHPD ZDWDJD 5RVV $f> @ *f>O@ &DODPRFHUDWLGDH $QLVRFHQWURSXV S\UDORLGHV :DONHUf (f>O@ $f>O @ )f>O@ +HWHURSOHFWURQ DPHULFDQXP :DONHUf (f> @ $f>O @ )f>O@ /HSLGRVWRPDWLGDH /HSLGRVWRPD JULVHXP %DQNVf $f>O @ /HSLGRVWRPD ODWLSHQQH %DQNVf $f>OO@ /HSLGRVWRPD VHUUDWXP )OLQW t (f>O@ )f>O@ :LJJLQV /HSWRFHULGDH &HUDFOHD FDQFHOODWD %HWWHQf $f>@ &HUDFOHD GLOXD +DJHQf (f>@ &HUDFOHD IODYD %DQNVf $f>O@ &HUDFOHD PDFODOD %DQNVf (f> @ $f>OO @ &HUDFOHD QHSKD 5RVVf $f>@ &HUDFOHD RSKLRGHUXV 5RVVf $f>@ &HUDFOHD SURWRQHSKD 0RUVH t 5RVV (Of>@ $f>O@ &HUDFOHD UHVXUJHQV :DONHUf ( f>@ &HUDFOHD WDUVLSXQFWDWD 9RUKLHVf $ f >@ &HUDFOHD WUDQVYHUVD +DJHQf $f>@ )f>O@ /HSWRFHUXV DPHULFDQXV %DQNVf $f>@)f>@ 1HFWRSV\FKH FDQGLGD +DJHQf (f>@ 1HFWRSV\FKH H[TXLVLWD :DONHUf (f>@$f>@ 1HFWRSV\FKH SDOXGLFROD +DUULV (f>O@ 1HFWRSV\FKH SDYLGD +DJHQf (f>@$f>@*f>@ 2HFHWLV FLQHUDVFHQV +DJHQf (f>@$f>@)f>@ 2HFHWLV GD\WRQD 5RVV (f>@ *f>O@ 2HFHWLV GLWLVVD 5RVV (f>@ $f>O@ )f>O@ 2HFHWLV JHRUJLD 5RVV ( f> @ $f>O @ )f>O@ *f>O@ 2HFHWLV LQFRQVSLFXD &RPSOH[ (f> @ $f>O@ )f>O@ *Of>O@ 2HFHWLV QRFWXUQD 5RVV (f>@ $f>O@ )f>@ 2HFHWLV RVWHQL 0LOQH (f>@ $f>O @ )f>@ *f>@ 2HFHWLV SHUVLPLOLV %DQNVf (f>O@ $f>OO @ 2HFHWLV VSK\UD 5RVV (f>@ $f> @ )f>O@ 7ULDHQRGHV DED 0LOQH $f>@ 7ULDHQRGHV KHOR 0LOQH $f>@ 7ULDHQRGHV LJQLWXV :DONHUf (f>O@ $f>OO @ )f>O@ *f>O@ 7ULDHQRGHV Q VS (f>@ 7ULDHQRGHV RFKUDFHXV %HWWHQ t $f>@ 0RVHO\f 7ULDHQRGHV SHUQD 5RVV (f>@ 7ULDHQRGHV WDHQLD 5RVV $f>@)f>@ 7ULDHQRGHV WDUGXV 0LOQH $f>O@

PAGE 46

7DEOH &RQWLQXHG 6SHFLHV &ROO Qf 6SHFLPHQV Qf 6WXG\ $UHD b RI 7RWDO 6SHFLPHQVf &ROOHFWLRQ 6WDWLRQ 1XPEHU@ /LPQHSKLOLGDH 3\FQRSV\FKH DQWLFD :DONHUf (f>@ $f>O @ )Of>O@ *f>O@ 3\FQRSV\FKH LQGLDQD 5RVVf (f>@ 0RODQQLGDH 0RODQQD EOHQGD 6LEOH\ (f>O@ $f>O @ )f>O@ 0RODQQD WU\SKHQD %HWWHQ (f>@ $f>@ )f>@ *f>O@ 0RODQQD XOPHULQD 1DY£V ( f> @ 2GRQWRFHULGDH 3VLORWUHWD IURQWDOLV %DQNV (f>@$f>@)f>@ 3KU\JDQHLGDH %DQNVLROD FRQFDWHQDWD :DONHUf (f>@ 3WLORVWRPLV RFHOOLIHUD :DONHUf (f>@ 3WLORVWRPLV SRVWLFD :DONHUf $f>@ )f> @ 6HULFRVWRPDWLGDH $JDURGHV FUDVVLFRUQLV :DONHUf (f>@ $f>O @ )f>O@ *f>O@ $JDURGHV OLEDOLV 5RVV t 6FRWW $f>O @ *f> @ $JDURGHV ORJDQL .HWK t +DUULV ) f> @ $JDURGHV ]LF]DF 5RVV t 6FRWW (f> @ 6XERUGHU $QQXOLSDOSLD 7DEOH f )DPLO\ 'LSVHXGRSVLGDH 7KUHH ZLGHVSUHDG HDVWHUQ 1RUWK $PHULFDQ 3K\ORFHQWURSXV VSHFLHV 3 FDUROLQXV 3 OXFLGXV 3 SODFLGXVf ZHUH UHFRUGHG LQ WKH VXUYH\ 3K\ORFHQWURSXV VSHFLHV ZHUH PRVW FRPPRQ ZLWKLQ WKH FHQWUDO SDQKDQGOH VWXG\ DUHDV 3K\ORFHQWURSXV OXFLGXV VKRZHG WKH PRVW UHVWULFWHG GLVWULEXWLRQ DQG ZDV FROOHFWHG IURP RQO\ VWDWLRQV ZLWKLQ WKH FHQWUDO SDQKDQGOH UHJLRQ /DUYDH RI 3 OXFLGXV ZHUH IRXQG LQ VPDOO VDQG\ VHHSV 7KH RWKHU VSHFLHV RFFXUUHG DFURVV D ZLGHU JHRJUDSKLF DUHD DQG DUUD\ RI KDELWDW W\SHV +RZHYHU QR 3K\ORFHQWURSXV VSHFLHV ZHUH FROOHFWHG IURP *ROG +HDG %UDQFK HYHQ WKRXJK ERWK 3 FDUROLQXV DQG 3 SODFLGXV RFFXU LQ VPDOO VSULQJIHG VWUHDPV RI WKH QRUWKHUQ )ORULGD SHQLQVXOD )DPLO\ +\GURSV\FKLGDH $ WRWDO RI VSHFLHV JURXSHG ZLWKLQ JHQHUD ZHUH LQYHQWRULHG 7KH JHQXV FRQWDLQLQJ WKH JUHDWHVW QXPEHU RI VSHFLHV ZDV &KHXPDWRSV\FKH f IROORZHG E\

PAGE 47

+\GURSV\FKH f 'LSOHFWURQD f DQG 0DFURVWHPXP DQG 3RWDP\LD VSHFLHV HDFKf 6SHFLHV FRPSRVLWLRQ DQG DEXQGDQFHV DW WKH VDPSOLQJ VWDWLRQV UHIOHFWHG VSHFLHV VWUHDP VL]H SUHIHUHQFHV DV ZHOO DV ODUJHVFDOH UHJLRQDO GLIIHUHQFHV LQ WKH VSHFLHV JHRJUDSKLF UDQJHV *HQXV &KHXPDWRSV\FKH 'LIIHUHQFHV LQ &KHXPDWRSV\FKH VSHFLHV FRPSRVLWLRQ DW WKH UHJLRQDO DQG ORFDO VFDOHV ZHUH HYLGHQW ,Q WKH ZHVWHUQ SDQKDQGOH UHJLRQ DW WKH (JOLQ VWDWLRQV WKH PRVW DEXQGDQW VSHFLHV ZHUH &KHXPDWRSV\FKH JRUGRQDH DQG &KHXPDWRSV\FKH SHWHUVL ERWK RI ZKLFK KDYH UHVWULFWHG GLVWULEXWLRQV &KHXPDWRSV\FKH JRUGRQDH ZLGHVSUHDG DQG DEXQGDQW ZLWKLQ VWUHDPV RQ (JOLQ $LU )RUFH %DVH LV XQNQRZQ RXWVLGH WKLV UHJLRQ $FFRUGLQJO\ WKH VSHFLHV ZDV OLVWHG E\ )&5(3$ DV 7KUHDWHQHG &KHXPDWRSV\FKH SHWHUVL OLVWHG E\ )&5(3$ DV 5DUHf KDV D VRPHZKDW ODUJHU UDQJH WKDW LQFOXGHV SDUWV RI WKH ZHVWHUQ )ORULGD SDQKDQGOH FRDVWDO $ODEDPD DQG 0LVVLVVLSSL 5HVXOWV RI WKH (JOLQ FROOHFWLQJ VKRZHG WKDW & JRUGRQDH RFFXUV PRVW RIWHQ LQ WKH XSSHU DQG PLGGOH VWUHDP UHDFKHV ZKLOH & SHWHUVL LV PRVW DEXQGDQW LQ ODUJHU VWUHDPV DQG ULYHUV VXFK DV WKH %ODFNZDWHU 5LYHU &KHXPDWRSV\FKH YLUJLQLFD D &RDVWDO 3ODLQ VSHFLHV ZDV DOVR FRPPRQ DQG ZLGHVSUHDG RQ (JOLQ VWUHDPV EXW LQIUHTXHQWO\ FROOHFWHG IURP WKH $SDODFKLFROD VWDWLRQV &RQYHUVHO\ &KHXPDWRSV\FKH HGLVWD DOVR D &RDVWDO 3ODLQ VSHFLHV ZDV FRPPRQ IURP WKH FHQWUDO SDQKDQGOH VWDWLRQV EXW ZDV LQIUHTXHQWO\ FROOHFWHG IURP WKH (JOLQ VWDWLRQV &KHXPDWRSV\FKH FDPS\OD ZDV FROOHFWHG RQO\ IURP WKH $SDODFKLFROD VWXG\ DUHD PDLQO\ IURP WKH ODUJHU VWUHDPV RU DW VWDWLRQV YHU\ QHDU WKH $SDODFKLFROD 5LYHU VXJJHVWLQJ WKH ULYHUfV SUR[LPLW\ LV DQ LPSRUWDQW LQIOXHQFH RQ WKH RFFXUUHQFH RI WKLV VSHFLHV &KHXPDWRSV\FKH SLQDFD ZDV WDNHQ LQ KLJK QXPEHUV IURP ODUJHU VWUHDPV RI WKH $SDODFKLFROD VWXG\ DUHD DQG DOVR DW *ROG +HDG %UDQFK ZKHUH WKH KLJKHVW QXPEHUV ZHUH

PAGE 48

UHFRUGHG DQG WKLV ZDV WKH RQO\ &KHXPDWRSV\FKH VSHFLHV FROOHFWHG &KHXPDWRSV\FKH SHWWLWL D WUDQVFRQWLQHQWDO VSHFLHV FROOHFWHG DW PRVW RI WKH FHQWUDO SDQKDQGOH VWDWLRQV ZDV OHVV FRPPRQ RQ (JOLQ SHUKDSV GXH WR DEXQGDQW SRSXODWLRQV RI & JRUGRQDH DQG & SHWHUVL *HQXV 'LSOHFWURQD 'LSOHFWURQD PRGHVWD DFFRXQWHG IRU WKH KLJKHVW WRWDO K\GURSV\FKLG DEXQGDQFH VSHFLPHQVf :LWKLQ WKH SDQKDQGOH VWXG\ DUHDV WKLV VSHFLHV ZDV WKH GRPLQDQW K\GURSV\FKLG DW VWHHSKHDG DQG XSSHU UDYLQHUHDFKHV /DUYDH RFFXUUHG DEXQGDQWO\ ZLWKLQ OHDI SDFNV DQG VPDOO GHEULVGDPV 'RZQVWUHDP IURP UDYLQH KHDG UHDFKHV WKLV VSHFLHV EHFDPH OHVV DEXQGDQW DQG ZDV UHSODFHG E\ &KHXPDWRSV\FKH DQG +\GURSV\FKH VSHFLHV $GXOWV DSSHDULQJ WR EH PRGHVWD ZHUH FROOHFWHG IURP WKH VWHHSKHDG DW *ROG +HDG %UDQFK ZKLFK LV HDVW DQG VRXWK RI WKH NQRZQ UDQJH IRU PRGHVWD +RZHYHU ODUYDH RI 'LSOHFWURQD FROOHFWHG DW WKH VWHHSKHDG DOO SRVVHVVHG D KHDG FRORUDWLRQ SDWWHUQ GLIIHUHQW IURP W\SLFDO ODUYDH RI PRGHVWDn WKHUHIRUH WKLV VSHFLHV ZDV GHVLJQDWHG 'LSOHFWURQD VS $ 7KH FRORUDWLRQ SDWWHUQ RI WKH KHDG LV VLPLODU WR 'LSOHFWURQD URVVL ZKLFK LV NQRZQ RQO\ IURP 6FKRROKRXVH 6SULQJV LQ /RXLVLDQD +RZHYHU WKH ODUYDH RI 'LSOHFWURQD VS $ KDYH HYHQO\ FXUYHG IURQWRFO\SHDO VXWXUHV XQOLNH WKRVH RI URVVL ZKLFK DQJOH VKDUSO\ QHDU WKH DQWHULRU WHQWRULDO SLWV 0RUVH t %DUU f 3XSDO FROOHFWLRQV RI 'LSOHFWURQD VS $ PD\ KHOS WR FODULI\ WKH LGHQWLW\ RI WKLV SRWHQWLDO QHZ VSHFLHV *HQXV +\GURSV\FKH 7KH +\GURSV\FKH FDGGLVIOLHV LQYHQWRULHG FRPSULVH VSHFLHV ZLWK VSHFLHV + HOLVVRPD + LQFRPPRGD DQG + URVVLf FROOHFWHG LQ UHODWLYHO\ KLJK QXPEHUV IURP ZLGHVSUHDG SDQKDQGOH VWDWLRQV DV FRPSDUHG WR WKH VFDQW FROOHFWLRQV RI + EHWWHQL DQG + GHFDOGD +\GURSV\FKH HOLVVRPD ZDV WKH GRPLQDQW +\GURSV\FKH VSHFLHV DW

PAGE 49

WKH (JOLQ VWDWLRQV ZKLOH WKH $SDODFKLFROD VWXG\ DUHD VXSSRUWHG + HOLVVRPD DV ZHOO DV KLJK QXPEHUV RI + LQFRPPRGD DQG + URVVL +\GURSV\FKH LQFRPPRGD ZDV YHU\ DEXQGDQW LQ OLJKWWUDS FROOHFWLRQV DW VWDWLRQV QHDU WKH $SDODFKLFROD 5LYHU VXJJHVWLQJ WKDW FORVH SUR[LPLW\ WR WKH ULYHU LV DQ LPSRUWDQW LQIOXHQFH RQ WKH DEXQGDQFH RI WKLV VSHFLHV ZKLFK LV NQRZQ WR LQKDELW ODUJH &RDVWDO 3ODLQ ULYHUV $W *ROG +HDG %UDQFK WKH RQO\ +\GURSV\FKH LGHQWLILHG ZHUH PDOHV RI + GHFDOGD +\GURSV\FKH EHWWHQL ZDV FROOHFWHG IURP RQO\ WKH )$08 )DUP 6WUHDP *HQXV 0DFURVWHPXP $ VLQJOH VSHFLHV ZDV LQYHQWRULHG 0 &DUROLQD 7KH VSHFLHV LV ZLGHVSUHDG LQ WKH HDVWHUQ 86$ DQG WKURXJKRXW PXFK RI QRUWKHUQ )ORULGD EXW LQ WKLV VXUYH\ ZDV FROOHFWHG VROHO\ IURP (JOLQ VWUHDPV ZKHUH LW ZDV ZLGHVSUHDG DQG FRPPRQ LQ OLJKWWUDS FROOHFWLRQV *HQXV 3RWDP\LD 7KH VLQJOH 1RUWK $PHULFDQ VSHFLHV RI WKLV JHQXV 3RWDP\LD IODYD ZDV WDNHQ LQ OLJKWWUDS FROOHFWLRQV IURP VHYHUDO VWDWLRQV ORFDWHG QHDU WKH $SDODFKLFROD 5LYHU 7KH VSHFLHV LV NQRZQ WR LQKDELW ODUJH ULYHUV DQG WKH DGXOWV FROOHFWHG OLNHO\ PRYHG IURP WKH ULYHU LQWR QHDUE\ WULEXWDU\ UHDFKHV )DPLO\ 3KLORSRWDPLGDH &KLPDUUD VSHFLHV ZHUH VLJQLILFDQW FRPSRQHQWV RI WKH FDGGLVIO\ IDXQD DW PRVW RI WKH VWUHDP UHDFKHV VDPSOHG $OO ILYH VSHFLHV NQRZQ WR RFFXU LQ )ORULGD ZHUH FROOHFWHG & DWHUULPD &IDOFXODWD & IORULGD & PRVHO\L & REVFXUDf &KLPDUUD IDOFXODWD ZDV WKH PRVW DEXQGDQW ZLWK QHDUO\ b RI DOO VSHFLPHQV FROOHFWHG DW VWDWLRQV RQ (JOLQ ZKHUH WKLV VSHFLHV RI UHVWULFWHG GLVWULEXWLRQ DSSHDUV WR KDYH WKH KLJKHVW SRSXODWLRQ GHQVLW\ %HVLGHV WKH )ORULGD SDQKDQGOH WKH JHRJUDSKLF UDQJH RI &IDOFXODWD LQFOXGHV WKH ORZHU &RDVWDO 3ODLQ RI 0LVVLVVLSSL DQG $ODEDPD DQG SDUWV RI VRXWKZHVWHUQ *HRUJLD &KLPDUUD IORULGD

PAGE 50

KDV D VLPLODU GLVWULEXWLRQ EXW H[WHQGV LWV UDQJH QRUWK DQG HDVW LQWR SDUWV RI WKH $WODQWLF &RDVWDO 3ODLQ DQG WKH )ORULGD SHQLQVXOD 0RUH WKDQ KDOI WKH & IORULGD FROOHFWHG FDPH IURP *ROG +HDG %UDQFK 6WDWLRQ 2I WKH ZLGHVSUHDG HDVWHUQ 1RUWK $PHULFD VSHFLHV & DWHUULPD DQG & REVXUD & DWHUULPD ZDV FRPPRQ DQG IDLUO\ DEXQGDQW DFURVV VWXG\ DUHDV DW YDULRXV VDPSOLQJ VWDWLRQV ZKLOH & REVFXUD ZDV FROOHFWHG LQ ORZ QXPEHUV IURP RQO\ D IHZ FHQWUDO SDQKDQGOH VWDWLRQV &KLPDUUD PRVHO\L RFFXUUHG DW PDQ\ RI WKH SDQKDQGOH VWDWLRQV EXW XVXDOO\ LQ ORZ QXPEHUV )DPLO\ 3RO\FHQWURSRGLGDH 3RO\FHQWURSRGLGDH ZHUH UHSUHVHQWHG LQ WKH VXUYH\ E\ JHQHUD DQG VSHFLHV $PRQJ WKHVH DUH ERWK FRPPRQ DQG ZLGHVSUHDG VSHFLHV DV ZHOO DV GLVMXQFW RFFXUUHQFH RI D VSHFLHV QHYHU FROOHFWHG EHIRUH LQ )ORULGD DQG UHVWULFWHGUDQJH VSHFLHV WKDW ZHUH OLVWHG E\ )&5(3$ DV 5DUH RU 7KUHDWHQHG 6HYHQ VSHFLHV ZHUH HDFK UHSUHVHQWHG E\ IHZHU WKDQ LQGLYLGXDOV DQG QRQH RI WKH SRO\FHQWURSRGLGV ZHUH FROOHFWHG HLWKHU DV DGXOWV RU ODUYDH LQ KLJK QXPEHUV DV ZHUH UHSUHVHQWDWLYHV IURP PRVW RI WKH RWKHU DQQXOLSDOSLDQ IDPLOLHV *HQXV &HUQRWLQD 7KUHH VSHFLHV ZHUH UHFRUGHG & FDOFHD & VSLFDWD & WUXQFRQDf HDFK UHSUHVHQWHG E\ RQO\ LQGLYLGXDO LQGLFDWLQJ WKDW &HUQRWLQD VSHFLHV DUH PLQRU FRQVWLWXHQWV RI WKH FDGGLVIO\ IDXQD RI UDYLQH DVVHPEODJHV &HUQRWLQD WUXQFRQD LV DQ XQFRPPRQ 6RXWKHDVWHUQ &RDVWDO 3ODLQ VSHFLHV OLVWHG E\ )&5(3$ DV 5DUH 7KLV VSHFLHV FROOHFWHG DW *ROG +HDG %UDQFK LV WKRXJKW WR EH DVVRFLDWHG ZLWK SRQGV DQG ODNHV DQG FRXOG KDYH HQWHUHG WKH UDYLQH IURP RQH RI WKH QHDUE\ ODNHV

PAGE 51

*HQXV &\UQHOOXV 7KH FROOHFWLRQ RI RQO\ D VLQJOH LQGLYLGXDO RI &\UQHOOXV IUDWHUQXV LQGLFDWHV WKDW WKLV ZLGHVSUHDG DQG DEXQGDQW ULYHU VSHFLHV LV DQ LQFLGHQWDO FRQVWLWXHQW RI UDYLQH DVVHPEODJHV *HQXV 1HXUHFOLSVLV 7KH VSHFLHV LQYHQWRULHG 1 FUHSXVFXODULV 1 PHOFRf ZHUH FROOHFWHG RQO\ IURP (JOLQ DQG $SDODFKLFROD VWDWLRQV 7KH ZLGHVSUHDG DQG FRPPRQ ULYHU VSHFLHV 1 FUHSXVFXODULV ZDV FROOHFWHG DV RU LQGLYLGXDOV IURP D YDULHW\ RI XSSHU DQG ORZHU UHDFK VWDWLRQV EXW ZDV FROOHFWHG LQ JUHDWHVW DEXQGDQFH DW VWDWLRQ $ QHDU WKH $SDODFKLFROD 5LYHU :LWKLQ WKH (JOLQ VWXG\ DUHD 1 PHOFR D 6RXWKHDVWHUQ HQGHPLF ZDV WKH PRUH FRPPRQ DQG ZLGHVSUHDG VSHFLHV *HQXV 1\FWLRSK\OD[ 7KUHH 1\FWLRSK\OD[ VSHFLHV ZHUH LQYHQWRULHG 1 DIILQLV 1 PRUVHO DQG 1 VHUUDWXV f $PRQJ WKHVH VSHFLHV LV WKH ZLGHVSUHDG 1RUWK $PHULFDQ VSHFLHV 1 DIILQLVf D VRXWKHDVWHUQ HQGHPLF 1 VHUUDWXVf DQG 1 PRUVHL HQGHPLF WR VPDOO FRRO VWUHDPV RI WKH ZHVWHUQ )ORULGD SDQKDQGOH DQG FRDVWDO $ODEDPD :LWKLQ WKLV VXUYH\ 1 VHUUDWXV ZDV WKH PRVW ZLGHVSUHDG RFFXUULQJ DFURVV WKH SDQKDQGOH VWDWLRQV DV ZHOO DV IURP *ROG +HDG %UDQFK 1\FWLRS\OD[ PRUVHL ZDV FROOHFWHG IURP D PDMRULW\ RI (JOLQ VWDWLRQV DQG RYHUDOO ZDV WKH PRVW DEXQGDQW 1\FWLRSK\OD[ VSHFLHV 1\FWLRSK\OD[ PRUVHL DORQJ ZLWK 3RO\FHQWURSXV IORULGHQVLV IRUP D SDLU RI V\QWRSLF HQGHPLFV XQLTXH WR WKH VSULQJIHG VWUHDPV RQ (JOLQ *HQXV 3RO\FHQWURSXV )RXU 3RO\FHQWURSXV VSHFLHV ZHUH LQYHQWRULHG 3 EOLFNOHL 3 FLQHUHXV 3 FOLQHL 3 IORULGHQVLVf DQG DOO RI WKHP KDYH FRQWUDVWLQJ GLVWULEXWLRQV 3RO\FHQWURSXV FLQHUHXV D WUDQVFRQWLQHQWDO VSHFLHV ZDV WKH PRVW ZLGHVSUHDG DQG DEXQGDQW LQ WKH VXUYH\ 3RO\FHQWURSXV EOLFNOHL ZDV DOVR ZLGHVSUHDG RFFXUULQJ LQ DOO VWXG\ DUHDV H[FHSW (JOLQ ,W ZDV FROOHFWHG PRVW IUHTXHQWO\ DQG DEXQGDQWO\ IURP WKH *ROG

PAGE 52

+HDG %UDQFK VSULQJUXQ 2WKHU FROOHFWLRQV RI 3 EOLFNOHL FRPSULVHG RQO\ VLQJOH LQGLYLGXDOV 7KLV VSHFLHV DSSHDUV WR EH UHVWULFWHG LQ )ORULGD WR VPDOO VSULQJIHG VWUHDPV $OVR IURP *ROG +HDG %UDQFK D VLQJOH PDOH RI 3RO\FHQWURSXV FOLQHL ZDV LGHQWLILHG 7KLV VSHFLHV LV PDLQO\ QRUWKHDVWHUQ LQ GLVWULEXWLRQ ZLWK GLVMXQFW SRSXODWLRQV KDYLQJ DOVR EHHQ IRXQG ZLWKLQ 0LQQHVRWD DQG FRDVWDO $ODEDPD +DUULV HW DO f +RZHYHU EHFDXVH LW KDV EHHQ VSDUVHO\ FROOHFWHG RQ WKH &RDVWDO 3ODLQ LW LV GLIILFXOW WR PDNH ILUP LQIHUHQFHV DV WR LWV DFWXDO GLVWULEXWLRQ 3RO\FHQWURSXV IORULGHQVLV LV HQGHPLF WR VSULQJIHG VWUHDPV RI WKH ZHVWHUQ SDQKDQGOH DQG FRDVWDO $ODEDPD ,W ZDV FROOHFWHG IURP VHYHUDO GLIIHUHQW (JOLQ VWUHDPV VXJJHVWLQJ WKDW WKH VSHFLHV LV ZLGHVSUHDG ZLWKLQ (JOLQ EXW QRW DV FRPPRQ LQ RFFXUUHQFH DV RWKHU QDUURZUDQJH HQGHPLFV VXFK DV 1\FWLRSK\OD[ PRUVHL &KHXPDWRSV\FKH JRUGRQDH $JDURGHV ]LF]DF DQG 1HFWRSV\FKH SDOXGLFROD $SSURSULDWHO\ 3 IORULGHQVLV ZDV OLVWHG E\ )&5(3$ DV 7KUHDWHQHG )DPLO\ 3V\FKRP\LLGDH /\SH GLYHUVD ZDV FRPPRQ DW PRVW SDQKDQGOH VWDWLRQV ,Q WHUPV RI QXPEHU RI FROOHFWLRQV f LW ZDV HTXDOHG RQO\ E\ 2HFHWLV LQFRQVSLFXD FRPSOH[ ,Q QRUWKHUQ )ORULGD KDELWDWV RWKHU WKDQ VPDOO VSULQJIHG VWUHDPV LW LV OHVV FRPPRQ 6XERUGHU 6SLFLSDOSLD 7DEOH f )DPLO\ +\GURSWLOLGDH +\GURSWLOLGDH DOVR NQRZQ DV PLFURFDGGLVIOLHV ZHUH WKH PRVW VSHFLRVH VSHFLHV UHSUHVHQWLQJ JHQHUDf IDPLO\ RI 7ULFKRSWHUD FROOHFWHG 7KH JHQHUD +\GURSWLOD DQG 2[\HWKLUD ZHUH ERWK UHSUHVHQWHG E\ VSHFLHV RWKHU JHQHUD LQFOXGHG 2UWKRWULFKLD VSSf 1HRWULFKLD VSSf 2FKURWULFKLD f DQG 0D\DWULFKLD VSf $PRQJ WKH PLFURFDGGLVIOLHV FROOHFWHG LQ WKLV VWXG\ DQG VHQW WR 'U +DUULV IRU LGHQWLILFDWLRQ ZHUH

PAGE 53

VSHFLHV QHZ WR VFLHQFH WKDW KDYH EHHQ VXEVHTXHQWO\ GHVFULEHG +\GURSWLOD DSDODFKLFROD + EULEULDH + HJOLQHQVLV + KDPLOWRQL + RNDORRVD + VDUDKDH + V\NRUDL 2FKURWULFKLD DSDODFKLFROD 2[\HWKLUD FKU\VRFDUD SHVFDGRULf )RUPDO GHVFULSWLRQV RI WKHVH VSHFLHV ZHUH SURYLGHG LQ +DUULV HW DO f +DUULV f DQG +DUULV DQG .HWK f $V ZLWK ,QWHJULSDOSLD DQG $QQXOLSDOSLD VSHFLHV FRPSRVLWLRQ RI K\GURSWLOLGV YDULHG JUHDWO\ DPRQJ VWXG\ DUHDV 1DUURZUDQJH HQGHPLFV ZHUH PRVW SUHYDOHQW ZLWKLQ WKH (JOLQ VWXG\ DUHD (JOLQfV FRRO FOHDU VSULQJUXQV ZLWK DEXQGDQW YDVFXODU SODQWV DQG PDFURDOJDH SURYLGH KDELWDW DQG IRRG UHVRXUFHV WKDW VXVWDLQ D GLYHUVH DQG XQLTXH DVVHPEODJH RI PLFURFDGGLVIOLHV 6HYHUDO RI WKHVH HQGHPLF VSHFLHV DUH YHU\ VLPLODU WR PRUH ZLGHO\ RFFXUULQJ 6RXWKHDVWHUQ VSHFLHV +DUULV f DQG LW LV OLNHO\ WR D ODUJH GHJUHH WKDW WKH RULJLQ RI WKLV XQLTXH IDXQD LV GXH WR VSHFLDWLRQ RI LVRODWHG UHOLFW SRSXODWLRQV *HQXV +\GURSWLOD 7KH VXUYH\ OHG WR WKH GLVFRYHU\ RI D QXPEHU RI QHZ VSHFLHV LQ WKLV ODUJH JHQXV 2I WKH +\GURSWLOD VSHFLPHQV VHQW WR 'U +DUULV IRU H[DPLQDWLRQ KH GLVFRYHUHG VSHFLHV QHZ WR VFLHQFH )LYH RI WKHVH ^+ EULEULDH + HJOLQHQVLV + KDPLOWRQL + RNDORRVD + VDUDKDHf DSSHDU WR EH HQGHPLF WR VWUHDPV RQ (JOLQ 7KH GHVFULSWLRQV IRU WKHVH VSHFLHV SURYLGHG LQ +DUULV f ZHUH EDVHG LQ ODUJH SDUW RQ VSHFLPHQV FROOHFWHG DV D SDUW RI WKLV VWXG\ 7KH DIRUHPHQWLRQHG VSHFLHV ZHUH DOO FROOHFWHG IURP PRUH WKDQ RQH ZDWHUVKHG DQG DUH SUREDEO\ IDLUO\ ZLGHVSUHDG LQ WKH (JOLQ VWUHDPV DW OHDVW RQ WKH ZHVWHUQ VLGH RI WKH EDVH ZKHUH WKH VWXG\ DUHD ZDV ORFDWHG 7KHVH QHZ VSHFLHV EHFDXVH RI WKHLU UHVWULFWHG GLVWULEXWLRQV VKRXOG EH FRQVLGHUHG IRU VSHFLDO FRQVHUYDWLRQ VWDWXV )RXU DGGLWLRQDO VSHFLHV + FLUFDQJXOD + OORJDQDH + PROVRQDH + SDUDVWUHSKDf ZLWK UHVWULFWHG UDQJHV ZHUH DOVR FROOHFWHG IURP WKH (JOLQ VWXG\ DUHD 2I

PAGE 54

WKHVH WKH GLVWULEXWLRQV RI + FLUFDQJXOD DQG + SDUDVWUHSKD HQFRPSDVV SDUWV RI WKH ZHVWHUQ )ORULGD SDQKDQGOH DQG FRDVWDO $ODEDPD +\GURSWLOD OORJDQDH NQRZQ IURP 7; /$ )/ DQG 6&f DQG + PROVRQDH D *XOI &RDVWDO 3ODLQ VSHFLHV ZHUH OLVWHG E\ )&5(3$ DV 5DUH $OVR RI QRWH +\GURSWLOD ODWRVD D &RDVWDO 3ODLQ VSHFLHV ZDV FRPPRQ ZLWKLQ WKH (JOLQ DQG *ROG +HDG VWXG\ DUHDV EXW ZDV QRW FROOHFWHG IURP DQ\ FHQWUDO SDQKDQGOH VWDWLRQV (QGHPLF WR WKH $SDODFKLFROD VWXG\ DUHD ZDV +\GURSWLOD DSDODFKLFROD 'HVFULEHG LQ +DUULV HW DO f LW LV NQRZQ IURP RQO\ VSHFLPHQV FROOHFWHG DW /LWWOH 6ZHHWZDWHU &UHHN 6WDWLRQ $f ,W LV PRVW VLPLODU WR + UHFXUYDWD D VSHFLHV HQGHPLF WR WKH %ODFN :DUULRU V\VWHP LQ $ODEDPD 2YHUDOO WKH PRVW DEXQGDQW +\GURSWLOD VSHFLHV ZHUH YHU\ FRPPRQ DQG ZLGHVSUHDG VSHFLHV + TXLQOD DQG + ZDXEHVLDQD 2WKHU UHODWLYHO\ FRPPRQ DQG ZLGHVSUHDG +\GURSWLOD VSHFLHV LQYHQWRULHG LQFOXGHG + EHUQHUL + GLVJDOHUD + QRYLFXOD DQG + UHPLWD *HQXV 0D\DWULFKLD 0D\DWULFKLD D\DPD RFFXUUHG LQ DOO VWXG\ DUHDV DQG ZDV PRVW IUHTXHQWO\ FROOHFWHG DW ORZHU UHDFK VWDWLRQV 7KLV VSHFLHV ZLGHVSUHDG LQ 1RUWK $PHULFD LV D FRPPRQ ULYHU VSHFLHV LQ )ORULGD *HQXV 1HRWULFKLD 7KUHH VSHFLHV RI 1HRWULFKLD 1 DUPLWDJHL 1 PLQXWLVLPHOOD 1 YLEUDQVf ZHUH LQYHQWRULHG 1HRWULFKLD PLQXWLVLPHOOD DQG 1 YLEUDQV ZHUH FROOHFWHG IURP VLQJOH VWDWLRQV ZLWKLQ WKH $SDODFKLFROD VWXG\ DUHD %RWK DUH ZLGHO\ GLVWULEXWHG RYHU SDUWV RI WKH HDVWHUQ DQG FHQWUDO 86$ LQFOXGLQJ PRVW RI 1RUWK DQG 6RXWK )ORULGD 1HRWULFKLD DUPLWDJHL RQ WKH RWKHU KDQG LV HQGHPLF WR VWUHDPV RI QRUWKHUQ )ORULGD DQG DGMDFHQW VRXWKZHVWHUQ *HRUJLD ,W ZDV GHVFULEHG LQ +DUULV f IURP FROOHFWLRQV PDGH E\ %$UPLWDJH DQG 0. :DUG IURP VWUHDPV RQ WKH ZHVWHUQVLGH RI (JOLQ $LU )RUFH %DVH ,Q

