Citation
Mechanisms for myocardial oxidative stress in obesity

Material Information

Title:
Mechanisms for myocardial oxidative stress in obesity
Creator:
Vincent, Heather Ketelaar
Publication Date:
Language:
English
Physical Description:
x, 107 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Antioxidants ( jstor )
Fats ( jstor )
Heart ( jstor )
Lipids ( jstor )
Myocardium ( jstor )
Obesity ( jstor )
Oxidative stress ( jstor )
Rats ( jstor )
Reactive oxygen species ( jstor )
Superoxides ( jstor )
Dissertations, Academic -- Exercise and Sport Sciences -- UF ( lcsh )
Exercise and Sport Sciences thesis, Ph.D ( lcsh )
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph.D.)--University of Florida, 1999.
Bibliography:
Includes bibliographical references (leaves 96-106).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Heather Ketelaar Vincent.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
030481526 ( ALEPH )
43460801 ( OCLC )

Downloads

This item has the following downloads:


Full Text

















MECHANISMS FOR MYOCARDIAL OXIDATIVE STRESS IN OBESITY


By

HEATHER KETELAAR VINCENT











A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY


UNIVERSITY OF FLORIDA






















Copyright 1999

By

Heather Ketelaar Vincent




















This dissertation is dedicated to my husband, Kevin, and my "little buddy" Ian.
You are my inspiration and the lights in my life.















ACKNOWLEDGMENTS


More than anything, I wanted to leave the Center for Exercise Science with the

sense that I had contributed somehow toward making where I studied and worked a better

place for my having been there. I hope that the spirit and forays of this project into a

different area have helped to do just that. I can be sure, however, that I have become a

better person for having been here. I owe this is great part to my friend and mentor, Dr.

Scott Powers. There was no better education than the understanding, trust, and faith that

came with his friendship during my stay here. He has helped me in many ways evolve

into who I have become, and he has clarified the direction in which my efforts have led

me. I can only hope that this is just the beginning of a lifelong friendship. As a person

and scientist, he is a hard example to follow. I will do my best to represent him well in

my career.

Sincere appreciation to a fellow student who spent tireless hours with me in the

lab, designing equipment and performing surgeries and assays: Amie Dirks. If I can repay

you for your help, I will be here for you. Sincere thanks to three very special loyal

friends who were there for me every time I needed them Rachel Cutler, Shannon

Lennon and Darby Stewart. Without any compensation, you spent many hours taking

care of Ian and helping us during many situations to make life a bit easier. I cannot thank

you enough.















To those faculty to whom I am indebted for the use of your equipment and

facilities Dr. Charles Wood, Dr. Randy Braith, Dr. Dodd, and Dr. Stephen Borst your

patience and support helped me to collect invaluable data for this work.

Most importantly, to my husband, Kevin, and my son, lan, I love you more than

anything in this whole world. It has been a whirlwind of a tour through our lives during

these past couple years lots of decisions, anxiety, and trying experiences. Above all else,

you are the bright lights in my life. You are my son, my sunshine, and my husband, my

soul mate. May this be just the beginning of a beautiful, healthy and loving family!



















TABLE OF CONTENTS


ACKNOWLEDGMENTS


ABSTRACT.


CHAPTERS


1 INTRODUCTION ..................


Specific Aims ...............
Hypothesis Justification. ............ ....
Significance .


2 LITERATURE REVIEW ...............


Introduction .
The Obesity Syndrome ...... ...
Obesity and Myocardial Overload .. .....
Myocardial Production of Reactive Oxygen Species. ..
Major ROS and Sources ofROS .. ....
Myocardial Antioxidant Defense .............
Enzymatic Defense .. .... ...
G lutathione .
Dietary Antioxidants and Myocardial Protection. .
Oxidative Injury to Myocardial Tissue ..........
Lipid Hydroperoxides and Malondialdehyde ..
Oxidative Damage to Membranes ... .. ...
Obesity and Oxidative Stress .... ... ..
Increased Myocardial Work Rate. .
Compromised Antioxidant Defense. ...
Myocardial Fat Composition and Oxidizability. .
The Genetic Contribution to Obesity .
Preliminary Experiments .
Susceptibility to an Oxidative Challenge in vitro.
Primary Antioxidant Defense .
Tertiary Antioxidant Defense .. .. ...


. .. 3
. 5
. 6


. 8


. 9

913
12
. 13
15
. 16
. 17
. 1 7
19
20
2 1
S.. 23
. 23
25
. 2 8
29
32
. 32
33
. 33


. .. ix















Lipid Content of the Myocardium ..33
Unanswered Issues ........ .. 34

3 METHODS ................................. 36

Animals. ... .. ..... ... .... .. ..... 36
Experimental Design and Diet .. .. ..... 36
Animal Model Justification .. ... 38
Assessment of Systemic Changes With Obesity .... ...... 38
Resting Oxygen Consumption (V02) .. .. ........ 40
Heart Rate and Blood Pressure .. .. 40
Blood Glucose and Insulin Concentrations. .. ..... 41
Heart Weight .. .................. ... 42
Adiposity. ............... ................. 42
Heart Tissue Composition. .. .............. 42
Lipid Content of the Myocardium... ........ 42
Water Content and Dry Weight ......... 43
Radical Production by the Myocardium ... ... 43
Isolated Papillary Muscle Experiments .. 44
Assessment of Myocardial Antioxidant Status .. 45
Oxidative and Antioxidant Enzyme Activity .. .. .. 46
Tissue Thiol Measurements. ......... 46
Biochemical Indicators of Oxidative Stress .. ... 46
Lipid Peroxidation Measurements ... ...... ... 47
Oxidative Challenges in vitro. ..... ...... 47
Xanthine-Xanthine Oxidase System (Superoxide Generator) 48
Hydrogen Peroxide System .... .. ... 48
Ferric Chloride System (Hydroxyl Generator) .. .... 48
AAPH System (Peroxyl generator in the Lipid Phase) .. 49
Statistical Analysis ................ .......... .49

4 RESULTS ............. .... ..... .... ..... 50

Diet and Antioxidant Consumption ....... 50
Body Weight Changes With Feeding.. .. ...... .... 53
Morphological Characteristics ...... 53
Physiological Characteristics ...... 56
Heart Rates, Blood Pressures, and Heart Work ... 56
Oxygen Consumption and Body Mass Index (BMI) .. .. ... 60
Blood Glucose and Insulin Concentrations .. .. ... 62
Heart Tissue Characteristics ....... .. .... 62
















02" Production: Cytochrome C Assay .. .
Oxidative and Antioxidant Enzyme Activities .
Tissue Thiols .. .. .. ........
Basal Lipid Peroxidation .........
Oxidative Challenges in vitro .
Correlations Between Lipid Hydroperoxides and
Physiologic Measures ..... .. ..
Stepwise Regression Model for Myocardial Lipid
Peroxidation. ... .... .. .


5 DISCUSSION .


. .. 63
. 65
67
69
69

. 73

73

77


Overview of Principal Findings. .. ... .. .
Lipid Peroxidation in Myocardial Tissue of Obese Animals .
Potential Pathways for Obesity-Induced Oxidative Stress .
Elevated Heart Work ..... .... .
Compromised Antioxidant Defense. .. .... ....
Elevated Lipid Content .... .
Superoxide Radical Production by Isolated Papillary Muscles ..
Major Conclusions .. .
Physiological Significance ........ .
Limitations to the Experiment and Future Directions. .. .


APPENDICES

A SAMPLE SIZE ESTIMATION. .

B DIETARY AND VITAMIN MIXES FOR
EXPERIMENTAL DIETS .. .. .

C RESIDUAL PLOTS FOR THE REGRESSION EQUATION
IN TABLE 12 ... .


. 96


REFERENCES ........

BIOGRAPHICAL SKETCH ...................


S77
S78
S80
S80
S82
S84
S86
S87
S88
88


S92


S93


S107














Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

MECHANISMS FOR MYOCARDIAL OXIDATIVE STRESS IN OBESITY


By

Heather Ketelaar Vincent

May 1999



Chairman: Scotty K. Powers
Major Department: Exercise and Sport Sciences


Obesity is associated with increased myocardial oxidative stress, yet the

mechanisms) responsible for this damage are unknown. We hypothesized that elevated

heart work, an increased rate of superoxide (02 ) production, increased myocardial lipid

content, and insufficient antioxidant defenses contribute to oxidative stress in obesity. To

test this hypothesis, Zucker rats (7 weeks old) were fed experimental diets for 9 weeks to

promote obesity by high-fat intake or lack of expression of the leptin receptor. Lean

control rats (CON, Fa/?) were fed either a control diet (10% fat) or a high-fat diet (FAT,

45% fat), while obese rats (OB, fa/fa) were fed the control diet. Oxidative stress was

assessed by measurement of hydroperoxides (PEROX) and thiobarbituric reactive acid

substances (TBARS).


IX














Compared to CON, the FAT and OB had similar elevations in PEROX and

TBARS (+21% and +33%, respectively, p<0.05). Small but significant differences

(p<0.05) in resting heart work (heart rate X systolic blood pressure) existed between the

FAT and OB compared to CON. Activities ofantioxidant enzymes CuZn-superoxide

dismutase and catalase and endogenous glutathione levels were elevated (32%, 15%, and

18%, respectively, p<0.05) in OB compared to CON. Myocardial lipid content was

increased similarly among all FAT and OB animals (p<0.05) compared to CON. The rate

of 02 formation by isolated papillary muscles in vitro did not differ among the

experimental groups (p<0.05). Regression analysis revealed that the largest contributor to

oxidative damage was myocardial lipid content (R2=0.76, p<0.05). These data indicate

that myocardial oxidative injury is not closely linked with elevated heart work,

insufficient antioxidant defenses or a greater rate of 02 production. In contrast,

myocardial lipid content is a key contributor to obesity-related myocardial oxidative

stress.














CHAPTER 1
INTRODUCTION


Obesity is a serious clinical disorder affecting millions of Americans (33%), and the

incidence is steadily increasing per year (7, 26). An alarming trend is the increase in the

percentage of adolescents and young adults who are becoming obese (estimates ranging

from 35 to 40%), with an ever-rising percentage of obese youths becoming severely obese

(51). Obesity is an independent risk factor for cardiovascular disease and increased

mortality (52). The underlying mechanisms for this increased morbidity and mortality are

unknown. Information is scarce regarding the myocardial alterations that occur at the

cellular level that make the obese individual more prone to myocardial injury or

irreversible damage leading to death. Hence, research in this area is clearly warranted

A preliminary biochemical investigation in our laboratory indicates that obesity is

associated with increased myocardial lipid peroxidation and susceptibility to oxidative

damage in vitro (111). The potential consequences of oxidative damage can be severe;

studies examining oxidative stress and the myocardium have shown that cellular membrane

integrity can be lost (97, 114), and lipids and proteins are transiently or irreversibly

altered, resulting in myocardial contractile dysfunction (40). These factors can ultimately

lead to cardiac arrhythmias, poor contractility, infarction, cardiac failure, or sudden death

(7)














Genetics and environment have both been identified as major contributors in the

etiology of obesity (11). The individual effects of these factors on the predisposition to

oxidative stress in the myocardium is unknown. The current animal models used in the

study of the systemic effects of obesity include the widely accepted genetically inbred fatty

Zucker rat (fa/fa) and the overfed, overweight rat. Although both models increase

myocardial work (e.g., elevated systolic blood pressure), the acquired and genetic obesity

models have different influences on myocardial work and possibly the level or type of

oxidative stress. The significance of this issue is such that in human obesity, there are both

heritable and environmental factors that are involved in the pathogenesis of obesity and its

association with cardiovascular disease (11). Recent evidence suggests that oxidative

stress is involved in the cellular damage incurred by cardiovascular disorders such as

coronary artery disease, hypertension, atherosclerosis, and vasospastic angina (27).

Considering that obesity (a) is often accompanied by these cardiovascular disorders, and

(b) is associated with myocardial oxidative stress, it is important to examine oxidative

cellular injury in both genetic and acquired obesity models.

There are several potential mechanisms to explain the increase in myocardial lipid

peroxidation associated with obesity: (1) increased myocardial work and oxygen flux

through the mitochondrial respiratory chain (97); (2) a decreased myocardial antioxidant

defense (23,24); (3) increased fat deposition within myocardial tissue (63); and (4)

increased rates of radical formation (12). Although there is indirect evidence to support















that all these mechanisms contribute to myocardial oxidative damage in the obese, direct

evidence is lacking. In addition, it in unclear how each of these factors are differentially

influenced by the fa/fa genotype and diet. Therefore, this investigation will examine the

relationships between oxidative stress and the cellular characteristics of the myocardium

from animals of two obesity models: high-fat fed animals and animals possessing the leptin

receptor defect (fa/fa). We attempted to determine the influence of the leptin receptor

defect (fa/fa) and high-fat feeding on myocardial lipid peroxidation.



Specific Aims

Obesity is associated with increased myocardial lipid oxidative damage in the obese

fatty Zucker rat (111). It is unknown whether these obese animals and lean animals that

are fed a high-fat diet are at the same risk for myocardial lipid peroxidation. Several lines

of evidence suggest that there are many potential mechanisms that could promote lipid

peroxidation in the myocardium in either the fa/fa rat or the high-fat fed animal. This

investigation will compare the cellular antioxidant characteristics and in vitro responses of

myocardial tissue from genetically lean (Fa/?), genetically obese (fa/fa), and high-fat fed

rats (Fa/?). Therefore, the specific aims of this project are as follows:


Specific Aim 1: To determine if high-fat fed rats (Fa/?, 44 9% dietary fat) and the obese

rat (fa/fa, 10% dietary fat) experience the same levels of oxidative injury (i.e., lipid

peroxidation) in the myocardium















Hypothesis 1: We hypothesize that the high-fat fed and obese animals (fa/fa) will

have similar levels of lipid peroxidation. Further, we hypothesize further that the

degree of lipid peroxidation will be independent of the fa/fa genotype and

dependent upon the degree of adiposity.

Specific Aim 2: To systematically examine several factors which could contribute to

elevated myocardial oxidative stress (i e., lipid peroxidation) in obesity. These include: (1)

increased heart work (rate pressure product) due to obesity; (2) insufficient intracellular

primary antioxidants such as antioxidant enzymes and glutathione; (3) increased fat

deposition within myocardial tissue; and (4) increased rate of radical formation

superoxidee) by isolated papillary muscles form the heart.

We will test the following hypotheses:

Hypothesis 2a: Obese animals will have a higher double product (i.e., heart rate X

systolic blood pressure) compared to lean animals.

Hypothesis 2b: Glutathione levels and antioxidant enzyme activities will be

reduced in hearts of obese animals compared to lean animals.

Hypothesis 2c: Myocardial tissue obtained from the left ventricles of obese

animals will contain more lipid compared to myocardial tissue obtained by lean

animals.

Hypothesis 2d: Contracting papillary muscles from obese animals will produce

superoxide anions at a greater rate compared to lean animals.

















Hypothesis Justification

We hypothesize that the degree of myocardial lipid peroxidation will not differ

between high-fat fed rats (Fa/?) and the obese fa/fa rats. The factors which can increase

oxidative stress on the heart are similar between both of these animal models. Specifically,

obesity-induced hypertension has been documented in both overfed animals fed high-fat

diets (14, 54, 55) and in obese Zucker rats (18). Hypertension forces the myocardium to

work at greater workloads independent of genotype (14, 61). The myocardial rate

pressure product and oxygen uptake increase in obesity. These processes can lead to

excessive 02 production. In addition, the presence of excessive fat deposition within the

myocardium in genetically obese or overfed, overweight animals serves as an enlarged

target for lipid peroxidation (63). These factors appear to be independent of genetics.

Hence, we speculate that lipid peroxidation levels will be the same in both groups of obese

animals.

Our second series of hypotheses relate to factors contributing to increased

myocardial lipid peroxidation in obese animals. First, hypothesis 2a states that obese

animals will have a higher double product compared to lean animals. As previously

mentioned, obesity places a substantial mechanical load on the heart which increases

myocardial oxygen consumption, as evidenced by the increased rate pressure product (2,

14). Second, hypothesis 2b states that glutathione and antioxidant enzyme levels will be














reduced in hearts of obese animals compared to lean animals. Obesity in humans and

animals is associated with lowered serum or tissue vitamin E, 0-carotene, and/or tissue

glutathione (19, 24, 79, 91), and some reports indicate reduced antioxidant enzyme

activities. Hypothesis 3b postulates that the left ventricles of obese (fa/fa) animals will

contain more lipid compared to ventricular tissue of lean animals. Increased deposition of

(polyunsaturated or saturated) fats within tissues is common to obesity and increases the

risk for lipid peroxidation by increasing the oxidation target number (7, 62, 63, 78).

Lastly, hypothesis 4b states that contracting papillary muscles from obese animals will

produce superoxide anions at a greater rate compared to lean animals. It has been

suggested that there is a greater mitochondrial lipid oxidation rate in tissue of obese

animals (12) providing indirect evidence for the notion that the elevated oxygen flux

through the mitochondria may be a primary source of ROS production within myocytes

from obese animals (12).



Significance

Obesity is an increasingly prevalent metabolic disorder affecting not only the U.S.

population but also that of the developing world (26). It is associated with many

comorbidities and it complicates health conditions in patients with various cancers,

diabetes, and cardiovascular disease (7, 25). Obesity is linked with a high morbidity and

mortality rate, particularly among cardiovascular patients (52). More frequent have the














incidences of fatal and non-fatal heart disease, arrhythmias and sudden death become in

obese persons during recent years (26). The economic burden that obesity and its related

disorders place on the U.S. health care system is enormous. The direct cost of obesity

alone was recently estimated at $45.8 billion (52). However, this estimate is low due to

the fact that many of the disorders, such as heart disease, that arise from obesity are

classified as illnesses separate from obesity; an additional $ 23 billion are used to treat

these disorders that are associated with obesity.

The prevalence of obesity in the adult population is rapidly increasing by 0.6% per

year for men and 1% per year for women (currently, -33 % of the adult population is

severely obese)(7, 26). More alarming is the fact that the percentage of children that are

becoming obese is rising rapidly (51). These statistics suggest that obesity is a disorder

that will continue to affect our nation's population and drain our health care resources

The U.S. will continue to suffer economically as a result of this disease. Hence, it is

essential that we expand our knowledge about the obesity syndrome.














CHAPTER 2
LITERATURE REVIEW

Introduction

Obesity is a prevalent disorder in the U.S. population and is also becoming an

epidemic in European countries, Canada and the third world (7). According to the recent

phase of the National Health and Nutrition Examination Survey (NHANES III, 1988-

1991), approximately 33% of the U.S. population is obese, 8% more than when the last

phase of NHANES II was completed (1976-1980) (60).

Obesity is defined as the accumulation of excess fat, such that the body mass index

(BMI, m-na. heIhi'i is greater than 30 kg/m2 (52). This overfatness is associated with a

number of comorbidities, including many forms of heart disease. Fat distribution also

represents risk for heart disease; deposition of fat in the abdomen indicates a greater risk

for coronary heart disease mortality (7).

Obesity can develop as a consequence of environment, such that overeating or

consumption of a high-fat diet induces fat accretion that may exacerbate weight gain.

Genetics can significantly contribute to 30-70% of the cases of obesity by influencing fat

accretion throughout life and passing on genes that predispose the offspring to obesity-

related complications (10, 52). While it is well established that obesity is associated is an

increased risk of heart disease, recent evidence also indicates that obesity is also associated

with an increase in oxidative damage to the myocardium (111). The purpose of this review














is to discuss possible physiological and biochemical links between obesity and myocardial

oxidative injury.



The Obesity Syndrome

Obesity is characterized by a complex pathophysiology that can impose potentially

harmful consequences on the cardiovascular system. Obesity is often accompanied by

increased plasma volume and hypertension, poor glycemic control, hyperlipidemia and

increased adrenergic drive with reduced adrenergic sensitivity at the tissue level (15, 88).

Further, the myocardium is often hypertrophied and may have fatty infiltration (2).

Obesity can have deleterious cardiovascular effects, but could also initiate several

cellular pathways that may promote myocardial oxidative damage. Specifically, the

workload on the heart is increased by obesity (15), this would increase the oxygen flux

through the mitochondrial respiratory chain (12). Further, the myocardial antioxidant

defense may be insufficient to protect against damage by reactive oxygen species (ROS)

(23, 24). Finally, there may be fatty infiltration and increased polyunsaturated fat

deposition within myocardial tissue that increases the risk for oxidation by ROS (63).



Obesity and Mvocardial Overload

There are several ways in which obesity contributes to an excessive workload on

the heart. Figure 1 summarizes the potential mechanisms involved in obesity-induced















myocardial overload. Excessive weight gain is associated with an increased plasma volume

and subsequent blood volume expansion (4). In addition, the hypertension so often

associated with obesity can be induced by insulin-mediated mechanisms. Hyperinsulinemia

causes sodium and water retention by acting directly on the renal tubules and on the renin-

angiotensin-aldosterone system, and it can also promote arterial smooth muscle

proliferation (88), all of which increase blood pressure and end diastolic volume. Increased

volume enhances diastolic filling and places a stretch overload on the heart (increased

preload). The wall stress in the ventricles increases. According to LaPlace's law (wall

stress = pressure X radius/ 2 X wall thickness), the bigger the left ventricle and/or the

greater the pressure developed by the left ventricle, the greater the wall stress. An

increase in wall stress increases myocardial 02 uptake as more ATP must be used to

generate greater tension to contract against this wall stress (80). In response to this wall

stress, eccentric and/or concentric cardiac hypertrophy will occur. Although gross

mechanical function may appear normal, there are several subtle mechanical alterations

that affect cardiac performance. Specifically, systolic function is compromised such that

the rate of shortening velocity is reduced (80). Also, diastolic dysfunction occurs.

Relaxation time is delayed and peak filling rates are reduced (2). In some specific cases,

vascular resistance may be reduced to counteract the increased blood volume. This may

override the renin-angiotensin effects. Diastolic filling is compromised and stroke volume

is reduced.


















Excessive Adipose Accumulation


4,

t Circulating Blood Volume ->

4,
t LV Stroke Volume
4,
T HR X SV = 1 Rate Pressure Product

TLV Enlargement
LV Wall Stress Eccentric Hy
1' LV Wall Stress -* Eccentric Hy


4,

Hypertension- Concentric
Hypertrophy

LV Systolic and Diastolic Dysfunction
4,


'pertrophy ->


Heart
Failure


LV Systolic and Diastolic Dysfunction


where LV = left ventricle, HR = heart rate, SV = left ventricular stroke volume


Figure 1. A schematic representation of the pathogenesis of heart complications induced
by obesity.


I














Therefore, the heart rate must increase in turn to maintain cardiac output (CO) (2, 80). In

all scenarios, the heart is working at higher work rates in obesity.

Hypertension is present in approximately 60% of obese individuals, with 10% of

those cases being classified as severe (94). The myocardium of hypertensive obese

individuals works against a greater systemic resistance created by elevated blood pressure

(increased afterload). Specifically, blood pressure is increased on average 6 mmHg systolic

and 4 mmHg diastolic for each 10% gain in body fat, with a greater effect observed in

those genetically susceptible to obesity (52).

Systolic dysfunction may manifest as depression of left ventricular peak rate of

contractility. Furthermore, obesity-induced hypertrophied hearts are susceptible to

potentially fatal arrhythmias, or heart failure (14).

In summary, the neuroendocrine and mechanical alterations that occur with obesity

are associated with an increase in the stress placed on the heart. Blood pressure and heart

rate are typically elevated, and preload and afterload are increased. The myocardium

hypertrophies to counteract this overload stress. Alterations in heart performance include

depressed rate of contractility, relaxation, and manifestation of arrhythmias or failure.



Mvocardial Production of Reactive Oxygen Species

A radical is a molecule or a molecular fragment containing an unpaired electron. In

general, approximately 2-5% of the oxygen consumed used during oxidative metabolism is














transformed to radicals or other reactive oxygen species (ROS) (48, 49). ROS are

considered essential in cellular homeostasis and when present in small amounts have been

shown to enhance contractile processes (86). ROS are often scavenged by naturally

occurring protective antioxidant defenses such as enzymes, vitamins and other molecules

within the myocyte so that an antioxidant-prooxidant balance is achieved. Under

pathological conditions or conditions in which electron flux through the electron transport

chain increases (such as exercise or increased contractile activity), ROS production

increases and causes a prooxidant state within the cell (114). When the cellular antioxidant

defenses are overpowered, this causes major disruptions to muscle contractile function,

cellular homeostasis and subsequent damage termed oxidativee stress" (49, 86). This

section will highlight the potential sources of ROS in cells and the types of molecules

generated.



Maior ROS and Sources of ROS

The major ROS include superoxide radicals (02 ), hydrogen peroxide (H202), and

the hydroxyl radical (OH.); other contributing ROS are the nitrogen containing species

such as peroxynitrite (ONOOH) and nitric oxide (NO). Molecular oxygen itself is a

diradical, though not highly reactive. The major potential sources of myocardial ROS in

obesity are the mitochondrial respiratory chain, xanthine oxidase activity, the neutrophil

oxidative burst, nitric oxide synthesis, catecholamine oxidation (49, 112). In the healthy














myocardium, a small fraction of the electrons flowing through the electron transport chain

leak from the reaction paths and collide with 02 to form superoxide radicals (48). This

anion is produced at greater rates under conditions that stress the respiratory chain,

including greater myocyte contraction rates (49). Superoxide can react with another 02

radical and two hydrogens to form H202 ; direct dismutation of 02 via superoxide

dismutase can produce H202 in the mitochondrion (Asayama et al. 1991, Girotti 1998).

Though H202 is not a radical, it is a reactive oxygen specie and can cause serious cellular

damage if it accumulates (48). Homolytic fission of the 0-0 bond in H202 produces two

hydroxyl radicals (OH), and can be achieved by an iron salt and H202 by Fenton

chemistry. The OH molecules react with an extremely high rate constant especially with

nearby biological membranes (34, 67). Therefore, OH reacts very close to its point of

formation in a phenomenon known as "site specific" reactivity (34).

Mainly located in the vessel walls of most tissues, xanthine dehydrogenase

catalyzes the oxidation of hypoxanthine to xanthine, and xanthine to uric acid. Xanthine

oxidase uses 02 as the electron acceptor and produces 02" while catalyzing the oxidation

of hypoxanthine to uric acid (114)

Another major source of ROS in cardiovascular disease is the reaction of O2 and

NO that occurs within the milieu of neutrophilic and macrophage oxidative bursts. Upon

phagocytic cell infiltration at the site of injury, these cells release a mixture of these two

ROS that form the strong oxidant peroxynitrate (ONOOH). Also, activated neutrophils














release myeloperoxidase-generated hypochlorous acid (HOCI) which is a strong oxidant

that can cause serious cellular damage (102, 112). It is unclear whether obesity per se

initiates myocardial infiltration by neutrophils, but studies have implicated phagocytic

infiltration ofatherogenic plaques and ischemic/necrotic cardiac tissue as complications

often associated with obesity (102).

While there are many targets for oxidative damage in the myocyte, these processes

elicit significant damage to the myocyte membranes (22). Membrane damage results in

alterations which could lead to ion imbalance and subsequent myocardial dysfunction (63).

It is well documented that the oxidative stress resulting from events such as ischemia-

reperfusion cause serious depression in myocyte function, such as inability to develop

maximal force, reduction in the rate of force development, and reduced segment

shortening (72). Therefore, the myocardium has several defense mechanisms to counteract

these potential effects.



Myocardial Antioxidant Defense

The endogenous antioxidant defense within the myocyte includes both enzymatic

and non-enzymatic components. The defense system exists as a multilevel system, such

that the major protection against acute oxidative stress is provided by glutathione, primary

antioxidant enzymes and dietary antioxidants (20). The secondary defense includes repair















enzymes, such as lipolytic and proteolytic enzymes, proteases and phospholipases that

repair cellular damage following oxidative stress.



Enzymatic Defense

The myocardial antioxidant enzymatic defense system includes superoxide

dismutase (SOD) which scavenges 02O, catalase (CAT) which scavenges H202 and

glutathione peroxidase (GPX) which reduces lipid peroxides and neutralizes H202. These

enzymes exist in differing concentrations in varying compartments within the myocyte,

thus providing a strategic defense against ROS generated in vivo. Specifically, the

manganese-dependent isoform of SOD (Mn-SOD) is found in the mitochondria, the

copper/zinc-dependent SOD isoform (CuZn-SOD) is found within the cytosol (Ji 1995).

GPX is found within the mitochondrial matrix and the cytosol, with most of the enzyme

located within the cytosol with a ratio of 2:1 (49). GPX is activated by H202 at lower

concentrations (K, = 1 iM) whereas the other H202 scavenger, CAT, is activated by

higher concentrations of the same substrate (K, = 1 mM). This overlap of substrate for

these two enzymes appears physiologically relevant in that if the oxidative stress of H202

exceeds the capability of GPX, CAT is present to provide protection. CAT, though found

throughout the cell, can be found primarily within peroxisomes. Activity of this enzyme

depends upon the binding of Fe3* to the active site (114)














Glutathione

Glutathione (GSH, y-glutamylcysteinylglycine), the predominant thiol in cells, has

direct antioxidant activity and is also involved in recycling other dietary antioxidants (49).

For example, GSH may neutralize hydroxyl radicals and singlet oxygen by abstracting an

electron and/or donating a proton, and can maintain tissue antioxidant vitamins in the

reduced state (74, 114). GSH is a substrate for GPX, which removes lipid peroxides and

H202. GSH is synthesized primarily by the liver and is transported to extrahepatic tissues

via the circulation. GSH is imported by the tissues and its constituent amino acids are

imported by membrane-bound enzymes (39, 74). Together, these enzymes and thiol

compounds serve as part of the primary defense against ROS and radicals.



Dietary Antioxidants and Myocardial Protection

Exogenous antioxidants have been extensively used to reduce the injury

associated with oxidative stress in muscle tissue Antioxidants are general scavengers of

ROS and radical species, and they can work alone or in combination with each other to

reduce the reactivity of the radicals.

Vitamin E belongs to a class oftocopherol phenolic molecules (at-tocopherol

being the most potent) and can covert Oz2, OH and peroxyl radicals to less reactive forms

(17). It is lipid soluble, and its trimethylhydroquinone head serves to break the chain

reaction of lipid peroxidation that occurs in cell membranes during oxidative stress (48,














71, 106). Once oxidized in this process, the vitamin E radical can be recycled once again

to its native state by other antioxidants such as vitamin C and GSH. Thus, vitamin E acts

synergistically with vitamin C and glutathione during periods of oxidative stress (49, 114).

Vitamin C is water soluble and can directly scavenge 02 OH and peroxyl radicals

in the cytosol and plasma. In addition, vitamin C can reduce the vitamin E radical back to

its original state. Oxidized vitamin C can be reduced again to its native form by electron

donors such as glutathione or dihydrolipoic acid Thus, vitamin C is extremely important

in the restoration of vitamin E in the lipid components of the cell, and in the scavenging of

radicals in the aqueous phase. Further, it is linked with reduced protein glycosylation, a

radical-generating process (21).

3-carotene is also a lipid soluble molecule found in membranes that can scavenge

singlet 02 and 02 Similar to vitamin E, this molecule can provide great protection against

lipid peroxidation and has a postulated role in the reduced uptake of oxidized low density

lipoproteins in the cardiac endothelium. Both benefits are associated with reduced

atherosclerotic disease in the heart. P-carotene appears to be most effective at low doses

(114).

Alpha-lipoic acid is an endogenous thiol containing compound that is a potent

antioxidant against all major ROS. It is found in low concentrations in the aqueous

compartments of myocytes, and is largely bound to enzyme complexes, rendering it

unavailable for scavenging ROS. As an exogenous, unbound supplement, lipoic acid may














be effective in recycling vitamin C and serving as a protective thiol-containing molecule

that can aid in reaction of oxidized molecules (53).



Oxidative Injury to Mvocardial Tissue

Although oxidative damage can be incurred on cellular proteins and carbohydrates

(114), much of the recent work has focused on the oxidative injury to cellular membrane

lipids (62, 85). Damaged lipids, as will be described in the next sections, can alter cellular

homeostasis, deteriorate contractile function or cause cell death by apoptosis (34, 105).

Hence, this section will focus on oxidative injury to lipids.

Lipid peroxidation is a common type of damage observed in tissue following

exposure to ROS. Lipid peroxidation is the destruction of polyunsaturated fats (PUFA) in

membranes and is initiated when a ROS is able to abstract an allylic H atom (1 electron

reduction) from a methylene group of a PUFA molecule. This forms a reactive lipid

peroxyl radical, ROO (where R = lipid chain, 00 denotes peroxyl group) which can react

with an adjacent PUFA, triggering exacerbating rounds of free-radical mediated lipid

peroxidation (28) This process initiates a cascade of lipid peroxidation that amplifies the

destructive effects of the initial peroxidation insult. Alternatively, two electron reduction

reactions with lipid hydroperoxides (ROOH) can lead to formation of redox-inert alcohols,

a process which serves as a secondary or reparativee" level of cytoprotection.














Recent work has shown that basal levels of lipid peroxidation by-products are

elevated within the myocardium and liver tissue of obese rats (fa/fa genotype) compared

to lean control animals (Fa/- genotype)(57, 111). The significance of lipid peroxidation

within membranes is that the membrane fluidity is decreased and permeability is increased.

Furthermore, consumption of high fat diets or diets high in unsaturated fats (especially

containing > n-3 fatty acids) exacerbates the susceptibility to free radical-mediated

peroxidation (78).

Several by-products of lipid peroxidation such as lipid hydroperoxides,

malondialdehyde (MDA), conjugated dienes and 4-hydroxynonenal (4HNE) are measured

to determine the extent of oxidative damage incurred on the tissue (38). The most

common measures used to determine the degree of oxidative injury in lipids are MDA and

lipid hydroperoxides (47).



Lipid Hvdroperoxides and Malondialdehyde

An outline of the postulated pathways by which hydroperoxides and MDA are

produced is shown in Figure 2. The importance of measuring these two by-products is that

each by-product occurs at different places within the pathway. Decomposition of PUFA

by 02 directly results in primary hydroperoxide products. Further breakdown of

hydroperoxide products generates endoperoxide radicals. These radicals, when exposed to

heat or acids, produce secondary MDA products (47). Because of considerable














disagreement within the literature with regard to the "optimal" lipid peroxidation measure

and the inability to specifically detect from where the MDA was derived, it is

recommended at least two different measures are used. Therefore, we will measure both

MDA and lipid hydroperoxides to evaluate the level of lipid peroxidation in the

myocardium of both lean and obese animals.



Oxidative Damage to Membranes

Lipid peroxidation reduces membrane integrity (97). A loss of membrane integrity

in cardiac myocytes can lead to arrhythmias, myocyte contractile dysfunction and cell

death (105). In addition, changes in membrane lipid content and permeability can alter

enzymatic membrane processes (i.e., ATPase activity)(46).

The impact ofperoxidative processes is enhanced when dietary consumption of

PUFA increases; reports using overfeeding models indicate that cell membrane

composition of liver and aortic tissue generally reflects dietary consumption of specific

lipid groups, though not absolutely (46, 59, 62, 107). A consistent finding is that

peroxidative injury increases as a function of dietary consumption of PUFA (46, 78, 107).

The lipid radicals that form as a result of peroxidation are believed to interfere with

essential membrane function of protein channels embedded within the membrane and

maintenance of ion gradients between cellular compartments (97). Lipid peroxidation of




















































Figure 2. The chemical pathway summary of lipid peroxidation products
maliondialdehyde and lipid hydroperoxides as described previously (47).














PUFA also leads to the formation of 4-hydroxynenal (4HNE), a toxic aldehyde among

others, that potentiates cytotoxic oxidation processes (98).

Furthermore, lipid peroxidation is associated with decreased membrane integrity,

and may in fact assist in "labeling" that affected cell as a target for neutrophilic attack (48,

58). Recent evidence also suggests that greater formation ofhydroperoxides can initiate

events that lead to apoptosis (34). Although it is beneficial to increase the fluidity of

cellular membranes to an optimal physiological level to enable recycling of receptors or

improve membrane-bound enzyme movement, fluidity that compromises cellular integrity

is dangerous for all cellular functions.



Obesity and Oxidative Stress

Evidence from our laboratory suggests that obesity is associated with an increase

in myocardial oxidative damage as evidenced by increased levels of by-products of lipid

peroxidation (111). Damaged lipids can alter cellular homeostasis, deteriorate contractile

function or cause cell death (105) Substantial indirect evidence suggests that there are

several potential factors that may contribute to myocardial lipid peroxidation in the obese.



Increased Myocardial Work Rate

Obesity is characterized by an increased mechanical load on the heart due to

increased fat, total body mass, and peripheral resistance (7). Hyperinsulinemia appears to














elevate blood pressure by activating the renin-angiotensin system or renal tubules directing

to retain sodium, by stimulating arterial smooth muscle hypertrophy, or by altering the

ionic (Ca2*) efflux from the smooth muscle cells (88). Blood pressure is elevated, and

stroke work is increased (2). Very recent evidence has shown that leptin, the adipocyte-

derived hormone, can act (1) through the central nervous system to either increase the

sympathetic nerve activity and vascular resistance in the kidney, (2) a decrease in renal

plasma flow, and/or (3) an increase in heart rate (43, 70) Together, these factors appear to

increase the rate pressure product and myocardial oxygen consumption (15).

Theoretically, the oxygen flux through the mitochondrial respiratory chain would be

increased in response to this workload. Animal studies indicate that blood pressures are

elevated in obese Zucker rats or rabbits fed either Purina chow diets or high fat diets (14,

18, 54, 55, 64). Human studies also report elevated blood pressures and/or heart rates in

obese humans (2). This increased work rate of the heart would increase myocardial

oxygen consumption, and subsequently, oxygen flux through the mitochondrial electron

transport chain.

Studies have reported elevated mitochondrial oxidative capacities in hearts of

obese mice (12) and mitochondrial lipid oxidation providing indirect evidence for the

notion that oxygen flux through the mitochondria may be a primary source ofROS

production (76). Some investigators report that maximal state 3 respiration (i.e., ADP-

stimulated) is greater in cardiac mitochondria from older obese (ob/ob) mice when














compared to lean mice (12). These data have been interpreted as an indication that obese

animals have tighter mitochondrial coupling, and therefore a greater rate of 02

consumption (76). As mentioned earlier, it is well established that increased 02 uptake and

electron flux through the electron transport chain leads to increased 02 formation (114).



Compromised Antioxidant Defense

Myocardial oxidative damage may be the result of an insufficient cellular

antioxidant defense (48). Reductions in antioxidant enzymes activities (SOD, GPX and

CAT) or reductions in the level of dietary antioxidants such as vitamin E, P-carotene and

vitamin C have been associated with increased lipid peroxidation and cellular damage (23,

24, 114). Lowered glutathione levels also contribute to lipid peroxidation (98). It is

possible that any of these mechanisms alone, or in combination, could contribute to the

elevated lipid peroxidation in obese animals.

Our initial experiment indicated that heart homogenates from genetically obese

animals were more susceptible to oxidative damage. Specifically, an iron-mediated

oxidative challenge in vitro resulted in greater production of thiobarbituric acid reactive

substances (TBARS) in heart homogenates of obese Zucker animals (111). These findings

may suggest that the antioxidant defense may not have been sufficient to protect against

the oxidative stress incurred by obesity.















Obesity lowered plasma levels of antioxidants such as vitamin E and p-carotene in

obese children and adults (24, 75, 79). In addition, this lowered antioxidant status was

associated with increased plasma levels of PUFA in obese children (23). The relationship

between myocardial lipid content and antioxidant status in various obesity models is not

well documented.

Tissue antioxidant enzyme activities are also altered in various obesity models. Our

initial study indicated that there were no differences in the activities of the primary

antioxidant enzymes within the heart, CAT, GPX and CuZn-SOD (111). However, the

activity of the Mn-SOD isoform was elevated in hearts of these obese Zuckers. Other

studies report reduced myocardial CAT and GPX activity (units/g heart tissue) in gold-

thioglucose-induced obese mice (12). In contrast, investigators treating lean rats with

obesity-inducing high fat diets using sources such as PUFA (corn or fish oils) or lard have

shown increased liver GPX activity with no change in SOD (107), or unaltered hepatic

antioxidant enzyme activities (45). Lean Wistar rats were fed a variety of n-3 fatty acid

high fat diets, and myocardial total and Mn-SOD and GPX values were found to be lower

than compared to rat chow fed controls; urinary and tissue TBARS values were also

greater compared to those of chow-fed controls (62). Clearly, these findings regarding the

effects of obesity on antioxidant enzyme activities are divergent. To provide clarity to the

question whether myocardial antioxidant enzyme activities are sufficient to protect against














the stress of obesity, this study will measure SOD, GPX and CAT in both high-fat fed and

fa/fa obese animals.

GSH levels appear to be altered in obesity. Glutathione is depleted (reduced by

45%) in the livers of overfed, overweight animals, and synthesis rates are reduced by 40%

(93). These data are corroborated by findings which indicated that liver glutathione stores

are depressed in overfed, obese mice (92). Furthermore, these animals were more

susceptible to allyl alcohol-induced injury and necrosis. Interestingly, the obese Zucker rat

resists drug-induced hepatotoxicity, and this has been correlated with this genotype's

higher glutathione levels compared to their lean counterparts (9). Our initial study

indicated that the myocardial non-protein thiol level (90% glutathione) was higher in

obese Zucker rats compared to lean, though this value was not found to be significant.

These contrasting findings do not elucidate the relationship between GSH and obesity-

induced myocardial lipid peroxidation. Hence, this is justification to assess the thiol

content (GSH) of the myocardial tissue of genetic and overfed obese animals to determine

whether alterations in GSH content can contribute to the elevated lipid peroxidation in

obesity.

In summary, there is no definitive evidence to support that the antioxidant defense

is compromised in the myocardium of obese animals. This forms the rationale to compare

the antioxidant enzyme activities and GSH content of myocardial tissue from two models

of obesity in this experiment.














Myocardial Fat Composition and Oxidizability

Findings from other studies report that significant correlations exist between the

type of tissue lipid and degree of lipid oxidizability in vivo or in vitro (109). Increased

myocardial PUFA increases the risk for oxidative attack. Specifically, greater serum

formation of TBARS occurs in the presence of triglycerides compared to high-density

lipoprotein (HDL) cholesterol (85). Lipoprotein oxidizability is also influenced by

lipoprotein composition, such that PUFA are more readily oxidized than monounsaturated

fats (107, 113). Whether the enhanced oxidizability of the tissue lipids in obesity is due to

increased oxidant challenge, decreased antioxidant defense, or altered phospholipid

composition requires further investigation (109).

Fatty infiltration of the myocardium increases the risk for lipid oxidation by

providing more fat substrate targets for oxidation (63). In addition, dietary consumption

of PUFAs or saturated fats can affect the fatty acid composition of the

phosphatidylcholine or ethanolamine molecules in total heart membrane phospholipids (62,

63). Considering the PUFA target for oxidative damage can be enhanced by dietary

consumption of fats, this may in part explain the greater susceptibility to myocyte damage

in obesity (57).

Both human and animal investigations have reported reduced antioxidant levels in

tissue and plasma of obese subjects (19, 24, 91). Swine fed a diet enriched in fish oils or














other 18:3 oils showed mild symptoms of vitamin E deficiency; following supplementation

with vitamin E and selenium, these symptoms disappeared (19, 91).

It is unknown whether the high-fat diet typically consumed by obese humans which

consists of-45% fats (approximately 18% saturated fats, 16% monounsaturated fats and

6% PUFAs) (27) renders the myocardium susceptible to lipid peroxidation in vivo or in

vitro. It is also unclear how this type of diet affects antioxidant enzyme activities and GSH

levels in myocardial tissue. This experiment will address this issue by feeding lean animals

the typical fattening diet, and assessing lipid peroxidation and susceptibility to oxidative

damage in vitro.



The Genetic Contribution to Obesity

The obesity phenotype cannot be simply reduced to Mendelian segregation

patterns largely for two reasons. First, body fat content and excess body fat results from

an intricate network of interactive causes that may be related to specific DNA sequencing

but are also a function of behavior and lifestyle (11). In addition, obesity is also a

heterogeneous phenotype, and there is growing evidence that a certain phenotype is

modified by other causal factors. Considering that human obesity classification schemes

consist of a minimum of four different phenotypes, each with different cases, it is difficult

to identify the etiology.














Any contribution of a genetic effect on caloric intake in human appears to be

minimal. Familial correlations computed in different relative types from the Quebec Family

Study revealed that there were no significant heredity effects on caloric intake (10, 11).

