Citation
Dynamics and optimization of a human motion problem

Material Information

Title:
Dynamics and optimization of a human motion problem
Creator:
Ghosh, Tushar Kanti, 1945-
Publication Date:
Language:
English
Physical Description:
x, 152 leaves. : illus. ; 28 cm.

Subjects

Subjects / Keywords:
Adjoints ( jstor )
Aircraft maneuvers ( jstor )
Boundary conditions ( jstor )
Cost functions ( jstor )
Error rates ( jstor )
Inertia ( jstor )
Kinetics ( jstor )
Mathematical models ( jstor )
Mathematical variables ( jstor )
Trajectories ( jstor )
Dissertations, Academic -- Engineering Mechanics -- UF
Engineering Mechanics thesis Ph. D
Human mechanics ( lcsh )
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis -- University of Florida.
Bibliography:
Bibliography: leaves 149-151.
General Note:
Typescript.
General Note:
Vita.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000580737 ( ALEPH )
14079183 ( OCLC )
ADA8842 ( NOTIS )

Downloads

This item has the following downloads:


Full Text
















DYNAMICS AND OPTIMIZATION OF A HUMAN MOTION PROBLEM


By

TUSHAR KANTI GHOSH





















A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE :.UNIk.RSITY OF FLORIDA IN PARTIAL
FULrILL~.I..'-I OF THE REQUIREMENT'S FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY




UNIVERSITY OF FLORIDA
1974




DYNAMICS AND OPTIMIZATION OF A HUMAN MOTION PROBLEM
By
TUSHAR KANTI GHOSH
A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE UNIVERSITY OF FLORIDA IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1974


TO MY FATHER AND MY MOTHER


ACKNOWLEDGMENTS
It has been a very happy experience to work with Dr. W. H.
Boykin, Jr., during my stay at the University of Florida. I am
grateful to him for his help and guidance throughout this work, from
suggesting the topic of the dissertation to proofreading the manuscript.
I wish to express my deepest gratitude to him, both as an efficient and
enthusiastic research counselor and as a human being.
I wish to thank Dr. T. E. Bullock for the many discussions
I had with him about the theory and numerical methods of optimization.
These discussions provided me with understanding of many of the concepts
that were used in this work.
I chose Drs. L. E. Malvern, U. H. Kurzweg, and 0. A. Slotterbeck
to be on my supervisory committee as a way of paying tribute to them as
excellent teachers. It is a pleasure to thank them. Special gratitude
is expressed to Professor Malvern for going through the dissertation
thoroughly and making corrections.
I am thankful to Drs. T. M. Khalil and R. C. Anderson for
examining this dissertation when Dr. 0. A. Slotterbeck left the University.
I am thankful to Mr. Tom Boone for his interest in this work and
for volunteering his services as the test subject of the experiments.
Thanks are also due to the National Science Foundation which
provided financial support for most of this work.
Finally, it is a pleasure to thank my friend Roy K. Samras for
his help in the experiments and Mrs., Edna Larrick for typing the
dissertation.
iii


TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS iii
LIST OF FIGURES vi
NOTATION vi i i
ABSTRACT ix
CHAPTER 1 INTRODUCTION 1
1.0. Why and What 1
1.1. Dynamics and Optimization in Human Motion 1
1.2. Previous Work 3
1.3. The Problem Statement 7
1.4. The Kip-Up Maneuver 8
1.5. Present Work . 8
CHAPTER 2 EXPERIMENTATION AND CONSTRUCTION OF THE
MATHEMATICAL MODEL 10
2.0. Introduction 10
2.1. Mathematical Model of the Kip-Up 10
2.2. The Equations of Motion 13
2.3. The Equations of Motion for the Experiment
and the Integration Scheme 21
2.4. Experimental Procedure 23-
2.5. Results and Discussion 26
2.6. Sources of Errors 31
2.6.1. Imperfections in the Model 31
2.6.2. Errors in Filming and Processing the Data 31
2.6.3. The Integration Scheme 32
CHAPTER 3 ANALYTIC DETERMINATION OF HIE MINIMUM-TIME
KIP-UP STRATEGY 34
3.0. Introduction 34
3.1. Mathematical Formulation of the Kip-Up Problem . 35
3.2. Bounds on the Controls 36
3.3. Torsional Springs in the Shoulder and
Hip Joints 38
3.4. Boundary Conditions 39
iv


TABLE OF CONTENTS (Continued)
Page
CHAPTER 3 (Continued)
3.5. The Necessary Conditions of Time
Optimal Control 40
3.6. The Solution Methods 47
3.7. A Quasilinearization Scheme for Solving
the Minimum-Time Problem 51
3.7.1. Derivation of the Modified
Quasilinearization Algorithm 52
3.7.2. Approximation of the Optimal Control
for the Kip-Up Problem 61
3.7.3. A Simple Example Problem for the
Method of Quasilinearization 69
3.7.4. The Results With the Kip-Up Problem ... 72
3.8. Steepest Descent Methods for Solving the
Minimum-Time Kip-Up Problem 79
3.8.1. Derivations for Formulation 1 81
3.8.2. Derivations for Formulation 2 93
3.8.3. Derivations for Formulation 3 106
3.8.4. The Integration Scheme for the
Steepest Descent Methods 108
3.8.5. Initial Guess of the Control Function . 109
3.9. Results of the Numerical Computations
and Comments 110
3.10.Comparison of the Minimum-Time Solution
With Experiment 127
CHAPTER 4 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK . 130
4.1. Conclusions 130
4.2. Recommendations for Future Work 134
APPENDIX A DETERMINATION OF THE INERTIA PARAMETERS OF THE
KIP-UP MODEL FROM THE-HANAVAN MODEL 138
APPENDIX B AN INVESTIGATION OF A STEEPEST DESCENT SCHEME
FOR FINDING OPTIMAL BANG-BANG CONTROL SOLUTION
FOR THE KIP-UP PROBLEM 143
LIST OF REFERENCES 149
BIOGRAPHICAL SKETCH 152
v


LIST OF FIGURES
Figure Page
1. Hanavan's Mathematical Model of a Human Being 12
2. Mathematical Model for Kip-Up 14
3. The Three-Link System 15
4. Sketch of Kip-Up Apparatus Configuration 24
5. Measured and Smoothed Film Data of Angles 0 and i|r
for the Kip-Up Motion 27
6. Measured and Computed Values of cp for Swinging Motion ... 29
7. Measured and Computed Values of cp for Kip-Up Motion .... 30
8. Unmodified Control Limit Functions 37
9. Approximation of Bang-Bang Control by Saturation Control 64
10. Graphs of Optimal and Nearly Optimal Solutions Obtained
via Quasilinearization for Simple Example 71
11. Modification of Corner Point Between Constrained and
Unconstrained Arcs After Changes in the Unconstrained
Arcs 90
12. Solution of Example Problem by the Method of Steepest
Descent 105
13. Initial Guess for the Control Functions 118
14. A Non-Optimal Control Which Acquires Boundary Conditions 119
15. Approximate Minimum Time Solution by Formulation 2
of the Method of Steepest Descent 122
16. Approximate Minimum Time Solution by Formulation 3
of the Method of Steepest Descent 124
vi


LIST OF FIGURES (Continued)
Figure Page
17. Angle Histories for Solution of Figure 16 125
18. Difference Between Measured Angle and Mathematical
Angle for Human Model Due to Deformation of Torso .... 129
19. Construction of Kip-Up Model from Hanavan Model 139
vii


NOTATION
Usage
Meaning
X
dx
; total derivative of the quantity x with respect to time t.
X
x is a column vector.
T .T
x (x)
Transpose of x; defined only when x is a vector or a matrix.
x,
y
3x
; partial derivative of x with respect to y.
oy
3x
x, ^
- y oy
Partial derivative of the column vector x with respect to the
scalar y. The result is a column vector whose i^ component
is the partial derivative of the i^a component of x with
respect to y-
9x
xv ¥
Partial derivative of the scalar x with respect to the column
vector y; also called the gradient of x with respect to y.
It is a row vector, whose i^h element is the partial deriva-
9x
tive of x with respect to the i^h element of y.
-V 3y
Partial derivative of a column vector x by a column vector y.
The result is a matrix whose (i,j)th element is the partial
derivative of the ith element of x with respect to the
element of y.
ii ill
T n 2
Norm of the column vector x. Defined as either x x or E K.x.
i=l 1 1
(to be specified which one) where x is a vector of dimension n
are given positive numbers, x^ is the i^h element of x.
viii


Abstract of Dissertation Presented to the
Graduate Council of the University of Florida in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy
DYNAMICS AND OPTIMIZATION OF A HUMAN MOTION PROBLEM
By
Tushar Kanti Ghosh
March, 1974
Chairman: Dr. William H. Boykin, Jr.
Major Department: Engineering Science, Mechanics,
and Aerospace Engineering
Questions about applicability of analytical mechanics and
usefulness of optimal control theory in determining optimal human
motions arise quite naturally, and especially, in the context of man's
increased activities in outer space and under water. So far very
little work has been done to answer these questions. In this disserta
tion investigations to answer these questions are presented.
A particular gymnastic maneuver, namely, the kip-up maneuver is
examined experimentally and theoretically. A mathematical model for
a human performer is constructed for this maneuver from the best per
sonalized inertia and joint centers model of a human being available
today. Experiments with the human performer and photographic data col
lection methods are discussed. Comparisons of the observed motion with
solutions of the mathematical model equations are presented. Discrepan
cies between the actual motion and the computed motion are explained in
terms of principles of mechanics and errors in measurements. Some
changes in the model are suggested.
IX


