Citation
Singular dynamics in quantum mechanics and quantum field theory

Material Information

Title:
Singular dynamics in quantum mechanics and quantum field theory
Creator:
Zhu, Chengjun, 1963-
Publication Date:
Language:
English
Physical Description:
vii, 103 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Adjoints ( jstor )
Boundary conditions ( jstor )
Diseases ( jstor )
Equations of motion ( jstor )
Mathematics ( jstor )
Modeling ( jstor )
Quantum field theory ( jstor )
Quantum mechanics ( jstor )
Symptomatology ( jstor )
Trajectories ( jstor )
Dissertations, Academic -- Physics -- UF
Physics thesis Ph.D
Quantum theory ( lcsh )
Singularities (Mathematics) ( lcsh )
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1994.
Bibliography:
Includes bibliographical references (leaves 101-102).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Chengjun Zhu.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001981559 ( ALEPH )
31920351 ( OCLC )
AKF8490 ( NOTIS )

Downloads

This item has the following downloads:


Full Text












SINGULAR DYNAMICS
IN
QUANTUM MECHANICS AND QUANTUM FIELD THEORY




By


CHENGJUN ZHU


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY


UNIVERSITY OF FLORIDA


1994




SINGULAR DYNAMICS
IN
QUANTUM MECHANICS AND QUANTUM FIELD THEORY
By
CHENGJUN ZHU
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA


Dedicated to
My Parents and Friends


ACKNOWLEDGMENTS
I wish to thank my supervisor, Prof. J. R. Klauder, for his efforts, patience
and encouragement throughout the time I have been at the University of Florida.
He introduced me to most of the topics involved in this dissertation and always
was ready for a discussion if needed. Over the years, his enthusiasm and
encouragement have been constant sources of inspiration to push the project
forward.
I am grateful to the other members in my supervisory committee, Prof.
Pierre Ramond for his valuable comments and suggestions, Prof. Charles
Hooper, Prof. Robert Buchler, Prof. David Tanner and Prof. Christopher Stark,
for patiently sitting through my oral exam and thesis defense. Special thanks
should go to Prof. Buchler for his kindness, concern and heuristic suggestions
when I was very depressed in job-hunting.
Also I want to express my deep thanks to my fellow graduate students
and colleagues, for their help and encouragement throughout the years.


TABLE OF CONTENTS
pages
ACKNOWLEDGMENTS in
ABSTRACT vi
PART I CLASSICAL SYMPTOMS OF QUANTUM ILLNESSES
CHAPTERS
1 INTRODUCTION 2
1.1 Basic Concepts of Operator Theory 3
1.2 Symmetric Operators and Extensions 4
1.3 The Construction of Self-Adjoint Extensions 8
2 CLASSICAL SYMPTOMS OF QUANTUM ILLNESSES 10
2.1 Principal Assertions 10
2.2 Classical Symptoms of Quantum Illnesses 12
2.3 More General Examples 16
2.3.1 Examples of One-Dimensional Hamiltonians 16
2.3.2 Examples of Three-Dimensional Hamiltonians 20
3 SELF-ADJOINTNESS OF HERMITIAN HAMILTONIANS 22
3.1 Three Different Cases of Hermitian Hamiltonians 22
3.2 The Application of Boundary Conditions and Self-Adjoint
Extensions at Regular Points 32
3.3 The Application of Boundary Conditions and Self-Adjoint
Extensions at Singular Points 34
3.4 Conclusion 38
PART II OPERATOR ANALYSIS AND FUNCTIONAL INTEGRAL
REPRESENTATION OF NONRENORMALIZABLE MULTI
COMPONENT ULTRALOCAL MODELS
4 INTRODUCTION 44
5 CLASSICAL ULTRALOCAL MODEL AND THE STANDARD
LATTICE APPROACH 48
6 OPERATOR ANALYSIS OF MULTI-COMPONENT ULTRALOCAL
MODELS 53
IV


6.1 Operator Analysis of Single-Component Ultralocal Models
54
6.2 Operator Analysis of Finite-Component Ultralocal Fields
60
6.3 Operator Analysis of Infinite-component Ultralocal Fields
65
7 THE CLASSICAL LIMIT OF ULTRALOCAL MODELS 73
7.1 Ultralocal Fields and Its Associated Coherent States 74
7.2 Selection of the Coherent States for Ultralocal Fields
and the Classical Limit 77
8 PATH-INTEGRAL FORMULATION OF ULTRALOCAL MODELS
86
8.1 Operator Solutions of Ultralocal Models 87
8.2 Euclidean-Space Path-Integral Formulation of
Single-Component Ultralocal Fields 92
8.3 Euclidean-Space Path-Integral Formulation of
Multi-Component Ultralocal Fields 96
REFERENCES 101
BIOGRAPHICAL SKETCH 103
v


Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
SINGULAR DYNAMICS
IN
QUANTUM MECHANICS AND QUANTUM HELD THEORY
By
Chengjun Zhu
April, 1994
Chairman: Dr. John R. Klauder
Major Department: Physics
The classical viewpoint that the pathologies of quantum Hamiltonians are
reflected in their classical counterparts and in the solution of the associated
classical dynamics is illustrated through the properties of classical equations of
motion. Rigorous mathematical proofs are provided by calculating the
deficiency indices, which further help to analyze the possibility of extending the
Hermitian Hamiltonian to a self-adjoint one. A few examples of how to add
boundary conditions on wave functions in order to have self-adjoint extensions,
as well as to cure the illness of certain Hamiltonians, are discussed.
The nontrivial (non-Gaussian), nonperturbative quantum field theory of
0(N)-invariant multi-component, nonrenormalizable ultralocal models is
presented. An indefinite nonclassical and singular potential has replaced the
nonvanishing, positive-definite nonclassical and singular potential appeared in
the single-component case. The operator theory of multi-component ultralocal
vi


fields remains noncanonical even with the disappearance of the singular
potential. The validity of this nontrivial solution is supported by the fact that the
nontrivial quantum solution reduces to the correct classical theory in a suitable
limit as fi -4 0. The nontrivial (non-Gaussian) path integral formulation
constructed by the nonperturbative operator solution, involving the nonclassical
and singular potential, replaces the standard lattice approach, which invariably
leads to a Gaussian theory regardless of any nonlinear interactions. The
appearance of the nonclasssical, singular potential suggests that we can not
always place the classical Lagrangian or classical Hamiltonian directly into the
path-integral formulation, or in other words, a straightforward canonical
quantization of fields with infinite degrees of freedom does not always apply.
These differences suggest plausible modifications in the lattice-space formulation
of relativistic nonrenormalizable models that may lead to nontriviality for N-
4
component models such as On, n > 5 (and possibly n = 4), for N > 1.
Vll


PARTI
CLASSICAL SYMPTOMS
OF
QUANTUM ILLNESSES


CHAPTER 1
INTRODUCTION
The rules of quantization, as laid down in 1926 by Schrodinger, have stood
the test of time and have provided the basis for applying (and teaching)
nonrelativistic quantum mechanics1. Because of the overwhelming success of the
theory, it is not surprising that physicists have little use for several mathematical
niceties that go by the largely unfamiliar code words of "self-adjoint extension,"
"deficiency indices," operator domains," etc. (which we will briefly define in
subsequent sections). 2/3
These concepts typically become important when the quantization
prescriptions are ambiguous or otherwise incomplete all by themselves4. Our
goal is to show that such quantum technicalities are actually reflected in the
classical theory by corresponding difficulties that are easy to see and understand.
It will be clear that such an evident classical difficulty must lead to some kind of
quantum difficulty, and thus the naturalness of the corresponding quantum
technicality will become apparent. We may go so far as to assert that there are
sufficient classical symptoms of any quantum illness that a complete diagnosis is
possible already at the classical level (Chapter 2). Of course, resolving the
problems and effecting a full cure, when one exists, can only take place at the
quantum level (Chapter 3).
This chapter contains basically a summary of the mathematical concepts
and theorems prepared for later chapters. In Chapter 2, we will discuss the
properties of classical solutions of given examples, whose "symptoms" can be
2


3
used to diagnose any potential quantum "illnesses". In Chapter 3, we will
provide the mathematical proof for all the assertions made in Chapter 2 and will
also give a few examples of how to add boundary conditions on the wave
functions in order to extend the Hamiltonians to be self-adjoint and so to cure the
illness of certain Hamiltonians.
1.1 Basic Concepts of Operator Theory
In this section we follow Ref. 3 closely. The operators we deal with in
quantum mechanics are frequently unbounded operators which need to be
defined on a domain D(A) to ensure that Ay/e for y/ e D(A), where is
Hilbert space.
Generally, if A and B are two unbounded linear operators,
a,P e C,
y/e D (ocA + pB).
D (aA + pB) = D(A) n D(B),
(aA + pB)y/ = a (A y/) + p(B y/),
For the product put
D(AB) = {y/:y/eD(B), By/ eD(A)},
(AB)y/= A (By/), y/e D (AB).
In general D(AB) D(BA), and hence AB BA, and even A A'1 A'1 A,
because their domains may not coincide. So extra care is needed in treating these
operators.


4
We recall that A is densely defined in #if (and only if) jtfis the closure of
D(A), i. e., for y/ e there is a sequence of elements of D(A) converting to y/,
[fa -+y/f fa e D(A)].
For a densely defined operator A for iH into there exists a unique
adjoint operator A+ which satisfies
(A yi, where y/ e D(A) and 0 e D{A +).
If an adjoint operator A+ = A on D(A), and D(A) = D(A+), then A is called
a self-adjoint operator.
1.2 Symmetric Operators and Extensions
If A+ = A on D(A), then D(A) £ D (A*) always holds (like Hermitian
Hamiltonian operators). Now,
(a) A is called a self-adjoint operator when D(A) = D(A+), and one writes A = A+.
(b) A is called a symmetric operator when D(A) c D(A+), and one writes A c A+.
Further, if there exists a symmetric extension As of A, such that A c As =
As+ c A+, then we say that A has the self-adjoint extension As (by enlarging D(A)
to D(AS) and contracting D(A+) to D(AS+) = D(AS)).
Let A + 0= i 0t, with solutions Q e N which are closed subspaces of ^4
known as the deficiency spaces of A; and their dimensions, n respectively, are
called the deficiency indices. We shall also say for brevity that A has deficiency
indices (n+, n_).
Lemma 1. If A is symmetric, then D(A'1) = D( A )N+N., A denotes the
closure of A.


5
Lemma 2 A symmetric operator with finite deficiency indices has a self-
adjoint extension if and only if its deficiency indices are equal.
With the help of the two above Lemmas, the following theorem regarding
deficiency indices is straightforward:
THEOREM 1: Suppose the Hermitian operator A has deficiency indices
(n+, n.), then if
(i) n+ = n. = 0,A is self-adjoint when D(A) is closed and the closure of A is self-
adjoint when D{A) is not closed.
(ii) n+ = n- 0, A has self-adjoint extensions.
(iii) n+ n., A is not self-adjoint and has no self-adjoint extension.
This theorem is used to classify Hermitian operators, and we see that not all
Hermitian operators will generate full-time quantum mechanical solutions.
Example: A = id/dx on Li(Q)
A + 0t= z
Ai=-i d/dx,
0t(x) ~ exp(+ x).
(a) Q = (- oo, + ): Neither 0+ nor 0. is in o, + oo)r so n+ = n- = 0 and A is
self-adjoint on its natural domain. This fact is consistent with its classical
behavior (see Fig. 1(a)), where there is a full-time evolution.
(b) Q = [ 0, + <>): 0. = exp(x) is not in L([ 0, + >)), so (n+, n.) = (1, 0), A is
not self-adjoint and possesses no self-adjoint extension. This fact is consistent
with its classical behavior (see Fig. 1(b)), where there is no full-time evolution.
(c) 2 = [ 0,1]: Both 0 are in £^([ 0,1 ]), (n+, ru) = (1,1), A has self-adjoint
extensions by adding the boundary condition y/(l) = exp (iff) yKO), where 8e 9.


6
The spectrum of A = 6 + 2n n, n = 0, 1, 2,.... For different 6, we get a different
self-adjoint extension. The case of 6 = 0 is the usual case used in quantum
mechanics and is called the periodic boundary condition. See Fig. 1(c) for its
consistent classical behavior.
The deficiency indices are clearly of central importance in the classification
of Hermitian operators and in the construction of self-adjoint extensions. These
may be found easily if explicit solutions of A fy/ = i \¡r are known, but unless
the coefficients of A are simple, the calculations will involve difficult special
functions. In order to avoid those tedious, sometimes even impossible
calculations, we will use a modified theorem of deficiency indices, especially
when both end points of £2 are singular. First, let us look at an example with
quantum Hamiltonian H, where
2
H \f/=(p2 + x3)\i/=(--^- + x3)y/
dx2
acting on functions defined on an interval 2 = (-<,+ ). Both end points x =
are singular. A direct calculation of the deficiency indices seems incredibly
tedious since the behavior of a solution of Hi// = i y/ at both end points must
be known. To simplify the difficulties, we separate Q = (a, b), where a and b are
both singular, to two intervals with Q\ = (a, c ] and Qi = [ c, b), where c is a
regular point. Here comes the second theorem regarding deficiency indices:
THEOREM 2 Let Aa and A\, be symmetric operators associated with A on
2i and / respectively. If n, na, nb indicate the deficiency indices of A, Aa
and Ab respectively, then n= n^ + nb 2, respectively (see Chapter 2 of Ref.
3).
To apply this result to the above example, we have


7
HV
= (--£ + *3)V4
= I>
Since H is a real operator, i. e., H = H, we have y/. = yr+. So n+= n. and we only
need to consider y/+ and n+. Let y/+ = yr,
(--f-+ X3)|//= 1>-
ax2
The asymptotic behaviors at x -> 00 is given by
y/ -x3y/= 0
1/4^+cc ~ Vx Ki/5(|x5/2) ~ x-3>'4exp( -1*5/2)
5 5
. ~ VR /l/5(^xf/2) ~ W 3/4COS ( ^W5/2- ^-7r)
or
V'f!. ~ VR /s&xj572) ~ W* 3/4sin( Jxj572-
A 5 5 20
where Jv, N\ and K\ are the Bessel functions of the first and second kinds,
respectively. Obviously, the integration
j|y/(x)j2dx converges at x = +00.
Thus, n+r +00= 1. In the same way,
v£L~w-3/4


8
(1 2)
so that both solutions of satisfy
j| \¡/ixf-dx converges at x = -
Therefore, n+ .00= 2, and
n+- n+i +oo + +,. 2 = 1 + 2 2 = 1
(+, n.) = (1,1).
One boundary condition* is needed to extend H to be self-adjoint. The existence
of bound states yioo demonstrates that the energy spectrum is discrete. This
result is exactly what is claimed in Chapter 2.
Later in Chapter 3, we will see examples for three different cases of the
deficiency indices: (i) += n. = 0, (ii) n+= n. 0, and (iii) n+* n..
1.3 The Construction of Self-Adjoint Extensions
Before we construct the self-adjoint extensions, we introduce some
notation (see Chapter 10 of Ref. 3):
(i) [(f), y/) = 04 y/) (0, ,4 V)/ where D(A +);
(h) f\r fi " fn e D(A +)= D{A) N+N_, where f¡ = h{ + fa i= 1,2,...,
hj e D(A), (foeN+0N..
If n+=il. the number of boundary conditions = n+; see page 260 of Ref 3.


9
We call fi, fi fn linearly independent relative to D(A) if fa, fa,..., fa are
linearly independent.
With the help of the preceding definitions, we introduce the following
theorem:
THEOREM 3 Let A be a symmetric operator with finite nonzero deficiency
indices n+ = n.= n. Suppose that f\, f2 / D(/4+) are linearly independent
relative to D(A) and satisfy
(fi,fj)= 0 (1,7 = 1,2, n).
Then the subspace Moi ^consisting of all y/e DiA*) such that (\j/,ft) = 0 (i = 1,2,
n) is the domain of a self-adjoint extension M of A, given by M y/= Afyj for
y/eM.
{yf, fi) = 0 ,i = 1, 2,n, are called the number of n boundary conditions on
the wave function y/.
In chapter 3, we will give a few examples of how to use theorem 3 to
obtain some of these self-adjoint extensions and thereby cure the illness of certain
Hamiltonians.


CHAPTER 2
CLASSICAL SYMPTOMS OF QUANTUM ILLNESSES
Without using the precise definitions and techniques of operator theory,
presented in chapter 1, we can simply show that the pathologies of quantum
Hamiltonians are reflected in their classical counterparts and in the solutions of
the associated classical equations of motion. This property permits one, on the
one hand, to appreciate the role of certain technical requirements acceptable
quantum Hamiltonian must satisfy, and, on the other hand, enables one to
recognize potentially troublesome quantum systems merely by examining the
classical systems.
In §2.1, we will make the principal assertions that three categories of
classical solutions correspond to three categories of the self-adjointness of
quantum Hamiltonian operators. Examples are given in §2.2 and §2.3, while the
mathematical proof will be presented in chapter 3.
2.1 Principal Assertions
H =
V
2m
Specifically, for the classical system with a real Hamiltonian function
+ V(q), the classical equation of motion
mq'(t) = V'[q(t)]
admits two kinds of solution:
(i) q(t) is global (which is defined through - < t < +<) and unique, e. g.,
H = p2 + i?4 ;
10


11
(ii) q(t) is locally unique, but globally possibly nonexistent (escapes to infinity
in finite time). This case may be also divided into two sub-cases:
extendible (q(t) can be extended to a global solution) or nonextendible.
For example, H = p2 qA, H = p2 q3 are extendible, but H = pq3 belongs
to nonextendible situation.
The corresponding quantum mechanical problem
i/-yKx, t) = HyKx, t) = [ //2 d2 + v(x) ] i/Kx, t)
ot 2m dx 2
has similar cases. To conserve probability, the time evolution of the wave
function must be effected by a unitary transformation. A unitary transformation
gives a prescription for wave function evolution for all times t, < t < or as
we shall sometimes also say, for full time. The generator of such a unitary
transformation times V^T, which we identify with the Hamiltonian operator (up
to constants), must satisfy one fundamental property, namely, that of being "self-
adjoint." Being self-adjoint is stronger, i.e., more restrictive, than being
Hermitian, which is the generally accepted sufficient criterion. According to
Theorem 1 on page 5, typically, there are three qualitatively different outcomes
that may arise (i) no additional input is needed to make the Hamiltonian self-
adjoint; (ii) some additional input (i.e., the boundary conditions) is required to
make the Hamiltonian self-adjoint, and qualitatively different Hamiltonians may
thereby emerge depending on what choice is make for the needed input; and (iii)
no amount of additional input can ever make the Hermitian Hamiltonian into a
self-adjoint operator. Remember it is only self-adjoint Hamiltonians that have
fully consistent dynamical solutions for all time. Thus in case (iii) no acceptable
quantum dynamical solution exists in any conventional sense.


12
Therefore we make the general assertions that there are three categories of
classical solutions, which correspond to three categories of the self-adjointness of
quantum Hamiltonian operators:
£(0
Hamiltonian operator
self-adjoint & unique
self-adjoint extensions exist
no self-adjoint H exists
(i) global & unique
(ii) nonglobal but extendible
(iii) nonglobal & nonextendible
2.2 Classical Symptoms of Quantum Illnesses
To be sure, the majority of classical systems one normally encounters~as
represented by their classical Hamiltonians, their Hamiltonian equations of
motion, and the solution to these equations of motion-are trouble free. But there
are exceptions, classical systems which exhibit one or another kind of singularity
in their solutions, and it is in these problematic examples that we will find the
anomalous behavior we seek to illustrate.
Let us consider three model classical Hamiltonians that will exhibit the
three kinds of behavior alluded to above.
Example a:
H = p ^ 4.
2y 41
The equations of motion lead to
i2 = 2E-fr,


13
where E > 0 is the conserved energy. Nontrivial motion requires E > 0 and E >
94/4 in which case
leads to a well-defined, unique solution valid for all time. This solution exhibits
a periodic behavior with an energy dependent period T(E). See example a in
Table I.
Example b:
H=2p2 + 3 The equations of motion lead to
42 = 2 E-| and E can assume any real value. Since cp < 3E, we find that
- da
^ t + c.
J
This solution has the property that q diverges, <7 for finite times, for
any nonzero E; see the solid line of example b in the table. The indicator of this
behavior is the observation that the integral converges as the upper limit goes to
- 00 leading to a finite value for the right side, namely, a finite value for the time.
Actually, this same trajectory diverges at an earlier time as well. As b illustrates,


14
the particle comes in from q = o at some time, say t = to, and returns to q = - at
a later time, say T + to, where
-0E)'/3
dq
T = 2
For any nonzero E, T < in particular, by a change of variables, we learn that
where S(E) = E/ IEI, the sign of the energy. As I EI - 0 the particle spends more
and more time near q = 0, until, at E = 0, it takes an infinite amount of time to
reach (or leave) the origin.
Example b in the table illustrates the generic situation for E 0 and finite
T. How could one possibly expect the quantum theory to persist for all time
when the generic classical solution diverges at finite times? The only possible
way for this example to have a genuine quantum mechanics is for the particle to
enjoy a full-time classical solution. And to achieve that-and this is the important
point--whenever the particle reaches q = o, we must launch the particle back
toward the origin with the same energy, once again follow the trajectory inward,
and then outward, until the particle again reaches q = <, when we must again
launch the particle back toward the origin with the same energy,..., and so on,
both forward and backward in time ad infinitum. In brief, to get full-time classical
solutions (as needed to parallel full time quantum solutions) we must recycle the


15
same divergent trajectory over and over again in an endless periodic fashion
(with period T(E)); see b in the table with the solid and the dashed lines.
Example c:
H = p cj3.
The equations of motion, in this case, lead to
4 = with the solution
q(t)= l/Yc-21.
The solution is valid for t < c/2, diverges at t = c/2, and becomes imaginary for t >
c/2. See example c in the table, where we chose the constant c = 0. In no way can
an imaginary solution be acceptable as a classical trajectory. We cannot relaunch
the particle once it has reached c\ = at t = c/2 following the kind of solution
we have found, the only solution there is, as we were able to do in case b. In
short there is no possibility to have a full-time classical solution in the present
example.
If there is no full-time classical solution, then there should be no full-time
quantum solution, and that is exactly what happens. The corresponding
quantum Hamiltonian may be chosen as Hermitian, but there are no technical
tricks that can ever make it self-adjoint. Once again, the signal of this quantum
behavior can be seen in the classical theory, i.e., a divergence of the classical


16
solution followed by a change of that classical solution from real to imaginary.
With such a classical symptom, it is no wonder that there is an incurable
quantum illness.
2.3 More General Examples
In what follows we discuss a number of hypothetical classical
Hamiltonians, examine qualitatively the nature of their classical solutions, and
address, based on the thesis illustrated in Sec. 2.1, the problem of making an
Hermitian Hamiltonian into a self-adjoint one, if that is indeed possible.
Let us dispense with the "healthy" cases at the outset. Whenever the
classical equations of motion admit global solution for arbitrary initial conditions,
then the quantization procedure is unambiguous (apart from classically
unresolvable factor-ordering ambiguities). Observe that the existence of such
global solutions is an intrinsic property of a Hamiltonian independent of any
particular set of canonical coordinates.
2.3.1. Examples of One-Dimensional Hamiltonians
4 = p = 2 VE + q4,
= t +c.
Example d:


17
E can be any real value.
For E > 0, we notice that dq / 2 VE + qA converges to, say T (E), which
means when the particle travels from to + the time interval is T (E). For
nonzero E, T is finite; see the solid line of example d in the table. In order to get a
full-time classical behavior, we must send the particle back when it gets q = o;
see the two distinct dashed lines of d in the table. In quantum theory, this
situation corresponds to adding two boundary conditions (at q = ), which are
required to extend H to be self-adjoint.
For E < 0, the paths do not cross the origin, but there is no essential
difference in the quantum behavior from the case E > 0. That means we still need
to add two boundary conditions to extend H to be self-adjoint.
Example e:
h=2v2-q2'
q=p = il jE + ql,
(1/2) In | q + Vi/2 + E | = f + c.
When the particle travels from > to + the time spent by the particle spans the
whole f-axis (see example e in the table), so there is a global solution for an


18
arbitrary initial condition. Thus the quantum Hamiltonian is unique and self-
adjoint.
Since there is no periodic behavior, the spectrum of the quantum
Hamiltonian is continuous.
Example f.
H = 2pcj2,
2cj = l/(-t + c).
Global solutions exist (see example / in the table) and the quantum Hamiltonian
is self-adjoint. Since there is no periodic behavior the spectrum is continuous.
Example g:
H =2p (1/q),
consider Q = (- <*>, 0) or (0, + ),
4 = 2(1 /q),
q2 = 4t + c.


19
similar to Example c, q becomes imaginary for t < c /4, and there is no
possibility of having a full-time classical solution, just as in the case of example c.
Therefore there is no way to extend the Hamiltonian to be self-adjoint.
Example h:
H = p2 + 2 p q3,
q = 2(p + q3) = 2 Jq6 + E.
Its classical solution is similar to example d, and is identical to H = p2 q6' to
which it is canonically equivalent.
Example i:
H = p2 + 2p /q
q 0, so £2 = (- <*>, 0) or (0, + <),
q=2(p + \/q) = 2 jE + l/q2,
Vl +Eq2 = 2 E(t+c).
The solution to the motion reads
(2E)\t + c)2 E q2 = 1.


20
See example i in the table, where we chose E > 0. Since q = 0 is a singular point,
we divide SR into Q = (- <*>, 0) and (0, + <*>). For example, when the particle reaches
q -> 0+, we have to send it back or cross over q = 0 to get a full-time classical
behavior. By choosing c, the full-time classical picture may be like the solid and
dashed lines of i in the table. In quantum theory, one boundary condition is
needed to extend H to be self-adjoint.
Two additional examples (/ and m ) appear in the table without discussion
in the text.
2.3.2. Examples of Three-Dimensional Hamiltonians
To simplify the problem, we consider here only central potentials V{r). In
suitable units, the quantum Hamiltonian becomes
H = V2 + V(r),
v2_ 1 dr?d L2
r2dr dr r2
Set
V/,
then
Hr = + ^4^- + V{r) for u(r).
dr1 r
The condition that i l\yl2 d3r converges now becomes the condition that
Qu(r)fdr converges.
For V(r) = A /rn, n = 1,2,3,..., A >0,


21
Hr = Pr2-a /rn) + (/ (/ + l)/r 2)
and the classical equation of motion is
r = 2VE + U/r")-(/ (/ + l)/r2).
Under both cases of E < 0 and E > 0, we see the difference between = 1 and
n >2. For n > 2, near the origin, i.e., r ~ 0, f = 2 E + A /r", so r could go as near
as r ~ 0. See example k in the table. In quantum theory, one condition is
required to extend the Hamiltonians to be self-adjoint. It corresponds to one
parameter (e.g., see parameter B in Ref. 4), which is needed to specify quantum
solutions. But for n= 1, f = 2Ve + A /r (/ + l)/r2; with E < 0 and / > 0, the
motion oscillates between the two roots of the expression under the radical,
namely,
/(/+!)
|E|
1(1+1)
|E|
So it avoids the singular point r = 0, and therefore it has a full-time classical
evolution (see example j in the table), thus its quantum Hamiltonian is a self-
adjoint operator. That is why the hydrogen atom does not have any problems.


CHAPTER 3
SELF-ADJOINTNESS OF HERMITIAN HAMILTONIANS
Having recalled that simple and physically natural classical "symptoms"
are available to diagnose any potential quantum "illness," we now discuss some
of the standard techniques in Chapter 1 used to analyze Hamiltonian operators
and confirm that the classical viewpoint presented in Chapter 2 is fully in
agreement with conventional analyses.
In particular, we analyze in this chapter the self-adjointness of several
Hamiltonians which appeared in Chapter 2 by calculating their deficiency
indices directly. Therefore, we can verify the consistency of solutions of classical
and quantum Hamiltonians. According to Theorem 1 on page 5, we have three
different cases of the deficiency indices: (i) n+= n. = 0, (ii) n+= n. 0, and (iii)
n+* n.. Cases (i) and (iii) are simple, where either a densely defined operator is
or is not self-adjoint, but case (ii) is much more complicated. Discussions such as
how to add boundary conditions on the wave functions in order to extend the
Hamiltonians to be self-adjoint, and what kind of physical interpretation those
extensions imply, etc., will be presented in §3.2 and §3.3.
3.1 Three Different Cases of Hermitian Hamiltonians
In this section we will apply Theorem si & 2 to four general types of
Hamiltonian, just as we did in §1.2 for H = p2 + x3:
22


23
(1) H = p2-bxm,
(2) H = p xm + xm p,
(3) H = p2 + p xm + xm p,
(4) H = p2 + xpm +pmx
where m is a positive integer and b is a real constant. Those four types of H cover
all the Hamiltonians discussed in chapter 2.
3.1.1 H = P2 bxm
Obviously, H is Hermitian. Similarly to what we did for H = p2 + x3 in
§1.2,let
H+ i/4= i i//
withp = id /Ax,
(£-2 + bxm)v = + W.
As both b and m are real, i//: = \p+ Thus, n+ = n. = n. So consider yr+ only; we
write
The asymptotic behavior of this equation as x -> is given by
y/" + bx mt// = 0
since we require y/ (<) = 0. The solutions are given by Bessel functions:


24
yKx) ~ VJxf Zi/(m + 2)( 2 ^ Vxm+2)
m + Z
where Zv ~ /v, Nv, /v, or Xv, which are Bessel functions of the first and second
kinds, respectively. To examine whether or not \ I yKx) 12dx converges at x ,
we need to use the following asymptotic forms of the Bessel functions:
i y I - + ~,
y-(v+i->
2 2J
Nv(y)~
fv(y)~-p=exp(y)
V2/ry
Kv(y) ~Vfexp(-y)
If J I y/Or) 12dx converges, then iy(x) e D(H+) c ^.
Examples:
(a) H = p2 + x4 :
y/' -x4y/=- iyj
near Ixl ~ <, y/ 0; thus,
y/' -x4iy= 0.


25
Then b = 1 and m = 4. We should choose Z ~ IV/ Kv (with y = 1/3 I x 13), the
Bessel functions of the second kind.
For x ~ oo, y/(x) ~ VJxfJCi/lW3)/ so n+/ ^ = 1
n+ = n+/ +00 + n+r., 2 = 1 + 1 2 = 0 = n., i.e., (n+/ n.) = (0,0).
Thus, H is self-adjoint in <*>, + )), which makes possible the global solution
of the Schrodinger evolution equation (see Sections 9.6 and 9.7 of Ref. 3); the
existence of the bound states y/+ and iy: implies a discrete spectrum of energy.
(b) H = p2-x4 :
y/' + xAy/=- iy/
Here b = +1 and m = 4; thus
V^2)(x)~VxJi/6*3) and VxNi/6(i-x3) ~ (l/x)cos or sin (i-x3 }-k).
wl J J J
It is easy to check that both of the solutions are in so n+ +co = 2 = n+>. ^ as yris
symmetric on x.
n+ = 2 + 2-2 = 2 = n., i.e., (n+, n.) = (2,2).
Two boundary conditions are required to extend H to be self-adjoint, and a
discrete energy spectrum is expected.
Indeed, even a WKB analysis leads to a discrete spectrum.
Jv will make the integral diverge, and therefore is not allowed.


26
(c) H = p2 -x2 (p2 + x2 is similar to p2 + x4 )
\\i' + x2y/=- iyt
where b = 1 and m = 2.
2>W ~ YRM}*2) and VJxfN1/4(i*2) ~ [xf 1/2cos or sin {\xA 2-tt)
T 4 4 4 8
but neither of them are in L2(Q); therefore,
(n+, n.) = (0, 0)
and H is self-adjoint, but its spectrum is continuous because no bound states
exist. Again, this conclusion follows from WKB arguments as well.
(d) H =p2 + x (p2 x is basically the same )
v4 ^ v'+ = -*>+
V£ (x- i)V4 = o.
For x > 0, b = -1 and m = 1,
V4(x) ~ 1x-iKV3(kx -if'2),
O
which is in £2.


27
But for x < 0, b = + 1, and m = 1,
V?' 2)W ~ VjxJ + i /i/3(| where we have ignored the unimportant phase term. Both of the solutions are
not in £2 (the square integral of y/+ diverges at x ~ ). That means there is no
solution for x < 0, and no solution could be connected to yr+, x >0 either.
Therefore, we have
(i) (n+r n.) = (0,0) for Q = (-, 0),
(ii) (n+, n.) = (0,0) for Q = (- <*>, + <),
(iii) (n+, n.) = (1,1) for Q = [ 0, + 00).
The spectrum is expected to be continuous in (i) and (ii), but discrete in (iii).
This is an interesting system. In section 3.2, we apply it to a particle in a
gravitational field and a uniform electrical field.
3.1.2 H = pxm + x mp
By substituting p ~ i d/dx and using [p,rm]=-irnrm'1,we get
(p xm + x m p )!//+= (2p xm imx mA )y/= i y/
/
2xmy/ = (+1 -mxm A)y/
(i) m = 1, 2x\p = (+1 l)y/f
2xy+=- 2\¡/+,
xy/.-0


28
with V4 ~ 1 lx., which is not in £2 since it diverges too rapidly at x ~ 0, and y/. =
const., which is not in £2 either. Therefore,
(n+, n.) = (0,0)
Thus, H = px + xp is self-adjoint and its spectrum is continuous.
(ii) m > 1,
2y/ /ip = (+1 -mxmA)lxr
V ~ |x| w/2exp ( 1 xl'm)
2(m-l)
As x ~ 0, y/ ~ which are square integrable, so 00 are regular points.
But now x = 0 is a singular point. Checking y/ near x = 0, we find
m = odd, n. = 1, n+ = 0, which has no self-adjoint extension. H is not self-
adjoint and has no complete evolution, just as was the case for H = p x3 + x3 p in
Chapter 2.
m = even, n. = n+ = 0, H is self-adjoint with continuous spectrum. See the
example of H = p x2 + x2 p in the previous chapter.
It is interesting to point out that for 2 = (- 00, 0), (+, n.) = (0,1) if m = odd
and (1, 0) if m = even; for 2 = ( 0, + ), (n+f n.) = (0,1) if m = odd and (0,1) if m =
even. Therefore, H is not self-adjoint in both Q = (- >, 0) and Q. = ( 0, + ), no
matter whether m is even or odd. To explain that by the classical picture (see
example c in the table), we say that neither of those intervals could contain a
complete temporal evolution.