However, when intakes of carbohydrate, fat and protein were expressed in a percent of

total energy intake, the contribution of genetic factors increased (11). These results

suggest that macronutrient selection may be under genetic control, and could indicate

susceptibility of some individuals to be in positive energy balance over a long period of

time. It is also possible that differential genetic expression of specific (neuro) peptides that

modulate or inhibit food intake are the underlying basis for individual variations in energy

and macronutrient intakes (11). For example, over expression of stimulatory

neuropeptides such as norepinephrine, neuropeptide Y, galanin and endogenous opiates

increase food intake, and elevated levels ofserotonin, histamine, neurotensin,

cholescytokinin, glucagon, insulin and corticotropic releasing hormone suppress food

intake (100).

Among the animal studies that employed high-fat or calorically dense diets to

fatten animals and simulate diet induced hyperphagia, there is much heterogeneity in

dietary treatments. The result is a wide range of physiological responses differential energy

intakes based on fat or sugar content of the diet and animal model (14, 42, 55, 62, 95).

Recently, investigators have designed specialty diets to identify animals that are

"susceptible" to obesity (64). Outbred Sprague-Dawley rats show differential responses to














a condensed milk diet such that half of the rats became obese, and some gained moderate

fat weight (64). Other studies show that genetically inbred Zucker rats possessing the

heterozygous Fa/? genotype also respond to fattening diets within 3-4 weeks (33). The

responsive nature of these susceptible animals has been attributed to a number of factors

including alterations in expression of satiety factors (leptin) and lipogenic enzymes,

improved energy efficiency (improved ability to utilize less energy per unit food intake,

fewer energetic futile cycles), and increased sensitivity to insulin that would promote more

rapid fat deposition in response to calorically dense diets (11).

It is unknown whether the leptin receptor defect in the fa/fa obese Zucker rat

increases the risk for myocardial oxidative stress. Intuitively, oxidative stress would be

elevated in any myocyte with elevated rates of oxidative phosphorylation (i.e., myocytes

that function against a greater workload) regardless of the single genetic defect. However,

there may be a greater risk for oxidative stress in human or animal subjects with high

heritability for obesity. It is well established that familial predisposition, or genetics, is a

primary risk factor for cardiovascular disease, and that heart disease is complicated by

obesity (7). Considering the important and significant role of the genetic influence upon

the development of obesity, it is also essential to examine the influence of the fa/fa

genotype in our investigation.














Preliminary Experiments

Our laboratory has recently performed initial experiments investigating the

relationship between myocardial oxidative stress and obesity (111). Using the fatty

Zucker rat animal model, hearts from 12 month old lean (590 + 60 g, Fa/?) and obese (881

+ 56 g, fa/fa) males were analyzed for a series of antioxidant and lipid peroxidative

characteristics. The data revealed that the hearts from the obese animals had higher basal

levels of lipid hydroperoxides and thiobarbituric reactive acid substances. We performed

experiments to compare the primary enzymatic, non-enzymatic and tertiary antioxidant

defense within the heart.



Susceptibility to an Oxidative Challenge In Vitro

Production of lipid peroxidation was exacerbated in the homgenized heart tissue of

obese animals compared to the lean following an iron-induced oxidative challenge in vitro.

These data indicate that the myocardial tissue from obese animals had higher basal lipid

peroxidation, but also a higher level of hydroperoxides per unit lipid following the same

exposure to oxidative reagents (ferric chloride) in an in vitro bath. We attributed this

susceptibility to oxidative damage to either: (1) a compromised antioxidant defense within

the myocardium, or (2) an increased lipid substrate availability within the myocardium of

obese animals.














Primary Antioxidant Defense

The left ventricular myocardial samples from the obese animals did not have

higher antioxidant enzyme activity levels compared the lean animals. Specifically, catalase

(CAT), glutathione peroxidase (GPX), total superoxide dismutase (SOD) and the copper-

zinc dependent SOD activities were not higher than those in the myocardium of the lean

animals. However, the manganese-dependent isoform of SOD (Mn-SOD) in the obese

animals showed significantly higher activity compared to the Mn-SOD activity in the lean

rats. The myocardial non-protein thiol content (representative of glutathione) was not

significantly different between the groups (14.1 + 1.1 lean, 16.2 + 2.0 obese).



Tertiary Antioxidant Defense

Evidence exists to support the notion that heat shock proteins (HSP)s of the 72 kD

family provide protection against oxidative stress in vitro and in vivo (20, 66). In our

preliminary study, we measured the relative contents of the constituitive isoform of HSP

73 kD, and the inducible HSP 72 kD. Our data revealed that the relative contents of both

of these HSPs were not significantly different between the lean and the obese groups.



Lipid Content of the Mvocardium

The lipid content of the hearts from obese animals was nearly double that of the

lean animals (59% versus 33% of the total wet mass). Others have suggested that elevated















lipid peroxidation may be the result of increased lipid substrate availability (34, 63), and

our data appeared to be in agreement with this postulate.



Unanswered Issues

Our data suggest that elevated lipid substrate and an insufficiently up-regulated

antioxidant defense are important issues in obesity induced myocardial oxidative damage.

However, there are other interpretations of these data that require investigation. First, the

elevated Mn-SOD activity suggests that either oxidative respiration is occurring at a

higher rate in the obese animals compared to the lean (i.e., greater heart work), or there is

an increased rate of superoxide production at the site of the mitochondrion to cause up-

regulation of the enzyme. Second, the antioxidant defense also includes dietary

antioxidants which are important in preventing lipid peroxidation, inlcuding vitamin E and

P-carotene. These dietary antioxidant characteristics of the myocardial tissue of these fatty

Zucker animals have not previously been measured. It is possible that obesity elevates the

level of oxidative stress such that the tissue vitamin E and 3-carotene levels may not be

sufficient to scavenge the ROS generated in the myocardial tissue. Third, it is possible that

this elevated lipid peroxidation may be in part due to the leptin receptor defect of the

Zucker strain. All the perturbations that are associated with the genetic defect of the

Zucker strain have not yet been elucidated, and it is important to address whether the fa/fa








35






genotype or diet-induced obesity in heterozygotes (Fa/?) is more important in contributing

to myocardial oxidative stress.
















CHAPTER 3
METHODS


Animals

Male lean and obese fatty Zucker rats (7 weeks of age) were used in this

experiment. This age of rat was chosen due to the inability to separate animals by body

weight between the lean and obese (fa/fa) groups (13, 18). Males were used to prevent

any possible antioxidant-protective effect of estrogen in females (114). Sample sizes are

based on a statistical power analyses performed using data from our preliminary

experiment (Appendix A). Animals were individually housed, maintained on a 12:12 hour

light:dark cycle. Following a one-week adjustment period, the experimental diets were

administered.



Experimental Design and Diet

The control diet contained the National Research Council's recommended daily

nutrient intake for rats (77, 84) High sugar or high fat diets have been widely used to

fatten animals within 3-4 weeks, with results being more pronounced at 8-10 weeks (33),

and have been characterized as highly palatable to rats (68, 89, 95). This study will employ

a high-fat, high-refined sugar diet in an effort to most closely mimic the diet consumed by

obese Americans (27, 83). This type of diet was also chosen in the effort to induce














voluntary hyperphagia. Data from theFramingham and Lipid Research Clinics (LRC)

projects (27, 83) and other cohort studies (6, 35, 110) indicate that the typical diet



Table 1. Schematic of Experimental Design using the fatty Zucker Rat Model

LEAN (Fa/?) Control Diet n=15
LEAN (Fa/?) High-Fat Diet n=15
OBESE (fa/fa) Control Diet n=15




consumed by obese humans is comprised of-15% protein, 39-50% total fats (-18%

saturated fat of animal origin, 6% polyunsaturated fats, 16% monounsaturated fats with

unsaturated/saturated ratios ranging from 0.24-0.4) and -37-42% carbohydrates (15-20%

from added or simple sugars). To determine whether obesity elicits an alteration in the

antioxidant status of obese animals, dietary antioxidant concentrations were the same per

kg food, and the daily antioxidant intakes with feeding were retrospectively calculated.

Therefore, in this study, lean animals (Fa/?) were fed a calorically dense diet for a period

of nine weeks, as this time period appears to be adequate to induce significant obesity in

high-fat fed groups (33, 107). The diets for all three groups were prepared by Research

Diets Inc. (New Brunswick, NJ). The macronutrient percentages of the diets are contained

in Table 2. Specific macronutrient and micronutrient composition of the diets are in Table

3. Animals were allowed to eat food and water ad libitum, and caloric intake was

monitored daily (food volume in g, and total calories consumed.
















Animal Model Justification

This study used an animal model comparable to human obesity, the fatty Zucker

rat. This animal was chosen because: (1) the invasive nature of these experiments

prevents the use of human subjects; (2) the fatty Zucker rat is a genetic model of obesity

possessing similar symptomology as humans including hypertrophy and hypertension (13);

(3) its widespread acceptance as a model for investigating human obesity; and (4) fatty

Zucker animals demonstrate depressed ventricular function similar to that observed in

human cases of obesity, such that responsiveness to 0-adrenergic stimulation is reduced

and the pressure developing ability of the ventricle is reduced (lower peak systolic stress at

any given volume)(l5, 82).

The overfed, overweight rat model has been cited as the best animal model to use

in any pharmacokinetic research (16) and studies of human hypertension.

Therefore, both the genetic (fa/fa lepitn receptor defect) and overfed (high-fat),

overweight animal model will be used in this investigation.



Assessment of Systemic Changes With Obesity

Several important physiological variables were measured before, during, and

following the dietary treatment period. These measures included resting body weight,














Table 2. Description of the control and high-fat, high-carbohydrate diet constituents fed to
lean and obese Zucker rats.

Control Diet (D12450) Fattening Diet (D12451)
Protein 15% Protein 15%
Carbohydrate* 75% Carbohydrate** 45.1%
Fat 10% Fat 44.9%
Total 100% Total 100%
Largely complex sugars (2/3 cornstarch) **Added -10% refined sugars (2/3 sucrose)





Table 3. Macronutrient and micronutrient composition of the diets fed to the experimental
groups of lean and obese fatty Zucker rats.

Ingredient g/kg diet Ingredient g/kg diet
Casein, 80 mesh 150,00 Casein 150.00
L-Cysteine 3.00 L-Cysteine 3.00
Cornstarch 250.00 Comstarch 72.80
Sucrose 350.00 Sucrose 172.80
Soybean Oil 25.00 Soybean Oil 25.00
Lard 20.00 Lard 177.50
S10026 10.00 S10026 10.00
L-Cysteine 3.00 L-Cysteine 3.00
Dicalcium Phosphate 13.00 Dicalcium phosphate 13.00
Calcium Carbonate 5.50 Calcium carbonate 5.50
Potassium Citrate, 1 H20 16.50 Potassium Citrate, 1 H20 16.50
Vitamin Mix (V10001) 10.00* Vitamin Mix (VI0001) 10.00*
Choline bitartate 2.00 Choline bitartate 2.00
*See Appendix B for details of Vitamin Mix constituents.
(Soybean oil is 14% saturated, 23% monounsaturated, 51% linoeic acid and 7% linolenic
fatty acid.)














oxygen consumption, heart rate, blood pressure, and blood glucose and insulin levels.

Experimental details for each measure follow.


Resting Oxygen Consumption (VO)

Body masses were recorded at the beginning of the study and weekly thereafter

until sacrifice. Resting oxygen consumption (VO2) of each animal was assessed at the

conclusion of the feeding treatment to determine differences between groups (32). Oxygen

consumption was measured by open-circuit spirometry using a specially constructed,

sealed metabolic chamber (5 X 6 X 5 cm, Truemax gas analyzing system). Animals

remained in the chamber with oxygen consumption measured upon equilibration of the gas

in the chamber (-40 min). Flow rates for gas sampling were set at 0.3 L/min., and resting

VO2 was estimated using the following formula: (flow rate)(% 02 difference between the

ambient air and the chamber)/ body mass (kg) = V02 in ml/kg/min.



Heart Rate and Blood Pressure

Systolic blood pressure (BP) and heart rate (HR) in awake, conscious animals

were assessed in all animals. A tail pressure cuff system (Kent Scientific, model #s

BP 1001, BP1004) was used to determine systolic blood pressure. HR was determined

using this same apparatus by allowing the piezoelectric transducer to detect the pulsations

of blood flow within the proximal region of the lateral tail vein. The analogue signal was

directed through a pre-amplifier and A/D converter to a pen chart recorder (Grass














instruments). One lean and one obese animal were tested simultaneously to reduce any

experimental variations between testing sessions. Prior to any data collection, animals

were placed into the warming restrainer on three different occasions for a period of 30 min

to acclimate them to the procedure and reduce any inflation of the true BP. BP and HR

measures were collected prior to the feeding treatment, once each week, and at the

conclusion of the feeding period.



Blood Glucose and Insulin Concentrations

Immediately prior to sacrifice, a -5mL blood sample was obtained from cardiac

puncture. Fresh blood samples were collected using EDTA treated vacutainer tubes.

Plasma was separated by centrifugation and immediately frozen for later analysis of blood

glucose and insulin levels. Blood glucose was assessed using an enzymatic, colorimetric

technique (101). Insulin levels were assessed by a radioimmunoassay technique described

previously (5)(commercial kit, LINCO Research 125I label). Glucose samples were

performed in duplicate, and insulin samples were performed in quadruplate. The average

of two hematocrits values were recorded as the sample score.














Heart Weight

Immediately following sacrifice, the hearts were rapidly excised and placed in

aerated ice-cold modified Kreb's solution to remove the remaining blood. Following

excision of the papillary muscles, the hearts were blotted and weighed immediately.



Adiposity

A BMI equivalent for rats, the adiposity index, was performed in all animals using

a well-documented method (65). Briefly, the length of the rat from the tip of the nose to

the anus was measured The body mass and the length of the animal was calculated using

the formula: Adiposity Index = the cube root of the body mass (g)/ length (mm) X 104.

The adiposity index was determined immediately prior to sacrifice.



Heart Tissue Composition

To determine whether the dietary treatment affected heart tissue composition, the

fat, water composition and dry weight of the hearts of lean and obese animals were

determined as follows.



Lipid Content of the Myocardium

A modified version of an earlier extraction technique was used to isolate

myocardial lipid (30). Briefly, heart samples were homogenized in a methanol: chloroform














mix (2:1 v/v) for 2 min at room temp. Samples were centrifuged for 4 min at 400 X g.

Supernatants were decanted, and the pellet was resuspended and re-extracted with

methanol:chloroform:0.2 N HCI (2:1:0.8 v/v). The two phases were separated by another

2 min centrifugation at 400 X g. The supernatants were pooled and the phases were

separated by a third 4 min centrifugation at 400 X g. The lower chloroform phase was

removed and neutralized by drop-wise addition of methanolic NH4OH. Samples were

concentrated under a stream of nitrogen. The weight of the residue was recorded as the

amount of lipid mass per unit heart weight.



Water Content and Dry Weight

To determine the myocardial water content and dry weight, a piece of ventricular

tissue was cut and placed in a pre-massed tube. The sample's weight was recorded. The

sample was freeze-dried in an evaporator at a negative pressure of 10' mmHg, and re-

weighed to obtain the sample's dry weight (tissue protein/lipid). The water weight of the

sample (tissue water) was calculated by: wet weight- post-drying weight.



Radical Production by the Myocardium

To determine whether obesity affects the respiration rates or the radical production

(specifically 02') of myocardial tissue papillary muscles were isolated and stimulated in

vitro, and an indirect assessment ofROS production was performed.
















Isolated Papillary Muscle Experiments

To determine whether hearts from obese animals generate ROS at greater rates,

papillary muscles were isolated from hearts from all animals as described previously (15).

In brief, animals were anesthetized with an intraperitoneal injection of sodium

pentobarbital (50 mg/kg). After reaching a plane of surgical anesthesia, the chest of the

animal was opened, exposing the contracting heart. The heart was subjected to

cardioplegic arrest by infusion of ice cold modified Kreb's Hensleit buffer (all in mmol/L:

NaCI 115.0, NaHCO3 20.0, KCI 4.0, K2HPO4 0.9, MgSO4 1.1, CaCI 2.5, and glucose

11.0) by a syringe through a cut in the aortic root. Ice cold buffer was applied to the heart

topically to assist in cooling of the organ. After flushing the heart with buffer, the heart

was removed from the animal and placed into an iced tissue bath with modified Kreb's

buffer bubbled with 95% 02/5% CO2. Under a magnifying glass, a papillary muscle was

rapidly excised and tied with sutures on both ends. The muscle was transferred to a small

tissue chamber containing warm Kreb's buffer (37C, 30 mi) bubbled with the same gas

mixture. One suture end was fixed to the chamber, and the other end fixed to a force

transducer (Grass Instruments, Model #FTIO). A specially designed pair of platinum

electrodes provided field stimulation to the muscle at the following parameters: 100V,

50Hz, 2 ms duration and 3 pulse per sec (to simulate 180 bpm). Following a 15 min

equilibration period, the muscle was stimulated for a 30 minute time period. To determine














whether 02 anions are formed at greater rates in response to electrical stimulation, the

bathing medium also contained 10"' M cytochrome C (C-2506, Sigma Chemical).

Cytochrome C is reduced as a function of superoxide production. The tissue bath was

wrapped in foil and the experiments were conducted in a dimmed laboratory to reduce

photoreduction in ambient light. Following the 15 min stimulation treatment, the bathing

medium was collected and analyzed spectrophotometrically for the reduction of

cytochrome C as previously described (87). The magnitude of absorbance change at 550

nm reflected the amount of 02 in the bathing medium (82). To confirm that the assay was

detecting 02 production, hypoxanthine (5 X 10" M; H-9377 Sigma Chemical) was added

to xanthine oxidase (0.02 U/ml; X-4500 Sigma Chemical) to produce 02 that reduced

cytochrome C. Alternatively, native SOD (103 U/ml; S-7008 Sigma Chemical) was added

to the medium to test inhibition of the radical.



Assessment of Mvocardial Antioxidant Status

To determine whether obesity or the overfeeding treatment affected oxidative and

antioxidant capacity, left ventricular samples from all groups were assessed for oxidative

and antioxidant enzyme activities,














Oxidative and Antioxidant Enzyme Activity

Citrate synthase (CS; EC 4.1.3.7) activity was used as a marker for oxidative

capacity using a method previously described (99). Superoxide dismutase (SOD; EC

1.15.1.1), selenium glutathione peroxidase (GPX; EC 1.11.1.9) and catalase (CAT; EC

1.11.1.6) activities were used as markers for antioxidant capacity using previously

described procedures (1, 29, 81). All assays were performed in duplicate and on the same

day to reduce interassay variation. Activities were normalized to protein in the sample

using previously described spectrophotometric dye binding methods (36, 111).



Tissue Thiol Measurements

Tissue thiols are molecules that contain sulfhydryl groups. They are important in

the regulation of both cellular redox status and antioxidant capacity (37). Therefore, total,

protein and non-protein thiols from the left ventricle were assayed from all experimental

animals. Thiol content was determined spectrophotometrically using a previously

described DTNB-based technique (50). Since glutathione is the dominant non-protein thiol

in the cell, this measure was used as a marker of tissue glutathione levels (49).



Biochemical Indicators of Oxidative Stress

To determine the amount of radical-mediated oxidative damage in the heart, left

ventricular levels of two by-products of lipid peroxidation were measured.

















Lipid Peroxidation Measurements

Malondialdehyde levels were determined spectrophotometrically using the

thiobarbituric acid-reactive substances (TBARS) method previously described (108). The

agent 1,1,3,3-tetraethoxypropane was used as the standard for this assay. Samples were

performed in duplicate.

Lipid hydroperoxides were quantified using the ferrous oxidation/xylenol orange

technique previously reported (44). Cumene hydroperoxide was used as the standard for

this assay. In our laboratory, the coefficients of variation for the TBARS and lipid

hydroperoxide assays are -3 and 4 percent, respectively. All samples were performed in

triplicate.



Oxidative Challenges in vitro

To investigate the relationship between obesity and myocardial antioxidant

capacity, heart homogenates from animals in all groups were subjected to a series of

several different ROS-generating systems. A section of the left ventricle from each heart

was homogenized in 0.9% saline at a concentration of 10:1 in nitrogen gassed 50 mM

potassium phosphate buffer at pH 7.4 according to a previous method (40). Aliquots of

the homogenates were incubated at a concentration of 10 mg protein/mi in the presence of














an ROS generating system. Following each challenge, the homogenates were analyzed for

lipid peroxidation using the previously mentioned technique (108).



Xanthine-Xanthine Oxidase System (Superoxide Generator)

Superoxide radicals were generated by the reactions involved in a xanthine-

xanthine oxidase system similar to an earlier method (87). One ml of 1 mM xanthine and

0.1 IU xanthine oxidase were added to a I ml aliquot of heart homogenate and incubated

at 37C for 15 min.



Hydrogen Peroxide System

One ml of hydrogen peroxide (100 mM) was added directly to a one ml aliquot of

heart homogenate and incubated at 370C for 15 min according to a previous method (96).



Ferric Chloride System (Hydroxvl Generator)

Hydroxyl radicals were produced in the heart homogenates by adding 0.1 mM

ferric chloride (FeCI3) and 1 mM ADP. The choice of these particular concentrations is

based on previous (3) who found that this concentration of iron-ADP induced free-radical

mediated arrhythmias in the isolated perfused rat heart and that it was possible to prevent

these arrhythmias by perfusing the heart with SOD (3).














AAPH System (Peroxvl Generator in the Lipid Phase)

Peroxyl radicals were generated in the aqueous phase of homogenate by thermal

decomposition of2,2'azobis(2-amidinopropane)-dihydrochloride, (AAPH). Iml of AAPH

solution and Iml of heart homogenate will be mixed in and incubated at 37C for 2 hrs.

Following incubation of the heart homogenates in each system, 200 mM butylated

hydroxytoluene (BHT) was added to stop the oxidative reaction. TBARS formation and

lipid hydroperoxide concentration were then analyzed as previously described (108).



Statistical Analysis

All dependent measures (antioxidant and biochemical parameters) were subjected

to a one-way analysis of variance (ANOVA). Significance was established at p<0.05. In

the case of significant differences, Scheffe post-hoc analysis was performed to determine

where differences existed. Bivariate correlations were performed between TBARS and

hydroperoxide levels and systemic, dietary and biochemical measures to determine any

relationships between lipid peroxidation and these variables. Furthermore, a stepwise

(forward) regression was performed on select variables to determine which variables

contribute most to lipid peroxidation in both models of obesity.














CHAPTER 4
RESULTS



Due to the variance between the adiposity levels attained within experimental

groups, each of the three groups of animals were separated into two groups based on

adiposity: low BMI and high BMI. BMIs that were above the group average were defined

as "high" and BMIs that were below the group average were defined as "low". Therefore,

the following annotation will be used throughout the remainder of the manuscript:

CONTROLS: Low BMI= C-L-BMI

High BMI = C-H-BMI

HIGH-FAT FED: Low BMI = F-L-BMI

High BMI = F-H-BMI

OBESE: Low BMI = O-L-BMI

High BMI = O-H-BMI



Diet and Antioxidant Consumption

The weekly food intake of all groups during the nine weeks of feeding is shown in

Figure 3. The total caloric intake and dietary consumption of vitamins A and E are

contained in Table 4. Although the fat-fed groups F-L-BMI and F-H-BMI consumed less

total food (p<0.05), the caloric intake of these groups was higher compared to C-L-BMI

and C-H-BMI (p>0.05). This is due to the fact that the food density of the high-fat diet





















-*-C-L-BMI
-- C-H-BMI
-*-F-L-BMI
-. F-H-BMI
-eO--L-BMI
O--H-BMI


- w ** ** **
** ** *


Ou I
1 2 3 4 5 6 7 8 9
Week

Figure 3. Food intake of the six experimental groups.
Values are means + SE. *Denotes greater than control
p<0.05, and ** denotes less than controls at p<0.05.














was 4.74 kcal/gm compared to the diet consumed by the two lean groups (3.84 kcal/gm).

The O-L-BMI and O-H-BMI animals consumed more total food and more calories than all

other control and fat-fed groups (p<0.05). Vitamin E and A intake were a direct function

of total food consumed (500 IU/ gm food vitamin E, 500,000 IU/ gm vitamin A).

Therefore, groups F-L-BMI and F-H-BMI consumed less of vitamin E and A compared to

the other four groups. In contrast, the obese groups O-L-BMI and O-H-BMI consumed

the most of these two vitamins of all six groups (p<0.05).



Table 4. Total diet consumption, caloric intake and antioxidant intake of lean control,
high-fat fed and obese Zucker rats during a 9-week feeding period. Values are means +
SEM. ** p<0.05 greater than groups 1-4, t p<0.05 less than all control and obese groups.

Group Diet Intake Calories Vitamin E (IU) Vitamin A (IU)
(g) (kcal) (IU, x 10') (IU, x 108)
C-L-BMI 1204+34 4922+85 6.02+0.17 6.02+0.17

C-H-BMI 1199+29 5013+83 6.0+0.14 6.0+0.14

F-L-BMI 1043 + 18t 5661 + 135* 5.21 + 0.09 5 21 + 0.09t

F-H-BMI 1062+ 18t 5682+ 163* 5.31+0.08t 5.31 +0.08t

O-L-BMI 1525+43** 7199+201** 7.62+0.21** 7.62+ 0.21**

O-H-BMI 1553 + 56** 7330 + 263** 776 + 0.28** 7.76 + 0.28**
where Vitamin E = vitamin E acetate, Vitamin A = Vitamin A Palmitate














Body Weight Changes With Feeding

Nine weeks of feeding the lean and obese Zucker rats resulted in a distinct

separation between the body weights of the groups. Figure 4 contains the body weights

data before, during and after the feeding treatment. The O-L-BMI and O-H-BMI were

heavier than the other four groups at the start of the study, and gained weight rapidly

during the first 4 weeks and were significantly heavier (p<0.05) than the other four groups

at all time points during the feeding period. By week 6, the F-H-BMI became significantly

(p<0.05) heavier than the control lean groups C-L-BMI and C-H-BMI and the fat-fed

group, F-L-BMI. These body weight separations remained present throughout the

remainder of the feeding period.



Morphological Characteristics

The morphological characteristics of the six groups are summarized in Table 5a.

The O-L-BMI and O-H-BMI groups were characterized by a significantly (p<0.05) larger

liver weights compared to all other groups. The heart weights were not significantly

different between groups (p>0.05), but the heart weight/body weight ratio was

significantly lower (p<0.05) in the groups O-L-BMI and O-H-BMI compared to all other

groups. The diaphragm weight of the F-H-BMI was significantly greater than the weights

of all other groups (p<0.05). The locomotor muscle weights are shown in Table 5b. The

data indicate that the locomotor muscle weights of the soleus, gastrocnemius,




















550


500


450


-400


350


m 300 I C-L-BMI
C-H-BM
250- F-L-BMI





150 -
Pre 1 2 3 4 5 6 7 8 Post
Week



Figure 4 Body weight ranges before, during and following the nine week
feeding period. Values are reans +SE denotes greater than control at
p<.05.


















Table 5a. Comparison of morphological characteristics between the six groups of Zucker
rats following 9 weeks of feeding. Values are means + SE., p<-0.05 compared to all
other groups, **p<0.05 greater than all lean control and fat-fed groups, t p<0.05 less than
all lean control and fat-fed groups.


Heart Weight Heart/ Body Weight
(g) Ratio (g/kg)
1 06+0.03 2.91+0.12
1.05+0.08 2.84+0.16
1.08+ 0.08 2.59+ 0.05
1.17+0.08 2.72+0.06
1.10+0.08 2.21 + 0.06
1.12+0.05 2.53 +0.05+


Liver Weight
(g)
8.92 + 0.40
9.99 + 1.23
10.88+ 0.85
10.54 + 0.44
21.32+ 1.15**
22.11 + 1.51**


Diaphragm Weight
(g)
0.86 + 0.02
0.96 + 0.21
0.93 + 0.07
1.04+0.11*
0.76 + 0.09
0.79 +0.05


Table 5b. Comparison of locomotor muscle weights between the six groups of Zucker
rats following 9 weeks of feeding. Values are means + SE. p<0.05 greater than all other
groups, t p<0.05 smaller than all other groups. All values are expressed in g.

Soleus Gastrocnemius Plantaris Tibialis Anterior

C-L-BMI 0.169+0.006 1.42+0.19 0.33+0.02 0.711+0.02
C-H-BMI 0.151 + 0.014 1.39+0.14 0.31 +0.03 0.647+0.06
F-L-BMI 0.179+ 0.008 1.45+0.05 0.36+ 0.01* 0.726+0.02
F-H-BMI 0.184+0.006* 1.63+0.21* 0.37+0.01* 0.755+0.02*
O-L-BMI 0.112+0.003t 1.03+0.03t 0.21 +0.01 0.415 0.01t
O-H-BMI 0.119+ 0.003t 1.05 +0.03t 0.22+0.01t 0.432 0.01t


C-L-BMI
C-H-BMI
F-L-BMI
F-H-BMI
O-L-BMI
O-H-BMI
















plantaris and the tibialis angterior muscles of the obese groups O-L-BMI and O-H-BMI

were significantly smaller (p<0.05) than those of their lean and high-fat fed counterparts in

all other groups. The muscle weights of group F-H-BMI were significantly greater

(p<0.05) compared to all other groups.



Physiological Characteristics

The physiological characteristics of the animals were recorded before, during and

following the feeding protocol. These measures included resting heart rates and systolic

blood pressures (double product ofHR x BP = heart work), oxygen consumption, BMI

and blood glucose and insulin concentrations.



Heart Rates. Blood Pressures, and Heart Work

The resting heart rates of the six groups did not differ (p>0.05) at any time point

during the study (Figure 5a). However, the systolic blood pressures of the obese animals

of groups O-L-BMI and O-H-BMI were significantly higher than those of all other groups

during weeks 1-2 (Figure 5b). By week three, the fat-fed groups F-L-BMI and F-H-BMI

exhibited a significantly higher (p<0.05) systolic blood pressure compared to groups C-L-

BMI and C-H-BMI. This difference between groups persisted throughout the remaining

weeks of the feeding period.





















-- C-L-BMI
-I-C-H-BMI
-A-F-L-BMI
-- F-H-BMI
-- O-L-BMI
-8- O-H-BMI


Pre 1 2 3 4 5
Week


6 7 8 Post


Figure 5. Cardiovascular functional measures.
5a) Resting heart rates of all experimental
groups. Values are means + SE.


240 4

















170



160


-- C-L-BMI
--C-H-BMI
-A-F-L-BMI
-- F-H-BMI
-+- O-L-BMI
-- O-H-BMI


100 I I I I ,
Ib ^ s U qo-
Week

Figure 5. Cardiovascular functional measures.
5b) Systolic blood pressure in all experimental groups,
Values are means + SE. ** denotes different from fat-
fed and controls, *denotes different from controls.


**


**
















60000

** **

55000 F-H



E















O0-H-BMI
50000










Pre 2 3 4 6 7 8 Post45000







Week

Figure 5. Cardiovascular functional measures.
5c) Myocardial work among the six groups. Values
are means + SE. Denotes greater than control
40000 groups at p<0.05, greater than fat-fed and

controls at p<0.05.F-L-BMI
35000. -4--F-H-BMI
"E'- O-L-BMI
'- "O-H-BMI

30000 -
Pre 1 2 3 4 5 6 7 8 Post
Week

Figure 5. Cardiovascular functional measures.
5c) Myocardial work among the six groups. Values
are means + SE. Denotes greater than control
groups at p controls at p<0.05.
















The rate pressure products of the heart rates X systolic blood pressures (defined as

heart work) for each group during weekly assessments are shown in Figure 5c. The data

indicate that the heart work generated by the obese groups O-L-BMI and O-H-BMI was

significantly greater (p<0.05) than that of all other groups during weeks 1-7. By week 5,

the heart work generated by the fat-fed groups F-L-BMI and F-H-BMI was significantly

greater than that of lean control groups C-L-BMI and C-H-BMI. This difference between

the six groups existed throughout the remainder of the study.



Oxygen Consumption and Body Mass Index (BMI)

Resting oxygen consumption (V02) and BMI values are shown in Table 6. The C-

H-BMI group demonstrated a significantly higher (p<0.05) resting oxygen consumption

value compared to all other groups, whereas, groups O-L-BMI and O-H-BMI showed the

lowest Vo2 values compared to the four remaining groups (p<0.05).

The BMI values following nine weeks of feeding resulted in significant differences

(p<0.05) between the groups. The BMI values for O-H-BMI was greater (p<0.05) than all

other groups, whereas the BMI values for groups F-H-BMI and O-L-BMI were greater

(p<0.05) than groups C-L-BMI, C-H-BMI and F-L-BMI. C-L-BMI had the lowest

(p<0.05) BMI value of all six experimental groups.

















Table 6. Resting oxygen consumption and body mass index values (BMI) for all
experimental groups of Zucker rats following 9 weeks of dietary treatment. Values are
means + SE. *p<0.05 lower than groups C-L-BMI, C-H-BMI, and F-L-BMI **p<0.05
greater than groups C-L-BMI and C-H-BMI, ***p<0.05 compared to all 5 other groups.

Group V02 (ml*kg*min) BMI (g/mm4)
C-L-BMI 29.62 + 2.88 276.51 + 5.70
C-H-BMI 35.46 + 2.42*** 308.25 + 6.50
F-L-BMI 29.85+ 1.78 30710 + 3.84**
F-H-BMI 28.1 + 2.36* 320.24 + 2.78**
O-L-BMI 24.11 + 2.52* 323.95 + 4.03**
O-H-BMI 22.18+ 1.30* 358.18+ 17.5**


Table 7. Blood glucose and insulin concentrations in all six experimental groups.
Hematocrit values are also provided. Values are means + SE. *p<0.05 greater than groups
C-L-BMI, C-H-BMI and F-L-BMI, **p<0.05 greater than all other 5 groups.


Group

C-L-BMI
C-H-BMI
F-L-BMI
F-H-BMI
O-L-BMI
O-H-BMI


Glucose (mg/dL)

140.7 + 13
162.5 + 12
176.7 + 14
180.6 + 9
212.2+ 11**
182.7 + 7*


Insulin (ng/ml)

1.39+0.35
1.81 +0.38
3.44 + 0.23
3.30 + 0.25
13 67 + 0.65**
17.29 + 1.67**


Hematocrit

39.5 + 0.86
40.2 + 0.36
41.3 + 0.99
37.7 + 1.89
38.2+ 1.12
37.4 + 1.38















Blood Glucose and Insulin Concentrations

The blood glucose and insulin concentrations are shown in Table 7. The data

indicate that groups F-H-BMI and O-H-BMI had higher (p<0.05) glucose levels than

groups C-L-BMI, C-H-BMI and F-L-BMI, and O-L-BMI had the highest concentration

(p<0.05) of blood glucose compared to all other groups. Insulin concentrations increased

as a function of adiposity. The O-L-BMI and O-H-BMI groups had significantly greater

(p<0.05) insulin concentrations compared to all other groups. There were no significant

differences (p>0.05) in the hematocrits between the six groups.



Heart Tissue Characteristics

Heart tissue characteristics are shown in Table 8. Although trends existed, the

water content and dry weights of the heart samples were not significantly different

between groups. In contrast, the myocardial lipid content values for F-L-BMI, F-H-BMI,

O-L-BMI and O-H-BMI were significantly greater (p<0.05) compared to the two groups

of lean control animals. However, there were no significant differences in lipid content

among the four fat-fed and obese groups.















Table 8. Myocardial tissue water content, dry weight and lipid content (mg/g) of the six
experimental groups. Values are means + SE. *p<0.05 greater compared to C-L-BMI and
C-H-BMI.

Group Water (%) Dry Mass (%) Lipid (mg/g)
C-L-BMI 79.72+ 0.67 20.27+ 0.67 21.55+5.06
C-H-BMI 79.21 +0.53 20.78+0.53 18.67+ 2.47
F-L-BMI 79.13 + 0.26 20.86 + 0.26 39.76 + 4.71*
F-H-BMI 78.57+0.19 21.42+0.19 42.17+5.75*
O-L-BMI 78.3 + 0.97 21.68+0.97 35.89+ 5.41*
O-H-BMI 77.02 + 0.92 22.98 + 0.92 42.93 + 6.17*




0' Production: Cvtochrome C Assay

The production of 02 production by isolated papillary muscles in vitro, was

determined using a cytochrome C assay. The results of this assay are shown in Figure 6.

Electrolysis and bubbling of the O2/CO2 gas mixture resulted in minimal 02.- production as

evidenced by the low absorbance. High absorption values were recorded following

incubation of the tissue bathing medium with hypoxanthine and xanthine oxidase,

indicating the viability of the assay. Purified SOD was added to the hypoxanthine/xanthine

oxidase bathing medium and inhibited 02.- production as shown by the reduced

absorbance value. Further, SOD was also added to the bathing medium containing

contracting papillary muscle. The low absorbance value indicates that SOD did inhibit 02.-

reduction of cytochrome C. However, there were not detectable differences (p>0.05) in




















0.07

0.06

i 0.05
c

0.04




0.02

0.01

0

--o c,. A o o 'o
.. I I 6 I






Figure Cytodirorr Creduction in response to expeinental
conditions and contracting isolated papillay muscle fiomthe six
operimntal groups.
Values are reans + SE














bathing medium absorbance values between the muscle preparations from all six

experimental groups, indicating no differences in 02 production. To demonstrate viability

of these muscle preparations, tetanic muscle forces were recorded. The average

contractile forces for all groups ranged from 4-6 mN/mm2.



Oxidative and Antioxidant Enzyme Activities

The oxidative (CS) and antioxidant enzyme activities (CAT and GPX) for left

ventricular samples are shown in Table 9a. Although a trend existed, there were no

significant differences in CS or GPX activity. However, the O-H-BMI group has higher

CAT activity compared to all other groups. Interestingly, the only significant difference in

the SOD activities was found with the CuZn-SOD isoform. Specifically, the CuZn-SOD

activity was greater in the O-L-BMI and O-H-BMI groups compared to the lean controls,

L-L-BMI and L-H-BMI. There were no other significant changes in SOD activities with

either model of obesity.

When antioxidant enzyme activities were normalized to the amount of myocardial

lipid, the antioxidant enzyme profile was quite different. The results of this analysis are

shown in Table 9c. In all cases, the lean, control groups (C-L-BMI and C-H-BMI) had

greater enzyme activities compared with all the high-fat fed and obese groups.

















Table 9a. Oxidative and antioxidant enzyme activities of left ventricular samples from all
six experimental groups. Values are means + SE. CS and GPX units are in Pmol*mg
protein*min; CAT units are in U/gww. *p<0.05 greater compared to C-L-BMI and F-L-
BMI groups.


Group

C-L-BMI

C-H-BMI
F-L-BMI
F-H-BMI

O-L-BMI

O-H-BMI


CS

82.4+3.4

84.3+ 1.4
81.6+ 1.4

82.6 + 1.1
84.7 4.1

97.8+7.8


GPX

122.8 +7.4

128.3 + 9.9
111.6+5.1
113.3+5.4
148.2 + 10.8

133.5 + 13.2


CAT

49.9+4.1

61.9+2.0
54.2+2.1
59.4+2.5

59.2+2.8
66.8+ 3.2*


Table 9b. SOD activities of left ventricular samples from all six experimental groups.
Values are means SE. SOD is expressed as Units*min*mg protein. *greater than all fat-
fed and control groups at p<0.05.


Group

C-L-BMI

C-H-BMI
F-L-BMI

F-H-BMI
O-L-BMI
O-H-BMI


Total SOD

100.4+3.8
101 4 +6.2

95.8+5.5
101.1 +8.4
119.1 +6.9

108.9+6.0


Mn-SOD

73.5+4.7

70.1 +4.2

73.83.2
62.3 +2.8
72.1 +3.1

63.6 4.9


CuZn-SOD

26 8 + 1.7
31.3 3.1

21.9+6.4
38.8+8.1
47.0+ 5.7*
45.3 +6.1*


--------~--


---
















Table 9c. Antioxidant enzyme activities of left ventricular samples from all six
experimental groups. Values are means + SE. CS and GPX units are in pImol*mg
lipid*min; CAT units are in U/mg lipid. *p<0.05 greater compared to all high-fat fed and
obese groups.

Group GPX CAT T-SOD Mn-SOD CuZn-SOD

C-L-BMI 8.1 1.7* 3.9 1.1* 6.6 1.4* 4.9 1.1* 1.70.32

C-H-BMI 7.60.73* 3.70.50* 6.3 1.1* 4.3 0.70* 1.90.45*
F-L-BMI 3.2 0.72 1.6 0.37 2.6 0.32 2.1 0.49 0.7 0.12
F-H-BMI 3.2 0.54 1,7 + 0.24 2.8 0.45 1.7 0.23 1.1 +0.29
O-L-BMI 4.4 0.79 1.9 0.22 3.7 0.44 2.2 0.22 1.5 0.23
O-H-BMI 2.8 0.43 1.7 0.49 2.8 0.35 1.7 0.28 1.10.13




Tissue Thiols


Myocardial thiol status was measured at the completion of the 9-week feeding

period (Figure 7). No significant differences existed (p>0.05) between groups in total thiol

content. Compared to C-L-BMI and C-H-BMI, F-L-BMI and F-H-BMI had significantly

lower protein thiols. F-H-BMI and O-H-BMI had greater levels (p<0.05) of non-protein

bound thiols compared to all other groups, suggesting that glutathione levels were

elevated in these groups.




















* C-L-BMI
* C-H-BMI
M F-L-BMI
* F-H-BMI
* O-L-BMI
* O-H-BMI


Total Thiols Protein Thiols Non-protein Thiols
Figure 7. Myocardial thiol fractions. Values are means
+ SE. Denotes greater than all other groups at p<0.05,
** less than control groups at p<0.05.

















Basal Lipid Peroxidation

Left ventricular hydroperoxide content is shown in Figure 8. The data indicate that

the F-L-BMI, F-H-BMI, O-L-BMI and O-H-BMI groups had significantly (p<0.05)

higher tissue hydroperoxide levels compared to C-L-BMI and C-H-BMI. No differences

existed between F-L-BMI, F-H-BMI, O-L-BMI and O-H-BMI.



Oxidative Challenges in Vitro

The results for the oxidative challenges are shown in Figure 9a and 9b. When

expressed per mg of protein (Figure 9a), the TBARS concentration was significantly

greater (p<0.05) in F-L-BMI, F-H-BMI, and O-H-BMI compared to all other groups at

the basal level. Following the FeCI3 challenge, the H202 challenge, and the xanthine/

xanthine oxidase challenge, the TBARS concentration was greater in F-H-BMI, O-L-BMI

and O-H-BMI groups. There were no differences (p>0.05) between groups following the

AAPH challenge. When expressed per mg lipid (Figure 9b), TBARS levels did not differ

between any group with the exception of the AAPH challenge. Specifically, the TBARS

levels of groups F-HBMI, O-LBMI and O-HBMI were significantly lower (p<0.05) than

those in C-LBMI and C-HBMI, suggesting that lipid peroxidation is dependent on the

amount of lipid substrate present for oxidation.





























e-
10


8
E
C
4-
2 "
0

0 4








C-L-BMI C-H-BMI F-L-BMI F-H-BMI O-L-BMI O-H-BMI

Figure 8. Myocardial lipid hydroperoxide content in
all six experimental groups. Values are means + SE.
*Denotes greater than control groups at p<0.05.






















1.2 0 Basal
FeCI3
8a H202
12

SEI EAAPH
0.8

E T









Fie 9a. Myocardial TARS content.
0.2



C-L-BMI C-H-BMI F-L-BMI F-H-BMI O-L-BMI O-H-BMI

Figure 9a. Myocardial TBARS content.
Myocardial TBARS/ mg protein Values
are means + SE. *greater than controls and
F-L-BMI at p<0.05.
















S0.18 Basal
0.18
a FeCI3
1 H202
0.16
Xantine/XO
*AAPH
0.14


0.12

Cm



) 0.08
m
0.06
I.-



0.04


0.02



CL-BM C-BI F-BM F--VM OL.-l O4BM


Figure 9b. Myocadial TARS content.
Myocardial TBARS/ ng lipid Values are rrans
+ SE *less than controls at pO.5
















Correlations Between Lipid Hvdroperoxides and Physiologic Measures

Pearson correlations were performed between lipid hydroperoxides and the

proposed radical-generating biochemical and systemic measures to determine which

measures best correlate with myocardial lipid peroxidation (Table 11). Lipid

hydroperoxide content is correlated with (systolic blood pressure and) heart work and

myocardial lipid content. Considering that these same variables were also significantly

correlated with myocardial TBARS content (data not shown), we suggest that heart work

and blood pressure may be good non-invasive predictors of myocardial oxidative stress.