An approximate analytic solution of the kip-up maneuver performed
in minimum time is obtained for the model via optimal control theory.
Several numerical methods are used to determine the solution, which is
compared with the observed performance of the human subject. Difficul
ties in solving human motion problems by existing numerical, algorithms
are discussed in terms of fundamental sources of these difficulties.
Finally, recommendations for immediate'future work have been
made.
x


CHAPTER 1
INTRODUCTION
1.0. Why and What
Man's increased interest in the exploration of space and the
oceans was an impetus for a better understanding of the mechanics of
large motion maneuvers performed by human beings. Experience in space
walking and certain athletic events brought out the fact that human
intuition does not always give correct answers to questions on human
motion. For certain problems the solutions must be found by analytical
methods such as methods of analytical mechanics and optimal control.
Broadly speaking, this work deals with the application of the
principles of mechanics and optimal control theory in the analytical
determination of human motion descriptors.
1.1. Dynamics and Optimization in Human Motion
Dynamics provides the basic foundation of the analytic problem
while optimal control theory completes the formulation of the mathemat
ical problem and provides means to solve the problem. In any endeavor
of analytic determination of a human motion the first steps are construc
tion of a workable model having the same dynamics of the motion as that
of the human performer, and obtaining the equations of motion for the
human model. However, the principles of mechanics alone do not give
enough information for analytical determination of a desired maneuver
whenever there are sufficient degrees of freedom of movement. W'ithout
1


2
knowing what goes on in the human motor system, optimal control is
presently the only known analytical method which can provide the remain
ing necessary information.
After a workable dynamic model of the human performer has been
obtained, the remaining part of the analytic determination of a physical
maneuver is a problem of control of a dynamic system where the position
vectors and/or orientation of the various elements of the model and
their rate of change with respect to time (representing the "states" of
the "dynamic system" being considered) is to be determined. The state
components change from one set of (initial) values to another set of
(final) values at a later time. The "control variables," that is, the
independent variables whose suitable choice will bring the change are
torques of the voluntary muscle forces at the joints of the various
limbs. However, the problem formulation is not mathematically complete
with the above statements because there would, in general, be more than
one way of transferring a system from one state to another when such
transfers are possible. Constraints are required in the complete for
mulation. The concept of optimization of a certain physically meaning
ful quantity during the maneuver arises naturally at this point. A cost
functional to be maximized or minimized gives a basic and needed struc
ture to the scheme for exerting the control torques. It may be expected,
logically, that, unless given special orders, a human being selects its
own performance criterion for optimization while doing any physical
activity. Some of the physically meaningful quantities that may be
optimized during a physical activity are the total time to perform the
activity, and the total energy spent during the activity.


3
1.2. Previous Work
Very little work has been reported in the literature so far
where the optimization considerations have been used in the study of
human motion. Earlier work in the study of the mechanics of motion of
living beings was done primarily from the view of grossly explaining
certain maneuvers modeling the applicability of principles of rigid body
mechanics. Most of this work was done under either free fall or zero
gravity conditions. The models were made up of coupled rigid bodies
and conservation of angular momentum in the absence of external torques
was the most often used principle of mechanics.
The righting maneuver of a free falling cat in midair attracted
the attention of several authors in the early days of studies of living
*
objects. Marey's [1] photographs of a falling cat evoked discussions
in 1894 in the French Acadmie des Sciences on whether an initial angu
lar velocity was necessary in order to perform the righting maneuver.
Guyou [2] modeled the cat by two coupled rigid bodies and explained the
phenomenon with the aid of the angular momentum principle with the angu
lar momentum of the entire cat identically equal to zero. Later, more
photographic studies were made by Magnus [3] and McDonald [4,5,6].
McDonald made an extensive study of the falling cats with a high speed
(1500 frames/second) motion picture camera. His description of their
motion added many details to previous explanations. McDonald found no
Numbers in brackets denote reference numbers listed in the
List of References.


4
evidence for the simple motion of Magnus. In addition he studied the
eyes and the vestibular organ as motion sensors.
Amar [7] made one of the most complete of the early studies of
human motor activities in 1914. This study of the relative motion of
the head, limbs and major sections of the trunk was made with a view
to study the efficiency of human motion in connection with industrial
labor.
Fischer [8] considered the mechanics of a body made up of n links
and obtained equations of motion without introducing coordinates. He
made discussions of applications of his theory to models of the human
body, but did not give applications for the equations of motion he had
obtained.
In recent years most of the analytical studies of human motion
have been associated with human beings in free fall as applied to
astronauts maneuvering in space with and without external devices.
McDonald [9] made extensive experimental studies of human motions such
as springboard diving and the "cat-drop" maneuver. McCrank and Segar
[10] considered the human body to be composed of nine connected parts.
They developed a procedure for the numerical solution of their very
complex equation of motion. Although some numerical results were pre
sented, no general conclusions were drawn.
The most significant contribution to the application of rational
mechanics to problems in the reorientation of a human being without the
help of external torques was made by Smith and Kane [11]. Specifically,
they considered a man under free fall. In this paper the authors pointed
out that the number of the unknown functions exceeded the number of the


5
equations of motions that were obtained for the system and recognized
the need for optimization considerations. In order to get the adequate
number of equations, they introduced a cost functional to be optimized
which consisted of an integral over the total time interval of some
suitable functional of the undetermined generalized coordinates.
Optimization of this functional became a problem of calculus of varia
tions, which yielded the necessary number of additional equations (the
Euler-Lagrange equations) to solve the original problem completely.
The approach of Smith and Kane suffers from one major drawback
it ignores the internal forces of the system. The internal forces due
to muscle groups at the various joints of the body segments are mostly
voluntary, have upper bounds in their magnitudes and are responsible
for the partially independent movements of the various limbs. Because
they are internal forces, it is possible to eliminate them completely
in any equations of motion. These can be obtained, for example, if the
entire system is considered as a whole. However, such equations will
be limited in number (at most six, three from the consideration of
translation and three from the consideration of rotation) and will, in
general, be less than the number of the unknown functions. The intro
duction of a cost functional will yield via the calculus of variations
the proper number of equations. However, the maneuver obtained may be
beyond the physical ability of the individual. It is therefore essen
tial to recognize the role of all the internal voluntary forces that
come into play during a physical maneuver.
Ayoub [12] considered an optimal performance problem of the
human arm transferring a load from one point on a table to another point.


6
The motion considered was planar. Internal forces and constraints on
the stresses were considered. A two-link model was considered for the
arm and numerical solutions were obtained, using the methods of Linear
Programming, Geometric Programming, Dynamic Programming and simulation.
The performance criterion was a mathematical expression for the total
effort spent during the activity. The motion considered was simple
from the point of view of dynamics. Also, it required less than ten
points to describe the entire motion. This allowed consideration of
many physical constraints but the dynamics of the human body motion con
sidered was quite different than when large motion of the various
limbs are involved. A list of references of works on human performance
from the point of view of Industrial Engineering is given in Ayoub's
thesis.
The research in the area of free fall problems showed that
analytical solutions agreed qualitatively with observations in those
cases in which rational mechanics has been applied with care. Examples
of such problems are the cat-drop problem and the jack-knife-diver
maneuver (Smith and Kane). Attempts at analytical solutions of activ
ity problems which are not in the free fall category have not been com
pletely successful. Such problems are in athletic activities (such as
running, part of the pole vault maneuver and part of the high jump
maneuver) and in activities associated with working on earth.
Simultaneously with the study of the dynamics of motion, several
investigations were made for the determination of the inertia parameters
of human beings at various configurations. Knowledge of inertia param
eters is essential for performing any dynamic analysis. A list of the


7
research activities in this area is given in References 13, 14 and 15.
However, only Hanavan [14,15] has proposed a personalized model of a
human being. This inertia model has been used in the present investi
gation.
1.3. The Problem Statement
The present work belongs to a broader program whose objective
is to investigate the basic aspects of the applicability of rational
mechanics to the solutions of any human activity problem. The aspects
presently being considered are:
1. Construction of an appropriate presonalized model for the
individual's maneuver under consideration
2. Formulation of a well-posed mathematical problem for the
analytic description of the maneuver
3. Solution of the mathematical problem .by a suitable analytical
method
4. Comparison of the analytical solution with an actual motion
conducted in an experiment with a human subject
5. Determination of muscle activity and comparison with computed
muscle torque histories for the maneuver.
If a complete analysis based on the above steps results in the
correct motion as compared with the experiment, then the results can be
used for training purposes and design of man-machine systems, but, more
importantly, the results will establish the applicability of rational
mechanics to the solution of problems of human activity.
In the present investigation, a particlar gymnastic maneuver,
the kip-up, has been selected for analysis as outlined above. The methods


