Citation
Determination of wear metals in lubricating oil by electrothermal vaporization inductively coupled plasma mass spectrometry

Material Information

Title:
Determination of wear metals in lubricating oil by electrothermal vaporization inductively coupled plasma mass spectrometry
Creator:
Escobar, Monica Paola, 1968-
Publication Date:
Language:
English
Physical Description:
xi, 175 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Argon ( jstor )
Educational television ( jstor )
Furnaces ( jstor )
Gas flow ( jstor )
Graphite ( jstor )
Ions ( jstor )
Mass spectrometers ( jstor )
Plasmas ( jstor )
Signals ( jstor )
Vapors ( jstor )
Chemistry thesis, Ph. D
Dissertations, Academic -- Chemistry -- UF
Inductively coupled plasma mass spectrometry ( lcsh )
Lubricating oils -- Analysis ( lcsh )
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1995.
Bibliography:
Includes bibliographical references (leaves 167-174).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Monica Paola Escobar.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
002045654 ( ALEPH )
33399206 ( OCLC )
AKN3583 ( NOTIS )

Downloads

This item has the following downloads:


Full Text









DETERMINATION OF WEAR METALS IN LUBRICATING OIL
BY ELECTROTHERMAL VAPORIZATION
INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY










By

MONICA PAOLA ESCOBAR


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1995




DETERMINATION OF WEAR METALS IN LUBRICATING OIL
BY ELECTROTHERMAL VAPORIZATION
INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY
By
MONICA PAOLA ESCOBAR
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1995


ACKNOWLEDGEMENTS
I would like to sincerely thank my research advisor, Dr. Jim Winefordner, for
his guidance and support. I would also like to thank Dr. Ben Smith for his assistance,
friendship, and encouragement and the Winefordner research group for their support.
I am grateful to the service engineers at Finnigan MAT, George Henderson, Tom
Musselman, and Frank Trensch, for their assistance.
I would like to thank everyone who has made this a special and enjoyable
experience: Nikki Schultz, Nancy Mullins, Sue Ohorodnik, Andi Pless, Lena Yacoub,
Laura Cole, Denise Imbroisi, Stefanie Pagano, Taylor Hale, Eugene Wagner, and
Sherrie Hall.
I am grateful to my family for their support and understanding. I am especially
grateful to Bill Maehlmann for his patience and love and for being there whenever I
needed him. This last year would have been much harder without his constant support
and encouragement.
Finally, I would like to thank the Air Force Office of Scientific Research for
supporting my research.
11


TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS ii
LIST OF TABLES v
LIST OF FIGURES vi
ABSTRACT x
CHAPTERS
1 INTRODUCTION 1
2 INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY
BACKGROUND 5
History 5
Recent Developments 7
Inductively Coupled Plasma 10
ICP-MS Interface 18
Mass Spectrometer 27
Analytical Characteristics of ICP-MS 31
Sample Introduction Techniques 37
Electrothermal Vaporization 40
3 INSTRUMENTATION 61
Inductively Coupled Plasma Mass Spectrometer 61
Electrothermal Vaporizer 66
m


4 DETERMINATION OF METALS IN AQUEOUS
SOLUTIONS 71
Instrument Modifications 71
Experimental 77
Results and Discussion 84
Conclusions 119
5 DETERMINATION OF METALLO-ORGANICS IN BASE
OIL 125
Instrument Modifications 125
Experimental 128
Results and Discussion 131
Conclusions 161
6 CONCLUSIONS 163
Future Studies 165
REFERENCES 167
BIOGRAPHICAL SKETCH 175
IV


LIST OF TABLES
Table Page
1 Dominant species in the ICP 16
2 Interfering ions in nebulization of 5% HN03 34
3 Interfering ions in organic solution nebulization 35
4 Calculated temperatures of the vapor-gas mixture required to obtain
S=10 for species generated under ETV conditions 52
5 Ion lens voltage ranges 65
6 New graphite tube conditioning 82
7 ETV temperature ramp used for aqueous solutions 89
8 Summary of modifier performance 123
9 ETV temperature program for metallo-organic aluminum 134
10 Two-step atomization ETV temperature ramp 136
11 Results of NIST and Conostan check standards for the determination
of metallo-organic Al 146
12 Optimum ETV ramp for Fe 148
13 Results of NIST and Conostan check standards for the determination
of metallo-organic Fe 151
14 Modified ETV ramp for Mg 153
15 Optimum ETV ramp for Mg 155
16 Summary of metallo-organic Al, Mg, Fe, and Y results 162
v


LIST OF FIGURES
Figure Page
1 Inductively coupled plasma. H designates the magnetic field 13
2 ICP torch 14
3 Calculated values for degree of ionization (%) for M+ at T=7500 K,
ne=lxl015 cm'3 19
4 Inductively coupled plasma mass spectrometer interface 20
5 Supersonic jet 24
6 Sampling interface 26
7 Ion transfer optics 28
8 Nebulizer, spray chamber and ICP torch 39
9 Modified commercial graphite furnace 42
10 Typical ETV temperature ramp 44
11 Dome-type ETV 46
12 SOLA ICP-MS vacuum system 63
13 ETV workhead 67
14 Gas flows for ETV-ICP-MS 69
15 Sample introduction for ETV 70
16 ETV-tubing interface 74
17 Diagram of ETV-tubing interface and pinch valve 76
vi


18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Sample introduction glassware for ETV 78
Calibration curve for Mg without carrier added 85
Comparison of peak intensity for ICP-MS and ICP-AES simultaneous
analyses for 27 consecutive injections of 1.5 ng Mg 87
Effect of NaCl added to Mg. A) 0.02 ng Mg. B) 0.1 ng Mg.
C) 0.25 ng Mg. D) 0.5 ng Mg. E) 2 ng Mg. F) 4 ng Mg 91
Mg temporal peak shapes (0.01 ng Mg). A) Without Carrier.
B) 4 pg NaCl added 94
Calibration curves for Mg. A) 0.004 pg NaCl added. B) 0.04 pg
NaCl added. C) 0.4 pg NaCl added. D) 4 pg NaCl added.
E) 10 pg NaCl added 95
Effect of NaCl added to Al. A) 0.02 ng Al. B) 0.1 ng Al. C) 0.5 ng Al.
D) 4 ng Al 97
Calibration curves for Al 100
Effect of NaCl added to Fe. A) 0.1 ng Fe. B) 0.25 ng Fe. C) 0.5 ng Fe.
D) 2 ng Fe 102
Calibration curves for Fe. A) No carrier added. B) 0.004 pg NaCl
added. C) 0.04 pg NaCl added. D) 0.4 pg NaCl added. E) 4 pg NaCl
added. F) 10 pg added 105
Effect of Pd(N03)2 added to Mg. A) 0.02 ng Mg. B) 0.1 ng Mg.
C) 0.5 ng Mg. D) 4 ng Mg 108
Calibration curves for Mg. A) No carrier added. B) 0.6 pg Pd(N03)2
added. C) 2 pg Pd(N03)2 added. D) 12 pg Pd(N03)2 added 110
Effect of adding Pd(N03)2 to Al. A) 0.02 ng Al. B) 0.25 ng Al.
C) 0.5 ng Al. D) 2 ng AL E) 4 ng Al 111
Calibration curves for Al. A) No carrier added. B) 0.6 pg Pd(N03)2
added. C) 2 pg Pd(N03)2 added. D) 12 pg Pd(N03), added 115
Effect of Pd(N03)2 on Fe. A) 0.02 ng Fe. B) 0.1 ng Fe. C) 0.5 ng Fe.
D) 4 ng Fe 116
vii


33 Calibration curves for Fe. A) No carrier added. B) 0.6 pg Pd(NO,)2
added. C) 2 pg Pd(N03)2 added. D) 12 pg Pd(N03)2 added ..." 118
34 Effect of SFfi addition on Y. A) 0.1 ng Y. B) 0.5 ng Y. C) 4 ng Y 120
35 Calibration curves for Y. A) 10 mL/min SF6. B) 20 mL/min SF6.
C) 30 mL/min SF6. D) 40 mL/min SF6 122
36 Pneumatic plug holder 126
37 Carrier flow through ETV. A) During drying and ashing steps.
B) During vaporization step 129
38 Effect of NaCl on Al metallo-organic standards. A) 1.29 ng Al.
B) 3.30 ng 132
39 Temporal metallo-organic Al signal. A) From initial temperature
program of 50 ng. B) From two-step vaporization program of 52 ng 135
40 Analytical curve of metallo-organic Al using two-step vaporization
ETV ramp 137
41 Effect of 20 C rest time on signal intensity. 0.525 ng metallo-organic
Al 139
42 Effect of different sample volumes on metallo-organic Mg signal
intensity. 300 ppb Mg 141
43 Calibration curve for metallo-organic Al. A) Peak intensity. B) Peak
area. Log-log plot. C) Peak intensity. D) Peak area 142
44 Calibration curve for metallo-organic Al, showing check standards 145
45 Calibration curve for metallo-organic Fe in base oil. A) Calibration
curve. B) Log-log plot 149
46 Calibration curve for metallo-organic Fe, showing check standards 150
47 Calibration curve for metallo-organic Mg in base oil. A) Analytical
curve. B) Log-log plot 156
48 Temporal signal of 3.5 ng Y. A) Before graphite tube conditioning
with SF6 B) After conditioning 157
viii


49 Calibration curve for metallo-organic Y. A) Analytical curve.
B) Log-log plot 159
50 Temporal profile of metallo-organic Y signal. A) Y blank.
B) 0.6 ng Y 160
IX


Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
DETERMINATION OF WEAR METALS IN LUBRICATING OIL BY
ELECTROTHERMAL VAPORIZATION INDUCTIVELY COUPLED PLASMA
MASS SPECTROMETRY
By
Monica Paola Escobar
May 1995
Chairperson: James D. Winefordner
Major Department: Chemistry
The inductively coupled plasma mass spectrometer (ICP-MS) is one of the few
techniques capable of multielement determinations with low detection limits. ICP-MS
is an almost ideal technique for the analysis of lubricating oils due to its many
advantages, which include broad linear dynamic range, multielemental analysis, rapid
acquisition of mass spectra, and low detection limits. However, there is a serious
problem when an organic matrix is nebulized into the ICP-MS. Carbon condenses on
the cooled interface cones, sooting and blocking the apertures. This is prevented by
adding a small amount of oxygen (2 10%) to the carrier gas so that all the carbon
is oxidized and volatilized. Too little oxygen will result in clogging of the interface
and too much will result in rapid deterioration of the orifice. A second disadvantage
of nebulizing organics into the ICP-MS is that carbide compounds formed in the ICP
x


may act as molecular interferences for some elements, making it difficult or impossible
to detect these elements.
Electrothermal vaporization (ETV) was chosen as a sample introduction
technique because it eliminates several of the problems associated with conventional
nebulization. When using ETV with 1CP-MS, the graphite furnace vaporizes the
sample, and it is then transported to the ICP where it is ionized. Each step can then
be optimized separately, adding several advantages to the technique: analysis of small
sample volumes, high sample transport efficiency, even higher sensitivity, and
separation of the analyte from the sample matrix, which leads to the ability to analyze
samples in organic, high acid, and high solid matrices. This makes it possible to
analyze oil samples while eliminating oxygen addition and reducing molecular
interferences due to the organic matrix.
This dissertation describes the development of a method for the determination
of wear metals in lubricating oils by electrothermal vaporization inductively coupled
plasma mass spectrometry. Hardware modifications were made to the ETV to
improve transport efficiency to the ICP. These included the addition of a graphite
plug holder, a new ETV-tubing interface, a new sample transfer valve, and a
modification to the sample introduction glassware. The technique was then
characterized using aqueous solutions of the analytes of interest with sodium chloride
and palladium nitrate added as sample carriers. Finally, a method was developed for
the detection of Al, Mg, Fe, and Y metallo-organic compounds in an oil matrix.
xi


CHAPTER 1
INTRODUCTION
There is a strong interest in replacing metallic ball bearings with those made
of ceramic, or silicon nitride (Si,N4), for a wide variety of applications. The
determination of wear-related trace elements in the lubricating fluids used with these
bearings is important in the development of models concerning the mechanisms of
wear for these materials. The routine determination of wear debris may also serve as
an indication for optimization of engine maintenance procedures.
Bearings consist of two rings spaced apart by a set of balls which are separated
by a cage or retainer, and are often lubricated. Conventionally, M50 steel is used to
make bearings; however advanced ceramics have recently been studied as materials
for bearing elements. Silicon nitride ball bearings have several advantages over steel
ball bearings currently being used in engines (1-6) Si4N4 bearings are lightweight,
chemically inert, and exhibit reduced wear. The high strength of the Si-N covalent
bond gives silicon nitride a high modulus of elasticity, hardness, and resistance to high
temperatures (550 800 C). Ceramic ball bearings are electrically resistive and
nonmagnetic; therefore, damage from electrical arcing is eliminated and they can be
used at reduced temperatures in magnetic fields. It has been shown that they can have
an increased fatigue lifetime of fifty times over M50 bearing steel (6). Because of
1


o
their high performance capabilities, ceramic ball bearings have many potential
applications (6), including high-speed engines, space products, guidance systems, and
machine tool spindles. They may be used in applications that require dry operation
because of product contamination, such as chemical processing, semiconductor
manufacturing, and high vacuum systems. The disadvantages of using silicon nitride
as a bearing material include the high cost of fabrication and the variability in
manufacturing. These two problems should improve with continued research into the
manufacturing process.
Because the use of silicon nitride as a bearing material is relatively new, there
has not been much research studying its wear mechanisms (1). The wear mechanisms
of ball bearings must be well understood before they can be put into widespread use
to ensure catastrophic failure will not occur. One method used to study wear
mechanisms is to analyze the lubrication fluid for wear debris (7). The composition
of wear debris provides insight into how the bearings are wearing as well as
information about other engine components. The routine testing of lubricants used in
engines is also important for diagnostic purposes, including aiding in preventive
maintenance by indicating when oil changes, component replacement, and engine
overhauls are required. The wear metal debris can be metallic (from mechanical
wear), oxidized (from oxidative corrosion), or metallo-organic (from chemical
corrosion). Therefore it is important to use an analysis technique that will detect
dissolved species to mm-sized particles.


3
Silicon nitride bearings are manufactured by sintering or hot isostatically
pressing of the Si3N4 powder (8). Sintering has been the most widely used technique.
Because silicon nitride is difficult to sinter, sintering aids are added to the powder
mixture (9). These include mixtures of yttrium oxide (Y203), spinel (MgAl204),
aluminum oxide (Al203), aluminum nitride (AIN), or magnesium oxide (MgO). The
powder is molded into shape, then sinterred in a nitrogen or inert gas atmosphere at
1400 1650 C. A liquid phase is formed between the silicon nitride powder and the
sintering aids. The powder, or a-phase, dissolves in the liquid, then precipitates as
a fine crystalline phase, or P-phase. Crystal growth continues and contraction and
densification occur. As the temperature increases, crystal grain size increases. The
result is interlocking fiber-like P-grains with a residual secondary phase at the grain
boundaries. The resulting material is 89.0 93.0 % by weight Si3N4 powder and 7.0 -
11.0 % by weight sintering aids. The proposed mechanism of wear focusses on the
grain boundaries because they are the weakest part of the bearing (10). Therefore, this
dissertation describes the development of a method for the determination of Mg, Al,
Y, and Fe in lubricating oils by electrothermal vaporization (ETV) inductively coupled
plasma mass spectrometry (ICP-MS). The detection of Fe is important because it is
present in other engine components.
The inductively coupled plasma mass spectrometer is one of the few techniques
capable of multielement determinations with low detection limits. Electrothermal
vaporization was chosen as the sample introduction technique because it eliminates
several of the problems associated with conventional nebulization, which are discussed


4
in Chapter 2. However, the ETV contained several design flaws that affected its
performance. Therefore, modifications were made to its hardware to improve transport
efficiency to the ICP. The technique was then characterized using aqueous solutions
of the analytes of interest and these results are shown in Chapter 4. Finally, a method
was developed for the detection of Al, Mg, Fe, and Y metallo-organic compounds in
an oil matrix, discussed in Chapter 5.


CHAPTER 2
ICP-MS BACKGROUND
History
A detailed history of ICP-MS may be found in several reviews (11-14); only
a brief discussion is given here. In the 1970s it became apparent that inductively
coupled plasma atomic emission spectroscopy (ICP-AES) was inadequate for trace
element detection in geological samples. Because geological samples have high
matrix concentrations, even weak emission lines from matrix components can interfere
with elements of interest. This prompted the search for alternative methods of multi
element trace analysis. Spark source mass spectrometry was already is use for the
determination of metals in geological samples, but the technique was inadequate for
trace analysis, and only a few samples could be analyzed per day.
Moruzzi, at the University of Liverpool, conducted a feasibility study under the
direction of Gray, using a capillary DC arc source mass spectrometer (15,16). The gas
temperature of 3500 K was too low for efficient ionization of some elements, it
experienced severe matrix effects, and produced nonlinear analytical curves. The
study did demonstrate that mass spectra could be produced from an atmospheric
pressure ionization source, although a hotter plasma was necessary.
5


6
The publication of the DC plasma results attracted attention in Canada and the
United States. Douglas and French, at the University of Toronto, started development
of a microwave induced plasma MS, which was later changed to an ICP-MS. Fassel
and Houk, at the Ames Laboratory at Iowa State University, started development of
an ICP source mass spectrometer. This latter group developed a close collaboration
with Gray's group in Surrey and obtained the first spectra of analyte ions produced
from an ICP source mass spectrometer (17). The main problem with this instrument
was in sampling ions from the bulk plasma. The apertures used for ion extraction
were too small and a cool boundary layer formed between the plasma and the interface
cone where molecular species formed. In 1980, by using larger diameter apertures,
continuum flow was first extracted from the bulk plasma, which led to improved
analytical performance (18).
During this time, Douglas and coworkers had developed the center-tapped load
coil design, which solved problems caused by the plasma offset potential (19). This
led to the release of the first commercial ICP-MS, the Sciex ELAN, in 1983 at the
Pittsburgh Conference. Soon after, the VG Plasma Quad, based on the instrument
developed in Surrey, was introduced in 1983 at the ASMS Meeting. Since that time,
the use of ICP-MS has greatly increased, and several different manufacturers now
market instruments.


7
Recent Developments
Now that ICP quadrupole MS instruments are in routine use, research has
begun on coupling different types of mass analyzers to the inductively coupled plasma.
The quadrupole mass analyzer has several limitations, including low mass resolution
and relatively slow mass scanning. In an attempt to overcome these disadvantages,
different mass analyzers have been used.
Finnigan MAT (20) recently marketed a high resolution magnetic sector ICP-
MS. The mass analyzer consists of a high resolution magnetic sector of reversed Nier-
Johnson geometry. Several scan modes are available, including magnetic, high
voltage, or their patented synchro-scan mode, in which counteracting and simultaneous
electric and magnetic scans are possible. The resolution is variable, with a maximum
resolving power of 7000. Since a resolution of 2700 is sufficient to separate spectral
interferences associated with ICP-MS, this instrument allows for the detection of
elements previously impossible to detect with a quadrupole instrument, such as Fe, and
V. With the instrument in the low resolution mode (300), detection limits are in the
10 pg/ml range. The authors were able to detect V, Fe, Cu, Zn, and Ag in human
serum.
Myers and coworkers (21) constructed an ICP time-of-flight mass spectrometer.
An orthogonal TOFMS was used as the mass analyzer, with argon ions deflected away
from the detector to reduce detector dead time and space-charge effects. The
advantage of using a TOFMS is the ability to produce a spectrum of all ions sampled


8
within 30 to 100 jas. The orthogonal TOFMS was chosen because the velocity of the
ions in the flight tube are one to two orders of magnitude faster than those exiting the
sampling interface. This allows the extraction region to slowly fill with ions while a
previously sampled pulse is mass analyzed. When operated in the nonreflecting mode,
the resolving power of the instrument is 500. The sampling duty cycle of the mass
analyzer is 3%, limiting the sensitivity of the instrument, and the transmission
efficiency was approximately 20%. No analytical figures of merit were given.
Koppenaal et al. (22) designed, built, and tested an I CP ion trap mass
spectrometer (ITMS). The advantages of using an ion trap with an I CP source are the
same as when used with organic MS. These include its high sensitivity and resolution,
and its ability to select, store, and manipulate ions for dissociation and mass analysis.
The authors used an ICP-linear quadrupole-ITMS configuration, in which the
quadrupole could be used in the resolving (r.f./d.c.), non-resolving (r.f. only), or notch
(r.f. + r.f.aux) filtering modes. The ion trap was able to eliminate molecular
interferences by collisions with He bath atoms in the ion trap chamber. The ion trap
almost completely neutralized Ar+ and two mechanisms were proposed for the
reaction. The LODs were in the 10 500 pg/ml range, and were expected to improve
upon optimization of instrument parameters. The same group is also currently
developing an ion cyclotron resonance mass spectrometer to couple to the ICP. This
will greatly enhance the resolving power of ICP-MS.
Other ionization sources have also been studied in an attempt to reduce spectral
interferences, increase the versatility of the instrument and increase the ionization of


9
nonmetal species. Microwave plasma, as well as low pressure plasma mass
spectrometers have been constructed.
Evans and coworkers (23) modified a VG PlasmaQuad 2 instrument so that a
low pressure ICP could be formed in place of the atmospheric pressure I CP. The
advantage of this low pressure ICP is that it may be used for the ionization of
molecular or atomic species. A vacuum seal was formed between the low pressure
plasma torch and the sampling cone and the vacuum pumping rate in the interface
region was also increased. The He flow from a GC was directed into the center of a
special torch with argon as the plasma gas. By adjusting the forward power and the
plasma gas flow, the degree of fragmentation of the analyte was changed. The authors
were able to detect organotin, organolead, organoiron, and organohalide compounds
with detection limits ranging from 13 15 pg.
Fechner and Nagengast (24) modified the plasma interface and torch on a VG
PlasmaQuad 2 ICP-MS for use as a microwave induced plasma (MIP) MS. The
plasma was sustained in 3 to 5 L/min He gas flow with 380 W of power. An
advantage of using He over Ar is that helium has a higher ionization potential, making
it possible to detect nonmetals which are not well ionized in an Ar ICP. A lower
background spectrum was observed, but the polyatomic ion formation increased due
to the lower power applied to the MIP. Limits of detection for As, Se, Br, and I were
between 0.05 and 1.1 pg/L, which is comparable to LODs found with ICP-MS.
Biological and fish reference samples were analyzed.


10
Wu (25) and coworkers constructed an He microwave plasma torch MS. The
advantages of this system are the same as for other He plasmas, including high
electron temperatures and moderate electron density. The 150 W atmospheric pressure
microwave plasma had a He flow rate of 4.0 L/min and produced fewer background
peaks than those found in ICP-MS. The limits of detection for F, Cl, Br, I, S, C, and
P were 12 ng/ml to 1.0 pg/ml. These are comparable to or better than LODs found
for an I CP ion source on the same instrument.
Inductively Coupled Plasma
The inductively coupled plasma was first studied as an excitation source for
atomic emission spectroscopy (AES) in the 1960s, independently, by the research
groups of Greenfield and Fassel (26,27). However, at this time atomic absorption
spectroscopy (AAS) was in widespread use, and ten years passed before the ICP
gained acceptance as an analytical tool. During this time, technological advances were
made that improved detection limits with ICP-AES, and the first commercial ICP was
introduced in 1974 (28). Since this time the use of the ICP as an excitation source for
AES has grown tremendously (29,30) and in the 1980s it gained use as an ion source
for elemental mass spectrometry (17,31).
The use of the ICP as a source for mass spectrometry has several advantages.
Because the samples are introduced at atmospheric pressure, sample changeover is
simple and rapid. The 7,000 K temperature of the ICP ionizes most elements easily


11
and produces primarily singly charged ions. It efficiently dissociates sample
components and produces few molecular fragments.
There are disadvantages associated with the ICP ion source. The high gas
temperature and pressure of the plasma requires an interface that is fairly inefficient,
with only 1 % of the ions that pass through the sampling cone passing through the
skimmer. Molecular ion formation in the plasma, especially from atmospheric gases
reacting with argon, is a primary disadvantage of ICP-MS. Molecular ions cause
isobaric interferences over certain areas of the mass range and make it difficult to
detect trace levels of some elements.
A thorough review of ICP, including instrumentation, fundamental properties,
and applications may be found in Montaser and Golightly (30) and other references
(29). An ICP is an electrodeless discharge at atmospheric pressure maintained by
energy coupled to it from a radio frequency generator. A copper coil acts as the
primary of the RF transformer and the plasma is the secondary. Argon is normally
the main support gas, although other gases, such as helium, xenon, and nitrogen have
been used as additives (32-36) and helium has been used as the main support gas as
well (37-39). The plasma is generated in a quartz torch similar to those used in ICP
atomic emission spectroscopy (AES) with usually the only modification being the
horizontal instead of vertical mounting. It is surrounded by the load coil, which is
connected to an RF generator.
The RF current travelling through the coil produces a magnetic field in the
plasma which varies in time at the generator frequency of 27 or 40 MHz. Eddy


12
currents are induced within the gas which flow in circular paths that run concentrically
inside the torch. The magnetic lines of force are oriented axially inside the quartz
tube and follow elliptical paths outside the coil (Figure 1). The magnetic field is
coupled to the plasma gas containing ions and electrons. The charged particles meet
resistance to flow, resulting in Joule heating. These charged particles are accelerated
and collide inelastically with gas atoms. At atmospheric pressure, the mean free path
of the particles is approximately 103 mm, resulting in a high rate of collisions which
quickly heats the plasma.
Because an inert gas is a poor electrical conductor, the plasma is initiated by
"seeding" the argon gas with electrons from a Tesla coil. Electrons and argon ions are
formed which absorb energy from the alternating magnetic field. Collisions generate
an avalanche of charged particles that absorb the energy from the RF field and once
the electrons reach the ionization potential of the support gas, further ionization takes
place forming a stable, self-sustaining plasma.
A typical ICP torch is shown in Figure 2. It consists of an outer tube of inner
diameter of about 18 mm, which contains two concentric quartz tubes of 13 and 1.5
mm inner diameter. The two outer tubes have side arms supplying gas entering
tangentially to create a vorticular flow. The center tube carries the sample gas flow
and runs down the axis of the torch. The outer gas flow, or the coolant flow, is at 10
- 15 L/min, is the main support gas and also protects the quartz outer wall from
melting. The copper load coil, which surrounds the plasma torch, has 2 4 turns and


13
Figure 1. Inductively coupled plasma. H designates the magnetic field.


R.F. Load Coil
Figure 2. ICP torch.


15
may be gas or water cooled. The bottom turn of the coil is located 3 mm from the
top of the injector tube and the top turn of the coil is 13 mm from the sampling cone.
The coolant flow experiences a 'skin effect' because most of the energy from
the coil is coupled to this outer region. The temperature in this induction region is
10,000 K. The next tube contains the intermediate, or auxiliary gas flow, and keeps
the plasma away from the tip of the central quartz tube. The auxiliary flow rate is
typically 0-1.5 L/min. The central gas flow, or injector, nebulizer, or carrier gas flow,
transports the analyte from the sample introduction technique, and is normally about
1 L/min. Because of the small diameter of the injector tube, a high velocity gas jet
is formed in the injector tube which punches a cool channel through the center of the
plasma. The gas in the center channel is heated by radiation and conduction from the
induction region to a temperature of 5000 to 7000 K. The central channel is
physically distinct from the outer region of the plasma; therefore, sample composition
can vary without greatly affecting the electrical processes in the plasma.
The ICP contains many different species that interact with each other physically
and chemically. Table 1 is a list of the major species found in the TCP discharge (40).
A thorough understanding of all the plasma mechanisms has not yet been achieved;
the majority of fundamental research has focussed on analyte excitation mechanisms.
Several different analyte excitation mechanisms have been proposed and have been
reviewed by Blades et al. (41). The most significant collisional and radiative


Table 1
Dominant species in the ICP
From Ar gas:
Argon atom: Ar
Argon ion: Ar*
Argon dimers: Ar;% Ar,
Argon molecules: ArO, ArX*
Free electrons: e'
From solvent:
Aqueous solvent:
Hydroxyl radical: OH
Atomized solvent species: O, H
Organic solvent:
Di-carbon and hydroxyl radical: C,, OH
Atomized solvent species: C, H, O, S, etc.
From analyte and concomitant elements:
Analyte atom: M
Analyte ion: 1VF
Analyte molecular species: MO, MO*
Concomitant atoms, ions, and molecular species: X*, X*, XO, etc.
From entrained air:
Air-N,, N,% O,, 0,+, O, N, CO, CO,, NO
X represents any element
(40)


17
processes are listed below. The ground state analyte atom (M,) and ion (M¡+) may
undergo collisional excitation (-) by electrons (e ):
M, + e (high energy) 11 Mp + e (low energy)
M,+ + e (high energy) ** Mp* + e (low energy)where Mp is the excited analyte
atom, and M is the excited and ionized analyte atom. Collisional ionization (-) and
three-body recombination (-) by electrons also occur:
M, + e' Mp* + 2e"
Excited and ionized analyte atoms may also be produced from charge transfer of the
ground state analyte with an argon ion:
Ar+ + Mj ** Mp + Ar + AE
AC + M, ^ Mp+ + Ar + AE
The de-excitation of species may also involve radiative decay with photon emission
of energy hvlme:
MP M, + hv.me
Mp+ M,+ + hvline
Radiative recombination of the ionized analyte with an electron may occur, producing
background emission:
M* + e' -* Mp + hvcont
Penning ionization with excited argon (Ar) may also occur:
Ar + M, Mp+ + Ar + AE
Of overall importance in 1CP-MS is the effective production of singly-charged
ions. The efficiency of the ICP in this regard varies among the elements, generally


18
in proportion to the ionization potential. Most elements are highly ionized (>90%),
which makes the ICP an almost ideal source for elemental mass spectrometry. The
degree of ionization is normally low for nonmetals, to near 100% for the alkali metals
(42). Figure 3 lists calculated values for the degree of ionization for most elements
of the periodic table, estimated using the Saha equation (43).
Inductively Coupled Plasma Mass Spectrometer Interface
Each instrument manufacturer has their own interface design, but most
instruments have a sampling and skimmer cone, and their functions are the same for
each interface. The instrument used in this research was the Finnigan MAT SOLA
ICP-MS. The difference between this instrument and others is discussed below.
Once the sample is ionized, the ions flow through a differentially pumped ion
extraction interface (Figure 4). Ions first pass through a sampling cone made of Ni
or Pt with an orifice diameter of 1.1 mm. While the plasma is at atmospheric
pressure, the area behind the sampling cone is kept at 2 3 torr by a 18 m3 per hour
single stage rotary pump, and this pressure is low enough for a supersonic jet to form
in this region. As the plasma interacts with the sampler, two processes take place(l 1).
First, the plasma is cooled and deflected. A boundary layer of gas forms between the
sampler and the plasma. The temperature of the boundary layer is inbetween that of
the plasma and the sampler and molecular species, such as oxides, readily form in this
region.


H
He
0.1
Li
Be
B
C
N
O
F
Ne
100
75
58
5
0.1
0.1
9x104
6x106
Na
Mg
A1
Si
P
s
Cl
Ar
100
98
98
85
33
14
0.9
0.04
K
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
100
99(1)
100
99
99
98
95
96
90
91
90
75
98
90
52
33
5
0.6
Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe
100
96(4)
98
99
98
98
96
94
93
93
85
99
96
78
66
29
8.5
Cs
Ba
La
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn
100
91(9)
90(10)
98
95
94
93
78
62
51
38
100
97(.01)
92
Fr
Ra
Ac
Ce
98(2)
Pr
90(10)
Nd
99*
Pm
Sm
97(3)
Eu
100*
Gd
93(7)
Tb
99*
Dy
100*
Ho
Er
99*
Tm
91(9)
Yb
91(9)
Lu
Th
100*
Pa
U
100*
Np
Pu
Am
Cm
Bk
Cf
Es
Fm
Md
No
Lw
Figure 3. Calculated values for degree of ionization (%) for M+ at T=7500K, ne=lxl015 cm1. Values in parentheses represent
percentages of M2+ formed. Yield significant M2+, but partition functions were not available (43).
Co


Figure 4. Inductively coupled plasma mass spectrometer interface.


21
The second interaction between the plasma and the sampler is electrical. The
plasma contains an equal number of positive ions and electrons, making it electrically
neutral. The metal sampling cone attracts electrons as well as positive ions. Because
the mobility of electrons is higher than that of ions, a negative charge collects on the
surface of the sampler. The sheath region that forms around the sampler is depleted
of electrons and contains an excess of positive ions. Because the sampler is grounded,
the plasma seems to float at a positive potential.
In addition to inductive coupling between the load coil and the torch, the load
coil is also electrostatically coupled through the torch wall by the capacitance between
the two. The capacitive coupling is dependent on the arrangement of electrical
connections to the coil. Conventionally one end of the coil is grounded and one end
is connected to the high voltage RF source. This results in a potential gradient along
the coil, except at the moment when the field polarity reverses.
When the plasma contacts the sampler and partially enters the orifice, the
plasma and cone are coupled through the thin sheath. The resistance of the sheath is
less than that of the capacitative impedance between the cone and plasma, and the
plasma's RF potential is determined by the ratio of the two impedances. As RF
current travels through the interface, the plasma flow to the sampler is modified by the
different mobilities of the positive ions and electrons in the sheath region. During
negative half cycles the current is carried by electrons, which move faster than positive
ions that carry the current during positive half cycles. This results in the plasma
carrying a net mean positive DC potential which may be larger than the floating


22
potential due to the sheath alone. Typically, the plasma may float at a positive
potential of 40 V from the grounded sampling cone (12).
When the plasma potential is high, there is an electrical discharge between the
plasma and the sampling orifice, called the secondary discharge. It is observed as a
bright white emission from the gas flowing into the orifice. This secondary discharge
is undesirable because it erodes the sampling orifice, produces multiply charged ions,
and induces high kinetic energies and a large spread of kinetic energy in the ion beam.
Minimizing the discharge was an important step in the early development of
ICP-MS. This was accomplished in several ways. Modifying the load coil by
grounding the end closest to the cone reduced the electric field close to the sampler.
The plasma potential was also reduced by using a low aerosol gas flow rate (0.5 0.9
L/min) or reducing the solvent load on the plasma. Using a two-turn instead of a
three-turn coil, or moving the coil closer to the cone also minimized the discharge.
It is thought that these last two modifications change the temperature and ion number
density of the plasma, which affects the sheath conditions, changing the plasma
potential.
One modification that almost totally eliminated the secondary discharge was
the center tapped coil, which was developed by Douglas and French (44). In this
arrangement, the center turn of the coil was grounded while voltages of equal
magnitude but opposite polarity were applied to each end. The positive gradient from
one end to the center was balanced by the opposite phase, negative gradient on the
other end. This resulted in a low bias potential in the plasma. The center tapped load


23
coil was first available on the early Sciex ELAN instruments. This arrangement
provided a great advantage for these instruments in the marketplace. However, the
other modifications discussed above reduced the discharge sufficiently, so that this
arrangement was not necessary for the develpment of ICP-MS.
As the ions pass through the sampling orifice, a large number of collisions
convert the random motion into directed mass flow along the beam axis (45). A shock
wave forms due to collisions with background gas molecules, and the leading edge is
called the Mach Disc (Figure 5).
The position of the Mach Disc is given by
(Eqn. 1) Xm=0.67Do(P(yP1)/i
where ^ is the distance of the Mach disc from the sampling orifice, D0 is the
diameter of the sampling orifice, P0 is the pressure of the ICP, and P, is the
background pressure in the extraction chamber. The formation of the supersonic jet
allows for the extraction of an essentially undisturbed bulk plasma.
The skimmer cone, located 8 mm behind the sampler, has a 0.8 mm orifice
diameter. This cone extracts only the center of the supersonic jet, or less than 1 % of
the plasma, so that a minimum of oxides passes through into the mass spectrometer.
The skimmer is placed with its orifice inside the Mach disc to avoid losses of ions due
to collisions and scattering, and its optimum postion from the sampler is about 2/3 of


Zone of Silence
Figure 5. Supersonic jet.
K>
4-


25
the distance to the onset of the Mach disc (2/3X,,,). The center of the zone of silence
passes through the skimmer cone into the next vacuum stage.
The SOLA has an accelerator cone, which is unique to this instrument, located
10 mm behind the skimmer (46). This region is pumped by a 330 L/s turbo pump
which keeps the pressure at about 1 x 103 torr. This cone has a voltage of +2 kV
applied to it which focuses and accelerates the ion beam. A cross-over (Figure 6)
occurs in the center of the cone for a large range of energies and angles of ions
exiting the skimmer. It also acts as the differential pumping aperture between the
intermediate and high vacuum regions of the instrument.
The most important advantage of the accelerator cone is that it reduces "space
charge" effects that are commonly observed in ICP-MS. Space charge effects occur
behind the skimmer cone when the ions emerge as a column of positively charged
particles. Each is repelled by the coulomb force e2/r, and the transverse acceleration
is proportional to e2/mr. Therefore, ions with lighter masses will be repelled faster;
and if the time it takes for the ions to pass through the ion optics is long when
compared with the time it takes for the lighter ions to be repelled, the result is loss of
the lighter ions. With the accelerator cone in place behind the skimmer, the distance
travelled through the high pressure region behind the skimmer cone is minimized,
reducing the transit time, reducing space charge effects.


Accelerator Cone
Interned Rotary
Turbo Pump
Figure 6. Sampling Interface.
o\


Mass Spectrometer
Ion Transfer Optics
In an ICP-MS system, it is important to remove neutrals because they interact
with ions, and photons need also be removed because they are detected as signal by
the detection system used. Conventional ICP-MS systems use a bessel box to remove
photons and neutrals from the ion beam emerging from the plasma. It contains a
central stop which physically removes these species. Ions are electrostatically steered
around the stop and refocussed into an exit slit. The SOLA ICP-MS employs the
accelerator cone to produce a high velocity stream of ions condensed into a tightly
focussed beam. This beam is diverted off axis and later realigned to exit parallel to
the entry beam into the quadrupole mass filter (47). Because the need for the central
stop is eliminated, the SOLA system is reported to have a higher transmission and a
lower background than conventional ICP-MS instruments.
A diagram of the transfer optics is shown in Figure 7. The X-Y deflectors and
focus plate steer the ion beam off axis. The Y steer realigns the beam so that it is
parallel to the entrance beam. Because the SOLA ion optics are operated at potentials
higher than normally used in ICP-MS instruments, the energy of the ions emerging
from the ion optics is too high for the quadrupole filter. The quadrupole requires ions
of low energy so that they have enough residence time in the electric field to be
differentiated. In order to solve this problem, a retarding lens, or the phase match


X-Y Deflectors
Focus
I
Analyzer Turbo
Figure 7. Ion transfer optics.
u
oo


29
lens placed before the quadrupole, matches the velocity of the ions to that required by
the analyzer.
The important advantage of the SOLA ion optics is that mass bias effects are
reduced. Mass bias effects are electrostatic in nature and are observed as a loss in
the transmission of ions at both ends of the mass range. The action of the ion transfer
lenses is based on the energy of particles passing through the system. The system is
tuned so that one energy is efficiently transferred, with a reduced efficiency for
particles of different energies. However, in ICP-MS, when particles emerge from the
sampler and skimmer cones, they are at the same velocity; thus, their energies are
mass dependent. The SOLA interface reduces mass bias effects by means of a
transfer lens system operated at higher potentials. This eliminates mass discrimination
because a wide range of energies can be focussed into the quadruples.
Quadrupole Mass Analyzer
A thorough review of quadrupole mass analyzers may be found in Dawson (48)
and Watson (49); only a brief description is given here. The quadrupole mass
analyzer consists of four parallel rods arranged symmetrically. Diagonally opposite
rods are connected together and RF and DC voltages are applied to each pair. The
DC voltage is positive for one pair and negative for the other, and the RF voltages are
of equal amplitude but opposite sign. Ions from the transfer lenses travel along the
longitudinal axis of the four rods. Ions of one mass are transmitted while ions of
other masses have unstable trajectories, collide with the rods, and do not reach the


30
detector. The mass spectrum is scanned by varying the amplitude of the voltages
while keeping the ratio of RF to DC voltage constant. The mass of the ions
transmitted increases linearly with the magnitude of the DC and RF voltages, and
results in a linear mass scale.
The mass resolution is set by the ratio of RF to DC voltages and in practice has
a limit:
(Eqn. 2) R=n2/c
where n is the number of RF cycles the ions spend in the RF Field, and c is a constant,
normally 10 25. The resolution is normally a unit mass and there is a trade-off
between resolution and sensitivity. Because resolution is a function of the DC to RF
voltage ratio, as the ratio is adjusted for the maximum resolution, fewer ions are stable
in the quadrupole field and the sensitivity decreases.
Ion Detection
The Faraday plate or cup is the simplest, most inexpensive, and most reliable
ion detector. However, it does have some disadvantages, including high noise and
slow response time. As positive ions strike the collector they are neutralized by
electrons drawn from ground after being passed through a high ohmic resistor. The
voltage across the resistor is amplified and is a measure of the ion current. The
amplified signal is directly proportional to the number of ions and the number of


31
charges per ion. The detector response is independent of the energy, mass, and
chemical nature of the ions.
The electron multiplier is the most popular ion detector because it has a low
noise level and a fast response time. This detector typically improves the signal
sensitivity by three orders of magnitude. The electron multiplier consists of a glass
tube coated with a high resistance film. The ion beam is focussed onto the entrance
of the detector, which emits electrons in direct proportion to the number of
bombarding ions. The secondary electrons are accelerated and strike another area of
the detector, which emits secondary electrons. This cascading effect continues and the
number of electrons ejected is greater than the number hitting it. The final collector,
the anode, is connected to a conventional amplifier.
The electron multiplier is not as stable as the Faraday plate because the gain
depends on the condition of the coating. There is also some mass discrimination
associated with using this detector. The coefficient of secondary emission is
dependent on the mass, charge, and nature of the incident particles, so that an ion with
mass-to-charge ratio 50 will produce more secondary electrons than one with mass-to-
charge ratio 500. Overloading and saturating of the detector occurs at an output
current greater than 10'8 A.
Analytical Characteristics of ICP-MS
ICP-MS is a technique which combines the efficient ionization abilities of the
ICP and the sensitivity and selectivity of MS detection. This combination results in


32
a very sensitive technique for elemental analysis. There have been several reviews of
ICP-MS covering applications and general studies of the technique (11,31,43,50-53).
When nebulizing aqueous solutions, ICP-MS has several advantages. It has a
broad linear dynamic range (up to 6 orders of magnitude), made possible, in some
cases, by the use of two ion detectors. It is capable of multielemental analysis due to
the broad range of elements ionized by the ICP and the rapid acquisition of mass
spectral data. Detection limits using ICP-MS are low (0.01 0.1 pg/L) for most
elements, and the technique produces simple mass spectra, with not more than 10 lines
per element. It has good signal stability (5% RSD for several hours) and is capable
of isotopic analysis.
The largest obstacle in ICP-MS is the presence of interferences arising from
different sources (11,54). For this reason, several factors must be considered when
using ICP-MS. These include total solute content of the sample and potential
interferences from the background spectrum and the matrix components. Interferences
may divided into two general groups: spectroscopic and non-spectroscopic, or matrix,
effects.
Spectroscopic effects are well understood and can further be divided into four
categories: isobaric overlap, polyatomic ions, refractory oxide ions, and doubly
charged ions. Isobaric overlap occurs when two elements have isotopes of similar
masses that cannot be resolved by the mass spectrometer. Most elements have 1 to
2 isotopes free from isobaric overlap, except indium, and this problem can generally
be corrected. An isotope of the interfering element that is free of overlap is measured.


33
The relative contribution of the overlapping isotope may then be calculated using
isotope abundance information. Many commercial instruments can incorporate these
corrections in their data collection software.
Polyatomic ions arise from the dominant species present in the plasma (Table
1). They only present significant problems at masses below 82. They can be
dependent on the specific instrument and are difficult to correct due to the instability
of the polyatomic ion signal. Because these interferences are somewhat dependent on
sample composition, they will vary with type of sample; however, polyatomic ions
present in dilute aqueous solutions have been well studied (55). Table 2 lists those
arising from nebulization of a 5% nitric acid aqueous solution. The elements most
affected by interferents are Si, P, S, Cl, Ca, K, Cr and Fe. Nitric acid results in the
cleanest background spectrum as compared to hydrochloric and sulfuric acids, and is
the preservative of choice for ICP-MS. Lowe and Stahl (56) studied the polyatomic
ion interferents present when an organic solvent is nebulized into the ICP-MS. Their
results, including detection limits for affected analyte ions, are presented in Table 3.
Several of the analyte elements had poorer detection limits due to the interferents, and
24Mg could not be determined.
Refractory oxides may be present due to the incomplete dissociation of sample
matrix or from recombination reactions in the plasma. Generally, oxide formation is
less that 1.5%, but it is dependent on the plasma operating conditions and nebulizer
flow rate. The formation of doubly charged ions depends on the second ionization
energy of the element and the condition plasma equilibrium. Only elements with a


34
Table 2
Interfering ions in nebulization of 5% HNO,
Mass
Element (abundance)
Interferent
16
0(99.76)
16q
19
F(100)
160H
20
Ne(90.92)
16OH2
28
Si(92.21)
14n14n, 12c16o
29
Si(4.7)
14NI4NH, nC16OH
30
Si(3.09)
14n16o
31
P(100)
14Nlf>OH
32
S(95.02)
l60160
33
S(0.75)
160160H
34
S(4.21)
160180
35
0(75.77)
16Ol8OH
40
Ar(99.6), Ca(96.97), K(0.01)
4,1 Ar
41
K(6.91)
40ArH
52
Cr(83.76)
^Ar^C, 36Ar160
54
Fe(5.82)
40Ar14N
56
Fe(91.66)
40Ar16O
80
Se(49.82), Kr(2.27)
4uAr40Ar
81
Br(49.82)
^Ar^ArH
(55)


Table 3
Interfering ions in organic solution nebulization
Element
Detection Limit
(pg/mL)
Interferent
24Mg
*
i:c2
Mg
7.2
13c12c, 12c2h
27A1
0.033
48Ti
0.16
32s16o, 12c4
V
0.042
3i!Ar13C
kj*
o
n
!-
0.20
52Cr

40Ar16O
56Fe
0.48
40Ar16O
58Ni
0.033
40Ar18O
MZn
0.27
40Ar12C2,32S2, 32S1602
Zn
0.21
40Ar12C14N, ^Ar'-'Q,
34s16o2
68Zn
0.69
40Ar12Cl6O
These isotopes were not able to be detected.
(56)


36
second ionization energy lower than the first ionization energy of argon will form any
doubly charged ions. These include the alkaline earth elements, some transition
metals, and rare earth elements. However, the number of doubly charged ions is
normally less than 1 %. The formation of doubly charged ions has two effects, it
decreases the number of singly charged ions, reducing sensitivity, and produces
isotopic overlaps at half the analyte mass.
Several methods have been attempted to reduce spectroscopic interferences.
Instrument optimization is the most obvious method. Nebulizer flow rates, sampling
depth, and ICP forward power can be varied to reduce spectroscopic interferences
(57). Mixed gas plasmas or He plasmas as well as different plasma types have been
used, as discussed previously in this chapter. Using He plasmas reduces the Ar
polyatomic ions, however it introduces a whole new set of He interferents. The
addition of molecular gases improves the transfer of energy within the plasma because
of their higher thermal conductivities. Sample introduction techniques other than
nebulization, such as ETV, laser ablation (LA), or cryogenic desolvation (58) often
reduce the level of spectroscopic interferences by introducing a 'dry' sample. This
reduces polyatomic ions due to hydrogen and oxygen. Another solution, which was
also discussed earlier in this chapter, is to use a different type of mass discriminator
that can effectively resolve the interferents from the analytes of interest.
Matrix effects are not as well understood (59) and can be divided into two
categories: suppression and enhancement effects, and physical effects. Suppression
and enhancements effects occur when the presence of one species reduces or increases


37
the signal obtained from the analyte, which depends on the type of sample and its
concomitant species. In general, the lower the mass and the degree of ionization of
the analyte, the greater the effect of an added matrix element on the ion signal of the
analyte. There is also an increased effect on the analyte signal when the atomic
mass and degree of ionization of the added matrix element is higher. Normally these
effects are not severe, but dilution of the sample is one solution. The use of a closely
matched internal standard (60) and standard addition calibration techniques (11) have
also been attempted. Varying instrument parameters has also decreased matrix
interferences (61). The most effective method of reducing matrix effects for some
samples is to separate the analyte from the matrix using chromatography or co
precipitation (11).
Physical interference effects normally involve blocking of the ICP-MS interface
apertures. This may occur by sooting with carbon containing materials, which is
discussed later, or by a high concentration of total dissolved solids (TDS). This
causes large signal drift over a very short time (several minutes). To prevent this,
solutions should contain less than 0.1% of TDS (62).
Sample Introduction Techniques
The various types of sample introduction techniques give ICP-MS its versatility,
and several reviews have been published on this topic (11,30,63,64). Solid samples
may be introduced using laser ablation (65-73), electrothermal vaporization (ETV)
(74,75), slurry nebulization (75,76) direct sample insertion (77), or arc nebulization


38
(78,79). Gas phase introduction techniques have been applied to hydride (80) and
osmium tetroxide (81) vapor generation and to supercritical fluid chromatography (82)
and gas chromatography (82,83). The introduction of liquids has been the most
widely researched area. Some techniques are used with a nebulizer, such as flow
injection (84) and liquid chromatography (82), while others, such as ETV, eliminate
the need for a nebulizer. For the direct determination of liquids, there are several
types of nebulizers. Ultrasonic (85), thermospray (86,87), and pneumatic nebulizers
(86) have been used.
Pneumatic nebulization is the most commonly used method of liquid sample
introduction (11). A concentric nebulizer and double pass spray chamber coupled to
the ICP are shown in Figure 8. For ICP-MS, a nebulizer gas flow of 0.75 -1.1 L/min
is normally used, with 0.2 1 mL/min of liquid flow. A peristaltic pump is often used
to monitor the liquid uptake. The spray chamber acts as a low pass filter, allowing
only small droplets (< 10 pm) to reach the plasma. This leads to the primary
disadvantage of pneumatic nebulization, which is that only 1 % of the sample solution
reaches the plasma.
There are special problems with the nebulization of organic solutions into the
ICP-MS (56,88,89). The large amount of hydrocarbon introduced causes loading of
the plasma, making it unstable and inefficient, because its energy is being used to
dissociate the organic matrix. The carbon also condenses rapidly on the cooled
sampling cone and quickly causes sooting and blocking of the cone aperture. To


ooo
Sample
Spray Chamber
Figure 8. Nebulizer, spray chamber, and ICP torch.