Stepwise Regression Model for Mvocardial Lipid Peroxidation

A stepwise regression was performed to determine those variables which are most

closely related to the magnitude of myocardial lipid peroxidation (hydroperoxides/ mg

lipid). The results are found in Table 12. These data suggest that lipid content contributes

most to the myocardial lipid peroxidation observed in both obesity models (regression

equation: y=-0.0096X + 0.731). In addition to lipid content, heart work, cytochrome C

reduction (evidence of excessive superoxide production), CuZn-SOD and CAT activities

contributed to the regression model, although their individual contributions were not

significant. To illustrate the relationship between lipid hydroperoxides/ mg lipid and

myocardial lipid content, a scatter plot was created (Figure 10). To test for adequacy of
















Table 11. Correlations (r) between basal lipid hydroperoxides/ mg lipid and selected
systemic measures in all groups and separated by obesity model. r values are shown with
p-values in parentheses. denotes p<0.05

MEASURE ALL GROUPS HIGH-FAT FED fa/fa

BMI 0.282 (0.064) 0.210 (0.472) 0.290 (0.295)
HEART WORK 0354 (0 034)* 0.217 (0.521) 0.587 (0.035)*
LIPID CONTENT 0.867 (0.0001)* 0.915 (0.0001)* 0.784 (0.001)*
VITAMIN E 0.008 (0.957) 0.538 (0.047)* 0.136 (0.628)
CONSUMPTION
CS 0.313 (0.046)* 0.391 (0.167) 0.466 (0.080)*
TOTAL SOD -0.068 (0.674) -0.419 (0.136) -0.083 (0.767)
Mn-SOD 0.168 (0.293) 0.098 (0.737) 0.057 (0.840)
CuZn-SOD 0.170 (0.288) -0.322 (0.261) -0.140 (0.619)
GPX -0.098 (0.542) -0.052 (0.860) -0.192 (0.493)
CAT -0.109 (0.510) -0.267 (0.356) -0.560 (0.037)*
CYTOCHROME C 0.144 (0.524) 0.156 (0.738) 0.282 (0.499)
REDUCTION



Table 12. Stepwise regression analysis (forward) for obesity-induced myocardial lipid
peroxidation (hydroperoxides mg/lipid). Each step is additive, representing 5 different
equations. denotes a significant contribution to the model

Step Variable r R2 P-value
1 Lipid Content 0.87 0.75* 0002*
2 Heart Work 0.35 0.76 0.434
3 Cyt C Reduction 0.14 0.78 0.968
4 CuZn-SOD 0.17 0.80 0.653
5 CAT 0.11 0.84 0.237






















y = -0.0096x + 0.731
R2= 0.7515


20 40 60 8(
Myocardial Lipid (mglg)

Figure 10 Scatter plot of the relationship between myocardial
lipid and hydroperoxide content (mg lipid).


0)



0
2 -
m
o=
|.








76






the model fit, the normal probability plots of the residuals, the standardized residuals and

the coefficient of determination (R2) indicate the model is adequate to predict myocardial

lipid peroxidation. All residual plots are found in Appendix C














CHAPTER 5
DISCUSSION


Overview of Principal Findings


This study investigated the mechanisms underlying myocardial oxidative stress in

the Zucker rat. In our preliminary experiment, we found that obese Zuckers had elevated

myocardial lipid peroxidation; to determine whether this was due to obesity per se or the

leptin receptor defect (fa/fa), we examined lipid peroxidation in high-fat fed (Fa/?) and

obese (fa/fa) animals. This study tested two hypotheses. First, we postulated that the

high-fat fed (Fa/?) animals and the obese (fa/fa) animals would have similar levels of

myocardial lipid peroxidation and that lipid peroxidation is highly correlated with the level

of adiposity. Second, we postulated that several factors could contribute to myocardial

oxidative stress in obesity, including: a) higher myocardial work, b) a compromised

antioxidant defense, c) higher myocardial lipid content, and d) increased superoxide anion

formation.

These data partially support hypothesis #1, that the two obesity models are

associated with elevated levels of lipid peroxidation. Indeed, the level of myocardial lipid

peroxidation, (hydroperoxides) was significantly correlated (p<0.05) with the level of

adiposity (BMI).

Hypothesis #2 was only partly supported by these data. Specifically, heart work

(systolic blood pressure X heart rate) and lipid content of the myocardium from the high














fat-fed (Fa/?) and obese (fa/fa) groups were greater (p<0.05) compared to the lean control

groups. Glutathione content, however, was increased in the F-H-BMI sand O-H-BMI

groups compared to lean controls. Furthermore, antioxidant enzyme activities (CAT,

CuZn-SOD) were elevated in the O-L-BMI and O-H-BMI groups compared to all other

groups. Lastly, there were no differences existed in the superoxide production by isolated

contracting papillary muscles in vitro. The following sections will discuss each of these

findings.



Lipid Peroxidation in Mvocardial Tissue of Obese Animals

A previous descriptive study from our laboratory indicated that genetically obese

Zucker animals (fa/fa) contained higher myocardial levels of TBARS and lipid

hydroperoxides compared to their age-matched lean counterparts (111). The current data

are the first to comprehensively investigate the potential sources of this lipid damage, and

possible mechanisms for increased susceptibility to myocardial oxidative stress using two

different models of obesity. Other reports indicate that lipid peroxidation is elevated in

other tissues such as liver and plasma in humans and obese animals (23, 24, 62).

Furthermore, diets enriched in fats (either saturated or unsaturated) are also associated

with increased lipid peroxidation in several tissues such as the myocardium, aorta, liver

and plasma (62, 69, 107). Collectively, these data indicate that high-fat feeding or















expression of the fa/fa gene is indeed associated with increased oxidative stress in various

tissues.

We attempted to address the issue of whether lipid peroxidation was due to high-

fat feeding or the leptin receptor defect by using a unique approach We investigated

animals that were developing obesity naturally as a consequence of their geneotype (fa/fa),

and we used cohorts of their lean counterparts (Fa/?) as the lean controls and the high-fat

fed groups. Over the course of the nine-week feeding period, individual animals developed

adiposity at different rates. By separating animals based on adiposity and genotype at the

conclusion of the study, we were able to examine the effects of the high-fat diet and the

leptin receptor defect on myocardial lipid peroxidation.

Basal lipid peroxidation products, (i.e., TBARS and hydroperoxides), were

elevated in the high-fat fed (F-H-BMI) and obese (O-L-BMI, O-H-BMI) groups. Post-

oxidative challenge TBARS values were elevated in F-H-BMI, O-L-BMI and O-H-BMI

groups. Interestingly, when expressed as TBARS/ mg tissue lipid, these differences

between groups disappeared, indicating the importance of increased lipid substrate target

for oxidation in the myocardium (this issue is discussed further in a subsequent section).

Considering the finding that hydroperoxide levels did not differ (p>0.05) between

the high-fat fed and obese groups, this suggests that the leptin receptor defect (fa/fa) is not

responsible for myocardial oxidative stress in obesity. In the following sections, we discuss














the contribution of four potential major pathways that could contribute to the elevated

lipid peroxidation in obesity



Potential Pathways for Obesity-Induced Oxidative Stress

We examined several systemic variables and biochemical parameters which could

contribute to myocardial oxidative stress in obesity. These measures included heart work

(double product: heart rate X systolic blood pressure), glutathione and antioxidant enzyme

activities, lipid content of the myocardial tissue, and superoxide anion production by

isolated papillary muscles. Each of these potential pathways and their relationship to

myocardial lipid peroxidation is examined in the following paragraphs.



Elevated Heart Work

The heart work estimate (rate pressure product = heart rate X systolic blood

pressure) was highest in the genetically obese groups (O-L-BMI, O-H-BMI), high in the

high-fat fed groups (F-L-BMI, F-H-BMI), and lowest in the controls (C-L-BMI, C-H-

BMI). Also, increased afterload (hypertension) was present in both models of obesity, and

the heart/body weight ratios of the O-L-BMI and O-H-BMI groups were lower than all

other groups. Although heart work was significantly correlated with both measures of

lipid peroxidation (hydroperoxides/ mg protein r=0.35, p=0.034, and TBARS levels














r=0.39, p=0.02), the regression analysis suggests that the overall contribution to the to

obesity-induced lipid peroxidation is not large (Table 12).

It is well established that in skeletal and heart muscle that elevated muscle work

(such as exercise, or some mechanical overload) is associated with increased free radical

production (49). Exercise or overload-induced increased oxygen consumption increases

the electron flux through the mitochondria in proportion to the overload, thus increasing

the risk for electron leakage in the electron transport chain. The result is excessive

production of superoxide anions or hydrogen peroxide (114). Excessive radical formation

can trigger a cascade of reactions that result in lipid peroxidation (34).

What is an explanation for the failure of the increasing increments in heart work to

proportionately increase lipid peroxidation between the high-fat fed and fa/fa animals?

There are two possibilities. First, it is possible that the obese animals were responding to

the (hypertension-induced) elevated heart work by improving elements of the myocardial

antioxidant defense. Even small elevations in the antioxidant capacity may provide enough

protection in the heart to remove reactive oxygen species generated by the hypertension-

induced elevations in heart work. Second, we monitored the physiologic variables such as

blood pressure in these animals at rest. It is possible that at rest, the workload on the heart

was not the level required to result in a significant increase in oxidant protection.














In summary, these data do not support the hypothesis that elevated heart work is a

major contributor to elevated lipid peroxidation in young adult high-fat fed animals (Fa/?)

and the obese fa/fa animals.



Compromised Antioxidant Defense

We hypothesized that a compromised myocardial antioxidant defense in obesity

was a potential mechanism to explain the elevated myocardial lipid peroxidation. Previous

investigations have reported obesity-related lower plasma or tissue levels of antioxidants

and/or increased susceptibility to oxidative challenges in vitro (24, 92, 93, 111).

This experiment demonstrated that glutathione levels (GSH, estimated by the non-

protein thiol fraction) were increased in hearts of the F-H-BMI and O-H-BMI groups

compared to the lean control groups. Furthemore, myocardial CAT activity was elevated

in the O-H-BMI group, and CuZn-SOD activity was elevated in both the O-L-BMI and 0-

H-BMI groups compared to the lean control groups. Hence, the antioxidant capacity of

the myocardium from obese animals does not appear to be depressed.

The elevations in the myocardial antioxidant defense in obesity suggest that these

hearts were exposed to greater radical production compared to the lean controls. It is well

established that the antioxidant enzyme activities and GSH concentrations increase in

response to free radical formation in an effort to protect the myocyte against subsequent

oxidative damage (49). The increased activities of SOD and CAT suggest that there was














excessive production of their substrates, superoxide and hydroperoxides respectively

(104), within the ventricular tissue of the O-L-BMI and O-H-BMI groups.

The adaptation of the primary antioxidant defense in the hearts of high-fat fed

animals (F-L-BMI, F-H-BMI) appeared to be incomplete, as indicated by the failure of any

antioxidant enzyme activity to increase with the high-fat diet. The failure of these groups

to demonstrate significant antioxidant enzyme up-regulation may be related to the

elevations in GSH in the F-H-BMI group. It is possible that the higher GSH content was

sufficient to suppress the signals necessary for antioxidant enzyme up-regulation in the

hearts of the fat-fed animals. For example, McDuffee et al. (1997) reported that oxidized

proteins containing non-native disulfide bonds are products ofoxidative stress, and can act

as signals for up-regulation of the tertiary antioxidant defense. It is possible then, that the

elevations in GSH in the F-H-BMI group could sufficiently reduce the oxidation of

proteins and lipids alike that may serve as stimuli for antioxidant enzyme up-regulation.

The oxidative challenge results (Figures 9a-b) indicated that the F-H-BMI, O-L-

BMI and O-H-BMI had similar levels of TBARS/mg protein following exposure to H202,

02 and OH radicals in vitro. The O-L-BMI and O-H-BMI groups had lower (p<0.05)

TBARS levels following the xanthine/ xanthine oxidase challenge superoxidee generating

system) compared to the other challenges (Figure 9a). This could suggest that the

elevations in CuZn-SOD in these groups were sufficient to protect against lipid

peroxidation following exposure to exogenous superoxide. Furthermore, the H202














generating system produced more TBARS in the F-H-BMI, O-L-BMI and O-H-BMI

groups compared to the remaining groups. This finding may be a consequence of the lack

of adaptation of GPX, as H202 is a substrate for GPX (114).

In summary, the current data do not support the hypothesis that the antioxidant

defense was insufficient; rather, antioxidant enzyme activities and GSH were up-regulated

in response to obesity. Furthermore, the data indicate that the antioxidant adaptations

were not a function of the leptin receptor defect (fa/fa), but a response to obesity per se.



Elevated Lipid Content

We also tested the hypothesis that the myocardial tissue from high-fat fed and fa/fa

animals contains higher lipid levels compared to their lean counterparts. Our data support

this hypothesis. Indeed, myocardial tissue obtained from the left ventricles of all high-fat

fed and fa/fa animals did indeed contain more lipid (p<0.05) compared to myocardial

tissue obtained from both groups of control animals (Table 8). Obesity due to both high-

fat feeding and development of obesity in the fa/fa genotype appeared to promote similar

deposition of fat into the myocardial tissue in the two obesity models (Table 8).

Several investigators have reported that lipid peroxidation is elevated in tissues

from fatty Zucker rats (fa/fa genotype) and in high-fat fed animals (62, 69, 107). We

previously reported that 12 month old fa/fa Zucker rats had a -30% greater myocardial

lipid content compared to their lean (Fa/?) counterparts (111). A potential mechanism for














increased lipid damage in obesity is that increased lipid substrate within the myocardium

can function as a larger target for oxidation by free radicals (63). Increasing the number of

lipid molecules within the cardiovascular system (within the cardiac cells and embedded

within the coronary vasculature intimal layers) may amplify lipid peroxidation injury (34).

Because we measured lipid peroxidation products from left ventrcular tissue

homogenates, it is likely that the lipid peroxidation reflects the combination of the

peroxidation products of both the myocytes and the vasculature. In the high-fat feeding

model, we surmise that the elevated lipid content is due to fat deposition and storage

within the myocytes (46, 111) and fat deposition onto the coronary endothelium (69, 107).

Previous experiments report that lipid peroxidation products are found within

atherosclerotic plaques from cardiovascular and/or obese patients, and within cardiac

tissue from high-fat fed animals (90). Both TBARS and lipid hydroperoxides/ mg lipid

were correlated with tissue lipid content (r=0.431 and r=0.760, p<0.05, respectively).

Lastly, the series of oxidative challenges revealed that the degree of lipid

peroxidation following the H202, FeC13 and xanthine/xanthine oxidase challenges was

related to amount of myocardial lipid. Based on these data, and the high correlation

between myocardial lipid content and lipid peroxidation products, it seems likely that

myocardial lipid content is an important contributor to myocardial lipid peroxidation in

both high-fat fed animals and fa/fa animals. Further, it appears that lipid peroxidation is a














function of obesity per se (consumption and deposition), and not a function of the leptin

receptor defect.



Superoxide Radical Production by Isolated Papillary Muscles

We hypothesized that contracting papillary muscles from obese animals will

produce superoxide anions at a greater rate compared to lean animals. Our data reveal that

superoxide formation by isolated papillary muscles in vitro does not differ across our

groups. There are two possibilities to explain this result.

First, it is possible that the antioxidant defense within the papillary muscles of the

heart adapted in response to the obesity overload in the obese models. Given that the

antioxidant defense increased in proportion to the overload, if excessive formation of

superoxide did occur in isolated papillary muscles during the stimulation protocol in vitro,

the majority of the radicals may have been scavenged and dismutated by endogenous SOD

before diffusion into the tissue bath. This is a likely possibility considering CuZn-SOD was

elevated in the ventricular tissue of the O-L-BMI and O-H-BMI groups, and these groups

exhibited a protection against the superoxide challenge in vitro.

Second, our findings do not preclude the possibility that ventricular tissue does

produce superoxide at a greater rate. Although isolated papillary muscles are widely used

as a model for cardiac contractility and performance (15, 56), there still may be enough of

a metabolic difference between the papillary muscle and ventricle that precludes significant














differences from being detected using our in vitro technique. Simple experiments

comparing 02' formation in the working isolated whole heart and the papillary muscle

could be performed to determine if this is the case.

In summary, these data suggest that a greater rate of superoxide production is not

a major contributor to the elevated lipid peroxidation in ventricular tissue in the high-fat

fed or fa/fa animals.



Maior Conclusions

Obesity that results from high-fat feeding and the leptin receptor defect (fa/fa) is

associated with elevated levels of lipid peroxidation. The level of myocardial lipid

peroxidation (hydroperoxides) was significantly correlated with the level of adiposity

(BMI) and lipid content, regardless of genotype (fa/fa or Fa/?). In contrast, elevated heart

work (systolic blood pressure X heart rate), insufficient antioxidant defenses, and

increased rate ofsuperoxide formation were not significant contributors to obesity-

induced myocardial lipid peroxidation. Hence, it seems likely that myocardial lipid

peroxidation is primarily due to obesity per se and not the leptin receptor defect (fa/fa

genotype)(Figure 11).














Physiological Significance

Chronically elevated levels of lipid peroxidation by-products could indicate that the

myocardium is less able to combat oxidative species and is more likely to sustain oxidative

injury (28, 41). For example, oxidative tissue injury was elevated in the myocardial tissue

of the high-fat fed and obese animals following several oxidative challenges in vitro. We

speculate that the heart tissues from these groups are less able to defend against oxidative

species generated in physiological scenarios such as ischemia-reperfusion and acute

exhaustive exercise. Furthermore, the elevated lipid by-products also trigger signal

transduction pathways that lead to apoptotic death or chemotaxis of tissue-devouring

macrophages (8, 34). The net result is increased risk for tissue damage during the

physiological stress and a reduced ability to repair itself and restore normal contractile

function.



Limitations to the Experiment and Future Directions

A limitation to this experiment was the difficulty in attaining the same degree of

adiposity between the high-fat fed (Fa/?) and obese (fa/fa) groups. The high-fat fed

animals controlled their dietary intake based on the caloric density of the food, such that

they consumed smaller volumes of the richer diet compared to the control diet fed lean

control animals. This delayed the accruement of body fat in the high-fat fed animals

(Figure 2). Even at the conclusion of the study, there were a few obesity "resistant"














animals that did not gain significantly higher fat than the C-H-BMI animals. This made it

difficult to determine the effects of diet-induced obesity and genetic obesity on myocardial

lipid peroxidation. Separation of the groups based on low and high BMI was required to

fully examine the relationships between systemic and biochemical variables and lipid

peroxidation.

A second limitation of this study was lack of a definite conclusion we could reach

with regard to lipid peroxidation and the rate of ventricular superoxide formation based on

the indirect measurement from isolated papillary muscle. It is currently unknown whether

radical formation and detection in vitro differ between papillary muscle and ventricle

tissue. To our knowledge, this study was the first to employ this new superoxide anion

detection technique in the isolated papillary muscle.

There are several possibilities for subsequent experiments. First, it is unknown

whether obesity increases lipid peroxidation in response to an oxidative challenge (i.e., an

acute bout of exercise) or an ischemic challenge in vivo. The data that could be obtained

from these experiments could provide information about the possible functional

consequences of obesity on the ability of the heart to withstand and ischemic-reperfusion

injury. Second, it is unclear how aging affects the myocardial lipid peroxidation profile in

obese animals. Our first experiment indicted that 12 month old animals had higher levels of

lipid peroxidation despite the normalization to myocardial lipid content, perhaps

suggesting that aging can increase the rate of radical formation, reduce the antioxidant








90






defense or increase the lipid deposition within the myocardium. These research questions

are testable and warrant further investigation. Lastly, it is unknown whether antioxidant

supplementation can reduce the myocardial lipid peroxidation in obese animals. Simple

feeding experiments can be conducted to determine the potential effects of various

antioxidants on lipid peroxidation and heart performance characteristics either in vitro or

in vivo.




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EAC21WV42_XIB5IL INGEST_TIME 2013-09-28T02:33:53Z PACKAGE AA00014296_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

0(&+$1,606 )25 0<2&$5',$/ 2;,'$7,9( 675(66 ,1 2%(6,7< %\ +($7+(5 .(7(/$$5 9,1&(17 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

&RS\ULJKW %\ +HDWKHU .HWHODDU 9LQFHQW

PAGE 3

7KLV GLVVHUWDWLRQ LV GHGLFDWHG WR P\ KXVEDQG .HYLQ DQG P\ fOLWWOH EXGG\f ,DQ
PAGE 4

$&.12:/('*0(176 0RUH WKDQ DQ\WKLQJ ZDQWHG WR OHDYH WKH &HQWHU IRU ([HUFLVH 6FLHQFH ZLWK WKH VHQVH WKDW KDG FRQWULEXWHG VRPHKRZ WRZDUG PDNLQJ ZKHUH VWXGLHG DQG ZRUNHG D EHWWHU SODFH IRU P\ KDYLQJ EHHQ WKHUH KRSH WKDW WKH VSLULW DQG IRUD\V RI WKLV SURMHFW LQWR D GLIIHUHQW DUHD KDYH KHOSHG WR GR MXVW WKDW FDQ EH VXUH KRZHYHU WKDW KDYH EHFRPH D EHWWHU SHUVRQ IRU KDYLQJ EHHQ KHUH RZH WKLV LV JUHDW SDUW WR P\ IULHQG DQG PHQWRU 'U 6FRWW 3RZHUV 7KHUH ZDV QR EHWWHU HGXFDWLRQ WKDQ WKH XQGHUVWDQGLQJ WUXVW DQG IDLWK WKDW FDPH ZLWK KLV IULHQGVKLS GXULQJ P\ VWD\ KHUH +H KDV KHOSHG PH LQ PDQ\ ZD\V HYROYH LQWR ZKR KDYH EHFRPH DQG KH KDV FODULILHG WKH GLUHFWLRQ LQ ZKLFK P\ HIIRUWV KDYH OHG PH FDQ RQO\ KRSH WKDW WKLV LV MXVW WKH EHJLQQLQJ RI D OLIHORQJ IULHQGVKLS $V D SHUVRQ DQG VFLHQWLVW KH LV D KDUG H[DPSOH WR IROORZ ZLOO GR P\ EHVW WR UHSUHVHQW KLP ZHOO LQ P\ FDUHHU 6LQFHUH DSSUHFLDWLRQ WR D IHOORZ VWXGHQW ZKR VSHQW WLUHOHVV KRXUV ZLWK PH LQ WKH ODE GHVLJQLQJ HTXLSPHQW DQG SHUIRUPLQJ VXUJHULHV DQG DVVD\V $PLH 'LUNV ,I FDQ UHSD\ \RX IRU \RXU KHOS ZLOO EH KHUH IRU \RX 6LQFHUH WKDQNV WR WKUHH YHU\ VSHFLDO OR\DO IULHQGV ZKR ZHUH WKHUH IRU PH HYHU\ WLPH QHHGHG WKHP 5DFKHO &XWOHU 6KDQQRQ /HQQRQ DQG 'DUE\ 6WHZDUW :LWKRXW DQ\ FRPSHQVDWLRQ \RX VSHQW PDQ\ KRXUV WDNLQJ FDUH RI ,DQ DQG KHOSLQJ XV GXULQJ PDQ\ VLWXDWLRQV WR PDNH OLIH D ELW HDVLHU FDQQRW WKDQN \RX HQRXJK ,9

PAGE 5

7R WKRVH IDFXOW\ WR ZKRP DP LQGHEWHG IRU WKH XVH RI \RXU HTXLSPHQW DQG IDFLOLWLHV 'U &KDUOHV :RRG 'U 5DQG\ %UDLWK 'U 'RGG DQG 'U 6WHSKHQ %RUVW \RXU SDWLHQFH DQG VXSSRUW KHOSHG PH WR FROOHFW LQYDOXDEOH GDWD IRU WKLV ZRUN 0RVW LPSRUWDQWO\ WR P\ KXVEDQG .HYLQ DQG P\ VRQ ,DQ ORYH \RX PRUH WKDQ DQ\WKLQJ LQ WKLV ZKROH ZRUOG ,W KDV EHHQ D ZKLUOZLQG RI D WRXU WKURXJK RXU OLYHV GXULQJ WKHVH SDVW FRXSOH \HDUV ORWV RI GHFLVLRQV DQ[LHW\ DQG WU\LQJ H[SHULHQFHV $ERYH DOO HOVH \RX DUH WKH EULJKW OLJKWV LQ P\ OLIH
PAGE 6

7$%/( 2) &217(176 3DJH $&.12:/('*0(176 LY $%675$&7 L[ &+$37(56 ,1752'8&7,21 6SHFLILF $LPV +\SRWKHVLV -XVWLILFDWLRQ 6LJQLILFDQFH /,7(5$785( 5(9,(: ,QWURGXFWLRQ 7KH 2EHVLW\ 6\QGURPH 2EHVLW\ DQG 0\RFDUGLDO 2YHUORDG 0\RFDUGLDO 3URGXFWLRQ RI 5HDFWLYH 2[\JHQ 6SHFLHV 0DMRU 526 DQG 6RXUFHV RI 526 0\RFDUGLDO $QWLR[LGDQW 'HIHQVH (Q]\PDWLF 'HIHQVH *OXWDWKLRQH 'LHWDU\ $QWLR[LGDQWV DQG 0\RFDUGLDO 3URWHFWLRQ 2[LGDWLYH ,QMXU\ WR 0\RFDUGLDO 7LVVXH /LSLG +\GURSHUR[LGHV DQG 0DORQGLDOGHK\GH 2[LGDWLYH 'DPDJH WR 0HPEUDQHV 2EHVLW\ DQG 2[LGDWLYH 6WUHVV ,QFUHDVHG 0\RFDUGLDO :RUN 5DWH &RPSURPLVHG $QWLR[LGDQW 'HIHQVH 0\RFDUGLDO )DW &RPSRVLWLRQ DQG 2[LGL]DELOLW\ 7KH *HQHWLF &RQWULEXWLRQ WR 2EHVLW\ 3UHOLPLQDU\ ([SHULPHQWV 6XVFHSWLELOLW\ WR DQ 2[LGDWLYH &KDOOHQJH LQ YLWUR 3ULPDU\ $QWLR[LGDQW 'HIHQVH 7HUWLDU\ $QWLR[LGDQW 'HIHQVH YL

PAGE 7

/LSLG &RQWHQW RI WKH 0\RFDUGLXP 8QDQVZHUHG ,VVXHV 0(7+2'6 $QLPDOV ([SHULPHQWDO 'HVLJQ DQG 'LHW $QLPDO 0RGHO -XVWLILFDWLRQ $VVHVVPHQW RI 6\VWHPLF &KDQJHV :LWK 2EHVLW\ 5HVWLQJ 2[\JHQ &RQVXPSWLRQ 92f +HDUW 5DWH DQG %ORRG 3UHVVXUH %ORRG *OXFRVH DQG ,QVXOLQ &RQFHQWUDWLRQV +HDUW :HLJKW $GLSRVLW\ +HDUW 7LVVXH &RPSRVLWLRQ /LSLG &RQWHQW RI WKH 0\RFDUGLXP :DWHU &RQWHQW DQG 'U\ :HLJKW 5DGLFDO 3URGXFWLRQ E\ WKH 0\RFDUGLXP ,VRODWHG 3DSLOODU\ 0XVFOH ([SHULPHQWV $VVHVVPHQW RI 0\RFDUGLDO $QWLR[LGDQW 6WDWXV 2[LGDWLYH DQG $QWLR[LGDQW (Q]\PH $FWLYLW\ 7LVVXH 7KLRO 0HDVXUHPHQWV %LRFKHPLFDO ,QGLFDWRUV RI 2[LGDWLYH 6WUHVV /LSLG 3HUR[LGDWLRQ 0HDVXUHPHQWV 2[LGDWLYH &KDOOHQJHV LQ YLWUR ;DQWKLQH;DQWKLQH 2[LGDVH 6\VWHP 6XSHUR[LGH *HQHUDWRUf +\GURJHQ 3HUR[LGH 6\VWHP )HUULF &KORULGH 6\VWHP +\GUR[\O *HQHUDWRUf $$3+ 6\VWHP 3HUR[\O JHQHUDWRU LQ WKH /LSLG 3KDVHf 6WDWLVWLFDO $QDO\VLV 5(68/76 'LHW DQG $QWLR[LGDQW &RQVXPSWLRQ %RG\ :HLJKW &KDQJHV :LWK )HHGLQJ 0RUSKRORJLFDO &KDUDFWHULVWLFV 3K\VLRORJLFDO &KDUDFWHULVWLFV +HDUW 5DWHV %ORRG 3UHVVXUHV DQG +HDUW :RUN 2[\JHQ &RQVXPSWLRQ DQG %RG\ 0DVV ,QGH[ %0,f %ORRG *OXFRVH DQG ,QVXOLQ &RQFHQWUDWLRQV +HDUW 7LVVXH &KDUDFWHULVWLFV YLL

PAGE 8

nn 3URGXFWLRQ &\WRFKURPH & $VVD\ 2[LGDWLYH DQG $QWLR[LGDQW (Q]\PH $FWLYLWLHV 7LVVXH 7KLROV %DVDO /LSLG 3HUR[LGDWLRQ 2[LGDWLYH &KDOOHQJHV LQ YLWUR &RUUHODWLRQV %HWZHHQ /LSLG +\GURSHUR[LGHV DQG 3K\VLRORJLF 0HDVXUHV 6WHSZLVH 5HJUHVVLRQ 0RGHO IRU 0\RFDUGLDO /LSLG 3HUR[LGDWLRQ ',6&866,21 2YHUYLHZ RI 3ULQFLSDO )LQGLQJV /LSLG 3HUR[LGDWLRQ LQ 0\RFDUGLDO 7LVVXH RI 2EHVH $QLPDOV 3RWHQWLDO 3DWKZD\V IRU 2EHVLW\,QGXFHG 2[LGDWLYH 6WUHVV (OHYDWHG +HDUW :RUN &RPSURPLVHG $QWLR[LGDQW 'HIHQVH (OHYDWHG /LSLG &RQWHQW 6XSHUR[LGH 5DGLFDO 3URGXFWLRQ E\ ,VRODWHG 3DSLOODU\ 0XVFOHV 0DMRU &RQFOXVLRQV 3K\VLRORJLFDO 6LJQLILFDQFH /LPLWDWLRQV WR WKH ([SHULPHQW DQG )XWXUH 'LUHFWLRQV $33(1',&(6 $ 6$03/( 6,=( (67,0$7,21 % ',(7$5< $1' 9,7$0,1 0,;(6 )25 (;3(5,0(17$/ ',(76 & 5(6,'8$/ 3/276 )25 7+( 5(*5(66,21 (48$7,21 ,1 7$%/( 5()(5(1&(6 YLLL %,2*5$3+,&$/ 6.(7&+

PAGE 9

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 0(&+$1,606 )25 0<2&$5',$/ 2;,'$7,9( 675(66 ,1 2%(6,7< %\ +HDWKHU .HWHODDU 9LQFHQW 0D\ &KDLUPDQ 6FRWW\ 3RZHUV 0DMRU 'HSDUWPHQW ([HUFLVH DQG 6SRUW 6FLHQFHV 2EHVLW\ LV DVVRFLDWHG ZLWK LQFUHDVHG P\RFDUGLDO R[LGDWLYH VWUHVV \HW WKH PHFKDQLVPVf UHVSRQVLEOH IRU WKLV GDPDJH DUH XQNQRZQ :H K\SRWKHVL]HG WKDW HOHYDWHG KHDUW ZRUN DQ LQFUHDVHG UDWH RI VXSHUR[LGH 2 f SURGXFWLRQ LQFUHDVHG P\RFDUGLDO OLSLG FRQWHQW DQG LQVXIILFLHQW DQWLR[LGDQW GHIHQVHV FRQWULEXWH WR R[LGDWLYH VWUHVV LQ REHVLW\ 7R WHVW WKLV K\SRWKHVLV =XFNHU UDWV ZHHNV ROGf ZHUH IHG H[SHULPHQWDO GLHWV IRU ZHHNV WR SURPRWH REHVLW\ E\ KLJKIDW LQWDNH RU ODFN RI H[SUHVVLRQ RI WKH OHSWLQ UHFHSWRU /HDQ FRQWURO UDWV &21 )D"f ZHUH IHG HLWKHU D FRQWURO GLHW b IDWf RU D KLJKIDW GLHW )$7 b IDWf ZKLOH REHVH UDWV 2% IDIDf ZHUH IHG WKH FRQWURO GLHW 2[LGDWLYH VWUHVV ZDV DVVHVVHG E\ PHDVXUHPHQW RI K\GURSHUR[LGHV 3(52;f DQG WKLREDUELWXULF UHDFWLYH DFLG VXEVWDQFHV 7%$56f L[

PAGE 10

&RPSDUHG WR &21 WKH )$7 DQG 2% KDG VLPLODU HOHYDWLRQV LQ 3(52; DQG 7%$56 b DQG b UHVSHFWLYHO\ Sf 6PDOO EXW VLJQLILFDQW GLIIHUHQFHV Sf LQ UHVWLQJ KHDUW ZRUN KHDUW UDWH ; V\VWROLF EORRG SUHVVXUHf H[LVWHG EHWZHHQ WKH )$7 DQG 2% FRPSDUHG WR &21 $FWLYLWLHV RI DQWLR[LGDQW HQ]\PHV &X=QVXSHUR[LGH GLVPXWDVH DQG FDWDODVH DQG HQGRJHQRXV JOXWDWKLRQH OHYHOV ZHUH HOHYDWHG b b DQG b UHVSHFWLYHO\ Sf LQ 2% FRPSDUHG WR &21 0\RFDUGLDO OLSLG FRQWHQW ZDV LQFUHDVHG VLPLODUO\ DPRQJ DOO )$7 DQG 2% DQLPDOV Sf FRPSDUHG WR &21 7KH UDWH RI 2n IRUPDWLRQ E\ LVRODWHG SDSLOODU\ PXVFOHV LQ YLWUR GLG QRW GLIIHU DPRQJ WKH H[SHULPHQWDO JURXSV Sf 5HJUHVVLRQ DQDO\VLV UHYHDOHG WKDW WKH ODUJHVW FRQWULEXWRU WR R[LGDWLYH GDPDJH ZDV P\RFDUGLDO OLSLG FRQWHQW 5 Sf 7KHVH GDWD LQGLFDWH WKDW P\RFDUGLDO R[LGDWLYH LQMXU\ LV QRW FORVHO\ OLQNHG ZLWK HOHYDWHG KHDUW ZRUN LQVXIILFLHQW DQWLR[LGDQW GHIHQVHV RU D JUHDWHU UDWH RI 2n SURGXFWLRQ ,Q FRQWUDVW P\RFDUGLDO OLSLG FRQWHQW LV D NH\ FRQWULEXWRU WR REHVLW\UHODWHG P\RFDUGLDO R[LGDWLYH VWUHVV

PAGE 11

&+$37(5 ,1752'8&7,21 2EHVLW\ LV D VHULRXV FOLQLFDO GLVRUGHU DIIHFWLQJ PLOOLRQV RI $PHULFDQV bf DQG WKH LQFLGHQFH LV VWHDGLO\ LQFUHDVLQJ SHU \HDU f $Q DODUPLQJ WUHQG LV WKH LQFUHDVH LQ WKH SHUFHQWDJH RI DGROHVFHQWV DQG \RXQJ DGXOWV ZKR DUH EHFRPLQJ REHVH HVWLPDWHV UDQJLQJ IURP WR bf ZLWK DQ HYHUULVLQJ SHUFHQWDJH RI REHVH \RXWKV EHFRPLQJ VHYHUHO\ REHVH f 2EHVLW\ LV DQ LQGHSHQGHQW ULVN IDFWRU IRU FDUGLRYDVFXODU GLVHDVH DQG LQFUHDVHG PRUWDOLW\ f 7KH XQGHUO\LQJ PHFKDQLVPV IRU WKLV LQFUHDVHG PRUELGLW\ DQG PRUWDOLW\ DUH XQNQRZQ ,QIRUPDWLRQ LV VFDUFH UHJDUGLQJ WKH P\RFDUGLDO DOWHUDWLRQV WKDW RFFXU DW WKH FHOOXODU OHYHO WKDW PDNH WKH REHVH LQGLYLGXDO PRUH SURQH WR P\RFDUGLDO LQMXU\ RU LUUHYHUVLEOH GDPDJH OHDGLQJ WR GHDWK +HQFH UHVHDUFK LQ WKLV DUHD LV FOHDUO\ ZDUUDQWHG $ SUHOLPLQDU\ ELRFKHPLFDO LQYHVWLJDWLRQ LQ RXU ODERUDWRU\ LQGLFDWHV WKDW REHVLW\ LV DVVRFLDWHG ZLWK LQFUHDVHG P\RFDUGLDO OLSLG SHUR[LGDWLRQ DQG VXVFHSWLELOLW\ WR R[LGDWLYH GDPDJH LQ YLWUR f 7KH SRWHQWLDO FRQVHTXHQFHV RI R[LGDWLYH GDPDJH FDQ EH VHYHUH VWXGLHV H[DPLQLQJ R[LGDWLYH VWUHVV DQG WKH P\RFDUGLXP KDYH VKRZQ WKDW FHOOXODU PHPEUDQH LQWHJULW\ FDQ EH ORVW f DQG OLSLGV DQG SURWHLQV DUH WUDQVLHQWO\ RU LUUHYHUVLEO\ DOWHUHG UHVXOWLQJ LQ P\RFDUGLDO FRQWUDFWLOH G\VIXQFWLRQ f 7KHVH IDFWRUV FDQ XOWLPDWHO\ OHDG WR FDUGLDF DUUK\WKPLDV SRRU FRQWUDFWLOLW\ LQIDUFWLRQ FDUGLDF IDLOXUH RU VXGGHQ GHDWK f ,

PAGE 12

*HQHWLFV DQG HQYLURQPHQW KDYH ERWK EHHQ LGHQWLILHG DV PDMRU FRQWULEXWRUV LQ WKH HWLRORJ\ RI REHVLW\ f 7KH LQGLYLGXDO HIIHFWV RI WKHVH IDFWRUV RQ WKH SUHGLVSRVLWLRQ WR R[LGDWLYH VWUHVV LQ WKH P\RFDUGLXP LV XQNQRZQ 7KH FXUUHQW DQLPDO PRGHOV XVHG LQ WKH VWXG\ RI WKH V\VWHPLF HIIHFWV RI REHVLW\ LQFOXGH WKH ZLGHO\ DFFHSWHG JHQHWLFDOO\ LQEUHG IDWW\ =XFNHU UDW IDIDf DQG WKH RYHUIHG RYHUZHLJKW UDW $OWKRXJK ERWK PRGHOV LQFUHDVH P\RFDUGLDO ZRUN H J HOHYDWHG V\VWROLF EORRG SUHVVXUHf WKH DFTXLUHG DQG JHQHWLF REHVLW\ PRGHOV KDYH GLIIHUHQW LQIOXHQFHV RQ P\RFDUGLDO ZRUN DQG SRVVLEO\ WKH OHYHO RU W\SH RI R[LGDWLYH VWUHVV 7KH VLJQLILFDQFH RI WKLV LVVXH LV VXFK WKDW LQ KXPDQ REHVLW\ WKHUH DUH ERWK KHULWDEOH DQG HQYLURQPHQWDO IDFWRUV WKDW DUH LQYROYHG LQ WKH SDWKRJHQHVLV RI REHVLW\ DQG LWV DVVRFLDWLRQ ZLWK FDUGLRYDVFXODU GLVHDVH f 5HFHQW HYLGHQFH VXJJHVWV WKDW R[LGDWLYH VWUHVV LV LQYROYHG LQ WKH FHOOXODU GDPDJH LQFXUUHG E\ FDUGLRYDVFXODU GLVRUGHUV VXFK DV FRURQDU\ DUWHU\ GLVHDVH K\SHUWHQVLRQ DWKHURVFOHURVLV DQG YDVRVSDVWLF DQJLQD f &RQVLGHULQJ WKDW REHVLW\ Df LV RIWHQ DFFRPSDQLHG E\ WKHVH FDUGLRYDVFXODU GLVRUGHUV DQG Ef LV DVVRFLDWHG ZLWK P\RFDUGLDO R[LGDWLYH VWUHVV LW LV LPSRUWDQW WR H[DPLQH R[LGDWLYH FHOOXODU LQMXU\ LQ ERWK JHQHWLF DQG DFTXLUHG REHVLW\ PRGHOV 7KHUH DUH VHYHUDO SRWHQWLDO PHFKDQLVPV WR H[SODLQ WKH LQFUHDVH LQ P\RFDUGLDO OLSLG SHUR[LGDWLRQ DVVRFLDWHG ZLWK REHVLW\ f LQFUHDVHG P\RFDUGLDO ZRUN DQG R[\JHQ IOX[ WKURXJK WKH PLWRFKRQGULDO UHVSLUDWRU\ FKDLQ f f D GHFUHDVHG P\RFDUGLDO DQWLR[LGDQW GHIHQVH f f LQFUHDVHG IDW GHSRVLWLRQ ZLWKLQ P\RFDUGLDO WLVVXH f DQG f LQFUHDVHG UDWHV RI UDGLFDO IRUPDWLRQ f $OWKRXJK WKHUH LV LQGLUHFW HYLGHQFH WR VXSSRUW

PAGE 13

WKDW DOO WKHVH PHFKDQLVPV FRQWULEXWH WR P\RFDUGLDO R[LGDWLYH GDPDJH LQ WKH REHVH GLUHFW HYLGHQFH LV ODFNLQJ ,Q DGGLWLRQ LW LQ XQFOHDU KRZ HDFK RI WKHVH IDFWRUV DUH GLIIHUHQWLDOO\ LQIOXHQFHG E\ WKH IDID JHQRW\SH DQG GLHW 7KHUHIRUH WKLV LQYHVWLJDWLRQ ZLOO H[DPLQH WKH UHODWLRQVKLSV EHWZHHQ R[LGDWLYH VWUHVV DQG WKH FHOOXODU FKDUDFWHULVWLFV RI WKH P\RFDUGLXP IURP DQLPDOV RI WZR REHVLW\ PRGHOV KLJKIDW IHG DQLPDOV DQG DQLPDOV SRVVHVVLQJ WKH OHSWLQ UHFHSWRU GHIHFW IDIDf :H DWWHPSWHG WR GHWHUPLQH WKH LQIOXHQFH RI WKH OHSWLQ UHFHSWRU GHIHFW IDIDf DQG KLJKIDW IHHGLQJ RQ P\RFDUGLDO OLSLG SHUR[LGDWLRQ 6SHFLILF $LPV 2EHVLW\ LV DVVRFLDWHG ZLWK LQFUHDVHG P\RFDUGLDO OLSLG R[LGDWLYH GDPDJH LQ WKH REHVH IDWW\ =XFNHU UDW f ,W LV XQNQRZQ ZKHWKHU WKHVH REHVH DQLPDOV DQG OHDQ DQLPDOV WKDW DUH IHG D KLJKIDW GLHW DUH DW WKH VDPH ULVN IRU P\RFDUGLDO OLSLG SHUR[LGDWLRQ 6HYHUDO OLQHV RI HYLGHQFH VXJJHVW WKDW WKHUH DUH PDQ\ SRWHQWLDO PHFKDQLVPV WKDW FRXOG SURPRWH OLSLG SHUR[LGDWLRQ LQ WKH P\RFDUGLXP LQ HLWKHU WKH IDID UDW RU WKH KLJKIDW IHG DQLPDO 7KLV LQYHVWLJDWLRQ ZLOO FRPSDUH WKH FHOOXODU DQWLR[LGDQW FKDUDFWHULVWLFV DQG LQ YLWUR UHVSRQVHV RI P\RFDUGLDO WLVVXH IURP JHQHWLFDOO\ OHDQ )D"f JHQHWLFDOO\ REHVH IDIDf DQG KLJKIDW IHG UDWV )D"f 7KHUHIRUH WKH VSHFLILF DLPV RI WKLV SURMHFW DUH DV IROORZV 6SHFLILF $LP 7R GHWHUPLQH LI KLJKIDW IHG UDWV )D" b GLHWDU\ IDWf DQG WKH REHVH UDW IDID b GLHWDU\ IDWf H[SHULHQFH WKH VDPH OHYHOV RI R[LGDWLYH LQMXU\ LH OLSLG SHUR[LGDWLRQf LQ WKH P\RFDUGLXP