8
developed will, of course, be valid for other maneuvers but the ana-
lyti cal model will be personalized to the maneuver and individual.
Among all the common physical and athletic activities, the kip-up
maneuver was found to be particularly well suited for analysis. The
motion involves large motions, and is continuous and smooth. Also, it
is planar and needs relatively fewer generalized co-ordinates for its
complete description, since a correctly executed kip-up exhibits three
"rigid" links. At the same time it is not a trivial problem from the
point of view of our basic objective.
The physical quantity (the performance criterion) chosen for
optimization (minimization, in this case) is the total time to do the
maneuver.
1.4. The Kip-Up Maneuver
The kip-up maneuver is an exercise that a gymnast performs on
a horizontal bar. The gymnast starts from a position hanging vertically
down from the horizontal bar and rises to the top of the bar by swinging
his arms and legs in a proper sequence. During the maneuver the motion
is symmetric and does not involve bending of the elbows and the knees.
Normally, the grip on the bar is loose most of the time. For an inex
perienced person, the maneuver is not easy to perform.
1.5. Present Work
In Chapter 2, a mathematical model for the kip-up motion and
results of laboratory experiments to test the accuracy of the model
are presented. First, a mathematical model of a professional gymnast
for the kip-up motion has been constructed. The dynamic equations of


9
motion for the mathematical model were then obtained. Two sets of
equations of motion were derived: one for the purpose of verifying the
accuracy of the mathematical model from experiments and one for the
purpose of optimization of the kip-up maneuver. Next, the results of
laboratory experiments with the gymnast are presented. The gymnast was
told to perform symmetric maneuvers on the horizontal bar, including the
kip-up. The maneuvers were photographically recorded. Two of the many
records were selected, one of a simple swinging motion with relatively
small oscillations, and another of his quickest kip-up maneuver.
The angle measurements from these film records were then used in the
equations of motion to check the accuracy of the mathematical model.
An error analysis was then performed to explain the disagreement between
the experimental and the computed results.
In Chapter 3, an analytic solution of the minimum time kip-up
for the mathematical model was obtained by numerical computations.
First, the analytical problem of the determination of the kip-up in mini
mum time was stated in precise mathematical terms. This involved repre
senting the equations of motion in the state variable form, specifying
the boundary conditions on the state variables, establishing the bounds
on the control variables, and modeling the stiffness of the shoulder
and the hip joints at extreme arm and leg movements. A survey of the
necessary conditions for time optimality given by the optimal control
theory has been presented. Finally, several numerical schemes used for
solving the kip-up maneuver problem are presented and the results of the
numerical computations are discussed.
In Chapter 4, final conclusions of the present investigation
and recommendations for future work have been presented.


CHAPTER 2
EXPERIMENTATION AND CONSTRUCTION
OF THE MATHEMATICAL MODEL
2.0. Introduction
In this chapter, modeling of a human being for the kip-up
maneuver is considered. In Section 2.1, a mathematical model for a
professional gymnast is constructed, using the personalized model of
Hanavan [14]. In Section 2.2, equations of motion for the mathematical
model are derived for the purpose of using them in the analytic deter
mination of the subject's optimal kip-up motion. An equivalent system
of first-order differential equations are derived in Section 2.3 for
testing the inertia properties and structure of the model. In Sec
tion 2.4, the laboratory experiments performed are described. The
results of the experiments are discussed in Section 2.5. An analysis
of the comparisons between the observed and computed results are also
presented.
2.1. Mathematical Model of the Kip-Up
The equations of motion of a deformable body such as the human
body are usually partial differential equations. Presently, not enough
is known or measurable about the deformation of the human body under
voluntary motion to determine a partial differential equation model.
Also, such models are quite difficult to handle. However, for situations
10


11
where the deformation is small compared to the displacement of a body,
the deformable body may be considered as a rigid body in writing the
equations of motion. The rigid link assumption has been used widely
in modeling human beings. The personalized model of Hanavan [14] is
based on this assumption. The elements of the Hanavan model are shown
in Figure 1 and consist of fifteen simple homogeneous geometric solids.
This construction allows a large number of degrees of freedom for the
model and minimizes the deformation of the elements without undue com
plexity. As the number of degrees of freedom increases to the maximum,
it is likely that a mathematical model based on the Hanavan model
becomes more accurate. However, increases in the degrees of freedom
increase the model's complexity and make it difficult to analyze mathe
matically.
Observation of a correctly performed kip-up indicates that the
human performer might be modeled quite accurately as a system of only
three rigid links. The two arms form one link, the head-neck-torso
system forms another, and the two legs form the third link. The
shoulder and hip joints may be approximated as smooth hinges where
these links are joined together. Deformation of the link consisting
of the head, neck, and torso during certain periods of the maneuver
is detectable when observed via high speed filming. It was felt that
the effect of the deformation of the torso would be no more significant
than the standard deviation in the Hanavan inertia parameters because
this part of the orientation of the torso is determined by the line
joining the shoulder and the hip joint centers.


12
Figure 1
o
00
>>
Hanavan's Mathematical Model
of a Human Being.


13
The muscle forces acting at the hip and shoulder to cause link
motion have been replaced with their rigid body equivalent resultant
forces and couples. If the masses of the muscles causing the forces
are small compared to the other portions of the links, then the net
effects of the forces are the torques of the couples. The resultants
do not appear in the equations of motion.
The three-link kip-up model is shown in Figure 2. It is con
structed with elements of the Hanavan model. Twenty-five anthropometric
dimensions of the gymnast were taken and used in a computer program for
calculating first the inertia properties of the Hanavan model and then
those of the kip-up model. The determination of the inertia properties
of the kip-up model from those of the Hanavan model is presented in
Appendix A.
2.2. The Equations of Motion
The mathematical model for the kip-up motion is a three-link
system executing plane motion under gravity. The active forces in the
system are the pull of gravity acting on each of the elements of
the system and the two muscle torques. The muscle forces at the shoulder
acting at the joint between links 1 and 2 are replaced by the torque u^.
Likewise, u^ is the torque for the hip joint between links 2 and 3.
The system is suspended from a hinge at the upper end of link 1, repre
senting the fists gripping the horizontal bar which is free to rotate
on its spherical bearings. All joint hinges are assumed to be friction
less. The general three-link system for which the equations of motion
will be derived is shown with nomenclature in Figure 3. Equations of
motion of the system were obtained via Lagrange's equations as follows:


0 Center of Gravity of an Element
Figure 2. Mathematical Model for Kip-Up.


15
3
CGI
a
3
*1
I
= length of element 2 = distance between the hinges A and B
- distance between the center of gravity of element 1 and the hinge 0
= distance between the center of gravity of element 2 and the hinge A
= distance between the center of gravity of element 3 and the hinge B
, CG2, CG3 locations of centers of gravity of elements 1, 2, and 3,
respectively
1
= angle between O-CGl and OA
= angle between A-CG2 and AB
, m m = mass of elements 1, 2, and 3, respectively
Z o
I^, I = moments of inertia of elements 1, 2, and 3, respectively,
about axes perpendicular to the xz plane through their respective
centers of gravity
I =
g
moment of inertia of the horizontal bar at the hinge 0 about its
longitudinal axis
acceleration due to gravity
Figure 3. The Three-Link System


16
If we define
A = §^rl + h + m2r2 +I2+m2*l + I3+ m3r3 + m34 + m34 + Ir)
B = m2Vl
C = m3X1X2
D = m3Vl
E = m3r3^2
F = ^(m2r2+I2 + m3^2+ln3r3+I3)
J mgr3 + 13
M = m^g
N = (m2 + m3)
V = m3 V
W = ra2r2g
R = m3r3g
(2.2.1)
with Equations (2.2.1), we can express the Lagrangian of the system as:
2 "2
L = cp [A + B cos (6+3) + C cos 8 + D cos (6+ijf) + E cos i|f] + 9 [F+ E cos \jf]
1 '2
+ 6cp[2F+B cos (6+3) + C cos 6+D cos (6+i|0 + 2E cos i|f] + ^ t J

+ 8 i| [J + E cos ijr] + cp \[r [J + D cos (9+iJr) + E cos i|r] + M cos (cp+a)
+ N cos cp + V cos (cp+8) + W cos (cp+9+3) + R cos (cp+6+i)i). (2.2.2)
For the Hanavan model of If we define and u2 as positive when they tend to increase
the angles 9 and i)r respectively, we can write the equations of motion
as:


17
d Bl Bl
_d_ BL
dt Be
3l
^0
= u.
d Bl 3l
dt "5F ~ U2
3^
(2.2.3)
(2.2.4)
(2.2.5)
Let us define
= 2(A + (B+C) cos 0 + D cos (0+ \|f) + E cos i|r)
a = 2F + (B+C) cos 9 + D cos (9+i|f) + 2E cos ijt
z
a^ = J + D cos (9+t) + E cos i)i
bl a2
b = 2(F + E cos f)
bg = J + E cos i|r
c3 = J >

d^ = cp9[2(B+C) sin 0 + 2D sin (0+\|/)] + 9\|i[2D sin (9+i|0 + 2E sin \|i]
+ 0i|r[2D sin (9+i|r) + 2E sin i|r] + 02[(B+C) sin 0 + D sin (0+\jf)]
2
+ i| [D sin (9+\J) + E sin \|r] (M+N) sin 9 (V+W) sin (9+0)
- R sin (cp+04-l)
*2
d = u + i|f[29 + 20 + i|r] E sin i|r 9 [(B+C) sin 0 + D sin (0+t|r)]
Z X
- (V+W) sin (9+9) R sin (9+0+ijf)
2 2
d = u -9 [D sin (+ \¡r) + E sin i|r] 9 E sin i|r -209 E sin ljf
o z
- R sin (9+0+i|i) .
(2.2.6)


18
With Equations (2.2.6) we obtain from Equations (2.2.2) (2.2.5) the
equations of motion
a P + = d1
V + 29 + c2* = d2
a3'P + b39 + C3* = d3 '
(2.2.7)
(2.2.8)
(2.2.9)
It will be helpful to express the equations of motion in
normal form in formulating optimal control problems for the system.
For that purpose we define the state variables as
x, =9 x =9 x_=e x. = e X = i|r x- = i|r
A =
(2.2.10)
(2.2.11)
A1 =
(2.2.12)
A2 =
(2.2.13)
(2.2.14)


19
Using these definitions, the equations of motion (2.2.7) (2.2.9) can
then be written in the normal form as
To write down the equations of motion in more convenient forms, we shall
further define the following quantities:
(2.2.15)
(2.2.16)
(2.2.17)
(2.2.18)
(2.2.19)


20
A -|T
r 3 l
A(X) = |_X2, x4, X6, -J
B(X) =
(_blC3+b3Cl)
("alC3_a3Cl)
(_aib3+a3bl)
(blC2 _b2Cl)
(_aiC2+a2Cl)
(aib2a2bl)
(2.2.20)
J
("blC3+b3Cl)
("alb3+ 3bl>
(2.2.21)
(blC2"Vl)
(_aiC2+ a2Cl}
(aib2 a2bl}
(2.22)
Using the definitions(2.2.16) (2.2.22), the equations of motion
(2.2.15) may now be expressed by any one of the following equations:


?1
, c.
.B j i.S ,-5rn. S_,-n,: V
v-
Up o this point, this analysis has been very gen
era": and three-dimensional witn "-id referente to a plate-
like two-dimensional problem. Equation >3} witn the aid
of (?) car, be applied to any three-oixensional elasticity


22
with 9 expressed in terms of p using Equation (2.3.1). Hamilton's
canonic equations are then given by
cp = -g (p,cp,t) (2.3.3)
and
P = (P,9,t). (2.3.4)
From Equations (2.3.2) (2.3.4) we obtain
.
^ p-0[2F+(B+C)cos 8+D cos (6+1|0+2E cos ifr] i|r[ J+D cos (8+i|f) + E cos i|f]
2[A + (B+C) cos 8 + D cos (6+i|) + E cos \|/]
(2. 3.5)
p = [ (M+N) sin cp + (V+W) sin (9+0) + R sin (9+0+i|r)]. (2.3.6)
If we wish to introduce the effects of the friction at the hinge 0,
the equation for p becomes
oh
p = - F
'5p
(2.3.7 )
where F^ is the generalized friction torque at the hinge 0.
The Integration Scheme
The integration scheme integrates Equations (2.3.5) and (2.3.7).
The initial condition of 9 is obtained from the measured values of 9.
The initial value of p is obtained from the definition of p given in
Equation (2.3.1). To compute the initial value of p, 9 has been com
puted for this starting point only. The 6 and i|r data are differenti-
ated numerically to generate 0 and \Jr values at every step. and
are computed at every step by using these values. The value of F^ is
not known a priori and it requires a separate experiment for its
determination. Integrations were done with F^ = 0 and F^= C sgn 9


23
with C determined experimentally. The difference between the two
cases was found to be insignificant even with C=1 ft-lb which was
well above the possible friction torque at the bearings.
2.4. Experimental Procedure
The test rig consisted of a horizontal bar and two motion
picture cameras. The horizontal bar was made of a short solid round
steel bar 1-3/16 inches in diameter and 58 inches long supported by two
very rigid vertical columns through a pair of self-aligning spherical
bearings. The bearings allowed free rotation of the bar with the arm
of the subject.

One movie camera was placed with its line of sight aligning
with the horizontal bar and about 30 feet away from the bar as shown
in Figure 4. Alignment of the camera's line of sight with the horizontal
bar would give the correct vertical projection of the two arms on the
film for determining the angle cp directly. The second camera was placed
in front of the horizontal bar at the same elevation as the bar. The
film taken in this camera showed whether a particular motion was sym
metric or not about the vertical plane of motion and also, the angle
between the two arms, which is required for computing the moment of
inertia of the arms. The film speed was determined from the flashes of
a strobe light regulated by a square wave generator.
Experiments
The experiments were done during two separate periods with the
same subject, a professional gymnast. An average of 15 experiments
of the subject's performance on the bar were recorded on film each day.


Figure 4. Sketch of Kip-Up Apparatus Configuration.


25
The subject was told to avoid bending his arms and legs and to maintain
symmetric motion. In the early days of experimentation he was told to
just swing on the bar by moving his stiff arms and legs relative to the
torso. These experiments were done with the idea of obtaining small
angle data for verifying the inertia properties of the Hanavan model.
The filming of the camera was done at speeds of 32 frames per second and
62.1 frames per second (as determined from stroboscopic measurements).
In later experiments the subject was told to perform the maneuver with
some specific objectives. He was told to perform what he thought would
be the kip-up (1) in minimum time, (2) with minimum expenditure of
energy, and (3) putting "least effort." Each of these maneuvers was
repeated several times. Between any two subsequent maneuvers, the
subject was given adequate rest periods to avoid fatigue. This exper
iment was conducted with the idea of making optimization studies as well
as testing the model.
Four white tapes were stuck to the subject, on the sides of
his upper and lower arms, sides of his torso, and on the sides of his
legs. These tapes were aligned between joint centers as suggested by
the Hanavan inertia model.
Processing the Data
The film speed was measured with the aid of a stroboscope by
running the camera with a developed film with the same speed setting.
After removing the lens the shutter was exposed to the stroboscope
flash. By arresting the shutter in the stroboscope light, the shutter
speed was obtained.


26
The films were run on an L-W Photo Optical Data Analyzer.
For the purpose of testing the inertia properties, two maneuvers were
selected, one from each day's filmings. The films were projected
plumb line perpendicularly on paper fixed to a vertical wall. As each
frame was projected, the white tapes fixed on the subject, now clearly
visible in the image, were marked out on the paper of the pad by means
of a pencil and a straight edge. In this way each frame was "trans
ferred" on separate sheets of paper. The angles 9 and i|r were then
measured from these traces. The angle 9 was measured with respect to
a vertical reference. The vertical reference was obtained from a sharp
window wall in the background.
Of the two sets of data processed, one was smoothed before
using it in the integration scheme. This was the one filmed at the
higher speed for the fast kip-up motion. A plot of the raw data and
those after preliminary smoothing for this set are shown in Figure 5.
2.5 Results and Discussion
The results of the integration of the equations of motion for
two of the data sets analyzed are shown in Figures 6 and 7. Figure 6
shows data for swinging motion, while Figure 7 is for the kip-up.
Also, in Figure 7 is given the computed results corresponding to
reinitiating the integration program with the measured data. Differ
ent starting points of integration were selected to eliminate the
errors that were generated before these points.
In Figure 6, curve 2 of the computed values for the unsmoothed
data agrees well with curve 1 of the measured values for a little more


Angles (Degree)
for the Kip-Up Motion. (Film Speed 62.1 frames/second.)
to


T h c* res o 1
t s o h a i
n v i
so fur a
re applicable
to
p: a
tes cons;stir.
of any
r. jiu2-
eo* la.
yens having ci
f f e r -
ent
properties an
; geomec
O
Cut -ro
n¡ here on, the
e n a 1 y
s i s
would depend
n t h s t
f o o
O pinte
c o n s i d l r e d v i
z. s 4 r.
gl e
layer cr mult
i p 1 a y e r
plates, thin
or moderately
thick
pi a
tes etc. and
also on
the
type Of
dispi a cement
rune-
t i on s V ?,rd V ,. Habi p [41 has demonstrated the apolica-
i j -
Dili rv of these results to a single layer plate.
In this dissertation, a thres-1ayered elate, popu
larly known as a sandwich plate will be considered.
San dvr i ch oate
A sandwich plate consisting of three layers is
shewn in figure (2). Tne face layers are much thinner
than the core. All layers are uniformly thick throughout-
The two faces are of the same thickness tt, the core thick
ness being t .
Tne present analysis is capable of treating aixed
boundary value problems. On the upper surface, the line
AB separates the two regions and over which
displacements and stresses respectively are prescribed.
On the lower surface, the line CD separates the correspond
ing regions. The line CD is located exactly below the line
AD. Also, at any two points locatec on the upoer and lower
surfaces of the plate and havine tne same >:, and x.