40
reduce these effects, a small percentage of oxygen is often added to the nebulizer
carrier gas to ash to organic matrix. This is a delicate procedure because if excess
oxygen is added, it quickly erodes the interface cones, but if too little oxygen is added,
clogging of the tiny orifices results. The addition of oxygen also increases the amount
of oxides present, raising the level of molecular interferents. The nebulizer suffers
from relatively slow sample changeover as well. However, operation of the nebulizer
and spray chamber is simple, and it provides continuous sample introduction. This
allows for long scanning times by the mass spectrometer and the use of an internal
standard.
Electrothermal Vaporization
The use of an electrothermal vaporizer (ETV) for sample introduction into an
ICP has several advantages over nebulization (63); small (pL) sample volumes are
used; a higher transport efficiency (20 80%) results, and the solvent and matrix are
vaporized independently of the analyte, allowing the analysis of difficult samples, such
as organic samples or those containing high total dissolved solids. In addition,
samples in a variety of physical forms may be analyzed without much sample
pre treatment.
There are also disadvantages associated with the technique. A transient signal
is generated by the ETV, requiring rapid data acquisition software for multielement
analysis. The technique also has a poorer reproducibility (10% RSD) due to
inconsistent sample insertion and sample transport. Analyte reactions with the


41
furnace material are another problem, as well as the added complexity and cost as
compared to nebulization.
An ETV is an electrically heated cylindrical graphite tube that in this case
produces sample vapor for introduction into an ICP (Figure 9). It is open at both ends
and has a central hole for sample introduction. Most tubes are 1-5 cm in length with
3-8 mm diameter and can accommodate 5-50 pL sample volumes. A tube is
replaceable and fits between a pair of cylindrical graphite electrodes at the ends of the
tube. The electrodes are located within a water-cooled metal housing. Two gas flows
are provided in the furnace. The external flow surrounds the outside of the tube and
prevents entrance of outside air and incineration of the tube. The internal stream
flows through the center of the tube for sample transport into the ICP and is normally
about 1 L/min.
Most tubes are made of graphite, however, tantalum, tungsten, and rhenium
have been used (77,90-94). These metals provide faster heating rates, do not absorb
the sample solution, and do not form carbides with the analyte. These problems can
also be reduced by using pyrolitically coated graphite tubes; the coating seals the pores
of the graphite. The alternative metals form oxides and tend to vaporize more quickly
and contain more impurities than graphite. Tsukahara and coworkers (90) added a
small amount of hydrogen to the argon carrier flow to minimize oxidation of a
tungsten furnace. Different furnace shapes have also been used, such as filaments,
strips, and loops (81,90,93,95-97) The platform tube (98)is another useful design.
This tube has a platform placed on the bottom under the dosing hole which is heated


Graphite
Argon
Flow
To
Plasma
Figure 9. Modified commercial graphite furnace.
4^


43
mainly by radiation from the tube walls. The temperature of the platform therefore
lags behind that of the tube walls and the analyte is vaporized after the wall has
reached a near steady-state temperature. This configuration produces an almost
constant-temperature furnace.
The furnace is normally heated in three steps (Figure 10). The temperature is
increased by increasing the current through the tube. The first step is the drying or
desolvation step. The tube is slowly ramped to about 110 C and held for several
seconds. In this step, the solvent is evaporated and a solid residue is left behind in
the furnace. The objective of this step is to evaporate the solvent as fast as possible
without splattering or vaporization of the analyte. This step may last 20 45 s.
The next step is the ashing step. The furnace is ramped to 350 1200 C and
held for several seconds. This step may also last 20 45 s. The purpose of the ashing
step is to ash any organic components in the sample and to vaporize any volatile
inorganic species present. The temperature must be high enough to remove volatile
components without loss of analyte.
The third step is atomization and/or vaporization. The furnace temperature
used in this step is in the range of 2000 3000 C. This step has a fast ramp rate
which vaporizes the analyte. The duration is 3 10 s.
A fourth step is occasionally used to clean the furnace of any remaining
sample. The temperature used for the cleaning step is normally higher than that used
for vaporization.


44
Step
Temperature (C)
Ramp Time (s)
Hold Time (s)
1
110
5
10
2
1200
10
10
3
2500
2
7
Figure 10. Typical ETV temperature ramp.


45
Two different types of furnaces have been used for sample introduction into an
ICP-MS. The first kind is a modification of commercially available graphite furnaces
(74,95,99-108), while the other is a furnace especially designed for sample
introduction into the ICP-MS (94,109-113). An example of each type is given below.
A typical modified graphite furnace is shown in Figure 9. Shen et al. (95)
modified a Perkin-Elmer HGA-300 graphite furnace for sample introduction into an
ICP-MS. They modified four areas of the furnace: coolant flow, front adaptor, rear
adaptor, and furnace tube. The main modification was the addition of a coolant flow
several millimeters downstream of the furnace tube. This flow condensed the sample
flow into particulate for better sample transport into the plasma. The side quartz
windows were removed and replaced with stainless-steel adapters. The front adaptor
was connected to a PTFE tube which transports the sample to the base of the I CP
torch. They also modified the furnace tube by inserting a tungsten loop that held the
sample solution into a tantalum tube that entered through the rear adaptor. Because
there is no means to vent the solvent during the drying step, a second drying step at
a higher temperature is required to remove condensed solvent from the tube walls.
Transport efficiency was improved by the additional coolant flow, and the detection
limit for lead was 10 fg.
Park and coworkers (109) designed an ETV taking into account the flow
dynamics and gas temperature distributions of the system (Figure 11). A glass dome
surrounded the rhenium filament and was sealed to its metallic base by an o-ring. The
glass dome has a 5 mL volume, which is large enough to minimize sample


46
ToICP
1 1
Copper Wire to Power Supply
Figure 11. Dome-type ETV.


47
condensation on its walls, but small enough to reduce the dilution of the sample in the
carrier gas. The ETV is oriented vertically and carrier gas is introduced tangentially
so that the sample is spiraled upwards, avoiding the dome walls. The sample is
carried through tygon tubing into the plasma and auxiliary argon flow is provided into
the plasma torch during drying and ashing of matrix and during sample deposition,
when the glass dome is removed. Using this system, better than 80% sample transport
efficiency was achieved.
Sample Transport in ETV-1CP-MS
Kant or (114) has developed a theory based on aerosol science to explain the
mechanism of sample transport from an electrothermal vaporizer to an ionization
source, such as an ICP or flame. He refers to the process as "thermal dispersion", or
the "production of a dry aerosol by high temperature processes," and
differentiates this from mechanical dispersion of solids or nebulization of liquids.
According to his theory, the change in analyte signal under constant furnace conditions
is the result of variations in the transport efficiency of the technique.
The theory attempts to explain the dependence of aerosol formation on (1)
properties of the analyte (single component sample), (2) concentration of the sample
in the vapor phase, which depends on the mass of the sample, the heating rate, and the
flow rate of the carrier gas, and (3) the properties and amount of matrix vaporized
with the analyte. All of these factors influence the sensitivity, linearity of calibration
curves, and matrix interferences resulting from the technique.


48
Aerosol formation is a process that begins when the sample is heated and its
hot vapor is generated from the surface of the furnace. Physical condensation of the
analyte occurs when the vapor is cooled and supersaturation is achieved. In the case
of ETV, this cooling occurs when the hot vapor mixes with the turbulent argon carrier
gas stream. Initial condensation results in nuclei clusters, which are present even in
unsaturated vapor because of collisions. As the supersaturation increases, more
clusters form and their size passes through a critical stage by the attachment of single
molecules. The formation of stable nuclei relieves the supersaturation, and the critical
droplet diameter, dp*, can be calculated according to nucleation theory (115):
(Eqn. 3) dp*=4YVm/kTlnS
where y is the surface tension of the liquid droplet, Vm is the molecular volume of the
vapor species, k is the Boltzmann constant, T is the temperature (K) and S is the
saturation ratio (dimensionless), which defines the magnitude of supersaturation. This
process is known as homogeneous nucleation or self-nucleation because the
condensation nuclei form from the vapor itself.
At a given S, droplets smaller than the critical diameter evaporate, while
droplets larger than the critical diameter continue to grow. The saturation ratio may
be calculated (114):
(Eqn. 4)
S=Pvap/Pe(T)


49
where pvap is the partial vapor pressure and p0(T) is the equilibrium vapor pressure at
the temperature of nucleation.
For ETV methods where a carrier gas is used, and the sample is being heated,
the partial vapor pressure may be calculated to an acceptable accuracy using (114):
(Eqn. 5) pvap=NsTqR/Vgtv
where the units of pvap are in atm, Ns is the amount of vapor, in moles, from the
evaporated sample, Tg is the temperature of the gas without heating in K, R is the gas
constant (82.05 cm 3atm K'1 mol1), Vg is the flow rate of the gas (cms1), and tv is the
mean evaporation time (s) of the majority of sample.
From the above equations, it can be deduced that, under the same conditions,
a higher supersaturation is observed for a less volatile substance because of the lower
value of pe(T). An increase in S results in an increase in the concentration of clusters
and, from Eqn 3, a decrease in the critical diameter, which increases the concentration
of stable nuclei. Below a certain value for S, there is negligible formation of stable
nuclei.
When there is a high concentration of stable nuclei and the supersaturation has
decreased, heterogenous condensation takes place. This is characterized by
condensation of vapor on existing particles. This condensational growth (g/s) is
proportional to the degree of supersaturation. When a high concentration of fine
particles is reached, growth continues by Brownian coagulation. Coagulation occurs


50
when two particles collide and adhere to form one particle. When the velocity is
determined by random motion, it is termed Brownian or thermal. Because the smaller
particles move faster, the rate of the process increases with smaller particles. This
leads to an increase in the mean particle size.
Flagan and Friedlander (116) and Kantor (114) took all of the above processes
into consideration and derived the following equation for the growth of particles:
(Eqn. 6) dF=kscv04
where dp is the particle diameter (cm), cv is the initial vapor concentration at the
temperature of nucleation (g/crrf), and k, is a constant specific for the vapor species
and conditions used in aerosol formation. It can be determined from Eqn. 6 that a
large change in the initial vapor concentration is needed to change the particle
diameter significantly. Therefore, when the initial analyte concentration is increased,
the number of particles will increase rather than the particle diameters. This means
that the transport efficiency does not change with sample mass, which leads to a broad
linear dynamic range.
If the vapor and particle concentrations continue to increase, particle growth
continues by the coalescence of finer particles and sintering of larger particles formed
by coagulation and coalescence. This is thought to occur when the major component
has a mass above 50 100 pg. When this occurs, the particles become large enough
so that they gravimetrically separate out of the argon carrier flow and sample is lost.


51
In graphite furnace ETV methods, the carrier gas flow is normally about 1
L/min, and the sample is vaporized in about 1 second due to the fast heating ramp
used. Using these data and equations 4 and 5, the temperature dependence of the
saturation ratio was calculated (114) for various analyte vapor species and different
masses. It is assumed that when S approaches 10, stable nuclei are formed. Table 4
shows the results of these calculations. The temperatures in Table 4 are those to
which the vapor-gas mixture must be cooled to achieve a saturation ratio of 10. The
results show that with increased volatility of the species (species lower in Table 4),
stable nucleation occurs at lower temperatures, or further downstream from the hot
furnace. Because of the longer distance travelled by the vapor in this case, deposition
of the vapor species on the cool walls of the transport tubing is more likely to take
place, resulting in the loss of analyte for more volatile species. This analyte loss has
in fact been observed for zinc (117), arsenic (118), and cadmium (119), confirming
the data in Table 4.
Vapor condensation on foreign particles. Kantor's theory also explains the
"carrier effect", or heterogeneous condensation of vapor on foreign particles added to
the sample (116). This occurs when vapor from a volatile analyte condenses on the
stable nuclei formed from the foreign species in the furnace and is how cloud
formation takes place in the atmosphere. This can happen several different ways. The
first is when the two species have similar volatilities. Partial covolatization takes
place and stable nuclei are formed from the most abundant species according to
equations 3 and 4.


52
Table 4
Calculated temperatures of the vapor-gas mixture required to obtain S= 10 for
species generated under ETV conditions.
Sample mass
(metal)
Vapor
1 ng
100 ng
NaCl
747 K
850 K
PbO
735
838
Pb
688
805
Ca
648
760
Mo03
612
700
Mg
540
583
CdCl2
500
572
Zn
455
530
ZnCl2
443
510
As4
410
464
Cd
390
458
(114)


53
A second process occurs when the volatilization of sample components is
different. Even in this case, there is partial mixing of the vapor from the volatile
element and the stable nuclei from the less volatile element because of the fast heating
rates used in ETV methods. Another example of the carrier effect may be due to the
electrothermally heated metal sample holders used in ETV methods. Metals such as
platinum, tungsten, and rhenium release vapor at the temperatures normally used for
atomization. It is thought that a surface oxide layer forms which is then vaporized and
forms stable nuclei (120).
Another possible mechanism occurs when the analyte vapor condenses on
stable nuclei produced from organic compounds present as solid sample matrices or
additives (114). It is known that during the pyrolysis of several organic materials,
aerosol particles are formed from the decomposition products, such as soot.
Stable nuclei may also form from gaseous organic substances added to the carrier gas.
Under ETV conditions, stable aerosol particles may form from the pyrolysis of
hydrocarbon or halogenated hydrocarbon vapors.
These carrier mechanisms may improve transport efficiency, but may also result
in loss of analyte if the foreign species is present in excess and particle formation is
controlled by coalescence and sintering.
Chemical condensation of vapor. Chemical condensation occurs when the
analyte vapor reacts to form a compound that is less volatile. An example of this is
the formation of a metal oxide or hydroxide when a volatile metal halide is mixed
with water or oxygen in the carrier gas. When the hot analyte vapor mixes with the


54
cool argon carrier gas, it is likely that oxidation takes place due to impurity oxygen
in the carrier gas or water vapor from the solvent. This results in chemical
condensation because the metal oxide is less volatile than the metal halide.
Effect of operating parameters on sample transport. In the case of ETV-ICP-
MS, the carrier gas flow rate from the furnace to the plasma must be about 1 L/min
in order to puncture the plasma and create the center channel. Any flow rates much
below this value will produce little or no signal; therefore, carrier flow is not a
parameter that can be widely varied.
When self-nucleation is the dominant process in aerosol formation, an increase
in the heating rate will improve transport efficiency. When the heating rate is
increased, the vaporization time of the analyte decreases, and according to equations
4 and 5, this will increase the supersaturation, improving transport efficiency. When
there is a large mass of sample, and coalescence and sintering are the main processes,
increasing the vaporization rate up to a certain point will improve transport efficiency.
However, above this rate, the transport efficiency decreases because the
supersaturation of the sample vapor is too high. Decreasing the heating rate reduces
supersaturation, reducing coalescence and sintering, and thus sample loss.
The final temperature of the furnace also affects sample transport. When the
final temperature of the furnace is increased, the temperature of the vapor-gas mixture
is also increased. Therefore, it takes longer for the mixture to cool down enough for
stable nuclei to form. This takes place further down the length of the transfer tubing
and allows for the sample vapor to condense onto the walls, resulting in sample loss.


55
The length of the transport tubing, therefore, also has an affect on sample
transport efficiency. It has been shown that with longer tubing, the signal area
remains the same, but peak height decreases. This is expected when ideal conditions
exist for stable nuclei to form. However, when large particles formed from
coalescence and sintering are transported through longer tubing, loss to gravitational
forces is more likely to occur. In addition, any volatile species that do not form stable
nuclei will have a greater chance of condensing on the tube walls.
Matrix Modification
Matrix modifiers are commonly used in graphite furnace atomic absorption
spectroscopy (GFAAS). Modifiers retain the analyte in the furnace at higher
temperatures, making it possible to ash at higher temperatures to remove matrix
compounds (121). When used with ETV-ICP-MS, matrix modifiers have a different
purpose. They act as physical carriers of the analyte from the furnace to the plasma,
and also may change the chemical composition of the analyte (114). Modifiers
improve transport efficiency, precision, and linearity of the technique (122).
Few researchers have used modifiers with ETV-ICP-MS. Ediger and Beres
conducted a comprehensive study concerning the effect of several modifiers on the
analysis of 20 different elements (122). The modifiers studied included sodium
chloride, palladium nitrate, magnesium nitrate, and tellurium nitrate. Before the
addition of the modifiers, the peak intensity increased nonlinearly when plotted versus
sample mass. The use of modifiers improved linearity and sensitivity for most


56
elements examined. They also studied the use of citric acid as a modifier for Co, V,
and In and found that it also enhanced the sensitivity of the technique. The use of
methane as a modifier was studied by adding 0.1% methane to the argon carrier,
however no improvement in transport efficiency was observed.
Hyamine hydroxide has been used as a modifier by two different research
groups. Forster et al. (101) used hyamine hydroxide in the determination of Pt in
leukemia cells. Newman and coworkers (102) used the same modifier for the
determination of Te in biological fluids. The researchers did not fully understand the
role of this modifier. It is thought that hyamine hydroxide disrupts the surface tension
of blood plasma, allowing it to dry over a larger area of the furnace. The detection
limit for Te in plasma was 5.7 ng/ml, which was a significant improvement over other
methods. Both groups used a post-furnace addition of oxygen to ash the organic
matrix present.
Gregoire (81) studied the effect of several modifiers on the determination of
Os by ETV-ICP-MS. A small enhancement in signal was found using NaCl, thiourea,
and 8-hydroxyquinoline. Ni and Se increased the sensitivity 5-fold, and Te had the
greatest effect, with a 20-fold increase in Os signal.
The same group examined the effect of mixed Mg/Pd modifiers on the
determination of volatile elements: Pb, Sn, and Ag (97). With the use of these
modifiers they observed a 5-fold increase in sensitivity, and an improvement in the
precision and linearity of the technique. Without the use of the matrix modifiers, the
analytical curves for these elements were similar to those obtained previously (122).


57
They found that the Mg(N03)2 and Pd(N03)2 mix increased the analyte signals two
times over the Mg(N03)2 and PdCl2 mix. It was also found that different proportions
of each mixture had different enhancement effects on the signals and that each
modifier alone did not improve the analyte sensitivity. This does not agree with the
results obtained by Ediger and Beres (122), who found an enhancement in signal
using Pd(N03)2 as well as Mg(N03)2 individually.
Hub and Amphlett (123) used potassium iodide as a matrix modifier when
determining metal contaminants for semiconductor process control. The instrument
used was an ELAN Perkin Elmer Sciex ICP-MS with an HGA 600 MS ETV.
Concentrated hydrofluoric acid and buffered oxide etch (BOE), which is a mixture of
ammonium fluoride and hydrogen fluoride, were analyzed for eight metal contaminants
with detection limits below 0.2 ng/g. The surfaces of silicon wafers were studied by
vapor phase decomposition or droplet surface etching combined with ETV-ICP-MS.
Detection limits for the simultaneous analysis of the eight elements for this analysis
were between 0.2 to 2 x 109 atoms/cm2 per 6-inch wafer. By using the KI modifier,
the sensitivity was improved by a factor of 3-4, and the reproducibility and linearity
of the analytical curves were substantially improved. The optimum amount of
modifier was found to be approximately 1 pg. For the analysis of BOE, the relative
standard deviation (RSD) was about 15% for Na, Al, and Fe, which were found in
concentrations of 0.2 0.8 ng/g. Zn, which was also in this concentration range, had
about a 25 % RSD. The reproducibility was about 30% RSD for Ni, Cu, and Pb,
which were found in concentrations less than 0.1 ng/g. The authors attempted to


58
measure 52Cr as well, but were unable to detect it at the 1 ng/g level because of the
^Ar^C molecular interference.
Analysis of Organics Bv ETV-ICP-MS
The ETV is an excellent sample introduction technique for organic samples.
It requires only a very small sample volume, and has rapid sample changeover. Most
importantly, the organic matrix may be removed and vented to atmosphere by using
a carefully programmed ETV temperature ramp, reducing the level of carbide
interferents. For this reason, oxygen addition for organic matrix ashing is normally
not required. However, not much research has been performed in this area. A brief
discussion of work in this field follows.
Hall and coworkers (77) were the first to use ETV-ICP-MS for the
determination of a metal in organic material. They determined gold in isobutyl methyl
ketone (IBMK), a solvent commonly used for the extraction of geological samples.
The authors used a laboratory-built glass domed ETV, similar to that described
previously in this chapter. They vented the organic matrix during the drying step
before atomizing the Au into the ICP. They had favorable results, with a 3% RSD
and a detection limit for gold of 0.008 ng/mL.
Osborne (106) determined elemental as well as organic mercury in petroleum
samples. He used a modified Perkin Elmer HGA 500 furnace coupled to a Sciex 250
ICP-MS. A post-furnace addition of oxygen to the carrier gas was used to ash the
organic matrix. The ETV parameters used were a vaporization step at 2650 C and


59
a cleanout step at 2700 C. No statistical difference was found between the
determination of elemental and organic Hg. A comparison was made of the organic
Hg signal obtained when dissolved in different length alkanes (Cs C32), and it was
found that the Hg signal decreased as the carbon chain length was increased. The best
results were obtained with a carbon length of 12 or lower. The precision was between
5.9 13 %RSD for the shorter chains and 70 and 55 %RSD for Qg and C32,
respectively, and the detection limit was 3 ppb Hg in pentane. The decrease in Hg
signal with increasing chain length was attributed to the increased plasma loading
because of the increased energy demands for longer carbon chains and the spatial
distribution of the sample as it combusts not being well confined to the plasma axis.
The author also noted an increase in the wear of the interface cones due to the
additional oxygen.
Richner and Wunderli (124) used ETV-ICP-MS to differentiate between organic
and inorganic chlorine. A Sciex Elan 5000 and ETV-600 were used, along with
platform graphite tubes. Oxygen gas flow at 20 mL/min was added to the furnace
carrier argon to ash the organic matrix. The ETV ramp temperature program consisted
of a drying step at 140 C, an initial vaporization step at 400 C to vaporize the
organic Cl, and a second vaporization step at 2650 C to vaporize the inorganic Cl.
The main application of this method was in the determination of polychlorinated
biphenyls (PCBs) in waste oils. The precision of the method for Cl was 10-20
%RSD, with detection limits of 0.5 9 pg/g for different PCBs. However, PCBs
containing less than three Cl atoms could not be detected, even at 50 pg/g. The


60
authors attributed this to the high volatilities of these compounds. They concluded
that the Cl compounds were being vaporized during the drying step, accounting for the
loss of signal. Because the method could not distinguish between PCBs and other
organic Cl compounds, it was suggested that it may be used only as a rapid screening
technique for the determination of PCBs in waste oils.
Manninen (105) used ETV-ICP-MS for the determination of extractable organic
chlorine (EOC1). EOC1 is the portion of total organic chlorine which is separated from
a sample by using an organic solvent extraction procedure. A Fisons PlasmaQuad PQ
II with a Fisons ETV Mk III instrument was used for the analysis. The furnace
heating was as follows: the drying step was at 100 C, the ashing temperature was
1000 C, and the vaporiztion temperature was 2600 C. The furnace was not vented
during drying or ashing, and no oxygen was added to ash the organic matrix; carbon
build-up was observed on the interface cones. Several chlorinated compounds were
studied, including p-chloroanisol, pentachlorophenol, trichloroethene, and o-
chlorobenzoic acid. Chlorine was determined in ethyl acetate with a detection limit
of 10 ng. The precision was 5 %RSD for standards and from 5 to 30 %RSD for real
samples.


CHAPTER 3
INSTRUMENTATION
Inductively Coupled Plasma Mass Spectrometer
The research in this dissertation was performed on a Finnigan MAT SOLA
inductively coupled plasma quadrupole mass spectrometer. The instrument is
controlled by a DELL Dimension 486 (Dell, Austin, TX, Ultrascan 15FS) computer
interfaced to the instrument by a Programmable Logic Controller (PLC) (Mitsubishi,
Himeji, Japan, model FX-48MR). The state of all vacuum, cooling, gas flows, and
electronic control units is constantly monitored by the PLC. In case of failure, the
instrument undergoes the shut-down procedure and vents to argon.
The ICP torch and spray chamber are shown in Chapter 2 (Figure 8); the torch
is similar to that discussed earlier. The torch and spray chamber material were
constructed of quartz by Precision Glassblowing (Englewood, CO). The spray
chamber has a water cooling jacket and its own chiller that circulates 50% ethylene
glycol in the temperature range from -30 to 100 C (model RTE-100, Neslab,
Newington, NH). Argon is obtained from a 180 L dewar of liquid argon supplied
from Liquid Air Corporation (Walnut Creek, CA). The coolant gas flow through the
ICP torch is argon at 15 L/min, with the auxiliary gas flow at 1.2 L/min. The carrier
61


62
gas flow is also argon and is normally 1.0 L/min, depending on the sampling
accessory used. The three-turn copper coupling coil is water cooled. The RF power
is 1.3 kW at a frequency of 27.12 MHz produced by a radio crystal controlled
generator (Henry Electronics, Los Angeles, CA), and an automatic tuning circuit is
used for impedance matching.
The peristaltic pump (model M312, Gilson, France) used for sample
introduction may also be controlled through the computer.
A second, larger chiller (model CTF-75, Neslab, Newington, NH) supplies the
copper load coil, matching box, sampling interface, ETV, and all turbo vacuum pumps
with water cooled to 19 C.
The sampling interface is a three cone system through which the pressure drops
from atmospheric to 1 x 10'5 torr. The sampling cone is located 13 mm from the load
coil and has an orifice diameter of 1.1 mm at its tip. It is made of nickel with copper
sandwiched in the middle. The space behind it is pumped by an 18 nr5 per hour single
stage rotary pump (model E1M18, Edwards, West Sussex, UK) and the pressure in
this region is normally 2-3 torr. The overall layout of the vacuum system is shown
in Figure 12. The skimmer cone is located 8 mm behind the sampler, has an aperture
of 0.8 mm, and is also made of nickel.
Located 10 mm behind the skimmer is the nickel accelerator cone. The region
between the skimmer and accelerator is pumped by a 330 L/s turbo pump ( model
TPH 330, Balzers, Germany) (Figure 12) which keeps the pressure at 1 x 10"3 torr.


Pirani Intermediate
Gauge 2 Housing
Expansion
Pirani
^ing^^Gauge 1 Housing Gaug<
Analyzer
Housing
Pennin
Gauge
Cooling
ZH
Detector
Housing
Rotary Pump
18 nr/h
Intermediate
Turbo
330 L/s
Analyzer
Turbo
1240 IVs
Collector
J Turbo
60 L/s
Rotary^ump
ON
Figure 12. SOLA ICP-MS vacuum system.


64
The quadrupole mass filters are pumped by a 240 L/s turbo pump (model TPH
240, Balzers, Germany), and the pressure in this analyzer housing is maintained at
about 2 x 10'5torr. The detector housing is pumped by a 60 L/s turbo pump (model
TPH 062, Balzers, Germany) which keeps the pressure in this region less than 5 x 106
torr. The turbo pumps are backed by a 12 m3/h rotary pump (model E2M12, Edwards,
West Sussex, UK).
There are three vacuum gauges on the system controlled by an Edwards
vacuum gauge controller (model 1105, West Sussex, UK). Pirani gauges (model PRM
10, Edwards, West Sussex, UK) are located in the expansion housing (#2), and in the
intermediate housing (#1) (Figure 12). A Penning ionization gauge (#3) (model
CP25-K, Edwards, West Sussex, UK) monitors the pressure in the analyzer housing.
Pirani gauge 1 is interlocked to the Penning gauge so that the Penning is not turned
on until the pressure in the intermediate housing is below 1 x 102 torr. This protects
the Penning gauge from damage when running at high pressures.
The optics lenses used to transfer the extracted ions into the quadrupole mass
analyzer have been discussed earlier (Chapter 2) and are shown in Figure 7. The
voltage range for each lens is shown in Table 5.
The quadrupole mass analyzer is a square array of four accurately matched
cylindrical rods (model QMS 511, Balzers, Germany). The specifications are as
follows: rod diameter is 16.00 mm, rod separation is 21.16 mm, rod length is 300
mm, with RF at 1.6 MHz. The mass range of the quadrupole is 1 255 a.m.u. Peak


65
Table 5
Ion lens voltage ranges
Lens
Min. Voltage
Max. Voltage
Extraction Cone
0
+5 kV
X Deflection
-100 V
+ 100 V
Y Deflection
-330 V
+330 V
Focus
0
+ 160 V
Y Steer
-330 V
+330 V
Phase Match
-512 V
0
Quadrupole Bias
-12 V
12 V


66
width is adjusted by the resolution control on the front of the mass spectrometer, and
abundance sensitivity is controlled by the pole bias voltage. The quadrupole may be
used in the "remote" or "local" modes. In the remote mode, the computer controls the
mass setting, while in the local mode, the operator has manual control via a knob
located on the front panel.
The collector system consists of an analog Faraday amplifier and a pulse
counting electron multiplier (model 4870, Galileo, Sturbridge, MA). The multiplier
is used for signals smaller that 106 ions per second, while the Faraday plate may be
used for signals up to 6 x 10lu ions per second. A pair of deflector electrodes controls
which detector the ion signal enters.
Electrothermal Vaporizer
The electrothermal vaporizer is a GBC graphite furnace (model GF3000, GBC
Scientific Equipment, Australia) that has been modified by Finnigan for use as a
sample introduction device for the ICP. It consists of a control unit, interfaced to the
computer, and the graphite furnace workhead (Figure 13). The left window of the
original furnace has been removed and replaced by a titanium vapor extraction
interface which connects to flexible tubing for sample transport (Figure 13). The
carrier argon and auxiliary gas flow through the center of the tube are controlled by
two mass flow controllers (MFC) on the ETV workhead unit. The carrier argon flow
has a range of 0 2 L/min and the auxiliary flow has a range of 0 0.2 L/min. They


67
Rubber
Bellows
Left Side
Block
Titanium
Interface
Plastic
Tubing-
Fitting
Spring
Tensioning
Screw'
Spring
Bakelite
Sleeve
Tension
Spring
Window
Right Side Block
Pivot yy,
Block
Figure 13. ETV workhead.


68
enter the tube tangentially, so the flow is turbulent. The shroud gas flow is controlled
by a flow meter on the front of the control unit.
The carrier argon exits the ETV through the Ti interface and is vented to
atmosphere until atomization of the sample begins, when the sample valve directs the
flow into the plasma (Figure 14). The carrier flow then enters through a "Y"
connector located between the spray chamber and ICP torch (Figure 15). The
computer controls the ETV temperature ramp as well as the time when the sample
valve is actuated and when the mass spectrometer starts scanning. A graphite plug
(P/N 4019D, Spectrographic Services, Sussex, NJ) is placed in the dosing hole of the
graphite tube before heating to prevent sample loss. Hollow as well as integrated
platform pyrolytically coated graphite tubes (P/N 4090-73 and 4090-75, CPI, Santa
Rosa, CA) may be used in the furnace.


Sample Valve
To Extraction
System
Carrier
Gas In
Auxiliary
Gas In
Water Shroud
In Gas In
Figure 14. Gas flows for ETV-ICP-MS.
ON
NO


ooo
From ETV
Figure 15. Sample introduction for ETV.


CHAPTER 4
DETERMINATION OF METALS IN AQUEOUS SOLUTIONS
Because the instrument was new to the laboratory and was one of the first
ETVs that Finnigan had delivered to a customer, it was decided to characterize the
system using aqueous standards of volatile elements and the elements of interest
before research was begun on the metallo-organic standards. It was thought that the
determination of Cu, Zn, Mg, Al, Fe and Y would be simple and straightforward, and
would be a good start for familiarizing ourselves with the new instrument.
Instrument Modifications
When the ETV was used as received from Finnigan MAT, poor results were
obtained. Precisions of 100 to 150% were not uncommon for aqueous standards of
Cu, Zn, Al, and Mg and calibration curves were nonlinear. Therefore, several
modifications were made to the ETV to improve the efficiency and precision of
sample vapor transport to the I CP.
Graphite Plug Holder
The first and most obvious change was with the graphite plug. Finnigan
provided no means of securing the plug in the dosing hole, and it often fell out during
71


72
ETV heating, resulting in sample loss through the opening and contributing to the poor
precision. A laboratory-constructed spring loaded graphite holder made of ceramic
with a bakelite support was adapted for the SOLA ETV from another graphite furnace
in the lab. It was anchored to the ETV by a magnetic mount which held the bakelite
support. The bakelite support held a phenolic sleeve that held a ceramic holder within
a spring. The graphite plug was pressed into the ceramic holder, then placed in the
dosing hole. The holder was tightened with a set screw going through the bakelite.
After correspondence with Finnigan MAT (San Jose, CA), this graphite plug
holder was soon replaced with one supplied by Finnigan MAT. It consisted of a metal
arm that screwed into the ETV workhead. It had a hinge that allowed it to be raised
or lowered, to plug or unplug the dosing hole using the mass of the arm to hold the
graphite plug into the dosing hole. The area of the arm that contacted the plug was
hollowed out and replaced with a small piece of insulating ceramic so that the current
traveling through the graphite tube would not travel through the arm.
ETV Tubing Interface
The interface between the graphite tube and the flexible transport tubing
supplied by Finnigan is shown in Figure 13. The titanium tube, however, was several
millimeters away from the graphite tube, leaving a dead volume that may have caused
sample loss. This interface was replaced with one constructed in the laboratory. It
consisted of a solid teflon cylinder constructed to fit the ETV that was drilled out in


73
the middle to provide a path for the argon flow and sample to travel. The teflon piece
also had an o-ring groove to seal it to the window opening. The transfer tubing fit
snugly within the tunnel drilled through the teflon, and it was pushed through the
teflon fitting into the ETV workhead. This provided less dead volume in that the
teflon piece was flush with the hole, while the other interface was hollowed out
around the titanium tube.
After further correspondence with Finnigan MAT, they provided a longer
titanium tube for the interface (Figure 16). It was not in contact with the graphite
tube, but was much closer than the previous Ti tube. The titanium tube was used for
all further work.
Sample Valve
The original sample valve was a solenoid microvalve with a teflon interior that
was actuated by the ICP-MS software according to the ETV temperature ramp. It was
a three-way valve so that the ETV flow could be vented to air or be transported into
the ICP. After experimenting with metallo-organic oil compounds in the ETV, oil
could be seen oozing out the vent port of the valve and a small puddle had formed
outside the valve. It was apparent that the tiny passages in the valve were too small
and that sample was condensing on the valve walls. We replaced the valve with a
manual three-way valve (Jax Valve & Fitting Co., Jacksonville, FL) with a much


To ICP
O-ring
From
Graphite Tube
Figure 16. Diagram of ETV-tubing interface.
4-


75
larger internal diameter that was actuated manually with the aide of a stopwatch. The
transport tubing was attached to the valve with 1/4 inch Swagelock fittings.
After further communication with Finnigan, they provided a 'pinch' valve in
which the transport tubing from the ETV to the ICP passed through a valve (Figure
17). A plastic tee was placed before the valve with silicon tubing connected to each
arm of the tee. Both tubes exiting from the tee passed through the valve, with one
connected to the ICP and the other venting to the atmosphere. A lever between the
two tubes pinched one of the two silicon tubes to constrict, or block, passage of the
ETV carrier gas. The carrier argon was then forced to travel through the other tube.
This valve provided a path with a larger diameter for sample transport, and was used
for all further work. The tubing is about two feet long, with an 1/8 inch i.d. and 1/4
inch o.d.
Sample Introduction Glassware
Finnigan MAT recommended that the ETV be operated with the spray chamber
and nebulizer in place with water being pumped continuously through them. They
claimed that hydrogen ions in the plasma contributed to a higher ionization efficiency.
However, this eliminates one of the advantages of ETV, which is the use of a 'dry'
plasma to reduce molecular interferents due to water in the plasma. Since one of the
analytes of interest in this research is iron, it is important to limit the amount of water
in the plasma to reduce the amount of the ArO molecular interferent at mass 56. The


Silicone ETV
Tubing
Figure 17. Diagram of ETV-tubing interface and pinch valve.


77
sample introduction interface at the ICP was modified to eliminate the use of the spray
chamber (Figure 18). The nebulizer gas flow was clamped to one arm of a "Y"
connector, with another arm connected to the ETV gas flow with a nylon Swagelock
fitting, and the third arm connected to the torch injector tube by the glass ball joint.
The nebulizer flow, before the "Y" connector, was passed through a three-way
solenoid valve that was wired to the ETV sample valve. It was hooked up oppositely,
so that nebulizer argon flowed to the ICP when the ETV valve was venting to
atmosphere and the nebulizer flow was vented to atmosphere when the ETV flow was
directed to the ICP. This provides a constant flow of injector gas into the ICP,
reducing the chance of plasma 'blow-out'.
Experimental
Instrument Optimization
A difficulty with using a 'dry' plasma is with optimizing instrumental
parameters. A constant signal is required to tune the instrument, or adjust the voltage
settings on the optics lenses to obtain a maximum signal. Constant signal is also
required to optimize the placement of the plasma torch position over the sampling
orifice. Many researchers have tuned the optics lenses using a wet plasma, or
nebulizing a standard solution, then removing the nebulizer and spray chamber after
optimization and hooking up the ETV interface (77,91,99,100,107,108,125,126). A
few researchers have tuned with a wet plasma, then continued to nebulize blank water


From ETV
Figure 18. Sample introduction glassware for ETV.


79
throughout the ETV runs in order to minimize changes in the ion lens settings
(90,127). Other researchers have tuned on a signal from an element slowly vaporized
from the furnace, such as mercury (96,128,129). One group tuned on the 12C signal
generated from a blank ETV firing or from C02 present as an impurity in the argon
gas supply, then tuned on the Cd signal generated from its slow vaporization off of
the furnace (111,112). Other researchers have tuned on the signal present from a
spectral feature in the plasma, such as Ar2 (128) or ArH (92). Tuning on the signal
from an element vaporized from the furnace is difficult because a stable signal is
difficult to generate, and adjustment of the torch position using a spectral feature is
impossible because the species, such as Ar2, is present throughout the plasma.
In our laboratory, several different approaches were attempted. I2 crystals were
placed into the graphite furnace and heated to produce a signal. A Pb shot was also
introduced into the furnace and vaporized slowly at a low temperature, and a
concentrated solution of Hg was slowly heated. However, none of these methods
worked well because a constant signal was impossible to obtain for more than a few
minutes.
The last method attempted gave the best results. House nitrogen was connected
to the auxiliary mass flow controller on the ETV. Using this controller, N2 gas was
slowly bled into the main ETV argon gas flow to the plasma. A nitrogen gas flow of
10-30 mL/min added to the 1 L/min argon flow produced enough signal at mass 14
or 28 to detect on the Faraday plate. Without the added nitrogen flow, no signal was


80
observed on the Faraday detector. Nitrogen is present throughout the plasma.
However, during the tuning procedure, the nitrogen concentration was higher in the
central channel than throughout the rest of the plasma. Therefore, the torch was able
to be finely adjusted over the sampling cone orifice. Initial adjustments were made
using a wet plasma, nebulizing a standard tuning solution of 2 ppm Al, Mg, Cd, Pb,
and In, once every one to two weeks. The ion optic lenses were then tuned using
nitrogen at mass 14 (N+) or 28 (N,+), or argon at mass 40, depending upon the mass
of the analyte of interest. This method worked well because a constant signal could
be maintained for as long as necessary.
The ETV parameters were optimized for each element, except carrier flow,
which was kept constant at 1 L/min, as this is the flow needed to puncture the plasma
and form the central channel. The vaporization temperature was optimized by running
three injections of the same concentration for a series of temperatures. The peak
intensities and precisions for each set of runs were compared, and the temperature that
gave the highest intensity, with good precision (<15% RSD), was chosen as the
optimum atomization temperature. There generally was a definite optimum
temperature, with peak intensity decreasing below and above the optimum. The mass
monitored for each element was optimized in a similar way. Each element was run
three times over a 1 amu mass range, for example, for Mg at mass 24, mass 23.8 was
studied, and increased by 0.1 until 24.7. The optimum mass was then chosen based
on the best peak intensity and precision. Because temporal profiles were taken, it was


81
important to monitor the correct mass, or precision and signal intensity suffered
because the tail of the peak was being monitored. The intensity may drop by 2 times
just 0.5 amu from the peak optimum. A hollow graphite tube was used for the
determination of aqueous elements.
Standard Preparation
Atomic absorption single metal standard solutions (Fisher Scientific) of Al, Mg,
Fe, and Y at 1000 ppm were diluted to prepare calibration standards. NaCl solutions
were prepared from solid, purified NaCl (Puratronic grade, Johnson Matthey, Ward
Hill, MA), and Pd(N03)2 solutions were prepared from solid, purified Pd(N03)2
(99.9%, Johnson Matthey, Ward Hill, MA). Each solution contained 1% trace metal
grade HN03 (Optima grade, Fisher Scientific) and was prepared using deionized water
purified in the laboratory (Milli-Q Plus, Millipore, Bedford, MA) with a specific
resistance of 18 Mfi cm.
Instrumental
Optical emission from the plasma was detected by placing a fused silica lens
(2 in focal length, 1 inch diameter) so as to image 1:1 light from a region between the
ICP load coil and the sampling cone upon a fused silica fiber optic bundle of 5 mm
diameter. The other end of the fiber optic cable was configured as a slit and
positioned 6 mm in front of the entrance slit of a 0.34 meter focal length


82
monochromator (Spex model 340E, Spex Industries, Edison, NJ). The signal was
detected using a photomultiplier tube, current-to-voltage converter and an analog strip
chart recorder. The spectrometer slits were typically set to 100 pm producing a
spectral resolution of 0.25 nm.
Sulfur hexafluoride was introduced into the furnace using the auxiliary mass
flow controller equipped on the ETV workhead.
Procedure
A 10 pL aliquot of aqueous standard was introduced into the graphite tube
through the dosing hole with a fixed 10 pL Eppendorf pipette (model 4800,
Brinkmann Instruments, Westbury, NY). Modifier, if used, was added first in 10 pL
aliquots, using a 0 10 pL Eppendorf pipette (model 4810, Brinkmann Instruments,
Westbury, NY ). The dosing hole was then plugged using a graphite plug that had a
few mm of its tip sanded off. Each plug was conditioned twice by consecutive blank
firings to remove any impurities in the graphite, and the plug was replaced daily.
Each graphite tube lasted for several hundred firings, usually it split in half after this.
A new graphite tube was conditioned using the ETV ramp procedure recommended
by Perkin Elmer (Table 6). The ETV run was then initiated on the computer. At the
appropriate time set by the operator in the software program, the sample valve was
actuated by the computer so that the ETV carrier argon flow was directed from
venting to the ICP.


83
Table 6
New graphite tube conditioning
Number
Temperature
(C)
Ramp Time
(s)
Hold Time
(s)
1
2650
60
2
2
20
1
20
3
2650
10
10
4
20
1
20
5
2650
10
10
6
20
1
20
7
2650
10
10


84
The mass spectrometer could only be set to scan over a preselected mass range,
but there was a "bug" in the software that prevented it from scanning over more than
one mass range. The time resolved software that allows the mass spectrometer to scan
very rapidly has not been released by Finnigan, and without it, it is difficult to scan
over more than a few elements. In order to monitor only one mass throughout the
length of the ETV ramp, the mass analyzer had to be manually switched to the "local"
mode using the switch on the front control panel of the mass spectrometer and the
mass of interest was selected. Time profiles of all signal peaks were obtained in this
research. The Faraday detector was used for all runs because the peak intensities
produced from the ETV were too large for the electron multiplier detector. Limits of
detection were calculated based on the 3 a criteria using the standard deviation of a
series of blank injections as the measure of blank noise.
Results and Discussion
After the previously discussed instrument modifications were made, sample
precision and analytical curve linearity were still poor. Calibration curves like the one
for Mg shown in Figure 19 were typical for all elements studied. Reproducibilities
for this data ranged from 17.5 86.0 % RSD. Several different parameters were
varied, including ETV ramp temperatures, ETV carrier gas flow, and volume of
sample introduced into the furnace. Because the precisions were so poor, it was
impossible to optimize these parameters.


Mean Peak Intensity (Counts/S)
1.0x108
8.0x107
6.0x107
4.0x107
2.0x107
0.0
i1i'i1iiTii>i'i'r
j i i i i i i i i i i i i i i L
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Mg Mass (ng)
Figure 19. Calibration curve for aqueous Mg without carrier added.
OO


86
In an attempt to find the cause of the poor precision, several experiments were
carried out. To ensure that the problem was not due to a "bug" in the software, a
chart recorder was wired to the electronics on the Faraday detector. The signal
measured on the chart recorder correlated rather well with the signal measured by the
Finnigan SOLA software. Therefore, it was concluded that the software data
acquisition was not the problem.
An optical emission detector was set up to measure the emission from the ICP
to ensure that the problem was not with the mass spectrometer. A 1.5 ng aliquot of
Mg was introduced into the furnace and the signal was monitored using the mass
spectrometer and optical emission detector simultaneously. Figure 20 shows the
results of this experiment. The peak intensities from each detection method followed
the same trend. The precision for the emission peak heights was 21 % RSD and it was
16% RSD for the mass spectral peak intensities. The results show that the poor
precision was not due to the mass spectrometer; therefore, it was concluded that the
problem was being caused by the ETV.
The reproducibility of the furnace heating was also measured using a
photodiode equipped with a red filter to measure the continuum emission of the
graphite tube and found to be acceptable. According to Planck's radiation law (130)
the emission is proportional to the temperature of the object. Most graphite furnace
systems are equipped with a photodiode to constantly measure the emission, and this
photodiode was adapted from another graphite furnace in the laboratory.


Peak Intensities (Counts/S)
Figure 20. Comparison of peak intensity for ICP-MS and ICP-AES simultaneous analyses for 27 consecutive injections
of 1.5 ng Mg.