PAGE 55

WKLV VWXG\ 1 DUPLWDJHL ZDV DOVR FROOHFWHG IURP (JOLQ EXW ZDV PRVW IUHTXHQWO\ FROOHFWHG IURP *ROG +HDG %UDQFK ZKHUH LW ZDV DEXQGDQW DW WKH ORZHU UHDFK 6WDWLRQ *f *HQXV 2FKURWULFKLD 7ZR 2FKURWLFKLD VSHFLHV ZHUH UHFRUGHG LQ WKH VXUYH\ 2 DSDODFKLFROD DQG 2 FRQIXVD ERWK LQ ORZ QXPEHUV 2FKURWLFKLD FRQIXVD ZDV UHSUHVHQWHG E\ D VLQJOH PDOH FROOHFWHG DW VWDWLRQ $ D VPDOO KLJKJUDGLHQW UDYLQH VWUHDP ORFDWHG DORQJ WKH HDVWHUQ EDQN RI WKH $SDODFKLFROD 5LYHU 2FKURWULFKLD DSDODFKLFROD D QHZO\ GLVFRYHUHG VSHFLHV ZDV GHVFULEHG LQ +DUULV HW DO f IURP D VLQJOH PDOH FROOHFWHG DW %HDYHU 'DP &UHHN 6WDWLRQ $f 6XEVHTXHQWO\ PDOHV ZHUH LGHQWLILHG IURP 6WDWLRQ ( RI WKH (JOLQ VWXG\ DUHD 7KHVH DUH WKH RQO\ NQRZQ ORFDOLWLHV IRU WKLV VSHFLHV ZKLFK DSSHDUV WR EH HQGHPLF WR WKH )ORULGD SDQKDQGOH 2FKURWULFKD RNDORRVD ZDV QRW FROOHFWHG LQ WKH VWXG\ 7KLV UDUH VSHFLHV GHVFULEHG LQ +DUULV DQG $UPLWDJH f LV NQRZQ RQO\ IURP WKH KRORW\SH FROOHFWHG $XJXVW RQ (JOLQ $LU )RUFH %DVH 7XUNH\ &UHHN DW %DVH 5RDG f *HQXV 2UWKRWULFKLD :LWKLQ WKLV VPDOO JHQXV D WRWDO RI VSHFLHV 2 DHJHUIDVFLHOOD 2 EDOGXIL 2 FULVWDWD 2 FXUWDf ZHUH LQYHQWRULHG $OO VWXG\ DUHDV ZHUH UHSUHVHQWHG E\ DW OHDVW VSHFLHV 7KH ZLGHVSUHDG DQG FRPPRQ HDVWHUQ VSHFLHV 2 DHJHUIDVFLHOOD RFFXUUHG LQ DOO VWXG\ DUHDV DQG ZDV WKH PRVW FRPPRQ 2UWKRWULFKLD FROOHFWHG 2UWKRWULFKLD FULVWDWD DOVR D ZLGHVSUHDG HDVWHUQ VSHFLHV ZDV UHSUHVHQWHG LQ DOO SDQKDQGOH VWXG\ DUHDV EXW ZDV OHVV FRPPRQ FROOHFWLRQVf 2UWKRWULFKLD EDOGXIL RFFXUUHG RQO\ ZLWKLQ WKH FHQWUDO SDQKDQGOH VWXG\ DUHDV 7KLV VSHFLHV LV QRUWKHUQ LQ GLVWULEXWLRQ ZLWK VFDWWHUHG GLVMXQFW SRSXODWLRQV ZLWKLQ WKH 6RXWKHDVWHUQ 86$ 2UWKRWULFKLD FXUWD LV D SULPDULO\ VRXWKHDVWHUQ VSHFLHV DQG LW RFFXUUHG RQO\ ZLWKLQ *ROG +HDG VWXG\ DUHD

PAGE 56

*HQXV 2[\HWKLUD 7KH VSHFLHV RI 2[\HWKLUD LGHQWLILHG LQ WKLV VXUYH\ ZHUH HTXDOHG LQ VSHFLHV ULFKQHVV RQO\ E\ WKH JHQXV +\GURSWLOD 1DUURZUDQJH HQGHPLF 2[\HWKLUD VSHFLHV GRFXPHQWHG LQ WKH VXUYH\ ZHUH 2 NHOOH\L DQG 2 FKU\VRFDUD 2[\HWKLUD NHOOH\L LV ZLGHVSUHDG DQG DEXQGDQW LQ VWUHDPV RQ WKH ZHVWHUQVLGH RI (JOLQ EXW LV XQNQRZQ IURP RXWVLGH WKLV DUHD WKH VSHFLHV ZDV GHVFULEHG LQ +DUULV DQG $UPLWDJH f DQG ZDV OLVWHG E\ )&5(3$ DV 7KUHDWHQHG 2[\HWKLUD FKU\VRFDUD UHFHQWO\ GHVFULEHG E\ +DUULV f LV FXUUHQWO\ NQRZQ IURP RQO\ WKH KRORW\SH VSHFLPHQ FROOHFWHG DW *ROG +HDG %UDQFK 6WDWLRQ *f $GGLWLRQDO FROOHFWLQJ LQ DQG DURXQG WKH W\SH ORFDOLW\ LV QHHGHG WR SLQSRLQW WKH SRSXODWLRQ FHQWHU 7KUHH VSHFLHV 2 JUVHD 2 VHWRVD 2 YHUQDf ZHUH UHFRUGHG RQO\ DV VLQJOH LQGLYLGXDOV IURP %HDYHU 'DP &UHHN 6WDWLRQ $f 2[\HWKLUD JUVHD LV XQNQRZQ IURP DQ\ RWKHU )ORULGD ORFDOLWLHV DQG LWV RFFXUUHQFH RQ WKH &RDVWDO 3ODLQ LV GLVMXQFW 2[\HWKLUD VHWRVD OLVWHG E\ )&5(3$ DV 5DUH ZDV SUHYLRXVO\ NQRZQ LQ )ORULGD IURP RQH RWKHU ORFDOLW\ 5RFN\ &UHHN RQ (JOLQ $LU )RUFH %DVH $QRWKHU 7KUHDWHQHG VSHFLHV 2 IORULGD ZDV UHFRUGHG IURP FROOHFWLRQV PDGH DW VWHHSKHDG VWDWLRQV (JOLQ 6WDWLRQ (Of DQG *ROG +HDG 6WDWLRQ *Of $VLGH IURP WKHVH FROOHFWLRQV WKH VSHFLHV LV NQRZQ LQ )ORULGD IURP RQO\ WKH W\SH ORFDOLW\ 0LDPLf DQG 7HPSOH 7HUUDFH QHDU 7DPSD 2[\HWKLUD OXPRVD D VRXWKHDVWHUQ VSHFLHV ZDV FROOHFWHG ZLWKLQ WKH (JOLQ $SDODFKLFROD DQG *ROG +HDG VWXG\ DUHDV 'U +DUULV FORVHO\ H[DPLQHG WKHVH VSHFLPHQV DQG RWKHUV IURP QRUWKHUQ )ORULGD DQG &RDVWDO 3ODLQ $ODEDPD DQG GLVFRYHUHG WKH SUHVHQFH RI FORVHO\UHODWHG VSHFLHV 2[\HWKLUD OXPRVD DQG D QHZ VSHFLHV 2 SHVFDGRUL GHVFULEHG LQ +DUULV DQG .HWK f 6XEVHTXHQWO\ WKLV QHZ VSHFLHV ZDV DOVR LGHQWLILHG IURP VSHFLPHQV FROOHFWHG E\ 'U 0DQXHO 3HVFDGRU DQG RWKHUV LQ FHQWUDO 6RXWK &DUROLQD VXJJHVWLQJ WKDW 2 SHVFDGRUL PD\ KDYH D VLPLODU GLVWULEXWLRQ WR 2 OXPRVD 2[\HWKLUD HOHUREL ZDV FROOHFWHG RQO\ IURP

PAGE 57

WKH (JOLQ VWXG\ DUHD 6WDWLRQV ( (f 7KH VSHFLHV ZDV OLVWHG E\ )&5(3$ DV 5DUH EXW KDYH IRXQG DGGLWLRQDO SRSXODWLRQV IURP VPDOO EODFNZDWHU VWUHDPV LQ QRUWKHUQ )ORULGD VXJJHVWLQJ WKDW WKH VSHFLHV LV PRUH FRPPRQ WKDQ SUHYLRXVO\ WKRXJKW 2YHUDOO WKH PRVW ZLGHVSUHDG DQG FRPPRQ 2[\HWKLUD VSHFLHV LQ DOO VWXG\ DUHDV ZDV WKH VRXWKHDVWHUQ VSHFLHV 2MDQHOOD 2WKHU 2[\HWKLUD VSHFLHV QRW DOUHDG\ PHQWLRQHG FROOHFWHG DW RU PRUH VWXG\ DUHDV LQFOXGHG 2 DEDFDWLD 2 JODVD 2 PD\D 2 QRYDVRWD 2 SDOOLGD 2 VDYDQQLHQVLV DQG 2 ]HURQLD )DPLO\ 5K\DFRSKLOLGDH 6SHFLHV ZLWKLQ WKH JHQXV 5K\DFRSKLOD DUH LFRQV RI $SSDODFKLDQ VWUHDP ELRWD 5K\DFRSKLOD &DUROLQD XQOLNH RWKHU 5K\DFRSKLOD VSHFLHV LV DOVR IRXQG LQ FRRO VSULQJIHG VWUHDPV RI WKH )ORULGD SDQKDQGOH 7KH VSHFLHV ZDV ZLGHVSUHDG ZLWKLQ WKH SDQKDQGOH VWXG\ DUHDV DQG ZDV PRVW DEXQGDQW DW VWUG RUGHU VSULQJUXQ UHDFKHV 6XERUGHU ,QWHJULSDOSLD 7DEOH f )DPLO\ %HUDHLGDH $ QHZ VSHFLHV ZLWKLQ WKH JHQXV %HUDHD ZDV GLVFRYHUHG ZLWKLQ WKH VWHHSKHDG DW 6WDWLRQ (O $GXOW PDOHV ZHUH OLJKW WUDSSHG RQ WZR RFFDVLRQV DQG D IHPDOH ZDV FROOHFWHG XVLQJ D EHDWLQJ VKHHW 7KH QHZ VSHFLHV ZLOO EH GHVFULEHG LQ D VHSDUDWH SDSHU /DUYDH UHPDLQ XQFROOHFWHG EXW WKH\ SUREDEO\ OLYH LQ PXFN\ VHHSDJH DUHDV ZLWKLQ WKH VWHHSKHDG JLYHQ WKDW %HUDHD VSHFLHV DUH QRWHG IRU WKHLU HFRORJLFDO VSHFLDOL]DWLRQ WR WKLV W\SH RI PLFURKDELWDW )DPLO\ %UDFKYFHQWULGDH 7KH %UDFK\FHQWULGDH VXUYH\HG LQFOXGHG %UDFK\FHQWUXV FKHODWXV 0LFUDVHPD Q VS DQG 0 ZDWDJD $PRQJ WKHVH VSHFLHV ZHUH DQ HDVWHUQ 1RUWK $PHULFDQ VSHFLHV 0

PAGE 58

ZDWDJDf D VRXWKHDVWHUQ VSHFLHV % FKHODWXVf DQG D ORZHU &RDVWDO 3ODLQ HQGHPLF 0LFUDVHPD Q VSf %UDFK\FHQWULGV ZHUH PRVW DEXQGDQW DW ORZHU VSULQJUXQ UHDFKHV KDYLQJ GHHSHU ZDWHU DQG VXEPHUJHG DTXDWLF SODQWV %UDFK\FHQWUXV FKHODWXV ZDV ZLGHVSUHDG DQG FRPPRQ RQ (JOLQ EXW ZDV FROOHFWHG IURP RQO\ RQH VWDWLRQ $f RXWVLGH WKLV VWXG\ DUHD 0LFUDVHPD Q VS GHVFULEHG LQ D GLVVHUWDWLRQ E\ &KDSLQ f ZDV ZLGHVSUHDG DQG DEXQGDQW DW WKH ORZHU VDPSOLQJ UHDFKHV RQ (JOLQ /DUYDH ZHUH IRXQG LQ DVVRFLDWLRQ ZLWK VXEPHUJHG PDFURSK\WHV DQG PDFURDOJDH %DWUDFKRVSHUPXPf ,Q FRQWUDVW 0LFUDVHPD ZDWDJD ZDV QRW FROOHFWHG DW WKH (JOLQ VWDWLRQV EXW GLG RFFXU ZLWKLQ WKH $SDODFKLFROD VWXG\ DUHD 6WDWLRQ $f DQG DW *ROG +HDG %UDQFK ZKHUH LW ZDV PRVW DEXQGDQW DW WKH GRZQVWUHDP VDPSOLQJ UHDFK 6WDWLRQ *f )DPLO\ &DODPRFHUDWLGDH 7KH FDODPRFHUDWLG VSHFLHV $QLVRFHQWURSXV S\UDORLGHV DQG +HWHURSOHFWURQ DPHULFDQXP ZHUH FROOHFWHG DW SDQKDQGOH VWDWLRQV SULPDULO\ IURP VWHHSKHDG DQG XSSHU UDYLQH UHDFKHV 7KHLU DEXQGDQFH ODUJH VL]H DQG IHHGLQJ KDELWV DV GHWULWLYRUHV DQG VKUHGGHUV RI FRXUVH SDUWLFXODWH PDWWHU HJ OHDYHVf DUH VXJJHVWLYH RI WKHLU HFRORJLFDO LPSRUWDQFH WR HFRV\VWHP IXQFWLRQLQJ LQ WKHVH KDELWDWV 7KH PRUH FRPPRQ $ S\UDORLGHV RFFXUUHG DW DOO VXFK VLWHV DGXOWV ZHUH RIWHQ REVHUYHG IO\LQJ GXULQJ WKH GD\WLPH ZLWKLQ WKH UDYLQHV +HWHURSOHFWURQ DPHULFDQXP LV PRUH UHVWULFWHG LQ GLVWULEXWLRQ DQG LQ )ORULGD WKH VSHFLHV LV SULPDULO\ FRQILQHG WR UDYLQH VWUHDPV 7KHVH LVRODWHG )ORULGD SRSXODWLRQV SUREDEO\ UHSUHVHQW UHOLFW SRSXODWLRQV RI D GLVWULEXWLRQ OHVV IUDJPHQWHG GXULQJ FRROHU FOLPDWH SHULRGV DV GXULQJ WKH 3OHLVWRFHQH /LNHO\ GXH WR WKHLU ZDUPZDWHU LQWROHUDQFH QHLWKHU VSHFLHV KDV EHHQ UHFRUGHG IURP SHQLQVXODU )ORULGD

PAGE 59

)DPLO\ /HSLGRVWRPDWLGDH 7KUHH /HSLGRVWRPD VSHFLHV ZHUH FROOHFWHG / JULVHXP / ODWLSHQQH / VHUUDWXPf 7KH )ORULGD SRSXODWLRQV DUH DOO VRXWKHUQ GLVMXQFWV DQG UHVWULFWHG WR FRRO ZHOOVKDGHG VSULQJIHG VWUHDPV /HSLGRVWRPD JULVHXP DQG / ODWLSHQQH ZHUH FROOHFWHG IURP RQO\ WKH $SDODFKLFROD VWXG\ DUHD DQG ERWK VSHFLHV VKRZ $SSDODFKLDQ +LJKODQG ELRJHRJUDSKLF DIILQLQLWHV /HSLGVWRPD VHUUDWXP ZDV FROOHFWHG IURP UDYLQH KHDGV DW WKH )$08 )DUP DQG RQ (JOLQ 7KH ODUYDH ZHUH IRXQG RQ WKH XQGHUVLGHV RI FKXQNV RI FOD\OLNH PDWHULDO WKDW DUH PRVW SUHYDOHQW QHDU VSULQJVRXUFH KHDGZDOO DUHDV ,QWHUHVWLQJO\ PDOH VSHFLPHQV H[KLELW WKH VDPH JHQLWDOLF YDULDWLRQ QRWHG LQ :HDYHU f IRU VSHFLPHQV FROOHFWHG IURP 6FKRROKRXVH 6SULQJV LQ /RXLVLDQD 7KH IDFW WKDW GLVWDQW SRSXODWLRQV RQ WKH VRXWKHUQ &RDVWDO 3ODLQ VKRZ WKH VDPH YDULDWLRQ DQG D GLVMXQFW GLVWULEXWLRQ SDWWHUQ VXJJHVWV WKDW WKHVH DUH UHOLFW SRSXODWLRQV SRVVLEO\ UHSUHVHQWLQJ DQ DQFHVWUDO IRUP RI WKH VSHFLHV WKDW ZDV IRUFHG VRXWKZDUG DORQJ ZLWK GHFLGXRXV IRUHVW FRPPXQLWLHV GXULQJ FRROHU SHULRGV DVVRFLDWHG ZLWK 3OHLVWRFHQH JODFLDO DGYDQFHV )DPLO\ /HSWRFHULGDH /HSWRFHULGDH ZHUH WKH PRVW GLYHUVH DQG DEXQGDQW LQWHJULSDOSLDQ IDPLO\ FROOHFWHG LQ WKH VXUYH\ ZLWK OHSWRFHULGV DFFRXQWLQJ IRU QHDUO\ b RI DOO LQWHJULSDOSLDQ VSHFLPHQV LGHQWLILHG DQG DERXW b RI DOO LQWHJULSDOSLDQ VSHFLHV :LWKLQ WKLV IDPLO\ VSHFLHV UHSUHVHQWLQJ JHQHUD ZHUH LQYHQWRULHG 6SHFLHV ULFKQHVV IRU HDFK JHQXV ZDV &HUDFOHD f 2HFHWLV f 7ULDHQRGHV f 1HFWRSV\FKH f /HSWRFHUXV f 7KH PDMRULW\ RI WKHVH OHSWRFHULGV DUH ZLGHVSUHDG LQ HDVWHUQ 1RUWK $PHULFD DV ZHOO DV LQ )ORULGD +RZHYHU WKHUH DUH UHSUHVHQWDWLYHV ZLWKLQ &HUDFOHD 2HFHWLV 7ULDHQRGHV DQG 1HFWRSV\FKH WKDW HLWKHU KDYH GLVMXQFW SRSXODWLRQV LQ )ORULGD RU DUH QDUURZUDQJH HQGHPLFV

PAGE 60

*HQXV &HUDFOHD 7KH &HUDFOHD VSHFLHV UHFRUGHG KDYH LQ JHQHUDO ZLGHVSUHDG GLVWULEXWLRQV RYHU ODUJH SDUWV RI HDVWHUQ 1RUWK $PHULFD 7KH\ RFFXUUHG PRVW RIWHQ DQG LQ JUHDWHVW DEXQGDQFH DW WKH ORZHUUHDFK VWDWLRQV DW XSSHUUHDFK UDYLQH VWDWLRQV &HUDFOHD VSHFLHV ZHUH TXLWH XQFRPPRQ 5HJLRQDO GLIIHUHQFHV LQ VSHFLHV FRPSRVLWLRQ RI &HUDFOHD ZHUH HYLGHQW 7KH $SDODFKLFROD VWXG\ DUHD VXSSRUWHG WKH PRVW VSHFLHV f ZLWK & SURWRQHSKD & WDUVLSXQFWDWD DQG & WUDQVYHUVD EHLQJ FROOHFWHG SULPDULO\ IURP WKLV UHJLRQ DQG LQ WKH KLJKHVW RYHUDOO DEXQGDQFH &HUDFOHD IODYD & QHSKD DQG & RSKLRGHUXV ZHUH FROOHFWHG RQO\ DW $SDODFKLFROD VWDWLRQV EXW ZHUH OHVV FRPPRQ &HUDFOHD PDFXODWD ZDV ZLGHVSUHDG DQG FRPPRQ DW ERWK (JOLQ DQG $SDODFKLFROD VWDWLRQV &HUDFOHD GLOXD DQG & UHVXUJHQV ZHUH FROOHFWHG RQO\ IURP (JOLQ ZLWK & GLOXD EHLQJ WKH PRUH FRPPRQ +DUULV HW DO f UHSRUWHG ERWK RI WKHVH VSHFLHV IURP VPDOO VWUHDPV ZLWKLQ FRDVWDO $ODEDPD DQG IURP IHZ RWKHU $ODEDPD ORFDOLWLHV 1HLWKHU ZDV UHFRUGHG IURP VWUHDPV VXUYH\HG RQ WKH HDVWHUQ SDUW RI WKH UHVHUYDWLRQ +DUULV HW DO f *HQXV /HSWRFHUXV /HSWRFHUXV DPHULFDQXV ZDV FROOHFWHG LQIUHTXHQWO\ IURP D IHZ FHQWUDO SDQKDQGOH VWDWLRQV 7KLV VSHFLHV LV DVVRFLDWHG ZLWK DTXDWLF PDFURSK\WHV EXW ZDV QRW FROOHFWHG DV ODUYDH RU DV DGXOWV DW GRZQVWUHDP VWDWLRQV RQ (JOLQ ZKHUH DTXDWLF PDFURSK\WHV ZHUH DEXQGDQW +LJK VWUHDP YHORFLWLHV DW WKHVH VWDWLRQV PD\ DFFRXQW IRU WKH DEVHQFH VLQFH / DPHULFDQXV LV DVVRFLDWHG PRUH ZLWK OHQWLF KDELWDWV *HQXV 1HFWRSV\FKH 1HFWRSV\FKH VSHFLHV ZHUH FRPPRQ DQG DEXQGDQW DW PLGGOH DQG ORZHU UHDFKHV :LWKLQ VWHHSKHDG DQG XSSHUUDYLQH UHDFKHV 1HFWRSV\FKH ZDV JHQHUDOO\ OHVV DEXQGDQW 6SHFLHV FRPSRVLWLRQ DQG DEXQGDQFH YDULHG E\ UHJLRQ 7KUHH 1 FDQGLGD 1 H[TXVLWD DQG 1 SDYLGDf RI WKH VSHFLHV FROOHFWHG UDQJH RYHU PXFK RI HDVWHUQ 1RUWK $PHULFD ZKHUHDV 1 SDOXGLFROD LV HQGHPLF WR WKH ZHVWHUQ )ORULGD SDQKDQGOH DQG FRDVWDO

PAGE 61

$ODEDPD 7KLV VSHFLHV ZDV FROOHFWHG IURP DOO (JOLQ VWDWLRQV RIWHQ LQ JUHDW DEXQGDQFH 1HFWRSV\FKH H[TXLVLWD ZDV WKH PRVW IUHTXHQWO\ RFFXUULQJ VSHFLHV IURP WKH $SDODFKLFROD VWXG\ DUHD 1HFWRSV\FKH SDYLGD ZDV FROOHFWHG IURP WKH (JOLQ DQG $SDODFKLFROD VWXG\ DUHDV EXW ZDV PRVW DEXQGDQW DW *ROG +HDG %UDQFK &ROOHFWLRQV RI WKLV VSHFLHV DW WKH VWHHSKHDG VWDWLRQ *Of FRPSULVHG VHYHUDO KXQGUHG IHPDOHV EXW RQO\ PDOHV ZKHUHDV WKH FROOHFWLRQV GRZQVWUHDP DW VWDWLRQ VKRZHG D PXFK PRUH HTXDO VH[UDWLR VXJJHVWLQJ WKDW IHPDOHV EXW QRW PDOHV ZHUH IO\LQJ XSVWUHDP 1HFWRSV\FKH FDQGLGD ZDV WKH OHDVW FRPPRQ VSHFLHV ZLWK RQO\ D VLQJOH VSHFLPHQ EHLQJ LGHQWLILHG *HQXV 2HFHWLV $W OHDVW QLQH VSHFLHV RI 2HFHWLV ZHUH FROOHFWHG DQG FRQJHQHUV ZHUH W\SLFDOO\ IRXQG DW VWDWLRQV ZKHUH PXOWLSOH VDPSOHV ZHUH FROOHFWHG 0RVW ZLGHVSUHDG DQG DEXQGDQW ZDV WKH 2HFHWLV LQFRQVSLFXD FRPSOH[ OLNHO\ FRPSULVLQJ RU GLIIHUHQW VSHFLHVf $OVR ZLGHVSUHDG DQG YHU\ DEXQGDQW SDUWLFXODUO\ LQ ORZHU UHDFKHV ZDV WKH VRXWKHDVWHUQ VSHFLHV 2HFHWLV VSK\UD 2HFHWLV JHRUJLD DQRWKHU VRXWKHDVWHUQ VSHFLHV ZDV FROOHFWHG IURP DOO UHJLRQV EXW LQ ORZHU QXPEHUV DQG WHQGHG WR RFFXU PRVW RIWHQ LQ XSSHU UHDFKHV 2HFHWLV GD\WRQD HQGHPLF WR WKH 6RXWKHDVWHUQ &RDVWDO 3ODLQ DQG OLVWHG E\ )&5(3$ DV 5DUH ZDV FROOHFWHG DW VWDWLRQV ( ( DQG *Of§LGHQWLILHG IURP VLQJOH PDOHV 7KH RWKHU 2HFHWLV FROOHFWHG 2 FLQHUDVFHQV 2 GLWLVVD 2 QRFWXUQD 2 RVWHQL DQG 2 SHUVLPLOLVf DUH FRPPRQ DQG ZLGHVSUHDG HDVWHUQ VSHFLHV )OR\G f WKDW ZHUH FROOHFWHG DW PDQ\ RI WKH VWDWLRQV *HQXV 7ULDHQRGHV (LJKW VSHFLHV RI 7ULDHQRGHV ZHUH GRFXPHQWHG LQ WKH VXUYH\ %\ IDU WKH PRVW ZLGHVSUHDG DQG FRPPRQ ZDV 7ULDHQRGHV LJQLWXVf§FROOHFWHG PRUH RIWHQ DQG LQ JUHDWHU WRWDO DEXQGDQFH WKDQ DOO RWKHU 7ULDHQRGHV VSHFLHV FRPELQHG ,W RFFXUUHG DW WKH PDMRULW\ RI VWDWLRQV DQG DSSHDUHG WR EH XELTXLWRXV LQ VWUHDPV RI DOO VL]HV /DUYDH ZHUH

PAGE 62

PRVW IUHTXHQWO\ IRXQG DPRQJ VXEPHUJHG URRWPDWV RI ULSDULDQ YHJHWDWLRQ 7ULDHQRGHV LJQLWXV LV ZLGHVSUHDG DQG FRPPRQ LQ VWUHDPV DQG ULYHUV DFURVV HDVWHUQ 1RUWK $PHULFD 2QH VSHFLHV 7 WDHQLD RFFXUUHG RQO\ LQ XSSHU UDYLQHUHDFKHV ZLWKLQ WKH $SDODFKLFROD DQG )$08 )DUP VWXG\ DUHDV 7KLV VSHFLHV ZDV SUHYLRXVO\ WKRXJKW WR EH UHVWULFWHG WR PRXQWDLQ VWUHDPV LQ WKH VRXWKHUQ $SSDODFKLDQV DQG VSULQJIHG VWUHDPV LQ WKH 3LHGPRQW RI 1RUWK &DUROLQD DQG $ODEDPD *ORYHU f 7KH FRROPRGLILHG UDYLQH PLFURFOLPDWH LV SUREDEO\ HVVHQWLDO IRU WKH VXUYLYDO RI )ORULGD SRSXODWLRQV RI WKLV $SSDODFKLDQ GLVMXQFW )RXU 7ULDHQRGHV VSHFLHV 7 DED 7 KHOR 7 RFKUDFHXV 7 WDUGXVf ZHUH FROOHFWHG RQO\ IURP WKH $SDODFKLFROD VWXG\ DUHD 7ULDHQRGHV DED DQG 7 WDUGXV DUH ZLGHVSUHDG VSHFLHV W\SLFDOO\ DVVRFLDWHG ZLWK PDFURSK\WHV LQ OHQWLF KDELWDWV WKH RFFXUUHQFH RI VLQJOH LQGLYLGXDOV RI WKHVH VSHFLHV LQGLFDWHV WKH\ GR QRW W\SLFDOO\ RFFXU LQ UDYLQH VWUHDPV 7KH VRXWKHDVWHUQ VSHFLHV 7 RFKUDFHXV DQG WKH &RDVWDO 3ODLQ VSHFLHV 7 KHOR ZHUH FROOHFWHG IURP IORRGSODLQ IRUHVW VWDWLRQV 6WDWLRQ $ $f *ORYHU f QRWHG WKDW WKHVH VSHFLHV KDYH VLPLODU KDELWDW SUHIHUHQFHV ERWK RFFXUULQJ RQ F\SUHVV URRWV LQ VPDOO VWUHDPV 7ULDHQRGHV Q VS DQG 7ULDHQRGHV SHUQD ZHUH FROOHFWHG IURP VHYHUDO (JOLQ VWDWLRQV 7ULDHQRGHV SHUQD D FORVH UHODWLYH RI 7 KHOR UDQJHV RYHU PXFK RI HDVWHUQ 1RUWK $PHULFD DQG FDQ EH IRXQG LQ D YDULHW\ RI ORWLF DQG VRPHWLPHV OHQWLF KDELWDWV 7ULDHQRGHV Q VS LV HQGHPLF WR WKH 6RXWKHDVWHUQ &RDVWDO 3ODLQ ZKHUH LW LV IRXQG LQ VPDOO KHDGZDWHU VWUHDPV 7KLV VSHFLHV SUHVHQWO\ EHLQJ GHVFULEHG E\ .HQ 0DQXHO ZDV OLVWHG LQ *ORYHU f DV 7ULDHQRGHV Q VS $ )DPLO\ /LPQHSKLOLGDH 7ZR VSHFLHV ZLWKLQ WKH JHQXV 3\FQRSV\FKH 3 DQWLFD 3 LQGLDQDf ZHUH LQYHQWRULHG 3\FQRSV\FKH DQWLFD ZDV FROOHFWHG IURP DOO UHJLRQV DQG VWXG\ DUHDV DQG JHQHUDOO\ ZDV

PAGE 63

PRVW DEXQGDQW DW PLGGOH DQG ORZHU UHDFK VWDWLRQV 3\FQRSV\FKH VSHFLHV DUH W\SLFDOO\ DVVRFLDWHG ZLWK WHPSHUDWH GHFLGXRXV IRUHVWV RI HDVWHUQ 1RUWK $PHULFD 5RVV f DQG WKHLU OLIH KLVWRU\ DQG ELRORJ\ DUH FORVHO\ OLQNHG ZLWK WKDW RI GHFLGXRXV ULSDULDQ YHJHWDWLRQ 3\FQRSV\FKH VSHFLHV DUH FRRODGDSWHG DQG LQ )ORULGD UHVWULFWHG WR ZHOOVKDGHG VWUHDPV ZLWK VXEVWDQWLDO JURXQGZDWHU LQSXWV KHQFH WKH FRPPRQ DQG DEXQGDQW RFFXUUHQFH RI 3 DQWLFD LQ WKH VWUHDPV VWXGLHG 3\FQRSV\FKH LQGLDQD RFFXUUHG DW RQO\ VWDWLRQ (f ,Q )ORULGD WKLV VSHFLHV KDV EHHQ FROOHFWHG DW RQO\ D IHZ ZLGHO\ VFDWWHUHG ORFDOLWLHV 5DVPXVVHQ t 'HQVRQ f )DPLO\ 0RODQQLGDH 0RODQQLGV RFFXUUHG FRPPRQO\ DORQJ WKH HQWLUH OHQJWKV RI WKH VWUHDPV VWXGLHG 7KUHH VSHFLHV ZHUH LQYHQWRULHG 0 EOHQGD 0 XOPHULQD 0 WU\SKHQDf DOO RI ZKLFK DUH ZLGHVSUHDG RYHU PXFK RI HDVWHUQ 1RUWK $PHULFD ,Q WKLV VWXG\ FOHDU GLVWLQFWLRQV ZHUH REVHUYHG LQ VSHFLHV ELRWRSHV DQG UHJLRQDO GLVWULEXWLRQV 0RODQQD EOHQGD ZDV FROOHFWHG LQ JUHDWHVW DEXQGDQFH DW UDYLQHKHDG UHDFKHV ZKLOH 0 WU\SKHQD PRUH W\SLFDOO\ RFFXUUHG DW ORZHU UHDFK VWDWLRQV 7KH ]RQDWLRQ ZDV RQO\ HYLGHQW LQ WKH SDQKDQGOH ZKHUH ERWK VSHFLHV DUH SUHVHQW $W *ROG +HDG %UDQFK ZKHUH LW DSSHDUV WKDW 0 EOHQGD LV DEVHQW 0 WU\SKHQD ZDV PRUH DEXQGDQW DW WKH VWHHSKHDG UHDFK WKDQ DW WKH ORZHU UHDFK RQ *ROG +HDG %UDQFK ,W DSSHDUV WKDW 0 EOHQGD ZKLFK LV QRWHG IRU SULPDULO\ LQKDELWLQJ VSULQJVHHSV DQG VPDOO VSULQJIHG VWUHDPV 6KHUEHUJHU t :DOODFH f FRPSHWLWLYHO\ H[FOXGHV 0 WU\SKHQD IURP XSSHU UHDFKHV LQ DUHDV RI V\PSDWU\ 0RODQQD XOPHULQD ZDV FROOHFWHG IURP WKH ZHVWHUQ SDQKDQGOH DW RQO\ VWDWLRQV (O ( (f 7KLV VSHFLHV DOVR RFFXUV LQ VSULQJUXQV RI QRUWKFHQWUDO )ORULGD EXW ZDV QRW FROOHFWHG DW *ROG +HDG %UDQFK

PAGE 64

)DPLO\ 2GRQWRFHULGDH :LWKLQ )ORULGD 3VLORWUHWD IURQWDOLV LV ODUJHO\ UHVWULFWHG WR WKH XSSHU UHDFKHV RI UDYLQH VWUHDPV 7KLV VSHFLHV WKH RQO\ RGRQWRFHULG NQRZQ LQ )ORULGD ZDV PRVW DEXQGDQW IURP UDYLQHUHDFK VWDWLRQV ZLWKLQ WKH FHQWUDO SDQKDQGOH UHJLRQ %RWK ODUYDH DQG DGXOWV ZHUH FROOHFWHG LQ ODUJH QXPEHUV DW WKH )$08 )DUP 6WUHDP 3VLORWUHWD IURQWDOLV ZDV FROOHFWHG DW RQO\ VWDWLRQV RQ (JOLQ DQG WKHVH VSHFLPHQV VKRZHG LQWHUHVWLQJ YDULDWLRQ LQ WKH PDOH JHQLWDOLD VSHFLILFDOO\ LQ WKH GHYHORSPHQW RI WKH VW\OHV RQ VHJPHQW 6SHFLPHQV IURP VWDWLRQ ( ODFNHG VW\OHV ZKLOH VSHFLPHQV IURP VWDWLRQ ( HLWKHU ODFNHG VW\OHV SRVVHVVHG QRUPDO VW\OHV RU SRVVHVVHG VKRUW VW\OHV 7KH ODFN RI VW\OHV ZDV XVHG E\ 'HQQLQJ f WR GLVWLQJXLVK 3 KDQVRQL IURP 3 IURQWDOLV +RZHYHU 3DUNHU DQG :LJJLQV f LQ WKHLU UHYLVLRQ RI WKH JHQXV FRQVLGHUHG WKH VSHFLPHQV WKH\ H[DPLQHG ODFNLQJ VW\OHV WR EH XQXVXDO YDULDQWV RI 3IURQWDOLV DQG IRXQG WKDW LQ DOO RWKHU UHVSHFWV WKH VSHFLPHQV ZHUH LGHQWLFDO WR W\SLFDO 3 IURQWDOLV 7KH YDULDWLRQ REVHUYHG LQ WKH (JOLQ VSHFLPHQV VXSSRUWV WKH DVVHUWLRQ WKDW WKLV LV LQGHHG D YDULDEOH FKDUDFWHU DQG QRW D YDOLG EDVLV IRU FRQVLGHULQJ WKHP WR EH VHSDUDWH VSHFLHV )XUWKHUPRUH ODUYDH DQG SXSDH FROOHFWHG DW VWDWLRQ ( ZHUH LQGLVWLQJXLVKDEOH IURP WKRVH FROOHFWHG DW WKH FHQWUDO SDQKDQGOH VWDWLRQV )DPLO\ 3KU\JDQHLGDH 7ZR JHQHUD %DQNVLROD 3WLORVWRPLVf FRPSULVLQJ VSHFLHV % FRQFDWHQDWD 3 RFHOOLIHUD 3 SRVWLFDf ZHUH FROOHFWHG LQ VPDOO QXPEHUV IRU WKLV IDPLO\ ZKRVH PHPEHUV OLNH /LPQHSKLOLGDH DUH SULPDULO\ QRUWKHUQ LQ GLVWULEXWLRQ %DQNVLROD FRQFDWHQDWD DQG 3 RFHOOLIHUD HDFK RFFXUUHG DW RQO\ (JOLQ VWDWLRQ ZKLOH 3 SRVWLFD ZDV FROOHFWHG RQ VHYHUDO RFFDVLRQV IURP WKH )$08 )DUP VWDWLRQV DQG DW $SDODFKLFROD VWDWLRQV