cp (Radian)
to
CD


(Radian)
(
Curve 1 Measured and Smoothed Values of cp
Curves 2,3,4- Computed Values of cp, Started
at Different Points
2.0
w
o


31
2.6. Sources of Errors
The following are considered to be the sources of errors
responsible for the disagreement between the computed and measured
values.
2.6.1. Imperfections in the Model
The human being for the motion studies was modeled as a system
of rigid bodies. The response of the system to be compared to that of
the rigid body model was a single generalized coordinate of the system.
The errors in modeling can be lumped into the overlapping categories of
(1) definition of the generalized coordinates of the rigid elements of
the system, (2) deformations of link lines during motions from prior
joint center measurements, and (3) significant variations during motion
in the inertia properties of the torso with respect to the fixed coor
dinate system. In several experiments the torso deformed with signif
icant movement of the shoulder joint centers. In these cases the con
stant inertia properties model is obviously incorrect. These variations
not only cause inaccuracies in the inertia parameters but also result in
errors in the link lines or additional errors in the mass center of
element 2. These errors are reflected in errors in the angles 0 and i|r,
which in turn cause a time varying "phase shift" in the computed angle cp-
2.6.2. Errors in Filming and Processing the Data
The primary source of errors in filming was considered to be
caused by inaccuracies in knowing precisely where the link lines were
in relation to the film plane. As mentioned in Section 2.4, care was


32
taken to minimize this error. That is, the cameras were aligned with
the horizontal bar so that the link line of the arms projected in the
plumb line plane of the film was very nearly the correct model refer
ence line. Since the link lines of the torso and legs were nearly
plumb line vertical, no corrections of the image data were required
for these links. Filming of static thin rods which were connected to
the bar at known angles to each other and the vertical plane produces
overall measurement errors of about 1 degree standard deviation.
Errors up to 3 degrees can be expected in data from films of the motion
experiments. These errors can cause the rates of the angles to be in
error by more than 30 percent. This is the primary cause of the error
in the amplitude of the angle cp computed from the dynamical equations.
(Second derivatives of the data can be in error by more than 100 percent.
This ruled out the use of equations such as Euler's or Lagrange's.)
2.6.3. The Integration Scheme
The integration scheme uses at any step the measured values of

0 and ijf and the computed values of 9 and i|f stored previously. Once a
difference between the measured (actual) and the calculated values of cp
has developed at a time t due to any of the sources of errors discussed
above, the system configuration determined by the calculated value of cp
and the measured (actual) values of 0 and ljr at the time t will be dif
ferent from that of the actual system at that time. This will cause
the model to have a different response after time t than that of the
actual system which has a different relative configuration. This
in turn will cause a further deviation between the actual and the
calculated motion that follows this instant of time. To reduce this


33
effect of propagation of error via the system equations, several
reinitializations of cp and p were done by restarting the integrations
at different points.
Various order differentiation and integraion schemes were
tested with insignificant differences in the results for smoothed
data. These were done with data from filming at F=62.1 frames per
second with a maximum integration step size of 2/F second. As men
tioned previously, the main cause of amplitude error was the errors in
the derivatives of the raw, unsmoothed data.
The results obtained from the experiments show that the model
for the kip-up motion constructed from the Hanavan model was reason
ably good considering its kinematical simplicity. In spite of imper
fections in the model, its dynamic behavior was quite similar to the
actual motion, so that this model could provide reasonable estimates
of optimal human performance via the theory of optimal processes and
numerical solution methods.
However, the results obtained from the experiments indicate
that the application of rational mechanics to the analysis and design
of man-machine systems could prove inadequate unless the model and the
data gathering techniques can be improved. This is especially true in
the design of high accuracy or low tolerance systems.


CHAPTER 3
ANALYTIC DETERMINATION OF
THE MINIMUM-TIME KIP-UP STRATEGY
3.0. Introduction
In this chapter the determination of an analytic solution of the
kip-up maneuver is presented. The problem of analytical determination
of the kip-up strategy in minimum time has been cast as a problem of
optimal control of dynamical systems. Before the techniques of the
optimal control theory may be applied to the problem, it is necessary
to state the physical problem in the language of mathematics and to
introduce the physical constraints that must also be considered for the
solution. Thus, the first four sections of this chapter have been
devoted to the formulation of the mathematical problem. In Section 3.5
a survey of the necessary conditions for optimality obtained from the
optimal control theory is presented. Since the problem under consider
ation cannot be solved in closed form, numerical methods were used to
obtain the solution. In Sections 3.6 3.9, the choice of the numerical
methods, their derivations and the results of the numerical computations
are discussed. In Section 3.10, results of the numerical computations
are compared with the actual motion.
34


35
3.1. ^Mathematical Formulation of the Kip-Up Problem
The problem is to determine the minimum time strategy for the
man model to kip-up without violating control constraints. These con
straints represent the maximum torques the man's muscles can exert for
any given configuration. Formulated mathematically, we have the follow
ing:
For the system equations
X = f(X,u) = A(X) + B(X)u (3.1.1)
and the boundary conditions
X(0) = X
o
(given)
(3.1.2)
where
and
given by
§(X(tf))= X(tf) Xf = 0 Xf = given
t = final time, to be determined
X(t) is the time-dependent state vector,
Xx(t) =qj(t), Xg(t) =cp(t), X3(t) = 9(t)
x4(t) = 0(t), x5(t) = \Kt), xg(t) I|r(t)
(3.1.3)
(3.1.4)
(3.1.5)
find a control
u(t) = [u1(t),u2(t)]
(3.1.6)
such that simultaneously Equations (3.1.1) (3.1.3) are satisfied,
t^ is minimized, and for all values of t, 0 ^ t £ t the inequalities
S*(X) ux(t) sJ(X)
s\a) S u2(t) S S2(X)
(3.1.7)


36
are satisfied. S1(X) are given functions of X and represent the bounds
on the control u.(t). The functions f(X,u), A(X) and B(X) were pre-
J
viously given in Section 2.2. § is the error in meeting the terminal
values of the state variables.
3.2. Bounds on the Controls
The control variable u^ is the muscle torque exerted at the
shoulder joint and u is that exerted at the hip. For the individual
being modeled, the functions u and u will have upper and lower limits
which are functions of the state X.
Samras [16] experimentally determined the maximum muscle torques
at the shoulder and hip joints for various limb angles at the joints.
This was done for the same subject modeled in the present study. These
measurements were made under static conditions and the mximums in
either flexion or extension were measured for the shoulder torque for
various values of 6 and the hip torque for various values of i|i. The ex
perimental bounds on the shoulder torque were then fitted by polynomials
in 9. The hip torque bounds were expressed in polynomials in \jf.
Even though each of these bounds might be expected to depend to
some degree on all four state variables X^, X^, X^, and X^, the bounds
on the shoulder torque u depend primarily on X and the bounds on the
1 O
hip torque u depend primarily on X The measurements of Samras do not
z o
include the rate dependence X and X Although the rate effect appears
4 6
to be measurable, it is a second-order effect and quite difficult to
obtain. The control limit functions are given in Figure 8. These func
tions are correct only for a certain range of values of the angles


Control Limit (ft-lb)
Figure 8. Unmodified Control Limit Functions
(Samras [16]).


38
X and X The values of S. and S0 can never be positive and those of
3 5 12
O O
and can never be negative. Whenever these sign conditions are
violated by extreme values of the states, S'? is set equal to zero. Also,
2
from extrapolated measurement data an upper limit has been set for S at
160.0 ft-lb and a lower limit has been set for at -100.0 ft-lb.
3.3. Torsional Springs in the Shoulder and Hip Joints
Our dynamical model and the control limit functions of the
shoulder and the hip do not account for the stiffness of the shoulder
and the hip joints at the extremities of shoulder and leg movements.
It has been observed that the shoulder joints produce a resistance to
raising the arm beyond an angle of 0 30. The hip joints resist move
ment for i|f > 120, or for i|r < -35. The effects of these "stops are
important and must be included in the model, since the film data showed
that these limits were reached. There are no data available for the
stiffness of these joint stops. It was observed that, although the
joints were not rigid, they were quite stiff. It was therefore decided
to use stiff torsional spring models at the model's shoulder and the
hip joints. These would be active when the stop angles were exceeded.
For the shoulder the spring is active for 9 ^ 0.5 radian. For the hip
joint the spring is active for ijj S -0.6 radian and i|r 2: 2.1 radians.
The springs have equal stiffnesses. One generates a 100 ft-lb torque
at the shoulder for a deflection of 0.1 radian. This corresponds to a
joint stop torque of the order of the maximum voluntary torque avail
able at the shoulder for the deflection of 0.1 radian. This gives a spring
constant of Kg = 1000 ft-lb/rad. The spring forces at the shoulders


39
would therefore be equal to -K (9-0.5) for 9 ^ 0.5 radian and those at
s
the hip joints would be -K (i|r-2.1) for 4 ^ 2.1 radians and -K (4+0.6)
s s
for 4 ^ -0.6 radian. These torques at the shoulder and the hip joints
were added to the voluntary control torques u^ and u^ when the stops
were activated.
3.4. Boundary Conditions
The boundary conditions for the kip-up maneuver were chosen
from the experimental data of Section 2.5. The initial values selected
correspond to motion which has already begun. This is beyond the
initial unsymmetrical motion which occurs on beginning the first swing.
This motion is difficult to model and is not important in this basic
research. The final values of the state variables represent the model
atop the horizontal bar still moving upward and just before body con
tact with the bar. (Once the torso contacts the bar, the model is no
longer valid.) The actual motion in the experiment terminated shortly
after this point when the gymnast used the impact of the horizontal bar
with his body to stop himself.
The initial and final values of the state variables for the
optimization problem are listed in Table 1.