29
3 ] 3 H = p2 + p + x M p
In the above section, we found that p xm + xm p is not self-adjoint if m =
odd. Here we will show that by adding p2 to it, the situation will be changed
dramatically. First let us examine the classical solutions:*
H = p2 + p cjm +c¡mp = p2+2pcjrn
Cj=2p + 2qm = 2 ^E + cj^m
(i) If m = 1, the solution is like that for H = p2 c¡2, where H is self-adjoint.
(ii) If m > 1, the solution is similar to that for H = p2- q4, where boundary
conditions must be added to make H self-adjoint.
Second, let us see that quantum features of H:
H = p2 + pxm + x m p = p 2 + 2pxm imx m A
[p 2+ 2p x m imx m A)y/ = i y/
y + 2i xmy/+ imx mAy/ = + iy/
The asymptotic for near x ~ ~ is
// t
y/ + 2i x my/+ imx m A y/ = 0.
H =p2+ 2p qm, 2p = 2qm 2 V£ + q2m 2p + 2pm= 2 Ve +


30
We introduce an equation with the solution given by the Bessel functions, i.e.,
O +[(1 2a)/x + 2ipyxY-'l]0 + [(a2- v2?2)/*2? i/3)(y- 2a)x r-2] 0= 0
0 = xaexp (ipx y) Zvifay).
Note that \p just fits this equation by choosing
a =1/2, y=m + 1, P = 1/y, v=l/2(m + l),
i/oc ~ Vjjjexp (- i1xm + 1) Zv (1xm + 1) ~ 1/Vlxf
m + 1 m + 1
which is square integrable when m> 1*. So n+ co = n. 00 = 2, and
(+, n.) = (2,2), when m > 1.
So by adding p2, H always has self-adjoint extensions no matter whether m is
even or odd. This is exactly consistent with what we have just discussed from
the classical point of view.
As for the case m = 1, y/ ~ 1/Vpc[, which is not square integrable, so
(n+, n.) = (0, 0), which again agrees with what follows from the classical point of
view.
3 \ 4 H = p 2 + x pwi + p 171 x
Classical method:
* Here Zv -/n, Nv.


31
p = dH/dcj = 2 pm
which is similar to c¡ = 2 q m based on H = 2 p qm; therefore,
when m = even, H is self-adjoint;
when m = odd, H is not self-adjoint.
Quantum method:
x - id/dp, [x, pm] = imp m -1
(p2 + xpm +pmx )yf(p) = i y/(p)
/
2ip my/ = (i p2 imp m-l)y/
y/~ (l/Vipp") exp |+ 2(^_ p1 -m) x exp |- i 2{£-^ P 3'm) (3-1)
For m > 1: (n+, .) = (0, 0), if m = even,
(n+, n.) = (1, 0), if m = odd.
For m = 1, (n+, n.) = (0, 0) which has already been discussed in Section 3.1.3. We
see again that the classical picture is consistent with the operator analysis.
It is heuristic to observe that the last factor in Eq. (3.1) comes from the part
p1 in H, and it only induces a phase in the solution, therefore it would not change
the convergence or divergence of the square integral, i. e., the self-adjointness of
p 2 + x pm + pmx is exactly the same as x pm + pmx, and the latter one turns out
to be the same as p x m + xmp.
In other words, unlike the p2 in p2 + p xm + xmp, the p2 in
pl + xpw + p m x will not change the properties of self-adjointness.


32
3.2 The Application of Boundary Conditions and Self-Adjoint Extensions at
Regular Points
Examples:
(a) A p = -1 d/dx, with Q. = [b, a]
p y/=+ iy i/4 = exp (+ x).
Thus, n+ = n. = 1, apply theorem 3 to this case, we have
/ri=ciV4+c2ye, Ci,C2& C
0 = (/i,/i> = <- / d/,/dx, /,) (/,, -dfr/d*) -1 [It
= i[/i(/i'(W-/iW/i(a)].
Set fi(b)/fi(a) = z ; we have 2 z* = 1, so z = exp(iO), ^ For self-adjoint D(M) =
[y/(x): (yr, /i) = 0],i.e.,
m /¡(b) yKa) f{(a) = 0
t/AW/i//(a) = exp (iff) (3.2)
let us look at the eigenfunctions of p :
m = A 1/4,
V4 ~ exp (Ax)


33
V'#)/ \¡fx{a) = exp (i'A( b a))
y/x has to satisfy (3.2) to be in D(M); so we get
A(b-a) = 6+2m n = 0, 1, 2,...
A = (d+2m )/(b-a).
The case of 6 = 0 is what is usually considered in quantum mechanics, and is
called the periodic boundary condition.
(b) H = p2 + x, with 2 = [0, + oo)
As we already discussed in (d) of Section 3.1.1, n+ = n. = 1 for Q = [0, + oo).
Therefore*
0 = (Ml) = (p2/i + M/i) (/i, p 2/i + xfo = (v2h>/i) (h,p2h)
= (/i A- /i fl) 10+~=A(o)/i(0) /i(0)/>).
So
fi(0)//1(0)=[/1(0)//1(0)J = tan6>
0 91,
D(M) = [!//(*): ( v^,/i) = 0 ], so the boundary condition at x = 0 is
i//(O)cos0 y/(O)sin0 = 0
(3.3)


34
In fact, at any regular point, the form is the same.
Consider a particle with 1/2 unit mass moving vertically in the earth's
gravitational field and set x = 0 at the surface of the earth, Q = [0, + ). Then its
Hamiltonian is given by
H = p2 + mgx = p2 + x, by setting g = 2.
It is interesting to note that this system has a natural self-adjoint extension
set by y(0) = 0. That is the case of q = 0 in the above boundary condition (3.3).
Additionally consider a physical system of an electron in a uniform
electric field E applied in the + x direction. The form of the Hamiltonian is then
H = p2 + x with £2 = ( o, + o). For such a system, no special boundary
condition is needed since n+ = n. = 0.
3.3 The Application of Boundary Conditions and Self-Adjoint Extensions at
Singular Points
In this section, we will look at the effect of an attractive central potential.
We discussed in the classical point of view that there is no trouble for systems
with nonrelativistic Coulomb potentials, since they have a full time evolution.
Here we will see that this holds because they are self-adjoint. We will also find
self-adjoint extensions for the super-attractive potentials [V(r) = -A/r", n > 2].
After separating the angular part from the radial part, we have
Hr = -d 2/dr2 + 1(1 + l)/r 2 + V(r)
which acts on u(r) with the requirement that |w(r)p dr must converge.


35
(i) V(r) = -A/r, A > O
Hr+ u = i u, u + (i + A/r -1(1 + 1 )/r 2)w = O
becomes, at small r,
u + (A/r / (/ + l)/r2)u = 0
u ~ VT Z (2/ + d(2Ar) ~ VT (iflrf(2 +1}.
Thus, with / > 0, n, 0+ = 1
//
At large r, w iu = 0
and its is not hard to find that
"+/ + ~ = 1-
Therefore, (n+f n.) = (0,0) for H with a Coulomb potential.
(ii) V(r) = -A/r2
u + (i +A/r 2- / (/ + l)/r2)u = 0.
At small r, the eigenfunction ue and u have the same form:


36
//
A / (/ + 1)
+ -T
= 0
u,uE~rP, p = 1/2 V 1/4 (A / (/ + 1))
For an s-wave (/ = 0) with A > 1/4 or A- /(/ -t-1) > 1 /4, we have
u, ~ r 1/2sin (A'ln r), or r^^osiA'ln r)
where A' = [A- / (/ + 1) -1/4]1/2. Then n 0* = 2. With n+00 = 1, we get
(n+, n.) = (1,1).
Now let us construct self-adjoint extensions: at small r,
fi = ci r1/2cos(A'ln r) + C2r 1/2sin(A'ln r).
Using ( o* [0 V* and noting that ( ) is a bilinear form on
D(H+)xD(H+), and(g h ) = -(h,g j, we have
Thus,
(r1/2sin(A'ln r),r 1/2sin(A'ln r) )o* = 0
(r 1/2C0S(A'ln r),r 1/2COs(A'ln r))jr = 0
(r1/2cos(A'ln r ), r 1/2sin(A'ln r ) )b+ = A'
o = (/i,/i) = (ciC2 cic2*)A cic2= real.
Consequently c2/ci is also real. Set c2/ci = tan 8, where 6 e 9; then


37
fi ~ r1/2cos(A'ln r 6)
The eigenfunctions have the same form at small r, i. e.,
ue = Cev1/2cos(A'ln r 6)
in order to satisfy (£,/i ) = 0. In Ref. 4, the author found the dependence of
eigenenergy on the choice of 6. Because of 6, we have a one-parameter family of
self-adjoint extensions.
Further, D(M) = [ u(r): ( u, /i) = 0 ], and therefore the boundary condition
at r = 0 is given by
lim
r-CT
u '(r)r1/2cos(A'ln r 6)
u(r) --(r1/2cos(A'ln r 6))
dr
= 0
(hi) V{r) = -A/r", n >2,
at small r,
uP +(£ +A/r" /(/ + l)/r2)wE = 0.
Ur +(A/rn)uE = 0
uE ~ VfZ-i/(+i)|=-&r-(-2)/2
Ln-2
Using the Bessel asymptotic forms, we get
ue ~ r"/4sin(yr('2)/2)
or


38
rn/4 cos(yr-(-2)/2)
where y= 2X /( -2). u have the same form, so n¡ 0* = 2, (+, n.) = (1,1).
The boundary condition is similar to (ii)
h ci r"/4 sin(yr (n _2)/2 ) + C2r/4 cos(yr'2)/2)
using
(r/4 sin(yr _2)/2 ), r"/4 cos(y r(n -2>/2 )b = A1/2
Thus,
(/i//i)=0 gives C2/ci=tan6, 0e SR
fi ~ r"/4 sin(yr(_2)/2 + 0)
we = Ce r"/4 sin(yr D(M) = [ w(r): (w, /1) = 0 ],
gives the requirement on u(r) at r -> 0
lim
r > 0*
u (r)r n/4 sin(yr -2)/2 + 6)) u(r) --(r/4 sin(yr- t/r
= 0
3.4. Conclusion
By calculating the deficiency indices for several representative examples of
Hermitian Hamiltonians, we have analyzed the possibilities in each case of
extending the operator to a self-adjoint one. In so doing we have confirmed the


39
connection proposed in the previous chapter that relates possible extensions to
associated characteristics in the solutions of the classical equations of motion.
The purpose of this chapter has been twofold: on the one hand, by demonstrating
that anomalies in the classical solutions to a dynamical system are reflected in
anomalies of the quantum Hamiltonian, certain technical issues ( such as
deficiency indices, etc.) are brought into the realm of everyday experience. On
the other hand, the intimate connection between classical and quantum
properties should enable one to examine a given system at a classical level in
order to assess what problems, if any, are expected to arise at the quantum level.


40
Table I Summary of classical and quantum highlights associated with several model problems Each model has a label, a classical Hamiltonian, typical
solution trajectories, nature of those solutions, character of quantum Hamiltonian, spectral properties, and. In some cases, related esamples as well T he
solid curve in the figure portion represents a typical trajectory or part of a trajectory in the case of a periodic orbit The dolled curve denotes an
alternative typical trajectory, and the dashed curve denotes a periodic extension o the basic orbit In d, the figure illustrates two possibly distinct periodic
extensions, h is omitted because it is a related example of d.
Example
Label
Classical
Hamiltonian
H
Qualitative Graph
t(q) of equations
of motion
Nature of
Classical
solutions
Self-adjoint
Quantum
Hamiltonian
Spectral
Properties
Related Examples
m = 1,2,3,---
a
p + 4
t
m
global
unique
discrete
p + i,m
t
p + 3

t

periodic
one parameter
family of
solution (one
boundary
condition)
discrete
p5-?5
p ?,m+>
c
2p?5
t
.
r
partially
complex
nonexistent
none
pqm m > 1 m = odd
d
P5 1*
t
'
W
periodic
two parameter
family of
solution (two
boundary
conditions)
discrete
p m > 2
p5 + 2p7m m > 2
t
p-
t
f
global
unique
continuous
PJ + 2p


41
1 able I (Continued )
Kxample
label
Classical
Hamiltonian
//
Qualitative Graph
(7) of equations
of motion
Nature of
Classical
solutions
Self-adjoint.
Quantum
Hamiltonian
Spec t ral
Properties
Related Pxarnpl'-s
mr 1.2 n
/
2p?7
global
unique
continuous
/ 7>m rn > 1 ?u even
9
2 v/l
-A-
t
t
-/ ?
e*
part ¡ally
complex
nonexistent
none
2;i/7n m = odd
\
2 r/i + p
^
\
piece wise
continuous
one parameter
family of
solution
continuous
P7 + 2 p/ j
P? + ^
A > 0
£ 1
AA,
i
<' '
i i
global
unique
discrete
t
yi2 A- 4 !liU
/ r r" r *
A
A.
>
-x*
x tr
periodic
one parameter
family of
solution.
discrete


42
Table I. (Continued.)
Example
Label
Classical
Hamiltonian
H
Qualitative Graph
t(q) of equations
of motion
Nature of
Classical
solutions
Self-adjoint
Quantum
Hamiltonian
Spectral
Properties
Related Examples
m = 1,2,3,
/
2 PI
i
\
\
r'
global
unique
continuous
m
P5 + V
:
global
unique
continuous
Fig. 1 Classical trajectories for the simple Hamiltonian H=p in three separate coordinate domains: (a) oc (b) 0

PART II
OPERATOR ANALYSIS
AND
FUNCTIONAL INTEGRAL REPRESENTATION
OF
NONRENORMALIZABLE MULTI-COMPONENT ULTRALOCAL MODELS


CHAPTER 4
INTRODUCTION
As we know, the features of infinitely many degrees of freedom and
noncompact invariance groups have made the structure of quantum field
theory very complex. So seeking for the proper formulation of problems in
quantum field theory has been a difficult yet exciting endeavor in our
research. Even though conventional perturbation theory5'6, which is based on
a free field formulation, has proved successful in solving some problems, e.g.,
quantum electrodynamics (QED), we must ascertain whether the free field can
be generally used as the basis for a perturbation expansion7. One of the results
that arose from the traditional perturbation analysis based on free fields is the
appearance of nonrenormalizable interactions which some physicists regard
as hopeless. Therefore the structure of nonrenormalizable models has been
largely ignored over the years. Twenty years ago, the pseudo-free theory was
proposed by Klauder7'8 in the study of ultralocal field models to extend the
usefulness of perturbation theory. An argument based on asymptotic
convergence suggests that the free theory is connected with continuous
perturbations while the pseudo-free theory is related to discontinuous
perturbations, which have much to do with nonrenormalizable interactions.
At about the same time, a functional and operator approach to single
component ultralocal field models was developed through general
nonperturbative and cut-off free arguments9'10. There Klauder gave an
44


45
alternative quantum theory of such models, which does not fit into the
canonical framework. He also showed that as any interaction is turned off.
after it was once introduced, the theory will not pass continuously to the free
theory, but rather to a distinctly different pseudo-free theory. Clearly,
conventional perturbation theory could not be applied to such a model.
The ultralocal model is obtained from covariant model by dropping the
space-gradient term. Since distinct spatial points there characterize
independent fields for all times, it unavoidably results in a
nonrenormalizable situation. We are interested in this model because it is
solvable by nonperturbative techniques and may give us some insight into
the structure of nonrenormalizable fields.
In chapter 5, we will show that just like nonrenormalizable relativistic
quantum field theories, on one hand they exhibit an infinite number of
distinct divergences when treated perturbatively, while on the other hand
they frequently reduce to (generalized) free fields when defined as the
continuum limit of conventional lattice-space formulation11, ultralocal
models are specialized nonrenormalizable theories that also exhibit infinitely
many perturbative divergences and an analogous (generalized) free-field
behavior when defined through a conventional lattice limit12. However, the
characterization of infinitely divisible distributions13 allows ultralocal models
alternative operator solutions9'10 (also Chapter 6), which lead to a nontrivial
(non-Gaussian) solution on the basis of operator methods. The validity of
this nontrivial solution is supported by the fact that the nontrivial quantum
solution reduces to the correct classical theory in a suitable limit as h > 0; the
trivial (Gaussian) solution has no such correct classical limit (Chapter 7)12.
Recently, it has been found how to obtain the same nontrivial results
offered by operator techniques through the continuum limit of a


46
nonconventional lattice-space formulation14. The key ingredient in the
lattice-space formulation that leads to the correct behavior is the presence of
an additional nonclasssical, local potential besides the normally expected
terms.
In chapter 6, we will construct the operator theory of 0(N)-invariant
multi-component nonrenormalizable ultralocal models, where N < <*>. It has
been surprisingly found that the singular, nonclassical term in the
Hamiltonian which showed up in the one-component ultralocal fields can be
made to disappear15, when N, the number of field components, satisfies N>4.
Nevertheless, a similar singular, nonclassical term still appears in the
regularized path-integral formulation16 that leads to the same nontrivial
quantum results for O(N) invariant multi-component scalar fields (Chapter
8). Thus, for any N, the number of field components, the new path integral
formulation involving the singular, nonclassical term replaces the standard
lattice approach which invariably leads to a Gaussian theory regardless of any
nonlinear interactions, and supports the concept of a pseudo-free theory.
One advantage of deriving the operator solutions by a lattice-space
formulation is the clear focus the latter approach places on the differences
from traditional approaches needed to lead to nontriviality. These differences
for ultralocal models suggest plausible modifications in the lattice-space
formulation of relativistic nonrenormalizable modes that may lead to
nontriviality for N-component models such as n > 5 (and possibly n = 4),
for N > 1.
In my future research, I hope to extend analogous reformulations to
covariant quantum fields, the possible relevance of which has already been
noted23. The general argument is partially based on the realization that the


47
classical theory of a typical nonrenormalizable interaction exists and is
nontrivial24.


CHAPTER 5
CLASSICAL ULTRALOCAL MODEL AND THE STANDARD
LATTICE APPROACH
The classical Hamiltonian of an ultralocal scalar field is expressed as
Hci = j Ji-7C2(x) + l-m2(p2(x) + Vi[(p(x)] jdx (5.1)
where n, cp denote the classical momentum and field respectively, and Vi[cp]
(= Vi[ - configuration space of arbitrary dimension, xe9?n l. This model evidently
differs from a conventional relativistic field theory by the absence of the term
The classical canonical equations of motion appropriate to (5.1)
become
i-Wx)]
(x,t) = -&- = 7i(x,t),
5rc(x,t)
ir(x,t) = 5Hcl = m2(p(x,t) Vj[(p(x,t)], (5.2)
5 Cp(x,t) = -m2(p(x,t)- Vj[cp(x,t)].
Unlike conventional canonical field quantization, the quantum theory
of ultralocal fields does not follow from standard canonical commutation
relations, etc., whenever a nonlinear interaction exists. In particular, we do
not have an equation such as (5.2) for local quantum operators (see Chap. 6).
48


49
Nevertheless, it is instructive to first examine these models from a
conventional lattice limit viewpoint.
Let us take a look at the result from a standard functional integral
approach (which is based on the standard canonical quantization) where the
vacuum-to-vacuum transition amplitude is formally given by 6:
ZQ] = ^| exp; i
cf x| J(x,t)(x,t) + Li (x,t) L (m^
2 2
ie) 02(x,t) g r
4
where we have chosen V¡ (O) = gO as an example. Using a lattice-space
regularization in the space direction (but not in the time direction) we obtain
I
Z[J] = 9\i lim^o I (FI 2>k) exp i dt Ik a
I
Jk(t)4>k(t) + Lk (t) L (m2 ie) 4>£(t) gO£f(t)
2 2 .
J,
= limfl^0 IT j exp|> j dt a
I
J k(t) 2 2
where k labels points in the spatial lattice and a is the volume of the unit cell
in the spatial lattice. As we now show, the result for such an interacting
model leads in the continuum limit to the analog of a generalized free field.
From the preceding equation, using u = O Va, go =g/a, and < > as an average
in the complex distribution, we have
Z[J] = Vi lim^o n
k
J k(t)u(t)V +l2(t)
2


50
I
limado II < exp{i I dt J k(t)u(t)Va } >
= lim^oll {l- [ I J k(t)u(t) dt ]2> + [ I J k(t)u(t) dt ]4 > + }
4!
/
= exp {-1/2 I d x dt dt' J(x, t) J(x, t') < u(t) u(t') > }.
(5.3)
Evidently (5.3) is a Gaussian result in which (assuming 0 J,
< u(t) u(t') > = ti I 'Du u(t) u(t') exp ji| dt
I
l2(t) -1 (m2 ie) u2(t) -gu4(t)]|
= < O IQ exp( i I t-t' IH )Q I 0 >
= ^<0 I Q I n > e < n I Q I 0 >
y Pn q i I t-t' I mn
n 2mn
(5.4)
where mn, n=l, 2, 3,--- denote the eigenvalues of H,
Pn = I < 0 I Q I n > I 2.
2mn
H = 1/2 (P2 + m2^ ) +gQ4 const., and the constant is chosen so that H10 >=0.
It is easy to verify that ^ pn = 1, and since < 01QH4Q 10 > < it follows that
n
oo
^ pnm^ < oo. Thus we have
zm=exp{-l/4 j d3xdtdt'J(x,t)J(x,t)X (pn/mn) e *ilt-t'lmn }


51
= i! exp {-
n
d3 x dt dt' J(x, t) J(x, t')e-ilM'lm" }.
(5.5)
The ultralocal free field corresponds to g= g=0, in which case mn = mn ,
Pi = 1/ Pn = 0 (n*l) in (5.4), so that
< u(t) u(t) > =_L-e-ilt-flm .
2m
Then (5.3) gives
Zf[J] = exp {-
d3 x dt dt J(x, t) J(x, t1) e 11 t_t'1 m }
= <0 I Texpfil d4xJ(x,t)Op (x,t)} I 0 >. (5.6)
Observe that the ultralocal free field operator Op (x,t) satisfies
m m
Op (x,t) + m2Op (x,t) = 0.
Comparing (5.5) and Eq. (5.6), we get
Z\J] = n < 0 I Texp {i
d4x\^J(x,t)0n(x,t)} I 0 >
d\ J(x,t) X Vp^0^n(x,t)}
0>
= < 0 I Texp {i


= < O I Texp {i I d'Sc J(x,t) 0(x,t)} 0 >,
(5.7)
where (x,t) =X Vp^OF^fot). 0?ln(x,t) are ultralocal free field operators with
n
mass mn t n = 1,2,3 ,which satisfy Op "(x,t) + Opln(x/t) = 0 for each n.
From (5.7) we see that our regularized interacting model has led in the
continuum limit to an ultralocal generalized free field, a natural analog of the
relativistic generalized free field17. As a consequence of
[0(x,t), [0(y,t), 0(z,t)] ] = 0, which holds for a generalized free field under our
present conditions, it is clear that the field operator C> of an interaction like
4
Vi (O) = g with g>0 can not satisfy this commutation equation. Obviously
this (generalized) free-field behavior is limited neither to g replaced by other local powers), or to the space-time dimension n=4. This fact
indicates some sort of failure of the conventional formulation of canonical
field quantization for these models. Moreover, with the help of coherent state
techniques18'19 we find that the classical limit of an ultralocal generalized free
field does not limit as (h -0) to a classical field that satisfies the classical
nonlinear canonical Eq.(1.2); instead, the classical limit of
n n


CHAPTER 6
OPERATOR ANALYSIS OF MULTI-COMPONENT
ULTRALOCAL MODELS
The quantum theory of ultralocal scalar fields had been discussed
extensively by Klauder9'10 over two decades ago. The employment of probability
theory and Hilbert space methods with an emphasis on infinitely divisible
distributions and coherent states techniques, respectively, enables us to give a
proper quantization of these models, which otherwise are meaningless within
the conventional canonical formulation of quantum field theory (see chap. 5).
An operator solution of multi-component, nonrenormalizable,
ultralocal quantum field models is developed here along lines presented
earlier for single-component models. In §6.2, we will show that the
additional, nonclassical, repulsive potential that is always present in the
solution of the single-component case becomes indefinite and may even
vanish in the multi-component case. The disappearance of that nonclassical
and singular potential does not mean a return to standard field theory. The
operator solution of multi-component ultralocal fields remains
noncanonical. In §6.3, we will show that nontrivial, i.e., nongaussian, results
hold for any number N of components, and suitable nontrivial behavior
persists even in the infinite-component ( N= ) case as well.
53


54
6.1 Operator Analysis of Single-Component Ultralocal Models
Let us briefly summarize the operator analysis of single-component
ultralocal models9'10. Assume that the field operator O(x) becomes self-
adjoint after smearing with a real test function f(x) at sharp time. Since
distinct spatial points characterize independent fields for all time, we may
write the expectation functional as
(6.1)
Where in the last step, we have used the result of Levy's canonical
representation theorem for the infinitely divisible characteristic functions13,
and have eliminated a possible contribution of the Gaussian component,
which applies to the free field. The real, even function c(A) is called the
"model function".
An operator realization for the field O(x) is straightforward. Let
A+(x, X) and A(x, X) denote conventional, irreducible Fock representation
operators for which 10 > is the unique vacuum, A(x, A,) 10 > = 0, for all
xe 9ln \ Xe 9L The only nonvanishing commutator is given by
(6.2)
Introduce the translated Fock operators


55
B(x,X) = A(x, X) + c(X), B+(x,W =A+(x,W + c(X), (6.3)
Obviously, the operators B+(x, X) and B(x, A.) follow the same commutation
relation (6.2). Then the operator realization for the field O(x) is given by
The correctness of this expression relies on the fact that
I
< 0 I exp{ i I dxO(x)f(x)} I 0 >
=< 0 I exp {i
=< 0 I: exp {
i j dxj dA. B+(x,
j dxj dX. B+(x,
X) Xf(x)B(x, X)} I 0 >
?0(eW*>-l)B(x,X)}:l 0>
= exp {- j dxj dX [ 1 e^M] c2(X.)}
as required by (6.1).
The Hamiltonian operator is constructed from the creation and
annihilation operators and is given by
H = J dxj dX. B+(x, X) h(d/dX, X) B(x, A,)


56
= j dxj dX A+(x,
X) h(B/3X, X) A(x, X).
(6.5)
Where h(3/3X, X) = -b2d2/dX2+ V(X), which is a self-adjoint operator in the X
variable alone. It is necessary that h(3/3X, X) > 0 in order that H > 0 and that
I 0 > be a unique ground state. Equality of the two expressions in (6.5) requires
h(3/3X, X) c(X) = 0, implying that c(X) e L2 in order for 10 > to be unique. This
relation also determines V(X) as V(X) = b2 c"(K)/c(k). Assuming that
dXX2 c2(X) < o, so that <0 I02(f) I0> I
I
I
together with the condition I dX c2(X) = we are led to choose
c(W=l^exp{-^mx2-y(4
(6.6)
where y, called the "singularity parameter", satisfies l/2 have (pk = ih B/BX )
h(B/BX, X) = b2^- + Y(Y+1)^2 + m(Y. 1/2)h + Wx2 + Vi(X)
2 BX2 2X2 2
= }:Px2 +^^ + m(Y-l/2)^ + iin2X2 + VI(X), (6.7)
2 2X 2
Vi(X) = y (- y" + y'2) + ( mftX + yh2/\ ) y'. (6.7b)
This equation determines c(X) for any given interaction potential V¡(X), at
least in principle. Notice that in addition to the free term p^2 + ^-m2X2 and
2 2


57
the interaction term Vi(A.), there appears a nonvanishing, positive, singular
and nonclassical potential y(y+l)h2/2X It is important to note that this
additional potential makes the path-integral formulation of ultralocal fields
totally different than that of standard quantum field theory14.
The definition of renormalized local powers of the field follows from
the operator product expansion
O(x) O(y) = 5(x-y) di B+(x, X) X2 B(x, X) + : which suggests the definition
I
dX B+ (x, X) X2 B(x, AO = Z O2 (x), Z'1 = 5 (0) (6.8)
or more generally,
Ork(x) =J dX B+(x, X) Xk B(x, X) = !-[Z 0(x)]k, k = 1,2,3, (6.9)
For k > 1, these expressions are local operators, i.e., become operators when
dA, B+(x, X) 1 B(x, A.), and
X
I dA. B+(x, X) B(x, X) = O,.1 (x), then we can extend (6.9) for renormalized
J X
k
negative powers of the field. But we should note that for k < 0, r(x) are not
local operators.
-l,
smeared by a test function. For k < 0, let O (x) =
sZf


58
Corresponding to (6.7), the Hamiltonian may be expressed by
renormalized fields as
H = j (i-rx) + Im2 2 2 9-2 0
where nr = Or+ y(y+l)/r Or + m(2y-l)h Or. Obviously it means that nr
neither fits into the canonical framework! flr = Or ) nor fulfills the standard
canonical commutation relation [Or(x), nr(y)] = i hb(x y). We should also
notice that although Or ( = O = -i [ O, H ] /h = -ifr J d\ B+(x, X) d/dX B(x, X) ) is
not a local operator due to the assumption regarding c(X), neither are
2-20 2
Or,Or ,0>r local operators by themselves alone; only the combination Fir is a
well-defined local operator. These are major differences from standard
quantum field theory.
The Heisenberg field operator is given by
0(x,t) = eiHt/;' ch(x) e-'Ht/fi
I
I
dX B+(x, X) eiht/rXe-iht/* B(x, X)
dX B+(x, X) ?.(t) B(x, X)
(6.11)
which is well defined. The time-ordered truncated n-point vacuum
expectation values are given by
< 01T [0(Xl,ti) 0(x2,t2) T


59
= 5(xrx2) 5(x2-x3)
5(xn-i-xn)-
| dX c(X)T [ X(ti) X(t2) X(tn)] c(X).
(6.12)
For ultralocal pseudo-free fields ( defined when the interaction
potential Vi(X) vanishes ), we have the model function
c(X)=|x|'Y exp {- mX2/2h }, and the expectation functional
E[f] = exp {
M
dX
1 tos [ Xf(x) ]
W*
exp
(6.13)
which is obviously not a Gaussian solution such as for ultralocal free fields.
In §6.2, the operator analysis of finite-component ultralocal models is
presented. There we will see how an indefinite (positive, negative or
vanishing), singular, and nonclassical potential affects the operator solutions.
In §6.3, the expectation functional of infinite-component ultralocal
fields is discussed. Even in this case the solution of any interacting theory
does not reduce to that of the free theory in the limit of vanishing nonlinear
interaction and again supports the concept of a pseudo-free theory7'8.


