The effects of six weeks of supplementation with multi-ingredient performance supplements and resistance training on ana...


Material Information

The effects of six weeks of supplementation with multi-ingredient performance supplements and resistance training on anabolic hormones, body composition, strength, and power in resistancetrained men
Physical Description:
Mixed Material
Ormsbee, Michael J.
Mandler, W Kyle
Thomas, D David
Ward, Emery G.
Kinsey, Amber W.
Simonavice, Emily
Panton, Lynn B.
Kim, Jeong-Su
BioMed Central (Jissn= Journal of the International Society of Sports Nutrition)
Publication Date:


Background: Resistance training (RT) enhances muscle protein synthesis and hypertrophy while increasing strength and power. Some multi-ingredient performance supplements (MIPS) have been shown to augment the physiological improvements associated with RT. The purpose of this study was to investigate the impact of specific pre- and post-workout MIPS on anabolic hormones, body composition, muscle strength, and power in resistance-trained men participating in a periodized RT program. Methods: Twenty-four ( mean ± SE; 24.0 ± 0.9 years; 180.5 ± 5.8 cm; 83.7 ± 0.5 kg) resistance-trained men completed 6 wks of periodized RT (3x/wk). Participants were assigned to one of two groups based upon maximal voluntary contraction of the quadriceps (Biodex) to lean mass (LM) ratio. Group 1 (n = 13; MIPS) consumed one serving of NO-ShotgunW (whey protein, casein protein, branched-chain amino acids, creatine, beta alanine, and caffeine) before each workout and one serving of NO-SynthesizeW (whey protein, casein protein, branched-chain amino acids, creatine, and beta alanine; Vital Pharmaceuticals, Inc., Davie, FL) immediately after each workout and on non-RT days. Group 2 (n = 11; Placebo; PLA) consumed a flavor-matched isocaloric maltodextrin placebo. Serum insulin-like growth factor 1, human growth hormone, testosterone, body composition (DXA), circumferences, 1-repetition maximal strength (1RM) of the upper (chest press) and lower body (leg press), and anaerobic power (Wingate test) were assessed before and after the intervention. Statistical analysis included a 2 × 2 (group x time) ANOVA with repeated measures. Tukey LSD post hoc tests were used to examine pairwise differences. Significance was set at p < 0.05. Results: There was a main time effect (p = 0.035) for testosterone to increase, but no differences between groups were observed. There were no differences in the other blood hormones. Group x time interactions were observed for LM (MIPS: PRE, 62.9 ± 2.1 to POST, 65.7 ± 2.0 vs. PLA: PRE, 63.5 ± 2.3 to POST, 64.8 ± 2.5 kg; p = 0.017). Only a main effect of time was noted for circumference measures. Both groups increased upper and lower body 1RM strength to a similar degree. MIPS significantly increased peak anaerobic power (PRE, 932.7 ± 172.5 W vs. POST, 1119.2 ± 183.8 W, p = 0.002) while PLA remained unchanged (PRE, 974.4 ± 44.1 W vs. POST, 1033.7 ± 48.6 W, p = 0.166). Conclusion: Consumption of MIPS during the course of a periodized RT program facilitated training-induced improvement in LM in trained males, whereas the consumption of PLA did not. MIPS improved measures of anaerobic power while PLA did not. Keywords: Sports nutrition, Wingate test, Body composition, Maximal strength, Testosterone
General Note:
Publication of this article was funded in part by the University of Florida Open-Access publishing Fund. In addition, requestors receiving funding through the UFOAP project are expected to submit a post-review, final draft of the article to UF's institutional repository, IR@UF, ( at the time of funding. The institutional Repository at the University of Florida community, with research, news, outreach, and educational materials.
General Note:
Ormsbee et al. Journal of the International Society of Sports Nutrition 2012, 9:49; Pages 1-12
General Note:
doi:10.1186/1550-2783-9-49 Cite this article as: Ormsbee et al.: The effects of six weeks of supplementation with multi-ingredient performance supplements and resistance training on anabolic hormones, body composition, strength, and power in resistance-trained men. Journal of the International Society of Sports Nutrition 2012 9:49.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
All rights reserved by the source institution.
System ID:

This item is only available as the following downloads:

Full Text


RESEARCHARTICLEOpenAccessTheeffectsofsixweeksofsupplementationwith multi-ingredientperformancesupplementsand resistancetrainingonanabolichormones,body composition,strength,andpowerinresistancetrainedmenMichaelJOrmsbee1*,WKyleMandler1,DDavidThomas1,EmeryGWard1,AmberWKinsey1,EmilySimonavice2, LynnBPanton1andJeong-SuKim1AbstractBackground: Resistancetraining(RT)enhancesmuscleproteinsynthesisandhypertrophywhileincreasingstrength andpower.Somemulti-ingredientperformancesupplements(MIPS)havebeenshowntoaugmentthe physiologicalimprovementsassociatedwithRT.Thepurposeofthisstudywastoinvestigatetheimpactofspecific pre-andpost-workoutMIPSonanabolichormones,bodycomposition,musclestrength,andpowerin resistance-trainedmenparticipatinginaperiodizedRTprogram. Methods: Twenty-four(meanSE;24.00.9years;180.55.8cm;83.70.5kg)resistance-trainedmencompleted 6wksofperiodizedRT(3x/wk).Participantswereassignedtooneoftwogroupsbaseduponmaximalvoluntary contractionofthequadriceps(Biodex)toleanmass(LM)ratio.Group1(n=13;MIPS)consumedoneservingof NO-ShotgunW(wheyprotein,caseinprotein,branched-chainaminoacids,creatine,betaalanine,andcaffeine) beforeeachworkoutandoneservingofNO-SynthesizeW(wheyprotein,caseinprotein,branched-chainamino acids,creatine,andbetaalanine;VitalPharmaceuticals,Inc.,Davie,FL)immediatelyaftereachworkoutandon non-RTdays.Group2(n=11;Placebo;PLA)consumedaflavor-matchedisocaloricmaltodextrinplacebo.Serum insulin-likegrowthfactor1,humangrowthhormone,testosterone,bodycomposition(DXA),circumferences, 1-repetitionmaximalstrength(1RM)oftheupper(chestpress)andlowerbody(legpress),andanaerobicpower (Wingatetest)wereassessedbeforeandaftertheintervention.Statisticalanalysisincludeda22(groupxtime) ANOVAwithrepeatedmeasures.TukeyLSDposthoctestswereusedtoexaminepairwisedifferences.Significance wassetatp<0.05. Results: Therewasamaintimeeffect(p=0.035)fortestosteronetoincrease,butnodifferencesbetweengroups wereobserved.Therewerenodifferencesintheotherbloodhormones.Groupxtimeinteractionswereobserved forLM(MIPS:PRE,62.92.1toPOST,65.72.0vs.PLA:PRE,63.52.3toPOST,64.82.5kg;p=0.017).Onlyamain effectoftimewasnotedforcircumferencemeasures.Bothgroupsincreasedupperandlowerbody1RMstrength toasimilardegree.MIPSsignificantlyincreasedpeakanaerobicpower(PRE,932.7172.5Wvs.POST,1119.2 183.8W,p=0.002)whilePLAremainedunchanged(PRE,974.444.1Wvs.POST,1033.748.6W,p=0.166).(Continuedonnextpage) *Correspondence: mormsbee@fsu.edu1DepartmentofNutrition,FoodandExerciseSciences,InstituteofSports ScienceandMedicine,TheFloridaStateUniversity,120ConvocationWay, 430SandelsBuilding,Tallahassee,FL32306-1493,USA Fulllistofauthorinformationisavailableattheendofthearticle 2012Ormsbeeetal.;licenseeBioMedCentralLtd.ThisisanOpenAccessarticledistributedunderthetermsoftheCreative CommonsAttributionLicense(,whichpermitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginalworkisproperlycited.Ormsbee etal.JournaloftheInternationalSocietyofSportsNutrition 2012, 9 :49


(Continuedfrompreviouspage)Conclusion: ConsumptionofMIPSduringthecourseofaperiodizedRTprogramfacilitatedtraining-induced improvementinLMintrainedmales,whereastheconsumptionofPLAdidnot.MIPSimprovedmeasuresof anaerobicpowerwhilePLAdidnot. Keywords: Sportsnutrition,Wingatetest,Bodycomposition,Maximalstrength,TestosteroneBackgroundMulti-ingredientperformancesupplements(MIPS)intendedforconsumptionincloseproximitytoresistance exerciseareextremelypopularamongyoungmales[1,2] andathletes[3].ThecompositionofMIPSvarywidely, buttheprincipleingredientsgenerallyincludecreatine monohydrate,caffeine,betaalanine,thebranchedchain aminoacids(BCAAs)leucine,isoleucine,andvaline,as wellasL-citrulline,andL-arginine.Mostoftheseingredientshavebeenshownsingularly[4-10]andincombination[11-14]toexertergogeniceffectsduringaerobic andanaerobicexerciseorfacilitatemusclehypertrophy overthecourseofaresistancetraining(RT)periodin untrainedparticipants. Claimsabouteffectivenessandergogenicenhancements providedbyMIPSareoftennotsupportedbyempirical dataandworse,frequentlyreflectpoorunderstanding orevenamisappropriationoftheunderlyingscience. Accordingly,itisofimportancetoconsumersandresearchersthatMIPSbeevaluatedindouble-blinded, placebo-controlledtrials.Whilethereisaconsiderablebodyofresearchontheindividualeffectsofcreatine,caffeine,betaalanineandprotein/aminoacidconsumption inproximitytoexercise[4,6,9,15-20],thereisapaucityof dataregardingthecombinedeffectoftheseingredientson exerciseperformancewithRT[14,21,22].ThelimitedevidenceavailablesuggeststhatMIPSproductsofthisgeneralcompositionmayofferanadvantageforthosewishing toincreasemusclemassandstrength. Smithetal.supplementedtwenty-fourmoderatelytrainedrecreationalathleteswithapre-workoutsupplement(GameTimeW,Corr-JensenLaboratoriesInc., Aurora,CO),containing18gofaproprietaryblend includingwheyprotein,cordycepssinensis,creatinemonohydrate,citrulline,ginseng,andcaffeine[11,12].Participantsinthisstudyperformedninehighintensity intervalruntrainingsessionsover3weeks.Participants consumedGameTimeWorplacebo30minutespriorto eachtrainingsession.Incontrasttotheplacebogroup, thesupplementedparticipantsdemonstratedasignificantlyhighertrainingvolume(distancetoexhaustion persession)andtendedtoperformbetterinmeasures ofanaerobicrunningcapacity(GameTimeW:11.6%versusplacebo).Additionally,leanmass(LM)increased from54.23.5kgto55.43.7kg(p=0.035)intheGame TimeWgroupandremainedunchangedintheplacebo group,whiletherewerenosignificantchangesforeither groupinpercentbodyfat[12]. Therehasbeensurprisinglylittleinvestigationintothe efficacyofthesesupplementsinindividualsthatare alreadyresistance-trained.Schmitzetal.[22]provided twotypesofMIPScontainingsimilarcreatine,carbohydrate,andproteinprofiles,butvaryinginsomeproprietaryingredients,forconsumptionimmediatelybefore andduringRTtomenwhohadbeenresistancetraining regularlyforatleasttwoyears.Following9weeksof4 days/weekprogressiveRT,bothgroupsdemonstrated improvementsinchestpressonerepetitionmaximum (1RM)(MIPS:+19.8%vs.ComparatorProduct+15.3% p<0.019),andLM(MIPS:+2.4%vs.ComparatorProduct+0.27%,p<0.049).Howe ver,withoutaplacebogroup, itisdifficulttosaywhatproportionoftheseimprovements wasinducedbyRTalone. Shelmadineetal.[14]andSpillaneetal.[21]have publisheddatathataredistinctlyrelevanttothecurrent study.Thesegroupsbothexaminedtheeffectsof28 daysofMIPSduringidenticalRTprogramsinuntrained men.ShelmadineusedthecommerciallyavailablepreworkoutsupplementNO-ShotgunW(SHOT,VitalPharmaceuticals,DavieFL),containingwheyprotein,caffeine, creatine,betaalanine,BCAAs,andL-argininewith18untrainedmalesandcomparedittoanisocaloricplacebo [14].Maximal1RMforupperbodystrengthimprovedfor bothgroups,butmoresoforMIPS(MIPS:+8.821.78% vs.placebo:+0.732.30%,p=0.003),whiletherewereno significantdifferencesinimprovementsin1RMlower bodystrength(MIPS:+18.41.91%vs.placebo:+11.99 2.79%,p=0.10).MIPSalsoincreasedfatfreemassgreater thanplacebo(MIPS:+4.750.50%vs.PL:+1.690.54%, p=0.001).Spillaneetal.[21]usedSHOTinthesame pre-workoutmannerasShelmadineetal.,butNO-SynthesizeW(SYNTH,VitalPharmaceuticals,DavieFL)was alsoconsumedimmediatelypost-RTanduponwakingon non-trainingdaysinuntrainedmen.Participantsinboth theSHOT/SYNTHandplacebogroupsimprovedbody compositionandstrengthasaresultoftraining,however, theSHOT/SYNTHgrouphadgreaterincreasesinfatfree mass(p=0.03),upper(p=0.02)andlowerbody(p=0.04) 1RMstrength. WhilethefindingsofShelmadine[14]andSpillane [21]arepromising,especiallyinregardstosignificant increasesinmusclemasswithMIPSuse,assumptionsOrmsbee etal.JournaloftheInternationalSocietyofSportsNutrition 2012, 9 :49Page2of12


mustbemadetodrawconclusionsaboutpopulations otherthanuntrainedmales.Todate,therehavebeenno investigationsoftheeffectivenessofMIPStakenbefore andafterRTandonnon-trainingdayswithresistancetrainedmaleparticipantsoverthecourseofanextended (six-week)RTprogram.Therefore,theaimofthisstudy wastodeterminetheefficacyofpre-andpost-RTsupplementationwithMIPSonanabolichormones,body composition,musclestrength,andpowerinresistancetrainedmenparticipatinginasix-weekperiodizedRT program.Wehypothesizedthatpre-andpost-exercise intakeofMIPSduringasix-weekRTprogramwouldincreasetheconcentrationsofanabolichormonesandenhancegainsinmusclemass,strength,andpowermore thanPLAinresistance-trainedmen.MethodsParticipantsTwenty-fourresistance-trained(meanSE,5.33.5 yearsofresistance-trainingforatleasttwiceperweek) maleparticipants(age,24.00.9years;height,180.5 5.8cm;bodymass,83.70.5kg;bodymassindex, BMI,25.52.2kg/m2)completedthisstudy.Participantswerenonsmokersanddidnothavehypertension (bloodpressure>140/90),uncontrolledcholesterol/ bloodlipidlevelsortakeprescriptioncholesterolmedication.Theyalsodidnothavediagnosedcardiovascular disease,stroke,diabetes,thyroidorkidneydysfunction,or haveanymusculoskeletalcomplicationsthatwouldimpede themfromperformingRT.Individualswhowerecurrently consumingotherworkoutsupplementsorergogenicaids wereinstructedtoimmediatelystopconsumptionand completeafour-weekwashoutperiodbeforeenteringthe study.Individualsconsumi nganabolicsteroidswere excluded.Allproceduresinvolvinghumansubjectswere approvedbytheFloridaStateUniversityHumanSubjects InstitutionalReviewBoardinaccordancewiththeHelsinki Declaration,andwritteninformedconsentwasobtained priortoparticipation.ExperimentaldesignThisstudyusedastratified,randomized,longitudinal, double-blinddesignwithpl acebocontrol.Followingthe initialcollectionofpre-testingdataandbeforethestartof training,participantswereplacedintoMIPS(n=13)or placebo(PLA,n=11)groups.Stratificationwasbasedon theratioofinitialmaximalvoluntarycontraction(MVC, isometric60kneeextension)toLM.Followingpre-testing datacollection,participantsbeganaperiodizedsix-week resistancetrainingprogramunderdirectsupervisionofresearchpersonnel.Participantsconsumedone21gserving ofNO-ShotgunW(SHOT;~72kcals;18gprotein;9.7g proteinhydrolysatematrixin cludingBCAAs;8.06gmuscle volumizingandpower/speed/s trengthmatrixthatincludes multipleformsofcreatineandbetaalanine;376mgof RedlineWenergymatrixincludingcaffeine;VitalPharmaceuticals,Inc.,Davie,FL)orisocaloricmaltodextrinPLA 15minutespriortoexercise.Upontheconclusionofeach trainingsession,participantsimmediatelyconsumedone 21gservingofNO-SynthesizeW(SYNTH;~82kcals;20g protein;9.7gproteinhydrolysatematrixincludingBCAAs; 9.4gmusclevolumizingandpower/speed/strengthmatrix thatincludesmultipleformsofcreatineandbetaalanine; VitalPharmaceuticals,Inc.,Davie,FL)orPLA.Research personnelwatchedaseachparticipantconsumedthesupplementonalltrainingdays.Inaddition,participantswere givensingleservingsofSYNTHorPLAtoconsumeon non-trainingdays.Laboratorytestingtookplaceonlybeforeandafterthesix-weekintervention.Participants returnedforpost-testingatleast36hoursfollowingthe finaltrainingsessioninordertominimizetheeffectsof delayedonsetmusclesorenessandpost-exercisereduced maximaltorque[23]ontestingdata,aswellastoensure thatanychangeswereduetochronictrainingandsupplementationratherthanacutechangesfromthefinalRT session.Participantscontinuedtoconsumeaservingof SYNTH(1x/day)aftertraininghadendeduntilthedayof (butnotincluding)post-testing.ResistancetrainingprotocolForthedurationofthestudy,threesetsofeachexercise werecompletedasapercentageofbaseline1RM.For thefirsttwoweeks,participantscompleted10repetitionsat70-75%of1RM.Forweeksthreeandfour,resistancewasincreasedtosixrepetitionsat80-85%1RM. Forthefinaltwoweeks,participantscompletedfour repetitionspersetat85-90%of1RM.Eachmajormuscle groupwastrainedonceperweekusingatleastoneexercise.Thesix-weektrainingprogramwasdesignedto targeteverymajormusclegroupinathree-daysplit andwasmodifiedfrompreviouslypublishedresearch [24,25].Theexercisesfordayone,designedtoworkthe biceps,triceps,andshoulderswereperformedinthefollowingorder:shouldermilitarypress,dumbbellincline bicepscurl,cableoverheadFrenchpress,straightbar curls,cabletricepspressdown,anddumbbellreversefly. Theexercisesfordaytwo,designedtoworkthemuscles ofthelegsandcore,were(inorder):legpress(LP), straightlegdeadlift,dumbbelllunge,legcurls,standing calfraises,abdominalcrunch,andcoreplanks.Thethird andfinaldayoftherotationwasdesignedtoworkthe musclesofthechestandbackwiththefollowingexercises(inorder):flatchestpress(CP),cablepulldown, inclineCP,cablelowrow(neutralgrip),dumbbellchest flys,anddumbbellshrugs.Threesetsofeachexercise wereperformedforprescribednumberofrepetitionsor tofailure,whichevercamefirst,withrestingtimesof 60 – 90secondsbetweensets.IfaparticipantwasunableOrmsbee etal.JournaloftheInternationalSocietyofSportsNutrition 2012, 9 :49Page3of12


