Citation
Development and characterization of luminescent oxygen sensing coatings

Material Information

Title:
Development and characterization of luminescent oxygen sensing coatings
Creator:
Bedlek-Anslow, Joanne M., 1973-
Publication Date:
Language:
English
Physical Description:
xxv, 205 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Calibration ( jstor )
Fluorescence ( jstor )
Glass coatings ( jstor )
Luminescence ( jstor )
Oxygen ( jstor )
Polymers ( jstor )
Quenching ( jstor )
Sensors ( jstor )
Silica gel ( jstor )
Temperature dependence ( jstor )
Chemical detectors ( lcsh )
Chemistry thesis, Ph. D ( lcsh )
Dissertations, Academic -- Chemistry -- UF ( lcsh )
Luminescence ( lcsh )
Oxygen ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 2000.
Bibliography:
Includes bibliographical references (leaves 192-203).
General Note:
Printout.
General Note:
Vita.
Statement of Responsibility:
by Joanne M. Bedlek-Anslow.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
025789879 ( ALEPH )
46673690 ( OCLC )

Downloads

This item has the following downloads:


Full Text











DEVELOPMENT AND CHARACTERIZATION OF LUMINESCENT OXYGEN
SENSING COATINGS














By

JOANNE M. BEDLEK-ANSLOW












A DISSERTATION PRESENTED TO THE GRADI IATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DE-GREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


2000


























Copyright 2000

by

Joanne M. Bedlek-Anslow





















For Jody

The little girl with curly brown hair who thought b's Cere d's id p's wecre q's.















ACKNOWLEDGMENTS

As I approach the completion of nearly 21 years of education, it becomes

challenging to properly thank the numerous people that have helped me along the way.

Foremost, my parents deserve my sincerest love and appreciation for always being there

for me with constant and unconditional love, encouragement, and praise throughout the

ups and downs of my life. As a young child, they encouraged my interests and helped me

to realize that any dream is possible. One of their greatest lessons was that life is about

decisions and choices. I am solely responsible for my happiness and must always be my

greatest ally. The significance of this advice continues to grow with each passing year.

Only recently, have I begun to realize the extent of their sacrifices and support of my

successes. Their examples as parents, companions and genuine people are constant

reminders of the person I am trying to become.

I must also thank my sister, Jeanne, for her love and faith and exquisite example

as a woman of compassion and conviction. My appreciation also extends to my small but

boisterous family for their love and support: Uncle Jim and Aunt Pat, Aunt Pam and

Uncle Ken, Alyssa and Chris, Arianna, Kevin and Roxann, Shay and Angie, Godmother

Helen, Russ and Dee, Matt and "little" Grandma. Unfortunately, my grandfather did not

live to see me finish my doctorate, yet I am positive he is rejoicing in my successes.

I am also fortunate to be the beneficiary of a large extended family of people who

if not through ties of blood but rather ties of friendship have blessed me with guidance,

love, and praise for longer than I can remember. This nucleus of people includes my dear








friends: Shannon and Joel Gruenke, Liz and Mark Tinch. Kerr% and Scot Corkey, Jackie

and Brian Brown, Sara Wadford. Dr. Mike and Andrea Robertson, Heather and John Me

Cabe. Dr. Marijean and Wayne Levering. Dr. Mary Frances and Joel Barthel, Ellen and

Brian Rasmussen. Louis Nicoulin, Regina Tonnesen. Janis and Dick Sil\erman. Diane

and Russ Mueller, Irene Mueller. Anna and Wes SchwLabedessen. Baba and Dzidzio

Iwanciew, and Klaus and Traudel Kummer. There %w as also an entire army of angels

praying for me night and day as I wrote: Sr. Kathleen Leonard, Sr. Claire Hanson. Sr.

Genevieve Therese. Sr. Dorothy Marie. Sr. Helene and all of the Sisters-of-Providcnce

and Salesian Nuns. I was also %cry fortunate for the friendships of some remarkable

people during my stay in Gainesville: Dr. Barbara Tsuie. Dr. Karen and Peter Torraca.

Dr. Keith Walters. Marilyn Peyton. and Dr. Gretchen Potts.

Credit must also be gien to m\ undergraduate tadv isor. Professor Mars K. Bo\d.

She has been an outstanding mentor and friend through the years. She is the one

responsible for my beginnings in chemical research and the one who first encouraged me

to pursue a Ph.D. in chemistry. Also a remarkable graduate student, Dr. Maria Valentino,

enhanced my years at Loyola. It was under her tutelage that I developed Im skills and

self-confidence in my "art." She was patient and kind and a model for the type of

graduate student I wished to become.

My formative research years led me to the laboratory of Dr. Kirk Schan/e. I must

thank Kirk for the many lessons he has made possible to foster my growth as a person

and as a scientist. I am truly grateful for the amazing multi-disciplinary project with

which he has matched me. and his belief in its and my successful outcome. He has given

me opportunities along with encouragement to present my research and publish my








findings. The members of the Schanze research group, past and present, have also aided

me in fulfilling my potential not only as a scientist but also as an integrated person. I

must give particular praise to Dr. Yibing Shen for taking me under his wing and

instructing me in the initial techniques for my project. He continued to be a source of

encouragement and collaboration as I finished my research. Since my project was multi-

disciplinary, thanks must also be given to our collaborators, Professor Bruce Carroll and

Dr. J. Paul Hubner, for their work on this project. I learned an amazing amount of

engineering, imaging techniques, and computer programming from Paul. He, like Maria,

was exceptionally patient and helpful. Of course my other committee members deserve a

thank you for their advice and help through these last four-and-a-half years: Dr. William

Dolbier, Dr. Lisa Mc Elwee-White, and Dr. James Boncella.

On a more personal note, a special acknowledgment of thanks and gratitude must

be given to my husband, Paul. He deserves the Golden Test Tube Award for enduring

my Ph.D. quest and the trials and tribulations graduate school inevitably imposed on our

life together. I cannot even begin to express my appreciation for his selflessness, love,

compassion, encouragement and constant reminders to take care of myself: eating,

sleeping, exercising, laughing. He will always be my true love and best friend.

Last but certainly not least, a most grateful Thank You is given up to God. When

I lost faith in Her, She never lost faith in me. It is only through her compassionate love

that I found the strength and perseverance within myself to continue on with my studies.

Her love and jubilation in my life are clearly evident in the number of truly gifted and

outstanding people I have been fortunate to know and love. I am blessed beyond

measure!















TABLE OF CONTENTS



A C K N O W LED G M ENT S ...... ..... ..................................................................................... iv

LIST OF TABLES ....................................................................................................... x

LIST O F FIG U R ES.... ............ .... .............................................. ....... ..................... ....... xv

A B ST R A C T .............. ............. ............... ................................................................... xxiv

CHAPTERS

I IN T R O D U C T IO N ........... ......... ............. .............................................................. 1

B background ...................................................................................... ..................................
Lum inescence Q uenching .................. ....................................................... ............... 2
Bimolecular Stern-Volmer Quenching .............. ......................2
Modeling Non-linear Stem-Volmer Response. ..................................... 3
Luminophores and Polymers.................................. ..........
R u(II) ct-Dni m ine C om plexes ..................................................................................... 7
Pt(llII)/Pd(II) Porphyrnn M acrocycle ......................................................................... 9
S ilic o n e ................................... ........................... .... .... .... ............ .. ............ ........ I I
Plasticizer% ...................... ... .... ..... .... .. .. .............. 12
M modified Polym ers ......... ......... ............ .............. .............................................. 12
W ind-T unnel A application ............. ....... ........................ ........................................... 15
T em perature Effects .................................................................................................. 18
Isotherm al C alibration ... .... .... .. .. .... ... ... ... .. .. ........................... 19
In -,itu C alib ratio n .................. .............................. ............................................... 19
K -fit C alib ration ....................................................................................................... 20
Temperature-corrected Pressure Calibration ........... .. ........ ................. ... 1
Physical Manifestations of the Temperature Effect .............. ...............................21
A advances in PSP D design .............. ............................... .......................................... 23
M monitoring M ethods...................................... ................. ..... ............... ..... ... ... .. 24
L um inescence Intensity .......... .................................... ........................................... 24
P used L ifetim e ............................ ......................... ................................................. 25
Phase-shift .................................................................................................................... 25
Scope of This W ork .................... .................................... .... ... ..................... 26





vii









2 DUAL-LUMINOPHORE OXYGEN SENSING COATINGS .................................... 27

Introduction ................................................................................................................... 27
Results ...................................................................................................................... 32
Dual-luminophore Coatings ...................................................................................... 32
Temperature Dependence and Thermal-stability ........................................... ........... 36
Temporal-stability .................... ............................. ................................................ 46
Photostability....................................................................................................... 53
Scanning and Transmission Electron M icroscopy........................................ ............ 59
Fluorescence M icroscopy ........................................................................................ 70
Image Testing...... ....................... ....................................................................... .... 85
Discussion ............................................................................................................... 94
PtTFPP ...................................................................................................................... 94
DOCIpgsp and DOCI-Ssisp............................................................................... 95
PtDOCIppsp/VPDMS and PtDOCI-Spsp/VPDMS Coatings................................... 97
Experimental ........................................................................................................... 98
Preparation of DOCI Highly Cross-linked Polymer Microspheres (DOCIpgsp)..... 98
Preparation of DOCI Sulfonated Polymer Microspheres (DOCI-Ssg.sp) .................99
Oligomers ................................................................................................................ 102
Luminophores.................................................................................................... 103
Preparation of Coatings... ............................ ....................... .... ............... .......... 103
Instrumentation..................................... ............................................................... 104


3 MICROSCOPIC ANALYSIS OF LUMINESCENT OXYGEN SENSOR THIN
FILM S ............................................................................................................................. 109

Introduction ................................................................................................................. 109
Results ..................... .................................................................................................. 112
Fluorescence Microscopy of Increased Concentrations of PtTFPP in SPDMS...... 112
Fluorescence Microscopy of Increased Mole Ratios of Cross-linker in
PtTFPP/SPDM S ....................................................................................................... 123
Fluorescence Microscopy of Ru(II) a-diimine Complexes in SPDMS................. 132
Fluorescence Microscopy of [Ru(dpp)3]C12 in SPDMS and PDMS with Fumed SiO2
...................................................................................... ..................................... 150
Discussion ................................................................................................................... 163
Analysis of PtTFPP Films ....................................................................................... 163
Analysis of Ru (II) a-diimine Films ................................................................... 164
Experimental ......................................................................................................... 168
Oligomers ................................................................................................................ 168
Luminophores............................................................................................... 168
Preparation of Coatings........................................................................................... 174
Instrumentation........................... ....................................................................... 175
Fluorescence M icroscope Image Analysis.............................................................. 175


4 CONCLUSIONS.............................................................. ...................................... 178


viii









PV-WAVE MACRO AND SUBROUTINES............................................................ ..182

LIST OF REFERENCES ............................................................................................... 192

BIOGRAPHICAL SKETCH ....................................................................................... 204



















































ix













LIST OF TABLES


Table Page

1-1: Photochemical Characteristics of the Ru(II) a-diimine Complexes in Water.............. 8

1-2: Platinum and Palladium Porphyrin Based Optical Oxygen Sensors.......................... 11

2-1: Percent change in PtTFPP emission area at seven pressures over a 40 K range for
PtDOCIpgsp/VPDMS coating on primed glass............................................. 39

2-2: Percent change in PtTFPP emission area at seven pressures over a 40 K range for
PtDOCI-Sspsp/VPDMS coating on primed glass............................................... 39

2-3: SV analysis of PtTFPP emission quenching in PtDOCIpjsp/VPDMS coating on
primed glass for a cyclic temperature run................................................... 40

2-4: SV analysis of PtTFPP emission quenching in PtDOCI-Sslsp/VPDMS coating on
primed glass for a cyclic temperature run................................................... 40

2-5: Percent change in DOCIpgsp emission area at seven pressures over a cyclic
temperature run of 40 K for PtDOCIpjtsp/VPDMS coating on primed glass.....44

2-6: Percent change in DOCI-Ssglsp emission area at seven pressures over a cyclic
temperature run of 40 K for PtDOCI-Ssgsp/VPDMS coating on primed glass. 45

2-7: SV Analysis of PtTFPP emission quenching in PtDOCIppsp/VPDMS coating on
bare glass. ....................................................................................................... 47

2-8: SV Analysis of PtTFPP emission quenching in PtDOCI-Sspsp/VPDMS coating on
bare glass. ............................................................... ..................................... 47

2-9: SV Analysis of PtTFPP emission quenching in VPDMS polymer on bare glass. ....... 48

2-10: SV Analysis of PtTFPP emission quenching in PtDOCIpgsp/VPDMS coating on
prim ed glass................................................................................................... 48

2-11: SV Analysis of PtTFPP emission quenching in PtDOCI-Sstsp/VPDMS coating on
prim ed glass................................................................................................... 48







2-12. SV Analysis of PtTFPP emission quenching in VPDMS polymer on primed glass.. 49

2-13: Analysis of the area under the emission curve for DOClpp.sp in
PtDOCIpp.sp/VPDMS coating on bare and primed glass................................. 50

2-14: Analysis of the area under the emission cure for DOCI-Sspsp in PtDOCI-
Sslpsp/VPDMS coating on bare and primed glass.................. ....................51

2-15: Analysis of the area under the emission curve for DOCIppsp in VPDMS poly mer
on bare and prim ed glass .................................................................................. 51

2-16: Analysis of the area under the emission curve for DOCI-Sspsp in VPDMS
polymer on bare and primed glass..... ............................. ... ... .. ..... 52

2-17: Percent photodegradation of the relative emission intensity for DOCIppsp in
PtDOCIppsp/VPDMS coaling on hare and primed glass ................................ 5

2-18: Percent photodcgradation of the relative emission intensity for DOCI-Ssp.sp in
PtDOCI-Sspsp/VPDMS coaling on primed glass .............................................. 59

2-19: Number of microsphere objects for 1f'e regiions of the ID)CIppspVPIDMS ilm.....72

2-20: Number of microsphere objects for five regions of the D)(CI-Spsp/VPIDMS film.. 72

2-21: Average and standard deviation of the microsphere objects' lengths for each region
of the DOCIp sp/VPDM S film ........................................................................ 73

2-22: Average and standard deviation of the microsphere objects' lengths for each region
of the DOCI-Ssl sp/VPDMN S film. ............................ ...................... ............ 73

2-23: Microscopic SV analysis of fi'e regions for Ptl)()Clpisp/VAPDMS thin fiilm using
the 10X and 40X objectives. ............................... .......................................... 81

2-24: Microscopic SV analysis of five regions for PtI))OC-SspIVspPDMS thin film
using the 10X and 40X objectives. ... ....... .. ....... 81

2-25: Macroscopic SV response data for PtDOCIppsp/VPDMS and PtDOCI-
Sspsp/V PD M S film on glass. .......................................................................... 83

2-26: Corresponding pressure values and statistical distributions for the uncorrected
ratioed intensity images of the PiDOCIlppp/VP)DMS coating on an alumLinum
plate at seven pressures hetw een 2 14.8 p i. ................................ ............ 88

2-27: Corresponding pressure values and statistical distributions for the corrected ratioed
intensity images of PtDOCIppsp/VPDMS coating onn an aluminum plate at
seven pressures between 2 14.8 psi ......................................... .......... ............ .. 89





2-28: Corresponding pressure values and statistical distributions for the corrected ratioed
intensity images of PtDOCI-Ss.sp/VPDMS coating on an aluminum plate at
seven pressures between 2 14.8 psi.......................................... ............ .... 91

3-1: Macroscopic SV response data for increased concentrations (mM) of PtTFPP
dispersed in SPDM S binder on glass. ............................................................... 114

3-2: PtTFPP emission intensity area (X = 630 670 nm) values for increased
concentrations (mM) of PtTFPP dispersed in SPDMS binder on glass .............. 114

3-3: Maximum fluorescence intensity values for 10X microscopic regions of increased
concentrations (mM) of PtTFPP dispersed in SPDMS binder on glass at 0.4
p si........................................................................................................................ 1 16

3-4: Percent standard deviation (a, %) in intensities at seven pressures for microscopic
regions of increased concentrations (mM) of PtTFPP dispersed in SPDMS
binder on glass using the 10X objective.............................................................. 117

3-5: Maximum Ksv values for 10X microscopic regions of increased concentrations
(mM) of PtTFPP dispersed in SPDMS binder on glass.................................. 119

3-6a: Microscopic SV analysis of five 10X regions for increased concentrations (mM) of
PtTFPP dispersed in SPDMS binder on glass .................................................. 121

3-6b: Microscopic SV analysis of five 10X regions for increased concentrations (mM) of
PtTFPP dispersed in SPDMS binder on glass................................................... 121

3-7a: Microscopic SV analysis of five 40X regions for increased concentrations (mM) of
PtTFPP dispersed in SPDMS binder on glass................................................... 122

3-7b: Microscopic SV analysis of five 40X regions for increased concentrations (mM) of
PtTFPP dispersed in SPDMS binder on glass................................................... 122

3-8: Macroscopic SV response data for PtTFPP/SPDMS on glass at five different mole
ratios of cross-linker......................................................................................... 124

3-9: PtTFPP emission intensity area (X = 630 670 nm) values for increased mole ratios
of cross-linker in PtTFPP/SPDMS on glass ........................................................ 124

3-10: Maximum fluorescence intensity values for 10X microscopic regions of
PtTFPP/SPDMS on glass at five different mole ratios of cross-linker at 0.4
psi............................................................................................................ ..... 126

3-11: Percent standard deviation (a, %) in intensities at seven pressures for microscopic
regions for PtTFPP/SPDMS on glass at five different mole ratios of cross-
linker........................................................................................................... 127







3-12: Maximum Ksv values for IOX microscopic regions for PtTFPP/SPDMS on glass at
five different mole ratios of cross-linker................................ .......................... 129

3-13a: Microscopic SV analysis of five 10X regions for PtTFPP/SPDMS on glass at five
different m ole ratios of cross-linker. ........ ....................................................... 130

3-13b: Microscopic SV analysis of five 10X regions for PtTFPP/SPDMS on glass at five
different mole ratios of cross-linker ....... ......................................................... 131

3-14a: Microscopic SV analysis of five 40X regions for PtTFPP/SPDMS on glass at fie
different m ole ratios of cross-linker......... .................................................... 131

3-14b: Microscopic SV analysis of five 40X regions for PtTFPP/SPDMS on glass at five
different mole ratios of cross-linker .................................................................. 132

3-15: Macroscopic SV response data for Ru( Il ao-diimine complexes dispersed in
SPD M S hinder on glass. ................................................................................ 134

3-16: Ru II) a-diimine complex emission intensity area (X = 6X) 640 nm) \ values at 0.1
psi for Rut l) a-diimine complexes dispersed in SPDMS hinder on glass ........ 135

3-17: Ru( II) a-diimine complex molar concentration (mM) for Ru 11l) c-diiminc
complexes dispersed in SPDMS hinder on glass.......................................... 135

3-18: Maximum fluorescence intensity values for 10X microscopic regions of Ru( I) a-
diimine complexes dispersed in SPDMS hinder on glass at 0.4 psi .................. 139

3-19: Percent standard deviation ( '; ) in intensities aX seen pressures for microscopic
regions of Rut iI) u-diimine complexes dispersed in SPDMS hinder on glass .. 140

3-20. Maximum Ksv values for 10X microscopic regions of Ru(IIl a-diimine complexes
dispersed in SPDM S hinder on glass. ............................................................. 143

3-21a: Microscopic SV analysis of five IOX regions for Ru(Ill a-diimine complexes
dispersed in SPDM S hinder on glass ........................................................... 144

3-21b: Microscopic SV analysis of five IOX regions for Rut ll) a-diimine complexes
dispersed in SPDM S hinder on glass ............................................................ 144

3-21c: Microscopic SV analysis of five 10 X regions for Ru( II) a-diimine complexes
dispersed in SPDM S hinder on glass. ................................................................. 145

K R"
3-22a: Discrete "' (x,y) values for three regions outlined in 10X microscopic Ksv(x,y)
image maps of Ru(II) a-diimine complexes dispersed in SPDMS hinder on
g lass ..................................................................................................................... 14 6







Ktavg
3-22b: Discrete sv (x,y) values for three regions outlined in 10X microscopic Ksv(x,y)
image maps of Ru(II) a-diimine complexes dispersed in SPDMS binder on
g lass ..................................................................................................................... 14 7

3-23a: Microscopic SV analysis of five 40X regions for Ru(II) a-diimine complexes
dispersed in SPDM S binder on glass. ............................................................... 149

3-23b: Microscopic SV analysis of five 40X regions for Ru(II) a-diimine complexes
dispersed in SPDM S binder on glass. ............................................................... 149

3-23c: Microscopic SV analysis of five 40X regions for Ru(II) a-diimine complexes
dispersed in SPDM S binder on glass. ............................................................... 150

3-24: Macroscopic SV response data for [Ru(dpp)3]Cl2 dispersed in SPDMS or PDMS
binder on glass with increased weight percent of fumed silica gel ................. 152

3-25: Maximum fluorescence intensity values for 10X microscopic regions of
[Ru(dpp)3]Cl2 dispersed in SPDMS or PDMS binder on glass with increased
weight percent of fumed silica gel..................................................................... 155

3-26: Percent standard deviation (o, %) in intensities at seven pressures for microscopic
regions of [Ru(dpp)3]C12 dispersed in SPDMS or PDMS binder on glass with
increased weight percent of fumed silica gel................................................... 156

3-27: Maximum Ksv values for 10X microscopic regions of [Ru(dpp)3]C12 dispersed in
SPDMS or PDMS binder on glass with increased weight percent of fumed
silica gel......................................................................................................... 158

3-28a: Microscopic SV analysis of five 10X regions for [Ru(dpp)3]Cl2 dispersed in
SPDMS binder on glass with increased weight percent of fumed silica gel..... 159

3-28b: Microscopic SV analysis of five 10X regions for [Ru(dpp)3]C12 dispersed in
PDMS binder on glass with increased weight percent of fumed silica gel ...... 160

3-29: Discrete K (x,y) values for three regions outlined in 10X microscopic Ksv(x,y)
image maps of [Ru(dpp)3]Cl2 dispersed in PDMS or SPDMS binder on glass
with increased weight percent of fumed silica gel........................................... 161

3-30a: Microscopic SV analysis of five 40X regions for [Ru(dpp)3]Cl2 dispersed in
SPDMS binder on glass with increased weight percent of fumed silica gel..... 162

3-30b: Microscopic SV analysis of five 40X regions of [Ru(dpp)3]Cl2 dispersed in
PDMS binder on glass with increased weight percent of fumed silica gel. ...... 162














LIST OF FIGL'RES


Figure Page

1-1: Stern-Volmer plots of 1JI versus pO2 for the follow ing optical oxygen sensors:
[Ru(phen)h]* in silicone rubber, GE RTV 118 (A), and [Ruthpy)3]2j in
silicone rubber. G E RTV 118 ( )....... ......... ..................................................... 4

1-2 Structures of the major Ru(T ) a-diimine luniinophores uLsed in optical oxXgen
sensors. ([Rut hp )~1', [Ru( phen)jhl*, and [ Ru dpp)]J2*) .................................. 8

1-3: Structures of the major platinum and palladium porphi rings used in optical o\\ gen
sensors. ( M = PtUl ) or Pd II)) .................................................................. .......... 9

1-4: Repeat unit of (fuor/c soprop)y/butyll acrylic poll mer................................................ 13

1-5: Repeat unit of pol) (styrene-co-pentat'luorostyrene) copolymer ................................... 14

1-6. Repeat units of pol (aminotthionylphospha/ene)-h-poly(tetrah droturan) block
copolym er. ........................................ .............................. .. ....... ................ 15

1-7: Pressure Sensitive Paint measurement system for testing of air pressure profiles on
an airplane m odel in a \ ind-tunnel...... .......................................................... 16

1-8: Gray-scale pressure distribution map for a nitrogen jet protruding from a PSP
coating ........................................................................................................ ..... 17

2-1: Scheme for preparation of DOCI highly cross-linked polymer microsphcres
(DOCIp.sp). A) 5 vol DVB relative to total volume. AIBN 2 wl. r;
relative to monomer, A 70 C for 24 h.. EtOH wash. dry in vacuoi at 50 C for
12 h. B) 1 mL MeOFH, ,onicate I h., soak in dark for 7 d., IMOH and CH2Cl:
wash. dry in vacuo at 30" C for 12 h........................................................ ... 2

2-2: Scheme for preparation of DOCI sulfonated polymer microspheres (DOCI-SsJpp).
A) 45 vol % DVB relative to total volume, DI H0O:porogen = 25:1 v/v,
porogen:monomcr = 1:1.4 v/v, porogen = 1:1 l-dodecanool:toluene, sodium
laurylsulfate 0.3 mol 'r relative to monomer, A 260 700 C 7 h. at 250 rpm.
DI H20 and acetone wash. THF Soxhlet extraction, dry in wvacu 480 C 12 h.
B) 40 mL CH.Cl2, 00 C, 0.5 mL CISOIH in 40 mL CHJCI dropwisc, warm to








250 C, stir 24 h. 250 C, CH2C12 wash, air dry. C) 150 mL DI H20, 50 mL
NaOH (150 mM), stir 100 min. 250 C, 3x100 mL DI H20 wash, 100 mL
acetone wash, dry in vacuo 53 C 40 h. D) 4 mL MeOH, 2 mL DI H20,
sonicate for 20 min., MeOH and acetone wash............................. ............ .. 30

2-3: Scheme for preparation of dual-luminophore oxygen sensing coatings.
PtDOCIpgpsp/VPDMS and PtDOCI-Ssgsp/VPDMS ........................................ 31

2-4: Emission intensity spectra for PtTFPP and DOCIpgsp dispersed in VPDMS
polymer on primed glass. .................................................. .......................... 33

2-5: Emission intensity spectra for PtTFPP and DOCI-Ssjsp dispersed in VPDMS
polym er on primed glass. .................................................. .......................... 35

2-6: SV plot PtDOCIpgsp/VPDMS coating on primed glass for temperatures between
273 313 K. AREF: area between 630 670 nm at 14.7 psi and 313 K. ........... 38

2-7: SV plot PtDOCI-Ssgsp/VPDMS coating on primed glass for temperatures between
273 313 K. AREF: area between 630 670 nm at 14.7 psi and 313 K............ 38

2-8: Emission intensity spectra for DOCIppsp in PtDOCIpgsp/VPDMS coating on
primed glass at 0.1 psi for five temperatures between 273 313 K..................41

2-9: Emission intensity spectra for DOCI-Sspsp in PtDOCI-Sspsp/VPDMS coating on
primed glass at 0.1 psi for five temperatures between 273 313 K.................. 42

2-10: Temperature dependence of emission for DOCIppsp in PtDOCIppsp/VPDMS
coating on primed glass for a series of pressures between 0.1 14.7 psi. AREF:
area between 530 570 nm at 273 K and 0.1 psi ............................................. 43

2-11: Temperature dependence of emission for DOCI-Ssgsp in PtDOCI-Ssgsp/VPDMS
coating on primed glass for a series of pressures between 0.1 14.7 psi. AREF:
area between 530 570 nm at 273 K and 0.1 psi ............................................. 43

2-12: Photostability of PtTFPP emission in PtDOCIppsp/VPDMS coating on bare and
primed glass at 5 and 14.7 psi and RT. AREF: area between 630 670 nm at
240 m in.......................................................................................................... 54

2-13: Photostability of PtTFPP emission in PtDOCI-Ssgsp/VPDMS coating on bare and
primed glass at 5 and 14.7 psi and RT. AREF: area between 630 670 nm at
240 m in.......................................................................................................... 54

2-14: Photostability of PtTFPP emission in VPDMS polymer coating on bare and primed
glass at 5 and 14.7 psi and RT. AREF: area between 630 670 nm at 240 min. 55







2-15: Photostability of DOClppsp relative emission intensity in PtDOClppsp/VPDMS
coating on bare and primed glass at 5 and 14.7 psi and RT. AREF: area
between 530- 570 nm at 240 m in ................................................................ .... 56

2-16: Photostability of DOCI-Sstasp relative emission intensity in PtDOCI-
Sspsp/VPDMS coating on bare and primed glass at 5 and 14.7 psi and RT.
AREF: area betu een 530- 570 nm at 240 min ................................ ................. 57

2-17: Photostability of DOCIppsp relative emission intensity in VPDMS polymer
coating on bare and primed glass at 5 and 14.7 psi and RT. AHF: area
between 530 570 nm at 240 min. ............ .... ....... ........................................ 57

2-18: Photostability of DOCI-Ssp.sp relative emission intensity in VPDMS polymer
coating on bare and primed glass at 5 and 14.7 psi and RT. ArEF: area
between 530 570 nm at 240 m in. .................... .......................................... 58

2-19: Scanning electron micrograph of precipitation Imicrospheres (ppsp)(5 vol ; of
DVB55; acetonitrile). The scale bar consists of 11 w white vertical lines and is
5 pm long from the first line to the last line............................... ................... 60

2-20: Scanning electron micrograph of fractured precipitation microspheres (ppsp)(5 \ol
r' of DVB55; acetonitrile). The scale bar consists of I1 white vertical lines
and is 1.5 pm long from the first line to the last line. .........................................61

2-21: Scanning electron micrograph of precipitation microspheres (5 vol c; of DVB55:
acetonitrile) with 7.27 wt. "; adsorbed DOCI (DOCIppsp). The scale bar
consists of 11 white vertical lines and is 2.31 pm long from the first line to the
last line. .......... ........... ......... .................................................................. ........... 62

2-22: Scanning electron micrograph of fractured precipitation microspheres (5 ,ol of
DVB55; acetonitrile) with 7.27 wt. q DOCI (DOCIppsp). The scale bar
consists of 11 white vertical lines and is 750 nm long from the first line to the
last line. ...................................................................................................... .... 62

2-23: Scanning electron micrograph of negatively charged. sulfonated, suspension
microspheres (Sspp')(45 vol r, of DVB55: I-dodecanol:toluene = 1:1). The
scale bar consists of 11 white vertical lines and is 10 pm long from the first
line to the last line ................. ................. ........................................ ........... 63

2-24: Scanning electron micrograph of fractured negatively charged, siulfonated.
suspension microspheres (Sspp') (45 1vol 'r of DVB55; 1-dodecanol:toluene =
1:1). The scale bar consists of 11 white vertical lines and is 750 nm long from
the firsl line to the last line. .................................................................... ......... .. 64

2-25: Scanning electron micrograph of fractured negatively charged, sulfonated,
suspension microspheres (45 vol % of DVB55; I-dodecanol:tolucne = 1:1)


xvii









with 3.83 wt. % adsorbed DOCI (DOCI-Sslsp). The scale bar consists of 11
white vertical lines and is 2.73 ptm long from the first line to the last line......... 65

2-26: Scanning electron micrograph of the surface of a thin film (~ 10 plm) of SPDMS
containing DOCIppsp (7.27 wt. % DOCI)(5 vol % of DVB55; acetonitrile).
The scale bar consists of 11 white vertical lines and is 5.02 p.m long from the
first line to the last line.................................................................................. .... 66

2-27: Scanning electron micrograph of the interior morphology of a thin film (- 10 plm)
of VPDMS containing DOCIppsp (7.27 wt. % DOCI)(5 vol % of DVB55;
acetonitrile). The scale bar consists of 11 white vertical lines and is 33.3 p.m
long from the first line to the last line. ................................................. .......... 67

2-28: Scanning electron micrograph of the interior morphology of a thin film (~ 10 p.m)
of VPDMS containing DOCIppsp (7.27 wt. % DOCI)(5 vol % of DVB55;
acetonitrile) (27X magnification of Figure 2-27). The scale bar consists of 11
white vertical lines and is 1.20 p.m long from the first line to the last line......... 67

2-29: Transmission electron micrographs of a < 100 nm slice of [Ru(dpp)3]Cl2 dispersed
in SPDMS polymer. (A) X4500 magnification of polymer, white scale bar is
3.0 p.m long and (B) X70000 magnification of polymer, white scale bar is 0.4
m long. ......................................................................................................... 69

2-30: Fluorescence microscope image of A) DOCIpp.sp/VPDMS film and B) DOCI-
Sslsp/VPDMS film obtained with a CCD camera through a 40X and 60X
objective, respectively. White scale bar is 26.5 pm and 17.8 pgm long,
respectively.................................................................................................... 7 1

2-31: Histogram of the microsphere objects' major axis lengths for A)
DOCIppsp/VPDMS film and B) DOCI-Ssgpsp/VPDMS film. Vertical bars
equal a 0.5 lpm length increment................................................. ................ 73

2-32: Fluorescence images of PtDOCIpplsp/VPDMS film obtained with a CCD camera
through a 40X objective. White scale bars are 37.9 pm long. A) PtTFPP
emission (ca. 630 nm), B) DOCIpplsp emission (ca. 525 nm), C) PtTFPP and
DOCIpplsp emissions (> 475 nm). ............................................... ........ .... 76

2-33: Line scan analysis of the emission intensity of a fluorescence microscope image of
PtDOCIpp.sp/VPDMS film obtained with a CCD camera through a 40X
objective with a 525 nm 50 nm, bandpass filter (DOCI emission response).
A) Fluorescence microscope image of DOCIppLsp emission and B) Emission
line scans for three 30 p.m lines through microsphere clusters in image A...... 77

2-34: Line scan analysis of the emission intensity of a fluorescence microscope image of
PtDOCIppsp/VPDMS film obtained with a CCD camera through a 40X
objective with a 630 nm 60 nm, bandpass filter (PtTFPP emission response).


xviii







A) Fluorescence microscope image of PtTFPP emission and B) Emission line
scans for three 30 pm lines through microsphere clusters in image A............... 78

2-35: False-colored quantitative microscopic fluorescence intensity (0.5psi. O1X) and
Kss(x.y) image maps for PtDOCIppsp/VPDMS thin film. White scale bars
are 61.5 pm long. A) False-colored quantitative microscopic fluorescence
intensity image. Ima, = 11081 a.u.. yellow color and B) Quantitative
microscopic Ksv(x,y) image map for the identical region. K = 0.87() psi'
yellow color ....................................................................................................... 80

2-36: False-colored quantitative microscopic fluorescence intensity (0.5psi, 10X) and
Ks,(x,y) image maps for PtDOCI-Ssp.spVPDMS thin film. White scale bars
are 61.5 pm long. A) False-colored quantitlati\e microscopic fluorescence
intensity image. I, = 16562 a.u.. yellow color and B) Quantitati\e
microscopic Ks (x.y) image map for the identical region. K = .88() psi 1,
yellow color............... ...... ............ .... ................................................... ...... 80

2-37: Macroscopic SV plot of PtDOClpp.sp/VPDMS thin film on glass. AKe-: area
between 630 670 nm at 14.7 psi and 298 K ..................................................... 82

2-38: Macroscopic SV plot of PtDOCI-Sspsp/VPDMS thin film on glass. ARE-: area
between 630 670 nm at 14.7 psi and 298 K ................................................... 83

2-39: Fluorescence microscopy images of 250 pm thick [Ru(dpp)hCI:/SPDMS strips
embedded in formvar resin obtained with a CCD camera through a 60X
objective. White scale bars are 24.5 pm long. ...................................... 85

2-40: Stern-Volmer plot and ratioed emission plots \Lrsus pressure and temperature for
PtDOCIppsp/VPDMS coating analyzed and imaged in a static calibration cell.
A) SV plot. emission integrated over an approximate area of 630 670 nm,
excitation at 460 nm. B) Ratioed emission plot versus pressure, emission
integrated over an approximate area of 530 570 nm. excitation at 460) nm.
C) Ratioed emission plot versus temperature, emission integrated over an
approximate area of 630 670 nm. excitation at 460 nm. and D) Ratioed
emission plot versus temperature, emission integrated over an approximate
area of 530 570 nm. excitation at 460 nm .................................................... 86

2-41: Luminescence ratioed intensity images at seven pressures from 2 14.8 psi for
PtDOCIppsp/VPDMS coating on an aluminum plate assuming a constant
temperature distribution over the plate. Emission collected at 650 nm peak
and excitation at 460 nm. Intensity scale bars appear to the right of each
im age for 0 18.0 psi ........................................................................................ 87

2-42: Corrected luminescence ratioed intensity images at seven pressures from 2 14.8
psi for PtDOCIppsp/VPDMS coating on an aluminum plate. Emission







collected at 650 nm peak and excitation at 460 nm. Intensity scale bars appear
to the right of each image for 0 18.0 psi..................................... ............ .. 89

2-43: Stern-Volmer plot and ratioed emission plots versus pressure and temperature for
PtDOCI-Ssglsp/VPDMS coating analyzed and imaged in a static calibration
cell. A) SV plot, emission integrated over an approximate area of 630 670
nm, excitation at 460 nm, B) Ratioed emission plot versus pressure, emission
integrated over an approximate area of 530 570 nm, excitation at 460 nm,
C) Ratioed emission plot versus temperature, emission integrated over an
approximate area of 630 670 nm, excitation at 460 nm, and D) Ratioed
emission plot versus temperature, emission integrated over an approximate
area of 530 570 nm, excitation at 460 nm.................................. ............. 90

2-44: Corrected luminescence ratioed intensity images at seven pressures from 2 14.8
psi for PtDOCI-Sgsp/VPDMS coating on an aluminum plate. Emission
collected at 650 nm peak and excitation at 460 nm. Intensity scale bars appear
to the right of each image for 0 18.0 psi..................................... ............ .. 91

2-45: Calibration cell intensity images of the PtDOCIpgsp/VPDMS and PtDOCI-
Ssgsp/VPDMS coatings on an aluminum plate imaged at 650 nm and 550 nm.
Excitation at 460 nm. A) PtDOCIptsp/VPDMS at 650 nm, B)
PtDOCIpgsp/VPDMS at 550 nm, C) PtDOCI-Ssglsp/VPDMS at 650 nm, D)
PtDOCI-Ssgsp/VPDMS at 550 nm......................................................................93

2-46: Inverted Fluorescence Microscope set-up for imaging of luminescent oxygen
sensing thin film s. .......................................................................................... 105

3-1: Scheme for preparation of PtTFPP/SPDMS luminescent thin films........................ 112

3-2: Macroscopic SV plots for increased concentrations (mM) of PtTFPP dispersed in
SPDMS binder on glass. AREF: area between 630 670 nm at 14.7 psi.......... 113

3-3: Qualitative microscopic fluorescence images (10X, 0.5 psi) for increased
concentrations (mM) of PtTFPP dispersed in SPDMS binder on glass. White
scale bars are 153 glm long. A) 2 mM, B) 3 mM, C) 5 mM, D) 10 mM, E) 17
mM PtTFPP in 500 mg SPDMS polymer binder.............................................. 115

3-4: Quantitative microscopic fluorescence intensity images (10X, 0.4 psi) for increased
concentrations (mM) of PtTFPP dispersed in SPDMS binder on glass. White
scale bars are 92 im long. Intensity color scale bars are shown to the right of
all images. A) 2 mM, B) 3 mM, C) 5 mM, D) 10 mM, E) 17 mM PtTFPP in
500 mg SPDM S polymer binder......................................................................... 116

3-5: Intensity distribution curves for intensities obtained with a 10X objective at seven
pressures for A) 2 mM PtTFPP dispersed in SPDMS binder on glass and B)
17 mM PtTFPP dispersed in SPDMS binder on glass....................................... 118







3-6: Quantitative microscopic Ksv(x.y) image map, for increased concentrations (mM)
of PtTFPP dispersed in SPDMS binder on glass. White scale bars are 92 pm
long. Ksv color scale bars are shown to the right of all images. A) 2 mM. B)
3 mM. C) 5 mM. D) 10 mM. E) 17 mM PtTFPP in 500 mg SPDMS polymer
binder........................................................................................................................ 120

3-7: Macroscopic SV plots for PtTFPP/SPDMS on glass at five different mole ratios of
cross-linker. AREF: area between 630 670 nm at 14.7 psi............................. 123

3-8: Qualitative microscopic fluorescence images (10X, 0.5 psi) for PtTFPP/SPDMS at
five different mole ratios of cross-linker on glass. White scale bars are 153
pm long. A) 1:4, B) 1:5, C) 1:7, D) 1:9, E) 1:19 mole ratio of oligomer:cross-
linker ....................................................................................................... .... 125

3-9: Quantitative microscopic fluorescence intensity images (10X, 0.4 psi) for
PITFPP/SPDMS on glass at five different mole ratios of cross-linker. White
scale bars are 92 pm long. Intensity color scale bars are shown to the right of
all images. A) 1:4, B) 1:5, C) 1:7, D) 1:9, E) 1:19 mole ratio oligomer:cross-
lin ker.................................................................................................................... 126

3-10: Intensity distribution curves for intensities obtained with a 10X objective at se\en
pressures for A) 1:4 mole ratio of oligomer:cross-linker in PtTFPP/SPDMS
on glass and B) 1:19 mole ratio of oligomer:cross-linker in PtTFPP/SPDMS
on glass .................................................................................................... ... ......... 128

3-11: Quantitative microscopic Kso(x,y) image maps for PtTFPP/SPDMS on glass at
five different mole ratio, of cross-linker. White scale hars are 92 pm long.
Ksv color scale bars are .show n to the right of all images A) 1:4, B) 1:5, C)
1:7, D) 1:9, E) 1:19 mole ratio oligomer cross-linker....................................... 29

3-12: Ru( II) a-diim ine com plexes .................................................................................. 133

3-13: Macroscopic SV plots of Ru(ll) a-diimine complexes dispersed in SPDMS binder
on glass. AREF.: area between 600 640 ni at 14.7 pi ..................................... 133

3-14: Qualitative microscopic fluorescence images (O0X, 0.5 psi) for Ru(II) a-diimine
complexes dispersed in SPDMS binder on glass. White scale bars are 153 pmr
long. A) [Ru(dpp),]CI:. B) [Ru(dpp)i( PF,,:, C) [Ru(dpp)3](BPh4)2, D)
[Ru(dpp)3](B(Ph(CF h))4)2, E) [Ru(dbdtap)](PF,):, F) [Ru(dpp)3](B(PhFs)4)2. 136

3-15: Qualitative microscopic fluorescence (A-C) and bright-field (D-F) images (10X,
14.7 psi) for Ru(Il) a-diimine complexes dispersed in SPDMS hinder on
glass. White scale bars are 153 pm long. A and D) [Ru(dpp)i]Cl2, B and E)
[Ru(dpp)3](B(Ph(CFh)2)4)2, and C and F) [Ru(dpp).](B(PhFs)4)2...................... 137

3-16: Quantitative microscopic fluorescence intensity images (IOX, 0.4 psi) for Ru(II) a-
diimine complexes dispersed in SPDMS binder on glass. White scale bars are


xxi






92 Lim long. Intensity color scale bars are shown to the right of all images.
A) [Ru(dpp)3]Cl2, B) [Ru(dpp)3](PF6)2, C) [Ru(dpp)3](BPh4)2, D)
[Ru(dpp)3](B(Ph(CF3)2)4)2, E) [Ru(dbdtap)3](PF6)2, F) [Ru(dpp)3](B(PhFs)4)2. 139

3-17: Intensity distribution curves for intensities obtained with a 10X objective at seven
pressures for Ru(II) a-diimine complexes dispersed in SPDMS binder on
glass. A) [Ru(dpp)3]C12, B) [Ru(dpp)3](PF6)2, C) [Ru(dpp)3](BPh4)2, D)
[Ru(dpp)3](B(Ph(CF3)2)4)2, E) [Ru(dbdtap)3](PF6)2, F) [Ru(dpp)3](B(PhF5)4)2. 142

3-18: Quantitative microscopic Ksv(x,y) image maps of Ru(II) a-diimine complexes
dispersed in SPDMS binder on glass. White scale bars are 92 gtm long. Ksv
color scale bars are shown to the right of all images. A) [Ru(dpp)3]C12, B)
[Ru(dpp)3](PF6)2, C) [Ru(dpp)3](BPh4)2, D) [Ru(dpp)3](B(Ph(CF3)2)4)2, E)
[Ru(dbdtap)3](PF6)2, F) [Ru(dpp)3](B(PhF5)4)2................................................... 143

3-19: Analysis of discrete regions (white boxes) in quantitative microscopic Ksv(x,y)
image maps of Ru(II) a-diimine complexes dispersed in SPDMS binder on
glass. White scale bars are 92 gpm long. Ksv color scale bars are shown to the
right of all images. A) [Ru(dpp)3]C12, B) [Ru(dpp)3](PF6)2, C)
[Ru(dpp)3](BPh4)2, D) [Ru(dpp)3](B(Ph(CF3)2)4)2, E) [Ru(dbdtap)3](PF6)2, F)
[R u(dpp)3](B (PhF5)4)2. .................................................................................... 146

3-20: Macroscopic and microscopic SV plots of Ru(II) a-diimine complexes dispersed
in SPDMS binder on glass. AREF: area between 600 640 nm at 14.7 psi....... 148

3-21: Macroscopic SV plots of [Ru(dpp)3]C12 dispersed in SPDMS or PDMS binder with
increased weight percent of fumed silica gel on glass. AREF: area between
600 640 nm at 14.7 psi................................................................................ 151

3-22: Qualitative microscopic fluorescence images (10X, 0.5 psi) for [Ru(dpp)3]Cl2
dispersed in SPDMS or PDMS binder on glass with increased weight percent
of fumed silica gel. White scale bars are 153 gim long. A) 0 wt. % in
SPDMS, B) 1 wt. % in SPMDS, C) 10 wt. % in SPDMS, D) 0 wt. % in
PDMS, E) 1 wt. % in PDMS, F) 10 wt. % in PDMS.......................................... 153

3-23: Quantitative microscopic fluorescence intensity images (10X, 0.4 psi) for
[Ru(dpp)3]Cl2 dispersed in SPDMS or PDMS binder with increased weight
percent of fumed silica gel on glass. White scale bars are 92 lim long.
Intensity color scale bars are shown to the right of all images. A) 0 wt. % in
SPDMS, B) 1 wt. % in SPDMS, C) 10 wt. % in SPDMS, D) 0 wt. % in
PDMS, E) 1 wt. % in PDMS, F) 10 wt. % in PDMS........................................ 155

3-24: Intensity distribution curves for intensities obtained with a 10X objective at six
pressures for [Ru(dpp)3]C12 dispersed in PDMS or SPDMS binder on glass
with increased weight percent of fumed silica gel. A) 1 wt. % in PDMS, B)
10 w t. % in SPD M S. ........................................................................................... 157


xxii








3-25: Quantitative microscopic Ks,(x,y) image maps for [Ru(dpp)3]Cl2 dispersed in
SPDMS or PDMS binder with increased weight percent of fumed silica gel
on glass. White scale bars are 92 p.m long. Ksv color scale bars are shown to
the right of all images. A) 0 wt. Q in SPDMS, B) 1 wt. g in SPDMS, C) 10
wt. t in SPDMS. D) 0 wt. I( in PDMS. E) 1 wt. '; in PDMS. F) 10 wt. C; in
PD M S. ..... ...................................................... ................................................ 158

3-26: Analysis of discrete regions (white boxes) in quantitative microscopic Ks\ (.y)
image maps of [Rucdpp)3]Cl2 dispersed in PDMS or SPDMS binder on glass
with increased weight percent of fumed silica gel. White scale bars are 92
pim long. Ksv color scale bars are show n to the right of all images. A) I wt.
in PDM S. B) 10 wt. in SPDM S............................................... ........ 160

3-27: Macroscopic and microscopic SV plots of [Ru(dpp)3ClI dispersed in PDMS or
SPDMS binder on glass with weight percent of fumed silica gel. ArHF: area
between 600 640 nm at 14.7 psi A) I wt. C in PDMS and B) 10 wt. ; in
S P D M S ...................................................................................................... ....... 16 1

















a


xxiii













Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

DEVELOPMENT AND CHARACTERIZATION OF LUMINESCENT OXYGEN
SENSING COATINGS

By

Joanne M. Bedlek-Anslow

December 2000


Chairman: Kirk S. Schanze
Major Department: Chemistry

Traditional aerodynamic model systems monitor surface pressure at discrete

points along a model surface. Models must be designed sufficiently large to

accommodate placement of small electronic pressure transducers along the model surface

and placement of the corresponding wiring through the model's hull. This process is

time-consuming, expensive, and detection is limited to the point of sensor placement.

Conversely, CCD (charge-coupled device) camera technology surveys the entire model's

surface pressure by monitoring oxygen concentration induced intensity variations of a

luminescent pressure-sensitive coating. However unfavorable intensity variations

originating from surface temperature fluctuations can disrupt accurate pressure

determination.

The research presented in this dissertation focuses on the development of several

dual-luminophore coatings. These systems simultaneously determine surface pressure

(oxygen concentration) and surface temperature. Therefore correction of the


xxiv








temperature-induced intensity fluctuations of the pressure sensing luminophore is

accomplished by determining the run-time temperature field across the model surface.

Spectral resolution, compatibility with polymer binder and surface primer, and chemical

inertness with respect to one another indicate successful integration of the to

luminophores into one binder matrix. These systems are primarily evaluated using

fluorescence spectroscopy to ascertain variations in luminescent intensity with respect to

the degree of oxygen quenching. Experiments utilizing continuous illumination

monitored photodegradation and luminescence quenching studies conducted at various

temperatures evaluated the temperature-dependence of the pressure and temperature

components and binder matrix. Studies conducted in a calibration cell determined

application readiness.

Non-linear luminescent response to oxygen concentration prompted development

of a new fluorescence microscopy technique The technique interrogates se eral regions

of a coating's surface analyzing its microscopic luminescent pressure-sensitive response.

It is believed that deviations from linearity are due to heterogeneity of the polymer matrix

or the luminophore distribution. Successful quantitative measurement of the degree of

oxygen quenching at the pixel level with micrometer spatial resolution is presented for

several mono- and dual-luminophore sensing coatings utilizing various luminophores in a

polymer binder. Characterization. evaluation, and discussion of the systems' attributes

provide insight for the enhanced design of future luminescent oxygen sensing coatings.


XXV













CHAPTER 1
INTRODUCTION


Background

The quest to quantitatively measure oxygen concentration in the gas phase,

dissolved in the liquid phase or in solid gas permeable polymers with reproducible,

accurate and precise results, has garnered considerable research interest throughout the

past four decades. The beginnings of oxygen measurement are rooted in electrochemical

sensors such as the amperometric Clark cell or the galvanic Mancy cell.2 These cells

are robust and reliable measurement tools, when properly used; however, reliable

measurements are often prohibited by electrical interference, and reproducibility is

hindered by consumption of the oxygen analyte during analysis. The systems also suffer

from a bulky instrument size, which is difficult to miniaturize. Therefore the focus of

oxygen detection shifted from these traditional invasive measurement methods to the

development of noninvasive optical oxygen sensors.

As a detection system, optical sensors are advantageous, since they are robust,

cost-effective, disposable, and easily scaled to suit their desired application. Optical

sensors have been employed in numerous detection systems for such analytes as H,3-6

CO2,7,8 vapors of explosives,9 and biochemical compounds. 10-12 However, the

analysis of oxygen concentration in blood and biological systems,13,14 combustion

analysis, 15 and pressure-sensitive paint (PSP) development16-20 has been at the







forefront of optical sensor research. In particular. development in the area of pressure-

sensitive paints (PSP) has grown considerably in the last fifteen years

PSP's fundamentally consist of a luminescent molecular probe (a luminophore)

dispersed or dissolved in an oxygen permeable polymer binder. The beginnings of this

technology are seen as early as 1980, when Peterson and Fitzgerald demonstrated the

quenching of a luminophore's photoluminescence emission by oxygen.21 The)

employed Fluorescein Yellow dye as the luminophore, and adsorbed it onto a silica gel

chromatography plate. This initial experiment of flow visualization demonstrated the

possibility of oxygen concentration measurement across a surface as a determination of

overall surface pressure.


Luminescence Quenching

The composite mixture of luminophore in polymer hinder described above is

typically applied as an aerosol to substrate material such as aluminum, steel, polymer, or

composite as a film of thickness less than 50 p.m. Under 'V or blue light illumination (X

< 450 nm), the sensor coating emits light (photoluminescence) in the green, orange or red

region of the visible spectrum (X L 500 nm).21-23

Bimolecular Stern-Volmer Quenching

The photoluminescence intensity of the sensor film is inversely proportional to

the partial pressure of O2 (pO2) in the gas phase that is in equilibrium with the surface of

the coated substrate. Moreover, since under normal conditions and assuming Henry's

Law holds, pO is then proportional to the total air pressure (i.e., pO2 = cP ai). The

following processes thus define the kinetic scheme for the Stern-Volmer (SV)

himolecular quenching of the luminophore's photoluminescence intensity by oxygen:






L + hv -4 *L photon absorption (1-1)

*L L + hv luminescence, kr (1-2)

*L -* L + A non-radiative decay, knr (1-3)

*L + Q -4 L + *Q dynamic quenching, kq (1-4)

The term L is the luminophore, and Q is the quencher molecule, 02. Therefore, by

reference to the SV calibration in equation (1-5) it is possible to quantitatively relate the

photoluminescence intensity to Pair,18

I(X em, Pair = 0) / I(XPem, Pair) = 1 + KsvPair (1-5)

Ksv = kqTo = kq(kr + knr)-1 (1-6)

where I is the photoluminescence intensity at emission wavelength ,Pem, and Ksv is the

SV coefficient. Therefore the photoluminescence intensity is inversely proportional to

Pair.

In many applications it is impractical to use Pair = 0 as a reference condition, and

consequently the SV equation is re-cast as equation (1-7),

I(XPem, Pair = 1 atm)/ I(X em, Pair) = A + BPair (1-7)

where the reference condition is taken as Pair = 1 atm,24 and the non-zero coefficients A

and B are a function of temperature and reference conditions (B/A = Ksv).

Modeling Non-linear Stern-Volmer Response

Some luminescent 02 sensor films feature linear SV calibrations in accord with

equations (1-5) or (1-7); however, many sensors exhibit non-linear calibrations that are

curved downward such as those displayed in Figure 1-1.25-27













3,m
4 .





0 200 400 600 800
Oxygen pressure Torr i

Figure 1-1: Stern-Volmer plots of I/, versus p02 for the following optical oxygen
sensors: [Ru(phen)3]2 in silicone rubber, GE RTV 118 (A), and [Ru(hpyh)]2 in silicone
rubber, GE RTV 118 ().



Although a number of studies have attempted to identify the basis for this non-

ideal SV response, the fundamental processes) responsible are still not \\ell

understood.25,28 Several mathematical models have been developed to fit the non-linear

SV correlations. These mathematical models are formulated based on the physical

hypothesis that the sensor film is inhomogeneous. possibly due to nano-or nmeso-scale

irregularities in the polymer morphology or the environment surrounding the luminescent

sensor molecules Several models have received considerable attention.

The two quenching site model in (1-8),25.29,30 explains the complex quIenching

behavior exhibited by a microheterogeneous system. The two-site equation is

I I
--o- (1-8)
I f +, f0z
+
1+K~Pp I+KSvPo

where fj is the fraction of each of the two sites contributing to the unquenched intensity,

and the Ksv values are the quenching constants for the two sites. The model works well




5

for quantitatively fitting intensity quenching data; however, it should be cautioned that

while it is able to fit more complex systems, the fitting parameters should be judiciously

chosen to avoid mechanistic misinterpretations.25,31 In other words, the fact that the

response of a specific sensor can be modeled by equation (1-8) does not necessarily mean

that the sensor has two specific quenchable sites.

The Gaussian or log-Gaussian distributions represent another set of models which

give predictive values for the non-linear response exhibited by SV plots.26,29,32,33 The

log-Gaussian distribution in the natural luminescent lifetime of the luminophore (To) and

the quenching rate constant (kq') generates theoretical model parameter values which are

physically plausible and consistent at all partial pressures of oxygen, p02. The log-

Gaussian distribution in to and kq' with respect to x is


1exp(pix)exp(- x2)ix
Io. ---- (1-9)
I {exp(p,x)exp(- x2 )[ 1+ exp({ p1 + p2 x)] }dx


where

px = ln(To,i/T,mdl) (1-10)

P2X = ln(kq,i/kq,md) (1-1)

0 = KsV,mdl pO2 = tO,mdl kq,mdl pO2 (112),

and where pi is a measure of the breadth of the distribution with respect to To,i, and TOmdl

is the natural lifetime associated with the modal number of sites; P2 is a measure of the

breadth of the distribution with respect to kq,i, and kq,mdl is the quenching rate constant by

oxygen of the modal number of sites; P2 can be of the same sign or opposite to pi. The







model is capable of providing physical rationale for disparate response features in typical

optical oxygen sensors: however, it fails to explain physical phenomena associated with

bi-phasic material.33

Finally, first-, second-, and third- order polynomials applied to non-linear SV

response data20 tend to fit the data sets in a limited pressure region. but they fail when

predicting extended pressure regions or an extrapolation of the data set.24 Therefore the

dual sorption model has been applied to the SV relationship (1-5) producing the intensity-

pressure relationship in (1-13),24

I_ P D(P/P )
S=A+B-+C D(P/Ptf (1-13)
I Pf I+ D P/P )

where the non-zero coefficients A, B, C, and D are a function of temperature and

reference conditions The model Vworks well with cases where pressure ranges are large

or extrapolated regions are needed; however, due to the non-lincarity of such data. it

requires an iterative technique for determining the calibration coefficients. Theerefore, for

high pressures and limited pressure regions. a first- or second-order polynomial is

recommended.24


Luminophores and Polymers

The luminescent molecular probe dispersed in a PSP is generally a luminescent

transition metal complex (TMC). TMC's are more advantageous than fluorescent

organic luminophores because of their long excited state lifetimes (Ti) and high

luminescence quantum yields (QL).34 Most often, these metal complexes are either

Ru(II) a-diimine31,35 complexes or Pt(II)/Pd(II) porphyrin macrocycles. 16,36-38 The






oxygen permeable polymer binder most commonly used is silicone; however, other

polymers such as cellulose acetate (CA),39 polymethylmethacrylate (PMMA),40

polyvinylchloride (PVC),41 polystyrene (PS),42 and sol-gels43,44 all with or without

plasticizers have also been employed.

Ru(II) a-Diimine Complexes

The Ru(II) a-diimine complexes have been investigated extensively as oxygen-

quenchable species both in the liquid45,46 and solid phases:47 tris(2,2'-

bipyridyl)ruthenium(II), [Ru(bpy)3]2+; tris(1,10-phenanthroline)ruthenium(II),

[Ru(phen)3]2+; and tris(4,7-diphenyl-1,10-phenanthroline)-ruthenium(II), [Ru(dpp)3]2+

Their extensive use is due to several factors: (1) their ability to be excited in the visible

region; (2) their long emission lifetimes (To), which are generally hundreds of

nanoseconds to tens of microseconds, allow the excited state to be easily quenched by

oxygen; (3) they exhibit high luminescence quantum yields (0L); (4) large Stokes shifts

in the emission spectra minimize excitation source interference; and (5) they possess

excellent photostability.25,48,49 Several examples of Ru(II) a-diimine complexes are

shown in Figure 1-2.50




















) [RI
N ND bip
N
N [R


N
N


/- 4,7
N N N


u(bpy)3]2
,yridyl


u(phen)3]2
0-phenanthroline




i(dpp)h
-diphenyl-1,10-phenanthroline


Figure 1-2: Structures of the major Ru(II) a-diimine luminlophores used in optical
oxygen sensors. ([Ru(hpyh)l', [Ru(phenh)]', and [Ru(dpp)Il").



As a result of the desirable properties shown in Table 1-1.50 the ldeign of Ru(II) X-

diimine complexes has been extensively investigated 25,3 1.34


Table 1-1: Photochemical Characteristics of the Ru(II) o-diimine Complexes in Water.


Luminophore To, Is Xx, nm E, Xn,. nm OL
(absorption) 104 dm3 (emission)
mol'"cm'


[Ru(bpy)h] 0.60
[Ru(phen)h]* 0.92
[Ru(dpp)3J2 5.34'
a in methanol. b in


(423),. 452
447.421
460
2-butanone, in


1.46 613.627 0.042
1.83. 1.90 605.625 0.080h
2.95 613, 627 -0.30L
water/ethanol, sh = shoulder






Pt(II)/Pd(II) Porphyrin Macrocycles

Pt(II)/Pd(II) porphyrin macrocycles have received considerable recent research

interest because of their ability to be more sensitive to oxygen quenching than the Ru(II)

a-diimine complexes.36,37,51 Several examples of Pt(II)/Pd(II) porphyrin macrocycles

are shown in Figure 1-3.50




N- N N

N" N



Tetraphenyl porphyrin (TPP) Octaethyl porphyrin (OEP)



NN




Porphyrin

Octaethyl porphyrin ketone
(OEPK)

Figure 1-3: Structures of the major platinum and palladium porphyrins used in optical
oxygen sensors. (M = Pt(II) or Pd(II)).



Their high oxygen sensitivity results from long excited state lifetimes, generally

tens to hundreds of microseconds, due in part to nt-n* transitions centered on the

porphyrin ring. 16 A strong spin-orbit coupling exists resulting from significant

interaction between the Pt(II) or Pd(II) metal d-orbitals and the anti-bonding 7t* orbitals

of the porphyrin ring which induces intersystem crossing to the triplet state.52,53 This







effect significantly decreases the triplet lifetime and increases the phosphorescence N field:

therefore, surrounding oxygen molecules effectively quench the luminophores'

photoluminescence.

In addition to their enhanced ability to be quenched by oxygen. Pt(II)/Pd(II)

complexes also possess the same desired excitation and emission characteristics as the

Ru(II) a-diimine complexes: (1) they are easily excited in the visible region: (2) they

possess high luminescence quantum yields (OL); and (3) they exhibit large Stokes shifts

and excellent photostability. 16,50 A listing of several optical sensor characteristics for

Pt(l)/Pd(II) porphyrins disbursed in polymer hinders are displayed in Table 1-2.50




Table 1-2: Platinum and Palladium Porphyrin Based Optical Oxygen Sensors.
Luminophore To, ms Xmax, nm (L Medium
(emission)


Pd-CPP
Pd-CPP
Pd-CPP
Pd-CPP
Pt-OEPK
Pt-OEPK
Pt-OEPK
Pd-OEPK


0.40
0.80
1.06
0.91
0.061
0.061
0.058
0.46


667
667
667
667
760
759
759
790


0.2
0.2
0.2
0.2
0.1
0.12
0.12
0.01


Water
Silicone rubber RTV 118(GE)
PS
PMMA
PS
PS
PS
PS


Pt-OEPK 0.064 759 0.12 PVC
Pd-OEPK 0.44 790 0.01 PVC
Pd-TPP 690 Arachidic acid L-B film
Pd-TSPP 1.0 702, 763 Water
Pd-TSPP 0.5 698,685 Water
Pd-CPP 0.53 667 Water
Pt-TDCPP 0.082 650 0.16 Silicone Rubber RTV 118(GE)
Pt-TFMPP 0.030 646 0.08
Pt-Br8TMP 0.023 721 0.02
Pd-OEP 0.99 670 0.2 PS
Pt-OEP 0.091 644 0.5 PS
Pt-OEP 0.091 644 0.5 PS


CPP: cc


)proporphyrin; OEPK: octaethyl porphyrin ketone; TPP: tetraphenylporphyrin;
TSPP: tetrakis(4-sulfonatophenyl)porphyrin; TDCPP: meso-tetra(2,6-
dichlorophenyl)porphyrin; TFMPP: meso-tetra(3,5-
bis(trifluoromethyl)phenyl)porphyrin; Br8TMP: meso-tetramesityl-P-
octabromoporphyrin; OEP: octaethyl porphyrin


Silicone

Silicone is the most widely used polymer binder matrix employed in optical

oxygen sensors due to its high permeability (62 x 10-9 (cm3 cm)/(cm2 s cm Hg) at 28' C)

and solubility (0.31 ml-g-~ at 280 C) to oxygen associated with a low glass transition

temperature, Tg, (- 1270 C), high chemical and mechanical durability, and benign

physiological effects beneficial to in vivo measurement applications.54,55 However,

silicone as a binder matrix is incredibly hydrophobic in nature due to its extended


I


I








nonpolar Si-O-Si backbone which forms during polymerization.25 Adequate

homogeneous distribution of the hydrophilic Ru(II) a-diimine complexes in the polymer

binder then becomes a challenge in avoiding aggregation or microcrystallization effects

which lead to inefficient oxygen quenching.31 Therefore, several researchers have

investigated the addition of Rut II) a-diimine adsorbed silica gel to the polymer binder.

The addition of silica gel aids luminescence oxygen quenching by lessening the negative

quenching effects due to formation of metal complex aggregates and

microcrystallites.25,56

Plasticizers

Other polymers such as cellulose acetate (CA),39 polymethylmcthacrylate

(PMMA),40 polyvinylchloride (PVC),41 polystyrene (PS),42 and sol-gels43,44 hae

been employed as oxygen permeable polymer hinders. These polymers are not as

permeable to oxygen as the elastomeric silicone polymer hinders and slow and inaccurate

oxygen concentration measurements result. When a plasticizer such as tetrabutyl borate

or dodecyl sulfate is incorporated into the given polymer, it lowers the Tg and improves

the parent polymer's permeability to oxygen.8,37 However, a plasticizer can leach from

the polymer binder and adversely affect the polymer's ability to adsorb oxygen.27

Modified Polymers

One way to avoid incorporating additives such as silica gel or plastici/crs into the

polymer binder is to design synthetically modified polymers. These polymers are

designed to possess similar oxygen permeability as the silicone polymers yet not suffer

from the same inaccurate sensing affects arising from inadequate luminophore








distribution or impurity leaching. Several alternative polymer binders have been

developed recently.

Puklin et al. have developed a fluoroacrylic copolymer (FIB),

(fluoro/isopropyl/butyl)acrylic polymer displayed in Figure 1-4.57 When Pt(II)

tetra(pentafluorophenyl)porphyrin (PtTFPP) is distributed through the polymer, the

coating displays a Ster-Volmer dynamic range of 0.9 [defined as (Ivac Iatm)/Ivac)],

where I is luminescence intensity and the subscripts vac and atm refer to vacuum and

atmospheric pressure, respectively. Other attributes include a response time of less than

1 s to an increase in pressure from near vacuum to 1 atm, good photostability, and low

temperature dependence (~ 0.6 %-C-1).



CH3
-CH- CH -CH-
I2 2m L 2" n
=0 0
O O
0 0
CH2(CF2)2CH3 CH(CF3)2

Figure 1-4: Repeat unit of (fluoro/isopropyl/butyl)acrylic polymer.


Amao et al. have developed a different fluorocopolymer [copoly(styrene/PFS)],

poly(styrene-co-pentafluorostyrene) illustrated in Figure 1-5.51 When Pt(II)

octaethylporphyrin (PtOEP) is distributed through the polymer, the coating displays a

Io/IIoo = 18.0 response as compared to Io/IIoo = 4.5 for a simple polystyrene coating,

where Io and Iloo represent the detected phosphorescence intensity from a coating exposed

to 100 % argon and 100 % oxygen, respectively. The photoluminescence response times








are 5.66 s for polymer exposure to argon then oxygen and 30.0 s for polN mer exposure to

oxygen then argon.





n






Figure 1-5: Repeat unit of poly(st) rene-co-pentafluorostyrene) copol rmer.



The preceding research groups are working from the basis that fluoropolmer

coatings possess an increased permeability to ox\gen-5 and a higher stability) to wards

photo-oxidation compared to polymers lacking highly electronegative groups. The C-F

bonds possess a large bonding energy (116 kcal-mol ") and short bond lengths (I.3.81 A)

which enhance the bonds' stability tow yards photo-oxidation and increases their affinity

towards oxygen sorption when incorporated into a polymer binder backbone.59

Ruffolo et al. have developed another type of block copol% mer

poly(aminothionylphosphavene)-b-poly(tetrahydrofuran) (PATP,-PTHF,) displayed in

Figure 1-6.60 When [Ru(dpp)3]Cl2 is distributed through the block copolymer, the

coating displays good quenching sensitivity and linear Stern-Volmer response compared

to earlier poly(butylaminothionylphospha7ene) (PBATPy) and PBATP/PTHF, blends.







NHCH NHCH 0
N=P-N=P-N-=S--O
I I I JYL 0 T
NHCH3 NHCH3 NHCH3

PMATPy-PTHFx

Figure 1-6: Repeat units of poly(aminothionylphosphazene)-b-poly(tetrahydrofuran)
block copolymer.



This particular design idea stems from the often-impractical necessity for silicone

coating polymers to cross-link prior to formation of a solid stable coating. The cross-

linking is not a controlled physical process and can change in degree and directionality

from coating to coating leading to irreproducible SV response.25,50,61 This lack of

cross-linking continuity can be one source of problems associated with poor luminophore

distribution. Therefore the (PATPy-PTHFx) design benefits from production of a

dimensionally stable coating without the need for cross-linking. Moreover, such a design

leads to a better understanding of the polymer coating's structure-function relationship.60

It will be interesting to see how future polymer designs will compare to the above

modified polymers, to one another, and to the more traditional elastomeric silicone binder

systems; what current morphological questions will be answered; and how will knowing

such answers lead to the development of other luminophore/polymer binder systems.


Wind-Tunnel Application

In a typical application of aerodynamic engineering, a sensor coating is composed

of a luminophore dispersed in a polymer binder which is dissolved in a volatile thinning

solvent and sprayed onto an aerodynamic model. The coating forms upon evaporation of

the volatile solvent. The model is installed in a wind-tunnel, and the photoluminescence







from the sensor coating at XPem is imaged with a camera (digital or film-based) that is

fitted with appropriate filters that pass light of wavelength X~em. By using appropriate

computer algorithms, it is possible to apply the Ster-Volmer calibration (1-5) to convert

the photoluminescence intensity map generated by the camera into a full-field map of air

pressure (Pair) over the surface of the model displayed in Figure 1-7.27


Blue filter Red filter Computer


'I I ~
Light Camera
source


Air flow

Figure 1-7: Pressure Sensitive Paint measurement system for testing of air pressure
profiles on an airplane model in a wind-tunnel.


Pressure maps obtained from the set-up in Figure 1-7 would show luminescence

characteristics similar to Figure 1-8. Figure 1-8 displays an intensity pressure map for a

nitrogen jet protruding out of the plane of a PSP coating.62 The direction of the tunnel

air-flow travels from behind the nitrogen injection jet forward (bottom to top of image).

A pressure field of high and low pressures develop. The oval shape preceding the

nitrogen jet indicates an area of high pressure or high oxygen concentration, and the cone

shape directly preceding the nitrogen jet indicates an area of low pressure or low oxygen

concentration due to air-flow disruption. Colors would then be assigned to the gradients







of gray in the image to enhance and discriminate among the pressure changes by making

them more discernable to the viewer's eye.









Injector




0 5 10 15 20 25
Air Pressure (psi)



Figure 1-8: Gray-scale pressure distribution map for a nitrogen jet protruding from a PSP
coating.



As demonstrated, PSP technology has revolutionized traditional wind-tunnel

testing which monitors discrete surface pressure measurements at localized pressure taps

across a test model. The transducers are connected to multitudes of electronic wiring and

hardware, and the assembly of such a model takes 9 12 months to design and construct.

As compared to the complexity of the transducer system, PSP coatings are easily applied

to a model surface and ready to use within a few hours. The noninvasive approach

offered is essential to prototype aerodynamic model testing; therefore, luminescence

imaging has generated significant research interest in the aerodynamic engineering

community. 16,27







Temperature Effects

Under ideal conditions, the photoluminescence intensity of a sensor coating

would respond only to changes in pO2; other environmental parameters such as

temperature (T) would not interfere with the measurement. Unfortunately, it is well

known that at constant air pressure, the photoluminescence intensity of most oxygen

sensor coatings varies inversely with T as does the Stern-Volmer coefficient (Ksv).63.64

For many sensor coatings. Ksv varies linearly with T over a narrow range of temperatures

demonstrated by equation (1-14).

Ksv(T) = Ksv f + bT (1-14)

Because of the temperature dependence of Ks\, when a sensor coating is applied

under non-isothermal conditions (most often the case in a wind-tunnel), the global map of

Pair that is created will be in error. On the other hand. ,ince Ksv is a well-behaced

function of temperature as in equation (1-14), if one knows the temperature distribution

over the surface of the aerodynamic model, it is possible to apply computer algorithms to

correct for the temperature dependence of Kw and obtain an accurate global surface

pressure distribution.63-65

Several data reduction methods have been developed, which convert the

processed wind tunnel image into false-color image representations of the quantitative

pressure distribution across the model surface. The intensity-ratios obtained at each pixel

are converted into pressures using a modified Henry's law relation, which accounts for

the non-ideal porous nature of the polymer binder in equation (1-15),64

P/Pef = CI + C2(lr~iTrcf/Irun(Trun)) + C3(lrTref)/Irun(Trun))2 (1-15)







where CI, C2, and C3 are the reduction method coefficients, and Iref(Tref)/Irun(Trun) is the

intensity-ratio obtained at each pixel.

Isothermal Calibration

An isothermal calibration assumes that the wind-tunnel surface is spatially and

temporally isothermal during the run of the flow.66 An initial static calibration is taken

at a reference temperature over a given pressure range, and a least-squares fit is employed

to obtain the resulting calibration curve. The pressure values obtained from pressure taps

fashioned along the model surface are compared to the intensity-ratio images obtained.

As is expected, the method does not account for the temperature drop that occurs across

the model during airflow that results in a prediction of pressure values lower than

measured. Therefore, it is best that this method only be used for qualitative evaluations

of coatings.64

In-situ Calibration

An in-situ calibration accounts for the change in surface temperature across a

model surface during wind-tunnel operation. 19 For this reduction method, a limited

number of pressure taps are placed across the surface of the model. These taps should be

placed in the regions of highest and lowest pressures as well as several intermediate

regions for the best results. However, a priori knowledge of the pressure distribution is

difficult to know and a disadvantage for this reduction method.

The intensity of the paint around the taps is evaluated and used in conjunction

with the pressure values obtained at the taps to develop a calibration curve. A least-

squares fit is applied to equation (1-15), and the pressure tap and intensity values are used







to determine the values for CI, C2, and C3. The pressure values across the model surface

are then obtained through interpolation of the data.

K-fit Calibration

The K-fit calibration is a hybrid of the isothermal and in-situ calibration methods.

It was found that equation (1-15) will coalesce if Tn, = Trf; therefore, equation (1-15)

can be re-cast as equation (1-16),

P/Pref = C' + C'2(lrliTi)/Irun(Ti)) + C'3(lrL.fT)/Iln(TI))2 (1-16)

where Ti is an arbitrary number, and the coefficients C'1, C'2, and C'3 do not vary with

temperature. A scaling process, function K in equation (1-17), is applied to rescale the

reference image (I,.Ti,)), so it then emulates a reference image taken at T2.

K = Ir,,{Ti)/Ire, T2) = f(T,,T2) (1-17)

Equation (1-16) is recast as (1-18),

P/Pref= C'I + C'2(KIreT2)/Irun(Ti)) + C' ,(KlreT2)/Irun(Ti))2 (1-18)

where Ti, T2, and K are constant over the model surface. If Ti = T1un and T2 = Trf, then a

least-squares fit of equation (1-18) will result in K.64 This reduction method is superior

to the isothermal method but less accurate than the in-situ method, since this model

under-predicts the pressure values in the low-pressure region. A possible explanation for

this is that it may not be physically reasonable to assume that there exists a separation in

the pressure-dependent (C'I, C'2, and C'3) and the temperature-dependent (K)

relationships of the coating. Therefore, the K value in equation (1-17) may be pressure-

sensitive, and the equation should be recast as equation (1-19).64

K = f(Ti,T2,P) (1-19)






Temperature-corrected Pressure Calibration

This method accounts for the change in surface temperature across the model

surface between the reference image and the wind-tunnel images. It utilizes a pixel-by-

pixel correction method by employing the image information of a temperature-sensitive

coating to correct for the temperature-dependence of a pressure-sensitive coating. By

knowing the intensity-ratio and temperature values at each pixel, a pressure value can be

determined by equation (1-20).64

Iref/Ica = f(P,T) (1-20)

The pressure values at each pixel are calculated through a linear interpolation between

isothermal calibration curves generated from in-situ taps and the temperature-sensitive

coating's temperature values. The advantages of this method allow for knowledge of the

slightest temperature gradient across the surface with no need for pressure taps to

calculate the final pressure values. However, there can be problems associated with

photodegradation of the coating materials; an inconsistent use of substrate material for

calibration samples and wind tunnel fixtures accounts for inaccurate comparisons of

pressure-sensitivities in calibration curve generations; and the temperature values

obtained from the temperature-sensitive coating may not be the exact values experienced

by the pressure-sensitive coating.64

Physical Manifestations of the Temperature Effect

The temperature effects experienced by the pressure-sensing coatings are due to

the two major components of the PSP: the luminophore and the polymer binder. First, it

is known that in degassed solution experiments that the temperature dependence of a

luminophore is dependent on the non-radiative decay pathways, since the radiative decay







rates are only weakly temperature dependent.63 Luminophores such as the RulII) a-

diimine complexes experience temperature dependence of non-radiative decay processes

because of the coupling of the excited state with vibrational levels of the metal ground

state and the solvent or polymer matrix. More specifically, for the Rut II) a-diimine

complexes, temperature dependent excited state decay arises due to increased coupling of

the emissive MLCT (metal-to-ligand charge-transfer) state to a nearby dd manifold.

Temperature dependent quenching can arise due to the temperature-dependence

of the diffusivity and solubility of the quencher molecule (02) in the polymer matrix.

The permeability ( P, ) of oxygen in the binder is a product of the solubility (S, ), and

diffusivity ( D, ). The rate constant for quenching (kq) is proportional to Do, and the

concentration of oxygen [021 in the polymer is affected by So, However, since it is

known that the solubility of diatomic gases in polymers is only weakly dependent on

temperature, temperature dependent quenching then arises primarily due to the

temperature dependence of Do .55 Gas diffusivity in polymers depends on the polymer

total free volume, which increases with increased temperatures. Polymer segments

undergo thermal expansion creating free sites accessible to oxygen molecules.67

According to Schanze et al.. kq[O2] = Aqexp(-E,/RT), where Aq and Eq are the frequency

factor and activation energy for oxygen quenching. respectively. Since kq is proportional

to Do it can be assumed that the Eq is related to the activation energy of diffusion (Ea).

Therefore, by the relations outlined above, PSP coatings should be developed which have

the lowest possible activation energy for oxygen diffusion.







Advances in PSP Design

A convenient method for obtaining the necessary information regarding the

temperature distribution over the aerodynamic model is to incorporate into the sensor

coating a second "temperature sensitive" luminophore that has the following

properties:65 (1) it is sufficiently excited at the same wavelength as the oxygen sensing

luminophore; (2) photoluminescence occurs in a different region of the visible spectrum

(X em) than the photoluminescence of the oxygen sensing luminophore (i.e., XTem # ,em);

(3) photoluminescence intensity is independent of pressure; (4) the luminophore is

photostable or deteriorates at a rate similar to that of the oxygen sensing luminophore;

and (5) photoluminescence intensity varies strongly and monotonically with temperature.

With such a dual-luminophore sensor system, one would be able to obtain a global map

of the temperature of the surface of an aerodynamic model by imaging the

photoluminescence from the temperature-sensitive luminophore with a camera fitted with

filters that pass light only at wavelength XTem. The resulting temperature map could then

be used in an algorithm to correct for the temperature-dependence of the

photoluminescence intensity from the pressure-sensitive luminophore.

The Gouterman research group has worked extensively in developing

luminophores and polymer binders which correct for temperature-dependence. They

reported in 1998 the incorporation of a second luminophore to a polymer binder: a

pressure-insensitive but temperature-sensitive inorganic phosphor to correct for the

temperature-dependence of the PSP coating. However this coating experienced some

problems with competitive absorption of the excitation light by PtTFPP, absorption of the

emission light from the phosphor (BaMg2A16027:Eu2+) by PtTFPP, and a heterogeneous




24


distribution of the phosphor particles. Expanding on earlier work with platinum

porphyrins, the Gouterman group investigated the use of silicon octaethylporphine

(SiOEP) as a new pressure-insensitive, temperature-sensitive luminophore. The silicon

porphine complex suffers from an increase in fluorescence intensity as the temperature

rises due to repopulation of the singlet excited state via the triplet state; moreover, the rise

in fluorescence can cause confusion in calibration runs at vacuum. Fortunately, the

temperature-dependence is only at vacuum conditions not a standard wind-tunnel

condition.65

Gouterman's group has also researched the development of a polymer possessing

a low activation energy to oxygen diffusion. A temperature sensitivity of- 0.6 o-"C1

for PtTFPP dispersed in the fluoroacrylic polymer FIB (Figure 1-4) has been reported.

This number is significantly better than a temperature sensitivity of- 1.7 "'; -C reported

for PtOEP in the silicone polymer binder Genesee GP-197.57


Monitoring Methods

There exist three monitoring methods for the analysis of PSP coatings:

luminescence intensity method, pulsed lifetime method, and phase-shift method.

Luminescence Intensity

The luminescence intensity method measures the emission intensity produced by

the luminophore(s) in the sensor coating. It is the most widely used method, since the

equipment is relatively inexpensive to assemble and small enough to be portable. The

pressure profile experienced by the coating is then determined from a calibration curve.

However, an accurate analysis by the method is directly affected by changes in the

excitation source intensity, variations in efficiency of the system equipment to collect the









emission signalss, and the photostability of sensing coatings. Fortunately, collecting a

reference signal and limiting the exposure time of the sensor coatings can help alleviate

the effects of these problems.

Pulsed Lifetime

The pulsed lifetime method utilizes an excitation source with a pulse termination

time that is shorter than the lifetime of the emission lifetime(s) being evaluated. This

method is employed less frequently due to the problem of reducing the complex decay

curves obtained by the traditional least-squares method; however, the simpler technique

of rapid lifetime determination (RLD) is being employed to reduce the complex decays to

a single parameter.68 The RLD technique allows for direct integration of various regions

under the integration curve resulting in reduction to a single parameter.

Phase-shift

The phase-shift method employs a sinusoidally modulated excitation source

combined with phase-sensitive detection.23 The modulated emission is delayed in phase

by an angle 4, relative to the excitation demonstrated by equation (1-21),

= arctan(ot) (1-21)

where o= 2nf (1-22),

and f is the linear modulation frequency. The phase shifts are easy to measure, since the

phase shift varies monotonically with oxygen concentration.69 The equipment required

for this method is relatively inexpensive. This method like the RLD method does not

provide an a priori knowledge of the complexity of the decay(s) measured; however, the

frequency can be varied for optimization of accuracy at a known concentration of

oxygen.27








Scope of This Work

Initial research has focused on development of a "temperature-sensitive"

luminophore, which is temperature-sensitive and pressure-insensitive. This system

configuration corrects for the temperature dependency of the pressure component by

determining the run-time temperature field. Dual-luminophore sensor coatings were

developed where the temperature sensing luminophore, encapsulated in polystyrene

microspheres, and the pressure sensing luminophore are conjointly distributed through a

polydimethylsiloxane polymer binder. Extensive studies were conducted to e ialuate the

photo, thermal-, and temporal-stability of the luminophore/binder coatings, and

fluorescence microscopy, SEM and TEM analytical techniques were employed to

evaluate the molecular distribution of the luminophores in the coatings. Finally the

coatings were subjected to static calibration cell imaging to evaluate their overall

application performance.

Fluorescence microscopy has also been employed to analyze the variable non-

linear Stern-Volmer response exhibited by several Ru(II) o-diimine based coatings and

the linear Stern-Volmer response exhibited by several Pt(II)

tetra(pentafluorophenyl)porphyrin based coatings. It is believed that deviations from

linearity are due to heterogeneity of the polymer matrix or the luminophore distribution.

By quantitatively measuring the oxygen quenching efficiency at the pixel level with

micrometer spatial resolution, we have been able to provide experimental evidence to

explain the linear and non-linear SV responses exhibited by such coatings.













CHAPTER 2
DUAL-LUMINOPHORE OXYGEN SENSING COATINGS


Introduction

As outlined in Chapter One, ideal oxygen sensing conditions produce

photoluminescence intensity which responds only to changes in pO2; however, other

environmental parameters such as temperature (T) interfere with this measurement. For

many sensors, the Ksv value varies linearly with temperature over a narrow range of

temperatures as indicated by equation (2-1).

Ksv(T) = Ksvref + bT (2-1)

When a sensor coating is evaluated under non-isothermal conditions (most often

the case in a wind-tunnel), the global map of Pair that is created will be in error, because

of the temperature dependence of Ksv. Since Ksv is a well-behaved function of

temperature as in (2-1), if one knows the temperature distribution over the surface of the

aerodynamic model, it is then possible to apply computer algorithms to correct for the

temperature-dependence of Ksv and obtain an accurate global surface pressure

distribution.63-65

A convenient method for obtaining the necessary information regarding the

temperature distribution over the aerodynamic model is to incorporate into the sensor

coating a second "temperature-sensitive" luminophore that exhibits similar properties65

to those outlined in Chapter One under PSP Advances. Therefore a dual-luminophore

sensor system would provide a global temperature map for the surface of an aerodynamic

model by imaging the photoluminescence from the temperature-sensitive luminophore.

27







The global temperature map would then be used to correct for the temperature-

dependence of the photoluminescence intensity imaged from the pressure-sensitive

luminophore, and a corrected global surface pressure distribution would result.

When incorporated separately (i.e., one at a time, but not together) into a polymer

binder, many photoluminescent probe molecules display desirable emission

characteristics for oxygen or temperature sensing. However, when two or more probe

molecules are mixed into the same binder, they typically do not display the desired

oxygen and/or temperature sensing photoluminescence properties. This non-ideal

behavior arises from both physical and chemical molecular interactions, and often yields

unpredictable results with respect to the overall photoluminescence properties of the

sensor coating.65 One solution to this problem is to design nanometer to micrometer

sized "molecular cages" or "compartments" that separate the luminophores in the

polymer binder at the molecular level yet provide a coating that is spatially homogenous

on the millimeter scale (i.e., camera spatial resolution). In this manner, it is possible to

produce a sensor coaling system incorporating two or more photoluminescent probe

molecules which display separate and well-defined photoluminescence intensity

variations due to temperature and oxygen sensing.

Recent work by Gouterman et al. has yielded two types of dual-luminophore

sensor coatings. In one coating, they have incorporated a second luminophore: a

pressure-insensitive but temperature-sensitive inorganic phosphor to correct for the

temperature-dependence of the PSP coating.70 Expanding on their earlier work with

platinum porphyrins. the Gouterman group has also investigated the use of silicon

octaethylporphine (SiOEP) as a new pressure-insensitive, temperature-sensitive

luminophore.65







In the work presented in this chapter, two dual-luminophore coatings were

developed and characterized. These coatings contain a temperature-sensitive

luminophore adsorbed onto polystyrene microspheres and an oxygen-sensitive

luminophore. The dyed-microspheres and the oxygen sensing luminophore were

distributed in a gas-permeable polymer binder. Detailed schemes for the preparation of

the dyed-microspheres and resulting dual-luminophore coatings are outlined in Figures 2-

1, 2-2, and 2-3.







+ ^












ppsp
B
pplsp + DOCI DOCIplsp

Figure 2-1: Scheme for preparation of DOCI highly cross-linked polymer microspheres
(DOCIppsp). A) 5 vol % DVB relative to total volume, AIBN 2 wt. % relative to
monomer, A 700 C for 24 h., EtOH wash, dry in vacuo at 500 C for 12 h. B) 1 mL
MeOH, sonicate 1 h., soak in dark for 7 d., MeOH and CH2C12 wash, dry in vacuo at 300
Cfor 12h.












K-


+


.SO3-Na+


C


SsPsp"


Sspsp- + DOCI


Ssp.sp


S DOCI-Sspsp


Figure 2-2: Scheme for preparation of DOCI sulfonated polymer microspheres (DOCI-
Sspsp). A) 45 vol % DVB relative to total volume. DI H20:porogen = 25:1 v/v,
porogen:monomer = 1:1.4 v/v, porogen = 1:1 l-dodecanol:toluene. sodium laurylsulfate
0.3 mol % relative to monomer, A 260 70 C 7 h. at 250 rpm, DI H20 and acetone wash,
THF Soxhlet extraction, dry in vaciu 480 C 12 h. B) 40 mL CH2C12, 0 C, 0.5 mL
CISO3H in 40 mL CH3CI dropwise, warm to 250 C, stir 24 h. 250 C, CH2CI2 wash, air
dry. C) 150 mL DI H20, 50 mL NaOH (150 mM), stir 100 min. 250 C, 3x100 mL DI
H20 wash, 100 mL acetone wash, dry in vacuo 530 C 40 h. D) 4 mL MeOH, 2 mL DI
H20, sonicate for 20 min.. MeOH and acetone wash.


SO3H


A










PtTFPP
3 3.5 % Pt divinyltetramethyl disiloxane catalyst
methylhydrosiloxanes-dimethylsiloxane copolymer
CH3 H CH3 CH3
1 3 1 1 3 I 3
H3C-Si-O- -Si-O -Si-O+ Si-CH3
ICH CH3 OI n CH
OH3 OH3 OH3 OH3
I


DOCIppsp or DOCI-Sspsp and vinyl
polydimethylsiloxane
Mix 20 min.
CH3 CH3 CH3
I rI + 1
CH2=CH-Si-O--Si-O-n Si-CH=CH2
CH3 CH3 CH3


air-brush application


PtTFPP


Polymer Binder


,O DOCI-Ssusp or DOClpusp

S0 Primer
P_ Primer


4--


Substrate


PtTFPP


Figure 2-3: Scheme for preparation of dual-luminophore oxygen sensing coatings.
PtDOCIpgsp/VPDMS and PtDOCI-Sslsp/VPDMS.



Extensive studies were conducted to evaluate the photo, thermal-, and temporal-

stability of the dual-luminophore coatings, and SEM, TEM, and fluorescence








microscopic analytical techniques were employed to evaluate the size and distribution of

the luminophores in the coatings. Finally the coatings were subjected to static calibration

imaging to evaluate their overall application performance. The results and discussion of

this work are presented in the following chapter.


Results

Dual-luminophore Coatings

Two dual-luminophore coatings were developed incorporating an oxygen sensing

luminophore and a temperature sensing luminophore adsorbed onto a polystyrene

microsphere dispersed in a polydimethylsiloxane (PDMS) polymer binder.

PtDOCIppsp/VPDMS Coating

The first coating consists of Pt(II) me.so-tetrakis(pentafluorophenyl)porplhine

(PtTFPP) as the oxygen sensing luminophore and DOCI-adsorbed microspheres

produced via precipitation polymerization (DOCIpp.sp)(3,3'-diethyloxacarbocyanine

iodide = DOCI) as the temperature sensing luminophore dispersed in a vinyl

polydimethylsiloxanes (VPDMS) polymer hinder. The preparation of the coating is

schematically represented in Figure 2-3.

A typical emission spectrum of the coating is shown in Figure 2-4.










1.4e+5 -2.033 psi
4.519 psi
i 1.2e+5 --6.124 psi
S- 8.015 psi
1.0e+5 10.103 psi
--- 14.639 psi
S8.0e+4

o 6.0e+4

S4.0e+4 'i
2.0e+4

0.0
500 550 600 650 700 750 800
Wavelength (nm)


Figure 2-4: Emission intensity spectra for PtTFPP and DOCIppsp dispersed in VPDMS
polymer on primed glass.



Two emission bands are detected when the coating is excited with 450 nm light.

The PtTFPP emission consists of two bands: an intense band, T(0,0), centered at 645 nm

and a weaker band, T(0,1), centered at 710 nm. The emission bands are due to


phosphorescence from the 3TI(1,71*) state of the porphyrin macrocycle.16 Back bonding

between the dxz and dyz orbitals of the Pt with the empty eg(it*) orbitals of the porphyrin

produce a strong spin-orbit coupling. This leads to singlet-triplet mixing which increases

the radiative decay rate from 3T1(.TC,*) -- ISo. The increase in phosphorescence


facilitates efficient oxygen quenching.71 Therefore, a decrease in emission intensity is

observed as the oxygen concentration above the coating sample is increased.

The DOCIpgsp temperature-sensing luminophore exhibits two weak emission

bands centered at 510 nm and 550 nm, respectively. This is fluorescence from the n-rC*

transitions centered along the conjugated chromophore backbone. The fluorescence is

split at 540 nm due to absorption by PtTFPP.








The PtTFPP porphyrin is a d8 phosphorescent hypso porphyrin possessing

absorption features blue-shifted relative to normal porphyrins. PtTFPP exhibits several

absorption bands. The first band is an intense near-UV band termed the Soret band at

395 nm, 'So -- 'S2(,t*). The second two bands appear in the visible region between

505 to 540 nm and are referred to as the Q bands. The first Q hand. Q(0,0), represents

the excitation from the lowest vibrational level of the ground-state singlet to the lowest

vibrational level of the first singlet excited state, and the second Q band. Q(1,0), has one

quantum of vibration in the first singlet excited state. 'So -- SIt(17,*). For square planar

metalloporphyrins, such as PtTFPP, the Q bands are due to degenerate excited states with

x and y polarization.72

For a d8 metalloporphyrin, the filled d, orbital. dx or dyz, are located between the

occupied alu(;), au,(n) orbital and the empty degenerate LUMO e,(t*) of the porphyrin

ring. The metal dn electrons can then interact with the empty eg(n*) orbitals inducing a

mixing between the empty eg(nl*) orbital and the filled e,(dni) orbital. Stabilization of the

filled eg(dn7) orbital raises the energy of the eg(7l*) orbital and results in a blue-shift of the

absorption bands.52,73

The fluorescence emission of the DOCIpplp is centered at 510 nm due to n-n*

transitions, and the Q bands of the PtTFPP overlap well with the DOCI fluorescence.

Therefore, the PtTFPP luminophore can absorb some of the DOClplpsp emission, and the

DOCI emission band experiences an emission bleach around 535 nm. The effect is

clearly seen in Figure 2-4.






35


PtDOCI-Ssjsp/VPDMS Coating

The second coating is a modification of the first. The formulation still contains

Pt(II) meso-tetrakis(pentafluorophenyl)porphine (PtTFPP) as the oxygen sensing

luminophore; however the DOCI-adsorbed microspheres were produced via a suspension

polymerization, sulfonated, and negatively charged prior to dye adsorption. The

luminophores are dispersed in a vinyl polydimethylsiloxanes (VPDMS) polymer binder.

A typical emission spectrum of the coating is displayed in Figure 2-5.




le+5
2.023 psi
S........ 4.056 psi
8e+4 --- 6.024 psi
.-.- 8.192 psi
10.501psi
6e+4 -- 14.615 psi

.2 4e+4

W 2e+4


500 550 600 650 700 750 800
Wavelength (nm)


Figure 2-5: Emission intensity spectra for PtTFPP and DOCI-Sslsp dispersed in
VPDMS polymer on primed glass.



Under 450 nm excitation light, the coating exhibits two emission bands that are

similar to the previous coating. The Imax of PtTFPP is only slightly less intense than in

Figure 2-4. However, the intensity of the DOCI-Sspsp is less than half intense as the

previous DOCIppsp emission in Figure 2-4. Adding twice as much dyed-microspheres

(DOCI-Sspsp) to the coating formulation did not significantly increase the emission

intensity either. The impact of the different microsphere preparation methods to the








overall performance of the PtDOCIppsp/VPDMS and PtDOCI-SsLsp/VPDMS coatings

will become clearer when the quantity and distribution of the PtTFPP, DOCIpLsp, and

DOCI-Ssgsp luminophores in relation to imaging of the coatings with CCD camera

technology is discussed later in the chapter.

Temperature Dependence and Thermal-stability

The temperature dependence and thermal-stability of the PtDOCIppsp/VPDMS

and PtDOCI-SslspN/PDMS coatings were assessed over a 40 K temperature range from

273 313 K. The temperature dependence of the PtTFPP pressure probe's

photoluminescence response to oxygen quenching for the emission region 630 670 nm

was established, and the stability of the probe's emission response to cyclic variations of

temperature from 273 313 -- 273 K was evaluated. The temperature dependence and

thermal-stability of the photoluminescence between 530 570 nm for the DOCIplsp and

DOCI-Sspsp temperature probes were evaluated in the same manner as the

photoluminescence of the pressure probe.

Specimens were prepared by air-brushing four layers of each coating onto

borosilicate microscope slides primed with a TiO2/SPDMS (SPDMS = silanol

polydimethylsiloxanes with methyltriacetoxysilane cross-linker) coating and storing the

specimens in the dark at room temperature and 33 'r relative humidity until analysis.

Exact details of the coating preparations can be found in the Experimental section. The

specimens were evaluated 24 h. after coating application using the pressure cell

attachment on the fluorimeter. The samples were illuminated with 450 nm light, and the

emission was evaluated at predetermined wavelength areas. This procedure was followed

to maintain consistency in coating characterization. The samples evaluated using the

fluorimeter were also evaluated using a calibration cell with CCD detection (as described










in the Experimental section). The calibration cell set-up monitors photoluminescence

utilizing a series of bandpass filters with an optical bandwidth of 40 nm FWHM.

Therefore in keeping with consistency, emission values obtained utilizing the fluorimeter

were calculated for areas rather than discrete wavelengths.

PtTFPP

The temperature dependence of PtTFPP photoluminescence was analyzed. The

luminescence intensity decreases moderately with increasing temperature at all pressures

from 0.1 14.7 psi. This is a typical behavior for many pressure probes. 16,57 Stern-

Volmer (SV) analysis of the solid coatings were conducted utilizing equation (2-2),

I(XPem, Pair = 1 atm)/ I(XPem, Pair) = A + BPair (2-2)

and (B/A) = Ksv. The pressure probe's response to oxygen quenching at different

temperatures yields linear SV plots with excellent correlation and high Ksv values. The

coatings are strongly pressure sensitive, as the total light intensity decreases by nearly a

factor of 10 when the pressure above the film increases from 0.1 14.7 psi. A SV plot

for each temperature is displayed in Figures 2-6 and 2-7 for the two coatings on primed

glass. The temperature dependence of the coatings' emission is evidenced by the "fan-

out" of the regression lines at higher pressure. Comparison of Figures 2-6 and 2-7

reveals that the pressure probe in the PtDOCI-Ssgsp/VPDMS coating is more

temperature-dependent than the PtDOCIpgsp/VPDMS coating.























0 2 4 6 8 10 12 14 16
Air Pressure (pi)


Figure 2-6: SV plot PtDOCIppsp/VPDMS coating on primed glass for temperatures
between 273 313 K. AREF: area between 630 670 nm at 14.7 psi and 313 K.


0 2 4 6 8 10
Air Pressure (psi)


12 14 16


Figure 2-7: SV plot PtDOCI-Sspsp/VPDMS coating on primed glass for temperatures
between 273 313 K. AREF: area between 630 670 nm at 14.7 psi and 313 K.



For the SV analysis, the data for the percent decrease in PtTFPP emission area at

each pressure as a function of oxygen concentration for a change in temperature are listed

in Tables 2-1 and 2-2 for the two coatings on primed glass. At all pressures, the

corresponding percent change in emission is consistent and provides evidence for a well-

behaved oxygen sensing coating. These numbers are consistent with ones obtained by










Puklin et al. for PtTFPP dispersed in fluoroacrylic polymer (FIB) and

poly(methylmethacrylate) (PMMA) polymers.57


Table 2-1: Percent change in PtTFPP emission area at seven pressures over a 40 K range
for PtDOCIpp.sp/VPDMS coating on primed glass.
Pressure (psi) AA %-K-'
273 313 K
0.1 -1.05
2 -0.78
4 -0.55
6 -0.77
8 -0.57
10 -0.77
14.7 -0.80


Table 2-2: Percent change in PtTFPP emission area at seven pressures over a 40 K range
for PtDOCI-Ssgsp/VPDMS coating on primed glass.
Pressure (psi) AA %-K-1
273 313 K
0.1 -1.30
2 -0.73
4 -0.78
6 -0.78
8 -0.76
10 -0.87
14.7 -0.88


The thermal-stability of the pressure probe's photoluminescence was evaluated by

subjecting the samples to various pressures between 0.1 14.7 psi at specific

temperatures during a cyclic run from 273 -> 313 -- 273 -- 313 -- 273 K. Analysis of

the pressure probe's response to oxygen at each temperature reveals a consistent SV

response at all temperatures, and no indication of hysteresis or change in the coatings








morphology. The SV data at each temperature evaluated for the PtDOCIppsp/VPDMS

and PtDOCI-Sspsp/VPDMS coatings are presented in Tables 2-3 and 2-4, respectively.


Table 2-3: SV analysis of PtTFPP emission quenching in PtDOCIppsp/VPDMS coating
on primed glass for a cyclic temperature run.
Temperature Run Intercept" Slope (psi')b r Ksv (psi-1)
273 K 1 0.064 0.067 0.990 1.05
293 K 1 0.051 0.067 0.995 1.31


313 K 1 0.030 0.065 0.998 2.17
293 K 2 0.048 0.066 0.995 1.38
273 K 2 0.063 0.067 0.991 1.06
293 K 3 0.047 0.067 0.996 1.43
313 K 3 0.031 0.065 0.938 2.10
293 K 4 0.056 0.067 0.994 1.20
273 K 4 0.051 0.067 0.995 1.31
intercept = A in equation (2-2), b slope = B in equation (2-2), c Ksv = B,


/A


Table 2-4: SV analysis of PtTFPP emission quenching in PtDOCI-Ss.sp/VPDMS
coating on primed glass for a cyclic temperature run.


Temperature
273 K
293 K
313 K


Run
1
1
1


Intercept"
0.047
0.024
0.029


Slope (psi' )b
0.067
0.067
0.067


R2
0.995
0.999
0.999


Ksv (psi')c
1.43
2.79
2.31


293 K 2 0.025 0.068 0.999 2.72
273 K 2 0.027 0.068 0.999 2.52
293 K 3 0.016 0.068 0.999 4.25


313 K
293 K
273 K
a intercept = A in


3
4
4
equation


0.025
0.070
0.026
(2-2), b


0.067 0.999
0.062 0.986
0.068 0.998
slope = B in equation (2-2),


2.68
0.88
2.62
SKsv = B/A


As can be seen in Tables 2-3 and 2-4, Ksv increases with temperature. This is not

surprising, since the diffusion of oxygen in a polymer is a thermally activated

phenomenon.55 Raising the temperature increases the diffusion rate of oxygen thereby

enhancing the efficiency of luminescence quenching.67 Even though small changes in


--









the intercept value can greatly affect the calculated Ksv value. The Ksv values in Tables

2-3 and 2-4 do not differ significantly and indicate that the coating is stable with respect

to repeated thermal cycling over the 273 313 K range.

DOCIppsp and DOCI-Sspsp

The temperature dependence of the photoluminescence from the DOCIpjisp and

DOCI-Ssgsp temperature probes was evaluated. The luminescence intensity of either

temperature probes did not vary significantly with change in pressure at a constant

temperature; however, it did decrease with increasing temperature.

The emission spectra for both coatings at 0.1 psi and five temperatures between

273 313 K are displayed in Figures 2-8 and 2-9 for the PtDOCIpglsp/PDMS and

PtDOCI-Ssgsp/VPDMS coatings on primed glass, respectively.





50000
273 K
-- -283 K
S40000 293 K /
303 K
..... 313K 33\
30000 .

0 20000 -

10000 -


500 550 600
Wavelength (nm)


Figure 2-8: Emission intensity spectra for DOCIpgsp in PtDOCIpjisp/VPDMS coating
on primed glass at 0.1 psi for five temperatures between 273 313 K.








14000

2 -- 293 K








4000 .



Wa elengh (nmi


Figure 2-9: Emission intensity spectra for DOCI-Sspsp in PtDOCI-Sspsp VPDMS
coating on primed glass at 0.1 psi for five temperatures between 273 313 K.



Analysis of the response of the temperature probes' emission at specific

temperatures from 273 313 K are displayed in Figures 2-10 and 2-11 for the

PtDOCIppsp, VPDMS and PtDOCI-Sspsp V'PDS coatings. respecti\elv. The origins of


the probes' temperature dependence and pressure independence will be discussed later in

the chapter.











1.05

1.00

0.95

0.90

S0.85

0.80

0.75 -0- 0.1 psi
-- 4 psi
0.70 --- 8 psi
-.>-0- 14.7 psi
0.65
270 280 290 300 310 320
Temperature (K)


Figure 2-10: Temperature dependence of emission for DOCIpgsp in
PtDOCIpptsp/VPDMS coating on primed glass for a series of pressures between 0.1 -
14.7 psi. AREF: area between 530 570 nm at 273 K and 0.1 psi.




1.05

1.00

0.95

S0.90

0.85

0.80 0.1 psi
-- 2 psi
0.75 1-- 8 psi
-0- 14 psi
0.70
270 280 290 300 310 320
Temperature (K)


Figure 2-11: Temperature dependence of emission for DOCI-Sslsp in PtDOCI-
Ssgsp/VPDMS coating on primed glass for a series of pressures between 0.1 14.7 psi.
AREF: area between 530 570 nm at 273 K and 0.1 psi.




The temperature dependence was nearly linear over the temperature range 273 -


310 K with a slope of the linear correlation of approximately 0.80 %-K-~ for Figure 2-10


and 0.54 %-K-1 for Figure 2-11. For the PtDOCIplsp/VPDMS coating, 0.80 %-K-1


correlates well with the percent change in emission area as a function of temperature for







each pressure displayed for Run 1 of Table 2-5. The temperature dependence at assorted

pressures varied between 0.69 to 0.80 %-K' for the temperature range 273 --- 313 K.

For the PtDOCI-SspspIVPDMS coating, the 0.54 %-K'' value agrees with the percent

change in emission area as a function of temperature for each pressure displayed for Run

1 of Table 2-6. The temperature dependence varied between 0.33 to 0.66 '-K'.

Compared to DOClppsp emission variation in Table 2-5, DOCI-Sspsp exhibit less

temperature dependence at each pressure with greater breadth in the distribution of

percent change from pressure to pressure. These are both undesirable features and

provide evidence for DOCIppsp as the better temperature-sensitive probe.




Table 2-5: Percent change in DOCIplpsp emission area at seven pressures over a cyclic
temperature run of 40 K for PtDOCIppsp/VPDMS coating on primed glass.
Pressure (psi) AA % %-' %-K AA' %-K-' AA %-K'
273 313 K 313 273 K 273 313 K 313 273 K
Run 1 Run 2 Run 3 Run 4
0.1 0.74 0.60 0.75 0.63
2 -0.69 0.60 0.73 0.54
4 0.78 0.64 0.80 0.62
6 0.76 0.60 0.70 0.59
8 0.75 0.64 0.73 0.56
10 0.79 0.55 0.70 0.57
14.7 -0.80 0.62 -0.63 0.52








Table 2-6: Percent change in DOCI-Ssgsp emission area at seven pressures over a cyclic
temperature run of 40 K for PtDOCI-Ssisp/VPDMS coating on primed glass.
Pressure (psi) AA %-K-1 AA %-K'1 AA %-K-' AA %-K1
273 313 K 313 273 K 273 313 K 313 273 K
Run 1 Run 2 Run 3 Run 4
0.1 0.63 0.60 0.47 0.52
2 0.44 0.44 0.40 0.47
4 -0.48 0.41 -0.43 0.51
6 0.33 0.25 0.40 0.55
8 -0.41 0.49 -0.62 0.61
10 0.34 0.40 0.44 0.45
14.7 0.40 0.53 0.61 0.48



The data for the thermal-stability of the temperature probes' emission obtained by

subjecting the samples to cyclic temperature changes from 273 -- 313 -- 273 -- 313 --

273 K is outlined in Tables 2-5 and 2-6. Three trends from these tables should be noted.

(1) The DOCIpgsp exhibit greater temperature dependence when the coating is heated

then when it is cooled. (2) The DOCI-Ssg.sp display a consistent temperature-

dependence when the coating is heated or cooled. (3) Both probes' emission intensity

response is appreciable with changes in temperature yet reproducible and thermally stable

throughout the cyclic run of temperatures. This last characteristic will allow for

correction of the photoluminescence temperature dependence exhibited by the PtTFPP

pressure probe.63-65

Emission Intensity

Throughout the thermal cycling experiments, the stability of not only the probes'

responses to oxygen pressure and temperature changes were monitored but the stability of

the probes' overall intensity was monitored as well. The magnitude of the emission

intensity data for both the pressure and temperature probes did not change during the

thermal cycling. This is an indication that the photoluminescence of both coatings is not







only responsive to repeated pressure and temperature changes but the magnitude of the

probes' luminescence intensity is stable as well.

Temporal-stability

The stability of photoluminescence emission intensity over time was analyzed for

the PtDOCIppp/VPDMS and PtDOCI-Sspsp/VPDMS coatings. To better understand

possible influences one luminophore might impart on the other over time, the individual

luminophorcs in VPDMS polymer were separately analyzed. The coatings, dual- and

mono-luminophore, were applied to plain and primed (TiO2/SPDMS) borosilicate

microscope slides and stored in the dark at room temperature and 33 % relative humidity.

For each spectroscopic analysis, the specimen slides were scored and a fresh piece

broken-off for evaluation of the photoluminescence properties. The specimen was

excited with 450 nm light, and emission was monitored from 475 800 nm. Particular

emphasis vwa placed on evaluating the areas under the emission curve between 530 570

nm for the temperature probes and 630 670 nm for the pressure probe at seven distinct

pressures in the range of 0.1 and 14.7 psi. All spectroscopic evaluations were conducted

at room temper.lture.

PtTFPP

The area of emission for the PtTFPP pressure probe (X = 630 670 nm) in the

PtDOCIppsp/VPDMS, PtDOCI-Ssgsp/VPDMS and PtTFPP/VPDMS coatings was

evaluated for its response to oxygen pressure. The coatings were analyzed at weekly

intervals for the first month after application and then at monthly intervals for a total

period of four or eight months. Stern-Volmer (SV) analysis of the pressure probe's

response to quenching at seven different pressures was performed for each analysis, and








the data are displayed in Tables 2-7, 2-8, and 2-9 for the coatings on bare glass and Table

2-10, 2-11, and 2-12 for the coatings on primer.




Table 2-7: SV Analysis of PtTFPP emission quenching in PtDOCIpgsp/VPDMS coating
on bare glass.


Time Intervala Interceptb Slope (psi')
24 h 0.046 0.065
1 wk 0.031 0.066
2 wk 0.020 0.066


r2
0.994
0.998
0.999


Ksv (psi-1)d
1.43
2.16
3.23


3 wk 0.030 0.068 0.998 2.28
4 wk 0.011 0.067 0.999 5.96
4 mo 0.015 0.069 0.985 4.56
8 mo 0.045 0.068 0.986 1.51


a fresh sample used for each SV measurement,
slope = B in equation (2-2),


intercept = A in equation (2-2), c
d Ksv = B/A


Table 2-8: SV Analysis of PtTFPP emission quenching in PtDOCI-Ssgsp/VPDMS


coating


Time Intervala
24 h


1 wk
2 wk
3 wk


4 wk
2 mo
4 mo


Intercept
0.048
0.023
0.031
0.055
0.018
0.047
0.018


on bare glass.
Slope (psi-)c
0.067


0.068
0.066
0.067
0.068
0.063
0.065


a fresh sample used for each SV measurement,
slope = B in equation (2-2),


0.995


0.999
0.999
0.992
0.995
0.992
0.998


Ksv (psi-')
1.40


2.96
2.13
1.22
3.78
1.34
3.61


intercept = A in equation (2-2),
d Ksv = B/A


r







Table 2-9: SV Analysis of PtTFPP emission quenching in VPDMS polymer on bare
glass.


Time Interval'
24 h
1 wk
2 wk
3 wk
4 wk
2 mo


4 mo
8 mo


Intercept"
0.100
0.054
0.110
0.047
0.083
0.135
0.111
0.072


Slope (psi')c
0.067
0.068
0.061
0.067
0.063
0.065
0.068
0.064


rz
0.969
0.986
0.995
0.995
0.981
0.965
0.946
0.979


Ksv (psi-')'
0.670
1.26
0.555
1.43
0.759
0.481
0.613
0.889


a fresh sIplle used for each SV measurement. intercept = A in equation (2-2), c
slope = B in equation (2-2), d Ksv = B/A


Table 2-10: SV Analysis


of PtTFPP emission quenching in


PtDOCIppsp/VPDMS


Time Intervala
24 h
1 wk
2 wk
3 wk
5 wk
4 mo


coating on primed glass.
Intercept" Slope (psi1)C
0.005 0.068
0.011 0.067
0.013 0.068
0.016 0.065
0.017 0.067
0.042 0.066


8 mo 0.018 0.065 0.996 3.70
a fresh saliple used for each SV measurement, b intercept = A in equation (2-2),
slope = B in equation (2-2), d Ksv = B/A


Table 2-11: SV Analysis of PtTFPP emission quenching in PtDOCI-Sspsp/VPDMS


Time Interval"
24 h
1 wk
2 wk
3 wk


4 wk
2 mo
3 mo
4 mo


a fresh sample used


coating on primed glass.
Intercept" Slope (psi')c
0.020 0.067
0.024 0.068
0.017 0.067
0.047 0.068
0.030 0.067
0.042 0.066
0.061 0.066
0.045 0.066


for each SV measurement. b
slope = B in equation (2-2),


2


r2
0.999
0.999
0.999
0.993
0.998
0.999
0.996
0.998


Ks, (psi")d
3.35
2.83
3.94
1.45
2.23
1.57
1.08
1.47


intercept = A in equation (2-2), c
d Ksv = B/A


rZ
0.999
0.999
0.999
0.997
0.999
0.999


Ksv (psi")d
14.4
5.96
5.14
4.09
4.01
1.56


~


--


I







Table 2-12: SV Analysis of PtTFPP emission quenching in VPDMS polymer on primed
glass.
Time Intervala Interceptb Slope (psi-')e r2 Ksv (psi-l)d
24 h 0.025 0.067 0.999 2.68
1 wk 0.033 0.067 0.999 2.03
2 wk 0.028 0.067 0.999 2.39
4 wk 0.019 0.067 0.999 3.53
8 mo 0.028 0.066 0.998 2.36
a fresh sample used for each SV measurement, intercept = A in equation (2-2),
slope = B in equation (2-2), d Ksv = B/A




Over a four- or eight-month period, the coatings retained an excellent response to

variation in Pa,i as evidenced by the high Ksv values in Tables 2-7 to 2-12. At all time

intervals, SV evaluation results in steep linear plots with minimal fluctuations in the

intercept values a small intercept value indicates excellent coating sensitivity to oxygen

concentration. The small variations in intercept however translate into large overall

variations in Ksv values. The most noticeable variation in Ksv is for the

PtDOCIpgsp/VPDMS coating on primed glass 24 h. after application. The Ksv value of

14.4 psi' is 3.5 times larger than the average Ksv value, 4.08 psi-', for subsequent time

intervals. The increased Ksv value is possibly due to photolysis of the coating and not

necessarily a consequence of oxygen pressure.

Complt ison of the intercept and Ksv values from Tables 2-7, 2-8, 2-10, and 2-11

to those in Tablcs 2-9 and 2-12, makes it is clear that the sensitivity of PtTFPP emission

to oxygen pressure is more sensitive in the dual-luminophore coatings than in the mono-

luminophore coating. Enhancement of PtTFPP's emission sensitivity in the dual-

luminophore coatings is a beneficial finding which counters negative effects seen in other

dual-luminophore coatings.70







DOClppsp and DOCI-Sspsp

Anals is of the area of the photoluminescence spectrum for the DOCIppsp and

DOCI-Ssgsp (X = 530 570 nm) temperature probes resulted in fairly consistent

emission intensity that was unaffected by oxygen pressure. The emission intensity areas

for each pressure were averaged (this is assuming that the emission intensity does not

fluctuate gre.lly with variation in Pair), and the coefficient of variation (CV %) (the

standard devi.ation of average emission intensity area divided by the average emission

intensity arei) '.\;s determined for each time interval analysis. The CV % statistically

describes the dlce-rcc of variance in the emission intensity areas of seven spectral emission

scans for prc,,utres between 0.1 14.7 psi. Since the temperature probe is ideally

pressure insclnitive, a low CV is expected. The CV % data at different time intervals

for the tempcililure probes are presented in Tables 2-13 and 2-14 for the

PtDOCIpgsp/VI'DMS and PtDOCI-Sspsp/VPDMS coatings on bare and primed glass.




Table 2-13: Analysis of the area under the emission curve for DOClppsp in
PtDOCIppsp/VPDMS coating on bare and primed glass.
Time lterval" CV % for glass Time Interval' CV % for primer"
24 h 3.26 24 hr 1.23
1 wk 6.14 1 wk 4.87
2 wk 5.06 2 wk 3.64
3 wk 7.25 3 wk 2.98
4 wk 3.76 2 mo 4.92
4 mo 2.97 4 mo 4.45
8 mo 1.41 8 mo 6.47
a fresh sample used for each SV measurement, b CV % for seven emission scans of the
sample obtained at pressures between 0.1 14.7 psi.








Table 2-14: Analysis of the area under the emission curve for DOCI-Ssgsp in PtDOCI-
Ssgsp/VPDMS coating on bare and primed glass.
Time Intervala CV % for glass Time Intervala CV % for primerb
24 h 3.75 24 h 2.94
I wk 3.29 1 wk 3.33
2 wk 4.06 2 wk 5.95
3 wk 5.82 3 wk 9.24
4 wk 3.31 4 wk 4.82
2 mo 9.15 2 mo 2.99
4 mo 3.65 3 mo 6.81
8 mo 7.74 4 mo 1.26
a fresh sample used for each SV measurement, bCV % for seven emission scans of the
sample obtained at pressures between 0.1 14.7 psi.



The DOCIppsp and DOCI-Ssgsp temperature probes were also analyzed

separately in the VPDMS polymer binder. This was done to prove that the emission of

the dyed-microspheres is not quenched by oxygen, regardless if the microspheres were

dispersed in VPDMS with or without the PtTFPP oxygen sensing probe. The CV % data

for dyed-microspheres in VPDMS on bare and primed glass are presented in Tables 2-15

and 2-16.




Table 2-15: Analysis of the area under the emission curve for DOCIppsp in VPDMS
polymer on bare and primed glass.
Time Intervala CV % for glass Time Intervala CV % for primerb
24 h 8.36 24 h 6.82
1 wk 11.5 1 wk 6.92
2 wk 12.7 2 wk 3.96
3 wk 11.8 3 wk 6.95
4 wk 9.04 5 wk 7.01
4 mo 4.48 4 mo 4.32
8 mo 7.04 8 mo 9.29
a fresh sample used for each SV measurement, b CV % for seven emission scans of the
sample obtained at pressures between 0.1 14.7 psi.








Table 2-16: Analysis of the area under the emission curve for DOCI-Ssisp in VPDMS
polymer on bare and primed glass.
Time Intervala CV % for glass Time Interval' CV % for primer
24 h 10.2 24 h 10.2
1 wk 8.78 1 wk 16.1
3 Ak 11.8 2 wk 13.3
4 wk 12.3 3 wk 15.3
2 ino 16.9 4 wk 8.95
4 mo 6.78 2 mo 4.57
8 mo 6.21 4 mo 17.1
8 mo 7.16
a fresh samlpk used for each SV measurement. CV % for seven emission scans of the
sample obtained at pressures between 0.1 14.7 psi.



Inspection of Tables 2-13 to 2-16 reveals that the data are similar. The variance

in the emission response for the dyed-microspheres is characteristic to the spheres and is

not influenced by dual-luminophore interactions.

Emission Intlnisity

Throughout the temporal-stability experiments, the magnitude of emission

intensity for the pressure and temperature probes' responses to oxygen pressure was

monitored. The -lmission intensity data for both probe types decreased by an order of

magnitude betv cen their respective first to last and final interval emission scans. This

effect was consilent for the coatings on glass but not for the coatings on primer. Only

the emission inicnsity of the PtTFPP, DOClppsp. and PtDOCIppsp in VPMDS on primer

decreased by an order of magnitude between their first to last and final interval emission

scans. The en io i intensity of the DOCI-Sslisp and PtDOCI-Sslsp in VPDMS on

primer were st.ible throughout the interval emission scans. The decrease in emission

intensity is not detrimental to the coatings, since the decrease in emission intensity did

not hinder the SV response of the pressure probe. Nor did it increase the small variance

in emission int: insity exhibited by the temperature probes to variation in Pair.







Photostability

The stability of the photoluminescence intensity to continuous illumination for a

period of four hours was examined for the PtDOCIppsp/VPDMS and PtDOCI-

Ssgsp/PDMS coatings. To better understand possible influences one luminophore

might impart on the other over time, the individual luminophores were also analyzed

separately. The coatings, dual- and mono-luminophore, were air-brushed onto plain and

primed (TiO2/SPDMS) borosilicate microscope slides. After application, the coatings

were stored in the dark at room temperature and 33 % relative humidity. The coating

samples were illuminated with 450 nm light with a 50-W arc-bulb, and emission was

monitored from 475 800 nm. A fresh specimen piece was broken-off the respective

prepared slide for each photostability experiment. Illumination was initiated at time

equals zero and an emission scan was obtained every 30 min. These experiments were

carried out in the fluorimeter. Particular emphasis was placed on evaluating the area

under the emission curve between 530 570 nm for the temperature probes and 630 630

nm for the pressure probe at two pressures, 5 and 14.7 psi, and room temperature.

PtTFPP

The phot abilityiy of the photoluminescence of the PtTFPP pressure probe (X =

630 670 nm) in PtDOCIpgsp/VPDMS and PtDOCI-Ssgsp coatings was evaluated at 5

and 14.7 psi. Analysis of the relative PtTFPP emission intensity versus time is displayed

in Figure 2-12 for the PtDOCIplsp/PDMS coating on bare and primed glass, in Figure

2-13 for the PtDOCI-Ssgsp/PDMS coating on bare and primed glass, and in Figure 2-

14 for PtTFPP in VPDMS polymer coating on bare and primed glass as a comparison.









1.2
-- 5 psi on glass
-0- 5 psi on primer
14.7 psi on clhis
I1I V 14.7 psi on primer
i ; v

10



0.9




0 30 60 90 120 Ic i 210 240
I ime (minutes)


Figure 2-12: Photostability of PtTFPP emission in PtDOCIppsp'VPDIMS coating on bare
and primed glass at 5 and 14,7 psi and RT. ArI : area between 630 670 nm at 240
min.




15 -
--0- p'"' gl.eh
1.4 5 psi on primer
-W 14 7 psi on glass
13 14.7 psi on primer

3 12i








0 8 ----r'~ '--r-- --_-
< I







0 30 60 90 120 1 '1 I l 210 240
lime (minutes)


Figure 2-13: Photosiability of PtTFPP emission in PtDOCI-Sspsp'VPDMS coating on
bare and primed glass at 5 and 14.7 psi and RT. A, HF: area between 630 670 nm at
240 min.









1.2

1.1

1.0

0.9

0.8
-*- 5 psi on glass
0.7 5 psi on primer
--- 14.7 psi on glass
O 14.7 psi on primer
0.6 -I I
0 30 60 90 120 150 180 210 240
Time (minutes)

Figure 2-14: Photostability of PtTFPP emission in VPDMS polymer coating on bare and
primed glass at 5 and 14.7 psi and RT. AREF: area between 630 670 nm at 240 min.



The photostability of the photoluminescence of the PtTFPP pressure probe in the

PtDOCIpgsp/VPDMS and PtDOCI-Ssgsp/VPDMS coatings exhibits minimal random

fluctuations in intensity ratio over the four-hour period. These results are within a

standard deviation of error for each scan point and similar to photostability experiments


conducted by Lee and Okura for PtTFPP in polystyrene.74 The PtDOCI-SsgspNPDMS

coating on primed glass at 14.7 psi experiences a decline in photoluminescence emission

intensity over the first 60 90 minutes of illumination. This "photolysis period", only

exhibited for one pressure condition of the photostability experiments, is not uncommon,

and has been observed by other groups not only for the PtTFPP luminophore but for other


Pt(II) porphyrin macrocycles. 16,74

The photostability of the photoluminescence of the PtTFPP pressure probe in

VPDMS polymer without incorporation of the dyed-microspheres behaves similarly to

the PtDOCIpgsp/PDMS coating. Therefore, the PtTFPP ratioed emission intensity








exhibits minor fluctuations over the time period that are not dependent on chemical or

physical interactions with the temperature probes.

DOCIpplsp and DOCI-Sspsp

The photostability of the photoluminescence of the DOCIpp.sp and DOCI-Sspsp

temperature probes (X = 530 570 nm) in PtDOCIppsp/VPDMS and PtDOCI-Sspsp

coatings were evaluated at 5 and 14.7 psi. Analysis of the relative DOCIppsp emission

intensity versus time is displayed in Figure 2-15 for the PtDOClppsp VPDMS coating on

bare and primed glass. The relative DOCI-Ssisp emission intensity versus time is

depicted in Figure 2-16 for the PtDOCI-Sspsp/VPDMS coating on bare and primed glass,

and the relative emission intensities of the DOCIppsp and DOCI-Sspsp temperature

probes, dispersed separately in VPDMS polymer coating without incorporation of the

PtTFPP pressure probe, versus time are illustrated in Figures 2-17 and 2-18, respectively,

as a comparison.




1.8
17" -*- 5 psi on glass
-- 5 psi on primer
1.6 14.7 psi on glass
1.5 0 14.7 psi on primer


1.3
I .4
< 1.2


1.0
0.9
0.8
0 31i 60 1() 120 150 i si1 210 24n1
Time (minutes)

Figure 2-15: Photostability of DOClppsp relative emission intensity in
PtDOCIppsp'VPDMS coating on bare and primed glass at 5 and 14.7 psi and RT. AREF:
area between 530 570 nm at 240 min.









1.3

1.2
.? 1.1


1.1



0.9
-*- 5 psi on glass
0.8 -- 5 psi on primer
--- 14.7 psi on glass
O 14.7 psi on primer
0.7
0 30 60 90 120 150 180 210 240
Time (minutes)

Figure 2-16: Photostability of DOCI-Sspsp relative emission intensity in PtDOCI-
Sspsp/VPDMS coating on bare and primed glass at 5 and 14.7 psi and RT. AREF: area
between 530 570 nm at 240 min.


0 30 60 90 120 150 180 210 240
Time (minutes)


Figure 2-17: Photostability of DOCIpgsp relative emission intensity in VPDMS polymer
coating on bare and primed glass at 5 and 14.7 psi and RT. AREF: area between 530 -
570 nm at 240 min.








142



S1.0


0.8
--0 5 psi on glass
0.6 5 psi on primer
--- 14.7 psi on LJ.1.i
0 14.7 psi on primer
0.4
0 ( 0 60 90 120 150 ImS 210 240
Time (minutes)

Figure 2-18: Photostability of DOCI-Sspsp relative emission intensity in VPDMS
polymer coating on bare and primed glass at 5 and 14.7 psi and RT. ARFF: area between
530 570 nm at 240 min.