60
6.2 Operator Analysis of Finite-Component Ultralocal Fields
Following the pattern of the single-component case, the field operator
and the Hamiltonian of N -component ultralocal fields are defined by
0>(x) =
I
dX B+(x, X) X B(x, X)
(6.14)
and
dX B+(x, X) h(Vx, X) B(x, X)
dX A+(x, X) h(V^, X) A(x, X)
(6.15)
where h(Vx, X) = + V(A), X svr2. Notice that here the N-component
ultralocal models under consideration have O(N) symmetry. The
commutation relation becomes
[a(x, X), A+(x', X')} = 5(x-x') 6(X-X')
(6.16)
and the unique ground state satisfies A(x, X) 10 > = 0. The operator B(x, X) is
related to A(x, X) by
B(x, A.) = A(x, X) + c(X).
(6.17)
The renormalized local powers of the field are given by


61
I
^ri,...ik(x) = dX BT(x, X) A*,- -^ik B(x, X), ii, ,ik = 1, 2,3, N
Occasionally, we need to use the renormalized negative powers of the field
even though they are not local operators. Take a single-component case for an
example:
Orf(x) =
I
dXB+(x,M,kB(x,?0 = L[Z Oi(x)]1
2]
i = 1,2 N,
(6.18)
which can be extended to k < 0, as long as we define
Oj1 (x) =Z21 dXB+(x,X)J-B(x,X) and dAB+(x,X)J-B(x,)t) = 4>ri(x).
1 h J h
From the requirement that h(V^, X) c(A.) = 0, we have
1 ? 2
V(A,) =-Hi Vxc(X)/c(X). The real, even model function c(X) becomes
c(X) = exp | Yjrm^2 y(W
(6.19)
with N/2 < T < N/2 +
dNA. c2(X) = oo and
I
I
1 which is determined by the conditions
dNX X2 cKX) < oo.
Next let us find out how the operator h(V^, X) appears. From (6.19), it
follows that
V(X) = 1^2VX.c(A.)
2 c(X)
_ T? V d2
2 c(X) i=i a^2
C(X)


(6.20)
= r(r+2 ~N) + mh(T- N/2) + -m2X2 + Vi(X),
2X2 2
where Vi(X) = 1/z2 (- y" + y'2 ) + y' { mhX + [ T- (N-l)/2 ] h2/X }, which
corresponds to the interaction. Therefore
h(V¡, X) = ^2V + V(X)
2
= h2vl + F(F+2 N)h +mh(r- N/2) + \m2X2 + Vi(X). (6.21)
2 IX2 2
This base Hamiltonian of multi-component ultralocal fields is similar to that
of single-component ultralocal fields (6.7); but a surprising difference between
the two equations is that unlike the non-vanishing, positive, singular and
nonclassical potential yiy+\)h2 / 2X2 appearing in (6.7), T(r+2 N)#2/2X2 is not
always positive and moreover it may vanish. These properties follow since
N/2 < T < N/2 + 1, i.e., 0 < T N/2 < 1 and therefore
2 N/2 < T+2 N = 2 + ( T N/2) N/2 < 3 N/2.
Summarizing, T+2-N>0 for N<4; r+2-N<0 for N>6; and T+2-N is
indefinite, when 4 even equal to zero. As examples of vanishing T(r+2 N)/r/2X we have N=4
and T=2, or N=5 and T=3.
It is worth mentioning that the disappearance of T(r+2 N)ft2/2X2 does
not mean a return to standard (canonical) field theory or standard path-


63
integral formulation; even in this case it can be shown that a similar non
vanishing, singular, nonclassical potential arises in the regularized path-
integral formulation (Chapter 8).
It is worthwhile to discuss further the Hamiltonian which according to
(6.21), is given by
H =
= j |i-nr(x) + i-m2Or(x) + Vi[Or(x)] |dx.
(6.22)
-2 -2 0
Here nr(x) = Or(x) + r(r+2 N)/¡21 Or(x) I + m/i(2r-N) lOr(x)l Notice that
j dX B+(x, X) (-2 d2/dX,2 )B(x, X) ,
i=l, 2,-- -N, are not local operators,
o -2
neither are On(x), IOr(x)l or IOr(x)l but somewhat surprisingly
N 2 -=*2
^ On (x) = Or(x) is a well-defined operator for N=4 and T=2 and
i=l
N 2 0 ^*2 0
2_, On (x) + m£ IOr I =Or(x) + m/z I i=l
-*2 -=*2
and T=2, we have nr(x) = Or(x), which in the present case is a local operator,
but nr(x) = Or(x) involves local forms rather than local operators due to the ill
defined On(x).
Summarizing, the canonical equation nr(x) = Or(x) and the standard
canonical commutation relation [On(x), ft^fy)] = i^5jj5(x y) do not hold for
the multi-component ultralocal fields, just as for the single-component
ultralocal fields, irrespect of whether the singular potential T(T+2 N)2/2X
-2
[~ I Or(x) I ] is present or not.
Analogous to the single-component case, the Heisenberg field operator
is given by


64
/

dX B+(x, X) eiht/^Xe_iht/fi B(x, X)
dX B+(x, X) X(t) B(x, X)
(6.23)
which is well defined. It follows that the time-ordered, truncated n-point
function reads
< 0 IT [(Di/x^ti) i2(X2,t2) ^(XnA)] 10 >T
= 5(xrx2) 5(x2-x3) 5(xn.rxn) dX c(X) TlXJt!) Xj2(t2) Xin(tn>] c(X).
(6.24)


65
6.3 Operator Analysis of Infinite-Component Ultralocal Fields
The expectation functional of finite-component fields is
E[f] = < 0 I exp
dx 3>(x)-f(x) I 0 >
= exp {- g
dX [ 1 e^'f(x)] C2(X)}.
(6.25)
Here we have introduced g a scale factor which cannot be determined on
general grounds but rather represents the only arbitrary renormalization scale
involved in the operator construction. The possibility of its existence lies in
the fact that two model functions differing by a constant factor lead to the
same differential operator h and thus to the same Hamiltonian H.
An operator realization of the infinite-component field requires us to
give a proper measure which is well defined. In doing so, notice that we can
absorb the model function c(X) into the measure so that we have the new
measure dp(X) = g c2(X) FIdX¡. Let us redefine the commutator
A(x, X), A+(x', X')\ = 5(x-x') 5P(X; X'),
(6.26)
where 8p(X; X') is related to the measure p by J dp(X) f(X)5p(X; X') = f(X). The
operator B and the infinite-component field are redefined as


66
B(x, X) = A(x, X) + 1,
(6.27)
O(x) = j dp(X) B+(x, X) X B(x, X).
(6.28)
Then we immediately recognize that (6.25) stays the same. The renormalized
local powers of the field and the Hamiltonian are given analogously by
ik(x) s j dp(A.) B+(x, X) Xu- -X[k B(x, X), h, ,ik = 1, 2,3,
N, (6.29)
and
H = Jdxj dp(X) B+(x, X) h(Vh X) B(x, X)
= j dxj dp(X) A+(x, X) h(Vx., X) A(x, X),
(6.30)
with the requirement of h(V^, A.)-l = 0. The Heisenberg field operator is
given by
0(x,t) = eiHt/ft O(x)
j dp(X) B+(x, X) eiht/^e-iht/a B(x, X)
l dp(X) B+(x, X) X(t) B(x, X).
(6.31)
The time-ordered, truncated n-point function reads


67
< 0 I T [Oi,(Xi,ti) i2(X2,t2) Ojjx^tn)] I 0 >T
= 6(xi-X2) 5(x2-x3) 8(xn_rXn)
I
dp(X) TtXi/t!) XfeOa) - Xi.itn)]-!.
(6.32)
It is worth mentioning that the above formulation for the infinite-
component case is suitable for the finite component case as well.
Next we try to obtain the characteristic functional of infinite-
component fields as the limit of finite-component ones. Take the general
form of c(X) = X Fexp | ^-mA.2 y(A.)J in the finite case, then we have
E[f] = expj- gj dxj dX [ 1 -1- exp [ lmA.2 2y(X) ]| (6.33)
In order for this limit to exist as we need to scale several parameters,
namely y=yN/ m=m>j and to choose a suitable factor g=gN- Following the
Ref. 22, suppressing the integration over x, let us consider


68

where | dr rn e-v = -S-L has been used. If we introduce the Fourier transform
yi+l
pair: e' 2YN^) = j d^ 1\n(!;) e'^, h^) = ^~j dX e-i%k f L[f] can be
expressed as
lim
N> <
j dr r1-1 j dX [ 1 e^'f ] exp | (^mN + r) ^.2 + jh^C^) d£,
The integration over X now involves simply Gaussian integration
j dx e^2 +^x = (^-)N/2 e-?/4a | and leads to
lim
N
_SN_ f dr rr-i / e |N/2 [ 1 e-?/ 4(mN/^ + r £)] hN(^) dt
(r-1)! J0 mN/fi + r £1
= lim
N-.
J dr r^mN/r/i i£/r + i)'N/2[ l e-?/ 4(mN/ti + r i£)] hN(£) dE,
(r-D! A
where -1 < 0 = T-l-N/2 < 0. Now we are ready to make the choice of y^, m^
and gN- Assume that gN= g^'N/2(T-l)!, m^= m/N and yxA) = y (X/) which
suggests that h^f^) = N h(N£). Following a change of variables of we take
the limit by using lim^^^i i + HlZLli^L) 1 expJ--L(m//i i£)J,
and we get
L[fj = g I dr re expj- ^-(m/h ¡5)J [ 1 e-?/ 4r] h(£) d^
Jo


69
= g I dr re expj'^- (m/ft) 2 y(J-)j [ 1 e-?/ 4r]
/o
= g| do-exp(-(m/fz) a 2y(a)} [ 1 e -c?/2], (6.35)
Jo (2o)e+2 1 1
where -1 < 0 < 0, and in the last step, we have substituted o = l/(2r).
We can also try in the following way to obtain the characteristic
functional of infinite-component fields as the limit of finite-component
ones. Take the general form of c(X) = X'Fexp j ^-mX2 y(X)| in the finite
case, then we have
E[f] = exp {
W
dp(X) [ 1 e^'f(x)] }
= exp -g
I dx I dX [ 1 e^'^x)] exp [ -lmX2-2y(A.) ]/
] ] i2r h I
1
(6.36)
In order for this limit to exist as Nwe need to scale several parameters,
namely y=yN, m=m^ and to choose a suitable factor g=gN- Suppressing the
integration over x, let us consider
I
L[f] = dpN(X) [ 1 e^'fW]
(6.37)
I
2r
= Wn^oo gN I dX. [ 1 e1^'f ] J- exp j fmN>.2 2yN(>.)


70
= lim
N>oo §N
j dX~- ^ exp |- i-mN^.2- 2yN(X) jj d [ 1 e&f cos 0]. (6.38)
Where dQ= sinN'2 0 d0 df2'. By changing the variable 0 -0/N + k/2 and
taking N large, we have cos 0 = sin (0/N) = 0/N and therefore
~ ~ 2 N-2 ~ 2
sinN-2 0= cosN-2 (0/N) [ 1 1(0/N) ] exp[ {0/N) (N 2) ]. Hence we
may write
J dQ [ 1 e&f cos Q]=J d0 exp[ i-02(N 2) ] [ 1 e~ iXf0]J d£T
2k.
N-2
j dn' { 1 -exp[-lf2X2/(N-2)]}
= S-{l-exp[-lf2X2/(N-2)]}.
(6.39)
Where S denotes the spherical surface area in N-dimensions, N 1, namely
S =
2 n
N-2
N/2j dir.
Substituting (6.39) into (6.38), we have
L[f] =/zmN_>00 gN J dX i exp j- lmNX2- 2yN(X) I S {1 exp[ -lfV/(N 2)]}
J ^2r-N + i \ J 2
= W*N->oogN j dXN y)/2SCxpj-lmNNX2- 2yN(f" X)j {1- exp[-lf2X2^L]}.
In the last step we have made a change of variables of X>V~ X', p = 21"- N + 1.


71
Now we must choose yu, mN and gjsj. Assume that m¡sj= m/N,
yN(X) = y (X/V") and gN= N^'^/^g/S, where gis proportional to g in (6.35).
By taking the limit N-<*>, we obtain
(6.40)
where 1< p< 3. So the characteristic functional of infinite-component fields
becomes
= exp -g
From (6.41), we see that a nontrivial, i.e., non-Gaussian, result holds for
infinite-component fields, just as it does for the finite-component ones.
Notice that the scalings we have used here, such as mw= m/N and
yrsA) = y (A./V), are different from the standard ones. For example: for
-4 ~*4
Vi = O the standard scaling assumes (Vi)n = O /N, while the non-standard
scaling employs mN= m/N and ytA) = y (A./V) which gives
(Vi)nIA.] = VitX/VbT] = X4/N2 or equivalently (Vi)n[0] = ViI/V] = 04/N2.
The nonstandard scaling admits a 1/N expansion relevant to the Poisson-
distributed finite-N solution, while the standard scaling does not. Another
similar non-standard scaling example was shown to hold in the independent-
-2 -*2
value models where mfr = m2/N, (Vi)n[0 ] = VifO /N] are also used22.


72
Judging from these examples it would appear that the standard scaling may
fail for certain nonrenormalized fields.


CHAPTER 7
THE CLASSICAL LIMIT OF ULTRALOCAL MODELS
As given in chapter 5, the classical Hamiltonian of an ultralocal scalar
field may expressed as
Hci = j J~"7C2(x) + lm2cp2(x) + Vi[(p(x)]Jd3x, (7.1)
where xe SR0"1,7t,

the interaction potential. The classical canonical equations of motion
appropriate to (7.1) are
8rc(x,t)
7t(x,t) = - SHcl = m2cp(x,t) V¡[cp(x,t)], (7.2)
5cp(x,t)
In fact, these formulas do not take into account a vestige of the quantum
theory that really is part of the classical action. Since the additional,
nonclassical, repulsive potential proportional to (field )'2 in (6.10) belongs in
73


74
the quantum Hamiltonian density, as -0 the coefficient of this term
vanishes save when tp(x) = 0. To account for this term we formally write
0-(p'2(x,t) in the classical Hamiltonian density, and to respect this potential we
need to derive the equations of motion for (p(x,t) by means of a scale
transformation20, namely, using 8cp(x,t) = 5S(x,t)-(p(x,t). This leads to a related
but alternative set of classical equations of motion (see Examples 1 and 2
below).
In the following, we will show that the alternative quantum theory of
ultralocal scalar fields described in Chapter 6 does indeed lead to the required
classical limit as h -0, thereby giving additional support to such an
alternative, non-Gaussian solution.
7.1 Ultralocal Fields and Associated Coherent States
The proper quantum Hamiltonian of ultralocal fields given by (6.10)
has an evident connection with the classical Hamiltonian. In (6.10), the
subscript 'r' means the fields are renormalized, and instead of fl = O, we have
According to (6.4) and (6.5), the field operator O and Hamiltonian
operator are given by
B(x, X) = A(x, X) + c(X),
(7.3)


75
dX A+(x, X) h(, X) A(x, XX
dX
dX B+(x, X) h (, X) B(x, X), (7.4)
dX
with h(, X) = H2 + 7(7+l)h2 + im2>.2 + V^X)
^ 2 9X2 2X2 2
= \ Px2 + + ^X2 + V:(X), (7.5)
2 2r 2
( i_)
dX
Here we write the interaction potential as Vi(X) instead of Vi(X), since we
have used Vi as the classical interaction potential in (7.1). By using
exp(^-Ht) B(x, X) exp( Ht) = exp[ i-t h(, X) ] B(x, X.) (7.6)
h h X
we can show that the Heisenberg field operator for any renormalized field
power is given by
OrG(x, t)= dX B+(x, X)exp[ M h(, X) ] X6exp[ t h(, X) ] B(x, X)
J dx ax
| dX B+(x, X) X6(t) B(x, X),
(7.7)


76
where XG(t) = exp[ -4 h(, X,) ] X6exp[ -4 h(, X) ] Even though
ft ax ft ax
[Or(x), nr(y)] ifi 8(x y), the variables X and p^ satisfy the standard one
dimensional canonical commutation relations. Therefore
X = -L [X, h] = pi
in '
(7.8)
Pl4lR'hl= ,3
Y(Y+l)/r
-m2X V^X).
We now introduce canonical coherent states for the ultralocal fields
I \|/ > = U[y] I 0 >,
(7.9)
where, for each \|/e L the unitary transformation operator
U[\j/] = expjj" dX d3x [\j/(x, X) A+(x, X) \j/*(x, X)A(x, X)]
(7.10)
It is straightforward to show that
U+[\|/] A(x, X) U[\|/j = A(x, X) + \jr(x, X),
U+ [\|/] A+(x, X) U[f] = A+(x, X) + \]/(x, X);
(7.11)
evidently the same relations hold for B(x, X) and B+(x, X) as well.


77
7.2. Selection of the Coherent States for Ultralocal Fields and the Classical
Limit
Let us employ a Dirac-like (first quantized) formulation for functions of
X, and in particular let us set
\}/(x, X) = (X I /f1/2 a(x)),
(7.12)
where
( X I K1/2 a(x)) = j^-)1/4expj ^[x cp(x)]2 + i- Xn(x) + i pj (7.13)
a(x) = -L [ (p(x) + i 7t(x) ].
2
(7.14)
The expression (7.13) has the form of a conventional canonical coherent state,
|i is an arbitrary phase, and I a(x)) = exp[a(x) a+ a(x) a] I 0 ) = U[a(x)] I 0 ), is
similar to the ordinary coherent state I a)18'19 except that in the present case
a is a function of x. a, a+ are the usual annihilation and creation operators,
which are related to X and p^by the relation
(7.15)
Note well the appearance of h in these various expressions.
In terms of these expressions we have
<\\i I Or(x) I \\f > = <0 I U+[\p] Or(x) U[\|/] I 0 >


78
I
= I dA. < O I [B+(x, A,) + y(x, X)] X [B(x, X) + \|/(x, A.)] I 0 >
= dX [c(A) + \|/*(x, X)] X [c(A) + xt/(x, X)]
I
Since c(A) always takes the form c(A) =.-^-exp mA2 yi(A) it follows that
W 2n 1
f
lim^ _> o I dA c (A) A \y(x, A,) = 0. Consequently
lim^ _> o< VI $r(x) IV > = lim _> o I dA. \|/*(x, A.) A, v|/(x, X)
i j dX \|/*(x,
1
= lim;, _>o I dA( K1/2 a(x) I X) A. ( X I K1/2 a(x))
= linv, _>o( 1/2 a(x) I A, I K1 /2 a(x))
= (p(x).
(7.16)
Before we calculate , we need to prove several useful
identities. By using
U^/f1/2 a(x)] X U[/f1/2 a(x)] = X + cp(x),
UV1/2 a(x)] pxU[r1/2 a(x)] = p^ + k(x),
we can calculate any arbitrary monomial in A's and p^ 's:


79
( h~1/2 oc(x) I ^01- p0n I K1/2 a(x))
= ( O I ( A, + Because of the prefactor fh in the definition of X ( a + a+) ] and p^
[ = a+ a )], all the terms involving X and p^ will go to zero when we
take the limit > 0. Thus we have
lim/j o ( 1/2 a(x) I A01- p0n I K1/2 a(x)) = cp01(x> -^"(x). (7.17)
Now with h(, X) = h = -h2-^ + W{X) we calculate
dX
2 dX2
A(t) = exp(-M: h) ^.exp( t h)

= X + it [h, X] + lM[h, [h, X]] + it)3[h, [h, [h, X]]]]
= X + tpi ij-t2V (X) [v'(X) Pl + PiV'(X)] + .. (7.18)
After an expectation in the coherent states l/f1/2a(x)) and the limit -0,
we obtain
lim/j -4 o ( 1 /2 a(x) I A(t) I K1 /2 a(x))
= (7.19)


80
where we have used (7.17), and introduced
Vo[cp(x, t)] = lim/j _> o V [cp(x, t)]. (7.20)
Notice that Vo(cp) no longer depends on h but it does contain a vestige of h
in the term 0-(p'2(x,t).
We now prove that the result of (7.19) is just the solution classical canonical equations with the Hamiltonian
d3>
i-7T2(x,t) + V0[cp(x, t)] ,
k(x, t) = -V0[cp(x, t)].
(7.21)
(7.22)
With (p(x, 0) = (p(x), 7t(x, 0) = 7i(x), we can use a Taylor series expansion:
cp(x, t) = (p(x, 0) +t cp(x, 0) t2 (p(x, 0) + 13 ^ +
2 3! at3
= = (p(x) + t7i(x) v0[(p(x)] ^V0(cp(x,1)) I t = 0 +
= cp(x) +tJr(x)-V0[(p(x)]-V0[(p(x)]7i(x) + .... (7.23)
In the same way, we can prove that


81
lim/j _> o ( K172 tx(x) I p^(t) I Ti~1/2 a(x)) = n(x, t).
Thus
lim^_>0
= lim^ _> o< ¥ IJ dX B+(x, A.) X(t) B(x, X.) I \|/ >
= lim _> 0( K1/2 a(x) I X(t) I K1/2 a(x)) = cp(x, t); (7.24)
and evidently
lim o< VI ^(x, t) IV > = rc(x, t). (7.25)
According to (7.22), cp(x, t) satisfies the classical equation of motion, namely
(p(x, t) = Vo[cp(x, t)]. (7.26)
Let us present two examples:
Example 1. Ultralocal Pseudo-Free Theory
The quantum Hamiltonian of the ultralocal pseudo-free field is given
H = | d3xj
dX B+(x,Wh(-,W B(x,W
dX


82
where
+ m(y-1/2)h .
The model function c(X) for the system is determined through (6.7b), and the
result is
(7.27)
Expressing the quantum Hamiltonian in terms of the renormalized
field operators, we have
1i
i-flr (x) + i-m2Or (x)jd3x
H =
where we have defined the local operator
Obviously this definition means that nr neither fits into the canonical
framework nor fulfills the commutation relation [Or(x), nr(y)] = i H8(x y).
From the above analysis, the classical limit of the field operators in the
coherent states denoted by tp(x, t) and 7i(x,t) fits into the classical canonical
equation (7.22), with Vi((p) = 0, and (p(x, t) is the solution of the classical
pseudo-free field equation of motion (7.26)20 :


83
cp(x, t) = 0-cp'3(x,t) m2cp(x,t),
where the role of 0-cp'3(x,t) is to assure that cp(x, t) > 0 or that (p(x, t) is not allowed to cross through (p(x, t) = 0, This kind of solution can
be secured if we replace the above equation by the scale-covariant equation of
motion3
cp(x,t) [ For readers interested in the equation of motion of the pseudo-free field
operators, Ref. 21 is recommended.
nrZ.
Example 2. Ultralocal Field with Interaction Potential g(p4 + tp6
2m 2
I *J
The quantum Hamiltonian is H = I d3x I d>. B+(x, X) h(, X) B(x, X),
dX
and the expressions of h(, X) and c(X) for such a model are
dX
w 3 N i Y(Y+1 )t¡2 i ,2 .4 g2
h( *) = ^Px2 + -2 + ym2X + gX + -S-X
dX 2
2X
2m
,6 + m (Y- 1/2 )fi + g ^m3l2)X2h
2 1 m
c(X) = -L exp (- J-mX2 -X4
|^JY H 2 4m
(7.28)
The Hamiltonian expressed in terms of the renormalized field operators is


84
H= (lrf(x) + i [m2 + 2g (Ym3/2)h- ] J \2 2 m 2 m2 I
2*2 2
with nr = d>r + y(y+1)/22 r + m(y--)/jOr Since the last two terms in
h(, A,) vanish when we take the classical limit, according to (7.20), the
3A
corresponding classical Hamiltonian when /z > 0 is
Hci = I j^t2(x) + 0-cp'2(x) + i-m2 J \2 2 2 m2 I
The canonical equations are
7t(x, t) = 0-cp'3(x,t) m2(p(x,t) 4g(p3(x,t) -
and the equation of motion is
cp(x, t) = 0-cp3(x,t) m2 according to (7.26).
^ m2
^ m2
(7.29)
Again the role of 0- 0 or cp(x, t) < 0 ,
namely, that (p(x, t) is not allowed to cross through (p(x, t) = 0, This kind of
solution can be secured if we replace (7.29) by the scale-covariant equation of
motion3


(p(x,t)cp(x, t) = m2tp2(x,t) 4gcp4(x,t) 2- m2
which is satisfied by the classical limit of the ultralocal field
lim^ _> o< VI ^*r(x, t) I \j/ >, according to Eq. (7.24).


CHAPTER 8
PATH-INTEGRAL FORMULATION OF ULTRALOCAL
MODELS
In an earlier chapter, we have pointed out that the path-integral of the
quartic self-coupled ultralocal scalar field leads to an trivial (Gaussian) result
when approached by the conventional lattice limit (Chap. 5). However, the
characterization of infinitely divisible distributions allows ultralocal models
alternative operator solutions (Chap. 6) which suggest a new expression of
path-integral with a nonvanishing, nonclassical potential. In this chapter, we
seek to replace the standard lattice formulation by a nonstandard one which
admits nontrivial results. Specifically, we will use these alternative,
nonperturbative operator solutions to construct nontrivial lattice-space path
integrals for nonrenormalizable ultralocal models. As we will see, the
indefinite, nonclassical, singular potential required for the nontriviality in
multi-component case has different effects on distributions compared to the
single-component case, however the essential property of reweighting the
distribution at the origin is similar. The appearance of additional
nonclasssical, singular potentials suggests that we can not always place the
classical Lagrangian or classical Hamiltonian directly into the path-integral
formulation, or in other words, a straightforward canonical quantization of
fields with infinite degrees of freedom does not always apply.
86


8.1. Operator Solutions of Ultralocal Models
In this section, we will select certain results, which will be used here,
from Chapter 6 on the operator analysis of ultralocal models15, and put them
into completely proper dimensional forms. Following Chapter 6, the N
-component ultralocal field operator can be expressed as
-J
(x) = I dA B+(x, A,) A B(x, A)
(8.1)
Where the operators B+(x, A) and B(x, A) are translated Fock operators, defined
through B(x, A) = A(x, A) + c(A), A = while A+(x, A) and A(x, A) denote
conventional irreducible Fock representation operators for which I 0 > is the
unique vacuum, A(x, A) 10 > = 0. for all xeSR""1, Ae9N. The only
nonvanishing commutator is given by
A(x, A), A+(x', A') = 5(x-x0 8(A-A0.
(8.2)
Obviously, the operators B+(x, A) and B(x, A) follow the same commutation
relation (8.2). For the single-component case, (8.1) becomes
0(x) =
l dA B+(x,
A) A B(x, A).
(8.3)
Renormalized products follow from the operator product expansion:


which suggests the definition of the renormalized square as
sbl
Orij(x) s b I dX B+(x, X) XiXj B(x,X) = ZOi(x) (8.4)
Here we have introduced an auxiliary constant b designed to keep Z
dimensionless. (In the previous chapters, we have generally chosen b=l).
With [] = dimension (), we have [b]= [x]1_n. More generally, the
renormalized local powers of the field are given by
ii, ,ik = 1,2,3, N and k = 1,2,3,
Occasionally, we need to use the renormalized negative powers of the field
even though they are not local operators. Take the one-component case for
example:
dXB+(x,X) (bXj)kB(x,X) h J-[Z 01(x)]k,
z
i = 1,2 N;
(8.6)
it can formally be extended to k < 0, as long as we define


89
The Hamiltonian of O(N) invariant, N-component ultralocal fields can
be expressed as
dX B+(x, X) MV*, X) B(x, X)
dX A+(x, X) h(V\, X) A(x, X).
(8.7)
1 9 2
Where h(V^, X) = ---h V>. + V(X) is a self-adjoint operator in the X variable
alone. The connection between these two relations holds when we insist that
h(Vx, X) c(X) = 0, and in order for 10 > to be the unique ground state of H, it
follows that c(X) g £2(9tN). Since [c]2 = [x]1_n[X]N and [X]2= [x]n [h], we have
[c]2 = [x]1"n(1+N/2)[^]'N/2. Therefore, by taking into account of the dimensions,,
the model function may be expressed as
c(X) = ft(2r-N)/4baX exp (- y(X, b, ft) j, (8.8)
! r r1 2 I
where a = [ n(l-T+N/2)-l ] /2(n-l). With a proper account of dimensions, the
self-adjoint base Hamiltonian obeys
^ ^ 2
MV*, X) = M2V2x+ r(r+2~N>ft + m^(r-N/2) + m2bX2+ l-Vi(Wt).
2b
2bX
(8.9)
Obviously, For the single-component case, (8.8) and (8.9) become
Cft) = /¡W>/4bIn<3/2-tf-ll/2 W
^-mX2 y(X, b, h)
2 n
(8.10)


h0/ax, X) = --h2 + 7(7+1 }^2 + mfi(Y -1/2) + lm2tA2 + l-Vi(bX) .
2b 9X2 2b/.2 2 b
(8.11)
The Hamiltonian may also be expressed in terms of renormalized
fields as
H = | ji-nr2(x) + Im20r2(x) + Vi[ -2-2 -2 0
where nr(x) = Or(x) + T(r+2 N)ft2b21 Or(x) I + mh (2T N)b I Or(x) I and in
terms of bare fields as
H=J ji-Zn2(x) + lm2ZiJ>2(x) + lVi[Z(x)]jdx (8.13)
^2 -2 -2 -0-2
where Z (x) = Z0> (x) + r(r+2-N)/z2b2Z'310(x) I + mh (2r-N)bZ'11 For the single-component case, the Hamiltonian becomes
H =
jln2(x) + i-m2chr2(x) + Vi[Or(x)] jdx,
(8.14)
¡Zn2(x) + l-m2Z02(x) + lVi[Zr(x)] jdx
(8.15)
where n2 = d>2+ y(y+l)n2b2 mh(2y- l)b Or and Zn2 = Z + 7(7+1 )^2b20>'2Z'3
+ m^(27-l)b oV1 =U2r.


91
The Hamiltonian operator (8.7) readily leads to the Heisenberg field
operator which is given by
I
0(x,t) = e*H/ I
= dX B+(x, X) X(t) B(x, X)
(8.16)
After this partial review, we turn our attention to the path-integral
formulation of ultralocal models.