PAGE 65

)DPLO\ 6HULFRVWRPDWLGDH $JDURGHV VSHFLHV ZHUH IRXQG WR EH LPSRUWDQW FRPSRQHQWV RI UDYLQH DVVHPEODJHV WKURXJKRXW XSSHU DQG ORZHU UHDFKHV /DUYDH RI VSHFLHV ZLWKLQ WKLV JHQXV DUH QRWHG IRU WKHLU EXUURZLQJ KDELWV DQG SUHIHUHQFH IRU VSULQJIHG VDQGERWWRP VWUHDPV )RXU VSHFLHV RI $JDURGHV ZHUH LQYHQWRULHG LQFOXGLQJ ZLGHVSUHDG 6RXWKHDVWHUQ VSHFLHV $ FUDVVLFRUQLV $ OLEDOLVf DQG QDUURZUDQJH HQGHPLFV $ ORJDQL $ ]LF]DFf 'LIIHUHQFHV LQ VSHFLHV FRPSRVLWLRQ ZHUH DSSDUHQW DW D UHJLRQDO OHYHO $JDURGHV FUDVVLFRUQLV ZDV WKH RQO\ VSHFLHV WR RFFXU LQ DOO VWXG\ DUHDV $JDURGHV OLEDOLV ZDV FROOHFWHG IURP WKH VWHHSKHDG VSULQJUXQV LQ WKH $SDODFKLFROD VWXG\ DUHD DQG IURP WKH *ROG +HDG %UDQFK VWDWLRQV 2YHUDOO WKLV VSHFLHV ZDV FROOHFWHG LQ KLJKHVW QXPEHUV DW WKH *ROG +HDG %UDQFK VWHHSKHDG $JDURGHV ]LF]DF ZDV UHVWULFWHG WR WKH (JOLQ VWXG\ DUHD ZKHUH LW ZDV ZLGHVSUHDG DQG FROOHFWHG LQ YHU\ KLJK QXPEHUV $JDURGHV ]LF]DF OLVWHG E\ )&5(3$ DV 7KUHDWHQHG RFFXUV RQO\ LQ WKH ZHVWHUQ )ORULGD SDQKDQGOH 5HVXOWV RI WKLV VXUYH\ DQG WKDW RI +DUULV HW DO f LQGLFDWHG WKDW WKH VSULQJIHG KHDGZDWHU VWUHDPV RQ (JOLQ VXSSRUW WKH KLJKHVW SRSXODWLRQV 7KH SURWHFWLRQ RI KHDGZDWHU DUHDV RQ WKH (JOLQ $LU )RUFH %DVH LV YLWDO WR ORQJWHUP KHDOWK RI WKLV VSHFLHV (YHQ PRUH UHVWULFWHG LQ GLVWULEXWLRQ LV $JDURGHV ORJDQL 7KLV VSHFLHV GHVFULEHG E\ .HWK DQG +DUULV f LV NQRZQ RQO\ IURP VSHFLPHQV FROOHFWHG ZLWKLQ WKH UDYLQH RI WKH )$08 )DUP 6WUHDP 6WDWLRQV ), )f 7KH UHVWULFWHG GLVWULEXWLRQ DQG DSSDUHQW VPDOO SRSXODWLRQ VL]H VXJJHVW WKDW WKLV VSHFLHV LV SDUWLFXODUO\ YXOQHUDEOH WR H[WLQFWLRQ 2WKHU KHDGZDWHU VSULQJIHG VWUHDPV DURXQG WKH W\SH ORFDOLW\ QHHG WR EH VDPSOHG LQ RUGHU WR EHWWHU XQGHUVWDQG LWV GLVWULEXWLRQ

PAGE 66

6XUYH\ $FFRXQW RI 3OHFRSWHUD 7KH 3OHFRSWHUD VSHFLHV LQYHQWRU\ SUHVHQWHG LQ 7DEOH LV GLVFXVVHG EHORZ 2YHUDOO VSHFLHV UHSUHVHQWLQJ IDPLOLHV DQG JHQHUD ZHUH LGHQWLILHG IURP DPRQJ WKH VDPSOHV WDNHQ DW WKH FROOHFWLQJ VWDWLRQV $ WRWDO RI VWRQHIO\ VSHFLPHQV ZHUH LGHQWLILHG 7KH IDPLO\ 3HUOLGDH FRQWDLQHG WKH OLRQfV VKDUH RI VSHFLHV f IROORZHG E\ /HXFWULGDH f 3HUORGLGDH f DQG 1HPRXULGDH 7DHQLRSWHU\JLGDH 3WHURQDUF\LGDH VSHFLHV HDFKf 6SHFLHV ULFKQHVV IRU WKH VWXG\ DUHDV ZDV (JOLQ VSHFLHVf $SDODFKLFROD VSHFLHVf )$08 IDUP VSHFLHVf DQG *ROG +HDG VSHFLHVf (LJKW VSHFLHV IRXQG LQ WKH $SDODFKLFROD VWXG\ DUHD ZHUH QRW FROOHFWHG DW WKH RWKHU VWXG\ DUHDV DQG VSHFLHV ZHUH UHFRUGHG IURP RQO\ (JOLQ VWXG\ DUHD FROOHFWLRQV $V GLVFXVVHG LQ WKH VXUYH\ DFFRXQW WKH GLVWULEXWLRQ RI PDQ\ VWRQHIO\ VSHFLHV ZLWKLQ DQG DPRQJ VWXG\ DUHDV DSSHDUV WR EH FRQWUROOHG DW WKH ORFDO VFDOH E\ VWULFW KDELWDW UHTXLUHPHQWV DQG DW D ODUJHU VFDOH E\ ELRJHRJUDSKLF DIILQLWLHV 7KH IROORZLQJ DFFRXQW VXPPDUL]HV WKH VXUYH\ UHVXOWV )DPLO\ VXEKHDGLQJV DQG VSHFLHV DUH DUUDQJHG DOSKDEHWLFDOO\ XQGHU HDFK RI WKH PDMRU VWRQHIO\ JURXSLQJV (XKRORJQDWKD DQG 6\VWHOORJQDWKD 7DEOH 6XUYH\ 6XPPDU\ 3OHFRSWHUDf 6SHFLHV &ROOHFWLRQV f 6SHFLPHQV 0 6WXG\ $UHD b RI 7RWDO 6SHFLPHQVf >&ROOHFWLRQ 6WDWLRQ 1XPEHU (8+2/2*1$7+$ /HXFWULGDH /HXFWUD FRWWDTXLOOD -DPHV ( f> @ /HXFWUD IHUUXJLQHD :DONHUf $f>@ /HXFWUD ULFNHUL -DPHV (f>@*f>@ /HXFWUD WULORED &ODDVVHQ $f>@)f>@ 1HXPRXULGDH $PSKLQHPXUD VS $f>@ 7DHQLRSWHU\JLGDH 7DHQLRSWHU\[ VS $f>O@ 6<67(//2*1$7+$ 3HUOLGDH $FURQHXULD DEQRUPLV 1HZPDQf (f>O@ $FURQHXULD DUHQRVD 3LFWHWf (f>@ $f> @ $FURQHXULD O\FRULDV 1HZPDQf (f>@$f>OOO@) $JQHWLQD DQQXOLSHV +DJHQf $f>O@

PAGE 67

7DEOH &RQWLQXHG 6SHFLHV &ROOHFWLRQV Qf 6SHFLPHQV Qf 6WXG\ $UHD b RI 7RWDO 6SHFLPHQVf >&ROOHFWLRQ 6WDWLRQ 1XPEHU@ (FFRSWXUD [DQWKHQHV 1HZPDQf $f>O @ )f>O@ 1HRSHUOD FDUOVRQL 6WDUN t $f>@ %DXPDQQ 1HRSHUOD FO\PHQH 1HZPDQf (f>@ $f>O@ *f>O@ 3DUDJQHWLQD IXPRVD %DQNVf (f>@ $ f>@ 3DUDJQHWLQD NDQVHQVLV %DQNVf $f>@ 3HUOHVD SODFLGD +DJHQf (f>O@ $f>OO @ )f>O@ 3HUOHVD VS $ (f>@ 3HUOHVD VS % (f>@ 3HUOLQHOOD GU\PR 1HZPDQf (f>O@ $f>O @ 3HUOLQHOOD ]ZLFNL .RQGUDWLHII HW DO (f>@ 3HUORGLGDH &OLRSHUOD FOLR 1HZPDQf $f>O@ ,VRSHUOD GLFDOD )ULVRQ $f>@ 3WHURQDUF\LGDH 3OHURQDUF\V GRUVDLD 6D\f ( f>@ $f>O *URXS (XKRORJQDWKD 7DEOH f )DPLO\ /HXFWULGDH )RXU VSHFLHV RI /HXFWUD ZHUH LQYHQWRULHG = FRWWDTXLOOD /IHUUXJLQHD / ULFNHUL / WULOREDf 1\PSKV RI /HXFWUD ZHUH VRPHWLPHV ORFDOO\ DEXQGDQW HVSHFLDOO\ LQ OHDI SDFNV ZLWKLQ XSSHU UHDFKHV XQIRUWXQDWHO\ Q\PSKV FRXOG QRW EH LGHQWLILHG WR VSHFLHV 7KHUHIRUH DGXOW FROOHFWLRQV IURP OLJKW WUDSSLQJ GRQH GXULQJ WKH IDOO DQG HDUO\ VSULQJ ZHUH XVHG WR GHWHUPLQH VSHFLHV FRPSRVLWLRQ 7KH IDFW WKDW DGXOWV RI /HXFWUD DUH RQO\ SUHVHQW LQ )ORULGD GXULQJ WKH FRRO PRQWKV PDNHV WKHP GLIILFXOW WR FROOHFW E\ OLJKW DQG WKH ORZ QXPEHUV FROOHFWHG LQ OLJKWWUDS VDPSOHV XQGHUUHSUHVHQWHG WKHLU WUXH DEXQGDQFH ZLWKLQ UDYLQH KDELWDWV 2I WKH IRXU VSHFLHV LQYHQWRULHG / FRWWDTXLOOD KDV WKH PRVW UHVWULFWHG GLVWULEXWLRQ 7KLV VSHFLHV LV HQGHPLF WR WKH ZHVWHUQ )ORULGD SDQKDQGOH DQG SDUWV RI VRXWKHUQ $ODEDPD DQG 0LVVLVVLSSL :LWKLQ WKH (JOLQ VWXG\ DUHD LW ZDV ZLGHVSUHDG DQG FROOHFWHG DW VWHHSKHDG DQG GRZQVWUHDP VWDWLRQV 7KH RWKHU VSHFLHV DUH ZLGHO\

PAGE 68

GLVWULEXWHG LQ HDVWHUQ 1RUWK $PHULFD /HXFWUD WULORED RFFXUUHG DW XSSHU UDYLQHUHDFK VWDWLRQV IURP WKH $SDODFKLFROD DQG )$08 VWXG\ DUHDV WKHVH )ORULGD SRSXODWLRQV DUH GLVMXQFW IURP LWV QRUWKHUQ UDQJH /HXFWUD IHUUXJLQHD DOVR RFFXUUHG LQ ERWK RI WKHVH VWXG\ DUHDV DQG LQ WKH HPHUJHQFH VWXG\ DW WKH )$08 )DUP 6WUHDP VHH &KDSWHU f ERWK VSHFLHV ZHUH IRXQG WR EH V\QWRSLF ZLWKLQ D P VWUHDP VHFWLRQ FRYHUHG E\ WKH HPHUJHQFH WUDS /HXFWUD ULFNHUL ZDV FROOHFWHG IURP WKH (JOLQ DQG *ROG +HDG VWXG\ DUHDV EXW QRW IURP WKH FHQWUDO SDQKDQGOH VWXG\ DUHDV )DPLO\ 1HPRXULGDH 7KH QHXPRXULGV ZHUH UHSUHVHQWHG E\ RQO\ FROOHFWLRQV RI $PSKLQHPXUD ODUYDH 6WDWLRQ $f ,W LV OLNHO\ WKDW WKHVH VSHFLPHQV EHORQJ WR $PSKLQHPXUD QLJULWWD D VSHFLHV UHSRUWHG QHDUE\ DQG WKH RQO\ NQRZQ $PSKLQHPXUD VSHFLHV LQ )ORULGD $PSKLQHPXUD VSHFLHV LQFOXGLQJ $ QLJULWWD KDYH D SURORQJHG HJJ GLDSDXVH 6WHZDUW t 6WDUN f ZKLFK PD\ DFFRXQW IRU WKHLU SUHVHQFH LQ VWUHDPV WKDW WHPSRUDULO\ JR GU\ $PSKLQHPXUD LQ )ORULGD DSSHDUV WR EH PRUH FKDUDFWHULVWLF RI WKLV VWUHDPW\SH WKDQ WKH SHUPDQHQW VSULQJIHG V\VWHPV WKDW ZHUH VWXGLHG )DPLO\ 7DHQLRSWHU\JLGDH 7DHQLRSWHU\JLGDH ZHUH UHSUHVHQWHG E\ RQO\ FROOHFWLRQ 6WDWLRQ $Of FRPSULVLQJ Q\PSKV RI D 7DHQLRSWHU\[ VSHFLHV $V ZLWK WKH RWKHU (XKRORJQDWKDQV LQYHQWRULHG Q\PSKV XVXDOO\ DUH QRW LGHQWLILDEOH WR VSHFLHV KHQFH WKH JHQXVOHYHO GHWHUPLQDWLRQ 7KH Q\PSKV OLNHO\ EHORQJ WR HLWKHU 7 OLWD RU 7 EXUNVL WKH RQO\ VSHFLHV NQRZQ WR RFFXU ZLWKLQ WKH FHQWUDO SDQKDQGOH RI )ORULGD

PAGE 69

*URXS 6\VWHOORJQDWKD )DPLO\ 3HUOLGDH 3HUOLGV ZHUH LQ JHQHUDO WKH PRVW FRPPRQ VWRQHIOLHV FROOHFWHG LQ WKH VXUYH\ DQG XQGRXEWHGO\ WKH\ SOD\ NH\ HFRORJLFDO UROHV DV SUHGDWRUV ZLWKLQ WKH UDYLQH HFRV\VWHPV VWXGLHG 7KH IDPLO\ ZDV UHSUHVHQWHG E\ VSHFLHV JURXSHG ZLWKLQ JHQHUD &ROOHFWLRQV UHIOHFWHG D YDULHW\ RI GLVWULEXWLRQDO SDWWHUQV 6RPH VSHFLHV LQYHQWRULHG FRXOG EH FRQVLGHUHG HFRORJLFDO JHQHUDOLVWV HJ 3HUOHVD SODFLGD &OLRSHUOD FOLRf ZKLOH DQRWKHU VSHFLHV (FFRSWXUD [DQWKHQHV DSSHDUV WR KDYH VWULFW HFRORJLFDO UHTXLUHPHQWV PHW RQO\ ZLWKLQ WKH HQYLURQV RI UDYLQH KHDGZDWHUV *HQXV $FURQHXULD 7KUHH $FURQHXULD VSHFLHV ZHUH LQYHQWRULHG $ DEQRUPLV $ DUHQRVD $ O\FRULDVf 7KH ZLGHVSUHDG 1RUWK $PHULFDQ VSHFLHV $ DEQRUPLV RFFXUUHG DW RQO\ 6WDWLRQ (O LQ )ORULGD LW LV PRUH FRPPRQ LQ ULYHUV WKDQ IURP VPDOO VSULQJIHG VWUHDPV $FURQHXULD O\FRULDV RQ WKH RWKHU KDQG ZDV FRPPRQ DQG DEXQGDQW DW SDQKDQGOH VWDWLRQV HVSHFLDOO\ ZLWKLQ WKH $SDODFKLFROD VWXG\ DUHD 7KH )ORULGD SDQKDQGOH SRSXODWLRQV DUH GLVMXQFW IURP WKH VSHFLHV PDLQUDQJH ZKLFK HQFRPSDVVHV PXFK RI WKH QRUWKHUQ 86$ DQG VRXWKHUQ &DQDGD HDVW RI WKH 5RFNLHV 7KH DEVHQFH RI WKLV VSHFLHV IURP RWKHU DUHDV RQ WKH 6RXWKHDVWHUQ &RDVWDO 3ODLQ VXJJHVWV WKDW LW OLNH PDQ\ VWRQHIO\ VSHFLHV LV LQWROHUDQW RI KLJK H[WUHPHV LQ ZDWHU WHPSHUDWXUH DQG WKDW SDQKDQGOH UDYLQH VWUHDPV DUH WKH NH\ UHIXJLD VXSSRUWLQJ SRSXODWLRQV RQ WKH 6RXWKHDVWHUQ &RDVWDO 3ODLQ $FURQHXULD DUHQRVD RFFXUUHG DW YDULRXV SDQKDQGOH VWDWLRQV EXW GLIIHUV IURP $ O\FRULDV LQ WKDW LW LV IRXQG FRPPRQO\ LQ VWUHDP KDELWDWV RXWVLGH RI UDYLQH UHJLRQV $OWKRXJK $FURQHXULD VSHFLHV GR RFFXU ZLWKLQ WKH QRUWKHUQ )ORULGD SHQLQVXOD QRQH ZHUH FROOHFWHG IURP WKH

PAGE 70

*ROG +HDG VWXG\ DUHD 7KH DEVHQFH RI $FURQHXULD IURP *ROG +HDG %UDQFK PD\ EH GXH WR WKH JUHDW DEXQGDQFH RI 1HRSHUOD FO\PHQH *HQXV $JQHWLQD 1\PSKV RI $ DQQXOLSHV ZHUH FROOHFWHG RQ VHYHUDO RFFDVLRQV IURP )ODW &UHHN 6WDWLRQ $Of 7KLV VSHFLHV ZDV DEVHQW IURP VWHHSKHDG DQG XSSHU UDYLQH UHDFKHV *HQXV (FFRSWXUD &ORVHO\ UHODWHG WR $FURQHXULD WKH PRQRW\SLF JHQXV LV WKRXJKW WR UHSUHVHQW D VSHFLDOL]HG OLQHDJH DGDSWHG WR VSULQJIHG KHDGZDWHU VWUHDPV 6WDUN t *DXILQ f 7KH VROH PHPEHU RI WKH JHQXV ( [DQWKHQHV RFFXUUHG DW VWHHSKHDG DQG XSSHU UHDFK UDYLQH VWDWLRQV ZLWKLQ WKH $SDODFKLFROD DQG )$08 )DUP VWXG\ DUHDV ,W ZDV SDUWLFXODUO\ DEXQGDQW ZLWKLQ WKH )$08 )DUP UDYLQH (FFRSWXUD [DQWKHQHV LV FRPPRQ LQ VPDOO VSULQJEURRNV RI WKH VRXWKHUQ $SSDODFKLDQV DQG WKH FOXVWHU RI SRSXODWLRQV RFFXUULQJ LQ WKH FHQWUDO SDQKDQGOH UDYLQHV VXJJHVWV SDVW GLVSHUVDO EHWZHHQ WKH UHJLRQV YLD $SDODFKLFROD&KDWWDKRRFKHH)OLQW ZDWHUVKHG FRQQHFWLRQV *HQXV 1HRSHUOD 7ZR VSHFLHV ZHUH LQYHQWRULHG 1 FDUOVRQL 1 FO\PHQHf %RWK RFFXU LQ D ZLGH DUUD\ RI ORWLF KDELWDWV ZLWKLQ )ORULGD 1 FDUOVRQL LV UHVWULFWHG WR WKH ZHVWHUQ DQG FHQWUDO SDQKDQGOH ZKLOH 1 FO\PHQH LV ZLGHO\ GLVWULEXWHG RYHU PXFK RI QRUWKHUQ )ORULGD &ROOHFWLRQV RI WKH VSHFLHV ZLWKLQ WKH SDQKDQGOH VWXG\ DUHDV ZHUH VFDQW ,Q FRQWUDVW DW *ROG +HDG %UDQFK 1 FO\PHQH ZDV YHU\ DEXQGDQW DQG WKH RQO\ SHUOLG VSHFLHV WR RFFXU *HQXV 3DUDJQHWLQD 7ZR VSHFLHV ZHUH LQYHQWRULHG 3 IXPRVD 3 NDQVHQVLVf 1\PSKV RI 3 IXPRVD ZHUH FROOHFWHG DW VHYHUDO RI WKH ODUJHU VWUHDPV ZLWKLQ WKH $SDODFKLFROD VWXG\ DUHD DQG IURP 7XUNH\ &UHHN 6WDWLRQ (f ZLWKLQ WKH (JOLQ VWXG\ DUHD 3DUDJQHWLQD NDQVHQVLV ZDV UHSUHVHQWHG E\ D VLQJOH IHPDOH WDNHQ IURP WKH $SDODFKLFROD

PAGE 71

VWXG\ DUHD 6WDWLRQ $f 1HLWKHU VSHFLHV DSSHDUV WR EH DQ LPSRUWDQW FRPSRQHQW RI XSSHU UHDFK UDYLQH DVVHPEODJHV *HQXV 3HUOHVD 1\PSKV RI 3HUOHVD ZHUH FRPPRQO\ FROOHFWHG DW YLUWXDOO\ DOO SDQKDQGOH VWDWLRQV VDPSOHG EXW XQIRUWXQDWHO\ Q\PSKV FRXOG QRW EH LGHQWLILHG WR VSHFLHV %DVHG RQ DGXOW VSHFLPHQV VSHFLHV ZHUH LQYHQWRULHG 3 SODFLGD 3HUOHVD VS $ 3HUOHVD VS %f 3HUOHVD SODFLGD ZKLFK RFFXUV LQ PRVW )ORULGD SDQKDQGOH VWUHDPV DQG ULYHUV ZDV ZLGHVSUHDG DQG FRPPRQ IURP SDQKDQGOH VWDWLRQV 3HUOHVD VS $ DQG 3HUOHVD VS % ZHUH FROOHFWHG IURP WKH (JOLQ VWXG\ DUHD 6WDWLRQ ( DQG ( UHVSHFWLYHO\f 3HUOHVD VS $ ZDV UHSUHVHQWHG E\ IHPDOHV DQG 3HUOHVD VS % E\ PDOH 7KH VSHFLPHQV ZHUH VHQW WR 'U %LOO 6WDUN IRU H[DPLQDWLRQ ZKR FRQFOXGHG WKDW WKH\ OLNHO\ EHORQJ WR QHZ VSHFLHV EXW WKDW DGGLWLRQDO VSHFLPHQV DUH QHHGHG IRU IXUWKHU VWXG\ %HFDXVH FROOHFWLRQ FRPSULVHG IHPDOHV DQG WKH RWKHU FROOHFWLRQ ZDV D PDOH VSHFLPHQ LW LV SRVVLEOH WKDW WKH VSHFLPHQV DUH RI WKH VDPH VSHFLHV *HQXV 3HUOLQHOOD $GXOWV RI 3HUOLQHOOD ZHUH FRPPRQO\ WDNHQ LQ OLJKWWUDS VDPSOHV IURP WKH (JOLQ DQG $SDODFKLFROD VWXG\ DUHDV 7ZR VSHFLHV ZHUH LQYHQWRULHG 3 GU\PR DQG 3 ]ZLFNLf 3HUOLQHOOD GU\PR ZDV FRPPRQ DW XSSHU DQG ORZHU UHDFK VWDWLRQV ZLWKLQ ERWK (JOLQ DQG $SDODFKLFROD VWXG\ DUHDV ZKLOH 3 ]ZLFNL ZDV UHSUHVHQWHG E\ D VLQJOH PDOH VSHFLPHQ WDNHQ IURP -XQLSHU &N 6WDWLRQ (f 3HUOLQHOOD ]ZLFNL D &RDVWDO 3ODLQ HQGHPLF PRUH FRPPRQO\ RFFXUV LQ VKLIWLQJVDQGERWWRP ULYHUV VXFK DV WKH %ODFNZDWHU ZKLOH 3HUOLQHOOD GU\PR DQ HDVWHUQ VSHFLHV RFFXUV LQ D ZLGHU DUUD\ RI KDELWDW W\SHV LQFOXGLQJ VPDOO KHDGZDWHU VWUHDPV

PAGE 72

)DPLO\ 3HUORGLGDH 2QO\ VSHFLHV RI SHUORGLGV ZHUH FROOHFWHG &OLRSHUOD FOLR DQG ,VRSHUOD GLFDOD ERWK IURP WKH $SDODFKLFROD VWXG\ DUHD $ ODUYD RI & FOLR ZDV FROOHFWHG IURP )ODW &UHHN 6WDWLRQ $Of DQG DGXOWV RI GLFDOD ZHUH WDNHQ IURP &URRNHG &UHHN 6WDWLRQ $f &OLRSHUOD FOLR RFFXUV DFURVV PDQ\ VWUHDP W\SHV LQ QRUWKHUQ )ORULGD EXW DSSDUHQWO\ LV QRW DQ LPSRUWDQW FRPSRQHQW RI UDYLQH DVVHPEODJHV ,VRSHUOD GLFDOD LV UDUHU ZLWKLQ WKH VWDWH DQG LV NQRZQ IURP RQO\ D IHZ SDQKDQGOH VWUHDPV DQG ULYHUV )DPLO\ 3WHURQDUF\LGDH 3WHURQDUF\V GRUVDWD ZDV FROOHFWHG DW VHYHUDO ORZHUUHDFK VWDWLRQV 6WDWLRQV ( $O $f /DUYDH ZHUH FROOHFWHG IURP DUHDV RI IDVW IORZ ZKHUH OHDI SDFNV DFFXPXODWHG RQ VQDJV 7KLV VSHFLHV ZLGHVSUHDG LQ 1RUWK $PHULFD LV UHVWULFWHG LQ )ORULGD WR FOHDQ XQSROOXWHG VWUHDPV DQG ULYHUV ZLWK IDVW IORZ 3WHURQDUF\V GRUVDWD GLG QRW RFFXU LQ WKH XSSHU UHDFKHV RI UDYLQH VWUHDPV

PAGE 73

&+$37(5 $1$/<6,6 2) 75,&+237(5$ &20081,7< 6758&785( $1' (19,5210(17$/ 5(/$7,216+,36 %DVHG RQ UHVXOWV RI WKH ELRGLYHUVLW\ VXUYH\ RI UDYLQH VWUHDPV DFURVV QRUWKHUQ )ORULGD &KDSWHU f LW ZDV DSSDUHQW WKDW WKHUH DUH VLJQLILFDQW GLIIHUHQFHV LQ VSHFLHV FRPSRVLWLRQ RI WKH FDGGLVIO\ DQG VWRQHIO\ IDXQD DPRQJ WKH GLIIHUHQW VDPSOLQJ VWDWLRQV ([DPSOHV RI IDXQDO GLIIHUHQFHV EHWZHHQ VWDWLRQV DQG VWXG\ DUHDV ZHUH QRWHG LQ WKH VXUYH\ DFFRXQW DQG VSHFLHV RFFXUUHQFH ZDV JHQHUDOO\ GLVFXVVHG LQ WHUPV RI VSHFLHV JHRJUDSKLF GLVWULEXWLRQV DQG KDELWDW DVVRFLDWLRQV HJ VWUHDP VL]H VXEVWUDWH PLFURKDELWDWVf )URP WKH VWDUWLQJ SRLQW RI XQGHUVWDQGLQJ WKH PDNHXS RI WKH VWRQHIO\ DQG FDGGLVIO\ IDXQD RI WKH YDULRXV VWDWLRQV DGGLWLRQDO TXHVWLRQV FDQ EH DVNHG VXFK DV +RZ VLPLODU RU GLIIHUHQW LV WKH IDXQD EHWZHHQ VWDWLRQV" &DQ WKH VXUYH\ UHVXOWV EH XVHG WR SURGXFH D FODVVLILFDWLRQ RI FRPPXQLW\ W\SHV DQG LI VR ZKDW VSHFLHV GHILQH D SDUWLFXODU FRPPXQLW\" :KDW JHRJUDSKLF DQG HQYLURQPHQWDO IDFWRUV EHVW H[SODLQ WKH IDXQDO GLIIHUHQFHV REVHUYHG DPRQJ VWDWLRQV" ,Q DQ DWWHPSW WR DGGUHVV WKHVH TXHVWLRQV WKH VXUYH\ GDWD ZHUH DQDO\]HG XVLQJ PXOWLYDULDWH VWDWLVWLFDO PHWKRGV 7KH REMHFWLYHV RI WKH DQDO\VLV ZHUH WR Lf SURYLGH D FODVVLILFDWLRQ DQG GHVFULSWLRQ RI FRPPXQLW\ W\SHV EDVHG RQ IDXQDO VLPLODULWLHV EHWZHHQ VWDWLRQV DQG LLf LQYHVWLJDWH NH\ JHRJUDSKLF DQG HQYLURQPHQWDO IDFWRUV WKDW DUH SUHGLFWRUV RI VSHFLHV FRPSRVLWLRQ

PAGE 74

0DWHULDOV DQG 0HWKRGV 'DWD 6HW 7KH IDXQDO VXUYH\ VHH &KDSWHU f ZKLFK UHVXOWHG LQ D UDWKHU ODUJH GDWD VHW RI VSHFLHV RFFXUUHQFHV DQG DEXQGDQFH YDOXHV IURP VWDWLRQV ZDV XVHG DV WKH VWDUWLQJ SRLQW LQ WKLV DQDO\VLV 7KH GDWD VHW DQDO\]HG ZDV OLPLWHG WR FDGGLVIO\ GDWD ZLWK WKH VWRQHIO\ GDWD H[FOXGHG IURP WKH DQDO\VHV EHFDXVH RI WKH UHODWLYHO\ ORZ VSHFLHV GLYHUVLW\ DQG VPDOO VDPSOHVL]HV 7KH ORZ VWRQHIO\ QXPEHUV ZHUH LQ SDUW GXH WR LQKHUHQW ORZHU GLYHUVLW\ DQG LQ SDUW GXH WR WKH VDPSOLQJ ELDV WKDW UHVXOWHG IURP WKH KHDY\ UHOLDQFH RQ OLJKW WUDSSLQJ ZKLFK LV LQHIIHFWLYH IRU FDSWXULQJ PDQ\ VWRQHIO\ VSHFLHV 7KH GDWD IRU PLFURFDGGLVIOLHV )DPLO\ +\GURSWLOLGDHf ZHUH H[FOXGHG IURP WKH DQDO\VHV EHFDXVH VSHFLHV FRPSRVLWLRQ DQG DEXQGDQFH GDWD FRXQWVf XQOLNH QRQK\GURSWLOLG GDWD ZHUH QRW DYDLODEOH IRU DOO EODFNOLJKW VDPSOHV 7KH GDWD VHW XVHG ZDV IXUWKHU FRQILQHG WR RQO\ WKRVH VWDWLRQV IURP ZKLFK DW OHDVW OLJKWWUDS VDPSOHV ZHUH FROOHFWHG VSULQJVXPPHU VDPSOHV DQG IDOO VDPSOHf 7KLV UHTXLUHPHQW UHVXOWHG LQ VWDWLRQV EHLQJ GURSSHG IURP WKH DQDO\VHV ( ( $O $ $ $ )f OHDYLQJ WKH ILQDO GDWD VHW FRQVLVWLQJ RI DEXQGDQFH YDOXHV IRU PDFURFDGGLVIO\ VSHFLHV IURP VWDWLRQV $EXQGDQFH ZDV UHFRUGHG DV WKH WRWDO QXPEHU RI LQGLYLGXDOVVSHFLHV FROOHFWHG DW HDFK VWDWLRQ 7KH GDWD VHW ZDV DQDO\]HG XVLQJ VWDWLVWLFDO DSSURDFKHV FODVVLILFDWLRQ DQG RUGLQDWLRQ 6WDWLVWLFDO SURFHGXUHV ZHUH SHUIRUPHG XVLQJ WKH FRPSXWHU VRIWZDUH 0963 .RYDFK f &ODVVLILFDWLRQ 6WDWLRQV ZHUH FODVVLILHG RQ WKH EDVLV RI IDXQDO VLPLODULW\ XVLQJ WKH FOXVWHULQJ WHFKQLTXH 8QZHLJKWHG 3DLU *URXS 0DWKHPDWLFDO $YHUDJLQJ 83*0$f 7KH SXUSRVH RI SHUIRUPLQJ D FOXVWHU DQDO\VLV ZDV WR PHDVXUH VLPLODULW\ RI PDFURFDGGLVIO\ IDXQDV DPRQJ

PAGE 75

VWDWLRQV DQG WR JURXS OLNH IDXQDV LQWR D IUDPHZRUN IURP ZKLFK FRPPXQLW\ VWUXFWXUH DQG UHODWLRQVKLSV FRXOG EH LQIHUUHG 6LPLODULW\ DPRQJ VWDWLRQV ZDV PHDVXUHG DV WKH 6SHDUPDQ UDQN RUGHU FRUUHODWLRQ FRHIILFLHQW UVf ZKLFK LV FRPSXWHG DV IROORZV Q UV N L Q ZKHUH 5? DQG 5L VWDWLRQ SDLU DEXQGDQFH UDQN RUGHU N VSHFLHV DEXQGDQFH Q WRWDO QXPEHU RI VSHFLHV $ TXDQWLWDWLYH PHDVXUH LH 6SHDUPDQfV &RHIILFLHQWf ZDV FKRVHQ RYHU ELQDU\ SUHVHQFHDEVHQFHf VLPLODULW\ PHDVXUHV HJ -DFFDUGf EHFDXVH VSHFLHV YDULHG JUHDWO\ LQ UHODWLYH DEXQGDQFH DPRQJ VWDWLRQV WKHUHIRUH D SUHVHQFHDEVHQFH FRGLQJ RI WKH GDWD ZRXOG QRW EH VHQVLWLYH WR WKHVH GLIIHUHQFHV 6SHDUPDQ UDQN FRUUHODWLRQ FRHIILFLHQW ZDV XVHG LQVWHDG RI RWKHU TXDQWLWDWLYH VLPLODULW\ PHDVXUHV EHFDXVH WKLV SURFHGXUH XVHV UDQN RUGHU RI DEXQGDQFH LQVWHDG RI UDZ WRWDOV IRU DEXQGDQFH 5DQN RUGHULQJ RI DEXQGDQFH LV SDUWLFXODUO\ XVHIXO LQ WKLV VWXG\ EHFDXVH VDPSOLQJ HIIRUW HJ QXPEHU RI OLJKW WUDS VDPSOHVf ZDV QRW HTXDO DPRQJ DOO VWDWLRQV WKXV VSHFLHV WRWDO DEXQGDQFH YDOXHV ZHUH QRW DOZD\V GLUHFWO\ FRPSDUDEOH EHWZHHQ VWDWLRQV KRZHYHU E\ FRQYHUWLQJ DEXQGDQFH WR D UDQN RUGHU WKH UHODWLYH DEXQGDQFH UDQNLQJV FRXOG EH XVHG IRU IDXQDO FRPSRVLWLRQ FRPSDULVRQV DPRQJ VWDWLRQV )URP WKH 6SHDUPDQ VLPLODULW\ PDWUL[ WKH ZLGHO\ XVHG FOXVWHULQJ SURFHGXUH 8QZHLJKWHG 3DLU *URXS 0DWKHPDWLFDO $YHUDJLQJ 83*0$f ZDV XVHG WR JURXS VWDWLRQV ZLWK OLNH FDGGLVIO\ IDXQDV LQWR D KLHUDUFK\ RI QHVWHG VHWV 7KH UHVXOWV RI WKLV DQDO\VLV GHSLFWHG DV D GHQGRJUDP DUH XVHG WR SURSRVH D FODVVLILFDWLRQ K\SRWKHVLV RI FRPPXQLW\ VWUXFWXUH &RPPXQLW\ VSHFLHV FRPSRVLWLRQ ZDV FKDUDFWHUL]HG E\ SURYLGLQJ D OLVW RI UHODWLYH DEXQGDQFHV IRU VSHFLHV RFFXUULQJ LQ HDFK FRPPXQLW\