toperformtheprescribedweightforanexercise,the weightwasadjustedtoyieldfailureatornearthespecifiednumberofrepetitions.Theemphasisplacedonconsistentliftingforminthisstudy,coupledwithresearcher supervisionfromcertifiedpersonaltrainersthroughthe NationalStrengthandConditioningAssociation(NSCA), helpedensurefullparticipantcompliancewithtraining aswellasreducevariabilityduetointer-subjectdifferencesordeficienciesinform.TestingsessionsLaboratorytestingwascompletedontwooccasions.The firstvisitwaspriortotheinterventionandthesecond visitwasafterthesix-weekintervention.Pre-andposttestinglaboratoryvisitswereidenticalandeachmeasurementwastakenbythesameinvestigatoratboth visits.Participantsarrivedatthelaboratoryfollowingan eight-hourovernightfastandhadheartrate(60seconds; radialpulse)andbloodpressure(auscultatorymethod) measured[26]aftersittingquietlyforfiveminutes.Each measurementwastakentwiceandtheaveragewas recorded.Thefollowingmeasurementswerecompleted (inorder):bloodmeasures,bodycomposition,isokinetic andisometricstrength,Wingate,andmaximalstrength foreveryparticipant.BloodmeasuresBloodsamples(~10ml)weredrawnviavenipuncture fromthemediancubitalorcephalicveinintheantecubital spaceoftheforearmintovacutainertubeswithnopreservative(BectonDickinson,FranklinLakes,NJ).Serum sampleswereallowedtoclotatroomtemperatureand thenstoredoniceuntilcentrifugingat3500rpmat4C for15minutes(IECCL3RMultispeedCentrifuge,Thermo ElectronCorporation,NeedhamHeights,Massachusetts). Aliquotsof300 Leachweretransferredintomicrotubes andfrozenat 80degreesCelsiusforlateranalysisof insulin-likegrowthfactor-1(IGF-1),humanGrowth Hormone(hGH),andtestosteroneusingcommercially availableELISAkits(R&DSystems,Minneapolis,MN, USA).Intra-assaycoefficientofvariabilitywas4.5%,8.1%, and15.2%forIGF-1,hGH,andtestosterone,respectively. Followingbloodcollection,participantsconsumedone eightounceboxofapplejuice.BodycompositionBodymassandheight(SECA,Hamburg,Germany)were recorded.Allmeasurementsweretakenwithshoesremovedwearingonlyunderwear.Bodycompositionwas measuredusingdual-energyx-rayabsorptiometry(DXA; GELunariDXA;GeneralElectricCompany,Fairfield, Connecticut)withparticipantsinthesupineposition accordingtothemanufacturer ’ sinstructions.Resultswere analyzedwithenCORESoftware,version11.0(GELunar). Thecoefficientofvariation(CV)forthetotalbodylean andfattissuewere1.5%and1.9%,respectively,basedon thethreerepeatedmeasuresofasubsetof10participants. Circumferencemeasurementsoftheupperarm,chest, gluteals,andthighweretakenusingameasuringtape withstraingauge(CreativeHealthProducts,AnnArbor, Michigan)andtheparticipantwearingonlyexercise shorts.Forthechestmeasurement,thetapewasrun horizontallyacrossthenipplesandaroundtheback,and theparticipantwasinstructedtoexhalefully.Forthe upperarmmeasurement,participantswereinstructedto raisethedominantarmtoshoulderheightandcontract thebicepsbrachiimaximallyuntilthemeasurementwas completed.Themeasurementwastakenatthethickest partofthecontractingbicepsbrachii.Theglutealmeasurementwastakenaroundthewidestpartwiththeparticipantstandingwithhisfeettogether.Thethigh measurementwastakenwhiletheparticipantstoodwith theheelofthedominantlegplacedonthetoesofthe oppositefoot.Themeasurementwasthentakenatthe widestpartofthedominantleg.Ameasurementfrom thetopofthepatellatothepointofcircumference measurementwasmadeandrecordedtoberepeatedin thepost-test.Allmeasurementsweretakenbythesame researcheronpre-andpost-testinglaboratoryvisits.IsokineticandisometricstrengthTheorderofperformancetestingwasuniformforeach participantforbothlaboratoryvisits.Participantswere placedintheuprightseatedpositiononaBiodexSystem 3(BiodexMedicalSystems,Shirley,NewYork).Theseat heightandpositionwereadjustedinordertoalignthe instrument ’ saxisofrotationwiththatoftheparticipant ’ s dominantknee.Participantswereinstructedtocrosstheir armsovertheirchests,butnottograbtherestraints. Isokinetic30sec-1and60sec-1unilateralkneeextension/ flexiontestswereconducted.Fiverepetitionsofconsecutivemaximalextensionandflexionwereperformedduringeachtest,withaoneminuterestintervalbetween tests.Followingtheisokinetictests,a60isometricknee extension/flexiontestwasperformed.Thistestinvolves threemaximalextensionandflexionexertionagainstan immovablearm,with10secondrestperiodsbetween exertions.Continuousverbalencouragementwasprovidedbytheresearchteamthroughoutthedurationofall tests.Criterionmeasureswerepeakandaveragetorque foreachrepetition.WingatetestAnaerobiccapacitywasmeasuredusingaWingatetest [27]onaplateloadedandfrictionbrakedMonarkErgomedic874-E(MonarkExerciseAB,Vansbro,Sweden) cycleergometer.Resistancewassetas7.5%ofbody mass(kg).EachparticipantwasfittedtotheergometerOrmsbee etal.JournaloftheInternationalSocietyofSportsNutrition 2012, 9 :49Page4of12


byadjustingtheseatheighttoensure5-10ofknee flexionatthebottomofthepedalstroke.Theparticipant performedatwo-minutewarm-upat75rpmwithonly theresistanceaddedbytheweightbasket(0.5kg),with twobrief(~10seconds)boutsofpracticesprinting.Followingthewarm-upperiod,afive-secondcountdown periodwasbegunwheretheparticipantmaximized revolutionsperminute.Whentheparticipantwascyclingatfullspeed,theresistancewasaddedandthe30secondtesttimerwasstarted.Throughoutthetestthe participantsweregivenverbalencouragementtoworkat thehighestpossibleeffortandtobeawareofthetime remaining.Attheendofthe30-secondtestperiod,the resistancewasremovedandtheparticipantwasinstructedtocycleslowlyforatleasttwominutestocool down.Videooftheexerciseboutwasrecorded(Pentax OptioW90,PentaxImagingCompany,Golden,Colorado)andlateranalyzedtodeterminetotalrevolutions (Rtotal)andpeakrevolutions(Rmax).Theexercisewas brokendownintofive-secondintervals(i.e.0 – 5seconds, 5 – 10seconds,10 – 15seconds,etc.)andRmaxwas definedasthemaximalnumberofrevolutionsachieved duringeachinterval.Fromthesevalues,totalwork(W) wascalculatedas( r Rtotal),where r istheresistancein kgandRtotalisthetotalnumberofrevolutionscompletedinthe30-secondtestingperiod.Peakanaerobic powerwascalculatedas r 6 m R max 5 second ,where Rmaxisthe numberofrevolutionscompletedinthefirstfivesecondsofthetestand6mcorrespondstothedistancetraversedbytheflywheelinonerevolution(6meters). Meananaerobicpowerwascalculatedas W 30 seconds .FatigueIndexwascalculatedastheratiooftheminimum numberofrevolutions(Rmin)toRmax.OneRepetitionMaximum(1RM)StrengthAfterlaboratorypre-testing,butpriortothefirsttrainingsession,participantsreportedtothetraininglocationforthedeterminationof1RMintheCPand45LP exercises.Forthepurposesofthisstudy,1RMisdefined asthemaximumweightanindividualisabletoperform onagivenexercise,withgoodform,throughthefull rangeofmotionandwasadministeredaccordingtothe NSCAguidelines[28].Briefly,awarmupwithalowresistanceandfiveto10repetitionswasfollowedbyone minuteofrest.Asecondwarmuploadwasestimatedto allowthesubjecttocompletethreetofiverepetitions. Followingatwo-minuterestperiod,weightwasgraduallyincreasedbyfiveto10%forCP,or10to20%for LPforasinglerepetition,followedbyatwo-minuterest period.Weightwasincreasedgraduallyuntilafailedattemptorproperformwasnotmaintained.Uponfailure, weightwasreducedby2.5-5%forCP,or5-10%forLP andtheparticipantmadeanother,finalattemptaftera four-minuterestperiod.Themaximumweightsuccessfullyliftedoncewasrecordedasthe1RMforthat exercise. Theformcuesusedforthe1RMandtrainingsessions foreachexercisedidnotdiffer.FortheCP,theparticipantwastolieflatonthebenchwiththeeyesapproximatelyatthelevelofthebarasitrestsintherack.The participantwastograspthebarsothatthewristswere situateddirectlyabovetheelbowsforthedurationof eachrepetition.Theparticipant ’ sbackmaintainedcontactwiththebenchatalltimes,anddidnotbecomeunnaturallyarched.Theparticipant ’ sfeetremainedflaton thefloorandtheheelsdidnotriseduringtheexercise. Thebarwaslowereduntiltheupperarmswereparallel withthefloor,andtheelbowswereflexedatapproximately90,atwhichpointthebarwaspressedbackto fullextension.FortheLP,feetwereplacedonthepush platesothattheywerejustwiderthanshoulderwidth andthekneeswereflexedtoapproximately90.The platewaslowereduntilthetopsofthethighswerejust touchingthechest,atwhichpointitwaspressedoutto fullextension.NutritionalintakeandsupplementationprotocolAfterthepre-testingsessionandattheendofthestudy, participantswererequiredtocompleteathree-dayfood andactivitylog.Compliancewaslowforthefoodlogs; onlyeightparticipantssuccessfullycompletedbothpre andposttrainingfoodlogs. Followingthecompletionofallpre-testing,theRT programbegan.Theassignedpre-workoutMIPSorPLA wasconsumedunderthesupervisionofcertifiedresearchstaff15minutespriortothebeginningofRT. Duringthistime,alightwarm-uponthecardiovascular exercisemachineofchoicewasperformed.Immediately uponthecompletionofeachtrainingsession,thepostworkoutMIPSorPLAwasconsumed.Asingleserving ZiplocWbagofMIPSorPLAwasgiventoeachparticipanttoconsumeonnon-trainingdays.Toensurecompliance,these(empty)bagswerereturnedbeforethe subsequenttrainingsessionandrecordedbyresearch personnel.Uponcompletionofthetrainingsessions,the participantsreportedbacktothelaboratory36hours followingthelastRTboutforpost-testing,identicalto thatofthepre-testingvisit.StatisticalanalysisDescriptivedataweregeneratedforallvariablesand expressedasmeanstandarderror.Atwo(group)two (time)analysisofvariance(ANOVA)withrepeatedmeasureswasusedtoanalyzebodycomposition,strength, power,andhormonedata.TukeyLSDposthoctests wereusedtoexaminepairwisedifferences.Significance wassetatp<0.05.Aone-wayANOVAwasusedforOrmsbee etal.JournaloftheInternationalSocietyofSportsNutrition 2012, 9 :49Page5of12


baselinecomparisonsbetweengroupsandvolume data.PASWStatisticsforWindowsversion18.0.0 (InternationalBusinessMachinesCorporation,Armonk, NewYork,UnitedStates)andSt atistica(Statsoft,Tulsa, Oklahoma,USA)softwarewereusedtoperformthe analyses.ResultsNosignificantdifferenceswerenotedbetweengroupsin anyvariablebeforetraining.Therewerenodifferences intotaltrainingvolume(weightxsuccessfulrepetitions sets)betweengroups(MIPS:26,5831,359kgvs.PLA: 24,2001,519kg,p=0.25).Whenthevalueswereadjustedforleanmasstherewerestillnodifferences(MIPS: 40015kgvs.PLA:38517kg,p=0.50).BloodmeasuresNomaineffectsoftimeorgroupxtimewerenotedin serumconcentrationsofIGF-1orhGHforeithergroup. Amaintimeeffect(p=0.035)wasnotedfortestosterone toincrease,butnodifferencesbetweengroupswere observed.TherewerenodifferencesbetweenanyhormonevariableatthebeginningofRT(Table1).BodycompositionSignificant(p=0.017)groupxtimeinteractionswere observedforLMbutnotforanyfatmeasures.MIPS increasedLMby4.7%(PRE,62.98.8kgvs.POST, 65.78.8kg,p<0.001).Nosignificantchangeswere observedinLMinthePLAgroup(PRE,63.55.2kgvs. POST,64.75.9kg,p=0.63)groupovertimewith training,althoughtherewasatrendforincreasesinLM (p=0.085).Bothgroupsdemonstratedamaintimeeffect (p=0.003)forpercentbodyfat(%BF),butnochanges wereobservedinFM(kg).Post-hocanalysisrevealed thattheMIPSdecreased%BFfrom21.61.4%to20.5 1.3%(p=0.004).Therewasnosignificantdecreasein overallFM.Therewerenosignificantchangesinfat variablesforthePLAgroup(Figure1).CircumferencesCircumferencesoftheupperarm,chest,thighandgluteals weremeasuredpre-andpost-training.Therewereno groupxtimeinteractionsforanyvariable.Timeeffects wereobservedinchest(p=0.005),arm(p=0.001),and gluteals(p=0.004).Post-hocanalysisindicatedthatthe MIPSgroupincreasedarmcircumferenceby2.2%(PRE, 37.60.8cmvs.POST,38.50.7cm,p=0.002)and thighby2.5%(PRE,55.11.2cmvs.POST,56.61.5cm, p=0.021).Likewise,thePLAgroupincreasedarmcircumferenceby2.6%(PRE,36.80.90cmvs.POST,37.8 0.9cm,p=0.001).Therewerenoothersignificantchanges incircumferenceforeithergroup.IsokineticandisometricstrengthTherewerenogroupxtimeinteractionsobservedforany isokineticvariable.Timeeffectswereobservedfor30sec-1extensionaveragepower(p=0.02),30sec-1flexionaveragepower(p=0.01),30sec-1agonist/antagonistratio (p=0.03).For60sec-1extension,timeeffectswereobservedforaveragepower(p=0.02)andmaximumrepetitiontotalwork(p=0.03).For60sec-1flexion,timeeffects werenotedforpeakpower(p=0.02),maximumrepetition totalwork(p=0.03),averagepower(p=0.004),andaveragepeaktorque(p=0.02). PosthocanalysisrevealedthattheMIPSgrouphad nochangeinrelativepeaktorque(PRE,254.516.5 N-Mkg-1vs.POST,245.912.2N-Mkg-1,p=0.09)during30sec-1extension,however,averagepowerincreased6.2%(PRE,72.13.7Wvs.POST,76.93.6W, p=0.02)andaccelerationtimedecreased52.2%(PRE, 29.23.9msvs.POST,19.21.9ms,p=0.03).During 60sec-1flexionMIPSpeaktorqueincreased14.5%(PRE, 108.74.6NMvs.POST,121.06.5NM,p=0.048), maximumrepetitiontotalworkincreased15.2%(PRE, 103.66.9Jvs.POST,122.18.3J,p=0.032),andaveragepowerincreased13.3%(PRE,68.83.0Wvs.POST 79.575.5W,p=0.028).Thereweretrendsduring60 sec-1extensionforanincreaseinMIPSmaximumrepetitiontotalwork(p=0.053)andaveragepeaktorque(p=0.052).Therewasalsoatrendforimproved Table1Averageserumconcentrationsoftestosterone,humangrowthhormone(hGh),andinsulin-likegrowthfactor-1 (IGF-1)VariableGroupPREPOSTtimegrouptime TestosteroneMIPS(n=11)40.212.958.311.5p=0.035p=0.881 (ng/mL)PLA(n=7)38.910.354.912.4 hGHMIPS(n=12)113.321.0119.935.3p=0.510p=0.376 (pg/mL)PLA(n=7)71.920.664.513.1 IGF 1MIPS(n=11)173.27.5181.910.5p=0.768p=0.283 (ng/mL)PLA(n=10)152.914.9147.528.4Amaintimeeffectwasobservedforbothgroupstoimproveserumtestosterone,withnodifferencebetweengroups.ValuesarepresentedasmeansSE.Sa mple sizebetweeneachanalyteisslightlydifferentduetechnicaldifficultieswithcertainsamples.Ormsbee etal.JournaloftheInternationalSocietyofSportsNutrition 2012, 9 :49Page6of12