The photoluminescencc of the temperature probes in PtDOClppsp. VPDMS and

PtDOCI-Sspsp coatings is less photostable than that of the PtTFPP pressure probe in the

same coatings. The DOClppsp temperature probe in the PtDOClppsp VPDMS coating

on bare and primed glass exhibits a decrease in relative emission intensity over the 240

min. time period at both pressures. The results for the percent photodegradation are listed

in Table 2-17.




Table 2-17: Percent photodegradation of the relative emission intensity for DOCIppsp in
PtDOClppsp/VPDMS coating on bare and primed glass.
Pressure (psi) Glass Primer
5 0.119 %-min" 0.77 no-min'
14.7 0.094 o-min- 0.179 o-mini1




The DOCI-Sspsp temperature probe in the PtDOCI-Sspsp coating on bare glass

experiences minor fluctuations in relative emission intensity over the four-hour time









period. However, the relative emission intensity decreases over the 240 min. time period

for the coating on primed glass. The results for the percent photodegradation of the

coating on primed glass are listed in Table 2-18.




Table 2-18: Percent photodegradation of the relative emission intensity for DOCI-Ssjlsp
in PtDOCI-Ssgsp/VPDMS coating on primed glass.
Pressure (psi) Primer
5 0.028 %-min-
14.7 0.079 %-min-



DOCIpgsp and DOCI-Ssjisp, dispersed separately in VPDMS polymer without

PtTFPP incorporation, display relative emission intensity plots versus time which are

scattered from point to point, however, the scatter from point to point is within the one

standard deviation error bars. Therefore the emission intensity for the temperature probes

in the VPDMS polymer coating is stable over the four-hour illumination period and

unaffected by chemical or physical interactions with the PtTFPP luminophore.

Scanning and Transmission Electron Microscopy

Scanning electron microscopy (SEM)

SEM was used to image the two types of microspheres used in this work. Images

were obtained on the undyed samples as well as on the dyed samples that were used in

the coating preparations. The method used to prepare the SEM specimens is discussed in

the Experimental section.

DOCIppsp. The poly(divinylbenzene) microspheres were prepared by

precipitation polymerization. A typical image of the microspheres prior to DOCI (3,3'-

diethyloxacarbocyanine iodide) adsorption is illustrated in Figure 2-19. All images

display the microspheres as aggregates of large and small particles.
























Figure 2-19: Scanning electron micrograph of precipitation microspheres (ppsp)(5 vol '-
of DVB55; acetonitrile). The scale bar consists of 11 white vertical lines and is 5 Pim
long from the first line to the last line.



The larger particles are 3 to 5 jim in size while the smaller particles are as tiny as

0.5 Jpm. The polymer particles possess a nonspherical shape and no evidence of pore

formation. It appears that in some instances the particles are fused together. This fusion

is most likely a consequence of an earlier stage in their growth.75

Placing carbon tape on an aluminum stud and pressing it against the above-

prepared sample fractured the polymer particles. The fractured microspheres were

transferred to the carbon tape and sputter-coated with 15 nm of gold As a result of

fracturing the polymer particles, a closer look of their interior morphology \% as obtained

and imaged in Figure 2-20.























Figure 2-20: Scanning electron micrograph of fractured precipitation microspheres
(ptsp)(5 vol % of DVB55; acetonitrile). The scale bar consists of 11 white vertical lines
and is 1.5 jpm long from the first line to the last line.



Magnification of the microspheres depicts the fusion of the smaller particles to the

larger particles as seen in the upper half and left side of the figure. The sphere in the

center of the figure exhibits jagged incisions due to the crushing process. Closer analysis

of the exterior and interior morphologies reveals a cauliflower-like surface. This effect is

most likely due to pore formation at the sub-micron level.75

When 3,3'-diethyloxacarbocyanine iodide (DOCI) was adsorbed onto the

microspheres, the particles possess a more spherical swollen shape with no evidence of

pore formation. Figure 2-21 displays a typical cluster of swollen 7.27 wt. % DOCI

adsorbed microspheres (DOCIpjtsp).
























Figure 2-21: Scanning electron micrograph of precipitation microspheres (5 vol I' of
DVB55; acetonitrile) with 7.27 wt. % adsorbed DOCI (DOCIppsp). The scale har
consists of 11 white vertical lines and is 2.31 p.m long from the first line to the last line.



Again, the particles were fractured to display the interior morphology imaged in

Figure 2-22. Magnification of the polymer particles reveals that the interior and exterior

morphologies are tightly polymeriied spheres creating .mall pores.


Figure 2-22: Scanning electron micrograph of fractured precipitation microspheres (5 vol
c of DVB55; acetonitrile) with 7.27 wt. % DOCI (DOCIppsp). The scale bar consists of
11 white vertical lines and is 750 nm long from the first line to the last line.









DOCI-Sspp. The poly(divinylbenzene) microspheres were also prepared via

suspension polymerization, sulfonated, and negatively charged. A typical image of the

microspheres prior to dye adsorption is displayed in Figure 2-23.


















Figure 2-23: Scanning electron micrograph of negatively charged, sulfonated, suspension
microspheres (Ssgp-)(45 vol % of DVB55; l-dodecanol:toluene = 1:1). The scale bar
consists of 11 white vertical lines and is 10 gm long from the first line to the last line.



Polymerization produced a variety of microsphere sizes. The majority are 3 gm

and smaller; although, some are as large as 8 to 10 plm. The microspheres exhibit a

porous structure due to the use of a porogen 1-dodecanol nonsolvent.76 The larger 8 to

10 [im polymer particles possess larger pores but are also more agglomerated and less

spherical than the smaller microspheres. St6ver reported similar character in porosity,

shape, and size distribution of poly(divinylbenzene) microspheres polymerized with

increased percentages of porogen nonsolvent.76

The interior morphology was revealed upon fracturing the microspheres. Figure

2-24 illustrates how the porous nature of the exterior surface is channeled throughout the

interior morphology.






















Figure 2-24: Scanning electron micrograph of fractured negatively charged, sulfonated.
suspension microspheres (Ssppp) (45 vol % ofDVB55; l-dodecanol:toluene = 1:1). The
scale bar consists of 11 white vertical lines and is 750 nm long from the first line to the
last line.



DOCI was adsorbed onto the charged, sulfonated, suspension microspheres

(Ssppp) replacing the Na' counter ion. Figure 2-25 reveals that some of the mIicrospheres

are spherical while others are fractured from the preparation procedure. The most

noticeable feature of these spheres is the appearance of a "sticky film" connecting and

covering the spheres.























Figure 2-25: Scanning electron micrograph of fractured negatively charged, sulfonated,
suspension microspheres (45 vol % of DVB55; 1-dodecanol:toluene = 1:1) with 3.83 wt.
% adsorbed DOCI (DOCI-Ssgsp). The scale bar consists of 11 white vertical lines and is
2.73 gm long from the first line to the last line.



The film forms an incomplete coating across the spheres in the left side of the figure and

a bridge connecting a larger particle and its nearest neighbors in the image right of center.

The film appears to be less than 1 gm thick, and its origins are unknown. However, its

existence was reproducible in additional SEM preparations.

SPDMS and VPDMS incorporating DOCIppsp or DOCI-Ssisp. Clusters of

microspheres penetrating the surface of the coating are observed when a thin film of

SPDMS (silanol polydimethylsiloxanes and methyltriacetoxysilane cross-linker)

containing DOCIpglsp (7.27 wt. % DOCI) (prepared by air-brush; approximately 10 jim

thick) was imaged by SEM. The randomness and irregularity of the microspheres'

distribution and size can be clearly seen in Figure 2-26. This image compliments

findings presented later in the chapter which utilize fluorescence microscopy to describe

the distribution of the microspheres in the polymer binder, Figure 2-30.






















Figure 2-26: Scanning electron micrograph of the surface of a thin film (- 10 pm) of
SPDMS containing DOCIpgsp (7.27 wt. % DOCI)(5 vol of DVB55; acetonitrile). The
scale bar consists of 11 white vertical lines and is 5.02 pm long from the first line to the
last line.



A thin film of VPDMS (vinyl polydimethylsiloxanes) containing DOCIpsp (7.27

wt. % DOCI) was more difficult to image than the DOCIppsp in SPDMS polymer binder.

The surface of DOCIppsp in the VPDMS film did not produce characteristic clusters of

microspheres. Only random indentations and crevices are found which are due to either

the morphology of the polymer cure, dust particles or embedded microspheres. However

upon fracturing the sample and imaging the interior film morphology, clusters of

microspheres are found and imaged in Figure 2-27.












Cluster of
microspheres


Film
Surface


Film
Interior
Glass
Substrate


Figure 2-27: Scanning electron micrograph of the interior morphology of a thin film (-
10 gm) of VPDMS containing DOCIplsp (7.27 wt. % DOCI)(5 vol % of DVB55;
acetonitrile). The scale bar consists of 11 white vertical lines and is 33.3 gm long from
the first line to the last line.



Magnification of the microsphere cluster is displayed in Figure 2-28. This image

further confirms scanning electron microscopy and fluorescence microscopy results

which indicate that the microspheres are not homogeneously distributed within the

polymer film.


Figure 2-28: Scanning electron micrograph of the interior morphology of a thin film (-
10 im) of VPDMS containing DOCIpp.sp (7.27 wt. % DOCI)(5 vol % of DVB55;
acetonitrile) (27X magnification of Figure 2-27). The scale bar consists of 11 white
vertical lines and is 1.20 im long from the first line to the last line.







DOCI-Ssp dispersed in VPDMS polymer could not be imaged with SEM. The

surface of the DOCI-SsLsp/VPDMS film did not reveal a globular texture as seen with

the DOCIppsp in SPDMS polymer (Figure 2-26). Fracturing of the DOCI-

Ssgsp/VPDMS sample did not reveal microspherical clusters of distinct microsphere

regions either. Two factors could be affecting the imaging. (1) It is possible that due to

the elastic nature of the VPDMS. the fractured specimen polymer binder close' over the

exposed interior region masking the microspheres.77 (2) The DOCI-Sspsp are smaller

than the DOCIpptsp and more difficult to image, since, as will be seen in the fluorescence

microscopy data, the DOCI-Ssl.sp are more evenly distributed and less clustered than the

DOCIppsp in the VPDMS polymer binder.

One solution to the problem of imaging is cooling the sample to 77 K, fractioning.

and using a cryostat-stage for the SEM imaging thereby precluding any negative effects

exhibited by the polymer's tendency to resume its shape at room temperature. This

option was not available at the time of the imaging. Regardless, it still does not guarantee

that the microsphere particles will be revealed and successfully imaged.

Transmission electron microscopy

Due to the elastomeric nature of the polydimethylsiloxane (PDMS) polymer

binders utilized in PSP/TSP coatings, the coatings exhibit rather poor mechanical

properties and were therefore difficult to microtome and analyze.77 However, after a

three month storage period at 50 % relative humidity, tris-(4,7-diphenyl-1,10-

phenanthroline)ruthenium (II) dichloride ([Ru(dpp)3]Cl2) dispersed SPDMS polymer was

sufficiently cured making it possible to microtome slices that were less than a 100 nm

thick. Visual and physical inspection of the SPDMS coating showed that cured SPDMS

was not as soft and pliable and easier to cleanly microtome than cured VPDMS polymer.







TEM images of the microtomed [Ru(dpp)3]C12 thin film are shown in Figure 2-29.

Due to the spraying application of the film, the SPDMS polymer is visualized as droplets.

Dark gray areas are indicative of increased electron density either from a single heavy

atom, Ru, or a high concentration of a low atomic weight atom, C, Si, O. The dark black

areas are the formvar resin used in sample preparation. The [Ru(dpp)3]C12 complex was

not discernable as discrete microcrystals, possibly due to the fact that its concentration

was low (i.e. 0.2 wt. % relative to polymer weight, 500 mg).















Figure 2-29: Transmission electron micrographs of a < 100 nm slice of [Ru(dpp)3]Cl2
dispersed in SPDMS polymer. (A) X4500 magnification of polymer, white scale bar is
3.0 ptm long and (B) X70000 magnification of polymer, white scale bar is 0.4 (pm long.



Energy dispersive spectroscopy (EDS)

Energy dispersive spectroscopy coupled with TEM was utilized to determine the

elemental composition of the darker droplet areas in Figure 2-29. The [Ru(dpp)3]Cl2

complex could not be identified, since its concentration at any one point was less than I

wt. % (the limit of detection for this method). However the atoms along the exterior of

the droplets (the darker areas of Figure 2-29 B) were identified as Si. The abundance of

silicon atoms along the exterior surface of the droplets is 3.29 times greater than the

abundance of interior droplet Si concentration. The ratio of Si was calculated by







determining the electron count from Si in the sample and Cu from the copper mesh disk

on which the polymer slice was attached. Ratio of Si = Edge/Interior =

(722/794)/(253/914) = 3.29.

Fluorescence Microscopy

Fluorescence microscopy techniques were employed to better understand the size

and distribution of [Ru(dpp)3]Cl2, PtTFPP, DOCIppsp, and DOCI-Ssgsp in the VPDMS

and SPDMS polymer binders. First, DOCIppsp and DOCI-Sspsp are analyzed for size

(length of particle major axis) and distribution (number of particles per region analyzed).

Second, the PtDOCIppsp/VPDMS and PtDOCI-Sspp/VPDMS film coatings are

analyzed for determination of the relative position of PtTFPP to the dyed-microspheres.

Third, the spatial distribution of the PtTFPP probe's luminescence response to oxygen

quenching in the PtDOCIpplsp/VPDMS and PtDOCI-Ssglsp/VPDMS films are evaluated.

Fourth, the evaluation of [Ru(dpp)3]Cl2 distribution in SPDMS binder.

Size and distribution of DOCIppsp and DOCI-Sspsp

The DOCIpp.sp (0.6 wt. %, relative to polymer weight, 500 mg) and DOCI-Sslsp

(0.2 wt. %, relative to polymer weight, 500 mg) were distributed separately in VPDMS

polymer binder. Two layers of each coating were air-brushed onto clean borosilicate

microscope slides. The DOCI-Sspsp/VPDMS film was approximately 5 pm thick, and

the DOCIppsp/VPDMS film was approximately 10 plm thick, as measured by

profilometry. The slides were analyzed using the inverted fluorescence microscope. A

detailed explanation for the system set-up is found in the Experimental section. For this

experiment, an IR filter, oc 50 % neutral density filter, and a 425 nm 40 nm, bandpass

filter were used in front of the 100-W mercury-bulb excitation source. The

DOCIpplsp/VPDMS film was imaged with the 40X objective and the DOCI-








SspspNPDMS film was imaged with the 40X objective set at 60X magnification by the

microscope's 1.5X magnification knob. The emission light was filtered through a 475

nm long-pass filter, and the side of the slide that was coated with the polymer film faced

the objective. Five regions of each coating were analyzed at an exposure time of 150

msec for the DOCIpglsp/PDMS film and 200 msec for the DOCI-SsgspNPDMS film.

Fluorescence microscope images of the DOCIpgspNPDMS and DOCI-

Ssgsp/PDMS films are displayed in Figure 2-30. Image A is 218 im x 173 im (1300 x

1030 pixels; calibration 0.168 gm-pixel-'). Image B is 146 pm x 115 [im (1300 x 1030

pixels; calibration 0.112 [lm-pixel-1). The images are representative of each film. Within

each image the white clusters and solo particles are defined by the DOCI fluorescence

emission detected from the microspheres.
















Figure 2-30: Fluorescence microscope image of A) DOCIpgsp/VPDMS film and B)
DOCI-SsgspNPDMS film obtained with a CCD camera through a 40X and 60X
objective, respectively. White scale bar is 26.5 im and 17.8 pm long, respectively.



Five regions were imaged for each film. White clusters were considered one

microsphere object rather than counting the individual microsphere components. The








number of objects in each region for the DOCIpgsp/VPDMS and DOCI-Sslsp/VPDMS

films is given in Tables 2-19 and 2-20, respectively.


Table 2-19: Number of microsphere objects for five regions of the DOCIppsp/VPDMS
film.
Region Number of DOCIppsp Objects
1 94
2 56
3 61
4 75
5 62
Average 69.6 13.7


Table 2-20: Number of microsphere objects for five regions of the DOCI-Sslsp/VPDMS
film.
Region Number of DOCI-Sspp Objects
1 81
2 66
3 72
4 90
5 84
Average 78.6 8.57



For all of the microsphere objects counted, the objects' major axis lengths were

determined using a statistical imaging program. Sigma Scan Pro (SPSS Inc.). The

average and the standard deviation for the microsphere objects' lengths for each region

analyzed are given in Tables 2-21 and 2-22.






73


Table 2-21: Average and standard deviation of the microsphere objects' lengths for each
region of the DOCIpgsp/VPDMS film.
Region Objects' Average Length (gm)
1 6.04 5.97
2 2.46 + 1.31
3 3.93 + 3.20
4 4.24 + 4.20
5 2.10 0.46


Table 2-22: Average and standard deviation of the microsphere objects' lengths for each
region of the DOCI-Ssgsp/VPDMS film.
Region Objects' Average Length (pjm)
1 1.55 + 0.51
2 1.52 + 0.56
3 1.19 0.26
4 1.22 + 0.32
5 1.44 + 0.48


The lengths of the objects' major axes from the five regions analyzed for each

film are represented by histograms in Figure 2-31. The number of objects for a given

size range are plotted versus the length of the objects (0.5 gim bin increments).


SIllIllllllllIllllillhIlllHnlll nnlnnn l n nl nP y
0 3 6 9 12 15 18 21 24 27 30
Length of Major Axis (pnm)


140
120
g 100
90
0 80
60
Z 40
20


0 3 6 9 12 15 18 21 24 27
Length of Major Axis (rm)


Figure 2-31: Histogram of the microsphere objects' major axis lengths for A)
DOCIppsp/VPDMS film and B) DOCI-Ssgsp/VPDMS film. Vertical bars equal a 0.5
Lm length increment.








For the DOCIpgspNPDMS film, the microsphere object lengths' are in the range

of 0.5 to 30 im with a substantial number of objects between 2 7 pmr in length. For the

DOCI-SsLtsp/VPDMS film, the microsphere object lengths' are in the range of < 0.5 to

7.5 plm with a substantial number of objects between 0.5 2.5 lam in length. Considering

that the number of objects per region for each film is similar, the large number of objects

(- 140) for the DOCI-SsgspVPDMS film proves that the microspheres are smaller and

less aggregated than the microspheres of the DOCIppspNPDMS film. The measured

object lengths correlate well with the lengths determined from the SEM images. Figures

2-19 and 2-23.

The number and corresponding lengths of DOCIppsp particles in Tables 2-19 and

2-21 and the objective depth of focus (DOF) were used to predict the density distribution

of microspheres in the VPDMS polymer binder for any given region. In this analysis, the

DOF is 4 pam at 40X. (The DOF is defined as the length along the optical axis of the

microscope by which, for a constant level of the image, the focusing position of the

objective can be varied without disturbing the sharpness of the image at the center of the

field.)78 Since the numbers of objects for each region are within a standard deviation of

one another as were the respective object lengths, then it can be derived that a certain

number of microspheres of average length are distributed throughout the coating for a

known region of predetermined size. This is not to say that the microspheres are evenly

distributed throughout the coating; rather, for any region analyzed, an average number of

spheres with average length are found. For example, the DOCIppspNVPDMS film

average is (69.6 objects)/(4 pm x 218 pmr x 173 im) = 4.61x10-4 objects-pm"3.








For the DOCI-Ssgsp/VPDMS film, the 60X objective DOF is not known, but a

rough estimate using the fine focus adjustment of the microscope yields a 2 ptm

measurement for the DOF. By evaluating the microspheres' quantity and length data in

Tables 2-20 and 2-22, the numbers of objects for each region were within a standard

deviation of one another as were the respective object lengths. Therefore, a certain

number of microspheres of average length are distributed throughout the film for a

known region of thickness and size. For example, the DOCI-SslspNPDMS film

average is (78.6 objects)/(2 gm x 146 gm x 115 pm) = 2.34x10-3 objects-gm-3. Although

the DOCI-Ssgsp may not be evenly distributed throughout an analyzed region, an

average number of microspheres with average lengths are found in any region.

Relative distribution of PtTFPP, DOCIppsp, and DOCI-Sspsp

The position of the PtTFPP probe relative to the microspheres in the

PtDOCIppsp/VPDMS and PtDOCI-Ssgsp/PDMS films was determined using the

fluorescence microscope. Two layers of each formulation coating were air-brushed onto

clean borosilicate microscope slides, and the luminescence of the two luminophores

(PtTFPP and DOCIpgsp or DOCI-Ssgsp) was detected. Three images from each coating

were obtained using the 40X objective, IR filter, oc 50 % neutral density filter, and a 425

nm 40 nm, bandpass filter in front of the excitation source. Three emission filters were

used interchangeably: a 475 nm longpass filter for imaging PtTFPP and DOCIpgsp or

DOCI-Ssglsp luminescence; a 525 nm 50 nm, bandpass filter for imaging DOCIpgsp or

DOCI-Ssgsp luminescence; and a 630 nm 60 nm, bandpass filter for imaging the PtTFPP

luminescence.




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EAM7BWMHU_Z116N2 INGEST_TIME 2013-02-14T17:47:15Z PACKAGE AA00013559_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

'(9(/230(17 $1' &+$5$&7(5,=$7,21 2) /80,1(6&(17 2;<*(1 6(16,1* &2$7,1*6 %\ -2$11( 0 %('/(.$16/2: $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56Q <2O )/25,'$ ,1 3$57,$, ), ),//0(17 2) 7+( 5(4O ,.(0(176 )25 7+( '(*5(( 2, '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

&RS\ULJKW E\ -RDQQH 0 %HGOHN$QVORZ

PAGE 3

)RU -RG\ 7KH OLWWOH JLUO ZLWK FXUO\ EURZQ KDLU ZKR WKRXJKW EnV ZHUH GfV DQG SnV ZHUH TfV

PAGE 4

$&.12:/('*0(176 $V DSSURDFK WKH FRPSOHWLRQ RI QHDUO\ \HDUV RI HGXFDWLRQ LW EHFRPHV FKDOOHQJLQJ WR SURSHUO\ WKDQN WKH QXPHURXV SHRSOH WKDW KDYH KHOSHG PH DORQJ WKH ZD\ )RUHPRVW P\ SDUHQWV GHVHUYH P\ VLQFHUHVW ORYH DQG DSSUHFLDWLRQ IRU DOZD\V EHLQJ WKHUH IRU PH ZLWK FRQVWDQW DQG XQFRQGLWLRQDO ORYH HQFRXUDJHPHQW DQG SUDLVH WKURXJKRXW WKH XSV DQG GRZQV RI P\ OLIH $V D \RXQJ FKLOG WKH\ HQFRXUDJHG P\ LQWHUHVWV DQG KHOSHG PH WR UHDOL]H WKDW DQ\ GUHDP LV SRVVLEOH 2QH RI WKHLU JUHDWHVW OHVVRQV ZDV WKDW OLIH LV DERXW GHFLVLRQV DQG FKRLFHV DP VROHO\ UHVSRQVLEOH IRU P\ KDSSLQHVV DQG PXVW DOZD\V EH P\ JUHDWHVW DOO\ 7KH VLJQLILFDQFH RI WKLV DGYLFH FRQWLQXHV WR JURZ ZLWK HDFK SDVVLQJ \HDU 2QO\ UHFHQWO\ KDYH EHJXQ WR UHDOL]H WKH H[WHQW RI WKHLU VDFULILFHV DQG VXSSRUW RI P\ VXFFHVVHV 7KHLU H[DPSOHV DV SDUHQWV FRPSDQLRQV DQG JHQXLQH SHRSOH DUH FRQVWDQW UHPLQGHUV RI WKH SHUVRQ DP WU\LQJ WR EHFRPH PXVW DOVR WKDQN P\ VLVWHU -HDQQH IRU KHU ORYH DQG IDLWK DQG H[TXLVLWH H[DPSOH DV D ZRPDQ RI FRPSDVVLRQ DQG FRQYLFWLRQ 0\ DSSUHFLDWLRQ DOVR H[WHQGV WR P\ VPDOO EXW ERLVWHURXV IDPLO\ IRU WKHLU ORYH DQG VXSSRUW 8QFOH -LP DQG $XQW 3DW $XQW 3DP DQG 8QFOH .HQ $O\VVD DQG &KULV $ULDQQD .HYLQ DQG 5R[DQQ 6KD\ DQG $QJLH *RGPRWKHU +HOHQ 5XVV DQG 'HH 0DWW DQG fOLWWOHf *UDQGPD 8QIRUWXQDWHO\ P\ JUDQGIDWKHU GLG QRW OLYH WR VHH PH ILQLVK P\ GRFWRUDWH \HW DP SRVLWLYH KH LV UHMRLFLQJ LQ P\ VXFFHVVHV DP DOVR IRUWXQDWH WR EH WKH EHQHILFLDU\ RI D ODUJH H[WHQGHG IDPLO\ RI SHRSOH ZKR LI QRW WKURXJK WLHV RI EORRG EXW UDWKHU WLHV RI IULHQGVKLS KDYH EOHVVHG PH ZLWK JXLGDQFH ORYH DQG SUDLVH IRU ORQJHU WKDQ FDQ UHPHPEHU 7KLV QXFOHXV RI SHRSOH LQFOXGHV P\ GHDU ,9

PAGE 5

IULHQGV 6KDQQRQ DQG -RHO *UXHQNH /L] DQG 0DUN 7LQHK .HUU\ DQG 6FRW &RUNH\ -DFNLH DQG %ULDQ %URZQ 6DUD :DGIRUG 'U 0LNH DQG $QGUHD 5REHUWVRQ +HDWKHU DQG -RKQ 0H &DEH 'U 0DULMHDQ DQG :D\QH /HYHULQJ 'U 0DU\n )UDQFHV DQG -RHO %DUWKHO (OOHQ DQG %ULDQ 5DVPXVVHQ /RXLV 1LFRXOLQ 5HJLQD 7RQQHVHQ -DQLV DQG 'LFN 6LOYHUPDQ 'LDQH DQG 5XVV 0XHOOHU ,UHQH 0XHOOHU $QQD DQG :HV 6FKZDEHGHVVHQ %DED DQG ']LG]LR ,ZDQFLHZ DQG .ODXV DQG 7UDXGHO .XPPHU 7KHUH ZDV DOVR DQ HQWLUH DUP\ RI DQJHOV SUD\LQJ IRU PH QLJKW DQG GD\ DV ZURWH 6U .DWKOHHQ /HRQDUG 6U &ODLUH +DQVRQ 6U *HQHYLHYH 7KHUHVH 6U 'RURWK\ 0DULH 6U +HOHQH DQG DOO RI WKH 6LVWHUVRI3URYLGHQFH DQG 6DOHVLDQ 1XQV ZDV DOVR YHU\ IRUWXQDWH IRU WKH IULHQGVKLSV RI VRPH UHPDUNDEOH SHRSOH GXULQJ P\ VWD\ LQ *DLQHVYLOOH 'U %DUEDUD 7VXLH 'U .DUHQ DQG 3HWHU 7RUUDFD 'U .HLWK :DOWHUV 0DULO\Q 3H\WRQ DQG 'U *UHWFKHQ 3RWWV &UHGLW PXVW DOVR EH JLYHQ WR P\ XQGHUJUDGXDWH DGYLVRU 3URIHVVRU 0DU\ %R\G 6KH KDV EHHQ DQ RXWVWDQGLQJ PHQWRU DQG IULHQG WKURXJK WKH \HDUV 6KH LV WKH RQH UHVSRQVLEOH IRU P\ EHJLQQLQJV LQ FKHPLFDO UHVHDUFK DQG WKH RQH ZKR ILUVW HQFRXUDJHG PH WR SXUVXH D 3K' LQ FKHPLVWU\ $OVR D UHPDUNDEOH JUDGXDWH VWXGHQW 'U 0DULD 9DOHQWLQR HQKDQFHG P\ \HDUV DW /R\ROD ,W ZDV XQGHU KHU WXWHODJH WKDW GHYHORSHG P\ VNLOOV DQG VHOIFRQILGHQFH LQ P\ fDUWf 6KH ZDV SDWLHQW DQG NLQG DQG D PRGHO IRU WKH W\SH RI JUDGXDWH VWXGHQW ZLVKHG WR EHFRPH 0\ IRUPDWLYH UHVHDUFK \HDUV OHG PH WR WKH ODERUDWRU\ RI 'U .LUN 6FKDQ]H PXVW WKDQN .LUN IRU WKH PDQ\ OHVVRQV KH KDV PDGH SRVVLEOH WR IRVWHU P\ JURZWK DV D SHUVRQ DQG DV D VFLHQWLVW DP WUXO\ JUDWHIXO IRU WKH DPD]LQJ PXOWLGLVFLSOLQDU\ SURMHFW ZLWK ZKLFK KH KDV PDWFKHG PH DQG KLV EHOLHI LQ LWV DQG P\ VXFFHVVIXO RXWFRPH +H KDV JLYHQ PH RSSRUWXQLWLHV DORQJ ZLWK HQFRXUDJHPHQW WR SUHVHQW P\ UHVHDUFK DQG SXEOLVK P\ Y

PAGE 6

ILQGLQJV 7KH PHPEHUV RI WKH 6FKDQ]H UHVHDUFK JURXS SDVW DQG SUHVHQW KDYH DOVR DLGHG PH LQ IXOILOOLQJ P\ SRWHQWLDO QRW RQO\ DV D VFLHQWLVW EXW DOVR DV DQ LQWHJUDWHG SHUVRQ PXVW JLYH SDUWLFXODU SUDLVH WR 'U
PAGE 7

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 LY /,67 2) 7$%/(6 [ /,67 2) ),*85(6 [Y $%675$&7 [[LY &+$37(56 ,1752'8&7,21 %DFNJURXQG /XPLQHVFHQFH 4XHQFKLQJ %LPROHFXODU 6WHP9ROPHU 4XHQFKLQJ 0RGHOLQJ 1RQOLQHDU 6WHP9ROPHU 5HVSRQVH /XPLQRSKRUHV DQG 3RO\PHUV 5X,,f D'LLPLQH &RPSOH[HV 3W,,f3G,,f 3RUSK\ULQ 0DFURF\FOHV 6LOLFRQH 3ODVWLFL]HUV 0RGLILHG 3RO\PHUV :LQG7XQQHO $SSOLFDWLRQ 7HPSHUDWXUH (IIHFWV ,VRWKHUPDO &DOLEUDWLRQ ,QVLWX &DOLEUDWLRQ .WLW &DOLEUDWLRQ 7HPSHUDWXUHFRUUHFWHG 3UHVVXUH &DOLEUDWLRQ 3K\VLFDO 0DQLIHVWDWLRQV RI WKH 7HPSHUDWXUH (IIHFW $GYDQFHV LQ 363 'HVLJQ 0RQLWRULQJ 0HWKRGV /XPLQHVFHQFH ,QWHQVLW\ 3XOVHG /LIHWLPH 3KDVHVKLIW 6FRSH RI 7KLV :RUN 9,,

PAGE 8

'8$//80,123+25( 2;<*(1 6(16,1* &2$7,1*6 ,QWURGXFWLRQ 5HVXOWV 'XDOOXPLQRSKRUH &RDWLQJV 7HPSHUDWXUH 'HSHQGHQFH DQG 7KHUPDOVWDELOLW\ 7HPSRUDOVWDELOLW\ 3KRWRVWDELOLW\ 6FDQQLQJ DQG 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRS\ )OXRUHVFHQFH 0LFURVFRS\ ,PDJH 7HVWLQJ 'LVFXVVLRQ 3W7)33 '2&,SSVS DQG '2&,6VSVS 3W'2&,SSVS93'06 DQG 3W'2&,6SVS93'06 &RDWLQJV ([SHULPHQWDO 3UHSDUDWLRQ RI '2&, +LJKO\ &URVVOLQNHG 3RO\PHU 0LFURVSKHUHV '2&,SSVSf 3UHSDUDWLRQ RI '2&, 6XOIRQDWHG 3RO\PHU 0LFURVSKHUHV '2&,6VSVSf 2OLJRPHUV /XPLQRSKRUHV 3UHSDUDWLRQ RI &RDWLQJV ,QVWUXPHQWDWLRQ 0,&526&23,& $1$/<6,6 2) /80,1(6&(17 2;<*(1 6(1625 7+,1 ),/06 ,QWURGXFWLRQ 5HVXOWV )OXRUHVFHQFH 0LFURVFRS\ RI ,QFUHDVHG &RQFHQWUDWLRQV RI 3W7)33 LQ 63'06 )OXRUHVFHQFH 0LFURVFRS\ RI ,QFUHDVHG 0ROH 5DWLRV RI &URVVOLQNHU LQ 3W7)3363'06 )OXRUHVFHQFH 0LFURVFRS\ RI 5X,,f RFGLLPLQH &RPSOH[HV LQ 63'06 )OXRUHVFHQFH 0LFURVFRS\ RI >5XGSSf@&O LQ 63'06 DQG 3'06 ZLWK )XPHG 6L&/ 'LVFXVVLRQ $QDO\VLV RI 3W7)33 )LOPV $QDO\VLV RI 5X ,,f DGLLPLQH )LOPV ([SHULPHQWDO 2OLJRPHUV /XPLQRSKRUHV 3UHSDUDWLRQ RI &RDWLQJV ,QVWUXPHQWDWLRQ )OXRUHVFHQFH 0LFURVFRSH ,PDJH $QDO\VLV &21&/86,216 YLLL ,

PAGE 9

39:$9( 0$&52 $1' 68%5287,1(6 /,67 2) 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ ,;

PAGE 10

/,67 2) 7$%/(6 7DEOH 3DJH 3KRWRFKHPLFDO &KDUDFWHULVWLFV RI WKH 5X,,f RFGLLPLQH &RPSOH[HV LQ :DWHU 3ODWLQXP DQG 3DOODGLXP 3RUSK\ULQ %DVHG 2SWLFDO 2[\JHQ 6HQVRUV 3HUFHQW FKDQJH LQ 3W7)33 HPLVVLRQ DUHD DW VHYHQ SUHVVXUHV RYHU D UDQJH IRU 3W'2&,SSVS93'06 FRDWLQJ RQ SULPHG JODVV 3HUFHQW FKDQJH LQ 3W7)33 HPLVVLRQ DUHD DW VHYHQ SUHVVXUHV RYHU D UDQJH IRU 3W'2&,6VSVS93'06 FRDWLQJ RQ SULPHG JODVV 69 DQDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 3W'2&,SSVS93'06 FRDWLQJ RQ SULPHG JODVV IRU D F\FOLF WHPSHUDWXUH UXQ 69 DQDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 3W'2&,6VSVS93'06 FRDWLQJ RQ SULPHG JODVV IRU D F\FOLF WHPSHUDWXUH UXQ 3HUFHQW FKDQJH LQ '2&,SSVS HPLVVLRQ DUHD DW VHYHQ SUHVVXUHV RYHU D F\FOLF WHPSHUDWXUH UXQ RI IRU 3W'2&,SSVS93'06 FRDWLQJ RQ SULPHG JODVV 3HUFHQW FKDQJH LQ '2&,6VSVS HPLVVLRQ DUHD DW VHYHQ SUHVVXUHV RYHU D F\FOLF WHPSHUDWXUH UXQ RI IRU 3W'2&,6VSVS93'06 FRDWLQJ RQ SULPHG JODVV 69 $QDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 3W'2&,SSVS93'06 FRDWLQJ RQ EDUH JODVV 69 $QDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 3W'2&,6VMXVS93'06 FRDWLQJ RQ EDUH JODVV 6 9 $QDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 93'06 SRO\PHU RQ EDUH JODVV 69 $QDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 3W'2&,SSVS93'06 FRDWLQJ RQ SULPHG JODVV 6 9 $QDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 3W'2&,6VMLVS93'06 FRDWLQJ RQ SULPHG JODVV [

PAGE 11

69 $QDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 93'06 SRO\PHU RQ SULPHG JODVV $QDO\VLV RI WKH DUHD XQGHU WKH HPLVVLRQ FXUYH IRU '2&,SSVS LQ 3W'2&,SSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV $QDO\VLV RI WKH DUHD XQGHU WKH HPLVVLRQ FXUYH IRU '2&,6VSVS LQ 3W'2&, 6VSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV $QDO\VLV RI WKH DUHD XQGHU WKH HPLVVLRQ FXUYH IRU '2&,SSVS LQ 93'06 SRO\PHU RQ EDUH DQG SULPHG JODVV $QDO\VLV RI WKH DUHD XQGHU WKH HPLVVLRQ FXUYH IRU '2&,6VSVS LQ 93'06 SRO\PHU RQ EDUH DQG SULPHG JODVV 3HUFHQW SKRWRGHJUDGDWLRQ RI WKH UHODWLYH HPLVVLRQ LQWHQVLW\ IRU '2&,SSVS LQ 3W'2&,SSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV 3HUFHQW SKRWRGHJUDGDWLRQ RI WKH UHODWLYH HPLVVLRQ LQWHQVLW\ IRU '2&,6VSVS LQ 3W'2&,6VSVS93'06 FRDWLQJ RQ SULPHG JODVV 1XPEHU RI PLFURVSKHUH REMHFWV IRU ILYH UHJLRQV RI WKH '2&,SSVS93'06 ILOP 1XPEHU RI PLFURVSKHUF REMHFWV IRU ILYH UHJLRQV RI WKH '2&,6VSVS93'06 ILOP $YHUDJH DQG VWDQGDUG GHYLDWLRQ RI WKH PLFURVSKHUH REMHFWVf OHQJWKV IRU HDFK UHJLRQ RI WKH '2&,SSVS93'06 ILOP $YHUDJH DQG VWDQGDUG GHYLDWLRQ RI WKH PLFURVSKHUH REMHFWVf OHQJWKV IRU HDFK UHJLRQ RI WKH '2&,6VSVS93'06 ILOP 0LFURVFRSLF 69 DQDO\VLV RI ILYH UHJLRQV IRU 3W'2&,SSVS93'06 WKLQ )LOP XVLQJ WKH R[ DQG ; REMHFWLYHV 0LFURVFRSLF 69 DQDO\VLV RI ILYH UHJLRQV IRU 3W'2&,6VSVS93'06 WKLQ ILOP XVLQJ WKH ; DQG ; REMHFWLYHV 0DFURVFRSLF 69 UHVSRQVH GDWD IRU 3W'2&,SSVS93'06 DQG 3W'2&, 6VSVS93'06 ILOPV RQ JODVV &RUUHVSRQGLQJ SUHVVXUH YDOXHV DQG VWDWLVWLFDO GLVWULEXWLRQV IRU WKH XQFRUUHFWHG UDWLRHG LQWHQVLW\ LPDJHV RI WKH 3W'2&,SSVS93'06 FRDWLQJ RQ DQ DOXPLQXP SODWH DW VHYHQ SUHVVXUHV EHWZHHQ SVL &RUUHVSRQGLQJ SUHVVXUH YDOXHV DQG VWDWLVWLFDO GLVWULEXWLRQV IRU WKH FRUUHFWHG UDWLRHG LQWHQVLW\ LPDJHV RI 3W'2&,SSVS93'06 FRDWLQJ RQ DQ DOXPLQXP SODWH DW VHYHQ SUHVVXUHV EHWZHHQ SVL ;,

PAGE 12

&RUUHVSRQGLQJ SUHVVXUH YDOXHV DQG VWDWLVWLFDO GLVWULEXWLRQV IRU WKH FRUUHFWHG UDWLRHG LQWHQVLW\ LPDJHV RI 3W'2&,6VSVS93'06 FRDWLQJ RQ DQ DOXPLQXP SODWH DW VHYHQ SUHVVXUHV EHWZHHQ SVL 0DFURVFRSLF 6 9 UHVSRQVH GDWD IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV 3W7)33 HPLVVLRQ LQWHQVLW\ DUHD ; QPf YDOXHV IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV 0D[LPXP IOXRUHVFHQFH LQWHQVLW\ YDOXHV IRU ; PLFURVFRSLF UHJLRQV RI LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV DW SVL 3HUFHQW VWDQGDUG GHYLDWLRQ R bf LQ LQWHQVLWLHV DW VHYHQ SUHVVXUHV IRU PLFURVFRSLF UHJLRQV RI LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV XVLQJ WKH ; REMHFWLYH 0D[LPXP .VY YDOXHV IRU ; PLFURVFRSLF UHJLRQV RI LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV D 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV E 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV D 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV E 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV 0DFURVFRSLF 69 UHVSRQVH GDWD IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU 3W7)33 HPLVVLRQ LQWHQVLW\ DUHD ; QPf YDOXHV IRU LQFUHDVHG PROH UDWLRV RI FURVVOLQNHU LQ 3W7)3363'06 RQ JODVV 0D[LPXP IOXRUHVFHQFH LQWHQVLW\ YDOXHV IRU ; PLFURVFRSLF UHJLRQV RI 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU DW SVL 3HUFHQW VWDQGDUG GHYLDWLRQ D bf LQ LQWHQVLWLHV DW VHYHQ SUHVVXUHV IRU PLFURVFRSLF UHJLRQV IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVn OLQNHU ;OO

PAGE 13

0D[LPXP .VY YDOXHV IRU ; PLFURVFRSLF UHJLRQV IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU D 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU E 0LFURVFRSLF 69 DQDO\VLV RI )LYH ; UHJLRQV IRU 3W7)3363'06 RQ JODVV DW )LYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU D 0LFURVFRSLF 69 DQDO\VLV RI )LYH ; UHJLRQV IRU 3W7)3363'06 RQ JODVV DW )LYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU E 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU 0DFURVFRSLF 69 UHVSRQVH GDWD IRU 5X ,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV 5X,,f DGLLPLQH FRPSOH[ HPLVVLRQ LQWHQVLW\ DUHD ; f QPf YDOXHV DW SVL IRU 5XL ,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV 5X,,f DGLLPLQH FRPSOH[ PRODU FRQFHQWUDWLRQ P0f IRU 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV 0D[LPXP IOXRUHVFHQFH LQWHQVLW\ YDOXHV IRU ; PLFURVFRSLF UHJLRQV RI 5X,,f D GLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV DW SVL 3HUFHQW VWDQGDUG GHYLDWLRQ R bf LQ LQWHQVLWLHV DW VHYHQ SUHVVXUHV IRU PLFURVFRSLF UHJLRQV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV 0D[LPXP .6Y YDOXHV IRU 2; PLFURVFRSLF UHJLRQV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV OD 0LFURVFRSLF 69 DQDO\VLV RI ILYH 2; UHJLRQV IRU 5X,Of DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV OE 0LFURVFRSLF 69 DQDO\VLV RI )LYH 2; UHJLRQV IRU 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV F 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV D 'LVFUHWH VY [\f YDOXHV IRU WKUHH UHJLRQV RXWOLQHG LQ ; PLFURVFRSLF .6Y[\f LPDJH PDSV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV ;,,,

PAGE 14

MADYJ E 'LVFUHWH VY [\f YDOXHV IRU WKUHH UHJLRQV RXWOLQHG LQ ; PLFURVFRSLF .6Y[\f LPDJH PDSV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV D 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV E 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV F 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV 0DFURVFRSLF 69 UHVSRQVH GDWD IRU >5XGSSf@&O GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO 0D[LPXP IOXRUHVFHQFH LQWHQVLW\ YDOXHV IRU ; PLFURVFRSLF UHJLRQV RI >5XGSSf@&O GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO 3HUFHQW VWDQGDUG GHYLDWLRQ D bf LQ LQWHQVLWLHV DW VHYHQ SUHVVXUHV IRU PLFURVFRSLF UHJLRQV RI >5XGSSf@&O GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO 0D[LPXP .VY YDOXHV IRU ; PLFURVFRSLF UHJLRQV RI >5XGSSf@&O GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO D 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU >5XGSSf@&O GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO E 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU >5XGSSf@&O GLVSHUVHG LQ 3'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO 'LVFUHWH .AI [\f YDOXHV IRU WKUHH UHJLRQV RXWOLQHG LQ ; PLFURVFRSLF .VY[\f LPDJH PDSV RI >5XGSSf@&O GLVSHUVHG LQ 3'06 RU 63'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO D 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU >5XGSSf@&O GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO E 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV RI >5XGSSf@&O GLVSHUVHG LQ 3'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO [LY

PAGE 15

/,67 2) ),*85(6 )LJXUH 3DJH 6WHUQ9ROPHU SORWV RI O, YHUVXV S2 IRU WKH IROORZLQJ RSWLFDO R[\JHQ VHQVRUV >5XSKHQE@nr LQ VLOLFRQH UXEEHU *( 579 $f DQG >5XES\fM@fa LQ VLOLFRQH UXEEHU *( 579 ff 6WUXFWXUHV RI WKH PDMRU 5X,,f DGLLPLQH OXPLQRSKRUHV XVHG LQ RSWLFDO R[\JHQ VHQVRUV >5XES\fM@f? >5XSKHQE@ r DQG >5XIGSSE@rf 6WUXFWXUHV RI WKH PDMRU SODWLQXP DQG SDOODGLXP SRUSK\ULQV XVHG LQ RSWLFDO R[\JHQ VHQVRUV 0 3WL ,K RU 3GL ,,ff 5HSHDW XQLW RI IOXRURLVRSURS\OEXW\OfDFU\OLF SRO\PHU 5HSHDW XQLW RI SRO\VW\UHQHFRSHQWDIOXRURVW\UHQHf FRSRO\PHU 5HSHDW XQLWV RI SRO\DPLQRWKLRQ\OSKRVSKD]HQHf!SRO\WHWUDK\GURIXUDQf EORFN FRSRO\PHU 3UHVVXUH 6HQVLWLYH 3DLQW PHDVXUHPHQW V\VWHP IRU WHVWLQJ RI DLU SUHVVXUH SURILOHV RQ DQ DLUSODQH PRGHO LQ D ZLQGWXQQHO *UD\VFDOH SUHVVXUH GLVWULEXWLRQ PDS IRU D QLWURJHQ MHW SURWUXGLQJ IURP D 363 FRDWLQJ 6FKHPH IRU SUHSDUDWLRQ RI '2&, KLJKO\ FURVVOLQNHG SRO\PHU PLFURVSKHUHV '2&,SSVSf $f YRO b '9% UHODWLYH WR WRWDO YROXPH $,%1 ZW b UHODWLYH WR PRQRPHU $ r & IRU K (W2+ ZDVK GU\ LQ YDFXR DW r & IRU K %f P/ 0H2+ VRQLFDWH K VRDN LQ GDUN IRU G 0H2+ DQG &K/&/ ZDVK GU\ LQ YDFXR DW r & IRU K 6FKHPH IRU SUHSDUDWLRQ RI '2&, VXOIRQDWHG SRO\PHU PLFURVSKHUHV '2&,6VMLVSf $f YRO b '9% UHODWLYH WR WRWDO YROXPH ', )/2SRURJHQ YY SRURJHQPRQRPHU YY SRURJHQ GRGHFDQRNWROXHQH VRGLXP ODXU\OVXOIDWH PRO b UHODWLYH WR PRQRPHU $ r r & K DW USP ', )/2 DQG DFHWRQH ZDVK 7+) 6R[KOHW H[WUDFWLRQ GU\ LQ YDFXR r & K %f P/ &)/&/ r & P/ &,627, LQ P/ &)K&O GURSZLVH ZDUP WR [Y

PAGE 16

r & VWLU K r & &+&, ZDVK DLU GU\ &f P/ ', + P/ 1D2+ P0f VWLU PLQ r & [ P/ ', +2 ZDVK P/ DFHWRQH ZDVK GU\ LQ YDFXR r & K 'f P/ 0H2+ P/ ', +2 VRQLFDWH IRU PLQ 0H2+ DQG DFHWRQH ZDVK 6FKHPH IRU SUHSDUDWLRQ RI GXDOOXPLQRSKRUH R[\JHQ VHQVLQJ FRDWLQJV 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS93'06 (PLVVLRQ LQWHQVLW\ VSHFWUD IRU 3W7)33 DQG '2&,SSVS GLVSHUVHG LQ 93'06 SRO\PHU RQ SULPHG JODVV (PLVVLRQ LQWHQVLW\ VSHFWUD IRU 3W7)33 DQG '2&,6VSVS GLVSHUVHG LQ 93'06 SRO\PHU RQ SULPHG JODVV 69 SORW 3W'2&,SSVS93'06 FRDWLQJ RQ SULPHG JODVV IRU WHPSHUDWXUHV EHWZHHQ $UHI DUHD EHWZHHQ QP DW SVL DQG 69 SORW 3W'2&,6VSVS93'06 FRDWLQJ RQ SULPHG JODVV IRU WHPSHUDWXUHV EHWZHHQ $UHI DUHD EHWZHHQ QP DW SVL DQG (PLVVLRQ LQWHQVLW\ VSHFWUD IRU '2&,SSVS LQ 3W'2&,SSVS93'06 FRDWLQJ RQ SULPHG JODVV DW SVL IRU ILYH WHPSHUDWXUHV EHWZHHQ (PLVVLRQ LQWHQVLW\ VSHFWUD IRU '2&,6VSVS LQ 3W'2&,6VSVS93'06 FRDWLQJ RQ SULPHG JODVV DW SVL IRU ILYH WHPSHUDWXUHV EHWZHHQ 7HPSHUDWXUH GHSHQGHQFH RI HPLVVLRQ IRU '2&,SSVS LQ 3W'2&,SSVS93'06 FRDWLQJ RQ SULPHG JODVV IRU D VHULHV RI SUHVVXUHV EHWZHHQ SVL $UHI DUHD EHWZHHQ QP DW DQG SVL 7HPSHUDWXUH GHSHQGHQFH RI HPLVVLRQ IRU '2&,6VSVS LQ 3W'2&,6VSVS93'06 FRDWLQJ RQ SULPHG JODVV IRU D VHULHV RI SUHVVXUHV EHWZHHQ SVL $UHI DUHD EHWZHHQ QP DW DQG SVL 3KRWRVWDELOLW\ RI 3W7)33 HPLVVLRQ LQ 3W'2&,SSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV DW DQG SVL DQG 57 $UHI DUHD EHWZHHQ QP DW PLQ 3KRWRVWDELOLW\ RI 3W7)33 HPLVVLRQ LQ 3W'2&,6VSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV DW DQG SVL DQG 57 $UHI DUHD EHWZHHQ QP DW PLQ 3KRWRVWDELOLW\ RI 3W7)33 HPLVVLRQ LQ 93'06 SRO\PHU FRDWLQJ RQ EDUH DQG SULPHG JODVV DW DQG SVL DQG 57 $UHI DUHD EHWZHHQ QP DW PLQ [YL

PAGE 17

3KRWRVWDELOLW\ RI '2&,SSVS UHODWLYH HPLVVLRQ LQWHQVLW\ LQ 3W'2&,SILVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV DW DQG SVL DQG 57 $5(I DUHD EHWZHHQ QP DW PLQ 3KRWRVWDELOLW\ RI '2&,6VSVS UHODWLYH HPLVVLRQ LQWHQVLW\ LQ 3W'2&, 6VSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV DW DQG SVL DQG 57 $UHIA DUHD EHWZHHQ QP DW PLQ 3KRWRVWDELOLW\ RI '2&,SSVS UHODWLYH HPLVVLRQ LQWHQVLW\ LQ 93'06 SRO\PHU FRDWLQJ RQ EDUH DQG SULPHG JODVV DW DQG SVL DQG 57 $5(I DUHD EHWZHHQ QP DW PLQ 3KRWRVWDELOLW\ RI '2&,6VSVS UHODWLYH HPLVVLRQ LQWHQVLW\ LQ 93'06 SRO\PHU FRDWLQJ RQ EDUH DQG SULPHG JODVV DW DQG SVL DQG 57 $U(I DUHD EHWZHHQ QP DW PLQ 6FDQQLQJ HOHFWURQ PLFURJUDSK RI SUHFLSLWDWLRQ PLFURVSKHUHV SSVSf YRO F RI '9% DFHWRQLWULOHf 7KH VFDOH EDU FRQVLVWV RI Z KLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI IUDFWXUHG SUHFLSLWDWLRQ PLFURVSKHUHV SSVSf YRO b RI '9% DFHWRQLWULOHf 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI SUHFLSLWDWLRQ PLFURVSKHUHV YRO F RI '9% DFHWRQLWULOHf ZLWK ZW b DGVRUEHG '2&, '2&,SSVSf 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI IUDFWXUHG SUHFLSLWDWLRQ PLFURVSKHUHV YRO F RI '9% DFHWRQLWULOHf ZLWK ZW b '2&, '2&,SSVSf 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV QP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI QHJDWLYHO\ FKDUJHG VXOIRQDWFG VXVSHQVLRQ PLFURVSKHUHV 6VSS f YRO b RI '9% GRGHFDQRKWROXHQH f 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI IUDFWXUHG QHJDWLYHO\ FKDUJHG VXOIRQDWFG VXVSHQVLRQ PLFURVSKHUHV 6VSS f YRO b RI '9% ,GRGHFDQRKWROXHQH f 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV QP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI IUDFWXUHG QHJDWLYHO\ FKDUJHG VXOIRQDWHG VXVSHQVLRQ PLFURVSKHUHV YRO F RI '9% GRGHFDQRKWROXHQH f ;9,,

PAGE 18

ZLWK ZW b DGVRUEHG '2&, '2&,6VSVSf 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV /WP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI WKH VXUIDFH RI D WKLQ ILOP a SPf RI 63'06 FRQWDLQLQJ '2&,SSVS ZW b '2&,f YRO b RI '9% DFHWRQLWULOHf 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI WKH LQWHULRU PRUSKRORJ\ RI D WKLQ ILOP a SPf RI 93'06 FRQWDLQLQJ '2&,SSVS ZW b '2&,f YRO b RI '9% DFHWRQLWULOHf 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI WKH LQWHULRU PRUSKRORJ\ RI D WKLQ ILOP a SPf RI 93'06 FRQWDLQLQJ '2&,SSVS ZW b '2&,f YRO b RI '9% DFHWRQLWULOHf ; PDJQLILFDWLRQ RI )LJXUH f 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI D QP VOLFH RI >5XGSSf@&O GLVSHUVHG LQ 63'06 SRO\PHU $f ; PDJQLILFDWLRQ RI SRO\PHU ZKLWH VFDOH EDU LV SP ORQJ DQG %f ; PDJQLILFDWLRQ RI SRO\PHU ZKLWH VFDOH EDU LV SP ORQJ )OXRUHVFHQFH PLFURVFRSH LPDJH RI $f '2&,SSVS93'06 ILOP DQG %f '2&, 6VSVS93'06 ILOP REWDLQHG ZLWK D &&' FDPHUD WKURXJK D ; DQG ; REMHFWLYH UHVSHFWLYHO\ :KLWH VFDOH EDU LV SP DQG SP ORQJ UHVSHFWLYHO\ +LVWRJUDP RI WKH PLFURVSKHUH REMHFWVf PDMRU D[LV OHQJWKV IRU $f '2&,SSVS93'06 ILOP DQG %f '2&,6VSVS93'06 ILOP 9HUWLFDO EDUV HTXDO D SP OHQJWK LQFUHPHQW )OXRUHVFHQFH LPDJHV RI 3W'2&,SSVS93'06 ILOP REWDLQHG ZLWK D &&' FDPHUD WKURXJK D ; REMHFWLYH :KLWH VFDOH EDUV DUH SP ORQJ $f 3W7)33 HPLVVLRQ FD QPf %f '2&,SSVS HPLVVLRQ FD QPf &f 3W7)33 DQG '2&,SSVS HPLVVLRQV QPf /LQH VFDQ DQDO\VLV RI WKH HPLVVLRQ LQWHQVLW\ RI D IOXRUHVFHQFH PLFURVFRSH LPDJH RI 3W'2&,SSVS93'06 ILOP REWDLQHG ZLWK D &&' FDPHUD WKURXJK D ; REMHFWLYH ZLWK D QP QP EDQGSDVV ILOWHU '2&, HPLVVLRQ UHVSRQVHf $f )OXRUHVFHQFH PLFURVFRSH LPDJH RI '2&,SSVS HPLVVLRQ DQG %f (PLVVLRQ OLQH VFDQV IRU WKUHH SP OLQHV WKURXJK PLFURVSKHUH FOXVWHUV LQ LPDJH $ /LQH VFDQ DQDO\VLV RI WKH HPLVVLRQ LQWHQVLW\ RI D IOXRUHVFHQFH PLFURVFRSH LPDJH RI 3W'2&,SSVS93'06 ILOP REWDLQHG ZLWK D &&' FDPHUD WKURXJK D ; REMHFWLYH ZLWK D QP QP EDQGSDVV ILOWHU 3W7)33 HPLVVLRQ UHVSRQVHf [YLLL

PAGE 19

$f )OXRUHVFHQFH PLFURVFRSH LPDJH RI 3W7)33 HPLVVLRQ DQG %f (PLVVLRQ OLQH VFDQV IRU WKUHH SP OLQHV WKURXJK PLFURVSKHUH FOXVWHUV LQ LPDJH $ )DOVHFRORUHG TXDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ SVL ;f DQG .VY[\f LPDJH PDSV IRU 3W'2&,SSVS93'06 WKLQ )LOP :KLWH VFDOH EDUV DUH SP ORQJ $f )DOVHFRORUHG TXDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ LPDJH ,A[ DX \HOORZ FRORU DQG %f 4XDQWLWDWLYH PLFURVFRSLF .VY[\f LPDJH PDS IRU WKH LGHQWLFDO UHJLRQ .r1 SVLn \HOORZ FRORU )DOVHFRORUHG TXDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ SVL ;f DQG .VY[\f LPDJH PDSV IRU 3W'2&,6VSVS93'06 WKLQ ILOP :KLWH VFDOH EDUV DUH SP ORQJ $f )DOVHFRORUHG TXDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ LPDJH A DX \HOORZ FRORU DQG %f 4XDQWLWDWLYH PLFURVFRSLF .VY[\f LPDJH PDS IRU WKH LGHQWLFDO UHJLRQ .r1n SVLn \HOORZ FRORU 0DFURVFRSLF 69 SORW RI 3W'2&,SSVS93'06 WKLQ ILOP RQ JODVV $UHI DUHD EHWZHHQ QP DW SVL DQG 0DFURVFRSLF 69 SORW RI 3W'2&,6VSVS93'06 WKLQ ILOP RQ JODVV $UHIA DUHD EHWZHHQ QP DW SVL DQG )OXRUHVFHQFH PLFURVFRS\ LPDJHV RI SP WKLFN >5XGSSK@&K63'06 VWULSV HPEHGGHG LQ IRUPYDU UHVLQ REWDLQHG ZLWK D &&' FDPHUD WKURXJK D ; REMHFWLYH :KLWH VFDOH EDUV DUH SP ORQJ 6WHUQ9ROPHU SORW DQG UDWLRHG HPLVVLRQ SORWV YHUVXV SUHVVXUH DQG WHPSHUDWXUH IRU 3W'2&,SSVS93'06 FRDWLQJ DQDO\]HG DQG LPDJHG LQ D VWDWLF FDOLEUDWLRQ FHOO $f 69 SORW HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP %f 5DWLRHG HPLVVLRQ SORW YHUVXV SUHVVXUH HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP &f 5DWLRHG HPLVVLRQ SORW YHUVXV WHPSHUDWXUH HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP DQG 'f 5DWLRHG HPLVVLRQ SORW YHUVXV WHPSHUDWXUH HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP /XPLQHVFHQFH UDWLRHG LQWHQVLW\ LPDJHV DW VHYHQ SUHVVXUHV IURP SVL IRU 3W'2&,SSVS93'06 FRDWLQJ RQ DQ DOXPLQXP SODWH DVVXPLQJ D FRQVWDQW WHPSHUDWXUH GLVWULEXWLRQ RYHU WKH SODWH (PLVVLRQ FROOHFWHG DW QP SHDN DQG H[FLWDWLRQ DW QP ,QWHQVLW\ VFDOH EDUV DSSHDU WR WKH ULJKW RI HDFK LPDJH IRU LNR SVL &RUUHFWHG OXPLQHVFHQFH UDWLRHG LQWHQVLW\ LPDJHV DW VHYHQ SUHVVXUHV IURP SVL IRU 3W'2&,SSVS93'06 FRDWLQJ RQ DQ DOXPLQXP SODWH (PLVVLRQ [L[

PAGE 20

FROOHFWHG DW QP SHDN DQG H[FLWDWLRQ DW QP ,QWHQVLW\ VFDOH EDUV DSSHDU WR WKH ULJKW RI HDFK LPDJH IRU SVL 6WHUQ9ROPHU SORW DQG UDWLRHG HPLVVLRQ SORWV YHUVXV SUHVVXUH DQG WHPSHUDWXUH IRU 3W'2&,6VSVS93'06 FRDWLQJ DQDO\]HG DQG LPDJHG LQ D VWDWLF FDOLEUDWLRQ FHOO $f 69 SORW HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP %f 5DWLRHG HPLVVLRQ SORW YHUVXV SUHVVXUH HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP &f 5DWLRHG HPLVVLRQ SORW YHUVXV WHPSHUDWXUH HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP DQG 'f 5DWLRHG HPLVVLRQ SORW YHUVXV WHPSHUDWXUH HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP &RUUHFWHG OXPLQHVFHQFH UDWLRHG LQWHQVLW\ LPDJHV DW VHYHQ SUHVVXUHV IURP SVL IRU 3W'2&,6SVS93'06 FRDWLQJ RQ DQ DOXPLQXP SODWH (PLVVLRQ FROOHFWHG DW QP SHDN DQG H[FLWDWLRQ DW QP ,QWHQVLW\ VFDOH EDUV DSSHDU WR WKH ULJKW RI HDFK LPDJH IRU SVL &DOLEUDWLRQ FHOO LQWHQVLW\ LPDJHV RI WKH 3W'2&,SSVS93'06 DQG 3W'2&, 6VSVS93'06 FRDWLQJV RQ DQ DOXPLQXP SODWH LPDJHG DW QP DQG QP ([FLWDWLRQ DW QP $f 3W'2&,SSVS93'06 DW QP %f 3W'2&,SSVS93'06 DW QP &f 3W'2&,6VSVS93'06 DW QP 'f 3W'2&,6VSVS93'06 DW QP ,QYHUWHG )OXRUHVFHQFH 0LFURVFRSH VHWXS IRU LPDJLQJ RI OXPLQHVFHQW R[\JHQ VHQVLQJ WKLQ ILOPV 6FKHPH IRU SUHSDUDWLRQ RI 3W7)3363'06 OXPLQHVFHQW WKLQ ILOPV 0DFURVFRSLF 69 SORWV IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV $UHI DUHD EHWZHHQ QP DW SVL 4XDOLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LPDJHV ; SVLf IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ $f P0 %f P0 &f P0 'f P0 (f P0 3W7)33 LQ PJ 63'06 SRO\PHU ELQGHU 4XDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ LPDJHV ; SVLf IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ ,QWHQVLW\ FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f P0 %f P0 &f P0 'f P0 (f P0 3W7)33 LQ PJ 63'06 SRO\PHU ELQGHU ,QWHQVLW\ GLVWULEXWLRQ FXUYHV IRU LQWHQVLWLHV REWDLQHG ZLWK D ; REMHFWLYH DW VHYHQ SUHVVXUHV IRU $f P0 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV DQG %f P0 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV [[

PAGE 21

4XDQWLWDWLYH PLFURVFRSLF .VY[\f LPDJH PDSV WRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ .VY FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f P0 %f P0 &f P0 'f P0 (f P0 3W7)33 LQ PJ 63'06 SRO\PHU ELQGHU 0DFURVFRSLF 69 SORWV IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU $UHI DUHD EHWZHHQ QP DW SVL 4XDOLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LPDJHV ; SVLf IRU 3W7)3363'06 DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ $f %f &f 'f (f PROH UDWLR RI ROLJRPHQFURVV OLQNHU 4XDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ LPDJHV ; SVLf IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU :KLWH VFDOH EDUV DUH SP ORQJ ,QWHQVLW\ FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f %f &f 'f (f PROH UDWLR ROLJRPHQFURVV OLQNHU ,QWHQVLW\ GLVWULEXWLRQ FXUYHV IRU LQWHQVLWLHV REWDLQHG ZLWK D ; REMHFWLYH DW VHYHQ SUHVVXUHV IRU $f PROH UDWLR RI ROLJRPHQFURVVOLQNFU LQ 3W7)3363'06 RQ JODVV DQG %f PROH UDWLR RI ROLJRPHQFURVVOLQNFU LQ 3W7)3363'06 RQ JODVV 4XDQWLWDWLYH PLFURVFRSLF .VY[\f LPDJH PDSV IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU :KLWH VFDOH EDUV DUH SP ORQJ .VY FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f %f 'f (f PROH UDWLR ROLJRPHQFURVVOLQNHU 5X,,f DGLLPLQH FRPSOH[HV 0DFURVFRSLF 69 SORWV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV $ UHIr DUHD EHWZHHQ QP DW SVL 4XDOLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LPDJHV ; SVLf IRU 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ $f >5XGSSK@&, %f >5XGSSK@3)If &f >5XGSSK@%3Kfr 'f >5XGSSf@%3K&)Lfff (f >5XGEGWDSK@3)Kf )f >5XGSSf@%3K)Vff 4XDOLWDWLYH PLFURVFRSLF IOXRUHVFHQFH $&f DQG EULJKWILHOG ')f LPDJHV ,; SVLf IRU 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ $ DQG 'f >5XGSSfM@&O % DQG (f >5XGSSK@%3K&)fKL DQG & DQG )f >5XGSS%@%3K)Vff 4XDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ LPDJHV ; SVLf IRU 5X,,f D GLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH ;;,

PAGE 22

_XP ORQJ ,QWHQVLW\ FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f >5XGSSf@&O %f >5XGSSf@3)f &f >5XGSSf@%3Kf 'f >5XGSSf@%3K&)fff (f >5XGEGWDSf@3)f )f >5XGSSf@%3K)ff ,QWHQVLW\ GLVWULEXWLRQ FXUYHV IRU LQWHQVLWLHV REWDLQHG ZLWK D ; REMHFWLYH DW VHYHQ SUHVVXUHV IRU 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV $f >5XGSSf@&O %f >5XGSSf@3)f &f >5XGSSf@%3Kf 'f >5XGSSf@%3K&)fff (f >5XGEGWDSf@3)f )f >5XGSSf@%3K)ff 4XDQWLWDWLYH PLFURVFRSLF .VY[\f LPDJH PDSV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ .VY FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f >5XGSSf@&O %f >5XGSSf@3)f &f >5XGSSf@%3Kf 'f >5XGSSf@%3K&)fff (f >5XGEGWDSf@3)f )f >5XGSSf@%3K)ff $QDO\VLV RI GLVFUHWH UHJLRQV ZKLWH ER[HVf LQ TXDQWLWDWLYH PLFURVFRSLF .VY[\f LPDJH PDSV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ .VY FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f >5XGSSf@&O %f >5XGSSf@3)f &f >5XGSSf@%3Kf 'f >5XGSSf@%3K&)fff (f >5XGEGWDSf@3)f )f >5XGSSf@%3K)ff 0DFURVFRSLF DQG PLFURVFRSLF 69 SORWV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV $UHI DUHD EHWZHHQ QP DW SVL 0DFURVFRSLF 69 SORWV RI >5XGSSf@&O GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO RQ JODVV $UHI DUHD EHWZHHQ QP DW SVL 4XDOLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LPDJHV ; SVLf IRU >5XGSSf@&O GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO :KLWH VFDOH EDUV DUH SP ORQJ $f ZW b LQ 63'06 %f ZW b LQ 630'6 &f ZW b LQ 63'06 'f ZW b LQ 3'06 (f ZW b LQ 3'06 )f ZW b LQ 3'06 4XDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ LPDJHV ; SVLf IRU >5XGSSf@&O GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ ,QWHQVLW\ FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f ZW b LQ 63'06 %f ZW b LQ 63'06 &f ZW b LQ 63'06 'f ZW b LQ 3'06 (f ZW b LQ 3'06 )f ZW b LQ 3'06 ,QWHQVLW\ GLVWULEXWLRQ FXUYHV IRU LQWHQVLWLHV REWDLQHG ZLWK D ; REMHFWLYH DW VL[ SUHVVXUHV IRU >5XGSSf@&O GLVSHUVHG LQ 3'06 RU 63'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO $f ZW b LQ 3'06 %f ZW b LQ 63'06 ;;,,

PAGE 23

4XDQWLWDWLYH PLFURVFRSLF .6Y[\f LPDJH PDSV IRU >5XOGSSE-&% GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO RQ JODVV :KLWH VFDOH EDUV DUH _LP ORQJ .VY FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f ZW b LQ 63'06 %f ZW b LQ 63'06 &f ZW b LQ 63'06 'f ZW b LQ 3'06 (f ZW b LQ 3'06 )f ZW b LQ 3'06 $QDO\VLV RI GLVFUHWH UHJLRQV ZKLWH ER[HVf LQ TXDQWLWDWLYH PLFURVFRSLF .6Y[\f LPDJH PDSV RI >5XGSSf`@&K GLVSHUVHG LQ 3'06 RU 63'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO :KLWH VFDOH EDUV DUH SP ORQJ .VY FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f ZW b LQ 3'06 %f ZW b LQ 63'06 0DFURVFRSLF DQG PLFURVFRSLF 69 SORWV RI >5XGSSK@&O GLVSHUVHG LQ 3'06 RU 63'06 ELQGHU RQ JODVV ZLWK ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO $UHI DUHD EHWZHHQ QP DW SVL $f ZW b LQ 3'06 DQG %f ZW b LQ 63'06 [[LLL

PAGE 24

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ '(9(/230(17 $1' &+$5$&7(5,=$7,21 2) /80,1(6&(17 2;<*(1 6(16,1* &2$7,1*6 %\ -RDQQH 0 %HGOHN$QVORZ 'HFHPEHU &KDLUPDQ .LUN 6 6FKDQ]H 0DMRU 'HSDUWPHQW &KHPLVWU\ 7UDGLWLRQDO DHURG\QDPLF PRGHO V\VWHPV PRQLWRU VXUIDFH SUHVVXUH DW GLVFUHWH SRLQWV DORQJ D PRGHO VXUIDFH 0RGHOV PXVW EH GHVLJQHG VXIILFLHQWO\ ODUJH WR DFFRPPRGDWH SODFHPHQW RI VPDOO HOHFWURQLF SUHVVXUH WUDQVGXFHUV DORQJ WKH PRGHO VXUIDFH DQG SODFHPHQW RI WKH FRUUHVSRQGLQJ ZLULQJ WKURXJK WKH PRGHOfV KXOO 7KLV SURFHVV LV WLPHFRQVXPLQJ H[SHQVLYH DQG GHWHFWLRQ LV OLPLWHG WR WKH SRLQW RI VHQVRU SODFHPHQW &RQYHUVHO\ &&' FKDUJHFRXSOHG GHYLFHf FDPHUD WHFKQRORJ\ VXUYH\V WKH HQWLUH PRGHOfV VXUIDFH SUHVVXUH E\ PRQLWRULQJ R[\JHQ FRQFHQWUDWLRQ LQGXFHG LQWHQVLW\ YDULDWLRQV RI D OXPLQHVFHQW SUHVVXUHVHQVLWLYH FRDWLQJ +RZHYHU XQIDYRUDEOH LQWHQVLW\ YDULDWLRQV RULJLQDWLQJ IURP VXUIDFH WHPSHUDWXUH IOXFWXDWLRQV FDQ GLVUXSW DFFXUDWH SUHVVXUH GHWHUPLQDWLRQ 7KH UHVHDUFK SUHVHQWHG LQ WKLV GLVVHUWDWLRQ IRFXVHV RQ WKH GHYHORSPHQW RI VHYHUDO GXDOOXPLQRSKRUH FRDWLQJV 7KHVH V\VWHPV VLPXOWDQHRXVO\ GHWHUPLQH VXUIDFH SUHVVXUH R[\JHQ FRQFHQWUDWLRQf DQG VXUIDFH WHPSHUDWXUH 7KHUHIRUH FRUUHFWLRQ RI WKH [[LY

PAGE 25

WHPSHUDWXUHLQGXFHG LQWHQVLW\ IOXFWXDWLRQV RI WKH SUHVVXUH VHQVLQJ OXPLQRSKRUH LV DFFRPSOLVKHG E\ GHWHUPLQLQJ WKH UXQWLPH WHPSHUDWXUH ILHOG DFURVV WKH PRGHO VXUIDFH 6SHFWUDO UHVROXWLRQ FRPSDWLELOLW\ ZLWK SRO\PHU ELQGHU DQG VXUIDFH SULPHU DQG FKHPLFDO LQHUWQHVV ZLWK UHVSHFW WR RQH DQRWKHU LQGLFDWH VXFFHVVIXO LQWHJUDWLRQ RI WKH WZR OXPLQRSKRUHV LQWR RQH ELQGHU PDWUL[ 7KHVH V\VWHPV DUH SULPDULO\ HYDOXDWHG XVLQJ IOXRUHVFHQFH VSHFWURVFRS\ WR DVFHUWDLQ YDULDWLRQV LQ OXPLQHVFHQW LQWHQVLW\ ZLWK UHVSHFW WR WKH GHJUHH RI R[\JHQ TXHQFKLQJ ([SHULPHQWV XWLOL]LQJ FRQWLQXRXV LOOXPLQDWLRQ PRQLWRUHG SKRWRGHJUDGDWLRQ DQG OXPLQHVFHQFH TXHQFKLQJ VWXGLHV FRQGXFWHG DW YDULRXV WHPSHUDWXUHV HYDOXDWHG WKH WHPSHUDWXUHGHSHQGHQFH RI WKH SUHVVXUH DQG WHPSHUDWXUH FRPSRQHQWV DQG ELQGHU PDWUL[ 6WXGLHV FRQGXFWHG LQ D FDOLEUDWLRQ FHOO GHWHUPLQHG DSSOLFDWLRQ UHDGLQHVV 1RQOLQHDU OXPLQHVFHQW UHVSRQVH WR R[\JHQ FRQFHQWUDWLRQ SURPSWHG GHYHORSPHQW RI D QHZ IOXRUHVFHQFH PLFURVFRS\ WHFKQLTXH 7KH WHFKQLTXH LQWHUURJDWHV VHYHUDO UHJLRQV RI D FRDWLQJfV VXUIDFH DQDO\]LQJ LWV PLFURVFRSLF OXPLQHVFHQW SUHVVXUHVHQVLWLYH UHVSRQVH ,W LV EHOLHYHG WKDW GHYLDWLRQV IURP OLQHDULW\ DUH GXH WR KHWHURJHQHLW\ RI WKH SRO\PHU PDWUL[ RU WKH OXPLQRSKRUH GLVWULEXWLRQ 6XFFHVVIXO TXDQWLWDWLYH PHDVXUHPHQW RI WKH GHJUHH RI R[\JHQ TXHQFKLQJ DW WKH SL[HO OHYHO ZLWK PLFURPHWHU VSDWLDO UHVROXWLRQ LV SUHVHQWHG IRU VHYHUDO PRQR DQG GXDO,XPLQRSKRUH VHQVLQJ FRDWLQJV XWLOL]LQJ YDULRXV OXPLQRSKRUHV LQ D SRO\PHU ELQGHU &KDUDFWHUL]DWLRQ HYDOXDWLRQ DQG GLVFXVVLRQ RI WKH V\VWHPVf DWWULEXWHV SURYLGH LQVLJKW IRU WKH HQKDQFHG GHVLJQ RI IXWXUH OXPLQHVFHQW R[\JHQ VHQVLQJ FRDWLQJV [[Y

PAGE 26

&+$37(5 ,1752'8&7,21 %DFNJURXQG 7KH TXHVW WR TXDQWLWDWLYHO\ PHDVXUH R[\JHQ FRQFHQWUDWLRQ LQ WKH JDV SKDVH GLVVROYHG LQ WKH OLTXLG SKDVH RU LQ VROLG JDV SHUPHDEOH SRO\PHUV ZLWK UHSURGXFLEOH DFFXUDWH DQG SUHFLVH UHVXOWV KDV JDUQHUHG FRQVLGHUDEOH UHVHDUFK LQWHUHVW WKURXJKRXW WKH SDVW IRXU GHFDGHV 7KH EHJLQQLQJV RI R[\JHQ PHDVXUHPHQW DUH URRWHG LQ HOHFWURFKHPLFDO VHQVRUV VXFK DV WKH DPSHURPHWULF &ODUN FHOO RU WKH JDOYDQLF 0DQF\ FHOO 7KHVH FHOOV DUH UREXVW DQG UHOLDEOH PHDVXUHPHQW WRROV ZKHQ SURSHUO\ XVHG KRZHYHU UHOLDEOH PHDVXUHPHQWV DUH RIWHQ SURKLELWHG E\ HOHFWULFDO LQWHUIHUHQFHV DQG UHSURGXFLELOLW\ LV KLQGHUHG E\ FRQVXPSWLRQ RI WKH R[\JHQ DQDO\WH GXULQJ DQDO\VLV 7KH V\VWHPV DOVR VXIIHU IURP D EXON\ LQVWUXPHQW VL]H ZKLFK LV GLIILFXOW WR PLQLDWXUL]H 7KHUHIRUH WKH IRFXV RI R[\JHQ GHWHFWLRQ VKLIWHG IURP WKHVH WUDGLWLRQDO LQYDVLYH PHDVXUHPHQW PHWKRGV WR WKH GHYHORSPHQW RI QRQLQYDVLYH RSWLFDO R[\JHQ VHQVRUV $V D GHWHFWLRQ V\VWHP RSWLFDO VHQVRUV DUH DGYDQWDJHRXV VLQFH WKH\ DUH UREXVW FRVWHIIHFWLYH GLVSRVDEOH DQG HDVLO\ VFDOHG WR VXLW WKHLU GHVLUHG DSSOLFDWLRQ 2SWLFDO VHQVRUV KDYH EHHQ HPSOR\HG LQ QXPHURXV GHWHFWLRQ V\VWHPV IRU VXFK DQDO\WHV DV + &f YDSRUV RI H[SORVLYHV DQG ELRFKHPLFDO FRPSRXQGV +RZHYHU WKH DQDO\VLV RI R[\JHQ FRQFHQWUDWLRQ LQ EORRG DQG ELRORJLFDO V\VWHPV FRPEXVWLRQ DQDO\VLVA DQG SUHVVXUHVHQVLWLYH SDLQW 363f GHYHORSPHQWr _LDV EHHQ DW WKH

PAGE 27

IRUHIURQW RI RSWLFDO VHQVRU UHVHDUFK ,Q SDUWLFXODU GHYHORSPHQW LQ WKH DUHD RI SUHVVXUH VHQVLWLYH SDLQWV 363f KDV JURZQ FRQVLGHUDEO\ LQ WKH ODVW ILIWHHQ \HDUV 363fV IXQGDPHQWDOO\ FRQVLVW RI D OXPLQHVFHQW PROHFXODU SUREH D OXPLQRSKRUHf GLVSHUVHG RU GLVVROYHG LQ DQ R[\JHQ SHUPHDEOH SRO\PHU ELQGHU 7KH EHJLQQLQJV RI WKLV WHFKQRORJ\ DUH VHHQ DV HDUO\ DV ZKHQ 3HWHUVRQ DQG )LW]JHUDOG GHPRQVWUDWHG WKH TXHQFKLQJ RI D OXPLQRSKRUHfV SKRWROXPLQHVFHQFH HPLVVLRQ E\ R[\JHQ 7KH\ HPSOR\HG )OXRUHVFHLQ
PAGE 28

/ ]Y r/ SKRWRQ DEVRUSWLRQ f r/ f§! / ]Y OXPLQHVFHQFH NU f r/! / $ QRQUDGLDWLYH GHFD\ NQU f r/ 4 } / r4 G\QDPLF TXHQFKLQJ NT f 7KH WHUP / LV WKH OXPLQRSKRUH DQG 4 LV WKH TXHQFKHU PROHFXOH 2 7KHUHIRUH E\ UHIHUHQFH WR WKH 69 FDOLEUDWLRQ LQ HTXDWLRQ f LW LV SRVVLEOH WR TXDQWLWDWLYHO\ UHODWH WKH SKRWROXPLQHVFHQFH LQWHQVLW\ WR 3DLUA ,A3HP 3DLU f ,;3HP 3DLUf .VY3DLU f .VY f§ NT7R NTNU NQUf f ZKHUH LV WKH SKRWROXPLQHVFHQFH LQWHQVLW\ DW HPLVVLRQ ZDYHOHQJWK $SHP DQG .VY LV WKH 69 FRHIILFLHQW 7KHUHIRUH WKH SKRWROXPLQHVFHQFH LQWHQVLW\ LV LQYHUVHO\ SURSRUWLRQDO WR 3 U DLU ,Q PDQ\ DSSOLFDWLRQV LW LV LPSUDFWLFDO WR XVH 3DcU DV D UHIHUHQFH FRQGLWLRQ DQG FRQVHTXHQWO\ WKH 69 HTXDWLRQ LV UHFDVW DV HTXDWLRQ f ,$3HP 3DLU DWPf ,"O3HP 3DLUf $ %3DLU f ZKHUH WKH UHIHUHQFH FRQGLWLRQ LV WDNHQ DV 3DcU DWP DQG WKH QRQ]HUR FRHIILFLHQWV $ DQG % DUH D IXQFWLRQ RI WHPSHUDWXUH DQG UHIHUHQFH FRQGLWLRQV %$ .VYf 0RGHOLQJ 1RQOLQHDU 6WHUQ9ROPHU 5HVSRQVH 6RPH OXPLQHVFHQW &7 VHQVRU ILOPV IHDWXUH OLQHDU 69 FDOLEUDWLRQV LQ DFFRUG ZLWK HTXDWLRQV f RU f KRZHYHU PDQ\ VHQVRUV H[KLELW QRQOLQHDU FDOLEUDWLRQV WKDW DUH FXUYHG GRZQZDUG VXFK DV WKRVH GLVSOD\HG LQ )LJXUH

PAGE 29

)LJXUH 6WHP9ROPHU SORWV RI 9, YHUVXV "2L IRU WKH IROORZLQJ RSWLFDO R[\JHQ VHQVRUV 5XSKHQfA@nn LQ VLOLFRQH UXEEHU *( 579 $f DQG >5XES\fA@nr LQ VLOLFRQH UXEEHU *( 579 f $OWKRXJK D QXPEHU RI VWXGLHV KDYH DWWHPSWHG WR LGHQWLI\ WKH EDVLV IRU WKLV QRQn LGHDO 69 UHVSRQVH WKH IXQGDPHQWDO SURFHVVHVf UHVSRQVLEOH DUH VWLOO QRW ZHOO XQGHUVWRRG 6HYHUDO PDWKHPDWLFDO PRGHOV KDYH EHHQ GHYHORSHG WR )LW WKH QRQOLQHDU 69 FRUUHODWLRQV 7KHVH PDWKHPDWLFDO PRGHOV DUH IRUPXODWHG EDVHG RQ WKH SK\VLFDO K\SRWKHVLV WKDW WKH VHQVRU ILOP LV LQKRPRJHQHRXV SRVVLEO\ GXH WR QDQRRU PHVRVFDOH LUUHJXODULWLHV LQ WKH SRO\PHU PRUSKRORJ\ RU WKH HQYLURQPHQW VXUURXQGLQJ WKH OXPLQHVFHQW VHQVRU PROHFXOHV 6HYHUDO PRGHOV KDYH UHFHLYHG FRQVLGHUDEOH DWWHQWLRQ 7KH WZR TXHQFKLQJ VLWH PRGHO LQ fA H[SODLQV WKH FRPSOH[ TXHQFKLQJ EHKDYLRU H[KLELWHG E\ D PLFURKHWHURJHQHRXV V\VWHP 7KH WZRVLWH HTXDWLRQ LV fR B f f .MMYL3RM AnrfA693R ZKHUH 9 LV WKH IUDFWLRQ RI HDFK RI WKH WZR VLWHV FRQWULEXWLQJ WR WKH XQTXHQFKHG LQWHQVLW\ DQG WKH .VY YDOXHV DUH WKH TXHQFKLQJ FRQVWDQWV IRU WKH WZR VLWHV 7KH PRGHO ZRUNV ZHOO

PAGE 30

IRU TXDQWLWDWLYHO\ ILWWLQJ LQWHQVLW\ TXHQFKLQJ GDWD KRZHYHU LW VKRXOG EH FDXWLRQHG WKDW ZKLOH LW LV DEOH WR ILW PRUH FRPSOH[ V\VWHPV WKH ILWWLQJ SDUDPHWHUV VKRXOG EH MXGLFLRXVO\ FKRVHQ WR DYRLG PHFKDQLVWLF PLVLQWHUSUHWDWLRQV cQ RWKHU ZRUGV WKH IDFW WKDW WKH UHVSRQVH RI D VSHFLILF VHQVRU FDQ EH PRGHOHG E\ HTXDWLRQ f GRHV QRW QHFHVVDULO\ PHDQ WKDW WKH VHQVRU KDV WZR VSHFLILF TXHQFKDEOH VLWHV 7KH *DXVVLDQ RU ORJ*DXVVLDQ GLVWULEXWLRQV UHSUHVHQW DQRWKHU VHW RI PRGHOV ZKLFK JLYH SUHGLFWLYH YDOXHV IRU WKH QRQOLQHDU UHVSRQVH H[KLELWHG E\ 69 SORWV 7KH ORJ*DXVVLDQ GLVWULEXWLRQ LQ WKH QDWXUDO OXPLQHVFHQW OLIHWLPH RI WKH OXPLQRSKRUH 7Rf DQG WKH TXHQFKLQJ UDWH FRQVWDQW NTnf JHQHUDWHV WKHRUHWLFDO PRGHO SDUDPHWHU YDOXHV ZKLFK DUH SK\VLFDOO\ SODXVLEOH DQG FRQVLVWHQW DW DOO SDUWLDO SUHVVXUHV RI R[\JHQ S2L 7KH ORJ *DXVVLDQ GLVWULEXWLRQ LQ 7R DQG NTn ZLWK UHVSHFW WR [ LV RR H[SS [ fH[S [ fG[ K f§ f RR 9 -^H[ SS [ fH[S [f> W H[S^ S S`[f@`G[ f§RR ZKHUH S[ OQ77PGOf f S[ OQNTLNTPGOf f .VYPGO S2O a WRPGL NAPGO 3t f DQG ZKHUH SL LV D PHDVXUH RI WKH EUHDGWK RI WKH GLVWULEXWLRQ ZLWK UHVSHFW WR 7Rc DQG 7RPGL LV WKH QDWXUDO OLIHWLPH DVVRFLDWHG ZLWK WKH PRGDO QXPEHU RI VLWHV S LV D PHDVXUH RI WKH EUHDGWK RI WKH GLVWULEXWLRQ ZLWK UHVSHFW WR NAM DQG NT PFML LV WKH TXHQFKLQJ UDWH FRQVWDQW E\ R[\JHQ RI WKH PRGDO QXPEHU RI VLWHV S FDQ EH RI WKH VDPH VLJQ RU RSSRVLWH WR S_ 7KH

PAGE 31

PRGHO LV FDSDEOH RI SURYLGLQJ SK\VLFDO UDWLRQDOH IRU GLVSDUDWH UHVSRQVH IHDWXUHV LQ W\SLFDO RSWLFDO R[\JHQ VHQVRUV KRZHYHU LW IDLOV WR H[SODLQ SK\VLFDO SKHQRPHQD DVVRFLDWHG ZLWK ELSKDVLF PDWHULDO )LQDOO\ ILUVW VHFRQG DQG WKLUG RUGHU SRO\QRPLDOV DSSOLHG WR QRQOLQHDU 69 UHVSRQVH GDWD WHQG WR ILW WKH GDWD VHWV LQ D OLPLWHG SUHVVXUH UHJLRQ EXW WKH\ IDLO ZKHQ SUHGLFWLQJ H[WHQGHG SUHVVXUH UHJLRQV RU DQ H[WUDSRODWLRQ RI WKH GDWD VHW 7KHUHIRUH WKH GXDO VRUSWLRQ PRGHO KDV EHHQ DSSOLHG WR WKH 69 UHODWLRQVKLS f SURGXFLQJ WKH LQWHQVLW\ SUHVVXUH UHODWLRQVKLS LQ f $ % & 33AIf 33UHIf f ZKHUH WKH QRQ]HUR FRHIILFLHQWV $ % & DQG DUH D IXQFWLRQ RI WHPSHUDWXUH DQG UHIHUHQFH FRQGLWLRQV 7KH PRGHO ZRUNV ZHOO ZLWK FDVHV ZKHUH SUHVVXUH UDQJHV DUH ODUJH RU H[WUDSRODWHG UHJLRQV DUH QHHGHG KRZHYHU GXH WR WKH QRQOLQHDULW\ RI VXFK GDWD LW UHTXLUHV DQ LWHUDWLYH WHFKQLTXH IRU GHWHUPLQLQJ WKH FDOLEUDWLRQ FRHIILFLHQWV 7KHUHIRUH IRU KLJK SUHVVXUHV DQG OLPLWHG SUHVVXUH UHJLRQV D ILUVW RU VHFRQGRUGHU SRO\QRPLDO LV UHFRPPHQGHG /XPLQRSKRUHV DQG 3RO\PHUV 7KH OXPLQHVFHQW PROHFXODU SUREH GLVSHUVHG LQ D 363 LV JHQHUDOO\ D OXPLQHVFHQW WUDQVLWLRQ PHWDO FRPSOH[ 70&f 70&fV DUH PRUH DGYDQWDJHRXV WKDQ IOXRUHVFHQW RUJDQLF OXPLQRSKRUHV EHFDXVH RI WKHLU ORQJ H[FLWHG VWDWH OLIHWLPHV 7Rf DQG KLJK OXPLQHVFHQFH TXDQWXP \LHOGV ,!OfA 0RVW RIWHQ WKHVH PHWDO FRPSOH[HV DUH HLWKHU 5X,,f RFGLLPLQHA f FRPSOH[HV RU 3W,,f3G,,f SRUSK\ULQ PDFURF\FOHV M_OF

PAGE 32

R[\JHQ SHUPHDEOH SRO\PHU ELQGHU PRVW FRPPRQO\ XVHG LV VLOLFRQH KRZHYHU RWKHU SRO\PHUV VXFK DV FHOOXORVH DFHWDWH &$f SRO\PHWK\OPHWKDFU\ODWH 300$f SRO\YLQ\OFKORULGH 39&f SRO\VW\UHQH 36f DQG VROJHOV DT ZMWK RU ZLWKRXW SODVWLFL]HUV KDYH DOVR EHHQ HPSOR\HG 5X,,f D'LLPLQH &RPSOH[HV 7KH 5X,,f DGLLPLQH FRPSOH[HV KDYH EHHQ LQYHVWLJDWHG H[WHQVLYHO\ DV R[\JHQ TXHQFKDEOH VSHFLHV ERWK LQ WKH OLTXLG DQFM VROLG SKDVHV WULVf ELS\ULG\OfUXWKHQLXP,,f >5XES\f@ IPOSKHQDQWKUROLQHfUXWKHQLXP,,f >5XSKHQf@ DQG WULV^$GLSKHQ\OOSKHQDQWKUROLQHfUXWKHQLXP,,f >5XGSSf@ 7KHLU H[WHQVLYH XVH LV GXH WR VHYHUDO IDFWRUV f WKHLU DELOLW\ WR EH H[FLWHG LQ WKH YLVLEOH UHJLRQ f WKHLU ORQJ HPLVVLRQ OLIHWLPHV Wf ZKLFK DUH JHQHUDOO\ KXQGUHGV RI QDQRVHFRQGV WR WHQV RI PLFURVHFRQGV DOORZ WKH H[FLWHG VWDWH WR EH HDVLO\ TXHQFKHG E\ R[\JHQ f WKH\ H[KLELW KLJK OXPLQHVFHQFH TXDQWXP \LHOGV 2Of f ODUJH 6WRNHV VKLIWV LQ WKH HPLVVLRQ VSHFWUD PLQLPL]H H[FLWDWLRQ VRXUFH LQWHUIHUHQFHV DQG f WKH\ SRVVHVV H[FHOOHQW SKRWRVWDELOLW\ 6HYHUDO H[DPSOHV RI 5X,,f DGLLPLQH FRPSOH[HV DUH VKRZQ LQ )LJXUH

PAGE 33

)LJXUH 6WUXFWXUHV RI WKH PDMRU 5X,,f DGLLPLQH OXPLQRSKRUHV XVHG LQ RSWLFDO R[\JHQ VHQVRUV >5XES\K@ _5XSKFQfLS? DQG >5XGSSf@rrf $V D UHVXOW RI WKH GHVLUDEOH SURSHUWLHV VKRZQ LQ 7DEOH A WKH GHVLJQ RI 5X,,f m GLLPLQH FRPSOH[HV KDV EHHQ H[WHQVLYHO\ LQYHVWLJDWHGrA /XPLQRSKRUH WR >LV QP DEVRUSWLRQf H GPf PROnFPn QP HPLVVLRQf ;!/ >5XES\f@fVK >5XSKHQf@K >5XGSSf@f D r r K f ? W & f aF

PAGE 34

3W,,f3G,,f 3RUSK\ULQ 0DFURF\FOHV 3W,,f3G,,f SRUSK\ULQ PDFURF\FOHV KDYH UHFHLYHG FRQVLGHUDEOH UHFHQW UHVHDUFK LQWHUHVW EHFDXVH RI WKHLU DELOLW\ WR EH PRUH VHQVLWLYH WR R[\JHQ TXHQFKLQJ WKDQ WKH 5X,,f DGLLPLQH FRPSOH[HV 6HYHUDO H[DPSOHV RI 3W,,f3G,,f SRUSK\ULQ PDFURF\FOHV DUH VKRZQ LQ )LJXUH 2FWDHWK\O SRUSK\ULQ NHWRQH 2(3.f )LJXUH 6WUXFWXUHV RI WKH PDMRU SODWLQXP DQG SDOODGLXP SRUSK\ULQV XVHG LQ RSWLFDO R[\JHQ VHQVRUV 0 3W,,f RU 3G,,ff 7KHLU KLJK R[\JHQ VHQVLWLYLW\ UHVXOWV IURP ORQJ H[FLWHG VWDWH OLIHWLPHV JHQHUDOO\ WHQV WR KXQGUHGV RI PLFURVHFRQGV GXH LQ SDUW WR NNr WUDQVLWLRQV FHQWHUHG RQ WKH SRUSK\ULQ ULQJ A D VWURQJ VSLQRUELW FRXSOLQJ H[LVWV UHVXOWLQJ IURP VLJQLILFDQW LQWHUDFWLRQ EHWZHHQ WKH 3W,,f RU 3G,,f PHWDO GRUELWDOV DQG WKH DQWLERQGLQJ WWr RUELWDOV RI WKH SRUSK\ULQ ULQJ ZKLFK LQGXFHV LQWHUV\VWHP FURVVLQJ WR WKH WULSOHW VWDWH 7KcV

PAGE 35

HIIHFW VLJQLILFDQWO\ GHFUHDVHV WKH WULSOHW OLIHWLPH DQG LQFUHDVHV WKH SKRVSKRUHVFHQFH \LHOG WKHUHIRUH VXUURXQGLQJ R[\JHQ PROHFXOHV HIIHFWLYHO\ TXHQFK WKH OXPLQRSKRUHVf SKRWROXPLQHVFHQFH ,Q DGGLWLRQ WR WKHLU HQKDQFHG DELOLW\ WR EH TXHQFKHG E\ R[\JHQ 3W,,f3G,,f FRPSOH[HV DOVR SRVVHVV WKH VDPH GHVLUHG H[FLWDWLRQ DQG HPLVVLRQ FKDUDFWHULVWLFV DV WKH 5X,,f DGLLPLQH FRPSOH[HV f WKH\ DUH HDVLO\ H[FLWHG LQ WKH YLVLEOH UHJLRQ f WKH\ SRVVHVV KLJK OXPLQHVFHQFH TXDQWXP \LHOGV !Of DQG f WKH\ H[KLELW ODUJH 6WRNHV VKLIWV DQG H[FHOOHQW SKRWRVWDELOLW\ D OLVWLQJ RI VHYHUDO RSWLFDO VHQVRU FKDUDFWHULVWLFV IRU 3W ,,f3G,,f SRUSK\ULQV GLVEXUVHG LQ SRO\PHU ELQGHUV DUH GLVSOD\HG LQ 7DEOH A

PAGE 36

7DEOH 3ODWLQXP DQG 3DOODGLXP 3RUSK\ULQ %DVHG 2SWLFDO 2[\JHQ 6HQVRUV /XPLQRSKRUH 7R PV APD[f QP HPLVVLRQf R/ 0HGLXP 3G&33 :DWHU 3G&33 6LOLFRQH UXEEHU 579 *(f 3G&33 36 3G&33 300$ 3W2(3. 36 3W2(3. 36 3W2(3. 36 3G2(3. 36 3W2(3. 39& 3G2(3. 39& 3G733 $UDFKLGLF DFLG /% ILOP 3G7633 :DWHU 3G7633 :DWHU 3G&33 :DWHU 3W7'&33 6LOLFRQH 5XEEHU 579 *(f 3W7)033 3W%U703 3G2(3 36 3W2(3 36 3W2(3 36 &33 FRSURSRUSK\ULQ 2(3. RFWDHWK\O SRUSK\ULQ NHWRQH 733 WHWUDSKHQ\OSRUSK\ULQ 7633 WHWUDNLVVXOIRQDWRSKHQ\OfSRUSK\ULQ 7'&33 PHVRWHWUD GLFKORURSKHQ\OfSRUSK\ULQ 7)033 PHVRWHWUD ELVWULIOXRURPHWK\OfSKHQ\OfSRUSK\ULQ %UJ703 UDL"VRWHWUDPHVLW\O> RFWDEURPRSRUSK\ULQ 2(3 RFWDHWK\O SRUSK\ULQ 6LOLFRQH 6LOLFRQH LV WKH PRVW ZLGHO\ XVHG SRO\PHU ELQGHU PDWUL[ HPSOR\HG LQ RSWLFDO R[\JHQ VHQVRUV GXH WR LWV KLJK SHUPHDELOLW\ [ n FP FPfFP V FP +Jf DW r &f DQG VROXELOLW\ POJ DW r &f WR R[\JHQ DVVRFLDWHG ZLWK D ORZ JODVV WUDQVLWLRQ WHPSHUDWXUH 7J r &f KLJK FKHPLFDO DQG PHFKDQLFDO GXUDELOLW\ DQG EHQLJQ SK\VLRORJLFDO HIIHFWV EHQHILFLDO WR LQ YLYR PHDVXUHPHQW DSSOLFDWLRQV +RZHYHU VLOLFRQH DV D ELQGHU PDWUL[ LV LQFUHGLEO\ K\GURSKRELF LQ QDWXUH GXH WR LWV H[WHQGHG

PAGE 37

QRQSRODU 6L26L EDFNERQH ZKLFK IRUPV GXULQJ SRO\PHUL]DWLRQ $GHTXDWH KRPRJHQHRXV GLVWULEXWLRQ RI WKH K\GURSKLOLF 5X,,f DGLLPLQH FRPSOH[HV LQ WKH SRO\PHU ELQGHU WKHQ EHFRPHV D FKDOOHQJH LQ DYRLGLQJ DJJUHJDWLRQ RU PLFURFU\VWDOOL]DWLRQ HIIHFWV ZKLFK OHDG WR LQHIILFLHQW R[\JHQ TXHQFKLQJ r 7KHUHIRUH VHYHUDO UHVHDUFKHUV KDYH LQYHVWLJDWHG WKH DGGLWLRQ RI 5X,,f DGLLPLQH DGVRUEHG VLOLFD JHO WR WKH SRO\PHU ELQGHU 7KH DGGLWLRQ RI VLOLFD JHO DLGV OXPLQHVFHQFH R[\JHQ TXHQFKLQJ E\ OHVVHQLQJ WKH QHJDWLYH TXHQFKLQJ HIIHFWV GXH WR IRUPDWLRQ RI PHWDO FRPSOH[ DJJUHJDWHV DQG PLFURFU\VWDO OLWHV 3ODVWLFL]HUV 2WKHU SRO\PHUV VXFK DV FHOOXORVH DFHWDWH &$fA SRO\PHWK\OPHWKDFU\ODWH 300$f SRO\YLQ\OFKORULGH 39&frn SRO\VW\UHQH 36fr DQG VROJHOV KDYH EHHQ HPSOR\HG DV R[\JHQ SHUPHDEOH SRO\PHU ELQGHUV 7KHVH SRO\PHUV DUH QRW DV SHUPHDEOH WR R[\JHQ DV WKH HODVWRPHULF VLOLFRQH SRO\PHU ELQGHUV DQG VORZ DQG LQDFFXUDWH R[\JHQ FRQFHQWUDWLRQ PHDVXUHPHQWV UHVXOW :KHQ D SODVWLFL]HU VXFK DV WHWUDEXW\O ERUDWH RU GRGHF\O VXOIDWH LV LQFRUSRUDWHG LQWR WKH JLYHQ SRO\PHU LW ORZHUV WKH 7J DQG LPSURYHV WKH SDUHQW SRO\PHUfV SHUPHDELOLW\ WR R[\JHQ +RZHYHU D SODVWLFL]HU FDQ OHDFK IURP WKH SRO\PHU ELQGHU DQG DGYHUVHO\ DIIHFW WKH SRO\PHUfV DELOLW\ WR DGVRUE R[\JHQ 0RGLILHG 3RO\PHUV 2QH ZD\ WR DYRLG LQFRUSRUDWLQJ DGGLWLYHV VXFK DV VLOLFD JHO RU SODVWLFL]HUV LQWR WKH SRO\PHU ELQGHU LV WR GHVLJQ V\QWKHWLFDOO\ PRGLILHG SRO\PHUV 7KHVH SRO\PHUV DUH GHVLJQHG WR SRVVHVV VLPLODU R[\JHQ SHUPHDELOLW\ DV WKH VLOLFRQH SRO\PHUV \HW QRW VXIIHU IURP WKH VDPH LQDFFXUDWH VHQVLQJ DIIHFWV DULVLQJ IURP LQDGHTXDWH OXPLQRSKRUH

PAGE 38

GLVWULEXWLRQ RU LPSXULW\ OHDFKLQJ 6HYHUDO DOWHUQDWLYH SRO\PHU ELQGHUV KDYH EHHQ GHYHORSHG UHFHQWO\ 3XNOLQ HW DO KDYH GHYHORSHG D IOXRURDFU\OLF FRSRO\PHU ),%f IOXRURLVRSURS\OEXW\OfDFU\OLF SRO\PHU GLVSOD\HG LQ )LJXUH ZKHQ 3W,,f WHWUDSHQWDIOXRURSKHQ\OfSRUSK\ULQ 3W7)33f LV GLVWULEXWHG WKURXJK WKH SRO\PHU WKH FRDWLQJ GLVSOD\V D 6WHUQ9ROPHU G\QDPLF UDQJH RI a >GHILQHG DV ,YDF ,DWPf,9DFf/ ZKHUH LV OXPLQHVFHQFH LQWHQVLW\ DQG WKH VXEVFULSWV YDF DQG DWP UHIHU WR YDFXXP DQG DWPRVSKHULF SUHVVXUH UHVSHFWLYHO\ 2WKHU DWWULEXWHV LQFOXGH D UHVSRQVH WLPH RI OHVV WKDQ V WR DQ LQFUHDVH LQ SUHVVXUH IURP QHDU YDFXXP WR DWP JRRG SKRWRVWDELOLW\ DQG ORZ WHPSHUDWXUH GHSHQGHQFH a br&f &)) &)) P &+f§&+ R 2 &+&)f&+ R 2 &+&)f )LJXUH 5HSHDW XQLW RI IOXRURLVRSURS\OEXW\OfDFU\OLF SRO\PHU $PDR HW DO KDYH GHYHORSHG D GLIIHUHQW IOXRURFRSRO\PHU >FRSRO\VW\UHQH3)6f@ SRO\VW\UHQHFRSHQWDIOXRURVW\UHQHf LOOXVWUDWHG LQ )LJXUH :KHQ 3W,,f RFWDHWK\OSRUSK\ULQ 3W2(3f LV GLVWULEXWHG WKURXJK WKH SRO\PHU WKH FRDWLQJ GLVSOD\V D ,f, UHVSRQVH DV FRPSDUHG WR ,R,LRR IRU D VLPSOH SRO\VW\UHQH FRDWLQJ ZKHUH ,R DQG ,LRR UHSUHVHQW WKH GHWHFWHG SKRVSKRUHVFHQFH LQWHQVLW\ IURP D FRDWLQJ H[SRVHG WR b DUJRQ DQG b R[\JHQ UHVSHFWLYHO\ 7KH SKRWROXPLQHVFHQFH UHVSRQVH WLPHV

PAGE 39

DUH V IRU SRO\PHU H[SRVXUH WR DUJRQ WKHQ R[\JHQ DQG V IRU SRO\PHU H[SRVXUH WR R[\JHQ WKHQ DUJRQ )LJXUH 5HSHDW XQLW RI SRO\VW\UHQHFRSHQWDIOXRURVW\UHQHf FRSRO\PHU 7KH SUHFHGLQJ UHVHDUFK JURXSV DUH ZRUNLQJ IURP WKH EDVLV WKDW IOXRURSRO\PHU FRDWLQJV SRVVHVV DQ LQFUHDVHG SHUPHDELOLW\ WR R[\JHQA DQG D KLJKHU VWDELOLW\ WRZDUGV SKRWRR[LGDWLRQ FRPSDUHG WR SRO\PHUV ODFNLQJ KLJKO\ HOHFWURQHJDWLYH JURXSV 7KH &) ERQGV SRVVHVV D ODUJH ERQGLQJ HQHUJ\ NFDOPROf DQG VKRUW ERQG OHQJWKV ƒf ZKLFK HQKDQFH WKH ERQGVf VWDELOLW\ WRZDUGV SKRWRR[LGDWLRQ DQG LQFUHDVHV WKHLU DIILQLW\ WRZDUGV R[\JHQ VRUSWLRQ ZKHQ LQFRUSRUDWHG LQWR D SRO\PHU ELQGHU EDFNERQHA 5XIIROR HW DO KDYH GHYHORSHG DQRWKHU W\SH RI EORFN FRSRO\PHU SRO\DPLQRWKLRQ\OSKRVSKD]HQHf"SRO\WHWUDK\GURIXUDQf 3$73Y37+)Uf GLVSOD\HG LQ )LJXUH OAf :KHQ 5XGSSKf&, LV GLVWULEXWHG WKURXJK WKH EORFN FRSRO\PHU WKH FRDWLQJ GLVSOD\V JRRG TXHQFKLQJ VHQVLWLYLW\ DQG OLQHDU 6WHUQ9ROPHU UHVSRQVH FRPSDUHG WR HDUOLHU SRO\EXW\ODPLQRWKLRQ\OSKRVSKD]HQFf 3%$739f DQG 3%$73\37+)[ EOHQGV

PAGE 40

1+&)/1+&)/2 U O ,, QU Q SQ SQ V / L L L -\> QKFKQKFKQKFK R 30$7337+); \ [ )LJXUH 5HSHDW XQLWV RI SRO\DPLQRWKLRQ\OSKRVSKD]HQHf"SRO\WHWUDK\GURIXUDQf EORFN FRSRO\PHU 7KLV SDUWLFXODU GHVLJQ LGHD VWHPV IURP WKH RIWHQLPSUDFWLFDO QHFHVVLW\ IRU VLOLFRQH FRDWLQJ SRO\PHUV WR FURVVOLQN SULRU WR IRUPDWLRQ RI D VROLG VWDEOH FRDWLQJ 7KH FURVV OLQNLQJ LV QRW D FRQWUROOHG SK\VLFDO SURFHVV DQG FDQ FKDQJH LQ GHJUHH DQG GLUHFWLRQDOLW\ IURP FRDWLQJ WR FRDWLQJ OHDGLQJ WR LUUHSURGXFLEOH 69 UHVSRQVH 7KMV I FURVVOLQNLQJ FRQWLQXLW\ FDQ EH RQH VRXUFH RI SUREOHPV DVVRFLDWHG ZLWK SRRU OXPLQRSKRUH GLVWULEXWLRQ 7KHUHIRUH WKH 3$73\37+)[f GHVLJQ EHQHILWV IURP SURGXFWLRQ RI D GLPHQVLRQDOO\ VWDEOH FRDWLQJ ZLWKRXW WKH QHHG IRU FURVVOLQNLQJ 0RUHRYHU VXFK D GHVLJQ OHDGV WR D EHWWHU XQGHUVWDQGLQJ RI WKH SRO\PHU FRDWLQJfV VWUXFWXUHIXQFWLRQ UHODWLRQVKLS ,W ZLOO EH LQWHUHVWLQJ WR VHH KRZ IXWXUH SRO\PHU GHVLJQV ZLOO FRPSDUH WR WKH DERYH PRGLILHG SRO\PHUV WR RQH DQRWKHU DQG WR WKH PRUH WUDGLWLRQDO HODVWRPHULF VLOLFRQH ELQGHU V\VWHPV ZKDW FXUUHQW PRUSKRORJLFDO TXHVWLRQV ZLOO EH DQVZHUHG DQG KRZ ZLOO NQRZLQJ VXFK DQVZHUV OHDG WR WKH GHYHORSPHQW RI RWKHU OXPLQRSKRUHSRO\PHU ELQGHU V\VWHPV :LQG7XQQHO $SSOLFDWLRQ ,Q D W\SLFDO DSSOLFDWLRQ RI DHURG\QDPLF HQJLQHHULQJ D VHQVRU FRDWLQJ LV FRPSRVHG RI D OXPLQRSKRUH GLVSHUVHG LQ D SRO\PHU ELQGHU ZKLFK LV GLVVROYHG LQ D YRODWLOH WKLQQLQJ VROYHQW DQG VSUD\HG RQWR DQ DHURG\QDPLF PRGHO 7KH FRDWLQJ IRUPV XSRQ HYDSRUDWLRQ RI WKH YRODWLOH VROYHQW 7KH PRGHO LV LQVWDOOHG LQ D ZLQGWXQQHO DQG WKH SKRWROXPLQHVFHQFH

PAGE 41

S IURP WKH VHQVRU FRDWLQJ DW ; HP LV LPDJHG ZLWK D FDPHUD GLJLWDO RU ILOPEDVHGf WKDW LV ILWWHG ZLWK DSSURSULDWH ILOWHUV WKDW SDVV OLJKW RI ZDYHOHQJWK ; HP %\ XVLQJ DSSURSULDWH FRPSXWHU DOJRULWKPV LW LV SRVVLEOH WR DSSO\ WKH 6WHP9ROPHU FDOLEUDWLRQ f WR FRQYHUW WKH SKRWROXPLQHVFHQFH LQWHQVLW\ PDS JHQHUDWHG E\ WKH FDPHUD LQWR D IXOOILHOG PDS RI DLU SUHVVXUH 3DLUf RYHU WKH VXUIDFH RI WKH PRGHO GLVSOD\HG LQ )LJXUH A %OXH ILOWHU 5HG ILOWHU &RPSXWHU $LU IORZ )LJXUH 3UHVVXUH 6HQVLWLYH 3DLQW PHDVXUHPHQW V\VWHP IRU WHVWLQJ RI DLU SUHVVXUH SURILOHV RQ DQ DLUSODQH PRGHO LQ D ZLQGWXQQHO 3UHVVXUH PDSV REWDLQHG IURP WKH VHWXS LQ )LJXUH ZRXOG VKRZ OXPLQHVFHQFH FKDUDFWHULVWLFV VLPLODU WR )LJXUH )LJXUH GLVSOD\V DQ LQWHQVLW\ SUHVVXUH PDS IRU D QLWURJHQ MHW SURWUXGLQJ RXW RI WKH SODQH RI D 363 FRDWLQJ 7KH GLUHFWLRQ RI WKH WXQQHO DLUIORZ WUDYHOV IURP EHKLQG WKH QLWURJHQ LQMHFWLRQ MHW IRUZDUG ERWWRP WR WRS RI LPDJHf $ SUHVVXUH ILHOG RI KLJK DQG ORZ SUHVVXUHV GHYHORS 7KH RYDO VKDSH SUHFHGLQJ WKH QLWURJHQ MHW LQGLFDWHV DQ DUHD RI KLJK SUHVVXUH RU KLJK R[\JHQ FRQFHQWUDWLRQ DQG WKH FRQH VKDSH GLUHFWO\ SUHFHGLQJ WKH QLWURJHQ MHW LQGLFDWHV DQ DUHD RI ORZ SUHVVXUH RU ORZ R[\JHQ FRQFHQWUDWLRQ GXH WR DLUIORZ GLVUXSWLRQ &RORUV ZRXOG WKHQ EH DVVLJQHG WR WKH JUDGLHQWV

PAGE 42

RI JUD\ LQ WKH LPDJH WR HQKDQFH DQG GLVFULPLQDWH DPRQJ WKH SUHVVXUH FKDQJHV E\ PDNLQJ WKHP PRUH GLVFHUQDEOH WR WKH YLHZHUfV H\H $LU 3UHVVXUH SVLf )LJXUH *UD\VFDOH SUHVVXUH GLVWULEXWLRQ PDS IRU D QLWURJHQ MHW SURWUXGLQJ IURP D 363 FRDWLQJ $V GHPRQVWUDWHG 363 WHFKQRORJ\ KDV UHYROXWLRQL]HG WUDGLWLRQDO ZLQGWXQQHO WHVWLQJ ZKLFK PRQLWRUV GLVFUHWH VXUIDFH SUHVVXUH PHDVXUHPHQWV DW ORFDOL]HG SUHVVXUH WDSV DFURVV D WHVW PRGHO 7KH WUDQVGXFHUV DUH FRQQHFWHG WR PXOWLWXGHV RI HOHFWURQLF ZLULQJ DQG KDUGZDUH DQG WKH DVVHPEO\ RI VXFK D PRGHO WDNHV PRQWKV WR GHVLJQ DQG FRQVWUXFW $V FRPSDUHG WR WKH FRPSOH[LW\ RI WKH WUDQVGXFHU V\VWHP 363 FRDWLQJV DUH HDVLO\ DSSOLHG WR D PRGHO VXUIDFH DQG UHDG\ WR XVH ZLWKLQ D IHZ KRXUV 7KH QRQLQYDVLYH DSSURDFK RIIHUHG LV HVVHQWLDO WR SURWRW\SH DHURG\QDPLF PRGHO WHVWLQJ WKHUHIRUH OXPLQHVFHQFH LPDJLQJ KDV JHQHUDWHG VLJQLILFDQW UHVHDUFK LQWHUHVW LQ WKH DHURG\QDPLF HQJLQHHULQJ FRPPXQLW\

PAGE 43

7HPSHUDWXUH (IIHFWV 8QGHU LGHDO FRQGLWLRQV WKH SKRWROXPLQHVFHQFH LQWHQVLW\ RI D VHQVRU FRDWLQJ ZRXOG UHVSRQG RQO\ WR FKDQJHV LQ S2L RWKHU HQYLURQPHQWDO SDUDPHWHUV VXFK DV WHPSHUDWXUH 7f ZRXOG QRW LQWHUIHUH ZLWK WKH PHDVXUHPHQW 8QIRUWXQDWHO\ LW LV ZHOO NQRZQ WKDW DW FRQVWDQW DLU SUHVVXUH WKH SKRWROXPLQHVFHQFH LQWHQVLW\ RI PRVW R[\JHQ VHQVRU FRDWLQJV YDULHV LQYHUVHO\ ZLWK 7 DV GRHV WKH 6WHUQ9ROPHU FRHIILFLHQW .VYfAfA )RU PDQ\ VHQVRU FRDWLQJV .VY YDULHV OLQHDUO\ ZLWK 7 RYHU D QDUURZ UDQJH RI WHPSHUDWXUHV GHPRQVWUDWHG E\ HTXDWLRQ f .VY7f .VYUFI E7 f %HFDXVH RI WKH WHPSHUDWXUH GHSHQGHQFH RI .VY ZKHQ D VHQVRU FRDWLQJ LV DSSOLHG XQGHU QRQLVRWKHUPDO FRQGLWLRQV PRVW RIWHQ WKH FDVH LQ D ZLQGWXQQHOf WKH JOREDO PDS RI 3DLU WKDW LV FUHDWHG ZLOO EH LQ HUURU 2Q WKH RWKHU KDQG VLQFH .VY LV D ZHOOEHKDYHG IXQFWLRQ RI WHPSHUDWXUH DV LQ HTXDWLRQ f LI RQH NQRZV WKH WHPSHUDWXUH GLVWULEXWLRQ RYHU WKH VXUIDFH RI WKH DHURG\QDPLF PRGHO LW LV SRVVLEOH WR DSSO\ FRPSXWHU DOJRULWKPV WR FRUUHFW IRU WKH WHPSHUDWXUH GHSHQGHQFH RI .VY DQG REWDLQ DQ DFFXUDWH JOREDO VXUIDFH SUHVVXUH GLVWULEXWLRQ 6HYHUDO GDWD UHGXFWLRQ PHWKRGV KDYH EHHQ GHYHORSHG ZKLFK FRQYHUW WKH SURFHVVHG ZLQG WXQQHO LPDJH LQWR IDOVHFRORU LPDJH UHSUHVHQWDWLRQV RI WKH TXDQWLWDWLYH SUHVVXUH GLVWULEXWLRQ DFURVV WKH PRGHO VXUIDFH 7KH LQWHQVLW\UDWLRV REWDLQHG DW HDFK SL[HO DUH FRQYHUWHG LQWR SUHVVXUHV XVLQJ D PRGLILHG +HQU\fV ODZ UHODWLRQ ZKLFK DFFRXQWV IRU WKH QRQLGHDO SRURXV QDWXUH RI WKH SRO\PHU ELQGHU LQ HTXDWLRQ fA 33UFI &_ & ,UH I7UFIf,PQ 7QMQff &,UHI7UHIf,UXQ7QLQff f

PAGE 44

ZKHUH &L & DQG & DUH WKH UHGXFWLRQ PHWKRG FRHIILFLHQWV DQG ,UHI7UHIf,UXQ7UXQf LV WKH LQWHQVLW\UDWLR REWDLQHG DW HDFK SL[HO ,VRWKHUPDO &DOLEUDWLRQ $Q LVRWKHUPDO FDOLEUDWLRQ DVVXPHV WKDW WKH ZLQGWXQQHO VXUIDFH LV VSDWLDOO\ DQG WHPSRUDOO\ LVRWKHUPDO GXULQJ WKH UXQ RI WKH IORZ $Q LQLWLDO VWDWLF FDOLEUDWLRQ LV WDNHQ DW D UHIHUHQFH WHPSHUDWXUH RYHU D JLYHQ SUHVVXUH UDQJH DQG D OHDVWVTXDUHV ILW LV HPSOR\HG WR REWDLQ WKH UHVXOWLQJ FDOLEUDWLRQ FXUYH 7KH SUHVVXUH YDOXHV REWDLQHG IURP SUHVVXUH WDSV IDVKLRQHG DORQJ WKH PRGHO VXUIDFH DUH FRPSDUHG WR WKH LQWHQVLW\UDWLR LPDJHV REWDLQHG $V LV H[SHFWHG WKH PHWKRG GRHV QRW DFFRXQW IRU WKH WHPSHUDWXUH GURS WKDW RFFXUV DFURVV WKH PRGHO GXULQJ DLUIORZ WKDW UHVXOWV LQ D SUHGLFWLRQ RI SUHVVXUH YDOXHV ORZHU WKDQ PHDVXUHG 7KHUHIRUH LW LV EHVW WKDW WKLV PHWKRG RQO\ EH XVHG IRU TXDOLWDWLYH HYDOXDWLRQV RI FRDWLQJV ,QVLWX &DOLEUDWLRQ $Q LQVLWX FDOLEUDWLRQ DFFRXQWV IRU WKH FKDQJH LQ VXUIDFH WHPSHUDWXUH DFURVV D PRGHO VXUIDFH GXULQJ ZLQGWXQQHO RSHUDWLRQ )RU WKLV UHGXFWLRQ PHWKRG D OLPLWHG QXPEHU RI SUHVVXUH WDSV DUH SODFHG DFURVV WKH VXUIDFH RI WKH PRGHO 7KHVH WDSV VKRXOG EH SODFHG LQ WKH UHJLRQV RI KLJKHVW DQG ORZHVW SUHVVXUHV DV ZHOO DV VHYHUDO LQWHUPHGLDWH UHJLRQV IRU WKH EHVW UHVXOWV +RZHYHU D SULRUL NQRZOHGJH RI WKH SUHVVXUH GLVWULEXWLRQ LV GLIILFXOW WR NQRZ DQG D GLVDGYDQWDJH IRU WKLV UHGXFWLRQ PHWKRG 7KH LQWHQVLW\ RI WKH SDLQW DURXQG WKH WDSV LV HYDOXDWHG DQG XVHG LQ FRQMXQFWLRQ ZLWK WKH SUHVVXUH YDOXHV REWDLQHG DW WKH WDSV WR GHYHORS D FDOLEUDWLRQ FXUYH $ OHDVW VTXDUHV ILW LV DSSOLHG WR HTXDWLRQ f DQG WKH SUHVVXUH WDS DQG LQWHQVLW\ YDOXHV DUH XVHG

PAGE 45

WR GHWHUPLQH WKH YDOXHV IRU &L & DQG & 7KH SUHVVXUH YDOXHV DFURVV WKH PRGHO VXUIDFH DUH WKHQ REWDLQHG WKURXJK LQWHUSRODWLRQ RI WKH GDWD .ILW &DOLEUDWLRQ 7KH .ILW FDOLEUDWLRQ LV D K\EULG RI WKH LVRWKHUPDO DQG LQVLWX FDOLEUDWLRQ PHWKRGV ,W ZDV IRXQG WKDW HTXDWLRQ f ZLOO FRDOHVFH LI 7PQ 7UHI WKHUHIRUH HTXDWLRQ f FDQ EH UHFDVW DV HTXDWLRQ f 33UHI &f &A:7\8&7ff &f,UF.7f,QMQ7ff f ZKHUH 7L LV DQ DUELWUDU\ QXPEHU DQG WKH FRHIILFLHQWV &f_ &f DQG &f GR QRW YDU\ ZLWK WHPSHUDWXUH $ VFDOLQJ SURFHVV IXQFWLRQ LQ HTXDWLRQ f LV DSSOLHG WR UHVFDOH WKH UHIHUHQFH LPDJH ,UHI7_ff VR LW WKHQ HPXODWHV D UHIHUHQFH LPDJH WDNHQ DW 7 :7f:7f 77f f (TXDWLRQ f LV UHFDVW DV f 33LUI &f &f.87f,QLQ7ff &f.,A7f87ff f ZKHUH 7L 7 DQG DUH FRQVWDQW RYHU WKH PRGHO VXUIDFH ,I 7_ 7PQ DQG 7 7UHI WKHQ D OHDVWVTXDUHV ILW RI HTXDWLRQ f ZLOO UHVXOW LQ 7KLV UHGXFWLRQ PHWKRG LV VXSHULRU WR WKH LVRWKHUPDO PHWKRG EXW OHVV DFFXUDWH WKDQ WKH LQVLWX PHWKRG VLQFH WKLV PRGHO XQGHUSUHGLFWV WKH SUHVVXUH YDOXHV LQ WKH ORZSUHVVXUH UHJLRQ $ SRVVLEOH H[SODQDWLRQ IRU WKLV LV WKDW LW PD\ QRW EH SK\VLFDOO\ UHDVRQDEOH WR DVVXPH WKDW WKHUH H[LVWV D VHSDUDWLRQ LQ WKH SUHVVXUHGHSHQGHQW &fL &f DQG &ff DQG WKH WHPSHUDWXUHGHSHQGHQW .f UHODWLRQVKLSV RI WKH FRDWLQJ 7KHUHIRUH WKH YDOXH LQ HTXDWLRQ f PD\ EH SUHVVXUH VHQVLWLYH DQG WKH HTXDWLRQ VKRXOG EH UHFDVW DV HTXDWLRQ f 773f f

PAGE 46

7HPSHUDWXUHFRUUHFWHG 3UHVVXUH &DOLEUDWLRQ 7KLV PHWKRG DFFRXQWV IRU WKH FKDQJH LQ VXUIDFH WHPSHUDWXUH DFURVV WKH PRGHO VXUIDFH EHWZHHQ WKH UHIHUHQFH LPDJH DQG WKH ZLQGWXQQHO LPDJHV ,W XWLOL]HV D SL[HOE\ SL[HO FRUUHFWLRQ PHWKRG E\ HPSOR\LQJ WKH LPDJH LQIRUPDWLRQ RI D WHPSHUDWXUHVHQVLWLYH FRDWLQJ WR FRUUHFW IRU WKH WHPSHUDWXUHGHSHQGHQFH RI D SUHVVXUHVHQVLWLYH FRDWLQJ %\ NQRZLQJ WKH LQWHQVLW\UDWLR DQG WHPSHUDWXUH YDOXHV DW HDFK SL[HO D SUHVVXUH YDOXH FDQ EH GHWHUPLQHG E\ HTXDWLRQ f ,UHI,FDO 37f f 7KH SUHVVXUH YDOXHV DW HDFK SL[HO DUH FDOFXODWHG WKURXJK D OLQHDU LQWHUSRODWLRQ EHWZHHQ LVRWKHUPDO FDOLEUDWLRQ FXUYHV JHQHUDWHG IURP LQVLWX WDSV DQG WKH WHPSHUDWXUHVHQVLWLYH FRDWLQJfV WHPSHUDWXUH YDOXHV 7KH DGYDQWDJHV RI WKLV PHWKRG DOORZ IRU NQRZOHGJH RI WKH VOLJKWHVW WHPSHUDWXUH JUDGLHQW DFURVV WKH VXUIDFH ZLWK QR QHHG IRU SUHVVXUH WDSV WR FDOFXODWH WKH ILQDO SUHVVXUH YDOXHV +RZHYHU WKHUH FDQ EH SUREOHPV DVVRFLDWHG ZLWK SKRWRGHJUDGDWLRQ RI WKH FRDWLQJ PDWHULDOV DQ LQFRQVLVWHQW XVH RI VXEVWUDWH PDWHULDO IRU FDOLEUDWLRQ VDPSOHV DQG ZLQG WXQQHO IL[WXUHV DFFRXQWV IRU LQDFFXUDWH FRPSDULVRQV RI SUHVVXUHVHQVLWLYLWLHV LQ FDOLEUDWLRQ FXUYH JHQHUDWLRQV DQG WKH WHPSHUDWXUH YDOXHV REWDLQHG IURP WKH WHPSHUDWXUHVHQVLWLYH FRDWLQJ PD\ QRW EH WKH H[DFW YDOXHV H[SHULHQFHG E\ WKH SUHVVXUHVHQVLWLYH FRDWLQJ 3K\VLFDO 0DQLIHVWDWLRQV RI WKH 7HPSHUDWXUH (IIHFW 7KH WHPSHUDWXUH HIIHFWV H[SHULHQFHG E\ WKH SUHVVXUHVHQVLQJ FRDWLQJV DUH GXH WR WKH WZR PDMRU FRPSRQHQWV RI WKH 363 WKH OXPLQRSKRUH DQG WKH SRO\PHU ELQGHU )LUVW LW LV NQRZQ WKDW LQ GHJDVVHG VROXWLRQ H[SHULPHQWV WKDW WKH WHPSHUDWXUH GHSHQGHQFH RI D OXPLQRSKRUH LV GHSHQGHQW RQ WKH QRQUDGLDWLYH GHFD\ SDWKZD\V VLQFH WKH UDGLDWLYH GHFD\

