Citation
Systematics of the Genera Hemicaranx and Atule (Pisces: Carangidae), with an analysis of the classification of the family

Material Information

Title:
Systematics of the Genera Hemicaranx and Atule (Pisces: Carangidae), with an analysis of the classification of the family
Creator:
Seaman, William, 1945-
Publication Date:
Language:
English
Physical Description:
xvi, 254 leaves. : illus. ; 28 cm.

Subjects

Subjects / Keywords:
Bones ( jstor )
Dentition ( jstor )
Fish ( jstor )
Genera ( jstor )
Pectorals ( jstor )
Peduncle ( jstor )
Skeleton ( jstor )
Species ( jstor )
Spine ( jstor )
Vertebrae ( jstor )
Caranigidae ( lcsh )
Dissertations, Academic -- Zoology -- UF
Zoology thesis Ph. D
Atlantic Ocean ( local )
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis--University of Florida.
Bibliography:
Bibliography: leaves 241-253.
General Note:
Typescript.
General Note:
Vita.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000582624 ( ALEPH )
14147593 ( OCLC )
ADB1001 ( NOTIS )
AA00004935_00001 ( sobekcm )

Downloads

This item has the following downloads:

systematicsofgen00seam.pdf

systematicsofgen00seam_0063.txt

systematicsofgen00seam_0159.txt

systematicsofgen00seam_0021.txt

systematicsofgen00seam_0126.txt

systematicsofgen00seam_0108.txt

systematicsofgen00seam_0019.txt

systematicsofgen00seam_0258.txt

systematicsofgen00seam_0031.txt

systematicsofgen00seam_0212.txt

systematicsofgen00seam_0109.txt

systematicsofgen00seam_0276.txt

systematicsofgen00seam_0055.txt

systematicsofgen00seam_0064.txt

systematicsofgen00seam_0250.txt

systematicsofgen00seam_0238.txt

AA00004935_00001.pdf

systematicsofgen00seam_0144.txt

systematicsofgen00seam_0141.txt

systematicsofgen00seam_0220.txt

systematicsofgen00seam_0099.txt

systematicsofgen00seam_0171.txt

systematicsofgen00seam_0121.txt

systematicsofgen00seam_0002.txt

systematicsofgen00seam_0190.txt

systematicsofgen00seam_0056.txt

systematicsofgen00seam_0157.txt

systematicsofgen00seam_0115.txt

systematicsofgen00seam_0228.txt

systematicsofgen00seam_0009.txt

systematicsofgen00seam_0092.txt

systematicsofgen00seam_0102.txt

systematicsofgen00seam_0274.txt

systematicsofgen00seam_0007.txt

systematicsofgen00seam_0060.txt

systematicsofgen00seam_0120.txt

systematicsofgen00seam_0087.txt

systematicsofgen00seam_0176.txt

systematicsofgen00seam_0076.txt

systematicsofgen00seam_0101.txt

systematicsofgen00seam_0040.txt

systematicsofgen00seam_0237.txt

systematicsofgen00seam_0180.txt

systematicsofgen00seam_0004.txt

systematicsofgen00seam_0165.txt

systematicsofgen00seam_0168.txt

systematicsofgen00seam_0177.txt

systematicsofgen00seam_0025.txt

systematicsofgen00seam_0267.txt

systematicsofgen00seam_0054.txt

systematicsofgen00seam_0080.txt

systematicsofgen00seam_0248.txt

systematicsofgen00seam_0259.txt

systematicsofgen00seam_0272.txt

systematicsofgen00seam_0270.txt

systematicsofgen00seam_0170.txt

systematicsofgen00seam_0038.txt

systematicsofgen00seam_0174.txt

systematicsofgen00seam_0156.txt

systematicsofgen00seam_0185.txt

systematicsofgen00seam_0045.txt

systematicsofgen00seam_0062.txt

systematicsofgen00seam_0223.txt

systematicsofgen00seam_0072.txt

systematicsofgen00seam_0047.txt

systematicsofgen00seam_pdf.txt

systematicsofgen00seam_0268.txt

systematicsofgen00seam_0163.txt

systematicsofgen00seam_0104.txt

systematicsofgen00seam_0196.txt

systematicsofgen00seam_0088.txt

systematicsofgen00seam_0018.txt

systematicsofgen00seam_0138.txt

systematicsofgen00seam_0135.txt

systematicsofgen00seam_0028.txt

systematicsofgen00seam_0114.txt

systematicsofgen00seam_0208.txt

systematicsofgen00seam_0271.txt

systematicsofgen00seam_0207.txt

systematicsofgen00seam_0252.txt

systematicsofgen00seam_0149.txt

systematicsofgen00seam_0232.txt

systematicsofgen00seam_0198.txt

systematicsofgen00seam_0016.txt

systematicsofgen00seam_0229.txt

systematicsofgen00seam_0245.txt

systematicsofgen00seam_0077.txt

systematicsofgen00seam_0203.txt

systematicsofgen00seam_0026.txt

systematicsofgen00seam_0001.txt

systematicsofgen00seam_0209.txt

systematicsofgen00seam_0210.txt

systematicsofgen00seam_0098.txt

systematicsofgen00seam_0221.txt

systematicsofgen00seam_0218.txt

systematicsofgen00seam_0094.txt

systematicsofgen00seam_0058.txt

systematicsofgen00seam_0246.txt

systematicsofgen00seam_0086.txt

systematicsofgen00seam_0261.txt

systematicsofgen00seam_0128.txt

systematicsofgen00seam_0067.txt

systematicsofgen00seam_0083.txt

systematicsofgen00seam_0132.txt

systematicsofgen00seam_0066.txt

systematicsofgen00seam_0068.txt

systematicsofgen00seam_0160.txt

systematicsofgen00seam_0129.txt

systematicsofgen00seam_0230.txt

systematicsofgen00seam_0249.txt

systematicsofgen00seam_0070.txt

systematicsofgen00seam_0175.txt

systematicsofgen00seam_0233.txt

systematicsofgen00seam_0069.txt

systematicsofgen00seam_0124.txt

systematicsofgen00seam_0266.txt

systematicsofgen00seam_0059.txt

systematicsofgen00seam_0103.txt

systematicsofgen00seam_0264.txt

systematicsofgen00seam_0131.txt

systematicsofgen00seam_0240.txt

systematicsofgen00seam_0192.txt

systematicsofgen00seam_0166.txt

systematicsofgen00seam_0134.txt

systematicsofgen00seam_0049.txt

systematicsofgen00seam_0105.txt

systematicsofgen00seam_0152.txt

systematicsofgen00seam_0032.txt

systematicsofgen00seam_0262.txt

systematicsofgen00seam_0204.txt

systematicsofgen00seam_0041.txt

systematicsofgen00seam_0020.txt

systematicsofgen00seam_0213.txt

systematicsofgen00seam_0167.txt

systematicsofgen00seam_0181.txt

systematicsofgen00seam_0224.txt

systematicsofgen00seam_0074.txt

systematicsofgen00seam_0089.txt

systematicsofgen00seam_0042.txt

systematicsofgen00seam_0014.txt

systematicsofgen00seam_0003.txt

systematicsofgen00seam_0247.txt

systematicsofgen00seam_0189.txt

systematicsofgen00seam_0169.txt

systematicsofgen00seam_0096.txt

systematicsofgen00seam_0029.txt

systematicsofgen00seam_0117.txt

systematicsofgen00seam_0046.txt

systematicsofgen00seam_0133.txt

systematicsofgen00seam_0139.txt

systematicsofgen00seam_0182.txt

systematicsofgen00seam_0236.txt

systematicsofgen00seam_0145.txt

systematicsofgen00seam_0255.txt

systematicsofgen00seam_0090.txt

systematicsofgen00seam_0027.txt

systematicsofgen00seam_0037.txt

systematicsofgen00seam_0201.txt

systematicsofgen00seam_0113.txt

systematicsofgen00seam_0226.txt

systematicsofgen00seam_0191.txt

systematicsofgen00seam_0053.txt

systematicsofgen00seam_0200.txt

systematicsofgen00seam_0044.txt

systematicsofgen00seam_0254.txt

systematicsofgen00seam_0234.txt

systematicsofgen00seam_0242.txt

systematicsofgen00seam_0173.txt

systematicsofgen00seam_0010.txt

systematicsofgen00seam_0243.txt

systematicsofgen00seam_0186.txt

systematicsofgen00seam_0231.txt

systematicsofgen00seam_0217.txt

systematicsofgen00seam_0194.txt

systematicsofgen00seam_0147.txt

systematicsofgen00seam_0162.txt

systematicsofgen00seam_0140.txt

AA00004935_00001_pdf.txt

systematicsofgen00seam_0227.txt

systematicsofgen00seam_0081.txt

systematicsofgen00seam_0034.txt

systematicsofgen00seam_0158.txt

systematicsofgen00seam_0065.txt

systematicsofgen00seam_0075.txt

systematicsofgen00seam_0205.txt

systematicsofgen00seam_0253.txt

systematicsofgen00seam_0179.txt

systematicsofgen00seam_0078.txt

systematicsofgen00seam_0116.txt

systematicsofgen00seam_0146.txt

systematicsofgen00seam_0195.txt

systematicsofgen00seam_0079.txt

systematicsofgen00seam_0251.txt

systematicsofgen00seam_0118.txt

systematicsofgen00seam_0039.txt

systematicsofgen00seam_0110.txt

systematicsofgen00seam_0085.txt

systematicsofgen00seam_0082.txt

systematicsofgen00seam_0215.txt

systematicsofgen00seam_0106.txt

systematicsofgen00seam_0275.txt

systematicsofgen00seam_0061.txt

systematicsofgen00seam_0013.txt

systematicsofgen00seam_0015.txt

systematicsofgen00seam_0241.txt

systematicsofgen00seam_0155.txt

systematicsofgen00seam_0095.txt

systematicsofgen00seam_0273.txt

systematicsofgen00seam_0052.txt

systematicsofgen00seam_0188.txt

systematicsofgen00seam_0206.txt

systematicsofgen00seam_0024.txt

systematicsofgen00seam_0071.txt

systematicsofgen00seam_0244.txt

systematicsofgen00seam_0184.txt

systematicsofgen00seam_0122.txt

systematicsofgen00seam_0148.txt

systematicsofgen00seam_0097.txt

systematicsofgen00seam_0193.txt

systematicsofgen00seam_0187.txt

systematicsofgen00seam_0239.txt

systematicsofgen00seam_0017.txt

systematicsofgen00seam_0051.txt

systematicsofgen00seam_0006.txt

systematicsofgen00seam_0091.txt

systematicsofgen00seam_0154.txt

systematicsofgen00seam_0123.txt

systematicsofgen00seam_0222.txt

systematicsofgen00seam_0112.txt

systematicsofgen00seam_0235.txt

systematicsofgen00seam_0005.txt

systematicsofgen00seam_0137.txt

systematicsofgen00seam_0093.txt

systematicsofgen00seam_0023.txt

systematicsofgen00seam_0257.txt

systematicsofgen00seam_0033.txt

systematicsofgen00seam_0008.txt

systematicsofgen00seam_0143.txt

systematicsofgen00seam_0256.txt

systematicsofgen00seam_0199.txt

systematicsofgen00seam_0130.txt

systematicsofgen00seam_0178.txt

systematicsofgen00seam_0048.txt

systematicsofgen00seam_0050.txt

systematicsofgen00seam_0035.txt

systematicsofgen00seam_0022.txt

systematicsofgen00seam_0172.txt

systematicsofgen00seam_0073.txt

systematicsofgen00seam_0012.txt

systematicsofgen00seam_0084.txt

systematicsofgen00seam_0202.txt

systematicsofgen00seam_0197.txt

systematicsofgen00seam_0219.txt

systematicsofgen00seam_0183.txt

systematicsofgen00seam_0151.txt

systematicsofgen00seam_0107.txt

systematicsofgen00seam_0043.txt

systematicsofgen00seam_0260.txt

systematicsofgen00seam_0036.txt

systematicsofgen00seam_0263.txt

systematicsofgen00seam_0164.txt

systematicsofgen00seam_0125.txt

systematicsofgen00seam_0100.txt

systematicsofgen00seam_0057.txt

systematicsofgen00seam_0265.txt

systematicsofgen00seam_0136.txt

systematicsofgen00seam_0161.txt

systematicsofgen00seam_0269.txt

systematicsofgen00seam_0127.txt

systematicsofgen00seam_0119.txt

systematicsofgen00seam_0011.txt

systematicsofgen00seam_0211.txt

systematicsofgen00seam_0153.txt

systematicsofgen00seam_0142.txt

systematicsofgen00seam_0150.txt

systematicsofgen00seam_0216.txt

systematicsofgen00seam_0030.txt

systematicsofgen00seam_0111.txt

systematicsofgen00seam_0225.txt

systematicsofgen00seam_0214.txt


Full Text


Systematics of the Genera Hemica ranx and Atule
sees: Carangidae), with an Analysis of the Classification
of the Family
By
WILLIAM SEAMAN, JR.
A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE UNIVERSITY OF FLORIDA IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1972


ACKNOWLEDGEMENTS
Dr. Carter R. Gilbert, chairman of my committee, and Mr. Frederick
H. Berry, ichthyologist, deserve special mention for their efforts in
overseeing completion of this dissertation. Above and beyond the
guidance one expects of a chairman, Dr. Gilbert maintained a continual
interest in the work and made completely available his extensive
knowledge of the field and his personal library. His support of
trips to a number of collections and his fellowship enjoyed thereon
-- significantly contributed to my graduate program. Fred Berry is a
rare person, dedicated to his profession and the apprentices who come
along; he initially suggested the work on Hemicaranx, and generously
provided personal notes and data that would assist this work. His
extensive knowledge of the Carangidae has provided a valuable review
mechanism.
The manuscript has benefited from review by my committee, Drs.
Brodkorb, Nicol, and Carr, for whose efforts I am grateful.
The following colleagues provided material assistance in obtaining
specimens on loan or allowed me to use their institutional facilities
(see abbreviations section): Dr. James Atz, AMNH; Drs. James Bohlke
and James Tyler, ANSP; Dr. William Eschmeyer, CAS; Mr. Loren Woods,
FMNH; Mr. Robert Topp, FSBC; Dr. Ralph Yerger, FSU; Mr. Charles Dawson,
GCRL; Drs. Robert Lavenberg and Camm Swift, LACM; Drs. Carl Hubbs and
Richard Rosenblatt, S10; Mr. George Miller, Dr. Robert V. Miller and
Mr Frederick H. Berry, TABL (now Southeast Fisheries Center); Dr. Royal


Suttkus, TU; Dr. Boyd Walker, UCLA; and Drs. Ernest Lachner and
Victor Springer, USNM, (now National Museum of Natural History).
Also, Dr. D. E. McAllister, NMC, loaned specimens. Mme. M. Bauchot
MNHN, and Dr. M Boeseman, RMNH, generously allowed the use of facilities
at their respective institutions. Dr. Boeseman further permitted a loan
of type material. Dr. Jurgen Nielsen, Universitetets Zoologische Museum
Copenhagen, provided data on the type of Atule djedaba. To Dr. Peter J.
P. Whitehead, BMNH, I extend similar thanks for the loan of specimens,
use of facilities, and provision of data; furthermore, his friendship
since our meeting has been one of the treasured experiences of prepar
ing this dissertation.
Dr. John Randall, Bernice Bishop Museum, Hawaii, and Mrs. Margaret
Smith, J. L. B. Smith Institute of Ichthyology, South Africa, provided
information on their collections.
Technical assistance was provided by University of Florida artists
Mr. Paul Laessle and Ms. Margaret Estey who put aside busy schedules
to offer suggestions about the drawings. Mr. Russell Parks, Image
Designs, Gainesville, took all the photographs.
To my friends -- among whom I am fortunate enough to include my
parents and my loving wife,Carol -- who helped, a quiet word of thanks.


TABLE OF CONTENTS
Page
ACKNOWLEDGEMENTS ii
LIST OF TEXT FIGURES vi
LIST OF TABLES vi i I
LIST OF OSTEOLOGICAL FIGURES x
ABBREVIATIONS xli
ABSTRACT xv
INTRODUCTION 1
METHODS 5
Numerical Taxonomy 7
Preparation of Skeletal Material 8
CLASSIFICATION OF I NDO-PAC I FI C CARANGIDAE 11
A Review of the Suzuki Classification of
Japanese Carangidae 12
Primitive characters of the Carangidae 13
Numerical Taxonomy of the Japanese Carangidae 16
OSTEOLOGY OF HEMICARANX 21
Infraspecific variation 21
Descriptive Osteology of Hemicaranx 22
KEY TO HEMICARANX AND ATULE 47
SYSTEMATICS OF HEMICARANX 50
Hemicaranx Bleeker 50
Hemicaranx amb1yrhynchus (Cuvier) 63
Hem ica ranx bicolor '(GOnther) 93
Hemicaranx zelotes Gilbert 99
Hemicaranx leucurus (Giinther) 123
SYSTEMATICS OF ATULE
130


Atule Jordan and Jordan 130
Atule mate (Cuvier) 150
Atule ka 1 1 a (Cuvier) 156
Atule macrurus (Bleeker) 160
Atule djedaba (Forskal) 163
Atule mal am (Bleeker) 167
APPENDICES 170
Appendix 1. Tables 171
Appendix II. Osteological Figures 208
Appendix III. Skeletal Material Examined 235
GLOSSARY 238
LIST OF REFERENCES 241
BIOGRAPHICAL SKETCH 254
V


TEXT FIGURES
Figure Page
1. Phylogeny of Japanese Carangidae 14
2. Phenetic dendrogram of Indo-Pacific Carangidae 17
3. Phenetic dendrogram of genera of Carangidae sharing
a matching coefficient of at least .75 with
Hemi ca ranx 61
4. Distribution of Hem?caranx in the Atlantic and Pacific
Oceans 79
5. Length of upper caudal fin lobe in populations of
Hemicaranx amblyrhynchus from the Western Atlantic
Ocean and H. bicolor from the Eastern Atlantic 82
6. Variation in number of fin rays in the soft dorsal
fin of Hemicaranx 83
7. Variation in number of fin rays in the soft anal
fin of Hemi caranx 84
8. Adult Hemicaranx from the Atlantic Ocean 87
9. Interspecific variation in number of scales in
curved lateral line of Hemicaranx 88
10. Winter Atlantic Ocean equatorial surface currents 91
11. Interspecific variation in ratio of straight to
curved lateral line lengths in large adult Hemicaranx . 107
12. Number of teeth in the premaxillary bone of
Hemicaranx from Panama Bay, Panama 108
13. Number of teeth in the dentary bone of Hemica ranx
from Panama Bay, Panama 109
14. Interspecific variation in number of teeth in large adult
specimens of Hemica ranx 110
15- Length of the pectoral fin in Hemicaranx from Panama
Bay, Panama Ill
vi


16. Length of the pelvic fin in Hemicaranx from Panama
Bay, Panama 112
17. Lateral outlines of anterior caudal peduncle scutes
in Eastern Pacific Hemicaranx 114
18. Width of the anterior peduncle scute in Hemicaranx
from Panama Bay, Panama 115
19. Juvenile specimens of Hemicaranx 117
20. Adult Hemicaranx from the Eastern Pacific Ocean 119
21. Lateral outlines of anterior ends of articulated
premaxillary and dentary bones in Eastern Pacific
Hemi caranx 121
22. Interspecific variation in width of the anterior
peduncle scute in large adult Hemicaranx 122
23. Phenetic dendrogram of genera of Carangidae
sharing a matching coefficient of at least
.75 with Atule 134
24. Ratios of straight to curved lateral line
lengths in the species of Atule 139
25. Depth of head in Atule 140
26. Species of Atule 142
27. Width of the anterior caudal peduncle scute
in the species of Atule 143
28. Number of premaxillary teeth in the species of
Atule characterized by uniseriate dentition 144
29. Relative lengths of ultimate (terminal) and pen
ultimate soft dorsal fin-rays in Atule 145
30. Interspecific variation in number of fin rays in
the soft dorsal fin of Atule 146
31. Interspecific variation in number of fin rays in
the soft anal fin of Atule 146
32. Interspecific variation in number of scales in
curved lateral line of Atule 147
33* Interspecific variation in number of scutes in
straight lateral line of Atule 147
34. Interspecific variation in width of the anterior
peduncle scute in Atule 148
35. Distribution of the species of Atule 149
vi 1


TABLES
Table Page
1. Geographic distribution of the nominal genera of Carangidae . 172
2. Characters coded in numerical taxonomy of
Carangidae 173
3. Character state-operational taxonomic unit matrix
for Carangidae 17*
A. Coefficients of association for carangid operational
taxonomic units from Japan 176
5. Second generation matrix of association coefficients,
calculated for cluster stems and individual OTU1s
incorporated in Japanese carangid cluster analysis 177
6. Distribution of primitive skeletal character states
in Japanese Carangidae, plus Hemicaranx 178
7. Morphometric values for Hemicaranx amblyrhynchus
from Western Atlantic localities 179
8. Meristic values for Hemicaranx amblyrhynchus from
Western Atlantic localities 182
9. Morphometric values for Hemicaranx bicolor from
three West African localities 183
10. Meristic values for Hemicaranx bicolor from three
West African localities 185
11. Comparative morphometric values for two species of
Hemicaranx from Panama Bay, Panama 186
12. Comparative meristic values for two species of
Hemicaranx from Panama Bay, Panama 189
13* Morphometric values for Hemicaranx zelotes from
the lower Pacific coast of Baja California, Mexico 190
14. Meristic values for Hemicaranx zelotes from the
lower Pacific coast of Baja California 191
15. Number of dorsal fin rays in four species of
Hemicaranx 192
vi i i


16. Number of anal fin rays in four species of
Hemi caranx 193
17. Number of pectoral fin rays in four species of
Hemi caranx 19**
18. Number of scales in the curved lateral line of
Hemi caranx 195
19. Number of scales in the straight lateral line of
Hemi caranx 195
20. Number of scales in the curved lateral line of
Atule 197
21. Number of scutes in the straight lateral line
of Atule 197
22. Coefficients of association between Hemicaranx
OTU and OTU's from Japan 199
23. Coefficients of association between Chloroscombrus
OTU and OTU's for which character state information
i s avai lable 200
2**. Atlantic Ocean surface temperatures 201
25. Comparison of diagnostic characters of the species
of Hemicaranx 202
26. Morphometric values for the species of Atule 203
27. Meristic values for the species of Atule 205
28. Number of teeth in species of Atule with
uniseriate dentition 206
29. Number of dorsal fin rays in the species of Atule .... 206
30. Number of anal fin rays in the species of Atule 206
31. Comparison of diagnostic characters of the species
of Atule 207
i x


OSTEOLOGICAL FIGURES
Figure Page
1. Neurocranium of Hemicaranx zelotes 210
II. Dorsal views of anterior edge of dorsal surface
of ethmoid bone in four species of
Hemicaranx 212
III. Suborbital series in Hemicaranx zelotes 212
IV. Dorsal view of two representative suborbital
shelves in Hemicaranx amb1yrhynchus 212
V. Lower jaw of Hemi ca ranx zelotes 21A
VI. Outline of posterior edge of left dentary in
Hemicaranx 214
VII. Lateral view of upper jaw of Hemicaranx zelotes # < # 216
VIII.Outline of dorsal edge of left premaxillary in
Hemi caranx 216
IX.Lateral view of hyomandi bu 1 ar bones of Hemica ranx
zelotes 218
X. Lateral outline of symplectic bone in Hemicaranx _ 218
XI. Lateral outline of pterygoid bone in Hemica ranx > 218
XII.Lateral view of opercle, subopercle, and inter-
opercle in Hemicaranx zelotes 220
XIII.Adpharyngeal view of basihyal bone and branchial
elements of Hemicaranx zelotes 222
XIV. Lateral views of hyal bones of Hemicaranx zelotes . 224
XV. Outlines of selected hyal elements in Hemicaranx t 226
XVI. Appendicular skeleton of Hemicaranx zelotes 228
XVII. Outline lateral view of postcranial axial and
medial skeleton, exclusive of caudal skeleton,
in Hemica ranx zelotes 230
x


XVIII. Pterygiophore lepidotrich articulation in
Hemicaranx zelotes 232
XIX.Lateral outlines of the distal ends of anal
pterygiophores in Hemicaranx 232
XX.Representative vertebrae in Hemicaranx zelotes . 232
XXI.Lateral view of caudal skeleton of Hemicaranx
zelotes 234
XXII.Ontogenetic fusion and development in Hemicaranx
ze 1 otes and Ch 1 oroscombrus chrysurus 234
XI


ABBREVIATIONS
I nstitut ions
AMNH
ANSP
BMNH
CAS
CAS-SU
CM
FMNH
FSBC
FSU
GCRL
LACM
MNHN
NMC
RMNH
SIO
TABL
TU
UBC
UCLA
UF
USNM
American Museum of Natural History, New York City
Academy of Natural Sciences of Philadelphia
British Museum (Natural History), London
California Academy of Sciences, San Francisco
Stanford University collection, now at CAS
Charleston Museum, Charleston, South Carolina
Field Museum of Natural History, Chicago
State of Florida Marine Research Laboratory,
St. Petersburg
Florida State University, Tallahassee
Gulf Coast Research Laboratory, Ocean Springs,
Mississippi
Los Angeles County Museum of Natural History
Museum National d'Histoire Naturelle, Paris
National Museum of Canada, Ottawa
Rijksmuseum van Natuurlijke Historie, Leiden
Scripps Institution of Oceanography, La Jolla
Tropical Atlantic Biological Laboratory, Miami
Tulane University, New Orleans
Institute of Fisheries, University of British Columbia,
Vancouver
Department of Zoology, University of California, Los
Angeles
Florida State Museum, University of Florida, Gainesville
United States National Museum, Washington, D. C.
Bones, By Region
Neurocranium
BOC
basioccipi tal
BS
basisphenoid
DSO
dermosphenotic
E
ethmoid
EOC
exoccipita1
EPO
epiotic
F
frontal
L
1 acrycna 1
LE
lateral ethmoid
N
nasal
OPS
opisthotic
XI i


p
parietal
PRO
prootic
PS
parasphenoid
PTO
autopterotic
PTS
pterosphenoid
PM
prevomer
S
sclerotic
SPH
autosphenotic
SUB
suborbital
SUO
supraoccipi tal
Branchiocranium
Oromandi bular region
Upper jaw bones
MX
maxi 1lary
PMX
premaxi 11 ary
SMX
supramaxi1lary
Lower jaw bones
AN
AR
D
Hyoid region
B
BH
CH
EH
HM
IH
I0P
LHH
MSPT
MTPT
OP
PAL
POP
PT
Q
SOP
SV
UH
UHH
Branchial region
angular
articular
dentary
branchiostegal rays
basihya1
ceratohya1
epihyal
hyomandi bu lar
interhyal
interoperc1e
lower hypohyal
mesopterygoid
metapterygoid
opercle
palatine
preopercle
pterygoid
quadrate
suboperc1e
symplectic
urohya1
upper hypohyal
basibranchial
ceratobranchi a 1
BB
CB
XI i


EB
HB
PB
epibranchial
hyopobranchial
pharyngobranchial
Appendicular Skeleton
Pectoral girdle
CL
cleithrum
CO
coracoid
LEP
lepidotrichs
PCL
postcleithrum
PTM
posttempora1
R
rad ials
SC
scapula
SCL
supracleithrum
Pelvic girdle
BPT
basipterygiurn
LEP
lepidotrichs
Axial Skeleton
CV
caudal vertebrae
EPR
epipleural rib
PCV
trunk (precaudal) vertebrae
PR
pleural rib
Medial Skeleton
DPT
distal pterygiophores
LEP
lepidotrichs
PD
predorsals (supraneura1s)
PPT
proximal pterygiophores
Caudal Skeleton
CAP
antepenultimate caudal verteb
CP
penultimate caudal vertebra
EP
epural
HS
hemal spine
HY
hypura1
NS
neural spine
PCR
principal caudal ray
SCR
secondary caudal ray
UN
uroneura1
UR
urostylar (terminal) vertebra
XIV


Abstract of Dissertation Presented to the
Graduate Council of the University of Florida in Partial Fulfillment
of, the Requirements for the Degree of Doctor of Philosophy
Systematics of the Genera Hemicaranx and Atule
(Pisces: Carangidae), with an Analysis of the Classification
of the Fami1y
By
William Seaman, Jr.
August, 1972
Chairman: Carter R. Gilbert
Major Department: Zoology
The carangid fish genus Hemicaranx Bleeker is an uncommon compon
ent of the subtropical and tropical ichthyofauna of the Atlantic and
Eastern Pacific Oceans. Analysis of specimens from throughout the
range for external morphological and osteological characters was per
formed to resolve the systematic status of the nominal species of
Hemicaranx. Based on examination of morphometric, meristic, and
osteological characters, four species are recognized: H. amblyrhynchus
(Cuvier), a wide-ranging Western Atlantic shore species that is document
ed to be estuarine dependent; H_. bicolor (Gunther) of the Eastern
Atlantic, closely related to amblyrhynchus but differing with regard
to number of dorsal and anal rays, length of caudal lobes, and several
osteological characters; and H_. zelotes Gi 1 bert and H_. 1 eucurus (Gunther),
which occur sympatrica11y over much of their ranges along the Eastern
Pacific coast from Mexico to Peru. The latter two species are distin
guished on the basis of tooth morphology, body bars, caudal scute width,
and, in larger individuals, pectoral fin length. H_. zelotes and H_.
1 eucurus are more closely related to each other than either is to H_.
amblyrhynchus and H. bicolor.
xv


To describe the osteology of Hemicaranx, two existing methods for
obtaining skeletal material from preserved specimens were combined for
the first time. Thus, larger preserved material was heated in enzyme-
based detergent solution and rinsed with ammonia, thereby speeding up
disarticulation.
Because the species of Hemicaranx and Atu1e are sometimes combined
in a single genus, and since a number of workers have questioned their
relationship, the hypothesis that the two genera are distinct but close
ly related was explored. Osteological data from the present study were
combined with a synthesis of the osteological catalog of Suzuki to assess
the relationship of Hemicaranx to the Indo-Pacific Carangidae. Based
on the numerical taxonomic analysis conducted, I conclude that Hemicaranx
and Atule are generically distinct, though very closely related. The
phenetic classification of this study confirms to a large degree the
phylogeny proposed by Suzuki for Japanese carangids.
Study of limited geographic and ontogenetic samples of Atule
provides the basis for review of the genus. Five valid species, all
in the Indo-Pacific basin, are recognized: A_. kal 1 a, A_. mate, A_. mal am,
A_. djedaba, and A_. macrurus. Diagnostic characters include dentition,
lateral-line ratios, and number of lateral-line scutes.
Ecologically, both Hemicaranx and Atule are characterized by
early juvenile stages that are commensal with jellyfishes. The possibil
ity of transoceanic dispersal by currents is seemingly confirmed by the
transport of H. bicolor from Africa to northeastern South America.
XV i


INTRODUCTION
The teleostean fish family Carangidae, whose members are commonly
known as the jacks, pmpanos, and scads, is well known because of the
commercial and/or sport fisheries supported by a relatively small number
of its species. Many members of this distinctive, primarily circum-
tropical, marine family are still poorly known systematically, however,
and as Berry has noted (1968: 16*0 the morphological characteristics
and limits of a number of carangid genera are inadequately defined,
pending thorough analysis of the species involved. Such is the case
for Hemicaranx Bleeker, a small, uncommonly collected genus whose
species are found in the tropical and subtropical coastal waters of
the Atlantic and eastern Pacific Oceans. With the accumulation of pre
served specimens of the nominal species in institutional collections,
it is now possible to revise the species of Hemicaranx. Based on
examination of (1) intraspecific variation of external morphology,
including several characteristics that have not been included in
earlier accounts of the species, and (2) osteology, which heretofore
has not been studied in Hemicaranx, the limits of the genus are also
defined in this study.
In seeking to identify the carangid genera with which Hemicaranx
might share a more or less common ancestor, it became apparent that
the supposedly phylogenetic classification of the Carangidae rests
mainly on subjective grounds. Without an abundance of fossil evidence
to provide an objective basis for definition of "primitive" characters,
1


2
students of this and many other groups have tended to base their class
ifications on either intuition or the assumption that the most widely
shared characters are most typical of ancestral forms. Indeed, taxon-
omically significant characters have frequently (but uncritically)
been assumed to be of significance in defining phylogenetic trends; the
danger of such a practice was pointed out by Gilbert and Bailey (1972:
9). Sokal and Sneath (1963: ^7) extensively discussed the problems at
tendant to inference of phylogeny from affinity (morphological resemb
lance, etc.) of organisms. To identify the genera of closer affinity
to Hemicaranx two alternative approaches may be employed:
1. Overall comparison of genera, as one might do in "keying-out"
a specimen, utilizing perhaps only a few characters that are more
"significant" (taxonomic or phylogenetic?) in constructing a phy-
1ogeny.
2. Comparisons based on large numbers of non-weighted, randomly
selected characters that result in an objective description of
phenetic resemblance.
The former approach is typical of the literature dealing with the
Carangidae; of recent import is the classification of the traditionally
recognized and accepted generic taxa of Japanese carangids by Suzuki
(1962), who based a phylogeny upon osteological characters. Also, on
the basis of "weighted" characters reflecting general morphological
similarities, the genus Atule of the Indo-Pacific basin was referred
to as a possible "close relative" of Hemicaranx by Nichols (19^2b: 229).
Indirect comment on the affinity of Hemicaranx to Atule was provided
by Fowler, who included species of both genera in the invalid genus
A1epes. Preliminary examination and comparison of nominal species of


3
Atuje with Hemicaranx confirms these appraisals.
Because Atu1e is poorly known and its species frequently confused,
and because of relatively close affinity to Hemicaranx, its species --
known from limited collections -- are reviewed. The relationship of
Atule to Hemicaranx will be assessed as part of the overal1 review of
generic classification presented in this study.
The second approach is based on the principles of numerical taxonomy
Because these techniques have not previously been applied to the Carangid
ae, or many other teleosts, the procedures of Sokal and Sneath (1963) on
which they are based, are briefly summarized and are then employed to
identify those genera to which Hemica ranx is related. In addition to
providing an alternate method of identifying relative affinities of gen
era, numerical taxonomy will be used in this study to generate a phenetic
classification of the Indo-Pacific Carangidae. As a means of evaluating
the phylogeny proposed by Suzuki (1962), the osteological characters he
used will be incorporated in this alternate classification insofar as
possible. In reviewing Suzuki's work it was necessary to reconcile hypo
thesized phyletic trends with the fossil record; a summary of primitive
carangid characters is essential to this task.
As with many marine teleost families, the Carangidae are more
diverse in the Indo-Pacific region. Because more genera are present
there than in the Atlantic and Eastern Pacific Oceans, it is likely
that the Indo-Pacific basin is the center of origin of the Carangidae
(Table 1). Of interest is the apparent failure of several genera from
the Indo-Pacific to enter the Atlantic or cross the Eastern Pacific past
Hawaii, perhaps partly because of either relative age of genera or their
relative rates of dispersal (see Table 1). Also of note is that several


genera (including Hemicaranx) are found only in the Atlantic and
Eastern Pacific basins. This may be due to a) lack of critical study
and definition of genera (Mansueti, 19&3: 55; Berry, 1968: 164),
resulting in simple unresolved synonymies, or b) evolution of new
taxa (genera) from some genera that did indeed reach the Atlantic and/or
Eastern Pacific either through the Tethys Sea of pre-Miocene times, or
around the southern tip of Africa, or across the Pacific Ocean. The
numerical taxonomy generated in this study may also prove useful in
assessing the various evolutionary histories of the genera of Carangidae.
In particular, it will be employed to comment on the affinities of
Hemicaranx.


METHODS
Counts and measurements of external morphological characters of
fish specimens examined were based as much as possible on standard
ichthyological procedure. For the most part, meristic and morphometric
data are expressed in terms of the definition of Hubbs and Lagler (1958:
19-26). However, the unique characteristics of certain Carangidae
necessitate the use of additional or modified counts and measurements;
in this regard, I have attempted to use those characters already defined
in the literature dealing specifically with carangid fishes (i.e.,
Berry, 1959; Williams, 1959; and Berry, 1968). Definitions of terms
from the literature, as well as terminology unique to this study, are
presented in the Glossary. All measurements were taken using dial
calipers; distances greater than 100 mm were read to the nearest
mi 11imeter.
Deduction of evolutionary history usually is based on the assump
tion that degree of relationship is positively correlated with degree
of resemblance. To strengthen the conclusions based on such comparisons
the number of characters examined may be increased to reduce misleading
interpretation of convergence of certain characters. Although external
morphology is most commonly employed, osteological features may be also
used to expand the evidence of taxonomy, and to construct phylogenies
based on degree of resemblance, Indeed, the supposed "conservative"
nature of osteological characters has prompted workers to accept them
as preferred kinds of evidence. (Norden [¡961: 683], for example,
5


6
acknowledged this, but he also employed developmental stages and other
morphological aspects.) However, the occurrence of significant infra
specific variation of certain osteological characters in some groups of
fishes (Schleuter and Thomerson, 1971) demonstrates the fallacy of a
typological approach to osteology. The need to account for infra
specific osteological variation before incorporating such information
in taxonomic definitions is apparent.
Analysis of infraspecific osteological variation was based on exam
ination of up to five specimens of closely similar standard length (65"
70 mm). Ontogenetic change was studied in specimens ranging from 33 to
150 mm SL. Osteological observations were made primarily on cleared and
stained specimens, but other preparations were also employed, as dis
cussed below. Skeletal material examined is listed in Appendix ill.
As nearly as possible, osteological terminology conforms to that
used in more recent publications on the Carangidae (I.e., Suzuki, 1962,
Berry, 1969). However, all usage has been reconciled with accepted
ichthyological literature; pertinent in this regard are Harrington, 1955
(osteocranium), Smith and Bailey, 1961 and 1962 (dorsal skeleton, sub
ocular series), and Gosline, 1961 (caudal skeleton). Terminology at
variance with Suzuki (1962) is so noted in the text. A listing of
skeletal elements is provided in the Abbreviations section. In the
osteological section, a detailed account of the location, orientation,
and morphology of each skeletal element is provided for one species of
Hemicaranx, namely H. zelotes. Following the description of each bone,
any interspecific differences are noted.
Material examined in the course of this study is listed in each
species account. For each lot of specimens studied, data are presented


7
in the following format: Institutional catalog number; number of speci
mens and size range (mm SL), in parentheses; and locality data (country,
state or province, county if in U. S., geographic locality, latitude, long
tude, depth, cruise, collector, date). Institutional abbreviations are
listed at the front of the text.
Outline drawings of material were made with a Wild camera lucida,
modelled in pencil, and ink drawings were then executed.
Statistical treatment of data was carried out by means of a Monroe
Epic 3000 Calculator in the computation of descriptive statistics, and
a Monroe Epic 1665 Calculator in the generation of t-statistics for
unequal sample size and unequal standard deviation (Snedecor, 1956: 97"
98). Comparison of larger numbers of samples was effected using the
graphical approximation to a multiple-comparison test of Eberhardt (1968).
The advantages of this technique, especially preservation of the stated
level of significance, are discussed by Eberhardt; significance levels
stated in figure legends of this text are derived from Eberhardt (1968:
Figure 2). Inspection of data reveals that many characters follow allo-
metric growth curves; for such characters restricted straight-line por
tions of the curve were compared for different samples of similar-sized
individuals. Ontogenetic growth is discussed in the species accounts.
Numerical Taxonomy
As employed by McAllister (1966) the techniques of Sokal and Sneath
(1963) have been shown to be of utility in assessing and establishing
a phenetic classification of fishes. McAllister (1966: 227-229) pro
vides a summary of the methods of coding characters and calculating and
tabulating simple matching coefficients; however he does not extend the
techniques of Sokal and Sneath beyond a coefficient matrix, nor does he


8
subject his data to standard cluster analysis to plot a dendrogram.
Therefore, a summary of the techniques of Sokal and Sneath herein em
ployed is provided:
1. Selection of characters.
2. Coding. Each character was recorded as being either present
or absent for each operational taxonomic unit (0TU)(i.e., generic taxon).
A list of the character states is provided in Table 2; a matrix of char
acter states appears in Table 3.
3. Calculation of matching coefficients of association, based on
the formula Ssm= m/n, where Ssm is the coefficient, m is the number of
character states shared between OTU's, and n is the total number of char
acter states compared. Matching coefficients are listed in Table 4.
4. Cluster analysis. As evaluated by Sokal and Sneath (1963: 189)
the "weighted pair group method" of cluster analysis, using averages to
calculate new similarity coefficients for each generation, results in the
least distortion of dendrograms. This technique is herein employed to
plot dendrograms; new members are weighted as equal to the sum total of
old cluster group members (Sokal and Sneath, 1963: 190-191). A second
generation matrix is illustrated in Table 5.
Preparation of Skeletal Material
Investigations of teleostean osteology have usually been based on (l)
X-rays of specimens, (2) cleared and stained material, and/or (3) dry
bones that have been cleaned of soft tissues. Limitations of each tech
nique exist: X-rays obscure 3_dimensional detail and prevent direct
handling of bones; very large specimens frequently fail to clear even
after months of enzyme digestion, and certain groups are resistant to
the process (Miller and Van Landingham, 1969: 829); dissection and re
moval of bones from preserved specimens may be prohibitively time


9
consuming, whereas fresh material from which dry bone preparations may
be obtained by maceration is frequently not readily available. Thus,
the osteological characters of many fish groups have not been incorporated
in systematic studies.
Collections of comparative skeletal material of the species of
Hemicaranx are extremely limited. Because the enzyme method of Taylor
(1967) for clearing and staining small vertebrates did not yield satis
factory results on carangid fishes greater than 100 mm SL, I employed
two recently developed techniques for the preparation of dry bones from
preserved material to examine the osteology of individuals of Hemicaranx
above 100 mm SL. I found, however, that Konnerth's (1965) method of pre
paring ligamentary articulated specimens consumed an inordinate amount of
time in the skinning and removal of tissue from specimens. The possibility
of skeletal damage by chlorine, which must be employed in this method, is
also a drawback (Ossian, 1970: 199). Meanwhile, the technique of Ossian
(1970) for spec imen disarticulation using enzyme-based laundry "pre
soakers" consistently resulted in partial disintegration of superficial
bones, especially dermal elements of the jaws and opercular series, before
complete disarticulation could occur. To avoid these difficulties, I
combined complementary aspects of each technique.
Preserved whole carangid specimens (150-200 mm SL) were transferred
from alcohol storage into "Biz" solution and maintained at 70^ C, follow
ing the procedure of Ossian (1970). Within 2k to 96 hours after initial
immersion, deterioration of superficial skin and membranes takes place,
although,because it precedes bone damage, such deterioration is a useful
signal of imminent osteological disintegration or alteration. At this


10
point, then, more superficial skeletal elements may be easily removed
before they are altered, either individually or as a unit, and the remain
der of the skeleton and attached flesh returned to a fresh "Biz" solution.
After brief additional soaking the deeper cranial and axial muscle masses
are easily split off in chunks, thus effecting considerable time-savings
over the method of Konnerth (1965). Exposure of bare bone to "Biz" solu
tion necessitates termination of soaking, but the remaining soft tissues
may now be readily removed -- especially if the specimen is soaked in
ammonia after rinsing, as discussed by Konnerth (1965: 328). By this
time, too, all preservative has been washed out of the specimen, and
maceration in water may also be employed to remove remaining tissue.
With judicious combination of the techniques of Konnerth (1965)
and Ossian (1970) it is now possible to prepare adequate amounts of un
damaged osteological material from preserved fish specimens. With dis
section, units of the skeleton may be retained in articulated condition.


CLASSIFICATION OF INDO-PACIF1C CARANGIDAE
Classifications are frequently based on a relatively low number
of taxonomic characters. For example, ever since Bleeker's (1862: 135
138) initial taxonomic distinction of several carangid genera on the
basis of dentition, distribution of teeth has been accorded special
taxonomic importance in the classification of Carangidae. Over the years
a small number of additional characters have been incorporated into
classifications as a means of defining carangid taxa: presence or ab
sence of lateral"line scutes, for example, has been utilized in the
establishment of subfamilies, just as presence or absence of detached
finlets has been ascribed value in generic diagnoses. More extensive
subsequent description of overall external morphology of species initi
ally distinguished by one or a few diagnostic characters has, for the
most part, confirmed the initial taxonomic interpretations, thus imply
ing that groups of characters vary in a correlated fashion. This con
clusion has apparently served as a "carte blanche" for the weighting of
certain characters as more important than others in establishing taxo
nomies. That is, suites of correlated characters may be incorporated
into taxonomy as a group (i.e., the "single adaptive complex" of Mayr,
et a 1., 1953: 123) by weighting a single member of the suite and letting
it represent the group, thus eliminating the need to continually repeat
character state information.


12
Besides the use of weighted characters which are not always
documented 1) to be representative of a suite or 2) to be primitive --
speculation about evolutionary trends has usually been based on the
assumption that closely related taxa share relatively more characteristics
than do more distantly related forms. For the Carangidae, for example,
Ginsburg (1952) ascribed phylogenetic relationship on the basis of ex
ternal morphological similarity. Most notable in this regard is the
phylogeny proposed by Suzuki (1962) for Indo-Pacific carangids based
upon an extensive catalog of osteological features.
A Review of the Suzuki Classification
of Japanese Carangidae
In a comparison of Indo-Pacific carangids from Japan (Table 1),
Suzuki (1962) provided descriptions of variable detail for over 70
osteological features. Out of 3** characters demonstrated to be diagnostic
for all genera, Suzuki (p. 130) listed ten that are "significant for dis
closing their phylogeny." Based on these characters a progenitor is
hypothesized, and extant forms are compared to the "ideal" in an effort
to delineate the evolutionary trends of subfamilies. In a subsequent
discussion of evolution within subfamilies, Suzuki cited various diagnostic
characters as evidence for derivation of phyletic units. However, in his
discussion Suzuki did not document many of the evolutionary trends he
hypothesized; if he had a rationale for a widely opened myodome being
primitive (p. 66), for example, he did not express it.
Also, out of many so-called primitive characters Suzuki chose to
weight some as being of special significance in phylogeny. In his dis
cussion of the suspensorium and opercular apparatus, for example (p. 87),


13
he listed eleven characters significant to classification; shape of
pterygoid and height of apparatus are stated to be of particular
importance. Again no rationale was given for the differential phylo
genetic significance.
The "disposition of genera in conformity with their degree of
differentiation" proposed by Suzuki (p. 133) is illustrated in Figure
1. Essentially this phylogenetic tree is based on documented and un
documented suppositions that, of the scores of features examined,
but a relative few are of utility in deducing phylogeny.
Primitive Characters of the Carangidae
The Carangidae first appear in the fossil record during the Eocene,
and they are thought to have arisen from a dinopterygoid beryciform
close to the genus Aipichthys (Patterson, 1964: 398). During the course
of evolution the Carangidae have lost the following characters that
are still found in Aipichthys: eight branch i ostega1 rays (reduction to
seven), orb itosphenoid toothed endopterygoid fewer dorsal spines and
no free spines in front of the dorsal, 17 branched caudal rays (reduction
to 15) (Patterson, 1964: 397). Characters shared between Aipichthys
and the Carangidae include: high supraoccipita1 crest; upturned,
protrusible mouth; absence of ornamentation on cranial bones; single,
elongate supramaxi11 ary; number of vertebrae (10 + 15); form of
cleithrum (lengthened and broadened ventrally); form of coracoid
(enlarged); long dorsal and anal fins with a few spines and with
elongate anterior rays; cycloid scales; and especially deeply forked
caudal-ray bases (Patterson, 1964: 397, 469-470).
Gregory (1933: 300-303) cited as primitive characters for the
Carangidae, a low number of vertebrae (24-26), spinous dorsal and anal


CHORINEMUS
TRACHINOTUS
Figure 1.
Phylogeny of Japanese Carangidae (Redrawn from Suzuki, 1962: 133)


15
fins that are neither reduced nor separated, non-broadened opercular
(antero-posteriorly) and less elongate head. He also stated that in
more primitive carangids the supraoccipital-frontal crest is steeper
and higher, the opercle relatively deep and short, the mouth small,
with a long ascending process of a protrusible premaxillary, the
quadrate articular joint moderately far forward, and the body is
deeper ("ovate to orbicular"). Presumably, Gregory based these
trends on examination of Aipichthys, which he referred to as a "deep
bodied Cretaceous form" that may be the real ancestor of the Carangidae
(1933: 300).
If these substantiated primitive characters are compared with
those used by Suzuki, one can see that he was correct in weighting
certain of the characters he employed as phylogenetic evidence.
Included are the primitive character states of (1) eight branchio-
stegal rays, (2) a supramaxi11 ary, (3) a high supraoccipital crest,
and (4) a protractile premaxillary. In addition, (5) the absence of
scutes, specialized structures appearing only in some members of the
family, and (6) a feebly developed first hemal spine appear to be
typical of primitive carangids and apichthyids. Finally, the (7)
expansion of the post-maxillary process as a bracing supportive struct
ure, ancillary to the development of a protrusible mouth as an evol
utionary advancement (Patterson, 1964: A56) appears to be a valid
trend in the group. Data of Suzuki for these few characters, when
tabulated after the manner employed by McAllister (1966: 230-231),
give some indication of the degree of resemblance of extant carangids
to ancestral forms (Table 6). Because data on only six primitive
characters are available for all genera in Suzuki, little significance


16
is attached to the tabulated summaries. Indeed, all genera have
between two and four primitive character states present. Clearly,
further appraisal of primitiveness, based on documented literature
accounts of fossils, must await additional study of appropriate
characters, including studies of external morphology, a task acknowled
ged by several workers.
In addition to a low number of documented primitive characters,
Suzuki also incorporated into his phylogenetic classification weighted
characters for which the primitive state is conjectural. Hypothe
sized primitive characters that were weighted include (1) rostrum
wide and short, (2) myodome opening wide, (3) ceratohyal window
wider, (4) urohyal shorter, and (5) olfactory cavity absent. Finally,
numerous other characters are unweighted in this study. As a result,
even though Suzuki reviewed scores of osteological features, only
a small number of diagnostic generic characters are incorporated
into his "hybrid-phy1ogeny," one that is inconsistent in employment
of characters and their weighting.
Numerical Taxonomy of the Japanese Carangidae
The extensive osteological catalog for the Carangidae provided
by Suzuki (1962) may be incorporated into an alternative scheme of
classification, based on the techniques of numerical taxonomy, in
which all characters are weighted equally. (The large number of
characters examined by Suzuki are not equally nor uniformly described
for all species in his discussion; this analysis is based only on the
characters completely cataloged in his paper.) Equal weighting
(Sokal and Sneath, 1963: 118-120) is employed as an alternative to the
dilemma of allocating differential weights to characters that may or


Phenetic dendrogram of Indo-Pacific
Carang¡dae
COEFFICIENT OF ASSOCIATION (Ssm x 100)
CTN oo
O O o
u>
o
IQ
c
a>
N)
ALECTIS
CI TULA
ATROPUS
CARANX
KAI WAR INUS
LONG I ROSTRUM
CARANGOI DES
URASPIS
GNATHAN0D0N
SELAROIDES
DECAPTERUS
TRACHURUS
ATULE
SELAR
MEGALASPIS
ELAGATIS
NAUCRATES
SERIOLA
TRACHINOTUS
CHORINEMUS


18
may not be classified as to "primitiveness." As discussed above, only
a small number of characters may unquestionably be described as
primitive for the Carangidae; many others may or may not be. (An infin
ite number of weightings could be assigned, therefore, with evaluation
largely a matter of subjective preference.)
As suggested by McAllister (1966: 227), the minimum of .40 charac
ters were coded for each OTU (Table 3)* Based on weighted pair group
cluster analysis, twelve association matrices (e. g., first generation,
Table 4; second generation, Table 5) were generated in the description
of a phenetic dendrogram (Figure 2).
The dendrogram in Figure 2 has utility in three ways:
1. It provides a visual illustration of the degree of taxonomic
similarity and difference between and among OTU's.
2. The taxonomic status of nominal genera may sometimes be re
solved. The extreme resemblance of two genera, especially when one is
monotypic, may indicate a congeneric situation. This process has the
additional effect of providing a mechanism for evaluation and revision
of diagnostic characters.
3. It provides a basis for phylogenetic deductions, based on the
assumptions that a) phenetic clusters of extant OTU's are most likely
monophyletic, and b) the best estimate of the attributes of a common
ancestor of a cluster -- in the absence of direct evidence -- is pro
vided by the cluster (Sokal and Sneath, 1963= 227).
Based on OTU association coefficients (Table 4, Figure 2) some
of the more apparent deductions about the phylogeny of Japanese carangids
include: "early" derivation of Chorinemus from the stem; derivation
of T rachinotus, and Elagatis Naucrates and Seriola from an "early"


19
common stem. These are not at variance with classical subfamilial
classification that relegates Chorinemus to the Chorineminae, Trachin-
otus, to Trachinotinae, and the latter three genera to the Naucratinae
(SUzuki, 1962). Were all lower clusters to be divided taxonomica11y,
however, it might be necessary to name the two remaining main stems
(which bear the nominal genera of the Caranginae). That is, two
groups of genera accorded to the subfamily Caranginae, namely Long i ros t rum
through Kaiwarinus, and Trachurus through Selar plus Mega 1aspis
(Figure 2), deviate from a common stem at a lower coefficient than do
the Trachinotinae and the Naucratinae. Two alternatives to achieve
a uniform taxonomy are suggested: 1) assign subfamilial rank to the
two carangine groups, since Elagatis Serila and Trachinotus are
accorded to subfamilies, despite a higher branch-point; or 2) abondon
the Naucratinae and Trachinotinae as subfamilial categories.
An additional conflict of taxonomies is seen for the Megalaspinae
(Mega 1 aspis) which was thought by Suzuki to be an early offshoot of the
Naucratinae-Caranginae line (Figure 1). Cluster analysis of character
states reveals the affinity of Megalaspis to the Trachurus-Selar group
illustrated in Figure 2.
Agreement of the two taxonomies is also observed in the clustering
of the genera Atule, Decapterus, Trachurus and Selar (=Trachurops).
The clustering of the genera of the Long i ros t rum Kaiwarinus group
also agrees with Suzuki's phylogeny.
In practice, the numerical taxonomy illustrated in Figure 2
points out the subjective nature of Suzuki's scheme. Based on ten
characters Suzuki (1962: 130-132) concluded that (1) the Naucratinae
are nearest the "Ideal form" (the progenitor of the family), (2) the


20
Trach¡notinae (more primitive than the Chorineminae) and the Chorineminae
both deviated at an early stage from the main stem leading to the
Carangidae, (3) the Megalaspinae are an offshoot from the line leading
the ancestral form of the Naucratinae to the Carangidae, and (4) the
evolution of the Caranginae represents "the main stem of the phylogene-
tical tree of the Carangidae." However, our lack of knowledge of
degree of primitiveness of many of the character states employed by
Suzuki reduces the confidence placed in his classification, although
the general affinities of many of the genera considered in both
studies reinforce many of the phylogenetic deductions to be drawn.
The phenetic dendrogram generated by cluster analysis in this
study avoids the speculative nature of differential character weighting
and its attendant difficulties (Sokal and Sneath, 19^3 118-120).
It provides an objective alternative for establishment of classifications,
with the utility of illustrating phylogenetic trends if the assumptions
noted above (3a and b) are valid. McAllister (1966: 234-235) mentioned
that perhaps the ideal procedure is the incorporation of objectively
weighted characters into such a scheme. The need for additional fossil
evidence as a basis for weighting the carangids is apparent, especially
as it pertains to the divergence of taxa from ancestral forms.


OSTEOLOGY OF HEMICARANX
Infraspecific Variation
Examination of series of similar-sized individuals reveals that
infraspecific osteological variation is minimal in the genus Hemicaranx,
with the exception of the suborbital shelf. The shape of the suborbital
shelf is uniquely variable in Hemicaranx (Figure IV), and is unreliable
as a diagnostic character in distinguishing taxa. All other skeletal
features, however, are remarkably constant. Thus it is reasonable to
hypothesize that osteological features are relatively "conservative"
in the Carangidae. Consequently, previous descriptions and definitions
based on single specimens may be regarded as more valid and usually
accurate representations of the osteology of this group. In the compari
son of caudal skeletons, for example, more confidence may be placed in
single-specimen observations of carangids. Indeed, this might be pre
dicted on the basis of the observation of Schleuter and Thomerson (1971:
33*0 that little variation exists in the caudal skeleton of strong swim
mers. However, the demonstration by Schleuter and Thomerson of signi
ficant osteological variability in some other fishes cautions against
a typological approach to skeletal characters.
For the most part, ontogeny of the skeleton is characterized by a
uniform expansion of each element, thus allowing some comparison of
different-sized specimens. In the comparative section below, however,
individuals of nearly identical size always were compared.
21


22
Descriptive Osteology of Hemicaranx
Neurocranium (Figure l)
Prevomer (PV) (vomer of Suzuki, 1962: 48). -- The unpaired pre
vomer is the anteriormost neurocranial bone. It is characterized in
the lateral plane by a forward-pointing triangular-shaped head from
which a median blade-like process extends posteriorly to articulate
with the ventral surface of the parasphenoid (PS). The anterior
margin of the head of the prevomer carries a dorsal crest, behind
which the ventral edge of the ethmoid (E) inserts. Just posterior
to this, the ventral edge of the lateral ethmoid (LE) articulates.
Antero-1atera1ly the prevomer is in contact with the medial portion of
the palatine (PAL). Dentition is not present in individuals of 65
or 150 mm SL.
Ethmoid (E)(mesethmoid of Suzuki, 1962: 50). The ethmoid is
unpaired, and is compressed, vertically elongate, and narrowest at the
middle. The anterior ventral edge inserts behind the dorsal crest of
the prevomer (PV), while the posterior vertical edge is articulated
with the medial edge of the lateral ethmoid (LE). The dorsal posterior
corners of this bone are each overlaid by the pointed anterior tip of
the frontal bones (F). The dorsal surface is convex anteriorly.
The anterior edge of the dorsal surface of the ethmoid (Figure ll)
is also convex in H_. 1 eucurus, but it is more sharply curved than in
zelotes. In both H_. ambl yrhynchus and bicolor it is concave, and is
characterized by projections on the anterior lateral corners.


23
Lateral ethmoid (LE) (ectethmo?d of Suzuki, 1962: 50). -- The
lateral ethmoid is oriented in the vertical plane, and in lateral view
gently curves posteriorly upward from its articulation with the anterior
parasphenoid (PS). Viewed anteriorly, the lateral ethmoid appears broad
and somewhat butterfly-shaped. The medial edge of this bone broadly
articulates with the posterior lateral edge of the ethmoid (E), which
separates it from its fellow member. Dorsally the lateral ethmoid
contacts the anterior edge of the frontal (F). Located in the upper
medial quarter is the olfactory foramen. Ventrally, the lateral
ethmoid loosely contacts the anterior tip of the pterygoid bone (PT).
Frontal (F). -- The largest of the neurocranial elements, the
frontal bone is broadly united with its fellow member anteriorly in a
dorsally projecting median crest, which is an anterior continuation of
the supraoccipita1 crest. Anteriorly, the frontals are separated by
the interposed ethmoid (E), while posteriorly the supraoccipita1 (SUO)
is juxtaposed between them. The anterior lateral corner of the frontal
rests on the dorsal edge of the lateral ethmoid (LE). Together with the
parietal (P), to which it articulates posteriorly, the frontal contributes
to the dorsa1-projectIng temporal crest, which extends to the forward
corner of the frontal, terminating at the anterior margin of the orbit.
Laterally, a second crest, the pterotic crest, is present; anteriorly
it extends just in advance of the posterior margin of the orbit, and
posteriorly it carries on to the autopterotic bone (PTO), which articu
lates with the posterior margin of the frontal. Beneath the temporal
crest, the ventral surface of the frontal articulates with the ptero-
sphenoid (PTS). Beneath the pterotic crest the ventral surface joins
the autosphenotic (SPH)..


2k
Pterosphenoid (PTS) (a 1 isphenoid of Suzuki, 1962: 59). Hidden
from dorsal view, this small rhomboida 1-shaped bone is widely separated
from its fellow member by the medial anterior opening of the braincase.
Dorsally the pterosphenoid articulates with the frontal (F). Posteriorly
it articulates with the autosphenotic (SPH); the ventral posterior angle
articulates with the prootic (PRO). The ventral edge of the ptero
sphenoid joins the dorsal tip of the lateral wing of the basisphenoid
bone (BS).
Basisphenoid (BS). The unpaired basisphenoid is a Y-shaped,
short rod-like bone that runs vertically from near the posterior end
of the dorsal surface of the parasphenoid (PS) to join, via each short
arm, the pterosphenoids (PTS).
Parasphenoid (PS). -- The parasphenoid is unpaired and extends
along the midline of the floor of the orbit. Anteriorly, it is charac
terized by a dorsal keel, and it is broadly joined to the dorsal surface
of the prevomer (PV) process. Laterally, the parasphenoid appears as
a long narrow shaft, from which an ascending process arises near the
posterior end. The ascending process flares away from its fellow as
it extends vertically to meet the lower anterior edge of the prootic
(PRO). The anterior tip of the parasphenoid touches the ventral margin
of the ethmoid (E). Posteriorly, the parasphenoid is broadly connected
to the anterior end of the basioccipita1 (BOC).
Supraoccipita1 (SUO). -- Prominent in lateral view is the medial
dorsal keel, the supraoccipita1 crest, formed by this unpaired bone.
The supraoccipita1 bone extends anteriorly over the posterior third of the
orbit. From front to back, it contacts the medial edges of the frontal (F),


25
parietal (P), and epiotic (EPO), respectively. Ventero-posteriorly it
joins the exoccipitals (EOC).
Parietal (P). -- The anterior edge of the parietal articulates
with the posterior edge of the frontal (F), from which it carries back
ward the temporal crest. The parietal is widely separated from its
fellow member by the medially interposed supraoccipita1 (SUO). The
lateral edge articulates with the autopterotic bone (PTO).
Autopterotic (PTO)(pterotic of Suzuki, 1962: 60). The auto
pterotic bone is prominently characterized by the pterotic crest, which
is carried forward by the adjoining frontal bone (F). Posteriorly the
crest terminates as a posterior projection, below which a spine extends
backward. The ventral edge is articulated with the autosphenotic (SPH)
anteriorly, and posteriorly with the prootic (PRO), the opisthotic (OPS),
and the exoccipital (EOC). Dorsally the pterotic contacts the parietal (P)
and the epiotic (EPO).
Autosphenotic (SPH) (sphenotic of Suzuki, 1962: 59)* "" Characterized
by ridges and perforations, the autosphenotic is a small, strongly built
bone found at the posterior angle of the orbit. Anteriorly, the dorsal
edge unites with the ventral surface of the frontal beneath the pterotic
crest, and the medial edge is united with the lateral margin of the ptero-
sphenoid (PTS). The ventral surface of the autosphenotic articulates with
the prootic (PRO). Its posterior edge joins the autopterotic (PTO).
Epiotic (EPO). -- The pyramid-shaped epiotic bone supports a postero-
dorsal backward-projecting process to which the upper arm of the post
temporal bone (PTM) articulates. The ventral corner of the epiotic is
united with the exoccipital (EOC). The antero-medial dorsal surface is


26
joined to the posterior edge of the supraoccipita1 (SUO). The antero
lateral dorsal surface is joined to the dorsal posterior edge of the
parietal (P). Laterally it contacts the autopterotic (PTO).
Prootic (PRO). The irregularly hexagonal prootic bone is
prominent in the lower anterior lateral wall of the braincase. Dorsally,
the prootic is united with the pterosphenoid (PTS) anteriorly, the auto-
sphenotic (SPH), and posteriorly with the autopterotic (PTO). The
anterior edge of the prootic receives a portion of the arm of the basis-
phenoid (8S), and ventrally it also articulates with the ascending pro
cess of the parasphenoid (PS). The ventral edge of the prootic approaches
and parallels the posterior end of the parasphenoid. Posteriorly, the
prootic is attached to the basioccipita1 (BOC), exoccipital (EOC), and
opisthotic (OPS).
Exoccipital (EOC). -- The exoccipital is located at the posterior
end of the cranium above the basioccipital (BOC), to which its ventero-
lateral margin is joined. Ventrally, the exoccipital meets its fellow
member to form the ventral margin of the foramen magnum. Each is dev
eloped as a facet that articulates with the atlas vertebra. The post
erior margins ascend to form the lateral margins of the foramen magnum.
The anterior edge of the exoccipital is joined to the prootic (PRO),
autopterotic (PTO), and opisthotic (OPS).
Basioccipital (BOC). -- The unpaired basioccipita1 is character
ized by a concave, circular posterior end that articulates with the
anterior centrum of the atlas. Anteriorly, the basioccipital is strongly
united with the parasphenoid (PS) and it is connected to the posterior
margin of the prootic (PRO). Dorsally, it joins the lower edge of the
exoccipital (EOC).


27
Opisthotic (OPS). -- The opisthotlc supports a posterior projection
that articulates with the lower arm of the posttemporal. Hidden from
dorsal and lateral view, it adjoins the autopterotic (PTO) and the exoc
cipital (EOC) bones.
Suborbital series (Figure 111). --
Lacrymal (L). -- This is the first, anteriormost element of the
suborbital series, and it sheaths the dorsal edge of the maxillary bone
(MX). The lacrymal is thin and flat, and extends from the anterior tip
of the maxillary back to its articulation with the second suborbital
bone (SUB) above the posterior margin of the palatine-pterygoid (PAL-PT)
union.
Suborbitals (SUB). -- These four bones are linked to form the
posterior ventral quarter of the orbit. Prominent in dorsal view is the
suborbital shelf of the third suborbital bone (Figure NIB). The fifth
suborbital is dorsally articulated with the dermosphenotic (DSO).
The suborbital shelf is unique in Hemicaranx in terms of its extreme
variability. Two examples observed in H_. amblyrhynchus of 70 mm SL are
illustrated in Figure IV.
Dermosphenot?c (DSO). -- The dermosphenotic resembles the sub
orbitals and extends dorsally to cover the lower half of the eutosphenotic
(SPH) bone.
Branch iocraniurn
Oromandibular region. --
Lower jaw bones (Figure V).
Dentary (DN). -- The anterior end of the dentary meets its fellow
in a medial symphysis. From the anterior end two broad arms angle backwards.


28
The upper arm bears a single row of roundly pointed canine teeth, while
the lower arm articulates dorsally and posteriorly with the articular
bone (AR). Between the arms a notch receives and encloses the anterior
tip of the lower arm of the articular bone.
The posterior tip of the upper arm of the dentary is curved in H.
zelotes and bicolor, more pointed but still rounded in amblyrhynchus,
and sharply pointed in 1eucurus (Figure VI).
Articular (AR). Two arms extend forward from the base of the
articular. The upper tapers to a point; the lower is larger and pro
ceeds horizontally with its ventral edge in close contact with the
dentary (DN) to enter into the notch of the dentary. The dorso-posterior
corner of the articular bears a facet which receives the ventrally
projecting knob of the quadrate (Q). The ventral posterior corner is
variably overlaid by the angular bone (AN).
Angular (AN). -- This small bone covers the posterior ventral
corner of the articular (AR), and is more readily seen in the medial
view.
Upper jaw bones (Figure VI l). --
Premaxi 1lary (PMX). The anterior end of the premaxillary unites
with its fellow member to form the anterior margin of the upper jaw.
The ascending process of the premaxillary bone rides in a groove at the
anterior end of the maxillary (MX), and is longer than the articular
process. The articular process arises dorsally from the tooth-bearing
arm of the premaxillary and extends behind the middle of the maxillary.
Canine teeth are present in a single row along the ventral edge of the
premaxi 1lary.


29
The dorsal surface of the ascending process of the premaxillary
(Figure VIM) is indented in H. ze 1 otes and bicolor, but in 1 eucurus
and amblyrhunchus it is flattened. The posterior edge of the articular
surface of the premaxillary (Figure VIII) is broadly concave in 1eucurus
and amblyrhynchus, while in ze1 otes and bicolor it descends as a straight
edge from a dorsal extension.
Maxi 1lary (MX). The maxillary is a slender bone, located above
and parallel to the length of the premaxillary (PMX). Anteriorly, the
head of the maxillary is grooved and articulates with the ascending pro
cess of the premaxillary. Just behind the head, the maxillary fits snugly
into the ventral curve of the pre-palatine process of the palatine bone
(PAL). Posteriorly, the maxillary is expanded in the vertical plane, and
underlies the entire supramaxi1lary (SMX).
Supramaxi1lary (SMX). -- The supramaxi1lary is flat, pointed anter
iorly, and meets the posterior end of the maxillary (MX) along its entire
ventral edge.
Hyoid region (Figure IX). --
Hyomandibular (HM). -- The hyomandi bul ar is a stout, flattened bone
that is characterized by a descending hyomandibular process. Posteriorly
the hyomandibular articulates with the anterior preopercle (POP) margin.
Anteriorly, the hyomandibular process and the middle edge of the hyoman
dibular are strongly joined to and partially underlain by the metaptery
goid (MTPT). Dorsally the hyomandibular articulates with the neurocranium
at two points: an anterior knob articulates with the autosphenotic (SPH),
and the middle knob with the autopterotic (PTO). The posterior knob on


30
the head of the hyomandibular articulates with a facet on the upper
opercle (OP). The ventral tip of the hyomandibular process articulates
with the dorsal tip of the interhyal bone (IH).
Metapterygoid (MTPT). This bone articulates posteriorly with
the lower anterior edge of the hyomandibular (HM); together their
anterior margins curve parallel to the posterior suborbitals (SUB).
Anteriorly, the upper edge meets the posterior lateral margin of the
mesopterygoid (MSPT), while the lower edge articulates with the dorsal
rear margin of the quadrate (Q). The lower posterior margin of the
metapterygoid articulates with the upper posterior edge of the symplectic
(SY).
Symplectic (SY). -- The symplectic is an elongate rod-like bone,
the anterior end of which firmly nestles in a groove on the medial sur
face of the lower half of the quadrate (Q). From its firm union with
the quadrate, the symplectic runs posteriorly to articulate with the
ventral curve of the posterior metapterygoid (MTPT).
In lateral view the symplectic is characterized by variably developed,
mid-ventral expansions in all four species. In amblyrhynchus, bicolor,
and leucurus a dorsal expansion is also present. (Figure X).
Quadrate (Q). -- This small triangular bone is characterized by
an anterior ventral knob that articulates with a wel1-developed facet on
the articular bone (AR) of the lower jaw. The anterior edge of the
quadrate borders the posterior edge of the lower limb of the pterygoid
(PT). Posteriorly, the dorsal margin of this bone parallels but does
not contact the mesopterygoid (MSPT); the ventral margin projects


31
backwards and articulates with the inner curve of the lower limb of
the preopercle (POP). Medio-ventra1ly the quadrate firmly receives the
anterior symplectic (SY).
Mesopteryqoid (MSPT). -- With the exception of a small downward tab
at the lateral margin, the mesopterygoid lies in a nearly horizontal
plane. It meets its fellow member medially below the entire length of
the parasphenoid (PS) to form a bony support for the roof of the mouth
and the floor of the orbits. Laterally, the downward tab separates the
metapterygoid (MTPT) and the pterygoid (PT). The anterior lateral edge
of the mesopterygoid articulates with the foward limb of the pterygoid;
its posterior lateral edge articulates with the anterior curve of the
metapterygoid.
Pterygoid (PT). -- The pterygoid bone is composed of two rod-like
arms that meet at an obtuse angle. The lower, downward-projecting arm
articulates along its posterior edge with the anterior margin of the
quadrate (Q). The upper, forward-projecting arm articulates along its
dorsal surface with the mesopterygoid (MSPT). Laterally, it articulates
with the posterior medial edge of the palatine (PAL). The anterior tip
of the pterygoid is in loose contact with the ventral edge of the lateral
ethmoid (LE) of the neurocranium.
The anterior end of the pterygoid bone (Figure XI) is developed as
a dorsal ly concave point in H_. zelotes and 1 eucurus. In amblyrhynchus
and bicolor it is also pointed, but is further characterized by indenta
tions above and below the point.
Palatine (PAL). The palatine articulates with the anterior tip
of the lateral ethmoid (LE) via a medial, plate-like swelling, from which


32
two processes project. The posteriorward arm closely articulates with
the pterygoid (PT). The curved, anterior, laterally projecting arm (pre
palatine process) articulates with the dorsal surface of the anterior end
of the maxillary (MX). The palatine also contacts the neurocranium by
riding the anterior lateral surface of the prevomer (PV).
Opercular bones. -- The four opercular bones form the gill cover
and are variously connected with each other and the hyomandi bular series.
Opercle (OP) (Figure XI IA). -- The opercle is a large flattened
bone, curved broadly posteriorly, that articulates with the posterior
knob of the hyomandi bular (HM) via a facet at its antero-dorsa1 corner.
The anterior margin underlies the posterior margin of the preopercle (POP).
Ventrally the opercle covers the dorsal margin of the subopercle (SOP).
Subopercle (SOP) (Figure XIIA). -- The subopercle is flattened and
is characterized by a tapered forward-projecting process that arises from
the lower anterior corner. The process and the leading edge of the sub
opercle are covered by the ventral tip of the opercle bone (OP). The
lower anterior corner is covered by the posterior edge of the interopercle
(I0P).
Interopercle (lOP) (Figure XI I A). -- In addition to covering the
anterior corner of the subopercle (SOP), the interopercle articulates
mid-dorsally with the epihyal bone (EH). The interopercle is in turn
covered along its dorsal half by the ventral margin of the preopercle
(POP). The anterior end of the interopercle is linked by strong connect
ing tissues to the posterior margin of the mandible.
Preopercle (POP) (Figure XI IB). -- The anterior margin of the upper
limb of the preopercle is firmly joined with the posterior edge of the


33
hyomandibular bone (HM). Pos terior1 y,it covers the dorsal half of the
interopercle (lOP) and the anterior edge of the opercle (OP). The dorsal
surface of the lower, forward-projecting limb articulates with the ventral
edge of the posterior projection of the quadrate (0). Juvenile specimens
are characterized by preopercular spines (Figure B) that radiate poster
iorly from the postero-ventra 1 angle of the preopercle.
Hyal bones (Figure XIII and XIV). --
Basihyal (BH) (glossohyal of Suzuki, 1J62: 89). This anterior-
most of the hyal series is an elongate, rod-1 ike, unpaired bone that forms
the base of the tongue. Its posterior end fits snugly into a rounded
notch formed by the convergence of the first basibranchia1 (BB) and the
upper hypohyals (UHH) (Figures XIII and XIV).
The basihyal (Figure XVB) is anteriorly widest in H_. zelotes, inter
mediate in leucurus and amblyrhynchus, and narrowest in bicolor. Pointed
conical teeth are found on the dorsal surface of the basihyal in
amblyrhynchus and bicolor.
Upper hypohyal (UHH). -- This curved, trapezoidal bone, which ap
proaches its fellow member at the medial tip of the dorsal surface, is
loosely articulated with the first basibranchial (BB) (Figure XIII).
In concert the three form a concave notch which receives the posterior end
of the basihyal (BH). The ventral edge of the upper hypohyal parallels
but does not touch the dorsal edge of the lower hypohyal (LHH). Posteriorly,
the upper hypohyal articulates with the upper anterior margin of the
ceratohyal (CH). A circular foramen pierces the upper posterior quadrant
of this double-1ayered bone.


In lateral view, the foramen located in the upper posterior quarter
of the upper hypohyal bone (Figure XVC) is variably shaped, being elongate
in zelotes and 1eucurus and more circular in amblyrhynchus and bicolor.
Lower hypohyal (LHH). -- The lower hypohyal curves inward medially
to meet its fellow member ventrally. Dorsally, it is loosely aligned with
the upper hypohyal (UHH). Posteriorly, it receives an underlying pro
jection from the anterior edge of the ceratohyal (CH) to which it is
broadly articulated.
Ceratohyal (CH). -- Prominent in the upper central area of this
elongate bone is the oval, ventrally-skewed ceratohyal window. The
ceratohyal bone is closely articulated with the lower hypohyal (LHH)
via an anterior projection arising from its lower forward edge. The
upper anterior edge articulates with the posterior edge of the upper
hypohyal (UHH). The ceratohyal is strongly united posteriorly with the
epihyal bone (EH). Ventrally, it receives the proximal tips of five
branchiostega1 rays (B).
The ceratohyal window is ventra11y-expanded in H. zelotes and
amblyrhynchus, more oval in bicolor, and roughly triangular in 1eucurus
(Figure XVD).
Epihyal (EH). The epihyal is a rounded triangular-shaped bone
that is strongly united anteriorly with the ceratohyal (CH). Postero-
ventrally it receives the proximal tips of the last two branchiostegal
rays (B). The mid-upper lateral surface of the epihyal articulates
with the mid-dorsal edge of the interopercle (lOP). The upper posterior
angle of this bone is a facet that receives the ventral end of the
interhyal bone (IH).


35
Urohya1 (UH). -- The urohyal is an unpaired rectangular bone that
lies in the ventral vertical plane and is characterized by a pair of
laterally flared wings at the ventral edge. Anteriorly, the urohyal is
loosely inserted -into a space surrounded by the first basibranchial (BB),
the hypohyals (HH), and the anterior portion of the ceratohyals (CH).
The urohyal (Figure XVA) of H_. zelotes is uniquely characterized
by slight posteriorward spines on the dorsal edge. In addition, a pro
jection at the ventral anterior corner is variably developed, being
longest in bicolor and shortest in zelotes.
Interhyal (IH). -- The interhyal is a short rod-shaped bone that
links the hyal series to the hyomandi bular bone (HM). Dorsally, it
articulates with the hyomandi bular; ventrally it meets a facet on the
posterior dorsal corner of the epihyal (EH).
Branchiostegal rays (B). Seven branchiostegal rays proceed
posteriorly from the hyal series to lend support to the lower opercular
membrane. The five anteriormost branchiostega1s arise from the cera-
tohyal (CH); the last two of these 1epidotrich-1ike rays arise from the
epihyal (EH).
Branchial region. -- Five branchial arches composed of paired and
unpaired elements are found in Hemicaranx (Figure XIII).
Bas i branch i a 1s (BB). Three unpaired basibranchial bones are
located in a longitudinal series in the floor of the pharynx and re
present the ventralmost members of the branchial series. The first is
only partially visible in dorsal view since it is overlaid anteriorly
by the basihyal bone (BH) (Figure XI I 1), below which it vertically extends
(Figure XIV B). In concert with the upper hypohyals (UHH) the first


36
basibranch Tal forms a concavity that receives the posterior end of the
basihyal, and thus links the branchial and hyal series. Posteriorly,
the first basibranchial articulates with the second basibranchial.
The second basibranchia1 bone is short, rod-like, and from its
articulation with the first basibranch i a 1 extends dorso-posterior 1y
to meet the third basibranchial. The second basibranch i a 1 is located
slightly above the dorsal anterior tips of the paired first hypo-
branchials (HB), with which its lateral anterior end articulates. The
posterior corners cover, but do not articulate with, the proximal ends
of the second hypobranchials.
The elongate third basibranchia1 extends obliquely back from the
articulation of its concave anterior end with the concave posterior
tip of the second basibranch i a 1 (Figure XIVB). The anterior lateral
margins of this bone firmly receive the dorsal halves of the proximal
ends of the paired second hypobranchi al (HB). Posteriorly, the third
basibranchial is loosely cradled by the dorsal ends of the third hypo-
branch ials.
The third bas i branch ia 1 is slightly more expanded laterally in H_.
1eucurus and bicolor than in zelotes and amblyrhynchus.
Hypobranchials (HB) (Figure XI I l). -- Three pairs of hypobranchials
are variously articulated with the basibranchia1 bones (BB) and extend
laterally to articulate with the first three ceratobranchials (CB).
The first and anteriormost hypobranchia1 bone is compressed and
firmly links the first ceratobranchial to the second basibranchial,
which possesses a shallow recess on the anterior lateral surface into


37
which the upper half of the proximal end of the hypobranchial fits.
The ventral edge of this elongate bone supports gills, while the
lateral and medial sides support gill rakers and tubercles, res
pect i vel y.
The second hypobranch i a 1 is more rectangular than the first, with
gills, gill rakers and tubercles similarly supported. The dorsal half
of the proximal end inserts into a recess along the anterior third of
the lateral margin of the third basibranchial.
The third hypobranchial is roughly funnel-shaped in appearance,
with the narrow tube-like process extending down and forward to ap
proach its fellow member in the midline below the middle of the third
basibranch i a 1. The medial margin of the flared dorsal end of this
bone flanks the posterior end of the third bas¡branchial. The posterior
end supports the third ceratobranchial.
Ceratobranchial (CB)(Figure XIII). The first four are gently
curved slender rods that dorsally support epibranch i a 1s (EB), and with
the exception of the fourth, are supported ventrally by the hypobranch i a 1s
(HB). Except for the first, which supports long gill rakers instead of
tubercles on its lateral margin, each supports two rows of tubercles on
the dorsal surface.
The fifth ceratobranchial (or "pharyngeal") is more massive and
laterally expanded than the others, and is densely covered dorsally by
pointed slender projections (teeth). Like the fourth ceratobranchial,
this element is not articulated with a hypobranchial; both are connected
to the base of the hyal series by cartilage. The fifth ceratobranchial
is also securely joined to its fellow member along the anterior medial
edge.


38
Epibranchials (EB)(Figure XIII). -- The four stout epibranchial
bones effect the characteristic sharp bend of the gill arches and link
the first four ceratobranchials (CB) to the pharyngpbranchial series.
Each is laterally compressed and characterized by a variably developed,
wi ng-1 i ke, pos ter ¡or projection.
Pharyngobranch la 1s (PB)(F?qure XIII). The first pharyngobranchial
bone is a slender rod that connects the first epibranchial bone (EB) to
the neurocranium. The other three pharyngobranchials are solidly built
blocks of bone characterized by long, slender sharp teeth projecting
into the pharyngeal cavity, and they are connected to the neurocranium
by a strong combination of muscle and connective tissue. The third is
the largest.
Appendicular Skeleton
Pectoral girdle and fin (Figure XVIA). --
Posttemporal (PTM). This anteriorly bifurcated bone supports all
other pectoral elements by its articulations with the neurocranium and
the supracleithrum. The upper arm of the posttemporal articulates with
the epiotic process, and the lower arm articulates with the opisthotic
(OPS) of the skull. The supracleithrum (SCL) meets it postero-ventrally.
Suprac1eithrum (SCL)(suprac1avicle of Suzuki, 1962: 108). -- This
flat, elongate bone extends obliquely downward from its dorsal articula
tion with the posttemporal (PTM). Ventrally it is attached to the lateral
upper angle of the cleithrum (CL).
Cleithrum (CL)(c1avic1e of Suzuki, 1962: 109). -- The cleithrum
is an elongate, broadly curved bone that is characterized ventrally by
two posteriorly projecting shelves, the exterior and interior, that meet to


39
form a ridge anteriorly. Dorsally, a broad shelf extends back from the
curved main axis of the bone. The cleithrum articulates dorso-1 atera11y
with the supraclelthrum (SCL) Medially, it touches the dorsal tip of
the postcleithrum (PCL) and borders the lateral dorso-anterior edge of
the scapula. Ventrally, the cleithrum touches its opposite member in
the midline of the body.
Scapula (SC) (hypercoracoid of Suzuki, 1962: 110). The scapula
is small, flat, and roughly rhomboidal in shape, with a central foramen.
Located behind the middle of the cleithrum (CL), this bone provides sup
port for the pectoral spine and at least the upper three radials (R).
It articulates anteriorly with the medial surface of the cleithrum, and
its entire ventral edge borders the dorsal edge of the coracoid (CO).
Coracoid (CO)(hypocoracoid of Suzuki, 1962: 110). This thin,
slightly concave bone is closely bordered dorsally by the scapula (SC),
and is characterized by a concave facet at the posterior corner of this
articulation. Anteriorly, the upper and lower edges of the coracoid
approach the posterior margin of the internal shelf of the cleithrum
(CL).
Pos teleithrum (PCL)(postc1avicle of Suzuki, 1962: 112). -- The
postcleithrum is actually composed of two broadly overlapping bones.
The upper element (PCL 1) is elongate and expanded ventrally, and
articulates dorsally with the medial upper surface of the posteriorly
extending process of the cleithrum (CL) Ventrally, it extends to a
point even with the lowest radial (R). The lower thin, rib-like element
(PCL 2) firmly articulates with the upper element as far as the lower
edge of the posterior cleithral process.


40
Rad jais (R). These four stout rods provide support for the soft
fin rays* The upper three are, in turn, supported by the posterior edge
of the scapula (SC) and the fourth loosely articulates with the coracoid
(CO).
Lepidotrichs (LEP). -- The lepidotrichs are represented by one fin
spine, plus 18 23 soft rays (Table 17), all but the first of which a re
branched. The spine articulates directly with the scapula (SC); the
soft rys are supported by the radials (R), which they fringe in a broad
arc.
Pelvic girdle and fin (Figure XVIB).
Basipteryg?um (BPT). The basipterygium is closely aligned with
its fellow member along its entire medial axis, tapering slightly from
a knobby posterior to a splint-like anterior that passes medial to the
coracoid (CO) and cleithrum (CL), and below the postcleithrum (PCL).
From the medial corner of the posterior end arises a splint-like process
that projects obliquely upward. In lateral view the splint appears to
carry through the main column of the bone to project ventrally. Six
lepidotrichs (LEP) are supported by the posterior margin of the
basipterygium.
Lepidotrichs. -- One spine at the lateral corner, and five soft
rays medial to it, are supported by the posterior basipterygium (BPT).
Postcranial Axial and Medial Skeleton
Dorsal fin. Two distinct parts of the dorsal fin are present in
adult and advanced juvenile specimens of Hemicaranx. The structural
continuity of the dorsal fins is illustrated by the regular spacing of
the 1epidotrich-supporting pterygiophores (PT) (Figure XVII).


41
Anteriormost in the dorsal skeleton are three predorsal bones (PD),
the first placed before the first neural spine (NS), the second and
third lying between the second and third neural spines. Following
the predorsals are pterygiophores (PT) which underlie and support
the lepidotrichs (LEP). With the exception of the first member, each
pterygiophore is segmentally associated with a lepidotrich and also
underlies structurally the lepidotrich immediately preceding its
segmental associate. All but the first and last lepidotrich have
compound support. (According to Smith and Bailey [1961: 348], the
pterygiophore of the first dorsal spine is actually included in the
predorsal series.) The one-to-one correspondence is illustrated in
Figure XVII. The true nature of lepidotrich support is shown in
Figure XVII. As seen in Figure XVIIA, dorsal spines II through IX
are segmentally supported by an elongate proximal pterygiophore (PPT)
and a short posteriorly-pointed distal pterygiophore (DPT). All soft
rays are supported by an elongate proximal pterygiophore and a bi
laterally halved distal pterygiophore inserted between halves of the
segmentally associated lepidotrich (Figure XV I I I B). The trend of
fusion of anterior proximal and intermediate pterygiophores in spiny-
rayed fishes (Smith and Bailey, 1961: 347) is completed in H. zelotes;
in the only other comparably sized specimens (SL: 33 mm) of Carangidae
discussed in the literature, Elagatis bipinnulata has only the two
posterior intermediate pterygiophores distinct (Berry, 1969: 456-457).
Insertion of proximal pterygiophores between neural spines is shown
in Figure XVII.


hi
Anal fin (Figure XV I I). Structurally and ontogenetica11y the
anal fin resembles the dorsal fin with regard to overall appearance,
and pterygiophore lepidotrich structure and articulation. Unique
is the anteriormost proximal pterygiophore (PPT), which articulates
with the hemal spine (HS) of the eleventh vertebra to form a strong
brace-like structure. It is also extended forward at its ventral base.
The distal tips of the proximal pterygiophores of each species
are characteristic in development of anterior-directed points and
degree of opposition to each other (Figure XIX). The pterygial
points are most prominent in _H. zelotes and are developed on all but
the anterior two normal pterygiophores. They are poorly developed in
1eucurus and are pointed only on the tenth through the eighteenth
normal pterygiophores. Points are intermediately developed in
amblyrhynchus and bicolor. (Points on dorsal pterygiophores follow
a similar pattern, but they more closely resemble each other.)
The distal ends of the anal pterygiophores are most closely op
posed in jH. ambl yrhynchus intermediately so in bicolor and 1 eucu rus,
and most distantly articulated in ze1 otes. (Figure XIX)
Vertebral column. -- The vertebral column is composed of 25
vertebrae, all of which typically feature processes for articulation
with adjacent members and a neural arch and spine. The ten precaudal
vertebrae (PCV) possess pleural (PR) and/or epipleural (EPR) ribs;
hemal spines (HS) are variably developed. Fifteen caudal vertebrae
(CV) possess closed hemal arches and hemal spines that descend to
interdigitate with anal pterygiophores.


*3
The first vertebra, the atlas (Figure XXA) is uniquely characterized
by a neural spine (NS) that is autogenous; it articulates with paired
facets on the atlas by two projections that jut inward from laterally
flared processes. Anteriorly the atlas articulates with the neurocranial
exoccipital (EOC) and basioccipita1 (BOC) bones. Posteriorly projecting
lateral apophyses extend past the articulation with the second vertebra.
The second vertebra, the axis (Figure XXA), is characterized by
neural prezygapophyses that extend over the atlas. Lateral apophyses
project backwards.
Vertebrae three through ten closely resemble each other, varying in
the degree of development of the features they share. As illustrated in
Figure XVII, neural postzygapophyses closely articulate with the follow
ing neural prezygapophyses, which are successively more elongate.
Similarly, the lateral apophyses lengthen posteriorward, and from the
seventh on are pierced by a foramen. Commencing with the eighth vertebra,
hemal prezygapophyses are developed.
The eleventh vertebra, which is characterized by a hemal spine
broadly united with the first anal pterygiophore, and all other caudal
vertebrae back to the antepenultimate are characterized by well-
developed neural and hemal pre and postzygapophyses (Figure XXB).
(The terminal three vertebrae are discussed as part of the caudal
skeleton.)
The pleural ribs articulate variously with the vertebrae, with
the third through the eighth inserting into hollow depressions at
the dorsal posterior angle of the lateral apophysis, and the others


articulating with the lateral vertebral surface. Epipleural ribs
articulate either directly with the vertebrae or with the proximal
end of a pleural rib, and are associated with vertebrae 1 through 14.
Numerically, the axial and medial skeletons of H. zelotes are
summarized as follows: predorsal formula: 0-0-0-2; dorsal softrays,
24-31; anal softrays 22 25; number of pterygiophores one less
than lepidotrichs of respective fins; vertebrae: 10 + 15.
In jH. 1 eucurus there are also 10 + 15 vertebrae, while 10 + 16
vertebrae are present in amblyrhynchus and bicolor. (Dorsal and anal
ray counts are summarized in Tables 15 and 16, respectively.)
Caudal Skeleton
The caudal skeleton of H.. zelotes is formed by the terminal three
caudal vertebrae (CV) modified and unmodified neural and hemal spines,
and lepidotrichs (LEP) that articulate with or oppose the outer margin
of the bony caudal complex (Figure XXI). Anteriormost in the caudal
skeleton is the thirteenth caudal centrum, the spool-shaped ante
penultimate (CAP). The neural spine (NS) of the antepenultimate
centrum extends posteriorly to underlie the anteriormost superior
secondary caudal rays (SCR), and the autogenous hemal spine (HS)
underlies all but the last two inferior secondary caudal rays. The
neural spine of the penultimate centrum (CP) is reduced posteriorly
and occupies the semi-circular space formed by the opposing edges of
the first epural and the uroneural bone. The autogenous hemal spines
of this centrum extends downward to underlie the two posteriormost
inferior secondary caudal rays. The urostylar vertebra (UR) is


45
formed anteriorly by a typical spool-shaped centrum; its posterior
portion js reduced to an obliquely ascending projection. This uro-
stylar projection is ultimately fused posteriorly with the dorsal-
most hypural element, and dorsally with the paired uroneurals. It
articulates posteriorly with the free remaining hypurals.
One pair of uroneural bones (UN) are present in zelotes. They
are roughly "L"-shaped, with the anteriorward short arm fused to the
dorsal margin of the urostylar centrum, and the long arm fused to
almost the entire length of the dorsal-most hypural (Figure XXI I A).
Two epural bones (EP) articulate with the dorsal surface of the uro
neurals. The first, which fits between the uroneurals with a rounded
ventral projection, extends anteriorly over the posterior half of the
penultimate neural spine; it also projects posteriorly to support sev
eral superior secondary caudal rays. The second epural is a rod-like
bone that parallels the first and articulates with the uroneurals and
the posterior two secondary caudal rays.
The hypural plate of PL zelotes is formed of two hypurals (HY)
that form the inferior portion, and two hypurals in the superior half.
A fifth hypural dorsally is fused to the uroneurals longitudinally, and
to the urostylar vertebra at its proximal tip. Articulating with the
distal margins of the hypurals are the branched principal caudal rays
(PCR) .
Nine superior plus eight inferior principal caudal rays are
present: all but the dorsal and ventral-most are branched. Additionally,
nine superior and eight inferior secondary caudal rays are present.
Ontogeny of the caudal skeleton of Hemicaranx zelotes is charac
terized by fusion of certain elements, and this is representative of


k 6
the percoid fishes and their derivatives (Gosline, 1961: 268). As
noted in Figure XXIIA, fusion of the paired uroneurals to the dorsal
urostylar surface and to the dorsal-most hypural bone is completed by
the 33 mm stage. At this stage in development lines of fusion are still
apparent, but soon thereafter the complex appears as one bone (Figure
XX I I A). Although an earlier stage of zelotes was not available for
study, it is likely that no elements are masked at the 33 mm stage.
That is, lines of fusion are still apparent, although they quickly
become lost with growth. An additional fusion is noted between the
third and fourth hypurals (Figure XXII), but at 65 mm SL no indication
of their union remains. Ontogeny resembles that of Chloroscombrus
chrysurus; fusion of the same bones occurs. It is probable that
Figure XXI IB illustrates the sequence of fusion in zelotes.


KEY TO HEMICARANX AND ATULE
IA. Body deeper, 40-50% SL; upper caudal fin lobe longer, 30-45%
SL; prevomerine dentition absent; interorbital width wider,
9-14% SL; pectoral fin 30-40% SL; exoccipital zygapophyses
adjoined; cranial depth exceeds width.
...Hemicaranx ... 2, p. 50
IB. Body shallower, 28-39% SL; upper caudal lobe shorter than one-
third SL; prevomerine dentition present; interorbital narrow,
7-10% SL; pectoral fin less than one-third SL; exoccipital
zygapophyses separate; cranial width exceeds depth.
-Atule 5 p. 130
2A. Spinous dorsal rays seven; ratio of straight portion of
lateral line to curved portion of lateral line = 2.3*3.0;
proportional width of anterior caudal peduncle scute
exceeds 38 thousandths SL; caudal vertebrae 16; upper hypo-
hyal window circular; anterior end of pterygoid indented.
.... 3
2B. Spinous dorsal rays eight; ratio of straight portion of
lateral line to curved portion of lateral line = 1.7*2.3;
proportional width of anterior caudal peduncle scute width
less than 36 thousandths SL; caudal vertebrae 15; upper
hypohyal window oval; anterior end of pterygoid concave.
.... 4
3A. Dorsal soft rays usually 27 or 28, range 24-30; anal soft
47


48
rays usually 24, (frequently 23 or 25), range 21-25;
upper caudal fin lobe relatively long, exceeding lower
lobe; anal pterygiophores closely spaced; ceratohyal
window intermediate, neither oval nor triangular.
. .H_. ambl yrhynchus . p.63
3B. Dorsal soft rays usually 25 or 26, range 24-28; anal
soft rays usually 22, (frequently 21 or 23), range 21-24;
upper caudal lobe equal to lower lobe length; anal
pterygiophores more distantly spaced; ceratohyal window
oval.
. .H_. bicolor p.93
4A. Caniform teeth roundly pointed; pectoral fin relatively
short, 30% SL in largest specimens; anteriormost caudal
peduncle scute wider, 2.6-3.6% SL; four to six lateral
body bars, fading with age; ceratohyal window intermed
iately shaped, neither triangular nor oval; urohyal spine
present; anal pterygiophore points prominent and distantly
spaced.
. .H_. ze lotes p.99
4B. Caniform teeth sharply pointed; pectoral fin long, more
pronounced with age, almost 40% SL in largest specimens;
anteriormost caudal peduncle scute narrower, 1.7-2.3% SL;
six to nine lateral body bars, fading with age; ceratohyal
window triangular; urohyal spine absent; anal pterygiophore
points reduced and intermediately spaced.
. .H leucurus p.123
5A. Number of scutes in lateral line 33 to 49, usually 36 to 39.


49
6
5B. Number of scutes in lateral line 48 to 63, usually 53 to 55.
.... 8
6A. Straight/curved ratio of lateral line sections ca. 2.0;
premaxillary dentition uniseriate.
...A. djedaba p. 1 63
6B. Straight/curved ratio of lateral line sections ca. 1.5;
premaxillary dentition biseriate anteriorly.
.... 7
7A. Ventral outline strongly convex; body deep, 35-40% SL;
anterior caudal peduncle scute wide, ca. 48 thousandths
SL; dentary teeth triseriate posteriorly; ultimate dorsal
and anal rays approximately equal to penultimate rays.
. ..A_. kal 1 a p. 156
7B. Ventral outline no more curved than dorsal outline;
body shallower, ca. 30% SL; anterior caudal peduncle
scute narrow, ca. 36 thousandths SL; dentary teeth
uniseriate posteriorly; ultimate dorsal and anal rays
relatively longer than penultimate rays.
. .A. mate p. 1 50
8A. Spinous dorsal blackened; supramaxi11 ary not extended
forward as a point; anal rays 19 to 21; curved lateral
1ine scales 35-45.
. .. A_. ma 1 am p. 167
8B. Spinous dorsal not blackened; supramaxi 11 ary extended
forward as a point; anal rays 21 to 23; curved lateral
1 ine scales 41-55.
.. .A. macrurus p. 160


SYSTEMATICS OF HEMICARANX
Hemicaranx Bleeker
Hemicaranx Bleeker, 1862: 135~136 (type species Hemicaranx marginatus
[=Hemicaranx bicolor], by original designation).
Ca rangops Gill, 1862: 435 (type species Caranx heteropygus [=Hemica ranx
amblyrhynchus], by original designation).
Diagnosis
Carangid fishes characterized by uniseriate dentition on premaxil
lary and dentary bones; jaw teeth fine, conical, pointed; depth 40 to
50% of standard length; lateral line with posterior-pointing scutes on
straight portion; no scutes on lateral line arch; no caudal peduncle
keels; premaxillary narrow, less than orbit; no dentition on prevomer;
ethmoid-prevomer keel elevated; exoccipital zygapophyses adjoined;
cranial depth greater than width; olfactory cavity we 11-deve 1 oped;
propercular width more than one-third of preopercular length; cerato-
hyal window wide and ovoidal; caudal vertebrae 15 or 16.
Hemica ranx is distinguished from its most closely related carangid
genus, Atule, in having adjoined exoccipital zygapophyses, an elevated
ethmoid-prevomer keel, no prevomerine dentition, a distinct myodome
opening, cranial depth greater than width, body deeper (40-50% SL),
longer upper caudal fin lobe (30~45% SL) slightly longer pectoral
fin (30-40% SL), greater interorbital width (9-14% SL).
Hemica ranx is distinguished from Selar by having adjoined exoc
cipital zygapophyses, no prevomerine dentition, a pterotic window,
50


51
cranial depth greater than width, the ascending process of the pre
maxillary longer than the articular process, the ceratohyal window
wide and ovoidal, and the absence of two papillae on the shoulder
girdle.
In addition to the characters that distinguish it from Se 1 a r,
Hemica ranx differs from Decapte rus and T rachurus by a mesopterygoid
bone that is less than one-half the hyomandi bu 1 ar. Hemicaranx is
further distinguished from Decapterus by a urohyal shorter than the
hyoid body, a 90-degree angle of the cleithrum shelf, and the absence
of detached finlets posterior to the soft median fins; in addition it
differs from Trachurus in having the posttemporal height less than one-
half its length and the anterior scales in the lateral line not trans
versely expanded.
From the genera Carangoides, Gnathanodon, Longirostrum, Selaroides ,
and Uraspis, which apparently comprise a natural cluster (Figures 2 and 3),
Hemicaranx is distinguished by a low frontal-supraoccipi tal crest,
ceratohyal window wide and ovoidal, and more than 14 caudal vertebrae.
It differs from all genera except Se 1aroides in having the posttemporal
height less than one-half the length. It is distinguished from all
genera but Longirostrum by a preopercular width less than one-third the
width and more than 14 caudal vertebrae. Hemicaranx differs from
Gnathanodon and Se 1aroides in not having a we 11-deve 1 oped metapterygoid
lamina and these three genera differ from the remaining three genera
(Uraspis Carangoides Long i ros t rum) in lacking prevomerine dentition.
Hemica ranx also differs from Carangoides and U raspis in possessing a
distinct myodome opening. Hemicaranx is further distinguished from
Uraspis by its we 11-deve 1 oped olfactory cavity, elevated ethmoid-prevomer


52
keel, pointed scutes directed forward, and lack of milky white areas
in the mouth; from Selaroides by a cranial depth greater than width,
and an ovoidal rostral cartilage; from Longirostrum by adjoined exoc
cipital zygapophyses ; from Gnathanodon by a dorsal process of the arti
cular bone less than one-half its height; and from Carangoides by uni-
seriate dentition in both jaws.
Hemicaranx is distinguished from Chloroscombrus by the absence of
prevomerine dentition, a pterotic window, cranial depth greater than
width, opercular length less than interopercle length, posttemporal
ventral branch not attached to upper opisthotic, posttemporal height
less than one-half its length, caudal vertebrae more than 14, lower
jaw teeth uniseriate, and a ventral outline that is not appreciably
more convex than the dorsal outline.
From the remaining Caranginae genera, namely Alectis, At ropus,
Ca ranx Ci tu 1 a and Kaiwarinus, which as a phenetic group Hemica ranx
less closely resembles, Hemicaranx is distinguished by a low frontal-
supraoccipi tal crest, an elevated ethmoid-prevomer keel, preopercular
width less than one-third its length, opercular length less than inter
opercle length, posttemporal height less than one-half its length,
more than 14 caudal vertebrae, and upper jaw teeth uniseriate. Hemicaranx
is further distinguished from all genera except Alectis, by the absence
of prevomerine dentition. It shares, along with Alectis and Ci tu 1 a a
pterotic window; and with Alectis and Kaiwarinus it shares a we 11-deve 1 op
ed olfactory cavity. Hemicaranx and Kaiwarinus are distinguished by a
pre-palatine process directed laterally, and a wide and ovoidal cerato-
hyal window; these two genera, along with At ropus, are characterized
by a pterygoid bone that is neither enlarged nor acuminate. Hemica ranx


53
is further distinguished from At ropus and Ca ranx, which have a round
postmaxi 11 ary process, and from Alectis and C i tu 1 a with opercular
apparatus height exceeding length and pluriseriate upper jaw dentition.
Hemicaranx also differs from Ci tu 1 a in having a conspicuous pterotic
crest that is produced backward.
Hemica ranx differs from Megalaspis in having exoccipital zygapo-
physes adjoined, a we 11-deve 1 oped olfactory cavity, an elevated ethmoid-
prevomer keel, a pterotic window, a distinct myodome opening, cranial
depth greater than width, ceratohyal window wide and ovoidal, caudal
vertebrae more than 14, prevomerine dentition absent, postmaxi 1lary
process not rounded, and uniseriate upper jaw teeth.
Hemicaranx is distinguished from E1agat i s aue ra tes and Se riola.
by a wel1-developed olfactory cavity, an elevated ethmoid-prevomer keel,
no prevomerine dentition, cranial depth greater than width, post-maxil
lary process triangular, ceratohyal window wide and ovoidal, postcora
coid process undeveloped, ventral element of pos teleithrum rib-like,
lateral-line scutes, first hemal spine enlarged, and lower jaw teeth
uniseriate. Hemicaranx and Seriola are both characterized by a pterotic
window and the mesopterygoid less than one-half the hyomandi bu 1 ar ; with
Naucrates they are distinguished from E1agatis by a preopercular width
less than one-third the height and an opercular apparatus that is taller
than wide. Serila is unique in having the opercular length exceeding
the interopercle length.
Hemica ranx is distinguished from T rachinotus by a low frontal-
supraoccipi tal crest, absence of prevomerine dentition, a triangular
postmaxillary process, uniseriate dentition, a we 11-deve 1 oped olfactory
cavity, ethmoid-prevomer keel elevated, a pterotic window, myodome


54
opening distinct, a supramaxi 11 ary, metapterygoid less than one-half
the hyomandi bu 1ar, ceratohyal window wide and ovoidal, posttemporal
ventral branch elongate, posttemporal height less than one-half its
length, lateral line scutes, and more than 14 caudal vertebrae.
Hemicaranx is most distantly related to Chorinemus, from which it
is distinguished by a we 11-deve 1 oped olfactory cavity, ethmoid-prevomer
keel elevated, pterotic crest conspicuous and produced backwards, a
pterotic window, premaxillary protractile, a dentary-articular interstice,
mesopterygoid less than one-half hyomandibular, preopercular width less
than one-third its length, pre-palatine process directed antero-ventrally,
height of opercular apparatus exceeding its length, seven branchiostegal
rays, ceratohyal window wide and ovoidal, posttemporal height less than
one-half its length, and lateral line scutes. Chorinemus is further
characterized by prevomerine dentition, an extremely long maxillary,
maxillary length much greater than height, posttemporal ventral branch
attached to upper opisthotic, and pluriseriate dentition.
Description
Morphometric measurements are summarized in Tables 7, 9, 11, 13;
meristic counts appear in Tables 8, 10, 12, 14, 15, 16, 17, 18, 19;
osteology is completely described in the osteological section.
Body compressed, but neither unusually depressed nor elongate;
body depth 40 to 50% of standard length; total length of lateral line
75% SL; lateral line dorsally arched anteriorly, becoming straight be
neath anterior rays of soft dorsal fin and then continuing posteriorly
onto the caudal peduncle; 30 to 40 scales in lateral line arch, the arc
of which is roughly half the straight lateral line distance, and which
is in turn covered by kO to 50 scutes; arch three times as long as high;


55
caudal peduncle slender, as wide as deep; dorsal outline of body broadly
convex, with soft dorsal origin midway between snout and hypural base;
soft dorsal and anal fins long and low, partially sheathed at base by
scaled membrane; upper caudal fin lobe 30 to 45% SL; lower caudal fin
lobe 30 to 33% SL; posterior margins of caudal lobes forming a broad,
slightly obtuse angle; origin of soft anal fin slightly behind origin
of soft dorsal fin, both extending to anterior part of peduncle; pectoral
fin 30 to 40% SL; pelvic fin 10 to 13% SL; pelvic fins inserted ventrally
just behind 1aterally-inserted pectoral fins; pectoral and caudal lobes
becoming pointed with age; head length 25 to 30% SL; interorbital width
9 to 14% SL; snout blunt, one fourth of head length, which is exceeded
slightly by head depth; orbit barely longer than snout; posterior end of
upper jaw terminating below anterior margin of orbit; maxillary depth
1.7 to 2.7% SL; gape 7 to 8% SL; teeth uniseriate and caniform in pre
maxillary and dentary; teeth absent from roof of mouth; dorsal spines
seven or eight; dorsal soft rays 24 to 31; anal soft rays 20 to 25; pector
al rays 18 to 23; pelvic rays 5; principal caudal rays 9 + 8 = 17; pre-
caudal vertebrae 10; caudal vertebrae 15 or 16; branch i ostega1 rays 7;
lower gill rakers 7 to 11; upper gill rakers 17 to 23; lower and upper
gill filaments increasing in number with age to a maximum, respectively,
in excess of 35 and 80; base, especially interior surface of pectoral
fin black; spinous and soft dorsal fins dusky due to melanophores on
interradial membrane; body dusky dorsally, lightly metallic ventrally;
four to nine lateral body bars, which fade with age; peritoneum flesh-
colored .
Nomenclature
The type-species of this genus is bicolor Gunther (i860: 942),


56
based on two juvenile specimens. The species marginatus Bleeker (1862:
138-140) (on which Bleeker based the description of Hemicaranx), based
on one adult, is recognized as a junior synonym. The conspecificity of
these taxa is confirmed by the large number of "transitional characters"
shared between juveniles and adults. Bleeker was correct in recognizing
this form as a genus distinct from Ca ranx.
Carangops Gill was infrequently used in the literature by Gill,
Poey, and Goode from 1862 to 1879. It was recognized as a synonym of
Hemicaranx by Jordan and Evermann (1896: 912), although they questioned
which name was published first in 1862. However, since Carangops has
not been used in the primary zoological literature for more than 50
years it may be regarded as a nomen obiiturn.
Hemicaranx has occasionally been incorrectly synonymized with
Alepes Swainson by Fowler.* However, Hemicaranx is geographically
restricted to the Atlantic and Eastern Pacific Oceans and by definition
(diagnosis and description) it is distinct from all other carangid
genera. The description of A1epes (Swainson, 1839- 248) was based on
a drawing (Russell, 1803: plate 155) of a specimen from India. As
noted by Ginsburg (1952: 97~98) however, the type species of Alepes,
A. melanoptera Swainson, is "...unidentifiable at the present time,
or else it is generally different" from Hemicaranx amb1yrhynchus. Indeed,
examination of the drawing of the specimen (commonly named the "won
parah") in Russell upon which Swainson based his generic and type
species description reveals a number of characters that support the
generic distinction hypothesized by Ginsburg. The most trenchant
differences are the number of pectoral rays (17 versus 18 to 23 in
*see species accounts annotated synonymies


57
Hemicaranx) (Table 17) and, more significantly, the number of principal
caudal rays (7 + 8 = 15, versus 9 + 8 = 17, the number diagnostic for
the Carangidae). Additionally, the illustration of A_. mel anoptera
lacks the dark pigment at the pectoral base characteristic of Hemicaranx.
It is obvious that Russell's drawing is incorrect, based on the
unusual number of principal caudal rays. Since the number is not char
acteristic of any known carangid, the genus Alepes and the type species
A. me 1anoptera are regarded as nomina dubia.
The combination of characters figured for A. melanoptera were
obviously based on a carangid fish. Based on the anteriorly-arched
lateral line, scutes only on the straight posterior section, fine teeth,
body outline, and pigment in the spinous dorsal interradial membrane,
one would suppose it to be Atule mal am. However, the number of first
dorsal spines (seven), number of pectoral rays, absence of pectoral-
base blotch, number of curved lateral line scales (5*0, and number of
scutes in the straight lateral line (AA) distinguish me 1anopte ra from
ma1 am (Tables 20 and 21).
The utility of the inclusion by Fowler of species of both Hemicaranx
and Atule in Alepes is that it gives a historical basis for considering
the two genera as possible close relatives. This is explored below.
Relationships
Since the original generic description by Bleeker, the relationships
of Hemica ranx we re infrequently commented on only by North American
workers. Of the nominal genera of Carangidae from American waters
(Table 1), those most commonly cited as "close relatives" of Hemicaranx
are Caranx, Ch1oroscombrus, and Uraspis. Discussing Hemicaranx, Ginsburg
stated:


58
This genus is near Caranx, differing in having a less
extensive dentition, a deeper body, and narrower maxil
lary. It is also close to Chloroscombrus and Uraspis ....
On the basis of "characters, form and general appearance" Ginsburg (1952:
101) said Ch1oroscomb rus is"nearest Hemica ranx," differing with fewer
and reduced scutes, more extensive dentition, and a more convex ventral
outline. Ginsburg (p. 101) also stated that of the Gulf of Mexico
carangids Uraspis is "nearest" H. amb1yrhynchus, from which it differs
on the basis of forward-pointed scutes, white areas in the mouth,
longer ventral fin, lower spinous dorsal, wider maxillary, longer
lateral line arch, biseriate jaw teeth, fewer gill rakers, scutes,
and anal rays, and more pectoral rays.
Although Berry (1959: 526) did not comment on the relatives of
Caranx, he incorporated the following characters in differentiating
the two genera:
character
Caranx
Hemicaranx
1 .
maxillary width/pupil diameter
greater
less
2.
jaw teeth
different size
al 1 equal size
3.
vomerine teeth
present
absent
it.
caudal peduncle keels
present
absent
Indirect comments on the relationships of Hemicaranx to genera
outside its geographic range were provided by Fowler who repeatedly
included species of both Hemica ranx and Atule in the genus Alepes, the
last herein considered to be a nomen dubiurn. Nichols (I9^2b; 229)
observed that Atule ma1 am "is an approach to the carangin [sic] genus
Hemicaranx" and alluded to the hypothesis that Hemicaranx and Ch1oroscom-
brus may each represent an Eastern Pac ific-At1 antic evolutionary lineage
from Atule. Presumably, Fowler and Nichols drew their conclusions from


59
overall external morphological similarity; neither, however, provided
a basis for their remarks.
Evaluation of the literature comments on Hemicaranx relationships
and/or resemblances reveals that they are often based on either (l) a
few characters that may or may not be documented as to differential
value in assigning "primitiveness" to a taxon, or (2) many characters
that yield an overall picture of morphology. In the absence of docu
mented primitive characters, a wiser course in hypothesizing evolution
ary trends and relationships is to assess relationships on degree of
resemblance or affinity. Sokal and Sneath (1963: 48) discuss this
approach; Gilbert (1964: 116), who followed it, stated:
The closest relatives of Luxi1 us are those species of
Notropis that share with it the largest number of similar
or identical morphological characters. To base a relation
ship on only one or two shared features can be misleading.
One means of implementing such a conceptual approach is to quantify
character states according to the techniques of numerical taxonomy.
Therefore, in assessing the relationships of Hemicaranx, phenetic
resemblance, based on comparison of many random characters, is inter
preted to reveal relationship.
A lack of critical analysis and definition of carangid species
and genera based on external morphology (Mansueti, 196 3: 57; Berry,
1968: 164) restricts the number of such characters that may be coded
in such an analysis. However, the osteological catalog of Indo-Pacific
genera provided by Suzuki (1962) contains enough characters for gen
eration of coefficients of association and Subsequent description of
phenetic resemblances. Coefficients of association between Hemicaranx
and Uraspis Caranx, and Atule are presented in Table 22. Ch1 oros comb rus,
the other genus historically referred to as a relative of Hemicaranx ,


60
is compared in Table 23.
Clearly, Hemicaranx most closely resembles Atule when random non-
weighted characters are compared. The two genera share a matching co
efficient of .89, which is higher than any other coefficient between
Hemicaranx and other carangids (Table 22). Thus the hypothesis that
Hemica ranx and Atule are closely related -- whether based on subjective
impressions of overall morphology or consideration of a relatively few
characters -- is confirmed. Of the primitive characters listed in Table
6, Hemicaranx and Atule share all but one, indicating a close relationship
if only "weighted" characters are used, too.
Of the three other genera said to be close to Hem? ca ranx, Uraspis
ranks highest with a coefficient of .80, followed by Ch1oroscombrus at
.77, and Caranx at .63. It would appear that these genera are not as
closely related to Hemicaranx as originally hypothesized, especially
in light of the affinity of Hemica ranx to a group of genera at or above
the .80 level. These include Longirostrum, Se 1 a r, and Selaroides (.82-
.83), and, at .80 Trachurus, and Gnathanodon (Table 22). With the ex
ception of Gnathanodon, all of these genera were said by Suzuki (1962:
133) to be closely related to Atule. Generation of association coeffic
ient matrices for the above genera yields a dendrogram that illustrates
the results of cluster analysis for the closest relatives of
Hemica ranx (Figure 3). From this analysis it is concluded that Hemicaranx,
Atule, and Selar are intimately related, and as a group are most closely
related to the genus-pair of Decapterus and T rachu rus. It is hypothe
sized that Hemicaranx. based on its distribution and the close resemblance
of its species, is relatively young and is derived from Atule, or else
they have evolved from a common Indo-Pacific ancestor. Atule is further


Figure 3- Phenetic dendrogram of genera
of Carangidae sharing a matching
coefficient (Ssm) of at least
.75 with Hemi caranx. (All Ssrr's
given in Table 22)
COEFFICIENT OF ASSOCIATION (Ssm x 100)
I OO VO
o o o
I 1 1 1 1 1
CARANGOIDES
URASPIS
L0NGIR0STRUM
GNATHAN0D0N
SELAROI DES
HEM ICARANX
ATULE
SELAR
TRACHURUS
DECAPTERUS
CHL0R0SC0MBRUS


62
hypothesized to be older, on the basis of greater morphological diver
gence of its species.


63
Hemicaranx amb1yrhynchus (Cuvier)
Figures 8, 19
Caranx amblyrhynchus. Cuvier, _i_n Cuvier and Valenciennes, 1833:
100, pi. 248 (original description; type locality: Brazil;
type material: MNHNA5843, two syn types 137 and 139 mm SL). --
Gunther, i860: 441-442 (£. fa 1catus a synonym; distinguished
from £. bicolor; description; range). -- Poey, 1861: 344
(comparison of amb 1 yrhynchus from Brazil with £. heteropyqus
from Cuba). -- Bleeker, 1862: 140 (comparison with Hem?caranx
marqinatus). Bleeker, 1863: 82 (comparison with Hem?caranx
marqinatus). Poey, 1866: 328 (distinguished from £.
hete ropyqus). -- Poey, 1867: 164 (distinguished from C_.
heteropyqus). Poey, 1875: 152 (distinguished from Ca ranqops
heteropyqus). -- Goode and Bean, 1882: 237 (Gulf of Mexico). -
Jordan and Gilbert, 1882: 308 (relationship to £. atrimanus;
comparison; £. fa 1catus synonymized). -- Jordan and Gilbert,
1883: 194, 197 (key; synonymy; £. secundus a synonym; Cape
Hatteras to Brazil). -- Jordan, 1884a: 34 (synonymy; Pensacola
Florida). -- Jordan, 1884b: 284 (relationship of £. 1eucurus
with amb1yrhynchus).
Carangops amblyrhynchus. Gill, 1862: 435 (compared with £.
fa 1catus; Brazil). -- Poey, 1868: 366-367 (£. heteropyqus
synonymized).
Hemicaranx amblyrhynchus. Jordan and Evermann, 1896: 912-913
(key; synonymy; description; comparison with Hemica ranx
atrimanus; Cape Hatteras to Brazil; West Indies). -- Jordan
and Evermann, 1898: 2844 (Hemicaranx falcatus recognized as


64
distinct from ambiyrhynchus).-- Jordan and Evermann, 1900:
plate CXL1 (Figure 386). Nichols, 1922: 59 (description
of juveniles; comparison with H., marginatus from West Africa;
ecological association with medusae; Miami Beach, Florida).
Meek and Hildebrand, 1925: 339 (key; synonymy; description;
Fox Bay, Colon, Panama). Jordan Evermann and Clark, 1930:
271 (synonymy; range).-- Nichols, 1937: 5-8 (juvenile growth
patterns; Ca ranx fa 1ca tus and Hemica ranx rhomboi des synonyms;
comparison with H_. ma rg ? natus ; South Carolina). Howell Y
Rivero, 1938: 56 (Caranx heteropygus identified as H_. amblyrhyn
chus) . Hildebrand, 1941: 226 (Beaufort Inlet to Cape Lookout,
North Carolina).-- Nichols and Murphy, 1944: 242 (iH. rhombo ides
synonymized; comparison with H_. 1 eucurus). Baughman, 1947:
280 (Aransas Bay, Texas). Irvine, 1947: 139 (tentatively
synonymizes 11. bicolor, West Africa).-- Breder, 1948: 131, 135
(key; association of young with jellyfish in lower Mississippi
R.; Cape Hatteras to Brazil). Baughman, 1950: 245 (small
specimens under Aurelia jellyfish; color notes; Texas).--
Ginsburg, 1952: 98-99, 101 (synonymy; description; close
relatives are U rasp is he idi and Chloroscomb rus ch rysu rus;
northern Gulf of Mexico). Matthews and Shoemaker, 1952: 270
(small individuals observed and collected in and with jelly
fish medusae and the ctenophore Be roe; Mississippi Sound,
Biloxi).-- Hildebrand, 1954: 301, 328 (young often found under
bell of cabbagehead jellyfish, Stomolophus meleaqris; trawl
and trynet collections at Greens Bayou, and Pass Cavallo to
Colorado River, Texas; "not uncommon in northern Gulf").
Reid, 1955: 440 (in trawl; salinity 17.6-24.3 ppt; East Bay,


65
Texas).-- Boeseman, 1956: 193 (description; Cape Hatteras to
Brazil; first Surinam record, from near lightship "Surinam
River"). Joseph and Yerger, 1956: 133, 156 (Alligator Harbor,
Florida; latitudinal range). Reid, 1956: 316 (in trawl;
not in seine or trammel net; East Bay, Texas). Springer
and Bulls, 1956: 75 (Oregon collections: 3017'N, 8829'W;
3016.3'N, 8829'W; 3015'N, 8825'W). Reid, 1957: 207
(East Bay, Texas). Briggs, 1958: 277 (pelagic; Florida;
range). Hoese, 1958: 334 (ecological association with jelly
fish; Texas).-- Berry, 1959: 525 (questions relationship to
Poey's cotypes of Caranx secundus). Smith and Bailey, 1961:
359 (predorsal formula: 0-0-0-1-).-- Mansueti, 1963: 56
(young specimens taken with jellyfish, Chrysaora quinquecirrha,
Gulf of Mexico, near Biloxi, Mississippi, Stomolophus meleagris,
Texas, Aurelia aurita, Texas, Mas tiqias sc inti 11ae, Sao Paulo,
Brazil, and unidentified species, Miami Beach, Florida, and
Texas).-- Bulls and Thompson, 1965: 4l (Oregon collections:
2850'N, 8758'W; 2940'N, 9323'W).~ Copeland, 1965: 17-18
(ecological association with cabbagehead jellyfish, Stomolophus
meleagris; occasional fall and winter emigration through
Aransas Pass, Texas). Parker, 1965: 212 (salinity 10-35 ppt;
uncommon Galveston Bay system, Texas). Roithmayr, 1965: 21
(in industrial bottomfish trawl catches; area: 28-30N, 8730'-
9030'W).-- Cervigon, 1966: (Venezuela).-- Berry, 1968: 148
(number of vertebrae).-- Bohlke and Chaplin, 1968: 322 (not
collected, but expected in Bahamas).-- Gines and Cervigon,
1968: 33 (648'N, 5738'W; 6o40'N, 5721'W; 634'N, 57111W;
6l8'N, 5555'W). Randall, 1968: 102 (not collected, but


66
"common" in the Caribbean).-- Phillips et al. 1969: 703
(ecologically associated with sea nettles and ctenophores,
Be roe; Mississippi Sound).-- Bailey et al., 1970: 40 (U.S.
Atlantic; common name "Bluntnose jack").-- Roessler, 1970:
863, 884 (Buttonwood Canal, Everglades Park, Florida).
Alepes amb1yrhynchus.-- Fowler, 1905: 7172 (description; Rio de
Janeiro, Brazil).-- Fowler, 1936: 690, fig 310 (synonymy of
Hemicaranx marginatus and Caranx bicolor with amb1yrhynchus;
description; tropical Atlantic).-- Fowler, 1941: 153 (Brazil).
-- Fowler, 1945: 189 375 (synonymy; South Carolina, Texas).
Caranx falcatus.-- Holbrook, 1855: 92-94 (original description; type
locality Charleston, South Carolina; one specimen; comparison
with C. amblyrhynchus).-- Holbrook, i860: 94 (description;
Charleston, South Carolina). Poey, 1867: 165 (distinguished
from C_. heteropygus) -- Poey, 1875: 152 (distinguished from
Carangops falcatus).-- Nichols, 1937: 6 (synonymized with
Hemica ranx amblyrhynchus).
Carangus falcatus.-- Gill, 1861: 36 (eastern coast of North America).
Carangops falcatus.-- Gill, 1862a: 238 (variation in dentition; in
distinguishable from C_. heteropygus) .-- Gill, 1862 b: 431, 435
(key; type of Carangops Gill; compared wi th C_. amb 1 y rhynchus
from Brazil; Charleston, South Carolina).-- Goode, 1879: 112
(East coast of Florida).
Hemicaranx falcatus.-- Jordan and Evermann, 1898: 912 (description;
distinguished from amblyrhynchus; Charleston, South Carolina).
-- Jordan, Evermann, and Clark, 1930: 271 (Charleston, South
Carol ina).