92
8.2 Euclidean-Space Path-Integral Formulation of Single-Component
Ultralocal Fields
In this section, we will start from the operator solution presented in
§8.1 to derive the Euclidean time lattice-space formulation. Attention is
focused on the time-ordered vacuum to vacuum expectation functional
il
C[f] = < 0 I Texpj UI dx dt 0(x,t) f(x,t)
I 0>.
(8.17)
Insert (8.3), then we have
C[f] = < 0 I Texd U
pj^j" dx dt J dX B+(x, X) f(x,t)X(t) B(x, X)
I 0>,
By using the normal ordering technique, C[f] becomes
< 0 IT: exp j dx J dX B+(x, X) { exp [j-J
X) { exp[E| dt f(x,t)X(t)] -1} B(x, X)
I 0>.
Notice that only the part inside { } depends on time t Therefore we can
move the time-ordering sign T into the bracket, so we find that
C[f] = < 0 I: exp
j dx j dX B+(x, X) { Texpl^j
X) { Texpl^J dt f(x,t)X(t)] -1 } B(x, X)
ici
= exp | dx | dX c(X) { Texpfh j dt f(x,t)A,(t)] -1} c(X)
ll
: I 0 >


Full Text
LD
\'\$o
I ^ V
. 263
UNIVERSITY OF FLORIDA
3 1262 08554 5555



PAGE 1

6,1*8/$5 '<1$0,&6 ,1 48$1780 0(&+$1,&6 $1' 48$1780 ),(/' 7+(25< %\ &+(1*-81 =+8 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

'HGLFDWHG WR 0\ 3DUHQWV DQG )ULHQGV

PAGE 3

$&.12:/('*0(176 ZLVK WR WKDQN P\ VXSHUYLVRU 3URI 5 .ODXGHU IRU KLV HIIRUWV SDWLHQFH DQG HQFRXUDJHPHQW WKURXJKRXW WKH WLPH KDYH EHHQ DW WKH 8QLYHUVLW\ RI )ORULGD +H LQWURGXFHG PH WR PRVW RI WKH WRSLFV LQYROYHG LQ WKLV GLVVHUWDWLRQ DQG DOZD\V ZDV UHDG\ IRU D GLVFXVVLRQ LI QHHGHG 2YHU WKH \HDUV KLV HQWKXVLDVP DQG HQFRXUDJHPHQW KDYH EHHQ FRQVWDQW VRXUFHV RI LQVSLUDWLRQ WR SXVK WKH SURMHFW IRUZDUG DP JUDWHIXO WR WKH RWKHU PHPEHUV LQ P\ VXSHUYLVRU\ FRPPLWWHH 3URI 3LHUUH 5DPRQG IRU KLV YDOXDEOH FRPPHQWV DQG VXJJHVWLRQV 3URI &KDUOHV +RRSHU 3URI 5REHUW %XFKOHU 3URI 'DYLG 7DQQHU DQG 3URI &KULVWRSKHU 6WDUN IRU SDWLHQWO\ VLWWLQJ WKURXJK P\ RUDO H[DP DQG WKHVLV GHIHQVH 6SHFLDO WKDQNV VKRXOG JR WR 3URI %XFKOHU IRU KLV NLQGQHVV FRQFHUQ DQG KHXULVWLF VXJJHVWLRQV ZKHQ ZDV YHU\ GHSUHVVHG LQ MREKXQWLQJ $OVR ZDQW WR H[SUHVV P\ GHHS WKDQNV WR P\ IHOORZ JUDGXDWH VWXGHQWV DQG FROOHDJXHV IRU WKHLU KHOS DQG HQFRXUDJHPHQW WKURXJKRXW WKH \HDUV

PAGE 4

7$%/( 2) &217(176 SDJHV $&.12:/('*0(176 LQ $%675$&7 YL 3$57 &/$66,&$/ 6<037206 2) 48$1780 ,//1(66(6 &+$37(56 ,1752'8&7,21 %DVLF &RQFHSWV RI 2SHUDWRU 7KHRU\ 6\PPHWULF 2SHUDWRUV DQG ([WHQVLRQV 7KH &RQVWUXFWLRQ RI 6HOI$GMRLQW ([WHQVLRQV &/$66,&$/ 6<037206 2) 48$1780 ,//1(66(6 3ULQFLSDO $VVHUWLRQV &ODVVLFDO 6\PSWRPV RI 4XDQWXP ,OOQHVVHV 0RUH *HQHUDO ([DPSOHV ([DPSOHV RI 2QH'LPHQVLRQDO +DPLOWRQLDQV ([DPSOHV RI 7KUHH'LPHQVLRQDO +DPLOWRQLDQV 6(/)$'-2,171(66 2) +(50,7,$1 +$0,/721,$16 7KUHH 'LIIHUHQW &DVHV RI +HUPLWLDQ +DPLOWRQLDQV 7KH $SSOLFDWLRQ RI %RXQGDU\ &RQGLWLRQV DQG 6HOI$GMRLQW ([WHQVLRQV DW 5HJXODU 3RLQWV 7KH $SSOLFDWLRQ RI %RXQGDU\ &RQGLWLRQV DQG 6HOI$GMRLQW ([WHQVLRQV DW 6LQJXODU 3RLQWV &RQFOXVLRQ 3$57 ,, 23(5$725 $1$/<6,6 $1' )81&7,21$/ ,17(*5$/ 5(35(6(17$7,21 2) 1215(1250$/,=$%/( 08/7, &20321(17 8/75$/2&$/ 02'(/6 ,1752'8&7,21 &/$66,&$/ 8/75$/2&$/ 02'(/ $1' 7+( 67$1'$5' /$77,&( $3352$&+ 23(5$725 $1$/<6,6 2) 08/7,&20321(17 8/75$/2&$/ 02'(/6 ,9

PAGE 5

2SHUDWRU $QDO\VLV RI 6LQJOH&RPSRQHQW 8OWUDORFDO 0RGHOV 2SHUDWRU $QDO\VLV RI )LQLWH&RPSRQHQW 8OWUDORFDO )LHOGV 2SHUDWRU $QDO\VLV RI ,QILQLWHFRPSRQHQW 8OWUDORFDO )LHOGV 7+( &/$66,&$/ /,0,7 2) 8/75$/2&$/ 02'(/6 8OWUDORFDO )LHOGV DQG ,WV $VVRFLDWHG &RKHUHQW 6WDWHV 6HOHFWLRQ RI WKH &RKHUHQW 6WDWHV IRU 8OWUDORFDO )LHOGV DQG WKH &ODVVLFDO /LPLW 3$7+,17(*5$/ )2508/$7,21 2) 8/75$/2&$/ 02'(/6 2SHUDWRU 6ROXWLRQV RI 8OWUDORFDO 0RGHOV (XFOLGHDQ6SDFH 3DWK,QWHJUDO )RUPXODWLRQ RI 6LQJOH&RPSRQHQW 8OWUDORFDO )LHOGV (XFOLGHDQ6SDFH 3DWK,QWHJUDO )RUPXODWLRQ RI 0XOWL&RPSRQHQW 8OWUDORFDO )LHOGV 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ Y

PAGE 6

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 6,1*8/$5 '<1$0,&6 ,1 48$1780 0(&+$1,&6 $1' 48$1780 +(/' 7+(25< %\ &KHQJMXQ =KX $SULO &KDLUPDQ 'U -RKQ 5 .ODXGHU 0DMRU 'HSDUWPHQW 3K\VLFV 7KH FODVVLFDO YLHZSRLQW WKDW WKH SDWKRORJLHV RI TXDQWXP +DPLOWRQLDQV DUH UHIOHFWHG LQ WKHLU FODVVLFDO FRXQWHUSDUWV DQG LQ WKH VROXWLRQ RI WKH DVVRFLDWHG FODVVLFDO G\QDPLFV LV LOOXVWUDWHG WKURXJK WKH SURSHUWLHV RI FODVVLFDO HTXDWLRQV RI PRWLRQ 5LJRURXV PDWKHPDWLFDO SURRIV DUH SURYLGHG E\ FDOFXODWLQJ WKH GHILFLHQF\ LQGLFHV ZKLFK IXUWKHU KHOS WR DQDO\]H WKH SRVVLELOLW\ RI H[WHQGLQJ WKH +HUPLWLDQ +DPLOWRQLDQ WR D VHOIDGMRLQW RQH $ IHZ H[DPSOHV RI KRZ WR DGG ERXQGDU\ FRQGLWLRQV RQ ZDYH IXQFWLRQV LQ RUGHU WR KDYH VHOIDGMRLQW H[WHQVLRQV DV ZHOO DV WR FXUH WKH LOOQHVV RI FHUWDLQ +DPLOWRQLDQV DUH GLVFXVVHG 7KH QRQWULYLDO QRQ*DXVVLDQf QRQSHUWXUEDWLYH TXDQWXP ILHOG WKHRU\ RI 1fLQYDULDQW PXOWLFRPSRQHQW QRQUHQRUPDOL]DEOH XOWUDORFDO PRGHOV LV SUHVHQWHG $Q LQGHILQLWH QRQFODVVLFDO DQG VLQJXODU SRWHQWLDO KDV UHSODFHG WKH QRQYDQLVKLQJ SRVLWLYHGHILQLWH QRQFODVVLFDO DQG VLQJXODU SRWHQWLDO DSSHDUHG LQ WKH VLQJOHFRPSRQHQW FDVH 7KH RSHUDWRU WKHRU\ RI PXOWLFRPSRQHQW XOWUDORFDO YL

PAGE 7

ILHOGV UHPDLQV QRQFDQRQLFDO HYHQ ZLWK WKH GLVDSSHDUDQFH RI WKH VLQJXODU SRWHQWLDO 7KH YDOLGLW\ RI WKLV QRQWULYLDO VROXWLRQ LV VXSSRUWHG E\ WKH IDFW WKDW WKH QRQWULYLDO TXDQWXP VROXWLRQ UHGXFHV WR WKH FRUUHFW FODVVLFDO WKHRU\ LQ D VXLWDEOH OLPLW DV IL 7KH QRQWULYLDO QRQ*DXVVLDQf SDWK LQWHJUDO IRUPXODWLRQ FRQVWUXFWHG E\ WKH QRQSHUWXUEDWLYH RSHUDWRU VROXWLRQ LQYROYLQJ WKH QRQFODVVLFDO DQG VLQJXODU SRWHQWLDO UHSODFHV WKH VWDQGDUG ODWWLFH DSSURDFK ZKLFK LQYDULDEO\ OHDGV WR D *DXVVLDQ WKHRU\ UHJDUGOHVV RI DQ\ QRQOLQHDU LQWHUDFWLRQV 7KH DSSHDUDQFH RI WKH QRQFODVVVLFDO VLQJXODU SRWHQWLDO VXJJHVWV WKDW ZH FDQ QRW DOZD\V SODFH WKH FODVVLFDO /DJUDQJLDQ RU FODVVLFDO +DPLOWRQLDQ GLUHFWO\ LQWR WKH SDWKLQWHJUDO IRUPXODWLRQ RU LQ RWKHU ZRUGV D VWUDLJKWIRUZDUG FDQRQLFDO TXDQWL]DWLRQ RI ILHOGV ZLWK LQILQLWH GHJUHHV RI IUHHGRP GRHV QRW DOZD\V DSSO\ 7KHVH GLIIHUHQFHV VXJJHVW SODXVLEOH PRGLILFDWLRQV LQ WKH ODWWLFHVSDFH IRUPXODWLRQ RI UHODWLYLVWLF QRQUHQRUPDOL]DEOH PRGHOV WKDW PD\ OHDG WR QRQWULYLDOLW\ IRU 1 FRPSRQHQW PRGHOV VXFK DV 2Q Q DQG SRVVLEO\ Q f IRU 1 9OO

PAGE 8

3$57, &/$66,&$/ 6<037206 2) 48$1780 ,//1(66(6

PAGE 9

&+$37(5 ,1752'8&7,21 7KH UXOHV RI TXDQWL]DWLRQ DV ODLG GRZQ LQ E\ 6FKURGLQJHU KDYH VWRRG WKH WHVW RI WLPH DQG KDYH SURYLGHG WKH EDVLV IRU DSSO\LQJ DQG WHDFKLQJf QRQUHODWLYLVWLF TXDQWXP PHFKDQLFV %HFDXVH RI WKH RYHUZKHOPLQJ VXFFHVV RI WKH WKHRU\ LW LV QRW VXUSULVLQJ WKDW SK\VLFLVWV KDYH OLWWOH XVH IRU VHYHUDO PDWKHPDWLFDO QLFHWLHV WKDW JR E\ WKH ODUJHO\ XQIDPLOLDU FRGH ZRUGV RI VHOIDGMRLQW H[WHQVLRQ GHILFLHQF\ LQGLFHV RSHUDWRU GRPDLQV HWF ZKLFK ZH ZLOO EULHIO\ GHILQH LQ VXEVHTXHQW VHFWLRQVf 7KHVH FRQFHSWV W\SLFDOO\ EHFRPH LPSRUWDQW ZKHQ WKH TXDQWL]DWLRQ SUHVFULSWLRQV DUH DPELJXRXV RU RWKHUZLVH LQFRPSOHWH DOO E\ WKHPVHOYHV 2XU JRDO LV WR VKRZ WKDW VXFK TXDQWXP WHFKQLFDOLWLHV DUH DFWXDOO\ UHIOHFWHG LQ WKH FODVVLFDO WKHRU\ E\ FRUUHVSRQGLQJ GLIILFXOWLHV WKDW DUH HDV\ WR VHH DQG XQGHUVWDQG ,W ZLOO EH FOHDU WKDW VXFK DQ HYLGHQW FODVVLFDO GLIILFXOW\ PXVW OHDG WR VRPH NLQG RI TXDQWXP GLIILFXOW\ DQG WKXV WKH QDWXUDOQHVV RI WKH FRUUHVSRQGLQJ TXDQWXP WHFKQLFDOLW\ ZLOO EHFRPH DSSDUHQW :H PD\ JR VR IDU DV WR DVVHUW WKDW WKHUH DUH VXIILFLHQW FODVVLFDO V\PSWRPV RI DQ\ TXDQWXP LOOQHVV WKDW D FRPSOHWH GLDJQRVLV LV SRVVLEOH DOUHDG\ DW WKH FODVVLFDO OHYHO &KDSWHU f 2I FRXUVH UHVROYLQJ WKH SUREOHPV DQG HIIHFWLQJ D IXOO FXUH ZKHQ RQH H[LVWV FDQ RQO\ WDNH SODFH DW WKH TXDQWXP OHYHO &KDSWHU f 7KLV FKDSWHU FRQWDLQV EDVLFDOO\ D VXPPDU\ RI WKH PDWKHPDWLFDO FRQFHSWV DQG WKHRUHPV SUHSDUHG IRU ODWHU FKDSWHUV ,Q &KDSWHU ZH ZLOO GLVFXVV WKH SURSHUWLHV RI FODVVLFDO VROXWLRQV RI JLYHQ H[DPSOHV ZKRVH V\PSWRPV FDQ EH

PAGE 10

XVHG WR GLDJQRVH DQ\ SRWHQWLDO TXDQWXP LOOQHVVHV ,Q &KDSWHU ZH ZLOO SURYLGH WKH PDWKHPDWLFDO SURRI IRU DOO WKH DVVHUWLRQV PDGH LQ &KDSWHU DQG ZLOO DOVR JLYH D IHZ H[DPSOHV RI KRZ WR DGG ERXQGDU\ FRQGLWLRQV RQ WKH ZDYH IXQFWLRQV LQ RUGHU WR H[WHQG WKH +DPLOWRQLDQV WR EH VHOIDGMRLQW DQG VR WR FXUH WKH LOOQHVV RI FHUWDLQ +DPLOWRQLDQV %DVLF &RQFHSWV RI 2SHUDWRU 7KHRU\ ,Q WKLV VHFWLRQ ZH IROORZ 5HI FORVHO\ 7KH RSHUDWRUV ZH GHDO ZLWK LQ TXDQWXP PHFKDQLFV DUH IUHTXHQWO\ XQERXQGHG RSHUDWRUV ZKLFK QHHG WR EH GHILQHG RQ D GRPDLQ '$f WR HQVXUH WKDW $\H IRU \ H '$f ZKHUH LV +LOEHUW VSDFH *HQHUDOO\ LI $ DQG % DUH WZR XQERXQGHG OLQHDU RSHUDWRUV D3 H & \H RF$ S%f D$ S%f '$f Q '%f D$ S%f\ D $ \f S% \f )RU WKH SURGXFW SXW '$%f ^\\H'%f %\ H'$f` $%f\ $ %\f \H $%f ,Q JHQHUDO '$%f r '%$f DQG KHQFH $% r %$ DQG HYHQ $ $n r $n $ EHFDXVH WKHLU GRPDLQV PD\ QRW FRLQFLGH 6R H[WUD FDUH LV QHHGHG LQ WUHDWLQJ WKHVH RSHUDWRUV

PAGE 11

:H UHFDOO WKDW $ LV GHQVHO\ GHILQHG LQ LI DQG RQO\ LIf MWILV WKH FORVXUH RI '$f L H IRU \ H WKHUH LV D VHTXHQFH RI HOHPHQWV RI '$f FRQYHUWLQJ WR \ >ID \I ID H '$f@ )RU D GHQVHO\ GHILQHG RSHUDWRU $ IRU L+ LQWR WKHUH H[LVWV D XQLTXH DGMRLQW RSHUDWRU $ ZKLFK VDWLVILHV $ \L Sf \ $ LSf ZKHUH \ H '$f DQG H '^$ f ,I DQ DGMRLQW RSHUDWRU $ $ RQ '$f DQG '$f '$f WKHQ $ LV FDOOHG D VHOIDGMRLQW RSHUDWRU 6\PPHWULF 2SHUDWRUV DQG ([WHQVLRQV ,I $ $ RQ '$f WKHQ '$f e $rf DOZD\V KROGV OLNH +HUPLWLDQ +DPLOWRQLDQ RSHUDWRUVf 1RZ Df $ LV FDOOHG D VHOIDGMRLQW RSHUDWRU ZKHQ '$f '$f DQG RQH ZULWHV $ $ Ef $ LV FDOOHG D V\PPHWULF RSHUDWRU ZKHQ '$f F '$f DQG RQH ZULWHV $ F $ )XUWKHU LI WKHUH H[LVWV D V\PPHWULF H[WHQVLRQ $V RI $ VXFK WKDW $ F $V $V F $ WKHQ ZH VD\ WKDW $ KDV WKH VHOIDGMRLQW H[WHQVLRQ $V E\ HQODUJLQJ '$f WR '$6f DQG FRQWUDFWLQJ '$f WR '$6f '$6ff /HW $ s sL W ZLWK VROXWLRQV 4s H 1s ZKLFK DUH FORVHG VXEVSDFHV RI A NQRZQ DV WKH GHILFLHQF\ VSDFHV RI $ DQG WKHLU GLPHQVLRQV Qs UHVSHFWLYHO\ DUH FDOOHG WKH GHILFLHQF\ LQGLFHV :H VKDOO DOVR VD\ IRU EUHYLW\ WKDW $ KDV GHILFLHQF\ LQGLFHV Q QBf /HPPD ,I $ LV V\PPHWULF WKHQ '$nff $ fp1p1 $ GHQRWHV WKH FORVXUH RI $

PAGE 12

/HPPD $ V\PPHWULF RSHUDWRU ZLWK ILQLWH GHILFLHQF\ LQGLFHV KDV D VHOI DGMRLQW H[WHQVLRQ LI DQG RQO\ LI LWV GHILFLHQF\ LQGLFHV DUH HTXDO :LWK WKH KHOS RI WKH WZR DERYH /HPPDV WKH IROORZLQJ WKHRUHP UHJDUGLQJ GHILFLHQF\ LQGLFHV LV VWUDLJKWIRUZDUG 7+(25(0 6XSSRVH WKH +HUPLWLDQ RSHUDWRU $ KDV GHILFLHQF\ LQGLFHV Q Qf WKHQ LI Lf Q Q $ LV VHOIDGMRLQW ZKHQ '$f LV FORVHG DQG WKH FORVXUH RI $ LV VHOI DGMRLQW ZKHQ '^$f LV QRW FORVHG LLf Q Q r $ KDV VHOIDGMRLQW H[WHQVLRQV LLLf Q r Q $ LV QRW VHOIDGMRLQW DQG KDV QR VHOIDGMRLQW H[WHQVLRQ 7KLV WKHRUHP LV XVHG WR FODVVLI\ +HUPLWLDQ RSHUDWRUV DQG ZH VHH WKDW QRW DOO +HUPLWLDQ RSHUDWRUV ZLOO JHQHUDWH IXOOWLPH TXDQWXP PHFKDQLFDO VROXWLRQV ([DPSOH $ LGG[ RQ /L4f $ W s] $L L GG[ W[f a H[S [f Df 4 RR mf 1HLWKHU QRU LV LQ rR RRfU VR Q Q DQG $ LV VHOIDGMRLQW RQ LWV QDWXUDO GRPDLQ 7KLV IDFW LV FRQVLVWHQW ZLWK LWV FODVVLFDO EHKDYLRU VHH )LJ Dff ZKHUH WKHUH LV D IXOOWLPH HYROXWLRQ Ef 4 > r!f H[S[f LV QRW LQ /> m!ff VR Q Qf f $ LV QRW VHOIDGMRLQW DQG SRVVHVVHV QR VHOIDGMRLQW H[WHQVLRQ 7KLV IDFW LV FRQVLVWHQW ZLWK LWV FODVVLFDO EHKDYLRU VHH )LJ Eff ZKHUH WKHUH LV QR IXOOWLPH HYROXWLRQ Ff  > @ %RWK  DUH LQ eA> @f Q UXf f $ KDV VHOIDGMRLQW H[WHQVLRQV E\ DGGLQJ WKH ERXQGDU\ FRQGLWLRQ \Of H[S LIIf \.2f ZKHUH H 

PAGE 13

7KH VSHFWUXP RI $ Q Q Q s s )RU GLIIHUHQW ZH JHW D GLIIHUHQW VHOIDGMRLQW H[WHQVLRQ 7KH FDVH RI LV WKH XVXDO FDVH XVHG LQ TXDQWXP PHFKDQLFV DQG LV FDOOHG WKH SHULRGLF ERXQGDU\ FRQGLWLRQ 6HH )LJ Ff IRU LWV FRQVLVWHQW FODVVLFDO EHKDYLRU 7KH GHILFLHQF\ LQGLFHV DUH FOHDUO\ RI FHQWUDO LPSRUWDQFH LQ WKH FODVVLILFDWLRQ RI +HUPLWLDQ RSHUDWRUV DQG LQ WKH FRQVWUXFWLRQ RI VHOIDGMRLQW H[WHQVLRQV 7KHVH PD\ EH IRXQG HDVLO\ LI H[SOLFLW VROXWLRQV RI $ I\s s L ?cUs DUH NQRZQ EXW XQOHVV WKH FRHIILFLHQWV RI $ DUH VLPSOH WKH FDOFXODWLRQV ZLOO LQYROYH GLIILFXOW VSHFLDO IXQFWLRQV ,Q RUGHU WR DYRLG WKRVH WHGLRXV VRPHWLPHV HYHQ LPSRVVLEOH FDOFXODWLRQV ZH ZLOO XVH D PRGLILHG WKHRUHP RI GHILFLHQF\ LQGLFHV HVSHFLDOO\ ZKHQ ERWK HQG SRLQWV RI e DUH VLQJXODU )LUVW OHW XV ORRN DW DQ H[DPSOH ZLWK TXDQWXP +DPLOWRQLDQ + ZKHUH + ?I S [f?L A [f\ G[ DFWLQJ RQ IXQFWLRQV GHILQHG RQ DQ LQWHUYDO  } rrf %RWK HQG SRLQWV [ s rr DUH VLQJXODU $ GLUHFW FDOFXODWLRQ RI WKH GHILFLHQF\ LQGLFHV VHHPV LQFUHGLEO\ WHGLRXV VLQFH WKH EHKDYLRU RI D VROXWLRQ RI +Ls s L \s DW ERWK HQG SRLQWV PXVW EH NQRZQ 7R VLPSOLI\ WKH GLIILFXOWLHV ZH VHSDUDWH 4 D Ef ZKHUH D DQG E DUH ERWK VLQJXODU WR WZR LQWHUYDOV ZLWK 4? D F @ DQG 4L > F Ef ZKHUH F LV D UHJXODU SRLQW +HUH FRPHV WKH VHFRQG WKHRUHP UHJDUGLQJ GHILFLHQF\ LQGLFHV 7+(25(0 /HW $D DQG $? EH V\PPHWULF RSHUDWRUV DVVRFLDWHG ZLWK $ RQ L DQG UHVSHFWLYHO\ ,I Qs QsD QsE LQGLFDWH WKH GHILFLHQF\ LQGLFHV RI $ $D DQG $E UHVSHFWLYHO\ WKHQ Qs QA QsE UHVSHFWLYHO\ VHH &KDSWHU RI 5HI f 7R DSSO\ WKLV UHVXOW WR WKH DERYH H[DPSOH ZH KDYH

PAGE 14

+9s e rf9 s ,!s 6LQFH + LV D UHDO RSHUDWRU L H + r + ZH KDYH \ \U 6R Q Q DQG ZH RQO\ QHHG WR FRQVLGHU \ DQG Q /HW \ \U I ;f_ D[ 7KH DV\PSWRWLF EHKDYLRUV DW [ s LV JLYHQ E\ \ [\ AFF a 9[ .L_[f a [!nH[S rf a 95 OA[If a : &26 A: AUf RU 9nI} f a 95 Vt[Mf a :r VLQ -[M $ ZKHUH -Y 1? DQG .? DUH WKH %HVVHO IXQFWLRQV RI WKH ILUVW DQG VHFRQG NLQGV UHVSHFWLYHO\ 2EYLRXVO\ WKH LQWHJUDWLRQ M_\[fMG[ FRQYHUJHV DW [ 7KXV QU ,Q WKH VDPH ZD\ Ye/aZ

PAGE 15

f VR WKDW ERWK VROXWLRQV RI VDWLVI\ M_ ?cL[IG[ FRQYHUJHV DW [ 7KHUHIRUH Q DQG Q QL RR m r m Qf f 2QH ERXQGDU\ FRQGLWLRQr LV QHHGHG WR H[WHQG + WR EH VHOIDGMRLQW 7KH H[LVWHQFH RI ERXQG VWDWHV \LRR GHPRQVWUDWHV WKDW WKH HQHUJ\ VSHFWUXP LV GLVFUHWH 7KLV UHVXOW LV H[DFWO\ ZKDW LV FODLPHG LQ &KDSWHU /DWHU LQ &KDSWHU ZH ZLOO VHH H[DPSOHV IRU WKUHH GLIIHUHQW FDVHV RI WKH GHILFLHQF\ LQGLFHV Lf m Q LLf Q Q r DQG LLLf Qr Q 7KH &RQVWUXFWLRQ RI 6HOI$GMRLQW ([WHQVLRQV %HIRUH ZH FRQVWUXFW WKH VHOIDGMRLQW H[WHQVLRQV ZH LQWURGXFH VRPH QRWDWLRQ VHH &KDSWHU RI 5HI f Lf >If \f \f 9f ZKHUH '$ f Kf I?U IL f IQ H '$ f '^$f p1k1B ZKHUH Ic K^ ID L KM H '$f IRH11 ,I Q LO WKH QXPEHU RI ERXQGDU\ FRQGLWLRQV Q VHH SDJH RI 5HI

PAGE 16

:H FDOO IL IL fff IQ OLQHDUO\ LQGHSHQGHQW UHODWLYH WR '$f LI ID ID ID DUH OLQHDUO\ LQGHSHQGHQW :LWK WKH KHOS RI WKH SUHFHGLQJ GHILQLWLRQV ZH LQWURGXFH WKH IROORZLQJ WKHRUHP 7+(25(0 /HW $ EH D V\PPHWULF RSHUDWRU ZLWK ILQLWH QRQ]HUR GHILFLHQF\ LQGLFHV Q Q Q 6XSSRVH WKDW I? I fff f f 'f DUH OLQHDUO\ LQGHSHQGHQW UHODWLYH WR '$f DQG VDWLVI\ ILIMf Qf 7KHQ WKH VXEVSDFH 0RL AFRQVLVWLQJ RI DOO \H 'L$rf VXFK WKDW ?MIWf L Qf LV WKH GRPDLQ RI D VHOIDGMRLQW H[WHQVLRQ 0 RI $ JLYHQ E\ 0 \ $I\M IRU \H0 ^\I ILf L Q DUH FDOOHG WKH QXPEHU RI Q ERXQGDU\ FRQGLWLRQV RQ WKH ZDYH IXQFWLRQ \ ,Q FKDSWHU ZH ZLOO JLYH D IHZ H[DPSOHV RI KRZ WR XVH WKHRUHP WR REWDLQ VRPH RI WKHVH VHOIDGMRLQW H[WHQVLRQV DQG WKHUHE\ FXUH WKH LOOQHVV RI FHUWDLQ +DPLOWRQLDQV

PAGE 17

&+$37(5 &/$66,&$/ 6<037206 2) 48$1780 ,//1(66(6 :LWKRXW XVLQJ WKH SUHFLVH GHILQLWLRQV DQG WHFKQLTXHV RI RSHUDWRU WKHRU\ SUHVHQWHG LQ FKDSWHU ZH FDQ VLPSO\ VKRZ WKDW WKH SDWKRORJLHV RI TXDQWXP +DPLOWRQLDQV DUH UHIOHFWHG LQ WKHLU FODVVLFDO FRXQWHUSDUWV DQG LQ WKH VROXWLRQV RI WKH DVVRFLDWHG FODVVLFDO HTXDWLRQV RI PRWLRQ 7KLV SURSHUW\ SHUPLWV RQH RQ WKH RQH KDQG WR DSSUHFLDWH WKH UROH RI FHUWDLQ WHFKQLFDO UHTXLUHPHQWV DFFHSWDEOH TXDQWXP +DPLOWRQLDQ PXVW VDWLVI\ DQG RQ WKH RWKHU KDQG HQDEOHV RQH WR UHFRJQL]H SRWHQWLDOO\ WURXEOHVRPH TXDQWXP V\VWHPV PHUHO\ E\ H[DPLQLQJ WKH FODVVLFDO V\VWHPV ,Q i ZH ZLOO PDNH WKH SULQFLSDO DVVHUWLRQV WKDW WKUHH FDWHJRULHV RI FODVVLFDO VROXWLRQV FRUUHVSRQG WR WKUHH FDWHJRULHV RI WKH VHOIDGMRLQWQHVV RI TXDQWXP +DPLOWRQLDQ RSHUDWRUV ([DPSOHV DUH JLYHQ LQ i DQG i ZKLOH WKH PDWKHPDWLFDO SURRI ZLOO EH SUHVHQWHG LQ FKDSWHU 3ULQFLSDO $VVHUWLRQV + 9f P 6SHFLILFDOO\ IRU WKH FODVVLFDO V\VWHP ZLWK D UHDO +DPLOWRQLDQ IXQFWLRQ 9Tf WKH FODVVLFDO HTXDWLRQ RI PRWLRQ PTnWf 9n>TWf@ DGPLWV WZR NLQGV RI VROXWLRQ Lf TWf LV JOREDO ZKLFK LV GHILQHG WKURXJK m W }f DQG XQLTXH H J + S L"

PAGE 18

LLf TWf LV ORFDOO\ XQLTXH EXW JOREDOO\ SRVVLEO\ QRQH[LVWHQW HVFDSHV WR LQILQLW\ LQ ILQLWH WLPHf 7KLV FDVH PD\ EH DOVR GLYLGHG LQWR WZR VXEFDVHV H[WHQGLEOH TWf FDQ EH H[WHQGHG WR D JOREDO VROXWLRQf RU QRQH[WHQGLEOH )RU H[DPSOH + S T$ + S s T DUH H[WHQGLEOH EXW + ST EHORQJV WR QRQH[WHQGLEOH VLWXDWLRQ 7KH FRUUHVSRQGLQJ TXDQWXP PHFKDQLFDO SUREOHP L\.[ Wf +\.[ Wf > G Y[f @ L.[ Wf RW P G[ KDV VLPLODU FDVHV 7R FRQVHUYH SUREDELOLW\ WKH WLPH HYROXWLRQ RI WKH ZDYH IXQFWLRQ PXVW EH HIIHFWHG E\ D XQLWDU\ WUDQVIRUPDWLRQ $ XQLWDU\ WUDQVIRUPDWLRQ JLYHV D SUHVFULSWLRQ IRU ZDYH IXQFWLRQ HYROXWLRQ IRU DOO WLPHV W rr W RU DV ZH VKDOO VRPHWLPHV DOVR VD\ IRU IXOO WLPH 7KH JHQHUDWRU RI VXFK D XQLWDU\ WUDQVIRUPDWLRQ WLPHV 9A7 ZKLFK ZH LGHQWLI\ ZLWK WKH +DPLOWRQLDQ RSHUDWRU XS WR FRQVWDQWVf PXVW VDWLVI\ RQH IXQGDPHQWDO SURSHUW\ QDPHO\ WKDW RI EHLQJ VHOI DGMRLQW %HLQJ VHOIDGMRLQW LV VWURQJHU LH PRUH UHVWULFWLYH WKDQ EHLQJ +HUPLWLDQ ZKLFK LV WKH JHQHUDOO\ DFFHSWHG VXIILFLHQW FULWHULRQ $FFRUGLQJ WR 7KHRUHP RQ SDJH W\SLFDOO\ WKHUH DUH WKUHH TXDOLWDWLYHO\ GLIIHUHQW RXWFRPHV WKDW PD\ DULVH Lf QR DGGLWLRQDO LQSXW LV QHHGHG WR PDNH WKH +DPLOWRQLDQ VHOI DGMRLQW LLf VRPH DGGLWLRQDO LQSXW LH WKH ERXQGDU\ FRQGLWLRQVf LV UHTXLUHG WR PDNH WKH +DPLOWRQLDQ VHOIDGMRLQW DQG TXDOLWDWLYHO\ GLIIHUHQW +DPLOWRQLDQV PD\ WKHUHE\ HPHUJH GHSHQGLQJ RQ ZKDW FKRLFH LV PDNH IRU WKH QHHGHG LQSXW DQG LLLf QR DPRXQW RI DGGLWLRQDO LQSXW FDQ HYHU PDNH WKH +HUPLWLDQ +DPLOWRQLDQ LQWR D VHOIDGMRLQW RSHUDWRU 5HPHPEHU LW LV RQO\ VHOIDGMRLQW +DPLOWRQLDQV WKDW KDYH IXOO\ FRQVLVWHQW G\QDPLFDO VROXWLRQV IRU DOO WLPH 7KXV LQ FDVH LLLf QR DFFHSWDEOH TXDQWXP G\QDPLFDO VROXWLRQ H[LVWV LQ DQ\ FRQYHQWLRQDO VHQVH

PAGE 19

7KHUHIRUH ZH PDNH WKH JHQHUDO DVVHUWLRQV WKDW WKHUH DUH WKUHH FDWHJRULHV RI FODVVLFDO VROXWLRQV ZKLFK FRUUHVSRQG WR WKUHH FDWHJRULHV RI WKH VHOIDGMRLQWQHVV RI TXDQWXP +DPLOWRQLDQ RSHUDWRUV e +DPLOWRQLDQ RSHUDWRU VHOIDGMRLQW t XQLTXH VHOIDGMRLQW H[WHQVLRQV H[LVW QR VHOIDGMRLQW + H[LVWV Lf JOREDO t XQLTXH LLf QRQJOREDO EXW H[WHQGLEOH LLLf QRQJOREDO t QRQH[WHQGLEOH &ODVVLFDO 6\PSWRPV RI 4XDQWXP ,OOQHVVHV 7R EH VXUH WKH PDMRULW\ RI FODVVLFDO V\VWHPV RQH QRUPDOO\ HQFRXQWHUVaDV UHSUHVHQWHG E\ WKHLU FODVVLFDO +DPLOWRQLDQV WKHLU +DPLOWRQLDQ HTXDWLRQV RI PRWLRQ DQG WKH VROXWLRQ WR WKHVH HTXDWLRQV RI PRWLRQDUH WURXEOH IUHH %XW WKHUH DUH H[FHSWLRQV FODVVLFDO V\VWHPV ZKLFK H[KLELW RQH RU DQRWKHU NLQG RI VLQJXODULW\ LQ WKHLU VROXWLRQV DQG LW LV LQ WKHVH SUREOHPDWLF H[DPSOHV WKDW ZH ZLOO ILQG WKH DQRPDORXV EHKDYLRU ZH VHHN WR LOOXVWUDWH /HW XV FRQVLGHU WKUHH PRGHO FODVVLFDO +DPLOWRQLDQV WKDW ZLOO H[KLELW WKH WKUHH NLQGV RI EHKDYLRU DOOXGHG WR DERYH ([DPSOH D + f§S A \ 7KH HTXDWLRQV RI PRWLRQ OHDG WR L (IU

PAGE 20

ZKHUH ( LV WKH FRQVHUYHG HQHUJ\ 1RQWULYLDO PRWLRQ UHTXLUHV ( DQG ( LQ ZKLFK FDVH OHDGV WR D ZHOOGHILQHG XQLTXH VROXWLRQ YDOLG IRU DOO WLPH 7KLV VROXWLRQ H[KLELWV D SHULRGLF EHKDYLRU ZLWK DQ HQHUJ\ GHSHQGHQW SHULRG 7(f 6HH H[DPSOH D LQ 7DEOH ([DPSOH E + S "f 7KH HTXDWLRQV RI PRWLRQ OHDG WR (_ DQG ( FDQ DVVXPH DQ\ UHDO YDOXH 6LQFH FS ( ZH ILQG WKDW mf GD s A W F 7KLV VROXWLRQ KDV WKH SURSHUW\ WKDW T GLYHUJHV IRU ILQLWH WLPHV IRU DQ\ QRQ]HUR ( VHH WKH VROLG OLQH RI H[DPSOH E LQ WKH WDEOH 7KH LQGLFDWRU RI WKLV EHKDYLRU LV WKH REVHUYDWLRQ WKDW WKH LQWHJUDO FRQYHUJHV DV WKH XSSHU OLPLW JRHV WR OHDGLQJ WR D ILQLWH YDOXH IRU WKH ULJKW VLGH QDPHO\ D ILQLWH YDOXH IRU WKH WLPH $FWXDOO\ WKLV VDPH WUDMHFWRU\ GLYHUJHV DW DQ HDUOLHU WLPH DV ZHOO $V E LOOXVWUDWHV