PAGE 14

+\SRWKHVLV :H K\SRWKHVL]H WKDW WKH KLJKIDW IHG DQG REHVH DQLPDOV IDIDf ZLOO KDYH VLPLODU OHYHOV RI OLSLG SHUR[LGDWLRQ )XUWKHU ZH K\SRWKHVL]H IXUWKHU WKDW WKH GHJUHH RI OLSLG SHUR[LGDWLRQ ZLOO EH LQGHSHQGHQW RI WKH IDID JHQRW\SH DQG GHSHQGHQW XSRQ WKH GHJUHH RI DGLSRVLW\ 6SHFLILF $LP 7R V\VWHPDWLFDOO\ H[DPLQH VHYHUDO IDFWRUV ZKLFK FRXOG FRQWULEXWH WR HOHYDWHG P\RFDUGLDO R[LGDWLYH VWUHVV LH OLSLG SHUR[LGDWLRQf LQ REHVLW\ 7KHVH LQFOXGH f LQFUHDVHG KHDUW ZRUN UDWH SUHVVXUH SURGXFWf GXH WR REHVLW\ f LQVXIILFLHQW LQWUDFHOOXODU SULPDU\ DQWLR[LGDQWV VXFK DV DQWLR[LGDQW HQ]\PHV DQG JOXWDWKLRQH f LQFUHDVHG IDW GHSRVLWLRQ ZLWKLQ P\RFDUGLDO WLVVXH DQG f LQFUHDVHG UDWH RI UDGLFDO IRUPDWLRQ VXSHUR[LGHf E\ LVRODWHG SDSLOODU\ PXVFOHV IRUP WKH KHDUW :H ZLOO WHVW WKH IROORZLQJ K\SRWKHVHV +\SRWKHVLV D 2EHVH DQLPDOV ZLOO KDYH D KLJKHU GRXEOH SURGXFW LH KHDUW UDWH ; V\VWROLF EORRG SUHVVXUHf FRPSDUHG WR OHDQ DQLPDOV +\SRWKHVLV E *OXWDWKLRQH OHYHOV DQG DQWLR[LGDQW HQ]\PH DFWLYLWLHV ZLOO EH UHGXFHG LQ KHDUWV RI REHVH DQLPDOV FRPSDUHG WR OHDQ DQLPDOV +\SRWKHVLV F 0\RFDUGLDO WLVVXH REWDLQHG IURP WKH OHIW YHQWULFOHV RI REHVH DQLPDOV ZLOO FRQWDLQ PRUH OLSLG FRPSDUHG WR P\RFDUGLDO WLVVXH REWDLQHG E\ OHDQ DQLPDOV +\SRWKHVLV G &RQWUDFWLQJ SDSLOODU\ PXVFOHV IURP REHVH DQLPDOV ZLOO SURGXFH VXSHUR[LGH DQLRQV DW D JUHDWHU UDWH FRPSDUHG WR OHDQ DQLPDOV

PAGE 15

+\SRWKHVLV -XVWLILFDWLRQ :H K\SRWKHVL]H WKDW WKH GHJUHH RI P\RFDUGLDO OLSLG SHUR[LGDWLRQ ZLOO QRW GLIIHU EHWZHHQ KLJKIDW IHG UDWV )D"f DQG WKH REHVH IDID UDWV 7KH IDFWRUV ZKLFK FDQ LQFUHDVH R[LGDWLYH VWUHVV RQ WKH KHDUW DUH VLPLODU EHWZHHQ ERWK RI WKHVH DQLPDO PRGHOV 6SHFLILFDOO\ REHVLW\LQGXFHG K\SHUWHQVLRQ KDV EHHQ GRFXPHQWHG LQ ERWK RYHUIHG DQLPDOV IHG KLJKIDW GLHWV f DQG LQ REHVH =XFNHU UDWV f +\SHUWHQVLRQ IRUFHV WKH P\RFDUGLXP WR ZRUN DW JUHDWHU ZRUNORDGV LQGHSHQGHQW RI JHQRW\SH f 7KH P\RFDUGLDO UDWH SUHVVXUH SURGXFW DQG R[\JHQ XSWDNH LQFUHDVH LQ REHVLW\ 7KHVH SURFHVVHV FDQ OHDG WR H[FHVVLYH 2\n SURGXFWLRQ ,Q DGGLWLRQ WKH SUHVHQFH RI H[FHVVLYH IDW GHSRVLWLRQ ZLWKLQ WKH P\RFDUGLXP LQ JHQHWLFDOO\ REHVH RU RYHUIHG RYHUZHLJKW DQLPDOV VHUYHV DV DQ HQODUJHG WDUJHW IRU OLSLG SHUR[LGDWLRQ f 7KHVH IDFWRUV DSSHDU WR EH LQGHSHQGHQW RI JHQHWLFV +HQFH ZH VSHFXODWH WKDW OLSLG SHUR[LGDWLRQ OHYHOV ZLOO EH WKH VDPH LQ ERWK JURXSV RI REHVH DQLPDOV 2XU VHFRQG VHULHV RI K\SRWKHVHV UHODWH WR IDFWRUV FRQWULEXWLQJ WR LQFUHDVHG P\RFDUGLDO OLSLG SHUR[LGDWLRQ LQ REHVH DQLPDOV )LUVW K\SRWKHVLV D VWDWHV WKDW REHVH DQLPDOV ZLOO KDYH D KLJKHU GRXEOH SURGXFW FRPSDUHG WR OHDQ DQLPDOV $V SUHYLRXVO\ PHQWLRQHG REHVLW\ SODFHV D VXEVWDQWLDO PHFKDQLFDO ORDG RQ WKH KHDUW ZKLFK LQFUHDVHV P\RFDUGLDO R[\JHQ FRQVXPSWLRQ DV HYLGHQFHG E\ WKH LQFUHDVHG UDWH SUHVVXUH SURGXFW f 6HFRQG K\SRWKHVLV E VWDWHV WKDW JOXWDWKLRQH DQG DQWLR[LGDQW HQ]\PH OHYHOV ZLOO EH

PAGE 16

UHGXFHG LQ KHDUWV RI REHVH DQLPDOV FRPSDUHG WR OHDQ DQLPDOV 2EHVLW\ LQ KXPDQV DQG DQLPDOV LV DVVRFLDWHG ZLWK ORZHUHG VHUXP RU WLVVXH YLWDPLQ ( SFDURWHQH DQGRU WLVVXH JOXWDWKLRQH f DQG VRPH UHSRUWV LQGLFDWH UHGXFHG DQWLR[LGDQW HQ]\PH DFWLYLWLHV +\SRWKHVLV E SRVWXODWHV WKDW WKH OHIW YHQWULFOHV RI REHVH IDIDf DQLPDOV ZLOO FRQWDLQ PRUH OLSLG FRPSDUHG WR YHQWULFXODU WLVVXH RI OHDQ DQLPDOV ,QFUHDVHG GHSRVLWLRQ RI SRO\XQVDWXUDWHG RU VDWXUDWHGf IDWV ZLWKLQ WLVVXHV LV FRPPRQ WR REHVLW\ DQG LQFUHDVHV WKH ULVN IRU OLSLG SHUR[LGDWLRQ E\ LQFUHDVLQJ WKH R[LGDWLRQ WDUJHW QXPEHU f /DVWO\ K\SRWKHVLV E VWDWHV WKDW FRQWUDFWLQJ SDSLOODU\ PXVFOHV IURP REHVH DQLPDOV ZLOO SURGXFH VXSHUR[LGH DQLRQV DW D JUHDWHU UDWH FRPSDUHG WR OHDQ DQLPDOV ,W KDV EHHQ VXJJHVWHG WKDW WKHUH LV D JUHDWHU PLWRFKRQGULDO OLSLG R[LGDWLRQ UDWH LQ WLVVXH RI REHVH DQLPDOV f SURYLGLQJ LQGLUHFW HYLGHQFH IRU WKH QRWLRQ WKDW WKH HOHYDWHG R[\JHQ IOX[ WKURXJK WKH PLWRFKRQGULD PD\ EH D SULPDU\ VRXUFH RI 526 SURGXFWLRQ ZLWKLQ P\RF\WHV IURP REHVH DQLPDOV f 6LJQLILFDQFH 2EHVLW\ LV DQ LQFUHDVLQJO\ SUHYDOHQW PHWDEROLF GLVRUGHU DIIHFWLQJ QRW RQO\ WKH 86 SRSXODWLRQ EXW DOVR WKDW RI WKH GHYHORSLQJ ZRUOG f ,W LV DVVRFLDWHG ZLWK PDQ\ FRPRUELGLWLHV DQG LW FRPSOLFDWHV KHDOWK FRQGLWLRQV LQ SDWLHQWV ZLWK YDULRXV FDQFHUV GLDEHWHV DQG FDUGLRYDVFXODU GLVHDVH f 2EHVLW\ LV OLQNHG ZLWK D KLJK PRUELGLW\ DQG PRUWDOLW\ UDWH SDUWLFXODUO\ DPRQJ FDUGLRYDVFXODU SDWLHQWV f 0RUH IUHTXHQW KDYH WKH

PAGE 17

LQFLGHQFHV RI IDWDO DQG QRQIDWDO KHDUW GLVHDVH DUUK\WKPLDV DQG VXGGHQ GHDWK EHFRPH LQ REHVH SHUVRQV GXULQJ UHFHQW \HDUV f 7KH HFRQRPLF EXUGHQ WKDW REHVLW\ DQG LWV UHODWHG GLVRUGHUV SODFH RQ WKH 86 KHDOWK FDUH V\VWHP LV HQRUPRXV 7KH GLUHFW FRVW RI REHVLW\ DORQH ZDV UHFHQWO\ HVWLPDWHG DW ELOOLRQ f +RZHYHU WKLV HVWLPDWH LV ORZ GXH WR WKH IDFW WKDW PDQ\ RI WKH GLVRUGHUV VXFK DV KHDUW GLVHDVH WKDW DULVH IURP REHVLW\ DUH FODVVLILHG DV LOOQHVVHV VHSDUDWH IURP REHVLW\ DQ DGGLWLRQDO ELOOLRQ DUH XVHG WR WUHDW WKHVH GLVRUGHUV WKDW DUH DVVRFLDWHG ZLWK REHVLW\ 7KH SUHYDOHQFH RI REHVLW\ LQ WKH DGXOW SRSXODWLRQ LV UDSLGO\ LQFUHDVLQJ E\ b SHU \HDU IRU PHQ DQG b SHU \HDU IRU ZRPHQ FXUUHQWO\ a b RI WKH DGXOW SRSXODWLRQ LV VHYHUHO\ REHVHf f 0RUH DODUPLQJ LV WKH IDFW WKDW WKH SHUFHQWDJH RI FKLOGUHQ WKDW DUH EHFRPLQJ REHVH LV ULVLQJ UDSLGO\ f 7KHVH VWDWLVWLFV VXJJHVW WKDW REHVLW\ LV D GLVRUGHU WKDW ZLOO FRQWLQXH WR DIIHFW RXU QDWLRQfV SRSXODWLRQ DQG GUDLQ RXU KHDOWK FDUH UHVRXUFHV 7KH 86 ZLOO FRQWLQXH WR VXIIHU HFRQRPLFDOO\ DV D UHVXOW RI WKLV GLVHDVH +HQFH LW LV HVVHQWLDO WKDW ZH H[SDQG RXU NQRZOHGJH DERXW WKH REHVLW\ V\QGURPH

PAGE 18

&+$37(5 /,7(5$785( 5(9,(: ,QWURGXFWLRQ 2EHVLW\ LV D SUHYDOHQW GLVRUGHU LQ WKH 8 6 SRSXODWLRQ DQG LV DOVR EHFRPLQJ DQ HSLGHPLF LQ (XURSHDQ FRXQWULHV &DQDGD DQG WKH WKLUG ZRUOG f $FFRUGLQJ WR WKH UHFHQW SKDVH RI WKH 1DWLRQDO +HDOWK DQG 1XWULWLRQ ([DPLQDWLRQ 6XUYH\ 1+$1(6 ,,, f DSSUR[LPDWHO\ b RI WKH 86 SRSXODWLRQ LV REHVH b PRUH WKDQ ZKHQ WKH ODVW SKDVH RI1+$1(6 ,, ZDV FRPSOHWHG f f 2EHVLW\ LV GHILQHG DV WKH DFFXPXODWLRQ RI H[FHVV IDW VXFK WKDW WKH ERG\ PDVV LQGH[ %0, PDVVKHLJKWf LV JUHDWHU WKDQ NJP f 7KLV RYHUIDWQHVV LV DVVRFLDWHG ZLWK D QXPEHU RI FRPRUELGLWLHV LQFOXGLQJ PDQ\ IRUPV RI KHDUW GLVHDVH )DW GLVWULEXWLRQ DOVR UHSUHVHQWV ULVN IRU KHDUW GLVHDVH GHSRVLWLRQ RI IDW LQ WKH DEGRPHQ LQGLFDWHV D JUHDWHU ULVN IRU FRURQDU\ KHDUW GLVHDVH PRUWDOLW\ f 2EHVLW\ FDQ GHYHORS DV D FRQVHTXHQFH RI HQYLURQPHQW VXFK WKDW RYHUHDWLQJ RU FRQVXPSWLRQ RI D KLJKIDW GLHW LQGXFHV IDW DFFUHWLRQ WKDW PD\ H[DFHUEDWH ZHLJKW JDLQ *HQHWLFV FDQ VLJQLILFDQWO\ FRQWULEXWH WR b RI WKH FDVHV RI REHVLW\ E\ LQIOXHQFLQJ IDW DFFUHWLRQ WKURXJKRXW OLIH DQG SDVVLQJ RQ JHQHV WKDW SUHGLVSRVH WKH RIIVSULQJ WR REHVLW\ UHODWHG FRPSOLFDWLRQV f :KLOH LW LV ZHOO HVWDEOLVKHG WKDW REHVLW\ LV DVVRFLDWHG LV DQ LQFUHDVHG ULVN RI KHDUW GLVHDVH UHFHQW HYLGHQFH DOVR LQGLFDWHV WKDW REHVLW\ LV DOVR DVVRFLDWHG ZLWK DQ LQFUHDVH LQ R[LGDWLYH GDPDJH WR WKH P\RFDUGLXP f 7KH SXUSRVH RI WKLV UHYLHZ

PAGE 19

LV WR GLVFXVV SRVVLEOH SK\VLRORJLFDO DQG ELRFKHPLFDO OLQNV EHWZHHQ REHVLW\ DQG P\RFDUGLDO R[LGDWLYH LQMXU\ 7KH 2EHVLW\ 6\QGURPH 2EHVLW\ LV FKDUDFWHUL]HG E\ D FRPSOH[ SDWKRSK\VLRORJ\ WKDW FDQ LPSRVH SRWHQWLDOO\ KDUPIXO FRQVHTXHQFHV RQ WKH FDUGLRYDVFXODU V\VWHP 2EHVLW\ LV RIWHQ DFFRPSDQLHG E\ LQFUHDVHG SODVPD YROXPH DQG K\SHUWHQVLRQ SRRU JO\FHPLF FRQWURO K\SHUOLSLGHPLD DQG LQFUHDVHG DGUHQHUJLF GULYH ZLWK UHGXFHG DGUHQHUJLF VHQVLWLYLW\ DW WKH WLVVXH OHYHO f )XUWKHU WKH P\RFDUGLXP LV RIWHQ K\SHUWURSKLHG DQG PD\ KDYH IDWW\ LQILOWUDWLRQ f 2EHVLW\ FDQ KDYH GHOHWHULRXV FDUGLRYDVFXODU HIIHFWV EXW FRXOG DOVR LQLWLDWH VHYHUDO FHOOXODU SDWKZD\V WKDW PD\ SURPRWH P\RFDUGLDO R[LGDWLYH GDPDJH 6SHFLILFDOO\ WKH ZRUNORDG RQ WKH KHDUW LV LQFUHDVHG E\ REHVLW\ f WKLV ZRXOG LQFUHDVH WKH R[\JHQ IOX[ WKURXJK WKH PLWRFKRQGULDO UHVSLUDWRU\ FKDLQ f )XUWKHU WKH P\RFDUGLDO DQWLR[LGDQW GHIHQVH PD\ EH LQVXIILFLHQW WR SURWHFW DJDLQVW GDPDJH E\ UHDFWLYH R[\JHQ VSHFLHV 526f f )LQDOO\ WKHUH PD\ EH IDWW\ LQILOWUDWLRQ DQG LQFUHDVHG SRO\XQVDWXUDWHG IDW GHSRVLWLRQ ZLWKLQ P\RFDUGLDO WLVVXH WKDW LQFUHDVHV WKH ULVN IRU R[LGDWLRQ E\ 526 f 2EHVLW\ DQG 0\RFDUGLDO 2YHUORDG 7KHUH DUH VHYHUDO ZD\V LQ ZKLFK REHVLW\ FRQWULEXWHV WR DQ H[FHVVLYH ZRUNORDG RQ WKH KHDUW )LJXUH VXPPDUL]HV WKH SRWHQWLDO PHFKDQLVPV LQYROYHG LQ REHVLW\LQGXFHG

PAGE 20

P\RFDUGLDO RYHUORDG ([FHVVLYH ZHLJKW JDLQ LV DVVRFLDWHG ZLWK DQ LQFUHDVHG SODVPD YROXPH DQG VXEVHTXHQW EORRG YROXPH H[SDQVLRQ f ,Q DGGLWLRQ WKH K\SHUWHQVLRQ VR RIWHQ DVVRFLDWHG ZLWK REHVLW\ FDQ EH LQGXFHG E\ LQVXOLQPHGLDWHG PHFKDQLVPV +\SHULQVXOLQHPLD FDXVHV VRGLXP DQG ZDWHU UHWHQWLRQ E\ DFWLQJ GLUHFWO\ RQ WKH UHQDO WXEXOHV DQG RQ WKH UHQLQ DQJLRWHQVLQDOGRVWHURQH V\VWHP DQG LW FDQ DOVR SURPRWH DUWHULDO VPRRWK PXVFOH SUROLIHUDWLRQ f DOO RI ZKLFK LQFUHDVH EORRG SUHVVXUH DQG HQG GLDVWROLF YROXPH ,QFUHDVHG YROXPH HQKDQFHV GLDVWROLF ILOOLQJ DQG SODFHV D VWUHWFK RYHUORDG RQ WKH KHDUW LQFUHDVHG SUHORDGf 7KH ZDOO VWUHVV LQ WKH YHQWULFOHV LQFUHDVHV $FFRUGLQJ WR /D3ODFHnV ODZ ZDOO VWUHVV SUHVVXUH ; UDGLXV ; ZDOO WKLFNQHVVf WKH ELJJHU WKH OHIW YHQWULFOH DQGRU WKH JUHDWHU WKH SUHVVXUH GHYHORSHG E\ WKH OHIW YHQWULFOH WKH JUHDWHU WKH ZDOO VWUHVV $Q LQFUHDVH LQ ZDOO VWUHVV LQFUHDVHV P\RFDUGLDO 2 XSWDNH DV PRUH $73 PXVW EH XVHG WR JHQHUDWH JUHDWHU WHQVLRQ WR FRQWUDFW DJDLQVW WKLV ZDOO VWUHVV f ,Q UHVSRQVH WR WKLV ZDOO VWUHVV HFFHQWULF DQGRU FRQFHQWULF FDUGLDF K\SHUWURSK\ ZLOO RFFXU $OWKRXJK JURVV PHFKDQLFDO IXQFWLRQ PD\ DSSHDU QRUPDO WKHUH DUH VHYHUDO VXEWOH PHFKDQLFDO DOWHUDWLRQV WKDW DIIHFW FDUGLDF SHUIRUPDQFH 6SHFLILFDOO\ V\VWROLF IXQFWLRQ LV FRPSURPLVHG VXFK WKDW WKH UDWH RI VKRUWHQLQJ YHORFLW\ LV UHGXFHG f $OVR GLDVWROLF G\VIXQFWLRQ RFFXUV 5HOD[DWLRQ WLPH LV GHOD\HG DQG SHDN ILOOLQJ UDWHV DUH UHGXFHG f ,Q VRPH VSHFLILF FDVHV YDVFXODU UHVLVWDQFH PD\ EH UHGXFHG WR FRXQWHUDFW WKH LQFUHDVHG EORRG YROXPH 7KLV PD\ RYHUULGH WKH UHQLQDQJLRWHQVLQ HIIHFWV 'LDVWROLF ILOOLQJ LV FRPSURPLVHG DQG VWURNH YROXPH LV UHGXFHG

PAGE 21

([FHVVLYH $GLSRVH $FFXPXODWLRQ L W &LUFXODWLQJ %ORRG 9ROXPH } +\SHUWHQVLRQ} &RQFHQWULF +\SHUWURSK\ 7 /9 6WURNH 9ROXPH /9 6\VWROLF DQG 'LDVWROLF '\VIXQFWLRQ L L W +5 ; 69 7 5DWH 3UHVVXUH 3URGXFW L L 7/9 (QODUJHPHQW +HDUW W /9 :DOO 6WUHVV (FFHQWULF +\SHUWURSK\ )DLOXUH L /9 6\VWROLF DQG 'LDVWROLF '\VIXQFWLRQ ZKHUH /9 OHIW YHQWULFOH +5 KHDUW UDWH 69 OHIW YHQWULFXODU VWURNH YROXPH )LJXUH $ VFKHPDWLF UHSUHVHQWDWLRQ RI WKH SDWKRJHQHVLV RI KHDUW FRPSOLFDWLRQV LQGXFHG E\ REHVLW\

PAGE 22

7KHUHIRUH WKH KHDUW UDWH PXVW LQFUHDVH LQ WXUQ WR PDLQWDLQ FDUGLDF RXWSXW &2f f ,Q DOO VFHQDULRV WKH KHDUW LV ZRUNLQJ DW KLJKHU ZRUN UDWHV LQ REHVLW\ +\SHUWHQVLRQ LV SUHVHQW LQ DSSUR[LPDWHO\ b RI REHVH LQGLYLGXDOV ZLWK b RI WKRVH FDVHV EHLQJ FODVVLILHG DV VHYHUH f 7KH P\RFDUGLXP RI K\SHUWHQVLYH REHVH LQGLYLGXDOV ZRUNV DJDLQVW D JUHDWHU V\VWHPLF UHVLVWDQFH FUHDWHG E\ HOHYDWHG EORRG SUHVVXUH LQFUHDVHG DIWHUORDGf 6SHFLILFDOO\ EORRG SUHVVXUH LV LQFUHDVHG RQ DYHUDJH PP+J V\VWROLF DQG PP+J GLDVWROLF IRU HDFK b JDLQ LQ ERG\ IDW ZLWK D JUHDWHU HIIHFW REVHUYHG LQ WKRVH JHQHWLFDOO\ VXVFHSWLEOH WR REHVLW\ f 6\VWROLF G\VIXQFWLRQ PD\ PDQLIHVW DV GHSUHVVLRQ RI OHIW YHQWULFXODU SHDN UDWH RI FRQWUDFWLOLW\ )XUWKHUPRUH REHVLW\LQGXFHG K\SHUWURSKLHG KHDUWV DUH VXVFHSWLEOH WR SRWHQWLDOO\ IDWDO DUUK\WKPLDV RU KHDUW IDLOXUH f ,Q VXPPDU\ WKH QHXURHQGRFULQH DQG PHFKDQLFDO DOWHUDWLRQV WKDW RFFXU ZLWK REHVLW\ DUH DVVRFLDWHG ZLWK DQ LQFUHDVH LQ WKH VWUHVV SODFHG RQ WKH KHDUW %ORRG SUHVVXUH DQG KHDUW UDWH DUH W\SLFDOO\ HOHYDWHG DQG SUHORDG DQG DIWHUORDG DUH LQFUHDVHG 7KH P\RFDUGLXP K\SHUWURSKLHV WR FRXQWHUDFW WKLV RYHUORDG VWUHVV $OWHUDWLRQV LQ KHDUW SHUIRUPDQFH LQFOXGH GHSUHVVHG UDWH RI FRQWUDFWLOLW\ UHOD[DWLRQ DQG PDQLIHVWDWLRQ RI DUUK\WKPLDV RU IDLOXUH 0\RFDUGLDO 3URGXFWLRQ RI 5HDFWLYH 2[\JHQ 6SHFLHV $ UDGLFDO LV D PROHFXOH RU D PROHFXODU IUDJPHQW FRQWDLQLQJ DQ XQSDLUHG HOHFWURQ ,Q JHQHUDO DSSUR[LPDWHO\ b RI WKH R[\JHQ FRQVXPHG XVHG GXULQJ R[LGDWLYH PHWDEROLVP LV

PAGE 23

WUDQVIRUPHG WR UDGLFDOV RU RWKHU UHDFWLYH R[\JHQ VSHFLHV 526f f 526 DUH FRQVLGHUHG HVVHQWLDO LQ FHOOXODU KRPHRVWDVLV DQG ZKHQ SUHVHQW LQ VPDOO DPRXQWV KDYH EHHQ VKRZQ WR HQKDQFH FRQWUDFWLOH SURFHVVHV f 526 DUH RIWHQ VFDYHQJHG E\ QDWXUDOO\ RFFXUULQJ SURWHFWLYH DQWLR[LGDQW GHIHQVHV VXFK DV HQ]\PHV YLWDPLQV DQG RWKHU PROHFXOHV ZLWKLQ WKH P\RF\WH VR WKDW DQ DQWLR[LGDQWSURR[LGDQW EDODQFH LV DFKLHYHG 8QGHU SDWKRORJLFDO FRQGLWLRQV RU FRQGLWLRQV LQ ZKLFK HOHFWURQ IOX[ WKURXJK WKH HOHFWURQ WUDQVSRUW FKDLQ LQFUHDVHV VXFK DV H[HUFLVH RU LQFUHDVHG FRQWUDFWLOH DFWLYLW\f 526 SURGXFWLRQ LQFUHDVHV DQG FDXVHV D SURR[LGDQW VWDWH ZLWKLQ WKH FHOO f :KHQ WKH FHOOXODU DQWLR[LGDQW GHIHQVHV DUH RYHUSRZHUHG WKLV FDXVHV PDMRU GLVUXSWLRQV WR PXVFOH FRQWUDFWLOH IXQFWLRQ FHOOXODU KRPHRVWDVLV DQG VXEVHTXHQW GDPDJH WHUPHG fR[LGDWLYH VWUHVVf f 7KLV VHFWLRQ ZLOO KLJKOLJKW WKH SRWHQWLDO VRXUFHV RI 526 LQ FHOOV DQG WKH W\SHV RI PROHFXOHV JHQHUDWHG 0DMRU 526 DQG 6RXUFHV RI 526 7KH PDMRU 526 LQFOXGH VXSHUR[LGH UDGLFDOV 2nf K\GURJHQ SHUR[LGH +2f DQG WKH K\GUR[\O UDGLFDO 2+ f RWKHU FRQWULEXWLQJ 526 DUH WKH QLWURJHQ FRQWDLQLQJ VSHFLHV VXFK DV SHUR[\QLWULWH 2122+f DQG QLWULF R[LGH 12 f 0ROHFXODU R[\JHQ LWVHOI LV D GLUDGLFDO WKRXJK QRW KLJKO\ UHDFWLYH 7KH PDMRU SRWHQWLDO VRXUFHV RI P\RFDUGLDO 526 LQ REHVLW\ DUH WKH PLWRFKRQGULDO UHVSLUDWRU\ FKDLQ [DQWKLQH R[LGDVH DFWLYLW\ WKH QHXWURSKLO R[LGDWLYH EXUVW QLWULF R[LGH V\QWKHVLV FDWHFKRODPLQH R[LGDWLRQ f ,Q WKH KHDOWK\

PAGE 24

P\RFDUGLXP D VPDOO IUDFWLRQ RI WKH HOHFWURQV IORZLQJ WKURXJK WKH HOHFWURQ WUDQVSRUW FKDLQ OHDN IURP WKH UHDFWLRQ SDWKV DQG FROOLGH ZLWK WR IRUP VXSHUR[LGH UDGLFDOV f 7KLV DQLRQ LV SURGXFHG DW JUHDWHU UDWHV XQGHU FRQGLWLRQV WKDW VWUHVV WKH UHVSLUDWRU\ FKDLQ LQFOXGLQJ JUHDWHU P\RF\WH FRQWUDFWLRQ UDWHV f 6XSHUR[LGH FDQ UHDFW ZLWK DQRWKHU n UDGLFDO DQG WZR K\GURJHQV WR IRUP +2 GLUHFW GLVPXWDWLRQ RI 2 f YLD VXSHUR[LGH GLVPXWDVH FDQ SURGXFH + LQ WKH PLWRFKRQGULRQ $VD\DPD HW DO *LURWWL f 7KRXJK +c LV QRW D UDGLFDO LW LV D UHDFWLYH R[\JHQ VSHFLH DQG FDQ FDXVH VHULRXV FHOOXODU GDPDJH LI LW DFFXPXODWHV f +RPRO\WLF ILVVLRQ RI WKH ERQG LQ +2 SURGXFHV WZR K\GUR[\O UDGLFDOV 2+ f DQG FDQ EH DFKLHYHG E\ DQ LURQ VDOW DQG + E\ )HQWRQ FKHPLVWU\ 7KH 2+ PROHFXOHV UHDFW ZLWK DQ H[WUHPHO\ KLJK UDWH FRQVWDQW HVSHFLDOO\ ZLWK QHDUE\ ELRORJLFDO PHPEUDQHV f 7KHUHIRUH 2+ UHDFWV YHU\ FORVH WR LWV SRLQW RI IRUPDWLRQ LQ D SKHQRPHQRQ NQRZQ DV fVLWH VSHFLILFf UHDFWLYLW\ f 0DLQO\ ORFDWHG LQ WKH YHVVHO ZDOOV RI PRVW WLVVXHV [DQWKLQH GHK\GURJHQDVH FDWDO\]HV WKH R[LGDWLRQ RI K\SR[DQWKLQH WR [DQWKLQH DQG [DQWKLQH WR XULF DFLG ;DQWKLQH R[LGDVH XVHV DV WKH HOHFWURQ DFFHSWRU DQG SURGXFHV f ZKLOH FDWDO\]LQJ WKH R[LGDWLRQ RI K\SR[DQWKLQH WR XULF DFLG f $QRWKHU PDMRU VRXUFH RI 526 LQ FDUGLRYDVFXODU GLVHDVH LV WKH UHDFWLRQ RI f DQG 12 WKDW RFFXUV ZLWKLQ WKH PLOLHX RI QHXWURSKLOLF DQG PDFURSKDJH R[LGDWLYH EXUVWV 8SRQ SKDJRF\WLF FHOO LQILOWUDWLRQ DW WKH VLWH RI LQMXU\ WKHVH FHOOV UHOHDVH D PL[WXUH RI WKHVH WZR 526 WKDW IRUP WKH VWURQJ R[LGDQW SHUR[\QLWUDWH 2122+f $OVR DFWLYDWHG QHXWURSKLOV

PAGE 25

UHOHDVH P\HORSHUR[LGDVHJHQHUDWHG K\SRFKORURXV DFLG +2&f ZKLFK LV D VWURQJ R[LGDQW WKDW FDQ FDXVH VHULRXV FHOOXODU GDPDJH f ,W LV XQFOHDU ZKHWKHU REHVLW\ SHU VH LQLWLDWHV P\RFDUGLDO LQILOWUDWLRQ E\ QHXWURSKLOV EXW VWXGLHV KDYH LPSOLFDWHG SKDJRF\WLF LQILOWUDWLRQ RI DWKHURJHQLF SODTXHV DQG LVFKHPLFQHFURWLF FDUGLDF WLVVXH DV FRPSOLFDWLRQV RIWHQ DVVRFLDWHG ZLWK REHVLW\ f :KLOH WKHUH DUH PDQ\ WDUJHWV IRU R[LGDWLYH GDPDJH LQ WKH P\RF\WH WKHVH SURFHVVHV HOLFLW VLJQLILFDQW GDPDJH WR WKH P\RF\WH PHPEUDQHV f 0HPEUDQH GDPDJH UHVXOWV LQ DOWHUDWLRQV ZKLFK FRXOG OHDG WR LRQ LPEDODQFH DQG VXEVHTXHQW P\RFDUGLDO G\VIXQFWLRQ f ,W LV ZHOO GRFXPHQWHG WKDW WKH R[LGDWLYH VWUHVV UHVXOWLQJ IURP HYHQWV VXFK DV LVFKHPLD UHSHUIXVLRQ FDXVH VHULRXV GHSUHVVLRQ LQ P\RF\WH IXQFWLRQ VXFK DV LQDELOLW\ WR GHYHORS PD[LPDO IRUFH UHGXFWLRQ LQ WKH UDWH RI IRUFH GHYHORSPHQW DQG UHGXFHG VHJPHQW VKRUWHQLQJ f 7KHUHIRUH WKH P\RFDUGLXP KDV VHYHUDO GHIHQVH PHFKDQLVPV WR FRXQWHUDFW WKHVH SRWHQWLDO HIIHFWV 0\RFDUGLDO $QWLR[LGDQW 'HIHQVH 7KH HQGRJHQRXV DQWLR[LGDQW GHIHQVH ZLWKLQ WKH P\RF\WH LQFOXGHV ERWK HQ]\PDWLF DQG QRQHQ]\PDWLF FRPSRQHQWV 7KH GHIHQVH V\VWHP H[LVWV DV D PXOWLOHYHO V\VWHP VXFK WKDW WKH PDMRU SURWHFWLRQ DJDLQVW DFXWH R[LGDWLYH VWUHVV LV SURYLGHG E\ JOXWDWKLRQH SULPDU\ DQWLR[LGDQW HQ]\PHV DQG GLHWDU\ DQWLR[LGDQWV f 7KH VHFRQGDU\ GHIHQVH LQFOXGHV UHSDLU

PAGE 26

HQ]\PHV VXFK DV OLSRO\WLF DQG SURWHRO\WLF HQ]\PHV SURWHDVHV DQG SKRVSKROLSDVHV WKDW UHSDLU FHOOXODU GDPDJH IROORZLQJ R[LGDWLYH VWUHVV (Q]\PDWLF 'HIHQVH 7KH P\RFDUGLDO DQWLR[LGDQW HQ]\PDWLF GHIHQVH V\VWHP LQFOXGHV VXSHUR[LGH GLVPXWDVH 62'f ZKLFK VFDYHQJHV 2\n FDWDODVH &$7f ZKLFK VFDYHQJHV +2 DQG JOXWDWKLRQH SHUR[LGDVH *3;f ZKLFK UHGXFHV OLSLG SHUR[LGHV DQG QHXWUDOL]HV +2 7KHVH HQ]\PHV H[LVW LQ GLIIHULQJ FRQFHQWUDWLRQV LQ YDU\LQJ FRPSDUWPHQWV ZLWKLQ WKH P\RF\WH WKXV SURYLGLQJ D VWUDWHJLF GHIHQVH DJDLQVW 526 JHQHUDWHG LQ YLYR 6SHFLILFDOO\ WKH PDQJDQHVHGHSHQGHQW LVRIRUP RI 62' 0Q62'f LV IRXQG LQ WKH PLWRFKRQGULD WKH FRSSHU]LQFGHSHQGHQW 62' LVRIRUP &X=Q62'f LV IRXQG ZLWKLQ WKH F\WRVRO -L f *3; LV IRXQG ZLWKLQ WKH PLWRFKRQGULDO PDWUL[ DQG WKH F\WRVRO ZLWK PRVW RI WKH HQ]\PH ORFDWHG ZLWKLQ WKH F\WRVRO ZLWK D UDWLR RI f *3; LV DFWLYDWHG E\ +2 DW ORZHU FRQFHQWUDWLRQV .P S0f ZKHUHDV WKH RWKHU + VFDYHQJHU &$7 LV DFWLYDWHG E\ KLJKHU FRQFHQWUDWLRQV RI WKH VDPH VXEVWUDWH .P P0f 7KLV RYHUODS RI VXEVWUDWH IRU WKHVH WZR HQ]\PHV DSSHDUV SK\VLRORJLFDOO\ UHOHYDQW LQ WKDW LI WKH R[LGDWLYH VWUHVV RI+ H[FHHGV WKH FDSDELOLW\ RI *3; &$7 LV SUHVHQW WR SURYLGH SURWHFWLRQ &$7 WKRXJK IRXQG WKURXJKRXW WKH FHOO FDQ EH IRXQG SULPDULO\ ZLWKLQ SHUR[LVRPHV $FWLYLW\ RI WKLV HQ]\PH GHSHQGV XSRQ WKH ELQGLQJ RI )Hr WR WKH DFWLYH VLWH f

PAGE 27

*OXWDWKLRQH *OXWDWKLRQH *6+ \JOXWDP\OF\VWHLQ\OJO\FLQHf WKH SUHGRPLQDQW WKLRO LQ FHOOV KDV GLUHFW DQWLR[LGDQW DFWLYLW\ DQG LV DOVR LQYROYHG LQ UHF\FOLQJ RWKHU GLHWDU\ DQWLR[LGDQWV f )RU H[DPSOH *6+ PD\ QHXWUDOL]H K\GUR[\O UDGLFDOV DQG VLQJOHW R[\JHQ E\ DEVWUDFWLQJ DQ HOHFWURQ DQGRU GRQDWLQJ D SURWRQ DQG FDQ PDLQWDLQ WLVVXH DQWLR[LGDQW YLWDPLQV LQ WKH UHGXFHG VWDWH f *6+ LV D VXEVWUDWH IRU *3; ZKLFK UHPRYHV OLSLG SHUR[LGHV DQG +2 *6+ LV V\QWKHVL]HG SULPDULO\ E\ WKH OLYHU DQG LV WUDQVSRUWHG WR H[WUDKHSDWLF WLVVXHV YLD WKH FLUFXODWLRQ *6+ LV LPSRUWHG E\ WKH WLVVXHV DQG LWV FRQVWLWXHQW DPLQR DFLGV DUH LPSRUWHG E\ PHPEUDQHERXQG HQ]\PHV f 7RJHWKHU WKHVH HQ]\PHV DQG WKLRO FRPSRXQGV VHUYH DV SDUW RI WKH SULPDU\ GHIHQVH DJDLQVW 526 DQG UDGLFDOV 'LHWDU\ $QWLR[LGDQWV DQG 0\RFDUGLDO 3URWHFWLRQ ([RJHQRXV DQWLR[LGDQWV KDYH EHHQ H[WHQVLYHO\ XVHG WR UHGXFH WKH LQMXU\ DVVRFLDWHG ZLWK R[LGDWLYH VWUHVV LQ PXVFOH WLVVXH $QWLR[LGDQWV DUH JHQHUDO VFDYHQJHUV RI 526 DQG UDGLFDO VSHFLHV DQG WKH\ FDQ ZRUN DORQH RU LQ FRPELQDWLRQ ZLWK HDFK RWKHU WR UHGXFH WKH UHDFWLYLW\ RI WKH UDGLFDOV 9LWDPLQ ( EHORQJV WR D FODVV RI WRFRSKHURO SKHQROLF PROHFXOHV DWRFRSKHURO EHLQJ WKH PRVW SRWHQWf DQG FDQ FRYHUW n 2+ DQG SHUR[\O UDGLFDOV WR OHVV UHDFWLYH IRUPV f ,W LV OLSLG VROXEOH DQG LWV WULPHWK\OK\GURTXLQRQH KHDG VHUYHV WR EUHDN WKH FKDLQ UHDFWLRQ RI OLSLG SHUR[LGDWLRQ WKDW RFFXUV LQ FHOO PHPEUDQHV GXULQJ R[LGDWLYH VWUHVV

PAGE 28

f 2QFH R[LGL]HG LQ WKLV SURFHVV WKH YLWDPLQ ( UDGLFDO FDQ EH UHF\FOHG RQFH DJDLQ WR LWV QDWLYH VWDWH E\ RWKHU DQWLR[LGDQWV VXFK DV YLWDPLQ & DQG *6+ 7KXV YLWDPLQ ( DFWV V\QHUJLVWLFDOO\ ZLWK YLWDPLQ & DQG JOXWDWKLRQH GXULQJ SHULRGV RI R[LGDWLYH VWUHVV f 9LWDPLQ & LV ZDWHU VROXEOH DQG FDQ GLUHFWO\ VFDYHQJH 2n 2+ DQG SHUR[\O UDGLFDOV LQ WKH F\WRVRO DQG SODVPD ,Q DGGLWLRQ YLWDPLQ & FDQ UHGXFH WKH YLWDPLQ ( UDGLFDO EDFN WR LWV RULJLQDO VWDWH 2[LGL]HG YLWDPLQ & FDQ EH UHGXFHG DJDLQ WR LWV QDWLYH IRUP E\ HOHFWURQ GRQRUV VXFK DV JOXWDWKLRQH RU GLK\GUROLSRLF DFLG 7KXV YLWDPLQ & LV H[WUHPHO\ LPSRUWDQW LQ WKH UHVWRUDWLRQ RI YLWDPLQ ( LQ WKH OLSLG FRPSRQHQWV RI WKH FHOO DQG LQ WKH VFDYHQJLQJ RI UDGLFDOV LQ WKH DTXHRXV SKDVH )XUWKHU LW LV OLQNHG ZLWK UHGXFHG SURWHLQ JO\FRV\ODWLRQ D UDGLFDOJHQHUDWLQJ SURFHVV f 3FDURWHQH LV DOVR D OLSLG VROXEOH PROHFXOH IRXQG LQ PHPEUDQHV WKDW FDQ VFDYHQJH VLQJOHW 2 DQG 2f 6LPLODU WR YLWDPLQ ( WKLV PROHFXOH FDQ SURYLGH JUHDW SURWHFWLRQ DJDLQVW OLSLG SHUR[LGDWLRQ DQG KDV D SRVWXODWHG UROH LQ WKH UHGXFHG XSWDNH RI R[LGL]HG ORZ GHQVLW\ OLSRSURWHLQV LQ WKH FDUGLDF HQGRWKHOLXP %RWK EHQHILWV DUH DVVRFLDWHG ZLWK UHGXFHG DWKHURVFOHURWLF GLVHDVH LQ WKH KHDUW 3FDURWHQH DSSHDUV WR EH PRVW HIIHFWLYH DW ORZ GRVHV f $OSKDOLSRLF DFLG LV DQ HQGRJHQRXV WKLRO FRQWDLQLQJ FRPSRXQG WKDW LV D SRWHQW DQWLR[LGDQW DJDLQVW DOO PDMRU 526 ,W LV IRXQG LQ ORZ FRQFHQWUDWLRQV LQ WKH DTXHRXV FRPSDUWPHQWV RI P\RF\WHV DQG LV ODUJHO\ ERXQG WR HQ]\PH FRPSOH[HV UHQGHULQJ LW XQDYDLODEOH IRU VFDYHQJLQJ 526 $V DQ H[RJHQRXV XQERXQG VXSSOHPHQW OLSRLF DFLG PD\

PAGE 29

EH HIIHFWLYH LQ UHF\FOLQJ YLWDPLQ & DQG VHUYLQJ DV D SURWHFWLYH WKLROFRQWDLQLQJ PROHFXOH WKDW FDQ DLG LQ UHXFWLRQ RI R[LGL]HG PROHFXOHV f 2[LGDWLYH ,QMXU\ WR 0\RFDUGLDO 7LVVXH $OWKRXJK R[LGDWLYH GDPDJH FDQ EH LQFXUUHG RQ FHOOXODU SURWHLQV DQG FDUERK\GUDWHV f PXFK RI WKH UHFHQW ZRUN KDV IRFXVHG RQ WKH R[LGDWLYH LQMXU\ WR FHOOXODU PHPEUDQH OLSLGV f 'DPDJHG OLSLGV DV ZLOO EH GHVFULEHG LQ WKH QH[W VHFWLRQV FDQ DOWHU FHOOXODU KRPHRVWDVLV GHWHULRUDWH FRQWUDFWLOH IXQFWLRQ RU FDXVH FHOO GHDWK E\ DSRSWRVLV f +HQFH WKLV VHFWLRQ ZLOO IRFXV RQ R[LGDWLYH LQMXU\ WR OLSLGV /LSLG SHUR[LGDWLRQ LV D FRPPRQ W\SH RI GDPDJH REVHUYHG LQ WLVVXH IROORZLQJ H[SRVXUH WR 526 /LSLG SHUR[LGDWLRQ LV WKH GHVWUXFWLRQ RI SRO\XQVDWXUDWHG IDWV 38) $f LQ PHPEUDQHV DQG LV LQLWLDWHG ZKHQ D 526 LV DEOH WR DEVWUDFW DQ DOO\OLF )7 DWRP HOHFWURQ UHGXFWLRQf IURP D PHWK\OHQH JURXS RI D 38)$ PROHFXOH 7KLV IRUPV D UHDFWLYH OLSLG SHUR[\O UDGLFDO 522 ZKHUH 5 OLSLG FKDLQ GHQRWHV SHUR[\O JURXSf ZKLFK FDQ UHDFW ZLWK DQ DGMDFHQW 38)$ WULJJHULQJ H[DFHUEDWLQJ URXQGV RI IUHHUDGLFDO PHGLDWHG OLSLG SHUR[LGDWLRQ f 7KLV SURFHVV LQLWLDWHV D FDVFDGH RI OLSLG SHUR[LGDWLRQ WKDW DPSOLILHV WKH GHVWUXFWLYH HIIHFWV RI WKH LQLWLDO SHUR[LGDWLRQ LQVXOW $OWHUQDWLYHO\ WZR HOHFWURQ UHGXFWLRQ UHDFWLRQV ZLWK OLSLG K\GURSHUR[LGHV 522)f FDQ OHDG WR IRUPDWLRQ RI UHGR[LQHUW DOFRKROV D SURFHVV ZKLFK VHUYHV DV D VHFRQGDU\ RU fUHSDUDWLYHf OHYHO RI F\WRSURWHFWLRQ