67
Caranx heteropygus .-- Poey, 1 861 : 344 373 (original description;
Havana market; one specimen, MCZ 17254; compared with C.
amblyrhynchus).-- Poey, 1866: 328 (distinguished from C.
ambl yrhynchus; Cuba).-- Poey, 1867: 164-165 (distinguished
from C. amb 1 yrhynchus and C. fa 1catus; Cuba).-- Howell y
Rivero, 1938: 56 (type specimen, MCZ 17254, identified as
Hemicaranx amb1yrhynchus).
Carangops heteropygus.-- Gill, 1862a : 238 (indistinguishable from
C. falcatus) .Poey, 1868: 366-367 (synonymized with C_.
amb1yrhynchus; Cuba).-- Poey, 1875: 151-152 (distinguished
from C_. amblyrhynchus and C_. fal catus; Cuba) .
Hemicaranx rhomboi des.-- Meek and Hildebrand, 1925: 343, pi. 25, fig. 2
(original description; type locality, Fox Bay, Colon, Panama;
type material: USNM 81758, 2 specimens, SL 55 and 75 mm;
compared with H_. leucurus and H_. secundus) -- Jordan, Evermann,
and Clark, 1930: 271 (Atlantic coast of Isthmus of Panama).--
Nichols, 1937: 6 (synonymized with H_. amblyrhynchus) .-- Nichols
and Murphy, 1944: 242 (comparison with H_. leucurus; synonymized
with amblyrhynchus).-- Gunter, 1945: 57 (juveniles; one in
trawl, five in seine, summer; Aransas Bay, Texas).-- Grey, 1947
154, 201 (one paratype located in Field Museum of Natural
History).
Material Examined
Uni ted States
North Carolina.-- USNM 111787 (1, 57.3), Carteret Co., Cape Lookout
Bight, J. S. Gutsell, 2 Sept. 1927; USNM 164487 (I, 19.8), Carteret
Co., Beaufort, J. S. Gutsell, 2 March 933; USNM 112746 (1 36.8),


68
Carteret Co., Beaufort, Sea Buoy, J. S. Gutsell, 17 Oct. 1931;
USNM 112745 (1, 45.5), Carteret Co., Beaufort, W. Bell Buoy, 13
Sept. 1914; USNM 112747 (1, 42.7), Carteret Co., Fort Macon, outer
beach, otter trawl, 31 July 1916.
South Carol ina.USNM 155275 (1, 102.3), Charleston Co., off Bull
Bay, 18 Oct. 1937; AMNH 13648 (2, 93-98), Charleston Co., Bull Bay,
trawl, E. M. Burton, 26 Aug. 1936; CM 36.I65.8 (6, 82-99), Charles
ton Co., Bull Bay, trawl, E. M. Burton, 26 Aug. 1936; AMNH 13647
(1 73.0), Charleston Co,, n. end of Cape Island, E. M. Burton,
12 Aug. 1936; CM 36.164.6 (3, 61.5-67), Charleston Co., n. end of
Cape Island, E. M. Burton, 12 Aug. 1936; CM 35.322.2 (1, 58.5),
Charleston Co., Morris Island, E. M. Burton, 22 Sept. 1935; CM 31.
i90.ll (1, 75.5), Charleston Co., Stone Inlet, trawl, John T.
Nichols, 12 Aug. 1931; CM 38.201.1 (2, 87-94.5), Charleston Co.,
north jetty, Charleston, trawl, E. M. Burton, 21 Aug. 1938; CM 38.
201.1 (2, 88.5-93), Charleston Co., Charleston north jetty, E. M.
Burton, 21 Aug. 1938; CM 34.175 (2, 154-157), Charleston Co.,
Charleston Harbor, E. L. Passailague, 9 July 1934; USNM 5990 (2,
189-224).
Georgia.-- USNM 119232 (1, 81), Glynn Co., St. Simons I.; TABL
105333 (1, 112), Glynn Co., Commercial trawling area off Brunswick,
Ga. ca. 3107'N, 8l10'W, Lewis Crab Co. shrimp trawl, 20 Oct.
1955; TABL 105334 (1, 98), Glynn Co., off Jekyll Island, ca. 3104'N,
8l23'W, Jane Briggs, J. E. Karr shrimp trawl, 9 July 1959; TABL
105332 (1, 158), Glynn Co., Jekyll Island, E. (ocean) side, ca.
3104'N, 81241W, Lewis Crab Co. shrimp trawl, 10 June 1957; TABL
105331 0, 68), Doboy Sound, ca. 3122N, 81 15' W, Doc. Jones -


69
Ga. Game and Fish Comm., 2 Aug. 1957.
Florida.-- FSBC 1015 (2, 80.4-86.3), Duval Co., Jetty at Atlantic
Beach, 29 Nov. 1958; TABL 105330 (1, 123), Florida Atlantic, 3031'N,
81221W, 7 fms, 40 1 2-seam trawl Silver Bay, 5 Oct. 1961; AMNH
8092 (8, 21.5-57.5) Dade Co., Miami Beach, L. L. Mowbray, 27 July
1921 ; USNM 39873 (1, 88.6), Monroe Co., off Cape Sable, Moser; SU
36285 (1, 61.4), Lee Co., Sanibel, M. Storey, Spring, 1933; FSBC
2071 (1, 168), Pinellas Co., Indian Rocks Pier, Indian Rocks Beach,
4 June 1961 ; FSU 1377 (4, 55.8-65), Franklin Co., Alligator Harbor,
16-22 Sept. 1952; FSU 5698 (10, 57.2-82.7), Franklin Co., Mud Cove
off Alligator Peninsula, W. Menzel, 3 Oct. 1959; SUCAS 767 (1, 221),
Escambia Co., Pensacola.
Mississippi.-- USNM 155274 (1, 13.3), Harrison Co., off Gulfport,
23 Sept. 1939.
Lou isiana.-- USNM 100 718 (1, 149); Jefferson Parrish, just off
front (south) beach Grande Isle; GCRL 265 (1, 57.5), Jefferson
Parrish, S. Grand Isle 3.5 fms., Dawson trawl field 582, 22
Nov. 1959; AMNH 14217 (14, 23~42) Cameron Parrish, Calcasieu R.,
Townsend, 12 Aug. 1928; GCRL 195 (1, 40), Gulf of Mexico, 2940'N,
9323'W, 5-5.4 fms., M/V Oregon Sta. 2875, Field No. 574, 7 Aug.
I960.
Texas.-- USNM 120055 (1, 102), Galveston Co., Galveston, J. L. Baugh
man; TABL 105329 (4, 6l-80), Brazoria Co., Freeport, Mar. Lab.
Mus., Texas Game, Fish and Oyster Comm., Apr.-Sept. 1947; BMNH 1948.8.6.
478.479 (2, 64-75.8), Aransas Co., Aransas Bay, Baughman; USNM
144014 (1, 62.6), Aransas Co., Aransas Pass, Harbor Island, J. C.
Pearson, 6 Dec. 1926; USNM 119805 (1, 96.4), Nueces Co., Corpus


70
Christi, J. C. Pearson; USNM 144072 (2, 118-133), Nueces Co.,
Corpus Christi Bay, J. C. Pearson, Nov.-Dec. 1926; ANSP 70602 (1,
121), Nueces Co., Corpus Christi, 1931.
Gulf of Mexico.-- GCRL 1251 (1, 196), Eastern Gulf of Mexico -
2-7 fms., M/V Tony, 2 Aug. 1962; UF 3931 (1, 32.9), S. Mobile,
Ala., 2850'N, 8758'W, Oregon 1593, D. K. Caldwell, 25-26 July
1956; TU A355 (1, 130, S. Horn Is., Miss., 30163'N, 8829'W,
2.8 fms., Oregon 627 36-65 mid-water trawl, 27 Aug. 1952; TU
4360 (1, 180), S. Ship I., Miss., 3017'N, 8851.6'W, 2.7 fms.,
Oregon 622 35-65 mid-water trawl, 23 Aug. 1952; TABL 102645
(2, 38.1-53.8), S. Cameron Parrish, 2931'N, 9245'W, Silver Bay
No. 2869, 6 Aug. I960.
Cuba
MCZ 17254 (1, 268), (holotype of Caranx heteropygus Poey).
Honduras
TABL 101355 (1, 151), east, parallel to beach off Caratasca Lagoon,
past Rio Cruta, 15191N, 8326'W, 5 fms., UN 6703 Shady Lady 601
trawls double rig, G. C. Miller, 10 April 1967; TABL 101400 (1, 70),
east of Rio Cruta, 1518a N, 8322'W, 5 fms., UN 6703 Shady Lady
try net, G. C. Miller, 10 April 1967; TABL 102757 (4, 116-166),
Commercial trawling area off Caratasca Lagoon east to past Rio
Cruta, 15191M 8326'W, 5 fms., UN 6 70 3 Shady Lady 601 trawls, dou
ble rig, G. C. Miller, 10 April 1967; TABL 101356 (7, 128-167),
o 0
west past Rio Cruta River to off Caratasca Lagoon, 15 21 1N 83 341W,
5-6-1/2 fms., UN 6703 601 trawls double rig, G. C. Miller, 10
April 1967; TABL 105388 (5, 127-167), Rio Cruta-Caratasca, 1526'N,
834l1W, 5-6 fms., UN 6703 601 trawls, double rig and try net Shady


71
Lady, G. C. Miller, 11 April 1967.
Costa Rica
LACM 30727 (1, 128), Cahuita Bay, W. Bussing.
Panama
USNM 80007,(1, 175), Colon; USNM 81758 (1, 58.5), Colon, Fox Bay,
22 Jan. 1912.
Venezuela
TABL 102891. (4, 172-180), 11331N, 7131 'W, 15 fms., 104 Oregon
40' shrimp trawl, 6 Oct. 1965; TABL 105035 (1, 215), off Puerto
la Cruz, 10111N, 6448'W, 19 fms., 401 flat trawl, 19 Oct. 1963.
Trini dad
BMNH 1931.12.5.167-8 (2, 63.1-120), Gulf of Paria, Taitn, Rodney;
ANSP 86221 (3, 169-184), Port of Spain, Barber Asphalt Co., 1930;
BMNH 1932.2.8.23.5 (3, 102-199), Gulf of Paria, Guppy; USNM 178437
(1, 38.2).
British Guiana
TABL 104329 (1, 168), 0845'N, 5915'W, Trawl Calamar, 18 June 1967;
TABL 104383 (1, 155), 0715'N, 5815'W, 67-6 Calamar Trawl, 20
June, 1967; BMNH 1961.9.1.25-26 (2, 138-174), R. M. McConnell.
Surinam
USNM 220144 (2, 196-205), 0712'N, 5647'W, 26-28 fms., Oregon Sta.
2263-80 ft. balloon trawl, 1 Sept. 1958; TABL 105335 (1, 57)
06l8'N, 5530'W, 7 fms., 401 flat trawl R/V Oregon Sta. 2280,
4 Sept. 1958; TABL 104788 (2, 197-207), 0615'N, 5445'W, 67-II
Calamar Trawl, 3 Nov. 1967; TABL Uncat. (2, 154-160), NW coast, 12.5-
14 fms., 68-11 Calamar, Dec. 1968; TABL Uncat. (2, 176-177), NW
coast, Calamar Cruise 68-11, Sta. 591, 12 Oct. 1968; RMNH Uncat.


72
(1, 65 ) 1 38 ft., Coquette Stat. 7 trawl, 29 June 1966; RMNH 18148
(3,. 53.2-63.7), Surinam R. near Plantation Resolutie; RMNH Uncat.
(1, 121), 7.7 mi. E. lightship Surinam River. 40-50 ft., 29 June
1966; RMNH 21*478 (*4, 51.5-83), off lightship Surinam River; RMNH
2*4771 (2 69.9-7*4.7).
Brazi 1
Para.-- CAS-SU 22113 (1, 152), E. C. Starks.
Ceara-- CAS-SU 51879 (1, 126), Port of Fortaleza (Mucuripe), 23
Feb. 19*5; CAS-SU 5182*4 (*4, 26.7-43.5), Fortaleza (Mucuripe),
March 1945.
Pernambuco.-- CAS-SU 67017 (1, 210) Recife, N. Berla, 8 Aug.
19*4*4; CAS-SU 67026 (1, 211), Recife.
Bah i a. -- BMNH 1 8*4*4.5.1*4.63 ( 1 1 *47), Salvador, Parzudakis Colin.;
BMNH 1862.1.30-20 (1, 171), Salvador; CAS-SU 66984 (1, 123),
Maranhao and Bahia, Salvador, 1944 or 1945; CAS-SU 67023 (1, 178),
Salvador; CAS-SU 67025 (1, 255), Salvador.
Sao Paulo.-- CAS-SU 66998 (1, 113), Ponto do Praia, Santos; CAS-SU
34813 (1, 123), Santos, A. W. Here, 3 June 1934; CAS-SU 66997
(3, 95121), Ponto Do Praia, Santos, P. Carvallo and Moraes, 14
March 1944; CAS-SU 66992 (2, 111-119), Santos; CAS-SU 66986 (1,
94), Ponto do Praia, Santos, V. Carvalka and Moraes, 23 May 1943.
Rio de Janeiro.-- BMNH 1923-7.30.145-6 (2, 133139)a Rio de Janeiro
(fish market), Ternetz; ANSP 11259 (1, 148), Rio de Janeiro.
Santa Catharina.-- CAS-SU 67019 (1, 182), Florianopolis Praia de
Carrosvicira, 19 Oct. 1943-


73
Diagnosis
Hemicaranx amb1 yrhynchus is distinguished from other members of
its genus by the following combination of characters: upper caudal
fin lobe extremely long, nearly 50% SL in largest adults; upper caudal
fin lobe up to 30% larger than lower lobe length; ventral body outline
slightly convex in advance of soft anal fin origin, but not as broadly
rounded as dorsal outline; anal pterygiophores closely spaced.
It is further distinguished from the closely related H. bicolor
by the following characters: more dorsal rays (24 to 30, usually 27
or 28) (X +_ Sx = 27.62 0.40) ; more anal rays (21 to 25, usually 23
to 25) (X +_ Sx = 23.7k + 0.35) ; a flattened ascending process (versus
indented) and concave articular process of the premaxillary (versus
straight); basihyal of intermediate width (versus narrow).
H_. amblyrhynchus is further distinguished from both H_. leucurus
and H. ze1 otes by the following characters: seven (versus eight) dorsal
spines; 16 (versus 15) caudal vertebrae; fewer scales in the curved
part of lateral line (25 to kk, usually 34 to 39) (X + S>T = 37.86 +_ 1 .18)
(versus 29 to 5*0; anterior caudal peduncle scute proportional width 3*9
to 4.8% SL (X = 4.4) (versus 1.7 to 3-6); ratio of straight portion of
lateral line to curved portion of lateral line 2.3 to 3.0 (X = 2.6)
(versus 1.9 to 2.3); antero-dorsal edge of ethmoid concave (versus
convex); anterior end of pterygoid bone indented (versus concave);
upper hypohyal window circular (versus oval); anal pterygiophore points
intermediately developed (versus prominent or reduced).
A comparison of H. amblyrhynchus and the other members of the genus
is presented in Table 25.


74
Description
Counts and proportional measurements are listed in Tables 7, 8,
15-19, and graphically presented in Figures 5-7, 9, 11, 14, 22. The
generic description and species diagnosis are supplemented by the
following: length of straight lateral line 50 to 60% SL; length of
curved lateral line 20% SL; body width 13% SL; pectoral fin 30% SL;
pelvic fin 33% pectoral; head depth 30% SL; interorbital width 9% SL;
maxillary depth 2% SL; pectoral fin rays 18-21, usually 19 or 20;
scutes in straight part of lateral line 34 to 51 (X + Sx = 44.87 +_ 0.29) ;
distal tips of the upper superior principal caudal rays lightly blacken
ed in adults.
Osteological characters are completely described in the account
of the osteology of the genus. Skeletal characteristics that disting
uish H_. amblyrhynchus from other members of the genus are: anterior
edge of dorsal surface of ethmoid concave; posterior tip of upper arm
of dentary rounded; posterior edge of postmaxi 11 ary process broadly
concave; a mid-dorsal expansion of the symplectic; pterygoid character
ized by indentations above and below anterior point; upper hypohyal
foramen circular; ceratohyal window ventrally expanded; anal pterygial
points moderate; distal ends of anal pterygiophores closely opposed.
Nomenclatu re
The original description of Caranx amb1yrhynchus Cuvier (commonly
named the Bluntnose jack [Bailey et_ aj_. 1970: 40]) was based on two
syntypes from Brazil. Both specimens agree with the original descrip
tion. In accord with Bailey (1951), authorship of the specific name
is recognized.
Caranx heteropygus Poey was based on a single specimen from Cuba.


75
The taxonomic status of heteropygus vacillated, even in the works of
Poey, who distinguished it from amb1yrhynchus strictly on the basis
of upper caudal fin lobe length. This character is within the normal
range of variation of amb1yrhynchus, however, and all other morpho
metric characters agree with the data obtained for that species.
Howell Y Rivero (1938: 56) correctly identified Poey's type specimen
as am61yrhynchus.
The original description of Hemicaranx rhomboides Meek and Hilde
brand was based on two juvenile specimens from Caribbean Panama. One
of these (the holotype) was found in the USNM type collection and it
agrees in every way with amblyrhynchus. The paratype is deposited in
the Field Museum of Natural History (Grey, 19^7: 15^, 201). Meek and
Hildebrand (1925: 3^+2) examined only juvenile specimens, which differ
in many ways from the adult specimens upon which their account of
amblyrhynchus was based. Nichols and Murphy (19^: 2^2) correctly synonym
ized rhomboides with amblyrhynchus .
The original description of Caranx falcatus was based on a single
adult specimen collected twenty miles offshore from Charleston, South
Carolina. The etymology of the name reflects the major distinction
Holbrook incorporated in a comparison of his specimen with the figure of
a syntype of Cuvier: i.e., the relatively longer length of the upper
caudal fin lobe (most pronounced in specimens from more temperate
localities). This variation is characteristic of amb1yrhynchus, and
in this and all other details the type specimen of falcatus agrees with
amb1yrhynchus. The specimen was accidentally destroyed (Holbrook, i860:
96). Fa 1catus was correctly synonymized with amb1yrhynchus by Nichols
(1937: 6).


76
An additional species originally described as Caranx secundus by
Poey (i860: 223) was doubtfully synonymized with amb1yrhynchus by
Jordan and Gilbert (1883: 197). This species is now regarded as a
number of the genus Uraspis (Berry, 1963* 584). In the same paper,
Berry noted that Caranx fasciatus, a nomen dubiurn, has at times been
regarded as a synonym of secundus and as a species of Hemicaranx.
Ecology
Hemicaranx amb1yrhynchus has been referred to by Briggs (1958: 277)
as a "pelagic" species, inhabiting
the surface layers of water -- depths of less than
200 meters -- in the offshore regions usually beyond
the limits of the continental shelf.
The bulk of the specimens of amb1yrhynchus examined in this study, how
ever, were collected in relatively shallow waters adjacent to continental
land masses, thus indicating a life cycle at least partially spent in
waters less than 200 meters deep. Despite such factors as (1) lack of
offshore collecting effort and (2) escape from collecting gear that may
bias conclusions about habitat, the almost exclusive collection of
Hemicaranx amb1yrhynchus in shallow waters over the continental shelf
identifies it as a "shore" species (see Briggs, 1958: 277). Copeland
(1965), in a discussion of animal emigration through Aransas Pass, Texas,
alluded to the estuarine dependence of this species. In a year-round
tide trap sampling of emigrants through Aransas Pass, Copeland (1965:
Table 1) found amblyrhynchus to occur occasionally in collections made
from October through February. Although Copeland did not mention the
size of specimens collected, they are presumably juveniles, based on
the collecting gear and a consideration of other collections from Texas.
Gunter (1945: 57), for example, reported Bluntnose jack of 32 to 82 mm


77
from Aransas Bay during June, July, and August.
Whether amblyrhynchus spawns in estuarine habitat is not certain,
but it appears that this species is one of many that utilizes the estuar
ine environment as a nursery ground for juveniles. From an estuarine
nursery it moves offshore to complete part or all of the life cycle. As
listed in the Material Examined section, juveniles of amb1yrhynchus have
been collected at a number of other estuarine localities, whereas adults
are always collected in offshore (ful 1-strength sea) waters.
The ecological association of juvenile H_. amblyrhynchus with jelly
fishes has been reported from a number of localities throughout its
range (summarized by Mansueti, 1963: 56-57), and is by no means unusual
for the Carangidae. Indeed, Mansueti (1963: Table 5) listed published
records of commensal and parasitic association between jellyfishes and
the young of 23 species of Carangidae in the world. For amblyrhynchus
Mansueti listed the following symbionts: Chrysaora quinquecirrha ,
Stomoloplus meleagris Aurelia au rita and Mast igi as sc inti 11ae .
Interestingly, amblyrhynchus was collected by Copeland (1965: 18) only
in association with the cabbagehead jellyfish, S_. me 1 eagr i s during
fall emigration from Aransas Bay.
In his review article, Mansueti stated that such fish-jellyfish
association may (1) protect the fish from predators and (2) provide
food in the form of crustaceans and other invertebrates found on or
with the jellyfish, as well as the jellyfish itself. Immunity of
carangids to nematocyst toxin was suggested by Mansueti (196 3 : 5*0.
The function of pelagic symbiotic hosts as dispersal mechanisms is
discussed below in the Relationships section, as a factor in possible
interspecific gene flow in Hemicaranx.


78
Distribution
Hemicaranx amb1 yrhynchus ranges from Beaufort, North Carolina,
south along the continental margin of the Atlantic coast of North
and South America to the vicinity of FI or ianopolis Brazil (ca. 28S)
(Figure 4). Although it may be common in occasional samples, H_.
amb1yrhynchus is most often present in institutional collections in
small numbers. Although this paucity of specimens may reflect
selectivity of sampling techniques or a failure to sample preferred
environmental habitat, it appears that this species is truly uncommon
in the natural environment, since even the more easily collected
juvenile stages are never taken in abundance. Tide traps collections
(Copeland, 19&5; Roessler, 1970), beach seining, and trawling have all
failed to capture large numbers of amblyrhynchus.
Along continental shores H. amblyrhynchus is differentially
abundant, no doubt partly as an artifact of collecting intensity. How
ever, this species -- although expected by various authors (Bohlke and
Chaplin, 1968: 322 Bahamas; Randall, 1968: 102 non-inshore Caribbean
saline habitats) -- has not been reported from even the most actively
collected islands of the northern and eastern Caribbean Sea. This is
interesting in view of the common occurrence of many other carangids
in such localities, including such closely related forms as Se 1ar
(Randall, 1968: 106), with which Hemicaranx is sympatric over much
of the continental shelf. Both Gilbert (in press) and Robins (1971:
254) note that the Carangidae as a family is ubiquitously distributed
in both continental and insular waters which are characterized respect
ively by turbid waters and notable environmental fluctuations or clear
waters and stable environmental conditions. Based on the apparently


120 110 100 90 80 70 60 50 40 30 20 10 0 10 20
30
20
10
0
10
20
30
U5
Figure 4. Distribution of Hemicaranx (Based on collections examined)
in the Atlantic and Pacific Oceans


80
small population size of this species, plus its apparent estuarine
dependence, it is likely that amb1yrhynchus does not inhabit most of
these islands, possibly due to a lack of extensive estuarine nursery
ground complexes. The absence of amblyrhynchus from the Caribbean
Islands parallels that of the sea turtle, Lepidoche1ys, which Pritchard
(1969: I82-I83) accounted for on the basis of a paucity of extensive
brackish water areas.
Undoubtedly, however, these medium-sized, highly mobile fish have
had access to such habitats by virtue of obvious carangid morphological
adaptations for open-water locomotion (e.g., narrow peduncle, broad caudal
lobes, compressed terete body). In addition, the symbiotic association
of juvenile amb1yrhynchus with jellyfishes is a likely factor in effect
ing its widespread dispersal. Not all free-swimming large species, of
course, are able to inhabit the entire spectrum of environments to which
they have access. The Spanish mackerel, Scomberomorus maculatus, for ex
ample is absent from insular environments of the western Atlantic,
doubtless because, according to Robins (1971: 252):
...geographic barriers are not operating to restrict
the continental element from the islands but instead...
ecological conditions and competition from closely
related and better adapted island species provide the
barrier to colonization. What we have in these faunas
is not a picture of what could reach the area in question
but of what could survive and breed there.
It is hypothesized that H. amb1yrhynchus is one species of the continent
al fauna to which this statement applies.
The vagility of groups such as the Carangidae has been discussed
by Rosenblatt (1963) as a factor in the relative lack of endemism in
this family. As contrasted to smaller fishes adapted to discontinuous
isolated habitats, which are restricted in their mobility (and thus


81
gene exchange), the carangids are larger and more mobile and generally
inhabit continuous habitats over which they are free-swimming. Thus,
opportunities to promote gene flow in this group contribute to what
may be a differentially slower rate of local differentiation. This is
certainly the case for Hemicaranx amb1yrhynchus.
Variation
Samples of H. amb1yrhynchus from throughout the range of the species
are remarkably homogeneous as indicated by inspection and statistical
analysis of data (see in Tables 7, 8, and 15~17 in part). The small
amount of variation noted is clinal in nature: samples from more
temperate latitudes are characterized by longer caudal fin lobes (Figure
5, Table 7), higher numbers of soft rays in the second dorsal fin
(Figure 6, Table 15) and higher numbers of soft rays in the anal fin
(Figure 7, Table 16). Based on the classical observation of more body
parts in fishes from colder environments (Barlow, 1961), such a pattern
of geographic variation of meristic characters might be predicted.
Although it is tempting to conclude that nearly equatorial popu
lations of amb1yrhynchus (e. g., Guyanas-Brazi 1) develop fewer dorsal
and anal rays than more temperate populations (e.g., U. S. Gulf of
Mexico) in response to warmer developmental temperatures, the difference
between Honduras and equatorial localities with similar temperatures
must be accounted for. Samples from Honduras and the U. S. Gulf
(localities with different thermal regimes [Table 24]) are nearly
identical meristica11y, whereas samples from Honduras and the equatorial
localities are statistically significantly different = .05) in
terms of dorsal and anal ray counts. Thus, if these carangid fishes
are able to disperse widely to inhibit divergence of temperate and


100
90
80
70
60
50
40
30
20
10
O
Figure
arob1 y rhynchus
^Northern Gulf of Mexico
Hondu ras
^ Su rinam-Guyanas
O bi col or
(U.S.)
%
O
C0

O
Vo
o
C*P
oo
o
oo
N>
J I I I I I I I I I 1 I
20 40 60 80 100 120 140 160 180 200 220 240
STANDARD LENGTH (mm)
5. Length of the upper caudal fin lobe in populations of Hemicaranx amblyrhynchus from the
Western Atlantic Ocean and H. bicolor from the Eastern Atlantic


1eucurus
I
PANAMA
ze1 otes
i
MEXICO
i
PANAMA
amb1yrhynchus
I
U.S. GULF
i
HONDURAS
i
TRINIDAD
GUYANAS
I
SOUTHERN BRAZIL
AFRICA
_i I I I i I I 1
26 27 28 29
NUMBER OF DORSAL RAYS
Figure 6. Variation in number of fin rays in the soft dorsal
fin of Hemicaranx. (Vertical line indicates x,
horizontal lines extend to either side for a distance
equal to Sx N.) (N=9;c^=.05 [after Eberhardt, 1988:
fig. 2])
bicolor
L
25


Full Text



PAGE 2

6\VWHPDWLFV RI WKH *HQHUD +HPLFD UDQ[ DQG $WXOH VHHV &DUDQJLGDHf ZLWK DQ $QDO\VLV RI WKH &ODVVLILFDWLRQ RI WKH )DPLO\ %\ :,//,$0 6($0$1 -5 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( &281&,/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 3

$&.12:/('*(0(176 'U &DUWHU 5 *LOEHUW FKDLUPDQ RI P\ FRPPLWWHH DQG 0U )UHGHULFN + %HUU\ LFKWK\RORJLVW GHVHUYH VSHFLDO PHQWLRQ IRU WKHLU HIIRUWV LQ RYHUVHHLQJ FRPSOHWLRQ RI WKLV GLVVHUWDWLRQ $ERYH DQG EH\RQG WKH JXLGDQFH RQH H[SHFWV RI D FKDLUPDQ 'U *LOEHUW PDLQWDLQHG D FRQWLQXDO LQWHUHVW LQ WKH ZRUN DQG PDGH FRPSOHWHO\ DYDLODEOH KLV H[WHQVLYH NQRZOHGJH RI WKH ILHOG DQG KLV SHUVRQDO OLEUDU\ +LV VXSSRUW RI WULSV WR D QXPEHU RI FROOHFWLRQV f§ DQG KLV IHOORZVKLS HQMR\HG WKHUHRQ VLJQLILFDQWO\ FRQWULEXWHG WR P\ JUDGXDWH SURJUDP )UHG %HUU\ LV D UDUH SHUVRQ GHGLFDWHG WR KLV SURIHVVLRQ DQG WKH DSSUHQWLFHV ZKR FRPH DORQJ KH LQLWLDOO\ VXJJHVWHG WKH ZRUN RQ +HPLFDUDQ[ DQG JHQHURXVO\ SURYLGHG SHUVRQDO QRWHV DQG GDWD WKDW ZRXOG DVVLVW WKLV ZRUN +LV H[WHQVLYH NQRZOHGJH RI WKH &DUDQJLGDH KDV SURYLGHG D YDOXDEOH UHYLHZ PHFKDQLVP 7KH PDQXVFULSW KDV EHQHILWHG IURP UHYLHZ E\ P\ FRPPLWWHH 'UV %URGNRUE 1LFRO DQG &DUU IRU ZKRVH HIIRUWV DP JUDWHIXO 7KH IROORZLQJ FROOHDJXHV SURYLGHG PDWHULDO DVVLVWDQFH LQ REWDLQLQJ VSHFLPHQV RQ ORDQ RU DOORZHG PH WR XVH WKHLU LQVWLWXWLRQDO IDFLOLWLHV VHH DEEUHYLDWLRQV VHFWLRQf 'U -DPHV $W] $01+ 'UV -DPHV %RKONH DQG -DPHV 7\OHU $163 'U :LOOLDP (VFKPH\HU &$6 0U /RUHQ :RRGV )01+ 0U 5REHUW 7RSS )6%& 'U 5DOSK
PAGE 4

6XWWNXV 78 'U %R\G :DONHU 8&/$ DQG 'UV (UQHVW /DFKQHU DQG 9LFWRU 6SULQJHU 8610 QRZ 1DWLRQDO 0XVHXP RI 1DWXUDO +LVWRU\f $OVR 'U ( 0F$OOLVWHU 10& ORDQHG VSHFLPHQV 0PH 0 %DXFKRW 01+1 DQG 'U 0 %RHVHPDQ 501+ JHQHURXVO\ DOORZHG WKH XVH RI IDFLOLWLHV DW WKHLU UHVSHFWLYH LQVWLWXWLRQV 'U %RHVHPDQ IXUWKHU SHUPLWWHG D ORDQ RI W\SH PDWHULDO 'U -XUJHQ 1LHOVHQ 8QLYHUVLWHWHWV =RRORJLVFKH 0XVHXP &RSHQKDJHQ SURYLGHG GDWD RQ WKH W\SH RI $WXOH GMHGDED 7R 'U 3HWHU 3 :KLWHKHDG %01+ H[WHQG VLPLODU WKDQNV IRU WKH ORDQ RI VSHFLPHQV XVH RI IDFLOLWLHV DQG SURYLVLRQ RI GDWD IXUWKHUPRUH KLV IULHQGVKLS VLQFH RXU PHHWLQJ KDV EHHQ RQH RI WKH WUHDVXUHG H[SHULHQFHV RI SUHSDUn LQJ WKLV GLVVHUWDWLRQ 'U -RKQ 5DQGDOO %HUQLFH %LVKRS 0XVHXP +DZDLL DQG 0UV 0DUJDUHW 6PLWK / % 6PLWK ,QVWLWXWH RI ,FKWK\RORJ\ 6RXWK $IULFD SURYLGHG LQIRUPDWLRQ RQ WKHLU FROOHFWLRQV 7HFKQLFDO DVVLVWDQFH ZDV SURYLGHG E\ 8QLYHUVLW\ RI )ORULGD DUWLVWV 0U 3DXO /DHVVOH DQG 0V 0DUJDUHW (VWH\ ZKR SXW DVLGH EXV\ VFKHGXOHV WR RIIHU VXJJHVWLRQV DERXW WKH GUDZLQJV 0U 5XVVHOO 3DUNV ,PDJH 'HVLJQV *DLQHVYLOOH WRRN DOO WKH SKRWRJUDSKV 7R P\ IULHQGV DPRQJ ZKRP DP IRUWXQDWH HQRXJK WR LQFOXGH P\ SDUHQWV DQG P\ ORYLQJ ZLIH&DURO ZKR KHOSHG D TXLHW ZRUG RI WKDQNV

PAGE 5

7$%/( 2) &217(176 3DJH $&.12:/('*(0(176 LL /,67 2) 7(;7 ),*85(6 YL /,67 2) 7$%/(6 YL L /,67 2) 267(2/2*,&$/ ),*85(6 [ $%%5(9,$7,216 [OL $%675$&7 [Y ,1752'8&7,21 0(7+2'6 1XPHULFDO 7D[RQRP\ 3UHSDUDWLRQ RI 6NHOHWDO 0DWHULDO &/$66,),&$7,21 2) 1'23$& ), & &$5$1*,'$( $ 5HYLHZ RI WKH 6X]XNL &ODVVLILFDWLRQ RI -DSDQHVH &DUDQJLGDH 3ULPLWLYH FKDUDFWHUV RI WKH &DUDQJLGDH 1XPHULFDO 7D[RQRP\ RI WKH -DSDQHVH &DUDQJLGDH 267(2/2*< 2) +(0,&$5$1; ,QIUDVSHFLILF YDULDWLRQ 'HVFULSWLYH 2VWHRORJ\ RI +HPLFDUDQ[ .(< 72 +(0,&$5$1; $1' $78/( 6<67(0$7,&6 2) +(0,&$5$1; +HPLFDUDQ[ %OHHNHU +HPLFDUDQ[ DPE\UK\QFKXV &XYLHUf +HP LFD UDQ[ ELFRORU n*2QWKHUf +HPLFDUDQ[ ]HORWHV *LOEHUW +HPLFDUDQ[ OHXFXUXV *LLQWKHUf 6<67(0$7,&6 2) $78/(

PAGE 6

$WXOH -RUGDQ DQG -RUGDQ $WXOH PDWH &XYLHUf $WXOH ND D &XYLHUf $WXOH PDFUXUXV %OHHNHUf $WXOH GMHGDED )RUVNDOf $WXOH PDO DP %OHHNHUf $33(1',&(6 $SSHQGL[ 7DEOHV $SSHQGL[ ,, 2VWHRORJLFDO )LJXUHV $SSHQGL[ ,,, 6NHOHWDO 0DWHULDO ([DPLQHG */266$5< /,67 2) 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ 9

PAGE 7

7(;7 ),*85(6 )LJXUH 3DJH 3K\ORJHQ\ RI -DSDQHVH &DUDQJLGDH 3KHQHWLF GHQGURJUDP RI ,QGR3DFLILF &DUDQJLGDH 3KHQHWLF GHQGURJUDP RI JHQHUD RI &DUDQJLGDH VKDULQJ D PDWFKLQJ FRHIILFLHQW RI DW OHDVW ZLWK +HPL FD UDQ[ 'LVWULEXWLRQ RI +HP"FDUDQ[ LQ WKH $WODQWLF DQG 3DFLILF 2FHDQV /HQJWK RI XSSHU FDXGDO ILQ OREH LQ SRSXODWLRQV RI +HPLFDUDQ[ DPEO\UK\QFKXV IURP WKH :HVWHUQ $WODQWLF 2FHDQ DQG + ELFRORU IURP WKH (DVWHUQ $WODQWLF 9DULDWLRQ LQ QXPEHU RI ILQ UD\V LQ WKH VRIW GRUVDO ILQ RI +HPLFDUDQ[ 9DULDWLRQ LQ QXPEHU RI ILQ UD\V LQ WKH VRIW DQDO ILQ RI +HPL FDUDQ[ $GXOW +HPLFDUDQ[ IURP WKH $WODQWLF 2FHDQ ,QWHUVSHFLILF YDULDWLRQ LQ QXPEHU RI VFDOHV LQ FXUYHG ODWHUDO OLQH RI +HPLFDUDQ[ :LQWHU $WODQWLF 2FHDQ HTXDWRULDO VXUIDFH FXUUHQWV ,QWHUVSHFLILF YDULDWLRQ LQ UDWLR RI VWUDLJKW WR FXUYHG ODWHUDO OLQH OHQJWKV LQ ODUJH DGXOW +HPLFDUDQ[ 1XPEHU RI WHHWK LQ WKH SUHPD[LOODU\ ERQH RI +HPLFDUDQ[ IURP 3DQDPD %D\ 3DQDPD 1XPEHU RI WHHWK LQ WKH GHQWDU\ ERQH RI +HPLFD UDQ[ IURP 3DQDPD %D\ 3DQDPD ,QWHUVSHFLILF YDULDWLRQ LQ QXPEHU RI WHHWK LQ ODUJH DGXOW VSHFLPHQV RI +HPLFD UDQ[ /HQJWK RI WKH SHFWRUDO ILQ LQ +HPLFDUDQ[ IURP 3DQDPD %D\ 3DQDPD ,OO YL

PAGE 8

/HQJWK RI WKH SHOYLF ILQ LQ +HPLFDUDQ[ IURP 3DQDPD %D\ 3DQDPD /DWHUDO RXWOLQHV RI DQWHULRU FDXGDO SHGXQFOH VFXWHV LQ (DVWHUQ 3DFLILF +HPLFDUDQ[ :LGWK RI WKH DQWHULRU SHGXQFOH VFXWH LQ +HPLFDUDQ[ IURP 3DQDPD %D\ 3DQDPD -XYHQLOH VSHFLPHQV RI +HPLFDUDQ[ $GXOW +HPLFDUDQ[ IURP WKH (DVWHUQ 3DFLILF 2FHDQ /DWHUDO RXWOLQHV RI DQWHULRU HQGV RI DUWLFXODWHG SUHPD[LOODU\ DQG GHQWDU\ ERQHV LQ (DVWHUQ 3DFLILF +HPL FDUDQ[ ,QWHUVSHFLILF YDULDWLRQ LQ ZLGWK RI WKH DQWHULRU SHGXQFOH VFXWH LQ ODUJH DGXOW +HPLFDUDQ[ 3KHQHWLF GHQGURJUDP RI JHQHUD RI &DUDQJLGDH VKDULQJ D PDWFKLQJ FRHIILFLHQW RI DW OHDVW ZLWK $WXOH 5DWLRV RI VWUDLJKW WR FXUYHG ODWHUDO OLQH OHQJWKV LQ WKH VSHFLHV RI $WXOH 'HSWK RI KHDG LQ $WXOH 6SHFLHV RI $WXOH :LGWK RI WKH DQWHULRU FDXGDO SHGXQFOH VFXWH LQ WKH VSHFLHV RI $WXOH 1XPEHU RI SUHPD[LOODU\ WHHWK LQ WKH VSHFLHV RI $WXOH FKDUDFWHUL]HG E\ XQLVHULDWH GHQWLWLRQ 5HODWLYH OHQJWKV RI XOWLPDWH WHUPLQDOf DQG SHQn XOWLPDWH VRIW GRUVDO ILQUD\V LQ $WXOH ,QWHUVSHFLILF YDULDWLRQ LQ QXPEHU RI ILQ UD\V LQ WKH VRIW GRUVDO ILQ RI $WXOH ,QWHUVSHFLILF YDULDWLRQ LQ QXPEHU RI ILQ UD\V LQ WKH VRIW DQDO ILQ RI $WXOH ,QWHUVSHFLILF YDULDWLRQ LQ QXPEHU RI VFDOHV LQ FXUYHG ODWHUDO OLQH RI $WXOH r ,QWHUVSHFLILF YDULDWLRQ LQ QXPEHU RI VFXWHV LQ VWUDLJKW ODWHUDO OLQH RI $WXOH ,QWHUVSHFLILF YDULDWLRQ LQ ZLGWK RI WKH DQWHULRU SHGXQFOH VFXWH LQ $WXOH 'LVWULEXWLRQ RI WKH VSHFLHV RI $WXOH YL

PAGE 9

7$%/(6 7DEOH 3DJH *HRJUDSKLF GLVWULEXWLRQ RI WKH QRPLQDO JHQHUD RI &DUDQJLGDH &KDUDFWHUV FRGHG LQ QXPHULFDO WD[RQRP\ RI &DUDQJLGDH &KDUDFWHU VWDWHRSHUDWLRQDO WD[RQRPLF XQLW PDWUL[ IRU &DUDQJLGDH r} $ &RHIILFLHQWV RI DVVRFLDWLRQ IRU FDUDQJLG RSHUDWLRQDO WD[RQRPLF XQLWV IURP -DSDQ 6HFRQG JHQHUDWLRQ PDWUL[ RI DVVRFLDWLRQ FRHIILFLHQWV FDOFXODWHG IRU FOXVWHU VWHPV DQG LQGLYLGXDO 278V LQFRUSRUDWHG LQ -DSDQHVH FDUDQJLG FOXVWHU DQDO\VLV 'LVWULEXWLRQ RI SULPLWLYH VNHOHWDO FKDUDFWHU VWDWHV LQ -DSDQHVH &DUDQJLGDH SOXV +HPLFDUDQ[ 0RUSKRPHWULF YDOXHV IRU +HPLFDUDQ[ DPEO\UK\QFKXV IURP :HVWHUQ $WODQWLF ORFDOLWLHV 0HULVWLF YDOXHV IRU +HPLFDUDQ[ DPEO\UK\QFKXV IURP :HVWHUQ $WODQWLF ORFDOLWLHV 0RUSKRPHWULF YDOXHV IRU +HPLFDUDQ[ ELFRORU IURP WKUHH :HVW $IULFDQ ORFDOLWLHV 0HULVWLF YDOXHV IRU +HPLFDUDQ[ ELFRORU IURP WKUHH :HVW $IULFDQ ORFDOLWLHV &RPSDUDWLYH PRUSKRPHWULF YDOXHV IRU WZR VSHFLHV RI +HPLFDUDQ[ IURP 3DQDPD %D\ 3DQDPD &RPSDUDWLYH PHULVWLF YDOXHV IRU WZR VSHFLHV RI +HPLFDUDQ[ IURP 3DQDPD %D\ 3DQDPD r 0RUSKRPHWULF YDOXHV IRU +HPLFDUDQ[ ]HORWHV IURP WKH ORZHU 3DFLILF FRDVW RI %DMD &DOLIRUQLD 0H[LFR 0HULVWLF YDOXHV IRU +HPLFDUDQ[ ]HORWHV IURP WKH ORZHU 3DFLILF FRDVW RI %DMD &DOLIRUQLD 1XPEHU RI GRUVDO ILQ UD\V LQ IRXU VSHFLHV RI +HPLFDUDQ[ YL L L

PAGE 10

1XPEHU RI DQDO ILQ UD\V LQ IRXU VSHFLHV RI +HPL FDUDQ[ 1XPEHU RI SHFWRUDO ILQ UD\V LQ IRXU VSHFLHV RI +HPL FDUDQ[ rr 1XPEHU RI VFDOHV LQ WKH FXUYHG ODWHUDO OLQH RI +HPL FDUDQ[ 1XPEHU RI VFDOHV LQ WKH VWUDLJKW ODWHUDO OLQH RI +HPL FDUDQ[ 1XPEHU RI VFDOHV LQ WKH FXUYHG ODWHUDO OLQH RI $WXOH 1XPEHU RI VFXWHV LQ WKH VWUDLJKW ODWHUDO OLQH RI $WXOH &RHIILFLHQWV RI DVVRFLDWLRQ EHWZHHQ +HPLFDUDQ[ 278 DQG 278nV IURP -DSDQ &RHIILFLHQWV RI DVVRFLDWLRQ EHWZHHQ &KORURVFRPEUXV 278 DQG 278nV IRU ZKLFK FKDUDFWHU VWDWH LQIRUPDWLRQ L V DYDL ODEOH rr $WODQWLF 2FHDQ VXUIDFH WHPSHUDWXUHV &RPSDULVRQ RI GLDJQRVWLF FKDUDFWHUV RI WKH VSHFLHV RI +HPLFDUDQ[ 0RUSKRPHWULF YDOXHV IRU WKH VSHFLHV RI $WXOH 0HULVWLF YDOXHV IRU WKH VSHFLHV RI $WXOH 1XPEHU RI WHHWK LQ VSHFLHV RI $WXOH ZLWK XQLVHULDWH GHQWLWLRQ 1XPEHU RI GRUVDO ILQ UD\V LQ WKH VSHFLHV RI $WXOH 1XPEHU RI DQDO ILQ UD\V LQ WKH VSHFLHV RI $WXOH &RPSDULVRQ RI GLDJQRVWLF FKDUDFWHUV RI WKH VSHFLHV RI $WXOH L [

PAGE 11

267(2/2*,&$/ ),*85(6 )LJXUH 3DJH 1HXURFUDQLXP RI +HPLFDUDQ[ ]HORWHV ,, 'RUVDO YLHZV RI DQWHULRU HGJH RI GRUVDO VXUIDFH RI HWKPRLG ERQH LQ IRXU VSHFLHV RI +HPLFDUDQ[ ,,, 6XERUELWDO VHULHV LQ +HPLFDUDQ[ ]HORWHV ,9 'RUVDO YLHZ RI WZR UHSUHVHQWDWLYH VXERUELWDO VKHOYHV LQ +HPLFDUDQ[ DPE\UK\QFKXV 9 /RZHU MDZ RI +HPL FD UDQ[ ]HORWHV $ 9, 2XWOLQH RI SRVWHULRU HGJH RI OHIW GHQWDU\ LQ +HPLFDUDQ[ 9,, /DWHUDO YLHZ RI XSSHU MDZ RI +HPLFDUDQ[ ]HORWHV 9,,,2XWOLQH RI GRUVDO HGJH RI OHIW SUHPD[LOODU\ LQ +HPL FDUDQ[ ,;/DWHUDO YLHZ RI K\RPDQGL EX DU ERQHV RI +HPLFD UDQ[ ]HORWHV ; /DWHUDO RXWOLQH RI V\PSOHFWLF ERQH LQ +HPLFDUDQ[ B B ;, /DWHUDO RXWOLQH RI SWHU\JRLG ERQH LQ +HPLFD UDQ[ B ;,,/DWHUDO YLHZ RI RSHUFOH VXERSHUFOH DQG LQWHU RSHUFOH LQ +HPLFDUDQ[ ]HORWHV ;,,,$GSKDU\QJHDO YLHZ RI EDVLK\DO ERQH DQG EUDQFKLDO HOHPHQWV RI +HPLFDUDQ[ ]HORWHV ;,9 /DWHUDO YLHZV RI K\DO ERQHV RI +HPLFDUDQ[ ]HORWHV ;9 2XWOLQHV RI VHOHFWHG K\DO HOHPHQWV LQ +HPLFDUDQ[ W B ;9, $SSHQGLFXODU VNHOHWRQ RI +HPLFDUDQ[ ]HORWHV ;9,, 2XWOLQH ODWHUDO YLHZ RI SRVWFUDQLDO D[LDO DQG PHGLDO VNHOHWRQ H[FOXVLYH RI FDXGDO VNHOHWRQ LQ +HPLFD UDQ[ ]HORWHV [

PAGE 12

;9,,, 3WHU\JLRSKRUH OHSLGRWULFK DUWLFXODWLRQ LQ +HPLFDUDQ[ ]HORWHV ;,;/DWHUDO RXWOLQHV RI WKH GLVWDO HQGV RI DQDO SWHU\JLRSKRUHV LQ +HPLFDUDQ[ ;;5HSUHVHQWDWLYH YHUWHEUDH LQ +HPLFDUDQ[ ]HORWHV ;;,/DWHUDO YLHZ RI FDXGDO VNHOHWRQ RI +HPLFDUDQ[ ]HORWHV ;;,,2QWRJHQHWLF IXVLRQ DQG GHYHORSPHQW LQ +HPLFDUDQ[ ]H RWHV DQG &K RURVFRPEUXV FKU\VXUXV ;,

PAGE 13

$%%5(9,$7,216 QVWLWXW LRQV $01+ $163 %01+ &$6 &$668 &0 )01+ )6%& )68 *&5/ /$&0 01+1 10& 501+ 6,2 7$%/ 78 8%& 8&/$ 8) 8610 $PHULFDQ 0XVHXP RI 1DWXUDO +LVWRU\ 1HZ
PAGE 14

S SDULHWDO 352 SURRWLF 36 SDUDVSKHQRLG 372 DXWRSWHURWLF 376 SWHURVSKHQRLG 30 SUHYRPHU 6 VFOHURWLF 63+ DXWRVSKHQRWLF 68% VXERUELWDO 682 VXSUDRFFLSL WDO %UDQFKLRFUDQLXP 2URPDQGL EXODU UHJLRQ 8SSHU MDZ ERQHV 0; PD[L ODU\ 30; SUHPD[L DU\ 60; VXSUDPD[LODU\ /RZHU MDZ ERQHV $1 $5 +\RLG UHJLRQ % %+ &+ (+ +0 ,+ ,3 /++ 0637 0737 23 3$/ 323 37 4 623 69 8+ 8++ %UDQFKLDO UHJLRQ DQJXODU DUWLFXODU GHQWDU\ EUDQFKLRVWHJDO UD\V EDVLK\D FHUDWRK\D HSLK\DO K\RPDQGL EX ODU LQWHUK\DO LQWHURSHUFH ORZHU K\SRK\DO PHVRSWHU\JRLG PHWDSWHU\JRLG RSHUFOH SDODWLQH SUHRSHUFOH SWHU\JRLG TXDGUDWH VXERSHUFH V\PSOHFWLF XURK\D XSSHU K\SRK\DO EDVLEUDQFKLDO FHUDWREUDQFKL D %% &% ;, L

PAGE 15

(% +% 3% HSLEUDQFKLDO K\RSREUDQFKLDO SKDU\QJREUDQFKLDO $SSHQGLFXODU 6NHOHWRQ 3HFWRUDO JLUGOH &/ FOHLWKUXP &2 FRUDFRLG /(3 OHSLGRWULFKV 3&/ SRVWFOHLWKUXP 370 SRVWWHPSRUD 5 UDG LDOV 6& VFDSXOD 6&/ VXSUDFOHLWKUXP 3HOYLF JLUGOH %37 EDVLSWHU\JLXUQ /(3 OHSLGRWULFKV $[LDO 6NHOHWRQ &9 FDXGDO YHUWHEUDH (35 HSLSOHXUDO ULE 3&9 WUXQN SUHFDXGDOf YHUWHEUDH 35 SOHXUDO ULE 0HGLDO 6NHOHWRQ '37 GLVWDO SWHU\JLRSKRUHV /(3 OHSLGRWULFKV 3' SUHGRUVDOV VXSUDQHXUDVf 337 SUR[LPDO SWHU\JLRSKRUHV &DXGDO 6NHOHWRQ &$3 DQWHSHQXOWLPDWH FDXGDO YHUWHE &3 SHQXOWLPDWH FDXGDO YHUWHEUD (3 HSXUDO +6 KHPDO VSLQH +< K\SXUD 16 QHXUDO VSLQH 3&5 SULQFLSDO FDXGDO UD\ 6&5 VHFRQGDU\ FDXGDO UD\ 81 XURQHXUD 85 XURVW\ODU WHUPLQDOf YHUWHEUD ;,9

PAGE 16

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 6\VWHPDWLFV RI WKH *HQHUD +HPLFDUDQ[ DQG $WXOH 3LVFHV &DUDQJLGDHf ZLWK DQ $QDO\VLV RI WKH &ODVVLILFDWLRQ RI WKH )DPL\ %\ :LOOLDP 6HDPDQ -U $XJXVW &KDLUPDQ &DUWHU 5 *LOEHUW 0DMRU 'HSDUWPHQW =RRORJ\ 7KH FDUDQJLG ILVK JHQXV +HPLFDUDQ[ %OHHNHU LV DQ XQFRPPRQ FRPSRQn HQW RI WKH VXEWURSLFDO DQG WURSLFDO LFKWK\RIDXQD RI WKH $WODQWLF DQG (DVWHUQ 3DFLILF 2FHDQV $QDO\VLV RI VSHFLPHQV IURP WKURXJKRXW WKH UDQJH IRU H[WHUQDO PRUSKRORJLFDO DQG RVWHRORJLFDO FKDUDFWHUV ZDV SHUn IRUPHG WR UHVROYH WKH V\VWHPDWLF VWDWXV RI WKH QRPLQDO VSHFLHV RI +HPLFDUDQ[ %DVHG RQ H[DPLQDWLRQ RI PRUSKRPHWULF PHULVWLF DQG RVWHRORJLFDO FKDUDFWHUV IRXU VSHFLHV DUH UHFRJQL]HG + DPEO\UK\QFKXV &XYLHUf D ZLGHUDQJLQJ :HVWHUQ $WODQWLF VKRUH VSHFLHV WKDW LV GRFXPHQWn HG WR EH HVWXDULQH GHSHQGHQW +B ELFRORU *XQWKHUf RI WKH (DVWHUQ $WODQWLF FORVHO\ UHODWHG WR DPEO\UK\QFKXV EXW GLIIHULQJ ZLWK UHJDUG WR QXPEHU RI GRUVDO DQG DQDO UD\V OHQJWK RI FDXGDO OREHV DQG VHYHUDO RVWHRORJLFDO FKDUDFWHUV DQG +B ]HORWHV *L EHUW DQG +B HXFXUXV *XQWKHUf ZKLFK RFFXU V\PSDWULFD\ RYHU PXFK RI WKHLU UDQJHV DORQJ WKH (DVWHUQ 3DFLILF FRDVW IURP 0H[LFR WR 3HUX 7KH ODWWHU WZR VSHFLHV DUH GLVWLQn JXLVKHG RQ WKH EDVLV RI WRRWK PRUSKRORJ\ ERG\ EDUV FDXGDO VFXWH ZLGWK DQG LQ ODUJHU LQGLYLGXDOV SHFWRUDO ILQ OHQJWK +B ]HORWHV DQG +B HXFXUXV DUH PRUH FORVHO\ UHODWHG WR HDFK RWKHU WKDQ HLWKHU LV WR +B DPEO\UK\QFKXV DQG + ELFRORU [Y

PAGE 17

7R GHVFULEH WKH RVWHRORJ\ RI +HPLFDUDQ[ WZR H[LVWLQJ PHWKRGV IRU REWDLQLQJ VNHOHWDO PDWHULDO IURP SUHVHUYHG VSHFLPHQV ZHUH FRPELQHG IRU WKH ILUVW WLPH 7KXV ODUJHU SUHVHUYHG PDWHULDO ZDV KHDWHG LQ HQ]\PH EDVHG GHWHUJHQW VROXWLRQ DQG ULQVHG ZLWK DPPRQLD WKHUHE\ VSHHGLQJ XS GLVDUWLFXODWLRQ %HFDXVH WKH VSHFLHV RI +HPLFDUDQ[ DQG $WXH DUH VRPHWLPHV FRPELQHG LQ D VLQJOH JHQXV DQG VLQFH D QXPEHU RI ZRUNHUV KDYH TXHVWLRQHG WKHLU UHODWLRQVKLS WKH K\SRWKHVLV WKDW WKH WZR JHQHUD DUH GLVWLQFW EXW FORVHn O\ UHODWHG ZDV H[SORUHG 2VWHRORJLFDO GDWD IURP WKH SUHVHQW VWXG\ ZHUH FRPELQHG ZLWK D V\QWKHVLV RI WKH RVWHRORJLFDO FDWDORJ RI 6X]XNL WR DVVHVV WKH UHODWLRQVKLS RI +HPLFDUDQ[ WR WKH ,QGR3DFLILF &DUDQJLGDH %DVHG RQ WKH QXPHULFDO WD[RQRPLF DQDO\VLV FRQGXFWHG FRQFOXGH WKDW +HPLFDUDQ[ DQG $WXOH DUH JHQHULFDOO\ GLVWLQFW WKRXJK YHU\ FORVHO\ UHODWHG 7KH SKHQHWLF FODVVLILFDWLRQ RI WKLV VWXG\ FRQILUPV WR D ODUJH GHJUHH WKH SK\ORJHQ\ SURSRVHG E\ 6X]XNL IRU -DSDQHVH FDUDQJLGV 6WXG\ RI OLPLWHG JHRJUDSKLF DQG RQWRJHQHWLF VDPSOHV RI $WXOH SURYLGHV WKH EDVLV IRU UHYLHZ RI WKH JHQXV )LYH YDOLG VSHFLHV DOO LQ WKH ,QGR3DFLILF EDVLQ DUH UHFRJQL]HG $B NDO D $B PDWH $B PDO DP $B GMHGDED DQG $B PDFUXUXV 'LDJQRVWLF FKDUDFWHUV LQFOXGH GHQWLWLRQ ODWHUDOOLQH UDWLRV DQG QXPEHU RI ODWHUDOOLQH VFXWHV (FRORJLFDOO\ ERWK +HPLFDUDQ[ DQG $WXOH DUH FKDUDFWHUL]HG E\ HDUO\ MXYHQLOH VWDJHV WKDW DUH FRPPHQVDO ZLWK MHOO\ILVKHV 7KH SRVVLELOn LW\ RI WUDQVRFHDQLF GLVSHUVDO E\ FXUUHQWV LV VHHPLQJO\ FRQILUPHG E\ WKH WUDQVSRUW RI + ELFRORU IURP $IULFD WR QRUWKHDVWHUQ 6RXWK $PHULFD ;9 L

PAGE 18

,1752'8&7,21 7KH WHOHRVWHDQ ILVK IDPLO\ &DUDQJLGDH ZKRVH PHPEHUV DUH FRPPRQO\ NQRZQ DV WKH MDFNV SPSDQRV DQG VFDGV LV ZHOO NQRZQ EHFDXVH RI WKH FRPPHUFLDO DQGRU VSRUW ILVKHULHV VXSSRUWHG E\ D UHODWLYHO\ VPDOO QXPEHU RI LWV VSHFLHV 0DQ\ PHPEHUV RI WKLV GLVWLQFWLYH SULPDULO\ FLUFXP WURSLFDO PDULQH IDPLO\ DUH VWLOO SRRUO\ NQRZQ V\VWHPDWLFDOO\ KRZHYHU DQG DV %HUU\ KDV QRWHG r WKH PRUSKRORJLFDO FKDUDFWHULVWLFV DQG OLPLWV RI D QXPEHU RI FDUDQJLG JHQHUD DUH LQDGHTXDWHO\ GHILQHG SHQGLQJ WKRURXJK DQDO\VLV RI WKH VSHFLHV LQYROYHG 6XFK LV WKH FDVH IRU +HPLFDUDQ[ %OHHNHU D VPDOO XQFRPPRQO\ FROOHFWHG JHQXV ZKRVH VSHFLHV DUH IRXQG LQ WKH WURSLFDO DQG VXEWURSLFDO FRDVWDO ZDWHUV RI WKH $WODQWLF DQG HDVWHUQ 3DFLILF 2FHDQV :LWK WKH DFFXPXODWLRQ RI SUHn VHUYHG VSHFLPHQV RI WKH QRPLQDO VSHFLHV LQ LQVWLWXWLRQDO FROOHFWLRQV LW LV QRZ SRVVLEOH WR UHYLVH WKH VSHFLHV RI +HPLFDUDQ[ %DVHG RQ H[DPLQDWLRQ RI f LQWUDVSHFLILF YDULDWLRQ RI H[WHUQDO PRUSKRORJ\ LQFOXGLQJ VHYHUDO FKDUDFWHULVWLFV WKDW KDYH QRW EHHQ LQFOXGHG LQ HDUOLHU DFFRXQWV RI WKH VSHFLHV DQG f RVWHRORJ\ ZKLFK KHUHWRIRUH KDV QRW EHHQ VWXGLHG LQ +HPLFDUDQ[ WKH OLPLWV RI WKH JHQXV DUH DOVR GHILQHG LQ WKLV VWXG\ ,Q VHHNLQJ WR LGHQWLI\ WKH FDUDQJLG JHQHUD ZLWK ZKLFK +HPLFDUDQ[ PLJKW VKDUH D PRUH RU OHVV FRPPRQ DQFHVWRU LW EHFDPH DSSDUHQW WKDW WKH VXSSRVHGO\ SK\ORJHQHWLF FODVVLILFDWLRQ RI WKH &DUDQJLGDH UHVWV PDLQO\ RQ VXEMHFWLYH JURXQGV :LWKRXW DQ DEXQGDQFH RI IRVVLO HYLGHQFH WR SURYLGH DQ REMHFWLYH EDVLV IRU GHILQLWLRQ RI SULPLWLYH FKDUDFWHUV

PAGE 19

VWXGHQWV RI WKLV DQG PDQ\ RWKHU JURXSV KDYH WHQGHG WR EDVH WKHLU FODVVn LILFDWLRQV RQ HLWKHU LQWXLWLRQ RU WKH DVVXPSWLRQ WKDW WKH PRVW ZLGHO\ VKDUHG FKDUDFWHUV DUH PRVW W\SLFDO RI DQFHVWUDO IRUPV ,QGHHG WD[RQ RPLFDOO\ VLJQLILFDQW FKDUDFWHUV KDYH IUHTXHQWO\ EXW XQFULWLFDOO\f EHHQ DVVXPHG WR EH RI VLJQLILFDQFH LQ GHILQLQJ SK\ORJHQHWLF WUHQGV WKH GDQJHU RI VXFK D SUDFWLFH ZDV SRLQWHG RXW E\ *LOEHUW DQG %DLOH\ f 6RNDO DQG 6QHDWK Af H[WHQVLYHO\ GLVFXVVHG WKH SUREOHPV DWn WHQGDQW WR LQIHUHQFH RI SK\ORJHQ\ IURP DIILQLW\ PRUSKRORJLFDO UHVHPEn ODQFH HWFf RI RUJDQLVPV 7R LGHQWLI\ WKH JHQHUD RI FORVHU DIILQLW\ WR +HPLFDUDQ[ WZR DOWHUQDWLYH DSSURDFKHV PD\ EH HPSOR\HG 2YHUDOO FRPSDULVRQ RI JHQHUD DV RQH PLJKW GR LQ NH\LQJRXW D VSHFLPHQ XWLOL]LQJ SHUKDSV RQO\ D IHZ FKDUDFWHUV WKDW DUH PRUH VLJQLILFDQW WD[RQRPLF RU SK\ORJHQHWLF"f LQ FRQVWUXFWLQJ D SK\ RJHQ\ &RPSDULVRQV EDVHG RQ ODUJH QXPEHUV RI QRQZHLJKWHG UDQGRPO\ VHOHFWHG FKDUDFWHUV WKDW UHVXOW LQ DQ REMHFWLYH GHVFULSWLRQ RI SKHQHWLF UHVHPEODQFH 7KH IRUPHU DSSURDFK LV W\SLFDO RI WKH OLWHUDWXUH GHDOLQJ ZLWK WKH &DUDQJLGDH RI UHFHQW LPSRUW LV WKH FODVVLILFDWLRQ RI WKH WUDGLWLRQDOO\ UHFRJQL]HG DQG DFFHSWHG JHQHULF WD[D RI -DSDQHVH FDUDQJLGV E\ 6X]XNL f ZKR EDVHG D SK\ORJHQ\ XSRQ RVWHRORJLFDO FKDUDFWHUV $OVR RQ WKH EDVLV RI ZHLJKWHG FKDUDFWHUV UHIOHFWLQJ JHQHUDO PRUSKRORJLFDO VLPLODULWLHV WKH JHQXV $WXOH RI WKH ,QGR3DFLILF EDVLQ ZDV UHIHUUHG WR DV D SRVVLEOH FORVH UHODWLYH RI +HPLFDUDQ[ E\ 1LFKROV AE f ,QGLUHFW FRPPHQW RQ WKH DIILQLW\ RI +HPLFDUDQ[ WR $WXOH ZDV SURYLGHG E\ )RZOHU ZKR LQFOXGHG VSHFLHV RI ERWK JHQHUD LQ WKH LQYDOLG JHQXV $HSHV 3UHOLPLQDU\ H[DPLQDWLRQ DQG FRPSDULVRQ RI QRPLQDO VSHFLHV RI

PAGE 20

$WXMH ZLWK +HPLFDUDQ[ FRQILUPV WKHVH DSSUDLVDOV %HFDXVH $WXH LV SRRUO\ NQRZQ DQG LWV VSHFLHV IUHTXHQWO\ FRQIXVHG DQG EHFDXVH RI UHODWLYHO\ FORVH DIILQLW\ WR +HPLFDUDQ[ LWV VSHFLHV NQRZQ IURP OLPLWHG FROOHFWLRQV DUH UHYLHZHG 7KH UHODWLRQVKLS RI $WXOH WR +HPLFDUDQ[ ZLOO EH DVVHVVHG DV SDUW RI WKH RYHUDO UHYLHZ RI JHQHULF FODVVLILFDWLRQ SUHVHQWHG LQ WKLV VWXG\ 7KH VHFRQG DSSURDFK LV EDVHG RQ WKH SULQFLSOHV RI QXPHULFDO WD[RQRP\ %HFDXVH WKHVH WHFKQLTXHV KDYH QRW SUHYLRXVO\ EHHQ DSSOLHG WR WKH &DUDQJLG DH RU PDQ\ RWKHU WHOHRVWV WKH SURFHGXUHV RI 6RNDO DQG 6QHDWK f} RQ ZKLFK WKH\ DUH EDVHG DUH EULHIO\ VXPPDUL]HG DQG DUH WKHQ HPSOR\HG WR LGHQWLI\ WKRVH JHQHUD WR ZKLFK +HPLFD UDQ[ LV UHODWHG ,Q DGGLWLRQ WR SURYLGLQJ DQ DOWHUQDWH PHWKRG RI LGHQWLI\LQJ UHODWLYH DIILQLWLHV RI JHQn HUD QXPHULFDO WD[RQRP\ ZLOO EH XVHG LQ WKLV VWXG\ WR JHQHUDWH D SKHQHWLF FODVVLILFDWLRQ RI WKH ,QGR3DFLILF &DUDQJLGDH $V D PHDQV RI HYDOXDWLQJ WKH SK\ORJHQ\ SURSRVHG E\ 6X]XNL f WKH RVWHRORJLFDO FKDUDFWHUV KH XVHG ZLOO EH LQFRUSRUDWHG LQ WKLV DOWHUQDWH FODVVLILFDWLRQ LQVRIDU DV SRVVLEOH ,Q UHYLHZLQJ 6X]XNLnV ZRUN LW ZDV QHFHVVDU\ WR UHFRQFLOH K\SRn WKHVL]HG SK\OHWLF WUHQGV ZLWK WKH IRVVLO UHFRUG D VXPPDU\ RI SULPLWLYH FDUDQJLG FKDUDFWHUV LV HVVHQWLDO WR WKLV WDVN $V ZLWK PDQ\ PDULQH WHOHRVW IDPLOLHV WKH &DUDQJLGDH DUH PRUH GLYHUVH LQ WKH ,QGR3DFLILF UHJLRQ %HFDXVH PRUH JHQHUD DUH SUHVHQW WKHUH WKDQ LQ WKH $WODQWLF DQG (DVWHUQ 3DFLILF 2FHDQV LW LV OLNHO\ WKDW WKH ,QGR3DFLILF EDVLQ LV WKH FHQWHU RI RULJLQ RI WKH &DUDQJLGDH 7DEOH f 2I LQWHUHVW LV WKH DSSDUHQW IDLOXUH RI VHYHUDO JHQHUD IURP WKH ,QGR3DFLILF WR HQWHU WKH $WODQWLF RU FURVV WKH (DVWHUQ 3DFLILF SDVW +DZDLL SHUKDSV SDUWO\ EHFDXVH RI HLWKHU UHODWLYH DJH RI JHQHUD RU WKHLU UHODWLYH UDWHV RI GLVSHUVDO VHH 7DEOH f $OVR RI QRWH LV WKDW VHYHUDO

PAGE 21

JHQHUD LQFOXGLQJ +HPLFDUDQ[f DUH IRXQG RQO\ LQ WKH $WODQWLF DQG (DVWHUQ 3DFLILF EDVLQV 7KLV PD\ EH GXH WR Df ODFN RI FULWLFDO VWXG\ DQG GHILQLWLRQ RI JHQHUD 0DQVXHWL t %HUU\ f UHVXOWLQJ LQ VLPSOH XQUHVROYHG V\QRQ\PLHV RU Ef HYROXWLRQ RI QHZ WD[D JHQHUDf IURP VRPH JHQHUD WKDW GLG LQGHHG UHDFK WKH $WODQWLF DQGRU (DVWHUQ 3DFLILF HLWKHU WKURXJK WKH 7HWK\V 6HD RI SUH0LRFHQH WLPHV RU DURXQG WKH VRXWKHUQ WLS RI $IULFD RU DFURVV WKH 3DFLILF 2FHDQ 7KH QXPHULFDO WD[RQRP\ JHQHUDWHG LQ WKLV VWXG\ PD\ DOVR SURYH XVHIXO LQ DVVHVVLQJ WKH YDULRXV HYROXWLRQDU\ KLVWRULHV RI WKH JHQHUD RI &DUDQJLGDH ,Q SDUWLFXODU LW ZLOO EH HPSOR\HG WR FRPPHQW RQ WKH DIILQLWLHV RI +HPLFDUDQ[

PAGE 22

0(7+2'6 &RXQWV DQG PHDVXUHPHQWV RI H[WHUQDO PRUSKRORJLFDO FKDUDFWHUV RI ILVK VSHFLPHQV H[DPLQHG ZHUH EDVHG DV PXFK DV SRVVLEOH RQ VWDQGDUG LFKWK\RORJLFDO SURFHGXUH )RU WKH PRVW SDUW PHULVWLF DQG PRUSKRPHWULF GDWD DUH H[SUHVVHG LQ WHUPV RI WKH GHILQLWLRQ RI +XEEV DQG /DJOHU f +RZHYHU WKH XQLTXH FKDUDFWHULVWLFV RI FHUWDLQ &DUDQJLGDH QHFHVVLWDWH WKH XVH RI DGGLWLRQDO RU PRGLILHG FRXQWV DQG PHDVXUHPHQWV LQ WKLV UHJDUG KDYH DWWHPSWHG WR XVH WKRVH FKDUDFWHUV DOUHDG\ GHILQHG LQ WKH OLWHUDWXUH GHDOLQJ VSHFLILFDOO\ ZLWK FDUDQJLG ILVKHV LH %HUU\ :LOOLDPV DQG %HUU\ f 'HILQLWLRQV RI WHUPV IURP WKH OLWHUDWXUH DV ZHOO DV WHUPLQRORJ\ XQLTXH WR WKLV VWXG\ DUH SUHVHQWHG LQ WKH *ORVVDU\ $OO PHDVXUHPHQWV ZHUH WDNHQ XVLQJ GLDO FDOLSHUV GLVWDQFHV JUHDWHU WKDQ PP ZHUH UHDG WR WKH QHDUHVW PL LPHWHU 'HGXFWLRQ RI HYROXWLRQDU\ KLVWRU\ XVXDOO\ LV EDVHG RQ WKH DVVXPSn WLRQ WKDW GHJUHH RI UHODWLRQVKLS LV SRVLWLYHO\ FRUUHODWHG ZLWK GHJUHH RI UHVHPEODQFH 7R VWUHQJWKHQ WKH FRQFOXVLRQV EDVHG RQ VXFK FRPSDULVRQV WKH QXPEHU RI FKDUDFWHUV H[DPLQHG PD\ EH LQFUHDVHG WR UHGXFH PLVOHDGLQJ LQWHUSUHWDWLRQ RI FRQYHUJHQFH RI FHUWDLQ FKDUDFWHUV $OWKRXJK H[WHUQDO PRUSKRORJ\ LV PRVW FRPPRQO\ HPSOR\HG RVWHRORJLFDO IHDWXUHV PD\ EH DOVR XVHG WR H[SDQG WKH HYLGHQFH RI WD[RQRP\ DQG WR FRQVWUXFW SK\ORJHQLHV EDVHG RQ GHJUHH RI UHVHPEODQFH ,QGHHG WKH VXSSRVHG FRQVHUYDWLYH QDWXUH RI RVWHRORJLFDO FKDUDFWHUV KDV SURPSWHG ZRUNHUV WR DFFHSW WKHP DV SUHIHUUHG NLQGV RI HYLGHQFH 1RUGHQ >c @ IRU H[DPSOH

PAGE 23

DFNQRZOHGJHG WKLV EXW KH DOVR HPSOR\HG GHYHORSPHQWDO VWDJHV DQG RWKHU PRUSKRORJLFDO DVSHFWVf +RZHYHU WKH RFFXUUHQFH RI VLJQLILFDQW LQIUDn VSHFLILF YDULDWLRQ RI FHUWDLQ RVWHRORJLFDO FKDUDFWHUV LQ VRPH JURXSV RI ILVKHV 6FKOHXWHU DQG 7KRPHUVRQ f GHPRQVWUDWHV WKH IDOODF\ RI D W\SRORJLFDO DSSURDFK WR RVWHRORJ\ 7KH QHHG WR DFFRXQW IRU LQIUDn VSHFLILF RVWHRORJLFDO YDULDWLRQ EHIRUH LQFRUSRUDWLQJ VXFK LQIRUPDWLRQ LQ WD[RQRPLF GHILQLWLRQV LV DSSDUHQW $QDO\VLV RI LQIUDVSHFLILF RVWHRORJLFDO YDULDWLRQ ZDV EDVHG RQ H[DPn LQDWLRQ RI XS WR ILYH VSHFLPHQV RI FORVHO\ VLPLODU VWDQGDUG OHQJWK PPf 2QWRJHQHWLF FKDQJH ZDV VWXGLHG LQ VSHFLPHQV UDQJLQJ IURP WR PP 6/ 2VWHRORJLFDO REVHUYDWLRQV ZHUH PDGH SULPDULO\ RQ FOHDUHG DQG VWDLQHG VSHFLPHQV EXW RWKHU SUHSDUDWLRQV ZHUH DOVR HPSOR\HG DV GLVn FXVVHG EHORZ 6NHOHWDO PDWHULDO H[DPLQHG LV OLVWHG LQ $SSHQGL[ LOO $V QHDUO\ DV SRVVLEOH RVWHRORJLFDO WHUPLQRORJ\ FRQIRUPV WR WKDW XVHG LQ PRUH UHFHQW SXEOLFDWLRQV RQ WKH &DUDQJLGDH ,H 6X]XNL %HUU\ f +RZHYHU DOO XVDJH KDV EHHQ UHFRQFLOHG ZLWK DFFHSWHG LFKWK\RORJLFDO OLWHUDWXUH SHUWLQHQW LQ WKLV UHJDUG DUH +DUULQJWRQ RVWHRFUDQLXPf 6PLWK DQG %DLOH\ DQG GRUVDO VNHOHWRQ VXEn RFXODU VHULHVf DQG *RVOLQH FDXGDO VNHOHWRQf 7HUPLQRORJ\ DW YDULDQFH ZLWK 6X]XNL f LV VR QRWHG LQ WKH WH[W $ OLVWLQJ RI VNHOHWDO HOHPHQWV LV SURYLGHG LQ WKH $EEUHYLDWLRQV VHFWLRQ ,Q WKH RVWHRORJLFDO VHFWLRQ D GHWDLOHG DFFRXQW RI WKH ORFDWLRQ RULHQWDWLRQ DQG PRUSKRORJ\ RI HDFK VNHOHWDO HOHPHQW LV SURYLGHG IRU RQH VSHFLHV RI +HPLFDUDQ[ QDPHO\ + ]HORWHV )ROORZLQJ WKH GHVFULSWLRQ RI HDFK ERQH DQ\ LQWHUVSHFLILF GLIIHUHQFHV DUH QRWHG 0DWHULDO H[DPLQHG LQ WKH FRXUVH RI WKLV VWXG\ LV OLVWHG LQ HDFK VSHFLHV DFFRXQW )RU HDFK ORW RI VSHFLPHQV VWXGLHG GDWD DUH SUHVHQWHG

PAGE 24

LQ WKH IROORZLQJ IRUPDW ,QVWLWXWLRQDO FDWDORJ QXPEHU QXPEHU RI VSHFLn PHQV DQG VL]H UDQJH PP 6/f LQ SDUHQWKHVHV DQG ORFDOLW\ GDWD FRXQWU\ VWDWH RU SURYLQFH FRXQW\ LI LQ 8 6 JHRJUDSKLF ORFDOLW\ ODWLWXGH ORQJ WXGH GHSWK FUXLVH FROOHFWRU GDWHf ,QVWLWXWLRQDO DEEUHYLDWLRQV DUH OLVWHG DW WKH IURQW RI WKH WH[W 2XWOLQH GUDZLQJV RI PDWHULDO ZHUH PDGH ZLWK D :LOG FDPHUD OXFLGD PRGHOOHG LQ SHQFLO DQG LQN GUDZLQJV ZHUH WKHQ H[HFXWHG 6WDWLVWLFDO WUHDWPHQW RI GDWD ZDV FDUULHG RXW E\ PHDQV RI D 0RQURH (SLF &DOFXODWRU LQ WKH FRPSXWDWLRQ RI GHVFULSWLYH VWDWLVWLFV DQG D 0RQURH (SLF &DOFXODWRU LQ WKH JHQHUDWLRQ RI WVWDWLVWLFV IRU XQHTXDO VDPSOH VL]H DQG XQHTXDO VWDQGDUG GHYLDWLRQ 6QHGHFRU f &RPSDULVRQ RI ODUJHU QXPEHUV RI VDPSOHV ZDV HIIHFWHG XVLQJ WKH JUDSKLFDO DSSUR[LPDWLRQ WR D PXOWLSOHFRPSDULVRQ WHVW RI (EHUKDUGW f 7KH DGYDQWDJHV RI WKLV WHFKQLTXH HVSHFLDOO\ SUHVHUYDWLRQ RI WKH VWDWHG OHYHO RI VLJQLILFDQFH DUH GLVFXVVHG E\ (EHUKDUGW VLJQLILFDQFH OHYHOV VWDWHG LQ ILJXUH OHJHQGV RI WKLV WH[W DUH GHULYHG IURP (EHUKDUGW )LJXUH f ,QVSHFWLRQ RI GDWD UHYHDOV WKDW PDQ\ FKDUDFWHUV IROORZ DOOR PHWULF JURZWK FXUYHV IRU VXFK FKDUDFWHUV UHVWULFWHG VWUDLJKWOLQH SRUn WLRQV RI WKH FXUYH ZHUH FRPSDUHG IRU GLIIHUHQW VDPSOHV RI VLPLODUVL]HG LQGLYLGXDOV 2QWRJHQHWLF JURZWK LV GLVFXVVHG LQ WKH VSHFLHV DFFRXQWV 1XPHULFDO 7D[RQRP\ $V HPSOR\HG E\ 0F$OOLVWHU f WKH WHFKQLTXHV RI 6RNDO DQG 6QHDWK f KDYH EHHQ VKRZQ WR EH RI XWLOLW\ LQ DVVHVVLQJ DQG HVWDEOLVKLQJ D SKHQHWLF FODVVLILFDWLRQ RI ILVKHV 0F$OOLVWHU f SURn YLGHV D VXPPDU\ RI WKH PHWKRGV RI FRGLQJ FKDUDFWHUV DQG FDOFXODWLQJ DQG WDEXODWLQJ VLPSOH PDWFKLQJ FRHIILFLHQWV KRZHYHU KH GRHV QRW H[WHQG WKH WHFKQLTXHV RI 6RNDO DQG 6QHDWK EH\RQG D FRHIILFLHQW PDWUL[ QRU GRHV KH

PAGE 25

VXEMHFW KLV GDWD WR VWDQGDUG FOXVWHU DQDO\VLV WR SORW D GHQGURJUDP 7KHUHIRUH D VXPPDU\ RI WKH WHFKQLTXHV RI 6RNDO DQG 6QHDWK KHUHLQ HPn SOR\HG LV SURYLGHG 6HOHFWLRQ RI FKDUDFWHUV &RGLQJ (DFK FKDUDFWHU ZDV UHFRUGHG DV EHLQJ HLWKHU SUHVHQW RU DEVHQW IRU HDFK RSHUDWLRQDO WD[RQRPLF XQLW 78fLH JHQHULF WD[RQf $ OLVW RI WKH FKDUDFWHU VWDWHV LV SURYLGHG LQ 7DEOH D PDWUL[ RI FKDUn DFWHU VWDWHV DSSHDUV LQ 7DEOH &DOFXODWLRQ RI PDWFKLQJ FRHIILFLHQWV RI DVVRFLDWLRQ EDVHG RQ WKH IRUPXOD 6VP PQ ZKHUH 6VP LV WKH FRHIILFLHQW P LV WKH QXPEHU RI FKDUDFWHU VWDWHV VKDUHG EHWZHHQ 278nV DQG Q LV WKH WRWDO QXPEHU RI FKDUn DFWHU VWDWHV FRPSDUHG 0DWFKLQJ FRHIILFLHQWV DUH OLVWHG LQ 7DEOH &OXVWHU DQDO\VLV $V HYDOXDWHG E\ 6RNDO DQG 6QHDWK f WKH ZHLJKWHG SDLU JURXS PHWKRG RI FOXVWHU DQDO\VLV XVLQJ DYHUDJHV WR FDOFXODWH QHZ VLPLODULW\ FRHIILFLHQWV IRU HDFK JHQHUDWLRQ UHVXOWV LQ WKH OHDVW GLVWRUWLRQ RI GHQGURJUDPV 7KLV WHFKQLTXH LV KHUHLQ HPSOR\HG WR SORW GHQGURJUDPV QHZ PHPEHUV DUH ZHLJKWHG DV HTXDO WR WKH VXP WRWDO RI ROG FOXVWHU JURXS PHPEHUV 6RNDO DQG 6QHDWK f $ VHFRQG JHQHUDWLRQ PDWUL[ LV LOOXVWUDWHG LQ 7DEOH 3UHSDUDWLRQ RI 6NHOHWDO 0DWHULDO ,QYHVWLJDWLRQV RI WHOHRVWHDQ RVWHRORJ\ KDYH XVXDOO\ EHHQ EDVHG RQ Of ;UD\V RI VSHFLPHQV f FOHDUHG DQG VWDLQHG PDWHULDO DQGRU f GU\ ERQHV WKDW KDYH EHHQ FOHDQHG RI VRIW WLVVXHV /LPLWDWLRQV RI HDFK WHFKn QLTXH H[LVW ;UD\V REVFXUH BGLPHQVLRQDO GHWDLO DQG SUHYHQW GLUHFW KDQGOLQJ RI ERQHV YHU\ ODUJH VSHFLPHQV IUHTXHQWO\ IDLO WR FOHDU HYHQ DIWHU PRQWKV RI HQ]\PH GLJHVWLRQ DQG FHUWDLQ JURXSV DUH UHVLVWDQW WR WKH SURFHVV 0LOOHU DQG 9DQ /DQGLQJKDP f GLVVHFWLRQ DQG UHn PRYDO RI ERQHV IURP SUHVHUYHG VSHFLPHQV PD\ EH SURKLELWLYHO\ WLPH

PAGE 26

FRQVXPLQJ ZKHUHDV IUHVK PDWHULDO IURP ZKLFK GU\ ERQH SUHSDUDWLRQV PD\ EH REWDLQHG E\ PDFHUDWLRQ LV IUHTXHQWO\ QRW UHDGLO\ DYDLODEOH 7KXV WKH RVWHRORJLFDO FKDUDFWHUV RI PDQ\ ILVK JURXSV KDYH QRW EHHQ LQFRUSRUDWHG LQ V\VWHPDWLF VWXGLHV &ROOHFWLRQV RI FRPSDUDWLYH VNHOHWDO PDWHULDO RI WKH VSHFLHV RI +HPLFDUDQ[ DUH H[WUHPHO\ OLPLWHG %HFDXVH WKH HQ]\PH PHWKRG RI 7D\ORU f IRU FOHDULQJ DQG VWDLQLQJ VPDOO YHUWHEUDWHV GLG QRW \LHOG VDWLVn IDFWRU\ UHVXOWV RQ FDUDQJLG ILVKHV JUHDWHU WKDQ PP 6/ HPSOR\HG WZR UHFHQWO\ GHYHORSHG WHFKQLTXHV IRU WKH SUHSDUDWLRQ RI GU\ ERQHV IURP SUHVHUYHG PDWHULDO WR H[DPLQH WKH RVWHRORJ\ RI LQGLYLGXDOV RI +HPLFDUDQ[ DERYH PP 6/ IRXQG KRZHYHU WKDW .RQQHUWKnV f PHWKRG RI SUHn SDULQJ OLJDPHQWDU\ DUWLFXODWHG VSHFLPHQV FRQVXPHG DQ LQRUGLQDWH DPRXQW RI WLPH LQ WKH VNLQQLQJ DQG UHPRYDO RI WLVVXH IURP VSHFLPHQV 7KH SRVVLELOLW\ RI VNHOHWDO GDPDJH E\ FKORULQH ZKLFK PXVW EH HPSOR\HG LQ WKLV PHWKRG LV DOVR D GUDZEDFN 2VVLDQ f 0HDQZKLOH WKH WHFKQLTXH RI 2VVLDQ f IRU VSHF LPHQ GLVDUWLFXODWLRQ XVLQJ HQ]\PHEDVHG ODXQGU\ SUHn VRDNHUV FRQVLVWHQWO\ UHVXOWHG LQ SDUWLDO GLVLQWHJUDWLRQ RI VXSHUILFLDO ERQHV HVSHFLDOO\ GHUPDO HOHPHQWV RI WKH MDZV DQG RSHUFXODU VHULHV EHIRUH FRPSOHWH GLVDUWLFXODWLRQ FRXOG RFFXU 7R DYRLG WKHVH GLIILFXOWLHV FRPELQHG FRPSOHPHQWDU\ DVSHFWV RI HDFK WHFKQLTXH 3UHVHUYHG ZKROH FDUDQJLG VSHFLPHQV PP 6/f ZHUH WUDQVIHUUHG IURP DOFRKRO VWRUDJH LQWR %L] VROXWLRQ DQG PDLQWDLQHG DW A & IROORZn LQJ WKH SURFHGXUH RI 2VVLDQ f :LWKLQ N WR KRXUV DIWHU LQLWLDO LPPHUVLRQ GHWHULRUDWLRQ RI VXSHUILFLDO VNLQ DQG PHPEUDQHV WDNHV SODFH DOWKRXJKEHFDXVH LW SUHFHGHV ERQH GDPDJH VXFK GHWHULRUDWLRQ LV D XVHIXO VLJQDO RI LPPLQHQW RVWHRORJLFDO GLVLQWHJUDWLRQ RU DOWHUDWLRQ $W WKLV

PAGE 27

SRLQW WKHQ PRUH VXSHUILFLDO VNHOHWDO HOHPHQWV PD\ EH HDVLO\ UHPRYHG EHIRUH WKH\ DUH DOWHUHG HLWKHU LQGLYLGXDOO\ RU DV D XQLW DQG WKH UHPDLQn GHU RI WKH VNHOHWRQ DQG DWWDFKHG IOHVK UHWXUQHG WR D IUHVK %L] VROXWLRQ $IWHU EULHI DGGLWLRQDO VRDNLQJ WKH GHHSHU FUDQLDO DQG D[LDO PXVFOH PDVVHV DUH HDVLO\ VSOLW RII LQ FKXQNV WKXV HIIHFWLQJ FRQVLGHUDEOH WLPHVDYLQJV RYHU WKH PHWKRG RI .RQQHUWK f ([SRVXUH RI EDUH ERQH WR %L] VROXn WLRQ QHFHVVLWDWHV WHUPLQDWLRQ RI VRDNLQJ EXW WKH UHPDLQLQJ VRIW WLVVXHV PD\ QRZ EH UHDGLO\ UHPRYHG HVSHFLDOO\ LI WKH VSHFLPHQ LV VRDNHG LQ DPPRQLD DIWHU ULQVLQJ DV GLVFXVVHG E\ .RQQHUWK f %\ WKLV WLPH WRR DOO SUHVHUYDWLYH KDV EHHQ ZDVKHG RXW RI WKH VSHFLPHQ DQG PDFHUDWLRQ LQ ZDWHU PD\ DOVR EH HPSOR\HG WR UHPRYH UHPDLQLQJ WLVVXH :LWK MXGLFLRXV FRPELQDWLRQ RI WKH WHFKQLTXHV RI .RQQHUWK f DQG 2VVLDQ f LW LV QRZ SRVVLEOH WR SUHSDUH DGHTXDWH DPRXQWV RI XQn GDPDJHG RVWHRORJLFDO PDWHULDO IURP SUHVHUYHG ILVK VSHFLPHQV :LWK GLVn VHFWLRQ XQLWV RI WKH VNHOHWRQ PD\ EH UHWDLQHG LQ DUWLFXODWHG FRQGLWLRQ

PAGE 28

&/$66,),&$7,21 2) ,1'23$&,)& &$5$1*,'$( &ODVVLILFDWLRQV DUH IUHTXHQWO\ EDVHG RQ D UHODWLYHO\ ORZ QXPEHU RI WD[RQRPLF FKDUDFWHUV )RU H[DPSOH HYHU VLQFH %OHHNHUnV f f LQLWLDO WD[RQRPLF GLVWLQFWLRQ RI VHYHUDO FDUDQJLG JHQHUD RQ WKH EDVLV RI GHQWLWLRQ GLVWULEXWLRQ RI WHHWK KDV EHHQ DFFRUGHG VSHFLDO WD[RQRPLF LPSRUWDQFH LQ WKH FODVVLILFDWLRQ RI &DUDQJLGDH 2YHU WKH \HDUV D VPDOO QXPEHU RI DGGLWLRQDO FKDUDFWHUV KDYH EHHQ LQFRUSRUDWHG LQWR FODVVLILFDWLRQV DV D PHDQV RI GHILQLQJ FDUDQJLG WD[D SUHVHQFH RU DEn VHQFH RI ODWHUDOOLQH VFXWHV IRU H[DPSOH KDV EHHQ XWLOL]HG LQ WKH HVWDEOLVKPHQW RI VXEIDPLOLHV MXVW DV SUHVHQFH RU DEVHQFH RI GHWDFKHG ILQOHWV KDV EHHQ DVFULEHG YDOXH LQ JHQHULF GLDJQRVHV 0RUH H[WHQVLYH VXEVHTXHQW GHVFULSWLRQ RI RYHUDOO H[WHUQDO PRUSKRORJ\ RI VSHFLHV LQLWLn DOO\ GLVWLQJXLVKHG E\ RQH RU D IHZ GLDJQRVWLF FKDUDFWHUV KDV IRU WKH PRVW SDUW FRQILUPHG WKH LQLWLDO WD[RQRPLF LQWHUSUHWDWLRQV WKXV LPSO\n LQJ WKDW JURXSV RI FKDUDFWHUV YDU\ LQ D FRUUHODWHG IDVKLRQ 7KLV FRQn FOXVLRQ KDV DSSDUHQWO\ VHUYHG DV D FDUWH EODQFKH IRU WKH ZHLJKWLQJ RI FHUWDLQ FKDUDFWHUV DV PRUH LPSRUWDQW WKDQ RWKHUV LQ HVWDEOLVKLQJ WD[Rn QRPLHV 7KDW LV VXLWHV RI FRUUHODWHG FKDUDFWHUV PD\ EH LQFRUSRUDWHG LQWR WD[RQRP\ DV D JURXS LH WKH VLQJOH DGDSWLYH FRPSOH[ RI 0D\U HW D f E\ ZHLJKWLQJ D VLQJOH PHPEHU RI WKH VXLWH DQG OHWWLQJ LW UHSUHVHQW WKH JURXS WKXV HOLPLQDWLQJ WKH QHHG WR FRQWLQXDOO\ UHSHDW FKDUDFWHU VWDWH LQIRUPDWLRQ

PAGE 29

%HVLGHV WKH XVH RI ZHLJKWHG FKDUDFWHUV f§ ZKLFK DUH QRW DOZD\V GRFXPHQWHG f WR EH UHSUHVHQWDWLYH RI D VXLWH RU f WR EH SULPLWLYH VSHFXODWLRQ DERXW HYROXWLRQDU\ WUHQGV KDV XVXDOO\ EHHQ EDVHG RQ WKH DVVXPSWLRQ WKDW FORVHO\ UHODWHG WD[D VKDUH UHODWLYHO\ PRUH FKDUDFWHULVWLFV WKDQ GR PRUH GLVWDQWO\ UHODWHG IRUPV )RU WKH &DUDQJLGDH IRU H[DPSOH *LQVEXUJ f DVFULEHG SK\ORJHQHWLF UHODWLRQVKLS RQ WKH EDVLV RI H[n WHUQDO PRUSKRORJLFDO VLPLODULW\ 0RVW QRWDEOH LQ WKLV UHJDUG LV WKH SK\ORJHQ\ SURSRVHG E\ 6X]XNL f IRU ,QGR3DFLILF FDUDQJLGV EDVHG XSRQ DQ H[WHQVLYH FDWDORJ RI RVWHRORJLFDO IHDWXUHV $ 5HYLHZ RI WKH 6X]XNL &ODVVLILFDWLRQ RI -DSDQHVH &DUDQJLGDH ,Q D FRPSDULVRQ RI ,QGR3DFLILF FDUDQJLGV IURP -DSDQ 7DEOH f 6X]XNL f SURYLGHG GHVFULSWLRQV RI YDULDEOH GHWDLO IRU RYHU RVWHRORJLFDO IHDWXUHV 2XW RI rr FKDUDFWHUV GHPRQVWUDWHG WR EH GLDJQRVWLF IRU DOO JHQHUD 6X]XNL S f OLVWHG WHQ WKDW DUH VLJQLILFDQW IRU GLVn FORVLQJ WKHLU SK\ORJHQ\ %DVHG RQ WKHVH FKDUDFWHUV D SURJHQLWRU LV K\SRWKHVL]HG DQG H[WDQW IRUPV DUH FRPSDUHG WR WKH LGHDO LQ DQ HIIRUW WR GHOLQHDWH WKH HYROXWLRQDU\ WUHQGV RI VXEIDPLOLHV ,Q D VXEVHTXHQW GLVFXVVLRQ RI HYROXWLRQ ZLWKLQ VXEIDPLOLHV 6X]XNL FLWHG YDULRXV GLDJQRVWLF FKDUDFWHUV DV HYLGHQFH IRU GHULYDWLRQ RI SK\OHWLF XQLWV +RZHYHU LQ KLV GLVFXVVLRQ 6X]XNL GLG QRW GRFXPHQW PDQ\ RI WKH HYROXWLRQDU\ WUHQGV KH K\SRWKHVL]HG LI KH KDG D UDWLRQDOH IRU D ZLGHO\ RSHQHG P\RGRPH EHLQJ SULPLWLYH S f IRU H[DPSOH KH GLG QRW H[SUHVV LW $OVR RXW RI PDQ\ VRFDOOHG SULPLWLYH FKDUDFWHUV 6X]XNL FKRVH WR ZHLJKW VRPH DV EHLQJ RI VSHFLDO VLJQLILFDQFH LQ SK\ORJHQ\ ,Q KLV GLVn FXVVLRQ RI WKH VXVSHQVRULXP DQG RSHUFXODU DSSDUDWXV IRU H[DPSOH S f

PAGE 30

KH OLVWHG HOHYHQ FKDUDFWHUV VLJQLILFDQW WR FODVVLILFDWLRQ VKDSH RI SWHU\JRLG DQG KHLJKW RI DSSDUDWXV DUH VWDWHG WR EH RI SDUWLFXODU LPSRUWDQFH $JDLQ QR UDWLRQDOH ZDV JLYHQ IRU WKH GLIIHUHQWLDO SK\ORn JHQHWLF VLJQLILFDQFH 7KH GLVSRVLWLRQ RI JHQHUD LQ FRQIRUPLW\ ZLWK WKHLU GHJUHH RI GLIIHUHQWLDWLRQ SURSRVHG E\ 6X]XNL S f LV LOOXVWUDWHG LQ )LJXUH (VVHQWLDOO\ WKLV SK\ORJHQHWLF WUHH LV EDVHG RQ GRFXPHQWHG DQG XQn GRFXPHQWHG VXSSRVLWLRQV WKDW RI WKH VFRUHV RI IHDWXUHV H[DPLQHG EXW D UHODWLYH IHZ DUH RI XWLOLW\ LQ GHGXFLQJ SK\ORJHQ\ 3ULPLWLYH &KDUDFWHUV RI WKH &DUDQJLGDH 7KH &DUDQJLGDH ILUVW DSSHDU LQ WKH IRVVLO UHFRUG GXULQJ WKH (RFHQH DQG WKH\ DUH WKRXJKW WR KDYH DULVHQ IURP D GLQRSWHU\JRLG EHU\FLIRUP FORVH WR WKH JHQXV $LSLFKWK\V 3DWWHUVRQ f 'XULQJ WKH FRXUVH RI HYROXWLRQ WKH &DUDQJLGDH KDYH ORVW WKH IROORZLQJ FKDUDFWHUV WKDW DUH VWLOO IRXQG LQ $LSLFKWK\V HLJKW EUDQFK L RVWHJD UD\V UHGXFWLRQ WR VHYHQf RUE LWRVSKHQRLG WRRWKHG HQGRSWHU\JRLG IHZHU GRUVDO VSLQHV DQG QR IUHH VSLQHV LQ IURQW RI WKH GRUVDO EUDQFKHG FDXGDO UD\V UHGXFWLRQ WR f 3DWWHUVRQ f &KDUDFWHUV VKDUHG EHWZHHQ $LSLFKWK\V DQG WKH &DUDQJLGDH LQFOXGH KLJK VXSUDRFFLSLWD FUHVW XSWXUQHG SURWUXVLEOH PRXWK DEVHQFH RI RUQDPHQWDWLRQ RQ FUDQLDO ERQHV VLQJOH HORQJDWH VXSUDPD[L DU\ QXPEHU RI YHUWHEUDH f IRUP RI FOHLWKUXP OHQJWKHQHG DQG EURDGHQHG YHQWUDOO\f IRUP RI FRUDFRLG HQODUJHGf ORQJ GRUVDO DQG DQDO ILQV ZLWK D IHZ VSLQHV DQG ZLWK HORQJDWH DQWHULRU UD\V F\FORLG VFDOHV DQG HVSHFLDOO\ GHHSO\ IRUNHG FDXGDOUD\ EDVHV 3DWWHUVRQ f *UHJRU\ f FLWHG DV SULPLWLYH FKDUDFWHUV IRU WKH &DUDQJLGDH D ORZ QXPEHU RI YHUWHEUDH f VSLQRXV GRUVDO DQG DQDO

PAGE 31

&+25,1(086 75$&+,12786 )LJXUH 3K\ORJHQ\ RI -DSDQHVH &DUDQJLGDH 5HGUDZQ IURP 6X]XNL f

PAGE 32

ILQV WKDW DUH QHLWKHU UHGXFHG QRU VHSDUDWHG QRQEURDGHQHG RSHUFXODU DQWHURSRVWHULRUO\f DQG OHVV HORQJDWH KHDG +H DOVR VWDWHG WKDW LQ PRUH SULPLWLYH FDUDQJLGV WKH VXSUDRFFLSLWDOIURQWDO FUHVW LV VWHHSHU DQG KLJKHU WKH RSHUFOH UHODWLYHO\ GHHS DQG VKRUW WKH PRXWK VPDOO ZLWK D ORQJ DVFHQGLQJ SURFHVV RI D SURWUXVLEOH SUHPD[LOODU\ WKH TXDGUDWH DUWLFXODU MRLQW PRGHUDWHO\ IDU IRUZDUG DQG WKH ERG\ LV GHHSHU RYDWH WR RUELFXODUf 3UHVXPDEO\ *UHJRU\ EDVHG WKHVH WUHQGV RQ H[DPLQDWLRQ RI $LSLFKWK\V ZKLFK KH UHIHUUHG WR DV D GHHSn ERGLHG &UHWDFHRXV IRUP WKDW PD\ EH WKH UHDO DQFHVWRU RI WKH &DUDQJLGDH f ,I WKHVH VXEVWDQWLDWHG SULPLWLYH FKDUDFWHUV DUH FRPSDUHG ZLWK WKRVH XVHG E\ 6X]XNL RQH FDQ VHH WKDW KH ZDV FRUUHFW LQ ZHLJKWLQJ FHUWDLQ RI WKH FKDUDFWHUV KH HPSOR\HG DV SK\ORJHQHWLF HYLGHQFH ,QFOXGHG DUH WKH SULPLWLYH FKDUDFWHU VWDWHV RI f HLJKW EUDQFKLR VWHJDO UD\V f D VXSUDPD[L DU\ f D KLJK VXSUDRFFLSLWDO FUHVW DQG f D SURWUDFWLOH SUHPD[LOODU\ ,Q DGGLWLRQ f WKH DEVHQFH RI VFXWHV VSHFLDOL]HG VWUXFWXUHV DSSHDULQJ RQO\ LQ VRPH PHPEHUV RI WKH IDPLO\ DQG f D IHHEO\ GHYHORSHG ILUVW KHPDO VSLQH DSSHDU WR EH W\SLFDO RI SULPLWLYH FDUDQJLGV DQG DSLFKWK\LGV )LQDOO\ WKH f H[SDQVLRQ RI WKH SRVWPD[LOODU\ SURFHVV DV D EUDFLQJ VXSSRUWLYH VWUXFWn XUH DQFLOODU\ WR WKH GHYHORSPHQW RI D SURWUXVLEOH PRXWK DV DQ HYROn XWLRQDU\ DGYDQFHPHQW 3DWWHUVRQ $f DSSHDUV WR EH D YDOLG WUHQG LQ WKH JURXS 'DWD RI 6X]XNL IRU WKHVH IHZ FKDUDFWHUV ZKHQ WDEXODWHG DIWHU WKH PDQQHU HPSOR\HG E\ 0F$OOLVWHU f JLYH VRPH LQGLFDWLRQ RI WKH GHJUHH RI UHVHPEODQFH RI H[WDQW FDUDQJLGV WR DQFHVWUDO IRUPV 7DEOH f %HFDXVH GDWD RQ RQO\ VL[ SULPLWLYH FKDUDFWHUV DUH DYDLODEOH IRU DOO JHQHUD LQ 6X]XNL OLWWOH VLJQLILFDQFH

PAGE 33

LV DWWDFKHG WR WKH WDEXODWHG VXPPDULHV ,QGHHG DOO JHQHUD KDYH EHWZHHQ WZR DQG IRXU SULPLWLYH FKDUDFWHU VWDWHV SUHVHQW &OHDUO\ IXUWKHU DSSUDLVDO RI SULPLWLYHQHVV EDVHG RQ GRFXPHQWHG OLWHUDWXUH DFFRXQWV RI IRVVLOV PXVW DZDLW DGGLWLRQDO VWXG\ RI DSSURSULDWH FKDUDFWHUV LQFOXGLQJ VWXGLHV RI H[WHUQDO PRUSKRORJ\ D WDVN DFNQRZOHGn JHG E\ VHYHUDO ZRUNHUV ,Q DGGLWLRQ WR D ORZ QXPEHU RI GRFXPHQWHG SULPLWLYH FKDUDFWHUV 6X]XNL DOVR LQFRUSRUDWHG LQWR KLV SK\ORJHQHWLF FODVVLILFDWLRQ ZHLJKWHG FKDUDFWHUV IRU ZKLFK WKH SULPLWLYH VWDWH LV FRQMHFWXUDO +\SRWKHn VL]HG SULPLWLYH FKDUDFWHUV WKDW ZHUH ZHLJKWHG LQFOXGH f URVWUXP ZLGH DQG VKRUW f P\RGRPH RSHQLQJ ZLGH f FHUDWRK\DO ZLQGRZ ZLGHU f XURK\DO VKRUWHU DQG f ROIDFWRU\ FDYLW\ DEVHQW )LQDOO\ QXPHURXV RWKHU FKDUDFWHUV DUH XQZHLJKWHG LQ WKLV VWXG\ $V D UHVXOW HYHQ WKRXJK 6X]XNL UHYLHZHG VFRUHV RI RVWHRORJLFDO IHDWXUHV RQO\ D VPDOO QXPEHU RI GLDJQRVWLF JHQHULF FKDUDFWHUV DUH LQFRUSRUDWHG LQWR KLV K\EULGSK\RJHQ\ RQH WKDW LV LQFRQVLVWHQW LQ HPSOR\PHQW RI FKDUDFWHUV DQG WKHLU ZHLJKWLQJ 1XPHULFDO 7D[RQRP\ RI WKH -DSDQHVH &DUDQJLGDH 7KH H[WHQVLYH RVWHRORJLFDO FDWDORJ IRU WKH &DUDQJLGDH SURYLGHG E\ 6X]XNL f PD\ EH LQFRUSRUDWHG LQWR DQ DOWHUQDWLYH VFKHPH RI FODVVLILFDWLRQ EDVHG RQ WKH WHFKQLTXHV RI QXPHULFDO WD[RQRP\ LQ ZKLFK DOO FKDUDFWHUV DUH ZHLJKWHG HTXDOO\ 7KH ODUJH QXPEHU RI FKDUDFWHUV H[DPLQHG E\ 6X]XNL DUH QRW HTXDOO\ QRU XQLIRUPO\ GHVFULEHG IRU DOO VSHFLHV LQ KLV GLVFXVVLRQ WKLV DQDO\VLV LV EDVHG RQO\ RQ WKH FKDUDFWHUV FRPSOHWHO\ FDWDORJHG LQ KLV SDSHUf (TXDO ZHLJKWLQJ 6RNDO DQG 6QHDWK f LV HPSOR\HG DV DQ DOWHUQDWLYH WR WKH GLOHPPD RI DOORFDWLQJ GLIIHUHQWLDO ZHLJKWV WR FKDUDFWHUV WKDW PD\ RU

PAGE 34

3KHQHWLF GHQGURJUDP RI ,QGR3DFLILF &DUDQJcGDH &2()),&,(17 2) $662&,$7,21 6VP [ f &71 RR 2 2 R X! R ,4 F D! 1f $/(&7,6 &, 78/$ $752386 &$5$1; .$, :$5 ,186 /21* 5267580 &$5$1*2, '(6 85$63,6 *1$7+$1'1 6(/$52,'(6 '(&$37(586 75$&+8586 $78/( 6(/$5 0(*$/$63,6 (/$*$7,6 1$8&5$7(6 6(5,2/$ 75$&+,12786 &+25,1(086

PAGE 35

PD\ QRW EH FODVVLILHG DV WR SULPLWLYHQHVV $V GLVFXVVHG DERYH RQO\ D VPDOO QXPEHU RI FKDUDFWHUV PD\ XQTXHVWLRQDEO\ EH GHVFULEHG DV SULPLWLYH IRU WKH &DUDQJLGDH PDQ\ RWKHUV PD\ RU PD\ QRW EH $Q LQILQn LWH QXPEHU RI ZHLJKWLQJV FRXOG EH DVVLJQHG WKHUHIRUH ZLWK HYDOXDWLRQ ODUJHO\ D PDWWHU RI VXEMHFWLYH SUHIHUHQFHf $V VXJJHVWHG E\ 0F$OOLVWHU f WKH PLQLPXP RI FKDUDFn WHUV ZHUH FRGHG IRU HDFK 278 7DEOH fr %DVHG RQ ZHLJKWHG SDLU JURXS FOXVWHU DQDO\VLV WZHOYH DVVRFLDWLRQ PDWULFHV H J ILUVW JHQHUDWLRQ 7DEOH VHFRQG JHQHUDWLRQ 7DEOH f ZHUH JHQHUDWHG LQ WKH GHVFULSWLRQ RI D SKHQHWLF GHQGURJUDP )LJXUH f 7KH GHQGURJUDP LQ )LJXUH KDV XWLOLW\ LQ WKUHH ZD\V ,W SURYLGHV D YLVXDO LOOXVWUDWLRQ RI WKH GHJUHH RI WD[RQRPLF VLPLODULW\ DQG GLIIHUHQFH EHWZHHQ DQG DPRQJ 278nV 7KH WD[RQRPLF VWDWXV RI QRPLQDO JHQHUD PD\ VRPHWLPHV EH UHn VROYHG 7KH H[WUHPH UHVHPEODQFH RI WZR JHQHUD HVSHFLDOO\ ZKHQ RQH LV PRQRW\SLF PD\ LQGLFDWH D FRQJHQHULF VLWXDWLRQ 7KLV SURFHVV KDV WKH DGGLWLRQDO HIIHFW RI SURYLGLQJ D PHFKDQLVP IRU HYDOXDWLRQ DQG UHYLVLRQ RI GLDJQRVWLF FKDUDFWHUV ,W SURYLGHV D EDVLV IRU SK\ORJHQHWLF GHGXFWLRQV EDVHG RQ WKH DVVXPSWLRQV WKDW Df SKHQHWLF FOXVWHUV RI H[WDQW 278nV DUH PRVW OLNHO\ PRQRSK\OHWLF DQG Ef WKH EHVW HVWLPDWH RI WKH DWWULEXWHV RI D FRPPRQ DQFHVWRU RI D FOXVWHU LQ WKH DEVHQFH RI GLUHFW HYLGHQFH LV SURn YLGHG E\ WKH FOXVWHU 6RNDO DQG 6QHDWK f %DVHG RQ 278 DVVRFLDWLRQ FRHIILFLHQWV 7DEOH )LJXUH f VRPH RI WKH PRUH DSSDUHQW GHGXFWLRQV DERXW WKH SK\ORJHQ\ RI -DSDQHVH FDUDQJLGV LQFOXGH HDUO\ GHULYDWLRQ RI &KRULQHPXV IURP WKH VWHP GHULYDWLRQ RI 7 UDFKLQRWXV DQG (ODJDWLV 1DXFUDWHV DQG 6HULROD IURP DQ HDUO\

PAGE 36

FRPPRQ VWHP 7KHVH DUH QRW DW YDULDQFH ZLWK FODVVLFDO VXEIDPLOLDO FODVVLILFDWLRQ WKDW UHOHJDWHV &KRULQHPXV WR WKH &KRULQHPLQDH 7UDFKLQ RWXV WR 7UDFKLQRWLQDH DQG WKH ODWWHU WKUHH JHQHUD WR WKH 1DXFUDWLQDH 68]XNL f :HUH DOO ORZHU FOXVWHUV WR EH GLYLGHG WD[RQRPLFD\ KRZHYHU LW PLJKW EH QHFHVVDU\ WR QDPH WKH WZR UHPDLQLQJ PDLQ VWHPV ZKLFK EHDU WKH QRPLQDO JHQHUD RI WKH &DUDQJLQDHf 7KDW LV WZR JURXSV RI JHQHUD DFFRUGHG WR WKH VXEIDPLO\ &DUDQJLQDH QDPHO\ /RQJ L URV W UXP WKURXJK .DLZDULQXV DQG 7UDFKXUXV WKURXJK 6HODU SOXV 0HJD DVSLV )LJXUH f GHYLDWH IURP D FRPPRQ VWHP DW D ORZHU FRHIILFLHQW WKDQ GR WKH 7UDFKLQRWLQDH DQG WKH 1DXFUDWLQDH 7ZR DOWHUQDWLYHV WR DFKLHYH D XQLIRUP WD[RQRP\ DUH VXJJHVWHG f DVVLJQ VXEIDPLOLDO UDQN WR WKH WZR FDUDQJLQH JURXSV VLQFH (ODJDWLV 6HULOD DQG 7UDFKLQRWXV DUH DFFRUGHG WR VXEIDPLOLHV GHVSLWH D KLJKHU EUDQFKSRLQW RU f DERQGRQ WKH 1DXFUDWLQDH DQG 7UDFKLQRWLQDH DV VXEIDPLOLDO FDWHJRULHV $Q DGGLWLRQDO FRQIOLFW RI WD[RQRPLHV LV VHHQ IRU WKH 0HJDODVSLQDH 0HJD DVSLVf ZKLFK ZDV WKRXJKW E\ 6X]XNL WR EH DQ HDUO\ RIIVKRRW RI WKH 1DXFUDWLQDH&DUDQJLQDH OLQH )LJXUH f &OXVWHU DQDO\VLV RI FKDUDFWHU VWDWHV UHYHDOV WKH DIILQLW\ RI 0HJDODVSLV WR WKH 7UDFKXUXV6HODU JURXS LOOXVWUDWHG LQ )LJXUH $JUHHPHQW RI WKH WZR WD[RQRPLHV LV DOVR REVHUYHG LQ WKH FOXVWHULQJ RI WKH JHQHUD $WXOH 'HFDSWHUXV 7UDFKXUXV DQG 6HODU 7UDFKXURSVf 7KH FOXVWHULQJ RI WKH JHQHUD RI WKH /RQJ L URV W UXP .DLZDULQXV JURXS DOVR DJUHHV ZLWK 6X]XNLnV SK\ORJHQ\ ,Q SUDFWLFH WKH QXPHULFDO WD[RQRP\ LOOXVWUDWHG LQ )LJXUH SRLQWV RXW WKH VXEMHFWLYH QDWXUH RI 6X]XNLnV VFKHPH %DVHG RQ WHQ FKDUDFWHUV 6X]XNL f FRQFOXGHG WKDW f WKH 1DXFUDWLQDH DUH QHDUHVW WKH ,GHDO IRUP WKH SURJHQLWRU RI WKH IDPLO\f f WKH

PAGE 37

7UDFKcQRWLQDH PRUH SULPLWLYH WKDQ WKH &KRULQHPLQDHf DQG WKH &KRULQHPLQDH ERWK GHYLDWHG DW DQ HDUO\ VWDJH IURP WKH PDLQ VWHP OHDGLQJ WR WKH &DUDQJLGDH f WKH 0HJDODVSLQDH DUH DQ RIIVKRRW IURP WKH OLQH OHDGLQJ WKH DQFHVWUDO IRUP RI WKH 1DXFUDWLQDH WR WKH &DUDQJLGDH DQG f WKH HYROXWLRQ RI WKH &DUDQJLQDH UHSUHVHQWV WKH PDLQ VWHP RI WKH SK\ORJHQH WLFDO WUHH RI WKH &DUDQJLGDH +RZHYHU RXU ODFN RI NQRZOHGJH RI GHJUHH RI SULPLWLYHQHVV RI PDQ\ RI WKH FKDUDFWHU VWDWHV HPSOR\HG E\ 6X]XNL UHGXFHV WKH FRQILGHQFH SODFHG LQ KLV FODVVLILFDWLRQ DOWKRXJK WKH JHQHUDO DIILQLWLHV RI PDQ\ RI WKH JHQHUD FRQVLGHUHG LQ ERWK VWXGLHV UHLQIRUFH PDQ\ RI WKH SK\ORJHQHWLF GHGXFWLRQV WR EH GUDZQ 7KH SKHQHWLF GHQGURJUDP JHQHUDWHG E\ FOXVWHU DQDO\VLV LQ WKLV VWXG\ DYRLGV WKH VSHFXODWLYH QDWXUH RI GLIIHUHQWLDO FKDUDFWHU ZHLJKWLQJ DQG LWV DWWHQGDQW GLIILFXOWLHV 6RNDO DQG 6QHDWK A r f ,W SURYLGHV DQ REMHFWLYH DOWHUQDWLYH IRU HVWDEOLVKPHQW RI FODVVLILFDWLRQV ZLWK WKH XWLOLW\ RI LOOXVWUDWLQJ SK\ORJHQHWLF WUHQGV LI WKH DVVXPSWLRQV QRWHG DERYH D DQG Ef DUH YDOLG 0F$OOLVWHU f PHQWLRQHG WKDW SHUKDSV WKH LGHDO SURFHGXUH LV WKH LQFRUSRUDWLRQ RI REMHFWLYHO\ ZHLJKWHG FKDUDFWHUV LQWR VXFK D VFKHPH 7KH QHHG IRU DGGLWLRQDO IRVVLO HYLGHQFH DV D EDVLV IRU ZHLJKWLQJ WKH FDUDQJLGV LV DSSDUHQW HVSHFLDOO\ DV LW SHUWDLQV WR WKH GLYHUJHQFH RI WD[D IURP DQFHVWUDO IRUPV

PAGE 38

267(2/2*< 2) +(0,&$5$1; ,QIUDVSHFLILF 9DULDWLRQ ([DPLQDWLRQ RI VHULHV RI VLPLODUVL]HG LQGLYLGXDOV UHYHDOV WKDW LQIUDVSHFLILF RVWHRORJLFDO YDULDWLRQ LV PLQLPDO LQ WKH JHQXV +HPLFDUDQ[ ZLWK WKH H[FHSWLRQ RI WKH VXERUELWDO VKHOI 7KH VKDSH RI WKH VXERUELWDO VKHOI LV XQLTXHO\ YDULDEOH LQ +HPLFDUDQ[ )LJXUH ,9f DQG LV XQUHOLDEOH DV D GLDJQRVWLF FKDUDFWHU LQ GLVWLQJXLVKLQJ WD[D $OO RWKHU VNHOHWDO IHDWXUHV KRZHYHU DUH UHPDUNDEO\ FRQVWDQW 7KXV LW LV UHDVRQDEOH WR K\SRWKHVL]H WKDW RVWHRORJLFDO IHDWXUHV DUH UHODWLYHO\ FRQVHUYDWLYH LQ WKH &DUDQJLGDH &RQVHTXHQWO\ SUHYLRXV GHVFULSWLRQV DQG GHILQLWLRQV EDVHG RQ VLQJOH VSHFLPHQV PD\ EH UHJDUGHG DV PRUH YDOLG DQG XVXDOO\ DFFXUDWH UHSUHVHQWDWLRQV RI WKH RVWHRORJ\ RI WKLV JURXS ,Q WKH FRPSDULn VRQ RI FDXGDO VNHOHWRQV IRU H[DPSOH PRUH FRQILGHQFH PD\ EH SODFHG LQ VLQJOHVSHFLPHQ REVHUYDWLRQV RI FDUDQJLGV ,QGHHG WKLV PLJKW EH SUHn GLFWHG RQ WKH EDVLV RI WKH REVHUYDWLRQ RI 6FKOHXWHU DQG 7KRPHUVRQ r WKDW OLWWOH YDULDWLRQ H[LVWV LQ WKH FDXGDO VNHOHWRQ RI VWURQJ VZLPn PHUV +RZHYHU WKH GHPRQVWUDWLRQ E\ 6FKOHXWHU DQG 7KRPHUVRQ RI VLJQLn ILFDQW RVWHRORJLFDO YDULDELOLW\ LQ VRPH RWKHU ILVKHV FDXWLRQV DJDLQVW D W\SRORJLFDO DSSURDFK WR VNHOHWDO FKDUDFWHUV )RU WKH PRVW SDUW RQWRJHQ\ RI WKH VNHOHWRQ LV FKDUDFWHUL]HG E\ D XQLIRUP H[SDQVLRQ RI HDFK HOHPHQW WKXV DOORZLQJ VRPH FRPSDULVRQ RI GLIIHUHQWVL]HG VSHFLPHQV ,Q WKH FRPSDUDWLYH VHFWLRQ EHORZ KRZHYHU LQGLYLGXDOV RI QHDUO\ LGHQWLFDO VL]H DOZD\V ZHUH FRPSDUHG