PAGE 21

WKH SDUWLFOH FRPHV LQ IURP T pR DW VRPH WLPH VD\ W WR DQG UHWXUQV WR T m} DW D ODWHU WLPH VD\ 7 WR ZKHUH (fn GT 7 )RU DQ\ QRQ]HUR ( 7 LQ SDUWLFXODU E\ D FKDQJH RI YDULDEOHV ZH OHDUQ WKDW ZKHUH 6(f ( ,(, WKH VLJQ RI WKH HQHUJ\ $V (, } WKH SDUWLFOH VSHQGV PRUH DQG PRUH WLPH QHDU T XQWLO DW ( LW WDNHV DQ LQILQLWH DPRXQW RI WLPH WR UHDFK RU OHDYHf WKH RULJLQ ([DPSOH E LQ WKH WDEOH LOOXVWUDWHV WKH JHQHULF VLWXDWLRQ IRU ( r DQG ILQLWH 7 +RZ FRXOG RQH SRVVLEO\ H[SHFW WKH TXDQWXP WKHRU\ WR SHUVLVW IRU DOO WLPH ZKHQ WKH JHQHULF FODVVLFDO VROXWLRQ GLYHUJHV DW ILQLWH WLPHV" 7KH RQO\ SRVVLEOH ZD\ IRU WKLV H[DPSOH WR KDYH D JHQXLQH TXDQWXP PHFKDQLFV LV IRU WKH SDUWLFOH WR HQMR\ D IXOOWLPH FODVVLFDO VROXWLRQ $QG WR DFKLHYH WKDWDQG WKLV LV WKH LPSRUWDQW SRLQWZKHQHYHU WKH SDUWLFOH UHDFKHV T rR ZH PXVW ODXQFK WKH SDUWLFOH EDFN WRZDUG WKH RULJLQ ZLWK WKH VDPH HQHUJ\ RQFH DJDLQ IROORZ WKH WUDMHFWRU\ LQZDUG DQG WKHQ RXWZDUG XQWLO WKH SDUWLFOH DJDLQ UHDFKHV T } ZKHQ ZH PXVW DJDLQ ODXQFK WKH SDUWLFOH EDFN WRZDUG WKH RULJLQ ZLWK WKH VDPH HQHUJ\ DQG VR RQ ERWK IRUZDUG DQG EDFNZDUG LQ WLPH DG LQILQLWXP ,Q EULHI WR JHW IXOOWLPH FODVVLFDO VROXWLRQV DV QHHGHG WR SDUDOOHO IXOO WLPH TXDQWXP VROXWLRQVf ZH PXVW UHF\FOH WKH

PAGE 22

VDPH GLYHUJHQW WUDMHFWRU\ RYHU DQG RYHU DJDLQ LQ DQ HQGOHVV SHULRGLF IDVKLRQ ZLWK SHULRG 7(ff VHH E LQ WKH WDEOH ZLWK WKH VROLG DQG WKH GDVKHG OLQHV ([DPSOH F + S FM 7KH HTXDWLRQV RI PRWLRQ LQ WKLV FDVH OHDG WR ZLWK WKH VROXWLRQ TWf s O
PAGE 23

VROXWLRQ IROORZHG E\ D FKDQJH RI WKDW FODVVLFDO VROXWLRQ IURP UHDO WR LPDJLQDU\ :LWK VXFK D FODVVLFDO V\PSWRP LW LV QR ZRQGHU WKDW WKHUH LV DQ LQFXUDEOH TXDQWXP LOOQHVV 0RUH *HQHUDO ([DPSOHV ,Q ZKDW IROORZV ZH GLVFXVV D QXPEHU RI K\SRWKHWLFDO FODVVLFDO +DPLOWRQLDQV H[DPLQH TXDOLWDWLYHO\ WKH QDWXUH RI WKHLU FODVVLFDO VROXWLRQV DQG DGGUHVV EDVHG RQ WKH WKHVLV LOOXVWUDWHG LQ 6HF WKH SUREOHP RI PDNLQJ DQ +HUPLWLDQ +DPLOWRQLDQ LQWR D VHOIDGMRLQW RQH LI WKDW LV LQGHHG SRVVLEOH /HW XV GLVSHQVH ZLWK WKH KHDOWK\ FDVHV DW WKH RXWVHW :KHQHYHU WKH FODVVLFDO HTXDWLRQV RI PRWLRQ DGPLW JOREDO VROXWLRQ IRU DUELWUDU\ LQLWLDO FRQGLWLRQV WKHQ WKH TXDQWL]DWLRQ SURFHGXUH LV XQDPELJXRXV DSDUW IURP FODVVLFDOO\ XQUHVROYDEOH IDFWRURUGHULQJ DPELJXLWLHVf 2EVHUYH WKDW WKH H[LVWHQFH RI VXFK JOREDO VROXWLRQV LV DQ LQWULQVLF SURSHUW\ RI D +DPLOWRQLDQ LQGHSHQGHQW RI DQ\ SDUWLFXODU VHW RI FDQRQLFDO FRRUGLQDWHV ([DPSOHV RI 2QH'LPHQVLRQDO +DPLOWRQLDQV S s  9( T sW F ([DPSOH G

PAGE 24

( FDQ EH DQ\ UHDO YDOXH )RU ( ZH QRWLFH WKDW GT  9( T$ FRQYHUJHV WR VD\ 7 (f ZKLFK PHDQV ZKHQ WKH SDUWLFOH WUDYHOV IURP m WR WKH WLPH LQWHUYDO LV 7 (f )RU QRQ]HUR ( 7 LV ILQLWH VHH WKH VROLG OLQH RI H[DPSOH G LQ WKH WDEOH ,Q RUGHU WR JHW D IXOOWLPH FODVVLFDO EHKDYLRU ZH PXVW VHQG WKH SDUWLFOH EDFN ZKHQ LW JHWV T s Rr VHH WKH WZR GLVWLQFW GDVKHG OLQHV RI G LQ WKH WDEOH ,Q TXDQWXP WKHRU\ WKLV VLWXDWLRQ FRUUHVSRQGV WR DGGLQJ WZR ERXQGDU\ FRQGLWLRQV DW T s rrf ZKLFK DUH UHTXLUHG WR H[WHQG + WR EH VHOIDGMRLQW )RU ( WKH SDWKV GR QRW FURVV WKH RULJLQ EXW WKHUH LV QR HVVHQWLDO GLIIHUHQFH LQ WKH TXDQWXP EHKDYLRU IURP WKH FDVH ( 7KDW PHDQV ZH VWLOO QHHG WR DGG WZR ERXQGDU\ FRQGLWLRQV WR H[WHQG + WR EH VHOIDGMRLQW ([DPSOH H K YTn T S sLO M( TO f ,Q T 9L ( sI F :KHQ WKH SDUWLFOH WUDYHOV IURP m! WR WKH WLPH VSHQW E\ WKH SDUWLFOH VSDQV WKH ZKROH ID[LV VHH H[DPSOH H LQ WKH WDEOHf VR WKHUH LV D JOREDO VROXWLRQ IRU DQ

PAGE 25

DUELWUDU\ LQLWLDO FRQGLWLRQ 7KXV WKH TXDQWXP +DPLOWRQLDQ LV XQLTXH DQG VHOI DGMRLQW 6LQFH WKHUH LV QR SHULRGLF EHKDYLRU WKH VSHFWUXP RI WKH TXDQWXP +DPLOWRQLDQ LV FRQWLQXRXV ([DPSOH I + SFM FM OW Ff *OREDO VROXWLRQV H[LVW VHH H[DPSOH LQ WKH WDEOHf DQG WKH TXDQWXP +DPLOWRQLDQ LV VHOIDGMRLQW 6LQFH WKHUH LV QR SHULRGLF EHKDYLRU WKH VSHFWUXP LV FRQWLQXRXV ([DPSOH J + S Tf FRQVLGHU 4 r! f RU mf Tf T W F

PAGE 26

VLPLODU WR ([DPSOH F T EHFRPHV LPDJLQDU\ IRU W F DQG WKHUH LV QR SRVVLELOLW\ RI KDYLQJ D IXOOWLPH FODVVLFDO VROXWLRQ MXVW DV LQ WKH FDVH RI H[DPSOH F 7KHUHIRUH WKHUH LV QR ZD\ WR H[WHQG WKH +DPLOWRQLDQ WR EH VHOIDGMRLQW ([DPSOH K + S S T T S Tf s -T ( ,WV FODVVLFDO VROXWLRQ LV VLPLODU WR H[DPSOH G DQG LV LGHQWLFDO WR + S Tn WR ZKLFK LW LV FDQRQLFDOO\ HTXLYDOHQW ([DPSOH L + S S T T r VR e r! f RU }f T S ?Tf s M( OT 9O (T s (WFf 7KH VROXWLRQ WR WKH PRWLRQ UHDGV (f?W Ff ( T

PAGE 27

6HH H[DPSOH L LQ WKH WDEOH ZKHUH ZH FKRVH ( 6LQFH T LV D VLQJXODU SRLQW ZH GLYLGH 65 LQWR 4 r! f DQG r!f )RU H[DPSOH ZKHQ WKH SDUWLFOH UHDFKHV T ZH KDYH WR VHQG LW EDFN RU FURVV RYHU T WR JHW D IXOOWLPH FODVVLFDO EHKDYLRU %\ FKRRVLQJ F WKH IXOOWLPH FODVVLFDO SLFWXUH PD\ EH OLNH WKH VROLG DQG GDVKHG OLQHV RI L LQ WKH WDEOH ,Q TXDQWXP WKHRU\ RQH ERXQGDU\ FRQGLWLRQ LV QHHGHG WR H[WHQG + WR EH VHOIDGMRLQW 7ZR DGGLWLRQDO H[DPSOHV DQG P f DSSHDU LQ WKH WDEOH ZLWKRXW GLVFXVVLRQ LQ WKH WH[W ([DPSOHV RI 7KUHH'LPHQVLRQDO +DPLOWRQLDQV 7R VLPSOLI\ WKH SUREOHP ZH FRQVLGHU KHUH RQO\ FHQWUDO SRWHQWLDOV 9^Uf ,Q VXLWDEOH XQLWV WKH TXDQWXP +DPLOWRQLDQ EHFRPHV + 9 9Uf YB GU"G / UGU GU U 6HW 9m WKHQ +U AA 9^Uf IRU XUf GU U 7KH FRQGLWLRQ WKDW L O?\O GU FRQYHUJHV QRZ EHFRPHV WKH FRQGLWLRQ WKDW 4XUfIGU FRQYHUJHV )RU 9Uf $ UQ Q $ !

PAGE 28

+U 3UD UQf OfU f DQG WKH FODVVLFDO HTXDWLRQ RI PRWLRQ LV U 9( 8Uf OfUf 8QGHU ERWK FDVHV RI ( DQG ( ZH VHH WKH GLIIHUHQFH EHWZHHQ m DQG Q )RU Q QHDU WKH RULJLQ LH U a I ( $ U VR U FRXOG JR DV QHDU DV U a 6HH H[DPSOH N LQ WKH WDEOH ,Q TXDQWXP WKHRU\ RQH FRQGLWLRQ LV UHTXLUHG WR H[WHQG WKH +DPLOWRQLDQV WR EH VHOIDGMRLQW ,W FRUUHVSRQGV WR RQH SDUDPHWHU HJ VHH SDUDPHWHU % LQ 5HI f ZKLFK LV QHHGHG WR VSHFLI\ TXDQWXP VROXWLRQV %XW IRU Q I 9H $ U OfU ZLWK ( DQG WKH PRWLRQ RVFLOODWHV EHWZHHQ WKH WZR URRWV RI WKH H[SUHVVLRQ XQGHU WKH UDGLFDO QDPHO\ f _(_ U f _(_ 6R LW DYRLGV WKH VLQJXODU SRLQW U DQG WKHUHIRUH LW KDV D IXOOWLPH FODVVLFDO HYROXWLRQ VHH H[DPSOH M LQ WKH WDEOHf WKXV LWV TXDQWXP +DPLOWRQLDQ LV D VHOI DGMRLQW RSHUDWRU 7KDW LV ZK\ WKH K\GURJHQ DWRP GRHV QRW KDYH DQ\ SUREOHPV

PAGE 29

&+$37(5 6(/)$'-2,171(66 2) +(50,7,$1 +$0,/721,$16 +DYLQJ UHFDOOHG WKDW VLPSOH DQG SK\VLFDOO\ QDWXUDO FODVVLFDO V\PSWRPV DUH DYDLODEOH WR GLDJQRVH DQ\ SRWHQWLDO TXDQWXP LOOQHVV ZH QRZ GLVFXVV VRPH RI WKH VWDQGDUG WHFKQLTXHV LQ &KDSWHU XVHG WR DQDO\]H +DPLOWRQLDQ RSHUDWRUV DQG FRQILUP WKDW WKH FODVVLFDO YLHZSRLQW SUHVHQWHG LQ &KDSWHU LV IXOO\ LQ DJUHHPHQW ZLWK FRQYHQWLRQDO DQDO\VHV ,Q SDUWLFXODU ZH DQDO\]H LQ WKLV FKDSWHU WKH VHOIDGMRLQWQHVV RI VHYHUDO +DPLOWRQLDQV ZKLFK DSSHDUHG LQ &KDSWHU E\ FDOFXODWLQJ WKHLU GHILFLHQF\ LQGLFHV GLUHFWO\ 7KHUHIRUH ZH FDQ YHULI\ WKH FRQVLVWHQF\ RI VROXWLRQV RI FODVVLFDO DQG TXDQWXP +DPLOWRQLDQV $FFRUGLQJ WR 7KHRUHP RQ SDJH ZH KDYH WKUHH GLIIHUHQW FDVHV RI WKH GHILFLHQF\ LQGLFHV Lf Q Q LLf Q Q r DQG LLLf Qr Q &DVHV Lf DQG LLLf DUH VLPSOH ZKHUH HLWKHU D GHQVHO\ GHILQHG RSHUDWRU LV RU LV QRW VHOIDGMRLQW EXW FDVH LLf LV PXFK PRUH FRPSOLFDWHG 'LVFXVVLRQV VXFK DV KRZ WR DGG ERXQGDU\ FRQGLWLRQV RQ WKH ZDYH IXQFWLRQV LQ RUGHU WR H[WHQG WKH +DPLOWRQLDQV WR EH VHOIDGMRLQW DQG ZKDW NLQG RI SK\VLFDO LQWHUSUHWDWLRQ WKRVH H[WHQVLRQV LPSO\ HWF ZLOO EH SUHVHQWHG LQ i DQG i 7KUHH 'LIIHUHQW &DVHV RI +HUPLWLDQ +DPLOWRQLDQV ,Q WKLV VHFWLRQ ZH ZLOO DSSO\ 7KHRUHP VL t WR IRXU JHQHUDO W\SHV RI +DPLOWRQLDQ MXVW DV ZH GLG LQ i IRU + S [

PAGE 30

f + SE[P f + S [P [P S f + S S [P [P S f + S [SP SP[ ZKHUH P LV D SRVLWLYH LQWHJHU DQG E LV D UHDO FRQVWDQW 7KRVH IRXU W\SHV RI + FRYHU DOO WKH +DPLOWRQLDQV GLVFXVVHG LQ FKDSWHU + 3 E[P 2EYLRXVO\ + LV +HUPLWLDQ 6LPLODUO\ WR ZKDW ZH GLG IRU + S [ LQ iOHW + L sL Ls ZLWKS LG $[ e E[PfYs :s $V ERWK E DQG P DUH UHDO L ?S 7KXV Q Q Q 6R FRQVLGHU \U RQO\ ZH ZULWH 7KH DV\PSWRWLF EHKDYLRU RI WKLV HTXDWLRQ DV [ s rr LV JLYHQ E\ \ E[ PW VLQFH ZH UHTXLUH \ }f 7KH VROXWLRQV DUH JLYHQ E\ %HVVHO IXQFWLRQV

PAGE 31

\.[f a 9-[I =LP f A 9[Pf P = ZKHUH =Y a Y 1Y Y RU ;Y ZKLFK DUH %HVVHO IXQFWLRQV RI WKH ILUVW DQG VHFRQG NLQGV UHVSHFWLYHO\ 7R H[DPLQH ZKHWKHU RU QRW ? \.[f G[ FRQYHUJHV DW [ rr ZH QHHG WR XVH WKH IROORZLQJ DV\PSWRWLF IRUPV RI WKH %HVVHO IXQFWLRQV L \ } a \YL! 1Y\fa IY\faS H[S\f 9U\ .Y\f a9IH[S\f ,I \2Uf G[ FRQYHUJHV WKHQ L\s[f H '+f F A ([DPSOHV Df + S [ \n [\ L\M QHDU ,[O a } \ WKXV \n [L\

PAGE 32

7KHQ E DQG P :H VKRXOG FKRRVH = a ,9 .Y ZLWK \ [ f WKH %HVVHO IXQFWLRQV RI WKH VHFRQG NLQG )RU [ a s RR \[f a 9-[I-&LO:f VR Q A Q Q QUm Q LH Q Qf f 7KXV + LV VHOIDGMRLQW LQ r! rrff ZKLFK PDNHV SRVVLEOH WKH JOREDO VROXWLRQ RI WKH 6FKURGLQJHU HYROXWLRQ HTXDWLRQ VHH 6HFWLRQV DQG RI 5HI f WKH H[LVWHQFH RI WKH ERXQG VWDWHV \ DQG L\ LPSOLHV D GLVFUHWH VSHFWUXP RI HQHUJ\ Ef + S[ \n [$\ L\ +HUH E DQG P WKXV 9Af[fa9[-Lrf DQG 9[1LL[f a O[fFRV RU VLQ L[ `Nf ZO ,W LV HDV\ WR FKHFN WKDW ERWK RI WKH VROXWLRQV DUH LQ VR Q FR Q! A DV \ULV V\PPHWULF RQ [ Q Q LH Q Qf f 7ZR ERXQGDU\ FRQGLWLRQV DUH UHTXLUHG WR H[WHQG + WR EH VHOIDGMRLQW DQG D GLVFUHWH HQHUJ\ VSHFWUXP LV H[SHFWHG ,QGHHG HYHQ D :.% DQDO\VLV OHDGV WR D GLVFUHWH VSHFWUXP -Y ZLOO PDNH WKH LQWHJUDO GLYHUJH DQG WKHUHIRUH LV QRW DOORZHG

PAGE 33

Ff + S [ S [ LV VLPLODU WR S [ f ??Ln [\ L\W ZKHUH E DQG P !: a <50`rf DQG 9-[I1Lrf a >[I FRV RU VLQ ^?[$ WWf 7 EXW QHLWKHU RI WKHP DUH LQ /4f WKHUHIRUH Q Qf f DQG + LV VHOIDGMRLQW EXW LWV VSHFWUXP LV FRQWLQXRXV EHFDXVH QR ERXQG VWDWHV H[LVW $JDLQ WKLV FRQFOXVLRQ IROORZV IURP :.% DUJXPHQWV DV ZHOO Gf + S [ S [ LV EDVLFDOO\ WKH VDPH f Y A Yn r! 9e [ Lf9 R )RU [ E DQG P 9[f a [L.9N[ LInf 2 ZKLFK LV LQ e

PAGE 34

%XW IRU [ E DQG P 9"n f: a 9M[L L_: f 9: L1L_-[_ Lff a : ZKHUH ZH KDYH LJQRUHG WKH XQLPSRUWDQW SKDVH WHUP %RWK RI WKH VROXWLRQV DUH QRW LQ e WKH VTXDUH LQWHJUDO RI \ GLYHUJHV DW [ a rrf 7KDW PHDQV WKHUH LV QR VROXWLRQ IRU [ DQG QR VROXWLRQ FRXOG EH FRQQHFWHG WR \U [ HLWKHU 7KHUHIRUH ZH KDYH Lf QU Qf f IRU 4 m f LLf Q Qf f IRU 4 r! }f LLLf Q Qf f IRU 4 > f 7KH VSHFWUXP LV H[SHFWHG WR EH FRQWLQXRXV LQ Lf DQG LLf EXW GLVFUHWH LQ LLLf 7KLV LV DQ LQWHUHVWLQJ V\VWHP ,Q VHFWLRQ ZH DSSO\ LW WR D SDUWLFOH LQ D JUDYLWDWLRQDO ILHOG DQG D XQLIRUP HOHFWULFDO ILHOG + S[P [ PS %\ VXEVWLWXWLQJ S a L GG[ DQG XVLQJ >SUP@ LUQUPnZH JHW S [P [ P S f S [P LP[ P$ f\s sL \s [P\s P[P $f\s Lf P [?Ss Of\sI [\ ?c [\

PAGE 35

ZLWK 9 a O[ ZKLFK LV QRW LQ e VLQFH LW GLYHUJHV WRR UDSLGO\ DW [ a DQG \ FRQVW ZKLFK LV QRW LQ e HLWKHU 7KHUHIRUH Q Qf f 7KXV + S[ [S LV VHOIDGMRLQW DQG LWV VSHFWUXP LV FRQWLQXRXV LLf P \ LSs P[P$fO[U 9s a _[_f ZH[S s [OnPf POf $V [ a s r \s a ZKLFK DUH VTXDUH LQWHJUDEOH VR s DUH UHJXODU SRLQWV %XW QRZ [ LV D VLQJXODU SRLQW &KHFNLQJ \s QHDU [ ZH ILQG P RGG Q Q ZKLFK KDV QR VHOIDGMRLQW H[WHQVLRQ + LV QRW VHOI DGMRLQW DQG KDV QR FRPSOHWH HYROXWLRQ MXVW DV ZDV WKH FDVH IRU + S [ [ S LQ &KDSWHU P HYHQ Q Q + LV VHOIDGMRLQW ZLWK FRQWLQXRXV VSHFWUXP 6HH WKH H[DPSOH RI + S [ [ S LQ WKH SUHYLRXV FKDSWHU ,W LV LQWHUHVWLQJ WR SRLQW RXW WKDW IRU  f m Qf f LI P RGG DQG f LI P HYHQ IRU  mf QI Qf f LI P RGG DQG f LI P HYHQ 7KHUHIRUH + LV QRW VHOIDGMRLQW LQ ERWK 4 m! f DQG 4 rrf QR PDWWHU ZKHWKHU P LV HYHQ RU RGG 7R H[SODLQ WKDW E\ WKH FODVVLFDO SLFWXUH VHH H[DPSOH F LQ WKH WDEOHf ZH VD\ WKDW QHLWKHU RI WKRVH LQWHUYDOV FRXOG FRQWDLQ D FRPSOHWH WHPSRUDO HYROXWLRQ

PAGE 36

@ + S S [ 0 S ,Q WKH DERYH VHFWLRQ ZH IRXQG WKDW S [P [P S LV QRW VHOIDGMRLQW LI P RGG +HUH ZH ZLOO VKRZ WKDW E\ DGGLQJ S WR LW WKH VLWXDWLRQ ZLOO EH FKDQJHG GUDPDWLFDOO\ )LUVW OHW XV H[DPLQH WKH FODVVLFDO VROXWLRQVr + S S FMP FcPS SSFMUQ &M S TP s A( FMAP Lf ,I P WKH VROXWLRQ LV OLNH WKDW IRU + S Fc ZKHUH + LV VHOIDGMRLQW LLf ,I P WKH VROXWLRQ LV VLPLODU WR WKDW IRU + S T ZKHUH ERXQGDU\ FRQGLWLRQV PXVW EH DGGHG WR PDNH + VHOIDGMRLQW 6HFRQG OHW XV VHH WKDW TXDQWXP IHDWXUHV RI + + S S[P [ P S S S[P LP[ P $ >S S [ P LP[ P $f\s sL \s \s L [P\s LP[ P$\s L\s 7KH DV\PSWRWLF IRU QHDU [ a s a LV W \s L [ P\s LP[ P $ \s + S S TP S TP s 9e TP S SP s 9H

PAGE 37

:H LQWURGXFH DQ HTXDWLRQ ZLWK WKH VROXWLRQ JLYHQ E\ WKH %HVVHO IXQFWLRQV LH 2 > Df[ LS\[D Y"fr" Lf\ Df[ U@ [DH[S sLS[ \f =YLID\f 1RWH WKDW ?Ss MXVW ILWV WKLV HTXDWLRQ E\ FKRRVLQJ D \ P 3 \ Y OP Of LsRF a 9MMMH[S Lf§f§[P f =Y f§f§[P f a 9O[If P P ZKLFK LV VTXDUH LQWHJUDEOH ZKHQ P! r 6R Q sFR Q s DQG m Qf f ZKHQ P 6R E\ DGGLQJ S + DOZD\V KDV VHOIDGMRLQW H[WHQVLRQV QR PDWWHU ZKHWKHU P LV HYHQ RU RGG 7KLV LV H[DFWO\ FRQVLVWHQW ZLWK ZKDW ZH KDYH MXVW GLVFXVVHG IURP WKH FODVVLFDO SRLQW RI YLHZ $V IRU WKH FDVH P \s a 9SF> ZKLFK LV QRW VTXDUH LQWHJUDEOH VR Q Qf f ZKLFK DJDLQ DJUHHV ZLWK ZKDW IROORZV IURP WKH FODVVLFDO SRLQW RI YLHZ ? + S [ SZL S [ &ODVVLFDO PHWKRG r +HUH =Y Q 1Y

PAGE 38

S G+GFM SP ZKLFK LV VLPLODU WR Fc T P EDVHG RQ + S TP WKHUHIRUH ZKHQ P HYHQ + LV VHOIDGMRLQW ZKHQ P RGG + LV QRW VHOIDGMRLQW 4XDQWXP PHWKRG [ } LGGS >[ SP@ LPS P S [SP SP[ f\IsSf s L \sSf LS P\s sL S LPS POf\s \sa O9LSSf H[S AB S Pf [ H[S L ^eA 3 nPf f )RU P Q mf f LI P HYHQ Q Qf f LI P RGG )RU P Q Qf f ZKLFK KDV DOUHDG\ EHHQ GLVFXVVHG LQ 6HFWLRQ :H VHH DJDLQ WKDW WKH FODVVLFDO SLFWXUH LV FRQVLVWHQW ZLWK WKH RSHUDWRU DQDO\VLV ,W LV KHXULVWLF WR REVHUYH WKDW WKH ODVW IDFWRU LQ (T f FRPHV IURP WKH SDUW S LQ + DQG LW RQO\ LQGXFHV D SKDVH LQ WKH VROXWLRQ WKHUHIRUH LW ZRXOG QRW FKDQJH WKH FRQYHUJHQFH RU GLYHUJHQFH RI WKH VTXDUH LQWHJUDO L H WKH VHOIDGMRLQWQHVV RI S [ SP SP[ LV H[DFWO\ WKH VDPH DV [ SP SP[ DQG WKH ODWWHU RQH WXUQV RXW WR EH WKH VDPH DV S [ P [PS ,Q RWKHU ZRUGV XQOLNH WKH S LQ S S [P [PS WKH S LQ SO [SZ S P [ ZLOO QRW FKDQJH WKH SURSHUWLHV RI VHOIDGMRLQWQHVV

PAGE 39

7KH $SSOLFDWLRQ RI %RXQGDU\ &RQGLWLRQV DQG 6HOI$GMRLQW ([WHQVLRQV DW 5HJXODU 3RLQWV ([DPSOHV Df $ S GG[ ZLWK 4 >E D@ S \s L\s L H[S [f 7KXV Q Q DSSO\ WKHRUHP WR WKLV FDVH ZH KDYH UL FL9F\H &L&t & LL! GG[ f GIUGrf >,W L>L}Ln:L:LfDf@ 6HW ILEfILDf ] ZH KDYH ]r VR ] H[SL2f A )RU VHOIDGMRLQW '0f >\[f \U Lf @LH P cEf \.Df I^Df W$:LDf H[S LIIf f OHW XV ORRN DW WKH HLJHQIXQFWLRQV RI S P $ 9 a H[S $[f

PAGE 40

9nf ?cI[^Df H[S Ln$ E Dff \[ KDV WR VDWLVI\ f WR EH LQ '0f VR ZH JHW $EDf P Q s s $ GP fEDf 7KH FDVH RI LV ZKDW LV XVXDOO\ FRQVLGHUHG LQ TXDQWXP PHFKDQLFV DQG LV FDOOHG WKH SHULRGLF ERXQGDU\ FRQGLWLRQ Ef + S [ ZLWK  > RRf $V ZH DOUHDG\ GLVFXVVHG LQ Gf RI 6HFWLRQ Q Q IRU 4 > RRf 7KHUHIRUHr 0Of SL 0Lf L S L [IR YK!Lf KSKf L $ L IOf a $RfLf Lf!f 6R ILff >ffWDQ! f '0f >rf YALf @ VR WKH ERXQGDU\ FRQGLWLRQ DW [ LV L2fFRV \2fVLQ f

PAGE 41

,Q IDFW DW DQ\ UHJXODU SRLQW WKH IRUP LV WKH VDPH &RQVLGHU D SDUWLFOH ZLWK XQLW PDVV PRYLQJ YHUWLFDOO\ LQ WKH HDUWKnV JUDYLWDWLRQDO ILHOG DQG VHW [ DW WKH VXUIDFH RI WKH HDUWK 4 > rrf 7KHQ LWV +DPLOWRQLDQ LV JLYHQ E\ + S PJ[ S [ E\ VHWWLQJ J ,W LV LQWHUHVWLQJ WR QRWH WKDW WKLV V\VWHP KDV D QDWXUDO VHOIDGMRLQW H[WHQVLRQ VHW E\ \f 7KDW LV WKH FDVH RI T LQ WKH DERYH ERXQGDU\ FRQGLWLRQ f $GGLWLRQDOO\ FRQVLGHU D SK\VLFDO V\VWHP RI DQ HOHFWURQ LQ D XQLIRUP HOHFWULF ILHOG ( DSSOLHG LQ WKH [ GLUHFWLRQ 7KH IRUP RI WKH +DPLOWRQLDQ LV WKHQ + S [ ZLWK e R} R}f )RU VXFK D V\VWHP QR VSHFLDO ERXQGDU\ FRQGLWLRQ LV QHHGHG VLQFH Q Q 7KH $SSOLFDWLRQ RI %RXQGDU\ &RQGLWLRQV DQG 6HOI$GMRLQW ([WHQVLRQV DW 6LQJXODU 3RLQWV ,Q WKLV VHFWLRQ ZH ZLOO ORRN DW WKH HIIHFW RI DQ DWWUDFWLYH FHQWUDO SRWHQWLDO :H GLVFXVVHG LQ WKH FODVVLFDO SRLQW RI YLHZ WKDW WKHUH LV QR WURXEOH IRU V\VWHPV ZLWK QRQUHODWLYLVWLF &RXORPE SRWHQWLDOV VLQFH WKH\ KDYH D IXOO WLPH HYROXWLRQ +HUH ZH ZLOO VHH WKDW WKLV KROGV EHFDXVH WKH\ DUH VHOIDGMRLQW :H ZLOO DOVR ILQG VHOIDGMRLQW H[WHQVLRQV IRU WKH VXSHUDWWUDFWLYH SRWHQWLDOV >9Uf $U Q @ $IWHU VHSDUDWLQJ WKH DQJXODU SDUW IURP WKH UDGLDO SDUW ZH KDYH +U G GU OfU 9Uf ZKLFK DFWV RQ XUf ZLWK WKH UHTXLUHPHQW WKDW _ZUfS GU PXVW FRQYHUJH

PAGE 42

Lf 9Uf $U $ 2 +U Xs s L Xs Xs sL $U fU fZs 2 EHFRPHV DW VPDOO U Xs $U OfUfXs Xs a 97 =s G$Uf a 97 LIOUI ` 7KXV ZLWK Qs f $W ODUJH U Zs s LXs DQG LWV LV QRW KDUG WR ILQG WKDW a 7KHUHIRUH QI Qf f IRU + ZLWK D &RXORPE SRWHQWLDO LLf 9Uf $U Xs sL $U OfUfXs $W VPDOO U WKH HLJHQIXQFWLRQ XH DQG Xs KDYH WKH VDPH IRUP

PAGE 43

$ f 7 ms XsX(aU3 S s 9 $ ff )RU DQ VZDYH f ZLWK $ RU $ Wf ZH KDYH Xs a U VLQ $nOQ Uf RU UAARVL$nOQ Uf ZKHUH $n >$ f @ 7KHQ Qs r :LWK Qs ZH JHW Q Qf f 1RZ OHW XV FRQVWUXFW VHOIDGMRLQW H[WHQVLRQV DW VPDOO U IL FL UFRV$nOQ Uf &U VLQ$nOQ Uf 8VLQJ S \UfEr OLPU B! Rr > 9r DQG QRWLQJ WKDW f LV D ELOLQHDU IRUP RQ '+f['+f DQGJf K f KJ M ZH KDYH 7KXV UVLQ$nOQ UfU VLQ$nOQ Uf fRr U &6$nOQ UfU &2V$nOQ UffMU UFRV$nOQ U f U VLQ$nOQ U f fE $n R LLf FL& FLFrf$ FLF UHDO &RQVHTXHQWO\ FFL LV DOVR UHDO 6HW FFL WDQ ZKHUH H  WKHQ