PAGE 30

5HFHQW ZRUN KDV VKRZQ WKDW EDVDO OHYHOV RI OLSLG SHUR[LGDWLRQ E\SURGXFWV DUH HOHYDWHG ZLWKLQ WKH P\RFDUGLXP DQG OLYHU WLVVXH RI REHVH UDWV IDID JHQRW\SHf FRPSDUHG WR OHDQ FRQWURO DQLPDOV )D JHQRW\SHf f 7KH VLJQLILFDQFH RI OLSLG SHUR[LGDWLRQ ZLWKLQ PHPEUDQHV LV WKDW WKH PHPEUDQH IOXLGLW\ LV GHFUHDVHG DQG SHUPHDELOLW\ LV LQFUHDVHG )XUWKHUPRUH FRQVXPSWLRQ RI KLJK IDW GLHWV RU GLHWV KLJK LQ XQVDWXUDWHG IDWV HVSHFLDOO\ FRQWDLQLQJ Q IDWW\ DFLGVf H[DFHUEDWHV WKH VXVFHSWLELOLW\ WR IUHH UDGLFDOPHGLDWHG SHUR[LGDWLRQ f 6HYHUDO E\SURGXFWV RI OLSLG SHUR[LGDWLRQ VXFK DV OLSLG K\GURSHUR[LGHV PDORQGLDOGHK\GH 0'$f FRQMXJDWHG GLHQHV DQG K\GUR[\QRQHQDO +1(f DUH PHDVXUHG WR GHWHUPLQH WKH H[WHQW RI R[LGDWLYH GDPDJH LQFXUUHG RQ WKH WLVVXH f 7KH PRVW FRPPRQ PHDVXUHV XVHG WR GHWHUPLQH WKH GHJUHH RI R[LGDWLYH LQMXU\ LQ OLSLGV DUH 0'$ DQG OLSLG K\GURSHUR[LGHV f /LSLG +\GURSHUR[LGHV DQG 0DORQGLDOGHK\GH $Q RXWOLQH RI WKH SRVWXODWHG SDWKZD\V E\ ZKLFK K\GURSHUR[LGHV DQG 0'$ DUH SURGXFHG LV VKRZQ LQ )LJXUH 7KH LPSRUWDQFH RI PHDVXULQJ WKHVH WZR E\SURGXFWV LV WKDW HDFK E\SURGXFW RFFXUV DW GLIIHUHQW SODFHV ZLWKLQ WKH SDWKZD\ 'HFRPSRVLWLRQ RI 38) $ E\ GLUHFWO\ UHVXOWV LQ SULPDU\ K\GURSHUR[LGH SURGXFWV )XUWKHU EUHDNGRZQ RI K\GURSHUR[LGH SURGXFWV JHQHUDWHV HQGRSHUR[LGH UDGLFDOV 7KHVH UDGLFDOV ZKHQ H[SRVHG WR KHDW RU DFLGV SURGXFH VHFRQGDU\ 0'$ SURGXFWV f %HFDXVH RI FRQVLGHUDEOH

PAGE 31

GLVDJUHHPHQW ZLWKLQ WKH OLWHUDWXUH ZLWK UHJDUG WR WKH fRSWLPDOf OLSLG SHUR[LGDWLRQ PHDVXUH DQG WKH LQDELOLW\ WR VSHFLILFDOO\ GHWHFW IURP ZKHUH WKH 0'$ ZDV GHULYHG LW LV UHFRPPHQGHG DW OHDVW WZR GLIIHUHQW PHDVXUHV DUH XVHG 7KHUHIRUH ZH ZLOO PHDVXUH ERWK 0'$ DQG OLSLG K\GURSHUR[LGHV WR HYDOXDWH WKH OHYHO RI OLSLG SHUR[LGDWLRQ LQ WKH P\RFDUGLXP RI ERWK OHDQ DQG REHVH DQLPDOV 2[LGDWLYH 'DPDJH WR 0HPEUDQHV /LSLG SHUR[LGDWLRQ UHGXFHV PHPEUDQH LQWHJULW\ f $ ORVV RI PHPEUDQH LQWHJULW\ LQ FDUGLDF P\RF\WHV FDQ OHDG WR DUUK\WKPLDV P\RF\WH FRQWUDFWLOH G\VIXQFWLRQ DQG FHOO GHDWK f ,Q DGGLWLRQ FKDQJHV LQ PHPEUDQH OLSLG FRQWHQW DQG SHUPHDELOLW\ FDQ DOWHU HQ]\PDWLF PHPEUDQH SURFHVVHV LH $73DVH DFWLYLW\ff 7KH LPSDFW RI SHUR[LGDWLYH SURFHVVHV LV HQKDQFHG ZKHQ GLHWDU\ FRQVXPSWLRQ RI 38)$ LQFUHDVHV UHSRUWV XVLQJ RYHUIHHGLQJ PRGHOV LQGLFDWH WKDW FHOO PHPEUDQH FRPSRVLWLRQ RI OLYHU DQG DRUWLF WLVVXH JHQHUDOO\ UHIOHFWV GLHWDU\ FRQVXPSWLRQ RI VSHFLILF OLSLG JURXSV WKRXJK QRW DEVROXWHO\ f $ FRQVLVWHQW ILQGLQJ LV WKDW SHUR[LGDWLYH LQMXU\ LQFUHDVHV DV D IXQFWLRQ RI GLHWDU\ FRQVXPSWLRQ RI 38)$ f 7KH OLSLG UDGLFDOV WKDW IRUP DV D UHVXOW RI SHUR[LGDWLRQ DUH EHOLHYHG WR LQWHUIHUH ZLWK HVVHQWLDO PHPEUDQH IXQFWLRQ RI SURWHLQ FKDQQHOV HPEHGGHG ZLWKLQ WKH PHPEUDQH DQG PDLQWHQDQFH RI LRQ JUDGLHQWV EHWZHHQ FHOOXODU FRPSDUWPHQWV f /LSLG SHUR[LGDWLRQ RI

PAGE 32

)LJXUH 7KH FKHPLFDO SDWKZD\ VXPPDU\ RI OLSLG SHUR[LGDWLRQ SURGXFWV PDOLRQGLDOGHK\GH DQG OLSLG K\GURSHUR[LGHV DV GHVFULEHG SUHYLRXVO\ f

PAGE 33

38)$ DOVR OHDGV WR WKH IRUPDWLRQ RI K\GUR[\QHQDO +1(f D WR[LF DOGHK\GH DPRQJ RWKHUV WKDW SRWHQWLDWHV F\WRWR[LF R[LGDWLRQ SURFHVVHV f )XUWKHUPRUH OLSLG SHUR[LGDWLRQ LV DVVRFLDWHG ZLWK GHFUHDVHG PHPEUDQH LQWHJULW\ DQG PD\ LQ IDFW DVVLVW LQ fODEHOLQJf WKDW DIIHFWHG FHOO DV D WDUJHW IRU QHXWURSKLOLF DWWDFN f 5HFHQW HYLGHQFH DOVR VXJJHVWV WKDW JUHDWHU IRUPDWLRQ RI K\GURSHUR[LGHV FDQ LQLWLDWH HYHQWV WKDW OHDG WR DSRSWRVLV f $OWKRXJK LW LV EHQHILFLDO WR LQFUHDVH WKH IOXLGLW\ RI FHOOXODU PHPEUDQHV WR DQ RSWLPDO SK\VLRORJLFDO OHYHO WR HQDEOH UHF\FOLQJ RI UHFHSWRUV RU LPSURYH PHPEUDQHERXQG HQ]\PH PRYHPHQW IOXLGLW\ WKDW FRPSURPLVHV FHOOXODU LQWHJULW\ LV GDQJHURXV IRU DOO FHOOXODU IXQFWLRQV 2EHVLW\ DQG 2[LGDWLYH 6WUHVV (YLGHQFH IURP RXU ODERUDWRU\ VXJJHVWV WKDW REHVLW\ LV DVVRFLDWHG ZLWK DQ LQFUHDVH LQ P\RFDUGLDO R[LGDWLYH GDPDJH DV HYLGHQFHG E\ LQFUHDVHG OHYHOV RI E\SURGXFWV RI OLSLG SHUR[LGDWLRQ f 'DPDJHG OLSLGV FDQ DOWHU FHOOXODU KRPHRVWDVLV GHWHULRUDWH FRQWUDFWLOH IXQFWLRQ RU FDXVH FHOO GHDWK f 6XEVWDQWLDO LQGLUHFW HYLGHQFH VXJJHVWV WKDW WKHUH DUH VHYHUDO SRWHQWLDO IDFWRUV WKDW PD\ FRQWULEXWH WR P\RFDUGLDO OLSLG SHUR[LGDWLRQ LQ WKH REHVH ,QFUHDVHG 0\RFDUGLDO :RUN 5DWH 2EHVLW\ LV FKDUDFWHUL]HG E\ DQ LQFUHDVHG PHFKDQLFDO ORDG RQ WKH KHDUW GXH WR LQFUHDVHG IDW WRWDO ERG\ PDVV DQG SHULSKHUDO UHVLVWDQFH f )O\SHULQVXOLQHPLD DSSHDUV WR

PAGE 34

HOHYDWH EORRG SUHVVXUH E\ DFWLYDWLQJ WKH UHQLQDQJLRWHQVLQ V\VWHP RU UHQDO WXEXOHV GLUHFWLQJ WR UHWDLQ VRGLXP E\ VWLPXODWLQJ DUWHULDO VPRRWK PXVFOH K\SHUWURSK\ RU E\ DOWHULQJ WKH LRQLF &Drf HIIOX[ IURP WKH VPRRWK PXVFOH FHOOV f %ORRG SUHVVXUH LV HOHYDWHG DQG VWURNH ZRUN LV LQFUHDVHG f 9HU\ UHFHQW HYLGHQFH KDV VKRZQ WKDW OHSWLQ WKH DGLSRF\WH GHULYHG KRUPRQH FDQ DFW f WKURXJK WKH FHQWUDO QHUYRXV V\VWHP WR HLWKHU LQFUHDVH WKH V\PSDWKHWLF QHUYH DFWLYLW\ DQG YDVFXODU UHVLVWDQFH LQ WKH NLGQH\ f D GHFUHDVH LQ UHQDO SODVPD IORZ DQGRU f DQ LQFUHDVH LQ KHDUW UDWH f 7RJHWKHU WKHVH IDFWRUV DSSHDU WR LQFUHDVH WKH UDWH SUHVVXUH SURGXFW DQG P\RFDUGLDO R[\JHQ FRQVXPSWLRQ f 7KHRUHWLFDOO\ WKH R[\JHQ IOX[ WKURXJK WKH PLWRFKRQGULDO UHVSLUDWRU\ FKDLQ ZRXOG EH LQFUHDVHG LQ UHVSRQVH WR WKLV ZRUNORDG $QLPDO VWXGLHV LQGLFDWH WKDW EORRG SUHVVXUHV DUH HOHYDWHG LQ REHVH =XFNHU UDWV RU UDEELWV IHG HLWKHU 3XULQD FKRZ GLHWV RU KLJK IDW GLHWV f +XPDQ VWXGLHV DOVR UHSRUW HOHYDWHG EORRG SUHVVXUHV DQGRU KHDUW UDWHV LQ REHVH KXPDQV f 7KLV LQFUHDVHG ZRUN UDWH RI WKH KHDUW ZRXOG LQFUHDVH P\RFDUGLDO R[\JHQ FRQVXPSWLRQ DQG VXEVHTXHQWO\ R[\JHQ IOX[ WKURXJK WKH PLWRFKRQGULDO HOHFWURQ WUDQVSRUW FKDLQ 6WXGLHV KDYH UHSRUWHG HOHYDWHG PLWRFKRQGULDO R[LGDWLYH FDSDFLWLHV LQ KHDUWV RI REHVH PLFH f DQG PLWRFKRQGULDO OLSLG R[LGDWLRQ SURYLGLQJ LQGLUHFW HYLGHQFH IRU WKH QRWLRQ WKDW R[\JHQ IOX[ WKURXJK WKH PLWRFKRQGULD PD\ EH D SULPDU\ VRXUFH RI 526 SURGXFWLRQ f 6RPH LQYHVWLJDWRUV UHSRUW WKDW PD[LPDO VWDWH UHVSLUDWLRQ LH $'3 VWLPXODWHGf LV JUHDWHU LQ FDUGLDF PLWRFKRQGULD IURP ROGHU REHVH REREf PLFH ZKHQ

PAGE 35

FRPSDUHG WR OHDQ PLFH f 7KHVH GDWD KDYH EHHQ ,QWHUSUHWHG DV DQ LQGLFDWLRQ WKDW REHVH DQLPDOV KDYH WLJKWHU PLWRFKRQGULDO FRXSOLQJ DQG WKHUHIRUH D JUHDWHU UDWH RI 2 FRQVXPSWLRQ f $V PHQWLRQHG HDUOLHU LW LV ZHOO HVWDEOLVKHG WKDW LQFUHDVHG 2 XSWDNH DQG HOHFWURQ IOX[ WKURXJK WKH HOHFWURQ WUDQVSRUW FKDLQ OHDGV WR LQFUHDVHG 2n IRUPDWLRQ f &RPSURPLVHG $QWLR[LGDQW 'HIHQVH 0\RFDUGLDO R[LGDWLYH GDPDJH PD\ EH WKH UHVXOW RI DQ LQVXIILFLHQW FHOOXODU DQWLR[LGDQW GHIHQVH f 5HGXFWLRQV LQ DQWLR[LGDQW HQ]\PHV DFWLYLWLHV 62' *3; DQG &$7f RU UHGXFWLRQV LQ WKH OHYHO RI GLHWDU\ DQWLR[LGDQWV VXFK DV YLWDPLQ ( SFDURWHQH DQG YLWDPLQ & KDYH EHHQ DVVRFLDWHG ZLWK LQFUHDVHG OLSLG SHUR[LGDWLRQ DQG FHOOXODU GDPDJH f /RZHUHG JOXWDWKLRQH OHYHOV DOVR FRQWULEXWH WR OLSLG SHUR[LGDWLRQ f ,W LV SRVVLEOH WKDW DQ\ RI WKHVH PHFKDQLVPV DORQH RU LQ FRPELQDWLRQ FRXOG FRQWULEXWH WR WKH HOHYDWHG OLSLG SHUR[LGDWLRQ LQ REHVH DQLPDOV 2XU LQLWLDO H[SHULPHQW LQGLFDWHG WKDW KHDUW KRPRJHQDWHV IURP JHQHWLFDOO\ REHVH DQLPDOV ZHUH PRUH VXVFHSWLEOH WR R[LGDWLYH GDPDJH 6SHFLILFDOO\ DQ LURQPHGLDWHG R[LGDWLYH FKDOOHQJH LQ YLWUR UHVXOWHG LQ JUHDWHU SURGXFWLRQ RI WKLREDUELWXULF DFLG UHDFWLYH VXEVWDQFHV 7% $56f LQ KHDUW KRPRJHQDWHV RI REHVH =XFNHU DQLPDOV f 7KHVH ILQGLQJV PD\ VXJJHVW WKDW WKH DQWLR[LGDQW GHIHQVH PD\ QRW KDYH EHHQ VXIILFLHQW WR SURWHFW DJDLQVW WKH R[LGDWLYH VWUHVV LQFXUUHG E\ REHVLW\

PAGE 36

2EHVLW\ ORZHUHG SODVPD OHYHOV RI DQWLR[LGDQWV VXFK DV YLWDPLQ ( DQG SFDURWHQH LQ REHVH FKLOGUHQ DQG DGXOWV f ,Q DGGLWLRQ WKLV ORZHUHG DQWLR[LGDQW VWDWXV ZDV DVVRFLDWHG ZLWK LQFUHDVHG SODVPD OHYHOV RI 38) $ LQ REHVH FKLOGUHQ f 7KH UHODWLRQVKLS EHWZHHQ P\RFDUGLDO OLSLG FRQWHQW DQG DQWLR[LGDQW VWDWXV LQ YDULRXV REHVLW\ PRGHOV LV QRW ZHOO GRFXPHQWHG 7LVVXH DQWLR[LGDQW HQ]\PH DFWLYLWLHV DUH DOVR DOWHUHG LQ YDULRXV REHVLW\ PRGHOV 2XU LQLWLDO VWXG\ LQGLFDWHG WKDW WKHUH ZHUH QR GLIIHUHQFHV LQ WKH DFWLYLWLHV RI WKH SULPDU\ DQWLR[LGDQW HQ]\PHV ZLWKLQ WKH KHDUW &$7 *3; DQG &X=Q62' f +RZHYHU WKH DFWLYLW\ RI WKH 0Q62' LVRIRUP ZDV HOHYDWHG LQ KHDUWV RI WKHVH REHVH =XFNHUV 2WKHU VWXGLHV UHSRUW UHGXFHG P\RFDUGLDO &$7 DQG *3; DFWLYLW\ XQLWVJ KHDUW WLVVXHf LQ JROG WKLRJOXFRVHLQGXFHG REHVH PLFH f ,Q FRQWUDVW LQYHVWLJDWRUV WUHDWLQJ OHDQ UDWV ZLWK REHVLW\LQGXFLQJ KLJK IDW GLHWV XVLQJ VRXUFHV VXFK DV 38)$ FRP RU ILVK RLOVf RU ODUG KDYH VKRZQ LQFUHDVHG OLYHU *3; DFWLYLW\ ZLWK QR FKDQJH LQ 62' f RU XQDOWHUHG KHSDWLF DQWLR[LGDQW HQ]\PH DFWLYLWLHV f /HDQ :LVWDU UDWV ZHUH IHG D YDULHW\ RI Q IDWW\ DFLG KLJK IDW GLHWV DQG P\RFDUGLDO WRWDO DQG 0Q62' DQG *3; YDOXHV ZHUH IRXQG WR EH ORZHU WKDQ FRPSDUHG WR UDW FKRZ IHG FRQWUROV XULQDU\ DQG WLVVXH 7%$56 YDOXHV ZHUH DOVR JUHDWHU FRPSDUHG WR WKRVH RI FKRZIHG FRQWUROV f &OHDUO\ WKHVH ILQGLQJV UHJDUGLQJ WKH HIIHFWV RI REHVLW\ RQ DQWLR[LGDQW HQ]\PH DFWLYLWLHV DUH GLYHUJHQW 7R SURYLGH FODULW\ WR WKH TXHVWLRQ ZKHWKHU P\RFDUGLDO DQWLR[LGDQW HQ]\PH DFWLYLWLHV DUH VXIILFLHQW WR SURWHFW DJDLQVW

PAGE 37

WKH VWUHVV RI REHVLW\ WKLV VWXG\ ZLOO PHDVXUH 62' *3; DQG &$7 LQ ERWK KLJKIDW IHG DQG IDIID REHVH DQLPDOV *6+ OHYHOV DSSHDU WR EH DOWHUHG LQ REHVLW\ *OXWDWKLRQH LV GHSOHWHG UHGXFHG E\ bf LQ WKH OLYHUV RI RYHUIHG RYHUZHLJKW DQLPDOV DQG V\QWKHVLV UDWHV DUH UHGXFHG E\ b f 7KHVH GDWD DUH FRUURERUDWHG E\ ILQGLQJV ZKLFK LQGLFDWHG WKDW OLYHU JOXWDWKLRQH VWRUHV DUH GHSUHVVHG LQ RYHUIHG REHVH PLFH f )XUWKHUPRUH WKHVH DQLPDOV ZHUH PRUH VXVFHSWLEOH WR DOO\O DOFRKROLQGXFHG LQMXU\ DQG QHFURVLV ,QWHUHVWLQJO\ WKH REHVH =XFNHU UDW UHVLVWV GUXJLQGXFHG KHSDWRWR[LFLW\ DQG WKLV KDV EHHQ FRUUHODWHG ZLWK WKLV JHQRW\SHfV KLJKHU JOXWDWKLRQH OHYHOV FRPSDUHG WR WKHLU OHDQ FRXQWHUSDUWV f 2XU LQLWLDO VWXG\ LQGLFDWHG WKDW WKH P\RFDUGLDO QRQSURWHLQ WKLRO OHYHO b JOXWDWKLRQHf ZDV KLJKHU LQ REHVH =XFNHU UDWV FRPSDUHG WR OHDQ WKRXJK WKLV YDOXH ZDV QRW IRXQG WR EH VLJQLILFDQW 7KHVH FRQWUDVWLQJ ILQGLQJV GR QRW HOXFLGDWH WKH UHODWLRQVKLS EHWZHHQ *6+ DQG REHVLW\ LQGXFHG P\RFDUGLDO OLSLG SHUR[LGDWLRQ +HQFH WKLV LV MXVWLILFDWLRQ WR DVVHVV WKH WKLRO FRQWHQW *6+f RI WKH P\RFDUGLDO WLVVXH RI JHQHWLF DQG RYHUIHG REHVH DQLPDOV WR GHWHUPLQH ZKHWKHU DOWHUDWLRQV LQ *6+ FRQWHQW FDQ FRQWULEXWH WR WKH HOHYDWHG OLSLG SHUR[LGDWLRQ LQ REHVLW\ ,Q VXPPDU\ WKHUH LV QR GHILQLWLYH HYLGHQFH WR VXSSRUW WKDW WKH DQWLR[LGDQW GHIHQVH LV FRPSURPLVHG LQ WKH P\RFDUGLXP RI REHVH DQLPDOV 7KLV IRUPV WKH UDWLRQDOH WR FRPSDUH WKH DQWLR[LGDQW HQ]\PH DFWLYLWLHV DQG *6+ FRQWHQW RI P\RFDUGLDO WLVVXH IURP WZR PRGHOV RI REHVLW\ LQ WKLV H[SHULPHQW

PAGE 38

0\RFDUGLDO )DW &RPSRVLWLRQ DQG 2[LGL]DELOLW\ )LQGLQJV IURP RWKHU VWXGLHV UHSRUW WKDW VLJQLILFDQW FRUUHODWLRQV H[LVW EHWZHHQ WKH W\SH RI WLVVXH OLSLG DQG GHJUHH RI OLSLG R[LGL]DELOLW\ LQ YLYR RU LQ YLWUR f ,QFUHDVHG P\RFDUGLDO 38)$ LQFUHDVHV WKH ULVN IRU R[LGDWLYH DWWDFN 6SHFLILFDOO\ JUHDWHU VHUXP IRUPDWLRQ RI 7%$56 RFFXUV LQ WKH SUHVHQFH RI WULJO\FHULGHV FRPSDUHG WR KLJKGHQVLW\ OLSRSURWHLQ +'/f FKROHVWHURO f /LSRSURWHLQ R[LGL]DELOLW\ LV DOVR LQIOXHQFHG E\ OLSRSURWHLQ FRPSRVLWLRQ VXFK WKDW 38)$ DUH PRUH UHDGLO\ R[LGL]HG WKDQ PRQRXQVDWXUDWHG IDWV f :KHWKHU WKH HQKDQFHG R[LGL]DELOLW\ RI WKH WLVVXH OLSLGV LQ REHVLW\ LV GXH WR LQFUHDVHG R[LGDQW FKDOOHQJH GHFUHDVHG DQWLR[LGDQW GHIHQVH RU DOWHUHG SKRVSKROLSLG FRPSRVLWLRQ UHTXLUHV IXUWKHU LQYHVWLJDWLRQ f )DWW\ LQILOWUDWLRQ RI WKH P\RFDUGLXP LQFUHDVHV WKH ULVN IRU OLSLG R[LGDWLRQ E\ SURYLGLQJ PRUH IDW VXEVWUDWH WDUJHWV IRU R[LGDWLRQ f ,Q DGGLWLRQ GLHWDU\ FRQVXPSWLRQ RI 38) $V RU VDWXUDWHG IDWV FDQ DIIHFW WKH IDWW\ DFLG FRPSRVLWLRQ RI WKH SKRVSKDWLG\OFKROLQH RU HWKDQRODPLQH PROHFXOHV LQ WRWDO KHDUW PHPEUDQH SKRVSKROLSLGV f &RQVLGHULQJ WKH 38)$ WDUJHW IRU R[LGDWLYH GDPDJH FDQ EH HQKDQFHG E\ GLHWDU\ FRQVXPSWLRQ RI IDWV WKLV PD\ LQ SDUW H[SODLQ WKH JUHDWHU VXVFHSWLELOLW\ WR P\RF\WH GDPDJH LQ REHVLW\ f %RWK KXPDQ DQG DQLPDO LQYHVWLJDWLRQV KDYH UHSRUWHG UHGXFHG DQWLR[LGDQW OHYHOV LQ WLVVXH DQG SODVPD RI REHVH VXEMHFWV f 6ZLQH IHG D GLHW HQULFKHG LQ ILVK RLOV RU

PAGE 39

RWKHU RLOV VKRZHG PLOG V\PSWRPV RI YLWDPLQ ( GHILFLHQF\ IROORZLQJ VXSSOHPHQWDWLRQ ZLWK YLWDPLQ ( DQG VHOHQLXP WKHVH V\PSWRPV GLVDSSHDUHG f ,W LV XQNQRZQ ZKHWKHU WKH KLJKIDW GLHW W\SLFDOO\ FRQVXPHG E\ REHVH KXPDQV ZKLFK FRQVLVWV RI b IDWV DSSUR[LPDWHO\ b VDWXUDWHG IDWV b PRQRXQVDWXUDWHG IDWV DQG b 38) $Vf f UHQGHUV WKH P\RFDUGLXP VXVFHSWLEOH WR OLSLG SHUR[LGDWLRQ LQ YLYR RU LQ YLWUR ,W LV DOVR XQFOHDU KRZ WKLV W\SH RI GLHW DIIHFWV DQWLR[LGDQW HQ]\PH DFWLYLWLHV DQG *6+ OHYHOV LQ P\RFDUGLDO WLVVXH 7KLV H[SHULPHQW ZLOO DGGUHVV WKLV LVVXH E\ IHHGLQJ OHDQ DQLPDOV WKH W\SLFDO IDWWHQLQJ GLHW DQG DVVHVVLQJ OLSLG SHUR[LGDWLRQ DQG VXVFHSWLELOLW\ WR R[LGDWLYH GDPDJH LQ YLWUR 7KH *HQHWLF &RQWULEXWLRQ WR 2EHVLW\ 7KH REHVLW\ SKHQRW\SH FDQQRW EH VLPSO\ UHGXFHG WR 0HQGHOLDQ VHJUHJDWLRQ SDWWHUQV ODUJHO\ IRU WZR UHDVRQV )LUVW ERG\ IDW FRQWHQW DQG H[FHVV ERG\ IDW UHVXOWV IURP DQ LQWULFDWH QHWZRUN RI LQWHUDFWLYH FDXVHV WKDW PD\ EH UHODWHG WR VSHFLILF '1$ VHTXHQFLQJ EXW DUH DOVR D IXQFWLRQ RI EHKDYLRU DQG OLIHVW\OH f ,Q DGGLWLRQ REHVLW\ LV DOVR D KHWHURJHQHRXV SKHQRW\SH DQG WKHUH LV JURZLQJ HYLGHQFH WKDW D FHUWDLQ SKHQRW\SH LV PRGLILHG E\ RWKHU FDXVDO IDFWRUV &RQVLGHULQJ WKDW KXPDQ REHVLW\ FODVVLILFDWLRQ VFKHPHV FRQVLVW RI D PLQLPXP RI IRXU GLIIHUHQW SKHQRW\SHV HDFK ZLWK GLIIHUHQW FDVHV LW LV GLIILFXOW WR LGHQWLI\ WKH HWLRORJ\

PAGE 40

$Q\ FRQWULEXWLRQ RI D JHQHWLF HIIHFW RQ FDORULF LQWDNH LQ KXPDQ DSSHDUV WR EH PLQLPDO )DPLOLDO FRUUHODWLRQV FRPSXWHG LQ GLIIHUHQW UHODWLYH W\SHV IURP WKH 4XHEHF )DPLO\ 6WXG\ UHYHDOHG WKDW WKHUH ZHUH QR VLJQLILFDQW KHUHGLW\ HIIHFWV RQ FDORULF LQWDNH f )ORZHYHU ZKHQ LQWDNHV RI FDUERK\GUDWH IDW DQG SURWHLQ ZHUH H[SUHVVHG LQ D SHUFHQW RI WRWDO HQHUJ\ LQWDNH WKH FRQWULEXWLRQ RI JHQHWLF IDFWRUV LQFUHDVHG f 7KHVH UHVXOWV VXJJHVW WKDW PDFURQXWULHQW VHOHFWLRQ PD\ EH XQGHU JHQHWLF FRQWURO DQG FRXOG LQGLFDWH VXVFHSWLELOLW\ RI VRPH LQGLYLGXDOV WR EH LQ SRVLWLYH HQHUJ\ EDODQFH RYHU D ORQJ SHULRG RI WLPH ,W LV DOVR SRVVLEOH WKDW GLIIHUHQWLDO JHQHWLF H[SUHVVLRQ RI VSHFLILF QHXURf SHSWLGHV WKDW PRGXODWH RU LQKLELW IRRG LQWDNH DUH WKH XQGHUO\LQJ EDVLV IRU LQGLYLGXDO YDULDWLRQV LQ HQHUJ\ DQG PDFURQXWULHQW LQWDNHV f )RU H[DPSOH RYHU H[SUHVVLRQ RI VWLPXODWRU\ QHXURSHSWLGHV VXFK DV QRUHSLQHSKULQH QHXURSHSWLGH < JDODQLQ DQG HQGRJHQRXV RSLDWHV LQFUHDVH IRRG LQWDNH DQG HOHYDWHG OHYHOV RI VHURWRQLQ KLVWDPLQH QHXURWHQVLQ FKROHVF\WRNLQLQ JOXFDJRQ LQVXOLQ DQG FRUWLFRWURSLF UHOHDVLQJ KRUPRQH VXSSUHVV IRRG LQWDNH f $PRQJ WKH DQLPDO VWXGLHV WKDW HPSOR\HG KLJKIDW RU FDORULFDOO\ GHQVH GLHWV WR IDWWHQ DQLPDOV DQG VLPXODWH GLHW LQGXFHG K\SHUSKDJLD WKHUH LV PXFK KHWHURJHQHLW\ LQ GLHWDU\ WUHDWPHQWV 7KH UHVXOW LV D ZLGH UDQJH RI SK\VLRORJLFDO UHVSRQVHV GLIIHUHQWLDO HQHUJ\ LQWDNHV EDVHG RQ IDW RU VXJDU FRQWHQW RI WKH GLHW DQG DQLPDO PRGHO f 5HFHQWO\ LQYHVWLJDWRUV KDYH GHVLJQHG VSHFLDOW\ GLHWV WR LGHQWLI\ DQLPDOV WKDW DUH fVXVFHSWLEOHf WR REHVLW\ f 2XWEUHG 6SUDJXH'DZOH\ UDWV VKRZ GLIIHUHQWLDO UHVSRQVHV WR

PAGE 41

D FRQGHQVHG PLON GLHW VXFK WKDW KDOI RI WKH UDWV EHFDPH REHVH DQG VRPH JDLQHG PRGHUDWH IDW ZHLJKW f 2WKHU VWXGLHV VKRZ WKDW JHQHWLFDOO\ LQEUHG =XFNHU UDWV SRVVHVVLQJ WKH KHWHUR]\JRXV )D" JHQRW\SH DOVR UHVSRQG WR IDWWHQLQJ GLHWV ZLWKLQ ZHHNV f 7KH UHVSRQVLYH QDWXUH RI WKHVH VXVFHSWLEOH DQLPDOV KDV EHHQ DWWULEXWHG WR D QXPEHU RI IDFWRUV LQFOXGLQJ DOWHUDWLRQV LQ H[SUHVVLRQ RI VDWLHW\ IDFWRUV OHSWLQf DQG OLSRJHQLF HQ]\PHV LPSURYHG HQHUJ\ HIILFLHQF\ LPSURYHG DELOLW\ WR XWLOL]H OHVV HQHUJ\ SHU XQLW IRRG LQWDNH IHZHU HQHUJHWLF IXWLOH F\FOHVf DQG LQFUHDVHG VHQVLWLYLW\ WR LQVXOLQ WKDW ZRXOG SURPRWH PRUH UDSLG IDW GHSRVLWLRQ LQ UHVSRQVH WR FDORULFDOO\ GHQVH GLHWV f ,W LV XQNQRZQ ZKHWKHU WKH OHSWLQ UHFHSWRU GHIHFW LQ WKH IDID REHVH =XFNHU UDW LQFUHDVHV WKH ULVN IRU P\RFDUGLDO R[LGDWLYH VWUHVV ,QWXLWLYHO\ R[LGDWLYH VWUHVV ZRXOG EH HOHYDWHG LQ DQ\ P\RF\WH ZLWK HOHYDWHG UDWHV RI R[LGDWLYH SKRVSKRU\ODWLRQ LH P\RF\WHV WKDW IXQFWLRQ DJDLQVW D JUHDWHU ZRUNORDGf UHJDUGOHVV RI WKH VLQJOH JHQHWLF GHIHFW +RZHYHU WKHUH PD\ EH D JUHDWHU ULVN IRU R[LGDWLYH VWUHVV LQ KXPDQ RU DQLPDO VXEMHFWV ZLWK KLJK KHULWDELOLW\ IRU REHVLW\ ,W LV ZHOO HVWDEOLVKHG WKDW IDPLOLDO SUHGLVSRVLWLRQ RU JHQHWLFV LV D SULPDU\ ULVN IDFWRU IRU FDUGLRYDVFXODU GLVHDVH DQG WKDW KHDUW GLVHDVH LV FRPSOLFDWHG E\ REHVLW\ f &RQVLGHULQJ WKH LPSRUWDQW DQG VLJQLILFDQW UROH RI WKH JHQHWLF LQIOXHQFH XSRQ WKH GHYHORSPHQW RI REHVLW\ LW LV DOVR HVVHQWLDO WR H[DPLQH WKH LQIOXHQFH RI WKH IDID JHQRW\SH LQ RXU LQYHVWLJDWLRQ

PAGE 42

3UHOLPLQDU\ ([SHULPHQWV 2XU ODERUDWRU\ KDV UHFHQWO\ SHUIRUPHG LQLWLDO H[SHULPHQWV LQYHVWLJDWLQJ WKH UHODWLRQVKLS EHWZHHQ P\RFDUGLDO R[LGDWLYH VWUHVV DQG REHVLW\ f 8VLQJ WKH IDWW\ =XFNHU UDW DQLPDO PRGHO KHDUWV IURP PRQWK ROG OHDQ J )D"f DQG REHVH J IDIDf PDOHV ZHUH DQDO\]HG IRU D VHULHV RI DQWLR[LGDQW DQG OLSLG SHUR[LGDWLYH FKDUDFWHULVWLFV 7KH GDWD UHYHDOHG WKDW WKH KHDUWV IURP WKH REHVH DQLPDOV KDG KLJKHU EDVDO OHYHOV RI OLSLG K\GURSHUR[LGHV DQG WKLREDUELWXULF UHDFWLYH DFLG VXEVWDQFHV :H SHUIRUPHG H[SHULPHQWV WR FRPSDUH WKH SULPDU\ HQ]\PDWLF QRQHQ]\PDWLF DQG WHUWLDU\ DQWLR[LGDQW GHIHQVH ZLWKLQ WKH KHDUW 6XVFHSWLELOLW\ WR DQ 2[LGDWLYH &KDOOHQJH ,Q 9LWUR 3URGXFWLRQ RI OLSLG SHUR[LGDWLRQ ZDV H[DFHUEDWHG LQ WKH KRPJHQL]HG KHDUW WLVVXH RI REHVH DQLPDOV FRPSDUHG WR WKH OHDQ IROORZLQJ DQ LURQLQGXFHG R[LGDWLYH FKDOOHQJH LQ YLWUR 7KHVH GDWD LQGLFDWH WKDW WKH P\RFDUGLDO WLVVXH IURP REHVH DQLPDOV KDG KLJKHU EDVDO OLSLG SHUR[LGDWLRQ EXW DOVR D KLJKHU OHYHO RI K\GURSHUR[LGHV SHU XQLW OLSLG IROORZLQJ WKH VDPH H[SRVXUH WR R[LGDWLYH UHDJHQWV IHUULF FKORULGHf LQ DQ LQ YLWUR EDWK :H DWWULEXWHG WKLV VXVFHSWLELOLW\ WR R[LGDWLYH GDPDJH WR HLWKHU f D FRPSURPLVHG DQWLR[LGDQW GHIHQVH ZLWKLQ WKH P\RFDUGLXP RU f DQ LQFUHDVHG OLSLG VXEVWUDWH DYDLODELOLW\ ZLWKLQ WKH P\RFDUGLXP RI REHVH DQLPDOV

PAGE 43

3ULPDU\ $QWLR[LGDQW 'HIHQVH 7KH OHIW YHQWULFXODU P\RFDUGLDO VDPSOHV IURP WKH REHVH DQLPDOV GLG QRW KDYH KLJKHU DQWLR[LGDQW HQ]\PH DFWLYLW\ OHYHOV FRPSDUHG WKH OHDQ DQLPDOV 6SHFLILFDOO\ FDWDODVH &$7f JOXWDWKLRQH SHUR[LGDVH *3;f WRWDO VXSHUR[LGH GLVPXWDVH 62'f DQG WKH FRSSHU ]LQF GHSHQGHQW 62' DFWLYLWLHV ZHUH QRW KLJKHU WKDQ WKRVH LQ WKH P\RFDUGLXP RI WKH OHDQ DQLPDOV +RZHYHU WKH PDQJDQHVHGHSHQGHQW LVRIRUP RI 62' 0Q62'f LQ WKH REHVH DQLPDOV VKRZHG VLJQLILFDQWO\ KLJKHU DFWLYLW\ FRPSDUHG WR WKH 0Q62' DFWLYLW\ LQ WKH OHDQ UDWV 7KH P\RFDUGLDO QRQSURWHLQ WKLRO FRQWHQW UHSUHVHQWDWLYH RI JOXWDWKLRQHf ZDV QRW VLJQLILFDQWO\ GLIIHUHQW EHWZHHQ WKH JURXSV OHDQ REHVHf 7HUWLDU\ $QWLR[LGDQW 'HIHQVH (YLGHQFH H[LVWV WR VXSSRUW WKH QRWLRQ WKDW KHDW VKRFN SURWHLQV +63fV RI WKH N' IDPLO\ SURYLGH SURWHFWLRQ DJDLQVW R[LGDWLYH VWUHVV LQ YLWUR DQG LQ YLYR f ,Q RXU SUHOLPLQDU\ VWXG\ ZH PHDVXUHG WKH UHODWLYH FRQWHQWV RI WKH FRQVWLWXLWLYH LVRIRUP RI +63 N' DQG WKH LQGXFLEOH +63 N' 2XU GDWD UHYHDOHG WKDW WKH UHODWLYH FRQWHQWV RI ERWK RI WKHVH +63V ZHUH QRW VLJQLILFDQWO\ GLIIHUHQW EHWZHHQ WKH OHDQ DQG WKH REHVH JURXSV /LSLG &RQWHQW RI WKH 0\RFDUGLXP 7KH OLSLG FRQWHQW RI WKH KHDUWV IURP REHVH DQLPDOV ZDV QHDUO\ GRXEOH WKDW RI WKH OHDQ DQLPDOV b YHUVXV b RI WKH WRWDO ZHW PDVVf 2WKHUV KDYH VXJJHVWHG WKDW HOHYDWHG

PAGE 44

OLSLG SHUR[LGDWLRQ PD\ EH WKH UHVXOW RI LQFUHDVHG OLSLG VXEVWUDWH DYDLODELOLW\ f DQG RXU GDWD DSSHDUHG WR EH LQ DJUHHPHQW ZLWK WKLV SRVWXODWH 8QDQVZHUHG ,VVXHV 2XU GDWD VXJJHVW WKDW HOHYDWHG OLSLG VXEVWUDWH DQG DQ LQVXIILFLHQWO\ XSUHJXODWHG DQWLR[LGDQW GHIHQVH DUH LPSRUWDQW LVVXHV LQ REHVLW\ LQGXFHG P\RFDUGLDO R[LGDWLYH GDPDJH +RZHYHU WKHUH DUH RWKHU LQWHUSUHWDWLRQV RI WKHVH GDWD WKDW UHTXLUH LQYHVWLJDWLRQ )LUVW WKH HOHYDWHG 0Q62' DFWLYLW\ VXJJHVWV WKDW HLWKHU R[LGDWLYH UHVSLUDWLRQ LV RFFXUULQJ DW D KLJKHU UDWH LQ WKH REHVH DQLPDOV FRPSDUHG WR WKH OHDQ LH JUHDWHU KHDUW ZRUNf RU WKHUH LV DQ LQFUHDVHG UDWH RI VXSHUR[LGH SURGXFWLRQ DW WKH VLWH RI WKH PLWRFKRQGULRQ WR FDXVH XS UHJXODWLRQ RI WKH HQ]\PH 6HFRQG WKH DQWLR[LGDQW GHIHQVH DOVR LQFOXGHV GLHWDU\ DQWLR[LGDQWV ZKLFK DUH LPSRUWDQW LQ SUHYHQWLQJ OLSLG SHUR[LGDWLRQ LQOFXGLQJ YLWDPLQ ( DQG FDURWHQH 7KHVH GLHWDU\ DQWLR[LGDQW FKDUDFWHULVWLFV RI WKH P\RFDUGLDO WLVVXH RI WKHVH IDWW\ =XFNHU DQLPDOV KDYH QRW SUHYLRXVO\ EHHQ PHDVXUHG ,W LV SRVVLEOH WKDW REHVLW\ HOHYDWHV WKH OHYHO RI R[LGDWLYH VWUHVV VXFK WKDW WKH WLVVXH YLWDPLQ ( DQG _FDURWHQH OHYHOV PD\ QRW EH VXIILFLHQW WR VFDYHQJH WKH 526 JHQHUDWHG LQ WKH P\RFDUGLDO WLVVXH 7KLUG LW LV SRVVLEOH WKDW WKLV HOHYDWHG OLSLG SHUR[LGDWLRQ PD\ EH LQ SDUW GXH WR WKH OHSWLQ UHFHSWRU GHIHFW RI WKH =XFNHU VWUDLQ $OO WKH SHUWXUEDWLRQV WKDW DUH DVVRFLDWHG ZLWK WKH JHQHWLF GHIHFW RI WKH =XFNHU VWUDLQ KDYH QRW \HW EHHQ HOXFLGDWHG DQG LW LV LPSRUWDQW WR DGGUHVV ZKHWKHU WKH IDID

PAGE 45

JHQRW\SH RU GLHWLQGXFHG REHVLW\ LQ KHWHUR]\JRWHV )D"f LV PRUH LPSRUWDQW LQ FRQWULEXWLQJ WR P\RFDUGLDO R[LGDWLYH VWUHVV

PAGE 46

&+$37(5 0(7+2'6 $QLPDOV 0DOH OHDQ DQG REHVH IDWW\ =XFNHU UDWV ZHHNV RI DJHf ZHUH XVHG LQ WKLV H[SHULPHQW 7KLV DJH RI UDW ZDV FKRVHQ GXH WR WKH LQDELOLW\ WR VHSDUDWH DQLPDOV E\ ERG\ ZHLJKW EHWZHHQ WKH OHDQ DQG REHVH IDIDf JURXSV f 0DOHV ZHUH XVHG WR SUHYHQW DQ\ SRVVLEOH DQWLR[LGDQWSURWHFWLYH HIIHFW RI HVWURJHQ LQ IHPDOHV f 6DPSOH VL]HV DUH EDVHG RQ D VWDWLVWLFDO SRZHU DQDO\VHV SHUIRUPHG XVLQJ GDWD IURP RXU SUHOLPLQDU\ H[SHULPHQW $SSHQGL[ $f $QLPDOV ZHUH LQGLYLGXDOO\ KRXVHG PDLQWDLQHG RQ D KRXU OLJKWGDUN F\FOH )ROORZLQJ D RQHZHHN DGMXVWPHQW SHULRG WKH H[SHULPHQWDO GLHWV ZHUH DGPLQLVWHUHG ([SHULPHQWDO 'HVLJQ DQG 'LHW 7KH FRQWURO GLHW FRQWDLQHG WKH 1DWLRQDO 5HVHDUFK &RXQFLOfV UHFRPPHQGHG GDLO\ QXWULHQW LQWDNH IRU UDWV f +LJK VXJDU RU KLJK IDW GLHWV KDYH EHHQ ZLGHO\ XVHG WR IDWWHQ DQLPDOV ZLWKLQ ZHHNV ZLWK UHVXOWV EHLQJ PRUH SURQRXQFHG DW ZHHNV f DQG KDYH EHHQ FKDUDFWHUL]HG DV KLJKO\ SDODWDEOH WR UDWV f 7KLV VWXG\ ZLOO HPSOR\ D KLJKIDW KLJKUHILQHG VXJDU GLHW LQ DQ HIIRUW WR PRVW FORVHO\ PLPLF WKH GLHW FRQVXPHG E\ REHVH $PHULFDQV f 7KLV W\SH RI GLHW ZDV DOVR FKRVHQ LQ WKH HIIRUW WR LQGXFH