PAGE 47

UDWHV DUH RQO\ ZHDNO\ WHPSHUDWXUH GHSHQGHQW /XPLQRSKRUHV VXFK DV WKH 5X,,f D GLLPLQH FRPSOH[HV H[SHULHQFH WHPSHUDWXUH GHSHQGHQFH RI QRQUDGLDWLYH GHFD\ SURFHVVHV EHFDXVH RI WKH FRXSOLQJ RI WKH H[FLWHG VWDWH ZLWK YLEUDWLRQDO OHYHOV RI WKH PHWDO JURXQG VWDWH DQG WKH VROYHQW RU SRO\PHU PDWUL[ 0RUH VSHFLILFDOO\ IRU WKH 5X,,f F[GLLPLQH FRPSOH[HV WHPSHUDWXUH GHSHQGHQW H[FLWHG VWDWH GHFD\ DULVHV GXH WR LQFUHDVHG FRXSOLQJ RI WKH HPLVVLYH 0/&7 PHWDOWROLJDQG FKDUJHWUDQVIHUf VWDWH WR D QHDUE\ GG PDQLIROG 7HPSHUDWXUH GHSHQGHQW TXHQFKLQJ FDQ DULVH GXH WR WKH WHPSHUDWXUHGHSHQGHQFH RI WKH GLIIXVLYLW\ DQG VROXELOLW\ RI WKH TXHQFKHU PROHFXOH &Ef LQ WKH SRO\PHU PDWUL[ 7KH SHUPHDELOLW\ 3f f RI R[\JHQ LQ WKH ELQGHU LV D SURGXFW RI WKH VROXELOLW\ 6Q f DQG GLIIXVLYLW\ f 7KH UDWH FRQVWDQW IRU TXHQFKLQJ NTf LV SURSRUWLRQDO WR DQG WKH FRQFHQWUDWLRQ RI R[\JHQ >2L@ LQ WKH SRO\PHU LV DIIHFWHG E\ 6* +RZHYHU VLQFH LW LV NQRZQ WKDW WKH VROXELOLW\ RI GLDWRPLF JDVHV LQ SRO\PHUV LV RQO\ ZHDNO\ GHSHQGHQW RQ WHPSHUDWXUH WHPSHUDWXUH GHSHQGHQW TXHQFKLQJ WKHQ DULVHV SULPDULO\ GXH WR WKH WHPSHUDWXUH GHSHQGHQFH RI *DV GLIIXVLYLW\ LQ SRO\PHUV GHSHQGV RQ WKH SRO\PHU WRWDO IUHH YROXPH ZKLFK LQFUHDVHV ZLWK LQFUHDVHG WHPSHUDWXUHV 3RO\PHU VHJPHQWV XQGHUJR WKHUPDO H[SDQVLRQ FUHDWLQJ IUHH VLWHV DFFHVVLEOH WR R[\JHQ PROHFXOHV $FFRUGLQJ WR 6FKDQ]H HW DO NT>&!@ $TH[S(T57f ZKHUH $T DQG (T DUH WKH IUHTXHQF\ IDFWRU DQG DFWLYDWLRQ HQHUJ\ IRU R[\JHQ TXHQFKLQJ UHVSHFWLYHO\ 6LQFH NT LV SURSRUWLRQDO WR LW FDQ EH DVVXPHG WKDW WKH (T LV UHODWHG WR WKH DFWLYDWLRQ HQHUJ\ RI GLIIXVLRQ (Df 7KHUHIRUH E\ WKH UHODWLRQV RXWOLQHG DERYH 363 FRDWLQJV VKRXOG EH GHYHORSHG ZKLFK KDYH WKH ORZHVW SRVVLEOH DFWLYDWLRQ HQHUJ\ IRU R[\JHQ GLIIXVLRQ

PAGE 48

$GYDQFHV LQ 363 'HVLJQ $ FRQYHQLHQW PHWKRG IRU REWDLQLQJ WKH QHFHVVDU\ LQIRUPDWLRQ UHJDUGLQJ WKH WHPSHUDWXUH GLVWULEXWLRQ RYHU WKH DHURG\QDPLF PRGHO LV WR LQFRUSRUDWH LQWR WKH VHQVRU FRDWLQJ D VHFRQG fWHPSHUDWXUH VHQVLWLYHf OXPLQRSKRUH WKDW KDV WKH IROORZLQJ SURSHUWLHVA f LW LV VXIILFLHQWO\ H[FLWHG DW WKH VDPH ZDYHOHQJWK DV WKH R[\JHQ VHQVLQJ OXPLQRSKRUH f SKRWROXPLQHVFHQFH RFFXUV LQ D GLIIHUHQW UHJLRQ RI WKH YLVLEOH VSHFWUXP "L7HLQf WKDQ WKH SKRWROXPLQHVFHQFH RI WKH R[\JHQ VHQVLQJ OXPLQRSKRUH LH ;7HP A ASHPf f SKRWROXPLQHVFHQFH LQWHQVLW\ LV LQGHSHQGHQW RI SUHVVXUH f WKH OXPLQRSKRUH LV SKRWRVWDEOH RU GHWHULRUDWHV DW D UDWH VLPLODU WR WKDW RI WKH R[\JHQ VHQVLQJ OXPLQRSKRUH DQG f SKRWROXPLQHVFHQFH LQWHQVLW\ YDULHV VWURQJO\ DQG PRQRWRQLFDOO\ ZLWK WHPSHUDWXUH :LWK VXFK D GXDOOXPLQRSKRUH VHQVRU V\VWHP RQH ZRXOG EH DEOH WR REWDLQ D JOREDO PDS RI WKH WHPSHUDWXUH RI WKH VXUIDFH RI DQ DHURG\QDPLF PRGHO E\ LPDJLQJ WKH SKRWROXPLQHVFHQFH IURP WKH WHPSHUDWXUHVHQVLWLYH OXPLQRSKRUH ZLWK D FDPHUD ILWWHG ZLWK ILOWHUV WKDW SDVV OLJKW RQO\ DW ZDYHOHQJWK L7HP 7KH UHVXOWLQJ WHPSHUDWXUH PDS FRXOG WKHQ EH XVHG LQ DQ DOJRULWKP WR FRUUHFW IRU WKH WHPSHUDWXUHGHSHQGHQFH RI WKH SKRWROXPLQHVFHQFH LQWHQVLW\ IURP WKH SUHVVXUHVHQVLWLYH OXPLQRSKRUH 7KH *RXWHUPDQ UHVHDUFK JURXS KDV ZRUNHG H[WHQVLYHO\ LQ GHYHORSLQJ OXPLQRSKRUHV DQG SRO\PHU ELQGHUV ZKLFK FRUUHFW IRU WHPSHUDWXUHGHSHQGHQFH 7KH\ UHSRUWHG LQ WKH LQFRUSRUDWLRQ RI D VHFRQG OXPLQRSKRUH WR D SRO\PHU ELQGHU D SUHVVXUHLQVHQVLWLYH EXW WHPSHUDWXUHVHQVLWLYH LQRUJDQLF SKRVSKRU WR FRUUHFW IRU WKH WHPSHUDWXUHGHSHQGHQFH RI WKH 363 FRDWLQJ +RZHYHU WKLV FRDWLQJ H[SHULHQFHG VRPH SUREOHPV ZLWK FRPSHWLWLYH DEVRUSWLRQ RI WKH H[FLWDWLRQ OLJKW E\ 3W7)33 DEVRUSWLRQ RI WKH HPLVVLRQ OLJKW IURP WKH SKRVSKRU %D0J$OL(Xf E\ 3W7)33 DQG D KHWHURJHQHRXV

PAGE 49

GLVWULEXWLRQ RI WKH SKRVSKRU SDUWLFOHV ([SDQGLQJ RQ HDUOLHU ZRUN ZLWK SODWLQXP SRUSK\ULQV WKH *RXWHUPDQ JURXS LQYHVWLJDWHG WKH XVH RI VLOLFRQ RFWDHWK\OSRUSKLQH 6L2(3f DV D QHZ SUHVVXUHLQVHQVLWLYH WHPSHUDWXUHVHQVLWLYH OXPLQRSKRUH 7KH VLOLFRQ SRUSKLQH FRPSOH[ VXIIHUV IURP DQ LQFUHDVH LQ IOXRUHVFHQFH LQWHQVLW\ DV WKH WHPSHUDWXUH ULVHV GXH WR UHSRSXODWLRQ RI WKH VLQJOHW H[FLWHG VWDWH YLD WKH WULSOHW VWDWH PRUHRYHU WKH ULVH LQ IOXRUHVFHQFH FDQ FDXVH FRQIXVLRQ LQ FDOLEUDWLRQ UXQV DW YDFXXP )RUWXQDWHO\ WKH WHPSHUDWXUHGHSHQGHQFH LV RQO\ DW YDFXXP FRQGLWLRQV QRW D VWDQGDUG ZLQGWXQQHO FRQGLWLRQ *RXWHUPDQfV JURXS KDV DOVR UHVHDUFKHG WKH GHYHORSPHQW RI D SRO\PHU SRVVHVVLQJ D ORZ DFWLYDWLRQ HQHUJ\ WR R[\JHQ GLIIXVLRQ $ WHPSHUDWXUH VHQVLWLYLW\ RI br& IRU 3W7)33 GLVSHUVHG LQ WKH IOXRURDFU\OLF SRO\PHU ),% )LJXUH f KDV EHHQ UHSRUWHG 7KLV QXPEHU LV VLJQLILFDQWO\ EHWWHU WKDQ D WHPSHUDWXUH VHQVLWLYLW\ RI br& UHSRUWHG IRU 3W2(3 LQ WKH VLOLFRQH SRO\PHU ELQGHU *HQHVHH *3 0RQLWRULQJ 0HWKRGV 7KHUH H[LVW WKUHH PRQLWRULQJ PHWKRGV IRU WKH DQDO\VLV RI 363 FRDWLQJV OXPLQHVFHQFH LQWHQVLW\ PHWKRG SXOVHG OLIHWLPH PHWKRG DQG SKDVHVKLIW PHWKRG /XPLQHVFHQFH ,QWHQVLW\ 7KH OXPLQHVFHQFH LQWHQVLW\ PHWKRG PHDVXUHV WKH HPLVVLRQ LQWHQVLW\ SURGXFHG E\ WKH OXPLQRSKRUHVf LQ WKH VHQVRU FRDWLQJ ,W LV WKH PRVW ZLGHO\ XVHG PHWKRG VLQFH WKH HTXLSPHQW LV UHODWLYHO\ LQH[SHQVLYH WR DVVHPEOH DQG VPDOO HQRXJK WR EH SRUWDEOH 7KH SUHVVXUH SURILOH H[SHULHQFHG E\ WKH FRDWLQJ LV WKHQ GHWHUPLQHG IURP D FDOLEUDWLRQ FXUYH +RZHYHU DQ DFFXUDWH DQDO\VLV E\ WKH PHWKRG LV GLUHFWO\ DIIHFWHG E\ FKDQJHV LQ WKH H[FLWDWLRQ VRXUFH LQWHQVLW\ YDULDWLRQV LQ HIILFLHQF\ RI WKH V\VWHP HTXLSPHQW WR FROOHFW WKH

PAGE 50

HPLVVLRQ VLJQDOVf DQG WKH SKRWRVWDELOLW\ RI VHQVLQJ FRDWLQJV )RUWXQDWHO\ FROOHFWLQJ D UHIHUHQFH VLJQDO DQG OLPLWLQJ WKH H[SRVXUH WLPH RI WKH VHQVRU FRDWLQJV FDQ KHOS DOOHYLDWH WKH HIIHFWV RI WKHVH SUREOHPV 3XOVHG /LIHWLPH 7KH SXOVHG OLIHWLPH PHWKRG XWLOL]HV DQ H[FLWDWLRQ VRXUFH ZLWK D SXOVH WHUPLQDWLRQ WLPH WKDW LV VKRUWHU WKDQ WKH OLIHWLPH RI WKH HPLVVLRQ OLIHWLPHVf EHLQJ HYDOXDWHG 7KLV PHWKRG LV HPSOR\HG OHVV IUHTXHQWO\ GXH WR WKH SUREOHP RI UHGXFLQJ WKH FRPSOH[ GHFD\ FXUYHV REWDLQHG E\ WKH WUDGLWLRQDO OHDVWVTXDUHV PHWKRG KRZHYHU WKH VLPSOHU WHFKQLTXH RI UDSLG OLIHWLPH GHWHUPLQDWLRQ 5/'f LV EHLQJ HPSOR\HG WR UHGXFH WKH FRPSOH[ GHFD\V WR D VLQJOH SDUDPHWHU 7KH 5/' WHFKQLTXH DOORZV IRU GLUHFW LQWHJUDWLRQ RI YDULRXV UHJLRQV XQGHU WKH LQWHJUDWLRQ FXUYH UHVXOWLQJ LQ UHGXFWLRQ WR D VLQJOH SDUDPHWHU 3KDVHVKLIW 7KH SKDVHVKLIW PHWKRG HPSOR\V D VLQXVRLGDOO\ PRGXODWHG H[FLWDWLRQ VRXUFH FRPELQHG ZLWK SKDVHVHQVLWLYH GHWHFWLRQ 7KH PRGXODWHG HPLVVLRQ LV GHOD\HG LQ SKDVH E\ DQ DQJOH -f UHODWLYH WR WKH H[FLWDWLRQ GHPRQVWUDWHG E\ HTXDWLRQ f DUFWDQFR7f f ZKHUH FR QI f DQG LV WKH OLQHDU PRGXODWLRQ IUHTXHQF\ 7KH SKDVH VKLIWV DUH HDV\ WR PHDVXUH VLQFH WKH SKDVH VKLIW YDULHV PRQRWRQLFDOO\ ZLWK R[\JHQ FRQFHQWUDWLRQ 7KH HTXLSPHQW UHTXLUHG IRU WKLV PHWKRG LV UHODWLYHO\ LQH[SHQVLYH 7KLV PHWKRG OLNH WKH 5/' PHWKRG GRHV QRW SURYLGH DQ D SULRUL NQRZOHGJH RI WKH FRPSOH[LW\ RI WKH GHFD\Vf PHDVXUHG KRZHYHU WKH IUHTXHQF\ FDQ EH YDULHG IRU RSWLPL]DWLRQ RI DFFXUDF\ DW D NQRZQ FRQFHQWUDWLRQ RI R[\JHQ

PAGE 51

6FRSH RI 7KLV :RUN ,QLWLDO UHVHDUFK KDV IRFXVHG RQ GHYHORSPHQW RI D fWHPSHUDWXUHVHQVLWLYHf ,XPLQRSKRUH ZKLFK LV WHPSHUDWXUHVHQVLWLYH DQG SUHVVXUHLQVHQVLWLYH 7KLV V\VWHP FRQILJXUDWLRQ FRUUHFWV IRU WKH WHPSHUDWXUH GHSHQGHQF\ RI WKH SUHVVXUH FRPSRQHQW E\ GHWHUPLQLQJ WKH UXQWLPH WHPSHUDWXUH ILHOG 'XDOOXPLQRSKRUH VHQVRU FRDWLQJV ZHUH GHYHORSHG ZKHUH WKH WHPSHUDWXUH VHQVLQJ ,XPLQRSKRUH HQFDSVXODWHG LQ SRO\VW\UHQH PLFURVSKHUHV DQG WKH SUHVVXUH VHQVLQJ ,XPLQRSKRUH DUH FRQMRLQWO\ GLVWULEXWHG WKURXJK D SRO\GLPHWK\OVLOR[DQH SRO\PHU ELQGHU ([WHQVLYH VWXGLHV ZHUH FRQGXFWHG WR HYDOXDWH WKH SKRWR WKHUPDO DQG WHPSRUDOVWDELOLW\ RI WKH OXPLQRSKRUHELQGHU FRDWLQJV DQG IOXRUHVFHQFH PLFURVFRS\ 6(0 DQG 7(0 DQDO\WLFDO WHFKQLTXHV ZHUH HPSOR\HG WR HYDOXDWH WKH PROHFXODU GLVWULEXWLRQ RI WKH OXPLQRSKRUHV LQ WKH FRDWLQJV )LQDOO\ WKH FRDWLQJV ZHUH VXEMHFWHG WR VWDWLF FDOLEUDWLRQ FHOO LPDJLQJ WR HYDOXDWH WKHLU RYHUDOO DSSOLFDWLRQ SHUIRUPDQFH )OXRUHVFHQFH PLFURVFRS\ KDV DOVR EHHQ HPSOR\HG WR DQDO\]H WKH YDULDEOH QRQn OLQHDU 6WHUQ9ROPHU UHVSRQVH H[KLELWHG E\ VHYHUDO 5X,,f DGLLPLQH EDVHG FRDWLQJV DQG WKH OLQHDU 6WHUQ9ROPHU UHVSRQVH H[KLELWHG E\ VHYHUDO 3W,,f WHWUDSHQWDIOXRURSKHQ\OfSRUSK\ULQ EDVHG FRDWLQJV ,W LV EHOLHYHG WKDW GHYLDWLRQV IURP OLQHDULW\ DUH GXH WR KHWHURJHQHLW\ RI WKH SRO\PHU PDWUL[ RU WKH ,XPLQRSKRUH GLVWULEXWLRQ %\ TXDQWLWDWLYHO\ PHDVXULQJ WKH R[\JHQ TXHQFKLQJ HIILFLHQF\ DW WKH SL[HO OHYHO ZLWK PLFURPHWHU VSDWLDO UHVROXWLRQ ZH KDYH EHHQ DEOH WR SURYLGH H[SHULPHQWDO HYLGHQFH WR H[SODLQ WKH OLQHDU DQG QRQOLQHDU 69 UHVSRQVHV H[KLELWHG E\ VXFK FRDWLQJV

PAGE 52

&+$37(5 '8$//80,123+25( 2;<*(1 6(16,1* &2$7,1*6 ,QWURGXFWLRQ $V RXWOLQHG LQ &KDSWHU 2QH LGHDO R[\JHQ VHQVLQJ FRQGLWLRQV SURGXFH SKRWROXPLQHVFHQFH LQWHQVLW\ ZKLFK UHVSRQGV RQO\ WR FKDQJHV LQ S2\ KRZHYHU RWKHU HQYLURQPHQWDO SDUDPHWHUV VXFK DV WHPSHUDWXUH 7f LQWHUIHUH ZLWK WKLV PHDVXUHPHQW )RU PDQ\ VHQVRUV WKH .6Y YDOXH YDULHV OLQHDUO\ ZLWK WHPSHUDWXUH RYHU D QDUURZ UDQJH RI WHPSHUDWXUHV DV LQGLFDWHG E\ HTXDWLRQ f .VY7f .VYUHn E7 f :KHQ D VHQVRU FRDWLQJ LV HYDOXDWHG XQGHU QRQLVRWKHUPDO FRQGLWLRQV PRVW RIWHQ WKH FDVH LQ D ZLQGWXQQHOf WKH JOREDO PDS RI 3DLU WKDW LV FUHDWHG ZLOO EH LQ HUURU EHFDXVH RI WKH WHPSHUDWXUH GHSHQGHQFH RI .VY 6LQFH .6Y LV D ZHOOEHKDYHG IXQFWLRQ RI WHPSHUDWXUH DV LQ f LI RQH NQRZV WKH WHPSHUDWXUH GLVWULEXWLRQ RYHU WKH VXUIDFH RI WKH DHURG\QDPLF PRGHO LW LV WKHQ SRVVLEOH WR DSSO\ FRPSXWHU DOJRULWKPV WR FRUUHFW IRU WKH WHPSHUDWXUHGHSHQGHQFH RI .6Y DQG REWDLQ DQ DFFXUDWH JOREDO VXUIDFH SUHVVXUH GLVWULEXWLRQ $ FRQYHQLHQW PHWKRG IRU REWDLQLQJ WKH QHFHVVDU\ LQIRUPDWLRQ UHJDUGLQJ WKH WHPSHUDWXUH GLVWULEXWLRQ RYHU WKH DHURG\QDPLF PRGHO LV WR LQFRUSRUDWH LQWR WKH VHQVRU FRDWLQJ D VHFRQG fWHPSHUDWXUHVHQVLWLYHf OXPLQRSKRUH WKDW H[KLELWV VLPLODU SURSHUWLHVA WR WKRVH RXWOLQHG LQ &KDSWHU 2QH XQGHU 363 $GYDQFHV 7KHUHIRUH D GXDOOXPLQRSKRUH VHQVRU V\VWHP ZRXOG SURYLGH D JOREDO WHPSHUDWXUH PDS IRU WKH VXUIDFH RI DQ DHURG\QDPLF PRGHO E\ LPDJLQJ WKH SKRWROXPLQHVFHQFH IURP WKH WHPSHUDWXUHVHQVLWLYH OXPLQRSKRUH

PAGE 53

7KH JOREDO WHPSHUDWXUH PDS ZRXOG WKHQ EH XVHG WR FRUUHFW IRU WKH WHPSHUDWXUH GHSHQGHQFH RI WKH SKRWROXPLQHVFHQFH LQWHQVLW\ LPDJHG IURP WKH SUHVVXUHVHQVLWLYH OXPLQRSKRUH DQG D FRUUHFWHG JOREDO VXUIDFH SUHVVXUH GLVWULEXWLRQ ZRXOG UHVXOW :KHQ LQFRUSRUDWHG VHSDUDWHO\ LH RQH DW D WLPH EXW QRW WRJHWKHUf LQWR D SRO\PHU ELQGHU PDQ\ SKRWROXPLQHVFHQW SUREH PROHFXOHV GLVSOD\ GHVLUDEOH HPLVVLRQ FKDUDFWHULVWLFV IRU R[\JHQ RU WHPSHUDWXUH VHQVLQJ +RZHYHU ZKHQ WZR RU PRUH SUREH PROHFXOHV DUH PL[HG LQWR WKH VDPH ELQGHU WKH\ W\SLFDOO\ GR QRW GLVSOD\ WKH GHVLUHG R[\JHQ DQGRU WHPSHUDWXUH VHQVLQJ SKRWROXPLQHVFHQFH SURSHUWLHV 7KLV QRQLGHDO EHKDYLRU DULVHV IURP ERWK SK\VLFDO DQG FKHPLFDO PROHFXODU LQWHUDFWLRQV DQG RIWHQ \LHOGV XQSUHGLFWDEOH UHVXOWV ZLWK UHVSHFW WR WKH RYHUDOO SKRWROXPLQHVFHQFH SURSHUWLHV RI WKH VHQVRU FRDWLQJA 2QH VROXWLRQ WR WKLV SUREOHP LV WR GHVLJQ QDQRPHWHU WR PLFURPHWHU VL]HG fPROHFXODU FDJHVf RU fFRPSDUWPHQWVf WKDW VHSDUDWH WKH OXPLQRSKRUHV LQ WKH SRO\PHU ELQGHU DW WKH PROHFXODU OHYHO \HW SURYLGH D FRDWLQJ WKDW LV VSDWLDOO\ KRPRJHQHRXV RQ WKH PLOOLPHWHU VFDOH LH FDPHUD VSDWLDO UHVROXWLRQf ,Q WKLV PDQQHU LW LV SRVVLEOH WR SURGXFH D VHQVRU FRDWLQJ V\VWHP LQFRUSRUDWLQJ WZR RU PRUH SKRWROXPLQHVFHQW SUREH PROHFXOHV ZKLFK GLVSOD\ VHSDUDWH DQG ZHOOGHILQHG SKRWROXPLQHVFHQFH LQWHQVLW\ YDULDWLRQV GXH WR WHPSHUDWXUH DQG R[\JHQ VHQVLQJ 5HFHQW ZRUN E\ *RXWHUPDQ HW DO KDV \LHOGHG WZR W\SHV RI GXDOOXPLQRSKRUH VHQVRU FRDWLQJV ,Q RQH FRDWLQJ WKH\ KDYH LQFRUSRUDWHG D VHFRQG OXPLQRSKRUH D SUHVVXUHLQVHQVLWLYH EXW WHPSHUDWXUHVHQVLWLYH LQRUJDQLF SKRVSKRU WR FRUUHFW IRU WKH WHPSHUDWXUHGHSHQGHQFH RI WKH 363 FRDWLQJA ([SDQGLQJ RQ WKHLU HDUOLHU ZRUN ZLWK SODWLQXP SRUSK\ULQV WKH *RXWHUPDQ JURXS KDV DOVR LQYHVWLJDWHG WKH XVH RI VLOLFRQ RFWDHWK\OSRUSKLQH 6L2(3f DV D QHZ SUHVVXUHLQVHQVLWLYH WHPSHUDWXUHVHQVLWLYH OXPLQRSKRUH

PAGE 54

,Q WKH ZRUN SUHVHQWHG LQ WKLV FKDSWHU WZR GXDOOXPLQRSKRUH FRDWLQJV ZHUH GHYHORSHG DQG FKDUDFWHUL]HG 7KHVH FRDWLQJV FRQWDLQ D WHPSHUDWXUHVHQVLWLYH OXPLQRSKRUH DGVRUEHG RQWR SRO\VW\UHQH PLFURVSKHUHV DQG DQ R[\JHQVHQVLWLYH OXPLQRSKRUH 7KH G\HGPLFURVSKHUHV DQG WKH R[\JHQ VHQVLQJ OXPLQRSKRUH ZHUH GLVWULEXWHG LQ D JDVSHUPHDEOH SRO\PHU ELQGHU 'HWDLOHG VFKHPHV IRU WKH SUHSDUDWLRQ RI WKH G\HGPLFURVSKHUHV DQG UHVXOWLQJ GXDOOXPLQRSKRUH FRDWLQJV DUH RXWOLQHG LQ )LJXUHV DQG )LJXUH 6FKHPH IRU SUHSDUDWLRQ RI '2&, KLJKO\ FURVVOLQNHG SRO\PHU PLFURVSKHUHV '2&,SSVSf $f YRO b '9% UHODWLYH WR WRWDO YROXPH $,%1 ZW b UHODWLYH WR PRQRPHU $ r & IRU K (W2+ ZDVK GU\ LQ YDFXR DW r & IRU K %f P/ 0H2+ VRQLFDWH K VRDN LQ GDUN IRU G 0H2+ DQG &))&E ZDVK GU\ LQ YDFXR DW r & IRU K

PAGE 55

6VM[VS 6VILVS '2& 6VILVS '2&,6VSVS )LJXUH 6FKHPH IRU SUHSDUDWLRQ RI '2&, VXOIRQDWHG SRO\PHU PLFURVSKHUHV '2&, 6VILVSf $f YRO b '9% UHODWLYH WR WRWDO YROXPH I'2LSRURJHQ YY SRURJHQPRQRPHU YY SRURJHQ GRGHFDQRKWROXHQH VRGLXP ODXU\OVXOIDWH PRO b UHODWLYH WR PRQRPHU $ r r & K DW USP ', I'2 DQG DFHWRQH ZDVK 7+) 6R[KOHW H[WUDFWLRQ GU\ LQ YDFXR r & K %f P/ &+&, r & P/ &,62+ LQ P/ &)K&O GURSZLVH ZDUP WR r & VWLU K r & &I/&/ ZDVK DLU GU\ &f P/ ', + P/ 1D2+ P0f VWLU PLQ r & [ P/ ', +2 ZDVK P/ DFHWRQH ZDVK GU\ LQ YDFXR r & K 'f P/ 0H2+ P/ ', +2 VRQLFDWH IRU PLQ 0H2+ DQG DFHWRQH ZDVK

PAGE 56

3W7)33 '2&,SSVS RU '2&,6VSVS DQG YLQ\O b 3W GLYLQ\OWHWUDPHWK\O GLVLOR[DQH FDWDO\VW SRO\GLPHWK\OVLOR[DQH PHWK\OK\GURVLOR[DQHVGLPHWK\OVLOR[DQH FRSRO\PHU 0L[ PLQ &+ + FR ; R L &)/ &3, &+ U L &+ +;f§6L2f§ 6L2 / P 6L2 )I&+ R &'f§ ; R ,, &0 ; R 6L2 6L&+ &+ Q FK FK FK FK FK FK FK DLUEUXVK DSSOLFDWLRQ 3W7)33 3RO\PHU %LQGHU )LJXUH 6FKHPH IRU SUHSDUDWLRQ RI GXDOOXPLQRSKRUH R[\JHQ VHQVLQJ FRDWLQJV 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS93'06 ([WHQVLYH VWXGLHV ZHUH FRQGXFWHG WR HYDOXDWH WKH SKRWR WKHUPDO DQG WHPSRUDO VWDELOLW\ RI WKH GXDOOXPLQRSKRUH FRDWLQJV DQG 6(0 7(0 DQG IOXRUHVFHQFH

PAGE 57

PLFURVFRSLF DQDO\WLFDO WHFKQLTXHV ZHUH HPSOR\HG WR HYDOXDWH WKH VL]H DQG GLVWULEXWLRQ RI WKH OXPLQRSKRUHV LQ WKH FRDWLQJV )LQDOO\ WKH FRDWLQJV ZHUH VXEMHFWHG WR VWDWLF FDOLEUDWLRQ LPDJLQJ WR HYDOXDWH WKHLU RYHUDOO DSSOLFDWLRQ SHUIRUPDQFH 7KH UHVXOWV DQG GLVFXVVLRQ RI WKLV ZRUN DUH SUHVHQWHG LQ WKH IROORZLQJ FKDSWHU 5HVXOWV 'XDOOXPLQRSKRUH &RDWLQJV 7ZR GXDOOXPLQRSKRUH FRDWLQJV ZHUH GHYHORSHG LQFRUSRUDWLQJ DQ R[\JHQ VHQVLQJ OXPLQRSKRUH DQG D WHPSHUDWXUH VHQVLQJ OXPLQRSKRUH DGVRUEHG RQWR D SRO\VW\UHQH PLFURVSKHUH GLVSHUVHG LQ D SRO\GLPHWK\OVLOR[DQH 3'06f SRO\PHU ELQGHU 3W'2&,SSVS93'06 &RDWLQJ 7KH ILUVW FRDWLQJ FRQVLVWV RI 3W,,f ZI?ZWHWUDNLVSHQWDIOXRURSKHQ\OfSRUSKLQH 3W7)33f DV WKH R[\JHQ VHQVLQJ OXPLQRSKRUH DQG '2&,DGVRUEHG PLFURVSKHUHV SURGXFHG YLD SUHFLSLWDWLRQ SRO\PHUL]DWLRQ '2&,SSVSfGLHWK\OR[DFDUERF\DQLQH LRGLGH '2&,f DV WKH WHPSHUDWXUH VHQVLQJ OXPLQRSKRUH GLVSHUVHG LQ D YLQ\O SRO\GLPHWK\OVLOR[DQHV 93'06f SRO\PHU ELQGHU 7KH SUHSDUDWLRQ RI WKH FRDWLQJ LV VFKHPDWLFDOO\ UHSUHVHQWHG LQ )LJXUH $ W\SLFDO HPLVVLRQ VSHFWUXP RI WKH FRDWLQJ LV VKRZQ LQ )LJXUH

PAGE 58

)LJXUH (PLVVLRQ LQWHQVLW\ VSHFWUD IRU 3W7)33 DQG '2&,SSVS GLVSHUVHG LQ 93'06 SRO\PHU RQ SULPHG JODVV 7ZR HPLVVLRQ EDQGV DUH GHWHFWHG ZKHQ WKH FRDWLQJ LV H[FLWHG ZLWK QP OLJKW 7KH 3W7)33 HPLVVLRQ FRQVLVWV RI WZR EDQGV DQ LQWHQVH EDQG 7f FHQWHUHG DW QP DQG D ZHDNHU EDQG 7f FHQWHUHG DW QP 7KH HPLVVLRQ EDQGV DUH GXH WR SKRVSKRUHVFHQFH IURP WKH 7L;7rf VWDWH RI WKH SRUSK\ULQ PDFURF\FOH A %DFN ERQGLQJ EHWZHHQ WKH G[] DQG G\] RUELWDOV RI WKH 3W ZLWK WKH HPSW\ HJLrf RUELWDOV RI WKH SRUSK\ULQ SURGXFH D VWURQJ VSLQRUELW FRXSOLQJ 7KLV OHDGV WR VLQJOHWWULSOHW PL[LQJ ZKLFK LQFUHDVHV WKH UDGLDWLYH GHFD\ UDWH IURP 7LWWrf f§! 6R 7KH LQFUHDVH LQ SKRVSKRUHVFHQFH IDFLOLWDWHV HIILFLHQW R[\JHQ TXHQFKLQJA 7KHUHIRUH D GHFUHDVH LQ HPLVVLRQ LQWHQVLW\ LV REVHUYHG DV WKH R[\JHQ FRQFHQWUDWLRQ DERYH WKH FRDWLQJ VDPSOH LV LQFUHDVHG 7KH '2&,S_LLVS WHPSHUDWXUHVHQVLQJ OXPLQRSKRUH H[KLELWV WZR ZHDN HPLVVLRQ EDQGV FHQWHUHG DW QP DQG QP UHVSHFWLYHO\ 7KLV LV IOXRUHVFHQFH IURP WKH NNr WUDQVLWLRQV FHQWHUHG DORQJ WKH FRQMXJDWHG FKURPRSKRUH EDFNERQH 7KH IOXRUHVFHQFH LV VSOLW DW QP GXH WR DEVRUSWLRQ E\ 3W7)33

PAGE 59

7KH 3W7)33 SRUSK\ULQ LV D Gr SKRVSKRUHVFHQW K\SVR SRUSK\ULQ SRVVHVVLQJ DEVRUSWLRQ IHDWXUHV EOXHVKLIWHG UHODWLYH WR QRUPDO SRUSK\ULQV 3W7)33 H[KLELWV VHYHUDO DEVRUSWLRQ EDQGV 7KH ILUVW EDQG LV DQ LQWHQVH QHDU89 EDQG WHUPHG WKH 6RUHW EDQG DW QP 6R f§} A7W7Wrf 7KH VHFRQG WZR EDQGV DSSHDU LQ WKH YLVLEOH UHJLRQ EHWZHHQ WR QP DQG DUH UHIHUUHG WR DV WKH 4 EDQGV 7KH )LUVW 4 EDQG 4f UHSUHVHQWV WKH H[FLWDWLRQ IURP WKH ORZHVW YLEUDWLRQDO OHYHO RI WKH JURXQGVWDWH VLQJOHW WR WKH ORZHVW YLEUDWLRQDO OHYHO RI WKH ILUVW VLQJOHW H[FLWHG VWDWH DQG WKH VHFRQG 4 EDQG 4 f KDV RQH TXDQWXP RI YLEUDWLRQ LQ WKH ILUVW VLQJOHW H[FLWHG VWDWH 6R f§! >6?^QQrf )RU VTXDUH SODQDU PHWDOORSRUSK\ULQV VXFK DV 3W7)33 WKH 4 EDQGV DUH GXH WR GHJHQHUDWH H[FLWHG VWDWHV ZLWK [ DQG \ SRODUL]DWLRQA )RU D G+ PHWDOORSRUSK\ULQ WKH ILOOHG Gr RUELWDOV G[ RU G\] DUH ORFDWHG EHWZHHQ WKH RFFXSLHG DLXUf D8Wf RUELWDOV DQG WKH HPSW\ GHJHQHUDWH /802 HJWrf RI WKH SRUSK\ULQ ULQJ 7KH PHWDO GQ HOHFWURQV FDQ WKHQ LQWHUDFW ZLWK WKH HPSW\ HJWrf RUELWDOV LQGXFLQJ D PL[LQJ EHWZHHQ WKH HPSW\ HJWrf RUELWDO DQG WKH ILOOHG HJGLf RUELWDO 6WDELOL]DWLRQ RI WKH ILOOHG HJGWf RUELWDO UDLVHV WKH HQHUJ\ RI WKH HJWrf RUELWDO DQG UHVXOWV LQ D EOXHVKLIW RI WKH DEVRUSWLRQ EDQGV 7KH IOXRUHVFHQFH HPLVVLRQ RI WKH '2&,SSVS LV FHQWHUHG DW QP GXH WR WLr WUDQVLWLRQV DQG WKH 4 EDQGV RI WKH 3W7)33 RYHUODS ZHOO ZLWK WKH '2&, IOXRUHVFHQFH 7KHUHIRUH WKH 3W7)33 OXPLQRSKRUH FDQ DEVRUE VRPH RI WKH '2&,SSVS HPLVVLRQ DQG WKH '2&, HPLVVLRQ EDQG H[SHULHQFHV DQ HPLVVLRQ EOHDFK DURXQG QP 7KH HIIHFW LV FOHDUO\ VHHQ LQ )LJXUH

PAGE 60

3W'2&,6VSVS93'06 &RDWLQJ 7KH VHFRQG FRDWLQJ LV D PRGLILFDWLRQ RI WKH ILUVW 7KH IRUPXODWLRQ VWLOO FRQWDLQV 3W,,f PARWHWUDNLVSHQWDIOXRURSKHQ\OfSRUSKLQH 3W7)33f DV WKH R[\JHQ VHQVLQJ OXPLQRSKRUH KRZHYHU WKH '2&,DGVRUEHG PLFURVSKHUHV ZHUH SURGXFHG YLD D VXVSHQVLRQ SRO\PHUL]DWLRQ VXOIRQDWHG DQG QHJDWLYHO\ FKDUJHG SULRU WR G\H DGVRUSWLRQ 7KH OXPLQRSKRUHV DUH GLVSHUVHG LQ D YLQ\O SRO\GLPHWK\OVLOR[DQHV 93'06f SRO\PHU ELQGHU $ W\SLFDO HPLVVLRQ VSHFWUXP RI WKH FRDWLQJ LV GLVSOD\HG LQ )LJXUH :DYHOHQJWK QPf )LJXUH (PLVVLRQ LQWHQVLW\ VSHFWUD IRU 3W7)33 DQG '2&,6VSVS GLVSHUVHG LQ 93'06 SRO\PHU RQ SULPHG JODVV 8QGHU QP H[FLWDWLRQ OLJKW WKH FRDWLQJ H[KLELWV WZR HPLVVLRQ EDQGV WKDW DUH VLPLODU WR WKH SUHYLRXV FRDWLQJ 7KH ,PD[ RI 3W7)33 LV RQO\ VOLJKWO\ OHVV LQWHQVH WKDQ LQ )LJXUH +RZHYHU WKH LQWHQVLW\ RI WKH '2&,6VSVS LV OHVV WKDQ KDOI LQWHQVH DV WKH SUHYLRXV '2&,SSVS HPLVVLRQ LQ )LJXUH $GGLQJ WZLFH DV PXFK G\HGPLFURVSKHUHV '2&,6VSVSf WR WKH FRDWLQJ IRUPXODWLRQ GLG QRW VLJQLILFDQWO\ LQFUHDVH WKH HPLVVLRQ LQWHQVLW\ HLWKHU 7KH LPSDFW RI WKH GLIIHUHQW PLFURVSKHUH SUHSDUDWLRQ PHWKRGV WR WKH

PAGE 61

RYHUDOO SHUIRUPDQFH RI WKH 3W'2&,SSVS93'06 DQG 3W'2&,6VMLVS93'06 FRDWLQJV ZLOO EHFRPH FOHDUHU ZKHQ WKH TXDQWLW\ DQG GLVWULEXWLRQ RI WKH 3W7)33 '2&,SSVS DQG '2&,6VSVS OXPLQRSKRUHV LQ UHODWLRQ WR LPDJLQJ RI WKH FRDWLQJV ZLWK &&' FDPHUD WHFKQRORJ\ LV GLVFXVVHG ODWHU LQ WKH FKDSWHU 7HPSHUDWXUH 'HSHQGHQFH DQG 7KHUPDOVWDELOLW\ 7KH WHPSHUDWXUH GHSHQGHQFH DQG WKHUPDOVWDELOLW\ RI WKH 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS93'06 FRDWLQJV ZHUH DVVHVVHG RYHU D WHPSHUDWXUH UDQJH IURP 7KH WHPSHUDWXUH GHSHQGHQFH RI WKH 3W7)33 SUHVVXUH SUREHnV SKRWROXPLQHVFHQFH UHVSRQVH WR R[\JHQ TXHQFKLQJ IRU WKH HPLVVLRQ UHJLRQ QP ZDV HVWDEOLVKHG DQG WKH VWDELOLW\ RI WKH SUREHfV HPLVVLRQ UHVSRQVH WR F\FOLF YDULDWLRQV RI WHPSHUDWXUH IURP f§! f§! ZDV HYDOXDWHG 7KH WHPSHUDWXUH GHSHQGHQFH DQG WKHUPDOVWDELOLW\ RI WKH SKRWROXPLQHVFHQFH EHWZHHQ QP IRU WKH '2&,SILVS DQG '2&,6VSVS WHPSHUDWXUH SUREHV ZHUH HYDOXDWHG LQ WKH VDPH PDQQHU DV WKH SKRWROXPLQHVFHQFH RI WKH SUHVVXUH SUREH 6SHFLPHQV ZHUH SUHSDUHG E\ DLUEUXVKLQJ IRXU OD\HUV RI HDFK FRDWLQJ RQWR ERURVLOLFDWH PLFURVFRSH VOLGHV SULPHG ZLWK D 7L2963'06 63'06 VLODQRO SRO\GLPHWK\OVLOR[DQHV ZLWK PHWK\OWULDFHWR[\VLODQH FURVVOLQNHUf FRDWLQJ DQG VWRULQJ WKH VSHFLPHQV LQ WKH GDUN DW URRP WHPSHUDWXUH DQG b UHODWLYH KXPLGLW\ XQWLO DQDO\VLV ([DFW GHWDLOV RI WKH FRDWLQJ SUHSDUDWLRQV FDQ EH IRXQG LQ WKH ([SHULPHQWDO VHFWLRQ 7KH VSHFLPHQV ZHUH HYDOXDWHG K DIWHU FRDWLQJ DSSOLFDWLRQ XVLQJ WKH SUHVVXUH FHOO DWWDFKPHQW RQ WKH IOXRULPHWHU 7KH VDPSOHV ZHUH LOOXPLQDWHG ZLWK QP OLJKW DQG WKH HPLVVLRQ ZDV HYDOXDWHG DW SUHGHWHUPLQHG ZDYHOHQJWK DUHDV 7KLV SURFHGXUH ZDV IROORZHF WR PDLQWDLQ FRQVLVWHQF\ LQ FRDWLQJ FKDUDFWHUL]DWLRQ 7KH VDPSOHV HYDOXDWHG XVLQJ WKH IOXRULPHWHU ZHUH DOVR HYDOXDWHG XVLQJ D FDOLEUDWLRQ FHOO ZLWK &&' GHWHFWLRQ DV GHVFULEHG

PAGE 62

LQ WKH ([SHULPHQWDO VHFWLRQf 7KH FDOLEUDWLRQ FHOO VHWXS PRQLWRUV SKRWROXPLQHVFHQFH XWLOL]LQJ D VHULHV RI EDQGSDVV ILOWHUV ZLWK DQ RSWLFDO EDQGZLGWK RI QP ):+0 7KHUHIRUH LQ NHHSLQJ ZLWK FRQVLVWHQF\ HPLVVLRQ YDOXHV REWDLQHG XWLOL]LQJ WKH IOXRULPHWHU ZHUH FDOFXODWHG IRU DUHDV UDWKHU WKDQ GLVFUHWH ZDYHOHQJWKV 3W7)33 7KH WHPSHUDWXUH GHSHQGHQFH RI 3W7)33 SKRWROXPLQHVFHQFH ZDV DQDO\]HG 7KH OXPLQHVFHQFH LQWHQVLW\ GHFUHDVHV PRGHUDWHO\ ZLWK LQFUHDVLQJ WHPSHUDWXUH DW DOO SUHVVXUHV IURP SVL 7KLV LV D W\SLFDO EHKDYLRU IRU PDQ\ SUHVVXUH SUREHV r VWHUQ 9ROPHU 69f DQDO\VLV RI WKH VROLG FRDWLQJV ZHUH FRQGXFWHG XWLOL]LQJ HTXDWLRQ f ,A3HP 3DLU DWPf ,A3HP 3DLUf $ %3DLU f DQG %$f .VY 7KH SUHVVXUH SUREHfV UHVSRQVH WR R[\JHQ TXHQFKLQJ DW GLIIHUHQW WHPSHUDWXUHV \LHOGV OLQHDU 69 SORWV ZLWK H[FHOOHQW FRUUHODWLRQ DQG KLJK .VY YDOXHV 7KH FRDWLQJV DUH VWURQJO\ SUHVVXUH VHQVLWLYH DV WKH WRWDO OLJKW LQWHQVLW\ GHFUHDVHV E\ QHDUO\ D IDFWRU RI ZKHQ WKH SUHVVXUH DERYH WKH ILOP LQFUHDVHV IURP SVL $ 69 SORW IRU HDFK WHPSHUDWXUH LV GLVSOD\HG LQ )LJXUHV DQG IRU WKH WZR FRDWLQJV RQ SULPHG JODVV 7KH WHPSHUDWXUH GHSHQGHQFH RI WKH FRDWLQJVf HPLVVLRQ LV HYLGHQFHG E\ WKH fIDQn RXWf RI WKH UHJUHVVLRQ OLQHV DW KLJKHU SUHVVXUH &RPSDULVRQ RI )LJXUHV DQG UHYHDOV WKDW WKH SUHVVXUH SUREH LQ WKH 3W'2&,6VSVS93'06 FRDWLQJ LV PRUH WHPSHUDWXUHGHSHQGHQW WKDQ WKH 3W'2&,SSVS93'06 FRDWLQJ

PAGE 63

)LJXUH 69 SORW 3W'2&,S_LVS93'06 FRDWLQJ RQ SULPHG JODVV IRU WHPSHUDWXUHV EHWZHHQ $UHI DUHD EHWZHHQ QP DW SVL DQG $LU 3UHVVXUH SVLf )LJXUH 69 SORW 3W'2&,6VSVS93'06 FRDWLQJ RQ SULPHG JODVV IRU WHPSHUDWXUHV EHWZHHQ $UHI DUHD EHWZHHQ QP DW SVL DQG )RU WKH 69 DQDO\VLV WKH GDWD IRU WKH SHUFHQW GHFUHDVH LQ 3W7)33 HPLVVLRQ DUHD DW HDFK SUHVVXUH DV D IXQFWLRQ RI R[\JHQ FRQFHQWUDWLRQ IRU D FKDQJH LQ WHPSHUDWXUH DUH OLVWHG LQ 7DEOHV DQG IRU WKH WZR FRDWLQJV RQ SULPHG JODVV $W DOO SUHVVXUHV WKH FRUUHVSRQGLQJ SHUFHQW FKDQJH LQ HPLVVLRQ LV FRQVLVWHQW DQG SURYLGHV HYLGHQFH IRU D ZHOO EHKDYHG R[\JHQ VHQVLQJ FRDWLQJ 7KHVH QXPEHUV DUH FRQVLVWHQW ZLWK RQHV REWDLQHG E\

PAGE 64

3XNOLQ HW DO IRU 3W7)33 GLVSHUVHG LQ IOXRURDFU\OLF SRO\PHU ),%f DQG SRO\PHWK\OPHWKDFU\ODWHf 300$f SRO\PHUV 7DEOH 3HUFHQW FKDQJH LQ 3W7)33 HPLVVLRQ DUHD DW VHYHQ SUHVVXUHV RYHU D UDQJH IRU 3W'2&,SSVS93'06 FRDWLQJ RQ SULPHG JODVV 3UHVVXUH SVLf $$ b.n 7DEOH 3HUFHQW FKDQJH LQ 3W7)33 HPLVVLRQ DUHD DW VHYHQ SUHVVXUHV RYHU D UDQJH IRU 3W'2&,6VSVS93'06 FRDWLQJ RQ SULPHG JODVV 3UHVVXUH SVLf $$ b.n 7KH WKHUPDOVWDELOLW\ RI WKH SUHVVXUH SUREHfV SKRWROXPLQHVFHQFH ZDV HYDOXDWHG E\ VXEMHFWLQJ WKH VDPSOHV WR YDULRXV SUHVVXUHV EHWZHHQ SVL DW VSHFLILF WHPSHUDWXUHV GXULQJ DF\FOLF UXQ IURP f§! f§! f§! f§! $QDO\VLV RI WKH SUHVVXUH SUREHfV UHVSRQVH WR R[\JHQ DW HDFK WHPSHUDWXUH UHYHDOV D FRQVLVWHQW 69 UHVSRQVH DW DOO WHPSHUDWXUHV DQG QR LQGLFDWLRQ RI K\VWHUHVLV RU FKDQJH LQ WKH FRDWLQJV

PAGE 65

PRUSKRORJ\ 7KH 69 GDWD DW HDFK WHPSHUDWXUH HYDOXDWHG IRU WKH 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS93'06 FRDWLQJV DUH SUHVHQWHG LQ 7DEOHV DQG UHVSHFWLYHO\ 7DEOH 69 DQDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 3W'2&,SILVS93'06 FRDWLQJ RQ SULPHG JODVV IRU D F\FOLF WHPSHUDWXUH UXQ 7HPSHUDWXUH 5XQ ,QWHUFHSW 6ORSH SVLn fE U .V Y SVL ffF . . . . D LQWHUFHSW $ LQ HTXDWLRQ f K VORSH % LQ HTXDWLRQ f .VY f§ %$ 7DEOH 69 DQDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 3W'2&,6VSVS93'06 FRDWLQJ RQ SULPHG JODVV IRU D F\FOLF WHPSHUDWXUH UXQ 7HPSHUDWXUH 5XQ ,QWHUFHSW 6ORSH SVL fE 5 .VYSVUnfF . . . . D LQWHUFHSW $ LQ HTXDWLRQ f K VORSH % LQ HTXDWLRQ f / .VY %$ $V FDQ EH VHHQ LQ 7DEOHV DQG .VY LQFUHDVHV ZLWK WHPSHUDWXUH 7KLV LV QRW VXUSULVLQJ VLQFH WKH GLIIXVLRQ RI R[\JHQ LQ D SRO\PHU LV D WKHUPDOO\ DFWLYDWHG SKHQRPHQRQ 5DLVLQJ WKH WHPSHUDWXUH LQFUHDVHV WKH GLIIXVLRQ UDWH RI R[\JHQ WKHUHE\ HQKDQFLQJ WKH HIILFLHQF\ RI OXPLQHVFHQFH TXHQFKLQJ (YHQ WKRXJK VPDOO FKDQJHV LQ

PAGE 66

WKH LQWHUFHSW YDOXH FDQ JUHDWO\ DIIHFW WKH FDOFXODWHG .VY YDOXH 7KH .6Y YDOXHV LQ 7DEOHV DQG GR QRW GLIIHU VLJQLILFDQWO\ DQG LQGLFDWH WKDW WKH FRDWLQJ LV VWDEOH ZLWK UHVSHFW WR UHSHDWHG WKHUPDO F\FOLQJ RYHU WKH UDQJH '2&,SSVS DQG '2&,6VSVS 7KH WHPSHUDWXUH GHSHQGHQFH RI WKH SKRWROXPLQHVFHQFH IURP WKH '2&,SSVS DQG '2&,6VSVS WHPSHUDWXUH SUREHV ZDV HYDOXDWHG 7KH OXPLQHVFHQFH LQWHQVLW\ RI HLWKHU WHPSHUDWXUH SUREHV GLG QRW YDU\ VLJQLILFDQWO\ ZLWK FKDQJH LQ SUHVVXUH DW D FRQVWDQW WHPSHUDWXUH KRZHYHU LW GLG GHFUHDVH ZLWK LQFUHDVLQJ WHPSHUDWXUH 7KH HPLVVLRQ VSHFWUD IRU ERWK FRDWLQJV DW SVL DQG ILYH WHPSHUDWXUHV EHWZHHQ DUH GLVSOD\HG LQ )LJXUHV DQG IRU WKH 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS93'06 FRDWLQJV RQ SULPHG JODVV UHVSHFWLYHO\ )LJXUH (PLVVLRQ LQWHQVLW\ VSHFWUD IRU '2&,SSVS LQ 3W'2&,SSVS93'06 FRDWLQJ RQ SULPHG JODVV DW SVL IRU ILYH WHPSHUDWXUHV EHWZHHQ .

PAGE 67

)LJXUH (PLVVLRQ LQWHQVLW\ VSHFWUD IRU '2&n,6VLVS LQ 3W'2&,6VSVS93'06 FRDWLQJ RQ SULPHG JODVV DW SVL IRU ILYH WHPSHUDWXUHV EHWZHHQ $QDO\VLV RI WKH UHVSRQVH RI WKH WHPSHUDWXUH SUREHVn HPLVVLRQ DW VSHFLILF WHPSHUDWXUHV IURP DUH GLVSOD\HG LQ )LJXUHV DQG IRU WKH 3W'2&,SSVS93'06 DQG 3W'2&,6V_LVS93'06 FRDWLQJV UHVSHFWLYHO\ 7KH RULJLQV RI WKH SUREHVf WHPSHUDWXUH GHSHQGHQFH DQG SUHVVXUH LQGHSHQGHQFH ZLOO EH GLVFXVVHG ODWHU LQ WKH FKDSWHU

PAGE 68

)LJXUH 7HPSHUDWXUH GHSHQGHQFH RI HPLVVLRQ IRU '2&,SSVS LQ 3W'2&,SSVS93'06 FRDWLQJ RQ SULPHG JODVV IRU D VHULHV RI SUHVVXUHV EHWZHHQ SVL $UHI DUHD EHWZHHQ QP DW DQG SVL )LJXUH 7HPSHUDWXUH GHSHQGHQFH RI HPLVVLRQ IRU '2&,6VSVS LQ 3W'2&, 6VSVS93'06 FRDWLQJ RQ SULPHG JODVV IRU D VHULHV RI SUHVVXUHV EHWZHHQ SVL $UHI DUHD EHWZHHQ QP DW DQG SVL 7KH WHPSHUDWXUH GHSHQGHQFH ZDV QHDUO\ OLQHDU RYHU WKH WHPSHUDWXUH UDQJH ZLWK D VORSH RI WKH OLQHDU FRUUHODWLRQ RI DSSUR[LPDWHO\ b.n IRU )LJXUH DQG b.n IRU )LJXUH )RU WKH 3W'2&,SSVS93'06 FRDWLQJ b. FRUUHODWHV ZHOO ZLWK WKH SHUFHQW FKDQJH LQ HPLVVLRQ DUHD DV D IXQFWLRQ RI WHPSHUDWXUH IRU

PAGE 69

HDFK SUHVVXUH GLVSOD\HG IRU 5XQ RI 7DEOH 7KH WHPSHUDWXUH GHSHQGHQFH DW DVVRUWHG SUHVVXUHV YDULHG EHWZHHQ WR b.n IRU WKH WHPSHUDWXUH UDQJH f§! )RU WKH 3W'2&,6V_LVS93'06 FRDWLQJ WKH b. YDOXH DJUHHV ZLWK WKH SHUFHQW FKDQJH LQ HPLVVLRQ DUHD DV D IXQFWLRQ RI WHPSHUDWXUH IRU HDFK SUHVVXUH GLVSOD\HG IRU 5XQ RI 7DEOH 7KH WHPSHUDWXUH GHSHQGHQFH YDULHG EHWZHHQ WR b.n &RPSDUHG WR '2&,SSVS HPLVVLRQ YDULDWLRQ LQ 7DEOH '2&,6VSVS H[KLELW OHVV WHPSHUDWXUH GHSHQGHQFH DW HDFK SUHVVXUH ZLWK JUHDWHU EUHDGWK LQ WKH GLVWULEXWLRQ RI SHUFHQW FKDQJH IURP SUHVVXUH WR SUHVVXUH 7KHVH DUH ERWK XQGHVLUDEOH IHDWXUHV DQG SURYLGH HYLGHQFH IRU '2&,SSVS DV WKH EHWWHU WHPSHUDWXUHVHQVLWLYH SUREH 7DEOH 3HUFHQW FKDQJH LQ '2&,SSVS HPLVVLRQ DUHD DW VHYHQ SUHVVXUHV RYHU D F\FOLF 3UHVVXUH SVLf $$ b.n $$ b. $$ b.n $$ b. . . 5XQ 5XQ 5XQ 5XQ

PAGE 70

7DEOH 3HUFHQW FKDQJH LQ '2&,6VSVS HPLVVLRQ DUHD DW VHYHQ SUHVVXUHV RYHU D F\FOLF WHPSHUDWXUH UXQ RI IRU 3W'2&,6V_/LVS93'06 FRDWLQJ RQ SULPHG JODVV 3UHVVXUH SVLf $$ b.n 5XQ $$ b.f 5XQ $$ b.n 5XQ $$ b.f 5XQ 7KH GDWD IRU WKH WKHUPDOVWDELOLW\ RI WKH WHPSHUDWXUH SUREHVf HPLVVLRQ REWDLQHG E\ VXEMHFWLQJ WKH VDPSOHV WR F\FOLF WHPSHUDWXUH FKDQJHV IURP f§! f§! f§! f§! LV RXWOLQHG LQ 7DEOHV DQG 7KUHH WUHQGV IURP WKHVH WDEOHV VKRXOG EH QRWHG f 7KH '2&,SSVS H[KLELW JUHDWHU WHPSHUDWXUH GHSHQGHQFH ZKHQ WKH FRDWLQJ LV KHDWHG WKHQ ZKHQ LW LV FRROHG f 7KH '2&,6VSVS GLVSOD\ D FRQVLVWHQW WHPSHUDWXUH GHSHQGHQFH ZKHQ WKH FRDWLQJ LV KHDWHG RU FRROHG f %RWK SUREHVf HPLVVLRQ LQWHQVLW\ UHVSRQVH LV DSSUHFLDEOH ZLWK FKDQJHV LQ WHPSHUDWXUH \HW UHSURGXFLEOH DQG WKHUPDOO\ VWDEOH WKURXJKRXW WKH F\FOLF UXQ RI WHPSHUDWXUHV 7KLV ODVW FKDUDFWHULVWLF ZLOO DOORZ IRU FRUUHFWLRQ RI WKH SKRWROXPLQHVFHQFH WHPSHUDWXUH GHSHQGHQFH H[KLELWHG E\ WKH 3W7)33 SUHVVXUH SUREH (PLVVLRQ ,QWHQVLW\ 7KURXJKRXW WKH WKHUPDO F\FOLQJ H[SHULPHQWV WKH VWDELOLW\ RI QRW RQO\ WKH SUREHVf UHVSRQVHV WR R[\JHQ SUHVVXUH DQG WHPSHUDWXUH FKDQJHV ZHUH PRQLWRUHG EXW WKH VWDELOLW\ RI WKH SUREHVf RYHUDOO LQWHQVLW\ ZDV PRQLWRUHG DV ZHOO 7KH PDJQLWXGH RI WKH HPLVVLRQ LQWHQVLW\ GDWD IRU ERWK WKH SUHVVXUH DQG WHPSHUDWXUH SUREHV GLG QRW FKDQJH GXULQJ WKH WKHUPDO F\FOLQJ 7KLV LV DQ LQGLFDWLRQ WKDW WKH SKRWROXPLQHVFHQFH RI ERWK FRDWLQJV LV QRW

PAGE 71

RQO\ UHVSRQVLYH WR UHSHDWHG SUHVVXUH DQG WHPSHUDWXUH FKDQJHV EXW WKH PDJQLWXGH RI WKH SUREHVf OXPLQHVFHQFH LQWHQVLW\ LV VWDEOH DV ZHOO 7HPSRUDOVWDELOLW\ 7KH VWDELOLW\ RI SKRWROXPLQHVFHQFH HPLVVLRQ LQWHQVLW\ RYHU WLPH ZDV DQDO\]HG IRU WKH 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS93'06 FRDWLQJV 7R EHWWHU XQGHUVWDQG SRVVLEOH LQIOXHQFHV RQH OXPLQRSKRUH PLJKW LPSDUW RQ WKH RWKHU RYHU WLPH WKH LQGLYLGXDO OXPLQRSKRUHV LQ 93'06 SRO\PHU ZHUH VHSDUDWHO\ DQDO\]HG 7KH FRDWLQJV GXDO DQG PRQROXPLQRSKRUH ZHUH DSSOLHG WR SODLQ DQG SULPHG 7L2L63'06f ERURVLOLFDWH PLFURVFRSH VOLGHV DQG VWRUHG LQ WKH GDUN DW URRP WHPSHUDWXUH DQG b UHODWLYH KXPLGLW\ )RU HDFK VSHFWURVFRSLF DQDO\VLV WKH VSHFLPHQ VOLGHV ZHUH VFRUHG DQG D IUHVK SLHFH EURNHQRII IRU HYDOXDWLRQ RI WKH SKRWROXPLQHVFHQFH SURSHUWLHV 7KH VSHFLPHQ ZDV H[FLWHG ZLWK QP OLJKW DQG HPLVVLRQ ZDV PRQLWRUHG IURP QUQ 3DUWLFXODU HPSKDVLV ZDV SODFHG RQ HYDOXDWLQJ WKH DUHDV XQGHU WKH HPLVVLRQ FXUYH EHWZHHQ QP IRU WKH WHPSHUDWXUH SUREHV DQG QP IRU WKH SUHVVXUH SUREH DW VHYHQ GLVWLQFW SUHVVXUHV LQ WKH UDQJH RI DQG SVL $OO VSHFWURVFRSLF HYDOXDWLRQV ZHUH FRQGXFWHG DW URRP WHPSHUDWXUH 3W7)33 7KH DUHD RI HPLVVLRQ IRU WKH 3W7)33 SUHVVXUH SUREH $ QPf LQ WKH 3W'2&,SSVS93'06 3W'2&,6VSVS93'06 DQG 3W7)3393'06 FRDWLQJV ZDV HYDOXDWHG IRU LWV UHVSRQVH WR R[\JHQ SUHVVXUH 7KH FRDWLQJV ZHUH DQDO\]HG DW ZHHNO\ LQWHUYDOV IRU WKH ILUVW PRQWK DIWHU DSSOLFDWLRQ DQG WKHQ DW PRQWKO\ LQWHUYDOV IRU D WRWDO SHULRG RI IRXU RU HLJKW PRQWKV 6WHUQ9ROPHU 69f DQDO\VLV RI WKH SUHVVXUH SUREHfV UHVSRQVH WR TXHQFKLQJ DW VHYHQ GLIIHUHQW SUHVVXUHV ZDV SHUIRUPHG IRU HDFK DQDO\VLV DQG

PAGE 72

WKH GDWD DUH GLVSOD\HG LQ 7DEOHV DQG IRU WKH FRDWLQJV RQ EDUH JODVV DQG 7DEOH DQG IRU WKH FRDWLQJV RQ SULPHU 7DEOH 69 $QDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 3W'2&,SSVS93'06 FRDWLQJ RQ EDUH JODVV 7LPH ,QWHUYDO ,QWHUFHSWE 6ORSH SVLrf .VY SVU9 K ZN ZN ZN ZN PR PR D IUHVK VDPSOH XVHG IRU HDFK 69 PHDVXUHPHQW E LQWHUFHSW $ LQ HTXDWLRQ f F VORSH % LQ HTXDWLRQ f G .VY %$ 7DEOH 69 $QDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 3W'2&,6VSVS93'06 FRDWLQJ RQ EDUH JODVV 7LPH ,QWHUYDO ,QWHUFHSW 6ORSH SVL fF U .6Y SVLnfG K ZN ZN ZN ZN PR PR f§E f IUHVK VDPSOH XVHG IRU HDFK 69 PHDVXUHPHQW LQWHUFHSW $ LQ HTXDWLRQ f VORSH % LQ HTXDWLRQ f G .VY %$

PAGE 73

7DEOH 6 9 $QDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 93'06 SRO\PHU RQ EDUH 7LPH ,QWHUYDO ,QWHUFHSW 6ORSH SVLf .VYLSVL9 K ZN ZN ZN ZN PR PR PR D IUHVK VDPSOH XVHG IRU HDFK 69 PHDVXUHPHQW E LQWHUFHSW $ LQ HTXDWLRQ f F VORSH % LQ HTXDWLRQ f G .VY %$ 7DEOH 69 $QDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 3W'2&,SSVS93'06 FRDWLQJ RQ SULPHG JODVV 7LPH ,QWHUYDO ,QWHUFHSWn 6ORSH SVLnnfF .VY SVL nfG K ZN ZN ZN ZN PR PR D IUHVK VDPSOH XVHG IRU HDFK 69 PHDVXUHPHQW E LQWHUFHSW $ LQ HTXDWLRQ f VORSH % LQ HTXDWLRQ f G .VY %$ & 7DEOH 6 9 $QDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 3W'2&,6VILVS93'06 D FRDWLQJ RQ SULPHG JODVV 7LPH ,QWHUYDO ,QWHUFHSWn 6ORSH SVL nfF U.VYSVLnfG K ZN ZN ZN ZN PR PR PR IUHVK VDPSOH XVHG IRU HDFK 69 PHDVXUHPHQW E LQWHUFHSW $ LQ HTXDWLRQ f F VORSH % LQ HTXDWLRQ f G .6Y %$

PAGE 74

7DEOH 69 $QDO\VLV RI 3W7)33 HPLVVLRQ TXHQFKLQJ LQ 93'06 SRO\PHU RQ SULPHG JODVV 7LPH ,QWHUYDO ,QWHUFHSWE 6ORSH SVLf a3a .VY SVLn9 K ZN ZN ZN PR E 7 IUHVK VDPSOH XVHG IRU HDFK 69 PHDVXUHPHQW LQWHUFHSW $ LQ HTXDWLRQ f VORSH % LQ HTXDWLRQ f G .VY %$ 2YHU D IRXU RU HLJKWPRQWK SHULRG WKH FRDWLQJV UHWDLQHG DQ H[FHOOHQW UHVSRQVH WR YDULDWLRQ LQ 3DQ DV HYLGHQFHG E\ WKH KLJK .VY YDOXHV LQ 7DEOHV WR $W DOO WLPH LQWHUYDOV 69 HYDOXDWLRQ UHVXOWV LQ VWHHS OLQHDU SORWV ZLWK PLQLPDO IOXFWXDWLRQV LQ WKH LQWHUFHSW YDOXHV D VPDOO LQWHUFHSW YDOXH LQGLFDWHV H[FHOOHQW FRDWLQJ VHQVLWLYLW\ WR R[\JHQ FRQFHQWUDWLRQ 7KH VPDOO YDULDWLRQV LQ LQWHUFHSW KRZHYHU WUDQVODWH LQWR ODUJH RYHUDOO YDULDWLRQV LQ .VY YDOXHV 7KH PRVW QRWLFHDEOH YDULDWLRQ LQ .VY LV IRU WKH 3W'2&,SSVS93'06 FRDWLQJ RQ SULPHG JODVV K DIWHU DSSOLFDWLRQ 7KH .6Y YDOXH RI SVLn LV WLPHV ODUJHU WKDQ WKH DYHUDJH .VY YDOXH SVL IRU VXEVHTXHQW WLPH LQWHUYDOV 7KH LQFUHDVHG .VY YDOXH LV SRVVLEO\ GXH WR SKRWRO\VLV RI WKH FRDWLQJ DQG QRW QHFHVVDULO\ D FRQVHTXHQFH RI R[\JHQ SUHVVXUH &RPSDULVRQ RI WKH LQWHUFHSW DQG .VY YDOXHV IURP 7DEOHV DQG WR WKRVH LQ 7DEOHV DQG PDNHV LW LV FOHDU WKDW WKH VHQVLWLYLW\ RI 3W7)33 HPLVVLRQ WR R[\JHQ SUHVVXUH LV PRUH VHQVLWLYH LQ WKH GXDOOXPLQRSKRUH FRDWLQJV WKDQ LQ WKH PRQR OXPLQRSKRUH FRDWLQJ (QKDQFHPHQW RI 3W7)33fV HPLVVLRQ VHQVLWLYLW\ LQ WKH GXDO OXPLQRSKRUH FRDWLQJV LV D EHQHILFLDO ILQGLQJ ZKLFK FRXQWHUV QHJDWLYH HIIHFWV VHHQ LQ RWKHU GXDOOXPLQRSKRUH FRDWLQJV

PAGE 75

'2&,SSVS DQG '2&,6VSVS $QDO\VLV RI WKH DUHD RI WKH SKRWROXPLQHVFHQFH VSHFWUXP IRU WKH '2&,SSVS DQG '2&,6VSVS ƒ QPf WHPSHUDWXUH SUREHV UHVXOWHG LQ IDLUO\ FRQVLVWHQW HPLVVLRQ LQWHQVLW\ WKDW ZDV XQDIIHFWHG E\ R[\JHQ SUHVVXUH 7KH HPLVVLRQ LQWHQVLW\ DUHDV IRU HDFK SUHVVXUH ZHUH DYHUDJHG WKLV LV DVVXPLQJ WKDW WKH HPLVVLRQ LQWHQVLW\ GRHV QRW IOXFWXDWH JUHDWO\ ZLWK YDULDWLRQ LQ 3Df DQG WKH FRHIILFLHQW RI YDULDWLRQ &9 bf WKH VWDQGDUG GHYLDWLRQ RI DYHUDJH HPLVVLRQ LQWHQVLW\ DUHD GLYLGHG E\ WKH DYHUDJH HPLVVLRQ LQWHQVLW\ DUHDf ZDV GHWHUPLQHG IRU HDFK WLPH LQWHUYDO DQDO\VLV 7KH &9 b VWDWLVWLFDOO\ GHVFULEHV WKH GHJUHH RI YDULDQFH LQ WKH HPLVVLRQ LQWHQVLW\ DUHDV RI VHYHQ VSHFWUDO HPLVVLRQ VFDQV IRU SUHVVXUHV EHWZHHQ SVL 6LQFH WKH WHPSHUDWXUH SUREH LV LGHDOO\ SUHVVXUH LQVHQVLWLYH D ORZ &9 b LV H[SHFWHG 7KH &9 b GDWD DW GLIIHUHQW WLPH LQWHUYDOV IRU WKH WHPSHUDWXUH SUREHV DUH SUHVHQWHG LQ 7DEOHV DQG IRU WKH 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS93'06 FRDWLQJV RQ EDUH DQG SULPHG JODVV 7DEOH $QDO\VLV RI WKH DUHD XQGHU WKH HPLVVLRQ FXUYH IRU '2&,SSVS LQ 7LPH ,QWHUYDOn &9 b IRU JODVVf 7LPH ,QWHUYDO &9 b IRU SULPHUf K KU ZN ZN ZN ZN ZN ZN ZN PR PR PR PR PR K r1 U VDPSOH REWDLQHG DW SUHVVXUHV EHWZHHQ SVL

PAGE 76

7DEOH $QDO\VLV RI WKH DUHD XQGHU WKH HPLVVLRQ FXUYH IRU '2&,6VSVS LQ 3W'2&, 6VSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV 7LPH ,QWHUYDO &9 b IRU JODVVn 7LPH ,QWHUYDO &9 b IRU SULPHUr K K ZN ZN WR 7 ZN ZN ZN ZN ZN PR PR PR PR PR PR E IUHVK VDPSOH XVHG IRU HDFK 69 PHDVXUHPHQW &9 b IRU VHYHQ HPLVVLRQ VFDQV RI WKH VDPSOH REWDLQHG DW SUHVVXUHV EHWZHHQ SVL 7KH '2&,SSVS DQG '2&,6VSVS WHPSHUDWXUH SUREHV ZHUH DOVR DQDO\]HG VHSDUDWHO\ LQ WKH 93'06 SRO\PHU ELQGHU 7KLV ZDV GRQH WR SURYH WKDW WKH HPLVVLRQ RI WKH G\HGPLFURVSKHUHV LV QRW TXHQFKHG E\ R[\JHQ UHJDUGOHVV LI WKH PLFURVSKHUHV ZHUH GLVSHUVHG LQ 93'06 ZLWK RU ZLWKRXW WKH 3W7)33 R[\JHQ VHQVLQJ SUREH 7KH &9 b GDWD IRU G\HGPLFURVSKHUHV LQ 93'06 RQ EDUH DQG SULPHG JODVV DUH SUHVHQWHG LQ 7DEOHV DQG 7DEOH $QDO\VLV RI WKH DUHD XQGHU WKH HPLVVLRQ FXUYH IRU '2&,SSVS LQ 93'06 SRO\PHU RQ EDUH DQG SULPHG JODVV 7LPH ,QWHUYDO &9 b IRU JODVVn 7LPH ,QWHUYDO &9 b IRU SULPHUr K K ZN ZN ZN ZN ZN ZN ZN ZN PR PR PR PR f§)777UUA77 D IUHVK VDPSOH XVHG IRU HDFK 69 PHDVXUHPHQW &9 b IRU VHYHQ HPLVVLRQ VFDQV RI WKH VDPSOH REWDLQHG DW SUHVVXUHV EHWZHHQ SVL

PAGE 77

7DEOH $QDO\VLV RI WKH DUHD XQGHU WKH HPLVVLRQ FXUYH IRU '2&,6VSVS LQ 93'06 7LPH ,QWHUYDO &9 b IRU JODVVr 7LPH ,QWHUYDO &9 b IRU SULPHUr K K ZN ZN ZN ZN ZN ZN PR ZN PR PR PR PR PR f§)UA77777 VDPSOH REWDLQHG DW SUHVVXUHV EHWZHHQ SVL ,QVSHFWLRQ RI 7DEOHV WR UHYHDOV WKDW WKH GDWD DUH VLPLODU 7KH YDULDQFH LQ WKH HPLVVLRQ UHVSRQVH IRU WKH G\HGPLFURVSKHUHV LV FKDUDFWHULVWLF WR WKH VSKHUHV DQG LV QRW LQIOXHQFHG E\ GXDOOXPLQRSKRUH LQWHUDFWLRQV (PLVVLRQ ,QWHQVLW\ 7KURXJKRXW WKH WHPSRUDOVWDELOLW\ H[SHULPHQWV WKH PDJQLWXGH RI HPLVVLRQ LQWHQVLW\ IRU WKH SUHVVXUH DQG WHPSHUDWXUH SUREHVf UHVSRQVHV WR R[\JHQ SUHVVXUH ZDV PRQLWRUHG 7KH HPLVVLRQ LQWHQVLW\ GDWD IRU ERWK SUREH W\SHV GHFUHDVHG E\ DQ RUGHU RI PDJQLWXGH EHWZHHQ WKHLU UHVSHFWLYH ILUVW WR ODVW DQG ILQDO LQWHUYDO HPLVVLRQ VFDQV 7KLV HIIHFW ZDV FRQVLVWHQW IRU WKH FRDWLQJV RQ JODVV EXW QRW IRU WKH FRDWLQJV RQ SULPHU 2QO\ WKH HPLVVLRQ LQWHQVLW\ RI WKH 3W7)33 '2&,SILVS DQG 3W'2&,SSVS LQ 930'6 RQ SULPHU GHFUHDVHG E\ DQ RUGHU RI PDJQLWXGH EHWZHHQ WKHLU ILUVW WR ODVW DQG ILQDO LQWHUYDO HPLVVLRQ VFDQV 7KH HPLVVLRQ LQWHQVLW\ RI WKH '2&,6VMLVS DQG 3W'2&,6VMLVS LQ 93'06 RQ SULPHU ZHUH VWDEOH WKURXJKRXW WKH LQWHUYDO HPLVVLRQ VFDQV 7KH GHFUHDVH LQ HPLVVLRQ LQWHQVLW\ LV QRW GHWULPHQWDO WR WKH FRDWLQJV VLQFH WKH GHFUHDVH LQ HPLVVLRQ LQWHQVLW\ GLG QRW KLQGHU WKH 6 9 UHVSRQVH RI WKH SUHVVXUH SUREH 1RU GLG LW LQFUHDVH WKH VPDOO YDULDQFH LQ HPLVVLRQ LQWHQVLW\ H[KLELWHG E\ WKH WHPSHUDWXUH SUREHV WR YDULDWLRQ LQ 3DLU

PAGE 78

3KRWRVWDELOLW\ 7KH VWDELOLW\ RI WKH SKRWROXPLQHVFHQFH LQWHQVLW\ WR FRQWLQXRXV LOOXPLQDWLRQ IRU D SHULRG RI IRXU KRXUV ZDV H[DPLQHG IRU WKH 3W'2&,SMLVS93'06 DQG 3W'2&, 6VSVS93'06 FRDWLQJV 7R EHWWHU XQGHUVWDQG SRVVLEOH LQIOXHQFHV RQH OXPLQRSKRUH PLJKW LPSDUW RQ WKH RWKHU RYHU WLPH WKH LQGLYLGXDO OXPLQRSKRUHV ZHUH DOVR DQDO\]HG VHSDUDWHO\ 7KH FRDWLQJV GXDO DQG PRQROXPLQRSKRUH ZHUH DLUEUXVKHG RQWR SODLQ DQG SULPHG 7L&)63'06f ERURVLOLFDWH PLFURVFRSH VOLGHV $IWHU DSSOLFDWLRQ WKH FRDWLQJV ZHUH VWRUHG LQ WKH GDUN DW URRP WHPSHUDWXUH DQG b UHODWLYH KXPLGLW\ 7KH FRDWLQJ VDPSOHV ZHUH LOOXPLQDWHG ZLWK QP OLJKW ZLWK D : DUFEXOE DQG HPLVVLRQ ZDV PRQLWRUHG IURP QP $ IUHVK VSHFLPHQ SLHFH ZDV EURNHQRII WKH UHVSHFWLYH SUHSDUHG VOLGH IRU HDFK SKRWRVWDELOLW\ H[SHULPHQW ,OOXPLQDWLRQ ZDV LQLWLDWHG DW WLPH HTXDOV ]HUR DQG DQ HPLVVLRQ VFDQ ZDV REWDLQHG HYHU\ PLQ 7KHVH H[SHULPHQWV ZHUH FDUULHG RXW LQ WKH IOXRULPHWHU 3DUWLFXODU HPSKDVLV ZDV SODFHG RQ HYDOXDWLQJ WKH DUHD XQGHU WKH HPLVVLRQ FXUYH EHWZHHQ QP IRU WKH WHPSHUDWXUH SUREHV DQG QP IRU WKH SUHVVXUH SUREH DW WZR SUHVVXUHV DQG SVL DQG URRP WHPSHUDWXUH 3W7)33 7KH SKRWRVWDELOLW\ RI WKH SKRWROXPLQHVFHQFH RI WKH 3W7)33 SUHVVXUH SUREH $ QPf LQ 3W'2&,SSVS93'06 DQG 3W'2&,6V_/LVS FRDWLQJV ZDV HYDOXDWHG DW DQG SVL $QDO\VLV RI WKH UHODWLYH 3W7)33 HPLVVLRQ LQWHQVLW\ YHUVXV WLPH LV GLVSOD\HG LQ )LJXUH IRU WKH 3W'2&,SSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV LQ )LJXUH IRU WKH 3W'2&,6VSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV DQG LQ )LJXUH IRU 3W7)33 LQ 93'06 SRO\PHU FRDWLQJ RQ EDUH DQG SULPHG JODVV DV D FRPSDULVRQ

PAGE 79

)LJXUH 3KRWRVWDELOLW\ RI 3W7)33 HPLVVLRQ LQ 3W'2&,SSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV DW DQG SVL DQG 57 $UHIn DUHD EHWZHHQ QP DW PLQ )LJXUH 3KRWRVWDELOLW\ RI 3W7)33 HPLVVLRQ LQ 3W'2&,6VSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV DW DQG SVL DQG 57 $UHI DUHD EHWZHHQ QP DW PLQ

PAGE 80

)LJXUH 3KRWRVWDELOLW\ RI 3W7)33 HPLVVLRQ LQ 93'06 SRO\PHU FRDWLQJ RQ EDUH DQG SULPHG JODVV DW DQG SVL DQG 57 $UHI DUHD EHWZHHQ QP DW PLQ 7KH SKRWRVWDELOLW\ RI WKH SKRWROXPLQHVFHQFH RI WKH 3W7)33 SUHVVXUH SUREH LQ WKH 3W'2&,SSVS93'06 DQG 3W'2&,6VMLVS93'06 FRDWLQJV H[KLELWV PLQLPDO UDQGRP IOXFWXDWLRQV LQ LQWHQVLW\ UDWLR RYHU WKH IRXUKRXU SHULRG 7KHVH UHVXOWV DUH ZLWKLQ D VWDQGDUG GHYLDWLRQ RI HUURU IRU HDFK VFDQ SRLQW DQG VLPLODU WR SKRWRVWDELOLW\ H[SHULPHQWV FRQGXFWHG E\ /HH DQG 2NXUD IRU 3W7)33 LQ SRO\VW\UHQH 7KH 3W'2&,6VSVS93'06 FRDWLQJ RQ SULPHG JODVV DW SVL H[SHULHQFHV D GHFOLQH LQ SKRWROXPLQHVFHQFH HPLVVLRQ LQWHQVLW\ RYHU WKH ILUVW PLQXWHV RI LOOXPLQDWLRQ 7KLV fSKRWRO\VLV SHULRGf RQO\ H[KLELWHG IRU RQH SUHVVXUH FRQGLWLRQ RI WKH SKRWRVWDELOLW\ H[SHULPHQWV LV QRW XQFRPPRQ DQG KDV EHHQ REVHUYHG E\ RWKHU JURXSV QRW RQO\ IRU WKH 3W7)33 OXPLQRSKRUH EXW IRU RWKHU 3W,,f SRUSK\ULQ PDFURF\FOHV 7KH SKRWFVLDELOLW\ RI WKH SKRWROXPLQHVFHQFH RI WKH 3W7)33 SUHVVXUH SUREH LQ 93'06 SRO\PHU ZLWKRXW LQFRUSRUDWLRQ RI WKH G\HGPLFURVSKHUHV EHKDYHV VLPLODUO\ WR WKH 3W'2&,SSVS93'06 FRDWLQJ 7KHUHIRUH WKH 3W7)33 UDWLRHG HPLVVLRQ LQWHQVLW\

PAGE 81

H[KLELWV PLQRU IOXFWXDWLRQV RYHU WKH WLPH SHULRG WKDW DUH QRW GHSHQGHQW RQ FKHPLFDO RU SK\VLFDO LQWHUDFWLRQV ZLWK WKH WHPSHUDWXUH SUREHV '2&,SSVS DQG '2&,6VSVS 7KH SKRWRVWDELOLW\ RI WKH SKRWROXPLQHVFHQFH RI WKH '2&,SSVS DQG '2&,6VSVS WHPSHUDWXUH SUREHV ƒ QPf LQ 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS FRDWLQJV ZHUH HYDOXDWHG DW DQG SVL $QDO\VLV RI WKH UHODWLYH '2&,SSVS HPLVVLRQ LQWHQVLW\ YHUVXV WLPH LV GLVSOD\HG LQ )LJXUH IRU WKH 3W'2&,SSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV 7KH UHODWLYH '2&,6VSVS HPLVVLRQ LQWHQVLW\ YHUVXV WLPH LV GHSLFWHG LQ )LJXUH IRU WKH 3W'2&,6VSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV DQG WKH UHODWLYH HPLVVLRQ LQWHQVLWLHV RI WKH '2&,SSVS DQG '2&,6VSVS WHPSHUDWXUH SUREHV GLVSHUVHG VHSDUDWHO\ LQ 93'06 SRO\PHU FRDWLQJ ZLWKRXW LQFRUSRUDWLRQ RI WKH 3W7)33 SUHVVXUH SUREH YHUVXV WLPH DUH LOOXVWUDWHG LQ )LJXUHV DQG UHVSHFWLYHO\ DV D FRPSDULVRQ )LJXUH 3KRWRVWDELOLW\ RI '2&,SSVS UHODWLYH HPLVVLRQ LQWHQVLW\ LQ 3W'2&,SSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV DW DQG SVL DQG 57 $UHI DUHD EHWZHHQ QP DW PLQ

PAGE 82

)LJXUH 3KRWRVWDELOLW\ RI '2&,6VSVS UHODWLYH HPLVVLRQ LQWHQVLW\ LQ 3W'2&, 6VMDVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV DW DQG SVL DQG 57 $UHI DUHD EHWZHHQ QP DW PLQ )LJXUH 3KRWRVWDELOLW\ RI '2&,SSVS UHODWLYH HPLVVLRQ LQWHQVLW\ LQ 93'06 SRO\PHU FRDWLQJ RQ EDUH DQG SULPHG JODVV DW DQG SVL DQG 57 $UHI DUHD EHWZHHQ QP DW PLQ

PAGE 83

)LJXUH 3KRWRVWDELOLW\ RI '2&,6VSVS UHODWLYH HPLVVLRQ LQWHQVLW\ LQ 93'06 SRO\PHU FRDWLQJ RQ EDUH DQG SULPHG JODVV DW DQG SVL DQG 57 $UHI DUHD EHWZHHQ QP DW PLQ 7KH SKRWROXPLQHVFHQFH RI WKH WHPSHUDWXUH SUREHV LQ 3W'2&,SMLVS93'06 DQG 3W'2&,6VSVS FRDWLQJV LV OHVV SKRWRVWDEOH WKDQ WKDW RI WKH 3W7)33 SUHVVXUH SUREH LQ WKH VDPH FRDWLQJV 7KH '2&,SSVS WHPSHUDWXUH SUREH LQ WKH 3W'2&,SSVS93'06 FRDWLQJ RQ EDUH DQG SULPHG JODVV H[KLELWV D GHFUHDVH LQ UHODWLYH HPLVVLRQ LQWHQVLW\ RYHU WKH PLQ WLPH SHULRG DW ERWK SUHVVXUHV 7KH UHVXOWV IRU WKH SHUFHQW SKRWRGHJUDGDWLRQ DUH OLVWHG LQ 7DEOH 7DEOH 3HUFHQW SKRWRGHJUDGDWLRQ RI WKH UHODWLYH HPLVVLRQ LQWHQVLW\ IRU '2&,SSVS LQ 3UHVVXUH SVLf *ODVV 3ULPHU bPLQn bPLQn bPLQ bPLQn 7KH '2&,6VSVS WHPSHUDWXUH SUREH LQ WKH 3W'2&,6VSVS FRDWLQJ RQ EDUH JODVV H[SHULHQFHV PLQRU IOXFWXDWLRQV LQ UHODWLYH HPLVVLRQ LQWHQVLW\ RYHU WKH IRXUKRXU WLPH

PAGE 84

SHULRG +RZHYHU WKH UHODWLYH HPLVVLRQ LQWHQVLW\ GHFUHDVHV RYHU WKH PLQ WLPH SHULRG IRU WKH FRDWLQJ RQ SULPHG JODVV 7KH UHVXOWV IRU WKH SHUFHQW SKRWRGHJUDGDWLRQ RI WKH FRDWLQJ RQ SULPHG JODVV DUH OLVWHG LQ 7DEOH 7DEOH 3HUFHQW SKRWRGHJUDGDWLRQ RI WKH UHODWLYH HPLVVLRQ LQWHQVLW\ IRU '2&,6VSVS LQ 3W'2&,6V_LWVS93'06 FRDWLQJ RQ SULPHG JODVV 3UHVVXUH SVLf 3ULPHU bPLQn bPP '2&,SSVS DQG '2&,6VSVS GLVSHUVHG VHSDUDWHO\ LQ 93'06 SRO\PHU ZLWKRXW 3W7)33 LQFRUSRUDWLRQ GLVSOD\ UHODWLYH HPLVVLRQ LQWHQVLW\ SORWV YHUVXV WLPH ZKLFK DUH VFDWWHUHG IURP SRLQW WR SRLQW KRZHYHU WKH VFDWWHU IURP SRLQW WR SRLQW LV ZLWKLQ WKH RQH VWDQGDUG GHYLDWLRQ HUURU EDUV 7KHUHIRUH WKH HPLVVLRQ LQWHQVLW\ IRU WKH WHPSHUDWXUH SUREHV LQ WKH 93'06 SRO\PHU FRDWLQJ LV VWDEOH RYHU WKH IRXUKRXU LOOXPLQDWLRQ SHULRG DQG XQDIIHFWHG E\ FKHPLFDO RU SK\VLFDO LQWHUDFWLRQV ZLWK WKH 3W7)33 OXPLQRSKRUH 6FDQQLQJ DQG 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRS\ 6FDQQLQJ HOHFWURQ PLFURVFRS\ 6(0f 6(0 ZDV XVHG WR LPDJH WKH WZR W\SHV RI PLFURVSKHUHV XVHG LQ WKLV ZRUN ,PDJHV ZHUH REWDLQHG RQ WKH XQG\HG VDPSOHV DV ZHOO DV RQ WKH G\HG VDPSOHV WKDW ZHUH XVHG LQ WKH FRDWLQJ SUHSDUDWLRQV 7KH PHWKRG XVHG WR SUHSDUH WKH 6(0 VSHFLPHQV LV GLVFXVVHG LQ WKH ([SHULPHQWDO VHFWLRQ '2&,SSVS 7KH SRO\GLYLQ\OEHQ]HQHf PLFURVSKHUHV ZHUH SUHSDUHG E\ SUHFLSLWDWLRQ SRO\PHUL]DWLRQ $ W\SLFDO LPDJH RI WKH PLFURVSKHUHV SULRU WR '2&, f GLHWK\OR[DFDUERF\DQLQH LRGLGHf DGVRUSWLRQ LV LOOXVWUDWHG LQ )LJXUH $OO LPDJHV GLVSOD\ WKH PLFURVSKHUHV DV DJJUHJDWHV RI ODUJH DQG VPDOO SDUWLFOHV

PAGE 85

)LJXUH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI SUHFLSLWDWLRQ PLFURVSKHUHV SSVSf YRO b RI '9% DFHWRQLWULOHf 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 7KH ODUJHU SDUWLFOHV DUH WR SP LQ VL]H ZKLOH WKH VPDOOHU SDUWLFOHV DUH DV WLQ\ DV SP 7KH SRO\PHU SDUWLFOHV SRVVHVV D QRQVSKHULFDO VKDSH DQG QR HYLGHQFH RI SRUH IRUPDWLRQ ,W DSSHDUV WKDW LQ VRPH LQVWDQFHV WKH SDUWLFOHV DUH IXVHG WRJHWKHU 7KLV IXVLRQ LV PRVW OLNHO\ D FRQVHTXHQFH RI DQ HDUOLHU VWDJH LQ WKHLU JURZWK 3ODFLQJ FDUERQ WDSH RQ DQ DOXPLQXP VWXG DQG SUHVVLQJ LW DJDLQVW WKH DERYH SUHSDUHG VDPSOH IUDFWXUHG WKH SRO\PHU SDUWLFOHV 7KH IUDFWXUHG PLFURVSKHUHV ZHUH WUDQVIHUUHG WR WKH FDUERQ WDSH DQG VSXWWHUFRDWHG ZLWK QP RI JROG $V D UHVXOW RI IUDFWXULQJ WKH SRO\PHU SDUWLFOHV D FORVHU ORRN RI WKHLU LQWHULRU PRUSKRORJ\ ZDV REWDLQHG DQG LPDJHG LQ )LJXUH

PAGE 86

)LJXUH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI IUDFWXUHG SUHFLSLWDWLRQ PLFURVSKHUHV SSVSf YRO b RI '9% DFHWRQLWULOHf 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 0DJQLILFDWLRQ RI WKH PLFURVSKHUHV GHSLFWV WKH IXVLRQ RI WKH VPDOOHU SDUWLFOHV WR WKH ODUJHU SDUWLFOHV DV VHHQ LQ WKH XSSHU KDOI DQG OHIW VLGH RI WKH ILJXUH 7KH VSKHUH LQ WKH FHQWHU RI WKH ILJXUH H[KLELWV MDJJHG LQFLVLRQV GXH WR WKH FUXVKLQJ SURFHVV &ORVHU DQDO\VLV RI WKH H[WHULRU DQG LQWHULRU PRUSKRORJLHV UHYHDOV D FDXOLIORZHUOLNH VXUIDFH 7KLV HIIHFW LV PRVW OLNHO\ GXH WR SRUH IRUPDWLRQ DW WKH VXEPLFURQ OHYHO :KHQ fGLHWK\OR[DFDUERF\DQLQH LRGLGH '2&,f ZDV DGVRUEHG RQWR WKH PLFURVSKHUHV WKH SDUWLFOHV SRVVHVV D PRUH VSKHULFDO VZROOHQ VKDSH ZLWK QR HYLGHQFH RI SRUH IRUPDWLRQ )LJXUH GLVSOD\V D W\SLFDO FOXVWHU RI VZROOHQ ZW b '2&, DGVRUEHG PLFURVSKHUHV '2&,SSVSf ,

PAGE 87

)LJXUH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI SUHFLSLWDWLRQ PLFURVSKHUHV YRO b RI '9% DFHWRQLWULOHf ZLWK ZW b DGVRUEHG '2&, '2&,SSVSf 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH $JDLQ WKH SDUWLFOHV ZHUH IUDFWXUHG WR GLVSOD\ WKH LQWHULRU PRUSKRORJ\ LPDJHG LQ )LJXUH 0DJQLILFDWLRQ RI WKH SRO\PHU SDUWLFOHV UHYHDOV WKDW WKH LQWHULRU DQG H[WHULRU PRUSKRORJLHV DUH WLJKWO\ SRO\PHUL]HG VSKHUHV FUHDWLQJ VPDOO SRUHV )LJXUH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI IUDFWXUHG SUHFLSLWDWLRQ PLFURVSKHUHV YRO b RI '9% DFHWRQLWULOHf ZLWK ZW b '2&, '2&,SSVSf 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV QP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH

PAGE 88

'2&,6VSS 7KH SRO\GLYLQ\OEHQ]HQHf PLFURVSKHUHV ZHUH DOVR SUHSDUHG YLD VXVSHQVLRQ SRO\PHUL]DWLRQ VXOIRQDWHG DQG QHJDWLYHO\ FKDUJHG $ W\SLFDO LPDJH RI WKH PLFURVSKHUHV SULRU WR G\H DGVRUSWLRQ LV GLVSOD\HG LQ )LJXUH )LJXUH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI QHJDWLYHO\ FKDUJHG VXOIRQDWHG VXVSHQVLRQ PLFURVSKHUHV 6VSSaf YRO b RI '9% OGRGHFDQROWROXHQH f 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 3RO\PHUL]DWLRQ SURGXFHG D YDULHW\ RI PLFURVSKHUH VL]HV 7KH PDMRULW\ DUH SP DQG VPDOOHU DOWKRXJK VRPH DUH DV ODUJH DV WR SP 7KH PLFURVSKHUHV H[KLELW D SRURXV VWUXFWXUH GXH WR WKH XVH RI D SRURJHQ GRGHFDQRO QRQVROYHQW 7KH ODUJHU WR SP SRO\PHU SDUWLFOHV SRVVHVV ODUJHU SRUHV EXW DUH DOVR PRUH DJJORPHUDWHG DQG OHVV VSKHULFDO WKDQ WKH VPDOOHU PLFURVSKHUHV 6WRYHU UHSRUWHG VLPLODU FKDUDFWHU LQ SRURVLW\ VKDSH DQG VL]H GLVWULEXWLRQ RI SRO\GLYLQ\OEHQ]HQHf PLFURVSKHUHV SRO\PHUL]HG ZLWK LQFUHDVHG SHUFHQWDJHV RI SRURJHQ QRQVROYHQW 7KH LQWHULRU PRUSKRORJ\ ZDV UHYHDOHG XSRQ IUDFWXULQJ WKH PLFURVSKHUHV )LJXUH LOOXVWUDWHV KRZ WKH SRURXV QDWXUH RI WKH H[WHULRU VXUIDFH LV FKDQQHOHG WKURXJKRXW WKH LQWHULRU PRUSKRORJ\

PAGE 89

)LJXUH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI IUDFWXUHG QHJDWLYHO\ FKDUJHG VXOIRQDWHG VXVSHQVLRQ PLFURVSKHUHV 6VSS f YRO b RI '9% OGRGHFDQROWROXHQH f 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV QP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH '2&, ZDV DGVRUEHG RQWR WKH FKDUJHG VXOIRQDWHG VXVSHQVLRQ PLFURVSKHUHV 6VSS f UHSODFLQJ WKH 1D FRXQWHU LRQ )LJXUH UHYHDOV WKDW VRPH RI WKH PLFURVSKHUHV DUH VSKHULFDO ZKLOH RWKHUV DUH IUDFWXUHG IURP WKH SUHSDUDWLRQ SURFHGXUH 7KH PRVW QRWLFHDEOH IHDWXUH RI WKHVH VSKHUHV LV WKH DSSHDUDQFH RI D fVWLFN\ ILOPf FRQQHFWLQJ DQG FRYHULQJ WKH VSKHUHV

PAGE 90

)LJXUH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI IUDFWXUHG QHJDWLYHO\ FKDUJHG VXOIRQDWHG VXVSHQVLRQ PLFURVSKHUHV YRO b RI '9% OGRGHFDQROWROXHQH f ZLWK ZW b DGVRUEHG '2&, '2&,6VSVSf 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 7KH ILOP IRUPV DQ LQFRPSOHWH FRDWLQJ DFURVV WKH VSKHUHV LQ WKH OHIW VLGH RI WKH ILJXUH DQG D EULGJH FRQQHFWLQJ D ODUJHU SDUWLFOH DQG LWV QHDUHVW QHLJKERUV LQ WKH LPDJH ULJKW RI FHQWHU 7KH ILOP DSSHDUV WR EH OHVV WKDQ SP WKLFN DQG LWV RULJLQV DUH XQNQRZQ +RZHYHU LWV H[LVWHQFH ZDV UHSURGXFLEOH LQ DGGLWLRQDO 6(0 SUHSDUDWLRQV 63'06 DQG 93'06 LQFRUSRUDWLQJ '2&,SSVS RU '2&,6VSVS &OXVWHUV RI PLFURVSKHUHV SHQHWUDWLQJ WKH VXUIDFH RI WKH FRDWLQJ DUH REVHUYHG ZKHQ D WKLQ ILOP RI 63'06 VLODQRO SRO\GLPHWK\OVLOR[DQHV DQG PHWK\OWULDFHWR[\VLODQH FURVVOLQNHUf FRQWDLQLQJ '2&,SSVS ZW b '2&,f SUHSDUHG E\ DLUEUXVK DSSUR[LPDWHO\ SP WKLFNf ZDV LPDJHG E\ 6(0 7KH UDQGRPQHVV DQG LUUHJXODULW\ RI WKH PLFURVSKHUHVf GLVWULEXWLRQ DQG VL]H FDQ EH FOHDUO\ VHHQ LQ )LJXUH 7KLV LPDJH FRPSOLPHQWV ILQGLQJV SUHVHQWHG ODWHU LQ WKH FKDSWHU ZKLFK XWLOL]H IOXRUHVFHQFH PLFURVFRS\ WR GHVFULEH WKH GLVWULEXWLRQ RI WKH PLFURVSKHUHV LQ WKH SRO\PHU ELQGHU )LJXUH

PAGE 91

)LJXUH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI WKH VXUIDFH RI D WKLQ ILOP a SPf RI 63'06 FRQWDLQLQJ '2&,SSVS ZW b '2&,f YRO b RI '9% DFHWRQLWULOHf 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH $ WKLQ ILOP RI 93'06 YLQ\O SRO\GLPHWK\OVLOR[DQHVf FRQWDLQLQJ '2&OSVS ZW b '2&,f ZDV PRUH GLIILFXOW WR LPDJH WKDQ WKH '2&,SSVS LQ 63'06 SRO\PHU ELQGHU 7KH VXUIDFH RI '2&,SSVS LQ WKH 93'06 ILOP GLG QRW SURGXFH FKDUDFWHULVWLF FOXVWHUV RI PLFURVSKHUHV 2QO\ UDQGRP LQGHQWDWLRQV DQG FUHYLFHV DUH IRXQG ZKLFK DUH GXH WR HLWKHU WKH PRUSKRORJ\ RI WKH SRO\PHU FXUH GXVW SDUWLFOHV RU HPEHGGHG PLFURVSKHUHV +RZHYHU XSRQ IUDFWXULQJ WKH VDPSOH DQG LPDJLQJ WKH LQWHULRU ILOP PRUSKRORJ\ FOXVWHUV RI PLFURVSKHUHV DUH IRXQG DQG LPDJHG LQ )LJXUH

PAGE 92

&OXVWHU RI PLFURVSKHUHV )LOP 6XUIDFH )LOP ,QWHULRU *ODVV 6XEVWUDWH )LJXUH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI WKH LQWHULRU PRUSKRORJ\ RI D WKLQ ILOP a SPf RI 93'06 FRQWDLQLQJ '2&,SSVS ZW b '2&,f YRO b RI '9% DFHWRQLWULOHf 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH 0DJQLILFDWLRQ RI WKH PLFURVSKHUH FOXVWHU LV GLVSOD\HG LQ )LJXUH 7KLV LPDJH IXUWKHU FRQILUPV VFDQQLQJ HOHFWURQ PLFURVFRS\ DQG IOXRUHVFHQFH PLFURVFRS\ UHVXOWV ZKLFK LQGLFDWH WKDW WKH PLFURVSKHUHV DUH QRW KRPRJHQHRXVO\ GLVWULEXWHG ZLWKLQ WKH SRO\PHU ILOP )LJXUH 6FDQQLQJ HOHFWURQ PLFURJUDSK RI WKH LQWHULRU PRUSKRORJ\ RI D WKLQ ILOP a SPf RI 93'06 FRQWDLQLQJ '2&,SSVS ZW b '2&,f YRO b RI '9% DFHWRQLWULOHf ; PDJQLILFDWLRQ RI )LJXUH f 7KH VFDOH EDU FRQVLVWV RI ZKLWH YHUWLFDO OLQHV DQG LV SP ORQJ IURP WKH ILUVW OLQH WR WKH ODVW OLQH

PAGE 93

'2&,6VSS GLVSHUVHG LQ 93'06 SRO\PHU FRXOG QRW EH LPDJHG ZLWK 6(0 7KH VXUIDFH RI WKH '2&,6VSVS93'06 ILOP GLG QRW UHYHDO D JOREXODU WH[WXUH DV VHHQ ZLWK WKH '2&,SSVS LQ 63'06 SRO\PHU )LJXUH f )UDFWXULQJ RI WKH '2&, 6VSVS93'06 VDPSOH GLG QRW UHYHDO PLFURVSKHULFDO FOXVWHUV RI GLVWLQFW PLFURVSKHUH UHJLRQV HLWKHU 7ZR IDFWRUV FRXOG EH DIIHFWLQJ WKH LPDJLQJ f ,W LV SRVVLEOH WKDW GXH WR WKH HODVWLF QDWXUH RI WKH 93'06 WKH IUDFWXUHG VSHFLPHQ SRO\PHU ELQGHU FORVHV RYHU WKH H[SRVHG LQWHULRU UHJLRQ PDVNLQJ WKH PLFURVSKHUHV f 7KH '2&,6VILVS DUH VPDOOHU WKDQ WKH '2&,SILVS DQG PRUH GLIILFXOW WR LPDJH VLQFH DV ZLOO EH VHHQ LQ WKH IOXRUHVFHQFH PLFURVFRS\ GDWD WKH '2&,6VSVS DUH PRUH HYHQO\ GLVWULEXWHG DQG OHVV FOXVWHUHG WKDQ WKH '2&,SSVS LQ WKH 93'06 SRO\PHU ELQGHU 2QH VROXWLRQ WR WKH SUREOHP RI LPDJLQJ LV FRROLQJ WKH VDPSOH WR IUDFWLRQLQJ DQG XVLQJ D FU\RVWDWVWDJH IRU WKH 6(0 LPDJLQJ WKHUHE\ SUHFOXGLQJ DQ\ QHJDWLYH HIIHFWV H[KLELWHG E\ WKH SRO\PHUfV WHQGHQF\ WR UHVXPH LWV VKDSH DW URRP WHPSHUDWXUH 7KLV RSWLRQ ZDV QRW DYDLODEOH DW WKH WLPH RI WKH LPDJLQJ 5HJDUGOHVV LW VWLOO GRHV QRW JXDUDQWHH WKDW WKH PLFURVSKHUH SDUWLFOHV ZLOO EH UHYHDOHG DQG VXFFHVVIXOO\ LPDJHG 7UDQVPLVVLRQ HOHFWURQ PLFURVFRS\ 'XH WR WKH HODVWRPHULF QDWXUH RI WKH SRO\GLPHWK\OVLOR[DQH 3'06f SRO\PHU ELQGHUV XWLOL]HG LQ 363763 FRDWLQJV WKH FRDWLQJV H[KLELW UDWKHU SRRU PHFKDQLFDO SURSHUWLHV DQG ZHUH WKHUHIRUH GLIILFXOW WR PLFURWRPH DQG DQDO\]H +RZHYHU DIWHU D WKUHH PRQWK VWRUDJH SHULRG DW b UHODWLYH KXPLGLW\ PGLSKHQ\O SKHQDQWKUROLQHfUXWKHQLXP ,,f GLFKORULGH >5XLGSS)-&)f GLVSHUVHG 63'06 SRO\PHU ZDV VXIILFLHQWO\ FXUHG PDNLQJ LW SRVVLEOH WR PLFURWRPH VOLFHV WKDW ZHUH OHVV WKDQ D QP WKLFN 9LVXDO DQG SK\VLFDO LQVSHFWLRQ RI WKH 63'06 FRDWLQJ VKRZHG WKDW FXUHG 63'06 ZDV QRW DV VRIW DQG SOLDEOH DQG HDVLHU WR FOHDQO\ PLFURWRPH WKDQ FXUHG 93'06 SRO\PHU

PAGE 94

7(0 LPDJHV RI WKH PLFURWRPHG >5XGSSf@&O WKLQ ILOP DUH VKRZQ LQ )LJXUH 'XH WR WKH VSUD\LQJ DSSOLFDWLRQ RI WKH ILOP WKH 63'06 SRO\PHU LV YLVXDOL]HG DV GURSOHWV 'DUN JUD\ DUHDV DUH LQGLFDWLYH RI LQFUHDVHG HOHFWURQ GHQVLW\ HLWKHU IURP D VLQJOH KHDY\ DWRP 5X RU D KLJK FRQFHQWUDWLRQ RI D ORZ DWRPLF ZHLJKW DWRP & 6L 2 7KH GDUN EODFN DUHDV DUH WKH IRUPYDU UHVLQ XVHG LQ VDPSOH SUHSDUDWLRQ 7KH >5XGSSf@&O FRPSOH[ ZDV QRW GLVFHUQDEOH DV GLVFUHWH PLFURFU\VWDOV SRVVLEO\ GXH WR WKH IDFW WKDW LWV FRQFHQWUDWLRQ ZDV ORZ LH ZW b UHODWLYH WR SRO\PHU ZHLJKW PJf )LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI D QP VOLFH RI >5XGSSf@&O GLVSHUVHG LQ 63'06 SRO\PHU $f ; PDJQLILFDWLRQ RI SRO\PHU ZKLWH VFDOH EDU LV SP ORQJ DQG %f ; PDJQLILFDWLRQ RI SRO\PHU ZKLWH VFDOH EDU LV SP ORQJ (QHUJ\ GLVSHUVLYH VSHFWURVFRS\ ('6f (QHUJ\ GLVSHUVLYH VSHFWURVFRS\ FRXSOHG ZLWK 7(0 ZDV XWLOL]HG WR GHWHUPLQH WKH HOHPHQWDO FRPSRVLWLRQ RI WKH GDUNHU GURSOHW DUHDV LQ )LJXUH 7KH >5XGSSf@&O FRPSOH[ FRXOG QRW EH LGHQWLILHG VLQFH LWV FRQFHQWUDWLRQ DW DQ\ RQH SRLQW ZDV OHVV WKDQ ZW b WKH OLPLW RI GHWHFWLRQ IRU WKLV PHWKRGf +RZHYHU WKH DWRPV DORQJ WKH H[WHULRU RI WKH GURSOHWV WKH GDUNHU DUHDV RI )LJXUH %f ZHUH LGHQWLILHG DV 6L 7KH DEXQGDQFH RI VLOLFRQ DWRPV DORQJ WKH H[WHULRU VXUIDFH RI WKH GURSOHWV LV WLPHV JUHDWHU WKDQ WKH DEXQGDQFH RI LQWHULRU GURSOHW 6L FRQFHQWUDWLRQ 7KH UDWLR RI 6L ZDV FDOFXODWHG E\

PAGE 95

GHWHUPLQLQJ WKH HOHFWURQ FRXQW IURP 6L LQ WKH VDPSOH DQG &X IURP WKH FRSSHU PHVK GLVN RQ ZKLFK WKH SRO\PHU VOLFH ZDV DWWDFKHG 5DWLR RI 6L (GJH,QWHULRU ff )OXRUHVFHQFH 0LFURVFRS\ )OXRUHVFHQFH PLFURVFRS\ WHFKQLTXHV ZHUH HPSOR\HG WR EHWWHU XQGHUVWDQG WKH VL]H DQG GLVWULEXWLRQ RI >5XLGSS)-&) 3W7)33 '2&,SSVS DQG '2&,6VSVS LQ WKH 93'06 DQG 63'06 SRO\PHU ELQGHUV )LUVW '2&,SSVS DQG '2&,6VSVS DUH DQDO\]HG IRU VL]H OHQJWK RI SDUWLFOH PDMRU D[LVf DQG GLVWULEXWLRQ QXPEHU RI SDUWLFOHV SHU UHJLRQ DQDO\]HGf 6HFRQG WKH 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS93'06 ILOP FRDWLQJV DUH DQDO\]HG IRU GHWHUPLQDWLRQ RI WKH UHODWLYH SRVLWLRQ RI 3W7)33 WR WKH G\HGPLFURVSKHUHV 7KLUG WKH VSDWLDO GLVWULEXWLRQ RI WKH 3W7)33 SUREHfV OXPLQHVFHQFH UHVSRQVH WR R[\JHQ TXHQFKLQJ LQ WKH 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS93'06 ILOPV DUH HYDOXDWHG )RXUWK WKH HYDOXDWLRQ RI >5XLGSS)M&) GLVWULEXWLRQ LQ 63'06 ELQGHU 6L]H DQG GLVWULEXWLRQ RI '2&,SSVS DQG '2&,6VSVS 7KH '2&,SSVS ZW b UHODWLYH WR SRO\PHU ZHLJKW PJf DQG '2&,6VSVS ZW b UHODWLYH WR SRO\PHU ZHLJKW PJf ZHUH GLVWULEXWHG VHSDUDWHO\ LQ 93'06 SRO\PHU ELQGHU 7ZR OD\HUV RI HDFK FRDWLQJ ZHUH DLUEUXVKHG RQWR FOHDQ ERURVLOLFDWH PLFURVFRSH VOLGHV 7KH '2&,6VSVS93'06 ILOP ZDV DSSUR[LPDWHO\ SP WKLFN DQG WKH '2&,SSVS93'06 ILOP ZDV DSSUR[LPDWHO\ SP WKLFN DV PHDVXUHG E\ SURILORPHWU\ 7KH VOLGHV ZHUH DQDO\]HG XVLQJ WKH LQYHUWHG IOXRUHVFHQFH PLFURVFRSH $ GHWDLOHG H[SODQDWLRQ IRU WKH V\VWHP VHWXS LV IRXQG LQ WKH ([SHULPHQWDO VHFWLRQ )RU WKLV H[SHULPHQW DQ ,5 ILOWHU b QHXWUDO GHQVLW\ ILOWHU DQG D QP QP EDQGSDVV ILOWHU ZHUH XVHG LQ IURQW RI WKH : PHUFXU\EXOE H[FLWDWLRQ VRXUFH 7KH '2&,SSVS93'06 ILOP ZDV LPDJHG ZLWK WKH ; REMHFWLYH DQG WKH '2&,

PAGE 96

6VSVS93'06 ILOP ZDV LPDJHG ZLWK WKH ; REMHFWLYH VHW DW ; PDJQLILFDWLRQ E\ WKH PLFURVFRSHfV ; PDJQLILFDWLRQ NQRE 7KH HPLVVLRQ OLJKW ZDV ILOWHUHG WKURXJK D QP ORQJSDVV ILOWHU DQG WKH VLGH RI WKH VOLGH WKDW ZDV FRDWHG ZLWK WKH SRO\PHU ILOP IDFHG WKH REMHFWLYH )LYH UHJLRQV RI HDFK FRDWLQJ ZHUH DQDO\]HG DW DQ H[SRVXUH WLPH RI PVHF IRU WKH '2&,SSVS93'06 ILOP DQG PVHF IRU WKH '2&,6VSVS93'06 ILOP )OXRUHVFHQFH PLFURVFRSH LPDJHV RI WKH '2&,SSVS93'06 DQG '2&, 6VSVS93'06 ILOPV DUH GLVSOD\HG LQ )LJXUH ,PDJH $ LV SP [ SP [ SL[HOV FDOLEUDWLRQ SPSL[HO f ,PDJH %LV SP [ SP [ SL[HOV FDOLEUDWLRQ SPSL[HNf 7KH LPDJHV DUH UHSUHVHQWDWLYH RI HDFK ILOP :LWKLQ HDFK LPDJH WKH ZKLWH FOXVWHUV DQG VROR SDUWLFOHV DUH GHILQHG E\ WKH '2&, IOXRUHVFHQFH HPLVVLRQ GHWHFWHG IURP WKH PLFURVSKHUHV )LJXUH )OXRUHVFHQFH PLFURVFRSH LPDJH RI $f '2&,SSVS93'06 ILOP DQG %f '2&,6VSVS93'06 ILOP REWDLQHG ZLWK D &&' FDPHUD WKURXJK D ; DQG ; REMHFWLYH UHVSHFWLYHO\ :KLWH VFDOH EDU LV SP DQG SP ORQJ UHVSHFWLYHO\ )LYH UHJLRQV ZHUH LPDJHG IRU HDFK ILOP :KLWH FOXVWHUV ZHUH FRQVLGHUHG RQH PLFURVSKHUH REMHFW UDWKHU WKDQ FRXQWLQJ WKH LQGLYLGXDO PLFURVSKHUH FRPSRQHQWV 7KH

PAGE 97

QXPEHU RI REMHFWV LQ HDFK UHJLRQ IRU WKH '2&,S_8VS93'06 DQG '2&,6VSVS93'06 ILOPV LV JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ 7DEOH 1XPEHU RI PLFURVSKHUH REMHFWV IRU ILYH UHJLRQV RI WKH '2&,SSVS93'06 ILOP 5HJLRQ 1XPEHU RI '2&,SMLVS 2EMHFWV $YHUDJH s f RI PLFURVSKHUH REMHFWV IRU ILYH UHJLRQV RI WKH & ILOP 5HJLRQ 1XPEHU RI '2&,6VSVS 2EMHFWV $YHUDJH s )RU DOO RI WKH PLFURVSKHUH REMHFWV FRXQWHG WKH REMHFWVf PDMRU D[LV OHQJWKV ZHUH GHWHUPLQHG XVLQJ D VWDWLVWLFDO LPDJLQJ SURJUDP 6LJPD 6FDQ 3UR 6366 ,QFf 7KH DYHUDJH DQG WKH VWDQGDUG GHYLDWLRQ IRU WKH PLFURVSKHUH REMHFWVf OHQJWKV IRU HDFK UHJLRQ DQDO\]HG DUH JLYHQ LQ 7DEOHV DQG

PAGE 98

7DEOH $YHUDJH DQG VWDQGDUG GHYLDWLRQ RI WKH PLFURVSKHUH REMHFWVf OHQJWKV IRU HDFK UHJLRQ RI WKH '2&,SSVS93'06 ILOP 5HJLRQ 2EMHFWVf $YHUDJH /HQJWK SPf s s s s s 7DEOH $YHUDJH DQG VWDQGDUG GHYLDWLRQ RI WKH PLFURVSKHUH REMHFWVf OHQJWKV IRU HDFK UHJLRQ RI WKH '2&,6VSVS93'06 ILOP 5HJLRQ 2EMHFWVf $YHUDJH /HQJWK SPf s s s s s 7KH OHQJWKV RI WKH REMHFWVf PDMRU D[HV IURP WKH ILYH UHJLRQV DQDO\]HG IRU HDFK ILOP DUH UHSUHVHQWHG E\ KLVWRJUDPV LQ )LJXUH 7KH QXPEHU RI REMHFWV IRU D JLYHQ VL]H UDQJH DUH SORWWHG YHUVXV WKH OHQJWK RI WKH REMHFWV SP ELQ LQFUHPHQWVf )LJXUH +LVWRJUDP RI WKH PLFURVSKHUH REMHFWVf PDMRU D[LV OHQJWKV IRU $f '2&,SSVS93'06 ILOP DQG %f '2&,6VSVS93'06 ILOP 9HUWLFDO EDUV HTXDO D SP OHQJWK LQFUHPHQW

PAGE 99

)RU WKH '2&,S_8VS93'06 ILOP WKH PLFURVSKHUH REMHFW OHQJWKVf DUH LQ WKH UDQJH RI WR SP ZLWK D VXEVWDQWLDO QXPEHU RI REMHFWV EHWZHHQ SP LQ OHQJWK )RU WKH '2&,6VSVS93'06 ILOP WKH PLFURVSKHUH REMHFW OHQJWKVf DUH LQ WKH UDQJH RI WR SP ZLWK D VXEVWDQWLDO QXPEHU RI REMHFWV EHWZHHQ SP LQ OHQJWK &RQVLGHULQJ WKDW WKH QXPEHU RI REMHFWV SHU UHJLRQ IRU HDFK ILOP LV VLPLODU WKH ODUJH QXPEHU RI REMHFWV a f IRU WKH '2&,6VSVS93'06 ILOP SURYHV WKDW WKH PLFURVSKHUHV DUH VPDOOHU DQG OHVV DJJUHJDWHG WKDQ WKH PLFURVSKHUHV RI WKH '2&,SSVS93'06 ILOP 7KH PHDVXUHG REMHFW OHQJWKV FRUUHODWH ZHOO ZLWK WKH OHQJWKV GHWHUPLQHG IURP WKH 6(0 LPDJHV )LJXUHV DQG 7KH QXPEHU DQG FRUUHVSRQGLQJ OHQJWKV RI '2&,SSVS SDUWLFOHV LQ 7DEOHV DQG DQG WKH REMHFWLYH GHSWK RI IRFXV '2)f ZHUH XVHG WR SUHGLFW WKH GHQVLW\ GLVWULEXWLRQ RI PLFURVSKHUHV LQ WKH 93'06 SRO\PHU ELQGHU IRU DQ\ JLYHQ UHJLRQ ,Q WKLV DQDO\VLV WKH '2) LV SP DW ; 7KH '2) LV GHILQHG DV WKH OHQJWK DORQJ WKH RSWLFDO D[LV RI WKH PLFURVFRSH E\ ZKLFK IRU D FRQVWDQW OHYHO RI WKH LPDJH WKH IRFXVLQJ SRVLWLRQ RI WKH REMHFWLYH FDQ EH YDULHG ZLWKRXW GLVWXUELQJ WKH VKDUSQHVV RI WKH LPDJH DW WKH FHQWHU RI WKH ILHOG6LQFH WKH QXPEHUV RI REMHFWV IRU HDFK UHJLRQ DUH ZLWKLQ D VWDQGDUG GHYLDWLRQ RI RQH DQRWKHU DV ZHUH WKH UHVSHFWLYH REMHFW OHQJWKV WKHQ LW FDQ EH GHULYHG WKDW D FHUWDLQ QXPEHU RI PLFURVSKHUHV RI DYHUDJH OHQJWK DUH GLVWULEXWHG WKURXJKRXW WKH FRDWLQJ IRU D NQRZQ UHJLRQ RI SUHGHWHUPLQHG VL]H 7KLV LV QRW WR VD\ WKDW WKH PLFURVSKHUHV DUH HYHQO\ GLVWULEXWHG WKURXJKRXW WKH FRDWLQJ UDWKHU IRU DQ\ UHJLRQ DQDO\]HG DQ DYHUDJH QXPEHU RI VSKHUHV ZLWK DYHUDJH OHQJWK DUH IRXQG )RU H[DPSOH WKH '2&,SSVS93'06 ILOP DYHUDJH LV REMHFWVf SP [ SP [ SPf [ REMHFWVSP ?