PAGE 39

'HVFULSWLYH 2VWHRORJ\ RI +HPLFDUDQ[ 1HXURFUDQLXP )LJXUH Of 3UHYRPHU 39f YRPHU RI 6X]XNL f 7KH XQSDLUHG SUHn YRPHU LV WKH DQWHULRUPRVW QHXURFUDQLDO ERQH ,W LV FKDUDFWHUL]HG LQ WKH ODWHUDO SODQH E\ D IRUZDUGSRLQWLQJ WULDQJXODUVKDSHG KHDG IURP ZKLFK D PHGLDQ EODGHOLNH SURFHVV H[WHQGV SRVWHULRUO\ WR DUWLFXODWH ZLWK WKH YHQWUDO VXUIDFH RI WKH SDUDVSKHQRLG 36f 7KH DQWHULRU PDUJLQ RI WKH KHDG RI WKH SUHYRPHU FDUULHV D GRUVDO FUHVW EHKLQG ZKLFK WKH YHQWUDO HGJH RI WKH HWKPRLG (f LQVHUWV -XVW SRVWHULRU WR WKLV WKH YHQWUDO HGJH RI WKH ODWHUDO HWKPRLG /(f DUWLFXODWHV $QWHURDWHUDO\ WKH SUHYRPHU LV LQ FRQWDFW ZLWK WKH PHGLDO SRUWLRQ RI WKH SDODWLQH 3$/f 'HQWLWLRQ LV QRW SUHVHQW LQ LQGLYLGXDOV RI RU PP 6/ (WKPRLG (fPHVHWKPRLG RI 6X]XNL f f§ 7KH HWKPRLG LV XQSDLUHG DQG LV FRPSUHVVHG YHUWLFDOO\ HORQJDWH DQG QDUURZHVW DW WKH PLGGOH 7KH DQWHULRU YHQWUDO HGJH LQVHUWV EHKLQG WKH GRUVDO FUHVW RI WKH SUHYRPHU 39f ZKLOH WKH SRVWHULRU YHUWLFDO HGJH LV DUWLFXODWHG ZLWK WKH PHGLDO HGJH RI WKH ODWHUDO HWKPRLG /(f 7KH GRUVDO SRVWHULRU FRUQHUV RI WKLV ERQH DUH HDFK RYHUODLG E\ WKH SRLQWHG DQWHULRU WLS RI WKH IURQWDO ERQHV )f 7KH GRUVDO VXUIDFH LV FRQYH[ DQWHULRUO\ 7KH DQWHULRU HGJH RI WKH GRUVDO VXUIDFH RI WKH HWKPRLG )LJXUH OOf LV DOVR FRQYH[ LQ +B HXFXUXV EXW LW LV PRUH VKDUSO\ FXUYHG WKDQ LQ ]HORWHV ,Q ERWK +B DPEO \UK\QFKXV DQG ELFRORU LW LV FRQFDYH DQG LV FKDUDFWHUL]HG E\ SURMHFWLRQV RQ WKH DQWHULRU ODWHUDO FRUQHUV

PAGE 40

/DWHUDO HWKPRLG /(f HFWHWKPR"G RI 6X]XNL f 7KH ODWHUDO HWKPRLG LV RULHQWHG LQ WKH YHUWLFDO SODQH DQG LQ ODWHUDO YLHZ JHQWO\ FXUYHV SRVWHULRUO\ XSZDUG IURP LWV DUWLFXODWLRQ ZLWK WKH DQWHULRU SDUDVSKHQRLG 36f 9LHZHG DQWHULRUO\ WKH ODWHUDO HWKPRLG DSSHDUV EURDG DQG VRPHZKDW EXWWHUIO\VKDSHG 7KH PHGLDO HGJH RI WKLV ERQH EURDGO\ DUWLFXODWHV ZLWK WKH SRVWHULRU ODWHUDO HGJH RI WKH HWKPRLG (f ZKLFK VHSDUDWHV LW IURP LWV IHOORZ PHPEHU 'RUVDOO\ WKH ODWHUDO HWKPRLG FRQWDFWV WKH DQWHULRU HGJH RI WKH IURQWDO )f /RFDWHG LQ WKH XSSHU PHGLDO TXDUWHU LV WKH ROIDFWRU\ IRUDPHQ 9HQWUDOO\ WKH ODWHUDO HWKPRLG ORRVHO\ FRQWDFWV WKH DQWHULRU WLS RI WKH SWHU\JRLG ERQH 37f )URQWDO )f 7KH ODUJHVW RI WKH QHXURFUDQLDO HOHPHQWV WKH IURQWDO ERQH LV EURDGO\ XQLWHG ZLWK LWV IHOORZ PHPEHU DQWHULRUO\ LQ D GRUVDOO\ SURMHFWLQJ PHGLDQ FUHVW ZKLFK LV DQ DQWHULRU FRQWLQXDWLRQ RI WKH VXSUDRFFLSLWD FUHVW $QWHULRUO\ WKH IURQWDOV DUH VHSDUDWHG E\ WKH LQWHUSRVHG HWKPRLG (f ZKLOH SRVWHULRUO\ WKH VXSUDRFFLSLWD 682f LV MX[WDSRVHG EHWZHHQ WKHP 7KH DQWHULRU ODWHUDO FRUQHU RI WKH IURQWDO UHVWV RQ WKH GRUVDO HGJH RI WKH ODWHUDO HWKPRLG /(f 7RJHWKHU ZLWK WKH SDULHWDO 3f WR ZKLFK LW DUWLFXODWHV SRVWHULRUO\ WKH IURQWDO FRQWULEXWHV WR WKH GRUVDSURMHFW,QJ WHPSRUDO FUHVW ZKLFK H[WHQGV WR WKH IRUZDUG FRUQHU RI WKH IURQWDO WHUPLQDWLQJ DW WKH DQWHULRU PDUJLQ RI WKH RUELW /DWHUDOO\ D VHFRQG FUHVW WKH SWHURWLF FUHVW LV SUHVHQW DQWHULRUO\ LW H[WHQGV MXVW LQ DGYDQFH RI WKH SRVWHULRU PDUJLQ RI WKH RUELW DQG SRVWHULRUO\ LW FDUULHV RQ WR WKH DXWRSWHURWLF ERQH 372f ZKLFK DUWLFXn ODWHV ZLWK WKH SRVWHULRU PDUJLQ RI WKH IURQWDO %HQHDWK WKH WHPSRUDO FUHVW WKH YHQWUDO VXUIDFH RI WKH IURQWDO DUWLFXODWHV ZLWK WKH SWHUR VSKHQRLG 376f %HQHDWK WKH SWHURWLF FUHVW WKH YHQWUDO VXUIDFH MRLQV WKH DXWRVSKHQRWLF 63+f

PAGE 41

N 3WHURVSKHQRLG 376f D LVSKHQRLG RI 6X]XNL f f§ +LGGHQ IURP GRUVDO YLHZ WKLV VPDOO UKRPERLGD VKDSHG ERQH LV ZLGHO\ VHSDUDWHG IURP LWV IHOORZ PHPEHU E\ WKH PHGLDO DQWHULRU RSHQLQJ RI WKH EUDLQFDVH 'RUVDOO\ WKH SWHURVSKHQRLG DUWLFXODWHV ZLWK WKH IURQWDO )f 3RVWHULRUO\ LW DUWLFXODWHV ZLWK WKH DXWRVSKHQRWLF 63+f WKH YHQWUDO SRVWHULRU DQJOH DUWLFXODWHV ZLWK WKH SURRWLF 352f 7KH YHQWUDO HGJH RI WKH SWHURn VSKHQRLG MRLQV WKH GRUVDO WLS RI WKH ODWHUDO ZLQJ RI WKH EDVLVSKHQRLG ERQH %6f %DVLVSKHQRLG %6f f§ 7KH XQSDLUHG EDVLVSKHQRLG LV D
PAGE 42

SDULHWDO 3f DQG HSLRWLF (32f UHVSHFWLYHO\ 9HQWHURSRVWHULRUO\ LW MRLQV WKH H[RFFLSLWDOV (2&f 3DULHWDO 3f 7KH DQWHULRU HGJH RI WKH SDULHWDO DUWLFXODWHV ZLWK WKH SRVWHULRU HGJH RI WKH IURQWDO )f IURP ZKLFK LW FDUULHV EDFNn ZDUG WKH WHPSRUDO FUHVW 7KH SDULHWDO LV ZLGHO\ VHSDUDWHG IURP LWV IHOORZ PHPEHU E\ WKH PHGLDOO\ LQWHUSRVHG VXSUDRFFLSLWD 682f 7KH ODWHUDO HGJH DUWLFXODWHV ZLWK WKH DXWRSWHURWLF ERQH 372f $XWRSWHURWLF 372fSWHURWLF RI 6X]XNL f f§ 7KH DXWRn SWHURWLF ERQH LV SURPLQHQWO\ FKDUDFWHUL]HG E\ WKH SWHURWLF FUHVW ZKLFK LV FDUULHG IRUZDUG E\ WKH DGMRLQLQJ IURQWDO ERQH )f 3RVWHULRUO\ WKH FUHVW WHUPLQDWHV DV D SRVWHULRU SURMHFWLRQ EHORZ ZKLFK D VSLQH H[WHQGV EDFNZDUG 7KH YHQWUDO HGJH LV DUWLFXODWHG ZLWK WKH DXWRVSKHQRWLF 63+f DQWHULRUO\ DQG SRVWHULRUO\ ZLWK WKH SURRWLF 352f WKH RSLVWKRWLF 236f DQG WKH H[RFFLSLWDO (2&f 'RUVDOO\ WKH SWHURWLF FRQWDFWV WKH SDULHWDO 3f DQG WKH HSLRWLF (32f $XWRVSKHQRWLF 63+f VSKHQRWLF RI 6X]XNL fr &KDUDFWHUL]HG E\ ULGJHV DQG SHUIRUDWLRQV WKH DXWRVSKHQRWLF LV D VPDOO VWURQJO\ EXLOW ERQH IRXQG DW WKH SRVWHULRU DQJOH RI WKH RUELW $QWHULRUO\ WKH GRUVDO HGJH XQLWHV ZLWK WKH YHQWUDO VXUIDFH RI WKH IURQWDO EHQHDWK WKH SWHURWLF FUHVW DQG WKH PHGLDO HGJH LV XQLWHG ZLWK WKH ODWHUDO PDUJLQ RI WKH SWHUR VSKHQRLG 376f 7KH YHQWUDO VXUIDFH RI WKH DXWRVSKHQRWLF DUWLFXODWHV ZLWK WKH SURRWLF 352f ,WV SRVWHULRU HGJH MRLQV WKH DXWRSWHURWLF 372f (SLRWLF (32f 7KH S\UDPLGVKDSHG HSLRWLF ERQH VXSSRUWV D SRVWHUR GRUVDO EDFNZDUGSURMHFWLQJ SURFHVV WR ZKLFK WKH XSSHU DUP RI WKH SRVWn WHPSRUDO ERQH 370f DUWLFXODWHV 7KH YHQWUDO FRUQHU RI WKH HSLRWLF LV XQLWHG ZLWK WKH H[RFFLSLWDO (2&f 7KH DQWHURPHGLDO GRUVDO VXUIDFH LV

PAGE 43

MRLQHG WR WKH SRVWHULRU HGJH RI WKH VXSUDRFFLSLWD 682f 7KH DQWHURn ODWHUDO GRUVDO VXUIDFH LV MRLQHG WR WKH GRUVDO SRVWHULRU HGJH RI WKH SDULHWDO 3f /DWHUDOO\ LW FRQWDFWV WKH DXWRSWHURWLF 372f 3URRWLF 352f f§ 7KH LUUHJXODUO\ KH[DJRQDO SURRWLF ERQH LV SURPLQHQW LQ WKH ORZHU DQWHULRU ODWHUDO ZDOO RI WKH EUDLQFDVH 'RUVDOO\ WKH SURRWLF LV XQLWHG ZLWK WKH SWHURVSKHQRLG 376f DQWHULRUO\ WKH DXWR VSKHQRWLF 63+f DQG SRVWHULRUO\ ZLWK WKH DXWRSWHURWLF 372f 7KH DQWHULRU HGJH RI WKH SURRWLF UHFHLYHV D SRUWLRQ RI WKH DUP RI WKH EDVLV SKHQRLG 6f DQG YHQWUDOO\ LW DOVR DUWLFXODWHV ZLWK WKH DVFHQGLQJ SURn FHVV RI WKH SDUDVSKHQRLG 36f 7KH YHQWUDO HGJH RI WKH SURRWLF DSSURDFKHV DQG SDUDOOHOV WKH SRVWHULRU HQG RI WKH SDUDVSKHQRLG 3RVWHULRUO\ WKH SURRWLF LV DWWDFKHG WR WKH EDVLRFFLSLWD %2&f H[RFFLSLWDO (2&f DQG RSLVWKRWLF 236f ([RFFLSLWDO (2&f 7KH H[RFFLSLWDO LV ORFDWHG DW WKH SRVWHULRU HQG RI WKH FUDQLXP DERYH WKH EDVLRFFLSLWDO %2&f WR ZKLFK LWV YHQWHUR ODWHUDO PDUJLQ LV MRLQHG 9HQWUDOO\ WKH H[RFFLSLWDO PHHWV LWV IHOORZ PHPEHU WR IRUP WKH YHQWUDO PDUJLQ RI WKH IRUDPHQ PDJQXP (DFK LV GHYn HORSHG DV D IDFHW WKDW DUWLFXODWHV ZLWK WKH DWODV YHUWHEUD 7KH SRVWn HULRU PDUJLQV DVFHQG WR IRUP WKH ODWHUDO PDUJLQV RI WKH IRUDPHQ PDJQXP 7KH DQWHULRU HGJH RI WKH H[RFFLSLWDO LV MRLQHG WR WKH SURRWLF 352f DXWRSWHURWLF 372f DQG RSLVWKRWLF 236f %DVLRFFLSLWDO %2&f 7KH XQSDLUHG EDVLRFFLSLWD LV FKDUDFWHUn L]HG E\ D FRQFDYH FLUFXODU SRVWHULRU HQG WKDW DUWLFXODWHV ZLWK WKH DQWHULRU FHQWUXP RI WKH DWODV $QWHULRUO\ WKH EDVLRFFLSLWDO LV VWURQJO\ XQLWHG ZLWK WKH SDUDVSKHQRLG 36f DQG LW LV FRQQHFWHG WR WKH SRVWHULRU PDUJLQ RI WKH SURRWLF 352f 'RUVDOO\ LW MRLQV WKH ORZHU HGJH RI WKH H[RFFLSLWDO (2&f

PAGE 44

2SLVWKRWLF 236f 7KH RSLVWKRWOF VXSSRUWV D SRVWHULRU SURMHFWLRQ WKDW DUWLFXODWHV ZLWK WKH ORZHU DUP RI WKH SRVWWHPSRUDO +LGGHQ IURP GRUVDO DQG ODWHUDO YLHZ LW DGMRLQV WKH DXWRSWHURWLF 372f DQG WKH H[RFn FLSLWDO (2&f ERQHV 6XERUELWDO VHULHV )LJXUH f /DFU\PDO /f 7KLV LV WKH ILUVW DQWHULRUPRVW HOHPHQW RI WKH VXERUELWDO VHULHV DQG LW VKHDWKV WKH GRUVDO HGJH RI WKH PD[LOODU\ ERQH 0;f 7KH ODFU\PDO LV WKLQ DQG IODW DQG H[WHQGV IURP WKH DQWHULRU WLS RI WKH PD[LOODU\ EDFN WR LWV DUWLFXODWLRQ ZLWK WKH VHFRQG VXERUELWDO ERQH 68%f DERYH WKH SRVWHULRU PDUJLQ RI WKH SDODWLQHSWHU\JRLG 3$/37f XQLRQ 6XERUELWDOV 68%f 7KHVH IRXU ERQHV DUH OLQNHG WR IRUP WKH SRVWHULRU YHQWUDO TXDUWHU RI WKH RUELW 3URPLQHQW LQ GRUVDO YLHZ LV WKH VXERUELWDO VKHOI RI WKH WKLUG VXERUELWDO ERQH )LJXUH 1,%f 7KH ILIWK VXERUELWDO LV GRUVDOO\ DUWLFXODWHG ZLWK WKH GHUPRVSKHQRWLF '62f 7KH VXERUELWDO VKHOI LV XQLTXH LQ +HPLFDUDQ[ LQ WHUPV RI LWV H[WUHPH YDULDELOLW\ 7ZR H[DPSOHV REVHUYHG LQ +B DPEO\UK\QFKXV RI PP 6/ DUH LOOXVWUDWHG LQ )LJXUH ,9 'HUPRVSKHQRW"F '62f 7KH GHUPRVSKHQRWLF UHVHPEOHV WKH VXEn RUELWDOV DQG H[WHQGV GRUVDOO\ WR FRYHU WKH ORZHU KDOI RI WKH HXWRVSKHQRWLF 63+f ERQH %UDQFK LRFUDQLXUQ 2URPDQGLEXODU UHJLRQ /RZHU MDZ ERQHV )LJXUH 9f f§ 'HQWDU\ '1f 7KH DQWHULRU HQG RI WKH GHQWDU\ PHHWV LWV IHOORZ LQ D PHGLDO V\PSK\VLV )URP WKH DQWHULRU HQG WZR EURDG DUPV DQJOH EDFNZDUGV

PAGE 45

7KH XSSHU DUP EHDUV D VLQJOH URZ RI URXQGO\ SRLQWHG FDQLQH WHHWK ZKLOH WKH ORZHU DUP DUWLFXODWHV GRUVDOO\ DQG SRVWHULRUO\ ZLWK WKH DUWLFXODU ERQH $5f %HWZHHQ WKH DUPV D QRWFK UHFHLYHV DQG HQFORVHV WKH DQWHULRU WLS RI WKH ORZHU DUP RI WKH DUWLFXODU ERQH 7KH SRVWHULRU WLS RI WKH XSSHU DUP RI WKH GHQWDU\ LV FXUYHG LQ + ]HORWHV DQG ELFRORU PRUH SRLQWHG EXW VWLOO URXQGHG LQ DPEO\UK\QFKXV DQG VKDUSO\ SRLQWHG LQ HXFXUXV )LJXUH 9,f $UWLFXODU $5f f§ 7ZR DUPV H[WHQG IRUZDUG IURP WKH EDVH RI WKH DUWLFXODU 7KH XSSHU WDSHUV WR D SRLQW WKH ORZHU LV ODUJHU DQG SURn FHHGV KRUL]RQWDOO\ ZLWK LWV YHQWUDO HGJH LQ FORVH FRQWDFW ZLWK WKH GHQWDU\ '1f WR HQWHU LQWR WKH QRWFK RI WKH GHQWDU\ 7KH GRUVRSRVWHULRU FRUQHU RI WKH DUWLFXODU EHDUV D IDFHW ZKLFK UHFHLYHV WKH YHQWUDOO\ SURMHFWLQJ NQRE RI WKH TXDGUDWH 4f 7KH YHQWUDO SRVWHULRU FRUQHU LV YDULDEO\ RYHUODLG E\ WKH DQJXODU ERQH $1f $QJXODU $1f 7KLV VPDOO ERQH FRYHUV WKH SRVWHULRU YHQWUDO FRUQHU RI WKH DUWLFXODU $5f DQG LV PRUH UHDGLO\ VHHQ LQ WKH PHGLDO YLHZ 8SSHU MDZ ERQHV )LJXUH 9, Of 3UHPD[L ODU\ 30;f f§ 7KH DQWHULRU HQG RI WKH SUHPD[LOODU\ XQLWHV ZLWK LWV IHOORZ PHPEHU WR IRUP WKH DQWHULRU PDUJLQ RI WKH XSSHU MDZ 7KH DVFHQGLQJ SURFHVV RI WKH SUHPD[LOODU\ ERQH ULGHV LQ D JURRYH DW WKH DQWHULRU HQG RI WKH PD[LOODU\ 0;f DQG LV ORQJHU WKDQ WKH DUWLFXODU SURFHVV 7KH DUWLFXODU SURFHVV DULVHV GRUVDOO\ IURP WKH WRRWKEHDULQJ DUP RI WKH SUHPD[LOODU\ DQG H[WHQGV EHKLQG WKH PLGGOH RI WKH PD[LOODU\ &DQLQH WHHWK DUH SUHVHQW LQ D VLQJOH URZ DORQJ WKH YHQWUDO HGJH RI WKH SUHPD[L ODU\

PAGE 46

7KH GRUVDO VXUIDFH RI WKH DVFHQGLQJ SURFHVV RI WKH SUHPD[LOODU\ )LJXUH 9,0f LV LQGHQWHG LQ + ]H RWHV DQG ELFRORU EXW LQ HXFXUXV DQG DPEO\UKXQFKXV LW LV IODWWHQHG 7KH SRVWHULRU HGJH RI WKH DUWLFXODU VXUIDFH RI WKH SUHPD[LOODU\ )LJXUH 9,,,f LV EURDGO\ FRQFDYH LQ HXFXUXV DQG DPEO\UK\QFKXV ZKLOH LQ ]H RWHV DQG ELFRORU LW GHVFHQGV DV D VWUDLJKW HGJH IURP D GRUVDO H[WHQVLRQ 0D[L ODU\ 0;f f§ 7KH PD[LOODU\ LV D VOHQGHU ERQH ORFDWHG DERYH DQG SDUDOOHO WR WKH OHQJWK RI WKH SUHPD[LOODU\ 30;f $QWHULRUO\ WKH KHDG RI WKH PD[LOODU\ LV JURRYHG DQG DUWLFXODWHV ZLWK WKH DVFHQGLQJ SURn FHVV RI WKH SUHPD[LOODU\ -XVW EHKLQG WKH KHDG WKH PD[LOODU\ ILWV VQXJO\ LQWR WKH YHQWUDO FXUYH RI WKH SUHSDODWLQH SURFHVV RI WKH SDODWLQH ERQH 3$/f 3RVWHULRUO\ WKH PD[LOODU\ LV H[SDQGHG LQ WKH YHUWLFDO SODQH DQG XQGHUOLHV WKH HQWLUH VXSUDPD[LODU\ 60;f 6XSUDPD[LODU\ 60;f 7KH VXSUDPD[LODU\ LV IODW SRLQWHG DQWHUn LRUO\ DQG PHHWV WKH SRVWHULRU HQG RI WKH PD[LOODU\ 0;f DORQJ LWV HQWLUH YHQWUDO HGJH +\RLG UHJLRQ )LJXUH ,;f +\RPDQGLEXODU +0f 7KH K\RPDQGL EXO DU LV D VWRXW IODWWHQHG ERQH WKDW LV FKDUDFWHUL]HG E\ D GHVFHQGLQJ K\RPDQGLEXODU SURFHVV 3RVWHULRUO\ WKH K\RPDQGLEXODU DUWLFXODWHV ZLWK WKH DQWHULRU SUHRSHUFOH 323f PDUJLQ $QWHULRUO\ WKH K\RPDQGLEXODU SURFHVV DQG WKH PLGGOH HGJH RI WKH K\RPDQn GLEXODU DUH VWURQJO\ MRLQHG WR DQG SDUWLDOO\ XQGHUODLQ E\ WKH PHWDSWHU\n JRLG 0737f 'RUVDOO\ WKH K\RPDQGLEXODU DUWLFXODWHV ZLWK WKH QHXURFUDQLXP DW WZR SRLQWV DQ DQWHULRU NQRE DUWLFXODWHV ZLWK WKH DXWRVSKHQRWLF 63+f DQG WKH PLGGOH NQRE ZLWK WKH DXWRSWHURWLF 372f 7KH SRVWHULRU NQRE RQ

PAGE 47

WKH KHDG RI WKH K\RPDQGLEXODU DUWLFXODWHV ZLWK D IDFHW RQ WKH XSSHU RSHUFOH 23f 7KH YHQWUDO WLS RI WKH K\RPDQGLEXODU SURFHVV DUWLFXODWHV ZLWK WKH GRUVDO WLS RI WKH LQWHUK\DO ERQH ,+f 0HWDSWHU\JRLG 0737f f§ 7KLV ERQH DUWLFXODWHV SRVWHULRUO\ ZLWK WKH ORZHU DQWHULRU HGJH RI WKH K\RPDQGLEXODU +0f WRJHWKHU WKHLU DQWHULRU PDUJLQV FXUYH SDUDOOHO WR WKH SRVWHULRU VXERUELWDOV 68%f $QWHULRUO\ WKH XSSHU HGJH PHHWV WKH SRVWHULRU ODWHUDO PDUJLQ RI WKH PHVRSWHU\JRLG 0637f ZKLOH WKH ORZHU HGJH DUWLFXODWHV ZLWK WKH GRUVDO UHDU PDUJLQ RI WKH TXDGUDWH 4f 7KH ORZHU SRVWHULRU PDUJLQ RI WKH PHWDSWHU\JRLG DUWLFXODWHV ZLWK WKH XSSHU SRVWHULRU HGJH RI WKH V\PSOHFWLF 6
PAGE 48

EDFNZDUGV DQG DUWLFXODWHV ZLWK WKH LQQHU FXUYH RI WKH ORZHU OLPE RI WKH SUHRSHUFOH 323f 0HGLRYHQWUDO\ WKH TXDGUDWH ILUPO\ UHFHLYHV WKH DQWHULRU V\PSOHFWLF 6
PAGE 49

WZR SURFHVVHV SURMHFW 7KH SRVWHULRUZDUG DUP FORVHO\ DUWLFXODWHV ZLWK WKH SWHU\JRLG 37f 7KH FXUYHG DQWHULRU ODWHUDOO\ SURMHFWLQJ DUP SUHn SDODWLQH SURFHVVf DUWLFXODWHV ZLWK WKH GRUVDO VXUIDFH RI WKH DQWHULRU HQG RI WKH PD[LOODU\ 0;f 7KH SDODWLQH DOVR FRQWDFWV WKH QHXURFUDQLXP E\ ULGLQJ WKH DQWHULRU ODWHUDO VXUIDFH RI WKH SUHYRPHU 39f 2SHUFXODU ERQHV 7KH IRXU RSHUFXODU ERQHV IRUP WKH JLOO FRYHU DQG DUH YDULRXVO\ FRQQHFWHG ZLWK HDFK RWKHU DQG WKH K\RPDQGL EXODU VHULHV 2SHUFOH 23f )LJXUH ;, ,$f 7KH RSHUFOH LV D ODUJH IODWWHQHG ERQH FXUYHG EURDGO\ SRVWHULRUO\ WKDW DUWLFXODWHV ZLWK WKH SRVWHULRU NQRE RI WKH K\RPDQGL EXODU +0f YLD D IDFHW DW LWV DQWHURGRUVD FRUQHU 7KH DQWHULRU PDUJLQ XQGHUOLHV WKH SRVWHULRU PDUJLQ RI WKH SUHRSHUFOH 323f 9HQWUDOO\ WKH RSHUFOH FRYHUV WKH GRUVDO PDUJLQ RI WKH VXERSHUFOH 623f 6XERSHUFOH 623f )LJXUH ;,,$f 7KH VXERSHUFOH LV IODWWHQHG DQG LV FKDUDFWHUL]HG E\ D WDSHUHG IRUZDUGSURMHFWLQJ SURFHVV WKDW DULVHV IURP WKH ORZHU DQWHULRU FRUQHU 7KH SURFHVV DQG WKH OHDGLQJ HGJH RI WKH VXEn RSHUFOH DUH FRYHUHG E\ WKH YHQWUDO WLS RI WKH RSHUFOH ERQH 23f 7KH ORZHU DQWHULRU FRUQHU LV FRYHUHG E\ WKH SRVWHULRU HGJH RI WKH LQWHURSHUFOH ,3f ,QWHURSHUFOH O23f )LJXUH ;, $f ,Q DGGLWLRQ WR FRYHULQJ WKH DQWHULRU FRUQHU RI WKH VXERSHUFOH 623f WKH LQWHURSHUFOH DUWLFXODWHV PLGGRUVDOO\ ZLWK WKH HSLK\DO ERQH (+f 7KH LQWHURSHUFOH LV LQ WXUQ FRYHUHG DORQJ LWV GRUVDO KDOI E\ WKH YHQWUDO PDUJLQ RI WKH SUHRSHUFOH 323f 7KH DQWHULRU HQG RI WKH LQWHURSHUFOH LV OLQNHG E\ VWURQJ FRQQHFWn LQJ WLVVXHV WR WKH SRVWHULRU PDUJLQ RI WKH PDQGLEOH 3UHRSHUFOH 323f )LJXUH ;, ,%f 7KH DQWHULRU PDUJLQ RI WKH XSSHU OLPE RI WKH SUHRSHUFOH LV ILUPO\ MRLQHG ZLWK WKH SRVWHULRU HGJH RI WKH

PAGE 50

K\RPDQGLEXODU ERQH +0f 3RV WHULRU \LW FRYHUV WKH GRUVDO KDOI RI WKH LQWHURSHUFOH O23f DQG WKH DQWHULRU HGJH RI WKH RSHUFOH 23f 7KH GRUVDO VXUIDFH RI WKH ORZHU IRUZDUGSURMHFWLQJ OLPE DUWLFXODWHV ZLWK WKH YHQWUDO HGJH RI WKH SRVWHULRU SURMHFWLRQ RI WKH TXDGUDWH f -XYHQLOH VSHFLPHQV DUH FKDUDFWHUL]HG E\ SUHRSHUFXODU VSLQHV )LJXUH %f WKDW UDGLDWH SRVWHUn LRUO\ IURP WKH SRVWHURYHQWUD DQJOH RI WKH SUHRSHUFOH +\DO ERQHV )LJXUH ;,,, DQG ;,9f %DVLK\DO %+f JORVVRK\DO RI 6X]XNL f f§ 7KLV DQWHULRU PRVW RI WKH K\DO VHULHV LV DQ HORQJDWH URG LNH XQSDLUHG ERQH WKDW IRUPV WKH EDVH RI WKH WRQJXH ,WV SRVWHULRU HQG ILWV VQXJO\ LQWR D URXQGHG QRWFK IRUPHG E\ WKH FRQYHUJHQFH RI WKH ILUVW EDVLEUDQFKLD %%f DQG WKH XSSHU K\SRK\DOV 8++f )LJXUHV ;,,, DQG ;,9f 7KH EDVLK\DO )LJXUH ;9%f LV DQWHULRUO\ ZLGHVW LQ +B ]HORWHV LQWHUn PHGLDWH LQ OHXFXUXV DQG DPEO\UK\QFKXV DQG QDUURZHVW LQ ELFRORU 3RLQWHG FRQLFDO WHHWK DUH IRXQG RQ WKH GRUVDO VXUIDFH RI WKH EDVLK\DO LQ DPEO\UK\QFKXV DQG ELFRORU 8SSHU K\SRK\DO 8++f 7KLV FXUYHG WUDSH]RLGDO ERQH ZKLFK DSn SURDFKHV LWV IHOORZ PHPEHU DW WKH PHGLDO WLS RI WKH GRUVDO VXUIDFH LV ORRVHO\ DUWLFXODWHG ZLWK WKH ILUVW EDVLEUDQFKLDO %%f )LJXUH ;,,,f ,Q FRQFHUW WKH WKUHH IRUP D FRQFDYH QRWFK ZKLFK UHFHLYHV WKH SRVWHULRU HQG RI WKH EDVLK\DO %+f 7KH YHQWUDO HGJH RI WKH XSSHU K\SRK\DO SDUDOOHOV EXW GRHV QRW WRXFK WKH GRUVDO HGJH RI WKH ORZHU K\SRK\DO /++f 3RVWHULRUO\ WKH XSSHU K\SRK\DO DUWLFXODWHV ZLWK WKH XSSHU DQWHULRU PDUJLQ RI WKH FHUDWRK\DO &+f $ FLUFXODU IRUDPHQ SLHUFHV WKH XSSHU SRVWHULRU TXDGUDQW RI WKLV GRXEOHD\HUHG ERQH

PAGE 51

,Q ODWHUDO YLHZ WKH IRUDPHQ ORFDWHG LQ WKH XSSHU SRVWHULRU TXDUWHU RI WKH XSSHU K\SRK\DO ERQH )LJXUH ;9&f LV YDULDEO\ VKDSHG EHLQJ HORQJDWH LQ ]HORWHV DQG HXFXUXV DQG PRUH FLUFXODU LQ DPEO\UK\QFKXV DQG ELFRORU /RZHU K\SRK\DO /++f 7KH ORZHU K\SRK\DO FXUYHV LQZDUG PHGLDOO\ WR PHHW LWV IHOORZ PHPEHU YHQWUDOO\ 'RUVDOO\ LW LV ORRVHO\ DOLJQHG ZLWK WKH XSSHU K\SRK\DO 8++f 3RVWHULRUO\ LW UHFHLYHV DQ XQGHUO\LQJ SURn MHFWLRQ IURP WKH DQWHULRU HGJH RI WKH FHUDWRK\DO &+f WR ZKLFK LW LV EURDGO\ DUWLFXODWHG &HUDWRK\DO &+f 3URPLQHQW LQ WKH XSSHU FHQWUDO DUHD RI WKLV HORQJDWH ERQH LV WKH RYDO YHQWUDOO\VNHZHG FHUDWRK\DO ZLQGRZ 7KH FHUDWRK\DO ERQH LV FORVHO\ DUWLFXODWHG ZLWK WKH ORZHU K\SRK\DO /++f YLD DQ DQWHULRU SURMHFWLRQ DULVLQJ IURP LWV ORZHU IRUZDUG HGJH 7KH XSSHU DQWHULRU HGJH DUWLFXODWHV ZLWK WKH SRVWHULRU HGJH RI WKH XSSHU K\SRK\DO 8++f 7KH FHUDWRK\DO LV VWURQJO\ XQLWHG SRVWHULRUO\ ZLWK WKH HSLK\DO ERQH (+f 9HQWUDOO\ LW UHFHLYHV WKH SUR[LPDO WLSV RI ILYH EUDQFKLRVWHJD UD\V %f 7KH FHUDWRK\DO ZLQGRZ LV YHQWUD\H[SDQGHG LQ + ]HORWHV DQG DPEO\UK\QFKXV PRUH RYDO LQ ELFRORU DQG URXJKO\ WULDQJXODU LQ HXFXUXV )LJXUH ;9'f (SLK\DO (+f f§ 7KH HSLK\DO LV D URXQGHG WULDQJXODUVKDSHG ERQH WKDW LV VWURQJO\ XQLWHG DQWHULRUO\ ZLWK WKH FHUDWRK\DO &+f 3RVWHUR YHQWUDOO\ LW UHFHLYHV WKH SUR[LPDO WLSV RI WKH ODVW WZR EUDQFKLRVWHJDO UD\V %f 7KH PLGXSSHU ODWHUDO VXUIDFH RI WKH HSLK\DO DUWLFXODWHV ZLWK WKH PLGGRUVDO HGJH RI WKH LQWHURSHUFOH O23f 7KH XSSHU SRVWHULRU DQJOH RI WKLV ERQH LV D IDFHW WKDW UHFHLYHV WKH YHQWUDO HQG RI WKH LQWHUK\DO ERQH ,+f

PAGE 52

8URK\D 8+f 7KH XURK\DO LV DQ XQSDLUHG UHFWDQJXODU ERQH WKDW OLHV LQ WKH YHQWUDO YHUWLFDO SODQH DQG LV FKDUDFWHUL]HG E\ D SDLU RI ODWHUDOO\ IODUHG ZLQJV DW WKH YHQWUDO HGJH $QWHULRUO\ WKH XURK\DO LV ORRVHO\ LQVHUWHG LQWR D VSDFH VXUURXQGHG E\ WKH ILUVW EDVLEUDQFKLDO %%f WKH K\SRK\DOV ++f DQG WKH DQWHULRU SRUWLRQ RI WKH FHUDWRK\DOV &+f 7KH XURK\DO )LJXUH ;9$f RI +B ]HORWHV LV XQLTXHO\ FKDUDFWHUL]HG E\ VOLJKW SRVWHULRUZDUG VSLQHV RQ WKH GRUVDO HGJH ,Q DGGLWLRQ D SURn MHFWLRQ DW WKH YHQWUDO DQWHULRU FRUQHU LV YDULDEO\ GHYHORSHG EHLQJ ORQJHVW LQ ELFRORU DQG VKRUWHVW LQ ]HORWHV ,QWHUK\DO ,+f 7KH LQWHUK\DO LV D VKRUW URGVKDSHG ERQH WKDW OLQNV WKH K\DO VHULHV WR WKH K\RPDQGL EXODU ERQH +0f 'RUVDOO\ LW DUWLFXODWHV ZLWK WKH K\RPDQGL EXODU YHQWUDOO\ LW PHHWV D IDFHW RQ WKH SRVWHULRU GRUVDO FRUQHU RI WKH HSLK\DO (+f %UDQFKLRVWHJDO UD\V %f f§ 6HYHQ EUDQFKLRVWHJDO UD\V SURFHHG SRVWHULRUO\ IURP WKH K\DO VHULHV WR OHQG VXSSRUW WR WKH ORZHU RSHUFXODU PHPEUDQH 7KH ILYH DQWHULRUPRVW EUDQFKLRVWHJDV DULVH IURP WKH FHUD WRK\DO &+f WKH ODVW WZR RI WKHVH HSLGRWULFKLNH UD\V DULVH IURP WKH HSLK\DO (+f %UDQFKLDO UHJLRQ )LYH EUDQFKLDO DUFKHV FRPSRVHG RI SDLUHG DQG XQSDLUHG HOHPHQWV DUH IRXQG LQ +HPLFDUDQ[ )LJXUH ;,,,f %DV L EUDQFK L D V %%f f§ 7KUHH XQSDLUHG EDVLEUDQFKLDO ERQHV DUH ORFDWHG LQ D ORQJLWXGLQDO VHULHV LQ WKH IORRU RI WKH SKDU\Q[ DQG UHn SUHVHQW WKH YHQWUDOPRVW PHPEHUV RI WKH EUDQFKLDO VHULHV 7KH ILUVW LV RQO\ SDUWLDOO\ YLVLEOH LQ GRUVDO YLHZ VLQFH LW LV RYHUODLG DQWHULRUO\ E\ WKH EDVLK\DO ERQH %+f )LJXUH ;, f EHORZ ZKLFK LW YHUWLFDOO\ H[WHQGV )LJXUH ;,9 %f ,Q FRQFHUW ZLWK WKH XSSHU K\SRK\DOV 8++f WKH ILUVW

PAGE 53

EDVLEUDQFK 7DO IRUPV D FRQFDYLW\ WKDW UHFHLYHV WKH SRVWHULRU HQG RI WKH EDVLK\DO DQG WKXV OLQNV WKH EUDQFKLDO DQG K\DO VHULHV 3RVWHULRUO\ WKH ILUVW EDVLEUDQFKLDO DUWLFXODWHV ZLWK WKH VHFRQG EDVLEUDQFKLDO 7KH VHFRQG EDVLEUDQFKLD ERQH LV VKRUW URGOLNH DQG IURP LWV DUWLFXODWLRQ ZLWK WKH ILUVW EDVLEUDQFK L D H[WHQGV GRUVRSRVWHULRU \ WR PHHW WKH WKLUG EDVLEUDQFKLDO 7KH VHFRQG EDVLEUDQFK L D LV ORFDWHG VOLJKWO\ DERYH WKH GRUVDO DQWHULRU WLSV RI WKH SDLUHG ILUVW K\SR EUDQFKLDOV +%f ZLWK ZKLFK LWV ODWHUDO DQWHULRU HQG DUWLFXODWHV 7KH SRVWHULRU FRUQHUV FRYHU EXW GR QRW DUWLFXODWH ZLWK WKH SUR[LPDO HQGV RI WKH VHFRQG K\SREUDQFKLDOV 7KH HORQJDWH WKLUG EDVLEUDQFKLD H[WHQGV REOLTXHO\ EDFN IURP WKH DUWLFXODWLRQ RI LWV FRQFDYH DQWHULRU HQG ZLWK WKH FRQFDYH SRVWHULRU WLS RI WKH VHFRQG EDVLEUDQFK L D )LJXUH ;,9%f 7KH DQWHULRU ODWHUDO PDUJLQV RI WKLV ERQH ILUPO\ UHFHLYH WKH GRUVDO KDOYHV RI WKH SUR[LPDO HQGV RI WKH SDLUHG VHFRQG K\SREUDQFKL DO +%f 3RVWHULRUO\ WKH WKLUG EDVLEUDQFKLDO LV ORRVHO\ FUDGOHG E\ WKH GRUVDO HQGV RI WKH WKLUG K\SR EUDQFK LDOV 7KH WKLUG EDV L EUDQFK LD LV VOLJKWO\ PRUH H[SDQGHG ODWHUDOO\ LQ +B HXFXUXV DQG ELFRORU WKDQ LQ ]HORWHV DQG DPEO\UK\QFKXV +\SREUDQFKLDOV +%f )LJXUH ;, Of 7KUHH SDLUV RI K\SREUDQFKLDOV DUH YDULRXVO\ DUWLFXODWHG ZLWK WKH EDVLEUDQFKLD ERQHV %%f DQG H[WHQG ODWHUDOO\ WR DUWLFXODWH ZLWK WKH ILUVW WKUHH FHUDWREUDQFKLDOV &%f 7KH ILUVW DQG DQWHULRUPRVW K\SREUDQFKLD ERQH LV FRPSUHVVHG DQG ILUPO\ OLQNV WKH ILUVW FHUDWREUDQFKLDO WR WKH VHFRQG EDVLEUDQFKLDO ZKLFK SRVVHVVHV D VKDOORZ UHFHVV RQ WKH DQWHULRU ODWHUDO VXUIDFH LQWR

PAGE 54

ZKLFK WKH XSSHU KDOI RI WKH SUR[LPDO HQG RI WKH K\SREUDQFKLDO ILWV 7KH YHQWUDO HGJH RI WKLV HORQJDWH ERQH VXSSRUWV JLOOV ZKLOH WKH ODWHUDO DQG PHGLDO VLGHV VXSSRUW JLOO UDNHUV DQG WXEHUFOHV UHVn SHFW L YHO \ 7KH VHFRQG K\SREUDQFK L D LV PRUH UHFWDQJXODU WKDQ WKH ILUVW ZLWK JLOOV JLOO UDNHUV DQG WXEHUFOHV VLPLODUO\ VXSSRUWHG 7KH GRUVDO KDOI RI WKH SUR[LPDO HQG LQVHUWV LQWR D UHFHVV DORQJ WKH DQWHULRU WKLUG RI WKH ODWHUDO PDUJLQ RI WKH WKLUG EDVLEUDQFKLDO 7KH WKLUG K\SREUDQFKLDO LV URXJKO\ IXQQHOVKDSHG LQ DSSHDUDQFH ZLWK WKH QDUURZ WXEHOLNH SURFHVV H[WHQGLQJ GRZQ DQG IRUZDUG WR DSn SURDFK LWV IHOORZ PHPEHU LQ WKH PLGOLQH EHORZ WKH PLGGOH RI WKH WKLUG EDVLEUDQFK L D 7KH PHGLDO PDUJLQ RI WKH IODUHG GRUVDO HQG RI WKLV ERQH IODQNV WKH SRVWHULRU HQG RI WKH WKLUG EDVcEUDQFKLDO 7KH SRVWHULRU HQG VXSSRUWV WKH WKLUG FHUDWREUDQFKLDO &HUDWREUDQFKLDO &%f)LJXUH ;,,,f f§ 7KH ILUVW IRXU DUH JHQWO\ FXUYHG VOHQGHU URGV WKDW GRUVDOO\ VXSSRUW HSLEUDQFK L D V (%f DQG ZLWK WKH H[FHSWLRQ RI WKH IRXUWK DUH VXSSRUWHG YHQWUDOO\ E\ WKH K\SREUDQFK L D V +%f ([FHSW IRU WKH ILUVW ZKLFK VXSSRUWV ORQJ JLOO UDNHUV LQVWHDG RI WXEHUFOHV RQ LWV ODWHUDO PDUJLQ HDFK VXSSRUWV WZR URZV RI WXEHUFOHV RQ WKH GRUVDO VXUIDFH 7KH ILIWK FHUDWREUDQFKLDO RU SKDU\QJHDOf LV PRUH PDVVLYH DQG ODWHUDOO\ H[SDQGHG WKDQ WKH RWKHUV DQG LV GHQVHO\ FRYHUHG GRUVDOO\ E\ SRLQWHG VOHQGHU SURMHFWLRQV WHHWKf /LNH WKH IRXUWK FHUDWREUDQFKLDO WKLV HOHPHQW LV QRW DUWLFXODWHG ZLWK D K\SREUDQFKLDO ERWK DUH FRQQHFWHG WR WKH EDVH RI WKH K\DO VHULHV E\ FDUWLODJH 7KH ILIWK FHUDWREUDQFKLDO LV DOVR VHFXUHO\ MRLQHG WR LWV IHOORZ PHPEHU DORQJ WKH DQWHULRU PHGLDO HGJH

PAGE 55

(SLEUDQFKLDOV (%f)LJXUH ;,,,f 7KH IRXU VWRXW HSLEUDQFKLDO ERQHV HIIHFW WKH FKDUDFWHULVWLF VKDUS EHQG RI WKH JLOO DUFKHV DQG OLQN WKH ILUVW IRXU FHUDWREUDQFKLDOV &%f WR WKH SKDU\QJSEUDQFKLDO VHULHV (DFK LV ODWHUDOO\ FRPSUHVVHG DQG FKDUDFWHUL]HG E\ D YDULDEO\ GHYHORSHG ZL QJ L NH SRV WHU cRU SURMHFWLRQ 3KDU\QJREUDQFK OD V 3%f)"TXUH ;,,,f f§ 7KH ILUVW SKDU\QJREUDQFKLDO ERQH LV D VOHQGHU URG WKDW FRQQHFWV WKH ILUVW HSLEUDQFKLDO ERQH (%f WR WKH QHXURFUDQLXP 7KH RWKHU WKUHH SKDU\QJREUDQFKLDOV DUH VROLGO\ EXLOW EORFNV RI ERQH FKDUDFWHUL]HG E\ ORQJ VOHQGHU VKDUS WHHWK SURMHFWLQJ LQWR WKH SKDU\QJHDO FDYLW\ DQG WKH\ DUH FRQQHFWHG WR WKH QHXURFUDQLXP E\ D VWURQJ FRPELQDWLRQ RI PXVFOH DQG FRQQHFWLYH WLVVXH 7KH WKLUG LV WKH ODUJHVW $SSHQGLFXODU 6NHOHWRQ 3HFWRUDO JLUGOH DQG ILQ )LJXUH ;9,$f 3RVWWHPSRUDO 370f f§ 7KLV DQWHULRUO\ ELIXUFDWHG ERQH VXSSRUWV DOO RWKHU SHFWRUDO HOHPHQWV E\ LWV DUWLFXODWLRQV ZLWK WKH QHXURFUDQLXP DQG WKH VXSUDFOHLWKUXP 7KH XSSHU DUP RI WKH SRVWWHPSRUDO DUWLFXODWHV ZLWK WKH HSLRWLF SURFHVV DQG WKH ORZHU DUP DUWLFXODWHV ZLWK WKH RSLVWKRWLF 236f RI WKH VNXOO 7KH VXSUDFOHLWKUXP 6&/f PHHWV LW SRVWHURYHQWUDOO\ 6XSUDFHLWKUXP 6&/fVXSUDFDYLFOH RI 6X]XNL f 7KLV IODW HORQJDWH ERQH H[WHQGV REOLTXHO\ GRZQZDUG IURP LWV GRUVDO DUWLFXODn WLRQ ZLWK WKH SRVWWHPSRUDO 370f 9HQWUDOO\ LW LV DWWDFKHG WR WKH ODWHUDO XSSHU DQJOH RI WKH FOHLWKUXP &/f &OHLWKUXP &/fFDYLFH RI 6X]XNL f 7KH FOHLWKUXP LV DQ HORQJDWH EURDGO\ FXUYHG ERQH WKDW LV FKDUDFWHUL]HG YHQWUDOO\ E\ WZR SRVWHULRUO\ SURMHFWLQJ VKHOYHV WKH H[WHULRU DQG LQWHULRU WKDW PHHW WR

PAGE 56

IRUP D ULGJH DQWHULRUO\ 'RUVDOO\ D EURDG VKHOI H[WHQGV EDFN IURP WKH FXUYHG PDLQ D[LV RI WKH ERQH 7KH FOHLWKUXP DUWLFXODWHV GRUVR DWHUD\ ZLWK WKH VXSUDFOHOWKUXP 6&/f 0HGLDOO\ LW WRXFKHV WKH GRUVDO WLS RI WKH SRVWFOHLWKUXP 3&/f DQG ERUGHUV WKH ODWHUDO GRUVRDQWHULRU HGJH RI WKH VFDSXOD 9HQWUDOO\ WKH FOHLWKUXP WRXFKHV LWV RSSRVLWH PHPEHU LQ WKH PLGOLQH RI WKH ERG\ 6FDSXOD 6&f K\SHUFRUDFRLG RI 6X]XNL f f§ 7KH VFDSXOD LV VPDOO IODW DQG URXJKO\ UKRPERLGDO LQ VKDSH ZLWK D FHQWUDO IRUDPHQ /RFDWHG EHKLQG WKH PLGGOH RI WKH FOHLWKUXP &/f WKLV ERQH SURYLGHV VXSn SRUW IRU WKH SHFWRUDO VSLQH DQG DW OHDVW WKH XSSHU WKUHH UDGLDOV 5f ,W DUWLFXODWHV DQWHULRUO\ ZLWK WKH PHGLDO VXUIDFH RI WKH FOHLWKUXP DQG LWV HQWLUH YHQWUDO HGJH ERUGHUV WKH GRUVDO HGJH RI WKH FRUDFRLG &2f &RUDFRLG &2fK\SRFRUDFRLG RI 6X]XNL f f§ 7KLV WKLQ VOLJKWO\ FRQFDYH ERQH LV FORVHO\ ERUGHUHG GRUVDOO\ E\ WKH VFDSXOD 6&f DQG LV FKDUDFWHUL]HG E\ D FRQFDYH IDFHW DW WKH SRVWHULRU FRUQHU RI WKLV DUWLFXODWLRQ $QWHULRUO\ WKH XSSHU DQG ORZHU HGJHV RI WKH FRUDFRLG DSSURDFK WKH SRVWHULRU PDUJLQ RI WKH LQWHUQDO VKHOI RI WKH FOHLWKUXP &/f 3RV WHOHLWKUXP 3&/fSRVWFDYLFOH RI 6X]XNL f 7KH SRVWFOHLWKUXP LV DFWXDOO\ FRPSRVHG RI WZR EURDGO\ RYHUODSSLQJ ERQHV 7KH XSSHU HOHPHQW 3&/ f LV HORQJDWH DQG H[SDQGHG YHQWUDOO\ DQG DUWLFXODWHV GRUVDOO\ ZLWK WKH PHGLDO XSSHU VXUIDFH RI WKH SRVWHULRUO\ H[WHQGLQJ SURFHVV RI WKH FOHLWKUXP &/f 9HQWUDOO\ LW H[WHQGV WR D SRLQW HYHQ ZLWK WKH ORZHVW UDGLDO 5f 7KH ORZHU WKLQ ULEOLNH HOHPHQW 3&/ f ILUPO\ DUWLFXODWHV ZLWK WKH XSSHU HOHPHQW DV IDU DV WKH ORZHU HGJH RI WKH SRVWHULRU FOHLWKUDO SURFHVV

PAGE 57

5DG MDLV 5f f§ 7KHVH IRXU VWRXW URGV SURYLGH VXSSRUW IRU WKH VRIW ILQ UD\Vr 7KH XSSHU WKUHH DUH LQ WXUQ VXSSRUWHG E\ WKH SRVWHULRU HGJH RI WKH VFDSXOD 6&f DQG WKH IRXUWK ORRVHO\ DUWLFXODWHV ZLWK WKH FRUDFRLG &2f /HSLGRWULFKV /(3f 7KH OHSLGRWULFKV DUH UHSUHVHQWHG E\ RQH ILQ VSLQH SOXV VRIW UD\V 7DEOH f DOO EXW WKH ILUVW RI ZKLFK D UH EUDQFKHG 7KH VSLQH DUWLFXODWHV GLUHFWO\ ZLWK WKH VFDSXOD 6&f WKH VRIW Um\V DUH VXSSRUWHG E\ WKH UDGLDOV 5f ZKLFK WKH\ IULQJH LQ D EURDG DUF 3HOYLF JLUGOH DQG ILQ )LJXUH ;9,%f f§ %DVLSWHU\J"XP %37f f§ 7KH EDVLSWHU\JLXP LV FORVHO\ DOLJQHG ZLWK LWV IHOORZ PHPEHU DORQJ LWV HQWLUH PHGLDO D[LV WDSHULQJ VOLJKWO\ IURP D NQREE\ SRVWHULRU WR D VSOLQWOLNH DQWHULRU WKDW SDVVHV PHGLDO WR WKH FRUDFRLG &2f DQG FOHLWKUXP &/f DQG EHORZ WKH SRVWFOHLWKUXP 3&/f )URP WKH PHGLDO FRUQHU RI WKH SRVWHULRU HQG DULVHV D VSOLQWOLNH SURFHVV WKDW SURMHFWV REOLTXHO\ XSZDUG ,Q ODWHUDO YLHZ WKH VSOLQW DSSHDUV WR FDUU\ WKURXJK WKH PDLQ FROXPQ RI WKH ERQH WR SURMHFW YHQWUDOO\ 6L[ OHSLGRWULFKV /(3f DUH VXSSRUWHG E\ WKH SRVWHULRU PDUJLQ RI WKH EDVLSWHU\JLXP /HSLGRWULFKV 2QH VSLQH DW WKH ODWHUDO FRUQHU DQG ILYH VRIW UD\V PHGLDO WR LW DUH VXSSRUWHG E\ WKH SRVWHULRU EDVLSWHU\JLXP %37f 3RVWFUDQLDO $[LDO DQG 0HGLDO 6NHOHWRQ 'RUVDO ILQ 7ZR GLVWLQFW SDUWV RI WKH GRUVDO ILQ DUH SUHVHQW LQ DGXOW DQG DGYDQFHG MXYHQLOH VSHFLPHQV RI +HPLFDUDQ[ 7KH VWUXFWXUDO FRQWLQXLW\ RI WKH GRUVDO ILQV LV LOOXVWUDWHG E\ WKH UHJXODU VSDFLQJ RI WKH HSLGRWULFKVXSSRUWLQJ SWHU\JLRSKRUHV 37f )LJXUH ;9,,f

PAGE 58

$QWHULRUPRVW LQ WKH GRUVDO VNHOHWRQ DUH WKUHH SUHGRUVDO ERQHV 3'f WKH ILUVW SODFHG EHIRUH WKH ILUVW QHXUDO VSLQH 16f WKH VHFRQG DQG WKLUG O\LQJ EHWZHHQ WKH VHFRQG DQG WKLUG QHXUDO VSLQHV )ROORZLQJ WKH SUHGRUVDOV DUH SWHU\JLRSKRUHV 37f ZKLFK XQGHUOLH DQG VXSSRUW WKH OHSLGRWULFKV /(3f :LWK WKH H[FHSWLRQ RI WKH ILUVW PHPEHU HDFK SWHU\JLRSKRUH LV VHJPHQWDOO\ DVVRFLDWHG ZLWK D OHSLGRWULFK DQG DOVR XQGHUOLHV VWUXFWXUDOO\ WKH OHSLGRWULFK LPPHGLDWHO\ SUHFHGLQJ LWV VHJPHQWDO DVVRFLDWH $OO EXW WKH ILUVW DQG ODVW OHSLGRWULFK KDYH FRPSRXQG VXSSRUW $FFRUGLQJ WR 6PLWK DQG %DLOH\ > @ WKH SWHU\JLRSKRUH RI WKH ILUVW GRUVDO VSLQH LV DFWXDOO\ LQFOXGHG LQ WKH SUHGRUVDO VHULHVf 7KH RQHWRRQH FRUUHVSRQGHQFH LV LOOXVWUDWHG LQ )LJXUH ;9,, 7KH WUXH QDWXUH RI OHSLGRWULFK VXSSRUW LV VKRZQ LQ )LJXUH ;9,, $V VHHQ LQ )LJXUH ;9,,$ GRUVDO VSLQHV ,, WKURXJK ,; DUH VHJPHQWDOO\ VXSSRUWHG E\ DQ HORQJDWH SUR[LPDO SWHU\JLRSKRUH 337f DQG D VKRUW SRVWHULRUO\SRLQWHG GLVWDO SWHU\JLRSKRUH '37f $OO VRIW UD\V DUH VXSSRUWHG E\ DQ HORQJDWH SUR[LPDO SWHU\JLRSKRUH DQG D ELn ODWHUDOO\ KDOYHG GLVWDO SWHU\JLRSKRUH LQVHUWHG EHWZHHQ KDOYHV RI WKH VHJPHQWDOO\ DVVRFLDWHG OHSLGRWULFK )LJXUH ;9 , %f 7KH WUHQG RI IXVLRQ RI DQWHULRU SUR[LPDO DQG LQWHUPHGLDWH SWHU\JLRSKRUHV LQ VSLQ\ UD\HG ILVKHV 6PLWK DQG %DLOH\ f LV FRPSOHWHG LQ + ]HORWHV LQ WKH RQO\ RWKHU FRPSDUDEO\ VL]HG VSHFLPHQV 6/ PPf RI &DUDQJLGDH GLVFXVVHG LQ WKH OLWHUDWXUH (ODJDWLV ELSLQQXODWD KDV RQO\ WKH WZR SRVWHULRU LQWHUPHGLDWH SWHU\JLRSKRUHV GLVWLQFW %HUU\ f ,QVHUWLRQ RI SUR[LPDO SWHU\JLRSKRUHV EHWZHHQ QHXUDO VSLQHV LV VKRZQ LQ )LJXUH ;9,,

PAGE 59

KL $QDO ILQ )LJXUH ;9 ,f f§ 6WUXFWXUDOO\ DQG RQWRJHQHWLFD\ WKH DQDO ILQ UHVHPEOHV WKH GRUVDO ILQ ZLWK UHJDUG WR RYHUDOO DSSHDUDQFH DQG SWHU\JLRSKRUH OHSLGRWULFK VWUXFWXUH DQG DUWLFXODWLRQ 8QLTXH LV WKH DQWHULRUPRVW SUR[LPDO SWHU\JLRSKRUH 337f ZKLFK DUWLFXODWHV ZLWK WKH KHPDO VSLQH +6f RI WKH HOHYHQWK YHUWHEUD WR IRUP D VWURQJ EUDFHOLNH VWUXFWXUH ,W LV DOVR H[WHQGHG IRUZDUG DW LWV YHQWUDO EDVH 7KH GLVWDO WLSV RI WKH SUR[LPDO SWHU\JLRSKRUHV RI HDFK VSHFLHV DUH FKDUDFWHULVWLF LQ GHYHORSPHQW RI DQWHULRUGLUHFWHG SRLQWV DQG GHJUHH RI RSSRVLWLRQ WR HDFK RWKHU )LJXUH ;,;f 7KH SWHU\JLDO SRLQWV DUH PRVW SURPLQHQW LQ B+ ]HORWHV DQG DUH GHYHORSHG RQ DOO EXW WKH DQWHULRU WZR QRUPDO SWHU\JLRSKRUHV 7KH\ DUH SRRUO\ GHYHORSHG LQ HXFXUXV DQG DUH SRLQWHG RQO\ RQ WKH WHQWK WKURXJK WKH HLJKWHHQWK QRUPDO SWHU\JLRSKRUHV 3RLQWV DUH LQWHUPHGLDWHO\ GHYHORSHG LQ DPEO\UK\QFKXV DQG ELFRORU 3RLQWV RQ GRUVDO SWHU\JLRSKRUHV IROORZ D VLPLODU SDWWHUQ EXW WKH\ PRUH FORVHO\ UHVHPEOH HDFK RWKHUf 7KH GLVWDO HQGV RI WKH DQDO SWHU\JLRSKRUHV DUH PRVW FORVHO\ RSn SRVHG LQ M+ DPEO \UK\QFKXV LQWHUPHGLDWHO\ VR LQ ELFRORU DQG HXFX UXV DQG PRVW GLVWDQWO\ DUWLFXODWHG LQ ]H RWHV )LJXUH ;,;f 9HUWHEUDO FROXPQ 7KH YHUWHEUDO FROXPQ LV FRPSRVHG RI YHUWHEUDH DOO RI ZKLFK W\SLFDOO\ IHDWXUH SURFHVVHV IRU DUWLFXODWLRQ ZLWK DGMDFHQW PHPEHUV DQG D QHXUDO DUFK DQG VSLQH 7KH WHQ SUHFDXGDO YHUWHEUDH 3&9f SRVVHVV SOHXUDO 35f DQGRU HSLSOHXUDO (35f ULEV KHPDO VSLQHV +6f DUH YDULDEO\ GHYHORSHG )LIWHHQ FDXGDO YHUWHEUDH &9f SRVVHVV FORVHG KHPDO DUFKHV DQG KHPDO VSLQHV WKDW GHVFHQG WR LQWHUGLJLWDWH ZLWK DQDO SWHU\JLRSKRUHV

PAGE 60

rA 7KH ILUVW YHUWHEUD WKH DWODV )LJXUH ;;$f LV XQLTXHO\ FKDUDFWHUL]HG E\ D QHXUDO VSLQH 16f WKDW LV DXWRJHQRXV LW DUWLFXODWHV ZLWK SDLUHG IDFHWV RQ WKH DWODV E\ WZR SURMHFWLRQV WKDW MXW LQZDUG IURP ODWHUDOO\ IODUHG SURFHVVHV $QWHULRUO\ WKH DWODV DUWLFXODWHV ZLWK WKH QHXURFUDQLDO H[RFFLSLWDO (2&f DQG EDVLRFFLSLWD %2&f ERQHV 3RVWHULRUO\ SURMHFWLQJ ODWHUDO DSRSK\VHV H[WHQG SDVW WKH DUWLFXODWLRQ ZLWK WKH VHFRQG YHUWHEUD 7KH VHFRQG YHUWHEUD WKH D[LV )LJXUH ;;$f LV FKDUDFWHUL]HG E\ QHXUDO SUH]\JDSRSK\VHV WKDW H[WHQG RYHU WKH DWODV /DWHUDO DSRSK\VHV SURMHFW EDFNZDUGV 9HUWHEUDH WKUHH WKURXJK WHQ FORVHO\ UHVHPEOH HDFK RWKHU YDU\LQJ LQ WKH GHJUHH RI GHYHORSPHQW RI WKH IHDWXUHV WKH\ VKDUH $V LOOXVWUDWHG LQ )LJXUH ;9,, QHXUDO SRVW]\JDSRSK\VHV FORVHO\ DUWLFXODWH ZLWK WKH IROORZn LQJ QHXUDO SUH]\JDSRSK\VHV ZKLFK DUH VXFFHVVLYHO\ PRUH HORQJDWH 6LPLODUO\ WKH ODWHUDO DSRSK\VHV OHQJWKHQ SRVWHULRUZDUG DQG IURP WKH VHYHQWK RQ DUH SLHUFHG E\ D IRUDPHQ &RPPHQFLQJ ZLWK WKH HLJKWK YHUWHEUD KHPDO SUH]\JDSRSK\VHV DUH GHYHORSHG 7KH HOHYHQWK YHUWHEUD ZKLFK LV FKDUDFWHUL]HG E\ D KHPDO VSLQH EURDGO\ XQLWHG ZLWK WKH ILUVW DQDO SWHU\JLRSKRUH DQG DOO RWKHU FDXGDO YHUWHEUDH EDFN WR WKH DQWHSHQXOWLPDWH DUH FKDUDFWHUL]HG E\ ZHOO GHYHORSHG QHXUDO DQG KHPDO SUH DQG SRVW]\JDSRSK\VHV )LJXUH ;;%f 7KH WHUPLQDO WKUHH YHUWHEUDH DUH GLVFXVVHG DV SDUW RI WKH FDXGDO VNHOHWRQf 7KH SOHXUDO ULEV DUWLFXODWH YDULRXVO\ ZLWK WKH YHUWHEUDH ZLWK WKH WKLUG WKURXJK WKH HLJKWK LQVHUWLQJ LQWR KROORZ GHSUHVVLRQV DW WKH GRUVDO SRVWHULRU DQJOH RI WKH ODWHUDO DSRSK\VLV DQG WKH RWKHUV

PAGE 61

DUWLFXODWLQJ ZLWK WKH ODWHUDO YHUWHEUDO VXUIDFH (SLSOHXUDO ULEV DUWLFXODWH HLWKHU GLUHFWO\ ZLWK WKH YHUWHEUDH RU ZLWK WKH SUR[LPDO HQG RI D SOHXUDO ULE DQG DUH DVVRFLDWHG ZLWK YHUWHEUDH WKURXJK 1XPHULFDOO\ WKH D[LDO DQG PHGLDO VNHOHWRQV RI + ]HORWHV DUH VXPPDUL]HG DV IROORZV SUHGRUVDO IRUPXOD GRUVDO VRIWUD\V DQDO VRIWUD\V QXPEHU RI SWHU\JLRSKRUHV RQH OHVV WKDQ OHSLGRWULFKV RI UHVSHFWLYH ILQV YHUWHEUDH ,Q M+ HXFXUXV WKHUH DUH DOVR YHUWHEUDH ZKLOH YHUWHEUDH DUH SUHVHQW LQ DPEO\UK\QFKXV DQG ELFRORU 'RUVDO DQG DQDO UD\ FRXQWV DUH VXPPDUL]HG LQ 7DEOHV DQG UHVSHFWLYHO\f &DXGDO 6NHOHWRQ 7KH FDXGDO VNHOHWRQ RI + ]HORWHV LV IRUPHG E\ WKH WHUPLQDO WKUHH FDXGDO YHUWHEUDH &9f PRGLILHG DQG XQPRGLILHG QHXUDO DQG KHPDO VSLQHV DQG OHSLGRWULFKV /(3f WKDW DUWLFXODWH ZLWK RU RSSRVH WKH RXWHU PDUJLQ RI WKH ERQ\ FDXGDO FRPSOH[ )LJXUH ;;,f $QWHULRUPRVW LQ WKH FDXGDO VNHOHWRQ LV WKH WKLUWHHQWK FDXGDO FHQWUXP WKH VSRROVKDSHG DQWHn SHQXOWLPDWH &$3f 7KH QHXUDO VSLQH 16f RI WKH DQWHSHQXOWLPDWH FHQWUXP H[WHQGV SRVWHULRUO\ WR XQGHUOLH WKH DQWHULRUPRVW VXSHULRU VHFRQGDU\ FDXGDO UD\V 6&5f DQG WKH DXWRJHQRXV KHPDO VSLQH +6f XQGHUOLHV DOO EXW WKH ODVW WZR LQIHULRU VHFRQGDU\ FDXGDO UD\V 7KH QHXUDO VSLQH RI WKH SHQXOWLPDWH FHQWUXP &3f LV UHGXFHG SRVWHULRUO\ DQG RFFXSLHV WKH VHPLFLUFXODU VSDFH IRUPHG E\ WKH RSSRVLQJ HGJHV RI WKH ILUVW HSXUDO DQG WKH XURQHXUDO ERQH 7KH DXWRJHQRXV KHPDO VSLQHV RI WKLV FHQWUXP H[WHQGV GRZQZDUG WR XQGHUOLH WKH WZR SRVWHULRUPRVW LQIHULRU VHFRQGDU\ FDXGDO UD\V 7KH XURVW\ODU YHUWHEUD 85f LV

PAGE 62

IRUPHG DQWHULRUO\ E\ D W\SLFDO VSRROVKDSHG FHQWUXP LWV SRVWHULRU SRUWLRQ MV UHGXFHG WR DQ REOLTXHO\ DVFHQGLQJ SURMHFWLRQ 7KLV XUR VW\ODU SURMHFWLRQ LV XOWLPDWHO\ IXVHG SRVWHULRUO\ ZLWK WKH GRUVDO PRVW K\SXUDO HOHPHQW DQG GRUVDOO\ ZLWK WKH SDLUHG XURQHXUDOV ,W DUWLFXODWHV SRVWHULRUO\ ZLWK WKH IUHH UHPDLQLQJ K\SXUDOV 2QH SDLU RI XURQHXUDO ERQHV 81f DUH SUHVHQW LQ ]HORWHV 7KH\ DUH URXJKO\ /VKDSHG ZLWK WKH DQWHULRUZDUG VKRUW DUP IXVHG WR WKH GRUVDO PDUJLQ RI WKH XURVW\ODU FHQWUXP DQG WKH ORQJ DUP IXVHG WR DOPRVW WKH HQWLUH OHQJWK RI WKH GRUVDOPRVW K\SXUDO )LJXUH ;;, $f 7ZR HSXUDO ERQHV (3f DUWLFXODWH ZLWK WKH GRUVDO VXUIDFH RI WKH XURn QHXUDOV 7KH ILUVW ZKLFK ILWV EHWZHHQ WKH XURQHXUDOV ZLWK D URXQGHG YHQWUDO SURMHFWLRQ H[WHQGV DQWHULRUO\ RYHU WKH SRVWHULRU KDOI RI WKH SHQXOWLPDWH QHXUDO VSLQH LW DOVR SURMHFWV SRVWHULRUO\ WR VXSSRUW VHYn HUDO VXSHULRU VHFRQGDU\ FDXGDO UD\V 7KH VHFRQG HSXUDO LV D URGOLNH ERQH WKDW SDUDOOHOV WKH ILUVW DQG DUWLFXODWHV ZLWK WKH XURQHXUDOV DQG WKH SRVWHULRU WZR VHFRQGDU\ FDXGDO UD\V 7KH K\SXUDO SODWH RI 3/ ]HORWHV LV IRUPHG RI WZR K\SXUDOV +
PAGE 63

N WKH SHUFRLG ILVKHV DQG WKHLU GHULYDWLYHV *RVOLQH f $V QRWHG LQ )LJXUH ;;,,$ IXVLRQ RI WKH SDLUHG XURQHXUDOV WR WKH GRUVDO XURVW\ODU VXUIDFH DQG WR WKH GRUVDOPRVW K\SXUDO ERQH LV FRPSOHWHG E\ WKH PP VWDJH $W WKLV VWDJH LQ GHYHORSPHQW OLQHV RI IXVLRQ DUH VWLOO DSSDUHQW EXW VRRQ WKHUHDIWHU WKH FRPSOH[ DSSHDUV DV RQH ERQH )LJXUH ;; , $f $OWKRXJK DQ HDUOLHU VWDJH RI ]HORWHV ZDV QRW DYDLODEOH IRU VWXG\ LW LV OLNHO\ WKDW QR HOHPHQWV DUH PDVNHG DW WKH PP VWDJH 7KDW LV OLQHV RI IXVLRQ DUH VWLOO DSSDUHQW DOWKRXJK WKH\ TXLFNO\ EHFRPH ORVW ZLWK JURZWK $Q DGGLWLRQDO IXVLRQ LV QRWHG EHWZHHQ WKH WKLUG DQG IRXUWK K\SXUDOV )LJXUH ;;,,f EXW DW PP 6/ QR LQGLFDWLRQ RI WKHLU XQLRQ UHPDLQV 2QWRJHQ\ UHVHPEOHV WKDW RI &KORURVFRPEUXV FKU\VXUXV IXVLRQ RI WKH VDPH ERQHV RFFXUV ,W LV SUREDEOH WKDW )LJXUH ;;, ,% LOOXVWUDWHV WKH VHTXHQFH RI IXVLRQ LQ ]HORWHV

PAGE 64

.(< 72 +(0,&$5$1; $1' $78/( ,$ %RG\ GHHSHU b 6/ XSSHU FDXGDO ILQ OREH ORQJHU b 6/ SUHYRPHULQH GHQWLWLRQ DEVHQW LQWHURUELWDO ZLGWK ZLGHU b 6/ SHFWRUDO ILQ b 6/ H[RFFLSLWDO ]\JDSRSK\VHV DGMRLQHG FUDQLDO GHSWK H[FHHGV ZLGWK +HPLFDUDQ[ S ,% %RG\ VKDOORZHU b 6/ XSSHU FDXGDO OREH VKRUWHU WKDQ RQH WKLUG 6/ SUHYRPHULQH GHQWLWLRQ SUHVHQW LQWHURUELWDO QDUURZ b 6/ SHFWRUDO ILQ OHVV WKDQ RQHWKLUG 6/ H[RFFLSLWDO ]\JDSRSK\VHV VHSDUDWH FUDQLDO ZLGWK H[FHHGV GHSWK f f $WXOH S $ 6SLQRXV GRUVDO UD\V VHYHQ UDWLR RI VWUDLJKW SRUWLRQ RI ODWHUDO OLQH WR FXUYHG SRUWLRQ RI ODWHUDO OLQH r SURSRUWLRQDO ZLGWK RI DQWHULRU FDXGDO SHGXQFOH VFXWH H[FHHGV WKRXVDQGWKV 6/ FDXGDO YHUWHEUDH XSSHU K\SR K\DO ZLQGRZ FLUFXODU DQWHULRU HQG RI SWHU\JRLG LQGHQWHG % 6SLQRXV GRUVDO UD\V HLJKW UDWLR RI VWUDLJKW SRUWLRQ RI ODWHUDO OLQH WR FXUYHG SRUWLRQ RI ODWHUDO OLQH r SURSRUWLRQDO ZLGWK RI DQWHULRU FDXGDO SHGXQFOH VFXWH ZLGWK OHVV WKDQ WKRXVDQGWKV 6/ FDXGDO YHUWHEUDH XSSHU K\SRK\DO ZLQGRZ RYDO DQWHULRU HQG RI SWHU\JRLG FRQFDYH $ 'RUVDO VRIW UD\V XVXDOO\ RU UDQJH DQDO VRIW

PAGE 65

UD\V XVXDOO\ IUHTXHQWO\ RU f UDQJH XSSHU FDXGDO ILQ OREH UHODWLYHO\ ORQJ H[FHHGLQJ ORZHU OREH DQDO SWHU\JLRSKRUHV FORVHO\ VSDFHG FHUDWRK\DO ZLQGRZ LQWHUPHGLDWH QHLWKHU RYDO QRU WULDQJXODU +B DPEO \UK\QFKXV S % 'RUVDO VRIW UD\V XVXDOO\ RU UDQJH DQDO VRIW UD\V XVXDOO\ IUHTXHQWO\ RU f UDQJH XSSHU FDXGDO OREH HTXDO WR ORZHU OREH OHQJWK DQDO SWHU\JLRSKRUHV PRUH GLVWDQWO\ VSDFHG FHUDWRK\DO ZLQGRZ RYDO +B ELFRORU S $ &DQLIRUP WHHWK URXQGO\ SRLQWHG SHFWRUDO ILQ UHODWLYHO\ VKRUW b 6/ LQ ODUJHVW VSHFLPHQV DQWHULRUPRVW FDXGDO SHGXQFOH VFXWH ZLGHU b 6/ IRXU WR VL[ ODWHUDO ERG\ EDUV IDGLQJ ZLWK DJH FHUDWRK\DO ZLQGRZ LQWHUPHGn LDWHO\ VKDSHG QHLWKHU WULDQJXODU QRU RYDO XURK\DO VSLQH SUHVHQW DQDO SWHU\JLRSKRUH SRLQWV SURPLQHQW DQG GLVWDQWO\ VSDFHG +B ]H ORWHV S % &DQLIRUP WHHWK VKDUSO\ SRLQWHG SHFWRUDO ILQ ORQJ PRUH SURQRXQFHG ZLWK DJH DOPRVW b 6/ LQ ODUJHVW VSHFLPHQV DQWHULRUPRVW FDXGDO SHGXQFOH VFXWH QDUURZHU b 6/ VL[ WR QLQH ODWHUDO ERG\ EDUV IDGLQJ ZLWK DJH FHUDWRK\DO ZLQGRZ WULDQJXODU XURK\DO VSLQH DEVHQW DQDO SWHU\JLRSKRUH SRLQWV UHGXFHG DQG LQWHUPHGLDWHO\ VSDFHG + OHXFXUXV S $ 1XPEHU RI VFXWHV LQ ODWHUDO OLQH WR XVXDOO\ WR

PAGE 66

f f f f % 1XPEHU RI VFXWHV LQ ODWHUDO OLQH WR XVXDOO\ WR $ 6WUDLJKWFXUYHG UDWLR RI ODWHUDO OLQH VHFWLRQV FD SUHPD[LOODU\ GHQWLWLRQ XQLVHULDWH $ GMHGDED S % 6WUDLJKWFXUYHG UDWLR RI ODWHUDO OLQH VHFWLRQV FD SUHPD[LOODU\ GHQWLWLRQ ELVHULDWH DQWHULRUO\ $ 9HQWUDO RXWOLQH VWURQJO\ FRQYH[ ERG\ GHHS b 6/ DQWHULRU FDXGDO SHGXQFOH VFXWH ZLGH FD WKRXVDQGWKV 6/ GHQWDU\ WHHWK WULVHULDWH SRVWHULRUO\ XOWLPDWH GRUVDO DQG DQDO UD\V DSSUR[LPDWHO\ HTXDO WR SHQXOWLPDWH UD\V $B NDO D S % 9HQWUDO RXWOLQH QR PRUH FXUYHG WKDQ GRUVDO RXWOLQH ERG\ VKDOORZHU FD b 6/ DQWHULRU FDXGDO SHGXQFOH VFXWH QDUURZ FD WKRXVDQGWKV 6/ GHQWDU\ WHHWK XQLVHULDWH SRVWHULRUO\ XOWLPDWH GRUVDO DQG DQDO UD\V UHODWLYHO\ ORQJHU WKDQ SHQXOWLPDWH UD\V $ PDWH S $ 6SLQRXV GRUVDO EODFNHQHG VXSUDPD[L DU\ QRW H[WHQGHG IRUZDUG DV D SRLQW DQDO UD\V WR FXUYHG ODWHUDO LQH VFDOHV $B PD DP S % 6SLQRXV GRUVDO QRW EODFNHQHG VXSUDPD[L DU\ H[WHQGHG IRUZDUG DV D SRLQW DQDO UD\V WR FXUYHG ODWHUDO LQH VFDOHV $ PDFUXUXV S

PAGE 67

6<67(0$7,&6 2) +(0,&$5$1; +HPLFDUDQ[ %OHHNHU +HPLFDUDQ[ %OHHNHU a W\SH VSHFLHV +HPLFDUDQ[ PDUJLQDWXV > +HPLFDUDQ[ ELFRORU@ E\ RULJLQDO GHVLJQDWLRQf &D UDQJRSV *LOO W\SH VSHFLHV &DUDQ[ KHWHURS\JXV > +HPLFD UDQ[ DPEO\UK\QFKXV@ E\ RULJLQDO GHVLJQDWLRQf 'LDJQRVLV &DUDQJLG ILVKHV FKDUDFWHUL]HG E\ XQLVHULDWH GHQWLWLRQ RQ SUHPD[LOn ODU\ DQG GHQWDU\ ERQHV MDZ WHHWK ILQH FRQLFDO SRLQWHG GHSWK WR b RI VWDQGDUG OHQJWK ODWHUDO OLQH ZLWK SRVWHULRUSRLQWLQJ VFXWHV RQ VWUDLJKW SRUWLRQ QR VFXWHV RQ ODWHUDO OLQH DUFK QR FDXGDO SHGXQFOH NHHOV SUHPD[LOODU\ QDUURZ OHVV WKDQ RUELW QR GHQWLWLRQ RQ SUHYRPHU HWKPRLGSUHYRPHU NHHO HOHYDWHG H[RFFLSLWDO ]\JDSRSK\VHV DGMRLQHG FUDQLDO GHSWK JUHDWHU WKDQ ZLGWK ROIDFWRU\ FDYLW\ ZH GHYH RSHG SURSHUFXODU ZLGWK PRUH WKDQ RQHWKLUG RI SUHRSHUFXODU OHQJWK FHUDWR K\DO ZLQGRZ ZLGH DQG RYRLGDO FDXGDO YHUWHEUDH RU +HPLFD UDQ[ LV GLVWLQJXLVKHG IURP LWV PRVW FORVHO\ UHODWHG FDUDQJLG JHQXV $WXOH LQ KDYLQJ DGMRLQHG H[RFFLSLWDO ]\JDSRSK\VHV DQ HOHYDWHG HWKPRLGSUHYRPHU NHHO QR SUHYRPHULQH GHQWLWLRQ D GLVWLQFW P\RGRPH RSHQLQJ FUDQLDO GHSWK JUHDWHU WKDQ ZLGWK ERG\ GHHSHU b 6/f ORQJHU XSSHU FDXGDO ILQ OREH ab 6/f VOLJKWO\ ORQJHU SHFWRUDO ILQ b 6/f JUHDWHU LQWHURUELWDO ZLGWK b 6/f +HPLFD UDQ[ LV GLVWLQJXLVKHG IURP 6HODU E\ KDYLQJ DGMRLQHG H[RFn FLSLWDO ]\JDSRSK\VHV QR SUHYRPHULQH GHQWLWLRQ D SWHURWLF ZLQGRZ

PAGE 68

FUDQLDO GHSWK JUHDWHU WKDQ ZLGWK WKH DVFHQGLQJ SURFHVV RI WKH SUHn PD[LOODU\ ORQJHU WKDQ WKH DUWLFXODU SURFHVV WKH FHUDWRK\DO ZLQGRZ ZLGH DQG RYRLGDO DQG WKH DEVHQFH RI WZR SDSLOODH RQ WKH VKRXOGHU JLUGOH ,Q DGGLWLRQ WR WKH FKDUDFWHUV WKDW GLVWLQJXLVK LW IURP 6H D U +HPLFD UDQ[ GLIIHUV IURP 'HFDSWH UXV DQG 7 UDFKXUXV E\ D PHVRSWHU\JRLG ERQH WKDW LV OHVV WKDQ RQHKDOI WKH K\RPDQGL EX DU +HPLFDUDQ[ LV IXUWKHU GLVWLQJXLVKHG IURP 'HFDSWHUXV E\ D XURK\DO VKRUWHU WKDQ WKH K\RLG ERG\ D GHJUHH DQJOH RI WKH FOHLWKUXP VKHOI DQG WKH DEVHQFH RI GHWDFKHG ILQOHWV SRVWHULRU WR WKH VRIW PHGLDQ ILQV LQ DGGLWLRQ LW GLIIHUV IURP 7UDFKXUXV LQ KDYLQJ WKH SRVWWHPSRUDO KHLJKW OHVV WKDQ RQH KDOI LWV OHQJWK DQG WKH DQWHULRU VFDOHV LQ WKH ODWHUDO OLQH QRW WUDQVn YHUVHO\ H[SDQGHG )URP WKH JHQHUD &DUDQJRLGHV *QDWKDQRGRQ /RQJLURVWUXP 6HODURLGHV DQG 8UDVSLV ZKLFK DSSDUHQWO\ FRPSULVH D QDWXUDO FOXVWHU )LJXUHV DQG f +HPLFDUDQ[ LV GLVWLQJXLVKHG E\ D ORZ IURQWDOVXSUDRFFLSL WDO FUHVW FHUDWRK\DO ZLQGRZ ZLGH DQG RYRLGDO DQG PRUH WKDQ FDXGDO YHUWHEUDH ,W GLIIHUV IURP DOO JHQHUD H[FHSW 6H DURLGHV LQ KDYLQJ WKH SRVWWHPSRUDO KHLJKW OHVV WKDQ RQHKDOI WKH OHQJWK ,W LV GLVWLQJXLVKHG IURP DOO JHQHUD EXW /RQJLURVWUXP E\ D SUHRSHUFXODU ZLGWK OHVV WKDQ RQHWKLUG WKH ZLGWK DQG PRUH WKDQ FDXGDO YHUWHEUDH +HPLFDUDQ[ GLIIHUV IURP *QDWKDQRGRQ DQG 6H DURLGHV LQ QRW KDYLQJ D ZH GHYH RSHG PHWDSWHU\JRLG ODPLQD DQG WKHVH WKUHH JHQHUD GLIIHU IURP WKH UHPDLQLQJ WKUHH JHQHUD 8UDVSLV &DUDQJRLGHV /RQJ L URV W UXPf LQ ODFNLQJ SUHYRPHULQH GHQWLWLRQ +HPLFD UDQ[ DOVR GLIIHUV IURP &DUDQJRLGHV DQG 8 UDVSLV LQ SRVVHVVLQJ D GLVWLQFW P\RGRPH RSHQLQJ +HPLFDUDQ[ LV IXUWKHU GLVWLQJXLVKHG IURP 8UDVSLV E\ LWV ZH GHYH RSHG ROIDFWRU\ FDYLW\ HOHYDWHG HWKPRLGSUHYRPHU

PAGE 69

NHHO SRLQWHG VFXWHV GLUHFWHG IRUZDUG DQG ODFN RI PLON\ ZKLWH DUHDV LQ WKH PRXWK IURP 6HODURLGHV E\ D FUDQLDO GHSWK JUHDWHU WKDQ ZLGWK DQG DQ RYRLGDO URVWUDO FDUWLODJH IURP /RQJLURVWUXP E\ DGMRLQHG H[RFn FLSLWDO ]\JDSRSK\VHV IURP *QDWKDQRGRQ E\ D GRUVDO SURFHVV RI WKH DUWLn FXODU ERQH OHVV WKDQ RQHKDOI LWV KHLJKW DQG IURP &DUDQJRLGHV E\ XQL VHULDWH GHQWLWLRQ LQ ERWK MDZV +HPLFDUDQ[ LV GLVWLQJXLVKHG IURP &KORURVFRPEUXV E\ WKH DEVHQFH RI SUHYRPHULQH GHQWLWLRQ D SWHURWLF ZLQGRZ FUDQLDO GHSWK JUHDWHU WKDQ ZLGWK RSHUFXODU OHQJWK OHVV WKDQ LQWHURSHUFOH OHQJWK SRVWWHPSRUDO YHQWUDO EUDQFK QRW DWWDFKHG WR XSSHU RSLVWKRWLF SRVWWHPSRUDO KHLJKW OHVV WKDQ RQHKDOI LWV OHQJWK FDXGDO YHUWHEUDH PRUH WKDQ ORZHU MDZ WHHWK XQLVHULDWH DQG D YHQWUDO RXWOLQH WKDW LV QRW DSSUHFLDEO\ PRUH FRQYH[ WKDQ WKH GRUVDO RXWOLQH )URP WKH UHPDLQLQJ &DUDQJLQDH JHQHUD QDPHO\ $OHFWLV $W URSXV &D UDQ[ &L WX D DQG .DLZDULQXV ZKLFK DV D SKHQHWLF JURXS +HPLFD UDQ[ OHVV FORVHO\ UHVHPEOHV +HPLFDUDQ[ LV GLVWLQJXLVKHG E\ D ORZ IURQWDO VXSUDRFFLSL WDO FUHVW DQ HOHYDWHG HWKPRLGSUHYRPHU NHHO SUHRSHUFXODU ZLGWK OHVV WKDQ RQHWKLUG LWV OHQJWK RSHUFXODU OHQJWK OHVV WKDQ LQWHUn RSHUFOH OHQJWK SRVWWHPSRUDO KHLJKW OHVV WKDQ RQHKDOI LWV OHQJWK PRUH WKDQ FDXGDO YHUWHEUDH DQG XSSHU MDZ WHHWK XQLVHULDWH +HPLFDUDQ[ LV IXUWKHU GLVWLQJXLVKHG IURP DOO JHQHUD H[FHSW $OHFWLV E\ WKH DEVHQFH RI SUHYRPHULQH GHQWLWLRQ ,W VKDUHV DORQJ ZLWK $OHFWLV DQG &L WX D D SWHURWLF ZLQGRZ DQG ZLWK $OHFWLV DQG .DLZDULQXV LW VKDUHV D ZH GHYH RSn HG ROIDFWRU\ FDYLW\ +HPLFDUDQ[ DQG .DLZDULQXV DUH GLVWLQJXLVKHG E\ D SUHSDODWLQH SURFHVV GLUHFWHG ODWHUDOO\ DQG D ZLGH DQG RYRLGDO FHUDWR K\DO ZLQGRZ WKHVH WZR JHQHUD DORQJ ZLWK $W URSXV DUH FKDUDFWHUL]HG E\ D SWHU\JRLG ERQH WKDW LV QHLWKHU HQODUJHG QRU DFXPLQDWH +HPLFD UDQ[

PAGE 70

LV IXUWKHU GLVWLQJXLVKHG IURP $W URSXV DQG &D UDQ[ ZKLFK KDYH D URXQG SRVWPD[L DU\ SURFHVV DQG IURP $OHFWLV DQG & L WX D ZLWK RSHUFXODU DSSDUDWXV KHLJKW H[FHHGLQJ OHQJWK DQG SOXULVHULDWH XSSHU MDZ GHQWLWLRQ +HPLFDUDQ[ DOVR GLIIHUV IURP &L WX D LQ KDYLQJ D FRQVSLFXRXV SWHURWLF FUHVW WKDW LV SURGXFHG EDFNZDUG +HPLFD UDQ[ GLIIHUV IURP 0HJDODVSLV LQ KDYLQJ H[RFFLSLWDO ]\JDSR SK\VHV DGMRLQHG D ZH GHYH RSHG ROIDFWRU\ FDYLW\ DQ HOHYDWHG HWKPRLG SUHYRPHU NHHO D SWHURWLF ZLQGRZ D GLVWLQFW P\RGRPH RSHQLQJ FUDQLDO GHSWK JUHDWHU WKDQ ZLGWK FHUDWRK\DO ZLQGRZ ZLGH DQG RYRLGDO FDXGDO YHUWHEUDH PRUH WKDQ SUHYRPHULQH GHQWLWLRQ DEVHQW SRVWPD[L ODU\ SURFHVV QRW URXQGHG DQG XQLVHULDWH XSSHU MDZ WHHWK +HPLFDUDQ[ LV GLVWLQJXLVKHG IURP (DJDW L V “DXH UD WHV DQG 6H ULROD E\ D ZHOGHYHORSHG ROIDFWRU\ FDYLW\ DQ HOHYDWHG HWKPRLGSUHYRPHU NHHO QR SUHYRPHULQH GHQWLWLRQ FUDQLDO GHSWK JUHDWHU WKDQ ZLGWK SRVWPD[LOn ODU\ SURFHVV WULDQJXODU FHUDWRK\DO ZLQGRZ ZLGH DQG RYRLGDO SRVWFRUDn FRLG SURFHVV XQGHYHORSHG YHQWUDO HOHPHQW RI SRV WHOHLWKUXP ULEOLNH ODWHUDOOLQH VFXWHV ILUVW KHPDO VSLQH HQODUJHG DQG ORZHU MDZ WHHWK XQLVHULDWH +HPLFDUDQ[ DQG 6HULROD DUH ERWK FKDUDFWHUL]HG E\ D SWHURWLF ZLQGRZ DQG WKH PHVRSWHU\JRLG OHVV WKDQ RQHKDOI WKH K\RPDQGL EX DU ZLWK 1DXFUDWHV WKH\ DUH GLVWLQJXLVKHG IURP (DJDWLV E\ D SUHRSHUFXODU ZLGWK OHVV WKDQ RQHWKLUG WKH KHLJKW DQG DQ RSHUFXODU DSSDUDWXV WKDW LV WDOOHU WKDQ ZLGH 6HULOD LV XQLTXH LQ KDYLQJ WKH RSHUFXODU OHQJWK H[FHHGLQJ WKH LQWHURSHUFOH OHQJWK +HPLFD UDQ[ LV GLVWLQJXLVKHG IURP 7 UDFKLQRWXV E\ D ORZ IURQWDO VXSUDRFFLSL WDO FUHVW DEVHQFH RI SUHYRPHULQH GHQWLWLRQ D WULDQJXODU SRVWPD[LOODU\ SURFHVV XQLVHULDWH GHQWLWLRQ D ZH GHYH RSHG ROIDFWRU\ FDYLW\ HWKPRLGSUHYRPHU NHHO HOHYDWHG D SWHURWLF ZLQGRZ P\RGRPH

PAGE 71

RSHQLQJ GLVWLQFW D VXSUDPD[L DU\ PHWDSWHU\JRLG OHVV WKDQ RQHKDOI WKH K\RPDQGL EX DU FHUDWRK\DO ZLQGRZ ZLGH DQG RYRLGDO SRVWWHPSRUDO YHQWUDO EUDQFK HORQJDWH SRVWWHPSRUDO KHLJKW OHVV WKDQ RQHKDOI LWV OHQJWK ODWHUDO OLQH VFXWHV DQG PRUH WKDQ FDXGDO YHUWHEUDH +HPLFDUDQ[ LV PRVW GLVWDQWO\ UHODWHG WR &KRULQHPXV IURP ZKLFK LW LV GLVWLQJXLVKHG E\ D ZH GHYH RSHG ROIDFWRU\ FDYLW\ HWKPRLGSUHYRPHU NHHO HOHYDWHG SWHURWLF FUHVW FRQVSLFXRXV DQG SURGXFHG EDFNZDUGV D SWHURWLF ZLQGRZ SUHPD[LOODU\ SURWUDFWLOH D GHQWDU\DUWLFXODU LQWHUVWLFH PHVRSWHU\JRLG OHVV WKDQ RQHKDOI K\RPDQGLEXODU SUHRSHUFXODU ZLGWK OHVV WKDQ RQHWKLUG LWV OHQJWK SUHSDODWLQH SURFHVV GLUHFWHG DQWHURYHQWUDOO\ KHLJKW RI RSHUFXODU DSSDUDWXV H[FHHGLQJ LWV OHQJWK VHYHQ EUDQFKLRVWHJDO UD\V FHUDWRK\DO ZLQGRZ ZLGH DQG RYRLGDO SRVWWHPSRUDO KHLJKW OHVV WKDQ RQHKDOI LWV OHQJWK DQG ODWHUDO OLQH VFXWHV &KRULQHPXV LV IXUWKHU FKDUDFWHUL]HG E\ SUHYRPHULQH GHQWLWLRQ DQ H[WUHPHO\ ORQJ PD[LOODU\ PD[LOODU\ OHQJWK PXFK JUHDWHU WKDQ KHLJKW SRVWWHPSRUDO YHQWUDO EUDQFK DWWDFKHG WR XSSHU RSLVWKRWLF DQG SOXULVHULDWH GHQWLWLRQ 'HVFULSWLRQ 0RUSKRPHWULF PHDVXUHPHQWV DUH VXPPDUL]HG LQ 7DEOHV PHULVWLF FRXQWV DSSHDU LQ 7DEOHV RVWHRORJ\ LV FRPSOHWHO\ GHVFULEHG LQ WKH RVWHRORJLFDO VHFWLRQ %RG\ FRPSUHVVHG EXW QHLWKHU XQXVXDOO\ GHSUHVVHG QRU HORQJDWH ERG\ GHSWK WR b RI VWDQGDUG OHQJWK WRWDO OHQJWK RI ODWHUDO OLQH b 6/ ODWHUDO OLQH GRUVDOO\ DUFKHG DQWHULRUO\ EHFRPLQJ VWUDLJKW EHn QHDWK DQWHULRU UD\V RI VRIW GRUVDO ILQ DQG WKHQ FRQWLQXLQJ SRVWHULRUO\ RQWR WKH FDXGDO SHGXQFOH WR VFDOHV LQ ODWHUDO OLQH DUFK WKH DUF RI ZKLFK LV URXJKO\ KDOI WKH VWUDLJKW ODWHUDO OLQH GLVWDQFH DQG ZKLFK LV LQ WXUQ FRYHUHG E\ N2 WR VFXWHV DUFK WKUHH WLPHV DV ORQJ DV KLJK

PAGE 72

FDXGDO SHGXQFOH VOHQGHU DV ZLGH DV GHHS GRUVDO RXWOLQH RI ERG\ EURDGO\ FRQYH[ ZLWK VRIW GRUVDO RULJLQ PLGZD\ EHWZHHQ VQRXW DQG K\SXUDO EDVH VRIW GRUVDO DQG DQDO ILQV ORQJ DQG ORZ SDUWLDOO\ VKHDWKHG DW EDVH E\ VFDOHG PHPEUDQH XSSHU FDXGDO ILQ OREH WR b 6/ ORZHU FDXGDO ILQ OREH WR b 6/ SRVWHULRU PDUJLQV RI FDXGDO OREHV IRUPLQJ D EURDG VOLJKWO\ REWXVH DQJOH RULJLQ RI VRIW DQDO ILQ VOLJKWO\ EHKLQG RULJLQ RI VRIW GRUVDO ILQ ERWK H[WHQGLQJ WR DQWHULRU SDUW RI SHGXQFOH SHFWRUDO ILQ WR b 6/ SHOYLF ILQ WR b 6/ SHOYLF ILQV LQVHUWHG YHQWUDOO\ MXVW EHKLQG DWHUDOO\LQVHUWHG SHFWRUDO ILQV SHFWRUDO DQG FDXGDO OREHV EHFRPLQJ SRLQWHG ZLWK DJH KHDG OHQJWK WR b 6/ LQWHURUELWDO ZLGWK WR b 6/ VQRXW EOXQW RQH IRXUWK RI KHDG OHQJWK ZKLFK LV H[FHHGHG VOLJKWO\ E\ KHDG GHSWK RUELW EDUHO\ ORQJHU WKDQ VQRXW SRVWHULRU HQG RI XSSHU MDZ WHUPLQDWLQJ EHORZ DQWHULRU PDUJLQ RI RUELW PD[LOODU\ GHSWK WR b 6/ JDSH WR b 6/ WHHWK XQLVHULDWH DQG FDQLIRUP LQ SUHn PD[LOODU\ DQG GHQWDU\ WHHWK DEVHQW IURP URRI RI PRXWK GRUVDO VSLQHV VHYHQ RU HLJKW GRUVDO VRIW UD\V WR DQDO VRIW UD\V WR SHFWRU DO UD\V WR SHOYLF UD\V SULQFLSDO FDXGDO UD\V SUH FDXGDO YHUWHEUDH FDXGDO YHUWHEUDH RU EUDQFK L RVWHJD UD\V ORZHU JLOO UDNHUV WR XSSHU JLOO UDNHUV WR ORZHU DQG XSSHU JLOO ILODPHQWV LQFUHDVLQJ LQ QXPEHU ZLWK DJH WR D PD[LPXP UHVSHFWLYHO\ LQ H[FHVV RI DQG EDVH HVSHFLDOO\ LQWHULRU VXUIDFH RI SHFWRUDO ILQ EODFN VSLQRXV DQG VRIW GRUVDO ILQV GXVN\ GXH WR PHODQRSKRUHV RQ LQWHUUDGLDO PHPEUDQH ERG\ GXVN\ GRUVDOO\ OLJKWO\ PHWDOOLF YHQWUDOO\ IRXU WR QLQH ODWHUDO ERG\ EDUV ZKLFK IDGH ZLWK DJH SHULWRQHXP IOHVK FRORUHG 1RPHQFODWXUH 7KH W\SHVSHFLHV RI WKLV JHQXV LV ELFRORU *XQWKHU L f

PAGE 73

EDVHG RQ WZR MXYHQLOH VSHFLPHQV 7KH VSHFLHV PDUJLQDWXV %OHHNHU f RQ ZKLFK %OHHNHU EDVHG WKH GHVFULSWLRQ RI +HPLFDUDQ[f EDVHG RQ RQH DGXOW LV UHFRJQL]HG DV D MXQLRU V\QRQ\P 7KH FRQVSHFLILFLW\ RI WKHVH WD[D LV FRQILUPHG E\ WKH ODUJH QXPEHU RI WUDQVLWLRQDO FKDUDFWHUV VKDUHG EHWZHHQ MXYHQLOHV DQG DGXOWV %OHHNHU ZDV FRUUHFW LQ UHFRJQL]LQJ WKLV IRUP DV D JHQXV GLVWLQFW IURP &D UDQ[ &DUDQJRSV *LOO ZDV LQIUHTXHQWO\ XVHG LQ WKH OLWHUDWXUH E\ *LOO 3RH\ DQG *RRGH IURP WR ,W ZDV UHFRJQL]HG DV D V\QRQ\P RI +HPLFDUDQ[ E\ -RUGDQ DQG (YHUPDQQ f DOWKRXJK WKH\ TXHVWLRQHG ZKLFK QDPH ZDV SXEOLVKHG ILUVW LQ +RZHYHU VLQFH &DUDQJRSV KDV QRW EHHQ XVHG LQ WKH SULPDU\ ]RRORJLFDO OLWHUDWXUH IRU PRUH WKDQ \HDUV LW PD\ EH UHJDUGHG DV D QRPHQ RELLWXUQ +HPLFDUDQ[ KDV RFFDVLRQDOO\ EHHQ LQFRUUHFWO\ V\QRQ\PL]HG ZLWK $OHSHV 6ZDLQVRQ E\ )RZOHUr +RZHYHU +HPLFDUDQ[ LV JHRJUDSKLFDOO\ UHVWULFWHG WR WKH $WODQWLF DQG (DVWHUQ 3DFLILF 2FHDQV DQG E\ GHILQLWLRQ GLDJQRVLV DQG GHVFULSWLRQf LW LV GLVWLQFW IURP DOO RWKHU FDUDQJLG JHQHUD 7KH GHVFULSWLRQ RI $HSHV 6ZDLQVRQ f ZDV EDVHG RQ D GUDZLQJ 5XVVHOO SODWH f RI D VSHFLPHQ IURP ,QGLD $V QRWHG E\ *LQVEXUJ af KRZHYHU WKH W\SH VSHFLHV RI $OHSHV $ PHODQRSWHUD 6ZDLQVRQ LV XQLGHQWLILDEOH DW WKH SUHVHQW WLPH RU HOVH LW LV JHQHUDOO\ GLIIHUHQW IURP +HPLFDUDQ[ DPE\UK\QFKXV ,QGHHG H[DPLQDWLRQ RI WKH GUDZLQJ RI WKH VSHFLPHQ FRPPRQO\ QDPHG WKH ZRQ SDUDKf LQ 5XVVHOO XSRQ ZKLFK 6ZDLQVRQ EDVHG KLV JHQHULF DQG W\SH VSHFLHV GHVFULSWLRQ UHYHDOV D QXPEHU RI FKDUDFWHUV WKDW VXSSRUW WKH JHQHULF GLVWLQFWLRQ K\SRWKHVL]HG E\ *LQVEXUJ 7KH PRVW WUHQFKDQW GLIIHUHQFHV DUH WKH QXPEHU RI SHFWRUDO UD\V YHUVXV WR LQ rVHH VSHFLHV DFFRXQWV DQQRWDWHG V\QRQ\PLHV

PAGE 74

+HPLFDUDQ[f 7DEOH f DQG PRUH VLJQLILFDQWO\ WKH QXPEHU RI SULQFLSDO FDXGDO UD\V YHUVXV WKH QXPEHU GLDJQRVWLF IRU WKH &DUDQJLGDHf $GGLWLRQDOO\ WKH LOOXVWUDWLRQ RI $B PHO DQRSWHUD ODFNV WKH GDUN SLJPHQW DW WKH SHFWRUDO EDVH FKDUDFWHULVWLF RI +HPLFDUDQ[ ,W LV REYLRXV WKDW 5XVVHOOnV GUDZLQJ LV LQFRUUHFW EDVHG RQ WKH XQXVXDO QXPEHU RI SULQFLSDO FDXGDO UD\V 6LQFH WKH QXPEHU LV QRW FKDUn DFWHULVWLF RI DQ\ NQRZQ FDUDQJLG WKH JHQXV $OHSHV DQG WKH W\SH VSHFLHV $ PH DQRSWHUD DUH UHJDUGHG DV QRPLQD GXELD 7KH FRPELQDWLRQ RI FKDUDFWHUV ILJXUHG IRU $ PHODQRSWHUD ZHUH REYLRXVO\ EDVHG RQ D FDUDQJLG ILVK %DVHG RQ WKH DQWHULRUO\DUFKHG ODWHUDO OLQH VFXWHV RQO\ RQ WKH VWUDLJKW SRVWHULRU VHFWLRQ ILQH WHHWK ERG\ RXWOLQH DQG SLJPHQW LQ WKH VSLQRXV GRUVDO LQWHUUDGLDO PHPEUDQH RQH ZRXOG VXSSRVH LW WR EH $WXOH PDO DP +RZHYHU WKH QXPEHU RI ILUVW GRUVDO VSLQHV VHYHQf QXPEHU RI SHFWRUDO UD\V DEVHQFH RI SHFWRUDO EDVH EORWFK QXPEHU RI FXUYHG ODWHUDO OLQH VFDOHV r DQG QXPEHU RI VFXWHV LQ WKH VWUDLJKW ODWHUDO OLQH $$f GLVWLQJXLVK PH DQRSWH UD IURP PD DP 7DEOHV DQG f 7KH XWLOLW\ RI WKH LQFOXVLRQ E\ )RZOHU RI VSHFLHV RI ERWK +HPLFDUDQ[ DQG $WXOH LQ $OHSHV LV WKDW LW JLYHV D KLVWRULFDO EDVLV IRU FRQVLGHULQJ WKH WZR JHQHUD DV SRVVLEOH FORVH UHODWLYHV 7KLV LV H[SORUHG EHORZ 5HODWLRQVKLSV 6LQFH WKH RULJLQDO JHQHULF GHVFULSWLRQ E\ %OHHNHU WKH UHODWLRQVKLSV RI +HPLFD UDQ[ ZH UH LQIUHTXHQWO\ FRPPHQWHG RQ RQO\ E\ 1RUWK $PHULFDQ ZRUNHUV 2I WKH QRPLQDO JHQHUD RI &DUDQJLGDH IURP $PHULFDQ ZDWHUV 7DEOH f WKRVH PRVW FRPPRQO\ FLWHG DV FORVH UHODWLYHV RI +HPLFDUDQ[ DUH &DUDQ[ &KRURVFRPEUXV DQG 8UDVSLV 'LVFXVVLQJ +HPLFDUDQ[ *LQVEXUJ VWDWHG

PAGE 75

7KLV JHQXV LV QHDU &DUDQ[ GLIIHULQJ LQ KDYLQJ D OHVV H[WHQVLYH GHQWLWLRQ D GHHSHU ERG\ DQG QDUURZHU PD[LOn ODU\ ,W LV DOVR FORVH WR &KORURVFRPEUXV DQG 8UDVSLV 2Q WKH EDVLV RI FKDUDFWHUV IRUP DQG JHQHUDO DSSHDUDQFH *LQVEXUJ f VDLG &KRURVFRPE UXV LVQHDUHVW +HPLFD UDQ[ GLIIHULQJ ZLWK IHZHU DQG UHGXFHG VFXWHV PRUH H[WHQVLYH GHQWLWLRQ DQG D PRUH FRQYH[ YHQWUDO RXWOLQH *LQVEXUJ S f DOVR VWDWHG WKDW RI WKH *XOI RI 0H[LFR FDUDQJLGV 8UDVSLV LV QHDUHVW + DPE\UK\QFKXV IURP ZKLFK LW GLIIHUV RQ WKH EDVLV RI IRUZDUGSRLQWHG VFXWHV ZKLWH DUHDV LQ WKH PRXWK ORQJHU YHQWUDO ILQ ORZHU VSLQRXV GRUVDO ZLGHU PD[LOODU\ ORQJHU ODWHUDO OLQH DUFK ELVHULDWH MDZ WHHWK IHZHU JLOO UDNHUV VFXWHV DQG DQDO UD\V DQG PRUH SHFWRUDO UD\V $OWKRXJK %HUU\ f GLG QRW FRPPHQW RQ WKH UHODWLYHV RI &DUDQ[ KH LQFRUSRUDWHG WKH IROORZLQJ FKDUDFWHUV LQ GLIIHUHQWLDWLQJ WKH WZR JHQHUD FKDUDFWHU &DUDQ[ +HPLFDUDQ[ PD[LOODU\ ZLGWKSXSLO GLDPHWHU JUHDWHU OHVV MDZ WHHWK GLIIHUHQW VL]H DO HTXDO VL]H YRPHULQH WHHWK SUHVHQW DEVHQW LW FDXGDO SHGXQFOH NHHOV SUHVHQW DEVHQW ,QGLUHFW FRPPHQWV RQ WKH UHODWLRQVKLSV RI +HPLFDUDQ[ WR JHQHUD RXWVLGH LWV JHRJUDSKLF UDQJH ZHUH SURYLGHG E\ )RZOHU ZKR UHSHDWHGO\ LQFOXGHG VSHFLHV RI ERWK +HPLFD UDQ[ DQG $WXOH LQ WKH JHQXV $OHSHV WKH ODVW KHUHLQ FRQVLGHUHG WR EH D QRPHQ GXELXUQ 1LFKROV ,AE f REVHUYHG WKDW $WXOH PD DP LV DQ DSSURDFK WR WKH FDUDQJLQ >VLF@ JHQXV +HPLFDUDQ[ DQG DOOXGHG WR WKH K\SRWKHVLV WKDW +HPLFDUDQ[ DQG &KRURVFRP EUXV PD\ HDFK UHSUHVHQW DQ (DVWHUQ 3DF LILF$W DQWLF HYROXWLRQDU\ OLQHDJH IURP $WXOH 3UHVXPDEO\ )RZOHU DQG 1LFKROV GUHZ WKHLU FRQFOXVLRQV IURP

PAGE 76

RYHUDOO H[WHUQDO PRUSKRORJLFDO VLPLODULW\ QHLWKHU KRZHYHU SURYLGHG D EDVLV IRU WKHLU UHPDUNV (YDOXDWLRQ RI WKH OLWHUDWXUH FRPPHQWV RQ +HPLFDUDQ[ UHODWLRQVKLSV DQGRU UHVHPEODQFHV UHYHDOV WKDW WKH\ DUH RIWHQ EDVHG RQ HLWKHU Of D IHZ FKDUDFWHUV WKDW PD\ RU PD\ QRW EH GRFXPHQWHG DV WR GLIIHUHQWLDO YDOXH LQ DVVLJQLQJ SULPLWLYHQHVV WR D WD[RQ RU f PDQ\ FKDUDFWHUV WKDW \LHOG DQ RYHUDOO SLFWXUH RI PRUSKRORJ\ ,Q WKH DEVHQFH RI GRFXn PHQWHG SULPLWLYH FKDUDFWHUV D ZLVHU FRXUVH LQ K\SRWKHVL]LQJ HYROXWLRQn DU\ WUHQGV DQG UHODWLRQVKLSV LV WR DVVHVV UHODWLRQVKLSV RQ GHJUHH RI UHVHPEODQFH RU DIILQLW\ 6RNDO DQG 6QHDWK f GLVFXVV WKLV DSSURDFK *LOEHUW f ZKR IROORZHG LW VWDWHG 7KH FORVHVW UHODWLYHV RI /X[L XV DUH WKRVH VSHFLHV RI 1RWURSLV WKDW VKDUH ZLWK LW WKH ODUJHVW QXPEHU RI VLPLODU RU LGHQWLFDO PRUSKRORJLFDO FKDUDFWHUV 7R EDVH D UHODWLRQn VKLS RQ RQO\ RQH RU WZR VKDUHG IHDWXUHV FDQ EH PLVOHDGLQJ 2QH PHDQV RI LPSOHPHQWLQJ VXFK D FRQFHSWXDO DSSURDFK LV WR TXDQWLI\ FKDUDFWHU VWDWHV DFFRUGLQJ WR WKH WHFKQLTXHV RI QXPHULFDO WD[RQRP\ 7KHUHIRUH LQ DVVHVVLQJ WKH UHODWLRQVKLSV RI +HPLFDUDQ[ SKHQHWLF UHVHPEODQFH EDVHG RQ FRPSDULVRQ RI PDQ\ UDQGRP FKDUDFWHUV LV LQWHUn SUHWHG WR UHYHDO UHODWLRQVKLS $ ODFN RI FULWLFDO DQDO\VLV DQG GHILQLWLRQ RI FDUDQJLG VSHFLHV DQG JHQHUD EDVHG RQ H[WHUQDO PRUSKRORJ\ 0DQVXHWL %HUU\ f UHVWULFWV WKH QXPEHU RI VXFK FKDUDFWHUV WKDW PD\ EH FRGHG LQ VXFK DQ DQDO\VLV +RZHYHU WKH RVWHRORJLFDO FDWDORJ RI ,QGR3DFLILF JHQHUD SURYLGHG E\ 6X]XNL f FRQWDLQV HQRXJK FKDUDFWHUV IRU JHQn HUDWLRQ RI FRHIILFLHQWV RI DVVRFLDWLRQ DQG 6XEVHTXHQW GHVFULSWLRQ RI SKHQHWLF UHVHPEODQFHV &RHIILFLHQWV RI DVVRFLDWLRQ EHWZHHQ +HPLFDUDQ[ DQG 8UDVSLV &DUDQ[ DQG $WXOH DUH SUHVHQWHG LQ 7DEOH &K RURV FRPE UXV WKH RWKHU JHQXV KLVWRULFDOO\ UHIHUUHG WR DV D UHODWLYH RI +HPLFDUDQ[

PAGE 77

LV FRPSDUHG LQ 7DEOH &OHDUO\ +HPLFDUDQ[ PRVW FORVHO\ UHVHPEOHV $WXOH ZKHQ UDQGRP QRQ ZHLJKWHG FKDUDFWHUV DUH FRPSDUHG 7KH WZR JHQHUD VKDUH D PDWFKLQJ FRn HIILFLHQW RI ZKLFK LV KLJKHU WKDQ DQ\ RWKHU FRHIILFLHQW EHWZHHQ +HPLFDUDQ[ DQG RWKHU FDUDQJLGV 7DEOH f 7KXV WKH K\SRWKHVLV WKDW +HPLFD UDQ[ DQG $WXOH DUH FORVHO\ UHODWHG ZKHWKHU EDVHG RQ VXEMHFWLYH LPSUHVVLRQV RI RYHUDOO PRUSKRORJ\ RU FRQVLGHUDWLRQ RI D UHODWLYHO\ IHZ FKDUDFWHUV LV FRQILUPHG 2I WKH SULPLWLYH FKDUDFWHUV OLVWHG LQ 7DEOH +HPLFDUDQ[ DQG $WXOH VKDUH DOO EXW RQH LQGLFDWLQJ D FORVH UHODWLRQVKLS LI RQO\ ZHLJKWHG FKDUDFWHUV DUH XVHG WRR 2I WKH WKUHH RWKHU JHQHUD VDLG WR EH FORVH WR +HP" FD UDQ[ 8UDVSLV UDQNV KLJKHVW ZLWK D FRHIILFLHQW RI IROORZHG E\ &KRURVFRPEUXV DW DQG &DUDQ[ DW ,W ZRXOG DSSHDU WKDW WKHVH JHQHUD DUH QRW DV FORVHO\ UHODWHG WR +HPLFDUDQ[ DV RULJLQDOO\ K\SRWKHVL]HG HVSHFLDOO\ LQ OLJKW RI WKH DIILQLW\ RI +HPLFD UDQ[ WR D JURXS RI JHQHUD DW RU DERYH WKH OHYHO 7KHVH LQFOXGH /RQJLURVWUXP 6H D U DQG 6HODURLGHV f DQG DW 7UDFKXUXV DQG *QDWKDQRGRQ 7DEOH f :LWK WKH H[n FHSWLRQ RI *QDWKDQRGRQ DOO RI WKHVH JHQHUD ZHUH VDLG E\ 6X]XNL f WR EH FORVHO\ UHODWHG WR $WXOH *HQHUDWLRQ RI DVVRFLDWLRQ FRHIILFn LHQW PDWULFHV IRU WKH DERYH JHQHUD \LHOGV D GHQGURJUDP WKDW LOOXVWUDWHV WKH UHVXOWV RI FOXVWHU DQDO\VLV IRU WKH FORVHVW UHODWLYHV RI +HPLFD UDQ[ )LJXUH f )URP WKLV DQDO\VLV LW LV FRQFOXGHG WKDW +HPLFDUDQ[ $WXOH DQG 6HODU DUH LQWLPDWHO\ UHODWHG DQG DV D JURXS DUH PRVW FORVHO\ UHODWHG WR WKH JHQXVSDLU RI 'HFDSWHUXV DQG 7 UDFKX UXV ,W LV K\SRWKHn VL]HG WKDW +HPLFDUDQ[ EDVHG RQ LWV GLVWULEXWLRQ DQG WKH FORVH UHVHPEODQFH RI LWV VSHFLHV LV UHODWLYHO\ \RXQJ DQG LV GHULYHG IURP $WXOH RU HOVH WKH\ KDYH HYROYHG IURP D FRPPRQ ,QGR3DFLILF DQFHVWRU $WXOH LV IXUWKHU

PAGE 78

)LJXUH 3KHQHWLF GHQGURJUDP RI JHQHUD RI &DUDQJLGDH VKDULQJ D PDWFKLQJ FRHIILFLHQW 6VPf RI DW OHDVW ZLWK +HPL FDUDQ[ $OO 6VUUnV JLYHQ LQ 7DEOH f &2()),&,(17 2) $662&,$7,21 6VP [ f f§, 22 92 R R R f§, &$5$1*2,'(6 85$63,6 f§ /1*,567580 *1$7+$1'1 6(/$52, '(6 +(0 ,&$5$1; $78/( 6(/$5 75$&+8586 '(&$37(586 &+/56&0%586

PAGE 79

K\SRWKHVL]HG WR EH ROGHU RQ WKH EDVLV RI JUHDWHU PRUSKRORJLFDO GLYHUn JHQFH RI LWV VSHFLHV

PAGE 80

+HPLFDUDQ[ DPE\UK\QFKXV &XYLHUf )LJXUHV &DUDQ[ DPEO\UK\QFKXV f§ &XYLHU BLBQ &XYLHU DQG 9DOHQFLHQQHV SL RULJLQDO GHVFULSWLRQ W\SH ORFDOLW\ %UD]LO W\SH PDWHULDO 01+1$ WZR V\Q W\SHV DQG PP 6/f *XQWKHU L e ID FDWXV D V\QRQ\P GLVWLQJXLVKHG IURP e ELFRORU GHVFULSWLRQ UDQJHf 3RH\ FRPSDULVRQ RI DPE \UK\QFKXV IURP %UD]LO ZLWK e KHWHURS\TXV IURP &XEDf %OHHNHU FRPSDULVRQ ZLWK +HP"FDUDQ[ PDUTLQDWXVf f§ %OHHNHU FRPSDULVRQ ZLWK +HP"FDUDQ[ PDUTLQDWXVf f§ 3RH\ GLVWLQJXLVKHG IURP e KHWH URS\TXVf 3RH\ GLVWLQJXLVKHG IURP &B KHWHURS\TXVf 3RH\ GLVWLQJXLVKHG IURP &D UDQTRSV KHWHURS\TXVf *RRGH DQG %HDQ *XOI RI 0H[LFRf -RUGDQ DQG *LOEHUW UHODWLRQVKLS WR e DWULPDQXV FRPSDULVRQ e ID FDWXV V\QRQ\PL]HGf -RUGDQ DQG *LOEHUW NH\ V\QRQ\P\ e VHFXQGXV D V\QRQ\P &DSH +DWWHUDV WR %UD]LOf -RUGDQ D V\QRQ\P\ 3HQVDFROD )ORULGDf -RUGDQ E UHODWLRQVKLS RI e HXFXUXV ZLWK DPE\UK\QFKXVf &DUDQJRSV DPEO\UK\QFKXV f§ *LOO FRPSDUHG ZLWK e ID FDWXV %UD]LOf 3RH\ e KHWHURS\TXV V\QRQ\PL]HGf +HPLFDUDQ[ DPEO\UK\QFKXV f§ -RUGDQ DQG (YHUPDQQ NH\ V\QRQ\P\ GHVFULSWLRQ FRPSDULVRQ ZLWK +HPLFD UDQ[ DWULPDQXV &DSH +DWWHUDV WR %UD]LO :HVW ,QGLHVf -RUGDQ DQG (YHUPDQQ +HPLFDUDQ[ IDOFDWXV UHFRJQL]HG DV