PAGE 47

YROXQWDU\ K\SHUSKDJLD 'DWD IURP WKH)UDPLQJKDP DQG /LSLG 5HVHDUFK &OLQLFV /5&f SURMHFWV f DQG RWKHU FRKRUW VWXGLHV f LQGLFDWH WKDW WKH W\SLFDO GLHW 7DEOH 6FKHPDWLF RI ([SHULPHQWDO 'HVLJQ XVLQJ WKH IDWW\ =XFNHU 5DW 0RGHO /($1 )D"f &RQWURO 'LHW Q /($1 )D"f +LJK)DW 'LHW Q 2%(6( IDIDf &RQWURO 'LHW Q FRQVXPHG E\ REHVH KXPDQV LV FRPSULVHG RI ab SURWHLQ a b WRWDO IDWV b VDWXUDWHG IDW RI DQLPDO RULJLQ b SRO\XQVDWXUDWHG IDWV b PRQRXQVDWXUDWHG IDWV ZLWK XQVDWXUDWHGVDWXUDWHG UDWLRV UDQJLQJ IURP f DQG b FDUERK\GUDWHV b IURP DGGHG RU VLPSOH VXJDUVf 7R GHWHUPLQH ZKHWKHU REHVLW\ HOLFLWV DQ DOWHUDWLRQ LQ WKH DQWLR[LGDQW VWDWXV RI REHVH DQLPDOV GLHWDU\ DQWLR[LGDQW FRQFHQWUDWLRQV ZHUH WKH VDPH SHU NJ IRRG DQG WKH GDLO\ DQWLR[LGDQW LQWDNHV ZLWK IHHGLQJ ZHUH UHWURVSHFWLYHO\ FDOFXODWHG 7KHUHIRUH LQ WKLV VWXG\ OHDQ DQLPDOV )D"f ZHUH IHG D FDORULFDOO\ GHQVH GLHW IRU D SHULRG RI QLQH ZHHNV DV WKLV WLPH SHULRG DSSHDUV WR EH DGHTXDWH WR LQGXFH VLJQLILFDQW REHVLW\ LQ KLJKIDW IHG JURXSV f 7KH GLHWV IRU DOO WKUHH JURXSV ZHUH SUHSDUHG E\ 5HVHDUFK 'LHWV ,QF 1HZ %UXQVZLFN 1-f 7KH PDFURQXWULHQW SHUFHQWDJHV RI WKH GLHWV DUH FRQWDLQHG LQ 7DEOH 6SHFLILF PDFURQXWULHQW DQG PLFURQXWULHQW FRPSRVLWLRQ RI WKH GLHWV DUH LQ 7DEOH $QLPDOV ZHUH DOORZHG WR HDW IRRG DQG ZDWHU DG OLELWXP DQG FDORULF LQWDNH ZDV PRQLWRUHG GDLO\ IRRG YROXPH LQ J DQG WRWDO FDORULHV FRQVXPHG

PAGE 48

$QLPDO 0RGHO -XVWLILFDWLRQ 7KLV VWXG\ XVHG DQ DQLPDO PRGHO FRPSDUDEOH WR KXPDQ REHVLW\ WKH IDWW\ =XFNHU UDW 7KLV DQLPDO ZDV FKRVHQ EHFDXVH f WKH LQYDVLYH QDWXUH RI WKHVH H[SHULPHQWV SUHYHQWV WKH XVH RI KXPDQ VXEMHFWV f WKH IDWW\ =XFNHU UDW LV D JHQHWLF PRGHO RI REHVLW\ SRVVHVVLQJ VLPLODU V\PSWRPRORJ\ DV KXPDQV LQFOXGLQJ K\SHUWURSK\ DQG K\SHUWHQVLRQ f f LWV ZLGHVSUHDG DFFHSWDQFH DV D PRGHO IRU LQYHVWLJDWLQJ KXPDQ REHVLW\ DQG f IDWW\ =XFNHU DQLPDOV GHPRQVWUDWH GHSUHVVHG YHQWULFXODU IXQFWLRQ VLPLODU WR WKDW REVHUYHG LQ KXPDQ FDVHV RI REHVLW\ VXFK WKDW UHVSRQVLYHQHVV WR SDGUHQHUJLF VWLPXODWLRQ LV UHGXFHG DQG WKH SUHVVXUH GHYHORSLQJ DELOLW\ RI WKH YHQWULFOH LV UHGXFHG ORZHU SHDN V\VWROLF VWUHVV DW DQ\ JLYHQ YROXPHf f 7KH RYHUIHG RYHUZHLJKW UDW PRGHO KDV EHHQ FLWHG DV WKH EHVW DQLPDO PRGHO WR XVH LQ DQ\ SKDUPDFRNLQHWLF UHVHDUFK f DQG VWXGLHV RI KXPDQ K\SHUWHQVLRQ 7KHUHIRUH ERWK WKH JHQHWLF IDID OHSLWQ UHFHSWRU GHIHFWf DQG RYHUIHG KLJKIDWf RYHUZHLJKW DQLPDO PRGHO ZLOO EH XVHG LQ WKLV LQYHVWLJDWLRQ $VVHVVPHQW RI 6\VWHPLF &KDQJHV :LWK 2EHVLW\ 6HYHUDO LPSRUWDQW SK\VLRORJLFDO YDULDEOHV ZHUH PHDVXUHG EHIRUH GXULQJ DQG IROORZLQJ WKH GLHWDU\ WUHDWPHQW SHULRG 7KHVH PHDVXUHV LQFOXGHG UHVWLQJ ERG\ ZHLJKW

PAGE 49

7DEOH 'HVFULSWLRQ RI WKH FRQWURO DQG KLJKIDW KLJKFDUERK\GUDWH GLHW FRQVWLWXHQWV IHG WR OHDQ DQG REHVH =XFNHU UDWV &RQWURO 'LHW 'f )DWWHQLQJ 'LHW 'f 3URWHLQ b 3URWHLQ b &DUERK\GUDWHr b &DUERK\GUDWHrr b )DW b )DW b 7RWDO b 7RWDO b /DUJHO\ FRPSOH[ VXJDUV FRUQVWDUFKf rf$GGHG b UHILQHG VXJDUV VXFURVHf 7DEOH 0DFURQXWULHQW DQG PLFURQXWULHQW FRPSRVLWLRQ RI WKH GLHWV IHG WR WKH H[SHULPHQWDO JURXSV RI OHDQ DQG REHVH IDWW\ =XFNHU UDWV ,QJUHGLHQW JNJ GLHW ,QJUHGLHQW JNJ GLHW &DVHLQ PHVK &DVHLQ /&\VWHLQH /&\VWHLQH &RUQVWDUFK &RUQVWDUFK 6XFURVH 6XFURVH 6R\EHDQ 2LO 6R\EHDQ 2LO /DUG /DUG 6, 6, /&\VWHLQH /&\VWHLQH 'LFDOFLXP 3KRVSKDWH 'LFDOFLXP SKRVSKDWH &DOFLXP &DUERQDWH &DOFLXP FDUERQDWH 3RWDVVLXP &LWUDWH + 3RWDVVLXP &LWUDWH + 9LWDPLQ 0L[ 9,f r 9LWDPLQ 0L[ 9,f r &KROLQH ELWDUWDWH &KROLQH ELWDUWDWH r6HH $SSHQGL[ % IRU GHWDLOV RI 9LWDPLQ 0L[ FRQVWLWXHQWV 6R\EHDQ RLO LV b VDWXUDWHG b PRQRXQVDWXUDWHG b OLQRHLF DFLG DQG b OLQROHQLF IDWW\ DFLGf

PAGE 50

R[\JHQ FRQVXPSWLRQ KHDUW UDWH EORRG SUHVVXUH DQG EORRG JOXFRVH DQG LQVXOLQ OHYHOV ([SHULPHQWDO GHWDLOV IRU HDFK PHDVXUH IROORZ 5HVWLQJ 2[\JHQ &RQVXPSWLRQ 92f %RG\ PDVVHV ZHUH UHFRUGHG DW WKH EHJLQQLQJ RI WKH VWXG\ DQG ZHHNO\ WKHUHDIWHU XQWLO VDFULILFH 5HVWLQJ R[\JHQ FRQVXPSWLRQ 92f RI HDFK DQLPDO ZDV DVVHVVHG DW WKH FRQFOXVLRQ RI WKH IHHGLQJ WUHDWPHQW WR GHWHUPLQH GLIIHUHQFHV EHWZHHQ JURXSV f 2[\JHQ FRQVXPSWLRQ ZDV PHDVXUHG E\ RSHQFLUFXLW VSLURPHWU\ XVLQJ D VSHFLDOO\ FRQVWUXFWHG VHDOHG PHWDEROLF FKDPEHU ;; FP 7UXHPD[ JDV DQDO\]LQJ V\VWHPf $QLPDOV UHPDLQHG LQ WKH FKDPEHU ZLWK R[\JHQ FRQVXPSWLRQ PHDVXUHG XSRQ HTXLOLEUDWLRQ RI WKH JDV LQ WKH FKDPEHU PLQf )ORZ UDWHV IRU JDV VDPSOLQJ ZHUH VHW DW /PLQ DQG UHVWLQJ 92 ZDV HVWLPDWHG XVLQJ WKH IROORZLQJ IRUPXOD IORZ UDWHfb GLIIHUHQFH EHWZHHQ WKH DPELHQW DLU DQG WKH FKDPEHUf ERG\ PDVV NJf 92 LQ PONJPLQ +HDUW 5DWH DQG %ORRG 3UHVVXUH 6\VWROLF EORRG SUHVVXUH %3f DQG KHDUW UDWH ),5f LQ DZDNH FRQVFLRXV DQLPDOV ZHUH DVVHVVHG LQ DOO DQLPDOV $ WDLO SUHVVXUH FXII V\VWHP .HQW 6FLHQWLILF PRGHO V %3 %3 f ZDV XVHG WR GHWHUPLQH V\VWROLF EORRG SUHVVXUH +5 ZDV GHWHUPLQHG XVLQJ WKLV VDPH DSSDUDWXV E\ DOORZLQJ WKH SLH]RHOHFWULF WUDQVGXFHU WR GHWHFW WKH SXOVDWLRQV RI EORRG IORZ ZLWKLQ WKH SUR[LPDO UHJLRQ RI WKH ODWHUDO WDLO YHLQ 7KH DQDORJXH VLJQDO ZDV GLUHFWHG WKURXJK D SUHDPSOLILHU DQG $' FRQYHUWHU WR D SHQ FKDUW UHFRUGHU *UDVV

PAGE 51

LQVWUXPHQWVf 2QH OHDQ DQG RQH REHVH DQLPDO ZHUH WHVWHG VLPXOWDQHRXVO\ WR UHGXFH DQ\ H[SHULPHQWDO YDULDWLRQV EHWZHHQ WHVWLQJ VHVVLRQV 3ULRU WR DQ\ GDWD FROOHFWLRQ DQLPDOV ZHUH SODFHG LQWR WKH ZDUPLQJ UHVWUDLQHU RQ WKUHH GLIIHUHQW RFFDVLRQV IRU D SHULRG RI PLQ WR DFFOLPDWH WKHP WR WKH SURFHGXUH DQG UHGXFH DQ\ LQIODWLRQ RI WKH WUXH %3 %3 DQG +5 PHDVXUHV ZHUH FROOHFWHG SULRU WR WKH IHHGLQJ WUHDWPHQW RQFH HDFK ZHHN DQG DW WKH FRQFOXVLRQ RI WKH IHHGLQJ SHULRG %ORRG *OXFRVH DQG ,QVXOLQ &RQFHQWUDWLRQV ,PPHGLDWHO\ SULRU WR VDFULILFH D aP/ EORRG VDPSOH ZDV REWDLQHG IURP FDUGLDF SXQFWXUH )UHVK EORRG VDPSOHV ZHUH FROOHFWHG XVLQJ ('7$ WUHDWHG YDFXWDLQHU WXEHV 3ODVPD ZDV VHSDUDWHG E\ FHQWULIXJDWLRQ DQG LPPHGLDWHO\ IUR]HQ IRU ODWHU DQDO\VLV RI EORRG JOXFRVH DQG LQVXOLQ OHYHOV %ORRG JOXFRVH ZDV DVVHVVHG XVLQJ DQ HQ]\PDWLF FRORULPHWULF WHFKQLTXH f ,QVXOLQ OHYHOV ZHUH DVVHVVHG E\ D UDGLRLPPXQRDVVD\ WHFKQLTXH GHVFULEHG SUHYLRXVO\ fFRPPHUFLDO NLW /,1&2 5HVHDUFK O, ODEHOf *OXFRVH VDPSOHV ZHUH SHUIRUPHG LQ GXSOLFDWH DQG LQVXOLQ VDPSOHV ZHUH SHUIRUPHG LQ TXDGUXSODWH 7KH DYHUDJH RI WZR KHPDWRFULWV YDOXHV ZHUH UHFRUGHG DV WKH VDPSOH VFRUH

PAGE 52

+HDUW :HLJKW ,PPHGLDWHO\ IROORZLQJ VDFULILFH WKH KHDUWV ZHUH UDSLGO\ H[FLVHG DQG SODFHG LQ DHUDWHG LFHFROG PRGLILHG .UHEfV VROXWLRQ WR UHPRYH WKH UHPDLQLQJ EORRG )ROORZLQJ H[FLVLRQ RI WKH SDSLOODU\ PXVFOHV WKH KHDUWV ZHUH EORWWHG DQG ZHLJKHG LPPHGLDWHO\ $GLSRVLW\ $ %0, HTXLYDOHQW IRU UDWV WKH DGLSRVLW\ LQGH[ ZDV SHUIRUPHG LQ DOO DQLPDOV XVLQJ D ZHOOGRFXPHQWHG PHWKRG f %ULHIO\ WKH OHQJWK RI WKH UDW IURP WKH WLS RI WKH QRVH WR WKH DQXV ZDV PHDVXUHG 7KH ERG\ PDVV DQG WKH OHQJWK RI WKH DQLPDO ZDV FDOFXODWHG XVLQJ WKH IRUPXOD $GLSRVLW\ ,QGH[ WKH FXEH URRW RI WKH ERG\ PDVV Jf OHQJWK PPf ; 7KH DGLSRVLW\ LQGH[ ZDV GHWHUPLQHG LPPHGLDWHO\ SULRU WR VDFULILFH +HDUW 7LVVXH &RPSRVLWLRQ 7R GHWHUPLQH ZKHWKHU WKH GLHWDU\ WUHDWPHQW DIIHFWHG KHDUW WLVVXH FRPSRVLWLRQ WKH IDW ZDWHU FRPSRVLWLRQ DQG GU\ ZHLJKW RI WKH KHDUWV RI OHDQ DQG REHVH DQLPDOV ZHUH GHWHUPLQHG DV IROORZV /LSLG &RQWHQW RI WKH 0\RFDUGLXP $ PRGLILHG YHUVLRQ RI DQ HDUOLHU H[WUDFWLRQ WHFKQLTXH ZDV XVHG WR LVRODWH P\RFDUGLDO OLSLG f %ULHIO\ KHDUW VDPSOHV ZHUH KRPRJHQL]HG LQ D PHWKDQRO FKORURIRUP

PAGE 53

PL[ YYf IRU PLQ DW URRP WHPS 6DPSOHV ZHUH FHQWULIXJHG IRU PLQ DW ; J 6XSHUQDWDQWV ZHUH GHFDQWHG DQG WKH SHOOHW ZDV UHVXVSHQGHG DQG UHH[WUDFWHG ZLWK PHWKDQROFKORURIRUP 1 +& YYf 7KH WZR SKDVHV ZHUH VHSDUDWHG E\ DQRWKHU PLQ FHQWULIXJDWLRQ DW ; J 7KH VXSHUQDWDQWV ZHUH SRROHG DQG WKH SKDVHV ZHUH VHSDUDWHG E\ D WKLUG PLQ FHQWULIXJDWLRQ DW ; J 7KH ORZHU FKORURIRUP SKDVH ZDV UHPRYHG DQG QHXWUDOL]HG E\ GURSZLVH DGGLWLRQ RI PHWKDQROLF 1+W2+ 6DPSOHV ZHUH FRQFHQWUDWHG XQGHU D VWUHDP RI QLWURJHQ 7KH ZHLJKW RI WKH UHVLGXH ZDV UHFRUGHG DV WKH DPRXQW RI OLSLG PDVV SHU XQLW KHDUW ZHLJKW :DWHU &RQWHQW DQG 'U\ :HLJKW 7R GHWHUPLQH WKH P\RFDUGLDO ZDWHU FRQWHQW DQG GU\ ZHLJKW D SLHFH RI YHQWULFXODU WLVVXH ZDV FXW DQG SODFHG LQ D SUHPDVVHG WXEH 7KH VDPSOHfV ZHLJKW ZDV UHFRUGHG 7KH VDPSOH ZDV IUHH]HGULHG LQ DQ HYDSRUDWRU DW D QHJDWLYH SUHVVXUH RI n PP+J DQG UHn ZHLJKHG WR REWDLQ WKH VDPSOHfV GU\ ZHLJKW WLVVXH SURWHLQOLSLGf 7KH ZDWHU ZHLJKW RI WKH VDPSOH WLVVXH ZDWHUf ZDV FDOFXODWHG E\ ZHW ZHLJKW SRVWGU\LQJ ZHLJKW 5DGLFDO 3URGXFWLRQ EY WKH 0\RFDUGLXP 7R GHWHUPLQH ZKHWKHU REHVLW\ DIIHFWV WKH UHVSLUDWLRQ UDWHV RU WKH UDGLFDO SURGXFWLRQ VSHFLILFDOO\ f RI P\RFDUGLDO WLVVXH SDSLOODU\ PXVFOHV ZHUH LVRODWHG DQG VWLPXODWHG LQ YLWUR DQG DQ LQGLUHFW DVVHVVPHQW RI 526 SURGXFWLRQ ZDV SHUIRUPHG

PAGE 54

,VRODWHG 3DSLOODU\ 0XVFOH ([SHULPHQWV 7R GHWHUPLQH ZKHWKHU KHDUWV IURP REHVH DQLPDOV JHQHUDWH 526 DW JUHDWHU UDWHV SDSLOODU\ PXVFOHV ZHUH LVRODWHG IURP KHDUWV IURP DOO DQLPDOV DV GHVFULEHG SUHYLRXVO\ f ,Q EULHI DQLPDOV ZHUH DQHVWKHWL]HG ZLWK DQ LQWUDSHULWRQHDO LQMHFWLRQ RI VRGLXP SHQWREDUELWDO PJNJf $IWHU UHDFKLQJ D SODQH RI VXUJLFDO DQHVWKHVLD WKH FKHVW RI WKH DQLPDO ZDV RSHQHG H[SRVLQJ WKH FRQWUDFWLQJ KHDUW 7KH KHDUW ZDV VXEMHFWHG WR FDUGLRSOHJLF DUUHVW E\ LQIXVLRQ RI LFH FROG PRGLILHG .UHEfV +HQVOHLW EXIIHU DOO LQ PPRO/ 1D&O 1D+&2M .& .+3 0J6 &D&O DQG JOXFRVH f E\ D V\ULQJH WKURXJK D FXW LQ WKH DRUWLF URRW ,FH FROG EXIIHU ZDV DSSOLHG WR WKH KHDUW WRSLFDOO\ WR DVVLVW LQ FRROLQJ RI WKH RUJDQ $IWHU IOXVKLQJ WKH KHDUW ZLWK EXIIHU WKH KHDUW ZDV UHPRYHG IURP WKH DQLPDO DQG SODFHG LQWR DQ LFHG WLVVXH EDWK ZLWK PRGLILHG .UHEfV EXIIHU EXEEOHG ZLWK b b & 8QGHU D PDJQLI\LQJ JODVV D SDSLOODU\ PXVFOH ZDV UDSLGO\ H[FLVHG DQG WLHG ZLWK VXWXUHV RQ ERWK HQGV 7KH PXVFOH ZDV WUDQVIHUUHG WR D VPDOO WLVVXH FKDPEHU FRQWDLQLQJ ZDUP .UHEfV EXIIHU r& POf EXEEOHG ZLWK WKH VDPH JDV PL[WXUH 2QH VXWXUH HQG ZDV IL[HG WR WKH FKDPEHU DQG WKH RWKHU HQG IL[HG WR D IRUFH WUDQVGXFHU *UDVV ,QVWUXPHQWV 0RGHO )7f $ VSHFLDOO\ GHVLJQHG SDLU RI SODWLQXP HOHFWURGHV SURYLGHG ILHOG VWLPXODWLRQ WR WKH PXVFOH DW WKH IROORZLQJ SDUDPHWHUV 9 +] PV GXUDWLRQ DQG SXOVH SHU VHF WR VLPXODWH ,62 ESPf )ROORZLQJ D PLQ HTXLOLEUDWLRQ SHULRG WKH PXVFOH ZDV VWLPXODWHG IRU D PLQXWH WLPH SHULRG 7R GHWHUPLQH

PAGE 55

ZKHWKHU n DQLRQV DUH IRUPHG DW JUHDWHU UDWHV LQ UHVSRQVH WR HOHFWULFDO VWLPXODWLRQ WKH EDWKLQJ PHGLXP DOVR FRQWDLQHG fV 0 F\WRFKURPH & & 6LJPD &KHPLFDOf &\WRFKURPH & LV UHGXFHG DV D IXQFWLRQ RI VXSHUR[LGH SURGXFWLRQ 7KH WLVVXH EDWK ZDV ZUDSSHG LQ IRLO DQG WKH H[SHULPHQWV ZHUH FRQGXFWHG LQ D GLPPHG ODERUDWRU\ WR UHGXFH SKRWRUHGXFWLRQ LQ DPELHQW OLJKW )ROORZLQJ WKH PLQ VWLPXODWLRQ WUHDWPHQW WKH EDWKLQJ PHGLXP ZDV FROOHFWHG DQG DQDO\]HG VSHFWURSKRWRPHWULFDOO\ IRU WKH UHGXFWLRQ RI F\WRFKURPH & DV SUHYLRXVO\ GHVFULEHG f 7KH PDJQLWXGH RI DEVRUEDQFH FKDQJH DW QP UHIOHFWHG WKH DPRXQW RI f LQ WKH EDWKLQJ PHGLXP f 7R FRQILUP WKDW WKH DVVD\ ZDV GHWHFWLQJ f SURGXFWLRQ K\SR[DQWKLQH ; n 0 + 6LJPD &KHPLFDOf ZDV DGGHG WR [DQWKLQH R[LGDVH 8PO ; 6LJPD &KHPLFDOf WR SURGXFH n WKDW UHGXFHG F\WRFKURPH & $OWHUQDWLYHO\ QDWLYH 62' 8PO 6 6LJPD &KHPLFDOf ZDV DGGHG WR WKH PHGLXP WR WHVW LQKLELWLRQ RI WKH UDGLFDO $VVHVVPHQW RI 0\RFDUGLDO $QWLR[LGDQW 6WDWXV 7R GHWHUPLQH ZKHWKHU REHVLW\ RU WKH RYHUIHHGLQJ WUHDWPHQW DIIHFWHG R[LGDWLYH DQG DQWLR[LGDQW FDSDFLW\ OHIW YHQWULFXODU VDPSOHV IURP DOO JURXSV ZHUH DVVHVVHG IRU R[LGDWLYH DQG DQWLR[LGDQW HQ]\PH DFWLYLWLHV

PAGE 56

2[LGDWLYH DQG $QWLR[LGDQW (Q]\PH $FWLYLW\ &LWUDWH V\QWKDVH &6 (& f DFWLYLW\ ZDV XVHG DV D PDUNHU IRU R[LGDWLYH FDSDFLW\ XVLQJ D PHWKRG SUHYLRXVO\ GHVFULEHG f 6XSHUR[LGH GLVPXWDVH 62' (& f VHOHQLXP JOXWDWKLRQH SHUR[LGDVH *3; (& f DQG FDWDODVH &$7 (& f DFWLYLWLHV ZHUH XVHG DV PDUNHUV IRU DQWLR[LGDQW FDSDFLW\ XVLQJ SUHYLRXVO\ GHVFULEHG SURFHGXUHV f $OO DVVD\V ZHUH SHUIRUPHG LQ GXSOLFDWH DQG RQ WKH VDPH GD\ WR UHGXFH LQWHUDVVD\ YDULDWLRQ $FWLYLWLHV ZHUH QRUPDOL]HG WR SURWHLQ LQ WKH VDPSOH XVLQJ SUHYLRXVO\ GHVFULEHG VSHFWURSKRWRPHWULF G\H ELQGLQJ PHWKRGV f 7LVVXH 7KLRO 0HDVXUHPHQWV 7LVVXH WKLROV DUH PROHFXOHV WKDW FRQWDLQ VXOIK\GU\O JURXSV 7KH\ DUH LPSRUWDQW LQ WKH UHJXODWLRQ RI ERWK FHOOXODU UHGR[ VWDWXV DQG DQWLR[LGDQW FDSDFLW\ f 7KHUHIRUH WRWDO SURWHLQ DQG QRQSURWHLQ WKLROV IURP WKH OHIW YHQWULFOH ZHUH DVVD\HG IURP DOO H[SHULPHQWDO DQLPDOV 7KLRO FRQWHQW ZDV GHWHUPLQHG VSHFWURSKRWRPHWULFDOO\ XVLQJ D SUHYLRXVO\ GHVFULEHG '71%EDVHG WHFKQLTXH f 6LQFH JOXWDWKLRQH LV WKH GRPLQDQW QRQSURWHLQ WKLRO LQ WKH FHOO WKLV PHDVXUH ZDV XVHG DV D PDUNHU RI WLVVXH JOXWDWKLRQH OHYHOV f %LRFKHPLFDO ,QGLFDWRUV RI 2[LGDWLYH 6WUHVV 7R GHWHUPLQH WKH DPRXQW RI UDGLFDOPHGLDWHG R[LGDWLYH GDPDJH LQ WKH KHDUW OHIW YHQWULFXODU OHYHOV RI WZR E\SURGXFWV RI OLSLG SHUR[LGDWLRQ ZHUH PHDVXUHG

PAGE 57

/LSLG 3HUR[LGDWLRQ 0HDVXUHPHQWV 0DORQGLDLGHK\GH OHYHOV ZHUH GHWHUPLQHG VSHFWURSKRWRPHWULFDOO\ XVLQJ WKH WKLREDUELWXULF DFLGUHDFWLYH VXEVWDQFHV 7%$56f PHWKRG SUHYLRXVO\ GHVFULEHG f 7KH DJHQW WHWUDHWKR[\SURSDQH ZDV XVHG DV WKH VWDQGDUG IRU WKLV DVVD\ 6DPSOHV ZHUH SHUIRUPHG LQ GXSOLFDWH /LSLG K\GURSHUR[LGHV ZHUH TXDQWLILHG XVLQJ WKH IHUURXV R[LGDWLRQ[\OHQRO RUDQJH WHFKQLTXH SUHYLRXVO\ UHSRUWHG f &XPHQH K\GURSHUR[LGH ZDV XVHG DV WKH VWDQGDUG IRU WKLV DVVD\ ,Q RXU ODERUDWRU\ WKH FRHIILFLHQWV RI YDULDWLRQ IRU WKH 7%$56 DQG OLSLG K\GURSHUR[LGH DVVD\V DUH DQG SHUFHQW UHVSHFWLYHO\ $OO VDPSOHV ZHUH SHUIRUPHG LQ WULSOLFDWH 2[LGDWLYH &KDOOHQJHV LQ YLWUR 7R LQYHVWLJDWH WKH UHODWLRQVKLS EHWZHHQ REHVLW\ DQG P\RFDUGLDO DQWLR[LGDQW FDSDFLW\ KHDUW KRPRJHQDWHV IURP DQLPDOV LQ DOO JURXSV ZHUH VXEMHFWHG WR D VHULHV RI VHYHUDO GLIIHUHQW 526JHQHUDWLQJ V\VWHPV $ VHFWLRQ RI WKH OHIW YHQWULFOH IURP HDFK KHDUW ZDV KRPRJHQL]HG LQ b VDOLQH DW D FRQFHQWUDWLRQ RI LQ QLWURJHQ JDVVHG P0 SRWDVVLXP SKRVSKDWH EXIIHU DW S+ DFFRUGLQJ WR D SUHYLRXV PHWKRG f $OLTXRWV RI WKH KRPRJHQDWHV ZHUH LQFXEDWHG DW D FRQFHQWUDWLRQ RI PJ SURWHLQPO LQ WKH SUHVHQFH RI

PAGE 58

DQ 526 JHQHUDWLQJ V\VWHP )ROORZLQJ HDFK FKDOOHQJH WKH KRPRJHQDWHV ZHUH DQDO\]HG IRU OLSLG SHUR[LGDWLRQ XVLQJ WKH SUHYLRXVO\ PHQWLRQHG WHFKQLTXH f ;DQWKLQH;DQWKLQH 2[LGDVH 6\VWHP 6XQHUR[LGH *HQHUDWRU 6XSHUR[LGH UDGLFDOV ZHUH JHQHUDWHG E\ WKH UHDFWLRQV LQYROYHG LQ D [DQWKLQH [DQWKLQH R[LGDVH V\VWHP VLPLODU WR DQ HDUOLHU PHWKRG f 2QH PO RI P0 [DQWKLQH DQG ,8 [DQWKLQH R[LGDVH ZHUH DGGHG WR D PO DOLTXRW RI KHDUW KRPRJHQDWH DQG LQFXEDWHG DW r& IRU PLQ +\GURJHQ 3HUR[LGH 6\VWHP 2QH PO RI K\GURJHQ SHUR[LGH P0f ZDV DGGHG GLUHFWO\ WR D RQH PO DOLTXRW RI KHDUW KRPRJHQDWH DQG LQFXEDWHG DW r& IRU PLQ DFFRUGLQJ WR D SUHYLRXV PHWKRG f )HUULF &KORULGH 6\VWHP I+YGUR[YO *HQHUDWRUf )O\GUR[\O UDGLFDOV ZHUH SURGXFHG LQ WKH KHDUW KRPRJHQDWHV E\ DGGLQJ P0 IHUULF FKORULGH )H&Ef DQG P0 $'3 7KH FKRLFH RI WKHVH SDUWLFXODU FRQFHQWUDWLRQV LV EDVHG RQ SUHYLRXV f ZKR IRXQG WKDW WKLV FRQFHQWUDWLRQ RI LURQ$'3 LQGXFHG IUHHUDGLFDO PHGLDWHG DUUK\WKPLDV LQ WKH LVRODWHG SHUIXVHG UDW KHDUW DQG WKDW LW ZDV SRVVLEOH WR SUHYHQW WKHVH DUUK\WKPLDV E\ SHUIXVLQJ WKH KHDUW ZLWK 62' f

PAGE 59

$$3+ 6\VWHP 3HUR[YO *HQHUDWRU LQ WKH /LSLG 3KDVHf 3HUR[\O UDGLFDOV ZHUH JHQHUDWHG LQ WKH DTXHRXV SKDVH RI KRPRJHQDWH E\ WKHUPDO GHFRPSRVLWLRQ RI fD]RELVDPLGLQRSURSDQHfGLK\GURFKORULGH $$3+f PO RI $$3+ VROXWLRQ DQG PO RI KHDUW KRPRJHQDWH ZLOO EH PL[HG LQ DQG LQFXEDWHG DW r& IRU KUV )ROORZLQJ LQFXEDWLRQ RI WKH KHDUW KRPRJHQDWHV LQ HDFK V\VWHP P0 EXW\ODWHG K\GUR[\WROXHQH %+7f ZDV DGGHG WR VWRS WKH R[LGDWLYH UHDFWLRQ 7%$56 IRUPDWLRQ DQG OLSLG K\GURSHUR[LGH FRQFHQWUDWLRQ ZHUH WKHQ DQDO\]HG DV SUHYLRXVO\ GHVFULEHG f 6WDWLVWLFDO $QDO\VLV $OO GHSHQGHQW PHDVXUHV DQWLR[LGDQW DQG ELRFKHPLFDO SDUDPHWHUVf ZHUH VXEMHFWHG WR D RQHZD\ DQDO\VLV RI YDULDQFH $129$f 6LJQLILFDQFH ZDV HVWDEOLVKHG DW S ,Q WKH FDVH RI VLJQLILFDQW GLIIHUHQFHV 6FKHII SRVWKRF DQDO\VLV ZDV SHUIRUPHG WR GHWHUPLQH ZKHUH GLIIHUHQFHV H[LVWHG %LYDULDWH FRUUHODWLRQV ZHUH SHUIRUPHG EHWZHHQ 7%$56 DQG K\GURSHUR[LGH OHYHOV DQG V\VWHPLF GLHWDU\ DQG ELRFKHPLFDO PHDVXUHV WR GHWHUPLQH DQ\ UHODWLRQVKLSV EHWZHHQ OLSLG SHUR[LGDWLRQ DQG WKHVH YDULDEOHV )XUWKHUPRUH D VWHSZLVH IRUZDUGf UHJUHVVLRQ ZDV SHUIRUPHG RQ VHOHFW YDULDEOHV WR GHWHUPLQH ZKLFK YDULDEOHV FRQWULEXWH PRVW WR OLSLG SHUR[LGDWLRQ LQ ERWK PRGHOV RI REHVLW\

PAGE 60

&+$37(5 5(68/76 'XH WR WKH YDULDQFH EHWZHHQ WKH DGLSRVLW\ OHYHOV DWWDLQHG ZLWKLQ H[SHULPHQWDO JURXSV HDFK RI WKH WKUHH JURXSV RI DQLPDOV ZHUH VHSDUDWHG LQWR WZR JURXSV EDVHG RQ DGLSRVLW\ ORZ %0, DQG KLJK %0/ %0,V WKDW ZHUH DERYH WKH JURXS DYHUDJH ZHUH GHILQHG DV fKLJKf DQG %0,V WKDW ZHUH EHORZ WKH JURXS DYHUDJH ZHUH GHILQHG DV fORZf 7KHUHIRUH WKH IROORZLQJ DQQRWDWLRQ ZLOO EH XVHG WKURXJKRXW WKH UHPDLQGHU RI WKH PDQXVFULSW &21752/6 /RZ %0, &/%0, +LJK %0, &+%0, +,*+)$7 )(' /RZ %0, )/%0, +LJK %0, )+%0, 2%(6( /RZ %0, 2/%0, +LJK %0, 2+%0, 'LHW DQG $QWLR[LGDQW &RQVXPSWLRQ 7KH ZHHNO\ IRRG LQWDNH RI DOO JURXSV GXULQJ WKH QLQH ZHHNV RI IHHGLQJ LV VKRZQ LQ )LJXUH 7KH WRWDO FDORULF LQWDNH DQG GLHWDU\ FRQVXPSWLRQ RI YLWDPLQV $ DQG ( DUH FRQWDLQHG LQ 7DEOH $OWKRXJK WKH IDWIHG JURXSV )/%0, DQG )+%0, FRQVXPHG OHVV WRWDO IRRG Sf WKH FDORULF LQWDNH RI WKHVH JURXSV ZDV KLJKHU FRPSDUHG WR &/%0, DQG &+%0, S!f 7KLV LV GXH WR WKH IDFW WKDW WKH IRRG GHQVLW\ RI WKH KLJKIDW GLHW

PAGE 61

)RRG ,QWDNH Jf )LJXUH )RRG LQWDNH RI WKH VL[ H[SHULPHQWDO JURXSV 9DOXHV DUH PHDQV 6( f'HQRWHV JUHDWHU WKDQ FRQWURO S DQG rr GHQRWHV OHVV WKDQ FRQWUROV DW S

PAGE 62

ZDV NFDOJP FRPSDUHG WR WKH GLHW FRQVXPHG E\ WKH WZR OHDQ JURXSV NFDOJPf 7KH 2/%0, DQG 2+%0, DQLPDOV FRQVXPHG PRUH WRWDO IRRG DQG PRUH FDORULHV WKDQ DOO RWKHU FRQWURO DQG IDWIHG JURXSV Sf 9LWDPLQ ( DQG $ LQWDNH ZHUH D GLUHFW IXQFWLRQ RI WRWDO IRRG FRQVXPHG ,8 JP IRRG YLWDPLQ ( ,8 JP YLWDPLQ $f 7KHUHIRUH JURXSV )/%0, DQG )+%0, FRQVXPHG OHVV RI YLWDPLQ ( DQG $ FRPSDUHG WR WKH RWKHU IRXU JURXSV ,Q FRQWUDVW WKH REHVH JURXSV 2/%0, DQG 2+%0, FRQVXPHG WKH PRVW RI WKHVH WZR YLWDPLQV RI DOO VL[ JURXSV Sf 7DEOH 7RWDO GLHW FRQVXPSWLRQ FDORULF LQWDNH DQG DQWLR[LGDQW LQWDNH RI OHDQ FRQWURO KLJKIDW IHG DQG REHVH =XFNHU UDWV GXULQJ D ZHHN IHHGLQJ SHULRG 9DOXHV DUH PHDQV s 6(0 rr S JUHDWHU WKDQ JURXSV I S OHVV WKDQ DOO FRQWURO DQG REHVH JURXSV *URXS 'LHW ,QWDNH &DORULHV 9LWDPLQ ( ,8f 9LWDPLQ $ ,8f JfNFDOf,8 [ Vf,8 [ f &/%0, s s s &+%0, s s s )/%0, I sr sI sI )+%0, I sr sW sI 2/%0, rr srr srr srr 2+%0, srr srr srr srr ZKHUH 9LWDPLQ ( YLWDPLQ ( DFHWDWH 9LWDPLQ $ 9LWDPLQ $ 3DOPLWDWH

PAGE 63

%RG\ :HLJKW &KDQJHV :LWK )HHGLQJ 1LQH ZHHNV RI IHHGLQJ WKH OHDQ DQG REHVH =XFNHU UDWV UHVXOWHG LQ D GLVWLQFW VHSDUDWLRQ EHWZHHQ WKH ERG\ ZHLJKWV RI WKH JURXSV )LJXUH FRQWDLQV WKH ERG\ ZHLJKWV GDWD EHIRUH GXULQJ DQG DIWHU WKH IHHGLQJ WUHDWPHQW 7KH 2/%0, DQG 2+%0, ZHUH KHDYLHU WKDQ WKH RWKHU IRXU JURXSV DW WKH VWDUW RI WKH VWXG\ DQG JDLQHG ZHLJKW UDSLGO\ GXULQJ WKH ILUVW ZHHNV DQG ZHUH VLJQLILFDQWO\ KHDYLHU Sf WKDQ WKH RWKHU IRXU JURXSV DW DOO WLPH SRLQWV GXULQJ WKH IHHGLQJ SHULRG %\ ZHHN WKH )+%0, EHFDPH VLJQLILFDQWO\ Sf KHDYLHU WKDQ WKH FRQWURO OHDQ JURXSV &/%0, DQG &+%0, DQG WKH IDWIHG JURXS )/%0, 7KHVH ERG\ ZHLJKW VHSDUDWLRQV UHPDLQHG SUHVHQW WKURXJKRXW WKH UHPDLQGHU RI WKH IHHGLQJ SHULRG 0RUSKRORJLFDO &KDUDFWHULVWLFV 7KH PRUSKRORJLFDO FKDUDFWHULVWLFV RI WKH VL[ JURXSV DUH VXPPDUL]HG LQ 7DEOH D 7KH 2/%0, DQG 2),%0, JURXSV ZHUH FKDUDFWHUL]HG E\ D VLJQLILFDQWO\ Sf ODUJHU OLYHU ZHLJKWV FRPSDUHG WR DOO RWKHU JURXSV 7KH KHDUW ZHLJKWV ZHUH QRW VLJQLILFDQWO\ GLIIHUHQW EHWZHHQ JURXSV S!f EXW WKH KHDUW ZHLJKWERG\ ZHLJKW UDWLR ZDV VLJQLILFDQWO\ ORZHU Sf LQ WKH JURXSV 2/%0, DQG 2+%0, FRPSDUHG WR DOO RWKHU JURXSV 7KH GLDSKUDJP ZHLJKW RI WKH )+%0, ZDV VLJQLILFDQWO\ JUHDWHU WKDQ WKH ZHLJKWV RI DOO RWKHU JURXSV Sf 7KH ORFRPRWRU PXVFOH ZHLJKWV DUH VKRZQ LQ 7DEOH E 7KH GDWD LQGLFDWH WKDW WKH ORFRPRWRU PXVFOH ZHLJKWV RI WKH VROHXV JDVWURFQHPLXV

PAGE 64

:HHN )LJXUH %RG\ ZHLJKW FKDQJHV EHIRUH GXULQJ DQG IROORZLQJ WKH QLQH ZHHN IHHGLQJ SHULRG 9DOXHV DUH PHDQV 6( r GHQRWHV JUHDWHU WKDQ FRQWURO DW S

PAGE 65

7DEOH D &RPSDULVRQ RI PRUSKRORJLFDO FKDUDFWHULVWLFV EHWZHHQ WKH VL[ JURXSV RI =XFNHU UDWV IROORZLQJ ZHHNV RI IHHGLQJ 9DOXHV DUH PHDQV 6( r S FRPSDUHG WR DOO RWKHU JURXSV rrS JUHDWHU WKDQ DOO OHDQ FRQWURO DQG IDWIHG JURXSV I S OHVV WKDQ DOO OHDQ FRQWURO DQG IDWIHG JURXSV +HDUW :HLJKW +HDUW %RG\ :HLJKW /LYHU :HLJKW 'LDSKUDJP :HLJKW Jf5DWLR JNJfJfJf &/%0, s s s &+%0, s s )/%0, s s s )+%0, s s s r 2/%0, s sW s rr 2+%0, s sI s rr 7DEOH E &RPSDULVRQ RI ORFRPRWRU PXVFOH ZHLJKWV EHWZHHQ WKH VL[ JURXSV RI =XFNHU UDWV IROORZLQJ ZHHNV RI IHHGLQJ 9DOXHV DUH PHDQV s 6( r S JUHDWHU WKDQ DOO RWKHU JURXSV W S VPDOOHU WKDQ DOO RWKHU JURXSV $OO YDOXHV DUH H[SUHVVHG LQ J 6ROHXV *DVWURFQHPLXV 3ODQWDULV 7LELDOLV $QWHULRU &/%0, s s s s &+%0, s s s s )/%0, s s s r s )+%0, sr sr r s r 2/%0, s W s I s 22OI s 22OI 2+%0, sW s I s 22OI s 2 2OI