PAGE 76

2UGLQDWLRQ $Q DOWHUQDWLYH DSSURDFK WR FODVVLI\LQJ FOXVWHULQJf VWDWLRQ IDXQDV LQWR GLVFUHWH JURXSV ZKLFK RQH PD\ LQIHU WR UHSUHVHQW HFRORJLFDO FRPPXQLWLHV LV WR FRQVLGHU WKDW VSHFLHV FRPSRVLWLRQ FKDQJHV LQ D PRUH FRQWLQXRXV IDVKLRQ LQ UHVSRQVH WR HQYLURQPHQWDO JUDGLHQWV HJ ODWLWXGHORQJLWXGH DOWLWXGH WHPSHUDWXUH VWUHDP VL]Hf 7DNLQJ WKLV DSSURDFK WKH VWDWLRQV ZHUH RUGLQDWHG RQ WKH EDVLV RI WKHLU PDFURFDGGLVIO\ IDXQDV WR VHH LI WKH GDWD ZHUH VWUXFWXUHG LQ VXFK D ZD\ WKDW FDQ EH UHODWHG WR HQYLURQPHQWDO JUDGLHQWV SUHVHQW ZLWKLQ WKH VWXG\ DUHD 7KH SURFHGXUH XVHG 'HWUHQGHG &RUUHVSRQGHQFH $QDO\VLV '&$f LV ZLGHO\ XVHG ZLWK HFRORJLFDO GDWD DQG KDV DGYDQWDJHV RYHU RWKHU RUGLQDWLRQ WHFKQLTXHV LQ WKDW ERWK VSHFLHV DQG VWDWLRQ RUGLQDWLRQV DUH SURGXFHG VLPXOWDQHRXVO\ DQG WKH D[HV DUH VFDOHG LQ VWDQGDUG GHYLDWLRQ XQLWV WKDW KDYH D GHILQLWH PHDQLQJ +LOO t *DXFK f $FFRUGLQJ WR +LOO f VDPSOHV VHSDUDWHG E\ PRUH WKDQ VWDQGDUG GHYLDWLRQV ZLOO LQ JHQHUDO KDYH QR VSHFLHV LQ FRPPRQ 'HWUHQGHG &RUUHVSRQGHQFH $QDO\VLV DOVR LV IDYRUHG RYHU RWKHU RUGLQDWLRQ WHFKQLTXHV EHFDXVH LW HOLPLQDWHV WKH fDUFKf HIIHFW FDXVHG E\ LQWHUGHSHQGHQFH RI D[LV DQG D[LV 5HVXOWV DQG 'LVFXVVLRQ 7KH UHVXOWV RI WKH GDWD DQDO\VHV VKRZHG WKDW UDYLQH DVVHPEODJHV VXUYH\HG IURP DFURVV QRUWKHUQ )ORULGD VXSSRUW D PDFURFDGGLVIO\ IDXQD WKDW FDQ EH FODVVLILHG LQWR GLVWLQFW FRPPXQLWLHV 7KH FRPPXQLWLHV H[KLELW PDMRU GLIIHUHQFHV LQ VSHFLHV FRPSRVLWLRQ WKDW FDQ EH UHODWHG WR JHRJUDSKLF UHJLRQ DQG KDELWDW W\SHV 7KHVH GLIIHUHQFHV LQ FRPPXQLW\ VWUXFWXUH DWWULEXWHG WR JHRJUDSKLF DQG KDELWDW IDFWRUV DUH VWUXFWXUHG KLHUDUFKLFDOO\ 7KH ODUJH DQG ELRJHRJUDSKLFDOO\ GLYHUVH DUHD HQFRPSDVVLQJ WKH VWXG\ DUHDV DFWV DV D JHRJUDSKLF WHPSODWH GHWHUPLQLQJ WR D ODUJH H[WHQW WKH FDGGLVIO\ IDXQD RI WKH JHRJUDSKLF

PAGE 77

UHJLRQV LH ZHVWHUQ SDQKDQGOH FHQWUDO SDQKDQGOH SHQLQVXODf 7KH IDXQDV DPRQJ UHJLRQV DUH VXIILFLHQWO\ GLVWLQFW WKDW VWDWLRQV ZLWKLQ UHJLRQV ZHUH PRUH VLPLODU WR HDFK RWKHU UHJDUGOHVV RI KDELWDW IDFWRUV WKDQ WR VWDWLRQV LQ RWKHU UHJLRQV 1HVWHG ZLWKLQ WKLV JHRJUDSKLF WHPSODWH LV D KDELWDW WHPSODWH WKDW DFWV WR IXUWKHU VKDSH DQG GHILQH WKH IDXQD LQWR UHFRJQL]DEOH FRPPXQLWLHV 'LVFXVVHG EHORZ DUH UHVXOWV RI WKH FODVVLILFDWLRQ DQG RUGLQDWLRQ DQDO\VLV DV LW DSSOLHV WR P\ LQWHUSUHWDWLRQ RI FRPPXQLW\ VWUXFWXULQJ &RPPXQLW\ &ODVVLILFDWLRQ 7KH VLPLODULW\ PDWUL[ 7DEOH f DQG 83*0$ GHQGRJUDP )LJ f TXDQWLI\ WKH GHJUHH RI VLPLODULW\ LQ WKH PDFURFDGGLVIO\ IDXQDO FRPSRVLWLRQ DPRQJ VWDWLRQV $Q\ VWDWLRQV FDQ EH FRPSDUHG E\ UHDGLQJ WKH VLPLODULW\ PDWUL[ 7KH GHQGRJUDP LOOXVWUDWHV WKH UHVXOWV RI WKH 83*0$ DQDO\VLV 6WDWLRQV ZHUH JURXSHG LQWR D KLHUDUFKLFDO IUDPHZRUN WKDW LV LQIRUPDWLYH DQG XVHIXO IRU SURSRVLQJ D FRPPXQLW\ FODVVLILFDWLRQ 7KH GHQGRJUDP VKRZV WKDW WKH KLJKO\ VLPLODU f SHQLQVXODU VWDWLRQV DW WKH *ROG +HDG %UDQFK VWHHSKHDG UHSUHVHQW D GLVWLQFW FRPPXQLW\ VKRZLQJ OLWWOH VLPLODULW\ f WR VWDWLRQV FRQVWLWXWLQJ WKH SDQKDQGOH JURXSLQJ /LNHZLVH ZLWKLQ WKH SDQKDQGOH WKH (JOLQ VWHHSKHDG VWUHDPV LQ WKH ZHVWHUQ SDQKDQGOH VKRZHG OLWWOH VLPLODULW\ f WR WKH FHQWUDO SDQKDQGOH VWDWLRQ FOXVWHU :LWKLQ WKH FHQWUDO SDQKDQGOH DGGLWLRQDO JURXSLQJV ZHUH HYLGHQW ZLWK ODUJH VWUHDPV ZLWKLQ WKH $SDODFKLFROD VWXG\ DUHD VKRZLQJ RQO\ VOLJKW VLPLODULW\ f WR VPDOO UDYLQHKHDGZDWHU VWUHDPV 7KH UDYLQH KHDGZDWHU VWUHDPV DOWKRXJK PRGHVWO\ VLPLODU f GR DSSHDU WR UHSUHVHQW GLVWLQFW FRPPXQLW\ W\SHV FRUUHVSRQGLQJ WR FOD\KLOO UDYLQH VWUHDPV f DQG $SDODFKLFROD VWHHSKHDG VWUHDPV f 7KH (JOLQ VWHHSKHDG VWUHDP SRUWLRQ RI WKH GHQGRJUDP VXJJHVWV WKDW WKH (JOLQ VWDWLRQV DUH QRW VHSDUDEOH LQWR GLVWLQFW FRPPXQLWLHV EXW UDWKHU UHSUHVHQW D VLQJOH GLYHUVH FRPPXQLW\

PAGE 78

%DVHG RQ WKLV LQWHUSUHWDWLRQ RI WKH DQDO\VLV GLVWLQFW FRPPXQLWLHV DUH UHFRJQL]HG ZLWKLQ WKH GDWD VHW *ROG +HDG %UDQFK $SDODFKLFROD 6WHHSKHDG 6WUHDPV &OD\KLOO 5DYLQH 6WUHDPV $SDODFKLFROD /DUJH 6WUHDPV DQG (JOLQ 6WHHSKHDG 6WUHDPV &RPPXQLW\ FRPSRVLWLRQ LV FKDUDFWHUL]HG LQ WHUPV RI ZKDW VSHFLHV DUH SUHVHQW DQG WKHLU UHODWLYH DEXQGDQFH 7DEOHV DQG f 7KHVH SDUDPHWHUV DUH DOVR XVHG LQ GLVFXVVLQJ FRPPXQLW\ GLYHUVLW\ LQ WKDW WKH\ GHOLPLW VSHFLHV ULFKQHVV DQG HYHQHVV 7KH DEXQGDQFH GLVWULEXWLRQ IRU VSHFLHV FRQVWLWXWLQJ WKH GLIIHUHQW FRPPXQLWLHV LV VKRZQ LQ )LJXUH 'DWD UHJDUGLQJ WKH FRPPXQLWLHV DUH VXPPDUL]HG DQG GLVFXVVHG EHORZ 7DEOH 0DWUL[ RI 6SHDUPDQ UDQN DEXQGDQFH FRUUHODWLRQ FRHIILFLHQWV IRU PDFURFDGGLVIO\ GDWD DQDO\]HG LQ WKH FOXVWHU DQDO\VLV (O (O ( ( ( ( ( ( ( ( ( ( ( ( ( ( $ $ $ $ $ $ $ $ $ $ $ $ $ $ $OO $OO ), ), ) ) * *

PAGE 79

*ROG +HDG %UDQFK &HQWUDO 3DQKDQGOH 8SSHU 5HDFKHV $SDODFKLFROD 6WHHSKHDGV /RZHU 5HDFKHV 5DYLQH +HDGZDWHU 6WUHDPV &OD\KLOO 5DYLQHV 3DQKDQGOH $SDODFK /DUJH 6WUHDPV (JOOQ 6WHHSKHDG 6WUHDPV 6WDWLRQ f§ f§ f§ $ f§ $ f§ $ f§ $ f§ ) f§ ) f§ $ f§ $ f§ $ f§ $ f§ ( f§ ( f§ ( f§ ( f§ ( f§ ( f§ ( f§ ( 6SHDUPDQ &RHIILFLHQW )LJXUH 5HVXOWV RI 83*0$ FOXVWHU DQDO\VLV RI VDPSOLQJ VWDWLRQV XVLQJ 6SHDUPDQfV UDQN RUGHU FRUUHODWLRQ FRHIILFLHQW DV WKH PHDVXUH RI VLPLODULW\ $QDO\VLV ZDV RI WKH PDFURFDGGLVIO\ GDWD REWDLQHG LQ WKH VXUYH\ *ROG +HDG %UDQFK 7KH SORW )LJ f RI VSHFLHV DEXQGDQFH YDOXHV LQGLFDWHG LQ 7DEOHV DQG LOOXVWUDWHV WKDW WKH PDFURFDGGLVIO\ FRPPXQLW\ DW WKH *ROG +HDG %UDQFK VSULQJUXQ LV VWUXFWXUHG YHU\ GLIIHUHQWO\ WKDQ WKH RWKHU FRPPXQLWLHV 7KLV FRPPXQLW\ LV FKDUDFWHUL]HG E\ ORZ VSHFLHV ULFKQHVV Q f DQG KLJKO\ XQHYHQ DEXQGDQFH GLVWULEXWLRQ DV LQGLFDWHG E\ WKH VKRUW DQG VWHHSO\ VORSLQJ OLQH LQ )LJXUH 'HVSLWH KLJKTXDOLW\ KDELWDW RI WKH VWUHDP DQG SUHVXPHG ZLGHEUHDGWK RI QLFKHV WKH FRPPXQLW\ LV QXPHULFDOO\ GRPLQDWHG E\ D UHODWLYH IHZ VSHFLHV ,Q SDUW WKLV FDQ EH H[SODLQHG E\ WKH ORZHU FDGGLVIO\ VSHFLHV ULFKQHVV RI WKH SHQLQVXOD YHUVXV WKH SDQKDQGOH +RZHYHU KDYH FROOHFWHG PDQ\ RWKHU FDGGLVIO\ VSHFLHV DQG DOVR VWRQHIO\ VSHFLHV IURP VPDOO VSULQJIHG VWUHDPV LQ WKH QRUWKHUQ

PAGE 80

SHQLQVXOD WKDW H[SHFWHG WR DOVR EH SUHVHQW LQ *ROG +HDG %UDQFK 7KH ORZ GLYHUVLW\ RI WKH *ROG +HDG %UDQFK FRPPXQLW\ PD\ EH GXH LQ SDUW WR WKH VPDOO VL]H RI WKH ZDWHUVKHG D VKRUW UDYLQHVSULQJUXQ ZKLFK HQGV LQ D ODNHf WKHUHIRUH RSSRUWXQLWLHV IRU VSHFLHV WR FRORQL]H *ROG +HDG %UDQFK DUH OLPLWHG $GGLWLRQDOO\ ODQG XVH LQ WKH DUHD UHODWHG WR SDUN GHYHORSPHQW DQG YLVLWRU XVH DQG SUHYLRXV PLOO RSHUDWLRQV GXULQJ WKH fV WKDW LQFOXGHG D GDP DFURVV WKH VWUHDP PD\ KDYH FDXVHG VSHFLHV H[WLUSDWLRQV 7KH *ROG +HDG %UDQFK FRPPXQLW\ GRHV KRZHYHU FRQWDLQ VRPH XQLTXH IDXQDO HOHPHQWV PRVW QRWDEOH EHLQJ WKH SRSXODWLRQ RI 'LSOHFWURQD VS $ WKDW LQKDELWV WKH XSSHU UHDFK RI WKH UDYLQH KHDG 3URWHFWLRQ RI WKH VWHHSKHDG IURP KXPDQ GLVWXUEDQFH LV HVVHQWLDO WR PDLQWDLQ WKH KHDOWK RI WKLV VSHFLHV ZKLFK LV NQRZQ IURP RQO\ WKLV ORFDOLW\ )LJXUH 6SHFLHV DEXQGDQFH SORWV IRU WKH PDFURFDGGLVIO\ FRPPXQLWLHV 6SHFLHV DEXQGDQFH YDOXHV DFFRUGLQJ WR WKRVH OLVWHG LQ 7DEOHV DQG

PAGE 81

$SDODFKLFROD VWHHSKHDG VWUHDPV 7KH VSULQJUXQV RI VWHHSKHDG UDYLQHV RQ WKH 1DWXUH &RQVHUYDQF\ 3UHVHUYH VXSSRUW D VSHFLHVULFK PDFURFDGGLVIO\ FRPPXQLW\ VSHFLHVf WKDW LQFOXGHV D QXPEHU RI UDYLQH FUHQRELRQWV QDUURZUDQJH HQGHPLFV DQG GLVMXQFWV DV ZHOO DV ZLGHVSUHDG KDELWDW JHQHUDOLVWV 7KH QXPHULFDO GRPLQDQFH RI +\GURSV\FKH LQFRPPRGD UHIOHFWV WKH VWURQJ LQIOXHQFH RI WKH $SDODFKLFROD 5LYHU RQ WKLV FRPPXQLW\ 'HVSLWH WKH ULYHUfV FOHDU IDXQDO LQIOXHQFH WKH FRPPXQLW\fV UDYLQH DIILQLW\ LV VWURQJ ZLWK UDYLQH FUHQRELRQWV VXFK DV 'LSOHFWURQD PRGHVWD +HWHURSOHFWURQ DPHULFDQXP 3VLORWUHWD IURQWDOLV DQG 0RODQQD EOHQGD DOO RFFXUULQJ LQ VLJQLILFDQW QXPEHUV 6SHFLHV WKDW VHW WKLV FRPPXQLW\ DSDUW LQFOXGH /HSLGRVWRPD JULVHXP D GLVMXQFW VSHFLHV NQRZQ IURP QR RWKHU DUHD RI )ORULGD 7KH DEXQGDQFH RI +\GURSV\FKH HOLVVRPD DQG &KLPDUUD IDOFXODWD DOVR GLVWLQJXLVKHV $SDODFKLFROD VWHHSKHDG VWUHDPV IURP FOD\KLOO UDYLQH VWUHDPV 7KH VXEVWDQWLDO FRQWULEXWLRQV RI VSULQJV WR WKH VWUHDP IORZV D UHVXOW RI KLJK JURXQGZDWHU VWRUDJH FDSDFLW\ RI WKH VDQGKLOOV LV OLNHO\ D NH\ IDFWRU DV WKHVH VSHFLHV DUH DOVR DEXQGDQW ZLWKLQ (JOLQfV VWHHSKHDG VSULQJUXQV &OD\KLOO UDYLQH VWUHDPV 7KH VWDWLRQV VDPSOHG DW VPDOO FOD\KLOO UDYLQH VWUHDPV LQ WKH FHQWUDO SDQKDQGOH KDYH D PDFURFDGGLVIO\ FRPPXQLW\ WKDW LV VRPHZKDW OHVV GLYHUVH ERWK LQ WHUPV RI VSHFLHV ULFKQHVV VSHFLHVf DQG HYHQHVV WKDQ WKH RWKHU SDQKDQGOH FRPPXQLWLHV VDPSOHG 5DYLQH FUHQRELRQWV DQG RWKHU FDGGLVIOLHV DVVRFLDWHG ZLWK VPDOO VSULQJIHG VWUHDPV LQ WKH )ORULGD SDQKDQGOH HJ 3VLORWUHWD IURQWDOLV 'LSOHFWURQD PRGHVWD $QLVRFHQWURSXV S\UDORLGHV 0RODQQD EOHQGD 3K\ORFHQWURSXV OXFLGXV /HSLGRVWRPD VHUUDWXPf DUH DPRQJ WKH PRVW DEXQGDQW VSHFLHV $EVHQW RU IDU OHVV DEXQGDQW DUH K\GURSV\FKLGV W\SLFDO RI WKH ODUJH

PAGE 82

VWUHDPV DQG ULYHUV HJ +\GURSV\FKH LQFRPPRGD &KHXPDWRSV\FKH SLQDFD +\GURSV\FKH URVVLf 7KH FRPPXQLW\ DOVR FRQWDLQV LQWHUHVWLQJ HOHPHQWV $JDURGHV ORJDQL D QDUURZUDQJH HQGHPLF DQG 7ULDHQRGHV WDHQLD DQ $SSDODFKLDQ GLVMXQFW 3VLORWUHWD IURQWDOLV LV HVSHFLDOO\ DEXQGDQW LQ WKLV FRPPXQLW\ $SDODFKLFROD ODUJH VWUHDPV 7KH ODUJH VWUHDPV RI WKH $SDODFKLFROD %OXIIV DQG 5DYLQHV 5HJLRQ KDYH D FDGGLVIO\ FRPPXQLW\ VKRZLQJ OLWWOH VLPLODULW\ WR KHDGZDWHU UDYLQH FRPPXQLWLHV 7KH FRPPXQLW\ KDV DQ HVSHFLDOO\ GLYHUVH OHSWRFHULG FRPSRQHQW ZLWK RI WKH PRVW DEXQGDQW VSHFLHV EHORQJLQJ WR WKLV IDPLO\ ,Q WKLV UHVSHFW WKH $SDODFKLFROD ODUJH VWUHDP FRPPXQLW\ PRUH JHQHUDOO\ UHIOHFWV WKH ZDUPDGDSWHG IDXQD RI )ORULGD DV D ZKROH 7KH PRVW DEXQGDQW VSHFLHV LQFOXGHG WKH ODUJH ULYHU VSHFLHV +\GURSV\FKH LQFRPPRGD DQG D KDELWDW JHQHUDOLVW &KHXPDWRSV\FKH SLQDFD *HQHUDOO\ DEVHQW DUH UDYLQH FUHQRELRQWV DQG $SSDODFKLDQ GLVMXQFWV VXJJHVWLQJ WKDW KDELWDW DQG ZDWHU TXDOLW\ SDUDPHWHUV VXFK DV WHPSHUDWXUH DUH VXIILFLHQWO\ GLIIHUHQW IURP UDYLQH KHDGZDWHUV VR WKDW WKH VWUXFWXUH RI WKLV FRPPXQLW\ VKRZV OLWWOH UHVHPEODQFH WR WKDW RI WKH VPDOOVWUHDP UDYLQH FRPPXQLWLHV RI WKH FHQWUDO SDQKDQGOH (JOLQ VWHHSKHDG VWUHDPV 7KH FDGGLVIO\ FRPPXQLW\ RI (JOLQfV VWHHSKHDG UDYLQHV DQG KLJK YROXPH VSULQJUXQV LV GLVWLQFW DQG DUJXDEO\ FRQWDLQV WKH KLJKHVW FRQFHQWUDWLRQ RI QDUURZUDQJH HQGHPLF FDGGLVIOLHV DQ\ZKHUH RQ WKH 6RXWKHDVWHUQ &RDVWDO 3ODLQ 5DYLQH FUHQRELRQWV RI WKLV FRPPXQLW\ LQFOXGH VSHFLHV W\SLFDO RI RWKHU SDQKDQGOH UDYLQHV VXFK DV 'LSOHFWURQD PRGHVWD 0RODQQD EOHQGD +HWHURSOHFWURQ DPHULFDQXP 3VLORWUHWD IURQWDOLV DQG /HSLGRVWRPD VHUUDWXP ,Q DGGLWLRQ WR WKLV OLVW FDQ EH DGGHG DQRWKHU UDYLQH FUHQRELRQW D

PAGE 83

QHZ VSHFLHV ZLWKLQ WKH JHQXV %HUDHD +RZHYHU ZKDW VHWV WKH (JOLQ VWHHSKHDG VWUHDP FRPPXQLW\ PRVW DSDUW IURP WKH RWKHU FRPPXQLWLHV DUH WKH RWKHU QDUURZUDQJH HQGHPLFV RI ZKLFK 0LFUDVHPD Q VS $JDURGHV ]LF]DF 1HFWRSV\FKH SDOXGLFRODf ZHUH WKH PRVW DEXQGDQW VSHFLHV ZLWKLQ WKLV FRPPXQLW\ $GGLWLRQDO QDUURZUDQJH HQGHPLFV VXFK DV &KHXPDWRSV\FKH JRUGRQDH &KHXPDWRSV\FKH SHWHUVL 1\FWLRSK\OD[ PRUVHL DQG 3RO\FHQWURSXV IORULGHQVLV DUH LPSRUWDQW DQG XQLTXH FRPSRQHQWV RI WKLV FRPPXQLW\ ZKLFK DUH QRW SUHVHQW LQ FHQWUDO SDQKDQGOH RU SHQLQVXODU UDYLQH HFRV\VWHPV ,Q WRWDO VSHFLHV RI PDFURFDGGLVIOLHV RFFXUUHG RQO\ LQ WKH (JOLQ VWHHSKHDG VWUHDP FRPPXQLW\ 7DEOH ff§WKH RWKHU FRPPXQLWLHV HDFK FRQWDLQHG RQO\ RU VXFK VSHFLHV 7KH RULJLQ DQG SHUVLVWHQFH RI WKLV XQLTXH FRPPXQLW\ DSSHDUV WR EH UHODWHG WR ERWK JHRJUDSKLF DQG KDELWDW IDFWRUV 7KH ODUJH DQG LQVXODU DUHD HQFRPSDVVLQJ (JOLQfV VWHHSKHDG GUDLQDJH QHWZRUNV FRQWDLQV HQRXJK XQLTXH VWUHDP KDELWDW WR DFW HIIHFWLYHO\ DV DQ fHYROXWLRQDU\ HQJLQHf GULYLQJ VSHFLDWLRQ 7KH PDQ\ QDUURZUDQJH HQGHPLFV IRXQG RQ (JOLQ DSSHDU WR KDYH DGDSWHG WR WKHVH UDWKHU VSHFLDOL]HG FRQGLWLRQV WR VXFK DQ H[WHQW DV WR OLPLW WKHLU DELOLWLHV IRU GLVSHUVDO DQG FRORQL]DWLRQ WR ZLGHVSUHDG DUHDV 0HDQV f K\SRWKHVL]HG WKDW SDVW VHDOHYHO FKDQJHV PD\ KDYH DFWHG DV DQ LVRODWLQJ PHFKDQLVP RQ DQFHVWUDO VWRFNV RI 3OHWKRGRQWLG VDODPDQGHU SRSXODWLRQV LQ VWHHSKHDGV QHDU WKH FRDVW VXFK DV WKRVH RQ (JOLQ 0HDQV f VXJJHVWHG WKDW IRU WKH VWHHSKHDG UDYLQHV RQ WKH ZHVWHUQ VLGH RI (JOLQ D VOLJKW LQFUHDVH LQ VHD OHYHO PHWHUVf ZRXOG KDYH UHVXOWHG LQ WKH HPED\PHQW RI WKH
PAGE 84

7DEOH 0DFURFDGGLVIO\ VSHFLHV FRPSRVLWLRQ IRU *ROG +HDG DQG (JOLQ VWHHSKHDG VWUHDP FRPPXQLWLHV DEXQGDQFH RI HDFK VSHFLHV JLYHQ DV SHUFHQW RI WRWDO VSHFLPHQV FROOHFWHG 1RWH r GHQRWHV VSHFLHV UHFRUGHG IURP RQO\ FRPPXQLW\ *ROG +HDG %UDQFK (JOLQ 6WHHSKHDG 6WUHDPV (JOLQ FRQWLQXHG 6SHFLHV Q f bf 6SHFLHV Q f bf 6SHFLHV bf &KHXPDWRSV\FKH SLQDFD r 0LFUDVHPD Q VS r 7ULDHQRGHV Q VS 1HFWRSV\FKH SDYLGD r $JDURGHV ]LF]DF &KHXPDWRSV\FKH SHWWLWL $JDURGHV OLEDOLV r1HFWRSV\FKH SDOXGLFROD 2HFHWLV GLWLVVD 7ULDHQRGHV LJQLWXV 'LSOHFWURQD PRGHVWD r%HUDHD Q VS &KLPDUUD IORULGD 2HFHWLV LQFRQVSLFXD &RPS 2HFHWLV RVWHQL 3\FQRSV\FKH DQWLFD 7\SH GLYHUVD 2HFHWLV SHUVLPLOLV &KLPDUUD DWHUULPD &KLPDUUD IDOFXODWD 3K\ORFHQWURSXV SODFLGXV 2HFHWLV JHRUJLD 2HFHWLV VSK\UD &KHXPDWRSV\FKH HGLVWD 0LFUDVHPD ZDWDJD $QLVRFHQWURSXV S\UDORLGHV 1\FWLRSK\OD[ VHUUDWXV 3RO\FHQWURSXV EOLFNOHL r &KHXPDWRSV\FKH JRUGRQDH 2HFHWLV FLQHUDVFHQV r'LSOHFWURQD VS $ +\GURSV\FKH HOLVVRPD +\GURSV\FKH LQFRPPRGD 0RODQQD WU\SKHQD 0RODQQD EOHQGD 1HXUHFOLSVLV FUHSXVFXODULV 2HFHWLV LQFRQVSLFXD &RPS 3\FQRSV\FKH DQWLFD 2HFHWLV GD\WRQD 1\FWLRSK\OD[ VHUUDWXV r0DFURVWHPXP &DUROLQD r3WLORVWRPLV RFHOOLIHUD 3RO\FHQWURSXV FLQHUHXV %UDFK\FHQWXV FKHODWXV &KHXPDWRSV\FKH EXUNVL $JDURGHV FUDVVLFRUQLV +HWHURSOHFWURQ DPHULFDQXP +\GURSV\FKH URVVL r +\GURSV\FKH GHFDOGD 5K\DFRSKLOD &DUROLQD r&HUQRWLQD FDOFHD r&HUQRWLQD WUXQFRQD r &KHXPDWRSV\FKH SHWHUVL &HUDFOHD SURWRQHSKD r 3RO\FHQWURSXV FOLQHL &KLPDUUD IORULGD r1HFWRSV\FKH FDQGLGD 2HFHWLV GD\WRQD $JDURGHV FUDVVLFRUQLV 2HFHWLV QRFWXUQD 2HFHWLV RVWHQL &KLPDUUD PRVHO\L r 3\FQRSV\FKH LQGLDQD 1HFWRSV\FKH SDYLGD r%DQNVLROD FRQFDWHQDWD &KLPDUUD DWHUULPD r&HUDFOHD GLOXD r1\FWLRSK\OD[ PRUVHL r1HXUHFOLSVLV PHOFR 3RO\FHQWURSXV FLQHUHXV r3RO\FHQWURSXV IORULGHQVLV &KHXPDWRSV\FKH YLUJLQLFD 3VLORWUHWD IURQWDOLV 7ULDHQRGHV LJQLWXV 2HFHWLV JHRUJLD r0RODQQD XOPHULQD 1HFWRSV\FKH H[TXLVLWD &HUDFOHD PDFXODWD r 7ULDHQRGHV SHUQD /HSLGRVWRPD VHUUDWXP r &HUDFOHD UHVXUJHQV 0RODQQD WU\SKHQD 3K\ORFHQWURSXV FDUROLQXV

PAGE 85

7DEOH 0DFURFDGGLVIO\ VSHFLHV FRPSRVLWLRQ IRU FHQWUDO SDQKDQGOH FRPPXQLWLHV DEXQGDQFH RI HDFK VSHFLHV JLYHQ DV SHUFHQW RI WRWDO VSHFLPHQV FROOHFWHG 1RWH r GHQRWHV VSHFLHV UHFRUGHG IURP RQO\ FRPPXQLW\ $SDODFK 6WHHSKHDG 6WUHDPV 6SHFLHV Q f bf +\GURSV\FKH LQFRPPRGD 'LSOHFWURQD PRGHVWD $QLVRFHQWURSXV S\UDORLGHV 2HFHWLV LQFRQVSLFXD &RPS +\GURSV\FKH URVVL $JDURGHV OLEDOLV 3\FQRSV\FKH DQWLFD +\GURSV\FKH HOLVVRPD 3VLORWUHWDIURQWDOLV &KLPDUUD IDOFXODWD &KLPDUUD DWHUULPD 2HFHWLV VSK\UD 7ULDHQRGHV LJQLWXV 1HFWRSV\FKH H[TXLVLWD 0RODQQD WU\SKHQD +HWHURSOHFWURQ DPHULFDQXP W\SH GLYHUVD 0RODQQD EOHQGD &KHXPDWRSV\FKH SLQDFD &KHXPDWRSV\FKH SHWWLWL 5K\DFRSKLOD &DUROLQD 3K\ORFHQWURSXV OXFLGDV 3RO\FHQWURSXV FLQHUHXV &KHXPDWRSV\FKH HGLVWD 3K\ORFHQWURSXV FDUROLQXV r/HSLGRVWRPD JULVHXP &K LPDUUD IORULGD 2HFHWLV JHRUJLD 2HFHWLV GLWLVVD $JDURGHV FUDVVLFRUQLV &HUDFOHD PDFODOD 2HFHWLV SHUVLPLOLV 3RWDP\LD IODYD 1HXUHFOLSVLV FUHSXVFXODULV /HSLGRVWRPD ODWLSHQQH 2HFHWLV QRFWXUQD r7ULDHQRGHV KHOR &KHXPDWRSV\FKH YLUJLQLFD 0LFUDVHPD ZDWDJD &HUDFOHD FDQFHOODWD 2HFHWLV RVWHQL &KHXPDWRSV\FKH FDPS\OD &KLPDUUD REVFXUD %UDFK\FHQWXV FKHODWXV &HUDFOHD WDUVLSXQFWDWD 3K\ORFHQWURSXV SODFLGDV r&HUQRWLQD VSLFDWD 3RO\FHQWURSXV EOLFNOHL &HUDFOHD SURWRQHSKD 1HFWRSV\FKH SDYLGD 2HFHWLV FLQHUDVFHQV r 7ULDHQRGHV DED r 7ULDHQRGHV RFKUDFHXV 3WLORVWRPLV SRVWLFD &OD\KLOO 5DYLQH 6WUHDPV $SDODFK /DUJH 6WUHDPV 6SHFLHV Q f bf 6SHFLHV Q f bf 3VLORWUHWD IURQWDOLV +\GURSV\FKH LQFRPPRGD 'LSOHFWURQD PRGHVWD &KHXPDWRSV\FKH SLQDFD $QLVRFHQWURSXV S\UDORLGHV 2HFHWLV VSK\UD 2HFHWLV LQFRQVSLFXD &RPS &HUDFOHD WDUVLSXQFWDWD 0RODQQD EOHQGD &HUDFOHD SURWRQHSKD 3K\ORFHQWURSXV OXFLGXV 7ULDHQRGHV LJQLWXV &KHXPDWRSV\FKH SHWWLWL 2HFHWLV LQFRQVSLFXD &RPS /\SH GLYHUVD &HUDFOHD WUDQVYHUVD /HSLGRVWRPD VHUUDWXP +\GURSV\FKH URVVL 7ULDHQRGHV LJQLWXV $QLVRFHQWURSXV S\UDORLGHV 2HFHWLV VSK\UD 2HFHWLV SHUVLPLOLV 5K\DFRSKLOD &DUROLQD 3K\ORFHQWURSXV FDUROLQXV /HSWRFHUXV DPHULFDQXV 1HFWRSV\FKH H[TXLVLWD 2HFHWLV GLWLVVD &HUDFOHD FDQFHOODWD /HSLGRVWRPD ODWLSHQQH 3RWDP\LD IODYD r 7ULDHQRGHV WDHQLD &HUDFOHD PDFXODWD &KHXPDWRSV\FKH SLQDFD /\SH GLYHUVD &KLPDUUD DWHUULPD r &HUDFOHD QHSKD 3RO\FHQWURSXV FLQHUHXV &KHXPDWRSV\FKH FDPS\OD &KHXPDWRSV\FKH HGLVWD &KHXPDWRSV\FKH HGLVWD 3\FQRSV\FKH DQWLFD /HSWRFHUXV DPHULFDQXV r $JDURGHV ORJDQL 1HFWRSV\FKH SDYLGD &KLPDUUD REVFXUD 2HFHWLV FLQHUDVFHQV &HUDFOHD WUDQVYHUVD 2HFHWLV RVWHQL 3K\ORFHQWURSXV FDUROLQXV 3\FQRSV\FKH DQWLFD r1\FWLRSK\,D[ DIILQLV 3K\ORFHQWURSXV SODFLGXV 3RO\FHQWURSXV EOLFNOHL &KHXPDWRSV\FKH SHWWLWL 2HFHWLV JHRUJLD 3RO\FHQWURSXV FLQHUHXV 3WLORVWRPLV SRVWLFD +HWHURSOHFWURQ DPHULFDQXP r +\GURSV\FKH EHWWHQL +\GURSV\FKH HOLVVRPD +HWHURSOHFWURQ DPHULFDQXP &KLPDUUD PRVHO\L 2HFHWLV RVWHQL 2HFHWLV JHRUJLD &KHXPDWRSV\FKH EXUNVL 2HFHWLV QRFWXUQD +\GURSV\FKH HOLVVRPD r 7ULDHQRGHV WDUGXV +\GURSV\FKH LQFRPPRGD 'LSOHFWURQD PRGHVWD 2HFHWLV QRFWXUQD 0RODQQD WU\SKHQD 0RODQQD WU\SKHQD 3K\ORFHQWURSXV OXFLGXV $JDURGHV FUDVVLFRUQLV 1HXUHFOLSVLV FUHSXVFXODULV 1\FWLRSK\OD[ VHUUDWXV 3RO\FHQWURSXV EOLFNOHL r&HUDFOHD IODYD r&HUDFOHD RSKLRGHUXV 3WLORVWRPLV SRVWLFD 5K\DFRSKLOD &DUROLQD