agonist/antagonistratioduring30sec-1isokineticexercise (p=0.053). ThePLAgroupincreasedaveragepower17.1%(PRE, 40.62.7Wvs.POST,49.02.1W,p=0.002)during 30sec-1flexion,decreaseddecelerationtime49.1%(PRE, 261.00.6msvs.POST,175.038.0ms,p=0.03),and improvedaveragepeaktorque9.6%(PRE,115.36.7 NMvs.POST,127.56.1NM,p=0.03).Therewere trendsforimprovementinaveragepower(p=0.058)and averagepeaktorque(p=0.065)during30sec-1flexion. Groupxtimeinteractionswereobservedforrelative averagepeaktorqueduringisometricflexion(p=0.03). Therewerealsosimilartrendsduringisometricflexion foraveragepeaktorque(p=0.053)andrelativepeak torque(p=0.057). Posthocanalysisrevealedthattherewerenochanges inanyisometricvariablesfortheMIPSgroup.However, thePLAgroupimprovedpeaktorqueby12.7%(PRE, 123.68.1NMvs.POST,141.56.9NM,p=0.03), andaveragepeaktorqueby12.2%(PRE,114.28.2NM vs.POST,130.96.3NM,p=0.047).Therewasalsoa trendforimprovementinrelativepeaktorqueinthe PLAgroup(p=0.053)butnotinMIPS.Wingatetest:anaerobicpowerTherewerenogroupxtimeinteractionsforanyofthe Wingatevariables.Therewasamaintimeeffectforpeak anaerobicpower(p=0.001,Figure2),relativepeakanaerobicpower(p=0.001),meananaerobicpower(p=0.007), relativemeananaerobicpower(p=0.016),andtotal work(p=0.006).Post-hocanalysisrevealedthattheMIPS groupsignificantlyincreasedpeakanaerobicpowerby 16.2%(PRE,932.7172.5Wvs.POST,1119.2183.8W, p=0.002),relativeanaerobicpowerby9.4%(PRE,11.1 1.7Wkg-1vs.POST,13.11.8Wkg-1,p=0.003),mean anaerobicpowerby9.9%(PRE,676.4145.3Wvs.POST, 751.11.8W,p=0.02),andrelativemeananaerobic powerby8.2%(PRE,7.91.0Wkg-1vs.POST,8.81.1 Wkg-1,p=0.03)whilePLAremainedunchanged.There werenochangesinfatigueindexforeithergroup.OneRepetitionMaximum(1RM)StrengthTherewerenogroupxtimeinteractionsobservedfor anymaximalstrengthvariable.Timeeffectswerenoted forall1RMmeasures(p=0.001).Post-hocanalysisindicatedthatinLP,theMIPSgroupincreasedwithRTby 19.6%(PRE,33624kgvs.POST,41825kg,p<0.001) Lean Mass (kg) MIPS PLA 50 55 60 65 70 Body Fat (%) MIPS PLA 0 5 10 15 20 25PRE POST *† *† † *A B Figure1 LeanMass(kg)andBodyFatpercentagebeforeandaftersixweeksofresistancetrainingandsupplementationwithmulti ingredientperformancesupplement(MIPS,n=13)orplacebo(PLA,n=11). † Indicatesgrouptimeeffect(p=0.017).*Indicatesmain timeeffect(p=0.001).BarsaremeansSE. Leg Press 1-RM (kg) MIPS PLA 0 100 200 300 400 500 600 Chest Press 1-RM (kg) MIPS PLA 0 50 100 150 200PRE POST A B* Figure2 WingatePeakAnaerobicPower(W)beforeandaftersixweeksofresistancetrainingandsupplementationwithmultiingredientperformancesupplement(MIPS,n=12)orplacebo(PLA,n=10). Therewasamaintimeeffect(p=0.002).*Post-hocanalysis indicatedasignificantincreaseforMIPSonly(p<0.05).BarsaremeansSE. Ormsbee etal.JournaloftheInternationalSocietyofSportsNutrition 2012, 9 :49Page7of12


andthePLAgroupincreasedby25.9%(PRE,31828kg vs.POST,42929kg,p<0.001).ForCP,MIPSincreased 8.4%(PRE,1127kgvs.POST,1237kg,p=0.001)and thePLAgroupincreasedby7.0%(PRE,1188kgvs. POST,1278kg,p=0.001)(SeeFigure3). WhenadjustedforindividualLM(relativestrength), thepreviouslynotedtimeeffectsweremaintainedfor all1RMmeasures(p=0.001).Post-hocanalysisindicatedthatinLP,theMIPSgroupincreasedwithtraining by19.9%(PRE,11.52.8vs.POST,14.42.6,p<0.001) andthePLAgroupincreasedby25.8%(PRE,10.81.8 vs.POST,14.62.2,p<0.001).ForCP,MIPSincreased by8.6%(PRE,3.90.8vs.POST,4.20.8,p=0.001) andthePLAgroupincreasedby6.9%(PRE,4.00.5vs. POST,4.30.5,p=0.001).Three-dayfoodintakeEightparticipantssatisfactorilycompletedthethree-day foodlogs(MIPS,n=5;PLA,n=3).Inthissubset,there werenosignificantdifferencesbetweengroupsinaverage kilocalories(MIPS,37.68.3kcal/kg/dayvs.PLA,25.3 5.8kcal/kg/day,p=0.34),protein(MIPS,1.90.5g/kg/ dayvs.PLA,1.40.3g/kg/day,p=0.56),carbohydrate (MIPS,3.20.7g/kg/dayvs.PLA,2.50.8g/kg/day, p=0.49),fat(MIPS,1.80.8g/kg/dayvs.PLA,1.00.9 g/kg/day,p=0.51),orcaffeine(MIPS,2.20.8mg/kg/ dayvs.PLA,1.90.7mg/kg/day,p=0.49)consumed beforeoraftertraining.DiscussionTheobjectiveofthisstudywastodeterminetheefficacy ofpre-andpost-RTsupplementationwithMIPSonbody composition,musclestrength,andpowerinresistancetrainedmenparticipatinginasix-weekperiodizedRT program.Withthisspecificpopulation,anygainsin strengthshouldbealmostentirelyduetophysiological andhypertrophicchangestothetrainedmuscles,rather thanimprovementsinneuromuscularcoordination.Shelmadineetal.[14]notedlargeincreasesinmarkersof satellitecellactivationandhypertrophy,andmodest increasesinLM(4.8%)fortheirMIPSgroupafteronly fourweeksinuntrainedmen.Byincreasingthetime courseandtotalvolumeoftraininginthepresentstudy, weaimedtoaugmenttheopportunityformusclegrowth. InadditiontoingestingSHOTbeforeexercise,ourparticipantsalsoconsumedoneservingofSYNTHimmediately post-exerciseandoneverynon-trainingday.Thissupplementationmodel,similartothatusedbySpillaneetal. [21],providedabetterenvironmentformusclehypertrophyandrecoveryandsupplementloadingthanthemodalityusedbyShelmadineetal.[14].BothShelmadine etal.andSpillaneetal.[14,21]allowedparticipantsto trainindependently,whilethepresentstudymonitoredall trainingsessionswithexperiencedresearchstaffthatprovidedformcorrectionsandspotsforfree-weightlifts.The emphasisplacedonconsistentliftingforminthisstudy, coupledwithresearchersupervision,helpedensurefull participantcompliancewithtrainingaswellasreduced variabilityduetointer-subjectdifferencesordeficiencies inform. Changesobservedinbodycompositionwereperhaps themostremarkableresultsofthecurrentstudy.MIPS increasedLMby4.7%,adegreesimilartothoseobservedinuntrainedmalesbySpillaneetal.(3.5%)and Shelmadineetal.(4.8%)[14,21]andgreaterthanthat observedintrainedmalesbySchmitzetal.(2.4%)[22]. BecausetherewerenochangesinFM,thedecreased %BFobservedintheMIPSgroupwasduetoincreased LMandoverallbodymass.ThePLAgroupmadenosignificantchangesinanybodycompositionvariable,althoughthereweretrendsforimprovedLM.Thelackof changeinFMdemonstratedinthisstudyreflectsthe findingsofothersimilarstudies[13,14,29-31],butisat oddswithpopularclaimsmadeabouttheseproducts. OneoftheproprietaryblendslistedontheSHOTlabel contains376mgofacombinationofcaffeine, phenylethlylamineHCL, hordeumvulgare bud,andLtyrosine,andismarketedinSHOTandinothersimilar productsasa “ fatburning ” component.However,becauseparticipantswereinstructedtoconsumetheirnormaldietaryintakeratherthanbeingfedspecificmeals withspecificcaloricrestrictions,wecannotdrawthe conclusionthatSHOTandSYNTHconsumptionpreandpost-exerciseareineffectiveatreducingFM.However,itisworthnotingthatnochangesindietaryintake werereportedfrombaseline(week0)topost-testing Peak Anaerobic Power (W) MIPS PLA 0 200 400 600 800 1000 1200 1400PRE POST Figure3 Legpressone-repetitionmaximum(1RM)(A)and chestpress1RM(B). *Indicatesmaintimeeffect(p=0.001).Before andaftersixweeksofresistancetrainingandsupplementationwith multi-ingredientperformancesupplement(MIPS,n=13)orplacebo (PLA,n=9).BarsaremeansSE. Ormsbee etal.JournaloftheInternationalSocietyofSportsNutrition 2012, 9 :49Page8of12


(week6)inasubset(n=8)ofourparticipants,therefore, ourlackofchangeinbodymass(kg)islikelyreal.Perhapsmorevaluabletoconsumers,limbcircumferences increasedonlyinthighmeasurementsfortheMIPS group,butnotforthePLAgroup. AsignificantincreaseinLMwasmeasuredinthe MIPSgroupbutnotinthePLAgroup.Thisisinconcurrencewithmanysimilarstudies[13,14,29-31].As musclemassisoneofthemaindeterminantsofstrength andpower[32],itissomewhatunexpectedthatthe MIPSgroupdidnotexperiencegreaterimprovementsin 1RMstrength,although1RMtestsmaynotbesensitive enoughtodetectthemodestdifferenceinLMimprovementexhibitedbytheMIPSgroupbythesetrained men.Likewise,thismostlikelyexplainsthelackofgroup xtimeeffectsincircumferencemeasurementsother thanthigh.Oneremarkablefindingofthisstudyisthat theincreasenotedinLMbytheMIPSgroupinthis study(+4.7%)wasverysimilartothatofthesupplement groupinShelmadineetal.(+4.7%)[14],despitethe increasedtrainingstatusofourparticipants. Whilethepresentstudynotedamaintimeeffect forpeakandaverageanaerobicpowerandtotalwork performed,therewerenodifferencesbetweenthetwo groups.Therewas,however,astrongtrend(grouptime effect,p=0.06)fortheMIPSgrouptoimprovepeakanaerobicpower.WealsonotedanincreaseinmeananaerobicpowerforMIPS,butnotforPLA(Figure1).These findingsaresimilartothoseofBecketal.[13],who demonstratedsignificantincreasesinpeakandmeananaerobicpowerfollowing10weeksofRTusinguntrained malesconsumingapre-exercisesupplementcontaining protein,creatine,andBCAAs.TheprotocolusedbyBeck etal.calledfortwoconsecutive30-secondcyclingbouts, whereasthepresentstudyonlyusedasinglebout.The differencesintrainingduration(sixweeksvs.10weeks), numberofcyclingbouts,andtrainingstatusmayexplain whyBecketal.wereabletoelicitsignificantgroupxtrainingeffectswhilewewerenot. Weobservedasignificant(p=0.035)timeeffectforrestingserumtestosteronetoincreasewithchronictraining, butnogroupxtimeeffectswereobserved.ThisisincontrasttoastudybyRankinetal.[33]whichdemonstrated decreasesintestosteronefollowingnineweeksofRTand supplementconsumption,butinagreementwithother studieslinkingwholebodyRTprogramswithenhanced testosterone.Corycepssinesis,aningredientincludedin theMIPSutilizedforthisstudy,ispurportedbysupplementmanufacturerstoenhancetestosteronelevelsin males.BasedonourfindingsandthoseofHsuetal.[34] whospecificallylookedattheeffectofcorycepssinesison testosteroneinconjunctionwithRT,weconcludethat MIPSandcorycepssinesisdidnotenhancerestingtestosteroneconcentrationsinresponsetochronicexercisein thepresentstudy.Inaddition,inthepresentstudyno changesforeithergroupwerenotedinIGF-1orhGH. Shelmadineetal.[14]andSpillaneetal.[21]reporteda timeeffectforIGF-1,butdidnotobservegroupxtime effects.WiththesimilarityinsupplementationandtrainingprotocolsbetweenSpillaneetal.[21]andours,differencesintrainingstatusmayexplainwhyourparticipants didnotexhibitdetectablechangesinIGF-1.Neither Shelmadineetal.[14]norSpillaneetal.[21]investigated changesintestosteroneorhGH.Ourobservationofno changeinhGHwithRTisinagreementwithKraemer etal.[35],whomeasuredb asalhGHfollowingthree, six,andeightweeksofresistancetraininginuntrainedmales.Itispossiblethatduetothetraining statusofthesemen,changesintheseanabolichormonesmayhavebeenblunted. Itwasalsoexpectedthattheinclusionofbetaalanine inMIPSwouldyieldimprovementsinfatigueindex throughthelactatebufferingeffectsofcarnosine.Instead,wefoundnosignificanttimeorgrouptimeeffectforfatigueindex,incontrasttothefindingsofothers [5,36,37].Hoffmanetal.notedimprovementsinfatigue indexfollowing30daysofbetaalaninesupplementation inAmericanfootballplayersduringoffseasontraining[5]. Someofthisdiscrepancymaybeexplainedbybetaalanine dosages.Instudiesthathavedemonstratedimprovements inperformance,betaalaninedosagestendtorangefrom 4.8to6.0gday-1[29,36,38,39].Unfortunately,theMIPSin thepresentstudyincludedbetaalanineaspartofaproprietaryblend,ratherthanlabelingitindependentlyand, therefore,wedonotknowthetrueconcentrationofbeta alanineintheproduct.Wecanonlyspeculate,therefore, thatourMIPSgroupmayhavebeenconsuminglessthan the4.8g/daythathasbeenshowntoelicittraining enhancements. Thepresentstudydemonstratedasignificanteffectof timeforbothCPandLPstrengthinbothgroups;however,therewasnogroupxtimeeffect.Shelmadineetal. [14]alsonotedatrainingeffectforbothgroupsinCP andLPfollowing28daysofRTwithSHOTsupplementationbeforeRTfor28days.TheynotedthattheSHOT supplementedgroupimprovedCPsignificantlymorethan theplacebogroup(18.4%vs.8.8%,respectively,p=0.003) [14].IncontrasttoShelmadineetal.,Becketal.[13]reportednodifferencesintraining-inducedenhancements inCPorLPbetweenacreatine-proteinsupplementgroup andplacebogroupsintheir10-weekRTstudy[13].Cribb etal.wereabletoelicit1RMgrouptimeeffectsin trainedmalesfollowing10weeksofRTandconsumption ofwheyprotein[40]orwheyproteinandcreatine[41]. Withsomuchconflictingevidenceandconfoundingvariables,itisdifficulttodrawconclusionsabouttheeffectivenessofMIPSon1RMstrengthintrainedmales.Itis worthnoting,however,thatinallofthesestudiestheOrmsbee etal.JournaloftheInternationalSocietyofSportsNutrition 2012, 9 :49Page9of12