PAGE 100

)RU WKH '2&,6VSVS93'06 ILOP WKH ; REMHFWLYH '2) LV QRW NQRZQ EXW D URXJK HVWLPDWH XVLQJ WKH ILQH IRFXV DGMXVWPHQW RI WKH PLFURVFRSH \LHOGV D SP PHDVXUHPHQW IRU WKH '2) %\ HYDOXDWLQJ WKH PLFURVSKHUHVf TXDQWLW\ DQG OHQJWK GDWD LQ 7DEOHV DQG WKH QXPEHUV RI REMHFWV IRU HDFK UHJLRQ ZHUH ZLWKLQ D VWDQGDUG GHYLDWLRQ RI RQH DQRWKHU DV ZHUH WKH UHVSHFWLYH REMHFW OHQJWKV 7KHUHIRUH D FHUWDLQ QXPEHU RI PLFURVSKHUHV RI DYHUDJH OHQJWK DUH GLVWULEXWHG WKURXJKRXW WKH ILOP IRU D NQRZQ UHJLRQ RI WKLFNQHVV DQG VL]H )RU H[DPSOH WKH '2&,6VSVS93'06 ILOP DYHUDJH LV REMHFWVf SP [ SP [ SPf [ REMHFWVSP $OWKRXJK WKH '2&,6VSVS PD\ QRW EH HYHQO\ GLVWULEXWHG WKURXJKRXW DQ DQDO\]HG UHJLRQ DQ DYHUDJH QXPEHU RI PLFURVSKHUHV ZLWK DYHUDJH OHQJWKV DUH IRXQG LQ DQ\ UHJLRQ 5HODWLYH GLVWULEXWLRQ RI 3W7)33 '2&,SSVS DQG '2&,6VSVS 7KH SRVLWLRQ RI WKH 3W7)33 SUREH UHODWLYH WR WKH PLFURVSKHUHV LQ WKH 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS93'06 ILOPV ZDV GHWHUPLQHG XVLQJ WKH IOXRUHVFHQFH PLFURVFRSH 7ZR OD\HUV RI HDFK IRUPXODWLRQ FRDWLQJ ZHUH DLUEUXVKHG RQWR FOHDQ ERURVLOLFDWH PLFURVFRSH VOLGHV DQG WKH OXPLQHVFHQFH RI WKH WZR OXPLQRSKRUHV 3W7)33 DQG '2&,SSVS RU '2&,6VSVSf ZDV GHWHFWHG 7KUHH LPDJHV IURP HDFK FRDWLQJ ZHUH REWDLQHG XVLQJ WKH ; REMHFWLYH ,5 ILOWHU r b QHXWUDO GHQVLW\ ILOWHU DQG D QP QP EDQGSDVV ILOWHU LQ IURQW RI WKH H[FLWDWLRQ VRXUFH 7KUHH HPLVVLRQ ILOWHUV ZHUH XVHG LQWHUFKDQJHDEO\ D QP ORQJSDVV ILOWHU IRU LPDJLQJ 3W7)33 DQG '2&,SSVS RU '2&,6VSVS OXPLQHVFHQFH D QP QP EDQGSDVV ILOWHU IRU LPDJLQJ '2&,SSVS RU '2&,6VSVS OXPLQHVFHQFH DQG D QP QP EDQGSDVV ILOWHU IRU LPDJLQJ WKH 3W7)33 OXPLQHVFHQFH

PAGE 101

7KH 3W'2&,SSVS93'06 ILOP LV LPDJHG LQ )LJXUH DW WKH WKUHH HPLVVLRQ ZDYHOHQJWKV (DFK LPDJH LV SP [ SP [ SL[HOV FDOLEUDWLRQ SPSL[HOf 7KH ILOWHUV ZHUH FKRVHQ VXFK WKDW WKH HPLVVLRQ RI WKH OXPLQRSKRUH FRPSRQHQWV FRXOG EH VHOHFWLYHO\ ILOWHUHG DQG GHWHFWHG )LJXUH )OXRUHVFHQFH LPDJHV RI 3W'2&,SSVS93'06 ILOP REWDLQHG ZLWK D &&' FDPHUD WKURXJK D ; REMHFWLYH :KLWH VFDOH EDUV DUH SP ORQJ $f 3W7)33 HPLVVLRQ FD QPf %f '2&,SSVS HPLVVLRQ FD QPf &f 3W7)33 DQG '2&,SSVS HPLVVLRQV QPf 7KHUH LV QRW PXFK GLIIHUHQFH LQ WKH YLVXDO ILHOGV IURP RQH LPDJH WR WKH RWKHU \HW WKLV ODFN RI GLIIHUHQWLDWLRQ DFFXUDWHO\ LOOXVWUDWHV WKH GLVWULEXWLRQ RI WKH OXPLQRSKRUHV UHODWLYH WR RQH DQRWKHU $V D UHIHUHQFH LPDJH & RI )LJXUH GHSLFWV WKH HPLVVLRQ LQWHQVLW\ RI ERWK WKH '2&,SSVS DQG WKH 3W7)33 OXPLQRSKRUHV ,Q LPDJH % RQO\ WKH JUHHQ HPLVVLRQ LQWHQVLW\ IURP WKH PLFURVSKHUHV LV GHWHFWHG DQG UHSUHVHQWHG DV ZKLWH JOREXOHV 7KH EDFNJURXQG ILHOG GRHV QRW H[KLELW VLJQLILFDQW HPLVVLRQ LQWHQVLW\ 7R LOOXVWUDWH WKLV VHYHUDO SP OLQH VFDQV WKURXJK WKH PLFURVSKHUH FOXVWHUV ZHUH SHUIRUPHG WR GHWHUPLQH WKH LQWHQVLW\ FRXQWV IRU WKH PLFURVSKHUHV YHUVXV WKH EDFNJURXQG 7KH HPLVVLRQ LQWHQVLW\ OLQH VFDQV DUH SORWWHG LQ )LJXUH JUDSK % 7KH PLFURVSKHUH FOXVWHUV DUH YHU\ LQWHQVH FRPSDUHG WR WKH QRQHPLVVLYH EDFNJURXQG ,Q SDUWLFXODU D OLQH

PAGE 102

VFDQ IRU FOXVWHU ELVHFWV WKUHH PLFURVSKHUHV DQG DQ RXWOLQH RI WKH LQWHQVH PLFURVSKHUH VKDSHV LV FKDUDFWHUL]HG E\ WKH FRUUHVSRQGLQJ OLQH VFDQ LQ JUDSK % )LJXUH /LQH VFDQ DQDO\VLV RI WKH HPLVVLRQ LQWHQVLW\ RI D IOXRUHVFHQFH PLFURVFRSH LPDJH RI 3W'2&,SSVS93'06 ILOP REWDLQHG ZLWK D &&' FDPHUD WKURXJK D ; REMHFWLYH ZLWK D QP QP EDQGSDVV ILOWHU '2&, HPLVVLRQ UHVSRQVHf $f )OXRUHVFHQFH PLFURVFRSH LPDJH RI '2&,SSVS HPLVVLRQ DQG %f (PLVVLRQ OLQH VFDQV IRU WKUHH SP OLQHV WKURXJK PLFURVSKHUH FOXVWHUV LQ LPDJH $ ,PDJH $ LQ )LJXUH LV VWULNLQJ LW RQO\ UHSUHVHQWV WKH GHWHFWHG HPLVVLRQ LQWHQVLW\ RI WKH 3W7)33 OXPLQRSKRUH \HW fIX]]\f RXWOLQHV RI WKH PLFURVSKHUHV DUH FOHDUO\ VHHQ 7KH EDFNJURXQG ILHOG RI WKH LPDJH HPLWV D KRPRJHQHRXV UHG SKRWROXPLQHVFHQFH 7R LOOXVWUDWH WKLV SRLQW VHYHUDO SP OLQH VFDQV WKURXJK WKH ZKLWH FOXVWHUV ZHUH SHUIRUPHG )LJXUH GHSLFWV WKH OLQH VFDQ DUHDV LQ LPDJH $ DQG WKH FRUUHVSRQGLQJ HPLVVLRQ LQWHQVLW\ SORWV LQ LPDJH % 7KH LQWHQVLWLHV RI WKH PLFURVSKHUHV DUH PXFK JUHDWHU WKDQ WKH EDFNJURXQG LQWHQVLW\ KRZHYHU LQ FRPSDULVRQ WR LPDJH % RI )LJXUH WKH EDFNJURXQG LQWHQVLW\ RI LPDJH % LQ )LJXUH LV UDWKHU LQWHQVH 7KLV LV VXSSRUWLQJ HYLGHQFH IRU WKH GLVWULEXWLRQ RI WKH 3W7)33 QRW RQO\ RQ RU QHDU WKH PLFURVSKHUH FOXVWHUV EXW DOVR WKURXJK WKH UHPDLQGHU RI WKH SRO\PHU ELQGHU

PAGE 103

$ )LJXUH /LQH VFDQ DQDO\VLV RI WKH HPLVVLRQ LQWHQVLW\ RI D IOXRUHVFHQFH PLFURVFRSH LPDJH RI 3W'2&,SSVS93'06 ILOP REWDLQHG ZLWK D &&' FDPHUD WKURXJK D ; REMHFWLYH ZLWK D QP QP EDQGSDVV ILOWHU 3W7)33 HPLVVLRQ UHVSRQVHf $f )OXRUHVFHQFH PLFURVFRSH LPDJH RI 3W7)33 HPLVVLRQ DQG %f (PLVVLRQ OLQH VFDQV IRU WKUHH _LP OLQHV WKURXJK PLFURVSKHUH FOXVWHUV LQ LPDJH $ 7KHUH DUH WKUHH SRVVLELOLWLHV IRU WKLV HPLVVLRQ SDWWHUQV LQ )LJXUHV DQG f $GVRUSWLRQ RI 3W7)33 RQWR WKH VXUIDFH RI WKH PLFURVSKHUHV GXULQJ WKH FRDWLQJ SUHSDUDWLRQ JHQHUDWHV DUHDV RI FRQFHQWUDWHG 3W7)33 HPLVVLRQ f 7KH SKRWROXPLQHVFHQFH IURP WKH '2&,SSVS LV fSXPSLQJf WKH SKRWROXPLQHVFHQFH RI WKH 3W7)33 WKURXJK HQHUJ\ WUDQVIHU RU D WULYLDO HPLVVLRQ UHDEVRUSWLRQ PHFKDQLVP f 7KH SKRWROXPLQHVFHQFH RI WKH EDFNJURXQG 3W7)33 LV LQWHUQDOO\ UHIOHFWHG LQ WKH SRO\PHU LOOXPLQDWLQJ WKH PLFURVSKHUHVf VKDSH 7KH 3W'2&,6VSVS93'06 ILOP H[KLELWV WKH VDPH HPLVVLRQ WHQGHQFLHV DV WKH 3W7)33 DQG '2&,SSVS OXPLQRSKRUHV ZKHQ LPDJHG ZLWK GLIIHUHQW HPLVVLRQ ILOWHUV 0LFURVFRSLF 6WHUQ9ROPHU DQDO\VLV RI 3W'2&,SSVS93'06 DQG 3W'2&, 6VSVS93'06 WKLQ )LOPV $ IOXRUHVFHQFH PLFURVFRS\ WHFKQLTXH ZDV GHYHORSHG WR H[SORUH WKH VSDWLDO GLVWULEXWLRQ RI WKH OXPLQHVFHQFH SURSHUWLHV IRU R[\JHQ VHQVLQJ FRDWLQJV ZLWKLQ D VSDWLDO UHVROXWLRQ RI SP )OXRUHVFHQFH PLFURVFRS\ FRXSOHG ZLWK &&' LPDJH DQDO\VLV ZDV HPSOR\HG WR FUHDWH VSDWLDOO\ UHVROYHG fLPDJH PDSVf RI WKH 6WHUQ9ROPHU 69f FRQVWDQW

PAGE 104

.VYf IRU OXPLQHVFHQW R[\JHQ VHQVLQJ ILOPV 7KH 69 OXPLQHVFHQFH LQWHQVLW\ UHVSRQVH WR YDULDWLRQ LQ DLU SUHVVXUH 3DMUf IRU 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS93'06 WKLQ ILOPV ZDV PHDVXUHG DW WKH PLFURVFRSLF OHYHO 7KH GHWDLOV RI WKH LQVWUXPHQW VHWXS DQG VDPSOH SUHSDUDWLRQ DUH IRXQG LQ WKH ([SHULPHQWDO VHFWLRQ DQG D WKRURXJK H[SODQDWLRQ RI WKH IOXRUHVFHQFH LPDJH DQDO\VLV LV SURYLGHG LQ WKH ([SHULPHQWDO VHFWLRQ RI &KDSWHU 7KUHH $ VHULHV RI TXDQWLWDWLYH LPDJH PDSV RI WKH 3W7)33 SUREHfV UHVSRQVH WR YDULDWLRQ LQ 3DcU ZHUH JHQHUDWHG XVLQJ ; DQG ; REMHFWLYHV )DOVHFRORUHG IOXRUHVFHQFH PLFURVFRSH LPDJHV IRU WKH 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS93'06 WKLQ ILOPV REWDLQHG DW 3DU SVL ZLWK D ; REMHFWLYH DQG QP QP EDQGSDVV ILOWHU DUH VKRZQ LQ )LJXUHV DQG UHVSHFWLYHO\ 7KH LPDJH VL]H LV SP [ SP [ SL[HOV FDOLEUDWLRQ SPSL[HO f )RU ERWK OXPLQHVFHQFH LQWHQVLW\ LPDJHV )LJXUHV $ DQG $f WKHUH DUH VHYHUDO EULJKW \HOORZ DQG UHG VSRWV ZKLFK FRUUHVSRQG WR WKH HQKDQFHG 3W7)33 SKRWROXPLQHVFHQFH FHQWHUHG RYHU WKH PLFURVSKHUH SDUWLFOHV 7KH LQWHQVH VSRWV DUH VXSHULPSRVHG RQ D EDFNJURXQG ILHOG RI KRPRJHQHRXV OXPLQHVFHQFH LQWHQVLW\

PAGE 105

)LJXUH )DOVHFRORUHG TXDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ SVL ;f DQG .VY[\f LPDJH PDSV IRU 3W'2&,SSVS93'06 WKLQ ILOP :KLWH VFDOH EDUV DUH SP ORQJ $f )DOVHFRORUHG TXDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ LPDJH ,PD[ DX \HOORZ FRORU DQG %f 4XDQWLWDWLYH PLFURVFRSLF .VY[\f LPDJH PDS IRU WKH LGHQWLFDO UHJLRQ SVL \HOORZ FRORU )LJXUH )DOVHFRORUHG TXDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ SVL ;f DQG .VY[\f LPDJH PDSV IRU 3W'2&,6VSVS93'06 WKLQ ILOP :KLWH VFDOH EDUV DUH SP ORQJ $f )DOVHFRORUHG TXDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ LPDJH ,PD[ DX \HOORZ FRORU DQG %f 4XDQWLWDWLYH PLFURVFRSLF .VY[\f LPDJH PDS IRU WKH LGHQWLFDO UHJLRQ SVLn \HOORZ FRORU )RU HDFK ILOP ILYH UHJLRQV ZHUH LQWHUURJDWHG ZLWK HDFK REMHFWLYH DW VHYHQ 3DLU YDOXHV EHWZHHQ SVL $ WRWDO RI WHQ .VY[\f LPDJH PDSV ZHUH JHQHUDWHG ZLWK DFFRPSDQ\LQJ VWDWLVWLFDO GDWD OLVWHG LQ 7DEOHV DQG $ .VY[\f LPDJH PDS IRU HDFK FRDWLQJ LV GLVSOD\HG LQ )LJXUHV % DQG % $ VSDWLDO FRUUHODWLRQ H[LVWV EHWZHHQ WKH LQWHQVLW\ DQG .VY[\f LPDJH PDSV PLFURVFRSLF UHJLRQV WKDW IHDWXUH EULJKW

PAGE 106

HPLVVLRQ \HOORZ VSRWVf WHQG WR H[KLELW FRPSDUDWLYHO\ ODUJHU .6Y YDOXHV UHG DQG \HOORZ VSRWVf +RZHYHU LQ LPDJH % RI ERWK )LJXUHV DQG WKH OLJKW EOXH RYDOV QHDU WKH UHG VSRWV DUH HUURQHRXV .6Y GDWD GXH WR LPDJH VKLIWLQJ GXULQJ DQDO\VLV 7KH EULJKW UHG VSRWV LQ WKH .6Y[\f LPDJH PDSV DQG WKH VWDWLVWLFDO GDWD LQ 7DEOHV DQG GHPRQVWUDWH WKH LQKRPRJHQHRXV GLVWULEXWLRQ RI 3W7)33 OXPLQHVFHQFH UHVSRQVH WR R[\JHQ TXHQFKLQJ 7DEOH 0LFURVFRSLF 69 DQDO\VLV RI ILYH UHJLRQV IRU 3W'2&,SSVS93'06 WKLQ ILOP XVLQJ WKH ,3; DQG ; REMHFWLYHV 5HJLRQ SVLf ;f WN b .VY SVLf ;f b .VY $YHUDJH 7DEOH 0LFURVFRSLF 69 DQDO\VLV RI ILYH UHJLRQV IRU 3W'2&,6VSVS93'06 WKLQ ILOP XVLQJ WKH ,3; DQG ; REMHFWLYHV 5HJLRQ .MY SVLnf ;f 2U b .VY .Y SVLf ;f b .VY $YHUDJH 7KH ; UHJLRQV H[KLELW ORZHU .AJ YDOXHV WKDQ WKH ; UHJLRQV $Q H[SODQDWLRQ IRU WKLV LV WKH ; LPDJHV DUH WKH VL]H RI WKH ; LPDJHV 7KH ; LQWHQVLW\ LPDJHV FDSWXUH D VPDOOHU PRUH KRPRJHQHRXV UHJLRQ RI WKH ILOP VXFK DV D VLQJOH EULJKW VSRW ZKHUHDV WKH ; LQWHQVLW\ LPDJHV FDSWXUH D ODUJHU KHWHURJHQHRXV UHJLRQ RI PDQ\ LQWHQVH

PAGE 107

VSRWV DQG EDFNJURXQG LOOXPLQDWLRQ 7KHUHIRUH WKH .AYYJ YDOXHV RI D ; LPDJH DUH ORZHU WKDQ WKH .A YDOXHV RI D ; LPDJH 5HPDUNDEO\ WKH KHWHURJHQHRXV GLVWULEXWLRQ RI .VY UHVSRQVH DW WKH PLFURVFRSLF OHYHO GRHV QRW DIIHFW WKH PDFURVFRSLF OHYHO UHVSRQVH )LJXUHV DQG UHSUHVHQW WKH 69 UHVSRQVH WR YDULDWLRQ LQ 3DLU IRU 3W'2&,Sf/LVS93'06 DQG 3W'2&,6VSVS93'06 WKLQ ILOPV ZKHQ WKH VDPSOHV DUH HYDOXDWHG XVLQJ WKH IOXRULPHWHU 7KH PDFURVFRSLF 69 GDWD DUH OLVWHG LQ 7DEOH )LJXUH 0DFURVFRSLF 69 SORW RI 3W'2&,SIOVS93'06 WKLQ ILOP RQ JODVV $UHI DUHD EHWZHHQ QP DW SVL DQG .

PAGE 108

)LJXUH 0DFURVFRSLF 69 SORW RI 3W'2&,6VSVS93'06 WKLQ ILOP RQ JODVV $UHI DUHD EHWZHHQ QP DW SVL DQG 7DEOH 0DFURVFRSLF 69 UHVSRQVH GDWD IRU 3W'2&,SSVS93'06 DQG 3W'2&, 6VSVS93'06 ILOPV RQ JODVV /XPLQRSKRUH 6ORSHLSVLf ,QWHUFHSWf .VYSVLnfF U 3W'2&,SSVS 3W'2&,6VSVS a f§f§ & 7= LQWHUFHSW $ LQ HTXDWLRQ f VORSH % LQ HTXDWLRQ f / .6\ %$ >5XGSSf@&O63'06 $Q 63'06 SRO\PHU VDPSOH FRQWDLQLQJ >5XGSSf@&O ZDV DQDO\]HG XVLQJ WKH IOXRUHVFHQFH PLFURVFRSH WR GHWHUPLQH WKH GLVWULEXWLRQ RI WKH OXPLQRSKRUH LQ WKH SRO\PHU ELQGHU $ WKLQ OD\HU RI >5XLGSSE-&)63'06 ZDV DLUEXVKHG RQWR D FOHDQ ERURVLOLFDWH PLFURVFRSH VOLGH DQG NHSW DW b UHODWLYH KXPLGLW\ LQ WKH GDUN IRU WKUHH PRQWKV 7KH SRO\PHU ILOP ZDV WKHQ OLIWHG IURP WKH JODVV SODWH ZLWK D UD]RU EODGH HPEHGGHG LQ DQ HSR[\ IRUPYDU UHVLQ DQG PLFURWRPHG LQWR QP WKLFN VOLFHV 7KH VOLFHV ZHUH SODFHG RQ

PAGE 109

FOHDQ ERURVLOLFDWH PLFURVFRSH VOLGHV DQG FRYHUVOLSV ZHUH FHPHQWHG RYHU WKH SRO\PHU VOLFHV 6HFWLRQHG VOLFHV ZHUH LPDJHG ZLWK WKH PLFURVFRSH XVLQJ WKH ; REMHFWLYH VHW DW ; PDJQLILFDWLRQ E\ WKH PLFURVFRSHnV ; PDJQLILFDWLRQ NQRE $Q ,5 ILOWHU DQG D QP QP EDQGSDVV ILOWHU ZHUH SODFHG LQ IURQW RI WKH H[FLWDWLRQ VRXUFH DQG HPLVVLRQ OLJKW ZDV ILOWHUHG WKURXJK D QP QP EDQGSDVV ILOWHU )OXRUHVFHQFH PLFURVFRSH LPDJHV RI WKH >5XLGSSAM&)63'06 ILOP DUH GLVSOD\HG LQ )LJXUH (DFK LPDJH VL]H LV SP [ SP [ SL[HOV FDOLEUDWLRQ SPSL[HOf 7KH ILOP VOLFHV LPDJHG LQ )LJXUH DUH ULEERQ VWULSV RI SRO\PHU HPEHGGHG LQ WKH QRQIOXRUHVFLQJ HSR[\ UHVLQ 0RGHUDWH SKRWROXPLQHVFHQFH RI WKH >5LSGSSEM&) OXPLQRSKRUH GHILQHV WKH RXWOLQH RI WKH SRO\PHU VWULSV $UHDV RI LQWHQVH SKRWROXPLQHVFHQFH GHILQH D VSKHULFDO WH[WXUH LQ WKH SRO\PHU VWULSV ZKLFK ZDV ILUVW LPDJHG DV GURSOHWV LQ WKH 7(0 LPDJHV )LJXUH f 6LQFH WKH SRO\PHU VOLFHV ZHUH VHDOHG XQGHU JODVV WKH >5XLGSS(M&) LV LPDJHG LQ LWV XQTXHQFKHG VWDWH ,W LV SRVVLEOH WKH >5XGSS!@&O FRPSOH[ H[LVWV DV KLJKO\ OXPLQHVFHQW QP VL]H PLFURFU\VWDOV LQGLVFHUQLEOH E\ ('6 VWXGLHV )XUWKHU DQDO\VLV RI >5XLGSS(M&) DQG RWKHU 5X,,f RWGLLPLQH FRPSOH[HVf PLFURVFRSLF VSDWLDO 69 UHVSRQVH WR R[\JHQ FRQFHQWUDWLRQ DUH RXWOLQHG LQ &KDSWHU 7KUHH

PAGE 110

)LJXUH )OXRUHVFHQFH PLFURVFRS\ LPDJHV RI SP WKLFN >5XLGSSIA&)63'06 VWULSV HPEHGGHG LQ IRUPYDU UHVLQ REWDLQHG ZLWK D &&' FDPHUD WKURXJK D ; REMHFWLYH :KLWH VFDOH EDUV DUH SP ORQJ ,PDJH 7HVWLQJ 6WDWLFFDOLEUDWLRQ FKDPEHU &DOLEUDWLRQ WHVWV ZHUH FRQGXFWHG RQ WKH 3W'2&,SSVS93'06 DQG 3W'2&, 6VSVS93'06 FRDWLQJV WR DFFHVV WKHLU SUHVVXUH PHDVXUHPHQW DFFXUDF\ ZKHQ H[SRVHG WR D VSDWLDO WHPSHUDWXUH JUDGLHQW $OXPLQXP FRXSRQV LQ [ LQ [ LQf ZHUH FRDWHG ZLWK SULPHU DQG IRXU OD\HUV RI HDFK FRDWLQJ ZHUH DLUEUXVKHG RQWR WKH LQGLYLGXDO FRXSRQV 7KH SODWHV ZHUH LQGLYLGXDOO\ SODFHG LQ D SUHVVXUH DQG WHPSHUDWXUH FRQWUROOHG HQYLURQPHQW FKDPEHU $ UHODWLYHO\ OLQHDU WHPSHUDWXUH JUDGLHQW .f ZDV LPSRVHG RYHU WKH OHQJWK RI WKH FRXSRQV XVLQJ D KHDWHG SODWH DW WKH WRS RI WKH FRXSRQ DQG D ZDWHUFRROHG EDWK DW WKH ERWWRP RI WKH FRXSRQ 7KH RYHUDOO SUHVVXUH ZDV YDULHG EHWZHHQ WR SVL DQG D WHPSHUDWXUH JUDGLHQW H[LVWHG RQ WKH SODWH .f IRU D VHULHV RI LPDJHV ,PDJHV ZHUH DFTXLUHG DW WZR HPLVVLRQ ZDYHOHQJWKV QP DQG QP 7KH RSWLFDO EDQGZLGWK ZDV QP ):+0 7KH VDPSOH ZDV H[FLWHG XVLQJ WZR WZRHOHPHQW EOXH /(' ODPSV SHDN HPLVVLRQ FD QPf $QDO\VLV RI WKH OXPLQHVFHQFH UHVSRQVH WR SUHVVXUH DQG WHPSHUDWXUH IRU WKH 3W'2&,SSVS93'06 FRDWLQJ LV GHSLFWHG LQ WKH SORWV RI )LJXUH

PAGE 111

)LJXUH 6WHUQ9ROPHU SORW DQG UDWLRHG HPLVVLRQ SORWV YHUVXV SUHVVXUH DQG WHPSHUDWXUH IRU 3W'2&,SILVS93'06 FRDWLQJ DQDO\]HG DQG LPDJHG LQ D VWDWLF FDOLEUDWLRQ FHOO $f 69 SORW HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP %f 5DWLRHG HPLVVLRQ SORW YHUVXV SUHVVXUH HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP &f 5DWLRHG HPLVVLRQ SORW YHUVXV WHPSHUDWXUH HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP DQG 'f 5DWLRHG HPLVVLRQ SORW YHUVXV WHPSHUDWXUH HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP &OHDUO\ WKH 3W7)33 SUHVVXUH SUREHfV UHVSRQVH WR YDULDWLRQ LQ 3DLU LV VWURQJ EXW LW LV DOVR WHPSHUDWXUH GHSHQGHQW DV VHHQ LQ LPDJHV $ DQG & 7KH '2&,SSVS WHPSHUDWXUH VHQVLWLYH SUREH H[KLELWV YHU\ OLWWOH UHVSRQVH WR YDULDWLRQ LV 3DLU DOWKRXJK WKLV UHVSRQVH FRXOG EH VSHFWUDO OHDNDJH RI WKH 3W7)33 HPLVVLRQ a QPf WKUX WKH ILOWHU $ FRQVLGHUDEOH WHPSHUDWXUH UHVSRQVH LV VHHQ LQ ERWK LPDJHV % DQG ,W LV WKH WHPSHUDWXUH GHSHQGHQFH DQG SUHVVXUH LQGHSHQGHQFH RI WKH WHPSHUDWXUH SUREH WKDW FRUUHFWV IRU WKH WHPSHUDWXUH GHSHQGHQFH RI WKH 3W7)33 SUREH

PAGE 112

:KHQ WKH FRDWLQJV DUH H[SRVHG WR D WHPSHUDWXUH JUDGLHQW .f DW FRQVWDQW SUHVVXUH WKH UDWLRHG LQWHQVLW\ LPDJHV RI WKH 3W'2&,SSVS93'06 FRDWLQJ IRU D VHULHV RI SUHVVXUHV H[KLELW D WHPSHUDWXUHGHSHQGHQFH 7KLV WHPSHUDWXUHGHSHQGHQFH ZLOO FDXVH WKH QP SUHVVXUHf HPLVVLRQ WR EH DWWHQXDWHG LQ UHJLRQV RI KLJK 7 ,I FRQYHUWHG WR SUHVVXUH YLD ,UHI, UDWLR DQG GLVSOD\HG ZLWK D IDOVH FRORU PDS WR UHSUHVHQW SUHVVXUH WKH XSSHU KHLJKWf SRUWLRQ RI WKH SODWH ZLOO VKRZ D IDOVH KLJKf SUHVVXUH PHDVXUHPHQW DQG WKH ORZHU SRUWLRQ ZLOO VKRZ D IDOVH ORZSUHVVXUH PHDVXUHPHQW 7KH XQFRUUHFWHG OXPLQHVFHQFH UDWLRHG LQWHQVLW\ LPDJHV DW VHYHQ SUHVVXUHV EHWZHHQ SVL IRU WKH 3W'2&,SSVS93'06 FRDWLQJ DUH LOOXVWUDWHG LQ )LJXUH DQG WKH DFFRPSDQ\LQJ SUHVVXUH GDWD DUH OLVWHG LQ 7DEOH )LJXUH /XPLQHVFHQFH UDWLRHG LQWHQVLW\ LPDJHV DW VHYHQ SUHVVXUHV IURP SVL IRU 3W'2&,SSVS93'06 FRDWLQJ RQ DQ DOXPLQXP SODWH DVVXPLQJ D FRQVWDQW WHPSHUDWXUH GLVWULEXWLRQ RYHU WKH SODWH (PLVVLRQ FROOHFWHG DW QP SHDN DQG H[FLWDWLRQ DW QP ,QWHQVLW\ VFDOH EDUV DSSHDU WR WKH ULJKW RI HDFK LPDJH IRU SVL

PAGE 113

7DEOH &RUUHVSRQGLQJ SUHVVXUH YDOXHV DQG VWDWLVWLFDO GLVWULEXWLRQV IRU WKH XQFRUUHFWHG UDWLRHG LQWHQVLW\ LPDJHV RI WKH 3W'2&,SSVS93'06 FRDWLQJ RQ DQ DOXPLQXP SODWH DW VHYHQ SUHVVXUHV EHWZHHQ SVL 3SVLfD 3 E U DYJ DDY bF D SUHVVXUH PDQXDOO\ VHW IRU FDOLEUDWLRQ FKDPEHU PHDVXUHG SUHVVXUH DYHUDJH IRU HDFK LPDJH 2DYJ A ADYJA3DYJ :KHQ WKH WHPSHUDWXUH GHSHQGHQFH RI WKH SUHVVXUH FRPSRQHQW LV FRUUHFWHG WKH WUXH SUHVVXUH YDOXHV IRU HDFK LQWHQVLW\ LPDJH DUH GHWHUPLQHG 7R FRQYHUW WKH LQWHQVLW\ UDWLR LPDJHV WR SUHVVXUHV ILUVW D WHPSHUDWXUH LV DVVXPHG DQG D SUHVVXUH LV FDOFXODWHG XVLQJ WKH FDOLEUDWLRQ FXUYH LQ )LJXUH TXDGUDWLF ,UDWL $ %3 &7 '3n (7 )37f 7KH FRHIILFLHQWV $)f DUH GHWHUPLQHG XVLQJ D OHDVWVTXDUHV UHJUHVVLRQ ILW IURP WKH FDOLEUDWHG GDWD SRLQWV VKRZQ LQ )LJXUH 2QFH WKH SUHVVXUH LV FDOFXODWHG LW LV XVHG WR XSGDWH WKH WHPSHUDWXUH XVLQJ WKH FDOLEUDWLRQ FXUYH LQ )LJXUH DOVR D TXDGUDWLF ILW ZLWK VL[ FRHIILFLHQWVf 7KLV LV LWHUDWHG XQWLO FRQYHUJHQFH IDLUO\ TXLFNO\ a LWHUDWLRQVf IRU HDFK SL[HO LQWHQVLW\ UDWLR YDOXH 7KH FRORU KRPRJHQHLW\ VHHQ LQ WKH DFFRPSDQ\LQJ SUHVVXUH GDWD )LJXUH f LQGLFDWHV WKDW WKH WHPSHUDWXUHGHSHQGHQFH KDV EHHQ FRUUHFWHG IRU E\ XVLQJ WKH GDWD 7KH FRUUHFWHG OXPLQHVFHQFH LQWHQVLW\ LPDJHV RI )LJXUH DUH LOOXVWUDWHG LQ )LJXUH DQG WKH DFFRPSDQ\LQJ SUHVVXUH GDWD DUH OLVWHG LQ 7DEOH

PAGE 114

)LJXUH &RUUHFWHG OXPLQHVFHQFH UDWLRHG LQWHQVLW\ LPDJHV DW VHYHQ SUHVVXUHV IURP SVL IRU 3W'2&,SSVS93'06 FRDWLQJ RQ DQ DOXPLQXP SODWH (PLVVLRQ FROOHFWHG DW QP SHDN DQG H[FLWDWLRQ DW QP ,QWHQVLW\ VFDOH EDUV DSSHDU WR WKH ULJKW RI HDFK LPDJH IRU SVL 7DEOH &RUUHVSRQGLQJ SUHVVXUH YDOXHV DQG VWDWLVWLFDO GLVWULEXWLRQV IRU WKH FRUUHFWHG UDWLRHG LQWHQVLW\ LPDJHV RI 3W'2&,SSVS93'06 FRDWLQJ RQ DQ DOXPLQXP SODWH DW VHYHQ SUHVVXUHV EHWZHHQ SVL 3SVLfD 3DYJE JDYJ bF SUHVVXUH PDQXDOO\ VHW IRU FDOLEUDWLRQ FKDPEHU E PHDVXUHG SUHVVXUH DYHUDJH IRU HDFK LPDJH *JYJ R ADYJ3DYJ $QDO\VLV RI WKH OXPLQHVFHQFH UHVSRQVH WR SUHVVXUH DQG WHPSHUDWXUH IRU WKH 3W'2&,6VSVS93'06 FRDWLQJ LV GHSLFWHG LQ WKH FDOLEUDWLRQ FXUYHV RI )LJXUH

PAGE 115

)LJXUH 6WHUQ9ROPHU SORW DQG UDWLRHG HPLVVLRQ SORWV YHUVXV SUHVVXUH DQG WHPSHUDWXUH IRU 3W'2&,6VSVS93'06 FRDWLQJ DQDO\]HG DQG LPDJHG LQ D VWDWLF FDOLEUDWLRQ FHOO $f 69 SORW HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP %f 5DWLRHG HPLVVLRQ SORW YHUVXV SUHVVXUH HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP &f 5DWLRHG HPLVVLRQ SORW YHUVXV WHPSHUDWXUH HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP DQG 'f 5DWLRHG HPLVVLRQ SORW YHUVXV WHPSHUDWXUH HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI QP H[FLWDWLRQ DW QP 7KH UHVXOWV DUH VLPLODU WR WKDW RI WKH 3W'2&,SSVS93'06 FRDWLQJ H[FHSW IRU WKH UDWLRHG HPLVVLRQ SORWV YHUVXV SUHVVXUH DQG WHPSHUDWXUH IRU HPLVVLRQ LQWHJUDWHG RYHU DQ DSSUR[LPDWH DUHD RI WR QP LPDJHV % DQG UHVSHFWLYHO\f 7KH '2&,6V_LVS WHPSHUDWXUH SUREH H[KLELWV OHVV SUHVVXUH DQG WHPSHUDWXUH VHQVLWLYLW\ DV FRPSDUHG WR WKH '2&,SSVS WHPSHUDWXUH SUREH 7KH XQFRUUHFWHG UDWLRHG LQWHQVLW\ LPDJHV DW QP DQG FRUUHVSRQGLQJ SUHVVXUH GDWD IRU WKH 3W'2&,6VSVS93'06 FRDWLQJ DUH VLPLODU WR WKRVH RI WKH

PAGE 116

3W'2&,S_8VS93'06 FRDWLQJ 3ODFLQJ D .f WHPSHUDWXUH JUDGLHQW DFURVV WKH DOXPLQXP SODWH LQGXFHV WHPSHUDWXUH VHQVLWLYLW\ LQ WKH SUHVVXUH SUREHfV OXPLQHVFHQFH LQWHQVLW\ 2QO\ WKH FRUUHFWHG UDWLRHG LQWHQVLW\ LPDJHV IRU WKH 3W'2&,6VSVS93'06 FRDWLQJ DUH LOOXVWUDWHG LQ )LJXUH DORQJ ZLWK WKH DFFRPSDQ\LQJ SUHVVXUH GDWD OLVWHG LQ 7DEOH )LJXUH &RUUHFWHG OXPLQHVFHQFH UDWLRHG LQWHQVLW\ LPDJHV DW VHYHQ SUHVVXUHV IURP SVL IRU 3W'2&,6SVS93'06 FRDWLQJ RQ DQ DOXPLQXP SODWH (PLVVLRQ FROOHFWHG DW QP SHDN DQG H[FLWDWLRQ DW QP ,QWHQVLW\ VFDOH EDUV DSSHDU WR WKH ULJKW RI HDFK LPDJH IRU SVL 7DEOH &RUUHVSRQGLQJ SUHVVXUH YDOXHV DQG VWDWLVWLFDO GLVWULEXWLRQV IRU WKH FRUUHFWHG UDWLRHG LQWHQVLW\ LPDJHV RI 3W'2&,6VSVS93'06 FRDWLQJ RQ DQ DOXPLQXP SODWH DW VHYHQ SUHVVXUHV EHWZHHQ SVL 3SVLfD 3 E UDYJ DDY bF SUHVVXUH PDQXDOO\ VHW IRU FDOLEUDWLRQ FKDPEHU K PHDVXUHG SUHVVXUH DYHUDJH IRU HDFK LPDJH 7DYJ R aa &7DYJ3DYJ

PAGE 117

6KLIWLQJ RI WKH LPDJHV GXULQJ DQDO\VLV DQG UHVROXWLRQ RI WKH PLFURVSKHUHV LV VHHQ LQ WKH ODVW LPDJH RI WKH VHULHV 7KH SUHVVXUH GDWD LV PRUH VFDWWHUHG WKDQ WKDW IRU WKH 3W'2&,Sf/LVS93'06 FRDWLQJ 7KH 3W'2&,SILVS93'06 FRDWLQJ VWDWLVWLFDOO\ DQG YLVXDOO\ DSSHDUV WR EH WKH EHWWHU RI WKH WZR FRDWLQJV IRU FDOLEUDWLRQ FHOO LPDJLQJ 7KH VWDWLVWLFDO GLVWULEXWLRQ RI WKH UDZ LQWHQVLW\ YDOXHV ZKLFK OHDG WR WKH SUHVVXUH DQG WHPSHUDWXUH YDOXHV DUH LPDJHG LQ )LJXUH DW DQG QP IRU WKH WZR FRDWLQJV 7KH FRXSRQV LQ HDFK LPDJH DUH LQ [ LQ LQ VL]H 7KH UDZ LQWHQVLW\ FRHIILFLHQW RI YDULDQFH IRU HDFK LPDJH LV OLVWHG DW WKH ERWWRP RI HDFK LPDJH $V FDQ EH VHHQ LQ WKH IRXU LPDJHV WKH LQWHQVLW\ GLVWULEXWLRQV IRU WKH 3W'2&,SSVS93'06 FRDWLQJ DUH VPDOOHU LQGLFDWLQJ OHVV SRVVLEOH GLVWXUEDQFH RI WKH LPDJLQJ SURFHVV IURP OXPLQRSKRUH GLVWULEXWLRQ

PAGE 118

)LJXUH &DOLEUDWLRQ FHOO LQWHQVLW\ LPDJHV RI WKH 3W'2&,SSVS93'06 DQG 3W'2&, 6VSVS93'06 FRDWLQJV RQ DQ DOXPLQXP SODWH LPDJHG DW QP DQG QP ([FLWDWLRQ DW QP $f 3W'2&,SSVS93'06 DW QP %f 3W'2&,SSVS93'06 DW QP &f 3W'2&,6VSVS93'06 DW QP 'f 3W'2&,6VSVS93'06 DW QP 6HYHUDO TXHVWLRQV FDQ EH UDLVHG FRQFHUQLQJ WKH LPDJHV LQ )LJXUH 'R WKH PLFURVSKHUHV LQWHUIHUH ZLWK WKH ZLQGWXQQHO DLUIORZ DQG LPDJH UHJLVWUDWLRQ" &RXOG WKH FRDWLQJV EH VSUD\HG WKLFNHU RU WKH PLFURVSKHUHV ILOWHUHG WR HOLPLQDWH WKH EXPS\ FRDWLQJ WH[WXUH DQG JULWW\ HIIHFW LQ WKH OXPLQHVFHQFH LPDJHV GXH WR PLFURVSKHUH EXLOGXS" 7KH 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS93'06 FRDWLQJV DUH DSSUR[LPDWHO\ SP DQG SP WKLFN UHVSHFWLYHO\ 3ULRU PLFURVFRSLF LPDJLQJ RI WKH FRDWLQJVf PLFURVSKHUH FRQWHQW ZDV LOOXVWUDWHG LQ )LJXUH &OHDUO\ WKH PLFURVFRSH LPDJHV GLVSOD\

PAGE 119

PLFURVSKHUHV RI VL]HV EHWZHHQ SP LQ OHQJWK KRZHYHU WKH SL[HO VL]H RI WKH FDPHUD XVHG IRU WKH FDOLEUDWLRQ FHOO LV DSSUR[LPDWHO\ SP 7KHUHIRUH WKH FOXVWHUV RI VSKHUHV LPDJHG GXULQJ WKH FDOLEUDWLRQ FHOO H[SHULPHQW DUH PXFK ODUJHU WKDQ WKH PLFURVSKHUHV LPDJHG ZLWK WKH PLFURVFRSH :KHWKHU WKH YLVXDOO\ UHVROYHG DJJUHJDWLRQ LQ )LJXUH LV LQKHUHQW WR WKH IRUPXODWLRQ RU D SURGXFW RI WKH DSSOLFDWLRQ QHHGV WR EH GHWHUPLQHG 'LVFXVVLRQ 7KH GHYHORSPHQW RI GXDOOXPLQRSKRUH FRDWLQJV LV QRW QHZ 7KHUH KDYH EHHQ VHYHUDO DWWHPSWV WR XVH LQRUJDQLF SKRVSKRUV UKRGDPLQH % DQG VLOLFRQ RFWDHWK\OSRUSKLQH DV WHPSHUDWXUH VHQVLQJ OXPLQRSKRUHV 4QH I WKH ELJJHVW SUREOHPV ZLWK VXFK IRUPXODWLRQV LV WKDW WKH\ VXIIHU IURP QHJDWLYH FKHPLFDO DQG SK\VLFDO LQWHUDFWLRQV EHWZHHQ WKH WZR OXPLQRSKRUHV 7KHUHIRUH HQFDSVXODWLQJ WKH WHPSHUDWXUH GHSHQGHQW OXPLQRSKRUH PDNHV SHUIHFW VHQVH IRU DYRLGLQJ WKHVH SUREOHPV 3W7)33 2WKHU UHVHDUFK JURXSV KDYH HPSOR\HG WKH XVH RI 3W7)33 SRUSK\ULQ IRU WKH SUHVVXUH VHQVLQJ SUREH MKH KDORJHQDWHG PHWDOORSRUSK\ULQ LV PRUH SKRWRVWDEOHA OHVV WHPSHUDWXUH GHSHQGHQWDQG PRUH VXVFHSWLEOH WR R[\JHQ TXHQFKLQJ WKDQ RWKHU SUHVVXUH VHQVLQJ SUREHV LQYHVWLJDWHG 5X,,f RFGLLPLQH FRPSOH[HV RU 3W,,f RFWDHWK\OSRUSK\ULQf 7KH LQFUHDVHG SKRWRVWDELOLW\ RI 3W7)33 LV GXH WR WKH DGGLWLRQ RI IOXRULQDWHG SKHQ\O ULQJV DW WKH PHVRSRVLWLRQV RI WKH SRUSK\ULQ ULQJ 7KH HOHFWURQ ZLWKGUDZLQJ HIIHFW RI WKH IOXRULQHV UDLVHV WKH 3W7)33 R[LGDWLRQ SRWHQWLDO PDNLQJ LW PRUH GLIILFXOW WR R[LGL]H WKHUHE\ VWDELOL]LQJ LW ZLWK UHVSHFW WR DWWDFN E\ VLQJOHW R[\JHQ

PAGE 120

7KH WHPSHUDWXUH GHSHQGHQFH RI WKH SKRWROXPLQHVFHQFH IRU 3W7)33 LV OHVV WKDQ RWKHU SUHVVXUH SUREHV 5X,,f DGLLPLQH FRPSOH[HVf EHFDXVH 3W7)33 GRHV QRW SRVVHVV ORZHQHUJ\ FKDUJH WUDQVIHU &7f VWDWHV RU GGf H[FLWHG VWDWHV WKDW FDQ EH WKHUPDOO\ SRSXODWHG OLNH WKH 5X,,f DGLLPLQH FRPSOH[HV GR 7KH SKRWROXPLQHVFHQFH HPLVVLRQ RI 3W7)33 LV GXH WR VSLQRUELW FRXSOLQJ UHVXOWLQJ LQ HPLVVLRQ ZKLFK LV OHVV WHPSHUDWXUH GHSHQGHQW 7KH LQFUHDVHG R[\JHQ VHQVLWLYLW\ RI 3W7)33 LV IDFLOLWDWHG E\ LWV ORQJ SKRVSKRUHVFHQFH OLIHWLPH GXH LQ SDUW WR NNr WUDQVLWLRQV FHQWHUHG RQ WKH SRUSK\ULQ ULQJ LQ SDUWLFXODU WKH 7LWLrf VWDWH %DFN ERQGLQJ EHWZHHQ WKH G[] DQG G\] RUELWDOV RI WKH 3W ZLWK WKH HPSW\ HJLrf RUELWDOV RI WKH SRUSK\ULQ PDFURF\FOH SURGXFHV D VWURQJ VSLQ RUELW FRXSOLQJ 7KLV OHDGV WR VLQJOHWWULSOHW PL[LQJ ZKLFK LQFUHDVHV WKH UDGLDWLYH GHFD\ UDWH IURP 7LWWrf f§! 6R 6SLQRUELW FRXSOLQJ VLJQLILFDQWO\ GHFUHDVHV WKH WULSOHW OLIHWLPH DQG LQFUHDVHV WKH SKRVSKRUHVFHQFH \LHOG 7KH ORQJ OLIHWLPH RI WKH SKRVSKRUHVFHQW VWDWH IDFLOLWDWHV HIILFLHQW R[\JHQ TXHQFKLQJ RI WKH OXPLQHVFHQFH r 7KHUHIRUH D GHFUHDVH LQ 3DLU DERYH WKH VDPSOH UHVXOWV LQ TXHQFKHG SKRWROXPLQHVFHQFH HPLVVLRQ ,Q DGGLWLRQ WR LWV HQKDQFHG DELOLW\ WR EH TXHQFKHG E\ R[\JHQ 3W7)33 LV DOVR HDVLO\ H[FLWHG LQ WKH YLVLEOH UHJLRQ DQG LW SRVVHVVHV D ODUJH 6WRNHV VKLIW '2&,SSVS DQG '2&,6VSVS 7KH XVH RI FDUERF\DQLQH G\HV KDV EHHQ SUHGRPLQDWHO\ UHSRUWHG LQ SKRWRJUDSK\ DV SKRWRVHQVLWL]HUV WR VLOYHU KDOLGH FROORLGV DQG LQ ODVHU WHFKQRORJ\ DV DFWLYH G\H ODVHU PDWHULDOV 5HFHQWO\ SKRWRFKHPLFDO DQG SKRWRSK\VLFDO VWXGLHV KDYH IRFXVHG RQ LQYHVWLJDWLQJ WKHVH F\DQLQH G\HV DGVRUEHG RQWR PLFURFU\VWDOOLQH FHOOXORVH F\FORGH[WULQV DQG IXQFWLRQDOL]HG SRO\PHU SDUWLFOHV 7KHUHIRUH LW LV FRQFHLYDEOH WR

PAGE 121

XWLOL]H SRO\VW\UHQH PLFURVSKHULFDO SDUWLFOHV IRU HQFDSVXODWLRQ RI F\DQLQH G\HV ,Q JHQHUDO G\H DGVRUSWLRQ RQWR SRO\VW\UHQH SDUWLFOHV LV QRW XQFRPPRQ DQG KDV EHHQ HPSOR\HG LQ WKH VWXG\ RI HQHUJ\ WUDQVIHU EHWZHHQ SDUWLFOHV DQG VROLG VXUIDFH SKRWRUHDFWLRQV 7KH '2&, G\H ZDV FKRVHQ DV WKH WHPSHUDWXUHGHSHQGHQW SUHVVXUHLQGHSHQGHQW SUREH EHFDXVH LWV IOXRUHVFHQFH OLIHWLPH LV FD QV LQ HWKDQRO DW r & DQG WRR TXLFN IRU DGHTXDWH OXPLQHVFHQFH TXHQFKLQJ E\ R[\JHQ 7KH IOXRUHVFHQFH HPLVVLRQ RI WKH '2&, G\H DULVHV XSRQ H[FLWDWLRQ RI WKH NNr YLVLEOH DEVRUSWLRQ EDQG ;PD[ QP H FLWL n0 LQ HWKDQROf DQG LV GRPLQDWHG E\ D IDVW LVRPHUL]DWLRQ SURFHVV IURP WKH ILUVW H[FLWHG VLQJOHW VWDWH 7KH LVRPHUL]DWLRQ EHJLQV ZLWK D WZLVWLQJ RI WKH PROHFXOH DURXQG RQH RI WKH FDUERQFDUERQ SRO\PHWKLQH FKDLQ ERQGV WR IRUP DQ H[FLWHG VWDWH WZLVWHG PROHFXOH 7KH WZLVWHG H[FLWHG VWDWH VSHFLHV GHFD\V WR WKH JURXQG VWDWH HLWKHU WR D JURXQG VWDWH SKRWRLVRPHU RU WR D WKHUPRG\QDPLFDOO\ VWDEOH JURXQG VWDWH VSHFLHV 7KH LVRPHUL]DWLRQ LV DQ DFWLYDWHG SURFHVV DQG LQIOXHQFHG E\ WHPSHUDWXUH DQG PHGLXP HIIHFWV 7KHUHIRUH WKH WZLVWLQJ SURFHVV FRPSHWHV ZLWK IOXRUHVFHQFH DQG LQWHUQDO FRQYHUVLRQ IURP WKH ILUVW H[FLWHG VWDWH $V WKH PROHFXOHV HQYLURQPHQW ULVHV LQ WHPSHUDWXUH WKH IOXRUHVFHQFH HPLVVLRQ RI WKH '2&, G\H GHFUHDVHV 7KH PLFURVSKHUHV XWLOL]HG LQ WKH 3W'2&,SSVS93'06 DQG 3W'2&, 6ILVS93'06 FRDWLQJV ZHUH SUHSDUHG LQ WZR GLIIHUHQW IDVKLRQV 7KH GLIIHULQJ PDQQHUV JDYH ULVH WR XQLTXH SK\VLFDO HIIHFWV )LUVW WKH PLFURVSKHUHV RI WKH 3W'2&,SSVS93'06 FRDWLQJ ZHUH SUHSDUHG XVLQJ D SUHFLSLWDWLRQ SRO\PHUL]DWLRQ $V VHHQ LQ WKH 6(0 LPDJHV )LJXUHV DQG DQG f WKH VSKHUHV DUH WLJKWO\ SDFNHG DQG KLJKO\ FURVVOLQNHG 7KH VSKHUHVf VXUIDFH FKDUJH LV QHXWUDO WKHUHIRUH G\H DGVRUSWLRQ LV QRW DQ HOHFWURVWDWLF SURFHVV 7KH G\H PROHFXOHV DUH ORRVHO\ KHOG WR WKH VSKHUHV HVVHQWLDOO\ WUDSSHG LQ WKH VPDOO SRUHV DQG ERQGHG E\ YDQ GHU :DDOV DQG K\GURSKRELF

PAGE 122

LQWHUDFWLRQV 7KH PDLQ EHQHILW RI WKH HQWUDSPHQW LV VHSDUDWLRQ RI WKH '2&, PROHFXOHV IURP WKH 3W7)33 OXPLQRSKRUH LQ WKH SRO\PHU ELQGHU 7KH WZR OXPLQRSKRUHV FRXOG QRW DQG GLG QRW QHJDWLYHO\ LQWHUDFW VSHFWURVFRSLFDOO\ ZLWK RQH DQRWKHU 7KH PLFURVSKHUHV RI WKH 3W'2&,6SVS93'06 FRDWLQJ ZHUH SUHSDUHG E\ HPSOR\LQJ D PRGLILHG VXVSHQVLRQ SRO\PHUL]DWLRQA IROORZHG E\ D VXOIRQDWLRQ 7KH VSKHUHV DUH VPDOOHU DQG PRUH SRURXV FRPSDUHG WR WKH '2&,SSVS 6XOIRQDWLRQ LPSDUWHG D QHJDWLYH FKDUJH WR WKH PLFURVSKHUHV ZKLFK FDQ WLJKWO\ KROG WKH G\H PROHFXOHV LQ SODFH ZLWK VWURQJ LRQLF IRUFHV )RU WKH PRVW SDUW ERWK VHWV RI PLFURVSKHUHV H[KLELW WKH VDPH UDWLRHG HPLVVLRQ UHVSRQVH ,UHI,f WR FRQWLQXRXV LOOXPLQDWLRQ DQG WHPSRUDO DQDO\VLV 7KH RQO\ PDMRU GLIIHUHQFH EHWZHHQ WKH WZR W\SHV RI VSKHUHV LV VHHQ LQ WKHLU WHPSHUDWXUH GHSHQGHQFH DQG WKHUPDOVWDELOLW\ 7KH '2&,6SVS DUH OHVV WHPSHUDWXUH GHSHQGHQW DQG UHVSRQG PRUH FRQVLVWHQWO\ WR WHPSHUDWXUH FKDQJHV IURP KRW WR FROG DQG FROG WR KRW WKDQ WKH '2&,SSVS 7KLV SK\VLFDO FKDUDFWHULVWLF FRXOG EH GXH WR WKH ZD\ LQ ZKLFK WKH G\H PROHFXOHV DUH ERXQG WR WKH VSKHUHV 7KH LRQLFDOO\ ERXQG G\H '2&,6VSVSf LV PRUH WLJKWO\ ERXQG DQG ULJLGO\ KHOG ,W LV OHVV OLNHO\ WR URWDWH DQG H[SHULHQFH IOXRUHVFHQFH WHPSHUDWXUHGHSHQGHQW HIIHFWV WKDQ WKH '2&,SSVS 3W'2&,SSVS93'06 DQG 3W'2&,6SVS93'06 &RDWLQJV 7KH 3W7)33 '2&,SSVS DQG '2&,6VSVS UDWLRHG SKRWROXPLQHVFHQFH HPLVVLRQ IRU WKH WZR FRDWLQJV LV WHPSRUDO WKHUPDO DQG SKRWRVWDEOH 7KH '2&,6VSVS IOXRUHVFHQFH HPLVVLRQ LV OHVV WHPSHUDWXUH GHSHQGHQW DQG PRUH WKHUPDOO\ VWDEOH WKDQ WKH '2&,SSVS IOXRUHVFHQFH HPLVVLRQ 7KH VPDOOHU '2&,6VSVS SDUWLFOHV SPf DUH PRUH HYHQO\ GLVWULEXWHG WKURXJKRXW WKH SRO\PHU ELQGHU DQG ZRXOG EH WKRXJKW WR LPSDUW D SRVLWLYH HIIHFW WR WKH FRDWLQJV SK\VLFDO FKDUDFWHULVWLFV KRZHYHU &&' LPDJLQJ RI WKH WZR

PAGE 123

FRDWLQJV UHYHDOV WKDW WKH 3W'2&,6VSVS93'06 FRDWLQJ VXIIHUV IURP ODUJH YDULDWLRQV LQ UDZ LQWHQVLW\ YDOXHV DFURVV WKH FRDWLQJ 7KHUH DUH QXPHURXV LQWHQVH IOXRUHVFHQW DJJORPHUDWLRQV WKURXJKRXW WKH LPDJHV 7KHVH DUHDV DUH GXH WR FOXVWHULQJ RI WKH PLFURVSKHUHV 7KH 3W'2&,SSVS93'06 FRDWLQJ H[KLELWV OHVV DUHDV RI LQWHQVH IOXRUHVFHQFH DQG LV WKHUHIRUH WKH EHWWHU FKRLFH RI WKH WZR FRDWLQJV 8QIRUWXQDWHO\ WKH SUHVHQFH RI PLFURVSKHULFDO DJJUHJDWHV RI HLWKHU IRUPXODWLRQ QHJDWLYHO\ DIIHFWV WKH LPDJLQJ UHVXOWV E\ JHQHUDWLQJ YLVXDOO\ JULWW\ LPDJHV PLFURVSKHUHV PP LQ VL]Hf 7KHVH DUH GLIILFXOW WR FRUUHFW IRU XVLQJ VWDQGDUG LPDJH UHJLVWUDWLRQ WHFKQLTXHV )XUWKHU GHYHORSPHQW RI WKH FRDWLQJV QHHGV WR EH LPSOHPHQWHG WR LPSURYH WKHVH FRPSOLFDWLRQV ([SHULPHQWDO 3UHSDUDWLRQ RI '2&, +LJKO\ &URVVOLQNHG 3RO\PHU 0LFURVSKHUHV '2&,SSVSf 3UHFLSLWDWLRQ SRO\PHUL]DWLRQ SSVSf 7KH SDUWLFOHV ZHUH SUHSDUHG YLD D SUHFLSLWDWLRQ SRO\PHUL]DWLRQ IROORZLQJ D SURFHGXUH DGDSWHG IURP 6WRYHUA LQ D P/ URXQGERWWRP IODVN IDVKLRQHG ZLWK D UHIOX[ FRQGHQVHU DQG QLWURJHQ LQOHW ZHUH FRPELQHG P/ GLVWLOOHG DFHWRQLWULOH J GLYLQ\OEHQ]HQH b GLYLQ\OEHQ]HQH LVRPHUV '9%f YRO b UHODWLYH WR WRWDO YROXPHf IURP $OGULFK DQG PJ $,%1 b ZW b UHODWLYH WR '9%f IURP $OGULFK 7KH WHPSHUDWXUH RI WKH SRO\PHUL]DWLRQ ZDV VWHDGLO\ UDPSHG WR r & RYHU D PLQ SHULRG DQG PDLQWDLQHG DW r & ZLWK FRQWLQXDO VWLUULQJ IRU K 7KH LQLWLDOO\ KRPRJHQRXV PL[WXUH EHFDPH PLON\ ZKLWH DIWHU K $W WKH HQG RI WKH SRO\PHUL]DWLRQ D ZKLWH SRO\PHU SUHFLSLWDWH VHWWOHG WR WKH ERWWRP RI WKH URXQGERWWRP $Q\ XQUHDFWHG PRQRPHU DQG LQLWLDWRU ZHUH VXFWLRQ ILOWHUHG DZD\ IURP WKH SUHFLSLWDWH ZLWK ; P/ DOLTXRWV RI b HWKDQRO 7KH SRO\PHU SDUWLFOHV ZHUH GULHG LQ YDFXR DW r & RYHUQLJKW

PAGE 124

'2&, LQFRUSRUDWLRQ '2&,SSVSf 7KH PLFURVSKHUHV PJf ZHUH FRPELQHG ZLWK PJ RI f GLHWK\OR[DFDUERF\DQLQH LRGLGH '2&,f b IURP $OGULFK GLVVROYHG LQ P/ PHWKDQRO 7KH VXVSHQVLRQ ZDV VRQLFDWHG IRU K DQG DOORZHG WR VWDQG LQ WKH GDUN IRU GD\V 7KH SDUWLFOHV ZHUH ILOWHUHG DQG VXFFHVVLYHO\ ZDVKHG ZLWK DOWHUQDWLQJ P/ DOLTXRWV RI PHWKDQRO DQG GLFKORURPHWKDQH XQWLO WKH H[FHVV G\H ZDV UHPRYHG '\H UHPRYDO ZDV GHWHUPLQHG E\ PRQLWRULQJ WKH G\H FRQFHQWUDWLRQ LQ WKH VROYHQW ZDVKHV YLD 899LV DEVRUSWLRQ 7KH SDUWLFOHV ZHUH GULHG LQ YDFXR DW r & RYHUQLJKW $ ILQH RUDQJH SRZGHU ZDV REWDLQHG '\H ORDGLQJ ZDV b '2&, (OHPHQWDO DQDO\VLV IRXQG & b 1 b + b 1 b LQ PJ VDPSOH [ J 1 [O J 1f JPROf [ 2f PRO 1 [On PRO '2&, LQ VDPSOH [ PRO '2&, [ JPRO [ J '2&, [ Jf [n Jf b '2&, 3UHSDUDWLRQ RI '2&, 6XOIRQDWHG 3RO\PHU 0LFURVSKHUHV '2&,6VSVSf 6XVSHQVLRQ SRO\PHUL]DWLRQ VSVSf 7KH SDUWLFOHV ZHUH SUHSDUHG YLD D FRQYHQWLRQDO VXVSHQVLRQ SRO\PHUL]DWLRQ DGDSWHG IURP 6WRYHU D P/ WKUHHQHFN IODVN ZDV ILWWHG ZLWK D VWDLQOHVV VWHHO VWLUULQJ URG ZLWK WZR WLOWHG EODGHV D UHIOX[ FRQGHQVHU ZLWK D QLWURJHQ LQOHW DQG D WKHUPRPHWHU ,Q P/ ', K/2 ', ,/&NSRURJHQ YYf ZDV GLVSHUVHG PJ VRGLXP ODXU\OVXOIDWH PRO b UHODWLYH WR PRQRPHUf DV VWDELOL]HU J GLYLQ\OEHQ]HQH b GLYLQ\OEHQ]HQH LVRPHUV '9%f YRO b UHODWLYH WR WRWDO YROXPHf IURP $OGULFK SRURJHQ GRGHFDQRNWROXHQH SRURJHPPRQRPHU YYf DQG PJ $,%1 ZW b UHODWLYH WR PRQRPHUf 7KH SRO\PHUL]DWLRQ LQLWLDWLRQ ZDV FRQGXFWHG DW r & XQGHU D QLWURJHQ DWPRVSKHUH DW USP IROORZHG E\ D JUDGXDO LQFUHDVH LQ WHPSHUDWXUH WR r & RYHU K DQG D ILQDO K DW r & 7KH SDUWLFOHV ZHUH DOORZHG WR FRRO WR URRP

PAGE 125

WHPSHUDWXUH 7KH SDUWLFOHV ZHUH WUDQVIHUUHG WR D EHDNHU DQG VXVSHQGHG LQ ', +2 $ VWLU EDU ZDV DGGHG ZKHUHXSRQ WKH SDUWLFOH DJJUHJDWHV ZHUH EURNHQ GRZQ 7KH VXVSHQVLRQ ZDV DOORZHG WR VWDQG IRU VHYHUDO KRXUV WR IUHH VPDOO ROLJRPHULF PDWHULDO LQWR WKH VXSHUQDWH ZKLFK ZDV WKHQ GHFDQWHG 7KLV SURFHVV ZDV UHSHDWHG DJDLQ ZLWK ', + DQG WZLFH ZLWK DFHWRQH 5HVLGXDO LPSXULWLHV ZHUH UHPRYHG ZLWK WHWUDK\GURIXUDQ LQ D 6R[KOHW UHDFWRU RYHUQLJKW 7KH SRO\PHU SDUWLFOHV ZHUH FROOHFWHG DQG GLVSHUVHG LQ ', + $ VWLU EDU ZDV DJDLQ DGGHG WR EUHDNXS SRO\PHU DJJUHJDWHV DIWHUZDUGV WKH SDUWLFOHV ZHUH UHVXVSHQGHG LQ WKH ', + IRU VHYHUDO KRXUV WR IXUWKHU UHPRYH LPSXULWLHV DQG WKH VROXWLRQ ZDV GHFDQWHG 7KLV SURFHVV ZDV UHSHDWHG DJDLQ DQG WKHQ WZLFH ZLWK DFHWRQH $ 6R[KOHW H[WUDFWLRQ ZLWK WHWUDK\GURIXUDQ ZDV SHUIRUPHG DJDLQ WR UHPRYH UHVLGXDO LPSXULWLHV 7KH UHVLQ SDUWLFOHV ZHUH GULHG LQ YDFXR RYHUQLJKW DW r & $SSUR[LPDWHO\ J RI PDWHULDO ZDV REWDLQHG $ ILQH ZKLWH SRZGHU ZDV DFKLHYHG ZKHQ WKH SDUWLFOHV ZHUH JURXQG LQ D PRUWDU ZLWK SHVWOH 6XOIRQDWLRQ RI SRO\PHU PLFURVSKHUHV 6VSVSf 7KH SRO\PHU SDUWLFOHV ZHUH VXOIRQDWHG IROORZLQJ D SURFHGXUH DGDSWHG IURP :LQQLN DQG 6WRYHU 7KH SDUWLFOHV PJf ZHUH GLVSHUVHG LQ P/ RI GLFKORURPHWKDQH DQG VRQLFDWHG IRU PLQ WR HOLPLQDWH WUDSSHG DLU 7KH IODVN ZDV FRROHG WR r& DQG DQ DGGLWLRQ IXQQHO ZDV DGGHG $ VROXWLRQ RI P/ RI FKORURVXOIRQLF DFLG $OGULFKf GLVVROYHG LQ P/ RI GLFKORURPHWKDQH ZDV DGGHG GURSZLVH WR WKH GLVSHUVHG SDUWLFOHV RYHU D K SHULRG 8SRQ DGGLWLRQ RI WKH ILUVW GURS WKH PL[WXUH WXUQHG SLQN LQ FRORU $IWHU WKH DGGLWLRQ WKH IODVN ZDV JUDGXDOO\ ZDUPHG WR URRP WHPSHUDWXUH ZLWK FRQWLQXRXV VWLUULQJ 7KH VXVSHQVLRQ ZDV VWLUUHG IRU DQ DGGLWLRQDO K SHULRG DW URRP WHPSHUDWXUH 7KH SDUWLFOHV ZHUH WUDQVIHUUHG WR D EHDNHU DQG VXVSHQGHG LQ P/ GLFKORURPHWKDQH $ VWLU EDU ZDV DGGHG WR EUHDN DSDUW ODUJH SDUWLFOH DJJORPHUDWLRQV 7KH

PAGE 126

VXVSHQVLRQ ZDV DOORZHG WR VWDQG IRU VHYHUDO KRXUV DQG WKH GLFKORURPHWKDQH VROXWLRQ ZDV GHFDQWHG 7KH SURFHVV ZDV UHSHDWHG WZLFH 'DUN EURZQ UHVLQ SDUWLFOHV ZHUH REWDLQHG DQG DOORZHG WR GU\ LQ WKH KRRG DW URRP WHPSHUDWXUH 3UHSDUDWLRQ RI FKDUJHG VXOIRQDWHG SRO\PHU PLFURVSKHUHV 6VSVS f 7KH VXOIRQDWHG SRO\PHU SDUWLFOHV ZHUH GLVSHUVHG LQ P/ RI ', I72 $ P/ VROXWLRQ RI 1D2+ P0f ZDV DGGHG WR WKH GLVSHUVHG SDUWLFOHV 7KH FRORU RI WKH VROXWLRQ FKDQJHG IURP EURZQ WR EHLJH XSRQ DGGLWLRQ RI WKH 1D2+ VROXWLRQ 7KH GLVSHUVLRQ ZDV VWLUUHG DW URRP WHPSHUDWXUH IRU PLQ 7KH SDUWLFOHV ZHUH WKHQ ILOWHUHG DQG ZDVKHG ZLWK P/ RI ', +L2 WKUHH WLPHV WKH S+ RI WKH VXVSHQVLRQ ZDV 7KH SDUWLFOHV ZHUH WKHQ ZDVKHG ZLWK P/ RI DFHWRQH DQG GULHG LQ YDFXR DW r & IRU K %HLJH SDUWLFOHV ZHUH REWDLQHG (OHPHQWDO DQDO\VLV RI WKH SDUWLFOHV ZDV 6 b 1D b & b + b 6XOIRQDWLRQ RI PLFURVSKHUHV ZDV b J PQ JPRO [ [ JPRO JPRO [ f O JPRO [ f A B JPRO b a b JPRO ; JPRO ;f O JPRO
PAGE 127

JPRO ; JPRO ; JPRO JPRO ; [ b6 ; b VXOIRQDWLRQ '2&, LQFRUSRUDWLRQ '2&,6VSVSf 7KH FKDUJHG VXOIRQDWHG PLFURVSKHUHV PJf ZHUH GLVSHUVHG LQ D VROXWLRQ RI PJ RI fGLHWK\OR[DFDUERF\DQLQH LRGLGH '2&,f b IURP $OGULFK GLVVROYHG LQ P/ PHWKDQRO DQG P/ ', ,'2 7KH PL[WXUH ZDV VRQLFDWHG IRU PLQ DQG VWLUUHG DW URRP WHPSHUDWXUH IRU K 7KH PL[WXUH ZDV DJDLQ FHQWULIXJHG IRU PLQ DQG WKH VROYHQW OD\HU ZDV GHFDQWHG 7KH UHVXOWLQJ VROLG ZDV ZDVKHG ZLWK P/ PHWKDQRO DQG FHQWULIXJHG IRU DQ DGGLWLRQDO PLQ 7KLV SURFHVV ZDV UHSHDWHG WKUHH WLPHV 7KH SDUWLFOHV ZHUH WKHQ ZDVKHG ZLWK P/ RI DFHWRQH DQG FHQWULIXJHG IRU PLQ 7KH G\H ORDGHG SDUWLFOHV ZHUH ILOWHUHG DQG GULHG LQ YDFXR DW r & IRU K '\H ORDGLQJ ZDV b RI '2&, (OHPHQWDO DQDO\VLV IRXQG & b 1 b + b JPRO ; JPRO f JPRO ;f JPRO ; b 1 JPRO '2&, LQFRUSRUDWHG UHSHDW XQLW ; [ b '2&, 2OLJRPHUV 63'06 VLODQRO WHUPLQDWHG SRO\GLPHWK\OVLOR[DQHV 3'06f b 2+ DYHUDJH 0: f DQG PHWK\OWULDFHWR[\VLODQH b ZHUH SXUFKDVHG IURP *HOHVW 7XOO\WRZQ 3$f 93'06 PHWK\OK\GURVLOR[DQHVGLPHWK\OVLOR[DQH FRSRO\PHU PROH b 0H+6L2 DYHUDJH 0: f YLQ\O WHUPLQDWHG SRO\GLPHWK\OVLOR[DQHV 3'06f ZW b YLQ\O DYHUDJH 0: f DQG SODWLQXPGLYLQ\OWHWUDPHWK\OGLVLOR[DQH b 3W FDWDO\VW ZHUH SXUFKDVHG IURP *HOHVW 7XOO\WRZQ 3$f

PAGE 128

/XPLQRSKRUHV >5XOGSS;L-&N 7ULV^GLSKHQ\OOSKHQDQWKUROLQHfUXWKHQLXP ,,f GLFKORULGH 5XGSSf ZDV V\QWKHVL]HG E\ D OLWHUDWXUH SURFHGXUH DQG SXULILHG E\ UHSHDWHG UHFU\VWDOOL]DWLRQV IURP ZDWHU 3W7)33 3W,,f P?VRWHWUDNLVSHQWDIOXRURSKHQ\OfSRUSKLQH ZDV SXUFKDVHG IURP 3RUSK\ULQ 3URGXFWV ,QF /RJDQ 87f '2&, fGLHWK\OR[DFDUERF\DQLQH LRGLGH b ZDV SXUFKDVHG IURP $OGULFK &KHPLFDO &RPSDQ\ 3UHSDUDWLRQ RI &RDWLQJV 5X'2&,SSVS 6LODQRO 3'06 PJ PPRO RI 6L2+ HQGJURXSVf PHWK\OWULDFHWR[\VLODQH PJ PPROf DQG '2&,SSVS PJf ZHUH PL[HG IRU DSSUR[LPDWHO\ PLQ RU XQWLO ZHOO GLVSHUVHG >5XLGSSEM&/ PJf ZDV GLVVROYHG LQ UQ/ GLFKORURPHWKDQH DQG DGGHG WR WKH ROLJRPHUPLFURVSKHUH PL[WXUH 7KH PL[WXUH ZDV VWLUUHG IRU PLQ DQG RQH GURS RI JODFLDO DFHWLF DFLG ZDV DGGHG WR FDWDO\]H WKH UHDFWLRQ 7KH FRDWLQJ ZDV DSSOLHG XVLQJ D FRPPHUFLDOO\ DYDLODEOH DLUEUXVK DW SVL RQWR FOHDQ DQG SULPHUFRDWHG ERURVLOLFDWH JODVV VOLGHV 7KH FRDWLQJV ZHUH DOORZHG WR FXUH WR WKH WRXFK DW URRP WHPSHUDWXUH IRU K $ >5XGSSf@&/ FRDWLQJ YRLG RI SSVS ZDV SUHSDUHG LQ WKH VDPH PDQQHU 3W'2&,SSVS DQG 3W'2&,6VSVS 9LQ\O 3'06 PJ PPRO RI 6LYLQ\O HQGJURXSVf DQG '2&,S_DVS PJf RU '2&,6VSVS PJf ZHUH PL[HG IRU DSSUR[LPDWHO\ PLQ RU XQWLO ZHOO GLVSHUVHG 3W7)33 PJf ZDV GLVVROYHG LQ P/ RI D ; 0 VWRFN VROXWLRQ RI PHWK\OK\GURVLOR[DQH FRSRO\PHU LQ FKORURIRUP DQG WKH OXPLQRSKRUHFRSRO\PHU VROXWLRQ

PAGE 129

ZDV DGGHG WR WKH 3'06 PL[WXUH ZLWK VWLUULQJ 3ULRU WR DSSOLFDWLRQ RI WKH FRDWLQJ P/ RI D VWRFN VROXWLRQ RI PJ RI WKH 3W FDWDO\VW LQ P/ FKORURIRUP ZDV DGGHG WR WKH OXPLQRSKRUHFRSRO\PHU3'06 PL[WXUH 7KH FRDWLQJ ZDV DSSOLHG XVLQJ D FRPPHUFLDOO\ DYDLODEOH DLUEUXVK DW SVL RQWR FOHDQ DQG SULPHUFRDWHG ERURVLOLFDWH JODVV VOLGHV 7KH FRDWLQJV ZHUH DOORZHG WR FXUH WR WKH WRXFK DW URRP WHPSHUDWXUH IRU K 3ULPHU 6LODQRO 3'06 PJ PPRO RI 6L2+ HQGJURXSVf DQG RU 72 SRZGHU .HUU0F*HHf PJf ZHUH PL[HG IRU G RU XQWLO ZHOO EOHQGHG 7KH PLON\ ZKLWH PL[WXUH ZDV WKHQ ILOWHUHG WKURXJK D SOXJ RI FRWWRQ WR UHPRYH DQ\ 7L&/ DJJUHJDWHV 0HWK\OWULDFHWR[\VLODQH PJ PPROf DQG P/ GLFKORURPHWKDQH ZHUH DGGHG DQG WKH UHVXOWLQJ PL[WXUH ZDV VWLUUHG 3ULRU WR DSSOLFDWLRQ RI WKH SULPHU GURSV RI JODFLDO DFHWLF DFLG ZHUH DGGHG WR FDWDO\]H WKH UHDFWLRQ 7KH FRDWLQJ ZDV DSSOLHG XVLQJ D FRPPHUFLDOO\ DYDLODEOH DLUEUXVK DW SVL RQWR FOHDQ ERURVLOLFDWH JODVV VOLGHV 7KH FRDWLQJV ZHUH DOORZHG WR FXUH WR WKH WRXFK DW URRP WHPSHUDWXUH IRU K RU ZLWKLQ K DW r & ,QVWUXPHQWDWLRQ )OXRUHVFHQFH PLFURVFRSH 7KH IOXRUHVFHQFH PLFURVFRSH V\VWHP FRQVLVWHG RI DQ LQYHUWHG PLFURVFRSH SODWIRUP 2O\PSXV PRGHO ,; f ILWWHG ZLWK D : +J VRXUFH 86+'+f DQG D &&' FDPHUD 3ULQFHWRQ 57( [ f PRXQWHG WR WKH VLGH SRUW )OXRUHVFHQFH PLFURVFRS\ ZDV FRQGXFWHG ZLWK D EOXHYLROHW PRGXODU ILOWHU FXEH &KURPD 7HFKQRORJ\ H[FLWDWLRQ QP QP EDQGSDVV QP GLFKURLF VSOLWWHUf 7KH HPLVVLRQ ILOWHU ZDV LQWHUFKDQJHDEOH DPRQJ DQ HPLVVLRQ QP QP EDQGSDVV ILOWHU DQ HPLVVLRQ QP QP EDQGSDVV ILOWHU RU D QP ORQJ SDVV ILOWHU &KURPD 7HFKQRORJ\f )OXRUHVFHQFH

PAGE 130

LPDJHV ZHUH FROOHFWHG WKURXJK ; DQG ; REMHFWLYH OHQVHV 2O\PSXV 8 3ODQ ), 1$ DQG 6/& 3ODQ ), 1$ UHVSHFWLYHO\f 1HXWUDO GHQVLW\ ILOWHUV DQG DQ ,5 EORFNLQJ ILOWHU ZHUH XVHG WR DGMXVW H[FLWDWLRQ LQWHQVLW\ DQG SUHYHQW H[WUDQHRXV H[FLWDWLRQ OLJKW IURP UHDFKLQJ WKH &&' 7KH FRDWLQJ IRUPXODWLRQV ZHUH DSSOLHG DV WKLQ ILOPV WR WKH VXUIDFH RI D LQ WKLFN ERURVLOLFDWH JODVV GLVN ZLWK D FRPPHUFLDOO\ DYDLODEOH DLUEUXVK RSHUDWHG DW SVL 3URILORPHWU\ GHWHUPLQHG WKDW WKH ILOPV ZHUH W\SLFDOO\ SP WKLFN 7KH GLVN ZDV PRXQWHG LQ D VWDLQOHVV VWHHO DLUWLJKW FKDPEHU ZLWK DQ RULQJ VHDO WKH VHQVRU ILOP ZDV RQ WKH LQVLGH VXUIDFH RI WKH JODVV GLVNf DV GLVSOD\HG LQ )LJXUH $ YDFXXP SXPS ZDV XVHG WR FRQWURO WKH DLU SUHVVXUH LQVLGH WKH FKDPEHU SVL SVLf DQG SUHVVXUH ZDV PRQLWRUHG XVLQJ D 'UXFN PRGHO '3, f SUHVVXUH JDXJH 7KH VHQVRU ILOP ZDV LPDJHG WKURXJK WKH LQ JODVV GLVN WKDW VXSSRUWHG WKH ILOP 7KLV ZDV SRVVLEOH EHFDXVH RI WKH ORQJIRFDO OHQJWK REMHFWLYHV XVHG ZLWK WKH 2O\PSXV PLFURVFRSH 7R 3UHVVXUH *DXJH /XP ,QHVFHQW 7R 9DFXXP *ODVV :LQGRZ 1HXWUDO 'HQVLW\ DQGRU ,5 )LOWHUVf QP EDQGSDVV 3ULQFHWRQ &&' &DP HUD 57(&&' < )LJXUH ,QYHUWHG )OXRUHVFHQFH 0LFURVFRSH VHWXS IRU LPDJLQJ RI OXPLQHVFHQW R[\JHQ VHQVLQJ WKLQ ILOPV

PAGE 131

,Q RUGHU WR DOORZ GLUHFW FRPSDULVRQ RI WKH &&' IOXRUHVFHQFH LPDJH GDWD REWDLQHG IURP WKH WKLQ ILOP VDPSOHV XQGHU WKH VDPH 61 FRQGLWLRQV FDUH ZDV WDNHQ WR LQVXUH WKDW WKH DEVROXWH IOXRUHVFHQFH LQWHQVLW\ IURP WKH VDPSOHV ZDV DGMXVWHG WR EH WKH VDPH DW 3DLU a DWP WKH fKLJKf OLJKW FRQGLWLRQ IRU WKH VHQVRU ILOPVf 7KLV OLJKWOHYHO DGMXVWPHQW ZDV PDGH E\ XVLQJ QHXWUDO GHQVLW\ ILOWHUV WR DWWHQXDWH WKH H[FLWDWLRQ OLJKW UHDFKLQJ WKH VDPSOH )RU DOO LPDJHV RQ DOO VSHFLPHQV WKH &&' H[SRVXUH WLPH ZDV PV )OXRULPHWHU &RQYHQWLRQDO FRUUHFWHG VWHDG\ VWDWH HPLVVLRQ VSHFWURVFRS\ RI WKH FRDWLQJ IRUPXODWLRQV ZDV FDUULHG RXW XVLQJ D 63(; ) IOXRULPHWHU )OXRUHVFHQFH GDWD REWDLQHG RQ FRDWLQJV UHSUHVHQWV WKH DYHUDJH RYHU DQ DUHD RI DSSUR[LPDWHO\ PP VSRW VL]H GHILQHG E\ WKH H[FLWDWLRQ OLJKWf $ VSHFLDO FKDPEHU VLPLODU WR )LJXUH ZDV GHVLJQHG IRU WKH IOXRULPHWHU DSSDUDWXV 7KH FKDPEHU FP [ FP [ FPf ZDV HTXLSSHG ZLWK YDFXXP WXELQJ DWWDFKHG WR D JDV PDQLIROG IDVKLRQHG ZLWK D SUHVVXUH JDXJH IRU PRQLWRULQJ WKH FKDPEHU DLU SUHVVXUH DQG D YDFXXP SXPS IRU UHJXODWLQJ WKH FKDPEHU DLU SUHVVXUH &RROLQJ WXEHV DWWDFKHG WR D ZDWHU FLUFXODWLRQ EDWK ZHUH IHG LQWR WKH FKDPEHU DORQJ WKH EDFN ZDOO DGMDFHQW WR WKH VDPSOH 7KH VDPSOH WHPSHUDWXUH ZDV PRQLWRUHG YLD DQ LQWHULRU WKHUPRFRXSOH LQVWDOOHG DORQJ WKH EDFN RI WKH ZDOO DGMDFHQW WR WKH VDPSOH 7KH VDPSOH PP [ PP [ PPf ZDV PRXQWHG LQ WKH FKDPEHU PP DZD\ IURP WKH PP WKLFN JODVV ZLQGRZ 7KH SKRWROXPLQHVFHQFH RI WKH VDPSOH ZDV PRQLWRUHG IURQWIDFH WR WKH FKDPEHU ZLQGRZ 8:9LV 6WHDG\ VWDWH DEVRUSWLRQ VSHFWUD ZHUH UHFRUGHG RQ D 9DUDQ &DU\ GXDOEHDP VSHFWURSKRWRPHWHU

PAGE 132

6FDQQLQJ HOHFWURQ PLFURVFRSH 7KH PLFURVSKHUHV ZHUH LPDJHG XVLQJ D +LWDFKL 6 )( VFDQQLQJ HOHFWURQ PLFURVFRSH 6(0f 7KH PLFURVSKHUH VSHFLPHQV ZHUH SUHSDUHG E\ UHGLVSHUVLQJ WKH PLFURVSKHUHV LQ PHWKDQRO DQG D GURS ZDV SODFHG RQ D SLHFH RI FLUFXODU JODVV VOLSFRYHU ZKLFK ZDV PRXQWHG RQ DQ DOXPLQXP VWXG ZLWK FDUERQ WDSH $IWHU VROYHQW HYDSRUDWLRQ WKH SDUWLFOHV ZHUH VSXWWHUFRDWHG ZLWK QP RI JROG 7KH '2&,SSVS DQG '2&,6VSVS GLVSHUVHG LQ 93'06 VSHFLPHQV ZHUH SUHSDUHG E\ FRDWLQJ D JODVV FLUFXODU VOLSFRYHU ZLWK WZR OD\HUV DSSUR[LPDWHO\ SP WKLFNf RI WKH PLFURVSKHUHSRO\PHU FRDWLQJ DQG PRXQWLQJ WKH FRYHU VOLS RQ DQ DOXPLQXP VWXG ZLWK FDUERQ WDSH $IWHU ILOP FXUH WKH FRDWLQJV ZHUH VSXWWHUFRDWHG ZLWK QP RI JROG 7KH IUDFWXUHG LPDJHV ZHUH DFKLHYHG E\ VQDSSLQJ LQ KDOI WKH JROG FRDWHG PLFURVSKHUHSRO\PHU FRDWHG JODVV VOLSFRYHUV SURSSLQJ WKH JODVV SLHFHV RQ HQG DQG DWWDFKLQJ WKH SLHFHV WR WKH DOXPLQXP VWXG ZLWK FDUERQ JOXH DQG WLQ\ EDOOV RI DOXPLQXP IRLO DV VXSSRUW 7UDQVPLVVLRQ HOHFWURQ PLFURVFRSH 7KH PLFURVSKHUHV ZHUH LPDJHG XVLQJ D +LWDFKL + WUDQVPLVVLRQ HOHFWURQ PLFURVFRSH 7(0f 7KH 7(0 VSHFLPHQV ZHUH SUHSDUHG E\ HPEHGGLQJ FXUHG >5XGSSf@&O GLVSHUVHG LQ 63'06 LQ IRUPYDU b SRO\YLQ\O IRUPXOD LQ HWK\OHQH GLFKORULGHf PLFURWRPLQJ VOLFHV WR D WKLFNQHVV RI QP DWWDFKLQJ WKH VOLFHV WR D PHVK FRSSHU JULG DQG FRDWLQJ ZLWK QP FDUERQ (QHUJ\ GLVSHUVLYH ;UD\ VSHFWURVFRS\ 7KH 5XGSS63'06 VDPSOHV ZHUH LPDJHG XVLQJ DQ ('$; HQHUJ\ GLVSHUVLYH [UD\ V\VWHP ('6f DWWDFKHG WR D 3KLOOLSV (0 7(0 7KH ('6 VSHFLPHQV ZHUH SUHSDUHG DV DERYH IRU 7(0

PAGE 133

&DOLEUDWLRQ FKDPEHU &DOLEUDWLRQ WHVWV ZHUH FRQGXFWHG RQ 3W'2&,SSVS93'06 DQG 3W'2&, 6VSVS93'06 FRDWLQJV WR DFFHVV WKHLU SUHVVXUH PHDVXUHPHQW DFFXUDF\ ZKHQ H[SRVHG WR D VSDWLDO WHPSHUDWXUH JUDGLHQW $OXPLQXP FRXSRQV LQ [ LQ [ LQf ZHUH FRDWHG ZLWK SULPHU DQG WKH FRDWLQJV ZHUH DLUEUXVKHG RQWR WKH FRXSRQV OD\HUVf 7KH SODWHV ZHUH LQGLYLGXDOO\ SODFHG LQWR D SUHVVXUH DQG WHPSHUDWXUH FRQWUROOHG HQYLURQPHQW FKDPEHU $ WHPSHUDWXUH JUDGLHQW .f ZDV LPSRVHG RQ WKH FRXSRQV XVLQJ D KHDWHG SODWH DQG D ZDWHUFRROHG EDWK 7KH RYHUDOO SUHVVXUH ZDV YDULHG EHWZHHQ WR SVL ,PDJHV ZHUH DFTXLUHG DW WZR HPLVVLRQ ZDYHOHQJWKV QP DQG QP 7KH RSWLFDO EDQGZLGWK ZDV QP ):+0 7KH VDPSOH ZDV H[FLWHG XVLQJ WZR WZRHOHPHQW EOXH /(' ODPSV SHDN HPLVVLRQ # QPf

PAGE 134

&+$37(5 0,&526&23,& $1$/<6,6 2) /80,1(6&(17 2;<*(1 6(1625 7+,1 ),/06 ,QWURGXFWLRQ $V RXWOLQHG LQ &KDSWHU 2QH WKHUH LV FRQVLGHUDEOH UHFHQW LQWHUHVW LQ WKH GHYHORSPHQW DQG DSSOLFDWLRQ RI VROLGVWDWH WKLQ ILOP SKRWROXPLQHVFHQFHEDVHG VHQVRUV IRU GHWHFWLRQ DQG TXDQWLILFDWLRQ RI JDV DQG VROXWLRQERUQH DQDO\WHV$ 7KHVH WKLQ ILOP VHQVRUV FRQVLVW RI D SKRWROXPLQHVFHQW G\H PROHFXOH GLVSHUVHG RU GLVVROYHG LQ D JDV SHUPHDEOH SRO\PHU ELQGHU 7KH ELQGHU HQFDSVXODWHV WKH OXPLQRSKRUH DQG DOORZV LW WR EH GLVWULEXWHG DFURVV DQ REMHFW DQG KHOG LQ SODFH IRU GHWHFWLRQ RI JDV PROHFXOHV 3DUWLFXODU LQWHUHVW KDV IRFXVHG RQ WKH GHYHORSPHQW RI OXPLQHVFHQW VHQVRUV IRU WKH PHDVXUHPHQW RI WKH R[\JHQ SDUWLDO SUHVVXUH S&/f LQ WKH JDV DQGRU FRQGHQVHG SKDVHV /XPLQHVFHQFH TXHQFKLQJ WKDW RFFXUV LQ DQ R[\JHQ SHUPHDEOH OXPLQHVFHQW FRDWLQJ FDQ EH PRGHOHG E\ WKH 6WHUQ9ROPHU 69f HTXDWLRQ f f ZKHUH LV WKH HPLVVLRQ LQWHQVLW\ .fVY LV WKH 6WHUQ9ROPHU TXHQFKLQJ FRQVWDQW DQG >&(MSRL\ LV WKH FRQFHQWUDWLRQ RI R[\JHQ LQ WKH SRO\PHU ELQGHU $VVXPLQJ +HQU\fV /DZ KROGV >&(MSRL\ LV SURSRUWLRQDO WR DLU SUHVVXUH 3DLUf DQG WKH 69 HTXDWLRQ UHGXFHV WR HTXDWLRQ f ZKLFK LV DQ DSSURSULDWH IRUP IRU D VROLG VWDWH WKLQ ILOP VHQVRU WKDW LV LQ HTXLOLEULXP ZLWK DLU ,3Df f .3DLUf .VY3H f

PAGE 135

,Q PDQ\ DSSOLFDWLRQV LW LV LPSUDFWLFDO WR XVH 3DcU DV D UHIHUHQFH FRQGLWLRQ DQG FRQVHTXHQWO\ WKH 69 HTXDWLRQ LV UHFDVW DV HTXDWLRQ f ZKHUH WKH UHIHUHQFH FRQGLWLRQ LV WDNHQ DV 3DcU DWP D DQG % DUH QRQ]HUR FRHIILFLHQWV DQG WKH UDWLR %$f .VY ,3DLU DWPf B $ %S .3DLUf f 6RPH WKLQ ILOP R[\JHQ VHQVRUV IHDWXUH OLQHDU 69 FDOLEUDWLRQV LQ DFFRUG ZLWK HTXDWLRQV f RU f KRZHYHU PDQ\ ILOPV H[KLELW QRQOLQHDU FDOLEUDWLRQV WKDW DUH FXUYHG GRZQZDUG $OWKRXJK D QXPEHU RI VWXGLHV KDYH DWWHPSWHG WR LGHQWLI\ WKH EDVLV IRU WKLV QRQLGHDO 69 UHVSRQVH WKH IXQGDPHQWDO SURFHVVHVf UHVSRQVLEOH DUH VWLOO QRW ZHOO XQGHUVWRRG 6HYHUDO PDWKHPDWLFDO PRGHOV KDYH EHHQ GHYHORSHG WR ILW WKH QRQOLQHDU 69 FRUUHODWLRQV 7KHVH PDWKHPDWLFDO PRGHOV DUH EDVHG RQ WKH SK\VLFDO K\SRWKHVLV WKDW WKH ILOP PRUSKRORJ\ LV LQKRPRJHQHRXV SRVVLEO\ GXH WR QDQR RU PHVRVFDOH LUUHJXODULWLHV LQ WKH SRO\PHU HQYLURQPHQW VXUURXQGLQJ WKH OXPLQHVFHQW VHQVRU PROHFXOHV 7KH PRGHOV WKDW KDYH UHFHLYHG WKH PRVW DWWHQWLRQ LQFOXGH WKH WZRVLWH TXHQFKLQJ PRGHO TH *DXVVLDQ RU ORJ*DXVVLDQ GLVWULEXWLRQ LQ OXPLQRSKRUH HPLVVLRQ GHFD\ WLPH 7f DQFM WKH GXDOVRUSWLRQ PRGHO $OO PRGHOV ZHUH H[WHQVLYHO\ H[SODLQHG LQ &KDSWHU 2QH $GYDQFHV LQ WKH DUHD RI IOXRUHVFHQFH PLFURVFRS\ VSHFLILFDOO\ WKH GHYHORSPHQW RI QHDUILHOG VFDQQLQJ RSWLFDO PLFURVFRS\ DQG VLQJOHPROHFXOH IOXRUHVFHQFH VSHFWURVFRS\ KDYH OHG WR QHZ VWXGLHV WKDW DUH IRFXVHG RQ H[DPLQLQJ WKH PRUSKRORJ\ DQG KHWHURJHQHLW\ RI OXPLQHVFHQW G\H PROHFXOHSRO\PHU FRPSRVLWHV ZLWK QP DQG SP VSDWLDO UHVROXWLRQ 5HFHQWO\ UHSRUWHG IOXRUHVFHQFH PLFURVFRS\ VWXGLHV KDYH XVHG HQYLURQPHQWDOO\ VHQVLWLYH IOXRUHVFHQW SUREH PROHFXOHV WR H[SORUH WKH KHWHURJHQHLW\ RI WKLQ SRO\PHU ILOPV

PAGE 136

,OO 7KHVH VWXGLHV UHYHDO WKDW VLJQLILFDQW LQVLJKW FDQ EH REWDLQHG FRQFHUQLQJ WKH VSDWLDO GLVWULEXWLRQ RI PROHFXODU HQYLURQPHQWV SURYLGHG E\ WKH SRO\PHU PDWUL[ RQ WKH QDQR DQG PHVRVFDOH 3UHVHQWHG LQ WKLV FKDSWHU LV D QRYHO DSSOLFDWLRQ RI IOXRUHVFHQFH PLFURVFRS\ IRU H[SORUDWLRQ RI WKH VSDWLDO GLVWULEXWLRQ RI WKH OXPLQHVFHQFH UHVSRQVH WR R[\JHQ FRQFHQWUDWLRQ LQ OXPLQHVFHQW R[\JHQ VHQVRU WKLQ ILOPV 6SHFLILFDOO\ IOXRUHVFHQFH PLFURVFRS\ DQG &&' LPDJH DQDO\VLV WHFKQLTXHV DUH HPSOR\HG WR FUHDWH VSDWLDOO\ UHVROYHG fLPDJH PDSVf RI WKH 69 FRQVWDQW .VYf IRU OXPLQHVFHQW R[\JHQ VHQVRU WKLQ ILOPV 7KHVH LPDJH PDSV SURYLGH TXDQWLWDWLYH LQIRUPDWLRQ FRQFHUQLQJ WKH 69 UHVSRQVH RI WKH VHQVRUV ZLWK JUHDWHU WKDQ SP VSDWLDO UHVROXWLRQ 6HYHUDO VHULHV RI OXPLQHVFHQW R[\JHQ VHQVRU WKLQ ILOPV DUH H[DPLQHG XVLQJ WKLV WHFKQLTXH 7KH ILUVW VHULHV RI R[\JHQ VHQVLQJ WKLQ ILOPV HYDOXDWHG DUH 3W7)3363'06 WKLQ ILOPV 3W7)33 3W,,f WHWUDSHQWDIOXRURSKHQ\OfSRUSK\ULQ GLVSHUVHG LQ D SRO\PHU ELQGHU 63'06 VLODQRO SRO\GLPHWK\OVLOR[DQHV 0: PHWK\OWULDFHWR[\VLODQH FURVVn OLQNHUf LQFRUSRUDWLQJ LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 VHQVRU 7KH VHFRQG VHULHV RI WKLQ ILOPV HYDOXDWHG DUH 3W7)3363'06 WKLQ ILOPV LQFRUSRUDWLQJ LQFUHDVHG PROH UDWLRV RI FURVVOLQNHU PHWK\OWULDFHWR[\VLODQHf 7KH WKLUG VHULHV RI WKLQ ILOPV HYDOXDWHG DUH VL[ 5X,,f RWGLLPLQH FRPSOH[HV YDU\LQJ LQ FRXQWHU LRQ RU OLJDQG VWUXFWXUH GLVSHUVHG LQ 63'06 7KH IRXUWK DQG ILQDO VHULHV HYDOXDWHG LV D FRPELQDWLRQ RI WKLQ ILOPV >5XGSSf@&) LV GLVSHUVHG LQ WZR VLPLODU SRO\PHUV 63'06 DQG D FRPPHUFLDOO\ V\QWKHVL]HG SRO\GLPHWK\OVLOR[DQH 3'06 0:f ELQGHU '06'f %RWK ILOPV LQFRUSRUDWH LQFUHDVHG ZHLJKW SHUFHQWV RI D K\GURSKLOLF IXPHG VLOLFD JHO 7KHVH IRXU

PAGE 137

VHULHV ZHUH FKRVHQ WR LOOXVWUDWH WKH UHODWLRQVKLSV EHWZHHQ VHQVRU GLVWULEXWLRQ SRO\PHU FURVVOLQNLQJ RU ILOOHU DGGLWLYHV DQG WKH ILOPVf 69 UHVSRQVH 5HVXOWV )OXRUHVFHQFH 0LFURVFRS\ RI ,QFUHDVHG &RQFHQWUDWLRQV RI 3W7)33 LQ 63'06 6L[ VHQVRU ILOPV ZHUH SUHSDUHG ZLWK LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 SRO\PHU ELQGHU $ JHQHUDO VFKHPH IRU WKH SRO\PHU ELQGHU IRUPXODWLRQ LV VKRZQ LQ )LJXUH &)/ +2f§6L2 &+ Q ; X! &+ 22&&+ 6L2 f§6L2+ Q +&f§6Lf§22&&+ 3W7)33 &+ &+ 22&&+ DLUEUXVK DSSOLFDWLRQ &+& 3RO\PHU %LQGHU 6XEVWUDWH r 37)33 3ULPHU )LJXUH 6FKHPH IRU SUHSDUDWLRQ RI 3W7)3363'06 OXPLQHVFHQW WKLQ ILOPV 7KH FRQFHQWUDWLRQV RI 3W7)33 DUH FDOFXODWHG DV PROH RI 3W7)33/ RI SRO\PHU GHQVLW\ RI SRO\PHU JP/f )RU HDFK WKLQ ILOP LQ WKH VHULHV WKH VDPSOHV DUH ILUVW DQDO\]HG RQ WKH PDFURVFRSLF OHYHO XWLOL]LQJ WKH IOXRULPHWHU 0DFURVFRSLF 6WHUQ9ROPHU 69f SORWV IRU LQFUHDVHG FRQFHQWUDWLRQV P0fRI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU DUH GLVSOD\HG LQ )LJXUH

PAGE 138

)LJXUH 0DFURVFRSLF 69 SORWV IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV $UHI DUHD EHWZHHQ QP DW SVL )RU WKH PRVW SDUW LQFUHDVHG FRQFHQWUDWLRQV RI 3W7)33 GR QRW QHJDWLYHO\ DIIHFW WKH 69 UHVSRQVH RI WKH VHQVRU ILOPV /XPLQHVFHQFH LQWHQVLW\ FRQVLVWHQWO\ GHFUHDVHV IRU DOO VHQVRU ILOPV E\ PRUH WKDQ D IDFWRU RI WHQ ZKHQ 3DcU LQFUHDVHV IURP SVL 7KH PDFURVFRSLF 69 UHVSRQVH OLQHDU UHJUHVVLRQ GDWD DUH OLVWHG LQ 7DEOH $V ZDV VHHQ LQ &KDSWHU 7ZR IRU 3W7)33 VHQVRU ILOPV VPDOO YDULDWLRQV LQ WKH LQWHUFHSW $f DW PD[LPXP VORSH %f YDOXHV IRU HTXDWLRQ f UHVXOW LQ ODUJH GHYLDWLRQV LQ WKH FDOFXODWHG .VY YDOXHV ,Q 7DEOH WKH VORSH YDOXHV DUH QHDU PD[LPXP SVL SVLf VR UHODWLYHO\ VPDOO YDULDWLRQV LQ WKH LQWHUFHSW YDOXH FDXVH WKH .VY YDOXHV WR DOVR YDU\ %\ ORRNLQJ DW WKH UDZ LQWHQVLW\ YDOXHV DW QHDU YDFXXP FRQGLWLRQV IRU WKH VHQVRU ILOPV LQ 7DEOH LW LV VHHQ WKDW WKH LQWHQVLW\ YDOXHV GR YDU\ DQG E\ WKH VDPH PDJQLWXGH DV WKH FRUUHVSRQGLQJ .VY YDOXHV 7KH .VY YDOXHV LQ 7DEOH DUH LQGLFDWLYH RI WKH VHQVRU ILOPVf UDZ LQWHQVLW\ FKDUDFWHULVWLFV WKH H[WHQW RI R[\JHQ TXHQFKLQJf DQG DUH EDVHG RQ UHDO FOHDQ GDWD

PAGE 139

7DEOH 0DFURVFRSLF 69 UHVSRQVH GDWD IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV &RQFHQWUDWLRQ P0fD 6ORSH SVLnfE ,QWHUFHSW .VY SVL fG U f E f 3W7)33 FRQFHQWUDWLRQ LQ PJ RI 63'06 SRO\PHU ELQGHU LQWHUFHSW $ LQ HTXDWLRQ f F VORSH % LQ HTXDWLRQ f G .VY %$f LQ HTXDWLRQ f 7DEOH 3W7)33 HPLVVLRQ LQWHQVLW\ DUHD ; QPf YDOXHV IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV 3UHVVXUH SVLf P0D P0D P0D P0D P0D D 3W7)33 FRQFHQWUDWLRQ LQ PJ RI 63'06 SRO\PHU ELQGHU :KLOH WKH 69 UHVSRQVH SORWV DUH XQDIIHFWHG E\ LQFUHDVHG VHQVRU FRQFHQWUDWLRQ PLFURVFRSLF DQDO\VLV RI WKH VHQVRU ILOPV UHYHDOV IRUPDWLRQ RI 3W7)33 IOXRUHVFHQW PLFURFU\VWDOV EULJKW VSRWVf DQG QRQIOXRUHVFHQW DJJUHJDWHV GDUN VSRWVf ZLWK LQFUHDVHG VHQVRU FRQFHQWUDWLRQ 7KH RQVHW RI VXEVWDQWLDO YLVXDO LPDJH KHWHURJHQHLW\ RFFXUV IRU WKH VHQVRU ILOP DW P0 3W7)33 4XDOLWDWLYH IOXRUHVFHQFH PLFURVFRSH LPDJHV RI WKH VHQVRU ILOPV REWDLQHG DW SVL PD[LPXP IOXRUHVFHQFHf ZLWK D ; REMHFWLYH DUH LPDJHG LQ )LJXUH (DFK LPDJH VL]H LV SP [ SP RU [ SL[HOV 7KH FDOLEUDWLRQ IRU HDFK SL[HO DW ; PDJQLILFDWLRQ LV SPSL[HO

PAGE 140

$ % & )LJXUH 4XDOLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LPDJHV ; SVLf IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ $f P0 %f P0 &f P0 'f P0 (f P0 3W7)33 LQ PJ 63'06 SRO\PHU ELQGHU 7KH HIIHFW RI WKH LQKRPRJHQHRXV GLVWULEXWLRQ RI 3W7)33 LQ WKH 63'06 ELQGHU RQ WKH VSDWLDO GLVWULEXWLRQ RI WKH PLFURVFRSLF 69 UHVSRQVH LV SUREHG E\ WDNLQJ D VHULHV RI TXDQWLWDWLYH ; LQWHQVLW\ LPDJH PDSV RI WKH VHQVRUfV OXPLQHVFHQFH UHVSRQVH WR YDULDWLRQ LQ 3DLU )RU HDFK VHQVRU ILOP VHYHQ LPDJH PDSV ZHUH REWDLQHG IRU SUHVVXUHV UDQJLQJ IURP SVL )LJXUH LOOXVWUDWHV WKH FRUUHFWHG OXPLQHVFHQFH LQWHQVLW\ GLVWULEXWLRQ 7[\ 3DLU SVLff RI RQH UHSUHVHQWDWLYH LPDJH PDS IRU RQH UHJLRQ IURP HDFK FRDWLQJ DW SVL )RU HDFK SP [ SP LQWHQVLW\ LPDJH REWDLQHG D fGDUN LPDJHf LV VXEWUDFWHG WR FRUUHFW IRU H[WUDQHRXV VRXUFHV RI OLJKW DQG QRLVH 7KH GDUN LPDJH LV REWDLQHG ZKHQ WKH H[FLWDWLRQ OLJKW LV EORFNHG 7KH FRORU RI WKH LQWHQVLW\ LPDJHV DUH QRW VFDOHG UHODWLYH WR HDFK RWKHU VR HDFK LPDJH SRVVHVVHV D GLIIHUHQW PD[LPXP LQWHQVLW\ YDOXH OLVWHG LQ 7DEOH 7KH PD[LPXP LQWHQVLW\ YDOXHV LQ 7DEOH DUH XVHG WR

PAGE 141

FDOLEUDWH WKH LQWHQVLW\ FRORU EDUV WR WKH ULJKW RI WKH LQWHQVLW\ LPDJHV 7KH PD[LPXP LQWHQVLW\ YDOXHV DUH \HOORZ DQG VFDOH WR GDUN EOXH IRU ]HUR HPLVVLRQ LQWHQVLW\ LQ WKH LPDJHV RI )LJXUH 7DEOH 0D[LPXP IOXRUHVFHQFH LQWHQVLW\ YDOXHV IRU ; PLFURVFRSLF UHJLRQV RI LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV DW SVL &RQFHQWUDWLRQ P0fD 0D[LPXP ,QWHQVLW\ DXfE D 3W7)33 FRQFHQWUDWLRQ LQ PJ RI 63'06 SRO\PHU ELQGHU E DX DUELWUDU\ XQLWV )LJXUH 4XDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ LPDJHV ; SVLf IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ ,QWHQVLW\ FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f P0 %f P0 &f P0 'f P0 (f P0 3W7)33 LQ PJ 63'06 SRO\PHU ELQGHU $V ZDV H[SHFWHG WKH TXDQWLWDWLYH IOXRUHVFHQFH LPDJHV DUH FRQVLVWHQW ZLWK WKH LQLWLDO TXDOLWDWLYH IOXRUHVFHQFH LPDJHV GLVSOD\HG LQ )LJXUH 7KH RQVHW RI VHQVRU

PAGE 142

FU\VWDOOL]DWLRQ LV DFWXDOO\ LOOXVWUDWHG LQ LPDJHV % DQG & RI )LJXUH ZKLFK ERWK H[KLELW D IHZ IOXRUHVFHQW PLFURFU\VWDOOLWHV 3URQRXQFHG GHYHORSPHQW RI PLFURFU\VWDOOL]DWLRQ DQG DJJUHJDWLRQ LV VHHQ LQ LPDJHV DQG ( 7KH SHUFHQW VWDQGDUG GHYLDWLRQV IRU WKH LQWHQVLW\ YDOXHV RI HDFK SVL LPDJH LQ )LJXUH DQG WKH UHPDLQLQJ VL[ LQWHQVLW\ LPDJH PDSV REWDLQHG IRU HDFK VHQVRU ILOP DUH OLVWHG LQ 7DEOH 7KH OLVW TXDQWLILHV WKH HIIHFW PLFURFU\VWDOOL]DWLRQ DQG DJJUHJDWLRQ KDV RQ WKH LQWHQVLW\ GLVWULEXWLRQ IRU HDFK VHQVRU ILOP 7DEOH 3HUFHQW VWDQGDUG GHYLDWLRQ R bf LQ LQWHQVLWLHV DW VHYHQ SUHVVXUHV IRU PLFURVFRSLF UHJLRQV RI LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV XVLQJ WKH ,3; REMHFWLYH 7 bE &RQFHQWUDWLRQ P0fD SVL SVL SVL SVL SVL SVL SVL D 3W7)33 FRQFHQWUDWLRQ LQ PJ RI 63'06 SRO\PHU ELQGHU K D b *@,D9J [ b 7KH SHUFHQWDJHV OLVWHG LQ 7DEOH DUH QRW ODUJH DQG GR QRW GHYLDWH VLJQLILFDQWO\ IURP RQH SUHVVXUH WR WKH QH[W 7KHUHIRUH HYHQ IRU WKH ILOPV ZLWK KLJKHU FRQFHQWUDWLRQV RI 3W7)33 PLFURFU\VWDOOL]DWLRQ DQG DJJUHJDWLRQ GR QRW LPSDFW WKH LQWHQVLW\ YDOXH GLVWULEXWLRQV VLJQLILFDQWO\ ,Q DFWXDOLW\ WKH SHUFHQWDJHV FRPSULVH DW OHDVW b HUURU GXH WR YDULDQFH LQ WKH H[FLWDWLRQ ILHOG ,PDJLQJ RI D SROLVKHG VLOLFRQ ZDIHU ZLWK D ; REMHFWLYH UHVXOWV LQ D

PAGE 143

UDWKHU KRPRJHQHRXV LOOXPLQDWLRQ ILHOG IRU D [ SL[HO DUHD FHQWHUHG RQ WKH [ SL[HO &&' FKLS 7KH LQWHQVLWLHV GHYLDWH E\ FD b GXH WR UDQGRP QRLVH 7KH GDUN DUHDV ORZ LQWHQVLW\f LQ LPDJHV DQG ( RI )LJXUH DUH VPDOO UHODWLYH WR WKH LQWHQVLW\ ILHOG DQG GR QRW FRQWULEXWH VLJQLILFDQWO\ WR WKH VHQVRU ILOPVf RYHUDOO LQWHQVLW\ UHVSRQVH WR YDULDWLRQ LQ 3DLU 7R IXUWKHU SURYH WKH LQVLJQLILFDQFH WKH EULJKW DQG GDUN VSRWV KDYH RQ WKH LQWHQVLW\ GLVWULEXWLRQV GLVWULEXWLRQ FXUYHV RI WKH LQWHQVLW\ YDOXHV IRU HDFK SUHVVXUH RI WKH OHDVW P0f DQG PRVW P0f YLVXDOO\ KHWHURJHQHRXV VHQVRU ILOPV DUH GLVSOD\HG LQ )LJXUH )LJXUH ,QWHQVLW\ GLVWULEXWLRQ FXUYHV IRU LQWHQVLWLHV REWDLQHG ZLWK D ; REMHFWLYH DW VHYHQ SUHVVXUHV IRU $f P0 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV DQG %f P0 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV ,PDJH $ GLVSOD\V VHYHQ LQWHQVLW\ GLFWULEXWLRQ FXUYHV WKDW GHFUHDVH DQG EURDGHQ DV WKH SHDNV DSSURDFK SVL 7KH SHDNV RYHUODS VOLJKWO\ EHWZHHQ WR SVL DQG H[KLELW D MDJJHG SHDN VKDSH DW HDFK SUHVVXUH 7KH GLVWULEXWLRQ FXUYHV LQ LPDJH % RYHUODS JUHDWO\ EHWZHHQ DQG SVL DQG DUH OHVV EURDG WKDQ WKH FXUYHV LQ LPDJH $ 7KH EURDGHQLQJ DQG RYHUODS RI WKH FXUYHV FDQ EH GXH WR VHYHUDO UHDVRQV XQHYHQ H[FLWDWLRQ ILHOG XQTXHQFKDEOH VHQVRU FU\VWDOOLWHV RU RWKHU OXPLQHVFHQW VSHFLHV SKRWREOHDFKHG HDUO\ LQ WKH

PAGE 144

DQDO\VLV DW ORZHU SUHVVXUHV )RU LPDJH $ HDFK SUHVVXUH FXUYH SRVVHVVHV D GLVWLQFW GLVWULEXWLRQ RI LQWHQVLW\ YDOXHV ZLWK OLWWOH QHDUHVW QHLJKERU RYHUODS %LPRGDO RU HFOLSVLQJ GLVWULEXWLRQ FXUYHV LQGLFDWH QXPHURXV VSHFLHV RI GLIIHULQJ OXPLQHVFHQFH TXHQFKLQJ DQG SRVVLEOH FDXVH IRU QRQOLQHDU 69 UHVSRQVH )RU LPDJH % WKH LQWHQVLW\ KHWHURJHQHLW\ FDXVHG E\ WKH 3W7)33 DJJUHJDWHV DQG PLFURFU\VWDOOLWHV LV HYLGHQFHG E\ KLJKHU LQWHQVLW\ YDOXHV DV ZHOO DV QHDUHVW QHLJKWERU RYHUODS 2YHUDOO WKH WZR LPDJHV GR QRW YDU\ JUHDWO\ ZKLFK H[SODLQV ZK\ WKH PDFURVFRSLF 69 UHVSRQVHV DUH QRW WKDW GLIIHUHQW HYHQ WKRXJK DW WKH PLFURVFRSLF OHYHO WKH VHQVRU ILOPV EHFRPH PRUH KHWHURJHQHRXV ZLWK LQFUHDVHG FRQFHQWUDWLRQV RI 3W7)33 7KH VHULHV RI ILYH TXDQWLWDWLYH LQWHQVLW\ LPDJH PDSV DIIRUGHG ILYH FRUUHVSRQGLQJ .VY[\f LPDJH PDSV LQ )LJXUH DQG DFFRPSDQ\LQJ VWDWLVWLFDO GDWD LQ 7DEOHV D DQG E (DFK LPDJH PDS GLVSOD\HG SRVVHVVHV D GLIIHUHQW PD[LPXP .VY YDOXH 7KH PD[LPXP .VY YDOXH IRU HDFK LPDJH PDS LV OLVWHG LQ 7DEOH 7KH PD[LPXP .VY YDOXHV LQ 7DEOH DUH XVHG WR FDOLEUDWH WKH .VY FRORU VFDOH EDUV WR WKH ULJKW RI WKH LQWHQVLW\ LPDJHV 7KH PD[LPXP .VY YDOXHV DUH \HOORZ DQG VFDOH WR GDUN EOXH IRU QR 69 UHVSRQVH LQ WKH LPDJHV RI )LJXUH 7DEOH 0D[LPXP .VY YDOXHV IRU ; PLFURVFRSLF UHJLRQV RI LQFUHDVHG &RQFHQWUDWLRQ P0fD 0D[LPXP .VY SVLff N UL L E HTXDWLRQ f .VY f§ %$f LQ

PAGE 145

)LJXUH 4XDQWLWDWLYH PLFURVFRSLF .VY[\f LPDJH PDSV IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ .VY FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f P0 %f P0 &f P0 'f P0 (f P0 3W7)33 LQ PJ 63'06 SRO\PHU ELQGHU 7KH .VY LPDJH PDSV LQ )LJXUH FRUUHODWH QLFHO\ ZLWK WKH LQWHQVLW\ LPDJHV LQ )LJXUH ,Q SDUWLFXODU WKH PRUH KHWHURJHQHRXV LPDJHV DQG ( H[KLELW KLJK DQG ORZ UHJLRQV RI 69 UHVSRQVH IRU FRUUHVSRQGLQJ UHJLRQV RI \HOORZ DQG EOXH LQ )LJXUH 6RPH RI WKH ORZ TXHQFKLQJ UHJLRQV GDUN EOXH VSRWVf LQ LPDJHV DQG ( RI )LJXUH DUH VLWXDWHG DURXQG WKH KLJK TXHQFKLQJ UHJLRQV UHG VSRWVf 7KHVH GDUN DUHDV DUH PRVW OLNHO\ GXH WR LPDJH VKLIWLQJ GXULQJ DQDO\VLV ZKLOH WKH UHPDLQLQJ GDUN DUHDV FRUUHODWH ZLWK WKH QRQIOXRUHVFHQW 3W7)33 DJJUHJDWHV %\ FRPSDULQJ WKH SHUFHQW VWDQGDUG GHYLDWLRQ GDWD LQ 7DEOH DQG WKH .VY GDWD LQ 7DEOHV D DQG E LW LV VHHQ WKDW WKH GHYLDWLRQV LQ LQWHQVLW\ DQG .VY YDOXHV LQFUHDVH LQ PDJQLWXGH ZLWK LQFUHDVHG FRQFHQWUDWLRQV RI 3W7)33 +RZHYHU DV ZDV HVWDEOLVKHG HDUOLHU WKH PLFURVFRSLF YLVXDO KHWHURJHQHLW\ H[KLELWHG E\ WKH VHQVRU ILOPV HVSHFLDOO\ DW KLJKHU FRQFHQWUDWLRQV RI 3W7)33 LV QHJOLJLEOH DV LOOXVWUDWHG E\ WKH H[FHOOHQW PDFURVFRSLF 69 FRUUHODWLRQ SORWV LQ )LJXUH

PAGE 146

7DEOH D 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV &RQFHQWUDWLRQ P0 P0 P0 5HJLRQ .fY SVLf R. bE r9VY .AISVUf R. bE .VY .VY SVL nf 2 N bE .VY D 3W7)33 FRQFHQWUDWLRQ LQ PJ RI 63'06 SRO\PHU ELQGHU K R. b Dn r969 69 9 MYDYJ $ A69 b 7DEOH E 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV &RQFHQWUDWLRQ P0 P0 5HJLRQ .VY6SVc f R. b r9VY .MY SVLf R. b r9VY 7KH OXPLQHVFHQFH GLVWULEXWLRQ DQG 69 UHVSRQVH RI LQFUHDVHG FRQFHQWUDWLRQV RI 3W7)33 LQ 63'06 ZDV DOVR PLFURVFRSLFDOO\ DQDO\]HG XWLOL]LQJ D ; REMHFWLYH )LYH UHJLRQV [ SL[HOV SP [ SPf ZHUH LQWHUURJDWHG IRU HDFK ILOP $W HDFK UHJLRQ VHYHQ LQWHQVLW\ LPDJHV IRU SUHVVXUHV EHWZHHQ SVL ZHUH REWDLQHG .VY[\f LPDJH PDSV VLPLODU WR )LJXUH ZHUH JHQHUDWHG IRU HDFK UHJLRQ ZLWK DFFRPSDQ\LQJ VWDWLVWLFDO GDWD OLVWHG LQ 7DEOHV D DQG E ,W LV LQWHUHVWLQJ WR QRWH WKDW WKH GDWD SUHVHQWHG LQ 7DEOHV D DQG E DUH QRW FRQVLVWHQW ZLWK WKH GDWD LQ 7DEOHV D DQG E 7KLV LV GXH WR WKH GLIIHULQJ PDJQLILFDWLRQ EHWZHHQ WKH WZR FDVHV 7KH ; LPDJHV DUH WKH VL]H RI WKH ; LPDJHV 6PDOO DUHDV RI GDUN DQG EULJKW VSRWV

PAGE 147

LOOXVWUDWHG LQ D ; LPDJH DUH HQODUJHG DQG PRUH VXEVWDQWLDO LQ D ; LPDJH 7KHLU FRQWULEXWLRQ WR WKH 69 VWDWLVWLFDO GDWD IRU WKDW UHJLRQ WKHQ KDV D JUHDWHU LPSDFW XSRQ WKH .MY YDOXHV DQG SHUFHQW VWDQGDUG GHYLDWLRQV 7DEOH D 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV &RQFHQWUDWLRQ P0 P0 P0 5HJLRQ .VY SVL nf R bE A69 .fYnOSVLnf 2U rYVY .-Y SVc nf R. bK r9VY D 3W7)33 FRQFHQWUDWLRQ LQ PJ RI 63'06 SRO\PHU ELQGHU 2 b ; b 7DEOH E 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV &RQFHQWUDWLRQ P0 P0 5HJLRQ .VSVL-f 2U b f9VY .VY SVLnf 2U b .VY &OHDUO\ LQFUHDVHG FRQFHQWUDWLRQV RI 3W7)33 WR WKH 63'06 VHQVRU ILOPV GR QRW LPSDUW D QHJDWLYH DIIHFW WR WKH PDFURVFRSLF 69 UHVSRQVH )LJXUH f 0LFURVFRSLF DQDO\VLV GLG UHYHDO WKDW WKH VHQVRU GLVWULEXWLRQ LV KHWHURJHQHRXV DW KLJKHU FRQFHQWUDWLRQV IOXRUHVFHQW PLFURFU\VWDOOLWHV DQG QRQIOXRUHVFHQW DJJUHJDWHVf 7KH PLFURFU\VWDOOLWHV DQG EDFNJURXQG HPLVVLRQ H[KLELW H[FHOOHQW 69 UHVSRQVHV DFFRUGLQJO\ WKH ODFN RI 69

PAGE 148

UHVSRQVH IURP WKH QRQIOXRUHVFHQW DJJUHJDWHV LV VPDOO DQG RI QR RYHUDOO FRQVHTXHQFH WR WKH SHUIRUPDQFH RI WKH VHQVRU ILOPV )OXRUHVFHQFH 0LFURVFRS\ RI ,QFUHDVHG 0ROH 5DWLRV RI &URVVOLQNHU LQ 3W7)336 3'06 3W7)3363'06 VHQVRU ILOPV ZLWK D IL[HG FRQFHQWUDWLRQ RI 3W7)33 DQG LQFUHDVHG PROH UDWLR RI PHWK\OWULDFHWR[\VLODQH FURVVOLQNHU UHODWLYH WR VLODQRO SRO\GLPHWK\OVLOR[DQH ROLJRPHU HQGJURXSV LH PROH RI ROLJRPHU ZLWK WZR 6L2+ HQGJURXSV IRU HYHU\ PROHV RI PHWK\OWULDFHWR[\VLODQHf DUH HYDOXDWHG 0DFURVFRSLF 6WHUQ9ROPHU 69f SORWV IRU WKH VHQVRU ILOPV DUH GLVSOD\HG LQ )LJXUH )LJXUH 0DFURVFRSLF 69 SORWV IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU $UHIA DUHD EHWZHHQ QP DW SVL 7KH VHQVRU ILOPVf UHVSRQVH WR YDULDWLRQ LQ 3DcU ZDV VLPLODU WR WKH SUHYLRXV VHULHV RI 3W7)33 VHQVRU ILOPV 7KH 69 UHVSRQVH LV VWURQJ DQG FRQVLVWHQW UHJDUGOHVV RI PROH UDWLR RI FURVVOLQNHU &RUUHVSRQGLQJ PDFURVFRSLF 69 UHVSRQVH GDWD IRU WKH VHQVRU ILOPV DUH GLVSOD\HG LQ 7DEOH 7KH .VY YDOXHV FRUUHVSRQG WR WKH GHYLDWLRQV LQ HPLVVLRQ DUHD QPf IRU 3W7)33 DW QHDU YDFXXP FRQGLWLRQV IRU HDFK VHQVRU ILOP LQ 7DEOH

PAGE 149

7DEOH 0DFURVFRSLF 69 UHVSRQVH GDWD IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU 0ROH 5DWLR 6ORSH SVLnfE ,QWHUFHSW .6Y SVLn9 U D ROLJRPHQFURVVOLQNHU E LQWHUFHSW $ LQ HTXDWLRQ f / VORSH % LQ HTXDWLRQ f G .VY %$f LQ HTXDWLRQ f 7DEOH 3W7)33 HPLVVLRQ LQWHQVLW\ DUHD ; QPf YDOXHV IRU LQFUHDVHG PROH UDWLRV RI FURVVOLQNHU LQ 3W7)3363'06 RQ JODVV 3UHVVXUH SVLf D D D D OD D ROLJRPHQFURVVOLQNHU 0LFURVFRSLF IOXRUHVFHQFH LPDJH DQDO\VLV UHYHDOV WKDW WKH VHQVRU ILOPVf PRUSKRORJ\ FKDQJHV ZLWK LQFUHDVHG FURVVOLQNHU PROH UDWLR 4XDOLWDWLYH IOXRUHVFHQFH PLFURVFRSH DQDO\VLV RI _LP LPDJH UHJLRQV IRU HDFK VHQVRU ILOP XQYHLOV WKH GHWDLOV RI WKH PRUSKRORJLFDO FKDQJHV )LJXUH LOOXVWUDWHV WKH IOXRUHVFHQFH PLFURVFRSLF LPDJHV SP [ SPf REWDLQHG ZLWK D ; REMHFWLYH DW SVL 9LVXDO KHWHURJHQHLW\ GXH WR SRO\PHU GHZHWWLQJ EODFN VSRWVf LQFUHDVHV ZLWK PROH UDWLR RI FURVVOLQNHU

PAGE 150

$ % & M )LJXUH 4XDOLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LPDJHV ; SVLf IRU 3W7)3363'06 DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ $f %f &f 'f (f PROH UDWLR RI ROLJRPHUFURVV OLQNHU ,QFUHDVHG PROH UDWLRV RI FURVVOLQNHU FDXVH WKH VHQVRU ILOPV WR EH LQFUHDVLQJO\ SRODU DQG VHSDUDWH IURP WKH JODVV RQ ZKLFK WKH\ ZHUH DSSOLHG ,Q LPDJH VPDOO VSRWV DSSHDU ZKHUH WKH SRO\PHU LV WKLQQLQJ DQG LQ LPDJH ( WKH SRO\PHU H[KLELWV DUHDV RI FRPSOHWH GHZHWWLQJ :KLOH WKH SRO\PHU GHZHWWLQJ GRHV QRW LPSDFW WKH PDFURVFRSLF 69 UHVSRQVH LWV LPSDFW RQ WKH VSDWLDO GLVWULEXWLRQ RI WKH PLFURVFRSLF 69 UHVSRQVH LV TXLWH GUDPDWLF 4XDQWLWDWLYH IOXRUHVFHQFH PLFURVFRSLF LPDJH PDSV RI WKH VHQVRU ILOPVf 69 UHVSRQVH WR YDULDWLRQ LQ 3DcU XVLQJ WKH ; REMHFWLYH ZHUH REWDLQHG WR SUREH WKH HIIHFWV RI LQFUHDVHG PROH UDWLRV RI FURVVOLQNHU RQ WKH PLFURVFRSLF LQWHQVLW\ VSDWLDO GLVWULEXWLRQ 6HYHQ LPDJHV DW SUHVVXUHV UDQJLQJ IRUP SVL ZHUH REWDLQHG IRU HDFK ILOP )LJXUH LOOXVWUDWHV RQH UHSUHVHQWDWLYH UHJLRQ IURP HDFK VHQVRU ILOP DW SVL 7KH

PAGE 151

LPDJH LQWHQVLWLHV ZHUH QRW VFDOHG WKH VDPH DQG WKH PD[LPXP LQWHQVLWLHV IRU HDFK LPDJH DUH OLVWHG LQ 7DEOH 7KH PD[LPXP LQWHQVLW\ YDOXHV DUH \HOORZ DQG VFDOH WR GDUN EOXH IRU ]HUR HPLVVLRQ LQWHQVLW\ LQ WKH LPDJHV RI )LJXUH 7DEOH 0D[LPXP IOXRUHVFHQFH LQWHQVLW\ YDOXHV IRU ; PLFURVFRSLF UHJLRQV RI 0ROH 5DWLR 0D[LPXP ,QWHQVLW\ DXfE B L" L E B L BB DX DUELWUDU\ XQLWV $ )LJXUH 4XDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ LPDJHV ; SVLf IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU :KLWH VFDOH EDUV DUH SP ORQJ ,QWHQVLW\ FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f %f &f 'f (f PROH UDWLR ROLJRPHQFURVVOLQNHU 7KH TXDQWLWDWLYH IOXRUHVFHQFH LPDJHV UHVHPEOH WKH TXDOLWDWLYH IOXRUHVFHQFH LPDJHV GLVSOD\HG LQ )LJXUH ,Q )LJXUH LPDJH & GLVSOD\V WKH RQVHW RI SRO\PHU

PAGE 152

GHZHWWLQJ GDUN \HOORZJUHHQ FLUFOHVf $V WKH PROH UDWLR RI FURVVOLQNHU LQFUHDVHV WKH GHZHWWLQJ VSRWV LQFUHDVH LQ VL]H ,PDJH ( H[KLELWV WKH PRVW VXEVWDQWLDO SRO\PHU GHZHWWLQJ DQG LPDJH KHWHURJHQHLW\ GDUN EOXH DQG UHG VSRWVf ,Q RUGHU WR TXDQWLI\ WKH LQWHQVLW\ FKDQJHV IRU HDFK LPDJH PDS WKH LQWHQVLW\ SHUFHQW VWDQGDUG GHYLDWLRQV ZHUH FDOFXODWHG DV ZHOO DV WKRVH IRU WKH UHPDLQLQJ VL[ LQWHQVLW\ SUHVVXUH LPDJHV DQDO\]HG IRU HDFK VHQVRU ILOP 7KH SHUFHQW VWDQGDUG GHYLDWLRQV DUH OLVWHG LQ 7DEOH 7DEOH 3HUFHQW VWDQGDUG GHYLDWLRQ D bf LQ LQWHQVLWLHV DW VHYHQ SUHVVXUHV IRU PLFURVFRSLF UHJLRQV IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVn OLQNHU 7 bD 0ROH 5DWLRE SVL SVL SVL SVL SVL SVL SVL D *L b *L,DYJ [ b E ROLJRPHUFURVVOLQNHU 1RW VXUSULVLQJ RQO\ WKH PROH UDWLR VHQVRU ILOP H[KLELWV LQFUHDVHG GHYLDWLRQV LQ WKH LQWHQVLW\ YDOXHV 7KLV LV QDWXUDOO\ GXH WR WKH ODUJH GDUN DUHDV FUHDWHG E\ SRO\PHU GHZHWWLQJ 7KH UHPDLQLQJ VHQVRU ILOPV H[SHULHQFH VPDOO GHYLDWLRQV FD b RI ZKLFK EHORQJ WR H[FLWDWLRQ ILHOG IOXFWXDWLRQV 7R YLVXDOO\ XQGHUVWDQG WKH LQWHQVLW\ GLVWULEXWLRQV LQWHQVLW\ GLVWULEXWLRQ FXUYHV IRU WKH LQWHQVLW\ YDOXHV DW HDFK SUHVVXUH RI WKH DQG PROH UDWLR 3W7)3363'06 VHQVRU ILOPV DUH VKRZQ LQ )LJXUH

PAGE 153

)LJXUH ,QWHQVLW\ GLVWULEXWLRQ FXUYHV IRU LQWHQVLWLHV REWDLQHG ZLWK D ; REMHFWLYH DW VHYHQ SUHVVXUHV IRU $f PROH UDWLR RI ROLJRPHQFURVVOLQNHU LQ 3W7)3363'06 RQ JODVV DQG %f PROH UDWLR RI ROLJRPHQFURVVOLQNHU LQ 3W7)3363'06 RQ JODVV 7KH GLVWULEXWLRQ FXUYHV LQ LPDJH % RYHUODS JUHDWO\ EHWZHHQ WR SVL DQG WKH LQWHQVLW\ YDOXHV DUH QRW DV ODUJH DV WKRVH IRU LPDJH $ 7KH SHDNV LQ LPDJH $ RYHUODS VOLJKWO\ DW WKH EDVHV EHWZHHQ DQG SVL DQG H[KLELW D MDJJHG SHDN VKDSH IRU HDFK SUHVVXUH )RU LPDJH % WKH FXUYH RYHUODS DQG EURDGHQLQJ LV GXH WR DUHDV LQ WKH SUHVVXUH LQWHQVLW\ LPDJHV ZKHUH WKH SRO\PHU LV GHZHWWLQJ DQG FRQVLGHUDEOH ORZ LQWHQVLW\ YDOXHV DUH UHJLVWHULQJ 7KH WUHQGV LQ )LJXUH FRUUHODWH ZLWK WKH LQFUHDVHG SHUFHQW VWDQGDUG GHYLDWLRQ GDWD LQ 7DEOH 5HJDUGOHVV RI WKH FXUYH RYHUODS LQ LPDJHV $ DQG % WKH FXUYHV DUH VWLOO UHSUHVHQWDWLYH RI GLVWLQFW LQWHQVLWLHV DQG D FOHDU LQGLFDWLRQ DV WR ZK\ HYHQ SRO\PHU GHZHWWLQJ KDV QR HIIHFW RQ WKH PDFURVFRSLF 69 SORW )LJXUH f 7KH VHULHV RI LQWHQVLW\ LPDJHV LQ )LJXUH DIIRUGHG ILYH FRUUHVSRQGLQJ PLFURVFRSLF TXDQWLWDWLYH .VY[\f LPDJH PDSV LOOXVWUDWHG LQ )LJXUH 7KH FRORUV RI WKH LPDJH PDSV DUH QRW VFDOHG WKH VDPH 7KH PD[LPXP .VY YDOXH IRU HDFK LPDJH LV OLVWHG LQ 7DEOH 7KH PD[LPXP .VY YDOXHV DUH UHSUHVHQWHG E\ \HOORZ DQG VFDOH WR GDUN EOXH IRU QR 69 UHVSRQVH LQ WKH LPDJHV RI )LJXUH