88
The precision of the Eppendorf pipette was measured by depositing 10 pL of
Millipore water into a beaker on the mass balance. It was found to have 1.58 % RSD,
which agrees with the manufacturer's claim for precision.
The argon flow was then measured using a mass flow controller (Teledyne)
to check if the graphite plug was sealing well after each injection. The dosing hole
was unplugged, then plugged, and the gas flow was monitored using a chart recorder.
The signal was measured and found to have 4.0 % RSD. Although this is rather high,
it is not high enough to account for all the reproducibility problems.
These experiments did not find the main cause of the problem, which was
inconsistent sample transport from the ETV to the ICP. The next section decribes the
solution to the reproducibility problem.
Matrix Modification
The use of matrix modifiers, or carriers, with the ETV was then investigated.
Two different modifiers, NaCl and Pd(N03)2, were chosen because of their previous
success in ETV-ICP-MS (122) and because they did not contain any of the elements
of interest. They can also be found in highly purified forms, which is important in
reducing contamination of the sample. Solutions of NaCl and Pd(N03)2 of various
concentrations were prepared and added to several concentrations of each element
(Mg, Al, Fe, and Y). The general ETV temperature ramp for the aqueous solutions
is shown in Table 7. The vaporization temperature (no. 3) changed with the element


Full Text
LD
1780
1995
L 7^
SKS! 0F FLORIDA
3 1262 08554 5506


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EJ1M2TTZX_MJIMCI INGEST_TIME 2012-02-20T23:12:14Z PACKAGE AA00009022_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

'(7(50,1$7,21 2) :($5 0(7$/6 ,1 /8%5,&$7,1* 2,/ %< (/(&7527+(50$/ 9$325,=$7,21 ,1'8&7,9(/< &283/(' 3/$60$ 0$66 63(&7520(75< %\ 021,&$ 3$2/$ (6&2%$5 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*(0(176 ZRXOG OLNH WR VLQFHUHO\ WKDQN P\ UHVHDUFK DGYLVRU 'U -LP :LQHIRUGQHU IRU KLV JXLGDQFH DQG VXSSRUW ZRXOG DOVR OLNH WR WKDQN 'U %HQ 6PLWK IRU KLV DVVLVWDQFH IULHQGVKLS DQG HQFRXUDJHPHQW DQG WKH :LQHIRUGQHU UHVHDUFK JURXS IRU WKHLU VXSSRUW DP JUDWHIXO WR WKH VHUYLFH HQJLQHHUV DW )LQQLJDQ 0$7 *HRUJH +HQGHUVRQ 7RP 0XVVHOPDQ DQG )UDQN 7UHQVFK IRU WKHLU DVVLVWDQFH ZRXOG OLNH WR WKDQN HYHU\RQH ZKR KDV PDGH WKLV D VSHFLDO DQG HQMR\DEOH H[SHULHQFH 1LNNL 6FKXOW] 1DQF\ 0XOOLQV 6XH 2KRURGQLN $QGL 3OHVV /HQD
PAGE 3

7$%/( 2) &217(176 3DJH $&.12:/('*0(176 LL /,67 2) 7$%/(6 Y /,67 2) ),*85(6 YL $%675$&7 [ &+$37(56 ,1752'8&7,21 ,1'8&7,9(/< &283/(' 3/$60$ 0$66 63(&7520(75< %$&.*5281' +LVWRU\ 5HFHQW 'HYHORSPHQWV ,QGXFWLYHO\ &RXSOHG 3ODVPD ,&306 ,QWHUIDFH 0DVV 6SHFWURPHWHU $QDO\WLFDO &KDUDFWHULVWLFV RI ,&306 6DPSOH ,QWURGXFWLRQ 7HFKQLTXHV (OHFWURWKHUPDO 9DSRUL]DWLRQ ,167580(17$7,21 ,QGXFWLYHO\ &RXSOHG 3ODVPD 0DVV 6SHFWURPHWHU (OHFWURWKHUPDO 9DSRUL]HU P

PAGE 4

'(7(50,1$7,21 2) 0(7$/6 ,1 $48(286 62/87,216 ,QVWUXPHQW 0RGLILFDWLRQV ([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ &RQFOXVLRQV '(7(50,1$7,21 2) 0(7$//225*$1,&6 ,1 %$6( 2,/ ,QVWUXPHQW 0RGLILFDWLRQV ([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ &RQFOXVLRQV &21&/86,216 )XWXUH 6WXGLHV 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ ,9

PAGE 5

/,67 2) 7$%/(6 7DEOH 3DJH 'RPLQDQW VSHFLHV LQ WKH ,&3 ,QWHUIHULQJ LRQV LQ QHEXOL]DWLRQ RI b +1 ,QWHUIHULQJ LRQV LQ RUJDQLF VROXWLRQ QHEXOL]DWLRQ &DOFXODWHG WHPSHUDWXUHV RI WKH YDSRUJDV PL[WXUH UHTXLUHG WR REWDLQ 6 IRU VSHFLHV JHQHUDWHG XQGHU (79 FRQGLWLRQV ,RQ OHQV YROWDJH UDQJHV 1HZ JUDSKLWH WXEH FRQGLWLRQLQJ (79 WHPSHUDWXUH UDPS XVHG IRU DTXHRXV VROXWLRQV 6XPPDU\ RI PRGLILHU SHUIRUPDQFH (79 WHPSHUDWXUH SURJUDP IRU PHWDOORRUJDQLF DOXPLQXP 7ZRVWHS DWRPL]DWLRQ (79 WHPSHUDWXUH UDPS 5HVXOWV RI 1,67 DQG &RQRVWDQ FKHFN VWDQGDUGV IRU WKH GHWHUPLQDWLRQ RI PHWDOORRUJDQLF $O 2SWLPXP (79 UDPS IRU )H 5HVXOWV RI 1,67 DQG &RQRVWDQ FKHFN VWDQGDUGV IRU WKH GHWHUPLQDWLRQ RI PHWDOORRUJDQLF )H 0RGLILHG (79 UDPS IRU 0J 2SWLPXP (79 UDPS IRU 0J 6XPPDU\ RI PHWDOORRUJDQLF $O 0J )H DQG < UHVXOWV Y

PAGE 6

/,67 2) ),*85(6 )LJXUH 3DJH ,QGXFWLYHO\ FRXSOHG SODVPD + GHVLJQDWHV WKH PDJQHWLF ILHOG ,&3 WRUFK &DOFXODWHG YDOXHV IRU GHJUHH RI LRQL]DWLRQ bf IRU 0 DW 7 QH O[O FPn ,QGXFWLYHO\ FRXSOHG SODVPD PDVV VSHFWURPHWHU LQWHUIDFH 6XSHUVRQLF MHW 6DPSOLQJ LQWHUIDFH ,RQ WUDQVIHU RSWLFV 1HEXOL]HU VSUD\ FKDPEHU DQG ,&3 WRUFK 0RGLILHG FRPPHUFLDO JUDSKLWH IXUQDFH 7\SLFDO (79 WHPSHUDWXUH UDPS 'RPHW\SH (79 62/$ ,&306 YDFXXP V\VWHP (79 ZRUNKHDG *DV IORZV IRU (79,&306 6DPSOH LQWURGXFWLRQ IRU (79 (79WXELQJ LQWHUIDFH 'LDJUDP RI (79WXELQJ LQWHUIDFH DQG SLQFK YDOYH YL

PAGE 7

6DPSOH LQWURGXFWLRQ JODVVZDUH IRU (79 &DOLEUDWLRQ FXUYH IRU 0J ZLWKRXW FDUULHU DGGHG &RPSDULVRQ RI SHDN LQWHQVLW\ IRU ,&306 DQG ,&3$(6 VLPXOWDQHRXV DQDO\VHV IRU FRQVHFXWLYH LQMHFWLRQV RI QJ 0J (IIHFW RI 1D&O DGGHG WR 0J $f QJ 0J %f QJ 0J &f QJ 0J 'f QJ 0J (f QJ 0J )f QJ 0J 0J WHPSRUDO SHDN VKDSHV QJ 0Jf $f :LWKRXW &DUULHU %f SJ 1D&O DGGHG &DOLEUDWLRQ FXUYHV IRU 0J $f SJ 1D&O DGGHG %f SJ 1D&O DGGHG &f SJ 1D&O DGGHG 'f SJ 1D&O DGGHG (f SJ 1D&O DGGHG (IIHFW RI 1D&O DGGHG WR $O $f QJ $O %f QJ $O &f QJ $O 'f QJ $O &DOLEUDWLRQ FXUYHV IRU $O (IIHFW RI 1D&O DGGHG WR )H $f QJ )H %f QJ )H &f QJ )H 'f QJ )H &DOLEUDWLRQ FXUYHV IRU )H $f 1R FDUULHU DGGHG %f SJ 1D&O DGGHG &f SJ 1D&O DGGHG 'f SJ 1D&O DGGHG (f SJ 1D&O DGGHG )f SJ DGGHG (IIHFW RI 3G1f DGGHG WR 0J $f QJ 0J %f QJ 0J &f QJ 0J 'f QJ 0J &DOLEUDWLRQ FXUYHV IRU 0J $f 1R FDUULHU DGGHG %f SJ 3G1f DGGHG &f SJ 3G1f DGGHG 'f SJ 3G1f DGGHG (IIHFW RI DGGLQJ 3G1f WR $O $f QJ $O %f QJ $O &f QJ $O 'f QJ $/ (f QJ $O &DOLEUDWLRQ FXUYHV IRU $O $f 1R FDUULHU DGGHG %f SJ 3G1f DGGHG &f SJ 3G1f DGGHG 'f SJ 3G1f DGGHG (IIHFW RI 3G1f RQ )H $f QJ )H %f QJ )H &f QJ )H 'f QJ )H YLL

PAGE 8

&DOLEUDWLRQ FXUYHV IRU )H $f 1R FDUULHU DGGHG %f SJ 3G12f DGGHG &f SJ 3G1f DGGHG 'f SJ 3G1f DGGHG (IIHFW RI 6)IL DGGLWLRQ RQ < $f QJ < %f QJ < &f QJ < &DOLEUDWLRQ FXUYHV IRU < $f P/PLQ 6) %f P/PLQ 6) &f P/PLQ 6) 'f P/PLQ 6) 3QHXPDWLF SOXJ KROGHU &DUULHU IORZ WKURXJK (79 $f 'XULQJ GU\LQJ DQG DVKLQJ VWHSV %f 'XULQJ YDSRUL]DWLRQ VWHS (IIHFW RI 1D&O RQ $O PHWDOORRUJDQLF VWDQGDUGV $f QJ $O %f QJ 7HPSRUDO PHWDOORRUJDQLF $O VLJQDO $f )URP LQLWLDO WHPSHUDWXUH SURJUDP RI QJ %f )URP WZRVWHS YDSRUL]DWLRQ SURJUDP RI QJ $QDO\WLFDO FXUYH RI PHWDOORRUJDQLF $O XVLQJ WZRVWHS YDSRUL]DWLRQ (79 UDPS (IIHFW RI r& UHVW WLPH RQ VLJQDO LQWHQVLW\ QJ PHWDOORRUJDQLF $O (IIHFW RI GLIIHUHQW VDPSOH YROXPHV RQ PHWDOORRUJDQLF 0J VLJQDO LQWHQVLW\ SSE 0J &DOLEUDWLRQ FXUYH IRU PHWDOORRUJDQLF $O $f 3HDN LQWHQVLW\ %f 3HDN DUHD /RJORJ SORW &f 3HDN LQWHQVLW\ 'f 3HDN DUHD &DOLEUDWLRQ FXUYH IRU PHWDOORRUJDQLF $O VKRZLQJ FKHFN VWDQGDUGV &DOLEUDWLRQ FXUYH IRU PHWDOORRUJDQLF )H LQ EDVH RLO $f &DOLEUDWLRQ FXUYH %f /RJORJ SORW &DOLEUDWLRQ FXUYH IRU PHWDOORRUJDQLF )H VKRZLQJ FKHFN VWDQGDUGV &DOLEUDWLRQ FXUYH IRU PHWDOORRUJDQLF 0J LQ EDVH RLO $f $QDO\WLFDO FXUYH %f /RJORJ SORW 7HPSRUDO VLJQDO RI QJ < $f %HIRUH JUDSKLWH WXEH FRQGLWLRQLQJ ZLWK 6) %f $IWHU FRQGLWLRQLQJ YLLL

PAGE 9

&DOLEUDWLRQ FXUYH IRU PHWDOORRUJDQLF < $f $QDO\WLFDO FXUYH %f /RJORJ SORW 7HPSRUDO SURILOH RI PHWDOORRUJDQLF < VLJQDO $f < EODQN %f QJ < ,;

PAGE 10

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ '(7(50,1$7,21 2) :($5 0(7$/6 ,1 /8%5,&$7,1* 2,/ %< (/(&7527+(50$/ 9$325,=$7,21 ,1'8&7,9(/< &283/(' 3/$60$ 0$66 63(&7520(75< %\ 0RQLFD 3DROD (VFREDU 0D\ &KDLUSHUVRQ -DPHV :LQHIRUGQHU 0DMRU 'HSDUWPHQW &KHPLVWU\ 7KH LQGXFWLYHO\ FRXSOHG SODVPD PDVV VSHFWURPHWHU ,&306f LV RQH RI WKH IHZ WHFKQLTXHV FDSDEOH RI PXOWLHOHPHQW GHWHUPLQDWLRQV ZLWK ORZ GHWHFWLRQ OLPLWV ,&306 LV DQ DOPRVW LGHDO WHFKQLTXH IRU WKH DQDO\VLV RI OXEULFDWLQJ RLOV GXH WR LWV PDQ\ DGYDQWDJHV ZKLFK LQFOXGH EURDG OLQHDU G\QDPLF UDQJH PXOWLHOHPHQWDO DQDO\VLV UDSLG DFTXLVLWLRQ RI PDVV VSHFWUD DQG ORZ GHWHFWLRQ OLPLWV +RZHYHU WKHUH LV D VHULRXV SUREOHP ZKHQ DQ RUJDQLF PDWUL[ LV QHEXOL]HG LQWR WKH ,&306 &DUERQ FRQGHQVHV RQ WKH FRROHG LQWHUIDFH FRQHV VRRWLQJ DQG EORFNLQJ WKH DSHUWXUHV 7KLV LV SUHYHQWHG E\ DGGLQJ D VPDOO DPRXQW RI R[\JHQ bf WR WKH FDUULHU JDV VR WKDW DOO WKH FDUERQ LV R[LGL]HG DQG YRODWLOL]HG 7RR OLWWOH R[\JHQ ZLOO UHVXOW LQ FORJJLQJ RI WKH LQWHUIDFH DQG WRR PXFK ZLOO UHVXOW LQ UDSLG GHWHULRUDWLRQ RI WKH RULILFH $ VHFRQG GLVDGYDQWDJH RI QHEXOL]LQJ RUJDQLFV LQWR WKH ,&306 LV WKDW FDUELGH FRPSRXQGV IRUPHG LQ WKH ,&3 [

PAGE 11

PD\ DFW DV PROHFXODU LQWHUIHUHQFHV IRU VRPH HOHPHQWV PDNLQJ LW GLIILFXOW RU LPSRVVLEOH WR GHWHFW WKHVH HOHPHQWV (OHFWURWKHUPDO YDSRUL]DWLRQ (79f ZDV FKRVHQ DV D VDPSOH LQWURGXFWLRQ WHFKQLTXH EHFDXVH LW HOLPLQDWHV VHYHUDO RI WKH SUREOHPV DVVRFLDWHG ZLWK FRQYHQWLRQDO QHEXOL]DWLRQ :KHQ XVLQJ (79 ZLWK &306 WKH JUDSKLWH IXUQDFH YDSRUL]HV WKH VDPSOH DQG LW LV WKHQ WUDQVSRUWHG WR WKH ,&3 ZKHUH LW LV LRQL]HG (DFK VWHS FDQ WKHQ EH RSWLPL]HG VHSDUDWHO\ DGGLQJ VHYHUDO DGYDQWDJHV WR WKH WHFKQLTXH DQDO\VLV RI VPDOO VDPSOH YROXPHV KLJK VDPSOH WUDQVSRUW HIILFLHQF\ HYHQ KLJKHU VHQVLWLYLW\ DQG VHSDUDWLRQ RI WKH DQDO\WH IURP WKH VDPSOH PDWUL[ ZKLFK OHDGV WR WKH DELOLW\ WR DQDO\]H VDPSOHV LQ RUJDQLF KLJK DFLG DQG KLJK VROLG PDWULFHV 7KLV PDNHV LW SRVVLEOH WR DQDO\]H RLO VDPSOHV ZKLOH HOLPLQDWLQJ R[\JHQ DGGLWLRQ DQG UHGXFLQJ PROHFXODU LQWHUIHUHQFHV GXH WR WKH RUJDQLF PDWUL[ 7KLV GLVVHUWDWLRQ GHVFULEHV WKH GHYHORSPHQW RI D PHWKRG IRU WKH GHWHUPLQDWLRQ RI ZHDU PHWDOV LQ OXEULFDWLQJ RLOV E\ HOHFWURWKHUPDO YDSRUL]DWLRQ LQGXFWLYHO\ FRXSOHG SODVPD PDVV VSHFWURPHWU\ +DUGZDUH PRGLILFDWLRQV ZHUH PDGH WR WKH (79 WR LPSURYH WUDQVSRUW HIILFLHQF\ WR WKH ,&3 7KHVH LQFOXGHG WKH DGGLWLRQ RI D JUDSKLWH SOXJ KROGHU D QHZ (79WXELQJ LQWHUIDFH D QHZ VDPSOH WUDQVIHU YDOYH DQG D PRGLILFDWLRQ WR WKH VDPSOH LQWURGXFWLRQ JODVVZDUH 7KH WHFKQLTXH ZDV WKHQ FKDUDFWHUL]HG XVLQJ DTXHRXV VROXWLRQV RI WKH DQDO\WHV RI LQWHUHVW ZLWK VRGLXP FKORULGH DQG SDOODGLXP QLWUDWH DGGHG DV VDPSOH FDUULHUV )LQDOO\ D PHWKRG ZDV GHYHORSHG IRU WKH GHWHFWLRQ RI $O 0J )H DQG < PHWDOORRUJDQLF FRPSRXQGV LQ DQ RLO PDWUL[ [L

PAGE 12

&+$37(5 ,1752'8&7,21 7KHUH LV D VWURQJ LQWHUHVW LQ UHSODFLQJ PHWDOOLF EDOO EHDULQJV ZLWK WKRVH PDGH RI FHUDPLF RU VLOLFRQ QLWULGH 6L1f IRU D ZLGH YDULHW\ RI DSSOLFDWLRQV 7KH GHWHUPLQDWLRQ RI ZHDUUHODWHG WUDFH HOHPHQWV LQ WKH OXEULFDWLQJ IOXLGV XVHG ZLWK WKHVH EHDULQJV LV LPSRUWDQW LQ WKH GHYHORSPHQW RI PRGHOV FRQFHUQLQJ WKH PHFKDQLVPV RI ZHDU IRU WKHVH PDWHULDOV 7KH URXWLQH GHWHUPLQDWLRQ RI ZHDU GHEULV PD\ DOVR VHUYH DV DQ LQGLFDWLRQ IRU RSWLPL]DWLRQ RI HQJLQH PDLQWHQDQFH SURFHGXUHV %HDULQJV FRQVLVW RI WZR ULQJV VSDFHG DSDUW E\ D VHW RI EDOOV ZKLFK DUH VHSDUDWHG E\ D FDJH RU UHWDLQHU DQG DUH RIWHQ OXEULFDWHG &RQYHQWLRQDOO\ 0 VWHHO LV XVHG WR PDNH EHDULQJV KRZHYHU DGYDQFHG FHUDPLFV KDYH UHFHQWO\ EHHQ VWXGLHG DV PDWHULDOV IRU EHDULQJ HOHPHQWV 6LOLFRQ QLWULGH EDOO EHDULQJV KDYH VHYHUDO DGYDQWDJHV RYHU VWHHO EDOO EHDULQJV FXUUHQWO\ EHLQJ XVHG LQ HQJLQHV f 6L1 EHDULQJV DUH OLJKWZHLJKW FKHPLFDOO\ LQHUW DQG H[KLELW UHGXFHG ZHDU 7KH KLJK VWUHQJWK RI WKH 6L1 FRYDOHQW ERQG JLYHV VLOLFRQ QLWULGH D KLJK PRGXOXV RI HODVWLFLW\ KDUGQHVV DQG UHVLVWDQFH WR KLJK WHPSHUDWXUHV r&f &HUDPLF EDOO EHDULQJV DUH HOHFWULFDOO\ UHVLVWLYH DQG QRQPDJQHWLF WKHUHIRUH GDPDJH IURP HOHFWULFDO DUFLQJ LV HOLPLQDWHG DQG WKH\ FDQ EH XVHG DW UHGXFHG WHPSHUDWXUHV LQ PDJQHWLF ILHOGV ,W KDV EHHQ VKRZQ WKDW WKH\ FDQ KDYH DQ LQFUHDVHG IDWLJXH OLIHWLPH RI ILIW\ WLPHV RYHU 0 EHDULQJ VWHHO f %HFDXVH RI

PAGE 13

R WKHLU KLJK SHUIRUPDQFH FDSDELOLWLHV FHUDPLF EDOO EHDULQJV KDYH PDQ\ SRWHQWLDO DSSOLFDWLRQV f LQFOXGLQJ KLJKVSHHG HQJLQHV VSDFH SURGXFWV JXLGDQFH V\VWHPV DQG PDFKLQH WRRO VSLQGOHV 7KH\ PD\ EH XVHG LQ DSSOLFDWLRQV WKDW UHTXLUH GU\ RSHUDWLRQ EHFDXVH RI SURGXFW FRQWDPLQDWLRQ VXFK DV FKHPLFDO SURFHVVLQJ VHPLFRQGXFWRU PDQXIDFWXULQJ DQG KLJK YDFXXP V\VWHPV 7KH GLVDGYDQWDJHV RI XVLQJ VLOLFRQ QLWULGH DV D EHDULQJ PDWHULDO LQFOXGH WKH KLJK FRVW RI IDEULFDWLRQ DQG WKH YDULDELOLW\ LQ PDQXIDFWXULQJ 7KHVH WZR SUREOHPV VKRXOG LPSURYH ZLWK FRQWLQXHG UHVHDUFK LQWR WKH PDQXIDFWXULQJ SURFHVV %HFDXVH WKH XVH RI VLOLFRQ QLWULGH DV D EHDULQJ PDWHULDO LV UHODWLYHO\ QHZ WKHUH KDV QRW EHHQ PXFK UHVHDUFK VWXG\LQJ LWV ZHDU PHFKDQLVPV f 7KH ZHDU PHFKDQLVPV RI EDOO EHDULQJV PXVW EH ZHOO XQGHUVWRRG EHIRUH WKH\ FDQ EH SXW LQWR ZLGHVSUHDG XVH WR HQVXUH FDWDVWURSKLF IDLOXUH ZLOO QRW RFFXU 2QH PHWKRG XVHG WR VWXG\ ZHDU PHFKDQLVPV LV WR DQDO\]H WKH OXEULFDWLRQ IOXLG IRU ZHDU GHEULV f 7KH FRPSRVLWLRQ RI ZHDU GHEULV SURYLGHV LQVLJKW LQWR KRZ WKH EHDULQJV DUH ZHDULQJ DV ZHOO DV LQIRUPDWLRQ DERXW RWKHU HQJLQH FRPSRQHQWV 7KH URXWLQH WHVWLQJ RI OXEULFDQWV XVHG LQ HQJLQHV LV DOVR LPSRUWDQW IRU GLDJQRVWLF SXUSRVHV LQFOXGLQJ DLGLQJ LQ SUHYHQWLYH PDLQWHQDQFH E\ LQGLFDWLQJ ZKHQ RLO FKDQJHV FRPSRQHQW UHSODFHPHQW DQG HQJLQH RYHUKDXOV DUH UHTXLUHG 7KH ZHDU PHWDO GHEULV FDQ EH PHWDOOLF IURP PHFKDQLFDO ZHDUf R[LGL]HG IURP R[LGDWLYH FRUURVLRQf RU PHWDOORRUJDQLF IURP FKHPLFDO FRUURVLRQf 7KHUHIRUH LW LV LPSRUWDQW WR XVH DQ DQDO\VLV WHFKQLTXH WKDW ZLOO GHWHFW GLVVROYHG VSHFLHV WR PPVL]HG SDUWLFOHV

PAGE 14

6LOLFRQ QLWULGH EHDULQJV DUH PDQXIDFWXUHG E\ VLQWHULQJ RU KRW LVRVWDWLFDOO\ SUHVVLQJ RI WKH 6L1 SRZGHU f 6LQWHULQJ KDV EHHQ WKH PRVW ZLGHO\ XVHG WHFKQLTXH %HFDXVH VLOLFRQ QLWULGH LV GLIILFXOW WR VLQWHU VLQWHULQJ DLGV DUH DGGHG WR WKH SRZGHU PL[WXUH f 7KHVH LQFOXGH PL[WXUHV RI \WWULXP R[LGH
PAGE 15

LQ &KDSWHU +RZHYHU WKH (79 FRQWDLQHG VHYHUDO GHVLJQ IODZV WKDW DIIHFWHG LWV SHUIRUPDQFH 7KHUHIRUH PRGLILFDWLRQV ZHUH PDGH WR LWV KDUGZDUH WR LPSURYH WUDQVSRUW HIILFLHQF\ WR WKH ,&3 7KH WHFKQLTXH ZDV WKHQ FKDUDFWHUL]HG XVLQJ DTXHRXV VROXWLRQV RI WKH DQDO\WHV RI LQWHUHVW DQG WKHVH UHVXOWV DUH VKRZQ LQ &KDSWHU )LQDOO\ D PHWKRG ZDV GHYHORSHG IRU WKH GHWHFWLRQ RI $O 0J )H DQG < PHWDOORRUJDQLF FRPSRXQGV LQ DQ RLO PDWUL[ GLVFXVVHG LQ &KDSWHU

PAGE 16

&+$37(5 ,&306 %$&.*5281' +LVWRU\ $ GHWDLOHG KLVWRU\ RI ,&306 PD\ EH IRXQG LQ VHYHUDO UHYLHZV f RQO\ D EULHI GLVFXVVLRQ LV JLYHQ KHUH ,Q WKH V LW EHFDPH DSSDUHQW WKDW LQGXFWLYHO\ FRXSOHG SODVPD DWRPLF HPLVVLRQ VSHFWURVFRS\ ,&3$(6f ZDV LQDGHTXDWH IRU WUDFH HOHPHQW GHWHFWLRQ LQ JHRORJLFDO VDPSOHV %HFDXVH JHRORJLFDO VDPSOHV KDYH KLJK PDWUL[ FRQFHQWUDWLRQV HYHQ ZHDN HPLVVLRQ OLQHV IURP PDWUL[ FRPSRQHQWV FDQ LQWHUIHUH ZLWK HOHPHQWV RI LQWHUHVW 7KLV SURPSWHG WKH VHDUFK IRU DOWHUQDWLYH PHWKRGV RI PXOWLn HOHPHQW WUDFH DQDO\VLV 6SDUN VRXUFH PDVV VSHFWURPHWU\ ZDV DOUHDG\ LV XVH IRU WKH GHWHUPLQDWLRQ RI PHWDOV LQ JHRORJLFDO VDPSOHV EXW WKH WHFKQLTXH ZDV LQDGHTXDWH IRU WUDFH DQDO\VLV DQG RQO\ D IHZ VDPSOHV FRXOG EH DQDO\]HG SHU GD\ 0RUX]]L DW WKH 8QLYHUVLW\ RI /LYHUSRRO FRQGXFWHG D IHDVLELOLW\ VWXG\ XQGHU WKH GLUHFWLRQ RI *UD\ XVLQJ D FDSLOODU\ '& DUF VRXUFH PDVV VSHFWURPHWHU f 7KH JDV WHPSHUDWXUH RI ZDV WRR ORZ IRU HIILFLHQW LRQL]DWLRQ RI VRPH HOHPHQWV LW H[SHULHQFHG VHYHUH PDWUL[ HIIHFWV DQG SURGXFHG QRQOLQHDU DQDO\WLFDO FXUYHV 7KH VWXG\ GLG GHPRQVWUDWH WKDW PDVV VSHFWUD FRXOG EH SURGXFHG IURP DQ DWPRVSKHULF SUHVVXUH LRQL]DWLRQ VRXUFH DOWKRXJK D KRWWHU SODVPD ZDV QHFHVVDU\

PAGE 17

7KH SXEOLFDWLRQ RI WKH '& SODVPD UHVXOWV DWWUDFWHG DWWHQWLRQ LQ &DQDGD DQG WKH 8QLWHG 6WDWHV 'RXJODV DQG )UHQFK DW WKH 8QLYHUVLW\ RI 7RURQWR VWDUWHG GHYHORSPHQW RI D PLFURZDYH LQGXFHG SODVPD 06 ZKLFK ZDV ODWHU FKDQJHG WR DQ ,&306 )DVVHO DQG +RXN DW WKH $PHV /DERUDWRU\ DW ,RZD 6WDWH 8QLYHUVLW\ VWDUWHG GHYHORSPHQW RI DQ ,&3 VRXUFH PDVV VSHFWURPHWHU 7KLV ODWWHU JURXS GHYHORSHG D FORVH FROODERUDWLRQ ZLWK *UD\nV JURXS LQ 6XUUH\ DQG REWDLQHG WKH ILUVW VSHFWUD RI DQDO\WH LRQV SURGXFHG IURP DQ ,&3 VRXUFH PDVV VSHFWURPHWHU f 7KH PDLQ SUREOHP ZLWK WKLV LQVWUXPHQW ZDV LQ VDPSOLQJ LRQV IURP WKH EXON SODVPD 7KH DSHUWXUHV XVHG IRU LRQ H[WUDFWLRQ ZHUH WRR VPDOO DQG D FRRO ERXQGDU\ OD\HU IRUPHG EHWZHHQ WKH SODVPD DQG WKH LQWHUIDFH FRQH ZKHUH PROHFXODU VSHFLHV IRUPHG ,Q E\ XVLQJ ODUJHU GLDPHWHU DSHUWXUHV FRQWLQXXP IORZ ZDV ILUVW H[WUDFWHG IURP WKH EXON SODVPD ZKLFK OHG WR LPSURYHG DQDO\WLFDO SHUIRUPDQFH f 'XULQJ WKLV WLPH 'RXJODV DQG FRZRUNHUV KDG GHYHORSHG WKH FHQWHUWDSSHG ORDG FRLO GHVLJQ ZKLFK VROYHG SUREOHPV FDXVHG E\ WKH SODVPD RIIVHW SRWHQWLDO f 7KLV OHG WR WKH UHOHDVH RI WKH ILUVW FRPPHUFLDO ,&306 WKH 6FLH[ (/$1 LQ DW WKH 3LWWVEXUJK &RQIHUHQFH 6RRQ DIWHU WKH 9* 3ODVPD 4XDG EDVHG RQ WKH LQVWUXPHQW GHYHORSHG LQ 6XUUH\ ZDV LQWURGXFHG LQ DW WKH $606 0HHWLQJ 6LQFH WKDW WLPH WKH XVH RI ,&306 KDV JUHDWO\ LQFUHDVHG DQG VHYHUDO GLIIHUHQW PDQXIDFWXUHUV QRZ PDUNHW LQVWUXPHQWV

PAGE 18

5HFHQW 'HYHORSPHQWV 1RZ WKDW ,&3 TXDGUXSROH 06 LQVWUXPHQWV DUH LQ URXWLQH XVH UHVHDUFK KDV EHJXQ RQ FRXSOLQJ GLIIHUHQW W\SHV RI PDVV DQDO\]HUV WR WKH LQGXFWLYHO\ FRXSOHG SODVPD 7KH TXDGUXSROH PDVV DQDO\]HU KDV VHYHUDO OLPLWDWLRQV LQFOXGLQJ ORZ PDVV UHVROXWLRQ DQG UHODWLYHO\ VORZ PDVV VFDQQLQJ ,Q DQ DWWHPSW WR RYHUFRPH WKHVH GLVDGYDQWDJHV GLIIHUHQW PDVV DQDO\]HUV KDYH EHHQ XVHG )LQQLJDQ 0$7 f UHFHQWO\ PDUNHWHG D KLJK UHVROXWLRQ PDJQHWLF VHFWRU ,&3 06 7KH PDVV DQDO\]HU FRQVLVWV RI D KLJK UHVROXWLRQ PDJQHWLF VHFWRU RI UHYHUVHG 1LHU -RKQVRQ JHRPHWU\ 6HYHUDO VFDQ PRGHV DUH DYDLODEOH LQFOXGLQJ PDJQHWLF KLJK YROWDJH RU WKHLU SDWHQWHG V\QFKURVFDQ PRGH LQ ZKLFK FRXQWHUDFWLQJ DQG VLPXOWDQHRXV HOHFWULF DQG PDJQHWLF VFDQV DUH SRVVLEOH 7KH UHVROXWLRQ LV YDULDEOH ZLWK D PD[LPXP UHVROYLQJ SRZHU RI 6LQFH D UHVROXWLRQ RI LV VXIILFLHQW WR VHSDUDWH VSHFWUDO LQWHUIHUHQFHV DVVRFLDWHG ZLWK ,&306 WKLV LQVWUXPHQW DOORZV IRU WKH GHWHFWLRQ RI HOHPHQWV SUHYLRXVO\ LPSRVVLEOH WR GHWHFW ZLWK D TXDGUXSROH LQVWUXPHQW VXFK DV )H DQG 9 :LWK WKH LQVWUXPHQW LQ WKH ORZ UHVROXWLRQ PRGH f GHWHFWLRQ OLPLWV DUH LQ WKH SJPO UDQJH 7KH DXWKRUV ZHUH DEOH WR GHWHFW 9 )H &X =Q DQG $J LQ KXPDQ VHUXP 0\HUV DQG FRZRUNHUV f FRQVWUXFWHG DQ ,&3 WLPHRIIOLJKW PDVV VSHFWURPHWHU $Q RUWKRJRQDO 72)06 ZDV XVHG DV WKH PDVV DQDO\]HU ZLWK DUJRQ LRQV GHIOHFWHG DZD\ IURP WKH GHWHFWRU WR UHGXFH GHWHFWRU GHDG WLPH DQG VSDFHFKDUJH HIIHFWV 7KH DGYDQWDJH RI XVLQJ D 72)06 LV WKH DELOLW\ WR SURGXFH D VSHFWUXP RI DOO LRQV VDPSOHG

PAGE 19

ZLWKLQ WR MDV 7KH RUWKRJRQDO 72)06 ZDV FKRVHQ EHFDXVH WKH YHORFLW\ RI WKH LRQV LQ WKH IOLJKW WXEH DUH RQH WR WZR RUGHUV RI PDJQLWXGH IDVWHU WKDQ WKRVH H[LWLQJ WKH VDPSOLQJ LQWHUIDFH 7KLV DOORZV WKH H[WUDFWLRQ UHJLRQ WR VORZO\ ILOO ZLWK LRQV ZKLOH D SUHYLRXVO\ VDPSOHG SXOVH LV PDVV DQDO\]HG :KHQ RSHUDWHG LQ WKH QRQUHIOHFWLQJ PRGH WKH UHVROYLQJ SRZHU RI WKH LQVWUXPHQW LV 7KH VDPSOLQJ GXW\ F\FOH RI WKH PDVV DQDO\]HU LV b OLPLWLQJ WKH VHQVLWLYLW\ RI WKH LQVWUXPHQW DQG WKH WUDQVPLVVLRQ HIILFLHQF\ ZDV DSSUR[LPDWHO\ b 1R DQDO\WLFDO ILJXUHV RI PHULW ZHUH JLYHQ .RSSHQDDO HW DO f GHVLJQHG EXLOW DQG WHVWHG DQ &3 LRQ WUDS PDVV VSHFWURPHWHU ,706f 7KH DGYDQWDJHV RI XVLQJ DQ LRQ WUDS ZLWK DQ &3 VRXUFH DUH WKH VDPH DV ZKHQ XVHG ZLWK RUJDQLF 06 7KHVH LQFOXGH LWV KLJK VHQVLWLYLW\ DQG UHVROXWLRQ DQG LWV DELOLW\ WR VHOHFW VWRUH DQG PDQLSXODWH LRQV IRU GLVVRFLDWLRQ DQG PDVV DQDO\VLV 7KH DXWKRUV XVHG DQ ,&3OLQHDU TXDGUXSROH,706 FRQILJXUDWLRQ LQ ZKLFK WKH TXDGUXSROH FRXOG EH XVHG LQ WKH UHVROYLQJ UIGFf QRQUHVROYLQJ UI RQO\f RU QRWFK UI UIDX[f ILOWHULQJ PRGHV 7KH LRQ WUDS ZDV DEOH WR HOLPLQDWH PROHFXODU LQWHUIHUHQFHV E\ FROOLVLRQV ZLWK +H EDWK DWRPV LQ WKH LRQ WUDS FKDPEHU 7KH LRQ WUDS DOPRVW FRPSOHWHO\ QHXWUDOL]HG $U DQG WZR PHFKDQLVPV ZHUH SURSRVHG IRU WKH UHDFWLRQ 7KH /2'V ZHUH LQ WKH SJPO UDQJH DQG ZHUH H[SHFWHG WR LPSURYH XSRQ RSWLPL]DWLRQ RI LQVWUXPHQW SDUDPHWHUV 7KH VDPH JURXS LV DOVR FXUUHQWO\ GHYHORSLQJ DQ LRQ F\FORWURQ UHVRQDQFH PDVV VSHFWURPHWHU WR FRXSOH WR WKH ,&3 7KLV ZLOO JUHDWO\ HQKDQFH WKH UHVROYLQJ SRZHU RI ,&306 2WKHU LRQL]DWLRQ VRXUFHV KDYH DOVR EHHQ VWXGLHG LQ DQ DWWHPSW WR UHGXFH VSHFWUDO LQWHUIHUHQFHV LQFUHDVH WKH YHUVDWLOLW\ RI WKH LQVWUXPHQW DQG LQFUHDVH WKH LRQL]DWLRQ RI

PAGE 20

QRQPHWDO VSHFLHV 0LFURZDYH SODVPD DV ZHOO DV ORZ SUHVVXUH SODVPD PDVV VSHFWURPHWHUV KDYH EHHQ FRQVWUXFWHG (YDQV DQG FRZRUNHUV f PRGLILHG D 9* 3ODVPD4XDG LQVWUXPHQW VR WKDW D ORZ SUHVVXUH ,&3 FRXOG EH IRUPHG LQ SODFH RI WKH DWPRVSKHULF SUHVVXUH &3 7KH DGYDQWDJH RI WKLV ORZ SUHVVXUH ,&3 LV WKDW LW PD\ EH XVHG IRU WKH LRQL]DWLRQ RI PROHFXODU RU DWRPLF VSHFLHV $ YDFXXP VHDO ZDV IRUPHG EHWZHHQ WKH ORZ SUHVVXUH SODVPD WRUFK DQG WKH VDPSOLQJ FRQH DQG WKH YDFXXP SXPSLQJ UDWH LQ WKH LQWHUIDFH UHJLRQ ZDV DOVR LQFUHDVHG 7KH +H IORZ IURP D *& ZDV GLUHFWHG LQWR WKH FHQWHU RI D VSHFLDO WRUFK ZLWK DUJRQ DV WKH SODVPD JDV %\ DGMXVWLQJ WKH IRUZDUG SRZHU DQG WKH SODVPD JDV IORZ WKH GHJUHH RI IUDJPHQWDWLRQ RI WKH DQDO\WH ZDV FKDQJHG 7KH DXWKRUV ZHUH DEOH WR GHWHFW RUJDQRWLQ RUJDQROHDG RUJDQRLURQ DQG RUJDQRKDOLGH FRPSRXQGV ZLWK GHWHFWLRQ OLPLWV UDQJLQJ IURP SJ )HFKQHU DQG 1DJHQJDVW f PRGLILHG WKH SODVPD LQWHUIDFH DQG WRUFK RQ D 9* 3ODVPD4XDG ,&306 IRU XVH DV D PLFURZDYH LQGXFHG SODVPD 0,3f 06 7KH SODVPD ZDV VXVWDLQHG LQ WR /PLQ +H JDV IORZ ZLWK : RI SRZHU $Q DGYDQWDJH RI XVLQJ +H RYHU $U LV WKDW KHOLXP KDV D KLJKHU LRQL]DWLRQ SRWHQWLDO PDNLQJ LW SRVVLEOH WR GHWHFW QRQPHWDOV ZKLFK DUH QRW ZHOO LRQL]HG LQ DQ $U ,&3 $ ORZHU EDFNJURXQG VSHFWUXP ZDV REVHUYHG EXW WKH SRO\DWRPLF LRQ IRUPDWLRQ LQFUHDVHG GXH WR WKH ORZHU SRZHU DSSOLHG WR WKH 0,3 /LPLWV RI GHWHFWLRQ IRU $V 6H %U DQG ZHUH EHWZHHQ DQG SJ/ ZKLFK LV FRPSDUDEOH WR /2'V IRXQG ZLWK ,&306 %LRORJLFDO DQG ILVK UHIHUHQFH VDPSOHV ZHUH DQDO\]HG

PAGE 21

:X f DQG FRZRUNHUV FRQVWUXFWHG DQ +H PLFURZDYH SODVPD WRUFK 06 7KH DGYDQWDJHV RI WKLV V\VWHP DUH WKH VDPH DV IRU RWKHU +H SODVPDV LQFOXGLQJ KLJK HOHFWURQ WHPSHUDWXUHV DQG PRGHUDWH HOHFWURQ GHQVLW\ 7KH : DWPRVSKHULF SUHVVXUH PLFURZDYH SODVPD KDG D +H IORZ UDWH RI /PLQ DQG SURGXFHG IHZHU EDFNJURXQG SHDNV WKDQ WKRVH IRXQG LQ ,&306 7KH OLPLWV RI GHWHFWLRQ IRU ) &O %U 6 & DQG 3 ZHUH QJPO WR SJPO 7KHVH DUH FRPSDUDEOH WR RU EHWWHU WKDQ /2'V IRXQG IRU DQ &3 LRQ VRXUFH RQ WKH VDPH LQVWUXPHQW ,QGXFWLYHO\ &RXSOHG 3ODVPD 7KH LQGXFWLYHO\ FRXSOHG SODVPD ZDV ILUVW VWXGLHG DV DQ H[FLWDWLRQ VRXUFH IRU DWRPLF HPLVVLRQ VSHFWURVFRS\ $(6f LQ WKH V LQGHSHQGHQWO\ E\ WKH UHVHDUFK JURXSV RI *UHHQILHOG DQG )DVVHO f +RZHYHU DW WKLV WLPH DWRPLF DEVRUSWLRQ VSHFWURVFRS\ $$6f ZDV LQ ZLGHVSUHDG XVH DQG WHQ \HDUV SDVVHG EHIRUH WKH ,&3 JDLQHG DFFHSWDQFH DV DQ DQDO\WLFDO WRRO 'XULQJ WKLV WLPH WHFKQRORJLFDO DGYDQFHV ZHUH PDGH WKDW LPSURYHG GHWHFWLRQ OLPLWV ZLWK ,&3$(6 DQG WKH ILUVW FRPPHUFLDO ,&3 ZDV LQWURGXFHG LQ f 6LQFH WKLV WLPH WKH XVH RI WKH ,&3 DV DQ H[FLWDWLRQ VRXUFH IRU $(6 KDV JURZQ WUHPHQGRXVO\ f DQG LQ WKH V LW JDLQHG XVH DV DQ LRQ VRXUFH IRU HOHPHQWDO PDVV VSHFWURPHWU\ f 7KH XVH RI WKH ,&3 DV D VRXUFH IRU PDVV VSHFWURPHWU\ KDV VHYHUDO DGYDQWDJHV %HFDXVH WKH VDPSOHV DUH LQWURGXFHG DW DWPRVSKHULF SUHVVXUH VDPSOH FKDQJHRYHU LV VLPSOH DQG UDSLG 7KH WHPSHUDWXUH RI WKH ,&3 LRQL]HV PRVW HOHPHQWV HDVLO\

PAGE 22

DQG SURGXFHV SULPDULO\ VLQJO\ FKDUJHG LRQV ,W HIILFLHQWO\ GLVVRFLDWHV VDPSOH FRPSRQHQWV DQG SURGXFHV IHZ PROHFXODU IUDJPHQWV 7KHUH DUH GLVDGYDQWDJHV DVVRFLDWHG ZLWK WKH ,&3 LRQ VRXUFH 7KH KLJK JDV WHPSHUDWXUH DQG SUHVVXUH RI WKH SODVPD UHTXLUHV DQ LQWHUIDFH WKDW LV IDLUO\ LQHIILFLHQW ZLWK RQO\ b RI WKH LRQV WKDW SDVV WKURXJK WKH VDPSOLQJ FRQH SDVVLQJ WKURXJK WKH VNLPPHU 0ROHFXODU LRQ IRUPDWLRQ LQ WKH SODVPD HVSHFLDOO\ IURP DWPRVSKHULF JDVHV UHDFWLQJ ZLWK DUJRQ LV D SULPDU\ GLVDGYDQWDJH RI ,&306 0ROHFXODU LRQV FDXVH LVREDULF LQWHUIHUHQFHV RYHU FHUWDLQ DUHDV RI WKH PDVV UDQJH DQG PDNH LW GLIILFXOW WR GHWHFW WUDFH OHYHOV RI VRPH HOHPHQWV $ WKRURXJK UHYLHZ RI ,&3 LQFOXGLQJ LQVWUXPHQWDWLRQ IXQGDPHQWDO SURSHUWLHV DQG DSSOLFDWLRQV PD\ EH IRXQG LQ 0RQWDVHU DQG *ROLJKWO\ f DQG RWKHU UHIHUHQFHV f $Q ,&3 LV DQ HOHFWURGHOHVV GLVFKDUJH DW DWPRVSKHULF SUHVVXUH PDLQWDLQHG E\ HQHUJ\ FRXSOHG WR LW IURP D UDGLR IUHTXHQF\ JHQHUDWRU $ FRSSHU FRLO DFWV DV WKH SULPDU\ RI WKH 5) WUDQVIRUPHU DQG WKH SODVPD LV WKH VHFRQGDU\ $UJRQ LV QRUPDOO\ WKH PDLQ VXSSRUW JDV DOWKRXJK RWKHU JDVHV VXFK DV KHOLXP [HQRQ DQG QLWURJHQ KDYH EHHQ XVHG DV DGGLWLYHV f DQG KHOLXP KDV EHHQ XVHG DV WKH PDLQ VXSSRUW JDV DV ZHOO f 7KH SODVPD LV JHQHUDWHG LQ D TXDUW] WRUFK VLPLODU WR WKRVH XVHG LQ ,&3 DWRPLF HPLVVLRQ VSHFWURVFRS\ $(6f ZLWK XVXDOO\ WKH RQO\ PRGLILFDWLRQ EHLQJ WKH KRUL]RQWDO LQVWHDG RI YHUWLFDO PRXQWLQJ ,W LV VXUURXQGHG E\ WKH ORDG FRLO ZKLFK LV FRQQHFWHG WR DQ 5) JHQHUDWRU 7KH 5) FXUUHQW WUDYHOOLQJ WKURXJK WKH FRLO SURGXFHV D PDJQHWLF ILHOG LQ WKH SODVPD ZKLFK YDULHV LQ WLPH DW WKH JHQHUDWRU IUHTXHQF\ RI RU 0+] (GG\

PAGE 23

FXUUHQWV DUH LQGXFHG ZLWKLQ WKH JDV ZKLFK IORZ LQ FLUFXODU SDWKV WKDW UXQ FRQFHQWULFDOO\ LQVLGH WKH WRUFK 7KH PDJQHWLF OLQHV RI IRUFH DUH RULHQWHG D[LDOO\ LQVLGH WKH TXDUW] WXEH DQG IROORZ HOOLSWLFDO SDWKV RXWVLGH WKH FRLO )LJXUH f 7KH PDJQHWLF ILHOG LV FRXSOHG WR WKH SODVPD JDV FRQWDLQLQJ LRQV DQG HOHFWURQV 7KH FKDUJHG SDUWLFOHV PHHW UHVLVWDQFH WR IORZ UHVXOWLQJ LQ -RXOH KHDWLQJ 7KHVH FKDUJHG SDUWLFOHV DUH DFFHOHUDWHG DQG FROOLGH LQHODVWLFDOO\ ZLWK JDV DWRPV $W DWPRVSKHULF SUHVVXUH WKH PHDQ IUHH SDWK RI WKH SDUWLFOHV LV DSSUR[LPDWHO\ PP UHVXOWLQJ LQ D KLJK UDWH RI FROOLVLRQV ZKLFK TXLFNO\ KHDWV WKH SODVPD %HFDXVH DQ LQHUW JDV LV D SRRU HOHFWULFDO FRQGXFWRU WKH SODVPD LV LQLWLDWHG E\ VHHGLQJ WKH DUJRQ JDV ZLWK HOHFWURQV IURP D 7HVOD FRLO (OHFWURQV DQG DUJRQ LRQV DUH IRUPHG ZKLFK DEVRUE HQHUJ\ IURP WKH DOWHUQDWLQJ PDJQHWLF ILHOG &ROOLVLRQV JHQHUDWH DQ DYDODQFKH RI FKDUJHG SDUWLFOHV WKDW DEVRUE WKH HQHUJ\ IURP WKH 5) ILHOG DQG RQFH WKH HOHFWURQV UHDFK WKH LRQL]DWLRQ SRWHQWLDO RI WKH VXSSRUW JDV IXUWKHU LRQL]DWLRQ WDNHV SODFH IRUPLQJ D VWDEOH VHOIVXVWDLQLQJ SODVPD $ W\SLFDO ,&3 WRUFK LV VKRZQ LQ )LJXUH ,W FRQVLVWV RI DQ RXWHU WXEH RI LQQHU GLDPHWHU RI DERXW PP ZKLFK FRQWDLQV WZR FRQFHQWULF TXDUW] WXEHV RI DQG PP LQQHU GLDPHWHU 7KH WZR RXWHU WXEHV KDYH VLGH DUPV VXSSO\LQJ JDV HQWHULQJ WDQJHQWLDOO\ WR FUHDWH D YRUWLFXODU IORZ 7KH FHQWHU WXEH FDUULHV WKH VDPSOH JDV IORZ DQG UXQV GRZQ WKH D[LV RI WKH WRUFK 7KH RXWHU JDV IORZ RU WKH FRRODQW IORZ LV DW /PLQ LV WKH PDLQ VXSSRUW JDV DQG DOVR SURWHFWV WKH TXDUW] RXWHU ZDOO IURP PHOWLQJ 7KH FRSSHU ORDG FRLO ZKLFK VXUURXQGV WKH SODVPD WRUFK KDV WXUQV DQG

PAGE 24

)LJXUH ,QGXFWLYHO\ FRXSOHG SODVPD + GHVLJQDWHV WKH PDJQHWLF ILHOG

PAGE 25

5) /RDG &RLO )LJXUH ,&3 WRUFK

PAGE 26

PD\ EH JDV RU ZDWHU FRROHG 7KH ERWWRP WXUQ RI WKH FRLO LV ORFDWHG PP IURP WKH WRS RI WKH LQMHFWRU WXEH DQG WKH WRS WXUQ RI WKH FRLO LV PP IURP WKH VDPSOLQJ FRQH 7KH FRRODQW IORZ H[SHULHQFHV D nVNLQ HIIHFWn EHFDXVH PRVW RI WKH HQHUJ\ IURP WKH FRLO LV FRXSOHG WR WKLV RXWHU UHJLRQ 7KH WHPSHUDWXUH LQ WKLV LQGXFWLRQ UHJLRQ LV 7KH QH[W WXEH FRQWDLQV WKH LQWHUPHGLDWH RU DX[LOLDU\ JDV IORZ DQG NHHSV WKH SODVPD DZD\ IURP WKH WLS RI WKH FHQWUDO TXDUW] WXEH 7KH DX[LOLDU\ IORZ UDWH LV W\SLFDOO\ /PLQ 7KH FHQWUDO JDV IORZ RU LQMHFWRU QHEXOL]HU RU FDUULHU JDV IORZ WUDQVSRUWV WKH DQDO\WH IURP WKH VDPSOH LQWURGXFWLRQ WHFKQLTXH DQG LV QRUPDOO\ DERXW /PLQ %HFDXVH RI WKH VPDOO GLDPHWHU RI WKH LQMHFWRU WXEH D KLJK YHORFLW\ JDV MHW LV IRUPHG LQ WKH LQMHFWRU WXEH ZKLFK SXQFKHV D FRRO FKDQQHO WKURXJK WKH FHQWHU RI WKH SODVPD 7KH JDV LQ WKH FHQWHU FKDQQHO LV KHDWHG E\ UDGLDWLRQ DQG FRQGXFWLRQ IURP WKH LQGXFWLRQ UHJLRQ WR D WHPSHUDWXUH RI WR 7KH FHQWUDO FKDQQHO LV SK\VLFDOO\ GLVWLQFW IURP WKH RXWHU UHJLRQ RI WKH SODVPD WKHUHIRUH VDPSOH FRPSRVLWLRQ FDQ YDU\ ZLWKRXW JUHDWO\ DIIHFWLQJ WKH HOHFWULFDO SURFHVVHV LQ WKH SODVPD 7KH ,&3 FRQWDLQV PDQ\ GLIIHUHQW VSHFLHV WKDW LQWHUDFW ZLWK HDFK RWKHU SK\VLFDOO\ DQG FKHPLFDOO\ 7DEOH LV D OLVW RI WKH PDMRU VSHFLHV IRXQG LQ WKH 7&3 GLVFKDUJH f $ WKRURXJK XQGHUVWDQGLQJ RI DOO WKH SODVPD PHFKDQLVPV KDV QRW \HW EHHQ DFKLHYHG WKH PDMRULW\ RI IXQGDPHQWDO UHVHDUFK KDV IRFXVVHG RQ DQDO\WH H[FLWDWLRQ PHFKDQLVPV 6HYHUDO GLIIHUHQW DQDO\WH H[FLWDWLRQ PHFKDQLVPV KDYH EHHQ SURSRVHG DQG KDYH EHHQ UHYLHZHG E\ %ODGHV HW DO f 7KH PRVW VLJQLILFDQW FROOLVLRQDO DQG UDGLDWLYH