PAGE 66

SODQWDULV DQG WKH WLELDOLV DQJWHULRU PXVFOHV RI WKH REHVH JURXSV 2/%0, DQG 2+%0, ZHUH VLJQLILFDQWO\ VPDOOHU Sf WKDQ WKRVH RI WKHLU OHDQ DQG KLJKIDW IHG FRXQWHUSDUWV LQ DOO RWKHU JURXSV 7KH PXVFOH ZHLJKWV RI JURXS )+%0, ZHUH VLJQLILFDQWO\ JUHDWHU S&?f FRPSDUHG WR DOO RWKHU JURXSV 3K\VLRORJLFDO &KDUDFWHULVWLFV 7KH SK\VLRORJLFDO FKDUDFWHULVWLFV RI WKH DQLPDOV ZHUH UHFRUGHG EHIRUH GXULQJ DQG IROORZLQJ WKH IHHGLQJ SURWRFRO 7KHVH PHDVXUHV LQFOXGHG UHVWLQJ KHDUW UDWHV DQG V\VWROLF EORRG SUHVVXUHV GRXEOH SURGXFW RI +5 [ %3 KHDUW ZRUNf R[\JHQ FRQVXPSWLRQ %0, DQG EORRG JOXFRVH DQG LQVXOLQ FRQFHQWUDWLRQV +HDUW 5DWHV %ORRG 3UHVVXUHV DQG +HDUW :RUN 7KH UHVWLQJ KHDUW UDWHV RI WKH VL[ JURXSV GLG QRW GLIIHU S!f DW DQ\ WLPH SRLQW GXULQJ WKH VWXG\ )LJXUH Df +RZHYHU WKH V\VWROLF EORRG SUHVVXUHV RI WKH REHVH DQLPDOV RI JURXSV 2/%0, DQG 2+%0, ZHUH VLJQLILFDQWO\ KLJKHU WKDQ WKRVH RI DOO RWKHU JURXSV GXULQJ ZHHNV )LJXUH Ef %\ ZHHN WKUHH WKH IDWIHG JURXSV )/%0, DQG )+%0, H[KLELWHG D VLJQLILFDQWO\ KLJKHU Sf V\VWROLF EORRG SUHVVXUH FRPSDUHG WR JURXSV &/ %0, DQG &+%0, 7KLV GLIIHUHQFH EHWZHHQ JURXSV SHUVLVWHG WKURXJKRXW WKH UHPDLQLQJ ZHHNV RI WKH IHHGLQJ SHULRG

PAGE 67

+HDUW 5DWH ESPf Uf§ L L L L L L L nnnQ 3UH 3RVW :HHN )LJXUH &DUGLRYDVFXODU IXQFWLRQDO PHDVXUHV Df 5HVWLQJ KHDUW UDWHV RI DOO H[SHULPHQWDO JURXSV 9DOXHV DUH PHDQV 6(

PAGE 68

)LJXUH &DUGLRYDVFXODU IXQFWLRQDO PHDVXUHV Ef 6\VWROLF EORRG SUHVVXUH LQ DOO H[SHULPHQWDO JURXSV 9DOXHV DUH PHDQV 6( rr GHQRWHV GLIIHUHQW IURP IDW IHG DQG FRQWUROV fGHQRWHV GLIIHUHQW IURP FRQWUROV

PAGE 69

+HDUW :RUN PP+JPLQf )LJXUH &DUGLRYDVFXODU IXQFWLRQDO PHDVXUHV Ff 0\RFDUGLDO ZRUN DPRQJ WKH VL[ JURXSV 9DOXHV DUH PHDQV 6( r 'HQRWHV JUHDWHU WKDQ FRQWURO JURXSV DW S rr JUHDWHU WKDQ IDWIHG DQG FRQWUROV DW S

PAGE 70

7KH UDWH SUHVVXUH SURGXFWV RI WKH KHDUW UDWHV ; V\VWROLF EORRG SUHVVXUHV GHILQHG DV KHDUW ZRUNf IRU HDFK JURXS GXULQJ ZHHNO\ DVVHVVPHQWV DUH VKRZQ LQ )LJXUH F 7KH GDWD LQGLFDWH WKDW WKH KHDUW ZRUN JHQHUDWHG E\ WKH REHVH JURXSV 2/%0, DQG 2+%0, ZDV VLJQLILFDQWO\ JUHDWHU Sf WKDQ WKDW RI DOO RWKHU JURXSV GXULQJ ZHHNV %\ ZHHN WKH KHDUW ZRUN JHQHUDWHG E\ WKH IDWIHG JURXSV )/%0, DQG )+%0, ZDV VLJQLILFDQWO\ JUHDWHU WKDQ WKDW RI OHDQ FRQWURO JURXSV &/%0, DQG &+%0, 7KLV GLIIHUHQFH EHWZHHQ WKH VL[ JURXSV H[LVWHG WKURXJKRXW WKH UHPDLQGHU RI WKH VWXG\ 2[\JHQ &RQVXPSWLRQ DQG %RG\ 0DVV ,QGH[ I%07f 5HVWLQJ R[\JHQ FRQVXPSWLRQ 92f DQG %0, YDOXHV DUH VKRZQ LQ 7DEOH 7KH & +%0, JURXS GHPRQVWUDWHG D VLJQLILFDQWO\ KLJKHU Sf UHVWLQJ R[\JHQ FRQVXPSWLRQ YDOXH FRPSDUHG WR DOO RWKHU JURXSV ZKHUHDV JURXSV 2/%0, DQG 2+%0, VKRZHG WKH ORZHVW 9 YDOXHV FRPSDUHG WR WKH IRXU UHPDLQLQJ JURXSV Sf 7KH %0, YDOXHV IROORZLQJ QLQH ZHHNV RI IHHGLQJ UHVXOWHG LQ VLJQLILFDQW GLIIHUHQFHV Sf EHWZHHQ WKH JURXSV 7KH %0, YDOXHV IRU 2+%0, ZDV JUHDWHU Sf WKDQ DOO RWKHU JURXSV ZKHUHDV WKH %0, YDOXHV IRU JURXSV )+%0, DQG 2/%0, ZHUH JUHDWHU Sf WKDQ JURXSV &/%0, &+%0, DQG )/%0, &/%0, KDG WKH ORZHVW Sf %0, YDOXH RI DOO VL[ H[SHULPHQWDO JURXSV

PAGE 71

7DEOH 5HVWLQJ R[\JHQ FRQVXPSWLRQ DQG ERG\ PDVV LQGH[ YDOXHV %0,f IRU DOO H[SHULPHQWDO JURXSV RI =XFNHU UDWV IROORZLQJ ZHHNV RI GLHWDU\ WUHDWPHQW 9DOXHV DUH PHDQV s 6( rS ORZHU WKDQ JURXSV &/%0, &+%0, DQG )/%0, rrS JUHDWHU WKDQ JURXSV &/%0, DQG &+%0, rrrS FRPSDUHG WR DOO RWKHU JURXSV *URXS 92 POrNJrPLQf %0, JPPf &/%0, s &+%0, rrr s )/%0, s rr )+%0, r srr 2/%0, r srr 2+%0, r rr 7DEOH %ORRG JOXFRVH DQG LQVXOLQ FRQFHQWUDWLRQV LQ DOO VL[ H[SHULPHQWDO JURXSV +HPDWRFULW YDOXHV DUH DOVR SURYLGHG 9DOXHV DUH PHDQV s 6( rS JUHDWHU WKDQ JURXSV &/%0, &+%0, DQG )/%0, rrS JUHDWHU WKDQ DOO RWKHU JURXSV *URXS *OXFRVH PJG/f ,QVXOLQ QJPOf +HPDWRFULW &/%0, s s s &+%0, s s s )/%0, s s s )+%0, s s s 2/%0, s rr srr s 2+%0, r rr

PAGE 72

%ORRG *OXFRVH DQG ,QVXOLQ &RQFHQWUDWLRQV 7KH EORRG JOXFRVH DQG LQVXOLQ FRQFHQWUDWLRQV DUH VKRZQ LQ 7DEOH 7KH GDWD LQGLFDWH WKDW JURXSV )+%0, DQG 2+%0, KDG KLJKHU Sf JOXFRVH OHYHOV WKDQ JURXSV &/%0, &+%0, DQG )/%0, DQG 2/%0, KDG WKH KLJKHVW FRQFHQWUDWLRQ Sf RI EORRG JOXFRVH FRPSDUHG WR DOO RWKHU JURXSV ,QVXOLQ FRQFHQWUDWLRQV LQFUHDVHG DV D IXQFWLRQ RI DGLSRVLW\ 7KH 2/%0, DQG 2+%0, JURXSV KDG VLJQLILFDQWO\ JUHDWHU Sf LQVXOLQ FRQFHQWUDWLRQV FRPSDUHG WR DOO RWKHU JURXSV 7KHUH ZHUH QR VLJQLILFDQW GLIIHUHQFHV S!f LQ WKH KHPDWRFULWV EHWZHHQ WKH VL[ JURXSV +HDUW 7LVVXH &KDUDFWHULVWLFV +HDUW WLVVXH FKDUDFWHULVWLFV DUH VKRZQ LQ 7DEOH $OWKRXJK WUHQGV H[LVWHG WKH ZDWHU FRQWHQW DQG GU\ ZHLJKWV RI WKH KHDUW VDPSOHV ZHUH QRW VLJQLILFDQWO\ GLIIHUHQW EHWZHHQ JURXSV ,Q FRQWUDVW WKH P\RFDUGLDO OLSLG FRQWHQW YDOXHV IRU )/%0, )+%0, 2/%0, DQG 2+%0, ZHUH VLJQLILFDQWO\ JUHDWHU Sf FRPSDUHG WR WKH WZR JURXSV RI OHDQ FRQWURO DQLPDOV +RZHYHU WKHUH ZHUH QR VLJQLILFDQW GLIIHUHQFHV LQ OLSLG FRQWHQW DPRQJ WKH IRXU IDWIHG DQG REHVH JURXSV

PAGE 73

7DEOH 0\RFDUGLDO WLVVXH ZDWHU FRQWHQW GU\ ZHLJKW DQG OLSLG FRQWHQW PJJf RI WKH VL[ H[SHULPHQWDO JURXSV 9DOXHV DUH PHDQV 6( rS JUHDWHU FRPSDUHG WR &/%0, DQG &+%0, *URXS :DWHU bf 'U\ 0DVV bf /LSLG PJJf &/%0, s s &+%0, s )/%0, s sr )+%0, sr 2/%0, s sr 2+%0, s sr 2"n 3URGXFWLRQ &\WRFKURPH & $VVD\ 7KH SURGXFWLRQ RI n SURGXFWLRQ E\ LVRODWHG SDSLOODU\ PXVFOHV LQ YLWUR ZDV GHWHUPLQHG XVLQJ D F\WRFKURPH & DVVD\ 7KH UHVXOWV RI WKLV DVVD\ DUH VKRZQ LQ )LJXUH (OHFWURO\VLV DQG EXEEOLQJ RI WKH 2&2 JDV PL[WXUH UHVXOWHG LQ PLQLPDO SURGXFWLRQ DV HYLGHQFHG E\ WKH ORZ DEVRUEDQFH +LJK DEVRUSWLRQ YDOXHV ZHUH UHFRUGHG IROORZLQJ LQFXEDWLRQ RI WKH WLVVXH EDWKLQJ PHGLXP ZLWK K\SR[DQWKLQH DQG [DQWKLQH R[LGDVH LQGLFDWLQJ WKH YLDELOLW\ RI WKH DVVD\ 3XULILHG 62' ZDV DGGHG WR WKH K\SR[DQWKLQH[DQWKLQH R[LGDVH EDWKLQJ PHGLXP DQG LQKLELWHG SURGXFWLRQ DV VKRZQ E\ WKH UHGXFHG DEVRUEDQFH YDOXH )XUWKHU 62' ZDV DOVR DGGHG WR WKH EDWKLQJ PHGLXP FRQWDLQLQJ FRQWUDFWLQJ SDSLOODU\ PXVFOH 7KH ORZ DEVRUEDQFH YDOXH LQGLFDWHV WKDW 62' GLG LQKLELW UHGXFWLRQ RI F\WRFKURPH & +RZHYHU WKHUH ZHUH QRW GHWHFWDEOH GLIIHUHQFHV S!f LQ

PAGE 74

XMXR66f DRXHTMRVTY )LJXUH t &\WRFKURPH & UHGXFWLRQ LQ UHVSRQVH WR HSHULPHQWDO FRQGLWLRQV DQG FRQWUDFWLQJ LVRODWHG SDSLOODL\ PWVFOH ILRPWKH VL[ H!SHULUUHQWDO JURXSV 9DOXHV DUH PDQV 6(

PAGE 75

EDWKLQJ PHGLXP DEVRUEDQFH YDOXHV EHWZHHQ WKH PXVFOH SUHSDUDWLRQV IURP DOO VL[ H[SHULPHQWDO JURXSV LQGLFDWLQJ QR GLIIHUHQFHV LQ 2Ln SURGXFWLRQ 7R GHPRQVWUDWH YLDELOLW\ RI WKHVH PXVFOH SUHSDUDWLRQV WHWDQLF PXVFOH IRUFHV ZHUH UHFRUGHG 7KH DYHUDJH FRQWUDFWLOH IRUFHV IRU DOO JURXSV UDQJHG IURP P1PP 2[LGDWLYH DQG $QWLR[LGDQW (Q]\PH $FWLYLWLHV 7KH R[LGDWLYH &6f DQG DQWLR[LGDQW HQ]\PH DFWLYLWLHV &$7 DQG *3;f IRU OHIW YHQWULFXODU VDPSOHV DUH VKRZQ LQ 7DEOH D $OWKRXJK D WUHQG H[LVWHG WKHUH ZHUH QR VLJQLILFDQW GLIIHUHQFHV LQ &6 RU *3; DFWLYLW\ +RZHYHU WKH 2+%0, JURXS KDV KLJKHU &$7 DFWLYLW\ FRPSDUHG WR DOO RWKHU JURXSV ,QWHUHVWLQJO\ WKH RQO\ VLJQLILFDQW GLIIHUHQFH LQ WKH 62' DFWLYLWLHV ZDV IRXQG ZLWK WKH &X=Q62' LVRIRUP 6SHFLILFDOO\ WKH &X=Q62' DFWLYLW\ ZDV JUHDWHU LQ WKH 2/%0, DQG 2+%0, JURXSV FRPSDUHG WR WKH OHDQ FRQWUROV //%0, DQG /+%0, 7KHUH ZHUH QR RWKHU VLJQLILFDQW FKDQJHV LQ 62' DFWLYLWLHV ZLWK HLWKHU PRGHO RI REHVLW\ :KHQ DQWLR[LGDQW HQ]\PH DFWLYLWLHV ZHUH QRUPDOL]HG WR WKH DPRXQW RI P\RFDUGLDO OLSLG WKH DQWLR[LGDQW HQ]\PH SURILOH ZDV TXLWH GLIIHUHQW 7KH UHVXOWV RI WKLV DQDO\VLV DUH VKRZQ LQ 7DEOH F ,Q DOO FDVHV WKH OHDQ FRQWURO JURXSV &/%0, DQG &+%0,f KDG JUHDWHU HQ]\PH DFWLYLWLHV FRPSDUHG ZLWK DOO WKH KLJKIDW IHG DQG REHVH JURXSV

PAGE 76

7DEOH D 2[LGDWLYH DQG DQWLR[LGDQW HQ]\PH DFWLYLWLHV RI OHIW YHQWULFXODU VDPSOHV IURP DOO VL[ H[SHULPHQWDO JURXSV 9DOXHV DUH PHDQV s 6( &6 DQG *3; XQLWV DUH LQ SPROrPJ SURWHLQrPLQ &$7 XQLWV DUH LQ 8JZZ rS JUHDWHU FRPSDUHG WR &/%0, DQG )/ %0, JURXSV *URXS &6 *3; &$7 &/%0, s &+%0, s s )/%0, s )+%0, s s 2/%0, s s 2+%0, s r 7DEOH E 62' DFWLYLWLHV RI OHIW YHQWULFXODU VDPSOHV IURP DOO VL[ H[SHULPHQWDO JURXSV 9DOXHV DUH PHDQV 6( 62' LV H[SUHVVHG DV 8QLWVrPLQrPJ SURWHLQ rJUHDWHU WKDQ DOO IDW IHG DQG FRQWURO JURXSV DW S *URXS 7RWDO 62' 0Q62' &X=Q62' &/%0, s s s &+%0, s s s )/%0, s s s )+%0, s s s 2/%0, s sr 2+%0, s s sr

PAGE 77

7DEOH F $QWLR[LGDQW HQ]\PH DFWLYLWLHV RI OHIW YHQWULFXODU VDPSOHV IURP DOO VL[ H[SHULPHQWDO JURXSV 9DOXHV DUH PHDQV 6( &6 DQG *3; XQLWV DUH LQ SPROrPJ OLSLGrPLQ &$7 XQLWV DUH LQ 8PJ OLSLG rS JUHDWHU FRPSDUHG WR DOO KLJKIDW IHG DQG REHVH JURXSV *URXS *3; &$7 762' 0Q62' &X=Q62' &/%0, sr s r s r sr s &+%0, sr sr s r sr r )/%0, s s s s )+%0, s s s s s 2/%0, s s s s s 2+%0, s s s s s 7LVVXH 7KLROV 0\RFDUGLDO WKLRO VWDWXV ZDV PHDVXUHG DW WKH FRPSOHWLRQ RI WKH ZHHN IHHGLQJ SHULRG )LJXUH f 1R VLJQLILFDQW GLIIHUHQFHV H[LVWHG S!f EHWZHHQ JURXSV LQ WRWDO WKLRO FRQWHQW &RPSDUHG WR &/%0, DQG &+%0, )/%0, DQG )+%0, KDG VLJQLILFDQWO\ ORZHU SURWHLQ WKLROV )+%0, DQG 2+%0, KDG JUHDWHU OHYHOV Sf RI QRQSURWHLQ ERXQG WKLROV FRPSDUHG WR DOO RWKHU JURXSV VXJJHVWLQJ WKDW JOXWDWKLRQH OHYHOV ZHUH HOHYDWHG LQ WKHVH JURXSV

PAGE 78

)LJXUH 0\RFDUGLDO WKLRO IUDFWLRQV 9DOXHV DUH PHDQV 6( r 'HQRWHV JUHDWHU WKDQ DOO RWKHU JURXSV DW S rr OHVV WKDQ FRQWURO JURXSV DW S

PAGE 79

%DVDO /LSLG 3HUR[LGDWLRQ /HIW YHQWULFXODU K\GURSHUR[LGH FRQWHQW LV VKRZQ LQ )LJXUH 7KH GDWD LQGLFDWH WKDW WKH )/%0, )+%0, 2/%0, DQG 2),%0, JURXSV KDG VLJQLILFDQWO\ Sf KLJKHU WLVVXH K\GURSHUR[LGH OHYHOV FRPSDUHG WR &/%0, DQG &),%0, 1R GLIIHUHQFHV H[LVWHG EHWZHHQ )/%0, )),%0, 2/%0, DQG 2+%0, 2[LGDWLYH &KDOOHQJHV LQ 9LWUR 7KH UHVXOWV IRU WKH R[LGDWLYH FKDOOHQJHV DUH VKRZQ LQ )LJXUH D DQG E :KHQ H[SUHVVHG SHU PJ RI SURWHLQ )LJXUH Df WKH 7%$56 FRQFHQWUDWLRQ ZDV VLJQLILFDQWO\ JUHDWHU Sf LQ )/%0, )+%0, DQG 2+%0, FRPSDUHG WR DOO RWKHU JURXSV DW WKH EDVDO OHYHO )ROORZLQJ WKH )H&O FKDOOHQJH WKH +2 FKDOOHQJH DQG WKH [DQWKLQH [DQWKLQH R[LGDVH FKDOOHQJH WKH 7%$56 FRQFHQWUDWLRQ ZDV JUHDWHU LQ )+%0, 2/%0, DQG 2+%0, JURXSV 7KHUH ZHUH QR GLIIHUHQFHV S!f EHWZHHQ JURXSV IROORZLQJ WKH $$3+ FKDOOHQJH :KHQ H[SUHVVHG SHU PJ OLSLG )LJXUH Ef 7%$56 OHYHOV GLG QRW GLIIHU EHWZHHQ DQ\ JURXS ZLWK WKH H[FHSWLRQ RI WKH $$3+ FKDOOHQJH 6SHFLILFDOO\ WKH 7%$56 OHYHOV RI JURXSV ),7%0, 2/%0, DQG 2+%0, ZHUH VLJQLILFDQWO\ ORZHU Sf WKDQ WKRVH LQ &/%0, DQG &+%0, VXJJHVWLQJ WKDW OLSLG SHUR[LGDWLRQ LV GHSHQGHQW RQ WKH DPRXQW RI OLSLG VXEVWUDWH SUHVHQW IRU R[LGDWLRQ

PAGE 80

+\GURSHUR[LGHV QPROPJ SURWHLQf Q &/%0, &+%0, )/%0, )+%0, 2/%0, 2+%0, )LJXUH 0\RFDUGLDO OLSLG K\GURSHUR[LGH FRQWHQW LQ DOO VL[ H[SHULPHQWDO JURXSV 9DOXHV DUH PHDQV 6( f'HQRWHV JUHDWHU WKDQ FRQWURO JURXSV DW S

PAGE 81

7%$56 QPRO PJ SURWHLQf &/%0, &+%0, )/%0, )+%0, 2/%0, 2+%0, )LJXUH D 0\RFDUGLDO 7%$56 FRQWHQW 0\RFDUGLDO 7%$56 PJ SURWHLQ 9DOXHV DUH PHDQV 6( rJUHDWHU WKDQ FRQWUROV DQG )/%0, DW S

PAGE 82

7%$56 QPROPJ OLSLG &/%0 &+%IYO )/%0, )%0 2/%0 )LJXUH E 0\RFDUGLDO7%$56 FRQWHQW 0\RFDUGLDO 7%$56A UUJ OLSLG 9DOXHV DUH PDQV 6( fOHVV WKDQ FRQWUROV DW S24 2%9

PAGE 83

&RUUHODWLRQV %HWZHHQ /LSLG +\GURSHUR[LGHV DQG 3K\VLRORJLF 0HDVXUHV 3HDUVRQ FRUUHODWLRQV ZHUH SHUIRUPHG EHWZHHQ OLSLG K\GURSHUR[LGHV DQG WKH SURSRVHG UDGLFDOJHQHUDWLQJ ELRFKHPLFDO DQG V\VWHPLF PHDVXUHV WR GHWHUPLQH ZKLFK PHDVXUHV EHVW FRUUHODWH ZLWK P\RFDUGLDO OLSLG SHUR[LGDWLRQ 7DEOH f /LSLG K\GURSHUR[LGH FRQWHQW LV FRUUHODWHG ZLWK V\VWROLF EORRG SUHVVXUH DQGf KHDUW ZRUN DQG P\RFDUGLDO OLSLG FRQWHQW &RQVLGHULQJ WKDW WKHVH VDPH YDULDEOHV ZHUH DOVR VLJQLILFDQWO\ FRUUHODWHG ZLWK P\RFDUGLDO 7%$56 FRQWHQW GDWD QRW VKRZQf ZH VXJJHVW WKDW KHDUW ZRUN DQG EORRG SUHVVXUH PD\ EH JRRG QRQLQYDVLYH SUHGLFWRUV RI P\RFDUGLDO R[LGDWLYH VWUHVV 6WHSZLVH 5HJUHVVLRQ 0RGHO IRU 0\RFDUGLDO /LSLG 3HUR[LGDWLRQ $ VWHSZLVH UHJUHVVLRQ ZDV SHUIRUPHG WR GHWHUPLQH WKRVH YDULDEOHV ZKLFK DUH PRVW FORVHO\ UHODWHG WR WKH PDJQLWXGH RI P\RFDUGLDO OLSLG SHUR[LGDWLRQ K\GURSHUR[LGHV PJ OLSLGf 7KH UHVXOWV DUH IRXQG LQ 7DEOH 7KHVH GDWD VXJJHVW WKDW OLSLG FRQWHQW FRQWULEXWHV PRVW WR WKH P\RFDUGLDO OLSLG SHUR[LGDWLRQ REVHUYHG LQ ERWK REHVLW\ PRGHOV UHJUHVVLRQ HTXDWLRQ \ ; f ,Q DGGLWLRQ WR OLSLG FRQWHQW KHDUW ZRUN F\WRFKURPH & UHGXFWLRQ HYLGHQFH RI H[FHVVLYH VXSHUR[LGH SURGXFWLRQf &X=Q62' DQG &$7 DFWLYLWLHV FRQWULEXWHG WR WKH UHJUHVVLRQ PRGHO DOWKRXJK WKHLU LQGLYLGXDO FRQWULEXWLRQV ZHUH QRW VLJQLILFDQW 7R LOOXVWUDWH WKH UHODWLRQVKLS EHWZHHQ OLSLG K\GURSHUR[LGHV PJ OLSLG DQG P\RFDUGLDO OLSLG FRQWHQW D VFDWWHU SORW ZDV FUHDWHG )LJXUH f 7R WHVW IRU DGHTXDF\ RI

PAGE 84

7DEOH &RUUHODWLRQV Uf EHWZHHQ EDVDO OLSLG K\GURSHUR[LGHV PJ OLSLG DQG VHOHFWHG V\VWHPLF PHDVXUHV LQ DOO JURXSV DQG VHSDUDWHG E\ REHVLW\ PRGHO U YDOXHV DUH VKRZQ ZLWK SYDOXHV LQ SDUHQWKHVHV r GHQRWHV S 0($685( $// *52836 +,*+)$7 )(' IDID %0, f f f +($57 :25. fr f fr /,3,' &217(17 fr fr fr 9,7$0,1 ( &2168037,21 f fr f &6 fr f fr 727$/ 62' f f f 0Q62' f f f &X=Q62' f f f *3; f f f &$7 f f fr &<72&+520( & 5('8&7,21 f f f 7DEOH 6WHSZLVH UHJUHVVLRQ DQDO\VLV IRUZDUGf IRU REHVLW\LQGXFHG P\RFDUGLDO OLSLG SHUR[LGDWLRQ K\GURSHUR[LGHV PJOLSLGf (DFK VWHS LV DGGLWLYH UHSUHVHQWLQJ GLIIHUHQW HTXDWLRQV r GHQRWHV D VLJQLILFDQW FRQWULEXWLRQ WR WKH PRGHO 6WHS 9DULDEOH U 5 3YDOXH /LSLG &RQWHQW r r +HDUW :RUN &\W & 5HGXFWLRQ &X=Q62' &$7

PAGE 85

0\RFDUGLDO +\GURSHUR[LGHV QPROPJ OLSLGf )LJXUH 6FDWWHU SORW RI WKH UHODWLRQVKLS EHWZHHQ P\RFDUGLDO OLSLG DQG K\GURSHUR[LGH FRQWHQW PJ OLSLGf

PAGE 86

WKH PRGHO ILW WKH QRUPDO SUREDELOLW\ SORWV RI WKH UHVLGXDOV WKH VWDQGDUGL]HG UHVLGXDOV DQG WKH FRHIILFLHQW RI GHWHUPLQDWLRQ 5f LQGLFDWH WKH PRGHO LV DGHTXDWH WR SUHGLFW P\RFDUGLDO OLSLG SHUR[LGDWLRQ $OO UHVLGXDO SORWV DUH IRXQG LQ $SSHQGL[ &

PAGE 87

&+$37(5 ',6&866,21 2YHUYLHZ RI 3ULQFLSDO )LQGLQJV 7KLV VWXG\ LQYHVWLJDWHG WKH PHFKDQLVPV XQGHUO\LQJ P\RFDUGLDO R[LGDWLYH VWUHVV LQ WKH =XFNHU UDW ,Q RXU SUHOLPLQDU\ H[SHULPHQW ZH IRXQG WKDW REHVH =XFNHUV KDG HOHYDWHG P\RFDUGLDO OLSLG SHUR[LGDWLRQ WR GHWHUPLQH ZKHWKHU WKLV ZDV GXH WR REHVLW\ SHU VH RU WKH OHSWLQ UHFHSWRU GHIHFW IDIDf ZH H[DPLQHG OLSLG SHUR[LGDWLRQ LQ KLJKIDW IHG )D"f DQG REHVH IDIDf DQLPDOV 7KLV VWXG\ WHVWHG WZR K\SRWKHVHV )LUVW ZH SRVWXODWHG WKDW WKH KLJKIDW IHG )D"f DQLPDOV DQG WKH REHVH IDIDf DQLPDOV ZRXOG KDYH VLPLODU OHYHOV RI P\RFDUGLDO OLSLG SHUR[LGDWLRQ DQG WKDW OLSLG SHUR[LGDWLRQ LV KLJKO\ FRUUHODWHG ZLWK WKH OHYHO RI DGLSRVLW\ 6HFRQG ZH SRVWXODWHG WKDW VHYHUDO IDFWRUV FRXOG FRQWULEXWH WR P\RFDUGLDO R[LGDWLYH VWUHVV LQ REHVLW\ LQFOXGLQJ Df KLJKHU P\RFDUGLDO ZRUN Ef D FRPSURPLVHG DQWLR[LGDQW GHIHQVH Ff KLJKHU P\RFDUGLDO OLSLG FRQWHQW DQG Gf LQFUHDVHG VXSHUR[LGH DQLRQ IRUPDWLRQ 7KHVH GDWD SDUWLDOO\ VXSSRUW K\SRWKHVLV WKDW WKH WZR REHVLW\ PRGHOV DUH DVVRFLDWHG ZLWK HOHYDWHG OHYHOV RI OLSLG SHUR[LGDWLRQ ,QGHHG WKH OHYHO RI P\RFDUGLDO OLSLG SHUR[LGDWLRQ K\GURSHUR[LGHVf ZDV VLJQLILFDQWO\ FRUUHODWHG Sf ZLWK WKH OHYHO RI DGLSRVLW\ %0,f +\SRWKHVLV ZDV RQO\ SDUWO\ VXSSRUWHG E\ WKHVH GDWD 6SHFLILFDOO\ KHDUW ZRUN V\VWROLF EORRG SUHVVXUH ; KHDUW UDWHf DQG OLSLG FRQWHQW RI WKH P\RFDUGLXP IURP WKH KLJK

PAGE 88

IDWIHG )D"f DQG REHVH IDIDf JURXSV ZHUH JUHDWHU Sf FRPSDUHG WR WKH OHDQ FRQWURO JURXSV *OXWDWKLRQH FRQWHQW KRZHYHU ZDV LQFUHDVHG LQ WKH )+%0, VDQG 2),%0, JURXSV FRPSDUHG WR OHDQ FRQWUROV )XUWKHUPRUH DQWLR[LGDQW HQ]\PH DFWLYLWLHV &$7 &X=Q62'f ZHUH HOHYDWHG LQ WKH 2/%0, DQG 2+%0, JURXSV FRPSDUHG WR DOO RWKHU JURXSV /DVWO\ WKHUH ZHUH QR GLIIHUHQFHV H[LVWHG LQ WKH VXSHUR[LGH SURGXFWLRQ E\ LVRODWHG FRQWUDFWLQJ SDSLOODU\ PXVFOHV LQ YLWUR 7KH IROORZLQJ VHFWLRQV ZLOO GLVFXVV HDFK RI WKHVH ILQGLQJV /LSLG 3HUR[LGDWLRQ LQ 0\RFDUGLDO 7LVVXH RI 2EHVH $QLPDOV $ SUHYLRXV GHVFULSWLYH VWXG\ IURP RXU ODERUDWRU\ LQGLFDWHG WKDW JHQHWLFDOO\ REHVH =XFNHU DQLPDOV IDIDf FRQWDLQHG KLJKHU P\RFDUGLDO OHYHOV RI 7%$56 DQG OLSLG K\GURSHUR[LGHV FRPSDUHG WR WKHLU DJHPDWFKHG OHDQ FRXQWHUSDUWV f 7KH FXUUHQW GDWD DUH WKH ILUVW WR FRPSUHKHQVLYHO\ LQYHVWLJDWH WKH SRWHQWLDO VRXUFHV RI WKLV OLSLG GDPDJH DQG SRVVLEOH PHFKDQLVPV IRU LQFUHDVHG VXVFHSWLELOLW\ WR P\RFDUGLDO R[LGDWLYH VWUHVV XVLQJ WZR GLIIHUHQW PRGHOV RI REHVLW\ 2WKHU UHSRUWV LQGLFDWH WKDW OLSLG SHUR[LGDWLRQ LV HOHYDWHG LQ RWKHU WLVVXHV VXFK DV OLYHU DQG SODVPD LQ KXPDQV DQG REHVH DQLPDOV f )XUWKHUPRUH GLHWV HQULFKHG LQ IDWV HLWKHU VDWXUDWHG RU XQVDWXUDWHGf DUH DOVR DVVRFLDWHG ZLWK LQFUHDVHG OLSLG SHUR[LGDWLRQ LQ VHYHUDO WLVVXHV VXFK DV WKH P\RFDUGLXP DRUWD OLYHU DQG SODVPD f &ROOHFWLYHO\ WKHVH GDWD LQGLFDWH WKDW KLJKIDW IHHGLQJ RU

PAGE 89

H[SUHVVLRQ RI WKH IDID JHQH LV LQGHHG DVVRFLDWHG ZLWK LQFUHDVHG R[LGDWLYH VWUHVV LQ YDULRXV WLVVXHV :H DWWHPSWHG WR DGGUHVV WKH LVVXH RI ZKHWKHU OLSLG SHUR[LGDWLRQ ZDV GXH WR KLJK IDW IHHGLQJ RU WKH OHSWLQ UHFHSWRU GHIHFW E\ XVLQJ D XQLTXH DSSURDFK :H LQYHVWLJDWHG DQLPDOV WKDW ZHUH GHYHORSLQJ REHVLW\ QDWXUDOO\ DV D FRQVHTXHQFH RI WKHLU JHQHRW\SH IDIDf DQG ZH XVHG FRKRUWV RI WKHLU OHDQ FRXQWHUSDUWV )D"f DV WKH OHDQ FRQWUROV DQG WKH KLJKIDW IHG JURXSV 2YHU WKH FRXUVH RI WKH QLQHZHHN IHHGLQJ SHULRG LQGLYLGXDO DQLPDOV GHYHORSHG DGLSRVLW\ DW GLIIHUHQW UDWHV %\ VHSDUDWLQJ DQLPDOV EDVHG RQ DGLSRVLW\ DQG JHQRW\SH DW WKH FRQFOXVLRQ RI WKH VWXG\ ZH ZHUH DEOH WR H[DPLQH WKH HIIHFWV RI WKH KLJKIDW GLHW DQG WKH OHSWLQ UHFHSWRU GHIHFW RQ P\RFDUGLDO OLSLG SHUR[LGDWLRQ %DVDO OLSLG SHUR[LGDWLRQ SURGXFWV LH 7%$56 DQG K\GURSHUR[LGHVf ZHUH HOHYDWHG LQ WKH KLJKIDW IHG )+%0,f DQG REHVH 2/%0, 2)O%0,f JURXSV 3RVW R[LGDWLYH FKDOOHQJH 7%$56 YDOXHV ZHUH HOHYDWHG LQ ))I%0, 2/%0, DQG 2),%0, JURXSV ,QWHUHVWLQJO\ ZKHQ H[SUHVVHG DV 7%$56 PJ WLVVXH OLSLG WKHVH GLIIHUHQFHV EHWZHHQ JURXSV GLVDSSHDUHG LQGLFDWLQJ WKH LPSRUWDQFH RI LQFUHDVHG OLSLG VXEVWUDWH WDUJHW IRU R[LGDWLRQ LQ WKH P\RFDUGLXP WKLV LVVXH LV GLVFXVVHG IXUWKHU LQ D VXEVHTXHQW VHFWLRQf &RQVLGHULQJ WKH ILQGLQJ WKDW K\GURSHUR[LGH OHYHOV GLG QRW GLIIHU S!f EHWZHHQ WKH KLJKIDW IHG DQG REHVH JURXSV WKLV VXJJHVWV WKDW WKH OHSWLQ UHFHSWRU GHIHFW IDIDf LV QRW UHVSRQVLEOH IRU P\RFDUGLDO R[LGDWLYH VWUHVV LQ REHVLW\ ,Q WKH IROORZLQJ VHFWLRQV ZH GLVFXVV

PAGE 90

WKH FRQWULEXWLRQ RI IRXU SRWHQWLDO PDMRU SDWKZD\V WKDW FRXOG FRQWULEXWH WR WKH HOHYDWHG OLSLG SHUR[LGDWLRQ LQ REHVLW\ 3RWHQWLDO 3DWKZD\V IRU 2EHVLW\,QGXFHG 2[LGDWLYH 6WUHVV :H H[DPLQHG VHYHUDO V\VWHPLF YDULDEOHV DQG ELRFKHPLFDO SDUDPHWHUV ZKLFK FRXOG FRQWULEXWH WR P\RFDUGLDO R[LGDWLYH VWUHVV LQ REHVLW\ 7KHVH PHDVXUHV LQFOXGHG KHDUW ZRUN GRXEOH SURGXFW KHDUW UDWH ; V\VWROLF EORRG SUHVVXUHf JOXWDWKLRQH DQG DQWLR[LGDQW HQ]\PH DFWLYLWLHV OLSLG FRQWHQW RI WKH P\RFDUGLDO WLVVXH DQG VXSHUR[LGH DQLRQ SURGXFWLRQ E\ ,VRODWHG SDSLOODU\ PXVFOHV (DFK RI WKHVH SRWHQWLDO SDWKZD\V DQG WKHLU UHODWLRQVKLS WR P\RFDUGLDO OLSLG SHUR[LGDWLRQ ,V H[DPLQHG LQ WKH IROORZLQJ SDUDJUDSKV (OHYDWHG +HDUW :RUN 7KH KHDUW ZRUN HVWLPDWH UDWH SUHVVXUH SURGXFW KHDUW UDWH ; V\VWROLF EORRG SUHVVXUHf ZDV KLJKHVW LQ WKH JHQHWLFDOO\ REHVH JURXSV 2/%0, 2+%0,f KLJK LQ WKH KLJKIDW IHG JURXSV )/%0 )+%0,f DQG ORZHVW LQ WKH FRQWUROV &/%0W &+ %0,f $OVR LQFUHDVHG DIWHUORDG K\SHUWHQVLRQf ZDV SUHVHQW LQ ERWK PRGHOV RI REHVLW\ DQG WKH KHDUWERG\ ZHLJKW UDWLRV RI WKH 2/%0, DQG 2+%0, JURXSV ZHUH ORZHU WKDQ DOO RWKHU JURXSV $OWKRXJK KHDUW ZRUN ZDV VLJQLILFDQWO\ FRUUHODWHG ZLWK ERWK PHDVXUHV RI OLSLG SHUR[LGDWLRQ K\GURSHUR[LGHV PJ SURWHLQ U S DQG 7%$56 OHYHOV

PAGE 91

U S f WKH UHJUHVVLRQ DQDO\VLV VXJJHVWV WKDW WKH RYHUDOO FRQWULEXWLRQ WR WKH WR REHVLW\LQGXFHG OLSLG SHUR[LGDWLRQ LV QRW ODUJH 7DEOH f ,W LV ZHOO HVWDEOLVKHG WKDW LQ VNHOHWDO DQG KHDUW PXVFOH WKDW HOHYDWHG PXVFOH ZRUN VXFK DV H[HUFLVH RU VRPH PHFKDQLFDO RYHUORDGf LV DVVRFLDWHG ZLWK LQFUHDVHG IUHH UDGLFDO SURGXFWLRQ f ([HUFLVH RU RYHUORDGLQGXFHG LQFUHDVHG R[\JHQ FRQVXPSWLRQ LQFUHDVHV WKH HOHFWURQ IOX[ WKURXJK WKH PLWRFKRQGULD LQ SURSRUWLRQ WR WKH RYHUORDG WKXV LQFUHDVLQJ WKH ULVN IRU HOHFWURQ OHDNDJH LQ WKH HOHFWURQ WUDQVSRUW FKDLQ 7KH UHVXOW LV H[FHVVLYH SURGXFWLRQ RI VXSHUR[LGH DQLRQV RU K\GURJHQ SHUR[LGH f ([FHVVLYH UDGLFDO IRUPDWLRQ FDQ WULJJHU D FDVFDGH RI UHDFWLRQV WKDW UHVXOW LQ OLSLG SHUR[LGDWLRQ f :KDW LV DQ H[SODQDWLRQ IRU WKH IDLOXUH RI WKH LQFUHDVLQJ LQFUHPHQWV LQ KHDUW ZRUN WR SURSRUWLRQDWHO\ LQFUHDVH OLSLG SHUR[LGDWLRQ EHWZHHQ WKH KLJKIDW IHG DQG IDID DQLPDOV" 7KHUH DUH WZR SRVVLELOLWLHV )LUVW LW LV SRVVLEOH WKDW WKH REHVH DQLPDOV ZHUH UHVSRQGLQJ WR WKH K\SHUWHQVLRQLQGXFHGf HOHYDWHG KHDUW ZRUN E\ LPSURYLQJ HOHPHQWV RI WKH P\RFDUGLDO DQWLR[LGDQW GHIHQVH (YHQ VPDOO HOHYDWLRQV LQ WKH DQWLR[LGDQW FDSDFLW\ PD\ SURYLGH HQRXJK SURWHFWLRQ LQ WKH KHDUW WR UHPRYH UHDFWLYH R[\JHQ VSHFLHV JHQHUDWHG E\ WKH K\SHUWHQVLRQ LQGXFHG HOHYDWLRQV LQ KHDUW ZRUN 6HFRQG ZH PRQLWRUHG WKH SK\VLRORJLF YDULDEOHV VXFK DV EORRG SUHVVXUH LQ WKHVH DQLPDOV DW UHVW ,W LV SRVVLEOH WKDW DW UHVW WKH ZRUNORDG RQ WKH KHDUW ZDV QRW WKH OHYHO UHTXLUHG WR UHVXOW LQ D VLJQLILFDQW LQFUHDVH LQ R[LGDQW SURWHFWLRQ

PAGE 92

,Q VXPPDU\ WKHVH GDWD GR QRW VXSSRUW WKH K\SRWKHVLV WKDW HOHYDWHG KHDUW ZRUN LV D PDMRU FRQWULEXWRU WR HOHYDWHG OLSLG SHUR[LGDWLRQ LQ \RXQJ DGXOW KLJKIDW IHG DQLPDOV )D"f DQG WKH REHVH IDID DQLPDOV &RPSURPLVHG $QWLR[LGDQW 'HIHQVH :H K\SRWKHVL]HG WKDW D FRPSURPLVHG P\RFDUGLDO DQWLR[LGDQW GHIHQVH LQ REHVLW\ ZDV D SRWHQWLDO PHFKDQLVP WR H[SODLQ WKH HOHYDWHG P\RFDUGLDO OLSLG SHUR[LGDWLRQ 3UHYLRXV LQYHVWLJDWLRQV KDYH UHSRUWHG REHVLW\UHODWHG ORZHU SODVPD RU WLVVXH OHYHOV RI DQWLR[LGDQWV DQGRU LQFUHDVHG VXVFHSWLELOLW\ WR R[LGDWLYH FKDOOHQJHV LQ YLWUR f 7KLV H[SHULPHQW GHPRQVWUDWHG WKDW JOXWDWKLRQH OHYHOV *6+ HVWLPDWHG E\ WKH QRQn SURWHLQ WKLRO IUDFWLRQf ZHUH LQFUHDVHG LQ KHDUWV RI WKH )+%0, DQG 2+%0, JURXSV FRPSDUHG WR WKH OHDQ FRQWURO JURXSV )XUWKHPRUH P\RFDUGLDO &$7 DFWLYLW\ ZDV HOHYDWHG LQ WKH 2+%0, JURXS DQG &X=Q62' DFWLYLW\ ZDV HOHYDWHG LQ ERWK WKH 2/%0, DQG +%0, JURXSV FRPSDUHG WR WKH OHDQ FRQWURO JURXSV +HQFH WKH DQWLR[LGDQW FDSDFLW\ RI WKH P\RFDUGLXP IURP REHVH DQLPDOV GRHV QRW DSSHDU WR EH GHSUHVVHG 7KH HOHYDWLRQV LQ WKH P\RFDUGLDO DQWLR[LGDQW GHIHQVH LQ REHVLW\ VXJJHVW WKDW WKHVH KHDUWV ZHUH H[SRVHG WR JUHDWHU UDGLFDO SURGXFWLRQ FRPSDUHG WR WKH OHDQ FRQWUROV ,W LV ZHOO HVWDEOLVKHG WKDW WKH DQWLR[LGDQW HQ]\PH DFWLYLWLHV DQG *6+ FRQFHQWUDWLRQV LQFUHDVH LQ UHVSRQVH WR IUHH UDGLFDO IRUPDWLRQ LQ DQ HIIRUW WR SURWHFW WKH P\RF\WH DJDLQVW VXEVHTXHQW R[LGDWLYH GDPDJH f 7KH LQFUHDVHG DFWLYLWLHV RI 62' DQG &$7 VXJJHVW WKDW WKHUH ZDV