PAGE 154

7DEOH 0D[LPXP .VY YDOXHV IRU ; PLFURVFRSLF UHJLRQV IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU 0ROH 5DWLRr 0D[LPXP .6? SVL fE ROLJRPHULFURVVOLQNHU E .VY %$f LQ HTXDWLRQ f )LJXUH 4XDQWLWDWLYH PLFURVFRSLF .VY[\f LPDJH PDSV IRU 3W7)3363'06 RQ JODVV DW )LYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU :KLWH VFDOH EDUV DUH -LP ORQJ .6Y FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f %f &f 'f (f PROH UDWLR ROLJRPHUFURVVOLQNHU 7KH .VY LPDJH PDSV FRUUHODWH ZLWK WKH LPDJH WUHQGV GHSLFWHG LQ )LJXUH 5HJLRQV RI SRO\PHU ELQGHU GHZHWWLQJ H[SHULHQFH ORZ LQWHQVLW\ YDOXHV EOXH VSRWVf DQG ORZ .VY YDOXHV EOXH VSRWVf ,PDJHV DQG ( LOOXVWUDWH WKH DUHDV RI ORZ LQWHQVLW\ DULVLQJ IURP SRO\PHU GHZHWWLQJ YRLG 69 UHVSRQVH ,Q LPDJH ( WKH UHG RYDOV QHDU WKH EOXH VSRWV DUH HUURQHRXV .VY GDWD GXH WR LPDJH VKLIWLQJ GXULQJ DQDO\VLV

PAGE 156

7KH DYHUDJH .6Y[\f YDOXHV ZHUH GHWHUPLQHG IRU HDFK LPDJH DQG WKH SHUFHQW VWDQGDUG GHYLDWLRQV DUH OLVWHG LQ 7DEOHV D DQG E 7KHVH QXPEHUV TXDQWLWDWLYHO\ GHPRQVWUDWH WKH HIIHFW RI SRO\PHU GHZHWWLQJ RQ 69 UHVSRQVH DQG GLVWULEXWLRQ IRU D JLYHQ UHJLRQ 7KH .AI YDOXHV DUH ODUJHU WKDQ WKH PDFURVFRSLF .6Y YDOXHV LQ 7DEOH $V ZDV H[SODLQHG IRU WKH SUHYLRXV VHULHV RI 3W7)33 ILOPV DQ\ DUHDV RI KRPRJHQHLW\ RU KHWHURJHQHLW\ LQ WKH VHQVRU ILOP DUH HQODUJHG IRU PLFURVFRSLF LPDJH PDSV 7KHUHIRUH LW LV SRVVLEOH WR REWDLQ KLJK .VY YDOXHV GHSHQGLQJ RQ WKH LPDJH ILHOG KRPRJHQHRXV YHUVXV SRO\PHU GHZHWWLQJf $ JRRG H[DPSOH RI WKLV LV VHHQ IRU WKH PROH UDWLR 3W7)3363'06 ILOP 7KH .A YDOXHV IOXFWXDWH GXH WR LPDJLQJ RI DUHDV ZLWK FRQFHQWUDWHG SRO\PHU GHZHWWLQJ DQG ORZ .A YDOXHV DQG DUHDV ZLWK OLWWOH WR PRGHUDWH SRO\PHU GHZHWWLQJ DQG KLJK .AI YDOXHV 7DEOH D 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU 0ROH 5DWLR 5HJLRQ .UYVSVUnf 7N bE .69 .VYSVcf R. bE f9VY .VnYnISVL nf R. bE .VY D ROLJRPHQFURVVOLQNHU K R. Y b r.69 ,6 DYJ n W b

PAGE 157

7DEOH E 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU 0ROH 5DWLR 5HJLRQ .MnYLSVUnf \. b n9VY .AOSVUf WN b r9VY 7KH HIIHFWV RI LQFUHDVHG PROH UDWLR RI FURVVOLQNHU LQ 3W7)3363'06 VHQVRU ILOPV ZHUH DOVR DQDO\]HG PLFURVFRSLFDOO\ XWLOL]LQJ D ; REMHFWLYH )LYH UHJLRQV RI HDFK VHQVRU ILOP ZHUH DQDO\]HG (DFK UHJLRQ SURGXFHG VHYHQ SUHVVXUH LPDJH PDSV DQG D .VY[\f LPDJH PDS ZLWK DFFRPSDQ\LQJ VWDWLVWLFDO GDWD .VY[\f GDWD IRU ILYH UHJLRQV DUH OLVWHG LQ 7DEOHV D DQG E $V LV H[SHFWHG WKH YDOXHV LQ 7DEOH D DQG E DUH KLJKHU WKDQ WKH YDOXHV LQ 7DEOHV D DQG OE $JDLQ WKLV LV PRVW OLNHO\ GXH WR JUHDWHU PDJQLILFDWLRQ RI WKH LPDJH DUHDV FUHDWLQJ PRUH VSDWLDOO\ KRPRJHQHRXV LPDJHV 7DEOH D 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU 0ROH 5DWLR 5HJLRQ .JSVUnf WN bE ‘9VY .AISVUf \. bE r9VY .SVLff 2U bE D ROLJRPHU FURVVOLQNHU FU 4 LL R. ‘Z ; LADYJ $ A69 b

PAGE 158

7DEOH E 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 3W7)3363'06 RQ JODVV DW ILYH GLIIHUHQW PROH UDWLRV RI FURVVOLQNHU 0ROH 5DWLR 5HJLRQ .VUSVcnf I7 N b ‘9VY .eSVUnf N b f9VY 7KH LQFUHDVHG PROH UDWLRV RI FURVVOLQNHU LQ WKH 3W7)3363'06 VHQVRU ILOPV SRVH QR HIIHFW WR WKH PDFURVFRSLF 69 UHVSRQVH DQG DQDO\VLV LQ )LJXUH DQG 7DEOH 'HZHWWLQJ RI WKH SRO\PHU ELQGHU GHWHFWHG DW WKH PLFURVFRSLF OHYHO DIIHFWV WKH PLFURVFRSLF 69 UHVSRQVH 7KH 69 UHVSRQVHV DUH VWURQJ EXW SODJXHG ZLWK ODUJH SHUFHQW GHYLDWLRQV (YHQ ZLWK SRO\PHU GHZHWWLQJ DQG GHILQLWH SL[HOWRSL[HO .VY[\f KHWHURJHQHLW\ WKH 69 UHVSRQVH IURP WKH EDFNJURXQG ILHOG LV VWLOO VXEVWDQWLDO HQRXJK WR FRPSHQVDWH IRU WKH FURVVOLQNHUfV QHJDWLYH HPLVVLRQ HIIHFWV DV VHHQ E\ WKH LQWHQVLW\ GLVWULEXWLRQ FXUYHV LQ )LJXUH )OXRUHVFHQFH 0LFURVFRS\ RI 5X,,f RFGLLPLQH &RPSOH[HV LQ 63'06 $ VHULHV RI 5X,,f DGLLPLQH FRPSOH[HV ZLWK GLIIHUHQW GLLPLQH OLJDQGV DQGRU FRXQWHU LRQV ZHUH VHSDUDWHO\ GLVSHUVHG LQ 63'06 SRO\PHU ELQGHU )LJXUH LOOXVWUDWHV WKH 5X,,f PHWDO FRPSOH[HV HPSOR\HG 7KH PDFURVFRSLF 6WHUQ9ROPHU 69f SORWV IRU WKH VHULHV RI 5X,,f DGLLPLQH FRPSOH[HV DUH GLVSOD\HG LQ )LJXUH

PAGE 159

0HWDO &RPSOH[HV &RXQWHU ,RQV )LJXUH 5X,,f DGLLPLQH FRPSOH[HV f >5XGSSfA@&, R >5XGSSfO3)f 7 >5XGSSfA@%3Kf 9 >5XGSSfA@%3K&)Mfff ‘ >5XGEGLDSfA@3)f ’ >5XGSSf@%3K)ff OLQHDU UHJUHVVLRQ $LU 3UHVVXUH SVLf )LJXUH 0DFURVFRSLF 69 SORWV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV $UHI DUHD EHWZHHQ QP DW SVL

PAGE 160

7KHUH DUH YDU\LQJ GHJUHHV RI 69 UHVSRQVH WR R[\JHQ FRQFHQWUDWLRQ ZLWKLQ WKH VHULHV 7KH >5XGSSf@%3K)ff VHQVRU ILOP H[KLELWV WKH ODUJHVW TXHQFKLQJ UHVSRQVH 7 ZLWK D .VY YDOXH RI SVL Uf f 7KH OXPLQHVFHQFH LQWHQVLW\ GHFUHDVHV E\ DSSUR[LPDWHO\ WKDQ D IDFWRU RI WKUHH ZKHQ 3DcU LQFUHDVHV IURP SVL &RQYHUVHO\ WKH >5XGSSf@%3Kf VHQVRU ILOP ZKLFK LV YLVXDOO\ KHWHURJHQHRXV GRHV QRW UHVSRQG WR YDULDWLRQ LQ 3DcU ,WV 69 SORW LQ )LJXUH LV VLPSO\ D VFDWWHUHG QRLVH SORW 7KH PDFURVFRSLF 69 UHVSRQVH GDWD IRU WKH RWKHU 5X,,f RFGLLPLQH FRPSOH[HV SORWWHG LQ )LJXUH DUH OLVWHG LQ 7DEOH 7KH HPLVVLRQ DUHD N QPf IRU WKH 5X,,f RF GLLPLQH FRPSOH[HV DW SVL PRVW LQWHQVH OXPLQHVFHQFHf DUH OLVWHG LQ 7DEOH 7KH PRODU FRQFHQWUDWLRQ RI 5X,,f RFGLLPLQH FRPSOH[ LQ HDFK VHQVRU ILOP LV OLVWHG LQ 7DEOH 7DEOH 0DFURVFRSLF 69 UHVSRQVH GDWD IRU 5X,,f RFGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV /XPLQRSKRUH 6ORSH SVLf ,QWHUFHSW .VY SVLnfn U >5XGSSf@&O >5XGSSf@3)f >5XGSSf@%3Kf >5XGSSf@%3K&)fff >5XGEGWDSf@3)f >5XGSSf@%3K)ff E f§f§A ? & 7 D LQWHUFHSW $ LQ HTXDWLRQ f E VORSH % LQ HTXDWLRQ f / .6Y %$f LQ HTXDWLRQ f

PAGE 161

7DEOH 5X,,f DGLLPLQH FRPSOH[ HPLVVLRQ LQWHQVLW\ DUHD $ QUQf YDOXHV DW SVL IRU 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV /XPLQRSKRUH (PLVVLRQ $UHD >5XGSSf@&O >5XGSSf@3)f >5XGSSf@%3Kf >5XGSSf@%3K&)fff >5XGEGWDSf@3)f >5XGSSf@%3K)ff 7DEOH 5X,,f RWGLLPLQH FRPSOH[ PRODU FRQFHQWUDWLRQ P0f IRU 5X,,f DGLLPLQH /XPLQRSKRUH P0D >5XGSSf@&O >5XGSSf@3)f >5XGSSf@%3Kf >5XGSSf@%3K&)fff >5XGEGWDSf@3)f >5XGSSf@%3K)ff 5X,,f DGLLPLQH FRPSOH[ FRQFHQWUDWLRQ LQ PJ RI 63'06 SRO\PHU ELQGHU 7KH YDULHG TXHQFKLQJ UHVSRQVHV RI WKH 5X,,f DGLLPLQH FRPSOH[HV DUH LQWULJXLQJ ,I WKH UHVSRQVHV DUH D FRQVHTXHQFH RI VHQVRU GLVWULEXWLRQ FUHDWLQJ XQLTXH DQG GLVWLQFW TXHQFKLQJ PLFURHQYLURQPHQWV WKHQ WKH RULJLQV RI WKH UHVSRQVHV DUH EHWWHU XQGHUVWRRG E\ LPDJLQJ WKH ILOPVf PLFURVFRSLF IOXRUHVFHQFH HPLVVLRQ GLVWULEXWLRQ 4XDOLWDWLYH IOXRUHVFHQFH PLFURVFRS\ LPDJHV SP [ SPf RI WKH 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU REWDLQHG DW SVL ZLWK D ; REMHFWLYH DUH GLVSOD\HG LQ )LJXUH $OO LPDJHV LOOXVWUDWH D YDULHG \HW VWULNLQJ fVWDUILHOG DSSHDUDQFHff§WKHUH DUH YHU\ EULJKW IOXRUHVFHQW VSRWV ZLWK VL]HV UDQJLQJ IURP SP 7KH EULJKW VSRWV DUH VXSHULPSRVHG RQ EDFNJURXQG ILHOGV RI YDU\LQJ IOXRUHVFHQFH LQWHQVLW\ 4XLWH FOHDUO\ WKH 5X,,f DGLLPLQH FRPSOH[HV DUH QRW HYHQO\ GLVSHUVHG ZLWKLQ WKH 63'06 ELQGHU ,QGHHG

PAGE 162

LW LV SRVVLEOH WKDW WKH OXPLQRSKRUHV DUH SUHVHQW LQ VRPH UHJLRQV DV PLFURFU\VWDOV RU LQ D VWURQJO\ DJJUHJDWHG VWDWH +RZ WKHVH PLFURHQYLURQPHQWV UHVSRQGHG WR R[\JHQ FRQFHQWUDWLRQ SURYLGHV IXUWKHU HYLGHQFH IRU WKH YDULHG 69 UHVSRQVHV SORWWHG LQ )LJXUH )LJXUH 4XDOLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LPDJHV ; SVLf IRU 5X,,f D GLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ $f >5XGSSf@&O %f >5XGSSf@3)f &f >5XGSSf@%3Kf 'f >5XGSSf@%3K&)fff (f >5XGEGWDSf@3)f )f >5XGSSf@%3K)ff ,PDJHV & DQG ) H[KLELW WKH PRVW KRPRJHQHRXV GLVWULEXWLRQV LQ LQWHQVLW\ ZLWK YHU\ IHZ GLVFUHWH EULJKW VSRWV DV FRPSDUHG WR LPDJHV $ % DQG ( $OWKRXJK ORRNLQJ DW 7DEOH WKH VHQVRU ILOPV ZKLFK H[KLELW WKH EHVW 69 UHVSRQVH DUH >5XGSSf@%3K&)fff DQG >5XGSSf@%3K)ff DQG WKH ZRUVW UHVSRQVH LV IURP >5XGSSf@%3Kf :KHQ WKH EULJKW ILHOG LPDJHV RI WKH 5X,,f RFGLLPLQH FRPSOH[HV DUH FRPSDUHG LW FDQ EH VHHQ WKDW WKH EULJKW VSRWV LQ WKH IOXRUHVFHQFH LPDJH $ RI )LJXUH FRPSDUH ZHOO

PAGE 163

ZLWK WKH GDUN VSRWV LQ LPDJH 7KH EULJKW ILHOG LPDJH LV REWDLQHG ZLWK D ; REMHFWLYH DQG WUDQVPLVVLRQ LOOXPLQDWLRQ IURP D 7XQJVWHQ : EXOE ILOWHUHG WKURXJK D %* EOXH ILOWHU VKRZQ RQ WKH VXUIDFH RI WKH VHQVRU ILOP 7KH LPDJHV LQ )LJXUH DUH SP [ SP LQ VL]H ,I WKH IOXRUHVFHQW PLFURFU\VWDOOLWHV LQ LPDJH $ DUH 5X,,f DGLLPLQH FRPSOH[HV WKHQ WKH\ VKRXOG DEVRUE WKH EOXH OLJKW LQ WKH EULJKWILHOG PRGH DQG DSSHDU DV GDUN VSRWV 7KLV LV SUHFLVHO\ WKH FDVH &RPSDULQJ WKH VHULHV RI IOXRUHVFHQFH DQG EULJKW ILHOG LPDJHV WKH >5XOGSSKM&K VHQVRU ILOP LV FOHDUO\ WKH PRVW SRSXODWHG ZLWK IOXRUHVFHQW PLFURFU\VWDOOLWHV 7KH >5XGSSf@%3K&)fff VHQVRU ILOP VKRZV OHVV PLFURFU\VWDOOLWH IRUPDWLRQ DQG WKH >5XGSSf@%3K)ff LV WKH EHVW VHQVRU ILOP \HW &OHDUO\ VLPSOH LPDJLQJ RI WKH VHQVRU ILOPVf IOXRUHVFHQFH PRUSKRORJ\ VWDUWV WR JLYH DQ LQGLFDWLRQ DV WR ZK\ WKH VHQVRU ILOPV UHVSRQG WKH ZD\ WKH\ GR RQ WKH PDFURVFRSLF OHYHO )LJXUH 4XDOLWDWLYH PLFURVFRSLF IOXRUHVFHQFH $&f DQG EULJKWILHOG ')f LPDJHV ; SVLf IRU 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ $ DQG 'f >5XGSSf@&O % DQG (f >5XGSSf@%3K&)fff DQG & DQG )f >5XGSSf@%3K)ff

PAGE 164

2YHUDOO WKH >5XGSSf@&O VHQVRU ILOP LV WKH PRVW KHWHURJHQHRXV LPDJH IOXRUHVFHQFH DQG EULJKWILHOGf ZLWK PDQ\ VWDUOLNH DUHDV 1RW VXUSULVLQJ LW SURGXFHG WKH PRVW LQWHQVH HPLVVLRQ RQ WKH PDFURVFRSLF OHYHO EXW DOVR WKH QHDU ORZHVW 69 UHVSRQVH &RXQWHU WR WKLV LV WKH >5XGSSf@%3Kf VHQVRU ILOP ZKLFK LV YLVXDOO\ KHWHURJHQHRXV ,W SURGXFHG D QHDUO\ KRPRJHQHRXV ZHDNO\ HPLVVLYH LQWHQVLW\ UHVSRQVH LQ )LJXUH DQG D FRUUHVSRQGLQJ ORZ PDFURVFRSLF .6Y YDOXH LQ 7DEOH 7KH UHPDLQLQJ 5X,,f D GLLPLQH FRPSOH[HVf LQWHQVLW\ DQG 69 UHVSRQVHV DUH FRPSOLFDWHG \HW LQWHUHVWLQJ 6HYHUDO IDFWRUV DUH LQYROYHG LQ XQGHUVWDQGLQJ WKHLU FKDUDFWHULVWLF UHVSRQVHV 'HSHQGLQJ RQ WKHLU FRQFHQWUDWLRQ P0f DQG VROXELOLW\ LQ WKH 63'06 ELQGHU KLJK RU ORZ HPLVVLRQ LQWHQVLW\ DQG KLJK RU ORZ .VY YDOXHV ZHUH REWDLQHG )RU H[DPSOH WKH >5XGSSf@%3K)ff VHQVRU ILOP ZDV WKH OHDVW FRQFHQWUDWHG ILOP ,W SURGXFHG D KRPRJHQHRXV IOXRUHVFHQFH LPDJH LQ )LJXUHV DQG LQGLFDWLQJ LWV H[FHOOHQW VROXELOLW\ LQ WKH SRO\PHU ELQGHU ZLWK KLJK PDFURVFRSLF HPLVVLRQ LQWHQVLW\ DQG .6Y YDOXHV LQ 7DEOHV DQG UHVSHFWLYHO\ 7KH RWKHU 5X,,f DGLLPLQH FRPSOH[HV SURGXFHG HPLVVLRQ LQWHQVLW\ DQG 69 UHVSRQVHV LQ DFFRUG ZLWK WKHLU FRQFHQWUDWLRQV DQG GHJUHH RI VROXELOLW\ LQ WKH 63'06 SRO\PHU ELQGHU 7KHUHIRUH IXUWKHU DQDO\VLV RI VXFK HIIHFWV QHHGV WR EH SUREHG DW WKH PLFURVFRSLF OHYHO 7KH HIIHFWV RI FRQFHQWUDWLRQ DQG LQKRPRJHQHRXV GLVWULEXWLRQ RI 5X,,f DGLLPLQH FRPSOH[HV LQ 63'06 ELQGHU RQ WKH VSDWLDO LQWHQVLW\ GLVWULEXWLRQ DQG VXEVHTXHQW 69 UHVSRQVH LV LQYHVWLJDWHG E\ WDNLQJ D VHULHV RI TXDQWLWDWLYH LPDJH PDSV RI WKH VHQVRUVf UHVSRQVHV WR YDULDWLRQ LQ 3DcU XVLQJ WKH ; REMHFWLYH )RU DOO RI WKH VHQVRU ILOPV WKH VDPH &&' LQWHJUDWLRQ WLPHV DQG ILOWHU FRPELQDWLRQV ZHUH XVHG )LYH SP [ SP UHJLRQV RI HDFK 5X,,f DGLLPLQH VHQVRU ILOP ZHUH LQWHUURJDWHG DW VHYHQ SUHVVXUHV IURP

PAGE 165

SVL 2QH UHSUHVHQWDWLYH LQWHQVLW\ LPDJH DW SVL IRU HDFK 5X,,f RFGLLPLQH VHQVRU ILOP LV LOOXVWUDWHG LQ )LJXUH 7KH FRORUV IRU HDFK LPDJH ZHUH QRW VFDOHG WKH VDPH DQG WKH PD[LPXP LQWHQVLW\ YDOXH IRU HDFK LPDJH LV OLVWHG LQ 7DEOH 7KH PD[LPXP LQWHQVLW\ YDOXHV DUH \HOORZ DQG VFDOH WR GDUN EOXH IRU ]HUR HPLVVLRQ LQ WKH LPDJHV RI )LJXUH 7DEOH 0D[LPXP IOXRUHVFHQFH LQWHQVLW\ YDOXHV IRU ; PLFURVFRSLF UHJLRQV RI /XPLQRSKRUH 0D[LPXP ,QWHQVLW\ DXfD >5XGSSf@&O >5XGSSf@3)f >5XLGSSA.%3KA >5XGSSf@%3K&)fff >5XGEGWDSf@3)f >5XGSSf@%3K)ff DX DUELWUDU\ XQLWV )LJXUH 4XDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ LPDJHV ; SVLf IRU 5X,,f RFGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ ,QWHQVLW\ FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f >5XGSSf@&O %f >5XGSSf@3)f &f >5XGSSf@%3Kf 'f >5XGSSf@%3K&)fff (f >5XGEGWDSf@3)f )f >5XGSSf@%3K)ff

PAGE 166

7KH TXDQWLWDWLYH LQWHQVLW\ LPDJHV DUH IDLUO\ FRQVLVWHQW ZLWK WKH TXDOLWDWLYH IOXRUHVFHQFH LPDJHV GLVSOD\HG LQ )LJXUH &OHDUO\ WKHUH DUH YDU\LQJ GLVWULEXWLRQV IRU WKH 5X,,f DGLLPLQH FRPSOH[HV LQ WKH SRO\PHU ELQGHU ,PDJHV $ DQG ( LQ )LJXUH LOOXVWUDWH D VWDUVSHFNOHG LPDJH ILHOG ZKLOH LPDJHV % & DQG ) SRVVHVV OHVV VWUXFWXUHG OXPLQHVFHQFH 4XDQWLILFDWLRQ RI WKH LQWHQVLW\ GLVWULEXWLRQV LV DFKLHYHG E\ FDOFXODWLQJ WKH SHUFHQW VWDQGDUG GHYLDWLRQV LQ LQWHQVLW\ D bf IRU WKH LQWHQVLW\ SUHVVXUH LPDJHV RI )LJXUH DQG WKH UHPDLQLQJ VL[ LQWHQVLW\ SUHVVXUH LPDJHV DQDO\]HG IRU HDFK 5X,,f DGLLPLQH VHQVRU ILOP 7KH SHUFHQW VWDQGDUG GHYLDWLRQV DUH OLVWHG LQ 7DEOH 7DEOH 3HUFHQW VWDQGDUG GHYLDWLRQ D bf LQ LQWHQVLWLHV DW VHYHQ SUHVVXUHV IRU PLFURVFRSLF UHJLRQV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV 7 bD /XPLQRSKRUH SVL SVL SVL SVL SVL SVL SVL >5XGSSf@&O >5XGSSf@3)f >5XGSSf@%3Kf >5XGSSf@%3K&)fff >5XGEGWDSf@3)f >5XGSSf@%3K)ff D D L b FT,DYJ [ b ,Q FRUUHODWLRQ WR WKH LPDJHV LQ )LJXUH WKH VWDUVSHFNOHG ILOPV >5XGSS(@&O >5XGSSf@%3K&)fff DQG >5XGEGWDSf@3)f DOVR H[KLELW WKH ODUJHVW LQWHQVLW\ SHUFHQW VWDQGDUG GHYLDWLRQV 7KH >5XGSSf@%3Kf ILOP ZKLFK LV YLVXDOO\ KHWHURJHQHRXV GHPRQVWUDWHV VLJQLILFDQW GHYLDWLRQ DV ZHOO

PAGE 167

5DWKHU WKDQ ORRN DW WKH QXPEHUV LW LV HDVLHU WR YLVXDOL]H WKHVH GLVWULEXWLRQV DQG WKHLU WUXH VLJQLILFDQFH E\ SORWWLQJ WKH LQWHQVLW\ GLVWULEXWLRQV DW HDFK SUHVVXUH IRU HDFK VHQVRU ILOP 7KH FXUYHV DUH SORWWHG LQ )LJXUH 7KH PRVW VWULNLQJ DWWULEXWH RI WKH FXUYHV LV WKDW WKH\ RYHUODS H[KLELWLQJ QR LQWHQVLW\ GLVWULEXWLRQ 7KH 5X,,f DGLLPLQH VHQVRU ILOPVf LQWHQVLW\ GLVWULEXWLRQ FXUYHV H[KLELW YDU\LQJ GHJUHHV RI RYHUODS GXH WR OXPLQHVFHQW UHJLRQV LQ WKH ILOPV WKDW DUH QRW KRPRJHQHRXVO\ TXHQFKHG ZLWK FKDQJHV LQ 3DLU 8SRQ IXUWKHU LQVSHFWLRQ VRPH GLVWULEXWLRQ FXUYHV H[KLELW D ELPRGDO GLVWULEXWLRQ SDWWHUQ ZKLFK LV LQGLFDWLYH RI GLVFUHWH PLFURHQYLURQPHQWV ZLWK YDULHG HPLVVLRQ UHVSRQVH )RU LPDJHV $ DQG ( ZKLFK H[KLELW WKH JUHDWHVW SHUFHQW GHYLDWLRQ WKH GLVWULEXWLRQ FXUYHV DUH HFOLSVLQJ RQH DQRWKHU 7KH >5XOGSS(-&) ILOP HYHQ GLVSOD\V D GLVWLQFW ELPRGDO GLVWULEXWLRQ DW KLJKHU SUHVVXUHV &OHDUO\ WKHUH DUH GLVFUHWH OXPLQHVFHQW VSHFLHV IRU WKLV VHQVRU ILOP DQG WKLV LV WKH FDXVH IRU LWV ORZ PDFURVFRSLF .VY YDOXHV LQ 7DEOH 1RW VXUSULVLQJ WKH >5XGSSf@%3K)ff ILOP ZKLFK H[KLELWV WKH EHVW PDFURVFRSLF .VY YDOXH DQG ORZ LQWHQVLW\ SHUFHQW VWDQGDUG GHYLDWLRQV DOVR H[SHULHQFHV WKH EHVW GLVWULEXWLRQ FXUYHV ZLWK WKH OHDVW DPRXQW RI QHDUHVW QHLJKERU RYHUODS RYHU WKH ZLGHVW LQWHQVLW\ YDOXH UDQJH IRU WKH VHULHV RI VHQVRU ILOPV LPDJH )f

PAGE 168

(PLVVLRQ ,QWHQVLW\ DXf (PLVVLRQ ,QWHQVLW\ DXf )LJXUH ,QWHQVLW\ GLVWULEXWLRQ FXUYHV IRU LQWHQVLWLHV REWDLQHG ZLWK D ; REMHFWLYH DW VHYHQ SUHVVXUHV IRU 5X,Of DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV $f >5XGSSf@&O %f >5XGSSf@3)f &f >5XGSSf@%3OLf 'f >5XGSSf@%3K&)fff (f >5XGEGWDSf@3)f )f >5XGSSf@%3K)ff 7KH VHULHV RI LQWHQVLW\ LPDJHV LQ )LJXUH DIIRUGHG VL[ FRUUHVSRQGLQJ PLFURVFRSLF TXDQWLWDWLYH .6Y[\f LPDJH PDSV GLVSOD\HG LQ )LJXUH 7KH LPDJH PDSV DUH QRW VFDOHG WKH VDPH DQG WKH PD[LPXP .VY YDOXH IRU HDFK VHQVRU ILOP LV OLVWHG

PAGE 169

LQ 7DEOH 7KH PD[LPXP .VY YDOXHV DUH \HOORZ DQG VFDOH WR GDUN EOXH IRU QR 69 UHVSRQVH LQ WKH LPDJHV RI )LJXUH 7DEOH 0D[LPXP .VY YDOXHV IRU ; PLFURVFRSLF UHJLRQV RI 5X,,f DGLLPLQH /XPLQRSKRUH 0D[LPXP .6\ SVLfr >5XGSSf@&O >5XGSSfO3)f >5XGSSf@%3Kf >5XGSSf@%3K&)fff >5XGEGWDSf@3)f >5XGSSfO%3K)ff .VY %$f LQ HTXDWLRQ f )LJXUH 4XDQWLWDWLYH PLFURVFRSLF .VY[\f LPDJH PDSV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ .VY FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f >5XGSSf@&O %f >5XGSSf@3)f &f >5XGSSf@%3Kf 'f >5XGSSf@%3K&)fff (f >5XGEGWDSf@3)f )f >5XGSSf@%3K)ff 7KH KLJK DQG ORZ .VY YDOXHV LQ )LJXUH FRUUHVSRQG WR WKH UHJLRQV RI KLJK DQG ORZ LQWHQVLW\ LQ WKH LPDJHV RI )LJXUH 2QH H[FHSWLRQ WR WKLV DUH WKH EURDG LQWHQVLW\

PAGE 170

KDQGV LQ LPDJH % RI )LJXUH ZKLFK DUH PXFK QDUURZHU LQ )LJXUH $W KLJKHU SUHVVXUHV RQO\ SRUWLRQV RI WKH KLJK LQWHQVLW\ EDQGV LQ LPDJH % RI )LJXUH DUH TXHQFKHG 7KHUHIRUH WKH EULJKW .6Y YDOXH EDQGV \HOORZ DQG JUHHQ DUHDVf LQ LPDJH % RI )LJXUH DSSHDU QDUURZHU GLYLGHG E\ UHJLRQV RI ORZ 69 UHVSRQVH UHG DQG EOXH DUHDVf 7KH SHUFHQW VWDQGDUG GHYLDWLRQV LQ .6Y[\f IRU HDFK LPDJH DUH OLVWHG LQ 7DEOHV D OE DQG OF 7KH PLFURVFRSLF 69 GDWD FRUUHODWH IDLUO\ ZHOO ZLWK WKH PDFURVFRSLF 69 GDWD LQ 7DEOH 7KH PDFURVFRSLF GDWD FRPSULVH KLJKHU .Y YDOXHV RIWHQ GRXEOLQJ WKH PLFURVFRSLF .AI [\f YDOXHV ,W LV LPSRUWDQW WR UHPHPEHU WKDW WKH .VY GDWD LQ 7DEOHV OD OE DQG OF DUH DYHUDJH YDOXHV 7DEOH OD 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV >5XGSSf@&O >5XGSSf@3)f >5XGSSf@%3Kf 5HJLRQ .AISVLf 2U bD .VY .-Y SVLf U. bD ‘9VY .VY3Vc nf N b .VY D 9Yb D.6DYJ;Ob 69 7DEOH OE 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV >5XGSSf@%3K&)fff 5HJLRQ .VY SVLf 7U .VY

PAGE 171

7DEOH OF 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 5X,,f RFGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV >5XGEGWDSf@3)f >5XGSSf@%3K)ff 5HJLRQ .VY 3Vc rf N b .VY .VYLSVLf 2N b r9VY 6LQFH WKH .VY[\f YDOXHV OLVWHG LQ 7DEOHV OD OE DQG OF DUH DYHUDJH YDOXHV LW LV EHQHILFLDO WR TXDQWLI\ WKH YDOXHV E\ ORRNLQJ DW .A [\f YDOXHV IRU GLVFUHWH UHJLRQV ZLWKLQ WKH .VY[\f LPDJH PDSV IRU HDFK 5X,,f DGLLPLQH ILOP LQ )LJXUH 7DEOHV D DQG E DUH OLVWV RI WKH GLVFUHWH .LAI [\f YDOXHV REWDLQHG IRU WKH ER[HV RXWOLQHG LQ WKH LPDJHV 7KH ZKLWH ER[HV DUH DQ DSSUR[LPDWLRQ RI WKH DUHD RI .VY[\f YDOXHV DQDO\]HG $V FDQ EH VHHQ WKH .AI [\f YDOXHV GR YDU\ JUHDWO\ IRU GLVFUHWH UHJLRQV ZLWKLQ D VLQJOH LPDJH 7KHUHIRUH WKH .AV [\f YDOXHV OLVWHG LQ 7DEOHV OD E DQG OF DUH SODXVLEOH UHSUHVHQWDWLRQV RI WKH VHQVRU ILOPVf .AI [\f YDOXHV DQG UHVSHFWLYH VWDQGDUG GHYLDWLRQV

PAGE 172

)LJXUH $QDO\VLV RI GLVFUHWH UHJLRQV ZKLWH ER[HVf LQ TXDQWLWDWLYH PLFURVFRSLF .VY[\f LPDJH PDSV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ .VY FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f >5XGSSf@&O %f >5XGSSf@3)f &f >5XGSSf@%3OLf 'f >5XGSSf@%3K&)fff (f >5XGEGWDSf@3)f )f >5XGSSf@%3K)ff .DYJ 7DEOH D 'LVFUHWH VY [\f YDOXHV IRU WKUHH UHJLRQV RXWOLQHG LQ ; PLFURVFRSLF .VY[\f LPDJH PDSV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ >5XGSSfO&O _5XGSSf_3)f >5XGSSf_%3Kf 5HJLRQ .VY3Vr nf .DJSVLff .VY SVL f D E F

PAGE 173

OADYJ 7DEOH E 'LVFUHWH VY [\f YDOXHV IRU WKUHH UHJLRQV RXWOLQHG LQ ; PLFURVFRSLF .VY[\f LPDJH PDSV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV >5XGSSf@%3K&)fff >5XGEGWDSf@3)f >5XGSSf@%3K)ff 5HJLRQ .JY 3VLf .VY SVLf .VY 3VL f D E F $Q HDVLHU ZD\ WR ORRN DW WKH QXPEHUV LQ 7DEOHV D DQG E LV WR SORW WKH 69 SORWV IRU WKH JLYHQ UHJLRQV RI HDFK VHQVRU ILOP )LJXUH GLVSOD\V WKH 69 SORWV RI WKH GLVFUHWH PLFURVFRSLF UHJLRQV RI HDFK VHQVRU ILOP 7KH PDFURVFRSLF 69 SORW IRU HDFK VHQVRU ILOP LV DOVR SORWWHG IRU FRPSDULVRQ

PAGE 174

)LJXUH 0DFURVFRSLF DQG PLFURVFRSLF 69 SORWV RI 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV $UHI DUHD EHWZHHQ QP DW SVL 7KH 5X,,f DGLLPLQH VHQVRUV ZHUH DOVR DQDO\]HG PLFURVFRSLFDOO\ XWLOL]LQJ D ; REMHFWLYH )LYH .6Y[\f LPDJH PDSV ZHUH SURGXFHG IRU HDFK VHQVRU ILOP ZLWK DFFRPSDQ\LQJ VWDWLVWLFDO GDWD OLVWHG LQ 7DEOHV D E DQG F ,W LV LQWHUHVWLQJ WR QRWH WKDW WKH GDWD LQ 7DEOHV OD OE DQG OF DUH QRW FRQVLVWHQW ZLWK WKH GDWD LQ 7DEOHV D E DQG F $V H[SODLQHG HDUOLHU VPDOO DUHDV RI KHWHURJHQHLW\

PAGE 175

H[KLELWHG E\ D ; LPDJH DUH PDJQLILHG IRU D ; LPDJH $V DQ H[DPSOH WKH VPDOO EULJKW VWDUV H[SHULHQFHG E\ WKH >5XGSSf@&O ILOP LQ LPDJH $ RI )LJXUH DUH JUHDWO\ PDJQLILHG LQ D ; LPDJH %\ GRLQJ VR WKH EULJKW VSRWV GRPLQDWH WKH LPDJH DQG \LHOG D KLJKHU .AJ YDOXH ZLWK VPDOOHU SHUFHQW VWDQGDUG GHYLDWLRQV 7KLV WUHQG LV VHHQ WKURXJKRXW 7DEOHV D E DQG F 7DEOH D 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 5X,,f RFGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV >5XGSSf@&O >5XGSSf@3)f >5XGSSf@%3Kf 5HJLRQ .VnY 3VL rf 2 N b ‘9VY .VYSVLf R. bD .AISVLf 7 N bD .69 D nb VY 7DEOH E 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 5X,,f DGLLPLQH >5XGSSf@%3K&)fff 5HJLRQ .VY 3VL f 2U A

PAGE 176

7DEOH F 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV >5XGEGWDSf@3)f >5XGSSf@%3K)ff 5HJLRQ .VY SVLf JN b .VY .ASVLf WN b .VY $ EULHI DQDO\VLV RI WKH GDWD SUHVHQWHG UHYHDOV WKDW TXDOLWDWLYH IOXRUHVFHQFH PLFURVFRSLF LPDJHV PD\ QRW WHOO WKH ZKROH VWRU\ DV WR ZK\ D VHQVRU ILOP EHKDYHV SRRUO\ RQ WKH PDFURVFRSLF OHYHO )XUWKHU DQDO\VLV LQWR WKH PLFURVFRSLF IOXRUHVFHQFH UHVSRQVH WR YDULDWLRQ LQ 3DLU UHYHDOV WKH VHQVRUV LQWHQVLW\ GLVWULEXWLRQV 3ORWWLQJ WKHVH LQWHQVLWLHV DV GLVWULEXWLRQ FXUYHV YLVXDOO\ H[SODLQV ZKHWKHU WKH LQWHQVLWLHV KRPRJHQHRXVO\ GHFUHDVH ZLWK SUHVVXUH FKDQJHV IURP SVL RU WKH FXUYHV RYHUODS DQGRU HFOLSVH IURP EL PRGDO GLVWULEXWLRQV 0LFURVFRSLF DQDO\VLV RI WKH .6Y YDOXHV JHQHUDWHG IURP WKH LQWHQVLW\ LPDJHV YHULILHV WKH GHJUHH RI KHWHURJHQHRXV VSDWLDO 69 UHVSRQVH &OHDUO\ DQDO\VLV RI WKH VSDWLDO LQWHQVLW\ DQG .6Y YDOXHV OHQGV HYLGHQFH WR KRZ WKH VHQVRUV DUH GLVSHUVHG LQ WKH SRO\PHU ELQGHUV DQG KRZ WKLV GLVSHUVLRQ FDXVHV WKH VHQVRU ILOPV WR EHKDYH SRRUO\ DW WKH PDFURVFRSLF OHYHO )OXRUHVFHQFH 0LFURVFRS\ RI >5XGSSf@&O LQ 63'06 DQG 3'06 ZLWK )XPHG 62 ,W KDV EHHQ NQRZQ IRU VRPH WLPH QRZ WKDW DGGLQJ D ILOOHU VXFK DV IXPHG VLOLFD JHO WR WKH SRO\PHU ELQGHU HQKDQFHV WKH 69 UHVSRQVH WR YDULDWLRQ LQ 3DcU D VHULHV RI VHQVRU ILOPV LV HYDOXDWHG ZLWK >5XGSSf@&O GLVSHUVHG HLWKHU LQ VLODQRO SRO\GLPHWK\OVLOR[DQHV 63'06 0: ZLWK PHWK\OWULDFHWR[\VLODQH FURVVOLQNHUf RU D FRPPHUFLDOO\ V\QWKHVL]HG SRO\GLPHWK\OVLOR[DQH 3'06 '06'f 0:f

PAGE 177

SRO\PHU ELQGHU LQFRUSRUDWLQJ YDU\LQJ ZHLJKW SHUFHQWV UHODWLYH WR WRWDO ZHLJKW RI SRO\PHU ELQGHU PJf RI D K\GURSKLOLF IXPHG VLOLFD JHO 7KH ILOPV DUH ILUVW DQDO\]HG RQ WKH PDFURVFRSLF OHYHO XWLOL]LQJ WKH IOXRULPHWHU 7KH PDFURVFRSLF 6WHUQ9ROPHU 69f SORWV DUH GLVSOD\HG LQ )LJXUH 63'06 DQG 3'06 VHQVRU ILOPV LQFRUSRUDWLQJ >5XGSSf@&O ZLWKRXW IXPHG VLOLFD JHO DUH DOVR SUHVHQWHG IRU FRPSDULVRQ )LJXUH 0DFURVFRSLF 69 SORWV RI >5XOGSSE-&) GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO RQ JODVV $5() DUHD EHWZHHQ QP DW SVL 7KH DGGLWLRQ RI VLOLFD SDUWLFOHV FUHDWHV PLFURGRPDLQV LQ WKH SRO\PHU ELQGHU ZKHUH WKH >5XGSSf@&O FRPSOH[ DGVRUEV DQG H[SHULHQFHV LQFUHDVHG OXPLQHVFHQFH R[\JHQ VHQVLWLYLW\ &RQVHTXHQWO\ WKH DGGLWLRQ RI IXPHG VLOLFD JHO KDV D SRVLWLYH HIIHFW RQ WKH 69 UHVSRQVH RI WKH VHQVRU ILOPV )RU WKLV VHULHV RI VHQVRU ILOPV WKH JUHDWHVW 69 UHVSRQVH LV H[KLELWHG E\ WKH ILOP LQFRUSRUDWLQJ ZW b RI IXPHG VLOLFD JHO LQ 3'06 ELQGHU +RZHYHU WKH OXPLQHVFHQFH LQWHQVLW\ RQO\ GHFUHDVHV E\ OHVV WKDQ D IDFWRU RI ILYH ZKHQ 3DLU LQFUHDVHV IURP SVL $OWKRXJK WKH PRVW GUDPDWLF UHVSRQVH LV VHHQ IRU DGGLWLRQ RI ZW b IXPHG VLOLFD JHO WR 63'06 ELQGHU &RPSDULQJ WKH WZR QRQVLOLFD

PAGE 178

ILOOHG ILOPV WKH 69 UHVSRQVH IRU >5XGSSf@&O LQ 3'06 ELQGHU LV ODUJHU ZLWK D .6Y YDOXH RI SVL U f WKDQ LWV UHVSRQVH LQ 63'06 ELQGHU ZLWK D .VY YDOXH RI SVLn U f ,W LV SRVVLEOH WKDW WKH 3'06 SRO\PHU PD\ SRVVHVV PRUH SRODU VLWHV RU PLFURGRPDLQV RQ ZKLFK WKH >5XGSSf@&O FDQ DGVRUE 7KHUHIRUH DGGLWLRQ RI IXPHG VLOLFD JHO WR 3'06 ELQGHU LV QRW DV EHQHILFLDO WR WKH 69 UHVSRQVH DV VHHQ LQ )LJXUH 7KH UHPDLQLQJ PDFURVFRSLF 69 UHVSRQVH GDWD IRU >5XLGSSE-&) GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO DUH GLVSOD\HG LQ 7DEOH 7DEOH 0DFURVFRSLF 69 UHVSRQVH GDWD IRU >5XGSSf@&O GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO a %LQGHU ZW b 6ORSH SVLnf ,QWHUFHSWK .6\ SVLnf U n 63'06 b 63'06 b 63'06 b 3'06 b 3'06 b 3'06 b LQWHUFHSW $ LQ HTXDWLRQ f E VORSH % LQ HTXDWLRQ f F .6Y %$f LQ HTXDWLRQ f )RU WKH 63'06 SRO\PHU DGGLWLRQ RI ZW b RI IXPHG VLOLFD JHO HVVHQWLDOO\ KDV QR HIIHFW XSRQ WKH 69 UHVSRQVH VLQFH WKH LQWHUFHSW YDOXHV EHWZHHQ WKH ZW b DQG ZW b DUH QRW DOO WKDW GLIIHUHQW 7KH GLIIHUHQFH LQ WKH 69 SORWV LV PRVW OLNHO\ GXH WR QRLVH +RZHYHU DW ZW b RI IXPHG VLOLFD JHO WKH 69 UHVSRQVH GUDVWLFDOO\ LPSURYHV 7KH VLOLFD SDUWLFOHV DUH FUHDWLQJ PLFURGRPDLQV RI LQFUHDVHG 69 UHVSRQVH ZLWKLQ WKH SRO\PHU ELQGHU ,QFUHDVHG ZHLJKW SHUFHQWV RI VLOLFD JHO LPSURYH WKH 69 UHVSRQVH EXW QRW VXEVWDQWLDOO\ EHIRUH WKH ILOPV EHFRPH H[WUHPHO\ SRURXV DQG SRZGHU\ 7KH 3'06

PAGE 179

SRO\PHU H[KLELWV WKH VDPH WUHQGV XSRQ DGGLWLRQ RI VLOLFD JHO $GGLWLRQ RI ZW b RI IXPHG VLOLFD JHO LPSURYHV WKH 69 UHVSRQVH VOLJKWO\ EXW IXUWKHU DGGLWLRQV GR QRW LPSURYH WKH UHVSRQVH DQG PD\ DFWXDOO\ KLQGHU LW 6LQFH QHLWKHU DGGLWLRQ GUDPDWLFDOO\ FKDQJHG WKH 69 UHVSRQVH RI WKH VHQVRU ILOP IXUWKHU LQFUHDVHG ZHLJKW SHUFHQWV ZHUH QRW DQDO\]HG 6PDOOHU ZHLJKW SHUFHQWV RI VLOLFD JHO ZHUH QRW DGGHG HLWKHU GXH WR WKH LQDELOLW\ WR DFFXUDWHO\ ZHLJK WKH IXPHG VLOLFD JHO &OHDUO\ DGGLWLRQ RI IXPHG VLOLFD JHO LQIOXHQFHV WKH 69 UHVSRQVH DQG WR IXUWKHU DQDO\]H WKH DERYH REVHUYDWLRQV TXDOLWDWLYH IOXRUHVFHQFH PLFURVFRSH LPDJHV RI VHRU ILOPV RI >5XGSSf@&O GLVSHUVHG LQ 63'06 DQG 3'06 ELQGHU LQFRUSRUDWLQJ YDULRXV ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO ZHUH REWDLQHG DW SVL ZLWK D ; REMHFWLYH 7KH LPDJHV DUH LOOXVWUDWHG LQ )LJXUH )LJXUH 4XDOLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LPDJHV ; SVLf IRU >5XGSSf@&O GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO :KLWH VFDOH EDUV DUH SP ORQJ $f ZW b LQ 63'06 %f ZW b LQ 630'6 &f ZW b LQ 63'06 'f ZW b LQ 3'06 (f ZW b LQ 3'06 )f ZW b LQ 3'06

PAGE 180

7KH DGGLWLRQ RI IXPHG VLOLFD JHO WR WKH SRO\PHU ELQGHUV LV VWULNLQJ )XPHG VLOLFD JHO LQ 63'06 DQG 3'06 GUDPDWLFDOO\ FKDQJHV WKH LPDJH ILHOG 7KH VWDU SDWWHUQ LQ LPDJHV $ DQG JLYHV ZD\ WR LQWHQVH DJJUHJDWHV RI >5XWGSSMLM&) DGVRUEHG IXPHG VLOLFD JHO LQ LPDJHV % DQG ( ZKLFK DUH KHDYLO\ SRSXODWHG LQ LPDJHV & DQG ) 6XEVHTXHQW DGGLWLRQV RI IXPHG VLOLFD JHO \LHOG FRQFHQWUDWHG UHJLRQV RI JRRG 69 OXPLQHVFHQFH UHVSRQVH ,I RQO\ LPDJH $ DQG DUH FRPSDUHG FOHDUO\ LPDJH LV OHVV SXQFWXDWHG ZLWK IOXRUHVFHQW EULJKW VSRWV DQG SRVVHVVHV PRUH RI D FRQVLVWHQW OXPLQHVFHQW EDFNJURXQG WKDQ LPDJH $ 7KH OXPLQHVFHQFH FRQVLVWHQF\ LV RQH RI WKH UHDVRQV ZK\ WKH 3'06 VHQVRU ILOPfV 69 UHVSRQVH LV IDU EHWWHU WKDQ WKDW RI WKH 63'06 VHQVRU ILOP )LJXUH f )XUWKHU DQDO\VLV RI WKH HIIHFW IXPHG VLOLFD JHO TXDQWLW\ KDV RQ WKH VSDWLDO GLVWULEXWLRQ RI WKH PLFURVFRSLF 69 UHVSRQVH LV SUREHG E\ WDNLQJ D VHULHV RI TXDQWLWDWLYH LQWHQVLW\ LPDJH PDSV RI WKH VHQVRUfV UHVSRQVH WR YDULDWLRQ LQ 3DLU XVLQJ WKH ; REMHFWLYH 7KXV ILYH SP [ SP UHJLRQV RI HDFK VHQVRU ILOP ZHUH LQWHUURJDWHG DQG WKH OXPLQHVFHQFH LQWHQVLW\ GLVWULEXWLRQ RI RQH UHSUHVHQWDWLYH UHJLRQ IURP HDFK ILOP ,F[\ 3DLU SVLff LV LOOXVWUDWHG LQ )LJXUH 7KH FRORUV IRU WKH LPDJHV DUH QRW VFDOHG WKH VDPH DQG WKH PD[LPXP LQWHQVLW\ IRU HDFK LPDJH LV OLVWHG LQ 7DEOH 7KH PD[LPXP LQWHQVLW\ YDOXHV DUH \HOORZ DQG VFDOH WR GDUN EOXH IRU ]HUR HPLVVLRQ LQ WKH LPDJHV RI )LJXUH

PAGE 181

7DEOH 0D[LPXP IOXRUHVFHQFH LQWHQVLW\ YDOXHV IRU ; PLFURVFRSLF UHJLRQV RI >5XGSSf@&O GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO %LQGHU ZW b 0D[LPXP ,QWHQVLW\ DXfD 63'06 b 63'06 b 63'06 b 3'06 b 3'06 b 3'06 b D DX DUELWUDU\ XQLWV )LJXUH 4XDQWLWDWLYH PLFURVFRSLF IOXRUHVFHQFH LQWHQVLW\ LPDJHV ; SVLf IRU >5XGSSf@&O GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ ,QWHQVLW\ FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f ZW b LQ 63'06 %f ZW b LQ 63'06 &f ZW b LQ 63'06 'f ZW b LQ 3'06 (f ZW b LQ 3'06 )f ZW b LQ 3'06 7KH TXDQWLWDWLYH LPDJHV DUH YHU\ VLPLODU WR WKH TXDOLWDWLYH LPDJHV ,Q WKH TXDQWLWDWLYH LPDJHV D JUHDWHU VHQVH RI WKH RYHUDOO LQWHQVLW\ YDOXHV LV DFKLHYHG )RU WKH 63'06 VHQVRU ILOPV LPDJHV $ WR & WKH GLVWULEXWLRQ RI >5XGSSf@&O OXPLQHVFHQFH EHFRPHV PRUH FOXVWHUHG ZLWK JUHDWHU GHYLDWLRQV RI WKH LQWHQVLW\ YDOXHV )RU WKH 3'06 ZW b ILOP EULHIO\ FRPSDULQJ WKH GDWD LQ 7DEOH ZLWK LPDJH ( LQ )LJXUH LW LV

PAGE 182

VHHQ WKDW WKH G\QDPLF 69 UHVSRQVH LV GXH WR WKH DGVRUSWLRQ RI >5XGSSf@&O WR WKH IXPHG VLOLFD JHO SDUWLFOHV 7KH SHUFHQW VWDQGDUG GHYLDWLRQ IRU WKH LQWHQVLWLHV D bf RI WKH LPDJHV LQ )LJXUH DQG WKH UHPDLQLQJ VL[ LQWHQVLW\ SUHVVXUH LPDJHV DQDO\]HG IRU HDFK >5XGSSf@&O VHQVRU ILOP DUH OLVWHG LQ 7DEOH 7DEOH 3HUFHQW VWDQGDUG GHYLDWLRQ R bf LQ LQWHQVLWLHV DW VHYHQ SUHVVXUHV IRU PLFURVFRSLF UHJLRQV RI >5XGSSf@&O GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO 7 bD 3RO\PHU ZW b SVL SVL SVL SVL SVL SVL SVL 63'06 b 63'06 b 63'06 b 3'06 b 3'06 b 3'06 b D &7@ b 2AO,DYJ ; b 7KH ODUJH SHUFHQW GHYLDWLRQV HVSHFLDOO\ IRU WKH ZW b RI IXPHG VLOLFD JHO LQ 3'06 LQGLFDWH WKDW WKH >5XGSSf@&O LV DGVRUEHG RQWR WKH VLOLFD SDUWLFOHV LQ YDU\LQJ FRQFHQWUDWLRQV WKXV FUHDWLQJ LQWHQVLW\ GLVWULEXWLRQV DQG SDUWLWLRQLQJ RI WKH OXPLQHVFHQW SDUWLFOHV IURP WKH ZHDNO\ HPLVVLYH EDFNJURXQG ILHOG $V LV H[SHFWHG WKH FRUUHVSRQGLQJ LQWHQVLW\ GLVWULEXWLRQV DW HDFK SUHVVXUH IRU HDFK VHQVRU ILOP DOVR H[KLELW YDU\LQJ GHJUHHV RI RYHUODS GXH WR WKH KHWHURJHQHRXV DGVRUSWLRQ RI WKH >5XGSSf@&O RQWR WKH VLOLFD SDUWLFOHV DQG LWV GLVWULEXWLRQ EHWZHHQ WKH VLOLFD JHO DQG

PAGE 183

WKH SRO\PHU ELQGHU 7KH GLVWULEXWLRQ FXUYHV IRU ZW b DQG ZW b RI IXPHG VLOLFD JHO LQ 3'06 DQG 63'06 ELQGHU UHVSHFWLYHO\ DUH GLVSOD\HG LQ )LJXUH )LJXUH ,QWHQVLW\ GLVWULEXWLRQ FXUYHV IRU LQWHQVLWLHV REWDLQHG ZLWK D ; REMHFWLYH DW VL[ SUHVVXUHV IRU >5XGSSf@&O GLVSHUVHG LQ 3'06 RU 63'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI ILOPHG VLOLFD JHO $f ZW b LQ 3'06 %f ZW b LQ 63'06 ,PDJH $ DQG % GLVSOD\ FXUYHV ZKLFK RYHUODS GHFUHDVH LQ VL]H DQG H[KLELW FRQVLGHUDEOH ILQH VWUXFWXUH 7KH RYHUODS SURYHV WKDW WKHUH DUH UHJLRQV LQ HDFK SUHVVXUH LPDJH ZKLFK DUH QRW TXHQFKHG ZLWK LQFUHDVHG 3DMU 6KRUW EURDG VWUXFWXUHG SHDNV LQGLFDWH WKDW WKHUH DUH PDQ\ OXPLQHVFHQW VSHFLHV GLIIHUHQW LQWHQVLW\ YDOXHVf DW ORZHU 3DLU YDOXHV WKDW DUH QRW TXHQFKHG DW KLJKHU 3DcU YDOXHV &RPSDULQJ LPDJH $ DQG % LW LV VHHQ ZK\ WKH 69 UHVSRQVH LV EHWWHU IRU WKH ZW b ILOP FXUYHV :KLOH WKH VHQVRU ILOPVf LQWHQVLW\ GLVWULEXWLRQ FXUYHV RYHUODS WKH\ DUH VWLOO PRUH VSDWLDOO\ GLVWULEXWHG WKDQ WKH ZW b FXUYHV 7KH VHULHV RI VL[ LQWHQVLW\ LPDJHV LQ )LJXUH DIIRUGHG VL[ FRUUHVSRQGLQJ PLFURVFRSLF TXDQWLWDWLYH .VY[\f LPDJH PDSV LOOXVWUDWHG LQ )LJXUH 7KH LPDJHV DUH QRW VFDOHG WKH VDPH DQG WKH PD[LPXP .VY YDOXH IRU HDFK VHQVRU ILOP LV OLVWHG LQ 7DEOH

PAGE 184

7KH PD[LPXP .VY YDOXHV DUH \HOORZ DQG VFDOH WR GDUN EOXH IRU QR 69 UHVSRQVH LQ WKH LPDJHV RI )LJXUH 7DEOH 0D[LPXP .VY YDOXHV IRU ; PLFURVFRSLF UHJLRQV RI >5XGSSf@&O GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO %LQGHU ZW b 0D[LPXP .6Y SVLn fD 63'06 b 63'06 b 63'06 b 3'06 b 3'06 b 3'06 b .VY %$f LQ HTXDWLRQ f )LJXUH 4XDQWLWDWLYH PLFURVFRSLF .VY[\f LPDJH PDSV IRU >5XGSSf@&O GLVSHUVHG LQ 63'06 RU 3'06 ELQGHU ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO RQ JODVV :KLWH VFDOH EDUV DUH SP ORQJ .VY FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f ZW b LQ 63'06 %f ZW b LQ 63'06 &f ZW b LQ 63'06 'f ZW b LQ 3'06 (f ZW b LQ 3'06 )f ZW b LQ 3'06

PAGE 185

7KH TXDQWLWDWLYH .6Y[\f LPDJH PDSV LQ )LJXUH FRUUHVSRQG ZHOO ZLWK KLJK DQG ORZ LQWHQVLW\ YDOXHV IRU WKH TXDQWLWDWLYH LQWHQVLW\ LPDJHV LQ )LJXUH 7KH DUHDV ZKHUH >5XGSSf@&O LV DGVRUEHG RQWR WKH IXPHG VLOLFD JHO H[KLELW WKH PRVW G\QDPLF 69 UHVSRQVHV LQ LPDJHV & DQG ( ,PDJH ( DQG ) ZHUH VFDOHG WR VKRZ WKH GUDPDWLF FKDQJH LQ .VY DFURVV WKH LPDJH 7KH DFWXDO .VY PD[LPXP YDOXHV DUH SVLn DQG SVLf IRU LPDJHV ( DQG ) UHVSHFWLYHO\ 7KLV ZDV GRQH EHFDXVH WKH WLSV RI WKH VLOLFD SDUWLFOHV SURGXFHG WKH JUHDWHVW 69 UHVSRQVH ZKLFK RYHU VKDGRZHG WKH FRORU VFDOLQJ RI WKH EDFNJURXQG VLJQDO 7KH SHUFHQW VWDQGDUG GHYLDWLRQV LQ .VY[\f IRU HDFK LPDJH DUH OLVWHG LQ 7DEOHV D DQG E 7DEOH D 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU >5XGSSf@&O GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO ZW b b b b 5HJLRQ .VY 3Vc nf bD .VY .VY SVL rf b .VY .VY 3VLf .VY R b D [ b

PAGE 186

7DEOH E 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU >5XGSSf@&O GLVSHUVHG LQ 3'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO :W b b b b 5HJLRQ .ASVL nf WN b ‘nf69 .VYSVL rf b A69 .DV3VL rf R. b 7KH PLFURVFRSLF DQG PDFURVFRSLF GDWD 7DEOH f YDU\ JUHDWO\ IURP RQH DQRWKHU 6LPLODU WR WKH SUHYLRXV VHULHV RI 5X,,f DGLLPLQH FRPSOH[HV WKH PLFURVFRSLF GDWD LV PHUHO\ DQ DYHUDJH RI WKH .VY[\f GDWD 7R LOOXVWUDWH WKLV ZW b DQG ZW b RI IXPHG VLOLFD JHO LQ 3'06 DQG 63'06 ELQGHU UHVSHFWLYHO\ ZHUH DQDO\]HG DW GLVFUHWH UHJLRQV IRU WKHLU UHVSHFWLYH .VY[\f LPDJH PDSV 7DEOH LV D OLVW RI WKH GLVFUHWH .A [\f YDOXHV REWDLQHG IRU WKH ER[HV RXWOLQHG LQ WKH LPDJHV RI )LJXUH 7KH ZKLWH ER[HV DUH DQ DSSUR[LPDWLRQ RI WKH DUHD RI .VY[\f YDOXHV DQDO\]HG 7KH YDOXHV FRUUHODWH ZLWK WKH DYHUDJH YDOXHV LQ 7DEOHV D DQG E DQG VHHP UHDVRQDEOH LQ FRPSDULVRQ WR WKH PDFURVFRSLF GDWD )LJXUH $QDO\VLV RI GLVFUHWH UHJLRQV ZKLWH ER[HVf LQ TXDQWLWDWLYH PLFURVFRSLF .VY[\f LPDJH PDSV RI >5XGSSf@&O GLVSHUVHG LQ 3'06 RU 63'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO :KLWH VFDOH EDUV DUH SP ORQJ .VY FRORU VFDOH EDUV DUH VKRZQ WR WKH ULJKW RI DOO LPDJHV $f ZW b LQ 3'06 %f ZW b LQ 63'06

PAGE 187

7DEOH 'LVFUHWH .LAI [\f YDOXHV IRU WKUHH UHJLRQV RXWOLQHG LQ ; PLFURVFRSLF .VY[\f LPDJH PDSV RI >5XGSSf@&O GLVSHUVHG LQ 3'06 RU 63'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO b LQ 3'06 b LQ 63'06 5HJLRQ .JY SVLf .VY 3VL rf D E F 2QH ZD\ WR YLVXDOO\ XQGHUVWDQG WKHVH QXPEHUV LV WR SORW WKH GLVFUHWH UHJLRQV DV 69 SORWV )LJXUH GLVSOD\V WKH 69 SORWV RI WKH GLVFUHWH PLFURVFRSLF UHJLRQV IRU >5XGSSf@&O ZLWK ZW b 62 LQ 3'06 DQG ZW b 62 LQ 63'06 7KH PDFURVFRSLF 69 SORWV IRU WKH WZR VHQVRU ILOPV DUH DOVR SORWWHG DV D FRPSDULVRQ $LU 3UHVVXUH SVLf $LU 3UHVVXUH SVLf )LJXUH 0DFURVFRSLF DQG PLFURVFRSLF 69 SORWV RI >5XGSSf@&O GLVSHUVHG LQ 3'06 RU 63'06 ELQGHU RQ JODVV ZLWK ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO $UHI DUHD EHWZHHQ QP DW SVL $f ZW b LQ 3'06 DQG %f ZW b LQ 63'06 7KH >5XGSSf@&O VHQVRU ILOPV ZHUH DOVR DQDO\]HG PLFURVFRSLFDOO\ XWLOL]LQJ D ; REMHFWLYH )LYH UHJLRQV RI HDFK VHQVRU ILOP ZHUH LQWHUURJDWHG SURGXFLQJ ILYH .VY[\f LPDJH PDSV IRU HDFK VHQVRU ILOP ZLWK DFFRPSDQ\LQJ VWDWLVWLFDO GDWD OLVWHG LQ 7DEOHV D DQG E 6LPLODU WR WKH GDWD IRU WKH SUHYLRXV VHULHV RI 5X,,f DGLLPLQH

PAGE 188

FRPSOH[HV WKH GDWD LQ 7DEOHV D DQG E SRVVHVVHV KLJKHU .A [\f YDOXHV ZLWK VPDOOHU GHYLDWLRQV 7KH ; LPDJHV DUH KLJKO\ PDJQLILHG UHJLRQV RI WKH KHWHURJHQHRXV ILOPV RIWHQ WLPHV \LHOGLQJ PRUH KRPRJHQHRXV LPDJHV KLJKHU .A YDOXHV DQG VPDOOHU SHUFHQW VWDQGDUG GHYLDWLRQV 7DEOH D 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV IRU >5XLGSSIA&E GLVSHUVHG LQ 63'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO :W b b b b 5HJLRQ .-Y SVLf bf .VY .JY SVLf R. bD .ASVLnf WN bD .VY 8 D. .69 b D.VY AVY [ b WEOH E 0LFURVFRSLF 69 DQDO\VLV RI ILYH ; UHJLRQV RI >5XGSSf@&O GLVSHUVHG 3'06 ELQGHU RQ JODVV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO ZW b b b b 5HJLRQ .VY SVL f r.69 b .MASVUf JN b A69 .V\FSVUf JN b .VY 2YHUDOO DQDO\VLV RI WKH GDWD SUHVHQWHG UHYHDOV WKDW LQ JHQHUDO WKH 69 UHVSRQVH DW WKH PDFURVFRSLF OHYHO IRU >5XGSSf@&O VHQVRU ILOPV LPSURYHV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI IXPHG VLOLFD JHO )LJXUH f $W WKH PLFURVFRSLF OHYHO WKH ZW b RI IXPHG VLOLFD JHO LQ 63'06 DQG ZW b RI IXPHG VLOLFD JHO LQ 3'06 SURGXFHG WKH

PAGE 189

KLJKHVW LQWHQVLW\ YDOXHV LQ 7DEOH VWURQJ .VY UHVSRQVHV LQ 7DEOH DQG WKH OHDVW GHYLDWLRQV LQ R. Y b IRU IXPHG VLOLFD JHO ILOPV LQ 7DEOHV D E D DQG E 'LVFXVVLRQ $QDO\VLV RI 3W7)33 )LOPV 0DFURVFRSLF 69 DQDO\VHV RI HDFK 3W7)33 VHQVRU ILOP VHULHV DUH XQDIIHFWHG E\ FKDQJHV LQ WKH VHQVRU FRQFHQWUDWLRQ RU WKH PROH UDWLR RI SRO\PHU FURVVOLQNHU )LJXUHV DQG f 8SRQ PLFURVFRSLF LQVSHFWLRQ RI WKH VHQVRU ILOPV VHQVRU GLVWULEXWLRQ DQG SRO\PHU PRUSKRORJ\ EHFRPH YLVXDOO\ KHWHURJHQHRXV DV WKH VHQVRU FRQFHQWUDWLRQ )LJXUH f DQG PROH UDWLR RI FURVVOLQNHU )LJXUH f DUH LQFUHDVHG 7KH YLVXDO KHWHURJHQHLW\ RQO\ KDV D VOLJKW HIIHFW RQ WKH LQWHQVLW\ SHUFHQW VWDQGDUG GHYLDWLRQV *L bf 9LVXDO UHSUHVHQWDWLRQV RI WKH LQWHQVLW\ GLVWULEXWLRQV IRU WKH fZRUVHf VHQVRU ILOPV DUH VHHQ LQ WKH GLVWULEXWLRQ FXUYHV GLVSOD\HG LQ )LJXUHV DQG &OHDUO\ WKH HIIHFWV IURP LQFUHDVHG VHQVRU FRQFHQWUDWLRQ DQG PROH UDWLR RI FURVVOLQNHU GR QRW VXEVWDQWLDOO\ LPSDFW WKH LQWHQVLW\ GLVWULEXWLRQV VLQFH WKH FXUYHV UHSUHVHQW GLVFUHWH GLVWULEXWLRQV 7KH LQIOXHQFH RI WKHVH WZR FRQGLWLRQV XSRQ WKH PLFURVFRSLF 69 UHVSRQVH LV PLQLPDO DV ZHOO )LJXUHV DQG f 7KH .AI YDOXHV 7DEOHV D DQG Ef DUH KLJKHU WKDQ WKH PDFURVFRSLF .VY YDOXHV IRU WKH 3W7)33 ILOPV ZLWK LQFUHDVHG FRQFHQWUDWLRQ RI VHQVRU 7KH IRUPDWLRQ RI 3W7)33 PLFURFU\VWDOV DQG DJJUHJDWHV LV WKHUHIRUH LQFRQVHTXHQWLDO 1RW WRR VXUSULVLQJ LV WKH IDFW WKDW WKH .LAI YDOXHV 7DEOHV D DQG Ef DUH ORZHU IRU WKH 3W7)33 ILOPV ZLWK LQFUHDVHG PROH UDWLR RI FURVVOLQNHU DQG WKH SHUFHQW VWDQGDUG GHYLDWLRQV DUH KLJKHU 7KH DUHDV RI SRO\PHU GHZHWWLQJ DUH ODUJHU DQG PRUH LQIOXHQWLDO XSRQ WKH .VY GLVWULEXWLRQ

PAGE 190

2YHUDOO IRU HDFK 3W7)33 VHQVRU ILOP LW LV FOHDU IURP WKH .VY LPDJH PDSV WKDW WKH VHQVRU UHVSRQVH LV XQLIRUP XS WR P0 3W7)33 DQG PROH UDWLR ROLJRPHUFURVVOLQNHU HYHQ RQ OHQJWK VFDOHV RI SP 7KLV XQLIRUPLW\ LV DOVR VHHQ RQ ORQJHU OHQJWK VFDOHV DV GHPRQVWUDWHG E\ WKH RYHUDOO FRQVLVWHQF\ RI WKH .A YDOXHV 7KH XQLIRUPLW\ ZLWKLQ HDFK PLFURVFRSLF UHJLRQ LV FRQILUPHG E\ WKH IDFW WKDW WKH SHUFHQW VWDQGDUG GHYLDWLRQV D.LY bf LQ .AYYJ DUH ORZ ,QGHHG WKH D. b YDOXHV REVHUYHG IRU WKH 3W7)33 VHQVRU ILOPV DUH OLNHO\ UHSUHVHQWDWLYH RI VFDWWHU GXH WR UDQGRP QRLVH LQ WKH LPDJLQJ H[SHULPHQWV VKRW H[FLWDWLRQ HWFf 7KH 3W7)33 ILOPV DSSHDU WR EHKDYH DV LGHDO R[\JHQ VHQVRU ILOPV RQ OHQJWK VFDOHV IURP PP WR SP 7KLV LGHDO EHKDYLRU FOHDUO\ DULVHV EHFDXVH WKH K\GURSKRELF 3W7)33 VHQVRU LV ZHOO GLVSHUVHG ZLWKLQ WKH JHQHUDOO\ K\GURSKRELF 63'06 SRO\PHU ELQGHU DW OHDVW ZLWK UHVSHFW WR R[\JHQ SHUPHDELOLW\ RQ OHQJWK VFDOHV DSSURDFKLQJ SP (YHQ LQFUHDVHG FRQFHQWUDWLRQV RI OXPLQRSKRUH DQG PROH UDWLRV RI FURVVOLQNHU GR QRW GLVWXUE WKH PDFURVFRSLF 69 UHVSRQVH WR YDULDWLRQ LQ 3PU 7KLV LV GXH WR WKH PLQLPDO HIIHFWV VHQVRU PLFURFU\VWDOOL]DWLRQ DQG DJJUHJDWLRQ RU SRO\PHU GHZHWWLQJ KDV RQ WKH RYHUDOO PDFURVFRSLF 69 UHVSRQVH RI WKH VHQVRU ILOPV $QDO\VLV RI 5X ,,f RFGLLPLQH )LOPV 0DFURVFRSLF 69 DQDO\VHV RI WKH 5X,,f DGLLPLQH FRPSOH[HV LQ 63'06 SRO\PHU ELQGHU \LHOG YDU\LQJ .VY YDOXHV )LJXUH DQG 7DEOH f 3UHYLRXV VWXGLHV RI OXPLQHVFHQW R[\JHQ VHQVLQJ WKLQ ILOPV WKDW FRQWDLQ >5XGSSE@ VDOWV VXJJHVW WKDW WKH VHQVRU UHVSRQVH PD\ EH UHGXFHG ZKHQ WKH PHWDO FRPSOH[ H[LVWV LQ WKH ILOP DV PLFURFU\VWDOOLWHV RU DJJUHJDWHV 7KHUH KDV EHHQ QR GLUHFW HYLGHQFH IRU WKLV WKHRU\

PAGE 191

H[FHSW WKH DVVXPSWLRQ WKDW WKH 5X,,f RFGLLPLQH FRPSOH[HV E\ YLUWXH RI WKHLU SRODU QDWXUH GLVVROYH DQG GLVSHUVH GLIIHUHQWO\ LQ WKH UHODWLYHO\ QRQSRODU 63'06 SRO\PHU ELQGHU 'HWHUPLQDWLRQ RI WKH PLFURVFRSLF 69 UHVSRQVH GLVWULEXWLRQ RI WKH 5X,,f RF GLLPLQH FRPSOH[HV LQ 63'06 SRO\PHU ELQGHU UHYHDOV D QXPEHU RI VLJQLILFDQW IHDWXUHV 2Q D TXDOLWDWLYH OHYHO WKH .VY LPDJHV LQ )LJXUH DQG WKH VWDWLVWLFDO GDWD OLVWHG LQ 7DEOHV OD OE DQG OF FOHDUO\ GHPRQVWUDWHV WKDW WKH LQKRPRJHQHRXV GLVWULEXWLRQ RI WKH 5X,,f RFGLLPLQH FRPSOH[HV LQ WKH 63'06 SRO\PHU ELQGHU FDXVHV WKH VHQVRU ILOPV WR H[KLELW D VSDWLDOO\ KHWHURJHQHRXV 69 UHVSRQVH ,QGHHG RYHU WKH ILYH GLIIHUHQW UHJLRQV RI HDFK VHQVRU ILOP DQDO\]HG ZLWK WKH ; REMHFWLYH WKH 69 UHVSRQVH YDULHV VLJQLILFDQWO\ UHDFKLQJ D PD[LPXP .LAI DW SVL IRU WKH >5XGSSf@%3K)ff ILOP DQG D PLQLPXP .AI DW SVLn IRU WKH >5LSGSSEM&) ILOP +RZHYHU HYHQ PRUH LQWHUHVWLQJ LV WKH IDFW WKDW WKH 69 UHVSRQVH YDULHV VWURQJO\ ZLWKLQ DQ LQGLYLGXDO PLFURVFRSLF UHJLRQf§LQVSHFWLRQ RI WKH LPDJHV RI )LJXUH LOOXVWUDWHV WKDW .VY GDWD LQ 7DEOHV D DQG E YDULHV VWURQJO\ RQ OHQJWK VFDOHV RI SP $ VXEWOH DQG LQWHUHVWLQJ HIIHFW LV VHHQ ZKHQ RQH FRPSDUHV LQWHQVLW\ DQG .VY LPDJHV 6SHFLILFDOO\ WKHUH LV D VSDWLDO FRUUHODWLRQ EHWZHHQ .VY DQG OXPLQHVFHQFH LQWHQVLW\ PLFURVFRSLF UHJLRQV WKDW IHDWXUH EULJKW HPLVVLRQ \HOORZ UHJLRQV LQ )LJXUH f DOVR WHQG WR H[KLELW FRPSDUDWLYHO\ ODUJHU .VY YDOXHV \HOORZ DQG UHG UHJLRQV LQ )LJXUH f 7KLV IHDWXUH LQGLFDWHV WKDW LQ UHJLRQV ZKHUH WKH OXPLQHVFHQFH LV PRUH LQWHQVH WKH VHQVRU LV PRUH VXVFHSWLEOH WR R[\JHQ TXHQFKLQJ $ SRVVLEOH SK\VLFDO PRGHO IRU WKH VSDWLDO FRUUHODWLRQ EHWZHHQ WKH OXPLQHVFHQFH LQWHQVLW\ DQG .VY YDOXHV IRU WKH 5X,,f RWGLLPLQH FRPSOH[HV LQ WKH 63'06 SRO\PHU ELQGHU LV EDVHG RQ WKH HIIHFW RI DJJUHJDWLRQ RQ WKH OXPLQHVFHQFH LQWHQVLW\ DQG OLIHWLPH RI

PAGE 192

WKH 5X,,f RWGLLPLQH FRPSOH[HV ,W LV NQRZQ WKDW ZKHQ 5XSRO\S\ULGLQH FRPSOH[HV H[LVW LQ DQ DJJUHJDWHG RU PLFURFU\VWDOOLQH VWDWH WKHLU OXPLQHVFHQFH OLIHWLPH DQG LQWHQVLW\ TXDQWXP \LHOGf LV VLJQLILFDQWO\ UHGXFHG 7KH UHGXFWLRQ LQ OLIHWLPH DQG LQWHQVLW\ LV EHOLHYHG WR DULVH IURP VHOITXHQFKLQJ GXH WR WKH FORVH SUR[LPLW\ RI WKH DJJUHJDWHG FKURPRSKRUHV &RQVHTXHQWO\ LQ UHJLRQV RI WKH SRO\PHU ZKHUH WKH 5X,,f DGLLPLQH FRPSOH[ LV DJJUHJDWHG WKH H[SHFWHG OXPLQHVFHQFH LQWHQVLW\ DQG GHFD\ WLPH RI WKH VHQVRU DUH ORZHU 'XH WR ORZ OXPLQHVFHQFH OLIHWLPH WKH DJJUHJDWHG VHQVRU ZLOO EH OHVV VXVFHSWLEOH WR TXHQFKLQJ E\ R[\JHQ LH .6Y LV ORZHUf 7KLV HIIHFW PD\ H[SODLQ WKH REVHUYDWLRQ WKDW .6Y LV OHVV LQ UHJLRQV RI WKH 5X,,f DGLLPLQH ILOPV ZKHUH WKH OXPLQHVFHQFH LQWHQVLW\ LV ORZHU $V IRU WKH EULJKW VSRWV LPDJHG IRU WKH VHQVRU ILOPV WKH PHWDO FRPSOH[HV H[LVW HLWKHU DV DPRUSKRXV VROLGV RU PLFURFU\VWDOOLWHV :KHQ VROLG >5L.GSSE-&5 ZLWKRXW D SRO\PHU ELQGHU ZDV DQDO\]HG ZLWK WKH PLFURVFRSH VHWXS YDULDWLRQ LQ 3DcU OHG WR OLQHDU 69 UHVSRQVH IURP WKH >5XGSSf@&O SDUWLFOHV VLPLODU WR WKH 5X,,f DGLLPLQH VHQVRU ILOPVf PLFURVFRSLF 69 UHVSRQVH ,W LV LPSRUWDQW WR FRQVLGHU ZK\ WKH 5X,,f DGLLPLQH FRPSOH[HV H[LVW DV DJJUHJDWHV RU PLFURFU\VWDOV LQ WKH 63'06 SRO\PHU ELQGHU )LUVW DOO RI WKH FRPSRQHQWV XVHG WR IDEULFDWH WKH ILOPV DUH IUHHO\ VROXEOH LQ WKH GLFKORURPHWKDQH VROXWLRQ WKDW LV XVHG GXULQJ WKH DHURVRO GHSRVLWLRQ +RZHYHU EHFDXVH 63'06 LV UHODWLYHO\ QRQSRODU LW LV OLNHO\ WKDW WKH LRQLF PHWDO FRPSOH[ VDOWV DUH QRW YHU\ VROXEOH LQ WKH SXUH SRO\PHU PDWUL[ 7KH PHWDO FRPSOH[HV VHHN VROXELOL]DWLRQ DUHDV LQ WKH SRO\PHU ZKLFK DUH IDLUO\ SRODU 7KH 63'06 IRUPXODWLRQ XVHG IRU WKLV ZRUN HPSOR\V IRXU PROHV RI FURVVOLQNHU IRU HYHU\ PROH RI 6L2+ HQG JURXS RQ WKH VLODQRO SRO\GLPHWK\OVLOR[DQH ROLJRPHU 7KHUHIRUH WKHUH H[LVWV XQWHUPLQDWHG 6LDFHWR[\ FRPSRQHQWV ZKLFK FDQ SURGXFH PLFURGRPDLQV WR

PAGE 193

VROXELOL]H WKH 5X,,f DGLLPLQH PHWDO FRPSOH[HV 7KH OHVV SRODU SRO\PHU HQYLURQPHQW ZLOO DOVR LQGXFH VWURQJ FRPSOH[DWLRQ EHWZHHQ WKH LRQLF VSHFLHV RI WKH PHWDO FRPSOH[HV UHVXOWLQJ LQ UHGXFHG OLIHWLPHV DQG GHFUHDVHG R[\JHQ TXHQFKLQJ 7KXV WKH 5X,,f RFGLLPLQH FRPSOH[HV DQG 63'06 PXVW SKDVH VHSDUDWH RU FU\VWDOOL]Hf HLWKHU GXULQJ WKH DHURVRO GHSRVLWLRQ VWHS LH DV WKH PRUH SRODU GLFKORURPHWKDQH FDUULHU VROYHQW YDSRUL]HVf RU GXULQJ WKH SHULRG RI WLPH ZKHQ WKH SRO\PHU FXUHV (DFK RI WKH 5X,,f DGLLPLQH PHWDO FRPSOH[HV FKRVHQ SRVVHVV HLWKHU D GLIIHUHQW OLJDQG RU FRXQWHU LRQ 'HSHQGLQJ RQ WKH VL]H VWUXFWXUH DQG VROXELOLW\ RI WKH JLYHQ FRPSOH[ WKH ILOPfV 69 UHVSRQVH ZLOO YDU\ 7KHVH IDFWV FRXSOHG ZLWK WKH UHODWLYHO\ KLJK FRQFHQWUDWLRQ RI WKH VHQVRU XVHG LQ WKH ILOPV b E\ ZHLJKW 5X,,f DGLLPLQH FRPSOH[ LQ 63'06 ZKLFK FRUUHVSRQGV WR URXJKO\ P0 LQ WKH FXUHG FRDWLQJVf DUH VRPH RI WKH OLNHO\ UHDVRQV IRU SKDVH VHSDUDWLRQ RU PLFURFU\VWDOOL]DWLRQ ZLWKLQ WKH SRO\PHU ELQGHU 7KHUH DUH VHYHUDO LQWHUHVWLQJ DGGHQGXPV WR WKH UHPDUNV LQ WKH ODVW SDUDJUDSK 2QH SUHOLPLQDU\ VWXGLHV XVLQJ HQHUJ\ GLVSHUVLYH VSHFWURVFRS\ RQ D >5L.GSSK-&(63'06 ILOP GHWHFWHG QR VLJQDOV GXH WR UXWKHQLXP 7KLV VXJJHVWV WKDW WKH VHQVRU LV QRW SUHVHQW LQ WKH ILOPV DV SP VL]HG FU\VWDOV EXW UDWKHU LV LQKRPRJHQHRXVO\ GLVWULEXWHG WKURXJK WKH SRO\PHU LQ QPVFDOH DJJUHJDWHV 7ZR GHFUHDVH RI WKH >5XGSSf@&O VHQVRU FRQFHQWUDWLRQ WR ZW b GLG QRW LPSURYH WKH PDFURVFRSLF 69 UHVSRQVH 0LFURVFRSLF IOXRUHVFHQFH LPDJLQJ UHYHDOV WKDW HYHQ GHFUHDVHG FRQFHQWUDWLRQV RI WKH VHQVRU GLVSOD\ PLFURGRPDLQV RI OXPLQHVFHQFH 7KUHH LQFUHDVHG FURVVOLQNHU FRQFHQWUDWLRQV PLJKW LQGXFH PRUH PLFURUHJLRQV RI SRODULW\ LQWR WKH SRO\PHU PRUSKRORJ\ DOORZLQJ IRU EHWWHU VROXELOL]DWLRQ RI WKH VHQVRU 7KLV ZDV QRW WKH FDVH IRU >5XWGSS(-&OL GLVSHUVHG LQ 63'06 SRO\PHU ZLWK RU PROH UDWLRV RI ROLJRPHUFURVVOLQNHU 7KH

PAGE 194

ILOPVf PDFURVFRSLF 69 UHVSRQVH ZDV ZRUVH ZLWK XQTXHQFKDEOH PLFURGRPDLQV LQ WKH ILOPV )RXU DGGLWLRQ RI K\GURSKLOLF IXPHG VLOLFD JHO LPSURYHV WKH PDFURVFRSLF 69 UHVSRQVH RI WKH >5XGSSf@&/ VHQVRU ILOPV LQ 63'06 RU 3'06 SRO\PHU ELQGHU 7KH VLOLFD SDUWLFOHV FUHDWH SRODU VLWHV IRU VHQVRU VROXELOL]DWLRQ DQG LQFUHDVHG OXPLQHVFHQFH R[\JHQ TXHQFKLQJ ([SHULPHQWDO 2OLJRPHUV 63'06 VLODQRO WHUPLQDWHG SRO\GLPHWK\OVLOR[DQHV 3'06f b 2+ DYHUDJH 0: f DQG PHWK\OWULDFHWR[\VLODQH b ZHUH SXUFKDVHG IURP *HOHVW 7XOO\WRZQ 3$f '06' GLDFHWR[\PHWK\OWHUPLQDWHG SRO\GLPHWK\OVLOR[DQH 3'06f ZDV SXUFKDVHG IURP *HOHVW 7XOO\WRZQ 3$f /XPLQRSKRUHV >5XGSSf@&O WULV^fGLSKHQ\OOSKHQDQWKUROLQHfUXWKHQLXP ,,f GLFKORULGH ZDV V\QWKHVL]HG E\ D OLWHUDWXUH SURFHGXUH DQG SXULILHG E\ UHSHDWHG UHFU\VWDOOL]DWLRQV IURP ZDWHU >5XGSSf`@3)f WULV^GLSKHQ\OOSKHQDQWKUROLQHfUXWKHQLXP ,,f GL KH[DIOXRURSKRVSKLQH ZDV SUHSDUHG E\ PHWDWKHVLV RI WKH GLFKORULGH VDOW >5XGSSf@%3Kf WULV^fGLSKHQ\OOSKHQDQWKUROLQHfUXWKHQLXP ,,f GLWHWUDNLVSKHQ\OERUDWHf ZDV SUHSDUHG E\ PHWDWKHVLV RI WKH GLFKORULGH VDOW >5XGSSf@%3K)ff WULVGLSKHQ\OSKHQDQWKUROLQHfUXWKHQLXP ,,f GLWHWUDNLVSHQWDIOXRURSKHQ\OfERUDWHf ZDV V\QWKHVL]HG E\ FRPELQLQJ PJ RI >5XGSSf@&O GLVVROYHG LQ P/ RI GLFKORURPHWKDQH ZLWK PJ RI VRGLXP WHWUDSHQWDIOXRURSKHQ\OfERUDWH GLVVROYHG LQ P/ RI b HWKDQRO 7KH UHVXOWLQJ

PAGE 195

PL[WXUH ZDV VWLUUHG IRU K DW URRP WHPSHUDWXUH DQG DOORZHG WR VLW RYHUQLJKW DW URRP WHPSHUDWXUH 7KH SURGXFW ILQH FU\VWDOV ZDV VXFWLRQILOWHUHG DQG ZDVKHG ZLWK b HWKDQRO WKUHH WLPHV $IWHU WKH FU\VWDOV ZHUH GULHG PJ RI WKH SURGXFW ZDV FROOHFWHG >5XGSSf@%3K&)fff WULVGLSKHQ\OOSKHQDQWKUROLQHfUXWKHQLXP ,,f GLWHWUDNLVELVWULIOXRURPHWK\OfSKHQ\OfERUDWHf ZDV V\QWKHVL]HG E\ JHQWO\ UHIOX[LQJ 58&,;+2 PJ PPROf GLVVROYHG LQ P/ RI (W2+))2 YYf ZLWK FRQWLQXRXV EXEEOLQJ RI DUJRQ 7KH FRORU RI WKH VROXWLRQ FKDQJHG JUDGXDOO\ IURP D GDUN EURZQ WR D GHHS EOXH FRORU YLD D GDUN JUHHQ FRORU ZLWKLQ DSSUR[LPDWHO\ K 7R WKH KRW EOXH VROXWLRQ ZDV DGGHG GLSKHQ\OSKHQDQWKUROLQH PJ PPROf GLVVROYHG LQ (W2+ P/f 7KH PL[WXUH ZDV UHIOX[HG IRU K GXULQJ ZKLFK WLPH WKH VROXWLRQ FRORU FKDQJHG IURP EOXH WR GHHS UHG 7KH VROXWLRQ ZDV HYDSRUDWHG WR GU\QHVV 6RGLXP7)3% &)(&K VROXWLRQ ZDV DGGHG WR WKH VROLG UHVXOWLQJ PDWHULDOV 7KH PL[WXUH ZDV H[WUDFWHG VHYHUDO WLPHV ZLWK ', +2 DQG WKH RUJDQLF VROYHQW ZDV UHPRYHG ZLWK HYDSRUDWLRQ WR \LHOG D UHGRUDQJH VROLG PJ bf f+ 105 0+] SSP &'&2&'f P +f P +f G +f G +f 3UHSDUDWLRQ RI VRGLXP WHWUDNLVELVWULIOXRURPHWK\OfSKHQ\OfERUDWH 6RGLXP7)3%f 6RGLXP7)3% ZDV V\QWKHVL]HG XVLQJ WKH SURFHGXUH GHVFULEHG E\ %DKU DQG FRZRUNHUV 0J WXUQLQJV PJ PPROf DQG P/ RI HWKHU ZHUH SODFHG LQWR D P/ QHFNHG IODVN ILWWHG ZLWK D FRQGHQVHUA LQOHW DQG D P/ DGGLWLRQ IXQQHO %LVWULIOXRURPHWK\OfOEURPREHQ]HQH J PPROf DQG P/ RI HWKHU ZHUH SODFHG LQ WKH DGGLWLRQ IXQQHO DQG DGGHG GURSZLVH WR WKH QHFN IODVN 7KH VROXWLRQ ZDV JHQWO\ KHDWHG WLOO UHIOX[ 7KH PL[WXUH ZDV VWLUUHG IRU K \LHOGLQJ D GDUN EURZQ VROXWLRQ 1D%) PJ PPROf GULHG DW r& IRU K LQ YDFXR ZDV

PAGE 196

TXLFNO\ DGGHG WR WKH VROXWLRQ DQG WKH PL[WXUH ZDV VWLUUHG IRU DQRWKHU K $ OLJKW WDQ VXVSHQVLRQ UHVXOWHG 7KH VXVSHQVLRQ ZDV VORZO\ SRXUHG LQWR P/ RI ', + ZDWHU VDWXUDWHG ZLWK 1D&O 7KH UHVXOWLQJ EURZQ RUJDQLF OD\HU ZDV VHSDUDWHG DQG DQ DGGLWLRQDO P/ SRUWLRQ RI HWKHU ZDV DGGHG WR WKH DTXHRXVRUJDQLF PL[WXUH DQG H[WUDFWHG 7KH WZR RUJDQLF SRUWLRQV ZHUH FRPELQHG DQG WKH HWKHU ZDV UHPRYHG E\ HYDSRUDWLRQ \LHOGLQJ D WKLFN GDUN EURZQ RLO 7KH FUXGH SURGXFW ZDV SXULILHG E\ FKURPDWRJUDSK\ RQ VLOLFD JHO XVLQJ DFHWRQLWULOH DV HOXDQW DQG \LHOGLQJ PJ bf RI SURGXFW n+ 105 0+] SSP &'&2&'f V +f V +f & 105 0+] &'&2&'f T -&) +] &)f Pf T -%& +]f >5XGEGWDSf@3)f 7KH V\QWKHWLF URXWH XVHG IRU SUHSDUDWLRQ RI WKH SUHFXUVRU WR WKH VXEVWLWXWHG SKHQDQWKUROLQH GLQEXW\OfGLEURPROSKHQDQWKUROLQHf LV EDVHG RQ D OLWHUDWXUH UHSRUW E\ 6FKPLWWHO HW DO r 7PGLEXW\OGLWRO\ODFHW\OHQ\OfO SKHQDQWKUROLQHfUXWKHQLXP ,,f GLKH[DIOXRURSKRVSKLQHf ZDV V\QWKHVL]HG E\ DGGLQJ PJ RI 5X&O[+ WR D P/ URXQG ERWWRP IODVN ZKLFK FRQWDLQHG D PL[WXUH RI ', + P/f DQG b HWKDQRO P/f 7KH UHVXOWLQJ EURZQ VROXWLRQ ZDV GHJDVVHG ZLWK DUJRQ IRU PLQ 7KH GHJDVVHG VROXWLRQ ZDV WKHQ KHDWHG WR UHIOX[ XQGHU QLWURJHQ ZLWK VWLUULQJ 7KH FRORU RI WKH VROXWLRQ FKDQJHG IURP GHHS EURZQ WR OLJKW EURZQ WR OLJKW JUHHQ WR GHHS JUHHQ DQG ILQDOO\ WR GHHS EOXH ZLWKLQ K $W ZKLFK WLPH PJ RI GLQEXW\OGLWRO\ODFHW\OHQ\Of SKHQDQWKUROLQH GLVVROYHG LQ P/ RI b HWKDQRO DQG D 1+3) VROXWLRQ ZHUH DGGHG WR WKH KRW VROXWLRQ 7KH UHVXOWLQJ PL[WXUH ZDV UHIOX[HG XQGHU QLWURJHQ IRU K $ GHHS UHGGLVK VROXWLRQ ZDV FROOHFWHG DIWHU ILOWUDWLRQ WKURXJK FHOLWH 7KH VROYHQWV ZHUH UHPRYHG E\ URWDU\ HYDSRUDWLRQ DQG WKH UHVXOWLQJ UHVLGXH ZDV ZDVKHG WKUHH WLPHV ZLWK P/

PAGE 197

DOLTXRWV RI HWKHU 7KH SURGXFW PJf ZDV LVRODWHG DIWHU D FROG UHFU\VWDOOL]DWLRQ IURP D PL[WXUH RI b HWKDQRO P/f DQG ', +A2 P/f 6\QWKHVLV RI HWK\O KH[DQRDWH ,Q D P/ URXQG ERWWRP IODVN KH[DQRLF DFLG Jf ZDV PL[HG ZLWK J RI HWKDQRO DQG J RI +62 bf 7KH UHVXOWLQJ PL[WXUH ZDV KHDWHG DW UHIOX[ IRU K $ QRUPDO SUHVVXUH GLVWLOODWLRQ ZDV FRQGXFWHG DQG WKH SURGXFW ZDV FROOHFWHG DV WKH IUDFWLRQ GLVWLOOHG IURP r & WR r & J RI SXUH SURGXFWf 7KH IUDFWLRQ GLVWLOOHG IURP r & WR r & DERXW P/f ZDV PL[HG ZLWK P/ RI HWKHU DQG WUDQVIHUUHG WR D VHSDUDWRU\ IXQQHO ZDVKHG ZLWK P/ RI 0 1D+&&/ WKUHH WLPHV DQG P/ RI ', )/2 WZLFH 7KH RUJDQLF OD\HU ZDV VHSDUDWHG DQG GULHG RYHU 0J6 DQK\GURXVf 2QFH WKH VROYHQW ZDV UHPRYHG J RI SURGXFW ZDV LVRODWHG n+ 105 0+] SSP &'&f W +f P +f WW +f W +f T +f 6\QWKHVLV RI HWK\O IRUP\OKH[DQRDWH $ VROXWLRQ RI P/ PROf RI GLLVRSURS\ODPLQH ZDV DGGHG WR P/ RI GU\ 7+) DQG WUHDWHG ZLWK P/ RI 0 EXW\OOLWKLXP LQ KH[DQHV DW URRP WHPSHUDWXUH XQGHU QLWURJHQ 7KH UHVXOWLQJ SDOH \HOORZ VROXWLRQ ZDV FRROHG WR r & ZLWK D GU\ LFHLVRSURS\O EDWK DW ZKLFK WLPH D VROXWLRQ RI J PROf RI HWK\O KH[DQRDWH LQ P/ RI GU\ 7+) ZDV VORZO\ DGGHG IRU K NHHSLQJ WKH WHPSHUDWXUH RI WKH UHDFWLRQ DW r & (WK\O IRUPDWH J PROf ZDV DGGHG E\ V\ULQJH WR WKH VROXWLRQ $IWHU VWLUULQJ IRU PLQ WKH GU\ LFHLVRSURSDQRO EDWK ZDV UHPRYHG 7KH WHPSHUDWXUH RI WKH UHDFWLRQ ZDV ZDUPHG WR URRP WHPSHUDWXUH r & DQG NHSW VWLUULQJ IRU DQ DGGLWLRQDO K XQGHU QLWURJHQ $W WKLV SRLQW WKH UHDFWLRQ PL[WXUH FKDQJHG FRQVLVWHQF\ IURP D FOHDU SDOH \HOORZ VROXWLRQ WR D PLON\ VXVSHQVLRQ 7R WKH VXVSHQVLRQ P/ RI HWKHU ZDV DGGHG $FHWLF DFLG FD P/f ZDV DGGHG XQWLO WKH

PAGE 198

VXVSHQVLRQ WXUQHG WR D FOHDU \HOORZ FRORU 7KH FOHDU \HOORZ VROXWLRQ ZDV WKHQ ZDVKHG WZLFH ZLWK ', + QHXWUDOL]HG ZLWK D 1D+&&/ VROXWLRQ 0f DQG ZDVKHG WZLFH ZLWK ', + 7KH HWKHU OD\HU ZDV FROOHFWHG DQG GULHG RYHU 0J6 DQK\GURXVf 2QFH WKH VROYHQW ZDV UHPRYHG J RI WKH SURGXFW ZDV LVRODWHG SXUH HQRXJK IRU WKH QH[W VWHS RI WKH UHDFWLRQf n+ 105 0+] SSP &'&,f W +f P +f P +f W +f P +f G +f V +f G +f 6\QWKHVLV RI GL]EXW\OfOSKHQDQWKUROLQHGLRQH (WK\O IRUP\O KH[DQRDWH J PROf ZDV GLVVROYHG LQ P/ RI GLFKORURPHWKDQH 7R WKH VROXWLRQ J PROf RI O SKHQ\OHQHGLDPLQH ZDV DGGHG 7KH UHVXOWLQJ VROXWLRQ ZDV KHDWHG DW UHIOX[ LQ D 'HDQ6WDUN DSSDUDWXV IRU K 7KH VROYHQW ZDV UHPRYHG WR DIIRUG J RI DQ RLO\ EURZQ UHVLGXH 7KH UHVLGXH ZDV XVHG ZLWKRXW IXUWKHU SXULILFDWLRQ DQG J RI LW ZDV DGGHG WR GLSKHQ\O HWKHU P/f 7KH VROXWLRQ ZDV KHDWHG WR r & XVLQJ D VDQG EDWK XQGHU D FRQWLQXRXV QLWURJHQ VWUHDP 7KH VROXWLRQ ZDV FKDUJHG ZLWK D YLJRURXV VWUHDP RI QLWURJHQ DQG WKH WHPSHUDWXUH RI WKH VDQG EDWK ZDV UDLVHG WR r & $IWHU PLQ WKH VDQG EDWK ZDV UHPRYHG 7KH WHPSHUDWXUH RI WKH VROXWLRQ FRROHG WR r & DQG D ZKLWH SUHFLSLWDWH IRUPHG 7KH VXVSHQVLRQ ZDV WKHQ DGGHG WR P/ RI KH[DQHV WR LQGXFH PRUH SUHFLSLWDWLRQ 7KH SUHFLSLWDWH ZDV VXFWLRQILOWHUHG DQG ZDVKHG ZLWK HWKHU 7KH ZDVKHG SUHFLSLWDWH ZDV DGGHG WR P/ RI DFHWRQH DQG KHDWHG DW UHIOX[ IRU PLQ 7KH VXVSHQVLRQ ZDV FRROHG WR URRP WHPSHUDWXUH DQG WKH UHVXOWLQJ SUHFLSLWDWH ZDV ILOWHUHG DQG GULHG LQ YDFXR DW URRP WHPSHUDWXUH WR DIIRUG J RI SURGXFW n+ 105 0+] SSP '062f W +f P +f V +f 6\QWKHVLV RI GLQEXW\OfGLEURPROOSKHQDQWKUROLQH O J RI GL] EXW\Of OSKHQDQWKUROLQHGLRQH ZDV DGGHG WR J RI PHOWHG SKRVSKRU\O WULEURPLGH

PAGE 199

32%Uf XQGHU QLWURJHQ 7KH UHVXOWLQJ PL[WXUH ZDV KHDWHG RYHUQLJKW DW r & ZLWK VWLUULQJ 7KH KRW VROXWLRQ ZDV VORZO\ DGGHG GURSZLVH WR ZHOOVWLUUHG LFH ZDWHU J RI LFH DQG P/ RI ZDWHUf $IWHU PLQ D VROLG SUHFLSLWDWH IRUPHG DQG P/ RI FKORURIRUP ZDV DGGHG $ .2+ VROXWLRQ FRQFHQWUDWHG J LQ P/ ZDWHUf ZDV DGGHG GURSZLVH WR EULQJ WKH VROXWLRQ S+ WR 7KH RUJDQLF OD\HU ZDV VHSDUDWHG DQG WKH ZDWHU OD\HU ZDV H[WUDFWHG WKUHH WLPHV ZLWK P/ RI FKORURIRUP 7KH FRPELQHG FKORURIRUP OD\HUV ZHUH ZDVKHG ZLWK P/ RI D 0 .2+ VROXWLRQ WKUHH WLPHV ZLWK P/ RI ', + DQG GULHG RYHU 0J6&/ DQK\GURXVf $IWHU UHPRYLQJ WKH VROYHQW J RI WKH SURGXFW ZDV LVRODWHG r+ 105 0+] SSP &'&f W +f P +f P +f W +f V +f V +f 6\QWKHVLV RI GLmEXW\OfGLWRO\ODFHW\OHQ\OfSKHQDQWKUROLQH GLUFEXW\OfGLEURPROSKHQDQWKUROLQH PJ ZDV PL[HG ZLWK PJ RI WRO\ODFHW\OHQH GLVVROYHG LQ P/ RI 7+) P/ RI GLLVRSURS\ODPLQH PRO b 3G33Kf&O DQG PRO b &XO 7KH PL[WXUH ZDV GHJDVVHG XQGHU DUJRQ IRU PLQ 7KH UHVXOWLQJ PL[WXUH ZDV KHDWHG DW r & XQGHU DUJRQ IRU K 7KH VROYHQWV ZHUH UHPRYHG DQG WKH UHVLGXH ZDV SDVVHG WKURXJK D VKRUW VLOLFD JHO FROXPQ 7R UHPRYH WKH H[FHVV WRO\ODFHW\OHQH WKH VWDUWLQJ HOXDQW ZDV KH[DQHV 7KH HOXDQW ZDV JUDGXDOO\ UHSODFHG ZLWK SXUH FKORURIRUP 7KH SURGXFW ZDVKHG RXW DV D EURZQ EDQG $IWHU UHPRYLQJ WKH VROYHQW WKH UHVLGXH ZDV UHFU\VWDOOL]HG LQ D PL[WXUH RI DFHWRQH DQG HWKDQRO $ OLJKW \HOORZ FU\VWDOOLQH VROLG PJ ZDV FROOHFWHG SURORQJLQJ WKH UHDFWLRQ WLPH PD\ LQFUHDVH WKH \LHOGf n+ 105 0+] SSP &'&f W +f P +f P +f V +f W +f G +f G +f V +f V +f

PAGE 200

3W7)33 3W,,f PARWHWUDNLVSHQWDIOXRURSKHQ\OfSRUSKLQH 3W7)33f ZDV SXUFKDVHG IURP 3RUSK\ULQ 3URGXFWV ,QF /RJDQ 87f 3UHSDUDWLRQ RI &RDWLQJV 5X,,f DGLLPLQH FRPSOH[HV63'06 6LODQRO 3'06 PJ PPRO RI 6L 2+ HQGJURXSVf DQG PHWK\OWULDFHWR[\VLODQH PJ PPROf ZHUH GLVVROYHG LQ P/ GLFKORURPHWKDQH DQG VWLUUHG IRU K 7KHQ PJ RI WKH OXPLQHVFHQW G\H ZDV DGGHG WR WKH SRO\PHU VROXWLRQ DQG WKH PL[WXUH ZDV VWLUUHG IRU PLQ $OO RI WKH FRPSRQHQWV DUH IUHHO\ VROXEOH LQ WKLV VROXWLRQf )LQDOO\ WZR GURSV RI JODFLDO DFHWLF DFLG ZHUH DGGHG WR FDWDO\]H WKH FRQGHQVDWLRQ SRO\PHUL]DWLRQ 7KH VROXWLRQ ZDV VSUD\HG RQWR D FOHDQ ERURVLOLFDWH PLFURVFRSH VOLGH DQG D LQ GLDPHWHU [ LQ WKLFN ERURVLOLFDWH JODVV GLVN XVLQJ D FRPPHUFLDOO\ DYDLODEOH DLUEUXVK RSHUDWHG DW SVL 7KH FRDWLQJV ZHUH FXUHG DW DPELHQW WHPSHUDWXUH DQG b UHODWLYH KXPLGLW\ IRU K 3URILORPHWU\ GHPRQVWUDWHG WKDW WKH FXUHG ILOPV ZHUH W\SLFDOO\ SP WKLFN 9DULRXV FRQFHQWUDWLRQV RI 3W7)33 LQ 63'06 ELQGHU 7KH ILOPV ZHUH SUHSDUHG LQ WKH VDPH PDQQHU DV WKH DERYH 5X,,f DGLLPLQH FRPSOH[ ILOPV 7KH FRQFHQWUDWLRQ RI 3W7)33 ZDV LQFUHDVHG P0 P0 P0 P0 DQG P0 9DULRXV PROH UDWLRV RI FURVVOLQNHU LQ 3W7)3363'06 ILOPV 7KH ILOPV ZHUH SUHSDUHG LQ WKH VDPH PDQQHU DV WKH DERYH 5X,,f DGLLPLQH FRPSOH[ ILOPV 7KH PROH UDWLR RI WKH FURVVOLQNHU PHWK\OWULDFHWR[\VLODQH ZDV LQFUHDVHG DQG PROH UDWLR RI ROLJRPHUFURVVOLQNHU >5XLGSS/-&/6L&)63'06 7KH ILOPV ZHUH SUHSDUHG LQ WKH VDPH PDQQHU DV WKH DERYH 5X,,f DGLLPLQH FRPSOH[ ILOPV ,QFUHDVHG ZHLJKW SHUFHQWV RI D K\GURSKLOLF IXPHG VLOLFD JHO ZHUH DGGHG WR WKH 63'06 SRO\PHU ELQGHU ZLWK VWLUULQJ IRU PLQ ZW b

PAGE 201

DQG ZW b UHODWLYH WR WRWDO ZHLJKW RI SRO\PHU ELQGHU PJf &DE26LO DPRUSKRXV )XPHG 6LOLFD *UDGH 0 ZDV SXUFKDVHG IURP &$%27 &RUSRUDWLRQ 7XVFROD ,/f >5XGSSf@&O6L3'06 7KH ILOPV ZHUH SUHSDUHG LQ WKH VDPH PDQQHU DV WKH DERYH >5XWGSS(-&E6L&)63'06 ILOPV KRZHYHU PJ RI FRPPHUFLDOO\ V\QWKHVL]HG 3'06 '06' ZDV XVHG DV WKH SRO\PHU ELQGHU 1R FURVVOLQNLQJ ROLJRPHUV ZHUH QHHGHG 2QH GURS RI JODFLDO DFHWLF DFLG ZDV DGGHG WR FDWDO\]H WKH FRQGHQVDWLRQ SRO\PHUL]DWLRQ ,QFUHDVHG ZHLJKW SHUFHQWV RI K\GURSKRELF IXPHG VLOLFD JHO ZHUH DGGHG ZW b DQG ZW b >5XGSSf@&O3'06 7KH ILOPV ZHUH SUHSDUHG LQ WKH VDPH PDQQHU DV WKH DERYH >5XGSSf@&O63'06 ILOPV KRZHYHU PJ RI FRPPHUFLDOO\ V\QWKHVL]HG 3'06 '06' ZDV XVHG DV WKH SRO\PHU ELQGHU 1R FURVVOLQNLQJ ROLJRPHUV ZHUH QHHGHG 2QH GURS RI JODFLDO DFHWLF DFLG ZDV DGGHG WR FDWDO\]H WKH FRQGHQVDWLRQ SRO\PHUL]DWLRQ 7KH SRO\PHU VROXWLRQ DQG PJ RI OXPLQRSKRUH QHHGHG RQO\ PLQ WR VWLU ,QVWUXPHQWDWLRQ 7KH VHWXS IRU WKH LQYHUWHG IOXRUHVFHQFH PLFURVFRSH IOXRULPHWHU DQG 899LV DSSDUDWXV DUH H[WHQVLYHO\ H[SODLQHG LQ WKH ([SHULPHQWDO VHFWLRQ RI &KDSWHU )OXRUHVFHQFH 0LFURVFRSH ,PDJH $QDO\VLV ,Q HYHU\ FDVH WKH UDZ IOXRUHVFHQFH LQWHQVLW\ LPDJH PDWUL[ ,>[\3PU@ ZDV DQ DYHUDJH RI VHYHQ LQGLYLGXDO PV &&' H[SRVXUHV ZKHUH [ DQG \ ZHUH WKH RUWKRJRQDO SL[HO ORFDWLRQV RI WKH &&' DQG 3PU ZDV WKH DLU SUHVVXUH )RU D JLYHQ VSDWLDO ILHOG RI YLHZ ,>[\3DLU@ LV REWDLQHG DW VHYHQ 3DcU YDOXHV 6XEVHTXHQW LPDJH DQDO\VLV LV SHUIRUPHG XVLQJ D 39:DYH 9LVXDO 1XPHULFV ,QFf PDFUR WKDW ZDV ZULWWHQ LQKRXVH 7KH PDFUR FDUULHV RXW WKH IROORZLQJ PDWKHPDWLFDO RSHUDWLRQV RQ WKH ,>[\ 3DcU@ GDWD f (DFK UDZ LPDJH ZDV EDFNJURXQG FRUUHFWHG DFFRUGLQJ WR HTXDWLRQ f

PAGE 202

, >;\3DLU@ f§ ,>[\3DLU@ ,GDUN>[\3DLU@ f ZKHUH ,GDUN LV WKH fGDUNFRXQWf LQWHQVLW\ PDWUL[ FROOHFWHG ZLWK WKH H[FLWDWLRQ OLJKW EORFNHG f $ VPRRWKLQJURXWLQH [ SL[HOVf LV DSSOLHG WR WKH LQWHQVLW\ LPDJHV WR FRUUHFW IRU VXEWOH VKLIWV LQ WKH LPDJH UHJLVWUDWLRQ f 7KH 69 FRHIILFLHQWV $ DQG % ff ZHUH FRPSXWHG RQ D SL[HOE\SL[HO EDVLV E\ FDUU\LQJ RXW D OLQHDU OHDVWVTXDUHV UHJUHVVLRQ RI WKH LPDJH GDWD DW VHYHQ 3DLU YDOXHV DFFRUGLQJ WR HTXDWLRQ f ,F>[\3DLU DWP@ ,F>[\3DLU @ $>[\@ %>[\@3OO f 7KH SL[HOE\SL[HO OHDVWVTXDUHV FRPSXWDWLRQ DOVR DIIRUGV D PDWUL[ RI UHJUHVVLRQ FRHIILFLHQWV U>[\@f 7KH UHJUHVVLRQ FRHIILFLHQWV DUH VLPSO\ XVHG DV DQ LQGLFDWLRQ RI 69 OLQHDULW\ 9DOXHV OHVV WKDQ RQH LQGLFDWH D QRQOLQHDU UHVSRQVH f$ PDWUL[ RI 69 FRQVWDQWV ZDV WKHQ FRPSXWHG IURP WKH $ DQG % PDWULFHV DFFRUGLQJ WR HTXDWLRQ f .VY>[\@ %>[\@ $>[\@ f f 6WDQGDUG GHYLDWLRQV LQ U>[\@ DQG .6Y>[\@ *U DQG R. Y UHVSHFWLYHO\f DUH FRPSXWHG IRU HDFK VSDWLDO ILHOG RI YLHZ (DFK RI WKHVH RSHUDWLRQV ZDV FDUULHG RXW IRU LPDJHV REWDLQHG RQ VHSDUDWH PLFURVFRSLF UHJLRQV RI D VHQVRU ILOP f $Q DYHUDJH 69 FRQVWDQW .LAIf ZDV FRPSXWHG IRU HDFK PLFURVFRSH VSDWLDO ILHOG RI YLHZ DFFRUGLQJ WR HTXDWLRQ f

PAGE 203

;O.VY>LM@ .VY f§ f L[ M ZKHUH L [ M UHSUHVHQW WKH VL]H RI WKH &&' LPDJH W\SLFDOO\ [ SL[HOVf f )LQDOO\ WKH PDFUR DOORZHG WKH XVHU WR FUHDWH IDOVHFRORUHG LPDJHV WKDW GHOLQHDWHG WKH SL[HOE\SL[HO YDOXHV RI .VY DQG RWKHU SDUDPHWHUVf ZKHUH WKH LQGLYLGXDO YDOXHV RI .VY DUH LQGLFDWHG E\ D FRORU PDS 7KH 39:DYH PDFUR DSSHDUV LQ WKH DSSHQGL[ ZLWK DFFRPSDQ\LQJ VXEURXWLQHV

PAGE 204

&+$37(5 &21&/86,216 ,Q WKH SUHFHGLQJ WZR FKDSWHUV WZR LQGHSHQGHQW \HW LQWLPDWHO\ UHODWHG SURMHFWV ZHUH GHILQHG 6HYHUDO GXDOOXPLQRSKRUH RSWLFDO R[\JHQ VHQVLQJ FRDWLQJV ZHUH GHYHORSHG DQG FKDUDFWHUL]HG XWLOL]LQJ QXPHURXV SK\VLFDO DQG VSHFWURVFRSLF PHWKRGV ,QWHUHVW LQ VSHFWURVFRSLF WHFKQLTXHV SDUWLFXODUO\ IOXRUHVFHQFH PLFURVFRS\ OHG WR WKH GHYHORSPHQW RI D QRYHO PLFURVFRS\ WHFKQLTXH ([DPLQLQJ WKH UHVXOWV IRU WKH GXDO OXPLQRSKRUH FRDWLQJV LQ &KDSWHU 7ZR DV ZHOO DV WKH PRQROXPLQRSKRUH FRDWLQJV LQ &KDSWHU 7KUHH OHDGV WR VHYHUDO FRQFOXVLRQV f 6HYHUDO GXDOOXPLQRSKRUH FRDWLQJV ZHUH GHYHORSHG ZKLFK FRQMRLQWO\ LQFRUSRUDWH D SUHVVXUHVHQVLWLYH OXPLQRSKRUH DQG D SUHVVXUHLQGHSHQGHQW EXW WHPSHUDWXUH GHSHQGHQW OXPLQRSKRUH 7KH 3W'2&,SSVS93'06 DQG 3W'2&,6VSVS93'06 FRDWLQJV FRPSULVH 3W,,f WHWUDSHQWDIOXRURSKHQ\OfSRUSK\ULQ 3W7)33f DV WKH SUHVVXUHVHQVLWLYH OXPLQRSKRUH DQG fGLHWK\OR[DFDUERF\DQLQH LRGLGH '2&,f ORDGHG PLFURVSKHUHV '2&,SSVS DQG '2&,6VSVSf DV WKH SUHVVXUHLQVHQVLWLYH EXW WHPSHUDWXUHVHQVLWLYH OXPLQRSKRUH GLVSHUVHG LQ YLQ\O SRO\GLPHWK\OVLOR[DQHV 93'06 0:f SRO\PHU ELQGHU :KHQ FRDWHG RQWR EDUH RU SULPHG 7L&/VLODQRO SRO\GLPHWK\OVLOR[DQHV 0: PHWK\OWULDFHWR[\VLODQH FURVVn OLQNHUf ERURVLOLFDWH PLFURVFRSH VOLGHV WKH IRUPXODWLRQV DUH VKRZQ WR H[KLELW VSHFWUDOO\ UHVROYHG SKRWROXPLQHVFHQFH HPLVVLRQV ZLWK QR HYLGHQFH RI GXELRXV FKHPLFDO LQWHUDFWLRQV EHWZHHQ WKH WZR OXPLQRSKRUHV

PAGE 205

Df %RWK FRDWLQJV DUH WKHUPDOO\ VWDEOH RYHU D UDQJH .f DQG H[KLELW QR LQGLFDWLRQ RI K\VWHUHVLV ZLWK UHVSHFW WR UHSHDWHG WKHUPDO F\FOLQJ RYHU WKH UDQJH 7KHUHIRUH WKHVH FRDWLQJV FDQ EH XWLOL]HG DW ZLQGWXQQHO FRQGLWLRQV ZKHUH WKH WHPSHUDWXUH UDQJHV KDYH EHHQ GRFXPHQWHG WR YDU\ IURP r & WR r & A Ef 7KH FRDWLQJVf 69 UHVSRQVH LV WHPSRUDOO\ VWDEOH RYHU D PLQLPXP IRXU PRQWK SHULRG 7KHUHIRUH D PRGHO PD\ EH FRDWHG DQG VWRUHG ZLWKRXW LPPHGLDWH HYDOXDWLRQ 7KLV DVSHFW IDFLOLWDWHV PRGHO SUHSDUDWLRQ ZLWKRXW WKH LPPHGLDF\ RI VFKHGXOLQJ ZLQGWXQQHO UXQV Ff 7KH FRDWLQJVf 3W7)33 SKRWROXPLQHVFHQFH HPLVVLRQ LQWHQVLW\ LV SKRWRVWDEOH RYHU D PLQLPXP IRXUKRXU LOOXPLQDWLRQ SHULRG 7KH '2&,SSVS DQG '2&,6VSVS GLG H[KLELW VRPH SKRWRGHJUDGDWLRQ EXW QR PRUH WKDQ D bPLQn GHJUDGDWLRQ IRU WKH '2&,SSVS LQ WKH 3W'2&,SSVS93'06 FRDWLQJ 7KHUHIRUH FRDWHG ZLQGWXQQHO PRGHOV FDQ EH H[SRVHG WR H[WHQGHG SHULRGV RI H[FLWDWLRQ LOOXPLQDWLRQ ZLWK FRQVLVWHQW SKRWROXPLQHVFHQFH HPLVVLRQ UHVSRQVH GXULQJ UXQWLPHV Gf 6FDQQLQJ HOHFWURQ PLFURVFRS\ LPDJHG WKH LQWHULRU DQG H[WHULRU PRUSKRORJ\ RI WKH SRO\VW\UHQH PLFURVSKHUHV EHIRUH DQG DIWHU G\H DGVRUSWLRQ )OXRUHVFHQFH PLFURVFRS\ LOOXVWUDWHG WKH DYHUDJH OHQJWK DQG UHODWLYH GLVWULEXWLRQ RI WKH PLFURVSKHUHV LQ WKH WZR FRDWLQJV DV ZHOO DV WKH GLVWULEXWLRQ RI 3W7)33 PROHFXOHV UHODWLYH WR '2&,SSVS DQG '2&,6VSVS Hf $SSOLFDWLRQ RI WKH FRDWLQJV LQ DQ LPDJLQJ FDOLEUDWLRQ FHOO UHYHDOV WKDW WKH WHPSHUDWXUH GHSHQGHQFH RI WKH SUHVVXUH SUREHfV HPLVVLRQ LQWHQVLW\ FDQ EH

PAGE 206

FRUUHFWHG DQG D WUXH DQDO\VLV RI WKH SUHVVXUH SUREHfV UHVSRQVH WR YDULDWLRQ LQ 3DLU LV REWDLQHG $QDO\VLV RI WKH UDZ LQWHQVLW\ LPDJHV RI WKH WZR FRDWLQJV DW QP DQG QP UHYHDOV WKDW WKH LQWHQVLW\ GDWD RI WKH 3W'2&,6VSVS93'06 FRDWLQJ LV PRUH KHWHURJHQHRXV 7KH SUHSDUDWLRQ WHFKQLTXHV RU WKH FRDWLQJ FRPSRQHQWV QHHG WR EH IXUWKHU GHYHORSHG LQ VXFK D ZD\ DV WR HOLPLQDWH WKH KHWHURJHQHRXV GLVWULEXWLRQ RI LQWHQVLW\ YDOXHV f $ IOXRUHVFHQFH PLFURVFRS\ WHFKQLTXH KDV EHHQ GHYHORSHG WKDW DOORZV IRU WKH LQYHVWLJDWLRQ RI WKH OXPLQHVFHQFH SURSHUWLHV RI ILOPEDVHG R[\JHQ VHQVRUV ZLWK VSDWLDO UHVROXWLRQ RI SP 7KH QHZ WHFKQLTXH KDV EHHQ DSSOLHG WR H[SORUH WKH SURSHUWLHV RI IRXU VHULHV RI PRQROXPLQRSKRUH SUHVVXUHVHQVLWLYH FRDWLQJV WKDW GLIIHU ZLGHO\ LQ WKHLU OXPLQHVFHQFH UHVSRQVH WR YDULDWLRQ LQ 3XU Df $ VHQVRU VHULHV EDVHG RQ LQFUHDVHG FRQFHQWUDWLRQV P0f RI 3W7)33 LQ D VLODQRO SRO\GLPHWK\OVLOR[DQHV 63'06 0:f SRO\PHU ELQGHU H[KLELWV LQFUHDVHG DJJUHJDWLRQ DQG PLFURFU\VWDOOL]DWLRQ RI WKH 3W7)33 OXPLQRSKRUH DW WKH PLFURVFRSLF OHYHO ZLWK QR KLQGUDQFH LQ PDFURVFRSLF 69 UHVSRQVH WR YDULDWLRQ LQ 3DcU 7KH IRUPDWLRQ RI DJJUHJDWHV DQG PLFURFU\VWDOOLWHV KDV QR DSSDUHQW HIIHFW VLQFH WKH OXPLQRSKRUH VXIILFLHQWO\ VROXELOL]HG LQ RWKHU UHJLRQV RI WKH SRO\PHU SURYLGHV DGHTXDWH EDFNJURXQG OXPLQHVFHQFH LQWHQVLW\ WR FRPSHQVDWH IRU WKH IRUPDWLRQ RI D KHWHURJHQHRXV OXPLQHVFHQFH ILHOG Ef $ VHULHV RI 3W7)3363'06 FRDWLQJV LQFRUSRUDWLQJ LQFUHDVHG PROH UDWLRV RI FURVVOLQNHU PHWK\OWULDFHWR[\VLODQHf H[KLELW GHZHWWLQJ RI WKH SRO\PHU ELQGHU ZLWK QR DIIHFW WR WKH PDFURVFRSLF 69 UHVSRQVH ZLWK YDULDWLRQ LQ

PAGE 207

3DLU :KLOH LQFUHDVHG PROH UDWLRV RI FURVVOLQNHU LQGXFHG SRO\PHU GHZHWWLQJ WKH OXPLQHVFHQFH LQWHQVLW\ RI WKH LQWDFW SRO\PHU LV VXIILFLHQW HQRXJK WR FRPSHQVDWH IRU DUHDV YRLG OXPLQHVFHQFH Ff $ VHQVRU VHULHV EDVHG RQ 5X,,f DGLLPLQH FRPSOH[HV GLVSHUVHG LQ DQ 63'06 SRO\PHU ELQGHU H[KLELW ZLGHO\ GLIIHULQJ 69 UHVSRQVHV WR YDULDWLRQ LQ 3DLU 7KH GHJUHH RI OXPLQRSKRUH VROXELOLW\ LV HYLGHQW LQ WKH PLFURVFRSLF VSDWLDO LQWHQVLW\ GLVWULEXWLRQ RI WKH OXPLQRSKRUHV GHJUHH RI OXPLQHVFHQW LQWHQVLW\ DQG VSDWLDO 69 UHVSRQVH WR YDULDWLRQ LQ 3DcU /HVV VROXEOH OXPLQRSKRUHV >5XGSSf@&O DQG >5XLGSS/.%3KAf SURGXFH PRUH OXPLQRSKRUH DJJUHJDWLRQ DQG PLFURFU\VWDOOL]DWLRQ DQG GHSUHVVHG RU QRQn OLQHDU 69 UHVSRQVHV Gf $ VHULHV RI >5XGSSf@&O GLVSHUVHG LQ 63'06 DQG 3'06 SRO\PHU ELQGHUV ZLWK LQFUHDVHG ZHLJKW SHUFHQWV RI K\GURSKLOLF IXPHG VLOLFD JHO H[KLELW HQKDQFHG 69 UHVSRQVH 7KLV LV GXH WR DGVRUSWLRQ RI WKH OXPLQRSKRUH RQWR WKH VLOLFD JHO 7KH VLOLFD JHO SDUWLFOHV SRVVHVV LQFUHDVHG VXUIDFH DUHDV IRU EHWWHU IDFLOLWDWLRQ RI >5XGSSf@&/ OXPLQHVFHQFH TXHQFKLQJ :KLOH PLFURVFRSLF 69 DQDO\VLV LOOXVWUDWHV D YHU\ KHWHURJHQHRXV VSDWLDO GLVWULEXWLRQ RI LQWHQVLW\ DQG .VY YDOXHV WKH PDFURVFRSLF DQDO\VLV LV SRVLWLYHO\ DIIHFWHG E\ WKH DGGLWLRQ RI IXPHG VLOLFD JHO DQG SURGXFHV OLQHDU SORWV RI LQFUHDVHG 69 VHQVLWLYLW\

PAGE 208

$33(1',; 39:$9( 0$&52 $1' 68%5287,1(6 0DFUR WR UHDG 363 LPDJHV VSH IRUPDWf DQG DQDO\]H SL[HOE\SL[HO 6WHUQ9ROPHU SORWV &UHDWHG -3+ SUR SL[HOVY ILOHRXW 8VHU LQSXW UHJLRQ 7n VXSSL[ SORWLQW VDYHEPS VXENVY 5HJLRQ GHVLJQDWLRQ 6L]H RI ZLQGRZ Q[Qf IRU VPRRWKLQJ QR VPRRWKLQJ 3ORW FRORU LQWHQVLW\ LPDJHV LI 6DYH FRORU LQWHQVLW\ LPDJHV DV ELWPDSV LI DQG SORWLQW ,QWHUURJDWH .VY RYHU VXEUHJLRQ LI S > @ $UUD\ RI YDOXHV GLU n&?8VHUV?+XEQHU?6%,5 $UP\f?&DOVSDQ 0DFURV90LFURVFRSHUHJLRQnSVSHnUHJLRQnSVSHnUHJLRQnSVSHnUHJLRQfSVSHnUHJLRQLnSVSHnUHJLRQLnS VSHnUHJLRQnS VSHn@ ILOHVEPS >UHJLRQnSEPSnUHJLRQnSEPSnUHJLRQnSEPSnUHJLRQnSEPSnUHJLRQnSEPSnUHJL RQnSEPSnUHJLRQnS EPSn@ IGDUN nGDUNnUHJLRQnVSHn SHW .69BFQWUBPLQ .69BFQWUBPD[ 'HILQH FROXPQ DQG URZ UHJLRQ FO F QFRO f UO U QURO f UO U FO F 'HILQH FRQWRXU VHWWLQJV FWUV FWUBKLJK FWU ORZ +LJK FRQWRXU FRORU YDOXH /RZ FRQWRXU FRORU YDOXH