PAGE 86

2UGLQDWLRQ $QDO\VLV 7KH UHVXOWV RI WKH GHWUHQGHG FRUUHVSRQGHQFH DQDO\VLV XVHG WR RUGLQDWH VDPSOLQJ VWDWLRQV DUH SUHVHQWHG LQ )LJXUHV WR 7KH ILUVW RUGLQDWLRQ )LJ f LV IRU DOO VWDWLRQV 7KLV DQDO\VLV UHVXOWHG LQ VWDWLRQV EHLQJ RUGLQDWHG DORQJ D[HV ZLWK HLJHQYDOXHV RI DQG UHVSHFWLYHO\ 7KH VWDWLRQV DV SORWWHG DORQJ WKH ILUVW D[HV VKRZQ LQ )LJXUH DFFRXQW IRU DERXW b RI WKH YDULDWLRQ LQ WKH GDWD %HFDXVH RI WKH SUHVHQFH RI DGGLWLRQDO D[HV EH\RQG D[LV DQG LQWHUSUHWDWLRQ RI WKH JUDSK LV UDWKHU WHQXRXV +RZHYHU LW GRHV DSSHDU WKDW LQ JHQHUDO D[LV LV UHODWHG WR D JHRJUDSKLF JUDGLHQW ORQJLWXGHf DQG D[LV LV UHODWHG WR D VWUHDPVL]H JUDGLHQW 7KLV DVVHVVPHQW LV LQ JHQHUDO DJUHHPHQW ZLWK WKH FOXVWHU DQDO\VLV ZKHUHLQ EDVDO JURXSLQJV FRUUHVSRQGHG ZLWK VWDWLRQ ORFDWLRQ ZLWKLQ D SDUWLFXODU UHJLRQ ZHVWHUQ SDQKDQGOH HDVWHUQ SDQKDQGOH DQG SHQLQVXODf ) £ ) $ 8f F & f Lf§ R F Qn WR n[ 2 4 n ( $ ( $ $ $ ( $ $ $ ( $ ( £ $ $ $ $ $ $ $ $ $ $ $ $ $ ZHVWHUQ SDQKDQGOH ( $W + K '&$ $[LV f§, SHQLQVXOD \ )LJXUH 6FDWWHU SORW RI '&$ RUGLQDWLRQ RI VWDWLRQV DFURVV QRUWKHUQ )ORULGD $QDO\VLV EDVHG RQ PDFURFDGGLVIO\ VXUYH\ GDWD

PAGE 87

7KH ZLGH VSUHDG RI WKH FHQWUDO SDQKDQGOH VWDWLRQV DORQJ D[LV KRZHYHU LQGLFDWHV WKDW ORQJLWXGH DORQH GRHV QRW H[SODLQ VWDWLRQ SODFHPHQW DORQJ D[LV ,Q RUGHU WR LQYHVWLJDWH JUDGLHQWV UHODWHG WR KDELWDW YDULDEOHV PRUH FORVHO\ WKH ZHVWHUQ SDQKDQGOH DQG FHQWUDO SDQKDQGOH VWDWLRQV ZHUH VHSDUDWHO\ RUGLQDWHG WR UHPRYH WKH HIIHFW UHJLRQ LPSDUWV RQ WKH RUGLQDWLRQ %RWK RUGLQDWLRQV )LJV DQG f LQGLFDWHG WKDW YDULDWLRQ EHWZHHQ VWDWLRQV LV ODUJHO\ H[SODLQHG LQ WHUPV RI D VWUHDPVL]H JUDGLHQW )RU WKH RUGLQDWLRQ RI (JOLQ VWDWLRQV )LJ f D[LV H[SODLQHG DERXW b RI WKH YDULDWLRQ LQ VWDWLRQ VFRUHV ,Q WKLV JUDSK XSSHU UHDFK VWDWLRQV DUH SODFHG DW RQH HQG D[LV DQG 6WDWLRQ ( WKH VWDWLRQ ZLWK JUHDWHVW GLVFKDUJH DW WKH RWKHU HQG VWDWLRQV IURP PLGGOH UHDFKHV ZHUH FOXVWHUHG DERXW PLGZD\ DORQJ D[LV $ VLPLODU UHVXOW ZDV REWDLQHG IRU WKH FHQWUDO SDQKDQGOH VWDWLRQV )LJ f ,Q WKLV RUGLQDWLRQ D[LV H[SODLQHG DERXW b RI WKH YDULDWLRQ LQ VWDWLRQ VFRUHV /DUJH VWUHDP VWDWLRQV ZHUH SODFHG DW RQH HQG RI WKH D[LV DQG UDYLQH KHDGZDWHU UHDFKHV DW WKH RWKHU HQG 5HVXOWV RI ERWK FOXVWHU DQDO\VLV DQG RUGLQDWLRQ VXJJHVW WKDW FDGGLVIO\ FRPPXQLW\ FRPSRVLWLRQ LV FRQWUROOHG ERWK E\ JHRJUDSKLF DQG KDELWDW IDFWRUV 7KH VWXG\ DUHDV ZKLFK VSDQ PXFK RI QRUWKHUQ )ORULGD DUH GLVWDQW HQRXJK IURP RQH DQRWKHU WKDW WKH JHRJUDSKLF UDQJHV RI PDQ\ VSHFLHV GR QRW LQFOXGH DOO VWXG\ DUHDV 7KH GLYHUVH DUUD\ RI FRPSRQHQW VSHFLHV JHRJUDSKLF GLVWULEXWLRQV DFWV DV D EDVH WHPSODWH XSRQ ZKLFK FRPPXQLW\ FRPSRVLWLRQ LV VWUXFWXUHG )URP WKLV WHPSODWH VSHFLHV FRPSRVLWLRQ DW D JLYHQ VLWH LV WKHQ ILQHWXQHG E\ KDELWDW IDFWRUV UHODWHG WR VWUHDP VL]H DQG UDYLQH W\SH

PAGE 88

VWHHSKHDG UHDFKHV &1 Z ; R 4 ( £ ( £ PLGGOH UHDFKHV ( $ ( $ ORZHU UHDFKHV ( $ / ( $ '&$ $[LV )LJXUH 6FDWWHU SORW RI '&$ RUGLQDWLRQ RI VWHHSKHDG VWUHDP VWDWLRQV RQ (JOLQ $LU )RUFH %DVH LQ WKH ZHVWHUQ SDQKDQGOH $QDO\VLV EDVHG RQ PDFURFDGGLVIO\ VXUYH\ GDWD ODUJH VWUHDPV &0 f ; 2 4 $ $ $ $ UDYLQH VSULQJUXQV $ $ $ $ $ $ $ ) $ ) $ $ 2R; '&$ $[LV )LJXUH 6FDWWHU SORW RI '&$ RUGLQDWLRQ RI FHQWUDO SDQKDQGOH VWDWLRQV $QDO\VLV EDVHG RQ PDFURFDGGLVIO\ GDWD

PAGE 89

&+$37(5 75,&+237(5$ $1' 3/(&237(5$ )/,*+7 6($621$/,7< $1' $'8/7 (0(5*(1&( ,1 $ 5$9,1( 635,1*581 ,QIRUPDWLRQ UHJDUGLQJ DGXOW HPHUJHQFH DQG IOLJKW VHDVRQDOLW\ LV RI NH\ LPSRUWDQFH WR WKH VWXG\ RI FDGGLVIO\ DQG VWRQHIO\ OLIH KLVWRULHV 7KH DGXOW VWDJH LV D UHODWLYHO\ VKRUWOLYHG OLIH VWDJH ZKHQ FDGGLVIOLHV DQG VWRQHIOLHV PXVW HPHUJH ILQG PDWHV DQG RYLSRVLW $GGLWLRQDOO\ LW LV GXULQJ WKH DGXOW VWDJH ZKHQ GLVSHUVDO WR QHZ KDELWDWV LV JUHDWHVW 'HVSLWH WKH ELRORJLFDO LPSRUWDQFH RI WKH DGXOW VWDJH UHODWLYHO\ OLWWOH LV NQRZQ RI WKH ELRORJ\ RI DGXOWV DV FRPSDUHG WR ODUYDH %HFDXVH WKH VXUYH\ UHVXOWHG LQ ODUJH QXPEHUV RI DGXOW FROOHFWLRQV WKHVH GDWD FDQ SURYLGH LPSRUWDQW EDVHOLQH GDWD RQ IOLJKW VHDVRQDOLW\ IRU WKH VSHFLHV DQG SRSXODWLRQV WKDW ZHUH VDPSOHG 7RZDUGV WKLV JRDO FROOHFWLRQ GDWHV ZHUH H[DPLQHG DQG IOLJKW VHDVRQDOLW\ ZDV FKDUDFWHUL]HG IRU YDULRXV VSHFLHV UHFRUGHG LQ WKH VXUYH\ $GGLWLRQDOO\ VSHFLHV GLYHUVLW\ DQG HPHUJHQFH SKHQRORJ\ RI FDGGLVILHV DQG VWRQHIOLHV LQKDELWLQJ WKH UDYLQH VSULQJUXQ DW WKH )$08 )DUP VWXG\ DUHD ZHUH LQYHVWLJDWHG XVLQJ HPHUJHQFH WUDSV 0DWHULDOV DQG 0HWKRGV 2EVHUYHG )OLJKW 6HDVRQV )OLJKW VHDVRQDOLW\ ZDV FKDUDFWHUL]HG IRU FDGGLVIO\ DQG VWRQHIO\ VSHFLHV LQYHQWRULHG DV D SDUW RI WKH ELRGLYHUVLW\ VXUYH\ RI UDYLQH HFRV\VWHPV LQ QRUWKHUQ )ORULGD &KDSWHU f $ GHVFULSWLRQ RI UDYLQH KDELWDWV DQG WKH VWUHDP V\VWHPV VXUYH\HG IRU FDGGLVIOLHV DQG VWRQHIOLHV LV SUHVHQWHG LQ &KDSWHU LQFOXGHG DUH PDSV )LJV WR f VKRZLQJ WKH ORFDWLRQV RI WKH VWXG\ DUHDV DQG VDPSOLQJ VWDWLRQV 7KH PRQWKO\ RFFXUUHQFH RI DGXOW

PAGE 90

FDGGLVIO\ DQG VWRQHIO\ VSHFLHV ZDV REWDLQHG IURP WKH DGXOW FROOHFWLRQ GDWD REWDLQHG LQ WKH VXUYH\ 'DWD RQ PRQWKO\ RFFXUUHQFHV IRU HDFK VSHFLHV IURP DOO VDPSOLQJ VWDWLRQV ZHUH FRPELQHG DQG WDEXODWHG LQ RUGHU WR JLYH D JHQHUDO SLFWXUH RI DGXOW IOLJKWVHDVRQDOLW\ IRU HDFK VSHFLHV ZLWKLQ WKH VWXG\ DUHD DV D ZKROH $GXOW VSHFLPHQV ZHUH FDSWXUHG SULPDULO\ E\ OLJKW WUDSSLQJ DQG PDLQO\ GXULQJ VSULQJ DQG IDOO 1R OLJKW WUDSSLQJ ZDV GRQH GXULQJ -DQXDU\ )HEUXDU\ DQG -XO\ 7KH QXPEHU RI OLJKWWUDS VDPSOHV FROOHFWHG LQ HDFK PRQWK LV DV IROORZV 0DUFK f $SULO f 0D\ f -XQH f $XJXVW f 6HSWHPEHU f 2FWREHU f 1RYHPEHU f 'HFHPEHU f (PHUJHQFH 6WXG\ 7KH HPHUJHQFH VWXG\ ZDV FRQGXFWHG DW WKH )$08 )DUP VWXG\ DUHD )LJ f ZLWKLQ D UDYLQH ORFDWHG RQ WKH SURSHUW\ RI WKH )ORULGD $t0 8QLYHUVLW\ 5HVHDUFK DQG ([WHQVLRQ &HQWHU LQ *DGVGHQ &RXQW\ VHH &KDSWHU IRU D GHVFULSWLRQ RI WKH VWXG\ DUHDf $GXOW DTXDWLF LQVHFWV HPHUJLQJ IURP WKH UDYLQH VSULQJUXQ DW WKH )$08 )DUP ZHUH VDPSOHG XVLQJ HPHUJHQFH WUDSV 7KH DTXDWLF LQVHFW HPHUJHQFH WUDS XVHG %LR4XLSp ,WHP 1R f )LJ f FRQVLVWHG RI D PKLJK WHQW VWUXFWXUH VXVSHQGHG RYHU D P DUHD 7KH IURQW DQG EDFN RI WKH WUDS LV FXW P VKRUWHU WKDQ WKH VLGHV VR WKDW ZDWHU LV DEOH WR IORZ XQGHU ZLWKRXW REVWUXFWLRQ 7KH WUDSV ZHUH )LJXUH (PHUJHQFH 7UDS LQVWDOOHG RYHU WKH )$08 IDUP VSULQJUXQ QHDU WKH UDYLQH KHDG

PAGE 91

HDFK VXVSHQGHG RYHU WKH VWUHDP IURP SDUDFKXWH FRUG WLHG EHWZHHQ WUHHV 7KH VLGHV DQG FRPHUV ZHUH VWDNHG VR WKH ERWWRP IODSV ZHUH LQ FRQWDFW ZLWK WKH VWUHDP EDQN RQ WKH VLGHV DQG LQ FRQWDFW ZLWK WKH VWUHDP VXUIDFH LQ WKH IURQW DQG EDFN WKHUHE\ SUHYHQWLQJ HPHUJHQW LQVHFWV IURP HVFDSLQJ $TXDWLF ODUYDH ZHUH QRW FRQILQHG DQG FRXOG PRYH LQWR RU RXW IURP XQGHU WKH WUDSV 7KH WHQW PDWHULDO FRQVLVWHG RI /XPLWH VFUHHQ ZLWK [ PHVK PLFURQ RSHQLQJVf $FFHVV WR WKH LQVLGH RI WKH WUDS ZDV WKURXJK D P VOLWRSHQLQJ VHDOHG ZLWK 9HOFUR 7ZR WUDSV ZHUH GHSOR\HG RYHU WKH )$08 )DUP UDYLQH VSULQJUXQ 7UDS ZDV ORFDWHG DERXW PHWHUV EHORZ WKH EDVH RI WKH UDYLQH KHDG DQG 7UDS ZDV SODFHG DERXW PHWHUV EHORZ WKH UDYLQH KHDG 7KH FRPSRVLWLRQ RI EHQWKLF VXEVWUDWH ZLWKLQ 7UDS ZDV HVWLPDWHG WR FRQVLVW RI VDQG bf JUDYHO bf PXGVLOW bf VQDJVOHDI SDFNV bf DQG URRWV bf 6XEVWUDWH ZLWKLQ 7UDS FRPSULVHG VDQG bf URRWV bf PXGVLOW bf JUDYHO bf DQG VQDJVOHDI SDFNV bf 7UDS ZDV LQVWDOOHG 0DUFK DQG VDPSOHV FROOHFWHG XQWLO 0D\ WK DIWHU ZKLFK WLPH WKH FRUG XVHG WR VXVSHQG WKH WUDS EURNH GXH WR DQ XQNQRZQ UHDVRQ FDXVLQJ WKH WUDS WR FROODSVH 7KH WUDS ZDV WKHQ UHLQVWDOOHG RQ -XQH DQG VDPSOLQJ FRQWLQXHG IRU D IXOO \HDU XQWLO -XO\ 7UDS ZDV LQVWDOOHG 0DUFK DQG GHSOR\HG XQWLO -XO\ ,QVHFW VDPSOHV IURP HDFK WUDS ZHUH FROOHFWHG DW DERXW GD\ LQWHUYDOV UHVXOWLQJ LQ VDPSOHV IURP 7UDS DQG VDPSOHV IURP 7UDS 6WRQHIO\ DQG FDGGLVIO\ DGXOWV WUDSSHG ZLWKLQ WKH WHQW ZHUH FROOHFWHG E\ DVSLUDWLRQ IRU VPDOOHU VSHFLPHQV DQG E\ XVLQJ D VRIW WRXFK IRUFHSV IRU FDSWXULQJ ODUJHU VSHFLPHQV $OO VSHFLPHQV ZHUH SODFHG LQ b HWK\O DOFRKRO 8VXDOO\ WKH LQVHFWV ZHUH IRXQG UHVWLQJ HLWKHU DW WKH SHDN RU RQ WKH VLGHV DQG FRPHUV RI WKH WUDS 6XIILFLHQW WLPH XVXDOO\ DERXW PLQXWHVf ZDV VSHQW VHDUFKLQJ DQG

PAGE 92

FROOHFWLQJ ZLWKLQ WKH WHQW XQWLO QR DGGLWLRQDO VSHFLPHQV FRXOG EH IRXQG 6LJQLILFDQW QXPEHUV RI HPHUJHQW LQVHFWV ZHUH OLNHO\ PLVVHG LQ VDPSOLQJ DV D UHVXOW RI PRUWDOLW\ GXULQJ VDPSOLQJ LQWHUYDOV GXH WR VSLGHU SUHGDWLRQ DQG RWKHU PRUWDOLW\ IDFWRUV 6SHFLPHQ LGHQWLILFDWLRQ DQG GDWD DQDO\VLV 7ULFKRSWHUD DQG 3OHFRSWHUD VSHFLPHQV FROOHFWHG IURP WKH HPHUJHQFH WUDSV ZHUH LGHQWLILHG WR VSHFLHV LQ PRVW FDVHV 7KH PLFURFDGGLVIOLHV )DPLO\+\GURSWLOLGDHf ZHUH LGHQWLILHG E\ 'U 6WHYHQ +DUULV DQG LGHQWLILHG DOO RWKHU VSHFLPHQV 6\QRSWLF YRXFKHU FROOHFWLRQV ZLOO EH GHSRVLWHG DW WKH IROORZLQJ FROOHFWLRQV )ORULGD $t0 8QLYHUVLW\ $TXDWLF ,QVHFW &ROOHFWLRQ &OHPVRQ 8QLYHUVLW\ $UWKURSRG &ROOHFWLRQ DQG WKH SHUVRQDO FROOHFWLRQ RI WKH DXWKRU 7KH GHSRVLWLRQ RI W\SH PDWHULDO IRU +\GURSWLOD V\NRUDL LV JLYHQ LQ +DUULV f )RU HDFK VDPSOH WKH QXPEHU RI PDOHV DQG IHPDOHV RI HDFK VSHFLHV ZHUH UHFRUGHG &ROOHFWLRQ GDWD ZHUH WDEXODWHG DQG HPHUJHQFH SKHQRORJ\ IRU WKH PRVW DEXQGDQW VSHFLHV ZDV JUDSKHG 5HVXOWV DQG 'LVFXVVLRQ 2EVHUYHG )OLJKW 6HDVRQV 7ULFKRSWHUDf ,Q ZDUP WHPSHUDWH FOLPDWHV VXFK DV IRXQG LQ QRUWKHUQ )ORULGD DGXOW FDGGLVIOLHV DUH SRWHQWLDOO\ SUHVHQW DW DQ\ WLPH RI \HDU DQG DV H[SHFWHG VSHFLPHQV ZHUH FROOHFWHG GXULQJ DOO PRQWKV ZKHQ OLJKW WUDSSLQJ ZDV FRQGXFWHG %DVHG RQ WKH PRQWKO\ RFFXUUHQFH GDWD IURP WKH VXUYH\ VSHFLHV FRXOG EH JURXSHG LQWR IOLJKWVHDVRQ FDWHJRULHV VSULQJVXPPHU VSHFLHV 6f IDOO VSHFLHV )f DQG WKRVH VSHFLHV ZLWK H[WHQGHG IOLJKW VHDVRQV (f 7DEOH f 6SHFLHV ZLWK IHZHU WKDQ RFFXUUHQFHV ZHUH QRW FODVVLILHG DV WR WKHLU IOLJKW VHDVRQDOLW\ 7KH KLJKHVW QXPEHU RI VSHFLHV IHOO LQWR WKH H[WHQGHG ILJKW VHDVRQ FDWHJRU\ VSSf IROORZHG E\ VSULQJVXPPHU VSHFLHV VSSf DQG IDOO VSHFLHV VSf 6SULQJVXPPHU VSHFLHV 7KH VSHFLHV LQ WKLV JURXS ZHUH FROOHFWHG RQO\ GXULQJ WKH

PAGE 93

VSULQJ DQG VXPPHU PRQWKV 0DUFK6HSWHPEHUf 6RPH VSHFLHV ZLWKLQ WKLV JURXSLQJ DSSHDUHG WR EH HDUO\ VSULQJ VSHFLHV VXFK DV &HUDFOHD UHVXUJHQV ZKLOH PRVW VSHFLHV RFFXUUHG DV DGXOWV WKURXJKRXW VSULQJ 0DUFK0D\f DQG LQWR WKH VXPPHU SHULRG -XQH 6HSWHPEHUf 7KH ORZ QXPEHU RI VDPSOHV FROOHFWHG GXULQJ -XO\ $XJXVW DQG 6HSWHPEHU PDNH LW GLIILFXOW WR GHWHUPLQH WKH H[WHQW RI VSHFLHV VWLOO SUHVHQW DV DGXOWV GXULQJ WKH ODWH VXPPHU SHULRG %HFDXVH VDPSOLQJ LQWHQVLW\ ZDV JUHDWHVW LQ WKH VSULQJ UHVXOWV IURP WKLV SHULRG ZHUH H[DPLQHG VHSDUDWHO\ IRU SDWWHUQV DQG WUHQGV LQ VSHFLHV RFFXUUHQFHV 'XULQJ WKH VSULQJ OLJKWWUDSSLQJ SHULRG FDGGLVIO\ VSHFLHV ULFKQHVV ZDV KLJKHVW LQ 0D\ ZLWK D WRWDO RI VSHFLHV EHLQJ FROOHFWHG $SULO VDPSOHV DFFRXQWHG IRU VSHFLHV IROORZHG E\ -XQH VSSf DQG 0DUFK VSSf 6RPH GLIIHUHQFHV ZHUH QRWHG EHWZHHQ PDMRU JURXSV RI FDGGLVIOLHV LQ WHUPV RI FKDQJHV LQ VSHFLHV ULFKQHVV WKURXJKRXW WKH VSULQJ PRQWKV )LJ f 5HODWLYHO\ IHZ OHSWRFHULG VSHFLHV ZHUH SUHVHQW LQ 0DUFK IROORZHG E\ D VKDUS LQFUHDVH LQ OHSWRFHULG VSHFLHV ULFKQHVV WR D SHDN LQ $SULO DQG WKHQ D JUDGXDO GHFUHDVH LQ 0D\ DQG f 9f 4f & & 2 f 4f 2 2 R FR 7 0DUFK $SULO 0D\ -XQH 0RQWK RI &ROOHFWLRQ )LJXUH &DGGLVIO\ VSHFLHV ULFKQHVV UHFRUGHG IURP OLJKW WUDS VDPSOHV FROOHFWHG GXULQJ VSULQJ PRQWKV 1XPEHU RI VDPSOHV Qf IRU HDFK PRQWK DV IROORZV 0DUFK f $SULO f 0D\ f -XQH f

PAGE 94

-XQH VDPSOHV +\GURSWLOLG VSHFLHV ULFKQHVV LQFUHDVHG VWHDGLO\ WR D SHDN LQ 0D\ IROORZHG E\ D VKDUS GHFUHDVH LQ ULFKQHVV LQ WKH -XQH VDPSOHV ,QWHJULSDOSLD RWKHU WKDQ /HSWRFHULGDHf ZHUH SUHVHQW DW IDLUO\ FRQVWDQW OHYHOV RI VSHFLHV ULFKQHVV WKURXJKRXW WKH VSULQJ ZKLOH WKH DQQXOLSDOSLDQV VKRZHG D JUDGXDO LQFUHDVH WR D SHDN LQ 0D\ IROORZHG E\ D JUDGXDO GURS RII LQ VSHFLHV ULFKQHVV LQ -XQH VDPSOHV 0RVW RI WKH FRRODGDSWHG VSHFLHV IDOO LQWR WKHVH ODVW JURXSV VR LW LV QRW VXUSULVLQJ WKDW D UHODWLYHO\ KLJK SHUFHQWDJH RI WKH WRWDO VSHFLHV FROOHFWHG LQ WKHVH JURXSV ZHUH SUHVHQW LQ WKH HDUO\ VSULQJ ZKHQ DLU DQG ZDWHU WHPSHUDWXUHV WHQG WR EH ORZHU &RQYHUVHO\ ZDUPDGDSWHG VSHFLHV SUHYDOHQW ZLWKLQ /HSWRFHULGDH DQG +\URSWLOLGDH VKRXOG KDYH D ORZHU SHUFHQW RFFXUUHQFH LQ WKH HDUO\ VSULQJ DQG LQFUHDVHG RFFXUUHQFHV ODWHU LQ WKH VSULQJ )DOO VSHFLHV 7KH IDOO VSHFLHV FRQVWLWXWHG WKH VPDOOHVW VHDVRQDOLW\ JURXSLQJ 7KH PRVW FRQVSLFXRXV FDGGLVIO\ ZLWKLQ IDOO OLJKWWUDS VDPSOHV ZDV 3\FQRSV\FKH DQWLFD ,Q DOO SDQKDQGOH SRSXODWLRQV VDPSOHG DGXOWV RI WKLV VSHFLHV ZHUH FROOHFWHG IURP 2FWREHU WR 'HFHPEHU KRZHYHU PHPEHUV RI WKH SHQLQVXODU SRSXODWLRQ DW *ROG +HDG %UDQFK ZHUH DOVR FROOHFWHG LQ 0DUFK 0D\ DQG -XQH VXJJHVWLQJ WKDW WKH OLIH KLVWRU\ RI WKLV SRSXODWLRQ GLIIHUV LQ VRPH VLJQLILFDQW ZD\ IURP WKDW RI WKH SDQKDQGOH SRSXODWLRQV $VLGH IURP SDQKDQGOH SRSXODWLRQV RI 3\FQRSV\FKH DQWLFD WKH RQO\ RWKHU VSHFLHV UHVWULFWHG WR WKH IDOO VHDVRQ ZDV /HSLGRVWRPD JULVHXP FROOHFWHG RQO\ GXULQJ 2FWREHUf :HDYHU f UHSRUWHG IOLJKW GDWHV IURP -XQH 6HSWHPEHU IRU / JULVHXP DFURVV LWV QRUWKHUQ UDQJH VXJJHVWLQJ WKDW WKH $SDODFKLFROD UDYLQHV SRSXODWLRQ PD\ HPHUJH ODWHU LQ WKH \HDU WKDQ GR QRUWKHUQ SRSXODWLRQV ([WHQGHG IOLJKWVHDVRQ VSHFLHV 7KH JUHDWHVW QXPEHU RI FDGGLVIO\ VSHFLHV f RFFXUUHG DV DGXOWV GXULQJ ERWK VSULQJVXPPHU DQG IDOO VHDVRQV $ QXPEHU RI XQGHUO\LQJ

PAGE 95

IDFWRUV PD\ DFFRXQW IRU VSHFLHV H[KLELWLQJ IOLJKW SHULRGV H[WHQGLQJ RYHU D ZLGH PRQWKO\ UDQJH 7KHVH LQFOXGH ELYROWLQH OLIH KLVWRULHV XQLYROWLQH SRSXODWLRQV ZLWK VHSDUDWH VSULQJ DQG IDOO FRKRUWV FRQWLQXRXV JHQHUDWLRQV VKRZLQJ QR GLVWLQFW FRKRUW VWUXFWXUH DQG GLIIHUHQW HPHUJHQFH SKHQRORJLHV EHWZHHQ FRQVSHFLILF SRSXODWLRQV $Q H[DPSOH RI GLIIHULQJ HPHUJHQFH SKHQRORJLHV EHWZHHQ SRSXODWLRQV DSSHDUV WR EH WKH FDVH ZLWK &KHXPDWRSV\FKH YLUJLQLFD ZKLFK ZDV FROOHFWHG IURP 0DUFK WR -XQH RQ (JOLQ EXW ZDV FROOHFWHG GXULQJ 0DUFK $XJXVW DQG 2FWREHU IURP WKH $SDODFKLFROD VWXG\ DUHD 3VLORWUHWD IURQWDOLV DOVR SUHVHQWV D JRRG H[DPSOH 7KLV VSHFLHV DSSHDUHG WR KDYH D QDUURZ SHULRG RI HPHUJHQFH $SULO 0D\f LQ PRVW SRSXODWLRQV VDPSOHG EXW ZLWKLQ VRPH VWUHDPV LQ WKH $SDODFKLFROD VWXG\ DUHD DGXOWV DOVR RFFXUUHG LQ 2FWREHU LQGLFDWLQJ SDUW RI WKH SRSXODWLRQ HPHUJHV LQ WKH IDOO 7DEOH 0RQWKO\ RFFXUUHQFHV RI DGXOW 7ULFKRSWHUD FROOHFWHG LQ VXUYH\ 6SHFLHV $GXOW &ROOHFWLRQV Qf 0RQWKO\ 2FFXUUHQFH RI $GXOWV &RO 1XPEHU RI /LJKW 7UD HFWHG E\ / S 6DPSOHV LJKW 7UDSSLQJ )OLJKW 6HDVRQ -$1 f )(% f 0$5 f $35 f 0$< f -81 f -8/ f $8* f 6(3 f 2&7 f 129 f '(& f $118/,3$/3,$ 'LSVHXGRSVLGDH 3K\ORFHQWURSXV FDUROLQXV ; ; ; ; ; ; ; ; ( 3K\ORFHQWURSXV OXFLGXV ; ; ; ; ; ; ; ; ( 3K\ORFHQWURSXV SODFLGXV ; ; ; ; ; ; ( +\GURSV\FKLGDH &KHXPDWRSV\FKH EXUNVL ; ; f§ &KHXPDWRSV\FKH FDPS\OD ; ; ; 6 &KHXPDWRSV\FKH HGLVWD ; ; ; ; 6 &KHXPDWRSV\FKH JRUGRQDH ; ; ; ; ; ; ( &KHXPDWRSV\FKH SHWHUVL ; ; ; ; 6 &KHXPDWRSV\FKH SHWWLWL ; ; ; ; ; ; ; ( &KHXPDWRSV\FKH SLQDFD ; ; ; ; ; ; ; ( &KHXPDWRSV\FKH YLUJLQLFD ; ; ; ; ; ; ( 'LSOHFWURQD PRGHVWD ; ; ; ; ; ; ; ; ( 'LSOHFWURQD VS $ ; ; ; ( +\GURSV\FKH EHWWHQL ; ; f§ +\GURSV\FKH GHFDOGD ; f§ +\GURSV\FKH HOLVVRPD ; ; ; ; ; ; 6

PAGE 96

7DEOH &RQWLQXHG 6SHFLHV $GXOW &ROOHFWLRQV LQf 0RQWKO\ 2FFXUUHQFH RI $GXOWV &RO 1XPEHU RI /LJKW 7UD HFWHG E\ /LJKW 7UDSSLQJ S 6DPSOHVf )OLJKW 6HDVRQ -$1 f )(% f 0$5 f $35 f 0$< f -81 f -8/ f $8* f 6(3 f 2&7 f 129 f '(& f +\GURSV\FKH LQFRPPRGD ; ; ; ; ; ; ; ( +\GURSV\FKH URVVL ; ; ; ; ; ; ( 0DFURVWHPXP FDURWLQD ; ; 6 3RWDP\LD IODYD ; ; ; ; ; ( 3KLORSRWDPLGDH &KLPDUUD DWHUULPD ; ; ; ; ; ; ( &KLPDUUD IDOFXODWD ; ; ; ; ; ; ; ( &KLPDUUD IORULGD ; ; ; ; ; ( &KLPDUUD PRVHO\L ; ; ; 6 &KLPDUUD REVFXUD ; ; ; ; ; ( 3RO\FHQWURSRGLGDH &HUQRWLQD FDOFHD ; f§ &HUQRWLQD VSLFDWD ; f§ &HUQRWLQD WUXQFRQD ; f§ &\UQHOOXV IUDWHPXV ; f§ 1HXUHFOLSVLV FUHSXVFXODULV ; ; ; ; ; ( 1HXUHFOLSVLV PHOFR ; ; ; ; ; ( 1\FWLRSK\OD[ DIILQLV ; f§ 1\FWLRSK\OD[ PRUVHL ; ; ; 6 1\FWLRSK\OD[ VHUUDWXV ; ; ; ( 3RO\FHQWURSXV EOLFNOHL ; ; ; ; ; ; ( 3RO\FHQWURSXV FLQHUHXV ; ; ; ; ; ; ( 3RO\FHQWURSXV FOLQHL ; f§ 3RO\FHQWURSXV IORULGHQVLV ; ; ; ( 3V\FKRP\LLGDH /\SH GLYHUVD ; ; ; ; ; ; ; ; ( 63,&,3$/3,$ +\GURSWLOLGDH +\GURSWLOD DSDODFKLFROD ; f§ +\GURSWLOD EHUQHUL ; f§ +\GURSWLOD EULEULDH ; ; ; ; ( +\GURSWLOD FLUFDQJXOD ; ; f§ +\GURSWLOD GLVJDOHUD ; ; ; 6 +\GURSWLOD HJOLQHQVLV ; ; ; ( +\GURSWLOD KDPLOWRQL ; ; 6 +\GURSWLOD ODWRVD ; ; ; ; ; ( +\GURSWLOD OORJDQDH ; f§ +\GURSWLOD PROVRQDH ; f§ +\GURSWLOD QRYLFXOD ; f§ +\GURSWLOD RNDORRVD ; ; f§ +\GURSWLOD SDUDVWUHSKD ; ; f§ +\GURSWLOD TXLQOD ; ; ; ; ; ( +\GURSWLOD UHPLWD ; ; ; ; ; ; ( +\GURSWLOD VDUDKDH ; ; ; (

PAGE 97

7DEOH &RQWLQXHG 6SHFLHV $GXOW &ROOHFWLRQV Qf 0RQWKO\ 2FFXUUHQFH RI $GXOWV &RO 1XPEHU RI /LJKW 7UD HFWHG E\ /LJKW 7UDSSLQJ S 6DPSOHVf )OLJKW 6HDVRQ -$1 f )(% f 0$5 f $35 f 0$< f -81 f -8/ f $8* f 6(3 f 2&7 f 129 f '(& f +\GURSWLOD ZDXEHVLDQD ; ; ; ; ; ; ; ( 0D\DWULFKLD D\DPD ; ; ; ; ; ; ; ( 1HRWULFKLD DUPLWDJHL ; ; ; ; ( 1HRWULFKLD PLQXWLVLPHOOD ; f§ 1HRWULFKLD YLEUDQV ; f§ 2FKURWULFKLD DSDODFKLFROD ; f§ 2FKURWULFKLD FRQIXVD ; f§ 2UWKRWULFKLD DHJHUIDVFLHOOD ; ; ; ; ; ; ( 2UWKRWULFKLD EDOGXIL ; ; f§ 2UWKRWULFKLD FULVWDWD ; ; f§ 2UWKRWULFKLD FXULD ; f§ 2[\HWKLUD DEDFDWLD ; ; ; 6 2[\HWKLUD FKU\VRFDUD ; f§ 2[\HWKLUD HOHUREL ; f§ 2[\HWKLUD IORULGD ; f§ 2[\HWKLUD JODVD ; ; ; ; ; ( 2[\HWKLUD JUVHD ; f§ 2[\HWKLUD MDQHOOD ; ; ; ; ; ; ; ; ( 2[\HWKLUD NHOOH\L ; ; ; ; ; ( 2[\HWKLUD OXPRVD ; ; ; ; ; ( 2[\HWKLUD PD\D ; ; ; ; ; ; ( 2[\HWKLUD QRYDVRWD ; ; ; ; ; ; ; ; ( 2[\HWKLUD SDOOLGD ; ; ; ( 2[\HWKLUD SHVFDGRUL ; ; ; 6 2[\HWKLUD VDYDQQLHQVLV ; ; ; ; ; ( 2[\HWKLUD VHWRVD ; f§ 2[\HWKLUD YHUQD ; f§ 2[\HWKLUD ]HURQLD ; ; ; ; ; ; ( 5K\DFRSKLOLGDH 5K\DFRSKLOD &DUROLQD ; ; ; ; ; ; ; ; ( ,17(*5,3$/3,$ %HUDHLGDH %HUDHD Q VS ; f§ %UDFK\FHQWULGDH %UDFK\FHQWUXV FKHODWXV ; ; ; ; ; ( 0LFUDVHPD Q VS ; ; ; ; ; ; ( 0LFUDVHPD ZDWDJD ; ; ; ; ; ( &DODPRFHUDWLGDH $QLVRFHQWURSXV S\UDORLGHV ; ; ; ; ; ; ; ; ( +HWHURSOHFWURQ DPHULFDQXP ; ; ; ; ; ; ( /HSLGRVWRPDWLGDH /HSLGRVWRPD JULVHXP ; ) /HSLGRVWRPD ODWLSHQQH ; ; ; ; ; ; ( /HSLGRVWRPD VHUUDWXP ; ; ; ; ; (