PAGE 81

GLVWLQFW IURP DPEL\UK\QFKXVf -RUGDQ DQG (YHUPDQQ SODWH &;/ )LJXUH ff§ 1LFKROV GHVFULSWLRQ RI MXYHQLOHV FRPSDULVRQ ZLWK + PDUJLQDWXV IURP :HVW $IULFD HFRORJLFDO DVVRFLDWLRQ ZLWK PHGXVDH 0LDPL %HDFK )ORULGDff§ 0HHN DQG +LOGHEUDQG NH\ V\QRQ\P\ GHVFULSWLRQ )R[ %D\ &RORQ 3DQDPDff§ -RUGDQ (YHUPDQQ DQG &ODUN V\QRQ\P\ UDQJHf 1LFKROV MXYHQLOH JURZWK SDWWHUQV &D UDQ[ ID FD WXV DQG +HPLFD UDQ[ UKRPERL GHV V\QRQ\PV FRPSDULVRQ ZLWK +B PD UJ QDWXV 6RXWK &DUROLQDff§ +RZHOO < 5LYHUR &DUDQ[ KHWHURS\JXV LGHQWLILHG DV +B DPEO\UK\Qn FKXVf f§ +LOGHEUDQG %HDXIRUW ,QOHW WR &DSH /RRNRXW 1RUWK &DUROLQDf 1LFKROV DQG 0XUSK\ L+ UKRPER LGHV V\QRQ\PL]HG FRPSDULVRQ ZLWK +B HXFXUXVff§ %DXJKPDQ $UDQVDV %D\ 7H[DVff§ ,UYLQH WHQWDWLYHO\ V\QRQ\PL]HV ELFRORU :HVW $IULFDf %UHGHU NH\ DVVRFLDWLRQ RI \RXQJ ZLWK MHOO\ILVK LQ ORZHU 0LVVLVVLSSL 5 &DSH +DWWHUDV WR %UD]LOff§ %DXJKPDQ VPDOO VSHFLPHQV XQGHU $XUHOLD MHOO\ILVK FRORU QRWHV 7H[DVf *LQVEXUJ V\QRQ\P\ GHVFULSWLRQ FORVH UHODWLYHV DUH 8 UDVS LV KH LGL DQG &KORURVFRPE UXV FK U\VX UXV QRUWKHUQ *XOI RI 0H[LFRff§ 0DWWKHZV DQG 6KRHPDNHU VPDOO LQGLYLGXDOV REVHUYHG DQG FROOHFWHG LQ DQG ZLWK MHOO\n ILVK PHGXVDH DQG WKH FWHQRSKRUH %H URH 0LVVLVVLSSL 6RXQG %LOR[Lf +LOGHEUDQG \RXQJ RIWHQ IRXQG XQGHU EHOO RI FDEEDJHKHDG MHOO\ILVK 6WRPRORSKXV PHOHDTULV WUDZO DQG WU\QHW FROOHFWLRQV DW *UHHQV %D\RX DQG 3DVV &DYDOOR WR &RORUDGR 5LYHU 7H[DV QRW XQFRPPRQ LQ QRUWKHUQ *XOIff§ 5HLG LQ WUDZO VDOLQLW\ SSW (DVW %D\

PAGE 82

7H[DVf %RHVHPDQ GHVFULSWLRQ &DSH +DWWHUDV WR %UD]LO ILUVW 6XULQDP UHFRUG IURP QHDU OLJKWVKLS 6XULQDP 5LYHUff§ -RVHSK DQG
PAGE 83

FRPPRQ LQ WKH &DULEEHDQf 3KLOOLSV HW DO HFRORJLFDOO\ DVVRFLDWHG ZLWK VHD QHWWOHV DQG FWHQRSKRUHV %H URH 0LVVLVVLSSL 6RXQGf %DLOH\ HW DO 86 $WODQWLF FRPPRQ QDPH %OXQWQRVH MDFNf 5RHVVOHU %XWWRQZRRG &DQDO (YHUJODGHV 3DUN )ORULGDf $OHSHV DPE\UK\QFKXV )RZOHU f GHVFULSWLRQ 5LR GH -DQHLUR %UD]LOf )RZOHU ILJ V\QRQ\P\ RI +HPLFDUDQ[ PDUJLQDWXV DQG &DUDQ[ ELFRORU ZLWK DPE\UK\QFKXV GHVFULSWLRQ WURSLFDO $WODQWLFf )RZOHU %UD]LOf )RZOHU } V\QRQ\P\ 6RXWK &DUROLQD 7H[DVf &DUDQ[ IDOFDWXV +ROEURRN RULJLQDO GHVFULSWLRQ W\SH ORFDOLW\ &KDUOHVWRQ 6RXWK &DUROLQD RQH VSHFLPHQ FRPSDULVRQ ZLWK & DPEO\UK\QFKXVf +ROEURRN L GHVFULSWLRQ &KDUOHVWRQ 6RXWK &DUROLQDff§ 3RH\ GLVWLQJXLVKHG IURP &B KHWHURS\JXVf 3RH\ GLVWLQJXLVKHG IURP &DUDQJRSV IDOFDWXVf 1LFKROV V\QRQ\PL]HG ZLWK +HPLFD UDQ[ DPEO\UK\QFKXVf &DUDQJXV IDOFDWXV *LOO HDVWHUQ FRDVW RI 1RUWK $PHULFDf &DUDQJRSV IDOFDWXV *LOO D YDULDWLRQ LQ GHQWLWLRQ LQn GLVWLQJXLVKDEOH IURP &B KHWHURS\JXVf *LOO E NH\ W\SH RI &DUDQJRSV *LOO FRPSDUHG ZL WK &B DPE \ UK\QFKXV IURP %UD]LO &KDUOHVWRQ 6RXWK &DUROLQDf *RRGH (DVW FRDVW RI )ORULGDf +HPLFDUDQ[ IDOFDWXV -RUGDQ DQG (YHUPDQQ GHVFULSWLRQ GLVWLQJXLVKHG IURP DPEO\UK\QFKXV &KDUOHVWRQ 6RXWK &DUROLQDf -RUGDQ (YHUPDQQ DQG &ODUN &KDUOHVWRQ 6RXWK &DURO LQDf

PAGE 84

&DUDQ[ KHWHURS\JXV 3RH\ RULJLQDO GHVFULSWLRQ +DYDQD PDUNHW RQH VSHFLPHQ 0&= FRPSDUHG ZLWK & DPEO\UK\QFKXVf 3RH\ GLVWLQJXLVKHG IURP & DPEO \UK\QFKXV &XEDf 3RH\ GLVWLQJXLVKHG IURP & DPE \UK\QFKXV DQG & ID FDWXV &XEDf +RZHOO \ 5LYHUR W\SH VSHFLPHQ 0&= LGHQWLILHG DV +HPLFDUDQ[ DPE\UK\QFKXVf &DUDQJRSV KHWHURS\JXV *LOO D LQGLVWLQJXLVKDEOH IURP & IDOFDWXVf 3RH\ V\QRQ\PL]HG ZLWK &B DPE\UK\QFKXV &XEDf 3RH\ GLVWLQJXLVKHG IURP &B DPEO\UK\QFKXV DQG &B IDO FDWXV &XEDf +HPLFDUDQ[ UKRPERL GHV 0HHN DQG +LOGHEUDQG SL ILJ RULJLQDO GHVFULSWLRQ W\SH ORFDOLW\ )R[ %D\ &RORQ 3DQDPD W\SH PDWHULDO 8610 VSHFLPHQV 6/ DQG PP FRPSDUHG ZLWK +B OHXFXUXV DQG +B VHFXQGXVf -RUGDQ (YHUPDQQ DQG &ODUN $WODQWLF FRDVW RI ,VWKPXV RI 3DQDPDf 1LFKROV V\QRQ\PL]HG ZLWK +B DPEO\UK\QFKXVf 1LFKROV DQG 0XUSK\ FRPSDULVRQ ZLWK +B OHXFXUXV V\QRQ\PL]HG ZLWK DPEO\UK\QFKXVf *XQWHU MXYHQLOHV RQH LQ WUDZO ILYH LQ VHLQH VXPPHU $UDQVDV %D\ 7H[DVf *UH\ RQH SDUDW\SH ORFDWHG LQ )LHOG 0XVHXP RI 1DWXUDO +LVWRU\f 0DWHULDO ([DPLQHG 8QL WHG 6WDWHV 1RUWK &DUROLQD 8610 f &DUWHUHW &R &DSH /RRNRXW %LJKW 6 *XWVHOO 6HSW 8610 f &DUWHUHW &R %HDXIRUW 6 *XWVHOO 0DUFK  8610 f

PAGE 85

&DUWHUHW &R %HDXIRUW 6HD %XR\ 6 *XWVHOO 2FW 8610 f &DUWHUHW &R %HDXIRUW : %HOO %XR\ 6HSW 8610 f &DUWHUHW &R )RUW 0DFRQ RXWHU EHDFK RWWHU WUDZO -XO\ 6RXWK &DURO LQD8610 f &KDUOHVWRQ &R RII %XOO %D\ 2FW $01+ f &KDUOHVWRQ &R %XOO %D\ WUDZO ( 0 %XUWRQ $XJ &0 f &KDUOHVn WRQ &R %XOO %D\ WUDZO ( 0 %XUWRQ $XJ $01+ f &KDUOHVWRQ &R Q HQG RI &DSH ,VODQG ( 0 %XUWRQ $XJ &0 f &KDUOHVWRQ &R Q HQG RI &DSH ,VODQG ( 0 %XUWRQ $XJ &0 f &KDUOHVWRQ &R 0RUULV ,VODQG ( 0 %XUWRQ 6HSW &0 LOO f &KDUOHVWRQ &R 6WRQH ,QOHW WUDZO -RKQ 7 1LFKROV $XJ &0 f &KDUOHVWRQ &R QRUWK MHWW\ &KDUOHVWRQ WUDZO ( 0 %XUWRQ $XJ &0 f &KDUOHVWRQ &R &KDUOHVWRQ QRUWK MHWW\ ( 0 %XUWRQ $XJ &0 f &KDUOHVWRQ &R &KDUOHVWRQ +DUERU ( / 3DVVDLODJXH -XO\ 8610 f *HRUJLD 8610 f *O\QQ &R 6W 6LPRQV 7$%/ f *O\QQ &R &RPPHUFLDO WUDZOLQJ DUHD RII %UXQVZLFN *D FD rn1 Orn: /HZLV &UDE &R VKULPS WUDZO 2FW 7$%/ f *O\QQ &R RII -HN\OO ,VODQG FD rn1 Orn: -DQH %ULJJV ( .DUU VKULPS WUDZO -XO\ 7$%/ f *O\QQ &R -HN\OO ,VODQG ( RFHDQf VLGH FD rn1 r: /HZLV &UDE &R VKULPS WUDZO -XQH 7$%/ f 'RER\ 6RXQG FD rf1 rn : 'RF -RQHV

PAGE 86

*D *DPH DQG )LVK &RPP $XJ )ORULGD )6%& f 'XYDO &R -HWW\ DW $WODQWLF %HDFK 1RY 7$%/ f )ORULGD $WODQWLF rn1 r: IPV VHDP WUDZO 6LOYHU %D\ 2FW $01+ f 'DGH &R 0LDPL %HDFK / / 0RZEUD\ -XO\ 8610 f 0RQURH &R RII &DSH 6DEOH 0RVHU 68 f /HH &R 6DQLEHO 0 6WRUH\ 6SULQJ )6%& f 3LQHOODV &R ,QGLDQ 5RFNV 3LHU ,QGLDQ 5RFNV %HDFK -XQH )68 f )UDQNOLQ &R $OOLJDWRU +DUERU 6HSW )68 f )UDQNOLQ &R 0XG &RYH RII $OOLJDWRU 3HQLQVXOD : 0HQ]HO 2FW 68&$6 f (VFDPELD &R 3HQVDFROD 0LVVLVVLSSL 8610 f +DUULVRQ &R RII *XOISRUW 6HSW /RX LVLDQD 8610 f -HIIHUVRQ 3DUULVK MXVW RII IURQW VRXWKf EHDFK *UDQGH ,VOH *&5/ f -HIIHUVRQ 3DUULVK 6 *UDQG ,VOH IPV 'DZVRQ WUDZO ILHOG 1RY $01+ af &DPHURQ 3DUULVK &DOFDVLHX 5 7RZQVHQG $XJ *&5/ f *XOI RI 0H[LFR rn1 rn: IPV 09 2UHJRQ 6WD )LHOG 1R $XJ 7H[DV 8610 f *DOYHVWRQ &R *DOYHVWRQ / %DXJKn PDQ 7$%/ Of %UD]RULD &R )UHHSRUW 0DU /DE 0XV 7H[DV *DPH )LVK DQG 2\VWHU &RPP $SU6HSW %01+ f $UDQVDV &R $UDQVDV %D\ %DXJKPDQ 8610 f $UDQVDV &R $UDQVDV 3DVV +DUERU ,VODQG & 3HDUVRQ 'HF 8610 f 1XHFHV &R &RUSXV

PAGE 87

&KULVWL & 3HDUVRQ 8610 f 1XHFHV &R &RUSXV &KULVWL %D\ & 3HDUVRQ 1RY'HF $163 f 1XHFHV &R &RUSXV &KULVWL *XOI RI 0H[LFR *&5/ f (DVWHUQ *XOI RI 0H[LFR IPV 09 7RQ\ $XJ 8) f 6 0RELOH $OD rn1 rn: 2UHJRQ &DOGZHOO -XO\ 78 $ 6 +RUQ ,V 0LVV rn1 rn: IPV 2UHJRQ PLGZDWHU WUDZO $XJ 78 f 6 6KLS 0LVV rn1 rn: IPV 2UHJRQ PLGZDWHU WUDZO $XJ 7$%/ f 6 &DPHURQ 3DUULVK rn1 rn: 6LOYHU %D\ 1R $XJ &XED 0&= f KRORW\SH RI &DUDQ[ KHWHURS\JXV 3RH\f +RQGXUDV 7$%/ f HDVW SDUDOOHO WR EHDFK RII &DUDWDVFD /DJRRQ SDVW 5LR &UXWD r1 rn: IPV 81 6KDG\ /DG\ WUDZOV GRXEOH ULJ & 0LOOHU $SULO 7$%/ f HDVW RI 5LR &UXWD rD 1 rn: IPV 81 6KDG\ /DG\ WU\ QHW & 0LOOHU $SULO 7$%/ f &RPPHUFLDO WUDZOLQJ DUHD RII &DUDWDVFD /DJRRQ HDVW WR SDVW 5LR &UXWD r0 rn: IPV 81 6KDG\ /DG\ WUDZOV GRXn EOH ULJ & 0LOOHU $SULO 7$%/ f R ZHVW SDVW 5LR &UXWD 5LYHU WR RII &DUDWDVFD /DJRRQ 1 : IPV 81 WUDZOV GRXEOH ULJ & 0LOOHU $SULO 7$%/ f 5LR &UXWD&DUDWDVFD rn1 rO: IPV 81 WUDZOV GRXEOH ULJ DQG WU\ QHW 6KDG\

PAGE 88

/DG\ & 0LOOHU $SULO &RVWD 5LFD /$&0 f &DKXLWD %D\ : %XVVLQJ 3DQDPD 8610 f &RORQ 8610 f &RORQ )R[ %D\ -DQ 9HQH]XHOD 7$%/ f r1 r n: IPV 2UHJRQ n VKULPS WUDZO 2FW 7$%/ f RII 3XHUWR OD &UX] r1 rn: IPV IODW WUDZO 2FW 7ULQL GDG %01+ f *XOI RI 3DULD 7DLWQ 5RGQH\ $163 f 3RUW RI 6SDLQ %DUEHU $VSKDOW &R %01+ f *XOI RI 3DULD *XSS\ 8610 f %ULWLVK *XLDQD 7$%/ f rn1 rn: 7UDZO &DODPDU -XQH 7$%/ f rn1 rn: &DODPDU 7UDZO -XQH %01+ f 5 0 0F&RQQHOO 6XULQDP 8610 f rn1 rn: IPV 2UHJRQ 6WD IW EDOORRQ WUDZO 6HSW 7$%/ f rOn1 rn: IPV IODW WUDZO 59 2UHJRQ 6WD 6HSW 7$%/ f rn1 rn: ,, &DODPDU 7UDZO 1RY 7$%/ 8QFDW f 1: FRDVW IPV &DODPDU 'HF 7$%/ 8QFDW f 1: FRDVW &DODPDU &UXLVH 6WD 2FW 501+ 8QFDW

PAGE 89

f IW &RTXHWWH 6WDW WUDZO -XQH 501+ f 6XULQDP 5 QHDU 3ODQWDWLRQ 5HVROXWLH 501+ 8QFDW f PL ( OLJKWVKLS 6XULQDP 5LYHU IW -XQH 501+ r r f RII OLJKWVKLS 6XULQDP 5LYHU 501+ r rf %UD]L 3DUD &$668 f ( & 6WDUNV &HDUD‘ &$668 f 3RUW RI )RUWDOH]D 0XFXULSHf )HE r} &$668 r r f )RUWDOH]D 0XFXULSHf 0DUFK 3HUQDPEXFR &$668 f 5HFLIH 1 %HUOD $XJ rr &$668 f 5HFLIH %DK L D %01+ rrr rf 6DOYDGRU 3DU]XGDNLV &ROLQ %01+ f 6DOYDGRU &$668 f 0DUDQKDR DQG %DKLD 6DOYDGRU RU &$668 f 6DOYDGRU &$668 f 6DOYDGRU 6DR 3DXOR &$668 f 3RQWR GR 3UDLD 6DQWRV &$668 f 6DQWRV $ : +HUH -XQH &$668 ff 3RQWR 'R 3UDLD 6DQWRV 3 &DUYDOOR DQG 0RUDHV 0DUFK &$668 f 6DQWRV &$668 f 3RQWR GR 3UDLD 6DQWRV 9 &DUYDOND DQG 0RUDHV 0D\ 5LR GH -DQHLUR %01+ ffD 5LR GH -DQHLUR ILVK PDUNHWf 7HUQHW] $163 f 5LR GH -DQHLUR 6DQWD &DWKDULQD &$668 f )ORULDQRSROLV 3UDLD GH &DUURVYLFLUD 2FW

PAGE 90

'LDJQRVLV +HPLFDUDQ[ DPE \UK\QFKXV LV GLVWLQJXLVKHG IURP RWKHU PHPEHUV RI LWV JHQXV E\ WKH IROORZLQJ FRPELQDWLRQ RI FKDUDFWHUV XSSHU FDXGDO ILQ OREH H[WUHPHO\ ORQJ QHDUO\ b 6/ LQ ODUJHVW DGXOWV XSSHU FDXGDO ILQ OREH XS WR b ODUJHU WKDQ ORZHU OREH OHQJWK YHQWUDO ERG\ RXWOLQH VOLJKWO\ FRQYH[ LQ DGYDQFH RI VRIW DQDO ILQ RULJLQ EXW QRW DV EURDGO\ URXQGHG DV GRUVDO RXWOLQH DQDO SWHU\JLRSKRUHV FORVHO\ VSDFHG ,W LV IXUWKHU GLVWLQJXLVKHG IURP WKH FORVHO\ UHODWHG + ELFRORU E\ WKH IROORZLQJ FKDUDFWHUV PRUH GRUVDO UD\V WR XVXDOO\ RU f ; B 6[ f PRUH DQDO UD\V WR XVXDOO\ WR f ; B 6[ N f D IODWWHQHG DVFHQGLQJ SURFHVV YHUVXV LQGHQWHGf DQG FRQFDYH DUWLFXODU SURFHVV RI WKH SUHPD[LOODU\ YHUVXV VWUDLJKWf EDVLK\DO RI LQWHUPHGLDWH ZLGWK YHUVXV QDUURZf +B DPEO\UK\QFKXV LV IXUWKHU GLVWLQJXLVKHG IURP ERWK +B OHXFXUXV DQG + ]H RWHV E\ WKH IROORZLQJ FKDUDFWHUV VHYHQ YHUVXV HLJKWf GRUVDO VSLQHV YHUVXV f FDXGDO YHUWHEUDH IHZHU VFDOHV LQ WKH FXUYHG SDUW RI ODWHUDO OLQH WR NN XVXDOO\ WR f ; 6!7 B f YHUVXV WR r DQWHULRU FDXGDO SHGXQFOH VFXWH SURSRUWLRQDO ZLGWK r WR b 6/ ; f YHUVXV WR f UDWLR RI VWUDLJKW SRUWLRQ RI ODWHUDO OLQH WR FXUYHG SRUWLRQ RI ODWHUDO OLQH WR ; f YHUVXV WR f DQWHURGRUVDO HGJH RI HWKPRLG FRQFDYH YHUVXV FRQYH[f DQWHULRU HQG RI SWHU\JRLG ERQH LQGHQWHG YHUVXV FRQFDYHf XSSHU K\SRK\DO ZLQGRZ FLUFXODU YHUVXV RYDOf DQDO SWHU\JLRSKRUH SRLQWV LQWHUPHGLDWHO\ GHYHORSHG YHUVXV SURPLQHQW RU UHGXFHGf $ FRPSDULVRQ RI + DPEO\UK\QFKXV DQG WKH RWKHU PHPEHUV RI WKH JHQXV LV SUHVHQWHG LQ 7DEOH

PAGE 91

'HVFULSWLRQ &RXQWV DQG SURSRUWLRQDO PHDVXUHPHQWV DUH OLVWHG LQ 7DEOHV DQG JUDSKLFDOO\ SUHVHQWHG LQ )LJXUHV 7KH JHQHULF GHVFULSWLRQ DQG VSHFLHV GLDJQRVLV DUH VXSSOHPHQWHG E\ WKH IROORZLQJ OHQJWK RI VWUDLJKW ODWHUDO OLQH WR b 6/ OHQJWK RI FXUYHG ODWHUDO OLQH b 6/ ERG\ ZLGWK b 6/ SHFWRUDO ILQ b 6/ SHOYLF ILQ b SHFWRUDO KHDG GHSWK b 6/ LQWHURUELWDO ZLGWK b 6/ PD[LOODU\ GHSWK b 6/ SHFWRUDO ILQ UD\V XVXDOO\ RU VFXWHV LQ VWUDLJKW SDUW RI ODWHUDO OLQH WR ; 6[ B f GLVWDO WLSV RI WKH XSSHU VXSHULRU SULQFLSDO FDXGDO UD\V OLJKWO\ EODFNHQn HG LQ DGXOWV 2VWHRORJLFDO FKDUDFWHUV DUH FRPSOHWHO\ GHVFULEHG LQ WKH DFFRXQW RI WKH RVWHRORJ\ RI WKH JHQXV 6NHOHWDO FKDUDFWHULVWLFV WKDW GLVWLQJn XLVK +B DPEO\UK\QFKXV IURP RWKHU PHPEHUV RI WKH JHQXV DUH DQWHULRU HGJH RI GRUVDO VXUIDFH RI HWKPRLG FRQFDYH SRVWHULRU WLS RI XSSHU DUP RI GHQWDU\ URXQGHG SRVWHULRU HGJH RI SRVWPD[L DU\ SURFHVV EURDGO\ FRQFDYH D PLGGRUVDO H[SDQVLRQ RI WKH V\PSOHFWLF SWHU\JRLG FKDUDFWHUn L]HG E\ LQGHQWDWLRQV DERYH DQG EHORZ DQWHULRU SRLQW XSSHU K\SRK\DO IRUDPHQ FLUFXODU FHUDWRK\DO ZLQGRZ YHQWUDOO\ H[SDQGHG DQDO SWHU\JLDO SRLQWV PRGHUDWH GLVWDO HQGV RI DQDO SWHU\JLRSKRUHV FORVHO\ RSSRVHG 1RPHQFODWX UH 7KH RULJLQDO GHVFULSWLRQ RI &DUDQ[ DPE\UK\QFKXV &XYLHU FRPPRQO\ QDPHG WKH %OXQWQRVH MDFN >%DLOH\ HWB DMB @f ZDV EDVHG RQ WZR V\QW\SHV IURP %UD]LO %RWK VSHFLPHQV DJUHH ZLWK WKH RULJLQDO GHVFULSn WLRQ ,Q DFFRUG ZLWK %DLOH\ f DXWKRUVKLS RI WKH VSHFLILF QDPH LV UHFRJQL]HG &DUDQ[ KHWHURS\JXV 3RH\ ZDV EDVHG RQ D VLQJOH VSHFLPHQ IURP &XED

PAGE 92

7KH WD[RQRPLF VWDWXV RI KHWHURS\JXV YDFLOODWHG HYHQ LQ WKH ZRUNV RI 3RH\ ZKR GLVWLQJXLVKHG LW IURP DPE\UK\QFKXV VWULFWO\ RQ WKH EDVLV RI XSSHU FDXGDO ILQ OREH OHQJWK 7KLV FKDUDFWHU LV ZLWKLQ WKH QRUPDO UDQJH RI YDULDWLRQ RI DPE\UK\QFKXV KRZHYHU DQG DOO RWKHU PRUSKRn PHWULF FKDUDFWHUV DJUHH ZLWK WKH GDWD REWDLQHG IRU WKDW VSHFLHV +RZHOO < 5LYHUR f FRUUHFWO\ LGHQWLILHG 3RH\nV W\SH VSHFLPHQ DV DP\UK\QFKXV 7KH RULJLQDO GHVFULSWLRQ RI +HPLFDUDQ[ UKRPERLGHV 0HHN DQG +LOGHn EUDQG ZDV EDVHG RQ WZR MXYHQLOH VSHFLPHQV IURP &DULEEHDQ 3DQDPD 2QH RI WKHVH WKH KRORW\SHf ZDV IRXQG LQ WKH 8610 W\SH FROOHFWLRQ DQG LW DJUHHV LQ HYHU\ ZD\ ZLWK DPEO\UK\QFKXV 7KH SDUDW\SH LV GHSRVLWHG LQ WKH )LHOG 0XVHXP RI 1DWXUDO +LVWRU\ *UH\ A A f 0HHN DQG +LOGHEUDQG Af H[DPLQHG RQO\ MXYHQLOH VSHFLPHQV ZKLFK GLIIHU LQ PDQ\ ZD\V IURP WKH DGXOW VSHFLPHQV XSRQ ZKLFK WKHLU DFFRXQW RI DPEO\UK\QFKXV ZDV EDVHG 1LFKROV DQG 0XUSK\ A Af FRUUHFWO\ V\QRQ\P L]HG UKRPERLGHV ZLWK DPEO\UK\QFKXV 7KH RULJLQDO GHVFULSWLRQ RI &DUDQ[ IDOFDWXV ZDV EDVHG RQ D VLQJOH DGXOW VSHFLPHQ FROOHFWHG WZHQW\ PLOHV RIIVKRUH IURP &KDUOHVWRQ 6RXWK &DUROLQD 7KH HW\PRORJ\ RI WKH QDPH UHIOHFWV WKH PDMRU GLVWLQFWLRQ +ROEURRN LQFRUSRUDWHG LQ D FRPSDULVRQ RI KLV VSHFLPHQ ZLWK WKH ILJXUH RI D V\QW\SH RI &XYLHU LH WKH UHODWLYHO\ ORQJHU OHQJWK RI WKH XSSHU FDXGDO ILQ OREH PRVW SURQRXQFHG LQ VSHFLPHQV IURP PRUH WHPSHUDWH ORFDOLWLHVf 7KLV YDULDWLRQ LV FKDUDFWHULVWLF RI DPE\UK\QFKXV DQG LQ WKLV DQG DOO RWKHU GHWDLOV WKH W\SH VSHFLPHQ RI IDOFDWXV DJUHHV ZLWK DPE\UK\QFKXV 7KH VSHFLPHQ ZDV DFFLGHQWDOO\ GHVWUR\HG +ROEURRN L f )D FDWXV ZDV FRUUHFWO\ V\QRQ\PL]HG ZLWK DPE\UK\QFKXV E\ 1LFKROV f

PAGE 93

$Q DGGLWLRQDO VSHFLHV RULJLQDOO\ GHVFULEHG DV &DUDQ[ VHFXQGXV E\ 3RH\ L f ZDV GRXEWIXOO\ V\QRQ\PL]HG ZLWK DPE\UK\QFKXV E\ -RUGDQ DQG *LOEHUW f 7KLV VSHFLHV LV QRZ UHJDUGHG DV D QXPEHU RI WKH JHQXV 8UDVSLV %HUU\ r f ,Q WKH VDPH SDSHU %HUU\ QRWHG WKDW &DUDQ[ IDVFLDWXV D QRPHQ GXELXUQ KDV DW WLPHV EHHQ UHJDUGHG DV D V\QRQ\P RI VHFXQGXV DQG DV D VSHFLHV RI +HPLFDUDQ[ (FRORJ\ +HPLFDUDQ[ DPE\UK\QFKXV KDV EHHQ UHIHUUHG WR E\ %ULJJV f DV D SHODJLF VSHFLHV LQKDELWLQJ WKH VXUIDFH OD\HUV RI ZDWHU GHSWKV RI OHVV WKDQ PHWHUV LQ WKH RIIVKRUH UHJLRQV XVXDOO\ EH\RQG WKH OLPLWV RI WKH FRQWLQHQWDO VKHOI 7KH EXON RI WKH VSHFLPHQV RI DPE\UK\QFKXV H[DPLQHG LQ WKLV VWXG\ KRZn HYHU ZHUH FROOHFWHG LQ UHODWLYHO\ VKDOORZ ZDWHUV DGMDFHQW WR FRQWLQHQWDO ODQG PDVVHV WKXV LQGLFDWLQJ D OLIH F\FOH DW OHDVW SDUWLDOO\ VSHQW LQ ZDWHUV OHVV WKDQ PHWHUV GHHS 'HVSLWH VXFK IDFWRUV DV f ODFN RI RIIVKRUH FROOHFWLQJ HIIRUW DQG f HVFDSH IURP FROOHFWLQJ JHDU WKDW PD\ ELDV FRQFOXVLRQV DERXW KDELWDW WKH DOPRVW H[FOXVLYH FROOHFWLRQ RI +HPLFDUDQ[ DPE\UK\QFKXV LQ VKDOORZ ZDWHUV RYHU WKH FRQWLQHQWDO VKHOI LGHQWLILHV LW DV D VKRUH VSHFLHV VHH %ULJJV f &RSHODQG f LQ D GLVFXVVLRQ RI DQLPDO HPLJUDWLRQ WKURXJK $UDQVDV 3DVV 7H[DV DOOXGHG WR WKH HVWXDULQH GHSHQGHQFH RI WKLV VSHFLHV ,Q D \HDUURXQG WLGH WUDS VDPSOLQJ RI HPLJUDQWV WKURXJK $UDQVDV 3DVV &RSHODQG 7DEOH f IRXQG DPEO\UK\QFKXV WR RFFXU RFFDVLRQDOO\ LQ FROOHFWLRQV PDGH IURP 2FWREHU WKURXJK )HEUXDU\ $OWKRXJK &RSHODQG GLG QRW PHQWLRQ WKH VL]H RI VSHFLPHQV FROOHFWHG WKH\ DUH SUHVXPDEO\ MXYHQLOHV EDVHG RQ WKH FROOHFWLQJ JHDU DQG D FRQVLGHUDWLRQ RI RWKHU FROOHFWLRQV IURP 7H[DV *XQWHU f IRU H[DPSOH UHSRUWHG %OXQWQRVH MDFN RI WR PP

PAGE 94

IURP $UDQVDV %D\ GXULQJ -XQH -XO\ DQG $XJXVW :KHWKHU DPEO\UK\QFKXV VSDZQV LQ HVWXDULQH KDELWDW LV QRW FHUWDLQ EXW LW DSSHDUV WKDW WKLV VSHFLHV LV RQH RI PDQ\ WKDW XWLOL]HV WKH HVWXDUn LQH HQYLURQPHQW DV D QXUVHU\ JURXQG IRU MXYHQLOHV )URP DQ HVWXDULQH QXUVHU\ LW PRYHV RIIVKRUH WR FRPSOHWH SDUW RU DOO RI WKH OLIH F\FOH $V OLVWHG LQ WKH 0DWHULDO ([DPLQHG VHFWLRQ MXYHQLOHV RI DPE\UK\QFKXV KDYH EHHQ FROOHFWHG DW D QXPEHU RI RWKHU HVWXDULQH ORFDOLWLHV ZKHUHDV DGXOWV DUH DOZD\V FROOHFWHG LQ RIIVKRUH IXO VWUHQJWK VHDf ZDWHUV 7KH HFRORJLFDO DVVRFLDWLRQ RI MXYHQLOH +B DPEO\UK\QFKXV ZLWK MHOO\n ILVKHV KDV EHHQ UHSRUWHG IURP D QXPEHU RI ORFDOLWLHV WKURXJKRXW LWV UDQJH VXPPDUL]HG E\ 0DQVXHWL f DQG LV E\ QR PHDQV XQXVXDO IRU WKH &DUDQJLGDH ,QGHHG 0DQVXHWL 7DEOH f OLVWHG SXEOLVKHG UHFRUGV RI FRPPHQVDO DQG SDUDVLWLF DVVRFLDWLRQ EHWZHHQ MHOO\ILVKHV DQG WKH \RXQJ RI VSHFLHV RI &DUDQJLGDH LQ WKH ZRUOG )RU DPEO\UK\QFKXV 0DQVXHWL OLVWHG WKH IROORZLQJ V\PELRQWV &KU\VDRUD TXLQTXHFLUUKD 6WRPRORSOXV PHOHDJULV $XUHOLD DX ULWD DQG 0DVW LJL DV VF LQWL DH ,QWHUHVWLQJO\ DPEO\UK\QFKXV ZDV FROOHFWHG E\ &RSHODQG f RQO\ LQ DVVRFLDWLRQ ZLWK WKH FDEEDJHKHDG MHOO\ILVK 6B PH HDJU L V GXULQJ IDOO HPLJUDWLRQ IURP $UDQVDV %D\ ,Q KLV UHYLHZ DUWLFOH 0DQVXHWL VWDWHG WKDW VXFK ILVKMHOO\ILVK DVVRFLDWLRQ PD\ f SURWHFW WKH ILVK IURP SUHGDWRUV DQG f SURYLGH IRRG LQ WKH IRUP RI FUXVWDFHDQV DQG RWKHU LQYHUWHEUDWHV IRXQG RQ RU ZLWK WKH MHOO\ILVK DV ZHOO DV WKH MHOO\ILVK LWVHOI ,PPXQLW\ RI FDUDQJLGV WR QHPDWRF\VW WR[LQ ZDV VXJJHVWHG E\ 0DQVXHWL r 7KH IXQFWLRQ RI SHODJLF V\PELRWLF KRVWV DV GLVSHUVDO PHFKDQLVPV LV GLVFXVVHG EHORZ LQ WKH 5HODWLRQVKLSV VHFWLRQ DV D IDFWRU LQ SRVVLEOH LQWHUVSHFLILF JHQH IORZ LQ +HPLFDUDQ[

PAGE 95

'LVWULEXWLRQ +HPLFDUDQ[ DPE \UK\QFKXV UDQJHV IURP %HDXIRUW 1RUWK &DUROLQD VRXWK DORQJ WKH FRQWLQHQWDO PDUJLQ RI WKH $WODQWLF FRDVW RI 1RUWK DQG 6RXWK $PHULFD WR WKH YLFLQLW\ RI ), RU LDQRSROLV %UD]LO FD r6f )LJXUH f $OWKRXJK LW PD\ EH FRPPRQ LQ RFFDVLRQDO VDPSOHV +B DPE\UK\QFKXV LV PRVW RIWHQ SUHVHQW LQ LQVWLWXWLRQDO FROOHFWLRQV LQ VPDOO QXPEHUV $OWKRXJK WKLV SDXFLW\ RI VSHFLPHQV PD\ UHIOHFW VHOHFWLYLW\ RI VDPSOLQJ WHFKQLTXHV RU D IDLOXUH WR VDPSOH SUHIHUUHG HQYLURQPHQWDO KDELWDW LW DSSHDUV WKDW WKLV VSHFLHV LV WUXO\ XQFRPPRQ LQ WKH QDWXUDO HQYLURQPHQW VLQFH HYHQ WKH PRUH HDVLO\ FROOHFWHG MXYHQLOH VWDJHV DUH QHYHU WDNHQ LQ DEXQGDQFH 7LGH WUDSV FROOHFWLRQV &RSHODQG t 5RHVVOHU f EHDFK VHLQLQJ DQG WUDZOLQJ KDYH DOO IDLOHG WR FDSWXUH ODUJH QXPEHUV RI DPEO\UK\QFKXV $ORQJ FRQWLQHQWDO VKRUHV + DPEO\UK\QFKXV LV GLIIHUHQWLDOO\ DEXQGDQW QR GRXEW SDUWO\ DV DQ DUWLIDFW RI FROOHFWLQJ LQWHQVLW\ +RZn HYHU WKLV VSHFLHV DOWKRXJK H[SHFWHG E\ YDULRXV DXWKRUV %RKONH DQG &KDSOLQ %DKDPDV 5DQGDOO QRQLQVKRUH &DULEEHDQ VDOLQH KDELWDWVf KDV QRW EHHQ UHSRUWHG IURP HYHQ WKH PRVW DFWLYHO\ FROOHFWHG LVODQGV RI WKH QRUWKHUQ DQG HDVWHUQ &DULEEHDQ 6HD 7KLV LV LQWHUHVWLQJ LQ YLHZ RI WKH FRPPRQ RFFXUUHQFH RI PDQ\ RWKHU FDUDQJLGV LQ VXFK ORFDOLWLHV LQFOXGLQJ VXFK FORVHO\ UHODWHG IRUPV DV 6H DU 5DQGDOO f ZLWK ZKLFK +HPLFDUDQ[ LV V\PSDWULF RYHU PXFK RI WKH FRQWLQHQWDO VKHOI %RWK *LOEHUW LQ SUHVVf DQG 5RELQV f QRWH WKDW WKH &DUDQJLGDH DV D IDPLO\ LV XELTXLWRXVO\ GLVWULEXWHG LQ ERWK FRQWLQHQWDO DQG LQVXODU ZDWHUV ZKLFK DUH FKDUDFWHUL]HG UHVSHFWn LYHO\ E\ WXUELG ZDWHUV DQG QRWDEOH HQYLURQPHQWDO IOXFWXDWLRQV RU FOHDU ZDWHUV DQG VWDEOH HQYLURQPHQWDO FRQGLWLRQV %DVHG RQ WKH DSSDUHQWO\

PAGE 96

8 )LJXUH 'LVWULEXWLRQ RI +HPLFDUDQ[ %DVHG RQ FROOHFWLRQV H[DPLQHGf LQ WKH $WODQWLF DQG 3DFLILF 2FHDQV

PAGE 97

VPDOO SRSXODWLRQ VL]H RI WKLV VSHFLHV SOXV LWV DSSDUHQW HVWXDULQH GHSHQGHQFH LW LV OLNHO\ WKDW DPE\UK\QFKXV GRHV QRW LQKDELW PRVW RI WKHVH LVODQGV SRVVLEO\ GXH WR D ODFN RI H[WHQVLYH HVWXDULQH QXUVHU\ JURXQG FRPSOH[HV 7KH DEVHQFH RI DPEO\UK\QFKXV IURP WKH &DULEEHDQ ,VODQGV SDUDOOHOV WKDW RI WKH VHD WXUWOH /HSLGRFKH\V ZKLFK 3ULWFKDUG ,,f DFFRXQWHG IRU RQ WKH EDVLV RI D SDXFLW\ RI H[WHQVLYH EUDFNLVK ZDWHU DUHDV 8QGRXEWHGO\ KRZHYHU WKHVH PHGLXPVL]HG KLJKO\ PRELOH ILVK KDYH KDG DFFHVV WR VXFK KDELWDWV E\ YLUWXH RI REYLRXV FDUDQJLG PRUSKRORJLFDO DGDSWDWLRQV IRU RSHQZDWHU ORFRPRWLRQ HJ QDUURZ SHGXQFOH EURDG FDXGDO OREHV FRPSUHVVHG WHUHWH ERG\f ,Q DGGLWLRQ WKH V\PELRWLF DVVRFLDWLRQ RI MXYHQLOH DPE\UK\QFKXV ZLWK MHOO\ILVKHV LV D OLNHO\ IDFWRU LQ HIIHFWn LQJ LWV ZLGHVSUHDG GLVSHUVDO 1RW DOO IUHHVZLPPLQJ ODUJH VSHFLHV RI FRXUVH DUH DEOH WR LQKDELW WKH HQWLUH VSHFWUXP RI HQYLURQPHQWV WR ZKLFK WKH\ KDYH DFFHVV 7KH 6SDQLVK PDFNHUHO 6FRPEHURPRUXV PDFXODWXV IRU H[n DPSOH LV DEVHQW IURP LQVXODU HQYLURQPHQWV RI WKH ZHVWHUQ $WODQWLF GRXEWOHVV EHFDXVH DFFRUGLQJ WR 5RELQV f JHRJUDSKLF EDUULHUV DUH QRW RSHUDWLQJ WR UHVWULFW WKH FRQWLQHQWDO HOHPHQW IURP WKH LVODQGV EXW LQVWHDG HFRORJLFDO FRQGLWLRQV DQG FRPSHWLWLRQ IURP FORVHO\ UHODWHG DQG EHWWHU DGDSWHG LVODQG VSHFLHV SURYLGH WKH EDUULHU WR FRORQL]DWLRQ :KDW ZH KDYH LQ WKHVH IDXQDV LV QRW D SLFWXUH RI ZKDW FRXOG UHDFK WKH DUHD LQ TXHVWLRQ EXW RI ZKDW FRXOG VXUYLYH DQG EUHHG WKHUH ,W LV K\SRWKHVL]HG WKDW + DPE\UK\QFKXV LV RQH VSHFLHV RI WKH FRQWLQHQWn DO IDXQD WR ZKLFK WKLV VWDWHPHQW DSSOLHV 7KH YDJLOLW\ RI JURXSV VXFK DV WKH &DUDQJLGDH KDV EHHQ GLVFXVVHG E\ 5RVHQEODWW f DV D IDFWRU LQ WKH UHODWLYH ODFN RI HQGHPLVP LQ WKLV IDPLO\ $V FRQWUDVWHG WR VPDOOHU ILVKHV DGDSWHG WR GLVFRQWLQXRXV LVRODWHG KDELWDWV ZKLFK DUH UHVWULFWHG LQ WKHLU PRELOLW\ DQG WKXV

PAGE 98

JHQH H[FKDQJHf WKH FDUDQJLGV DUH ODUJHU DQG PRUH PRELOH DQG JHQHUDOO\ LQKDELW FRQWLQXRXV KDELWDWV RYHU ZKLFK WKH\ DUH IUHHVZLPPLQJ 7KXV RSSRUWXQLWLHV WR SURPRWH JHQH IORZ LQ WKLV JURXS FRQWULEXWH WR ZKDW PD\ EH D GLIIHUHQWLDOO\ VORZHU UDWH RI ORFDO GLIIHUHQWLDWLRQ 7KLV LV FHUWDLQO\ WKH FDVH IRU +HPLFDUDQ[ DPE\UK\QFKXV 9DULDWLRQ 6DPSOHV RI + DPE\UK\QFKXV IURP WKURXJKRXW WKH UDQJH RI WKH VSHFLHV DUH UHPDUNDEO\ KRPRJHQHRXV DV LQGLFDWHG E\ LQVSHFWLRQ DQG VWDWLVWLFDO DQDO\VLV RI GDWD VHH LQ 7DEOHV DQG a LQ SDUWf 7KH VPDOO DPRXQW RI YDULDWLRQ QRWHG LV FOLQDO LQ QDWXUH VDPSOHV IURP PRUH WHPSHUDWH ODWLWXGHV DUH FKDUDFWHUL]HG E\ ORQJHU FDXGDO ILQ OREHV )LJXUH 7DEOH f KLJKHU QXPEHUV RI VRIW UD\V LQ WKH VHFRQG GRUVDO ILQ )LJXUH 7DEOH f DQG KLJKHU QXPEHUV RI VRIW UD\V LQ WKH DQDO ILQ )LJXUH 7DEOH f %DVHG RQ WKH FODVVLFDO REVHUYDWLRQ RI PRUH ERG\ SDUWV LQ ILVKHV IURP FROGHU HQYLURQPHQWV %DUORZ f VXFK D SDWWHUQ RI JHRJUDSKLF YDULDWLRQ RI PHULVWLF FKDUDFWHUV PLJKW EH SUHGLFWHG $OWKRXJK LW LV WHPSWLQJ WR FRQFOXGH WKDW QHDUO\ HTXDWRULDO SRSXn ODWLRQV RI DPE\UK\QFKXV H J *X\DQDV%UD]L f GHYHORS IHZHU GRUVDO DQG DQDO UD\V WKDQ PRUH WHPSHUDWH SRSXODWLRQV HJ 8 6 *XOI RI 0H[LFRf LQ UHVSRQVH WR ZDUPHU GHYHORSPHQWDO WHPSHUDWXUHV WKH GLIIHUHQFH EHWZHHQ +RQGXUDV DQG HTXDWRULDO ORFDOLWLHV ZLWK VLPLODU WHPSHUDWXUHV PXVW EH DFFRXQWHG IRU 6DPSOHV IURP +RQGXUDV DQG WKH 8 6 *XOI ORFDOLWLHV ZLWK GLIIHUHQW WKHUPDO UHJLPHV >7DEOH @f DUH QHDUO\ LGHQWLFDO PHULVWLFD\ ZKHUHDV VDPSOHV IURP +RQGXUDV DQG WKH HTXDWRULDO ORFDOLWLHV DUH VWDWLVWLFDOO\ VLJQLILFDQWO\ GLIIHUHQW f LQ WHUPV RI GRUVDO DQG DQDO UD\ FRXQWV 7KXV LI WKHVH FDUDQJLG ILVKHV DUH DEOH WR GLVSHUVH ZLGHO\ WR LQKLELW GLYHUJHQFH RI WHPSHUDWH DQG

PAGE 99

2 )LJXUH DURE \ UK\QFKXV A1RUWKHUQ *XOI RI 0H[LFR p+RQGX UDV A 6X ULQDP*X\DQDV 2 EL FRO RU 86f b k2 f & f f 2 9R R r&r3 RR Rrr RR 1! , , , , , 67$1'$5' /(1*7+ PPf /HQJWK RI WKH XSSHU FDXGDO ILQ OREH LQ SRSXODWLRQV RI +HPLFDUDQ[ DPEO\UK\QFKXV IURP WKH :HVWHUQ $WODQWLF 2FHDQ DQG + ELFRORU IURP WKH (DVWHUQ $WODQWLF

PAGE 100

HXFXUXV 3$1$0$ ]H RWHV L 0(;,&2 L 3$1$0$ DPE\UK\QFKXV 86 *8/) L +21'85$6 L 75,1,'$' *8<$1$6 6287+(51 %5$=,/ $)5,&$ BL , L , 180%(5 2) '256$/ 5$<6 )LJXUH 9DULDWLRQ LQ QXPEHU RI ILQ UD\V LQ WKH VRIW GRUVDO ILQ RI +HPLFDUDQ[ 9HUWLFDO OLQH LQGLFDWHV [ KRUL]RQWDO OLQHV H[WHQG WR HLWKHU VLGH IRU D GLVWDQFH HTXDO WR 6[ r 1f 1 FA >DIWHU (EHUKDUGW ILJ @f ELFRORU /

PAGE 101

OHXFXUXV 3$1$0$ ]HORWHV 0(;,&2 3$1$0$ DPEO\UK\QFKXV 75,1, '$' *8<$1$ L 86 *8/) +21'85$6 6287+(51 %5$=,/ ELFRORU L $)5,&$ , E 180%(5 2) $1$/ 5$<6 )LJXUH 9DULDWLRQ LQ QXPEHU RI ILQ UD\V LQ WKH VRIW DQDO ILQ RI +HP L FDUDQ[ 6\PEROV DV LQ )LJXUH 1 nA f

PAGE 102

WURSLFDO SRSXODWLRQV LW LV QHFHVVDU\ WR DFFRXQW IRU WKH GLIIHUHQFHV EHn WZHHQ SRSXODWLRQV LQKDELWLQJ ZDWHUV RI VLPLODU WHPSHUDWXUH ,W LV SRVVLEOH WKDW HPEU\RORJLFDO GHYHORSPHQW LQ ERWK WKH *XOI RI 0H[LFR DQG WKH ZDWHUV RII +RQGXUDV RFFXUV DW GLIIHUHQW WLPHV RI WKH VHDVRQ EXW DW WKH VDPH WHPSHUDWXUH ,I VR KRZHYHU WKH H[SODQDWLRQ RI WKH GLIIHUHQFHV EHWZHHQ +RQGXUDV DQG HTXDWRULDO $PHULFD LV VWLOO QRW REYLRXV $Q DOWHUQDWH SURSRVDO LV WKDW JHQH IORZ RFFXUV EHWZHHQ D SRSXODWLRQ ZLWK ORZHU UD\ FRXQWV DQG WKH HTXDWRULDO DPE\UK\QFKXV WKLV LV SUHVHQWHG EHORZ 5HODWLRQVKLSV +HPLFDUDQ[ DPE\UK\QFKXV LV PRVW FORVHO\ UHODWHG WR WKH :HVW $IULFDQ VSHFLHV +B ELFRORU EDVHG RQ WKH H[WUHPHO\ FORVH PRUSKRORJLFDO VLPLODULW\ RI WKH WZR IRUPV 2I WKH H[WHUQDO PRUSKRORJLFDO FKDUDFWHUV DQDO\]HG WKH WZR VSHFLHV GLIIHU FRQVLVWHQWO\ LQ QXPEHU RI GRUVDO UD\V )LJXUH 7DEOH f QXPEHU RI DQDO UD\V )LJXUH 7DEOH f OHQJWK RI WKH XSSHU FDXGDO ILQ OREH )LJXUHV 7DEOHV f DQG QXPEHU RI VFDOHV LQ WKH FXUYHG SDUW RI WKH ODWHUDO OLQH )LJXUH 7DEOH f 'LIIHUHQFHV LQ GRUVDO UD\ FRXQWV EHWZHHQ DOO VDPSOHV RI DPEO\UK\QFKXV DQG ELFRORU DW WKH OHYHO RI VWDWLVWLFDO VLJQLILFDQFH DUH REVHUYHG ZKHQ PXOWLSOH FRPSDULVRQ DQDO\VLV LV SHUIRUPHG WKH\ DUH JUDSKLFDOO\ SUHVHQWHG LQ )LJXUH $QDO UD\ FRXQWV DUH VLJQLILFDQWO\ GLIIHUHQW OHYHOf EHWZHHQ ELFRORU DQG DOO VDPSOHV RI DPE\UK\QFKXV H[FHSW WKRVH IURP WKH QRUWKHDVW VKRUH RI 6RXWK $PHULFD )LJXUH f D SRVVLEOH H[SODQDWLRQ IRU WKLV H[FHSWLRQ LV GLVFXVVHG EHORZ 'LIIHUHQFH LQ XSSHU FDXGDO ILQ OREH OHQJWKV LQFUHDVHV EHWZHHQ WKH WZR VSHFLHV ZLWK DJH D VWXGHQWnV W YDOXH RI UHYHDOV D KLJKO\ VLJQLILFDQW OHYHOf

PAGE 103

JXUH $GXOW +HPLFDUDQ[ IURP WKH $WODQWLF 2FHDQ +HPLFDUDQ[ ELFRORU PP 6/ 7$%/ *XLQHD $IULFD DERYHf DQG +B DPEO\UK\QFKXV PP 6/ 7$%/ RII &DUDWDVFD /DJRRQ +RQGXUDV

PAGE 104

m09

PAGE 105

HXFXUXV ]HORWHV DPEO\UK\QFKXV n ELFRORU , , , , L , , , , , r &859(' /$7(5$/ /,1( 6&$/(6 )LJXUH ,QWHUVSHFLILF YDULDWLRQ LQ QXPEHU RI VFDOHV LQ FXUYHG ODWHUDO OLQH RI +HPLFDUDQ[ 6\PEROV DIWHU )LJXUH 1 OrF O

PAGE 106

VWDWLVWLFDO GLIIHUHQFH IRU DGXOWV $OWKRXJK EURDG RYHUODS LQ FXUYHG ODWn HUDOOLQH VFDOH FRXQWV H[LVWV VWDWLVWLFDO VLJQLILFDQFH DW WKH OHYHO LV VKRZQ LQ )LJXUH 2VWHRRJLFD\ WKH\ GLIIHU ZLWK UHVSHFW WR URXQGn LQJ RI WKH SRVWHULRU WLS RI WKH XSSHU DUP RI WKH GHQWDU\ )LJXUH 9,f FXUYDWXUH RI WKH SURFHVVHV RI WKH SUHPD[LOODU\ ERQH )LJXUH 9LO 9, ,Of VKDSH RI WKH XURK\DO )LJXUH ;9f DQG RSSRVLWLRQ DQG GHYHORSPHQW RI GLVWDO WLSV RI DQDO SWHU\JLRSKRUHV )LJXUH ;,;f 7KH IHZ VOLJKW VLJQLILFDQW H[WHUQDO GLIIHUHQFHV DQG WKH QDWXUH RI RVWHRORJLFDO FKDUDFWHUV WKDW YDU\ RQO\ LQ GHJUHH RI H[SUHVVLRQ LQGLFDWH D FORVH UHODWLRQVKLS RI DPE\UK\QFK XVB DQG ELFRORU 7KHVH WZR VSHFLHV DV GLVFXVVHG LQ WKH DFFRXQW RI +B ]HORWHV DUH PRUH GLVWDQWO\ UHODWHG WR ERWK +B ]HORWHV DQG HXFXUXV WKDQ WKH\ DUH WR HDFK RWKHU &RPSDULVRQ RI ELFRORU DQG DPE\UK\QFKXV UHYHDOV WKDW ELFRORU PRVW FORVHO\ UHVHPEOHV SRSXODWLRQV RI DPEO\UK\QFKXV IURP WKH QRUWKHDVW VKRUH RI %UD]LO DQG WKH 6XULQDP*W\DLDV UHJLRQ WKDW LV WKH DUHD MXVW QRUWK RI WKH (TXDWRU 7KH GLDJQRVWLF FKDUDFWHUV RI XSSHU FDXGDO ILQ OREH OHQJWK QXPEHU RI GRUVDO UD\V DQG QXPEHU RI DQDO UD\V PRUH FORVHO\ DSSURDFK HDFK RWKHU ZKHQ WKHVH WZR ORFDOLWLHV DUH FRPSDUHG WKDQ ZKHQ PRUH WHPSHUDWH SRSXODWLRQV RI DPEO\UK\QFKXV DUH FRQVLGHUHG $V DQ DOWHUQDWLYH WR HQYLURQPHQWDO PRGLILFDWLRQ RI WKHVH FKDUDFWHUV LQ DPE\UK\QFKXV LW LV VXJJHVWHG WKDW JHQH IORZ IURP ZHVWHUQ $IULFD +HPLFDUDQ[ WR HTXDWRULDO 6RXWK $PHULFD PD\ EH LQIOXHQFLQJ WKH H[WHUQDO PRUSKRORJ\ RI + DPE\UK\QFKXV LQ WKH GLUHFWLRQ RI ELFRORU 7KH SRVn VLELOLW\ RI WKLV FRQWHQWLRQ LV VXSSRUWHG E\ WZR REVHUYDWLRQV 7KH HFRORJLFDO DVVRFLDWLRQ RI MXYHQLOH +B DPE \UK\QFKXV ZLWK SHODJLF MHOO\ILVK PHGXVDH DQG FWHQRSKRUHV LV UHDVRQDEO\ K\SRWKHVL]HG DV FKDUDFWHULVWLF RI ELFRORU

PAGE 107

HVSHFLDOO\ LQ YLHZ RI LWV RFFXUUHQFH LQ WKH FORVHO\ UHODWHG JHQXV $WXH .DQVXHWL f +HQFH D EHKDYLRUDO PHFKDQLVP ZKHUHE\ ZLGHVSUHDG GLVSHUVDO PD\ EH HIIHFWHG H[LVWV SHQGLQJ D WUDQVSRUW DJHQW 7KH H[LVWHQFH RI VWURQJ VWDEOH ZHVWZDUGIORZLQJ HTXDWRULDO FXUUHQWV LQ WKH $WODQWLF 2FHDQ )LJXUH f SURYLGHV D GLVSHUVDO DJHQW WKDW UHSUHVHQWV D PHDQV RI WUDQVSRUWLQJ RUJDQLVPV WKDW LQKDELW WKH ZDWHU FROXPQ RI WKH FXUUHQW GXULQJ WUDQVDWODQWLF WUDQVLW 6XFK D PHFKDQLVP KDV EHHQ VXJJHVWHG DV D IDFWRU LQ WKH FRORQL]DWLRQ RI 6RXWK $PHULFD E\ WKH ULGOH\ WXUWOH /HSLGRFKHO\V ROLY£FHD 3ULWFKDUG f $V QRWHG LQ 'LHWULFK &KDUW f SHUVLVWHQW VXUIDFH FXUUHQWV IORZ IURP WKH *XOI RI *XLQHD RI :HVWHUQ $IULFD r1 r:f DFURVV WKH $WODQWLF DW UDWHV RI WR QDXWLFDO PLOHV SHU GD\ ILUVW UHDFKLQJ WKH :HVWHUQ +HPLVSKHUH DORQJ WKH QRUWKHDVW FRDVW RI %UD]LO DQG WKH 6XULQDP*XLDQDV FRDVW )LJXUH f 7R FRYHU WKLV GLVWDQFH RI DSSUR[Ln PDWHO\ PLOHV WDNHV URXJKO\ GD\V DVVXPLQJ DQ DYHUDJH IORZ RI PLOHV SHU GD\ 7KXV LI WKH K\SRWKHVL]HG FRPPHQVDO SDUWQHUV RI ELFRORU DUH FDUULHG DFURVV WKH $WODQWLF E\ H[LVWLQJ FXUUHQWV WKH LPPHGLDWH WDUJHW DUHD LV WKH QRUWKHDVW VORSH RI 6RXWK $PHULFD :LWK VXFFHVVIXO UHSURGXFWLRQ RI LQWHUPL[LQJ SRSXODWLRQV DVVXPLQJ QRUPDO PDWXUDWLRQ RI ELFRORU RQH PLJKW H[SHFW WR REVHUYH GHSDUWXUH RI DPE\UK\QFKXV FKDUDFWHUV IURP WKH KRPRJHQHRXV QRUP 7KLV LV HYLGHQFHG E\ WKH IDFW WKDW DPE\UK\QFKXV IURP %ULWLVK *XLDQD 6XULQDP DQG QRUWKn HDVW %UD]LO UHVHPEOH ELFRORU PRUH FORVHO\ WKDQ GR PRUH QRUWKHUO\ DQG VRXWKHUO\ SRSXODWLRQV ZLWK UHJDUG WR QXPEHU RI GRUVDO UD\V QXPEHU RI

PAGE 108

RrZ )LJXUH :LQWHU $WODQWLF 2FHDQ HTXDWRULDO VXUIDFH FXUUHQWV )URP 'LHWULFK &KDUW f

PAGE 109

DQDO UD\V DQG OHQJWK RI WKH XSSHU FDXGDO ILQ OREH )LJXUHV f 'HVSLWH WKH DSSURDFK RI WKHVH PHULVWLF DQG PRUSKRPHWULF FKDUDFWn HUV WKH\ UHPDLQ VWDWLVWLFDOO\ VLJQLILFDQWO\ GLIIHUHQW ,Q DGGLWLRQ RVWHRORJOFDO GLIIHUHQFHV PHQWLRQHG DUH FRQVWDQW EHWZHHQ WKHVH WZR YHU\ FORVHO\ UHODWHG IRUPV WKH W

PAGE 110

+HPLFDUDQ[ ELFRORU *XQWKHUf )LJXUHV &DUDQ[ ELFRORU *XQWKHU L RULJLQDO GHVFULSWLRQ W\SH PDWHUn LDO %01+ OD DQG E W?YRVSHFLPHQV DQG PP 6/ 6LHUUD /HRQH GLVWLQFW IURP &B DPEO\ UK\QFKXVf %OHHNHU FRPSDUHG ZLWK +HPLFDUDQ[ PDUJLQDWXV UHFRJQL]HG DV D VSHFLHV RI +HPLFDUDQ[f %OHHNHU GLVWLQJXLVKHG IURP +HPLFDUDQ[ PDUJLQDWXV UHFRJQL]HG DV D VSHFLHV RI +HPL FDUDQ[f *XQWKHU $ r e OHXFXUXV D FORVH UHODn WLYHf )RZOHU V\QRQ\PL]HG ZLWK $OHSHV DPEO\UK\Q FKXV IURP %UD]LO QRW GLVWLQFW IURP +HPLFD UDQ[ PDUJLQDWXV &DSH 9HUGH ,VODQGVf +HPLFDUDQ[ ELFRORU ,UYLQH ILJ GHVn FULSWLRQ SUREDEOH V\QRQ\P\ ZLWK + DPEO\UK\QFKXV $FFUD *ROG &RDVW $IULFDf +HPLFDUDQ[ PDUJLQDWXV %OHHNHU RULJLQDO GHVFULSWLRQ RQH VSHFLPHQ PP 6/ $VKDQWHH *XLQHD FRPSDULVRQ ZLWK &DUDQ[ DPEO\UK\QFKXV GLVWLQJXLVKHG IURP &DUDQ[ ELFRORU ZKLFK LV UHFRJQL]HG DV D +HPLFD UDQ[f %OHHNHU GHVFULSWLRQ FRPSDULVRQ ZLWK &DUDQ[ DPEO\UK\QFKXV DQG &B ELFRORUf)RZOHU V\QRQ\PL]HG ZLWK $OHSHV DPEO\UK\QFKXV IURP %UD]L L GHQWLFDO ZLWK &DUDQ[ ELFRORU &DSH 9HUGH ,VODQGVf 0DWHULDO ([DPLQHG *XLQHD 7$%/ f rn1 rn: P *76, 7UDQV

PAGE 111

/D 5DIDOH 7UDZO 1RY 7$%/ f rn1 r: *76 7UDQV /D 5DIDOH 7UDZO 1RY 7$%/ f rn1 r: P *76, 7UDQV /D 5DIDOH 7UDZO 1RY 7$%/ ,2,f rn1 rn: *76, 7UDQV /D 5DIDOH &ROOHWH 1RY 6LHUUD /HRQH 7$%/ f rn1 rf: P *76, 7UDQV /D 5DIDOH 7UDZO 1RY 7$%/ f VRXWK RI )UHHWRZQ FD rn1 rn: *HUQLPR &UXLVH %01+ D DQG E W\SH VSHFLPHQV RI &DUDQ[ ELFRORU *XQWKHU f /LEHULD 8610 8610 8610 *ROG &RDVW %01+ f $FFUD ) 5 ,UYLQH 501+ W\SH RI +HPLFDUDQ[ PDUJLQDWXV %OHHNHU f $VKDQWHH 1LJHULD 7$%/ f rn1 rn( P *76 7UDQV 7KLHUU\WUDZO 0DUFK &DPH URRQ 68 f .ULEL $ *RRG 6HSW &$668 f .ULEL 5LYHU $ *RRG 6HSW 7$%/ f rn1 rn( %01+ f 6ZHODED 7K 0RQRG *DERQ 8610 8QFDWf f rn6 rn( )HE 7$%/ f rn6 r( P 7KLHUU\ *76, 7UDQV 6WD 1RY ,

PAGE 112

&RQJR $01+ Off 0RXWK RI &RQJR 5 /DQJ&KDSLQ :HVW $IULFD %01+ f $ 0XUUD\ (VT 3LDJQRVLV $ VSHFLHV RI +HPLFDUDQ[ GLVWLQJXLVKHG IURP DOO RWKHU PHPEHUV RI WKH JHQXV E\ IHZHU GRUVDO VRIW UD\V r WR XVXDOO\ RU f ; B 6[ B f IHZHU DQDO UD\V WR r XVXDOO\ f ; MA6[ r B f EDVLK\DO ZLGWK QDUURZ DQG FHUDWRK\DO ZLQGRZ RYDO + ELFRORU LV IXUWKHU GLVWLQJXLVKHG IURP + DPEO\UK\QFKXV E\ WKH IROORZLQJ FKDUDFWHUV XSSHU DQG ORZHU FDXGDO OREHV RI QHDUO\ HTXDO OHQJWK YHUVXV XSSHU OREH H[WHQGHGf LQGHQWHG DVFHQGLQJ SURFHVV YHUVXV IODWWHQHGf DQG VWUDLJKW DUWLFXODU SURFHVV RI WKH SUHPD[LOODU\ YHUVXV FRQFDYHf DQDO SWHU\JLRSKRUH VSDFLQJ LQWHUPHGLDWH YHUVXV FORVHO\ VSDFHGf +HPLFDUDQ[ ELFRORU LV IXUWKHU GLVWLQJXLVKHG IURP ERWK + ]HORWHV DQG OHXFXUXV E\ VHYHQ YHUVXV f GRUVDO VSLQHV YHUVXV f FDXGDO YHUWHEUDH SURSRUWLRQDO ZLGWK RI DQWHULRU FDXGDO SHGXQFOH VFXWH WR r Eb 6/ ; rf YHUVXV WR f UDWLR RI VWUDLJKW WR FXUYHG SRUWLRQV RI ODWHUDO OLQH r WR YHUVXV WR f DQWHURGRUVDO HGJH RI HWKPRLG FRQFDYH YHUVXV FRQYH[f DQWHULRU HQG RI SWHU\JRLG LQGHQWHG YHUVXV FRQFDYHf XSSHU K\SRK\DO ZLQGRZ FLUFXODU YHUVXV RYDOf DQDO SWHU\JLRSKRUH SRLQWV LQWHUPHGLDWHO\ GHYHORSHG YHUVXV SURPLQHQW RU UHGXFHGf +B ELFRORU LV DOVR GLVWLQJXLVKHG IURP ]H ORWHV E\ VKRUWHU KHDG OHQJWK XURK\DO VSLQH DEVHQW DQDO SWHU\JLRSKRUH SRLQWV LQWHUPHGLDWHO\ VSDFHG YHUVXV GLVWDQWO\ VSDFHGf +B ELFRORU LV DGGLWLRQDOO\ GLVWLQJXLVKHG IURP + OHXFXUXV E\

PAGE 113

SRVWHULRU WLS RI XSSHU GHQWDU\ DUP FXUYHG YHUVXV SRLQWHGf LQGHQWHG DVFHQGLQJ SURFHVV YHUVXV IODWWHQHGf DQG VWUDLJKW DUWLFXODU SURFHVV YHUVXV FRQFDYHf RI SUHPD[LOODU\ GRUVDO V\PSOHFWLF H[SDQVLRQ SUHVHQW DQWHULRU HQG RI SWHU\JRLG LQGHQWHG YHUVXV FRQFDYHf DQG SHFWRUDO ILQ QRW XQXVXDOO\ ORQJ +HPLFDUDQ[ ELFRORU DQG WKH RWKHU PHPEHUV RI WKH JHQXV DUH FRPSDUHG LQ 7DEOH f 'HVFULSWLRQ &RXQWV DQG SURSRUWLRQDO PHDVXUHPHQWV DUH VXPPDUL]HG LQ 7DEOHV DQG )LJXUHV 7KH JHQHULF GHVFULSWLRQ DQG VSHFLHV GLDJQRVLV DUH VXSSOHPHQWHG DV IROORZV OHQJWK RI WRWDO ODWHUDO OLQH WR b 6/ OHQJWK RI FXUYHG ODWHUDO OLQH b 6/ PHDQ VWUDLJKWFXUYHG ODWHUDO OLQH UDWLR PHDQ ZLGWK RI DQWHULRU FDXGDO SHGn XQFOH VFXWH rb 6/ ERG\ ZLGWK b 6/ SHFWRUDO ILQ b 6/ SHOYLF ILQ b RI SHFWRUDO KHDG OHQJWK ab 6/ KHDG GHSWK b 6/ LQWHURUELWDO ZLGWK b 6/ PD[LOODU\ GHSWK b 6/ SHFWRUDO ILQ UD\V WR XVXDOO\ RU VFDOHV LQ FXUYHG SDUW RI ODWHUDO OLQH WR ; B 6[ Bf VFXWHV LQ VWUDLJKW SDUW RI ODWHUDO OLQH WR ; B 6[ f +HPLFDUDQ[ ELFRORU LV GLVWLQJXLVKHG RVWHRORJLFDOO\ E\ DQWHULRU HGJH RI GRUVDO VXUIDFH RI HWKPRLG FRQFDYH SRVWHULRU WLS RI XSSHU DUP RI GHQWDU\ FXUYHG SRVWHULRU HGJH RI SRVWPD[L DU\ SURFHVV VWUDLJKW V\PSOHFn WLF ZLWK D PLGGRUVDO H[SDQVLRQ DQWHULRU SRLQW RI SWHU\JRLG ZLWK WZR LQGHQWDWLRQV XSSHU K\SRK\DO IRUDPHQ FLUFXODU FHUDWRK\DO ZLQGRZ RYDO DQDO SWHU\JLDO SRLQWV PRGHUDWH GLVWDO HQGV RI DQDO SWHU\JLRSKRUHV PRGHUDWHO\ VSDFHG 7KH RVWHRORJ\ RI +HPLFDUDQ[ ELFRORU LV FRPSOHWHO\ GHVFULEHG LQ WKH RVWHRORJLFDO DFFRXQW RI WKH JHQXV

PAGE 114

1RPHQFODWXUH }U 7KH RULJLQDO GHVFULSWLRQ RI &DUDQ[ ELFRORU *XQWKHU ZDV EDVHG RQ WZR V\QW\SHV IURP WKH FRDVW RI 6LHUUD /HRQH 7KH VSHFLPHQV DUH FKDUDFWn HUL]HG E\ WKH W\SLFDOO\ ORZ FRXQWV RI GRUVDO DQG DQDO UD\V DQG DQG UHVSHFWLYHO\f DQG VFDOHV LQ WKH FXUYHG SDUW RI WKH ODWHUDO OLQH 7KH RULJLQDO GHVFULSWLRQ RI +HPLFDUDQ[ PDUJLQDWXV %OHHNHU W\SH VSHFn LHV RI WKH JHQXVf ZDV EDVHG RQ D VLQJOH VSHFLPHQ IURP $VKDQWHH *XLQHD 7KH GLDJQRVWLF FKDUDFWHUV RI UHGXFHG GRUVDO DQG DQDO UD\ FRXQWV r DQG UHVSHFWLYHO\f DUH W\SLFDO RI ELFRORU ,Q GLVWLQJXLVKLQJ KLV DGXOW VSHFLPHQ IURP WKH WZR MXYHQLOH V\QW\SHV RI *XQWKHU %OHHNHU f XWLOL]HG FKDUDFWHUV WKDW FKDQJH ZLWK DJH D IDFWRU KH GLG DFNQRZOHGJH +RZHYHU KH PDLQWDLQHG WKHLU LGHQWLWLHV RQ WKH EDVLV RI UHODWLYH VQRXW H\H GLDPHWHU PHDVXUHPHQWV WKH W\SH VSHFLPHQ RI PDUJLQDWXV KDV WKH VQRXW VKRUWHU WKDQ WKH RUELWDO GLDPHWHU ZKHUHDV *XQWKHUnV RULJLQDO GHVFULSWLRQ Lf RI ELFRORU QRWHG WKH VQRXW DV ORQJHU WKDQ WKH H\H GL £PHWHU"f 7KLV LV LQ HUURU IRU WKH VQRXW RI *XQWKHUnV VSHFLPHQV LV DOVR OHVV WKDQ WKH RUELWDO GLDPHWHU )XUWKHUPRUH WKH SURSRUWLRQDO PHDVXUHPHQWV RI ERWK FKDUDFWHUV UHPDLQ UHODWLYHO\ FRQVWDQW ZLWK JURZWK 7DEOH f WKXV DOORZLQJ FRPSDULVRQ RI VDPSOHV FRPSRVHG RI GLIIHUHQW VL]HG LQGLYLGXDOV 'LVWULEXWLRQ DQG 9DULDWLRQ 7KH UDQJH RI +HPLFDUDQ[ ELFRORU LV FHQWHUHG DORQJ WKH FRDVW RI WKH *XOI RI *XLQHD DQG VSHFLPHQV KDYH EHHQ FROOHFWHG DORQJ WKH $WODQWLF FRDVW RI $IULFD DV IDU QRUWK DV 6LHUUD /HRQH DQG WKH &DSH 9HUGH ,VODQGV DQG DV IDU VRXWK DV WKH PRXWK RI WKH &RQJR 5LYHU )LJXUH Nf 1R UHFRUGV RI ELFRORU IURP RIIVKRUH LVODQGV DUH NQRZQ LW LV QRW IRXQG DW HLWKHU

PAGE 115

6DLQW +HOHQD r6 rn:f RU $VFHQVLRQ rn6 rn:f &DGHQDW DQG 0DUVKDOO fr $V GLVFXVVHG LQ WKH DFFRXQW RI + DPEO\UK\QFKXV LW LV K\SRWKHVL]HG WKDW ELFRORU LV DGDSWHG WR WUDQV$W DQWLF GLVSHUVDO YLD HTXDWRULDO FXUUHQWV DQG LW PD\ KDYH EHHQ FDUULHG WR WKHVH LVODQGV ,WV DSSDUHQW DEVHQFH IURP RIIVKRUH LVODQGV PD\ EH H[SODLQHG E\ D ODFN RI DGHTXDWH HVWXDULQH QXUVHU\ FRPSOH[HV LI LWV OLIH F\FOH LV FRPSDUDEOH WR WKDW RI DPEO\UK\QFKXV +HPLFDUDQ[ ELFRORU LV DQ H[WUHPHO\ KRPRJHQHRXV VSHFLHV ZLWK UHJDUG WR JHRJUDSKLF YDULDWLRQ RI H[WHUQDO PRUSKRORJ\ &RPSDULVRQ RI DOO PRUSKRPHWULF DQG PHULVWLF FKDUDFWHUV RI VDPSOHV IURP WKH QRUWKHUQ *XLQHDf DQG VRXWKHUQ &DPHURRQf SRUWLRQV RI WKH UDQJH LQGLFDWH PLQLPDO YDULDWLRQ ZLWK WKH H[FHSWLRQ RI VWDWLVWLFDOO\ VLJQLILFDQW GLIIHUHQFHV IRU ODWHUDO OLQH DUFK W f FDXGDO SHGXQFOH ZLGWK W f RUELW W f DQG JDSH W f +RZHYHU LW LV IHOW WKDW WKLV YDULDWLRQ LV QHLWKHU ELRORJLFDOO\ QRU WD[RQRPLFDOO\ VLJQLILFDQW HVSHFLDOn O\ LQ YLHZ RI RVWHRORJLFDO KRPRJHQHLW\ (FRORJ\ DQG 5HODWLRQVKLSV 7KHVH DVSHFWV RI WKH V\VWHPDWLFV RI +B ELFRORU DUH GLVFXVVHG LQ WKH DFFRXQW RI WKH FORVHO\ UHODWHG + DPE\UK\QFKXV

PAGE 116

+HPLFDUDQ[ ]H RWHV *cEHUW )LJXUHV +HPLFDUDQ[ ]HORWHV *LOEHUW MBQB -RUGDQ DQG (YHUPDQQ RULJLQDO GHVFULSWLRQ W\SH ORFDOLW\ 3DQDPD W\SH PDWHUn LDO &$668 RQH VSHFLPHQ PP 6/ FRPSDUHG ZLWK + DW ULPDQXVf *LOEHUW DQG 6WDUNV SL ILJ GHVFULSWLRQ FRPSDULVRQ ZLWK DWULPDQXV IRXU VSHFLPHQV IURP 3DQDPD PDUNHWf .HQGDOO DQG 5DGFOLIIH FRXQWV PHDVn XUHPHQWV FRORU RI RQH VSHFLPHQ f LQFKHV ORQJ 3DQDPD %D\f 0HHN DQG +LOGHEUDQG f GHVFULSWLRQ VHYHQ VSHFLn PHQV WR PP LQ OHQJWK 3DQDPD FORVHO\ UHODWHG WR + D W ULPDQXV GLVWLQJXLVKHG IURP DWULPDQXVf -RUGDQ (YHUPDQQ DQG &ODUN 3DQDPDf %RKONH FDWDORJHG LQ 1DWXUDO +LVWRU\ 0XVHXP 6WDQIRUG 8QLYHUVLW\f +HPLFDUDQ[ VHFKXUDH +LOGHEUDQG RULJLQDO GHVFULSWLRQ W\SH ORFDOLW\ 6HFKXUD %D\ 3HUX W\SH PDWHULDO RQH VSHFLPHQ PP PP WR EDVH RI FDXGDOf ORQJ >6/ PP@ 8610 FRPSDUHG ZLWK HXFXUXV DW OHDVW PP VPDOOHU IURP 3DQDPDf 0DWHULDO ([DPLQHG 0H[LFR 6 f %DMD &DOLIRUQLD $OPHMDV %D\ PLG6HSW 6 2 f %DMD &DOLIRUQLD 6XU $OPHMDV %D\ RII ( VLGH RI 6DQWD 0DUJDULWD ,VODQG ) + %HUU\ $XJ 8610 f 6LQDORD 7RSROREDPSR %DKLD 7RSROREDPSR ODJRRQ ( WRZQ 3 $ /DUNLQ 0DUFK 10& f 6LQDORD 0D]DWODQ PL 6 FLW\ 7 ) 3OHWFKHU 1RY

PAGE 117

/$&0 f f 6LQDORD /RV &RFRV 6HSW /$&0 f 0DJGDOHQD %D\ (O 6DOYDGRU 7$%/ $ f r1 rn: 6DJLWDULR %D\OLII 'HF +RQGXUDV 8&/$:, f *XOI RI )RQVHFD :\OLH 'HF &RVWD 5LFD 8&/$:,, f *XOI RI 1LFR\D &KLUD IODWV RII &KLUD ,V IPV IW VKULPS WUDZO & 3HWHUVHQ 0DUFK /$&0 f *XOI RI 1LFR\D 1LVKLPRWR )HE 6 f *XOIR GH 1LFR\D 0DUFK 3DQDPD 8%& f 3DQDPD 9LHMR QHDU 3DQDPD &LW\ : + %D\OLII 1RY 'HF 8&/$: f 3DQDPD %D\ 3XQWD &KDPH DQG 3XQWD $QWRQ IPV -RDQQD IW WUDZO ( 6 5HHVH 6HSW 8&/$: f PRXWK RI 5LR $QWRQ IPV EDLW KDXO + &OHPHQV $SULO 8610 f &KDPH 3RLQW 5REHUW 7ZHHGOLH -XO\ PL[HG ZLWK )/ HXFXUXVf 8%& f &KDPH 3RLQW 5 ( -RKDQQHV 6XPPHU 8%& f 3DQDPD &LW\ WR 3XQWD &KDPH : + %D\OLII -DQ)HE 10& f 7DERJD ,VODQG 5 ( -RKDQQHV -XQH 8610 f 3DQDPD %D\ %DOERD &DQDO =RQH 0HHN DQG +LOGHEUDQG )HE 8%& a f 3DQDPD %D\ QHDU 3DQDPD &LW\ 5 ( -RKDQQHV -XQH 68 f KRORW\SH RI +HPLFDUDQ[ ]HORWHV *LOEHUWf 3DQDPD &LW\ PDUNHW *LOEHUW HW DO

PAGE 118

-DQ )HE 8610 f 3DQDPD %D\ $OEDWURVV 2FW 10& af 3DQDPD &LW\ ILVK PDUNHW 5 ( -RKDQQHV -XQH -XO\ 8610 f 3DQDPD &LW\ PDUNHW 0HHN DQG +LOGHEUDQG -DQ 8610 f 3DQDPD &LW\ PDUNHW 0HHN DQG +LOGHEUDQG -DQ 8&/$: f 3DQDPD %D\ RIIVKRUH EHWZHHQ 3XQWD GH+LFDFDO DQG 5LR 3DVLJD IPV (ODLQD IW WUDZO : %DOGZLQ 6HSW 8610 f &$6 f 3DQDPD PDUNHW +DQFRFN H[SHGLWLRQ 'HF &RORPELD 8%& f %DKLD &XSLFD WR 5LR 2USXD %DUUHWW HW DMB )HE 3HUX 8610 f 6HFKXUD %D\ 6 +LOGHEUDQG W\SH VSHFLPHQ RI +B VHFKXUDHf 'LDJQRVLV +HPLFDUDQ[ ]HORWHV LV GLVWLQJXLVKHG IURP DOO RWKHU PHPEHUV RI WKH JHQXV E\ WKH IROORZLQJ FRPELQDWLRQ RI FKDUDFWHUV KHDG VKRUW WR b 6/ EDVLK\DO ERQH ZLGH XURK\DO VSLQH SUHVHQW DQDO SWHU\JLRSKRUH SRLQWV SURPLQHQWO\ GHYHORSHG DQDO SWHU\JLRSKRUHV GLVWDQWO\ VSDFHG +B ]HORWHV LV IXUWKHU GLVWLQJXLVKHG IURP +B ELFRORU DQG +B DPE \UK\Q FKXV E\ HLJKW YHUVXV VHYHQf GRUVDO VSLQHV YHUVXV f FDXGDO YHUWHn EUDH SURSRUWLRQDO ZLGWK RI DQWHULRU FDXGDO SHGXQFOH VFXWH WR r YHUVXV r WR f UDWLR RI VWUDLJKW WR FXUYHG SRUWLRQV RI ODWHUDO OLQH WR YHUVXV WR f DQWHURGRUVD HGJH RI HWKPRLG FRQYH[ YHUVXV FRQFDYHf DQWHULRU HQG RI SWHU\JRLG FRQFDYH YHUVXV LQGHQWHGf XSSHU K\SRK\DO RYDO YHUVXV FLUFXODUf

PAGE 119

,Q DGGLWLRQ ]HORWHV LV GLVWLQJXLVKHG IURP DPE\UK\QFKXV E\ D FXUYHG YHUVXV LQWHUPHGLDWHf SRVWHULRU WLS RI WKH XSSHU GHQWDU\ DUP LQGHQWHG YHUVXV IODWWHQHGf DVFHQGLQJ SURFHVV DQG VWUDLJKW YHUVXV FRQFDYHf DUWLFXODU SURFHVV RI WKH SUHPD[LOODU\ +B ]HORWHV LV DGGLWLRQn DOO\ GLVWLQJXLVKHG IURP + ELFRORU E\ DQ LQWHUPHGLDWH YHUVXV RYDOf FHUDWRK\DO ZLQGRZ PRUH GRUVDO UD\V WR XVXDOO\ RU f ; B 6[ B f PRUH DQDO UD\V WR XVXDOO\ RU f ; B6[ f +HPLFDUDQ[ ]HORWHV LV IXUWKHU UHFRJQL]HG DV GLVWLQFW IURP + HXFXUXV E\ WKH IROORZLQJ FKDUDFWHUV D VKRUWHU b YHUVXV b 6/f SHFWRUDO ILQ WHHWK XVXDOO\ URXQGO\ SRLQWHG YHUVXV VKDUSO\ SRLQWHGf SRVWHULRU WLS RI XSSHU GHQWDU\ DUP FXUYHG YHUVXV SRLQWHGf LQGHQWHG YHUVXV IODWWHQHGf DVFHQGLQJ SURFHVV DQG VWUDLJKW YHUVXV FRQFDYHf DUWLFXODU SURFHVV RI SUHPD[LOODU\ GRUVDO V\PSOHFWLF H[SDQVLRQ SUHVHQW FHUDWRK\DO ZLQGRZ LQWHUPHGLDWH YHUVXV WULDQJXODUf DQWHULRU FDXGDO SHGXQFOH VFXWHV ZLGHU WR b 6/ YHUVXV WR f IHZHU ODWHUDO EDUV IRXU WR VL[ YHUn VXV VL[ WR QLQHf 7KLV VSHFLHV DQG WKH RWKHU PHPEHUV RI WKH JHQXV DUH FRPSDUHG LQ 7DEOH 'HVFULSWLRQ &RXQWV DQG PHDVXUHPHQWV DUH OLVWHG LQ 7DEOHV DQG SORWWHG LQ )LJXUHV DQG 7KH JHQHULF GHVFULSWLRQ DQG VSHFLHV GLDJn QRVLV DUH VXSSOHPHQWHG DV IROORZV OHQJWK RI VWUDLJKW SDUW RI ODWHUDO OLQH WR b 6/ OHQJWK RI FXUYHG SDUW RI ODWHUDO OLQH WR b 6/ PHDQ VWUDLJKWFXUYHG ODWHUDO OLQH UDWLR ERG\ ZLGWK b 6/ KHDG GHSWK WR b 6/ LQWHURUELWDO ZLGWK WR b 6/ RUELW WR b 6/ SUHPD[LOODU\ WR b 6/ JDSH b 6/ SHFWRUDO ILQ UD\V WR XVXDOO\

PAGE 120

RU VFDOHV LQ FXUYHG ODWHUDO OLQH WR r ; 6[ f VFXWHV LQ VWUDLJKW ODWHUDO OLQH r WR ; B 6[ r B f 7KH RVWHRORJLFDO GLIIHUHQFHV QRWHG LQ WKH FKDSWHU RQ RVWHRORJ\ DUH VXPPDUL]HG DV IROORZV DQWHULRU HGJH RI GRUVDO VXUIDFH RI HWKPRLG ERQH FRQYH[ SRVWHULRU WLS RI XSSHU DUP RI GHQWDU\ FXUYHG SRVWPD[L DU\ SURFHVV VWUDLJKW DQWHULRU HQG RI SWHU\JRLG D GRUVDOO\ FRQFDYH SRLQW XSSHU K\SRK\DO IRUDPHQ HORQJDWH FHUDWRK\DO ZLQGRZ RYDO YHQWUDOO\ H[SDQGHG SRLQWV SURPLQHQW RQ DOO EXW WZR DQWHULRUPRVW DQDO SWHU\JLR SKRUHV GLVWDO HQGV RI DQDO SWHU\JLRSKRUHV GLVWDQW 1RPHQFODWXUH 7R GDWH +HPLFDUDQ[ ]HORWHV LV NQRZQ LQ WKH OLWHUDWXUH IURP RQO\ ODUJH VSHFLPHQV LQFOXGLQJ WKH KRORW\SH IURP 3DFLILF 3DQDPD 2QH ORW RI MXYHQLOH VSHFLPHQV UHSRUWHG DV +B OHXFXUXV >0HHN DQG +LOGHEUDQG rrr@ LV DFWXDOO\ FRPSRVHG RI OHXFXUXV DQG ]H RWHVf 7KH WD[RQRPLF FKDUDFWHUV KHUHLQ GLVFXVVHG LQGLFDWH WKDW +HPLFDUDQ[ VHFKXUDH NQRZQ IURP D VLQJOH VSHFLPHQ PP 6/f IURP 3HUX LV D V\QRQ\P RI ]HORWHV 7RRWK PRUSKRORJ\ QXPEHU RI ODWHUDO ERG\ EDUV DQG ZLGWK RI WKH DQWHULRU FDXGDO SHGXQFOH VFXWH DUH HVSHFLDOO\ XVHIXO FKDUDFWHUV 'LVWULEXWLRQ +HPLFDUDQ[ ]HORWHV UDQJHV IURP WKH VRXWKHUQ WLS RI %DMD &DOLIRUQLD 0H[LFR DORQJ WKH 3DFLILF FRDVW RI &HQWUDO $PHULFD WR 6HFKXUD %D\ 3HUX )LJXUH rf $OWKRXJK LW LV QRW QHDUO\ DV ZHOO UHSUHVHQWHG LQ LQVWLWXWLRQ DO FROOHFWLRQV DV + DPE\UK\QFKXV IURP D PRUH LQWHQVLYHO\ VWXGLHG VKRUH OLQHf ]HORWHV GRHV DSSHDU WR EH UHODWLYHO\ PRUH DEXQGDQW WKURXJKRXW LWV RSWLPDO UDQJH 7KLV LV LQGLFDWHG E\ LWV IUHTXHQW RFFXUUHQFH LQ WKH 3DQDPD PDUNHW *LOEHUW DQG 6WDUNV r f DV ZHOO DV WKH H[LVWHQFH RI

PAGE 121

VHYHUDO ORWV RI VSHFLPHQV RI WHQ RU PRUH LQGLYLGXDOV LQ FROOHFWLRQV $V LOOXVWUDWHG LQ )LJXUH ]HORWHV LV V\PSDWULF RYHU PXFK RI LWV UDQJH ZLWK +B HXFX UXV 3DUWLDO V\QWRSLF RFFXUUHQFH LV GRFXPHQWHG E\ D QXPEHU RI VDPSOHV LQ ZKLFK WKH\ ZHUH FROOHFWHG WRJHWKHU 9DULDWLRQ 7KH QXOO K\SRWKHVLV RI QR LQIUDVSHFLILF H[WHUQDO PRUSKRORJLFDO YDULDWLRQ EHWZHHQ VDPSOHV RI ]HORWHV IURP 0H[LFR DQG 3DQDPD LV KHUHLQ DFFHSWHG %DVHG RQ f WKH JHQHUDO PRELOLW\ RI WKH &DUDQJLGDH DQG f WKH SRVVLELOLW\ WKDW MXYHQLOHV RI WKLV VSHFLHV DUH SDVVLYHO\ GLVSHUVHG LI WKH\ DUH FRPPHQVDO ZLWK SHODJLF FRH HQWHUDWHV LW LV QRW OLNHO\ WKDW JHQHWLF HYROXWLRQDU\ GLYHUJHQFH LV RFFXUULQJ LQ ]HORWHV VLQFH SURORQJHG LVRODWLRQ RI SRSXODWLRQV LV XQOLNHO\ 5H DWLRQVKLSV +HPLFDUDQ[ ]HORWHV LV PRVW FORVHO\ UHODWHG WR + HXFX UXV RQ WKH EDVLV RI WKHLU QXPHURXV VLPLODULWLHV RI H[WHUQDO PRUSKRORJ\ DQG RVWHRn ORJ\ $GXOWV RI WKHVH WZR VSHFLHV GLIIHU VLJQLILFDQWO\ ZLWK UHJDUG WR WKH UDWLR RI VWUDLJKW WR FXUYHG ODWHUDO OLQH OHQJWKV )LJXUH f QXPEHU RI VFDOHV LQ WKH FXUYHG ODWHUDO OLQH 7DEOH f QXPEHU RI WHHWK LQ WKH SUHPD[LOODU\ DQG GHQWDU\ ERQHV )LJXUHV f DQG OHQJWK RI WKH SHFWRUDO DQG SHOYLF ILQV )LJXUHV DQG f 0XFK RI WKH WD[RQRPLF FRQIXVLRQ FHQWHULQJ RQ WKLV SDLU RI VSHFLHV DV HYLGHQFHG E\ QXPHURXV PLVL GHQWLILHG VSHFLPHQV LQ FROOHFWLRQVf KDV UHVXOWHG IURP LQFUHDVLQJ PRUSKRORJLFDO VLPLODULWLHV DV VPDOOHU DQG VPDOOHU LQGLYLGXDOV RI +HPLFDUDQ[ IURP WKH (DVWHUQ 3DFLILF DUH FRPSDUHG )RU H[DPSOH VSHFLPHQV EHORZ PP 6/ DUH LQGLVWLQJXLVKDEOH RQ WKH EDVLV RI SHFWRUDO ILQ OHQJWKV )LJXUH f ,Q DWWHPSWLQJ WR UHVROYH WKH LGHQWLW\ RI VPDOO XQNQRZQ VSHFLPHQV

PAGE 122

FULWLFDO DQDO\VLV RI H[WHUQDO PRUSKRORJ\ UHYHDOV WKH H[LVWHQFH RI DGGLWn LRQDO GLDJQRVWLF FKDUDFWHUV WKDW DSSO\ QRW RQO\ WR DGXOWV EXW WR MXYHQLOHV DV ZHOO ZLGWK RI WKH DQWHULRU FDXGDO SHGXQFOH VFXWH )LJXUHV DQG f QXPEHU RI ODWHUDO ERG\ EDUV )LJXUHV DQG f DQG PRUSKRORJ\ RI WKH SUHPD[LOODU\ DQG GHQWDU\ WHHWK )LJXUH f 2Q WKH EDVLV RI WKHVH WUDQVn LWLRQDO FKDUDFWHUV VPDOO DQG LQWHUPHGLDWHVL]HG VSHFLPHQV DUH UHDGLO\ GLVFHUQLEOH DV HLWKHU ]HORWHV RU HXFX UXV LW LV LPSRUWDQW WR QRWH WKDW LQGLYLGXDOV FRQVLVWHQWO\ GLIIHU IRU WKHVH VSHF LHVVSHF LILF FKDUDFWHUV 2VWHROJLFDO\ WKH WZR VSHFLHV GLIIHU LQ GHJUHH RI GHYHORSPHQW RI FXUYDWXUH RI WKH SRVWHULRU WLS RI WKH XSSHU DUP RI WKH GHQWDU\ )LJXUH 9,f FXUYDWXUH RI WKH SUHPD[LOODU\ )LJXUH 9, ,Of GHYHORSPHQW RI D V\PSOHFWLF GRUVDO H[SDQVLRQ )LJXUH ;f ZLGWK RI WKH EDVLK\DO )LJXUH ;,9 %f VKDSH RI WKH FHUDWRK\DO ZLQGRZ )LJXUH ;9 'f VKDSH RI WKH XUR K\DO )LJXUH ;9f DQG PRUSKRORJ\ DQG VSDFLQJ RI WKH GLVWDO HQGV RI WKH DQDO SWHU\JLRSKRUHV )LJXUH ;,;f ,Q YLHZ RI WKH PRUH VKDUS\SRLQWHG WHHWK LQ HXFXUXV RQH PLJKW UHDVRQDEO\ K\SRWKHVL]H GLIIHUHQW IHHGLQJ KDELWV IRU WKHVH WZR VSHFLHV +RZHYHU H[DPLQDWLRQ RI VWRPDFK FRQWHQWV RI DGXOW VSHFLPHQV SURYHG LQn FRQFOXVLYH GXH HLWKHU WR HPSW\ VWRPDFKV RU WRWDOO\ GHFRPSRVHG XQLGHQWn LILDEOH IRRG LQ WKH VWRPDFKV RI + HXFX UXV $ VHULHV RI ]HORWHV IURP 0DJGDOHQD %D\ 0H[LFR 6 f ZDV IRXQG WR FRQWDLQ MXYHQLOH DQFKRYLHV H[FOXVLYHO\ LQ YDULRXV VWDJHV RI GLJHVWLRQ &RPSOHWH HYDOXDWLRQ RI WURSKLF DQG RWKHU HFRORJLFDO FKDUDFWHULVWLFV RI WKHVH VSHFLHV LV FRQWLQJHQW XSRQ PRUH H[WHQVLYH ILHOG ZRUN 'HVSLWH WKH GLIIHUHQFHV QRWHG LQ WKH FRPSDULVRQ RI +B ]H RWHV DQG HXFX UXV WKH\ DUH PRUH FORVHO\ UHODWHG WR HDFK RWKHU WKDQ WKH\ DUH WR HLWKHU DPE\UK\QFKXV RU ELFRORU &RPSDULVRQ RI WKH IRUPHU SDLU RI

PAGE 123

VSHFLHV ZLWK WKH ODWWHU VKRZV WKH JUHDWHU DIILQLWLHV RI WKH PHPEHUV RI HDFK SDLU WR RQH DQRWKHU EDVHG RQ WKH JUHDWHU QXPEHU RI FKDUDFWHUV WKDW WKH\ VKDUH LQ FRPPRQ 7RJHWKHU ]HORWHV DQG HXFXUXV GLIIHU IURP DPE\UK\QFKXV DQG ELFRORU ZLWK UHJDUG WR QXPEHU RI FDXGDO YHUWHEUDH YHUVXV ? QXPEHU RI VSLQHV LQ WKH ILUVW GRUVDO ILQ YHUVXV f UDWLR RI VWUDLJKW WR FXUYHG ODWHUDO OLQH OHQJWKV )LJXUH f DQG ZLGWK RI WKH DQWHULRU SHGXQFOH VFXWH )LJXUH f ,Q DGGLWLRQ WKH DQWHULRU HGJH RI WKH GRUVDO VXUIDFH RI WKH HWKPRLG ERQH )LJXUH f WKH DQWHULRU HQG RI WKH SWHU\JRLG )LJXUH ;,f WKH XSSHU K\SRK\DO IRUDPHQ )LJXUH ;9f DUH FKDUDFWHULVWLFDOO\ VKDSHG LQ HDFK SDLU ,QWHUVSHFLILF DQG LQWHUVSHFL HVSDLU GLIIHUHQFHV DUH VXPPDUL]HG LQ 7DEOH

PAGE 124

OHXFXUXV f§ ]HORWHV f§,f§ DPE\UK\QFKXV n ELFRORU f§‘f§, , , , , , , L , 675$,*+7 &859(' /$7(5$/ /,1( 5$7,2 )LJXUH ,QWHUVSHFLILF YDULDWLRQ LQ UDWLR RI VWUDLJKW WR FXUYHG ODWHUDO OLQH OHQJWKV LQ ODUJH DGXOW +HPLFDUDQ[ 6/ PPf 6\PEROV DIWHU )LJXUH 1 F f

PAGE 125

35(0$;,//$5< 7((7+ 2 2 67$1'$5' /(1*7+ PPf )LJXUH 1XPEHU RI WHHWK LQ WKH SUHPD[LOODU\ ERQH RI +HPLFDUDQ[ IURP 3DQDPD %D\ 3DQDPD

PAGE 126

'(17$5< 7((7+ 2 $2 HXFX UXV ]HORWHV IH k k k k k p 2 k rR p -} Rp / 2n k L k 2 k2 R R kR R k 2 R R R R *rR k k &2 k k k p k k k $ O$2 67$1'$5' /(1*7+ PPf $ 2 )LJXUH 1XPEHU RI WHHWK LQ WKH GHQWDU\ ERQH RI +HPLFDUDQ[ IURP 3DQDPD %D\ 3DQDPD Rb

PAGE 127

'(17$5< HXFX UXV ]HORWHV DPE \UK\QFKXV ELFRORU 35(0$;,//$5< O O A 180%(5 2) 7((7+ )LJXUH @E ,QWHUVSHFLILF YDULDWLRQ LQ QXPEHU RI WHHWK LQ ODUJH DGXOW VSHFLPHQV RI +HPLFDUDQ[ 6/ PPf 6\PEROV DIWHU )LJXUH 1 r; f HXFXUXV ]HORWHV DPE\ UK\QFKXV ELFRORU

PAGE 128

3(&725$/ ),1 /(1*7+ PPf )LJXUH /HQJWK RI WKH SHFWRUDO ILQ LQ +HPLFDUDQ[ IURP 3DQDPD %D\ 3DQDPD

PAGE 129

3(/9,& ),1 /(1*7+ PPf 2 )LJXUH /HQJWK RI WKH SHOYLF ILQ LQ +HPLFDUDQ[ IURP 3DQDPD %D\ 3DQDPD

PAGE 130

)LJXUH /DWHUDO RXWOLQHV RI DQWHULRU FDXGDO SHGXQFOH VFXWHV LQ (DVWHUQ 3DFLILF +HPLFDUDQ[ WRS URZ + ]HORWHV $ 6/ PP % 6/ PP & 6/ PP ERWWRP URZ + HXFXUXV 6/ PP ( 6/ PP ) 6/ PP

PAGE 132

6&87( :,'7+ PPf 67$1'$5' /(1*7+ PPf )LJXUH :LGWK RI WKH DQWHULRU SHGXQFOH VFXWH LQ +HPLFDUDQ[ IURP 3DQDPD %D\ 3DQDPD

PAGE 133

)LJXUH -XYHQLOH VSHFLPHQV RI +HPLFDUDQ[ 7RS +B DPEO \UK\QFKXV PP 6/ )68 $OOLJDWRU +DUERU )ORULGD 86$ XSSHU PLGGOH + ELFRORU PP 6/ 7$%/ *DERQ $IULFD ORZHU PLGGOH + ]HORWHV PP 6/ 8&/$ : 3DQDPD ?DQG ERWWRP +B HXFXUXV PP 6/ 8610 3DQDPD

PAGE 135

)LJXUH $GXOW +HPLFDUDQ[ IURP WKH (DVWHUQ 3DFLILF 2FHDQ +HPLFDUDQ[ ]HORWHV PP 6/ 6 %DMD &DOLIRUQLD 0H[LFR DERYHf DQG +B HXFXUXV PP 6/ 6 %DMD &DOLIRUQLD 0H[LFR EHORZf

PAGE 137

JXUH /DWHUDO RXWOLQHV RI DQWHULRU HQGV RI DUWLFXODWHG SUHPD[LOODU\ DQG GHQWDU\ ERQHV LQ (DVWHUQ 3DFLILF +HPLFDUDQ[ $ +B HXFXUXV PP 6/ 8610 3DQDPD % +B ]HORWHV PP 6/ 8610 3DQDPD

PAGE 139

HXFXUXV ]HORWHV DPE\UK\QFKXV f§f§ ELFRORU , , ,  EE E 3523257,21$/ 6&87( :,'7+ ,Q WKRXVDQGWKV RI VWDQGDUG OHQJWKf )LJXUH ,QWHUVSHFLILF YDULDWLRQ LQ ZLGWK RI WKH DQWHULRU SHGXQFOH VFXWH LQ ODUJH DGXOW +HPLFDUDQ[ 6/ PPf 6\PEROV DIWHU )LJXUH 1  R f

PAGE 140

+HPLFDUDQ[ HXFXUXV *XQWKHUf )LJXUHV &DUDQ[ OHXFXUXV *XQWKHU r RULJLQDO GHVFULSWLRQ 3DFLILF FRDVW RI 3DQDPD W\SH PDWHULDO %01+ 6/ DQG PP FORVHO\ DOOLHG WR & ELFRORUf-RUGDQ DQG *LOEHUW DFFRUGHG WR VXEJHQXV 8 UDVSLV QRW H[DPLQHG ILYH NQRZQ VSHFLPHQV DUH IURP 3DQDPD LPPDWXUH IXUWKLL V\QRQ\PL]HGf-RUGDQ E GHVFULSWLRQ RI WZR W\SH VSHFLPHQV RI e HXFXUXV UHDVVLJQHG WR VXEJHQXV +HPLFDUDQ[ UHODWHG WR & DWULPDQXV DQG & DPE\UK\QFKXVf-RUGDQ DQG (YHUPDQQ +HPLFDUDQ[ IXUWKLL SRVVLEO\ D V\QRQ\Pf +HPLFDUDQ[ OHXFXUXV -RUGDQ DQG (YHUPDQQ GHVFULSn WLRQ WZR VSHFLPHQV HDFK WKUHH LQFKHV ORQJ>WKH W\SH VSHFLn PHQV RI OHXFXUXV *XQWKHU LQ %01+"@ 3DQDPD UHIHUHQFHVf *LOEHUW DQG 6WDUNV RQO\ WKH W\SH NQRZQ 3DQDPDf .HQGDOO DQG 5DGFOLIIH FRXQWV PHDVXUHPHQWV REVHUYDWLRQV RI RQH VSHFLPHQ ORQJ 3DQDPD %D\f 0HHN DQG +LOGHEUDQG GHVFULSWLRQ VSHFLPHQV WR PP LQ OHQJWK &KDPH 3RLQW 3DQDPD %D\ GLVFXVVLRQ EDVHG RQ PL[HG FROOHFWLRQ RI MXYHQLOH OHXFXUXV DQG ]HORWHVf -RUGDQ (YHUPDQQ DQG &ODUN 3DFLILF 3DQDPDf +LOGHEUDQG &D UDQ[ IXUWKLL D V\QRQ\P +B VHFKX UDH F RVH \ UH D WHGf &D UDQ[ IXUWKLL 6WHLQGDFKQHU RULJLQDO GHVFULSWLRQ WKH VDPH KDELWDW DV WKRVH GHVFULEHG E\ 'U *XQWKHU DV &DUDQ[ OHXFXUXV WKUHH VSHFLPHQV WR LQFKHV LQ OHQJWK GLVn WLQJXLVKHG IURP & OHXFXUXVf -RUGDQ DQG *LOEHUW

PAGE 141

V\QRQ\PL]HG ZLWK & HXFXUXVf +LOGHEUDQG D V\QRQ\P RI +HPLFDUDQ[ HXFX UXVf +HPLFDUDQ[ IXUWKLL -RUGDQ DQG (YHUPDQQ rr GHVFULSWLRQ NQRZQ IURP WKUHH VSHFLPHQV 3DQDPD SHUKDSV QRW GLVWLQFW IURP &DUDQ[ OHXFXUXVf *LOEHUW DQG 6WDUNV NQRZQ RQO\ IURP W\SHV 3DQDPD SUREDEO\ QRW GLVWLQFW IURP +B HXFXUXVf -RUGDQ (YHUPDQQ DQG &ODUN 3DQDPDf &DUDQ[ DWULPDQXV -RUGDQ DQG *LOEHUW RULJLQDO GHVFULSWLRQ %D\ RI 3DQDPD W\SH PDWHULDO 8610 RQH VSHFLPHQ LQFKHV LQ OHQJWK >PLVVLQJ@ VXEJHQXV &DUDQJRSV FRPSDULVRQ ZLWK &B DPEO\UK\QFKXV -RUGDQ DQG *LOEHUW UDUH UHFRUGHG RQO\ IURP 3DFLILF 3DQDPDf -RUGDQ E UHODWHG WR &B HXFXUXVf +HPLFDUDQ[ DWULPDQXV -RUGDQ DQG (YHUPDQQ f GHVFULSn WLRQ >QHDUO\ LGHQWLFDO WR RULJLQDO GHVFULSWLRQ JLYHQ LQ -RUGDQ DQG *LOEHUW @ D VLQJOH VSHFLPHQ LQFKHV ORQJ DYDLODEOH %D\ RI 3DQDPD FRPSDUHG WR DPEO\UK\QFKXVf*LOEHUW DQG 6WDUNV A IUHTXHQW RFFXUUHQFH LQ 3DQDPD PDUNHW EULHI GHVFULSWLRQ >WRWDO"@ OHQJWK WR PP .HQGDOO DQG 5DGFOLIIH a FKDUDFWHUV OLVWHG IRU WKUHH VSHFLPHQV FD WR PP 6/ > f LQFKHV ORQJ@ %D\ RI 3DQDPD UHIHUHQFHVf 0HHN DQG +LOGHEUDQG GHVFULSWLRQ QLQH VSHFLPHQV WR PP LQ OHQJWK NQRZQ RQO\ IURP 3DQDPD %D\f -RUGDQ (YHUPDQQ DQG &ODUN 3DFLILF 3DQDPDf 0DWHULDO ([DPLQHG 0H[LFR

PAGE 142

6 f %DMD &DOLIRUQLD %DKLD $OPHMDV ,VOD 6DQWD 0DUJDULWD ( VLGH ) + %HUU\ $XJ 2 10& rf 6LQDORD PL 6 0D]DWODQ 7 ) 3OHWFKHU 1RY *&5/ f 6LQDORD /DJXQD 7HDFDSDQ rn1 rn: IW 'DZVRQ )LHOG 1R $XJ /$&0 f 6LQDORD /RV &RFRV 10& f 2[DFD &KLDSDV 3XHUWD $ULVWD 6( WR 6DOLQD &UX] PDUNHW FROOHFWLRQ 7 ) 3OHWFKHU $XJ 10& f &KLFDSDV 3XHUWD $ULVWD 7 ) 3OHWFKHU $XJ (O 6DOYDGRU 7$%/ f rn1 rn: 6DJLWDULR )$25&$)'3 'HF 7$%/ f rn1 rn: 7$%/ f rn1 rn: 1LFDUDJXD 6 + f %D\ RI )RQVHFD 09 5HQRZQ $XJ 3DQDPD 8&/$ : f 3DQDPD %D\ RIIVKRUH EHWZHHQ 3XQWD GH +LFDFDO DQG 5LR 3DVLJD IPV (ODLQD : %DOGZLQ 6HSW 8&/6: f 3DQDPD %D\ 3XQWD &KDPH DQG 3XQWD $QWRQ fO IPV -RDQQD ( 6 5HHVH 6HSW 7$%/ f ,VOD *RYHUQDERUD %RFD &KLFD 6HYLOOD 6DQ 3HGUR 3HVFDPDU ,, )% WUDZO : + %D\OLII a 1RY 8610 f 3DQDPD %D\ $OEDWURVV 8%& f VHYHUDO PL 1 3DQDPD &LW\ 5 ( -RKDQQHV -XQH 7$%/ f ILVK PDUNHW 3DQDPD &LW\ ([SHG /D 3ODWD ,V (FXDGRU 6HSW 8610 f & + *LOEHUW 8610 f 3DQDPD FLW\ PDUNHW 0HHN DQG

PAGE 143

+LOGHEUDQG -DQ 8610 f 3DQDPD FLW\ PDUNHW 0HHN DQG +LOGHEUDQG )HE 10& rf 3DQDPD FLW\ ILVK PDUNHW 5 ( -RKDQQHV -XQH-XO\ 10& A f & & /LQGVH\ r -DQ 68 r f & + *LOEHUW 8610 f &KDPH 3RLQW 5REHUW 7ZHHGOLH -XO\ %01+ f W\SH VSHFLPHQV RI &DUDQ[ HXFXUXV *XQWKHU &RORPELD 7$%/ XQFDW rf %XHQDYHQWXUD PDUNHW 'LDJQRVLV +HPLFDUDQ[ OHXFXUXV LV GLVWLQJXLVKHG IURP DOO RWKHU VSHFLHV RI +HPLFD UDQ[ E\ WKH IROORZLQJ FKDUDFWHUV D ORQJ SHFWRUDO ILQ XS WR Eb 6/ ZLGWK RI DQWHULRU FDXGDO SHGXQFOH VFXWH QDUURZ WR b 6/ SRVWHULRU WLS RI XSSHU GHQWDU\ DUP SRLQWHG GRUVDO V\PSOHFWLF H[n SDQVLRQ DEVHQW FHUDWRK\DO ZLQGRZ WULDQJXODU DQDO SWHU\JLRSKRUH SRLQWV UHGXFHG +HPLFD UDQ[ HXFX UXV LV IXUWKHU GLVWLQJXLVKHG IURP + ]HORWHV E\ VL[ WR QLQH ODWHUDO ERG\ EDUV YHUVXV IRXU WR VL[f PRUH WHHWK LQ WKH GHQWDU\ DQG SUHPD[LOODU\ ERQHV WHHWK PRUH VKDUSO\ SRLQWHG SHOYLF ILQ ORQJHU IODWWHQHG YHUVXV LQGHQWHGf DVFHQGLQJ SURFHVV DQG FRQFDYH YHUVXV VWUDLJKWf DUWLFXODU SURFHVV RI SUHPD[LOODU\ EDVLK\DO ZLGWK LQWHUPHGLDWH YHUVXV ZLGHf XURK\DO VSLQH DEVHQW DQDO SWHU\JLRSKRUHV LQWHUPHGLDWHO\ VSDFHG YHUVXV GLVWDQWO\ VSDFHGf + HXFX UXV LV DGGLWLRQDOO\ GLVWLQJXLVKHG IURP + DPE\UK\QFKXV DQG +B ELFRORU E\ PRUH VFDOHV LQ FXUYHG ODWHUDO OLQH r WR r YHUVXV WR rf ; B 6[ rr rf HLJKW YHUVXV VHYHQf GRUVDO VSLQHV

PAGE 144

YHUVXV f FDXGDO YHUWHEUDH UDWLR RI VWUDLJKW WR FXUYHG SRUWLRQV RI ODWHUDO OLQH WR YHUVXV WR f DQWHURGRUVDO HGJH RI HWKPRLG FRQYH[ YHUVXV FRQFDYHf DQWHULRU HQG RI SWHU\JRLG FRQFDYH YHUVXV LQGHQWHGf XSSHU K\SRK\DO ZLQGRZ RYDO YHUVXV FLUFXODUf +B OHXFXUXV LV IXUWKHU GLVWLQJXLVKHG IURP DPE\UK\QFKXV E\ LQWHUPHGLDWH YHUVXV FORVHf VSDFLQJ RI WKH DQDO SWHU\JLRSKRUHV + OHXFXUXV DOVR GLIIHUV IURP ELFRORU ZLWK UHJDUG WR IODWWHQHG YHUVXV LQGHQWHGf DVn FHQGLQJ SURFHVV DQG FRQFDYH YHUVXV VWUDLJKWf DUWLFXODU SURFHVV RI WKH SUHPD[LOODU\ EDVLK\DO ZLGWK LQWHUPHGLDWH YHUVXV QDUURZf PRUH GRUVDO UD\V WR XVXDOO\ RU f ; 6[ f +HPLFDUDQ[ OHXFXUXV DQG DOO RWKHU PHPEHUV RI WKH JHQXV DUH FRPSDUHG LQ 7DEOH 'HVFULSWLRQ &RXQWV DQG PHDVXUHPHQWV DUH VXPPDUL]HG LQ 7DEOHV DQG )LJXUHV 7KH JHQHULF GHVFULSWLRQ DQG VSHFLHV GLDJQRVLV DUH VXSSOHPHQWHG E\ WKH IROORZLQJ OHQJWK RI VWUDLJKW ODWHUDO OLQH WR b 6/ OHQJWK RI FXUYHG ODWHUDO OLQH b 6/ PHDQ VWUDLJKWFXUYHG ODWHUDO OLQH UDWLR ERG\ ZLGWK b 6/ KHDG OHQJWK Bb 6/ KHDG GHSWK WR b 6/ LQWHURUELWDO ZLGWK WR b 6/ RUELW WR b 6/ SUHPD[LOODU\ WR b 6/ JDSH b 6/ SHFWRUDO ILQ UD\V WR PRGDOO\ VFXWHV LQ VWUDLJKW ODWHUDO OLQH WR ; B 6[ f 2VWHRORJLFDO FKDUDFWHUV SUHYLRXVO\ FDWDORJHG DUH VXPPDUL]HG DV IROORZV DQWHULRU HGJH RI GRUVDO VXUIDFH RI HWKPRLG FRQYH[ SRVWHULRU WLS RI XSSHU DUP RI GHQWDU\ SRLQWHG SRVWHULRU HGJH RI SRVWPD[L DU\ SURFHVV EURDGO\ FRQFDYH DQWHULRU HQG RI SWHU\JRLG D GRUVDOO\ FRQFDYH SRLQW XSSHU K\SRK\DO IRUDPHQ HORQJDWH FHUDWRK\DO ZLQGRZ WULDQJXODU

PAGE 145

DQDO SWHU\JLDO SRLQWV SRRUO\ GHYHORSHG GLVWDO HQGV RI DQDO SWHU\JLR SKRUHV PRGHUDWHO\ VSDFHG 1RPHQFODWXUH 5HFRJQLWLRQ RI MXYHQLOH DQG DGXOW VWDJHV RI +HPLFDUDQ[ OHXFXUXV DV GLIIHUHQW VSHFLHV KDV EHHQ FRQIXVLQJ LQ WKH SDVW $QDO\VLV RI WKH IRUPV LQYROYHG UHYHDOV WKDW HXFXUXV IURP WKH WLPH RI LWV GHVFULSWLRQ RQ WKH EDVLV RI WZR VSHFLPHQV RI DQG PP 6/f XQWLO ZDV NQRZQ RQO\ IURP HLJKW LQGLYLGXDOV DOO OHVV WKDQ PP WRWDO OHQJWK (YHQ IHZHU LQGLYLGXDOV f RI &DUDQ[ IXUWKLL DUH UHSRUWHG LQ WKH OLWHUDn WXUH WKLV VSHFLHV ZDV FRUUHFWO\ V\QRQ\PL]HG ZLWK OHXFXUXV RQ WKH EDVLV RI OLPLWHG LQIRUPDWLRQ -RUGDQ DQG *LOEHUW f DOWKRXJK DV ODWH DV LW ZDV VWLOO WKRXJKW WR EH GLVWLQFW -RUGDQ HW DO f 7KH W\SHV RI +B IXUWK L L FDQQRW EH IRXQG 8QWLO QRZ + DWULPDQXV KDV EHHQ UHJDUGHG DV D GLVWLQFW VSHFLHV DOWKRXJK LW ZDV NQRZQ RQO\ IURP VSHFLPHQV JUHDWHU WKDQ A PP 6/ 7KH UHVXOWV RI WKLV VWXG\ UHYHDO WKDW DWULPDQXV DV NQRZQ IURP D OLPLWHG QXPEHU RI UHIHUHQFHV ZDV EDVHG RQ WKH DGXOW VWDJH RI HXFX UXV $OWKRXJK WKH W\SH VSHFLPHQ 8610 Ar RI DWULPDQXV FDQQRW EH IRXQG WKHUH LV QR GRXEW WKDW WKLV IRUP LV D MXQLRU V\QRQ\P RI HXFX UXV EDVHG RQ FRPSDULVRQ RI H[WHQVLYH GHVFULSWLRQV LQ WKH OLWHUDWXUH LQ ZKLFK LWV LGHQWLW\ DV D +HPLFDUDQ[ LV ILUPO\ HVWDEOLVKHG 0RVW OLNHO\ WKH W\SH VSHFLPHQ RI DWULPDQXV ZDV GHVWUR\HG DORQJ ZLWK RWKHU PDWHULDO IURP WKH 3DFLILF FRDVW DQG D PDQXVFULSW EDVHG RQ LW LQ WKH ILUH DW WKH 8QLYHUVLW\ RI ,QGLDQD VHH -RUGDQ f ([DPLQDWLRQ RI LQWHUPHGLDWHVL]HG LQGLYLGXDOV SURYLGHV WUDQVLWLRQDO FKDUDFWHUV WKDW FRQILUP WKH SUHVHQW V\QRQ\P\ 5HYLHZ RI WKH H[WHQVLYH OLWHUDWXUH GHVFULSWLRQV EDVHG XSRQ VSHFLPHQV H[DPLQHG GXULQJ WKLV VWXG\ ZLWK VXEVHTXHQW H[DPLQDWLRQ RI

PAGE 146

SURJUHVVLYHO\ VPDOOHU VSHFLPHQV UHYHDOV D QXPEHU RI WUDQVLWLRQDO FKDUDFWHUV WKDW FRQILUP WKLV V\QRQ\P\ 'LVWULEXWLRQ DQG 9DULDWLRQ 7KLV VSHFLHV LV V\PSDWULF ZLWK +B ]HORWHV RYHU PXFK RI LWV UDQJH ,W UDQJHV IURP &RORPELD DV IDU QRUWK DV ORZHU %DMD &DOLIRUQLD 7KH DSn SDUHQW IDLOXUH RI HXFXUXV WR UHDFK 6HFKXUD %D\ 3HUX WKH VRXWKHUQ OLPLW RI ]HORWHVf PD\ ZHOO EH GXH WR ODFN RI FROOHFWLQJ HIIRUW 7KH VPDOO QXPEHU RI FROOHFWLRQV IURP RXWVLGH WKH ZDWHUV RI 3DQDPD %D\ SUHn FOXGHV D PHDQLQJIXO DQDO\VLV RI JHRJUDSKLF YDULDWLRQ 7KH REVHUYHG PLQLPDO LQIUDVSHH LILF JHRJUDSKLF YDULDWLRQ RI HXFX UXV LV UHDVRQDEO\ K\SRWKHVL]HG HVSHFLDOO\ RQ WKH EDVLV RI VLPLODU SDWWHUQV LQ ]HORWHV ELFRORU DQG DPE\UK\QFKXV 2QH ZRXOG SUHGLFW ORZ YDULDWLRQ RQ WKH EDVLV RI WKH GLVSHUVDO SRZHUV RI WKLV JURXS 5H DW LRQVKLSV 7KH UHODWLRQVKLS RI +B HXFXUXV DQG ]HORWHV LV YHU\ FORVH DQG LV GLVFXVVHG LQ WKH DFFRXQW RI WKDW VSHFLHV

PAGE 147

6<67(0$7,&6 2) $78/( $WXH -RUGDQ DQG -RUGDQ $WXOH -RUGDQ DQG -RUGDQ W\SH VSHFLHV &DUDQ[ DIILQLV > $WXO H PDWH@ E\ RULJLQDO GHVLJQDWLRQf 'LDJQRVLV $ JHQXV RI &DUDQJLGDH GLVWLQJXLVKHG E\ ODWHUDO OLQH DUFKHG DQWHUn LRUO\ ZLWK VFXWHV RQO\ RQ VWUDLJKW SRUWLRQ FDXGDO YHUWHEUDH RU MDZ WHHWK SDUWLDOO\ RU WRWDOO\ XQLVHULDWH GHQWLWLRQ ILQH RI XQLIRUP VL]H PLQXWH WHHWK YDULDEO\ GHYHORSHG RQ SUHYRPHU DQG PHVRSWHU\JRLG SUHRUELWDO UHJLRQ VKRUW DQG ZLGH IURQWRVXSUDRFFLSLWD FUHVW VRPHZKDW KLJK P\RGRPH UHGXFHG RU DEVHQW H[RFFLSLWDO ]\JDSRSK\VHV ZLGHO\ VHSDUn DWHG HWKPRLGSUHYRPHU NHHO QRW HOHYDWHG PHVRSWHU\JRLG OHQJWK OHVV WKDQ RQHKDOI K\RPDQGL EXODU FHUDWRK\DO ZLQGRZ ZLGH DQG RYRLGDO XUR K\DO OHQJWK OHVV WKDQ K\RLG ERG\ FOHLWKUXP VKHOI DQJOH r SRVWWHPn SRUDO KHLJKW OHVV WKDQ RQHKDOI LWV OHQJWK $WXOH LV GLVWLQJXLVKHG IURP 7UDFKXUXV ZLWK ZKLFK LW VKDUHV D PDWFKLQJ FRHIILFLHQW RI 7DEOH f E\ P\RGRPH RSHQLQJ GLVWLQFW SUHPD[LOODU\ DVFHQGLQJ SURFHVV ORQJHU WKDQ DUWLFXODU SURFHVV PHVRSWHU\ JRLG OHVV WKDQ RQHKDOI WKH K\RPDQGL EXODU SRVWWHPSRUDO KHLJKW OHVV WKDQ RQHKDOI LWV OHQJWK DQWHULRU VFDOHV LQ WKH ODWHUDO OLQH QRW WUDQVn YHUVHO\ H[SDQGHG $WXOH LV GLVWLQJXLVKHG IURP +HPLFDUDQ[ E\ SUHYRPHULQH GHQWLWLRQ H[RFFLSLWDO ]\JDSRSK\VHV QRW DGMRLQHG GLVWLQFW P\RGRPH RSHQLQJ DEVHQW