PAGE 209

FWUBVSDFH FWUBKLJKFWUBORZfFWUV FOHY IOWDUUFWUVf &RQWRXU YDOXHV FODE LQWDUUFWUVf &RQWRXU ODEHOV RQRII FLQ LQWDUUFWUVOf &RQWRXU FRORU LQGH[ ORDGFW 'HFODUH DUUD\V QILOHV QBHOHPHQWVILOHVf ILOHUHI ILOHV2f ILOHGN n f LQWDYJ IOWDUUQILOHVf LQWVWG IOWDUUQILOHVf QF FF QU UUO O LQWGDWD IOWDUUQF QU QILOHVf LQWGDUN IOWDUUQF QUf LQWQRUP IOWDUUQF QU QILOHVf UDWLR IOWDUUQF QU QILOHVf VYP IOWDUUQF QUf VYE IOWDUUQF QUf FRUU IOWDUUQF QUf 5HDG ILOHV DQG VHW GDWD PDQLSXODWLRQ ILOHV ORDGFW IRU ORRS QILOHV GR EHJLQ VSHUHDG GLU ILOHVORRSf GDWD QFRO QURZ LQWGDWDrrORRSf GDWDF FU Uf LI ORRS HT WKHQ EHJLQ VSHUHDG GLU IGDUN GDWD QFRO QURZ LQWGDUN GDWDF FU Uf HQGLI LQWGDWDrrORRSf LQWGDWDrrORRSfLQWGDUNrrf FRXQW IRU LL QF GR EHJLQ IRU MM QU GR EHJLQ LI LQWGDWDLLMMORRSf OH WKHQ EHJLQ LQWGDWDLLMMORRSf FRXQW FRXQW HQGLI HQGIRU HQGIRU LI FRXQW JW WKHQ SULQW f3HW SL[HOV ILOHVORRSf FRXQWIORDWQFrQUfr SULQW n0D[ DQG PLQ LQWHQVLW\ n ILOHVORRSfPD[LQWGDWDrrORRSffPLQLQWGDWDrrORRSff LQWDYJORRSf DYJLQWGDWDrrORRSff LQWVWGORRSf VWGHYLQWGDWDrrORRSff UDWLRrrORRSf LQWGDWDrrfLQWGDWDrrORRSf

PAGE 210

HQGIRU SULQW n$YJ t 6WGHY 'DUN ,QWHQVLW\n DYJLQWGDUNf VWGHYLQWGDUNf SULQW n$YJ ,QWHQVLW\n SULQW WUDQVSRVHLQWDYJf SULQW n6WGHY ,QWHQVLW\f SULQW WUDQVSRVHLQWVWGf SULQWnn &DOFXODWH DYHUDJH 69 SORW 4XDG ILW :LQGRZ /LQHDU ILW :LQGRZ WHPS SRO\BILWSLQWDYJfLQWDYJVYILWTXDGDEFVLJTXDGf VYTBDYJ WHPSf VYPBDYJ WHPS f VYEBDYJ WHPSf SULQW n4XDGUDWLF ILW FRHIILFLHQWV 52,f n VYTBDYJ VYPBDYJ VYEBDYJ SULQW n6WG 'HY RI )LW n VLJTXDG SULQWnn ZLQGRZ [VL]H \VL]H WLWOH n*OREDO 4XDG )LWn SORW S LQWDYJfLQWDYJ SV\P \UDQJH >QLD[LQWDYJfLQWDYJf@ RSORW S VYILWTXDG SV\P WHPS SRO\BILWSLQWDYJfLQWDYJOVYILWOLQDEFVLJOLQf VYPBDYJ WHPS f VYEBDYJ WHPS2f FRUUOLQ FRUUHODWHSLQWDYJfLQWDYJf SULQW n/LQHDU ILW FRHIILFLHQWV t .69 52,f n VYPBDYJ VYEBDYJ VYPBDYJVYEBDYJ SULQW n6WG 'HY RI )LW n VLJOLQ SULQW n&RUUHODWLRQ RI 'DWD n FRUUOLQ SULQWnn ZLQGRZ [VL]H \VL]H WLWOH n*OREDO /LQHDU )LWn SORW S LQWDYJfLQWDYJ SV\P \UDQJH >@ RSORW S VYILWOLQ SV\P 3HUIRUP VSDWLDO FRQYROXWLRQ PRYLQJ ZLQGRZ DYHUDJLQJf LI VXSSL[ JW WKHQ EHJLQ IRU ORRS QILOHV GR EHJLQ SULQW n6PRRWKLQJ ILOHn ILOHVORRSf LQWGDWDrrORRSf VPRRWKLQWGDWDrrORRSf VXSSL[f HQGIRU HQGLI SULQWnn 6HW FRXQWRXU OLPLWV IRU LPDJH SORWV PD[LQW PD[LQWGDWDf PLQLQW PLQLQWGDWDf FPLQ

PAGE 211

FPD[ PD[LQWr FGLII FPD[FPLQ IRU L FWUV GR EHJLQ FOHYLf FPLQ FPD[FPLQfrIORDWLfIORDWFWUVOff FLQLf FWUBORZ FWUBKLJKFWUBORZfrIORDWLfFWUV FODELf HQGIRU FLQFWUVf FWUBKLJK FWUBGLII FWUBKLJKFWUBORZ OJWK UUO LI FFO JW UUO WKHQ OJWK FFO 3ORW LPDJHV RI UDZ LQWHQVLWLHV :LQGRZV WKURXJK QILOHV LI SORWLQW HT WKHQ EHJLQ IRU ORRS QILOHV GR EHJLQ WHPSBLQW FWUBGLIIfrLQWGDWDrrORRSfFPLQfFPD[FPLQfLFWUBORZf ZLQGRZ ORRS [VL]H OJWK \VL]H OJWK WLWOH ILOHVORRSf WY UHYHUVHWHPSBLQWf FQWUOHJ OJWK FWUV FOHY FLQ LI VDYHEPS HT WKHQ EHJLQ SULQW n6DYLQJ ELWPDS n ILOHVEPSORRSf VWDWXV ::5,7(B',%ORRS )LOHQDPH GLUILOHVEPSORRSff HQGLI HQGIRU HQGLI SULQWnn 3ORW ,QWHQVLW\ +LVWRJUDPV EV ZLQGRZ [VL]H \VL]H WLWOH n,QWHQVLW\ +LVWRJUDPn IRU L QILOHV GR EHJLQ LQWQRUPrrLf LQWGDWDrrLf LQWKLVW KLVWRJUDPLQWQRUPrrLf ELQVL]H EVf QHOHP QBHOHPHQWVLQWKLVWf [LQWGDWD IOWDUUQHOHPf PLQLQWQRUP PLQLQWQRUPrrLff IRU M QHOHP GR [LQWGDWDMf MrEVPLQLQWQRUP LI L HT WKHQ SORW [LQWGDWD LQWKLVW [UDQJH >PLQLQWGDWDfPD[LQWGDWDf@ LI L JW WKHQ RSORW [LQWGDWD LQWKLVW FRORU Lr VWDWXV '&B:5UU(B)5((GLUnKLVWnVWULQJLfLILOHRXW [LQWGDWD LQWKLVW FROXPQf HQGIRU &DOFXODWH SL[HO 69 RYHU 52, SULQW n&DOFXODWLQJ SL[HOE\SL[HO .VY VWDWLVWLFV RYHU 52,f FRXQW IRU L QF GR EHJLQ

PAGE 212

IRU M QU GR EHJLQ WHPS SRO\BILWSLQWGDWDLMfLQWGDWDLMrfOVYILWf VYPLMf WHPSOf VYELMf WHPSf FRUULMf FRUUHODWHSLQWGDWDL MfLQWGDWDLMrff HQGIRU HQGIRU .69 VYPVYE VYPBDYJBSL[ DYJVYPf VYEBDYJBSL[ DYJVYEf .69BDYJBSL[ DYJ.69f VYPBVWGBSL[ VWGHYVYPf VYEBVWGBSL[ VWGHYVYEf .69BVWGBSL[ VWGHY.69f FRUUBDYJ DYJFRUUf .69BPD[ PD[.69f .69BPLQ PLQ.69f SULQW n$YHUDJH t 6WG RI 6WHUQ9ROPHU .69 Z DYJ FRUUFRHI 3L[HOVf .69BDYJBSL[ .69BVWGBSL[ FRUUBDYJ SULQW fn SULQW f0D[ DQG 0LQ RI .69 n .69BPD[ .69BPLQ SULQWnn 3ORW RI FRUUHODWLRQ FRHIILFLHQW FPLQ FLQD[ FGLII FPD[FPLQ IRU L FWUV GR EHJLQ FLHYLf FPLQ FPD[FPLQfrIORDWLfIORDWFWUVOff FLQLf FWUMRZ FWUBKLJKFWUBORZfrIORDWLfFWUV FODELf HQGIRU FLQFWUVf FWUBKLJK FWUBGLII FWUBKLJKFWUBORZ OJWK UUO LI FFO JW UUO WKHQ OJWK FFO WHPSBFRUU FWUBGLIIfrFRUUFPLQfFPD[FPLQfFWUBORZf ZLQGRZ [VL]H OJWK \VL]H OJWK WLWOH n&RUUHODWLRQ 3ORWn WY UHYHUVHWHPSBFRUUf FQWUOHJ OJWK FWUV FOHY FLQ 3ORW .VY +LVWRJUDP EV .69BVWGBSL[ .69KLVW KLVWRJUDP.69 ELQVL]H EVf QHOHP QBHOHPHQWV.69KLVWf [GDWD IOWDUUQHOHPf

PAGE 213

IRU L QHOHP GR [GDWDLf LrEV.69BPLQ ZLQGRZ [VL]H \VL]H WLWOH n.VY +LVWRJUDPn SORW [GDWD .69KLVW SULQW n%LQ VL]H IRU KLVWRJUDP SORW EV 3ORW RI .69 FPLQ .69BFQWUBPLQ .69BFQWUBPLQ .69BDYJBSL[r SFWf FPD[ .69BFQWUBPD[ .69BFQWUBPD[ .69BDYJBSL[rOSFWf FGLII FPD[FPLQ IRU L FWUV GR EHJLQ FOHYLf FPLQ FPD[FPLQfrIORDWLfIORDWFWUVOff FLQLf FWUMRZ FWUBKLJKFWUBORZfrIORDWLfFWUV FODELf HQGIRU FLQFWUVf FWUBKLJK FWUBGLII FWUBKLJKFWUBORZ ,JWK UUO LI FF JW UU WKHQ OJWK FF WHPSB.69 FWUBGLIIfr.69FPLQfFPD[FPLQfWFWU-RZf UHVXOW VL]HWHPSB.69f IRU L UHVXOWO fO GR EHJLQ IRU M UHVXOWfO GR EHJLQ LI WHPSB.69LMf ,W FWUMRZ WKHQ WHPSB.69LMf LI WHPSB.69LMf JW FWUBKLJK WKHQ WHPSB.69LMf HQGIRU HQGIRU ZLQGRZ [VL]H OJWK \VL]H OJWK WLWOH n.VY SORWn WY UHYHUVHWHPSB.69f FQWUOHJ OJWK FWUV FOHY FLQ 6XEUHJLRQ LQWHUURJDWLRQ LI VXENVY HT WKHQ EHJLQ IODJ WHPSLQW IOWDUUQILOHVf ZKLOH IODJ HT GR EHJLQ ZLQGRZ [VL]H QF \VL]H QU [SRV \SRV GDWD .69 NVYURL GDWD n.69 3ORWn FPLQ FPD[ UPLQ UPD[ IODJ LI IODJ HT WKHQ EHJLQ &DOFXODWH .VY RYHU VXEUHJLRQ IRU L QILOHV GR EHJLQ WHPSLQWLf DYJLQWGDWDFPLQFPD[UPLQUPD[ffDYJLQWGDWDFPLQFPD[UPLQUPD[Lff HQGIRU WHPS SRO\BILWSWHPSLQW OVYILWOLQDEFVLJOLQf SULQW n/LQHDU ILW FRHIILFLHQWV t .69 52,f n WHPSOf WHPSf WHPS fWHPSf SULQW n6WG 'HY RI )LW n VLJOLQ

PAGE 214

SULQWnn ZLQGRZ [VL]H \VL]H WLWOH n6XEUHJLRQ /LQHDU )LWn SORW S WHPSLQW SV\P \UDQJH >@ RSORW S VYILWOLQ SV\P [\RXWV WHPS fWHPSf 6L]H IRQW GHYLFH [\RXWV VLJOLQ 6L]H IRQW GHYLFH SULQW n(QWHU WR 6$9( GDWD RU WR FRQWLQXHn UHDG RSW ILOHQDPH nWHPSFVYn LI RSW HT WKHQ EHJLQ SULQW n(QWHU ILOH QDPH ZLWK H[WHQVLRQn UHDG ILOHQDPH VWDWXV '&B:5,7(B)5((GLUILOHQDPH S WHPSLQW VYILWOLQ WHPSf WHPS f FO FPLQ FPD[ UO UPLQ UPD[ FROXPQf HQGLI HQGLI ZGHOHWH HQGZKLOH HQGLI ZGHOHWH :ULWH GDWD WR ILOHVf VWDWXV '&B:5,7(B)5((GLUILOHRXW .69 FROXPQf VWDWXV '&B:5,7(B)5((GLUnFRRUnILOHRXW FRUU FROXPQf VWDWXV '&B:5,7(B)5((GLUnVYnILOHRXW S LQWDYJ LQWVWG VLJTXDG VLJOLQ VYPBDYJ VYEBDYJ .69BDYJBSL[ .69BVWGBSL[ .69+LVW PLQ.69f FROXPQf 48,7 UHWXUQ HQG .VYURL SUR NVYURL GDWD RXWBVWU [PLQ [PD[ \PLQ \PD[ IODJ IDOVH WUXH ZLQGRZ [VL]H \VL]H GDWD UHYHUVHGDWDf HUDVH WYVFO GDWD GHYLFH HOHPHQWV VL]HGDWDf QF HOHPHQWVOf QU HOHPHQWVf ILUVW WUXH UHSHDW EHJLQ LI ILUVW WKHQ EHJLQ [\RXWV QU RXWBVWU 6L]H IRQW GHYLFH

PAGE 215

[\RXWV QU 6HOHFW 52, 6L]H IRQW GHYLFH FXUVRU [O \O GHYLFH SORWV >[O [O@ >\O \O@ FRORU GHYLFH SORWV >[O [O@ >\O \O@ FRORU GHYLFH FXUVRU [ \ GHYLFH SORWV >[O [@ >\O \O@ FRORU GHYLFH SORWV >[ [@ >\ \@ FRORU GHYLFH SORWV >[O [O@ >\O \@ FRORU GHYLFH SORWV >[ [@ >\O \@ FRORU GHYLFH [O [ \O \ ILUVW IDOVH HQGLI HUDVH WYVFO GDWD GHYLFH SORWV >[O [@ >\O \O@ FRORU GHYLFH SORWV >[ [@ >\ \@ FRORU GHYLFH SORWV >[O [O@ >\O \@ FRORU GHYLFH SORWV >[ [@ >\O \@ FRORU GHYLFH [\RXWV QU (17(5 6L]H IRQW GHYLFH [\RXWV QU 48,7 6L]H IRQW GHYLFH [\RXWV QU 5HVHOHFW 52, RU &OLFN (QWHU RU &OLFN 4XLW 6L]H IRQW GHYLFH FXUVRU WHPS[O WHPS\O GHYLFH LI WHPS[O OH f DQG WHPS\O JH QUf WKHQ EHJLQ IODJ JRWR TXLW HQGLI LI WHPS[O OH f DQG WHPS\O JH QUf WKHQ EHJLQ IODJ JRWR TXLW HQGLI [ WHPS[ \ WHPS\ HUDVH WYVFO GDWD GHYLFH SORWV >[O [O@ >\O \O@ FRORU GHYLFH SORWV >[O [O@ >\O \O@ FRORU GHYLFH FXUVRU [ \ GHYLFH HQGUHS XQWLO IDOVH 48,7 [PLQ [O [PD[ [ LI [ ,W [ WKHQ EHJLQ

PAGE 216

[PLQ [ [PD[ [ HQGLI \PLQ \ \PD[ \ LI \ ,W \ WKHQ EHJLQ \PLQ \ \PD[ \ HQGLI UHWXUQ HQG &HQWUOHJ SUR FQWUOHJ OHQ FWUV FOHY FLQ MVWHS OHQFWUV M IRU L FWUV GR EHJLQ SRO\ILOO >OHQ OHQ OHQ OHQ@ >M MMVWHS MMVWHS M@ GHYLFH FRORU FLQLf M M MVWHS HQGIRU [\RXWV OHQ VWULQJFOHYf IRUPDW Iff GHYLFH FRORU FKDUVL]H [\RXWV OHQ MMVWHS VWULQJFOHYFWUVf IRUPDW Iff GHYLFH FRORU FKDUVL]H UHWXUQ HQG 6SHUHDG 7KLV SURFHGXUH UHDGV :,19,(: VSH LPDJH ILOHV ,W GHWHUPLQHV WKH VL]H RI WKH LPDJH $Q DUUD\ RI IORDWLQJ SRLQW YDOXHV UHSUHVHQWLQJ WKH EZ LQWHQVLW\ LV WKH RXWSXW GDWDQFROQURZf 1RWHV &XUUHQWO\ UHDGV WKH GDWD DIWHU WKH LPDJH KHDGHUf DV ORQJ ZRUGV /21$55f 7KH KHDGHU LV UHDG DV ZRUGV ,17$55f 7KH KHDGHU OHQJWK LV KDUG FRGHG DW ZRUGV SUR VSHUHDG GLU ILOH GDWD QFRO QURZ VSHKHDG LQWDUUf SULQW n5HDGLQJ ILOH n GLUILOH RSHQU GLUILOH UHDGX VSHKHDG QURZ VSHKHDGf QFRO VSHKHDGf SULQW QFRO QURZ SULQW VSHKHDG LI QFRO ,W f RU QFRO JW f WKHQ EHJLQ SULQW n1XPEHU RI FROXPQV nQFROn 2XW RI 5DQJHn FORVH

PAGE 217

JRWR TXLW HQGLI LI QURZ ,W f RU QURZ JW f WKHQ EHJLQ SULQW n1XPEHU RI URZV nQURZn 2XW RI 5DQJHn FORVH JRWR TXLW HQGLI SULQW n&ROXPQV n QFRO n 5RZV n QURZ GDWD ORQDUUQFROQURZf UHDGX GDWD FORVH :,1'2: [VL]H QFRO \VL]H QURZ 796&/ GDWD GHYLFH 48,7 UHWXUQ HQG 0DFUR ZULWWHQ E\ 'U 3DXO +XEQHU $GMXQFW 3URIHVVRU $HURVSDFH (QJLQHHULQJ 0HFKDQLFV DQG (QJLQHHULQJ 6FLHQFH 8QLYHUVLW\ RI )ORULGD

PAGE 218

/,67 2) 5()(5(1&(6 +LWFKPDQ 0 / &KHPLFDO $QDO\VLV $ 6HULHV RI 0RQRJUDSKV RQ $QDO\WLFDO &KHPLVWU\ DQG LWV $SSOLFDWLRQV VW HG :LOH\ t 6RQV 1HZ
PAGE 219

f/L / :DOW 5 'XDO$QDO\WH )LEHURSWLF 6HQVRU IRU WKH 6LPXOWDQHRXV DQG &RQWLQXRXV 0HDVXUHPHQW RI *OXFRVH DQG 2[\JHQ $QDO &KHP f+HDOH\ % :DOW 5 ,PSURYHG )LEHURSWLF &KHPLFDO 6HQVRU IRU 3HQLFLOOLQ $QDO &KHP f+HDOH\ % 0DWVRQ 5 6 :DOW 5 )LEHURSWLF '1$ 6HQVRU $UUD\ &DSDEOH RI 'HWHFWLQJ 3RLQW 0XWDWLRQV $QDO %LRFKHP f 6HLW] : 5 &KHPLFDO 6HQVRUV %DVHG RQ ,PPRELOL]HG ,QGLFDWRUV DQG )LEHU 2SWLFV &5& &ULW 5HY $QDO &KHP f =KDR < 5LFKPDQ $ 6WRUH\ & 5DGIRUG 1 % 3DQWDQR 3 ,Q VLWX )LEHUn RSWLF 2[\JHQ &RQVXPSWLRQ 0HDVXUHPHQWV IURP D :RUNLQJ 0RXVH +HDUW $QDO &KHP f1L 7 4 0HOWRQ / $ )XHO (TXLYDOHQFH 5DWLR ,PDJLQJ IRU 0HWKDQH -HWV $SSO 6SHFWURVFRS\ f*RXWHUPDQ 0 2[\JHQ 4XHQFKLQJ RI /XPLQHVFHQFH RI 3UHVVXUH 6HQVLWLYH 3DLQW IRU :LQG 7XQQHO 5HVHDUFK &KHP (G f0RUULV 0 'RQRYDQ ) .HJHOPDQ 7 6FKZDE 6 /HY\ 5 / &ULWHV 5 & $HURG\QDPLF $SSOLFDWLRQV RI 3UHVVXUH 6HQVLWLYH 3DLQW $$$ -RXUQDO f /X ; :LQQLN 0 $ /XPLQHVFHQFH 4XHQFKLQJ E\ 2[\JHQ LQ 3RO\PHU )LOPVn 5DPDPXUWK\ 9 DQG 6FKDQ]H 6 (G 0DUFHO 'HNNHU ,QF 1HZ
PAGE 220

f/LX 7 &DPSEHOO % 7 %XUQV 6 3 6XOOLYDQ 3 7HPSHUDWXUH DQG 3UHVVXUH 6HQVLWLYH /XPLQHVFHQW 3DLQWV LQ $HURG\QDPLFV $SSO 0HFK 5HY f 3HWHUVRQ / )LW]JHUDOG 5 9 1HZ 7HFKQLTXH RI 6XUIDFH )ORZ 9LVXDOL]DWLRQ %DVHG RQ 2[\JHQ 4XHQFKLQJ RI )OXRUHVFHQFH 5HY 6FL ,QVWU f 5DEHN ) 0HFKDQLVPV RI 3KRWRSK\VLFDO 3URFHVVHV DQG 3KRWRFKHPLFDO 5HDFWLRQV LQ 3RO\PHUV VW HG :LOH\ t 6RQV 1HZ
PAGE 221

f'HPDV 1 'H*UDII % $ ;X : 0RGHOLQJ RI /XPLQHVFHQFH 4XHQFKLQJ EDVHG 6HQVRUV &RPSDULVRQ RI 0XOWLVLWH DQG 1RQOLQHDU *DV 6ROXELOLW\ 0RGHOV $QDO &KHP f &DUUDZD\ ( 5 'HP£V 1 'H*UDII % $ %DFRQ 5 3KRWRSK\VLFV DQG 3KRWRFKHPLVWU\ RI 2[\JHQ 6HQVRUV %DVHG RQ /XPLQHVFHQW 7UDQVLWLRQ0HWDO &RPSOH[HV $QDO &KHP f 'HP£V 1 'H*UDII % $ /XPLQHVFHQFHEDVHG VHQVRUV 0LFURKHWHURJHQHRXV DQG 7HPSHUDWXUH (IIHFWV 6HQVRU $FWXDW % f0LOOV $ 5HVSRQVH &KDUDFWHULVWLFV RI 2SWLFDO 6HQVRUV IRU 2[\JHQ $ 0RGHO %DVHG RQ D 'LVWULEXWLRQ LQ WT DQG NT $QDO\VW f'HP£V 1 'H*UDII % $ 'HVLJQ DQG $SSOLFDWLRQV RI +LJKO\ /XPLQHVFHQW 7UDQVLWLRQ 0HWDO &RPSOH[HV $QDO &KHP $ $ f'HP£V 1 'H*UDII % $ $SSOLFDWLRQV RI /XPLQHVFHQW 7UDQVLWLRQ 0HWDO &RPSOH[HV WR 6HQVRU 7HFKQRORJ\ DQG 0ROHFXODU 3UREHV &KHP (G f/HH 6 2NXUD 3KRWROXPLQHVFHQW 2[\JHQ 6HQVLQJ RQ D 6SHFLILF 6XUIDFH $UHD 8VLQJ 3KRVSKRUHVFHQFH 4XHQFKLQJ RI 3W3RUSK\ULQ $QDO 6FL f 0LOOV $ /HSUH $ &RQWUROOLQJ WKH 5HVSRQVH &KDUDFWHULVWLFV RI /XPLQHVFHQW 3RUSK\ULQ 3ODVWLF )LOP 6HQVRUV IRU 2[\JHQ $QDO &KHP f 3DSNRYVN\ % 3RQRPDUHY 9 7UHWWQDN : 2n/HDU\ 3 3KRVSKRUHVFHQW &RPSOH[HV RI 3RUSK\ULQ .HWRQHV 2SWLFDO 3URSHUWLHV DQG $SSOLFDWLRQ WR 2[\JHQ 6HQVLQJ $QDO &KHP f 0LOOV $ :LOOLDPV ) & &KHPLFDO ,QIOXHQFHV RQ WKH /XPLQHVFHQFH RI 5XWKHQLXP 'LLPLQH &RPSOH[HV DQG ,WV 5HVSRQVH WR 2[\JHQ 7KLQ 6ROLG )LOPV

PAGE 222

f 0LOOV $ 7KRPDV 0 (IIHFW RI 3ODVWLFL]HU 9LVFRVLW\ RQ WKH 6HQVLWLYLW\ RI DQ >5XES\ff3K%nf@EDVHG 2SWLFDO 6HQVRU $QDO\VW f +DUWPDQQ 3 7UHWWQDN : (IIHFWV RI 3RO\PHU 0DWULFHV RQ &DOLEUDWLRQ )XQFWLRQV RI /XPLQHVFHQW 2[\JHQ 6HQVRUV %DVHG RQ 3RUSK\ULQ .HWRQH &RPSOH[HV $QDO &KHP f+DUWPDQQ 3 3KRWRFKHPLFDOO\ ,QGXFHG (QHUJ\ 7UDQVIHU (IIHFWV RQ WKH 'HFD\ 7LPHV RI 5XWKHQLXP &RPSOH[HV LQ 3RO\PHUV $QDO &OLHQW f:ROIEHLV 2 6 )LEHU2SWLF &KHPLFDO 6HQVRUV DQG %LRVHQVRUV $QDO &KHP 55 f0F'RQDJK & 0DF&UDLWK % 0F(YR\ $ 7DLORULQJ RI 6RO*HO )LOPV IRU 2SWLFDO 6HQVLQJ RI 2[\JHQ LQ *DV DQG $TXHRXV 3KDVH $QDO &OLHQW f %XHOO 6 / 'HP£V 1 +HWHURJHQHRXV 3UHSDUDWLRQ RI 6LQJOHW 2[\JHQ XVLQJ DQ ,RQ([FKDQJH5HVLQ%RXQG 7ULVfELS\ULGLQHf UXWKHQLXP ,,f 3KRWRVHQVLWL]HU 3LQV &KHP f 'HPDV 1 'LHPHQWH +DUULV ( : 2[\JHQ 4XHQFKLQJ RI &KDUJH 7UDQVIHU ([FLWHG 6WDWHV RI 5XWKHQLXP ,,f &RPSOH[HV (YLGHQFH IRU 6LQJOHW 2[\JHQ 3URGXFWLRQ $P &KHP 6RF f %DFRQ 5 'HPDV 1 'HWHUPLQDWLRQ RI 2[\JHQ &RQFHQWUDWLRQ E\ /XPLQHVFHQFH 4XHQFKLQJ RI D 3RO\PHU,PPRELOL]HG 7UDQVLWLRQ0HWDO &RPSOH[ $QDO &KHP f +DUWPDQQ 3 /HLQHU 0 3 .RMOEDFKHU 3 3KRWREOHDFKLQJ RI D 5XWKHQLXP &RPSOH[ LQ 3RO\PHUV XVHG IRU 2[\JHQ 2SWRGHV DQG ,WV ,QKLELWLRQ E\ 6LQJOHW 2[\JHQ 4XHQFKHUV 6HQV DQG $FWXDWRUV % f -XULV $ %DO]DQL 9 %DULJHOOHWWL ) &DPSDJQD 6 %FOVHU 3 YRQ =HOHZVN\ $ 5X,,f 3RO\S\ULGLQH &RPSOH[HV 3KRWRSK\VLFV 3KRWRFKHPLVWU\ (OHFWURFKHPLVWU\ DQG &KHPLOXPLQHVFHQFH &RRUG &KHP 5HY

PAGE 223

f 0LOOV $ 2SWLFDO 2[\JHQ 6HQVRUV 3ODWLQXP 0HW 5HY f $PDR < 0L\DVKLWD 7 2NXUD 2SWLFDO 2[\JHQ 6HQVLQJ %DVHG RQ WKH /XPLQHVFHQFH &KDQJH RI 0HWDOORSRUSK\ULQV ,PPRELOL]HG LQ 6W\UHQH 3HQWDIOXRURVW\UHQH &RSRO\PHU )LOP $QDO\VW f *RXWHUPDQ 0 7KH 3RUSK\ULQVn 'ROSKLQ (G $FDGHPLF 1HZ
PAGE 224

f 5XIIROR 5 (YDQV & ( % /LX ; + 1L < 3DQJ = 3DUN 3 0F:LOOLDP $ 5 *X ; /X ;
PAGE 225

f +DUULV *RXWHUPDQ 0 5HIHUHQFHG 3UHVVXUH 6HQVLWLYH 3DLQW 8VLQJ %OXH (PLWWLQJ 3KRVSKRUV 6L[WK $QQXDO 3UHVVXUH 6HQVLWLYH 3DLQW :RUNVKRS 7KH %RHLQJ &RPSDQ\ 6HDWWOH :$ SS f (DVWZRRG *RXWHUPDQ 0 3RUSK\ULQV ;9,,, /XPLQHVFHQFH RI &Rf 1Lf 3G 3W &RPSOH[HV 0ROHF 6SHFWURVFRS\ f 6SHOODQH 3 *RXWHUPDQ 0 $QWLSDV $ .LP 6 /LX < & 3RUSK\ULQV n (OHFWURQLF 6SHFWUD DQG )RXU2UELWDO (QHUJLHV RI )UHH%DVH =LQF &RSSHU DQG 3DOODGLXP 7HWUDNLVSHUIOXRURSKHQ\OfSRUSK\ULQ ,QRUJ &KHP f .DO\DQDVXQGDUDP 3KRWRFKHPLVWU\ RI 3RO\S\ULGLQH DQG 3RUSK\ULQ &RPSOH[HVn $FDGHPLF 3UHVV ,QF 1HZ
PAGE 226

f /HH : : 6 :RQJ < /L ; 0 /HXQJ < % &KDQ & 6 &KDQ 6 +DORJHQDWHG 3ODWLQXP 3RUSK\ULQV DV 6HQVLQJ 0DWHULDOV IRU /XPLQHVFHQFH EDVHG 2[\JHQ 6HQVRUV 0DWHU &KHP f$QWLSDV $ 'ROSKLQ *RXWHUPDQ 0 -RKQVRQ ( & 3RUSK\ULQV r 5HGR[ 3RWHQWLDOV &KDUJH 7UDQVIHU 7UDQVLWLRQV DQG (PLVVLRQ RI &RSSHU 6LOYHU DQG *ROG &RPSOH[HV $P &KHP 6RF f 0DWVXRND 0 &\DQLQH '\HV 0DWVXRND 0 (G 3OHQLXP 3UHVV 1HZ
PAGE 227

f /HYLWXV 0 1HJUL 5 0 $UDPHQGD 3 ) 5RWDWLRQDO 5HOD[DWLRQ RI &DUERF\DQLQHV &RPSDUDWLYH 6WXG\ ZLWK WKH ,VRPHUL]DWLRQ '\QDPLFV 3K\V &KHP f 6FDIIDUGL / 'L 3DROR 5 ( 'XFKRZLF] 5 6LPXOWDQHRXV $EVRUSWLRQ DQG )OXRUHVFHQFH $QDO\VLV RI WKH &\DQLQH '\H '2&, 3KRWRFKHP 3KRWRELR $ &KHP f $UDPHQGD 3 ) 1HJUL 5 0 6DQ 5RPDQ ( 7HPSHUDWXUH 'HSHQGHQFH RI )OXRUHVFHQFH DQG 3KRWRLVRPHUL]DWLRQ LQ 6\PPHWULF &DUERF\DQLQHV ,QIOXHQFH RI 0HGLXP 9LVFRVLW\ DQG 0ROHFXODU 6WUXFWXUH 3K\V &KHP f 3RQWHULQL 0RPLFFKLROL ) 7UDQVFLV 3KRWRLVRPHUL]DWLRQ 0HFKDQLVP RI &DUERF\DQLQHV ([SHULPHQWDO &KHFN RI 7KHRUHWLFDO 0RGHOV &KHP 3K\V OO f :LQQLN ) 0 0RUQHDX $ =LROR 5 ) 6WRYHU + + /L : + 7HPSODWH &RQWUROOHG 6\QWKHVLV RI 6XSHUSDUDPDJQHWLF *RHWKLWH ZLWKLQ 0DFURSRURXV 3RO\PHULF 0LFURVSKHUHV /DQJPXLU f :DWWV 5 &URVE\ $ 6SHFWURVFRSLF &KDUDFWHUL]DWLRQ RI &RPSOH[HV RI 5XWKHQLXP ,,f DQG ,ULGLXP ,,,f ZLWK n'LSKHQ\OnELS\ULGLQH DQG 'LSKHQ\OOSKHQDQWKUROLQH $P &KHP 6RF f 'HPDV 1 'H*UDII % $ $SSOLFDWLRQ RI +LJKO\ /XPLQHVFHQW 7UDQVLWLRQ 0HWDO &RPSOH[HV LQ 3RO\PHU 6\VWHPV 0DNURPROHNXODUH &KHPLH 0DFURPROHFXODU 6\PSRVLD Q f (OOLV $ % %UDLQDUG 5 .HSOHU 0RRUH ( :LQGHU ( 0RGXODWLRQ RI WKH 3KRWROXPLQHVFHQFH RI 6HPLFRQGXFWRUV E\ 6XUIDFH $GGXFW )RUPDWLRQ $Q $SSOLFDWLRQ RI ,QRUJDQLF 3KRWRFKHPLVWU\ WR &KHPLFDO 6HQVLQJ &KHP (G f 0LOOV $ 2SWLFDO 6HQVRUV IRU 2[\JHQ D /RJJDXVVLDQ 0XOWLVLWHTXHQFKLQJ 0RGHO 6HQVRU $FWXDW %

PAGE 228

f $VVXPLQJ +HQU\nV /DZ KROGV .\ LV UHODWHG WR .n\ E\ WKH HTXDWLRQ .\ f D .nV\ ZKHUH D LV WKH VROXELOLW\ FRHIILFLHQW RI 2 LQ WKH SRO\PHU ILOP DQG LV WKH PROH IUDFWLRQ RI 2 LQ WKH DLU f'XQQ 5 & 1HDU)LHOG 6FDQQLQJ 2SWLFDO 0LFURVFRS\ &KHP 5HY f+RX < %DUGR $ 0 0DUWLQH] & +LJJLQV $ &KDUDFWHUL]DWLRQ RI 0ROHFXODU 6FDOH (QYLURQPHQWV LQ 3RO\PHU )LOPV E\ 6LQJOH 0ROHFXOH 6SHFWURVFRS\ 3K\V &KHP % f:DQJ + %DUGR $ 0 &ROOLQVRQ 0 0 +LJJLQV $ 0LFURKHWHURJHQHLW\ LQ '\H'RSHG 6LOLFDWH DQG 3RO\PHU )LOPV 3K\V &KHP % f
PAGE 229

f'HYHQQH\ 0 :RUO / $ *RXOG 6 *XDGDOXSH $ 6XOOLYDQ % 3 &DVSDU 9 /HDVXUH 5 / *DUGQHU 5 0H\HU 7 ([FLWHG 6WDWH ,QWHUDFWLRQV LQ (OHFWURSRO\PHUL]HG 7KLQ )LOPV RI 5X,, 2V,, DQG =Q,, 3RO\S\ULG\O &RPSOH[HV 3K\V &KHP $ f+DXHQVWHLQ % / 'UHVVLFN : *LOEHUW 7 % 'HPDV 1 'H*UDII % $ ,QWHUDFWLRQV RI 5XWKHQLXP ,,f 3KRWRVHQVLWL]HUV ZLWK 1RQLRQLF 6XUIDFWDQWV 7KH %LQGLQJ 5HJLRQ DQG 6SHFLILF$QLRQ (IIHFWV 3K\V &KHP f 6DFNVWHGHU / 'HPDV 1 'H*UDII % $ 'HVLJQ RI 2[\JHQ 6HQVRUV %DVHG RQ 4XHQFKLQJ RI /XPLQHVFHQW 0HWDO &RPSOH[HV (IIHFW RI /LJDQG 6L]H RQ +HWHURJHQHLW\ $QDO &KHP f 0LOOV $ 7KRPDV 0 )OXRUHVFHQFHEDVHG 7KLQ 3ODVWLF )LOP ,RQ3DLU 6HQVRUV IRU 2[\JHQ $QDO\VW f %DKU 6 5 %RXGMRXN 3 7ULW\O WHWUDNLV ELVWULIOXRURPHWK\OfSKHQ\OfERUDWH$ 1HZ +\GULGH $EVWUDFWLRQ 5HDJHQW 2UJ &KHP f 6FKPLWWHO 0 $PPRQ + $ 6KRUW 6\QWKHWLF 5RXWH WR GLKDORJHQDWHG SKHQDQWKUROLQHV ZLWK $GGLWLRQDO *URXSV LQ SRVLWLRQ 6ROXEOH 3UHFXUVRUV IRU 0DFURF\FOLF 2OLJRSKHQDQWKUROLQHV (DU 2UJ &KHP I D

PAGE 230

%,2*5$3+,&$/ 6.(7&+ -RDQQH 0 %HGOHN$QVORZ ZDV ERUQ RQ -XO\ LQ &KLFDJR ,/ WR $QQH DQG -RKQ %HGOHN 6KH KDV D \RXQJHU VLVWHU -HDQQH D )LUVW /LHXWHQDQW LQ WKH 8QLWHG 6WDWHV $LU )RUFH 7KH WZR JUHZXS DV EHVW IULHQGV DQG RQH DQRWKHUfV ELJJHVW FKDPSLRQ $V D \RXQJ ZRPDQ -RDQQH ZDV DFWLYH LQ *LUO 6FRXWLQJ VZLPPLQJ YROXQWHHULQJ DQG FKXUFK VWHZDUGVKLS 6KH REWDLQHG KHU 6FRXWLQJ *ROG $ZDUG QXPHURXV VZLPPLQJ PHGDOV DQG ULEERQV DQG FRPPHQGDWLRQV IRU KHU FRPPXQLW\ VHUYLFH $FFRUGLQJO\ VKH GLG ZHOO WKURXJKRXW JUDPPDU DQG KLJK VFKRROV H[FHOOLQJ LQ DUWV ODQJXDJHV DQG VFLHQFH DQG JUDGXDWHG ZLWK KRQRUV IURP % &RQDQW +LJK 6FKRRO 6KH EHJDQ KHU GHJUHH LQ ELRORJ\SUHPHGLFLQH DW /R\ROD 8QLYHUVLW\ RI &KLFDJR LQ WKH IDOO RI ,Q KHU VRSKRPRUH \HDU VKH EHFDPH D FKHPLVWU\ PDMRU DIWHU DWWHQGLQJ DQ RUJDQLF FKHPLVWU\ FRXUVH WDXJKW E\ 'U 0DU\ %R\G -RDQQHfV PHQWRU DQG IULHQG 'XULQJ KHU WLPH DW /R\ROD -RDQQH ZDV LQYROYHG LQ WKH XQLYHUVLW\ PLQLVWU\ RUFKHVWUD DQG VWXGHQW DIILOLDWH $PHULFDQ &KHPLFDO 6RFLHW\ $IWHU FRPSOHWLQJ KHU FKHPLVWU\ PDMRU DQG *HUPDQ PLQRU -RDQQH FKRVH D \HDU RI ,WDOLDQ LPPHUVLRQ DW WKH /R\ROD 8QLYHUVLW\ 5RPH &HQWHU 5RPH ,WDO\ +HU SDVVLRQDWH YRFDWLRQV DV D FKLOG ZHUH FHQWHUHG LQ WKH DUWV DQG IRUHLJQ ODQJXDJHV 6KH WRRN DGYDQWDJH RI WKH RSSRUWXQLW\ DEURDG WR VWRS OLVWHQ ORRN DQG EUHDWKH LQ WKH H[SDQVLYH FXOWXUH RI ,WDO\ DQG (XURSH -RDQQH FRQVLGHUV WKLV WLPH DZD\ LQVWUXPHQWDO LQ GHYHORSLQJ KHU DZDUHQHVV RI VHOI DQG SUHVHQFH DV D \RXQJ ZRPDQ ZLWK DQ H[WUDRUGLQDU\ OLIH VWLOO WR OLYH

PAGE 231

-RDQQH VWLOO VDYRULQJ KHU QHZIRXQG VHOI UHWXUQHG WR WKH VWDWHV WR JUDGXDWH IURP /R\ROD FXP ODXGH 6KRUWO\ WKHUHDIWHU VKH UHORFDWHG WR *DLQHVYLOOH )/ WR SXUVXH KHU RWKHU PRUH SUDFWLFDO SDVVLRQ FKHPLVWU\ 'XULQJ KHU WLPH DW WKH 8QLYHUVLW\ RI )ORULGD -RDQQH OHDUQHG WKDW VKH FRXOG UHFUHDWH KHUVHOI RQFH PRUH 6KH GHYHORSHG WKH DQDO\WLFDO FULWLFDO WKLQNLQJ DVSHFWV RI KHU SHUVRQD LQ SXUVXLQJ KHU 3K' /RQJ KRXUV VSHQW LQ WKH OLEUDU\ DQG ODERUDWRU\ OHIW YHU\ OLWWOH WLPH IRU RWKHU SOHDVXUHV KRZHYHU VKH EDODQFHG KHU VWXGLHV ZLWK DQ DFWLYH LQYROYHPHQW LQ KHU FKXUFK DUW DQG YDULRXV RXWGRRU UHFUHDWLRQV ,Q WKH PLGVW RI DOO WKLV VKH PDUULHG KHU FROOHJH VZHHWKHDUW 3DXO 7KH WZR VKDUH VLPLODU GUHDPV DQG DVSLUDWLRQV IRUPLQJ D UHODWLRQVKLS IXOO RI ORYH DQG VXSSRUW 8SRQ JUDGXDWLRQ -RDQQH 3DXO DQG WKHLU WZR NLWWLHV ZLOO UHORFDWH WR &ROXPELD 6& ZKHUH VKH ZLOO EHJLQ KHU FDUHHU DV D 6HQLRU &KHPLVW ZLWK 'X3RQW 1\ORQ

PAGE 232

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ .LUN 6FKDQ]H &KDLUPDQ 3URIHVVRU RI &KHPLVWU\ WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ /LVDn0F (OZHH:KLWH 3URIHVVRU RI &KHPLVWU\ WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ M.PHV %RQFHOOD 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ %UXFH &DUUROO $VVRFLDWH 3URIHVVRU RI $HURVSDFH (QJLQHHULQJ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ *UDGXDWH 6FKRRO

PAGE 234

/' 6 e9


DEVELOPMENT AND CHARACTERIZATION OF LUMINESCENT OXYGEN
SENSING COATINGS
By
JOANNE M BEDLEK-ANSLOW
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSn YOl FLORIDA IN PARTIA! FI I FILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OI
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
2000

Copyright 2000
by
Joanne M. Bedlek-Anslow

For Jody
The little girl with curly brown hair who thought b's were d’s and p's were q’s.

ACKNOWLEDGMENTS
As I approach the completion of nearly 21 years of education, it becomes
challenging to properly thank the numerous people that have helped me along the way.
Foremost, my parents deserve my sincerest love and appreciation for always being there
for me with constant and unconditional love, encouragement, and praise throughout the
ups and downs of my life. As a young child, they encouraged my interests and helped me
to realize that any dream is possible. One of their greatest lessons was that life is about
decisions and choices. I am solely responsible for my happiness and must always be my
greatest ally. The significance of this advice continues to grow with each passing year.
Only recently, have I begun to realize the extent of their sacrifices and support of my
successes. Their examples as parents, companions and genuine people are constant
reminders of the person I am trying to become.
I must also thank my sister, Jeanne, for her love and faith and exquisite example
as a woman of compassion and conviction. My appreciation also extends to my small but
boisterous family for their love and support: Uncle Jim and Aunt Pat, Aunt Pam and
Uncle Ken, Alyssa and Chris, Arianna, Kevin and Roxann, Shay and Angie, Godmother
Helen, Russ and Dee, Matt and “little” Grandma. Unfortunately, my grandfather did not
live to see me finish my doctorate, yet I am positive he is rejoicing in my successes.
I am also fortunate to be the beneficiary of a large extended family of people who
if not through ties of blood but rather ties of friendship have blessed me with guidance,
love, and praise for longer than I can remember. This nucleus of people includes my dear
IV

friends: Shannon and Joel Gruenke, Liz and Mark Tinch, Kerry and Scot Corkey, Jackie
and Brian Brown, Sara Wadford. Dr. Mike and Andrea Robertson, Heather and John Me
Cabe. Dr. Marijean and Wayne Levering. Dr. Mary' Frances and Joel Barthel. Ellen and
Brian Rasmussen, Louis Nicoulin, Regina Tonnesen, Janis and Dick Silverman, Diane
and Russ Mueller, Irene Mueller, Anna and Wes Schwabedessen. Baba and Dzidzio
Iwanciew, and Klaus and Traudel Kummer. There was also an entire army of angels
praying for me night and day as I wrote: Sr. Kathleen Leonard, Sr. Claire Hanson. Sr.
Genevieve Therese, Sr. Dorothy Marie, Sr. Helene and all of the Sisters-of-Providence
and Salesian Nuns. I was also very fortunate for the friendships of some remarkable
people during my stay in Gainesville: Dr. Barbara Tsuie. Dr. Karen and Peter Torraca,
Dr. Keith Walters. Marilyn Peyton, and Dr. Gretchen Potts.
Credit must also be given to my undergraduate advisor. Professor Mary K. Boyd.
She has been an outstanding mentor and friend through the years. She is the one
responsible for my beginnings in chemical research and the one who first encouraged me
to pursue a Ph.D. in chemistry. Also a remarkable graduate student. Dr. Maria Valentino,
enhanced my years at Loyola. It was under her tutelage that I developed my skills and
self-confidence in my “art.” She was patient and kind and a model for the type of
graduate student I wished to become.
My formative research years led me to the laboratory of Dr. Kirk Schan/.e. I must
thank Kirk for the many lessons he has made possible to foster my growth as a person
and as a scientist. I am truly grateful for the amazing multi-disciplinary project with
which he has matched me, and his belief in its and my successful outcome. He has given
me opportunities along with encouragement to present my research and publish my
v

findings. The members of the Schanze research group, past and present, have also aided
me in fulfilling my potential not only as a scientist but also as an integrated person. I
must give particular praise to Dr. Yibing Shen for taking me under his wing and
instructing me in the initial techniques for my project. He continued to be a source of
encouragement and collaboration as I finished my research. Since my project was multi¬
disciplinary, thanks must also be given to our collaborators, Professor Bruce Carroll and
Dr. J. Paul Hubner, for their work on this project. I learned an amazing amount of
engineering, imaging techniques, and computer programming from Paul. He, like Maria,
was exceptionally patient and helpful. Of course my other committee members deserve a
thank you for their advice and help through these last four-and-a-half years: Dr. William
Dolbier, Dr. Lisa Me Elwee-White, and Dr. James Boncella.
On a more personal note, a special acknowledgment of thanks and gratitude must
be given to my husband, Paul. He deserves the Golden Test Tube Award for enduring
my Ph.D. quest and the trials and tribulations graduate school inevitably imposed on our
life together. I cannot even begin to express my appreciation for his selflessness, love,
compassion, encouragement and constant reminders to take care of myself: eating,
sleeping, exercising, laughing. He will always be my true love and best friend.
Last but certainly not least, a most grateful Thank You is given up to God. When
I lost faith in Her, She never lost faith in me. It is only through her compassionate love
that I found the strength and perseverance within myself to continue on with my studies.
Her love and jubilation in my life are clearly evident in the number of truly gifted and
outstanding people I have been fortunate to know and love. I am blessed beyond
measure!
vi

TABLE OF CONTENTS
page
ACKNOWLEDGMENTS iv
LIST OF TABLES x
LIST OF FIGURES xv
ABSTRACT xxiv
CHAPTERS
1 INTRODUCTION 1
Background I
Luminescence Quenching 2
Bimolecular Stem-Volmer Quenching 2
Modeling Non-linear Stcm-Volmcr Response 3
Luminophores and Polymers 6
Ru(II) a-Diimine Complexes 7
Pt(II)/Pd(II) Porphyrin Macrocycles 9
Silicone 11
Plasticizers 12
Modified Polymers 12
Wind-Tunnel Application 15
Temperature Effects 18
Isothermal Calibration 19
In-situ Calibration 19
K-fit Calibration 20
Temperature-corrected Pressure Calibration 21
Physical Manifestations of the Temperature Effect 21
Advances in PSP Design 23
Monitoring Methods 24
Luminescence Intensity 24
Pulsed Lifetime 25
Phase-shift 25
Scope of This Work 26
VII

2DUAL-LUMINOPHORE OXYGEN SENSING COATINGS
27
Introduction 27
Results 32
Dual-luminophore Coatings 32
Temperature Dependence and Thermal-stability 36
Temporal-stability 46
Photostability 53
Scanning and Transmission Electron Microscopy 59
Fluorescence Microscopy 70
Image Testing 85
Discussion 94
PtTFPP 94
DOCIppsp and DOCI-Sspsp 95
PtDOCIppsp/VPDMS and PtDOCI-Spsp/VPDMS Coatings 97
Experimental 98
Preparation of DOCI Highly Cross-linked Polymer Microspheres (DOCIppsp) 98
Preparation of DOCI Sulfonated Polymer Microspheres (DOCI-Sspsp) 99
Oligomers 102
Luminophores 103
Preparation of Coatings 103
Instrumentation 104
3MICROSCOPIC ANALYSIS OF LUMINESCENT OXYGEN SENSOR THIN
FILMS 109
Introduction 109
Results 112
Fluorescence Microscopy of Increased Concentrations of PtTFPP in SPDMS 112
Fluorescence Microscopy of Increased Mole Ratios of Cross-linker in
PtTFPP/SPDMS 123
Fluorescence Microscopy of Ru(II) oc-diimine Complexes in SPDMS 132
Fluorescence Microscopy of [Ru(dpp)3]Cl2 in SPDMS and PDMS with Fumed SiCL
150
Discussion 163
Analysis of PtTFPP Films 163
Analysis of Ru (II) a-diimine Films 164
Experimental 168
Oligomers 168
Luminophores 168
Preparation of Coatings 174
Instrumentation 175
Fluorescence Microscope Image Analysis 175
4CONCLUSIONS 178
viii
I

PV-WAVE MACRO AND SUBROUTINES
182
LIST OF REFERENCES 192
BIOGRAPHICAL SKETCH 204
IX

LIST OF TABLES
Table Page
1-1: Photochemical Characteristics of the Ru(II) a-diimine Complexes in Water 8
1-2: Platinum and Palladium Porphyrin Based Optical Oxygen Sensors 11
2-1: Percent change in PtTFPP emission area at seven pressures over a 40 K range for
PtDOCIppsp/VPDMS coating on primed glass 39
2-2: Percent change in PtTFPP emission area at seven pressures over a 40 K range for
PtDOCI-Sspsp/VPDMS coating on primed glass 39
2-3: SV analysis of PtTFPP emission quenching in PtDOCIppsp/VPDMS coating on
primed glass for a cyclic temperature run 40
2-4: SV analysis of PtTFPP emission quenching in PtDOCI-Sspsp/VPDMS coating on
primed glass for a cyclic temperature run 40
2-5: Percent change in DOCIppsp emission area at seven pressures over a cyclic
temperature run of 40 K for PtDOCIppsp/VPDMS coating on primed glass 44
2-6: Percent change in DOCI-Sspsp emission area at seven pressures over a cyclic
temperature run of 40 K for PtDOCI-Ss|Lisp/VPDMS coating on primed glass. 45
2-7: SV Analysis of PtTFPP emission quenching in PtDOCIppsp/VPDMS coating on
bare glass 47
2-8: SV Analysis of PtTFPP emission quenching in PtDOCI-Ssjusp/VPDMS coating on
bare glass 47
2-9: S V Analysis of PtTFPP emission quenching in VPDMS polymer on bare glass 48
2-10: SV Analysis of PtTFPP emission quenching in PtDOCIppsp/VPDMS coating on
primed glass 48
2-11: S V Analysis of PtTFPP emission quenching in PtDOCI-Ssjisp/VPDMS coating on
primed glass 48
x

2-12: SV Analysis of PtTFPP emission quenching in VPDMS polymer on primed glass.. 49
2-13: Analysis of the area under the emission curve for DOCIppsp in
PtDOCIppsp/VPDMS coating on bare and primed glass 50
2-14: Analysis of the area under the emission curve for DOCI-Sspsp in PtDOCI-
Sspsp/VPDMS coating on bare and primed glass 51
2-15: Analysis of the area under the emission curve for DOCIppsp in VPDMS polymer
on bare and primed glass 51
2-16: Analysis of the area under the emission curve for DOCI-Sspsp in VPDMS
polymer on bare and primed glass 52
2-17: Percent photodegradation of the relative emission intensity for DOCIppsp in
PtDOCIppsp/VPDMS coating on bare and primed glass 58
2-18: Percent photodegradation of the relative emission intensity for DOCI-Sspsp in
PtDOCI-Sspsp/VPDMS coating on primed glass 59
2-19: Number of microsphere objects for five regions of the DOCIppsp/VPDMS film 72
2-20: Number of microspherc objects for five regions of the DOCI-Sspsp/VPDMS film.. 72
2-21: Average and standard deviation of the microsphere objects’ lengths for each region
of the DOCIppsp/VPDMS film 73
2-22: Average and standard deviation of the microsphere objects’ lengths for each region
Of the DOCI-Sspsp/VPDMS film 73
2-23: Microscopic SV analysis of five regions for PtDOCIppsp/VPDMS thin film using
the 1 OX and 40X objectives 81
2-24: Microscopic SV analysis of five regions for PtDOCI-Sspsp/VPDMS thin film
using the I OX and 40X objectives 81
2-25: Macroscopic SV response data for PtDOCIppsp/VPDMS and PtDOCI-
Sspsp/VPDMS films on glass 83
2-26: Corresponding pressure values and statistical distributions for the uncorrected
ratioed intensity images of the PtDOCIppsp/VPDMS coating on an aluminum
plate at seven pressures between 2 - 14.8 psi 88
2-27: Corresponding pressure values and statistical distributions for the corrected ratioed
intensity images of PtDOCIppsp/VPDMS coating on an aluminum plate at
seven pressures between 2 - 14.8 psi 89
XI

2-28: Corresponding pressure values and statistical distributions for the corrected ratioed
intensity images of PtDOCI-Sspsp/VPDMS coating on an aluminum plate at
seven pressures between 2 - 14.8 psi 91
3-1: Macroscopic S V response data for increased concentrations (mM) of PtTFPP
dispersed in SPDMS binder on glass 114
3-2: PtTFPP emission intensity area (X = 630 - 670 nm) values for increased
concentrations (mM) of PtTFPP dispersed in SPDMS binder on glass 114
3-3: Maximum fluorescence intensity values for 10X microscopic regions of increased
concentrations (mM) of PtTFPP dispersed in SPDMS binder on glass at 0.4
psi 116
3-4: Percent standard deviation (o, %) in intensities at seven pressures for microscopic
regions of increased concentrations (mM) of PtTFPP dispersed in SPDMS
binder on glass using the 10X objective 117
3-5: Maximum Ksv values for 10X microscopic regions of increased concentrations
(mM) of PtTFPP dispersed in SPDMS binder on glass 119
3-6a: Microscopic SV analysis of five 10X regions for increased concentrations (mM) of
PtTFPP dispersed in SPDMS binder on glass 121
3-6b: Microscopic SV analysis of five 10X regions for increased concentrations (mM) of
PtTFPP dispersed in SPDMS binder on glass 121
3-7a: Microscopic SV analysis of five 40X regions for increased concentrations (mM) of
PtTFPP dispersed in SPDMS binder on glass 122
3-7b: Microscopic SV analysis of five 40X regions for increased concentrations (mM) of
PtTFPP dispersed in SPDMS binder on glass 122
3-8: Macroscopic SV response data for PtTFPP/SPDMS on glass at five different mole
ratios of cross-linker 124
3-9: PtTFPP emission intensity area (X = 630 - 670 nm) values for increased mole ratios
of cross-linker in PtTFPP/SPDMS on glass 124
3-10: Maximum fluorescence intensity values for 10X microscopic regions of
PtTFPP/SPDMS on glass at five different mole ratios of cross-linker at 0.4
psi 126
3-11: Percent standard deviation (a, %) in intensities at seven pressures for microscopic
regions for PtTFPP/SPDMS on glass at five different mole ratios of cross¬
linker 127
Xll

3-12: Maximum Ksv values for 10X microscopic regions for PtTFPP/SPDMS on glass at
five different mole ratios of cross-linker 129
3-13a: Microscopic SV analysis of five 10X regions for PtTFPP/SPDMS on glass at five
different mole ratios of cross-linker 130
3-13b: Microscopic SV analysis of Five 10X regions for PtTFPP/SPDMS on glass at Five
different mole ratios of cross-linker 131
3-14a: Microscopic SV analysis of Five 40X regions for PtTFPP/SPDMS on glass at Five
different mole ratios of cross-linker 131
3- 14b: Microscopic SV analysis of five 40X regions for PtTFPP/SPDMS on glass at five
different mole ratios of cross-linker 132
3-15: Macroscopic SV response data for Rut II) a-diimine complexes dispersed in
SPDMS binder on glass 134
3-16: Ru(II) a-diimine complex emission intensity arca (X = 6<)0 - 640 nm) values at 0.1
psi for Ru(II) a-diimine complexes dispersed in SPDMS binder on glass 135
3-17: Ru(II) a-diimine complex molar concentration (mM) for Ru(II) a-diimine
complexes dispersed in SPDMS binder on glass 135
3-18: Maximum fluorescence intensity values for 10X microscopic regions of Ru(II) a-
diimine complexes dispersed in SPDMS binder on glass at 0.4 psi 139
3-19: Percent standard deviation ( o, %) in intensities at seven pressures for microscopic
regions of Ru(II) a-diimine complexes dispersed in SPDMS binder on glass... 140
3-20: Maximum KSv values for I0X microscopic regions of Ru(II) a-diimine complexes
dispersed in SPDMS binder on glass 143
3-2 la: Microscopic SV analysis of five I OX regions for Ru(II) a-diimine complexes
dispersed in SPDMS binder on glass 144
3-2 lb: Microscopic SV analysis of Five I OX regions for Ru(II) a-diimine complexes
dispersed in SPDMS binder on glass 144
3-2lc: Microscopic SV analysis of five 10 X regions for Ru(II) a-diimine complexes
dispersed in SPDMS binder on glass 145
l^avg
3-22a: Discrete sv (x,y) values for three regions outlined in 10X microscopic KSv(x,y)
image maps of Ru(II) a-diimine complexes dispersed in SPDMS binder on
glass 146
XIII

j^avg
3-22b: Discrete sv (x,y) values for three regions outlined in 10X microscopic KSv(x,y)
image maps of Ru(II) a-diimine complexes dispersed in SPDMS binder on
glass 147
3-23a: Microscopic SV analysis of five 40X regions for Ru(II) a-diimine complexes
dispersed in SPDMS binder on glass 149
3-23b: Microscopic SV analysis of five 40X regions for Ru(II) a-diimine complexes
dispersed in SPDMS binder on glass 149
3-23c: Microscopic SV analysis of five 40X regions for Ru(II) a-diimine complexes
dispersed in SPDMS binder on glass 150
3-24: Macroscopic SV response data for [Ru(dpp)3]Cl2 dispersed in SPDMS or PDMS
binder on glass with increased weight percents of fumed silica gel 152
3-25: Maximum fluorescence intensity values for 10X microscopic regions of
[Ru(dpp)3]Cl2 dispersed in SPDMS or PDMS binder on glass with increased
weight percents of fumed silica gel 155
3-26: Percent standard deviation (a, %) in intensities at seven pressures for microscopic
regions of [Ru(dpp)3]Cl2 dispersed in SPDMS or PDMS binder on glass with
increased weight percents of fumed silica gel 156
3-27: Maximum Ksv values for 10X microscopic regions of [Ru(dpp)3]Cl2 dispersed in
SPDMS or PDMS binder on glass with increased weight percents of fumed
silica gel 158
3-28a: Microscopic SV analysis of five 10X regions for [Ru(dpp)3]Cl2 dispersed in
SPDMS binder on glass with increased weight percents of fumed silica gel 159
3-28b: Microscopic SV analysis of five 10X regions for [Ru(dpp)3]Cl2 dispersed in
PDMS binder on glass with increased weight percents of fumed silica gel 160
3-29: Discrete K^f (x,y) values for three regions outlined in 10X microscopic Ksv(x,y)
image maps of [Ru(dpp)3]Cl2 dispersed in PDMS or SPDMS binder on glass
with increased weight percents of fumed silica gel 161
3-30a: Microscopic SV analysis of five 40X regions for [Ru(dpp)3]Cl2 dispersed in
SPDMS binder on glass with increased weight percents of fumed silica gel 162
3-30b: Microscopic SV analysis of five 40X regions of [Ru(dpp)3]Cl2 dispersed in
PDMS binder on glass with increased weight percents of fumed silica gel 162
xiv

LIST OF FIGURES
Figure Page
I -1: Stern-Volmer plots of l/I versus pO: for the following optical oxygen sensors:
[Ru(phenb]~* in silicone rubber. GE RTV 118(A), and [Ru(bpy)3]"~ in
silicone rubber, GE RTV 118 (•) 4
1-2: Structures of the major Ru(II) a-diimine luminophores used in optical oxygen
sensors. ([Ru(bpy)j]:*, [Ru(phenb]~\ and [Ru(dppb]~+) 8
1-3: Structures of the major platinum and palladium porphyrins used in optical oxygen
sensors (M = Pt< II) or Pdi II)) 9
1-4: Repeat unit of (fluoro/isopropyl/butyl)acrylic polymer 13
1-5: Repeat unit of poly(styrene-co-pentafluorostyrene) copolymer 14
I -6: Repeat units of poly(aminothionylphosphazene)-^-poly(tetrahydrofuran) block
copolymer 15
1-7: Pressure Sensitive Paint measurement system for testing of air pressure profiles on
an airplane model in a wind-tunnel 16
I -8: Gray-scale pressure distribution map for a nitrogen jet protruding from a PSP
coating 17
2-1: Scheme for preparation of DOCI highly cross-linked polymer microspheres
(DOCIppsp). A) 5 vol % DVB relative to total volume, AIBN 2 wt. %
relative to monomer, A 70° C for 24 h., EtOH wash, dry in vacuo at 50° C for
12 h. B) I mL MeOH, sonicate 1 h., soak in dark for 7 d., MeOH and CI-LCL
wash, dry in vacuo at 30° C for 12 h 29
2-2: Scheme for preparation of DOCI sulfonated polymer microspheres (DOCI-Ssjisp).
A) 45 vol % DVB relative to total volume, DI FLO:porogen = 25:1 v/v,
porogen:monomer = 1:1.4 v/v, porogen =1:11 -dodecanoktoluene, sodium
laurylsulfate 0.3 mol % relative to monomer, A 26° - 70° C 7 h. at 250 rpm,
DI FLO and acetone wash, THF Soxhlet extraction, dry in vacuo 48° C 12 h.
B) 40 mL CFLCL, 0° C, 0.5 mL CISOTI in 40 mL C1UCI dropwise, warm to
xv

25° C, stir 24 h. 25° C, CH2CI2 wash, air dry. C) 150 mL DI H20, 50 mL
NaOH (150 mM), stir 100 min. 25° C, 3x100 mL DI H2O wash, 100 mL
acetone wash, dry in vacuo 53° C 40 h. D) 4 mL MeOH, 2 mL DI H2O,
sonicate for 20 min., MeOH and acetone wash 30
2-3: Scheme for preparation of dual-luminophore oxygen sensing coatings.
PtDOCIppsp/VPDMS and PtDOCI-Sspsp/VPDMS 31
2-4: Emission intensity spectra for PtTFPP and DOCIppsp dispersed in VPDMS
polymer on primed glass 33
2-5: Emission intensity spectra for PtTFPP and DOCI-Sspsp dispersed in VPDMS
polymer on primed glass 35
2-6: SV plot PtDOCIppsp/VPDMS coating on primed glass for temperatures between
273 - 313 K. Aref area between 630 - 670 nm at 14.7 psi and 313 K 38
2-7: SV plot PtDOCI-Sspsp/VPDMS coating on primed glass for temperatures between
273 -313 K. Aref: area between 630 - 670 nm at 14.7 psi and 313 K 38
2-8: Emission intensity spectra for DOCIppsp in PtDOCIppsp/VPDMS coating on
primed glass at 0.1 psi for five temperatures between 273 - 313 K 41
2-9: Emission intensity spectra for DOCI-Sspsp in PtDOCI-Sspsp/VPDMS coating on
primed glass at 0.1 psi for five temperatures between 273 - 313 K 42
2-10: Temperature dependence of emission for DOCIppsp in PtDOCIppsp/VPDMS
coating on primed glass for a series of pressures between 0.1-14.7 psi. Aref:
area between 530 - 570 nm at 273 K and 0.1 psi 43
2-11: Temperature dependence of emission for DOCI-Sspsp in PtDOCI-Sspsp/VPDMS
coating on primed glass for a series of pressures between 0.1 - 14.7 psi. Aref:
area between 530 - 570 nm at 273 K and 0.1 psi 43
2-12: Photostability of PtTFPP emission in PtDOCIppsp/VPDMS coating on bare and
primed glass at 5 and 14.7 psi and RT. Aref: area between 630 - 670 nm at
240 min 54
2-13: Photostability of PtTFPP emission in PtDOCI-Sspsp/VPDMS coating on bare and
primed glass at 5 and 14.7 psi and RT. Aref: area between 630 - 670 nm at
240 min 54
2-14: Photostability of PtTFPP emission in VPDMS polymer coating on bare and primed
glass at 5 and 14.7 psi and RT. Aref: area between 630 - 670 nm at 240 min. 55
xvi

2-15: Photostability of DOCIppsp relative emission intensity in PtDOCIpfisp/VPDMS
coating on bare and primed glass at 5 and 14.7 psi and RT. AREf- area
between 530 - 570 nm at 240 min 56
2-16: Photostability of DOCI-Sspsp relative emission intensity in PtDOCI-
Sspsp/VPDMS coating on bare and primed glass at 5 and 14.7 psi and RT.
Aref^ area between 530 - 570 nm at 240 min 57
2-17: Photostability of DOCIppsp relative emission intensity in VPDMS polymer
coating on bare and primed glass at 5 and 14.7 psi and RT. AREf: area
between 530 - 570 nm at 240 min 57
2-18: Photostability of DOCI-Sspsp relative emission intensity in VPDMS polymer
coating on bare and primed glass at 5 and 14.7 psi and RT. ArEf: area
between 530 - 570 nm at 240 min 58
2-19: Scanning electron micrograph of precipitation microspheres (pfisp)(5 vol °/c of
DVB55; acetonitrile). The scale bar consists of 1 1 w hite vertical lines and is
5 pm long from the first line to the last line 60
2-20: Scanning electron micrograph of fractured precipitation microspheres (ppsp)(5 vol
% of DVB55; acetonitrile). The scale bar consists of 11 white vertical lines
and is 1.5 pm long from the first line to the last line 61
2-21: Scanning electron micrograph of precipitation microspheres (5 vol % of DVB55;
acetonitrile) with 7.27 wt. % adsorbed DOCI (DOCIppsp). The scale bar
consists of 1 I white vertical lines and is 2.31 pm long from the first line to the
last line 62
2-22: Scanning electron micrograph of fractured precipitation microspheres (5 vol % of
DVB55; acetonitrile) with 7.27 wt. % DOCI (DOCIppsp). The scale bar
consists of 11 white vertical lines and is 750 nm long from the first line to the
last line 62
2-23: Scanning electron micrograph of negatively charged, sulfonated, suspension
microspheres (Sspp )(45 vol % of DVB55; 1-dodecanohtoluenc = 1:1). The
scale bar consists of 11 white vertical lines and is 10 pm long from the first
line to the last line 63
2-24: Scanning electron micrograph of fractured negatively charged, sulfonated,
suspension microspheres (Sspp ) (45 vol % of DVB55; I-dodecanohtoluene =
1:1). The scale bar consists of 11 white vertical lines and is 750 nm long from
the first line to the last line 64
2-25: Scanning electron micrograph of fractured negatively charged, sulfonated,
suspension microspheres (45 vol % of DVB55; 1-dodecanohtoluene =1:1)
XVII

with 3.83 wt. % adsorbed DOCI (DOCI-Sspsp). The scale bar consists of 11
white vertical lines and is 2.73 (Ltm long from the first line to the last line 65
2-26: Scanning electron micrograph of the surface of a thin film (~ 10 pm) of SPDMS
containing DOCIppsp (7.27 wt. % DOCI)(5 vol % of DVB55; acetonitrile).
The scale bar consists of 11 white vertical lines and is 5.02 pm long from the
first line to the last line 66
2-27: Scanning electron micrograph of the interior morphology of a thin film (~ 10 pm)
of VPDMS containing DOCIppsp (7.27 wt. % DOCI)(5 vol % of DVB55;
acetonitrile). The scale bar consists of 11 white vertical lines and is 33.3 pm
long from the first line to the last line 67
2-28: Scanning electron micrograph of the interior morphology of a thin film (~ 10 pm)
of VPDMS containing DOCIppsp (7.27 wt. % DOCI)(5 vol % of DVB55;
acetonitrile) (27X magnification of Figure 2-27). The scale bar consists of 11
white vertical lines and is 1.20 pm long from the first line to the last line 67
2-29: Transmission electron micrographs of a < 100 nm slice of [Ru(dpp)3]Cl2 dispersed
in SPDMS polymer. (A) X4500 magnification of polymer, white scale bar is
3.0 pm long and (B) X70000 magnification of polymer, white scale bar is 0.4
pm long 69
2-30: Fluorescence microscope image of A) DOCIppsp/VPDMS film and B) DOCI-
Sspsp/VPDMS film obtained with a CCD camera through a 40X and 60X
objective, respectively. White scale bar is 26.5 pm and 17.8 pm long,
respectively 71
2-31: Histogram of the microsphere objects’ major axis lengths for A)
DOCIppsp/VPDMS film and B) DOCI-Sspsp/VPDMS film. Vertical bars
equal a 0.5 pm length increment 73
2-32: Fluorescence images of PtDOCIppsp/VPDMS film obtained with a CCD camera
through a 40X objective. White scale bars are 37.9 pm long. A) PtTFPP
emission (ca. 630 nm), B) DOCIppsp emission (ca. 525 nm), C) PtTFPP and
DOCIppsp emissions (> 475 nm) 76
2-33: Line scan analysis of the emission intensity of a fluorescence microscope image of
PtDOCIppsp/VPDMS film obtained with a CCD camera through a 40X
objective with a 525 nm 50 nm, bandpass filter (DOCI emission response).
A) Fluorescence microscope image of DOCIppsp emission and B) Emission
line scans for three 30 pm lines through microsphere clusters in image A 77
2-34: Line scan analysis of the emission intensity of a fluorescence microscope image of
PtDOCIppsp/VPDMS film obtained with a CCD camera through a 40X
objective with a 630 nm 60 nm, bandpass filter (PtTFPP emission response).
xviii

A) Fluorescence microscope image of PtTFPP emission and B) Emission line
scans for three 30 pm lines through microsphere clusters in image A 78
2-35: False-colored quantitative microscopic fluorescence intensity (0.5psi. 10X) and
Ksv(x,y) image maps for PtDOCIppsp/VPDMS thin Film. White scale bars
are 61.5 pm long. A) False-colored quantitative microscopic fluorescence
intensity image, 1^ = 11081 a.u., yellow color and B) Quantitative
microscopic Ksv(x,y) image map for the identical region, K"“ = 0.870 psi'1,
yellow color 80
2-36: False-colored quantitative microscopic fluorescence intensity (0.5psi. 10X) and
Ksv(x,y) image maps for PtDOCI-Sspsp/VPDMS thin Film. White scale bars
are 61.5 pm long. A) False-colored quantitative microscopic fluorescence
intensity image, 1^ = 16562 a.u., yellow color and B) Quantitative
microscopic Ksv(x,y) image map for the identical region, K^' = 0.880 psi1,
yellow color 80
2-37: Macroscopic SV plot of PtDOCIppsp/VPDMS thin film on glass. Aref: area
between 630 - 670 nm at 14.7 psi and 298 K 82
2-38: Macroscopic SV plot of PtDOCI-Sspsp/VPDMS thin Film on glass. Aref^ area
between 630 - 670 nm at 14.7 psi and 298 K 83
2-39: Fluorescence microscopy images of 250 pm thick [Ru(dpph]Ch/SPDMS strips
embedded in formvar resin obtained w ith a CCD camera through a 60X
objective. White scale bars arc 24.5 pm long 85
2-40: Stern-Volmer plot and ratioed emission plots versus pressure and temperature for
PtDOCIppsp/VPDMS coating analyzed and imaged in a static calibration cell.
A) SV plot, emission integrated over an approximate area of 630 - 670 nm,
excitation at 460 nm, B) Ratioed emission plot versus pressure, emission
integrated over an approximate area of 530 - 570 nm. excitation at 460 nm,
C) Ratioed emission plot versus temperature, emission integrated over an
approximate area of 630 - 670 nm. excitation at 460 nm. and D) Ratioed
emission plot versus temperature, emission integrated over an approximate
area of 530 - 570 nm, excitation at 460 nm 86
2-41: Luminescence ratioed intensity images at seven pressures from 2 - 14.8 psi for
PtDOCIppsp/VPDMS coating on an aluminum plate assuming a constant
temperature distribution over the plate. Emission collected at 650 nm peak
and excitation at 460 nm. Intensity scale bars appear to the right of each
image for0— I s.o psi 87
2-42: Corrected luminescence ratioed intensity images at seven pressures from 2 - 14.8
psi for PtDOCIppsp/VPDMS coating on an aluminum plate. Emission
xix

collected at 650 nm peak and excitation at 460 nm. Intensity scale bars appear
to the right of each image for 0 - 18.0 psi 89
2-43: Stern-Volmer plot and ratioed emission plots versus pressure and temperature for
PtDOCI-Sspsp/VPDMS coating analyzed and imaged in a static calibration
cell. A) SV plot, emission integrated over an approximate area of 630 - 670
nm, excitation at 460 nm, B) Ratioed emission plot versus pressure, emission
integrated over an approximate area of 530 - 570 nm, excitation at 460 nm,
C) Ratioed emission plot versus temperature, emission integrated over an
approximate area of 630 - 670 nm, excitation at 460 nm, and D) Ratioed
emission plot versus temperature, emission integrated over an approximate
area of 530 - 570 nm, excitation at 460 nm 90
2-44: Corrected luminescence ratioed intensity images at seven pressures from 2 - 14.8
psi for PtDOCI-Spsp/VPDMS coating on an aluminum plate. Emission
collected at 650 nm peak and excitation at 460 nm. Intensity scale bars appear
to the right of each image for 0 - 18.0 psi 91
2-45: Calibration cell intensity images of the PtDOCIppsp/VPDMS and PtDOCI-
Sspsp/VPDMS coatings on an aluminum plate imaged at 650 nm and 550 nm.
Excitation at 460 nm. A) PtDOCIppsp/VPDMS at 650 nm, B)
PtDOCIppsp/VPDMS at 550 nm, C) PtDOCI-Sspsp/VPDMS at 650 nm, D)
PtDOCI-Sspsp/VPDMS at 550 nm 93
2-46: Inverted Fluorescence Microscope set-up for imaging of luminescent oxygen
sensing thin films 105
3-1: Scheme for preparation of PtTFPP/SPDMS luminescent thin films 112
3-2: Macroscopic SV plots for increased concentrations (mM) of PtTFPP dispersed in
SPDMS binder on glass. Aref: area between 630 - 670 nm at 14.7 psi 113
3-3: Qualitative microscopic fluorescence images (10X, 0.5 psi) for increased
concentrations (mM) of PtTFPP dispersed in SPDMS binder on glass. White
scale bars are 153 pm long. A) 2 mM, B) 3 mM, C) 5 mM, D) 10 mM, E) 17
mM PtTFPP in 500 mg SPDMS polymer binder 115
3-4: Quantitative microscopic fluorescence intensity images (10X, 0.4 psi) for increased
concentrations (mM) of PtTFPP dispersed in SPDMS binder on glass. White
scale bars are 92 pm long. Intensity color scale bars are shown to the right of
all images. A) 2 mM, B) 3 mM, C) 5 mM, D) 10 mM, E) 17 mM PtTFPP in
500 mg SPDMS polymer binder 116
3-5: Intensity distribution curves for intensities obtained with a 10X objective at seven
pressures for A) 2 mM PtTFPP dispersed in SPDMS binder on glass and B)
17 mM PtTFPP dispersed in SPDMS binder on glass 118
xx

3-6: Quantitative microscopic Ksv(x,y) image maps tor increased concentrations (mM)
of PtTFPP dispersed in SPDMS binder on glass. White scale bars are 92 pm
long. Ksv color scale bars are shown to the right of all images. A) 2 mM, B)
3 mM, C) 5 mM, D) 10 mM, E) 17 mM PtTFPP in 500 mg SPDMS polymer
binder 120
3-7: Macroscopic SV plots for PtTFPP/SPDMS on glass at five different mole ratios of
cross-linker. Aref^ area between 630 - 670 nm at 14.7 psi 123
3-8: Qualitative microscopic fluorescence images (10X, 0.5 psi) for PtTFPP/SPDMS at
five different mole ratios of cross-linker on glass. White scale bars are 153
pm long. A) 1:4, B) 1:5, C) 1:7, D) 1:9, E) 1:19 mole ratio of oligomencross-
linker 125
3-9: Quantitative microscopic fluorescence intensity images (10X, 0.4 psi) for
PtTFPP/SPDMS on glass at five different mole ratios of cross-linker. White
scale bars are 92 pm long. Intensity color scale bars are shown to the right of
all images. A) 1:4, B) 1:5, C) 1:7, D) 1:9, E) 1:19 mole ratio oligomencross-
linker 126
3-10: Intensity distribution curves for intensities obtained with a 10X objective at seven
pressures for A) 1:4 mole ratio of oligomencross-linker in PtTFPP/SPDMS
on glass and B) 1:19 mole ratio of oligomencross-linker in PtTFPP/SPDMS
on glass 128
3-11: Quantitative microscopic Ksv(x,y) image maps for PtTFPP/SPDMS on glass at
five different mole ratios of cross-linker. White scale bars are 92 pm long.
Ksv color scale bars are shown to the right of all images. A) 1:4, B) 1:5,0
1:7, D) 1:9, E) 1:19 mole ratio oligomencross-linker 129
3-12: Ru(II) a-diimine complexes 133
3-13: Macroscopic SV plots of Ru(II) a-diimine complexes dispersed in SPDMS binder
on glass. A ref* area between 600 - 640 nm at 14.7 psi 133
3-14: Qualitative microscopic fluorescence images (IOX, 0.5 psi) for Ru(II) a-diimine
complexes dispersed in SPDMS binder on glass. White scale bars are 153 pm
long. A) [Ru(dpph]CI2, B) [Ru(dpph](PFf,)2, C) [Ru(dpph)(BPh4)2* D)
[Ru(dpp)3](B(Ph(CFi)2)4)2. E) [Ru(dbdtaph](PFh)2. F) lRu(dpp)3](B(PhFs)4)2- 136
3-15: Qualitative microscopic fluorescence (A-C) and bright-field (D-F) images (I0X.
14.7 psi) for Ru(II) a-diimine complexes dispersed in SPDMS binder on
glass. White scale bars are 153 pm long. A and D) [Ru(dppp]Cl2, B and E)
[Ru(dpph](B(Ph(CFi)2)4)2i and C and F) [Ru(dpp)i](B(PhFs)a)2 137
3-16: Quantitative microscopic fluorescence intensity images (10X, 0.4 psi) for Ru(II) a-
diimine complexes dispersed in SPDMS binder on glass. White scale bars are
XXI

92 |um long. Intensity color scale bars are shown to the right of all images.
A) [Ru(dpp)3]Cl2, B) [Ru(dpp)3](PF6)2, C) [Ru(dpp)3](BPh4)2, D)
[Ru(dpp)3](B(Ph(CF3)2)4)2, E) [Ru(dbdtap)3](PF6)2, F) [Ru(dpp)3](B(PhF5)4)2. 139
3-17: Intensity distribution curves for intensities obtained with a 10X objective at seven
pressures for Ru(II) a-diimine complexes dispersed in SPDMS binder on
glass. A) [Ru(dpp)3]Cl2, B) [Ru(dpp)3](PF6)2, C) [Ru(dpp)3](BPh4)2, D)
[Ru(dpp)3](B(Ph(CF3)2)4)2, E) [Ru(dbdtap)3](PF6)2, F) [Ru(dpp)3](B(PhF5)4)2. 142
3-18: Quantitative microscopic Ksv(x,y) image maps of Ru(II) a-diimine complexes
dispersed in SPDMS binder on glass. White scale bars are 92 pm long. Ksv
color scale bars are shown to the right of all images. A) [Ru(dpp)3]Cl2, B)
[Ru(dpp)3](PF6)2, C) [Ru(dpp)3](BPh4)2, D) [Ru(dpp)3](B(Ph(CF3)2)4)2, E)
[Ru(dbdtap)3](PF6)2, F) [Ru(dpp)3](B(PhF5)4)2 143
3-19: Analysis of discrete regions (white boxes) in quantitative microscopic Ksv(x,y)
image maps of Ru(II) a-diimine complexes dispersed in SPDMS binder on
glass. White scale bars are 92 pm long. Ksv color scale bars are shown to the
right of all images. A) [Ru(dpp)3]Cl2, B) [Ru(dpp)3](PF6)2, C)
[Ru(dpp)3](BPh4)2, D) [Ru(dpp)3](B(Ph(CF3)2)4)2, E) [Ru(dbdtap)3](PF6)2, F)
[Ru(dpp)3](B(PhF5)4)2 146
3-20: Macroscopic and microscopic SV plots of Ru(II) a-diimine complexes dispersed
in SPDMS binder on glass. Aref: area between 600 - 640 nm at 14.7 psi 148
3-21: Macroscopic SV plots of [Ru(dpp)3]Cl2 dispersed in SPDMS or PDMS binder with
increased weight percents of fumed silica gel on glass. Aref: area between
600 - 640 nm at 14.7 psi 151
3-22: Qualitative microscopic fluorescence images (10X, 0.5 psi) for [Ru(dpp)3]Cl2
dispersed in SPDMS or PDMS binder on glass with increased weight percents
of fumed silica gel. White scale bars are 153 pm long. A) 0 wt. % in
SPDMS, B) 1 wt. % in SPMDS, C) 10 wt. % in SPDMS, D) 0 wt. % in
PDMS, E) 1 wt. % in PDMS, F) 10 wt. % in PDMS 153
3-23: Quantitative microscopic fluorescence intensity images (10X, 0.4 psi) for
[Ru(dpp)3]Cl2 dispersed in SPDMS or PDMS binder with increased weight
percents of fumed silica gel on glass. White scale bars are 92 pm long.
Intensity color scale bars are shown to the right of all images. A) 0 wt. % in
SPDMS, B) 1 wt. % in SPDMS, C) 10 wt. % in SPDMS, D) 0 wt. % in
PDMS, E) 1 wt. % in PDMS, F) 10 wt. % in PDMS 155
3-24: Intensity distribution curves for intensities obtained with a 10X objective at six
pressures for [Ru(dpp)3]Cl2 dispersed in PDMS or SPDMS binder on glass
with increased weight percents of fumed silica gel. A) 1 wt. % in PDMS, B)
10 wt. % in SPDMS 157
XXII

3-25: Quantitative microscopic Ksv(x.y) image maps for [RuldppbJCF dispersed in
SPDMS or PDMS binder with increased weight percents of fumed silica gel
on glass. White scale bars are 92 |im long. Ksv color scale bars are shown to
the right of all images. A) 0 wt. % in SPDMS. B) 1 wt. % in SPDMS, C) 10
wt. % in SPDMS, D) 0 wt. % in PDMS, E) 1 wt. % in PDMS, F) 10 wt. % in
PDMS 158
3-26: Analysis of discrete regions (white boxes) in quantitative microscopic KSv(x,y)
image maps of [Ru(dpp)}]Ch dispersed in PDMS or SPDMS binder on glass
with increased weight percents of fumed silica gel. White scale bars are 92
pm long. Ksv color scale bars are shown to the right of all images. A) 1 wt.
% in PDMS, B) 10 wt. % in SPDMS 160
3-27: Macroscopic and microscopic SV plots of [Ru(dpph]Cl: dispersed in PDMS or
SPDMS binder on glass with weight percents of fumed silica gel. A«ef: area
between 600 - 640 nm at 14.7 psi. A) 1 wt. % in PDMS and B) 10 wt. % in
SPDMS 161
XX1I1

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
DEVELOPMENT AND CHARACTERIZATION OF LUMINESCENT OXYGEN
SENSING COATINGS
By
Joanne M. Bedlek-Anslow
December 2000
Chairman: Kirk S. Schanze
Major Department: Chemistry
Traditional aerodynamic model systems monitor surface pressure at discrete
points along a model surface. Models must be designed sufficiently large to
accommodate placement of small electronic pressure transducers along the model surface
and placement of the corresponding wiring through the model’s hull. This process is
time-consuming, expensive, and detection is limited to the point of sensor placement.
Conversely, CCD (charge-coupled device) camera technology surveys the entire model’s
surface pressure by monitoring oxygen concentration induced intensity variations of a
luminescent pressure-sensitive coating. However unfavorable intensity variations
originating from surface temperature fluctuations can disrupt accurate pressure
determination.
The research presented in this dissertation focuses on the development of several
dual-luminophore coatings. These systems simultaneously determine surface pressure
(oxygen concentration) and surface temperature. Therefore correction of the
xxiv

temperature-induced intensity fluctuations of the pressure sensing luminophore is
accomplished by determining the run-time temperature field across the model surface.
Spectral resolution, compatibility with polymer binder and surface primer, and chemical
inertness with respect to one another indicate successful integration of the two
luminophores into one binder matrix. These systems are primarily evaluated using
fluorescence spectroscopy to ascertain variations in luminescent intensity with respect to
the degree of oxygen quenching. Experiments utilizing continuous illumination
monitored photodegradation and luminescence quenching studies conducted at various
temperatures evaluated the temperature-dependence of the pressure and temperature
components and binder matrix. Studies conducted in a calibration cell determined
application readiness.
Non-linear luminescent response to oxygen concentration prompted development
of a new fluorescence microscopy technique. The technique interrogates several regions
of a coating’s surface analyzing its microscopic luminescent pressure-sensitive response.
It is believed that deviations from linearity are due to heterogeneity of the polymer matrix
or the luminophore distribution. Successful quantitative measurement of the degree of
oxygen quenching at the pixel level with micrometer spatial resolution is presented for
several mono- and dual-Iuminophore sensing coatings utilizing various luminophores in a
polymer binder. Characterization, evaluation, and discussion of the systems’ attributes
provide insight for the enhanced design of future luminescent oxygen sensing coatings.
xxv

CHAPTER 1
INTRODUCTION
Background
The quest to quantitatively measure oxygen concentration in the gas phase,
dissolved in the liquid phase or in solid gas permeable polymers with reproducible,
accurate and precise results, has garnered considerable research interest throughout the
past four decades. The beginnings of oxygen measurement are rooted in electrochemical
sensors such as the amperometric Clark cell 1 or the galvanic Mancy cell.- These cells
are robust and reliable measurement tools, when properly used; however, reliable
measurements are often prohibited by electrical interferences, and reproducibility is
hindered by consumption of the oxygen analyte during analysis. The systems also suffer
from a bulky instrument size, which is difficult to miniaturize. Therefore the focus of
oxygen detection shifted from these traditional invasive measurement methods to the
development of noninvasive optical oxygen sensors.
As a detection system, optical sensors are advantageous, since they are robust,
cost-effective, disposable, and easily scaled to suit their desired application. Optical
sensors have been employed in numerous detection systems for such analytes as H+,3-6
C02,7’8 vapors of explosives,9 and biochemical compounds. 10-12 However, the
analysis of oxygen concentration in blood and biological systems, 13,14 combustion
analysis,^5 anc} pressure-sensitive paint (PSP) development*6-20 |ias been at the

2
forefront of optical sensor research. In particular, development in the area of pressure-
sensitive paints (PSP) has grown considerably in the last fifteen years.
PSP’s fundamentally consist of a luminescent molecular probe (a luminophore)
dispersed or dissolved in an oxygen permeable polymer binder. The beginnings of this
technology are seen as early as 1980, when Peterson and Fitzgerald demonstrated the
quenching of a luminophore’s photoluminescence emission by oxygen.- 1 They
employed Fluorescein Yellow dye as the luminophore, and adsorbed it onto a silica gel
chromatography plate. This initial experiment of flow visualization demonstrated the
possibility of oxygen concentration measurement across a surface as a determination of
overall surface pressure.
Luminescence Quenching
The composite mixture of luminophore in polymer binder described above is
typically applied as an aerosol to substrate material such as aluminum, steel, polymer, or
composite as a film of thickness less than 50 pm. Under UV or blue light illumination (X
< 450 nm), the sensor coating emits light (photoluminescence) in the green, orange or red
region of the visible spectrum (A. > 500 nm).“
liimolecular Stern-Volmer Quenching
The photoluminescence intensity of the sensor film is inversely proportional to
the partial pressure of CL (pCL) in the gas phase that is in equilibrium with the surface of
the coated substrate. Moreover, since under normal conditions and assuming Henry’s
Law holds, /?CL is then proportional to the total air pressure (i.e., pO2 = cP;Mr). The
following processes thus define the kinetic scheme for the Stern-Volmer (SV)
bimolecular quenching of the luminophore’s photoluminescence intensity by oxygen:

3
L + /zv -> *L
photon absorption
(1-1)
*L —> L + /zv
luminescence, kr
(1-2)
*L -» L + A
non-radiative decay, knr
(1-3)
*L + Q -> L + *Q
dynamic quenching, kq
(1-4)
The term L is the luminophore, and Q is the quencher molecule, O2. Therefore, by
reference to the SV calibration in equation (1-5) it is possible to quantitatively relate the
photoluminescence intensity to Pa¡r,^
I(^Pem, Pair = 0) / I(2lPem, Pair) = 1 + KsvPair (1-5)
Ksv — kq^o — kq(kr + knr) (1 -6)
where I is the photoluminescence intensity at emission wavelength A,pem, and Ksv is the
SV coefficient. Therefore the photoluminescence intensity is inversely proportional to
P
r air-
In many applications it is impractical to use Pa¡r = 0 as a reference condition, and
consequently the SV equation is re-cast as equation (1-7),
iaPem, Pair = 1 atm)/ I(/lPem, Pair) = A + BPair ( 1 -7)
where the reference condition is taken as Pa¡r = 1 atm,24 and the non-zero coefficients A
and B are a function of temperature and reference conditions (B/A = Ksv)-
Modeling Non-linear Stern-Volmer Response
Some luminescent CT sensor films feature linear SV calibrations in accord with
equations (1-5) or (1-7); however, many sensors exhibit non-linear calibrations that are
curved downward such as those displayed in Figure 1-1.25-27

4
Figure 1-1: Stem-Volmer plots of VI versus pOi for the following optical oxygen
sensors: (Ru(phen)^]'' in silicone rubber, GE RTV 118(A), and [Ru(bpy)i]'’ in silicone
rubber, GERTV 118(#).
Although a number of studies have attempted to identify the basis for this non¬
ideal SV response, the fundamental process(es) responsible arc still not well
understood.25,28 Several mathematical models have been developed to fit the non-linear
SV correlations. These mathematical models are formulated based on the physical
hypothesis that the sensor film is inhomogeneous, possibly due to nano-or meso-scale
irregularities in the polymer morphology or the environment surrounding the luminescent
sensor molecules. Several models have received considerable attention.
The two quenching site model in (1-8),25*29.30 explains the complex quenching
behavior exhibited by a microheterogeneous system. The two-site equation is
lo _
(1-8)
‘02
1 + KjviPoj 1 + KSV2Po,
where V is the fraction of each of the two sites contributing to the unquenched intensity,
and the Ksv values are the quenching constants for the two sites. The model works well

5
for quantitatively fitting intensity quenching data; however, it should be cautioned that
while it is able to fit more complex systems, the fitting parameters should be judiciously
chosen to avoid mechanistic misinterpretations.25,31 ¡n other words, the fact that the
response of a specific sensor can be modeled by equation (1-8) does not necessarily mean
that the sensor has two specific quenchable sites.
The Gaussian or log-Gaussian distributions represent another set of models which
give predictive values for the non-linear response exhibited by SV plots.26,29,32,33 The
log-Gaussian distribution in the natural luminescent lifetime of the luminophore (t0) and
the quenching rate constant (kq') generates theoretical model parameter values which are
physically plausible and consistent at all partial pressures of oxygen, pOi. The log-
Gaussian distribution in To and kq' with respect to x is
oo
| exp(p, x )exp(- x2 )dx
h. = — (1-9)
oo V
J{ex p(p, x )exp(- x2)/[ 1 -t- 0exp({ p, +p2}x)]}dx
—oo
where
p,x = ln(T0/To,mdl)
(1-10)
p2x = ln(kqi/kqmdI)
(1-11)
0 = Ksv.mdl pOl ~ to.mdi k^mdl P&2
(1-12),
and where pi is a measure of the breadth of the distribution with respect to To,¡, and To.mdi
is the natural lifetime associated with the modal number of sites; p2 is a measure of the
breadth of the distribution with respect to k^j, and kq mcji is the quenching rate constant by
oxygen of the modal number of sites; p2 can be of the same sign or opposite to p|. The

6
model is capable of providing physical rationale for disparate response features in typical
optical oxygen sensors; however, it fails to explain physical phenomena associated with
bi-phasic material.33
Finally, first-, second-, and third- order polynomials applied to non-linear SV
response data-0 tend to fit the data sets in a limited pressure region, but they fail when
predicting extended pressure regions or an extrapolation of the data set.-4 Therefore the
dual sorption model has been applied to the SV relationship (1-5) producing the intensity-
pressure relationship in (1-13),24
I
= A + B
+ C
1 + D( P/Pref)
(1-13)
where the non-zero coefficients A. B, C, and D are a function of temperature and
reference conditions. The model works well with cases where pressure ranges are large
or extrapolated regions are needed; however, due to the non-linearity of such data, it
requires an iterative technique for determining the calibration coefficients. Therefore, for
high pressures and limited pressure regions, a first- or second-order polynomial is
recommended.24
Luminophores and Polymers
The luminescent molecular probe dispersed in a PSP is generally a luminescent
transition metal complex (TMC). TMC’s are more advantageous than fluorescent
organic luminophores because of their long excited state lifetimes (To) and high
luminescence quantum yields (<1>l)Most often, these metal complexes are either
Ru(II) a-diimine^ 1 -35 complexes or Pt(II)/Pd(II) porphyrin macrocycles.16,36-38 j|lc

/
oxygen permeable polymer binder most commonly used is silicone; however, other
polymers such as cellulose acetate (CA),39 polymethylmethacrylate (PMMA),40
polyvinylchloride (PVC),41 polystyrene (PS),42 and sol-gels43,44 ap wjth or without
plasticizers have also been employed.
Ru(II) a-Diimine Complexes
The Ru(II) a-diimine complexes have been investigated extensively as oxygen-
quenchable species both in the liquid45,46 ancj solid phases;47 tris(2,2’-
bipyridyl)ruthenium(II), [Ru(bpy)3]2+; fm(l,10-phenanthroline)ruthenium(II),
[Ru(phen)3]2+; and tris{A,7-diphenyl-l,10-phenanthroline)-ruthenium(II), [Ru(dpp)3]2+.
Their extensive use is due to several factors: (1) their ability to be excited in the visible
region; (2) their long emission lifetimes (t0), which are generally hundreds of
nanoseconds to tens of microseconds, allow the excited state to be easily quenched by
oxygen; (3) they exhibit high luminescence quantum yields (Ol); (4) large Stokes shifts
in the emission spectra minimize excitation source interferences; and (5) they possess
excellent photostability.25,48,49 Several examples of Ru(II) a-diimine complexes are
shown in Figure 1-2.50

8
Figure 1-2: Structures of the major Ru(II) a-diimine luminophores used in optical
oxygen sensors. ([Ru(bpy)3]‘\ (Ru(phen)ip', and [Ru(dpp)3]**).
As a result of the desirable properties shown in Table 1-1 the design of Ru(II) «-
diimine complexes has been extensively investigated.25.31.34
Luminophore
to, ps
^>maxi nm
(absorption)
e,
104 dm'
mol'cnT1
nm
(emission)
.
[Ru(bpy)3]J+
0.60
(423)sh, 452
1.46
613,627
0.042
[Ru(phen)3]J+
0.92
447,421
1.83, 1.90
605, 625
0.080h
[Ru(dpp)3]‘+
a * .i
5.34*
, b • -
460
* i . _ C •
2.95
613,627
~0.30c

Pt(II)/Pd(II) Porphyrin Macrocycles
Pt(II)/Pd(II) porphyrin macrocycles have received considerable recent research
interest because of their ability to be more sensitive to oxygen quenching than the Ru(II)
a-diimine complexes.36,37,51 Several examples of Pt(II)/Pd(II) porphyrin macrocycles
are shown in Figure 1-3.50
Octaethyl porphyrin ketone
(OEPK)
Figure 1-3: Structures of the major platinum and palladium porphyrins used in optical
oxygen sensors. (M = Pt(II) or Pd(II)).
Their high oxygen sensitivity results from long excited state lifetimes, generally
tens to hundreds of microseconds, due in part to k-k* transitions centered on the
porphyrin ring. ^ a strong spin-orbit coupling exists resulting from significant
interaction between the Pt(II) or Pd(II) metal d-orbitals and the anti-bonding tt* orbitals
of the porphyrin ring which induces intersystem crossing to the triplet state.52.53 jhjs

10
effect significantly decreases the triplet lifetime and increases the phosphorescence yield:
therefore, surrounding oxygen molecules effectively quench the luminophores’
photoluminescence.
In addition to their enhanced ability to be quenched by oxygen, Pt(II)/Pd(II)
complexes also possess the same desired excitation and emission characteristics as the
Ru(II) a-diimine complexes: (1) they are easily excited in the visible region: (2) they
possess high luminescence quantum yields <<£>l); and (3) they exhibit large Stokes shifts
and excellent photostability. 16,50 a listing of several optical sensor characteristics for
Pt( II)/Pd(II) porphyrins disbursed in polymer binders are displayed in Table 1-2.^

Table 1-2: Platinum and Palladium Porphyrin Based Optical Oxygen Sensors.
Luminophore
To, ms
^max, nm
(emission)
oL
Medium
Pd-CPP
0.40
667
0.2
Water
Pd-CPP
0.80
667
0.2
Silicone rubber RTV 118(GE)
Pd-CPP
1.06
667
0.2
PS
Pd-CPP
0.91
667
0.2
PMMA
Pt-OEPK
0.061
760
0.1
PS
Pt-OEPK
0.061
759
0.12
PS
Pt-OEPK
0.058
759
0.12
PS
Pd-OEPK
0.46
790
0.01
PS
Pt-OEPK
0.064
759
0.12
PVC
Pd-OEPK
0.44
790
0.01
PVC
Pd-TPP
-
690
-
Arachidic acid L-B film
Pd-TSPP
1.0
702, 763
-
Water
Pd-TSPP
0.5
698,685
-
Water
Pd-CPP
0.53
667
-
Water
Pt-TDCPP
0.082
650
0.16
Silicone Rubber RTV 118(GE)
Pt-TFMPP
0.030
646
0.08
Pt-Br8TMP
0.023
721
0.02
Pd-OEP
0.99
670
0.2
PS
Pt-OEP
0.091
644
0.5
PS
Pt-OEP
0.091
644
0.5
PS
CPP: coproporphyrin; OEPK; octaethyl porphyrin ketone; TPP: tetraphenylporphyrin
TSPP: tetrakis(4-sulfonatophenyl)porphyrin; TDCPP: meso-tetra(2,6-
dichlorophenyl)porphyrin; TFMPP: meso-tetra(3,5-
bis(trifluoromethyl)phenyl)porphyrin; BrgTMP: rai?so-tetramesityl-[3-
octabromoporphyrin; OEP: octaethyl porphyrin
Silicone
Silicone is the most widely used polymer binder matrix employed in optical
oxygen sensors due to its high permeability (62 x 10'9 (cm3 cm)/(cm2 s cm Hg) at 28° C)
and solubility (0.31 ml-g 1 at 28° C) to oxygen associated with a low glass transition
temperature, Tg, (- 127° C), high chemical and mechanical durability, and benign
physiological effects beneficial to in vivo measurement applications.54,55 However,
silicone as a binder matrix is incredibly hydrophobic in nature due to its extended

12
nonpolar Si-O-Si backbone which forms during polymerization.25 Adequate
homogeneous distribution of the hydrophilic Ru(II) a-diimine complexes in the polymer
binder then becomes a challenge in avoiding aggregation or microcrystallization effects
which lead to inefficient oxygen quenching.3 • Therefore, several researchers have
investigated the addition of Ru(II) a-diimine adsorbed silica gel to the polymer binder.
The addition of silica gel aids luminescence oxygen quenching by lessening the negative
quenching effects due to formation of metal complex aggregates and
microcrystal lites.25,56
Plasticizers
Other polymers such as cellulose acetate (CA),-^ polymethylmethacrylate
(PMMA),40 polyvinylchloride (PVC)/*' polystyrene (PS),^2 and sol-gels^2.44 have
been employed as oxygen permeable polymer binders. These polymers are not as
permeable to oxygen as the elastomeric silicone polymer binders and slow and inaccurate
oxygen concentration measurements result. When a plasticizer such as tetrabutyl borate
or dodecyl sulfate is incorporated into the given polymer, it lowers the Tg and improves
the parent polymer’s permeability to oxygen.8-57 However, a plasticizer can leach from
the polymer binder and adversely affect the polymer’s ability to adsorb oxygen.22
Modified Polymers
One way to avoid incorporating additives such as silica gel or plasticizers into the
polymer binder is to design synthetically modified polymers. These polymers are
designed to possess similar oxygen permeability as the silicone polymers yet not suffer
from the same inaccurate sensing affects arising from inadequate luminophore

13
distribution or impurity leaching. Several alternative polymer binders have been
developed recently.
Puklin et al. have developed a fluoroacrylic copolymer (FIB),
(fluoro/isopropyl/butyl)acrylic polymer displayed in Figure 1-4.57 when Pt(II)
tetra(pentafluorophenyl)porphyrin (PtTFPP) is distributed through the polymer, the
coating displays a Stern-Volmer dynamic range of ~ 0.9 [defined as (Ivac - Iatm)/IVac)L
where I is luminescence intensity and the subscripts vac and atm refer to vacuum and
atmospheric pressure, respectively. Other attributes include a response time of less than
1 s to an increase in pressure from near vacuum to 1 atm, good photostability, and low
temperature dependence (~ 0.6 %-°C-1).
CFF
CFF
m
-CH—CH-
=o
O
I
CH,(CF,),CH,
=o
O
I
CH(CF,),
Figure 1-4: Repeat unit of (fluoro/isopropyl/butyl)acrylic polymer.
Amao et al. have developed a different fluorocopolymer [copoly(styrene/PFS)],
poly(styrene-co-pentafluorostyrene) illustrated in Figure 1-5.51 When Pt(II)
octaethylporphyrin (PtOEP) is distributed through the polymer, the coating displays a
I()/I100 = 18.0 response as compared to Io/Iioo = 4.5 for a simple polystyrene coating,
where Io and Iioo represent the detected phosphorescence intensity from a coating exposed
to 100 % argon and 100 % oxygen, respectively. The photoluminescence response times

14
are 5.66 s for polymer exposure to argon then oxygen and 30.0 s for polymer exposure to
oxygen then argon.
Figure 1-5: Repeat unit of poly(styrene-co-pentafluorostyrene) copolymer.
The preceding research groups are working from the basis that fluoropolymer
coatings possess an increased permeability to oxygen-^ and a higher stability towards
photo-oxidation compared to polymers lacking highly electronegative groups. The C-F
bonds possess a large bonding energy (116 kcal-mol1) and short bond lengths (1.381 Á)
which enhance the bonds’ stability towards photo-oxidation and increases their affinity
towards oxygen sorption when incorporated into a polymer binder backbone.
Ruffolo et al. have developed another type of block copolymer
poly(aminothionylphosphazene)-/?-poly(tetrahydrofuran) (PATPv-PTHFr) displayed in
Figure l-6.^() When (RutdppbJCh is distributed through the block copolymer, the
coating displays good quenching sensitivity and linear Stern-Volmer response compared
to earlier poly(butylaminothionylphosphazenc) (PBATPV) and PBATPy/PTHFx blends.

15
NHCPTNHCFLO
r i I 3II nr
4-n=p-n=p-n=s
L i i i Jy[
nhch3nhch3nhch3
o
PMATP-PTHFX
y x
Figure 1-6: Repeat units of poly(aminothionylphosphazene)-/?-poly(tetrahydrofuran)
block copolymer.
This particular design idea stems from the often-impractical necessity for silicone
coating polymers to cross-link prior to formation of a solid stable coating. The cross-
linking is not a controlled physical process and can change in degree and directionality
from coating to coating leading to irreproducible SV response.25,50,61 This iack 0f
cross-linking continuity can be one source of problems associated with poor luminophore
distribution. Therefore the (PATPy-PTHFx) design benefits from production of a
dimensionally stable coating without the need for cross-linking. Moreover, such a design
leads to a better understanding of the polymer coating’s structure-function relationship.60
It will be interesting to see how future polymer designs will compare to the above
modified polymers, to one another, and to the more traditional elastomeric silicone binder
systems; what current morphological questions will be answered; and how will knowing
such answers lead to the development of other luminophore/polymer binder systems.
Wind-Tunnel Application
In a typical application of aerodynamic engineering, a sensor coating is composed
of a luminophore dispersed in a polymer binder which is dissolved in a volatile thinning
solvent and sprayed onto an aerodynamic model. The coating forms upon evaporation of
the volatile solvent. The model is installed in a wind-tunnel, and the photoluminescence

16
_ P
from the sensor coating at X em is imaged with a camera (digital or film-based) that is
fitted with appropriate filters that pass light of wavelength X em- By using appropriate
computer algorithms, it is possible to apply the Stem-Volmer calibration (1-5) to convert
the photoluminescence intensity map generated by the camera into a full-field map of air
pressure (Pair) over the surface of the model displayed in Figure 1-7.-^
Blue filter Red filter Computer
Light
source
Air flow
Figure 1-7: Pressure Sensitive Paint measurement system for testing of air pressure
profiles on an airplane model in a wind-tunnel.
Pressure maps obtained from the set-up in Figure 1-7 would show luminescence
characteristics similar to Figure 1-8. Figure 1-8 displays an intensity pressure map for a
nitrogen jet protruding out of the plane of a PSP coating.6- The direction of the tunnel
air-flow travels from behind the nitrogen injection jet forward (bottom to top of image).
A pressure field of high and low pressures develop. The oval shape preceding the
nitrogen jet indicates an area of high pressure or high oxygen concentration, and the cone
shape directly preceding the nitrogen jet indicates an area of low pressure or low oxygen
concentration due to air-flow disruption. Colors would then be assigned to the gradients

17
of gray in the image to enhance and discriminate among the pressure changes by making
them more discernable to the viewer’s eye.
0 5 10 15 20 25
Air Pressure (psi)
Figure 1-8: Gray-scale pressure distribution map for a nitrogen jet protruding from a PSP
coating.
As demonstrated, PSP technology has revolutionized traditional wind-tunnel
testing which monitors discrete surface pressure measurements at localized pressure taps
across a test model. The transducers are connected to multitudes of electronic wiring and
hardware, and the assembly of such a model takes 9-12 months to design and construct.
As compared to the complexity of the transducer system, PSP coatings are easily applied
to a model surface and ready to use within a few hours. The noninvasive approach
offered is essential to prototype aerodynamic model testing; therefore, luminescence
imaging has generated significant research interest in the aerodynamic engineering
community. 16,27

18
Temperature Effects
Under ideal conditions, the photoluminescence intensity of a sensor coating
would respond only to changes in pOi, other environmental parameters such as
temperature (T) would not interfere with the measurement. Unfortunately, it is well
known that at constant air pressure, the photoluminescence intensity of most oxygen
sensor coatings varies inversely with T as does the Stern-Volmer coefficient (Ksv).^'^
For many sensor coatings, Ksv varies linearly with T over a narrow range of temperatures
demonstrated by equation (1-14).
Ksv(T) = Ksvrcf + bT (1-14)
Because of the temperature dependence of Ksv, when a sensor coating is applied
under non-isothermal conditions (most often the case in a wind-tunnel), the global map of
Pair that is created will be in error. On the other hand, since Ksv is a well-behaved
function of temperature as in equation (1-14), if one knows the temperature distribution
over the surface of the aerodynamic model, it is possible to apply computer algorithms to
correct for the temperature dependence of Ksv and obtain an accurate global surface
pressure distribution.63-65
Several data reduction methods have been developed, which convert the
processed wind tunnel image into false-color image representations of the quantitative
pressure distribution across the model surface. The intensity-ratios obtained at each pixel
are converted into pressures using a modified Henry’s law relation, which accounts for
the non-ideal porous nature of the polymer binder in equation (1-15),^
P/Prcf = C| + C2(IreKTrcf)/Irun(Tnjn)) + C3(Iref(Tref)/Irun(Trun))2
(1-15)

19
where Ci, C2, and C3 are the reduction method coefficients, and Iref(Tref)/Irun(Trun) is the
intensity-ratio obtained at each pixel.
Isothermal Calibration
An isothermal calibration assumes that the wind-tunnel surface is spatially and
temporally isothermal during the run of the flow.66 An initial static calibration is taken
at a reference temperature over a given pressure range, and a least-squares fit is employed
to obtain the resulting calibration curve. The pressure values obtained from pressure taps
fashioned along the model surface are compared to the intensity-ratio images obtained.
As is expected, the method does not account for the temperature drop that occurs across
the model during airflow that results in a prediction of pressure values lower than
measured. Therefore, it is best that this method only be used for qualitative evaluations
of coatings.64
In-situ Calibration
An in-situ calibration accounts for the change in surface temperature across a
model surface during wind-tunnel operation. 19 For this reduction method, a limited
number of pressure taps are placed across the surface of the model. These taps should be
placed in the regions of highest and lowest pressures as well as several intermediate
regions for the best results. However, a priori knowledge of the pressure distribution is
difficult to know and a disadvantage for this reduction method.
The intensity of the paint around the taps is evaluated and used in conjunction
with the pressure values obtained at the taps to develop a calibration curve. A least-
squares fit is applied to equation (1-15), and the pressure tap and intensity values are used

20
to determine the values for Ci, C2, and C3. The pressure values across the model surface
are then obtained through interpolation of the data.
K-fit Calibration
The K-fit calibration is a hybrid of the isothermal and in-situ calibration methods.
It was found that equation (1-15) will coalesce if Tmn = Tref; therefore, equation (1-15)
can be re-cast as equation (1-16),
P/Pref = C, + C’rfWT.yWT,)) + C’3(IrcKT,)/Injn(T1))2 (1-16)
where Ti is an arbitrary number, and the coefficients C’|, C’2, and C’3 do not vary with
temperature. A scaling process, function K in equation (1-17), is applied to rescale the
reference image (Iref(T|)), so it then emulates a reference image taken at T2.
K = WT,)/WT2) = /(T,,T2) (1-17)
Equation (1-16) is recast as (I -18),
P/P ref = C, + C’2(KUT2)/Inin(T1)) + C’rfKW^yWT,))2 (1-18)
where Ti, T2, and K are constant over the model surface. If T| = Tmn and T2 = Tref, then a
least-squares fit of equation (1-18) will result in K.^ This reduction method is superior
to the isothermal method but less accurate than the in-situ method, since this model
under-predicts the pressure values in the low-pressure region. A possible explanation for
this is that it may not be physically reasonable to assume that there exists a separation in
the pressure-dependent (C’i, C'2, and C’3) and the temperature-dependent (K)
relationships of the coating. Therefore, the K value in equation (1-17) may be pressure-
sensitive, and the equation should be recast as equation (1-19).^
K = /(T,,T2,P)
(1-19)

Temperature-corrected Pressure Calibration
This method accounts for the change in surface temperature across the model
surface between the reference image and the wind-tunnel images. It utilizes a pixel-by-
pixel correction method by employing the image information of a temperature-sensitive
coating to correct for the temperature-dependence of a pressure-sensitive coating. By
knowing the intensity-ratio and temperature values at each pixel, a pressure value can be
determined by equation (1-20).64
Iref/Ical = /(P,T) ( 1 -20)
The pressure values at each pixel are calculated through a linear interpolation between
isothermal calibration curves generated from in-situ taps and the temperature-sensitive
coating’s temperature values. The advantages of this method allow for knowledge of the
slightest temperature gradient across the surface with no need for pressure taps to
calculate the final pressure values. However, there can be problems associated with
photodegradation of the coating materials; an inconsistent use of substrate material for
calibration samples and wind tunnel fixtures accounts for inaccurate comparisons of
pressure-sensitivities in calibration curve generations; and the temperature values
obtained from the temperature-sensitive coating may not be the exact values experienced
by the pressure-sensitive coating.64
Physical Manifestations of the Temperature Effect
The temperature effects experienced by the pressure-sensing coatings are due to
the two major components of the PSP: the luminophore and the polymer binder. First, it
is known that in degassed solution experiments that the temperature dependence of a
luminophore is dependent on the non-radiative decay pathways, since the radiative decay

22
rates are only weakly temperature dependent.63 Luminophores such as the Ru(II) a-
diimine complexes experience temperature dependence of non-radiative decay processes
because of the coupling of the excited state with vibrational levels of the metal ground
state and the solvent or polymer matrix. More specifically, for the Ru(II) cx-diimine
complexes, temperature dependent excited state decay arises due to increased coupling of
the emissive MLCT (metal-to-ligand charge-transfer) state to a nearby dd manifold.
Temperature dependent quenching can arise due to the temperature-dependence
of the diffusivity and solubility of the quencher molecule (O2) in the polymer matrix.
The permeability ( P() ) of oxygen in the binder is a product of the solubility (Sn ). and
diffusivity ( D0 ). The rate constant for quenching (kq) is proportional to D0 , and the
concentration of oxygen [O2] in the polymer is affected by SG . However, since it is
known that the solubility of diatomic gases in polymers is only weakly dependent on
temperature, temperature dependent quenching then arises primarily due to the
temperature dependence of D0 .55 Gas diffusivity in polymers depends on the polymer
total free volume, which increases with increased temperatures. Polymer segments
undergo thermal expansion creating free sites accessible to oxygen molecules.67
According to Schanze et al., kq[C>2] = Aqexp(-Eq/RT), where Aq and Eq are the frequency
factor and activation energy for oxygen quenching, respectively. Since kq is proportional
to D0 . it can be assumed that the Eq is related to the activation energy of diffusion (Ea).
Therefore, by the relations outlined above, PSP coatings should be developed which have
the lowest possible activation energy for oxygen diffusion.

23
Advances in PSP Design
A convenient method for obtaining the necessary information regarding the
temperature distribution over the aerodynamic model is to incorporate into the sensor
coating a second “temperature sensitive” luminophore that has the following
properties:^ (1) it is sufficiently excited at the same wavelength as the oxygen sensing
luminophore; (2) photoluminescence occurs in a different region of the visible spectrum
aTem) than the photoluminescence of the oxygen sensing luminophore (i.e., XTem ^ Xpem);
(3) photoluminescence intensity is independent of pressure; (4) the luminophore is
photostable or deteriorates at a rate similar to that of the oxygen sensing luminophore;
and (5) photoluminescence intensity varies strongly and monotonically with temperature.
With such a dual-luminophore sensor system, one would be able to obtain a global map
of the temperature of the surface of an aerodynamic model by imaging the
photoluminescence from the temperature-sensitive luminophore with a camera fitted with
filters that pass light only at wavelength 2iTem. The resulting temperature map could then
be used in an algorithm to correct for the temperature-dependence of the
photoluminescence intensity from the pressure-sensitive luminophore.
The Gouterman research group has worked extensively in developing
luminophores and polymer binders which correct for temperature-dependence. They
reported in 1998 the incorporation of a second luminophore to a polymer binder: a
pressure-insensitive but temperature-sensitive inorganic phosphor to correct for the
temperature-dependence of the PSP coating. However this coating experienced some
problems with competitive absorption of the excitation light by PtTFPP, absorption of the
emission light from the phosphor (BaMg2Ali6027:Eu2+) by PtTFPP, and a heterogeneous

24
distribution of the phosphor particles. Expanding on earlier work with platinum
porphyrins, the Gouterman group investigated the use of silicon octaethylporphine
(SiOEP) as a new pressure-insensitive, temperature-sensitive luminophore. The silicon
porphine complex suffers from an increase in fluorescence intensity as the temperature
rises due to repopulation of the singlet excited state via the triplet state; moreover, the rise
in fluorescence can cause confusion in calibration runs at vacuum. Fortunately, the
temperature-dependence is only at vacuum conditions - not a standard wind-tunnel
condition.65
Gouterman’s group has also researched the development of a polymer possessing
a low activation energy to oxygen diffusion. A temperature sensitivity of - 0.6 %-°C 1
for PtTFPP dispersed in the fluoroacrylic polymer FIB (Figure 1-4) has been reported.
This number is significantly better than a temperature sensitivity of - 1.7 %-°C 1 reported
for PtOEP in the silicone polymer binder Genesee GP-197.57
Monitoring Methods
There exist three monitoring methods for the analysis of PSP coatings:
luminescence intensity method, pulsed lifetime method, and phase-shift method.
Luminescence Intensity
The luminescence intensity method measures the emission intensity produced by
the luminophore(s) in the sensor coating. It is the most widely used method, since the
equipment is relatively inexpensive to assemble and small enough to be portable. The
pressure profile experienced by the coating is then determined from a calibration curve.
However, an accurate analysis by the method is directly affected by changes in the
excitation source intensity, variations in efficiency of the system equipment to collect the

25
emission signal(s), and the photostability of sensing coatings. Fortunately, collecting a
reference signal and limiting the exposure time of the sensor coatings can help alleviate
the effects of these problems.
Pulsed Lifetime
The pulsed lifetime method utilizes an excitation source with a pulse termination
time that is shorter than the lifetime of the emission lifetime(s) being evaluated. This
method is employed less frequently due to the problem of reducing the complex decay
curves obtained by the traditional least-squares method; however, the simpler technique
of rapid lifetime determination (RLD) is being employed to reduce the complex decays to
a single parameter.68 The RLD technique allows for direct integration of various regions
under the integration curve resulting in reduction to a single parameter.
Phase-shift
The phase-shift method employs a sinusoidally modulated excitation source
combined with phase-sensitive detection.23 The modulated emission is delayed in phase
by an angle (J), relative to the excitation demonstrated by equation (1-21),
0 = arctan(cor) (1-21)
where co = 2nf (1-22),
and / is the linear modulation frequency. The phase shifts are easy to measure, since the
phase shift varies monotonically with oxygen concentration.69 The equipment required
for this method is relatively inexpensive. This method like the RLD method does not
provide an a priori knowledge of the complexity of the decay(s) measured; however, the
frequency can be varied for optimization of accuracy at a known concentration of
oxygen.22

26
Scope of This Work
Initial research has focused on development of a “temperature-sensitive”
luminophore, which is temperature-sensitive and pressure-insensitive. This system
configuration corrects for the temperature dependency of the pressure component by
determining the run-time temperature field. Dual-luminophore sensor coatings were
developed where the temperature sensing luminophore, encapsulated in polystyrene
microspheres, and the pressure sensing luminophore are conjointly distributed through a
polydimethylsiloxane polymer binder. Extensive studies were conducted to evaluate the
photo, thermal-, and temporal-stability of the luminophore/binder coatings, and
fluorescence microscopy, SEM and TEM analytical techniques were employed to
evaluate the molecular distribution of the luminophores in the coatings. Finally the
coatings were subjected to static calibration cell imaging to evaluate their overall
application performance.
Fluorescence microscopy has also been employed to analyze the variable non¬
linear Stern-Volmer response exhibited by several Ru(II) a-diimine based coatings and
the linear Stern-Volmer response exhibited by several Pt(II)
tetra(pentafluorophenyl)porphyrin based coatings. It is believed that deviations from
linearity are due to heterogeneity of the polymer matrix or the luminophore distribution.
By quantitatively measuring the oxygen quenching efficiency at the pixel level with
micrometer spatial resolution, we have been able to provide experimental evidence to
explain the linear and non-linear SV responses exhibited by such coatings.

CHAPTER 2
DUAL-LUMINOPHORE OXYGEN SENSING COATINGS
Introduction
As outlined in Chapter One, ideal oxygen sensing conditions produce
photoluminescence intensity which responds only to changes in pOy, however, other
environmental parameters such as temperature (T) interfere with this measurement. For
many sensors, the KSv value varies linearly with temperature over a narrow range of
temperatures as indicated by equation (2-1).
Ksv(T) = Ksvre'+ bT (2-1)
When a sensor coating is evaluated under non-isothermal conditions (most often
the case in a wind-tunnel), the global map of Pair that is created will be in error, because
of the temperature dependence of Ksv- Since KSv is a well-behaved function of
temperature as in (2-1), if one knows the temperature distribution over the surface of the
aerodynamic model, it is then possible to apply computer algorithms to correct for the
temperature-dependence of KSv and obtain an accurate global surface pressure
distribution.63-65
A convenient method for obtaining the necessary information regarding the
temperature distribution over the aerodynamic model is to incorporate into the sensor
coating a second “temperature-sensitive” luminophore that exhibits similar properties^
to those outlined in Chapter One under PSP Advances. Therefore a dual-luminophore
sensor system would provide a global temperature map for the surface of an aerodynamic
model by imaging the photoluminescence from the temperature-sensitive luminophore.
27

28
The global temperature map would then be used to correct for the temperature-
dependence of the photoluminescence intensity imaged from the pressure-sensitive
luminophore, and a corrected global surface pressure distribution would result.
When incorporated separately (i.e., one at a time, but not together) into a polymer
binder, many photoluminescent probe molecules display desirable emission
characteristics for oxygen or temperature sensing. However, when two or more probe
molecules are mixed into the same binder, they typically do not display the desired
oxygen and/or temperature sensing photoluminescence properties. This non-ideal
behavior arises from both physical and chemical molecular interactions, and often yields
unpredictable results with respect to the overall photoluminescence properties of the
sensor coating.^ One solution to this problem is to design nanometer to micrometer
sized “molecular cages” or “compartments” that separate the luminophores in the
polymer binder at the molecular level yet provide a coating that is spatially homogeneous
on the millimeter scale (i.e., camera spatial resolution). In this manner, it is possible to
produce a sensor coating system incorporating two or more photoluminescent probe
molecules which display separate and well-defined photoluminescence intensity
variations due to temperature and oxygen sensing.
Recent work by Gouterman et al. has yielded two types of dual-luminophore
sensor coatings. In one coating, they have incorporated a second luminophore: a
pressure-insensitive but temperature-sensitive inorganic phosphor to correct for the
temperature-dependence of the PSP coating.^ Expanding on their earlier work with
platinum porphyrins, the Gouterman group has also investigated the use of silicon
octaethylporphine (SiOEP) as a new pressure-insensitive, temperature-sensitive
65
luminophore.

29
In the work presented in this chapter, two dual-luminophore coatings were
developed and characterized. These coatings contain a temperature-sensitive
luminophore adsorbed onto polystyrene microspheres and an oxygen-sensitive
luminophore. The dyed-microspheres and the oxygen sensing luminophore were
distributed in a gas-permeable polymer binder. Detailed schemes for the preparation of
the dyed-microspheres and resulting dual-luminophore coatings are outlined in Figures 2-
1,2-2, and 2-3.
Figure 2-1: Scheme for preparation of DOCI highly cross-linked polymer microspheres
(DOCIppsp). A) 5 vol % DVB relative to total volume, AIBN 2 wt. % relative to
monomer, A 70° C for 24 h., EtOH wash, dry in vacuo at 50° C for 12 h. B) 1 mL
MeOH, sonicate 1 h., soak in dark for 7 d., MeOH and CFFCF wash, dry in vacuo at 30°
C for 12 h.

30
Ssjxsp"
Ssfisp- + DOC I
D
Ssfisp
I)OCI-Sspsp
Figure 2-2: Scheme for preparation of DOCI sulfonated polymer microspheres (DOCI-
Ssfisp). A) 45 vol % DVB relative to total volume, D1 fDOiporogen = 25:1 v/v,
porogen:monomer = 1:1.4 v/v, porogen =1:1 l-dodecanol:toluene, sodium laurylsulfate
0.3 mol % relative to monomer, A 26° - 70° C 7 h. at 250 rpm, DI H2O and acetone wash,
THF Soxhlet extraction, dry in vacuo 48° C 12 h. B) 40 mL CH2CI2, 0° C, 0.5 mL
CISO^H in 40 mL CFhCl dropwise, warm to 25° C, stir 24 h. 25° C, CfLCL wash, air
dry. C) 150 mL DI H20, 50 mL NaOH (150 mM). stir 100 min. 25° C, 3x100 mL DI
H2O wash, 100 mL acetone wash, dry in vacuo 53° C 40 h. D) 4 mL MeOH, 2 mL DI
H2O, sonicate for 20 min., MeOH and acetone wash.