40
TABLE 1
BOUNDARY CONDITIONS FOR A MINIMUM TIME KIP-UP MOTION
State Variables
Initial Value
Final
Value
V
X1 = 0.340
o
1
Xf =
-2. 84
2
2
X = -2.30
o
Xf -
-7.05
e
X3 = 0.305
x3 =
2.88
O
f
#
4
4
e
X -0.660
X-c =
0.163
o
f

X5 = -0.087
o
0.436

6
6

X = -1.20
o
Xf =
0.108
3.5. The Necessary Conditions for Time Optimal Control
In this chapter, we look into the necessary conditions for the
minimum time problem formulated in the previous chapter. The necessary
conditions for optimality of motion for the case when the constraints
on the control are not a function of the states are given in Reference
17. For the case where control constraints depend on the states, the nec
essary condition requires a modification in the adjoint equations.
These are obtained through a calculus of variations approach [18].
This approach is used in the following developments.
Writing the state equations of our system as
X = f(X,u) = A(X) + B(X)u
(3.5.1)


41
we can construct the cost function as
dt
(3.5.2)
where t
f
is free.
The Hamiltonian is then given by
H(X,u,X) = 1 + \Tf
= 1 + \TA(X) + \TB(X)u
= 1 + XTA(X) + XTb1(x)u1 + \TB2(X)U2
where X(t) is the time-dependent six-dimensional column vector of
adjoint variables. A, B, B1 B and f are the quantities as defined
by Equations (2.2.15) (2.2.22) in Section 2.2.
The minimum-time control policy u(t) will be given by the one
that minimizes the Hamiltonian (3.5.3), provided no singular arcs are
present. We note that in this case the Hamiltonian is a linear func
tion of the control u and therefore the minimum with respect to u occurs
only in the upper and the lower bounds of u if there is no singular
solution. Thus, we have, recalling the definitions of S^ in Section 3.2,
T
(1) If X B^(X) >0, u^ = the minimum allowable value of u^
= S*(X) (3.5.4a)
(3.5.3a)
(3.5.3b)
(3.5.3c)
(2) If \TB (X) < 0, U;L
(3) If XTB2(X) > 0, u2
the maximum allowable value of u^.
SJ(X)
(3.5,4b)
the minimum allowable value of ur
S2(
(3.5.5a)
(4) If \TB2(X) < 0, u2
the maximum allowable value of u
(3.5.5b)


42
(5) If \TB (X) = 0
T "
or X B (X) = 0 J
, u^ u^ = possible singular control.
(3.5.6)
u and u will be determined by investigating whether or not there is
-i- C*
a singular solution with respect to these variables.
The adjoint equations will be different for the portions of the
o
trajectories for u corresponding to constrained and unconstrained arcs.
The adjoint equations are, in general, given by
\T = -H, (3.5.7)
X
This yields
(a) When neither u nor u lie on a constraint
\T = -H, = -\TA, \TB u XTB u (3.5.8)
'X -X l,x 1 "2,x 2
(b) When any one or both u and u denoted by u. (i = 1 or 2), lie on
1 Z X
a constraint denoted by (j = 1 or 2) the right side of Equation (3.5.8)
of the adjoint variables has the additional term
- \tb. SJ
- -i i
X
and the equation can be written as
T_ j
X = X A, X B, U x Bn u Z 5. x B. S.
- -'X -1, 1 -2,x 2 i=1 -1 i,
(3.5.9)
where
6=0 if X B. = 0
l -l
6. = 1 if \ B. 4 0.
i -l
The boundary conditions on the state and the adjoint variables
are


43
X(0) given = X \(0) = free
- -o -
X(t ) = given = Xf \(tf) = free
and
H(tf) = (1 + \Tf)t ^ 0 .
(3.5.10)
(3.5.11)
The state and adjoint equations together with the control laws
and the boundary conditions written above form a two-point boundary
value problem (TPBVP) in the state and adjoint variables. If these
o
equations can be solved, the optimal control, u will be immediately
obtained from Equations (3.5.4a) (3.5.6).
Investigation of Singular Solutions
T o
It has been noted that if ¡V = 0, u^ cannot be determined
from the requirement that the Hamiltonian is to be minimized with
o T
respect to u The same is true for u when\ B = 0.
Since the treatment for u^ is the'same as for u^, we shall
investigate a singular control for only u^.
T
If the quantity \ B^ = 0 only for a single instant of time,
then the situation is not of much concern because the duration of the
interval is not finite and we can simply choose u = u^(t ) or u^(t+)
or 0, where u^(t ) = control at the instant preceding t, u^(t4) is the
instant exactly after t. The situation needs special attention when
T
\ B^ = 0 for a finite interval of time.
If t S t £ t is an interval for which u is singular, it is
1 Z a
clear that, for our system
^ t t^
0
for
(3.5.12)


44
and therefore,
d T .
Ht 5^
= 0
for
(3.5.13)
or
x\ + \TB = 0 for ti t t2
(3.5.14)
or, for the interval t ^ t ^ t the following results must hold:
X cj
Case 1
Only u is singular. u is nonsingular. Since u is not
1 ^ 2
singular, u is on a constraint boundary and is given by
2
u = S
2 2
j = 1 for the lower constraint
j = 2 for the upper constraint.
The adjoint equations are given by Equation (3.5.9)
T T T T i T i
l = -X A X B1 u XJ, S, X B S
X 1 } v 1 ~ 2 f 2 2 a y
(3.5.15)
X
§i = B X
'X
= §1, + ?1 ui + 52 ^
X
(3.5.16)
(3.5.17)
From Equations (3.5.14), (3.5.15), and (3.5.16), we obtain
4-h\4, jSi + ^Si, <* + s2 s2> = 0
X XX
It is to be observed that the necessary condition (3.5.17) is not
explicit in u^.
Case 2
Both u and u are singular. The value of u is no longer
X 2a 2 2
T j
and the term X B S in the X Equation (3.5.15) drops out in this
2 X
case. Accordingly, one obtains
-XT[A,x B1 A] XT[B2 B1 Bx B21 u2 = 0 (3.5.18)
X XX


45
Proceeding from the assumption that u is singular, one would also get,
£
for this case, when both u^ and u^ are singular
T
C*X
B_ A] \T[B1 B,
^X X '
(3.5.19)
From Equations (3.5.17), (3.5.18), and (3.5.19) we can see that
T T
only if both \ B^ and \ Bare zero simultaneously, is it possible to
find a singular solution by suitable choices of u^ and u^ from the
T T t
condition (3.5.13). If only one of \ B^ and \ B^, say \ B^, is zero,
the requirement (^ B,) = 0 does not yield an equation explicit in
dt -1
d T
u as observed in Equation (3.5.17). It is thus required that (\ B.)
1 i ' l
dt
= 0, which will be explicit in u during the interval t ^ t ^ t
J_ -L £
together with the requirement that the relation (3.5.17) is satisfied
T
at t r t^. These two conditions will ensure that \ B^ = 0 in the
interval t^ ^ t S t .
It is to be noted that singular control computed by the above
procedure has not been proved to be the minimizing control. Additional
necessary conditions analogous to the convexity conditions for singular
controls have been obtained by Tait [19] and Kelley, Kopp and Moyer [20]
for scalar control and by Robbins [21] and Goh [22] for vector control.
For the general case of vector control these conditions, summarized by
Jacobson [23], may be stated as on singular subarcs:
3
- Ldt
H, =0 if q is odd
(3.5.20)
and
:> 0 .
(3.5.21)


46
d2p
In these equations, * H, (X,\) is the lowest order time derivative
dt P -
of H, in which the control u appears explicitly, and q < 2p.
For a scalar control, Equation (3.5.20) is satisfied iden
tically.
Equations (3.5.20) and (3.5.21) also do not constitute suf
ficiency conditions for minimality. A complete set of sufficiency
conditions for singular arcs has not yet been established in the
literature of optimal control theory for a general nonlinear system.
We can see that there are quite severe restrictions on the
existence of singular arcs in the human motion problem. In the
numerical methods used in the present work to determine the optimal
solution, only in the method of quasilinearization is it necessary to
express the control (its optimal value) in terms of the state and
adjoint variables, while in the gradient methods where successive
improvements are made in the control variables, this is not so. In
the attempts with the quasilinearization method, singular solutions
were not considered in the construction of the two-point boundary value
problem in the state and adjoint variables. It was decided that if
a solution to the TPBVP was obtained by quasilinearization, singular
arcs would be looked for later. The gradient methods exhibit singular
arcs automatically if there are any. The additional necessary condi
tions for singular arcs should be checked when off-constraint arcs are
exhibited by the gradient method.