PAGE 148

HWKPRLGSUHYRPHU NHHO QRW HOHYDWHG FUDQLDO GHSWK OHVV WKDQ ZLGWK ERG\ VKDOORZHU WR b 6/ LQWHURUELWDO ZLGWK OHVV WR b 6/ XSSHU FDXGDO ILQ OREH VKRUWHU WR b 6/ SHFWRUDO ILQ VKRUWHU WR ONb 6/ $WXOH LV GLVWLQJXLVKHG IURP ERWK 6HODU DQG 'HFDSWHUXV E\ P\RGRPH RSHQLQJ QRW GLVWLQFW SUHPD[LOODU\ DVFHQGLQJ SURFHVV ORQJHU WKDQ DUWLn FXODU SURFHVV ,Q DGGLWLRQ $WXOH LV IXUWKHU GLVWLQJXLVKHG IURP 6HODU E\ HWKPRLGSUHYRPHU NHHO QRW HOHYDWHG SWHURWLF ZLQGRZ SUHVHQW FHUDWR K\DO ZLQGRZ ZLGH DQG RYRLGDO WZR SDSLOODH ODFNLQJ RQ WKH VKRXOGHU JLUGOH $WXOH GLIIHUV IURP 'HFDSWHUXV E\ DEVHQFH RI GHWDFKHG ILQOHWV SRVWHULRU WR VRIW PHGLDQ ILQV PHVRSWHU\JRLG OHVV WKDQ RQHKDOI K\R PDQGLEXODU XURK\DO VKRUWHU WKDQ K\RLG ERG\ FOHLWKUXP VKHOI DQJOH r $WXOH LV GLVWLQJXLVKHG IURP 0HJDODVSLV E\ ROIDFWRU\ FDYLW\ ZHOO GHYHORSHG SWHURWLF ZLQGRZ SUHVHQW FHUDWRK\DO ZLQGRZ ZLGH DQG RYRLGDO SRVWPD[L DU\ SURFHVV QRW URXQGHG XSSHU WHHWK QRW DOZD\V LQ D EDQG $WXOH LV GLVWLQJXLVKHG IURP 8UDVSLV E\ H[RFFLSLWDO ]\JDSRSK\VHV DGMRLQHG ROIDFWRU\ FDYLW\ QRW ZH GHYH RSHG IURQWRVXSUDRFFLSL WDO FUHVW ORZ UDWLR RI FUDQLDO GHSWK WR ZLGWK QRW JUHDW SUHRSHUFXODU ZLGWK OHVV WKDQ RQHWKLUG LWV OHQJWK FHUDWRK\DO ZLQGRZ ZLGH DQG RYRLGDO SRVWWHPSRUDO KHLJKW OHVV WKDQ RQHKDOI WKH OHQJWK $WXOH LV GLVWLQJXLVKHG IURP /RQJLURVW UXP E\ FHUDWRK\DO ZLQGRZ ZLGH DQG RYRLGDO SRVWWHPSRUDO KHLJKW OHVV WKDQ RQHKDOI LWV OHQJWK IURQWDVXSUDRFFLSLWD FUHVW ORZ P\RGRPH RSHQLQJ QRW GLVWLQFW FUDQLDO GHSWKZLGWK QRW JUHDW 7KH RWKHU JHQHUD IRU ZKLFK RVWHROJLFD@ GDWD DUH DYDLODEOH DUH PRUH GLVWDQWO\ UHODWHG $WXOH GLIIHUV IURP WKHP LQ PXFK WKH VDPH ZD\ DV GRHV +HPLFDUDQ[ ZLWK DOO VLPLODULWLHV DQG GLIIHUHQFHV VXPPDUL]HG LQ

PAGE 149

7DEOH 'HVFULSWLRQ $ JHQXV RI &DUDQJLGDH FKDUDFWHUL]HG E\ FRPSUHVVHG ERG\ ODWHUDO OLQH DUFKHG DQWHULRUO\ EHFRPLQJ VWUDLJKW EHQHDWK DQWHULRU HQG RI VRIW GRUVDO ODWHUDO OLQH DUFK ZLWK WR VFDOHV VWUDLJKW ODWHUDO OLQH ZLWK WR VFXWHV WRWDO ODWHUDO OLQH b 6, OHQJWK RI VWUDLJKW ODWHUDO OLQH WR b 6/ OHQJWK RI FXUYHG ODWHUDO OLQH WR b 6/ KHLJKW RI ODWHUDOOLQH DUFK WR b 6/ ERG\ GHSWK WR b 6/ ERG\ ZLGWK b 6/ FDXGDO SHGXQFOH VOHQGHU OHQJWK b 6/ FDXGDO ILQ OREHV HTXDO LQ OHQJWK WR b 6/ OHQJWK RI SHFWRUDO ILQ WR b 6/ SHOYLF ILQ b SHFWRUDO OHQJWK SHOYLF ILQV LQVHUWHG DW D GLVWDQFH EHKLQG VQRXW b 6/ SHFWRUDO DQG FDXGDO OREHV EHFRPLQJ SRLQWHG ZLWK DJH RULJLQ RI DQDO DW GLVWDQFH EHKLQG VQRXW b 6/ GRUVDO RULJLQ PLGn ZD\ EHWZHHQ VQRXW DQG FDXGDO EDVH KHDG OHQJWK b 6/ KHDG GHSWK WR b 6/ LQWHURUELWDO ZLGWK WR b 6/ SRVWRUELWDO OHQJWK b 6/ QRW TXLWH WZLFH DV ORQJ DV HLWKHU VQRXW RU RUELW OHQJWK RI SUHPD[LOODU\ b 6/ PD[LOODU\ GHSWK WR b 6/ JDSH WR b 6/ ZLGWK RI DQWHULRU FDXGDO SHGXQFOH VFXWH WR b 6/ GRUVDO VSLQHV HLJKW GRUVDO VRIW UD\V WR DQDO VRIW UD\V WR SUHFDXGDO YHUWHEUDH FDXGDO YHUWHEUDH RU EUDQFKLRVWHJDO UD\V ORZHU JLOO UDNHUV WR XSSHU JLOO UDNHUV WR ORZHU JLOO ILODPHQWV WR XSSHU JLOO ILODPHQWV WR SVHXGREUDQFKLDO ILODPHQWV WR 1RPHQFODWXUH 7KH VSHFLHV RI $WXOH KDYH DW WLPHV EHHQ UHJDUGHG DV PHPEHUV RI WKH JHQXV 6H DU %OHHNHU ZKLFK LQ WXUQ KDV VRPHWLPHV EHHQ DFFRUGHG VXEJHQHULF VWDWXV LQ &DUDQ[ 7KH OLWHUDWXUH DFFRXQWV WKDW IROORZ WKLV FODVVLILFDWLRQ

PAGE 150

HPSOR\HG E\ :HEHU DQG GH %HDXIRUW DQG RWKHUV DUH LQFRUUHFW *LQVEXUJ f SURSHUO\ VXPPDUL]HG WKH VWDWXV RI 6HODU E\ QRWLQJ WKDW ERRSV JHQHUOFDOO\ GLVWLQFW IURP WKH VSHFLHV RI $WXOH LV WKH FRUUHFW W\SHVSHFLHV RI 6HODU 7KHUHIRUH $WXOH LV WKH YDOLG JHQHULF QDPH IRU WKH VSHFLHV IRUPHUO\ DFFRUGHG WR 6HODU EXW QRW FRQJHQHULF ZLWK LW $OWKRXJK $OHSHV 6ZDLQVRQ ZDV PRVW OLNHO\ EDVHG RQ $WXOH PDODP WKH LQDFFXUDFLHV RI WKH GUDZLQJ 5XVVHOO SL f RQ ZKLFK 6ZDLQVRQ f EDVHG KLV GHVFULSWLRQ RI $OHSHV PHODQRSWHUD QHFHVVLWDWH LWV UHFRJQLWLRQ DV D QRPHQ GXELXP VHH DFFRXQW RI +HPLFDUDQ[f *LQVEXUJ f QRWHG WKH SRVVLELOLW\ WKDW $OHSHV PHODQRSWHUD LV XQLGHQWLIn LDEOH 5HODWLRQVKLSV %DVHG RQ FOXVWHU DQDO\VLV RI QRQZHLJKWHG FKDUDFWHUV RI ,QGR3DFLILF FDUDQJLG JHQHUD $WXOH PRVW FORVHO\ UHVHPEOHV 'HFDSWH UXV 7 UDFKX UXV 6HODU DQG 0HJD DVSLV VHH DFFRXQW RI QXPHULFDO WD[RQRP\ RI -DSDQHVH &DUDQJLGDHf )LJXUH f &RHIILFLHQWV RI DVVRFLDWLRQ EHWZHHQ $WXOH DQG WKHVH WD[D DUH YDOXHG DW RU DERYH 7DEOH f :KHQ $WXOH LV FRPSDUHG ZLWK JHQHUD IURP RXWVLGH LWV UDQJH D FORVH UHVHPEODQFH WR +HPLFD UDQ[ LV REVHUYHG VHH DFFRXQW RI +HPLFD UDQ[f 7KH LQWHJULW\ RI WKH SKHQHWLF FOXVWHU FRPn SRVHG RI WKHVH JHQHUD LV JUDSKLFDOO\ UHSUHVHQWHG LQ )LJXUH $OWKRXJK DGGLWLRQDO FDUDQJLGV DUH GHSLFWHG LQ )LJXUH DV EHLQJ SKHQHWLFDOO\ FORVH WR $WXOH D PRUH FRUUHFW DVVHVVPHQW RI WKHVH UHODWLRQn VKLSV LV VKRZQ LQ )LJXUH LQ ZKLFK /RQJLURVWUXP DQG 8UDVSLV IRU H[DPSOH DUH FOXVWHUHG ZLWK DQ HQWLUHO\ GLIIHUHQW JURXS RI JHQHUD 6LPLn ODUO\ ERWK 6H D URL GHV DQG .DLZDULQXV KDYH JUHDWHU DIILQLWLHV ZLWK RWKHU FOXVWHUV RI JHQHUD WKDQ ZLWK $WXOH DQG LWV FORVHVW UHODWLYHV 1LFKROV

PAGE 151

&2()),&,(17 2) $662&,$7,21 6VP [ f WR F L &' 1! Q R R UW 2 WL & ' f§ K 2 &' K 4&' f§ f, UW 2 4f§ f§ &' 8' f§ &/ UW &/ &' 4' 2 2O aK M WR 2 4=7 /4 UW 4L O O 4&' 42 2 WR K f f /Q WR &' &' 2 L f 4UW f W2 92 2 7 '(&$37(586 75$&+8586 $78/( 6(/$5 +(0,&$5$1; 0(*$/$63,6 /21* 5267580 85$63,6 6(/$52 '(6 &+/2526&20%586 .$,:$5,186 Z ;7

PAGE 152

ADf K\SRWKHVL]HG D FORVH UHODWLRQVKLS EHWZHHQ &KORURVFRPEUXV DQG $WX H ND D DSSDUHQWO\ PDLQO\ RQ WKH EDVLV RI FRPSDUDEO\ GHHS FRQYH[ YHQWUDO ERG\ RXWOLQHV 7KH FRHIILFLHQW RI DVVRFLDWLRQ EHWZHHQ WKHVH WZR JHQHUD LV 7DEOH f KRZHYHU VLJQLILFDQWO\ EHORZ WKH YDOXHV IRU WKH JHQHUD DOUHDG\ GLVFXVVHG 6SHFLHV RI $WXOH 7KH FRUUHFW LGHQWLILFDWLRQ RI WKH VSHFLHV RI $WXOH KDV EHHQ D SUREOHP LQ SDUW GXH WR D ODFN RI UHFRJQLWLRQ RI GLDJQRVWLF FKDUDFWHUV DQG SDUWO\ EHFDXVH RI OLPLWHG TXDQWLWLHV RI VWXG\ PDWHULDO $OWKRXJK JUDGHG VHULHV RI $WXOH DUH VWLOO QRW DYDLODEOH HDFK VSHFLHV LV QRZ PRGHUDWHO\ ZHOO UHSUHVHQWHG LQ FROOHFWLRQV IRU WKH WR PP 6/ VL]H UDQJH 7KH IROORZLQJ VSHFLHV DFFRXQWV DUH EDVHG RQ WKHVH VSHFLn PHQV $OWKRXJK QRW DOO WKH PDWHULDO LV IURP WKH VDPH ORFDOLW\ LW LV IHOW WKDW WKH WD[RQRPLF FRQFOXVLRQV PD\ EH FRQILGHQWO\ DSSOLHG WKURXJKn RXW WKH UDQJH RI HDFK VSHFLHV LQ OLJKW RI WKH PLQLPDO JHRJUDSKLF YDULDWLRQ REVHUYHG IRU RWKHU FDUDQJLGV VXFK DV +HPLFDUDQ[ DQG (DJDWLV ELSLQQX DWD %HUU\ f $V DGGLWLRQDO PDWHULDO IURP WKURXJKRXW WKH UDQJH LV FROOHFWHG FRQILUPDWLRQ DQG PRGLILFDWLRQ RI WKHVH ILQGLQJV WKURXJK VWXGLHV RI ERWK RQWRJHQHWLF GLIIHUHQFHV DQG JHRJUDSKLF YDULDWLRQ ZLOO EH SRVVLEH 7KH GLIIHUHQWLDO GLDJQRVHV DQG GHVFULSWLRQV LQ WKH VSHFLHV DFFRXQWV DUH EDVHG RQ WKH H[DPLQDWLRQV RI H[WHUQDO PRUSKRORJ\ FRQGXFWHG LQ WKLV VWXG\ DQG WKH RVWHRORJLFDO FDWDORJ SURYLGHG E\ 6X]XNL f &RPSDULVRQ RI VSHFLHV )URP H[DPLQDWLRQ RI VDPSOHV IURP WKH VDPH RU DGMDFHQW ORFDOLWLHV ILYH VSHFLHV RI $WXOH DUH UHFRJQL]HG

PAGE 153

6SHFLPHQV UHFRJQL]HG DV $WXOH PDWH DJUHH ZLWK WKH RULJLQDO GHVn FULSWLRQ RI &XYLHU f LQ HYHU\ ZD\ LQFOXGLQJ WKH ORZ UDWLR RI VWUDLJKWFXUYHG ODWHUDO OLQH OHQJWKV ORZHVW IRU DOO WKH VSHFLHV RI $WXOH )LJXUH f 7KH FRPELQDWLRQ RI D VOLJKWO\ GHWDFKHG DQG HORQJDWHG WHUPLQDO UD\ RI WKH VRIW GRUVDO DQG DQDO ILQV DQG D EODFN RSHUFXODU VSRW DOVR FRQILUPV WKH VXEVHTXHQW UHFRJQLWLRQ RI WKLV VSHFLHV $ PDWH LV IXUWKHU FKDUDFWHUL]HG E\ D GLVWLQFWLYH FRPELQDWLRQ RI ODWHUDO OLQH VFDOH DQG VFXWH FRXQWV 7DEOHV DQG f DQG SUHPD[LOODU\ WHHWK EL VHULDWH DQWHULRUO\ DQG XQLVHULDWH SRVWHULRUO\ 7KH GHQWDU\ WHHWK DUH XQ L VHULDWH $V QRWHG LQ WKH RULJLQDO GHVFULSWLRQ $WXOH ND D &XYLHU f LV FKDUDFWHUL]HG E\ D YHQWUDO RXWOLQH WKDW LV FRQVLGHUDEO\ PRUH FRQYH[ WKDQ WKH GRUVDO RXWOLQH ZKLFK UHDGLO\ GLVWLQJXLVKHV LW IURP WKH RWKHU FDUDQJLGV NQRZQ IURP WKH W\SH ORFDOLW\ RI 3RQGLFKHU\ ,QGLD 7KH VSHFLPHQV RI ND D KHUHLQ H[DPLQHG LQ QR ZD\ GHSDUW VLJQLILFDQWO\ IURP WKH PRUSKRORJLFDO GHVFULSWLRQ RI WKH W\SH PDWHULDO $B NDO D LV XQLTXH DPRQJ WKH VSHFLHV RI $WXH LQ LWV H[WUHPHO\ FRQYH[ YHQWUDO RXWOLQH SOXULVHULDWH GHQWLWLRQ RQ WKH SRVWHULRU SUHPD[LOODU\ LQ DGXOW VSHFLPHQV WULVHULDWH GHQWLWLRQ SRVWHULRUO\ RQ WKH GHQWDU\ LQ DGXOWV QRWDEO\ JUHDWn HU GHSWK RI ERG\ )LJXUHV DQG f DQG UHODWLYHO\ ZLGHU DQWHULRU FDXGDO SHGXQFOH VFXWHV )LJXUH f 7KLV VSHFLHV DOVR H[KLELWV D VSRW RQ WKH PLGDQWHULRU SRUWLRQ RI WKH SHFWRUDO JLUGOH ([DPLQDWLRQ RI WKH W\SH PDWHULDO RI 6HODU PHJDODVSLV %OHHNHU UHYHDOV WKDW LW LV D MXQLRU V\QRQ\P RI $ ND D ([DPLQDWLRQ RI W\SH PDWHULDO RI $WXOH PDFUXUXV %OHHNHU $ PD DP %OHHNHU DQG $ GMHGDED )RUVNDO FRQILUPV WKH YDOLGLW\ RI WKHVH VSHFLHV ZKLFK DUH H[WUHPHO\ VLPLODU LQ RYHUDOO PRUSKRORJLFDO DSSHDUDQFH 7KHLU

PAGE 154

RYHUDOO ERG\ IRUP ,V VWULNLQJO\ XQLIRUP )LJXUH f DQG WKH\ GLIIHU IURP PDWH DQG ND D LQ WKH SRVVHVVLRQ RI XQLVHULDWH WHHWK LQ ERWK WKH SUHPD[LOODU\ DQG GHQWDU\ ERQHV $OWKRXJK WKH VSHFLILFLW\ RI GMHGDED DQG PDODP KDV EHHQ TXHVWLRQHG :LOOLDPV f VWXG\ RI VSHFLPHQV ZKRVH LGHQWLW\ ZDV FRQILUPHG E\ FRPSDULVRQ ZLWK WKH W\SH PDWHULDO UHYHDOV VHYHUDO GLIIHUHQFHV EHWZHHQ WKHVH WZR VSHFLHV f GMHGDED LV GLVWLQJXLVKHG E\ HORQJDWLRQ RI WKH XOWLPDWH VRIW UD\V RI WKH GRUVDO DQG DQDO ILQV YHUVXV XOWLPDWH DQG SHQXOWLPDWH UD\V RI QHDUO\ HTXDO OHQJWKf f GMHGDED KDV IHZHU ODWHUDO OLQH VFXWHV WR EEfYHUVXV A WR f f WKH VXSUDPD[L DU\ RI GMHGDED LV QRW H[WHQGHG DQWHULRUO\ DV D SRLQW f GMHGDED GRHV QRW KDYH D GXVN\ VSLQRXV GRUVDO ILQ f GMHGDED KDV QDUURZHU SHGXQFOH VFXWHV ; rb 6/fYHUVXV b 6/f 6HH )LJXUHV E 7DEOHV f 7KH W\SH VSHFLPHQ RI GMHGDED D GULHG VNLQ LQ WKH 8QLYHUVLWHWHWV =RRORJLVND 0XVHXP &RSHQKDJHQ LV FKDUDFWHUL]HG E\ E VRIW GRUVDO UD\V VRIW DQDO UD\V E SUHPD[LOODU\ DQG E6 GHQWDU\ WHHWK ERWK LQ XQLn VHULDWH URZV D VXSUDPD[L DU\ ERQH FKDUDFWHUL]HG E\ DQ DQWHULRUSURMHFWn LQJ SRLQWHG SURFHVV ODWHUDOOLQH VFXWHV DQG E2 "f VFDOHV LQ WKH FXUYHG ODWHUDO OLQH -XUJHQ 1LHOVHQ SHUV FRPPf $OO RI WKHVH FKDUn DFWHU VWDWHV RFFXU ZLWKLQ WKH QRUPDO UDQJH RI YDOXHV REVHUYHG LQ WKRVH VSHFLPHQV QRZ UHJDUGHG DV GMHGDED $ VHFRQG JURXS RI VSHFLPHQV UHJDUGHG DV ? PDO DP UHIOHFWV YDUn LDWLRQ RI FKDUDFWHU VWDWHV WKDW FHQWHU DURXQG WKH GLDJQRVWLF FKDUDFWHUV IRXQG LQ WKH WZR V\QW\SHV RI PDODP DQG GRUVDO UD\V DQG DQDO UD\V WR SUHPD[LOODU\ WHHWK WR GHQWDU\ WHHWK DOO XQLVHULDWHf DQ HRQJDWHRYRLGD VXSUDPD[L DU\ ZLWK QR H[WHQGHG SURFHVV DQG E VFXWHV DQG E6 DQG FXUYHG ODWHUDO OLQH VFDOHV VSHFLPHQV

PAGE 155

DQG PP 6/ UHVSHFWLYHO\f 6DPSOHV RI $WXOH PDFUXUXV GLVSOD\ FKDUDFWHU VWDWHV WKDW FOXVWHU DURXQG WKRVH RI WKH V\QW\SHV $ PDFUXUXV LV GLVWLQJXLVKHG IURP GMHGDED E\ QRQRYHUODSSLQJ DQDO UD\ FRXQWV WR YHUVXV WR f)LJXUH f 7DEOH f QRQHORQJDWH WHUPLQDO GRUVDO DQG DQDO UD\V )LJXUH f KLJKn HU FRXQWV RI SUHPD[LOODU\ 7DEOH f DQG GHQWDU\ 7DEOH f WHHWK DQG KLJKHU ODWHUDOOLQH VFDOH DQG VFXWH FRXQWV 7DEOHV DQG f)LJXUHV DQG f f )URP $ PDO DP PDFUXUXV G L I IH UV LQ KDYLQJ D VOLJKWO\ PRUH VKDOORZ KHDG )LJXUH f VOLJKWO\ PRUH DQDO UD\V 7DEOH f)LJXUH DQG D VXSUDPD[LODU\ ZLWK D IRUZDUGSRLQWLQJ SURFHVV $WXOH PDODP VHHPV WR EH XQLTXHO\ FKDUDFWHUL]HG E\ D GXVN\ VSLQRXV GRUVDO ILQ

PAGE 156

675$,*+7&859(' /$7(5$/ /,1( 5$7,2 U k NDO D 2 PDWH $ GMHGDED Â’ PDFUXUXV PDO DP B D $ k Hk $ 2J$ T e $T f k k 2 k k &' t *p r 67$0'$5' /(1*7+ PPf )LJXUH 5DWLRV RI VWUDLJKW WR FXUYHG ODWHUDO OLQH OHQJWKV LQ WKH VSHFLHV RI $WXOH 9D!

PAGE 157

+($' '(37+ PPf )LJXUH 'HSWK RI KHDG LQ $WXOH

PAGE 158

)LJXUH 6SHFLHV RI $WXLH 7RS $ NDOOD PP 6/ 7$%/ 626& 3RUWR 1RYR ,QGLD VHFRQG IURP WRS $ PDWH PP 6/ 7$%/ XQFDW &&. &H\ORQ PLGGOH $ PD DP PP 6/ 501+ ,QGRQHVLD IRXUWK IURP WRS $ PDFUXUXV PP 6/ 7$%/ XQFDW &&. &H\ORQ ERWWRP $ G M HGDED PP 6/ 7$%/ XQFDW &&. @ &H\ORQ

PAGE 160

6&87( :,'7+ PPf p ND D 2 PDWH $ GMHGDED ’ PDFUXUXV 4 PDO DP 3D &$ $ 2 k k $ $ r $ 2 2 A ’ r k k $ $ ’ % ’ % 2 2 O , , O , 67$1'$5' /(1*7+ PPf )LJXUH :LGWK RI WKH DQWHULRU FDXGDO SHGXQFOH VFXWH LQ WKH VSHFLHV RI $WX H 3

PAGE 161

180%(5 2) 7((7+ n $ GMHGDED Â’ PDFUXUXV Â’ ( PD DP Â’Â’ ( RQ R 3D D D ( $ 2 t +$ $ D $$ $ $ $ $ $ $ O 67$1'$5' /(1*7+ PPf )LJXUH 1XPEHU RI SUHPD[LOODU\ WHHWK LQ WKH VSHFLHV RI $WXOH FKDUDFWHUL]HG E\ XQLVHULDWH GHQWLWLRQ

PAGE 162

k NDOOD p PDWH $ GMHGDED Â’ PDFUXUXV % PD DP 2 $ $ $ $ $ 2 D A R R Â’ $ p Â’ k2 Â’ % L O L O L L L L L L /(1*7+ 2) 3(18/7,0$7( 5$< PPf UH 5HODWLYH OHQJWKV RI XOWLPDWH WHUPLQDOf DQG SHQXOWLPDWH VRIW GRUVDO ILQ UD\V LQ $WXOH

PAGE 163

PDFUX UXV PD DP ND D GMHGDED PDWH , O , L 180%(5 2) '256$/ 5$<6 )LJXUH ,QWHUVSHFLILF YDULDWLRQ LQ QXPEHU RI ILQ UD\V LQ WKH VRIW GRUVDO ILQ RI $WXOH 6\PEROV DIWHU )LJXUH 1 rA O PDFUXUXV PDO DP r ND D L GMHGDED PDWH 180%(5 2) $1$/ 5$<6 )LJXUH ,QWHUVSHFLILF YDULDWLRQ LQ QXPEHU RI ILQ UD\V LQ WKH VRIW DQDO ILQ RI $WXOH 6\PEROV DIWHU )LJXUH 1 F. nf

PAGE 164

GMHGDED ND D PD DP PDWH PDFUXUXV , L L L , , O L &859(' /$7(5$/ /,1( 6&$/(6 )LJXUH ,QWHUVSHFLILF YDULDWLRQ LQ QXPEHU RI VFDOHV LQ FXUYHG ODWHUDO OLQH RI $WXMH 6\PEROV DIWHU )LJXUH 1 G f ND D GMHGDED PDWH PD DP PDFUXUXV , , , , , , , , , , 675$,*+7 /$7(5$/ /,1( 6&87(6 )LJXUH ,QWHUVSHFLILF YDULDWLRQ LQ QXPEHU RI VFXWHV LQ VWUDLJKW ODWHUDO OLQH RI $WXH 6\PEROV DIWHU )LJXUH 1 A f

PAGE 165

PDO DP PDFUXUXV GMHGDED PD WH r ND D O O , , 3523257,21$/ 6&87( :,'7+ 7KRXVDQGWKV RI VWDQGDUG OHQJWKf )LJXUH A ,QWHUVSHFLILF YDULDWLRQ LQ ZLGWK RI WKH DQWHULRU SHGXQFOH VFXWH LQ $WXH PP 6/f 6\PEROV DIWHU )LJXUH 1 f

PAGE 166

*22'( %$6( $?$3 6(5,(6 !P X}f§r &+}rOO}O6W 2 2O2L00I r rrfr + nr}f§ ‘} WL}}L W0r X0UWDbLLU RU LX rRR 01m7 r} ONUr$62 L2O720 )LJXUH 'LVWULEXWLRQ RI WKH VSHFLHV RI $WX H f $B GMHGDED RQO\ f $ PDWH DQG $ NDO OD RQO\ f $ PDWH $ PDO DP DQG $ GMHGDED f DOO ILYH VSHFLHV

PAGE 167

$WXOH PDWH &XYLHUf )LJXUH &D UDQ[ PDWH &XYLHU MBQB &XYLHU DQG 9DOHQFLHQQHV r RULJLQDO GHVFULSWLRQ W\SH ORFDOLW\ 3RQGLFKHU\ ,QGLD UDQJH LQFOXGLQJ 6H\FKHOOHV 1HZ *XLQHDf 'D\ V\QRQ\P\ GHVFULSn WLRQ ,QGLD 0DOD\VLD 6H\FKHOOHV WR 1HZ *XLQHDf 'D\ FRORUV $QGDPDQ ,VODQGVf )RZOHU r SL 6XPDWUDf )RZOHU r GHVFULSWLRQ 6XPDWUD UHIHUn HQFHV &DUDQ[ [DQWKXUXV DQ DSSDUHQW V\QRQ\Pf )RZOHU 3KLOLSSLQHVf )RZOHU r V\QRQ\P\ GHVFULSWLRQ 5HG 6HD WR (DVW ,QGLHV 7DKLWL DQG +DZDLL FRPSDUHG ZLWK &DUDQ[ NXKOL" %OHHNHUf )RZOHU +RQROXOX PDUNHWVf :HEHU DQG GH %HDXIRUW A GHVFULSWLRQ V\QRQ\P\ UDQJH VXEJHQXV 6H DUf )RZOHU AE rr VXEJHQXV 6HODU +DZDLLf 1LFKROV rr r &D UDQ[ DI I L Q L V D V\QRQ\Pf 5R[DV DQG $JFR rA r SL V\QRQ\P\ GHVFULSWLRQ 3KLOLSn SLQHV VXEJHQXV 6HODUf 1LFKROV rrE FRPSDULVRQ ZLWK &D UDQ[ ND Df 1LFKROV A D 6HODU KDVVHOWL %OHHNHU DQG &DUDQ[ DIILQLV V\QRQ\PVf )RZOHU A V\Qn RQ\P\ 2FHDQLDf 0HQGLV r V\QRQ\P\ VXEJHQXV 6HODU &H\ORQf
PAGE 168

$OHSHV PDWH )RZOHU r %DQJNRNf )RZOHU 6LDPf )RZOHU E GHVFULSWLRQ +RQROXOX (DVWHUQ 2FHDQLDf )RZOHU rfD )LMLf )RZOHU rr V\QRQ\P\ 2FHDQLDf 0XQUR GHVFULSn WLRQ V\QRQ\P\ 1HZ *XLQHDf 6H D U PDWH 0XQUR GHVFULSWLRQ V\QRQ\P\f $WXOH PDWH :LOOLDPV SL GHVFULSWLRQ V\QRQ\P\ (DVW $IULFD UDQJHf %HUU\ $ 'HFDSWHUXV QRUPDQL D V\QRQ\Pf &DUDQ[ar[DQ WKX UXV &XYLHUMBQB &XYLHU DQG 9DOHQFLHQQHV RULJn LQDO GHVFULSWLRQf *XQWKHU L rr GHVFULSWLRQ UDQJH &B PDWH DQG 6HODU NXKOLL V\QRQ\PVf 'D\ LQ V\QRQ\n P\ RI e PDWHf )RZOHU V\QRQ\P RI &B PDWHf :HEHU DQG GH %HDXIRUW LQ V\QRQ\P\ RI &B PDWHf 0HQG LV rr LQ V\QRQ\P\ RI &B PDWHf :LOOLDPV LQ V\QRQ\P\ RI $WXOH PDWHf &D UDQ[ DI I L Q L V 5XSSHOO rr ILJ RULJLQDO GHVFULSWLRQf 'D\ SL rW GHVFULSWLRQ V\QRQ\P\ ,QGLD UDQJHf 6WH L QGDFKQHU r GHVFULSWLRQ &B KDVVH L L D V\Qn RQ\Pf (YHUPDQQ DQG 6HDOH r %XODQ 3KLOLSSLQHV FRPSDULVRQ ZLWK VDPSOHV IURP +DZDLLf -RUGDQ DQG 5LFKDUGVRQ GHVFULSWLRQ 3KLOLSSLQHVf -RUGDQ DQG 5LFKDUGVRQ 3KLOLSSLQHVf -RUGDQ DQG -RUGDQ W\SH VSHFLHV RI $WXOH JHQ QRYf :DNL\D r SL GHVFULSWLRQ UDQJH VXEJHQXV $WXHf :HEHU DQG GH %HDXIRUW LQ V\QRQ\P\ RI e PDWHf f§ :LOOLDPV P V\QRQ\P\ RI $WXOH PDWHf

PAGE 169

&DUDQJXV DIILQLV -HQNLQV ILJ GHVFULSWLRQ UHIHUn HQFHV +RQROXOXf 6Q\GHU } +RQROXOXf -RUGDQ DQG (YHUPDQQ ILJ GHVFULSWLRQ UHIHUHQFHV +RQROXXf 6HODU DIILQLV -RUGDQ DQG 6WDUNV &H\ORQ FRQVSHFLILF ZLWK +DZDLLDQ VSHFLPHQVf $WXOH DIILQLV 6X]XNL ILJ GHVFULSWLRQ LQFOXGn LQJ RVWHRORJ\ UHIHUHQFHV -DSDQf 6HODU KDVVHWLLf§ %OHHNHU 6 RULJLQDO GHVFULSWLRQf %OHHNHU GHVFULSWLRQ V\QRQ\P\f :HEHU DQG GH %HDXIRUW LQ V\QRQ\P\ RI &DUDQ[ PDWHf &DUDQ[ KDVVHO W L L *XQWKHU L V\QRQ\P\ GHVFULSWLRQf 3OD\IDLU DQG *XQWKHU GHVFULSWLRQ UDQJHf 3OD\IDLU QDPH RQO\ 6H\FKHOOHVf 6WHLQGDFKQHU V\QRQ\P RI &B DIILQLVf :HEHU DQG GH %HDXIRUW LQ V\QRQ\P\ RI & PDWHf &DUDQJXV KDVVHOWL -RUGDQ DQG (YHUPDQQ &B SRO L WXV D SUREDEOH V\QRQ\Pf &D UDQJXV SROL WXV -HQNLQV ILJ RULJLQDO GHVFULSWLRQ W\SH VSHFLPHQ 8610 VSHFLPHQV +RQROXOXf -RUGDQ DQG (YHUPDQQ ILJ GHVFULSWLRQ SUREDEOH V\QRQ\P RI &B KDVVHOWLf $WXH SRLWD -RUGDQ DQG -RUGDQ UDUH +RQROXOXf 'HFDSWHUXV OXQGLQL -RUGDQ DQG 6HDOH ILJ RULJLQDO GHVFULSWLRQ 3DJR 3DJR RQH VSHFLPHQ 8610 f f§ :HEHU DQG GH %HDXIRUW LQ V\QRQ\P\ RI &DUDQ[ PDWHf $WXH XQGLQL -RUGDQ DQG -RUGDQ V\QRQ\P\ +RQROXOXf

PAGE 170

&DUDQ[ PDWH OXQGLQL 1LFKROV GHVFULSWLRQ FRPSDUn LVRQ ZLWK &B ND Df 'HFDSWHUXV QRUPDQL %HUWLQ DQG 'ROIXV RULJLQDO GHVFULSWLRQ 0DGDJDVFDUf %HUU\ V\QRQ\P RI $WXH PDWHf 0DWHULDO ([DPLQHG ,QGLD 626& f 0DGUDV (QQRUH )LVK /DQGLQJ rn 1 rn( 6HSW &H\ORQ 7$%/ XQFDW &&. f & & .RHQLJ 7$%/ XQFDW f 0XOODLWWLYX 3 & DQG 9 +HHPVWUD $XJ 7KDL DQG 7$%/ XQFDW f &KRQ %XUL 3URY PL RIIVKRUH DQG PL 6: &KRQ %XUL rn1 rn( 1$*$ 6WD 5HJ 1R $XJ L ,QGRQHVLD $163 f 6XPDWUD 3DGDQJ $ & +DUULVRQ DQG + 0 +, +HU )RUPRVD )01+ f +DZD L L $163 f +RQROXOX 6 & %DOO $163 f +RQROXOX )RZOHU 'LDJQRVLV $ VSHFLHV RI $WXOH GLVWLQJXLVKHG E\ WKH IROORZLQJ FRPELQDWLRQ RI FKDUDFWHUV XOWLPDWH GRUVDO UD\ ORQJHU WKDQ SHQXOWLPDWH UD\ XOWLPDWH DQDO UD\ ORQJHU WKDQ SHQXOWLPDWH UD\ UDWLR RI VWUDLJKW WR FXUYHG SRUWLRQ

PAGE 171

RI ODWHUDO OLQH GRUVDO UD\V WR XVXDOO\ RU ; 6[ B f DQDO UD\V RU ; B 6[ f FXUYHG ODWHUDO OLQH VFDOHV WR XVXDOO\ WR B f VWUDLJKW ODWHUDO LQH VFXWHV WR ; 6[ f DQWHULRU FDXGDO SHGXQFOH VFXWH ZLGWK b 6/ SUHPD[LOODU\ WHHWK ELVHULDWH DQWHULRUO\ GHQWDU\ WHHWK XQLVHULDWH $WXOH PDWH GLIIHUV IURP $ NDO D LQ KDYLQJ GHQWDU\ WHHWK WKDW DUH XQLVHULDWH DQWHULRUO\ SHQXOWLPDWH GRUVDO DQG DQDO UD\V ERWK UHODWLYHO\ ORQJHU WKDQ UHVSHFWLYH SHQXOWLPDWH UD\V VKDOORZHU ERG\ YHQWUDO RXWOLQH } QRW DV FRQYH[ KLJKHU QXPEHU RI FXUYHG ODWHUDO OLQH VFDOHV WR YHUVXV WR f D QDUURZHU DQWHULRU FDXGDO SHGXQFOH VFXWH $B PDWH LV GLVWLQJXLVKHG IURP $ GMHGDED E\ SUHPD[LOODU\ WHHWK ELn VHULDWH DQWHULRUO\ KLJKHU QXPEHU RI FXUYHG ODWHUDO OLQH VFDOHV WR YHUVXV WR f VOLJKWO\ QDUURZHU DQWHULRU FDXGDO SHGXQFOH VFXWH ORZHU UDWLR RI VWUDLJKW WR FXUYHG ODWHUDO OLQH SURWLRQV $ PDWH LV GLVWLQJXLVKHG IURP $ PDFUXUXV E\ XOWLPDWH UD\ RI GRUVDO ILQ ORQJHU WKDQ SHQXOWLPDWH UD\ XOWLPDWH UD\ RI DQDO ILQ ORQJHU WKDQ SHQXOWLPDWH UD\ ORZHU UDWLR RI VWUDLJKW WR FXUYHG ODWHUDO OLQH VHJPHQWV DQWHULRU FDXGDO SHGXQFOH VFXWH VOLJKWO\ ZLGHU ORZHU QXPEHU RI VWUDLJKW ODWHUDO OLQH VFXWHV WR YHUVXV WR f ORZHU QXPEHU RI GRUVDO UD\V WR YHUVXV WR f ORZHU QXPEHU RI DQDO UD\V WR YHUVXV WR f $ PDWH LV GLVWLQJXLVKHG IURP $ PDO DP E\ SUHPD[LOODU\ GHQWLWLRQ ELVHULDWH DQWHULRUO\ XOWLPDWH UD\V RI ERWK GRUVDO DQG DQDO ILQV UHODWLYHO\ ODUJHU WKDQ SHQXOWLPDWH UD\V ORZHU UDWLR RI VWUDLJKW WR FXUYHG SRUWLRQV RI ODWHUDO OLQH DQWHULRU FDXGDO SHGXQFOH VFXWH ZLGHU ERG\ VOLJKWO\ GHHSHU KLJKHU QXPEHU RI FXUYHG ODWHUDO OLQH VFDOHV WR YHUVXV WR f

PAGE 172

ORZHU QXPEHU RI VWUDLJKW ODWHUDO OLQH VFXWHV WR YHUVXV WR f $WXOH PDWH LV FRPSDUHG WR RWKHU PHPEHUV RI WKH JHQXV LQ 7DEOH 'HVFULSWLRQ &RXQWV DQG SURSRUWLRQDO PHDVXUHPHQWV DUH OLVWHG LQ 7DEOHV DQG JUDSKLFDOO\ SUHVHQWHG LQ )LJXUHV ,Q DGGLWLRQ WR WKH JHQHULF GHVFULSWLRQ $WXOH PDWH LV FKDUDFWHUL]HG E\ VWUDLJKW ODWHUDO OLQH b 6/ FXUYHG ODWHUDO OLQH b 6/ KHLJKW RI ODWHUDO OLQH DUFK WR rb 6/ ERG\ GHSWK WR b 6/ ERG\ ZLGWK b 6/ FDXGDO SHGXQFOH VOHQGHU b 6/ FDXGDO ILQ OREHV HTXDO LQ OHQJWK b 6/ OHQJWK RI SHFWRUDO ILQ b 6/ OHQJWK RI SHOYLF ILQ b 6/ KHDG GHSWK b 6/ LQWHURUELWDO ZLGWK WR b 6/ PD[LOODU\ GHSWK b 6/ JDSH b 6/ RZHU JLOO UDNHUV WR ;A6[ B f XSSHU JLOO UDNHUV WR ; 6[ f ORZHU JLOO ILODPHQWV WR ; 6[ B f XSSHU JLOO ILODPHQWV WR ; B 6[ r B f SVHXGREUDQFK L D ILODPHQWV WR ; 6[ f

PAGE 173

$WXOH NDOOD &XYLHUf )LJXUH &DUDQ[ NDOOD &XYLHU LQ &XYLHU DQG 9DOHQFLHQQHV RULJLQDO GHVFULSWLRQf 'D\ UHIHUHQFHV GHVFULSWLRQ UDQJHf )RZOHU GLVWLQJXLVKHG IURP &B PHJD DVS L Vf )RZOHU XVH RI 6HO DUf :DNL\D FRQn WUDVWHG ZLWK & PLYDNDPLLf )RZOHU GHVFULSWLRQf )RZOHU 3KLOLSSLQHVf )RZOHU UHIHUn HQFHV GHVFULSWLRQ UDQJH SRVVLEOH V\QRQ\P RI &B SDUDV L WXVf ‘ )RZOHU UHIHUHQFHf :HEHU DQG GH %HDXIRUW ILJ V\QRQ\P\ GHVFULSWLRQ UDQJH e EUHYLV DQG &B NXKOL V\QRQ\PRXV ZLWK &B NDOODf )RZOHU E DFNn QRZOHGJH V\QRQ\P\ RI 6HODU NXKOLLf )RZOHU F %DQJn NRNf )RZOHU 6LDPf 1LFKROV FRPSDUn HG ZLWK &B PDWHf 5R[DV DQG $JFR SL V\QRQ\n P\ GHVFULSWLRQf 1LFKROV R WD[RQRPLF DFFRXQW FRPSDULVRQ ZLWK & PDWH TXHHQV DQGLDH EUHYLV DQG &KRURVFRP E UXVf 0HQGLV V\QRQ\P\ NH\f
PAGE 174

UHIHUHQFHV 3KLOLSSLQHVf 6HO DU FDOOD -RUGDQ DQG 6WDUNV &H\ORQf $OHSHV NDO OD )RZOHU 6LDPf )RZOHU 6LDPf )RZOHU E V\QRQ\P\f 0XQUR SL V\QRQ\P\ GHVFULSWLRQf 6H DU ND D0XQUR SL V\QRQ\P\ GHVFULSWLRQf 6H D U E UHY LV %OHHNHU RULJLQDO GHVFULSWLRQf &D UDQ[ E UHY LV :HEHU DQG GH %HDXIRUW V\QRQ\PL]HG ZLWK &B NDO ODf 6H DU NXKL %OHHNHU ,, 2, RULJLQDO GHVFULSWLRQf &D UDQ[ NXK" :HEHU DQG GH %HDXIRUW V\QRQ\PL]HG ZLWK &B NDO Df 6HODU PHJD DVSLV %OHHNHU RULJLQDO GHVFULSWLRQf &DUDQ[ PL\DNDPL"f§ :DNL\D SL RULJLQDO GHVFULSWLRQ )RUPRVDf +HQQ W\SH VSHFLPHQ LQ &DUQHJLH 0XVHXPf $WXH PL\DNDP"L 6X]XNL GHVFULSWLRQf 0DWHULDO ([DPLQHG &H\ RQ 7$%/ f§f -DIIQD &RORPER 6PLWK9DQL] $XJ 7KDL DQG $163 f 7DFKLQ 5 0 GH6FKDXHQVHH $163 f 7DFKLQ 5 0 GH6FKDXHQVHH $163 f 3DNQDP 5 0 GH6FKDXHQVHH $XJ ,QGRQHVLD 501+ f 3ULDPDQ &K LQD &$668 f +RQJ .RQJ 3ORYHU &RYH %ROLQ )HE $163

PAGE 175

f $163 f 'LDJQRVLV $ VSHFLHV RI $WXH GLVWLQJXLVKHG E\ WKH IROORZLQJ FRPELQDWLRQ RI FKDUDFWHUV SUHPD[LOODU\ WHHWK ELVHULDWH DQWHULRUO\ GHQWDU\ WHHWK WULVHULDWH SRVWHULRUO\ ERG\ GHHS YHQWUDO RXWOLQH VWURQJO\ FRQYH[ XOWLPDWH DQG SHQXOWLPDWH UD\V RI GRUVDO DQG DQDO ILQV UHVSHFWLYHO\ HTXDO UDWLR RI VWUDLJKW WR FXUYHG ODWHUDO OLQH DQWHULRU FDXGDO SHGXQFOH VFXWH ZLGWK b 6/ GRUVDO UD\V WR XVXDOO\ RU ; 6[ Af DQDO UD\V WR XVXDOO\ RU ; 6[ ABf FXUYHG ODWHUDO OLQH VFDOHV WR XVXDOO\ WR ; B 6[ B f VWUDLJKW ODWH UDO OLQH VFXWHV WR XVXDOO\ WR ; 6[ f $WXOH NDO OD LV GLVWLQJXLVKHG IURP $B G MHGDED E\ SUHPD[L DU\ WHHWK ELVHULDWH DQWHULRUO\ GHQWDU\ WHHWK WULVHULDWH SRVWHULRUO\ ERG\ GHHSHU YHQWUDO RXWOLQH PRUH FRQYH[ XOWLPDWH UD\ RI ERWK GRUVDO DQG DQDO ILQ HTXDO WR SHQXOWLPDWH UD\ DQWHULRU FDXGDO SHGXQFOH VFXWH ZLGHU UDWLR RI VWUDLJKW WR FXUYHG SRUWLRQ RI ODWHUDO OLQH ORZHU $ NDO D GLIIH UV IURP $ PDO DP E\ SUHPD[LOODU\ WHHWK ELVHULDWH DQWHULRUO\ GHQWDU\ WHHWK WULVHULDWH SRVWHULRUO\ ERG\ GHHSHU ZLWK D PRUH FRQYH[ YHQWUDO RXWOLQH UDWLR RI VWUDLJKW WR FXUYHG SRUWLRQ RI ODWHUDO OLQH ORZHU DQWHULRU FDXGDO SHGXQFOH VFXWH ZLGHU IHZHU VWUDLJKW ODWHUDO OLQH VFXWHV $B ND D LV GLVWLQJXLVKHG IURP $ PDFUXUXV E\ D GHHSHU ERG\ YHQWUDO ERG\ RXWOLQH PRUH FRQYH[ SUHPD[LOODU\ WHHWK ELVHULDWH DQWHULRUO\ GHQWDU\ WHHWK WULVHULDWH SRVWHULRUO\ IHZHU VFDOHV LQ FXUYHG SDUW RI ODWHUDO OLQH WR YHUVXV WR f IHZHU VWUDLJKW ODWHUDO OLQH VFXWHV WR YHUVXV WR f IHZHU GRUVDO UD\V WR YHUVXV

PAGE 176

WR f IHZHU DQDO UD\V WR YHUVXV WR f UDWLR RI VWUDLJKW WR FXUYHG VHFWLRQV RI ODWHUDO OLQH VOLJKWO\ ORZHU ZLGWK RI DQWHULRU FDXGDO SHGXQFOH VFXWH JUHDWHU $B ND D LV GLVWLQJXLVKHG IURP $B PDWH E\ GHQWDU\ WHHWK WULVHULDWH SRVWHULRUO\ GHHSHU ERG\ ZLWK D PRUH FRQYH[ YHQWUDO ERG\ RXWOLQH ZLGHU DQWHULRU FDXGDO SHGXQFOH VFXWH IHZHU VFDOHV LQ WKH FXUYHG ODWHUDO OLQH WR YHUVXV WR f SHQXOWLPDWH DQG XOWLPDWH UD\V RI GRUVDO DQG DQDO ILQV UHVSHFWLYHO\ RI HTXDO OHQJWK $WXOH ND D LV FRPSDUHG WR WKH RWKHU VSHFLHV RI $WXOH LQ 7DEOH 'HVFULSWLRQ &RXQWV DQG SURSRUWLRQDO PHDVXUHPHQWV DUH OLVWHG LQ 7DEOHV DQG JUDSKLFDOO\ SUHVHQWHG LQ )LJXUHV a ,Q DGGLWLRQ WR WKH JHQHULF GHVFULSWLRQ $WXOH PDWH LV FKDUDFWHUL]HG E\ VWUDLJKW ODWHUDO OLQH b 6/ FXUYHG ODWHUDO OLQH b 6/ KHLJKW RI ODWHUDO OLQH DUFK b 6/ ERG\ GHSWK WR b 6/ ERG\ ZLGWK b 6/ FDXGDO SHGXQFOH VOHQGHU b 6/ XSSHU FDXGDO ILQ OREH b 6/ VOLJKWO\ ORQJHU WKDQ ORZHU OREH b 6/f OHQJWK RI SHFWRUDO ILQ b 6/ OHQJWK RI SHOYLF ILQ b 6/ KHDG GHSWK b 6/ LQWHURUELWDO ZLGWK b 6/ PD[LOODU\ GHSWK rb 6/ JDSH b 6/ RZHU JLOO UDNHUV WR ; B 6[ f XSSHU JLOO UDNHUV WR ; B 6[ f ORZHU JLOO IL ODPHQWV WR ; B 6[ f XSSHU J L I L DPHQWV WR ; B 6[ f SVHXGREUDQFKLDO ILODPHQWV WR ; 6[ 2f

PAGE 177

$WXOH PDFUXUXV %OHHNHUf )LJXUH 6HODU PDFUXUXV%OHHNHU RULJLQDO GHVFULSWLRQf %OHHNHU GHVFULSWLRQf &DUDQ[ PDFUXUXV *XQWKHU L GHVFULSWLRQf )RZOHU UHVHPEODQFH WR $OHSHV J DEUDf :HEHU DQG GH %HDXIRUW V\QRQ\P\ GHVFULSWLRQ UDQJHf $OHSHV PDFUXUXV )RZOHU 5D\RQJ 6LDPf $OHSHV JODEUD )RZOHU SL RULJLQDO GHVFULSWLRQ 6XPDWUDf :HEHU DQG GH %HDXIRUW LQ V\QRQ\P\ RI &DUDQ[ PDFUXUXVf &DUDQ[ PD DP :DNL\D SL PLVLGHQWLILFDWLRQ $WXH PDFUXUXVf 0DWHULDO ([DPLQHG &H\ORQ 7$%/ XQFDW &&. f ff &&. a f 7KDL DQG $163 f %DQJNRN 5 0 GH6FKDXHQVHH 0DUFK ,QGRQHVLD 501+ f -DZD %DWDYLD -DNDUWDfV\QW\SHVf )R UPRVD )01+ f 'LDJQRVLV $ VSHFLHV RI $WXOH GLVWLQJXLVKHG E\ WKH IROORZLQJ FRPELQDWLRQ RI FKDUDFWHUV SUHPD[LOODU\ GHQWLWLRQ XQLVHULDWH GHQWDU\ GHQWLWLRQ

PAGE 178

XQLVHULDWH OHQJWK RI XOWLPDWH UD\ RI GRUVDO DQG DQDO ILQV HTXDO WR OHQJWK RI SHQXOWLPDWH UD\ VXSUDPD[L DU\ ERQH H[WHQGHG E\ D KRUL]RQWDO DQWHURSURMHFWLQJ SURFHVV DQWHULRU FDXGDO SHGXQFOH VFXWH ZLGWK b 6/ UDWLR RI VWUDLJKW WR FXUYHG SRUWLRQ RI ODWHUDO OLQHV GRUVDO UD\V WR XVXDO O\ RW f ; B 6[ B r DQDO UD\V WR XVXDOO\ f ; B6[ Bf FXUYHG ODWHUDO OLQH VFDOH WR XVXDOO\ WR f ; 6[ B VWUDLJKW ODWHUDO OLQH VFXWHV WR XVXDOO\ WR f ; B6[ B f $WXOH PDFUXUXV LV G L VW L QJXL VKHG IURP $ G M HGDED E\ PRUH SUHPD[L ODU\ WHHWK PRUH GRUVDO UD\V WR YHUVXV WR f PRUH DQDO UD\V WR YHUVXV WR f VOLJKWO\ QDUURZHU DQWHULRU FDXGDO SHGXQFOH VFXWH PRUH VFDOHV LQ FXUYHG SDUW RI ODWHUDO OLQH PRUH VWUDLJKW ODWHUDO OLQH VFXWHV XOWLPDWH UD\ RI GRUVDO ILQ QR ORQJHU WKDQ SHQXOWLPDWH UD\ XOWLPDWH UD\ RI DQDO ILQ HTXDO WR SHQXOWLPDWH UD\ $ PDFUXUXV LV GLVWLQJXLVKHG IURP $B NDO D E\ XQLVHULDWH SUHPD[LOn ODU\ GHQWLWLRQ XQLVHULDWH GHQWDU\ GHQWLWLRQ OHVV FRQYH[ YHQWUDO ERG\ RXWOLQH VKDOORZHU ERG\ QDUURZHU DQWHULRU FDXGDO SHGXQFOH VFXWH PRUH VFDOHV LQ FXUYHG ODWHUDO OLQH WR YHUVXV WR f PRUH VWUDLJKW ODWHUDO OLQH VFXWHV WR YHUVXV WR f PRUH DQDO UD\V WR YHUVXV WR f PRUH GRUVDO UD\V WR YHUVXV WR f JUHDWn HU QXPEHU RI DQDO UD\V WR YHUVXV WR f VOLJKWO\ PRUH SUHn PD[L DU\ WHHWK $B PDFUXUXV LV GLVWLQJXLVKHG IURP $B PDWH E\ PRUH GRUVDO UD\V WR YHUVXV WR f PRUH DQDO UD\V WR YHUVXV WR f KLJKHU VWUDLJKW WR FXUYHG ODWHUDO OLQH UDWLR PRUH VFXWHV LQ VWUDLJKW ODWHUDO OLQH VOLJKWO\ QDUURZHU DQWHULRU FDXGDO SHGXQFOH VFXWH XOWLPDWH UD\ RI ERWK GRUVDO DQG DQDO ILQ HTXDO WR SHQXOWLPDWH UD\

PAGE 179

$WXOH PDFUXUXV LV FRPSDUHG WR WKH RWKHU VSHFLHV RI $WXH LQ 7DEOH 'HVFULSWLRQ &RXQWV DQG SURSRUWLRQDO PHDVXUHPHQWV DUH JUDSKLFDOO\ SUHVHQWHG LQ )LJXUHV N 6aN DQG 7DEOHV ,Q DGGLWLRQ WR WKH JHQHULF GHVFULSWLRQ $WXOH PDFUXUXV LV FKDUDFWHUL]HG E\ VWUDLJKW ODWHUDO OLQH b 6/ FXUYHG ODWHUDO OLQH b 6/ KHLJKW RI ODWHUDO OLQH DUFK f WR b 6/ ERG\ GHSWK WR Nb 6/ ERG\ ZLGWK b 6/ FDXGDO SHGXQFOH VOHQGHU b 6/ FDXGDO OREHV QHDUO\ HTXDO LQ OHQJWK XSSHU OREH VOLJKWO\ ORQJHU b 6/ OHQJWK RI SHFWRUDO ILQ b 6/ OHQJWK RI SHOYLF ILQ b 6/ KHDG GHSWK b 6/ LQWHURUELWDO ZLGWK b 6/ PD[LOODU\ GHSWK b 6/ JDSH $b 6/ ORZHU JLOO UDNHUV WR ; A6[ B f XSSHU JLOO UDNHUV WR N ; B6[ B f RZHU JLOO ILODPHQWV WR NN ; 6[ A f XSSHU JLOO ILODn PHQWV WR A ; B 6[ B f SVHXGREUDQFK LDO I L DPHQWV WR ; 6[ N f

PAGE 180

$WXOH GMHGDED )RUVNDOf )LJXUH 6FRPEHU GMHGDED )RUVNDO RULJLQDO GHVFULSWLRQ 5HG 6HDf &DUDQ[ GMHGGDED &XYLHU MBQB &XYLHU DQG 9DOHQFLHQQHV GHVFULSWLRQ 5HG 6HDf *XQWKHU L GHVFULSWLRQ UDQJH TXHVWLRQV V\QRQ\P\ RI &B YDULf 3OD\IDLU DQG *XQWKHU UHIHUHQFHV =DQ]LEDU UDQJHf 'D\ SL V\QRQ\P\ GHVFULSWLRQ UDQJHf (YHUPDQQ DQG 6HDOH GHVFULSWLRQ UHIHUHQFHV 3KLOLSSLQHVf -RUGDQ DQG 5LFKDUGVRQ GHVFULSWLRQ 0DQLODf -RUGDQ DQG 5LFKDUGVRQ A 3KLOLSSLQHV UHIHUHQFHVf 9DNL\D 4 PLVLGHQW LILFDWLRQ $WXH PDFUXUXVf 1LFKROV E SRVVLEO\ FORVH WR e ND Df 7RUWRQHVH QDPH RQO\f &KDQ SL JHQHUDO DFFRXQWf 6HODU GMHGGDED %OHHNHU $ QDPH RQO\f &DUDQ[ GMHGDED 'D\ QDPH RQO\f )RZOHU 3KLOLSSLQHV VSHFLPHQV LQ $163 $OHSHV VFLWXOD V\QRQ\PL]HG"f )RZOHU SDUWLDO V\QRQ\P\f :HEHU DQG GH %HDXIRUW GHVFULSWLRQ V\QRQ\P\ UDQJHf )RZOHU F %DQJNRNf 6PLWK SL UHIHUHQFHVf 6PLWK DQG 6PLWK SL UDQJHf $OHSHV GMHGDED )RZOHU 6LDPf )RZOHU KD QDPH RQO\f 5R[DV DQG $JFR SL GHVFULSWLRQ V\QRQ\P\ VXEJHQXV 6HODUf 0XQUR f UHIHUHQFHV GHVFULSWLRQf $WXOH GMHGGDEDf§ :LOOLDPV f LQ SDUW GHVFULSWLRQ V\QRQ\P\f 6X]XNL V\QRQ\P\ GHVFULSWLRQ LQFOXG

PAGE 181

cQJ RVWHRORJ\f %HQ7XYLD V\QRQ\P\ 5HG 6HD UDQJHf &DUDQ[ YDULf§ &XYLHU MBQB &XYLHU DQG 9DOHQFLHQQHV RULJLQDO GHVFULSWLRQff§ *8QWKHU L V\QRQ\P RI & GMHGGDEDf :HEHU DQG GH %HDXIRUW A LQ V\QRQ\P\ RI &B G M HGDEDf 0DWHULDO ([DPLQHG &H\ORQ 7$%/ XQFDW &&. f )RUPRVD )01+ f 7KDL DQG $163 f %DQJNRN 5 0 GH 6FKDXHQVHH 7$%/ XQFDW f *XOI RI 7KDLODQG &KRL %XUL5D\RQJ 'HF 3KLO L SSLQHV $163 f &OHPHQV $163 f %DWDDQ /X]RQ &OHPHQV 0D\ $163 f %DWDDQ /X]RQ 6DQ )HUDQGR &OHPHQV -DQ 'LDJQRVLV $ VSHFLHV RI $WXOH GLVWLQJXLVKHG E\ WKH IROORZLQJ FRPELQDWLRQ RI FKDUDFWHUV XOWLPDWH GRUVDO UD\ ORQJHU WKDQ SHQXOWLPDWH UD\ XOWLPDWH DQDO UD\ ORQJHU WKDQ SHQXOWLPDWH UD\ SUHPD[LOODU\ GHQWLWLRQ XQLVHULDWH GHQWDU\ GHQWLWLRQ XQLVHULDWH UDWLR RI VWUDLJKW WR FXUYHG ODWHUDO OLQH OHQJWKV DQWHULRU FDXGDO SHGXQFOH VFXWH ZLGWK b 6/ VXSUDPD[LOO DU\ DQWHULRUO\ H[WHQGHG E\ D QDUURZ KRUL]RQWDO SURFHVV GRUVDO UD\V

PAGE 182

WR ; 6[ f DQDO UD\V WR ; 6[ f FXUYHG ODWHUDO OLQH VFDOHV WR ; B 6[ f VWUDLJKW ODWn HUDO OLQH VFXWHV WR ;  6[ f $WXOH GM HGDED LV GLVWLQJXLVKHG I URP ND D E\ VKDOORZHU ERG\ YHQWUDO ERG\ RXWOLQH OHVV FRQYH[ GHQWDU\ WHHWK XQLVHULDWH SUHPD[LOODU\ WHHWK XQLVHULDWH XOWLPDWH UD\ RI GRUVDO ILQ HORQJDWH XOWLPDWH UD\ RI DQDO ILQ HORQJDWH QDUURZHU DQWHULRU FDXGDO SHGXQFOH VFXWH UDWLR RI VWUDLJKW WR FXUYHG SRUWLRQ RI ODWHUDO OLQH KLJKHU $ GM HGDED LV GLVWLQJXLVKHG IURP PDFUXUXV E\ XOWLPDWH UD\ RI GRUVDO ILQ PRUH HORQJDWH WKDQ SHQXOWLPDWH UD\ XOWLPDWH UD\ RI DQDO ILQ ORQJHU WKDQ SHQXOWLPDWH UD\ IHZHU SUHPD[LOODU\ WHHWK IHZHU VFDOHV LQ FXUYHG SRUWLRQ RI ODWHUDO OLQH IHZHU VFXWHV LQ VWUDLJKW ODWHUDO OLQHV IHZHU GRUVDO UD\V WR YHUVXV WR f IHZHU DQDO UD\V WR YHUVXV WR f DQWHULRU FDXGDO SHGXQFOH VFXWH VOLJKWO\ ZLGHU $ GMHGDED LV GLVWLQJXLVKHG IURP PDO DP E\ VXSUDPD[LODU\ ERQH QRW H[WHQGHG IRUZDUG DV WKLQ SURFHVV DQWHULRU FDXGDO SHGXQFOH VFXWH ZLGHU IHZHU SUHPD[LOODU\ WHHWK VOLJKWO\ IHZHU GRUVDO UD\V WR YHUVXV WR f IHZHU FXUYHG ODWHUDO OLQH VFDOHV WR YHUVXV WR f IHZHU VFXWHV LQ VWUDLJKW ODWHUDO OLQH WR YHUVXV WR f $ GMHGDED LV GLVWLQJXLVKHG IURP $ PDWH E\ IHZHU FXUYHG ODWHUDO OLQH VFDOHV WR YHUVXV WR f UDWLR RI VWUDLJKW WR FXUYHG ODWHUDO OLQHV KLJKHU DQWHULRU FDXGDO SHGXQFOH VFXWH VOLJKWO\ ZLGHU XQLVHULDWH SUHPD[LOODU\ GHQWLWLRQ $WXOH GMHGDED LV FRPSDUHG WR RWKHU PHPEHUV RI WKH JHQXV LQ 7DEOH nf 'HVFULSWLRQ &RXQWV DQG SURSRUWLRQDO PHDVXUHPHQWV DUH OLVWHG LQ 7DEOHV DQG JUDSKLFDOO\ SUHVHQWHG LQ )LJXUHV f ,Q DGGLWLRQ

PAGE 183

WR WKH JHQHULF GHVFULSWLRQ $WXOH GMHGDED LV FKDUDFWHUL]HG E\ VWUDLJKW ODWHUDO OLQH b 6/ FXUYHG ODWHUDO OLQH b 6/ KHLJKW RI ODWHUDO OLQH DUFK b 6/ ERG\ GHSWK WR b 6/ ERG\ ZLGWK b 6/ FDXGDO SHGXQFOH VOHQGHU b 6/ SHFWRUDO ILQ OHQJWK b 6/ SHOYLF ILQ OHQJWK b 6/ KHDG GHSWK b 6/ LQWHURUELWDO ZLGWK b 6/ PD[LOODU\ GHSWK b 6/ JDSH b 6/ RZHU JLOO UDNHUV WR ; B 6[ A f XSSHU JLOO UDNHUV WR ; A6[ B f RZHU JLOO IL DPHQWV WR ; B 6[ B 2f XSSHU JLOO I L ODPHQWV WR ; B 6[ f SVHXGREUDQFKLDO ILODPHQWV WR ; 6[ f

PAGE 184

$WXOH PDODP %OHHNHUf )LJXUH 6HODU PDODP %OHHNHU RULJLQDO GHVFULSWLRQ %DWDYLDf %OHHNHU B GHVFULSWLRQf 0XQUR UHIHUHQFHV GHVFULSWLRQf &DUDQ[ PDODP *XQWKHU L GHVFULSWLRQ 6HD RI %DWDYLDf :HEHU DQG GH %HDXIRUW a V\QRQ\P\ GHVFULSWLRQ UDQJHf 5R[DV DQG $JFR SL V\QRQ\P\ GHVn FULSWLRQf 1LFKROV FRPSDULVRQ RI PDO DP IURP %DWDYLD ZLWK & QLJULSLQQLV IURP 3HUVLDQ *XOIf 0HQGLV QDPH RQO\f &KHQ DQG
PAGE 185

7$%/ XQFDW f *XOI RI 7KDLODQG PL ( WR (6( .KDR 0RQJ /DL rrr r1 rnr( 1$*$ 5HJ i $SULO 0D\ 7KDL DQG,QGRQHVLD 501+ r f %OHHNHU LQFOXGHV V\QW\SHVf 'LDJQRVLV $ VSHFLHV RI $WXH GLVWLQJXLVKHG E\ WKH IROORZLQJ FRPELQDWLRQV RI FKDUDFWHUV XOWLPDWH UD\ RI ERWK GRUVDO DQG DQDO ILQ HTXDO WR SHQXOWLn PDWH UD\ SUHPD[LOODU\ GHQWLWLRQ XQLVHULDWH GHQWDU\ WHHWK XQLVHULDWH VXSUDPD[L DU\ ERQH QRW H[WHQGHG DV D SURFHVV DQWHULRUO\ DQWHULRU FDXGn DO SHGXQFOH VFXWH ZLGWK b 6/ UDWLR RI FXUYHG WR VWUDLJKW SRUWLRQV RI ODWH UDO OLQH GRUVDO UD\V WR ; B 6[ r Af DQDO UD\V WR ; B 6[ f FXUYHG ODWHUDO OLQH VFDOHV WR r ; B 6[ r f VWUDLJKW ODWHUDO LQH VFXWHV r WR ; 6[ f $WX H PDO DP LV GLVWLQJX VKHG IURP $B NDO D E\ VKDO ORZHU ERG\ XQLVHULDWH SUHPD[LOODU\ GHQWLWLRQ GHQWDU\ GHQWLWLRQ XQLVHULDWH PRUH VFXWHV LQ VWUDLJKW ODWHUDO OLQH r WR YHUVXV `!N WR rf KLJKHU VWUDLJKW WR FXUYHG ODWHUDO OLQH UDWLR QDUURZHU DQWHULRU FDXGDO SHGXQFOH VFXWH YHQWUDO RXWOLQH RI ERG\ OHVV FRQYH[ $B PDO DP LV GLVWLQJXLVKHG IURP $ PDFUXUXV E\ VXSUDPD[ L DU\ ERQH QRW H[WHQGHG DQWHULRUO\ IHZHU FXUYHG ODWHUDO OLQH VFDOHV WR r YHUVXV rO WR f IHZHU GRUVDO UD\V WR YHUVXV WR f IHZHU DQDO UD\V WR YHUVXV WR f VOLJKWO\ IHZHU SUHPD[LOODU\ WHHWK $B PDO DP LV GLVWLQJXLVKHG IURP $ PDWH E\ XQLVHULDWH SUHPD[LOODU\ GHQWLWLRQ PRUH VWUDLJKW ODWHUDO OLQH VFXWHV r WR YHUVXV WR rf

PAGE 186

IHZHU FXUYHG ODWHUDO OLQH VFDOHV WR r YHUVXV WR f QDUURZHU DQWHULRU FDXGDO SHGXQFOH VFXWH KLJKHU UDWLR RI VWUDLJKW WR FXUYHG VHFWLRQ RI ODWHUDO OLQH XOWLPDWH UD\ RI ERWK GRUVDO DQG DQDO UD\ HTXDO WR SHQXOWLPDWH UD\ $ PD DP LV GLVWLQJXLVKHG IURP $ GMHGDED E\ QDUURZHU DQWHULRU FDXGDO SHGXQFOH VFXWH PRUH SUHPD[LOODU\ WHHWK VXSUDPD[L DU\ H[WHQGHG IRUZDUG E\ D WKLQ SURFHVV PRUH FXUYHG ODWHUDO OLQH VFDOHV WR r YHUVXV WR rf PRUH VWUDLJKW ODWHUDO OLQH VFXWHV WR YHUVXV WR rrf VOLJKWO\ PRUH GRUVDO UD\V WR YHUVXV WR rf 'HVFULSWLRQ &RXQWV DQG PHDVXUHPHQWV DUH SUHVHQWHG LQ 7DEOHV a DQG )LJXUHV r r ,Q DGGLWLRQ WR WKH JHQHULF GHVFULSWLRQ $WXOH PDO DP LV FKDUDFWHUL]HG E\ VWUDLJKW ODWHUDO OLQH b 6/ FXUYHG ODWHUDO OLQH rb 6/ KHLJKW RI ODWHUDO OLQH DUFK WR b 6/ ERG\ GHSWK rr WR b 6/ ERG\ ZLGWK b 6/ FDXGDO SHGXQFOH b 6/ FDXGDO ILQ OREHV QHDUO\ HTXDO LQ OHQJWK WR b 6/ OHQJWK RI SHFWRUDO ILQ b 6/ OHQJWK RI SHOYLF ILQ b 6/ KHDG GHSWK b 6/ LQWHURUELWDO ZLGWK WR b 6/ PD[LOODU\ GHSWK b 6/ JDSH b 6/ ORZHU JLOO UDNHUV WR ; B 6[ B f XSSHU JL UDNHUV WR r ; B 6[ B f ORZHU JLOO I L ODPHQWV r WR ; 6[ B f XSSHU JLOO IL DPHQWV WR ;B6[ Af SVHXGREUDQFKLDO ILODn PHQWV WR ; 6[ ff

PAGE 188

$33(1',; 7$%/(6

PAGE 189

7DEOH LXWLRQ RI WKH QRPLQDO JHQHUD RI 2 RQ PDMRU IDXQ LV WLF VWXG LHVf &$ Uf§ r 9B f§ X B4 r ff§ ; /$ A fr ; F 2, R_ 2$ 21 Y2 ; X f /$ &$ 2 1 2 9 &$ f§ FQ B4 -' -= Y2 & LB & f &$ &2 ; F ( 8f f P ff§ ‘f§ -= /$ 2$ ‘f§ r ; f f§ *2 /$ I2 2f &0 F Q] f§ &$ 2 f§ & FQ ( ; If§ 8O F OB 2 2 } 7 R= fr & ff§ ff§ O R V ff§ ff§ f§r /B 2 rf§ f§ F F F 0 f§ 2, f§ 8 2 ; 2 ff§ 2;, 2 f§ RRF & 2OB 0 OB & &2 ff§ X ff§2n &/ F F F & ; &/ f§ &0 ff§ O 0 /B &0 9 -= 2 2 & ff§ r & 0 ff§ X U /$ 2f B! 2 &$ &$ M? } ff§ ff§ &/ f§ rf§ ‘f§ f ff§ R =-= f &2 /8 2 ] Rn 4B Q /8 /8 HV f $/(&7,6 5DILQHVTXH $752386 &XYLHU $78/( -RUGDQ t -RUGDQ %5$1&+ ,$/(3(6 )RZOHU &$5$1*2,'(6 %OHHNHU &$5$1; /DFHSHGH &,72/$ &XYLHU &+/2526&20%586 *LUDUG &+25,1(086 &XYLHU t 9D '(&$37(586 %OHHNHU (/$*$7,6 %HQQHWW *1$7+$12'21 %OHHNHU +(0 ,&$5$1; %OHHNHU +<11,6 &XYLHU +<3$&$17+86 5DILQHVTXH .$, :$5 ,186 6X]XNL /,&+,$ &XYLHU /21* 5267580 :DNL\D 0(*$/$63,6 %OHHNHU 1$8&5$7(6 5DILQHVTXH 1(3720(1(86 *XQWKHU 2/,*23/,7(6 *LO 3$521$ %HUJ 6(/$5 %OHHNHU 6(/$52,'(6 %OHHNHU 6(/(1( /DFHSHGH 6(5,2/$ &XYLHU 75$&+,12786 5DILQHVTXH 75$&+8586 5DILQHVTXH 8/8$ -RUGDQ t 6Q\GHU 85$63,6 %OHHNHU 920(5 &XYLHU =21,&+7+<6 6ZDLQVRQ

PAGE 190

7DEOH &KDUDFWHUV FRGHG LQ QXPHULFDO WD[RQRP\ RI &DUDQJLGDH ([RFFLSLWDO ]\JDSRSK\VHV DGMRLQHG )URQWDVXSUDRFFLSLWD FUHVW KLJK 2OIDFWRU\ FDYLW\ ZHOGHYHORSHG r (WKPRLGSUHYRPHU NHHO HOHYDWHG 3UHYRPHULQH GHQWLWLRQ SUHVHQW 3WHURWLF FUHVW FRQVSLFXRXV SURGXFHG EDFNZDUGV 3WHURWLF ZLQGRZ 0\RGRPH RSHQLQJ GLVWLQFW &UDQLDO GHSWKZLGWK JUHDW 3UHPD[LOODU\ SURWUDFWLOH 3RVWPD[LOODU\ SURFHVV URXQG 3UHPD[LOODU\ DVFHQGLQJ SURFHVV ORQJHU WKDQ DUWLFXODU SURFHVV 6XSUDPD[LODU\ O$ 0D[LOODU\ H[WUHPHO\ ORQJ 5RVWUDO FDUWLODJH RYRLGDO 'HQWDU\DUWLFXODU LQWHUVWLFH $UWLFXODU GRUVDO SURFHVV OHVV WKDQ LWV KHLJKW 0D[LOODU\ OHQJWK PXFK JUHDWHU WKDQ KHLJKW 3WHU\JRLG HQODUJHG DQWHULRU HQG DFXPLQDWH 0HWDSWHU\JRLG ODPLQD ZH GHYH RSHG 0HVRSWHU\JRLG OHVV WKDQ K\RPDQGL EX DU $QWHULRU SWHU\JRLG H[SDQGHG 3UHSDODWLQH SURFHVV GLUHFWHG DQ WHURYHQWUD\ N 3UHRSHUFXODU ZLGWK OHVV WKDQ LWV 2SHUFXODU H[FHHGV LQWHURSHUFOH 2SHUFXODU DSSDUDWXV KHLJKW H[FHHGV LWV 6HYHQ EUDQFK LRVWHJD UD\V &HUDWRK\DO ZLQGRZ ZLGH DQG RYRLGDO 8URK\DO VKRUWHU WKDQ K\RLG ERG\ 3RVWFRUDFRLG SURFHVV ZHOGHYHORSHG 3RVWFHLWKUXP YHQWUDO HOHPHQW ULEOLNH &OHLWKUXP VKHOI DQJOH r 3RVWWHPSRUDO YHQWUDO EUDQFK DWWDFKHV WR XSSHU RSLVWKRWLF N 3RVWWHPSRUDO YHQWUDO EUDQFK HORQJDWH 3RVWWHPSRUDO KHLJKW OHVV WKDQ LWV /DWHUDO OLQH VFXWHV &DXGDO YHUWHEUDH JUHDWHU WKDQ )LUVW KHPDO VSLQH HQODUJHG 8SSHU MDZ WHHWK LQ EDQG /RZHU MDZ WHHWK LQ EDQG

PAGE 191

7DEOH &KDUDFWHU VWDWHRSHUDWLRQDO WD[RQRPLF XQLW PDWUL[ IRU &DUDQJLGDH &KDUDFWHU FRGH QXPEHUV GHILQHG LQ 7DEOH f &+$5$&7(56 278 $/(&7,6 f B B B B B B $752386 $78/( &$5$1*2,'(6 &$5$1; &+25,1(086 &,78/$ '(&$37(586 (/$*$7,6 *1$7+$12'21 +(0 &$5$1; .$ :$5 186 /21* 5267580 0(*$/$63,6 1$8&5$7(6 6(/$5 6(/$52 '(6 6(5,2/$ f§ 75$&+,12786 75$&+8586 85$63,6 } ‘

PAGE 192

7DEOH &RQWLQXHG &+$5$&7(56 278 $/(&7,6 B $752386 $78/( &$5$1*2 '(6 &$5$1; &+25,1(086 &,78 /$ n '(&$37(586 (/$*$76 *1$7+$12'21 +(0,&$5$1; .$ :$5 186 /21* 5267580 0(*$/$63,6 1$8&5$7(6 6(/$5 6(/$52 '(6 6(5,2/$ 75$&+,12786 75$&+8586 85$63,6

PAGE 193

7DEOH &RHIILFLHQWV RI DVVRFLDWLRQ IRU FDUDQJLG RSHUDWLRQDO WD[RQRPLF XQLWV IURP -DSDQ 'HULYHG IURP FKDUDFWHU VWDWHV FRGHG LQ 7DEOH f 278 $& $3 $8 &* &; &+ & '( (/ *1 .$ /2 0( 1$ 65 6' 6$ 71 78 85 $/(&7,6 ; $752386 ; $78/( ; &$5$1*2 '(6 ; &$5$1; ; &+25,1(086 E ; & 78/$ ; '(&$37(586 ; (/$*$7 ,6 ; *1$7+$12'21 ; .$ :$5 186 E ; /21* 5267580 ; 0(*$/$63,6 ; 1$8&5$7(6 ; 6(/$5 ; 6(/$52,'(6 ; 6(5,2/$ ; 75$&+,12786 ; 75$&+8586 ; 85$63,6 ;

PAGE 194

7DEOH 6HFRQG JHQHUDWLRQ PDWUL[ RI DVVRFLDWLRQ FRHIILFLHQWV FDOFXODWHG IRU FOXVWHU VWHPV DQG LQGLYLGXDO 278V LQn FRUSRUDWHG LQ -DSDQHVH FDUDQJLG FOXVWHU DQDO\VLV 278 $&& $3&; &*85 '(78 (/1$ *16' $8 &+ .$ / 0( 65 6$ 71B $&&, ; E $3&; ; &*85 ; '(78 ; (/1$ E ; *16' E ; $8 ; &+ E ; .$ ; /2 ; 0( ; 65 E ; 6$ ; 71 ;

PAGE 195

7DEOH 'LVWULEXWLRQ RI SULPLWLYH VNHOHWDO FKDUDFWHU VWDWHV LQ -DSDQHVH &DUDQJLGDH SOXV +HPLFDUDQ[ *(186 KLJK VXSUD RFFLSLWD FUHVW RQH VXSUD PD[LODU\ PRXWK SURW UXVLEOH SRVWPD[L ODU\ SURFHVV URXQG HLJKW EUDQFK LRVWHJDV QR VFXWHV $/(&7,6 $752386 $78/( &$5$1*2 '(6 &$5$1; f &,78/$ &+25,1(086 '(&$37(586 (/$*$7,6 *1$7+$12'21 +(0,&$5$1; .$ :$5 186 /21* 5267580 0$*$/$63,6 1$8&5$7(6 6(/$5 6(/$52,'(6 6(5,2/$ 75$&+,12786 75$&+8586 85$63,6

PAGE 196

7DEOH 0RUSKRPHWULF YDOXHV IRU +HPLFDUDQ[ DPEO\UK\QFKXV IURP :HVWHUQ $WODQWLF ORFDOLWLHV 0HDQ YDOXH IRU HDFK FKDUDFWHU LV OLVWHG DV WKRXVDQGWKV RI VWDQGDUG OHQJWK SOXV RU PLQXV VWDQGDUG HUURU RI WKH PHDQf /RFD LW\ 1RUWKHUQ *XO I RI 0H[LFR 86f +RQGXUDV *X\DQDV 6X ULQDP 6XULQDP 6RXWKHUQ %UD]L 1 5DQJH RI 6WDQGDUG /HQJWK PPf 6WDQGDUG OHQJWK PPf 7RWDO DWHUD OLQH 22 /$ &2 6WUDLJKW ODWHUDO OLQH &XUYHG ODWHUDO OLQH /DWHUDO LQH DUFK %RG\ G DW SHOYLF FU 3$ %RG\ G DW DQDO %RG\ Z &DXGDO SHGXQFOH G &DXGDO SHGXQFOH Z f B &DXGD SHGXQFOH

PAGE 197

7DEOH &RQWLQXHG /RFD cW\ 8SSHU FDXGDO ILQ /RZHU FDXGDO ILQ 3HFWRUDO ILQ 3HOYLF ILQ 3UHSHYLF 3UHDQDO 3UHVRIW GRUVDO 'RUVDO RULJLQ WR FDXGDO EDVH +HDG +HDG G ,QWHURUELWDO Z 3RVWRUE L WDO 6QRXW 2UELW 3UHPD[L ODU\ OREH OREH 1RUWKHUQ *XOI RI 0H[LFR 86f +RQGXUDV *X\DQDV 6XULQDP 6XULQDP 6RXWKHUQ %UD]L

PAGE 198

7DEOH &RQWLQXHG /RFD LW\ 1RUWKHUQ *XOI RI 0H[L FR Of 6 f +RQGX UDV *X\DQDV 6X ULQDP 6XULQDP 6RXWKHUQ %UD]L 0D[L ODU\ G FR

PAGE 199

7DEOH 0HULVWLF YDOXHV IRU +HPLFDUDQ[ DPE\UK\QFKXV IURP :HVWHUQ $WODQWLF ORFDOLWLHV /RFD LW\ 1RUWKH UQ RI 0H[LFR *XOI n XVf +RQGX UDV *X\DQDV 6XULQDP 6XULQDP 6RXWKHUQ %UD]L 1 5DQJH RI 6WDQGDUG /HQJWK PPf 6WDQGDUG OHQJWK PPf /RZHU JLOO UDNHUV 8SSHU JLOO UDNHUV /RZHU JLOO IL DPHQWV 8SSHU JLOO ILODPHQWV 3VHXGREUDFKL D IL DPHQWV s &XUYHG ODWHUDO OLQH VFDOHV 6WUDLJKW DWH UD OLQH VFDOHV WR K\SXUDO EDVHf

PAGE 200

7DEOH 0RUSKRPHWULF YDOXHV IRU +HPLFDUDQ[ ELFRORU IURP WKUHH :HVW $IULFDQ ORFD LWL HV )RU HDFK FKDUDFWHU D PHDQ YDOXH H[SUHVVHG DV WKRXVDQGWKV RI VWDQGDUG OHQJWK SOXV RU PLQXV VWDQGDUG HUURU RI WKH PHDQ LV LVWHGf /RFD LW\ *XLQHD &DPH URRQ *DERQ 1 6WDQGDUG OHQJWK PPf rr 6L]H UDQJH 6/f 7RWDO ODWHUDO OLQH rr 6WUDLJKW ODWHUDO OLQH rrrr rrrr &XUYHG DWHUDO OLQH rr /DWHUDO LQH DUFK %RG\ G DW SHOYLF rr rr %RG\ G DW DQDO rr rr %RG\ Z &DXGDO SHGXQFOH G rr &DXGDO SHGXQFOH Z &DXGDO SHGXQFOH rr 8SSHU FDXGDO ILQ OREH rr /RZHU FDXGDO ILQ OREH rr 3HFWRUDO ILQ n rr 3HOYLF ILQ rr 3UHSH YLF 3UHDQDO 3UHVRIW GRUVDO rr 'RUVDO RULJLQ WR FDXGDO EDVH +HDG rr

PAGE 201

7DEOH FRQWLQXHG /RFDOLW\ *XLQHD &DPH URRQ *DERQ +HDG G L QWHURUEL WDO Z 3RVWRUE L WDO 6QRXW 2UELW 3UHPD[L DU\ 0D[L ODU\ G *DSH

PAGE 202

7DEOH 0HULVWLF YDOXHV IRU +HPLFDUDQ[ ELFRORU IURP WKUHH :HVW $IULFDQ ORFDOLWLHV (DFK FKDUDFWHU LV H[SUHVVHG DV D PHDQ QXPEHU SOXV RU PLQXV RQH VWDQGDUG HUURUf /RFDOLW\ *X L L QHD &DPHURRQ *DERQ 1 /RZH U JLOO UDNH UV M 8SSHU JL UDNHUV /RZHU JLOO IL DPHQWV 8SSHU JLOO IL DPHQWV 3VHXGRE UDQFK L D IL DPHQWV &XUYHG ODWHUDO OLQH VFDOHV 6WUDLJKW ODWHUDO LQH VFDOHV WR K\SXUDO EDVHf

PAGE 203

7DEOH &RPSDUDWLYH PRUSKRPHWULF YDOXHV IRU WZR VSHFLHV RI +HPLFDUDQ[ IURP 3DQDPD %D\ 3DQDPD 0HDQ YDOXH IRU HDFK FKDUDFWHU LV OLVWHG DV WKRXVDQGWKV RI VWDQGDUG OHQJWK SOXV RU PLQXV VWDQGDUG HUURU RI WKH PHDQf 5DQJH RI 6WDQGDUG /HQJWK PPf 6SHFLHV ]HORWHV HXFXUXV ]HORWHV HXFX UXV 1 f F f 6WDQGDUG OHQJWK PPf 7RWDO DWHUDO OLQH 6WUDLJKW ODWHUDO OLQH &XUYHG ODWHUDO OLQH /DWHUDO LQH DUFK %RG\ G DW SHOYLF M %RG\ G DW DQDO W %RG\ Z &DXGDO SHGXQFOH G &DXGDO SHGXQFOH Z &DXGD SHGXQFOH

PAGE 204

7DEOH FRQWLQXHG ]HORWHV HXFXUXV ]HORWHV HXFXUXV 8SSHU FDXGDO ILQ OREH R RR O? /RZHU FDXGDO ILQ OREH 3HFWRUD ILQ 3HOYLF ILQ 3UHSHO YLF 3UHDQDO 3UHVRIW GRUVDO 'RUVDO RULJLQ WR FDXGDO EDVH +HDG +HDG G ,QWHURUELWDO Z K / n 3RVWRUE LWD f 6QRXW 2 2UELW

PAGE 205

7DEOH FRQWOQXHG ]HORWHV OHXFXUXV ]HORWHV OHXFXUXV 3UHPD[L ODU\ 0D[L DU\ G *DSH $QWHULRU SHGXQFOH VFXWH Z

PAGE 206

7DEOH &RPSDUDWLYH PHULVWLF YDOXHV IRU WZR VSHFLHV RI +HPLFDUDQ[ IURP 3DQDPD %D\ 3DQDPD 5DQJH RI 6WDQGDUG /HQJWK PPf 6SHFcHV ]H RWHV OHXFXUXV ]HORWHV HXFX UXV 1 /RZHU JLOO UDNHUV M + 8SSHU JLOO UDNHUV /RZHU JL IL DPHQWV 22 8SSHU JLOO IL DPHQWV 3VHXGREUDQFK L D IL DPHQWV &XUYHG ODWHUDO OLQH VHD OHV 6WUDLJKW DWHUD OLQH VHD HV 3UH PD[L ODU\ WHHWK 'HQWDU\ WHHWK

PAGE 207

7DEOH 0RUSKRPHWULF YDOXHV IRU +HPLFDUDQ[ ]HORWHV IURP WKH ORZHU 3DFLILF FRDVW RI %DMD &D9L IRUQL D 0H[LFR 0HDQ YDOXH IRU HDFK FKDUDFWHU LV OLVWHG DV WKRXVDQGWKV RI VWDQGDUG OHQJWK SOXV RU PLQXV VWDQGDUG HUURU RI WKH PHDQf &KDUDFWHU ; 6[ &KDUDFWHU ; 6[ 1 5DQJH RI 6WDQGDUG /HQJWK PPf 3HFWRUDO ILQ 3HOYLF ILQ 6WDQGDUG OHQJWK PPf 3UHSHO YLH 7RWD DWH UDO OLQH 3UHDQDO 6WUDLJKW ODWHUDO OLQH 3UHVRIW GRUVDO &XUYHG ODWHUDO OLQH 'RUVDO RULJLQ WR FDXGDO EDVH /DWHUDO LQH DUFK +HDG %RG\ G DW SHOYLF +HDG G %RG\ G DW DQDO QWHURUELWDO Z %RG\ Z 3RVWRUELWDO &DXGDO SHGXQFOH G 6QRXW &DXGDO SHGXQFOH Z 2UELW &DXGD SHGXQFH 3UHPD[L DU\ 8SSHU FDXGDO ILQ OREH 0D[L DU\ /RZHU FDXGDO ILQ OREH *DSH

PAGE 208

7DEOH 0HULVWLF YDOXHV IRU +HPLFDUDQ[ ]H RWHV IURP WKH ORZHU 3DFLILF FRDVW RI %DMD &DOLIRUQLD &KDUDFWHU ; 6[ 1 5DQJH RI 6WDQGDUG /HQJWK PPf 6WDQGDUG OHQJWK PPf /RZHU JLOO UDNHUV 8SSHU JLOO UDNHUV /RZHU JLOO IL DPHQWV 8SSHU JLOO ILODPHQWV 3VHXGREUDQFKLDO IL DPHQWV &XUYHG ODWHUDO OLQH VFDOHV 6WUDLJKW DWH UD OLQH VFDOHV WR K\SXUDO EDVHf 3UHPD[L DU\ WHHWK 'HQWDU\ WHHWK }

PAGE 209

7DEOH 1XPEHU RI GRUVDO ILQ UD\V ,Q IRXU VSHFLHV RI +HPLFDUDQ[ 'RUVDO UD\ FRXQW 6SHFLHV L} 7 6[ HXFX UXV 3DQDPD ]HORWHV 0H[LFR %DMD 0H[LFR 6LQDORD 0H[LFR &RPELQHG 3DQDPD &20%,1(' /2&$/,7,(6 DPEO\UK\QFKXV 6( 86 $WODQWLF 6RXWK )ORULGD 1RUWKHUQ *XOI RI 0H[LFR 86f +RQGXUDV 7ULQL GDG *X\DQDV6X ULQDP %UD]L r6 %UD]L r6 %UD]L 6 %UD]LO r6 &20%,1(' /2&$/,7,(6 ELFRORU *XLQHD &DPHURRQ *DERQ &20%,1(' /2&$/,7,(6 A O 7 7 7 7 7 7 7 7 7

PAGE 210

7DEOH 1XPEHU RI DQDO ILQ UD\V LQ IRXU VSHFLHV RI +HPLFDUDQ[ $QDO UD\ FRXQW 6SHFLHV ; 6[ HXFXUXV 3DQDPD ]HORWHV 0H[LFR %DMD 0H[LFR 6LQDORD 0H[LFR &RPELQHG 3DQDPD &20%,1(' /2&$/,7,(6 DPE\ UK\QFKXV 6( 86 $WODQWLF 6RXWK )ORULGD 1RUWKHUQ *XOI RI 0H[LFR 86f +RQGXUDV 7ULQL GDG *X\DQDV6XULQDP % UD] L r6 %UD]LO r6 %UD]LO r6 %UD]LO r6 &20%,1(' /2&$/,7,(6 ELFRORU *XLQHD &DPH URRQ *DERQ &20%,1(' /2&$/,7,(6

PAGE 211

7DEOH 1XPEHU RI SHFWRUDO ILQ UD\V LQ IRXU VSHFLHV RI +HPLFDUDQ[ 6SHFLHV 3HFWRUDO UD\ FRXQW OHIW VLGH ; 6[ HXFXUXV 3DQDPD ]HORWHV 0H[LFR %DMD 0H[LFR 6LQDORD 0H[LFR &RPELQHG 3DQDPD &20%,1(' /2&$/,7,(6 DPE\ UK\QFKXV 6( 86 $WODQWLF 1RUWKHUQ *XOI RI 0H[LFR 86f +RQGXUDV 7ULQLGDG *X\DQDV6XULQDP %UD]LO r6 % UD]L r6 %UD]LO r6 %UD]LO r6 &20%,1(' /2&$/,7,(6 ELFRORU *XLQHD &DPHURRQ *DERQ &20%,1(' /2&$/,7,(6 E E

PAGE 212

7DEOH 1XPEHU RI VFDOHV LQ WKH FXUYHG ODWHUDO OLQH RI +HPLFDUDQ[ 6FDOHV 6SHFLHV DPE \ UK\QFKXV ELFRORU ]HORWHV @ OHXFXUXV 7DEOH 1XPEHU RI VFXWHV LQ WKH VWUDLJKW ODWHUDO OLQH RI +HPLFDUDQ[ 6SHF LHV DPE\UK\QFKXV ELFRORU ]H RWHV HXFX UXV 6FXWHV

PAGE 213

7DEMH H[WHQGHG KL KL ; 6[ r B r 7DEOH H[WHQGHG ; 6[ K r r

PAGE 214

7DEOH 1XPEHU RI VFDOHV LQ WKH FXUYHG ODWHUDO OLQH RI $WXOH 6SHF LHV 6HD HV t ND D PDWH GMHGDED PDFUXUXV PDO DP 7DEOH 1XPEHU RI VFXWHV LQ WKH VWUDLJKW ODWHUDO OLQH RI $WXOH 6SHFLHV ND D PDWH GMHGDED PDFUX UXV 6FXWHV R f§ f§ f§ f§ f§ f§ f§ PD DP

PAGE 215

7DEOH H[WHQGHG   ; 6[ B  B A   7DEOH H[WHQGHG A ; 6[

PAGE 216

7DEOH &RHIILFLHQWV RI DVVRFLDWLRQ EHWZHHQ +HPLFDUDQ[ 278 DQG 278nV IURP -DSDQ +LJKHVW YDOXH XQGHUOLQHGf +HPLFDUDQ[ $HFWLV $W URSXV $WXO H &D UDQTRL GHV &D UDQ[ &L WX D &KRULQHPXV 'HFDSWHUXV (DTDW V *QDWKDQRGRQ .DLZDULQXV /RQTLURVWUXP 0HTD DVSLV 1DXFUDWHV 6HO DU 6HODURLGHV 6HULOD 7 UDFKLQRWXV 7 UDFKX UXV 8 UDVS L V

PAGE 217

7DEOH &RHIILFLHQWV RI DVVRFLDWLRQ EHWZHHQ &KORURVFRPEUXV 278 DQG 278V IRU ZKLFK FKDUDFWHU VWDWH LQIRUPDWLRQ LV DYDLODEOH &KORURVFRPEUXV $OHFWLV $W URSXV $WX H &D UDQJR L GHV &DUDQ[ &KRULQHPXV &L WX D 'HFDSWH UXV (DJD WLV *QDWKDQRGRQ +HPLFD UDQ[ .DLZD ULQXV /RQJ L URV W UXP 0HJD DVSLV 1DXFUDWHV 6HO DU 6HODURLGHV 6HULOD 7 UDFKLQRWXV 7 UDFKX UXV 8 UDVSLV

PAGE 218

7DEOH $WODQWLF 2FHDQ VXUIDFH WHPSHUDWXUHV r& 7(03(5$785( /RFDOLW\ /DWLWXGH 0HDQ $QQXDOr )HEUXDU\A $XJXVWA :HVWHUQ $WODQWLF 86 *XOI RI 0H[LFR r1 +RQGXUDV 9HQH]XHOD 7ULQL GDG *X\DQDV (TXDWRU %UD]LO %UD]L %UD]L %UD]LO r6 (DVWHUQ $WODQWLF &DPHURRQ r1r(f *DERQ r 6r (f r IURP 'LHWULFK &KDUW A IURP 6YHUGUXS HW DO &KDUWV DQG

PAGE 219

7DEOH &RPSDULVRQ RI GLDJQRVWLF FKDUDFWHUV RI WKH VSHFLHV RI +HPLFDUDQ[ &KDUDFWHU DPE\ UK\QFKXV 1XPEHU RI GRUVDO VRIW UD\Vr f 1XPEHU RI DQDO VRIW UD\Vr 1XPEHU RI VFDOHV LQ FXUYHG f ODWHUDO OLQH 1XPEHU RI GRUVDO VSLQHV 1XPEHU RI ODWHUDO ERG\ EDUV 1XPEHU RI FDXGDO YHUWHEUDH 3URSRUWLRQDO ZLGWK RI DQWHULRU FDXGDO SHGXQFOH VFXWH 5DWLR RI VWUDLJKWFXUYHG DWH UDO OLQH 8SSHU FDXGDO ILQ OREH ORQJHVW 3HFWRUDO ILQ +HDG OHQJWK $QWHURGRUVDO HGJH RI HWKPRLG FRQFDYH 0RUSKRORJ\ RI MDZ WHHWK 3RVWHULRU WLS XSSHU GHQWDU\ DUP LQWHUPHGLDWH 3UHPD[LOODU\ DVFHQGLQJ SURFHVV IODW WHQHG 3UHPD[LOODU\ DUWLFXODU SURFHVV FRQFDYH 'RUVDO V\PSOHFWLF H[SDQVLRQ SUHVHQW $QWHULRU HQG RI SWHU\JRLG LQGHQWHG %DVLK\DO ZLGWK LQWH UPHGLDWH 8SSHU K\SRK\DO ZLQGRZ FLUFXODU &HUDWRK\DO ZLQGRZ LQWH UPHGLDWH 8URK\DO VSLQH DEVHQW $QDO SWHU\JLRSKRUH SRLQWV LQWHUPHGLDWH $QDO SWHU\JLRSKRUH VSDFLQJ FORVH ELFRORU ]HORWHV HXFX UXV f f f f f f ORQJHVW VKRUWHVW FRQFDYH FRQYH[ FRQYH[ URXQG SRLQW VKDUS SRLQW FX UYHG FX UYHG SRLQWHG LQGHQWHG L QGHQWHG IDWWHQHG VWUDLJKW VWUDLJKW FRQFDYH SUHVHQW SUHVHQW DEVHQW LQGHQWHG FRQFDYH FRQFDYH QDUURZ ZL GH LQWHUPHGLDWH FLUFXODU RYD RYD RYD LQ WH UPHGLDWH WULDQJXODU DEVHQ W SUHVHQW DEVHQW LQWHUPHGLDWH SURPLQQW UHGXFHG LQWHUPHGLDWH GLVWDQW L QWHUPHGLDWH rPRGH LQ SDUHQWKHVHV

PAGE 220

7DEOH 0RUSKRPHWULF YDOXHV IRU WKH VSHFLHV RI $WXOH PHDQ YDOXH IRU HDFK FKDUDFWHU LV OLVWHG DV WKRXVDQGWKV RI VWDQGDUG OHQJWK SOXV RU PLQXV VWDQGDUG HUURU RI WKH PHDQ 1 f ND D PDWH PDFUXUXV G MHGDED PDO DP 6WDQGDUG OHQJWK PPf 7RWDO ODWHUDO OLQH 6WUDLJKW ODWHUDO OLQH &XUYHG ODWHUDO /DWHUDO LQH DUFK 2 YR %RG\ G DW SHOYLF %RG\ G DW DQDO %RG\ Z &DXGDO SHGXQFOH G &DXGDO SHGXQFOH Z &DXGDO SHGXQFOH 8SSHU FDXGDO ILQ OREH /RZHU FDXGDO ILQ OREH f§ 3HFWRUDO ILQ

PAGE 221

7DEOH FRQWLQXHG ND D PDWH PDFUXUXV GMHGDED PD DP 3HOYLF ILQ 3UHSHO YLH 3UHDQDO 3UHVRIW GRUVDO 'RUVDO RULJLQ WR FDXGDO EDVH +HDG +HDG G ,QWHURUELWDO Z 3RVWRUELWDO 6QRXW 2 2UELW 3UHPD[L DU\ 0D[L DU\ G n *DSH $QWHULRU SHGXQFOH VFXWH Z

PAGE 222

7DEOH 0HULVWLF YDOXHV IRU WKH VSHFLHV RI $WXH /RZHU JLOO UDNHUV 8SSHU JLOO UDNHUV /RZHU JLOO ILODPHQWV 8SSHU JLOO IL DPHQWV 3VHXGREUDQFKLDO IL DPHQWV &XUYHG ODWHUDO OLQH VFDOHV 6WUD L JKW ODWHUDO OLQH VFDOHV WR K\SXUDO EDVHf ND D PDWH 63(&,(6 PDFUXUXV GM HGDED PD DP 2 J ?-,

PAGE 223

7DEOH 1XPEHU RI WHHWK LQ VSHFLHV RI $WXOH ZLWK XQLVHULDWH GHQWLWLRQ 1 f PDFUXUXV GM HGDED PDO DP 3UHPD[L DU\ 'HQWDU\ 7DEOH 1XPEHU RI GRUVDO ILQ UD\V L Q WKH VSHFLHV RI $WXOH 'RUVD UD\V 6SHF LHV ; 6[ ND D PDWH GMHGDED PDFUXUXV PD DP 7DEOH 1XPEHU RI DQD ILQ UD\V LQ WKH VSHFLHV RI $WX H 6SHFLHV ; 6[ ND D PDWH GMHGDED PDFUXUXV PD DP

PAGE 224

7DEOH &RPSDULVRQ RI GLDJQRVWLF FKDUDFWHUV RI WKH VSHFLHV RI $WXOH &KDUDFWHU ND D PDWH GM HGDED PDFUX UXV PD DP 3UHPD[ L D U\ WHHWK E L VHULDWH DQWHULRUO\ ELVHULDWH DQWHULRUO\ XQLVHULDWH XQ L VHU L DWH XQ L VHU L DWH 'HQWDU\ WHHWK WUL VH ULDWH SRVWHULRUO\ XQ L VHULDWH XQ L VH ULDWH XQL VHULDWH XQ L VHU L DWH 8OWLPDWH GRUVDO DQG DQDO UD\ UHODWLYH WR SHQXOWLPDWH UD\ HTXDO ORQJHU ORQJHU HTXDO HTXDO 'HSWKSURI LOH GHHSHVW VWURQJO\ FRQYH[ f§ f§ f§ 6XSUDPD[LODU\ VKDSH f§ f§ H[WHQGHG H[WHQGHG QRW H[WHQGHG 'RUVDO UD\V $QDO UD\V /DWHUDOOLQH VFDOHV /DWHUDOOLQH VFXWHV $QWHULRU SHGXQFOH VFXWH ZLGWKr L 6WUDLJKWFXUYHG UDWLR RI DWHUD OLQH VHFWLRQV AWKRXVDQGWKV 6/ [ 6\f

PAGE 225

$33(1',; 267(2/2*,&$ ),*85(6 , ),*85(6 ;;, ,

PAGE 226

)LJXUH 1HXURFUDQLXP RI +HPLFDUDQ[ ]HORWHV PP 6/ 8610 3DQDPD $ 'RUVDO YLHZ % /DWHUDO YLHZ

PAGE 227

, P P

PAGE 228

)LJXUH 'RUVDO YLHZV RI DQWHULRU HGJH RI GRUVDO VXUIDFH RI HWKPRLG ERQH LQ IRXU VSHFLHV RI +HPLFDUDQ[ D ]HORWHV E HXFXUXV F DPE\UK\QFKXV G ELFRORU )LJXUH 6XERUELWDO VHULHV LQ +HPLFDUDQ[ ]HORWHV PP 6/ 8610 3DQDPD $ /DWHUDO YLHZ % 'RUVDO YLHZ RI VXERUELWDO VKHOI )LJXUH ,9 'RUVDO YLHZ RI WZR UHSUHVHQWDWLYH VXERUELWDO VKHOYHV LQ +HPLFDUDQ[ DPEO\UK\QFKXV

PAGE 229

UF

PAGE 230

)LJXUH 9 /RZHU MDZ RI +HPLFDUDQ[ ]HORWHV PP 6/ 8&/$ : 3DQDPD $ PHGLDO YLHZ % ODWHUDO YLHZ )LJXUH9, 2XWOLQH RI SRVWHULRU HGJH RI OHIW GHQWDU\ LQ +HPLFDUDQ[ D ]HORWHV E HXFXUXV F DPE\UK\QFKXV G ELFRORU

PAGE 232

)LJXUH 9LO /DWHUDO YLHZ RI XSSHU MDZ RI +HPLFDUDQ[ ]HORWHV PP 6/ 8&/$ : 3DQDPD )LJXUH 9 2XWOLQH RI GRUVDO HGJH RI OHIW SUHPD[LOODU\ LQ +HPLFDUDQ[ D ]HORWHV E HXFXUXV F DPEO\UK\QFKXV G ELFRORU

PAGE 233

/ BL PP

PAGE 234

)LJXUH ; /DWHUDO RXWOLQH RI V\PSOHFWLF ERQH LQ +HPLFDUDQ[ D ]HORWHV E HXFXUXV F DPEO\UK\QFKXV G ELFRORU )LJXUH ,; /DWHUDO YLHZ RI K\RPDQGL EX DU ERQHV RI +HPLFDUDQ[ ]HORWHV PP 6/ 8&/$ : 3DQDPD )LJXUH ;, /DWHUDO RXWOLQH RI SWHU\JRLG ERQH LQ +HPLFDUDQ[ D ]HORWHV E HXFXUXV F DPEO\UK\QFKXV G ELFRORU

PAGE 235

0637 PP D E F G .! 22

PAGE 236

)LJXUH ;, $ /DWHUDO YLHZ RI RSHUFOH VXERSHUFOH DQG LQWHURSHUFOH LQ +HPLFDUDQ[ ]HORWHV PP 6/ 8&/$ : 3DQDPD % SUHRSHUFXODU VSLQHV RI MXYHQLOH +B ]H ORWHV ‘ PP 6/ 8610 3DQDPD

PAGE 237

PP PP

PAGE 238

)LJXUH ; $GSKDU\QJHDO YLHZ RI EDVLK\DO ERQH DQG EUDQFKLDO HOHPHQWV RI +HPLFDUDQ[ ]HORWHV PP 6/ 8610 3DQDPD $QWHULRU PRVW SRUWLRQ LV DW ERWWRP RI SDJHf

PAGE 240

)LJXUH ;,9 /DWHUDO YLHZV RI K\DO ERQHV RI +HPLFDUDQ[ ]HORWHV PP 6/ 8610 3DQDPD $ RXWHU VHULHV % XURK\DO SUHFHGHG E\ RXWOLQHV RI EDVLK\DO DQG EDVLEUDQFK L D V $QWHULRU GLUHFWLRQ LV WR OHIW VLGH RI ILJXUHf

PAGE 242

)LJXUH ;9 2XWOLQHV RI VHOHFWHG K\DO HOHPHQWV LQ +HPLFDUDQ[ $ XURK\DOV ODWHUDO YLHZf % EDVLK\DO GRUVDO YLHZf & XSSHU K\SRK\DO ODWHUDO YLHZf FHUDWR K\DO ZLQGRZ ODWHUDO YLHZf D ]H RWHV E HXFXUXV F DPEO\UK\QFKXV G ELFRORUf

PAGE 244

)LJXUH ;9, $SSHQGLFXODU VNHOHWRQ RI +HPLFDUDQ[ ]HORWHV PP 6/ 8610 3DQDPD $ /DWHUDO YLHZ RI SHFWRUDO JLUGOHr % 'RUVDO DERYHf DQG ODWHUDO EHORZf YLHZV RI SHOYLF JLUGOH

PAGE 246

)LJXUH ;9,, 2XWOLQH ODWHUDO YLHZ RI SRVWFUDQLDO D[LDO DQG PHGLDO VNHOHWRQ H[FOXVLYH RI FDXGDO VNHOHWRQ LQ +HPLFDUDQ[ ]HORWHV PP 6/ 8610 3DQDPD 'LVWDO WLSV RI VRIW SWHU\JLRSKRUHV RPLWWHGf

PAGE 247

r

PAGE 248

)LJXUH ;9OOO 3WHU\JLRSKRUHHSL GRWULFK DUWLFXODWLRQ LQ +HPLFDUDQ[ ]HORWHV PP 6/ 8610 3DQDPD $ /DWHUDO OHIWf DQG IURQWDO ULJKWf YLHZV RI WKH IRXUWK SWHU\JLRSKRUHV DQG ILIWK OHSLGRWULFK ILIWK GRUVDO VSLQHf RI WKH VSLQRXV GRUVDO ILQ % )URQWDO YLHZ RI WKH WZHOYH SWHU\JLRSKRUHV DQG WKLUWHHQWK OHSLGRWULFK RI WKH GRUVDO VNHOHWRQ )LJXUH ;,; /DWHUDO RXWOLQHV RI WKH GLVWDO HQGV RI DQDO SWHU\JLRSKRUHV LQ +HPLFDUDQ[ D ]HORWHV E HXFXUXV F DPEO\UK\QFKXV G ELFRORU )LJXUH ;; 5HSUHVHQWDWLYH YHUWHEUDH LQ +HPLFDUDQ[ ]HORWHV PP 6/ 8610 3DQDPD $ ILUVW DWODVf DQG VHFRQG D[LVf SUH FDXGDO YHUWHEUDH % WKLUG FDXGDO YHUWHEUD

PAGE 250

)LJXUH ;;, /DWHUDO YLHZ RI FDXGDO VNHOHWRQ RI +HPLFDUDQ[ ]HORWHV PP 6/ 8610 3DQDPD )LJXUH ;;, 2QWRJHQHWLF IXVLRQ DQG GHYHORSPHQW LQ +HPLFDUDQ[ ]HORWHV DQG &KRURVFRPEUXV FKU\VXUXV $ 6LWHV RI IXVLRQ If 7Q +B ]HORWHV PP 6/ 8610 3DQDPD % 2QWRJHQ\ RI XURVW\ODU 85f XURQHXUDO 81f HSXUDO (3f DQG K\SXUDO Oaf HOHn PHQWV RI e FKU\VXUXV UHGUDZQ IURP +ROOLVWHU ILJV f

PAGE 251

`cO % PP PP PP

PAGE 252

$SSHQGL[ ,,, 6NHOHWDO 0DWHULDO ([DPLQHG

PAGE 253

6NHOHWDO 0DWHULDO 6SHFLHV &DW 1R 6/ PPf 3UHSDUDWLRQ +HPLFD UDQ[ DPEO\UK\QFKXV )68 &6 $01+ FV $01+ 8 &6 7$%/ FV )68 FV 78 r FV 7$%/ 8) 6 VX ; + ELFRORU 7$%/ &6 7$%/ FV 7$%/ 8610 A f ; + ]HORWHV 8&/$ :A FV 8610 rr FV 8&/$ : FV 8&/$ : &$668 ;

PAGE 254

6SHFLHV &DW 1R 6/ PPf 3UHSDUDW + OHXFXUXV 8610 &6 8&/$ :r &6 7$%/ XQFDW 6,2 ; &KRURVFRPE UXV FKU\VXUXV 8) XQFDW &6 7$%/ XQFDW &6 $WXOH NDO D $163 &6 VRVF &6 7$%/ &6 7$%/ r $ PDWH $163 &6 7$%/ &&. f &6 7$%/ 3&+ f $ PDO DP 501+ &6 7$%/ XQFDW $ PDFUXUXV 7$%/ &&. f &6 $ GMHGDED $163 &6 7$%/ &&. rOf &6 7$%/ &&. f r&6 FOHDU DQG VWDLQ GLVDUWLFXODWHG ; ;UD\

PAGE 255

*/266$5< ([WHUQDO 0RUSKRORJLFDO &KD UDFWHUVn 0HDVXUHPHQWV 'LVWDQFHV $UH 6WUDLJKWOLQHf 6WDQGDUG OHQJWK GLVWDQFH IURP SRVWHULRU EDVH RI K\SXUDO SODWH WR WLS RI VQRXW %f 7RWDO ODWHUDO OLQH OHQJWK GLVWDQFH IURP EDVH RI K\SXUDO SODWH WR ODWHUDO OLQH RULJLQ DW SRVWHULRU HGJH RI VKRXOGHU JLUGOH 6WUDLJKW ODWHUDO OLQH OHQJWK GLVWDQFH IURP K\SXUDO SODWH WR SRLQW DW ZKLFK VWUDLJKW ODWHUDO OLQH VWDUWV WR FXUYH XSZDUG &XUYHG ODWHUDO OLQH OHQJWK DUF OHQJWK FKRUGf RI ODWHUDO OLQH FXUYH IURP VKRXOGHU JLUGOH WR SRLQW RI VWUD L JKWHQLQJ% :f /DWHUDO OLQH DUFK JUHDWHVW KHLJKW RI ODWHUDO OLQH FXUYH %RG\ GHSWK DW SHOYLF GLVWDQFH IURP RULJLQ RI ILUVW GRUVDO ILQ WR LQVHUWLRQ RI SHOYLF ILQV %f %RG\ GHSWK DW DQDO GLVWDQFH RULJLQ VHFRQG GRUVDO WR RULJLQ VRIW DQDO ILQ %RG\ ZLGWK GLVWDQFH EHWZHHQ ODWHUDO PDUJLQV RI SHFWRUDO JLUGOHV &DXGDO SHGXQFOH GHSWK OHDVW GHSWK +/f &DXGDO SHGXQFOH ZLGWK OHDVW ZLGWK &DXGDO SHGXQFOH OHQJWK GLVWDQFH IURP RULJLQ RI ODVW DQDO VRIW UD\ WR EDVH RI K\SXUDO SODWH 8SSHU DQG ORZHU FDXGDO ILQ OREH OHQJWK GLVWDQFH IURP EDVH RI K\SXUDO SODWH WR H[WUHPH WLS RI OREH LQ QDWXUDO SRVLWLRQf 3HFWRUDO ILQ DQG SHOYLF ILQ OHQJWK GLVWDQFH IURP SRLQW RI LQVHUWLRQ RI ILQ VSLQH WR WLS RI ORQJHVW UD\ % :f r &RGH OHWWHUV LQ SDUHQWKHVHV IROORZLQJ GHILQLWLRQV LQGLFDWH OLWHUDWXUH UHIHUHQFHV DV IROORZV %O %HUU\ % %HUU\ +/ +XEEV DQG /DJOHU : :LOOLDPV

PAGE 256

3UHSHOYLF OHQJWK GLVWDQFH LQVHUWLRQ RI SHOYLF WR DQWHULRU PRVW SRLQW RI VQRXW WLSf 3UHVRIWGRUVDO OHQJWK GLVWDQFH WLS RI VQRXW WR RULJLQ RI VRIW GRUVDO ILQ +/f 'RUVDO RULJLQ WR FDXGDO EDVH GLVWDQFH RULJLQ VRIW GRUVDO WR K\SXUDO EDVH +HDG OHQJWK WLS RI VQRXW WR SRVWHULRU HGJH RI IOHVK\ SRUWLRQ RI WKH RSHUFXOXP % % +/ :f +HDG GHSWK YHUWLFDO GLVWDQFH IURP RFFLSXW WR YHQWUDO FRQWRXU RI EUHDVW RU KHDG +/f ,QWHURUELWDO ZLGWK OHDVW ERQ\ ZLGWKf KRUL]RQWDO GLVWDQFH EHWZHHQ RXWHU ODWHUDO PDUJLQV RI FUDQLXP DW D SRLQW RQ PLG GRUVDO SHULPHWHU RU RUELW +/ :f 3RVWRUELWDO OHQJWK GLVWDQFH IURP SRVWHULRU ULP RI RUELW WR SRVWHULRU HGJH RI RSHUFXODU PHPEUDQH % +/ :f 6QRXW OHQJWK GLVWDQFH IURP DQWHULRU PDUJLQ RI RUELW WR DQWHULRUPRVW SRLQW RQ VQRXW +/f 2UELW OHQJWK RI RUELWf JUHDWHVW GLVWDQFH EHWZHHQ IUHH RUELWDO ULPV LQQHU PDUJLQV RI FLUFXPRUELWDVf +/f 3UHPD[LOODU\ OHQJWK OHQJWK RI XSSHU MDZ DQWHULRUPRVW SRLQW RI SUHPD[LOODU\ WR SRVWHULRUPRVW SRLQW RI PD[LOODU\ % +/f 0D[LOODU\ GHSWK JUHDWHVW GHSWK IURP GRUVDO PDUJLQ RI VXSUDPD[L DU\ WR YHQWUDO PDUJLQ RI PD[LOODU\ %f /HQJWK RI ILQ UD\V VRIWGRUVDO VSLQH VRIWDQDO VSLQH GRUVDO VSLQHV VRIW ILQ UD\Vf GLVWDQFH IURP EDVH RI UD\ WR H[WUHPH WLS RI UD\ +/f *DSH JUHDWHVW WUDQVYHUVH GLVWDQFH DFURVV WKH RSHQLQJ RI WKH PRXWK +/f $QWHULRU SHGXQFOH VFXWH ZLGWK JUHDWHVW YHUWLFDO GLVWDQFH EHWZHHQ PDUJLQV RI ODWHUDO OLQH VFXWH YHUWLFDOO\ EHORZ XOWLPDWH GRUVDO VRIW UD\ &RXQWV *LOO UDNHUV DOO UDNHUV RQ ILUVW DUFK IRUPXOD ORZHU OLPE >LQFOXGLQJ UDNHU DW MXQFWLRQ@ XSSHU OLPE FRXQWf % % +/f %UDQFKLRVWHJDO UD\V WRWDO FRXQW

PAGE 257

*LOO ILODPHQWV DOO ILODPHQWV RQ ILUVW DUFK IRUPXOD ORZHU XSSHUf 3VHXGREUDQFKLDO ILODPHQWV WRWDO FRXQW &XUYHG ODWHUDO OLQH VFDOHV QXPEHU VFDOHV LQ FXUYHG DUFK 6WUDLJKW ODWHUDO OLQH VFDOHV QXPEHU VFDOHV EHWZHHQ FXUYH RI ODWHUDO OLQH DQG K\SXUDO EDVH SOXV VFDOHV DIWHU EDVH )LQ UD\V IRUPXODHf QXPEHU RI VSLQHV QRWHG XVLQJ 5RPDQ QXPHUDOV VRIW UD\V LQ $UDELF QXPEHUVf +/ :f SHFWRUDO QXPEHU VSLQHV QXPEHU VRIW UD\V SHOYLF QXPEHU VSLQHV QXPEHU VRIW UD\V GRUVDO QXPEHU VSLQHV ILUVW GRUVDO QXPEHU VSLQHV VHFRQG GRUVDO QXPEHU VRIW UD\V DQDO VSLQHV ILUVW DQDO VSLQHV VHFRQG DQDO VRIW UD\V FDXGDO SULQFLSDO UD\V EUDQFKHG SOXV WZRf+/f 7HHWK FRXQW SHU LQGLYLGXDO MDZ ERQH LH SUHPD[LOODU\ RU GHQWDU\f 9HUWHEUDO IRUPXOD QXPEHU RI WUXQN YHUWHEUDH QXPEHU RI FDXGDO YHUWHEUDH LQFOXVLYH RI XURVW\ODU YHUWHEUDf %f