PAGE 27

7DEOH 'RPLQDQW VSHFLHV LQ WKH ,&3 )URP $U JDV $UJRQ DWRP $U $UJRQ LRQ $Ur $UJRQ GLPHUV $Ub $U $UJRQ PROHFXOHV $U2 $U;r )UHH HOHFWURQV Hn )URP VROYHQW $TXHRXV VROYHQW +\GUR[\O UDGLFDO 2+ $WRPL]HG VROYHQW VSHFLHV 2 + 2UJDQLF VROYHQW 'LFDUERQ DQG K\GUR[\O UDGLFDO & 2+ $WRPL]HG VROYHQW VSHFLHV & + 2 6 HWF )URP DQDO\WH DQG FRQFRPLWDQW HOHPHQWV $QDO\WH DWRP 0 $QDO\WH LRQ 9) $QDO\WH PROHFXODU VSHFLHV 02 02r &RQFRPLWDQW DWRPV LRQV DQG PROHFXODU VSHFLHV ;r ;r ;2 HWF )URP HQWUDLQHG DLU $LU1 1b 2 2 1 &2 &2 12 f; UHSUHVHQWV DQ\ HOHPHQW f

PAGE 28

SURFHVVHV DUH OLVWHG EHORZ 7KH JURXQG VWDWH DQDO\WH DWRP 0f DQG LRQ 0cf PD\ XQGHUJR FROOLVLRQDO H[FLWDWLRQ f E\ HOHFWURQV H f 0 H KLJK HQHUJ\f 0S H ORZ HQHUJ\f 0 H KLJK HQHUJ\f rr 0Sr H ORZ HQHUJ\fZKHUH 0S LV WKH H[FLWHG DQDO\WH DWRP DQG 0 r LV WKH H[FLWHG DQG LRQL]HG DQDO\WH DWRP &ROOLVLRQDO LRQL]DWLRQ f DQG WKUHHERG\ UHFRPELQDWLRQ f E\ HOHFWURQV DOVR RFFXU 0 Hn p 0Sr H ([FLWHG DQG LRQL]HG DQDO\WH DWRPV PD\ DOVR EH SURGXFHG IURP FKDUJH WUDQVIHU RI WKH JURXQG VWDWH DQDO\WH ZLWK DQ DUJRQ LRQ $U 0M rr 0S $U $( $& 0 A 0S $U $( 7KH GHH[FLWDWLRQ RI VSHFLHV PD\ DOVR LQYROYH UDGLDWLYH GHFD\ ZLWK SKRWRQ HPLVVLRQ RI HQHUJ\ KYOPH 03 0 KYPH 0S 0 KYOLQH 5DGLDWLYH UHFRPELQDWLRQ RI WKH LRQL]HG DQDO\WH ZLWK DQ HOHFWURQ PD\ RFFXU SURGXFLQJ EDFNJURXQG HPLVVLRQ 0r Hn r 0S KYFRQW 3HQQLQJ LRQL]DWLRQ ZLWK H[FLWHG DUJRQ $Uff PD\ DOVR RFFXU $Uf 0 m 0S $U $( 2I RYHUDOO LPSRUWDQFH LQ &306 LV WKH HIIHFWLYH SURGXFWLRQ RI VLQJO\FKDUJHG LRQV 7KH HIILFLHQF\ RI WKH ,&3 LQ WKLV UHJDUG YDULHV DPRQJ WKH HOHPHQWV JHQHUDOO\

PAGE 29

LQ SURSRUWLRQ WR WKH LRQL]DWLRQ SRWHQWLDO 0RVW HOHPHQWV DUH KLJKO\ LRQL]HG !bf ZKLFK PDNHV WKH ,&3 DQ DOPRVW LGHDO VRXUFH IRU HOHPHQWDO PDVV VSHFWURPHWU\ 7KH GHJUHH RI LRQL]DWLRQ LV QRUPDOO\ ORZ IRU QRQPHWDOV WR QHDU b IRU WKH DONDOL PHWDOV f )LJXUH OLVWV FDOFXODWHG YDOXHV IRU WKH GHJUHH RI LRQL]DWLRQ IRU PRVW HOHPHQWV RI WKH SHULRGLF WDEOH HVWLPDWHG XVLQJ WKH 6DKD HTXDWLRQ f ,QGXFWLYHO\ &RXSOHG 3ODVPD 0DVV 6SHFWURPHWHU ,QWHUIDFH (DFK LQVWUXPHQW PDQXIDFWXUHU KDV WKHLU RZQ LQWHUIDFH GHVLJQ EXW PRVW LQVWUXPHQWV KDYH D VDPSOLQJ DQG VNLPPHU FRQH DQG WKHLU IXQFWLRQV DUH WKH VDPH IRU HDFK LQWHUIDFH 7KH LQVWUXPHQW XVHG LQ WKLV UHVHDUFK ZDV WKH )LQQLJDQ 0$7 62/$ ,&306 7KH GLIIHUHQFH EHWZHHQ WKLV LQVWUXPHQW DQG RWKHUV LV GLVFXVVHG EHORZ 2QFH WKH VDPSOH LV LRQL]HG WKH LRQV IORZ WKURXJK D GLIIHUHQWLDOO\ SXPSHG LRQ H[WUDFWLRQ LQWHUIDFH )LJXUH f ,RQV ILUVW SDVV WKURXJK D VDPSOLQJ FRQH PDGH RI 1L RU 3W ZLWK DQ RULILFH GLDPHWHU RI PP :KLOH WKH SODVPD LV DW DWPRVSKHULF SUHVVXUH WKH DUHD EHKLQG WKH VDPSOLQJ FRQH LV NHSW DW WRUU E\ D P SHU KRXU VLQJOH VWDJH URWDU\ SXPS DQG WKLV SUHVVXUH LV ORZ HQRXJK IRU D VXSHUVRQLF MHW WR IRUP LQ WKLV UHJLRQ $V WKH SODVPD LQWHUDFWV ZLWK WKH VDPSOHU WZR SURFHVVHV WDNH SODFHO f )LUVW WKH SODVPD LV FRROHG DQG GHIOHFWHG $ ERXQGDU\ OD\HU RI JDV IRUPV EHWZHHQ WKH VDPSOHU DQG WKH SODVPD 7KH WHPSHUDWXUH RI WKH ERXQGDU\ OD\HU LV LQEHWZHHQ WKDW RI WKH SODVPD DQG WKH VDPSOHU DQG PROHFXODU VSHFLHV VXFK DV R[LGHV UHDGLO\ IRUP LQ WKLV UHJLRQ

PAGE 30

+ +H /L %H % & 1 2 ) 1H [ [ 1D 0J $ 6L 3 V &O $U &D 6F 7L 9 &U 0Q )H &R 1L &X =Q *D *H $V 6H %U .U f 5E 6U < =U 1E 0R 7F 5X 5K 3G $J &G ,Q 6Q 6E 7H ;H f &V %D /D +I 7D : 5H 2V ,U 3W $X +J 7O 3E %L 3R $W 5Q f f f )U 5D $F &H f 3U f 1G r 3P 6P f (X r *G f 7E r '\ r +R (U r 7P f
PAGE 31

)LJXUH ,QGXFWLYHO\ FRXSOHG SODVPD PDVV VSHFWURPHWHU LQWHUIDFH

PAGE 32

7KH VHFRQG LQWHUDFWLRQ EHWZHHQ WKH SODVPD DQG WKH VDPSOHU LV HOHFWULFDO 7KH SODVPD FRQWDLQV DQ HTXDO QXPEHU RI SRVLWLYH LRQV DQG HOHFWURQV PDNLQJ LW HOHFWULFDOO\ QHXWUDO 7KH PHWDO VDPSOLQJ FRQH DWWUDFWV HOHFWURQV DV ZHOO DV SRVLWLYH LRQV %HFDXVH WKH PRELOLW\ RI HOHFWURQV LV KLJKHU WKDQ WKDW RI LRQV D QHJDWLYH FKDUJH FROOHFWV RQ WKH VXUIDFH RI WKH VDPSOHU 7KH VKHDWK UHJLRQ WKDW IRUPV DURXQG WKH VDPSOHU LV GHSOHWHG RI HOHFWURQV DQG FRQWDLQV DQ H[FHVV RI SRVLWLYH LRQV %HFDXVH WKH VDPSOHU LV JURXQGHG WKH SODVPD VHHPV WR IORDW DW D SRVLWLYH SRWHQWLDO ,Q DGGLWLRQ WR LQGXFWLYH FRXSOLQJ EHWZHHQ WKH ORDG FRLO DQG WKH WRUFK WKH ORDG FRLO LV DOVR HOHFWURVWDWLFDOO\ FRXSOHG WKURXJK WKH WRUFK ZDOO E\ WKH FDSDFLWDQFH EHWZHHQ WKH WZR 7KH FDSDFLWLYH FRXSOLQJ LV GHSHQGHQW RQ WKH DUUDQJHPHQW RI HOHFWULFDO FRQQHFWLRQV WR WKH FRLO &RQYHQWLRQDOO\ RQH HQG RI WKH FRLO LV JURXQGHG DQG RQH HQG LV FRQQHFWHG WR WKH KLJK YROWDJH 5) VRXUFH 7KLV UHVXOWV LQ D SRWHQWLDO JUDGLHQW DORQJ WKH FRLO H[FHSW DW WKH PRPHQW ZKHQ WKH ILHOG SRODULW\ UHYHUVHV :KHQ WKH SODVPD FRQWDFWV WKH VDPSOHU DQG SDUWLDOO\ HQWHUV WKH RULILFH WKH SODVPD DQG FRQH DUH FRXSOHG WKURXJK WKH WKLQ VKHDWK 7KH UHVLVWDQFH RI WKH VKHDWK LV OHVV WKDQ WKDW RI WKH FDSDFLWDWLYH LPSHGDQFH EHWZHHQ WKH FRQH DQG SODVPD DQG WKH SODVPDnV 5) SRWHQWLDO LV GHWHUPLQHG E\ WKH UDWLR RI WKH WZR LPSHGDQFHV $V 5) FXUUHQW WUDYHOV WKURXJK WKH LQWHUIDFH WKH SODVPD IORZ WR WKH VDPSOHU LV PRGLILHG E\ WKH GLIIHUHQW PRELOLWLHV RI WKH SRVLWLYH LRQV DQG HOHFWURQV LQ WKH VKHDWK UHJLRQ 'XULQJ QHJDWLYH KDOI F\FOHV WKH FXUUHQW LV FDUULHG E\ HOHFWURQV ZKLFK PRYH IDVWHU WKDQ SRVLWLYH LRQV WKDW FDUU\ WKH FXUUHQW GXULQJ SRVLWLYH KDOI F\FOHV 7KLV UHVXOWV LQ WKH SODVPD FDUU\LQJ D QHW PHDQ SRVLWLYH '& SRWHQWLDO ZKLFK PD\ EH ODUJHU WKDQ WKH IORDWLQJ

PAGE 33

SRWHQWLDO GXH WR WKH VKHDWK DORQH 7\SLFDOO\ WKH SODVPD PD\ IORDW DW D SRVLWLYH SRWHQWLDO RI 9 IURP WKH JURXQGHG VDPSOLQJ FRQH f :KHQ WKH SODVPD SRWHQWLDO LV KLJK WKHUH LV DQ HOHFWULFDO GLVFKDUJH EHWZHHQ WKH SODVPD DQG WKH VDPSOLQJ RULILFH FDOOHG WKH VHFRQGDU\ GLVFKDUJH ,W LV REVHUYHG DV D EULJKW ZKLWH HPLVVLRQ IURP WKH JDV IORZLQJ LQWR WKH RULILFH 7KLV VHFRQGDU\ GLVFKDUJH LV XQGHVLUDEOH EHFDXVH LW HURGHV WKH VDPSOLQJ RULILFH SURGXFHV PXOWLSO\ FKDUJHG LRQV DQG LQGXFHV KLJK NLQHWLF HQHUJLHV DQG D ODUJH VSUHDG RI NLQHWLF HQHUJ\ LQ WKH LRQ EHDP 0LQLPL]LQJ WKH GLVFKDUJH ZDV DQ LPSRUWDQW VWHS LQ WKH HDUO\ GHYHORSPHQW RI ,&306 7KLV ZDV DFFRPSOLVKHG LQ VHYHUDO ZD\V 0RGLI\LQJ WKH ORDG FRLO E\ JURXQGLQJ WKH HQG FORVHVW WR WKH FRQH UHGXFHG WKH HOHFWULF ILHOG FORVH WR WKH VDPSOHU 7KH SODVPD SRWHQWLDO ZDV DOVR UHGXFHG E\ XVLQJ D ORZ DHURVRO JDV IORZ UDWH /PLQf RU UHGXFLQJ WKH VROYHQW ORDG RQ WKH SODVPD 8VLQJ D WZRWXUQ LQVWHDG RI D WKUHHWXUQ FRLO RU PRYLQJ WKH FRLO FORVHU WR WKH FRQH DOVR PLQLPL]HG WKH GLVFKDUJH ,W LV WKRXJKW WKDW WKHVH ODVW WZR PRGLILFDWLRQV FKDQJH WKH WHPSHUDWXUH DQG LRQ QXPEHU GHQVLW\ RI WKH SODVPD ZKLFK DIIHFWV WKH VKHDWK FRQGLWLRQV FKDQJLQJ WKH SODVPD SRWHQWLDO 2QH PRGLILFDWLRQ WKDW DOPRVW WRWDOO\ HOLPLQDWHG WKH VHFRQGDU\ GLVFKDUJH ZDV WKH FHQWHU WDSSHG FRLO ZKLFK ZDV GHYHORSHG E\ 'RXJODV DQG )UHQFK f ,Q WKLV DUUDQJHPHQW WKH FHQWHU WXUQ RI WKH FRLO ZDV JURXQGHG ZKLOH YROWDJHV RI HTXDO PDJQLWXGH EXW RSSRVLWH SRODULW\ ZHUH DSSOLHG WR HDFK HQG 7KH SRVLWLYH JUDGLHQW IURP RQH HQG WR WKH FHQWHU ZDV EDODQFHG E\ WKH RSSRVLWH SKDVH QHJDWLYH JUDGLHQW RQ WKH RWKHU HQG 7KLV UHVXOWHG LQ D ORZ ELDV SRWHQWLDO LQ WKH SODVPD 7KH FHQWHU WDSSHG ORDG

PAGE 34

FRLO ZDV ILUVW DYDLODEOH RQ WKH HDUO\ 6FLH[ (/$1 LQVWUXPHQWV 7KLV DUUDQJHPHQW SURYLGHG D JUHDW DGYDQWDJH IRU WKHVH LQVWUXPHQWV LQ WKH PDUNHWSODFH +RZHYHU WKH RWKHU PRGLILFDWLRQV GLVFXVVHG DERYH UHGXFHG WKH GLVFKDUJH VXIILFLHQWO\ VR WKDW WKLV DUUDQJHPHQW ZDV QRW QHFHVVDU\ IRU WKH GHYHOSPHQW RI ,&306 $V WKH LRQV SDVV WKURXJK WKH VDPSOLQJ RULILFH D ODUJH QXPEHU RI FROOLVLRQV FRQYHUW WKH UDQGRP PRWLRQ LQWR GLUHFWHG PDVV IORZ DORQJ WKH EHDP D[LV f $ VKRFN ZDYH IRUPV GXH WR FROOLVLRQV ZLWK EDFNJURXQG JDV PROHFXOHV DQG WKH OHDGLQJ HGJH LV FDOOHG WKH 0DFK 'LVF )LJXUH f 7KH SRVLWLRQ RI WKH 0DFK 'LVF LV JLYHQ E\ (TQ f ;P 'R3\3ffL ZKHUH A LV WKH GLVWDQFH RI WKH 0DFK GLVF IURP WKH VDPSOLQJ RULILFH LV WKH GLDPHWHU RI WKH VDPSOLQJ RULILFH 3 LV WKH SUHVVXUH RI WKH ,&3 DQG 3 LV WKH EDFNJURXQG SUHVVXUH LQ WKH H[WUDFWLRQ FKDPEHU 7KH IRUPDWLRQ RI WKH VXSHUVRQLF MHW DOORZV IRU WKH H[WUDFWLRQ RI DQ HVVHQWLDOO\ XQGLVWXUEHG EXON SODVPD 7KH VNLPPHU FRQH ORFDWHG PP EHKLQG WKH VDPSOHU KDV D PP RULILFH GLDPHWHU 7KLV FRQH H[WUDFWV RQO\ WKH FHQWHU RI WKH VXSHUVRQLF MHW RU OHVV WKDQ b RI WKH SODVPD VR WKDW D PLQLPXP RI R[LGHV SDVVHV WKURXJK LQWR WKH PDVV VSHFWURPHWHU 7KH VNLPPHU LV SODFHG ZLWK LWV RULILFH LQVLGH WKH 0DFK GLVF WR DYRLG ORVVHV RI LRQV GXH WR FROOLVLRQV DQG VFDWWHULQJ DQG LWV RSWLPXP SRVWLRQ IURP WKH VDPSOHU LV DERXW RI

PAGE 35

=RQH RI 6LOHQFH )LJXUH 6XSHUVRQLF MHW .!

PAGE 36

WKH GLVWDQFH WR WKH RQVHW RI WKH 0DFK GLVF ;f 7KH FHQWHU RI WKH ]RQH RI VLOHQFH SDVVHV WKURXJK WKH VNLPPHU FRQH LQWR WKH QH[W YDFXXP VWDJH 7KH 62/$ KDV DQ DFFHOHUDWRU FRQH ZKLFK LV XQLTXH WR WKLV LQVWUXPHQW ORFDWHG PP EHKLQG WKH VNLPPHU f 7KLV UHJLRQ LV SXPSHG E\ D /V WXUER SXPS ZKLFK NHHSV WKH SUHVVXUH DW DERXW [ WRUU 7KLV FRQH KDV D YROWDJH RI N9 DSSOLHG WR LW ZKLFK IRFXVHV DQG DFFHOHUDWHV WKH LRQ EHDP $ FURVVRYHU )LJXUH f RFFXUV LQ WKH FHQWHU RI WKH FRQH IRU D ODUJH UDQJH RI HQHUJLHV DQG DQJOHV RI LRQV H[LWLQJ WKH VNLPPHU ,W DOVR DFWV DV WKH GLIIHUHQWLDO SXPSLQJ DSHUWXUH EHWZHHQ WKH LQWHUPHGLDWH DQG KLJK YDFXXP UHJLRQV RI WKH LQVWUXPHQW 7KH PRVW LPSRUWDQW DGYDQWDJH RI WKH DFFHOHUDWRU FRQH LV WKDW LW UHGXFHV VSDFH FKDUJH HIIHFWV WKDW DUH FRPPRQO\ REVHUYHG LQ ,&306 6SDFH FKDUJH HIIHFWV RFFXU EHKLQG WKH VNLPPHU FRQH ZKHQ WKH LRQV HPHUJH DV D FROXPQ RI SRVLWLYHO\ FKDUJHG SDUWLFOHV (DFK LV UHSHOOHG E\ WKH FRXORPE IRUFH HU DQG WKH WUDQVYHUVH DFFHOHUDWLRQ LV SURSRUWLRQDO WR HPU 7KHUHIRUH LRQV ZLWK OLJKWHU PDVVHV ZLOO EH UHSHOOHG IDVWHU DQG LI WKH WLPH LW WDNHV IRU WKH LRQV WR SDVV WKURXJK WKH LRQ RSWLFV LV ORQJ ZKHQ FRPSDUHG ZLWK WKH WLPH LW WDNHV IRU WKH OLJKWHU LRQV WR EH UHSHOOHG WKH UHVXOW LV ORVV RI WKH OLJKWHU LRQV :LWK WKH DFFHOHUDWRU FRQH LQ SODFH EHKLQG WKH VNLPPHU WKH GLVWDQFH WUDYHOOHG WKURXJK WKH KLJK SUHVVXUH UHJLRQ EHKLQG WKH VNLPPHU FRQH LV PLQLPL]HG UHGXFLQJ WKH WUDQVLW WLPH UHGXFLQJ VSDFH FKDUJH HIIHFWV

PAGE 37

$FFHOHUDWRU &RQH ,QWHUQHG 5RWDU\ 7XUER 3XPS )LJXUH 6DPSOLQJ ,QWHUIDFH R?

PAGE 38

0DVV 6SHFWURPHWHU ,RQ 7UDQVIHU 2SWLFV ,Q DQ ,&306 V\VWHP LW LV LPSRUWDQW WR UHPRYH QHXWUDOV EHFDXVH WKH\ LQWHUDFW ZLWK LRQV DQG SKRWRQV QHHG DOVR EH UHPRYHG EHFDXVH WKH\ DUH GHWHFWHG DV VLJQDO E\ WKH GHWHFWLRQ V\VWHP XVHG &RQYHQWLRQDO ,&306 V\VWHPV XVH D EHVVHO ER[ WR UHPRYH SKRWRQV DQG QHXWUDOV IURP WKH LRQ EHDP HPHUJLQJ IURP WKH SODVPD ,W FRQWDLQV D FHQWUDO VWRS ZKLFK SK\VLFDOO\ UHPRYHV WKHVH VSHFLHV ,RQV DUH HOHFWURVWDWLFDOO\ VWHHUHG DURXQG WKH VWRS DQG UHIRFXVVHG LQWR DQ H[LW VOLW 7KH 62/$ ,&306 HPSOR\V WKH DFFHOHUDWRU FRQH WR SURGXFH D KLJK YHORFLW\ VWUHDP RI LRQV FRQGHQVHG LQWR D WLJKWO\ IRFXVVHG EHDP 7KLV EHDP LV GLYHUWHG RII D[LV DQG ODWHU UHDOLJQHG WR H[LW SDUDOOHO WR WKH HQWU\ EHDP LQWR WKH TXDGUXSROH PDVV ILOWHU f %HFDXVH WKH QHHG IRU WKH FHQWUDO VWRS LV HOLPLQDWHG WKH 62/$ V\VWHP LV UHSRUWHG WR KDYH D KLJKHU WUDQVPLVVLRQ DQG D ORZHU EDFNJURXQG WKDQ FRQYHQWLRQDO ,&306 LQVWUXPHQWV $ GLDJUDP RI WKH WUDQVIHU RSWLFV LV VKRZQ LQ )LJXUH 7KH ;< GHIOHFWRUV DQG IRFXV SODWH VWHHU WKH LRQ EHDP RII D[LV 7KH < VWHHU UHDOLJQV WKH EHDP VR WKDW LW LV SDUDOOHO WR WKH HQWUDQFH EHDP %HFDXVH WKH 62/$ LRQ RSWLFV DUH RSHUDWHG DW SRWHQWLDOV KLJKHU WKDQ QRUPDOO\ XVHG LQ ,&306 LQVWUXPHQWV WKH HQHUJ\ RI WKH LRQV HPHUJLQJ IURP WKH LRQ RSWLFV LV WRR KLJK IRU WKH TXDGUXSROH ILOWHU 7KH TXDGUXSROH UHTXLUHV LRQV RI ORZ HQHUJ\ VR WKDW WKH\ KDYH HQRXJK UHVLGHQFH WLPH LQ WKH HOHFWULF ILHOG WR EH GLIIHUHQWLDWHG ,Q RUGHU WR VROYH WKLV SUREOHP D UHWDUGLQJ OHQV RU WKH SKDVH PDWFK

PAGE 39

;< 'HIOHFWRUV )RFXV $QDO\]HU 7XUER )LJXUH ,RQ WUDQVIHU RSWLFV X RR

PAGE 40

OHQV SODFHG EHIRUH WKH TXDGUXSROH PDWFKHV WKH YHORFLW\ RI WKH LRQV WR WKDW UHTXLUHG E\ WKH DQDO\]HU 7KH LPSRUWDQW DGYDQWDJH RI WKH 62/$ LRQ RSWLFV LV WKDW PDVV ELDV HIIHFWV DUH UHGXFHG 0DVV ELDV HIIHFWV DUH HOHFWURVWDWLF LQ QDWXUH DQG DUH REVHUYHG DV D ORVV LQ WKH WUDQVPLVVLRQ RI LRQV DW ERWK HQGV RI WKH PDVV UDQJH 7KH DFWLRQ RI WKH LRQ WUDQVIHU OHQVHV LV EDVHG RQ WKH HQHUJ\ RI SDUWLFOHV SDVVLQJ WKURXJK WKH V\VWHP 7KH V\VWHP LV WXQHG VR WKDW RQH HQHUJ\ LV HIILFLHQWO\ WUDQVIHUUHG ZLWK D UHGXFHG HIILFLHQF\ IRU SDUWLFOHV RI GLIIHUHQW HQHUJLHV +RZHYHU LQ ,&306 ZKHQ SDUWLFOHV HPHUJH IURP WKH VDPSOHU DQG VNLPPHU FRQHV WKH\ DUH DW WKH VDPH YHORFLW\ WKXV WKHLU HQHUJLHV DUH PDVV GHSHQGHQW 7KH 62/$ LQWHUIDFH UHGXFHV PDVV ELDV HIIHFWV E\ PHDQV RI D WUDQVIHU OHQV V\VWHP RSHUDWHG DW KLJKHU SRWHQWLDOV 7KLV HOLPLQDWHV PDVV GLVFULPLQDWLRQ EHFDXVH D ZLGH UDQJH RI HQHUJLHV FDQ EH IRFXVVHG LQWR WKH TXDGUXSOHV 4XDGUXSROH 0DVV $QDO\]HU $ WKRURXJK UHYLHZ RI TXDGUXSROH PDVV DQDO\]HUV PD\ EH IRXQG LQ 'DZVRQ f DQG :DWVRQ f RQO\ D EULHI GHVFULSWLRQ LV JLYHQ KHUH 7KH TXDGUXSROH PDVV DQDO\]HU FRQVLVWV RI IRXU SDUDOOHO URGV DUUDQJHG V\PPHWULFDOO\ 'LDJRQDOO\ RSSRVLWH URGV DUH FRQQHFWHG WRJHWKHU DQG 5) DQG '& YROWDJHV DUH DSSOLHG WR HDFK SDLU 7KH '& YROWDJH LV SRVLWLYH IRU RQH SDLU DQG QHJDWLYH IRU WKH RWKHU DQG WKH 5) YROWDJHV DUH RI HTXDO DPSOLWXGH EXW RSSRVLWH VLJQ ,RQV IURP WKH WUDQVIHU OHQVHV WUDYHO DORQJ WKH ORQJLWXGLQDO D[LV RI WKH IRXU URGV ,RQV RI RQH PDVV DUH WUDQVPLWWHG ZKLOH LRQV RI RWKHU PDVVHV KDYH XQVWDEOH WUDMHFWRULHV FROOLGH ZLWK WKH URGV DQG GR QRW UHDFK WKH

PAGE 41

GHWHFWRU 7KH PDVV VSHFWUXP LV VFDQQHG E\ YDU\LQJ WKH DPSOLWXGH RI WKH YROWDJHV ZKLOH NHHSLQJ WKH UDWLR RI 5) WR '& YROWDJH FRQVWDQW 7KH PDVV RI WKH LRQV WUDQVPLWWHG LQFUHDVHV OLQHDUO\ ZLWK WKH PDJQLWXGH RI WKH '& DQG 5) YROWDJHV DQG UHVXOWV LQ D OLQHDU PDVV VFDOH 7KH PDVV UHVROXWLRQ LV VHW E\ WKH UDWLR RI 5) WR '& YROWDJHV DQG LQ SUDFWLFH KDV D OLPLW (TQ f 5 QF ZKHUH Q LV WKH QXPEHU RI 5) F\FOHV WKH LRQV VSHQG LQ WKH 5) )LHOG DQG F LV D FRQVWDQW QRUPDOO\ 7KH UHVROXWLRQ LV QRUPDOO\ D XQLW PDVV DQG WKHUH LV D WUDGHRII EHWZHHQ UHVROXWLRQ DQG VHQVLWLYLW\ %HFDXVH UHVROXWLRQ LV D IXQFWLRQ RI WKH '& WR 5) YROWDJH UDWLR DV WKH UDWLR LV DGMXVWHG IRU WKH PD[LPXP UHVROXWLRQ IHZHU LRQV DUH VWDEOH LQ WKH TXDGUXSROH ILHOG DQG WKH VHQVLWLYLW\ GHFUHDVHV ,RQ 'HWHFWLRQ 7KH )DUDGD\ SODWH RU FXS LV WKH VLPSOHVW PRVW LQH[SHQVLYH DQG PRVW UHOLDEOH LRQ GHWHFWRU +RZHYHU LW GRHV KDYH VRPH GLVDGYDQWDJHV LQFOXGLQJ KLJK QRLVH DQG VORZ UHVSRQVH WLPH $V SRVLWLYH LRQV VWULNH WKH FROOHFWRU WKH\ DUH QHXWUDOL]HG E\ HOHFWURQV GUDZQ IURP JURXQG DIWHU EHLQJ SDVVHG WKURXJK D KLJK RKPLF UHVLVWRU 7KH YROWDJH DFURVV WKH UHVLVWRU LV DPSOLILHG DQG LV D PHDVXUH RI WKH LRQ FXUUHQW 7KH DPSOLILHG VLJQDO LV GLUHFWO\ SURSRUWLRQDO WR WKH QXPEHU RI LRQV DQG WKH QXPEHU RI

PAGE 42

FKDUJHV SHU LRQ 7KH GHWHFWRU UHVSRQVH LV LQGHSHQGHQW RI WKH HQHUJ\ PDVV DQG FKHPLFDO QDWXUH RI WKH LRQV 7KH HOHFWURQ PXOWLSOLHU LV WKH PRVW SRSXODU LRQ GHWHFWRU EHFDXVH LW KDV D ORZ QRLVH OHYHO DQG D IDVW UHVSRQVH WLPH 7KLV GHWHFWRU W\SLFDOO\ LPSURYHV WKH VLJQDO VHQVLWLYLW\ E\ WKUHH RUGHUV RI PDJQLWXGH 7KH HOHFWURQ PXOWLSOLHU FRQVLVWV RI D JODVV WXEH FRDWHG ZLWK D KLJK UHVLVWDQFH ILOP 7KH LRQ EHDP LV IRFXVVHG RQWR WKH HQWUDQFH RI WKH GHWHFWRU ZKLFK HPLWV HOHFWURQV LQ GLUHFW SURSRUWLRQ WR WKH QXPEHU RI ERPEDUGLQJ LRQV 7KH VHFRQGDU\ HOHFWURQV DUH DFFHOHUDWHG DQG VWULNH DQRWKHU DUHD RI WKH GHWHFWRU ZKLFK HPLWV VHFRQGDU\ HOHFWURQV 7KLV FDVFDGLQJ HIIHFW FRQWLQXHV DQG WKH QXPEHU RI HOHFWURQV HMHFWHG LV JUHDWHU WKDQ WKH QXPEHU KLWWLQJ LW 7KH ILQDO FROOHFWRU WKH DQRGH LV FRQQHFWHG WR D FRQYHQWLRQDO DPSOLILHU 7KH HOHFWURQ PXOWLSOLHU LV QRW DV VWDEOH DV WKH )DUDGD\ SODWH EHFDXVH WKH JDLQ GHSHQGV RQ WKH FRQGLWLRQ RI WKH FRDWLQJ 7KHUH LV DOVR VRPH PDVV GLVFULPLQDWLRQ DVVRFLDWHG ZLWK XVLQJ WKLV GHWHFWRU 7KH FRHIILFLHQW RI VHFRQGDU\ HPLVVLRQ LV GHSHQGHQW RQ WKH PDVV FKDUJH DQG QDWXUH RI WKH LQFLGHQW SDUWLFOHV VR WKDW DQ LRQ ZLWK PDVVWRFKDUJH UDWLR ZLOO SURGXFH PRUH VHFRQGDU\ HOHFWURQV WKDQ RQH ZLWK PDVVWR FKDUJH UDWLR 2YHUORDGLQJ DQG VDWXUDWLQJ RI WKH GHWHFWRU RFFXUV DW DQ RXWSXW FXUUHQW JUHDWHU WKDQ n $ $QDO\WLFDO &KDUDFWHULVWLFV RI ,&306 ,&306 LV D WHFKQLTXH ZKLFK FRPELQHV WKH HIILFLHQW LRQL]DWLRQ DELOLWLHV RI WKH ,&3 DQG WKH VHQVLWLYLW\ DQG VHOHFWLYLW\ RI 06 GHWHFWLRQ 7KLV FRPELQDWLRQ UHVXOWV LQ

PAGE 43

D YHU\ VHQVLWLYH WHFKQLTXH IRU HOHPHQWDO DQDO\VLV 7KHUH KDYH EHHQ VHYHUDO UHYLHZV RI ,&306 FRYHULQJ DSSOLFDWLRQV DQG JHQHUDO VWXGLHV RI WKH WHFKQLTXH f :KHQ QHEXOL]LQJ DTXHRXV VROXWLRQV ,&306 KDV VHYHUDO DGYDQWDJHV ,W KDV D EURDG OLQHDU G\QDPLF UDQJH XS WR RUGHUV RI PDJQLWXGHf PDGH SRVVLEOH LQ VRPH FDVHV E\ WKH XVH RI WZR LRQ GHWHFWRUV ,W LV FDSDEOH RI PXOWLHOHPHQWDO DQDO\VLV GXH WR WKH EURDG UDQJH RI HOHPHQWV LRQL]HG E\ WKH ,&3 DQG WKH UDSLG DFTXLVLWLRQ RI PDVV VSHFWUDO GDWD 'HWHFWLRQ OLPLWV XVLQJ ,&306 DUH ORZ SJ/f IRU PRVW HOHPHQWV DQG WKH WHFKQLTXH SURGXFHV VLPSOH PDVV VSHFWUD ZLWK QRW PRUH WKDQ OLQHV SHU HOHPHQW ,W KDV JRRG VLJQDO VWDELOLW\ sb 56' IRU VHYHUDO KRXUVf DQG LV FDSDEOH RI LVRWRSLF DQDO\VLV 7KH ODUJHVW REVWDFOH LQ ,&306 LV WKH SUHVHQFH RI LQWHUIHUHQFHV DULVLQJ IURP GLIIHUHQW VRXUFHV f )RU WKLV UHDVRQ VHYHUDO IDFWRUV PXVW EH FRQVLGHUHG ZKHQ XVLQJ ,&306 7KHVH LQFOXGH WRWDO VROXWH FRQWHQW RI WKH VDPSOH DQG SRWHQWLDO LQWHUIHUHQFHV IURP WKH EDFNJURXQG VSHFWUXP DQG WKH PDWUL[ FRPSRQHQWV ,QWHUIHUHQFHV PD\ GLYLGHG LQWR WZR JHQHUDO JURXSV VSHFWURVFRSLF DQG QRQVSHFWURVFRSLF RU PDWUL[ HIIHFWV 6SHFWURVFRSLF HIIHFWV DUH ZHOO XQGHUVWRRG DQG FDQ IXUWKHU EH GLYLGHG LQWR IRXU FDWHJRULHV LVREDULF RYHUODS SRO\DWRPLF LRQV UHIUDFWRU\ R[LGH LRQV DQG GRXEO\ FKDUJHG LRQV ,VREDULF RYHUODS RFFXUV ZKHQ WZR HOHPHQWV KDYH LVRWRSHV RI VLPLODU PDVVHV WKDW FDQQRW EH UHVROYHG E\ WKH PDVV VSHFWURPHWHU 0RVW HOHPHQWV KDYH WR LVRWRSHV IUHH IURP LVREDULF RYHUODS H[FHSW LQGLXP DQG WKLV SUREOHP FDQ JHQHUDOO\ EH FRUUHFWHG $Q LVRWRSH RI WKH LQWHUIHULQJ HOHPHQW WKDW LV IUHH RI RYHUODS LV PHDVXUHG

PAGE 44

7KH UHODWLYH FRQWULEXWLRQ RI WKH RYHUODSSLQJ LVRWRSH PD\ WKHQ EH FDOFXODWHG XVLQJ LVRWRSH DEXQGDQFH LQIRUPDWLRQ 0DQ\ FRPPHUFLDO LQVWUXPHQWV FDQ LQFRUSRUDWH WKHVH FRUUHFWLRQV LQ WKHLU GDWD FROOHFWLRQ VRIWZDUH 3RO\DWRPLF LRQV DULVH IURP WKH GRPLQDQW VSHFLHV SUHVHQW LQ WKH SODVPD 7DEOH f 7KH\ RQO\ SUHVHQW VLJQLILFDQW SUREOHPV DW PDVVHV EHORZ 7KH\ FDQ EH GHSHQGHQW RQ WKH VSHFLILF LQVWUXPHQW DQG DUH GLIILFXOW WR FRUUHFW GXH WR WKH LQVWDELOLW\ RI WKH SRO\DWRPLF LRQ VLJQDO %HFDXVH WKHVH LQWHUIHUHQFHV DUH VRPHZKDW GHSHQGHQW RQ VDPSOH FRPSRVLWLRQ WKH\ ZLOO YDU\ ZLWK W\SH RI VDPSOH KRZHYHU SRO\DWRPLF LRQV SUHVHQW LQ GLOXWH DTXHRXV VROXWLRQV KDYH EHHQ ZHOO VWXGLHG f 7DEOH OLVWV WKRVH DULVLQJ IURP QHEXOL]DWLRQ RI D b QLWULF DFLG DTXHRXV VROXWLRQ 7KH HOHPHQWV PRVW DIIHFWHG E\ LQWHUIHUHQWV DUH 6L 3 6 &O &D &U DQG )H 1LWULF DFLG UHVXOWV LQ WKH FOHDQHVW EDFNJURXQG VSHFWUXP DV FRPSDUHG WR K\GURFKORULF DQG VXOIXULF DFLGV DQG LV WKH SUHVHUYDWLYH RI FKRLFH IRU ,&306 /RZH DQG 6WDKO f VWXGLHG WKH SRO\DWRPLF LRQ LQWHUIHUHQWV SUHVHQW ZKHQ DQ RUJDQLF VROYHQW LV QHEXOL]HG LQWR WKH ,&306 7KHLU UHVXOWV LQFOXGLQJ GHWHFWLRQ OLPLWV IRU DIIHFWHG DQDO\WH LRQV DUH SUHVHQWHG LQ 7DEOH 6HYHUDO RI WKH DQDO\WH HOHPHQWV KDG SRRUHU GHWHFWLRQ OLPLWV GXH WR WKH LQWHUIHUHQWV DQG 0J FRXOG QRW EH GHWHUPLQHG 5HIUDFWRU\ R[LGHV PD\ EH SUHVHQW GXH WR WKH LQFRPSOHWH GLVVRFLDWLRQ RI VDPSOH PDWUL[ RU IURP UHFRPELQDWLRQ UHDFWLRQV LQ WKH SODVPD *HQHUDOO\ R[LGH IRUPDWLRQ LV OHVV WKDW b EXW LW LV GHSHQGHQW RQ WKH SODVPD RSHUDWLQJ FRQGLWLRQV DQG QHEXOL]HU IORZ UDWH 7KH IRUPDWLRQ RI GRXEO\ FKDUJHG LRQV GHSHQGV RQ WKH VHFRQG LRQL]DWLRQ HQHUJ\ RI WKH HOHPHQW DQG WKH FRQGLWLRQ SODVPD HTXLOLEULXP 2QO\ HOHPHQWV ZLWK D

PAGE 45

7DEOH ,QWHUIHULQJ LRQV LQ QHEXOL]DWLRQ RI b +12 0DVV (OHPHQW DEXQGDQFHf ,QWHUIHUHQW f T )f + 1Hf 2+ 6Lf QQ FR 6Lf 1,1+ Q&2+ 6Lf QR 3f 1OI!2+ 6f O 6f + 6f f 2O2+ $Uf &Df .f $U .f $U+ &Uf A$UA& $U )Hf $U1 )Hf $U2 6Hf .Uf X$U$U %Uf A$UA$U+ f

PAGE 46

7DEOH ,QWHUIHULQJ LRQV LQ RUJDQLF VROXWLRQ QHEXOL]DWLRQ (OHPHQW 'HWHFWLRQ /LPLW SJP/f ,QWHUIHUHQW 0J r LF f0J FF FK $ 7L VR F m9 L$U& NMr R Q  &U $U2 )H $U2 1L $U2 0=Q $U&6 6 f=Q $U&1 A$Unn4 VR =Q $U&O2 f7KHVH LVRWRSHV ZHUH QRW DEOH WR EH GHWHFWHG f

PAGE 47

VHFRQG LRQL]DWLRQ HQHUJ\ ORZHU WKDQ WKH ILUVW LRQL]DWLRQ HQHUJ\ RI DUJRQ ZLOO IRUP DQ\ GRXEO\ FKDUJHG LRQV 7KHVH LQFOXGH WKH DONDOLQH HDUWK HOHPHQWV VRPH WUDQVLWLRQ PHWDOV DQG UDUH HDUWK HOHPHQWV +RZHYHU WKH QXPEHU RI GRXEO\ FKDUJHG LRQV LV QRUPDOO\ OHVV WKDQ b 7KH IRUPDWLRQ RI GRXEO\ FKDUJHG LRQV KDV WZR HIIHFWV LW GHFUHDVHV WKH QXPEHU RI VLQJO\ FKDUJHG LRQV UHGXFLQJ VHQVLWLYLW\ DQG SURGXFHV LVRWRSLF RYHUODSV DW KDOI WKH DQDO\WH PDVV 6HYHUDO PHWKRGV KDYH EHHQ DWWHPSWHG WR UHGXFH VSHFWURVFRSLF LQWHUIHUHQFHV ,QVWUXPHQW RSWLPL]DWLRQ LV WKH PRVW REYLRXV PHWKRG 1HEXOL]HU IORZ UDWHV VDPSOLQJ GHSWK DQG ,&3 IRUZDUG SRZHU FDQ EH YDULHG WR UHGXFH VSHFWURVFRSLF LQWHUIHUHQFHV f 0L[HG JDV SODVPDV RU +H SODVPDV DV ZHOO DV GLIIHUHQW SODVPD W\SHV KDYH EHHQ XVHG DV GLVFXVVHG SUHYLRXVO\ LQ WKLV FKDSWHU 8VLQJ +H SODVPDV UHGXFHV WKH $U SRO\DWRPLF LRQV KRZHYHU LW LQWURGXFHV D ZKROH QHZ VHW RI +H LQWHUIHUHQWV 7KH DGGLWLRQ RI PROHFXODU JDVHV LPSURYHV WKH WUDQVIHU RI HQHUJ\ ZLWKLQ WKH SODVPD EHFDXVH RI WKHLU KLJKHU WKHUPDO FRQGXFWLYLWLHV 6DPSOH LQWURGXFWLRQ WHFKQLTXHV RWKHU WKDQ QHEXOL]DWLRQ VXFK DV (79 ODVHU DEODWLRQ /$f RU FU\RJHQLF GHVROYDWLRQ f RIWHQ UHGXFH WKH OHYHO RI VSHFWURVFRSLF LQWHUIHUHQFHV E\ LQWURGXFLQJ D nGU\n VDPSOH 7KLV UHGXFHV SRO\DWRPLF LRQV GXH WR K\GURJHQ DQG R[\JHQ $QRWKHU VROXWLRQ ZKLFK ZDV DOVR GLVFXVVHG HDUOLHU LQ WKLV FKDSWHU LV WR XVH D GLIIHUHQW W\SH RI PDVV GLVFULPLQDWRU WKDW FDQ HIIHFWLYHO\ UHVROYH WKH LQWHUIHUHQWV IURP WKH DQDO\WHV RI LQWHUHVW 0DWUL[ HIIHFWV DUH QRW DV ZHOO XQGHUVWRRG f DQG FDQ EH GLYLGHG LQWR WZR FDWHJRULHV VXSSUHVVLRQ DQG HQKDQFHPHQW HIIHFWV DQG SK\VLFDO HIIHFWV 6XSSUHVVLRQ DQG HQKDQFHPHQWV HIIHFWV RFFXU ZKHQ WKH SUHVHQFH RI RQH VSHFLHV UHGXFHV RU LQFUHDVHV

PAGE 48

WKH VLJQDO REWDLQHG IURP WKH DQDO\WH ZKLFK GHSHQGV RQ WKH W\SH RI VDPSOH DQG LWV FRQFRPLWDQW VSHFLHV ,Q JHQHUDO WKH ORZHU WKH PDVV DQG WKH GHJUHH RI LRQL]DWLRQ RI WKH DQDO\WH WKH JUHDWHU WKH HIIHFW RI DQ DGGHG PDWUL[ HOHPHQW RQ WKH LRQ VLJQDO RI WKH DQDO\WH 7KHUH LV DOVR DQ LQFUHDVHG HIIHFW RQ WKH DQDO\WH VLJQDO ZKHQ WKH DWRPLF PDVV DQG GHJUHH RI LRQL]DWLRQ RI WKH DGGHG PDWUL[ HOHPHQW LV KLJKHU 1RUPDOO\ WKHVH HIIHFWV DUH QRW VHYHUH EXW GLOXWLRQ RI WKH VDPSOH LV RQH VROXWLRQ 7KH XVH RI D FORVHO\ PDWFKHG LQWHUQDO VWDQGDUG f DQG VWDQGDUG DGGLWLRQ FDOLEUDWLRQ WHFKQLTXHV f KDYH DOVR EHHQ DWWHPSWHG 9DU\LQJ LQVWUXPHQW SDUDPHWHUV KDV DOVR GHFUHDVHG PDWUL[ LQWHUIHUHQFHV f 7KH PRVW HIIHFWLYH PHWKRG RI UHGXFLQJ PDWUL[ HIIHFWV IRU VRPH VDPSOHV LV WR VHSDUDWH WKH DQDO\WH IURP WKH PDWUL[ XVLQJ FKURPDWRJUDSK\ RU FRn SUHFLSLWDWLRQ f 3K\VLFDO LQWHUIHUHQFH HIIHFWV QRUPDOO\ LQYROYH EORFNLQJ RI WKH ,&306 LQWHUIDFH DSHUWXUHV 7KLV PD\ RFFXU E\ VRRWLQJ ZLWK FDUERQ FRQWDLQLQJ PDWHULDOV ZKLFK LV GLVFXVVHG ODWHU RU E\ D KLJK FRQFHQWUDWLRQ RI WRWDO GLVVROYHG VROLGV 7'6f 7KLV FDXVHV ODUJH VLJQDO GULIW RYHU D YHU\ VKRUW WLPH VHYHUDO PLQXWHVf 7R SUHYHQW WKLV VROXWLRQV VKRXOG FRQWDLQ OHVV WKDQ b RI 7'6 f 6DPSOH ,QWURGXFWLRQ 7HFKQLTXHV 7KH YDULRXV W\SHV RI VDPSOH LQWURGXFWLRQ WHFKQLTXHV JLYH ,&306 LWV YHUVDWLOLW\ DQG VHYHUDO UHYLHZV KDYH EHHQ SXEOLVKHG RQ WKLV WRSLF f 6ROLG VDPSOHV PD\ EH LQWURGXFHG XVLQJ ODVHU DEODWLRQ f HOHFWURWKHUPDO YDSRUL]DWLRQ (79f f VOXUU\ QHEXOL]DWLRQ f GLUHFW VDPSOH LQVHUWLRQ f RU DUF QHEXOL]DWLRQ

PAGE 49

f *DV SKDVH LQWURGXFWLRQ WHFKQLTXHV KDYH EHHQ DSSOLHG WR K\GULGH f DQG RVPLXP WHWUR[LGH f YDSRU JHQHUDWLRQ DQG WR VXSHUFULWLFDO IOXLG FKURPDWRJUDSK\ f DQG JDV FKURPDWRJUDSK\ f 7KH LQWURGXFWLRQ RI OLTXLGV KDV EHHQ WKH PRVW ZLGHO\ UHVHDUFKHG DUHD 6RPH WHFKQLTXHV DUH XVHG ZLWK D QHEXOL]HU VXFK DV IORZ LQMHFWLRQ f DQG OLTXLG FKURPDWRJUDSK\ f ZKLOH RWKHUV VXFK DV (79 HOLPLQDWH WKH QHHG IRU D QHEXOL]HU )RU WKH GLUHFW GHWHUPLQDWLRQ RI OLTXLGV WKHUH DUH VHYHUDO W\SHV RI QHEXOL]HUV 8OWUDVRQLF f WKHUPRVSUD\ f DQG SQHXPDWLF QHEXOL]HUV f KDYH EHHQ XVHG 3QHXPDWLF QHEXOL]DWLRQ LV WKH PRVW FRPPRQO\ XVHG PHWKRG RI OLTXLG VDPSOH LQWURGXFWLRQ f $ FRQFHQWULF QHEXOL]HU DQG GRXEOH SDVV VSUD\ FKDPEHU FRXSOHG WR WKH ,&3 DUH VKRZQ LQ )LJXUH )RU ,&306 D QHEXOL]HU JDV IORZ RI /PLQ LV QRUPDOO\ XVHG ZLWK P/PLQ RI OLTXLG IORZ $ SHULVWDOWLF SXPS LV RIWHQ XVHG WR PRQLWRU WKH OLTXLG XSWDNH 7KH VSUD\ FKDPEHU DFWV DV D ORZ SDVV ILOWHU DOORZLQJ RQO\ VPDOO GURSOHWV SPf WR UHDFK WKH SODVPD 7KLV OHDGV WR WKH SULPDU\ GLVDGYDQWDJH RI SQHXPDWLF QHEXOL]DWLRQ ZKLFK LV WKDW RQO\ b RI WKH VDPSOH VROXWLRQ UHDFKHV WKH SODVPD 7KHUH DUH VSHFLDO SUREOHPV ZLWK WKH QHEXOL]DWLRQ RI RUJDQLF VROXWLRQV LQWR WKH ,&306 f 7KH ODUJH DPRXQW RI K\GURFDUERQ LQWURGXFHG FDXVHV ORDGLQJ RI WKH SODVPD PDNLQJ LW XQVWDEOH DQG LQHIILFLHQW EHFDXVH LWV HQHUJ\ LV EHLQJ XVHG WR GLVVRFLDWH WKH RUJDQLF PDWUL[ 7KH FDUERQ DOVR FRQGHQVHV UDSLGO\ RQ WKH FRROHG VDPSOLQJ FRQH DQG TXLFNO\ FDXVHV VRRWLQJ DQG EORFNLQJ RI WKH FRQH DSHUWXUH 7R