PAGE 98

7DEOH &RQWLQXHG 6SHFLHV $GXOW &ROOHFWLRQV Qf 0RQWKO\ 2FFXUUHQFH RI $GXOWV &RO 1XPEHU RI /LJKW 7UD HFWHG E\ / S 6DPSOHV LJKW 7UDSSLQJ )OLJKW 6HDVRQ -$1 f )(% f 0$5 f $35 f 0$< f -81 f -8/ f $8* f 6(3 f 2&7 f 129 f '(& f /HSWRFHULGDH &HUDFOHD FDQFHOODWD ; ; ; ; 6 &HUDFOHD GLOXD ; ; 6 &HUDFOHD IODYD ; ; f§ &HUDFOHD PDFXODWD ; ; ; ; 6 &HUDFOHD QHSKD ; V &HUDFOHD RSKLRGHUXV ; f§ &HUDFOHD SURWRQHSKD ; V &HUDFOHD UHVZUJHQV ; V &HUDFOHD WDUVLSXQFWDWD ; V &HUDFOHD WUDQVYHUVD ; ; ; V /HSWRFHUXV DPHULFDQXV ; ; V 1HFWRSV\FKH FDQGLGD ; f§ 1HFWRSV\FKH H[TXLVLWD ; ; ; ; V 1HFWRSV\FKH SDOXGLFROD ; ; ; ; ; ; ( 1HFWRSV\FKH SDYLGD ; ; ; ; ; ( 2HFHWLV FLQHUDVFHQV ; ; ; ; ; 6 2HFHWLV GD\WRQD ; ; ; ( 2HFHWLV GLWLVVD ; ; ; ; ; ; ) 2HFHWLV JHRUJLD ; ; ; ; ; ; ( 2HFHWLV LQFRQVSLFXD &RPSOH[ ; ; ; ; ; ; ; ; ( 2HFHWLV QRFWXUQD ; ; ; ; ; ( 2HFHWLV RVWHQL ; ; ; ; ; ( 2HFHWLV SHUVLPLOLV ; ; ; ; ; ( 2HFHWLV VSK\UD ; ; ; ; ; 6 7ULDHQRGHV DED ; f§ 7ULDHQRGHV KHOR ; f§ 7ULDHQRGHV LJQLWXV ; ; ; ; ; ; ; ; ( 7ULDHQRGHV Q VS ; ; ; 6 7ULDHQRGHV RFKUDFHXV ; f§ 7ULDHQRGHV SHUQD ; ; ; 6 7ULDHQRGHV WDHQLD ; ; ; V 7ULDHQRGHV WDUGXV ; ; V /LPQHSKLOLGDH 3\FQRSV\FKH DQWLFD ; ; ; ; ; ; ( 3\FQRSV\FKH LQGLDQD ; f§ 0RODQQLGDH 0RODQQD EOHQGD ; ; ; ; ; ; ; ; ( 0RODQQD WU\SKHQD ; ; ; ; ; ; ; ( 0RODQQD XOPHULQD ; ; ; ; ( 2GRQWRFHULGDH 3VLORWUHWD IURQWDOLV ; ; ; ; ; ( 3KU\JDQHLGDH %DQNVLROD FRQFDWHQDWD ; f§

PAGE 99

7DEOH &RQWLQXHG 6SHFLHV $GXOW &ROOHFWLRQV Qf 0RQWKO\ 2FFXUUHQFH RI $GXOWV &RO 1XPEHU RI /LJKW 7UD HFWHG E\ / S 6DPSOHV LJKW 7UDSSLQJ )OLJKW 6HDVRQ -$1 f )(% f 0$5 f $35 f 0$< f -81 f -8/ f $8* f 6(3 f 2&7 f 129 f '(& f 3WLORVWRPLV RFHOOLIHUD ; ; f§ 3WLORVWRPLV SRVWLFD ; ; ; ( 6HULFRVWRPDWLGDH $JDURGHV FUDVVLFRUQLV ; ; ; ; 6 $JDURGHV OLEDOLV ; ; ; ; ; ( $JDURGHV ORJDQL ; ; ; ; ( $JDURGHV ]LF]DF ; ; ; ; ; ( 2EVHUYHG )OLJKW 6HDVRQV 3OHFRSWHUDf 7KH PRQWKO\ RFFXUUHQFHV RI VWRQHIOLHV FROOHFWHG DV D SDUW RI WKH ELRGLYHUVLW\ VXUYH\ 7DEOH f UHYHDOHG VHYHUDO GLVWLQFW DGXOW VHDVRQDOLW\ SDWWHUQV 7KH /HXFWUD VSHFLHV PHPEHUV RI WKH HXKRORJQDWKDQ JURXSLQJf§ZKDW DUH WUDGLWLRQDOO\ FDOOHG WKH fZLQWHU VWRQHIOLHVff§RFFXUUHG DV DGXOWV RQO\ GXULQJ WKH FRROHVW PRQWKV RI WKH \HDU 2FWREHU 0DUFKf ,W LV LQWHUHVWLQJ WR QRWH WKDW QRW DOO /HXFWUD VSHFLHV W\SLI\ WKH fZLQWHU VWRQHIO\f GHVLJQDWLRQ LQ QRUWKHUQ ODWLWXGHV ZKHUH D QXPEHU RI VSHFLHV W\SLFDOO\ HPHUJH GXULQJ VSULQJ DQG VXPPHU ,Q SRSXODWLRQV RI /HXFWUD VSS WKURXJKRXW QRUWKHUQ )ORULGD KRZHYHU HPHUJHQFH LV RQO\ IURP IDOO WR HDUO\ VSULQJ 7KH 6\VWHOORJQDWKD FRQVLVWHG RI PDLQO\ VSULQJVXPPHU VSHFLHV 7KH RQO\ V\VWHOORJQDWKDQV FROOHFWHG LQ WKH IDOO ZHUH 1HRSHUOD FO\PHQH DQG 3HUOHVD SODFLGD 1HRSHUOD FO\PHQH WKH GRPLQDQW VWRQHIO\ DW *ROG +HDG %UDQFK RFFXUUHG LQ VSULQJ VXPPHU DQG IDOO VDPSOHV EXW ZDV PRVW DEXQGDQW LQ 0D\ DQG -XQH VDPSOHV 3HUOHVD SODFLGD PDLQO\ RFFXUUHG DV DGXOWV LQ VSULQJ DQG VXPPHU DOWKRXJK WKHUH ZDV RQH DQRPDORXV UHFRUG RI D VLQJOH LQGLYLGXDO FROOHFWHG LQ 1RYHPEHU 7KH RWKHU V\VWHOORJQDWKDQV VKRZHG D QDUURZHU VHDVRQDOUDQJH LQ DGXOW RFFXUUHQFH 3HUOLQHOOD GU\PR

PAGE 100

DSSHDUHG UDWKHU HDUO\ LQ WKH VSULQJ 0DUFK DQG $SULOf DQG GLG QRW SHUVLVW ORQJ VXJJHVWLQJ WKDW JURZWK DQG GHYHORSPHQW DUH PRUH WLJKWO\ V\QFKURQL]HG LQ WKLV VSHFLHV WKDQ WKDW RI PRVW VWRQHIO\ VSHFLHV (FFRSWXUD [DQWKHQHV ZDV FROOHFWHG DV DGXOWV RQO\ LQ ODWH0D\ DQG -XQH 7KH FRPPRQ SHUOLG $FURQHXULD DUHQRVD ZDV PRVW DEXQGDQW LQ -XQH ZKLOH $FURQHXULD O\FRULDV DGXOWV ZHUH PRUH SUHYDOHQW LQ $SULO DQG 0D\ 2WKHU VWRQHIOLHV FROOHFWHG LQ WKH VXUYH\ EXW QRW PHQWLRQHG KHUH ZHUH HLWKHU FROOHFWHG RQO\ DV Q\PSKV RU ZHUH FROOHFWHG DV DGXOWV WRR LQIUHTXHQWO\ WR PDNH JHQHUDOL]DWLRQV DV WR WKHLU DGXOW IOLJKW VHDVRQV $GXOW FROOHFWLRQ SHULRGV IRU DOO VSHFLHV RI VWRQHIOLHV NQRZQ WR RFFXU LQ )ORULGD ZHUH VXPPDUL]HG LQ 5DVPXVVHQ HW DO f 7DEOH 0RQWKO\ RFFXUUHQFH RI DGXOW 3OHFRSWHUD UHFRUGHG LQ VXUYH\ 6SHFLHV $GXOW &ROOHFWLRQV Qf 0RQWKO\ 2FFXUUHQFH RI $GXOWV &ROOHFWHG E\ /LJKW 7UDSSLQJ 1R RI /LJKW WUDS 6DPSOHVf -$1 f )(% f 0$5 f $35 f 0$< f -81 f -8/ f $8* f 6(3 f 2&7 f 129 f '(& f (8+2/2*1$7+$ /HXFWULGDH /HXFWUD FRWWDTXLOOD -DPHV ; ; ; /HXFWUD IHUUXJLQHD :DONHUf ; ; /HXFWUD ULFNHUL -DPHV ; /HXFWUD WULORED &ODDVVHQ ; ; 1HXPRXULGDH $PSKLQHPXUD VS 7DHQLRSWHU\JLGDH 7DHQLRSWHU\[ VS 6<67(//2*1$7+$ 3HUOLGDH $FURQHXULD DEQRUPLV 1HZPDQf ; $FURQHXULD DUHQRVD 3LFWHWf ; ; $FURQHXULD O\FRULDV 1HZPDQf ; ; ; $JQHWLQD DQQXOLSHV +DJHQf (FFRSWXUD [DQWKHQHV 1HZPDQf ; ; 1HRSHUOD FDUOVRQL 6WDUN t %DXPDQQ ; 1HRSHUOD FO\PHQH 1HZPDQf ; ; ; ; 3DUDJQHWLQD IXPRVD %DQNVf ; 3DUDJQHWLQD NDQVHQVLV %DQNVf ; 3HUOHVD SODFLGD +DJHQf ; ; ; ; ; 3HUOHVD VS $ ;

PAGE 101

7DEOH &RQWLQXHG 6SHFLHV $GXOW &ROOHFWLRQV Qf 0RQWKO\ 2FFXUUHQFH RI $GXOWV &ROOHFWHG E\ /LJKW 7UDSSLQJ 1R RI /LJKW WUDS 6DPSOHVf -$1 f )(% f 0$5 f $35 f 0$< f -81 f -8/ f $8* f 6(3 f 2&7 f 129 f '(& f 3HUOHVD VS % ; 3HUOLQHOOD GU\PR 1HZPDQf ; ; 3HUOLQHOOD ]ZLFNL .RQGUDWLHII HW DW ; 3HUORGLGDH &OLRSHUOD FOLR 1HZPDQf ,VRSHUOD GLFDOD )ULVRQ ; 3WHURQDUF\LGDH 3WHURQDUF\V GRUV DWD 6D\f ; ; (PHUJHQFH 6WXG\ 7ULFKRSWHUD VSHFLHV IRXQG $ WRWDO RI VSHFLPHQV RI 7ULFKRSWHUD UHSUHVHQWLQJ IDPLOLHV JHQHUD DQG VSHFLHV ZHUH LGHQWLILHG IURP HPHUJHQFH WUDS VDPSOHV 7DEOH f 7KUHH VSHFLHV 'LSOHFWURQD PRGHVWD &KLPDUUD DWHUULPD 3VLORWUHWD IURQWDOLVf DFFRXQWHG IRU PRUH WKDQ b RI WKH LQGLYLGXDOV FROOHFWHG 2QO\ WKH IDPLO\ 6HULFRVWRPDWLGDH ZDV UHSUHVHQWHG E\ PRUH WKDQ RQH VSHFLHV $JDURGHV FUDVVLFRUQLV DQG $JDURGHV ORJDQLf 7KH DOPRVW UDWLRV LQ WKH QXPEHU RI IDPLOLHV WR VSHFLHV DQG IDPLOLHV WR JHQHUD VXJJHVW WKDW LQWHUVSHFLILF FRPSHWLWLRQ DQG QLFKH RYHUODS PD\ EH SUHFOXGLQJ FRRFFXUUHQFH RI FORVHO\ UHODWHG JHQHUD DQG VSHFLHV ZLWKLQ YHU\ VPDOO VWUHDPVHJPHQWV DV VDPSOHG LQ WKH HPHUJHQFH WUDSV $ WRWDO RI FDGGLVIO\ VSHFLHV DUH FXUUHQWO\ NQRZQ IURP WKH )$08 )DUP VWUHDP JLYHQ WKLV IDFW LW LV DSSDUHQW WKDW RWKHU VWUHDP VHJPHQWV DUH EHLQJ XWLOL]HG E\ PDQ\ RWKHU FDGGLVIO\ VSHFLHV &RQVSLFXRXVO\ DEVHQW IURP WKH HPHUJHQFH WUDS FROOHFWLRQV ZHUH WKH /HSWRFHULGDH LQ ZKLFK VSHFLHV KDYH EHHQ UHFRUGHG IURP OLJKW WUDS FROOHFWLRQV PDGH DW WKH )$08 )DUP VWUHDP ,W LV OLNHO\ WKDW WKHVH VSHFLHV DQG PDQ\ RI WKH RWKHUV QRW FROOHFWHG LQ WKH HPHUJHQFH WUDSV LQKDELW GRZQVWUHDP UHDFKHV DQG GR QRW

PAGE 102

UHDGLO\ FRORQL]H WKH XSSHU VSULQJUXQ ZKHUH VSHFLHV VXFK DV PRGHVWD & DWHUULPD DQG 3 IURQWDOLV DSSHDU WR EH WKH GRPLQDQW PHPEHUV RI WKH XSSHUVSULQJUXQ FDGGLVIO\ DVVHPEODJH 7DEOH (PHUJHQFH 7UDS FROOHFWLRQV RI 7ULFKRSWHUD DQG 3OHFRSWHUD 6SHFLHV 6SHFLPHQ 7RWDO Qf 0 0DOHV ) )HPDOHV 7UDS 1R Qf 7UDS 1R Qf 0RQWKO\ 2FFXUUHQFH 7ULFKRSWHUD 'LSOHFWURQD PRGHVWD 0 )f $// &KLPDUUD DWHUULPD 0)f $// 3VLORWUHWD IURQWDOLV 0)f /DWH0$5 $35 0$< 0RODQQD EOHQGD 0)f )(% 0$5 0$< 6(3 $QLVRFHQWURSXV S\UDORLGHV 0)f )(% 0$< -81 $8* 2&7 129 3RO\FHQWURSXV FLQHUHXV 0)f $35 0$< +\GURSWLOD V\NRUDL 0)f -$1 0$5 0$< -81 /HSLGRVWRPD VHUUDWXP 0)f 0$5 0$< 2&7 $JDURGHV FUDVVLFRUQLV 0)f 0$< -81 -8/ /\SH GLYHUVD 0)f 0$< $JDURGHV ORJDQL 0)f $35 3WLORVWRPLV SRVWLFD 0)f 0$< 5K\DFRSKLOD &DUROLQD 0)f )(% 3OHFRSWHUD /HXFWUD IHPDOHVf )f 2&7 129 '(& -$1 )(% 0$5 /HXFWUD WULORED 0f 129 '(& -$1 0$5 /HXFWUD IHUUXJLQHD 0f 129 '(& -$1 )(% (FFRSWXUD [DQWKHQHV 0)f 0$< -81 3HUOHVD VS 0)f -81 6XERUGHU $QQXOLSDOSLD 7KH PRVW DEXQGDQW VSHFLHV FROOHFWHG ZDV WKH K\GURSV\FKLG 'LSOHFWURQD PRGHVWD VSHFLPHQVf WKH GRPLQDQW K\GURSV\FKLG ZLWKLQ UDYLQHKHDG VSULQJUXQV WKURXJKRXW WKH )ORULGD SDQKDQGOH 2WKHU K\GURSV\FKLGV VXFK DV +\GURSV\FKH DQG &KHXPDWRSV\FKH VSHFLHV ZHUH QRW FROOHFWHG ZLWKLQ WKH HPHUJHQFH WUDS VXJJHVWLQJ WKDW HYHQ XELTXLWRXV VSHFLHV VXFK DV &KHXPDWRSV\FKH SHWWLWL DUH XQDEOH WR FRORQL]H KDELWDWV ZLWK KLJK GHQVLWLHV RI PRGHVWD &KLPDUUD DWHUULPD ZDV WKH VHFRQG PRVW DEXQGDQW VSHFLHV FROOHFWHG LW RFFXUV LQ D YDULHW\ RI VPDOO VWUHDPV LQ QRUWKHUQ )ORULGD DQG LV QRW UHVWULFWHG WR UDYLQH VSULQJUXQV /LNHZLVH WKH RWKHU DQQXOSDOSLDQV FROOHFWHG

PAGE 103

3RO\FHQWURSXV FLQHUHXV DQG /\SH GLYHUVD DUH ERWK ZLGHVSUHDG VSHFLHV RFFXUULQJ LQ PDQ\ ORWLF KDELWDWV ZLWKLQ QRUWKHUQ )ORULGD 6XERUGHU 6SLFLSDOSLD 7KH RQO\ PLFURFDGGLVIO\ VSHFLHV FROOHFWHG ZDV + V\NRUDL D VSHFLHV UHFHQWO\ GHVFULEHG LQ +DUULV f .QRZQ RQO\ IURP VSHFLPHQV FROOHFWHG LQ 7UDS WKLV VSHFLHV ZDV QRW UHFRUGHG LQ WKH VXUYH\ &KDSWHU f XVLQJ 89EODFNOLJKW VXJJHVWLQJ WKDW LW HLWKHU PD\ QRW VKRZ DQ DWWUDFWLRQ WR 89EODFNOLJKW RU LV QRW DFWLYH GXULQJ WKH HDUO\ QLJKWWLPH ZKHQ OLJKW WUDSSLQJ ZDV FRQGXFWHG 1RQH RI WKH K\GURSWLOLG VSHFLHV OLJKWWUDSSHG DW WKH )$08 )DUP VWUHDP ZHUH FROOHFWHG LQ WKH HPHUJHQFH WUDSV +DUULV f QRWHG WKDW + V\NRUDL LV YHU\ VLPLODU LQ RYHUDOO DSSHDUDQFH WR + RXDFKLWD ZKLFK LV HQGHPLF WR 6FKRROKRXVH 6SULQJV LQ /RXLVLDQD $VVXPLQJ + RXDFKLWD DQG + V\NRUDL DUH VLVWHU VSHFLHV LW LV UHDVRQDEOH WR K\SRWKHVL]H WKDW WKHLU SDUHQW VSHFLHV ZDV RQFH ZLGHVSUHDG RQ WKH &RDVWDO 3ODLQ DQG EHFDPH LVRODWHG LQ VPDOO KHDGZDWHU VSULQJUXQV RQ WKH *XOI &RDVWDO 3ODLQ 7KH RWKHU VSLFLSDOSLDQ UHFRUGHG ZDV 5K\DFRSKLOD &DUROLQD D FRPPRQ VSHFLHV LQ VZLIWO\ IORZLQJ VSULQJIHG KHDGZDWHU VWUHDPV ZLWKLQ WKH )ORULGD SDQKDQGOH 6XERUGHU ,QWHJULSDOSLD 7KH VSHFLHV FROOHFWHG DUH DQ LQWHUHVWLQJ DVVRUWPHQW LQFOXGLQJ UDYLQH FUHQRELRQWV 3VLORWUHWD IURQWDOLV 0RODQQD EOHQGD /HSLGRVWRPD VHUUDWXP $JDURGHV ORJDQLf DQG RWKHU VSHFLHV OHVV UHVWULFWHG LQ KDELWDW $QLVRFHQWURSXV S\UDORLGHV $JDURGHV FUDVVLFRUQLV 3WLORVWRPLV SRVWLFDf )RXU VSHFLHV 3 IURQWDOLV 0 EOHQGD $ FUDVVLFRUQLV $ ORJDQLf FRQVWUXFW ODUYDO FDVHV PDGH IURP PLQHUDO PDWHULDOV ZKLOH VSHFLHV / VHUUDWXP $ S\UDORLGHV DQG 3 SRVWLFDf FRQVWUXFW FDVHV IURP SODQW PDWHULDOV 6SHFLHVVSHFLILF GLIIHUHQFHV LQ FDVH VWUXFWXUH DQG ODUYDO KDELWV LQ JHQHUDO SUREDEO\ DOORZ WKHVH VSHFLHV WR XWLOL]H GLIIHUHQW EHQWKLF PLFURKDELWDWV UHVXOWLQJ LQ YHU\

PAGE 104

ILQHVFDOH UHVRXUFH SDUWLWLRQLQJ $PRQJ WKH LQWHJULSDOSLDQV FROOHFWHG ZDV VSHFLPHQ RI $JDURGHV ORJDQL D QDUURZUDQJH HQGHPLF NQRZQ IURP RQO\ WKH )$08 )DUP VWUHDP .HWK t +DUULV f 7KH SUHVHQFH RI WKH DGXOW FROOHFWHG LQ 7UDS FRQILUPV WKDW WKLV VSHFLHV EUHHGV LQ XSSHU UHDFKHV RI WKH VSULQJUXQ 7ULFKRSWHUD HPHUJHQFH SKHQRORJ\ 7DEOH )LJ f $GXOW WULFKRSWHUDQV ZHUH FROOHFWHG \HDUURXQG LQ 7UDS ZLWK SHDN HPHUJHQFH SHULRGV PDLQO\ LQ WKH VSULQJ DQG IDOO SHULRGV DQG UHODWLYHO\ OLWWOH HPHUJHQFH DFWLYLW\ LQ VXPPHU DQG ZLQWHU 2I WKH PRVW DEXQGDQW VSHFLHV DGXOWV RI VSHFLHV 'LSOHFWURQD PRGHVWD DQG &KLPDUUD DWHUULPD HPHUJHG WKURXJKRXW WKH \HDU ZKLOH HPHUJHQFH RI 3VLORWUHWD IURQWDOLV ZDV FRQILQHG WR WKH VSULQJWLPH 0RODQQD EOHQGD $QLVRFHQWURSXV S\UDORLGHV DQG +\GURSWLOD V\NRUDL ZHUH FROOHFWHG DW YDULRXV WLPHV RI \HDU VXJJHVWLQJ WKDW WKHVH VSHFLHV PD\ DOVR EH HPHUJLQJ IURP WKH )$08 IDUP VSULQJUXQ WKURXJKRXW )LJXUH $GXOW HPHUJHQFH RI WKH PRVW DEXQGDQW FDGGLVIO\ VSHFLHV FROOHFWHG LQ 7UDS

PAGE 105

PXFK RI WKH \HDU ,Q WKH VSULQJ RI HPHUJHQFH SHDNHG IRU PRGHVWD & DWHUULPD DQG 3 IURQWDOLV 7KH VLQJOH VL]HFODVV RI ODUYDO FROOHFWLRQV DW WKH )$08 IDUP VWUHDP DQG WKH XQLPRGDO HPHUJHQFH LQGLFDWHV WKDW 3 IURQWDOLV KDV D VLQJOH FRKRUW WKDW GHYHORSV LQ V\QFKURQRXV IDVKLRQ UHVXOWLQJ LQ JHQHUDWLRQ SHU \HDU WKDW UHDFKHV PDWXULW\ LQ WKH VSULQJ 7KH FRKRUW VWUXFWXUH DQG YROWLQLVP RI PRGHVWD DQG & DWHUULPD DSSHDUV WR EH PRUH FRPSOH[ 'LSOHFWURQD PRGHVWD DQG & DWHUULPD ERWK VKRZHG VSULQJ VHDVRQDO SHDNV LQ HPHUJHQFH EXW WKH DOPRVW FRQWLQXRXV ORZHULQWHQVLW\ HPHUJHQFH GXULQJ RWKHU WLPHV RI \HDU LQGLFDWHV WKDW FRKRUW VWUXFWXUH LV ZHDN DQG JHQHUDWLRQV ZHUH RYHUODSSLQJ DQG FRQWLQXRXVO\ EHLQJ SURGXFHG 'LSOHFWURQD PRGHVWD H[KLELWHG D VHFRQGDU\ VPDOOHU VXVWDLQHG SHDN LQ HPHUJHQFH 6HSWHPEHU2FWREHUf VXJJHVWLQJ WKDW D IDOO JHQHUDWLRQ LV SUHVHQW 'LSOHFWURQD PRGHVWD ZDV XQLYROWLQH LQ ERWK WKH 7XOOXODK 5LYHU D VRXWKHUQ $SSDODFKLDQ KHDGZDWHU VWUHDP %HQNH t :DOODFH f DQG D ZRRGODQG VWUHDP LQ 7HQQHVVHH &XVKPDQ HW DO f 6RPH &KLPDUUD VSHFLHV LQ 1RUWK $PHULFD LQFOXGLQJ & DWHUULPD KDYH ELYROWLQH OLIH KLVWRULHV :DOODFH t $QGHUVRQ f 0RUH GHWDLOHG OLIH KLVWRU\ VWXGLHV LQYROYLQJ DOO OLIH VWDJHV DUH QHHGHG EHIRUH FRQFOXVLRQV DV WR YROWLQLVP LQ WKHVH VSHFLHV FDQ EH PDGH IRU WKH SRSXODWLRQV DW WKH )$08 IDUP VWUHDP 2EVHUYHG VH[ UDWLRV IRU WKH PRVW DEXQGDQW FDGGLVIO\ VSHFLHV ZHUH VOLJKWO\ IHPDOH ELDVHG LQ PRGHVWD DQG & DWHUULPD DQG VOLJKWO\ PDOHELDVHG LQ 3 IURQWDOLV 7DEOH f 1R FOHDU GLIIHUHQFHV ZHUH GHWHFWHG LQ WKHVH VSHFLHV UHJDUGLQJ WLPLQJ RI PDOH DQG IHPDOH HPHUJHQFH (DUOLHU PDOH HPHUJHQFH SURWDQGU\f KDV EHHQ UHSRUWHG LQ PDQ\ DTXDWLF LQVHFW RUGHUV %XWOHU f

PAGE 106

3OHFRSWHUD VSHFLHV IRXQG $ WRWDO RI VSHFLPHQV UHSUHVHQWLQJ VSHFLHV RI 3OHFRSWHUD ZHUH FROOHFWHG LQ WKH HPHUJHQFH WUDSV 7DEOH f 7KH WUDS FDWFKHV VXJJHVW WKDW RQO\ D IHZ VSHFLHV RI VWRQHIOLHV RFFXU LQ WKH XSSHU VSULQJUXQ QDPHO\ /HXFWUD WULORED /HXFWUD IHUUXJLQHD DQG (FFRSWXUD [DQWKHQHV 7KH /HXFWUD VSHFLHV QXPHULFDOO\ GRPLQDWHG WKH WUDS FDWFK RI VWRQHIOLHV 6XUSULVLQJ LV WKH IDFW WKDW WKHVH VSHFLHV ZHUH FROOHFWHG LQ QHDUO\ HTXDO QXPEHUV RYHU WKH VDPH WLPH SHULRG 7KH\ DSSHDU WR RFFXS\ YHU\ VLPLODU QLFKHV ZKLFK UDLVHV TXHVWLRQV DV WR PHFKDQLVPV WKDW SHUPLW WKHLU FRH[LVWHQFH :KHWKHU WKHVH VSHFLHV DUH VLPLODUO\ GLVWULEXWHG ZLWKLQ VWUHDP VHFWLRQV HOVHZKHUH DQG DUH DEOH WR FRH[LVW RQ D ORQJWHUP EDVLV LV XQNQRZQ 3HUKDSV WKH GLVWULEXWLRQ RI WKHVH VSHFLHV LQ 7UDS ZDV DW\SLFDO DQG WUDQVLWLYH $GGLWLRQDO HPHUJHQFH WUDSSLQJ LV UHTXLUHG WR DGGUHVV WKHVH TXHVWLRQV (FFRSWXUD [DQWKHQHV WKH RQO\ SHUOLG IURP 7UDS LV D VLJQDWXUH VSHFLHV RI UDYLQH VWUHDPV LQ WKH FHQWUDO SDQKDQGOH DQG LWV SUHVHQFH LOOXVWUDWHV WKH FORVH ELRJHRJUDSKLF DIILQLWLHV RI UDYLQHV LQ WKLV UHJLRQ ZLWK VPDOO VWUHDPV RI WKH VRXWKHUQ $SSDODFKLDQV ZKHUH WKLV VSHFLHV W\SLFDOO\ RFFXUV 3OHFRSWHUD HPHUJHQFH SKHQRORJ\ /HXFWUD IHUUXJLQHD DQG /HXFWUD WULORED H[KLELWHG DQ H[WHQGHG HPHUJHQFH SHULRG RI QHDUO\ PRQWKV IURP 2FWREHU WKURXJK 0DUFK )LJ f 'XULQJ PRVW RI WKLV SHULRG HPHUJHQFH RI ERWK VSHFLHV ZDV UHODWLYHO\ ORZ EXW DURXQG WKH EHJLQQLQJ RI 'HFHPEHU HPHUJHQFH LQWHQVLW\ SHDNHG VLJQLILFDQWO\ 7KH QXPEHU RI /HXFWUD IHPDOHV LQFUHDVHG DOVR LQ RQH VDPSOH WDNHQ LQ ODWH-DQXDU\ EXW EHFDXVH IHPDOHV RI WKH VSHFLHV FRXOG QRW EH GLVWLQJXLVKHG WKH VSHFLHV FRPSRVLWLRQ DQG DEXQGDQFH GLVWULEXWLRQ IRU IHPDOHV LV XQNQRZQ +DUSHU f IRXQG /HXFWUD IHUUXJLQHD SRSXODWLRQV LQ VRXWKHUQ 2QWDULR WR

PAGE 107

FRQVLVW VROHO\ RI LQGLYLGXDOV ZLWK \HDU VHPLYROWLQHf OLIH KLVWRULHV IURP WKH FRROHVW VWUHDPV DQG D PL[ RI VHPLYROWLQH DQG XQLYROWLQH LQGLYLGXDOV LQ ZDUPHU VWUHDPV (PEU\RQLF DQG Q\PSKDO JURZWK ZDV IRXQG WR VORZ LQ FRRO ZDWHU WHPSHUDWXUHV DQG DFFRXQWHG IRU WKH GLIIHULQJ YROWLQLVP REVHUYHG $W WKH )$08 IDUP VWUHDP WKH UDWKHU VWDEOH DQG RSWLPXP ZDWHU WHPSHUDWXUHV VHHP WR SURPRWH VWHDG\ JURZWK DQG GHYHORSPHQW DQG WKXV IDYRU XQLYROWLQH OLIH KLVWRULHV 'DWH )LJXUH $GXOW HPHUJHQFH RI /HXFWUD WULORED DQG /IHUUXJLQHD LQ 7UDS (FFRSWXUD [DQWKHQHV HPHUJHG LQ ODWH0D\ DQG HDUO\ -XQH 7KH VSHFLHV ZDV VHPLYROWLQH LQ D VPDOO .HQWXFN\ VWUHDP $OOHQ t 7DUWHU f 'HWHUPLQDWLRQ RI YROWLQLVP IRU LQGLYLGXDOV ZLWKLQ WKH )$08 )DUP VWUHDP DQG IURP RWKHU SRSXODWLRQV LQ QRUWKHUQ )ORULGD UHTXLUHV IXUWKHU LQYHVWLJDWLRQ 7KH VSHFLHV GLVSOD\V D ZHOOV\QFKURQL]HG ODWHVSULQJ SDWWHUQ RI DGXOW HPHUJHQFH DW ERWK WKH )$08 IDUP VWUHDP DQG RWKHU FHQWUDO SDQKDQGOH UDYLQHV

PAGE 108

&+$37(5 6800$5< $1' &21&/86,216 7ULFKRSWHUD DQG 3OHFRSWHUD VSHFLHV GLYHUVLW\ DQG HFRORJ\ ZHUH LQYHVWLJDWHG LQ UDYLQH GUDLQDJH QHWZRUNV DFURVV QRUWKHUQ )ORULGD &HQWUDO WR WKH VWXG\ ZDV PDNLQJ DQ LQYHQWRU\ RI VSHFLHV GLYHUVLW\ LQ VHOHFWHG DUHDV RI QRUWKHUQ )ORULGD WKDW SRVVHVV H[HPSODU\ UDYLQH HFRV\VWHPV 7KH VXUYH\ GDWD ZHUH WKHQ XVHG WR TXDQWLI\ IDXQDO VLPLODULWLHV DPRQJ VDPSOLQJ VWDWLRQV DQG SURYLGH D FRPPXQLW\ FODVVLILFDWLRQ RI UDYLQH VWUHDPV EDVHG RQ PDFURFDGGLVIO\ VSHFLHV FRPSRVLWLRQ DQG FRUUHODWLRQV ZLWK JHRJUDSKLF DQG KDELWDW SDUDPHWHUV 6XUYH\ GDWD ZHUH DOVR XVHG WR FKDUDFWHUL]H FDGGLVIO\ DQG VWRQHIO\ IOLJKW VHDVRQDOLW\ ZLWKLQ WKH QRUWKHUQ )ORULGD UHJLRQ $GXOW HPHUJHQFH SKHQRORJ\ RI FDGGLVIOLHV DQG VWRQHIOLHV DW RQH UDYLQHKHDGZDWHU VSULQJUXQ ZDV VWXGLHG XVLQJ HPHUJHQFH WUDSV ,Q WKLV ILQDO FKDSWHU WKH ILUVW VHFWLRQ UHYLHZV VRPH DVSHFWV RI 7ULFKRSWHUD DQG 3OHFRSWHUD QDWXUDO KLVWRU\ DV LW UHODWHV WR &RDVWDO 3ODLQ UDYLQHV DQG WKH IROORZLQJ VHFWLRQV VXPPDUL]H WKH VWXG\ VWDWH PDMRU FRQFOXVLRQV DQG GLVFXVV IXWXUH UHVHDUFK QHHGV 5DYLQH %LRJHRJUDSK\ 7ULFKRSWHUD DQG 3OHFRSWHUD FRPPRQO\ NQRZQ DV FDGGLVIOLHV DQG VWRQHIOLHV UHVSHFWLYHO\ FRPSULVH GLYHUVH DQG HFRORJLFDOO\ LPSRUWDQW DTXDWLF LQVHFWV ,Q WKH ZRUOGfV WHPSHUDWH ]RQHV ERWK JURXSV DUH HVSHFLDOO\ ZHOO UHSUHVHQWHG LQ KHDGZDWHU VWUHDPV DQG DUH RIWHQ GRPLQDQW PHPEHUV RI EHQWKLF PDFURLQYHUWHEUDWH FRPPXQLWLHV 7KH HFRORJ\ RI EHQWKLF FRPPXQLWLHV LQ KHDGZDWHU VWUHDPV LV FORVHO\ OLQNHG WR ULSDULDQIRUHVW FDQRS\ FRYHU DQG RUJDQLF PDWWHU LQSXWV 6SHFLDOL]HG OLQHDJHV RI 7ULFKRSWHUD DQG 3OHFRSWHUD