PAGE 44

IL a UFRV$nOQ U f 7KH HLJHQIXQFWLRQV KDYH WKH VDPH IRUP DW VPDOO U L H XH &HYFRV$nOQ U f LQ RUGHU WR VDWLVI\ meL f ,Q 5HI WKH DXWKRU IRXQG WKH GHSHQGHQFH RI HLJHQHQHUJ\ RQ WKH FKRLFH RI %HFDXVH RI ZH KDYH D RQHSDUDPHWHU IDPLO\ RI VHOIDGMRLQW H[WHQVLRQV )XUWKHU '0f > XUf X Lf @ DQG WKHUHIRUH WKH ERXQGDU\ FRQGLWLRQ DW U LV JLYHQ E\ OLP U}&7 X nUfUFRV$nOQ U f XUf UFRV$nOQ U ff GU KLf 9^Uf $U Q DW VPDOO U X3 e $U OfUfZ( 8U $UQfX( X( a 9I=LfLf_ tUff /Q 8VLQJ WKH %HVVHO DV\PSWRWLF IRUPV ZH JHW XH a UVLQ\Ufnff RU

PAGE 45

UQ FRV\Umff ZKHUH \ ; m f Xs KDYH WKH VDPH IRUP VR Qsc r m Qf f 7KH ERXQGDU\ FRQGLWLRQ LV VLPLODU WR LLf K FL U VLQ\U Q Bf f &Uf FRV\Unff XVLQJ Uf VLQ\U Bf f U FRV\ UQ fEf $ 7KXV LLf JLYHV &FL WDQ H 65 IL a U VLQ\UffBf f ZH &H U VLQ\U QBf f '0f > ZUf Z f @ JLYHV WKH UHTXLUHPHQW RQ XUf DW U OLP U f§! r X UfU Q VLQ\U f ff XUf Uf VLQ\U Q f ff WU &RQFOXVLRQ %\ FDOFXODWLQJ WKH GHILFLHQF\ LQGLFHV IRU VHYHUDO UHSUHVHQWDWLYH H[DPSOHV RI +HUPLWLDQ +DPLOWRQLDQV ZH KDYH DQDO\]HG WKH SRVVLELOLWLHV LQ HDFK FDVH RI H[WHQGLQJ WKH RSHUDWRU WR D VHOIDGMRLQW RQH ,Q VR GRLQJ ZH KDYH FRQILUPHG WKH

PAGE 46

FRQQHFWLRQ SURSRVHG LQ WKH SUHYLRXV FKDSWHU WKDW UHODWHV SRVVLEOH H[WHQVLRQV WR DVVRFLDWHG FKDUDFWHULVWLFV LQ WKH VROXWLRQV RI WKH FODVVLFDO HTXDWLRQV RI PRWLRQ 7KH SXUSRVH RI WKLV FKDSWHU KDV EHHQ WZRIROG RQ WKH RQH KDQG E\ GHPRQVWUDWLQJ WKDW DQRPDOLHV LQ WKH FODVVLFDO VROXWLRQV WR D G\QDPLFDO V\VWHP DUH UHIOHFWHG LQ DQRPDOLHV RI WKH TXDQWXP +DPLOWRQLDQ FHUWDLQ WHFKQLFDO LVVXHV VXFK DV GHILFLHQF\ LQGLFHV HWFf DUH EURXJKW LQWR WKH UHDOP RI HYHU\GD\ H[SHULHQFH 2Q WKH RWKHU KDQG WKH LQWLPDWH FRQQHFWLRQ EHWZHHQ FODVVLFDO DQG TXDQWXP SURSHUWLHV VKRXOG HQDEOH RQH WR H[DPLQH D JLYHQ V\VWHP DW D FODVVLFDO OHYHO LQ RUGHU WR DVVHVV ZKDW SUREOHPV LI DQ\ DUH H[SHFWHG WR DULVH DW WKH TXDQWXP OHYHO

PAGE 47

7DEOH 6XPPDU\ RI FODVVLFDO DQG TXDQWXP KLJKOLJKWV DVVRFLDWHG ZLWK VHYHUDO PRGHO SUREOHPV (DFK PRGHO KDV D ODEHO D FODVVLFDO +DPLOWRQLDQ W\SLFDO VROXWLRQ WUDMHFWRULHV QDWXUH RI WKRVH VROXWLRQV FKDUDFWHU RI TXDQWXP +DPLOWRQLDQ VSHFWUDO SURSHUWLHV DQG ,Q VRPH FDVHV UHODWHG HVDPSOHV DV ZHOO 7 KH VROLG FXUYH LQ WKH ILJXUH SRUWLRQ} UHSUHVHQWV D W\SLFDO WUDMHFWRU\ RU SDUW RI D WUDMHFWRU\ LQ WKH FDVH RI D SHULRGLF RUELW 7KH GROOHG FXUYH GHQRWHV DQ DOWHUQDWLYH W\SLFDO WUDMHFWRU\ DQG WKH GDVKHG FXUYH GHQRWHV D SHULRGLF H[WHQVLRQ R WKH EDVLF RUELW ,Q G WKH ILJXUH LOOXVWUDWHV WZR SRVVLEO\ GLVWLQFW SHULRGLF H[WHQVLRQV K LV RPLWWHG EHFDXVH LW LV D UHODWHG H[DPSOH RI G ([DPSOH /DEHO &ODVVLFDO +DPLOWRQLDQ + 4XDOLWDWLYH *UDSK WTf RI HTXDWLRQV RI PRWLRQ 1DWXUH RI &ODVVLFDO VROXWLRQV 6HOIDGMRLQW 4XDQWXP +DPLOWRQLDQ 6SHFWUDO 3URSHUWLHV 5HODWHG ([DPSOHV P D Sf m W f§f§P JOREDO XQLTXH GLVFUHWH Sf LP W Sf m f§ W f§ SHULRGLF RQH SDUDPHWHU IDPLO\ RI VROXWLRQ RQH ERXQGDU\ FRQGLWLRQf GLVFUHWH S" Sf s "P! F S" W ‘ U SDUWLDOO\ FRPSOH[ QRQH[LVWHQW QRQH STP P P RGG G 3 r W n : SHULRGLF WZR SDUDPHWHU IDPLO\ RI VROXWLRQ WZR ERXQGDU\ FRQGLWLRQVf GLVFUHWH Sf P S SP P W Sfmf W f§I JOREDO XQLTXH FRQWLQXRXV 3Sm

PAGE 48

DEOH &RQWLQXHG f .[DPSOH ODEHO &ODVVLFDO +DPLOWRQLDQ 4XDOLWDWLYH *UDSK f RI HTXDWLRQV RI PRWLRQ 1DWXUH RI &ODVVLFDO VROXWLRQV 6HOIDGMRLQW 4XDQWXP +DPLOWRQLDQ 6SHF W UDO 3URSHUWLHV 5HODWHG 3[DUQSOnV PU Q S" JOREDO XQLTXH FRQWLQXRXV f !P UQ "X f§ HYHQ YO $ W W f§ Hr SDUW cDOO\ FRPSOH[ QRQH[LVWHQW QRQH LQf P RGG ? UL Sf A ? SLHFH ZLVH FRQWLQXRXV RQH SDUDPHWHU IDPLO\ RI VROXWLRQ FRQWLQXRXV 3 SLn M 3" r A $ eF $$ L f§n n L L JOREDO XQLTXH GLVFUHWH W \L f§$ OLs8 U U n U r ‹F $ $f§ [r [ WU SHULRGLF RQH SDUDPHWHU IDPLO\ RI VROXWLRQ GLVFUHWH

PAGE 49

7DEOH &RQWLQXHGf ([DPSOH /DEHO &ODVVLFDO +DPLOWRQLDQ + 4XDOLWDWLYH *UDSK WTf RI HTXDWLRQV RI PRWLRQ 1DWXUH RI &ODVVLFDO VROXWLRQV 6HOIDGMRLQW 4XDQWXP +DPLOWRQLDQ 6SHFWUDO 3URSHUWLHV 5HODWHG ([DPSOHV P f 3, L ? ? Un JOREDO XQLTXH FRQWLQXRXV P 3 9 JOREDO XQLTXH FRQWLQXRXV )LJ &ODVVLFDO WUDMHFWRULHV IRU WKH VLPSOH +DPLOWRQLDQ + S LQ WKUHH VHSDUDWH FRRUGLQDWH GRPDLQV Df f§ RF T RF WKH WUDMHFWRU\ KROGV IRU DOO WLPH Ef T RR WKH WUDMHFWRU\ GRHV QRW KROG IRU DOO WLPH Ff IO E\ SHULRGLF FRQWLQXDWLRQ RI WKH WUDMHFWRU\ LW FDQ EH H[WHQGHG WR KROG IRU DOO WLPH

PAGE 50

3$57 ,, 23(5$725 $1$/<6,6 $1' )81&7,21$/ ,17(*5$/ 5(35(6(17$7,21 2) 1215(1250$/,=$%/( 08/7,&20321(17 8/75$/2&$/ 02'(/6

PAGE 51

&+$37(5 ,1752'8&7,21 $V ZH NQRZ WKH IHDWXUHV RI LQILQLWHO\ PDQ\ GHJUHHV RI IUHHGRP DQG QRQFRPSDFW LQYDULDQFH JURXSV KDYH PDGH WKH VWUXFWXUH RI TXDQWXP ILHOG WKHRU\ YHU\ FRPSOH[ 6R VHHNLQJ IRU WKH SURSHU IRUPXODWLRQ RI SUREOHPV LQ TXDQWXP ILHOG WKHRU\ KDV EHHQ D GLIILFXOW \HW H[FLWLQJ HQGHDYRU LQ RXU UHVHDUFK (YHQ WKRXJK FRQYHQWLRQDO SHUWXUEDWLRQ WKHRU\n ZKLFK LV EDVHG RQ D IUHH ILHOG IRUPXODWLRQ KDV SURYHG VXFFHVVIXO LQ VROYLQJ VRPH SUREOHPV HJ TXDQWXP HOHFWURG\QDPLFV 4('f ZH PXVW DVFHUWDLQ ZKHWKHU WKH IUHH ILHOG FDQ EH JHQHUDOO\ XVHG DV WKH EDVLV IRU D SHUWXUEDWLRQ H[SDQVLRQ 2QH RI WKH UHVXOWV WKDW DURVH IURP WKH WUDGLWLRQDO SHUWXUEDWLRQ DQDO\VLV EDVHG RQ IUHH ILHOGV LV WKH DSSHDUDQFH RI QRQUHQRUPDOL]DEOH LQWHUDFWLRQV ZKLFK VRPH SK\VLFLVWV UHJDUG DV KRSHOHVV 7KHUHIRUH WKH VWUXFWXUH RI QRQUHQRUPDOL]DEOH PRGHOV KDV EHHQ ODUJHO\ LJQRUHG RYHU WKH \HDUV 7ZHQW\ \HDUV DJR WKH SVHXGRIUHH WKHRU\ ZDV SURSRVHG E\ .ODXGHUn LQ WKH VWXG\ RI XOWUDORFDO ILHOG PRGHOV WR H[WHQG WKH XVHIXOQHVV RI SHUWXUEDWLRQ WKHRU\ $Q DUJXPHQW EDVHG RQ DV\PSWRWLF FRQYHUJHQFH VXJJHVWV WKDW WKH IUHH WKHRU\ LV FRQQHFWHG ZLWK FRQWLQXRXV SHUWXUEDWLRQV ZKLOH WKH SVHXGRIUHH WKHRU\ LV UHODWHG WR GLVFRQWLQXRXV SHUWXUEDWLRQV ZKLFK KDYH PXFK WR GR ZLWK QRQUHQRUPDOL]DEOH LQWHUDFWLRQV $W DERXW WKH VDPH WLPH D IXQFWLRQDO DQG RSHUDWRU DSSURDFK WR VLQJOHn FRPSRQHQW XOWUDORFDO ILHOG PRGHOV ZDV GHYHORSHG WKURXJK JHQHUDO QRQSHUWXUEDWLYH DQG FXWRII IUHH DUJXPHQWVn 7KHUH .ODXGHU JDYH DQ

PAGE 52

DOWHUQDWLYH TXDQWXP WKHRU\ RI VXFK PRGHOV ZKLFK GRHV QRW ILW LQWR WKH FDQRQLFDO IUDPHZRUN +H DOVR VKRZHG WKDW DV DQ\ LQWHUDFWLRQ LV WXUQHG RII DIWHU LW ZDV RQFH LQWURGXFHG WKH WKHRU\ ZLOO QRW SDVV FRQWLQXRXVO\ WR WKH IUHH WKHRU\ EXW UDWKHU WR D GLVWLQFWO\ GLIIHUHQW SVHXGRIUHH WKHRU\ &OHDUO\ FRQYHQWLRQDO SHUWXUEDWLRQ WKHRU\ FRXOG QRW EH DSSOLHG WR VXFK D PRGHO 7KH XOWUDORFDO PRGHO LV REWDLQHG IURP FRYDULDQW PRGHO E\ GURSSLQJ WKH VSDFHJUDGLHQW WHUP 6LQFH GLVWLQFW VSDWLDO SRLQWV WKHUH FKDUDFWHUL]H LQGHSHQGHQW ILHOGV IRU DOO WLPHV LW XQDYRLGDEO\ UHVXOWV LQ D QRQUHQRUPDOL]DEOH VLWXDWLRQ :H DUH LQWHUHVWHG LQ WKLV PRGHO EHFDXVH LW LV VROYDEOH E\ QRQSHUWXUEDWLYH WHFKQLTXHV DQG PD\ JLYH XV VRPH LQVLJKW LQWR WKH VWUXFWXUH RI QRQUHQRUPDOL]DEOH ILHOGV ,Q FKDSWHU ZH ZLOO VKRZ WKDW MXVW OLNH QRQUHQRUPDOL]DEOH UHODWLYLVWLF TXDQWXP ILHOG WKHRULHV RQ RQH KDQG WKH\ H[KLELW DQ LQILQLWH QXPEHU RI GLVWLQFW GLYHUJHQFHV ZKHQ WUHDWHG SHUWXUEDWLYHO\ ZKLOH RQ WKH RWKHU KDQG WKH\ IUHTXHQWO\ UHGXFH WR JHQHUDOL]HGf IUHH ILHOGV ZKHQ GHILQHG DV WKH FRQWLQXXP OLPLW RI FRQYHQWLRQDO ODWWLFHVSDFH IRUPXODWLRQ XOWUDORFDO PRGHOV DUH VSHFLDOL]HG QRQUHQRUPDOL]DEOH WKHRULHV WKDW DOVR H[KLELW LQILQLWHO\ PDQ\ SHUWXUEDWLYH GLYHUJHQFHV DQG DQ DQDORJRXV JHQHUDOL]HGf IUHHILHOG EHKDYLRU ZKHQ GHILQHG WKURXJK D FRQYHQWLRQDO ODWWLFH OLPLW +RZHYHU WKH FKDUDFWHUL]DWLRQ RI LQILQLWHO\ GLYLVLEOH GLVWULEXWLRQV DOORZV XOWUDORFDO PRGHOV DOWHUQDWLYH RSHUDWRU VROXWLRQVn DOVR &KDSWHU f ZKLFK OHDG WR D QRQWULYLDO QRQ*DXVVLDQf VROXWLRQ RQ WKH EDVLV RI RSHUDWRU PHWKRGV 7KH YDOLGLW\ RI WKLV QRQWULYLDO VROXWLRQ LV VXSSRUWHG E\ WKH IDFW WKDW WKH QRQWULYLDO TXDQWXP VROXWLRQ UHGXFHV WR WKH FRUUHFW FODVVLFDO WKHRU\ LQ D VXLWDEOH OLPLW DV K f§! WKH WULYLDO *DXVVLDQf VROXWLRQ KDV QR VXFK FRUUHFW FODVVLFDO OLPLW &KDSWHU f 5HFHQWO\ LW KDV EHHQ IRXQG KRZ WR REWDLQ WKH VDPH QRQWULYLDO UHVXOWV RIIHUHG E\ RSHUDWRU WHFKQLTXHV WKURXJK WKH FRQWLQXXP OLPLW RI D

PAGE 53

QRQFRQYHQWLRQDO ODWWLFHVSDFH IRUPXODWLRQ 7KH NH\ LQJUHGLHQW LQ WKH ODWWLFHVSDFH IRUPXODWLRQ WKDW OHDGV WR WKH FRUUHFW EHKDYLRU LV WKH SUHVHQFH RI DQ DGGLWLRQDO QRQFODVVVLFDO ORFDO SRWHQWLDO EHVLGHV WKH QRUPDOO\ H[SHFWHG WHUPV ,Q FKDSWHU ZH ZLOO FRQVWUXFW WKH RSHUDWRU WKHRU\ RI 1fLQYDULDQW PXOWLFRPSRQHQW QRQUHQRUPDOL]DEOH XOWUDORFDO PRGHOV ZKHUH 1 r! ,W KDV EHHQ VXUSULVLQJO\ IRXQG WKDW WKH VLQJXODU QRQFODVVLFDO WHUP LQ WKH +DPLOWRQLDQ ZKLFK VKRZHG XS LQ WKH RQHFRPSRQHQW XOWUDORFDO ILHOGV FDQ EH PDGH WR GLVDSSHDU ZKHQ 1 WKH QXPEHU RI ILHOG FRPSRQHQWV VDWLVILHV 1! 1HYHUWKHOHVV D VLPLODU VLQJXODU QRQFODVVLFDO WHUP VWLOO DSSHDUV LQ WKH UHJXODUL]HG SDWKLQWHJUDO IRUPXODWLRQ WKDW OHDGV WR WKH VDPH QRQWULYLDO TXDQWXP UHVXOWV IRU 21f LQYDULDQW PXOWLFRPSRQHQW VFDODU ILHOGV &KDSWHU f 7KXV IRU DQ\ 1 WKH QXPEHU RI ILHOG FRPSRQHQWV WKH QHZ SDWK LQWHJUDO IRUPXODWLRQ LQYROYLQJ WKH VLQJXODU QRQFODVVLFDO WHUP UHSODFHV WKH VWDQGDUG ODWWLFH DSSURDFK ZKLFK LQYDULDEO\ OHDGV WR D *DXVVLDQ WKHRU\ UHJDUGOHVV RI DQ\ QRQOLQHDU LQWHUDFWLRQV DQG VXSSRUWV WKH FRQFHSW RI D SVHXGRIUHH WKHRU\ 2QH DGYDQWDJH RI GHULYLQJ WKH RSHUDWRU VROXWLRQV E\ D ODWWLFHVSDFH IRUPXODWLRQ LV WKH FOHDU IRFXV WKH ODWWHU DSSURDFK SODFHV RQ WKH GLIIHUHQFHV IURP WUDGLWLRQDO DSSURDFKHV QHHGHG WR OHDG WR QRQWULYLDOLW\ 7KHVH GLIIHUHQFHV IRU XOWUDORFDO PRGHOV VXJJHVW SODXVLEOH PRGLILFDWLRQV LQ WKH ODWWLFHVSDFH IRUPXODWLRQ RI UHODWLYLVWLF QRQUHQRUPDOL]DEOH PRGHV WKDW PD\ OHDG WR QRQWULYLDOLW\ IRU 1FRPSRQHQW PRGHOV VXFK DV Q DQG SRVVLEO\ Q f IRU 1 ,Q P\ IXWXUH UHVHDUFK KRSH WR H[WHQG DQDORJRXV UHIRUPXODWLRQV WR FRYDULDQW TXDQWXP ILHOGV WKH SRVVLEOH UHOHYDQFH RI ZKLFK KDV DOUHDG\ EHHQ QRWHG 7KH JHQHUDO DUJXPHQW LV SDUWLDOO\ EDVHG RQ WKH UHDOL]DWLRQ WKDW WKH

PAGE 54

FODVVLFDO WKHRU\ RI D W\SLFDO QRQUHQRUPDOL]DEOH LQWHUDFWLRQ H[LVWV DQG LV QRQWULYLDO

PAGE 55

&+$37(5 &/$66,&$/ 8/75$/2&$/ 02'(/ $1' 7+( 67$1'$5' /$77,&( $3352$&+ 7KH FODVVLFDO +DPLOWRQLDQ RI DQ XOWUDORFDO VFDODU ILHOG LV H[SUHVVHG DV +FL M -L&[f OPS[f 9L>S[f@ MG[ f ZKHUH Q FS GHQRWH WKH FODVVLFDO PRPHQWXP DQG ILHOG UHVSHFWLYHO\ DQG 9L>FS@ 9L> S@ IRU VLPSOLFLW\f WKH LQWHUDFWLRQ SRWHQWLDO +HUH [ LV D SRLQW LQ FRQILJXUDWLRQ VSDFH RI DUELWUDU\ GLPHQVLRQ [H"Q O 7KLV PRGHO HYLGHQWO\ GLIIHUV IURP D FRQYHQWLRQDO UHODWLYLVWLF ILHOG WKHRU\ E\ WKH DEVHQFH RI WKH WHUP 7KH FODVVLFDO FDQRQLFDO HTXDWLRQV RI PRWLRQ DSSURSULDWH WR f EHFRPH L:[f@ M![Wf t L[Wf UF[Wf LU[Wf +FO PS[Wf 9M>S[Wf@ f S[Wf &S[Wf PS[Wf 9M>FS[Wf@ 8QOLNH FRQYHQWLRQDO FDQRQLFDO ILHOG TXDQWL]DWLRQ WKH TXDQWXP WKHRU\ RI XOWUDORFDO ILHOGV GRHV QRW IROORZ IURP VWDQGDUG FDQRQLFDO FRPPXWDWLRQ UHODWLRQV HWF ZKHQHYHU D QRQOLQHDU LQWHUDFWLRQ H[LVWV ,Q SDUWLFXODU ZH GR QRW KDYH DQ HTXDWLRQ VXFK DV f IRU ORFDO TXDQWXP RSHUDWRUV VHH &KDS f

PAGE 56

1HYHUWKHOHVV LW LV LQVWUXFWLYH WR ILUVW H[DPLQH WKHVH PRGHOV IURP D FRQYHQWLRQDO ODWWLFH OLPLW YLHZSRLQW /HW XV WDNH D ORRN DW WKH UHVXOW IURP D VWDQGDUG IXQFWLRQDO LQWHJUDO DSSURDFK ZKLFK LV EDVHG RQ WKH VWDQGDUG FDQRQLFDO TXDQWL]DWLRQf ZKHUH WKH YDFXXPWRYDFXXP WUDQVLWLRQ DPSOLWXGH LV IRUPDOO\ JLYHQ E\ =4@ A_ H[S L FI [_ -[Wf,![Wf /L} [Wf / PA LHf [Wf J'[Wf U ZKHUH ZH KDYH FKRVHQ 9c 2f J2 DV DQ H[DPSOH 8VLQJ D ODWWLFHVSDFH UHJXODUL]DWLRQ LQ WKH VSDFH GLUHFWLRQ EXW QRW LQ WKH WLPH GLUHFWLRQf ZH REWDLQ =>-@ ?L OLPAR ), !Nf H[S L GW ,N D -NWf!NWf /N Wf / P LHf !eWf J2eIWf OLPIOA ,7 M H[S_! M GW D NWf' Wf LGf Wf L P LHf Wf JWf ZKHUH N ODEHOV SRLQWV LQ WKH VSDWLDO ODWWLFH DQG D LV WKH YROXPH RI WKH XQLW FHOO LQ WKH VSDWLDO ODWWLFH $V ZH QRZ VKRZ WKH UHVXOW IRU VXFK DQ LQWHUDFWLQJ PRGHO OHDGV LQ WKH FRQWLQXXP OLPLW WR WKH DQDORJ RI D JHQHUDOL]HG IUHH ILHOG )URP WKH SUHFHGLQJ HTXDWLRQ XVLQJ X 2 9D JR JD DQG f DV DQ DYHUDJH LQ WKH FRPSOH[ GLVWULEXWLRQ ZH KDYH =>-@ 9L OLPAR Q N NWfXWf9£ OWf

PAGE 57

, OLPDGR ,, H[S^L GW NWfXWf9D ` OLPAROO ^O > NWfXWf GW @! > NWfXWf GW @ f f f` H[S ^ G [ GW GWn -[ Wf -[ Wnf XWf XWnf ` f (YLGHQWO\ f LV D *DXVVLDQ UHVXOW LQ ZKLFK DVVXPLQJ J OLPDB}RJRDf f XWf XWnf WL n'X XWf XWnf H[S ML_ GW OWf P LHf XWf JXWf@_ 2 ,4 H[S L WWn ,+ f4 A 4 Q H Q 4 f\ 3Q T L WWn PQ Q PQ f ZKHUH PQ Q O GHQRWH WKH HLJHQYDOXHV RI + 3Q , 4 Q PQ + 3 PA f J4 FRQVW DQG WKH FRQVWDQW LV FKRVHQ VR WKDW + ,W LV HDV\ WR YHULI\ WKDW A SQ DQG VLQFH 4+4 LW IROORZV WKDW Q RR A SQPA RR 7KXV ZH KDYH ]P H[S^O M G[GWGWn-[Wf-[Wff; SQPQf H rLOWWnOPQ `

PAGE 58

L H[S ^ Q G [ GW GWn -[ Wf -[ WnfHLO0nOP ` f 7KH XOWUDORFDO IUHH ILHOG FRUUHVSRQGV WR J J LQ ZKLFK FDVH PQ PQ 3L 3Q QrOf LQ f VR WKDW XWf XWff B/HLOWIOP P 7KHQ f JLYHV =I>-@ H[S ^ G [ GW GWf -[ Wf -[ Wf H f WBWn P ` 7H[SILO G[-[Wf2S [Wf` f 2EVHUYH WKDW WKH XOWUDORFDO IUHH ILHOG RSHUDWRU 2S [Wf VDWLVILHV ‘‘P P 2S [Wf P2S [Wf &RPSDULQJ f DQG (T f ZH JHW =?-@ Q 7H[S ^L G[?A-[Wfr1Q[Wf` G? -[Wf ; 9SAAQ[Wf` 7H[S ^L

PAGE 59

2 7H[S ^L Gn6F -[Wf [Wf` f ZKHUH W![Wf ; 9SA2)AIRWf "OQ[Wf DUH XOWUDORFDO IUHH ILHOG RSHUDWRUV ZLWK Q PDVV PQ W Q f f f ZKLFK VDWLVI\ 2S [Wf 2SOQ[Wf IRU HDFK Q )URP f ZH VHH WKDW RXU UHJXODUL]HG LQWHUDFWLQJ PRGHO KDV OHG LQ WKH FRQWLQXXP OLPLW WR DQ XOWUDORFDO JHQHUDOL]HG IUHH ILHOG D QDWXUDO DQDORJ RI WKH UHODWLYLVWLF JHQHUDOL]HG IUHH ILHOG $V D FRQVHTXHQFH RI >[Wf >\Wf ]Wf@ @ ZKLFK KROGV IRU D JHQHUDOL]HG IUHH ILHOG XQGHU RXU SUHVHQW FRQGLWLRQV LW LV FOHDU WKDW WKH ILHOG RSHUDWRU &! RI DQ LQWHUDFWLRQ OLNH 9L 2f JO! ZLWK J! FDQ QRW VDWLVI\ WKLV FRPPXWDWLRQ HTXDWLRQ 2EYLRXVO\ WKLV JHQHUDOL]HGf IUHHILHOG EHKDYLRU LV OLPLWHG QHLWKHU WR J' ZKLFK FRXOG EH UHSODFHG E\ RWKHU ORFDO SRZHUVf RU WR WKH VSDFHWLPH GLPHQVLRQ Q 7KLV IDFW LQGLFDWHV VRPH VRUW RI IDLOXUH RI WKH FRQYHQWLRQDO IRUPXODWLRQ RI FDQRQLFDO ILHOG TXDQWL]DWLRQ IRU WKHVH PRGHOV 0RUHRYHU ZLWK WKH KHOS RI FRKHUHQW VWDWH WHFKQLTXHVn ZH ILQG WKDW WKH FODVVLFDO OLPLW RI DQ XOWUDORFDO JHQHUDOL]HG IUHH ILHOG GRHV QRW OLPLW DV K }f WR D FODVVLFDO ILHOG WKDW VDWLVILHV WKH FODVVLFDO QRQOLQHDU FDQRQLFDO (Tf LQVWHDG WKH FODVVLFDO OLPLW RI '[Wf = 9SA2r1Q[WfLV JLYHQ QRW VXUSULVLQJO\ E\ S[Wf ; 9SAn0[f ZKHUH Q Q SPQ[Wf PQ FSPQ[Wf IRU HDFK Q

PAGE 60

&+$37(5 23(5$725 $1$/<6,6 2) 08/7,&20321(17 8/75$/2&$/ 02'(/6 7KH TXDQWXP WKHRU\ RI XOWUDORFDO VFDODU ILHOGV KDG EHHQ GLVFXVVHG H[WHQVLYHO\ E\ .ODXGHUn RYHU WZR GHFDGHV DJR 7KH HPSOR\PHQW RI SUREDELOLW\ WKHRU\ DQG +LOEHUW VSDFH PHWKRGV ZLWK DQ HPSKDVLV RQ LQILQLWHO\ GLYLVLEOH GLVWULEXWLRQV DQG FRKHUHQW VWDWHV WHFKQLTXHV UHVSHFWLYHO\ HQDEOHV XV WR JLYH D SURSHU TXDQWL]DWLRQ RI WKHVH PRGHOV ZKLFK RWKHUZLVH DUH PHDQLQJOHVV ZLWKLQ WKH FRQYHQWLRQDO FDQRQLFDO IRUPXODWLRQ RI TXDQWXP ILHOG WKHRU\ VHH FKDS f $Q RSHUDWRU VROXWLRQ RI PXOWLFRPSRQHQW QRQUHQRUPDOL]DEOH XOWUDORFDO TXDQWXP ILHOG PRGHOV LV GHYHORSHG KHUH DORQJ OLQHV SUHVHQWHG HDUOLHU IRU VLQJOHFRPSRQHQW PRGHOV ,Q i ZH ZLOO VKRZ WKDW WKH DGGLWLRQDO QRQFODVVLFDO UHSXOVLYH SRWHQWLDO WKDW LV DOZD\V SUHVHQW LQ WKH VROXWLRQ RI WKH VLQJOHFRPSRQHQW FDVH EHFRPHV LQGHILQLWH DQG PD\ HYHQ YDQLVK LQ WKH PXOWLFRPSRQHQW FDVH 7KH GLVDSSHDUDQFH RI WKDW QRQFODVVLFDO DQG VLQJXODU SRWHQWLDO GRHV QRW PHDQ D UHWXUQ WR VWDQGDUG ILHOG WKHRU\ 7KH RSHUDWRU VROXWLRQ RI PXOWLFRPSRQHQW XOWUDORFDO ILHOGV UHPDLQV QRQFDQRQLFDO ,Q i ZH ZLOO VKRZ WKDW QRQWULYLDO LH QRQJDXVVLDQ UHVXOWV KROG IRU DQ\ QXPEHU 1 RI FRPSRQHQWV DQG VXLWDEOH QRQWULYLDO EHKDYLRU SHUVLVWV HYHQ LQ WKH LQILQLWHFRPSRQHQW 1 rr f FDVH DV ZHOO

PAGE 61

2SHUDWRU $QDO\VLV RI 6LQJOH&RPSRQHQW 8OWUDORFDO 0RGHOV /HW XV EULHIO\ VXPPDUL]H WKH RSHUDWRU DQDO\VLV RI VLQJOHFRPSRQHQW XOWUDORFDO PRGHOVn $VVXPH WKDW WKH ILHOG RSHUDWRU 2[f EHFRPHV VHOI DGMRLQW DIWHU VPHDULQJ ZLWK D UHDO WHVW IXQFWLRQ I[f DW VKDUS WLPH 6LQFH GLVWLQFW VSDWLDO SRLQWV FKDUDFWHUL]H LQGHSHQGHQW ILHOGV IRU DOO WLPH ZH PD\ ZULWH WKH H[SHFWDWLRQ IXQFWLRQDO DV f :KHUH LQ WKH ODVW VWHS ZH KDYH XVHG WKH UHVXOW RI /HY\nV FDQRQLFDO UHSUHVHQWDWLRQ WKHRUHP IRU WKH LQILQLWHO\ GLYLVLEOH FKDUDFWHULVWLF IXQFWLRQV DQG KDYH HOLPLQDWHG D SRVVLEOH FRQWULEXWLRQ RI WKH *DXVVLDQ FRPSRQHQW ZKLFK DSSOLHV WR WKH IUHH ILHOG 7KH UHDO HYHQ IXQFWLRQ F$f LV FDOOHG WKH PRGHO IXQFWLRQ $Q RSHUDWRU UHDOL]DWLRQ IRU WKH ILHOG 2[f LV VWUDLJKWIRUZDUG /HW $[ ;f DQG $[ ;f GHQRWH FRQYHQWLRQDO LUUHGXFLEOH )RFN UHSUHVHQWDWLRQ RSHUDWRUV IRU ZKLFK LV WKH XQLTXH YDFXXP $[ $f IRU DOO [H OQ ? ;H / 7KH RQO\ QRQYDQLVKLQJ FRPPXWDWRU LV JLYHQ E\ f ,QWURGXFH WKH WUDQVODWHG )RFN RSHUDWRUV