supplementgroupincreasedLMsignificantlymorethan theplacebo. Isokineticlegexerciseresultsweremixed.Thereappearedtobeapatternforbothgroupstoimprovestrength andpowerduringflexionbuttomakelittleimprovement orevendecreaseperformanceinextension,aswasthe casewith30sec-1extensionintheMIPSgroup.However, theMIPSgroupdidexhibittrends(p=0.054)forimprovementsinsome60sec-1extensionvariables.Training specificityisoneexplanationforthesedata;ourtraining programincludedseatedhamstringcurls,butnotknee extensions.Thus,eachparticipantspentsixweekswithout doingseatedextensiontypesofexercise(theyparticipated inlegpressandlungeexercisesinstead).LittleinvestigationhasbeenconductedintotheeffectofMIPSand RTonisokineticstrength.Theseresultsaresurprising assingle-supplement[29,36,42-44]andtraining-alone [45,46]studieshavedemonstratedmodestincreasesin isokineticperformancefollowingRT. Resultsoftheisometrictestsareparticularlypuzzling, astheMIPSgroupmadenoimprovementswhilethe PLAgroupimprovedinseveralmeasuresduringflexion. Thisisincontrasttootherstudiesusingsupplement combinedwithtraining[47,48]andcorrelationsofmusclemassandisometricforceproduction[32].Thereare afewpossibleexplanationsforthesefindings.Neither groupinthepresentstudyperformedisometricexercise aspartoftraining.Thus,trainingspecificitymayhave playedaroleinthelackoffindings;however,thiswould haveappliedtobothgroupsequally.Moreover,isometric exerciseperformanceissomewhatsensitivetoinnate musclefibertypedistribution[49],whichwasnottested orcontrolledforinthisinvestigation. Weobservednodifferencesinvolume(weightlifted repetitionsxsets)liftedforanyexerciseoverthecourse ofthetrainingperiod.Thiswasincontrasttocommon findingsofothersupplementplustrainingstudiesinvolvingcaffeine[12,50],betaalanine[5,9],andcreatine [9],butnotallstudies[4].Thelackofdifferencebetweengroupsintrainingvolumemayhavebeenaresult ofourstudydesignratherthansupplementeffects.All participantswereinstructedthatthegoalofeveryset shouldbefailureandtheyweretoachievethisbyselectingweightsthatcausedthemtofailataspecificnumber ofrepetitions(10forweeksoneandtwo,sixforweeks threeandfour,andfourforweeksfiveandsix).The numberofrepetitionswascontrolledinordertofacilitatetheperiodizedtraininggoals.Ifparticipantsliftedto failureoneveryset,differencesintrainingvolumemay havebeenevident.Ontheotherhand,eliminatingtrainingvolumeasavariableleavesmanipulationofhypertrophicpathwaysbythesupplementingredientsasthe mostprobableexplanationforincreasedLMinMIPS butnotforPLA.Inaddition,alloftheparticipantshad performedtherequiredexercisesinpastworkoutsprior tobeginningthestudy.Theparticipantswerealsofamiliarwithoverloadingthemuscleswithperiodizedtraining.However,wedidnotsurveyorrecordthedegreeto whichthestudyroutinewassimilartoordifferentfrom theparticipant ’ sregularworkoutprogram.ConclusionsConsumptionofMIPSbeforeandafterRTduringthe courseofaperiodizedsix-weekRTprogramresulted insignificantimprovementsinLMintrainedmales, whereastheconsumptionofanisocaloricPLAdidnot. Atthedosagesconsumedandwiththespecificpopulationinthisstudy,MIPSconsumptiondidnotappear toofferadvantagesinmeasuresofabsoluteorrelative musclestrength,butitdidelicitgainsinanaerobicpower.Continuedinvestigationoftheseorsimilarproductsiswarrantedasquestionsabouttheinfluenceof performancesupplementsonvolitionaltrainingvolume shouldbeanswered.Additionally,futureresearchshould investigateMIPSuseinpopulationsthatincludeboth womenandolderpopulationsandincorporateexercisemodalitiesthatextendbeyondtraditionalresistance training.Abbreviations %BF:Percentbodyfat;1-RM:Onerepetitionmaximum;BCAA:Branched chainaminoacid;DXA:DualX-rayAbsorptiometry;FFM:Fatfreemass; FM:Fatmass;hGH:HumanGrowthhormone;HIIT:Highintensityinterval training;IGF-1:Insulin-likegrowthfactor-1;LM:Leanmass;MHC:Myosin heavychain;MIPS:Multi-ingredientperformancesupplement;MVC:Maximal voluntarycontraction;PLA:Placebo;RE:Resistanceexercise;RT:Resistance training;SHOT:NO-Shotgunmulti-ingredientperformancesupplement; SYNTH:NO-synthesizemulti-ingredientperformancesupplement. Competinginterests Thisstudywassupportedbyanindependentresearchgrantandproduct donationfromVitalPharmaceuticals,Inc.(Davie,FL).Noneoftheauthors hadfinancialorotherinterestsconcerningtheoutcomesofthe investigation.Theauthorsdeclarethattheyhavenocompetinginterests. Authors ’ contributions MJOconceivedanddesignedthestudy,securedfundingfortheproject, providedoversightofdatacollection,analysis,biochemicalassays,and manuscriptpreparation.WKMcarriedoutdatacollection,participant recruitment,exercisetraining,laboratorytesting,andmanuscriptpreparation. DDTcarriedoutsubjectrecruitment,datacollection,exercisetraining, immunoassays,andassistedwithmanuscriptpreparation.AWKandEGW helpedextensivelywithdatacollection.LBPandJSKprovidedassaysupport, andinsightintodraftingthestudydesignandmanuscript.Allauthorsread andapprovedthefinalmanuscript. Acknowledgements WewouldliketothankGold ’ sGym(Tallahassee,FL),JimBurtoftandJoe Burtoftfortheuseoftheirfacilities.WewouldalsoliketothankColinRiley, NathanielKing,JohnLox,WyattEddy,MikeZourdos,ShwetaRawal,Kelly Knoth,FrankEspina,LorenIncandela,GabbyOrtiz,TyCarzoli,BruceLee, WilburSelander,DaniRoss,JustinQuiles,ParkerLovelace,AntonGomez,and ShannonSellarsfortheirinvaluableassistance.Wealsothankallofthe participantsfromthisstudyandtheInstituteofSportsScienceandMedicine forbeingsupportiveofthedataanalysis.Ormsbee etal.JournaloftheInternationalSocietyofSportsNutrition 2012, 9 :49Page10of12


Authordetails1DepartmentofNutrition,FoodandExerciseSciences,InstituteofSports ScienceandMedicine,TheFloridaStateUniversity,120ConvocationWay, 430SandelsBuilding,Tallahassee,FL32306-1493,USA.2Departmentof Kinesiology,GeorgiaCollegeandStateUniversity,Miledgeville,GA31061, USA. Received:28September2012Accepted:15November2012 Published:15November2012 References1.YoungCR,StephensMB: SportsandnutritionalsupplementUseinUSMC recruits:apilotstudy. MilitaryMedicine 2009, 174: 158 – 161. 2.MassadSJ,ShierNW,KocejaDM,EllisNT: High-schoolathletesand nutritionalsupplements-astudyofknowledgeanduse. IntJSportNutr 1995, 5: 232 – 245. 3.ErdmanKA,FungTS,Doyle-BakerPK,VerhoefMJ,ReimerRA: Dietary supplementationofhigh-performanceCanadianathletesbyageand gender. ClinJSportMed 2007, 17: 458 – 464. 4.BeckTW,HoushTJ,SchmidtRJ,JohnsonGO,HoushDJ,CoburnJW,Malek MH: Theacuteeffectsofacaffeine-containingsupplementonstrength, muscularendurance,andanaerobiccapabilities. JStrengthCondRes 2006, 20: 506 – 510. 5.HoffmanJR,RatamessNA,FaigenbaumAD,RossR,KangR,StoutJR,Wise JA: Short-durationbeta-alaninesupplementationincreasestraining volumeandreducessubjectivefeelingsoffatigueincollegefootball players. NutrRes 2008, 28: 31 – 35. 6.ArtioliGG,GualanoB,SmithA,StoutJ,LanchaAH: Roleofbeta-alanine supplementationonmusclecarnosineandexerciseperformance. Med SciSportsExerc 2010, 42: 1162 – 1173. 7.SaleC,SaundersB,HarrisRC: Effectofbeta-alaninesupplementationon musclecarnosineconcentrationsandexerciseperformance. AminoAcids 2010, 39: 321 – 333. 8.RawsonES,VolekJS: Effectsofcreatinesupplementationandresistance trainingonmusclestrengthandweightliftingperformance. JStrength CondRes 2003, 17: 822 – 831. 9.KreiderRB,FerreiraM,WilsonM,GrindstaffP,PliskS,ReinardyJ,CantlerE, AlmadaAL: Effectsofcreatinesupplementationonbodycomposition, strength,andsprintperformance. MedSciSportsExerc 1998, 30: 73 – 82. 10.LongJHD,LiraVA,SoltowQA,BettersJL,SellmanJE,CriswellDS: Arginine supplementationinducesmyoblastfusionviaaugmentationofnitric oxideproduction. JMuscleResCellMotil 2006, 27: 577 – 584. 11.FukudaDH,SmithAE,KendallKL,StoutJR: Thepossiblecombinatory effectsofacuteconsumptionofcaffeine,creatine,andaminoacidson theimprovementofanaerobicrunningperformanceinhumans. NutrRes 2010,30: 607 – 614. 12.SmithAE,FukudaDH,KendallKL,StoutJR: Theeffectsofapre-workout supplementcontainingcaffeine,creatine,andaminoacidsduringthree weeksofhigh-intensityexerciseonaerobicandanaerobicperformance. JIntSocSportNutr 2010, 7: 11. 13.BeckTW,HoushTJ,JohnsonGO,CoburnJW,MalekMH,CramerJT: Effects ofadrinkcontainingcreatine,aminoacids,andproteincombinedwith tenweeksofresistancetrainingonbodycomposition,strength,and anaerobicperformance. JStrengthCondRes 2007, 21: 100 – 104. 14.ShelmadineB,CookeM,BufordT,HudsonG,ReddL,LeutholtzB, WilloughbyDS: Effectsof28daysofresistanceexerciseandconsuminga commerciallyavailablepre-workoutsupplement,NO-Shotgun(R),on bodycomposition,musclestrengthandmass,markersofsatellitecell activation,andclinicalsafetymarkersinmales. JIntSocSportNutr 2009, 6: 13. 15.HarrisRC,SoderlundK,HultmanE: Elevationofcreatineinrestingand exercisedmuscleofnormalsubjectsbycreatinesupplementation. Clin Sci 1992, 83: 367 – 374. 16.BroseA,PariseG,TarnopolskyMA: Creatinesupplementationenhances isometricstrengthandbodycompositionimprovementsfollowing strengthexercisetraininginolderadults. JGerontolSerABiolSciMedSci 2003, 58: 11 – 19. 17.ForbesSC,CandowDG,LittleJP,MagnusC,ChilibeckPD: Effectofredbull energydrinkonrepeatedwingatecycleperformanceandbench-press muscleendurance. IntJSportNutrExercMetab 2007, 17: 433 – 444. 18.HillCA,HarrisRC,KimHJ,HarrisBD,SaleC,BoobisLH,KimCK,WiseJA: Influenceofbeta-alaninesupplementationonskeletalmusclecarnosine concentrationsandhighintensitycyclingcapacity. AminoAcids 2007, 32: 225 – 233. 19.TiptonKD,RasmussenBB,MillerSL,WolfSE,Owens-StovallSK,PetriniBE, WolfeRR: Timingofaminoacid-carbohydrateingestionaltersanabolic responseofmuscletoresistanceexercise. AmJPhysiolEndocrinolMetab 2001, 281: E197 – E206. 20.TiptonKD,ElliottTA,CreeMG,WolfSE,SanfordAP,WolfeRR: Ingestionof caseinandwheyproteinsresultinmuscleanabolismafterresistance exercise. MedSciSportsExerc 2004, 36: 2073 – 2081. 21.SpillaneM,SchwarzN,LeddyS,CorreaT,MinterM,LongoriaV,Willoughby DS: Effectsof28daysofresistanceexercisewhileconsuming commerciallyavailablepre-andpost-workoutsupplements,NO-Shotgun (R)andNO-Synthesize(R)onbodycomposition,musclestrengthand mass,markersofproteinsynthesis,andclinicalsafetymarkersinmales. NutrMetab 2011, 8: 11. 22.SchmitzSM,HofheinsJE,LemieuxR: Nineweeksofsupplementationwith amulti-nutrientproductaugmentsgainsinleanmass,strength,and muscularperformanceinresistancetrainedmen. JIntSocSportNutr 2010,7: 40 – 49. 23.MacIntyreDL,ReidWD,LysterDM,SzaszIJ,McKenzieDC: PresenceofWBC, decreasedstrength,anddelayedsorenessinmuscleaftereccentric exercise. JApplPhysiol 1996, 80: 1006 – 1013. 24.ArcieroPJ,GentileCL,Martin-PressmanR,OrmsbeeMJ,EverettM,ZwickyL, SteeleCA: Increaseddietaryproteinandcombinedhighintensityaerobic andresistanceexerciseimprovesbodyfatdistributionand cardiovascularriskfactors. IntJSportNutrExercMetab 2006, 16: 373 – 392. 25.OrmsbeeMJ,ThyfaultJP,JohnsonEA,KrausRM,ChoiMD,HicknerRC: Fat metabolismandacuteresistanceexerciseintrainedmen. JApplPhysiol 2007, 102: 1767 – 1772. 26.PickeringTG,HallJE,AppelLJ,FalknerBE,GravesJ,HillMN,JonesDW,Kurtz T,ShepsSG,RoccellaEJ: Recommendationsforbloodpressure measurementinhumansandexperimentalanimals-part1:blood pressuremeasurementinhumans-astatementforprofessionalsfrom thesubcommitteeofprofessionalandpubliceducationoftheamerican heartassociationcouncilonhighbloodpressureresearch. Hypertension 2005, 45: 142 – 161. 27.BarorO: Thewingateanaerobictest-anupdateonmethodology. Reliabilityandvalidity. SportsMed 1987, 4: 381 – 394. 28.BaechleTR,EarleRW: Essentialsofstrengthandconditioning.3rdedn:human kinetics ;2008. 29.KendrickIP,HarrisRC,KimHJ,KimCK,DangVH,LamTQ,BuiTT,SmithM, WiseJA: Theeffectsof10weeksofresistancetrainingcombinedwith beta-alaninesupplementationonwholebodystrength,force production,muscularenduranceandbodycomposition. AminoAcids 2008, 34: 547 – 554. 30.HoffmanJR,RatamessNA,TranchinaCP,RashtiSL,KangJ,FaigenbaumAD: Effectofprotein-supplementtimingonstrength,power,andbodycompositionchangesinresistance-trainedMen. IntJSportNutrExerc Metab 2009, 19: 172 – 185. 31.HoffmanJ,RatamessN,KangJ,MangineG,FaigenbaumA,StoutJ: Effect ofcreatineandbeta-alaninesupplementationonperformanceand endocrineresponsesinstrength/powerathletes. IntJSportNutrExerc Metab 2006, 16: 430 – 446. 32.FukunagaT,RoyRR,ShellockFG,HodgsonJA,DayMK,LeePL, KwongfuH,EdgertonVR: Physiologicalcross-sectionalareaofhuman legmusclesbasedonmagne tic-resonance-imaging. JOrthopRes 1992, 10: 926 – 934. 33.RankinJW,GoldmanLP,PuglisiMJ,Nickols-RichardsonSM,EarthmanCP, GwazdauskasFC:Effectofpost-exercisesupplementconsumptionon adaptationstoresistancetraining. JAmCollNutr 2004, 23: 322 – 330. 34.HsuCC,LinYA,SuB,LiJH,HuangHY,HsuMC: Noeffectofcordyceps sinensissupplementationontestosteronelevelandmusclestrengthin healthyyoungadultsforresistancetraining. BiolSport 2011, 28: 107 – 110. 35.KraemerWJ,StaronRS,HagermanFC,HikidaRS,FryAC,GordonSE,Nindl BC,GothshalkLA,VolekJS,MarxJO, etal : Theeffectsofshort-term resistancetrainingonendocrinefunctioninmenandwomen. EurJAppl PhysiolOccupPhysiol 1998, 78: 69 – 76. 36.DeraveW,OezdemirMS,HarrisRC,PottierA,ReyngoudtH,KoppoK,Wise JA,AchtenE: Beta-alaninesupplementationaugmentsmusclecarnosineOrmsbee etal.JournaloftheInternationalSocietyofSportsNutrition 2012, 9 :49Page11of12