47
3.6. _The Solution Methods
The optimal control problem formulated in the preceding section
cannot be solved in closed form. Numerical methods must therefore be
used to find its solution. In the optimal control theory literature
several numerical methods have been proposed for solving the differ
ential equations and the optimality conditions that arise out of optimal
control problems such as the present one. None of these methods guaran
tees that a solution will be obtained readily, while some of the methods
do not guarantee that a solution may be obtained at all. The methods
are all iterative, necessitating the use of high-speed computers for
all nontrivial problems. A nominal guessed trajectory is improved
iteratively until the improved solution satisfactorily meets all the
necessary conditions.
Depending on whether the method requires finding the first or
both first and second derivatives of the system equations with respect
to the state and control variables, these methods are called First-Order
or Second-Order methods, respectively. This is so because they, in
effect, make first-order or second-order approximations of the system
equations with respect to the state and control variables. The first-
order methods, in general, have the property that they can start from
a poor guess and make fast improvements in the beginning. They need
fewer computations in each iteration. But their performance is not
good near the optimal solution where the convergence rate becomes very
poor. The second-order methods, on the other hand, need a good ini
tial guess to be able to start but have excellent convergence prop
erties near the optimal solution. Because the second-order methods


48
need computation of the second derivative of the system equations,
they need more computing time per iteration, which may be excessive
for some problems.
Apart from the first- and second-order methods mentioned above,
there is another class of methods which tries to combine the advantages
of both of these methods while eliminating the disadvantages of both.
The Conjugate Gradient Method, Parallel Tangent Method, and the Davidon-
Fletcher-Powell Method fall into this class. These methods work very
much like the first-order method except that, in the first-order
expansion, the coefficients of the first-order term, or the gradient
term, is modified by some transformations. These transformations are
generated from the modified gradient term of the previous iteration and
the gradient term of the current iteration. This has the effect of
using the information that is obtained from a second derivative.
It is not known which of the several methods used for solving
optimal control problems is good for a given problem and one may have
to try more than one method in order to obtain the solution. In the
published literature, most of the illustrations of these methods are
simple. In these simple problems control or state variable histories
do not have wide oscillations or the system equations themselves are
not complicated. This makes it truly difficult for someone without
previous experience to decide upon the merits of these methods.
There is no preference list, and it seems certain that there cannot
be one whereby a decision can be made as to which method should be
tried first so that a solution of a given problem will be obtained
most efficiently. In this respect, deciding upon a computing


49
method for a given problem is still an art and depends largely on the
previous experience of the individual trying to solve the problem.
In the attempts to solve the minimum time problem, the method
of quasilinearization was taken up first. This choice was based on
several factors. This is the only method where the two-point boundary
value problem obtained from the necessary conditions of optimality is
solved directly, and this feature was found very attractive. As a start
ing guess, this method requires the time histories of the state and
adjoint variables. Time histories of the state variables were available
from the experiments. (It was decided that if the method was success
ful for this guess, an arbitrary and less accurate initial guess would
be tried later.) When it converges, the method has a quadratic conver
gence rate. Also, in spite of its being a well-known method for solv
ing nonlinear two-point boundary value problems since it was first
introduced by Bellman and Kalaba [24] its applications in solving
optimal control problems have been very few. There was thus an added
incentive for using this methodto determine its usefulness in solv
ing fairly complicated optimal control problems.
Sylvester and Meyer [25] proposed, with demonstrations, an
efficient scheme for solving a nonlinear TPBVP using the method of
quasilinearization. This scheme was available in the IBM SHARE program
ABS QUASI and was used by Boykin and Sierakowski [26] who reported
excellent convergence properties of the scheme for some structural
optimization problems.
With this record of success, the program QUASI was taken up for
our problem. But with our problem several difficulties were encountered


50
from the very beginning. First, the bang-bang control law obtained
from the necessary conditions had to be replaced by a suitably steep
saturation type control law. Second, a slight modification in computa
tion scheme was necessary when it was found that the method was unable
to solve a simple example problem. The example problem could be solved
with these modifications. But, in spite of all these changes and sub
sequently, many attempts to generate a guess of the adjoint variables,
the method could not be made to work for the human motion problem.
Reasons for the difficulties encountered are discussed in detail in
Section 3.7.
During the attempts with quasilinearization, it was found that
computations of the second derivatives of the system equations were
taking an exorbitant amount of time and this was the deciding factor
for the next choice of a computing method. Also, the appearance of the
control function linearly in the Hamiltonian put restrictions on the use
of most of the other second-order methods.
The next attempts were based on the first-order steepest descent
method proposed by Bryson and Denham [27,28]. The most attractive
feature of this method is that the various steps involved in it render
themselves to clear physical understanding. This method directly reduces
the cost function in a systematic way and one obtains good insight into
the basic steps in the iterative computations and can make adjustments
to improve convergence and/or stability with relative ease. These
features of the method of steepest descent may more than offset the
advantages of other methods for some complicated problems. In the
attempts with this method, three different formulations of the minimum


51
time problem were tried. In the first formulation the computations were
not pursued beyond a certain point due to computational difficulties.
The solution was obtained by the second formulation and verified by the
third formulation. These attempts are discussed in Section 3.8.
3.7. A Quasilinearization Scheme for Solving
the Minimum-Time Problem
In Section 3.5 the adjoint equations and the optimal control
laws (Equations (3.5.9), (3.5.4a)-(3.5.6)) have been derived for the
minimum time kip-up problem. The system equations and the boundary
conditions on the state and the adjoint variables are given by Equa
tions (3.5.1) and (3.5.10), respectively. From these equations we can
readily see that if the control variables u^ and u^ appearing in the
system and adjoint equations are replaced by their optimal expressions
in terms of the state and the adjoint variables, one obtains a non
linear TPBVP in the state and adjoint variables. If these equations
are solved, the optimal state and adjoint variable trajectories will
be obtained and the optimal controls can be constructed by using the
state and adjoint variables and the optimal control laws.
In the TPBVP in the state and the adjoint variables, the final
time is not a given constant and is to be determined from the implicit
relation (3.5.11). This makes the problem one with a variable end
point.
The method of quasilinearization is formulated primarily for
a fixed-end-point TPBVP. In problems with variable end points, the
adjustment of the final time is usually done by a separate scheme, not
integral with the quasilinearization scheme. Long [29] proposed a


52
scheme for converting a variable end point problem into a fixed-end
point problem with the adjustment of the final time built into the
quasilinearization process. For the present system, however, this
scheme was not practicable because the boundary condition (3.5.11)
becomes too complicated to handle in this formulation.
It was decided that with a separate algorithm for adjusting
a
the finai time, described later in this section, the nonlinear TPBVP
with free final time would be converted to a sequence of nonlinear
TPBVP's with fixed final times. Each of these fixed final time problems
would then be solved by the modified quasilinearization algorithm until
the correct final time was obtained. The derivation of the modified
quasilinearization algorithm is described below.
3.7.1. Derivation of the Modified
Quasilinearization Algorithm
The fixed final time nonlinear TPBVP to be solved falls in the
general class of problems given by
dy
^=g(i:,t). (3.7.1)
With the boundary condition
Bj Z) + Br + c = 0 tf = given (3.7.2)
y, g, and c are of dimension n, B^ and B^ are matrices of dimension
(nxn). It is being assumed that the TPBVP has been defined for the
interval 0 £ t < t for some given t > 0.
In the state and adjoint equations, if the expressions for optimal
control in terms of the state and the adjoint variables are used for the
control variables, one obtains


53
X = f(X,u(X,\)) = F(X,\) (say)
(3.7.3a)
and
X = -H^(X,u(X,\),X) = G(X,X) (say). (3.7.3b)
In the formulations of the TPBVP given by Equations (3,7.1) and
(3.7.2), it may be seen that for the kip-up system, n=12,
X
~F
0
0
I
0
y =
_X
, g =
1
IO 1
1
i
0
II
u
CQ
0
0
and
-o
The 0 and I appearing in the matrices B. and B represent 6x6 order null
J Y
and unit matrices, respectively.
Let z(t) be an initial guess vector for y(t) which satisfies
the boundary conditions (3.7.2). If g(y,t) is approximated by its
Taylor series expansion about g(z,t), keeping only the first-order term,
one obtains
(y-z).
y=5
9g
g(y,t) = g(z,t) +
Let
W =
so that,
W. .
ij
(3.7.4)
or, W.. = partial derivative of the i
ij
th
. j element of y, evaluated at y = z.
. th
element of g with respect to the