PAGE 62

%[;f $[ ;f F;f %[: $[: F;f f 2EYLRXVO\ WKH RSHUDWRUV %[ ;f DQG %[ $f IROORZ WKH VDPH FRPPXWDWLRQ UHODWLRQ f 7KHQ WKH RSHUDWRU UHDOL]DWLRQ IRU WKH ILHOG 2[f LV JLYHQ E\ '[f G; %[ ;f ; %[ ;f f 7KH FRUUHFWQHVV RI WKLV H[SUHVVLRQ UHOLHV RQ WKH IDFW WKDW f, H[S^ L G[2[fI[f` H[S ^L H[S ^ L M G[M G$ %[ M G[M G; %[ ;f ;I[f%[ ;f` "H:r!Of%[;f`O H[S ^ M G[M G; > HA0@ F;f` DV UHTXLUHG E\ f 7KH +DPLOWRQLDQ RSHUDWRU LV FRQVWUXFWHG IURP WKH FUHDWLRQ DQG DQQLKLODWLRQ RSHUDWRUV DQG LV JLYHQ E\ + G[M G; %[ ;f KGG; ;f %[ $f

PAGE 63

M G[M G; $[ ;f K%; ;f $[ ;f f :KHUH K; ;f EGG; 9;f ZKLFK LV D VHOIDGMRLQW RSHUDWRU LQ WKH ; YDULDEOH DORQH ,W LV QHFHVVDU\ WKDW K; ;f LQ RUGHU WKDW + DQG WKDW EH D XQLTXH JURXQG VWDWH (TXDOLW\ RI WKH WZR H[SUHVVLRQV LQ f UHTXLUHV K; ;f F;f LPSO\LQJ WKDW F;f H / LQ RUGHU IRU WR EH XQLTXH 7KLV UHODWLRQ DOVR GHWHUPLQHV 9;f DV 9;f E F.fFNf $VVXPLQJ WKDW G;; F;f kR VR WKDW ,If ,!rR ZKHUH 2If G[ '[f I[f , ‘, WRJHWKHU ZLWK WKH FRQGLWLRQ G; F;f ZH DUH OHG WR FKRRVH F: OAH[S^AP[\ f ZKHUH \ FDOOHG WKH VLQJXODULW\ SDUDPHWHU VDWLVILHV O\ 7KXV ZH KDYH SN LK %%; f K%%; ;f EA <
PAGE 64

WKH LQWHUDFWLRQ WHUP 9L$f WKHUH DSSHDUV D QRQYDQLVKLQJ SRVLWLYH VLQJXODU DQG QRQFODVVLFDO SRWHQWLDO \\OfK; ,W LV LPSRUWDQW WR QRWH WKDW WKLV DGGLWLRQDO SRWHQWLDO PDNHV WKH SDWKLQWHJUDO IRUPXODWLRQ RI XOWUDORFDO ILHOGV WRWDOO\ GLIIHUHQW WKDQ WKDW RI VWDQGDUG TXDQWXP ILHOG WKHRU\ 7KH GHILQLWLRQ RI UHQRUPDOL]HG ORFDO SRZHUV RI WKH ILHOG IROORZV IURP WKH RSHUDWRU SURGXFW H[SDQVLRQ 2[f 2\f [\f GL %[ ;f ; %[ ;f '[f 2\f ZKLFK VXJJHVWV WKH GHILQLWLRQ 'U[f+ G; % [ ;f ; %[ $2 = 2 [f =n f f RU PRUH JHQHUDOO\ 2UN[f G; %[ ;f ;N %[ ;f >= [f@N N ‘ ‘ ‘ f )RU N WKHVH H[SUHVVLRQV DUH ORFDO RSHUDWRUV LH EHFRPH RSHUDWRUV ZKHQ G$ %[ ;f %[ $f DQG ; G$ %[ ;f %[ ;f 2 [f WKHQ ZH FDQ H[WHQG f IRU UHQRUPDOL]HG ; N QHJDWLYH SRZHUV RI WKH ILHOG %XW ZH VKRXOG QRWH WKDW IRU N -!U[f DUH QRW ORFDO RSHUDWRUV O VPHDUHG E\ D WHVW IXQFWLRQ )RU N OHW 2f [f V=I

PAGE 65

&RUUHVSRQGLQJ WR f WKH +DPLOWRQLDQ PD\ EH H[SUHVVHG E\ UHQRUPDOL]HG ILHOGV DV + M LU[f ,PKU[f 9L>'U[f@-G[ f f ZKHUH QU 2U \\OfU 2U P\OfK 2U 2EYLRXVO\ LW PHDQV WKDW QU QHLWKHU ILWV LQWR WKH FDQRQLFDO IUDPHZRUN IOU 2U f QRU IXOILOOV WKH VWDQGDUG FDQRQLFDO FRPPXWDWLRQ UHODWLRQ >2U[f QU\f@ L KE[ \f :H VKRXOG DOVR QRWLFH WKDW DOWKRXJK 2U 2 L > 2 + @ K LIU G? %[ ;f GG; %[ ;f f LV QRW D ORFDO RSHUDWRU GXH WR WKH DVVXPSWLRQ UHJDUGLQJ F;f QHLWKHU DUH f 2U2U !U ORFDO RSHUDWRUV E\ WKHPVHOYHV DORQH RQO\ WKH FRPELQDWLRQ )LU LV D ZHOOGHILQHG ORFDO RSHUDWRU 7KHVH DUH PDMRU GLIIHUHQFHV IURP VWDQGDUG TXDQWXP ILHOG WKHRU\ 7KH +HLVHQEHUJ ILHOG RSHUDWRU LV JLYHQ E\ [Wf HL+Wn FK[f Hn+WIL ‘, ‘, G; %[ ;f HLKWUf;HLKWr %[ ;f G; %[ ;f "Wf %[ ;f f ZKLFK LV ZHOO GHILQHG 7KH WLPHRUGHUHG WUXQFDWHG QSRLQW YDFXXP H[SHFWDWLRQ YDOXHV DUH JLYHQ E\ 7 >;OWLf [Wf f f ‘ K[QWQf@ !7

PAGE 66

[U[f [[f f f [QL[Qf G; F;f7 > ;WLf ;Wf f f f ;WQf@ F;f f )RU XOWUDORFDO SVHXGRIUHH ILHOGV GHILQHG ZKHQ WKH LQWHUDFWLRQ SRWHQWLDO 9L;f YDQLVKHV f ZH KDYH WKH PRGHO IXQFWLRQ F;f _[_n< H[S ^ P;K ` DQG WKH H[SHFWDWLRQ IXQFWLRQDO (>I@ H[S ^ f0 G; WRV > ;I[f @ :r H[S f ZKLFK LV REYLRXVO\ QRW D *DXVVLDQ VROXWLRQ VXFK DV IRU XOWUDORFDO IUHH ILHOGV ,Q i WKH RSHUDWRU DQDO\VLV RI ILQLWHFRPSRQHQW XOWUDORFDO PRGHOV LV SUHVHQWHG 7KHUH ZH ZLOO VHH KRZ DQ LQGHILQLWH SRVLWLYH QHJDWLYH RU YDQLVKLQJf VLQJXODU DQG QRQFODVVLFDO SRWHQWLDO DIIHFWV WKH RSHUDWRU VROXWLRQV ,Q i WKH H[SHFWDWLRQ IXQFWLRQDO RI LQILQLWHFRPSRQHQW XOWUDORFDO ILHOGV LV GLVFXVVHG (YHQ LQ WKLV FDVH WKH VROXWLRQ RI DQ\ LQWHUDFWLQJ WKHRU\ GRHV QRW UHGXFH WR WKDW RI WKH IUHH WKHRU\ LQ WKH OLPLW RI YDQLVKLQJ QRQOLQHDU LQWHUDFWLRQ DQG DJDLQ VXSSRUWV WKH FRQFHSW RI D SVHXGRIUHH WKHRU\n

PAGE 67

2SHUDWRU $QDO\VLV RI )LQLWH&RPSRQHQW 8OWUDORFDO )LHOGV )ROORZLQJ WKH SDWWHUQ RI WKH VLQJOHFRPSRQHQW FDVH WKH ILHOG RSHUDWRU DQG WKH +DPLOWRQLDQ RI 1 FRPSRQHQW XOWUDORFDO ILHOGV DUH GHILQHG E\ ![f G; %[ ;f ; %[ ;f f DQG G; %[ ;f K9[ ;f %[ ;f G; $[ ;f K9A ;f $[ ;f f ZKHUH K9[ ;f 9$f ; VYU 1RWLFH WKDW KHUH WKH 1FRPSRQHQW XOWUDORFDO PRGHOV XQGHU FRQVLGHUDWLRQ KDYH 21f V\PPHWU\ 7KH FRPPXWDWLRQ UHODWLRQ EHFRPHV >D[ ;f $[n ;nf` [[nf ;;nf f DQG WKH XQLTXH JURXQG VWDWH VDWLVILHV $[ ;f 7KH RSHUDWRU %[ ;f LV UHODWHG WR $[ ;f E\ %[ $f $[ ;f F;f f 7KH UHQRUPDOL]HG ORFDO SRZHUV RI WKH ILHOG DUH JLYHQ E\

PAGE 68

‘, AULLN[f G; %7[ ;f $r f ALN %[ ;f LL f f ‘ LN f f ‘ 1 2FFDVLRQDOO\ ZH QHHG WR XVH WKH UHQRUPDOL]HG QHJDWLYH SRZHUV RI WKH ILHOG HYHQ WKRXJK WKH\ DUH QRW ORFDO RSHUDWRUV 7DNH D VLQJOHFRPSRQHQW FDVH IRU DQ H[DPSOH 2UI[f G;%[0N%[" />= 2L[f@ @ L f ‘ f 1 f ZKLFK FDQ EH H[WHQGHG WR N DV ORQJ DV ZH GHILQH 2M [f = G;%[;f-%[;f DQG G$%[;f-%[fWf !UL[f K K )URP WKH UHTXLUHPHQW WKDW K9A ;f F$f ZH KDYH 9$f +L 9[F;fF;f 7KH UHDO HYHQ PRGHO IXQFWLRQ F;f EHFRPHV F;f f§ H[S
PAGE 69

f UU a1ff§ PK7 1f sP; 9L;f ; ZKHUH 9L;f ] \ \n f \n ^ PK; > 7 1Of @ K; ` ZKLFK FRUUHVSRQGV WR WKH LQWHUDFWLRQ 7KHUHIRUH K9c ;f A9 9;f KYO )) n 1fK ‘ PKU 1f ?P; 9L;f f ,; 7KLV EDVH +DPLOWRQLDQ RI PXOWLFRPSRQHQW XOWUDORFDO ILHOGV LV VLPLODU WR WKDW RI VLQJOHFRPSRQHQW XOWUDORFDO ILHOGV f EXW D VXUSULVLQJ GLIIHUHQFH EHWZHHQ WKH WZR HTXDWLRQV LV WKDW XQOLNH WKH QRQYDQLVKLQJ SRVLWLYH VLQJXODU DQG QRQFODVVLFDO SRWHQWLDO \L\?fK ; DSSHDULQJ LQ f 7U 1f; LV QRW DOZD\V SRVLWLYH DQG PRUHRYHU LW PD\ YDQLVK 7KHVH SURSHUWLHV IROORZ VLQFH 1 7 1 LH 7 1 DQG WKHUHIRUH 1 7 1 7 1f 1 1 6XPPDUL]LQJ 71! IRU 1 U1 IRU 1! DQG 71 LV LQGHILQLWH ZKHQ 1 LH LW PD\ EH ODUJHU WKDQ ]HUR VPDOOHU WKDQ ]HUR RU HYHQ HTXDO WR ]HUR $V H[DPSOHV RI YDQLVKLQJ 7U 1fU; ZH KDYH 1 DQG 7 RU 1 DQG 7 ,W LV ZRUWK PHQWLRQLQJ WKDW WKH GLVDSSHDUDQFH RI 7U 1fIW; GRHV QRW PHDQ D UHWXUQ WR VWDQGDUG FDQRQLFDOf ILHOG WKHRU\ RU VWDQGDUG SDWK

PAGE 70

LQWHJUDO IRUPXODWLRQ HYHQ LQ WKLV FDVH LW FDQ EH VKRZQ WKDW D VLPLODU QRQn YDQLVKLQJ VLQJXODU QRQFODVVLFDO SRWHQWLDO DULVHV LQ WKH UHJXODUL]HG SDWK LQWHJUDO IRUPXODWLRQ &KDSWHU f ,W LV ZRUWKZKLOH WR GLVFXVV IXUWKHU WKH +DPLOWRQLDQ ZKLFK DFFRUGLQJ WR f LV JLYHQ E\ + M _LQU[f LP2U[f 9L>2U[f@ _G[ f f§ f§ +HUH QU[f 2U[f UU 1fc 2U[f PLU1f O2U[fO 1RWLFH WKDW 0[f M G; %[ ;f GG; f%[ ;f L O 1 DUH QRW ORFDO RSHUDWRUV f§ R f§ QHLWKHU DUH 2Q[f ,2U[fO RU ,2U[fO EXW VRPHZKDW VXUSULVLQJO\ 1 r A 2Q [f 2U[f LV D ZHOOGHILQHG RSHUDWRU IRU 1 DQG 7 DQG L O 1 f§ Ar f§ B 2Q [f Pe ,2U 2U[f P] ,WY IRU 1 DQG 7 ,Q WKH FDVH RI 1 L O r r DQG 7 ZH KDYH QU[f 2U[f ZKLFK LQ WKH SUHVHQW FDVH LV D ORFDO RSHUDWRU EXW QU[f 2U[f LQYROYHV ORFDO IRUPV UDWKHU WKDQ ORFDO RSHUDWRUV GXH WR WKH LOO GHILQHG 2Q[f 6XPPDUL]LQJ WKH FDQRQLFDO HTXDWLRQ QU[f 2U[f DQG WKH VWDQGDUG FDQRQLFDO FRPPXWDWLRQ UHODWLRQ >2Q[f IWAI\f@ LAMM[ \f GR QRW KROG IRU WKH PXOWLFRPSRQHQW XOWUDORFDO ILHOGV MXVW DV IRU WKH VLQJOHFRPSRQHQW XOWUDORFDO ILHOGV LUUHVSHFW RI ZKHWKHU WKH VLQJXODU SRWHQWLDO 77 1f; f§ >a 2U[f @ LV SUHVHQW RU QRW $QDORJRXV WR WKH VLQJOHFRPSRQHQW FDVH WKH +HLVHQEHUJ ILHOG RSHUDWRU LV JLYHQ E\

PAGE 71

'[Wf '[f HnL+WA ‘ ‘ G; %[ ;f HLKWA;HBLKWIL %[ ;f G; %[ ;f ;Wf %[ ;f f ZKLFK LV ZHOO GHILQHG ,W IROORZV WKDW WKH WLPHRUGHUHG WUXQFDWHG QSRLQW IXQFWLRQ UHDGV ,7 >'L[AWLf -!L;Wf f ‘ f A;Q$f@ !7 [U[f [[f ‘ f f [QU[Qf G; F;f 7O;-Wf ;MWf f f ;LQWQ!@ F;f f

PAGE 72

2SHUDWRU $QDO\VLV RI ,QILQLWH&RPSRQHQW 8OWUDORFDO )LHOGV 7KH H[SHFWDWLRQ IXQFWLRQDO RI ILQLWHFRPSRQHQW ILHOGV LV (>I@ H[S G[ ![fI[f H[S ^ J G; > HAnI[f@ &;f` f +HUH ZH KDYH LQWURGXFHG J D VFDOH IDFWRU ZKLFK FDQQRW EH GHWHUPLQHG RQ JHQHUDO JURXQGV EXW UDWKHU UHSUHVHQWV WKH RQO\ DUELWUDU\ UHQRUPDOL]DWLRQ VFDOH LQYROYHG LQ WKH RSHUDWRU FRQVWUXFWLRQ 7KH SRVVLELOLW\ RI LWV H[LVWHQFH OLHV LQ WKH IDFW WKDW WZR PRGHO IXQFWLRQV GLIIHULQJ E\ D FRQVWDQW IDFWRU OHDG WR WKH VDPH GLIIHUHQWLDO RSHUDWRU K DQG WKXV WR WKH VDPH +DPLOWRQLDQ + $Q RSHUDWRU UHDOL]DWLRQ RI WKH LQILQLWHFRPSRQHQW ILHOG UHTXLUHV XV WR JLYH D SURSHU PHDVXUH ZKLFK LV ZHOO GHILQHG ,Q GRLQJ VR QRWLFH WKDW ZH FDQ DEVRUE WKH PRGHO IXQFWLRQ F;f LQWR WKH PHDVXUH VR WKDW ZH KDYH WKH QHZ PHDVXUH GS;f J F;f ),G;c /HW XV UHGHILQH WKH FRPPXWDWRU $[ ;f $[n ;nf? [[nf 3; ;nf f ZKHUH S; ;nf LV UHODWHG WR WKH PHDVXUH S E\ GS;ff I;ffS; ;nf I;f 7KH RSHUDWRU % DQG WKH LQILQLWHFRPSRQHQW ILHOG DUH UHGHILQHG DV

PAGE 73

%[ ;f $[ ;f f 2[f M GS;f %[ ;f ; %[ ;f f 7KHQ ZH LPPHGLDWHO\ UHFRJQL]H WKDW f VWD\V WKH VDPH 7KH UHQRUPDOL]HG ORFDO SRZHUV RI WKH ILHOG DQG WKH +DPLOWRQLDQ DUH JLYHQ DQDORJRXVO\ E\ LN[f V M GS$f %[ ;f ;X f ;>N %[ ;f K f f f LN f f ‘ 1 f DQG + -G[M GS;f %[ ;f K9K ;f %[ ;f M G[M GS;f $[ ;f K9[ ;f $[ ;f f ZLWK WKH UHTXLUHPHQW RI K9A $fO 7KH +HLVHQEHUJ ILHOG RSHUDWRU LV JLYHQ E\ [Wf HL+WIW 2[f M GS;f %[ ;f HLKWAHLKWD %[ ;f O GS;f %[ ;f ;Wf %[ ;f f 7KH WLPHRUGHUHG WUXQFDWHG QSRLQW IXQFWLRQ UHDGV

PAGE 74

, 7 >2L;LWLf W!L;Wf f f f 2MM[AWQf@ !7 [L;f [[f f ‘ f [QBU;Qf GS;f 7W;LWf ;IH2Df ;LLWQf@ f ,W LV ZRUWK PHQWLRQLQJ WKDW WKH DERYH IRUPXODWLRQ IRU WKH LQILQLWH FRPSRQHQW FDVH LV VXLWDEOH IRU WKH ILQLWH FRPSRQHQW FDVH DV ZHOO 1H[W ZH WU\ WR REWDLQ WKH FKDUDFWHULVWLF IXQFWLRQDO RI LQILQLWH FRPSRQHQW ILHOGV DV WKH OLPLW RI ILQLWHFRPSRQHQW RQHV 7DNH WKH JHQHUDO IRUP RI F;f ; )H[S AP$ \$fLQ WKH ILQLWH FDVH WKHQ ZH KDYH (>I@ H[SM JM G[M G; > H[S > OP$ B \;f @_ f ,Q RUGHU IRU WKLV OLPLW WR H[LVW DV ZH QHHG WR VFDOH VHYHUDO SDUDPHWHUV QDPHO\ \ \1 P P!M DQG WR FKRRVH D VXLWDEOH IDFWRU J J1 )ROORZLQJ WKH 5HI VXSSUHVVLQJ WKH LQWHJUDWLRQ RYHU [ OHW XV FRQVLGHU

PAGE 75

ZKHUH GU UQ HY 6/ KDV EHHQ XVHG ,I ZH LQWURGXFH WKH )RXULHU WUDQVIRUP \LO SDLU Hn <1Af M GA ?Qf HnA KAf AaM G; HLbN I />I@ FDQ EH H[SUHVVHG DV OLP 1f§! f§M GU Uf M G; > HAnI @ H[S AP1 Uf A MKA&Af Ge 7KH LQWHJUDWLRQ RYHU ; QRZ LQYROYHV VLPSO\ *DXVVLDQ LQWHJUDWLRQ M  G[ HA Af[ Af1 H"D DQG OHDGV WR OLP 1f§ B61B I GU UUL H _1 > H" P1A U ef@ K1Af GW Uf fP1IL U e OLP 1} f§ GU UAP1UL LeU Lfn1> O H" P1WL U Lef@ K1ef G( U' $ ZKHUH 7O1 1RZ ZH DUH UHDG\ WR PDNH WKH FKRLFH RI \A PA DQG J1 $VVXPH WKDW J1 JAn17Of PA P1 DQG \[$f \ ;“f ZKLFK VXJJHVWV WKDW KAIAf 1 K1ef )ROORZLQJ D FKDQJH RI YDULDEOHV RI ZH WDNH WKH OLPLW E\ XVLQJ OLPAAAL L +O=/OLA/f H[S-/PL LefDQG ZH JHW />IM J GU UH H[SM APK cf> H" U@ Kef GA -R

PAGE 76

J GU UH H[SMnA PIWf \-fM > H" U@ fR J_ GRf§f§H[SPI]f D \Df` > H F"@ f -R RfH ZKHUH DQG LQ WKH ODVW VWHS ZH KDYH VXEVWLWXWHG R OUf :H FDQ DOVR WU\ LQ WKH IROORZLQJ ZD\ WR REWDLQ WKH FKDUDFWHULVWLF IXQFWLRQDO RI LQILQLWHFRPSRQHQW ILHOGV DV WKH OLPLW RI ILQLWHFRPSRQHQW RQHV 7DNH WKH JHQHUDO IRUP RI F;f ;n)H[S M AP; \;f_ LQ WKH ILQLWH FDVH WKHQ ZH KDYH (>I@ H[S ^ : GS;f > HAnI[f@ ` H[S J G[ G; > HAnA[f@ f§H[S > OP;\$f @ @ @ LU K f ,Q RUGHU IRU WKLV OLPLW WR H[LVW DV 1f§ZH QHHG WR VFDOH VHYHUDO SDUDPHWHUV QDPHO\ \ \1 P PA DQG WR FKRRVH D VXLWDEOH IDFWRU J J1 6XSSUHVVLQJ WKH LQWHJUDWLRQ RYHU [ OHW XV FRQVLGHU />I@ GS1;f > HAnI:@ f U :QARR J1 G; > HAnI @ H[S M IP1! \1!f

PAGE 77

OLP 1f§!RR i1 M G;a A H[S LP1A \1;f MM G > HtI FRV @ f :KHUH G4 VLQ1n G GIn %\ FKDQJLQJ WKH YDULDEOH }1 N DQG WDNLQJ 1 ODUJH ZH KDYH FRV VLQ 1f 1 DQG WKHUHIRUH a a 1 a VLQ1 FRV1 1f > 1f @ m H[S> s^1f 1 f @ +HQFH ZH PD\ ZULWH G4 > HtI FRV 4@ G H[S> L1 f @ > Ha L;I@Ge7 N 1 M GQn ^ H[S>OI;1f@` 6^OH[S>OI;1f@` f :KHUH 6 GHQRWHV WKH VSKHULFDO VXUIDFH DUHD LQ 1GLPHQVLRQV 1 } QDPHO\ 6 Q 1 1M GLU 6XEVWLWXWLQJ f LQWR f ZH KDYH />I@ ]P1B! J1 G; L H[S M OP1; \1;f 6 ^ H[S> OI91 f@` AU1 L ? :}r1!RRJ1 M G;1 \f6&[SMOP11; \1I“ ;fM ^ H[S>OI;A/@` ,Q WKH ODVW VWHS ZH KDYH PDGH D FKDQJH RI YDULDEOHV RI ;f§!9“a ;n S 1

PAGE 78

1RZ ZH PXVW FKRRVH \X P1 DQG JMVM $VVXPH WKDW PcVM P1 \1;f \ ;9“f DQG J1 1AnAAJ6 ZKHUH JLV SURSRUWLRQDO WR J LQ f %\ WDNLQJ WKH OLPLW 1}r! ZH REWDLQ f ZKHUH S 6R WKH FKDUDFWHULVWLF IXQFWLRQDO RI LQILQLWHFRPSRQHQW ILHOGV EHFRPHV H[S J )URP f ZH VHH WKDW D QRQWULYLDO LH QRQ*DXVVLDQ UHVXOW KROGV IRU LQILQLWHFRPSRQHQW ILHOGV MXVW DV LW GRHV IRU WKH ILQLWHFRPSRQHQW RQHV 1RWLFH WKDW WKH VFDOLQJV ZH KDYH XVHG KHUH VXFK DV PZ P1 DQG \UV$f \ $9“f DUH GLIIHUHQW IURP WKH VWDQGDUG RQHV )RU H[DPSOH IRU ar 9L 2 WKH VWDQGDUG VFDOLQJ DVVXPHV 9LfQ 2 1 ZKLOH WKH QRQVWDQGDUG VFDOLQJ HPSOR\V P1 P1 DQG \W$f \ $9“f ZKLFK JLYHV 9LfQ,$@ 9LW;9E7@ ;1 RU HTXLYDOHQWO\ 9LfQ>@ 9L,-!9“@ 1 7KH QRQVWDQGDUG VFDOLQJ DGPLWV D 1 H[SDQVLRQ UHOHYDQW WR WKH 3RLVVRQ GLVWULEXWHG ILQLWH1 VROXWLRQ ZKLOH WKH VWDQGDUG VFDOLQJ GRHV QRW $QRWKHU VLPLODU QRQVWDQGDUG VFDOLQJ H[DPSOH ZDV VKRZQ WR KROG LQ WKH LQGHSHQGHQW } r YDOXH PRGHOV ZKHUH PIU P1 9LfQ> @ 9LI2 1@ DUH DOVR XVHG

PAGE 79

-XGJLQJ IURP WKHVH H[DPSOHV LW ZRXOG DSSHDU WKDW WKH VWDQGDUG VFDOLQJ PD\ IDLO IRU FHUWDLQ QRQUHQRUPDOL]HG ILHOGV

PAGE 80

&+$37(5 7+( &/$66,&$/ /,0,7 2) 8/75$/2&$/ 02'(/6 $V JLYHQ LQ FKDSWHU WKH FODVVLFDO +DPLOWRQLDQ RI DQ XOWUDORFDO VFDODU ILHOG PD\ H[SUHVVHG DV +FL M -a&[f OPFS[f 9L>S[f@-G[ f ZKHUH [H 65W S GHQRWH FODVVLFDO ILHOGV DQG 9LWFS@ 9c> S@ IRU VLPSOLFLW\f WKH LQWHUDFWLRQ SRWHQWLDO 7KH FODVVLFDO FDQRQLFDO HTXDWLRQV RI PRWLRQ DSSURSULDWH WR f DUH S[Wf +FO W[Wf UF[Wf W[Wf 6+FO PFS[Wf 9c>FS[Wf@ f FS[Wf S[Wf PS[Wf 9M>S[Wf@ ,Q IDFW WKHVH IRUPXODV GR QRW WDNH LQWR DFFRXQW D YHVWLJH RI WKH TXDQWXP WKHRU\ WKDW UHDOO\ LV SDUW RI WKH FODVVLFDO DFWLRQ 6LQFH WKH DGGLWLRQDO QRQFODVVLFDO UHSXOVLYH SRWHQWLDO SURSRUWLRQDO WR ILHOG fn LQ f EHORQJV LQ

PAGE 81

WKH TXDQWXP +DPLOWRQLDQ GHQVLW\ DV } WKH FRHIILFLHQW RI WKLV WHUP YDQLVKHV VDYH ZKHQ WS[f 7R DFFRXQW IRU WKLV WHUP ZH IRUPDOO\ ZULWH Sn[Wf LQ WKH FODVVLFDO +DPLOWRQLDQ GHQVLW\ DQG WR UHVSHFW WKLV SRWHQWLDO ZH QHHG WR GHULYH WKH HTXDWLRQV RI PRWLRQ IRU S[Wf E\ PHDQV RI D VFDOH WUDQVIRUPDWLRQ QDPHO\ XVLQJ FS[Wf 6[WfS[Wf 7KLV OHDGV WR D UHODWHG EXW DOWHUQDWLYH VHW RI FODVVLFDO HTXDWLRQV RI PRWLRQ VHH ([DPSOHV DQG EHORZf ,Q WKH IROORZLQJ ZH ZLOO VKRZ WKDW WKH DOWHUQDWLYH TXDQWXP WKHRU\ RI XOWUDORFDO VFDODU ILHOGV GHVFULEHG LQ &KDSWHU GRHV LQGHHG OHDG WR WKH UHTXLUHG FODVVLFDO OLPLW DV K } WKHUHE\ JLYLQJ DGGLWLRQDO VXSSRUW WR VXFK DQ DOWHUQDWLYH QRQ*DXVVLDQ VROXWLRQ 8OWUDORFDO )LHOGV DQG $VVRFLDWHG &RKHUHQW 6WDWHV 7KH SURSHU TXDQWXP +DPLOWRQLDQ RI XOWUDORFDO ILHOGV JLYHQ E\ f KDV DQ HYLGHQW FRQQHFWLRQ ZLWK WKH FODVVLFDO +DPLOWRQLDQ ,Q f WKH VXEVFULSW nUn PHDQV WKH ILHOGV DUH UHQRUPDOL]HG DQG LQVWHDG RI IO 2 ZH KDYH $FFRUGLQJ WR f DQG f WKH ILHOG RSHUDWRU 2 DQG +DPLOWRQLDQ RSHUDWRU DUH JLYHQ E\ %[ ;f $[ ;f F;f f

PAGE 82

G; $[ ;f Kf§ ;f $[ ;; G; G; %[ ;f K f§ ;f %[ ;f f G; ZLWK Kf§ ;f +f§ OfK LP! 9A;f A ; ; ? 3[ A; 9;f f U LBf G; +HUH ZH ZULWH WKH LQWHUDFWLRQ SRWHQWLDO DV 9L;f LQVWHDG RI 9L;f VLQFH ZH KDYH XVHG 9L DV WKH FODVVLFDO LQWHUDFWLRQ SRWHQWLDO LQ f %\ XVLQJ H[SA+Wf %[ ;f H[S +Wf H[S> LW Kf§ ;f @ %[ ;f f K K ; ZH FDQ VKRZ WKDW WKH +HLVHQEHUJ ILHOG RSHUDWRU IRU DQ\ UHQRUPDOL]HG ILHOG SRZHU LV JLYHQ E\ 2U*[ Wf G; %[ ;fH[S> 0 Kf§ ;f @ ;H[S> W Kf§ ;f @ %[ ;f r G[ r D[ G; %[ ;f ;Wf %[ ;f f

PAGE 83

ZKHUH ;*Wf H[S> Kf§ ;f @ ;H[S> Kf§ ;f @ (YHQ WKRXJK IW D[ IW D[ >2U[f QU\f@ r LIL [ \f WKH YDULDEOHV ; DQG SA VDWLVI\ WKH VWDQGDUG RQHn GLPHQVLRQDO FDQRQLFDO FRPPXWDWLRQ UHODWLRQV 7KHUHIRUH ; / >; K@ SL LQ r1n f 3OO5nKO <\@ f ZKHUH IRU HDFK ?_H / WKH XQLWDU\ WUDQVIRUPDWLRQ RSHUDWRU 8>?M@ H[SMM G; G[ >?M[ ;f $[ ;f ?Mr[ ;f$[ ;f@ f ,W LV VWUDLJKWIRUZDUG WR VKRZ WKDW 8>?_@ $[ ;f 8>?_M $[ ;f ?MU[ ;f 8 >?_@ $[ ;f 8>I@ $[ ;f ?@[ ;f f HYLGHQWO\ WKH VDPH UHODWLRQV KROG IRU %[ ;f DQG %[ ;f DV ZHOO

PAGE 84

6HOHFWLRQ RI WKH &RKHUHQW 6WDWHV IRU 8OWUDORFDO )LHOGV DQG WKH &ODVVLFDO /LPLW /HW XV HPSOR\ D 'LUDFOLNH ILUVW TXDQWL]HGf IRUPXODWLRQ IRU IXQFWLRQV RI ; DQG LQ SDUWLFXODU OHW XV VHW ?`[ ;f ; I D[ff f ZKHUH ; D[ff MAfH[SM A>[ FS[f@ L ;Q[f L SM f D[f / > S[f L W[f @  f 7KH H[SUHVVLRQ f KDV WKH IRUP RI D FRQYHQWLRQDO FDQRQLFDO FRKHUHQW VWDWH _L LV DQ DUELWUDU\ SKDVH DQG D[ff H[S>D[f D Df[f D@ f 8>D[f@ f LV VLPLODU WR WKH RUGLQDU\ FRKHUHQW VWDWH Dfn H[FHSW WKDW LQ WKH SUHVHQW FDVH D LV D IXQFWLRQ RI [ D D DUH WKH XVXDO DQQLKLODWLRQ DQG FUHDWLRQ RSHUDWRUV ZKLFK DUH UHODWHG WR ; DQG SAE\ WKH UHODWLRQ f 1RWH ZHOO WKH DSSHDUDQFH RI K LQ WKHVH YDULRXV H[SUHVVLRQV ,Q WHUPV RI WKHVH H[SUHVVLRQV ZH KDYH ??L 2U[f ??I 8>?S@ 2U[f 8>?_@ !