31
PtTFPP DOCIppsp or DOCI-Sspsp and vinyl
3 - 3.5 % Pt divinyltetramethyl disiloxane catalyst polydimethylsiloxane
methylhydrosiloxanes-dimethylsiloxane copolymer Mix 20 min.
CFL
H
1
co
X
o-
i
CFL
J
CH,
1 3
CFL
r 1 3 i
CFL
1 3
HX—Si-O—
3 1
-Si-O-
L 1 J
m
-Si-O-
1
b-f-CH3
CHP=CH—Si-O—
2 1
-Si-O-
1 J
-Si-CH=CH
n 1
ch3
ch3
ch3
ch3
ch3
ch3
ch3
air-brush application
PtTFPP
Polymer Binder
Figure 2-3: Scheme for preparation of dual-luminophore oxygen sensing coatings.
PtDOCIppsp/VPDMS and PtDOCI-Sspsp/VPDMS.
Extensive studies were conducted to evaluate the photo, thermal-, and temporal-
stability of the dual-luminophore coatings, and SEM, TEM, and fluorescence

32
microscopic analytical techniques were employed to evaluate the size and distribution of
the luminophores in the coatings. Finally the coatings were subjected to static calibration
imaging to evaluate their overall application performance. The results and discussion of
this work are presented in the following chapter.
Results
Dual-luminophore Coatings
Two dual-luminophore coatings were developed incorporating an oxygen sensing
luminophore and a temperature sensing luminophore adsorbed onto a polystyrene
microsphere dispersed in a polydimethylsiloxane (PDMS) polymer binder.
PtDOCIppsp/VPDMS Coating
The first coating consists of Pt(II) wf\w-tetrakis(pentafluorophenyl)porphine
(PtTFPP) as the oxygen sensing luminophore and DOCI-adsorbed microspheres
produced via precipitation polymerization (DOClppsp)(3,3,-diethyloxacarbocyanine
iodide = DOCI) as the temperature sensing luminophore dispersed in a vinyl
polydimethylsiloxanes (VPDMS) polymer binder. The preparation of the coating is
schematically represented in Figure 2-3.
A typical emission spectrum of the coating is shown in Figure 2-4.

33
Figure 2-4: Emission intensity spectra for PtTFPP and DOCIppsp dispersed in VPDMS
polymer on primed glass.
Two emission bands are detected when the coating is excited with 450 nm light.
The PtTFPP emission consists of two bands: an intense band, T(0,0), centered at 645 nm
and a weaker band, T(0,1), centered at 710 nm. The emission bands are due to
phosphorescence from the 3Ti(7X,tc*) state of the porphyrin macrocycle. ^ Back bonding
between the dxz and dyz orbitals of the Pt with the empty eg(7i*) orbitals of the porphyrin
produce a strong spin-orbit coupling. This leads to singlet-triplet mixing which increases
the radiative decay rate from 3Ti(7t,7t*) —> 1 So- The increase in phosphorescence
facilitates efficient oxygen quenching.^ 1 Therefore, a decrease in emission intensity is
observed as the oxygen concentration above the coating sample is increased.
The DOCIp|iisp temperature-sensing luminophore exhibits two weak emission
bands centered at 510 nm and 550 nm, respectively. This is fluorescence from the k-k*
transitions centered along the conjugated chromophore backbone. The fluorescence is
split at 540 nm due to absorption by PtTFPP.

34
The PtTFPP porphyrin is a d* phosphorescent hypso porphyrin possessing
absorption features blue-shifted relative to normal porphyrins. PtTFPP exhibits several
absorption bands. The first band is an intense near-UV band termed the Soret band at
395 nm, 1 So —» ^(Tt.TC*). The second two bands appear in the visible region between
505 to 540 nm and are referred to as the Q bands. The First Q band. Q(0,0), represents
the excitation from the lowest vibrational level of the ground-state singlet to the lowest
vibrational level of the first singlet excited state, and the second Q band. Q( 1.0), has one
quantum of vibration in the first singlet excited state, 1 So —> 'S\{n,n*). For square planar
metalloporphyrins, such as PtTFPP, the Q bands are due to degenerate excited states with
x and y polarization.^
For a dH metalloporphyrin, the filled orbitals, dx/ or dyz, are located between the
occupied aiu(7i), d2U(K) orbitals and the empty degenerate LUMO eg(7T*) of the porphyrin
ring. The metal dn electrons can then interact with the empty ep(7i*) orbitals inducing a
mixing between the empty ep(7i*) orbital and the filled ep(d7i) orbital. Stabilization of the
filled ep(d7t) orbital raises the energy of the eg(7t*) orbital and results in a blue-shift of the
absorption bands.52,73
The fluorescence emission of the DOCIppsp is centered at 510 nm due to 7t-7i*
transitions, and the Q bands of the PtTFPP overlap well with the DOCI fluorescence.
Therefore, the PtTFPP luminophore can absorb some of the DOCIppsp emission, and the
DOCI emission band experiences an emission bleach around 535 nm. The effect is
clearly seen in Figure 2-4.

35
PtDOCI-Sspsp/VPDMS Coating
The second coating is a modification of the first. The formulation still contains
Pt(II) m^o-tetrakis(pentafluorophenyl)porphine (PtTFPP) as the oxygen sensing
luminophore; however the DOCI-adsorbed microspheres were produced via a suspension
polymerization, sulfonated, and negatively charged prior to dye adsorption. The
luminophores are dispersed in a vinyl polydimethylsiloxanes (VPDMS) polymer binder.
A typical emission spectrum of the coating is displayed in Figure 2-5.
500 550 600 650 700 750 800
Wavelength (nm)
Figure 2-5: Emission intensity spectra for PtTFPP and DOCI-Sspsp dispersed in
VPDMS polymer on primed glass.
Under 450 nm excitation light, the coating exhibits two emission bands that are
similar to the previous coating. The Imax of PtTFPP is only slightly less intense than in
Figure 2-4. However, the intensity of the DOCI-Sspsp is less than half intense as the
previous DOCIppsp emission in Figure 2-4. Adding twice as much dyed-microspheres
(DOCI-Sspsp) to the coating formulation did not significantly increase the emission
intensity either. The impact of the different microsphere preparation methods to the

36
overall performance of the PtDOCIppsp/VPDMS and PtDOCI-Ssjisp/VPDMS coatings
will become clearer when the quantity and distribution of the PtTFPP. DOCIppsp, and
DOCI-Sspsp luminophores in relation to imaging of the coatings with CCD camera
technology is discussed later in the chapter.
Temperature Dependence and Thermal-stability
The temperature dependence and thermal-stability of the PtDOCIppsp/VPDMS
and PtDOCI-Sspsp/VPDMS coatings were assessed over a 40 K temperature range from
273 - 313 K. The temperature dependence of the PtTFPP pressure probe's
photoluminescence response to oxygen quenching for the emission region 630 - 670 nm
was established, and the stability of the probe’s emission response to cyclic variations of
temperature from 273 —> 313 —> 273 K was evaluated. The temperature dependence and
thermal-stability of the photoluminescence between 530 - 570 nm for the DOCIpfisp and
DOCI-Sspsp temperature probes were evaluated in the same manner as the
photoluminescence of the pressure probe.
Specimens were prepared by air-brushing four layers of each coating onto
borosilicate microscope slides primed with a TiOVSPDMS (SPDMS = silanol
polydimethylsiloxanes with methyltriacetoxysilane cross-linker) coating and storing the
specimens in the dark at room temperature and 33 % relative humidity until analysis.
Exact details of the coating preparations can be found in the Experimental section. The
specimens were evaluated 24 h. after coating application using the pressure cell
attachment on the fluorimeter. The samples were illuminated with 450 nm light, and the
emission was evaluated at predetermined wavelength areas. This procedure was followec
to maintain consistency in coating characterization. The samples evaluated using the
fluorimeter were also evaluated using a calibration cell with CCD detection (as described

37
in the Experimental section). The calibration cell set-up monitors photoluminescence
utilizing a series of bandpass filters with an optical bandwidth of 40 nm FWHM.
Therefore in keeping with consistency, emission values obtained utilizing the fluorimeter
were calculated for areas rather than discrete wavelengths.
PtTFPP
The temperature dependence of PtTFPP photoluminescence was analyzed. The
luminescence intensity decreases moderately with increasing temperature at all pressures
from 0.1 - 14.7 psi. This is a typical behavior for many pressure probes. 1°,57 stern-
Volmer (SV) analysis of the solid coatings were conducted utilizing equation (2-2),
I(^Pem, Pair = 1 atm)/ I(^Pem, Pair) = A + BPair (2-2)
and (B/A) = Ksv- The pressure probe’s response to oxygen quenching at different
temperatures yields linear SV plots with excellent correlation and high Ksv values. The
coatings are strongly pressure sensitive, as the total light intensity decreases by nearly a
factor of 10 when the pressure above the film increases from 0.1 - 14.7 psi. A SV plot
for each temperature is displayed in Figures 2-6 and 2-7 for the two coatings on primed
glass. The temperature dependence of the coatings’ emission is evidenced by the “fan¬
out” of the regression lines at higher pressure. Comparison of Figures 2-6 and 2-7
reveals that the pressure probe in the PtDOCI-Sspsp/VPDMS coating is more
temperature-dependent than the PtDOCIppsp/VPDMS coating.

38
1.2
1.0
0.8
<
W 0.6
OÍ
<
0.4
0.2
0.0
0 2 4 6 8 10 12 14 16
Air Pressure (psi)
Figure 2-6: SV plot PtDOCIp|isp/VPDMS coating on primed glass for temperatures
between 273 - 313 K. Aref: area between 630 - 670 nm at 14.7 psi and 313 K.
0 2 4 6 8 10 12 14 16
Air Pressure (psi)
Figure 2-7: SV plot PtDOCI-Sspsp/VPDMS coating on primed glass for temperatures
between 273 - 313 K. Aref: area between 630 - 670 nm at 14.7 psi and 313 K.
For the SV analysis, the data for the percent decrease in PtTFPP emission area at
each pressure as a function of oxygen concentration for a change in temperature are listed
in Tables 2-1 and 2-2 for the two coatings on primed glass. At all pressures, the
corresponding percent change in emission is consistent and provides evidence for a well-
behaved oxygen sensing coating. These numbers are consistent with ones obtained by

39
Puklin et al. for PtTFPP dispersed in fluoroacrylic polymer (FIB) and
poly(methylmethacrylate) (PMMA) polymers.57
Table 2-1: Percent change in PtTFPP emission area at seven pressures over a 40 K range
for PtDOCIppsp/VPDMS coating on primed glass.
Pressure (psi) AA %-K'1
273 - 313 K
0.1 - 1.05
2 -0.78
4 -0,55
6 -0.11
8 -0.57
10 -0.11
14.7 -0.80
Table 2-2: Percent change in PtTFPP emission area at seven pressures over a 40 K range
for PtDOCI-Sspsp/VPDMS coating on primed glass.
Pressure (psi)
AA %-K'1
273 - 313 K
0.1
- 1.30
2
-0.73
4
-0.78
6
-0.78
8
-0.76
10
-0.87
14.7
-0.88
The thermal-stability of the pressure probe’s photoluminescence was evaluated by
subjecting the samples to various pressures between 0.1 - 14.7 psi at specific
temperatures during acyclic run from 273 —> 313 —> 273 —> 313 —> 273 K. Analysis of
the pressure probe’s response to oxygen at each temperature reveals a consistent SV
response at all temperatures, and no indication of hysteresis or change in the coatings

40
morphology. The SV data at each temperature evaluated for the PtDOCIppsp/VPDMS
and PtDOCI-Sspsp/VPDMS coatings are presented in Tables 2-3 and 2-4, respectively.
Table 2-3: SV analysis of PtTFPP emission quenching in PtDOCIpfisp/VPDMS coating
on
primed glass for a cyclic temperature run.
Temperature
Run
Intercept11 Slope (psi'1 )b
â– s
r"
Ks
v (psi ‘)c
273 K
1
0.064 0.067
0.990
1.05
293 K
1
0.051 0.067
0.995
1.31
313 K
1
0.030 0.065
0.998
2.17
293 K
2
0.048 0.066
0.995
1.38
273 K
2
0.063 0.067
0.991
1.06
293 K
3
0.047 0.067
0.996
1.43
313 K
3
0.031 0.065
0.938
2.10
293 K
4
0.056 0.067
0.994
1.20
273 K
4
0.051 0.067
0.995
1.31
a intercept = A in equation (2-2), h slope = B in equation (2-
2), c
Ksv — B/A
Table 2-4: SV analysis of PtTFPP emission quenching in PtDOCI-Sspsp/VPDMS
coating on primed glass for a cyclic temperature run.
Temperature
Run
Intercept1' Slope (psi1 )b
R:
Ks
v (psi ')c
273 K
1
0.047 0.067
0.995
1.43
293 K
1
0.024 0.067
0.999
2.79
313 K
1
0.029 0.067
0.999
2.31
293 K
2
0.025 0.068
0.999
2.72
273 K
2
0.027 0.068
0.999
2.52
293 K
3
0.016 0.068
0.999
4.25
313 K
3
0.025 0.067
0.999
2.68
293 K
4
0.070 0.062
0.986
0.88
273 K
4
0.026 0.068
0.998
2.62
a intercept = A in equation (2-2), h slope = B in equation (2-2), c
Ksv = B/A
As can be seen in Tables 2-3 and 2-4, KSv increases
with temperature. This is not
surprising, since the diffusion of
oxygen in a polymer is a thermally activated
phenomenon.55 Raising the temperature increases the diffusion rate of oxygen thereby
enhancing the efficiency of luminescence quenching.67 Even though small changes in

41
the intercept value can greatly affect the calculated Ksv value. The KSv values in Tables
2-3 and 2-4 do not differ significantly and indicate that the coating is stable with respect
to repeated thermal cycling over the 273 - 313 K range.
DOCIpjisp and DOCI-Sspsp
The temperature dependence of the photoluminescence from the DOCIpjisp and
DOCI-Sspsp temperature probes was evaluated. The luminescence intensity of either
temperature probes did not vary significantly with change in pressure at a constant
temperature; however, it did decrease with increasing temperature.
The emission spectra for both coatings at 0.1 psi and five temperatures between
273 - 313 K are displayed in Figures 2-8 and 2-9 for the PtDOCIpjisp/VPDMS and
PtDOCI-Ssjisp/VPDMS coatings on primed glass, respectively.
Figure 2-8: Emission intensity spectra for DOCIpjisp in PtDOCIpjisp/VPDMS coating
on primed glass at 0.1 psi for five temperatures between 273 - 313 K.

42
Figure 2-9: Emission intensity spectra for DOC'I-Ss(isp in PtDOCI-Sspsp/VPDMS
coating on primed glass at 0.1 psi for five temperatures between 273 - 313 K.
Analysis of the response of the temperature probes' emission at specific
temperatures from 273 - 313 K are displayed in Figures 2-10 and 2-11 for the
PtDOCIppsp/VPDMS and PtDOCI-Ss|isp/VPDMS coatings, respectively. The origins of
the probes’ temperature dependence and pressure independence will be discussed later in
the chapter.

43
Figure 2-10: Temperature dependence of emission for DOCIppsp in
PtDOCIppsp/VPDMS coating on primed glass for a series of pressures between 0.1 -
14.7 psi. Aref area between 530 - 570 nm at 273 K and 0.1 psi.
Figure 2-11: Temperature dependence of emission for DOCI-Sspsp in PtDOCI-
Sspsp/VPDMS coating on primed glass for a series of pressures between 0.1 - 14.7 psi.
Aref: area between 530 - 570 nm at 273 K and 0.1 psi.
The temperature dependence was nearly linear over the temperature range 273 -
310 K with a slope of the linear correlation of approximately - 0.80 %-K'1 for Figure 2-10
and - 0.54 %-K'1 for Figure 2-11. For the PtDOCIppsp/VPDMS coating, 0.80 %-K 1
correlates well with the percent change in emission area as a function of temperature for

44
each pressure displayed for Run 1 of Table 2-5. The temperature dependence at assorted
pressures varied between - 0.69 to - 0.80 %-K'1 for the temperature range 273 —> 313 K.
For the PtDOCI-Ss|isp/VPDMS coating, the - 0.54 %-K 1 value agrees with the percent
change in emission area as a function of temperature for each pressure displayed for Run
1 of Table 2-6. The temperature dependence varied between - 0.33 to - 0.66 %-K'1.
Compared to DOCIppsp emission variation in Table 2-5, DOCI-Sspsp exhibit less
temperature dependence at each pressure with greater breadth in the distribution of
percent change from pressure to pressure. These are both undesirable features and
provide evidence for DOCIppsp as the better temperature-sensitive probe.
Table 2-5: Percent change in DOCIppsp emission area at seven pressures over a cyclic
Pressure (psi)
AA %-K'1
AA %-K 1
AA %-K'1
AA %-K 1
273 - 313 K
313 - 273 K
273-313 K
313 - 273 K
Run 1
Run 2
Run 3
Run 4
0.1
-0.74
0.60
- 0.75
0.63
2
-0.69
0.60
-0.73
0.54
4
-0.78
0.64
-0.80
0.62
6
- 0.76
0.60
-0.70
0.59
8
-0.75
0.64
-0.73
0.56
10
-0.79
0.55
-0.70
0.57
14.7
-0.80
0.62
-0.63
0.52

45
Table 2-6: Percent change in DOCI-Sspsp emission area at seven pressures over a cyclic
temperature run of 40 K for PtDOCI-Ss|Lisp/VPDMS coating on primed glass.
Pressure (psi) AA %-K'1
273 - 313 K
Run 1
AA %-K’1
313 - 273 K
Run 2
AA %-K'1
273 - 313 K
Run 3
AA %-K’1
313 - 273 K
Run 4
0.1
-0.63
0.60
-0.47
0.52
2
-0.44
0.44
-0.40
0.47
4
-0.48
0.41
-0.43
0.51
6
-0.33
0.25
-0.40
0.55
8
-0.41
0.49
-0.62
0.61
10
-0.34
0.40
-0.44
0.45
14.7
-0.40
0.53
-0.61
0.48
The data for the thermal-stability of the temperature probes’ emission obtained by
subjecting the samples to cyclic temperature changes from 273 —> 313 —> 273 —> 313 —>
273 K is outlined in Tables 2-5 and 2-6. Three trends from these tables should be noted.
(1) The DOCIppsp exhibit greater temperature dependence when the coating is heated
then when it is cooled. (2) The DOCI-Sspsp display a consistent temperature-
dependence when the coating is heated or cooled. (3) Both probes’ emission intensity
response is appreciable with changes in temperature yet reproducible and thermally stable
throughout the cyclic run of temperatures. This last characteristic will allow for
correction of the photoluminescence temperature dependence exhibited by the PtTFPP
pressure probe.63-65
Emission Intensity
Throughout the thermal cycling experiments, the stability of not only the probes’
responses to oxygen pressure and temperature changes were monitored but the stability of
the probes’ overall intensity was monitored as well. The magnitude of the emission
intensity data for both the pressure and temperature probes did not change during the
thermal cycling. This is an indication that the photoluminescence of both coatings is not

46
only responsive to repeated pressure and temperature changes but the magnitude of the
probes’ luminescence intensity is stable as well.
Temporal-stability
The stability of photoluminescence emission intensity over time was analyzed for
the PtDOCIppsp/VPDMS and PtDOCI-Sspsp/VPDMS coatings. To better understand
possible influences one luminophore might impart on the other over time, the individual
luminophores in VPDMS polymer were separately analyzed. The coatings, dual- and
mono-luminophore, were applied to plain and primed (TiOi/SPDMS) borosilicate
microscope slides and stored in the dark at room temperature and 33 % relative humidity.
For each spectroscopic analysis, the specimen slides were scored and a fresh piece
broken-off for evaluation of the photoluminescence properties. The specimen was
excited with 450 nm light, and emission was monitored from 475 - 800 nrn. Particular
emphasis was placed on evaluating the areas under the emission curve between 530 - 570
nm for the temperature probes and 630 - 670 nm for the pressure probe at seven distinct
pressures in the range of 0.1 and 14.7 psi. All spectroscopic evaluations were conducted
at room temperature.
PtTFPP
The area of emission for the PtTFPP pressure probe (A, = 630 - 670 nm) in the
PtDOCIppsp/VPDMS, PtDOCI-Ssfisp/VPDMS and PtTFPP/VPDMS coatings was
evaluated for its response to oxygen pressure. The coatings were analyzed at weekly
intervals for the first month after application and then at monthly intervals for a total
period of four or eight months. Stern-Volmer (SV) analysis of the pressure probe’s
response to quenching at seven different pressures was performed for each analysis, and

47
the data are displayed in Tables 2-7, 2-8, and 2-9 for the coatings on bare glass and Table
2-10, 2-11, and 2-12 for the coatings on primer.
Table 2-7: SV Analysis of PtTFPP emission quenching in PtDOCIppsp/VPDMS coating
on bare glass.
Time Interval3
Interceptb
Slope (psi'1)0
Ksv (psrV
24 h
0.046
0.065
0.994
1.43
1 wk
0.031
0.066
0.998
2.16
2 wk
0.020
0.066
0.999
3.23
3 wk
0.030
0.068
0.998
2.28
4 wk
0.011
0.067
0.999
5.96
4 mo
0.015
0.069
0.985
4.56
8 mo
0.045
0.068
0.986
1.51
a fresh sample used for each SV measurement, b intercept = A in equation (2-2), c
slope = B in equation (2-2), d Ksv = B/A
Table 2-8: SV Analysis of PtTFPP emission quenching in PtDOCI-Ssp.sp/VPDMS
coating on bare glass.
Time Interval3
Intercept13
Slope (psi'y
r2
KSv (psi-1)"
24 h
0.048
0.067
0.995
1.40
1 wk
0.023
0.068
0.999
2.96
2 wk
0.031
0.066
0.999
2.13
3 wk
0.055
0.067
0.992
1.22
4 wk
0.018
0.068
0.995
3.78
2 mo
0.047
0.063
0.992
1.34
4 mo
0.018
0.065
:—b • .
0.998
3.61
fresh sample used for each SV measurement, intercept = A in equation (2-2),
slope = B in equation (2-2), d Ksv = B/A

48
Table 2-9: S V Analysis of PtTFPP emission quenching in VPDMS polymer on bare
Time Interval3
Intercept11
Slope (psi'1)0
Ksvipsi-V
24 h
0.100
0.067
0.969
0.670
1 wk
0.054
0.068
0.986
1.26
2 wk
0.110
0.061
0.995
0.555
3 wk
0.047
0.067
0.995
1.43
4 wk
0.083
0.063
0.981
0.759
2 mo
0.135
0.065
0.965
0.481
4 mo
0.1 11
0.068
0.946
0.613
8 mo
0.072
0.064
0.979
0.889
a fresh sample used for each SV measurement, b intercept = A in equation (2-2), c
slope = B in equation (2-2), ll Ksv = B/A
Table 2-10: SV Analysis of PtTFPP emission quenching in PtDOCIppsp/VPDMS
coating on primed glass.
Time Interval3
Intercept'1
Slope (psi ')c
Ksv 24 h
0.005
0.068
0.999
14.4
1 wk
0.01 1
0.067
0.999
5.96
2 wk
0.013
0.068
0.999
5.14
3 wk
0.016
0.065
0.997
4.09
5 wk
0.017
0.067
0.999
4.01
4 mo
0.042
0.066
0.999
1.56
8 mo
0.018
0.065
0.996
3.70
a fresh sample used for each SV measurement, b intercept = A in equation (2-2),
slope = B in equation (2-2), d Ksv = B/A
C
Table 2-11: S V Analysis of PtTFPP emission quenching in PtDOCI-Sspsp/VPDMS
a
coating on primed glass.
Time Interval3
Intercept'1
Slope (psi ')c
r2
KsvIpsiV
24 h
0.020
0.067
0.999
3.35
1 wk
0.024
0.068
0.999
2.83
2 wk
0.017
0.067
0.999
3.94
3 wk
0.047
0.068
0.993
1.45
4 wk
0.030
0.067
0.998
2.23
2 mo
0.042
0.066
0.999
1.57
3 mo
0.061
0.066
0.996
1.08
4 mo
0.045
0.066
0.998
1.47
fresh sample used for each SV measurement, b intercept = A in equation (2-2), c
slope = B in equation (2-2), d KSv = B/A

49
Table 2-12: SV Analysis of PtTFPP emission quenching in VPDMS polymer on primed
glass.
Time Interval3
Interceptb
Slope (psi1)0
~P~
Ksv (psi ')d
24 h
0.025
0.067
0.999
2.68
1 wk
0.033
0.067
0.999
2.03
2 wk
0.028
0.067
0.999
2.39
4 wk
0.019
0.067
0.999
3.53
8 mo
0.028
0.066
b T "
0.998
2.36
fresh sample used for each SV measurement, intercept = A in equation (2-2),
slope = B in equation (2-2), d Ksv = B/A
Over a four- or eight-month period, the coatings retained an excellent response to
variation in Pa¡, as evidenced by the high Ksv values in Tables 2-7 to 2-12. At all time
intervals, SV evaluation results in steep linear plots with minimal fluctuations in the
intercept values - a small intercept value indicates excellent coating sensitivity to oxygen
concentration. The small variations in intercept however translate into large overall
variations in Ksv values. The most noticeable variation in Ksv is for the
PtDOCIppsp/VPDMS coating on primed glass 24 h. after application. The KSv value of
14.4 psi'1 is 3.5 times larger than the average Ksv value, 4.08 psi 1, for subsequent time
intervals. The increased Ksv value is possibly due to photolysis of the coating and not
necessarily a consequence of oxygen pressure.
Comparison of the intercept and Ksv values from Tables 2-7, 2-8, 2-10, and 2-11
to those in Tables 2-9 and 2-12, makes it is clear that the sensitivity of PtTFPP emission
to oxygen pressure is more sensitive in the dual-luminophore coatings than in the mono-
luminophore coating. Enhancement of PtTFPP’s emission sensitivity in the dual-
luminophore coatings is a beneficial finding which counters negative effects seen in other
70
dual-luminophore coatings.

50
DOCIppsp and DOCI-Sspsp
Analysis of the area of the photoluminescence spectrum for the DOCIppsp and
DOCI-Sspsp (Á. = 530 - 570 nm) temperature probes resulted in fairly consistent
emission intensity that was unaffected by oxygen pressure. The emission intensity areas
for each pressure were averaged (this is assuming that the emission intensity does not
fluctuate greatly with variation in Pa,r), and the coefficient of variation (CV %) (the
standard deviation of average emission intensity area divided by the average emission
intensity area) was determined for each time interval analysis. The CV % statistically
describes the degree of variance in the emission intensity areas of seven spectral emission
scans for pressures between 0.1 - 14.7 psi. Since the temperature probe is ideally
pressure insensitive, a low CV % is expected. The CV % data at different time intervals
for the temperature probes are presented in Tables 2-13 and 2-14 for the
PtDOCIppsp/VPDMS and PtDOCI-Sspsp/VPDMS coatings on bare and primed glass.
Table 2-13: Analysis of the area under the emission curve for DOCIppsp in
PtDOCIppsp/VPDMS coating on bare and primed glass.
Time Interval1'
CV % for glass1’
Time Interval*
CV % for primer1’
24 h
3.26
24 hr
1.23
1 wk
6.14
1 wk
4.87
2 wk
5.06
2 wk
3.64
3 wk
7.25
3 wk
2.98
4 wk
3.76
2 mo
4.92
4 mo
2.97
4 mo
4.45
8 mo
1.41
8 mo
6.47
J fresh sample used for each SV measurement, CV % for seven emission scans of the
sample obtained at pressures between 0.1 - 14.7 psi.

51
Table 2-14: Analysis of the area under the emission curve for DOCI-Sspsp in PtDOCI-
Sspsp/VPDMS coating on bare and primed glass.
Time Interval3
CV % for glass'1
Time Interval3
CV % for primer*1
24 h
3.75
24 h
2.94
1 wk
3.29
1 wk
3.33
to
<-
<
7T
4.06
2 wk
5.95
3 wk
5.82
3 wk
9.24
4 wk
3.31
4 wk
4.82
2 mo
9.15
2 mo
2.99
4 mo
3.65
3 mo
6.81
8 mo
7.74
4 mo
: b
1.26
fresh sample used for each SV measurement, CV % for seven emission scans of the
sample obtained at pressures between 0.1 - 14.7 psi.
The DOCIppsp and DOCI-Sspsp temperature probes were also analyzed
separately in the VPDMS polymer binder. This was done to prove that the emission of
the dyed-microspheres is not quenched by oxygen, regardless if the microspheres were
dispersed in VPDMS with or without the PtTFPP oxygen sensing probe. The CV % data
for dyed-microspheres in VPDMS on bare and primed glass are presented in Tables 2-15
and 2-16.
Table 2-15: Analysis of the area under the emission curve for DOCIppsp in VPDMS
polymer on bare and primed glass.
Time Interval3
CV % for glass'1
Time Interval3
CV % for primer*1
24 h
8.36
24 h
6.82
1 wk
11.5
1 wk
6.92
2 wk
12.7
2 wk
3.96
3 wk
11.8
3 wk
6.95
4 wk
9.04
5 wk
7.01
4 mo
4.48
4 mo
4.32
8 mo
7.04
8 mo
h
9.29
a fresh sample used for each SV measurement, CV % for seven emission scans of the
sample obtained at pressures between 0.1 - 14.7 psi.

52
Table 2-16: Analysis of the area under the emission curve for DOCI-Sspsp in VPDMS
Time Interval3
CV % for glass*
Time Interval3
CV % for primer*
24 h
10.2
24 h
10.2
1 wk
8.78
1 wk
16.1
3 wk
1 1.8
2 wk
13.3
4 wk
12.3
3 wk
15.3
2 mo
16.9
4 wk
8.95
4 mo
6.78
2 mo
4.57
8 mo
6.21
4 mo
17.1
8 mo
—:——'
7.16
sample obtained at pressures between 0.1 - 14.7 psi.
Inspection of Tables 2-13 to 2-16 reveals that the data are similar. The variance
in the emission response for the dyed-microspheres is characteristic to the spheres and is
not influenced by dual-Iuminophore interactions.
Emission Intensity
Throughout the temporal-stability experiments, the magnitude of emission
intensity for the pressure and temperature probes’ responses to oxygen pressure was
monitored. The emission intensity data for both probe types decreased by an order of
magnitude between their respective first to last and final interval emission scans. This
effect was consistent for the coatings on glass but not for the coatings on primer. Only
the emission intensity of the PtTFPP, DOCIpfisp, and PtDOCIppsp in VPMDS on primer
decreased by an order of magnitude between their first to last and final interval emission
scans. The emission intensity of the DOCI-Ssjisp and PtDOCI-Ssjisp in VPDMS on
primer were stable throughout the interval emission scans. The decrease in emission
intensity is not detrimental to the coatings, since the decrease in emission intensity did
not hinder the S V response of the pressure probe. Nor did it increase the small variance
in emission intensity exhibited by the temperature probes to variation in Pair.

53
Photostability
The stability of the photoluminescence intensity to continuous illumination for a
period of four hours was examined for the PtDOCIpjisp/VPDMS and PtDOCI-
Sspsp/VPDMS coatings. To better understand possible influences one luminophore
might impart on the other over time, the individual luminophores were also analyzed
separately. The coatings, dual- and mono-luminophore, were air-brushed onto plain and
primed (TiCF/SPDMS) borosilicate microscope slides. After application, the coatings
were stored in the dark at room temperature and 33 % relative humidity. The coating
samples were illuminated with 450 nm light with a 50-W arc-bulb, and emission was
monitored from 475 - 800 nm. A fresh specimen piece was broken-off the respective
prepared slide for each photostability experiment. Illumination was initiated at time
equals zero and an emission scan was obtained every 30 min. These experiments were
carried out in the fluorimeter. Particular emphasis was placed on evaluating the area
under the emission curve between 530 - 570 nm for the temperature probes and 630 - 630
nm for the pressure probe at two pressures, 5 and 14.7 psi, and room temperature.
PtTFPP
The photostability of the photoluminescence of the PtTFPP pressure probe (A =
630 - 670 nm) in PtDOCIppsp/VPDMS and PtDOCI-Ss|Lisp coatings was evaluated at 5
and 14.7 psi. Analysis of the relative PtTFPP emission intensity versus time is displayed
in Figure 2-12 for the PtDOCIppsp/VPDMS coating on bare and primed glass, in Figure
2-13 for the PtDOCI-Sspsp/VPDMS coating on bare and primed glass, and in Figure 2-
14 for PtTFPP in VPDMS polymer coating on bare and primed glass as a comparison.

54
Figure 2-12: Photostability of PtTFPP emission in PtDOCIpjisp/VPDMS coating on bare
and primed glass at 5 and 14.7 psi and RT. Aref- area between 630 - 670 nm at 240
min.
Figure 2-13: Photostability of PtTFPP emission in PtDOCI-Sspsp/VPDMS coating on
bare and primed glass at 5 and 14.7 psi and RT. Aref: area between 630 - 670 nm at
240 min.

55
Figure 2-14: Photostability of PtTFPP emission in VPDMS polymer coating on bare and
primed glass at 5 and 14.7 psi and RT. Arhf: area between 630 - 670 nm at 240 min.
The photostability of the photoluminescence of the PtTFPP pressure probe in the
PtDOCIppsp/VPDMS and PtDOCI-Sspsp/VPDMS coatings exhibits minimal random
fluctuations in intensity ratio over the four-hour period. These results are within a
standard deviation of error for each scan point and similar to photostability experiments
conducted by Lee and Okura for PtTFPP in polystyrene. 74 The PtDOCI-Sspsp/VPDMS
coating on primed glass at 14.7 psi experiences a decline in photoluminescence emission
intensity over the first 60 - 90 minutes of illumination. This “photolysis period”, only
exhibited for one pressure condition of the photostability experiments, is not uncommon,
and has been observed by other groups not only for the PtTFPP luminophore but for other
Pt(II) porphyrin macrocycles. 16,74
The photosiability of the photoluminescence of the PtTFPP pressure probe in
VPDMS polymer without incorporation of the dyed-microspheres behaves similarly to
the PtDOCIppsp/VPDMS coating. Therefore, the PtTFPP ratioed emission intensity

56
exhibits minor fluctuations over the time period that are not dependent on chemical or
physical interactions with the temperature probes.
DOCIppsp and DOCI-Sspsp
The photostability of the photoluminescence of the DOCIppsp and DOCI-Sspsp
temperature probes (Á = 530 - 570 nm) in PtDOCIppsp/VPDMS and PtDOCI-Sspsp
coatings were evaluated at 5 and 14.7 psi. Analysis of the relative DOCIppsp emission
intensity versus time is displayed in Figure 2-15 for the PtDOCIppsp/VPDMS coating on
bare and primed glass. The relative DOCI-Sspsp emission intensity versus time is
depicted in Figure 2-16 for the PtDOCI-Sspsp/VPDMS coating on bare and primed glass,
and the relative emission intensities of the DOCIppsp and DOCI-Sspsp temperature
probes, dispersed separately in VPDMS polymer coating without incorporation of the
PtTFPP pressure probe, versus time are illustrated in Figures 2-17 and 2-18, respectively,
as a comparison.
Figure 2-15: Photostability of DOCIppsp relative emission intensity in
PtDOCIppsp/VPDMS coating on bare and primed glass at 5 and 14.7 psi and RT. Aref:
area between 530 - 570 nm at 240 min.

57
Figure 2-16: Photostability of DOCI-Sspsp relative emission intensity in PtDOCI-
Ssjisp/VPDMS coating on bare and primed glass at 5 and 14.7 psi and RT. Aref: area
between 530 - 570 nm at 240 min.
Figure 2-17: Photostability of DOCIppsp relative emission intensity in VPDMS polymer
coating on bare and primed glass at 5 and 14.7 psi and RT. Aref: area between 530 -
570 nm at 240 min.

58
Figure 2-18: Photostability of DOCI-Sspsp relative emission intensity in VPDMS
polymer coating on bare and primed glass at 5 and 14.7 psi and RT. Aref- area between
530 - 570 nm at 240 min.
The photoluminescence of the temperature probes in PtDOCIppsp/VPDMS and
PtDOCI-Sspsp coatings is less photostable than that of the PtTFPP pressure probe in the
same coatings. The DOCIppsp temperature probe in the PtDOCIppsp/VPDMS coating
on bare and primed glass exhibits a decrease in relative emission intensity over the 240
min. time period at both pressures. The results for the percent photodegradation are listed
in Table 2-17.
Table 2-17: Percent photodegradation of the relative emission intensity for DOCIppsp in
Pressure (psi)
Glass
Primer
5
0.119 %-min'1
0.77 %-min'
14.7
0.094 %-min 1
0.179 %-min 1
The DOCI-Sspsp temperature probe in the PtDOCI-Sspsp coating on bare glass
experiences minor fluctuations in relative emission intensity over the four-hour time

59
period. However, the relative emission intensity decreases over the 240 min. time period
for the coating on primed glass. The results for the percent photodegradation of the
coating on primed glass are listed in Table 2-18.
Table 2-18: Percent photodegradation of the relative emission intensity for DOCI-Sspsp
in PtDOCI-Ss|itsp/VPDMS coating on primed glass.
Pressure (psi)
Primer
5
0.028 %-min'1
14.7
0.079 %-mm 1
DOCIppsp and DOCI-Sspsp, dispersed separately in VPDMS polymer without
PtTFPP incorporation, display relative emission intensity plots versus time which are
scattered from point to point, however, the scatter from point to point is within the one
standard deviation error bars. Therefore the emission intensity for the temperature probes
in the VPDMS polymer coating is stable over the four-hour illumination period and
unaffected by chemical or physical interactions with the PtTFPP luminophore.
Scanning and Transmission Electron Microscopy
Scanning electron microscopy (SEM)
SEM was used to image the two types of microspheres used in this work. Images
were obtained on the undyed samples as well as on the dyed samples that were used in
the coating preparations. The method used to prepare the SEM specimens is discussed in
the Experimental section.
DOCIppsp. The poly(divinylbenzene) microspheres were prepared by
precipitation polymerization. A typical image of the microspheres prior to DOCI (3,3’-
diethyloxacarbocyanine iodide) adsorption is illustrated in Figure 2-19. All images
display the microspheres as aggregates of large and small particles.

60
Figure 2-19: Scanning electron micrograph of precipitation microspheres (ppsp)(5 vol %
of DVB55; acetonitrile). The scale bar consists of 1 1 white vertical lines and is 5 pm
long from the first line to the last line.
The larger particles are 3 to 5 pm in size while the smaller particles are as tiny as
0.5 pm. The polymer particles possess a nonspherical shape and no evidence of pore
formation. It appears that in some instances the particles are fused together. This fusion
is most likely a consequence of an earlier stage in their growth.75
Placing carbon tape on an aluminum stud and pressing it against the above-
prepared sample fractured the polymer particles. The fractured microspheres were
transferred to the carbon tape and sputter-coated with 15 nm of gold. As a result of
fracturing the polymer particles, a closer look of their interior morphology was obtained
and imaged in Figure 2-20.

61
Figure 2-20: Scanning electron micrograph of fractured precipitation microspheres
(ppsp)(5 vol % of DVB55; acetonitrile). The scale bar consists of 11 white vertical lines
and is 1.5 pm long from the first line to the last line.
Magnification of the microspheres depicts the fusion of the smaller particles to the
larger particles as seen in the upper half and left side of the figure. The sphere in the
center of the figure exhibits jagged incisions due to the crushing process. Closer analysis
of the exterior and interior morphologies reveals a cauliflower-like surface. This effect is
most likely due to pore formation at the sub-micron level.75
When 3,3’-diethyloxacarbocyanine iodide (DOCI) was adsorbed onto the
microspheres, the particles possess a more spherical swollen shape with no evidence of
pore formation. Figure 2-21 displays a typical cluster of swollen 7.27 wt. % DOCI
adsorbed microspheres (DOCIppsp).
I

62
Figure 2-21: Scanning electron micrograph of precipitation microspheres (5 vol % of
DVB55; acetonitrile) with 7.27 wt. % adsorbed DOCI (DOCIppsp). The scale bar
consists of 11 white vertical lines and is 2.31 pm long from the first line to the last line.
Again, the particles were fractured to display the interior morphology imaged in
Figure 2-22. Magnification of the polymer particles reveals that the interior and exterior
morphologies are tightly polymerized spheres creating small pores.
Figure 2-22: Scanning electron micrograph of fractured precipitation microspheres (5 vol
% of DVB55; acetonitrile) with 7.27 wt. % DOCI (DOCIppsp). The scale bar consists of
1 1 white vertical lines and is 750 nm long from the first line to the last line.

63
DOCI-Sspp. The poly(divinylbenzene) microspheres were also prepared via
suspension polymerization, sulfonated, and negatively charged. A typical image of the
microspheres prior to dye adsorption is displayed in Figure 2-23.
Figure 2-23: Scanning electron micrograph of negatively charged, sulfonated, suspension
microspheres (Sspp~)(45 vol % of DVB55; l-dodecanol:toluene = 1:1). The scale bar
consists of 11 white vertical lines and is 10 pm long from the first line to the last line.
Polymerization produced a variety of microsphere sizes. The majority are 3 pm
and smaller; although, some are as large as 8 to 10 pm. The microspheres exhibit a
porous structure due to the use of a porogen 1-dodecanol nonsolvent.76 The larger 8 to
10 pm polymer particles possess larger pores but are also more agglomerated and less
spherical than the smaller microspheres. Stover reported similar character in porosity,
shape, and size distribution of poly(divinylbenzene) microspheres polymerized with
increased percentages of porogen nonsolvent.76
The interior morphology was revealed upon fracturing the microspheres. Figure
2-24 illustrates how the porous nature of the exterior surface is channeled throughout the
interior morphology.

64
Figure 2-24: Scanning electron micrograph of fractured negatively charged, sulfonated,
suspension microspheres (Sspp ) (45 vol % of DVB55; 1 -dodecanohtoluene = 1:1). The
scale bar consists of 11 white vertical lines and is 750 nm long from the first line to the
last line.
DOCI was adsorbed onto the charged, sulfonated, suspension microspheres
(Sspp ) replacing the Na+ counter ion. Figure 2-25 reveals that some of the microspheres
are spherical while others are fractured from the preparation procedure. The most
noticeable feature of these spheres is the appearance of a “sticky film” connecting and
covering the spheres.

65
Figure 2-25: Scanning electron micrograph of fractured negatively charged, sulfonated,
suspension microspheres (45 vol % of DVB55; l-dodecanol:toluene =1:1) with 3.83 wt.
% adsorbed DOCI (DOCI-Sspsp). The scale bar consists of 11 white vertical lines and is
2.73 pm long from the first line to the last line.
The film forms an incomplete coating across the spheres in the left side of the figure and
a bridge connecting a larger particle and its nearest neighbors in the image right of center.
The film appears to be less than 1 pm thick, and its origins are unknown. However, its
existence was reproducible in additional SEM preparations.
SPDMS and VPDMS incorporating DOCIppsp or DOCI-Sspsp. Clusters of
microspheres penetrating the surface of the coating are observed when a thin film of
SPDMS (silanol polydimethylsiloxanes and methyltriacetoxysilane cross-linker)
containing DOCIppsp (7.27 wt. % DOCI) (prepared by air-brush; approximately 10 pm
thick) was imaged by SEM. The randomness and irregularity of the microspheres’
distribution and size can be clearly seen in Figure 2-26. This image compliments
findings presented later in the chapter which utilize fluorescence microscopy to describe
the distribution of the microspheres in the polymer binder, Figure 2-30.

66
Figure 2-26: Scanning electron micrograph of the surface of a thin film (~ 10 pm) of
SPDMS containing DOCIppsp (7.27 wt. % DOCI)(5 vol % of DVB55; acetonitrile). The
scale bar consists of 11 white vertical lines and is 5.02 pm long from the first line to the
last line.
A thin film of VPDMS (vinyl polydimethylsiloxanes) containing DOClpsp (7.27
wt. % DOCI) was more difficult to image than the DOCIppsp in SPDMS polymer binder
The surface of DOCIppsp in the VPDMS film did not produce characteristic clusters of
microspheres. Only random indentations and crevices are found which are due to either
the morphology of the polymer cure, dust particles or embedded microspheres. However
upon fracturing the sample and imaging the interior film morphology, clusters of
microspheres are found and imaged in Figure 2-27.

67
Cluster of
microspheres
Film
Surface
Film
Interior
Glass
Substrate
Figure 2-27: Scanning electron micrograph of the interior morphology of a thin film (~
10 pm) of VPDMS containing DOCIppsp (7.27 wt. % DOCI)(5 vol % of DVB55;
acetonitrile). The scale bar consists of 11 white vertical lines and is 33.3 pm long from
the first line to the last line.
Magnification of the microsphere cluster is displayed in Figure 2-28. This image
further confirms scanning electron microscopy and fluorescence microscopy results
which indicate that the microspheres are not homogeneously distributed within the
polymer film.
Figure 2-28: Scanning electron micrograph of the interior morphology of a thin film (~
10 pm) of VPDMS containing DOCIppsp (7.27 wt. % DOCI)(5 vol % of DVB55;
acetonitrile) (27X magnification of Figure 2-27). The scale bar consists of 11 white
vertical lines and is 1.20 pm long from the first line to the last line.

68
DOCI-Sspp dispersed in VPDMS polymer could not be imaged with SEM. The
surface of the DOCI-Sspsp/VPDMS film did not reveal a globular texture as seen with
the DOCIppsp in SPDMS polymer (Figure 2-26). Fracturing of the DOCI-
Sspsp/VPDMS sample did not reveal microspherical clusters of distinct microsphere
regions either. Two factors could be affecting the imaging. (1) It is possible that due to
the elastic nature of the VPDMS, the fractured specimen polymer binder closes over the
exposed interior region masking the microspheres.^7 (2) The DOCI-Sspsp are smaller
than the DOCIpfisp and more difficult to image, since, as will be seen in the fluorescence
microscopy data, the DOCI-Ss(isp are more evenly distributed and less clustered than the
DOCIppsp in the VPDMS polymer binder.
One solution to the problem of imaging is cooling the sample to 77 K. fractioning,
and using a cryostat-stage for the SEM imaging thereby precluding any negative effects
exhibited by the polymer’s tendency to resume its shape at room temperature. This
option was not available at the time of the imaging. Regardless, it still does not guarantee
that the microsphere particles will be revealed and successfully imaged.
Transmission electron microscopy
Due to the elastomeric nature of the polydimethylsiloxane (PDMS) polymer
binders utilized in PSP/TSP coatings, the coatings exhibit rather poor mechanical
properties and were therefore difficult to microtome and analyze.77 However, after a
three month storage period at 50 % relative humidity, tris-(4,7-diphenyl-1,10-
phenanthroline)ruthenium (II) dichloride ([RuidppFJCF) dispersed SPDMS polymer was
sufficiently cured making it possible to microtome slices that were less than a 100 nm
thick. Visual and physical inspection of the SPDMS coating showed that cured SPDMS
was not as soft and pliable and easier to cleanly microtome than cured VPDMS polymer.

69
TEM images of the microtomed [Ru(dpp)3]Cl2 thin film are shown in Figure 2-29.
Due to the spraying application of the film, the SPDMS polymer is visualized as droplets.
Dark gray areas are indicative of increased electron density either from a single heavy
atom, Ru, or a high concentration of a low atomic weight atom, C, Si, O. The dark black
areas are the formvar resin used in sample preparation. The [Ru(dpp)3]Cl2 complex was
not discernable as discrete microcrystals, possibly due to the fact that its concentration
was low (i.e. 0.2 wt. % relative to polymer weight, 500 mg).
Figure 2-29: Transmission electron micrographs of a < 100 nm slice of [Ru(dpp)3]Cl2
dispersed in SPDMS polymer. (A) X4500 magnification of polymer, white scale bar is
3.0 pm long and (B) X70000 magnification of polymer, white scale bar is 0.4 pm long.
Energy dispersive spectroscopy (EDS)
Energy dispersive spectroscopy coupled with TEM was utilized to determine the
elemental composition of the darker droplet areas in Figure 2-29. The [Ru(dpp)3]Cl2
complex could not be identified, since its concentration at any one point was less than 1
wt. % (the limit of detection for this method). However the atoms along the exterior of
the droplets (the darker areas of Figure 2-29 B) were identified as Si. The abundance of
silicon atoms along the exterior surface of the droplets is 3.29 times greater than the
abundance of interior droplet Si concentration. The ratio of Si was calculated by

70
determining the electron count from Si in the sample and Cu from the copper mesh disk
on which the polymer slice was attached. Ratio of Si = Edge/Interior =
(722/794)/(253/914) = 3.29.
Fluorescence Microscopy
Fluorescence microscopy techniques were employed to better understand the size
and distribution of [RuidppFJCF, PtTFPP, DOCIppsp, and DOCI-Sspsp in the VPDMS
and SPDMS polymer binders. First, DOCIppsp and DOCI-Sspsp are analyzed for size
(length of particle major axis) and distribution (number of particles per region analyzed).
Second, the PtDOCIppsp/VPDMS and PtDOCI-Sspsp/VPDMS film coatings are
analyzed for determination of the relative position of PtTFPP to the dyed-microspheres.
Third, the spatial distribution of the PtTFPP probe’s luminescence response to oxygen
quenching in the PtDOCIppsp/VPDMS and PtDOCI-Sspsp/VPDMS films are evaluated.
Fourth, the evaluation of [RuidppbJCF distribution in SPDMS binder.
Size and distribution of DOCIppsp and DOCI-Sspsp
The DOCIppsp (0.6 wt. %, relative to polymer weight, 500 mg) and DOCI-Sspsp
(0.2 wt. %, relative to polymer weight, 500 mg) were distributed separately in VPDMS
polymer binder. Two layers of each coating were air-brushed onto clean borosilicate
microscope slides. The DOCI-Sspsp/VPDMS film was approximately 5 pm thick, and
the DOCIppsp/VPDMS film was approximately 10 pm thick, as measured by
profilometry. The slides were analyzed using the inverted fluorescence microscope. A
detailed explanation for the system set-up is found in the Experimental section. For this
experiment, an IR filter, 50 % neutral density filter, and a 425 nm 40 nm, bandpass
filter were used in front of the 100-W mercury-bulb excitation source. The
DOCIppsp/VPDMS film was imaged with the 40X objective and the DOCI-

71
Sspsp/VPDMS film was imaged with the 40X objective set at 60X magnification by the
microscope’s 1.5X magnification knob. The emission light was filtered through a 475
nm long-pass filter, and the side of the slide that was coated with the polymer film faced
the objective. Five regions of each coating were analyzed at an exposure time of 150
msec for the DOCIppsp/VPDMS film and 200 msec for the DOCI-Sspsp/VPDMS film.
Fluorescence microscope images of the DOCIppsp/VPDMS and DOCI-
Sspsp/VPDMS films are displayed in Figure 2-30. Image A is 218 pm x 173 pm (1300 x
1030 pixels; calibration 0.168 pm-pixel"1). Image B is 146 pm x 115 pm (1300 x 1030
pixels; calibration 0.112 pm-pixel"1). The images are representative of each film. Within
each image the white clusters and solo particles are defined by the DOCI fluorescence
emission detected from the microspheres.
Figure 2-30: Fluorescence microscope image of A) DOCIppsp/VPDMS film and B)
DOCI-Sspsp/VPDMS film obtained with a CCD camera through a 40X and 60X
objective, respectively. White scale bar is 26.5 pm and 17.8 pm long, respectively.
Five regions were imaged for each film. White clusters were considered one
microsphere object rather than counting the individual microsphere components. The

72
number of objects in each region for the DOCIp|Usp/VPDMS and DOCI-Sspsp/VPDMS
films is given in Tables 2-19 and 2-20, respectively.
Table 2-19: Number of microsphere objects for five regions of the DOCIppsp/VPDMS
film.
Region
Number of DOCIpjisp Objects
1
94
2
56
3
61
4
75
5
62
Average
69.6± 13.7
• of microsphere objects for five regions of the C
film.
Region
Number of DOCI-Sspsp Objects
1 81
2
66
3
72
4
90
5
84
Average
78.6 ±8.57
For all of the microsphere objects counted, the objects’ major axis lengths were
determined using a statistical imaging program. Sigma Scan Pro (SPSS Inc.). The
average and the standard deviation for the microsphere objects’ lengths for each region
analyzed are given in Tables 2-21 and 2-22.

73
Table 2-21: Average and standard deviation of the microsphere objects’ lengths for each
region of the DOCIppsp/VPDMS film.
Region
Objects’ Average Length (pm)
1
6.04 ± 5.97
2
2.46 ± 1.31
3
3.93 ±3.20
4
4.24 ±4.20
5
2.10 ±0.46
Table 2-22: Average and standard deviation of the microsphere objects’ lengths for each
region of the DOCI-Sspsp/VPDMS film.
Region
Objects’ Average Length (pm)
1
1.55 ±0.51
2
1.52 ±0.56
3
1.19 ± 0.26
4
1.22 ±0.32
5
1.44 ±0.48
The lengths of the objects’ major axes from the five regions analyzed for each
film are represented by histograms in Figure 2-31. The number of objects for a given
size range are plotted versus the length of the objects (0.5 pm bin increments).
Figure 2-31: Histogram of the microsphere objects’ major axis lengths for A)
DOCIppsp/VPDMS film and B) DOCI-Sspsp/VPDMS film. Vertical bars equal a 0.5
pm length increment.

74
For the DOCIp|Usp/VPDMS film, the microsphere object lengths’ are in the range
of 0.5 to 30 pm with a substantial number of objects between 2-7 pm in length. For the
DOCI-Sspsp/VPDMS film, the microsphere object lengths’ are in the range of < 0.5 to
7.5 pm with a substantial number of objects between 0.5 - 2.5 pm in length. Considering
that the number of objects per region for each film is similar, the large number of objects
(~ 140) for the DOCI-Sspsp/VPDMS film proves that the microspheres are smaller and
less aggregated than the microspheres of the DOCIppsp/VPDMS film. The measured
object lengths correlate well with the lengths determined from the SEM images. Figures
2-19 and 2-23.
The number and corresponding lengths of DOCIppsp particles in Tables 2-19 and
2-21 and the objective depth of focus (DOF) were used to predict the density distribution
of microspheres in the VPDMS polymer binder for any given region. In this analysis, the
DOF is 4 pm at 40X. (The DOF is defined as the length along the optical axis of the
microscope by which, for a constant level of the image, the focusing position of the
objective can be varied without disturbing the sharpness of the image at the center of the
field.Since the numbers of objects for each region are within a standard deviation of
one another as were the respective object lengths, then it can be derived that a certain
number of microspheres of average length are distributed throughout the coating for a
known region of predetermined size. This is not to say that the microspheres are evenly
distributed throughout the coating; rather, for any region analyzed, an average number of
spheres with average length are found. For example, the DOCIppsp/VPDMS film
average is (69.6 objects)/(4 pm x 218 pm x 173 pm) = 4.61x104 objects-pm \

75
For the DOCI-Sspsp/VPDMS film, the 60X objective DOF is not known, but a
rough estimate using the fine focus adjustment of the microscope yields a 2 pm
measurement for the DOF. By evaluating the microspheres’ quantity and length data in
Tables 2-20 and 2-22, the numbers of objects for each region were within a standard
deviation of one another as were the respective object lengths. Therefore, a certain
number of microspheres of average length are distributed throughout the film for a
known region of thickness and size. For example, the DOCI-Sspsp/VPDMS film
average is (78.6 objects)/(2 pm x 146 pm x 115 pm) = 2.34x10 3 objects-pm 3. Although
the DOCI-Sspsp may not be evenly distributed throughout an analyzed region, an
average number of microspheres with average lengths are found in any region.
Relative distribution of PtTFPP, DOCIppsp, and DOCI-Sspsp
The position of the PtTFPP probe relative to the microspheres in the
PtDOCIppsp/VPDMS and PtDOCI-Sspsp/VPDMS films was determined using the
fluorescence microscope. Two layers of each formulation coating were air-brushed onto
clean borosilicate microscope slides, and the luminescence of the two luminophores
(PtTFPP and DOCIppsp or DOCI-Sspsp) was detected. Three images from each coating
were obtained using the 40X objective, IR filter, <*= 50 % neutral density filter, and a 425
nm 40 nm, bandpass filter in front of the excitation source. Three emission filters were
used interchangeably: a 475 nm longpass filter for imaging PtTFPP and DOCIppsp or
DOCI-Sspsp luminescence; a 525 nm 50 nm, bandpass filter for imaging DOCIppsp or
DOCI-Sspsp luminescence; and a 630 nm 60 nm, bandpass filter for imaging the PtTFPP
luminescence.

76
The PtDOCIppsp/VPDMS film is imaged in Figure 2-32 at the three emission
wavelengths. Each image is 218 pm x 173 pm (1300 x 1030 pixels; calibration 0.168
pm-pixel1). The filters were chosen such that the emission of the luminophore
components could be selectively filtered and detected.
Figure 2-32: Fluorescence images of PtDOCIppsp/VPDMS film obtained with a CCD
camera through a 40X objective. White scale bars are 37.9 pm long. A) PtTFPP
emission (ca. 630 nm), B) DOCIppsp emission (ca. 525 nm), C) PtTFPP and DOCIppsp
emissions (> 475 nm).
There is not much difference in the visual fields from one image to the other, yet
this lack of differentiation accurately illustrates the distribution of the luminophores
relative to one another. As a reference, image C of Figure 2-32 depicts the emission
intensity of both the DOCIppsp and the PtTFPP luminophores. In image B only the
green emission intensity from the microspheres is detected and represented as white
globules. The background field does not exhibit significant emission intensity. To
illustrate this, several 30 pm line scans through the microsphere clusters were performed
to determine the intensity counts for the microspheres versus the background. The
emission intensity line scans are plotted in Figure 2-33, graph B. The microsphere
clusters are very intense compared to the non-emissive background. In particular, a line

77
scan for cluster 1 bisects three microspheres, and an outline of the intense microsphere
shapes is characterized by the corresponding line scan in graph B.
Figure 2-33: Line scan analysis of the emission intensity of a fluorescence microscope
image of PtDOCIppsp/VPDMS film obtained with a CCD camera through a 40X
objective with a 525 nm 50 nm, bandpass filter (DOCI emission response). A)
Fluorescence microscope image of DOCIppsp emission and B) Emission line scans for
three 30 pm lines through microsphere clusters in image A.
Image A in Figure 2-32 is striking; it only represents the detected emission intensity of
the PtTFPP luminophore, yet “fuzzy” outlines of the microspheres are clearly seen. The
background field of the image emits a homogeneous red photoluminescence. To
illustrate this point, several 30 pm line scans through the white clusters were performed.
Figure 2-34 depicts the line scan areas in image A and the corresponding emission
intensity plots in image B. The intensities of the microspheres are much greater than the
background intensity; however, in comparison to image B of Figure 2-33, the background
intensity of image B in Figure 2-34 is rather intense. This is supporting evidence for the
distribution of the PtTFPP not only on or near the microsphere clusters but also through
the remainder of the polymer binder.

78
A
2
1
3
Figure 2-34: Line scan analysis of the emission intensity of a fluorescence microscope
image of PtDOCIppsp/VPDMS film obtained with a CCD camera through a 40X
objective with a 630 nm 60 nm, bandpass filter (PtTFPP emission response). A)
Fluorescence microscope image of PtTFPP emission and B) Emission line scans for three
30 |im lines through microsphere clusters in image A.
There are three possibilities for this emission patterns in Figures 2-33 and 2-34:
(1) Adsorption of PtTFPP onto the surface of the microspheres during the coating
preparation generates areas of concentrated PtTFPP emission. (2) The
photoluminescence from the DOCIppsp is “pumping” the photoluminescence of the
PtTFPP through energy transfer or a trivial emission reabsorption mechanism.^3 (3) The
photoluminescence of the background PtTFPP is internally reflected in the polymer
illuminating the microspheres’ shape.
The PtDOCI-Sspsp/VPDMS film exhibits the same emission tendencies as the
PtTFPP and DOCIppsp luminophores when imaged with different emission filters.
Microscopic Stern-Volmer analysis of PtDOCIppsp/VPDMS and PtDOCI-
Sspsp/VPDMS thin Films
A fluorescence microscopy technique was developed to explore the spatial
distribution of the luminescence properties for oxygen sensing coatings within a spatial
resolution of < 5 pm. Fluorescence microscopy coupled with CCD image analysis was
employed to create spatially resolved “image maps” of the Stern-Volmer (SV) constant

79
(Ksv) for luminescent oxygen sensing films. The SV luminescence intensity response to
variation in air pressure (Pa¡r) for PtDOCIppsp/VPDMS and PtDOCI-Sspsp/VPDMS thin
films was measured at the microscopic level. The details of the instrument set-up and
sample preparation are found in the Experimental section, and a thorough explanation of
the fluorescence image analysis is provided in the Experimental section of Chapter Three.
A series of quantitative image maps of the PtTFPP probe’s response to variation in Pa¡r
were generated using 10X and 40X objectives.
False-colored fluorescence microscope images for the PtDOCIppsp/VPDMS and
PtDOCI-Sspsp/VPDMS thin films obtained at Pa,r = 0.5 psi with a 10X objective and 630
nm 30 nm, bandpass filter are shown in Figures 2-35 and 2-36, respectively. The image
size is 436 pm x 345 pm (650 x 515 pixels; calibration 0.67 pm-pixel" ). For both
luminescence intensity images (Figures 2-35 A and 2-36 A) there are several bright
yellow and red spots, which correspond to the enhanced PtTFPP photoluminescence
centered over the microsphere particles. The intense spots are superimposed on a
background field of homogeneous luminescence intensity.

80
Figure 2-35: False-colored quantitative microscopic fluorescence intensity (0.5psi, 10X)
and Ksv(x,y) image maps for PtDOCIppsp/VPDMS thin film. White scale bars are 61.5
pm long. A) False-colored quantitative microscopic fluorescence intensity image, Imax =
11081 a.u., yellow color and B) Quantitative microscopic Ksv(x,y) image map for the
identical region, = 0.870 psi 1, yellow color.
Figure 2-36: False-colored quantitative microscopic fluorescence intensity (0.5psi, 10X)
and Ksv(x,y) image maps for PtDOCI-Sspsp/VPDMS thin film. White scale bars are
61.5 pm long. A) False-colored quantitative microscopic fluorescence intensity image,
Imax - 16562 a.u., yellow color and B) Quantitative microscopic Ksv(x,y) image map for
the identical region, = 0.880 psi'1, yellow color.
For each film, five regions were interrogated with each objective at seven Pair
values between 0.4 - 14.7 psi. A total of ten Ksv(x,y) image maps were generated with
accompanying statistical data listed in Tables 2-23 and 2-24. A Ksv(x,y) image map for
each coating is displayed in Figures 2-35B and 2-36B. A spatial correlation exists
between the intensity and Ksv(x,y) image maps: microscopic regions that feature bright

81
emission (yellow spots) tend to exhibit comparatively larger KSv values (red and yellow
spots). However, in image B of both Figures 2-34 and 2-35, the light blue ovals near the
red spots are erroneous KSv data due to image shifting during analysis. The bright red
spots in the KSv(x,y) image maps and the statistical data in Tables 2-23 and 2-24
demonstrate the inhomogeneous distribution of PtTFPP luminescence response to oxygen
quenching.
Table 2-23: Microscopic SV analysis of five regions for PtDOCIppsp/VPDMS thin film
using the IPX and 40X objectives.
Region
K“;8(psi'')(iox)
Ksv
K";« (psi'1) (40X)
oK %
Ksv
1
0.278
33.5
1.84
26.8
2
0.287
9.41
0.470
7.02
3
0.275
13.8
0.643
3.89
4
0.293
34.1
0.644
34.3
5
0.266
13.5
0.799
22.0
Average
0.280
3.21
0.879
55.9
Table 2-24: Microscopic SV analysis of five regions for PtDOCI-Sspsp/VPDMS thin
film using the IPX and 40X objectives.
Region
Kjv8 (psi-1) (10X)
Or %
*Vsv
K”8 (psi1) (40X)
%
Ksv
1
0.218
30.7
1.06
12.1
2
0.243
7.00
2.12
27.4
3
0.210
9.05
1.89
12.9
4
0.225
13.8
0.928
10.0
5
0.241
10.4
1.30
9.08
Average
0.227
5.73
1.46
32.0
The 10X regions exhibit lower values than the 40X regions. An explanation
for this is the 40X images are 1/36 the size of the 10X images. The 40X intensity images
capture a smaller more homogeneous region of the film such as a single bright spot;
whereas the 10X intensity images capture a larger heterogeneous region of many intense

82
spots and background illumination. Therefore, the K^vvg values of a 10X image are lower
than the K^8 values of a 40X image. Remarkably, the heterogeneous distribution of Ksv
response at the microscopic level does not affect the macroscopic level response. Figures
2-37 and 2-38 represent the SV response to variation in Pair for PtDOCIp|Lisp/VPDMS and
PtDOCI-Sspsp/VPDMS thin films when the samples are evaluated using the fluorimeter.
The macroscopic SV data are listed in Table 2-25.
Figure 2-37: Macroscopic SV plot of PtDOCIpflsp/VPDMS thin film on glass. Aref:
area between 630 - 670 nm at 14.7 psi and 298 K.

83
Figure 2-38: Macroscopic SV plot of PtDOCI-Sspsp/VPDMS thin film on glass. Aref
area between 630 - 670 nm at 14.7 psi and 298 K.
Table 2-25: Macroscopic SV response data for PtDOCIppsp/VPDMS and PtDOCI-
Sspsp/VPDMS films on glass.
Luminophore
Slopeipsi'1)3 Intercept1’
Ksv(psi‘l)c
r2
PtDOCIppsp
0.067
0.014
4.79
0.999
PtDOCI-Sspsp
0.066
~ tttt:—r—
0.026
2.53
0.999
C TZ
intercept = A in equation (2-2), slope = B in equation (2-2), c KSy = B/A
[Ru(dpp)3]Cl2/SPDMS
An SPDMS polymer sample containing [Ru(dpp)3]Cl2 was analyzed using the
fluorescence microscope to determine the distribution of the luminophore in the polymer
binder.
A thin layer of [RuidppbJCF/SPDMS was air-bushed onto a clean borosilicate
microscope slide and kept at 50 % relative humidity in the dark for three months. The
polymer film was then lifted from the glass plate with a razor blade, embedded in an
epoxy formvar resin and microtomed into 250 nm thick slices. The slices were placed on

84
clean borosilicate microscope slides and cover-slips were cemented over the polymer
slices. Sectioned slices were imaged with the microscope using the 40X objective set at
60X magnification by the microscope's 1.5X magnification knob. An IR filter and a 425
nm 40 nm. bandpass filter were placed in front of the excitation source, and emission
light was filtered through a 630 nm 60 nm, bandpass filter.
Fluorescence microscope images of the [Ruidpp'hjCF/SPDMS film are displayed
in Figure 2-39. Each image size is 146 pm x 115 pm (1300 x 1030 pixels; calibration
0.112 pm-pixel’1). The film slices imaged in Figure 2-39 are ribbon strips of polymer
embedded in the non-fluorescing epoxy resin. Moderate photoluminescence of the
[RipdppbjCF luminophore defines the outline of the polymer strips. Areas of intense
photoluminescence define a spherical texture in the polymer strips, which was first
imaged as droplets in the TEM images (Figure 2-29). Since the polymer slices were
sealed under glass, the [RuidppEJCF is imaged in its unquenched state. It is possible the
[Ru(dpp>3]Cl2 complex exists as highly luminescent nm size microcrystals indiscernible
by EDS studies. Further analysis of [RuidpphjCF and other Ru(II) ot-diimine
complexes’ microscopic spatial SV response to oxygen concentration are outlined in
Chapter Three.

85
Figure 2-39: Fluorescence microscopy images of 250 pm thick [RuidppbjCL/SPDMS
strips embedded in formvar resin obtained with a CCD camera through a 60X objective.
White scale bars are 24.5 pm long.
Image Testing
Static-calibration chamber
Calibration tests were conducted on the PtDOCIppsp/VPDMS and PtDOCI-
Sspsp/VPDMS coatings to access their pressure measurement accuracy when exposed to
a spatial temperature gradient. Aluminum coupons (4 in. x 2 in. x 1/8 in.) were coated
with primer and four layers of each coating were air-brushed onto the individual coupons.
The plates were individually placed in a pressure and temperature controlled environment
chamber. A relatively linear temperature gradient (> 20 K) was imposed over the length
of the coupons using a heated plate at the top of the coupon and a water-cooled bath at
the bottom of the coupon. The overall pressure was varied between 2 to 14.7 psi, and a
temperature gradient existed on the plate (300 - 320 K) for a series of images. Images
were acquired at two emission wavelengths: 550 nm and 650 nm. The optical bandwidth
was 40 nm FWHM. The sample was excited using two two-72-element blue LED lamps
(peak emission ca. 460 nm).
Analysis of the luminescence response to pressure and temperature for the
PtDOCIppsp/VPDMS coating is depicted in the plots of Figure 2-40.

86
Figure 2-40: Stern-Volmer plot and ratioed emission plots versus pressure and
temperature for PtDOCIpfisp/VPDMS coating analyzed and imaged in a static calibration
cell. A) SV plot, emission integrated over an approximate area of 630 - 670 nm,
excitation at 460 nm, B) Ratioed emission plot versus pressure, emission integrated over
an approximate area of 530 - 570 nm, excitation at 460 nm, C) Ratioed emission plot
versus temperature, emission integrated over an approximate area of 630 - 670 nm,
excitation at 460 nm, and D) Ratioed emission plot versus temperature, emission
integrated over an approximate area of 530 - 570 nm, excitation at 460 nm.
Clearly the PtTFPP pressure probe’s response to variation in Pa¡r is strong, but it is
also temperature dependent as seen in images A and C. The DOCIppsp temperature-
sensitive probe exhibits very little response to variation is Pair; although, this response
could be spectral leakage of the PtTFPP emission (~ 600 nm) thru the filter. A
considerable temperature response is seen in both images B and D. It is the temperature
dependence and pressure independence of the temperature probe that corrects for the
temperature dependence of the PtTFPP probe.

87
When the coatings are exposed to a temperature gradient (300 - 320 K) at
constant pressure, the ratioed intensity images of the PtDOCIppsp/VPDMS coating for a
series of pressures exhibit a temperature-dependence. This temperature-dependence will
cause the 650 nm (pressure) emission to be attenuated in regions of high T. If converted
to pressure via Iref/I ratio and displayed with a false color map to represent pressure, the
upper (height) portion of the plate will show a false (high) pressure measurement and the
lower portion will show a false low-pressure measurement. The uncorrected
luminescence ratioed intensity images at seven pressures between 2 - 14.8 psi for the
PtDOCIppsp/VPDMS coating are illustrated in Figure 2-41, and the accompanying
pressure data are listed in Table 2-26.
Figure 2-41: Luminescence ratioed intensity images at seven pressures from 2 - 14.8 psi
for PtDOCIpjisp/VPDMS coating on an aluminum plate assuming a constant temperature
distribution over the plate. Emission collected at 650 nm peak and excitation at 460 nm.
Intensity scale bars appear to the right of each image for 0 - 18.0 psi.

88
Table 2-26: Corresponding pressure values and statistical distributions for the
uncorrected ratioed intensity images of the PtDOCIppsp/VPDMS coating on an
aluminum plate at seven pressures between 2 - 14.8 psi.
P(psi)a
P b
r avg
aav2 %c
2.00
2.06
6.8
4.05
4.20
6.4
6.03
6.18
6.3
8.07
8.17
6.4
10.07
10.14
6.7
12.04
12.11
7.1
14.79
15.09
7.8
a pressure manually set for calibration chamber, measured pressure average for each
image, Oavg ^ = ^avgTPavg
When the temperature dependence of the pressure component is corrected, the
true pressure values for each intensity image are determined. To convert the intensity
ratio images to pressures, first a temperature is assumed and a pressure is calculated using
the 650 calibration curve in Figure 2-40 (quadratic: Iratl0, 650 = A + BP + CT + DP' +
ET" + FPT). The coefficients (A-F) are determined using a least-squares regression fit
from the calibrated data points shown in Figure 2-40. Once the pressure is calculated, it
is used to update the temperature using the 550 calibration curve in Figure 2-40 (also a
quadratic fit with six coefficients). This is iterated until convergence (fairly quickly ~ 2-
3 iterations) for each pixel intensity ratio value. The color homogeneity seen in the
accompanying pressure data (Figure 2-42) indicates that the temperature-dependence has
been corrected for by using the 550 data. The corrected luminescence intensity images of
Figure 2-41 are illustrated in Figure 2-42, and the accompanying pressure data are listed
in Table 2-27.

89
Figure 2-42: Corrected luminescence ratioed intensity images at seven pressures from 2
- 14.8 psi for PtDOCIppsp/VPDMS coating on an aluminum plate. Emission collected at
650 nm peak and excitation at 460 nm. Intensity scale bars appear to the right of each
image for 0 - 18.0 psi.
Table 2-27: Corresponding pressure values and statistical distributions for the corrected
ratioed intensity images of PtDOCIppsp/VPDMS coating on an aluminum plate at seven
pressures between 2 - 14.8 psi.
P(psi)a Pavgb gavg %c
2.00 1.95 4.61
4,05 4.06 2.22
6,03 6.04 1,32
8.07 8.03 1.00
10.07 10.02 0.70
12.04 11,92 0.60
14.79 14.88 0.90
pressure manually set for calibration chamber, b measured pressure average for each
image, Gavg /o (^avg/Pavg
Analysis of the luminescence response to pressure and temperature for the
PtDOCI-Sspsp/VPDMS coating is depicted in the calibration curves of Figure 2-43.

90
Figure 2-43: Stern-Volmer plot and ratioed emission plots versus pressure and
temperature for PtDOCI-Sspsp/VPDMS coating analyzed and imaged in a static
calibration cell. A) SV plot, emission integrated over an approximate area of 630 - 670
nm, excitation at 460 nm, B) Ratioed emission plot versus pressure, emission integrated
over an approximate area of 530 - 570 nm, excitation at 460 nm, C) Ratioed emission
plot versus temperature, emission integrated over an approximate area of 630 - 670 nm,
excitation at 460 nm, and D) Ratioed emission plot versus temperature, emission
integrated over an approximate area of 530 - 570 nm, excitation at 460 nm.
The results are similar to that of the PtDOCIppsp/VPDMS coating except for the
ratioed emission plots versus pressure and temperature for emission integrated over an
approximate area of 530 to 570 nm (images B and D, respectively). The DOCI-Ss|isp
temperature probe exhibits less pressure and temperature sensitivity as compared to the
DOCIppsp temperature probe.
The uncorrected ratioed intensity images at 650 nm and corresponding pressure
data for the PtDOCI-Sspsp/VPDMS coating are similar to those of the

91
PtDOCIp|Usp/VPDMS coating. Placing a (> 20 K) temperature gradient across the
aluminum plate induces temperature sensitivity in the pressure probe’s luminescence
intensity. Only the corrected ratioed intensity images for the PtDOCI-Sspsp/VPDMS
coating are illustrated in Figure 2-44 along with the accompanying pressure data listed in
Table 2-28.
Figure 2-44: Corrected luminescence ratioed intensity images at seven pressures from 2
- 14.8 psi for PtDOCI-Spsp/VPDMS coating on an aluminum plate. Emission collected
at 650 nm peak and excitation at 460 nm. Intensity scale bars appear to the right of each
image for 0 - 18.0 psi.
Table 2-28: Corresponding pressure values and statistical distributions for the corrected
ratioed intensity images of PtDOCI-Sspsp/VPDMS coating on an aluminum plate at
seven pressures between 2-14.8 psi.
P(psi)a
P b
ravg
Oavs ^
2.02
1.95
7.18
4.03
4.08
2.45
6.06
6.15
1.79
8.04
8.08
1.49
10.01
9.67
3.83
12.08
11.94
1.84
14.76
14.83
1.48
pressure manually set for calibration chamber, h measured pressure average for each
image, (Tavg /o ~~ CTavg/Pavg

92
Shifting of the images during analysis and resolution of the microspheres is seen in the
last image of the series. The pressure data is more scattered than that for the
PtDOCIppsp/VPDMS coating. The PtDOCIpfisp/VPDMS coating statistically and
visually appears to be the better of the two coatings for calibration cell imaging.
The statistical distribution of the raw intensity values which lead to the pressure
and temperature values are imaged in Figure 2-45 at 550 and 650 nm for the two
coatings. The coupons in each image are 4 in. x 2 in. in size. The raw intensity
coefficient of variance for each image is listed at the bottom of each image. As can be
seen in the four images, the intensity distributions for the PtDOCIppsp/VPDMS coating
are smaller, indicating less possible disturbance of the imaging process from luminophore
distribution.

93
Figure 2-45: Calibration cell intensity images of the PtDOCIppsp/VPDMS and PtDOCI-
Sspsp/VPDMS coatings on an aluminum plate imaged at 650 nm and 550 nm. Excitation
at 460 nm. A) PtDOCIppsp/VPDMS at 650 nm, B) PtDOCIppsp/VPDMS at 550 nm, C)
PtDOCI-Sspsp/VPDMS at 650 nm, D) PtDOCI-Sspsp/VPDMS at 550 nm.
Several questions can be raised concerning the images in Figure 2-45. Do the
microspheres interfere with the wind-tunnel airflow and image registration? Could the
coatings be sprayed thicker or the microspheres filtered to eliminate the bumpy coating
texture and gritty effect in the luminescence images due to microsphere build-up? The
PtDOCIppsp/VPDMS and PtDOCI-Sspsp/VPDMS coatings are approximately 20 pm
and 10 pm thick, respectively. Prior microscopic imaging of the coatings’ microsphere
content was illustrated in Figure 2-30. Clearly, the microscope images display

94
microspheres of sizes between 1-15 pm in length; however, the pixel size of the camera
used for the calibration cell is approximately 200 pm2. Therefore, the clusters of spheres
imaged during the calibration cell experiment are much larger than the microspheres
imaged with the microscope. Whether the visually resolved aggregation in Figure 2-45 is
inherent to the formulation or a product of the application needs to be determined.
Discussion
The development of dual-luminophore coatings is not new. There have been
several attempts to use inorganic phosphors, rhodamine B, and silicon octaethylporphine
as temperature sensing luminophores.65.70,79 Qne 0f ^ t>jggest problems with such
formulations is that they suffer from negative chemical and physical interactions between
the two luminophores. Therefore, encapsulating the temperature dependent luminophore
makes perfect sense for avoiding these problems.
PtTFPP
Other research groups have employed the use of PtTFPP porphyrin for the
pressure sensing probe.57,65,74 jhe halogenated metalloporphyrin is more
photostable,^ less temperature dependent,and more susceptible to oxygen quenching
than other pressure sensing probes investigated (Ru(II) oc-diimine complexes or Pt(II)
octaethylporphyrin).36,50
The increased photostability of PtTFPP is due to the addition of fluorinated
phenyl rings at the meso-positions of the porphyrin ring. The electron withdrawing effect
of the fluorines raises the PtTFPP oxidation potential making it more difficult to oxidize
thereby stabilizing it with respect to attack by singlet oxygen.80

95
The temperature dependence of the photoluminescence for PtTFPP is less than
other pressure probes (Ru(II) a-diimine complexes), because PtTFPP does not possess
low-energy charge transfer (CT) states or (d-d) excited states that can be thermally
populated like the Ru(II) a-diimine complexes do. The photoluminescence emission of
PtTFPP is due to spin-orbit coupling resulting in emission which is less temperature
dependent.73,81
The increased oxygen sensitivity of PtTFPP is facilitated by its long
phosphorescence lifetime due in part to n-n* transitions centered on the porphyrin ring -
in particular, the 3Ti(7t,7i*) state J 6 Back bonding between the dxz and dyz orbitals of the
Pt with the empty eg(7i*) orbitals of the porphyrin macrocycle produces a strong spin-
orbit coupling. This leads to singlet-triplet mixing which increases the radiative decay
rate from 3Ti(7t,7t*) —> 1 So- Spin-orbit coupling significantly decreases the triplet lifetime
and increases the phosphorescence yield. The long lifetime of the phosphorescent state
facilitates efficient oxygen quenching of the luminescence.7 * Therefore, a decrease in
Pair above the sample results in quenched photoluminescence emission. In addition to its
enhanced ability to be quenched by oxygen, PtTFPP is also easily excited in the visible
region, and it possesses a large Stokes shift. 16,50
DOCIppsp and DOCI-Sspsp
The use of carbocyanine dyes has been predominately reported in photography as
photosensitizers to silver halide colloids, and in laser technology as active dye laser
materials.82 Recently, photochemical and photophysical studies have focused on
investigating these cyanine dyes adsorbed onto microcrystalline cellulose,83
cyclodextrins,84 and functionalized polymer particles.85 Therefore, it is conceivable to

96
utilize polystyrene microspherical particles for encapsulation of cyanine dyes. In general,
dye adsorption onto polystyrene particles is not uncommon and has been employed in the
study of energy transfer between particles,86 and solid surface photoreactions.87,88
The DOCI dye was chosen as the temperature-dependent pressure-independent
probe because its fluorescence lifetime is ca. 0.3 ns in ethanol at 25° C and too quick for
adequate luminescence quenching by oxygen.89 The fluorescence emission of the DOCI
dye arises upon excitation of the n-K* visible absorption band (X,max = 484 nm, e = 22,000
cirf'M 1 in ethanol) and is dominated by a fast isomerization process from the first
excited singlet state. The isomerization begins with a twisting of the molecule around
one of the carbon-carbon polymethine chain bonds to form an excited state twisted
molecule. The twisted excited state species decays to the ground state either to a ground
state photoisomer or to a thermodynamically stable ground state species. The
isomerization is an activated process and influenced by temperature and medium
effects.89-92 Therefore the twisting process competes with fluorescence and internal
conversion from the first excited state. As the molecules environment rises in
temperature, the fluorescence emission of the DOCI dye decreases.
The microspheres utilized in the PtDOCIppsp/VPDMS and PtDOCI-
Sfisp/VPDMS coatings were prepared in two different fashions. The differing manners
gave rise to unique physical effects. First, the microspheres of the PtDOCIppsp/VPDMS
coating were prepared using a precipitation polymerization.^ As seen in the SEM
images (Figures 2-19 - 2-22 and 2-27 and 2-28), the spheres are tightly packed and
highly cross-linked. The spheres’ surface charge is neutral; therefore, dye adsorption is
not an electrostatic process. The dye molecules are loosely held to the spheres,
essentially trapped in the small pores and bonded by van der Waals and hydrophobic

97
interactions. The main benefit of the entrapment is separation of the DOCI molecules
from the PtTFPP luminophore in the polymer binder. The two luminophores could not
and did not negatively interact spectroscopically with one another.
The microspheres of the PtDOCI-Spsp/VPDMS coating were prepared by
employing a modified suspension polymerization^ followed by a sulfonation.93 The
spheres are smaller and more porous compared to the DOCIppsp. Sulfonation imparted a
negative charge to the microspheres which can tightly hold the dye molecules in place
with strong ionic forces.
For the most part, both sets of microspheres exhibit the same ratioed emission
response (Iref/I) to continuous illumination and temporal analysis. The only major
difference between the two types of spheres is seen in their temperature dependence and
thermal-stability. The DOCI-Spsp are less temperature dependent and respond more
consistently to temperature changes from hot to cold and cold to hot than the DOCIppsp.
This physical characteristic could be due to the way in which the dye molecules are
bound to the spheres. The ionically bound dye (DOCI-Sspsp) is more tightly bound and
rigidly held. It is less likely to rotate and experience fluorescence temperature-dependent
effects than the DOCIppsp.
PtDOCIppsp/VPDMS and PtDOCI-Spsp/VPDMS Coatings
The PtTFPP, DOCIppsp and DOCI-Sspsp ratioed photoluminescence emission
for the two coatings is temporal-, thermal-, and photostable. The DOCI-Sspsp
fluorescence emission is less temperature dependent and more thermally stable than the
DOCIppsp fluorescence emission. The smaller DOCI-Sspsp particles (0.5 - 2.5 pm) are
more evenly distributed throughout the polymer binder and would be thought to impart a
positive effect to the coatings physical characteristics; however, CCD imaging of the two

98
coatings reveals that the PtDOCI-Sspsp/VPDMS coating suffers from large variations in
raw intensity values across the coating. There are numerous intense fluorescent
agglomerations throughout the images. These areas are due to clustering of the
microspheres. The PtDOCIppsp/VPDMS coating exhibits less areas of intense
fluorescence and is therefore the better choice of the two coatings. Unfortunately, the
presence of microspherical aggregates of either formulation negatively affects the
imaging results by generating visually gritty images (microspheres > 1 mm in size).
These are difficult to correct for using standard image registration techniques. Further
development of the coatings needs to be implemented to improve these complications.
Experimental
Preparation of DOCI Highly Cross-linked Polymer Microspheres (DOCIppsp)
Precipitation polymerization (ppsp)
The particles were prepared via a precipitation polymerization following a
procedure adapted from Stover.^ in a 100 mL round-bottom flask fashioned with a
reflux condenser and nitrogen inlet were combined 55 mL distilled acetonitrile, 2.6 g
divinylbenzene, 55 % divinylbenzene isomers (DVB55) (5 vol % relative to total
volume) from Aldrich, and 46 mg AIBN, 98 % (2 wt. % relative to DVB55) from
Aldrich. The temperature of the polymerization was steadily ramped to 70° C over a 50
min. period and maintained at 70° C with continual stirring for 24 h. The initially
homogenous mixture became milky white after 2 h. At the end of the polymerization, a
white polymer precipitate settled to the bottom of the round-bottom. Any unreacted
monomer and initiator were suction filtered away from the precipitate with 15 X 20 mL
aliquots of 95 % ethanol. The polymer particles were dried in vacuo at 50° C overnight.

99
DOCI incorporation (DOCIppsp)
The microspheres (53 mg) were combined with 10 mg of 3,3’-
diethyloxacarbocyanine iodide (DOCI), 98% from Aldrich, dissolved in 1 mL methanol.
The suspension was sonicated for 1 h. and allowed to stand in the dark for 7 days. The
particles were filtered and successively washed with alternating 5 mL aliquots of
methanol and dichloromethane, until the excess dye was removed. Dye removal was
determined by monitoring the dye concentration in the solvent washes via UV/Vis
absorption. The particles were dried in vacuo at 30° C overnight. A fine orange powder
was obtained. Dye loading was 7.27 % DOCI. Elemental analysis found: C, 90.65 %;
N, 0.45 %; H, 8.62 %.
N, 0.45 % in 1.58 mg sample = 7x 10"6 g N
(7x10~6 g N)/( 14 g/mol) = 5xl0'7 mol N/2 = 2.5xl0'7 mol DOCI in sample
2.5x 10-7 mol DOCI x 460.32 g/mol = 1.15x 10 4 g DOCI
(1.15x10 4 g)/( 1.58x10'3 g) = 7.27 % DOCI
Preparation of DOCI Sulfonated Polymer Microspheres (DOCI-Sspsp)
Suspension polymerization (spsp)
The particles were prepared via a conventional suspension polymerization
adapted from Stover.76 a 250 mL three-neck flask was fitted with a stainless steel
stirring rod with two tilted blades, a reflux condenser with a nitrogen inlet, and a
thermometer. In 100 mL DI IDO (DI ILCkporogen = 2.5:1 v/v) was dispersed 14.7 mg
sodium laurylsulfate (0.3 mol % relative to monomer) as stabilizer, 5 g divinylbenzene 55
% divinylbenzene isomers (DVB55) (45 vol % relative to total volume) from Aldrich,
porogen (1 -dodecanoktoluene =1:1; porogemmonomer = 1:1.4 v/v), and 79 mg AIBN
(3.5 wt % relative to monomer). The polymerization initiation was conducted at 26° C
under a nitrogen atmosphere at 250 rpm followed by a gradual increase in temperature to
70° C over 7 h. and a final 21 h. at 70° C. The particles were allowed to cool to room

100
temperature. The particles were transferred to a beaker and suspended in DI H2O. A stir
bar was added, whereupon the particle aggregates were broken down. The suspension
was allowed to stand for several hours to free small oligomeric material into the
supernate, which was then decanted. This process was repeated again with DI H20 and
twice with acetone. Residual impurities were removed with tetrahydrofuran in a Soxhlet
reactor overnight. The polymer particles were collected and dispersed in DI H20. A stir
bar was again added to break-up polymer aggregates; afterwards, the particles were
resuspended in the DI H20 for several hours to further remove impurities, and the
solution was decanted. This process was repeated again and then twice with acetone. A
Soxhlet extraction with tetrahydrofuran was performed again to remove residual
impurities. The resin particles were dried in vacuo overnight at 48° C. Approximately 2
g of material was obtained. A fine, white powder was achieved when the particles were
ground in a mortar with pestle.
Sulfonation of polymer microspheres (Sspsp)
The polymer particles were sulfonated following a procedure adapted from
Winnik and Stover.93 The particles (800 mg) were dispersed in 40 mL of
dichloromethane and sonicated for 10 min. to eliminate trapped air. The flask was cooled
to 0°C and an addition funnel was added. A solution of 0.5 mL of chlorosulfonic acid
(Aldrich) dissolved in 40 mL of dichloromethane was added drop-wise to the dispersed
particles over a 3 h. period. Upon addition of the first drop, the mixture turned pink in
color. After the addition, the flask was gradually warmed to room temperature with
continuous stirring. The suspension was stirred for an additional 24 h. period at room
temperature. The particles were transferred to a beaker and suspended in 100 mL
dichloromethane. A stir bar was added to break apart large particle agglomerations. The

101
suspension was allowed to stand for several hours, and the dichloromethane solution was
decanted. The process was repeated twice. Dark brown resin particles were obtained and
allowed to dry in the hood at room temperature.
Preparation of charged, sulfonated polymer microspheres (Sspsp )
The sulfonated polymer particles were dispersed in 150 mL of DI fTO. A 50 mL
solution of NaOH (150 mM) was added to the dispersed particles. The color of the
solution changed from brown to beige upon addition of the NaOH solution. The
dispersion was stirred at room temperature for 100 min. The particles were then filtered
and washed with 100 mL of DI HiO three times; the pH of the suspension was 7.0. The
particles were then washed with 100 mL of acetone and dried in vacuo at 53° C for 40 h.
Beige particles were obtained. Elemental analysis of the particles was: S, 8.37 %; Na,
6.58 %; C, 53.92 %; H, 5.56 %. Sulfonation of microspheres was 49 %.
130 g
m:n =1:1
32 g/mol x 0.5
x 100 =
16g/mol
(234.25 g/mol x 0.5)+ (l 32g/mol x 0.5) ^ ~ 183.13g/mol
8.37 % ~ 8.74 %
32 g/mol X
(234.25 g/mol X)+ (l 32 g/mol Y)
x 100 = 8.74 %S
x 100 = 8.37 %S

102
32 g/mol X
234.25 g/mol X + 132 g/mol - 132 g/mol X
x 100 = 8.37 %S
X = 0.47 = 47 % sulfonation
DOCI incorporation (DOCI-Sspsp)
The charged, sulfonated microspheres (30 mg) were dispersed in a solution of
2.76 mg of 3,3’-diethyloxacarbocyanine iodide (DOCI), 98% from Aldrich, dissolved in
4 mL methanol and 2 mL DI IDO. The mixture was sonicated for 20 min. and stirred at
room temperature for 18 h. The mixture was again centrifuged for 30 min., and the
solvent layer was decanted. The resulting solid was washed with 6 mL methanol and
centrifuged for an additional 30 min. This process was repeated three times. The
particles were then washed with 6 mL of acetone and centrifuged for 40 min. The dye-
loaded particles were filtered and dried in vacuo at 45° C for 24 h. Dye loading was 3.83
% of DOCI. Elemental analysis found: C, 53.53%; N, 0.28%; H, 5.41%.
28 g/mol X
130 g/mol (0.53)+ 234.25 g/mol (0.47 - X)+ 545.68g/mol X
100 = 0.28 % N
545.68 g/mol = DOCI incorporated repeat unit
X = 0.018
0.018/0.47 x 100 = 3.83 % DOCI
Oligomers
SPDMS: silanol terminated polydimethylsiloxanes (PDMS) 0.2 % OH (average
MW 18,000) and methyltriacetoxysilane 95 % were purchased from Gelest (Tullytown,
PA). VPDMS: methylhydrosiloxanes-dimethylsiloxane copolymer 15-18 mole %
MeHSiO (average MW 1900- 2000), vinyl terminated polydimethylsiloxanes (PDMS)
0.37 - 0.43 wt. % vinyl (average MW 17,200), and platinum-divinyltetramethyldisiloxane
3 - 3.5 % Pt catalyst were purchased from Gelest (Tullytown, PA).

103
Luminophores
[Ru(dpp)3]Cl2: Tris-{4,7-diphenyl-l,10-phenanthroline)ruthenium (II) dichloride
(Rudpp) was synthesized by a literature procedure and purified by repeated
recrystallizations from water 47,94
PtTFPP: Pt(II) mé\S6>-tetrakis(pentafluorophenyl)porphine was purchased from
Porphyrin Products Inc. (Logan, UT).
DOCI: 3,3’diethyloxacarbocyanine iodide, 98% was purchased from Aldrich
Chemical Company.
Preparation of Coatings
RuDOCIppsp
Silanol PDMS (500 mg, 0.056 mmol of Si-OH endgroups),
methyltriacetoxysilane (26 mg, 0.12 mmol) and DOCIppsp (3.2 mg) were mixed for
approximately 20 min. or until well dispersed. [RuidppbjCL (1 mg) was dissolved in 4
rnL dichloromethane and added to the oligomer/microsphere mixture. The mixture was
stirred for 5 min. and one drop of glacial acetic acid was added to catalyze the reaction.
The coating was applied using a commercially available air-brush at 15 psi onto clean
and primer-coated borosilicate glass slides. The coatings were allowed to cure to the
touch at room temperature for 12 - 24 h. A [Ru(dpp)3]CL coating void of ppsp was
prepared in the same manner.
PtDOCIppsp and PtDOCI-Sspsp
Vinyl PDMS (500 mg, 0.058 mmol of Si-vinyl endgroups) and DOCIp)Ltsp(3 mg)
or DOCI-Sspsp (1 mg) were mixed for approximately 20 min. or until well dispersed.
PtTFPP (1.2 mg) was dissolved in 0.5 mL of a 2 X 10"2 M stock solution of
methylhydrosiloxane copolymer in chloroform, and the luminophore/copolymer solution

104
was added to the PDMS mixture with stirring. Prior to application of the coating, 1.5 mL
of a stock solution of 30 mg of the Pt catalyst in 25 mL chloroform was added to the
luminophore/copolymer/PDMS mixture. The coating was applied using a commercially
available air-brush at 15 psi onto clean and primer-coated borosilicate glass slides. The
coatings were allowed to cure to the touch at room temperature for 1 h.
Primer
Silanol PDMS (1000 mg, 0.11 mmol of Si-OH endgroups) and 800 or 822 TÍO2
powder (Kerr-McGee) (60 mg) were mixed for 2 d. or until well blended. The milky
white mixture was then filtered through a plug of cotton to remove any TiCL aggregates.
Methyltriacetoxysilane (110 mg, 0.5 mmol) and 4 mL dichloromethane were added and
the resulting mixture was stirred. Prior to application of the primer, 2 drops of glacial
acetic acid were added to catalyze the reaction. The coating was applied using a
commercially available air-brush at 15 psi onto clean borosilicate glass slides. The
coatings were allowed to cure to the touch at room temperature for 12 h. or within 1 h. at
60° C.
Instrumentation
Fluorescence microscope
The fluorescence microscope system consisted of an inverted microscope
platform (Olympus, model IX 70) fitted with a 100 W Hg source (USH-102DH) and a
CCD camera (Princeton, RTE 1300 x 1030) mounted to the side port. Fluorescence
microscopy was conducted with a blue-violet modular filter cube (Chroma Technology,
excitation 425 nm, 40 nm bandpass; 475 nm dichroic splitter). The emission filter was
interchangeable among an emission 630 nm 60 nm bandpass filter, an emission 525 nm
50 nm bandpass filter, or a 475 nm long pass filter (Chroma Technology). Fluorescence

105
images were collected through 10X and 40X objective lenses (Olympus U Plan FI, 0.30
NA and SLC Plan FI, 0.55 NA, respectively). Neutral density filters and an IR blocking
filter were used to adjust excitation intensity and prevent extraneous excitation light from
reaching the CCD.
The coating formulations were applied as thin films to the surface of a 1/16 in.
thick borosilicate glass disk with a commercially available air-brush operated at 15 psi.
Profilometry determined that the films were typically 10-20 pm thick. The disk was
mounted in a stainless steel air-tight chamber with an o-ring seal (the sensor film was on
the inside surface of the glass disk) as displayed in Figure 2-46. A vacuum pump was
used to control the air pressure inside the chamber (0.4 psi - 14.7 psi) and pressure was
monitored using a Druck (model DPI 260) pressure gauge. The sensor film was imaged
through the 1/16 in. glass disk that supported the film. This was possible because of the
long-focal length objectives used with the Olympus microscope.
To Pressure
Gauge
To Vacuum
Neutral Density
and/or IR Filter(s)
60 nm bandpass
Princeton
CCD Cam era
RTE/CCD - 1300 - Y
Figure 2-46: Inverted Fluorescence Microscope set-up for imaging of luminescent
oxygen sensing thin films.

106
In order to allow direct comparison of the CCD fluorescence image data obtained
from the thin film samples under the same S/N conditions, care was taken to insure that
the absolute fluorescence intensity from the samples was adjusted to be the same at Pair ~
0 atm (the “high” light condition for the sensor films). This light-level adjustment was
made by using neutral density filters to attenuate the excitation light reaching the sample.
For all images on all specimens the CCD exposure time was 300 ms.
Fluorimeter
Conventional corrected steady state emission spectroscopy of the coating
formulations was carried out using a SPEX F-112 fluorimeter. Fluorescence data
obtained on coatings represents the average over an area of approximately 15 mm2 (spot
size defined by the excitation light). A special chamber similar to Figure 2-46 was
designed for the fluorimeter apparatus. The chamber (8.5 cm x 7.5 cm x 7.5 cm) was
equipped with vacuum tubing attached to a gas manifold fashioned with a pressure gauge
for monitoring the chamber air pressure and a vacuum pump for regulating the chamber
air pressure. Cooling tubes attached to a water circulation bath were fed into the chamber
along the back wall adjacent to the sample. The sample temperature was monitored via
an interior thermo-couple installed along the back of the wall adjacent to the sample. The
sample (1 mm x 1 mm x 10 mm) was mounted in the chamber 13 mm away from the 4
mm thick glass window. The photoluminescence of the sample was monitored front-face
to the chamber window.
UWVis
Steady state absorption spectra were recorded on a Varían Cary 100 dual-beam
spectrophotometer.

107
Scanning electron microscope
The microspheres were imaged using a Hitachi S-4000 FE scanning electron
microscope (SEM). The microsphere specimens were prepared by redispersing the
microspheres in methanol, and a drop was placed on a piece of circular glass slip-cover
which was mounted on an aluminum stud with carbon tape. After solvent evaporation,
the particles were sputter-coated with 15 nm of gold. The DOCIppsp and DOCI-Sspsp
dispersed in VPDMS specimens were prepared by coating a glass circular slip-cover with
two layers (approximately 5-10 pm thick) of the microsphere/polymer coating, and
mounting the cover slip on an aluminum stud with carbon tape. After film cure, the
coatings were sputter-coated with 15 nm of gold. The fractured images were achieved by
snapping in half the gold coated microsphere/polymer coated glass slip-covers; propping
the glass pieces on end; and attaching the pieces to the aluminum stud with carbon glue
and tiny balls of aluminum foil as support.
Transmission electron microscope
The microspheres were imaged using a Hitachi H-7000 transmission electron
microscope (TEM). The TEM specimens were prepared by embedding cured
[Ru(dpp)3]Cl2 dispersed in SPDMS in formvar (0.25% polyvinyl formula in ethylene
dichloride); microtoming slices to a thickness of < 100 nm; attaching the slices to a 400
mesh copper grid, and coating with 1-5 nm carbon.
Energy dispersive X-ray spectroscopy
The Rudpp/SPDMS samples were imaged using an EDAX 5800 energy
dispersive x-ray system (EDS) attached to a Phillips EM420 TEM. The EDS specimens
were prepared as above for TEM.

108
Calibration chamber
Calibration tests were conducted on PtDOCIppsp/VPDMS and PtDOCI-
Sspsp/VPDMS coatings to access their pressure measurement accuracy when exposed to
a spatial temperature gradient. Aluminum coupons (4 in. x 2 in. x 1/8 in.) were coated
with primer, and the coatings were air-brushed onto the coupons (4 layers). The plates
were individually placed into a pressure and temperature controlled environment
chamber. A temperature gradient (> 20 K) was imposed on the coupons using a heated
plate and a water-cooled bath. The overall pressure was varied between 2 to 14.7 psi.
Images were acquired at two emission wavelengths: 550 nm and 650 nm. The optical
bandwidth was 40 nm FWHM. The sample was excited using two two-72-element blue
LED lamps (peak emission @ 460 nm).

CHAPTER 3
MICROSCOPIC ANALYSIS OF LUMINESCENT OXYGEN SENSOR THIN FILMS
Introduction
As outlined in Chapter One, there is considerable recent interest in the
development and application of solid-state thin film photoluminescence-based sensors for
detection and quantification of gas- and solution-borne analytesA 18,27,37,95,96 These
thin film sensors consist of a photoluminescent dye molecule dispersed or dissolved in a
gas permeable polymer binder. The binder encapsulates the luminophore and allows it to
be distributed across an object and held in place for detection of gas molecules.
Particular interest has focused on the development of luminescent sensors for the
measurement of the oxygen partial pressure (pCL) in the gas and/or condensed phases.
Luminescence quenching that occurs in an oxygen permeable luminescent coating
can be modeled by the Stern-Volmer (SV) equation (3-1),24,26,27,29-33,95,97
(3-1)
where I is the emission intensity, K’sv is the Stern-Volmer quenching constant, and
[CEjpoiy is the concentration of oxygen in the polymer binder. Assuming Henry’s Law
holds, [CEjpoiy is proportional to air pressure (Pair), and the SV equation reduces to
equation (3-2) which is an appropriate form for a solid state thin film sensor that is in
equilibrium with air. 18,98
I(Pa„ = 0)
KPair)
(3-2)
109

110
In many applications it is impractical to use Pair = 0 as a reference condition, and
consequently the SV equation is recast as equation (3-3), where the reference condition is
taken as Pa¡r = 1 atm.24 a and B are non-zero coefficients, and the ratio (B/A) = Ksv-
I(Pair = 1 atm)
KPair)
= A + BPa]r
(3-3)
Some thin film oxygen sensors feature linear SV calibrations in accord with
equations (3-2) or (3-3); however, many films exhibit non-linear calibrations that are
curved downward.25 Although a number of studies have attempted to identify the basis
for this non-ideal SV response, the fundamental process(es) responsible are still not well
understood.25,28 Several mathematical models have been developed to fit the non-linear
SV correlations. These mathematical models are based on the physical hypothesis that
the film morphology is inhomogeneous, possibly due to nano- or meso-scale irregularities
in the polymer environment surrounding the luminescent sensor molecules. The models
that have received the most attention include the two-site quenching model,25,29,30 q-,e
Gaussian or log-Gaussian distribution in luminophore emission decay time
(T),26,29,32,33 ancj the dual-sorption model.24 All models were extensively explained in
Chapter One.
Advances in the area of fluorescence microscopy, specifically the development of
near-field scanning optical microscopy and single-molecule fluorescence spectroscopy,
have led to new studies that are focused on examining the morphology and heterogeneity
of luminescent dye molecule/polymer composites with nm and pm spatial resolution.99-
103 Recently reported fluorescence microscopy studies have used environmentally
sensitive fluorescent probe molecules to explore the heterogeneity of thin polymer films.

Ill
These studies reveal that significant insight can be obtained concerning the spatial
distribution of molecular environments provided by the polymer matrix on the nano- and
meso-scale.99" 104
Presented in this chapter is a novel application of fluorescence microscopy for
exploration of the spatial distribution of the luminescence response to oxygen
concentration in luminescent oxygen sensor thin films. Specifically, fluorescence
microscopy and CCD image analysis techniques are employed to create spatially-
resolved “image maps” of the SV constant (Ksv) for luminescent oxygen sensor thin
films. These image maps provide quantitative information concerning the SV response
of the sensors with greater than 5 pm spatial resolution. Several series of luminescent
oxygen sensor thin films are examined using this technique.
The first series of oxygen sensing thin films evaluated are PtTFPP/SPDMS thin
films (PtTFPP = Pt(II) tetra(pentafluorophenyl)porphyrin dispersed in a polymer binder
SPDMS = silanol polydimethylsiloxanes 18,000 MW methyltriacetoxysilane cross¬
linker) incorporating increased concentrations (mM) of PtTFPP sensor. The second
series of thin films evaluated are PtTFPP/SPDMS thin films incorporating increased mole
ratios of cross-linker (methyltriacetoxysilane). The third series of thin films evaluated
are six Ru(II) ot-diimine complexes, varying in counter ion or ligand structure, dispersed
in SPDMS. The fourth and final series evaluated is a combination of thin films.
[Ru(dpp)3]CF is dispersed in two similar polymers: SPDMS and a commercially
synthesized polydimethylsiloxane (PDMS 1900 - 2000 MW) binder (DMS-D33). Both
films incorporate increased weight percents of a hydrophilic fumed silica gel. These four

112
series were chosen to illustrate the relationships between sensor distribution, polymer
cross-linking, or filler additives and the films’ SV response.
Results
Fluorescence Microscopy of Increased Concentrations of PtTFPP in SPDMS
Six sensor films were prepared with increased concentrations (mM) of PtTFPP
dispersed in SPDMS polymer binder. A general scheme for the polymer binder
formulation is shown in Figure 3-1.
CH,
I 3
HO—Si-O
I
CH,
CH,
| 3 1
CH,
1 3
OOCCH,
1 3
-Si-O-
—Si-OH
n |
+ H,C—Si—OOCCH, + PtTFPP
CH,
CH,
OOCCH,
air-brush application
CH2C12
Polymer Binder
Substrate
â–º
*â–º
PTFPP
Primer
Figure 3-1: Scheme for preparation of PtTFPP/SPDMS luminescent thin films.
The concentrations of PtTFPP are calculated as mole of PtTFPP-L 1 of polymer
(density of polymer = 1 g/mL). For each thin film in the series, the samples are first
analyzed on the macroscopic level utilizing the fluorimeter. Macroscopic Stern-Volmer
(SV) plots for increased concentrations (mM)of PtTFPP dispersed in SPDMS binder are
displayed in Figure 3-2.

113
Figure 3-2: Macroscopic SV plots for increased concentrations (mM) of PtTFPP
dispersed in SPDMS binder on glass. Aref: area between 630 - 670 nm at 14.7 psi.
For the most part, increased concentrations of PtTFPP do not negatively affect the
SV response of the sensor films. Luminescence intensity consistently decreases for all
sensor films by more than a factor of ten when Pair increases from 0 - 14.7 psi. The
macroscopic SV response linear regression data are listed in Table 3-1. As was seen in
Chapter Two for PtTFPP sensor films, small variations in the intercept (A) at maximum
slope (B) values for equation (3-3) result in large deviations in the calculated Ksv values.
In Table 3-1, the slope values are near maximum (1/14.7psi = 0.068 psi), so relatively
small variations in the intercept value cause the Ksv values to also vary. By looking at
the raw intensity values at near vacuum conditions for the sensor films in Table 3-2, it is
seen that the intensity values do vary and by the same magnitude as the corresponding
Ksv values. The Ksv values in Table 3-1 are indicative of the sensor films’ raw intensity
characteristics (the extent of oxygen quenching) and are based on real clean data.

114
Table 3-1: Macroscopic SV response data for increased concentrations (mM) of PtTFPP
dispersed in SPDMS binder on glass.
Concentration (mM)a
Slope (psi'1)b
Intercept
Ksv (psi 1)d
r2
2
0.066
0.076
0.868
0.991
3
0.067
0.044
1.52
0.995
5
0.066
0.083
0.795
0.985
10
0.066
0.056
1.18
0.988
17
0.065
0.066
0.985
• . b • .
0.990
PtTFPP concentration in 500 mg of SPDMS polymer binder, intercept = A in
equation (3-3), c slope = B in equation (3-3), d Ksv = (B/A) in equation (3-3)
Table 3-2: PtTFPP emission intensity area (X = 630 - 670 nm) values for increased
concentrations (mM) of PtTFPP dispersed in SPDMS binder on glass.
Pressure (psi)
2mMa
3mMa
5mMa
10 mMa
17 mMa
0.1
1650438
4372167
1986260
4980864
12763170
2
260795
679724
276934
619479
1253054
4
151282
361038
156497
270506
815546
6
109394
251175
109809
223869
516944
8
85503
183637
88630
162543
444968
10
71324
156463
75627
142058
368623
14.7
54268
114959
57728
102420
267282
a PtTFPP concentration in 500 mg of SPDMS polymer binder
While the SV response plots are unaffected by increased sensor concentration,
microscopic analysis of the sensor films reveals formation of PtTFPP fluorescent
microcrystals (bright spots) and non-fluorescent aggregates (dark spots) with increased
sensor concentration. The onset of substantial visual image heterogeneity occurs for the
sensor film at 10 mM PtTFPP. Qualitative fluorescence microscope images of the sensor
films obtained at 0.5 psi (maximum fluorescence) with a 10X objective are imaged in
Figure 3-3. Each image size is 871 pm x 690 pm or 1300 x 1030 pixels. The calibration
for each pixel at 10X magnification is 0.67 pm-pixel \

115
A
B
C
Figure 3-3: Qualitative microscopic fluorescence images (10X, 0.5 psi) for increased
concentrations (mM) of PtTFPP dispersed in SPDMS binder on glass. White scale bars
are 153 pm long. A) 2 mM, B) 3 mM, C) 5 mM, D) 10 mM, E) 17 mM PtTFPP in 500
mg SPDMS polymer binder.
The effect of the inhomogeneous distribution of PtTFPP in the SPDMS binder on
the spatial distribution of the microscopic SV response is probed by taking a series of
quantitative 10X intensity image maps of the sensor’s luminescence response to variation
in Pair. For each sensor film, seven image maps were obtained for pressures ranging from
0.4 - 14.7 psi. Figure 3-4 illustrates the corrected luminescence intensity distribution
(T(x,y; Pair = 0.4 psi)) of one representative image map for one region from each coating
at 0.4 psi. For each 436 pm x 345 pm intensity image obtained, a “dark image” is
subtracted to correct for extraneous sources of light and noise. The dark image is
obtained when the excitation light is blocked. The color of the intensity images are not
scaled relative to each other, so each image possesses a different maximum intensity
value listed in Table 3-3. The maximum intensity values in Table 3-3 are used to

116
calibrate the intensity color bars to the right of the intensity images. The maximum
intensity values are yellow and scale to dark blue for zero emission intensity in the
images of Figure 3-4.
Table 3-3: Maximum fluorescence intensity values for 10X microscopic regions of
increased concentrations (mM) of PtTFPP dispersed in SPDMS binder on glass at 0.4 psi.
a
Concentration (mM)a
Maximum Intensity (a.u.)b
2
11812
3
27431
5
27983
10
23919
17
22440
PtTFPP concentration in 500 mg of SPDMS polymer binder, b a.u. ; arbitrary units
A
Figure 3-4: Quantitative microscopic fluorescence intensity images (10X, 0.4 psi) for
increased concentrations (mM) of PtTFPP dispersed in SPDMS binder on glass. White
scale bars are 92 pm long. Intensity color scale bars are shown to the right of all images.
A) 2 mM, B) 3 mM, C) 5 mM, D) 10 mM, E) 17 mM PtTFPP in 500 mg SPDMS
polymer binder.
As was expected, the quantitative fluorescence images are consistent with the
initial qualitative fluorescence images displayed in Figure 3-3. The onset of sensor

117
crystallization is actually illustrated in images B and C of Figure 3-4 which both exhibit a
few fluorescent microcrystallites. Pronounced development of microcrystallization and
aggregation is seen in images D and E.
The percent standard deviations for the intensity values of each 0.4 psi image in
Figure 3-4 and the remaining six intensity image maps obtained for each sensor film are
listed in Table 3-3. The list quantifies the effect microcrystallization and aggregation has
on the intensity distribution for each sensor film.
Table 3-4: Percent standard deviation (o, %) in intensities at seven pressures for
microscopic regions of increased concentrations (mM) of PtTFPP dispersed in SPDMS
binder on glass using the IPX objective.
Concentration (mM)a
0.4 psi
2 psi
4 psi
6 psi
8 psi
10 psi
14.7 psi
2
3.48
3.65
3.59
3.80
3.93
4.08
4.08
3
3.19
3.29
3.30
3.33
3.27
3.22
3.36
5
3.04
3.55
4.22
3.50
3.28
3.23
3.20
10
3.79
2.73
3.55
4.00
4.63
4.80
4.92
17
4.35
2.87
3.98
5.76
5.42
6.43
4.86
a PtTFPP concentration in 500 mg of SPDMS polymer binder, h a, % = G]/IaVg x 100 %
The percentages listed in Table 3-4 are not large and do not deviate significantly
from one pressure to the next. Therefore, even for the films with higher concentrations of
PtTFPP, microcrystallization and aggregation do not impact the intensity value
distributions significantly.
In actuality, the percentages comprise at least 2.5 % error due to variance in the
excitation field. Imaging of a polished silicon wafer with a 10X objective results in a

118
rather homogeneous illumination field for a 650 x 515 pixel area centered on the 1300 x
1030 pixel CCD chip. The intensities deviate by ca. 2.5 % due to random noise.
The dark areas (low intensity) in images D and E of Figure 3-4 are small relative
to the intensity field and do not contribute significantly to the sensor films’ overall
intensity response to variation in Pair. To further prove the insignificance the bright and
dark spots have on the intensity distributions, distribution curves of the intensity values
for each pressure of the least (2 mM) and most (17 mM) visually heterogeneous sensor
films are displayed in Figure 3-5.
0 3000 6000 9000 1200C
Emission Intensity (a.u.)
Figure 3-5: Intensity distribution curves for intensities obtained with a 10X objective at
seven pressures for A) 2 mM PtTFPP dispersed in SPDMS binder on glass and B) 17
mM PtTFPP dispersed in SPDMS binder on glass.
Image A displays seven intensity dictribution curves that decrease and broaden as
the peaks approach 0 psi. The peaks overlap slightly between 6 to 10 psi and exhibit a
jagged peak shape at each pressure. The distribution curves in image B overlap greatly
between 6 and 14.7 psi and are less broad than the curves in image A. The broadening
and overlap of the curves can be due to several reasons: uneven excitation field,
unquenchable sensor crystallites, or other luminescent species photo-bleached early in the

119
analysis at lower pressures. For image A, each pressure curve possesses a distinct
distribution of intensity values with little nearest neighbor overlap. Bi-modal or eclipsing
distribution curves indicate numerous species of differing luminescence quenching and
possible cause for non-linear SV response. For image B, the intensity heterogeneity
caused by the PtTFPP aggregates and microcrystallites is evidenced by higher intensity
values as well as nearest neightbor overlap. Overall, the two images do not vary greatly,
which explains why the macroscopic SV responses are not that different even though, at
the microscopic level, the sensor films become more heterogeneous with increased
concentrations of PtTFPP.
The series of five quantitative intensity image maps afforded five corresponding
Ksv(x,y) image maps in Figure 3-6 and accompanying statistical data in Tables 3-6a and
3-6b. Each image map displayed possesses a different maximum Ksv value. The
maximum Ksv value for each image map is listed in Table 3-5. The maximum Ksv
values in Table 3-5 are used to calibrate the Ksv color scale bars to the right of the
intensity images. The maximum Ksv values are yellow and scale to dark blue for no SV
response in the images of Figure 3-6.
Table 3-5: Maximum Ksv values for 10X microscopic regions of increased
Concentration (mM)a
Maximum Ksv (psi 1)b
2
0.780
3
0.770
5
3.05
10
4.22
17
4.86
—; ft
equation (3-3)
Ksv — (B/A) in

120
Figure 3-6: Quantitative microscopic Ksv(x,y) image maps for increased concentrations
(mM) of PtTFPP dispersed in SPDMS binder on glass. White scale bars are 92 pm long.
Ksv color scale bars are shown to the right of all images. A) 2 mM, B) 3 mM, C) 5 mM,
D) 10 mM, E) 17 mM PtTFPP in 500 mg SPDMS polymer binder.
The Ksv image maps in Figure 3-6 correlate nicely with the intensity images in
Figure 3-4. In particular, the more heterogeneous images, D and E, exhibit high and low
regions of SV response for corresponding regions of yellow and blue in Figure 3-4.
Some of the low quenching regions (dark blue spots) in images D and E of Figure 3-6 are
situated around the high quenching regions (red spots). These dark areas are most likely
due to image shifting during analysis, while the remaining dark areas correlate with the
non-fluorescent PtTFPP aggregates. By comparing the percent standard deviation data in
Table 3-3 and the Ksv data in Tables 3-6a and 3-6b, it is seen that the deviations in
intensity and Ksv values increase in magnitude with increased concentrations of PtTFPP.
However, as was established earlier, the microscopic visual heterogeneity exhibited by
the sensor films, especially at higher concentrations of PtTFPP, is negligible as illustrated
by the excellent macroscopic SV correlation plots in Figure 3-2.

121
Table 3-6a: Microscopic SV analysis of five 10X regions for increased concentrations
(mM) of PtTFPP dispersed in SPDMS binder on glass.
Concentration3
2 mM
3 mM
5 mM
Region
K”v (psi-1)
oK %b
*Vsv
Ksvfpsi-')
oK %b
Ksv
Ksv (psi"')
O k %b
Ksv
1
0.576
3.47
0.463
3.46
0.641
5.77
2
0.579
3.28
0.531
2.45
0.605
11.7
3
0.567
3.17
0.465
2.80
0.641
4.68
4
0.594
2.86
0.491
2.04
0.634
10.6
5
0.607
3.46
0.493
4.87
0.604
2.81
a PtTFPP concentration in 500 mg of SPDMS polymer binder, h
oK % = a'
K-SV
KSV / V
/jv-avg A
/ ^SV
100%
Table 3-6b: Microscopic SV analysis of five 10X regions for increased concentrations
(mM) of PtTFPP dispersed in SPDMS binder on glass.
Concentration
10 mM
17 mM
Region
KsvS(ps¡ 1)
oK %
*Vsv
Ksv8 (psi1)
oK %
*Vsv
1
0.654
7.49
0.872
15.8
2
0.819
9.04
0.820
15.8
3
0.946
12.3
0.836
18.3
4
0.806
8.06
0.879
15.6
5
0.863
7.18
0.367
11.2
The luminescence distribution and SV response of increased concentrations of
PtTFPP in SPDMS was also microscopically analyzed utilizing a 40X objective. Five
regions (650 x 515 pixels =110 pm x 88 pm) were interrogated for each film. At each
region, seven intensity images for pressures between 0.4 - 14.7 psi were obtained.
Ksv(x,y) image maps similar to Figure 3-6 were generated for each region with
accompanying statistical data listed in Tables 3-7a and 3-7b. It is interesting to note that
the data presented in Tables 3-6a and 3-6b are not consistent with the data in Tables 3-7a
and 3-7b. This is due to the differing magnification between the two cases. The 40X
images are 1/36 the size of the 10X images. Small areas of dark and bright spots

122
illustrated in a 10X image are enlarged and more substantial in a 40X image. Their
contribution to the SV statistical data for that region then has a greater impact upon the
Kgv values and percent standard deviations.
Table 3-7a: Microscopic SV analysis of five 40X regions for increased concentrations
(mM) of PtTFPP dispersed in SPDMS binder on glass.
Concentration3
2 mM
3 mM
5 mM
Region
Ksv (psi ')
o, %b
^SV
Ksv (psi’1)
Or
*vsv
K-'tsi'1)
oK %h
*Vsv
1
0.854
6.67
0.982
7.13
0.891
7.97
2
1.54
3.70
0.882
6.35
0.863
8.00
3
1.37
3.21
1.23
11.9
0.787
10.0
4
1.47
4.15
0.945
6.03
0.504
8.73
5
1.62
4.88
1.52
13.0
0.671
9.99
a PtTFPP concentration in 500 mg of SPDMS polymer binder,
O,
% =
X
100%
Table 3-7b: Microscopic SV analysis of five 40X regions for increased concentrations
(mM) of PtTFPP dispersed in SPDMS binder on glass.
Concentration
10 mM
17 mM
Region
Ks7(psiJ)
Or %
•Vsv
K"!(psi-‘)
Or %
Ksv
1
1.30
29.2
1.09
8.72
2
1.46
32.6
1.03
5.92
3
1.39
32.8
0.967
5.17
4
1.16
26.9
1.05
5.24
5
0.906
20.3
0.991
5.35
Clearly increased concentrations of PtTFPP to the SPDMS sensor films do not
impart a negative affect to the macroscopic SV response (Figure 3-2). Microscopic
analysis did reveal that the sensor distribution is heterogeneous at higher concentrations
(fluorescent microcrystallites and non-fluorescent aggregates). The microcrystallites and
background emission exhibit excellent SV responses; accordingly, the lack of SV

123
response from the non-fluorescent aggregates is small and of no overall consequence to
the performance of the sensor films.
Fluorescence Microscopy of Increased Mole Ratios of Cross-linker in
PtTFPP/S PDMS
PtTFPP/SPDMS sensor films with a fixed concentration of PtTFPP and increased
mole ratio of methyltriacetoxysilane cross-linker relative to silanol polydimethylsiloxane
oligomer end-groups (i.e. 1:4=1 mole of oligomer with two Si-OH end-groups for every
4 moles of methyltriacetoxysilane) are evaluated. Macroscopic Stern-Volmer (SV) plots
for the sensor films are displayed in Figure 3-7.
Figure 3-7: Macroscopic SV plots for PtTFPP/SPDMS on glass at five different mole
ratios of cross-linker. Aref^ area between 630 - 670 nm at 14.7 psi.
The sensor films’ response to variation in Pa¡r was similar to the previous series of
PtTFPP sensor films. The SV response is strong and consistent regardless of mole ratio
of cross-linker. Corresponding macroscopic SV response data for the sensor films are
displayed in Table 3-8. The Ksv values correspond to the deviations in emission area (7.
= 630 - 670 nm) for PtTFPP at near vacuum conditions for each sensor film in Table 3-9.

124
Table 3-8: Macroscopic SV response data for PtTFPP/SPDMS on glass at five different
mole ratios of cross-linker.
Mole Ratio3
Slope (psi'1)b
Intercept
KSv (psi'V
r2
1:4
0.066
0.076
0.868
0.991
1:5
0.067
0.035
1.91
0.995
1:7
0.068
0.066
1.02
0.984
1:9
0.064
0.090
0.711
0.982
1:19
0.064
0.072
0.889
0.986
a oligomencross-linker, b intercept = A in equation (3-3), L slope = B in equation (3-3),
d Ksv = (B/A) in equation (3-3)
Table 3-9: PtTFPP emission intensity area (X = 630 - 670 nm) values for increased mole
ratios of cross-linker in PtTFPP/SPDMS on glass.
Pressure (psi)
1:4a
1:5a
1:7a
1:9a
l:19a
0.1
1650438
12473164
2229603
1964753
2664233
2
260795
1225965
231994
148413
206711
4
151282
632750
119140
87189
122548
6
109394
433654
83082
68127
94833
8
85503
322693
64966
54246
73265
10
71324
279773
53875
47294
66277
14.7
54268
197662
42620
34567
45187
a oligomencross-linker
Microscopic fluorescence image analysis reveals that the sensor films’
morphology changes with increased cross-linker mole ratio. Qualitative fluorescence
microscope analysis of |im: image regions for each sensor film unveils the details of the
morphological changes. Figure 3-8 illustrates the fluorescence microscopic images (871
pm x 690 pm) obtained with a 10X objective at 0.5 psi. Visual heterogeneity due to
polymer dewetting (black spots) increases with mole ratio of cross-linker.

125
A B
* «
* *
f
m
• j
* M
Figure 3-8: Qualitative microscopic fluorescence images (10X, 0.5 psi) for
PtTFPP/SPDMS at five different mole ratios of cross-linker on glass. White scale bars
are 153 pm long. A) 1:4, B) 1:5, C) 1:7, D) 1:9, E) 1:19 mole ratio of oligomencross-
linker.
Increased mole ratios of cross-linker cause the sensor films to be increasingly
polar and separate from the glass on which they were applied. In image D, small spots
appear where the polymer is thinning, and in image E, the polymer exhibits areas of
complete dewetting. While the polymer dewetting does not impact the macroscopic SV
response, its impact on the spatial distribution of the microscopic SV response is quite
dramatic.
Quantitative fluorescence microscopic image maps of the sensor films’ SV
response to variation in Pa¡r using the 10X objective were obtained to probe the effects of
increased mole ratios of cross-linker on the microscopic intensity spatial distribution.
Seven images at pressures ranging form 0.4 - 14.7 psi were obtained for each film.
Figure 3-9 illustrates one representative region from each sensor film at 0.4 psi. The
D
p
m

126
image intensities were not scaled the same, and the maximum intensities for each image
are listed in Table 3-10. The maximum intensity values are yellow and scale to dark blue
for zero emission intensity in the images of Figure 3-9.
Table 3-10: Maximum fluorescence intensity values for 10X microscopic regions of
Mole Ratio3
Maximum Intensity (a.u.)b
1:4
11812
1:5
6230
1:7
10070
1:9
17772
1:19
8073
_ i* i- b _ i __
a.u. - arbitrary units
Figure 3-9: Quantitative microscopic fluorescence intensity images (10X, 0.4 psi) for
PtTFPP/SPDMS on glass at five different mole ratios of cross-linker. White scale bars
are 92 pm long. Intensity color scale bars are shown to the right of all images. A) 1:4,
B) 1:5, C) 1:7, D) 1:9, E) 1:19 mole ratio oligomencross-linker.
The quantitative fluorescence images resemble the qualitative fluorescence
images displayed in Figure 3-8. In Figure 3-9, image C displays the onset of polymer

127
dewetting (dark yellow/green circles). As the mole ratio of cross-linker increases, the
dewetting spots increase in size. Image E exhibits the most substantial polymer
dewetting and image heterogeneity (dark blue and red spots). In order to quantify the
intensity changes for each image map, the intensity percent standard deviations were
calculated as well as those for the remaining six intensity pressure images analyzed for
each sensor film. The percent standard deviations are listed in Table 3-11.
Table 3-11: Percent standard deviation (a, %) in intensities at seven pressures for
microscopic regions for PtTFPP/SPDMS on glass at five different mole ratios of cross¬
linker.
(T, %a
Mole Ratiob
0.4 psi
2 psi
4 psi
6 psi
8 psi
10 psi
14.7 psi
1:4
3.48
3.65
3.59
3.80
3.93
4.08
4.08
1:5
4.33
4.04
3.78
3.39
3.04
2.56
2.28
1:7
2.13
2.25
2.38
2.60
2.87
2.93
3.25
1:9
3.41
3.10
2.60
2.52
3.33
2.65
2.86
1:19
17.5
16.0
14.2
13.0
11.6
10.9
-
J Gi % = Gi/Iavg x 100%, b oligomer:cross-linker
Not surprising, only the 1:19 mole ratio sensor film exhibits increased deviations
in the intensity values. This is naturally due to the large dark areas created by polymer
dewetting. The remaining sensor films experience small deviations ca. 2.5 % of which
belong to excitation field fluctuations.
To visually understand the intensity distributions, intensity distribution curves for
the intensity values at each pressure of the 1:4 and 1:19 mole ratio PtTFPP/SPDMS
sensor films are shown in Figure 3-10.