PAGE 258

5()(5(1&(6 %DLOH\ 5HHYH 0 7KH DXWKRUVKLS RI QDPHV SURSRVHG LQ &XYLHU DQG 9DOHQFLHQQHVn +LVWRLUH 1DWXUHOOH GHV 3RLVVRQV &RSHLD f ( )LWFK ( 6 +HUDOG ( $ /DFKQHU & & /LQGn VH\ & 5 5RELQV DQG : % 6FRWW $ OLVW RI FRPPRQ DQG VFLHQWLILF QDPHV RI ILVKHV IURP WKH 8QLWHG 6WDWHV DQG &DQDGD $PHULFDQ )LVK 6RF 6SHF 3XE 1R S %DXJKPDQ / )LVKHV QRW SUHYLRXVO\ UHSRUWHG IURP 7H[DV ZLWK PLVFHOODQHRXV QRWHV RQ RWKHU VSHFLHV &RSHLD f 5DQGRP QRWHV RQ 7H[DV ILVKHV 7H[DV -RXU 6FL f %HQ7XYLD $GDP 5HG 6HD ILVKHV UHFHQWO\ IRXQG LQ WKH 0HGLWHUUDQn HDQ &RSHLD f %HUU\ )UHGHULFN +
PAGE 259

r 1LHXZH WLHQWDOOHQ GLDJQRVWcVFKH EHVFKULMXYLQJHQ YDQ QLHXZH RI ZHLQLJ EHNHQGH YLVFKVRRUWHQ YDQ 6XPDWUD 1DW 7LMGVFKU 1HG ,QG 9 SS rrr 1RWLFHV LFKWK\RORJLTXHV ,;f 9HUVODJHQ HQ PHGHGHHLQJHQ GHU .RPLQNOLJNH $NDGHPLH YDQ :HWHQVFKDSSHQ $IGH HOLQJ 1DWXUNXQGH 'HUWLHQGH 'HHO 9HUVO $NDG $PVWHUGDP ;,9 0HPRLU VXU OHV SRLVVRQV GH OD FRWH GH *XLHH 1DW 9HUK +ROO 0DDWVFK :HWHQVFK f %RHVHPDQ 0 2Q UHFHQW DFFHVVLRQV RI 6XULQDP ILVKHV =RRO 0HGHG r %RKONH -DPHV $ FDWDORJXH RI WKH W\SH VSHFLPHQV RI UHFHQW ILVKHV LQ WKH 1DWXUDO +LVWRU\ 0XVHXP RI 6WDQIRUG 8QLYHUVLW\ 6WDQIRUG ,FKWK\RORJLFDO %XOO DQG &KDUOHV & &KDSOLQ )LVKHV RI WKH %DKDPDV DQG DGMDFHQW WURSLFDO ZDWHUV /LYLQJVWRQ 3XE &R :\QQHZRRG 3D [[[LL S %RXOHQJHU $ r )LVKHV 6\VWHPDWLF DFFRXQW RI 7HOHRVWHLf SS ,Q +DUPHU 6 ) DQG $ ( 6KLSOH\ 7KH &DPEULGJH 1DWXUDO +LVWRU\ YRO f 0DFPLOODQ DQG &R /WG /RQGRQ UHSULQWf %UHGHU &KDUOHV 0 -U rr )LHOG ERRN RI PDULQH ILVKHV RI WKH $WODQWLF FRDVW 3 3XWQDPnV 6RQV 1HZ
PAGE 260

&XYLHU *HRUJHV DQG $FKLOOH 9DOHQFLHQQHV +LVWRLUH QDWXUHOOH GHV SRLVVRQV SLV ) /HYUDXOW 3DULV 'D\ )UDQFLV 7KH ILVKHV RI 0DODEDU %HUQDUG 4XDULWFK /RQGRQ [[[LL S SLV 2Q WKH ILVKHV RI WKH $QGDPDQ ,VODQGV 3URF =RRO 6RF /RQGRQ SS 7KH ILVKHV RI ,QGLD EHLQJ D QDWXUDO KLVWRU\ RI WKH ILVKHV NQRZQ WR LQKDELW WKH VHDV DQG IUHVK ZDWHUV RI ,QGLD %XUPD DQG &H\ORQ %HUQDUG 4XDULWFK /RQGRQ [LL S SLV 'LHWULFK *XQWHU *HQHUDO RFHDQRJUDSK\ -RKQ :LOH\ DQG 6RQV ,QF 1HZ
PAGE 261

E 7KH ILVKHV RI 2FHDQLD 6XSSOHPHQW 0HP %HUQLFH 3 %LVKRS 0XV f A F =RRORJLFDO UHVXOWV RI WKH WKLUG GH 6FKDXHQVHH 6LDPHVH ([SHGLWLRQ 3DUW )LVKHV 3URF $FDG 1DW 6FL 3KLODGHOSKLD a =RRORJLFDO UHVXOWV RI WKH WKLUG GH 6FKDXHQVHH 6LDPHVH ([SHGLWLRQ 3DUW 9, )LVKHV REWDLQHG LQ 3URF $FDG 1DW 6FL 3KLODGHOSKLD a 7KH PDULQH ILVKHV RI :HVW $IULFD EDVHG RQ WKH FROOHFWLRQ RI WKH $PHULFDQ 0XVHXP &RQJR ([SHGLWLRQ a %XOO $PHU 0XV 1DW +LVW f a A f =RRORJLFDO UHVXOWV RI WKH WKLUG GH 6FKDXHQVHH 6LDPHVH ([SHGLWLRQ 3DUW 9,,, )LVKHV REWDLQHG LQ 3URF $FDG 1DW 6FL 3KLODGHOSKLD D 'HVFULSWLRQV RI QHZ ILVKHV REWDLQHG E\ WKH 8QLWHG 6WDWHV %XUHDX RI )LVKHULHV VWHDPHU $OEDWURVV FKLHIO\ LQ 3KLOLSSLQH 6HDV DQG DGMDFHQW ZDWHUV 3URF 8610 f B E 7KH ILVKHV RI WKH *HRUJH 9DQGHUELOW 6RXWK 3DFLILF ([SHGLWLRQ $FDG 1DW 6FL 3KLODGHOSKLD 0RQ 1R YL LL S SLV =RRORJLFDO UHVXOWV RI WKH 'HQLVRQ&URFNHWW 6RXWK 3DFLILF ([SHGLWLRQ IRU WKH $FDGHP\ RI 1DWXUDO 6FLHQFHV RI 3KLODGHOSKLD 3DUW ,,, 7KH ILVKHV 3URF $FDG 1DW 6FL 3KLODGHOSKLD f D 7KH ILVKHV REWDLQHG E\ WKH :LONHV ([SHGLWLRQ ,, 3URF $PHULFDQ 3KLORV 6RF f f A2E =RRORJLFDO UHVXOWV RI WKH *HRUJH 9DQGHUELOW 6XPDWUDQ ([SHGLWLRQ 3DUW ,, 7KH ILVKHV 3URF $FDG 1DW 6FL 3KLODGHOSKLD f f $ OLVW RI WKH ILVKHV NQRZQ IURP WKH FRDVW RI %UD]LO $UT =RRO 6 3DXOR f $ VWXG\ RI WKH ILVKHV RI WKH VRXWKHUQ SLHGPRQW DQG FRDVWDO SODLQ $FDG 1DW 6FL 3KLODGHOSKLD 0RQ 1R YLLL S ILJV 7KH ILVKHV RI 2FHDQLD 6XSSOHPHQW 0HP %HUQLFH 3 %LVKRS 0XV f *LOEHUW &DUWHU 7KH $PHULFDQ F\SULQLG ILVKHV RI WKH VXEJHQXV /X[L XV JHQXV 1RWURSLVf %XOO )ORULGD 6W 0XV f

PAGE 262

LQ SUHVV &KDUDFWHULVWLFV RI WKH ZHVWHUQ $WODQWLF UHHI IDXQD 4XDUW )ORULGD $FDG 6FL DQG 5HHYH 0 %DLOH\ 6\VWHPDWLFV DQG ]RRJHRn JUDSK\ RI WKH $PHULFDQ F\SULQLG ILVK 1RWURSLV 2SVRSRHRGXVf HPLLDH 2FF 3DS 0XV =RRO 8QLY 0LFKLJDQ 1R S *LOEHUW &KDUOHV + DQG (GZLQ & 6WDUNV 7KH ILVKHV RI 3DQDPD %D\ 0HP &DOLI $FDG 6FL *LOO 7KHRGRUH 1LFKRODV &DWDORJXH RI WKH ILVKHV RI WKH HDVWHUQ FRDVW RI 1RUWK $PHULFD IURP *UHHQODQG WR *HRUJLD 3URF $FDG 1DW 6FL 3KLODGHOSKLD SS D 5HPDUNV RQ WKH UHODWLRQV RI WKH JHQHUD DQG RWKHU JURXSV RI &XEDQ ILVKHV 3URF $FDG 1DW 6FL 3KLODGHOSKn LD E 6\QRSVLV RI WKH FDUDQJRLGV RI WKH HDVW HUQ FRDVW RI 1RUWK $PHULFD 3URF $FDG 1DW 6FL 3KLODGHOSKLD *LQHV +QR DQG )HUQDQGR &HUYLJRQ ([SORUDFLQ SHVTXHUD HQ ODV FRVWDV GH *XD\DQD \ 6XULQDP DQR 0HPRULD GH OD 6RFLHGDG GH &LHQFLDV 1DWXUDOHV /D 6DOOH f B *LQVEXUJ ,VDDF )LVKHV RI WKH IDPLO\ &DUDQJLGDH RI WKH QRUWKHUQ *XOI RI 0H[LFR DQG WKUHH UHODWHG VSHFLHV 3XEO ,QVW 0DU 6FL f *RRGH % f $ SUHOLPLQDU\ FDWDORJXH RI WKH ILVKHV RI WKH 6W -RKQV 5LYHU DQG WKH HDVW FRDVW RI )ORULGD ZLWK GHVFULSWLRQV RI D QHZ JHQXV DQG WKUHH QHZ VSHFLHV 3URF 8610 f DQG 7DUOHWRQ + %HDQ $ OLVW RI WKH VSHFLHV RI ILVKHV UHFRUGHG DV RFFXUULQJ LQ WKH *XOI RI 0H[LFR 3URF 8610 *RVOLQH :LOOLDP $ 7KH SHUFLIRUP FDXGDO VNHOHWRQ &RSHLD f 7KH VXERUGHUV RI SHUFLIRUP ILVKHV 3URF 8610 f DQG 9HUQRQ ( %URFN L +DQGERRN RI +DZDLLDQ ILVKHV 8QLY +DZDLL 3UHVV L[ S *UHHQZRRG 3 +XPSKU\ 'RQQ ( 5RVHQ 6WDQOH\ + :HLW]PDQ DQG *HRUJH 6 0\HUV 3K\OHWLF VWXGLHV RI WHOHRVWHDQ ILVKHV ZLWK D SURYLVLRQDO FODVVLILFDWLRQ RI OLYLQJ IRUPV %XOO $PHULFDQ 0XV 1DW +LVW f ILJV SLV FKDUWV

PAGE 263

*UHJRU\ :LOOLDP )LVK VNXOOV $ VWXG\ RI WKH HYROXWLRQ RI QDWXUDO PHFKDQLVPV 7UDQV $PHULFDQ 3KLORV 6RF f LYLLL *UH\ 0DULRQ &DWDORJXH RI W\SH VSHFLPHQV RI ILVKHV LQ &KLFDJR 1DWXUDO +LVWRU\ 0XVHXP )LHOGLDQD =RRORJ\ f n *XQWHU 6WXGLHV RQ PDULQH ILVKHV RI 7H[DV 3XEO ,QVW 0DU 6FL 7H[DV 8QLY f WH[WILJV *XQWKHU $OEHUW L &DWDORJ RI WKH DFDQWKRSWHU\JLDQ ILVKHV LQ WKH FROOHFWLRQ RI WKH %ULWLVK 0XVHXP 7D\ORU DQG )UDQFLV /RQGRQ YRO [YL S  2Q VRPH QHZ VSHFLHV RI &HQWUDO $PHULFDQ ILVKHV 3URF =RRO 6RF /RQGRQ SLV a +DHGULFK 5LFKDUG / 7KH VWURPDWHRLG ILVKHV 6\VWHPDWLFV DQG D FODVVLILFDWLRQ %XOO 0XV &RPS =RRO f f +DUULQJWRQ 5REHUW : -U 7KH RVWHRFUDQLXP RI WKH $PHULFDQ F\SULQLG ILVK 1RWURSLV ELIUHQDWXV ZLWK DQ DQQRWDWHG V\QRQ\P\ RI WHOHRVW VNXOO ERQHV &RSHLD f +HQQ $UWKXU /LVW RI W\SHV RI ILVKHV LQ WKH FROOHFWLRQ RI WKH &DUQHJLH 0XVHXP RQ 6HSWHPEHU $QQ &DUQHJLH 0XV f +LOGHEUDQG + + $ VWXG\ RI WKH IDXQD RI WKH EURZQ VKULPS 3HQDHXV D]WHFXV ,YHVf JURXQGV LQ WKH :HVWHUQ *XOI RI 0H[LFR 8QLY 7H[DV 3XE ,QVW 0DU 6FL f f +LOGHEUDQG 6DPXHO ) $Q DQQRWDWHG OLVW RI VDOW DQG EUDFNLVK ZDWHU ILVKHV ZLWK D QHZ QDPH IRU D PHQKDGHQ IRXQG LQ 1RUWK &DUROLQD VLQFH WKH SXEOLFDWLRQ RI 7KH ILVKHV RI 1RUWK &DUROLQD E\ +XJK 0 6PLWK LQ &RSHLD f $ GHVFULSWLYH FDWDORJ RI WKH VKRUH ILVKHV RI 3HUX %XOO 8610 [L S +RHVH +LQWRQ $ SDUWLDOO\ DQQRWDWHG FKHFNOLVW RI WKH PDULQH ILVKHV RI 7H[DV 3XEO ,QVW 0DU 6FL 8QLY 7H[DV +ROEURRN -RKQ (GZDUGV L UG HGf ,FKWK\RORJ\ RI 6RXWK &DUROLQD 5XVVHOO DQG -RQHV &KDUOHVWRQ 6 & YRO SS SLV +ROOLVWHU *ORULD &DXGDO VNHOHWRQ RI %HUPXGD VKDOORZ ZDWHU ILVKHV 2UGHU ,VRVSRQG\OO (ORSLGDH 0HJDORSLGDH $OEXOLGDH &OXSHLGDH 'XVVXPHUL LGDH (QJUDXOLGDH =RROJLFD f &DXGDO VNHOHWRQ RI %HUPXGD VKDOORZ ZDWHU ILVKHV 9 2UGHU 3HUFRPRUSKLD &DUDQJLGDH =RROJLFD f SL +RZHOO < 5LYHUR /XLV /LVW RI WKH ILVKHV W\SHV RI 3RH\ LQ WKH 0XVHXP RI &RPSDUDWLYH =RRORJ\ %XOO 0XV &RPS =RRO f

PAGE 264

+XEEV &DUO / DQG .DUO ) /DJOHU )LVKHV RI WKH *UHDW /DNHV UHJLRQ &UDQEURRN ,QVW 6FL %XOO 1R [L S SLV +XQWHU -RKQ 5 DQG &KDUOHV 7 0LWFKHOO $VVRFLDWLRQ RI ILVKHV ZLWK IORWVDP LQ WKH RIIVKRUH ZDWHUV RI &HQWUDO $PHULFD 8 6 )LVK :LOGOLIH 6HUY )LVK %XOO f ,UYLQH ) 5 7KH ILVKHV DQG ILVKHULHV RI WKH *ROG &RDVW 8QLYHUn VLW\ 3UHVV &DPEULGJH (QJODQG [YL S -HQNLQV 2OLYHU 3 5HSRUW RQ FROOHFWLRQV RI ILVKHV PDGH LQ WKH +DZDLLDQ ,VODQGV ZLWK GHVFULSWLRQV RI QHZ VSHFLHV %XOO 8 6 )LVK &RPP f SLV -RUGDQ 'DYLG 6 D 1RWHV RQ D FROOHFWLRQ RI ILVKHV IURP 3HQVDFROD )ORULGD REWDLQHG E\ 6LODV 6WHDUQV ZLWK GHVFULSWLRQV RI WZR QHZ VSHFLHV ([RFRHWXV YRODGRU DQG *QDWK\SRSV P\VWDFLQXVf 3URF 8 610 f E 1RWHV RQ $PHULFDQ ILVKHV SUHVHUYHG LQ WKH PXVHXPV DW %HUOLQ /RQGRQ 3DULV DQG &RSHQKDJHQ 3URF $FDG 1DW 6FL 3KLODGHOSKLD f 7KH JHQHUD RI ILVKHV ,Q IRXU SDUWV 6WDQIRUG 8QLY 8QLY 6HULHV SS WRWDO RI SS YDULRXVO\ SDJHG LQ 5RPDQ QXPHUDOVf 3DUW SS 3DUW ,, SS 3DUW ,,, SS 3DUW ,9 SS f 7KH GD\V RI D PDQ :RUOG %RRN &R
PAGE 265

WKH +DZDLLDQ ,VODQGV ZLWK D JHQHUDO DFFRXQW RI WKH ILVK IDXQD %XOO 8 6 )LVK &RPP f f [[YLLL S SLV DQG +RZDUG :DOWRQ &ODUN $ FKHFN OLVW RI WKH ILVKHV DQG ILVKOLNH YHUWHEUDWHV RI 1RUWK DQG 0LGGOH $PHULFD QRUWK RI 9HQH]XHOD DQG &RORPELD 5HSRUW 8 6 &RPP )LVK f 'RF S DQG &KDUOHV + *LOEHUW 'HVFULSWLRQV RI QLQHn WHHQ QHZ VSHFLHV RI ILVKHV IURP WKH %D\ RI 3DQDPD %XOO 8 6 )LVK &RPP f DQG $ UHYLHZ RI WKH $PHULFDQ &DUDQJLQDH 3URF7 6a 1 0 f B DQG (ULF .QLJKW -RUGDQ $ OLVW RI WKH ILVKHV RI +DZDLL ZLWK QRWHV DQG GHVFULSWLRQV RI QHZ VSHFLHV 0HP &DUQHJLH 0XV f SLV DQG 5REHUW (DUO 5LFKDUGVRQ )LVKHV IURP LVODQGV RI WKH 3KLOLSSLQH DUFKLSHODJR %XOO %XU )LVK f a DQG &KHFNOLVW RI WKH VSHFLHV RI ILVKHV NQRZQ IURP WKH 3KLOLSSLQH DUFKLSHODJR 3KLOLSSLQH %XU6FL 0RQRJ 3XE )LVKHV 1R S DQG $OYLQ 6HDOH 7KH ILVKHV RI 6DPRD 'HVFULSn WLRQ RI WKH VSHFLHV IRXQG LQ WKH DUFKLSHODJR ZLWK D SURYLVLRQDO FKHFNOLVW RI WKH ILVKHV RI 2FHDQLD %XOO %XU )LVK f SLV DQG )LVKHV RI WKH LVODQGV RI /X]RQ DQG 3DQD\ %XOO %XU )LVK f DQG (GZLQ &KDSLQ 6WDUNV 1RWHV RQ D FROOHFWLRQ RI ILVKHV IURP &H\ORQ ZLWK GHVFULSWLRQV RI QHZ VSHFLHV $QQ &DUQHJLH 0XV SLV -RVHSK (GZLQ % DQG 5DOSK :
PAGE 266

r 0DUVKDOO 7RP & 7URSLFDO ILVKHV RI WKH *UHDW %DUULHU 5HHI $UJXV DQG 5REHUWVRQ 6\GQH\ S 0DWWKHZV ( DQG + + 6KRHPDNHU )LVKHV XVLQJ FWHQRSKRUHV IRU VKHOWHU &RSHLD $f 0D\U (UQVW ( *RUWRQ /LQVOH\ DQG 5REHUW / 8VLQJHU 0HWKRGV DQG SULQFLSOHV RI V\VWHPDWLF ]RRORJ\ 0F*UDZ+LOO 1HZ
PAGE 267

1LFKROV 7 2Q &DUDQ[ QLJULSLQQLV IURP WKH 3HUVLDQ *XOI &RSHLD Af DQG 5REHUW &XVKPDQ 0XUSK\ $ FROOHFWLRQ RI ILVKHV IURP WKH 3DQDPD %LJKW 3DFLILF 2FHDQ %XOO $PHULFDQ 0XV 1DW +LVW $f 1RUGHQ &DUUROO 5 &RPSDUDWLYH RVWHRORJ\ RI UHSUHVHQWDWLYH VDOPRQ LG ILVKHV ZLWK SDUWLFXODU UHIHUHQFH WR WKH JUD\OLQJ 7K\PDO XV DUWL FXVf DQG LWV SK\ORJHQ\ )LVK 5HV %G &DQDGD af 1RUPDQ 5 $ GUDIW V\QRSVLV RI WKH RUGHUV IDPLOLHV DQG JHQn HUD RI UHFHQW ILVKHV DQG ILVKOLNH YHUWHEUDWHV H[FOXGLQJ 2VWDULRSK \VL 6FOHURSDUHL $PPRG\WLGDH DQG D IHZ RWKHU IDPLOLHV QRWDEO\ &HQWUDUFKLGDH 3HUFLGDH DQG &LFKOLGDHf FRYHULQJ OLWHUDWXUH XS WR DQG DV IDU DV LW ZDV DYDLODEOH WR WKH DXWKRU IURP WR 8QSXE PDQXVFULSW 2VKLPD 0DVDPLWVX $ UHYLHZ RI WKH FDUDQJRLG ILVKHV IRXQG LQ WKH ZDWHUV RI )RUPRVD 3KLOLSSLQH 6FL f SL 2VVLDQ &ODLU 5 3UHSDUDWLRQ RI GLVDUWLFXODWHG VNHOHWRQV XVLQJ HQ]\PHEDVHG ODXQGU\ SUHVRDNHUV &RSHLD f 3DUNHU -DFN & $Q DQQRWDWHG FKHFNOLVW RI WKH ILVKHV RI WKH *DOYHVWRQ %D\ V\VWHP 7H[DV 3XEO ,QVW 0DU 6FL 7H[DV 3DWWHUVRQ & $ UHYLHZ RI 0HVR]RLF DFDQWKRSWHU\JLDQ ILVKHV ZLWK VSHFLDO UHIHUHQFH WR WKRVH RI WKH (QJOLVK FKDON 3KLO 7UDQV 5R\ 6RF /RQGRQf % %LRO 6FL f 3KLOOLSV 3KLOLS : 'DYLG %XUNH DQG (OL]DEHWK .HHQHU A 2EVHUYDWLRQV RQ WKH WURSKLF VLJQLILFDQFH RI MHOO\ILVKHV LQ 0LVVn LVVLSSL 6RXQG ZLWK TXDQWLWDWLYH GDWD RQ WKH DVVRFLDWLYH EHKDYLRU RI VPDOO ILVKHV ZLWK PHGXVDH 7UDQV $PHU )LVK 6RF f f 3OD\IDLU 5 / 7KH ILVKHV RI 6H\FKHOOHV 3URF =RRO 6RF /RQGRQ SS DQG $ & / *XQWKHU 7KH ILVKHV RI =DQ]LEDU -RKQ 9DQ 9RRUVW /RQGRQ [LY 3 SLV 3RH\ )HOLSH 0HPRULDV VREUH OD KLVWRULD QDWXUDO GH OD ,VOD GH &XED DFFRPSDQDGRV GH VXPDULRV /DWLQRV \ H[WUDFWRV GH )UDQFHV SOV +DEDQD 5HSHUWRUL IL VHcRQDWXUDO GH D ,VOD GH &XED 5HSHUWRULR ILVFLRQDWXUD GH D ,VOD GH &XED

PAGE 268

3RH\ )HOLSH 5HSHUWRULR ILVFLRQDWXUDO GH OD ,VOD GH &XED (QXPHUDWLR SLVFLXP &XEHQVLXP $QQ 6RF (VS +LVW 1DW f SLV 3ULWFKDUG 3HWHU & + 6WXGLHV RI WKH V\VWHPDWLFV DQG UHSURGXFWn LRQ F\FOHV RI WKH JHQXV /HSLGRFKH\V 3K 'LVVHUWDWLRQ 8QLY )ORULGD [LL S 5DQGDOO -RKQ ( &DULEEHDQ UHHI ILVKHV 7 ) + 3XEOLFDWLRQV ,QF -HUVH\ &LW\ S 5HJDQ & 7DWH 2Q WKH DQDWRP\ DQG FODVVLILFDWLRQ RI WKH VFRPEn URLG ILVKHV $QQ 0DJ 1DW +LVW f ILJ 7KH FODVVLILFDWLRQ RI WHOHRVWHDQ ILVKHV $QQ 0DJ 1DW +LVW f 5HLG *HRUJH -U $ VXPPHU VWXG\ RI WKH ELRORJ\ DQG HFRORJ\ RI (DVW %D\ 7H[DV 3DUW ,, 7KH ILVK IDXQD RI (DVW %D\ WKH *XOI EHDFK DQG VXPPDU\ 7H[DV 6FL f (FRORJLFDO LQYHVWLJDWLRQV LQ D GLVWXUEHG 7H[DV FRDVWDO HVWXDU\ 7H[DV 6FL f %LRORJLF DQG K\GURJUDSKLF DGMXVWPHQW LQ D GLVWXUEHG *XOI FRDVW HVWXDU\ /LPQRO 2FHDQRJU f 5RELQV & 5 'LVWULEXWLRQDO SDWWHUQV RI ILVKHV IURP FRDVWDO DQG VKHOI ZDWHUV RI WKH WURSLFDO ZHVWHUQ $WODQWLF 3URF )$2 6\PS &DULEEHDQ 5HVRXUFHV SS 5RHVVOHU 0DUWLQ $ &KHFNOLVW RI ILVKHV LQ %XWWRQZRRG &DQDO (YHUJODGHV 1DWLRQDO 3DUN )ORULGD DQG REVHUYDWLRQV RQ WKH VHDVRQn DO RFFXUUHQFH DQG OLIH KLVWRULHV RI VHOHFWHG VSHFLHV %XOO 0DU 6FL f 5RLWKPD\U &KDUOHV 0 ,QGXVWULDO ERWWRPILVK ILVKHU\ RI WKH QRUWK HUQ *XOI RI 0H[LFR 8 6 )LVK :LOGO 6HUY 6SHF 6FL 5HS )LVK 1R LYS 5R[DV +LODULR $ DQG $QWROLQ $JFR $ UHYLHZ RI 3KLOLSSLQH &DUDQJLGDH 3KLOLSSLQH 6FL f SLV 5XSSHOO (GXDUG 1HXH ZLUEHOWKLHUH ]X GHU IDXQD YRQ $E\VVLQLHQ JHKRULQJ )LVFKH GHV URWKHQ 0HHUHV 5XVVHOO 3DWULFN 'HVFULSWLRQV DQG ILJXUHV RI WZR KXQGUHG ILVKHV FROOHFWHG DW 9L]DJDSDWDP RQ WKH FRDVW RI &RURPDQGHO : %XOPHU DQG &R /RQGRQ YRO S SLV 6FKOHXWHU 5D\PRQG $ DQG -DPLH ( 7KRPHUVRQ 9DULDWLRQ LQ WKH FDXGDO VNHOHWRQ RI (WKHRVWRPD FDHUXOHXP 6WRUHU &RSHLD f

PAGE 269

r 6FKXOW] / 3 $ IXUWKHU FRQWULEXWLRQ WR WKH LFKWK\RORJ\ RI 9HQH]XHOD 3URF 8 6 1 0 rf f SLV WH[W ILJ 6PLWK & /DYHWW DQG 5HHYH 0 %DLOH\ (YROXWLRQ RI WKH GRUVDO ILQ VXSSRUWV RI SHUFRLG ILVKHV 3DS 0LFKLJDQ $FDG 6FL $UWV /HWWHUV f r DQG 7KH VXERFXODU VKHOI RI ILVKHV 0RUSKRO f 6PLWK / % 7KH VHD ILVKHV RI VRXWKHUQ $IULFD &HQWUDO 1HZV $JHQF\ /WG 6RXWK $IULFD [Y L r S SLV DQG 0 0 6PLWK 7KH ILVKHV RI 6H\FKHOOHV 'HSW ,FKWK\RO 5KRGHV 8QLY *UDKDPVWRZQ 6RXWK $IULFD S 6QHGHFRU *HRUJH : 6WDWLVWLFDO PHWKRGV )LIWK HG ,RZD 6W 8QLY 3U $PHV [L L L r S 6Q\GHU -RKQ 2WWHUEHLQ $ FDWDORJXH RI WKH VKRUH ILVKHV FROOHFWHG E\ WKH VWHDPHU $OEDWURVV DERXW WKH +DZDLLDQ ,VODQGV LQ %XOO 8 6 )LVK &RPP f a SLV 6RNDO 5 5 DQG 3 + $ 6QHDWK 3ULQFLSOHV RI QXPHULFDO WD[n RQRP\ : + )UHHPDQ &R 6DQ )UDQFLVFR S 6SULQJHU 6WHZDUW DQG +DUYH\ 5 %XOOV -U &ROOHFWLRQV E\ WKH 2UHJRQ LQ WKH *XOI RI 0H[LFR /LVW RI FUXVWDFHDQV PROOXVNV DQG ILVKHV LGHQWLILHG IURP FROOHFWLRQV PDGH E\ WKH H[SORUDWRU\ ILVKLQJ YHVVHO 2UHJRQ LQ WKH *XOI RI 0H[LFR DQG DGMDFHQW VHDV WKURXJK 8 6 )LVK :LOGO 6HUY 6SHF 6FL 5HS )LVK r S 6WDUNV (GZLQ &KDSLQ 7KH VFRPEURLG ILVKHV 6FLHQFH QHZ VHULHVf f r 7KH RVWHRORJ\ DQG PXWXDO UHODWLRQVKLSV RI WKH ILVKHV EHORQJLQJ WR WKH IDPLO\ 6FRPEULGDH 0RUSKRO f SLV 7KH RVWHRORJ\ DQG UHODWLRQVKLS RI WKH ILVKHV EHORQJLQJ WR WKH IDPLO\ &DUDQJLGDH 6WDQIRUG 8QLY 3XEO 8QLY 1R SS r 6WHLQGDFKQHU )UDQ] :HLQ YRO SS ,FKWK %HLWUDJH 1R 6LW]E $NDG :LVV SLV OO ,FKWK\RORJLVFKH %HLWUDJH ;f $XV GHP /;;;, , %DQGH GHU 6LW]E GHU $NDG GHU :LVVHQFK $EWK )HEU+HIW SS SLV 6X]XNL .L\RVKL $QDWRPLFDO DQG WD[RQRPLFDO VWXGLHV RQ WKH FDUDQ JLG ILVKHV RI -DSDQ 5HSRUW RI )DFXOW\ RI )LVKHULHV 3UHIHFWXUDO

PAGE 270

8QLYHUVLW\ RI 0H f 6YHUGUXS + 8 HW DO 7KH RFHDQV WKHLU SK\VLFV FKHPLVWU\ DQG JHQHUDO ELRORJ\ 3UHQWLFH+DOO ,QF (QJOHZRRG &OLIIV 1HZ -HUVH\ [ S FKDUWV 6ZDLQ -RVHSK $ UHYLHZ RI 6ZDLQVRQnV JHQHUD RI ILVKHV 3URF $FDG 1DW 6FL 3KLODGHOSKLD f SS 6ZDLQVRQ :LOOLDP 7KH QDWXUDO KLVWRU\ RI ILVKHV DPSKLELDQV DQG UHSWLOHV RU PRQRFDUGLDQ DQLPDOV /RQJPDQ HW DO /RQGRQ YROXPQ , 7D\ORU :LOOLDP 5DOSK $Q HQ]\PH PHWKRG RI FOHDULQJ DQG VWDLQLQJ YHUWHEUDWHV 3URF 8 6 1 0 7RUWRQHVH (QULFR (WXGH FRPSDUDWLYH GHV IDXQHV GH &DUDQJLGDH 3RLVVRQV 3HUFRLGHVf GH OD 0HGLWHUUDQHH HW GH On$WODQWLTXH QRUGn RFFLGHQWDO ([WUDLWV GHV 5DSSRUWV HW 3URFHVYHUEDX[ GHV UHXQLRQV GH OD &,(600 f :DNL\D
PAGE 271

%,2*5$3+,&$/ 6.(7&+ :LOOLDP 6HDPDQ -U ZDV ERUQ RQ -DQXDU\ A DW 0LQHOD / 1HZ
PAGE 272

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ &DUWHU 5 *LOEHUW &KDLUPDQ $VVRFLDWH &XUDWRU RI )LVKHV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3LHUFH %URGNRUE 3URIHVVRU RI =RRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ / Y \ Qn ?V? 'DYLG 1LFRO 3URIHVVRU RI *HRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ :LOOLDP ( 6 &DUU $VVRFLDWH 3URIHVVRU RI =RRORJ\ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH 'HSDUWPHQW RI =RRORJ\ LQ WKH &ROOHJH RI $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH &RXQFLO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW 'HDQ *UDGXDWH 6FKRRO

PAGE 273

81,9(56,7< 2) )/25,'$ ,, ,,, ,,, PLO

PAGE 275

‘‘ V\VWHPDWLFVRIJHQ22VHDP



Systematics of the Genera Hemica ranx and Atule
ces: Carangidae), with an Analysis of the Classification
of the Family
By
WILLIAM SEAMAN, JR.
A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE UNIVERSITY OF FLORIDA IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1972

ACKNOWLEDGEMENTS
Dr. Carter R. Gilbert, chairman of my committee, and Mr. Frederick
H. Berry, ichthyologist, deserve special mention for their efforts in
overseeing completion of this dissertation. Above and beyond the
guidance one expects of a chairman, Dr. Gilbert maintained a continual
interest in the work and made completely available his extensive
knowledge of the field and his personal library. His support of
trips to a number of collections — and his fellowship enjoyed thereon
-- significantly contributed to my graduate program. Fred Berry is a
rare person, dedicated to his profession and the apprentices who come
along; he initially suggested the work on Hemicaranx, and generously
provided personal notes and data that would assist this work. His
extensive knowledge of the Carangidae has provided a valuable review
mechanism.
The manuscript has benefited from review by my committee, Drs.
Brodkorb, Nicol, and Carr, for whose efforts I am grateful.
The following colleagues provided material assistance in obtaining
specimens on loan or allowed me to use their institutional facilities
(see abbreviations section): Dr. James Atz, AMNH; Drs. James Bohlke
and James Tyler, ANSP; Dr. William Eschmeyer, CAS; Mr. Loren Woods,
FMNH; Mr. Robert Topp, FSBC; Dr. Ralph Yerger, FSU; Mr. Charles Dawson,
GCRL; Drs. Robert Lavenberg and Camm Swift, LACM; Drs. Carl Hubbs and
Richard Rosenblatt, S10; Mr. George Miller, Dr. Robert V. Miller and
Mr Frederick H. Berry, TABL (now Southeast Fisheries Center); Dr. Royal

Suttkus, TU; Dr. Boyd Walker, UCLA; and Drs. Ernest Lachner and
Victor Springer, USNM, (now National Museum of Natural History).
Also, Dr. D. E. McAllister, NMC, loaned specimens. Mme. M. Bauchot
MNHN, and Dr. M Boeseman, RMNH, generously allowed the use of facilities
at their respective institutions. Dr. Boeseman further permitted a loan
of type material. Dr. Jurgen Nielsen, Universitetets Zoologische Museum
Copenhagen, provided data on the type of Atule djedaba. To Dr. Peter J.
P. Whitehead, BMNH, I extend similar thanks for the loan of specimens,
use of facilities, and provision of data; furthermore, his friendship
since our meeting has been one of the treasured experiences of prepar¬
ing this dissertation.
Dr. John Randall, Bernice Bishop Museum, Hawaii, and Mrs. Margaret
Smith, J. L. B. Smith Institute of Ichthyology, South Africa, provided
information on their collections.
Technical assistance was provided by University of Florida artists
Mr. Paul Laessle and Ms. Margaret Estey who put aside busy schedules
to offer suggestions about the drawings. Mr. Russell Parks, Image
Designs, Gainesville, took all the photographs.
To my friends -- among whom I am fortunate enough to include my
parents and my loving wife,Carol -- who helped, a quiet word of thanks.

TABLE OF CONTENTS
Page
ACKNOWLEDGEMENTS ii
LIST OF TEXT FIGURES vi
LIST OF TABLES v¡ i i
LIST OF OSTEOLOGICAL FIGURES x
ABBREVIATIONS xii
ABSTRACT xv
INTRODUCTION 1
METHODS 5
Numerical Taxonomy 7
Preparation of Skeletal Material 8
CLASSIFICATION OF I NDO-PAC I FI C CARANGIDAE 11
A Review of the Suzuki Classification of
Japanese Carangidae 12
Primitive characters of the Carangidae 13
Numerical Taxonomy of the Japanese Carangidae 16
OSTEOLOGY OF HEMICARANX 21
Infraspecific variation 21
Descriptive Osteology of Hemicaranx 22
KEY TO HEMICARANX AND ATULE 47
SYSTEMATICS OF HEMICARANX 50
Hemicaranx Bleeker 50
Hemicaranx amb1yrhynchus (Cuvier) 63
Hem ica ranx bicolor '(GOnther) 93
Hemicaranx zelotes Gilbert 99
Hemicaranx leucurus (Giinther) 123
SYSTEMATICS OF ATULE
130

Atule Jordan and Jordan 130
Atule mate (Cuvier) 150
Atule ka 1 1 a (Cuvier) 156
Atule macrurus (Bleeker) 160
Atule djedaba (Forskal) 163
Atule mal am (Bleeker) 167
APPENDICES 170
Appendix 1. Tables 171
Appendix II. Osteological Figures 208
Appendix III. Skeletal Material Examined 235
GLOSSARY 238
LIST OF REFERENCES 241
BIOGRAPHICAL SKETCH 254
V

TEXT FIGURES
Figure Page
1. Phylogeny of Japanese Carangidae 14
2. Phenetic dendrogram of Indo-Pacific Carangidae 17
3. Phenetic dendrogram of genera of Carangidae sharing
a matching coefficient of at least .75 with
Hemi ca ranx 61
4. Distribution of Hem?caranx in the Atlantic and Pacific
Oceans 79
5. Length of upper caudal fin lobe in populations of
Hemicaranx amblyrhynchus from the Western Atlantic
Ocean and H. bicolor from the Eastern Atlantic 82
6. Variation in number of fin rays in the soft dorsal
fin of Hemicaranx 83
7. Variation in number of fin rays in the soft anal
fin of Hemi caranx 84
8. Adult Hemicaranx from the Atlantic Ocean 87
9. Interspecific variation in number of scales in
curved lateral line of Hemicaranx 88
10. Winter Atlantic Ocean equatorial surface currents 91
11. Interspecific variation in ratio of straight to
curved lateral line lengths in large adult Hemicaranx . . . 107
12. Number of teeth in the premaxillary bone of
Hemicaranx from Panama Bay, Panama 108
13. Number of teeth in the dentary bone of Hemica ranx
from Panama Bay, Panama 109
14. Interspecific variation in number of teeth in large adult
specimens of Hemica ranx 110
15- Length of the pectoral fin in Hemicaranx from Panama
Bay, Panama Ill
vi

16. Length of the pelvic fin in Hemicaranx from Panama
Bay, Panama 112
17. Lateral outlines of anterior caudal peduncle scutes
in Eastern Pacific Hemicaranx 114
18. Width of the anterior peduncle scute in Hemicaranx
from Panama Bay, Panama 115
19. Juvenile specimens of Hemicaranx 117
20. Adult Hemicaranx from the Eastern Pacific Ocean 119
21. Lateral outlines of anterior ends of articulated
premaxillary and dentary bones in Eastern Pacific
Hemi caranx 121
22. Interspecific variation in width of the anterior
peduncle scute in large adult Hemicaranx 122
23. Phenetic dendrogram of genera of Carangidae
sharing a matching coefficient of at least
.75 with Atule 134
24. Ratios of straight to curved lateral line
lengths in the species of Atule 139
25. Depth of head in Atule 140
26. Species of Atule 142
27. Width of the anterior caudal peduncle scute
in the species of Atule 143
28. Number of premaxillary teeth in the species of
Atule characterized by uniseriate dentition 144
29. Relative lengths of ultimate (terminal) and pen¬
ultimate soft dorsal fin-rays in Atule 145
30. Interspecific variation in number of fin rays in
the soft dorsal fin of Atule 146
31. Interspecific variation in number of fin rays in
the soft anal fin of Atule 146
32. Interspecific variation in number of scales in
curved lateral line of Atule 147
33* Interspecific variation in number of scutes in
straight lateral line of Atule 147
34. Interspecific variation in width of the anterior
peduncle scute in Atule 148
35. Distribution of the species of Atule 149
vi 1

TABLES
Table Page
1. Geographic distribution of the nominal genera of Carangidae . . 172
2. Characters coded in numerical taxonomy of
Carangidae 173
3. Character state-operational taxonomic unit matrix
for Carangidae 174
4. Coefficients of association for carangid operational
taxonomic units from Japan 176
5. Second generation matrix of association coefficients,
calculated for cluster stems and individual OTU1s
incorporated in Japanese carangid cluster analysis 177
6. Distribution of primitive skeletal character states
in Japanese Carangidae, plus Hemicaranx 178
7. Morphometric values for Hemicaranx amblyrhynchus
from Western Atlantic localities 179
8. Meristic values for Hemicaranx amblyrhynchus from
Western Atlantic localities , 182
9. Morphometric values for Hemicaranx bicolor from
three West African localities 183
10. Meristic values for Hemicaranx bicolor from three
West African localities 185
11. Comparative morphometric values for two species of
Hemica ranx from Panama Bay, Panama 186
12. Comparative meristic values for two species of
Hemicaranx from Panama Bay, Panama 189
13* Morphometric values for Hemicaranx zelotes from
the lower Pacific coast of Baja California, Mexico 190
14. Meristic values for Hemicaranx zelotes from the
lower Pacific coast of Baja California 191
15. Number of dorsal fin rays in four species of
Hemicaranx 192
vi i i

16. Number of anal fin rays in four species of
Hemi caranx 193
17. Number of pectoral fin rays in four species of
Hemi caranx 19**
18. Number of scales in the curved lateral line of
Hemi caranx 195
19. Number of scales in the straight lateral line of
Hemi caranx 195
20. Number of scales in the curved lateral line of
Atule 197
21. Number of scutes in the straight lateral line
of Atule 197
22. Coefficients of association between Hemicaranx
OTU and OTU's from Japan 199
23. Coefficients of association between Chloroscombrus
OTU and OTU's for which character state information
i s avai lable 200
2**. Atlantic Ocean surface temperatures 201
25. Comparison of diagnostic characters of the species
of Hemicaranx 202
26. Morphometric values for the species of Atule 203
27. Meristic values for the species of Atule 205
28. Number of teeth in species of Atule with
uniseriate dentition 206
29. Number of dorsal fin rays in the species of Atule .... 206
30. Number of anal fin rays in the species of Atule 206
31. Comparison of diagnostic characters of the species
of Atule 207
i x

OSTEOLOGICAL FIGURES
Figure Page
1. Neurocranium of Hemicaranx zelotes 210
II. Dorsal views of anterior edge of dorsal surface
of ethmoid bone in four species of
Hemicaranx 212
III. Suborbital series in Hemicaranx zelotes 212
IV. Dorsal view of two representative suborbital
shelves in Hemicaranx amb1yrhynchus 212
V. Lower jaw of Hemi ca ranx zelotes 21A
VI. Outline of posterior edge of left dentary in
Hemicaranx 214
VII. Lateral view of upper jaw of Hemicaranx zelotes # < # 216
VIII.Outline of dorsal edge of left premaxillary in
Hemi caranx 216
IX.Lateral view of hyomandi bu 1 ar bones of Hemica ranx
ze lotes 218
X. Lateral outline of symplectic bone in Hemicaranx _ _ 218
XI. Lateral outline of pterygoid bone in Hemica ranx > _ 218
XII.Lateral view of opercle, subopercle, and inter-
opercle in Hemicaranx zelotes 220
XIII.Adpharyngeal view of basihyal bone and branchial
elements of Hemicaranx zelotes 222
XIV. Lateral views of hyal bones of Hemicaranx zelotes . . 224
XV. Outlines of selected hyal elements in Hemicaranx t _ 226
XVI. Appendicular skeleton of Hemicaranx zelotes 228
XVII. Outline lateral view of postcranial axial and
medial skeleton, exclusive of caudal skeleton,
in Hemica ranx zelotes 230
x

XVIII. Pterygiophore - lepidotrich articulation in
Hemicaranx zelotes 232
XIX.Lateral outlines of the distal ends of anal
pterygiophores in Hemicaranx 232
XX.Representative vertebrae in Hemicaranx zelotes . . . 232
XXI.Lateral view of caudal skeleton of Hemicaranx
zelotes 23^4
XXII.Ontogenetic fusion and development in Hemicaranx
ze 1 otes and Ch 1 oroscombrus chrysurus 234
XI

ABBREVIATIONS
I nstitut ions
AMNH
ANSP
BMNH
CAS
CAS-SU
CM
FMNH
FSBC
FSU
GCRL
LACM
MNHN
NMC
RMNH
SIO
TABL
TU
UBC
UCLA
UF
USNM
American Museum of Natural History, New York City
Academy of Natural Sciences of Philadelphia
British Museum (Natural History), London
California Academy of Sciences, San Francisco
Stanford University collection, now at CAS
Charleston Museum, Charleston, South Carolina
Field Museum of Natural History, Chicago
State of Florida Marine Research Laboratory,
St. Petersburg
Florida State University, Tallahassee
Gulf Coast Research Laboratory, Ocean Springs,
Mississippi
Los Angeles County Museum of Natural History
Museum National d'Histoire Naturelle, Paris
National Museum of Canada, Ottawa
Rijksmuseum van Natuurlijke Historie, Leiden
Scripps Institution of Oceanography, La Jolla
Tropical Atlantic Biological Laboratory, Miami
Tulane University, New Orleans
Institute of Fisheries, University of British Columbia,
Vancouver
Department of Zoology, University of California, Los
Angeles
Florida State Museum, University of Florida, Gainesville
United States National Museum, Washington, D. C.
Bones, By Region
Neurocranium
BOC
basioccipi tal
BS
basisphenoid
DSO
dermosphenotic
E
ethmoid
EOC
exoccipita1
EPO
epiotic
F
frontal
L
1 acrycna 1
LE
lateral ethmoid
N
nasal
OPS
opisthotic
XI i

p
parietal
PRO
prootic
PS
parasphenoid
PTO
autopterotic
PTS
pterosphenoid
PM
prevomer
S
sclerotic
SPH
autosphenotic
SUB
suborbital
SUO
supraoccipi tal
Branchiocranium
Oromandi bular region
Upper jaw bones
MX
maxi 1lary
PMX
premaxi 11 ary
SMX
supramaxi1lary
Lower jaw bones
AN
AR
D
Hyoid region
B
BH
CH
EH
HM
IH
I0P
LHH
MSPT
MTPT
OP
PAL
POP
PT
Q
SOP
SV
UH
UHH
Branchial region
angular
articular
dentary
branchiostegal rays
basihya1
ceratohya1
epihyal
hyomandi bu lar
interhyal
interoperc1e
lower hypohyal
mesopterygoid
metapterygoid
opercle
palatine
preopercle
pterygoid
quadrate
suboperc1e
symplectic
urohya1
upper hypohyal
basibranchial
ceratobranchi a 1
BB
CB
XI i

EB
HB
PB
epibranchial
hyopobranchial
pharyngobranchial
Appendicular Skeleton
Pectoral girdle
CL
cleithrum
CO
coracoid
LEP
lepidotrichs
PCL
postcleithrum
PTM
posttempora1
R
rad ials
SC
scapula
SCL
supracleithrum
Pelvic girdle
BPT
basipterygiurn
LEP
lepidotrichs
Axial Skeleton
CV
caudal vertebrae
EPR
epipleural rib
PCV
trunk (precaudal) vertebrae
PR
pleural rib
Medial Skeleton
DPT
distal pterygiophores
LEP
lepidotrichs
PD
predorsals (supraneura1s)
PPT
proximal pterygiophores
Caudal Skeleton
CAP
antepenultimate caudal verteb
CP
penultimate caudal vertebra
EP
epural
HS
hemal spine
HY
hypura1
NS
neural spine
PCR
principal caudal ray
SCR
secondary caudal ray
UN
uroneura1
UR
urostylar (terminal) vertebra
XIV

Abstract of Dissertation Presented to the
Graduate Council of the University of Florida in Partial Fulfillment
of, the Requirements for the Degree of Doctor of Philosophy
Systematics of the Genera Hemicaranx and Atule
(Pisces: Carangidae), with an Analysis of the Classification
of the Fami1y
By
William Seaman, Jr.
August, 1972
Chairman: Carter R. Gilbert
Major Department: Zoology
The carangid fish genus Hemicaranx Bleeker is an uncommon compon¬
ent of the subtropical and tropical ichthyofauna of the Atlantic and
Eastern Pacific Oceans. Analysis of specimens from throughout the
range for external morphological and osteological characters was per¬
formed to resolve the systematic status of the nominal species of
Hemicaranx. Based on examination of morphometric, meristic, and
osteological characters, four species are recognized: H. amblyrhynchus
(Cuvier), a wide-ranging Western Atlantic shore species that is document¬
ed to be estuarine dependent; H_. bicolor (Gunther) of the Eastern
Atlantic, closely related to amblyrhynchus but differing with regard
to number of dorsal and anal rays, length of caudal lobes, and several
osteological characters; and H_. zelotes Gi 1 bert and H_. 1 eucurus (Gunther),
which occur sympatrica11y over much of their ranges along the Eastern
Pacific coast from Mexico to Peru. The latter two species are distin¬
guished on the basis of tooth morphology, body bars, caudal scute width,
and, in larger individuals, pectoral fin length. H_. zelotes and H_.
1 eucurus are more closely related to each other than either is to H_.
amblyrhynchus and H. bicolor.
xv

To describe the osteology of Hemicaranx, two existing methods for
obtaining skeletal material from preserved specimens were combined for
the first time. Thus, larger preserved material was heated in enzyme-
based detergent solution and rinsed with ammonia, thereby speeding up
disarticulation.
Because the species of Hemicaranx and Atu1e are sometimes combined
in a single genus, and since a number of workers have questioned their
relationship, the hypothesis that the two genera are distinct but close¬
ly related was explored. Osteological data from the present study were
combined with a synthesis of the osteological catalog of Suzuki to assess
the relationship of Hemicaranx to the Indo-Pacific Carangidae. Based
on the numerical taxonomic analysis conducted, I conclude that Hemicaranx
and Atule are generically distinct, though very closely related. The
phenetic classification of this study confirms to a large degree the
phylogeny proposed by Suzuki for Japanese carangids.
Study of limited geographic and ontogenetic samples of Atule
provides the basis for review of the genus. Five valid species, all
in the Indo-Pacific basin, are recognized: A_. kal 1 a, A_. mate, A_. mal am,
A_. djedaba, and A_. macrurus. Diagnostic characters include dentition,
lateral-line ratios, and number of lateral-line scutes.
Ecologically, both Hemicaranx and Atule are characterized by
early juvenile stages that are commensal with jellyfishes. The possibil¬
ity of transoceanic dispersal by currents is seemingly confirmed by the
transport of H. bicolor from Africa to northeastern South America.
XV i

INTRODUCTION
The teleostean fish family Carangidae, whose members are commonly
known as the jacks, pómpanos, and scads, is well known because of the
commercial and/or sport fisheries supported by a relatively small number
of its species. Many members of this distinctive, primarily circum-
tropical, marine family are still poorly known systematically, however,
and as Berry has noted (1968: 16*0 the morphological characteristics
and limits of a number of carangid genera are inadequately defined,
pending thorough analysis of the species involved. Such is the case
for Hemicaranx Bleeker, a small, uncommonly collected genus whose
species are found in the tropical and subtropical coastal waters of
the Atlantic and eastern Pacific Oceans. With the accumulation of pre¬
served specimens of the nominal species in institutional collections,
it is now possible to revise the species of Hemicaranx. Based on
examination of (1) intraspecific variation of external morphology,
including several characteristics that have not been included in
earlier accounts of the species, and (2) osteology, which heretofore
has not been studied in Hemicaranx, the limits of the genus are also
defined in this study.
In seeking to identify the carangid genera with which Hemicaranx
might share a more or less common ancestor, it became apparent that
the supposedly phylogenetic classification of the Carangidae rests
mainly on subjective grounds. Without an abundance of fossil evidence
to provide an objective basis for definition of "primitive" characters,
]

2
students of this and many other groups have tended to base their class¬
ifications on either intuition or the assumption that the most widely
shared characters are most typical of ancestral forms. Indeed, taxon-
omically significant characters have frequently (but uncritically)
been assumed to be of significance in defining phylogenetic trends; the
danger of such a practice was pointed out by Gilbert and Bailey (1972:
9). Sokal and Sneath (1963: 67) extensively discussed the problems at¬
tendant to inference of phylogeny from affinity (morphological resemb¬
lance, etc.) of organisms. To identify the genera of closer affinity
to Hemicaranx two alternative approaches may be employed:
1. Overall comparison of genera, as one might do in "keying-out"
a specimen, utilizing perhaps only a few characters that are more
"significant" (taxonomic or phylogenetic?) in constructing a phy-
1ogeny.
2. Comparisons based on large numbers of non-weighted, randomly
selected characters that result in an objective description of
phenetic resemblance.
The former approach is typical of the literature dealing with the
Carangidae; of recent import is the classification of the traditionally
recognized and accepted generic taxa of Japanese carangids by Suzuki
(1962), who based a phylogeny upon osteological characters. Also, on
the basis of "weighted" characters reflecting general morphological
similarities, the genus Atule of the Indo-Pacific basin was referred
to as a possible "close relative" of Hemicaranx by Nichols (19^2b: 229).
Indirect comment on the affinity of Hemicaranx to Atule was provided
by Fowler, who included species of both genera in the invalid genus
A1epes. Preliminary examination and comparison of nominal species of

3
Atuje with Hemicaranx confirms these appraisals.
Because Atu1e is poorly known and its species frequently confused,
and because of relatively close affinity to Hemicaranx, its species --
known from limited collections -- are reviewed. The relationship of
Atule to Hemicaranx will be assessed as part of the overal1 review of
generic classification presented in this study.
The second approach is based on the principles of numerical taxonomy
Because these techniques have not previously been applied to the Carangid
ae, or many other teleosts, the procedures of Sokal and Sneath (1963)» on
which they are based, are briefly summarized and are then employed to
identify those genera to which Hemica ranx is related. In addition to
providing an alternate method of identifying relative affinities of gen¬
era, numerical taxonomy will be used in this study to generate a phenetic
classification of the Indo-Pacific Carangidae. As a means of evaluating
the phylogeny proposed by Suzuki (1962), the osteological characters he
used will be incorporated in this alternate classification insofar as
possible. In reviewing Suzuki's work it was necessary to reconcile hypo¬
thesized phyletic trends with the fossil record; a summary of primitive
carangid characters is essential to this task.
As with many marine teleost families, the Carangidae are more
diverse in the Indo-Pacific region. Because more genera are present
there than in the Atlantic and Eastern Pacific Oceans, it is likely
that the Indo-Pacific basin is the center of origin of the Carangidae
(Table 1). Of interest is the apparent failure of several genera from
the Indo-Pacific to enter the Atlantic or cross the Eastern Pacific past
Hawaii, perhaps partly because of either relative age of genera or their
relative rates of dispersal (see Table 1). Also of note is that several

genera (including Hemicaranx) are found only in the Atlantic and
Eastern Pacific basins. This may be due to a) lack of critical study
and definition of genera (Mansueti, 1963: 55; Berry, 1968: 164),
resulting in simple unresolved synonymies, or b) evolution of new
taxa (genera) from some genera that did indeed reach the Atlantic and/or
Eastern Pacific either through the Tethys Sea of pre-Miocene times, or
around the southern tip of Africa, or across the Pacific Ocean. The
numerical taxonomy generated in this study may also prove useful in
assessing the various evolutionary histories of the genera of Carangidae.
In particular, it will be employed to comment on the affinities of
Hemicaranx.

METHODS
Counts and measurements of external morphological characters of
fish specimens examined were based as much as possible on standard
ichthyological procedure. For the most part, meristic and morphometric
data are expressed in terms of the definition of Hubbs and Lagler (1958:
19-26). However, the unique characteristics of certain Carangidae
necessitate the use of additional or modified counts and measurements;
in this regard, I have attempted to use those characters already defined
in the literature dealing specifically with carangid fishes (i.e.,
Berry, 1959; Williams, 1959; and Berry, 1968). Definitions of terms
from the literature, as well as terminology unique to this study, are
presented in the Glossary. All measurements were taken using dial
calipers; distances greater than 100 mm were read to the nearest
mi 11imeter.
Deduction of evolutionary history usually is based on the assump¬
tion that degree of relationship is positively correlated with degree
of resemblance. To strengthen the conclusions based on such comparisons
the number of characters examined may be increased to reduce misleading
interpretation of convergence of certain characters. Although external
morphology is most commonly employed, osteological features may be also
used to expand the evidence of taxonomy, and to construct phylogenies
based on degree of resemblance, Indeed, the supposed "conservative"
nature of osteological characters has prompted workers to accept them
as preferred kinds of evidence. (Norden [1961: 683], for example,
5

6
acknowledged this, but he also employed developmental stages and other
morphological aspects.) However, the occurrence of significant infra¬
specific variation of certain osteological characters in some groups of
fishes (Schleuter and Thomerson, 1971) demonstrates the fallacy of a
typological approach to osteology. The need to account for infra¬
specific osteological variation before incorporating such information
in taxonomic definitions is apparent.
Analysis of infraspecific osteological variation was based on exam¬
ination of up to five specimens of closely similar standard length (65"
70 mm). Ontogenetic change was studied in specimens ranging from 33 to
150 mm SL. Osteological observations were made primarily on cleared and
stained specimens, but other preparations were also employed, as dis¬
cussed below. Skeletal material examined is listed in Appendix ill.
As nearly as possible, osteological terminology conforms to that
used in more recent publications on the Carangidae (i.e., Suzuki, 1962,
Berry, 1969). However, all usage has been reconciled with accepted
ichthyological literature; pertinent in this regard are Harrington, 1955
(osteocranium), Smith and Bailey, 1961 and 1962 (dorsal skeleton, sub¬
ocular series), and Gosline, 1961 (caudal skeleton). Terminology at
variance with Suzuki (1962) is so noted in the text. A listing of
skeletal elements is provided in the Abbreviations section. In the
osteological section, a detailed account of the location, orientation,
and morphology of each skeletal element is provided for one species of
Hemicaranx, namely H. zelotes. Following the description of each bone,
any interspecific differences are noted.
Material examined in the course of this study is listed in each
species account. For each lot of specimens studied, data are presented

7
in the following format: Institutional catalog number; number of speci¬
mens and size range (mm SL), in parentheses; and locality data (country,
state or province, county if in U. S., geographic locality, latitude, long
tude, depth, cruise, collector, date). Institutional abbreviations are
listed at the front of the text.
Outline drawings of material were made with a Wild camera lucida,
modelled in pencil, and ink drawings were then executed.
Statistical treatment of data was carried out by means of a Monroe
Epic 3000 Calculator in the computation of descriptive statistics, and
a Monroe Epic 1665 Calculator in the generation of t-statistics for
unequal sample size and unequal standard deviation (Snedecor, 1956: 97”
98). Comparison of larger numbers of samples was effected using the
graphical approximation to a multiple-comparison test of Eberhardt (1968).
The advantages of this technique, especially preservation of the stated
level of significance, are discussed by Eberhardt; significance levels
stated in figure legends of this text are derived from Eberhardt (1968:
Figure 2). Inspection of data reveals that many characters follow allo-
metric growth curves; for such characters restricted straight-line por¬
tions of the curve were compared for different samples of similar-sized
individuals. Ontogenetic growth is discussed in the species accounts.
Numerical Taxonomy
As employed by McAllister (1966) the techniques of Sokal and Sneath
(1963) have been shown to be of utility in assessing and establishing
a phenetic classification of fishes. McAllister (1966: 227-229) pro¬
vides a summary of the methods of coding characters and calculating and
tabulating simple matching coefficients; however he does not extend the
techniques of Sokal and Sneath beyond a coefficient matrix, nor does he

8
subject his data to standard cluster analysis to plot a dendrogram.
Therefore, a summary of the techniques of Sokal and Sneath herein em¬
ployed is provided:
1. Selection of characters.
2. Coding. Each character was recorded as being either present
or absent for each operational taxonomic unit (0TU)(i.e., generic taxon).
A list of the character states is provided in Table 2; a matrix of char¬
acter states appears in Table 3.
3. Calculation of matching coefficients of association, based on
the formula Ssm= m/n, where Ssm is the coefficient, m is the number of
character states shared between OTU's, and n is the total number of char¬
acter states compared. Matching coefficients are listed in Table 4.
4. Cluster analysis. As evaluated by Sokal and Sneath (1963: 189)
the "weighted pair group method" of cluster analysis, using averages to
calculate new similarity coefficients for each generation, results in the
least distortion of dendrograms. This technique is herein employed to
plot dendrograms; new members are weighted as equal to the sum total of
old cluster group members (Sokal and Sneath, 1963: 190-191). A second
generation matrix is illustrated in Table 5.
Preparation of Skeletal Material
Investigations of teleostean osteology have usually been based on (l)
X-rays of specimens, (2) cleared and stained material, and/or (3) dry
bones that have been cleaned of soft tissues. Limitations of each tech¬
nique exist: X-rays obscure 3_dimensional detail and prevent direct
handling of bones; very large specimens frequently fail to clear even
after months of enzyme digestion, and certain groups are resistant to
the process (Miller and Van Landingham, 1969: 829); dissection and re¬
moval of bones from preserved specimens may be prohibitively time

9
consuming, whereas fresh material from which dry bone preparations may
be obtained by maceration is frequently not readily available. Thus,
the osteological characters of many fish groups have not been incorporated
in systematic studies.
Collections of comparative skeletal material of the species of
Hemicaranx are extremely limited. Because the enzyme method of Taylor
(1967) for clearing and staining small vertebrates did not yield satis¬
factory results on carangid fishes greater than 100 mm SL, I employed
two recently developed techniques for the preparation of dry bones from
preserved material to examine the osteology of individuals of Hemicaranx
above 100 mm SL. I found, however, that Konnerth's (1965) method of pre¬
paring ligamentary articulated specimens consumed an inordinate amount of
time in the skinning and removal of tissue from specimens. The possibility
of skeletal damage by chlorine, which must be employed in this method, is
also a drawback (Ossian, 1970: 199). Meanwhile, the technique of Ossian
(1970) for spec imen disarticulation using enzyme-based laundry "pre¬
soakers" consistently resulted in partial disintegration of superficial
bones, especially dermal elements of the jaws and opercular series, before
complete disarticulation could occur. To avoid these difficulties, I
combined complementary aspects of each technique.
Preserved whole carangid specimens (150-200 mm SL) were transferred
from alcohol storage into "Biz" solution and maintained at 70^ C, follow¬
ing the procedure of Ossian (1970). Within 2k to 96 hours after initial
immersion, deterioration of superficial skin and membranes takes place,
although,because it precedes bone damage, such deterioration is a useful
signal of imminent osteological disintegration or alteration. At this

10
point, then, more superficial skeletal elements may be easily removed
before they are altered, either individually or as a unit, and the remain¬
der of the skeleton and attached flesh returned to a fresh "Biz" solution.
After brief additional soaking the deeper cranial and axial muscle masses
are easily split off in chunks, thus effecting considerable time-savings
over the method of Konnerth (1965). Exposure of bare bone to "Biz" solu¬
tion necessitates termination of soaking, but the remaining soft tissues
may now be readily removed -- especially if the specimen is soaked in
ammonia after rinsing, as discussed by Konnerth (1965: 328). By this
time, too, all preservative has been washed out of the specimen, and
maceration in water may also be employed to remove remaining tissue.
With judicious combination of the techniques of Konnerth (1965)
and Ossian (1970) it is now possible to prepare adequate amounts of un¬
damaged osteological material from preserved fish specimens. With dis¬
section, units of the skeleton may be retained in articulated condition.

CLASSIFICATION OF INDO-PACIF1C CARANGIDAE
Classifications are frequently based on a relatively low number
of taxonomic characters. For example, ever since Bleeker1s (1862: 135“
138) initial taxonomic distinction of several carangid genera on the
basis of dentition, distribution of teeth has been accorded special
taxonomic importance in the classification of Carangidae. Over the years
a small number of additional characters have been incorporated into
classifications as a means of defining carangid taxa: presence or ab¬
sence of lateral"line scutes, for example, has been utilized in the
establishment of subfamilies, just as presence or absence of detached
finlets has been ascribed value in generic diagnoses. More extensive
subsequent description of overall external morphology of species initi¬
ally distinguished by one or a few diagnostic characters has, for the
most part, confirmed the initial taxonomic interpretations, thus imply¬
ing that groups of characters vary in a correlated fashion. This con¬
clusion has apparently served as a "carte blanche" for the weighting of
certain characters as more important than others in establishing taxo¬
nomies. That is, suites of correlated characters may be incorporated
into taxonomy as a group (i.e., the "single adaptive complex" of Mayr,
et a 1., 1953: 123) by weighting a single member of the suite and letting
it represent the group, thus eliminating the need to continually repeat
character state information.

12
Besides the use of weighted characters — which are not always
documented 1) to be representative of a suite or 2) to be primitive --
speculation about evolutionary trends has usually been based on the
assumption that closely related taxa share relatively more characteristics
than do more distantly related forms. For the Carangidae, for example,
Ginsburg (1952) ascribed phylogenetic relationship on the basis of ex¬
ternal morphological similarity. Most notable in this regard is the
phylogeny proposed by Suzuki (1962) for Indo-Pacific carangids based
upon an extensive catalog of osteological features.
A Review of the Suzuki Classification
of Japanese Carangidae
In a comparison of Indo-Pacific carangids from Japan (Table 1),
Suzuki (1962) provided descriptions of variable detail for over 70
osteological features. Out of 3** characters demonstrated to be diagnostic
for all genera, Suzuki (p. 130) listed ten that are "significant for dis¬
closing their phylogeny." Based on these characters a progenitor is
hypothesized, and extant forms are compared to the "ideal" in an effort
to delineate the evolutionary trends of subfamilies. In a subsequent
discussion of evolution within subfamilies, Suzuki cited various diagnostic
characters as evidence for derivation of phyletic units. However, in his
discussion Suzuki did not document many of the evolutionary trends he
hypothesized; if he had a rationale for a widely opened myodome being
primitive (p. 66), for example, he did not express it.
Also, out of many so-called primitive characters Suzuki chose to
weight some as being of special significance in phylogeny. In his dis¬
cussion of the suspensorium and opercular apparatus, for example (p. 87),

13
he listed eleven characters significant to classification; shape of
pterygoid and height of apparatus are stated to be of particular
importance. Again no rationale was given for the differential phylo¬
genetic significance.
The "disposition of genera in conformity with their degree of
differentiation" proposed by Suzuki (p. 133) is illustrated in Figure
1. Essentially this phylogenetic tree is based on documented and un¬
documented suppositions that, of the scores of features examined,
but a relative few are of utility in deducing phylogeny.
Primitive Characters of the Carangidae
The Carangidae first appear in the fossil record during the Eocene,
and they are thought to have arisen from a dinopterygoid beryciform
close to the genus Aipichthys (Patterson, 1964: 398). During the course
of evolution the Carangidae have lost the following characters that
are still found in Aipichthys: eight branch i ostega1 rays (reduction to
seven), orb itosphenoid , toothed endopterygoid , fewer dorsal spines and
no free spines in front of the dorsal, 17 branched caudal rays (reduction
to 15) (Patterson, 1964: 397). Characters shared between Aipichthys
and the Carangidae include: high supraoccipita1 crest; upturned,
protrusible mouth; absence of ornamentation on cranial bones; single,
elongate supramaxi11 ary; number of vertebrae (10 + 15); form of
cleithrum (lengthened and broadened ventrally); form of coracoid
(enlarged); long dorsal and anal fins with a few spines and with
elongate anterior rays; cycloid scales; and especially deeply forked
caudal-ray bases (Patterson, 1964: 397, 469-470).
Gregory (1933: 300-303) cited as primitive characters for the
Carangidae, a low number of vertebrae (24-26), spinous dorsal and anal

CHORINEMUS
TRACHINOTUS
Figure 1.
Phylogeny of Japanese Carangidae (Redrawn from Suzuki, 1962: 133)

15
fins that are neither reduced nor separated, non-broadened opercular
(antero-posteriorly) , and less elongate head. He also stated that in
more primitive carangids the supraoccipital-frontal crest is steeper
and higher, the opercle relatively deep and short, the mouth small,
with a long ascending process of a protrusible premaxillary, the
quadrate articular joint moderately far forward, and the body is
deeper ("ovate to orbicular"). Presumably, Gregory based these
trends on examination of Ai pi chthys, which he referred to as a "deep¬
bodied Cretaceous form" that may be the real ancestor of the Carangidae
(1933: 300).
If these substantiated primitive characters are compared with
those used by Suzuki, one can see that he was correct in weighting
certain of the characters he employed as phylogenetic evidence.
Included are the primitive character states of (1) eight branchio-
stegal rays, (2) a supramaxi11 ary, (3) a high supraoccipital crest,
and (A) a protractile premaxillary. In addition, (5) the absence of
scutes, specialized structures appearing only in some members of the
family, and (6) a feebly developed first hemal spine appear to be
typical of primitive carangids and apichthyids. Finally, the (7)
expansion of the post-maxillary process as a bracing supportive struct¬
ure, ancillary to the development of a protrusible mouth as an evol¬
utionary advancement (Patterson, 1964: A56) , appears to be a valid
trend in the group. Data of Suzuki for these few characters, when
tabulated after the manner employed by McAllister (1966: 230-231),
give some indication of the degree of resemblance of extant carangids
to ancestral forms (Table 6). Because data on only six primitive
characters are available for all genera in Suzuki, little significance

16
is attached to the tabulated summaries. Indeed, all genera have
between two and four primitive character states present. Clearly,
further appraisal of primitiveness, based on documented literature
accounts of fossils, must await additional study of appropriate
characters, including studies of external morphology, a task acknowled¬
ged by several workers.
In addition to a low number of documented primitive characters,
Suzuki also incorporated into his phylogenetic classification weighted
characters for which the primitive state is conjectural. Hypothe¬
sized primitive characters that were weighted include (1) rostrum
wide and short, (2) myodome opening wide, (3) ceratohyal window
wider, (4) urohyal shorter, and (5) olfactory cavity absent. Finally,
numerous other characters are unweighted in this study. As a result,
even though Suzuki reviewed scores of osteological features, only
a small number of diagnostic generic characters are incorporated
into his "hybrid-phy1ogeny," one that is inconsistent in employment
of characters and their weighting.
Numerical Taxonomy of the Japanese Carangidae
The extensive osteological catalog for the Carangidae provided
by Suzuki (1962) may be incorporated into an alternative scheme of
classification, based on the techniques of numerical taxonomy, in
which all characters are weighted equally. (The large number of
characters examined by Suzuki are not equally nor uniformly described
for all species in his discussion; this analysis is based only on the
characters completely cataloged in his paper.) Equal weighting
(Sokal and Sneath, 1963: 118-120) is employed as an alternative to the
dilemma of allocating differential weights to characters that may or

Phenetic dendrogram of Indo-Pacific
Carang¡dae
COEFFICIENT OF ASSOCIATION (Ssm x 100)
CTN oo
O O o
u>
o
IQ
c
(D
N)
ALECTIS
CI TULA
ATROPUS
CARANX
KAI WAR INUS
LONG I ROSTRUM
CARANGOI DES
URASPIS
GNATHAN0D0N
SELAROIDES
DECAPTERUS
TRACHURUS
ATULE
SELAR
MEGALASPIS
ELAGATIS
NAUCRATES
SERIOLA
TRACHINOTUS
CHORINEMUS

18
may not be classified as to "primitiveness." As discussed above, only
a small number of characters may unquestionably be described as
primitive for the Carangidae; many others may or may not be. (An infin¬
ite number of weightings could be assigned, therefore, with evaluation
largely a matter of subjective preference.)
As suggested by McAllister (1966: 227), the minimum of .40 charac¬
ters were coded for each OTU (Table 3)* Based on weighted pair group
cluster analysis, twelve association matrices (e. g., first generation,
Table 4; second generation, Table 5) were generated in the description
of a phenetic dendrogram (Figure 2).
The dendrogram in Figure 2 has utility in three ways:
1. It provides a visual illustration of the degree of taxonomic
similarity and difference between and among OTU's.
2. The taxonomic status of nominal genera may sometimes be re¬
solved. The extreme resemblance of two genera, especially when one is
monotypic, may indicate a congeneric situation. This process has the
additional effect of providing a mechanism for evaluation and revision
of diagnostic characters.
3. It provides a basis for phylogenetic deductions, based on the
assumptions that a) phenetic clusters of extant OTU's are most likely
monophyletic, and b) the best estimate of the attributes of a common
ancestor of a cluster -- in the absence of direct evidence -- is pro¬
vided by the cluster (Sokal and Sneath, 1963= 227).
Based on OTU association coefficients (Table 4, Figure 2) some
of the more apparent deductions about the phylogeny of Japanese carangids
include: "early" derivation of Chorinemus from the stem; derivation
of T rachinotus, and Elagatis , Naucrates , and Seriola from an "early"

19
common stem. These are not at variance with classical subfamilial
classification that relegates Chorinemus to the Chorineminae, Trachin-
otus, to Trachinotinae, and the latter three genera to the Naucratinae
(SUzuki, 1962). Were all lower clusters to be divided taxonomica11y,
however, it might be necessary to name the two remaining main stems
(which bear the nominal genera of the Caranginae). That is, two
groups of genera accorded to the subfamily Caranginae, namely Long i ros t rum
through Kaiwarinus, and Trachurus through Selar , plus Mega 1aspis
(Figure 2), deviate from a common stem at a lower coefficient than do
the Trachinotinae and the Naucratinae. Two alternatives to achieve
a uniform taxonomy are suggested: 1) assign subfamilial rank to the
two carangine groups, since Elagatis - Serióla and Trachinotus are
accorded to subfamilies, despite a higher branch-point; or 2) abondon
the Naucratinae and Trachinotinae as subfamilial categories.
An additional conflict of taxonomies is seen for the Megalaspinae
(Mega 1 aspis) which was thought by Suzuki to be an early offshoot of the
Naucratinae-Caranginae line (Figure 1). Cluster analysis of character
states reveals the affinity of Megalaspis to the Trachurus-Selar group
illustrated in Figure 2.
Agreement of the two taxonomies is also observed in the clustering
of the genera Atule, Decapterus, Trachurus, and Selar (=Trachurops).
The clustering of the genera of the Long i ros t rum - Kaiwarinus group
also agrees with Suzuki's phylogeny.
In practice, the numerical taxonomy illustrated in Figure 2
points out the subjective nature of Suzuki's scheme. Based on ten
characters Suzuki (1962: 130-132) concluded that (1) the Naucratinae
are nearest the "Ideal form" (the progenitor of the family), (2) the

20
Trach¡notinae (more primitive than the Chorineminae) and the Chorineminae
both deviated at an early stage from the main stem leading to the
Carangidae, (3) the Megalaspinae are an offshoot from the line leading
the ancestral form of the Naucratinae to the Carangidae, and (4) the
evolution of the Caranginae represents "the main stem of the phylogene-
tical tree of the Carangidae." However, our lack of knowledge of
degree of primitiveness of many of the character states employed by
Suzuki reduces the confidence placed in his classification, although
the general affinities of many of the genera considered in both
studies reinforce many of the phylogenetic deductions to be drawn.
The phenetic dendrogram generated by cluster analysis in this
study avoids the speculative nature of differential character weighting
and its attendant difficulties (Sokal and Sneath, 19^3 * 118-120).
It provides an objective alternative for establishment of classifications,
with the utility of illustrating phylogenetic trends if the assumptions
noted above (3a and b) are valid. McAllister (1966: 234-235) mentioned
that perhaps the ideal procedure is the incorporation of objectively
weighted characters into such a scheme. The need for additional fossil
evidence as a basis for weighting the carangids is apparent, especially
as it pertains to the divergence of taxa from ancestral forms.

OSTEOLOGY OF HEMICARANX
Infraspecific Variation
Examination of series of similar-sized individuals reveals that
infraspecific osteological variation is minimal in the genus Hemicaranx,
with the exception of the suborbital shelf. The shape of the suborbital
shelf is uniquely variable in Hemicaranx (Figure IV), and is unreliable
as a diagnostic character in distinguishing taxa. All other skeletal
features, however, are remarkably constant. Thus it is reasonable to
hypothesize that osteological features are relatively "conservative"
in the Carangidae. Consequently, previous descriptions and definitions
based on single specimens may be regarded as more valid and usually
accurate representations of the osteology of this group. In the compari¬
son of caudal skeletons, for example, more confidence may be placed in
single-specimen observations of carangids. Indeed, this might be pre¬
dicted on the basis of the observation of Schleuter and Thomerson (1971:
33*0 that little variation exists in the caudal skeleton of strong swim¬
mers. However, the demonstration by Schleuter and Thomerson of signi¬
ficant osteological variability in some other fishes cautions against
a typological approach to skeletal characters.
For the most part, ontogeny of the skeleton is characterized by a
uniform expansion of each element, thus allowing some comparison of
different-sized specimens. In the comparative section below, however,
individuals of nearly identical size always were compared.
21

22
Descriptive Osteology of Hemicaranx
Neurocran i urn (Figure l)
Prevomer (PV) (vomer of Suzuki, 1962: ^8). -- The unpaired pre¬
vomer is the anteriormost neurocranial bone. It is characterized in
the lateral plane by a forward-pointing triangular-shaped head from
which a median blade-like process extends posteriorly to articulate
with the ventral surface of the parasphenoid (PS). The anterior
margin of the head of the prevomer carries a dorsal crest, behind
which the ventral edge of the ethmoid (E) inserts. Just posterior
to this, the ventral edge of the lateral ethmoid (LE) articulates.
Antero-1atera1ly the prevomer is in contact with the medial portion of
the palatine (PAL). Dentition is not present in individuals of 65
or 150 mm SL.
Ethmoid (E)(mesethmoid of Suzuki, 1962: 50). — The ethmoid is
unpaired, and is compressed, vertically elongate, and narrowest at the
middle. The anterior ventral edge inserts behind the dorsal crest of
the prevomer (PV), while the posterior vertical edge is articulated
with the medial edge of the lateral ethmoid (LE). The dorsal posterior
corners of this bone are each overlaid by the pointed anterior tip of
the frontal bones (F). The dorsal surface is convex anteriorly.
The anterior edge of the dorsal surface of the ethmoid (Figure ll)
is also convex in H_. 1 eucurus, but it is more sharply curved than in
zelotes. In both H_. ambl yrhynchus and bicolor it is concave, and is
characterized by projections on the anterior lateral corners.

23
Lateral ethmoid (LE) (ectethmoid of Suzuki, 1962: 50). -- The
lateral ethmoid is oriented in the vertical plane, and in lateral view
gently curves posteriorly upward from its articulation with the anterior
parasphenoid (PS). Viewed anteriorly, the lateral ethmoid appears broad
and somewhat butterfly-shaped. The medial edge of this bone broadly
articulates with the posterior lateral edge of the ethmoid (E), which
separates it from its fellow member. Dorsally the lateral ethmoid
contacts the anterior edge of the frontal (F). Located in the upper
medial quarter is the olfactory foramen. Ventrally, the lateral
ethmoid loosely contacts the anterior tip of the pterygoid bone (PT).
Frontal (F). -- The largest of the neurocranial elements, the
frontal bone is broadly united with its fellow member anteriorly in a
dorsally projecting median crest, which is an anterior continuation of
the supraoccipital crest. Anteriorly, the frontals are separated by
the interposed ethmoid (E), while posteriorly the supraoccipita1 (SUO)
is juxtaposed between them. The anterior lateral corner of the frontal
rests on the dorsal edge of the lateral ethmoid (LE). Together with the
parietal(P), to which it articulates posteriorly, the frontal contributes
to the dorsa1-projectIng temporal crest, which extends to the forward
corner of the frontal, terminating at the anterior margin of the orbit.
Laterally, a second crest, the pterotic crest, is present; anteriorly
it extends just in advance of the posterior margin of the orbit, and
posteriorly it carries on to the autopterotic bone (PTO), which articu¬
lates with the posterior margin of the frontal. Beneath the temporal
crest, the ventral surface of the frontal articulates with the ptero-
sphenoid (PTS). Beneath the pterotic crest the ventral surface joins
the autosphenotic (SPH)..

2k
Pterosphenoid (PTS) (a 1 isphenoid of Suzuki, 1962: 59). — Hidden
from dorsal view, this small rhomboida 1-shaped bone is widely separated
from its fellow member by the medial anterior opening of the braincase.
Dorsally the pterosphenoid articulates with the frontal (F). Posteriorly
it articulates with the autosphenotic (SPH); the ventral posterior angle
articulates with the prootic (PRO). The ventral edge of the ptero¬
sphenoid joins the dorsal tip of the lateral wing of the basisphenoid
bone (BS).
Basisphenoid (BS). — The unpaired basisphenoid is a Y-shaped,
short rod-like bone that runs vertically from near the posterior end
of the dorsal surface of the parasphenoid (PS) to join, via each short
arm, the pterosphenoids (PTS).
Parasphenoid (PS). -- The parasphenoid is unpaired and extends
along the midline of the floor of the orbit. Anteriorly, it is charac¬
terized by a dorsal keel, and it is broadly joined to the dorsal surface
of the prevomer (PV) process. Laterally, the parasphenoid appears as
a long narrow shaft, from which an ascending process arises near the
posterior end. The ascending process flares away from its fellow as
it extends vertically to meet the lower anterior edge of the prootic
(PRO). The anterior tip of the parasphenoid touches the ventral margin
of the ethmoid (E). Posteriorly, the parasphenoid is broadly connected
to the anterior end of the basioccipita1 (BOC).
Supraoccipita1 (SUO). -- Prominent in lateral view is the medial
dorsal keel, the supraoccipita1 crest, formed by this unpaired bone.
The supraoccipita1 bone extends anteriorly over the posterior third of the
orbit. From front to back, it contacts the medial edges of the frontal (F),

25
parietal (P), and epiotic (EPO), respectively. Ventero-posteriorly it
joins the exoccipitals (EOC).
Parietal (P). -- The anterior edge of the parietal articulates
with the posterior edge of the frontal (F), from which it carries back¬
ward the temporal crest. The parietal is widely separated from its
fellow member by the medially interposed supraoccipita1 (SUO). The
lateral edge articulates with the autopterotic bone (PTO).
Autopterotic (PTO)(pterotic of Suzuki, 1962: 60). — The auto¬
pterotic bone is prominently characterized by the pterotic crest, which
is carried forward by the adjoining frontal bone (F). Posteriorly the
crest terminates as a posterior projection, below which a spine extends
backward. The ventral edge is articulated with the autosphenotic (SPH)
anteriorly, and posteriorly with the prootic (PRO), the opisthotic (OPS),
and the exoccipital (EOC). Dorsally the pterotic contacts the parietal (P)
and the epiotic (EPO).
Autosphenotic (SPH)(sphenotic of Suzuki, 1962: 59)* Characterized
by ridges and perforations, the autosphenotic is a small, strongly built
bone found at the posterior angle of the orbit. Anteriorly, the dorsal
edge unites with the ventral surface of the frontal beneath the pterotic
crest, and the medial edge is united with the lateral margin of the ptero-
sphenoid (PTS). The ventral surface of the autosphenotic articulates with
the prootic (PRO). Its posterior edge joins the autopterotic (PTO).
Epiotic (EPO). -- The pyramid-shaped epiotic bone supports a postero-
dorsal backward-projecting process to which the upper arm of the post¬
temporal bone (PTM) articulates. The ventral corner of the epiotic is
united with the exoccipital (EOC). The antero-medial dorsal surface is

26
joined to the posterior edge of the supraoccipita1 (SUO). The antero¬
lateral dorsal surface is joined to the dorsal posterior edge of the
parietal (P). Laterally it contacts the autopterotic (PTO).
Prootic (PRO). — The irregularly hexagonal prootic bone is
prominent in the lower anterior lateral wall of the braincase. Dorsally,
the prootic is united with the pterosphenoid (PTS) anteriorly, the auto-
sphenotic (SPH), and posteriorly with the autopterotic (PTO). The
anterior edge of the prootic receives a portion of the arm of the basis-
phenoid (8S), and ventrally it also articulates with the ascending pro¬
cess of the parasphenoid (PS). The ventral edge of the prootic approaches
and parallels the posterior end of the parasphenoid. Posteriorly, the
prootic is attached to the basioccipita1 (BOC), exoccipital (EOC), and
opisthotic (OPS).
Exoccipital (EOC). -- The exoccipital is located at the posterior
end of the cranium above the basioccipital (BOC), to which its ventero-
lateral margin is joined. Ventrally, the exoccipital meets its fellow
member to form the ventral margin of the foramen magnum. Each is dev¬
eloped as a facet that articulates with the atlas vertebra. The post¬
erior margins ascend to form the lateral margins of the foramen magnum.
The anterior edge of the exoccipital is joined to the prootic (PRO),
autopterotic (PTO), and opisthotic (OPS).
Basioccipital (BOC). -- The unpaired bas ioccip i ta1 is character¬
ized by a concave, circular posterior end that articulates with the
anterior centrum of the atlas. Anteriorly, the basioccipital is strongly
united with the parasphenoid (PS), and it is connected to the posterior
margin of the prootic (PRO). Dorsally, it joins the lower edge of the
exoccipital (EOC).

27
Opisthotic (OPS). -- The opisthotlc supports a posterior projection
that articulates with the lower arm of the posttemporal. Hidden from
dorsal and lateral view, it adjoins the autopterotic (PTO) and the exoc¬
cipital (EOC) bones.
Suborbital series (Figure 111). --
Lacrymal (L). -- This is the first, anteriormost element of the
suborbital series, and it sheaths the dorsal edge of the maxillary bone
(MX). The lacrymal is thin and flat, and extends from the anterior tip
of the maxillary back to its articulation with the second suborbital
bone (SUB) above the posterior margin of the palatine-pterygoid (PAL-PT)
union.
Suborbitals (SUB). -- These four bones are linked to form the
posterior ventral quarter of the orbit. Prominent in dorsal view is the
suborbital shelf of the third suborbital bone (Figure NIB). The fifth
suborbital is dorsally articulated with the dermosphenotic (DSO).
The suborbital shelf is unique in Hemicaranx in terms of its extreme
variability. Two examples observed in H. amblyrhynchus of 70 mm SL are
illustrated in Figure IV.
Dermosphenot?c (DSO). -- The dermosphenotic resembles the sub¬
orbitals and extends dorsally to cover the lower half of the eutosphenotic
(SPH) bone.
Branch iocraniurn
Oromandibular region. --
Lower jaw bones (Figure V). —
Dentary (DN). -- The anterior end of the dentary meets its fellow
in a medial symphysis. From the anterior end two broad arms angle backwards.

28
The upper arm bears a single row of roundly pointed canine teeth, while
the lower arm articulates dorsally and posteriorly with the articular
bone (AR). Between the arms a notch receives and encloses the anterior
tip of the lower arm of the articular bone.
The posterior tip of the upper arm of the dentary is curved in H.
zelotes and bicolor, more pointed but still rounded in amblyrhynchus,
and sharply pointed in 1eucurus (Figure VI).
Articular (AR). — Two arms extend forward from the base of the
articular. The upper tapers to a point; the lower is larger and pro¬
ceeds horizontally with its ventral edge in close contact with the
dentary (DN) to enter into the notch of the dentary. The dorso-posterior
corner of the articular bears a facet which receives the ventrally
projecting knob of the quadrate (Q). The ventral posterior corner is
variably overlaid by the angular bone (AN).
Angular (AN). -- This small bone covers the posterior ventral
corner of the articular (AR), and is more readily seen in the medial
view.
Upper jaw bones (Figure VI l). --
Premaxi 1lary (PMX). — The anterior end of the premaxillary unites
with its fellow member to form the anterior margin of the upper jaw.
The ascending process of the premaxillary bone rides in a groove at the
anterior end of the maxillary (MX), and is longer than the articular
process. The articular process arises dorsally from the tooth-bearing
arm of the premaxillary and extends behind the middle of the maxillary.
Canine teeth are present in a single row along the ventral edge of the
premaxi 1lary.

29
The dorsal surface of the ascending process of the premaxillary
(Figure VIM) is indented in H. ze 1 otes and bicolor, but in 1 eucurus
and amblyrhunchus it is flattened. The posterior edge of the articular
surface of the premaxillary (Figure VIII) is broadly concave in 1eucurus
and amblyrhynchus, while in ze1 otes and bicolor it descends as a straight
edge from a dorsal extension.
Maxi 1lary (MX). — The maxillary is a slender bone, located above
and parallel to the length of the premaxillary (PMX). Anteriorly, the
head of the maxillary is grooved and articulates with the ascending pro¬
cess of the premaxillary. Just behind the head, the maxillary fits snugly
into the ventral curve of the pre-palatine process of the palatine bone
(PAL). Posteriorly, the maxillary is expanded in the vertical plane, and
underlies the entire supramaxi1lary (SMX).
Supramaxi1lary (SMX). -- The supramaxi1lary is flat, pointed anter¬
iorly, and meets the posterior end of the maxillary (MX) along its entire
ventral edge.
Hyoid region (Figure IX). --
Hyomandi bu 1ar (HM). -- The hyomandi bul ar is a stout, flattened bone
that is characterized by a descending hyomandi bul ar process. Posteriorly
the hyomandi bular articulates with the anterior preopercle (POP) margin.
Anteriorly, the hyomandibular process and the middle edge of the hyoman-
dibular are strongly joined to and partially underlain by the metaptery¬
goid (MTPT). Dorsally the hyomandibular articulates with the neurocranium
at two points: an anterior knob articulates with the autosphenotic (SPH),
and the middle knob with the autopterotic (PTO). The posterior knob on

30
the head of the hyomandibular articulates with a facet on the upper
opercle (OP). The ventral tip of the hyomandibular process articulates
with the dorsal tip of the interhyal bone (IH).
Metapterygoid (MTPT). — This bone articulates posteriorly with
the lower anterior edge of the hyomandibular (HM); together their
anterior margins curve parallel to the posterior suborbitals (SUB).
Anteriorly, the upper edge meets the posterior lateral margin of the
mesopterygoid (MSPT), while the lower edge articulates with the dorsal
rear margin of the quadrate (Q). The lower posterior margin of the
metapterygoid articulates with the upper posterior edge of the symplectic
(SY).
Symplectic (SY). -- The symplectic is an elongate rod-like bone,
the anterior end of which firmly nestles in a groove on the medial sur¬
face of the lower half of the quadrate (Q). From its firm union with
the quadrate, the symplectic runs posteriorly to articulate with the
ventral curve of the posterior metapterygoid (MTPT).
In lateral view the symplectic is characterized by variably developed,
mid-ventral expansions in all four species. In amblyrhynchus, bicolor,
and leucurus a dorsal expansion is also present. (Figure X).
Quadrate (Q). -- This small triangular bone is characterized by
an anterior ventral knob that articulates with a wel1-developed facet on
the articular bone (AR) of the lower jaw. The anterior edge of the
quadrate borders the posterior edge of the lower limb of the pterygoid
(PT). Posteriorly, the dorsal margin of this bone parallels but does
not contact the mesopterygoid (MSPT); the ventral margin projects

31
backwards and articulates with the inner curve of the lower limb of
the preopercle (POP). Medio-ventra1ly the quadrate firmly receives the
anterior symplectic (SY).
Mesopteryqoid (MSPT). -- With the exception of a small downward tab
at the lateral margin, the mesopterygoid lies in a nearly horizontal
plane. It meets its fellow member medially below the entire length of
the parasphenoid (PS) to form a bony support for the roof of the mouth
and the floor of the orbits. Laterally, the downward tab separates the
metapterygoid (MTPT) and the pterygoid (PT). The anterior lateral edge
of the mesopterygoid articulates with the foward limb of the pterygoid;
its posterior lateral edge articulates with the anterior curve of the
metapterygoid.
Pterygoid (PT). -- The pterygoid bone is composed of two rod-like
arms that meet at an obtuse angle. The lower, downward-projecting arm
articulates along its posterior edge with the anterior margin of the
quadrate (Q). The upper, forward-projecting arm articulates along its
dorsal surface with the mesopterygoid (MSPT). Laterally, it articulates
with the posterior medial edge of the palatine (PAL). The anterior tip
of the pterygoid is in loose contact with the ventral edge of the lateral
ethmoid (LE) of the neurocranium.
The anterior end of the pterygoid bone (Figure XI) is developed as
a dorsal ly concave point in H_. zelotes and 1 eucurus. In amblyrhynchus
and bicolor it is also pointed, but is further characterized by indenta¬
tions above and below the point.
Palatine (PAL). — The palatine articulates with the anterior tip
of the lateral ethmoid (LE) via a medial, plate-like swelling, from which

32
two processes project. The posteriorward arm closely articulates with
the pterygoid (PT). The curved, anterior, laterally projecting arm (pre¬
palatine process) articulates with the dorsal surface of the anterior end
of the maxillary (MX). The palatine also contacts the neurocranium by
riding the anterior lateral surface of the prevomer (PV).
Opercular bones. -- The four opercular bones form the gill cover
and are variously connected with each other and the hyomandi bular series.
Opercle (OP) (Figure XI IA). -- The opercle is a large flattened
bone, curved broadly posteriorly, that articulates with the posterior
knob of the hyomandi bular (HM) via a facet at its antero-dorsa1 corner.
The anterior margin underlies the posterior margin of the preopercle (POP).
Ventrally the opercle covers the dorsal margin of the subopercle (SOP).
Subopercle (SOP) (Figure XIIA). -- The subopercle is flattened and
is characterized by a tapered forward-projecting process that arises from
the lower anterior corner. The process and the leading edge of the sub¬
opercle are covered by the ventral tip of the opercle bone (OP). The
lower anterior corner is covered by the posterior edge of the interopercle
(I0P).
Interopercle (lOP) (Figure XI I A). -- In addition to covering the
anterior corner of the subopercle (SOP), the interopercle articulates
mid-dorsally with the epihyal bone (EH). The interopercle is in turn
covered along its dorsal half by the ventral margin of the preopercle
(POP). The anterior end of the interopercle is linked by strong connect¬
ing tissues to the posterior margin of the mandible.
Preopercle (POP) (Figure XI IB). -- The anterior margin of the upper
limb of the preopercle is firmly joined with the posterior edge of the

33
hyomandibular bone (HM). Pos terior1 y,it covers the dorsal half of the
interopercle (lOP) and the anterior edge of the opercle (OP). The dorsal
surface of the lower, forward-projecting limb articulates with the ventral
edge of the posterior projection of the quadrate (O). Juvenile specimens
are characterized by preopercular spines (Figure B) that radiate poster¬
iorly from the postero-ventra 1 angle of the preopercle.
Hyal bones (Figure XIII and XIV). --
Basihyal (BH) (glossohyal of Suzuki, 1J62: 89). — This anterior-
most of the hyal series is an elongate, rod-1 ike, unpaired bone that forms
the base of the tongue. Its posterior end fits snugly into a rounded
notch formed by the convergence of the first basibranchia1 (BB) and the
upper hypohyals (UHH) (Figures XIII and XIV).
The basihyal (Figure XVB) is anteriorly widest in H_. zelotes, inter¬
mediate in leucurus and amblyrhynchus, and narrowest in bicolor. Pointed
conical teeth are found on the dorsal surface of the basihyal in
amblyrhynchus and bicolor.
Upper hypohyal (UHH). -- This curved, trapezoidal bone, which ap¬
proaches its fellow member at the medial tip of the dorsal surface, is
loosely articulated with the first basibranchial (BB) (Figure XIII).
In concert the three form a concave notch which receives the posterior end
of the basihyal (BH). The ventral edge of the upper hypohyal parallels
but does not touch the dorsal edge of the lower hypohyal (LHH). Posteriorly,
the upper hypohyal articulates with the upper anterior margin of the
ceratohyal (CH). A circular foramen pierces the upper posterior quadrant
of this double-1ayered bone.

In lateral view, the foramen located in the upper posterior quarter
of the upper hypohyal bone (Figure XVC) is variably shaped, being elongate
in zelotes and 1eucurus and more circular in amblyrhynchus and bicolor.
Lower hypohyal (LHH). -- The lower hypohyal curves inward medially
to meet its fellow member ventrally. Dorsally, it is loosely aligned with
the upper hypohyal (UHH). Posteriorly, it receives an underlying pro¬
jection from the anterior edge of the ceratohyal (CH) to which it is
broadly articulated.
Ceratohyal (CH). -- Prominent in the upper central area of this
elongate bone is the oval, ventrally-skewed ceratohyal window. The
ceratohyal bone is closely articulated with the lower hypohyal (LHH)
via an anterior projection arising from its lower forward edge. The
upper anterior edge articulates with the posterior edge of the upper
hypohyal (UHH). The ceratohyal is strongly united posteriorly with the
epihyal bone (EH). Ventrally, it receives the proximal tips of five
branchiostega1 rays (B).
The ceratohyal window is ventra11y-expanded in H. zelotes and
amblyrhynchus, more oval in bicolor, and roughly triangular in 1eucurus
(Figure XVD).
Epihyal (EH). — The epihyal is a rounded triangular-shaped bone
that is strongly united anteriorly with the ceratohyal (CH). Postero-
ventrally it receives the proximal tips of the last two branchiostegal
rays (B). The mid-upper lateral surface of the epihyal articulates
with the mid-dorsal edge of the interopercle (lOP). The upper posterior
angle of this bone is a facet that receives the ventral end of the
interhyal bone (IH).

35
Urohya1 (UH). -- The urohyal is an unpaired rectangular bone that
lies in the ventral vertical plane and is characterized by a pair of
laterally flared wings at the ventral edge. Anteriorly, the urohyal is
loosely inserted -into a space surrounded by the first basibranchial (BB),
the hypohyals (HH), and the anterior portion of the ceratohyals (CH).
The urohyal (Figure XVA) of H_. zelotes is uniquely characterized
by slight posteriorward spines on the dorsal edge. In addition, a pro¬
jection at the ventral anterior corner is variably developed, being
longest in bicolor and shortest in zelotes.
Interhyal (IH). -- The interhyal is a short rod-shaped bone that
links the hyal series to the hyomandi bular bone (HM). Dorsally, it
articulates with the hyomandi bular; ventrally it meets a facet on the
posterior dorsal corner of the epihyal (EH).
Branchiostegal rays (B). — Seven branchiostegal rays proceed
posteriorly from the hyal series to lend support to the lower opercular
membrane. The five anteriormost branchiostega1s arise from the cera-
tohyal (CH); the last two of these 1epidotrich-1ike rays arise from the
epihyal (EH).
Branchial region. -- Five branchial arches composed of paired and
unpaired elements are found in Hemicaranx (Figure XIII).
Bas i branch i a 1s (BB). — Three unpaired basibranchial bones are
located in a longitudinal series in the floor of the pharynx and re¬
present the ventralmost members of the branchial series. The first is
only partially visible in dorsal view since it is overlaid anteriorly
by the basihyal bone (BH) (Figure XI I 1), below which it vertically extends
(Figure XIV B). In concert with the upper hypohyals (UHH) the first

36
basibranch Tal forms a concavity that receives the posterior end of the
basihyal, and thus links the branchial and hyal series. Posteriorly,
the first basibranchial articulates with the second basibranchial.
The second basibranchia1 bone is short, rod-like, and from its
articulation with the first basibranch i a 1 extends dorso-posterior 1y
to meet the third basibranchial. The second basibranch i a 1 is located
slightly above the dorsal anterior tips of the paired first hypo-
branchials (HB), with which its lateral anterior end articulates. The
posterior corners cover, but do not articulate with, the proximal ends
of the second hypobranchials.
The elongate third basibranchia1 extends obliquely back from the
articulation of its concave anterior end with the concave posterior
tip of the second basibranch i a 1 (Figure XIVB). The anterior lateral
margins of this bone firmly receive the dorsal halves of the proximal
ends of the paired second hypobranchi al (HB). Posteriorly, the third
basibranchial is loosely cradled by the dorsal ends of the third hypo-
branch ials.
The third bas i branch ia 1 is slightly more expanded laterally in H_.
1eucurus and bicolor than in zelotes and amblyrhynchus.
Hypobranchials (HB) (Figure XI I l). -- Three pairs of hypobranchials
are variously articulated with the basibranchia1 bones (BB) and extend
laterally to articulate with the first three ceratobranchials (CB).
The first and anteriormost hypobranchia1 bone is compressed and
firmly links the first ceratobranchial to the second basibranchial,
which possesses a shallow recess on the anterior lateral surface into

37
which the upper half of the proximal end of the hypobranchial fits.
The ventral edge of this elongate bone supports gills, while the
lateral and medial sides support gill rakers and tubercles, res¬
pect i vel y.
The second hypobranch i a 1 is more rectangular than the first, with
gills, gill rakers and tubercles similarly supported. The dorsal half
of the proximal end inserts into a recess along the anterior third of
the lateral margin of the third basibranchial.
The third hypobranchial is roughly funnel-shaped in appearance,
with the narrow tube-like process extending down and forward to ap¬
proach its fellow member in the midline below the middle of the third
basibranch i a 1. The medial margin of the flared dorsal end of this
bone flanks the posterior end of the third bas¡branchial. The posterior
end supports the third ceratobranchial.
Ceratobranchial (CB)(Figure XIII). — The first four are gently
curved slender rods that dorsal ly support epibranch i a 1 s (EB), and with
the exception of the fourth, are supported ventrally by the hypobranch i a 1s
(HB). Except for the first, which supports long gill rakers instead of
tubercles on its lateral margin, each supports two rows of tubercles on
the dorsal surface.
The fifth ceratobranchial (or "pharyngeal") is more massive and
laterally expanded than the others, and is densely covered dorsally by
pointed slender projections (teeth). Like the fourth ceratobranchial,
this element is not articulated with a hypobranchial; both are connected
to the base of the hyal series by cartilage. The fifth ceratobranchial
is also securely joined to its fellow member along the anterior medial
edge.

38
Epibranchials (EB)(Figure XIII). -- The four stout epibranchial
bones effect the characteristic sharp bend of the gill arches and link
the first four ceratobranchials (CB) to the pharyngpbranchial series.
Each is laterally compressed and characterized by a variably developed,
wi ng-1 i ke, pos ter ¡or projection.
Pharyngobranchia1s (PB)(Fiqure XIII). — The first pharyngobranchial
bone is a slender rod that connects the first epibranchial bone (EB) to
the neurocranium. The other three pharyngobranchials are solidly built
blocks of bone characterized by long, slender sharp teeth projecting
into the pharyngeal cavity, and they are connected to the neurocranium
by a strong combination of muscle and connective tissue. The third is
the largest.
Appendicular Skeleton
Pectoral girdle and fin (Figure XVIA). --
Posttemporal (PTM). — This anteriorly bifurcated bone supports all
other pectoral elements by its articulations with the neurocranium and
the supracleithrum. The upper arm of the posttemporal articulates with
the epiotic process, and the lower arm articulates with the opisthotic
(OPS) of the skull. The supracleithrum (SCL) meets it postero-ventrally.
Suprac1eithrum (SCL)(suprac1avicle of Suzuki, 1962: 108). -- This
flat, elongate bone extends obliquely downward from its dorsal articula¬
tion with the posttemporal (PTM). Ventrally it is attached to the lateral
upper angle of the cleithrum (CL).
Cleithrum (CL)(c1avic1e of Suzuki, 1962: 109). -- The cleithrum
is an elongate, broadly curved bone that is characterized ventrally by
two posteriorly projecting shelves, the exterior and interior, that meet to

39
form a ridge anteriorly. Dorsally, a broad shelf extends back from the
curved main axis of the bone. The cleithrum articulates dorso-1 atera11y
with the supraclelthrum (SCL) . Medially, it touches the dorsal tip of
the postcleithrum (PCL) and borders the lateral dorso-anterior edge of
the scapula. Ventrally, the cleithrum touches its opposite member in
the midline of the body.
Scapula (SC) (hypercoracoid of Suzuki, 1962: 110). — The scapula
is small, flat, and roughly rhomboidal in shape, with a central foramen.
Located behind the middle of the cleithrum (CL), this bone provides sup¬
port for the pectoral spine and at least the upper three radials (R).
It articulates anteriorly with the medial surface of the cleithrum, and
its entire ventral edge borders the dorsal edge of the coracoid (CO).
Coracoid (CO)(hypocoracoid of Suzuki, 1962: 110). — This thin,
slightly concave bone is closely bordered dorsally by the scapula (SC),
and is characterized by a concave facet at the posterior corner of this
articulation. Anteriorly, the upper and lower edges of the coracoid
approach the posterior margin of the internal shelf of the cleithrum
(CL).
Pos teleithrum (PCL)(postc1avicle of Suzuki, 1962: 112). -- The
postcleithrum is actually composed of two broadly overlapping bones.
The upper element (PCL 1) is elongate and expanded ventrally, and
articulates dorsally with the medial upper surface of the posteriorly
extending process of the cleithrum (CL) . Ventrally, it extends to a
point even with the lowest radial (R). The lower thin, rib-like element
(PCL 2) firmly articulates with the upper element as far as the lower
edge of the posterior cleithral process.

40
Rad jais (R). — These four stout rods provide support for the soft
fin rays* The upper three are, in turn, supported by the posterior edge
of the scapula (SC) , and the fourth loosely articulates with the coracoid
(CO).
Lepidotrichs (LEP). -- The lepidotrichs are represented by one fin
spine, plus 18 - 23 soft rays (Table 17), all but the first of which a re
branched. The spine articulates directly with the scapula (SC); the
soft r«ys are supported by the radials (R), which they fringe in a broad
arc.
Pelvic girdle and fin (Figure XVIB). —
Basipteryq?um (BPT). — The basipterygium is closely aligned with
its fellow member along its entire medial axis, tapering slightly from
a knobby posterior to a splint-like anterior that passes medial to the
coracoid (CO) and cleithrum (CL), and below the postcleithrum (PCL).
From the medial corner of the posterior end arises a splint-like process
that projects obliquely upward. In lateral view the splint appears to
carry through the main column of the bone to project ventrally. Six
lepidotrichs (LEP) are supported by the posterior margin of the
basipterygium.
Lepidotrichs. -- One spine at the lateral corner, and five soft
rays medial to it, are supported by the posterior basipterygium (BPT).
Postcranial Axial and Medial Skeleton
Dorsal fin. Two distinct parts of the dorsal fin are present in
adult and advanced juvenile specimens of Hemicaranx. The structural
continuity of the dorsal fins is illustrated by the regular spacing of
the 1epidotrich-supporting pterygiophores (PT) (Figure XVII).

Anteriormost in the dorsal skeleton are three predorsal bones (PD),
the first placed before the first neural spine (NS), the second and
third lying between the second and third neural spines. Following
the predorsals are pterygiophores (PT) , which underlie and support
the lepidotrichs (LEP). With the exception of the first member, each
pterygiophore is segmentally associated with a lepidotrich and also
underlies structurally the lepidotrich immediately preceding its
segmental associate. All but the first and last lepidotrich have
compound support. (According to Smith and Bailey [1961: 348], the
pterygiophore of the first dorsal spine is actually included in the
predorsal series.) The one-to-one correspondence is illustrated in
Figure XVII. The true nature of lepidotrich support is shown in
Figure XVII. As seen in Figure XVIIA, dorsal spines II through IX
are segmentally supported by an elongate proximal pterygiophore (PPT)
and a short posteriorly-pointed distal pterygiophore (DPT). All soft
rays are supported by an elongate proximal pterygiophore and a bi¬
laterally halved distal pterygiophore inserted between halves of the
segmentally associated lepidotrich (Figure XV I I I B). The trend of
fusion of anterior proximal and intermediate pterygiophores in spiny-
rayed fishes (Smith and Bailey, 1961: 347) is completed in H. zelotes;
in the only other comparably sized specimens (SL: 33 mm) of Carangidae
discussed in the literature, Elagatis bipinnulata has only the two
posterior intermediate pterygiophores distinct (Berry, 1969: *+56-457).
Insertion of proximal pterygiophores between neural spines is shown
in Figure XVII.

U2
Anal fin (Figure XV I I). — Structurally and ontogenetica11y the
anal fin resembles the dorsal fin with regard to overall appearance,
and pterygiophore - lepidotrich structure and articulation. Unique
is the anteriormost proximal pterygiophore (PPT), which articulates
with the hemal spine (HS) of the eleventh vertebra to form a strong
brace-like structure. It is also extended forward at its ventral base.
The distal tips of the proximal pterygiophores of each species
are characteristic in development of anterior-directed points and
degree of opposition to each other (Figure XIX). The pterygial
points are most prominent in _H. zelotes and are developed on all but
the anterior two normal pterygiophores. They are poorly developed in
1eucurus and are pointed only on the tenth through the eighteenth
normal pterygiophores. Points are intermediately developed in
amblyrhynchus and bicolor. (Points on dorsal pterygiophores follow
a similar pattern, but they more closely resemble each other.)
The distal ends of the anal pterygiophores are most closely op¬
posed in jj. ambl yrhynchus , intermediately so in bicolor and 1 eucu rus,
and most distantly articulated in ze1 otes. (Figure XIX)
Vertebral column. -- The vertebral column is composed of 25
vertebrae, all of which typically feature processes for articulation
with adjacent members and a neural arch and spine. The ten precaudal
vertebrae (PCV).possess pleural (PR) and/or epipleural (EPR) ribs;
hemal spines (HS) are variably developed. Fifteen caudal vertebrae
(CV) possess closed hemal arches and hemal spines that descend to
interdigitate with anal pterygiophores.

*♦3
The first vertebra, the atlas (Figure XXA) , is uniquely characterized
by a neural spine (NS) that is autogenous; it articulates with paired
facets on the atlas by two projections that jut inward from laterally
flared processes. Anteriorly the atlas articulates with the neurocranial
exoccipital (EOC) and basioccipita1 (BOC) bones. Posteriorly projecting
lateral apophyses extend past the articulation with the second vertebra.
The second vertebra, the axis (Figure XXA), is characterized by
neural prezygapophyses that extend over the atlas. Lateral apophyses
project backwards.
Vertebrae three through ten closely resemble each other, varying in
the degree of development of the features they share. As illustrated in
Figure XVII, neural postzygapophyses closely articulate with the follow¬
ing neural prezygapophyses, which are successively more elongate.
Similarly, the lateral apophyses lengthen posteriorward, and from the
seventh on are pierced by a foramen. Commencing with the eighth vertebra,
hemal prezygapophyses are developed.
The eleventh vertebra, which is characterized by a hemal spine
broadly united with the first anal pterygiophore, and all other caudal
vertebrae back to the antepenultimate are characterized by well-
developed neural and hemal pre and postzygapophyses (Figure XXB).
(The terminal three vertebrae are discussed as part of the caudal
skeleton.)
The pleural ribs articulate variously with the vertebrae, with
the third through the eighth inserting into hollow depressions at
the dorsal posterior angle of the lateral apophysis, and the others

articulating with the lateral vertebral surface. Epipleural ribs
articulate either directly with the vertebrae or with the proximal
end of a pleural rib, and are associated with vertebrae 1 through 14.
Numerically, the axial and medial skeletons of H. zelotes are
summarized as follows: predorsal formula: 0-0-0-2; dorsal softrays,
24-31; anal softrays 22 - 25; number of pterygiophores one less
than lepidotrichs of respective fins; vertebrae: 10 + 15.
In jH. leucurus there are also 10 + 15 vertebrae, while 10 + 16
vertebrae are present in amblyrhynchus and bicolor. (Dorsal and anal
ray counts are summarized in Tables 15 and 16, respectively.)
Caudal Skeleton
The caudal skeleton of H.. zelotes is formed by the terminal three
caudal vertebrae (CV) , modified and unmodified neural and hemal spines,
and lepidotrichs (LEP) that articulate with or oppose the outer margin
of the bony caudal complex (Figure XXI). Anteriormost in the caudal
skeleton is the thirteenth caudal centrum, the spool-shaped ante¬
penultimate (CAP). The neural spine (NS) of the antepenultimate
centrum extends posteriorly to underlie the anteriormost superior
secondary caudal rays (SCR), and the autogenous hemal spine (HS)
underlies all but the last two inferior secondary caudal rays. The
neural spine of the penultimate centrum (CP) is reduced posteriorly
and occupies the semi-circular space formed by the opposing edges of
the first epural and the uroneural bone. The autogenous hemal spines
of this centrum extends downward to underlie the two posteriormost
inferior secondary caudal rays. The urostylar vertebra (UR) is

45
formed anteriorly by a typical spool-shaped centrum; its posterior
portion js reduced to an obliquely ascending projection. This uro-
stylar projection is ultimately fused posteriorly with the dorsal-
most hypural element, and dorsally with the paired uroneurals. It
articulates posteriorly with the free remaining hypurals.
One pair of uroneural bones (UN) are present in zelotes. They
are roughly "L"-shaped, with the anteriorward short arm fused to the
dorsal margin of the urostylar centrum, and the long arm fused to
almost the entire length of the dorsal-most hypural (Figure XXI I A).
Two epural bones (EP) articulate with the dorsal surface of the uro¬
neurals. The first, which fits between the uroneurals with a rounded
ventral projection, extends anteriorly over the posterior half of the
penultimate neural spine; it also projects posteriorly to support sev¬
eral superior secondary caudal rays. The second epural is a rod-like
bone that parallels the first and articulates with the uroneurals and
the posterior two secondary caudal rays.
The hypural plate of IH. zelotes is formed of two hypurals (HY)
that form the inferior portion, and two hypurals in the superior half.
A fifth hypural dorsally is fused to the uroneurals longitudinally, and
to the urostylar vertebra at its proximal tip. Articulating with the
distal margins of the hypurals are the branched principal caudal rays
(PCR) .
Nine superior plus eight inferior principal caudal rays are
present: all but the dorsal and ventral-most are branched. Additionally,
nine superior and eight inferior secondary caudal rays are present.
Ontogeny of the caudal skeleton of Hemicaranx zelotes is charac¬
terized by fusion of certain elements, and this is representative of

46
the percoid fishes and their derivatives (Gosline, 1961: 268). As
noted in Figure XXIIA, fusion of the paired uroneurals to the dorsal
urostylar surface and to the dorsal-most hypural bone is completed by
the 33 mm stage. At this stage in development lines of fusion are still
apparent, but soon thereafter the complex appears as one bone (Figure
XX I I A). Although an earlier stage of zelotes was not available for
study, it is likely that no elements are masked at the 33 mm stage.
That is, lines of fusion are still apparent, although they quickly
become lost with growth. An additional fusion is noted between the
third and fourth hypurals (Figure XXII), but at 65 mm SL no indication
of their union remains. Ontogeny resembles that of Chloroscombrus
chrysurus; fusion of the same bones occurs. It is probable that
Figure XXI IB illustrates the sequence of fusion in zelotes.

KEY TO HEMICARANX AND ATULE
IA. Body deeper, 40-50% SL; upper caudal fin lobe longer, 30-45%
SL; prevomerine dentition absent; interorbital width wider,
9-14% SL; pectoral fin 30-40% SL; exoccipital zygapophyses
adjoined; cranial depth exceeds width.
...Hemicaranx ... 2, p. 50
IB. Body shallower, 28-39% SL; upper caudal lobe shorter than one-
third SL; prevomerine dentition present; interorbital narrow,
7-10% SL; pectoral fin less than one-third SL; exoccipital
zygapophyses separate; cranial width exceeds depth.
• • -Atu^e 5 , p. 130
2A. Spinous dorsal rays seven; ratio of straight portion of
lateral line to curved portion of lateral line = 2.3*3.0;
proportional width of anterior caudal peduncle scute
exceeds 38 thousandths SL; caudal vertebrae 16; upper hypo-
hyal window circular; anterior end of pterygoid indented.
.... 3
2B. Spinous dorsal rays eight; ratio of straight portion of
lateral line to curved portion of lateral line = 1.7*2.3;
proportional width of anterior caudal peduncle scute width
less than 36 thousandths SL; caudal vertebrae 15; upper
hypohyal window oval; anterior end of pterygoid concave.
.... 4
3A. Dorsal soft rays usually 27 or 28, range 24-30; anal soft
47

48
rays usually 24, (frequently 23 or 25), range 21-25;
upper caudal fin lobe relatively long, exceeding lower
lobe; anal pterygiophores closely spaced; ceratohyal
window intermediate, neither oval nor triangular.
. . .H_. ambl yrhynchus . . . p.63
3B. Dorsal soft rays usually 25 or 26, range 24-28; anal
soft rays usually 22, (frequently 21 or 23), range 21-24;
upper caudal lobe equal to lower lobe length; anal
pterygiophores more distantly spaced; ceratohyal window
oval.
. . .H_. bicolor p.93
4A. Caniform teeth roundly pointed; pectoral fin relatively
short, 30% SL in largest specimens; anteriormost caudal
peduncle scute wider, 2.6-3.6% SL; four to six lateral
body bars, fading with age; ceratohyal window intermed¬
iately shaped, neither triangular nor oval; urohyal spine
present; anal pterygiophore points prominent and distantly
spaced.
. . .H_. ze lotes p.99
4B. Caniform teeth sharply pointed; pectoral fin long, more
pronounced with age, almost 40% SL in largest specimens;
anteriormost caudal peduncle scute narrower, 1.7-2.3% SL;
six to nine lateral body bars, fading with age; ceratohyal
window triangular; urohyal spine absent; anal pterygiophore
points reduced and intermediately spaced.
. . .H . leucurus p.123
5A. Number of scutes in lateral line 33 to 49, usually 36 to 39.