PAGE 93

H[FHVVLYH SURGXFWLRQ RI WKHLU VXEVWUDWHV VXSHUR[LGH DQG K\GURSHUR[LGHV UHVSHFWLYHO\ f ZLWKLQ WKH YHQWULFXODU WLVVXH RI WKH 2/%0, DQG 2+%0, JURXSV 7KH DGDSWDWLRQ RI WKH SULPDU\ DQWLR[LGDQW GHIHQVH LQ WKH KHDUWV RI KLJKIDW IHG DQLPDOV )/%0, )+%0,f DSSHDUHG WR EH LQFRPSOHWH DV LQGLFDWHG E\ WKH IDLOXUH RI DQ\ DQWLR[LGDQW HQ]\PH DFWLYLW\ WR LQFUHDVH ZLWK WKH KLJKIDW GLHW 7KH IDLOXUH RI WKHVH JURXSV WR GHPRQVWUDWH VLJQLILFDQW DQWLR[LGDQW HQ]\PH XSUHJXODWLRQ PD\ EH UHODWHG WR WKH HOHYDWLRQV LQ *6+ LQ WKH )+%0, JURXS ,W LV SRVVLEOH WKDW WKH KLJKHU *6+ FRQWHQW ZDV VXIILFLHQW WR VXSSUHVV WKH VLJQDOV QHFHVVDU\ IRU DQWLR[LGDQW HQ]\PH XSUHJXODWLRQ LQ WKH KHDUWV RI WKH IDWIHG DQLPDOV )RU H[DPSOH 0F'XIIHH HW DO f UHSRUWHG WKDW R[LGL]HG SURWHLQV FRQWDLQLQJ QRQQDWLYH GLVXOILGH ERQGV DUH SURGXFWV RI R[LGDWLYH VWUHVV DQG FDQ DFW DV VLJQDOV IRU XSUHJXODWLRQ RI WKH WHUWLDU\ DQWLR[LGDQW GHIHQVH ,W LV SRVVLEOH WKHQ WKDW WKH HOHYDWLRQV LQ *6+ LQ WKH )+%0, JURXS FRXOG VXIILFLHQWO\ UHGXFH WKH R[LGDWLRQ RI SURWHLQV DQG OLSLGV DOLNH WKDW PD\ VHUYH DV VWLPXOL IRU DQWLR[LGDQW HQ]\PH XSUHJXODWLRQ 7KH R[LGDWLYH FKDOOHQJH UHVXOWV )LJXUHV DEf LQGLFDWHG WKDW WKH )+%0, 2/ %0, DQG 2+%0, KDG VLPLODU OHYHOV RI 7%$56PJ SURWHLQ IROORZLQJ H[SRVXUH WR +2 nDQG 2+ UDGLFDOV LQ YLWUR 7KH 2/%0, DQG 2+%0, JURXSV KDG ORZHU Sf 7%$56 OHYHOV IROORZLQJ WKH [DQWKLQH [DQWKLQH R[LGDVH FKDOOHQJH VXSHUR[LGH JHQHUDWLQJ V\VWHPf FRPSDUHG WR WKH RWKHU FKDOOHQJHV )LJXUH Df 7KLV FRXOG VXJJHVW WKDW WKH HOHYDWLRQV LQ &X=Q62' LQ WKHVH JURXSV ZHUH VXIILFLHQW WR SURWHFW DJDLQVW OLSLG SHUR[LGDWLRQ IROORZLQJ H[SRVXUH WR H[RJHQRXV VXSHUR[LGH )XUWKHUPRUH WKH +

PAGE 94

JHQHUDWLQJ V\VWHP SURGXFHG PRUH 7%$56 LQ WKH )+%0, 2/%0, DQG 2+%0, JURXSV FRPSDUHG WR WKH UHPDLQLQJ JURXSV 7KLV ILQGLQJ PD\ EH D FRQVHTXHQFH RI WKH ODFN RI DGDSWDWLRQ RI *3; DV 7W&KLV D VXEVWUDWH IRU *3; f ,Q VXPPDU\ WKH FXUUHQW GDWD GR QRW VXSSRUW WKH K\SRWKHVLV WKDW WKH DQWLR[LGDQW GHIHQVH ZDV LQVXIILFLHQW UDWKHU DQWLR[LGDQW HQ]\PH DFWLYLWLHV DQG *6+ ZHUH XSUHJXODWHG LQ UHVSRQVH WR REHVLW\ )XUWKHUPRUH WKH GDWD LQGLFDWH WKDW WKH DQWLR[LGDQW DGDSWDWLRQV ZHUH QRW D IXQFWLRQ RI WKH OHSWLQ UHFHSWRU GHIHFW IDIDf EXW D UHVSRQVH WR REHVLW\ SHU VH (OHYDWHG /LSLG &RQWHQW :H DOVR WHVWHG WKH K\SRWKHVLV WKDW WKH P\RFDUGLDO WLVVXH IURP KLJKIDW IHG DQG IDID DQLPDOV FRQWDLQV KLJKHU OLSLG OHYHOV FRPSDUHG WR WKHLU OHDQ FRXQWHUSDUWV 2XU GDWD VXSSRUW WKLV K\SRWKHVLV ,QGHHG P\RFDUGLDO WLVVXH REWDLQHG IURP WKH OHIW YHQWULFOHV RI DOO KLJKIDW IHG DQG IDID DQLPDOV GLG LQGHHG FRQWDLQ PRUH OLSLG Sf FRPSDUHG WR P\RFDUGLDO WLVVXH REWDLQHG IURP ERWK JURXSV RI FRQWURO DQLPDOV 7DEOH f 2EHVLW\ GXH WR ERWK KLJK IDW IHHGLQJ DQG GHYHORSPHQW RI REHVLW\ LQ WKH IDID JHQRW\SH DSSHDUHG WR SURPRWH VLPLODU GHSRVLWLRQ RI IDW LQWR WKH P\RFDUGLDO WLVVXH LQ WKH WZR REHVLW\ PRGHOV 7DEOH f 6HYHUDO LQYHVWLJDWRUV KDYH UHSRUWHG WKDW OLSLG SHUR[LGDWLRQ LV HOHYDWHG LQ WLVVXHV IURP IDWW\ =XFNHU UDWV IDID JHQRW\SHf DQG LQ KLJKIDW IHG DQLPDOV f :H SUHYLRXVO\ UHSRUWHG WKDW PRQWK ROG IDID =XFNHU UDWV KDG D b JUHDWHU P\RFDUGLDO OLSLG FRQWHQW FRPSDUHG WR WKHLU OHDQ )D"f FRXQWHUSDUWV f $ SRWHQWLDO PHFKDQLVP IRU

PAGE 95

LQFUHDVHG OLSLG GDPDJH LQ REHVLW\ LV WKDW LQFUHDVHG OLSLG VXEVWUDWH ZLWKLQ WKH P\RFDUGLXP FDQ IXQFWLRQ DV D ODUJHU WDUJHW IRU R[LGDWLRQ E\ IUHH UDGLFDOV f ,QFUHDVLQJ WKH QXPEHU RI OLSLG PROHFXOHV ZLWKLQ WKH FDUGLRYDVFXODU V\VWHP ZLWKLQ WKH FDUGLDF FHOOV DQG HPEHGGHG ZLWKLQ WKH FRURQDU\ YDVFXODWXUH LQWLPDO OD\HUVf PD\ DPSOLI\ OLSLG SHUR[LGDWLRQ LQMXU\ f %HFDXVH ZH PHDVXUHG OLSLG SHUR[LGDWLRQ SURGXFWV IURP OHIW YHQWULFXODU WLVVXH KRPRJHQDWHV LW LV OLNHO\ WKDW WKH OLSLG SHUR[LGDWLRQ UHIOHFWV WKH FRPELQDWLRQ RI WKH SHUR[LGDWLRQ SURGXFWV RI ERWK WKH P\RF\WHV DQG WKH YDVFXODWXUH ,Q WKH KLJKIDW IHHGLQJ PRGHO ZH VXUPLVH WKDW WKH HOHYDWHG OLSLG FRQWHQW LV GXH WR IDW GHSRVLWLRQ DQG VWRUDJH ZLWKLQ WKH P\RF\WHV f DQG IDW GHSRVLWLRQ RQWR WKH FRURQDU\ HQGRWKHOLXP f 3UHYLRXV H[SHULPHQWV UHSRUW WKDW OLSLG SHUR[LGDWLRQ SURGXFWV DUH IRXQG ZLWKLQ DWKHURVFOHURWLF SODTXHV IURP FDUGLRYDVFXODU DQGRU REHVH SDWLHQWV DQG ZLWKLQ FDUGLDF WLVVXH IURP KLJKIDW IHG DQLPDOV f %RWK 7%$56 DQG OLSLG K\GURSHUR[LGHV PJ OLSLG ZHUH FRUUHODWHG ZLWK WLVVXH OLSLG FRQWHQW U DQG U S UHVSHFWLYHO\f /DVWO\ WKH VHULHV RI R[LGDWLYH FKDOOHQJHV UHYHDOHG WKDW WKH GHJUHH RI OLSLG SHUR[LGDWLRQ IROORZLQJ WKH +2 )H&O DQG [DQWKLQH[DQWKLQH R[LGDVH FKDOOHQJHV ZDV UHODWHG WR DPRXQW RI P\RFDUGLDO OLSLG %DVHG RQ WKHVH GDWD DQG WKH KLJK FRUUHODWLRQ EHWZHHQ P\RFDUGLDO OLSLG FRQWHQW DQG OLSLG SHUR[LGDWLRQ SURGXFWV LW VHHPV OLNHO\ WKDW P\RFDUGLDO OLSLG FRQWHQW LV DQ LPSRUWDQW FRQWULEXWRU WR P\RFDUGLDO OLSLG SHUR[LGDWLRQ LQ ERWK KLJKIDW IHG DQLPDOV DQG IDID DQLPDOV )XUWKHU LW DSSHDUV WKDW OLSLG SHUR[LGDWLRQ LV D

PAGE 96

IXQFWLRQ RI REHVLW\ SHU VH FRQVXPSWLRQ DQG GHSRVLWLRQf DQG QRW D IXQFWLRQ RI WKH OHSWLQ UHFHSWRU GHIHFW 6XQHUR[LGH 5DGLFDO 3URGXFWLRQ EY ,VRODWHG 3DSLOODU\ 0XVFOHV :H K\SRWKHVL]HG WKDW FRQWUDFWLQJ SDSLOODU\ PXVFOHV IURP REHVH DQLPDOV ZLOO SURGXFH VXSHUR[LGH DQLRQV DW D JUHDWHU UDWH FRPSDUHG WR OHDQ DQLPDOV 2XU GDWD UHYHDO WKDW VXSHUR[LGH IRUPDWLRQ E\ LVRODWHG SDSLOODU\ PXVFOHV LQ YLWUR GRHV QRW GLIIHU DFURVV RXU JURXSV 7KHUH DUH WZR SRVVLELOLWLHV WR H[SODLQ WKLV UHVXOW )LUVW LW LV SRVVLEOH WKDW WKH DQWLR[LGDQW GHIHQVH ZLWKLQ WKH SDSLOODU\ PXVFOHV RI WKH KHDUW DGDSWHG LQ UHVSRQVH WR WKH REHVLW\ RYHUORDG LQ WKH REHVH PRGHOV *LYHQ WKDW WKH DQWLR[LGDQW GHIHQVH LQFUHDVHG LQ SURSRUWLRQ WR WKH RYHUORDG LI H[FHVVLYH IRUPDWLRQ RI VXSHUR[LGH GLG RFFXU LQ LVRODWHG SDSLOODU\ PXVFOHV GXULQJ WKH VWLPXODWLRQ SURWRFRO LQ YLWUR WKH PDMRULW\ RI WKH UDGLFDOV PD\ KDYH EHHQ VFDYHQJHG DQG GLVPXWDWHG E\ HQGRJHQRXV 62' EHIRUH GLIIXVLRQ LQWR WKH WLVVXH EDWK 7KLV LV D OLNHO\ SRVVLELOLW\ FRQVLGHULQJ &X=Q62' ZDV HOHYDWHG LQ WKH YHQWULFXODU WLVVXH RI WKH 2/%0, DQG 2+%0, JURXSV DQG WKHVH JURXSV H[KLELWHG D SURWHFWLRQ DJDLQVW WKH VXSHUR[LGH FKDOOHQJH LQ YLWUR 6HFRQG RXU ILQGLQJV GR QRW SUHFOXGH WKH SRVVLELOLW\ WKDW YHQWULFXODU WLVVXH GRHV SURGXFH VXSHUR[LGH DW D JUHDWHU UDWH $OWKRXJK LVRODWHG SDSLOODU\ PXVFOHV DUH ZLGHO\ XVHG DV D PRGHO IRU FDUGLDF FRQWUDFWLOLW\ DQG SHUIRUPDQFH f WKHUH VWLOO PD\ EH HQRXJK RI D PHWDEROLF GLIIHUHQFH EHWZHHQ WKH SDSLOODU\ PXVFOH DQG YHQWULFOH WKDW SUHFOXGHV VLJQLILFDQW

PAGE 97

GLIIHUHQFHV IURP EHLQJ GHWHFWHG XVLQJ RXU LQ YLWUR WHFKQLTXH 6LPSOH H[SHULPHQWV FRPSDULQJ 2n IRUPDWLRQ LQ WKH ZRUNLQJ LVRODWHG ZKROH KHDUW DQG WKH SDSLOODU\ PXVFOH FRXOG EH SHUIRUPHG WR GHWHUPLQH LI WKLV LV WKH FDVH ,Q VXPPDU\ WKHVH GDWD VXJJHVW WKDW D JUHDWHU UDWH RI VXSHUR[LGH SURGXFWLRQ LV QRW D PDMRU FRQWULEXWRU WR WKH HOHYDWHG OLSLG SHUR[LGDWLRQ LQ YHQWULFXODU WLVVXH LQ WKH KLJKIDW IHG RU IDID DQLPDOV 0DMRU &RQFOXVLRQV 2EHVLW\ WKDW UHVXOWV IURP KLJKIDW IHHGLQJ DQG WKH OHSWLQ UHFHSWRU GHIHFW IDIDf LV DVVRFLDWHG ZLWK HOHYDWHG OHYHOV RI OLSLG SHUR[LGDWLRQ 7KH OHYHO RI P\RFDUGLDO OLSLG SHUR[LGDWLRQ K\GURSHUR[LGHVf ZDV VLJQLILFDQWO\ FRUUHODWHG ZLWK WKH OHYHO RI DGLSRVLW\ %0,f DQG OLSLG FRQWHQW UHJDUGOHVV RI JHQRW\SH IDID RU )D"f ,Q FRQWUDVW HOHYDWHG KHDUW ZRUN V\VWROLF EORRG SUHVVXUH ; KHDUW UDWHf LQVXIILFLHQW DQWLR[LGDQW GHIHQVHV DQG LQFUHDVHG UDWH RI VXSHUR[LGH IRUPDWLRQ ZHUH QRW VLJQLILFDQW FRQWULEXWRUV WR REHVLW\ LQGXFHG P\RFDUGLDO OLSLG SHUR[LGDWLRQ +HQFH LW VHHPV OLNHO\ WKDW P\RFDUGLDO OLSLG SHUR[LGDWLRQ LV SULPDULO\ GXH WR REHVLW\ SHU VH DQG QRW WKH OHSWLQ UHFHSWRU GHIHFW IDID JHQRW\SHf)LJXUH f

PAGE 98

3K\VLRORJLFDO 6LJQLILFDQFH &KURQLFDOO\ HOHYDWHG OHYHOV RI OLSLG SHUR[LGDWLRQ E\SURGXFWV FRXOG LQGLFDWH WKDW WKH P\RFDUGLXP LV OHVV DEOH WR FRPEDW R[LGDWLYH VSHFLHV DQG LV PRUH OLNHO\ WR VXVWDLQ R[LGDWLYH LQMXU\ f )RU H[DPSOH R[LGDWLYH WLVVXH LQMXU\ ZDV HOHYDWHG LQ WKH P\RFDUGLDO WLVVXH RI WKH KLJKIDW IHG DQG REHVH DQLPDOV IROORZLQJ VHYHUDO R[LGDWLYH FKDOOHQJHV LQ YLWUR :H VSHFXODWH WKDW WKH KHDUW WLVVXHV IURP WKHVH JURXSV DUH OHVV DEOH WR GHIHQG DJDLQVW R[LGDWLYH VSHFLHV JHQHUDWHG LQ SK\VLRORJLFDO VFHQDULRV VXFK DV LVFKHPLDUHSHUIXVLRQ DQG DFXWH H[KDXVWLYH H[HUFLVH )XUWKHUPRUH WKH HOHYDWHG OLSLG E\SURGXFWV DOVR WULJJHU VLJQDO WUDQVGXFWLRQ SDWKZD\V WKDW OHDG WR DSRSWRWLF GHDWK RU FKHPRWD[LV RI WLVVXHGHYRXULQJ PDFURSKDJHV f 7KH QHW UHVXOW LV LQFUHDVHG ULVN IRU WLVVXH GDPDJH GXULQJ WKH SK\VLRORJLFDO VWUHVV DQG D UHGXFHG DELOLW\ WR UHSDLU LWVHOI DQG UHVWRUH QRUPDO FRQWUDFWLOH IXQFWLRQ /LPLWDWLRQV WR WKH ([SHULPHQW DQG )XWXUH 'LUHFWLRQV $ OLPLWDWLRQ WR WKLV H[SHULPHQW ZDV WKH GLIILFXOW\ LQ DWWDLQLQJ WKH VDPH GHJUHH RI DGLSRVLW\ EHWZHHQ WKH KLJKIDW IHG )D"f DQG REHVH IDIDf JURXSV 7KH KLJKIDW IHG DQLPDOV FRQWUROOHG WKHLU GLHWDU\ LQWDNH EDVHG RQ WKH FDORULF GHQVLW\ RI WKH IRRG VXFK WKDW WKH\ FRQVXPHG VPDOOHU YROXPHV RI WKH ULFKHU GLHW FRPSDUHG WR WKH FRQWURO GLHW IHG OHDQ FRQWURO DQLPDOV 7KLV GHOD\HG WKH DFFUXHPHQW RI ERG\ IDW LQ WKH KLJKIDW IHG DQLPDOV )LJXUH f (YHQ DW WKH FRQFOXVLRQ RI WKH VWXG\ WKHUH ZHUH D IHZ REHVLW\ fUHVLVWDQWf

PAGE 99

DQLPDOV WKDW GLG QRW JDLQ VLJQLILFDQWO\ KLJKHU IDW WKDQ WKH &+%0, DQLPDOV 7KLV PDGH LW GLIILFXOW WR GHWHUPLQH WKH HIIHFWV RI GLHWLQGXFHG REHVLW\ DQG JHQHWLF REHVLW\ RQ P\RFDUGLDO OLSLG SHUR[LGDWLRQ 6HSDUDWLRQ RI WKH JURXSV EDVHG RQ ORZ DQG KLJK %0, ZDV UHTXLUHG WR IXOO\ H[DPLQH WKH UHODWLRQVKLSV EHWZHHQ V\VWHPLF DQG ELRFKHPLFDO YDULDEOHV DQG OLSLG SHUR[LGDWLRQ $ VHFRQG OLPLWDWLRQ RI WKLV VWXG\ ZDV ODFN RI D GHILQLWH FRQFOXVLRQ ZH FRXOG UHDFK ZLWK UHJDUG WR OLSLG SHUR[LGDWLRQ DQG WKH UDWH RI YHQWULFXODU VXSHUR[LGH IRUPDWLRQ EDVHG RQ WKH LQGLUHFW PHDVXUHPHQW IURP LVRODWHG SDSLOODU\ PXVFOH ,W LV FXUUHQWO\ XQNQRZQ ZKHWKHU UDGLFDO IRUPDWLRQ DQG GHWHFWLRQ LQ YLWUR GLIIHU EHWZHHQ SDSLOODU\ PXVFOH DQG YHQWULFOH WLVVXH 7R RXU NQRZOHGJH WKLV VWXG\ ZDV WKH ILUVW WR HPSOR\ WKLV QHZ VXSHUR[LGH DQLRQ GHWHFWLRQ WHFKQLTXH LQ WKH LVRODWHG SDSLOODU\ PXVFOH 7KHUH DUH VHYHUDO SRVVLELOLWLHV IRU VXEVHTXHQW H[SHULPHQWV )LUVW LW LV XQNQRZQ ZKHWKHU REHVLW\ LQFUHDVHV OLSLG SHUR[LGDWLRQ LQ UHVSRQVH WR DQ R[LGDWLYH FKDOOHQJH LH DQ DFXWH ERXW RI H[HUFLVHf RU DQ LVFKHPLF FKDOOHQHJH LQ YLYR 7KH GDWD WKDW FRXOG EH REWDLQHG IURP WKHVH H[SHULPHQWV FRXOG SURYLGH LQIRUPDWLRQ DERXW WKH SRVVLEOH IXQFWLRQDO FRQVHTXHQFHV RI REHVLW\ RQ WKH DELOLW\ RI WKH KHDUW WR ZLWKVWDQG DQG LVFKHPLFUHSHUILLVLRQ LQMXU\ 6HFRQG LW LV XQFOHDU KRZ DJLQJ DIIHFWV WKH P\RFDUGLDO OLSLG SHUR[LGDWLRQ SURILOH LQ REHVH DQLPDOV 2XU ILUVW H[SHULPHQW LQGLFWHG WKDW PRQWK ROG DQLPDOV KDG KLJKHU OHYHOV RI OLSLG SHUR[LGDWLRQ GHVSLWH WKH QRUPDOL]DWLRQ WR P\RFDUGLDO OLSLG FRQWHQW SHUKDSV VXJJHVWLQJ WKDW DJLQJ FDQ LQFUHDVH WKH UDWH RI UDGLFDO IRUPDWLRQ UHGXFH WKH DQWLR[LGDQW

PAGE 100

GHIHQVH RU LQFUHDVH WKH OLSLG GHSRVLWLRQ ZLWKLQ WKH P\RFDUGLXP 7KHVH UHVHDUFK TXHVWLRQV DUH WHVWDEOH DQG ZDUUDQW IXUWKHU LQYHVWLJDWLRQ /DVWO\ LW LV XQNQRZQ ZKHWKHU DQWLR[LGDQW VXSSOHPHQWDWLRQ FDQ UHGXFH WKH P\RFDUGLDO OLSLG SHUR[LGDWLRQ LQ REHVH DQLPDOV 6LPSOH IHHGLQJ H[SHULPHQWV FDQ EH FRQGXFWHG WR GHWHUPLQH WKH SRWHQWLDO HIIHFWV RI YDULRXV DQWLR[LGDQWV RQ OLSLG SHUR[LGDWLRQ DQG KHDUW SHUIRUPDQFH FKDUDFWHULVWLFV HLWKHU LQ YLWUR RU LQ YLYR

PAGE 101

0\RFDUGLDO /LSLG 3HUR[LGDWLRQ 0\RFDUGLDO /LSLG &RQWHQW ?" W 5DGLFDO )RUPDWLRQ W +HDUW :RUN +5 ; %3f ,QVXIILFLHQW $QWLR[LGDQWV VLJQLILFDQW FRUUHODWLRQ SRVVLEOH HIIHFW )LJXUH 3RWHQWLDO SDWKZD\V IRU REHVLW\LQGXFHG P\RFDUGLDO R[LGDWLYH VWUHVV

PAGE 102

$33(1',; $ 6$03/( 6,=( (67,0$7,21 8VLQJ WKH FULWHULRQ PHDVXUHV WR GHWHFW DQWLR[LGDQW HQ]\PH DFWLYLW\ GLIIHUHQFHV EHWZHHQ JURXSV %DVHG RQ WKH VHQVLWLYLW\ QHHGHG WR GHWHFW GLIIHUHQFHV LQ WKH LVRODWHG SDSLOODU\ PXVFOH SUHSDUDWLRQ Q VDPSOH VL]Hf = RWf D ( ZKHUH DW D b FRQILGHQFH LQWHUYDO = DQG D ZLGWK RI DEVRUEDQFH XQLWV ZKHUH WKH YDULDQFH D LQ DEVRUEDQFH XQLWVf Q Q RU UDWV SHU JURXS

PAGE 103

$33(1',; % ',(7$5< $1' 9,7$0,1 0,;(6 )25 (;3(5,0(17$/ ',(76 0LQHUDO 9LWDPLQ ,QJUHGLHQW J.J 'LHW ,QJUHGLHQW J.J 6RGLXP &KORULGH 1LFRWLQLF $FLG 0DJQHVLXP 6XOIDWH 3\UR[LGLQH +& &KURPLXP 3RWDVVLXP 6XOIDWH 7KLDPLQ +& &XSULF &DUERQDWH 5LERIODYLQ 6RGLXP )OXRULGH )ROLF $FLG 0DJQHVLXP 2[LGH '%LRWLQ )HUULF &LWUDWH '/$OSKD 7RFRSKHURO 3RWDVVLXP ,RGDWH $FHWDWH ,8Jf 0DJDQRXV &DUERQDWH 9LWDPLQ $ SDOPLWDWH $PPRQLXP 0RO\EGDWH ,8Jf 6RGLXP 6HOHQDWH 9LWDPLQ ,8Jf 6XFURVH 6XFURVH IPHOY JURXQG

PAGE 104

$33(1',; % 5(6,'8$/ 3/276 )25 7+( 5(*5(66,21 (48$7,21 ,1 7$%/( )LJXUH &O 6WDQGDUGL]HG UHVLGXDO SORW RI OLSLG FRQWHQW VFRUHV +\GURSHUR[LGHV QPROQLJ OLSLGf )LJXUH & 6WDQGDUGL]HG UHVLGXDO SORW RI KHDUW ZRUN VFRUHV

PAGE 105

/LSLG 5HVLGXDO 6FRUHV L /LSLG PJJf )LJXUH & 3ORW RI OLSLG UHVLGXDOV WR QRUPDO VFRUHV

PAGE 106

5()(5(1&(6 $HEL + &DWDODVH LQ YLWUR 0HWKRGV LQ (Q]\PRORJ\ $OSHUW 0$ DQG :: +DVKLPL 2EHVLW\ DQG WKH KHDUW 7KH $PHULFDQ -RXUQDO RI WKH 0HGLFDO 6FLHQFHV %HUQLHU 0 '+HDUVH DQG $6 0DQQLQJ 5HSHUIXVLRQLQGXFHG DUUK\WKPLDV DQG R[\JHQGHULYHG IUHH UDGLFDOV &LUFXODWLRQ 5HVHDUFK %HUNDOS % 9 &HVXU &RUDSFLRJOX & (URO DQG 1 %DVNDO 2EHVLW\ DQG OHIW YHQWULFXODU GLDVWROLF G\VIXQFWLRQ ,QWHUQDWLRQDO -RXUQDO RI &DUGLRORJ\ %HUVRQ 6$ DQG 56
PAGE 107

%UD\ *$ 7KH =XFNHUIDWW\ UDW D UHYLHZ )HGHUDO 3URFHHGLQJV &DUUROO -) 70 'Z\HU $: *UDG\ *$ 5HLQKDUW -3 0RQWDQ &RFNUHOO () 0H\GUHFK DQG +/ 0L]HOOH +\SHUWHQVLRQ FDUGLDF K\SHUWURSK\ DQG QHXURKXPRUDO DFWLYLW\ LQ D QHZ DQLPDO PRGHO RI REHVLW\ $PHULFDQ -RXUQDO RI 3K\VLRORJ\ /+ + &DUUROO -) $( -RQHV 5/ +HVWHU *$ 5HLQKDUW &RFNUHOO DQG +/ 0L]HOOH 5HGXFHG FDUGLDF FRQWUDFWLOH UHVSRQVLYHQHVV WR LVRSURWHUHQRO LQ REHVH UDEELWV +\SHUWHQVLRQ &RFRUDQ *% '( 6DOD]DU DQG &/ 6RUJH 3KDUPDFRNLQHWLF FKDUDFWHULVWLFV RI WKH REHVH RYHUIHG UDW ,QWHUQDWLRQDO -RXUQDO RI 2EHVLW\ &RUW : 7 9LQFHQWH ( :D\VHN DQG % :LOOLDPV 9LWDPLQ ( FRQWHQW RI IHHGVWXIInV GHWHUPLQHG E\ KLJK SUHVVXUH OLTXLG FKURPDWRJUDSKLF IOXRUHVFHQFH -RXUQDO RI $JULFXOWXUDO DQG )RRG &KHPLVWU\ &R[ 5+ DQG & .LWND $JHUHODWHG FKDQJHV LQ WKRUDFLF DRUWD RI REHVH =XFNHU UDWV $PHULFDQ -RXUQDO RI 3K\VLRORJ\ ++ 'DQVH /+-& DQG 30 9HUVFKXUHQ )LVKRLO LQGXFHG \HOORZ IDW GLVHDVH LQ WKH UDWV +LVWRORJLFDO FKDQJHV 9HWHULQDU\ 3DWKRORJ\ 'DV '3 1 0DXOLN DQG ,, 0RUDUX *HQH H[SUHVVLRQ LQ DFXWH P\RFDUGLDO VWUHVV ,QGXFWLRQ E\ K\SR[LD LVFKHPLD UHSHUIXVLRQ K\SHUWKHUPLD DQG R[LGDWLYH VWUHVV -RXUQDO RI 0ROHFXODU DQG &HOOXODU &DUGLRORJ\ 'DYLH 6%*RXOG DQG -6
PAGE 108

'HVFL 7 0ROQDU DQG % .ROHW]NR 5HGXFHG SODVPD FRQFHQWUDWLRQV RI DOSKD WRFRSKHURO DQG EHWDFDURWHQH LQ REHVH ER\V -RXUQDO RI 3HGLDWULFV 'L3HWUR / 3K\VLFDO $FWLYLW\ ERG\ ZHLJKW DQG DGLSRVLW\ DQ HSLGHPLRORJLF SHUVSHFWLYH ([HUFLVH DQG 6SRUW 6FLHQFH 5HYLHZV (FNHO 5+ 2EHVLW\ DQG KHDUW GLVHDVH D VWDWHPHQW IRU KHDOWKFDUH SURIHVVLRQDOV IURP WKH 1XWULWLRQ &RPPLWWHH $PHULFDQ +HDUW $VVRFLDWLRQ &LUFXODWLRQ (VUH\ ./ / -RVHSK DQG 6$ *URYHU 5HODWLRQVKLS EHWZHHQ GLHWDU\ LQWDNH DQG FRURQDU\ KHDUW GLVHDVH PRUWDOLW\ /LSLG 5HVHDUFK &OLQLFV 3UHYDOHQFH )ROORZXS 6WXG\ -RXUQDO RI &OLQLFDO (SLGHPLRORJ\ (VWHUEDXHU + *HELFNL + 3XKO DQG -XUJHQV 7KH UROH RI OLSLG SHUR[LGDWLRQ DQG DQWLR[LGDQWV LQ R[LGDWLYH PRGLILFDWLRQ RI /'/ )UHH 5DGLFDOV LQ %LRORJ\ DQG 0HGLFLQH )ORKH / DQG :*XQ]OHU $VVD\V RI JOXWDWKLRQH SHUR[LGDVH 0HWKRGV LQ (Q]\PRORJ\ )ROFK 0 /HHV DQG *+6 6WDQOH\ $ VLPSOH PHWKRG IRU WKH LVRODWLRQ DQG SXULILFDWLRQ RI WRWDO OLSLGV IURP DQLPDO WLVVXHV -RXUQDO RI %LRORJ\ DQG &KHPLVWU\ )ULGRYLFK 4XDQWLWDWLYH DVSHFWV RI WKH SURGXFWLRQ RI VXSHUR[LGH DQLRQ UDGLFDOV E\ PLON [DQWKLQH R[LGDVH -RXUQDO RI %LRORJLFDO &KHPLVWU\ *D\OHV (& 03DJOLLDVVRWWL 3$ 3UDFK 7$ .RSSHQKDIHU DQG -2 +LOO &RQWULEXWLRQ RI HQHUJ\ LQWDNH DQG WLVVXH HQ]\PDWLF SURILOH WR ERG\ ZHLJKW JDLQ LQ KLJKIDW IHG UDWV $PHULFDQ -RXUQDO RI 3K\VLRORJ\ 55 *KRUEDQL 0 DQG +LPPV+DJHQ 7UHDWPHQW ZLWK &/ D SDGUHQRFHSWRU DJRQLVW UHGXFHV VHUXP OHSWLQ LQ UDWV ZLWK GLHWRU DJLQJDVVRFLDWHG REHVLW\ EXW QRW LQ =XFNHU UDWV ZLWK JHQHWLF IDIDf REHVLW\ ,QWHUQDWLRQDO -RXUQDO RI 2EHVLW\ *LURWWL $: /LSLG K\GURSHUR[LGH JHQHUDWLRQ WXUQRYHU DQG HIIHFWRU DFWLRQ LQ ELRORJLFDO V\VWHPV -RXUQDO RI /LSLG 5HVHDUFK *LWWHOVRKQ 706 :ROHYHU 6 % +DUULV 5 +DUULV*LUDOGR $-* +DQOH\ DQG % =LQPDQ 6SHFLILF SDWWHUQV RI IRRG FRQVXPSWLRQ DQG SUHSDUDWLRQ DUH DVVRFLDWHG ZLWK

PAGE 109

GLDEHWHV DQG REHVLW\ LQ D QDWLYH &DQDGLDQ FRPPXQLW\ -RXUQDO RI 1XWULWLRQ *RUQDOO $* &%DUGDZLOO DQG 00 'DYLG 'HWHUPLQDWLRQ RI VHUXP SURWHLQV E\ PHDQV RI WKH ELXUHW UHDFWLRQ -RXUQDO RI %LRORJLFDO &KHPLVWU\ *ULIILWK 2: 'HWHUPLQDWLRQ RI JOXWDWKLRQH DQG JOXWDWKLRQH GLVXOILGH XVLQJ JOXWDWKLRQH UHGXFWDVH DQG YLQ\OS\ULGLQH $QDO\WLFDO %LRFKHPLVWU\ +DOOLZHOO % DQG 6 &KLULFR /LSLG SHUR[LGDWLRQ LWV PHFKDQLVP PHDVXUHPHQW DQG VLJQLILFDQFH $PHULFDQ -RXUQDO RI &OLQLFDO 1XWULWLRQ 66 +DOOLZHOO % DQG -0& *XWWHULGJH )UHH 5DGLFDOV LQ %LRORJ\ DQG 0HGLFLQH 2[IRUG &ODUHQGRQ 3UHVV +DUDPDNL 1 / 0DURFFL 5 'f$QQD /
PAGE 110

,EUDKLP : 86 /HH &
PAGE 111

.LWD < 0 6KLPL]X 6 6KLED\DPD +
PAGE 112

/OR\G 59 30 +DQQD DQG 53 0DVRQ 7KH RULJLQ RI WKH K\GUR[\O UDGLFDO R[\JHQ LQ WKH IHQWRQ UHDFWLRQ )UHH 5DGLFDOV LQ %LRORJ\ DQG 0HGLFLQH /RXLV6\OYHVWUH *LDFKHWWL DQG /H0DJQHQ 6HQVRU\ YHUVXV GLHWDU\ IDFWRUV LQ FDIHWHULDLQGXFHG RYHUZHLJKW 3K\VLRORJ\ DQG %HKDYLRU 0DKIRX] 00 + .DZDQR DQG ) $ .XPPHURZ (IIHFW RI FKROHVWHUROULFK GLHWV ZLWK DQG ZLWKRXW YLWDPLQV ( DQG & RQ WKH VHYHULW\ RI DWKHURVFOHURVLV LQ UDEELWV $PHULFDQ -RXUQDO RI &OLQLFDO 1XWULWLRQ 0DUN $/ 0 &RUUHLD $ 0RUJDQ 5$ 6KDIIHU :* +D\QHV 2EHVLW\LQGXFHG K\SHUWHQVLRQ +\SHUWHQVLRQ SDUW ,,f 0DVFLR 3' 0( 0XUSK\ DQG + 6LHV $QWLR[LGDQW GHIHQVH V\VWHPV WKH UROH RI FDURWHQRLGV WRFRSKHUROV DQG WKLROV $PHULFDQ -RXUQDO RI &OLQLFDO 1XWULWLRQ 6 6 0D]D 6 DQG : )ULVKPDQ 7KHUDSHXWLF RSWLRQV WR PLQLPL]H IUHHUDGLFDO GDPDJH DQG WKURPERJHQLFLW\ LQ LVFKHPLFUHSHUIXVHG P\RFDUGLXP 0HGLFDO &OLQLFV RI 1RUWK $PHULFD 0F'XIIHH $ 7 6HQLVWHUUD 6 +XQWOH\ -5 /HSRFN .5 6HNKDU 00HUHGLWK 0%RUUHOOL -' 0RUURZ DQG 0 / )UHHPDQ 3URWHLQV FRQWDLQLQJ QRQQDWLYH GLVXOILGH ERQGV E\ R[LGDWLYH VWUHVV FDQ DFW DV VLJQDOV IRU WKH LQGXFWLRQ RI WKH KHDW VKRFN UHVSRQVH -RXUQDO RI &HOOXODU 3K\VLRORJ\ 0HLVWHU $ DQG 0( $QGHUVRQ *OXWDWKLRQH $QQXDO 5HYLHZ RI %LRFKHPLVWU\ 0RRU GH %XUJRV $ 0 :DUWDQRZLF] DQG 6 =LHPODQVNL %ORRG YLWDPLQ DQG OLSLG OHYHOV LQ RYHUZHLJKW ZRPHQ DQG REHVH ZRPHQ (XURSHDQ -RXUQDO RI &OLQLFDO 1XWULWLRQ 0XUSK\ 3$ $ .UDKOLQJ 5 *HH .LUN DQG 1( 7ROEHUW (Q]\PH DFWLYLWLHV RI LVRODWHG KHSDWLF SHUR[LVRPHV IURP JHQHWLFDOO\ OHDQ DQG REHVH PDOH PLFH $UFKLYHV RI %LRFKHPLVWU\ DQG %LRSK\VLFDO 6FLHQFHV 1DWLRQDO 5HVHDUFK &RXQFLO 1XWULHQW UHTXLUHPHQWV RI /DERUDWRU\ $QLPDOV 1DWLRQDO $FDGHP\ RI 6FLHQFHV :DVKLQJWRQ '&

PAGE 113

2f)DUUHOO 6 0-DFNVRQ 'LHWDU\ SRO\XQVDWXUDWHG IDWW\ DFLGV YLWDPLQ ( DQG K\SR[LDUHJHQHUDWLRQLQGXFHG GDPDJH WR FDUGLDF WLVVXH &OQLFD &KLPLFD $FWD 2KUYDOO 0 6 7HQJEODG DQG % 9HVVE\ /RZHU WRFRSKHURO VHUXP OHYHOV LQ VXEMHFWV ZLWK DEGRPLQDO DGLSRVLW\ -RXUQDO RI ,QWHUQDO 0HGLFLQH 2SLH /+ 7KH +HDUW 3K\VLRORJ\ DQG 0HWDEROLVP QG HG 5DYHQ 3UHVV1HZ
PAGE 114

5ROOV % DQG ($ 5RZH 'LHWDU\ REHVLW\ SHUPDQHQW FKDQJHV LQ ERG\ ZHLJKW -RXUQDO RI 3K\VLRORJ\ /RQGRQf 3 5RVV 5 DQG 9 )XVWHU 7KH SDWKRJHQHVLV RI DWKHURVFOHURVLV ,Q $WKHURVFOHURVLV DQG &RURQDU\ $UWHU\ 'LVHDVH (G 9 )XVWHU 5 5RVV DQG (7RSRO /LSSLQFRWW5DYHQ 3XEOLVKHUV 3KLOHGHOSKLD SS 5XLWHU $ $: -RQJORHG &0 9DQ *HQW /+-& 'DQVH DQG 6+0 0HW] 7KH LQIOXHQFH RI D GLHW RI PDFNHUHO RLO RQ WKH FRQGLWLRQ RI RUJDQ DQG EORRG OLSLG FRPSRVLWLRQ LQ WKH \RXQJ JURZLQJ SLJ -RXUQDO RI &OLQLFDO 1XWULWLRQ 6DOD]DU '( &/ 6RUJH 6: -RUGDQ DQG *% &RFRUDQ 2EHVLW\ GHFUHDVHV KHSDWLF JOXWDWKLRQH FRQFHQWUDWLRQV DQG PDUNHGO\ SRWHQWLDWHV DOO\O DOFRKROLQGXFHG SHULSRUWDO QHFURVLV LQ WKH RYHUIHG UDW ,QWHUQDWLRQDO -RXUQDO RI 2EHVLW\ 6DVWUH )9 3DOODUGR /ORSLV 7 )XUNDZD -5 9LQD DQG 9LQD *OXWDWKLRQH GHSOHWLRQ E\ K\SHUSKDJLDLQGXFHG REHVLW\ /LIH 6FLHQFHV 6FKPLHGHU 5( DQG )+ 0HVVHUOL 2EHVLW\ K\SHUWHQVLRQ 0HGLFDO &OLQLFV RI 1RUWK $PHULFD 6FODIDQL $ DQG 6SULQJHU 'LHWDU\ REHVLW\ LQ DGXOW UDWV VLPLODULWLHV WR K\SRWKDODPLF DQG KXPDQ REHVLW\ V\QGURPHV 3K\VLRORJ\ DQG %HKDYLRU 6FRWW -$ $)LVFKPDQ %$ .KDZ &+RPH\ DQG &$ 5DELWR )UHH UDGLFDO PHGLDWHG PHPEUDQH GHSRODUL]DWLRQ LQ UHQDO DQG FDUGLDF FHOOV %LRFKLPLFD HW %LRSK\VLFD $FWD 6KDWWRFN 0DQG 36 +DGGRFN 2[LGDQW VWUHVV DQG WKH KHDUW PRGXODWLRQ RI LRQ WUDQVSRUW PHFKDQLVPV GXULQJ LVFKPLD DQG UHSHUIXVLRQ ,Q ,PPXQRSKDUPDFRORJ\ RI )UHH 5DGLFDO 6SHFLHV $FDGHPLF 3UHVV%DOWLPRUH 6SLW] '5 66XOOLYDQ 55 0DOFROP DQG 55REHUWV *OXWDWKLRQH GHSHQGHQW PHWDEROLVP DQG GHWR[LILFDWLRQ RI K\GUR[\QHQDO )UHH 5DGLFDOV LQ %LRORJ\ DQG 0HGLFLQH 6UHUH 3 &LWUDWH V\QWKDVH 0HWKRGV LQ (Q]\PRORJ\

PAGE 115

6WHIIHQV $% -+ 6WUXEEH % %DONDQ DQG $-: 6KHXULQN 1HXURHQGRFULQH IDFWRUV UHJXODWLQJ EORRG JOXFRVH SODVPD ))$ DQG LQVXOLQ LQ WKH GHYHORSPHQW RI REHVLW\ %UDLQ 5HVHDUFK %XOOHWLQ 6WHLQ 0: 'JOXFRVH GHWHUPLQDWLRQ ZLWK KH[RNLQDVH DQG JOXFRVHSKRVSKDWH GHK\GURJHQDVH ,Q 0HWKRGV RI (Q]\PDWLF $QDO\VLV +8 %HUJPH\HU (G $FDGHPLF 3UHVV 1HZ
PAGE 116

:DUG 3$ -6 :DUUHQ DQG .-RKQVRQ 2[\JHQ UDGLFDOV LQIODPPDWLRQ DQG WLVVXH LQMXU\ )UHH 5DGLFDOV LQ %LRORJ\ DQG 0HGLFLQH :LW]XP -/ 6XVFHSWLELOLW\ RI ORZGHQVLW\ OLSRSURWHLQ WR R[LGDWLYH PRGLILFDWLRQ $PHULFDQ -RXUQDO RI 0HGLFLQH
PAGE 117

%,2*5$3+,&$/ 6.(7&+ +HDWKHU .HWHODDU 9LQFHQW FRPSOHWHG KHU XQGHUJUDGXDWH WUDLQLQJ DW WKH 8QLYHUVLW\ RI 0DVVDFKXVHWWV LQ ZLWK D PDMRU LQ ]RRORJ\ DQG D GRXEOH PLQRU LQ H[HUFLVH VFLHQFH DQG ILQH DUWV )ROORZLQJ KHU XQGHUJUDGXDWH FDUHHU VKH VSHQW RYHU WZR DQG D KDOI \HDUV DV D UHVHDUFK DVVRFLDWH DW
PAGE 118

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 6FRWW\ 3RZHUV &KDLU 3URIHVVRU RI ([HUFLVH DQG 6SRUW 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ DLW} 6WHSKHQ / 'RGG $VVRFLDWH 3URIHVVRU RI ([HUFLVH DQG 6SRUW 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ %UXFH 6WHYHQV 3URIHVVRU RI 3K\VLRORJ\

PAGE 119

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3KLOLS 6FDUSDFH 3URIHVVRU RI 3KDUPDFRORJ\ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI +HDOWK DQG +XPDQ 3HUIRUPDQFH DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW 'HDQ 3HUIRUPDQFH 'HDQ *UDGXDWH 6FKRRO

PAGE 120

/' e PL 81,9(56,7-2) )/25,'}