PAGE 109

HYROYHG LQ XQLVRQ ZLWK HDVWHUQ GHFLGXRXV IRUHVW UHVXOWLQJ LQ D GLYHUVH DQG HQGHPLF IDXQD DGDSWHG WR ZRRGODQG VWUHDPV 6SHFLHV GLYHUVLILFDWLRQ KDV EHHQ PDJQLILHG E\ WKH JHRJUDSKLF LVRODWLRQ RI SRSXODWLRQV GXH WR GLVSHUVDO DQG YLFDULDQFH DV D FRQVHTXHQFH RI FOLPDWH FKDQJHV GXULQJ WKH 7HUWLDU\ DQG 4XDWHUQDU\ ,W KDV EHHQ ZLGHO\ SRVWXODWHG WKDW PDMRU FOLPDWLF IOXFWXDWLRQV UHVXOWHG LQ PXOWLSOH 1RUWK6RXWK PRYHPHQWV RI ELRWD DORQJ WKH PDMRU ULYHU FRUULGRUV ZLWKLQ HDVWHUQ 1RUWK $PHULFD 7KH RFFXUUHQFH RI UDYLQH VWUHDPV DVVRFLDWHG ZLWK ULYHU YDOOH\ HVFDUSPHQWV OLNHO\ DIIRUGHG VXLWDEOH KDELWDW WKXV IDFLOLWDWLQJ PRYHPHQWV RI ZRRGODQGVWUHDP WD[D 5DYLQH HFRV\VWHPV LQ QRUWKHUQ )ORULGD RIIHU VXLWDEOH KDELWDWV IRU WKLV KLJKO\ VSHFLDOL]HG IDXQD DQG EHFDXVH RI JHRJUDSKLF LVRODWLRQ IURP VLPLODU KDELWDWV LQ WKH HDVWHUQ KLJKODQGV WKHUH RFFXU GLVMXQFW DQG UHOLFWXDO DV ZHOO DV HQGHPLF HOHPHQWV WR WKH IDXQD DQG IORUD ,Q WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV UHIXJLD IRU FRRODGDSWHG ELRWD DUH IRXQG SULPDULO\ ZLWKLQ DUHDV SRVVHVVLQJ PLFURFOLPDWHV WKDW IDYRU WKH GHYHORSPHQW RI PL[HG PHVRSK\WLF IRUHVW DQG LWV DVVRFLDWHG ELRWD 5DYLQHV GXH WR PHVLF FRQGLWLRQV FUHDWHG E\ WKHLU VKDUS UHOLHI DQG VSULQJ IORZ DUH LPSRUWDQW UHIXJLD IRU ZRRGODQG VWUHDP ELRWD 7KH ZDUPZDWHU DTXDWLF KDELWDWV LQ QRUWKHUQ )ORULGD JHQHUDOO\ GR QRW VXSSRUW FDGGLVIO\ DQG VWRQHIO\ WD[D DGDSWHG WR FRRO ZRRGODQG VWUHDPV WKHUHIRUH WKH VSULQJIHG VWUHDPV DQG OXVK ULSDULDQ IRUHVWV IRXQG LQ UDYLQH GUDLQDJH QHWZRUNV DUH SDUWLFXODUO\ LPSRUWDQW IRU PDLQWDLQLQJ WKLV ELRGLYHUVLW\ %DVHG RQ WKHLU JHRPRUSKRORJ\ UDYLQH GUDLQDJH V\VWHPV RQ WKH ORZHU &RDVWDO 3ODLQ RI WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV FDQ EH EURDGO\ FODVVLILHG LQWR JURXSV VWHHSKHDG UDYLQHV DQG FOD\KLOO UDYLQHV 6WHHSKHDG UDYLQHV DUH D UHVXOW RI JURXQGZDWHUVDSSLQJ SURFHVVHV DQG W\SLFDOO\ IRUP LQ GHHS GHSRVLWV RI FRDUVH VDQGV ZKHUHDV FOD\KLOO UDYLQHV

PAGE 110

IRUP LQ PRUH WLJKWO\SDFNHG VRLOV SULPDULO\ DV D UHVXOW RI VFRXULQJ IURP VXUIDFH UXQRII %HFDXVH RI WKH HOHYDWLRQDO DQG PRLVWXUH JUDGLHQW LQ UDYLQHV SODQW FRPPXQLWLHV DUH GLYHUVH PLG DQG ORZHU VORSHV DUH HVSHFLDOO\ ULFK LQ PHVLF KDUGZRRG VSHFLHV 7ULFKRSWHUD DQG 3OHFRSWHUD 6SHFLHV 'LYHUVLW\ 6SHFLHV ZHUH LQYHQWRULHG E\ VXUYH\LQJ UHODWLYHO\ SULVWLQH UDYLQH HFRV\VWHPV LQ DUHDV DFURVV QRUWKHUQ )ORULGD )LJ f 7KH ELRGLYHUVLW\ VXUYH\ PHWKRGV FRQVLVWHG RI UHSHDWHG FROOHFWLQJ RI ERWK LPPDWXUHV DQG DGXOWV DW VDPSOLQJ VWDWLRQV )LJV WR f WKURXJKRXW VHYHUDO VHDVRQV LQ HDFK VWXG\ DUHD 7DEOH f %HFDXVH DGXOWV DUH UHTXLUHG WR PDNH VSHFLHVOHYHO GHWHUPLQDWLRQV IRU PRVW VSHFLHV DGXOW FROOHFWLRQ PHWKRGV SDUWLFXODUO\ OLJKW WUDSSLQJf ZHUH HPSKDVL]HG $ WRWDO RI OLJKWWUDS VDPSOHV ZHUH FROOHFWHG ,Q RUGHU WR LQYHVWLJDWH IDXQDO GLYHUVLW\ IURP D ZLGH DUUD\ RI KDELWDWV FROOHFWLQJ ZDV FDUULHG RXW DW WKH XSSHUPRVW KHDGZDWHUV DV ZHOO DV DW YDULRXV SRLQWV GRZQVWUHDP 7KH VXUYH\ UHVXOWV &KDSWHU f EDVHG RQ PRUH WKDQ VSHFLPHQ LGHQWLILFDWLRQV GRFXPHQW D GLYHUVH IDXQD RI VSHFLHV RI 7ULFKRSWHUD DQG VSHFLHV RI 3OHFRSWHUD 7KLV UHSUHVHQWV DSSUR[LPDWHO\ b DQG b UHVSHFWLYHO\ RI WKH WRWDO QXPEHU RI VSHFLHV NQRZQ LQ WKH )ORULGD )URP WKH VSHFLHV LQYHQWRULHV KDYH LGHQWLILHG RYHU VSHFLHV RI VSHFLDO LQWHUHVW 7DEOH f WKDW ILW LQWR RQH RU PRUH RI WKH IROORZLQJ FDWHJRULHV UDYLQH FUHQRELRQWV VSHFLHVf VSHFLHV HQGHPLF WR YHU\ OLPLWHG DUHDV RI WKH ORZHU &RDVWDO 3ODLQ VSHFLHVf VSHFLHV WKDW KDYH SRSXODWLRQV ZLWKLQ WKH VWXG\ DUHDV WKDW DUH GLVMXQFW IURP QRUWKHUO\ JHRJUDSKLF UDQJHV VSHFLHVf VSHFLHV OLVWHG E\ WKH )ORULGD &RPPLWWHH RQ 5DUH DQG (QGDQJHUHG 3ODQWV DQG $QLPDOV DV 7KUHDWHQHG RU 5DUH VSHFLHVf %HVLGHV WKHVH VSHFLHV RI VSHFLDO LQWHUHVW PDQ\ VSHFLHV FRPPRQ WR )ORULGD ZDWHUV ZHUH DOVR

PAGE 111

GRFXPHQWHG LQ WKH VXUYH\ $ IXOO DFFRXQWLQJ RI DOO 7ULFKRSWHUD DQG 3OHFRSWHUD VSHFLHV UHFRUGHG LQ WKH VXUYH\ 7DEOHV WR f ZDV SUHVHQWHG DQG GLVFXVVHG $W OHDVW FDGGLVIO\ VSHFLHV SUHYLRXVO\ XQNQRZQ WR VFLHQFH ZHUH GLVFRYHUHG LQ WKH FRXUVH RI WKLV VWXG\ 6XEVHTXHQW WR WKHVH FROOHFWLRQV WKH IROORZLQJ VSHFLHV ZHUH IRUPDOO\ GHVFULEHG $JDURGHV ORJDQL .HWK t +DUULV +\GURSWLOD DSDODFKLFROD +DUULV HW DO +\URSWLOD EULEULDH +DUULV +\GURSWLOD HJOLQHQVLV +DUULV +\GURSWLOD KDPLOWRQL +DUULV +\GURSWLOD RNDORRVD +DUULV +\GURSWLOD VDUDKDH +DUULV +\GURSWLOD V\NRUDL +DUULV 2FKURWULFKLD DSDODFKLFROD +DUULV HW DO 2[\HWKLUD FKU\VRFDUD +DUULV DQG 2[\HWKLUD SHVFDGRUL +DUULV t .HWK $OO RI WKH QHZO\ GHVFULEHG VSHFLHV PHQWLRQHG DERYH DSSHDU WR EH QDUURZUDQJH HQGHPLFV ZLWK WKH H[FHSWLRQ RI 2 SHVFDGRUL 5DYLQH +HDGZDWHU 6SHFLDOLVWV 5DYLQH &UHQRELRQWVf 7KH VPDOO VSULQJV DQG VSULQJUXQV RFFXUULQJ LQ UDYLQHKHDGV ZHUH IRXQG WR FRQWDLQ D QXPEHU RI VSHFLHV WKDW DSSHDU WR EH VSHFLILFDOO\ DGDSWHG DQG UHVWULFWHG WR WKRVH KDELWDWV 6SHFLHV FRQILQHG WR XSSHU UDYLQHKHDG VWUHDP UHDFKHV LQFOXGH WKH FDGGLVIO\ VSHFLHV 'LSOHFWURQD PRGHVWD 'LSOHFWURQD VS $ %HUDHD Q VS +HWHURSOHFWURQ DPHULFDQXP +\GURSWLOD V\NRUDL /HSLGRVWRPD VHUUDWXP 7ULDHQRGHV WDHQLD 0RODQQD EOHQGD 3VLORWUHWD IURQWDOLV DQG $JDURGHV ORJDQL 6WRQHIO\ UDYLQH FUHQRELRQWV LQFOXGH /HXFWUD WULORED DQG (FFRSWXUD [DQWKHQHV 6SHFLHV VXFK DV 'LSOHFWURQD PRGHVWD 0RODQQD EOHQGD DQG +HWHURSOHFWURQ DPHULFDQXP DUH ORFDOO\ DEXQGDQW DW PRVW UDYLQHKHDG VWDWLRQV LQ WKH SDQKDQGOH /HSLGRVWRPD VHUUDWXP RFFXUV DW UDYLQH KHDGV KDYLQJ VPDOO SLHFHV DQG FKXQNV RI FOD\H\ VXEVWUDWH DW WKH VSULQJKHDGV WKH ODUYDH DUH IRXQG LQ DVVRFLDWLRQ ZLWK WKLV XQXVXDO VXEVWUDWH 'LSOHFWURQD VS $ DSSHDUV WR EH D QHZ VSHFLHV DQG LV SUREDEO\ HQGHPLF

PAGE 112

WR UDYLQH KHDGV RI WKH )ORULGD SHQLQVXOD $Q XQGHVFULEHG VSHFLHV LQ WKH JHQXV %HUDHD ZDV FROOHFWHG DW D VWHHSKHDG VWDWLRQ RQ (JOLQ $LU )RUFH %DVH LQ WKH ZHVWHUQ )ORULGD SDQKDQGOH %HUDHD VSHFLHV LQ 1RUWK $PHULFD DUH H[FHHGLQJO\ UDUH DQG DUH FRQILQHG WR VHHSDJHVSULQJ PXFN KDELWDWV $JDURGHV ORJDQL LV RQO\ NQRZQ IURP D UDYLQH VSULQJUXQ ORFDWHG LQ WKH FHQWUDO SDQKDQGOH DW WKH )ORULGD $t0 8QLYHUVLW\ 5HVHDUFK DQG ([WHQVLRQ &HQWHU $QRWKHU QHZ VSHFLHV GLVFRYHUHG LQ WKLV UDYLQH ZDV +\GURSWLOD V\NRUDLf§WKH RQO\ PLFURFDGGLVIO\ VSHFLHV FROOHFWHG LQ DQ HPHUJHQFH WUDS XVHG WR FDSWXUH LQVHFWV HPHUJLQJ IURP WKH XSSHU VSULQJUXQ 5DYLQH KHDGZDWHU VWUHDPV LQ WKH FHQWUDO SDQKDQGOH FRQWDLQ DEXQGDQW SRSXODWLRQV RI WKH SHUOLG VWRQHIO\ (FFRSWXUD [DQWKHQHV DQG OHXFWULG /HXFWUD VSSf VWRQHIOLHV $W *ROG +HDG %UDQFK WKH SHUOLG VWRQHIO\ 1HRSHUOD FO\PHQH LV WKH GRPLQDQW VWRQHIO\ VSHFLHV WKURXJKRXW WKH VSULQJUXQ 7KH FHQWUDO SDQKDQGOH UDYLQHV FRQWDLQ PRUH $SSDODFKLDQ GLVMXQFW VSHFLHV WKDQ WKH ZHVWHUQ SDQKDQGOH DQG SHQLQVXODU VWXG\ DUHDV VXSSRUWLQJ WKH ULYHUFRUULGRU K\SRWKHVLV IRU GLVSHUVDO EHWZHHQ )ORULGD DQG WKH HDVWHUQ KLJKODQGV YLD WKH $SDODFKLFROD&KDWWDKRRFKHH)OLQW ULYHU V\VWHP ,Q SDUWLFXODU WKH GLVWULEXWLRQV RI (FFRSWXUD [DQWKHQHV /HXFWUD WULORED 3VLORWUHWD IURQWDOLV DQG 7ULDQHRGHV WDHQLD LQGLFDWH WKDW WKHVH VSHFLHV PRVW OLNHO\ HQWHUHG )ORULGD YLD WKLV URXWH )DXQDO (OHPHQWV RI 0LGGOH DQG /RZHU 5HDFKHV 7KH FDGGLVIO\ DQG VWRQHIO\ DVVHPEODJHV RI WKH ORZHU DQG PLGGOH UHDFKHV LQFOXGH FRPPRQ VSHFLHV DV ZHOO DV PDQ\ VSHFLHV RI VSHFLDO LQWHUHVW 7KH VXUYH\ UHYHDOHG WKDW VSHFLHV FRPSRVLWLRQ LV TXLWH GLIIHUHQW DPRQJ WKH VWXG\ DUHDV RI WKH UHJLRQV ZHVWHUQ SDQKDQGOH FHQWUDO SDQKDQGOH SHQLQVXODf UHSUHVHQWHG LQ WKH VWXG\ 7KH PLGGOH DQG ORZHU UHDFKHV RI WKH VWHHSKHDG VWUHDPV VXUYH\HG RQ (JOLQ $LU )RUFH %DVH LQ WKH ZHVWHUQ

PAGE 113

SDQKDQGOH ZHUH IRXQG WR FRQWDLQ E\ IDU WKH JUHDWHVW QXPEHU RI QDUURZUDQJH HQGHPLF FDGGLVIO\ VSHFLHV 7KH DEXQGDQFH RI KLJKTXDOLW\ VWHHSKHDG UDYLQH VWUHDPV ORFDWHG LQ WKLV UHODWLYHO\ LVRODWHG FRDVWDO DUHD KDV JLYHQ ULVH WR D XQLTXH FDGGLVIO\ IDXQD XQSDUDOOHOHG DQ\ZKHUH HOVH RQ WKH 6RXWKHDVWHUQ &RDVWDO 3ODLQ 7KH FDGGLVIO\ IDXQD UHFRUGHG IURP (JOLQfV VWHHSKHDG VWUHDPV LQFOXGHV VSHFLHV RXW RI D WRWDO RI VSHFLHV WKDW DUH QDUURZO\ HQGHPLF WR DUHDV RI WKH ORZHU &RDVWDO 3ODLQ 7KH PDMRULW\ RI WKHVH VSHFLHV DUH HLWKHU FRQILQHG HQWLUHO\ WR VWUHDPV RQ (JOLQ RU LI IRXQG RXWVLGH RI WKLV DUHD DUH IDU OHVV DEXQGDQW VXJJHVWLQJ WKDW WKH VWHHSKHDG VWUHDPV RQ (JOLQ DUH WKH SRLQW RI RULJLQ IRU PXFK RI LWV GLVWLQFW FDGGLVIO\ IDXQD 6RPH H[DPSOHV RI HVSHFLDOO\ DEXQGDQW DXWRFKWKRQRXV HQGHPLFV DUH 0LFUDVHPD Q VS $JDURGHV ]LF]DF 1HFWRSV\FKHSDOXGLFROD DQG &KHXPDWRSV\FKH JRUGRQDH 7KH ODUJHU VWUHDPV VDPSOHG LQ WKH $SDODFKLFROD VWXG\ DUHD LQFOXGH YHU\ IHZ QDUURZ UDQJH HQGHPLFV DQG WKH FDGGLVIO\ IDXQD FRQWDLQV D UHODWLYHO\ KLJKHU SHUFHQWDJH RI ZDUP DGDSWHG ULYHU VSHFLHV WKDQ GRHV DQ\ RI WKH RWKHU VWUHDPV VDPSOHG 7KH $SDODFKLFROD 5LYHU DSSHDUV WR GLUHFWO\ LQIOXHQFH WKH VSHFLHV FRPSRVLWLRQ DW VWDWLRQV ORFDWHG QHDU WKH ULYHU $ JRRG H[DPSOH RI WKLV LV WKH DEXQGDQW RFFXUUHQFH RI WKH FDGGLVIO\ VSHFLHV +\GURSV\FKH LQFRPPRGD 7KH $SDODFKLFROD 5LYHU DSSHDUV WR KDYH FRQQHFWHG WKH UDYLQH UHJLRQ WR WKH PRUH FKDUDFWHULVWLF ZDUPDGDSWHG IDXQDf§DV WKH KLJK QXPEHU RI OHSWRFHULG FDGGLVIO\ VSHFLHV UHFRUGHG VXJJHVWV 7KH VSULQJUXQV RI WKH $SODFKLFROD VWHHSKHDGV KDYH QRW GHYHORSHG WKH KLJKO\ HQGHPLF IDXQD DV VHHQ LQ WKH (JOLQ VWHHSKHDG VWUHDPV EXW GR LQFOXGH D QXPEHU RI FRRODGDSWHG FDGGLVIOLHV DQG GLVMXQFW VSHFLHV VXFK DV /HSLGRVWRPD JULVHXP DQG /HSLGRVWRPD ODWLSHQQH 7KH IDFW WKDW WKH ODUJHU VWUHDPV LQ WKH VWXG\ DUHD )ODW &UHHN &URRNHG &UHHN 6ZHHWZDWHU &UHHNf H[SHULHQFH PRUH YDULDEOH ZDWHU

PAGE 114

WHPSHUDWXUHV WKDQ WKH VWHHSKHDG VSULQJUXQV DOVR KHOSV WR H[SODLQ WKH SUHVHQFH WKH SUHYDOHQFH RI ZDUPDGDSWHG VSHFLHV 6WRQHIO\ VSHFLHV RI QRWH UHFRUGHG LQ WKH VWXG\ DW GRZQVWUHDP UHDFKHV LQFOXGH $FURQHXULD O\FRULDV DQG 3WHURQDUF\V GRUVDWD ,Q WKH SDQKDQGOH VWXG\ DUHDV $FURQHXULD O\FRULDV LV WKH PRVW DEXQGDQW ODUJH SHUOLG LQ WKH PLGGOH DQG ORZHU UHDFKHV WKH SRSXODWLRQV LQ )ORULGD DUH GLVMXQFW DQG ODUJHO\ OLPLWHG WR UDYLQH GUDLQDJHV 3WHURQDUF\V GRUVDWD DOVR D GLVMXQFW ZDV UHFRUGHG DW RQO\ D IHZ VWDWLRQV DQG LQ )ORULGD WKH VSHFLHV DSSHDUV WR EH VSDUVHO\ GLVWULEXWHG 6SHFLPHQV RI ZKDW DSSHDUV WR EH SRVVLEO\ 3HUOHVD VSHFLHV QHZ WR VFLHQFH ZHUH UHFRUGHG IURP VWHHSKHDG VWUHDPV LQ WKH (JOLQ DUHD 7KLV VXJJHVWV WKDW (JOLQ VWHHSKHDG VWUHDPV EHVLGHV KDYLQJ HQGHPLF FDGGLVIOLHV PD\ DOVR KDYH DQ HQGHPLF VWRQHIO\ IDXQD 7ULFKRSWHUD &RPPXQLW\ 6WUXFWXUH DQG (QYLURQPHQWDO 5HODWLRQVKLSV 7KH 7ULFKRSWHUD VXUYH\ RI QRUWKHUQ )ORULGD UDYLQH HFRV\VWHPV SURYLGHV D FRPSUHKHQVLYH LQYHQWRU\ RI VSHFLHV GLYHUVLW\ IURP WKH VWXG\ DUHDV DQG VKRZV WKDW IDXQDO FRPSRVLWLRQ LV YHU\ GLIIHUHQW DPRQJ WKH UHJLRQV DQG KDELWDWV WKDW ZHUH VDPSOHG 7KHVH GLVWLQFWLRQV ZHUH LQYHVWLJDWHG IXUWKHU E\ DQDO\]LQJ WKH PDFURFDGGLVIO\ GDWDVHW XVLQJ PXOWLYDULDWH VWDWLVWLFDO PHWKRGV &KDSWHU f 7KH REMHFWLYHV ZHUH WR LQYHVWLJDWH PDFURFDGGLVIO\ FRPPXQLW\ VWUXFWXUH DQG HQYLURQPHQWDO UHODWLRQVKLSV $EXQGDQFH GDWD WRWDO QXPEHU RI LQGLYLGXDOVf IRU PDFURFDGGLVIO\ VSHFLHV FROOHFWHG DW VWDWLRQV ZHUH DQDO\]HG XVLQJ WKH FOXVWHULQJ PHWKRG 8QZHLJKWHG 3DLU *URXS 0DWKHPDWLFDO $YHUDJLQJ 83*0$f DQG WKH RUGLQDWLRQ WHFKQLTXH 'HWUHQGHG &RUUHVSRQGHQFH $QDO\VLV '&$f 6LPLODULW\ DPRQJ VWDWLRQV LQ WHUPV RI WKHLU PDFURFDGGLVIO\ IDXQDV ZDV PHDVXUHG XVLQJ 6SHDUPDQfV UDQN RUGHU RI DEXQGDQFH FRUUHODWLRQ FRHIILFLHQW

PAGE 115

&RPPXQLW\ &KDUDFWHUL]DWLRQ 7KH 83*0$ FOXVWHU DQDO\VLV UHVXOWHG LQ D GHQGRJUDP )LJ f LQ ZKLFK EUDQFKLQJ SDWWHUQV FRUUHVSRQG FORVHO\ ZLWK JHRJUDSK\ DV ZHOO DV KDELWDW IDFWRUV UHODWHG WR VWUHDP VL]H DQG UDYLQH W\SH %DVDO VSOLWV LQ WKH GHQGRJUDP GHOLQHDWH VWDWLRQV DFFRUGLQJ WR JHRJUDSKLF UHJLRQ ZHVWHUQ SDQKDQGOH FHQWUDO SDQKDQGOH DQG SHQLQVXODf 7KH FHQWUDO SDQKDQGOH VWDWLRQ FOXVWHU IXUWKHU VSOLWV LQWR GLVVLPLODU FOXVWHUV WKDW FRUUHVSRQGV WR ODUJH VWUHDP RU UDYLQH KHDGZDWHUVWUHDP VWDWLRQV 7KH PRGHVWO\ VLPLODU UDYLQHKHDGZDWHU VWDWLRQV VSOLW LQWR FOXVWHUV FRUUHVSRQGLQJ WR VWHHSKHDG UDYLQH VWUHDPV DQG FOD\KLOO UDYLQH VWUHDPV %DVHG RQ WKLV LQWHUSUHWDWLRQ RI WKH 83*0$ GHQGRJUDP WKH IROORZLQJ PDFURFDGGLVIO\ FRPPXQLWLHV ZHUH LGHQWLILHG *ROG +HDG %UDQFK $SDODFKLFROD VWHHSKHDG VWUHDPV FOD\KLOO UDYLQH VWUHDPV $SDODFKLFROD ODUJH VWUHDPV DQG (JOLQ VWHHSKHDG VWUHDPV )RU HDFK FRPPXQLW\ VSHFLHV FRPSRVLWLRQ ZDV WDEXODWHG 7DEOHV f DQG DEXQGDQFH GLVWULEXWLRQV ZHUH JUDSKHG )LJ f 3HQLQVXOD UHJLRQ 7KH *ROG +HDG %UDQFK FRPPXQLW\ LV WKH OHDVW GLYHUVHf§ FKDUDFWHUL]HG E\ ORZ VSHFLHV ULFKQHVV DQG XQHYHQ DEXQGDQFH GLVWULEXWLRQ )DFWRUV DFFRXQWLQJ IRU WKH GHSDXSDUDWH *ROG +HDG %UDQFK FRPPXQLW\ LQFOXGH ORZ VSHFLHV GLYHUVLW\ RI WKH SHQLQVXOD ODFN RI FRORQL]DWLRQ SRWHQWLDO IURP RWKHU VWUHDPV DQG SRVVLEOH VSHFLHV H[WLUSDWLRQV GXH WR KLVWRULF ODQGXVH SUDFWLFHV 7ZR YHU\ FRPPRQ KDELWDW JHQHUDOLVWV &KHXPDWRSV\FKH SLQDFD DQG 1HFWRSV\FKH SDYLGD DUH WKH PRVW DEXQGDQW VSHFLHV 8QLTXH WR WKH *ROG +HDG FRPPXQLW\ LV 'LSOHFWURQD VS $ D UDYLQH FUHQRELRQW DQG SRWHQWLDO QHZ VSHFLHV WR VFLHQFH 7KH PDFURFDGGLVIO\ FRPPXQLWLHV RI WKH )ORULGD SDQKDQGOH DUH PXFK PRUH GLYHUVH DQG GR QRW VKRZ WKH QLFKHSUHHPSWLRQ E\ KDELWDW JHQHUDOLVWV DSSDUHQW LQ WKH *ROG +HDG FRPPXQLW\

PAGE 116

&HQWUDO SDQKDQGOH UHJLRQ ,Q WKH FHQWUDO SDQKDQGOH WKH $SDODFKLFROD VWHHSKHDG VWUHDP FRPPXQLW\ VSHFLHVf SRVVHVVHV D YHU\ XQXVXDO PL[ RI VSHFLHV WKDW LQFOXGHV D UREXVW DVVHPEODJH RI UDYLQH FUHQRELRQWV DQG QRUWKHUQ HOHPHQWV VXFK DV /HSLGRVWRPD JULVHXP DQG / ODWLSHQQH DV ZHOO DV ODUJH ULYHU VSHFLHV DQG RWKHU ZDUPDGDSWHG IDXQD 7KH FRQQHFWLYLW\ RI $SDODFKLFROD VWHHSKHDG VWUHDPV ZLWK WKH $SDODFKLFROD 5LYHU FOHDUO\ LPSDFWV FRPPXQLW\ FRPSRVLWLRQ WKH ODFN RI JHRJUDSKLF LVRODWLRQ H[SODLQV WKH FRPPXQLW\fV ORZ HQGHPLFLW\ DQG LWV ZDWHUVKHG FRQQHFWLRQV ZLWK WKH VRXWKHUQ $SSDODFKLDQV H[SODLQV WKH SUHVHQFH RI QRUWKHUQ HOHPHQWV 7KH RWKHU FHQWUDO SDQKDQGOH FRPPXQLW\ FRPSULVLQJ KHDGZDWHU UDYLQH VWDWLRQV LV WKH FOD\KLOO UDYLQH VWUHDP FRPPXQLW\ %\ FRPSDULVRQ LW KDV ORZHU VSHFLHV ULFKQHVV VSHFLHVf DQG LV GRPLQDWHG E\ UDYLQH FUHQRELRQWV VXFK DV 3VLORWUHWD IURQWDOLV DQG 'LSOHFWURQD PRGHVWD LW ODFNV VLJQLILFDQW QXPEHUV RI +\GURSV\FKH HOLVVRPD DQG &KLPDUUD IDOFXODWD ZKLFK DUH IRXQG DEXQGDQWO\ LQ WKH SDQKDQGOH VWHHSKHDG VSULQJUXQV /DUJHVWUHDP DQG RWKHU ZDUPDGDSWHG WD[D DUH DOVR ODUJHO\ DEVHQW LQ WKH FOD\KLOO UDYLQH VWUHDP FRPPXQLW\ 7KH FOD\KLOO UDYLQH FRPPXQLW\ KDV GHILQLWH ELRJHRJUDSKLF DIILQLWLHV ZLWK WKH $SSDODFKLDQ KLJKODQGV DV LQGLFDWHG E\ WKH SUHVHQFH RI 7ULDHQRGHV WDHQLD 7KH $SDODFKLFROD ODUJH VWUHDP FRPPXQLW\ VSHFLHVf KDV OLWWOH VLPLODULW\ WR WKH UDYLQH KHDGZDWHU FRPPXQLWLHV DQG LV GRPLQDWHG E\ K\GURSV\FKLG DQG OHSWRFHULGV FRRODGDSWHG WD[D DQG QDUURZUDQJH HQGHPLFV DUH PLQRU FRQVWLWXHQWV :HVWHUQ SDQKDQGOH UHJLRQ (JOLQfV VWHHSKHDG UDYLQH FRPPXQLW\ KDV D VSHFLHVULFK VSHFLHVf DQG KLJKO\ GLVWLQFWLYH PDFURFDGGLVIO\ IDXQD WKDW LQFOXGHV VSHFLHV QRW UHFRUGHG IURP WKH RWKHU FRPPXQLWLHV (LJKW RI WKH PDFURFDGGLVIO\ VSHFLHV DUH QDUURZO\ HQGHPLF DQG RI WKHVH VSHFLHV DUH QXPHULFDOO\ GRPLQDQW 0LFUDVHPD Q VS $JDURGHV

PAGE 117

]LF]DF DQG 1HFWRSV\FKH SDOXFKHODf 7KH (JOLQ VWHHSKHDG VWUHDP FRPPXQLW\ LV KHWHURJHQHRXV DQG GLIIHUHQFHV LQ VSHFLHV FRPSRVLWLRQ DPRQJ VWDWLRQV DUH VLJQLILFDQW +RZHYHU WKHUH LV QRW D ODUJH UHSODFHPHQW RI FRRODGDSWHG VSHFLHV ZLWK ZDUPDGDSWHG VSHFLHV LQ WKH GRZQVWUHDP UHDFKHV DV LV WKH FDVH LQ WKH ODUJH VWUHDPV RI WKH $SDODFKLFROD %OXIIV DQG 5DYLQHV 5HJLRQ 7KH (JOLQ VWUHDPV PDLQWDLQ WKHLU VSULQJUXQ FKDUDFWHULVWLFV WKURXJKRXW WKHLU FRXUVH DQG DV D UHVXOW D VLPLODU VHW RI DEXQGDQW VSHFLHV DUH GLVWULEXWHG WKURXJKRXW WKH DUHDfV VWHHSKHDG GUDLQDJHV 2UGLQDWLRQ $QDO\VLV 7KH RUGLQDWLRQ DQDO\VLV '&$f UHVXOWHG LQ VWDWLRQ SODFHPHQWV DORQJ D[HV RI HFRORJLFDO LQWHUHVW )LJXUH f 7KH SULPDU\ D[LV DSSHDUV WR EH UHODWHG WR D JHRJUDSKLF JUDGLHQW DV VWDWLRQV LQ WKH ZHVWHUQ SDQKDQGOH DQG SHQLQVXOD ZHUH SORWWHG DW RSSRVLWH HQGV RI WKH D[LV DQG FHQWUDO SDQKDQGOH VWDWLRQV SORWWHG LQ WKH PLGGOH 7KH VHFRQGDU\ D[LV DSSHDUV WR EH UHODWHG WR D VWUHDPVL]H JUDGLHQW 7KH VWUHDPVL]H JUDGLHQW ZDV FRQILUPHG E\ VHSDUDWHO\ RUGLQDWLQJ ZHVWHUQ SDQKDQGOH DQG FHQWUDO SDQKDQGOH VWDWLRQV VR DV WR UHPRYH WKH UHJLRQDO DIIHFW )LJV f 7KH RUGLQDWLRQ DQDO\VLV DORQJ ZLWK WKH FOXVWHU DQDO\VLV VXSSRUWV WKH DVVHUWLRQ WKDW PDFURFDGGLVIO\ VSHFLHV FRPSRVLWLRQ LQ UDYLQH HFRV\VWHPV RI QRUWKHUQ )ORULGD LV FRQWUROOHG E\ JHRJUDSKLF IDFWRUV UHODWHG WR UHJLRQDO ELRJHRJUDSK\ RQ D ODUJH VFDOH DQG ZLWKLQUHJLRQ KDELWDW IDFWRUV UHODWHG WR UDYLQH W\SH DQG IORZ FKDUDFWHULVWLFV DW D OHVVHU VFDOH )OLJKW 6HDVRQDOLW\ DQG (PHUJHQFH 6WXG\ 7KH GDWHV ZKHQ DGXOW FDGGLVIOLHV DQG VWRQHIOLHV ZHUH FROOHFWHG LQ WKH VXUYH\ ZHUH XVHG WR FKDUDFWHUL]H IOLJKW VHDVRQDOLW\ &KDSWHU f 7KLV EDVLF LQIRUPDWLRQ LV XVHIXO LQ SUHGLFWLQJ ZKHQ SDUWLFXODU VSHFLHV ZLOO EH IRXQG LQ WKH DGXOW VWDJH KRZHYHU WKRURXJK

PAGE 118

,OO LQYHVWLJDWLRQV LQWR HDFK VSHFLHV OLIHKLVWRU\ WUDLWV UHODWHG WR DGXOW HPHUJHQFH SKHQRORJ\ DQG YROWLQLVP DUH QHHGHG EHIRUH WKH XQGHUO\LQJ ELRORJLFDO FDXVHV DFFRXQWLQJ IRU WKH REVHUYHG IOLJKW VHDVRQDOLW\ FDQ EH IXOO\ H[SODLQHG 7RZDUGV WKLV JRDO HPHUJHQFH RI DGXOW FDGGLVIOLHV DQG VWRQHIOLHV ZHUH PRQLWRUHG XVLQJ HPHUJHQFH WUDSV DW WKH UDYLQH VSULQJUXQ ORFDWHG DW WKH )$08 )DUP VWXG\ DUHD 7KH FROOHFWLRQ UHFRUGV REWDLQHG LQ WKH HPHUJHQFH VWXG\ DOVR FRQWULEXWH WR EHWWHU XQGHUVWDQGLQJ VSHFLHV FRPSRVLWLRQ RI WKH EHQWKLF FRPPXQLW\ DW UDYLQHKHDG VSULQJUXQV )OLJKW 6HDVRQDOLW\ 7DEOHV f 2I WKH FDGGLVIO\ VSHFLHV UHFRUGHG LQ OLJKWWUDS VDPSOHV FROOHFWHG IURP WKH VWXG\ DUHDV VSHFLHV DUH FKDUDFWHUL]HG DV KDYLQJ IOLJKW VHDVRQV H[WHQGLQJ RYHU WKH VSULQJ VXPPHU DQG IDOO VSHFLHV DV KDYLQJ VSULQJVXPPHU IOLJKW VHDVRQV DQG RQO\ VSHFLHV DV EHLQJ OLPLWHG WR WKH IDOO 7KH UHPDLQLQJ VSHFLHV ZHUH QRW FROOHFWHG LQ JUHDW HQRXJK IUHTXHQF\ WR FKDUDFWHUL]H WKHLU IOLJKW VHDVRQDOLW\ 7KH JUHDW PDMRULW\ RI FDGGLVIO\ DQG V\VWHOORJQDWKDQ VWRQHIO\ VSHFLHV KDYH WKHLU SHDN DGXOW DEXQGDQFH GXULQJ VSULQJ DQG VXPPHU 'LIIHUHQFHV ZHUH QRWHG LQ WKH FDGGLVIO\ WD[RQRPLF FRPSRVLWLRQ RI OLJKWWUDS VDPSOHV DPRQJ VDPSOHV FROOHFWHG LQ 0DUFK $SULO 0D\ DQG -XQH )LJ f 7RWDO FDGGLVIO\ VSHFLHV ULFKQHVV ZDV KLJKHVW LQ 0D\ VDPSOHV VSHFLHVf ZKHQ ERWK VSHFLHV ULFKQHVV RI +\GURSWLOLGDH DQG $QQXOLSDOSLD SHDNHG ,QWHJULSDOSLD RWKHU WKDQ /HSWRFHULGDHf VSHFLHV ULFKQHVV VWD\HG UHODWLYHO\ HYHQ WKURXJKRXW WKH VSULQJ ZKLOH WKH /HSWRFHULGDH URVH VKDUSO\ IURP ORZ VSHFLHV ULFKQHVV LQ 0DUFK VDPSOHV WR D SHDN LQ VSHFLHV ULFKQHVV LQ $SULO VDPSOHV 7KH VHDVRQDO WHQGHQFLHV LQ HPHUJHQFH DPRQJ WKHVH PDMRU JURXSV RI FDGGLVIOLHV DSSHDU WR EH UHODWHG WR WKHLU WHPSHUDWXUH DGDSWDWLRQV $PRQJ