49
• • • • 6
5B. Number of scutes in lateral line 48 to 63, usually 53 to 55.
.... 8
6A. Straight/curved ratio of lateral line sections ca. 2.0;
premaxillary dentition uniseriate.
...A. djedaba p. 1 63
6B. Straight/curved ratio of lateral line sections ca. 1.5;
premaxillary dentition biseriate anteriorly.
.... 7
7A. Ventral outline strongly convex; body deep, 35-40% SL;
anterior caudal peduncle scute wide, ca. 48 thousandths
SL; dentary teeth triseriate posteriorly; ultimate dorsal
and anal rays approximately equal to penultimate rays.
. ..A_. kal 1 a p. 156
7B. Ventral outline no more curved than dorsal outline;
body shallower, ca. 30% SL; anterior caudal peduncle
scute narrow, ca. 36 thousandths SL; dentary teeth
uniseriate posteriorly; ultimate dorsal and anal rays
relatively longer than penultimate rays.
. . .A. mate p. 1 50
8A. Spinous dorsal blackened; supramaxi11 ary not extended
forward as a point; anal rays 19 to 21; curved lateral
1ine scales 35-45.
. .. A_. ma 1 am p. 167
8B. Spinous dorsal not blackened; supramaxi 11 ary extended
forward as a point; anal rays 21 to 23; curved lateral
1ine scales 41-55.
.. .A. macrurus p. 160

SYSTEMATICS OF HEMICARANX
Hemicaranx Bleeker
Hemicaranx Bleeker, 1862: 135~136 (type species Hemicaranx marginatus
[=Hemicaranx bicolor], by original designation).
Carangops Gill, 1862: 435 (type species Caranx heteropygus [=Hemicaranx
amblyrhynchus], by original designation).
Diagnosis
Carangid fishes characterized by uniseriate dentition on premaxil¬
lary and dentary bones; jaw teeth fine, conical, pointed; depth 40 to
50% of standard length; lateral line with posterior-pointing scutes on
straight portion; no scutes on lateral line arch; no caudal peduncle
keels; premaxillary narrow, less than orbit; no dentition on prevomer;
ethmoid-prevomer keel elevated; exoccipital zygapophyses adjoined;
cranial depth greater than width; olfactory cavity we 11-deve 1 oped;
propercular width more than one-third of preopercular length; cerato-
hyal window wide and ovoidal; caudal vertebrae 15 or 16.
Hemica ranx is distinguished from its most closely related carangid
genus, Atule, in having adjoined exoccipital zygapophyses, an elevated
ethmoid-prevomer keel, no prevomerine dentition, a distinct myodome
opening, cranial depth greater than width, body deeper (40-50% SL),
longer upper caudal fin lobe (30~45% SL) , slightly longer pectoral
fin (30-40% SL), greater interorbital width (9-14% SL).
Hemica ranx is distinguished from Selar by having adjoined exoc¬
cipital zygapophyses, no prevomerine dentition, a pterotic window,
50

51
cranial depth greater than width, the ascending process of the pre¬
maxillary longer than the articular process, the ceratohyal window
wide and ovoidal, and the absence of two papillae on the shoulder
girdle.
In addition to the characters that distinguish it from Se 1 a r,
Hemica ranx differs from Decapte rus and T rachurus by a mesopterygoid
bone that is less than one-half the hyomandi bu 1 ar. Hemicaranx is
further distinguished from Decapterus by a urohyal shorter than the
hyoid body, a 90-degree angle of the cleithrum shelf, and the absence
of detached finlets posterior to the soft median fins; in addition it
differs from Trachurus in having the posttemporal height less than one-
half its length and the anterior scales in the lateral line not trans¬
versely expanded.
From the genera Carangoides, Gnathanodon , Longirostrum, Selaroides ,
and Uraspis , which apparently comprise a natural cluster (Figures 2 and 3),
Hemicaranx is distinguished by a low frontal-supraoccipi tal crest,
ceratohyal window wide and ovoidal, and more than 14 caudal vertebrae.
It differs from all genera except Se 1aroides in having the posttemporal
height less than one-half the length. It is distinguished from all
genera but Longirostrum by a preopercular width less than one-third the
width and more than 14 caudal vertebrae. Hemicaranx differs from
Gnathanodon and Se 1aroides in not having a we 11-deve 1 oped metapterygoid
lamina and these three genera differ from the remaining three genera
(Uraspis , Carangoides , Long i ros t rum) in lacking prevomerine dentition.
Hemica ranx also differs from Carangoides and U raspis in possessing a
distinct myodome opening. Hemicaranx is further distinguished from
Uraspis by its we 11-deve 1 oped olfactory cavity, elevated ethmoid-prevomer

52
keel, pointed scutes directed forward, and lack of milky white areas
in the mouth; from Selaroides by a cranial depth greater than width,
and an ovoidal rostral cartilage; from Longirostrum by adjoined exoc¬
cipital zygapophyses ; from Gnathanodon by a dorsal process of the arti¬
cular bone less than one-half its height; and from Carangoides by uni-
seriate dentition in both jaws.
Hemicaranx is distinguished from Chloroscombrus by the absence of
prevomerine dentition, a pterotic window, cranial depth greater than
width, opercular length less than interopercle length, posttemporal
ventral branch not attached to upper opisthotic, posttemporal height
less than one-half its length, caudal vertebrae more than 14, lower
jaw teeth uniseriate, and a ventral outline that is not appreciably
more convex than the dorsal outline.
From the remaining Caranginae genera, namely Alectis, At ropus,
Ca ranx , Ci tu 1 a and Kaiwarinus, which as a phenetic group Hemica ranx
less closely resembles, Hemicaranx is distinguished by a low frontal-
supraoccipi tal crest, an elevated ethmoid-prevomer keel, preopercular
width less than one-third its length, opercular length less than inter¬
opercle length, posttemporal height less than one-half its length,
more than 14 caudal vertebrae, and upper jaw teeth uniseriate. Hemicaranx
is further distinguished from all genera except Alectis, by the absence
of prevomerine dentition. It shares, along with Alectis and Ci tu 1 a , a
pterotic window; and with Alectis and Kaiwarinus it shares a we 11-deve 1 op¬
ed olfactory cavity. Hemicaranx and Kaiwarinus are distinguished by a
pre-palatine process directed laterally, and a wide and ovoidal cerato-
hyal window; these two genera, along with At ropus, are characterized
by a pterygoid bone that is neither enlarged nor acuminate. Hemica ranx

53
is further distinguished from At ropus and Ca ranx, which have a round
postmaxi 11 ary process, and from Alectis and C i tu 1 a , with opercular
apparatus height exceeding length and pluriseriate upper jaw dentition.
Hemicaranx also differs from Ci tu 1 a in having a conspicuous pterotic
crest that is produced backward.
Hemica ranx differs from Megalaspis in having exoccipital zygapo-
physes adjoined, a we 11-deve 1 oped olfactory cavity, an elevated ethmoid-
prevomer keel, a pterotic window, a distinct myodome opening, cranial
depth greater than width, ceratohyal window wide and ovoidal, caudal
vertebrae more than 14, prevomerine dentition absent, postmaxi 1lary
process not rounded, and uniseriate upper jaw teeth.
Hemicaranx is distinguished from E1agat i s , Ñaue ra tes , and Se riola.
by a wel1-developed olfactory cavity, an elevated ethmoid-prevomer keel,
no prevomerine dentition, cranial depth greater than width, post-maxil¬
lary process triangular, ceratohyal window wide and ovoidal, postcora¬
coid process undeveloped, ventral element of pos teleithrum rib-like,
lateral-line scutes, first hemal spine enlarged, and lower jaw teeth
uniseriate. Hemicaranx and Seriola are both characterized by a pterotic
window and the mesopterygoid less than one-half the hyomandi bu 1 ar ; with
Naucrates they are distinguished from E1agatis by a preopercular width
less than one-third the height and an opercular apparatus that is taller
than wide. Serióla is unique in having the opercular length exceeding
the interopercle length.
Hemica ranx is distinguished from T rachinotus by a low frontal-
supraoccipi tal crest, absence of prevomerine dentition, a triangular
postmaxillary process, uniseriate dentition, a we 11-deve 1 oped olfactory
cavity, ethmoid-prevomer keel elevated, a pterotic window, myodome

54
opening distinct, a supramaxi 11 ary, metapterygoid less than one-half
the hyomandi bu 1ar, ceratohyal window wide and ovoidal, posttemporal
ventral branch elongate, posttemporal height less than one-half its
length, lateral line scutes, and more than 14 caudal vertebrae.
Hemicaranx is most distantly related to Chorinemus, from which it
is distinguished by a we 11-deve 1 oped olfactory cavity, ethmoid-prevomer
keel elevated, pterotic crest conspicuous and produced backwards, a
pterotic window, premaxillary protractile, a dentary-articular interstice,
mesopterygoid less than one-half hyomandibular, preopercular width less
than one-third its length, pre-palatine process directed antero-ventrally,
height of opercular apparatus exceeding its length, seven branchiostegal
rays, ceratohyal window wide and ovoidal, posttemporal height less than
one-half its length, and lateral line scutes. Chorinemus is further
characterized by prevomerine dentition, an extremely long maxillary,
maxillary length much greater than height, posttemporal ventral branch
attached to upper opisthotic, and pluriseriate dentition.
Description
Morphometric measurements are summarized in Tables 7, 9, 11, 13;
meristic counts appear in Tables 8, 10, 12, 14, 15, 16, 17, 18, 19;
osteology is completely described in the osteological section.
Body compressed, but neither unusually depressed nor elongate;
body depth 40 to 50% of standard length; total length of lateral line
75% SL; lateral line dorsally arched anteriorly, becoming straight be¬
neath anterior rays of soft dorsal fin and then continuing posteriorly
onto the caudal peduncle; 30 to 40 scales in lateral line arch, the arc
of which is roughly half the straight lateral line distance, and which
is in turn covered by kO to 50 scutes; arch three times as long as high;

55
caudal peduncle slender, as wide as deep; dorsal outline of body broadly
convex, with soft dorsal origin midway between snout and hypural base;
soft dorsal and anal fins long and low, partially sheathed at base by
scaled membrane; upper caudal fin lobe 30 to ^5% SL; lower caudal fin
lobe 30 to 33% SL; posterior margins of caudal lobes forming a broad,
slightly obtuse angle; origin of soft anal fin slightly behind origin
of soft dorsal fin, both extending to anterior part of peduncle; pectoral
fin 30 to b0% SL; pelvic fin 10 to 13% SL; pelvic fins inserted ventrally
just behind 1aterally-inserted pectoral fins; pectoral and caudal lobes
becoming pointed with age; head length 25 to 30% SL; interorbital width
9 to 1^% SL; snout blunt, one fourth of head length, which is exceeded
slightly by head depth; orbit barely longer than snout; posterior end of
upper jaw terminating below anterior margin of orbit; maxillary depth
1.7 to 2.7% SL; gape 7 to 8% SL; teeth uniseriate and caniform in pre¬
maxillary and dentary; teeth absent from roof of mouth; dorsal spines
seven or eight; dorsal soft rays 2b to 31; anal soft rays 20 to 25; pector
al rays 18 to 23; pelvic rays 5; principal caudal rays 9 + 8 = 17; pre-
caudal vertebrae 10; caudal vertebrae 15 or 16; branch i ostega1 rays 7;
lower gill rakers 7 to 11; upper gill rakers 17 to 23; lower and upper
gill filaments increasing in number with age to a maximum, respectively,
in excess of 35 and 80; base, especially interior surface of pectoral
fin black; spinous and soft dorsal fins dusky due to melanophores on
interradial membrane; body dusky dorsally, lightly metallic ventrally;
four to nine lateral body bars, which fade with age; peritoneum flesh-
colored .
Nomenclature
The type-species of this genus is bicolor Gunther (i860: Sb2) ,

56
based on two juvenile specimens. The species marginatus Bleeker (1862:
138-140) (on which Bleeker based the description of Hemicaranx), based
on one adult, is recognized as a junior synonym. The conspecificity of
these taxa is confirmed by the large number of "transitional characters"
shared between juveniles and adults. Bleeker was correct in recognizing
this form as a genus distinct from Ca ranx.
Carangops Gill was infrequently used in the literature by Gill,
Poey, and Goode from 1862 to 1879. It was recognized as a synonym of
Hemicaranx by Jordan and Evermann (1896: 912), although they questioned
which name was published first in 1862. However, since Carangops has
not been used in the primary zoological literature for more than 50
years it may be regarded as a nomen obiiturn.
Hemicaranx has occasionally been incorrectly synonymized with
Alepes Swainson by Fowler.* However, Hemicaranx is geographically
restricted to the Atlantic and Eastern Pacific Oceans and by definition
(diagnosis and description) it is distinct from all other carangid
genera. The description of A1epes (Swainson, 1839- 248) was based on
a drawing (Russell, 1803: plate 155) of a specimen from India. As
noted by Ginsburg (1952: 97~98) , however, the type species of Alepes,
A. melanoptera Swainson, is "...unidentifiable at the present time,
or else it is generally different" from Hemicaranx amb1yrhynchus. Indeed,
examination of the drawing of the specimen (commonly named the "won
parah") in Russell upon which Swainson based his generic and type
species description revea's a number of characters that support the
generic distinction hypothesized by Ginsburg. The most trenchant
differences are the number of pectoral rays (17 versus 18 to 23 in
*see species accounts annotated synonymies

57
Hemicaranx) (Table 17) and, more significantly, the number of principal
caudal rays (7 + 8 = 15, versus 9 + 8 = 17, the number diagnostic for
the Carangidae). Additionally, the illustration of A_. mel anoptera
lacks the dark pigment at the pectoral base characteristic of Hemicaranx.
It is obvious that Russell's drawing is incorrect, based on the
unusual number of principal caudal rays. Since the number is not char¬
acteristic of any known carangid, the genus Alepes and the type species
A. me 1anoptera are regarded as nomina dubia.
The combination of characters figured for A. melanoptera were
obviously based on a carangid fish. Based on the anteriorly-arched
lateral line, scutes only on the straight posterior section, fine teeth,
body outline, and pigment in the spinous dorsal interradial membrane,
one would suppose it to be Atule mal am. However, the number of first
dorsal spines (seven), number of pectoral rays, absence of pectoral-
base blotch, number of curved lateral line scales (5*0, and number of
scutes in the straight lateral line (AA) distinguish me 1anopte ra from
ma1 am (Tables 20 and 21).
The utility of the inclusion by Fowler of species of both Hemicaranx
and Atule in Alepes is that it gives a historical basis for considering
the two genera as possible close relatives. This is explored below.
Relationships
Since the original generic description by Bleeker, the relationships
of Hemica ranx we re infrequently commented on only by North American
workers. Of the nominal genera of Carangidae from American waters
(Table 1), those most commonly cited as "close relatives" of Hemicaranx
are Caranx, Ch1oroscombrus, and Uraspis. Discussing Hemicaranx, Ginsburg
stated:

58
This genus is near Caranx, differing in having a less
extensive dentition, a deeper body, and narrower maxil¬
lary. It is also close to Chloroscombrus and Uraspis ....
On the basis of "characters, form and general appearance" Ginsburg (1952:
101) said Ch1oroscomb rus is"nearest Hemica ranx," differing with fewer
and reduced scutes, more extensive dentition, and a more convex ventral
outline. Ginsburg (p. 101) also stated that of the Gulf of Mexico
carangids Uraspis is "nearest" H. amb1yrhynchus, from which it differs
on the basis of forward-pointed scutes, white areas in the mouth,
longer ventral fin, lower spinous dorsal, wider maxillary, longer
lateral line arch, biseriate jaw teeth, fewer gill rakers, scutes,
and anal rays, and more pectoral rays.
Although Berry (1959: 526) did not comment on the relatives of
Caranx, he incorporated the following characters in differentiating
the two genera:
character
Caranx
Hemicaranx
1 .
maxillary width/pupil diameter
greater
less
2.
jaw teeth
different size
al 1 equal size
3.
vomerine teeth
present
absent
A.
caudal peduncle keels
present
absent
Indirect comments on the relationships of Hemicaranx to genera
outside its geographic range were provided by Fowler who repeatedly
included species of both Hemica ranx and Atule in the genus Alepes, the
last herein considered to be a nomen dubiurn. Nichols (I9^2b; 229)
observed that Atule ma1 am "is an approach to the carangin [sic] genus
Hemicaranx" and alluded to the hypothesis that Hemicaranx and Ch1oroscom-
brus may each represent an Eastern Pac ific-At1 antic evolutionary lineage
from Atule. Presumably, Fowler and Nichols drew their conclusions from

59
overall external morphological similarity; neither, however, provided
a basis for their remarks.
Evaluation of the literature comments on Hemicaranx relationships
and/or resemblances reveals that they are often based on either (l) a
few characters that may or may not be documented as to differential
value in assigning "primitiveness" to a taxon, or (2) many characters
that yield an overall picture of morphology. In the absence of docu¬
mented primitive characters, a wiser course in hypothesizing evolution¬
ary trends and relationships is to assess relationships on degree of
resemblance or affinity. Sokal and Sneath (1963: 48) discuss this
approach; Gilbert (1964: 116), who followed it, stated:
The closest relatives of Luxi1 us are those species of
Notropis that share with it the largest number of similar
or identical morphological characters. To base a relation¬
ship on only one or two shared features can be misleading.
One means of implementing such a conceptual approach is to quantify
character states according to the techniques of numerical taxonomy.
Therefore, in assessing the relationships of Hemicaranx, phenetic
resemblance, based on comparison of many random characters, is inter¬
preted to reveal relationship.
A lack of critical analysis and definition of carangid species
and genera based on external morphology (Mansueti, 196 3: 57; Berry,
1968: 164) restricts the number of such characters that may be coded
in such an analysis. However, the osteological catalog of Indo-Pacific
genera provided by Suzuki (1962) contains enough characters for gen¬
eration of coefficients of association and Subsequent description of
phenetic resemblances. Coefficients of association between Hemicaranx
and Uraspis , Caranx, and Atule are presented in Table 22. Ch1 oros comb rus,
the other genus historically referred to as a relative of Hemicaranx ,

60
is compared in Table 23.
Clearly, Hemicaranx most closely resembles Atule when random non-
weighted characters are compared. The two genera share a matching co¬
efficient of .89, which is higher than any other coefficient between
Hemicaranx and other carangids (Table 22). Thus the hypothesis that
Hemicaranx and Atule are closely related -- whether based on subjective
impressions of overall morphology or consideration of a relatively few
characters -- is confirmed. Of the primitive characters listed in Table
6, Hemicaranx and Atule share all but one, indicating a close relationship
if only "weighted" characters are used, too.
Of the three other genera said to be close to Hem? ca ranx, Uraspis
ranks highest with a coefficient of .80, followed by Ch1oroscombrus at
.77, and Caranx at .63. It would appear that these genera are not as
closely related to Hemicaranx as originally hypothesized, especially
in light of the affinity of Hemica ranx to a group of genera at or above
the .80 level. These include Longirostrum, Se 1 a r, and Sel aroides (.82-
.83), and, at .80 Trachurus, and Gnathanodon (Table 22). With the ex¬
ception of Gnathanodon, all of these genera were said by Suzuki (1962:
133) to be closely related to Atule. Generation of association coeffic¬
ient matrices for the above genera yields a dendrogram that illustrates
the results of cluster analysis for the closest relatives of
Hemica ranx (Figure 3). From this analysis it is concluded that Hemicaranx,
Atule, and Selar are intimately related, and as a group are most closely
related to the genus-pair of Decapterus and T rachu rus. It is hypothe¬
sized that Hemicaranx. based on its distribution and the close resemblance
of its species, is relatively young and is derived from Atule, or else
they have evolved from a common Indo-Pacific ancestor. Atule is further

Figure 3- Phenetic dendrogram of genera
of Carangidae sharing a matching
coefficient (Ssm) of at least
.75 with Hemi caranx. (All Ssrr's
given in Table 22)
COEFFICIENT OF ASSOCIATION (Ssm x 100)
—I CO UD
O O O
1 1 1 1 1 1
CARANGOIDES
URASPIS
— LONG I ROSTRUM
GNATHAN0D0N
SELAROI DES
HEM ICARANX
ATULE
SELAR
TRACHURUS
DECAPTERUS
CHL0R0SC0MBRUS

62
hypothesized to be older, on the basis of greater morphological diver¬
gence of its species.

63
Hemicaranx amb1yrhynchus (Cuvier)
Figures 8, 19
Caranx amblyrhynchus. — Cuvier, _i_n Cuvier and Valenciennes, 1833:
100, pi. 248 (original description; type locality: Brazil;
type material: MNHNA5843, two syn types , 137 and 139 mm SL). --
Gunther, i860: 441-442 (£. fa 1catus a synonym; distinguished
from £. bicolor; description; range). -- Poey, 1861: 344
(comparison of amb 1 yrhynchus from Brazil with £. heteropyqus
from Cuba). -- Bleeker, 1862: 140 (comparison with Hemicaranx
marqinatus). — Bleeker, 1863: 82 (comparison with Hemicaranx
marqinatus). — Poey, 1866: 328 (distinguished from £.
hete ropyqus). -- Poey, 1867: 164 (distinguished from C_.
heteropyqus). Poey, 1875: 152 (distinguished from Ca ranqops
heteropyqus). -- Goode and Bean, 1882: 237 (Gulf of Mexico). -
Jordan and Gilbert, 1882: 308 (relationship to £. atrimanus;
comparison; £. fa 1catus synonymized). -- Jordan and Gilbert,
1883: 194, 197 (key; synonymy; £. secundus a synonym; Cape
Hatteras to Brazil). -- Jordan, 1884a: 34 (synonymy; Pensacola
Florida). -- Jordan, 1884b: 284 (relationship of £. 1eucurus
with amb1yrhynchus).
Carangops amblyrhynchus. — Gill, 1862: 435 (compared with £.
fa 1catus; Brazil). -- Poey, 1868: 366-367 (£. heteropyqus
synonymized).
Hemicaranx amblyrhynchus. — Jordan and Evermann, 1896: 912-913
(key; synonymy; description; comparison with Hemicaranx
atrimanus; Cape Hatteras to Brazil; West Indies). -- Jordan
and Evermann, 1898: 2844 (Hemicaranx falcatus recognized as

64
distinct from ambiyrhynchus).-- Jordan and Evermann, 1900:
plate CXL1 (Figure 386).— Nichols, 1922: 59 (description
of juveniles; comparison with IH. marginatus from West Africa;
ecological association with medusae; Miami Beach, Florida).—
Meek and Hildebrand, 1925: 339 (key; synonymy; description;
Fox Bay, Colon, Panama).— Jordan Evermann and Clark, 1930:
271 (synonymy; range).-- Nichols, 1937: 5-8 (juvenile growth
patterns; Ca ranx fa 1catus and Hemica ranx rhomboi des synonyms;
comparison with II. ma rg ? natus ; South Carolina).— Howell Y
Rivero, 1938: 56 (Caranx heteropygus identified as II. amblyrhyn¬
chus) .— Hildebrand, 1941: 226 (Beaufort Inlet to Cape Lookout,
North Carolina).-- Nichols and Murphy, 1944: 242 (iH. rhombo ides
synonymized; comparison with H_. 1 eucurus).— Baughman, 1947:
280 (Aransas Bay, Texas).— Irvine, 1947: 139 (tentatively
synonymizes 11. bicolor, West Africa).-- Breder, 1948: 131, 135
(key; association of young with jellyfish in lower Mississippi
R.; Cape Hatteras to Brazil).— Baughman, 1950: 245 (small
specimens under Aurelia jellyfish; color notes; Texas).--
Ginsburg, 1952: 98-99, 101 (synonymy; description; close
relatives are U rasp is he idi and Chloroscomb rus ch rysu rus;
northern Gulf of Mexico).— Matthews and Shoemaker, 1952: 270
(small individuals observed and collected in and with jelly¬
fish medusae and the ctenophore Be roe; Mississippi Sound,
Biloxi).-- Hildebrand, 1954: 301, 328 (young often found under
bell of cabbagehead jellyfish, Stomolophus meleagris; trawl
and trynet collections at Greens Bayou, and Pass Cavallo to
Colorado River, Texas; "not uncommon in northern Gulf").—
Reid, 1955: 440 (in trawl; salinity 17.6-24.3 ppt; East Bay,

65
Texas).-- Boeseman, 1956: 193 (description; Cape Hatteras to
Brazil; first Surinam record, from near lightship "Surinam
River").— Joseph and Yerger, 1956: 133, 156 (Alligator Harbor,
Florida; latitudinal range).— Reid, 1956: 316 (in trawl;
not in seine or trammel net; East Bay, Texas).— Springer
and Bullís, 1956: 75 (Oregon collections: 30°17'N, 88°29'W;
30°16.3'N, 88°29'W; 30°15'N, 88°25'W).— Reid, 1957: 207
(East Bay, Texas).— Briggs, 1958: 277 (pelagic; Florida;
range).— Hoese, 1958: 334 (ecological association with jelly¬
fish; Texas).-- Berry, 1959: 525 (questions relationship to
Poey's cotypes of Caranx secundus).— Smith and Bailey, 1961:
359 (predorsal formula: 0-0-0-1-).-- Mansueti, 1963: 56
(young specimens taken with jellyfish, Chrysaora quinquecirrha,
Gulf of Mexico, near Biloxi, Mississippi, Stomolophus meleagris,
Texas, Aurelia aurita, Texas, Mas tiqias sc inti 11ae, Sao Paulo,
Brazil, and unidentified species, Miami Beach, Florida, and
Texas).-- Bullís and Thompson, 1965: 4l (Oregon collections:
28°50'N, 87°58'W; 29°40'N, 93°23'W).-- Copeland, 1965: 17-18
(ecological association with cabbagehead jellyfish, Stomolophus
meleagris; occasional fall and winter emigration through
Aransas Pass, Texas).— Parker, 1965: 212 (salinity 10-35 ppt;
uncommon Galveston Bay system, Texas).— Roithmayr, 1965: 21
(in industrial bottomfish trawl catches; area: 28°-30°N, 87°30'-
90°30'W).-- Cervigon, 1966: (Venezuela).-- Berry, 1968: 148
(number of vertebrae).-- Bohlke and Chaplin, 1968: 322 (not
collected, but expected in Bahamas).-- Gines and Cervigon,
1968: 33 (6°48'N, 57°38'W; 6o40'N, 57°21'W; 6°34'N, 57°111W;
6°l8'N, 55°55'W).— Randall, 1968: 102 (not collected, but

66
"common" in the Caribbean).-- Phillips et al. , 1969: 703
(ecologically associated with sea nettles and ctenophores,
Be roe; Mississippi Sound).-- Bailey et al., 1970: 40 (U.S.
Atlantic; common name "Bluntnose jack").-- Roessler, 1970:
863, 884 (Buttonwood Canal, Everglades Park, Florida).
Alepes amb1yrhynchus.-- Fowler, 1905: 71”72 (description; Rio de
Janeiro, Brazil).-- Fowler, 1936: 690, fig 310 (synonymy of
Hemicaranx marginatus and Caranx bicolor with amb1yrhynchus;
description; tropical Atlantic).-- Fowler, 1941: 153 (Brazil).
-- Fowler, 1945: 189» 375 (synonymy; South Carolina, Texas).
Caranx falcatus.-- Holbrook, 1855: 92-94 (original description; type
locality Charleston, South Carolina; one specimen; comparison
with C. amblyrhynchus).-- Holbrook, i860: 94 (description;
Charleston, South Carolina).— Poey, 1867: 165 (distinguished
from C_. heteropygus) . -- Poey, 1875: 152 (distinguished from
Carangops falcatus).-- Nichols, 1937: 6 (synonymized with
Hemica ranx amblyrhynchus).
Carangus falcatus.-- Gill, 1861: 36 (eastern coast of North America).
Carangops falcatus.-- Gill, 1862a: 238 (variation in dentition; in¬
distinguishable from C_. heteropygus) .-- Gill, 1862 b: 431, 435
(key; type of Carangops Gill; compared wi th C_. amb 1 y rhynchus
from Brazil; Charleston, South Carolina).-- Goode, 1879: 112
(East coast of Florida).
Hemicaranx falcatus.-- Jordan and Evermann, 1898: 912 (description;
distinguished from amblyrhynchus; Charleston, South Carolina).
-- Jordan, Evermann, and Clark, 1930: 271 (Charleston, South
Carol ina).

67
Caranx heteropygus .-- Poey, 1 861 : 344 , 373 (original description;
Havana market; one specimen, MCZ 17254; compared with C.
amblyrhynchus).-- Poey, 1866: 328 (distinguished from C.
ambl yrhynchus; Cuba).-- Poey, 1867: 164-165 (distinguished
from C. amb 1 yrhynchus and C. fa 1catus; Cuba).-- Howell y
Rivero, 1938: 56 (type specimen, MCZ 17254, identified as
Hemicaranx amb1yrhynchus).
Carangops heteropygus.-- Gill, 1862a : 238 (indistinguishable from
C. falcatus) .Poey, 1868: 366-367 (synonymized with C_.
amb1yrhynchus; Cuba).-- Poey, 1875: 151-152 (distinguished
from C_. amblyrhynchus and C_. fal catus; Cuba) .
Hemicaranx rhomboi des.-- Meek and Hildebrand, 1925: 343, pi. 25, fig. 2
(original description; type locality, Fox Bay, Colon, Panama;
type material: USNM 81758, 2 specimens, SL 55 and 75 mm;
compared with H_. leucurus and H_. secundus) . -- Jordan, Evermann,
and Clark, 1930: 271 (Atlantic coast of Isthmus of Panama).--
Nichols, 1937: 6 (synonymized with H_. amblyrhynchus) Nichols
and Murphy, 1944: 242 (comparison with H_. leucurus; synonymized
with amblyrhynchus)Gunter, 1945: 57 (juveniles; one in
trawl, five in seine, summer; Aransas Bay, Texas).-- Grey, 1947
154, 201 (one paratype located in Field Museum of Natural
History).
Material Examined
Uni ted States
North Carolina.-- USNM 111787 (1, 57.3), Carteret Co., Cape Lookout
Bight, J. S. Gutsell, 2 Sept. 1927; USNM 164487 (I, 19.8), Carteret
Co., Beaufort, J. S. Gutsell, 2 March Í933; USNM 112746 (1 , 36.8),

68
Carteret Co., Beaufort, Sea Buoy, J. S. Gutsell, 17 Oct. 1931;
USNM 112745 (1, 45.5), Carteret Co., Beaufort, W. Bell Buoy, 13
Sept. 1914; USNM 112747 (1, 42.7), Carteret Co., Fort Macon, outer
beach, otter trawl, 31 July 1916.
South Carol ina.USNM 155275 (1, 102.3), Charleston Co., off Bull
Bay, 18 Oct. 1937; AMNH 13648 (2, 93-98), Charleston Co., Bull Bay,
trawl, E. M. Burton, 26 Aug. 1936; CM 36.I65.8 (6, 82-99), Charles¬
ton Co., Bull Bay, trawl, E. M. Burton, 26 Aug. 1936; AMNH 13647
(1 , 73.0), Charleston Co,, n. end of Cape Island, E. M. Burton,
12 Aug. 1936; CM 36.164.6 (3, 61 .5“67) , Charleston Co., n. end of
Cape Island, E. M. Burton, 12 Aug. 1936; CM 35.322.2 (1, 58.5),
Charleston Co., Morris Island, E. M. Burton, 22 Sept. 1935; CM 31.
i90.ll (1, 75.5), Charleston Co., Stone Inlet, trawl, John T.
Nichols, 12 Aug. 1931; CM 38.201.1 (2, 87-94.5), Charleston Co.,
north jetty, Charleston, trawl, E. M. Burton, 21 Aug. 1938; CM 38.
201.1 (2, 88.5-93), Charleston Co., Charleston north jetty, E. M.
Burton, 21 Aug. 1938; CM 34.175 (2, 154-157), Charleston Co.,
Charleston Harbor, E. L. Passailague, 9 July 1934; USNM 5990 (2,
189-224).
Georgia.-- USNM 119232 (1, 81), Glynn Co., St. Simons I.; TABL
105333 (1, 112), Glynn Co., Commercial trawling area off Brunswick,
Ga. ca. 31°07'N, 8l°10'W, Lewis Crab Co. - shrimp trawl, 20 Oct.
1955; TABL 105334 (1, 98), Glynn Co., off Jekyll Island, ca. 31°04'N,
8l°23'W, Jane Briggs, J. E. Karr - shrimp trawl, 9 July 1959; TABL
105332 (1, 158), Glynn Co., Jekyll Island, E. (ocean) side, ca.
31°04'N, 81°241W, Lewis Crab Co. - shrimp trawl, 10 June 1957; TABL
105331 (1, 68), Doboy Sound, ca. 31°22‘N, 8l°15'W, Doc. Jones -

69
Ga. Game and Fish Comm., 2 Aug. 1957.
Florida.-- FSBC 1015 (2, 80.4-86.3), Duval Co., Jetty at Atlantic
Beach, 29 Nov. 1958; TABL 105330 (1, 123), Florida Atlantic, 30°31'N,
81°221W, 7 fms, 40 1 2-seam trawl Silver Bay, 5 Oct. 1961; AMNH
8092 (8, 21.5-57.5), Dade Co., Miami Beach, L. L. Mowbray, 27 July
1921 ; USNM 39873 (1, 88.6), Monroe Co., off Cape Sable, Moser; SU
36285 (1, 61.4), Lee Co., Sanibel, M. Storey, Spring, 1933; FSBC
2071 (1, 168), Pinellas Co., Indian Rocks Pier, Indian Rocks Beach,
4 June 1961 ; FSU 1377 (4, 55.8-65), Franklin Co., Alligator Harbor,
16-22 Sept. 1952; FSU 5698 (10, 57.2-82.7), Franklin Co., Mud Cove
off Alligator Peninsula, W. Menzel, 3 Oct. 1959; SUCAS 767 (1, 221),
Escambia Co., Pensacola.
Mississippi.-- USNM 155274 (1, 79.9), Harrison Co., off Gulfport,
23 Sept. 1939.
Lou isiana.-- USNM 100 718 (1, 149); Jefferson Parrish, just off
front (south) beach Grande Isle; GCRL 265 (1, 57.5), Jefferson
Parrish, S. Grand Isle - 3.5 fms., Dawson - trawl field 582, 22
Nov. 1959; AMNH 14217 (14, 23-42), Cameron Parrish, Calcasieu R.,
Townsend, 12 Aug. 1928; GCRL 195 (1, 40), Gulf of Mexico, 29°40'N,
93°23'W, 5-5.4 fms., M/V Oregon Sta. 2875, Field No. 574, 7 Aug.
I960.
Texas.-- USNM 120055 (1, 102), Galveston Co., Galveston, J. L. Baugh¬
man; TABL 105329 (4, 6l-80), Brazoria Co., Freeport, Mar. Lab.
Mus., Texas Game, Fish and Oyster Comm., Apr.-Sept. 1947; BMNH 1948.8.6.
478.479 (2, 64-75.8), Aransas Co., Aransas Bay, Baughman; USNM
144014 (1, 62.6), Aransas Co., Aransas Pass, Harbor Island, J. C.
Pearson, 6 Dec. 1926; USNM 119805 (1, 96.4), Nueces Co., Corpus

70
Christ!, J. C. Pearson; USNM 144072 (2, 118-133), Nueces Co.,
Corpus Christi Bay, J. C. Pearson, Nov.-Dec. 1926; ANSP 70602 (1,
121), Nueces Co., Corpus Christi, 1931.
Gulf of Mexico.-- GCRL 1251 (1, 196), Eastern Gulf of Mexico -
2-7 fms., M/V Tony, 2 Aug. 1962; UF 3931 (1, 32.9), S. Mobile,
Ala., 28°50'N, 87°58'W, Oregon 1593, D. K. Caldwell, 25-26 July
1956; TU 4355 (1, 130, S. Horn Is., Miss., 30°163'N, 88°29'W,
2.8 fms., Oregon 627 - 36-65 mid-water trawl, 27 Aug. 1952; TU
4360 (1, 180), S. Ship I., Miss., 30°17'N, 88°51.6'W, 2.7 fms.,
Oregon 622 - 35-65 mid-water trawl, 23 Aug. 1952; TABL 102645
(2, 38.1-53.8), S. Cameron Parrish, 29°31'N, 92°45'W, Silver Bay
No. 2869, 6 Aug. I960.
Cuba
MCZ 17254 (1, 268), (holotype of Caranx heteropygus Poey).
Honduras
TABL 101355 (1, 151), east, parallel to beach off Caratasca Lagoon,
past Rio Cruta, 15°191N, 83°26'W, 5 fms., UN 6703 Shady Lady 601
trawls double rig, G. C. Miller, 10 April 1967; TABL 101400 (1, 70),
east of Rio Cruta, 15°18'N, 83°22'W, 5 fms., UN 6703 Shady Lady
try net, G. C. Miller, 10 April 1967; TABL 102757 (4, 116-166),
Commercial trawling area off Caratasca Lagoon east to past Rio
Cruta, 15°191M , 83°26'W, 5 fms., UN 6 70 3 Shady Lady 601 trawls, dou¬
ble rig, G. C. Miller, 10 April 1967; TABL 101356 (7, 128-167),
o 0
west past Rio Cruta River to off Caratasca Lagoon, 15 21 1N , 83 341W,
5-6-1/2 fms., UN 6703 601 trawls double rig, G. C. Miller, 10
April 1967; TABL 105388 (5, 127-167), Rio Cruta-Caratasca, 15°26'N,
83°4l1W, 5-6 fms., UN 6703 601 trawls, double rig and try net Shady

71
Lady, G. C. Miller, 11 April 1967.
Costa Rica
LACM 30727 (1, 128), Cahuita Bay, W. Bussing.
Panama
USNM 80007,(1, 175), Colon; USNM 81758 (1, 58.5), Colon, Fox Bay,
22 Jan. 1912.
Venezuela
TABL 102891. (4, 172-180), 11°331N, 71°31 'W, 15 fms., 104 Oregon
40' shrimp trawl, 6 Oct. 1965; TABL 105035 (1, 215), off Puerto
la Cruz, 10°111N, 64°48'W, 19 fms., 401 flat trawl, 19 Oct. 1963.
Trini dad
BMNH 1931.12.5.167-8 (2, 63.1-120), Gulf of Paria, Taitón, Rodney;
ANSP 86221 (3, 169-184), Port of Spain, Barber Asphalt Co., 1930;
BMNH 1932.2.8.23.5 (3, 102-199), Gulf of Paria, Guppy; USNM 178437
(1, 38.2).
British Guiana
TABL 104329 (1, 168), 08°45'N, 59°15'W, Trawl Calamar, 18 June 1967;
TABL 104383 (1, 155), 07°15'N, 58°15'W, 67-6 Calamar Trawl, 20
June, 1967; BMNH 1961.9.1.25-26 (2, 138-174), R. M. McConnell.
Surinam
USNM 220144 (2, 196-205), 07°12'N, 56°47'W, 26-28 fms., Oregon Sta.
2263-80 ft. balloon trawl, 1 Sept. 1958; TABL 105335 (1, 57)
06°l8'N, 55°30'W, 7 fms., 401 flat trawl R/V Oregon Sta. 2280,
4 Sept. 1958; TABL 104788 (2, 197-207), 06°15'N, 54°45'W, 67-II
Calamar Trawl, 3 Nov. 1967; TABL Uncat. (2, 154-160), NW coast, 12.5-
14 fms., 68-11 Calamar, Dec. 1968; TABL Uncat. (2, 176-177), NW
coast, Calamar Cruise 68-11, Sta. 591, 12 Oct. 1968; RMNH Uncat.

72
(1, 65 ) 1 38 ft., Coquette Stat. 7 trawl, 29 June 1966; RMNH 18148
(3,. 53.2-63.7), Surinam R. near Plantation Resolutie; RMNH Uncat.
(1, 121), 7.7 mi. E. lightship Surinam River. 40-50 ft., 29 June
1966; RMNH 21478 (4, 51.5-83), off lightship Surinam River; RMNH
214771 (2, 69.9-74.7).
Brazi 1
Para.-- CAS-SU 22113 (1, 152), E. C. Starks.
Cearaâ– -- CAS-SU 51879 (1, 126), Port of Fortaleza (Mucuripe), 23
Feb. 1945; CAS-SU 51824 (4, 26.7-43.5), Fortaleza (Mucuripe),
March 1945.
Pernambuco.-- CAS-SU 67017 (1, 210) , Recife, N. Berla, 8 Aug.
1944; CAS-SU 67026 (1, 211), Recife.
Bah i a.-- BMNH 1844.5.14.63 (1, 147), Salvador, Parzudakis Colin.;
BMNH 1862.1.30-20 (1, 171), Salvador; CAS-SU 66984 (1, 123),
Maranhao and Bahia, Salvador, 1944 or 1945; CAS-SU 67023 (1, 178),
Salvador; CAS-SU 67025 (1, 255), Salvador.
Sao Paulo.-- CAS-SU 66998 (1, 113), Ponto do Praia, Santos; CAS-SU
34813 (1, 123), Santos, A. W. Here, 3 June 1934; CAS-SU 66997
(3, 95“121), Ponto Do Praia, Santos, P. Carvallo and Moraes, 14
March 1944; CAS-SU 66992 (2, 111-119), Santos; CAS-SU 66986 (1,
94), Ponto do Praia, Santos, V. Carvalka and Moraes, 23 May 1943.
Rio de Janeiro.-- BMNH 1923-7.30.145-6 (2, 133“139)a Rio de Janeiro
(fish market), Ternetz; ANSP 11259 (1, 148), Rio de Janeiro.
Santa Catharina.-- CAS-SU 67019 (1, 182), Florianopolis , Praia de
Carrosvicira, 19 Oct. 1943-

73
Diagnosis
Hemicaranx amb1 yrhynchus is distinguished from other members of
its genus by the following combination of characters: upper caudal
fin lobe extremely long, nearly 50% SL in largest adults; upper caudal
fin lobe up to 30% larger than lower lobe length; ventral body outline
slightly convex in advance of soft anal fin origin, but not as broadly
rounded as dorsal outline; anal pterygiophores closely spaced.
It is further distinguished from the closely related H. bicolor
by the following characters: more dorsal rays (24 to 30, usually 27
or 28) (X +_ Sx = 27.62 0.40) ; more anal rays (21 to 25, usually 23
to 25) (X +_ Sx = 23.7k + 0.35) ; a flattened ascending process (versus
indented) and concave articular process of the premaxillary (versus
straight); basihyal of intermediate width (versus narrow).
H_. amblyrhynchus is further distinguished from both H_. leucurus
and H. ze1 otes by the following characters: seven (versus eight) dorsal
spines; 16 (versus 15) caudal vertebrae; fewer scales in the curved
part of lateral line (25 to kk, usually 34 to 39) (X + Sx = 37.86 +_ 1.18)
(versus 29 to 5*0; anterior caudal peduncle scute proportional width 3*9
to 4.8% SL (X = 4.4) (versus 1.7 to 3-6); ratio of straight portion of
lateral line to curved portion of lateral line 2.3 to 3.0 (X = 2.6)
(versus 1.9 to 2.3); antero-dorsal edge of ethmoid concave (versus
convex); anterior end of pterygoid bone indented (versus concave);
upper hypohyal window circular (versus oval); anal pterygiophore points
intermediately developed (versus prominent or reduced).
A comparison of H. amblyrhynchus and the other members of the genus
is presented in Table 25.

74
Description
Counts and proportional measurements are listed in Tables 7, 8,
15-19, and graphically presented in Figures 5-7, 9, 11, 14, 22. The
generic description and species diagnosis are supplemented by the
following: length of straight lateral line 50 to 60% SL; length of
curved lateral line 20% SL; body width 13% SL; pectoral fin 30% SL;
pelvic fin 33% pectoral; head depth 30% SL; interorbital width 9% SL;
maxillary depth 2% SL; pectoral fin rays 18-21, usually 19 or 20;
scutes in straight part of lateral line 34 to 51 (X + Sx = 44.87 +_ 0.29) ;
distal tips of the upper superior principal caudal rays lightly blacken¬
ed in adults.
Osteological characters are completely described in the account
of the osteology of the genus. Skeletal characteristics that disting¬
uish H_. amblyrhynchus from other members of the genus are: anterior
edge of dorsal surface of ethmoid concave; posterior tip of upper arm
of dentary rounded; posterior edge of postmaxi 11 ary process broadly
concave; a mid-dorsal expansion of the symplectic; pterygoid character¬
ized by indentations above and below anterior point; upper hypohyal
foramen circular; ceratohyal window ventrally expanded; anal pterygial
points moderate; distal ends of anal pterygiophores closely opposed.
Nomenclatu re
The original description of Caranx amb1yrhynchus Cuvier (commonly
named the Bluntnose jack [Bailey et_ aj_. , 1970: 40]) was based on two
syntypes from Brazil. Both specimens agree with the original descrip¬
tion. In accord with Bailey (1951), authorship of the specific name
is recognized.
Caranx heteropygus Poey was based on a single specimen from Cuba.

75
The taxonomic status of heteropygus vacillated, even in the works of
Poey, who distinguished it from amb1yrhynchus strictly on the basis
of upper caudal fin lobe length. This character is within the normal
range of variation of amb1yrhynchus, however, and all other morpho¬
metric characters agree with the data obtained for that species.
Howell Y Rivero (1938: 56) correctly identified Poey's type specimen
as am61yrhynchus.
The original description of Hemicaranx rhomboides Meek and Hilde¬
brand was based on two juvenile specimens from Caribbean Panama. One
of these (the holotype) was found in the USNM type collection and it
agrees in every way with amblyrhynchus. The paratype is deposited in
the Field Museum of Natural History (Grey, 19^7: 15^, 201). Meek and
Hildebrand (1925: 3^+2) examined only juvenile specimens, which differ
in many ways from the adult specimens upon which their account of
amblyrhynchus was based. Nichols and Murphy (19^: 2^2) correctly synonym
ized rhomboides with amblyrhynchus .
The original description of Caranx falcatus was based on a single
adult specimen collected twenty miles offshore from Charleston, South
Carolina. The etymology of the name reflects the major distinction
Holbrook incorporated in a comparison of his specimen with the figure of
a syntype of Cuvier: i.e., the relatively longer length of the upper
caudal fin lobe (most pronounced in specimens from more temperate
localities). This variation is characteristic of amb1yrhynchus, and
in this and all other details the type specimen of falcatus agrees with
amb1yrhynchus. The specimen was accidentally destroyed (Holbrook, i860:
96). Fa 1catus was correctly synonymized with amb1yrhynchus by Nichols
(1937: 6).

76
An additional species originally described as Caranx secundus by
Poey (i860: 223) was doubtfully synonymized with amblyrhynchus by
Jordan and Gilbert (1883: 197). This species is now regarded as a
number of the genus Uraspis (Berry, 1963* 58¿0 . In the same paper,
Berry noted that Caranx fasciatus, a nomen dubiurn, has at times been
regarded as a synonym of secundus and as a species of Hemicaranx.
Ecology
Hemicaranx amblyrhynchus has been referred to by Briggs (1958: 277)
as a "pelagic" species, inhabiting
the surface layers of water -- depths of less than
200 meters -- in the offshore regions usually beyond
the limits of the continental shelf.
The bulk of the specimens of amblyrhynchus examined in this study, how¬
ever, were collected in relatively shallow waters adjacent to continental
land masses, thus indicating a life cycle at least partially spent in
waters less than 200 meters deep. Despite such factors as (1) lack of
offshore collecting effort and (2) escape from collecting gear that may
bias conclusions about habitat, the almost exclusive collection of
Hemicaranx amblyrhynchus in shallow waters over the continental shelf
identifies it as a "shore" species (see Briggs, 1958: 277). Copeland
(1965), in a discussion of animal emigration through Aransas Pass, Texas,
alluded to the estuarine dependence of this species. In a year-round
tide trap sampling of emigrants through Aransas Pass, Copeland (1965:
Table 1) found amblyrhynchus to occur occasionally in collections made
from October through February. Although Copeland did not mention the
size of specimens collected, they are presumably juveniles, based on
the collecting gear and a consideration of other collections from Texas.
Gunter (19^5: 57), for example, reported Bluntnose jack of 32 to 82 mm

77
from Aransas Bay during June, July, and August.
Whether amblyrhynchus spawns in estuarine habitat is not certain,
but it appears that this species is one of many that utilizes the estuar¬
ine environment as a nursery ground for juveniles. From an estuarine
nursery it moves offshore to complete part or all of the life cycle. As
listed in the Material Examined section, juveniles of amb1yrhynchus have
been collected at a number of other estuarine localities, whereas adults
are always collected in offshore (ful 1-strength sea) waters.
The ecological association of juvenile H_. amblyrhynchus with jelly¬
fishes has been reported from a number of localities throughout its
range (summarized by Mansueti, 1963- 56-57), and is by no means unusual
for the Carangidae. Indeed, Mansueti (1963: Table 5) listed published
records of commensal and parasitic association between jellyfishes and
the young of 23 species of Carangidae in the world. For amblyrhynchus
Mansueti listed the following symbionts: Chrysaora quinquecirrha ,
Stomoloplus meleagris , Aurelia au rita , and Mast igi as sc inti 11ae .
Interestingly, amblyrhynchus was collected by Copeland (1965: 18) only
in association with the cabbagehead jellyfish, S_. me 1 eagr i s , during
fall emigration from Aransas Bay.
In his review article, Mansueti stated that such fish-jellyfish
association may (1) protect the fish from predators and (2) provide
food in the form of crustaceans and other invertebrates found on or
with the jellyfish, as well as the jellyfish itself. Immunity of
carangids to nematocyst toxin was suggested by Mansueti (196 3 : 5*0.
The function of pelagic symbiotic hosts as dispersal mechanisms is
discussed below in the Relationships section, as a factor in possible
interspecific gene flow in Hemicaranx.

78
Distribution
Hemicaranx amb1 yrhynchus ranges from Beaufort, North Carolina,
south along the continental margin of the Atlantic coast of North
and South America to the vicinity of FI or ianopolis , Brazil (ca. 28°S)
(Figure 4). Although it may be common in occasional samples, HL
amb1yrhynchus is most often present in institutional collections in
small numbers. Although this paucity of specimens may reflect
selectivity of sampling techniques or a failure to sample preferred
environmental habitat, it appears that this species is truly uncommon
in the natural environment, since even the more easily collected
juvenile stages are never taken in abundance. Tide traps collections
(Copeland, 1965; Roessler, 1970), beach seining, and trawling have all
failed to capture large numbers of amblyrhynchus.
Along continental shores H. amblyrhynchus is differentially
abundant, no doubt partly as an artifact of collecting intensity. How¬
ever, this species -- although expected by various authors (Bohlke and
Chaplin, 1968: 322 - Bahamas; Randall, 1968: 102 - non-inshore Caribbean
saline habitats) -- has not been reported from even the most actively
collected islands of the northern and eastern Caribbean Sea. This is
interesting in view of the common occurrence of many other carangids
in such localities, including such closely related forms as Se 1ar
(Randall, 1968: 106), with which Hemicaranx is sympatric over much
of the continental shelf. Both Gilbert (in press) and Robins (1971:
254) note that the Carangidae as a family is ubiquitously distributed
in both continental and insular waters which are characterized respect¬
ively by turbid waters and notable environmental fluctuations or clear
waters and stable environmental conditions. Based on the apparently

120 110 100 90 80 70 60 50 40 30 20 10 0 10 20
30
20
10
0
10
20
30
U5
Figure 4. Distribution of Hemicaranx (Based on collections examined)
in the Atlantic and Pacific Oceans

80
small population size of this species, plus its apparent estuarine
dependence, it is likely that amb1yrhynchus does not inhabit most of
these islands, possibly due to a lack of extensive estuarine nursery
ground complexes. The absence of amblyrhynchus from the Caribbean
Islands parallels that of the sea turtle, Lepidoche1ys, which Pritchard
(1969: I82-I83) accounted for on the basis of a paucity of extensive
brackish water areas.
Undoubtedly, however, these medium-sized, highly mobile fish have
had access to such habitats by virtue of obvious carangid morphological
adaptations for open-water locomotion (e.g., narrow peduncle, broad caudal
lobes, compressed terete body). In addition, the symbiotic association
of juvenile amb1yrhynchus with jellyfishes is a likely factor in effect¬
ing its widespread dispersal. Not all free-swimming large species, of
course, are able to inhabit the entire spectrum of environments to which
they have access. The Spanish mackerel, Scomberomorus maculatus, for ex¬
ample is absent from insular environments of the western Atlantic,
doubtless because, according to Robins (1971: 252):
...geographic barriers are not operating to restrict
the continental element from the islands but instead...
ecological conditions and competition from closely
related and better adapted island species provide the
barrier to colonization. What we have in these faunas
is not a picture of what could reach the area in question
but of what could survive and breed there.
It is hypothesized that H. amb1yrhynchus is one species of the continent¬
al fauna to which this statement applies.
The vagility of groups such as the Carangidae has been discussed
by Rosenblatt (1963) as a factor in the relative lack of endemism in
this family. As contrasted to smaller fishes adapted to discontinuous
isolated habitats, which are restricted in their mobility (and thus

81
gene exchange), the carangids are larger and more mobile and generally
inhabit continuous habitats over which they are free-swimming. Thus,
opportunities to promote gene flow in this group contribute to what
may be a differentially slower rate of local differentiation. This is
certainly the case for Hemicaranx amb1yrhynchus.
Variation
Samples of H. amb1yrhynchus from throughout the range of the species
are remarkably homogeneous as indicated by inspection and statistical
analysis of data (see in Tables 7, 8, and 15~17 in part). The small
amount of variation noted is clinal in nature: samples from more
temperate latitudes are characterized by longer caudal fin lobes (Figure
5, Table 7), higher numbers of soft rays in the second dorsal fin
(Figure 6, Table 15) and higher numbers of soft rays in the anal fin
(Figure 7, Table 16). Based on the classical observation of more body
parts in fishes from colder environments (Barlow, 1961), such a pattern
of geographic variation of meristic characters might be predicted.
Although it is tempting to conclude that nearly equatorial popu¬
lations of amb1yrhynchus (e. g., Guyanas-Brazi 1) develop fewer dorsal
and anal rays than more temperate populations (e.g., U. S. Gulf of
Mexico) in response to warmer developmental temperatures, the difference
between Honduras and equatorial localities with similar temperatures
must be accounted for. Samples from Honduras and the U. S. Gulf
(localities with different thermal regimes [Table 24]) are nearly
identical meristica11y, whereas samples from Honduras and the equatorial
localities are statistically significantly different = .05) in
terms of dorsal and anal ray counts. Thus, if these carangid fishes
are able to disperse widely to inhibit divergence of temperate and

100
90
80
70
60
50
40
30
20
10
O
Figure
amb1 y rhynchus
^Northern Gulf of Mexico
®Hondu ras
^ Su rinam-Guyanas
®bi col or
(U.S.)
©o •
C0
• •
O
â–² Vo
oo
°ocP
oo
N>
J I I I I I I I I I 1 I
20 40 60 80 100 120 140 160 180 200 220 240
STANDARD LENGTH (mm)
5. Length of the upper caudal fin lobe in populations of Hemicaranx amblyrhynchus from the
Western Atlantic Ocean and H. bicolor from the Eastern Atlantic

1eucurus
I
PANAMA
ze1 otes
i
MEXICO
i
PANAMA
amb1yrhynchus
I
U.S. GULF
i
HONDURAS
i
TRINIDAD
GUYANAS
I
SOUTHERN BRAZIL
AFRICA
_i I I I i I I 1
26 27 28 29
NUMBER OF DORSAL RAYS
Figure 6. Variation in number of fin rays in the soft dorsal
fin of Hemicaranx. (Vertical line indicates x,
horizontal lines extend to either side for a distance
equal to Sx * N.) (N=9;c^=.05 [after Eberhardt, 1988:
fig. 2])
bicolor
L
25

leucurus
I
PANAMA
zelotes
1
MEXICO
I
PANAMA
amblyrhynchus
TRINI DAD
I
GUYANA
i
U.S. GULF
HONDURAS
I
SOUTHERN BRAZIL
bicolor
21
i
AFRICA
22
23
J I I
2b 25
NUMBER OF ANAL RAYS
Figure 7. Variation in number of fin rays in the soft anal fin
of Hem i caranx. (Symbols as in Figure 6; N=9',<^=.05)

85
tropical populations, it is necessary to account for the differences be¬
tween populations inhabiting waters of similar temperature.
It is possible that embryological development in both the Gulf of
Mexico and the waters off Honduras occurs at different times of the
season, but at the same temperature. If so, however, the explanation
of the differences between Honduras and equatorial America is still not
obvious.
An alternate proposal is that gene flow occurs between a population
with lower ray counts and the equatorial amb1yrhynchus; this is presented
below.
Relationships
Hemicaranx amb1yrhynchus is most closely related to the West
African species H_. bicolor, based on the extremely close morphological
similarity of the two forms. Of the external morphological characters
analyzed, the two species differ consistently in number of dorsal rays
(Figure 6, Table 15), number of anal rays (Figure 7, Table 16), length
of the upper caudal fin lobe (Figures 5, 8, Tables 7, 9), and number
of scales in the curved part of the lateral line (Figure 9, Table 18).
Differences in dorsal ray counts between all samples of amblyrhynchus
and bicolor at the .05 level of statistical significance are observed
when multiple comparison analysis is performed; they are graphically
presented in Figure 6. Anal ray counts are significantly different
(.05 level) between bicolor and all samples of amb1yrhynchus, except
those from the northeast shore of South America (Figure 7); a possible
explanation for this exception is discussed below. Difference in upper
caudal fin lobe lengths increases between the two species with age; a
student's t value of 6.5016 reveals a highly significant (.01 level)

gure 8. Adult Hemicaranx from the Atlantic
Ocean. Hemicaranx bicolor, 169 mm
SL, TABL 104438, Guinea, Africa
(above); and H_. amblyrhynchus, 157
mm SL, TABL 101356, off Caratasca
Lagoon, Honduras

87
L<*

88
1eucurus
zelotes
amblyrhynchus
1 ' bicolor
I I I 1 I I I I I i I 1 I I I I I I I I I
30 35 1*5 50
CURVED LATERAL LINE SCALES
Figure 9. Interspecific variation in number of scales in
curved lateral line of Hemicaranx. (Symbols
after Figure 6; N=l*;c(=.07j

89
statistical difference for adults. Although broad overlap in curved lat¬
eral-line scale counts exists, statistical significance at the .07 level
is shown in Figure 9. Osteo1ogica11y they differ with respect to round¬
ing of the posterior tip of the upper arm of the dentary (Figure VI),
curvature of the processes of the premaxillary bone (Figure Vil, VI Il),
shape of the urohyal (Figure XV), and opposition and development of distal
tips of anal pterygiophores (Figure XIX). The few slight significant
external differences and the nature of osteological characters that vary
only in degree of expression indicate a close relationship of amb1yrhynch-
us_ and bicolor. These two species, as discussed in the account of H_.
zelotes, are more distantly related to both H_. zelotes and 1 eucurus than
they are to each other.
Comparison of bicolor and amb1yrhynchus reveals that bicolor most
closely resembles populations of amblyrhynchus from the northeast shore
of Brazil and the Surinam-Gtyaias region - that is, the area just north
of the Equator. The diagnostic characters of upper caudal fin lobe
length, number of dorsal rays, and number of anal rays more closely
approach each other when these two localities are compared than when
more temperate populations of amblyrhynchus are considered. As an
alternative to environmental modification of these characters in
amb1yrhynchus, it is suggested that gene flow from western Africa
Hemicaranx to equatorial South America may be influencing the external
morphology of H. amb1yrhynchus in the direction of bicolor. The pos¬
sibility of this contention is supported by two observations:
1. The ecological association of juvenile H_. amb 1 yrhynchus
with pelagic jellyfish medusae and ctenophores is
reasonably hypothesized as characteristic of bicolor,

90
especially in view of its occurrence in the closely related
genus Atu1e (Kansueti, 1963: 57). Hence, a behavioral
mechanism whereby widespread dispersal may be effected
exists, pending a transport agent.
2. The existence of strong stable westward-flowing equatorial
currents in the Atlantic Ocean (Figure 10) provides a
dispersal agent that represents a means of transporting
organisms that inhabit the water column of the current
during transatlantic transit. Such a mechanism has been
suggested as a factor in the colonization of South America
by the ridley turtle, Lepidochelys olivácea (Pritchard, 1969=
181) .
As noted in Dietrich (1963: Chart 5), persistent surface currents
flow from the Gulf of Guinea of Western Africa (0°N, 0°W) across the
Atlantic at rates of 36 to 108 nautical miles per day, first reaching
the Western Hemisphere along the northeast coast of Brazil and the
Surinam-Guianas coast (Figure 10). To cover this distance of approxi¬
mately 3600 miles takes roughly 50 days, assuming an average flow of
72 miles per day. Thus, if the hypothesized commensal partners of
bicolor are carried across the Atlantic by existing currents, the
immediate target area is the northeast slope of South America. With
successful reproduction of intermixing populations, assuming normal
maturation of bicolor, one might expect to observe departure of
amb1yrhynchus characters from the homogeneous norm. This is evidenced
by the fact that amb1yrhynchus from British Guiana, Surinam, and north¬
east Brazil resemble bicolor more closely than do more northerly and
southerly populations with regard to number of dorsal rays, number of

91
6o°w
Figure 10. Winter Atlantic Ocean equatorial surface currents
(From Dietrich, 1963: Chart 5)

92
anal rays, and length of the upper caudal fin lobe (Figures 5, 6, 7,
8). Despite the approach of these meristic and morphometric charact¬
ers, they remain statistically significantly different. In addition, the
osteological differences mentioned are constant between these two
very closely related forms.
*

93
Hemicaranx bicolor (Gunther)
Figures 8, 19
Caranx bicolor.-- Gunther, i860: 942 (original description; type mater¬
ial: BMNH l855.12.26.539a and b, t\vospecimens 78 and 58 mm
SL; Sierra Leone; distinct from C_. ambly rhynchus) . -- Bleeker,
1862: 140 (compared with Hemicaranx marginatus; recognized as
a species of Hemicaranx).-- Bleeker, 1863: 82 (distinguished
from Hemicaranx marginatus; recognized as a species of
Hemicaranx).-- Gunther, 186A: 2b (£. leucurus a close rela¬
tive).-- Fowler, 1938: 690 (synonymized with Alepes amblyrhyn-
chus from Brazil; not distinct from Hemicaranx marginatus;
Cape Verde Islands).
Hemicaranx bicolor.-- Irvine, 1947: 21, 138, 138, fig. 63 (des¬
cription; probable synonymy with H. amblyrhynchus; Accra,
Gold Coast Africa).
Hemicaranx marginatus.-- Bleeker, 1882: 138-140 (original description;
one specimen, 158 mm SL; Ashantee, Guinea; comparison with
Caranx amblyrhynchus; distinguished from Caranx bicolor,
which is recognized as a Hemica ranx).-- Bleeker, 186 3 : 81-82
(description; comparison with Caranx amblyrhynchus and £.
bicolor).Fowler, 1936: 690 (synonymized with Alepes
amblyrhynchus from Brazi1 ; i dentical with Caranx bicolor;
Cape Verde Islands).
Material Examined
Guinea
TABL 102906 (6, 170-217), 09°36'N, 14°13'W, 20 m, GTSI, Trans. 7,

94
La Rafale, Trawl, 26 Nov. 1963; TABL 10A438 (5, 170-195), 09°36'N,
14°131W, GTSI, Trans. 7, La Rafale, Trawl, 26 Nov. 1963; TABL
102876 (5, 190-220), 08°52'N, 13°521W, 32m, GTSI, Trans. 8, La
Rafale, Trawl, 24 Nov. 1963; TABL 103645 (3, I6O-I85), 08°52'N,
13°52'W, GTSI, Trans. 8, La Rafale, Collete, 24 Nov. 1963.
Sierra Leone
TABL 102880 (3, 185-207), 07°20.5'N, 12°40‘W, 30m, GTSI, Trans.
11, La Rafale, Trawl, 15 Nov. 1963; TABL 102236 (4, 200-230),
south of Freetown, ca. 08°00'N, 13°05'W, Gerónimo Cruise 4; BMNH
1855.12.26.539a and b, type specimens of Caranx bicolor Gunther
(2, 56-76).
Liberia
USNM 193849, 1; USNM 193740, 11; USNM 193801, 1.
Gold Coast
BMNH 1930.8.26.47-8 (2, 44.3-47.4), Accra, F. R. Irvine; RMNH
1381 , type of Hemicaranx marginatus Bleeker (1 , 158) , Ashantee.
Nigeria
TABL 102765 (1, 151) , 05°15'N, 05°09'E, 15m, GTS 11, Trans. 40,
Thierry-trawl, 30 March 1964.
Came roon
SU 15882 (1, 145), Kribi, A. I. Good, 24 Sept. 1940; CAS-SU 18219
(1, 123), Kribi River, A. I. Good, 21 Sept. 1940; TABL 102778 (66,
135-170), 02°28'N, 09°44'E; BMNH 1927.3.2.1 (1, 55.8), Swelaba,
Th. Monod.
Gabon
USNM (Uncat.)(2, 173-204), 04°10'S, 10°52'E, 13 Feb. I960; TABL
102896 (13, 60.6-83), 01°57'S , 09°121E , 30m, Thierry, GTSI Trans.
56, Sta. 2, 26 Nov. I963.

95
Congo
AMNH 7300 (2, 8l.7“85.0), Mouth of Congo R. , Lang-Chapin.
West Africa
BMNH 1862.1.24.14 (1), A. Murray Esq.
Piagnosis
A species of Hemicaranx distinguished from all other members of
the genus by: fewer dorsal soft rays (2*4 to 28, usually 25 or 26)
(X +_ Sx = 25.62 +_ 0. 15) ; fewer anal rays (21 to 2*4, usually 22) (X j^Sx =
22.1*4 +_ 0.13) ; basihyal width narrow; and ceratohyal window oval.
H. bicolor is further distinguished from H. amblyrhynchus by the
following characters: upper and lower caudal lobes of nearly equal
length (versus upper lobe extended); indented ascending process (versus
flattened), and straight articular process of the premaxillary (versus
concave); anal pterygiophore spacing intermediate (versus closely spaced).
Hemicaranx bicolor is further distinguished from both H. zelotes
and leucurus by: seven (versus 8) dorsal spines; 16 (versus 15) caudal
vertebrae; proportional width of anterior caudal peduncle scute 3.8 to
*4. b% SL (X = *4.1) (versus 1.7 to 3.6); ratio of straight to curved
portions of lateral line 2. *4 to 3.1 (versus 1.7 to 2.3); antero-dorsal
edge of ethmoid concave (versus convex); anterior end of pterygoid
indented (versus concave); upper hypohyal window circular (versus oval);
anal pterygiophore points intermediately developed (versus prominent
or reduced).
H_. bicolor is also distinguished from ze lotes by: shorter head
length; urohyal spine absent; anal pterygiophore points intermediately
spaced (versus distantly spaced).
H_. bicolor is additionally distinguished from H. leucurus by:

96
posterior tip of upper dentary arm curved (versus pointed); indented
ascending process (versus flattened) and straight articular process
(versus concave) of premaxillary; dorsal symplectic expansion present;
anterior end of pterygoid indented (versus concave) ; and pectoral fin
not unusually long.
Hemicaranx bicolor and the other members of the genus are compared
in Table 25 •
Description
Counts and proportional measurements are summarized in Tables 9,
10, 15, 16, 17, 18, 19, and Figures 5, 6, 7, 9. The generic description
and species diagnosis are supplemented as follows: length of total
lateral line 53 to 59% SL; length of curved lateral line 20% SL; mean
straight/curved lateral line ratio 2.7; mean width of anterior caudal ped¬
uncle scute 4.1% SL; body width 13% SL; pectoral fin 33% SL; pelvic fin
33% of pectoral; head length 25 ~30% SL; head depth 30% SL; interorbital
width 9.2% SL; maxillary depth 2% SL; pectoral fin rays 18 to 20, usually
19 or 20; scales in curved part of lateral line 29 to 44 (X +_ Sx = 34.02
+_0.58); scutes in straight part of lateral line 39 to 53 (X +_ Sx = 45.50
+ 0.47).
Hemicaranx bicolor is distinguished osteologically by: anterior edge
of dorsal surface of ethmoid concave; posterior tip of upper arm of
dentary curved; posterior edge of postmaxi 11 ary process straight; symplec¬
tic with a mid-dorsal expansion; anterior point of pterygoid with two
indentations; upper hypohyal foramen circular; ceratohyal window oval;
anal pterygial points moderate; distal ends of anal pterygiophores
moderately spaced. The osteology of Hemicaranx bicolor is completely
described in the osteological account of the genus.

97
Nomenclature
»r
The original description of Caranx bicolor Gunther was based on
two syntypes from the coast of Sierra Leone. The specimens are charact¬
erized by the typically low counts of dorsal and anal rays (25 and 26;
22 and 23, respectively) and 30 scales in the curved part of the lateral
line.
The original description of Hemicaranx marginatus Bleeker (type spec¬
ies of the genus) was based on a single specimen from Ashantee, Guinea.
The diagnostic characters of reduced dorsal and anal ray counts (2*4 and
20, respectively) are typical of bicolor. In distinguishing his adult
specimen from the two juvenile syntypes of Gunther, Bleeker (1863: 82)
utilized characters that change with age, a factor he did acknowledge.
However, he maintained their identities on the basis of relative snout-
eye diameter measurements: the type specimen of marginatus has the
snout shorter than the orbital diameter, whereas Gunther's original
description (i860) of bicolor noted the snout as longer than the "eye
di ámeter"(?). This is in error, for the snout of Gunther's specimens
is also less than the orbital diameter. Furthermore, the proportional
measurements of both characters remain relatively constant with growth
(Table 9), thus allowing comparison of samples composed of different¬
sized individuals.
Distribution and Variation
The range of Hemicaranx bicolor is centered along the coast of the
Gulf of Guinea, and specimens have been collected along the Atlantic
coast of Africa as far north as Sierra Leone and the Cape Verde Islands,
and as far south as the mouth of the Congo River (Figure k) . No records
of bicolor from offshore islands are known; it is not found at either

98
Saint Helena (15°55 ' S , O 5°44'W) or Ascension (07°56'S, 14°25'W) (Cadenat
and Marshall, 1963)*
As discussed in the account of H. amblyrhynchus, it is hypothesized
that bicolor is adapted to trans-At 1 antic dispersal via equatorial
currents, and it may have been carried to these islands. Its apparent
absence from offshore islands may be explained by a lack of adequate
estuarine nursery complexes, if its life cycle is comparable to that of
amblyrhynchus.
Hemicaranx bicolor is an extremely homogeneous species with regard
to geographic variation of external morphology. Comparison of all
morphometric and meristic characters of samples from the northern (Guinea)
and southern (Cameroon) portions of the range indicate minimal variation,
with the exception of statistically significant differences for lateral
line arch (t .01 = 3.39), caudal peduncle width (t .01 = 4.10), orbit
(t .01 = 2.34), and gape (t .01 = 3.41). However, it is felt that this
variation is neither biologically nor taxonomically significant, especial¬
ly in view of osteological homogeneity.
Ecology and Relationships
These aspects of the systematics of H_. bicolor are discussed in the
account of the closely related H. amb1yrhynchus.

99
Hemicaranx ze1 otes G¡1bert
Figures 19, 20
Hemicaranx zelotes.-- Gilbert, j_n_ Jordan and Evermann, 1898: 2845“
2846 (original description; type locality: Panama; type mater¬
ial: CAS-SU 5819, one specimen, 201 mm SL; compared with H.
at rimanus).-- Gilbert and Starks, 1904: 5, 76, pi. 7, fig. 22
(description; comparison with atrimanus; four specimens from
Panama market).-- Kendall and Radcliffe, 1912: 98 (counts, meas¬
urements, color of one specimen, "7“5/8 inches long"; Panama Bay).
-- Meek and Hildebrand, 1925: 343“344 (description; seven speci¬
mens, "230 to 275 mm in length"; Panama; "closely, related to H.
a t rimanus"; distinguished from atrimanus).-- Jordan, Evermann, and
Clark, 1930; 271 (Panama).-- Bohlke, 1953: 75 (cataloged in
Natural History Museum, Stanford University).
Hemicaranx sechurae.-- Hildebrand, 1946: 211-213 (original description;
type locality, Sechura Bay, Peru; type material: one specimen,
"135 mm (105 mm to base of caudal) long", [SL 108 mm], USNM 127920;
compared with 1eucurus, at least 40 mm smaller, from Panama).
Material Examined
Mexico
S10 62-531 (1, 173), Baja, California, Almejas Bay, mid-Sept. 1949;
S10 6O-368 (13, 175-201), Baja, California Sur, Almejas Bay, off E.
side of Santa Margarita Island, F. H. Berry, 24 Aug. I960; USNM
119733 (2, 190-200), Sinaloa, Topolobampo, Bahia Topolobampo,
lagoon E. town, P. A. Larkin, 11 March 1959; NMC 68-115 (3, 170-
186), Sinaloa, Mazatlan, 2-1/2 mi. S. city, T. F. Pletcher, 11 Nov.

100
1959; LACM 6533“3 (1, 162), Sinaloa, Los Cocos, 10 Sept. 1962;
LACM 1318.(1, 179)> Magdalena Bay.
El Salvador
TABL 10A609 O, 160), 1 3°08 ' N , 88°00'W, Sagitario, Bay 1 i f f, 14
Dec. 1967.
Honduras
UCLA-W-53-I76 (1, 149), Gulf of Fonseca, Wylie, 20-22 Dec. 1946.
Costa Rica
UCLA-W-54-II (2, 114-116), Gulf of Nicoya, Chira flats off Chira
Is., 2-1/2-41 fms., 60 ft. shrimp trawl, C. Petersen, 22 March 1952;
LACM 30224-4 (2, 114-126), Gulf of Nicoya, Nishimoto, 5-6 Feb. 1969;
S10 63-476 (1, 211), Gulfo de Nicoya, March 1947.
Panama
UBC 59-670 (11, 46-85.6), Panama Viejo, near Panama City, W. H.
Bayliff, 23 Nov. - 11 Dec. 1958; UCLA-W-58-303 (9, 118-149),
Panama Bay: Punta Chame and Punta Anton, 3-1/2-15 fms., Joanna,
60 ft., trawl, E. S. Reese, 6-9 Sept. 1958; UCLA-W-54-326 (3, 33"
79-7), mouth of Rio Anton, 6 fms., bait haul, H. Clemens, 29 April
1954; USNM 82190 (50, 32.2-82.3), Chame Point, Robert Tweedlie,
26 July 1913 (mixed with FL 1eucurus) ; UBC 59-680 (3, 86-112),
Chame Point, R. E. Johannes, Summer, 1959; UBC 59"664 (1, 107) »
Panama City to Punta Chame, W. H. Bayliff, Jan.-Feb. 1959; NMC 68-
1187 (1, 186), Taboga Island, R. E. Johannes, 3 June 1959; USNM
80012 (1, 195), Panama Bay, Balboa, Canal Zone, Meek and Hildebrand,
9 Feb. 1912; UBC 59-668 (1, 162), Panama Bay, near Panama City,
R. E. Johannes, 22 June I960; SU 5819 (1, 201) (holotype of
Hemicaranx zelotes Gilbert), Panama City market, Gilbert et al.,

101
10 Jan.-24 Feb. 1896; USNM 75065 (1, 142), Panama Bay, Albatross,
28 Oct. 1904; NMC 68-1091 (4, 183~214), Panama City fish market,
R. E. Johannes, June, July 1959; USNM 80010 (1, 210), Panama City
market, Meek and Hildebrand, 29 Jan. 1912; USNM 80011 (1, 201),
Panama City market, Meek and Hildebrand, 26 Jan. 1912; UCLA-W-58-
304 (7, 70.1-107), Panama Bay, offshore between Punta deHicacal
and Rio Pasiga, 1-1/2-2 fms., Elaina, 60 ft. trawl, W. J. Baldwin,
7-9 Sept. 1958; USNM 79962 (1, 168); CAS 6082 (1, 130), Panama
market, Hancock expedition, 24 Dec. 1931.
Colombia
UBC 59-656 (2, 109-112), Bahia Cupica, to Rio Orpua, I. Barrett
et aj_. , Feb. 1959.
Peru
USNM 127920 (1, 105), Sechura Bay, S. Hildebrand (type specimen
of H_. sechurae) .
Diagnosis
Hemicaranx zelotes is distinguished from all other members of the
genus by the following combination of characters: head short, 23 to
28% SL; basihyal bone wide; urohyal spine present; anal pterygiophore
points prominently developed; anal pterygiophores distantly spaced.
H_. zelotes is further distinguished from H_. bicolor and H_. amb 1 yrhyn-
chus by: eight (versus seven) dorsal spines, 15 (versus 16) caudal verte¬
brae; proportional width of anterior caudal peduncle scute 2.6 to 3*6
(versus 3*8 to 4.8); ratio of straight to curved portions of lateral line
1.9 to 2.3 (versus 2.3 to 3.1) antero-dorsa1 edge of ethmoid convex
(versus concave); anterior end of pterygoid concave (versus indented);
upper hypohyal oval (versus circular).

102
In addition, zelotes is distinguished from amb1yrhynchus by: a
curved (versus intermediate) posterior tip of the upper dentary arm;
indented (versus flattened) ascending process and straight (versus
concave) articular process of the premaxillary. H_. zelotes is addition¬
ally distinguished from H. bicolor by: an intermediate (versus oval)
ceratohyal window; more dorsal rays (25 to 31, usually 28 or 29) (X +_ Sx
= 28.22 +_ 0.12) ; more anal rays (22 to 25, usually 23 or 24) (X +_Sx =
23.74 + 0.12).
Hemicaranx zelotes is further recognized as distinct from H. 1eucurus
by the following characters: a shorter (30% versus 40% SL) pectoral fin;
teeth usually roundly pointed (versus sharply pointed); posterior tip of
upper dentary arm curved (versus pointed); indented (versus flattened)
ascending process and straight (versus concave) articular process of
premaxillary; dorsal symplectic expansion present; ceratohyal window
intermediate (versus triangular); anterior caudal peduncle scutes wider
(2.6 to 3.6% SL, versus 1.7 to 2.3); fewer lateral bars (four to six, ver¬
sus six to nine) .
This species and the other members of the genus are compared in
Table 25.
Description
Counts and measurements are listed in Tables 11-19 and plotted in
Figures 6, 7, 11-18, and 22. The generic description and species diag¬
nosis are supplemented as follows: length of straight part of lateral
line 52 to 54% SL; length of curved part of lateral line 23 to 24% SL;
mean straight/curved lateral line ratio 2.12; body width 12% SL; head
depth 25 to 30% SL; interorbital width 7.8 to 8.6% SL; orbit 6 to 8% SL;
premaxillary 8 to 9% SL; gape 7% SL; pectoral fin rays 18 to 23, usually

103
20 or 21; scales in curved lateral line 29 to (X +. Sx = 39-66 0.60) ;
scutes in straight lateral line 42 to 52 (X +_ Sx = 47.71 1 .06) .
The osteological differences noted in the chapter on osteology are
summarized as follows: anterior edge of dorsal surface of ethmoid bone
convex; posterior tip of upper arm of dentary curved; postmaxi 11 ary
process straight; anterior end of pterygoid a dorsally concave point;
upper hypohyal foramen elongate; ceratohyal window oval, ventrally
expanded; points prominent on all but two anteriormost anal pterygio-
phores; distal ends of anal pterygiophores distant.
Nomenclature
To date Hemicaranx zelotes is known, in the literature, from only
13 large specimens, including the holotype from Pacific Panama. (One
lot of juvenile specimens reported as H_. leucurus [Meek and Hildebrand,
1925: 344-345] is actually composed of leucurus and ze 1 otes.) . The
taxonomic characters herein discussed indicate that Hemicaranx sechurae,
known from a single specimen (105 mm SL) from Peru, is a synonym of
zelotes. Tooth morphology, number of lateral body bars, and width of the
anterior caudal peduncle scute, are especially useful characters.
Distribution
Hemicaranx zelotes ranges from the southern tip of Baja California,
Mexico, along the Pacific coast of Central America to Sechura Bay, Peru
(Figure A). Although it is not nearly as well represented in institution
al collections as H. amb1yrhynchus (from a more intensively studied shore
line), zelotes does appear to be relatively more abundant throughout its
optimal range. This is indicated by its "frequent occurrence" in the
Panama market (Gilbert and Starks, 1904: 75) as well as the existence of

104
several lots of specimens of ten or more individuals in collections.
As illustrated in Figure 4, zelotes is sympatric over much of its
range with H_. 1 eucu rus. Partial syntopic occurrence is documented by
a number of samples in which they were collected together.
Variation
The null hypothesis of no infraspecific external morphological
variation between samples of zelotes from Mexico and Panama is herein
accepted. Based on (1) the general mobility of the Carangidae and (2)
the possibility that juveniles of this species are passively dispersed
if they are commensal with pelagic coelenterates, it is not likely that
genetic evolutionary divergence is occurring in zelotes, since prolonged
isolation of populations is unlikely.
Reí ationships
Hemicaranx zelotes is most closely related to H. leucurus on the
basis of their numerous similarities of external morphology and osteo¬
logy. Adults of these two species differ significantly with regard to
the ratio of straight to curved lateral line lengths (Figure 11), number
of scales in the curved lateral line (Table 18), number of teeth in the
premaxillary and dentary bones (Figures 12-14), and length of the pectoral
and pelvic fins (Figures 15 and 16). Much of the taxonomic confusion
centering on this pair of species (as evidenced by numerous misi dentified
specimens in collections) has resulted from increasing morphological
similarities as smaller and smaller individuals of Hemicaranx from the
Eastern Pacific are compared. For example, specimens below 130 mm SL
are indistinguishable on the basis of pectoral fin lengths (Figure 15).
In attempting to resolve the identity of small "unknown" specimens

105
critical analysis of external morphology reveals the existence of addit¬
ional diagnostic characters that apply not only to adults but to juveniles
as well: width of the anterior caudal peduncle scute (Figures 17 and 18),
number of lateral body bars (Figures 19 and 20), and morphology of the
premaxillary and dentary teeth (Figure 21). On the basis of these trans¬
itional characters, small and intermediate-sized specimens are readily
discernible as either zelotes or 1eucu rus; it is important to note that
individuals consistently differ for these spec ies-spec ific characters.
Osteologically the two species differ in degree of development of
curvature of the posterior tip of the upper arm of the dentary (Figure
VI), curvature of the premaxillary (Figure VI Il), development of a
symplectic dorsal expansion (Figure X), width of the basihyal (Figure
XIV B), shape of the ceratohyal window (Figure XV D), shape of the uro-
hyal (Figure XV), and morphology and spacing of the distal ends of the
anal pterygiophores (Figure XIX).
In view of the more sharp1y-pointed teeth in 1eucurus , one might
reasonably hypothesize different feeding habits for these two species.
However, examination of stomach contents of adult specimens proved in¬
conclusive, due either to empty stomachs or totally decomposed, unident¬
ifiable food in the stomachs of H. 1eucu rus. A series of zelotes from
Magdalena Bay, Mexico (S10 60-368) , was found to contain juvenile
anchovies exclusively, in various stages of digestion. Complete
evaluation of trophic and other ecological characteristics of these
species is contingent upon more extensive field work.
Despite the differences noted in the comparison of H_. ze 1 otes
and 1 eucu rus, they are more closely related to each other than they are
to either amb1yrhynchus or bicolor. Comparison of the former pair of

106
species with the latter shows the greater affinities of the members of
each pair to one another, based on the greater number of characters
that they share in common. Together, zelotes and 1eucurus differ from
amb1yrhynchus and bicolor with regard to number of caudal vertebrae
(15 versus 16\ number of spines in the first dorsal fin (8 versus 7),
ratio of straight to curved lateral line lengths (Figure 11), and width
of the anterior peduncle scute (Figure 22).
In addition, the anterior edge of the dorsal surface of the ethmoid
bone (Figure 11), the anterior end of the pterygoid (Figure XI), the
upper hypohyal foramen (Figure XV) are characteristically shaped in each
pair. Interspecific and interspeci es-pair differences are summarized in
Table 25.

107
leucurus 1—
zelotes —I—
amb1yrhynchus '
bicolor —■—I
I I I 1 I I I I I I I I I i I I
1.5 2.0 2.5 3.0
STRAIGHT: CURVED LATERAL LINE RATIO
Figure 11. Interspecific variation in ratio of
straight to curved lateral line
lengths in large adult Hemicaranx.
(SL 170-210 mm) (Symbols after Figure
6; N=4;c<=.07)

PREMAXILLARY TEETH
O
O
STANDARD LENGTH (mm)
Figure 12. Number of teeth in the premaxillary bone of Hemicaranx from Panama Bay, Panama

DENTARY TEETH
60
O
50
AO
30
20
10
1eucu rus
zelotes
©
O
8
©
o
©o
8
&
o
OQO
o
©
©
o
o
o
o
G°o
©
a CO
©
©
© ®
©
© ©
o
I I I I I 1 I I I I I l
0 20 A0 60 80 100 120 lAO 160 180 200 220 2A0
STANDARD LENGTH (mm)
Figure 13. Number of teeth in the dentary bone of Hemicaranx from Panama Bay, Panama
8> o%

DENTARY
1eucu rus
zelotes
amb1 yrhynchus
bicolor
PREMAXILLARY
I
J
l
I l 1
30 ^0 50 60
NUMBER OF TEETH
Figure Ib. Interspecific variation in number of
teeth in large adult specimens of
Hemicaranx. (SL 170-210 mm) (Symbols
after Figure 6; N=¿*;cX = .07)
1eucurus
zelotes
amb1y rhynchus
bicolor

PECTORAL FIN LENGTH (mm)
Figure 15. Length of the pectoral fin in Hemicaranx from Panama Bay, Panama

PELVIC FIN LENGTH (mm)
O
Figure 16. Length of the pelvic fin in Hemicaranx from Panama Bay, Panama
112

Figure 17. Lateral outlines of anterior caudal peduncle
scutes in Eastern Pacific Hemicaranx. top
row: H. zelotes, A, SL 70.1 mm, B, SL 110.4 mm,
C, SL 142 mm; bottom row: H. 1eucurus, D, SL
69.3 mm, E, SL 118.3 mm, F, SL 153 mm

114

SCUTE WIDTH (mm)
STANDARD LENGTH (mm)
Figure 18. Width of the anterior peduncle scute in Hemicaranx from Panama Bay, Panama

Figure 19. Juvenile specimens of Hemicaranx.
Top, H_. ambl yrhynchus, 58.0 mm SL,
FSU 1377, Alligator Harbor, Florida,
USA; upper middle, H. bicolor, 66.9
mm SL, TABL 102896, Gabon, Africa;
lower middle, H. zelotes , 72.7 mm SL,
UCLA W 58-304 , Panama ;\and bottom, H_.
1eucurus , 79 mm SL, USNM 82190, Panama

117

Figure 20. Adult Hemicaranx from the Eastern
Pacific Ocean. Hemicaranx zelotes,
201 mm SL, S10 60-368, Baja California,
Mexico (above); and H_. 1 eucurus, 210 mm
SL, S10 62-150, Baja California, Mexico
(below)

119

gure 21. Lateral outlines of anterior ends of
articulated premaxillary and dentary
bones in Eastern Pacific Hemicaranx.
A, H_. 1 eucurus, 153 mm SL, USNM 50338,
Panama. B, H_. zelotes, 142 mm SL,
USNM 75065, Panama

121

122
1eucurus
zelotes
amb1yrhynchus 1
—1— bicolor
1 I I I I I 1 I I
23 26 29 32 35 38 ¿41 bb b7
PROPORTIONAL SCUTE WIDTH
(In thousandths of standard length)
Figure 22. Interspecific variation in width of the
anterior peduncle scute in large adult
Hemicaranx. (SL 170-210 mm) (Symbols
after Figure 6; N=¿4; o<=.07)

123
Hemicaranx 1eucurus (Gunther)
Figures 19, 20
Caranx leucurus.-- Gunther, 186*4: 24 (original description; Pacific coast
of Panama; type material: BMNH 1863.12.16.70-71, SL 52 and 59
mm; "closely allied to C. bicolor").Jordan and Gilbert,
1883: 192,197 (accorded to subgenus U raspis ; "not examined...
five known specimens are from Panama ... immature"; furthii
synonymized) .Jordan, 1884b: 28*4 (description of two type
specimens of £. 1eucurus; reassigned to subgenus Hemicaranx;
related to C. atrimanus and C. amb1yrhynchus)Jordan and
Evermann, 1896: 91*4 (Hemicaranx furthii possibly a synonym).
Hemicaranx leucurus.-- Jordan and Evermann, 1896: 914-915 (descrip¬
tion; two specimens, each three inches long[the type speci¬
mens of leucurus Gunther in BMNH?]; Panama; references).--
Gilbert and Starks, 1904: 77 ("only the type known"; Panama).
-- Kendall and Radcliffe, 1912: 98 (counts, measurements,
observations of one specimen,"2-1/16" long; Panama Bay).--
Meek and Hildebrand, 1925: 344-345 (description; 125 specimens;
"25 to 107 mm in length"; Chame Point, Panama Bay; discussion
based on mixed collection of juvenile leucurus and ze1 otes).--
Jordan, Evermann and Clark, 1930: 271 (Pacific Panama).--
Hildebrand, 1946: 212 (Ca ranx furthii a synonym; H_. sechu rae
c1 ose 1 y re 1 a ted).
Ca ranx furthii.-- Steindachner , 1875: 12-13 (original description; "the
same habitat as those described by Dr. Gunther as Caranx
leucurus"; three specimens, "3 to 5 inches in length"; dis¬
tinguished from C. leucurus).-- Jordan and Gilbert, 1883: 197

(synonymized with C. 1eucurus).-- Hildebrand, 1946: 212-213
a synonym of Hemicaranx 1eucu rus).
Hemicaranx furthii.-- Jordan and Evermann, 1896: 91** (description;
"known from three specimens"; Panama; "perhaps not distinct
from Caranx leucurus).-- Gilbert and Starks, 1904: 77 (known
only from types; Panama; "probably not distinct from H_. 1 eucurus") .
-- Jordan, Evermann and Clark, 1930: 271 (Panama).
Caranx atrimanus.-- Jordan and Gilbert, 1882: 308 (original description;
Bay of Panama; type material: USNM 29341, one specimen, "12
inches in length," [missing]; subgenus Carangops; comparison
with C_. amblyrhynchus. -- Jordan and Gilbert, 1883: 197 ("rare";
recorded only from Pacific Panama).-- Jordan, 1884b: 284
(related to C_. 1 eucurus) .
Hemicaranx atrimanus.-- Jordan and Evermann, I896: 913“914 (descrip¬
tion [nearly identical to original description given in Jordan
and Gilbert, 1882: 308] ; a single specimen, 12 inches long,
available; Bay of Panama; compared to amblyrhynchus).--Gilbert
and Starks, 1^04: 75-76 (frequent occurrence in Panama market;
brief description; [total?] length 230 to 360 mm.-- Kendall
and Radcliffe, 1912: 97~98 (15 characters listed for three
specimens; ca. 141 to 148 mm SL [7-3/8 - 7-3/4 inches long];
Bay of Panama; references).-- Meek and Hildebrand, 1925: 342-
343 (description; nine specimens, "225 to 315 mm in length";
"known only from Panama Bay").-- Jordan, Evermann, and Clark,
1930: 271 (Pacific Panama).
Material Examined
Mexico

125
S10 62-150 (1, 197), Baja, California, Bahia Almejas, Isla Santa
Margarita, E. side, F. H. Berry, 24 Aug. 196O; NMC 68-115 (1, 21*7),
Sinaloa, 2-1/2 mi. S. Mazatlan, T. F. Pletcher, 11 Nov. 1959; GCRL
2651 (5, 13.0-42.6), Sinaloa, Laguna, Teacapan, 29°00'N, 105°43'W,
0-4 ft., Dawson - Field No. 1218, 4 Aug. 1967; LACM 6552-6 (1, 104),
Sinaloa, Los Cocos; NMC 68-1109 (1, 198), Oxaca - Chiapas, Puerta
Arista SE to Salina Cruz, market collection, T. F. Pletcher, 20 Aug.
1959; NMC 68-110 (1, 226), Chicapas, Puerta Arista, T. F. Pletcher,
21 Aug. I960.
El Salvador
TABL 104611 (1, 163), 86°30'N, 89°30'W, Sagitario, FAO/RCAFDP, Dec.
1967; TABL 104604 (1, 72), 13°11'N, 88°50'W; TABL 104603 (1, 102),
86°30'N, 89°30'W.
Nicaragua
S10 H51 -324 (1 , 220), Bay of Fonseca, M/V Renown, 1 Aug. 1951.
Panama
UCLA W58-304 (10, 84-137), Panama Bay, offshore between Punta de
Hicacal and Rio Pasiga, 1-1/2 - 2 fms., Elaina, W. J. Baldwin,
7-9 Sept. 1958; UCLS-W-58-303 (1, 123), Panama Bay: Punta Chame
and Punta Anton, 3“l/2 - 15 fms., Joanna, E. S. Reese, 6-9 Sept.
1958; TABL 105326 (1, 105), Isla Governabora, Boca Chica Sevilla,
San Pedro, Pescamar II, FB62-1821 trawl, W. H. Bayliff, 25~27 Nov.
1961 ; USNM 65695 (2, 143-144), Panama Bay, Albatross; UBC 60-110
(2, 102-104), several mi. N. Panama City, R. E. Johannes, 2 June
1959; TABL 105533 (2, 185-200) , fish market, Panama City, Exped.
La Plata Is., Ecuador, 1961 , 6 Sept. 1961 ; USNM 50338 (2, 153-217),
C. H. Gilbert; USNM 79941 (1, 226), Panama city market, Meek and

126
Hildebrand, 26 Jan. 1912; USNM 80009 (1, 228), Panama city market,
Meek and Hildebrand, 7 Feb. 1912; NMC 68-1091 (5, 16*4-232), Panama
city: fish market, R. E. Johannes, June-July 1959; NMC 68-^67 (1,
206), C. C. Lindsey, 2*4 Jan. 1953; SU 699*4 (3 , 177-211), C. H.
Gilbert; USNM 82.90 (50, 35-89.3), Chame Point, Robert Tweedlie,
26 July 1913; BMNH 1863.12.16.70-71 (2, 52-59), type specimens of
Caranx 1eucurus Gunther.
Colombia
TABL uncat. (1, 22*4), Buenaventura market, 1969.
Diagnosis
Hemicaranx leucurus is distinguished from all other species of
Hemica ranx by the following characters: a long pectoral fin, up to
b0% SL; width of anterior caudal peduncle scute narrow, 1.7 to 3.1%
SL; posterior tip of upper dentary arm pointed; dorsal symplectic ex¬
pansion absent; ceratohyal window triangular; anal pterygiophore points
reduced.
Hemica ranx 1eucu rus is further distinguished from H. zelotes by:
six to nine lateral body bars (versus four to six); more teeth in the
dentary and premaxillary bones; teeth more sharply pointed; pelvic fin
longer; flattened (versus indented) ascending process and concave (versus
straight) articular process of premaxillary; basihyal width intermediate
(versus wide); urohyal spine absent; anal pterygiophores intermediately
spaced (versus distantly spaced).
H. 1eucu rus is additionally distinguished from H. amb1yrhynchus
and H_. bicolor by: more scales in curved lateral line (*40 to 5*4, versus
29 to *43) (X +_ Sx = *4*4,90 + 0.5*4) ; eight (versus seven) dorsal spines;

127
15 (versus 16) caudal vertebrae; ratio of straight to curved portions
of lateral line 1.7 to 2.3 (versus 2.3 to 3.1); antero-dorsal edge of
ethmoid convex (versus concave); anterior end of pterygoid concave
(versus indented); upper hypohyal window oval (versus circular). H_.
leucurus is further distinguished from amb1yrhynchus by intermediate
(versus close) spacing of the anal pterygiophores. H. leucurus also
differs from bicolor with regard to: flattened (versus indented) as¬
cending process and concave (versus straight) articular process of the
premaxillary; basihyal width intermediate (versus narrow); more dorsal
rays (25 to 28, usually 27 or 28) (X + Sx = 23.62 + 0.20).
Hemicaranx leucurus and all other members of the genus are compared
in Table 25.
Description
Counts and measurements are summarized in Tables 11-19 and Figures
6, 7, 8, 11-16, 18, 22. The generic description and species diagnosis
are supplemented by the following: length of straight lateral line 48
to 51% SL; length of curved lateral line 26% SL; mean straight/curved
lateral line ratio 1.92; body width 12% SL; head length 25_30% SL; head
depth 27 to 31% SL; interorbital width 8.2 to 9.2% SL; orbit 6.7 to 8.3%
SL; premaxillary 8 to 9% SL; gape 8% SL; pectoral fin rays 18 to 22,
modally 20; scutes in straight lateral line 40 to 59 (X -f Sx = 49.09 +.
0.47).
Osteological characters previously cataloged are summarized as
follows: anterior edge of dorsal surface of ethmoid convex; posterior
tip of upper arm of dentary pointed; posterior edge of postmaxi 11 ary
process broadly concave; anterior end of pterygoid a dorsally concave
point; upper hypohyal foramen elongate; ceratohyal window triangular;

128
anal pterygial points poorly developed; distal ends of anal pterygio-
phores moderately spaced.
Nomenclature
Recognition of juvenile and adult stages of Hemicaranx leucurus
as different species has been confusing in the past. Analysis of the
forms involved reveals that 1eucurus, from the time of its description
(on the basis of two specimens of 52 and 59 mm SL) until 1925, was
known only from eight individuals, all less than 107 mm total length.
Even fewer individuals (3) of Caranx furthii are reported in the litera¬
ture; this species was correctly synonymized with leucurus on the basis
of limited information (Jordan and Gilbert, 1883: 197), although as late
as 1930 it was still thought to be distinct (Jordan et al. , 1930: 271).
The types of H. furthii cannot be found.
Until now, H. atrimanus has been regarded as a distinct species,
although it was known only from specimens greater than 1^1 mm SL. The
results of this study reveal that atrimanus, as known from a limited
number of references, was based on the adult stage of 1eucu rus. Although
the type specimen (USNM 293^*0 of atrimanus cannot be found, there is no
doubt that this form is a junior synonym of 1eucu rus, based on comparison
of extensive descriptions in the literature, in which its identity as a
Hemicaranx is firmly established. Most likely the type specimen of
atrimanus was destroyed -- along with other material from the Pacific
coast and a manuscript based on it -- in the 1883 fire at the University
of Indiana (see Jordan, 1922: 213). Examination of intermediate-sized
individuals provides transitional characters that confirm the present
synonymy. Review of the extensive literature descriptions, based upon
specimens examined during this study, with subsequent examination of

129
progressively smaller specimens, reveals a number of transitional
characters that confirm this synonymy.
Distribution and Variation
This species is sympatric with H_. zelotes over much of its range.
It ranges from Colombia as far north as lower Baja California. The ap¬
parent failure of 1eucurus to reach Sechura Bay, Peru (the southern
limit of zelotes) may well be due to lack of collecting effort. The
small number of collections from outside the waters of Panama Bay pre¬
cludes a meaningful analysis of geographic variation. The observed
minimal infraspee ific geographic variation of 1eucu rus is reasonably
hypothesized, especially on the basis of similar patterns in zelotes,
bicolor, and amb1yrhynchus. One would predict low variation on the
basis of the dispersal powers of this group.
Re 1 at ionships
The relationship of H_. 1 eucurus and zelotes is very close and is
discussed in the account of that species.

SYSTEMATICS OF ATULE
Atu1e Jordan and Jordan
Atule Jordan and Jordan, 1922: 38 (type species: Caranx affi-nis [=Atul e
mate] by original designation).
Diagnosis
A genus of Carangidae distinguished by: lateral line arched anter¬
iorly, with scutes only on straight portion; caudal vertebrae 14 or 15;
jaw teeth partially or totally uniseriate; dentition fine, of uniform
size; minute teeth variably developed on prevomer and mesopterygoid;
preorbital region short and wide; fronto-supraoccipi tal crest somewhat
high; myodome reduced or absent; exoccipital zygapophyses widely separ¬
ated; ethmoid-prevomer keel not elevated; mesopterygoid length less
than one-half hyomandi bular; ceratohyal window wide and ovoidal; uro-
hyal length less than hyoid body; cleithrum shelf angle 90°; post-tem¬
poral height less than one-half its length.
Atule is distinguished from Trachurus, with which it shares a
matching coefficient of .91 (Table 4), by: myodome opening distinct;
premaxillary ascending process longer than articular process; mesoptery-
goid less than one-half the hyomandi bular; posttemporal height less
than one-half its length; anterior scales in the lateral line not trans¬
versely expanded.
Atule is distinguished from Hemicaranx by: prevomerine dentition;
exoccipital zygapophyses not adjoined; distinct myodome opening absent;
130

131
ethmoid-prevomer keel not elevated; cranial depth less than width;
body shallower, 28 to 39% SL; interorbital width less, 7 to 10% SL;
upper caudal fin lobe shorter, 22 to 23% SL; pectoral fin shorter,
27- to lk% SL.
Atule is distinguished from both Selar and Decapterus by: myodome
opening not distinct; premaxillary ascending process longer than arti¬
cular process. In addition, Atule is further distinguished from Selar
by ethmoid-prevomer keel not elevated; pterotic window present; cerato-
hyal window wide and ovoidal; two papillae lacking on the shoulder
girdle. Atule differs from Decapterus by: absence of detached finlets
posterior to soft median fins; mesopterygoid less than one-half hyo-
mandibular; urohyal shorter than hyoid body; cleithrum shelf angle 90°.
Atule is distinguished from Megalaspis by: olfactory cavity well-
developed; pterotic window present; ceratohyal window wide and ovoidal;
postmaxi 11 ary process not rounded; upper teeth not always in a band.
Atule is distinguished from Uraspis by: exoccipital zygapophyses
adjoined; olfactory cavity not we 11-deve 1 oped; fronto-supraoccipital
crest low; ratio of cranial depth to width not great; preopercular
width less than one-third its length; ceratohyal window wide and ovoidal;
posttemporal height less than one-half the length.
Atule is distinguished from Longirost rum by: ceratohyal window
wide and ovoidal; posttemporal height less than one-half its length;
fronta1-supraoccipita1 crest low; myodome opening not distinct; cranial
depth/width not great.
The other genera for which osteológica] data are available are
more distantly related. Atule differs from them in much the same way
as does Hemicaranx, with all similarities and differences summarized in

132
Table 4.
Pesor ipti on
A genus of Carangidae characterized by: compressed body; lateral
line arched anteriorly, becoming straight beneath anterior end of soft
dorsal; lateral line arch with 30 to 35 scales; straight lateral line
with 30 to 60 scutes; total lateral line 75% SI; length of straight
lateral line 40 to 50% SL; length of curved lateral line 25 to 30% SL;
height of lateral-line arch 3 to 6% SL; body depth 28 to 39% SL; body
width 12% SL; caudal peduncle slender, length 12% SL; caudal fin lobes
equal in length, 22 to 33% SL; length of pectoral fin 27 to 34% SL;
pelvic fin 33% pectoral length; pelvic fins inserted at a distance
behind snout 33% SL; pectoral and caudal lobes becoming pointed with
age; origin of anal at distance behind snout 60% SL; dorsal origin mid¬
way between snout and caudal base; head length 25% SL; head depth 25 to
33% SL; interorbital width 7 to 10% SL; postorbital length 12% SL, not
quite twice as long as either snout or orbit; length of premaxillary
10% SL; maxillary depth 2 to 4% SL; gape 6 to 8% SL; width of anterior
caudal peduncle scute 2.5 to 5.0% SL; dorsal spines eight; dorsal soft
rays 22 to 27; anal soft rays 18 to 23; precaudal vertebrae 10; caudal
vertebrae 14 or 15; branchiostegal rays 7; lower gill rakers 6 to 13;
upper gill rakers 18 to 34; lower gill filaments 25 to 40; upper gill
filaments 60 to 90; pseudobranch i a 1 filaments 17 to 25.
Nomenclature
The species of Atule have at times been regarded as members of the
genus Se 1 ar Bleeker, which in turn has sometimes been accorded subgeneric
status in Caranx. The literature accounts that follow this classification,

133
employed by Weber and de Beaufort (1930 and others, are incorrect.
Ginsburg (1952: 83) properly summarized the status of Selar by noting
that boops -- generically distinct from the species of Atule -- is the
correct type-species of Selar. Therefore Atule is the valid generic
name for the species formerly accorded to Selar but not congeneric
with it.
Although Alepes Swainson was most likely based on Atule malam, the
inaccuracies of the drawing (Russell, 1803: pi. 155) on which Swainson
(1839: 248) based his description of Alepes melanoptera necessitate its
recognition as a nomen dubium (see account of Hemicaranx). Ginsburg
(1952: 97-98) noted the possibility that Alepes melanoptera is unidentif¬
iable.
Relationships
Based on cluster analysis of non-weighted characters of Indo-Pacific
carangid genera, Atule most closely resembles Decapte rus , T rachu rus, Selar,
and Mega 1 aspis (see account of numerical taxonomy of Japanese Carangidae)
(Figure 2). Coefficients of association between Atule and these taxa
are valued at .86 or above (Table 4). When Atule is compared with genera
from outside its range a close resemblance to Hemica ranx is observed
(see account of Hemica ranx). The integrity of the phenetic cluster com¬
posed of these genera is graphically represented in Figure 23.
Although additional carangids are depicted in Figure 23 as being
phenetically close to Atule, a more correct assessment of these relation¬
ships is shown in Figure 2, in which Longirostrum and Uraspis, for
example, are clustered with an entirely different group of genera. Simi¬
larly, both Se 1 a roi des and Kaiwarinus have greater affinities with other
clusters of genera than with Atule and its closest relatives. Nichols

COEFFICIENT OF ASSOCIATION (Ssm x 100)
CO
c
CD
N>
> n o "o
rt O -ti J
C (D (D
— -h O D
CD -h Q) CD
— “t rt
O CD —
— DO
CD tO
D — CL
rf Q_ (D
CD D
O CD CL
~h
to O
CD IT tO
rt CD -i
-1 CD
3
CD 3
CD CO O
to -h
rt CD
to
• 3 CD
SJ Ü) D
VH rt CD
° n
£ zr cd
rf 3
IT tO
VO
o
T
DECAPTERUS
TRACHURUS
ATULE
SELAR
HEMICARANX
MEGALASPIS
LONG I ROSTRUM
URASPIS
SELARO I DES
CHL0R0SC0MBRUS
KAIWARINUS
w
jr-

135
(19^2a) hypothesized a close relationship between Chloroscombrus and
Atu 1 e ka11 a , apparently mainly on the basis of comparably deep, convex
ventral body outlines. The coefficient of association between these two
genera is .77 (Table 23), however -- significantly below the values
for the genera already discussed.
Species of Atule
The correct identification of the species of Atule has been a
problem, in part due to a lack of recognition of diagnostic characters
and partly because of limited quantities of study material. Although
graded series of Atule are still not available, each species is now
moderately well represented in collections for the 110 to 135 mm SL
size range. The following species accounts are based on these speci¬
mens. Although not all the material is from the same locality, it is
felt that the taxonomic conclusions may be confidently applied through¬
out the range of each species, in light of the minimal geographic
variation observed for other carangids, such as Hemicaranx and E1agatis
bipinnu1 ata (Berry, 1969) . As additional material from throughout the
range is collected, confirmation and modification of these findings
through studies of both ontogenetic differences and geographic variation
will be possib1e.
The differential diagnoses and descriptions in the species accounts are
based on the examinations of external morphology conducted in this
study and the osteological catalog provided by Suzuki (1962).
Comparison of species
From examination of samples from the same or adjacent localities,
five species of Atule are recognized.

136
Specimens recognized as Atule mate agree with the original des¬
cription of Cuvier (1933: 5*0 in every way, including the low ratio
of straight/curved lateral line lengths, lowest for all the species of
Atule (Figure 2*0. The combination of a slightly detached and elongated
terminal ray of the soft dorsal and anal fins and a black opercular
spot also confirms the subsequent recognition of this species. A. mate
is further characterized by a distinctive combination of lateral line
scale and scute counts (Tables 20 and 21), and premaxillary teeth bi-
seriate anteriorly and uniseriate posteriorly. The dentary teeth are
un i seriate.
As noted in the original description, Atule ka11 a Cuvier (1833:
*49-51) is characterized by a ventral outline that is considerably more
convex than the dorsal outline, which readily distinguishes it from
the other carangids known from the type locality of Pondichery, India.
The specimens of ka11 a herein examined in no way depart significantly
from the morphological description of the type material. A_. kal 1 a is
unique among the species of Atu1e in its extremely convex ventral outline,
pluriseriate dentition on the posterior premaxillary in adult specimens,
triseriate dentition posteriorly on the dentary in adults, notably great¬
er depth of body (Figures 25 and 26), and relatively wider anterior
caudal peduncle scutes (Figure 27). This species also exhibits a spot
on the mid-anterior portion of the pectoral girdle. Examination of
the type material of Selar megalaspis Bleeker reveals that it is a
junior synonym of A. ka11 a.
Examination of type material of Atule macrurus Bleeker, A. ma1 am
Bleeker, and A. djedaba Forskal confirms the validity of these species,
which are extremely similar in overall morphological appearance. Their

137
overall body form Is strikingly uniform (Figure 26), and they differ
from mate and ka11 a in the possession of uniseriate teeth in both the
premaxillary and dentary bones. Although the specificity of djedaba
and malam has been questioned (Williams, 1959: 381), study of specimens
whose identity was confirmed by comparison with the type material
reveals several differences between these two species: (1) djedaba
is distinguished by elongation of the ultimate soft rays of the dorsal
and anal fins (versus ultimate and penultimate rays of nearly equal
length); (2) djedaba has fewer lateral line scutes (33 to bb)(versus ^9
to 58); (3) the supramaxi11 ary of djedaba is not extended anteriorly as
a point; (4) djedaba does not have a dusky spinous dorsal fin; (5)
djedaba has narrower peduncle scutes (X = 3*9% SL)(versus 2.6% SL) .
(See Figures 27, 28, 3b, Tables 27, 29, 30.)
The type specimen of djedaba, a dried skin in the Universitetets
Zoologiska Museum, Copenhagen, is characterized by 2b soft dorsal rays;
20 soft anal rays; b0 premaxillary and bS dentary teeth, both in uni¬
seriate rows; a supramaxi11 ary bone characterized by an anterior-project"
ing pointed process; 39 lateral-line scutes; and bO (?) scales in the
curved lateral line (Jurgen Nielsen, pers. comm.). All of these char¬
acter states occur within the normal range of values observed in those
specimens now regarded as djedaba.
A second group of specimens, regarded as /\. mal am, reflects var¬
iation of character states that center around the diagnostic characters
found in the two syntypes of malam: 23 and 26 dorsal rays, 20 and 21
anal rays, b6 to 66 premaxillary teeth, 5b to 60 dentary teeth (all
uniseriate), an e1ongate-ovoida 1 supramaxi 11 ary, with no extended process,
50 and 5b scutes, and b5 and 35 curved lateral line scales (specimens

138
96.3 and 158 mm SL, respectively).
Samples of Atule macrurus display character states that cluster
around those of the syntypes. A. macrurus is distinguished from djedaba
by non-overlapping anal ray counts (21 to 23 versus 18 to 20)(Figure 31)
(Table 30), non-elongate terminal dorsal and anal rays (Figure 29), high¬
er counts of premaxillary (Table 28) and dentary (Table 28) teeth, and
higher lateral-line scale and scute counts (Tables 20 and 21)(Figures
32 and 33) • From A.. mal am, macrurus d i f fe rs in having a slightly more
shallow head (Figure 25), slightly more anal rays (Table 30)(Figure 30,
and a supramaxi11 ary with a forward-pointing process. Atule malam seems
to be uniquely characterized by a dusky spinous dorsal fin.

STRAIGHT/CURVED LATERAL LINE RATIO
3.0 r
2.0
© kal1 a
O mate
A djedaba
â–¡ macrurus
3 mal am
* a1**'
_ u
©
S
e©
A
A BgA ©
Aq
• © ©
o
©
© CD
& C® °
0
20
40 60
80 100 120 140 160 180 200 220
STAMDARD LENGTH (mm)
Figure 24. Ratios of straight to curved lateral line lengths in the species of Atule
240
Va>
\*o

HEAD DEPTH (mm)
Figure 25.
Depth of head in Atule

Figure 26. Species of Atuie. Top, A. kalla,
129 mm SL, TABL SOSC 381, Porto
Novo, India; second from top, A.
mate, 139 mm SL, TABL uncat. CCK
69-71, Ceylon; middle, A. ma1 am,
133 mm SL, RMNH 6094, Indonesia;
fourth from top, A0 macrurus, 133
mm SL, TABL uncat. CCK 69-38, Ceylon;
bottom, A. d j edaba, 151 mm SL, TABL
uncat. CCK 69-4], Ceylon

142

SCUTE WIDTH (mm)
8
7
6
5
4
3
2
1
® ka11 a
O mate
A djedaba
â–¡ macrurus
Q mal am
¿Pa
CA
A
O
©
© A (
A °
A
O
O ^ â–¡
*6
mg*
©
©
A
A â–¡
B
â–¡ B
O
O
l I I I I l I I 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200 220 240
STANDARD LENGTH (mm)
Figure 27. Width of the anterior caudal peduncle scute in the species of Atu 1 e
-P-

NUMBER OF TEETH
STANDARD LENGTH (mm)
Figure 28. Number of premaxillary teeth in the species of Atule characterized by uniseriate
dentition

13
12
1 1
10
9
8
7
6
5
4
3
2
1
145
© kalla
® mate
A djedaba
â–¡ mac ru rus
B ma1 am
O
A
A A
O a ^
o0 o ®cF
â–¡
©
a â–¡
ao
â–¡
a
a
i i i i i i i i i i
>2345 6 7 8 9 10
LENGTH OF PENULTIMATE RAY (mm)
re 29. Relative lengths of ultimate (terminal) and
penultimate soft dorsal fin rays in Atule

146
macru rus
ma 1 am
1 * ka 1 1 a
1 djedaba
1 mate
I I I l I I I i 1
23 24 25 26 27
NUMBER OF DORSAL RAYS
Figure 30. Interspecific variation in number of fin rays
in the soft dorsal fin of Atule. (Symbols
after Figure 6; N=5;°^ = .08l
macrurus
ma 1 am
kal 1 a
i
djedaba
mate
I 1 1 1
19 20 21 22
NUMBER OF ANAL RAYS
Figure 31. Interspecific variation in number of
fin rays in the soft anal fin of Atule.
(Symbols after Figure 6; N=5 ; cK =.08)

147
djedaba
1 ka 1 1 a
ma 1 am
mate 1
macrurus 1
I I i i i I 1 I I 1 1 1 I l I i I
35 40 45 50
CURVED LATERAL LINE SCALES
Figure 32. Interspecific variation in number of
scales in curved lateral line of Atuje.
(Symbols after Figure 6; N=5 ; c< = .08)
ka 1 1 a
1 djedaba
1 mate
ma 1 am 1
macrurus 1
I 1 I I 1 ! I I I I I I I I 1 I I I I I I I I I
40 45 50 55
STRAIGHT LATERAL LINE SCUTES
Figure 33- Interspecific variation in number of
scutes in straight lateral line of Atu1e.
(Symbols after Figure 6; N=3;<^ = .08)

148
mal am 1
macrurus -1-
djedaba
ma te
* ka 1 1 a
l l I I I I I
20 25 30 35 40 45 50
PROPORTIONAL SCUTE WIDTH
(Thousandths of standard length)
Figure 3^- Interspecific variation in width of the
anterior peduncle scute in Atu1e.
(120-135 mm SL). (Symbols after Figure
6; N=5 =.08)

GOODE BASE MAP SERIES
R**ll»lSt O# OlOiMMf * **•* H '*»— ■» < G»»i
tw| UMr.ta%iTT or iu. AGO
MN«T ** ttr*MD. UATOM
Figure 35. Distribution of the species of Atu 1 e. (1) = A_. djedaba only;
(2) = A. mate and A. kal la only; (3) = A. mate, A. mal am and
A. djedaba; (5) = all five species. .

150
Atule mate (Cuvier)
. Figure 26
Ca ranx mate. Cuvier, j_n_ Cuvier and Valenciennes, 1833: 5*4-55 (original
description; type locality Pondichery, India; range including
Seychelles, New Guinea).-- Day, 1865: 82-83 (synonymy; descrip¬
tion; India, Malaysia, Seychelles to New Guinea).-- Day, 1870:
101 (colors; Andaman Islands).-- Fowler, 190*4: 510, pi. 13
(Sumatra).-- Fowler, 1905: 7*+-76 (description; Sumatra; refer¬
ences; Caranx xanthurus an apparent synonym).-- Fowler, 1927:
269 (Philippines).-- Fowler, 1928 : 1 *45 (synonymy; description;
Red Sea to East Indies, Tahiti and Hawaii; compared with Caranx
kuhli? Bleeker).-- Fowler, 1931: 326 (Honolulu markets).-- Weber
and de Beaufort, 19^1 : 207-208 (description; synonymy; range;
subgenus Se 1 ar) . -- Fowler, 193^b: *40*4 (subgenus Selar; Hawaii).
--Nichols, 1 938 : 1 *4*4- 1 *45 (Ca ranx af f i n i s a synonym).-- Roxas
and Agco, 19*^ 1 : 11-1*4, pi. 1 (synonymy; description; Philip¬
pines; subgenus Selar).-- Nichols, 19**2b: 226-228 (comparison
with Ca ranx ka 1 1 a) . -- Nichols, 19*42a: 226 (Selar hassel t i
Bleeker and Caranx affinis synonyms).-- Fowler, 19^+9: 76 (syn¬
onymy; Oceania).-- Mendis, 195*4: 389 (synonymy; subgenus Selar;
Ceylon).-- Yamaguchi, _i_n_Gosline and Brock, I960: 179-189,326 -
327, fig. 203 (description; synonymy).-- Chen and Yang, 1962:
376 (South China Sea).-- Mansueti, 1963: 57 (commensal assoc¬
iation with jellyfishes; possible synonymy of Apogon frenatus).
-- Smith and Smith, 1963: 229, pi. 2 (references: Seychelles;
range).-- Chan, 1968: 122, pi. 66 (description; subgenus Atule;
Hong Kong; range).

151
Alepes mate.-- Fowler, 1935: 1*40 (Bangkok).-- Fowler, 1937: 226
(Siam).-- Fowler, 1938b: 221, 278 (description; Honolulu;
Eastern Oceania).-- Fowler, 19*‘0a: 766 (Fiji).-- Fowler,
19**9: 76 (synonymy; Oceania).-- Munro, 1967: 369 (descrip¬
tion; synonymy; New Guinea).
Se 1 a r mate.-- Munro, 1967: 126 (description; synonymy).
Atule mate.-- Williams, 1958: 379-380, pi. 16 (description;
synonymy; East Africa; range).-- Berry, 1968: 16A (Decapterus
normani a synonym).
Caranx~*xan thu rus . - - Cuvier,j_n_ Cuvier and Valenciennes, 1 833 : 55 (orig¬
inal description).-- Gunther, i860: *43*4 (description; range;
C_. mate and Selar kuhlii synonyms).-- Day, 1865: 82 (in synony¬
my of £. mate) . -- Fowler, 1905: 7 6 (synonym of C_. mate) . --
Weber and de Beaufort, 1931: 207 (in synonymy of C_. mate) . --
Mend is, 195**: 126 (in synonymy of C_. mate) . -- Williams, 1958:
378 (in synonymy of Atule mate).
Ca ranx af f i n i s . -- Ruppell, 1835: **9 , fig. 1 (original description).--
Day, 1876: 219, pi. *t9 (description; synonymy; India; range).
--Ste i ndachner , 1881 : 3 3 - 3 *+ (description; C_. hasse 11 i i a syn¬
onym).-- Evermann and Seale, 1907: 6*4 (Bulan, Philippines;
comparison with samples from Hawaii).-- Jordan and Richardson,
1908: 250 (description; Philippines).-- Jordan and Richardson,
1910: 20 (Philippines).-- Jordan and Jordan, 1922: 38 (type
species of Atule, gen. nov.) . -- Wakiya, 192*4: 200-201, pi. 30
(description range; subgenus Atu1e).-- Weber and de Beaufort,
1931: 207 (in synonymy of £. mate).— Williams, 1958: 378 (m
synonymy of Atule mate).

152
Carangus affinis.-- Jenkins, 1904: 446, fig. 17 (description; refer¬
ences; Honolulu).-- Snyder, 1901»: 77 (Honolulu).-- Jordan and
Evermann, 1905: 195-196, fig. 76 (description; references;
Honolu1u).
Selar affinis.-- Jordan and Starks, 1917: 443 (Ceylon; conspecific
with Hawaiian specimens).
Atule affinis.-- Suzuki, 1962: 200-202, fig. 60 (description includ¬
ing osteology; references; Japan).
Selar hasse1tii.— Bleeker, 1801: 359 (original description).-- Bleeker,
1852: 53 (description; synonymy).-- Weber and de Beaufort, 1931:
208 (in synonymy of Caranx mate).
Caranx hassel t i i . -- Gunther, i860: 430 (synonymy; description).--
Playfair and Gunther, 1866: 190 (description; range).-- Playfair,
1867: 861 (name only; Seychelles).-- Steindachner, 18 81: 33
(synonym of C_. affinis) . -- We ber and de Beaufort, 1931: 208 (in
synonymy of C. mate).
Carangus hasselti.-- Jordan and Evermann, 1905: 195 (C_. poli tus a
probable synonym).
Ca rangus pol i tus.-- Jenkins, 1904: 445-446, fig. 17 (original description;
type specimen USNM 50700; 2 specimens; Honolulu).-- Jordan and
Evermann, 1905: 194-105, fig. 75 (description; probable synonym
of C_. hasselti) .
Atu1e po1ita.-- Jordan and Jordan, 1922: 38 ("rare"; Honolulu).
Decapterus lundini.-- Jordan and Seale, 1906: 229, fig. 27 (original
description; Pago Pago; one specimen; USNM 51727)- — Weber and
de Beaufort, 1001: 207 (in synonymy of Caranx mate).
Atu1e 1undini.-- Jordan and Jordan, 1922: 38 (synonymy; Honolulu).

153
Caranx mate lundini.-- Nichols, 193^* 144-145 (description; compar¬
ison with C_. ka 1 1 a) .
Decapterus normani.-- Bertin and Dolfus, 19^8: 21 (original description;
Madagascar).-- Berry, 1968: 164 (synonym of Atu1e mate).
Material Examined
India
SOSC 334 (1, 165), Madras, Ennore Fish Landing, 13°13 'N, 80°25'E,
14 Sept. 1966.
Ceylon
TABL uncat., CCK 69-71 (25, 95-143), C. C. Koenig, 1969; TABL uncat.,
(8, 210-220), Mullaittivu, P. C. and V. Heemstra, 24 Aug. 1969.
Thai 1 and
TABL uncat., (16, 195-210), Chon Buri Prov.: 8 mi. offshore and
14 mi. SW Chon Buri, 13°15'N, 100°43'E, NAGA 1959-61, Sta. 60-369,
Reg. No. 2386, 22 Aug. i960.
Indonesia
ANSP 27508-11 (4, 157-165), Sumatra: Padang, A. C. Harrison and
H. M. HI Her.
Formosa
FMNH 59383 (1 , 236) .
Hawa i i
ANSP 91505 (1, 142), Honolulu, S. C. Ball, 1925; ANSP 89193 (1,
212), Honolulu, Fowler, 1937.
Diagnosis
A species of Atule distinguished by the following combination of
characters: ultimate dorsal ray longer than penultimate ray; ultimate
anal ray longer than penultimate ray; ratio of straight to curved portion

154
of lateral line 1.4; dorsal rays 22 to 25, usually 23 or 24 (X + Sx =
23.47 +_ 0.21) ; anal rays 19 or 20 (X +_ Sx = 19-33 0.12) ; curved lateral
line scales 39 to 57, usually 43 to 47 (46.66 +_ 0.99) ; straight lateral
1 ine scutes 33 to 49 (X + Sx = 39-35 1.41) ; anterior caudal peduncle
scute width 3-6% SL; premaxillary teeth biseriate anteriorly; dentary
teeth uniseriate.
Atule mate differs from A. kal1 a in having: dentary teeth that are
uniseriate anteriorly; penultimate dorsal and anal rays both relatively
longer than respective penultimate rays; shallower body; ventral outline
»
not as convex; higher number of curved lateral line scales (39 to 57 versus
32 to 43); a narrower anterior caudal peduncle scute.
A_. mate is distinguished from A. djedaba by: premaxillary teeth bi¬
seriate anteriorly; higher number of curved lateral line scales (39 to 57
versus 32 to 40); slightly narrower anterior caudal peduncle scute; lower
ratio of straight to curved lateral line protions.
A. mate is distinguished from A. macrurus by: ultimate ray of dorsal
fin longer than penultimate ray; ultimate ray of anal fin longer than
penultimate ray; lower ratio of straight to curved lateral line segments;
anterior caudal peduncle scute slightly wider; lower number of straight
lateral line scutes (33 to 49 versus 48 to 63); lower number of dorsal rays
(22 to 25 versus 25 to 27); lower number of anal rays (19 to 20 versus
21 to 23) .
A. mate is distinguished from A. mal am by: premaxillary dentition
biseriate anteriorly; ultimate rays of both dorsal and anal fins relatively
larger than penultimate rays; lower ratio of straight to curved portions
of lateral line; anterior caudal peduncle scute wider; body slightly deeper
higher number of curved lateral line scales (39 to 57 versus 35 to 45);

155
lower number of straight lateral line scutes (33 to 44 versus 49 to 58).
Atule mate is compared to other members of the genus in Table 31.
Description
Counts and proportional measurements are listed in Tables 20, 21,
26-30, and graphically presented in Figures 24, 25, 29-3- In addition
to the generic description, Atule mate is characterized by: straight
lateral line 42% SL; curved lateral line 31% SL; height of lateral line
arch 3-1 to 3*8% SL; body depth 28 to 30% SL; body width 14% SL; caudal
peduncle slender, 11% SL; caudal fin lobes equal in length, 23% SL;
length of pectoral fin 32% SL; length of pelvic fin 12% SL; head depth
25% SL; interorbital width 8 to 9% SL; maxillary depth 3% SL; gape 6.5%
SL; 1 ower gill rakers 10 to 13 (X+^Sx= 11.6 +_ 0.50); upper gill rakers
10 to 13 (X + Sx = 27.8 + 1.39); lower gill filaments 38 to 43 (X + Sx =
41.0 +_ 1.81); upper gill filaments 81 to 99 (X +_ Sx = 91*0 +_ 3.08);
pseudobranch i a 1 filaments 21 to 26 (X + Sx = 22.6 + 1.02).