PAGE 50

RRR 6DPSOH 6SUD\ &KDPEHU )LJXUH 1HEXOL]HU VSUD\ FKDPEHU DQG ,&3 WRUFK

PAGE 51

UHGXFH WKHVH HIIHFWV D VPDOO SHUFHQWDJH RI R[\JHQ LV RIWHQ DGGHG WR WKH QHEXOL]HU FDUULHU JDV WR DVK WR RUJDQLF PDWUL[ 7KLV LV D GHOLFDWH SURFHGXUH EHFDXVH LI H[FHVV R[\JHQ LV DGGHG LW TXLFNO\ HURGHV WKH LQWHUIDFH FRQHV EXW LI WRR OLWWOH R[\JHQ LV DGGHG FORJJLQJ RI WKH WLQ\ RULILFHV UHVXOWV 7KH DGGLWLRQ RI R[\JHQ DOVR LQFUHDVHV WKH DPRXQW RI R[LGHV SUHVHQW UDLVLQJ WKH OHYHO RI PROHFXODU LQWHUIHUHQWV 7KH QHEXOL]HU VXIIHUV IURP UHODWLYHO\ VORZ VDPSOH FKDQJHRYHU DV ZHOO +RZHYHU RSHUDWLRQ RI WKH QHEXOL]HU DQG VSUD\ FKDPEHU LV VLPSOH DQG LW SURYLGHV FRQWLQXRXV VDPSOH LQWURGXFWLRQ 7KLV DOORZV IRU ORQJ VFDQQLQJ WLPHV E\ WKH PDVV VSHFWURPHWHU DQG WKH XVH RI DQ LQWHUQDO VWDQGDUG (OHFWURWKHUPDO 9DSRUL]DWLRQ 7KH XVH RI DQ HOHFWURWKHUPDO YDSRUL]HU (79f IRU VDPSOH LQWURGXFWLRQ LQWR DQ ,&3 KDV VHYHUDO DGYDQWDJHV RYHU QHEXOL]DWLRQ f VPDOO S/f VDPSOH YROXPHV DUH XVHG D KLJKHU WUDQVSRUW HIILFLHQF\ bf UHVXOWV DQG WKH VROYHQW DQG PDWUL[ DUH YDSRUL]HG LQGHSHQGHQWO\ RI WKH DQDO\WH DOORZLQJ WKH DQDO\VLV RI GLIILFXOW VDPSOHV VXFK DV RUJDQLF VDPSOHV RU WKRVH FRQWDLQLQJ KLJK WRWDO GLVVROYHG VROLGV ,Q DGGLWLRQ VDPSOHV LQ D YDULHW\ RI SK\VLFDO IRUPV PD\ EH DQDO\]HG ZLWKRXW PXFK VDPSOH SUH WUHDWPHQW 7KHUH DUH DOVR GLVDGYDQWDJHV DVVRFLDWHG ZLWK WKH WHFKQLTXH $ WUDQVLHQW VLJQDO LV JHQHUDWHG E\ WKH (79 UHTXLULQJ UDSLG GDWD DFTXLVLWLRQ VRIWZDUH IRU PXOWLHOHPHQW DQDO\VLV 7KH WHFKQLTXH DOVR KDV D SRRUHU UHSURGXFLELOLW\ b 56'f GXH WR LQFRQVLVWHQW VDPSOH LQVHUWLRQ DQG VDPSOH WUDQVSRUW $QDO\WH UHDFWLRQV ZLWK WKH

PAGE 52

IXUQDFH PDWHULDO DUH DQRWKHU SUREOHP DV ZHOO DV WKH DGGHG FRPSOH[LW\ DQG FRVW DV FRPSDUHG WR QHEXOL]DWLRQ $Q (79 LV DQ HOHFWULFDOO\ KHDWHG F\OLQGULFDO JUDSKLWH WXEH WKDW LQ WKLV FDVH SURGXFHV VDPSOH YDSRU IRU LQWURGXFWLRQ LQWR DQ ,&3 )LJXUH f ,W LV RSHQ DW ERWK HQGV DQG KDV D FHQWUDO KROH IRU VDPSOH LQWURGXFWLRQ 0RVW WXEHV DUH FP LQ OHQJWK ZLWK PP GLDPHWHU DQG FDQ DFFRPPRGDWH S/ VDPSOH YROXPHV $ WXEH LV UHSODFHDEOH DQG ILWV EHWZHHQ D SDLU RI F\OLQGULFDO JUDSKLWH HOHFWURGHV DW WKH HQGV RI WKH WXEH 7KH HOHFWURGHV DUH ORFDWHG ZLWKLQ D ZDWHUFRROHG PHWDO KRXVLQJ 7ZR JDV IORZV DUH SURYLGHG LQ WKH IXUQDFH 7KH H[WHUQDO IORZ VXUURXQGV WKH RXWVLGH RI WKH WXEH DQG SUHYHQWV HQWUDQFH RI RXWVLGH DLU DQG LQFLQHUDWLRQ RI WKH WXEH 7KH LQWHUQDO VWUHDP IORZV WKURXJK WKH FHQWHU RI WKH WXEH IRU VDPSOH WUDQVSRUW LQWR WKH ,&3 DQG LV QRUPDOO\ DERXW /PLQ 0RVW WXEHV DUH PDGH RI JUDSKLWH KRZHYHU WDQWDOXP WXQJVWHQ DQG UKHQLXP KDYH EHHQ XVHG f 7KHVH PHWDOV SURYLGH IDVWHU KHDWLQJ UDWHV GR QRW DEVRUE WKH VDPSOH VROXWLRQ DQG GR QRW IRUP FDUELGHV ZLWK WKH DQDO\WH 7KHVH SUREOHPV FDQ DOVR EH UHGXFHG E\ XVLQJ S\UROLWLFDOO\ FRDWHG JUDSKLWH WXEHV WKH FRDWLQJ VHDOV WKH SRUHV RI WKH JUDSKLWH 7KH DOWHUQDWLYH PHWDOV IRUP R[LGHV DQG WHQG WR YDSRUL]H PRUH TXLFNO\ DQG FRQWDLQ PRUH LPSXULWLHV WKDQ JUDSKLWH 7VXNDKDUD DQG FRZRUNHUV f DGGHG D VPDOO DPRXQW RI K\GURJHQ WR WKH DUJRQ FDUULHU IORZ WR PLQLPL]H R[LGDWLRQ RI D WXQJVWHQ IXUQDFH 'LIIHUHQW IXUQDFH VKDSHV KDYH DOVR EHHQ XVHG VXFK DV ILODPHQWV VWULSV DQG ORRSV f 7KH SODWIRUP WXEH fLV DQRWKHU XVHIXO GHVLJQ 7KLV WXEH KDV D SODWIRUP SODFHG RQ WKH ERWWRP XQGHU WKH GRVLQJ KROH ZKLFK LV KHDWHG

PAGE 53

*UDSKLWH $UJRQ )ORZ 7R 3ODVPD )LJXUH 0RGLILHG FRPPHUFLDO JUDSKLWH IXUQDFH A

PAGE 54

PDLQO\ E\ UDGLDWLRQ IURP WKH WXEH ZDOOV 7KH WHPSHUDWXUH RI WKH SODWIRUP WKHUHIRUH ODJV EHKLQG WKDW RI WKH WXEH ZDOOV DQG WKH DQDO\WH LV YDSRUL]HG DIWHU WKH ZDOO KDV UHDFKHG D QHDU VWHDG\VWDWH WHPSHUDWXUH 7KLV FRQILJXUDWLRQ SURGXFHV DQ DOPRVW FRQVWDQWWHPSHUDWXUH IXUQDFH 7KH IXUQDFH LV QRUPDOO\ KHDWHG LQ WKUHH VWHSV )LJXUH f 7KH WHPSHUDWXUH LV LQFUHDVHG E\ LQFUHDVLQJ WKH FXUUHQW WKURXJK WKH WXEH 7KH ILUVW VWHS LV WKH GU\LQJ RU GHVROYDWLRQ VWHS 7KH WXEH LV VORZO\ UDPSHG WR DERXW r& DQG KHOG IRU VHYHUDO VHFRQGV ,Q WKLV VWHS WKH VROYHQW LV HYDSRUDWHG DQG D VROLG UHVLGXH LV OHIW EHKLQG LQ WKH IXUQDFH 7KH REMHFWLYH RI WKLV VWHS LV WR HYDSRUDWH WKH VROYHQW DV IDVW DV SRVVLEOH ZLWKRXW VSODWWHULQJ RU YDSRUL]DWLRQ RI WKH DQDO\WH 7KLV VWHS PD\ ODVW V 7KH QH[W VWHS LV WKH DVKLQJ VWHS 7KH IXUQDFH LV UDPSHG WR r& DQG KHOG IRU VHYHUDO VHFRQGV 7KLV VWHS PD\ DOVR ODVW V 7KH SXUSRVH RI WKH DVKLQJ VWHS LV WR DVK DQ\ RUJDQLF FRPSRQHQWV LQ WKH VDPSOH DQG WR YDSRUL]H DQ\ YRODWLOH LQRUJDQLF VSHFLHV SUHVHQW 7KH WHPSHUDWXUH PXVW EH KLJK HQRXJK WR UHPRYH YRODWLOH FRPSRQHQWV ZLWKRXW ORVV RI DQDO\WH 7KH WKLUG VWHS LV DWRPL]DWLRQ DQGRU YDSRUL]DWLRQ 7KH IXUQDFH WHPSHUDWXUH XVHG LQ WKLV VWHS LV LQ WKH UDQJH RI r& 7KLV VWHS KDV D IDVW UDPS UDWH ZKLFK YDSRUL]HV WKH DQDO\WH 7KH GXUDWLRQ LV V $ IRXUWK VWHS LV RFFDVLRQDOO\ XVHG WR FOHDQ WKH IXUQDFH RI DQ\ UHPDLQLQJ VDPSOH 7KH WHPSHUDWXUH XVHG IRU WKH FOHDQLQJ VWHS LV QRUPDOO\ KLJKHU WKDQ WKDW XVHG IRU YDSRUL]DWLRQ

PAGE 55

6WHS 7HPSHUDWXUH r&f 5DPS 7LPH Vf +ROG 7LPH Vf )LJXUH 7\SLFDO (79 WHPSHUDWXUH UDPS

PAGE 56

7ZR GLIIHUHQW W\SHV RI IXUQDFHV KDYH EHHQ XVHG IRU VDPSOH LQWURGXFWLRQ LQWR DQ ,&306 7KH ILUVW NLQG LV D PRGLILFDWLRQ RI FRPPHUFLDOO\ DYDLODEOH JUDSKLWH IXUQDFHV f ZKLOH WKH RWKHU LV D IXUQDFH HVSHFLDOO\ GHVLJQHG IRU VDPSOH LQWURGXFWLRQ LQWR WKH ,&306 f $Q H[DPSOH RI HDFK W\SH LV JLYHQ EHORZ $ W\SLFDO PRGLILHG JUDSKLWH IXUQDFH LV VKRZQ LQ )LJXUH 6KHQ HW DO f PRGLILHG D 3HUNLQ(OPHU +*$ JUDSKLWH IXUQDFH IRU VDPSOH LQWURGXFWLRQ LQWR DQ ,&306 7KH\ PRGLILHG IRXU DUHDV RI WKH IXUQDFH FRRODQW IORZ IURQW DGDSWRU UHDU DGDSWRU DQG IXUQDFH WXEH 7KH PDLQ PRGLILFDWLRQ ZDV WKH DGGLWLRQ RI D FRRODQW IORZ VHYHUDO PLOOLPHWHUV GRZQVWUHDP RI WKH IXUQDFH WXEH 7KLV IORZ FRQGHQVHG WKH VDPSOH IORZ LQWR SDUWLFXODWH IRU EHWWHU VDPSOH WUDQVSRUW LQWR WKH SODVPD 7KH VLGH TXDUW] ZLQGRZV ZHUH UHPRYHG DQG UHSODFHG ZLWK VWDLQOHVVVWHHO DGDSWHUV 7KH IURQW DGDSWRU ZDV FRQQHFWHG WR D 37)( WXEH ZKLFK WUDQVSRUWV WKH VDPSOH WR WKH EDVH RI WKH &3 WRUFK 7KH\ DOVR PRGLILHG WKH IXUQDFH WXEH E\ LQVHUWLQJ D WXQJVWHQ ORRS WKDW KHOG WKH VDPSOH VROXWLRQ LQWR D WDQWDOXP WXEH WKDW HQWHUHG WKURXJK WKH UHDU DGDSWRU %HFDXVH WKHUH LV QR PHDQV WR YHQW WKH VROYHQW GXULQJ WKH GU\LQJ VWHS D VHFRQG GU\LQJ VWHS DW D KLJKHU WHPSHUDWXUH LV UHTXLUHG WR UHPRYH FRQGHQVHG VROYHQW IURP WKH WXEH ZDOOV 7UDQVSRUW HIILFLHQF\ ZDV LPSURYHG E\ WKH DGGLWLRQDO FRRODQW IORZ DQG WKH GHWHFWLRQ OLPLW IRU OHDG ZDV IJ 3DUN DQG FRZRUNHUV f GHVLJQHG DQ (79 WDNLQJ LQWR DFFRXQW WKH IORZ G\QDPLFV DQG JDV WHPSHUDWXUH GLVWULEXWLRQV RI WKH V\VWHP )LJXUH f $ JODVV GRPH VXUURXQGHG WKH UKHQLXP ILODPHQW DQG ZDV VHDOHG WR LWV PHWDOOLF EDVH E\ DQ RULQJ 7KH JODVV GRPH KDV D P/ YROXPH ZKLFK LV ODUJH HQRXJK WR PLQLPL]H VDPSOH

PAGE 57

7R,&3 &RSSHU :LUH WR 3RZHU 6XSSO\ )LJXUH 'RPHW\SH (79

PAGE 58

FRQGHQVDWLRQ RQ LWV ZDOOV EXW VPDOO HQRXJK WR UHGXFH WKH GLOXWLRQ RI WKH VDPSOH LQ WKH FDUULHU JDV 7KH (79 LV RULHQWHG YHUWLFDOO\ DQG FDUULHU JDV LV LQWURGXFHG WDQJHQWLDOO\ VR WKDW WKH VDPSOH LV VSLUDOHG XSZDUGV DYRLGLQJ WKH GRPH ZDOOV 7KH VDPSOH LV FDUULHG WKURXJK W\JRQ WXELQJ LQWR WKH SODVPD DQG DX[LOLDU\ DUJRQ IORZ LV SURYLGHG LQWR WKH SODVPD WRUFK GXULQJ GU\LQJ DQG DVKLQJ RI PDWUL[ DQG GXULQJ VDPSOH GHSRVLWLRQ ZKHQ WKH JODVV GRPH LV UHPRYHG 8VLQJ WKLV V\VWHP EHWWHU WKDQ b VDPSOH WUDQVSRUW HIILFLHQF\ ZDV DFKLHYHG 6DPSOH 7UDQVSRUW LQ (79&306 .DQW RU f KDV GHYHORSHG D WKHRU\ EDVHG RQ DHURVRO VFLHQFH WR H[SODLQ WKH PHFKDQLVP RI VDPSOH WUDQVSRUW IURP DQ HOHFWURWKHUPDO YDSRUL]HU WR DQ LRQL]DWLRQ VRXUFH VXFK DV DQ ,&3 RU IODPH +H UHIHUV WR WKH SURFHVV DV WKHUPDO GLVSHUVLRQ RU WKH SURGXFWLRQ RI D GU\ DHURVRO E\ KLJK WHPSHUDWXUH SURFHVVHV DQG GLIIHUHQWLDWHV WKLV IURP PHFKDQLFDO GLVSHUVLRQ RI VROLGV RU QHEXOL]DWLRQ RI OLTXLGV $FFRUGLQJ WR KLV WKHRU\ WKH FKDQJH LQ DQDO\WH VLJQDO XQGHU FRQVWDQW IXUQDFH FRQGLWLRQV LV WKH UHVXOW RI YDULDWLRQV LQ WKH WUDQVSRUW HIILFLHQF\ RI WKH WHFKQLTXH 7KH WKHRU\ DWWHPSWV WR H[SODLQ WKH GHSHQGHQFH RI DHURVRO IRUPDWLRQ RQ f SURSHUWLHV RI WKH DQDO\WH VLQJOH FRPSRQHQW VDPSOHf f FRQFHQWUDWLRQ RI WKH VDPSOH LQ WKH YDSRU SKDVH ZKLFK GHSHQGV RQ WKH PDVV RI WKH VDPSOH WKH KHDWLQJ UDWH DQG WKH IORZ UDWH RI WKH FDUULHU JDV DQG f WKH SURSHUWLHV DQG DPRXQW RI PDWUL[ YDSRUL]HG ZLWK WKH DQDO\WH $OO RI WKHVH IDFWRUV LQIOXHQFH WKH VHQVLWLYLW\ OLQHDULW\ RI FDOLEUDWLRQ FXUYHV DQG PDWUL[ LQWHUIHUHQFHV UHVXOWLQJ IURP WKH WHFKQLTXH

PAGE 59

$HURVRO IRUPDWLRQ LV D SURFHVV WKDW EHJLQV ZKHQ WKH VDPSOH LV KHDWHG DQG LWV KRW YDSRU LV JHQHUDWHG IURP WKH VXUIDFH RI WKH IXUQDFH 3K\VLFDO FRQGHQVDWLRQ RI WKH DQDO\WH RFFXUV ZKHQ WKH YDSRU LV FRROHG DQG VXSHUVDWXUDWLRQ LV DFKLHYHG ,Q WKH FDVH RI (79 WKLV FRROLQJ RFFXUV ZKHQ WKH KRW YDSRU PL[HV ZLWK WKH WXUEXOHQW DUJRQ FDUULHU JDV VWUHDP ,QLWLDO FRQGHQVDWLRQ UHVXOWV LQ QXFOHL FOXVWHUV ZKLFK DUH SUHVHQW HYHQ LQ XQVDWXUDWHG YDSRU EHFDXVH RI FROOLVLRQV $V WKH VXSHUVDWXUDWLRQ LQFUHDVHV PRUH FOXVWHUV IRUP DQG WKHLU VL]H SDVVHV WKURXJK D FULWLFDO VWDJH E\ WKH DWWDFKPHQW RI VLQJOH PROHFXOHV 7KH IRUPDWLRQ RI VWDEOH QXFOHL UHOLHYHV WKH VXSHUVDWXUDWLRQ DQG WKH FULWLFDO GURSOHW GLDPHWHU GSr FDQ EH FDOFXODWHG DFFRUGLQJ WR QXFOHDWLRQ WKHRU\ f (TQ f GSr <9PN7OQ6 ZKHUH \ LV WKH VXUIDFH WHQVLRQ RI WKH OLTXLG GURSOHW 9P LV WKH PROHFXODU YROXPH RI WKH YDSRU VSHFLHV N LV WKH %ROW]PDQQ FRQVWDQW 7 LV WKH WHPSHUDWXUH .f DQG 6 LV WKH VDWXUDWLRQ UDWLR GLPHQVLRQOHVVf ZKLFK GHILQHV WKH PDJQLWXGH RI VXSHUVDWXUDWLRQ 7KLV SURFHVV LV NQRZQ DV KRPRJHQHRXV QXFOHDWLRQ RU VHOIQXFOHDWLRQ EHFDXVH WKH FRQGHQVDWLRQ QXFOHL IRUP IURP WKH YDSRU LWVHOI $W D JLYHQ 6 GURSOHWV VPDOOHU WKDQ WKH FULWLFDO GLDPHWHU HYDSRUDWH ZKLOH GURSOHWV ODUJHU WKDQ WKH FULWLFDO GLDPHWHU FRQWLQXH WR JURZ 7KH VDWXUDWLRQ UDWLR PD\ EH FDOFXODWHG f (TQ f 6 3YDS3H7f

PAGE 60

ZKHUH SYDS LV WKH SDUWLDO YDSRU SUHVVXUH DQG S7f LV WKH HTXLOLEULXP YDSRU SUHVVXUH DW WKH WHPSHUDWXUH RI QXFOHDWLRQ )RU (79 PHWKRGV ZKHUH D FDUULHU JDV LV XVHG DQG WKH VDPSOH LV EHLQJ KHDWHG WKH SDUWLDO YDSRU SUHVVXUH PD\ EH FDOFXODWHG WR DQ DFFHSWDEOH DFFXUDF\ XVLQJ f (TQ f SYDS 1V7T59JWY ZKHUH WKH XQLWV RI SYDS DUH LQ DWP 1V LV WKH DPRXQW RI YDSRU LQ PROHV IURP WKH HYDSRUDWHG VDPSOH 7J LV WKH WHPSHUDWXUH RI WKH JDV ZLWKRXW KHDWLQJ LQ 5 LV WKH JDV FRQVWDQW FP DWP .n PROf 9J LV WKH IORZ UDWH RI WKH JDV FPfVf DQG WY LV WKH PHDQ HYDSRUDWLRQ WLPH Vf RI WKH PDMRULW\ RI VDPSOH )URP WKH DERYH HTXDWLRQV LW FDQ EH GHGXFHG WKDW XQGHU WKH VDPH FRQGLWLRQV D KLJKHU VXSHUVDWXUDWLRQ LV REVHUYHG IRU D OHVV YRODWLOH VXEVWDQFH EHFDXVH RI WKH ORZHU YDOXH RI SH7f $Q LQFUHDVH LQ 6 UHVXOWV LQ DQ LQFUHDVH LQ WKH FRQFHQWUDWLRQ RI FOXVWHUV DQG IURP (TQ D GHFUHDVH LQ WKH FULWLFDO GLDPHWHU ZKLFK LQFUHDVHV WKH FRQFHQWUDWLRQ RI VWDEOH QXFOHL %HORZ D FHUWDLQ YDOXH IRU 6 WKHUH LV QHJOLJLEOH IRUPDWLRQ RI VWDEOH QXFOHL :KHQ WKHUH LV D KLJK FRQFHQWUDWLRQ RI VWDEOH QXFOHL DQG WKH VXSHUVDWXUDWLRQ KDV GHFUHDVHG KHWHURJHQRXV FRQGHQVDWLRQ WDNHV SODFH 7KLV LV FKDUDFWHUL]HG E\ FRQGHQVDWLRQ RI YDSRU RQ H[LVWLQJ SDUWLFOHV 7KLV FRQGHQVDWLRQDO JURZWK JVf LV SURSRUWLRQDO WR WKH GHJUHH RI VXSHUVDWXUDWLRQ :KHQ D KLJK FRQFHQWUDWLRQ RI ILQH SDUWLFOHV LV UHDFKHG JURZWK FRQWLQXHV E\ %URZQLDQ FRDJXODWLRQ &RDJXODWLRQ RFFXUV

PAGE 61

ZKHQ WZR SDUWLFOHV FROOLGH DQG DGKHUH WR IRUP RQH SDUWLFOH :KHQ WKH YHORFLW\ LV GHWHUPLQHG E\ UDQGRP PRWLRQ LW LV WHUPHG %URZQLDQ RU WKHUPDO %HFDXVH WKH VPDOOHU SDUWLFOHV PRYH IDVWHU WKH UDWH RI WKH SURFHVV LQFUHDVHV ZLWK VPDOOHU SDUWLFOHV 7KLV OHDGV WR DQ LQFUHDVH LQ WKH PHDQ SDUWLFOH VL]H )ODJDQ DQG )ULHGODQGHU f DQG .DQWRU f WRRN DOO RI WKH DERYH SURFHVVHV LQWR FRQVLGHUDWLRQ DQG GHULYHG WKH IROORZLQJ HTXDWLRQ IRU WKH JURZWK RI SDUWLFOHV (TQ f G) NVFY ZKHUH GS LV WKH SDUWLFOH GLDPHWHU FPf FY LV WKH LQLWLDO YDSRU FRQFHQWUDWLRQ DW WKH WHPSHUDWXUH RI QXFOHDWLRQ JFUUIf DQG N LV D FRQVWDQW VSHFLILF IRU WKH YDSRU VSHFLHV DQG FRQGLWLRQV XVHG LQ DHURVRO IRUPDWLRQ ,W FDQ EH GHWHUPLQHG IURP (TQ WKDW D ODUJH FKDQJH LQ WKH LQLWLDO YDSRU FRQFHQWUDWLRQ LV QHHGHG WR FKDQJH WKH SDUWLFOH GLDPHWHU VLJQLILFDQWO\ 7KHUHIRUH ZKHQ WKH LQLWLDO DQDO\WH FRQFHQWUDWLRQ LV LQFUHDVHG WKH QXPEHU RI SDUWLFOHV ZLOO LQFUHDVH UDWKHU WKDQ WKH SDUWLFOH GLDPHWHUV 7KLV PHDQV WKDW WKH WUDQVSRUW HIILFLHQF\ GRHV QRW FKDQJH ZLWK VDPSOH PDVV ZKLFK OHDGV WR D EURDG OLQHDU G\QDPLF UDQJH ,I WKH YDSRU DQG SDUWLFOH FRQFHQWUDWLRQV FRQWLQXH WR LQFUHDVH SDUWLFOH JURZWK FRQWLQXHV E\ WKH FRDOHVFHQFH RI ILQHU SDUWLFOHV DQG VLQWHULQJ RI ODUJHU SDUWLFOHV IRUPHG E\ FRDJXODWLRQ DQG FRDOHVFHQFH 7KLV LV WKRXJKW WR RFFXU ZKHQ WKH PDMRU FRPSRQHQW KDV D PDVV DERYH SJ :KHQ WKLV RFFXUV WKH SDUWLFOHV EHFRPH ODUJH HQRXJK VR WKDW WKH\ JUDYLPHWULFDOO\ VHSDUDWH RXW RI WKH DUJRQ FDUULHU IORZ DQG VDPSOH LV ORVW

PAGE 62

,Q JUDSKLWH IXUQDFH (79 PHWKRGV WKH FDUULHU JDV IORZ LV QRUPDOO\ DERXW /PLQ DQG WKH VDPSOH LV YDSRUL]HG LQ DERXW VHFRQG GXH WR WKH IDVW KHDWLQJ UDPS XVHG 8VLQJ WKHVH GDWD DQG HTXDWLRQV DQG WKH WHPSHUDWXUH GHSHQGHQFH RI WKH VDWXUDWLRQ UDWLR ZDV FDOFXODWHG f IRU YDULRXV DQDO\WH YDSRU VSHFLHV DQG GLIIHUHQW PDVVHV ,W LV DVVXPHG WKDW ZKHQ 6 DSSURDFKHV VWDEOH QXFOHL DUH IRUPHG 7DEOH VKRZV WKH UHVXOWV RI WKHVH FDOFXODWLRQV 7KH WHPSHUDWXUHV LQ 7DEOH DUH WKRVH WR ZKLFK WKH YDSRUJDV PL[WXUH PXVW EH FRROHG WR DFKLHYH D VDWXUDWLRQ UDWLR RI 7KH UHVXOWV VKRZ WKDW ZLWK LQFUHDVHG YRODWLOLW\ RI WKH VSHFLHV VSHFLHV ORZHU LQ 7DEOH f VWDEOH QXFOHDWLRQ RFFXUV DW ORZHU WHPSHUDWXUHV RU IXUWKHU GRZQVWUHDP IURP WKH KRW IXUQDFH %HFDXVH RI WKH ORQJHU GLVWDQFH WUDYHOOHG E\ WKH YDSRU LQ WKLV FDVH GHSRVLWLRQ RI WKH YDSRU VSHFLHV RQ WKH FRRO ZDOOV RI WKH WUDQVSRUW WXELQJ LV PRUH OLNHO\ WR WDNH SODFH UHVXOWLQJ LQ WKH ORVV RI DQDO\WH IRU PRUH YRODWLOH VSHFLHV 7KLV DQDO\WH ORVV KDV LQ IDFW EHHQ REVHUYHG IRU ]LQF f DUVHQLF f DQG FDGPLXP f FRQILUPLQJ WKH GDWD LQ 7DEOH 9DSRU FRQGHQVDWLRQ RQ IRUHLJQ SDUWLFOHV .DQWRUnV WKHRU\ DOVR H[SODLQV WKH FDUULHU HIIHFW RU KHWHURJHQHRXV FRQGHQVDWLRQ RI YDSRU RQ IRUHLJQ SDUWLFOHV DGGHG WR WKH VDPSOH f 7KLV RFFXUV ZKHQ YDSRU IURP D YRODWLOH DQDO\WH FRQGHQVHV RQ WKH VWDEOH QXFOHL IRUPHG IURP WKH IRUHLJQ VSHFLHV LQ WKH IXUQDFH DQG LV KRZ FORXG IRUPDWLRQ WDNHV SODFH LQ WKH DWPRVSKHUH 7KLV FDQ KDSSHQ VHYHUDO GLIIHUHQW ZD\V 7KH ILUVW LV ZKHQ WKH WZR VSHFLHV KDYH VLPLODU YRODWLOLWLHV 3DUWLDO FRYRODWL]DWLRQ WDNHV SODFH DQG VWDEOH QXFOHL DUH IRUPHG IURP WKH PRVW DEXQGDQW VSHFLHV DFFRUGLQJ WR HTXDWLRQV DQG

PAGE 63

7DEOH &DOFXODWHG WHPSHUDWXUHV RI WKH YDSRUJDV PL[WXUH UHTXLUHG WR REWDLQ 6 IRU VSHFLHV JHQHUDWHG XQGHU (79 FRQGLWLRQV 6DPSOH PDVV PHWDOf 9DSRU QJ QJ 1D&O . 3E2 3E &D 0R 0J &G&O =Q =Q&O $V &G f

PAGE 64

$ VHFRQG SURFHVV RFFXUV ZKHQ WKH YRODWLOL]DWLRQ RI VDPSOH FRPSRQHQWV LV GLIIHUHQW (YHQ LQ WKLV FDVH WKHUH LV SDUWLDO PL[LQJ RI WKH YDSRU IURP WKH YRODWLOH HOHPHQW DQG WKH VWDEOH QXFOHL IURP WKH OHVV YRODWLOH HOHPHQW EHFDXVH RI WKH IDVW KHDWLQJ UDWHV XVHG LQ (79 PHWKRGV $QRWKHU H[DPSOH RI WKH FDUULHU HIIHFW PD\ EH GXH WR WKH HOHFWURWKHUPDOO\ KHDWHG PHWDO VDPSOH KROGHUV XVHG LQ (79 PHWKRGV 0HWDOV VXFK DV SODWLQXP WXQJVWHQ DQG UKHQLXP UHOHDVH YDSRU DW WKH WHPSHUDWXUHV QRUPDOO\ XVHG IRU DWRPL]DWLRQ ,W LV WKRXJKW WKDW D VXUIDFH R[LGH OD\HU IRUPV ZKLFK LV WKHQ YDSRUL]HG DQG IRUPV VWDEOH QXFOHL f $QRWKHU SRVVLEOH PHFKDQLVP RFFXUV ZKHQ WKH DQDO\WH YDSRU FRQGHQVHV RQ VWDEOH QXFOHL SURGXFHG IURP RUJDQLF FRPSRXQGV SUHVHQW DV VROLG VDPSOH PDWULFHV RU DGGLWLYHV f ,W LV NQRZQ WKDW GXULQJ WKH S\URO\VLV RI VHYHUDO RUJDQLF PDWHULDOV DHURVRO SDUWLFOHV DUH IRUPHG IURP WKH GHFRPSRVLWLRQ SURGXFWV VXFK DV VRRW 6WDEOH QXFOHL PD\ DOVR IRUP IURP JDVHRXV RUJDQLF VXEVWDQFHV DGGHG WR WKH FDUULHU JDV 8QGHU (79 FRQGLWLRQV VWDEOH DHURVRO SDUWLFOHV PD\ IRUP IURP WKH S\URO\VLV RI K\GURFDUERQ RU KDORJHQDWHG K\GURFDUERQ YDSRUV 7KHVH FDUULHU PHFKDQLVPV PD\ LPSURYH WUDQVSRUW HIILFLHQF\ EXW PD\ DOVR UHVXOW LQ ORVV RI DQDO\WH LI WKH IRUHLJQ VSHFLHV LV SUHVHQW LQ H[FHVV DQG SDUWLFOH IRUPDWLRQ LV FRQWUROOHG E\ FRDOHVFHQFH DQG VLQWHULQJ &KHPLFDO FRQGHQVDWLRQ RI YDSRU &KHPLFDO FRQGHQVDWLRQ RFFXUV ZKHQ WKH DQDO\WH YDSRU UHDFWV WR IRUP D FRPSRXQG WKDW LV OHVV YRODWLOH $Q H[DPSOH RI WKLV LV WKH IRUPDWLRQ RI D PHWDO R[LGH RU K\GUR[LGH ZKHQ D YRODWLOH PHWDO KDOLGH LV PL[HG ZLWK ZDWHU RU R[\JHQ LQ WKH FDUULHU JDV :KHQ WKH KRW DQDO\WH YDSRU PL[HV ZLWK WKH

PAGE 65

FRRO DUJRQ FDUULHU JDV LW LV OLNHO\ WKDW R[LGDWLRQ WDNHV SODFH GXH WR LPSXULW\ R[\JHQ LQ WKH FDUULHU JDV RU ZDWHU YDSRU IURP WKH VROYHQW 7KLV UHVXOWV LQ FKHPLFDO FRQGHQVDWLRQ EHFDXVH WKH PHWDO R[LGH LV OHVV YRODWLOH WKDQ WKH PHWDO KDOLGH (IIHFW RI RSHUDWLQJ SDUDPHWHUV RQ VDPSOH WUDQVSRUW ,Q WKH FDVH RI (79,&3 06 WKH FDUULHU JDV IORZ UDWH IURP WKH IXUQDFH WR WKH SODVPD PXVW EH DERXW /PLQ LQ RUGHU WR SXQFWXUH WKH SODVPD DQG FUHDWH WKH FHQWHU FKDQQHO $Q\ IORZ UDWHV PXFK EHORZ WKLV YDOXH ZLOO SURGXFH OLWWOH RU QR VLJQDO WKHUHIRUH FDUULHU IORZ LV QRW D SDUDPHWHU WKDW FDQ EH ZLGHO\ YDULHG :KHQ VHOIQXFOHDWLRQ LV WKH GRPLQDQW SURFHVV LQ DHURVRO IRUPDWLRQ DQ LQFUHDVH LQ WKH KHDWLQJ UDWH ZLOO LPSURYH WUDQVSRUW HIILFLHQF\ :KHQ WKH KHDWLQJ UDWH LV LQFUHDVHG WKH YDSRUL]DWLRQ WLPH RI WKH DQDO\WH GHFUHDVHV DQG DFFRUGLQJ WR HTXDWLRQV DQG WKLV ZLOO LQFUHDVH WKH VXSHUVDWXUDWLRQ LPSURYLQJ WUDQVSRUW HIILFLHQF\ :KHQ WKHUH LV D ODUJH PDVV RI VDPSOH DQG FRDOHVFHQFH DQG VLQWHULQJ DUH WKH PDLQ SURFHVVHV LQFUHDVLQJ WKH YDSRUL]DWLRQ UDWH XS WR D FHUWDLQ SRLQW ZLOO LPSURYH WUDQVSRUW HIILFLHQF\ +RZHYHU DERYH WKLV UDWH WKH WUDQVSRUW HIILFLHQF\ GHFUHDVHV EHFDXVH WKH VXSHUVDWXUDWLRQ RI WKH VDPSOH YDSRU LV WRR KLJK 'HFUHDVLQJ WKH KHDWLQJ UDWH UHGXFHV VXSHUVDWXUDWLRQ UHGXFLQJ FRDOHVFHQFH DQG VLQWHULQJ DQG WKXV VDPSOH ORVV 7KH ILQDO WHPSHUDWXUH RI WKH IXUQDFH DOVR DIIHFWV VDPSOH WUDQVSRUW :KHQ WKH ILQDO WHPSHUDWXUH RI WKH IXUQDFH LV LQFUHDVHG WKH WHPSHUDWXUH RI WKH YDSRUJDV PL[WXUH LV DOVR LQFUHDVHG 7KHUHIRUH LW WDNHV ORQJHU IRU WKH PL[WXUH WR FRRO GRZQ HQRXJK IRU VWDEOH QXFOHL WR IRUP 7KLV WDNHV SODFH IXUWKHU GRZQ WKH OHQJWK RI WKH WUDQVIHU WXELQJ DQG DOORZV IRU WKH VDPSOH YDSRU WR FRQGHQVH RQWR WKH ZDOOV UHVXOWLQJ LQ VDPSOH ORVV

PAGE 66

7KH OHQJWK RI WKH WUDQVSRUW WXELQJ WKHUHIRUH DOVR KDV DQ DIIHFW RQ VDPSOH WUDQVSRUW HIILFLHQF\ ,W KDV EHHQ VKRZQ WKDW ZLWK ORQJHU WXELQJ WKH VLJQDO DUHD UHPDLQV WKH VDPH EXW SHDN KHLJKW GHFUHDVHV 7KLV LV H[SHFWHG ZKHQ LGHDO FRQGLWLRQV H[LVW IRU VWDEOH QXFOHL WR IRUP +RZHYHU ZKHQ ODUJH SDUWLFOHV IRUPHG IURP FRDOHVFHQFH DQG VLQWHULQJ DUH WUDQVSRUWHG WKURXJK ORQJHU WXELQJ ORVV WR JUDYLWDWLRQDO IRUFHV LV PRUH OLNHO\ WR RFFXU ,Q DGGLWLRQ DQ\ YRODWLOH VSHFLHV WKDW GR QRW IRUP VWDEOH QXFOHL ZLOO KDYH D JUHDWHU FKDQFH RI FRQGHQVLQJ RQ WKH WXEH ZDOOV 0DWUL[ 0RGLILFDWLRQ 0DWUL[ PRGLILHUV DUH FRPPRQO\ XVHG LQ JUDSKLWH IXUQDFH DWRPLF DEVRUSWLRQ VSHFWURVFRS\ *)$$6f 0RGLILHUV UHWDLQ WKH DQDO\WH LQ WKH IXUQDFH DW KLJKHU WHPSHUDWXUHV PDNLQJ LW SRVVLEOH WR DVK DW KLJKHU WHPSHUDWXUHV WR UHPRYH PDWUL[ FRPSRXQGV f :KHQ XVHG ZLWK (79,&306 PDWUL[ PRGLILHUV KDYH D GLIIHUHQW SXUSRVH 7KH\ DFW DV SK\VLFDO FDUULHUV RI WKH DQDO\WH IURP WKH IXUQDFH WR WKH SODVPD DQG DOVR PD\ FKDQJH WKH FKHPLFDO FRPSRVLWLRQ RI WKH DQDO\WH f 0RGLILHUV LPSURYH WUDQVSRUW HIILFLHQF\ SUHFLVLRQ DQG OLQHDULW\ RI WKH WHFKQLTXH f )HZ UHVHDUFKHUV KDYH XVHG PRGLILHUV ZLWK (79,&306 (GLJHU DQG %HUHV FRQGXFWHG D FRPSUHKHQVLYH VWXG\ FRQFHUQLQJ WKH HIIHFW RI VHYHUDO PRGLILHUV RQ WKH DQDO\VLV RI GLIIHUHQW HOHPHQWV f 7KH PRGLILHUV VWXGLHG LQFOXGHG VRGLXP FKORULGH SDOODGLXP QLWUDWH PDJQHVLXP QLWUDWH DQG WHOOXULXP QLWUDWH %HIRUH WKH DGGLWLRQ RI WKH PRGLILHUV WKH SHDN LQWHQVLW\ LQFUHDVHG QRQOLQHDUO\ ZKHQ SORWWHG YHUVXV VDPSOH PDVV 7KH XVH RI PRGLILHUV LPSURYHG OLQHDULW\ DQG VHQVLWLYLW\ IRU PRVW

PAGE 67

HOHPHQWV H[DPLQHG 7KH\ DOVR VWXGLHG WKH XVH RI FLWULF DFLG DV D PRGLILHU IRU &R 9 DQG ,Q DQG IRXQG WKDW LW DOVR HQKDQFHG WKH VHQVLWLYLW\ RI WKH WHFKQLTXH 7KH XVH RI PHWKDQH DV D PRGLILHU ZDV VWXGLHG E\ DGGLQJ b PHWKDQH WR WKH DUJRQ FDUULHU KRZHYHU QR LPSURYHPHQW LQ WUDQVSRUW HIILFLHQF\ ZDV REVHUYHG +\DPLQH K\GUR[LGH KDV EHHQ XVHG DV D PRGLILHU E\ WZR GLIIHUHQW UHVHDUFK JURXSV )RUVWHU HW DO f XVHG K\DPLQH K\GUR[LGH LQ WKH GHWHUPLQDWLRQ RI 3W LQ OHXNHPLD FHOOV 1HZPDQ DQG FRZRUNHUV f XVHG WKH VDPH PRGLILHU IRU WKH GHWHUPLQDWLRQ RI 7H LQ ELRORJLFDO IOXLGV 7KH UHVHDUFKHUV GLG QRW IXOO\ XQGHUVWDQG WKH UROH RI WKLV PRGLILHU ,W LV WKRXJKW WKDW K\DPLQH K\GUR[LGH GLVUXSWV WKH VXUIDFH WHQVLRQ RI EORRG SODVPD DOORZLQJ LW WR GU\ RYHU D ODUJHU DUHD RI WKH IXUQDFH 7KH GHWHFWLRQ OLPLW IRU 7H LQ SODVPD ZDV QJPO ZKLFK ZDV D VLJQLILFDQW LPSURYHPHQW RYHU RWKHU PHWKRGV %RWK JURXSV XVHG D SRVWIXUQDFH DGGLWLRQ RI R[\JHQ WR DVK WKH RUJDQLF PDWUL[ SUHVHQW *UHJRLUH f VWXGLHG WKH HIIHFW RI VHYHUDO PRGLILHUV RQ WKH GHWHUPLQDWLRQ RI 2V E\ (79,&306 $ VPDOO HQKDQFHPHQW LQ VLJQDO ZDV IRXQG XVLQJ 1D&O WKLRXUHD DQG K\GUR[\TXLQROLQH 1L DQG 6H LQFUHDVHG WKH VHQVLWLYLW\ IROG DQG 7H KDG WKH JUHDWHVW HIIHFW ZLWK D IROG LQFUHDVH LQ 2V VLJQDO 7KH VDPH JURXS H[DPLQHG WKH HIIHFW RI PL[HG 0J3G PRGLILHUV RQ WKH GHWHUPLQDWLRQ RI YRODWLOH HOHPHQWV 3E 6Q DQG $J f :LWK WKH XVH RI WKHVH PRGLILHUV WKH\ REVHUYHG D IROG LQFUHDVH LQ VHQVLWLYLW\ DQG DQ LPSURYHPHQW LQ WKH SUHFLVLRQ DQG OLQHDULW\ RI WKH WHFKQLTXH :LWKRXW WKH XVH RI WKH PDWUL[ PRGLILHUV WKH DQDO\WLFDO FXUYHV IRU WKHVH HOHPHQWV ZHUH VLPLODU WR WKRVH REWDLQHG SUHYLRXVO\ f

PAGE 68

7KH\ IRXQG WKDW WKH 0J1f DQG 3G1f PL[ LQFUHDVHG WKH DQDO\WH VLJQDOV WZR WLPHV RYHU WKH 0J1f DQG 3G&O PL[ ,W ZDV DOVR IRXQG WKDW GLIIHUHQW SURSRUWLRQV RI HDFK PL[WXUH KDG GLIIHUHQW HQKDQFHPHQW HIIHFWV RQ WKH VLJQDOV DQG WKDW HDFK PRGLILHU DORQH GLG QRW LPSURYH WKH DQDO\WH VHQVLWLYLW\ 7KLV GRHV QRW DJUHH ZLWK WKH UHVXOWV REWDLQHG E\ (GLJHU DQG %HUHV f ZKR IRXQG DQ HQKDQFHPHQW LQ VLJQDO XVLQJ 3G1f DV ZHOO DV 0J1f LQGLYLGXDOO\ +XE DQG $PSKOHWW f XVHG SRWDVVLXP LRGLGH DV D PDWUL[ PRGLILHU ZKHQ GHWHUPLQLQJ PHWDO FRQWDPLQDQWV IRU VHPLFRQGXFWRU SURFHVV FRQWURO 7KH LQVWUXPHQW XVHG ZDV DQ (/$1 3HUNLQ (OPHU 6FLH[ ,&306 ZLWK DQ +*$ 06 (79 &RQFHQWUDWHG K\GURIOXRULF DFLG DQG EXIIHUHG R[LGH HWFK %2(f ZKLFK LV D PL[WXUH RI DPPRQLXP IOXRULGH DQG K\GURJHQ IOXRULGH ZHUH DQDO\]HG IRU HLJKW PHWDO FRQWDPLQDQWV ZLWK GHWHFWLRQ OLPLWV EHORZ QJJ 7KH VXUIDFHV RI VLOLFRQ ZDIHUV ZHUH VWXGLHG E\ YDSRU SKDVH GHFRPSRVLWLRQ RU GURSOHW VXUIDFH HWFKLQJ FRPELQHG ZLWK (79,&306 'HWHFWLRQ OLPLWV IRU WKH VLPXOWDQHRXV DQDO\VLV RI WKH HLJKW HOHPHQWV IRU WKLV DQDO\VLV ZHUH EHWZHHQ WR [ DWRPVFP SHU LQFK ZDIHU %\ XVLQJ WKH ., PRGLILHU WKH VHQVLWLYLW\ ZDV LPSURYHG E\ D IDFWRU RI DQG WKH UHSURGXFLELOLW\ DQG OLQHDULW\ RI WKH DQDO\WLFDO FXUYHV ZHUH VXEVWDQWLDOO\ LPSURYHG 7KH RSWLPXP DPRXQW RI PRGLILHU ZDV IRXQG WR EH DSSUR[LPDWHO\ SJ )RU WKH DQDO\VLV RI %2( WKH UHODWLYH VWDQGDUG GHYLDWLRQ 56'f ZDV DERXW b IRU 1D $O DQG )H ZKLFK ZHUH IRXQG LQ FRQFHQWUDWLRQV RI QJJ =Q ZKLFK ZDV DOVR LQ WKLV FRQFHQWUDWLRQ UDQJH KDG DERXW D b 56' 7KH UHSURGXFLELOLW\ ZDV DERXW b 56' IRU 1L &X DQG 3E ZKLFK ZHUH IRXQG LQ FRQFHQWUDWLRQV OHVV WKDQ QJJ 7KH DXWKRUV DWWHPSWHG WR

PAGE 69

PHDVXUH &U DV ZHOO EXW ZHUH XQDEOH WR GHWHFW LW DW WKH QJJ OHYHO EHFDXVH RI WKH A$UA& PROHFXODU LQWHUIHUHQFH $QDO\VLV RI 2UJDQLFV %Y (79,&306 7KH (79 LV DQ H[FHOOHQW VDPSOH LQWURGXFWLRQ WHFKQLTXH IRU RUJDQLF VDPSOHV ,W UHTXLUHV RQO\ D YHU\ VPDOO VDPSOH YROXPH DQG KDV UDSLG VDPSOH FKDQJHRYHU 0RVW LPSRUWDQWO\ WKH RUJDQLF PDWUL[ PD\ EH UHPRYHG DQG YHQWHG WR DWPRVSKHUH E\ XVLQJ D FDUHIXOO\ SURJUDPPHG (79 WHPSHUDWXUH UDPS UHGXFLQJ WKH OHYHO RI FDUELGH LQWHUIHUHQWV )RU WKLV UHDVRQ R[\JHQ DGGLWLRQ IRU RUJDQLF PDWUL[ DVKLQJ LV QRUPDOO\ QRW UHTXLUHG +RZHYHU QRW PXFK UHVHDUFK KDV EHHQ SHUIRUPHG LQ WKLV DUHD $ EULHI GLVFXVVLRQ RI ZRUN LQ WKLV ILHOG IROORZV +DOO DQG FRZRUNHUV f ZHUH WKH ILUVW WR XVH (79,&306 IRU WKH GHWHUPLQDWLRQ RI D PHWDO LQ RUJDQLF PDWHULDO 7KH\ GHWHUPLQHG JROG LQ LVREXW\O PHWK\O NHWRQH ,%0.f D VROYHQW FRPPRQO\ XVHG IRU WKH H[WUDFWLRQ RI JHRORJLFDO VDPSOHV 7KH DXWKRUV XVHG D ODERUDWRU\EXLOW JODVV GRPHG (79 VLPLODU WR WKDW GHVFULEHG SUHYLRXVO\ LQ WKLV FKDSWHU 7KH\ YHQWHG WKH RUJDQLF PDWUL[ GXULQJ WKH GU\LQJ VWHS EHIRUH DWRPL]LQJ WKH $X LQWR WKH ,&3 7KH\ KDG IDYRUDEOH UHVXOWV ZLWK D b 56' DQG D GHWHFWLRQ OLPLW IRU JROG RI QJP/ 2VERUQH f GHWHUPLQHG HOHPHQWDO DV ZHOO DV RUJDQLF PHUFXU\ LQ SHWUROHXP VDPSOHV +H XVHG D PRGLILHG 3HUNLQ (OPHU +*$ IXUQDFH FRXSOHG WR D 6FLH[ ,&306 $ SRVWIXUQDFH DGGLWLRQ RI R[\JHQ WR WKH FDUULHU JDV ZDV XVHG WR DVK WKH RUJDQLF PDWUL[ 7KH (79 SDUDPHWHUV XVHG ZHUH D YDSRUL]DWLRQ VWHS DW r& DQG