PAGE 119

3OHFRSWHUD /HXFWUD VSHFLHV DUH SUHVHQW RQO\ GXULQJ WKH IDOO ZLQWHU DQG HDUO\ VSULQJ ZKLOH WKH RWKHU VWRQHIO\ VSHFLHV FROOHFWHG DV DGXOWV RFFXU SULPDULO\ LQ WKH VSULQJ (PHUJHQFH 6WXG\ 7KH HPHUJHQFH VWXG\ FRQGXFWHG DW WKH )$08 )DUP UDYLQH VSULQJUXQ SURYLGHG D PRUH GHWDLOHG SLFWXUH RI HPHUJHQFH SDWWHUQV LQ FDGGLVIO\ DQG VWRQHIO\ SRSXODWLRQV LQKDELWLQJ WKH XSSHU VSULQJUXQ (PHUJHQFH WUDSV KDYH DQ DGYDQWDJH RYHU OLJKW WUDSSLQJ DQG RWKHU DGXOW FROOHFWLRQ PHWKRGV LQ WKDW DGXOWODUYDO KDELWDW DVVRFLDWLRQV FDQ EH PRUH DFFXUDWHO\ GHWHUPLQHG 7KH WHQWWUDS )LJ f WKDW ZDV SODFHG RYHU D QU VWUHDP VHFWLRQ QHDU WKH UDYLQH KHDG ZDV XVHG WR PRQLWRU HPHUJHQFH DW DERXW GD\ LQWHUYDOV IRU PRUH WKDQ D \HDU 7KH FROOHFWLRQ UHVXOWV ZHUH XVHG WR FKDUDFWHUL]H VSHFLHV FRPSRVLWLRQ DQG HPHUJHQFH SKHQRORJ\ 6SHFLHV FRPSRVLWLRQ 7KH HPHUJHQFH WUDS FROOHFWLRQV 7DEOH f FRPSULVHG QHDUO\ VSHFLPHQV RI 7ULFKRSWHUD IDPLOLHV JHQHUD VSHFLHVf DQG VSHFLPHQV RI 3OHFRSWHUD VSHFLHVf 7KH ORZ FDGGLVIO\ VSHFLHV ULFKQHVV UHFRUGHG LQ WKH HPHUJHQFH WUDSV UHODWLYH WR WKH VSHFLHV UHFRUGHG DW WKH )$08 IDUP VWXG\ DUHD LQGLFDWHV WKDW WKH XSSHU UDYLQHKHDG UHDFK LV GRPLQDWHG E\ D UHODWLYHO\ IHZ VSHFLHV 'LSOHFWURQD PRGHVWD &KLPDUUD DWHUULPD DQG 3VLORWUHWD IURQWDOLV DFFRXQWHG IRU PRUH WKDQ SHUFHQW RI WKH WUDS FDWFK 2WKHU QRWHZRUWK\ UHFRUGV LQFOXGHG FDGGLVIO\ VSHFLHV $JDURGHV ORJDQL DQG +\GURSWLOD V\NRUDL NQRZQ RQO\ IURP WKH )$08 )DUP UDYLQH $PRQJ WKH VWRQHIOLHV FROOHFWHG /HXFWUD WULORED DQG /HXFWUD IHUUXJLQHD ZHUH E\ IDU WKH PRVW DEXQGDQW RFFXUULQJ LQ DSSUR[LPDWHO\ HTXDO QXPEHUV (FFRSWXUD [DQWKHQHV D ODUJH SHUOLG VWRQHIO\ FRPPRQ LQ UDYLQHV RI WKH FHQWUDO SDQKDQGOH ZDV DOVR UHFRUGHG

PAGE 120

(PHUJHQFH SKHQRORJ\ :DWHU WHPSHUDWXUHV LQ WKH XSSHU VSULQJUXQ DW WKH )$08 IDUP JHQHUDOO\ VWD\ ZLWKLQ DERXW D r& UDQJH \HDUURXQG 1RW VXUSULVLQJO\ WKHUH DUH YDULRXV FDGGLVIO\ DQG VWRQHIO\ WD[D HPHUJLQJ WKURXJKRXW WKH \HDU 7DEOH f $PRQJ WKH PRVW DEXQGDQW FDGGLVIO\ VSHFLHV 'LSOHFWURQD PRGHVWD &KLPDUUD DWHUULPD HPHUJH \HDU URXQG ZLWK D VSULQJSHDN LQ HPHUJHQFH LQWHQVLW\ )LJ f &RKRUW VWUXFWXUH DSSHDUV ZHDN DQG JHQHUDWLRQV DSSHDU WR EH FRQWLQXDOO\ SURGXFHG LQ WKHVH VSHFLHV ,Q FRQWUDVW 3VLORWUHWD IURQWDOLV HPHUJHV RQO\ LQ WKH VSULQJ DQG DSSHDUV WR KDYH D VLQJOH ZHOOGHILQHG FRKRUW KDYLQJ D XQLYROWLQH OLIH F\FOH 7KH VSHFLHV RI /HXFWUD VWRQHIOLHV HDFK H[KLELWHG D SURORQJHG HPHUJHQFH SHULRG WKURXJKRXW WKH IDOO ZLQWHU DQG HDUO\ VSULQJ ZLWK D SHDN LQ HPHUJHQFH DFWLYLW\ LQ ODWH1RYHPEHU WR HDUO\'HFHPEHU )LJ f 7KH V\QFKURQL]HG FRn HPHUJHQFH RI WKHVH FRQJHQHUV ZLWKLQ VXFK D VPDOO VWUHDPVHFWLRQ VXJJHVWV WKDW WKH\ FRPSHWH FORVHO\ IRU UHVRXUFHV 7KH RQO\ RWKHU VWRQHIO\ UHFRUGHG LQ VLJQLILFDQW QXPEHUV (FFRSWXUD [DQWKHQHV HPHUJHV RYHU D UHODWLYHO\ QDUURZ WLPHSHULRG IURP ODWH0D\ WR HDUO\-XQH )XWXUH 5HVHDUFK 1HHGV 5DYLQH HFRV\VWHPV RIIHU H[FHOOHQW SURVSHFWV IRU DGGLWLRQDO UHVHDUFK UHODWHG WR D ZLGH UDQJH RI WRSLFV 7R H[WHQG WKH FDGGLVIO\ DQG VWRQHIO\ UHVHDUFK WKDW ZDV UHSRUWHG LQ WKLV VWXG\ DGGLWLRQDO VXUYH\ ZRUN LV QHHGHG LQ RWKHU UDYLQH GUDLQDJH QHWZRUNV HVSHFLDOO\ RXWVLGH WKH DUHDV WKDW ZHUH VWXGLHG 7KH (FRQIPD &UHHN VWHHSKHDG VWUHDPV ZKLFK DUH ORFDWHG EHWZHHQ WKH (JOLQ 6WXG\ DUHD DQG WKH $SDODFKLFROD VWHHSKHDGV VKRXOG EH VXUYH\HG %HVLGHV DGGLWLRQDO VXUYH\ ZRUN WKH ELRORJ\ DQG HFRORJ\ RI WKH PDQ\ VSHFLHV RI VSHFLDO LQWHUHVW IRXQG LQ UDYLQH GUDLQDJH V\VWHPV VKRXOG EH VWXGLHG IXUWKHU 0DQ\ RI WKHVH VSHFLHV EHFDXVH RI WKHLU UHVWULFWHG GLVWULEXWLRQV DUH SDUWLFXODUO\ YXOQHUDEOH WR

PAGE 121

H[WLQFWLRQ DQG FRXOG EH EHWWHU SURWHFWHG LI PRUH LV OHDUQHG FRQFHUQLQJ WKHLU ELRORJ\ DQG HFRORJ\ 7KHUH DUH RWKHU DTXDWLF LQVHFW JURXSV EHVLGHV 7ULFKRSWHUD DQG 3OHFRSWHUD WKDW DUH YHU\ LPSRUWDQW ELRWLF FRPSRQHQWV RI UDYLQH HFRV\VWHPV DQG WKHVH JURXSV LQFOXGLQJ (SKHPHURSWHUD 2GRQDWD DTXDWLF +HPLSWHUD DTXDWLF &ROHSWHUD DQG 'LSWHUD DUH VWLOO UHODWLYHO\ XQNQRZQ DQG UHTXLUH VWXG\ ,Q DGGLWLRQ WR EDVLF IDXQLVWLF DQG HFRORJLFDO VWXGLHV UDYLQHV RIIHU LQWHUHVWLQJ RSSRUWXQLWLHV IRU VWXGLHV RI KLVWRULFDO ELRJHRJUDSK\ DQG LQYHVWLJDWLRQV LQWR WKH RULJLQV RI WKHVH GLVWLQFW IDXQDV 'XH WR WKH JHRJUDSKLF LVRODWLRQ RI UDYLQH SRSXODWLRQV PROHFXODU VWXGLHV RQ JHQHWLF GLYHUVLW\ LQ VSHFLHV SRSXODWLRQV IURP GLIIHUHQW GUDLQDJHV DUH SURPLVLQJ DYHQXHV RI UHVHDUFK WRZDUGV DQ XQGHUVWDQGLQJ RI GLVSHUVDO JHQH IORZ DQG HYROXWLRQ RI UDYLQH ELRWD

PAGE 122

5()(5(1&(6 &,7(' $OOHQ %/ DQG '& 7DUWHU /LIH KLVWRU\ DQG HFRORJ\ RI (FFRSWXUD [DQWKHQHV 3OHFRSWHUD 3HUOLGDHf IURP D VPDOO .HQWXFN\ 86$f VWUHDP 7UDQVDFWLRQV RI WKH .HQWXFN\ $FDGHP\ RI 6FLHQFHV %HQNH $& DQG -% :DOODFH 7URSKLF EDVLV RI SURGXFWLRQ DPRQJ QHWVSLQQLQJ FDGGLVIOLHV LQ D VRXWKHUQ $SSDODFKLDQ VWUHDP (FRORJ\ %HUQHU / 5HFRUGV RI VWRQHIOLHV IURP )ORULGD 3OHFRSWHUDf )ORULGD (QWRPRORJLVW %OLFNOH 5/ +\GURSWLOLGDH 7ULFKRSWHUDf RI )ORULGD )ORULGD (QWRPRORJLVW %RVVDUW -/ DQG &( &DUOWRQ ,QVHFW FRQVHUYDWLRQ LQ $PHULFD $PHULFDQ (QWRPRORJLVW %RWRVDQHDQX / HGf 6WXGLHV LQ FUHQRELRORJ\ WKH ELRORJ\ RI VSULQJV DQG VSULQJEURRNV %DFNKX\V 3XEOLVKHUV /HLGHQ 7KH 1HWKHUODQGV SS %XHQR6RULD (VWXGLRV HQ LQVHFWRV DFX£WLFRV GH 0H[LFR 7ULFKRSWHUD /HSWRFHULGDHf &LQFR QHXHYDV HVSHFLHV GH 2HFHWLV 0F/DFKODQ )ROLD (QWRPROJLFD 0H[LFDQD %XWOHU 0& /LIH KLVWRULHV RI DTXDWLF LQVHFWV 3S ,Q 9+ 5HVK DQG '0 5RVHQEHUJ HGVf 7KH HFRORJ\ RI DTXDWLF LQVHFWV 3UDHJHU 3XEOLVKHUV 1HZ
PAGE 123

&XVKPDQ 50 -: (OZRRG DQG 6* +LOGHEUDQG /LIH KLVWRU\ DQG SURGXFWLRQ G\QDPLFV RI $OORSHUOD PHGLDQD DQG 'LSOHFWURQD PRGHVWD LQ :DONHU %UDQFK 7HQQHVVHH $PHULFDQ 0LGODQG 1DWXUDOLVW 'HOFRXUW +5 DQG 3$ 'HOFRXUW 7KH EOXIIODQGV 3OHLVWRFHQH SDWKZD\ LQWR WKH 7XQLFD +LOOV $PHULFDQ 0LGODQG 1DWXUDOLVW 'HOFRXUW +5 DQG 3$ 'HOFRXUW 3UHVHWWOHPHQW PDJQROLDEHHFK FOLPD[ RI WKH *XOI &RDVWDO 3ODLQ TXDQWLWDWLYH HYLGHQFH IURP WKH $SDODFKLFROD 5LYHU %OXIIV QRUWK FHQWUDO )ORULGD (FRORJ\ 'HOFRXUW +5 DQG 3$ 'HOFRXUW ,FH DJH KDYHQ IRU KDUGZRRGV 1DWXUDO +LVWRU\ f 'HQQLQJ '* 'HVFULSWLRQV RI HLJKW QHZ VSHFLHV RI 7ULFKRSWHUD %XOOHWLQ RI WKH %URRNO\Q (QWRPRORJLFDO 6RFLHW\ 'H\UXS 0 DQG 5 )UDQ] HGVf 5DUH DQG HQGDQJHUHG ELRWD RI )ORULGD YROXPH LY LQYHUWHEUDWHV 8QLYHUVLW\ 3UHVVHV RI )ORULGD *DLQHVYLOOH )ORULGD SS )HPDOG ($ DQG (' 3XUGXP HGVf :DWHU UHVRXUFHV DWODV RI )ORULGD ,QVWLWXWH RI 6FLHQFH DQG 3XEOLF $IIDLUV )ORULGD 6WDWH 8QLYHUVLW\ 7DOODKDVVHH SS )HUULQJWRQ /& -U HGf %LRGLYHUVLW\ RI DTXDWLF LQVHFWV DQG RWKHU LQYHUWHEUDWHV LQ VSULQJV -RXUQDO RI WKH .DQVDV (QWRPRORJLFDO 6RFLHW\ f 6XSSOHPHQW )OR\G 0$ /DUYDH RI WKH FDGGLVIO\ JHQXV 2HFHWLV 7ULFKRSWHUD /HSWRFHULGDHf LQ 1RUWK $PHULFD %XOOHWLQ RI WKH 2KLR %LRORJLFDO 6XUYH\ 1HZ 6HULHV f SS *LEVRQ '9HJHWDWLRQHQYLURQPHQW UHODWLRQVKLSV LQ D VRXWKHUQ PL[HG KDUGZRRG IRUHVW &DVWDQHD *ORYHU -% /DUYDH RI WKH FDGGLVIO\ JHQHUD 7ULDHQRGHV DQG
PAGE 124

+DPLOWRQ 6: DQG -& 0RUVH 6RXWKHDVWHUQ FDGGLVIO\ IDXQD RULJLQV DQG DIILQLWLHV )ORULGD (QWRPRORJLVW +DUSHU 33 /LIH KLVWRULHV RI 1HPRXULGDH DQG /HXFWULGDH LQ VRXWKHUQ 2QWDULR 3OHFRSWHUDf +\GURELRORJLD +DUULV 6 & 1HZ FDGGLVIOLHV 7ULFKRSWHUDf IURP $ODEDPD DQG )ORULGD %XOOHWLQ RI WKH $ODEDPD 0XVHXP RI1DWDUDO +LVWRU\ +DUULV 6 & 1HZ VSHFLHV RI PLFURFDGGLVIOLHV 7ULFKRSWHUD +\GURSWLOLGDHf IURP QRUWKHUQ )ORULGD $QQDOV RI WKH &DUQHJLH 0XVHXP +DUULV 6 & DQG % $UPLWDJH 1HZ +\GURSWLOLGDH 7ULFKRSWHUDf IURP )ORULGD (QWRPRORJLFDO 1HZV +DUULV 6 & DQG $ & .HWK 7ZR QHZ PLFURFDGGLVIOLHV IURP $ODEDPD DQG )ORULGD (QWRPRORJLFDO 1HZV +DUULV 6& 3. /DJR DQG 5: +RO]HQWKDO $Q DQQRWDWHG FKHFNOLVW RI WKH FDGGLVIOLHV 7ULFKRSWHUDf RI 0LVVLVVLSSL DQG VRXWKHDVWHUQ /RXLVLDQD 3DUW ,, 5K\DFRSKLORLGHD 3URFHHGLQJV RI WKH (QWRPRORJLFDO 6RFLHW\ RI :DVKLQJWRQ +DUULV 6 & 3 /DJR DQG ) 6FKHLULQJ $QQRWDWHG OLVW RI 7ULFKRSWHUD RI VHYHUDO VWUHDPV RI (JOLQ $LU )RUFH %DVH )ORULGD (QWRPRORJLFDO 1HZV +DUULV 6& 3( 2f1HLO DQG 3. /DJR &DGGLVIOLHV RI $ODEDPD *HRORJLFDO 6XUYH\ RI $ODEDPD %XOOHWLQ 1XPEHU SS +DUULV 6& 0/ 3HVFDGRU DQG $. 5DVPXVVHQ 7ZR QHZ VSHFLHV RI PLFURFDGGLVIOLHV 7ULFKRSWHUD+\GURSWLOLGDHf IURP QRUWKHUQ )ORULGD )ORULGD (QWRPRORJLVW +LOO 02 '(&25$1$ $ )2575$1 SURJUDP IRU GHWUHQGHG FRUUHVSRQGHQFH DQDO\VLV DQG UHFLSURFDO DYHUDJLQJ &RUQHOO 8QLYHUVLW\ ,WKDFD 1HZ
PAGE 125

+XEEHOO 7+ $0 /DHVVOH DQG -& 'LFNLQVRQ -U 7KH )OLQW&KDWWDKRRFKHH $SDODFKLFROD UHJLRQ DQG LWV HQYLURQPHQWV %XOOHWLQ RI WKH )ORULGD 6WDWH 0XVHXP %LRORJLFDO 6FLHQFHV -DPHV &: (QGHPLVP LQ )ORULGD %ULWWRQLD .HWK $ & DQG 6 & +DUULV 7ZR QHZ VSHFLHV RI $JDURGHV %DQNV 7ULFKRSWHUD 6HULFRVWRPDWLGDHf IURP VRXWKHDVWHUQ 8QLWHG 6WDWHV 3URFHHGLQJV RI WKH (QWRPRORJLFDO 6RFLHW\ RI :DVKLQJWRQ .LQGHOO &( %+HUULQJ & 1RUGPDQ -HQVHQ $5 6FKRW] DQG /* &KDILQ 1DWXUDO FRPPXQLW\ VXUYH\ RI (JOLQ $LU )RUFH %DVH )LQDO 5HSRUW )ORULGD 1DWXUDO $UHDV ,QYHQWRU\ 7DOODKDVVHH )ORULGD SS .RYDFK :/ 0963 $ PXOWLYDULDWH VWDWLVWLFDO SDFNDJH IRU :LQGRZV YHU .RYDFK &RPSXWLQJ 6HUYLFHV 3HQWUDHWK :DOHV 8. .ZLW & 0: 6FKZDUW] :3ODWW DQG -3 *HDJKDQ 7KH GLVWULEXWLRQ RI WUHH VSHFLHV LQ VWHHSKHDGV RI WKH $SDODFKLFROD 5LYHU %OXIIV )ORULGD -RXUQDO RI WKH 7RUUH\ %RWDQLFDO 6RFLHW\ /DJR 3 DQG 6 & +DUULV 1HZ VSHFLHV RI 7ULFKRSWHUD IURP )ORULGD DQG $ODEDPD $QQDOV RI WKH (QWRPRORJLFDO 6RFLHW\ RI $PHULFD /DJR 3 DQG 6 & +DUULV 7KH &KLPDUUD 7ULFKRSWHUD 3KLORSRWDPLGDHf RI HDVWHUQ 1RUWK $PHULFD ZLWK GHVFULSWLRQV RI WKUHH QHZ VSHFLHV -RXUQDO RI WKH 1HZ
PAGE 126

0LQFNOH\ :/ 7KH HFRORJ\ RI D VSULQJ VWUHDP 'RH 5XQ 0HDGH &RXQW\ .HQWXFN\ :LOGOLIH 0RQRJUDSKV 0LQVKDOO *: &RPPXQLW\ G\QDPLFV RI WKH EHQWKLF IDXQD LQ D ZRRGODQG VSULQJEURRN +\GURELRORJLD 0RUVH -& 7ULFKRSWHUD FDGGLVIOLHVf 3S ,Q 5HVK 9+ DQG 57 &DUG HGVf (QF\FORSHGLD RI ,QVHFWV $FDGHPLF 3UHVV 1HZ
PAGE 127

5RVV ++ 6WUHDP FRPPXQLWLHV DQG WHUUHVWULDO ELRPHV $UFKLY IXU +\GURELRORJLH 6FKZDUW] 0: 1DWXUDO GLVWULEXWLRQ DQG DEXQGDQFH RI IRUHVW VSHFLHV DQG FRPPXQLWLHV LQ QRUWKHUQ )ORULGD (FRORJ\ 6FKXPP 6$ .) %R\G &* :ROII DQG :6SLW] $ JURXQGZDWHU VDSSLQJ ODQGVFDSH LQ WKH )ORULGD SDQKDQGOH *HRPRUSKRORJ\ 6HDPDQ : -U HGf )ORULGD DTXDWLF KDELWDW DQG ILVKHU\ UHVRXUFHV )ORULGD &KDSWHU RI $PHULFDQ )LVKHULHV 6RFLHW\ .LVVLPPHH )ORULGD SS 6HOODUGV (+ DQG + *XQWHU *HRORJ\ EHWZHHQ WKH $SDODFKLFROD DQG 2FKORFNRQHH ULYHUV LQ )ORULGD )ORULGD *HRORJLFDO 6XUYH\ WK DQG WK $QQXDO 5HSRUWV 6KHUEHUJHU )) DQG -% :DOODFH /DUYDH RI WKH VRXWKHDVWHUQ VSHFLHV RI 0RODQQD -RXUQDO RI WKH .DQVDV (QWRPRORJLFDO 6RFLHW\ 6ORDQ :& 7KH GLVWULEXWLRQ RI DTXDWLF LQVHFWV LQ WZR )ORULGD VSULQJV (FRORJ\ 6WDUN %3 DQG $5 *DXILQ 7KH 1HDUFWLF JHQHUD RI 3HUOLGDH 3OHFRSWHUDf 0LVFHOODQHRXV 3XEOLFDWLRQV RI WKH (QWRPRORJLFDO 6RFLHW\ RI $PHULFD 6WDUN %3 DQG $5 *DXILQ 7KH VWRQHIOLHV 3OHFRSWHUDf RI )ORULGD 7UDQVDFWLRQV RI WKH $PHULFDQ (QWRPRORJLFDO 6RFLHW\ 6WDUN %3 6: 6]F]\WNR DQG &5 1HOVRQ $PHULFDQ VWRQHIOLHV D SKRWRJUDSKLF JXLGH WR WKH 3OHFRSWHUD 7KH &DGGLV 3UHVV &ROXPEXV 2KLR SS 6WHZDUW .: 3OHFRSWHUD VWRQHIOLHVf 3S ,Q 5HVK 9+ DQG 57 &DUG HGVf (QF\FORSHGLD RI ,QVHFWV $FDGHPLF 3UHVV 1HZ
PAGE 128

:DOODFH -% DQG 1+ $QGHUVRQ +DELWDW OLIH KLVWRU\ DQG EHKDYLRUDO DGDSWDWLRQV RI DTXDWLF LQVHFWV 3S ,Q 5: 0HUULWW DQG .: &XPPLQV HGVf $TXDWLF LQVHFWV RI 1RUWK $PHULFD UG HGLWLRQ .HQGDOO +XQW 'XEXTXH ,RZD :DUG -9 $TXDWLF LQVHFW HFRORJ\ %LRORJ\ DQG KDELWDW :LOH\ t 6RQV ,QF 1HZ
PAGE 129

$33(1',; $ 75,&+237(5$ '$7$ 0$75,;

PAGE 130

1XPEHU RI 6SHFLPHQV ,GHQWLILHG IURP HDFK 6DPSOLQJ 6WDWLRQ (O ( ( ( ( ( ( ( ( (( ( $O $ $ $ $ $ $ $ $ $$$ ), ) ) * .! 86SHFLHV 3K\ORFHQWURSXV FDUROLQXV 3K\ORFHQWURSXV OXFLGXV 3K\ORFHQWURSXV SODFLGXV &KHXPDWRSV\FKH EXUNVL &KHXPDWRSV\FKH FDPS\OD &KHXPDWRSV\FKH HGLVWD &KHXPDWRSV\FKH JRUGRQDH &KHXPDWRSV\FKH SHWHUVL &KHXPDWRSV\FKH SHWWLWL &KHXPDWRSV\FKH SLQDFD &KHXPDWRSV\FKH YLUJLQLFD 'LSOHFWURQD PRGHVWD 'LSOHFWURQD VS $ +\GURSV\FKH EHWWHQL +\GURSV\FKH GHFDOGD +\GURSV\FKH HOLVVRPD +\GURSV\FKH LQFRPPRGD +\GURSV\FKH URVVL 0DFURVWHPXP &DUROLQD 3RWDP\LD IODYD &KLPDUUD DWHUULPD &KLPDUUD IDOFXODWD &KLPDUUD IORULGD &KLPDUUD PRVHO\L &KLPDUUD REVFXUD &HUQRWLQD FDOFHD &HUQRWLQD VSLFDWD &HUQRWLQD WUXQFRQD &\UQHOOXV IUDWHUQXV 1HXUHFOLSVLV FUHSXVFXODULV

PAGE 131

1XPEHU RI 6SHFLPHQV ,GHQWLILHG IURP HDFK 6DPSOLQJ 6WDWLRQ (O ( ( ( ( ( ( ( ( ( (OO ( $O $ $ $ $ $ $ $ $ $$$ ), ) ) * 6SHFLHV 1HXUHFOLSVLV PHOFR 1\FWLRSK\OD[ DMMLQLV 1\FWLRSK\OD[ PRUVHL 1\FWLRSK\OD[ VHUUDWXV 3RO\FHQWURSXV EOLFNOHL 3RO\FHQWURSXV FLQHUHXV 3RO\FHQWURSXV FOLQHL 3RO\FHQWURSXV IORULGHQVLV /\SH GLYHUVD %HUDHD Q VS %UDFK\FHQWXV FKHODWXV 0LFUDVHPD Q VS 0LFUDVHPD ZDWDJD $QLVRFHQWURSXV S\UDORLGHV +HWHURSOHFWURQ DPHULFDQXP /HSLGRVWRPD JULVHXP /HSLGRVWRPD ODWLSHQQH /HSLGRVWRPD VHUUDWXP &HUDFOHD FDQFHOODWD &HUDFOHD GLOXD &HUDFOHD IODYD &HUDFOHD PDFXODWD &HUDFOHD QHSKD &HUDFOHD RSKLRGHUXV &HUDFOHD SURWRQHSKD &HUDFOHD UHVXUJHQV &HUDFOHD ODUVLSXQFODWD &HUDFOHD WUDQVYHUVD /HSWRFHUXV DPHULFDQXV 1HFWRSV\FKH FDQGLGD 1HFWRS\VKFH H[TXLVLWD

PAGE 132

1XPEHU RI 6SHFLPHQV ,GHQWLILHG IURP HDFK 6DPSOLQJ 6WDWLRQ 6SHFLHV (O ( ( ( ( ( ( ( ( ( (OO ( $ $ $ $ $ $ $ $ $ $ $OO $ ), ) ) * 1HFWRSV\FKH SDOXFKHOD 1HFWRSV\FKH SDYLGD 2HFHWLV FLQHUDVFHQV 2HFHWLV GD\WRQD 2HFHWLV GLWLVVD 2HFHWLV JHRUJLD 2HFHWLV LQFRQVSLFXD 2HFHWLV QRFWXUQD 2HFHWLV RVWHQL 2HFHWLV SHUVLPLOLV 2HFHWLV VSK\UD 7ULDHQRGHV DED 7ULDHQRGHV KHOR 7ULDHQRGHV LJQLWXV 7ULDHQRGHV Q VS 7ULDHQRGHV RFKUDFHXV 7ULDHQRGHV SHUQD 7ULDHQRGHV WDHQLD 7ULDHQRGHV WDUGXV 3\FQRSV\FKH DQWLFD 3\FQRSV\FKH LQGLDQD 0RODQQD EOHQGD 0RODQQD WU\SKHQD 0RODQQD XOPHULQD 3VLORWUHWD IURQWDOLV %DQNVLROD FRQFDWQDOD 3WLORVWRPLV RFHOOLIHUD 3WLORVWRPLV SRVWLFD $JDURGHV FUDVVLFRUQLV $JDURGHV OLEDOLV $JDURGHV ORJDQL

PAGE 133

1XPEHU RI 6SHFLPHQV ,GHQWLILHG IURP HDFK 6DPSOLQJ 6WDWLRQ (((( ( ( ( ( ( (( ( $O $ $ $ $ $ $ $ $ $$$ ), ) ) * 6SHFLHV $JDURGHV ]LF]DF 5K\DFRSKLOD &DUROLQD +\GURSWLOD DSDODFKLFROD +\GURSOLOD EHUQHUL +\GURSWLOD EULEULDH +\GURSWLOD FLUFDQJXOD +\GURSWLOD GLVJDOHUD +\GURSWLOD HJOLQHQVLV +\GURSWLOD OLDPLOWRQL +\GURSWLOD ODWRVD +\GURSWLOD OORJDQDH +\GURSWLOD PROVRQDH +\GURSWLOD QRYLFXOD +\GURSWLOD RNDORRVD +\GURSWLOD SDUDVWUHSKD +\GURSWLOD TXLQOD +\GURSWLOD UHPLWD +\GURSWLOD VDUDKDH +\GURSWLOD ZDXEHVLDQD 0D\DWULFKLD D\DPD 1HRWULFKLD DUPLWDJHL 1HRWULFKLD PLQXWLVLPHOOD 1HRWULFKLD YLEUDQV 2FKURWULFKLD DSDODFKLFROD 2FKURWULFKLD FRQIXVD 2UWKRWULFKLD DHJHUIDVFLHOOD 2UWKRWULFKLD EDOGXIL 2UWKRWULFKLD FULVWDWD 2UWKRWULFKLD FXUWD 2[\HWKLUD DEDFDWLD 2[\HWKLUD FKU\VRFDUD , .! 21

PAGE 134

6SHFLHV (O ( ( ( ( ( ( 1XPEHU RI 6SHFLPHQV ,GHQWLILHG IURP HDFK 6DPSOLQJ 6WDWLRQ ( ( (( ( $O $ $ $ $ $ $ $ $ $ $OO $ ), ) ) * 2[\HWKLUD HOHUREL 2[\HWKLUD IORULGD 2[\HWKLUD JODVD 2[\HWKLUD JULVHD 2[\HWKLUD MDQHOOD 2[\HWKLUD NHOOH\L 2[\HWKLUD OXPRVD 2[\HWKLUD PD\D 2[\HWKLUD QRYDVRWD 2[\HWKLUD SDOOLGD 2[\HWKLUD SHVH DGRU L 2[\HWKLUD VDYDQQLHQVLV 2[\HWKLUD VHW RVD 2[\HWKLUD YHUQD 2[\HWKLUD ]HURQLD D ([FHSW IRU +\GURSWLOLGDH VSHFLHV LQ ZKLFK FDVH WKH QXPEHU RI FROOHFWLRQV DUH LQGLFDWHG QRW QXPEHU RI VSHFLPHQV

PAGE 135

$33(1',; % 3/(&237(5$ '$7$ 0$75,;

PAGE 136

1XPEHU RI 6SHFLPHQV ,GHQWLILHG IURP HDFK 6DPSOLQJ 6WDWLRQ (O ( ( ( ( ( ( ( ( ( (OO ( $O $ $ $ $ $ $ $ $ $ $OO $ ), ) ) * 6SHFLHV /HXFWUD FRWWDTXLOOD /HXFWUD IHUUXJLQHD /HXFWUD ULFNHUL /HXFWUD WULORED $PSKLQHPXUD VS 7DHQLRSWHU\[ VS $FURQHXULD DEQRUPLV $FURQHXULD DUHQRVD $FURQHXULD O\FRULDV $JQHWLQD DQQXOLSHV (FFRSWXUD [DQWKHQHV 1HRSHUOD FDUOVRQL 1HRSHUOD FO\PHQH 3DUDJQHWLQD IXPRVD 3DUDJQHWLQD NDQVHQVLV 3HUOHVD SODFLGD 3HUOHVD VS $ 3HUOHVD VS % 3HUOLQHOOD GU\PR 3HUOLQHOOD ]ZLFNL &OLRSHUOD FOLR ,VRSHUOD GLFDOD 3WHURQDUF\V GRUVDWD WR 62

PAGE 137

%,2*5$3+,&$/ 6.(7&+ $QGUHZ 5DVPXVVHQ ZDV ERP LQ 'XOXWK 0LQQHVRWD RQ -XO\ +H DWWHQGHG SULPDU\ DQG VHFRQGDU\ VFKRRO LQ )ORULGD DQG :LVFRQVLQ ,Q KH JUDGXDWHG IURP &HQWUDO +LJK 6FKRRO LQ /DFURVVH :LVFRQVLQ )ROORZLQJ KLJK VFKRRO KH HQWHUHG WKH 8QLYHUVLW\ RI :LVFRQVLQ6WHYHQV 3RLQW JUDGXDWLQJ LQ ZLWK D %DFKHORU RI 6FLHQFH GHJUHH LQ ZDWHU UHVRXUFHV DQG ELRORJ\ )URP WR KH DWWHQGHG WKH 8QLYHUVLW\ RI )ORULGD ZKHUH KH JUDGXDWHG ZLWK D 0DVWHU RI (GXFDWLRQ GHJUHH LQ VFLHQFH HGXFDWLRQ )URP WR KH ZDV D PLGGOH VFKRRO WHDFKHU LQ 0RQWLFHOOR )ORULGD $IWHU WHDFKLQJ KH ZRUNHG IURP WR DV DQ DTXDWLF ELRORJLVW DW )ORULGD $t0 8QLYHUVLW\ ,Q KH HQUROOHG DV D JUDGXDWH VWXGHQW LQ WKH 8QLYHUVLW\ RI )ORULGD )ORULGD $t0 8QLYHUVLW\ FRRSHUDWLYH 3K' GHJUHH SURJUDP LQ HQWRPRORJ\ :KLOH FRPSOHWLQJ KLV GRFWRUDO UHVHDUFK KH FRQWLQXHG ZRUNLQJ DW )ORULGD $t0 8QLYHUVLW\ DV D UHVHDUFK DVVRFLDWH LQ DTXDWLF HQWRPRORJ\

PAGE 138

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0DQXHO / 3HVFDGRU &KDLU 3URIHVVRU RI (QWRPRORJ\ DQG 1HPDWRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ KQ / &DSLQI(UD 3URIHVVRU RI (QWRPRORJ\ DQG 1HPDWRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI (QWRPRORJ\ DQG 1HPDWRORJ\ 5DOSK : )ORZHUV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0LFKDHO +XEEDUG $VVRFLDWH 3URIHVVRU RI (QWRPRORJ\ DQG 1HPDWRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7KRPDV / &ULVPDP 3URIHVVRU RI (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV

PAGE 139

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI $JULFXOWXUDO DQG /LIH 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0D\ 'HDQ &ROOHJH RI $JULFXOWF DQG /LIH 6FLHQFHV 'HDQ *UDGXDWH 6FKRRO

PAGE 140

81,9(56,7< 2) )/25,'$


UNIVERSITY OF FLORIDA
3 1262 08555 0381