PAGE 85

‘, G$ 2 >%[ $f \f[ ;f@ ; >%[ ;f ?_[ $f@ G; >F$f ?_r[ ;f@ ; >F$f [W[ ;f@ 6LQFH F$f DOZD\V WDNHV WKH IRUP F$f AH[S P$ \L$f LW IROORZV WKDW : n Q rI OLPA B! R G$ F $f $ ?\[ $f &RQVHTXHQWO\ OLPA B! R 9, U[f ,9 OLP B! R G$ ?_r[ $f $ Y_[ ;f L M G; ?_r[ ‘ OLP B!R G$ D[f ;f $ ; D[ff OLQY B!R D[f $ D[ff S[f f %HIRUH ZH FDOFXODWH L_ KU[Wf ?_ ZH QHHG WR SURYH VHYHUDO XVHIXO LGHQWLWLHV %\ XVLQJ 8AI D[f@ ; 8>I D[f@ ; FS[f 89 D[f@ S[8>U D[f@ SA N[f ZH FDQ FDOFXODWH DQ\ DUELWUDU\ PRQRPLDO LQ $nV DQG SA nV

PAGE 86

Ka RF[f A f f SQ D[ff 2 $ S[f f ‘ f SA MF[f fQ f %HFDXVH RI WKH SUHIDFWRU IK LQ WKH GHILQLWLRQ RI ; D Df @ DQG SA > D D f@ DOO WKH WHUPV LQYROYLQJ ; DQG SA ZLOO JR WR ]HUR ZKHQ ZH WDNH WKH OLPLW f§! 7KXV ZH KDYH OLPM R D[f $ f f SQ D[ff FS[! f A[f f 1RZ ZLWK Kf§ ;f K KAf§ :^;f ZH FDOFXODWH G; G; $Wf H[S0 Kf AH[S f§W Kf ; LW >K ;@ O0>K >K ;@@ LWf>K >K >K ;@@@@ ; WSL LMW9 ;f >Yn;f 3O 3L9n;f@ ‘ ‘ f $IWHU DQ H[SHFWDWLRQ LQ WKH FRKHUHQW VWDWHV OID[ff DQG WKH OLPLW } ZH REWDLQ OLPM R D[f $Wf D[ff S[f W WW[f AW9>S[f@ AW 9>FS[f@ W[f f f f

PAGE 87

ZKHUH ZH KDYH XVHG f DQG LQWURGXFHG 9R>FS[ Wf@ OLPM B! R 9 >FS[ Wf@ f 1RWLFH WKDW 9RFSf QR ORQJHU GHSHQGV RQ K EXW LW GRHV FRQWDLQ D YHVWLJH RI K LQ WKH WHUP Sn[Wf :H QRZ SURYH WKDW WKH UHVXOW RI f LV MXVW WKH VROXWLRQ S[ Wf RI WKH FODVVLFDO FDQRQLFDO HTXDWLRQV ZLWK WKH +DPLOWRQLDQ G! L7[Wf 9>FS[ Wf@ S[ Wf W[ Wf N[ Wf 9>FS[ Wf@ f f :LWK S[ f S[f W[ f L[f ZH FDQ XVH D 7D\ORU VHULHV H[SDQVLRQ FS[ Wf S[ f W FS[ f W S[ f A f f ‘ DW S[f W&[ f MW[ f A\IW[ f ‘ ‘ f S[f WL[f Y>S[f@ A9FS[ff W f f f FS[f W-U[f9>S[f@9>S[f@L[f f ,Q WKH VDPH ZD\ ZH FDQ SURYH WKDW

PAGE 88

OLPM B! R W[[f SAWf 7La D[ff Q[ Wf 7KXV OLPAB!YOAfU[ Wf ?@I! OLPA B! R g ,G; %[ $f ;Wf %[ ;f ?_ OLP B! D[f ;Wf D[ff FS[ Wf f DQG HYLGHQWO\ OLP R 9, A[ Wf ,9 UF[ Wf f $FFRUGLQJ WR f FS[ Wf VDWLVILHV WKH FODVVLFDO HTXDWLRQ RI PRWLRQ QDPHO\ S[ Wf 9R>FS[ Wf@ f /HW XV SUHVHQW WZR H[DPSOHV ([DPSOH 8OWUDORFDO 3VHXGR)UHH 7KHRU\ 7KH TXDQWXP +DPLOWRQLDQ RI WKH XOWUDORFDO SVHXGRIUHH ILHOG LV JLYHQ + G[M G; %[:K: %[: G;

PAGE 89

ZKHUH P\fK 7KH PRGHO IXQFWLRQ F;f IRU WKH V\VWHP LV GHWHUPLQHG WKURXJK Ef DQG WKH UHVXOW LV f ([SUHVVLQJ WKH TXDQWXP +DPLOWRQLDQ LQ WHUPV RI WKH UHQRUPDOL]HG ILHOG RSHUDWRUV ZH KDYH L LIOU [f LP2U [fMG[ + ZKHUH ZH KDYH GHILQHG WKH ORFDO RSHUDWRU 2EYLRXVO\ WKLV GHILQLWLRQ PHDQV WKDW QU QHLWKHU ILWV LQWR WKH FDQRQLFDO IUDPHZRUN QRU IXOILOOV WKH FRPPXWDWLRQ UHODWLRQ >2U[f QU\f@ L +[ \f )URP WKH DERYH DQDO\VLV WKH FODVVLFDO OLPLW RI WKH ILHOG RSHUDWRUV LQ WKH FRKHUHQW VWDWHV GHQRWHG E\ WS[ Wf DQG L[Wf ILWV LQWR WKH FODVVLFDO FDQRQLFDO HTXDWLRQ f ZLWK 9LSf DQG S[ Wf LV WKH VROXWLRQ RI WKH FODVVLFDO SVHXGRIUHH ILHOG HTXDWLRQ RI PRWLRQ f

PAGE 90

FS[ Wf FSn[Wf PFS[Wf ZKHUH WKH UROH RI FSn[Wf LV WR DVVXUH WKDW FS[ Wf RU S[ Wf QDPHO\ WKDW S[ Wf LV QRW DOORZHG WR FURVV WKURXJK S[ Wf 7KLV NLQG RI VROXWLRQ FDQ EH VHFXUHG LI ZH UHSODFH WKH DERYH HTXDWLRQ E\ WKH VFDOHFRYDULDQW HTXDWLRQ RI PRWLRQ FS[Wf >S[ Wf PS[ Wf@ )RU UHDGHUV LQWHUHVWHG LQ WKH HTXDWLRQ RI PRWLRQ RI WKH SVHXGRIUHH ILHOG RSHUDWRUV 5HI LV UHFRPPHQGHG QU= ([DPSOH 8OWUDORFDO )LHOG ZLWK ,QWHUDFWLRQ 3RWHQWLDO JS f§f§WS P ‘, r7KH TXDQWXP +DPLOWRQLDQ LV + G[ G! %[ ;f Kf§ ;f %[ ;f G; DQG WKH H[SUHVVLRQV RI Kf§ ;f DQG F;f IRU VXFK D PRGHO DUH G; Z 1 L << fWc L } J Kf§ r‘f A3[ f§ \P; J; 6; G; ; P P < fIL J APOf;K P F;f / H[S -P; f§; _A-< + P f 7KH +DPLOWRQLDQ H[SUHVVHG LQ WHUPV RI WKH UHQRUPDOL]HG ILHOG RSHUDWRUV LV

PAGE 91

+ OUI[f L >P J
PAGE 92

S[WfFS[ Wf PWS[Wf JFS[Wf f§S[Wf P ZKLFK LV VDWLVILHG E\ WKH FODVVLFDO OLPLW RI WKH XOWUDORFDO ILHOG OLPA B! R 9, ArU[ Wf ?M DFFRUGLQJ WR (T f

PAGE 93

&+$37(5 3$7+,17(*5$/ )2508/$7,21 2) 8/75$/2&$/ 02'(/6 ,Q DQ HDUOLHU FKDSWHU ZH KDYH SRLQWHG RXW WKDW WKH SDWKLQWHJUDO RI WKH TXDUWLF VHOIFRXSOHG XOWUDORFDO VFDODU ILHOG OHDGV WR DQ WULYLDO *DXVVLDQf UHVXOW ZKHQ DSSURDFKHG E\ WKH FRQYHQWLRQDO ODWWLFH OLPLW &KDS f +RZHYHU WKH FKDUDFWHUL]DWLRQ RI LQILQLWHO\ GLYLVLEOH GLVWULEXWLRQV DOORZV XOWUDORFDO PRGHOV DOWHUQDWLYH RSHUDWRU VROXWLRQV &KDS f ZKLFK VXJJHVW D QHZ H[SUHVVLRQ RI SDWKLQWHJUDO ZLWK D QRQYDQLVKLQJ QRQFODVVLFDO SRWHQWLDO ,Q WKLV FKDSWHU ZH VHHN WR UHSODFH WKH VWDQGDUG ODWWLFH IRUPXODWLRQ E\ D QRQVWDQGDUG RQH ZKLFK DGPLWV QRQWULYLDO UHVXOWV 6SHFLILFDOO\ ZH ZLOO XVH WKHVH DOWHUQDWLYH QRQSHUWXUEDWLYH RSHUDWRU VROXWLRQV WR FRQVWUXFW QRQWULYLDO ODWWLFHVSDFH SDWK LQWHJUDOV IRU QRQUHQRUPDOL]DEOH XOWUDORFDO PRGHOV $V ZH ZLOO VHH WKH LQGHILQLWH QRQFODVVLFDO VLQJXODU SRWHQWLDO UHTXLUHG IRU WKH QRQWULYLDOLW\ LQ PXOWLFRPSRQHQW FDVH KDV GLIIHUHQW HIIHFWV RQ GLVWULEXWLRQV FRPSDUHG WR WKH VLQJOHFRPSRQHQW FDVH KRZHYHU WKH HVVHQWLDO SURSHUW\ RI UHZHLJKWLQJ WKH GLVWULEXWLRQ DW WKH RULJLQ LV VLPLODU 7KH DSSHDUDQFH RI DGGLWLRQDO QRQFODVVVLFDO VLQJXODU SRWHQWLDOV VXJJHVWV WKDW ZH FDQ QRW DOZD\V SODFH WKH FODVVLFDO /DJUDQJLDQ RU FODVVLFDO +DPLOWRQLDQ GLUHFWO\ LQWR WKH SDWKLQWHJUDO IRUPXODWLRQ RU LQ RWKHU ZRUGV D VWUDLJKWIRUZDUG FDQRQLFDO TXDQWL]DWLRQ RI ILHOGV ZLWK LQILQLWH GHJUHHV RI IUHHGRP GRHV QRW DOZD\V DSSO\

PAGE 94

2SHUDWRU 6ROXWLRQV RI 8OWUDORFDO 0RGHOV ,Q WKLV VHFWLRQ ZH ZLOO VHOHFW FHUWDLQ UHVXOWV ZKLFK ZLOO EH XVHG KHUH IURP &KDSWHU RQ WKH RSHUDWRU DQDO\VLV RI XOWUDORFDO PRGHOV DQG SXW WKHP LQWR FRPSOHWHO\ SURSHU GLPHQVLRQDO IRUPV )ROORZLQJ &KDSWHU WKH 1 FRPSRQHQW XOWUDORFDO ILHOG RSHUDWRU FDQ EH H[SUHVVHG DV -![f G$ %[ $f $ %[ $f f :KHUH WKH RSHUDWRUV %[ $f DQG %[ $f DUH WUDQVODWHG )RFN RSHUDWRUV GHILQHG WKURXJK %[ $f $[ $f F$f $ ZKLOH $[ $f DQG $[ $f GHQRWH FRQYHQWLRQDO LUUHGXFLEOH )RFN UHSUHVHQWDWLRQ RSHUDWRUV IRU ZKLFK LV WKH XQLTXH YDFXXP $[ $f IRU DOO [H65 $H1 7KH RQO\ QRQYDQLVKLQJ FRPPXWDWRU LV JLYHQ E\ $[ $f $[n $nf [[ $$ f 2EYLRXVO\ WKH RSHUDWRUV %[ $f DQG %[ $f IROORZ WKH VDPH FRPPXWDWLRQ UHODWLRQ f )RU WKH VLQJOHFRPSRQHQW FDVH f EHFRPHV [f O G$ %[ $f $ %[ $f f 5HQRUPDOL]HG SURGXFWV IROORZ IURP WKH RSHUDWRU SURGXFW H[SDQVLRQ

PAGE 95

ZKLFK VXJJHVWV WKH GHILQLWLRQ RI WKH UHQRUPDOL]HG VTXDUH DV VEO 2ULM[f V E G; %[ ;f ;L;M %[;f =2L[f IF\f = E f f +HUH ZH KDYH LQWURGXFHG DQ DX[LOLDU\ FRQVWDQW E GHVLJQHG WR NHHS = GLPHQVLRQOHVV ,Q WKH SUHYLRXV FKDSWHUV ZH KDYH JHQHUDOO\ FKRVHQ E Of :LWK >f@ GLPHQVLRQ ff ZH KDYH >E@ >[@BQ 0RUH JHQHUDOO\ WKH UHQRUPDOL]HG ORFDO SRZHUV RI WKH ILHOG DUH JLYHQ E\ .LOLN[f EN OG; %[ ;f ;L f ? %[ ;f f LL f f ‘ LN f ‘ f 1 DQG N f ‘ f 2FFDVLRQDOO\ ZH QHHG WR XVH WKH UHQRUPDOL]HG QHJDWLYH SRZHUV RI WKH ILHOG HYHQ WKRXJK WKH\ DUH QRW ORFDO RSHUDWRUV 7DNH WKH RQHFRPSRQHQW FDVH IRU H[DPSOH G;%[;f E;MfN%[;f K ->= [f@N ] L ‘ f 1 f LW FDQ IRUPDOO\ EH H[WHQGHG WR N DV ORQJ DV ZH GHILQH

PAGE 96

7KH +DPLOWRQLDQ RI 21f LQYDULDQW 1FRPSRQHQW XOWUDORFDO ILHOGV FDQ EH H[SUHVVHG DV G; %[ ;f 09r ;f %[ ;f G; $[ ;f K9? ;f $[ ;f f :KHUH K9A ;f K 9! 9;f LV D VHOIDGMRLQW RSHUDWRU LQ WKH ; YDULDEOH DORQH 7KH FRQQHFWLRQ EHWZHHQ WKHVH WZR UHODWLRQV KROGV ZKHQ ZH LQVLVW WKDW K9[ ;f F;f DQG LQ RUGHU IRU WR EH WKH XQLTXH JURXQG VWDWH RI + LW IROORZV WKDW F;f J eW1f 6LQFH >F@ >[@BQ>;@f1 DQG >;@ >[@Q >K@ ZH KDYH >F@ >[@Q1f>A@n1 7KHUHIRUH E\ WDNLQJ LQWR DFFRXQW RI WKH GLPHQVLRQV WKH PRGHO IXQFWLRQ PD\ EH H[SUHVVHG DV F;f IWU1fED; H[S \; E IWf M f U U ZKHUH D > QO71fO @ QOf :LWK D SURSHU DFFRXQW RI GLPHQVLRQV WKH VHOIDGMRLQW EDVH +DPLOWRQLDQ REH\V A A 09r ;f 09[ UUa1!IW PAU1f sPE; O9L:Wf E E; f 2EYLRXVO\ )RU WKH VLQJOHFRPSRQHQW FDVH f DQG f EHFRPH &IWf c:!E,QWIOOQLQB : AP; \; E Kf Q f

PAGE 97

KD[ ;f sKf§ `A PIL< f OPW$ O9LE;f E ; E E f 7KH +DPLOWRQLDQ PD\ DOVR EH H[SUHVVHG LQ WHUPV RI UHQRUPDOL]HG ILHOGV DV + MLQU[f ,PU[f 9L>'U[f@ -G[ f f§ f§ ZKHUH QU[f 2U[f 7U 1fIWE 2U[f PK 7 1fE 2U[f DQG LQ WHUPV RI EDUH ILHOGV DV + ML=Q[f OP=L-![f O9L>=-![f@MG[ f A ZKHUH = [f =! [f UU1f]E=n[f PK U1fE=n '[f IOU [f )RU WKH VLQJOHFRPSRQHQW FDVH WKH +DPLOWRQLDQ EHFRPHV + MOQ[f LPFKU[f 9L>2U[f@ MG[ f cs=Q[f OP=[f O9L>=pU[f@ MG[ f ZKHUH Q G! \\OfQE PK\ OfE 2Ur DQG =Q =p fAE!n=n PAOfE R9 8U

PAGE 98

7KH +DPLOWRQLDQ RSHUDWRU f UHDGLO\ OHDGV WR WKH +HLVHQEHUJ ILHOG RSHUDWRU ZKLFK LV JLYHQ E\ ‘, [Wf Hr+f} '[f HL+Wr G; %[ ;f %[ ;f ‘, G; %[ ;f ;Wf %[ ;f f $IWHU WKLV SDUWLDO UHYLHZ ZH WXUQ RXU DWWHQWLRQ WR WKH SDWKLQWHJUDO IRUPXODWLRQ RI XOWUDORFDO PRGHOV

PAGE 99

(XFOLGHDQ6SDFH 3DWK,QWHJUDO )RUPXODWLRQ RI 6LQJOH&RPSRQHQW 8OWUDORFDO )LHOGV ,Q WKLV VHFWLRQ ZH ZLOO VWDUW IURP WKH RSHUDWRU VROXWLRQ SUHVHQWHG LQ i WR GHULYH WKH (XFOLGHDQ WLPH ODWWLFHVSDFH IRUPXODWLRQ $WWHQWLRQ LV IRFXVHG RQ WKH WLPHRUGHUHG YDFXXP WR YDFXXP H[SHFWDWLRQ IXQFWLRQDO LO &>I@ 7H[SM 8, G[ GW [Wf I[Wf f ,QVHUW f WKHQ ZH KDYH &>I@ 7H[G 8 SMAM G[ GW G; %[ ;f I[Wf;Wf %[ ;f %\ XVLQJ WKH QRUPDO RUGHULQJ WHFKQLTXH &>I@ EHFRPHV ,7 H[S M G[ G; %[ ;f ^ H[S >M;f ^ H[S>(_ GW I[Wf;Wf@ ` %[ ;f 1RWLFH WKDW RQO\ WKH SDUW LQVLGH ^ ` GHSHQGV RQ WLPH W 7KHUHIRUH ZH FDQ PRYH WKH WLPHRUGHULQJ VLJQ 7 LQWR WKH EUDFNHW VR ZH ILQG WKDW &>I@ H[S M G[ M G; %[ ;f ^ 7H[SOAM ;f ^ 7H[SOAGW I[Wf;Wf@ ` %[ ;f LFL H[S G[ G; F;f ^ 7H[SIK M GW I[Wf$Wf@ ` F;f O}O !

PAGE 100

+ _GHLI[W H[S M G[M G; F;f ^ 7H[S> GW /I[Wf; K4; ;ff @ ` F;f OLPDB}R H[S_ e D M G; &J;f ^ 7H[S >M GW LIN[ Wf;KmGD; ;ff @ ` &;f +HUH LQ WKH ODVW VWHS ZH KDYH HPSOR\HG D ODWWLFHVSDFH UHJXODUL]DWLRQ LQ ZKLFK D LV WKH VSDFH YROXPH /HW FV;f IF:! ED ; fnQODEf@ IRU \ O 7KHUHIRUH f§} DV Df§! OLPDAR F;f F;f DQG &>I@ OLPDAROO H[3 N > GO LIN[ D G; &J;f ^7H[S> GW /IN;Wf; Ki; ;ff @ ` &J;f OLPDA (O DM 4!Af ^ 7H[S >GW AINWf; GW KV2D; ;f @` &V;f ZKHUH DAFJI;f UHSUHVHQWV WKH QRUPDOL]HG JURXQG VWDWH RI K; ;f LH Ki; ;f &J;f 7R WKH UHTXLUHG DFFXUDF\ LQ ZH KDYH KRD[ Z E ;
PAGE 101

DQG &>I@ LV UHGXFHG WR D SDWKLQWHJUDO IRUP RI VLQJOH GHJUHH TXDQWXP PHFKDQLFV DV OLPDBR,, '; H[S I GW ^LIY;?sEO <AE;N U\ f; AP\ BfQ E;N f LPE$N-9LE!Nf@` E 6HW $N D2N WKHQ WKLV H[SUHVVLRQ EHFRPHV &>I@ OLPDB '2Nf H[SA D GW ^MUAN >LDE2N M GW P0\f LPDE2N f§9LDE2Nf@ ` D DE \\Of2ND\ K E2NDBf D f ,Q WKH IRUPDO OLPLW Df§! ZH KDYH &>I@ '2 H[SM G[ GW ^OI[ Wf[ Wf >,]R9AA=n9 PIL\ OfE R9 OP=f§9L=2f@` =

PAGE 102

G[ GW I[ Wf[ WfM GW/ f :KHUH / M G[ ML=2f \^\OA E =n9 PK\ OfE 6!r=$ AP=K A9L=2f DQG QRWLFH WKDW ZH KDYH XVHG WKH IRUPDO IDFWRU = Ef OLPDAR ED 2EYLRXVO\ EHFDXVH RI WKH DSSHDUDQFH RI WKH DGGLWLRQDO QRQFODVVVLFDO VLQJXODU SRWHQWLDO WKH IRUP RI / LV QR ORQJHU WKH FODVVLFDO /DJUDQJLDQ RI WKH XOWUDORFDO PRGHO ZKLFK UHDGV /FL M G[ APK 9Lf_ 6XFK D GLIIHUHQFH VXJJHVWV WKDW ZH FDQ QRW DOZD\V SODFH WKH FODVVLFDO /DJUDQJLDQ RU FODVVLFDO +DPLOWRQLDQ GLUHFWO\ LQWR WKH SDWKLQWHJUDO IRUPXODWLRQ RU LQ RWKHU ZRUGV D VWUDLJKWIRUZDUG FDQRQLFDO TXDQWL]DWLRQ RI ILHOGV ZLWK LQILQLWHO\ PDQ\ GHJUHHV RI IUHHGRP GRHV QRW DOZD\V KROG

PAGE 103

(XFOLGHDQ 6SDFH 3DWK,QWHJUDO )RUPXODWLRQ RI 0XOWL&RPSRQHQW 8OWUDORFDO )LHOGV )ROORZLQJ ZKDW ZH GLG LQ i DQG XVLQJ WKH UHVXOWV SUHVHQWHG LQ i ZH KDYH WKH WLPHRUGHUHG YDFXXPWRYDFXXP H[SHFWDWLRQ IXQFWLRQDO c, &>I@ 7H[Sf§, G[GW;![WfI[Wf f 6XEVWLWXWH f LQWR WKH DERYH HTXDWLRQ DQG LW EHFRPHV ,7H[S f§ MAM G[GW M G$ %[ ;f I[Wf;Wf %[ ;f $V ZH GLG EHIRUH E\ XVLQJ WKH QRUPDO RUGHULQJ WHFKQLTXH ZH REWDLQ &>I@ ,7 H[S G[ M G; %[ ;f ^H[S>_ GW L I[Wf$Wf@ ` %[ $f M G[ G$ %[ $f ^ 7H[S >M GW 8I[Wf$Wf@ ` %[ $f H[S H[S H[S + 0 G; F;f ^7H[S> GW 7I[Wf;Wf@ ` F;f > GWMIL[ > GWLI[ G; F;f ^7H[S> GW II[Wf ; K9[ ;ff @ ` F;f OLPDAR H[S ; D M &J;f ^7H[S >M GW MMIN[ Wf;K9[$ff@O`&;f

PAGE 104

:KHUH LQ WKH ODVW VWHS ZH KDYH HPSOR\HG D ODWWLFHVSDFH UHJXODUL]DWLRQ LQ ZKLFK D LV WKH ODWWLFHFHOO YROXPH /HW F;f ILU1fED H[S  A9 f \; f Q VI ; f ZKHUH D > QO71fO @ QOf DQG FKRRVH D M G$ &i;f WKHQ ZH KDYH &>I@ OLPDURQ H[3 D G; &J;f ^7H[SO M GW IN[Wf; K9A ;ff @` &J;f > GWLIN[W OLPDB!R ,, D G! &2f ^ 7H[SOM GW LIN[Wf; KDI9B 8 f @f IWf ZKHUH DFi$f GHQRWHV WKH QRUPDOL]HG JURXQG VWDWH RI KVI9[ $f LH Ki9A ;f FV;f 7KXV WR WKH UHTXLUHG DFFXUDF\ LQ ZH KDYH K9[ [f sQYO UU1fA E;f UUfI PAU1f -PE; /9LE;f E E; f ([SUHVVLQJ &>I@ LQ D SDWKLQWHJUDO IRUP ZH JHW &>I@ OLPDAQ H[3 MGWINWf ; M GW /[; ;f f ZKHUH

PAGE 105

A X /;? ;f AE; UFU1fA E; f QUfA E; f P.7 1f OPE[ OYUE;f E ,W LV ZRUWK QRWLFH WKDW LQ WKH FDVHV RI YDQLVKLQJ QRQFODVVLFDO VLQJXODU SRWHQWLDO 771: E"W f DQRWKHU UHJXODUL]HG VLQJXODU SRWHQWLDO U7!fIL EU f ZLOO WDNH RYHU WKH UHZHLJKWLQJ UROH RI WKH GLVWULEXWLRQ EXW RQO\ DW WKH RULJLQ ; V VLPLODU WR RI E E6 1 FDVH 7KHUHIRUH WKH UHZHLJKWLQJ EHKDYLRU QHDU ; LV HVVHQWLDOO\ WKH VDPH 6LQFH WKH VXEVFULSW N GHQRWHV LQGHSHQGHQW VSDWLDO SRLQWV ZH WKHUHIRUH PD\ ZULWH f DV GW ^r INnAN ;Nf ` Q 6HW ;r D2N DQG WDNH WKH OLPLW ZH WKHQ REWDLQ

PAGE 106

GW^M IN2N-8D2N D2Nf` D GW MI[ Wf[ Wf K O GW 8 'f f ZKHUH ZH KDYH XVHG WKH IRUPDO IDFWRU = Ef OLPD!R ED DQG / 2f OLPDB!R ? /[D2N D2Nf ‘ X r r r f§ G[ ^=2 -UU1fALE=n PMU f§fE=B \P= L9L&=2f` 2QFH DJDLQ WKH DSSHDUDQFH RI WKH DGGLWLRQDO QRQFODVVVLFDO VLQJXODU SRWHQWLDO KDV PDGH WKH IRUP RI / QR ORQJHU WKH FODVVLFDO /DJUDQJLDQ RI  XOWUDORFDO PRGHO ZKLFK UHDGV /FL [f AP [f 9L>[f@G[ 6XFK D GLIIHUHQFH VXJJHVWV DJDLQ WKDW ZH FDQ QRW DOZD\V VHW WKH FODVVLFDO /DJUDQJLDQ RU FODVVLFDO +DPLOWRQLDQ GLUHFWO\ LQ D SDWKLQWHJUDO IRUPXODWLRQ RU LQ RWKHU ZRUGV WKH FDQRQLFDO TXDQWL]DWLRQ IRU PXOWLFRPSRQHQW ILHOGV ZLWK LQILQLWHO\ PDQ\ GHJUHHV RI IUHHGRP GRHV QRW DOZD\V KROG :H DUH XQDEOH WR LOOXVWUDWH D SDWK LQWHJUDO FRQVWUXFWLRQ IRU 1 r! GLUHFWO\ DOWKRXJK WKHUH LV DOZD\V WKH RSWLRQ WR LQWURGXFH 1 f§! } RXWVLGH RI f 2Q WKH RWKHU KDQG WKH GHVLUHG JHQHUDWLQJ IXQFWLRQ IRU 1 [! FDQ EH IRUPXODWHG LQ WKH RSHUDWRU ODQJXDJH ,Q SDUWLFXODU E\ XVLQJ WKH UHVXOWV RI WKH

PAGE 107

RSHUDWRU VROXWLRQ LQ 5HI IRU WKH LQILQLWHFRPSRQHQW FDVH LH f WKURXJK f LQ 5HI f ZH KDYH &>I@ L7H[Sf§, G[ GW [WfI[Wf 7H[G SMLG[GWM GS;f %[ ;f I[Wf;Wf %[ ;f ,7 H[S G[ GS;f %[ ;f ^H[S>_ GW f§ I[Wf;Wf@ ` %[ ;f 0 + H[S G[ GS;f % [ ;f ^7H[S> GW f§ I[Wf;Wf@ ` %[ ;f GW LI[W M GW ; I[W ! : H[S G[O GS;f ^7H[S> GW LI[Wf;Wf @ ` MGW )[n H[S 0 GS;f ^ 7H[S> I GWLL[Wf7M GW K9A;f@` ZKHUH K9A ;fO DQG GS;f J f§H[S \; E 2MG;G4 S ; Q ,W ZRXOG EH LQWHUHVWLQJ WR WU\ WR UHIRUPXODWH WKLV ILQDO H[SUHVVLRQ E\ PHDQV RI D SDWK LQWHJUDO EXW VR IDU ZH KDYH QRW VXFFHHGHG LQ GRLQJ VR +RZHYHU ZH FDQ VWLOO SUHGLFW WKDW WKH UHVXOW LV QRQWULYLDO VLQFH ZH KDYH DOUHDG\ REWDLQHG WKH QRQWULYLDO FKDUDFWHULVWLF IXQFWLRQDO RI LQILQLWH FRPSRQHQW ILHOGV DV WKH OLPLW RI ILQLWHFRPSRQHQW RQHV VHH f RU f

PAGE 108

5()(5(1&(6 6HH IRU H[DPSOH / 6FKLII 4XDQWXP 0HFKDQLFV 0F*UDZ+LOO 1HZ
PAGE 109

5 .ODXGHU 6HOI,QWHUDFWLQJ 6FDODU )LHOGV DQG 1RQf 7ULYLDOLW\ WR EH SXEOLVKHG LQ WKH 3URFHHGLQJ RI WKH :RUNVKRS RQ 0DWKHPDWLFDO 3K\VLFV 7RZDUG WKH ;;,VW &HQWXU\ %HHU 6KHYD ,VUDHO 0DUFK &KHQJMXQ =KX DQG -RKQ 5 .ODXGHU 2SHUDWRU $QDO\VLV RI 1RQUHQRUPDOL]DEOH 0XOWLFRPSRQHQW 8OWUDORFDO )LHOG 0RGHOV VXEPLWWHG WR 3K\V 5HY 'f &KHQJMXQ =KX DQG -RKQ 5 .ODXGHU 1RQWULYLDO 3DWK ,QWHJUDOV IRU 1RQUHQRUPDOL]DEOH ILHOGV f§0XOWLFRPSRQHQW 8OWUDORFDO 0RGHOV VXEPLWWHG WR 3K\V 5HY 'f 2 : *UHHQEHUJ $QQ 3K\V f $ / /LFKW $QQ 3K\V f +HSS &RPP 0DWK 3K\V f 5 .ODXGHU DQG % 6 6NDJHUVWDP &RKHUHQW 6WDWHV :RUOG 6FLHQWLILF 6LQJDSRUH f 5 .ODXGHU 3K\V /HWW % f $QQ 3K\V f % 6 .D\ 3K\V $ 0DWK *HQ f 5 .ODXGHU DQG + 1DUQKRIHU 3K\V 5HY f -RKQ 5 .ODXGHU &RYDULDQW 'LDVWURSKLF 4XDQWXP )LHOG 7KHRU\ 3K\V 5HY /HWW f 0 5HHG $EVWUDFW 1RQOLQHDU :DYH (TXDWLRQV /HFWXUH 1RWHV LQ 0DWKHPDWLFV 6SULQJHU9HUODJ %HUOLQ f

PAGE 110

%,2*5$3+,&$/ 6.(7&+ %RUQ LQ &KHQJMXQ =KX JUHZ XS LQ WKH FLW\ RI +HIHL $QKXL 3URYLQFH &KLQD 6KH REWDLQHG KHU % 6 DQG 0 6 GHJUHHV LQ SK\VLFV IURP +HIHL 8QLYHUVLW\ RI 7HFKQRORJ\ DQG WKH 8QLYHUVLW\ RI 6FLHQFH DQG 7HFKQRORJ\ RI &KLQD UHVSHFWLYHO\ 6LQFH 6HSWHPEHU VKH KDV EHHQ ZRUNLQJ WRZDUGV KHU GRFWRUDO GHJUHH LQ WKH 'HSDUWPHQW RI 3K\VLFV 8QLYHUVLW\ RI )ORULGD

PAGE 111

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ > ƒMOtMY0X -RKA5 .ODXGHU FKDLUPDQ 3URIHVVRU RI 3K\VLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5REHUW %XFKOHU 3URIHVVRU RI 3K\VLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3LHUUH 5D 3URIHVVR FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ AFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ &KDUOHV ) +RRSHU 3URIHVVRU RI 3K\VLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ F 'DYLG % 7DQQHU 3URIHVVRU RI 3K\VLFV

PAGE 112

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH $VVRFLDWH 3URIHVVRU RI 0DWKHPDWLFV I 'RFWRU RI 3KLORVRSK\ ] &KULVWRSKHU : 6WDUN 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI 3K\VLFV LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $SULO 'HDQ *UDGXDWH 6FKRRO

PAGE 113

/' ?n?R A 9 81,9(56,7< 2) )/25,'$