contentandattenuatesfatigueduringrepeatedisokineticcontraction boutsintrainedsprinters. JApplPhysiol 2007, 103: 1736 – 1743. 37.StoutJR,CramerJT,ZoellerRF,TorokD,CostaP,HoffmanJR,HarrisRC, O'KroyJ: Effectsofbeta-alaninesupplementationontheonsetof neuromuscularfatigueandventilatorythresholdinwomen. AminoAcids 2007, 32: 381 – 386. 38.JordanT,LukaszukJ,MisicM,UmorenJ: Effectofbeta-alanine supplementationontheonsetofbloodlactateaccumulation(OBLA) duringtreadmillrunning:Pre/post2treatmentexperimentaldesign. JIntSocSportNutr 2010, 7: 20 – 27. 39.BaguetA,KoppoK,PottierA,DeraveW: Beta-alaninesupplementation reducesacidosisbutnotoxygenuptakeresponseduringhigh-intensity cyclingexercise. EurJApplPhysiol 2010, 108: 495 – 503. 40.CribbPJ,HayesA: Effectsofsupplementtimingandresistanceexercise onskeletalmusclehypertrophy. MedSciSportsExerc 2006, 38: 1918 – 1925. 41.CribbPJ,WilliamsAD,StathisCG,CareyMF,HayesA: Effectsofwhey isolate,creatine,andresistancetrainingonmusclehypertrophy. MedSciSportsExerc 2007, 39: 298 – 307. 42.VanThienenR,VanProeyenK,EyndeBV,PuypeJ,LefereT,HespelP: Beta-alanineimprovessprintperformanceinendurancecycling. MedSciSportsExerc 2009, 41: 898 – 903. 43.TarnopolskyMA,PariseG,YardleyNJ,BallantyneCS,OlatunjiS,PhillipsSM: Creatine-dextroseandprotein-dextroseinducesimilarstrengthgains duringtraining. MedSciSportsExerc 2001, 33: 2044 – 2052. 44.AndersenLL,TufekovicG,ZebisMK,CrameriRM,VerlaanG,KjaerM,Suetta C,MagnussonP,AagaardP: Theeffectofresistancetrainingcombined withtimedingestionofproteinonmusclefibersizeandmuscle strength. MetabClinExp 2005, 54: 151 – 156. 45.PinciveroDM,LephartSM,KarunakaraRG: Effectsofrestintervalon isokineticstrengthandfunctionalperformanceaftershorttermhigh intensitytraining. BrJSportsMed 1997, 31: 229 – 234. 46.RemaudA,CornuC,GuevelA: Neuromuscularadaptationsto8-week strengthtraining:isotonicversusisokineticmode. EurJApplPhysiol 2010, 108: 59 – 69. 47.MaganarisCN,MaughanRJ: Creatinesupplementationenhances maximumvoluntaryisometricforceandendurancecapacityinresistancetrainedmen. ActaPhysiolScand 1998, 163: 279 – 287. 48.KilduffLP,VidakovicP,CooneyG,Twycross-LewisR,AmunaP,ParkerM, PaulL,PitsiladisYP: Effectsofcreatineonisometricbench-press performanceinresistance-trainedhumans. MedSciSportsExerc 2002, 34: 1176 – 1183. 49.MannionAF,JakemanPM,WillanPLT: Skeletal-musclebuffervalue, fiber-typedistributionandhigh-intensityexerciseperformanceinman. ExpPhysiol 1995, 80: 89 – 101. 50.HoffmanJR,RatamessNA,RossR,ShanklinM,KangJ,FaigenbaumAD: Effectofapre-exerciseenergysupplementontheacutehormonal responsetoresistanceexercise. JStrengthCondRes 2008, 22: 874 – 882.doi:10.1186/1550-2783-9-49 Citethisarticleas: Ormsbee etal. : Theeffectsofsixweeksof supplementationwithmulti-ingredientperformancesupplementsand resistancetrainingonanabolichormones,bodycomposition,strength, andpowerinresistance-trainedmen. JournaloftheInternationalSociety ofSportsNutrition 2012 9 :49. Submit your next manuscript to BioMed Central and take full advantage of: € Convenient online submission € Thorough peer review € No space constraints or color “gure charges € Immediate publication on acceptance € Inclusion in PubMed, CAS, Scopus and Google Scholar € Research which is freely available for redistribution Submit your manuscript at Ormsbee etal.JournaloftheInternationalSocietyofSportsNutrition 2012, 9 :49Page12of12

xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EP78FQ9NN_57V935 INGEST_TIME 2013-03-25T16:12:25Z PACKAGE AA00014145_00001

xml version 1.0 encoding utf-8 standalone no
mets ID sort-mets_mets OBJID sword-mets LABEL DSpace SWORD Item PROFILE METS SIP Profile xmlns http:www.loc.govMETS
xmlns:xlink http:www.w3.org1999xlink xmlns:xsi http:www.w3.org2001XMLSchema-instance
xsi:schemaLocation http:www.loc.govstandardsmetsmets.xsd
metsHdr CREATEDATE 2013-01-10T16:07:47
name BioMed Central
dmdSec sword-mets-dmd-1 GROUPID sword-mets-dmd-1_group-1
epdcx:descriptionSet xmlns:epdcx http:purl.orgeprintepdcx2006-11-16 xmlns:MIOJAVI
epdcx:description epdcx:resourceId sword-mets-epdcx-1
epdcx:statement epdcx:propertyURI http:purl.orgdcelements1.1type epdcx:valueURI http:purl.orgeprintentityTypeScholarlyWork
epdcx:valueString The effects of six weeks of supplementation with multi-ingredient performance supplements and resistance training on anabolic hormones, body composition, strength, and power in resistance-trained men
Resistance training (RT) enhances muscle protein synthesis and hypertrophy while increasing strength and power. Some multi-ingredient performance supplements (MIPS) have been shown to augment the physiological improvements associated with RT. The purpose of this study was to investigate the impact of specific pre- and post-workout MIPS on anabolic hormones, body composition, muscle strength, and power in resistance-trained men participating in a periodized RT program.
Twenty-four ( mean ± SE; 24.0 ± 0.9 years; 180.5 ± 5.8 cm; 83.7 ± 0.5 kg) resistance-trained men completed 6 wks of periodized RT (3x/wk). Participants were assigned to one of two groups based upon maximal voluntary contraction of the quadriceps (Biodex) to lean mass (LM) ratio. Group 1 (n = 13; MIPS) consumed one serving of NO-Shotgun® (whey protein, casein protein, branched-chain amino acids, creatine, beta alanine, and caffeine) before each workout and one serving of NO-Synthesize® (whey protein, casein protein, branched-chain amino acids, creatine, and beta alanine; Vital Pharmaceuticals, Inc., Davie, FL) immediately after each workout and on non-RT days. Group 2 (n = 11; Placebo; PLA) consumed a flavor-matched isocaloric maltodextrin placebo. Serum insulin-like growth factor 1, human growth hormone, testosterone, body composition (DXA), circumferences, 1-repetition maximal strength (1RM) of the upper (chest press) and lower body (leg press), and anaerobic power (Wingate test) were assessed before and after the intervention. Statistical analysis included a 2 × 2 (group x time) ANOVA with repeated measures. Tukey LSD post hoc tests were used to examine pairwise differences. Significance was set at p < 0.05.
There was a main time effect (p = 0.035) for testosterone to increase, but no differences between groups were observed. There were no differences in the other blood hormones. Group x time interactions were observed for LM (MIPS: PRE, 62.9 ± 2.1 to POST, 65.7 ± 2.0 vs. PLA: PRE, 63.5 ± 2.3 to POST, 64.8 ± 2.5 kg; p = 0.017). Only a main effect of time was noted for circumference measures. Both groups increased upper and lower body 1RM strength to a similar degree. MIPS significantly increased peak anaerobic power (PRE, 932.7 ± 172.5 W vs. POST, 1119.2 ± 183.8 W, p = 0.002) while PLA remained unchanged (PRE, 974.4 ± 44.1 W vs. POST, 1033.7 ± 48.6 W, p = 0.166).
Consumption of MIPS during the course of a periodized RT program facilitated training-induced improvement in LM in trained males, whereas the consumption of PLA did not. MIPS improved measures of anaerobic power while PLA did not.
Ormsbee, Michael J
Mandler, W Kyle
Thomas, D David
Ward, Emery G
Kinsey, Amber W
Simonavice, Emily
Panton, Lynn B
Kim, Jeong-Su
http:purl.orgeprinttermsisExpressedAs epdcx:valueRef sword-mets-expr-1
http:purl.orgdcelements1.1language epdcx:vesURI http:purl.orgdctermsRFC3066
epdcx:sesURI http:purl.orgdctermsW3CDTF 2012-11-15
BioMed Central Ltd
http:purl.orgeprinttermsstatus http:purl.orgeprinttermsStatus
Michael J Ormsbee et al.; licensee BioMed Central Ltd.
http:purl.orgdctermsaccessRights http:purl.orgeprinttermsAccessRights
Journal of the International Society of Sports Nutrition. 2012 Nov 15;9(1):49
fileGrp sword-mets-fgrp-1 USE CONTENT
file sword-mets-fgid-0 sword-mets-file-1
FLocat LOCTYPE URL xlink:href 1550-2783-9-49.xml
sword-mets-fgid-1 sword-mets-file-2 applicationpdf
structMap sword-mets-struct-1 structure LOGICAL
div sword-mets-div-1 DMDID Object
sword-mets-div-2 File