PAGE 70

D FOHDQRXW VWHS DW r& 1R VWDWLVWLFDO GLIIHUHQFH ZDV IRXQG EHWZHHQ WKH GHWHUPLQDWLRQ RI HOHPHQWDO DQG RUJDQLF +J $ FRPSDULVRQ ZDV PDGH RI WKH RUJDQLF +J VLJQDO REWDLQHG ZKHQ GLVVROYHG LQ GLIIHUHQW OHQJWK DONDQHV &V &f DQG LW ZDV IRXQG WKDW WKH +J VLJQDO GHFUHDVHG DV WKH FDUERQ FKDLQ OHQJWK ZDV LQFUHDVHG 7KH EHVW UHVXOWV ZHUH REWDLQHG ZLWK D FDUERQ OHQJWK RI RU ORZHU 7KH SUHFLVLRQ ZDV EHWZHHQ b56' IRU WKH VKRUWHU FKDLQV DQG DQG b56' IRU 4J DQG & UHVSHFWLYHO\ DQG WKH GHWHFWLRQ OLPLW ZDV SSE +J LQ SHQWDQH 7KH GHFUHDVH LQ +J VLJQDO ZLWK LQFUHDVLQJ FKDLQ OHQJWK ZDV DWWULEXWHG WR WKH LQFUHDVHG SODVPD ORDGLQJ EHFDXVH RI WKH LQFUHDVHG HQHUJ\ GHPDQGV IRU ORQJHU FDUERQ FKDLQV DQG WKH VSDWLDO GLVWULEXWLRQ RI WKH VDPSOH DV LW FRPEXVWV QRW EHLQJ ZHOO FRQILQHG WR WKH SODVPD D[LV 7KH DXWKRU DOVR QRWHG DQ LQFUHDVH LQ WKH ZHDU RI WKH LQWHUIDFH FRQHV GXH WR WKH DGGLWLRQDO R[\JHQ 5LFKQHU DQG :XQGHUOL f XVHG (79,&306 WR GLIIHUHQWLDWH EHWZHHQ RUJDQLF DQG LQRUJDQLF FKORULQH $ 6FLH[ (ODQ DQG (79 ZHUH XVHG DORQJ ZLWK SODWIRUP JUDSKLWH WXEHV 2[\JHQ JDV IORZ DW P/PLQ ZDV DGGHG WR WKH IXUQDFH FDUULHU DUJRQ WR DVK WKH RUJDQLF PDWUL[ 7KH (79 UDPS WHPSHUDWXUH SURJUDP FRQVLVWHG RI D GU\LQJ VWHS DW r& DQ LQLWLDO YDSRUL]DWLRQ VWHS DW r& WR YDSRUL]H WKH RUJDQLF &O DQG D VHFRQG YDSRUL]DWLRQ VWHS DW r& WR YDSRUL]H WKH LQRUJDQLF &O 7KH PDLQ DSSOLFDWLRQ RI WKLV PHWKRG ZDV LQ WKH GHWHUPLQDWLRQ RI SRO\FKORULQDWHG ELSKHQ\OV 3&%Vf LQ ZDVWH RLOV 7KH SUHFLVLRQ RI WKH PHWKRG IRU &O ZDV b56' ZLWK GHWHFWLRQ OLPLWV RI SJJ IRU GLIIHUHQW 3&%V +RZHYHU 3&%V FRQWDLQLQJ OHVV WKDQ WKUHH &O DWRPV FRXOG QRW EH GHWHFWHG HYHQ DW SJJ 7KH

PAGE 71

DXWKRUV DWWULEXWHG WKLV WR WKH KLJK YRODWLOLWLHV RI WKHVH FRPSRXQGV 7KH\ FRQFOXGHG WKDW WKH &O FRPSRXQGV ZHUH EHLQJ YDSRUL]HG GXULQJ WKH GU\LQJ VWHS DFFRXQWLQJ IRU WKH ORVV RI VLJQDO %HFDXVH WKH PHWKRG FRXOG QRW GLVWLQJXLVK EHWZHHQ 3&%V DQG RWKHU RUJDQLF &O FRPSRXQGV LW ZDV VXJJHVWHG WKDW LW PD\ EH XVHG RQO\ DV D UDSLG VFUHHQLQJ WHFKQLTXH IRU WKH GHWHUPLQDWLRQ RI 3&%V LQ ZDVWH RLOV 0DQQLQHQ f XVHG (79,&306 IRU WKH GHWHUPLQDWLRQ RI H[WUDFWDEOH RUJDQLF FKORULQH (2&f (2& LV WKH SRUWLRQ RI WRWDO RUJDQLF FKORULQH ZKLFK LV VHSDUDWHG IURP D VDPSOH E\ XVLQJ DQ RUJDQLF VROYHQW H[WUDFWLRQ SURFHGXUH $ )LVRQV 3ODVPD4XDG 34 ,, ZLWK D )LVRQV (79 0N ,,, LQVWUXPHQW ZDV XVHG IRU WKH DQDO\VLV 7KH IXUQDFH KHDWLQJ ZDV DV IROORZV WKH GU\LQJ VWHS ZDV DW r& WKH DVKLQJ WHPSHUDWXUH ZDV r& DQG WKH YDSRUL]WLRQ WHPSHUDWXUH ZDV r& 7KH IXUQDFH ZDV QRW YHQWHG GXULQJ GU\LQJ RU DVKLQJ DQG QR R[\JHQ ZDV DGGHG WR DVK WKH RUJDQLF PDWUL[ FDUERQ EXLOGXS ZDV REVHUYHG RQ WKH LQWHUIDFH FRQHV 6HYHUDO FKORULQDWHG FRPSRXQGV ZHUH VWXGLHG LQFOXGLQJ SFKORURDQLVRO SHQWDFKORURSKHQRO WULFKORURHWKHQH DQG R FKORUREHQ]RLF DFLG &KORULQH ZDV GHWHUPLQHG LQ HWK\O DFHWDWH ZLWK D GHWHFWLRQ OLPLW RI QJ 7KH SUHFLVLRQ ZDV b56' IRU VWDQGDUGV DQG IURP WR b56' IRU UHDO VDPSOHV

PAGE 72

&+$37(5 ,167580(17$7,21 ,QGXFWLYHO\ &RXSOHG 3ODVPD 0DVV 6SHFWURPHWHU 7KH UHVHDUFK LQ WKLV GLVVHUWDWLRQ ZDV SHUIRUPHG RQ D )LQQLJDQ 0$7 62/$ LQGXFWLYHO\ FRXSOHG SODVPD TXDGUXSROH PDVV VSHFWURPHWHU 7KH LQVWUXPHQW LV FRQWUROOHG E\ D '(// 'LPHQVLRQ 'HOO $XVWLQ 7; 8OWUDVFDQ )6f FRPSXWHU LQWHUIDFHG WR WKH LQVWUXPHQW E\ D 3URJUDPPDEOH /RJLF &RQWUROOHU 3/&f 0LWVXELVKL +LPHML -DSDQ PRGHO );05f 7KH VWDWH RI DOO YDFXXP FRROLQJ JDV IORZV DQG HOHFWURQLF FRQWURO XQLWV LV FRQVWDQWO\ PRQLWRUHG E\ WKH 3/& ,Q FDVH RI IDLOXUH WKH LQVWUXPHQW XQGHUJRHV WKH VKXWGRZQ SURFHGXUH DQG YHQWV WR DUJRQ 7KH ,&3 WRUFK DQG VSUD\ FKDPEHU DUH VKRZQ LQ &KDSWHU )LJXUH f WKH WRUFK LV VLPLODU WR WKDW GLVFXVVHG HDUOLHU 7KH WRUFK DQG VSUD\ FKDPEHU PDWHULDO ZHUH FRQVWUXFWHG RI TXDUW] E\ 3UHFLVLRQ *ODVVEORZLQJ (QJOHZRRG &2f 7KH VSUD\ FKDPEHU KDV D ZDWHU FRROLQJ MDFNHW DQG LWV RZQ FKLOOHU WKDW FLUFXODWHV b HWK\OHQH JO\FRO LQ WKH WHPSHUDWXUH UDQJH IURP WR r& PRGHO 57( 1HVODE 1HZLQJWRQ 1+f $UJRQ LV REWDLQHG IURP D / GHZDU RI OLTXLG DUJRQ VXSSOLHG IURP /LTXLG $LU &RUSRUDWLRQ :DOQXW &UHHN &$f 7KH FRRODQW JDV IORZ WKURXJK WKH ,&3 WRUFK LV DUJRQ DW /PLQ ZLWK WKH DX[LOLDU\ JDV IORZ DW /PLQ 7KH FDUULHU

PAGE 73

JDV IORZ LV DOVR DUJRQ DQG LV QRUPDOO\ /PLQ GHSHQGLQJ RQ WKH VDPSOLQJ DFFHVVRU\ XVHG 7KH WKUHHWXUQ FRSSHU FRXSOLQJ FRLO LV ZDWHU FRROHG 7KH 5) SRZHU LV N: DW D IUHTXHQF\ RI 0+] SURGXFHG E\ D UDGLR FU\VWDO FRQWUROOHG JHQHUDWRU +HQU\ (OHFWURQLFV /RV $QJHOHV &$f DQG DQ DXWRPDWLF WXQLQJ FLUFXLW LV XVHG IRU LPSHGDQFH PDWFKLQJ 7KH SHULVWDOWLF SXPS PRGHO 0 *LOVRQ )UDQFHf XVHG IRU VDPSOH LQWURGXFWLRQ PD\ DOVR EH FRQWUROOHG WKURXJK WKH FRPSXWHU $ VHFRQG ODUJHU FKLOOHU PRGHO &7) 1HVODE 1HZLQJWRQ 1+f VXSSOLHV WKH FRSSHU ORDG FRLO PDWFKLQJ ER[ VDPSOLQJ LQWHUIDFH (79 DQG DOO WXUER YDFXXP SXPSV ZLWK ZDWHU FRROHG WR r& 7KH VDPSOLQJ LQWHUIDFH LV D WKUHH FRQH V\VWHP WKURXJK ZKLFK WKH SUHVVXUH GURSV IURP DWPRVSKHULF WR [ n WRUU 7KH VDPSOLQJ FRQH LV ORFDWHG PP IURP WKH ORDG FRLO DQG KDV DQ RULILFH GLDPHWHU RI PP DW LWV WLS ,W LV PDGH RI QLFNHO ZLWK FRSSHU VDQGZLFKHG LQ WKH PLGGOH 7KH VSDFH EHKLQG LW LV SXPSHG E\ DQ QU SHU KRXU VLQJOH VWDJH URWDU\ SXPS PRGHO (0 (GZDUGV :HVW 6XVVH[ 8.f DQG WKH SUHVVXUH LQ WKLV UHJLRQ LV QRUPDOO\ WRUU 7KH RYHUDOO OD\RXW RI WKH YDFXXP V\VWHP LV VKRZQ LQ )LJXUH 7KH VNLPPHU FRQH LV ORFDWHG PP EHKLQG WKH VDPSOHU KDV DQ DSHUWXUH RI PP DQG LV DOVR PDGH RI QLFNHO /RFDWHG PP EHKLQG WKH VNLPPHU LV WKH QLFNHO DFFHOHUDWRU FRQH 7KH UHJLRQ EHWZHHQ WKH VNLPPHU DQG DFFHOHUDWRU LV SXPSHG E\ D /V WXUER SXPS PRGHO 73+ %DO]HUV *HUPDQ\f )LJXUH f ZKLFK NHHSV WKH SUHVVXUH DW [ WRUU

PAGE 74

3LUDQL ,QWHUPHGLDWH *DXJH +RXVLQJ ([SDQVLRQ 3LUDQL ALQJAA*DXJH +RXVLQJ *DXJ $QDO\]HU +RXVLQJ 3HQQLQ *DXJH &RROLQJ m=+ 'HWHFWRU +RXVLQJ 5RWDU\ 3XPS QUK ,QWHUPHGLDWH 7XUER /V $QDO\]HU 7XUER ,9V &ROOHFWRU f7XUER /V 5RWDU\AXPS 21 )LJXUH 62/$ ,&306 YDFXXP V\VWHP

PAGE 75

7KH TXDGUXSROH PDVV ILOWHUV DUH SXPSHG E\ D /V WXUER SXPS PRGHO 73+ %DO]HUV *HUPDQ\f DQG WKH SUHVVXUH LQ WKLV DQDO\]HU KRXVLQJ LV PDLQWDLQHG DW DERXW [ nWRUU 7KH GHWHFWRU KRXVLQJ LV SXPSHG E\ D /V WXUER SXPS PRGHO 73+ %DO]HUV *HUPDQ\f ZKLFK NHHSV WKH SUHVVXUH LQ WKLV UHJLRQ OHVV WKDQ [ f WRUU 7KH WXUER SXPSV DUH EDFNHG E\ D PK URWDU\ SXPS PRGHO (0 (GZDUGV :HVW 6XVVH[ 8.f 7KHUH DUH WKUHH YDFXXP JDXJHV RQ WKH V\VWHP FRQWUROOHG E\ DQ (GZDUGV YDFXXP JDXJH FRQWUROOHU PRGHO :HVW 6XVVH[ 8.f 3LUDQL JDXJHV PRGHO 350 (GZDUGV :HVW 6XVVH[ 8.f DUH ORFDWHG LQ WKH H[SDQVLRQ KRXVLQJ f DQG LQ WKH LQWHUPHGLDWH KRXVLQJ f )LJXUH f $ 3HQQLQJ LRQL]DWLRQ JDXJH f PRGHO &3. (GZDUGV :HVW 6XVVH[ 8.f PRQLWRUV WKH SUHVVXUH LQ WKH DQDO\]HU KRXVLQJ 3LUDQL JDXJH LV LQWHUORFNHG WR WKH 3HQQLQJ JDXJH VR WKDW WKH 3HQQLQJ LV QRW WXUQHG RQ XQWLO WKH SUHVVXUH LQ WKH LQWHUPHGLDWH KRXVLQJ LV EHORZ [ WRUU 7KLV SURWHFWV WKH 3HQQLQJ JDXJH IURP GDPDJH ZKHQ UXQQLQJ DW KLJK SUHVVXUHV 7KH RSWLFV OHQVHV XVHG WR WUDQVIHU WKH H[WUDFWHG LRQV LQWR WKH TXDGUXSROH PDVV DQDO\]HU KDYH EHHQ GLVFXVVHG HDUOLHU &KDSWHU f DQG DUH VKRZQ LQ )LJXUH 7KH YROWDJH UDQJH IRU HDFK OHQV LV VKRZQ LQ 7DEOH 7KH TXDGUXSROH PDVV DQDO\]HU LV D VTXDUH DUUD\ RI IRXU DFFXUDWHO\ PDWFKHG F\OLQGULFDO URGV PRGHO 406 %DO]HUV *HUPDQ\f 7KH VSHFLILFDWLRQV DUH DV IROORZV URG GLDPHWHU LV PP URG VHSDUDWLRQ LV PP URG OHQJWK LV PP ZLWK 5) DW 0+] 7KH PDVV UDQJH RI WKH TXDGUXSROH LV DPX 3HDN

PAGE 76

7DEOH ,RQ OHQV YROWDJH UDQJHV /HQV 0LQ 9ROWDJH 0D[ 9ROWDJH ([WUDFWLRQ &RQH N9 ; 'HIOHFWLRQ 9 9 < 'HIOHFWLRQ 9 9 )RFXV 9 < 6WHHU 9 9 3KDVH 0DWFK 9 4XDGUXSROH %LDV 9 9

PAGE 77

ZLGWK LV DGMXVWHG E\ WKH UHVROXWLRQ FRQWURO RQ WKH IURQW RI WKH PDVV VSHFWURPHWHU DQG DEXQGDQFH VHQVLWLYLW\ LV FRQWUROOHG E\ WKH SROH ELDV YROWDJH 7KH TXDGUXSROH PD\ EH XVHG LQ WKH UHPRWH RU ORFDO PRGHV ,Q WKH UHPRWH PRGH WKH FRPSXWHU FRQWUROV WKH PDVV VHWWLQJ ZKLOH LQ WKH ORFDO PRGH WKH RSHUDWRU KDV PDQXDO FRQWURO YLD D NQRE ORFDWHG RQ WKH IURQW SDQHO 7KH FROOHFWRU V\VWHP FRQVLVWV RI DQ DQDORJ )DUDGD\ DPSOLILHU DQG D SXOVH FRXQWLQJ HOHFWURQ PXOWLSOLHU PRGHO *DOLOHR 6WXUEULGJH 0$f 7KH PXOWLSOLHU LV XVHG IRU VLJQDOV VPDOOHU WKDW LRQV SHU VHFRQG ZKLOH WKH )DUDGD\ SODWH PD\ EH XVHG IRU VLJQDOV XS WR [ OX LRQV SHU VHFRQG $ SDLU RI GHIOHFWRU HOHFWURGHV FRQWUROV ZKLFK GHWHFWRU WKH LRQ VLJQDO HQWHUV (OHFWURWKHUPDO 9DSRUL]HU 7KH HOHFWURWKHUPDO YDSRUL]HU LV D *%& JUDSKLWH IXUQDFH PRGHO *) *%& 6FLHQWLILF (TXLSPHQW $XVWUDOLDf WKDW KDV EHHQ PRGLILHG E\ )LQQLJDQ IRU XVH DV D VDPSOH LQWURGXFWLRQ GHYLFH IRU WKH ,&3 ,W FRQVLVWV RI D FRQWURO XQLW LQWHUIDFHG WR WKH FRPSXWHU DQG WKH JUDSKLWH IXUQDFH ZRUNKHDG )LJXUH f 7KH OHIW ZLQGRZ RI WKH RULJLQDO IXUQDFH KDV EHHQ UHPRYHG DQG UHSODFHG E\ D WLWDQLXP YDSRU H[WUDFWLRQ LQWHUIDFH ZKLFK FRQQHFWV WR IOH[LEOH WXELQJ IRU VDPSOH WUDQVSRUW )LJXUH f 7KH FDUULHU DUJRQ DQG DX[LOLDU\ JDV IORZ WKURXJK WKH FHQWHU RI WKH WXEH DUH FRQWUROOHG E\ WZR PDVV IORZ FRQWUROOHUV 0)&f RQ WKH (79 ZRUNKHDG XQLW 7KH FDUULHU DUJRQ IORZ KDV D UDQJH RI /PLQ DQG WKH DX[LOLDU\ IORZ KDV D UDQJH RI /PLQ 7KH\

PAGE 78

5XEEHU %HOORZV /HIW 6LGH %ORFN 7LWDQLXP ,QWHUIDFH 3ODVWLF 7XELQJ )LWWLQJ 6SULQJ 7HQVLRQLQJ 6FUHZn 6SULQJ %DNHOLWH 6OHHYH 7HQVLRQ 6SULQJ :LQGRZ 5LJKW 6LGH %ORFN 3LYRW \\ %ORFN )LJXUH (79 ZRUNKHDG

PAGE 79

HQWHU WKH WXEH WDQJHQWLDOO\ VR WKH IORZ LV WXUEXOHQW 7KH VKURXG JDV IORZ LV FRQWUROOHG E\ D IORZ PHWHU RQ WKH IURQW RI WKH FRQWURO XQLW 7KH FDUULHU DUJRQ H[LWV WKH (79 WKURXJK WKH 7L LQWHUIDFH DQG LV YHQWHG WR DWPRVSKHUH XQWLO DWRPL]DWLRQ RI WKH VDPSOH EHJLQV ZKHQ WKH VDPSOH YDOYH GLUHFWV WKH IORZ LQWR WKH SODVPD )LJXUH f 7KH FDUULHU IORZ WKHQ HQWHUV WKURXJK D < FRQQHFWRU ORFDWHG EHWZHHQ WKH VSUD\ FKDPEHU DQG ,&3 WRUFK )LJXUH f 7KH FRPSXWHU FRQWUROV WKH (79 WHPSHUDWXUH UDPS DV ZHOO DV WKH WLPH ZKHQ WKH VDPSOH YDOYH LV DFWXDWHG DQG ZKHQ WKH PDVV VSHFWURPHWHU VWDUWV VFDQQLQJ $ JUDSKLWH SOXJ 31 6SHFWURJUDSKLF 6HUYLFHV 6XVVH[ 1-f LV SODFHG LQ WKH GRVLQJ KROH RI WKH JUDSKLWH WXEH EHIRUH KHDWLQJ WR SUHYHQW VDPSOH ORVV +ROORZ DV ZHOO DV LQWHJUDWHG SODWIRUP S\URO\WLFDOO\ FRDWHG JUDSKLWH WXEHV 31 DQG &3, 6DQWD 5RVD &$f PD\ EH XVHG LQ WKH IXUQDFH

PAGE 80

6DPSOH 9DOYH 7R ([WUDFWLRQ 6\VWHP &DUULHU *DV ,Q $X[LOLDU\ *DV ,Q :DWHU 6KURXG ,Q *DV ,Q )LJXUH *DV IORZV IRU (79,&306 21 12

PAGE 81

RRR )URP (79 )LJXUH 6DPSOH LQWURGXFWLRQ IRU (79

PAGE 82

&+$37(5 '(7(50,1$7,21 2) 0(7$/6 ,1 $48(286 62/87,216 %HFDXVH WKH LQVWUXPHQW ZDV QHZ WR WKH ODERUDWRU\ DQG ZDV RQH RI WKH ILUVW (79V WKDW )LQQLJDQ KDG GHOLYHUHG WR D FXVWRPHU LW ZDV GHFLGHG WR FKDUDFWHUL]H WKH V\VWHP XVLQJ DTXHRXV VWDQGDUGV RI YRODWLOH HOHPHQWV DQG WKH HOHPHQWV RI LQWHUHVW EHIRUH UHVHDUFK ZDV EHJXQ RQ WKH PHWDOORRUJDQLF VWDQGDUGV ,W ZDV WKRXJKW WKDW WKH GHWHUPLQDWLRQ RI &X =Q 0J $O )H DQG < ZRXOG EH VLPSOH DQG VWUDLJKWIRUZDUG DQG ZRXOG EH D JRRG VWDUW IRU IDPLOLDUL]LQJ RXUVHOYHV ZLWK WKH QHZ LQVWUXPHQW ,QVWUXPHQW 0RGLILFDWLRQV :KHQ WKH (79 ZDV XVHG DV UHFHLYHG IURP )LQQLJDQ 0$7 SRRU UHVXOWV ZHUH REWDLQHG 3UHFLVLRQV RI WR b ZHUH QRW XQFRPPRQ IRU DTXHRXV VWDQGDUGV RI &X =Q $O DQG 0J DQG FDOLEUDWLRQ FXUYHV ZHUH QRQOLQHDU 7KHUHIRUH VHYHUDO PRGLILFDWLRQV ZHUH PDGH WR WKH (79 WR LPSURYH WKH HIILFLHQF\ DQG SUHFLVLRQ RI VDPSOH YDSRU WUDQVSRUW WR WKH &3 *UDSKLWH 3OXJ +ROGHU 7KH ILUVW DQG PRVW REYLRXV FKDQJH ZDV ZLWK WKH JUDSKLWH SOXJ )LQQLJDQ SURYLGHG QR PHDQV RI VHFXULQJ WKH SOXJ LQ WKH GRVLQJ KROH DQG LW RIWHQ IHOO RXW GXULQJ

PAGE 83

(79 KHDWLQJ UHVXOWLQJ LQ VDPSOH ORVV WKURXJK WKH RSHQLQJ DQG FRQWULEXWLQJ WR WKH SRRU SUHFLVLRQ $ ODERUDWRU\FRQVWUXFWHG VSULQJ ORDGHG JUDSKLWH KROGHU PDGH RI FHUDPLF ZLWK D EDNHOLWH VXSSRUW ZDV DGDSWHG IRU WKH 62/$ (79 IURP DQRWKHU JUDSKLWH IXUQDFH LQ WKH ODE ,W ZDV DQFKRUHG WR WKH (79 E\ D PDJQHWLF PRXQW ZKLFK KHOG WKH EDNHOLWH VXSSRUW 7KH EDNHOLWH VXSSRUW KHOG D SKHQROLF VOHHYH WKDW KHOG D FHUDPLF KROGHU ZLWKLQ D VSULQJ 7KH JUDSKLWH SOXJ ZDV SUHVVHG LQWR WKH FHUDPLF KROGHU WKHQ SODFHG LQ WKH GRVLQJ KROH 7KH KROGHU ZDV WLJKWHQHG ZLWK D VHW VFUHZ JRLQJ WKURXJK WKH EDNHOLWH $IWHU FRUUHVSRQGHQFH ZLWK )LQQLJDQ 0$7 6DQ -RVH &$f WKLV JUDSKLWH SOXJ KROGHU ZDV VRRQ UHSODFHG ZLWK RQH VXSSOLHG E\ )LQQLJDQ 0$7 ,W FRQVLVWHG RI D PHWDO DUP WKDW VFUHZHG LQWR WKH (79 ZRUNKHDG ,W KDG D KLQJH WKDW DOORZHG LW WR EH UDLVHG RU ORZHUHG WR SOXJ RU XQSOXJ WKH GRVLQJ KROH XVLQJ WKH PDVV RI WKH DUP WR KROG WKH JUDSKLWH SOXJ LQWR WKH GRVLQJ KROH 7KH DUHD RI WKH DUP WKDW FRQWDFWHG WKH SOXJ ZDV KROORZHG RXW DQG UHSODFHG ZLWK D VPDOO SLHFH RI LQVXODWLQJ FHUDPLF VR WKDW WKH FXUUHQW WUDYHOLQJ WKURXJK WKH JUDSKLWH WXEH ZRXOG QRW WUDYHO WKURXJK WKH DUP (79 7XELQJ ,QWHUIDFH 7KH LQWHUIDFH EHWZHHQ WKH JUDSKLWH WXEH DQG WKH IOH[LEOH WUDQVSRUW WXELQJ VXSSOLHG E\ )LQQLJDQ LV VKRZQ LQ )LJXUH 7KH WLWDQLXP WXEH KRZHYHU ZDV VHYHUDO PLOOLPHWHUV DZD\ IURP WKH JUDSKLWH WXEH OHDYLQJ D GHDG YROXPH WKDW PD\ KDYH FDXVHG VDPSOH ORVV 7KLV LQWHUIDFH ZDV UHSODFHG ZLWK RQH FRQVWUXFWHG LQ WKH ODERUDWRU\ ,W FRQVLVWHG RI D VROLG WHIORQ F\OLQGHU FRQVWUXFWHG WR ILW WKH (79 WKDW ZDV GULOOHG RXW LQ

PAGE 84

WKH PLGGOH WR SURYLGH D SDWK IRU WKH DUJRQ IORZ DQG VDPSOH WR WUDYHO 7KH WHIORQ SLHFH DOVR KDG DQ RULQJ JURRYH WR VHDO LW WR WKH ZLQGRZ RSHQLQJ 7KH WUDQVIHU WXELQJ ILW VQXJO\ ZLWKLQ WKH WXQQHO GULOOHG WKURXJK WKH WHIORQ DQG LW ZDV SXVKHG WKURXJK WKH WHIORQ ILWWLQJ LQWR WKH (79 ZRUNKHDG 7KLV SURYLGHG OHVV GHDG YROXPH LQ WKDW WKH WHIORQ SLHFH ZDV IOXVK ZLWK WKH KROH ZKLOH WKH RWKHU LQWHUIDFH ZDV KROORZHG RXW DURXQG WKH WLWDQLXP WXEH $IWHU IXUWKHU FRUUHVSRQGHQFH ZLWK )LQQLJDQ 0$7 WKH\ SURYLGHG D ORQJHU WLWDQLXP WXEH IRU WKH LQWHUIDFH )LJXUH f ,W ZDV QRW LQ FRQWDFW ZLWK WKH JUDSKLWH WXEH EXW ZDV PXFK FORVHU WKDQ WKH SUHYLRXV 7L WXEH 7KH WLWDQLXP WXEH ZDV XVHG IRU DOO IXUWKHU ZRUN 6DPSOH 9DOYH 7KH RULJLQDO VDPSOH YDOYH ZDV D VROHQRLG PLFURYDOYH ZLWK D WHIORQ LQWHULRU WKDW ZDV DFWXDWHG E\ WKH ,&306 VRIWZDUH DFFRUGLQJ WR WKH (79 WHPSHUDWXUH UDPS ,W ZDV D WKUHHZD\ YDOYH VR WKDW WKH (79 IORZ FRXOG EH YHQWHG WR DLU RU EH WUDQVSRUWHG LQWR WKH ,&3 $IWHU H[SHULPHQWLQJ ZLWK PHWDOORRUJDQLF RLO FRPSRXQGV LQ WKH (79 RLO FRXOG EH VHHQ RR]LQJ RXW WKH YHQW SRUW RI WKH YDOYH DQG D VPDOO SXGGOH KDG IRUPHG RXWVLGH WKH YDOYH ,W ZDV DSSDUHQW WKDW WKH WLQ\ SDVVDJHV LQ WKH YDOYH ZHUH WRR VPDOO DQG WKDW VDPSOH ZDV FRQGHQVLQJ RQ WKH YDOYH ZDOOV :H UHSODFHG WKH YDOYH ZLWK D PDQXDO WKUHHZD\ YDOYH -D[ 9DOYH t )LWWLQJ &R -DFNVRQYLOOH )/f ZLWK D PXFK

PAGE 85

7R ,&3 2ULQJ )URP *UDSKLWH 7XEH )LJXUH 'LDJUDP RI (79WXELQJ LQWHUIDFH

PAGE 86

ODUJHU LQWHUQDO GLDPHWHU WKDW ZDV DFWXDWHG PDQXDOO\ ZLWK WKH DLGH RI D VWRSZDWFK 7KH WUDQVSRUW WXELQJ ZDV DWWDFKHG WR WKH YDOYH ZLWK LQFK 6ZDJHORFN ILWWLQJV $IWHU IXUWKHU FRPPXQLFDWLRQ ZLWK )LQQLJDQ WKH\ SURYLGHG D nSLQFKn YDOYH LQ ZKLFK WKH WUDQVSRUW WXELQJ IURP WKH (79 WR WKH ,&3 SDVVHG WKURXJK D YDOYH )LJXUH f $ SODVWLF WHH ZDV SODFHG EHIRUH WKH YDOYH ZLWK VLOLFRQ WXELQJ FRQQHFWHG WR HDFK DUP RI WKH WHH %RWK WXEHV H[LWLQJ IURP WKH WHH SDVVHG WKURXJK WKH YDOYH ZLWK RQH FRQQHFWHG WR WKH ,&3 DQG WKH RWKHU YHQWLQJ WR WKH DWPRVSKHUH $ OHYHU EHWZHHQ WKH WZR WXEHV SLQFKHG RQH RI WKH WZR VLOLFRQ WXEHV WR FRQVWULFW RU EORFN SDVVDJH RI WKH (79 FDUULHU JDV 7KH FDUULHU DUJRQ ZDV WKHQ IRUFHG WR WUDYHO WKURXJK WKH RWKHU WXEH 7KLV YDOYH SURYLGHG D SDWK ZLWK D ODUJHU GLDPHWHU IRU VDPSOH WUDQVSRUW DQG ZDV XVHG IRU DOO IXUWKHU ZRUN 7KH WXELQJ LV DERXW WZR IHHW ORQJ ZLWK DQ LQFK LG DQG LQFK RG 6DPSOH ,QWURGXFWLRQ *ODVVZDUH )LQQLJDQ 0$7 UHFRPPHQGHG WKDW WKH (79 EH RSHUDWHG ZLWK WKH VSUD\ FKDPEHU DQG QHEXOL]HU LQ SODFH ZLWK ZDWHU EHLQJ SXPSHG FRQWLQXRXVO\ WKURXJK WKHP 7KH\ FODLPHG WKDW K\GURJHQ LRQV LQ WKH SODVPD FRQWULEXWHG WR D KLJKHU LRQL]DWLRQ HIILFLHQF\ +RZHYHU WKLV HOLPLQDWHV RQH RI WKH DGYDQWDJHV RI (79 ZKLFK LV WKH XVH RI D nGU\n SODVPD WR UHGXFH PROHFXODU LQWHUIHUHQWV GXH WR ZDWHU LQ WKH SODVPD 6LQFH RQH RI WKH DQDO\WHV RI LQWHUHVW LQ WKLV UHVHDUFK LV LURQ LW LV LPSRUWDQW WR OLPLW WKH DPRXQW RI ZDWHU LQ WKH SODVPD WR UHGXFH WKH DPRXQW RI WKH $U2 PROHFXODU LQWHUIHUHQW DW PDVV 7KH

PAGE 87

6LOLFRQH (79 7XELQJ )LJXUH 'LDJUDP RI (79WXELQJ LQWHUIDFH DQG SLQFK YDOYH

PAGE 88

VDPSOH LQWURGXFWLRQ LQWHUIDFH DW WKH ,&3 ZDV PRGLILHG WR HOLPLQDWH WKH XVH RI WKH VSUD\ FKDPEHU )LJXUH f 7KH QHEXOL]HU JDV IORZ ZDV FODPSHG WR RQH DUP RI D < FRQQHFWRU ZLWK DQRWKHU DUP FRQQHFWHG WR WKH (79 JDV IORZ ZLWK D Q\ORQ 6ZDJHORFN ILWWLQJ DQG WKH WKLUG DUP FRQQHFWHG WR WKH WRUFK LQMHFWRU WXEH E\ WKH JODVV EDOO MRLQW 7KH QHEXOL]HU IORZ EHIRUH WKH < FRQQHFWRU ZDV SDVVHG WKURXJK D WKUHHZD\ VROHQRLG YDOYH WKDW ZDV ZLUHG WR WKH (79 VDPSOH YDOYH ,W ZDV KRRNHG XS RSSRVLWHO\ VR WKDW QHEXOL]HU DUJRQ IORZHG WR WKH ,&3 ZKHQ WKH (79 YDOYH ZDV YHQWLQJ WR DWPRVSKHUH DQG WKH QHEXOL]HU IORZ ZDV YHQWHG WR DWPRVSKHUH ZKHQ WKH (79 IORZ ZDV GLUHFWHG WR WKH ,&3 7KLV SURYLGHV D FRQVWDQW IORZ RI LQMHFWRU JDV LQWR WKH ,&3 UHGXFLQJ WKH FKDQFH RI SODVPD nEORZRXWn ([SHULPHQWDO ,QVWUXPHQW 2SWLPL]DWLRQ $ GLIILFXOW\ ZLWK XVLQJ D nGU\n SODVPD LV ZLWK RSWLPL]LQJ LQVWUXPHQWDO SDUDPHWHUV $ FRQVWDQW VLJQDO LV UHTXLUHG WR WXQH WKH LQVWUXPHQW RU DGMXVW WKH YROWDJH VHWWLQJV RQ WKH RSWLFV OHQVHV WR REWDLQ D PD[LPXP VLJQDO &RQVWDQW VLJQDO LV DOVR UHTXLUHG WR RSWLPL]H WKH SODFHPHQW RI WKH SODVPD WRUFK SRVLWLRQ RYHU WKH VDPSOLQJ RULILFH 0DQ\ UHVHDUFKHUV KDYH WXQHG WKH RSWLFV OHQVHV XVLQJ D ZHW SODVPD RU QHEXOL]LQJ D VWDQGDUG VROXWLRQ WKHQ UHPRYLQJ WKH QHEXOL]HU DQG VSUD\ FKDPEHU DIWHU RSWLPL]DWLRQ DQG KRRNLQJ XS WKH (79 LQWHUIDFH f $ IHZ UHVHDUFKHUV KDYH WXQHG ZLWK D ZHW SODVPD WKHQ FRQWLQXHG WR QHEXOL]H EODQN ZDWHU

PAGE 89

)URP (79 )LJXUH 6DPSOH LQWURGXFWLRQ JODVVZDUH IRU (79

PAGE 90

WKURXJKRXW WKH (79 UXQV LQ RUGHU WR PLQLPL]H FKDQJHV LQ WKH LRQ OHQV VHWWLQJV f 2WKHU UHVHDUFKHUV KDYH WXQHG RQ D VLJQDO IURP DQ HOHPHQW VORZO\ YDSRUL]HG IURP WKH IXUQDFH VXFK DV PHUFXU\ f 2QH JURXS WXQHG RQ WKH & VLJQDO JHQHUDWHG IURP D EODQN (79 ILULQJ RU IURP & SUHVHQW DV DQ LPSXULW\ LQ WKH DUJRQ JDV VXSSO\ WKHQ WXQHG RQ WKH &G VLJQDO JHQHUDWHG IURP LWV VORZ YDSRUL]DWLRQ RII RI WKH IXUQDFH f 2WKHU UHVHDUFKHUV KDYH WXQHG RQ WKH VLJQDO SUHVHQW IURP D VSHFWUDO IHDWXUH LQ WKH SODVPD VXFK DV $U f RU $U+ f 7XQLQJ RQ WKH VLJQDO IURP DQ HOHPHQW YDSRUL]HG IURP WKH IXUQDFH LV GLIILFXOW EHFDXVH D VWDEOH VLJQDO LV GLIILFXOW WR JHQHUDWH DQG DGMXVWPHQW RI WKH WRUFK SRVLWLRQ XVLQJ D VSHFWUDO IHDWXUH LV LPSRVVLEOH EHFDXVH WKH VSHFLHV VXFK DV $U LV SUHVHQW WKURXJKRXW WKH SODVPD ,Q RXU ODERUDWRU\ VHYHUDO GLIIHUHQW DSSURDFKHV ZHUH DWWHPSWHG FU\VWDOV ZHUH SODFHG LQWR WKH JUDSKLWH IXUQDFH DQG KHDWHG WR SURGXFH D VLJQDO $ 3E VKRW ZDV DOVR LQWURGXFHG LQWR WKH IXUQDFH DQG YDSRUL]HG VORZO\ DW D ORZ WHPSHUDWXUH DQG D FRQFHQWUDWHG VROXWLRQ RI +J ZDV VORZO\ KHDWHG +RZHYHU QRQH RI WKHVH PHWKRGV ZRUNHG ZHOO EHFDXVH D FRQVWDQW VLJQDO ZDV LPSRVVLEOH WR REWDLQ IRU PRUH WKDQ D IHZ PLQXWHV 7KH ODVW PHWKRG DWWHPSWHG JDYH WKH EHVW UHVXOWV +RXVH QLWURJHQ ZDV FRQQHFWHG WR WKH DX[LOLDU\ PDVV IORZ FRQWUROOHU RQ WKH (79 8VLQJ WKLV FRQWUROOHU 1 JDV ZDV VORZO\ EOHG LQWR WKH PDLQ (79 DUJRQ JDV IORZ WR WKH SODVPD $ QLWURJHQ JDV IORZ RI P/PLQ DGGHG WR WKH /PLQ DUJRQ IORZ SURGXFHG HQRXJK VLJQDO DW PDVV RU WR GHWHFW RQ WKH )DUDGD\ SODWH :LWKRXW WKH DGGHG QLWURJHQ IORZ QR VLJQDO ZDV

PAGE 91

REVHUYHG RQ WKH )DUDGD\ GHWHFWRU 1LWURJHQ LV SUHVHQW WKURXJKRXW WKH SODVPD +RZHYHU GXULQJ WKH WXQLQJ SURFHGXUH WKH QLWURJHQ FRQFHQWUDWLRQ ZDV KLJKHU LQ WKH FHQWUDO FKDQQHO WKDQ WKURXJKRXW WKH UHVW RI WKH SODVPD 7KHUHIRUH WKH WRUFK ZDV DEOH WR EH ILQHO\ DGMXVWHG RYHU WKH VDPSOLQJ FRQH RULILFH ,QLWLDO DGMXVWPHQWV ZHUH PDGH XVLQJ D ZHW SODVPD QHEXOL]LQJ D VWDQGDUG WXQLQJ VROXWLRQ RI SSP $O 0J &G 3E DQG ,Q RQFH HYHU\ RQH WR WZR ZHHNV 7KH LRQ RSWLF OHQVHV ZHUH WKHQ WXQHG XVLQJ QLWURJHQ DW PDVV 1f RU 1f RU DUJRQ DW PDVV GHSHQGLQJ XSRQ WKH PDVV RI WKH DQDO\WH RI LQWHUHVW 7KLV PHWKRG ZRUNHG ZHOO EHFDXVH D FRQVWDQW VLJQDO FRXOG EH PDLQWDLQHG IRU DV ORQJ DV QHFHVVDU\ 7KH (79 SDUDPHWHUV ZHUH RSWLPL]HG IRU HDFK HOHPHQW H[FHSW FDUULHU IORZ ZKLFK ZDV NHSW FRQVWDQW DW /PLQ DV WKLV LV WKH IORZ QHHGHG WR SXQFWXUH WKH SODVPD DQG IRUP WKH FHQWUDO FKDQQHO 7KH YDSRUL]DWLRQ WHPSHUDWXUH ZDV RSWLPL]HG E\ UXQQLQJ WKUHH LQMHFWLRQV RI WKH VDPH FRQFHQWUDWLRQ IRU D VHULHV RI WHPSHUDWXUHV 7KH SHDN LQWHQVLWLHV DQG SUHFLVLRQV IRU HDFK VHW RI UXQV ZHUH FRPSDUHG DQG WKH WHPSHUDWXUH WKDW JDYH WKH KLJKHVW LQWHQVLW\ ZLWK JRRG SUHFLVLRQ b 56'f ZDV FKRVHQ DV WKH RSWLPXP DWRPL]DWLRQ WHPSHUDWXUH 7KHUH JHQHUDOO\ ZDV D GHILQLWH RSWLPXP WHPSHUDWXUH ZLWK SHDN LQWHQVLW\ GHFUHDVLQJ EHORZ DQG DERYH WKH RSWLPXP 7KH PDVV PRQLWRUHG IRU HDFK HOHPHQW ZDV RSWLPL]HG LQ D VLPLODU ZD\ (DFK HOHPHQW ZDV UXQ WKUHH WLPHV RYHU D DPX PDVV UDQJH IRU H[DPSOH IRU 0J DW PDVV PDVV ZDV VWXGLHG DQG LQFUHDVHG E\ XQWLO 7KH RSWLPXP PDVV ZDV WKHQ FKRVHQ EDVHG RQ WKH EHVW SHDN LQWHQVLW\ DQG SUHFLVLRQ %HFDXVH WHPSRUDO SURILOHV ZHUH WDNHQ LW ZDV

PAGE 92

LPSRUWDQW WR PRQLWRU WKH FRUUHFW PDVV RU SUHFLVLRQ DQG VLJQDO LQWHQVLW\ VXIIHUHG EHFDXVH WKH WDLO RI WKH SHDN ZDV EHLQJ PRQLWRUHG 7KH LQWHQVLW\ PD\ GURS E\ WLPHV MXVW DPX IURP WKH SHDN RSWLPXP $ KROORZ JUDSKLWH WXEH ZDV XVHG IRU WKH GHWHUPLQDWLRQ RI DTXHRXV HOHPHQWV 6WDQGDUG 3UHSDUDWLRQ $WRPLF DEVRUSWLRQ VLQJOH PHWDO VWDQGDUG VROXWLRQV )LVKHU 6FLHQWLILFf RI $O 0J )H DQG < DW SSP ZHUH GLOXWHG WR SUHSDUH FDOLEUDWLRQ VWDQGDUGV 1D&O VROXWLRQV ZHUH SUHSDUHG IURP VROLG SXULILHG 1D&O 3XUDWURQLF JUDGH -RKQVRQ 0DWWKH\ :DUG +LOO 0$f DQG 3G1f VROXWLRQV ZHUH SUHSDUHG IURP VROLG SXULILHG 3G1f b -RKQVRQ 0DWWKH\ :DUG +LOO 0$f (DFK VROXWLRQ FRQWDLQHG b WUDFH PHWDO JUDGH +1 2SWLPD JUDGH )LVKHU 6FLHQWLILFf DQG ZDV SUHSDUHG XVLQJ GHLRQL]HG ZDWHU SXULILHG LQ WKH ODERUDWRU\ 0LOOL4 3OXV 0LOOLSRUH %HGIRUG 0$f ZLWK D VSHFLILF UHVLVWDQFH RI 0IL FP ,QVWUXPHQWDO 2SWLFDO HPLVVLRQ IURP WKH SODVPD ZDV GHWHFWHG E\ SODFLQJ D IXVHG VLOLFD OHQV LQ IRFDO OHQJWK LQFK GLDPHWHUf VR DV WR LPDJH OLJKW IURP D UHJLRQ EHWZHHQ WKH ,&3 ORDG FRLO DQG WKH VDPSOLQJ FRQH XSRQ D IXVHG VLOLFD ILEHU RSWLF EXQGOH RI PP GLDPHWHU 7KH RWKHU HQG RI WKH ILEHU RSWLF FDEOH ZDV FRQILJXUHG DV D VOLW DQG SRVLWLRQHG PP LQ IURQW RI WKH HQWUDQFH VOLW RI D PHWHU IRFDO OHQJWK

PAGE 93

PRQRFKURPDWRU 6SH[ PRGHO ( 6SH[ ,QGXVWULHV (GLVRQ 1-f 7KH VLJQDO ZDV GHWHFWHG XVLQJ D SKRWRPXOWLSOLHU WXEH FXUUHQWWRYROWDJH FRQYHUWHU DQG DQ DQDORJ VWULS FKDUW UHFRUGHU 7KH VSHFWURPHWHU VOLWV ZHUH W\SLFDOO\ VHW WR SP SURGXFLQJ D VSHFWUDO UHVROXWLRQ RI QP 6XOIXU KH[DIOXRULGH ZDV LQWURGXFHG LQWR WKH IXUQDFH XVLQJ WKH DX[LOLDU\ PDVV IORZ FRQWUROOHU HTXLSSHG RQ WKH (79 ZRUNKHDG 3URFHGXUH $ S/ DOLTXRW RI DTXHRXV VWDQGDUG ZDV LQWURGXFHG LQWR WKH JUDSKLWH WXEH WKURXJK WKH GRVLQJ KROH ZLWK D IL[HG S/ (SSHQGRUI SLSHWWH PRGHO %ULQNPDQQ ,QVWUXPHQWV :HVWEXU\ 1
PAGE 94

7DEOH 1HZ JUDSKLWH WXEH FRQGLWLRQLQJ 1XPEHU 7HPSHUDWXUH r&f 5DPS 7LPH Vf +ROG 7LPH Vf

PAGE 95

7KH PDVV VSHFWURPHWHU FRXOG RQO\ EH VHW WR VFDQ RYHU D SUHVHOHFWHG PDVV UDQJH EXW WKHUH ZDV D EXJ LQ WKH VRIWZDUH WKDW SUHYHQWHG LW IURP VFDQQLQJ RYHU PRUH WKDQ RQH PDVV UDQJH 7KH WLPH UHVROYHG VRIWZDUH WKDW DOORZV WKH PDVV VSHFWURPHWHU WR VFDQ YHU\ UDSLGO\ KDV QRW EHHQ UHOHDVHG E\ )LQQLJDQ DQG ZLWKRXW LW LW LV GLIILFXOW WR VFDQ RYHU PRUH WKDQ D IHZ HOHPHQWV ,Q RUGHU WR PRQLWRU RQO\ RQH PDVV WKURXJKRXW WKH OHQJWK RI WKH (79 UDPS WKH PDVV DQDO\]HU KDG WR EH PDQXDOO\ VZLWFKHG WR WKH ORFDO PRGH XVLQJ WKH VZLWFK RQ WKH IURQW FRQWURO SDQHO RI WKH PDVV VSHFWURPHWHU DQG WKH PDVV RI LQWHUHVW ZDV VHOHFWHG 7LPH SURILOHV RI DOO VLJQDO SHDNV ZHUH REWDLQHG LQ WKLV UHVHDUFK 7KH )DUDGD\ GHWHFWRU ZDV XVHG IRU DOO UXQV EHFDXVH WKH SHDN LQWHQVLWLHV SURGXFHG IURP WKH (79 ZHUH WRR ODUJH IRU WKH HOHFWURQ PXOWLSOLHU GHWHFWRU /LPLWV RI GHWHFWLRQ ZHUH FDOFXODWHG EDVHG RQ WKH D FULWHULD XVLQJ WKH VWDQGDUG GHYLDWLRQ RI D VHULHV RI EODQN LQMHFWLRQV DV WKH PHDVXUH RI EODQN QRLVH 5HVXOWV DQG 'LVFXVVLRQ $IWHU WKH SUHYLRXVO\ GLVFXVVHG LQVWUXPHQW PRGLILFDWLRQV ZHUH PDGH VDPSOH SUHFLVLRQ DQG DQDO\WLFDO FXUYH OLQHDULW\ ZHUH VWLOO SRRU &DOLEUDWLRQ FXUYHV OLNH WKH RQH IRU 0J VKRZQ LQ )LJXUH ZHUH W\SLFDO IRU DOO HOHPHQWV VWXGLHG 5HSURGXFLELOLWLHV IRU WKLV GDWD UDQJHG IURP b 56' 6HYHUDO GLIIHUHQW SDUDPHWHUV ZHUH YDULHG LQFOXGLQJ (79 UDPS WHPSHUDWXUHV (79 FDUULHU JDV IORZ DQG YROXPH RI VDPSOH LQWURGXFHG LQWR WKH IXUQDFH %HFDXVH WKH SUHFLVLRQV ZHUH VR SRRU LW ZDV LPSRVVLEOH WR RSWLPL]H WKHVH SDUDPHWHUV

PAGE 96

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f [ [ [ [ [ Lf§f§Lf§nf§Lf§f§Lf§ff§Lf§7f§Lf§}f§Lf§!f§Lf§nf§Lf§nf§U M L L L L L L L L L L L L L L / 0J 0DVV QJf )LJXUH &DOLEUDWLRQ FXUYH IRU DTXHRXV 0J ZLWKRXW FDUULHU DGGHG 22