156
Atule kalla (Cuvier)
Figure 26
Caranx kalla Cuvier, in Cuvier and Valenciennes, 1833: 49-51 (original
description).-- Day, 1865: 83 (references; description; range).
-- Fowler, 1995: 73 (distinguished from C_. mega 1 asp i s) . --
Fowler, 1918: 15 (use of Selar) . -- Wakiya, 1924: 201-202 (con¬
trasted with C. mivakamii).-- Fowler, 1925: 215 (description).
-- Fowler, 1927: 270 (Philippines).-- Fowler, 1928: 148 (refer¬
ences; description; range; possible synonym of £_. paras i tus) ■
Fowler, 1931: 326 (reference).-- Weber and de Beaufort, 1931:
216-218, fig. 44 (synonymy; description; range; £. brevis and
C_. kuhli synonymous with C_. kalla).-- Fowler, 1934b: 404 (ack¬
nowledge synonymy of Selar ku h 1 i i) . — Fowler, 1934c: 150 (Bang¬
kok).-- Fowler, 1935: 140 (Siam).-- Nichols, 1038: 144 (compar¬
ed with C_. mate) . -- Roxas and Agco, 1941: 20-22, pi. 3 (synony¬
my; description).-- Nichols, 1942o: 226-229 (taxonomic account;
comparison with C. mate, queens 1 andiae , brevis, and Ch1oroscom-
b rus) . -- Mendis, 1954: 126 (synonymy; key).-- Yamaguchi, in Gos-
1 ine and Brock, I960: 180 (description).-- Tortonese, 1961: 357
(name only).-- Chen and Yang, 1962: 375 (name only).— Mansueti,
I963; 57 (ecological association with jellyfishes).-- Marshall,
1966: 190, pi. 30 (description).-- Chan, 1968: 124, pi. 68
(general account) .
Caranx calla.-- Gunther, i860: 433 (description; range).-- Day, I87O:
689 (name only).-- Day, 1876: 219-220, pi. 49 (synonymy; descrip¬
tion; range).-- Jordan and Richardson, 1908: 250 (description;
"close to Caranx djeddaba;" Philippines).-- Jordan and Richardson,

157
1910: 20 (references; Philippines).
Sel ar calla.-- Jordan and Starks, 1017: 443 (Ceylon).
Alepes kal la. -- Fowler, 193.9: 1 40 (Siam).-- Fowler, 1937: 226 (Siam)
-- Fowler, 1940b: 387 (synonymy).-- Munro, 1967: 228, pi. 25
(synonymy; description).
Se 1ar ka11 a,Munro, 1995: 126, pi. 23 (synonymy; description).
Se 1 a r b rev is.-- Bleeker, 1851: 361 (original description).
Caranx brevis.-- Weber and de Beaufort, 1931: 218 (synonymized with
C_. kal 1 a) .
Se 1ar kuh11i.-- Bleeker, I85I: 36O-36I (original description).
Ca ranx kuh1?.-- Weber and de Beaufort, 1931: 218 (synonymized with
C_. kal 1 a) .
Selar mega 1 aspis.-- Bleeker, 1853: 502-503 (original description).
Caranx miyakami?.— Wakiya, 1924: 201-202, pi. 29 (original description;
Formosa).-- Henn, 1928: 90 (type specimen in Carnegie Museum).
Atu1e miyakam?i.Suzuki, 1962: 203 (description).
Material Examined
Cey 1 on
TABL 107343 (9, 110—123) > Jaffna, Colombo, Smith-Vaniz, 4 Aug. 1969
Thai 1 and
ANSP 89416 (80, 65-85), Tachin, R. M. deSchauensee, 1936;
ANSP 87270 (26, 47-62), Tachin, R. M. deSchauensee, 1936; ANSP
62115-17 (3, 123“135), Paknam, R. M. deSchauensee, 28 Aug. 1934.
Indonesia
RMNH 6077 (2, 69.6) , Priaman.
Ch ina
CAS-SU 60938 (5), Hong Kong, Plover Cove, Bolin, 6 Feb. 1958; ANSP

158
87181 (13, 85-100); ANSP 87054 (2, 144).
Di agrios i s
A species of Atule distinguished by the following combination of
characters: premaxillary teeth biseriate anteriorly; dentary teeth
triseriate posteriorly; body deep, ventral outline strongly convex;
ultimate and penultimate rays of dorsal and anal fins, respectively,
equal; ratio of straight to curved lateral line 1.5; anterior caudal
peduncle scute width 4.8% SL; dorsal rays 22 to 25, usually 23 or 24
(X + Sx = 23.66 +^0.23); anal rays 18 to 21, usually 19 or 20 (X + Sx =
19.73 ^_0.20); curved lateral line scales 32 to 43, usually 36 to 38
(X +_ Sx = 36.86 +_ 0.83) ; straight late ral line scutes 34 to 42, usually
36 to 38 (X + Sx = 37.50 + 0.50) .
Atule kal la is distinguished from A_. d jedaba by: premaxi 1 1 ary
teeth biseriate anteriorly; dentary teeth triseriate posteriorly; body
deeper, ventral outline more convex; ultimate ray of both dorsal and
anal fin equal to penultimate ray; anterior caudal peduncle scute wider;
ratio of straight to curved portion of lateral line lower.
A. kal1 a diffe rs from A. mal am by: premaxillary teeth biseriate
anteriorly; dentary teeth triseriate posteriorly; body deeper, with a
more convex ventral outline; ratio of straight to curved portion of
lateral line lower; anterior caudal peduncle scute wider; fewer straight
lateral line scutes.
A_. ka 1 1 a is distinguished from A. macrurus by: a deeper body;
ventral body outline more convex; premaxillary teeth biseriate anteriorly;
dentary teeth triseriate posteriorly; fewer scales in curved part of
lateral line (32 to 43 versus 41 to 55); fewer straight lateral line
scutes (34 to 42 versus 48 to 63); fewer dorsal rays (22 to 25 versus 25

159
to 27); fewer anal rays (18 to 21 versus 21 to 23); ratio of straight to
curved sections of lateral line slightly lower; width of anterior caudal
peduncle scute greater.
A_. ka 1 1 a is distinguished from A_. mate by: dentary teeth triseriate
posteriorly; deeper body, with a more convex ventral body outline; wider
anterior caudal peduncle scute; fewer scales in the curved lateral line
(32 to 43 versus 39 to 57); penultimate and ultimate rays of dorsal and
anal fins, respectively, of equal length.
Atule ka11 a is compared to the other species of Atule in Table 31.
Description
Counts and proportional measurements are listed in Tables 20, 21
26-30, and graphically presented in Figures 24, 25, 29~34. In addition
to the generic description Atule mate is characterized by: straight
lateral line 45% SL; curved lateral line 30% SL; height of lateral line
arch 5.7% SL; body depth 35 to 39% SL; body width 12% SL; caudal peduncle
slender, 11% SL; upper caudal fin lobe 29% SL, slightly longer than lower
lobe (25% SL); length of pectoral fin 32% SL; length of pelvic fin 10%
SL; head depth 31% SL; interorbital width 7% SL; maxillary depth 3*5%
SL; gape 6.4% SL; 1 ower gill rakers 9 to 11 (X +_ Sx = 10.1 . 40) ; upper
gill rakers 27 to 30 (X +_ Sx = 28.6 +_ 0.49) ; lower gill fi laments 24 to
29 (X +_ Sx = 26.3 0.88) ; upper g i 1 1 f i 1 aments 59 to 64 (X +_Sx = 61.5
+ 0.92); pseudobranchial filaments 16 to 20 (X + Sx = 18.3 + O.76).

160
Atule macrurus (Bleeker)
Figure 26
Selar macrurusBleeker, 1851: 359 (original description).-- Bleeker,
1852: 52-53 (description).
Caranx macrurus.-- Gunther, i860: 434 (description).-- Fowler, 1904:
509 (resemblance to Alepes g1 abra).-- Weber and de Beaufort,
1931: 213 (synonymy; description; range).
Alepes macrurus.-- Fowler, 1937: 224 (Rayong, Siam).
Alepes glabra.-- Fowler, 1904: 507-509, pi. 12 (original description;
Sumatra).-- Weber and de Beaufort, 1931: 213 (in synonymy of
Caranx macrurus).
Caranx ma1 am.-- Wakiya, 1924: 200, pi. 29 (misidentification; = Atu1e
macrurus).
Material Examined
Ceylon
TABL uncat., (CCK 69-38)(2 , 1 33“135) ; CCK 69~71 (7, 124-139).
Thai 1 and
ANSP 59911-12 (2, 162), Bangkok, R. M. deSchauensee, 12 March
1933.
Indonesia
RMNH 6092 (3), Jawa: Batavia (Jakarta)(syntypes).
Fo rmosa
FMNH 59493 (1 , 150) .
Diagnosis
A species of Atule distinguished by the following combination of
characters: premaxillary dentition uniseriate; dentary dentition

161
uniseriate; length of ultimate ray of dorsal and anal fins equal to
length of penultimate ray; supramaxi 11 ary bone extended by a horizontal
antero-projecting process; anterior caudal peduncle scute width 3-0% SL;
ratio of straight to curved portion of lateral lines 1.9; dorsal rays
25 to 27, (usual ly 25 ot 26) (X +_ Sx = 25.80 +_ 0.2*0 ; anal rays 21 to
23, (usually 22) (X +_Sx = 21.81 +_0.18); curved lateral line scale 41
to 55, (usually 46 to 48) (X + Sx = 47.18 +_ 1.32; straight lateral line
scutes 40 to 63, (usually 53 to 55) (X +_Sx = 55.0 +_ 1.46).
Atule macrurus is d i st i ngui shed from A_. d j edaba by : more premaxi 1 -
lary teeth; more dorsal rays (25 to 27 versus 22 to 24); more anal rays
(21 to 23 versus 18 to 22); slightly narrower anterior caudal peduncle
scute; more scales in curved part of lateral line; more straight lateral
line scutes; ultimate ray of dorsal fin no longer than penultimate ray;
ultimate ray of anal fin equal to penultimate ray.
A. macrurus is distinguished from A_. kal 1 a by: uniseriate premaxil¬
lary dentition; uniseriate dentary dentition; less convex ventral body
outline; shallower body; narrower anterior caudal peduncle scute; more
scales in curved lateral line (41 to 55 versus 34 to 42); more straight
lateral line scutes (48 to 63 versus 34 to 42); more anal rays (21 to
23 versus 18 to 21); more dorsal rays (25 to 27 versus 23 to 26); great¬
er number of anal rays (21 to 23 versus 19 to 21); slightly more pre¬
maxi 11 ary teeth.
A_. macrurus is distinguished from A_. mate by: more dorsal rays
(25 to 27 versus 22 to 25); more anal rays (21 to 23 versus 19 to 20);
higher straight to curved lateral line ratio; more scutes in straight
lateral line; slightly narrower anterior caudal peduncle scute; ultimate
ray of both dorsal and anal fin equal to penultimate ray.

162
Atule macrurus is compared to the other species of Atu1e in Table
31.
Description
Counts and proportional measurements are graphically presented in
Figures 2k, 25, 29~34, and Tables 20, 21, 26-30. In addition to the
generic description, Atule macrurus is characterized by: straight
lateral line 50% SL; curved lateral line 25% SL; height of lateral line
arch 5•k to 5.8% SL; body depth 31 to 34% SL; body width 13% SL; caudal
peduncle slender 11% SL; caudal lobes nearly equal in length, upper
lobe slightly longer, 33% SL; length of pectoral fin 28% SL; length of
pelvic fin 13% SL; head depth 27% SL; interorbital width 8.3% SL;
maxillary depth 2.3% SL; gape 6.4% SL; lower gill rakers 11 to 12
(X +^Sx = 11.1 +_ 0. 16) ; upper gill rakers 23 to 2 k (X +_Sx =23.1 +_ 0.16) ;
1ower gill filaments 37 to kk (X +Sx = 40.6 +0.98); upper gill fila¬
ments 85 to 94 (X +_ Sx = 87.6 +_ 1.30); pseudobranch ial f i 1 aments 22
to 26 (X + Sx = 24.2 + 0.73) .

163
Atule djedaba (Forskal)
Figure 26
Scomber djedaba.-- Forskal, 1776: 56-57 (original description; Red Sea).
Caranx djeddaba.-- Cuvier, _i_n_ Cuvier and Valenciennes, 1833: 51 -52
(description; Red Sea).-- Gunther, i860: 432-433 (description;
range; questions synonymy of C_. vari) . -- Playfair and Gunther,
1866: 50 (references; Zanzibar; range).-- Day, 1876: 218-219,
pi. 49 (synonymy; description; range).-- Evermann and Seale,
1907: 65 (description; references; Philippines).-- Jordan and
Richardson, 1908: 250 (description; Manila).-- Jordan and
Richardson, 1^10: 20 (Philippines; references).-- Vakiya, 1924:
19Q (misident ification; = Atu1e macrurus).-- Nichols, 1942b:
227 (possibly close to £. ka11 a).-- Tortonese, 1961: 357 (name
only).-- Chan, I968: 123, pi. 67 (general account).
Selar djeddaba.-- Bleeker, 1851: 3A3 (name only).
Caranx djedaba.-- Day, 1870: 689 (name only).-- Fowler, 1927: 270
Philippines specimens in ANSP; Alepes scitula synonymized?).--
Fowler, 1931: 3?-6 (partial synonymy).-- Weber and de Beaufort,
1931 : 214-215 (description; synonymy; range).-- Fowler, 1934c:
150 (Bangkok).-- Smith, 1953: 215, pi. 25 (references).--
Smith and Smith, 1963: 20, pi. 11 (range).
Alepes djedaba.-- Fowler, 1937: 226 (Siam).-- Fowler, 194ha: 766
(name only).-- Roxas and Agco, 1941: 19 ~20, pi. 3 (description;
synonymy; subgenus Selar).-- Munro, 1967: 227“228 (references;
description).
Atule djeddaba.— Williams, 1958: 379“381 (in part; description;
synonymy).-- Suzuki, 1962: 198-200 (synonymy; description includ-

164
¡ng osteology).-- Ben-Tuvia, 1966: 264 (synonymy; Red Sea;
range).
Caranx varí.— Cuvier, j_n_ Cuvier and Valenciennes, 1833: 48 (original
description).— Gtinther, i860: 432-433 (synonym of C. dj eddaba) .
-- Weber and de Beaufort, 19^1 : 214-215 (in synonymy of C_.
d j edaba).
Material Examined
Ceylon
TABL uncat., CCK 69-41 (14, 145-174).
Formosa
FMNH 59472 (1 , 109) .
Thai 1 and
ANSP 87218 (4, 95-111), Bangkok, R. M. de Schauensee, 1936; TABL
uncat., (4), Gulf of Thailand, Choi Buri-Rayong, 1 Dec. 1957.
Phil ippines
ANSP 63552-65; 63761-76; 64062-64 (33, 55.8-139), J. Clemens,
1923; ANSP 6378I (1, 135), Bataan, Luzon, J. Clemens, 11 May
1923; ANSP 79672 (12, 57-65), Bataan, Luzon, San Ferando, J.
Clemens, 12 Jan. 1923.
Diagnosis
A species of Atule distinguished by the following combination of
characters: ultimate dorsal ray longer than penultimate ray; ultimate
anal ray longer than penultimate ray; premaxillary dentition uniseriate;
dentary dentition uniseriate; ratio of straight to curved lateral line
lengths 2.0; anterior caudal peduncle scute width 3-9% SL; supramaxill-
ary anteriorly extended by a narrow horizontal process; dorsal rays 22

165
to 24 (X + Sx = 23.43 + 0,18) ; anal rays 18 to 22 (X + Sx = 19-55 + 0.24) ;
curved lateral line scales 32 to 40 (X +_ Sx = 34.52 0.53) ; straight lat¬
eral line scutes 33 to 40 (X ¿ Sx = 38.75 ¿0.68).
Atule dj edaba is distinguished f rom ka11 a by : shallower body;
ventral body outline less convex; dentary teeth uniseriate; premaxillary
teeth uniseriate; ultimate ray of dorsal fin elongate; ultimate ray of
anal fin elongate; narrower anterior caudal peduncle scute; ratio of
straight to curved portion of lateral line higher.
A. dj edaba is distinguished from macrurus by: ultimate ray of dorsal
fin more elongate than penultimate ray; ultimate ray of anal fin longer
than penultimate ray; fewer premaxillary teeth; fewer scales in curved
portion of lateral line; fewer scutes in straight lateral lines; fewer
dorsal rays (22 to 24 versus 25 to 27); fewer anal rays (18 to 22 versus
21 to 23); anterior caudal peduncle scute slightly wider.
A. djedaba is distinguished from mal am by: supramaxi1lary bone
not extended forward as thin process; anterior caudal peduncle scute
wider; fewer premaxillary teeth; slightly fewer dorsal rays (22 to 24
versus 23 to 26); fewer curved lateral line scales (32 to 40 versus 35 to
45); fewer scutes in straight lateral line (33 to 44 versus 49 to 58).
A djedaba is distinguished from A. mate by: fewer curved lateral
line scales (32 to 40 versus 39 to 57); ratio of straight to curved lateral
lines higher; anterior caudal peduncle scute slightly wider; uniseriate
premaxillary dentition.
Atule djedaba is compared to other members of the genus in Table 3'•
Description
Counts and proportional measurements are listed in Tables 20, 21,
26-30, and graphically presented in Figures 24, 25, 29“34. In addition

166
to the generic description, Atule djedaba is characterized by: straight
lateral line 49% SL; curved lateral line 24% SL; height of lateral line
arch 6.1% SL; body depth 32 to 35% SL; body width 13% SL; caudal peduncle
slender, 11% SL; pectoral fin length 34% SL; pelvic fin length 13% SL;
head depth 27% SL; interorbital width 8.0% SL; maxillary depth 3.1% SL;
gape 7.2% SL; 1ower gill rakers 11 to 14 (X +_ Sx = 12.5 ^ 0.49) ; upper
gill rakers 30 to 35 (X +^Sx = 32.1 +_ 0.79) ; 1 ower gill fi 1 aments 32
to 38 (X +_ Sx = 34.8 +_ O.87) ; upper gill f i laments 76 to 84 (X +_ Sx =
81.0 + 1.43); pseudobranchial filaments 21 to 26 (X + Sx = 24.1 + 0.70).

167
Atule malam (Bleeker)
Figure 26
Selar malam.-- Bleeker, 1851: 362 (original description; Batavia).--
Bleeker, 1852: 55_56 (description).-- Munro, 1955: 126
(references; description).
Caranx malam.-- Gunther, i860: 43*4-^35 (description; Sea of Batavia).
-- Weber and de Beaufort, 1931: 213~214 (synonymy; description;
range).-- Roxas and Agco, 19^1: 18-19, pi. 2 (synonymy; des¬
cription).-- Nichols, 19^8: 300 (comparison of mal am from
Batavia with C. nigripinnis from Persian Gulf).-- Mendis,
195^: 126 (name only).-- Chen and Yang, 1962: 377 (name only).
-- Chan, 1968: 120, pi. 61* (general account).
Atule malam.-- Williams, 1958: 381 (East Africa; incorrect synony¬
my with A_. djeddaba) .
Caranx nigripinnis.-- Day, 1876: 225_226, pi. 51 (original description;
Andamans, India).-- Fowler, 1905: 71 (synonymized with A1epes
me 1anopte ra; description; Sumatra).-- Jordan and Seale,
1907: 11) (description; Philippines).-- Jordan, 1917"1920: 200
(apparent synonym of Alepes me 1 anopte ra) .-- Nichols, 1 9^+2a :
229 (synonym of £. malam) . -- Nichols, 191)8: 300 (specimen
from Persian Gulf compared to £. mal am from Batavia).
?Caranx pectora1is.-- Chu and Cheng, 1958: (original description).
-- Chan, 1968: 121, pi. 65 (general account; possible synony¬
my with C. malam).
Material Examined
Thai 1 and

168
TABL uncat., (3, 161-167), Gulf of Thailand, 11-18 mi. E. to
ESE Khao Mong Lai, 11°*4*41 -11°50115"N, 100°01'30"-100°08130"E,
NAGA 1959-61, Reg. #2553, 27 April-2 May 1961.
Thai 1 and-Indonesia
RMNH 609*4 (16, 96.3-158), Bleeker (includes 2 syntypes) .
Diagnosis
A species of Atu1e distinguished by the following combinations of
characters: ultimate ray of both dorsal and anal fin equal to penulti¬
mate ray; premaxillary dentition uniseriate; dentary teeth uniseriate;
supramaxi11 ary bone not extended as a process anteriorly; anterior caud¬
al peduncle scute width 2.6% SL; ratio of curved to straight portions
of late ral line 2.1; dorsal rays 23 to 26 (X +_ Sx = 2k. 50 +^0.26); anal
rays 19 to 21 (X +_ Sx = 20.09 +.0.21); curved lateral line scales 35
to *45 (X +_ Sx + *40.91 +. 0.90) ; straight lateral 1 ine scutes *49 to 58
(X + Sx = 53.36 + 0.91) .
Atu 1 e mal am is distinguí shed from A_. kal 1 a by : shal lower body ;
uniseriate premaxillary dentition; dentary dentition uniseriate; more
scutes in straight lateral line (*49 to 58 versus to *42); higher
straight to curved lateral line ratio; narrower anterior caudal peduncle
scute; ventral outline of body less convex.
A_. mal am is distinguished from A. macrurus by: supramax i 11 ary
bone not extended anteriorly; fewer curved lateral line scales (35 to
*45 versus *4l to 55) ; fewer dorsal rays (23 to 26 versus 25 to 27) ;
fewer anal rays (19 to 21 versus 21 to 23); slightly fewer premaxillary
teeth.
A_. mal am is distinguished from A. mate by: uniseriate premaxillary
dentition; more straight lateral line scutes (*49 to 58 versus 33 to *49);

169
fewer curved lateral line scales (35 to *45 versus 39 to 57); narrower
anterior caudal peduncle scute; higher ratio of straight to curved
section of lateral line; ultimate ray of both dorsal and anal ray equal
to penultimate ray.
A. ma1 am is distinguished from A. djedaba by: narrower anterior
caudal peduncle scute; more premaxillary teeth; supramaxi11 ary extended
forward by a thin process; more curved lateral line scales (35 to *45
versus 32 to *40); more straight lateral line scutes (49 to 58 versus
33 to *4*4); slightly more dorsal rays (23 to 26 versus 22 to 2*4).
Description
Counts and measurements are presented in Tables 20, 21, 26~30, and
Figures 2*4 , 25 , 29“3*+ - In addition to the generic description, Atule
mal am is characterized by: straight lateral line 51% SL; curved lateral
line 2*4% SL; height of lateral line arch 5.7 to 7.0% SL; body depth 3**
to 38% SL; body width 12% SL; caudal peduncle 12% SL; caudal fin lobes
nearly equal in length, 22 to 23% SL; length of pectoral fin 28% SL;
length of pelvic fin 13% SL; head depth 28% SL; interorbital width 9.5
to 10% SL; maxillary depth 2.3% SL; gape 7-9% SL; lower gill rakers 7
to 10 (X +_ Sx = 7.8 +_ 0.37) ; upper gi 1 1 rakers 17 to 2*4 (X +_ Sx = 20.6
+_ 1.56); lower gill f i laments 2*4 to 31 (X Sx = 28.8 +_ 1.39); upper
gill fi 1 aments 61 to 79 (X+_Sx= 73-6 ^3.21); pseudobranchial fila¬
ments 21 to 25 (X + Sx = 23.2 + 0.73)•

APPENDICES

APPENDIX 1.
TABLES 1 - 31

172
Table 1.
iution of
the
nominal genera of
O
on
major
faun is tic
stud ies)
CA
r—
*
l-
— 1
(0|
_Q
*
00
0
• —
"O
LA
3 M3
•*
c
OI
o|
OA
(A
vO
0
u
-X
03
L_
4)
la
CA
O
N
O
v_
O
CA
—
cn
D
0
-O
JD
JZ
vO
<
C/1
i_
03
0)
0
CA
CD
"O
c
03
E
ub
. ~
• —
■—
JZ
03
LA
OA ■—
-4*
~o
• —
C3
CD
4-J
LA
* CT\ fO
O)
CM
c
JZ
CA
O — -C
03
03
03
1
1
E
,
L- 01
X
f—
1
Ul
C - L_
0
03
O
O
«.
=3 4-» (T3
CC
•*
C
0
•—
•—
l
O
2; >- s;
03
•—
•—
4-J
4-J
1
l_
O
1
>-
»—
4—
c
c
03
c
1 *+- 1
—
OI
—
03
03
U
03
D
O
01
-X
0
O
*—
O
21
OJ 03 “O
03
03
O
03
4->
4-J
L.
(Doc
C
3
Q.
<
<
M-
l_
1
C CD 03
•—
1
c
u-
.-.(Ur—
CL
1
C
c
c
<
C
D “O 01
CL
.—
CM
•—
O
l- M3
L_
CM V-
JZ
O
O C
•—
-4*
C M3
•—
M3
03
LA !U
4-J
4-1
03
r—
CA
03 CA
03
4-1 cn
4-»
cn 4-1
D
01
>-
3 0
• —
r—
CL —
3
01 ■—
0)
<— 0)
o
03
03
03 Z>
JZ
03
03
03
03
03
CO
LU
O
:z: o'
Q_
5
JZ
LU
3
LU
+
+
+
+ +
+
+
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+
+ +
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
es+
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+
ALECTIS Rafinesque
ATROPUS Cuvier
ATULE Jordan & Jordan
BRANCH IALEPES Fowler
CARANGOIDES Bleeker
CARANX Lacepede
CITOLA Cuvier
CHLOROSCOMBRUS Girard
CHORINEMUS Cuvier & Va
DECAPTERUS Bleeker
ELAGATIS Bennett
GNATHANODON Bleeker
HEM ICARANX Bleeker
HYNNIS Cuvier
HYPACANTHUS Rafinesque
KAI WAR INUS Suzuki
LICHIA Cuvier
LONG I ROSTRUM Wakiya
MEGALASPIS Bleeker
NAUCRATES Rafinesque
NEPTOMENEUS Gunther
OLIGOPLITES Gil 1
PARONA Berg
SELAR Bleeker
SELAROIDES Bleeker
SELENE Lacepede
SERIOLA Cuvier
TRACHINOTUS Rafinesque
TRACHURUS Rafinesque
ULUA Jordan & Snyder
URASPIS Bleeker
VOMER Cuvier
ZONICHTHYS Swainson
+ + +
+ +
+ + +
+ +
+
+ + +
+
+
+
+
+ + +
+
+
+
+
+
+
+
+
+

173
o
Table 2. Characters coded in numerical taxonomy of Carangidae
01 Exoccipital zygapophyses adjoined
02 Fronta1-supraoccipita1 crest high
03 Olfactory cavity wel1-developed
0*4 Ethmoid-prevomer keel elevated
05 Prevomerine dentition present
06 Pterotic crest conspicuous, produced backwards
07 Pterotic window
08 Myodome opening distinct
09 Cranial depth/width great
10 Premaxillary protractile
11 Postmaxillary process round
12 Premaxillary ascending process longer than articular process
13 Supramaxi1lary
lA Maxillary extremely long
15 Rostral cartilage ovoidal
16 Dentary-articular interstice
17 Articular dorsal process 1. less than 1/2 its height
18 Maxillary length much greater than height
19 Pterygoid enlarged, anterior end acuminate
20 Metapterygoid lamina we 11-deve 1 oped
21 Mesopterygoid less than 1/2 hyomandi bu 1 ar
22 Anterior pterygoid expanded
23 Pre-palatine process directed an tero-ventra11y
2b Preopercular width less than 1/3 its 1.
25 Opercular 1. exceeds interopercle 1.
26 Opercular apparatus height exceeds its 1.
27 Seven branch iostega1 rays
28 Ceratohyal window wide and ovoidal
29 Urohyal shorter than hyoid body
30 Postcoracoid process wel1-developed
31 Postc1eithrum ventral element rib-like
32 Cleithrum shelf angle 90°
33 Posttemporal ventral branch attaches to upper opisthotic
3b Posttemporal ventral branch elongate
35 Posttemporal height less than 1/2 its 1,
36 Lateral line scutes
37 Caudal vertebrae greater than 14
38 First hemal spine enlarged
39 Upper jaw teeth in band
40 Lower jaw teeth in band

Table 3
Character state-operational taxonomic
unit matrix for Carangidae
(Character code numbers defined in Table 2 )
CHARACTERS
OTU
01
02
03
Ok
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
ALECTIS
+
+
+
_
+
+
+
+
_
+
+
_
+
+
+
_
+
_
ATROPUS
+
+
-
-
+
+
-
+
+
+
+
+
+
-
+
+
+
-
-
-
ATULE
-
-
+
-
+
+
+
-
-
+
-
+
+
-
+
+
+
-
-
-
CARANGOIDES
+
+
+
+
+
+
+
-
+
+
-
+
+
-
+
+
+
-
-
-
CARANX
+
+
-
-
+
+
-
+
+
+
+
+
+
-
+
+
+
-
+
-
CHORINEMUS
+
-
-
-
+
-
-
+
+
-
0
+
+
+
+
-
+
+
-
-
CITULA
+
+
-
-
+
+
+
+
+
+
-
+
+
-
+
+
+
-
+
-
DECAPTERUS
-
-
+
-
+
+
+
+
-
+
-
-
+
+
+
+
-
-
-
ELAGATIS
+
-
-
-
+
+
-
+
-
+
+
+
+
-
+
+
+
-
-
-
GNATHANODON
+
+
+
+
-
+
+
+
+
+
-
+
+
-
+
+
-
-
-
+
HEM 1CARANX
+
-
+
+
-
+
+
+
+
+
-
+
+
-
+
+
+
-
-
-
KA1 WAR 1NUS
+
+
+
-
+
+
-
+
+
+
-
+
+
-
+
+
+
-
-
-
LONG 1 ROSTRUM
-
+
+
-
+
+
+
+
+
+
-
+
+
-
+
+
+
-
-
-
MEGALASPIS
-
-
-
-
+
+
-
-
-
+
+
+
+
-
+
+
+
-
-
-
NAUCRATES
+
-
-
-
+
+
-
+
-
+
+
+
+
-
+
+
+
-
-
-
SELAR
-
-
+
+
+
+
-
+
-
+
-
-
+
-
+
+
+
-
-
-
SELARO1 DES
+
+
+
+
-
+
+
+
-
+
-
+
+
-
-
+
+
-
-
+
SERIOLA
+
-
-
-
+
+
+
+
-
+
+
+
+
-
+
+
+
-
-
-
TRACHINOTUS
+
-
-
-
+
+
-
-
+
+
+
+
-
-
+
+
+
-
-
-
TRACHURUS
-
-
+
-
+
+
+
+
-
+
-
-
+
-
+
+
+
-
-
-
URASPIS
+
-
•»
+
+
+
-
+
+
-
+
+
•-
+,
+
+
-
-
-

Table 3
Continued
CHARACTERS
OTU
21
22
23
24
25
26
27
28
29
30
31
32
33
3k
35
36
37
38
39
40
ALECTIS
+
+
+
_
+
+
+
+
+
+
+
+
+
+
+
ATROPUS
+
+
+
-
. +
-
+
-
+
-
+
+
-
+
-
+
-
+
+
-
ATULE
+
-
+
+
-
-
+
+
+
-
+
+
-
+
+
+
-
+
-
-
CARANGO1 DES
+
-
+
-
-
-
+
-
+
-
+
+
-
+
-
+
-
+
+
+
CARANX
+
+
+
-
+
-
+
-
+
-
+
+
-
+
-
+
-
+
+
-
CHORINEMUS
+
-
+
+
+
+
-
-
+
+
+
+
CITU LA
+
+
+
-
+
+
+
-
+
-
+
+
-
' +
-
+
-
+
+
+
DECAPTERUS
-
-
+
+
-
-
+
+
-
-
+
-
+
+
+
-
+
-
-
ELAGAT1S
-
-
+
-
-
+
+
-
+
+
-
+
-
+
+
-
-
-
+
+
GNATHANODON
+
-
+
-
-
-
+
-
+
-
+
+
-
+
-
+
-
+
-
-
HEMICARANX
+
-
+
+
-
-
+
+
+
-
+
+
-
+
+
+
+
+
-
-
KAIWARINUS
+
-
+
-
+
-
+
+
+
-
+
+
-
+
-
+
-
+
+
-
LONG 1 ROSTRUM
+
-
+
+
-
-
+
-
+
-
+
+
-
+
-
+
+
+
-
-
MEGALASPIS
+
-
+
+
-
-
+
-
+
-
+
+
-
+
+
+
-
+
+
-
NAUCRATES
-
-
+
+
-
-
+
-
+
+
-
+
-
+
+
-
+
-
+
+
SELAR
+
-
+
+
-
-
+
-
+
-
+
+
-
+
+
+
-
+
-
-
SELARO1 DES
+
-
+
-
-
-
+
-
+
+
+
-
+
+
+
-
+
-
-
SERIOLA
+
-
+
+
+
-
+
-
+
+
-
+
-
+
+
-
-
+
+
TRACHINOTUS
-
-
+
+
-
-
+
-
+
-
+
+
-
-
-
-
-
+
+
+
TRACHURUS
-
-
+
+
-
-
+
+
+
-
+
+
-
+
-
+
-
+
-
-
URASPIS
+
-
+
-
-
-
+
-
+
-
+
+
-
+
-
+
-
+
-
-

Table 4. Coefficients of association for carangid operational taxonomic
units from Japan
(Derived from character states coded in Table 3)
OTU
AC
AP
AU
CG
CX
CH
C 1
DE
EL
GN
KA
LO
ME
NA
SR
SD
SA
TN
TU
UR
ALECTIS
X
84
64
84
82
56
92
57
61
79
84
76
63
53
63
74
63
63
66
76
ATROPUS
84
X
65
84
95
63
92
60
77
77
94
79
81
71
71
71
76
79
76
87
ATULE
64
65
X
71
68
45
71
89
68
73
76
86
86
66
89
79
74
68
91
84
CARANGO1 DES
84
84
71
X
77
58
77
64
67
85
87
83
73
60
77
83
68
77
73
90
CARANX
82
95
68
77
X
58
90
59
72
73
87
75
78
63
67
68
70
74
65
83
CHORINEMUS
56
63
bS
58
58
X
60
42
63
47
61
56
56
63
47
42
56
63
50
58
C 1 TULA
92
92
71
77
90
60
X
62
67
75
85
75
70
60
64
68
68
69
70
83
DECAPTERUS
57
60
89
64
59
42
62
X
61
67
69
77
72
69
80
69
64
57
92
69
ELAGAT IS
61
77
68
67
72
63
67
61
X
57
67
59
74
95
67
62
92
74
62
67
GNATHANODON
79
77
73
85
73
47
75
67
57
X
80
83
65
53
74
90
57
60
72
85
KA1 WAR 1NUS
84
3b
76
87
87
61
85
69
67
80
X
80
72
62
72
68
63
72
75
85
LONG 1 ROSTRUM
76
79
86
83
75
56
75
77
59
83
80
X
78
63
82
78
65
67
85
87
MEGALASPIS
63
81
86
73
78
56
70
72
74
65
72
78
X
78
85
70
80
82
78
80
NAUCRATES
53
71
66
60
63
63
60
64
95
53
62
63
78
X
69
58
90
77
70
62
SELAR
63
71
89
77
67
47
64
80
67
74
72
82
85
69
X
79
67
67
87
74
SELAROIDES
74
71
79
83
68
42
68
69
62
90
68
78
70
58
79
X
60
54
72
80
SERIOLA
63
76
74
68
70
56
68
64
92
57
63
65
80
90
67
60
X
74
65
65
TRACHINOTUS
63
79
68
77
74
63
69
57
74
60
72
67
82
77
67
54
74
X
64
75
TRACHURUS
66
76
91
73
65
50
70
92
62
72
75
85
78
70
87
72
65
64
X
78
URASPIS
76
87
84
90
83
58
83
69
67
85
85
87
80
62
74
80
65
75
78
X

Table 5.
Second generation matrix of association coefficients,
calculated for cluster stems and individual OTU1s in¬
corporated in Japanese carangid cluster analysis
OTU
AC-C 1
AP-CX
CG-UR
DE-TU
EL-NA
GN-SD
AU
CH
KA
L0
ME
SR
SA
TN_
AC-CI
X
87
70
64
67
72
58
58
85
76
67
64
66
66
AP-CX
87
X
83
65
71
72
68
61
91
77
79
69
73 ‘
77
CG-UR
80
83
X
71
64
84
78
58
86
85
77
76
67
76
DE-TU
64
65
71
X
62
70
90
46
72
81
75
84
65
61
EL-NA
67
71
64
62
X
58
67
63
65
61
76
68
91
76
GN-SD
72
72
84
70
58
X
76
45
74
81
68
77
59
57
AU
68
68
78
90
67
76
X
45
76
86
86
89
74
68
CH
58
61
58
46
63
45
45
X
61
86
56
47
56
63
KA
85
91
86
72
65
74
76
61
X
80
72
72
63
72
LO
76
77
85
81
61
81
86
56
80
X
78
82
68
67
ME
67
79
77
75
76
68
86
56
72
78
X
85
80
82
SR
64
69
76
84
68
77
89
47
72
82
85
X
67
67
SA
66
73
67
65
91
59
74
56
63
65
80
67
X
74
TN
66
77
76
61
76
57
68
63
72
67
82
67
74
X

Table 6. Distribution of primitive skeletal character
states in Japanese Carangidae, plus Hemicaranx
GENUS
high supra-
occipita1
crest
one
supra-
maxi1lary
mouth
prot rusible
postmaxi 1lary
process
round
eight
branch iostega1s
no
scutes
ALECTIS
+
+
+
ATROPUS
+
+
+
+
-
-
ATULE
-
+
+
-
-
-
CARANGO1 DES
+
+
+
-
-
-
CARANX
+
+ •
+
+
-
-
CITULA
+
+
+
-
-
-
CHORINEMUS
-
+
-
0
+
+
DECAPTERUS
+
+
+
-
-
-
ELAGATIS
-
+
+
+
-
+
GNATHANODON
+
+
-
-
-
HEMICARANX
+
+
+
-
-
-
KA1 WAR 1NUS
+
+
+
-
-
-
LONG 1 ROSTRUM
+
+
+
-
-
-
MAGALASPIS
-
+
+
+
-
-
NAUCRATES
-
+
+
+
-
+
SELAR
+
+
+
-
-
-
SELAROIDES
+
+
+
-
-
-
SERIOLA
-
+
+
+
-
+
TRACHINOTUS
-
-
+
+
-
+
TRACHURUS
+
+
+
-
-
-
URASPIS
-
+
+
-
-
-

Table 7. Morphometric values for Hemicaranx amblyrhynchus
from Western Atlantic localities. (Mean value
for each character is listed as thousandths of
standard length, plus or minus standard error of
the mean)
Loca 1ity
Northern Gul f
of Mexico (U.S.)
Honduras
Guyanas-
Su rinam
Surinam
Southern
Brazi 1
N
14
10
7
4
6
Range of
Standard Length (mm)
68-86
143-165
156-204
65
1-83
1 11
-123
Standard length (mm)
76.3
+
1 .45
156.1 +
3.01
177.7 +
3.80
76.7
+
1.12
117.8
+ 1 .22
Total 1 atera1 line 1 .
736.9
+
3.6
+ 1
CO
LA
CO
6.04
769.5 +
3.94
744.0
+
2.88
762.1
+ 1.85
Straight lateral line 1.
527.8
+
3.5
584.0 +
6.53
549.8 +
5.00
527.6
+
5.20
555.8
+ 3.64
Curved lateral line 1.
213.0
+
3.5
207.3 +
3.90
216.8 +
5.77
218.3
+
4.25
212.8
+ 2.77
Lateral 1ine arch
74.8
+
1.62
69.1 +
1.62
75.5 +
1.92
74.6
+
8.56
71 .5
+ 2.06
Body d. at pelvic
417.9
+
3.5
381.1 +
4.91
+ 1
-cr
PA
4.91
406.7
+
5.35
390.0
+ 7.33
Body d, at anal
485.4
+
5.0
454.3 +
3.48
438.0 +
8.77
464.2
+
6.14
440.3
+ 8.22
Body w.
128.4
+
1.5
118.3 +
1.87
131.1 +
1.85
127.2
+
3.25
110.6
+ 1.35
Caudal peduncle d.
49.7
+
0.6
52.6 +
0.71
52.7
+
1.25
47.0
+ 1.65
Caudal peduncle w.
40.2
+
1.4
51 • 8 +_
12.40
42.2
+
3.19
41 .0
+ 0.48
Cauda 1 peduncle 1.
110.6
+
1 .8
132.8 +
3.73
118.2
+
5.48
135.0
+ 2.72

Table 7 Continued
Loca 1¡ty
Upper caudal fin
Lower caudal fin
Pectora1 fin 1.
Pelvic fin 1.
Pre-pe1vic 1.
Pre-anal 1.
Pre-soft dorsal 1
Dorsal origin to
caudal base
Head 1.
Head d.
Interorbital w.
Postorb i tal 1.
Snout 1.
Orbit
Premaxi 1lary 1 .
lobe 1 .
lobe 1 .
Northern Gulf
of Mexico (U.S.)
Honduras
Guyanas-
Surinam
Surinam
Southern
Brazi1
308.3
+
8.7
456.3
+
10.41
359.2
+
11.09
335.5
+
8.50
348.3
+
7.83
285.1
+
6.3
339.7
+
6.10
300.0
+
14.35
306.5
+
8.50
353-6
+
7.99
253.5
+
3.5
330.8
+
5.30
324.0
+
6.98
299.6
+
6.38
321.6
+
3.63
143.6
+
3.1
102.0
+
3.89
104.7
+
3.44
132.2
+
4.00
111.5
+
5.47
336.1
+
3.3
303.4
+
3.15
302.7
+
3.15
330.2
+
6.60
310.3
+
2.64
564.7
+
3.8
519.7
+
3.41
525.7
+
6.07
576.5
+
11 .32
513.5
+
3.81
530.0
+
3.3
471.2
+
12.72
483.1
+
4.52
533.0
+
5.21
497.0
+
3.78
588.5
+
3.4
617.3
+
3.53
608.0
+
4.12
586.2
+
6.28
606.8
+
3.43
306.5
+
2.6
255.9
+
1.42
258.2
+
2.36
316.2
+
3.68
276.1
+
2.62
329.7
+
3.7
302.6
+
3.89
298.4
+
4.17
339.7
+
3.96
312.8
+
6.97
88.5
+
2.0
88.7
+
1.91
92.8
+
1.73
96.2
+
1 .65
89.0
+
3.24
139.9
+
2.1
120.3
+
1.49
120.7
+
4.57
142.5
+
4.57
125.5
+
1.72
75.2
+
1.1
59.7
+
1.14
59.1
+
1 .56
78.0
+
4.52
61 .8
+
1 .88
83.2
+
2.2
77.7
+
0.91
76.8
+
1.14
92.7
+
3.94
86.5
+
1.83
96.7
+
1 .2
86.6
+
1.14
88.1
+
1.05
109.7
+
3.27
88.6
+
1.56

Table 7 Continued
Loca 1ity
Northern Gulf
of Mexi co (l). S .)
Hondu ras
Guyanas-
Su rinam
Surinam
Southern
Brazi 1
Maxi 1lary d.
23.2 + 0.6
17.4 + 0.68
19.1 +0.34
27.7 + 0.62
20.1 + 0.
co

Table 8. Meristic values for Hemicaranx amb1yrhynchus
from Western Atlantic localities
Loca 1ity
N
Range of
Standard Length (mm)
Standard length (mm)
Lower gill rakers
Upper gill rakers
Lower gill fi 1 aments
Upper gill fi 1 aments
Pseudobrachi a 1
fi 1 aments
Curved lateral line
scales
Straight 1 ate ra1 line
scales (to hypural
base)
Northe rn
of Mexico
Gulf
» (u.s.)
Hondu ras
Guyanas-
Surinam
Surinam
Southern
Brazi 1
14
10
7
4
6
68-86
143-1
165
156-204
69-83
111-123
76.3 +
1 .45
156.1
+
3.01
177.7 + 3.80
76.7 + 1.12
117.8+1.22
9.0 +
0.2
9.0
+
0.22
8.5 + 0.22
8.0 + 0.40
9.5 + 0.22
.20.4 +
0.32
20.8
+
0.44
19.7 + 0.35
18.75 + 0.62
20.1 +0.16
26.0 +
1 .04
34.8
+
0.67
36.0+1 .67
30.7+1.43
31.0 + 0.89
65.0 +
1.33
83.7
+
1 .52
86.2 + 0.88
68.0 + 1.08
77.4 + 3.20
16.1 +
0.78
22.1
+
0.76
24.42 + 0.99
17.6 +0.66
21.5 +0.22
36.4 +
0.78
37.6
+
1.37
37.1 +2.18
31.0 + 0.57
39.0 +1.23
44.6 +
0.78
45.1
+
0.78
43.7 + 0.91
43.0 + 0.000
47.0 + 0.93

183
Table 9. Morphometric values for Hemicaranx bicolor from
three West African loca 1 iti es. (For each character
a mean value expressed as thousandths of standard
length, plus or minus standard error of the mean,
is 1isted)
Loca 1ity
Guinea
Came roon
Gabon
N
9
10
<
3
Standard length (mm)
177.0
+
3.72
1 **2.2
+ 2.59
75.5
+
1 .89
Size range (SL)
162-
-190
135
-166
68-83
Total lateral line 1.
78** .0
+
3.39
788.2
+ 6.24
753.6
+
7.97
Straight lateral line 1.
57**.**
+
**.**1
582.0
1 3.63
537.7
+
8.76
Curved 1ateral line 1.
215.1
+
**.06
206.3
+ 7.10
218.5
+
6.14
Lateral 1ine arch
67.8
+
0.90
75.9
+ 2.18
79.1
+
2.81
Body d. at pelvic
350.3
+
**.87
364.**
+ 4.48
431.0
+
5.46
Body d. at anal
**09.5
+
6.5**
419.9
+ 6.54
503.0
+
7.88
Body w.
130.0
+
3.10
132.8
+ 1.71
137.7
+
2.11
Caudal peduncle d.
**6.3
+
0.79
49.8
+ 0.81
56.1
+
1.48
Caudal peduncle w.
52.6
+
1.13
59.3
+ 1.15
39.5
+
2.15
Caudal peduncle 1.
128.**
+
1.97
133.3
+ 1 .97
119.2
+
5.90
Upper caudal fin lobe 1.
305.5
+
**.20
316.3
+ 4.89
217.2
+
3.13
Lower caudal fin lobe 1.
291.5
+
**.11
291.5
+ 4.22
217.3
+
4.00
Pectoral fin 1.
331.7
+'
**.51
334.5
+ 4.00
224.0
+
4.26
Pelvic fin 1.
111.**
+
2.83
117.42 +2.12
151.6
+
3.81
Pre-pe1 vic 1.
302.4
+ 3.33
335.1
+
3.04
Pre-anal 1 .
516.3
+
3.96
525.4
+ 4.69
593.4
+
3.02
Pre-soft dorsal 1 .
**77.3
+
2.75
488.9
+ 6.55
551.5
+
7.46
Dorsal origin to
caudal base
607.0
+
5.53
612.3
+ 4.40
566.7
+
8.11
Head 1 .
251 .5
+
1 .8**
262.1
+ 4.13
299.1
+
2.74

184
Table 9 continued
Locality
Guinea
Came roon
Gabon
Head d.
290.2
+
2.58
296.5
+
3.82
346.2
+ 8.02
1nterorbi tal w.
95.3
+
1 .51
92.7
+
1.95
92.7
+ 1 .46
Postorb i tal 1.
118.1
+
1 .49
114.5
+
1.09
145.7
+ 3.63
Snout 1.
56.3
+
1 .22
55.7
+
1.09
67-3
+ 1.35
Orbit
77.7
+
0.94
84.5
+
1.59
85.2
+ 1.57
Premaxi 11 ary 1.
78.6
+
0.65
82.5
+
1.29
96.7
+ 1 .46
Maxi 1lary d.
16.6
+
0.92
18.6
+
0.85
23.8
+ 0.75
Gape
58.8
+
1.72
68.3
+
2.17
85.1
+ 1.63

185
Table 10. Meristic values for Hemicaranx bicolor from
three West African localities. (Each character
is expressed as a mean number plus or minus one
standard error)
Locality
Guinea
Cameroon
Gabon
N
8
10
9
Lowe r gill rake rs
8.62
+ 0.53
9.37 j
: 0.32
8.5
+
0.29
Upper gi 11 rakers
21 .0 +
0.57
20.2
+
0.41
19.8
+
0.40
Lower gill fi 1 aments
31 .3 +
0.73
31 .3
+
1 .08
26.1
+
1.43
Upper gill fi 1 aments
85.8 +
1 .34
79.0
+
2.12
62.7
+
1 .20
Pseudob ranch i a 1
fi 1 aments
24.2 +
1 .76
22.3
+
0.76
18.0
+
0.61
Curved lateral line
scales
32.7 +
1 .08
34.2
+
1.38
35.0
+
0.66
Straight lateral 1ine
scales (to hypural
base)
47.2 +
1 .22
44.1
+
0.93
46.0
+
1.05

Table 11. Comparative morphometric values for two species of
Hemicaranx from Panama Bay, Panama. (Mean value
for each character is listed as thousandths of
standard length, plus or minus standard error of
the mean)
Range of
Standard Length (mm)
100 -
130
142
- 210
Species
zelotes
1eucurus
zelotes
1eucu rus
N
<
)
8
8
c
)
Standard length (mm)
115.6
+
3.90
114.3 +
3.84
178.4 + 6.20
182.7
+
6.34
Total 1 ateral line I.
751.7
+
4.31
742.5 +
5.18
774.1 + 6.59
761 .6
+
3.96
Straight lateral line 1.
522.2
+
6.21
485.5 +
4.52
535.1 + 3.64
506.4
+
4.63
Curved lateral line 1.
233.7
+
4.38
262.0 +
4.85
243.0 + 6.30
264.4
+
4.22
Lateral 1ine arch
79.1
+
1 .26
75.6 +
3.28
70.0 + 2.69
69.7
+
2.67
Body d. at pelvic
389.7
+
5.87
413.12 j
: 6.79
333.5 + 7.65
363.6
+
7.31
Body d. at anal
¿t66. 1
+
5.93
489.5 +
12.91
399.6 + 7.89
426.3
+
6.33
Body w.
123.1
+
1 .76
120.6 +
3.24
115.6 +3.38
117.0
+
3.29
Caudal peduncle d.
51.3
+
1 .0
52,7 +
1.30
45.25 + 1'.35
49.7
+
0.82
Caudal peduncle w.
51.7
+
0.70
44.3 +
1.62
50.0 + 1.86
47.2
+
1 .58
Cauda 1 peduncle 1.
118.2
+
2.66
112.5 +
4.65
115.5 + 2.81
109.8
+
3.53

Table 11 continued
100 - 130
zelotes
Upper caudal fin
lobe 1
358.0
+
7.21
Lower caudal fin
lobe 1
344.0
+
1 .00
Pectora1 fin 1.
296.6
+
6.38
Pelvic fin 1.
120.4
+
2.32
Pre-pel vic 1.
321.7
+
5.93
Pre-anal 1.
540.4
+
6.04
Pre-soft dorsal 1
•
528.2
+
14.33
Dorsal origin to
603.3
+
4.48
caudal base
Head 1.
280.8
+
3.99
Head d.
310.3
+
4.73
Interorbital w.
86.0 + 2
â–  .33
Postorb ita1 1•
131.0
+
2.74
Snout 1.
69.4
+
2.01
Orbit
79.7
+
1 .10
142 - 210
1eucurus
zelotes
1eucurus
304.8
+
14.22
308.7
+
9.07
285.5
+
15.03
--â– 
352.66
307.5
+
9.71
299.1
+
5.11
384.1
+ 5.50
136.5
+
3.38
104.8
+
3.59
132.2
+ 3.77
324.3
+
3.41
283.3
+
3.57
302.3
+ 1.63
565.8
+
5.59
507.2
+
4.00
532.0
+ 6.88
540.1
+
5.37
469.0
+
3.23
499.2
+ 3.12
584.1
+
9.02
610.2
+
5.34
594.0
+ 5.60
296.8
+
2.00
238.4
+
2.71
256.5
OO
r^v
Csl
+ 1
316.5
+
2.66
252.0
+
2.52
272.7
+ 6.06
92.6
+
2.95
78.5
+
1.59
82.8
+ 2.00
141.3
+
2.36
123.8
+
1.95
133.3
+ 2.87
74.1
+
1.79
55.8
+
1.66
63.O
+ 0.89
83.O
+
1.97
62.7
+
1.68
67.3
+ 2.52

Table 11 contlnued
100 - 130
142 - 210
zelotes leucurus
zelotes leucurus
Premaxi 1lary 1.
90.8
+
1.50
91.7
+
1.06
79.0
+
1 .72
79.7
+
0.89
Maxi 11 ary d.
23.1
+
0.48
21 .2
+
0.59
18.2
+
0.72
17.8
+
0.53
Gape
74.4
+
3.18
80.3
+
2.34
66.7
+
3.90
77.8
+
2.67
Anterior peduncle
scute w.
36.3
+
0.68
24.1
+
0.83
32.4
+
0.89
25.3
+
0.66

Table 12. Comparative meristic values for two species
of Hemicaranx from Panama Bay, Panama
Range of
Standard Length (mm)
100 -
130
142
- 210
Spec¡es
ze1 otes
leucurus
zelotes
1eucu rus
N
9
8
8
9
Lower gill rakers
8.42 +0.36
8.87 j
: 0.22
9.3
+
0.32
9.H
+ 0.35
Upper gill rakers
20.85 + 0.59
19.1
+
0.35
20.2
+
0.95
21 .2
+ 0.64
Lower gi 11 fi 1 aments
27.7 + 0.99
29.7
+
0.56
30.6
+
1.78
33.5
+ 1.70
OO
Upper gill fi 1 aments
70.1 +1.47
71 .4
+
1.41
74.0
+
1 .28
77.3
+ 0.74
Pseudobranch i a 1
fi 1 aments
20.7 +0.47
19.8
+
0.79 .
Curved lateral line
sea les
38.7 +0.89
45.3
+
1.20
44.1
+
1 .10
46.0
+ 1.34
Straight 1atera1 line
sea 1es
45.5 + 0.72
53.0
+
1.18
47.0
+
1 .00
48.8
+ 1.25
Pre maxi 1lary teeth
34.8 + 1.34
41 .5
+
1.81
39.5
+
1 .85
46.2
+ 1.95
Dentary teeth
29.3 + 1.11
34.1
+
2.00
34.2
+
1.30
38.8
+ 1 .55

Table 13. Morphometric values for Hemicaranx zelotes from the lower
Pacific coast of Baja CaVi forni a, Mexico. (Mean value for
each character is listed as thousandths of standard length,
plus or minus standard error of the mean)
Character X + Sx Character X + Sx
N
Range of Standard Length (mm)
7
173 - 201
Pectoral fin 1.
Pelvic fin 1 .
283.8+3.
114.4 +2.
Standard length (mm)
186.1 +3.39
Pre-pel vie 1 .
298.8 + 1.
Tota 1 1 ate ral line 1 .
782.0 + 3.82
Pre-anal 1 .
526.0 + 3.
Straight lateral line 1,
542.5 + 2.58
Pre-soft dorsal 1 .
480.8+2.
Curved lateral line 1 .
249.7 + 3.66
Dorsal origin to caudal base
602.1 +3.
Latera 1 line arch
68.5 +1.78
Head 1.
251.7 + 1.
Body d. at pelvic
331.1 + 3.21
Head d.
255.7 + 3.
Body d. at anal
389.8 + 4.49
1 nterorbital w.
81.1 + 1.
Body w.
117.1 + 2.58
Postorbital l.
124.2 + 1.
Caudal peduncle d.
43.7 + 0.68
Snout 1.
57.8 + 1.
Caudal peduncle w.
54.0+1.43
Orbit
68.7 + 0.
Cauda 1 pedunc1e 1 .
123.7 +2.43
Premaxi 11 ary 1.
76.8+0.
Upper caudal fin lobe 1.
333.4 + 6.21
Maxi 11 ary 1.
18.1 + 0.
Lower caudal fin lobe 1.
294.2 + 6.78
Gape
64.8+ 1.
97
76
99
75
04
22
49
51
56
10
45
77
98
40
29

191
Table 14. Meristic values for Hemicaranx
ze1 otes from the lower Pacific
coast of Baja California
Character
X + Sx
N
Range of
Standard Length (mm)
Standard length (mm)
Lower gill rakers
Upper gill rakers
Lower gill fi 1 aments
Upper gill filaments
Pseudob ranch i a 1
fi 1 aments
Curved lateral line
scales
Straight 1 ate ra1 line
scales (to hypural
base)
Premaxi 11 ary teeth
Dentary teeth
7
173 - 201
186.1 +3.39
9.0 + 0.21
20.2 +0.35
28.7 + 0.96
72.1 +1.42
21.0+1.00
39.3 + 1.84
48.5 + 0.78
43.2 + 1.28
35.1 + 1.50

192
Table 15. Number of dorsal fin rays in
four species of Hemicaranx
Dorsal ray count
Species 2 i» 25 26 27 28 29 30 31 >T + Sx
1eucu rus
Panama
zelotes
Mexico: Baja
Mexico: Sinaloa
Mexico: Combined
Panama
COMBINED LOCALITIES
amblyrhynchus
S.E. Ü.S. Atlantic
South Florida
Northern Gulf of
Mexico (U.S.)
Honduras
Trini dad
Guyanas-Su rinam
Brazi 1 : 1 -4°S
Brazi1: 8°S
Brazi 1: 1 3 S
Brazil: 24-27°S
COMBINED LOCALITIES
bicolor
Guinea
Cameroon
Gabon
COMBINED LOCALITIES
1 2 9 1^
3 3
1-32
1-65
25
1 - 6 30
3 7
5 2
2 10 30
1 2 15
7 1
3 14 4
1-32
1 1
4 1
1 3 7
6 49 63
7 5 2 1
3 5 1
5 3 2
15 13 5 1
27.38 + 0.15
2
27.87
+
0.29
1
1
27.62
+"
0.53
3
1
27.75
7
0.29
9
2
1 28.42
7
0.11
12
3
1 28.22
7
0.12
5
27.88
+
0.29
1
27.50
7
0.26
7
1
27.89
+
0.11
2
27.90
7
0.13
27.12
7
0.12
27.04
7
0.12
27.00
7
0.44
27.50
7
0.49
27.20
7
0.19
1
27.69
+
0.20
15
1
27.62
7
0.40
25.80
+
0.24
25.60
7
0.26
25.41
7
0.28
25.62
7
0.15

193
Table 16. Number of anal fin rays in
four species of Hemicaranx
Anal ray count
Species 20 21 22 23 24 25 X + Sx
1eucurus
Panama
zelotes
Mexico: Baja
Mexico: Sinaloa
Mexico: Combined
Panama
COMBINED LOCALITIES
amb1y rhynchus
S.E. U.S. Atlantic
South Florida
Northern Gulf of
Mexico (U.S.)
Honduras
Trini dad
Guyanas-Surinam
B razi 1: 1-k°S
Brazil: 8°S
Brazil: 13°S
Brazil: 24-27°S
COMBINED LOCALITIES
bicolor
Guinea
Came roon
Gabon
COMBINED LOCALITIES
8
13
4
23.62 + 0.20
1
4
2
23.14 + 0.26
2
1
4
23.28 + 0.35
3
5
6
23.20 + 0.19
12
14
10
23.94 + 0.13
3
17
20
10
23.74 + 0.12
1
-
3
8
5
23.94
+ 0.24
1
5
2
24.12
+ 0.22
2
7
27
14
24.06
+ 0.10
2
1
13
4
23.95
+ 0.17
2
-
5
1
22.62
+ 0.37
4
14
2
22.90
+ 0.12
2
1
2
1
23.33
+ 0.49
2
24.00
2
3
23.60
+ 0.24
2
9
1
23.91
+ 0.14
3
10
36
72
27
2
8
3
2
22.33 + 0.23
1
6
4
22.27 + 0.19
6
6
21.50 + 0.15
9
20
7
2
22.14 + 0.13

194
Table 17. Number of pectoral fin rays in
four species of Hemicaranx
Species
Pectoral ray count, left side
18 19 20 21 22 23 X + Sx
1eucurus
Panama
zelotes
Mexico:
Mexico:
Mexico:
Panama
COMBINED
Baja
Sinaloa
Combined
LOCALITIES
amb1y rhynchus
S.E. U.S. Atlantic
Northern Gulf of
Mexico (U.S.)
Honduras
Trinidad
Guyanas-Surinam
Brazil: 1-4°S
B razi1: 8°S
Brazil: 13°S
Brazil: 24-27°S
COMBINED LOCALITIES
bicolor
Guinea
Cameroon
Gabon
COMBINED LOCALITIES
1 3 15
1 3
1 1 4
2 1 7
b 11
2 5 18
2 b
1 13 8
7 8
1 5
1 10
2
2
2 3
1 8
1 29 48
2 8
b 3
1 5 4
1 11 15
2
5
1
6
12
18
2
1
1
5
2
1 1
1
1
1
5
6
19.95 + 0.16
20.33 +0.33
20.00 + 0.42
20.17 +0.26
20.63 + 0.17
20.48 + 0.39
20.00 + 0.26
19.45 + 0.12
19.53 + 0.13
20.00 + 0.21
20.25 +0.14
20
19
19.60 + 0.24
20.09 +0.16
19.98 + 0.21
19.80 +0.13
19.42 +0.20
19.30 + 0.21
19.51 + 0.11

195
Table 18. Number of scales in the curved lateral line of Hemicaranx
Scales
Species 25 26 27 28 29 30 31 32 33 34 35 36 37 38
amb1 y rhynchus 1 - 2 1 2 5 5 4 12 18 10 16 9
bicolor 4344-75241
zelotes 1 -----] 369
leucurus 1
Table 19. Number of scutes in the straight lateral line of Hemicaranx
Spec ies
amb1yrhynchus
bicolor
ze1 otes
1eucu rus
Scutes
34 35 36 37 38 39 40 41 42 43 44 45 46
1 2 - - 2 2 - 9 8 13 14 12 12
1 - 1 5 3 3 9 6
13 4 6 8
1-1112 5

196
Tabje 18 extended
39 40 41 42 i+3 44 45 **6 kl 48 49 50 51 52
11 2 5 6 2 1
2 - - 1 - 1
2
1
1
53 54 X + Sx
37*86 +_ 1.18
34.07 + 0.58
39*66 + 0.60
1 44.90 + 0.54
Table 19 extended
47 48 49 50 51 52 53 54 55 56 57 58 59 X + Sx
10 12
4 3
8 4
2 2
5 11-
11-2
- 3 4 1
3 3-3
1
14 11-
44.87 + 0.29
45.50 + 0.47
47.71 + 1*06
1 49*09 + 0.47

197
Table 20. Number of scales in the curved lateral line of Atule
Spec ies
Sea 1es
32 33 3^ 35 3& 37 38 39 40 41 42 43 44 45 46
ka 1 1 a
mate
djedaba
macrurus
mal am
2-123121 1
1
3 2 5 4 1 - - 1 1
1 - 1 - 3 -
1 1
- 5
4 1
1 1
1 2
1 2
3 1
Table 21. Number of scutes in the straight lateral line of Atule
Species
ka 1 1 a
mate
djedaba
macru rus
Scutes
32 33 3^ 35 36 37 38 39 4o 41 42 43 44 45 46 47 48 49 50 51
114 15 2 1-1
12 — 1 — 1 12 — 21 — 1 — — — 1 1
1 - -42432--1 3
1-11
ma 1 am
1 2

198
Table 20 extended
¿47 48 ¿49 50 51 52 53 54 55 56 57 X + Sx
36.86 +0.83
6 - - 1 - --1 2 ¿46.66 +_ 0.99
3^4.52 + 0.53
- 2 - - 1 - 1 - 1 ¿47.18+1.32
¿40.91 + 0.90
Table 21 extended
52 53 5** 55 56 57 58 59 60 61 62 63 X- + Sx
37.50 + 0.50
39-35 + 1.41
38.75 + 0.68
- 2 - 2 1 - 1 - - - - 2 55.0+1.46
1 2 2 - - 2 1 53.36 + 0.91

199
Table 22. Coefficients of association between Hemicaranx OTU and OTU's
from Japan (Highest value underlined)
Hemicaranx
A1ectis
.67
At ropus
.65
Atul e
.89
Ca ranqoi des
.78
Ca ranx
.63
Ci tu 1 a
.65
Chorinemus
.50
Decapterus
.75
E1aqat ? s
.55
Gnathanodon
.80
Kaiwarinus
.70
Lonqirostrum
.83
Meqa1 aspis
.70
Naucrates
.65
Sel ar
.82
Selaroides
.82
Serióla
.65
T rachinotus
.64
T rachu rus
.80
U rasp i s
.80

200
Table 23. Coefficients of association between Chloroscombrus OTU
and OTU1s for which character state information is
available
Chloroscombrus
Alectis
.69
At ropus
.77
Atu 1 e
.77
Ca rango i des
.79
Caranx
.74
Chorinemus
.58
Ci tu 1 a
.74
Decapte rus
.69
E1aga tis
.69
Gnathanodon
.69
Hemica ranx
.77
Kaiwa rinus
.84
Long i ros t rum
.72
Mega 1 aspis
.74
Naucrates
.67
Sel ar
.79
Selaroides
.72
Serióla
.72
T rachinotus
.69
T rachu rus
.74
U raspis
.69

201
Table 24. Atlantic Ocean surface temperatures, °C
TEMPERATURE
Locality Latitude Mean Annual* February5^ August^
Western Atlantic
U.S. Gulf of
Mexico
30°N
23.8
20
29
Honduras
15
27.7
25
29
Venezuela
10
26.1
25
26
Trini dad
10
26.1
25
26
Guyanas
6
26.2
26
27
Equator
0
26.5
26
26
Brazil
10
26.1
27
25
Brazi 1
20
23.5
26
23
Brazi 1
25
21 .1
25
19
Brazil
30°S
19.8
26
16
Eastern Atlantic
Cameroon
(2°N,10°E)
26.4
28
25
Gabon
(2° S , 1 0° E)
25.4
27
23
* from Dietrich,
1963: Chart
3
^ from Sverdrup
et al., 1942:
Charts 2 and 3

Table 25. Comparison of diagnostic characters of the species of Hemicaranx
Character
amb1y rhynchus
Number of dorsal soft rays*
24-30(28)
Number of anal soft rays*
Number of scales in curved
21-25(24)
lateral line
32-43
Number of dorsal spines
Number of lateral body bars
7
Number of caudal vertebrae
Proportional width of anterior
16
caudal peduncle scute
Ratio of straight/curved
39-48
1 ate ral line
2.3-3.0
Upper caudal fin lobe
longest
Pectoral fin
-
Head length
-
Antero-dorsal edge of ethmoid
concave
Morphology of jaw teeth
-
Posterior tip upper dentary arm
intermediate
Premaxillary ascending process
flattened
Premaxillary articular process
concave
Dorsal symplectic expansion
present
Anterior end of pterygoid
indented
Basihyal width
inte rmediate
Upper hypohyal window
circular
Ceratohyal window
inte rmediate
Urohyal spine
absent
Anal pterygiophore points
intermediate
Anal pterygiophore spacing
close
bicolor
zelotes
1eucu rus
24-28(25)
25-31(28)
25-28(28)
21-24(22)
22-25(24)
20-25(24)
29-39
36-49
40-54
7
8
8
4-6
6-9
16
15
15
38-44
26-36
17-31
2.4-3.1
1.9-2.3
1.7-2.3
-
-
longest
-
shortest
-
concave
convex
convex
-
round point
sharp point
cu rved
cu rved
pointed
indented
i ndented
f1attened
straight
straight
concave
present
present
absent
indented
concave
concave
narrow
wi de
intermediate
circular
ova 1
ova 1
ova 1
in te rmediate
triangular
absen t
present
absent
intermediate
prominént
reduced
intermediate
distant
intermediate
*mode in parentheses
202

Table 26. Morphometric values for the species of Atule
(mean value for each character is listed as
thousandths of standard length, plus or minus
standard error of the mean; N=6)
ka 1 1 a
mate
macrurus
d jedaba
mal am
Standard length (mm)
121.3
+
1.81
126.8 + 5.99
133.3
+
2.04
133.5 + 2.48
125.6
+
2.90
Total lateral line 1.
755.1
+
3.70
736.6 + 4.03
754.8
+
4.48
742.3 + 5.25
757.8
+
6.35
Straight lateral line 1.
452.0
+
8.09
422.8+8.15
496.5
+
5.97
494.1 +5.77
519.2
+
9.91
Curved lateral 1.
300.8
+
8.53
311.8+ 5.61
255.6
+
4.43
243.1 + 5.20
242.6
+
5.67
Lateral 1ine arch
57.0
+
2.28
33.5 + 2.72
56.0
+
2.50
61.3+1.74
63.5
+
6.50
O
v-o
Body d. at pelvic
364.1
+
3.74
281.8 + 3.70
318.0
+
3.16
317.6 + 2.91
346.0
+ .
4.47
Body d. at anal
393.3
+
3.45
307.3 + 3.91
344.1
+
3.09
350.3 + 3.49
385.0
+
6.78
Body w.
120.0
+
3.10
137.5 + 2.97
128.5
+
1 .Sb
131.6 +2.90
118.0
+
4.62
Caudal peduncle d.
45.3
+
1.14
31.3 +0.49
44.3
+
1.30
38.6 + 0.76
48.2
+
0.86
Caudal peduncle w.
39.0
+
0.44
53.0 + 1.71
43.6
+
1.49
47.1 + 0.60
43.8
+
1.06
Caudal peduncle 1.
115.8
+
3.60
110.5 + 1.80
111.5
+
2.95
111.8+1.51
116.6
+
1.32
Upper caudal fin lobe 1.
294.0
+
3.24
232.7 + 5.80
325.8
+
6.75
—1
232.5
+
1 .50
Lower caudal fin lobe 1.
255.6
+
2.78
231 .5 + 3.22
303.3
+
7.58
—
220.5
+
0.49
Pectoral fin 1.
323.6
+
4.83
317.6 + 6.77
276.6
+
7.36
340.1 + 5.36
277.5
+
5.48

Table 26 continued
ka 1 1 a
mate
macrurus
djedaba
ma 1 am
Pelvic fin 1.
104.5
+ 1.97
118.3
+
5.88
125.3
+
3.16
127.1
+
4.71
133.7
+
6.99
Pre-pel vie 1.
338.3
+ 4.69
331 .6
+
2.77
318.0
+
3.42
325.1
+
5.48
314.6
+
3.58
Pre-anal 1.
572.8
+ 3.01
602.1
+
4.72
566.0
+
4.82
576.3
+
4.11
584.4
+
9.82
Pre-soft dorsal 1 .
504.0
+ 3.36
514.5
+
2.20
508.6
+
2.55
511 .5
+
0.76
525.0
+
5.32
Dorsal origin to
caudal base
546.6
+ 4.18
513.6
+
4.65
548.8
+
5.02
551 .6
+
7.40
549.0
+
7.35
Head 1.
267.8
+ 1.64
283.8
+
2.73
280.3
+
2.41
279.3
+
3.53
280.7
+
3.09
Head d.
313.6
+ 4.47
252.6
+
1.87
270.5
+
1.66
271.1
+
3.04
285.4
+
3.44
Interorbital w.
71.5
+ 1.66
82.3
+
0.80
83.3
+
1.17
80.1
+
1.72
97.8
+
2.85
Postorbital 1.
116.6
+ 0.55
121 .2
+
2.90
126.5
+
1.38
127.3
+
2.30
132.8
+
2.55
Snout 1.
64.6
+ 0.76
80.4
+
O.67
71 .6
+
1.38
68.5
+
1.72
67.2
+
2.22
Orbit
79.5 +2.32
72.6
+
2.54
80.1
+
3.13
74.6
+
2.90
74.8
+
2.47
Premaxi 11 ary 1.
105.2
+ 1.39
103.6
+
0.88
87.6
+
1 .08
102.6
+
1 .40
93.8
+
1 .90
Maxi 11 ary d.
36.0
+ 0.77
30.1
+
0.16
23.3
+
0.80
31.0
+'
0.93
23.0
+
1 .48
Gape
64.5
+ 3.20
65.3
+
2.61
63.8
+
2.41
71 .8
+
2.94
79.2
+
1.79
Anterior peduncle
scute w.
47.8
+ 0.9!
36.2
+
0.42
29.7
+
0.25
39.0
+
1 .03
26.4
+
1 .02

Table 27. Meristic values for the species of Atu1e
Lower gill rakers
Upper gill rakers
Lower gill filaments
Upper gill fi 1 aments
Pseudobranchial
fi 1 aments
Curved lateral
line scales
Stra i ght lateral 1ine
scales (to hypural
base)
ka 1 1 a
10.1 + 0.40
28.6 + 0.49
26.3 +0.88
61 .5 + 0.92
mate
11.6+ 0.50
27.8 + 1.39
41.0+1.81
91.0 + 3.08
SPECIES
mac ru rus
11.1 +0.16
23.1 +0.16
40.6 + 0.98
87.6 + 1.30
dj edaba
12.5 +0.49
32.1 +0.79
34.8 +0.87
81.0+ 1.43
ma 1 am
7.8 + 0.37
20.6+1.56
28.8 + 1.39
73.6 + 3.21
18.3 +0.76
36.5 + 1.14
22.6+1 .02
44.3 + 1.22
24.2 +0.73
49.8 + 1.53
24.1 +0.70
35.1 + O.83
23.2 + 0.73 g
\J"I
40.6 + 1.20
38.3 + 0.66
41.4 + 1.97
55.0 + 1.46
37.3 + 0.55
54.0 + 2.04

206
Table 28. Number of teeth in species of
Atule with uniseriate dentition (N=6)
macrurus
dj edaba
mal am
Premaxi 11 ary
71.3 + 3.10
44.1 + 3.37
63.8 +
2.43
Dentary
62.1 + 3.57
46.0 + 2.06
53-8 +
3.55
Table 29.
Number
of 1
dorsa1
fin rays in the
species
of
Atule
Dorsa1
rays
Spec ies
21 22
23
24
25
26 27
X + Sx
ka 1 1 a
1
6
5
3
23.66 +
0.23
mate
2
7
6
2
23.47 +
0.21
djedaba
2
5
9
23.43 +
0.18
macrurus
4
4 2
25.80 +
0.24
ma 1 am
1
6
3
2
24.50 +
0.26
Table 30.
Number
of .
anal fin rays in the
species
of
Atule
Species
18
19 20
21
22 23
X + Sx
ka 1 1 a
1
4
8
2
19.73 +
0.20
mate
10
5 .
19.33 +
0.12
djedaba
3
5
8
1
1
19.55 +
0.24
macrurus
3
7 1
21.81 +
0.18
ma 1 am
20.09 + 0.21

Table 31 .
Comparison of diagnostic characters of the species of Atule
Character
ka 1 1 a
mate
dj edaba
macru rus
ma 1 am
Premax i 11 a ry
teeth
b i seriate
anteriorly
biseriate
anteriorly
uniseriate
un i ser i ate
un i ser i ate
Dentary
teeth
tri se riate
posteriorly
un i seriate
un i se riate
uni seriate
un i ser i ate
Ultimate dorsal
and anal ray
1. relative to
penultimate ray
equal
longer
longer
equal
equal
Depth/prof ile
deepest/
strongly convex
—
—
—
Supramaxi1lary
shape
—
—
extended
extended
not
extended
Dorsal rays
22 - 25
22 - 25
22 - 24
25 - 27
23 - 26
Anal rays
18 - 21
19 - 20
18-22
21 - 23
19 - 21
Lateral-line scales
32 - 43
39 - 57
32 - 40
41-55
35 - 45
Lateral-line scutes
34 - 42
33 - 49
33 - 44
48 - 63
49 - 58
Anterior peduncle
scute width*
47.8 + 0.91
36.2 + 0.42
39.0 + 1.03
29.7 i 0.25
26.4 +1.02
Straight/curved ratio
of 1atera1 line
sections 1.5 1.4 2.0 1.9
^thousandths SL (x" + Sy)
2.1
207

APPENDIX I I.
OSTEOLOGICA!. FIGURES
FIGURES I - XXI I

Figure I. Neurocranium of Hemicaranx zelotes.
65 mm SL, USNM 82190, Panama. A.
Dorsal view; B. Lateral view

210
I .
3 m m

Figure 11.
Dorsal views of anterior edge of
dorsal surface of ethmoid bone in
four species of Hemicaranx. a,
zelotes; b, 1eucurus; c, amb1yrhynchus;
d, bicolor
Figure 111. Suborbital series in Hemicaranx zelotes.
65 mm SL, USNM 82190, Panama. A. Lateral
view; B. Dorsal view of suborbital shelf
Figure IV. Dorsal view of two representative suborbital
shelves in Hemicaranx amblyrhynchus

p cl
3 cr
Z[Z

Figure V . Lower jaw of Hemicaranx zelotes.
150 mm SL, UCLA W 58-303, Panama.
A. medial view; B. lateral view
FigureVI . Outline of posterior edge of left
dent3ry in Hemicaranx. a, zelotes
b, 1eucurus ; c, amb1yrhynchus;
d, bicolor

214

Figure Vil.
Lateral view of upper jaw of
Hemicaranx zelotes. 150 mm
SL, UCLA W 58-303, Panama
Figure V111. Outline of dorsal edge of left
premaxillary in Hemicaranx. a,
zelotes; b, 1eucurus ; c, amblyrhynchus;
d, bicolor

216
PMX
MX SMX
L
_i I
2 mm

Figure X . Lateral outline of symplectic
bone in Hemicaranx. a, zelotes;
b, 1eucurus ; c, amblyrhynchus;
d, bicolor
Figure IX. Lateral view of hyomandi bu 1ar
bones of Hemicaranx zelotes.
150 mm SL, UCLA W 58-303, Panama
Figure XI. Lateral outline of pterygoid
bone in Hemicaranx. a, zelotes;
b, 1eucurus; c, amblyrhynchus;
d, bicolor

HM
MSPT
a
b
c
d
K>
OO

Figure XI1.
A. Lateral view of opercle, subopercle, and
interopercle in Hemicaranx zelotes. 150 mm
SL, UCLA W 58-303, Panama; B. preopercular
spines of juvenile H_. ze lotes â–  65 mm SL,
USNM 82190, Panama

1 mm
220

Figure X111. Adpharyngeal view of basihyal bone and
branchial elements of Hemicaranx zelotes.
65 mm SL, USNM 82190, Panama. (Anterior-
most portion is at bottom of page)

222

Figure XIV. Lateral views of hyal bones of Hemicaranx
zelotes. 65 mm SL. USNM 82190, Panama.
A. outer series; B. urohyal , preceded by
outlines of basihyal and basibranch i a 1s.
(Anterior direction is to left side of figure)

1 mm

Figure XV. Outlines of selected hyal elements in Hemicaranx.
A. urohyals (lateral view); B. basihyal (dorsal
view); C. upper hypohyal (lateral view); D. cerato-
hyal window (lateral view). (a, ze1 otes; b, 1eucurus
c, amblyrhynchus; d, bicolor)

226

Figure XVI. Appendicular skeleton of Hemicaranx
zelotes. 65 mm SL, USNM 82190, Panama.
A. Lateral view of pectoral girdle*
B. Dorsal (above) and lateral (below)
views of pelvic girdle

228

Figure XVI1.
Outline lateral view of postcranial axial
and medial skeleton, exclusive of caudal
skeleton, in Hemicaranx zelotes. 65 mm SL,
USNM 82190, Panama. (Distal tips of soft
pterygiophores omitted)

13°

Figure XV111 - Pterygiophore-1epi dotrich articulation
in Hemicaranx zelotes. 65 mm SL, USNM
82190, Panama. A. Lateral (left) and
frontal (right) views of the fourth
pterygiophores and fifth lepidotrich
(fifth dorsal spine) of the spinous
dorsal fin; B. Frontal view of the
twelve pterygiophores and thirteenth
lepidotrich of the dorsal skeleton
Figure XIX. Lateral outlines of the distal ends of
anal pterygiophores in Hemicaranx. a,
zelotes ; b, 1eucurus ; c, amblyrhynchus ;
d, bicolor
Figure XX. Representative vertebrae in Hemicaranx
zelotes. 65 mm SL, USNM 82190, Panama.
A. first (atlas) and second (axis) pre-
caudal vertebrae; B. third caudal vertebra

232

Figure XXI. Lateral view of caudal skeleton of
Hemicaranx zelotes. 65 mm SL, USNM
82190, Panama
Figure XXI1. Ontogenetic fusion and development in
Hemicaranx zelotes and Ch1oroscombrus
chrysurus. A. Sites of fusion (f.) Tn
H_. zelotes. 33 mm SL, USNM 82190, Panama;
B. Ontogeny of urostylar (UR), uroneural
(UN), epural (EP) , and hypural (l~5) ele¬
ments of £. chrysurus; (redrawn from Hollister,
1936; figs. 16-18)

234
B
6 mm
] 0 m m
15 mm

Appendix III.
Skeletal Material Examined

236
Skeletal Material
Species
Cat. No.
SL (mm)
Preparation
Hemica ranx
amblyrhynchus
FSU 1377
50.3
c-s
AMNH 8092
26, 39
c-s
AMNH U217
23
c-s
TABL 105329
79
c-s
FSU 5698
77
c-s
TU 5332
73.3, 80,
89, 9*4.2
100, 100,
126
c-s
TABL 101356
164
D
UF 20207-S
126, 127
D
su 22113
152
X
H. bicolor
TABL 102896
60.6, 83
C-S
TABL 102778
133
c-s
TABL 102778
160
D
USNM 1937^0
(16) 180-
200
X
H. zelotes
UCLA W-58-30^
82
c-s
USNM 82190
33, **3, 50,
65
c-s
UCLA W-58-363
123
c-s
UCLA W 58-303
160
D
CAS-SU 5819
201
X

237
Species
Cat. No.
SL (mm)
Preparat
H. leucurus
USNM 82190
35, 40.1,
47.7, 57.5
C-S
UCLA W-58-30*4
82, 126
C-S
TABL uncat.
155
D
SIO 60-368
205
X
Ch1oroscomb rus
chrysurus
UF uncat.
16, 18, 19
C-S
TABL uncat.
53, 101
C-S
Atule kal1 a
ANSP 87181
82
C-S
sosc 381
89
C-S
TABL 107343
120
C-S
TABL 1073^3
122
D
A. mate
ANSP 89351
53.6
C-S
TABL (CCK 69-71)
97, 102,
126
C-S
TABL (PCH 69-211)
198, 203
D
A. mal am
RMNH 6094
102
C-S
TABL uncat.
161
D
A. macrurus
TABL (CCK 69-71)
124
C-S
A. djedaba
ANSP 63552
55, 89
C-S
TABL (CCK 69-41)
145
C-S
TABL (CCK 69-41)
174
0
*C-S: clear and stain; D: disarticulated; X: X-ray

GLOSSARY
External Morphological Cha racters-'-
Measurements (Distances Are Straight-line)
Standard length: distance from posterior base of hypural plate
to tip of snout. (B2)
Total lateral line length: distance from base of hypural plate
to lateral line origin at posterior edge of shoulder girdle.
Straight lateral line length: distance from hypural plate to point
at which straight lateral line starts to curve upward.
Curved lateral line length: arc length (chord) of lateral line
curve from shoulder girdle to point of stra i ghtening.(B2 , W)
Lateral line arch: greatest height of lateral line curve.
Body depth at pelvic: distance from origin of first dorsal fin
to insertion of pelvic fins. (B2)
Body depth at anal: distance, origin second dorsal to origin
soft anal fin.
Body width: distance between lateral margins of pectoral
girdles.
Caudal peduncle depth: least depth. (HL)
Caudal peduncle width: least width.
Caudal peduncle length: distance from origin of last anal
soft ray to base of hypural plate.
Upper and lower caudal fin lobe length: distance from base of
hypural plate to extreme tip of lobe (in natural position).
Pectoral fin and pelvic fin length: distance from point of
insertion of fin spine to tip of longest ray. (B2, W).
* Code letters in parentheses following definitions indicate literature
references as follows: Bl, Berry, 1959J B2, Berry, 1968; HL, Hubbs
and Lagler, 1958; W, Williams, 1959.
238

239
Pre-pelvic length: distance, insertion of pelvic to anterior-
most point of snout (tip).
Pre-soft-dorsal length: distance, tip of snout to origin of
soft dorsal fin. (HL)
Dorsal origin to caudal base: distance, origin soft dorsal to
hypural base.
Head length: tip of snout to posterior edge of fleshy portion
of the operculum. (B1, B2, HL, W)
Head depth: vertical distance from occiput to ventral contour
of breast or head. (HL)
Interorbital width: (least bony width) - horizontal distance
between outer lateral margins of cranium at a point on mid-
dorsal perimeter or orbit. (HL, W)
Postorbital length: distance from posterior rim of orbit to
posterior edge of opercular membrane. (B2, HL, W)
Snout length: distance from anterior margin of orbit to
anteriormost point on snout. (HL)
Orbit: (length of orbit) - greatest distance between free orbital
rims (inner margins of circumorbita1s). (HL)
Premaxillary length: length of upper jaw - anteriormost point of
premaxillary to posteriormost point of maxillary. (B2, HL)
Maxillary depth: greatest depth from dorsal margin of supramaxi11 ary
to ventral margin of maxillary. (B2)
Length of fin rays: (soft-dorsal spine, soft-anal spine, dorsal
spines, soft fin rays): distance from base of ray to extreme
tip of ray. (HL)
Gape: greatest transverse distance across the opening of the
mouth. (HL)
Anterior peduncle scute width: greatest vertical distance
between margins of lateral line scute vertically below
ultimate dorsal soft ray.
Counts
Gill rakers: all rakers on first arch; (formula = lower limb
[including raker at junction] + upper limb count). (B1,
B2, HL)
Branchiostegal rays: total count.

240
Gill filaments: all filaments on first arch; (formula = lower
+ upper).
Pseudobranchial filaments: total count.
Curved lateral line scales: number scales in curved arch.
Straight lateral line scales: number scales between curve of
lateral line and hypural base, plus scales after base.
Fin rays (formulae) (number of spines noted using Roman numerals,
soft rays in Arabic numbers) (HL, W) :
pectoral: number spines, number soft rays,
pelvic: number spines, number soft rays,
dorsal: number spines first dorsal - number spines second
dorsal, number soft rays.
anal: spines first anal - spines second anal, soft rays,
caudal: principal rays (branched plus two).(HL)
Teeth: count per individual jaw bone (i.e., premaxillary or
dentary).
Vertebral formula: number of trunk vertebrae + number of caudal
vertebrae (inclusive of urostylar vertebra). (B2)

REFERENCES
Bailey, Reeve M. 1951. The authorship of names proposed in Cuvier and
Valenciennes' "Histoire Naturelle des Poissons." Copeia 1951(3):
249-251.
, J. E. Fitch, E. S. Herald, E. A. Lachner, C. C. Lind¬
sey, C. R. Robins, and W. B. Scott. 1970. A list of common and
scientific names of fishes from the United States and Canada.
American Fish. Soc. Spec. Pub. No. 6. 150 p.
Baughman, J. L. 1947- Fishes not previously reported from Texas, with
miscellaneous notes on other species. Copeia 1947(4): 280.
. 1950. Random notes on Texas fishes. Texas Jour. Sci.
2(2) : 242-263.
Ben-Tuvia, Adam. 1966. Red Sea fishes recently found in the Mediterran¬
ean. Copeia 1966(2): 254-275-
Berry, Frederick H. 1959. Young jack crevalles (Caranx species) off the
southeastern Atlantic coast of the United States. U.S. Fish and Wild¬
life Serv. Fish. Bull. 152. vol. 59, pp. 417-535.
. 1963. Caranx fasciatus Cuvier, an unidentifiable
name for a carangid fish. Cope i a 1963(3) : 583~584.
. 1968. A new species of carangid fish (Decapte rus
tabl) from the Western Atlantic. Contr. Mar. Sci. 13: 145-1 &T.
. 1969. E1agatis bipinnulata (Pisces: Carangidae):
Morphology of the fins and other characters. Copeia 1969(3): 454-
463.
, and Izadore Barrett. 1963. Gill raker analysis
and speciation in the thread herring genus Opisthonema. Bull.
Inter-American Tropical Tuna Comm. 7(2): 113“190.
Blache, J., J. Cadenat, and A. Stauch. 1970. Cíes de determination des
poissons de mer sígnales dans l'Atlantique oriental. Office de la
Recherche Scientifique et Technique Outre Mer. Paris. 479 p.
Bleeker, P. 1851 . Over eenige nieuwe geslachten en soorten van
Makreelachtige visschen van den Indischen Archlpel. Nat. Tijdschr.
Ned. Ind. 1. pp. 341-372.
. 1852. Bijdrage tot de Kennis der Makree1achtige vischen
van den Soenda-Molukschen Archipel. Verh. Bat. Gen. XXIV. pp. 1-93.
241

242
. 1853. Nieuwe tientallen diagnost¡sche beschrijuvingen van
nieuwe of weinig bekende vischsoorten van Sumatra. Nat. Tijdschr.
Ned. Ind. V, pp. 495-534.
. 1862. Notices ichthyologiques. (I-X). Verslagen en
mededee1ingen der Kominkligke Akademie van Wetenschappen. Afde-
eling Naturkunde. Dertiende Deel. Versl. Akad. Amsterdam XIV:
123-141.
. 1863. Memoir sur les poissons de la cote de Guiñee. Nat.
Verh, Holl. Maatsch. Wetensch. 18(2): 1 -136.
Boeseman, M. 1956. On recent accessions of Surinam fishes. Zool.
Meded. 34: 183-199.
Bohlke, James. 1953. A catalogue of the type specimens of recent fishes
in the Natural History Museum of Stanford University. Stanford
Ichthyological Bull. 5: 1 -168.
, and Charles C. G. Chaplin. 1968. Fishes of the Bahamas
and adjacent tropical waters. Livingston Pub. Co., Wynnewood, Pa.
xxxii + 771 p.
Boulenger, G. A. 1904. Fishes - (Systematic account of Teleostei).
pp. 539-727. In: Harmer, S. F., and A. E. Shipley. The Cambridge
Natural History. (vol. 7). Macmillan and Co., Ltd. London.
(1922 reprint) .
Breder, Charles M., Jr. 1948. Field book of marine fishes of the
Atlantic coast. G. P. Putnam's Sons. New York, xxxvii + 332 p.,
16 pis.
Briggs, John C. 1958. A list of Florida fishes and their distribution.
Bull. Florida St. Mus. 2(8): 223-318.
Bul lis, Harvey R. , Jr., and John R. Thompson. 1965. Collections by the
exploratory fishing vessels 0 regon , Silver Bay , Combat, and Pe 1ican
made during 1956 to i960 in the southwestern North Atlantic. U.S.
Fish and Wildlife Serv. Spec. Sci. Rep.--Fish No. 510, iii + 130 p.
Cervigon, F. 1966. Las peces marinos de Venezuela. Fundación La Salla
de Ciencias Naturales, Caracas. 2 v.
Chan, W. L. 1968. Marine fishes of Hong Kong. Hong Kong Govt. Pr. xxvi
+ 129 p.
Chen, Wen-lien, and Tong-lai Yang. 1962. Carangidae. pp. 355-404. I n :
Chu, Yuen-ting et al. Synopsis of the fishes of the South China
Sea. (in Chinese) Science Press Co., Peiping.
Copeland, B. J. 1965. Fauna of the Aransas Pass Inlet, Texas. I.
Emigration as shown by tide trap collections. Publ . Inst. Mar.
Sci. 10: 9-21.

243
Cuvier, Georges, and Achille Valenciennes. 1833. Histoire naturelle
des poissons, 9: 1-512, pis. 246-279. F. G. Levrault, Paris.
Day, Francis. 1865. The fishes of Malabar. Bernard Quaritch, London,
xxxii + 293 p., 20 pis.
. 1870. On the fishes of the Andaman Islands. Proc. Zool
Soc. London, pp. 677-705.
. 1876. The fishes of India; being a natural history of the
fishes known to inhabit the seas and fresh waters of India, Burma,
and Ceylon. Bernard Quaritch London, xii + 320 p., 67 pis.
Dietrich, Gunter. 1963. General oceanography. John Wiley and Sons, Inc.
New York, xv + 588 p., 7 charts.
Eberhardt, L. L. 1968. An approximation to a multiple-comparison test,
Copeia 1968(2) : 314-319.
Evermann, Barton Warren, and Alvin Seale. 1907. Fishes of the Philippine
Islands. Bull. Bur. Fish. (1906) 26: 51-110.
Fierstine, Harry L. 1968. Swollen dorsal fin elements in living and fos¬
sil Caranx (Teleostei: Carangidae). Los Angeles Co. Mus. Contr.
Sci. No. 137, 10 p.
Forskal, Petrus. 1775. Descriptiones animalium, avium, amphibiorum,
piscium, insectorium, vermium; quae in itinere orientali observa-
vit. Molleri, Hauniae, xxxiv + 164 p., 1 map.
Fowler, Henry W. 1904. A collection of fishes from Sumatra. J. Acad.
Nat. Sci. Philadelphia. 2nd Series 12(4): 497_560, pis. 7-38.
1905. New, rare or little-known scombroids. No. 11,
Proc. Acad. Nat. Sci. Philadelphia. 57: 56-88.
. 1918. New and little-known fishes from the Philippine
Islands. Proc. Acad. Nat. Sci. Philadelphia. 70: 2-71.
. 1925. Fishes from Natal, Zululand, and Portuguese
East Africa. Proc. Acad. Nat. Sci. Philadelphia. 77: 187-272.
. 1927. Notes on the Philippine fishes in the collection
of the Academy. Proc. Acad. Nat. Sci. Philadelphia. 79: 255“
1928. The fishes of Oceania. Mem. Bernice P. Bishop
Mus., iii+ 540 p., 49 pis.
. 1931. The fishes of Oceania - Supplement 1. Mem.
Bernice P. Bishop Mus. 11(5): 313-381
1934a. Natal fishes collected by Mr. H. W. Bell-Marley.
Ann. Natal Mus. 7(3): 403-433.

244
. 1934b. The fishes of Oceania - Supplement 2. Mem.
Bernice P. Bishop Mus. 11(6): 383_i»66.
. 1934c. Zoological results of the third de Schauensee
Siamese Expedition, Part 1. - Fishes. Proc. Acad. Nat. Sci.
Philadelphia 86: 6 7 ~163 -
. 1935. Zoological results of the third de Schauensee
Siamese Expedition, Part VI. - Fishes obtained in 1934. Proc.
Acad. Nat. Sci. Philadelphia 87: 89~163-
1936. The marine fishes of West Africa based on the
collection of the American Museum Congo Expedition, 1909~1915.
Bull. Amer. Mus. Nat. Hist. 70(2): 60 7 ~ 1 ^+9 3 •
. 1937. Zoological results of the third de Schauensee
Siamese Expedition, Part VIII, - Fishes obtained in 1936. Proc.
Acad. Nat. Sci. Philadelphia 89: 125-264.
. 1938a. Descriptions of new fishes obtained by the
United States Bureau of Fisheries steamer "Albatross," chiefly
in Philippine Seas and adjacent waters. Proc. U.S.N.M. 85(3032):
31-135.
_. 1938b. The fishes of the George Vanderbilt South
Pacific Expedition, 1937. Acad. Nat. Sci. Philadelphia Mon. No.
2 vi ii + 349 p., 12 pis.
. 1939. Zoological results of the Denison-Crockett
South Pacific Expedition for the Academy of Natural Sciences of
Philadelphia, 1937“1938. Part III. - The fishes. Proc. Acad.
Nat. Sci. Philadelphia 91: 77“96.
. 1940a. The fishes obtained by the Wilkes Expedition,
I838-I842. Proc. American Philos. Soc. 82(5): 733“800.
. 1940b. Zoological results of the George Vanderbilt
Sumatran Expedition, 1936-1939. Part II. - The fishes. Proc.
Acad. Nat. Sci. Philadelphia 91(1939): 369“398.
. 1941. A list of the fishes known from the coast of
Brazil. Arq. Zool. S. Paulo 3(6): 115-184.
. 1945. A study of the fishes of the southern piedmont
and coastal plain. Acad. Nat. Sci. Philadelphia Mon. No. 7. vi i i
+ 408 p., 313 figs.
. 1949. The fishes of Oceania - Supplement 3. Mem.
Bernice P. Bishop Mus. 12(2): 37-186.
Gilbert, Carter. 1964. The American cyprinid fishes of the subgenus
Luxi1 us (genus Notropis). Bull. Florida St. Mus. 8(2): 95-194.

245
. in press. Characteristics of the western Atlantic
reef fauna. Quart. J. Florida Acad. Sci.
, and Reeve M. Bailey. 1972. Systematics and zoogeo¬
graphy of the American cyprinid fish Notropis (Opsopoeodus) emi1iae.
Occ. Pap. Mus. Zool. Univ. Michigan, No. 6047 35 p.
Gilbert, Charles H., and Edwin C. Starks. 1904. The fishes of Panama
Bay. Mem. Calif. Acad. Sci. 4: 1-304.
Gill, Theodore Nicholas. 1861. Catalogue of the fishes of the eastern
coast of North America, from Greenland to Georgia. Proc. Acad. Nat.
Sci. Philadelphia, pp. 1-63.
. 1862a. Remarks on the relations of the genera
and other groups of Cuban fishes. Proc. Acad. Nat. Sci. Philadelph¬
ia 14: 235-242.
. 1862b. Synopsis of the carangoids of the east-
ern coast of North America. Proc. Acad. Nat. Sci. Philadelphia 14:
430-443.
Gines, Hno., and Fernando Cervigon. 1968. Exploración pesquera en las
costas de Guayana y Surinam ano 1967. Memoria de la Sociedad de
Ciencias Naturales La Salle. 28(79): 5_96.
Ginsburg, Isaac. 1952. Fishes of the family Carangidae of the northern
Gulf of Mexico and three related species. Publ . Inst. Mar. Sci.
2(2): 45-117.
Goode, G. B. 1879• A preliminary catalogue of the fishes of the St.
Johns River and the east coast of Florida, with descriptions of
a new genus and three new species. Proc. U.S.N.M. 2(73): 108-121.
, and Tarleton H. Bean. 1882. A list of the species of
fishes recorded as occurring in the Gulf of Mexico. Proc. USNM 5:
234-240.
Gosline, William A. 1961. The perciform caudal skeleton. Copeia 1961
(3): 265-270.
. 1968. The suborders of perciform fishes. Proc.
U.S.N.M. 124(3647): 1-78.
, and Vernon E. Brock. i960. Handbook of Hawaiian
fishes. Univ. Hawaii Press. ix + 372 p.
Greenwood, P. Humphry, Donn E. Rosen, Stanley H. Weitzman, and George
S. Myers. 1966. Phyletic studies of teleostean fishes, with a
provisional classification of living forms. Bull. American Mus.
Nat. Hist. 131(4): 341-455, figs. 1-9, pis. 21-23, charts 1-32.

246
Gregory, William K. 1933- Fish skulls. A study of the evolution of
natural mechanisms. Trans. American Philos. Soc. 23(2): i-viii, 7581 .
Grey, Marion. 1947. Catalogue of type specimens of fishes in Chicago
Natural History Museum. Fieldiana: Zoology. 32(3): 109-205.'
Gunter, G. 1945. Studies on marine fishes of Texas. Publ. Inst. Mar.
Sci. Texas Univ. 1(1): 1-190, 11 text-figs.
Gunther, Albert. i860. Catalog of the acanthopterygian fishes in the
collection of the British Museum. Taylor and Francis. London, vol.
2: xvi + 948 p.
. 186 ¿4. On some new species of Central American fishes.
Proc. Zool. Soc. London. 2: 23-27 > pis. 3~4.
Haedrich, Richard L. 1967. The stromateoid fishes: Systematics and a
classification. Bull. Mus. Comp. Zool. 135(2): 31“139.
Harrington, Robert W., Jr. 1955. The osteocranium of the American
cyprinid fish, Notropis bifrenatus, with an annotated synonymy
of teleost skull bones. Copeia 1955(4): 267-290.
Henn, Arthur. 1928. List of types of fishes in the collection of the
Carnegie Museum on September 3, 1928. Ann. Carnegie Mus. 19: 51“99.
Hildebrand, H. H. 1954. A study of the fauna of the brown shrimp
(Penaeus aztecus Ives) grounds in the Western Gulf of Mexico.
Univ. Texas Pub. Inst. Mar. Sci. 3(2): 233“366.
Hildebrand, Samuel F. 1941. An annotated list of salt and brackish
water fishes, with a new name for a menhaden, found in North Carolina
since the publication of "The fishes of North Carolina" by Hugh M.
Smith in 1907- Copeia 1941(1»): 220-232.
. 1946. A descriptive catalog of the shore fishes
of Peru. Bull. U.S.N.M. 189: xi + 530 p.
Hoese, Hinton D. 1958. A partially annotated checklist of the marine
fishes of Texas. Publ. Inst. Mar. Sci. Univ. Texas S' 312-352.
Holbrook, John Edwards. i860. (3rd ed.) Ichthyology of South Carolina.
Russell and Jones. Charleston, S. C. vol. 1 pp. 1-205, pis. 1-28.
Hollister, Gloria. 1936. Caudal skeleton of Bermuda shallow water
fishes. I. Order Isospondyll: Elopidae, Megalopidae, Albulidae,
Clupeidae, Dussumeri idae, Engraulidae. Zoológica 21(23): 257-290.
. 1941. Caudal skeleton of Bermuda shallow water
fishes. V. Order Percomorphi a: Carangidae. Zoológica 36(7):
31-45, 1 pi.
Howell Y Rivero, Luis. 1938. List of the fishes, types of Poey, in
the Museum of Comparative Zoology. Bull. Mus. Comp. Zool., 82(3):

247
169-227.
Hubbs, Carl L., and Karl F. Lagler. 1958. Fishes of the Great Lakes
region. Cranbrook Inst. Sci. Bull. No. 26 xi + 213 p., 44 pis.
Hunter, John R., and Charles T. Mitchell. 1966. Association of fishes
with flotsam in the offshore waters of Central America. U. S.
Fish Wildlife Serv. Fish. Bull. 66(1): 13-29.
Irvine, F. R. 1947. The fishes and fisheries of the Gold Coast. Univer¬
sity Press. Cambridge, England, xvi + 352 p.
Jenkins, Oliver P. 1904. Report on collections of fishes made in the
Hawaiian Islands, with descriptions of new species. Bull. U. S.
Fish. Comm. (1902) 22: 417-511, pis. 1-4.
Jordan, David S. 1884a. Notes on a collection of fishes from Pensacola,
Florida, obtained by Silas Stearns, with descriptions of two new
species (Exocoetus volador and Gnathypops mystacinus). Proc. U.
S.N.M. 7(3): 33-40.
. 1884b. Notes on American fishes preserved in the
museums at Berlin, London, Paris and Copenhagen. Proc. Acad. Nat.
Sci. Philadelphia (1883) 35: 281-293.
. 1917-1920. The genera of fishes ... In four parts.
Stanford Univ., Univ. Series: 576 pp. (+ total of 55 pp. variously
paged in Roman numerals). (Part I, 1917, pp. 1-161; Part II, 1919,
pp. 163-284; Part III, 1919, pp. 285-410; Part IV, 1920, pp. 411-
576.)
. 1922. The days of a man. World Book Co., Yonkers-on-
Hudson, New York, xxviii + 710 p.
. 1923. A classification of fishes including families
and genera as far as known. Stanford Univ. Pubs., Univ. Series,
Biol . Sci. , 3(2) : i-x, + 77-243.
. 1927. The fossil fishes of the Miocene of Southern
California. Stanford Univ. Pubs., Univ. Series, Biol. Sci., 5(2):
84-99, pis. 1-4.
, and Barton Warren Evermann. 1896. The fishes of North
and
Middle Ame rica.
Bul 1 .
U.S.N.M.
47(1)
: i-1x, 1-1240.
, and
I898. The fishes of North
and
Middle America.
Bull .
U.S.N.M.
47(3)
: i-xxiv, 2183-3136.
, and
1900. The fishes of North
and Middle America,
cccxcii.
Bull.
U.S.N.M.
“57(4)
: i-ci , 3137-3313, pis. i-
, and
1905. The shore fishes of

248
the Hawaiian Islands, with a general account of the fish fauna.
Bull. U. S. Fish. Comm. (1903) 23(1): xxviii + 574 p., pis.
, , and Howard Walton Clark,
1930. A check list of the fishes and fishlike vertebrates of
North and Middle America north of Venezuela and Colombia. Report
U. S. Comm. Fish. (1928) Doc. 1055. 670 p.
, and Charles H. Gilbert. 1882. Descriptions of nine¬
teen new species of fishes from the Bay of Panama. Bull. U. S.
Fish. Comm. (1881) 1: 306-355.
, and . I883. A review of the American
Caranginae. Proc^ 0"! S"! N. M. , 6(13): 188-207.
_ , and Eric Knight Jordan. 1922. A list of the fishes of
Hawaii, with notes and descriptions of new species. Mem. Carnegie
Mus. 10(1) : 1-92, 4 pis.
, and Robert Earl Richardson. 1908. Fishes from islands
of the Philippine archipelago. Bull. Bur. Fish. (1907) 27: 233~295.
, and . 1910. Checklist of the
species of fishes known from the Philippine archipelago. Philippine
Bur.Sci. Monog. Pub. Fishes. No. 1. 78 p.
, and Alvin Seale. 1906. The fishes of Samoa. Descrip¬
tion of the species found in the archipelago, with a provisional
check-list of the fishes of Oceania. Bull. Bur Fish. (1905) 25:
173-455, pis. 38-53.
, and . 1907. Fishes of the islands of Luzon
and Panay. Bull. Bur. Fish. (1906) 26: 1-48.
, and Edwin Chapin Starks. 1917- Notes on a collection
of fishes from Ceylon with descriptions of new species. Ann.
Carnegie Mus. 11: 430-460, pis. 43-45.
Joseph, Edwin B., and Ralph W. Yerger. 1956. The fishes of Alligator
Harbor, Florida, with notes on their natural history. Florida St.
Univ. Studies No. 22. pp. 11-156.
Kendall, William C., and Lewis Radcliffe. 1912. Reports on the scient¬
ific results of the expeditions to the eastern tropical Pacific...
XXV. The shore fishes. Mem. Mus. Comp. Zool. 35(3): 77-171, 8 pis.
Konnerth, A. 1965. Preparation of ligamentary articulated fish skelet¬
ons. Curator 8(4): 325“332.
Mansueti, Romeo J. 1963. Symbiotic behavior between small fishes and
jellyfishes, with new data on that between the stromateid, Pepri 1 us
alepidotus, and the scyphomedusa , Chrysaora quinquecirrha. Copeia
1963(0 : 40-80.

2*49
Marshall, Tom C. 1966. Tropical fishes of the Great Barrier Reef.
Argus and Robertson, Sydney. 239 p.
Matthews, J. E., and H. H. Shoemaker. 1952. Fishes using ctenophores
for shelter. Copeia (A): 270.
Mayr, Ernst, E. Gorton Linsley, and Robert L. Usinger. 1953. Methods
and principles of systematic zoology. McGraw-Hill, New York. ix
+ 336 p.
McAllister, D. E. 1966. Numerical taxonomy and the smelt family,
Osmeridae. Can. Field-Nat. 80(A): 227-238.
Meek, Seth E., and Samuel F. Hildebrand. 1925. The marine fishes of
Panama. Field Mus. Nat. Hist. Publ. No. 226. Zool. Serv. 15(2):
xv-xix, 331-707.
Mendis, A. S. 195^. Fishes of Ceylon. Fish. Res. Sta. Dept. Fish. Ceylon.
Bull. No. 2. viii + 222 p.
Merriman, D. 19 ^ 3 • The distribution, morphology,
the carangid fish, Trachurus lathami Nichols.
211 .
and relationships of
Cope i a 19^3 (*0 : 205"
Miller, Robert Victor, and John W. Van Landingham. 1969. Additional pro¬
cedures for effective clearing and staining of fishes. Copeia 1969
(*4) : 829-830.
Moreira, M. G. S. 1961. Sobre Mastigias scintillae sp. nov. (Scyphome-
dusae, Rhizostomeae) das costas do Brasil. Bol. Inst. Oceanogr.
Univ. Sao Paulo 11(2): 5-29.
Munro, Ian S. R. 1955. The marine and fresh water fishes of Ceylon.
Dept. External Affairs. Canberra, Australia, xvi + 351 p., 55 pis.
. 1967. The fishes of New Guinea. Dept. Agrie., Stock
and Fish. Port Moresby, New Guinea, xxxvii + 65I p., 78 pis.
Nichols, J. T. 1922. Young Hemicaranx and Florida Apogon. Copeia (109):
59-60.
. 1938. On Caranx mate lundini (Jordan and Seale). Copeia
1938: 1 *4*4- 1 *45 .
. 1937. Notes on carangin fishes. Amer. Mus. Novitates
N. Y. No. 967. pp. 1-6.
. 19*+2a. Selar equals Atule, a subgenus of Caranx. Copeia
19^2 (*4) : 226.
. 19^+2b. On fishes oonfused with Caranx kal la Cuvier and
Valenciennes. Copeia 19 ^+2 (*4) : 226-229.

250
Nichols, J. T. 1948. On Caranx nigripinnis from the Persian Gulf. Copeia
1948(4): 300.
, and Robert Cushman Murphy. 1944. A collection of fishes
from the Panama Bight, Pacific Ocean. Bull. American Mus. Nat. Hist.
83(4) : 217-260.
Norden, Carroll R. 1961. Comparative osteology of representative salmon-
id fishes, with particular reference to the grayling (Thymal1 us arti-
cus) and its phylogeny. J. Fish. Res. Bd. Canada 18(57": 679~791•
Norman, J. R. 1957. A draft synopsis of the orders, families, and gen¬
era of recent fishes and fish-like vertebrates (excluding Ostarioph-
ysi, Scleroparei, Ammodytidae and a few other families, notably
Centrarchidae, Percidae, and Cichlidae) covering literature up to
1938, and as far as it was available to the author, from 1939 to
1944. Unpub. manuscript.
Oshima, Masamitsu. 1925. A review of the carangoid fishes found in the
waters of Formosa. Philippine J. Sci. 26(3): 345-413, pi. 1.
Ossian, Clair R. 1970. Preparation of disarticulated skeletons using
enzyme-based laundry "pre-soakers." Copeia 1970(1): 199-200.
Parker, Jack C. 1965. An annotated checklist of the fishes of the
Galveston Bay system, Texas. Publ. Inst. Mar. Sci., Texas 10:
201-220.
Patterson, C. 1964. A review of Mesozoic acanthopterygian fishes with
special reference to those of the English chalk. Phil. Trans. Roy.
Soc. (London), B, Biol. Sci. 247(739): 213-482.
Phillips, Philip J., W. David Burke, and Elizabeth J. Keener. 19^9 -
Observations on the trophic significance of jellyfishes in Miss¬
issippi Sound with quantitative data on the associative behavior
of small fishes with medusae. Trans. Amer. Fish. Soc. 98(4): 703“
712.
Playfair, R. L. 1867. The fishes of Seychelles. Proc. Zool. Soc.
London, pp. 846-872.
, and A. C. L. G. Gunther. 1866. The fishes of Zanzibar.
John Van Voorst, London, xiv + 153 P-, 21 pis.
Poey, Felipe. 1861. Memorias sobre la historia natural de la Isla de
Cuba, accompanados de sumarios Latinos y extractos de Frances 2:
337-442, pls. 13, 15-19. Habana.
1866.
Repertori0
fi se¡o-natural
de 1 a
Isla
de
Cuba. 1 :
1867.
Repertorio
fi sc io-natura1
de 1 a
Isla
de
Cuba. 2:
49-276.

251
Poey, Felipe. 1868. Repertorio fiscio-natural de la Isla de Cuba. 2:
276-484.
. 1875. Enumeratio piscium Cubensium. Ann. Soc. Esp. Hist
Nat. 4":“ 75-162 (1-88), pis. 5-8.
Pritchard, Peter C. H. 1969. Studies of the systematics and reproduct¬
ion cycles of the genus Lepidoche1ys. Ph. D. Dissertation. Univ.
Florida, xii + 197 p.
Randall, John E. 1968. Caribbean reef fishes. T. F. H. Publications,
Inc. Jersey City. 318 p.
Regan, C. Tate. 1909. On the anatomy and classification of the scomb¬
roid fishes. Ann. Mag. Nat. Hist., 8, 3(12): 66-75, 1 fig.
. 1909. The classification of teleostean fishes. Ann.
Mag. Nat. Hist. , 8, 3(12): 76-86.
Reid, George K., Jr. 1955. A summer study of the biology and ecology
of East Bay, Texas. Part II. The fish fauna of East Bay, the Gulf
beach, and summary. Texas J. Sci. 7(4): 430-453.
. 1956. Ecological investigations in a disturbed
Texas coastal estuary. Texas J. Sci. 8(3): 296-327.
. 1957. Biologic and hydrographic adjustment in a
disturbed Gulf coast estuary. Limnol. Oceanogr. 2(3): 198-212.
Robins, C. R. 1972. Distributional patterns of fishes from coastal
and shelf waters of the tropical western Atlantic. Proc. F.A.O.
Symp. Caribbean Resources. pp. 249-255.
Roessler, Martin A. 1970. Checklist of fishes in Buttonwood Canal,
Everglades National Park, Florida, and observations on the season¬
al occurrence and life histories of selected species. Bull.
Mar. Sci. 20(4): 860-893.
Roithmayr, Charles M. 1965. Industrial bottomfish fishery of the north
ern Gulf of Mexico. U. S. Fish Wildl. Serv. Spec. Sci. Rep. -
Fish No. 518. iv+23p.
Roxas, Hilario A., and Antolin G. Agco. 1941. A review of Philippine
Carangidae. Philippine J. Sci. 74(1): 1-82, pis. 1-12.
Ruppell, Eduard. 1835. Neue wirbelthiere zu der fauna von Abyssinien
gehoring. Fische des rothen Meeres.
Russell, Patrick. 1803. Descriptions and figures of two hundred fishes
collected at Vizagapatam on the coast of Coromandel. W. Bulmer
and Co., London, vol. 2., 85 p., pis. 101 -198.
Schleuter, Raymond A., and Jamie E. Thomerson. 1971. Variation in the
caudal skeleton of Etheostoma caeruleum Storer. Copeia 1971 (2):

252
332-33*4.
Schultz, L. P. 1950. A further contribution to the ichthyology of
Venezuela. Proc. U. S. N. M. (19*49) 99(3235): 1 -211, 3 pis.,
20 text - fig.
Smith, C. Lavett, and Reeve M. Bailey. 1961. Evolution of the dorsal-
fin supports of percoid fishes. Pap. Michigan Acad. Sci., Arts,
Letters (1960) . 46: 345-363.
, and . 1962. The subocular shelf of
fishes. J. Morphol". 110(1): 1 -1 8.
Smith, J. L. B. 1953. The sea fishes of southern Africa. Central
News Agency, Ltd. South Africa, xvi + 564 p., 107 pis.
, and M. M. Smith. 196 3 - The fishes of Seychelles.
Dept. Ichthyol., Rhodes Univ., Grahamstown, South Africa. 215 p.
Snedecor, George W. 1956. Statistical methods. Fifth ed. Iowa St.
Univ. Pr., Ames, xiii + 534 p.
Snyder, John Otterbein. 1904. A catalogue of the shore fishes collected
by the steamer "Albatross" about the Hawaiian Islands in 1902. Bull.
U. S. Fish. Comm. (1902) 22: 513-538, pis. 1-13-
Sokal , R. R., and P. H. A. Sneath. 1963. Principles of numerical tax¬
onomy. W. H. Freeman Co., San Francisco. 359 p.
Springer, Stewart, and Harvey R. Bullís, Jr. 1956. Collections by the
Oregon in the Gulf of Mexico. List of crustaceans, mollusks, and
fishes identified from collections made by the exploratory fishing
vessel Oregon in the Gulf of Mexico and adjacent seas 1950 through
1955. U. S. Fish Wildl. Serv. Spec. Sci. Rep. -- Fish. 196. 134 p.
Starks, Edwin Chapin. 1909. The scombroid fishes. Science (new series)
30(773) : 572-574.
. 1910. The osteology and mutual relationships of
the fishes belonging to the family Scombridae. J. Morphol. 21(1):
77-99, 3 pis.
. 1911. The osteology and relationship of the fishes
belonging to the family Carangidae. Stanford Univ. Publ., Univ. No.
5, pp. 27-49.
Steindachner , Franz. 1875.
Wein vol. 72, pp. 1-68,
Ichth. Beitrage No. 3- Sitzb. Akad. Wiss.
13 pis.
. l88l. Ichthyologische Beitrage (X). Aus dem
LXXXI I I. Bande der Sitzb. der K. Akad. der Wissench. 1. Abth,
Febr.-Heft. pp. 182-211, pis. 1-7.
Suzuki, Kiyoshi. 1962. Anatomical and taxonomical studies on the caran-
gid fishes of Japan. Report of Faculty of Fisheries, Prefectural

253
University of Mie. 4(2): 43-232.
Sverdrup, H. U. et al. 1942. The oceans -- their physics, chemistry,
and general biology. Prentice-Hall, Inc. Englewood Cliffs, New
Jersey, x + 1087 p. , 7 charts.
Swain, Joseph. 1883. A review of Swainson's genera of fishes. Proc.
Acad. Nat. Sci. Philadelphia (1882) pp. 272-284.
Swainson, William. 1839. The natural history of fishes, amphibians,
and reptiles, or monocardian animals. Longmars et al., London,
volumn I I .
Taylor, William Ralph. I967. An enzyme method of clearing and staining
vertebrates. Proc. U. S. N. M. 122: 1-17.
Tortonese, Enrico. 1961. Etude comparative des faunes de Carangidae
(Poissons Percoides) de la Mediterranee et de l'Atlantique nord¬
occidental. Extraits des Rapports et Proces-verbaux des reunions
de la C.I.E.S.M.M., 16(2): 357-361.
Wakiya, Yojiro. 1924. The carangoid fishes of Japan. Ann. Carnegie
Mus. 15(2-3): 139-293.
Weber, Max, and L. F. DeBeaufort. 1931. The fishes of the Indo-Austral -
ian Archipelago. VI. Perciformes (continued). E. J. Brill, Ltd.
Leiden, xii + 448 p., figs. 1-81.
Williams, F. 1959. Fishes of the family Carangidae in British East
African waters. Ann. and Magazine of Nat. Hist. Serv. 13, vol. 1,
pp. 369-430, pis. 6-16.
Yamaguchi, Yoshio. Family Carangidae. _l_n_: Gosline, William A., and
Vernon E. Brock. I960. Handbook of Hawaiian fishes. Univ.
Hawaii Pr., Honolulu. iv + 372 p.

BIOGRAPHICAL SKETCH
William Seaman, Jr., was born on 30 January 19^5 at Mineóla, L.
I., New York. After completing an undergraduate major in vertebrate
zoology at Cornell University in 1966, he entered Graduate School at
the University of Florida. He finished a master's degree in ichthy¬
ology in 1968, and then continued doctoral studies in the Department
of Zoology. Financial support of his graduate work has come from
an NDEA Title IV Fellowship, a College of Arts and Sciences Fellowship,
and a research ass istantship within the Florida State Museum. He is
presently a research associate with the Center of Aquatic Sciences.
William Seaman is married to the former Carol Jean Noel. Their
son's name is Scott.
254

I certify that 1 have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.
Carter R. Gilbert, Chairman
Associate Curator of Fishes
I certify that I have read this study and that in my op-inion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.
Pierce Brodkorb
Professor of Zoology
I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.
Q\
L v
*y ' ft 1
^ *
David Nicol
Professor of Geology
I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.
¿ft^¿/ftjX^ J ■
William E. S. Carr
Associate Professor of Zoology
This dissertation was submitted to the Department of Zoology in the
College of Arts and Sciences and to the Graduate Council, and was
accepted as partial fulfillment of the requirements for the degree
of Doctor of Philosophy.
August, 1972
Dean, Graduate School

UNIVERSITY OF FLORIDA
II III III Mill - ------
3 1262 08556 7419


*W?- \\
57
57 systematicsofgenOOseam