!DOCTYPE art SYSTEM 'http:www.biomedcentral.comxmlarticle.dtd'
ui 1550-2783-9-49
ji 1550-2783
dochead Research article
p The effects of six weeks of supplementation with multi-ingredient performance supplements and resistance training on anabolic hormones, body composition, strength, and power in resistance-trained men
au id A1 ca yes snm Ormsbeemi Jfnm Michaelinsr iid I1 email
A2 MandlerW
A3 ThomasD
A6 SimonaviceEmilyI2
ins Department of Nutrition, Food and Exercise Sciences, Institute of Sports Science and Medicine, The Florida State University, 120 Convocation Way, 430 Sandels Building, Tallahassee, FL, 32306-1493, USA
Department of Kinesiology, Georgia College and State University, Miledgeville, GA, 31061, USA
source Journal of the International Society of Sports Nutrition
issn 1550-2783
pubdate 2012
volume 9
issue 1
fpage 49
xrefbib pubidlist pubid idtype doi 10.1186/1550-2783-9-49pmpid 23153110
history rec date day 28month 9year 2012acc 15112012pub 15112012
cpyrt 2012collab Ormsbee et al.; licensee BioMed Central Ltd.note This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
kwd Sports nutrition
Wingate test
Body composition
Maximal strength
Resistance training (RT) enhances muscle protein synthesis and hypertrophy while increasing strength and power. Some multi-ingredient performance supplements (MIPS) have been shown to augment the physiological improvements associated with RT. The purpose of this study was to investigate the impact of specific pre- and post-workout MIPS on anabolic hormones, body composition, muscle strength, and power in resistance-trained men participating in a periodized RT program.
Twenty-four ( mean ± SE; 24.0 ± 0.9 years; 180.5 ± 5.8 cm; 83.7 ± 0.5 kg) resistance-trained men completed 6 wks of periodized RT (3x/wk). Participants were assigned to one of two groups based upon maximal voluntary contraction of the quadriceps (Biodex) to lean mass (LM) ratio. Group 1 (n = 13; MIPS) consumed one serving of NO-Shotgun® (whey protein, casein protein, branched-chain amino acids, creatine, beta alanine, and caffeine) before each workout and one serving of NO-Synthesize® (whey protein, casein protein, branched-chain amino acids, creatine, and beta alanine; Vital Pharmaceuticals, Inc., Davie, FL) immediately after each workout and on non-RT days. Group 2 (n = 11; Placebo; PLA) consumed a flavor-matched isocaloric maltodextrin placebo. Serum insulin-like growth factor 1, human growth hormone, testosterone, body composition (DXA), circumferences, 1-repetition maximal strength (1RM) of the upper (chest press) and lower body (leg press), and anaerobic power (Wingate test) were assessed before and after the intervention. Statistical analysis included a 2 × 2 (group x time) ANOVA with repeated measures. Tukey LSD post hoc tests were used to examine pairwise differences. Significance was set at p < 0.05.
There was a main time effect (p = 0.035) for testosterone to increase, but no differences between groups were observed. There were no differences in the other blood hormones. Group x time interactions were observed for LM (MIPS: PRE, 62.9 ± 2.1 to POST, 65.7 ± 2.0 vs. PLA: PRE, 63.5 ± 2.3 to POST, 64.8 ± 2.5 kg; p = 0.017). Only a main effect of time was noted for circumference measures. Both groups increased upper and lower body 1RM strength to a similar degree. MIPS significantly increased peak anaerobic power (PRE, 932.7 ± 172.5 W vs. POST, 1119.2 ± 183.8 W, p = 0.002) while PLA remained unchanged (PRE, 974.4 ± 44.1 W vs. POST, 1033.7 ± 48.6 W, p = 0.166).
Consumption of MIPS during the course of a periodized RT program facilitated training-induced improvement in LM in trained males, whereas the consumption of PLA did not. MIPS improved measures of anaerobic power while PLA did not.
Multi-ingredient performance supplements (MIPS) intended for consumption in close proximity to resistance exercise are extremely popular among young males abbrgrp
abbr bid B1 1
B2 2
and athletes
B3 3
. The composition of MIPS vary widely, but the principle ingredients generally include creatine monohydrate, caffeine, beta alanine, the branched chain amino acids (BCAAs) leucine, isoleucine, and valine, as well as L-citrulline, and L-arginine. Most of these ingredients have been shown singularly
B4 4
B5 5
B6 6
B7 7
B8 8
B9 9
B10 10
and in combination
B11 11
B12 12
B13 13
B14 14
to exert ergogenic effects during aerobic and anaerobic exercise or facilitate muscle hypertrophy over the course of a resistance training (RT) period in untrained participants.Claims about effectiveness and ergogenic enhancements provided by MIPS are often not supported by empirical data and worse, frequently reflect poor understanding or even a misappropriation of the underlying science. Accordingly, it is of importance to consumers and researchers that MIPS be evaluated in double-blinded, placebo-controlled trials. While there is a considerable body of research on the individual effects of creatine, caffeine, beta alanine and protein/amino acid consumption in proximity to exercise
B15 15
B16 16
B17 17
B18 18
B19 19
B20 20
, there is a paucity of data regarding the combined effect of these ingredients on exercise performance with RT
B21 21
B22 22
. The limited evidence available suggests that MIPS products of this general composition may offer an advantage for those wishing to increase muscle mass and strength.Smith et al. supplemented twenty-four moderately-trained recreational athletes with a pre-workout supplement (Game Time®, Corr-Jensen Laboratories Inc., Aurora, CO), containing 18 g of a proprietary blend including whey protein, cordyceps sinensis, creatine monohydrate, citrulline, ginseng, and caffeine
. Participants in this study performed nine high intensity interval run training sessions over 3 weeks. Participants consumed Game Time® or placebo 30 minutes prior to each training session. In contrast to the placebo group, the supplemented participants demonstrated a significantly higher training volume (distance to exhaustion per session) and tended to perform better in measures of anaerobic running capacity (Game Time®: 11.6% versus placebo). Additionally, lean mass (LM) increased from 54.2 ±3.5 kg to 55.4 ± 3.7 kg (p = 0.035) in the Game Time® group and remained unchanged in the placebo group, while there were no significant changes for either group in percent body fat
.There has been surprisingly little investigation into the efficacy of these supplements in individuals that are already resistance-trained. Schmitz et al.
provided two types of MIPS containing similar creatine, carbohydrate, and protein profiles, but varying in some proprietary ingredients, for consumption immediately before and during RT to men who had been resistance training regularly for at least two years. Following 9 weeks of 4 days/week progressive RT, both groups demonstrated improvements in chest press one repetition maximum (1RM) (MIPS: +19.8% vs. Comparator Product +15.3% p < 0.019 ), and LM (MIPS: + 2.4% vs. Comparator Product +0.27%, p < 0.049 ). However, without a placebo group, it is difficult to say what proportion of these improvements was induced by RT alone.Shelmadine et al.
and Spillane et al.
have published data that are distinctly relevant to the current study. These groups both examined the effects of 28 days of MIPS during identical RT programs in untrained men. Shelmadine used the commercially available pre-workout supplement NO-Shotgun® (SHOT, Vital Pharmaceuticals, Davie FL), containing whey protein, caffeine, creatine, beta alanine, BCAAs, and L-arginine with 18 untrained males and compared it to an isocaloric placebo
. Maximal 1RM for upper body strength improved for both groups, but more so for MIPS (MIPS: +8.82 ± 1.78% vs. placebo: +0.73 ± 2.30%, p = 0.003), while there were no significant differences in improvements in 1RM lower body strength (MIPS: +18.4 ± 1.91% vs. placebo: +11.99 ± 2.79%, p = 0.10). MIPS also increased fat free mass greater than placebo (MIPS: +4.75 ± 0.50% vs. PL: +1.69 ± 0.54%, p = 0.001). Spillane et al.
used SHOT in the same pre-workout manner as Shelmadine et al., but NO-Synthesize® (SYNTH, Vital Pharmaceuticals, Davie FL) was also consumed immediately post-RT and upon waking on non-training days in untrained men. Participants in both the SHOT/SYNTH and placebo groups improved body composition and strength as a result of training, however, the SHOT/SYNTH group had greater increases in fat free mass (p = 0.03), upper (p = 0.02) and lower body (p = 0.04) 1RM strength.While the findings of Shelmadine
and Spillane
are promising, especially in regards to significant increases in muscle mass with MIPS use, assumptions must be made to draw conclusions about populations other than untrained males. To date, there have been no investigations of the effectiveness of MIPS taken before and after RT and on non-training days with resistance-trained male participants over the course of an extended (six-week) RT program. Therefore, the aim of this study was to determine the efficacy of pre- and post-RT supplementation with MIPS on anabolic hormones, body composition, muscle strength, and power in resistance-trained men participating in a six-week periodized RT program. We hypothesized that pre- and post-exercise intake of MIPS during a six-week RT program would increase the concentrations of anabolic hormones and enhance gains in muscle mass, strength, and power more than PLA in resistance-trained men.
Twenty-four resistance-trained (mean ± SE, 5.3 ± 3.5 years of resistance-training for at least twice per week) male participants (age, 24.0 ± 0.9 years; height, 180.5 ± 5.8 cm; body mass, 83.7 ± 0.5 kg; body mass index, BMI, 25.5 ± 2.2 kg/msup 2) completed this study. Participants were nonsmokers and did not have hypertension (blood pressure >140/90), uncontrolled cholesterol/blood lipid levels or take prescription cholesterol medication. They also did not have diagnosed cardiovascular disease, stroke, diabetes, thyroid or kidney dysfunction, or have any musculoskeletal complications that would impede them from performing RT. Individuals who were currently consuming other workout supplements or ergogenic aids were instructed to immediately stop consumption and complete a four-week washout period before entering the study. Individuals consuming anabolic steroids were excluded. All procedures involving human subjects were approved by the Florida State University Human Subjects Institutional Review Board in accordance with the Helsinki Declaration, and written informed consent was obtained prior to participation.
Experimental design
This study used a stratified, randomized, longitudinal, double-blind design with placebo control. Following the initial collection of pre-testing data and before the start of training, participants were placed into MIPS (n = 13) or placebo (PLA, n = 11) groups. Stratification was based on the ratio of initial maximal voluntary contraction (MVC, isometric 60° knee extension) to LM. Following pre-testing data collection, participants began a periodized six-week resistance training program under direct supervision of research personnel. Participants consumed one 21 g serving of NO-Shotgun® (SHOT; ~72 kcals; 18 g protein; 9.7 g protein hydrolysate matrix including BCAAs; 8.06 g muscle volumizing and power/speed/strength matrix that includes multiple forms of creatine and beta alanine; 376 mg of Redline®energy matrix including caffeine; Vital Pharmaceuticals, Inc., Davie, FL) or isocaloric maltodextrin PLA 15 minutes prior to exercise. Upon the conclusion of each training session, participants immediately consumed one 21 g serving of NO-Synthesize® (SYNTH; ~82 kcals; 20 g protein; 9.7 g protein hydrolysate matrix including BCAAs; 9.4 g muscle volumizing and power/speed/strength matrix that includes multiple forms of creatine and beta alanine; Vital Pharmaceuticals, Inc., Davie, FL) or PLA. Research personnel watched as each participant consumed the supplement on all training days. In addition, participants were given single servings of SYNTH or PLA to consume on non-training days. Laboratory testing took place only before and after the six-week intervention. Participants returned for post-testing at least 36 hours following the final training session in order to minimize the effects of delayed onset muscle soreness and post-exercise reduced maximal torque
B23 23
on testing data, as well as to ensure that any changes were due to chronic training and supplementation rather than acute changes from the final RT session. Participants continued to consume a serving of SYNTH (1x/day) after training had ended until the day of (but not including) post-testing.
Resistance training protocol
For the duration of the study, three sets of each exercise were completed as a percentage of baseline 1RM. For the first two weeks, participants completed 10 repetitions at 70-75% of 1RM. For weeks three and four, resistance was increased to six repetitions at 80-85% 1RM. For the final two weeks, participants completed four repetitions per set at 85-90% of 1RM. Each major muscle group was trained once per week using at least one exercise. The six-week training program was designed to target every major muscle group in a three-day split and was modified from previously published research
B24 24
B25 25
. The exercises for day one, designed to work the biceps, triceps, and shoulders were performed in the following order: shoulder military press, dumbbell incline biceps curl, cable overhead French press, straight bar curls, cable triceps press down, and dumbbell reverse fly. The exercises for day two, designed to work the muscles of the legs and core, were (in order): leg press (LP), straight leg dead lift, dumbbell lunge, leg curls, standing calf raises, abdominal crunch, and core planks. The third and final day of the rotation was designed to work the muscles of the chest and back with the following exercises (in order): flat chest press (CP), cable pull down, incline CP, cable low row (neutral grip), dumbbell chest flys, and dumbbell shrugs. Three sets of each exercise were performed for prescribed number of repetitions or to failure, whichever came first, with resting times of 60–90 seconds between sets. If a participant was unable to perform the prescribed weight for an exercise, the weight was adjusted to yield failure at or near the specified number of repetitions. The emphasis placed on consistent lifting form in this study, coupled with researcher supervision from certified personal trainers through the National Strength and Conditioning Association (NSCA), helped ensure full participant compliance with training as well as reduce variability due to inter-subject differences or deficiencies in form.
Testing sessions
Laboratory testing was completed on two occasions. The first visit was prior to the intervention and the second visit was after the six-week intervention. Pre- and post-testing laboratory visits were identical and each measurement was taken by the same investigator at both visits. Participants arrived at the laboratory following an eight-hour overnight fast and had heart rate (60 seconds; radial pulse) and blood pressure (auscultatory method) measured
B26 26
after sitting quietly for five minutes. Each measurement was taken twice and the average was recorded. The following measurements were completed (in order): blood measures, body composition, isokinetic and isometric strength, Wingate, and maximal strength for every participant.
Blood measures
Blood samples (~10 ml) were drawn via venipuncture from the median cubital or cephalic vein in the antecubital space of the forearm into vacutainer tubes with no preservative (Becton Dickinson, Franklin Lakes, NJ). Serum samples were allowed to clot at room temperature and then stored on ice until centrifuging at 3500 rpm at 4°C for 15 minutes (IEC CL3R Multispeed Centrifuge, Thermo Electron Corporation, Needham Heights, Massachusetts). Aliquots of 300 μL each were transferred into microtubes and frozen at −80 degrees Celsius for later analysis of insulin-like growth factor-1 (IGF-1), human Growth Hormone (hGH), and testosterone using commercially available ELISA kits (R&D Systems, Minneapolis, MN, USA). Intra-assay coefficient of variability was 4.5%, 8.1%, and 15.2% for IGF-1, hGH, and testosterone, respectively. Following blood collection, participants consumed one eight ounce box of apple juice.
Body composition
Body mass and height (SECA, Hamburg, Germany) were recorded. All measurements were taken with shoes removed wearing only underwear. Body composition was measured using dual-energy x-ray absorptiometry (DXA; GE Lunar iDXA; General Electric Company, Fairfield, Connecticut) with participants in the supine position according to the manufacturer’s instructions. Results were analyzed with enCORE Software, version 11.0 (GE Lunar). The coefficient of variation (CV) for the total body lean and fat tissue were 1.5% and 1.9%, respectively, based on the three repeated measures of a subset of 10 participants.Circumference measurements of the upper arm, chest, gluteals, and thigh were taken using a measuring tape with strain gauge (Creative Health Products, Ann Arbor, Michigan) and the participant wearing only exercise shorts. For the chest measurement, the tape was run horizontally across the nipples and around the back, and the participant was instructed to exhale fully. For the upper arm measurement, participants were instructed to raise the dominant arm to shoulder height and contract the biceps brachii maximally until the measurement was completed. The measurement was taken at the thickest part of the contracting biceps brachii. The gluteal measurement was taken around the widest part with the participant standing with his feet together. The thigh measurement was taken while the participant stood with the heel of the dominant leg placed on the toes of the opposite foot. The measurement was then taken at the widest part of the dominant leg. A measurement from the top of the patella to the point of circumference measurement was made and recorded to be repeated in the post-test. All measurements were taken by the same researcher on pre- and post-testing laboratory visits.
Isokinetic and isometric strength
The order of performance testing was uniform for each participant for both laboratory visits. Participants were placed in the upright seated position on a Biodex System 3 (Biodex Medical Systems, Shirley, New York). The seat height and position were adjusted in order to align the instrument’s axis of rotation with that of the participant’s dominant knee. Participants were instructed to cross their arms over their chests, but not to grab the restraints. Isokinetic 30°sec-1 and 60°sec-1 unilateral knee extension/flexion tests were conducted. Five repetitions of consecutive maximal extension and flexion were performed during each test, with a one minute rest interval between tests. Following the isokinetic tests, a 60° isometric knee extension/flexion test was performed. This test involves three maximal extension and flexion exertion against an immovable arm, with 10 second rest periods between exertions. Continuous verbal encouragement was provided by the research team throughout the duration of all tests. Criterion measures were peak and average torque for each repetition.
Wingate test
Anaerobic capacity was measured using a Wingate test
B27 27
on a plate loaded and friction braked Monark Ergomedic 874-E (Monark Exercise AB, Vansbro, Sweden) cycle ergometer. Resistance was set as 7.5% of body mass (kg). Each participant was fitted to the ergometer by adjusting the seat height to ensure 5-10° of knee flexion at the bottom of the pedal stroke. The participant performed a two-minute warm-up at 75 rpm with only the resistance added by the weight basket (0.5 kg), with two brief (~10 seconds) bouts of practice sprinting. Following the warm-up period, a five-second countdown period was begun where the participant maximized revolutions per minute. When the participant was cycling at full speed, the resistance was added and the 30-second test timer was started. Throughout the test the participants were given verbal encouragement to work at the highest possible effort and to be aware of the time remaining. At the end of the 30-second test period, the resistance was removed and the participant was instructed to cycle slowly for at least two minutes to cool down. Video of the exercise bout was recorded (Pentax Optio W90, Pentax Imaging Company, Golden, Colorado) and later analyzed to determine total revolutions (Rsub total) and peak revolutions (Rmax). The exercise was broken down into five-second intervals (i.e. 0–5 seconds, 5–10 seconds, 10–15 seconds, etc.) and Rmax was defined as the maximal number of revolutions achieved during each interval. From these values, total work (W) was calculated as (it r R
), where r is the resistance in kg and Rtotal is the total number of revolutions completed in the 30-second testing period. Peak anaerobic power was calculated as inline-formula
m:math name 1550-2783-9-49-i1 xmlns:m http:www.w3.org1998MathMathML m:mfenced open ( close )
m:mi r
m:mo ∗
m:mn 6