PAGE 97

,Q DQ DWWHPSW WR ILQG WKH FDXVH RI WKH SRRU SUHFLVLRQ VHYHUDO H[SHULPHQWV ZHUH FDUULHG RXW 7R HQVXUH WKDW WKH SUREOHP ZDV QRW GXH WR D EXJ LQ WKH VRIWZDUH D FKDUW UHFRUGHU ZDV ZLUHG WR WKH HOHFWURQLFV RQ WKH )DUDGD\ GHWHFWRU 7KH VLJQDO PHDVXUHG RQ WKH FKDUW UHFRUGHU FRUUHODWHG UDWKHU ZHOO ZLWK WKH VLJQDO PHDVXUHG E\ WKH )LQQLJDQ 62/$ VRIWZDUH 7KHUHIRUH LW ZDV FRQFOXGHG WKDW WKH VRIWZDUH GDWD DFTXLVLWLRQ ZDV QRW WKH SUREOHP $Q RSWLFDO HPLVVLRQ GHWHFWRU ZDV VHW XS WR PHDVXUH WKH HPLVVLRQ IURP WKH ,&3 WR HQVXUH WKDW WKH SUREOHP ZDV QRW ZLWK WKH PDVV VSHFWURPHWHU $ QJ DOLTXRW RI 0J ZDV LQWURGXFHG LQWR WKH IXUQDFH DQG WKH VLJQDO ZDV PRQLWRUHG XVLQJ WKH PDVV VSHFWURPHWHU DQG RSWLFDO HPLVVLRQ GHWHFWRU VLPXOWDQHRXVO\ )LJXUH VKRZV WKH UHVXOWV RI WKLV H[SHULPHQW 7KH SHDN LQWHQVLWLHV IURP HDFK GHWHFWLRQ PHWKRG IROORZHG WKH VDPH WUHQG 7KH SUHFLVLRQ IRU WKH HPLVVLRQ SHDN KHLJKWV ZDV b 56' DQG LW ZDV b 56' IRU WKH PDVV VSHFWUDO SHDN LQWHQVLWLHV 7KH UHVXOWV VKRZ WKDW WKH SRRU SUHFLVLRQ ZDV QRW GXH WR WKH PDVV VSHFWURPHWHU WKHUHIRUH LW ZDV FRQFOXGHG WKDW WKH SUREOHP ZDV EHLQJ FDXVHG E\ WKH (79 7KH UHSURGXFLELOLW\ RI WKH IXUQDFH KHDWLQJ ZDV DOVR PHDVXUHG XVLQJ D SKRWRGLRGH HTXLSSHG ZLWK D UHG ILOWHU WR PHDVXUH WKH FRQWLQXXP HPLVVLRQ RI WKH JUDSKLWH WXEH DQG IRXQG WR EH DFFHSWDEOH $FFRUGLQJ WR 3ODQFNnV UDGLDWLRQ ODZ f WKH HPLVVLRQ LV SURSRUWLRQDO WR WKH WHPSHUDWXUH RI WKH REMHFW 0RVW JUDSKLWH IXUQDFH V\VWHPV DUH HTXLSSHG ZLWK D SKRWRGLRGH WR FRQVWDQWO\ PHDVXUH WKH HPLVVLRQ DQG WKLV SKRWRGLRGH ZDV DGDSWHG IURP DQRWKHU JUDSKLWH IXUQDFH LQ WKH ODERUDWRU\

PAGE 98

3HDN ,QWHQVLWLHV &RXQWV6f )LJXUH &RPSDULVRQ RI SHDN LQWHQVLW\ IRU ,&306 DQG ,&3$(6 VLPXOWDQHRXV DQDO\VHV IRU FRQVHFXWLYH LQMHFWLRQV RI QJ 0J

PAGE 99

7KH SUHFLVLRQ RI WKH (SSHQGRUI SLSHWWH ZDV PHDVXUHG E\ GHSRVLWLQJ S/ RI 0LOOLSRUH ZDWHU LQWR D EHDNHU RQ WKH PDVV EDODQFH ,W ZDV IRXQG WR KDYH b 56' ZKLFK DJUHHV ZLWK WKH PDQXIDFWXUHUnV FODLP IRU SUHFLVLRQ 7KH DUJRQ IORZ ZDV WKHQ PHDVXUHG XVLQJ D PDVV IORZ FRQWUROOHU 7HOHG\QHf WR FKHFN LI WKH JUDSKLWH SOXJ ZDV VHDOLQJ ZHOO DIWHU HDFK LQMHFWLRQ 7KH GRVLQJ KROH ZDV XQSOXJJHG WKHQ SOXJJHG DQG WKH JDV IORZ ZDV PRQLWRUHG XVLQJ D FKDUW UHFRUGHU 7KH VLJQDO ZDV PHDVXUHG DQG IRXQG WR KDYH b 56' $OWKRXJK WKLV LV UDWKHU KLJK LW LV QRW KLJK HQRXJK WR DFFRXQW IRU DOO WKH UHSURGXFLELOLW\ SUREOHPV 7KHVH H[SHULPHQWV GLG QRW ILQG WKH PDLQ FDXVH RI WKH SUREOHP ZKLFK ZDV LQFRQVLVWHQW VDPSOH WUDQVSRUW IURP WKH (79 WR WKH ,&3 7KH QH[W VHFWLRQ GHFULEHV WKH VROXWLRQ WR WKH UHSURGXFLELOLW\ SUREOHP 0DWUL[ 0RGLILFDWLRQ 7KH XVH RI PDWUL[ PRGLILHUV RU FDUULHUV ZLWK WKH (79 ZDV WKHQ LQYHVWLJDWHG 7ZR GLIIHUHQW PRGLILHUV 1D&O DQG 3G1f ZHUH FKRVHQ EHFDXVH RI WKHLU SUHYLRXV VXFFHVV LQ (79,&306 f DQG EHFDXVH WKH\ GLG QRW FRQWDLQ DQ\ RI WKH HOHPHQWV RI LQWHUHVW 7KH\ FDQ DOVR EH IRXQG LQ KLJKO\ SXULILHG IRUPV ZKLFK LV LPSRUWDQW LQ UHGXFLQJ FRQWDPLQDWLRQ RI WKH VDPSOH 6ROXWLRQV RI 1D&O DQG 3G1f RI YDULRXV FRQFHQWUDWLRQV ZHUH SUHSDUHG DQG DGGHG WR VHYHUDO FRQFHQWUDWLRQV RI HDFK HOHPHQW 0J $O )H DQG
PAGE 100

7DEOH (79 WHPSHUDWXUH UDPS XVHG IRU DTXHRXV VROXWLRQV 1XPEHU 7HPSHUDWXUH r&f 5DPS 7LPH Vf +ROG 7LPH Vf r f7KLV WHPSHUDWXUH YDULHG ZLWK HOHPHQW

PAGE 101

EHLQJ VWXGLHG EXW WKH RWKHU SDUDPHWHUV ZHUH FRQVWDQW IRU HDFK HOHPHQW 7KH ODVW WHPSHUDWXUH QR f ZDV XVHG DV D FRRO GRZQ VWHS EHIRUH WKH QH[W LQMHFWLRQ DV WKH LQVWUXPHQW ZDV QRW HTXLSSHG ZLWK DQ DXWRPDWLF GHOD\ EHWZHHQ UXQV (DFK 1D&O FRQFHQWUDWLRQ ZDV UXQ ZLWK VHYHUDO FRQFHQWUDWLRQV RI 0J ZLWK D YDSRUL]DWLRQ WHPSHUDWXUH RI r& 7KH UHVXOWV DUH VKRZQ LQ )LJXUH (DFK UXQ ZDV UHSHDWHG WKUHH WLPHV DQG HUURU EDUV UHSUHVHQW RQH VWDQGDUG GHYLDWLRQ 7KH XVH RI 1D&O LPSURYHG WKH SUHFLVLRQ DQG LQWHQVLW\ RI HDFK VHW RI UXQV DV ZHOO DV WKH WHPSRUDO SHDN VKDSH )LJXUH f VXJJHVWLQJ WKDW VDPSOH WUDQVSRUW ZDV LPSURYHG 7KH RSWLPXP DPRXQW RI 1D&O ZDV SJ IRU HDFK PDVV RI 0J VWXGLHG 7KH DQDO\WLFDO FXUYHV SORWWHG ZHUH JHQHUDOO\ PRUH OLQHDU WKDQ ZLWKRXW DGGHG 1D&O 5 f HYHQ WKH VPDOOHU 1D&O PDVVHV ZHUH DQ LPSURYHPHQW RYHU QRW DGGLQJ FDUULHU )LJXUH f 7KH SUHFLVLRQ ZDV W\SLFDOO\ EHWWHU WKDQ b 56' 7KH OLPLWV RI GHWHFWLRQ IRU HDFK PDVV RI 1D&O DUH JLYHQ RQ HDFK FDOLEUDWLRQ FXUYH DQG UDQJH IURP WR SJ 7KHVH GHWHFWLRQ OLPLWV ZHUH FDOFXODWHG XVLQJ WKH )DUDGD\ GHWHFWRU DQG DUH EODQN OLPLWHG 0DJQHVLXP ZDV SUHVHQW LQ WKH VRGLXP FKORULGH DW SSP ZKLFK DFFRXQWV IRU WKH KLJK EODQN :LWK D FOHDQHU EODQN DQG XVLQJ WKH HOHFWURQ PXOWLSOLHU GHWHFWRU GHWHFWLRQ OLPLWV VKRXOG EH DW OHDVW DQ RUGHU RI PDJQLWXGH EHWWHU 5HSHDWLQJ WKH VDPH H[SHULPHQW ZLWK $ JDYH VLPLODU UHVXOWV 7KH SHDN LQWHQVLW\ DQG SUHFLVLRQ RI WKH $O UXQV ZHUH PXFK LPSURYHG ZKHQ FRPSDUHG WR WKRVH ZLWKRXW DGGHG 1D&O )LJXUH f 7KH SHDN LQWHQVLW\ ZDV LQFUHDVHG XS WR WLPHV 7KHUH ZDV DQ RSWLPXP DPRXQW RI 1D&O GHSHQGLQJ RQ WKH PDVV RI DQDO\WH ZLWK PRUH

PAGE 102

[ 0DVV 1D&, AJf R E R 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f UR WR E E E E ; ; ; ; BB; f§N R R R R R! R! R! &' / 2f [n

PAGE 103

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0DVV 1D&, _LJf 0DVV 1D&, AJf )LJXUH FRQWLQXHGf &f QJ 0J 'f QJ 0J

PAGE 104

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0DVV 1D&, AJf 0DVV 1D&, AJf )LJXUH FRQWLQXHGf (f QJ 0J )f QJ 0J

PAGE 105

,QWHQVLW\ &RXQWV6f ,QWHQVLW\ &RXQWV6f 7LPH Vf 7LPH 6f )LJXUH 0J WHPSRUDO SHDN VKDSHV QJ 0Jf $f :LWKRXW FDUULHU %f XJ 1D&O DGGHG

PAGE 106

)LJXUH &DOLEUDWLRQ FXUYHV IRU 0J $f ALJ 1D&O DGGHG %f AJ 1D&O DGGHG &f _LJ 1D&, D 'f QJ 1D&O DGGHG 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f f§N 0 2‘R E E E E ; ; ; ; N ; R R R R 2' RR [n

PAGE 107

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f )LJXUH FRQWLQXHGf (f _LJ 1D&O DGGHG 92 2Y

PAGE 108

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0DVV 1D&, AJf )LJXUH (IIHFW RI 1D&, DGGHG WR $O $f QJ $O %f QJ $O

PAGE 109

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f WR F 2 2 F 72 &' &/ F FR f 0DVV 1D&, AJf [ [p [p [p [p [p 0DVV 1D&, AJf )LJXUH FRQWLQXHGf &f QJ $O 'f QJ $O

PAGE 110

1D&O UHTXLUHG IRU WKH VPDOOHU $O PDVVHV 7KH DGGLWLRQ RI HYHQ D QRQ RSWLPXPDPRXQW RI FDUULHU LPSURYHG WKH SHDN LQWHQVLW\ DQG SUHFLVLRQ VR WKDW D FRPSURPLVH DPRXQW RI 1D&O PD\ EH XVHG IRU D ODUJH DQDO\WH PDVV UDQJH 7KH DQDO\WLFDO FXUYHV ZHUH PXFK LPSURYHG ZLWK W\SLFDO 5 YDOXHV RI )LJXUH f 'HWHFWLRQ OLPLWV DUH JLYHQ LQ )LJXUH DQG ZHUH W\SLFDOO\ SJ 7KH GHWHFWLRQ OLPLWV ZHUH RQFH DJDLQ EODQNOLPLWHG DQG ZLWK D FOHDQHU EODQN DQG XVLQJ WKH HOHFWURQ PXOWLSOLHU GHWHFWRU WKH\ VKRXOG DOVR EH DQ RUGHU RI PDJQLWXGH EHWWHU 7KH YDSRUL]DWLRQ WHPSHUDWXUH XVHG IRU WKH DQDO\VLV ZDV r& 7KH DGGLWLRQ RI VRGLXP FKORULGH DOVR LPSURYHG WKH UHSURGXFLELOLW\ RI WKH )H DQDO\VHV )LJXUH f 7KH RSWLPXP YDSRUL]DWLRQ WHPSHUDWXUH ZDV IRXQG WR EH r& 7KH RSWLPXP PDVV RI 1D&O ZDV SJ IRU HDFK )H PDVV VWXGLHG 7KH ORZHU )H FRQFHQWUDWLRQV FRXOG QRW EH GHWHFWHG ZLWKRXW WKH DGGLWLRQ RI 1D&O 'HWHFWLRQ OLPLWV UDQJHG IURP WR SJ )LJXUH f 7KH GHWHFWLRQ OLPLW ZDV QRW EODQNOLPLWHG EXW ZDV OLPLWHG E\ WKH GHWHFWRU QRLVH 7KHUHIRUH XVH RI WKH PXOWLSOLHU GHWHFWRU ZKLFK KDV PXFK ORZHU QRLVH VKRXOG LPSURYH WKH GHWHFWLRQ OLPLW 7KH DGGLWLRQ RI VRGLXP FKORULGH DV D FDUULHU GLG QRW LPSURYH WKH GHWHFWLRQ RI < E\ (79,&306 < IRUPV UHIUDFWRU\ FDUELGHV DQG GRHV QRW FRPH RII WKH IXUQDFH HYHQ DW KLJK WHPSHUDWXUHV f WKHUHIRUH LW ZDV H[SHFWHG WKDW 1D&O ZRXOG QRW VROYH WKLV SUREOHP *HQHUDOO\ QR VLJQDO ZDV GHWHFWHG IRU < DOWKRXJK RFFDVLRQDOO\ D VPDOO SHDN GLG DSSHDU

PAGE 111

)LJXUH &DOLEUDWLRQ FXUYHV IRU $O $f 1R FDUULHU DGGHG %f QJ 1D&O DGGHG &f ALJ 1D&O DGGHG 'f AJ 1D&O DGGHG [

PAGE 112

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f Z )LJXUH FRQWLQXHGf (f _LJ 1D&O DGGHG )f _LJ 1D&O DGGHG R

PAGE 113

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0DVV 1D&, AJf 0DVV 1D&, AJf )LJXUH (IIHFW RI 1D&, DGGHG WR )H $f QJ )H %f QJ )H

PAGE 114

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0DVV 1D&, AJf )LJXUH FRQWLQXHGf &f QJ )H 'f QJ )H

PAGE 115

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f )LJXUH FRQWLQXHGf (f QJ )H

PAGE 116

)LJXUH &DOLEUDWLRQ FXUYHV IRU )H $f 1R FDUULHU DGGHG %f MLJ 1D&O DGGHG &f MLJ 1D&O DGGHG 'f MLJ 1D&O DGGHG 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f [ L LQ [

PAGE 117

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f )LJXUH FRQWLQXHGf (f _LJ 1D&O DGGHG )f QJ 1D&O DGGHG R 2Q

PAGE 118

7KH QH[W FDUULHU VWXGLHG ZDV SDOODGLXP QLWUDWH ,W GLG QRW LPSURYH WKH GHWHFWLRQ RI WKH DQDO\WHV DV ZHOO DV 1D&O GLG KRZHYHU LW ZDV DQ LPSURYHPHQW RYHU QRW XVLQJ D FDUULHU 3DOODGLXP QLWUDWH LV PRUH YRODWLOH WKDQ 1D&O SRVVLEO\ DFFRXQWLQJ IRU LWV SRRUHU SHUIRUPDQFH DV D FDUULHU 7KH GHWHFWLRQ OLPLWV DQG SUHFLVLRQ XVLQJ 3G1f ZHUH VRPHZKDW SRRUHU WKDQ ZKHQ XVLQJ 1D&O DV WKH FDUULHU 7KH DGGLWLRQ RI 3G1f LPSURYHG WKH SUHFLVLRQ DQG SHDN LQWHQVLW\ RI WKH (79,&306 UXQV IRU 0J RYHU QRW XVLQJ D FDUULHU )LJXUH f 7KH RSWLPXP YDSRUL]DWLRQ WHPSHUDWXUH ZDV r& ZKLFK ZDV WKH WHPSHUDWXUH XVHG ZLWK WKH 1D&O FDUULHU 7KHUH ZDV DQ RSWLPXP DPRXQW RI 3G12f SJf IRU DOO WKH 0J PDVVHV DQDO\]HG ZKLFK LV ODUJHU WKDQ WKH RSWLPXP DPRXQW RI 1D&O DGGHG SJf 7KH OLQHDULW\ RI WKH DQDO\WLFDO FXUYHV ZDV DOVR LPSURYHG RYHU QRW DGGLQJ D FDUULHU )LJXUH f ZLWK 5 YDOXHV RI 7KH GHWHFWLRQ OLPLWV UDQJHG IURP WR SJ DQG WKH SUHFLVLRQ ZDV JHQHUDOO\ OHVV WKDQ b 56' ERWK RI ZKLFK DUH VRPHZKDW SRRUHU WKDQ ZLWK 1D&O DV WKH FDUULHU 7KH GHWHFWLRQ OLPLW ZDV EODQN OLPLWHG 0J FRQWDPLQDWLRQ PD\ KDYH FRPH IURP WKH SDOODGLXP QLWUDWH RU WKH ODERUDWRU\ DLU RU ZDWHU f 8VLQJ SDOODGLXP QLWUDWH DV D FDUULHU LPSURYHG WKH GHWHFWLRQ RI $O DV ZHOO 7KH YDSRUL]DWLRQ WHPSHUDWXUH XVHG ZDV r& VLPLODU WR WKDW XVHG IRU 1D&O DGGHG WR $O 7KH SUHFLVLRQ ZDV LPSURYHG IURP OHVV WKDQ b 56' WR W\SLFDOO\ OHVV WKDQ b 56' H[FHSW IRU WKH ODUJH PDVV RI $O VWXGLHG )LJXUH f 7KH RSWLPXP DPRXQW RI 3G1f YDULHG DFFRUGLQJ WR WKH PDVV RI $O EHLQJ VWXGLHG ZLWK OHVV FDUULHU EHLQJ RSWLPXP IRU KLJKHU PDVVHV RI $O 7KLV PD\ EH GXH WR WKH IRUPDWLRQ RI SDUWLFOHV WKDW

PAGE 119

)LJXUH (IIHFW RI 3G1f DGGHG WR 0J $f QJ 0J %f QJ 0J 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 2 &' E E E ; ; ; ; R R R R! R! 2f f&' [n 0DVV 3G1f AJf 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f !f .! Z &' E E E E E ; ; ; ; ; ; BBN ; 2 R R R R R! 2f 2f &' 2f M L L L L L L L L [n

PAGE 120

8;2= 0DVV 3G1f _LJf 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 2&-! &' f§!‘ E E E 1FQ ER ; ; ; ; ; ; BB[ N R R R R R R &' &' &' A , , , L L Lf§, /

PAGE 121

)LJXUH &DOLEUDWLRQ FXUYHV IRU 0J $f 1R FDUULHU DGGHG %f _LJ 3G1f DGGHG &f AJ 3G12f DGGHG 'f SJ 3G14f DGGHG 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN R E ,QWHQVLW\ &RXQWV6f R ; R E ; R 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f &2 &' }f E E E .M FQ ; ; ; ; ; 2 E R 1_ R R R R 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 2LO [

PAGE 122

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0DVV 3G1f AJf 0DVV 3G1f QJf )LJXUH (IIHFW RI DGGLQJ 3G1f WR $O $f QJ $O %f QJ $O

PAGE 123

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0DVV 3G1f AJf 0DVV 3G14f AJf )LJXUH FRQWLQXHGf &f QJ $O 'f QJ $O

PAGE 124

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0DVV 3G1f AJf )LJXUH FRQWLQXHGf (f QJ $O

PAGE 125

ZHUH WRR ODUJH WR EH WUDQVIHUUHG HIILFLHQWO\ f UHVXOWLQJ LQ VDPSOH ORVV LQ WKH WUDQVIHU OLQH EHWZHHQ WKH (79 DQG WKH ,&3 7KH GHWHFWLRQ OLPLWV IRU $O UDQJHG IURP WR SJ RQH RUGHU RI PDJQLWXGH ZRUVH WKDQ ZLWK 1D&O DV WKH FDUULHU DQG YDOXHV IRU WKH FRUUHODWLRQ FRHIILFLHQW IRU WKH DQDO\WLFDO FXUYHV ZHUH )LJXUH f 7KH SUHFLVLRQ ZDV PXFK LPSURYHG IURP b 56' WR OHVV WKDQ b 56' ZLWK WKH DGGLWLRQ RI SDOODGLXP QLWUDWH WR )H )LJXUH f 7KH OLQHDULW\ RI WKH DQDO\WLFDO FXUYHV ZDV JRRG ZLWK 5 YDOXHV RI )LJXUH f 7KH GHWHFWLRQ OLPLWV IRU )H ZHUH SJ ZLWK 3G1f DGGHG DQG SJ ZLWKRXW FDUULHU DGGHG 7KLV LV EHFDXVH DV PRUH FDUULHU ZDV DGGHG WR WKH KLJKHU )H PDVVHV SHDN LQWHQVLW\ GHFUHDVHG DV LW GLG ZKHQ SDOODGLXP QLWUDWH ZDV DGGHG WR $O $ FRPSURPLVH PDVV RI 3G1f VKRXOG EH XVHG IRU D ODUJH UDQJH RI DQDO\WH FRQFHQWUDWLRQV LQ WKLV FDVH SJ 7KH YDSRUL]DWLRQ WHPSHUDWXUH XVHG LQ WKH (79 UDPS ZDV r& 7KH GHWHFWLRQ RI < ZDV QRW LPSURYHG E\ WKH DGGLWLRQ RI SDOODGLXP QLWUDWH $JDLQ WKLV ZDV H[SHFWHG DV 3G1f DFWV DV D FDUULHU DQG GRHV QRWKLQJ WR YRODWLOL]H WKH < IURP WKH IXUQDFH 1RUPDOO\ IUHRQ RU DQRWKHU KDOLGHFRQWDLQLQJ FRPSRXQG LV XVHG WR YRODWLOL]H WKH FDUELGH IRUPLQJ HOHPHQWV LQ JUDSKLWH IXUQDFH PHWKRGV f 7KH XVH RI DQ DOWHUQDWLYH IXUQDFH PDWHULDO DOVR HOLPLQDWHV WKLV SUREOHP EXW WKH IXUQDFH WXEHV IRU WKH )LQQLJDQ (79 DUH RQO\ DYDLODEOH PDGH RI JUDSKLWH %HFDXVH IUHRQ LV H[SHQVLYH DQG KD]DUGRXV WR WKH HQYLURQPHQW DQ DOWHUQDWLYH FKHPLFDO PRGLILHU ZDV H[SORUHG

PAGE 126

)LJXUH &DOLEUDWLRQ FXUYHV IRU $O $f 1R FDUULHU DGGHG %f QJ 3G12`f DGGHG &f AJ 3G12f DGGHG 'f WLJ 3G12f DGGHG 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0 &2 tf 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f R E R ; R 2 ; R &' R ; R FR R ; R FQ E [ R &' 0 &2 FQ FG R ; R ; R R R R ; ; ; ; 2 &' RR RR RR RR RR 0HDQ 3HDN ,QWHQVLW\ &RXQW6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f R E 0 &' 1 &2 FQ &' E E E E E E 2 E E E E ; ; ; ; ; ; ; ; ; ; ; ; BB[ B; R B; BB[ [ f§; f§; f§[ R R R R R R R R R R R A A A RR • RR RR RR RR

PAGE 127

QJ )H [ 0DVV 3G1f QJf 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f I2 A R! 2V

PAGE 128

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0DVV 3G1f QJf 0DVV 3G1f AJf )LJXUH FRQWLQXHGf &f QJ )H 'f QJ )H

PAGE 129

)LJXUH &DOLEUDWLRQ FXUYHV IRU )H $f 1R FDUULHU DGGHG %f QJ 3G12f DGGHG &f AJ 3G1f DGGHG 'f A[J 3G12f DGGHG 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f FQ N f§N 1L f§N UR 2‘IHN WQ &' E E &-O E E E E E E E ; ; ; ; ; ; ; ; ; ; ; Y BB[ R ; N R R R R R R R R R R A RR 22 2 aYO ‘YM 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0 WN D! RR f§N f§N RU f§N N WR 1E E E E E UR 2 E 8O E 2O E ; ; ; ; ; ; ; ; ; ; ; ; [ [ R f§N N N f§N f§N f§N R R R R R R R R R R R R nYO A RR E RR D &' RR

PAGE 130

6XOIXU KH[DIOXRULGH ZDV VWXGLHG EHFDXVH LW SURYLGHV WKH IOXRULQH UHTXLUHG IRU YRODWLOL]DWLRQ 6) IORZ UDWHV ZHUH YDULHG IRU GLIIHUHQW < FRQFHQWUDWLRQV VWXGLHG 7KH RSWLPXP YDSRUL]DWLRQ WHPSHUDWXUH ZDV IRXQG WR EH r& ZKLFK LV KLJKHU WKDQ ZKDW ZDV XVHG IRU WKH RWKHU HOHPHQWV VWXGLHG 7KH UHVXOWV DUH VKRZQ LQ )LJXUH %\ LQFUHDVLQJ WKH 6) IORZ WKH < LQWHQVLW\ LQFUHDVHG 3HDN WDLOLQJ LQFUHDVHG ZLWK 6) IORZ UDWH DQG LW ZDV GLVFRYHUHG WKDW 6) ZKLFK SUREDEO\ IRUPV LQ WKH SODVPD KDV D PDVV RI WKH VDPH DV WKH DWRPLF PDVV RI < 7KLV LQWHUIHUHQW RQO\ DSSHDUHG DV WDLOLQJ DIWHU WKH < SHDN 7KLV LV SUREDEO\ EHFDXVH WKH EXON RI WKH 6) ZDV UHDFWLQJ ZLWK \WWULXP LQ WKH IXUQDFH VR 6) ZDV QRW UHDFKLQJ WKH ,&3 DQG IRUPLQJ 6) 7KH GHWHFWLRQ OLPLWV LPSURYHG ZLWK 6) IORZ UDWH DQG UDQJHG IURP WR SJ ZLWK b 56' )LJXUH f $OWKRXJK WKH SUHFLVLRQ VKRXOG KDYH EHHQ EHWWHU LW ZDV DFFHSWDEOH IRU VLPSO\ FKDUDFWHUL]LQJ WKH LQVWUXPHQW &RQFOXVLRQV 7KH UHVXOWV RI WKH DTXHRXV HOHPHQW GHWHUPLQDWLRQV DUH VXPPDUL]HG LQ 7DEOH 7KH XVH RI HDFK PRGLILHU LPSURYHG WKH GHWHUPLQDWLRQ RI $O 0J DQG )H 6RGLXP FKORULGH SHUIRUPHG EHWWHU DV D FDUULHU WKDQ SDOODGLXP QLWUDWH LW UHVXOWHG LQ LPSURYHG SUHFLVLRQ DQG OLPLWV RI GHWHFWLRQ ,W ZDV DOVR IRXQG WKDW WKH RSWLPXP YDSRUL]DWLRQ WHPSHUDWXUH IRU HDFK HOHPHQW ZDV QRW GHSHQGHQW RQ WKH FDUULHU XVHG RQO\ RQ WKH HOHPHQW EHLQJ GHWHFWHG $ FRPSURPLVH YDSRUL]DWLRQ WHPSHUDWXUH ZRXOG KDYH WR EH XVHG IRU PXOWLHOHPHQW GHWHUPLQDWLRQV

PAGE 131

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 6) )ORZ 5DWH P/PLQf 6) )ORZ 5DWH P/PLQf )LJXUH (IIHFW RI 6) DGGLWLRQ RQ < $f QJ < %f QJ <

PAGE 132

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 6) )ORZ 5DWH P/PLQf )LJXUH FRQWLQXHGf &f QJ <

PAGE 133

)LJXUH &DOLEUDWLRQ FXUYHV IRU < $f P/LQLQ 6) %f LQ/WQLQ 6)If &f LQ/PLQ 6) 'f LQ/UQLQ 6) 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f R R R 1FQ YO N 8 E FQ E 1UR Wr 2f &' 2 R R R FQ E E E 2 ; ; ; ; ; ; ; ; ; N N R L ; f§-N R R R R R R R R R YO 2 &' 2f &' &' ==, [

PAGE 134

7DEOH 6XPPDU\ RI PRGLILHU SHUIRUPDQFH &DUULHU $QDO\WH /LPLW RI 'HWHFWLRQ 3Jf b 56' 2SWLPXP &DUULHU 0DVV SJf 7UDQVSRUW (IILFLHQF\ 1D&O 0J [On $O [n )H [V 3G1f 0J [ V $O [ V )H [V VI < P/PLQf [ 2n r GHVLJQDWHV WKH IORZ UDWH RI 6)

PAGE 135

7KH OLPLW RI GHWHFWLRQ IRU WKH GHWHUPLQDWLRQ RI DTXHRXV $ DQG 0J XVLQJ WKH 1D&O FDUULHU ZDV SJ 7KH GHWHFWLRQ OLPLW IRU )H ZLWK WKH 1D&O FDUULHU ZDV VOLJKWO\ KLJKHU DW SJ 7KLV LV GXH LQ SDUW WR WKH KLJKHU PDVV RI LURQ UHODWLYH WR WKDW RI $O DQG 0J EXW GRHV QRW DFFRXQW IRU WKH ODUJH GLIIHUHQFH )RU WKH GHWHUPLQDWLRQ RI PXOWLHOHPHQW DTXHRXV VDPSOHV VRPH RSWLPL]DWLRQ ZRXOG KDYH WR EH FDUULHG RXW 7KH RSWLPXP DPRXQW RI FDUULHU ZLOO EH GHSHQGHQW QRW RQO\ RQ WKH FRQFHQWUDWLRQ RI WKH DQDO\WH EXW RQ WKH FRQFHQWUDWLRQ RI FRQFRPLWDQW HOHPHQWV $ VPDOO PDVV RI 1D&O LQ WKH QJ UDQJHf ZRXOG SUREDEO\ EH VXIILFLHQW WR FRQGHQVH RQH DQDO\WH \HW QRW H[FHVVLYH HQRXJK WR UHGXFH WKH VLJQDO LQWHQVLW\ RI D VDPSOH FRQWDLQLQJ PRUH WKDQ RQH HOHPHQW 7KH GHWHFWLRQ HIILFLHQFLHV DUH JLYHQ LQ 7DEOH IRU HDFK HOHPHQW 7KH\ ZHUH FDOFXODWHG E\ GLYLGLQJ WKH QXPEHU RI LRQV VWULNLQJ WKH )DUDGD\ GHWHFWRU E\ WKH QXPEHU RI DWRPV LQMHFWHG LQWR WKH IXUQDFH 7KH QXPEHU RI LRQV VWULNLQJ WKH )DUDGD\ GHWHFWRU ZDV FDOFXODWHG E\ LQWHJUDWLQJ WKH WHPSRUDO SURILOH RI DQ DQDO\WH VLJQDO 7KH GHWHFWLRQ HIILFLHQFLHV DUH JHQHUDOO\ LQ WKH UDQJH ZKLFK LV DQ LPSURYHPHQW RYHU WKH HIILFLHQF\ ZKHQ QHEXOL]LQJ DTXHRXV VWDQGDUGV ZKLFK KDV EHHQ FDOFXODWHG DV n

PAGE 136

&+$37(5 '(7(50,1$7,21 2) 0(7$//225*$1,&6 ,1 %$6( 2,/ ,QVWUXPHQW 0RGLILFDWLRQV %HIRUH UHVHDUFK ZDV EHJXQ RQ WKH RUJDQLF VDPSOHV WZR DGGLWLRQDO PRGLILFDWLRQV ZHUH PDGH WR WKH (79 WR DFFRPPRGDWH WKLV W\SH RI PDWUL[ 7KHVH PRGLILFDWLRQV DUH GHVFULEHG EHORZ 3QHXPDWLF *UDSKLWH 3OXJ +ROGHU 2QH RI WKH ILQDO PRGLILFDWLRQV WR EH PDGH WR WKH LQVWUXPHQW ZDV WKH LQVWDOODWLRQ RI D SQHXPDWLF JUDSKLWH SOXJ KROGHU ,W LV LPSRUWDQW WKDW WKH RUJDQLF PDWUL[ IURP WKH RLO VDPSOHV QRW HQWHU WKH SODVPD WR SUHYHQW VRRWLQJ DQG EORFNLQJ RI WKH LQWHUIDFH DSHUWXUHV 7KH EHVW ZD\ WR DFFRPSOLVK WKLV LV WR YDSRUL]H WKH RUJDQLF PDWUL[ DW D ORZ WHPSHUDWXUH EHIRUH YDSRUL]LQJ WKH DQDO\WH 7KH VDPSOH YDOYH PD\ EH XVHG IRU WKLV SXUSRVH EXW WKH RUJDQLF YDSRUV FRQGHQVH DORQJ WKH VKRUW OHQJWK RI WXELQJ EHIRUH WKH YDOYH 7KHUHIRUH D SQHXPDWLF SOXJ KROGHU ZDV FRQVWUXFWHG VR WKDW WKH JUDSKLWH WXEH FRXOG EH YHQWHG WKURXJK WKH GRVLQJ KROH DQG WKHQ SOXJJHG GXULQJ WKH KHDWLQJ F\FOH )LJXUH f

PAGE 137

9HUWLFDO 3OXQJHU *UDSKLWH 3OXJ W $LU ,Q +RUL]RQWDO 3OXQJHU 0RXQW )LJXUH 3QHXPDWLF SOXJ KROGHU

PAGE 138

7KH SOXJ KROGHU ZDV EXLOW IURP WZR SQHXPDWLF SOXQJHUV IRXQG LQ WKH ODERUDWRU\ WKDW KDG EHHQ XVHG WR KROG HOHFWURGHV IRU D '& DUF LQVWUXPHQW 2QH SOXQJHU ZDV PRXQWHG KRUL]RQWDOO\ DQG WKH RWKHU ZDV PRXQWHG YHUWLFDOO\ WR DOORZ PRYHPHQW LQ ERWK GLUHFWLRQV 7KH SOXJ KROGHU ZDV KHOG RQ D PRXQW WKDW ZDV EROWHG WR WKH ERWWRP RI WKH (79 ZRUNKHDG 7KH HOHFWURGH ZDV KHOG LQ SODFH E\ D VHW VFUHZ LQ WKH SOXQJHU 7KH SOXJ KROGHU ZDV FRQWUROOHG E\ WZR PDQXDO YDOYHV HDFK FRQWUROOLQJ WKH IORZ RI KRXVH DLU WR HDFK SOXQJHU 7R SOXJ WKH GRVLQJ KROH WKH DSSURSULDWH YDOYH ZDV PDQXDOO\ DFWXDWHG DQG WKH KRUL]RQWDO SOXQJHU PRYHG IRUZDUG 7KH RWKHU YDOYH ZDV WKHQ DFWXDWHG WR PRYH WKH SOXJ YHUWLFDOO\ 7R XQSOXJ WKH GRVLQJ KROH WKH SURFHGXUH ZDV UHYHUVHG 7KH VDPSOH YDOYH ZDV NHSW LQ SODFH EHWZHHQ WKH (79 DQG WKH ,&3 %HFDXVH WKH SOXJ KROGHU ZDV RSHUDWHG PDQXDOO\ LI WKH GRVLQJ KROH ZDV SOXJJHG EHIRUH WKH WLPH LQGLFDWHG LQ WKH VRIWZDUH WKH ,&3 ZRXOG KDYH /PLQ RI FDUULHU IORZLQJ WKURXJK LW SRVVLEO\ UHVXOWLQJ LQ D EORZRXW RI WKH SODVPD /PLQ FRPLQJ IURP WKH GU\ QHEXOL]HU JDVf RU LQ RUJDQLF PDWUL[ UHDFKLQJ WKH SODVPD 7KH VDPSOH YDOYH SUHYHQWHG WKLV IURP KDSSHQLQJ E\ YHQWLQJ WKH (79 FDUULHU JDV IORZ LI WKH GRVLQJ KROH ZDV SOXJJHG SUHPDWXUHO\ 7KLV SQHXPDWLF YDOYH ZDV XVHG IRU WKH UHPDLQGHU RI WKLV UHVHDUFK $GGLWLRQDO *DV )ORZ )RU WKH GHWHUPLQDWLRQ RI 0J LQ RLO WKH RUJDQLF PDWUL[ ZDV DVKHG ZLWK DQ DGGLWLRQDO IORZ RI R[\JHQ WKURXJK WKH IXUQDFH 7KH JDV IORZ SRUW RQ WKH OHIW VLGH RI

PAGE 139

WKH IXUQDFH ZDV XQSOXJJHG DQG FRQQHFWHG WR D VXSSO\ RI b R[\JHQ LQ DUJRQ $ VHFRQG SLQFK YDOYH ZDV SODFHG LQ WKH R[\JHQ OLQH EHIRUH LW UHDFKHG WKH (79 DQG ZDV HOHFWULFDOO\ FRQQHFWHG RSSRVLWHO\ WR WKH VDPSOH SLQFK YDOYH VR WKDW WKH R[\JHQ IORZHG RQO\ EHIRUH WKH VDPSOH YDOYH ZDV RSHQHG WR WKH ,&3 )LJXUH f 7KLV HQVXUHG WKDW R[\JHQ GLG QRW UHDFK WKH SODVPD UHVXOWLQJ LQ HURVLRQ RI WKH PHWDOOLF VDPSOLQJ FRQHV 7KLV FRQILJXUDWLRQ ZDV RQO\ XVHG IRU WKH DGGLWLRQ RI R[\JHQ WR WKH IXUQDFH ([SHULPHQWDO ,QVWUXPHQW RSWLPL]DWLRQ LQFOXGLQJ WXQLQJ DQG (79 RSWLPL]DWLRQ ZDV DFFRPSOLVKHG DV GHVFULEHG SUHYLRXVO\ LQ &KDSWHU 6WDQGDUG 3UHSDUDWLRQ 7KH b R[\JHQ LQ DUJRQ WDQN ZDV REWDLQHG IURP 6SHFWUD *DVHV ,QF 1HZDUN 1-f 6LQJOH HOHPHQW PHWDOORRUJDQLF VWDQGDUGV RI $O 0J )H DQG < DW SJJ LQ EDVH RLO -RKQVRQ 0DWWKH\ :DUG +LOO 0$f ZHUH GLOXWHG LQ [\OHQH /RZ 7UDFH 0HWDO *UDGH 0DOOLQFNURGW &KHVWHUILHOG 0LVVRXULf WR PDNH VROXWLRQV RI b RLO E\ ZHLJKWYROXPH LQ [\OHQH %DVH RLO ZDV XVHG WR SURYLGH HQRXJK RLO WR PDNH XS b RLO DQG WR SUHSDUH DQDO\WLFDO EODQNV 7KHVH [\OHQH VROXWLRQV ZHUH HDVLHU WKDQ SXUH RLO VWDQGDUGV WR PHDVXUH DQG LQWURGXFH LQWR WKH IXUQDFH ;\OHQH ZDV XVHG EHFDXVH LW ZDV WKH RQO\ DSSURSULDWH VROYHQW DYDLODEOH LQ D WUDFH PHWDO JUDGH $ PXOWLHOHPHQW PHWDOOR RUJDQLF VWDQGDUG LQ RLO ZKLFK FRQWDLQHG HOHPHQWV DW SSP ZWf 6 &RQRVWDQ

PAGE 140

)LJXUH &DUULHU IORZ WKURXJK (79 $f 'XULQJ GU\LQJ DQG DVKLQJ VWHSV %f 'XULQJ YDSRUL]DWLRQ VWHS

PAGE 141

3RQFD &LW\ 2.f DQG 6WDQGDUG 5HIHUHQFH 0DWHULDO D ZHDU PHWDOV LQ RLO SSP1,67 *DLWKHUVEXUJ 0'f ZHUH GLOXWHG LQ D VLPLODU ZD\ %ODQNV IRU WKHVH VWDQGDUGV ZHUH SUHSDUHG IURP EDVH RLO REWDLQHG IURP HDFK VRXUFH 'LOXWLRQV ZHUH PDGH LQ D YROXPHWULF IODVN XVLQJ DQ DQDO\WLFDO EDODQFH IRU WKH ILUVW GLOXWLRQ DQG D RU PO JDVWLJKW V\ULQJH PRGHOV RU +DPLOWRQ &R 5HQR 1HYDGDf IRU IXUWKHU GLOXWLRQV 6ROXWLRQV RI 1D&O b 3XUDWURQLF JUDGH -RKQVRQ 0DWWKH\ :DUG +LOO 0$f ZHUH SUHSDUHG LQ PHWKDQRO 2SWLPD JUDGH )LVKHU 6FLHQWLILF 3LWWVEXUJK 3$f 3URFHGXUH $ S/ DOLTXRW RI RUJDQLF VWDQGDUG ZDV LQWURGXFHG LQWR WKH SODWIRUP WXEH WKURXJK WKH GRVLQJ KROH ZLWK D S/ JDVWLJKW +DPLOWRQ V\ULQJH 0RGHO +DPLOWRQ &R 5HQR 1HYDGDf 1D&O PRGLILHU ZKHQ XVHG ZDV LQWURGXFHG ILUVW LQ S/ DOLTXRWV XVLQJ D S/ JDVWLJKW +DPLOWRQ V\ULQJH 0RGHO +DPLOWRQ &R 5HQR 1HYDGDf 7KH IXUQDFH SURJUDP ZDV WKHQ LQLWLDWHG WKURXJK WKH FRPSXWHU DQG WKH JUDSKLWH SOXJ KROGHU ZDV DFWXDWHG DW WKH DSSURSULDWH WLPH ZLWK WKH DLGH RI D VWRSZDWFK 7KH YDOYH GHOD\ WLPH LV VHW E\ WKH DQDO\VW LQ WKH (79 FRPSXWHU VRIWZDUH DV ZHOO DV WKH VFDQ GHOD\ ZKLFK LV WKH WLPH DIWHU WKH YDOYH RSHQV WKDW PDVV VFDQQLQJ VWDUWV 7LPH SURILOHV RI DOO VLJQDO SHDNV ZHUH REWDLQHG DV GHVFULEHG LQ &KDSWHU 7KH PDVV VSHFWURPHWHU VFDQQHG IURP WR VHFRQGV IRU HDFK UXQ 7KH SDUDPHWHUV ZHUH VHW IRU D GZHOOWLPH RI PV SHU FKDQQHO ZLWK FKDQQHOV SHU DWRPLF PDVV XQLW 7KH

PAGE 142

)DUDGD\ SODWH GHWHFWRU ZDV XVHG IRU DOO UXQV DV WKH VLJQDO LQWHQVLW\ ZDV WRR KLJK IRU WKH HOHFWURQ PXOWLSOLHU GHWHFWRU 5HVXOWV DQG 'LVFXVVLRQ 0DWUL[ 0RGLILFDWLRQ $IWHU REVHUYLQJ SURPLVLQJ UHVXOWV ZLWK 1D&O DV D FDUULHU IRU WKH DTXHRXV VWDQGDUGV LQ (79,&306 LW ZDV DVVXPHG WKDW D FDUULHU ZRXOG EH QHHGHG IRU WKH RUJDQLF VDPSOHV DV ZHOO $TXHRXV 1D&O VROXWLRQV ZHUH DGGHG WR WKH RUJDQLF VDPSOHV LQ WKH IXUQDFH WXEH 6LQFH WKH PDWUL[ LV YDSRUL]HG EHIRUH DQDO\WH YDSRUL]DWLRQ LW ZDV KRSHG WKDW DTXHRXV FDUULHUV PLJKW ZRUN +RZHYHU XSRQ KHDWLQJ RI WKH IXUQDFH WKH VDPSOH UHDFWHG YLROHQWO\ PDNLQJ VSLWWLQJ QRLVHV DQG RIWHQ VSODWWHULQJ RXW RI WKH IXUQDFH VDPSOLQJ KROH ,W ZDV WKRXJKW WKDW XVLQJ DQ RUJDQLF VROYHQW ZRXOG VROYH WKH SUREOHP 'LOXWH VROXWLRQV RI 1D&O LQ PHWKDQRO ZHUH WKHQ SUHSDUHG DQG DGGHG WR WKH IXUQDFH ZLWK WKH RUJDQLF VDPSOHV 7KLV VROYHG WKH VSODWWHULQJ SUREOHP EXW LW ZDV IRXQG WKDW WKH DGGLWLRQ RI VRGLXP FKORULGH GLG QRW LPSURYH WKH GHWHFWLRQ RI $O )LJXUH VKRZV WKH HIIHFW RI 1D&O RQ WKH GHWHFWLRQ RI PHWDOORRUJDQLF $O LQ DQ RUJDQLF PDWUL[ E\ (79,&306 7KH SHDN LQWHQVLW\ LPSURYHG VRPHZKDW EXW WKH SUHFLVLRQ JHQHUDOO\ ZDV SRRUHU ZKHQ WKH 1D&O ZDV DGGHG OHVV WKDQ b 56' ZLWKRXW WKH FDUULHU WR b 56' ZLWK WKH FDUULHU DGGHG 7KHUHIRUH VWXGLHV XVLQJ D FDUULHU ZLWK WKH PHWDOORRUJDQLF VDPSOHV ZHUH GLVFRQWLQXHG

PAGE 143

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f 0DVV 1D&, AJf 0DVV 1D&, AJf )LJXUH (IIHFW RI 1D&, RQ $ PHWDOORRUJDQLF VWDQGDUGV $f QJ $O %f QJ $O

PAGE 144

'HWHUPLQDWLRQ RI 0HWDOORRUVDQLHV :LWKRXW $GGHG &DUULHU 5HVHDUFK FRQWLQXHG ZLWKRXW XVH RI DQ DGGHG FDUULHU 7KH LQLWLDO (79 WHPSHUDWXUH UDPS LV VKRZQ LQ 7DEOH ,W SURYLGHG D VORZ DVKLQJ UDPS WR YDSRUL]H WKH RUJDQLF PDWUL[ WKHQ DQ DWRPL]DWLRQ VWHS WR YDSRUL]H WKH PHWDOORRUJDQLF $O 7KH SHDN VKDSH WKDW UHVXOWHG IURP WKLV W\SH RI UDPS ZDV HUUDWLF DQG SUHFLVLRQ UDQJHG IURP WR b 56' 7KH VLJQDO RIWHQ H[KLELWHG WZR SHDNV WKDW DSSHDUHG XQUHVROYHG )LJXUH $f ZKLFK RIWHQ PHDQV WKDW WZR GLIIHUHQW FRPSRXQGV DUH FRPLQJ RII WKH IXUQDFH DW VOLJKWO\ GLIIHUHQW WHPSHUDWXUHV 7KH QH[W WHPSHUDWXUH UDPS ZDV DQ DWWHPSW WR WKHUPDOO\ VHSDUDWH WKH WZR SHDNV DQG LV VKRZQ LQ 7DEOH $ UHVW WLPH ZDV LQFRUSRUDWHG EHWZHHQ WZR YDSRUL]DWLRQ WHPSHUDWXUHV WR VHSDUDWH WKH SHDNV LQ WLPH 7KH UHVXOWV DUH VKRZQ LQ )LJXUH % 7KH SHDNV ZHUH QRW FRPSOHWHO\ VHSDUDWHG DV WKHUH LV D VOLJKW VKRXOGHU RQ WKH OHIW VLGH RI WKH VHFRQG SHDN 7KH SUHFLVLRQ ZDV JHQHUDOO\ OHVV WKDQ b 56' IRU WKH VLJQDO LQWHQVLW\ RI WKH VHFRQG SHDN XVLQJ WKLV (79 UDPS ,W ZDV WKRXJKW WKDW WKH SHDN FRPLQJ RII DW r& ZDV WKH &+1 LQWHUIHUHQW DULVLQJ IURP WKH RUJDQLF PDWUL[ 7R FRQILUP WKLV WKUHH FRQFHQWUDWLRQV RI PHWDOOR RUJDQLF $O ZHUH UXQ DQG ERWK VLJQDOV ZHUH PRQLWRUHG 7KH UHVXOWV DUH VKRZQ LQ )LJXUH 7KH ERWWRP OLQH UHSUHVHQWV WKH VLJQDO LQWHQVLW\ RI WKH ILUVW SHDN RU WKH SHDN WR EH YDSRUL]HG DW r& DQG LW GLG QRW LQFUHDVH ZLWK $O LQWHQVLW\ 7KHUHIRUH LW ZDV FRQFOXGHG WKDW WKLV ILUVW SHDN UHVXOWHG IURP WKH RUJDQLF PDWUL[ DQG QRW $O

PAGE 145

7DEOH (79 WHPSHUDWXUH SURJUDP IRU PHWDOORRUJDQLF DOXPLQXP 1XPEHU 7HPSHUDWXUH 5DPS 7LPH +ROG 7LPH r&f Vf Vf (79 9DOYH 'HOD\ V (79 6FDQ 'HOD\ V

PAGE 146

,QWHQVLW\ &RXQWVf 7LPH 6f )LJXUH 7HPSRUDO PHWDOORRUJDQLF $O VLJQDO $f )URP LQLWLDO WHPSHUDWXUH SURJUDP RI QJ %f )URP WZRVWHS YDSRUL]DWLRQ SURJUDP RI QJ

PAGE 147

7DEOH 7ZRVWHS DWRPL]DWLRQ (79 WHPSHUDWXUH UDPS 1XPEHU 7HPSHUDWXUH 5DPS 7LPH +ROG 7LPH &2 Vf Vf (79 9DOYH 'HOD\ V (79 6FDQ 'HOD\ V

PAGE 148

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f )LJXUH $QDO\WLFDO FXUYH RI LQHWDOORRUJDQLF $, XVLQJ WZRVWHS YDSRUL]DWLRQ (79 UDPS UHSUHVHQWV WKH ILUVW YDSRUL]DWLRQ VLJQDO f§ff§