128
Figure 3-10: Intensity distribution curves for intensities obtained with a 10X objective at
seven pressures for A) 1:4 mole ratio of oligomencross-linker in PtTFPP/SPDMS on
glass and B) 1:19 mole ratio of oligomencross-linker in PtTFPP/SPDMS on glass.
The distribution curves in image B overlap greatly between 6 to 14.7 psi, and the
intensity values are not as large as those for image A. The peaks in image A, overlap
slightly at the bases between 6 and 10 psi and exhibit a jagged peak shape for each
pressure. For image B, the curve overlap and broadening is due to areas in the pressure
intensity images where the polymer is dewetting, and considerable low intensity values
are registering. The trends in Figure 3-10 correlate with the increased percent standard
deviation data in Table 3-12. Regardless of the curve overlap in images A and B, the
curves are still representative of distinct intensities and a clear indication as to why even
polymer dewetting has no effect on the macroscopic SV plot (Figure 3-7).
The series of intensity images in Figure 3-9 afforded five corresponding
microscopic quantitative Ksv(x,y) image maps illustrated in Figure 3-11. The colors of
the image maps are not scaled the same. The maximum Ksv value for each image is
listed in Table 3-12. The maximum Ksv values are represented by yellow and scale to
dark blue for no SV response in the images of Figure 3-11.

129
Table 3-12: Maximum Ksv values for 10X microscopic regions for PtTFPP/SPDMS on
glass at five different mole ratios of cross-linker.
Mole Ratio*
Maximum KS\ (psi"1 )b
1:4
0.780
1:5
1.33
1:7
1.07
1:9
0.870
1:19
0.860
oligomer:cross-linker, b Ksv - (B/A) in equation (3-3)
Figure 3-11: Quantitative microscopic Ksv(x,y) image maps for PtTFPP/SPDMS on
glass at five different mole ratios of cross-linker. White scale bars are 92 pm long. KSv
color scale bars are shown to the right of all images. A) 1:4, B) 1:5, C) 1:7, D) 1:9, E)
1:19 mole ratio oligomer:cross-linker.
The Ksv image maps correlate with the image trends depicted in Figure 3-9. Regions of
polymer binder dewetting experience low intensity values (blue spots) and low Ksv
values (blue spots). Images D and E illustrate the areas of low intensity arising from
polymer dewetting void SV response. In image E, the red ovals near the blue spots are
erroneous Ksv data due to image shifting during analysis.


130
The average KSv(x,y) values were determined for each image, and the percent
standard deviations are listed in Tables 3-13a and 3-13b. These numbers quantitatively
demonstrate the effect of polymer dewetting on SV response and distribution for a given
region. The K^f values are larger than the macroscopic KSv values in Table 3-9. As
was explained for the previous series of PtTFPP films, any areas of homogeneity or
heterogeneity in the sensor film are enlarged for microscopic image maps. Therefore it is
possible to obtain high Ksv values depending on the image field (homogeneous versus
polymer dewetting). A good example of this is seen for the 1:19 mole ratio
PtTFPP/SPDMS film. The K^8 values fluctuate due to imaging of areas with
concentrated polymer dewetting and low K^8 values and areas with little to moderate
polymer dewetting and high K^f values.
Table 3-13a: Microscopic SV analysis of five 10X regions for PtTFPP/SPDMS on glass
at five different mole ratios of cross-linker.
Mole Ratio3
1:4
1:5
1:7
Region
Krv'fpsr')
(Tk %b
KSV
Kjv (psi 1)
oK %b
*Vsv
Ks'v'fpsi ')
oK %b
Ksv
1
0.576
3.47
0.699
5.44
0.670
4.18
2
0.579
3.28
0.652
5.37
0.643
3.42
3
0.567
3.17
0.659
5.46
0.662
3.63
4
0.594
2.86
0.717
5.58
0.678
4.42
5
0.607
3.46
0.676
5.77
0.673
4.90
a oligomencross-linker, h oK v % =
aKsv /
/ IS avg '
/
t 100%

131
Table 3-13b: Microscopic SV analysis of five 10X regions for PtTFPP/SPDMS on glass
at five different mole ratios of cross-linker.
Mole Ratio
1:9
1:19
Region
Kj'vipsr')
*VSV
K^fpsi"1)
*Vsv
1
0.630
8.26
0.832
28.2
2
0.672
4.46
0.563
17.2
3
0.644
4.50
0.491
33.0
4
0.694
3.75
0.476
29.0
5
0.702
12.3
0.301
19.9
The effects of increased mole ratio of cross-linker in PtTFPP/SPDMS sensor
films were also analyzed microscopically utilizing a 40X objective. Five regions of each
sensor film were analyzed. Each region produced seven pressure image maps and a
Ksv(x,y) image map with accompanying statistical data. Ksv(x,y) data for five regions
are listed in Tables 3-14a and 3-14b. As is expected, the values in Table 3-14a and
3-14b are higher than the values in Tables 3-13a and 3-3 lb. Again, this is most likely
due to greater magnification of the image areas creating more spatially homogeneous
images.
Table 3-14a: Microscopic SV analysis of five 40X regions for PtTFPP/SPDMS on glass
at five different mole ratios of cross-linker.
Mole Ratio3
1:4
1:5
1:7
Region
K"*(psr')
â– Vsv
Ksv (ps*l)
*Vsv
K-;!(psi-‘)
Or %b
1
0.854
6.67
1.24
8.87
1.40
12.1
2
1.54
3.70
1.27
11.7
1.25
11.8
3
1.37
3.21
1.22
10.4
1.22
10.0
4
1.47
4.15
1.24
10.9
1.51
13.6
5
1.62
4.88
1.14
11.1
1.51
13.0
a oligomer:
cross-linker,
cr
Q
75
t/i
<
ii
oK /
â– sv / X
/i^avg A
/ ^SV
100%

132
Table 3-14b: Microscopic SV analysis of five 40X regions for PtTFPP/SPDMS on glass
at five different mole ratios of cross-linker.
Mole Ratio
1:9
1:19
Region
Ksv (ps' ')
(T k %
â– Vsv
K^fpsi-')
•Vsv
1
0.986
9.94
1.30
31.6
2
1.18
7.80
1.10
38.5
3
1.28
9.06
1.27
18.5
4
1.26
7.78
1.31
22.3
5
0.915
2.62
1.45
27.6
The increased mole ratios of cross-linker in the PtTFPP/SPDMS sensor films pose
no effect to the macroscopic SV response and analysis in Figure 3-7 and Table 3-8.
Dewetting of the polymer binder detected at the microscopic level affects the microscopic
SV response. The SV responses are strong but plagued with large percent deviations.
Even with polymer dewetting and definite pixel-to-pixel Ksv(x,y) heterogeneity, the SV
response from the background field is still substantial enough to compensate for the
cross-linker’s negative emission effects as seen by the intensity distribution curves in
Figure 3-10.
Fluorescence Microscopy of Ru(II) oc-diimine Complexes in SPDMS
A series of Ru(II) a-diimine complexes with different diimine ligands and/or
counter ions were separately dispersed in SPDMS polymer binder. Figure 3-12 illustrates
the Ru(II) metal complexes employed. The macroscopic Stern-Volmer (SV) plots for the
series of Ru(II) a-diimine complexes are displayed in Figure 3-13.

133
Metal Complexes Counter Ions
Figure 3-12: Ru(II) a-diimine complexes.
•
[Ru(dpp)^]CI2
o
[Ru(dpp)3](PF6)2
â–¼
[Ru(dpp)^](BPh4)2
V
[Ru(dpp)3](B(Ph(CF3)2)4)2
â– 
[Ru(dbdiap)3](PF6)2
â–¡
[Ru(dpp)3](B(PhF5)4)2
linear regression
6 8 10 12
Air Pressure (psi)
14 16
Figure 3-13: Macroscopic SV plots of Ru(II) a-diimine complexes dispersed in SPDMS
binder on glass. Aref: area between 600 - 640 nm at 14.7 psi.

134
There are varying degrees of SV response to oxygen concentration within the
series. The [Ru(dpp)3](B(PhF3)4)2 sensor film exhibits the largest quenching response
1 T
with a Ksv value of 0.128 psi (r“ = 0.972). The luminescence intensity decreases by
approximately than a factor of three when Pa¡r increases from 0 - 14.7 psi. Conversely,
the [Ru(dpp)3](BPh4)2 sensor film, which is visually heterogeneous, does not respond to
variation in Pa¡r. Its SV plot in Figure 3-13 is simply a scattered noise plot. The
macroscopic SV response data for the other Ru(II) a-diimine complexes plotted in Figure
3-13 are listed in Table 3-15. The emission area (X = 600 - 640 nm) for the Ru(II) a-
diimine complexes at 0.1 psi (most intense luminescence) are listed in Table 3-16. The
molar concentration of Ru(II) a-diimine complex in each sensor film is listed in Table 3-
17.
Table 3-15: Macroscopic SV response data for Ru(II) a-diimine complexes dispersed in
SPDMS binder on glass.
Luminophore
Slope (psi1)3
1
Intercept
Ksv (psi'1)'
r2
[Ru(dpp)3]Cl2
0.013
0.820
0.016
0.968
[Ru(dpp)3](PF6)2
0.029
0.604
0.048
0.974
[Ru(dpp)3](BPh4)2
0.003
1.00
0.003
0.108
[Ru(dpp)3](B(Ph(CF3)2)4)2
0.031
0.595
0.052
0.943
[Ru(dbdtap)3](PF6)2
0.039
0.460
0.085
0.987
[Ru(dpp)3](B(PhF5)4)2
0.047
-X b , ^
0.367
0.128
-> \ C rr
0.972
a intercept = A in equation (3-3), b slope = B in equation (3-3), L KSv = (B/A) in
equation (3-3)

135
Table 3-16: Ru(II) a-diimine complex emission intensity area (A = 600 - 640 nrn) values
at 0.1 psi for Ru(II) a-diimine complexes dispersed in SPDMS binder on glass.
Luminophore
Emission Area
[Ru(dpp)3]Cl2
800968
[Ru(dpp)3](PF6)2
157832
[Ru(dpp)3](BPh4)2
24978
[Ru(dpp)3](B(Ph(CF3)2)4)2
89029
[Ru(dbdtap)3](PF6)2
764384
[Ru(dpp)3](B(PhF5)4)2
187422
Table 3-17: Ru(II) ot-diimine complex molar concentration (mM) for Ru(II) a-diimine
Luminophore
mMa
[Ru(dpp)3]Cl2
1.71
[Ru(dpp)3](PF6)2
1.44
[Ru(dpp)3](BPh4)2
1.15
[Ru(dpp)3](B(Ph(CF3)2)4)2
0.71
[Ru(dbdtap)3](PF6)2
1.07
[Ru(dpp)3](B(PhF5)4)2
0.81
Ru(II) a-diimine complex concentration in 500 mg of SPDMS polymer binder
The varied quenching responses of the Ru(II) a-diimine complexes are intriguing.
If the responses are a consequence of sensor distribution creating unique and distinct
quenching microenvironments, then the origins of the responses are better understood by
imaging the films’ microscopic fluorescence emission distribution. Qualitative
fluorescence microscopy images (871 pm x 690 pm) of the Ru(II) a-diimine complexes
dispersed in SPDMS binder obtained at 0.5 psi with a 10X objective are displayed in
Figure 3-14. All images illustrate a varied yet striking “star-field appearance”—there are
very bright fluorescent spots with sizes ranging from 1-10 pm. The bright spots are
superimposed on background fields of varying fluorescence intensity. Quite clearly the
Ru(II) a-diimine complexes are not evenly dispersed within the SPDMS binder. Indeed,

136
it is possible that the luminophores are present in some regions as microcrystals or in a
strongly aggregated state. How these microenvironments responded to oxygen
concentration provides further evidence for the varied SV responses plotted in Figure 3-
13.
Figure 3-14: Qualitative microscopic fluorescence images (10X, 0.5 psi) for Ru(II) a-
diimine complexes dispersed in SPDMS binder on glass. White scale bars are 153 pm
long. A) [Ru(dpp)3]Cl2, B) [Ru(dpp)3](PF6)2, C) [Ru(dpp)3](BPh4)2, D)
[Ru(dpp)3](B(Ph(CF3)2)4)2, E) [Ru(dbdtap)3](PF6)2, F) [Ru(dpp)3](B(PhF5)4)2.
Images C, D, and F exhibit the most homogeneous distributions in intensity with
very few discrete bright spots as compared to images A, B, and E. Although, looking at
Table 3-15, the sensor films which exhibit the best SV response are
[Ru(dpp)3](B(Ph(CF3)2)4)2 and [Ru(dpp)3](B(PhF5)4)2, and the worst response is from
[Ru(dpp)3](BPh4)2.
When the bright field images of the Ru(II) oc-diimine complexes are compared, it
can be seen that the bright spots in the fluorescence image A of Figure 3-15 compare well

137
with the dark spots in image D. The bright field image is obtained with a 10X objective
and transmission illumination from a Tungsten 100 W bulb filtered through a BG-7 blue
filter shown on the surface of the sensor film. The images in Figure 3-15 are 871 pm x
690 pm in size. If the fluorescent microcrystallites in image A are Ru(II) a-diimine
complexes, then they should absorb the blue light in the bright-field mode and appear as
dark spots. This is precisely the case. Comparing the series of fluorescence and bright-
field images, the [RuldpphjCh sensor film is clearly the most populated with fluorescent
microcrystallites. The [Ru(dpp)3](B(Ph(CF3)2)4)2 sensor film shows less microcrystallite
formation, and the [Ru(dpp)3](B(PhF5)4)2 is the best sensor film yet. Clearly, simple
imaging of the sensor films’ fluorescence morphology starts to give an indication as to
why the sensor films respond the way they do on the macroscopic level.
Figure 3-15: Qualitative microscopic fluorescence (A-C) and bright-field (D-F) images
(10X, 14.7 psi) for Ru(II) a-diimine complexes dispersed in SPDMS binder on glass.
White scale bars are 153 pm long. A and D) [Ru(dpp)3]Cl2, B and E)
[Ru(dpp)3](B(Ph(CF3)2)4)2, and C and F) [Ru(dpp)3](B(PhF5)4)2.

138
Overall, the [Ru(dpp)3]Cl2 sensor film is the most heterogeneous image
(fluorescence and bright-field) with many star-like areas. Not surprising, it produced the
most intense emission on the macroscopic level but also the near lowest SV response.
Counter to this is the [Ru(dpp)3](BPh4)2 sensor film which is visually heterogeneous. It
produced a nearly homogeneous weakly emissive intensity response in Figure 3-14 and a
corresponding low macroscopic KSv value in Table 3-15. The remaining Ru(II) a-
diimine complexes’ intensity and SV responses are complicated yet interesting. Several
factors are involved in understanding their characteristic responses. Depending on their
concentration (mM) and solubility in the SPDMS binder, high or low emission intensity
and high or low Ksv values were obtained. For example, the [Ru(dpp)3](B(PhF5)4)2
sensor film was the least concentrated film. It produced a homogeneous fluorescence
image in Figures 3-14 and 3-15 indicating its excellent solubility in the polymer binder
with high macroscopic emission intensity and Ksv values in Tables 3-16 and 3-15,
respectively. The other Ru(II) a-diimine complexes produced emission intensity and SV
responses in accord with their concentrations and degree of solubility in the SPDMS
polymer binder. Therefore, further analysis of such effects needs to be probed at the
microscopic level.
The effects of concentration and inhomogeneous distribution of Ru(II) a-diimine
complexes in SPDMS binder on the spatial intensity distribution and subsequent SV
response is investigated by taking a series of quantitative image maps of the sensors’
responses to variation in Pa¡r using the 10X objective. For all of the sensor films, the
same CCD integration times and filter combinations were used. Five 436 pm x 345 pm
regions of each Ru(II) a-diimine sensor film were interrogated at seven pressures from

139
0.4 - 14.7 psi. One representative intensity image at 0.4 psi for each Ru(II) oc-diimine
sensor film is illustrated in Figure 3-16. The colors for each image were not scaled the
same, and the maximum intensity value for each image is listed in Table 3-18. The
maximum intensity values are yellow and scale to dark blue for zero emission in the
images of Figure 3-16.
Table 3-18: Maximum fluorescence intensity values for 10X microscopic regions of
Luminophore
Maximum Intensity (a.u.)a
[Ru(dpp)3lCl2
13400
[Ru(dpp)3](PF6)2
3955
[Ru(dpp)3](BPh4)2
245
[Ru(dpp)3](B(Ph(CF3)2)4)2
2751
[Ru(dbdtap)3](PF6)2
250
[Ru(dpp)3l(B(PhF5)4)2
10645
a.u. = arbitrary units
Figure 3-16: Quantitative microscopic fluorescence intensity images (10X, 0.4 psi) for
Ru(II) oc-diimine complexes dispersed in SPDMS binder on glass. White scale bars are
92 pm long. Intensity color scale bars are shown to the right of all images. A)
[Ru(dpp)3]Cl2, B) [Ru(dpp)3](PF6)2, C) [Ru(dpp)3](BPh4)2, D) [Ru(dpp)3](B(Ph(CF3)2)4)2,
E) [Ru(dbdtap)3](PF6)2, F) [Ru(dpp)3](B(PhF5)4)2.

140
The quantitative intensity images are fairly consistent with the qualitative
fluorescence images displayed in Figure 3-14. Clearly, there are varying distributions for
the Ru(II) a-diimine complexes in the polymer binder. Images A, D, and E in Figure 3-
16 illustrate a star-speckled image field while images B, C, and F possess less structured
luminescence.
Quantification of the intensity distributions is achieved by calculating the percent
standard deviations in intensity (a, %) for the intensity pressure images of Figure 3-16
and the remaining six intensity pressure images analyzed for each Ru(II) a-diimine
sensor film. The percent standard deviations are listed in Table 3-19.
Table 3-19: Percent standard deviation (a, %) in intensities at seven pressures for
microscopic regions of Ru(II) a-diimine complexes dispersed in SPDMS binder on glass.
Luminophore
0.4 psi
2 psi
4 psi
6 psi
8 psi
10 psi
14.7 psi
[Ru(dpp)3]Cl2
14.4
10.8
7.73
6.49
6.32
6.01
5.14
[Ru(dpp)3](PF6)2
6.60
6.73
7.01
7.38
6.86
6.51
6.45
[Ru(dpp)3](BPh4)2
10.8
14.0
18.2
20.3
22.8
25.5
19.6
[Ru(dpp)3](B(Ph(CF3)2)4)2
14.6
10.5
8.89
7.65
6.27
5.24
3.99
[Ru(dbdtap)3](PF6)2
14.5
17.1
13.9
12.2
11.4
10.6
10.9
[Ru(dpp)3](B(PhF5)4)2
8.60
7.77
7.82
9.30
8.77
6.96
-
a a i % = cq/Iavg x 100%
In correlation to the images in Figure 3-16, the star-speckled films [Ru(dppE]Cl2,
[Ru(dpp)3](B(Ph(CF3)2)4)2, and [Ru(dbdtap)3](PF6)2 also exhibit the largest intensity
percent standard deviations. The [Ru(dpp)3](BPh4)2 film which is visually heterogeneous
demonstrates significant deviation as well.

141
Rather than look at the numbers, it is easier to visualize these distributions and
their true significance by plotting the intensity distributions at each pressure for each
sensor film. The curves are plotted in Figure 3-17. The most striking attribute of the
curves is that they overlap - exhibiting no intensity distribution. The Ru(II) a-diimine
sensor films’ intensity distribution curves exhibit varying degrees of overlap due to
luminescent regions in the films that are not homogeneously quenched with changes in
Pair. Upon further inspection, some distribution curves exhibit a bi-modal distribution
pattern which is indicative of discrete microenvironments with varied emission response.
For images A, D, and E, which exhibit the greatest percent deviation, the
distribution curves are eclipsing one another. The [Ru(dpp)3]Cl2 film even displays a
distinct bimodal distribution at higher pressures. Clearly there are discrete luminescent
species for this sensor film, and this is the cause for its low macroscopic Ksv values in
Table 3-15. Not surprising, the [Ru(dpp)3](B(PhF<0.4)2 film which exhibits the best
macroscopic Ksv value and low intensity percent standard deviations also experiences the
best distribution curves with the least amount of nearest neighbor overlap over the widest
intensity value range for the series of sensor films (image F).

142
Figure 3-17: Intensity distribution curves for intensities obtained with a 10X objective at
seven pressures for Ru(Il) a-diimine complexes dispersed in SPDMS binder on glass. A)
[Ru(dpp)3]Cl2, B) [Ru(dpp)3](PF6)2, C) [Ru(dpp)3](BPli4)2, D) [Ru(dpp)3](B(Ph(CF3)2)4)2,
E) [Ru(dbdtap)3](PF6)2, F) [Ru(dpp)3](B(PhF5)4)2.
The series of intensity images in Figure 3-16 afforded six corresponding
microscopic quantitative KSv(x,y) image maps displayed in Figure 3-18. The image
maps are not scaled the same, and the maximum Ksv value for each sensor film is listed

143
in Table 3-20. The maximum Ksv values are yellow and scale to dark blue for no SV
response in the images of Figure 3-18.
Table 3-20: Maximum Ksv values for 10X microscopic regions of Ru(II) a-diimine
Luminophore
Maximum KSy (psi"')a
[Ru(dpp)3]Cl2
0.082
[Ru(dpp)31(PF6)2
0.045
[Ru(dpp)3](BPh4)2
0.360
[Ru(dpp)3](B(Ph(CF3)2)4)2
0.110
[Ru(dbdtap)3](PF6)2
0.135
[Ru(dpp)3l(B(PhF5)4)2
0.310
Ksv - (B/A) in equation (3-3)
Figure 3-18: Quantitative microscopic Ksv(x,y) image maps of Ru(II) a-diimine
complexes dispersed in SPDMS binder on glass. White scale bars are 92 pm long. Ksv
color scale bars are shown to the right of all images. A) [Ru(dpp)3]Cl2, B)
[Ru(dpp)3](PF6)2, C) [Ru(dpp)3](BPh4)2, D) [Ru(dpp)3](B(Ph(CF3)2)4)2, E)
[Ru(dbdtap)3](PF6)2, F) [Ru(dpp)3](B(PhF5)4)2.
The high and low Ksv values in Figure 3-18 correspond to the regions of high and
low intensity in the images of Figure 3-16. One exception to this are the broad intensity

144
hands in image B of Figure 3-16 which are much narrower in Figure 3-18. At higher
pressures, only portions of the high intensity bands in image B of Figure 3-16 are
quenched. Therefore, the bright KSv value bands (yellow and green areas) in image B of
Figure 3-18 appear narrower divided by regions of low SV response (red and blue areas).
The percent standard deviations in KSv(x,y) for each image are listed in Tables 3-
21a, 3-2lb, and 3-2lc. The microscopic SV data correlate fairly well with the
macroscopic SV data in Table 3-15. The macroscopic data comprise higher K$v values
often doubling the microscopic K^f (x,y) values. It is important to remember that the
Ksv data in Tables 3-2la, 3-2lb, and 3-2lc are average values.
Table 3-2la: Microscopic SV analysis of five 10X regions for Ru(II) a-diimine
complexes dispersed in SPDMS binder on glass.
[Ru(dpp)3]Cl2
[Ru(dpp)3](PF6)2
[Ru(dpp)3](BPh4)2
Region
K^fpsi-1)
Or
Ksv
KJv (psi-1)
aK %a
â– Vsv
K^ipsr1)
<7k %
Ksv
1
0.007
71.4
0.024
12.5
0.037
29.7
2
0.008
62.5
0.025
8.00
0.072
22.2
3
0.007
71.4
0.023
13.0
0.081
30.9
4
0.008
87.5
0.023
17.4
0.051
27.5
5
0.008
75.0
0.024
8.33
0.073
27.4
a Vv%=aKS;4avgXl00%
/ .SV
Table 3-2lb: Microscopic SV analysis of five 10X regions for Ru(II) a-diimine
complexes dispersed in SPDMS binder on glass.
[Ru(dpp)3](B(Ph(CF3)2)4)2
Region
K-tpsi-1)
(Tr
Ksv
1
0.036
22.2
2
0.034
23.5
3
0.033
30.3
4
0.034
29.1
5
0.033
27.3

145
Table 3-2 lc: Microscopic SV analysis of five 10 X regions for Ru(II) a-diimine
complexes dispersed in SPDMS binder on glass.
[Ru(dbdtap)3](PF6)2
[Ru(dpp)3](B(PhF5)4)2
Region
Ksv (Ps¡ *)
<7k %
Ksv
Ksv (psi 1)
Ok %
Ksv
1
0.022
45.4
0.170
17.6
2
0.037
32.4
0.152
17.1
3
0.036
44.4
0.169
11.8
4
0.026
42.3
0.153
13.7
5
0.048
35.4
0.167
11.4
Since the Ksv(x,y) values listed in Tables 3-2la, 3-2lb and 3-2lc are average
values, it is beneficial to quantify the values by looking at Ki^f (x,y) values for discrete
regions within the Ksv(x,y) image maps for each Ru(II) a-diimine film in Figure 3-19.
Tables 3-22a and 3-22b are lists of the discrete K^8 (x,y) values obtained for the boxes
outlined in the images. The white boxes are an approximation of the area of Ksv(x,y)
values analyzed. As can be seen, the K^8 (x,y) values do vary greatly for discrete
regions within a single image. Therefore, the K^8 (x,y) values listed in Tables 3-2la, 3-
21b, and 3-2 lc are plausible representations of the sensor films’ K^f (x,y) values and
respective standard deviations.

146
Figure 3-19: Analysis of discrete regions (white boxes) in quantitative microscopic
Ksv(x,y) image maps of Ru(II) a-diimine complexes dispersed in SPDMS binder on
glass. White scale bars are 92 pm long. Ksv color scale bars are shown to the right of all
images. A) [Ru(dpp)3]Cl2, B) [Ru(dpp)3](PF6)2, C) [Ru(dpp)3](BPli4)2, D)
[Ru(dpp)3](B(Ph(CF3)2)4)2, E) [Ru(dbdtap)3](PF6)2, F) [Ru(dpp)3](B(PhF5)4)2.
K.avg
Table 3-22a: Discrete sv (x,y) values for three regions outlined in 10X microscopic
Ksv(x,y) image maps of Ru(II) a-diimine complexes dispersed in SPDMS binder on
[Ru(dpp)3lCl2
|Ru(dpp)3|(PF6)2
[Ru(dpp)3|(BPh4)2
Region
Kas;8(psi ')
Kavv8(psr')
K“;g(psi')
a
0.006
0.021
0.082
b
0.010
0.025
0.073
c
0.008
0.026
0.065

147
l^avg
Table 3-22b: Discrete sv (x,y) values for three regions outlined in 10X microscopic
Ksv(x,y) image maps of Ru(II) a-diimine complexes dispersed in SPDMS binder on
glass.
[Ru(dpp)3](B(Ph(CF3)2)4)2
[Ru(dbdtap)3](PF6)2
[Ru(dpp)3](B(PhF5)4)2
Region
Ksv (psi1)
Ksv (Psi *)
Ksv (Psi ’)
a
0.031
0.026
0.146
b
0.038
0.025
0.163
c
0.033
0.025
0.146
An easier way to look at the numbers in Tables 3-22a and 3-22b, is to plot the SV
plots for the given regions of each sensor film. Figure 3-20 displays the SV plots of the
discrete microscopic regions of each sensor film. The macroscopic SV plot for each
sensor film is also plotted for comparison.

148
Figure 3-20: Macroscopic and microscopic SV plots of Ru(II) a-diimine complexes
dispersed in SPDMS binder on glass. Aref: area between 600 - 640 nm at 14.7 psi.
The Ru(II) a-diimine sensors were also analyzed microscopically utilizing a 40X
objective. Five KSv(x,y) image maps were produced for each sensor film with
accompanying statistical data listed in Tables 3-23a, 3-23b and 3-23c. It is interesting to
note that the data in Tables 3-2la, 3-2lb, and 3-2lc are not consistent with the data in
Tables 3-23a, 3-23b and 3-23c. As explained earlier, small areas of heterogeneity

149
exhibited by a 10X image are magnified for a 40X image. As an example, the small
bright stars experienced by the [Ru(dpp)3]Cl2 film in image A of Figure 3-18 are greatly
magnified in a 40X image. By doing so the bright spots dominate the image and yield a
higher K^f value with smaller percent standard deviations. This trend is seen
throughout Tables 3-23a, 3-23b, and 3-23c.
Table 3-23a: Microscopic SV analysis of five 40X regions for Ru(II) oc-diimine
complexes dispersed in SPDMS binder on glass.
[Ru(dpp)3]Cl2
[Ru(dpp)3](PF6)2
[Ru(dpp)3](BPh4)2
Region
Kg'v (Psi *)
O k %3
â– Vsv
Kgv (psi1)
Or %a
KaVvg(psi-')
(T k %a
KSV
1
0.013
53.8
0.058
10.3
0.024
25.0
2
0.014
35.7
0.012
50.0
0.030
30.0
3
0.023
26.1
0.013
46.2
0.020
30.0
4
0.010
60.0
0.016
37.5
0.018
55.6
5
0.012
33.3
0.014
57.1
0.022
31.8
a aKsv%=aK%..Bx 100%
/ ,SV
Table 3-23b: Microscopic SV analysis of five 40X regions for Ru(II) a-diimine
[Ru(dpp)3](B(Ph(CF3)2)4)2
Region
Ksv (Psi !)
1
0.252
11.1
2
0.240
10.8
3
0.220
14.5
4
0.236
6.36
5
0.237
11.4

150
Table 3-23c: Microscopic SV analysis of five 40X regions for Ru(II) a-diimine
complexes dispersed in SPDMS binder on glass.
[Ru(dbdtap)3](PF6)2
[Ru(dpp)3](B(PhF5)4)2
Region
Ksv8(Psi-1)
gk %
KSV
K’^psi-1)
Ksv
1
0.050
18.0
0.508
10.4
2
0.084
11.9
0.418
7.42
3
0.066
12.1
0.415
13.3
4
0.076
11.8
0.452
13.1
5
0.069
13.0
0.491
7.94
A brief analysis of the data presented reveals that qualitative fluorescence
microscopic images may not tell the whole story as to why a sensor film behaves poorly
on the macroscopic level. Further analysis into the microscopic fluorescence response to
variation in Pair reveals the sensors intensity distributions. Plotting these intensities as
distribution curves visually explains whether the intensities homogeneously decrease
with pressure changes from 0.4 - 14.7 psi or the curves overlap and/or eclipse from bi-
modal distributions. Microscopic analysis of the KSv values generated from the intensity
images verifies the degree of heterogeneous spatial SV response. Clearly, analysis of the
spatial intensity and KSv values lends evidence to how the sensors are dispersed in the
polymer binders and how this dispersion causes the sensor films to behave poorly at the
macroscopic level.
Fluorescence Microscopy of [Ru(dpp)3]Cl2 in SPDMS and PDMS with Fumed SÍO2
It has been known for some time now that adding a filler such as fumed silica gel
to the polymer binder enhances the SV response to variation in Pa¡r.25,29,56 a series of
sensor films is evaluated with [Ru(dpp)3]Cl2 dispersed either in silanol
polydimethylsiloxanes (SPDMS 18,000 MW with methyltriacetoxysilane cross-linker) or
a commercially synthesized polydimethylsiloxane (PDMS (DMS-D33)1900 - 2000 MW)

151
polymer binder incorporating varying weight percents (relative to total weight of polymer
binder, 500 mg) of a hydrophilic fumed silica gel. The films are first analyzed on the
macroscopic level utilizing the fluorimeter. The macroscopic Stern-Volmer (SV) plots
are displayed in Figure 3-21. SPDMS and PDMS sensor films incorporating
[Ru(dpp)3]Cl2 without fumed silica gel are also presented for comparison.
Figure 3-21: Macroscopic SV plots of [RuldppbJCF dispersed in SPDMS or PDMS
binder with increased weight percents of fumed silica gel on glass. AREF: area between
600 - 640 nm at 14.7 psi.
The addition of silica particles creates micro-domains in the polymer binder
where the [Ru(dpp)3]Cl2 complex adsorbs and experiences increased luminescence
oxygen sensitivity.56,105 Consequently, the addition of fumed silica gel has a positive
effect on the SV response of the sensor films. For this series of sensor films, the greatest
SV response is exhibited by the film incorporating 1 wt. % of fumed silica gel in PDMS
binder. However, the luminescence intensity only decreases by less than a factor of five
when Pair increases from 0 - 14.7 psi. Although the most dramatic response is seen for
addition of 10 wt. % fumed silica gel to SPDMS binder. Comparing the two non-silica

152
filled films, the SV response for [Ru(dpp)3]Cl2 in PDMS binder is larger with a KSv value
of 0.141 psi 1 (r = 0.928) than its response in SPDMS binder with a Ksv value of 0.016
psi'1 (r = 0.968). It is possible that the PDMS polymer may possess more polar sites or
micro-domains on which the [Ru(dpp)3]Cl2 can adsorb. Therefore, addition of fumed
silica gel to PDMS binder is not as beneficial to the SV response as seen in Figure 3-21.
The remaining macroscopic SV response data for [RuidppbJCF dispersed in SPDMS or
PDMS binder with increased weight percents of fumed silica gel are displayed in Table
3-24.
Table 3-24: Macroscopic SV response data for [Ru(dpp)3]Cl2 dispersed in SPDMS or
PDMS binder on glass with increased weight percents of fumed silica gel.
~ Binder wt. % Slope (psi'*)a Intercept11 KSy (psi'1)0 r2 '
SPDMS 0% 0.013 0.820 0.016 0.968
SPDMS 1 % 0.009 0.892 0.010 0.738
SPDMS 10% 0.032 0.551 0.058 0.990
PDMS 0 % 0.049 0.348 0.141 0,928
PDMS 1 % 0.058 0.201 0.289 0.987
PDMS 10% 0.050 0.289 0.173 0.993
J intercept = A in equation (3-3), b slope = B in equation (3-3), c KSv = (B/A) in
equation (3-3)
For the SPDMS polymer, addition of 1 wt. % of fumed silica gel essentially has
no effect upon the SV response, since the intercept values between the 1 wt. % and 0 wt.
% are not all that different. The difference in the SV plots is most likely due to noise.
However at 10 wt. % of fumed silica gel, the SV response drastically improves. The
silica particles are creating micro-domains of increased SV response within the polymer
binder. Increased weight percents of silica gel improve the SV response but not
substantially before the films become extremely porous and powdery. The PDMS

153
polymer exhibits the same trends upon addition of silica gel. Addition of 1 wt. % of
fumed silica gel improves the SV response slightly, but further additions do not improve
the response and may actually hinder it. Since neither addition dramatically changed the
SV response of the sensor film, further increased weight percents were not analyzed.
Smaller weight percents of silica gel were not added either due to the inability to
accurately weigh the fumed silica gel.
Clearly addition of fumed silica gel influences the SV response, and to further
analyze the above observations, qualitative fluorescence microscope images of señor
films of [Ru(dpp)3]Cl2 dispersed in SPDMS and PDMS binder incorporating various
weight percents of fumed silica gel were obtained at 0.5 psi with a 10X objective. The
images are illustrated in Figure 3-22.
Figure 3-22: Qualitative microscopic fluorescence images (10X, 0.5 psi) for
[Ru(dpp)3]Cl2 dispersed in SPDMS or PDMS binder on glass with increased weight
percents of fumed silica gel. White scale bars are 153 pm long. A) 0 wt. % in SPDMS,
B) 1 wt. % in SPMDS, C) 10 wt. % in SPDMS, D) 0 wt. % in PDMS, E) 1 wt. % in
PDMS, F) 10 wt. % in PDMS.

154
The addition of fumed silica gel to the polymer binders is striking. Fumed silica
gel in SPDMS and PDMS dramatically changes the image field. The star pattern in
images A and D gives way to intense aggregates of [RutdppjijCF adsorbed fumed silica
gel in images B and E which are heavily populated in images C and F. Subsequent
additions of fumed silica gel yield concentrated regions of good SV luminescence
response. If only image A and D are compared, clearly image D is less punctuated with
fluorescent bright spots and possesses more of a consistent luminescent background than
image A. The luminescence consistency is one of the reasons why the PDMS sensor
film’s SV response is far better than that of the SPDMS sensor film (Figure 3-21).
Further analysis of the effect fumed silica gel quantity has on the spatial
distribution of the microscopic SV response is probed by taking a series of quantitative
intensity image maps of the sensor’s response to variation in Pair using the 10X objective.
Thus, five 436 pm x 345 pm regions of each sensor film were interrogated, and the
luminescence intensity distribution of one representative region from each film (Ic(x,y;
Pair = 0.4 psi)) is illustrated in Figure 3-23. The colors for the images are not scaled the
same, and the maximum intensity for each image is listed in Table 3-25. The maximum
intensity values are yellow and scale to dark blue for zero emission in the images of
Figure 3-23.

155
Table 3-25: Maximum fluorescence intensity values for 10X microscopic regions of
[Ru(dpp)3]Cl2 dispersed in SPDMS or PDMS binder on glass with increased weight
percents of fumed silica gel.
Binder
wt. %
Maximum Intensity (a.u.)a
SPDMS
0%
13400
SPDMS
1 %
11295
SPDMS
10%
32358
PDMS
0%
4302
PDMS
1 %
25218
PDMS
10%
8494
a a.u.
= arbitrary units
Figure 3-23: Quantitative microscopic fluorescence intensity images (10X, 0.4 psi) for
[Ru(dpp)3]Cl2 dispersed in SPDMS or PDMS binder with increased weight percents of
fumed silica gel on glass. White scale bars are 92 pm long. Intensity color scale bars are
shown to the right of all images. A) 0 wt. % in SPDMS, B) 1 wt. % in SPDMS, C) 10
wt. % in SPDMS, D) 0 wt. % in PDMS, E) 1 wt. % in PDMS, F) 10 wt. % in PDMS.
The quantitative images are very similar to the qualitative images. In the
quantitative images, a greater sense of the overall intensity values is achieved. For the
SPDMS sensor films, images A to C, the distribution of [Ru(dpp)3]Cl2 luminescence
becomes more clustered with greater deviations of the intensity values. For the PDMS 1
wt. % film, briefly comparing the data in Table 3-24 with image E in Figure 3-23, it is

156
seen that the dynamic SV response is due to the adsorption of [Ru(dpp)3]Cl2 to the fumed
silica gel particles.
The percent standard deviation for the intensities (a, %) of the images in Figure
3-23, and the remaining six intensity pressure images analyzed for each [Ru(dpp)3]Cl2
sensor film are listed in Table 3-26.
Table 3-26: Percent standard deviation (o, %) in intensities at seven pressures for
microscopic regions of [Ru(dpp)3]Cl2 dispersed in SPDMS or PDMS binder on glass with
increased weight percents of fumed silica gel.
Polymer
wt. %
0.4 psi
2 psi
4 psi
6 psi
8 psi
10 psi
14.7 psi
SPDMS
0%
14.4
10.8
7.73
6.49
6.32
6.01
5.14
SPDMS
1 %
17.6
16.1
14.8
14.0
14.7
13.4
-
SPDMS
10%
43.2
39.6
36.3
38.1
35.6
35.5
38.5
PDMS
0%
7.16
7.61
6.88
6.38
5.65
4.85
3.56
PDMS
1 %
24.2
34.1
39.7
40.6
40.4
-
-
PDMS
10%
77.1
69.6
71.5
66.4
52.7
42.7
-
a
CTi % =
O^l/Iavg X
100%
The large percent deviations, especially for the 10 wt. % of fumed silica gel in
PDMS, indicate that the [Ru(dpp)3]Cl2 is adsorbed onto the silica particles in varying
concentrations thus creating intensity distributions and partitioning of the luminescent
particles from the weakly emissive background field.
As is expected, the corresponding intensity distributions at each pressure for each
sensor film also exhibit varying degrees of overlap due to the heterogeneous adsorption
of the [Ru(dpp)3]Cl2 onto the silica particles and its distribution between the silica gel and

157
the polymer binder. The distribution curves for 1 wt. % and 10 wt. % of fumed silica gel
in PDMS and SPDMS binder, respectively, are displayed in Figure 3-24.
Emission Intensity (a.u.)
Figure 3-24: Intensity distribution curves for intensities obtained with a 10X objective at
six pressures for [Ru(dpp)3]Cl2 dispersed in PDMS or SPDMS binder on glass with
increased weight percents of filmed silica gel. A) 1 wt. % in PDMS, B) 10 wt. % in
SPDMS.
Image A and B display curves which overlap, decrease in size, and exhibit
considerable fine structure. The overlap proves that there are regions in each pressure
image which are not quenched with increased Pajr. Short, broad, structured peaks indicate
that there are many luminescent species (different intensity values) at lower Pair values
that are not quenched at higher Pa¡r values. Comparing image A and B, it is seen why the
SV response is better for the 1 wt. % film curves. While the sensor films’ intensity
distribution curves overlap, they are still more spatially distributed than the 10 wt. %
curves.
The series of six intensity images in Figure 3-23 afforded six corresponding
microscopic quantitative Ksv(x,y) image maps illustrated in Figure 3-25. The images are
not scaled the same, and the maximum Ksv value for each sensor film is listed in Table 3-

158
27. The maximum Ksv values are yellow and scale to dark blue for no SV response in
the images of Figure 3-25.
Table 3-27: Maximum Ksv values for 10X microscopic regions of [Ru(dpp)3]Cl2
dispersed in SPDMS or PDMS binder on glass with increased weight percents of fumed
silica gel.
Binder
wt. %
Maximum KSv (psi'V
SPDMS
0%
0.082
SPDMS
1 %
0.065
SPDMS
10%
0.340
PDMS
0%
0.220
PDMS
1 %
0.900
PDMS
10%
0.900
J Ksv = (B/A) in equation (3-3)
Figure 3-25: Quantitative microscopic Ksv(x,y) image maps for [Ru(dpp)3]Cl2 dispersed
in SPDMS or PDMS binder with increased weight percents of fumed silica gel on glass.
White scale bars are 92 pm long. Ksv color scale bars are shown to the right of all
images. A) 0 wt. % in SPDMS, B) 1 wt. % in SPDMS, C) 10 wt. % in SPDMS, D) 0 wt.
% in PDMS, E) 1 wt. % in PDMS, F) 10 wt. % in PDMS.

159
The quantitative KSv(x,y) image maps in Figure 3-25 correspond well with high
and low intensity values for the quantitative intensity images in Figure 3-23. The areas
where [Ru(dpp)3]Cl2 is adsorbed onto the fumed silica gel exhibit the most dynamic SV
responses in images C and E. Image E and F were scaled to show the dramatic change in
Ksv across the image. The actual Ksv maximum values are 2.01 psi'1 and 2.59 psi’1 for
images E and F, respectively. This was done because the tips of the silica particles
produced the greatest SV response which over shadowed the color scaling of the
background signal.
The percent standard deviations in Ksv(x,y) for each image are listed in Tables 3-
28a and 3-28b.
Table 3-28a: Microscopic SV analysis of five 10X regions for [Ru(dpp)3]Cl2 dispersed in
SPDMS binder on glass with increased weight percents of fumed silica gel.
wt. %
0 %
1 %
10 %
Region
Ksv (Ps¡ ')
0K %a
Ksv
Ksv (psi *)
0 K %3
*Vsv
Ksv (Psi1)
0 K
Ksv
1
0.007
71.4
0.013
61.5
0.161
40.4
2
0.008
62.5
0.014
64.3
0.313
35.6
3
0.007
71.4
0.014
50.0
0.112
22.3
4
0.008
87.5
0.011
81.8
0.115
42.6
5
0.008
75.0
0.012
66.7
0.159
58.5
o,
% =
a
x 100%

160
Table 3-28b: Microscopic SV analysis of five 10X regions for [Ru(dpp)3]CF dispersed
in PDMS binder on glass with increased weight percents of fumed silica gel.
Wt. %
0%
1 %
10%
Region
KSfipsr1)
oK %
â– *sv
Ksvipsi1)
ok %
Kas;8(psi *)
oK %
1
0.112
13.7
0.396
38.6
0.132
94.7
2
0.111
9.91
0.390
38.5
0.124
97.6
3
0.117
12.0
0.465
37.0
0.193
54.9
4
0.115
13.9
0.517
57.8
0.198
92.4
5
0.117
15.4
0.386
50.0
0.189
98.9
The microscopic and macroscopic data (Table 3-24) vary greatly from one another.
Similar to the previous series of Ru(II) a-diimine complexes, the microscopic data is
merely an average of the Ksv(x,y) data. To illustrate this, 1 wt. % and 10 wt. % of fumed
silica gel in PDMS and SPDMS binder, respectively, were analyzed at discrete regions
for their respective Ksv(x,y) image maps. Table 3-29 is a list of the discrete K^8 (x,y)
values obtained for the boxes outlined in the images of Figure 3-26. The white boxes are
an approximation of the area of Ksv(x,y) values analyzed. The values correlate with the
average values in Tables 3-28a and 3-28b and seem reasonable in comparison to the
macroscopic data.
Figure 3-26: Analysis of discrete regions (white boxes) in quantitative microscopic
Ksv(x,y) image maps of [Ru(dpp)3]Cl2 dispersed in PDMS or SPDMS binder on glass
with increased weight percents of fumed silica gel. White scale bars are 92 pm long.
Ksv color scale bars are shown to the right of all images. A) 1 wt. % in PDMS, B) 10 wt.
% in SPDMS.

161
Table 3-29: Discrete K^f (x,y) values for three regions outlined in 10X microscopic
Ksv(x,y) image maps of [Ru(dpp)3]Cl2 dispersed in PDMS or SPDMS binder on glass
with increased weight percents of fumed silica gel.
1 % in PDMS
10 % in SPDMS
Region
Kgv (psi ')
Kgv (Psi *)
a
0.30
0.11
b
0.28
0.12
c
0.57
0.12
One way to visually understand these numbers is to plot the discrete regions as
SV plots. Figure 3-27 displays the SV plots of the discrete microscopic regions for
[Ru(dpp)3]Cl2 with 1 wt. % SÍO2 in PDMS and 10 wt. % SÍO2 in SPDMS. The
macroscopic SV plots for the two sensor films are also plotted as a comparison.
Air Pressure (psi)
Air Pressure (psi)
Figure 3-27: Macroscopic and microscopic SV plots of [Ru(dpp)3]Cl2 dispersed in
PDMS or SPDMS binder on glass with weight percents of fumed silica gel. Aref: area
between 600 - 640 nm at 14.7 psi. A) 1 wt. % in PDMS and B) 10 wt. % in SPDMS.
The [Ru(dpp)3]Cl2 sensor films were also analyzed microscopically utilizing a
40X objective. Five regions of each sensor film were interrogated producing five
Ksv(x,y) image maps for each sensor film with accompanying statistical data listed in
Tables 3-30a and 3-30b. Similar to the data for the previous series of Ru(II) a-diimine

162
complexes, the data in Tables 3-30a and 3-30b possesses higher K^8 (x,y) values with
smaller deviations. The 40X images are highly magnified regions of the heterogeneous
films often times yielding more homogeneous images, higher K^8 values and smaller
percent standard deviations.
Table 3-30a: Microscopic SV analysis of five 40X regions for [Ru(dpp)3]Cl2 dispersed in
SPDMS binder on glass with increased weight percents of fumed silica gel.
Wt %
0 %
1 %
10 %
Region
Ksv (Psi *)
(T K %“
Ksv
KsVv8(psi“')
•Vsv
K^ipsi')
oK %a
Ksv
1
0.013
53.8
0.044
25.0
0.164
29.9
2
0.014
35.7
0.021
33.3
0.141
15.6
3
0.023
26.1
0.023
30.4
0.160
28.1
4
0.010
60.0
0.019
47.4
0.135
17.8
5
0.012
33.3
0.026
23.1
0.150
13.3
U aK
Nsv
% = ai / ^sv
x 100%
tble 3-30b: Microscopic SV analysis of five 40X regions of [Ru(dpp)3]Cl2 dispersed
PDMS binder on glass with increased weight percents of fumed silica gel.
wt. %
0 %
1 %
10 %
Region
Kgv (Psi 1
) °KSV %
Ksv(Ps¡ *)
^SV
Ksv(psi 1)
(T k %
Ksv
1
0.221
6.33
0.448
44.6
0.097
75.6
2
0.195
8.21
0.399
28.6
0.340
82.0
3
0.265
5.28
0.281
34.9
0.080
54.5
4
0.251
5.18
0.346
34.6
0.124
72.3
5
0.229
6.55
0.393
38.2
0.235
61.2
Overall analysis of the data presented reveals that, in general, the SV response at
the macroscopic level for [Ru(dpp)3]Cl2 sensor films improves with increased weight
percents of fumed silica gel (Figure 3-21). At the microscopic level, the 10 wt. % of
fumed silica gel in SPDMS and 1 wt. % of fumed silica gel in PDMS produced the

163
highest intensity values in Table 3-25, strong Ksv responses in Table 3-27, and the least
deviations in oK v % for fumed silica gel films in Tables 3-28a, 3-28b, 3-30a, and 3-30b.
Discussion
Analysis of PtTFPP Films
Macroscopic SV analyses of each PtTFPP sensor film series are unaffected by
changes in the sensor concentration or the mole ratio of polymer cross-linker (Figures 3-2
and 3-7). Upon microscopic inspection of the sensor films, sensor distribution and
polymer morphology become visually heterogeneous as the sensor concentration (Figure
3-4) and mole ratio of cross-linker (Figure 3-9) are increased. The visual heterogeneity
only has a slight effect on the intensity percent standard deviations (Gi %). Visual
representations of the intensity distributions for the “worse” sensor films are seen in the
distribution curves displayed in Figures 3-5 and 3-10. Clearly, the effects from increased
sensor concentration and mole ratio of cross-linker do not substantially impact the
intensity distributions, since the curves represent discrete distributions.
The influence of these two conditions upon the microscopic SV response is
minimal as well (Figures 3-6 and 3-11). The K^f values (Tables 3- 6a and 3- 6b) are
higher than the macroscopic Ksv values for the PtTFPP films with increased
concentration of sensor. The formation of PtTFPP microcrystals and aggregates is
therefore inconsequential. Not too surprising is the fact that the K^g values (Tables 3-
13a and 3-13b) are lower for the PtTFPP films with increased mole ratio of cross-linker
and the percent standard deviations are higher. The areas of polymer dewetting are larger
and more influential upon the Ksv distribution.

164
Overall for each PtTFPP sensor film, it is clear from the Ksv image maps that the
sensor response is uniform up to 5 mM PtTFPP and 1:7 mole ratio oligomer:cross-linker,
even on length scales of < 5 pm. This uniformity is also seen on longer length scales as
demonstrated by the overall consistency of the K^8 values. The uniformity within each
microscopic region is confirmed by the fact that the percent standard deviations (oK %)
in K^vvs are low. Indeed the oK % values observed for the PtTFPP sensor films are
likely representative of scatter due to random noise in the imaging experiments (shot,
excitation, etc.)
The PtTFPP films appear to behave as ideal oxygen sensor films on length scales
from mm to pm. This ideal behavior clearly arises because the hydrophobic PtTFPP
sensor is well dispersed within the generally hydrophobic SPDMS polymer binder, at
least with respect to oxygen permeability, on length scales approaching 1 pm.56 Even
increased concentrations of luminophore and mole ratios of cross-linker do not disturb
the macroscopic SV response to variation in Pa¡r. This is due to the minimal effects
sensor microcrystallization and aggregation or polymer dewetting has on the overall
macroscopic SV response of the sensor films.
Analysis of Ru (II) oc-diimine Films
Macroscopic SV analyses of the Ru(II) a-diimine complexes in SPDMS polymer
binder yield varying Ksv values (Figure 3-13 and Table 3-15). Previous studies of
luminescent oxygen sensing thin films that contain [Ru(dppE]2+ salts suggest that the
sensor response may be reduced when the metal complex exists in the film as
microcrystallites or aggregates J 66 There has been no direct evidence for this theory

165
except the assumption that the Ru(II) oc-diimine complexes, by virtue of their polar
nature, dissolve and disperse differently in the relatively non-polar SPDMS polymer
binder. Determination of the microscopic SV response distribution of the Ru(II) oc-
diimine complexes in SPDMS polymer binder reveals a number of significant features.
On a qualitative level, the Ksv images in Figure 3-18 and the statistical data listed
in Tables 3-2la, 3-2lb and 3-2lc clearly demonstrates that the inhomogeneous
distribution of the Ru(II) oc-diimine complexes in the SPDMS polymer binder causes the
sensor films to exhibit a spatially heterogeneous SV response. Indeed, over the five
different regions of each sensor film analyzed with the 10X objective, the SV response
varies significantly, reaching a maximum Ki^f at 0.170 psi 1 for the
[Ru(dpp)3](B(PhF5)4)2 film and a minimum K^f at 0.007 psi"1 for the [RipdppbjCF film.
However, even more interesting is the fact that the SV response varies strongly within an
individual microscopic region—inspection of the images of Figure 3-19 illustrates that
Kgy data in Tables 3-22a and 3-22b varies strongly on length scales of < 5 pm.
A subtle and interesting effect is seen when one compares intensity and Ksv
images. Specifically, there is a spatial correlation between Ksv and luminescence
intensity: microscopic regions that feature bright emission (yellow regions in Figure 3-
16) also tend to exhibit comparatively larger Ksv values (yellow and red regions in
Figure 3-18). This feature indicates that in regions where the luminescence is more
intense, the sensor is more susceptible to oxygen quenching.
A possible physical model for the spatial correlation between the luminescence
intensity and Ksv values for the Ru(II) ot-diimine complexes in the SPDMS polymer
binder is based on the effect of aggregation on the luminescence intensity and lifetime of

166
the Ru(II) ot-diimine complexes. It is known that when Ru-polypyridine complexes exist
in an aggregated or microcrystalline state their luminescence lifetime and intensity
(quantum yield) is significantly reduced. 107 The reduction in lifetime and intensity is
believed to arise from self-quenching due to the close proximity of the aggregated
chromophores. Consequently, in regions of the polymer where the Ru(II) a-diimine
complex is aggregated, the expected luminescence intensity and decay time of the sensor
are lower. Due to low luminescence lifetime, the aggregated sensor will be less
susceptible to quenching by oxygen (i.e., KSv is lower). This effect may explain the
observation that Ksv is less in regions of the Ru(II) a-diimine films where the
luminescence intensity is lower. As for the bright spots imaged for the sensor films, the
metal complexes exist either as amorphous solids or microcrystallites. When solid
[Ru(dpp)3]Cl2 without a polymer binder was analyzed with the microscope set-up,
variation in Pa¡r led to linear SV response from the [Ru(dpp).3]Cl2 particles similar to the
Ru(II) a-diimine sensor films’ microscopic SV response.
It is important to consider why the Ru(II) a-diimine complexes exist as
aggregates or microcrystals in the SPDMS polymer binder. First, all of the components
used to fabricate the films are freely soluble in the dichloromethane solution that is used
during the aerosol deposition. However, because SPDMS is relatively non-polar, it is
likely that the ionic metal complex salts are not very soluble in the pure polymer matrix.
The metal complexes seek solubilization areas in the polymer which are fairly polar. The
SPDMS formulation used for this work employs four moles of cross-linker for every
mole of Si-OH end group on the silanol polydimethylsiloxane oligomer. Therefore, there
exists unterminated Si-acetoxy components which can produce micro-domains to

167
solubilize the Ru(II) a-diimine metal complexes.25 The less polar polymer environment
will also induce strong complexation between the ionic species of the metal complexes
resulting in reduced lifetimes and decreased oxygen quenching.31,108 Thus the Ru(II)
oc-diimine complexes and SPDMS must phase separate (or crystallize) either during the
aerosol deposition step (i.e., as the more polar dichloromethane carrier solvent vaporizes)
or during the period of time when the polymer cures. Each of the Ru(II) a-diimine metal
complexes chosen possess either a different ligand or counter ion. Depending on the size,
structure, and solubility of the given complex, the film’s SV response will vary. 109
These facts, coupled with the relatively high concentration of the sensor used in the films
(0.2 % by weight Ru(II) a-diimine complex in SPDMS, which corresponds to roughly 1-
2 mM in the cured coatings) are some of the likely reasons for phase separation or
microcrystallization within the polymer binder.
There are several interesting addendums to the remarks in the last paragraph.
One, preliminary studies using energy dispersive spectroscopy on a
[RiKdpphJCE/SPDMS film detected no signals due to ruthenium. This suggests that the
sensor is not present in the films as pm sized crystals, but rather is inhomogeneously
distributed through the polymer in nm-scale aggregates. Two, decrease of the
[RiKdppEjCb sensor concentration to 0.02 wt. % did not improve the macroscopic SV
response. Microscopic fluorescence imaging reveals that even decreased concentrations
of the sensor display micro-domains of luminescence. Three, increased cross-linker
concentrations might induce more micro-regions of polarity into the polymer morphology
allowing for better solubilization of the sensor. This was not the case for [RutdppEJCli
dispersed in SPDMS polymer with 1:5 or 1:7 mole ratios of oligomencross-linker. The

168
films’ macroscopic SV response was worse with unquenchable micro-domains in the
films. Four, addition of hydrophilic fumed silica gel improves the macroscopic SV
response of the [RuidppLJCL sensor films in SPDMS or PDMS polymer binder. The
silica particles create polar sites for sensor solubilization and increased luminescence
oxygen quenching.25,29,56
Experimental
Oligomers
SPDMS: silanol terminated polydimethylsiloxanes (PDMS) 0.2 % OH (average
MW 18,000) and methyltriacetoxysilane 95% were purchased from Gelest (Tullytown,
PA). DMS-D33: diacetoxymethylterminated polydimethylsiloxane (PDMS) was
purchased from Gelest (Tullytown, PA).
Luminophores
[Ru(dpp)3]Cl2: tris-{4‘7-diphenyl-l,10-phenanthroline)ruthenium (II) dichloride
was synthesized by a literature procedure and purified by repeated recrystallizations from
water .47,94
[Ru(dpph](PF6)2: tris-(4,7-diphenyl-l,10-phenanthroline)ruthenium (II) di-
hexafluorophosphine was prepared by metathesis of the dichloride salt.
[Ru(dpp)3](BPh4)2: tris-{4‘7-diphenyl-l,10-phenanthroline)ruthenium (II)
di(tetrakisphenylborate) was prepared by metathesis of the dichloride salt.40,110
[Ru(dpp)3](B(PhF5)4)2: tris-(4,7-diphenyl-1,10-phenanthroline)ruthenium (II)
di(tetrakis(pentafluorophenyl)borate) was synthesized by combining 26 mg of
[Ru(dpp)3]Cl2 dissolved in 2 mL of dichloromethane with 70 mg of sodium
tetra(pentafluorophenyl)borate dissolved in 5 mL of 100 % ethanol. The resulting

169
mixture was stirred for 2 h. at room temperature and allowed to sit overnight at room
temperature. The product, fine crystals, was suction-filtered and washed with 100 %
ethanol three times. After the crystals were dried, 45 mg of the product was collected.
[Ru(dpp)3](B(Ph(CF3)2)4)2: tris-(4,7-diphenyl-l,10-phenanthroline)ruthenium (II)
di(tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) was synthesized by gently refluxing
RUCI3XH2O (28 mg, 0.11 mmol) dissolved in 20 mL of 1:1 EtOH/FFO (v:v) with
continuous bubbling of argon. The color of the solution changed gradually from a dark
brown to a deep blue color via a dark green color within approximately 4 h. To the hot
blue solution was added 4,7-diphenyl-1,10-phenanthroline (107 mg, 0.33 mmol)
dissolved in EtOH (10 mL). The mixture was refluxed for 48 h., during which time the
solution color changed from blue to deep red. The solution was evaporated to dryness.
SodiumTFPB CFECh solution was added to the solid resulting materials. The mixture
was extracted several times with DI H2O, and the organic solvent was removed with
evaporation to yield a red-orange solid, 151 mg (80%). ’H NMR (300 MHz, 5/ppm,
CD3COCD3) 7.61 (m, 30H), 7.75 (m, 24H), 7.78 (d, 6H), 8.68 (d, 2H).
Preparation of sodium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate
(SodiumTFPB): SodiumTFPB was synthesized using the procedure described by Bahr
and coworkers J 11 Mg turnings (100 mg, 4.2 mmol) and 15 mL of ether were placed
into a 250 mL 3-necked flask fitted with a condenser/^ inlet and a 50 mL addition
funnel. 3,5-Bis(trifluoromethyl)-l-bromobenzene (1.0472 g, 3.57 mmol) and 15 mL of
ether were placed in the addition funnel and added drop-wise to the 3-neck flask. The
solution was gently heated till reflux. The mixture was stirred for 4 h. yielding a dark
brown solution. NaBF4 (100 mg, 0.89 mmol) dried at 110°C for 1 h. in vacuo was

170
quickly added to the solution, and the mixture was stirred for another 12 h. A light tan
suspension resulted. The suspension was slowly poured into 50 mL of DI H20 water
saturated with NaCl. The resulting brown organic layer was separated and an additional
50 mL portion of ether was added to the aqueous/organic mixture and extracted. The two
organic portions were combined, and the ether was removed by evaporation yielding a
thick, dark brown oil. The crude product was purified by chromatography on silica gel
using acetonitrile as eluant and yielding 600 mg (65%) of product. 'H NMR (300 MHz,
6/ppm, CD3COCD3) 7.65 (s, 4H), 7.79 (s, 8H). 13C NMR (75 MHz, CD3COCD3) 6 118.4,
125.5 (q, JCF = 269 Hz, CF3), 129.9 (m), 135.5, 162.9 (q, JBC = 49 Hz).
[Ru(dbdtap)3](PF6)2: The synthetic route used for preparation of the precursor to
the substituted 1,10-phenanthroline: (3,8-di(n-butyl)-4,7-dibromo-l,10-phenanthroline)
is based on a literature report by Schmittel et al J * 2
Tm-(3,8-di-/2-butyl-4,7-di(tolylacetylenyl)-l, 10-phenanthroline)ruthenium (II)
di(hexafluorophosphine) was synthesized by adding 13 mg of RuCl3xH20 to a 50 mL
round bottom flask, which contained a mixture of DI H20 (3 mL) and 95 % ethanol (5
mL). The resulting brown solution was degassed with argon for 40 min. The degassed
solution was then heated to reflux under nitrogen with stirring. The color of the solution
changed from deep brown to light brown to light green to deep green and finally to deep
blue within 4 h. At which time, 129 mg of 3,8-di-«-butyl-4,7-di(tolylacetylenyl)-1,10-
phenanthroline dissolved in 8 mL of 95 % ethanol and a NH4PF6 solution were added to
the hot solution. The resulting mixture was refluxed under nitrogen for 48 h. A deep
reddish solution was collected after filtration through celite. The solvents were removed
by rotary evaporation, and the resulting residue was washed three times with 15 mL

171
aliquots of ether. The product (70 mg) was isolated after a cold recrystallization from a
mixture of 95 % ethanol (2 mL) and DI H^O (0.4 mL).
Synthesis of ethyl hexanoate: In a 250 mL round bottom flask, hexanoic acid (58
g) was mixed with 20 g of ethanol and 0.6 g of H2SO4 (96%). The resulting mixture was
heated at reflux for 40 h. A normal pressure distillation was conducted, and the product
was collected as the fraction distilled from 166° C to 169° C ( 31 g of pure product). The
fraction distilled from 170° C to 179° C (about 40 mL) was mixed with 100 mL of ether
and transferred to a separatory funnel, washed with 100 mL of 2 M NaHCCL three times
and 100 mL of DI FLO twice. The organic layer was separated and dried over MgSÜ4
(anhydrous). Once the solvent was removed, 30 g of product was isolated. 'H NMR
(300 MHz, 6/ppm, CDC13) 0.91 (t, 3H), 1.0-1.1 (m, 7H), 1.60 (tt, 2H), 2.25 (t, 2H), 4.16
(q, 2H).
Synthesis of ethyl 2-formyl-hexanoate: A solution of 5.06 mL (0.05 mol) of
diisopropylamine was added to 50 mL of dry THF and treated with 21.3 mL of 2.5 M 11-
butyllithium in hexanes at room temperature under nitrogen. The resulting pale yellow
solution was cooled to -78° C with a dry ice/isopropyl bath, at which time, a solution of
7.2 g (0.05 mol) of ethyl hexanoate in 15 mL of dry THF was slowly added for 0.5 h.
keeping the temperature of the reaction at -78° C. Ethyl formate, 11.1 g (0.15 mol), was
added by syringe to the solution. After stirring for 5 min., the dry ice/isopropanol bath
was removed. The temperature of the reaction was warmed to room temperature, 25° C,
and kept stirring for an additional 2 h. under nitrogen. At this point, the reaction mixture
changed consistency from a clear pale yellow solution to a milky suspension. To the
suspension, 350 mL of ether was added. Acetic acid (ca. 15 mL) was added until the

172
suspension turned to a clear yellow color. The clear yellow solution was then washed
twice with DI H20, neutralized with a NaHCCL solution (2 M) and washed twice with DI
H20. The ether layer was collected and dried over MgS04 (anhydrous). Once the
solvent was removed, 7 g of the product was isolated (pure enough for the next step of
the reaction). 'H NMR (300 MHz, 8/ppm, CDCI3) 0.87 (t, 3H), 1.0-1.1 (m, 7H), 1.8-2.1
(m, 2H), 3.10 (t, 0.5H), 4.25 (m, 2H), 6.95 (d, 0.5H), 9.68 (s, 0.5H), 1 1.40 (d, 0.5H).
Synthesis of 3,8-di(/?-butyl)-l,10-phenanthroline-4,7-dione: Ethyl 2-formyl-
hexanoate, 7 g (0.041 mol), was dissolved in 200 rnL of dichloromethane. To the
solution, 1.9 g (0.018 mol) of 1,2-phenylenediamine was added. The resulting solution
was heated at reflux in a Dean-Stark apparatus for 2 h. The solvent was removed to
afford 7.8 g of an oily brown residue. The residue was used without further purification,
and 4 g of it was added to diphenyl ether (100 mL). The solution was heated to 230° C
using a sand bath under a continuous nitrogen stream. The solution was charged with a
vigorous stream of nitrogen, and the temperature of the sand bath was raised to 245° C.
After 25 min., the sand bath was removed. The temperature of the solution cooled to 50°
C, and a white precipitate formed. The suspension was then added to 200 mL of hexanes
to induce more precipitation. The precipitate was suction-filtered and washed with ether.
The washed precipitate was added to 50 mL of acetone and heated at reflux for 30 min.
The suspension was cooled to room temperature, and the resulting precipitate was filtered
and dried in vacuo at room temperature to afford 2 g of product. 'H NMR (300 MHz,
5/ppm, DMSO) 0.94 (t, 6H), 1.3-1.6 (m, 6H), 7.96 (s, 4H).
Synthesis of 3,8-di(n-butyl)-4,7-dibromo-1,10-phenanthroline: 1.2 g of 3,8-di(/i-
butyl)-l,10-phenanthroline-4,7-dione was added to 25 g of melted phosphoryl tribromide

173
(POBr3) under nitrogen. The resulting mixture was heated overnight at 70° C with
stirring. The hot solution was slowly added drop-wise to well-stirred ice water (100 g of
ice and 200 mL of water). After 15 min., a solid precipitate formed, and 60 mL of
chloroform was added. A KOH solution (concentrated, 10 g in 10 mL water) was added
drop-wise to bring the solution pH to 11. The organic layer was separated, and the water
layer was extracted three times with 100 mL of chloroform. The combined chloroform
layers were washed with 150 mL of a 1 M KOH solution, three times with 150 mL of DI
H20 and dried over MgSCL (anhydrous). After removing the solvent, 1.4 g of the
product was isolated. *H NMR (300 MHz, 5/ppm, CDC13) 1.02 (t, 3H), 1.45 (m, 4H),
1.72 (m, 4H), 3.06 (t, 4H), 8.33 (s, 2H), 8.91 (s, 2H).
Synthesis of 3,8-di(«-butyl)-4,7-di(tolyl-acetylenyl)-1,10-phenanthroline: 3,8-
di(rc-butyl)-4,7-dibromo-l,10-phenanthroline, 300 mg, was mixed with 260 mg of
tolylacetylene dissolved in 6 mL of THF, 5 mL of diisopropylamine, 6 mol %
Pd(PPh3)2Cl2 and 3 mol % Cul. The mixture was degassed under argon for 20 min. The
resulting mixture was heated at 65° C under argon for 24 h. The solvents were removed,
and the residue was passed through a short silica gel column. To remove the excess
tolylacetylene, the starting eluant was hexanes. The eluant was gradually replaced with
pure chloroform. The product washed out as a brown band. After removing the solvent,
the residue was recrystallized in a mixture of acetone and ethanol. A light yellow
crystalline solid, 160 mg, was collected (prolonging the reaction time may increase the
yield). 'H NMR (300 MHz, 5/ppm, CDC13) 0.96 (t, 6H), 1.43 (m, 4H), 1.80 (m, 4H),
2.41 (s, 6H), 3.10 (t, 4H), 7.25 (d, 4H), 4.58 (d, 4H), 8.42 (s, 2H), 9.03 (s, 2H).

174
PtTFPP: Pt(II) m^o-tetrakis(pentafluorophenyl)porphine (PtTFPP) was
purchased from Porphyrin Products Inc. (Logan, UT).
Preparation of Coatings
Ru(II) a-diimine complexes/SPDMS: Silanol PDMS (500 mg, 0.056 mmol of Si-
OH endgroups) and methyltriacetoxysilane (48.9 mg, 0.22 mmol) were dissolved in 4 mL
dichloromethane and stirred for 0.5 h. Then 1 mg of the luminescent dye was added to
the polymer solution and the mixture was stirred for 5 min. (All of the components are
freely soluble in this solution.) Finally, two drops of glacial acetic acid were added to
catalyze the condensation polymerization. The solution was sprayed onto a clean
borosilicate microscope slide and a 2 in. diameter x 1/16 in. thick borosilicate glass disk
using a commercially available air-brush operated at 15 psi. The coatings were cured at
ambient temperature and 33 % relative humidity for 12 - 24 h. Profilometry
demonstrated that the cured films were typically 5 pm thick.
Various concentrations of PtTFPP in SPDMS binder: The films were prepared in
the same manner as the above Ru(II) a-diimine complex films. The concentration of
PtTFPP was increased: 2 mM, 3 mM, 5 mM, 10 mM, and 17 mM.
Various mole ratios of cross-linker in PtTFPP/SPDMS films: The films were
prepared in the same manner as the above Ru(II) a-diimine complex films. The mole
ratio of the cross-linker, methyltriacetoxysilane, was increased: 1:4, 1:5, 1:7, 1:9, and
1:19 mole ratio of oligomer:cross-linker.
[RuidppLJCL/SiCF/SPDMS: The films were prepared in the same manner as the
above Ru(II) a-diimine complex films. Increased weight percents of a hydrophilic fumed
silica gel were added to the SPDMS polymer binder with stirring for 20 min.: 1 wt. %

175
and 10 wt. % relative to total weight of polymer binder (500 mg). Cab-O-Sil amorphous
Fumed Silica Grade M-5 was purchased from CABOT Corporation (Tuscola, IL).
[Ru(dpp)3]Cl2/Si02/PDMS: The films were prepared in the same manner as the
above [RutdppEJCb/SiCF/SPDMS films; however, 500 mg of commercially synthesized
PDMS, DMS-D33, was used as the polymer binder. No cross-linking oligomers were
needed. One drop of glacial acetic acid was added to catalyze the condensation
polymerization. Increased weight percents of hydrophobic fumed silica gel were added:
1 wt. % and 10 wt. %.
[Ru(dpp)3]Cl2/PDMS: The films were prepared in the same manner as the above
[Ru(dpp)3]Cl2/SPDMS films; however, 500 mg of commercially synthesized PDMS,
DMS-D33, was used as the polymer binder. No cross-linking oligomers were needed.
One drop of glacial acetic acid was added to catalyze the condensation polymerization.
The polymer solution and 1 mg of luminophore needed only 5 min. to stir.
Instrumentation
The set-up for the inverted fluorescence microscope, fluorimeter and UV/Vis
apparatus are extensively explained in the Experimental section of Chapter 2.
Fluorescence Microscope Image Analysis
In every case, the raw fluorescence intensity image matrix, I[x,y;Pmr], was an
average of seven individual 300 ms CCD exposures where x and y were the orthogonal
pixel locations of the CCD and Pmr was the air pressure. For a given spatial field of view
I[x,y;Pair] is obtained at seven Pa¡r values. Subsequent image analysis is performed using
a PV-Wave (Visual Numerics, Inc.) macro that was written in-house. The macro carries
out the following mathematical operations on the I[x,y; Pa¡r] data.
(1) Each raw image was background corrected according to equation (3-4)

176
I [X,y,Pair] — I[x,y,Pair] Idark[x,y-Pair]
(3-4)
where Idark is the “dark-count” intensity matrix collected with the excitation light
blocked.
(2) A smoothing-routine (3x3 pixels) is applied to the intensity images to
correct for subtle shifts in the image registration.
(3) The SV coefficients (A and B, (3-3)) were computed on a pixel-by-pixel basis
by carrying out a linear least-squares regression of the image data at seven Pair values
according to equation (3-5)
Ic[x,y;Pair = 1 atm]
Ic[x,y;Pair ]
A[x,y]+B[x,y]P;ll
(3-5)
The pixel-by-pixel least-squares computation also affords a matrix of regression
coefficients (r[x,y]). The regression coefficients are simply used as an indication of SV
linearity. Values less than one indicate a non-linear response.
(4)A matrix of SV constants was then computed from the A and B matrices
according to equation (3-6)
Ksv[x,y] =
B[x,y]
A[x,y]
(3-6)
(5) Standard deviations in r[x,y] and KSv[x,y] (Gr and oK v , respectively) are
computed for each spatial field of view. Each of these operations was carried out for
images obtained on 5 separate microscopic regions of a sensor film.
(6) An average SV constant ( Ki^f) was computed for each microscope spatial
field of view according to equation (3-7)

177
IlKsv[i,j]
Ksv — (3-7)
ix j
where i x j represent the size of the CCD image (typically 650 x 515 pixels).
(7) Finally, the macro allowed the user to create false-colored images that
delineated the pixel-by-pixel values of Ksv (and other parameters), where the individual
values of Ksv are indicated by a color map.
The PV-Wave macro appears in the appendix with accompanying subroutines.

CHAPTER 4
CONCLUSIONS
In the preceding two chapters, two independent yet intimately related projects
were defined. Several dual-luminophore, optical oxygen sensing coatings were
developed and characterized utilizing numerous physical and spectroscopic methods.
Interest in spectroscopic techniques, particularly fluorescence microscopy, led to the
development of a novel microscopy technique. Examining the results for the dual-
luminophore coatings in Chapter Two as well as the mono-luminophore coatings in
Chapter Three leads to several conclusions:
1) Several dual-luminophore coatings were developed which conjointly incorporate
a pressure-sensitive luminophore and a pressure-independent but temperature
dependent luminophore. The PtDOCIppsp/VPDMS and PtDOCI-Sspsp/VPDMS
coatings comprise Pt(II) tetra(pentafluorophenyl)porphyrin (PtTFPP) as the
pressure-sensitive luminophore and 3,3’-diethyloxacarbocyanine iodide (DOCI)
loaded microspheres (DOCIppsp and DOCI-Sspsp) as the pressure-insensitive but
temperature-sensitive luminophore dispersed in vinyl polydimethylsiloxanes
(VPDMS 17,200 MW) polymer binder. When coated onto bare or primed
(TiCL/silanol polydimethylsiloxanes MW 18,000, methyltriacetoxysilane cross¬
linker) borosilicate microscope slides, the formulations are shown to exhibit
spectrally resolved photoluminescence emissions with no evidence of dubious
chemical interactions between the two luminophores.
178

179
a) Both coatings are thermally stable over a 40 K range (273 - 313 K) and
exhibit no indication of hysteresis with respect to repeated thermal cycling
over the 273 - 313 K range. Therefore, these coatings can be utilized at
wind-tunnel conditions where the temperature ranges have been
documented to vary from 283° C to 323° C. ^
b) The coatings’ SV response is temporally stable over a minimum four-
month period. Therefore, a model may be coated and stored without
immediate evaluation. This aspect facilitates model preparation without
the immediacy of scheduling wind-tunnel runs.
c) The coatings’ PtTFPP photoluminescence emission intensity is
photostable over a minimum four-hour illumination period. The
DOCIppsp and DOCI-Sspsp did exhibit some photodegradation but no
more than a 0.77 %-min'1 degradation for the DOCIppsp in the
PtDOCIppsp/VPDMS coating. Therefore, coated wind-tunnel models can
be exposed to extended periods of excitation illumination with consistent
photoluminescence emission response during run-times.
d) Scanning electron microscopy imaged the interior and exterior
morphology of the polystyrene microspheres before and after dye
adsorption. Fluorescence microscopy illustrated the average length and
relative distribution of the microspheres in the two coatings as well as the
distribution of PtTFPP molecules relative to DOCIppsp and DOCI-Sspsp.
e) Application of the coatings in an imaging calibration cell reveals that the
temperature dependence of the pressure probe’s emission intensity can be

180
corrected, and a true analysis of the pressure probe’s response to variation
in Pair is obtained. Analysis of the raw intensity images of the two
coatings at 550 nm and 650 nm reveals that the intensity data of the
PtDOCI-Sspsp/VPDMS coating is more heterogeneous. The preparation
techniques or the coating components need to be further developed in such
a way as to eliminate the heterogeneous distribution of intensity values.
2) A fluorescence microscopy technique has been developed that allows for the
investigation of the luminescence properties of film-based oxygen sensors with
spatial resolution of < 5 pm. The new technique has been applied to explore the
properties of four series of mono-luminophore pressure-sensitive coatings that
differ widely in their luminescence response to variation in P;ur.
a) A sensor series based on increased concentrations (mM) of PtTFPP in a
silanol polydimethylsiloxanes (SPDMS 18,000 MW) polymer binder
exhibits increased aggregation and microcrystallization of the PtTFPP
luminophore at the microscopic level with no hindrance in macroscopic
SV response to variation in Pajr. The formation of aggregates and
microcrystallites has no apparent effect, since the luminophore,
sufficiently solubilized in other regions of the polymer, provides adequate
background luminescence intensity to compensate for the formation of a
heterogeneous luminescence field.
b) A series of PtTFPP/SPDMS coatings incorporating increased mole ratios
of cross-linker (methyltriacetoxysilane) exhibit dewetting of the polymer
binder with no affect to the macroscopic SV response with variation in

181
Pair- While increased mole ratios of cross-linker induced polymer
dewetting, the luminescence intensity of the intact polymer is sufficient
enough to compensate for areas void luminescence.
c) A sensor series based on Ru(II) oc-diimine complexes dispersed in an
SPDMS polymer binder exhibit widely differing SV responses to variation
in Pair- The degree of luminophore solubility is evident in the microscopic
spatial intensity distribution of the luminophores, degree of luminescent
intensity, and spatial SV response to variation in Pa¡r. Less soluble
luminophores ([Ru(dpp)3]Cl2 and [RuidppLKBPh^) produce more
luminophore aggregation and microcrystallization and depressed or non¬
linear SV responses.
d) A series of [Ru(dpp)3]Cl2 dispersed in SPDMS and PDMS polymer
binders with increased weight percents of hydrophilic fumed silica gel
exhibit enhanced SV response. This is due to adsorption of the
luminophore onto the silica gel. The silica gel particles possess increased
surface areas for better facilitation of [Ru(dpp)3]CL luminescence
quenching. While microscopic SV analysis illustrates a very
heterogeneous spatial distribution of intensity and Ksv values, the
macroscopic analysis is positively affected by the addition of fumed silica
gel and produces linear plots of increased SV sensitivity.

APPENDIX
PV-WAVE MACRO AND SUBROUTINES
Macro to read PSP images (.spe format) and analyze pixel-by-pixel Stern-Volmer
plots.
; Created: 07-08-99, JPH
pro pixelsv, fileout
; User input
region = T7'
suppix = 3
plotint = 0
savebmp = 0
subksv = 1
; Region designation
; Size of window (nxn) for smoothing, 0 = no smoothing
; Plot color intensity images if = 1
; Save color intensity images as bitmaps if = 1 and plotint = 1
; Interrogate Ksv over subregion if = 1
p = [ 14.658, 10.15, 8.11,6.09, 4.27, 2.19, 0.43] ; Array of values
dir = 'C:\Users\Hubner\SBIR-9901 (Army)\Calspan Macros\Microscope\'+region-i-'V;
Directory of stored data files
; Files to read: follows specified format for file name, region + pressure number + spe
extention.
Files =
[region+'p7.spe',region+'p6.spe',region+'p5.spe',region+’p4.spe',region+'p3.spe',region-i-'p
2.spe',region+'p 1 .spe']
filesbmp =
[region+'p7. bmp',region+'p6.bmp',region+'p5.bmp',region+'p4.bmp',region+'p3.bmp',regi
on+'p2.bmp',region-i-’p 1 .bmp']
fdark ='dark'+region+'.spe'
pet = 1
KSV_cntr_min = 0.00
KSV_cntr_max = 0.14
; Define column and row region: 0 < cl < c2 < ncol (1500), 0 < rl < r2 < nrol (1500)
rl = 357 ;257
r2 = 672 ;772
cl =425 ;325
c2 = 875 ;975
; Define contour settings
ctrs = 41
ctr_high = 225.
ctr low = 10.
; High contour color value
; Low contour color value
182

183
ctr_space = (ctr_high-ctr_low)/ctrs
clev = fltarr(ctrs) ; Contour values
clab = intarr(ctrs) ; Contour labels on/off
cin = intarr(ctrs+l) ; Contour color index
loadct, 0
; Declare arrays
nfiles = n_elements(files)
fileref = files(O)
filedk = ' ’
intavg = fltarr(nfiles)
intstd = fltarr(nfiles)
nc = c2-c 1 +1
nr = r2-rl + l
intdata = fltarr(nc, nr, nfiles)
intdark = fltarr(nc, nr)
intnorm = fltarr(nc, nr, nfiles)
ratio = fltarr(nc, nr, nfiles)
svm = fltarr(nc, nr)
svb = fltarr(nc, nr)
corr = fltarr(nc, nr)
; Read files and set data manipulation files
loadct, 5
for loop = 0, nfiles-1 do begin
speread, dir, files(loop), data, ncol, nrow
intdata(*,*,loop) = data(c 1 :c2,r 1 :r2)
if loop eq 0 then begin
speread, dir, fdark, data, ncol, nrow
intdark = data(c 1 :c2,r 1 :r2)
endif
intdata(*,*,loop) = intdata(*,*,loop)-intdark(*,*)
count = 0
for ii = 0, nc-1 do begin
for jj = 0, nr-1 do begin
if intdata(ii,jj,loop) le 0. then begin
intdata(ii,jj,loop) = 0.1
count = count+1
endif
endfor
endfor
if count gt 0 then print, ’Pet pixels <= 0: files(loop), count/float(nc*nr)* 100.
print, 'Max and min intensity: ', files(loop),max(intdata(*,*,loop)),min(intdata(*,*,loop))
intavg(loop) = avg(intdata(*,*,loop))
intstd(loop) = stdev(intdata(*,*,loop))
ratio(*,*,loop) = intdata(*,*,0)/intdata(*,*,loop)

184
endfor
print, 'Avg & Stdev Dark Intensity', avg(intdark), stdev(intdark)
print, 'Avg Intensity'
print, transpose(intavg)
print, 'Stdev Intensity’
print, transpose(intstd)
print,''
; Calculate average SV plot
; Quad fit: Window 10
; Linear fit: Window 11
temp = poly_fit(p,intavg(0)/intavg,2,svfitquad,abc,sigquad)
svq_avg = temp(2)
svm_avg = temp( 1)
svb_avg = temp(0)
print, 'Quadratic fit coefficients (ROI): ', svq_avg, svm_avg, svb_avg
print, 'Std Dev of Fit: ', sigquad
print,''
window, 10, xsize = 400, ysize = 400, title = 'Global Quad Fit'
plot, p, intavg(0)/intavg, psym = 6, yrange=[0,max(intavg(0)/intavg)]
oplot, p, svfitquad, psym = 0
temp = poly_fit(p,intavg(0)/intavg,l,svfitlin,abc,siglin)
svm_avg = temp( 1)
svb_avg = temp(O)
corrlin = correlate(p,intavg(0)/intavg)
print, 'Linear fit coefficients & KSV (ROI): ', svm_avg, svb_avg, svm_avg/svb_avg
print, 'Std Dev of Fit: ', siglin
print, 'Correlation of Data: ', corrlin
print,''
window, 11, xsize = 400, ysize = 400, title = 'Global Linear Fit'
plot, p, intavg(0)/intavg, psym = 6, yrange=[0,1.2]
oplot, p, svfitlin, psym = 0
; Perform spatial convolution (moving window averaging)
if suppix gt 1 then begin
for loop = 0, nfiles-1 do begin
print, 'Smoothing file...', files(loop)
intdata(*,*,loop) = smooth(intdata(*,*,loop), suppix)
endfor
endif
print,''
; Set countour limits for image plots
maxint = max(intdata)
minint = min(intdata)
cmin = 0.

185
cmax = maxint* 1.05
cdiff = cmax-cmin
for i = 0, ctrs-1 do begin
clev(i) = cmin + (cmax-cmin)*(float(i)/float(ctrs-l))
cin(i) = ctr_low + (ctr_high-ctr_low)*float(i)/ctrs
clab(i) = 1
endfor
cin(ctrs) = ctr_high
ctr_diff = ctr_high-ctr_low
lgth = r2-rl
if c2-cl gt r2-rl then lgth = c2-cl
; Plot images of raw intensities: Windows 1 through nfiles
if plotint eq 1 then begin
for loop = 0, nfiles-1 do begin
temp_int = ((ctr_diff)*(intdata(*,*,loop)-cmin)/(cmax-cmin)-i-ctr_low)
window, loop, xsize = lgth+90, ysize = lgth+10, title = files(loop)
tv, reverse(temp_int,2)
cntrleg2, lgth, ctrs, clev, cin
if savebmp eq 1 then begin
print, 'Saving bitmap: ', filesbmp(loop)
status = WWRITE_DIB(loop, Filename=dir+filesbmp(loop))
endif
endfor
endif
print,''
; Plot Intensity Histograms
bs = 10
window, 20, xsize = 500, ysize = 500, title = 'Intensity Histogram'
for i = 0, nfiles-1 do begin
intnorm(*,*,i) = intdata(*,*,i)
inthist = histogram(intnorm(*,*,i), binsize = bs)
nelem = n_elements(inthist)
xintdata = fltarr(nelem)
minintnorm = min(intnorm(*,*,i))
for j = 0, nelem-1 do xintdata(j) = j*bs+minintnorm
if i eq 0 then plot, xintdata, inthist, xrange = [min(intdata),max(intdata)]
if i gt 0 then oplot, xintdata, inthist, color=i*25
status = DC_WRrrE_FREE(dir+'hist'+string(i)-i-fileout, xintdata, inthist, /column)
endfor
; Calculate pixel SV over ROI
print, 'Calculating pixel-by-pixel Ksv statistics over ROI...’
count = 0
for i = 0, nc-1 do begin

186
for j = 0, nr-1 do begin
temp = poly_fit(p,intdata(i,j,0)/intdata(i,j,*),l,svfit)
svm(i,j) = temp(l)
svb(i,j) = temp(0)
corr(i,j) = correlate(p,intdata(i ,j,0)/intdata(i,j,*))
endfor
endfor
KSV = svm/svb
svm_avg_pix = avg(svm)
svb_avg_pix = avg(svb)
KSV_avg_pix = avg(KSV)
svm_std_pix = stdev(svm)
svb_std_pix = stdev(svb)
KSV_std_pix = stdev(KSV)
corr_avg = avg(corr)
KSV_max = max(KSV)
KSV_min = min(KSV)
print, 'Average & Std of Stern-Volmer KSV w/ avg corr-coef (Pixels): KSV_avg_pix,
KSV_std_pix, corr_avg
print, ’'
print, ’Max and Min of KSV: ', KSV_max, KSV_min
print,''
; Plot of correlation coefficient
cmin = 0.0
cmax = 1.0
cdiff = cmax-cmin
for i = 0, ctrs-1 do begin
clev(i) = cmin + (cmax-cmin)*(float(i)/float(ctrs-l))
cin(i) = ctrjow + (ctr_high-ctr_low)*float(i)/ctrs
clab(i) = 1
endfor
cin(ctrs) = ctr_high
ctr_diff = ctr_high-ctr_low
lgth = r2-rl
if c2-cl gt r2-rl then lgth = c2-cl
temp_corr = ((ctr_diff)*(corr-cmin)/(cmax-cmin)+ctr_low)
window, 21, xsize = lgth+90, ysize = lgth+10, title = 'Correlation Plot'
tv, reverse(temp_corr,2)
cntrleg2, lgth, ctrs, clev, cin
; Plot Ksv Histogram
bs = KSV_std_pix/3.
KSVhist = histogram(KSV, binsize = bs)
nelem = n_elements(KSVhist)
xdata = fltarr(nelem)

187
for i = 0, nelem-1 do xdata(i) = i*bs+KSV_min
window, 22, xsize = 300, ysize = 300, title = 'Ksv Histogram'
plot, xdata, KSVhist
print, 'Bin size for histogram plot: bs
; Plot of KSV
cmin = KSV_cntr_min ; KSV_cntr_min ; KSV_avg_pix*( 1 ,-pct)
cmax = KSV_cntr_max ; KSV_cntr_max ; KSV_avg_pix*(l.+pct)
cdiff = cmax-cmin
for i = 0, ctrs-1 do begin
clev(i) = cmin + (cmax-cmin)*(float(i)/float(ctrs-l))
cin(i) = ctrjow + (ctr_high-ctr_low)*float(i)/ctrs
clab(i) = 1
endfor
cin(ctrs) = ctr_high
ctr_diff = ctr_high-ctr_low
Igth = r2-rl
if c2-c 1 gt r2-r 1 then lgth = c2-c 1
temp_KSV = ((ctr_diff)*(KSV-cmin)/(cmax-cmin)+ctr_low)
result = size(temp_KSV)
for i = 0, result(l )-l do begin
for j = 0, result(2)-l do begin
if temp_KSV(i,j) It ctr_low then temp_KSV(i,j) = 0.
if temp_KSV(i,j) gt ctr_high then temp_KSV(i,j) = 255.
endfor
endfor
window, 23, xsize = lgth+90, ysize = lgth+10, title = 'Ksv plot'
tv, reverse(temp_KSV,2)
cntrleg2, lgth, ctrs, clev, cin
; Subregion interrogation
if subksv eq 1 then begin
flag = 1
tempint = fltarr(nfiles)
while flag eq 1 do begin
window, 24, xsize = nc+10, ysize = nr+70, xpos = 10 , ypos = 30
data = KSV
ksvroi, data, 'KSV Plot', cmin, cmax, rmin, rmax, flag
if flag eq 1 then begin ; Calculate Ksv over subregion
for i = 0, nfiles-1 do begin
tempint(i) =
avg(intdata(cmin:cmax,rmin:rmax,0))/avg(intdata(cmin:cmax,rmin:rmax,i))
endfor
temp = poly_fit(p,tempint, l,svfitlin,abc,siglin)
print, 'Linear fit coefficients & KSV (ROI): ', temp(l), temp(0), temp( 1 )/temp(0)
print, 'Std Dev of Fit: ', siglin

188
print,''
window, 25, xsize = 400, ysize = 400, title = 'Subregion Linear Fit'
plot, p, tempint, psym = 6, yrange=[0,1.2]
oplot, p, svfitlin, psym = 0
xyouts, 50, 380, temp( 1 )/temp(0), Size = 1., font = 5., /device
xyouts, 50, 360, siglin. Size = 1., font = 5., /device
print, 'Enter 1 to SAVE data or 0 to continue:'
read, opt
filename = 'temp.csv'
if opt eq 1 then begin
print, 'Enter file name with extension:'
read, filename
status = DC_WRITE_FREE(dir+filename, p, tempint, svfitlin, temp(0), temp( 1), cl,
cmin, cmax, rl, rmin, rmax, /column)
endif
endif
wdelete, 25
endwhile
endif
wdelete, 24
; Write data to file(s)
status = DC_WRITE_FREE(dir+fileout, KSV, /column)
status = DC_WRITE_FREE(dir+'coor'+fileout, corr, /column)
status = DC_WRITE_FREE(dir+'sv'+fileout, p, intavg, intstd, sigquad, siglin, svm_avg,
svb_avg, KSV_avg_pix, KSV_std_pix, KSVHist, min(KSV),/column)
QUIT:
return
end
Ksvroi
pro ksvroi, data, out_str, xmin, xmax, ymin, ymax, flag
false = 0
true = 1
;window, 0, xsize = 520, ysize = 540
data = reverse(data,2)
erase
tvscl, data, /device
elements = size(data)
nc = elements(l)
nr = elements(2)
first = true
repeat begin
if first then begin
; xyouts, 2, nr+30, out_str, Size = 1., font = 5., /device

189
; xyouts, 2, nr+10, "Select ROI...", Size = 1., font = 5., /device
; cursor, xl, yl, 3, /device
; plots, [xl-4, xl+4], [yl, yl], color = 250, /device
; plots, [xl, xl], [yl+4, yl-4], color = 250, /device
; cursor, x2, y2, 4, /device
; plots, [xl, x2], [yl, yl], color = 250, /device
; plots, [x 1, x2], [y2, y2], color = 250, /device
; plots, [xl, xl], [yl, y2], color = 250, /device
; plots, [x2, x2], [yl, y2], color = 250, /device
xl = 10
x2 = 20
yl = 10
y2 = 20
first = false
endif
erase
tvscl, data, /device
plots, [xl, x2], [yl, yl], color = 250, /device
plots, [x 1, x2], [y2, y2], color = 250, /device
plots, [xl, xl], [yl, y2], color = 250, /device
plots, [x2, x2], [yl, y2], color = 250, /device
xyouts, 2, nr+50, "ENTER", Size = 1.5, font = 5., /device
xyouts, 2, nr+30, "QUIT", Size = 1.5, font = 5., /device
xyouts, 2, nr+10, "Re-select ROI or Click Enter or Click Quit", Size = 1., font
/device
cursor, tempxl, tempyl, 3, /device
if (tempxl le 150) and (tempyl ge nr+50) then begin
flag = 1
goto, quit
endif
if (tempxl le 150) and (tempyl ge nr+30) then begin
flag = 0
goto, quit
endif
x 1 = tempx 1
y 1 = tempyl
erase
tvscl, data, /device
plots, [xl-4, xl+4], [yl, yl], color = 250, /device
plots, [xl, xl], [yl+4, yl-4], color = 250, /device
cursor, x2, y2, 4, /device
endrep until false
QUIT:
xmin = xl
xmax = x2
if x2 It x 1 then begin

190
xmin = x2
xmax = x 1
endif
ymin = y 1
ymax = y2
if y2 It y 1 then begin
ymin = y2
ymax = y 1
endif
return
end
Centrleg2
pro cntrleg2, len, ctrs, clev, cin
jstep = len/ctrs
j=0
for i = 0, ctrs-1 do begin
polyfill, [len+85, len+85, len+89, len+89], [j, j+jstep, j+jstep, j], /device, color = cin(i)
j =j + jstep
endfor
xyouts, len+5, 10, string(clev(0), format = "(f8.2)"), /device, color = 250, charsize =1
xyouts, len+5, j-jstep, string(clev(ctrs-1), format = "(f8.2)"), /device, color = 250,
charsize =1
return
end
Speread
; This procedure reads WINVIEW .spe image files. It determines the
; size of the 2-D image. An array of floating point
; values representing the b/w intensity is the output: data(ncol,nrow).
; Notes:
; 12/13/99: Currently reads the data (after the image header) as long words (LONARR).
; The header is read as words (INTARR). The header length is hard coded at
2050 words.
pro speread, dir, file, data, ncol, nrow
spehead = intarr(2050)
print, 'Reading file: ', dir+file
openr, 1, dir+file
readu, 1, spehead
nrow = spehead(21)
ncol = spehead(328)
:print, ncol, nrow
;print, spehead
if (ncol It 1) or (ncol gt 1024) then begin
print, 'Number of columns = ',ncol,' Out of Range!'
close, 1

191
goto, quit
endif
if (nrow It 1) or (nrow gt 1024) then begin
print, 'Number of rows = ',nrow,' Out of Range!'
close, 1
goto, quit
endif
print, 'Columns: ', ncol, ' Rows: ', nrow
data = lonarr(ncol,nrow)
readu, 1, data
close, 1
;WINDOW, 1, xsize = ncol+10, ysize = nrow+10
;TVSCL, data, /device
QUIT:
return
end
Macro written by Dr. J. Paul Hubner, Adjunct Professor, Aerospace Engineering,
Mechanics and Engineering Science, University of Florida

LIST OF REFERENCES
1)Hitchman, M. L. Chemical Analysis: A Series of Monographs on Analytical
Chemistry and its Applications, 1st ed.; Wiley & Sons: New York, 1978; Vol. 49.
2)Mancy, K. H.; Okun, D. A.; Reilley, C. N. "A Galvanic Cell Oxygen Analyser."
J. Electroanal. Client. 1962, 4, 65-92.
3)Price, J. M.; Wenying, X.; Demás, J. N.; DeGraff, B. A. "Polymer-Support pH
Sensors Based on Hydrophobically Bound Luminescent Ruthenium (II)
Complexes." Anal. Client. 1998. 70, 265-270.
4)Lin, H. -J.; Szmacinski, H.; Lakowicz, J. R. "Lifetime-Based pH Sensors:
Indicators for Acidic Environments." Anal. Biochem. 1999, 269, 162-167.
5) Murtaza, Z.; Chang, Q.; Rao, G. V.; Lin, H.; Lakowicz, J. R. "Long-Lifetime
Metal-Ligand pH Probe." Anal. Biochem. 1997, 247, 216-222.
6) Michael, K. L.; Walt, D. R. "Combined Imaging and Chemical Sensing of
Fertilization-Induced Acid Release from Single Sea Urchin Eggs." Anal.
Biochem. 1999,273, 168-178.
7) Mills, A.; Lepre, A.; Wild, L. "Breath-by-breath Measurement of Carbon Dioxide
using a Plastic Film Optical Sensor." Sens. Actuators B 1997, 38-39, 419-425.
8) Mills, A.; Lepre, A.; Wild, L. "Effect of Plasticizer Compatibility on the
Response Characteristics of Optical Thin CO2 and O2 Sensing Films." Anal.
Chim. Acta 1998, 362, 193-202.
9) Albert, K. J.; Walt, D. R. "High-Speed Fluorescence Detection of Explosives-like
Vapors." Anal. Chem 2000, 72, 1947-1955.
192

193
10)Li, L.; Walt, D. R. "Dual-Analyte Fiberoptic Sensor for the Simultaneous and
Continuous Measurement of Glucose and Oxygen." Anal. Chem. 1995, 67, 3746-
3752.
11)Healey, B. G.; Walt, D. R. "Improved Fiberoptic Chemical Sensor for Penicillin."
Anal. Chem. 1995, 67, 4471-4476.
12)Healey, B. G.; Matson, R. S.; Walt, D. R. "Fiberoptic DNA Sensor Array Capable
of Detecting Point Mutations." Anal. Biochem. 1997, 251, 270-279.
13) Seitz, W. R. "Chemical Sensors Based on Immobilized Indicators and Fiber
Optics." CRC Crit. Rev. Anal. Chem. 1988, 79, 135-173.
14) Zhao, Y. D.; Richman, A.; Storey, C.; Radford, N. B.; Pantano, P. "In situ Fiber¬
optic Oxygen Consumption Measurements from a Working Mouse Heart." Anal.
Chem. 1999, 77, 3887-3893.
15)Ni, T. Q.; Melton, L. A. "Fuel Equivalence Ratio Imaging for Methane Jets."
Appl. Spectroscopy. 1993, 47, 773-781.
16)Gouterman, M. "Oxygen Quenching of Luminescence of Pressure Sensitive Paint
for Wind Tunnel Research." J. Chem. Ed. 1997, 74, 697-702.
17)Morris, M. J.; Donovan, J. F.; Kegelman, J. T.; Schwab, S. D.; Levy, R. L.;
Crites, R. C. "Aerodynamic Applications of Pressure Sensitive Paint." AIAA
Journal 1993, 31, 419-425.
18) Lu, X.; Winnik, M. A. Luminescence Quenching by Oxygen in Polymer Films',
Ramamurthy, V. and Schanze, K. S., Ed.; Marcel Dekker, Inc.: New York, 2000;
Vol. 6, pp 311-352.
19) Kavandi, J.; Callis, J.; Gouterman, M.; Khalil, G.; Wright, D.; Green, E.; Burns,
D.; McLachlan, B. "Luminescent Barometry in Wind Tunnels." Rev. Sci. Instrum.
1990, 67, 3340-3347.

194
20)Liu, T.; Campbell, B. T.; Burns, S. P.; Sullivan, J. P. "Temperature- and Pressure-
Sensitive Luminescent Paints in Aerodynamics." Appl. Mech. Rev. 1997, 50, 227-
246.
21) Peterson, J. I.; Fitzgerald, R. V. "New Technique of Surface Flow Visualization
Based on Oxygen Quenching of Fluorescence." Rev. Sci. Instr. 1980. 51, 670-671.
22) Rabek, J. F. Mechanisms of Photophysical Processes and Photochemical
Reactions in Polymers, 1st ed.; Wiley & Sons: New York, 1987.
23) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed.; Academic
Press/Plenum Press: New York, 1999.
24)Hubner, J. P.; Carroll, B. F. "Application of Dual Sorption Theory to Pressure-
Sensitive Paints." AIAA Journal 1997, 35, 1790-1792.
25) Xu, W. Y.; McDonough, R. C.; Langsdorf, B.; Demas, J. N.; DeGraff, B. A.
"Oxygen Sensors Based On Luminescence Quenching: Interactions of Metal-
Complexes with the Polymer Supports." Anal. Chem. 1994, 66, 4133-4141.
26) Mills, A. "Response Characteristics of Optical Sensors for Oxygen: Models
Based on a Distribution in tq or kq." Analyst 1999, 124, 1301-1307.
27) Demás, J. N.; DeGraff, B. A.; Coleman, P. B. "Oxygen Sensors Based on
Luminescence Quenching." Anal. Chem. 1999. 71, 793A-800A.
28) Kneas, K. A.; Xu, W. Y.; Demas, J. N.; DeGraff, B. A. "Oxygen Sensors Based
on Luminescence Quenching: Interactions of Tris(4,7-diphenyl-1,10-
phenanthroline)ruthenium(II) chloride and Pyrene with Polymer Supports."
Applied Spectroscopy 1997, 51, 1346-1351.
29) Carraway, E. R.; Demas, J. N.; DeGraff, B. A. "Luminescence Quenching
Mechanism for Microheterogeneous Systems." Anal. Chem. 1991, 63, 322-336.

195
30)Demas, J. N.; DeGraff, B. A.; Xu, W. "Modeling of Luminescence Quenching-
based Sensors: Comparison of Multisite and Nonlinear Gas Solubility Models."
Anal. Chem. 1995, 67, 1377-1380.
31) Carraway, E. R.; Demás, J. N.; DeGraff, B. A.; Bacon, J. R. "Photophysics and
Photochemistry of Oxygen Sensors Based on Luminescent Transition-Metal
Complexes." Anal. Chem. 1991, 63, 337-342.
32) Demás, J. N.; DeGraff, B. A. "Luminescence-based sensors: Microheterogeneous
and Temperature Effects." Sensor. Actuat. B 1993, 11, 35-41.
33)Mills, A. "Response Characteristics of Optical Sensors for Oxygen: A Model
Based on a Distribution in tq and kq." Analyst 1999, 124, 1309-1314.
34)Demás, J. N.; DeGraff, B. A. "Design and Applications of Highly Luminescent
Transition Metal Complexes." Anal. Chem. 1991, 63, 829A- 837A.
35)Demás, J. N.; DeGraff, B. A. "Applications of Luminescent Transition Metal
Complexes to Sensor Technology and Molecular Probes." J. Chem. Ed. 1997, 74,
690-695.
36)Lee, S. -K.; Okura, I. "Photoluminescent Oxygen Sensing on a Specific Surface
Area Using Phosphorescence Quenching of Pt-Porphyrin." Anal. Sci. 1997, 13,
535-540.
37) Mills, A.; Lepre, A. "Controlling the Response Characteristics of Luminescent
Porphyrin Plastic Film Sensors for Oxygen." Anal. Chem. 1997, 69, 4653-4659.
38) Papkovsky, D. B.; Ponomarev, G. V.; Trettnak, W.; O'Leary, P. "Phosphorescent
Complexes of Porphyrin Ketones: Optical Properties and Application to Oxygen
Sensing." Anal. Chem. 1995, 67, 4112-4117.
39) Mills, A.; Williams, F. C. "Chemical Influences on the Luminescence of
Ruthenium Diimine Complexes and Its Response to Oxygen." Thin Solid Films
1997, 306, 163-170.

196
40) Mills, A.; Thomas, M. D. "Effect of Plasticizer Viscosity on the Sensitivity of an
[Ru(bpy)3“+(Ph4B')2]-based Optical Sensor." Analyst 1998. 123, 1135-1140.
41) Hartmann, P.; Trettnak, W. "Effects of Polymer Matrices on Calibration
Functions of Luminescent Oxygen Sensors Based on Porphyrin Ketone
Complexes." Anal. Chem. 1996. 68, 2615-2620.
42)Hartmann. P. "Photochemically Induced Energy Transfer Effects on the Decay
Times of Ruthenium Complexes in Polymers." Anal. Client 2000, 72, 2828-2834.
43)Wolfbeis, O. S. "Fiber-Optic Chemical Sensors and Biosensors." Anal. Chem.
2000, 72, 81R-90R.
44)McDonagh, C.; MacCraith, B. D.; McEvoy, A. K. "Tailoring of Sol-Gel Films for
Optical Sensing of Oxygen in Gas and Aqueous Phase." Anal. Client. 1998, 70,
45-50.
45) Buell, S. L.; Demas, J. N. "Heterogeneous Preparation of Singlet Oxygen using an
Ion-Exchange-Resin-Bound Tris(2,2’-bipyridine) ruthenium (II) Photosensitizer."
J. Pins. Chem. 1983, 87, 4675-4681.
46) Demas, J. N.; Diemente, D.; Harris, E. W. "Oxygen Quenching of Charge-
Transfer Excited States of Ruthenium (II) Complexes. Evidence for Singlet
Oxygen Production." J. Am. Chem. Soc. 1973, 95, 6864-6865.
47) Bacon, J. R.; Demas, J. N. "Determination of Oxygen Concentration by
Luminescence Quenching of a Polymer-Immobilized Transition-Metal Complex."
Anal. Chem. 1987,59, 2780-2785.
48) Hartmann, P.; Leiner, M. J. P.; Kojlbacher, P. "Photobleaching of a Ruthenium
Complex in Polymers used for Oxygen Optodes and Its Inhibition by Singlet
Oxygen Quenchers." Sens, and Actuators B 1998, 5/, 196-202.
49) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Bclser, P.; von Zelewsky, A.
"Ru(II) Polypyridine Complexes: Photophysics, Photochemistry,
Electrochemistry and Chemiluminescence." Coord. Chem. Rev. 1988, 84, 85-277.

197
50) Mills, A. "Optical Oxygen Sensors." Platinum Met. Rev. 1997, 41, 115-127.
51) Amao, Y.; Miyashita, T.; Okura, I. "Optical Oxygen Sensing Based on the
Luminescence Change of Metalloporphyrins Immobilized in Styrene-
Pentafluorostyrene Copolymer Film." Analyst 2000, 125, 871-875.
52) Gouterman, M. The Porphyrins', Dolphin, D., Ed.; Academic: New York, 1978;
Vol. 3.
53)Turro, N. J. Modern Molecular Photochemistry, University Science Books: Mill
Valley, 1991.
54)Odian, G. Principles of Polymerization, 3rd ed.; Wiley-Interscience: New York,
1991.
55)Pauly, S. Permeability and Diffusion Data', 4th ed.; Brandrup, J., Immergut, E. H.,
Grulke, E. A., Abe, A. and Gloch, D. R., Ed.; Wiley-Interscience: New York,
1999.
56) Chan, C. -M.; Chan, M.-Y.; Zhang, M.; Lo, W.; Wong, K.-Y. "The Performance
of Oxygen Sensing Films with Ruthenium-adsorbed Fumed Silica Dispersed in
Silicone Rubber." Analyst 1999, 124, 691-694.
57) Puklin, E.; Carlson, B.; Gouin, S.; Costin, C.; Green, E.; Ponomarev, S.; Tanji,
H.; Gouterman, M. "Ideality of Pressure Sensitive Paint. I. Platinum
Tetra(pentafluorophenyl)porphine in Fluoroacrylic Polymer." J. Appl. Polym. Sci.
2000, 77, 2795-2804. -
58) Yi-Yan, N.; Felder, R. M.; Koros, W. J. "Selective Permeation of Hydrocarbon
Gases in poly(tetrafluoroethylene) and poly(fluoroethylene-propylene)co-
polymer." J. Appl. Polym. Sci. 1980, 25, 1755-1744.
59) Amao, Y.; Asai, K.; Miyashita, T.; Okura, I. "Novel Optical Oxygen Sensing
Material: platinum porphyrin-styrene-pentafluorostyrene Copolymer Film." Anal.
Commun. 1999, 36, 367-369.

198
60) Ruffolo, R.; Evans, C. E. B.; Liu, X. -H.; Ni, Y.; Pang, Z.; Park, P.; McWilliam,
A. R.; Gu, X.; Lu, X.; Yekta, A.; Winnik, M. A.; Manners, I. "Phosphorescent
Oxygen Sensors Utilizing Sulfur-Nitrogen-Phosphorous Polymer Matrixes:
Synthesis, Characterization, and Evaluation of Poly(thionylphosphazene)-/?-
Poly(tetrahydrofuran) Block Copolymers." Anal. Chem. 2000, 72, 1894-1904.
61) Pang, Z.; Gu, X.; Yekta, A.; Masoumi, Z.; Coll, J. B.; Winnik, M. A.; Manners, I.
"Phosphorescent Oxygen Sensors Utilizing Sulfur-Nitrogen-Phosphorous
Polymer Matrices." Adv. Mater. 1996, 8, 768-771.
62) Innovative Scientific Solutions, I. "www.innssi.com.". 14 October 2000,
63) Schanze, K. S.; Carroll, B. F.; Korotkevitch, S.; Morris, M. J. "Temperature
Dependence of Pressure Sensitive Paints." AIAA Journal 1997, 35, 306-310.
64) Woodmansee, M. A.; Dutton, J. C. "Treating Temperature-Sensitivity Effects of
Pressure Sensitive Paint Measurements." Exp. Fluids 1998, 24, 163-174.
65) Coyle, L. M.; Chapman, D.; Khalil, G.; Schibli, E.; Gouterman, M. "Non-
Monotonic Temperature Dependence in Molecular Referenced Pressure-Sensitive
Paint." J. Lumin. 1999, 82, 33-39.
66) Troyanovsky, I.; Sadovskii, N.; Kuzmin, M.; Mosharow, V.; Orlov, A.;
Radchenko, V.; Phonov, S. "Set of Luminescence Pressure Sensors for Aerospace
Research." Sens. Actuators B 1993, //, 201-206.
67) Guillet, J. E. Mass Diffusion in Solid Polymers', Winnik, M. A., Ed.; D. Reidel
Publishing Company: Dordrecht, 1986; Vol. 182, pp 467-494.
68) Sharman, K. K.; Periasamy, A.; Ashworth, H.; Demas, J. N.; Snow, N. H. "Error
Analysis of the Rapid Lifetime Determination Method for Double-Exponential
Decays and New Windowing Schemes." Anal. Chem. 1999, 7/, 947-952.
O'Keeffe, G.; MacCraith, B. D.; McEvoy, A. K.; McDonagh, C. M.; McGilp, J. F.
"Development of a LED-based Fluorimetric Oxygen Sensor using Evanescent
Wave Excitation of a Sol-gel Immobilize Dye." Sens. Actuators B 1995, 29, 226-
230.
69)

199
70) Harris, J.; Gouterman, M. Referenced Pressure Sensitive Paint Using Blue
Emitting Phosphors; Sixth Annual Pressure Sensitive Paint Workshop, The
Boeing Company, Seattle, WA, 1998, pp 19.1-19.13.
71) Eastwood, D.; Gouterman, M. "Porphyrins XVIII. Luminescence of (Co), (Ni),
Pd, Pt Complexes." J. Molec. Spectroscopy. 1970, 35, 359-375.
72) Spellane, P. J.; Gouterman, M.; Antipas, A.; Kim, S.; Liu, Y. C. "Porphyrins. 40.'
Electronic Spectra and Four-Orbital Energies of Free-Base, Zinc, Copper, and
Palladium Tetrakis(perfluorophenyl)porphyrin." Inorg. Chem. 1980, 79, 386-391.
73) Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin Complexes',
Academic Press Inc.: New York, 1992.
74)Lee, S. -K.; Okura, I. "Photostable Optical Oxygen Sensing Material: Platinum
tetrakis(pentafluoropenyl)porphyrin Immobilized in Polystyrene." Anal. Commun.
1997,34, 185-188.
75)Li, K.; Stover, H. D. H. "Synthesis of Monodisperse Poly(divinylbenzene)
Microspheres." J. Polym. Sci. Part A: Polym. Chem. 1993, 31, 3257-3263.
76)Li, W. H.; Stover, H. D. H.; Hamielec, A. E. "Novel Polystyryl Resins For Size-
Exclusion Chromatography." J. Polym. Sci. Part A: Polym. Chem. 1994, 32,
2029-2038.
77)Stanciu, A.; Airineri, A.; Timpu, D.; Ioanid, A.; loan, C.; Bulacovschi, V.
"Polyurethane/polydimethylsiloxane Segmented Copolymers." Eur. Polym. J.
1999, 35, 1959-1965.
78) Piller, H. Microscope Photometry-, Springer-Verlag: New York, 1977.
79) Gallery, J.; Gouterman, M.; Callis, J.; Khalil, G.; McLachlan, B.; Bell, J.
"Luminescent Thermometry For Aerodynamic Measurements." Rev. Sci. Instrum.
1994, 65, 712-720.

80)
Lee, W. W. -S.; Wong, K. -Y.; Li, X. -M.; Leung, Y. -B.; Chan, C. -S.; Chan, K.
S. "Halogenated Platinum Porphyrins as Sensing Materials for Luminescence-
based Oxygen Sensors." J. Mater. Chem. 1993, 3, 1031-1035.
81)Antipas, A.; Dolphin, D.; Gouterman, M.; Johnson, E. C. "Porphyrins. 38. *
Redox Potentials, Charge Transfer Transitions, and Emission of Copper, Silver,
and Gold Complexes." J. Am. Chem. Soc. 1978, 100, 7705-7709.
82) Matsuoka, M. Cyanine Dyes; Matsuoka, M., Ed.; Plenium Press: New York,
1990, pp 19-35.
83) Botelho do Regó, A. M.; Pereira, L. P.; Reis, M. J.; Oliveira, A. S.; Ferreira, L. F.
"X-ray Photoelectron, UV-vis Absorption, and Luminescence Spectroscopic
Studies of 2,2'-Cyanines Adsorbed onto Microcrystalline Cellulose." Langmuir
1997. 75, 6787-6794.
84)Rao, T. V. S.; Huff, J. B.; Bieniarz, C. "Supramolecular Control of Photophysical
Properties of Cyanine Dyes." Tetrahedron 1998, 54, 10627-10634.
85)Hofstraat, J. W.; van Houwelingen, G. D. B.; Schotman, A. H. M.; Nuijens, M. J.;
Gooijer, C.; Velthorst, N. H.; Strekowski, L.; Patonay, G. "Near-IR Fluorescent
Labels for Determination of Functional Groups in Polymeric Materials." Polym.
1997, 38, 4033-4041.
86) Roberts, D. V.; Wittmerhaus, B. P.; Zhang, Y. -Z.; Swan, S.; Klinosky, M. P.
"Efficient Excitation Energy Transfer among Multiple Dyes in Polystyrene
Microspheres." J. Lumin. 1998, 79, 225-231.
87) Nakashima, K.; Tañida, S.; Miyamoto, T.; Hashimoto, S. "Photoinduced Electron
Transfer from Indolic Compounds to 1-pyrenemethanol in Polystyrene Latex
Dispersions." J. Photochem. Photobio. A: Chem. 1998, 117, 111-117.
88) Nakashima, K.; Kido, N.; Yekta, A.; Winnik, M. A. "Photoreactions on Latex
Surfaces: Excimer Formation of 1-pyrenemethanol on Polystyrene Latex
Particles." J. Photochem. Photobio. A: Chem. 1997, 110, 207-212.

201
89)
Levitus, M.; Negri, R. M.; Aramendía, P. F. "Rotational Relaxation of
Carbocyanines. Comparative Study with the Isomerization Dynamics." J. Phys.
Chem. 1995, 99, 14231-14239.
90)
Scaffardi, L.; Di Paolo, R. E.; Duchowicz, R. "Simultaneous Absorption and
Fluorescence Analysis of the Cyanine Dye DOCI." J. Photochem. Photobio. A:
Chem. 1997, 107, 185-188.
91)
Aramendía, P. F.; Negri, R. M.; San Roman, E. "Temperature Dependence of
Fluorescence and Photoisomerization in Symmetric Carbocyanines. Influence of
Medium Viscosity and Molecular Structure." J. Phys. Chem. 1994, 98, 3165-
3173.
92)
.1
Ponterini, G.; Momicchioli, F. "Trans-cis Photoisomerization Mechanism of
Carbocyanines: Experimental Check of Theoretical Models." Chem. Phys. 1991,
151, 111-126.
ll
93)
Winnik, F. M.; Morneau, A.; Ziolo, R. F.; Stover, H. D. H.; Li, W. -H. "Template-
Controlled Synthesis of Superparamagnetic Goethite within Macroporous
Polymeric Microspheres." Langmuir 1995, 11, 3660-3666.
94)
Watts, R. J.; Crosby, G. A. "Spectroscopic Characterization of Complexes of
Ruthenium (II) and Iridium (III) with 4,4'-Diphenyl-2,2'-bipyridine and 4,7-
Diphenyl-l,10-phenanthroline." J. Am. Chem. Soc. 1971, 93, 3184-3188.
95)
Demas, J. N.; DeGraff, B. A. "Application of Highly Luminescent Transition
Metal Complexes in Polymer Systems." Makromolekulare Chemie-
Macromolecular Symposia 1992, 59, 35-51.
n
96)
Ellis, A. B.; Brainard, R. J.; Kepler, K. D.; Moore, D. E.; Winder, E. J.
"Modulation of the Photoluminescence of Semiconductors by Surface Adduct
Formation: An Application of Inorganic Photochemistry to Chemical Sensing." J.
Chem. Ed. 1997, 75, 680-684.
97)
Mills, A. "Optical Sensors for Oxygen: a Log-gaussian Multisite-quenching
Model." Sensor. Actuat. B 1998, 57, 69-76.

98)
Assuming Henry's Law holds, K$y is related to K'$y by the equation, K$y =
(0.21) a K'sy where a is the solubility coefficient of O2 in the polymer film and
0.21 is the mole fraction of O2 in the air.
99)Dunn, R. C. "Near-Field Scanning Optical Microscopy." Chem. Rev. 1999, 99,
2891-2927.
100)Hou, Y.; Bardo, A. M.; Martinez, C.; Higgins, D. A. "Characterization of
Molecular Scale Environments in Polymer Films by Single Molecule
Spectroscopy." J. Phys. Chem. B 2000, 104, 212-219.
101)Wang, H.; Bardo, A. M.; Collinson, M. M.; Higgins, D. A. "Microheterogeneity
in Dye-Doped Silicate and Polymer Films." J. Phys. Chem. B 1998, 102, 7231-
7237.
102)Yoshikawa, H.; Masuhara, H. "Near-Field Fluorescence Microscopy and
Photochemistry of Organic Mesoscopic Materials." J. Photochem. Photobio. C:
Photochem. Rev. 2000, /, 57-78.
103)Bout, D. A. V.; Kerimo, J.; Higgins, D. A.; Barbara, P. F. "Near-field Optical
Studies of Thin-film Mesostructured Organic Materials." Acc. Chem. Res. 1997,
30, 204-212.
104) Ishikawa, M.; Ye, J. Y.; Maruyama, Y.; Nakatsuka, H. "Triphenylmethane Dyes
Revealing Heterogeneity of Their Nanoenviroment: Femtosecond, Picosecond
and Single-molecule Studies." J. Phys. Chem. A 1999, 103, 4319-4331.
105) Carraway, E. R.; Demas, J. N.; DeGraff, B. A. "Photophysics and Oxygen
Quenching of Transition Metal Complexes on Fumed Silica." Langmuir 1991. 7,
2991-2998.
106)Draxler, S.; Lippitsch, M. E.; Klimant, I.; Kraus, H.; Wolfbeis, O. S. "Effects of
Polymer Matrices on the Time-Resolved Luminescence of a Ruthenium Complex
Quenched by Oxygen." J. Phys. Chem. 1995, 99, 3162-3167.

203
107) Devenney, M.; Worl, L. A.; Gould, S.; Guadalupe, A.; Sullivan, B. P.; Caspar, J.
V.; Leasure, R. L.; Gardner, J. R.; Meyer, T. J. "Excited State Interactions in
Electropolymerized Thin Films of Ru-II, Os-II and Zn-II Polypyridyl
Complexes." J. Phys. Chem. A 1997, 101, 4535-4540.
108) Hauenstein, B. L.; Dressick, W. J.; Gilbert, T. B.; Demas, J. N.; DeGraff, B. A.
"Interactions of Ruthenium (II) Photosensitizers with Nonionic Surfactants: The
Binding Region and Specific-Anion Effects." J. Phys. Chem. 1984, 88, 1902-
1905.
109) Sacksteder, L.; Demas, J. N.; DeGraff, B. A. "Design of Oxygen Sensors Based
on Quenching of Luminescent Metal Complexes: Effect of Ligand Size on
Heterogeneity." Anal. Chem. 1993, 65, 3480-3483.
110) Mills, A.; Thomas, M. "Fluorescence-based Thin Plastic Film Ion-Pair Sensors
for Oxygen." Analyst 1997, 122, 63-68.
111) Bahr, S. R.; Boudjouk, P. "Trityl tetrakis(3,5-
bis(trifluoromethyl)phenyl)borate-A New Hydride Abstraction Reagent." J. Org.
Chem. 1992, 57, 5545-5547.
112) Schmittel, M.; Ammon, H. "A Short Synthetic Route to 4,7-dihalogenated 1,10-
phenanthrolines with Additional Groups in 3,8-position: Soluble Precursors for
Macrocyclic Oligophenanthrolines." Eur. J. Org. Chem. 1998, 5, 785-792.
[
a

BIOGRAPHICAL SKETCH
Joanne M. Bedlek-Anslow was born on July 12, 1973, in Chicago, IL to Anne and
John Bedlek. She has a younger sister, Jeanne, a First Lieutenant in the United States Air
Force. The two grew-up as best friends and one another’s biggest champion. As a
young woman. Joanne was active in Girl Scouting, swimming, volunteering and church
stewardship. She obtained her Scouting Gold Award, numerous swimming medals and
ribbons, and commendations for her community service. Accordingly, she did well
throughout grammar and high schools excelling in arts, languages, and science and
graduated with honors from J. B. Conant High School.
She began her degree in biology/pre-medicine at Loyola University of Chicago in
the fall of 1991. In her sophomore year, she became a chemistry major after attending an
organic chemistry course taught by Dr. Mary K. Boyd, Joanne’s mentor and friend.
During her time at Loyola, Joanne was involved in the university ministry, orchestra, and
student affiliate American Chemical Society.
After completing her chemistry major and German minor, Joanne chose a year of
Italian immersion at the Loyola University Rome Center, Rome, Italy. Her passionate
vocations as a child were centered in the arts and foreign languages. She took advantage
of the opportunity abroad to stop, listen, look and breathe in the expansive culture of Italy
and Europe. Joanne considers this time away instrumental in developing her awareness
of self and presence as a young woman with an extraordinary life still to live.
204

205
Joanne, still savoring her newfound self, returned to the states to graduate from
Loyola cum laude. Shortly thereafter she relocated to Gainesville, FL, to pursue her
other more practical passion, chemistry.
During her time at the University of Florida, Joanne learned that she could
recreate herself once more. She developed the analytical critical thinking aspects of her
persona in pursuing her Ph.D. Long hours spent in the library and laboratory left very
little time for other pleasures; however, she balanced her studies with an active
involvement in her church, art, and various outdoor recreations. In the midst of all this,
she married her college sweetheart, Paul. The two share similar dreams and aspirations
forming a relationship full of love and support.
Upon graduation, Joanne, Paul and their two kitties will relocate to Columbia, SC,
where she will begin her career as a Senior Chemist with DuPont Nylon.

I certify that I have read this study and
standards of scholarly presentation and is fully
for the degree of Doctor of Philosophy.
I certify that I have read this study and
standards of scholarly presentation and is fully
for the degree of Doctor of Philosophy.
I certify that I have read this study and
standards of scholarly presentation and is fully
for the degree of Doctor of Philosophy.
I certify that I have read this study and
standards of scholarly presentation and is fully
for the degree of Doctor of Philosophy.
that in my opinion it conforms to acceptable
adequate, in scope and quality, as a dissertation
Kirk Schanze, Chairman
Professor of Chemistry
that in my opinion it conforms to acceptable
adequate, in scope and quality, as a dissertation
that in my opinion it conforms to acceptable
adequate, in scope and quality, as a dissertation
✓
Lisa'Mc Elwee-White
Professor of Chemistry
that in my opinion it conforms to acceptable
adequate, in scope and quality, as a dissertation
J^mes Boncella
Professor of Chemistry
I certify that I have read this study and that in my opinion it conforms to acceptable
standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation
for the degree of Doctor of Philosophy.
x7.—-z^L^y
Bruce Carroll
Associate Professor of Aerospace Engineering
This dissertation was submitted to the Graduate Faculty of the Department of Chemistry
in the College of Liberal Arts and Sciences and to the Graduate School and was accepted as
partial fulfillment of the requirements for the degree of Doctor of Philosophy.
December 2000
Dean, Graduate School


LD
17S0
20 00
,0V/2