m:mtext max
m:mspace width 0.5em
mathvariant italic seconds
, where R
is the number of revolutions completed in the first five seconds of the test and 6m corresponds to the distance traversed by the flywheel in one revolution (6 meters). Mean anaerobic power was calculated as
. Fatigue Index was calculated as the ratio of the minimum number of revolutions (Rmin) to Rmax.
One Repetition Maximum (1RM) Strength
After laboratory pre-testing, but prior to the first training session, participants reported to the training location for the determination of 1RM in the CP and 45° LP exercises. For the purposes of this study, 1RM is defined as the maximum weight an individual is able to perform on a given exercise, with good form, through the full range of motion and was administered according to the NSCA guidelines
B28 28
. Briefly, a warm up with a low resistance and five to 10 repetitions was followed by one minute of rest. A second warm up load was estimated to allow the subject to complete three to five repetitions. Following a two-minute rest period, weight was gradually increased by five to 10% for CP, or 10 to 20% for LP for a single repetition, followed by a two-minute rest period. Weight was increased gradually until a failed attempt or proper form was not maintained. Upon failure, weight was reduced by 2.5-5% for CP, or 5-10% for LP and the participant made another, final attempt after a four-minute rest period. The maximum weight successfully lifted once was recorded as the 1RM for that exercise.The form cues used for the 1RM and training sessions for each exercise did not differ. For the CP, the participant was to lie flat on the bench with the eyes approximately at the level of the bar as it rests in the rack. The participant was to grasp the bar so that the wrists were situated directly above the elbows for the duration of each repetition. The participant’s back maintained contact with the bench at all times, and did not become unnaturally arched. The participant’s feet remained flat on the floor and the heels did not rise during the exercise. The bar was lowered until the upper arms were parallel with the floor, and the elbows were flexed at approximately 90°, at which point the bar was pressed back to full extension. For the LP, feet were placed on the push plate so that they were just wider than shoulder width and the knees were flexed to approximately 90°. The plate was lowered until the tops of the thighs were just touching the chest, at which point it was pressed out to full extension.
Nutritional intake and supplementation protocol
After the pre-testing session and at the end of the study, participants were required to complete a three-day food and activity log. Compliance was low for the food logs; only eight participants successfully completed both pre and post training food logs.Following the completion of all pre-testing, the RT program began. The assigned pre-workout MIPS or PLA was consumed under the supervision of certified research staff 15 minutes prior to the beginning of RT. During this time, a light warm-up on the cardiovascular exercise machine of choice was performed. Immediately upon the completion of each training session, the post-workout MIPS or PLA was consumed. A single serving Ziploc® bag of MIPS or PLA was given to each participant to consume on non-training days. To ensure compliance, these (empty) bags were returned before the subsequent training session and recorded by research personnel. Upon completion of the training sessions, the participants reported back to the laboratory 36 hours following the last RT bout for post-testing, identical to that of the pre-testing visit.
Statistical analysis
Descriptive data were generated for all variables and expressed as mean ± standard error. A two (group) × two (time) analysis of variance (ANOVA) with repeated measures was used to analyze body composition, strength, power, and hormone data. Tukey LSD post hoc tests were used to examine pairwise differences. Significance was set at p < 0.05. A one-way ANOVA was used for baseline comparisons between groups and volume data. PASW Statistics for Windows version 18.0.0 (International Business Machines Corporation, Armonk, New York, United States) and Statistica (Statsoft, Tulsa, Oklahoma, USA) software were used to perform the analyses.
No significant differences were noted between groups in any variable before training. There were no differences in total training volume (weight x successful repetitions × sets) between groups (MIPS: 26,583 ± 1,359 kg vs. PLA: 24,200 ± 1,519 kg, p = 0.25). When the values were adjusted for lean mass there were still no differences (MIPS: 400 ± 15 kg vs. PLA: 385 ± 17 kg, p = 0.50).
Blood measures
No main effects of time or group x time were noted in serum concentrations of IGF-1 or hGH for either group. A main time effect (p = 0.035) was noted for testosterone to increase, but no differences between groups were observed. There were no differences between any hormone variable at the beginning of RT (Table tblr tid T1 1).
Table 1
b Average serum concentrations of testosterone, human growth hormone (hGh), and insulin-like growth factor-1 (IGF-1)
tgroup align left cols 6
colspec colname c1 colnum 1 colwidth 1*
center c2 2
c3 3
c4 4
c5 5
thead valign top
row rowsep
group × time
A main time effect was observed for both groups to improve serum testosterone, with no difference between groups. Values are presented as means ± SE. Sample size between each analyte is slightly different due technical difficulties with certain samples.
MIPS (n = 11)
40.2 ± 12.9
58.3 ± 11.5
p = 0.035
p = 0.881
PLA (n = 7)
38.9 ± 10.3
54.9 ± 12.4
MIPS (n = 12)
113.3 ± 21.0
119.9 ± 35.3
p = 0.510
p = 0.376
PLA (n = 7)
71.9 ± 20.6
64.5 ± 13.1
IGF −1
MIPS (n = 11)
173.2 ± 7.5
181.9 ± 10.5
p = 0.768
p = 0.283
PLA (n = 10)
152.9 ± 14.9
147.5 ± 28.4
Body composition
Significant (p = 0.017) group x time interactions were observed for LM but not for any fat measures. MIPS increased LM by 4.7% (PRE, 62.9 ± 8.8 kg vs. POST, 65.7 ± 8.8 kg, p < 0.001). No significant changes were observed in LM in the PLA group (PRE, 63.5 ± 5.2 kg vs. POST, 64.7 ± 5.9 kg, p = 0.63) group over time with training, although there was a trend for increases in LM (p = 0.085). Both groups demonstrated a main time effect (p = 0.003) for percent body fat (%BF), but no changes were observed in FM (kg). Post-hoc analysis revealed that the MIPS decreased %BF from 21.6 ± 1.4% to 20.5 ± 1.3% (p = 0.004). There was no significant decrease in overall FM. There were no significant changes in fat variables for the PLA group (Figure figr fid F1 1).
fig Figure 1Lean Mass (kg) and Body Fat percentage before and after six weeks of resistance training and supplementation with multi ingredient performance supplement (MIPS, n = 13) or placebo (PLA, n = 11).text
Lean Mass (kg) and Body Fat percentage before and after six weeks of resistance training and supplementation with multi ingredient performance supplement (MIPS, n = 13) or placebo (PLA, n = 11). † Indicates group × time effect (p = 0.017). Indicates main time effect (p = 0.001). Bars are means ± SE.
graphic file 1550-2783-9-49-1
Circumferences of the upper arm, chest, thigh and gluteals were measured pre- and post- training. There were no group x time interactions for any variable. Time effects were observed in chest (p = 0.005), arm (p = 0.001), and gluteals (p = 0.004). Post-hoc analysis indicated that the MIPS group increased arm circumference by 2.2% (PRE, 37.6 ± 0.8 cm vs. POST, 38.5 ± 0.7 cm, p = 0.002) and thigh by 2.5% (PRE, 55.1 ± 1.2 cm vs. POST, 56.6 ± 1.5 cm, p = 0.021). Likewise, the PLA group increased arm circumference by 2.6% (PRE, 36.8 ± 0.90 cm vs. POST, 37.8 ± 0.9 cm, p = 0.001). There were no other significant changes in circumference for either group.
Isokinetic and isometric strength
There were no group x time interactions observed for any isokinetic variable. Time effects were observed for 30°sec-1 extension average power (p = 0.02), 30°sec-1 flexion average power (p = 0.01), 30°sec-1 agonist/antagonist ratio (p = 0.03). For 60°sec-1 extension, time effects were observed for average power (p =0.02) and maximum repetition total work (p = 0.03). For 60°sec-1 flexion, time effects were noted for peak power (p = 0.02), maximum repetition total work (p = 0.03), average power (p = 0.004), and average peak torque (p = 0.02).Post hoc analysis revealed that the MIPS group had no change in relative peak torque (PRE, 254.5 ± 16.5 N-M·kg-1 vs. POST, 245.9 ± 12.2 N-M·kg-1, p = 0.09) during 30°sec-1 extension, however, average power increased 6.2% (PRE, 72.1 ± 3.7 W vs. POST, 76.9 ± 3.6 W, p = 0.02) and acceleration time decreased 52.2% (PRE, 29.2 ± 3.9 ms vs. POST, 19.2 ± 1.9 ms, p = 0.03). During 60°sec-1 flexion MIPS peak torque increased 14.5% (PRE, 108.7 ± 4.6 N·M vs. POST, 121.0 ± 6.5 N·M, p = 0.048), maximum repetition total work increased 15.2% (PRE, 103.6 ± 6.9 J vs. POST, 122.1 ± 8.3 J, p = 0.032), and average power increased 13.3% (PRE, 68.8 ± 3.0 W vs. POST 79.5 ± 75.5 W, p = 0.028). There were trends during 60°sec-1 extension for an increase in MIPS maximum repetition total work (p = 0.053) and average peak torque (p = 0.052). There was also a trend for improved agonist/antagonist ratio during 30°sec-1 isokinetic exercise (p = 0.053).The PLA group increased average power 17.1% (PRE, 40.6 ± 2.7 W vs. POST, 49.0 ± 2.1 W, p = 0.002) during 30°sec-1 flexion, decreased deceleration time 49.1% (PRE, 261.0 ± 0.6 ms vs. POST, 175.0 ± 38.0 ms, p = 0.03), and improved average peak torque 9.6% (PRE, 115.3 ± 6.7 N·M vs. POST, 127.5 ± 6.1 N·M, p = 0.03). There were trends for improvement in average power (p = 0.058) and average peak torque (p = 0.065) during 30°sec-1 flexion.Group x time interactions were observed for relative average peak torque during isometric flexion (p = 0.03). There were also similar trends during isometric flexion for average peak torque (p = 0.053) and relative peak torque (p = 0.057).Post hoc analysis revealed that there were no changes in any isometric variables for the MIPS group. However, the PLA group improved peak torque by 12.7% (PRE, 123.6 ± 8.1 N·M vs. POST, 141.5 ± 6.9 N·M, p = 0.03), and average peak torque by 12.2% (PRE, 114.2 ± 8.2 N·M vs. POST, 130.9 ± 6.3 N·M, p = 0.047). There was also a trend for improvement in relative peak torque in the PLA group (p = 0.053) but not in MIPS.
Wingate test: anaerobic power
There were no group x time interactions for any of the Wingate variables. There was a main time effect for peak anaerobic power (p = 0.001, Figure F2 2), relative peak anaerobic power (p = 0.001), mean anaerobic power (p = 0.007), relative mean anaerobic power (p = 0.016), and total work (p = 0.006). Post-hoc analysis revealed that the MIPS group significantly increased peak anaerobic power by 16.2% (PRE, 932.7 ± 172.5 W vs. POST, 1119.2 ± 183.8 W, p = 0.002), relative anaerobic power by 9.4% (PRE, 11.1 ± 1.7 W·kg-1 vs. POST, 13.1 ± 1.8 W·kg-1, p = 0.003), mean anaerobic power by 9.9% (PRE, 676.4 ± 145.3 W vs. POST, 751.1 ± 1.8 W, p = 0.02), and relative mean anaerobic power by 8.2% (PRE, 7.9 ± 1.0 W·kg-1 vs. POST, 8.8 ± 1.1 W·kg-1, p = 0.03) while PLA remained unchanged. There were no changes in fatigue index for either group.
Figure 2Wingate Peak Anaerobic Power (W) before and after six weeks of resistance training and supplementation with multi-ingredient performance supplement (MIPS, n = 12) or placebo (PLA, n = 10).
Wingate Peak Anaerobic Power (W) before and after six weeks of resistance training and supplementation with multi-ingredient performance supplement (MIPS, n = 12) or placebo (PLA, n = 10). There was a main time effect (p = 0.002). *Post-hoc analysis indicated a significant increase for MIPS only (p < 0.05). Bars are means ± SE.
One Repetition Maximum (1RM) Strength
There were no group x time interactions observed for any maximal strength variable. Time effects were noted for all 1RM measures (p = 0.001). Post-hoc analysis indicated that in LP, the MIPS group increased with RT by 19.6% (PRE, 336 ± 24 kg vs. POST, 418 ± 25 kg, p < 0.001) and the PLA group increased by 25.9% (PRE, 318 ± 28 kg vs. POST, 429 ± 29 kg, p < 0.001). For CP, MIPS increased 8.4% (PRE, 112 ± 7 kg vs. POST, 123 ± 7 kg, p = 0.001) and the PLA group increased by 7.0% (PRE, 118 ± 8 kg vs. POST, 127 ± 8 kg, p = 0.001) (See Figure F3 3).
Figure 3Leg press one-repetition maximum (1RM) (A) and chest press 1RM (B).
Leg press one-repetition maximum (1RM) (A) and chest press 1RM (B). Indicates main time effect (p = 0.001). Before and after six weeks of resistance training and supplementation with multi- ingredient performance supplement (MIPS, n = 13) or placebo (PLA, n = 9). Bars are means ± SE.
1550-2783-9-49-3 When adjusted for individual LM (relative strength), the previously noted time effects were maintained for all 1RM measures (p = 0.001). Post-hoc analysis indicated that in LP, the MIPS group increased with training by 19.9% (PRE, 11.5 ± 2.8 vs. POST, 14.4 ± 2.6, p < 0.001) and the PLA group increased by 25.8% (PRE, 10.8 ± 1.8 vs. POST, 14.6 ± 2.2, p < 0.001). For CP, MIPS increased by 8.6% (PRE, 3.9 ± 0.8 vs. POST, 4.2 ± 0.8, p = 0.001) and the PLA group increased by 6.9% (PRE, 4.0 ± 0.5 vs. POST, 4.3 ± 0.5, p = 0.001).
Three-day food intake
Eight participants satisfactorily completed the three-day food logs (MIPS, n = 5; PLA, n = 3). In this subset, there were no significant differences between groups in average kilocalories (MIPS, 37.6 ± 8.3 kcal/kg/day vs. PLA, 25.3 ± 5.8 kcal/kg/day, p = 0.34), protein (MIPS, 1.9 ±0.5 g/kg/day vs. PLA, 1.4 ± 0.3 g/kg/day, p = 0.56), carbohydrate (MIPS, 3.2 ± 0.7 g/kg/day vs. PLA, 2.5 ± 0.8 g/kg/day, p = 0.49), fat (MIPS, 1.8 ± 0.8 g/kg/day vs. PLA, 1.0 ± 0.9 g/kg/day, p = 0.51), or caffeine (MIPS, 2.2 ± 0.8 mg/kg/day vs. PLA, 1.9 ± 0.7 mg/kg/day, p = 0.49) consumed before or after training.
The objective of this study was to determine the efficacy of pre- and post-RT supplementation with MIPS on body composition, muscle strength, and power in resistance-trained men participating in a six-week periodized RT program. With this specific population, any gains in strength should be almost entirely due to physiological and hypertrophic changes to the trained muscles, rather than improvements in neuromuscular coordination. Shelmadine et al.
noted large increases in markers of satellite cell activation and hypertrophy, and modest increases in LM (4.8%) for their MIPS group after only four weeks in untrained men. By increasing the time course and total volume of training in the present study, we aimed to augment the opportunity for muscle growth. In addition to ingesting SHOT before exercise, our participants also consumed one serving of SYNTH immediately post-exercise and on every non-training day. This supplementation model, similar to that used by Spillane et al.
, provided a better environment for muscle hypertrophy and recovery and supplement loading than the modality used by Shelmadine et al.
. Both Shelmadine et al. and Spillane et al.
allowed participants to train independently, while the present study monitored all training sessions with experienced research staff that provided form corrections and spots for free-weight lifts. The emphasis placed on consistent lifting form in this study, coupled with researcher supervision, helped ensure full participant compliance with training as well as reduced variability due to inter-subject differences or deficiencies in form.Changes observed in body composition were perhaps the most remarkable results of the current study. MIPS increased LM by 4.7%, a degree similar to those observed in untrained males by Spillane et al. (3.5%) and Shelmadine et al. (4.8%)
and greater than that observed in trained males by Schmitz et al. (2.4%)
. Because there were no changes in FM, the decreased %BF observed in the MIPS group was due to increased LM and overall body mass. The PLA group made no significant changes in any body composition variable, although there were trends for improved LM. The lack of change in FM demonstrated in this study reflects the findings of other similar studies
B29 29
B30 30
B31 31
, but is at odds with popular claims made about these products. One of the proprietary blends listed on the SHOT label contains 376 mg of a combination of caffeine, β-phenylethlylamine HCL, hordeum vulgare bud, and L-tyrosine, and is marketed in SHOT and in other similar products as a “fat burning” component. However, because participants were instructed to consume their normal dietary intake rather than being fed specific meals with specific caloric restrictions, we cannot draw the conclusion that SHOT and SYNTH consumption pre- and post-exercise are ineffective at reducing FM. However, it is worth noting that no changes in dietary intake were reported from baseline (week 0) to post-testing (week 6) in a subset (n = 8) of our participants, therefore, our lack of change in body mass (kg) is likely real. Perhaps more valuable to consumers, limb circumferences increased only in thigh measurements for the MIPS group, but not for the PLA group.A significant increase in LM was measured in the MIPS group but not in the PLA group. This is in concurrence with many similar studies
. As muscle mass is one of the main determinants of strength and power
B32 32
, it is somewhat unexpected that the MIPS group did not experience greater improvements in 1RM strength, although 1RM tests may not be sensitive enough to detect the modest difference in LM improvement exhibited by the MIPS group by these trained men. Likewise, this most likely explains the lack of group x time effects in circumference measurements other than thigh. One remarkable finding of this study is that the increase noted in LM by the MIPS group in this study (+4.7%) was very similar to that of the supplement group in Shelmadine et al. (+4.7%)
, despite the increased training status of our participants.While the present study noted a main time effect for peak and average anaerobic power and total work performed, there were no differences between the two groups. There was, however, a strong trend (group × time effect, p = 0.06) for the MIPS group to improve peak anaerobic power. We also noted an increase in mean anaerobic power for MIPS, but not for PLA (Figure 1). These findings are similar to those of Beck et al.
, who demonstrated significant increases in peak and mean anaerobic power following 10 weeks of RT using untrained males consuming a pre-exercise supplement containing protein, creatine, and BCAAs. The protocol used by Beck et al. called for two consecutive 30-second cycling bouts, whereas the present study only used a single bout. The differences in training duration (six weeks vs. 10 weeks), number of cycling bouts, and training status may explain why Beck et al. were able to elicit significant group x training effects while we were not.We observed a significant (p = 0.035) time effect for resting serum testosterone to increase with chronic training, but no group x time effects were observed. This is in contrast to a study by Rankin et al.
B33 33