PAGE 149

7KH QH[W H[SHULPHQW FDUULHG RXW FRQFHUQHG WKH r& nUHVW WLPHn EHWZHHQ WKH WZR YDSRUL]DWLRQ VWHSV 7KH GXUDWLRQ RI WKLV VWHS ZDV YDULHG ZKLOH VLJQDO LQWHQVLW\ ZDV PRQLWRUHG IRU VHWV RI WKUHH UXQV DQG WKH UHVXOWV DUH VKRZQ LQ )LJXUH 7KH SHDN LQWHQVLW\ DQG SUHFLVLRQ GLG QRW FKDQJH VLJQLILFDQWO\ IRU WKH WLPHV LQYHVWLJDWHG 7KH SUHFLVLRQ RI WKH VLJQDO IURP WKH RQH VHFRQG UHVW SHULRG UXQV ZDV WKH ZRUVW DW b 56' WKH RWKHU UXQV KDG D SUHFLVLRQ RI OHVV WKDQ b 56' 7KH SURSRVHG PHFKDQLVP IRU WKLV (79 SURJUDP ZDV WKDW DW WKH ILUVW YDSRUL]DWLRQ WHPSHUDWXUH r&f WKH IXUQDFH WHPSHUDWXUH ZDV QRW KHOG ORQJ HQRXJK IRU D VWHDG\VWDWH WR IRUP 7KHUHIRUH VRPH RI WKH RUJDQLF PDWUL[ LV YDSRUL]HG EXW WKH $ LV QRW ,I WKLV VWHS ZDV KHOG IRU D ORQJHU SHULRG RI WLPH Vf WKH VLJQDO LQWHQVLW\ RI WKH VHFRQG VLJQDO r&f VWDUWHG WR GHFUHDVH ZKLOH WKH LQWHQVLW\ RI WKH ILUVW VLJQDO LQFUHDVHG 7KLV PD\ EH GXH WR WKH PHWDOORRUJDQLF $ EHLQJ YDSRUL]HG DW WKH r& VWHS 7KH r& UHVW VWHS VLPSO\ VHSDUDWHV WKH WZR VLJQDOV LQ WLPH ZKLOH SURYLGLQJ D VKRUW WLPH IRU UHFRQGHQVDWLRQ RI WKH DQDO\WH WR RFFXU LQ WKH JUDSKLWH WXEH ,W LV SURSRVHG WKDW D SRUWLRQ RI WKH RUJDQLF PDWUL[ LV IXQFWLRQLQJ DV WKH VDPSOH FDUULHU $OO RI WKH RLO LV QRW YDSRUL]HG LQ WKH IXUQDFH GXULQJ WKH ILUVW YDSRUL]DWLRQ VWHS DQG WKLV FDQ EH VHHQ E\ REVHUYLQJ WKH JUHHQ & HPLVVLRQ LQ WKH ,&3 DQG E\ PRQLWRULQJ WKH VLJQDO DW PDVV RQ WKH PDVV VSHFWURPHWHU GXULQJ WKH VHFRQG YDSRUL]DWLRQ VWHS .DQWRU f GHVFULEHV WKH XVH RI RUJDQLF VSHFLHV DV FDUULHUV DQG FLWULF DFLG KDV EHHQ XVHG VXFFHVVIXOO\ DV D FDUULHU f 7KLV DOVR SURYLGHV DQ H[SODQDWLRQ IRU WKH IDFW WKDW WKH DGGLWLRQ RI 1D&O WR WKH PHWDOORRUJDQLF $O VDPSOH UHVXOWHG LQ SRRU SUHFLVLRQ

PAGE 150

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f )LJXUH (IIHFW RI r& UHVW WLPH RQ VLJQDO LQWHQVLW\ QJ PHWDOORRUJDQLF $ 92

PAGE 151

7KH PDVV RI WKH SDUWLFXODWH IRUPHG PD\ KDYH EHHQ WRR ODUJH UHVXOWLQJ LQ VDPSOH ORVV DORQJ WKH WUDQVSRUW WXELQJ ,Q RUGHU WR FRQILUP WKDW WKH RUJDQLF PDWUL[ ZDV DFWLQJ DV D FDUULHU WKH YROXPH RI D SSE 0J VDPSOH ZDV YDULHG DQG HDFK YROXPH ZDV UXQ WKUHH WLPHV ZKLOH PRQLWRULQJ WKH 0J VLJQDO 7KH UHVXOWV DUH VKRZQ LQ )LJXUH 7KH VLJQDO GLG QRW LQFUHDVH OLQHDUO\ DV ZRXOG EH H[SHFWHG IRU WKLV W\SH RI SORW 7KLV LQGLFDWHV WKDW WUDQVSRUW HIILFLHQF\ LPSURYHG ZLWK ODUJHU DPRXQWV RI PDWUL[ FRQILUPLQJ WKDW WKH RUJDQLF VSHFLHV PD\ EH WKH FDUULHU $ FDOLEUDWLRQ FXUYH IRU PHWDOORRUJDQLF $O LQ b EDVH RLO LQ [\OHQH ZDV UXQ DQG WKH UHVXOWV DUH VKRZQ LQ )LJXUH 7KH FRUUHODWLRQ FRHIILFLHQW 5f ZDV IRU WKH SHDN LQWHQVLW\ YHUVXV $O PDVV 7KH SHDN DUHDV ZHUH DOVR FDOFXODWHG DQG SORWWHG YHUVXV PDVV RI DOXPLQXP WKLV 5 YDOXH ZDV 7KH ORJORJ SORWV RI WKH VDPH GDWD DUH VKRZQ LQ )LJXUH & DQG 7KH OLPLW RI GHWHFWLRQ IRU WKH SHDN LQWHQVLW\ GDWD ZDV SJ DQG WKH OLPLW RI GHWHFWLRQ IRU WKH SHDN DUHD GDWD ZDV SJ 7KLV ZDV XQH[SHFWHG DV WKH SHDN DUHD QRUPDOO\ UHVXOWV LQ D EHWWHU GHWHFWLRQ OLPLW EHFDXVH RI WKH LPSURYHG VDPSOLQJ VWDWLVWLFV +RZHYHU LQ WKLV FDVH WKH SHDN DUHD KDG D ZRUVH SUHFLVLRQ WKDQ WKH SHDN KHLJKW OHVV WKDQ b 56' IRU WKH SHDN DUHD DQG OHVV WKDQ b 56' IRU WKH SHDN LQWHQVLW\ UHVXOWLQJ LQ D SRRUHU GHWHFWLRQ OLPLW 7KH SRRUHU SUHFLVLRQ ZDV SUREDEO\ WKH UHVXOW RI WKH LQFRPSOHWH VHSDUDWLRQ RI WKH &+1 IURP WKH $O VLJQDO 7KLV GRHV QRW HIIHFW WKH SHDN LQWHQVLW\ DV WKH LQWHUIHUHQW DSSHDUV DV D VKRXOGHU RQ WKH SHDN )LJXUH f 7KH GHWHFWLRQ OLPLW ZDV EODQNOLPLWHG ,W ZDV

PAGE 152

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f [ [ [ [ [ 7 n n ‘ n 6DPSOH 9ROXPH Q/f )LJXUH (IIHFW RI GLIIHUHQW VDPSOH YROXPHV RQ PHWDOORRUJDQLF 0J VLJQDO LQWHQVLW\ SSE 0J

PAGE 153

0HDQ 3HDN $UHD &RXQWVf 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f $O 0DVV QJf )LJXUH &DOLEUDWLRQ FXUYH IRU PHWDOORRUJDQLF $O $f 3HDN LQWHQVLW\ %f 3HDN DUHD

PAGE 154

0HDQ 3HDN $UHD &RXQWVf 0HDQ 3HDN ,QWHQVLW\ &RXQWV6f )LJXUH FRQWLQXHGf /RJORJ 3ORW &f 3HDN LQWHQVLW\ 'f 3HDN DUHD

PAGE 155

LPSRVVLEOH WR REWDLQ D FOHDQ RLO DQG [\OHQH EODQN EHFDXVH PRVW RUJDQLF VROYHQWV DUH SXULILHG IRU RUJDQLF FRQWHQW QRW PHWDO FRQWHQW 7KH OLQHDU UHVSRQVH H[WHQGHG WR QJ DQG UHSUHVHQWV WKH OHYHO DW ZKLFK WKH )DUDGD\ GHWHFWRU LV VDWXUDWHG 7KH )DUDGD\ GHWHFWRU PD\ EH VHW WR OHVV VHQVLWLYH VHWWLQJV WR H[WHQG WKH GHWHFWLRQ UDQJH XS WR WZR RUGHUV RI PDJQLWXGH 6HQVLWLYLW\ DW WKH ORZHU FRQFHQWUDWLRQV LV WKHQ FRPSURPLVHG VR WKH GHWHFWRU PD\ EH VHW DFFRUGLQJ WKH FRQFHQWUDWLRQ UDQJH RI LQWHUHVW 7KH DFFXUDF\ RI WKH $O GHWHUPLQDWLRQ ZDV FKHFNHG XVLQJ WKH &RQRVWDQ DQG 1,67 PXOWLHOHPHQW VWDQGDUGV 7KHVH UHVXOWV DUH VKRZQ LQ )LJXUH $W ORZHU FRQFHQWUDWLRQV WKH PXOWLHOHPHQW VWDQGDUGV DJUHHG ZLWK WKH VLQJOHHOHPHQW VWDQGDUGV EXW DW KLJKHU FRQFHQWUDWLRQV WKH &RQRVWDQ DQG 1,67 VWDQGDUGV JDYH KLJKHU VLJQDOV WKDQ WKH -RKQVRQ 0DWWKH\ VLQJOHHOHPHQW VWDQGDUGV 7KH GDWD LV VXPPDUL]HG LQ 7DEOH 7KHVH UHVXOWV FDQ EH H[SODLQHG E\ WKH IDFW WKDW WKH &RQRVWDQ DQG 1,67 VWDQGDUGV DUH FRPSULVHG RI VHYHUDO HOHPHQWV ZKLOH WKH VWDQGDUGV XVHG WR FRQVWUXFW WKH DQDO\WLFDO FXUYH DUH VLQJOHHOHPHQW VWDQGDUGV 7KH LQFUHDVHG FRQFHQWUDWLRQ RI HOHPHQWV LQ WKH &RQRVWDQ DQG 1,67 VWDQGDUGV PD\ DFW DV FDUULHUV IRU WKH DQDO\WH RI LQWHUHVW 7KLV ZRXOG UHVXOW LQ D KLJKHU VLJQDO DV WKH FRQFHQWUDWLRQ RI WKH HOHPHQWV LQFUHDVHV 7KH FDUULHU HIIHFW ZRXOG QRW EH DV SURQRXQFHG ZLWK ORZHU FRQFHQWUDWLRQV RI WKH DGGLWLRQDO HOHPHQWV WKHUHIRUH WKH $O VLJQDO LV QRW DV KLJK ZKHQ WKH GLOXWH VROXWLRQV DUH UXQ 7KH QH[W HOHPHQW VWXGLHG ZDV LURQ 7KH VDPH W\SH RI (79 WHPSHUDWXUH SURJUDP ZDV XVHG EHFDXVH ZKHQ WKH WLPHUHVROYHG VRIWZDUH LV LQVWDOOHG FRPSURPLVH (79 FRQGLWLRQV ZLOO EH XVHG IRU PXOWLHOHPHQW GHWHUPLQDWLRQV 7KHUHIRUH WKH

PAGE 156

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f )LJXUH &DOLEUDWLRQ FXUYH IRU PHWDOORRUJDQLF $O VKRZLQJ FKHFN VWDQGDUGV UHSUHVHQWV WKH -RKQVRQ 0DWWKH\ VWDQGDUGV $ UHSUHVHQWV WKH &RQRVWDQ VWDQGDUGVr UHSUHVHQWV WKH 1,67 VWDQGDUGV e

PAGE 157

7DEOH 5HVXOWV RI 1,67 DQG &RQRVWDQ FKHFN VWDQGDUGV IRU WKH GHWHUPLQDWLRQ RI PHWDOORRUJDQLF $O $O 0DVV QJf b 56' b (UURU &RQRVWDQ &RQRVWDQ 1,67 1,67 1,67

PAGE 158

HOHPHQWV RI LQWHUHVW VKRXOG KDYH VLPLODU (79 WHPSHUDWXUH SURJUDPV 7KH RSWLPXP (79 UDPS XVHG IRU )H LV VKRZQ LQ 7DEOH 7KH YDOYH ZDV RSHQHG GXULQJ WKH r& UHVW WLPH WR NHHS DV PXFK RUJDQLF YDSRU DV SRVVLEOH RXW RI WKH ,&3 7KH DVKLQJ WHPSHUDWXUH 1R f ZDV ORZHU IRU )H WKDQ $O 6LQFH WKH PHWDOORRUJDQLF FRPSRXQGV LQ WKH EDVH RLO VWDQGDUGV DUH SURSULHWDU\ LW LV QRW NQRZQ LI WKH )H FRPSRXQG ZDV LQGHHG PRUH YRODWLOH WKDQ WKH $O FRPSRXQG $W DVKLQJ WHPSHUDWXUHV KLJKHU WKDQ r& WKH DQDO\WH SHDN VWDUWHG WR GHFUHDVH EHFDXVH RI )H ORVV GXULQJ WKH DVKLQJ VWHS 7KH DQDO\WLFDO FXUYH XVLQJ WKH )H (79 UDPS LV VKRZQ LQ )LJXUH 7KH GHWHFWLRQ OLPLW ZDV SJ DQG WKH 5 YDOXH ZDV 7KH GHWHFWLRQ OLPLW ZDV RQFH DJDLQ EODQNOLPLWHG 7KH SUHFLVLRQ ZDV JHQHUDOO\ OHVV WKDQ b 56' H[FHSW IRU WKH WZR ORZHU FRQFHQWUDWLRQV ZKLFK ZHUH EHWZHHQ DQG b 56' 7KH XSSHU OLPLW RI OLQHDU UHVSRQVH ZDV QJ GXH WR WKH VDWXUDWLRQ RI WKH )DUDGD\ SODWH GHWHFWRU DW WKH PRVW VHQVLWLYH VHWWLQJ 7KH &RQRVWDQ DQG 1,67 PXOWLHOHPHQW VWDQGDUGV ZHUH XVHG WR FKHFN WKH DFFXUDF\ RI WKH )H GHWHUPLQDWLRQ DQG WKH UHVXOWV DUH VKRZQ LQ )LJXUH 7KHVH UHVXOWV ZHUH EHWWHU WKDQ WKRVH REWDLQHG IRU WKH GHWHUPLQDWLRQ RI $O 7KH GDWD LV VXPPDUL]HG LQ 7DEOH 7KH SUHFLVLRQ ZDV OHVV WKDQ b 56' IRU HDFK VHW RI WKUHH UXQV $W WKH KLJKHU DQDO\WH FRQFHQWUDWLRQV WKH )H VLJQDO IURP WKH PXOWLHOHPHQW VWDQGDUGV ZDV DJDLQ KLJKHU WKDQ WKDW REWDLQHG IURP WKH VLQJOHHOHPHQW VWDQGDUGV 7KLV RQFH DJDLQ LV SUREDEO\ GXH WR WKH FDUULHU HIIHFW RI WKH RWKHU HOHPHQWV SUHVHQW LQ WKH RLO 7KH GLIIHUHQFH LQ VLJQDO PD\ DOVR EH GXH WR D GLIIHUHQFH LQ WKH EDVH RLOV XVHG 6LQFH WKH

PAGE 159

7DEOH 2SWLPXP (79 UDPS IRU )H 1XPEHU 7HPSHUDWXUH 5DPS 7LPH +ROG 7LPH r&f Vf Vf (79 9DOYH 'HOD\ V (79 6FDQ 'HOD\ V

PAGE 160

)H 0DVV QJf )LJXUH &DOLEUDWLRQ FXUYH IRU PHWDOORRUJDQLF )H LQ EDVH RLO $f &DOLEUDWLRQ FXUYH %f /RJORJ SORW

PAGE 161

0HDQ 3HDN ,QWHQVLW\ &RXQWV6f )LJXUH &DOLEUDWLRQ FXUYH IRU RUHJDQRPHWDOOLF )H VKRZLQJ FKHFN VWDQGDUGV UHSUHVHQWV WKH -RKQVRQ 0DWWKH\ VWDQGDUGV $ UHSUHVHQWV WKH &RQRVWDQ VWDQGDUGV UHSUHVHQWV WKH 1,67 VWDQGDUGV f§ R

PAGE 162

7DEOH 5HVXOWV RI 1,67 DQG &RQRVWDQ FKHFN VWDQGDUGV IRU WKH GHWHUPLQDWLRQ RI PHWDOORRUJDQLF )H )H 0DVV QJf b 56' b (UURU &RQRVWDQ &RQRVWDQ 1,67 1,67 1,67

PAGE 163

EDVH RLO LV DFWLQJ DV D FDUULHU D FKDQJH LQ LWnV FRPSRVLWLRQ PD\ HIIHFW WKH DQDO\WH VLJQDO 7KH QH[W HOHPHQW LQYHVWLJDWHG ZDV PDJQHVLXP 0J LV HVSHFLDOO\ GLIILFXOW WR GHWHUPLQH LQ DQ RUJDQLF PDWUL[ EHFDXVH & LV DQ LQWHUIHUHQW DW WKH VDPH PDVV 7KLV SRVHG DQ HYHQ JUHDWHU FKDOOHQJH EHFDXVH FDUERQ ZDV DFWLQJ DV WKH DQDO\WH FDUULHU $ VPDOO SHUFHQWDJH bf RI R[\JHQ ZDV EOHG LQWR WKH IXUQDFH GXULQJ WKH GU\LQJ DQG DVKLQJ VWHSV WR DVK WKH FDUERQ 4XLWH D ELW RI WKH FDUERQ ZDV UHPRYHG REVHUYHG DV D GHFUHDVH LQ FDUERQ VLJQDO E\ WKH PDVV VSHFWURPHWHU +RZHYHU WKH SUHFLVLRQ RI WKH 0J UXQV VXIIHUHG ZLWK b 56' EHLQJ W\SLFDO 7KLV ZDV DWWULEXWHG WR WKH ORVV RI WKH FDUULHU WKH RUJDQLF PDWUL[ 7KH (79 UDPS ZDV WKHQ PRGLILHG WR DOORZ WKH DGGLWLRQ RI VRGLXP FKORULGH WR WKH IXUQDFH GXULQJ WKH r& UHVW WLPH 7DEOH f 7KH UHVW WLPH ZDV H[WHQGHG WR V WR DOORZ HQRXJK WLPH IRU WKH IXUQDFH WR FRRO VR WKDW S/ RI 1D&O LQ PHWKDQRO FRXOG EH LQWURGXFHG 7KH (79 YDOYH GHOD\ ZDV VHW WR LWnV PD[LPXP YDOXH RI V DQG WKH PDVV VSHFWUDO VFDQQLQJ ZDV VHW WR VWDUW V DIWHU WKDW 7KH GU\LQJ 1ROf DQG DVKLQJ WHPSHUDWXUHV 1R f ZHUH LQFUHDVHG WR UHPRYH PRUH RI WKH RUJDQLF PDWUL[ 7KH 0J VLJQDOV UHVXOWLQJ IURP WKLV (79 WHPSHUDWXUH SURJUDP ZHUH LUUHSURGXFLEOH RIWHQ ZLWK b 56' :KHQ D EODQN ZDV UXQ WKH VLJQDO ZDV YHU\ KLJK VXJJHVWLQJ WKDW WKH FDUERQ ZDV QRW EHLQJ VXIILFLHQWO\ HOLPLQDWHG 7KH DGGHG VRGLXP FKORULGH PD\ SRVVLEO\ KDYH EHHQ DFWLQJ DV D FDUULHU IRU WKH FDUERQ UHPDLQLQJ LQ WKH IXUQDFH DIWHU WKH DVKLQJ VWHS 7KH R[\JHQ DVKLQJ DQG 1D&O DGGLWLRQ ZHUH WKHQ WHUPLQDWHG

PAGE 164

7DEOH 0RGLILHG (79 UDPS IRU 0J 1XPEHU 7HPSHUDWXUH 5DPS 7LPH +ROG 7LPH r&f Vf Vf (79 9DOYH 'HOD\ V (79 6FDQ 'HOD\ V

PAGE 165

7KH GHWHUPLQDWLRQ RI PHWDOORRUJDQLF 0J FRQWLQXHG XVLQJ WKH (79 UDPS WKDW KDG EHHQ XVHG IRU WKH GHWHUPLQDWLRQ RI PHWDOORRUJDQLF )H DQG $O 7KH RSWLPL]HG (79 SURJUDP LV VKRZ LQ 7DEOH $ VHULHV RI FDOLEUDWLRQ VWDQGDUGV ZHUH UXQ DQG WKH UHVXOWV DUH VKRZQ LQ )LJXUH 7KH 5 YDOXH ZDV ZKLFK ZDV VOLJKWO\ SRRUHU WKDQ WKDW IRU $O RU )H 7KH SUHFLVLRQ ZDV DOVR SRRUHU UDQJLQJ IURP WR b 56' 7KH GHWHFWLRQ OLPLW ZDV SJ DQG ZDV OLPLWHG E\ WKH & LQWHUIHUHQW
PAGE 166

7DEOH 2SWLPXP (79 UDPS IRU 0J 1XPEHU 7HPSHUDWXUH 5DPS 7LPH +ROG 7LPH r&f Vf Vf (79 9DOYH 'HOD\ V (79 6FDQ 'HOD\ V

PAGE 167

0J 0DVV QJf )LJXUH &DOLEUDWLRQ FXUYH IRU PHWDOORRUJDQLF 0J $f $QDO\WLFDO FXUYH %f /RJORJ SORW

PAGE 168

,QWHQVLW\ &RXQWV6f ,QWHQVLW\ &RXQWV6f )LJXUH 7HPSRUDO VLJQDO RI QJ PHWDOORRUJDQLF < $f %HIRUH JUDSKLWH WXEH FRQGLWLRQLQJ ZLWK 6) %f $IWHU FRQGLWLRQLQJ

PAGE 169

FRQGLWLRQLQJ ODVWHG IRU XS WR (79 ILULQJV WKHQ WKH SUHFLVLRQ VWDUWHG WR GHWHULRUDWH &DOLEUDWLRQ VWDQGDUGV ZHUH UXQ DQG WKH UHVXOWV DUH VKRZQ LQ )LJXUH 7KH GHWHFWLRQ OLPLW ZDV SJ DQG ZDV OLPLWHG E\ GHWHFWRU QRLVH 7KH XVH RI WKH HOHFWURQ PXOWLSOLHU GHWHFWRU VKRXOG LPSURYH WKH OLPLW RI GHWHFWLRQ E\ DQ RUGHU RI PDJQLWXGH 7KH SUHFLVLRQ ZDV JHQHUDOO\ OHVV WKDQ b 56' %HFDXVH 6) LV D SRWHQWLDO < LQWHUIHUHQW WKH IXUQDFH ZDV ILUHG ZLWKRXW VDPSOH WR LQYHVWLJDWH WKH IRUPDWLRQ RI 6) IURP DQ\ 6) SRVVLEO\ EHLQJ UHOHDVHG IURP WKH JUDSKLWH 7KH UHVXOWV DUH VKRZQ LQ )LJXUH $ 7KHUH ZDV D VOLJKW LQFUHDVH LQ WKH EDFNJURXQG DW WKH WLPH WKDW < ZRXOG QRUPDOO\ EH SUHVHQW EXW LW ZDV H[WUHPHO\ VPDOO ,W ZDV FRQFOXGHG WKDW ZKHQ XVLQJ WKH )DUDGD\ GHWHFWRU WKHUH ZDV QR LQWHUIHUHQFH IURP 6) 7KH HOHFWURQ PXOWLSOLHU PD\ GHWHFW VRPH 6) VLJQDO KRZHYHU $OWKRXJK DOO RI WKH RUJDQLF PDWUL[ ZDV QRW DVKHG LQ WKH IXUQDFH VRRWLQJ RI WKH LQWHUIDFH FRQHV ZDV QRW D VHYHUH SUREOHP 6RPH VRRWLQJ GLG RFFXU EXW EHFDXVH WKH YROXPH RI RUJDQLF VROXWLRQ GHSRVLWHG LQWR WKH IXUQDFH ZDV VR VPDOO S/f WKH FDUERQ GHSRVLWV ZHUH QRW VHYHU HQRXJK WR FDXVH EORFNLQJ RI WKH DSHUWXUHV 7KH FRQHV GLG KDYH WR EH FOHDQHG GDLO\ KRZHYHU WR SUHYHQW D ODUJH EXLOGXS RI FDUERQ 7KH DGGLWLRQ RI R[\JHQ WKURXJKRXW WKH DQDO\VLV ZDV FRQVLGHUHG EXW ZRXOG KDYH HURGHG WKH LQWHUIDFH FRQHV DQG ZDV QRW XVHG

PAGE 170

)LJXUH &DOLEUDWLRQ FXUYH IRU PHWDOORRUJDQLF < $f $QDO\WLFDO FXUYH %f /RJ ORJ SORW

PAGE 171

,QWHQVLW\ &RXQWVf ,QWHQVLW\ &RXQWVf )LJXUH 7HPSRUDO SURILOH RI PHWDOORRUJDQLF < VLJQDO $f < EODQN %f QJ <

PAGE 172

&RQFOXVLRQV ,Q JHQHUDO WKH SHUIRUPDQFH RI (79,&306 ZLWK RUJDQLF PDWULFHV ZDV SRRUHU WKDQ ZLWK DTXHRXV VROXWLRQV $ VXPPDU\ RI GHWHFWLRQ OLPLWV RI WKH PHWDOORRUJDQLF VSHFLHV LV JLYHQ LQ 7DEOH 7KH SRRUHU GHWHFWLRQ OLPLWV ZHUH GXH WR WKH KLJK OHYHO RI LPSXULWLHV SUHVHQW LQ WKH EODQN DQG GXH WR WKH SRRUHU WUDQVSRUW HIILFLHQF\ 7KH GHWHFWLRQ HIILFLHQF\ IRU WKH PHWDOORRUJDQLF HOHPHQWV ZDV DQ RUGHU RI PDJQLWXGH ZRUVH WKDQ WKDW RI WKH DTXHRXV HOHPHQWV 7KLV LV SUREDEO\ GXH WR WKH RUJDQLF PDWUL[ FDUULHU QRW ZRUNLQJ DV ZHOO DV WKH 1D&O RU 3G1f )RU WKH GHWHUPLQDWLRQ RI 0J WKH GHWHFWLRQ ZDV OLPLWHG E\ WKH FDUERQ LQWHUIHUHQW < ZDV QRW SUHVHQW LQ WKH EODQN WKHUHIRUH LW KDG D EHWWHU OLPLW RI GHWHFWLRQ 7KH GHWHFWLRQ RI < ZDV OLPLWHG E\ WKH )DUDGD\ GHWHFWRU QRLVH 8VLQJ WKH HOHFWURQ PXOWLSOLHU GHWHFWRU VKRXOG LPSURYH WKH GHWHFWLRQ OLPLW DOWKRXJK LW PD\ GHWHFW 6) ZKLFK PD\ EH IRUPHG LQ WKH SODVPD LI 6) LV UHOHDVHG IURP WKH IXUQDFH VXUIDFH

PAGE 173

7DEOH 6XPPDU\ RI PHWDOORRUJDQLF $O 0J )H DQG < UHVXOWV (OHPHQW /LPLW RI 'HWHFWLRQ 3Jf b 56' 'HWHFWLRQ (IILFLHQF\ $O ; )H [ 2n 0J [On < [ 2n

PAGE 174

&+$37(5 &21&/86,216 ,QGXFWLYHO\ FRXSOHG SODVPD PDVV VSHFWURPHWU\ ,&306f LV RQH RI WKH IHZ WHFKQLTXHV FDSDEOH RI PXOWLHOHPHQW GHWHUPLQDWLRQV ZLWK ORZ GHWHFWLRQ OLPLWV 2QH GLVDGYDQWDJH RFFXUV ZKHQ DQ RUJDQLF PDWUL[ LV QHEXOL]HG LQWR WKH ,&306 &DUERQ FRQGHQVHV RQ WKH FRROHG LQWHUIDFH FRQHV VRRWLQJ DQG EORFNLQJ WKH DSHUWXUHV $ VHFRQG GLVDGYDQWDJH RI QHEXOL]LQJ RUJDQLFV LQWR WKH ,&306 LV WKDW FDUELGH FRPSRXQGV IRUPHG LQ WKH ,&3 PD\ DFW DV PROHFXODU LQWHUIHUHQFHV IRU VRPH HOHPHQWV PDNLQJ LW GLIILFXOW RU LPSRVVLEOH WR GHWHFW WKHVH HOHPHQWV 7KLV GLVVHUWDWLRQ KDV GHVFULEHG DQ DOWHUQDWLYH PHWKRG IRU WKH LQWURGXFWLRQ RI RUJDQLF VDPSOHV LQWR WKH ,&306 WKDW UHGXFHV WKHVH WZR SUREOHPV :KHQ XVLQJ (79 ZLWK ,&306 WKH JUDSKLWH IXUQDFH YDSRUL]HV WKH VDPSOH DQG LW LV WKHQ WUDQVSRUWHG WR WKH ,&3 ZKHUH LW LV LRQL]HG ,Q WKLV WHFKQLTXH WKH RUJDQLF PDWUL[ LV YDSRUL]HG DQG YHQWHG WR WKH DWPRVSKHUH EHIRUH WKH VDPSOH LV YDSRUL]HG DQG WUDQVSRUWHG WR WKH ,&306 7KH JUHDWHVW SUREOHP ZLWK WKLV WHFKQLTXH ZDV WKH LQHIILFLHQW WUDQVSRUW RI WKH DQDO\WH WR WKH ,&3 +DUGZDUH PRGLILFDWLRQV ZHUH PDGH WR WKH (79 WR LPSURYH WUDQVSRUW HIILFLHQF\ WR WKH ,&3 7KHVH LQFOXGHG WKH DGGLWLRQ RI D JUDSKLWH SOXJ KROGHU D QHZ (79WXELQJ LQWHUIDFH D QHZ VDPSOH WUDQVIHU YDOYH DQG D PRGLILFDWLRQ WR WKH VDPSOH LQWURGXFWLRQ JODVVZDUH 7KHVH PRGLILFDWLRQV LPSURYHG WKH WUDQVSRUW DQG

PAGE 175

UHSURGXFLELOLW\ VRPHZKDW EXW XOWLPDWHO\ WKH DQDO\WH WUDQVSRUW SUREOHP ZDV VROYHG E\ WKH DGGLWLRQ RI D FDUULHU 1D&O RU 3G1f WR WKH DTXHRXV VDPSOH LQ WKH (79 7KH UROH RI D FDUULHU LV WR KHOS WKH YDSRU LQ WKH (79 FRQGHQVH LQWR SDUWLFOHV WKDW FDQ EH WUDQVSRUWHG WR WKH ,&3 ZLWKRXW VDPSOH ORVV PHDQLQJ WKDW WKH WRWDO PDVV FDQQRW EH WRR VPDOO RU SDUWLFOHV ZLOO QRW IRUP DQG LW FDQQRW EH H[FHVVLYHO\ ODUJH RU WKH SDUWLFOHV ZLOO IDOO RXW RI WKH FDUULHU JDV IORZ $Q RSWLPXP DPRXQW RI FDUULHU ZDV IRXQG IRU HDFK PDVV RI DTXHRXV DQDO\WH VWXGLHG ,I WKH WRWDO PDVV ZDV WRR ODUJH RU WRR VPDOO WKH SHDN LQWHQVLW\ GHFUHDVHG )LQDOO\ PHWKRGV ZHUH GHYHORSHG IRU WKH GHWHFWLRQ RI $O 0J )H DQG < PHWDOORRUJDQLF FRPSRXQGV LQ DQ RLO PDWUL[ )RU HDFK GHWHUPLQDWLRQ WKH RUJDQLF PDWUL[ DFWHG DV WKH FDUULHU SURYLGLQJ WKH H[WUD PDVV UHTXLUHG IRU WKH FRQGHQVDWLRQ RI WKH DQDO\WHV LQWR SDUWLFXODWHV 7KLV SRVHG D SUREOHP IRU WKH GHWHUPLQDWLRQ RI 0J LQ WKDW & LV DQ LVREDULF LQWHUIHUHQW EXW EHFDXVH WKH PDVV RI RUJDQLF VSHFLHV ZDV VR VPDOO WKH LQWHUIHUHQW ZDV JUHDWO\ UHGXFHG DQG GHWHFWLRQ ZDV SRVVLEOH GRZQ WR QJ 7KLV ZDV D JUHDW LPSURYHPHQW RYHU WKH GHWHFWLRQ RI 0J XVLQJ FRQYHQWLRQDO QHEXOL]DWLRQ f ZKLFK ZDV LPSRVVLEOH DW PDVV $OXPLQXP DQG LURQ ZHUH GHWHUPLQHG DV ZHOO %\ XVLQJ WKH WZRVWHS YDSRUL]DWLRQ (79 UDPS WKH RUJDQLF PDWUL[ ZDV HIIHFWLYHO\ VHSDUDWHG IURP WKH DQDO\WH PDNLQJ LW SRVVLEOH WR GHWHUPLQH PHWDOORRUJDQLF $ LQ b ZWYf EDVH RLO LQ [\OHQH 7KH GHWHFWLRQ OLPLW IRU WKH GHWHUPLQDWLRQ RI PHWDOORRUJDQLF $O ZDV SJ 7KH GHWHFWLRQ OLPLW IRU PHWDOORRUJDQLF )H ZDV SJ 7KHVH GHWHFWLRQ OLPLWV DUH WZR

PAGE 176

RUGHUV RI PDJQLWXGH ZRUVH WKDQ IRU WKH GHWHUPLQDWLRQ RI WKH DTXHRXV VWDQGDUGV GXH WR WKH KLJK OHYHO RI PHWDOV IRXQG LQ WKH EDVH RLO DQG LQ WKH [\OHQH 0HWDOORRUJDQLF \WWULXP ZDV DOVR GHWHFWHG XVLQJ WKH (79,&306 7KH GLIILFXOW\ ZLWK GHWHFWLQJ < ZLWK WKLV WHFKQLTXH LV WKDW LW IRUPV UHIUDFWRU\ FDUELGHV ZLWK WKH JUDSKLWH IXUQDFH 7KLV SUREOHP ZDV UHGXFHG E\ WUHDWLQJ WKH JUDSKLWH WXEH ZLWK 6) DW D KLJK WHPSHUDWXUH EHIRUH WKH DQDO\VLV 7KH FRDWLQJ RU FKHPLFDO PRGLILFDWLRQ RI WKH JUDSKLWH SUHYHQWHG < IURP UHDFWLQJ ZLWK WKH FDUERQ DOORZLQJ LW WR EH YRODWLOL]HG DQG WUDQVSRUWHG WR WKH (79 7KH GHWHFWLRQ OLPLW IRU WKH GHWHUPLQDWLRQ RI < ZDV 3J )XWXUH 6WXGLHV 7KH PHFKDQLVP RI WKH 6) UHDFWLRQ ZLWK WKH JUDSKLWH WXEH VKRXOG EH LQYHVWLJDWHG 2QFH WKH UHDFWLRQ LV NQRZQ LW PD\ EH SRVVLEOH WR H[WHQG WKH OHQJWK RI WLPH WKDW D WXEH PD\ EH XVHG RQFH LW KDV EHHQ WUHDWHG RU DQ DOWHUQDWLYH PRGLILHU PD\ EH XVHG 2WKHU WXEH PDWHULDOV PD\ DOVR EH LQYHVWLJDWHG WR HOLPLQDWH WKH FDUELGH IRUPDWLRQ 7KH (79 PD\ DOVR EH IXUWKHU LPSURYHG $ FRROLQJ IORZ RI DUJRQ PD\ EH DGGHG WR WKH (79WXELQJ LQWHUIDFH WR KHOS FRQGHQVH WKH DQDO\WH LQWR SDUWLFXODWH 7KLV KDV EHHQ IRXQG WR LPSURYH WUDQVSRUW HIILFLHQF\ f DQG PD\ UHGXFH WKH QHHG IRU D FDUULHU 7KH SQHXPDWLF SOXJ KROGHU PD\ DOVR EH DXWRPDWHG E\ UHSODFLQJ WKH PDQXDO YDOYHV WKDW FRQWURO WKH DLU IORZ ZLWK D VROHQRLG YDOYH HOHFWULFDOO\ FRQQHFWHG WR WKH

PAGE 177

SUHVHQW YDOYHV %\ GRLQJ WKLV WKH VDPSOLQJ KROH PD\ EH SOXJJHG DW SUHFLVHO\ WKH FRUUHFW PRPHQW 7KH GHWHFWLRQ RI 0J PD\ EH IXUWKHU LPSURYHG 7KH HYDOXDWLRQ RI DOWHUQDWLYH FDUULHU PD\ LPSURYH WKH WUDQVSRUW HIILFLHQF\ DQG HQDEOH WKH FRPSOHWH UHPRYDO RI WKH RUJDQLF PDWUL[ $ VRXUFH RI FOHDQHU EDVH RLO PD\ EH IRXQG KRZHYHU WKH SURMHFW ZLOO XOWLPDWHO\ EH OLPLWHG E\ WKH RLO XVHG LQ WKH EHDULQJ WHVWV DQG LQ HQJLQH FRPSRQHQWV 7KHUHIRUH LW LV LPSRUWDQW WR SXULI\ WKH [\OHQH XVHG IRU EDVH RLO GLOXWLRQ 7KH VXEn ERLOLQJ GLVWLOODWLRQ RI [\OHQH LQ D TXDUW] GLVWLOODWLRQ DSSDUDWXV VKRXOG SURYLGH D UHGXFWLRQ LQ EODQN OHYHOV 2QH SUREOHP WKDW ZLOO KDYH WR LQYHVWLJDWHG LV WKH DELOLW\ WR GHWHUPLQH SDUWLFXODWH ZHDU GHEULV LQ RLO VDPSOHV &XUUHQWO\ SDUWLFXODWH VWDQGDUGV LQ RLO DUH QRW DYDLODEOH DQG WKLV UHVHDUFK ZDV EDVHG RQ WKH GHWHUPLQDWLRQ RI PHWDOORRUJDQLF VDPSOHV $OWKRXJK WKH ZHDU PHWDOV ZLOO EH SUHVHQW LQ WKLV IRUP WKH\ ZLOO DOVR EH SUHVHQW DV SDUWLFOHV RI YDULRXV VL]HV ZKLFK DOVR KDYH WR EH GHWHFWHG 7KH PRVW SURPLVLQJ SURFHGXUH IRU WKLV LV WKH GLJHVWLRQ RI WKH RLO VDPSOHV ZLWK D VPDOO DPRXQW RI FRQFHQWUDWHG DFLG WR GLVVROYH WKH PHWDO SDUWLFOHV f 5HSUHVHQWDWLYH VDPSOLQJ DQG GHWHFWLRQ PD\ WKHQ EH DFKLHYHG

PAGE 178

5()(5(1&(6 f /XFHN : ,Q *DV 7XUELQH t $HURHQJLQH &RQJUHVV t ([SR %UXVVHOV %HOJLXP f *XDOWLHUL $XWRPRWLYH ,QGXVWULHV f *DOEDWR $ 7 &XQGLOO 5 7 +DUULV 7 $ ,Q WK 67/( $QQXDO 0HHWLQJ 3KLODGHOSKLD 3HQQV\OYDQLD S f (QJLQHHULQJ f :HGHYHQ / 0DFKLQH 'HVLJQ f &HUDP %XOO f .DXIIPDQ 5 ( 6DED & 6 5KLQH : ( (LVHQWUDXW $6/( 7UDQV f +DPSVKLUH 6 ,Q &HUDPLFV DQG *ODVVHV 6 5 /DPSPDQ 0 6 :RRGV DQG 7 % =RUF (GV $60 ,QWHUQDWLRQDO 86$ 9RO f 7VX]XNL < $ZD]X 7
PAGE 179

f *UD\ $ / 3URF 6RF $QDO\W &KHP f *UD\ $ / $QDO\VW f +RXN 5 6 )DVVHO 9 $ )OHVFK 6YHF + *UD\ $ / 7D\ORU & ( $QDO &KHP f 'DWH $ 5 *UD\ $ / 6SHFWURFKLP $FWD % f 'RXJODV 4XDQ ( 6 6PLWK 5 6SHFWURFKLP $FWD % f 0RHQV / 9HUUHSW 3 'DPV 5 *UHE 8 -XQJ /DVHU % $QDO $W 6SHFWURP f 0\HUV 3 /L
PAGE 180

f /DERUGD ) %D[WHU 0 &UHZV + 0 'HQQLV $QDO $W 6SHFWURP f %HDXFKHPLQ &UDLJ 0 6SHFWURFKLP $FWD % f 6KHSSDUG % 6 6KHQ : / 'DYLGVRQ 7 0 &DUXVR $ $QDO $W 6SHFWURP f /DP : + +RUOLFN 6SHFWURFKLP $FWD % f 6PLWK ) :LHGHULQ 5 +RXN 5 6 $QDO &KHP f 1DP 6 + 0DVDPED : 5 / 0RQWDVHU $ $QDO &KHP f 0RQWDVHU $ &KDQ 6 .RSSHQDDO : $QDO &KHP f .RSSHQDDO : 4XLQWRQ / ) $QDO $W 6SHFWURP f %ODGHV 0 : :HLU 6SHFWURVF f %ODGHV 0 : &DXJKOLQ % / :DONHU = + %XUWRQ / / 3URJ $QDO\W $WRP 6SHFWURVF f 'RXJODV ,Q ,QGXFWLYHO\ &RXSOHG 3ODVPDV LQ $QDO\WLFDO $WRPLF 6SHFWURPHWU\ 6HFRQG HG $ 0RQWDVHU DQG : *ROLJKWO\ (GV 9&+ 3XEOLVKHUV 1HZ
PAGE 181

f :DWVRQ 7 ,QWURGXFWLRQ WR 0DVV 6SHFWURPHWU\ 5DYHQ 1HZ
PAGE 182

f 0DUVKDOO )UDQNV $EHOO 7\H & $QDO $W 6SHFWURP f 0RFKL]XNL 7 6DNDVKLWD $ ,ZDWD + .DJD\D 7 6KLPDPXUD 7 %ODLU 3 $QDO 6FL f 0RFKL]XNL 7 6DNDVKLWD $ ,ZDWD + ,VKLEDVKL < *XQML 1 $QDO 6FL f 0RHQNH%ODQNHQEXUJ / 6SHFWURFKLP $FWD f 5LFKQHU 3 (YDQV :DKUHQEHUJHU & 'LHWULFK 9 )UHV $QDO &KHP f :DQJ &DUH\ 0 &DUXVR $ 6SHFWURFKLP $FWD % f 'DUNH 6 $ 7\VRQ ) 0LFURFKHP f :LOOLDPV *UD\ $ / 1RUPDQ 3 (EGRQ / $QDO $W 6SHFWURP f +DOO ( 0 3HOFKDW & %RRPHU : 3RZHOO 0 $QDO $W 6SHFWURP f -LDQJ 6 +RXN 5 6 $QDO &KHP f -LDQJ 6 +RXN 5 6 6SHFWURFKLP $FWD % f -DQJKRUEDQL 0 7LQJ % 7 $QDO &KHP f *UHJRLUH & $QDO &KHP f 9HOD 1 3 2OVRQ / &DUXVR $ $QDO &KHP f &KRQJ 1 6 +RXN 5 6 $SSO 6SHF f 9RHOONRSI 8 *XHQVHO $ 3DXO 0 :LHVPDQQ + ,Q $SSOLFDWLRQV RI 3ODVPD 6RXUFH 0DVV 6SHFWURPHWU\ +ROODQG DQG $ 1 (DWRQ (GV 7KH 5R\DO 6RFLHW\ RI &KHPLVWU\ &DPEULGJH S f %RWWR 5 $QDO $W 6SHFWURP

PAGE 183

f 0RQWDVHU $ 7DQ + ,VKLL 1DP 6 + &DL 0 $QDO &KHP f 9DQKRH + 0RHQV / 'DPV 5 $QDO $W 6SHFWURP f +DXVOHU 6SHFWURFKLP $FWD % f +XWWRQ 5 & $QDO $W 6SHFWURP f 7VXNDKDUD 5 .XERWD 0 6SHFWURFKLP $FWD % f 6KLEDWD 1 )XGDJDZD 1 .XERWD 0 $QDO &KHP f 6KLEDWD 1 )XGDJDZD 1 .XERWD 0 6SHFWURFKLP $FWD % f 3DUN & +DOO ( 0 $QDO $W 6SHFWURP f 3DUN & +DOO ( 0 *HRORJLFDO 6XUYH\ RI &DQDGD 3DUW % f 6KHQ : / &DUXVR $ )ULFNH ) / 6DW]JHU 5 $QDO $W 6SHFWURP f *UHJRLUH & $QDO $W 6SHFWURP f *UHJRLUH & $O0DDZDOL 6 &KDNUDEDUWL & / 6SHFWURFKLP $FWD % f /nYRY % 9 6SHFWURFKLP $FWD % f %DLOH\ ( + .HPS $ 5DJQDUVGRWWLU 9 $QDO $W 6SHFWURP f /DPRXUHX[ 0 0 *UHJRLUH & &KDNUDEDUWL & / *ROW] 0 $QDO &KHP f )RUVWHU $ 5 +RZDUG 5 $ :LOOLDPV ( 3 86 3DWHQW f 1HZPDQ 5 $ 2VERP 6 6LGGLN = + &OLQ &KLP $FWD f 8OULFK $ +XFKXOVNL & 'DQQHFNHU : 9ROONRSI 8 $QDO 3URF

PAGE 184

f 8OULFK $ 'DQQHFNHU : 0HLQHUV 6 9ROONRSI 8 $QDO 3URF f 0DQQLQHQ 3 $QDO $W 6SHFWURP f 2VERUQH 6 3 $SSO 6SHF f 6WXUJHRQ 5 ( :LOOLH 6 1 =KHQJ .XGR $ *UHJRLUH & $QDO $W 6SHFWURP f *UHJRLUH & 6WXUJHRQ 5 ( 6SHFWURFKLP $FWD % f 3DUN & /RRQ & 9 $UURZVPLWK 3 )UHQFK % &DQ 6SHF f +DOO ( 0 3HOFKDW & 'XQQ & ( *HRFKHP ([SORU f 'DWH $ 5 &KHXQJ < < $QDO\VW f :KLWWDNHU 3 /LQG 7 :LOOLDPV *UD\ $ / $QDO\VW f *UHJRLUH & $QDO 3URF f .DQWRU 7 6SHFWURFKLP $FWD % f )ULHGODQGHU 6 ,Q 5HFHQW 'HYHORSPHQWV LQ $HURVRO 6FLHQFH 7 6KDZ (GV -RKQ :LOH\ t 6RQV 1HZ
PAGE 185

f (GLJHU 5 %HUHV 6 $ 6SHFWURFKLP $FWD % f +XE : $PSKOHWW + )UHV $QDO &KHWQ f 5LFKQHU 3 :XQGHUOL 6 $QDO $W 6SHFWURP f 3DUN & /RRQ & 9 $UURZVPLWK 3 )UHQFK % $QDO &KHP f /DPRXUHX[ 0 0 *UHJRLUH & &KDNUDEDUWL & / *ROW] 0 $QDO &KHP f +LUDWD 7 $NDJL 7 6KLPL]X + 0DVXGD $ $QDO &KHP f &DUH\ 0 (YDQV ( + &DUXVR $ 6KHQ : / 6SHFWURFKLP $FWD % f +DOO 5 % -DPHV 0 5 :D\PDQ 7 +XOPVWRQ 3 ,Q 3ODVPD 6RXUFH 0DVV 6SHFWURPHWU\ ( -DUYLV $ / *UD\ -DUYLV DQG :LOOLDPV (GV 5R\DO 6RFLHW\ RI &KHPLVWU\ &DPEULGJH f ,QJOH &URXFK 6 5 6SHFWURFKHPLFDO $QDO\VLVn 3UHQWLFH +DOO (QJOHZRRG &OLIIV f 3UHOO / 6W\ULV / 6SHFWURFKLP $FWD % f $GHORMX 6 % %RQG $ 0 $QDO &KHP f 1J & &DUXVR $ $QDO\VW f +XDQJ 0 -LDQJ = =HQJ < $QDO 6FL f .LUNEULJKW ) 6QRRN 5 $QDO &KHP f 3DUN & +DOO ( 0 $QDO $W 6SHFWURP f %URZQ 5 6DED & 6 5KLQH : ( (LVHQWUDXW $QDO &KHP f 6DED & 6 5KLQH : ( (LVHQWUDXW $SSO 6SHF

PAGE 186

%,2*5$3+,&$/ 6.(7&+ 0RQLFD (VFREDU ZDV ERP RQ 1RYHPEHU LQ %RFD 5DWRQ )ORULGD 6KH UHFHLYHG KHU %DFKHORU RI 6FLHQFH GHJUHH LQ FKHPLVWU\ LQ 0D\ IURP )ORULGD $WODQWLF 8QLYHUVLW\ ZKHUH VKH SHUIRUPHG XQGHUJUDGXDWH UHVHDUFK LQ LQRUJDQLF FKHPLVWU\ LQ WKH ODERUDWRU\ RI 'U 'RQDOG 0 %DLUG 6KH VWDUWHG JUDGXDWH VFKRRO LQ WKH IDOO RI DW WKH 8QLYHUVLW\ RI )ORULGD ZKHUH VKH MRLQHG 'U -LP :LQHIRUGQHUnV UHVHDUFK JURXS 6KH UHFHLYHG D 'RFWRU RI 3KLORVRSK\ GHJUHH LQ DQDO\WLFDO FKHPLVWU\ LQ 0D\ DQG EHJLQV KHU FDUHHU DW 3URFWHU t *DPEOH 3KDUPDFHXWLFDOV LQ 1RUZLFK 1<

PAGE 187

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DYLG 3RZHOO $VVRFLDWH 6FLHQWLVW LQ &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5REHUW .HQQHG\ $VVLVWDQW 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $VVLVWDQW 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ (ULF $OOHQ 3URIHVVRU RI (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV

PAGE 188

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0D\ 'HDQ *UDGXDWH 6FKRRO

PAGE 189

/' f / A 6.6 ) )/25,'$