which demonstrated decreases in testosterone following nine weeks of RT and supplement consumption, but in agreement with other studies linking whole body RT programs with enhanced testosterone. Coryceps sinesis, an ingredient included in the MIPS utilized for this study, is purported by supplement manufacturers to enhance testosterone levels in males. Based on our findings and those of Hsu et al.
B34 34
who specifically looked at the effect of coryceps sinesis on testosterone in conjunction with RT, we conclude that MIPS and coryceps sinesis did not enhance resting testosterone concentrations in response to chronic exercise in the present study. In addition, in the present study no changes for either group were noted in IGF-1 or hGH. Shelmadine et al.
and Spillane et al.
reported a time effect for IGF-1, but did not observe group x time effects. With the similarity in supplementation and training protocols between Spillane et al.
and ours, differences in training status may explain why our participants did not exhibit detectable changes in IGF-1. Neither Shelmadine et al.
nor Spillane et al.
investigated changes in testosterone or hGH. Our observation of no change in hGH with RT is in agreement with Kraemer et al.
B35 35
, who measured basal hGH following three, six, and eight weeks of resistance training in untrained males. It is possible that due to the training status of these men, changes in these anabolic hormones may have been blunted.It was also expected that the inclusion of beta alanine in MIPS would yield improvements in fatigue index through the lactate buffering effects of carnosine. Instead, we found no significant time or group × time effect for fatigue index, in contrast to the findings of others
B36 36
B37 37
. Hoffman et al. noted improvements in fatigue index following 30 days of beta alanine supplementation in American football players during offseason training
. Some of this discrepancy may be explained by beta alanine dosages. In studies that have demonstrated improvements in performance, beta alanine dosages tend to range from 4.8 to 6.0 g·day-1
B38 38
B39 39
. Unfortunately, the MIPS in the present study included beta alanine as part of a proprietary blend, rather than labeling it independently and, therefore, we do not know the true concentration of beta alanine in the product. We can only speculate, therefore, that our MIPS group may have been consuming less than the 4.8 g/day that has been shown to elicit training enhancements.The present study demonstrated a significant effect of time for both CP and LP strength in both groups; however, there was no group x time effect. Shelmadine et al.
also noted a training effect for both groups in CP and LP following 28 days of RT with SHOT supplementation before RT for 28 days. They noted that the SHOT supplemented group improved CP significantly more than the placebo group (18.4% vs. 8.8%, respectively, p = 0.003)
. In contrast to Shelmadine et al., Beck et al.
reported no differences in training-induced enhancements in CP or LP between a creatine-protein supplement group and placebo groups in their 10-week RT study
. Cribb et al. were able to elicit 1RM group × time effects in trained males following 10 weeks of RT and consumption of whey protein
B40 40
or whey protein and creatine
B41 41
. With so much conflicting evidence and confounding variables, it is difficult to draw conclusions about the effectiveness of MIPS on 1RM strength in trained males. It is worth noting, however, that in all of these studies the supplement group increased LM significantly more than the placebo.Isokinetic leg exercise results were mixed. There appeared to be a pattern for both groups to improve strength and power during flexion but to make little improvement or even decrease performance in extension, as was the case with 30°sec-1 extension in the MIPS group. However, the MIPS group did exhibit trends (p = 0.054) for improvements in some 60°sec-1 extension variables. Training specificity is one explanation for these data; our training program included seated hamstring curls, but not knee extensions. Thus, each participant spent six weeks without doing seated extension types of exercise (they participated in leg press and lunge exercises instead). Little investigation has been conducted into the effect of MIPS and RT on isokinetic strength. These results are surprising as single-supplement
B42 42
B43 43
B44 44
and training-alone
B45 45
B46 46
studies have demonstrated modest increases in isokinetic performance following RT.Results of the isometric tests are particularly puzzling, as the MIPS group made no improvements while the PLA group improved in several measures during flexion. This is in contrast to other studies using supplement combined with training
B47 47
B48 48
and correlations of muscle mass and isometric force production
. There are a few possible explanations for these findings. Neither group in the present study performed isometric exercise as part of training. Thus, training specificity may have played a role in the lack of findings; however, this would have applied to both groups equally. Moreover, isometric exercise performance is somewhat sensitive to innate muscle fiber type distribution
B49 49
, which was not tested or controlled for in this investigation.We observed no differences in volume (weight lifted × repetitions x sets) lifted for any exercise over the course of the training period. This was in contrast to common findings of other supplement plus training studies involving caffeine
B50 50
, beta alanine
, and creatine
, but not all studies
. The lack of difference between groups in training volume may have been a result of our study design rather than supplement effects. All participants were instructed that the goal of every set should be failure and they were to achieve this by selecting weights that caused them to fail at a specific number of repetitions (10 for weeks one and two, six for weeks three and four, and four for weeks five and six). The number of repetitions was controlled in order to facilitate the periodized training goals. If participants lifted to failure on every set, differences in training volume may have been evident. On the other hand, eliminating training volume as a variable leaves manipulation of hypertrophic pathways by the supplement ingredients as the most probable explanation for increased LM in MIPS but not for PLA. In addition, all of the participants had performed the required exercises in past workouts prior to beginning the study. The participants were also familiar with overloading the muscles with periodized training. However, we did not survey or record the degree to which the study routine was similar to or different from the participant’s regular workout program.
Consumption of MIPS before and after RT during the course of a periodized six-week RT program resulted in significant improvements in LM in trained males, whereas the consumption of an isocaloric PLA did not. At the dosages consumed and with the specific population in this study, MIPS consumption did not appear to offer advantages in measures of absolute or relative muscle strength, but it did elicit gains in anaerobic power. Continued investigation of these or similar products is warranted as questions about the influence of performance supplements on volitional training volume should be answered. Additionally, future research should investigate MIPS use in populations that include both women and older populations and incorporate exercise modalities that extend beyond traditional resistance training.
%BF: Percent body fat; 1-RM: One repetition maximum; BCAA: Branched chain amino acid; DXA: Dual X-ray Absorptiometry; FFM: Fat free mass; FM: Fat mass; hGH: Human Growth hormone; HIIT: High intensity interval training; IGF-1: Insulin-like growth factor-1; LM: Lean mass; MHC: Myosin heavy chain; MIPS: Multi-ingredient performance supplement; MVC: Maximal voluntary contraction; PLA: Placebo; RE: Resistance exercise; RT: Resistance training; SHOT: NO-Shotgun multi-ingredient performance supplement; SYNTH: NO-synthesize multi-ingredient performance supplement.
Competing interests
This study was supported by an independent research grant and product donation from Vital Pharmaceuticals, Inc. (Davie, FL). None of the authors had financial or other interests concerning the outcomes of the investigation. The authors declare that they have no competing interests.
Authors’ contributions
MJO conceived and designed the study, secured funding for the project, provided oversight of data collection, analysis, biochemical assays, and manuscript preparation. WKM carried out data collection, participant recruitment, exercise training, laboratory testing, and manuscript preparation. DDT carried out subject recruitment, data collection, exercise training, immunoassays, and assisted with manuscript preparation. AWK and EGW helped extensively with data collection. LBP and JSK provided assay support, and insight into drafting the study design and manuscript. All authors read and approved the final manuscript.
We would like to thank Gold’s Gym (Tallahassee, FL), Jim Burtoft and Joe Burtoft for the use of their facilities. We would also like to thank Colin Riley, Nathaniel King, John Lox, Wyatt Eddy, Mike Zourdos, Shweta Rawal, Kelly Knoth, Frank Espina, Loren Incandela, Gabby Ortiz, Ty Carzoli, Bruce Lee, Wilbur Selander, Dani Ross, Justin Quiles, Parker Lovelace, Anton Gomez, and Shannon Sellars for their invaluable assistance. We also thank all of the participants from this study and the Institute of Sports Science and Medicine for being supportive of the data analysis.
refgrp Sports and nutritional supplement Use in USMC recruits: a pilot studyYoungCRStephensMBMilitary Medicine2009174158lpage 16119317196High-school athletes and nutritional supplements a study of knowledge and useMassadSJShierNWKocejaDMEllisNTInt J Sport Nutr199552322458547941Dietary supplementation of high-performance Canadian athletes by age and genderErdmanKAFungTSDoyle-BakerPKVerhoefMJReimerRAClin J Sport Med20071745846410.1097/JSM.0b013e31815aed33link fulltext 17993788The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilitiesBeckTWHoushTJSchmidtRJJohnsonGOHoushDJCoburnJWMalekMHJ Strength Cond Res20062050651016937961Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football playersHoffmanJRRatamessNAFaigenbaumADRossRKangRStoutJRWiseJANutr Res200828313510.1016/j.nutres.2007.11.00419083385Role of beta-alanine supplementation on muscle carnosine and exercise performanceArtioliGGGualanoBSmithAStoutJLanchaAHMed Sci Sports Exerc2010421162117320479615Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performanceSaleCSaundersBHarrisRCAmino Acids20103932133310.1007/s00726-009-0443-420091069Effects of creatine supplementation and resistance training on muscle strength and weightlifting performanceRawsonESVolekJSJ Strength Cond Res20031782283114636102Effects of creatine supplementation on body composition, strength, and sprint performanceKreiderRBFerreiraMWilsonMGrindstaffPPliskSReinardyJCantlerEAlmadaALMed Sci Sports Exerc19983073829475647Arginine supplementation induces myoblast fusion via augmentation of nitric oxide productionLongJHDLiraVASoltowQABettersJLSellmanJECriswellDSJ Muscle Res Cell Motil20062757758410.1007/s10974-006-9078-117051348The possible combinatory effects of acute consumption of caffeine, creatine, and amino acids on the improvement of anaerobic running performance in humansFukudaDHSmithAEKendallKLStoutJRNutr Res20103060761410.1016/j.nutres.2010.09.00420934602The effects of a pre-workout supplement containing caffeine, creatine, and amino acids during three weeks of high-intensity exercise on aerobic and anaerobic performanceSmithAEFukudaDHKendallKLStoutJRJ Int Soc Sport Nutr201071110.1186/1550-2783-7-11Effects of a drink containing creatine, amino acids, and protein combined with ten weeks of resistance training on body composition, strength, and anaerobic performanceBeckTWHoushTJJohnsonGOCoburnJWMalekMHCramerJTJ Strength Cond Res20072110010417313263Effects of 28 days of resistance exercise and consuming a commercially available pre-workout supplement, NO-Shotgun (R), on body composition, muscle strength and mass, markers of satellite cell activation, and clinical safety markers in malesShelmadineBCookeMBufordTHudsonGReddLLeutholtzBWilloughbyDSJ Int Soc Sport Nutr200961310.1186/1550-2783-6-13Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementationHarrisRCSoderlundKHultmanEClin Sci1992833673741327657Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adultsBroseAPariseGTarnopolskyMAJ Gerontol Ser A Biol Sci Med Sci200358111910.1093/gerona/58.1.B11Effect of red bull energy drink on repeated wingate cycle performance and bench-press muscle enduranceForbesSCCandowDGLittleJPMagnusCChilibeckPDInt J Sport Nutr Exerc Metab20071743344418046053Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacityHillCAHarrisRCKimHJHarrisBDSaleCBoobisLHKimCKWiseJAAmino Acids20073222523310.1007/s00726-006-0364-416868650Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exerciseTiptonKDRasmussenBBMillerSLWolfSEOwens-StovallSKPetriniBEWolfeRRAm J Physiol Endocrinol Metab2001281E197E20611440894Ingestion of casein and whey proteins result in muscle anabolism after resistance exerciseTiptonKDElliottTACreeMGWolfSESanfordAPWolfeRRMed Sci Sports Exerc2004362073208115570142Effects of 28 days of resistance exercise while consuming commercially available pre- and post-workout supplements, NO-Shotgun (R) and NO-Synthesize (R) on body composition, muscle strength and mass, markers of protein synthesis, and clinical safety markers in malesSpillaneMSchwarzNLeddySCorreaTMinterMLongoriaVWilloughbyDSNutr Metab201181110.1186/1743-7075-8-11Nine weeks of supplementation with a multi-nutrient product augments gains in lean mass, strength, and muscular performance in resistance trained menSchmitzSMHofheinsJELemieuxRJ Int Soc Sport Nutr20107404910.1186/1550-2783-7-40Presence of WBC, decreased strength, and delayed soreness in muscle after eccentric exerciseMacIntyreDLReidWDLysterDMSzaszIJMcKenzieDCJ Appl Physiol1996801006101310.1063/1.3628328964718Increased dietary protein and combined high intensity aerobic and resistance exercise improves body fat distribution and cardiovascular risk factorsArcieroPJGentileCLMartin-PressmanROrmsbeeMJEverettMZwickyLSteeleCAInt J Sport Nutr Exerc Metab20061637339217136940Fat metabolism and acute resistance exercise in trained menOrmsbeeMJThyfaultJPJohnsonEAKrausRMChoiMDHicknerRCJ Appl Physiol20071021767177210.1152/japplphysiol.00704.200617234805Recommendations for blood pressure measurement in humans and experimental animals part 1: blood pressure measurement in humans a statement for professionals from the subcommittee of professional and public education of the american heart association council on high blood pressure researchPickeringTGHallJEAppelLJFalknerBEGravesJHillMNJonesDWKurtzTShepsSGRoccellaEJHypertension20054514216115611362The wingate anaerobic test an update on methodology. Reliability and validityBarorOSports Med1987438139410.2165/00007256-198704060-000013324256BaechleTREarleRWEssentials of strength and conditioning. 3rd edn: human kinetics2008The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body compositionKendrickIPHarrisRCKimHJKimCKDangVHLamTQBuiTTSmithMWiseJAAmino Acids20083454755410.1007/s00726-007-0008-318175046Effect of protein-supplement timing on strength, power, and body-composition changes in resistance-trained MenHoffmanJRRatamessNATranchinaCPRashtiSLKangJFaigenbaumADInt J Sport Nutr Exerc Metab20091917218519478342Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletesHoffmanJRatamessNKangJMangineGFaigenbaumAStoutJInt J Sport Nutr Exerc Metab20061643044617136944Physiological cross-sectional area of human leg muscles based on magnetic-resonance-imagingFukunagaTRoyRRShellockFGHodgsonJADayMKLeePLKwongfuHEdgertonVRJ Orthop Res19921092693410.1002/jor.1100100623Effect of post-exercise supplement consumption on adaptations to resistance trainingRankinJWGoldmanLPPuglisiMJNickols-RichardsonSMEarthmanCPGwazdauskasFCJ Am Coll Nutr20042332233015310736No effect of cordyceps sinensis supplementation on testosterone level and muscle strength in healthy young adults for resistance trainingHsuCCLinYASuBLiJHHuangHYHsuMCBiol Sport20112810711010.5604/942739The effects of short-term resistance training on endocrine function in men and womenKraemerWJStaronRSHagermanFCHikidaRSFryACGordonSENindlBCGothshalkLAVolekJSMarxJOetal Eur J Appl Physiol Occup Physiol199878697610.1007/s0042100503899660159Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprintersDeraveWOezdemirMSHarrisRCPottierAReyngoudtHKoppoKWiseJAAchtenEJ Appl Physiol20071031736174310.1152/japplphysiol.00397.200717690198Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in womenStoutJRCramerJTZoellerRFTorokDCostaPHoffmanJRHarrisRCO'KroyJAmino Acids20073238138610.1007/s00726-006-0474-z17136505Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA) during treadmill running: Pre/post 2 treatment experimental designJordanTLukaszukJMisicMUmorenJJ Int Soc Sport Nutr20107202710.1186/1550-2783-7-20Beta-alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exerciseBaguetAKoppoKPottierADeraveWEur J Appl Physiol201010849550310.1007/s00421-009-1225-019841932Effects of supplement timing and resistance exercise on skeletal muscle hypertrophyCribbPJHayesAMed Sci Sports Exerc2006381918192510.1249/01.mss.0000233790.08788.3e17095924Effects of whey isolate, creatine, and resistance training on muscle hypertrophyCribbPJWilliamsADStathisCGCareyMFHayesAMed Sci Sports Exerc20073929830710.1249/01.mss.0000247002.32589.ef17277594Beta-alanine improves sprint performance in endurance cyclingVan ThienenRVan ProeyenKEyndeBVPuypeJLefereTHespelPMed Sci Sports Exerc20094189890310.1249/MSS.0b013e31818db70819276843Creatine-dextrose and protein-dextrose induce similar strength gains during trainingTarnopolskyMAPariseGYardleyNJBallantyneCSOlatunjiSPhillipsSMMed Sci Sports Exerc2001332044205210.1097/00005768-200112000-0001111740297The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strengthAndersenLLTufekovicGZebisMKCrameriRMVerlaanGKjaerMSuettaCMagnussonPAagaardPMetab Clin Exp20055415115610.1016/j.metabol.2004.07.01215690307Effects of rest interval on isokinetic strength and functional performance after short term high intensity trainingPinciveroDMLephartSMKarunakaraRGBr J Sports Med19973122923410.1136/bjsm.31.3.229pmcid 13325269298559Neuromuscular adaptations to 8-week strength training: isotonic versus isokinetic modeRemaudACornuCGuevelAEur J Appl Physiol2010108596910.1007/s00421-009-1164-919756712Creatine supplementation enhances maximum voluntary isometric force and endurance capacity in resistance trained menMaganarisCNMaughanRJActa Physiol Scand199816327928710.1046/j.1365-201x.1998.00395.x9715740Effects of creatine on isometric bench-press performance in resistance-trained humansKilduffLPVidakovicPCooneyGTwycross-LewisRAmunaPParkerMPaulLPitsiladisYPMed Sci Sports Exerc2002341176118310.1097/00005768-200207000-0001912131259Skeletal-muscle buffer value, fiber-type distribution and high-intensity exercise performance in manMannionAFJakemanPMWillanPLTExp Physiol199580891017734141Effect of a pre-exercise energy supplement on the acute hormonal response to resistance exerciseHoffmanJRRatamessNARossRShanklinMKangJFaigenbaumADJ Strength Cond Res20082287488210.1519/JSC.0b013e31816d5db618438227