54
With the above approximation of g(y,t), Equation (3.7.2) becomes
dy
= g(x,t) + W(z,t)(y-z)
at - - -
or,
de dz
= -rf + g(z,t) + W(z,t) e
dt dt - -
where,
e = y(t) z(t) = error in the guess z(t).
Rearranging the above equation, one obtains
de dz
W(z,t)s = + g(z,t). (3.7.5)
dt - dt -
Since z(t) is chosen to satisfy the boundary conditions,
Bj, z (0) + z(tf) + c = 0.
Subtracting this equation from Equation (3.7.2), one obtains the
boundary conditions on the error e(t) as
Bj £(0) + Br e(tf) = 0. (3.7.6)
Equations (3.7.5) and (3.7.6) form a linear TPBVP in e(t) which, when
solved, will give the values of the error between the guessed solution
z(t) and the actual solution y(t) based on the linearized expressions
of the right side of Equations (3.7.1) about the guessed solution z(t).
Because of using the linearized equation instead of the full nonlinear
"'n
equations, the values of e(t) obtained by solving Equations (3.7.5) and
(3.7.6) will not be the actual error between the guess z(t) and the
solution. However, a new guess of y(t) will be obtained from e(t) by
z (t) = z(t) + T) e(t) ,
0 < 7] < 1.
(3.7.7)


55
The algorithm of Sylvester and Meyer uses T| = 1 for all the
time, which is the usual quasilinearization algorithm. It was found,
while solving a simple example problem, that without the incorporation
of a multiplier 7] in the expression (3.7.7), i.e. using
z' (t) = z(t) + e(t)
the method was unstable. The convergence property of the scheme with
the incorporation of the multiplier 7] can be understood for small values
of 7] by comparison with the step-size adjustment procedure of the usual
steepest descent algorithms. The mathematical proof for the convergence
property follows the proof of Miele and Iyer [30] and is now given.
The integral squared norm of the error in the guessed solution
z(t) can be expressed by the integral
Similarly, the error in the solution z'(t) = z(t) + 7] e(t) is given by
t
f
If 7] is sufficiently small, one can write
g(z',t) = g(z,t) + g,z(z,t) Tie
where g, = g,
- z y
= W(z,t) (from Equation (3.7.4)).
y=z
Also, for all values of 7],
/
z
= z + 7] e .


56
From these results, one obtains, for small values of 7],
j' j = 27] J {z g(z,t)}T {e We}
Since e(t) satisfies the differential equation (3.7.5), this finally
yields:
t
j' J = 27] J || z g(z,t)||2dt
= a negative quantity.
Thus, for sufficiently small values of 7], the reduction in the cost is
assured.
In the quasilinearization algorithm z^(t) takes the role of z(t)
as the new guess of y(t) and the process is continued until the error in
satisfying the differential equations is reduced to an acceptable value.
The linear TPBVP of the error Equation's (3.7.5) and (3.7.6) is
solved as follows:
The time interval t = 0 to t = t^ is divided into m small inter
vals. This results in m+ 1 values of t at which the solution will be
computed. Equation (3.7.5) can be written in a finite central differ
ence scheme as
rl
/Z.+Z. t.+t.
[-1 -1+1 1 1+1]
e. + e. z. -z.
1 -i -i+l -i+l -i i
/z. + z. t. + t.\
f -i+l -l i+l i)
hi
' 2 2 /
2 h. +^'
i
^ 2 2 /
th
where h = t t The subscript i denotes values at the i
i i+1 i
station, i=1,2,...,ra+l. Rearranging and simplifying the above expres
sion one obtains
( + i h.w. )e. + (-1 + = h.W. )e = r. (3.7.8)
2 i i -i 2 i i -l+l -l
i = 1,2,... ,m


57
where
r. = z
-l -l+l
rui+ii i+i+^
-5i-hi 5 V 2 2 ')
/z. + Z. t. + t X
(3.7.9)
(3.7.10)
and
I unit matrix of dimension n xn .
The boundary conditions, Equation (3.7.2), reduce to
B. e + B e = 0
i -1 r -m+1
(3.7.11)
Equation (3.7.8) can be cast into the following convenient recursive
expression
e. + D. e. = s.
-l l-i+l -i
(3.7.12)
where
and
D. = (I + i h. W.)"1 (-1+ i- h. W.)
l 2 i l 2 i l
- 1 -1
s. = (I + h. W. ) r.
-l 2 i i -l
(3.7.13)
By repeated substitution, equation (3.7.12) yields the following rela
tionship between e_ and e
-1 -m+1
. m
m
e. = T + (-1) ( T D.) e
-1 i -m+1
l-l
where
m
i-1
i-1
T = s + E (-1) ( TT D.)s.
i=2 j=l J 1
(3.7.14)
(3.7.15)
or, multiplying by on both sides of Equation (3.7.14),
B. e = B. T + (-l)m B. TT D. e
JL -1 l l i -m+1
1=1
m
(3.7.16)
Equations (3.6.16) and (3.7.11) can be solved simultaneously for
and e to give
-m+1


58
-m+1
where
m
C = (-l)m B ( TT D.) + B .
I i x r
1=1
(3.7.17)
(3.7.18)
With e determined, e e ,. . e_ are determined in succession by
-m+1 -m -m-1 -1
using the recursive relation (3.7.12). Then, the new iterate is given
by
zil^1(t) = zi(t) + T) e(t).
The stopping condition of the algorithm is given by the fact that
e should be small. When they are small, it may be seen from Equation
(3.7.8) that the quantities r will also be small. From Equation (3.7.9)
it is also seen that small r correspond to satisfying the central differ
ence expression of the differential equations. That is, the finite dif
ference equation error must be small. This does not mean that the dif
ferential equation error is small unless the intervals for the differences
are sufficiently small.
The IBM SHARE program ABS QUASI is a program of the procedure
outlined above without the provision of the multiplier T) in Equation
(3.7.7), and therefore is for 7] = 1. The program was modified to intro
duce and to adjust 7] to get the desired convergence. The algorithm may
be described by the following steps:
1. Set up the matrices B. and B and guess a nominal trajectory
Ju r
z(t) that satisfies the boundary conditions (3.7.2).
Set ITER = 0
(ITER for Iteration)


59
2. Do the following for i = l,2,...,m.
a. Find r and W. as defined in Equations (3.7.9) and
-i i
(3.7.10). Find the largest element of r^, searching
between the elements of each r ^, for i = l,2,...,m.
Call it E2MAX. If E2MAX < specified maximum allowable
error, print out z and stop the computations.
b. Using Equation (3.7.13), find and s^.
3. Calculate T and C according to Equations (3.7.15) and (3.7.18).
Calculate the integral norm of the error
(here the norm is defined by the sum of squares of the elements
of the vector r.). Set J1 = J2.
-l
4. Find e using Equation (3.7.17).
-mf 1
5. Decide upon a value of T], Discussions on the choice of T] will
be presented in a later section.
6. Generate and store e e _,,e e. using Equation (3.7.12).
-m -m-l -m-2 -l
Generate the new guess z^, i = 1,2,. . ,nn-l, by doing
z. = z. + T) e..
-i -i -i
Set ITER = ITER + 1.
7. Find J2 and r i = l,2,...,m and find E2MAX as in step 2.
8. If J2 > Jl (unstable), go to step 11.
9. Stop if E2MAX < a prescribed value.
10. If J2 < Jl to to step 12 to continue to the next iteration.
11. If this step has been performed more than a specified number
of times in this situation, go to step 13. If not, store the


60
value of the current Tj and J2. Recover the values of
z of the previous iteration by doing
z = z T1 e .
-i -i -1
Reduce the value of T]. Generate the new by doing
z. = z. + T] e. V
-i -i -i
Go to step 7.
12. If this step has been performed more than a specified number
of times or if step 11 has been performed at least once in
this iteration, go to step 13. If not, store the value of J2
and T]. Recover the new z^ as in step 11, this time by increas
ing 7] to increase speed of convergence. Go to step 7.
13. Find out the minimum value of J2 that have been obtained in
steps 11 and 12. If this value is greater than Jl, stop com
putations and look for the cause of the instability. If this
value is less than Jl, recall the T] corresponding to this J2 and
regenerate the z^ for this case. Go to step 2.
In this program the value of T] was selected from the consider
ation that at the station m+1 the maximum value of
12
should be less than a prescribed value (j in parentheses represents the
th
element of the vector). This procedure limits the changes in the
j
existing trajectory by limiting the magnitude of the maximum fractional
change in the terminal values of the variables not specified at the
final time.


61
Whenever an iteration was found unstable, T] was reduced by
half. When there was an improvement, a linear extrapolation formula
was used to increase the value of T] so that the norm of the error J2
would decrease to a desired value. In such an attempt, however, T)
was not allowed to increase beyond a certain multiple of its existing
value.
3.7.2. Approximations of the Optimal Control
for the Kip-Up Problem
The method of quasilinearization disregards the question of
singular solutions in the present investigation. It was found in
Section 3.5 that there were many requirements for the existence of
a singular control arq and the necessary conditions for the existence
of singular controls are quite complicated. It was decided that, before
going into those cases extrema without singular arc would be looked for
first and if the computational method was successful, singular subarcs
v/ould be looked for later.
If the singular solutions are not considered, the optimal
o o
controls u^ and u^ become bang-bang and are given by Equations (3.5.4a)
through (3.5.5b).
It is convenient to rewrite these equations at this point
in the following way:
!f -X B (X)
< 0, u = S*(X)
= 0, ux = 0
> 0, u = sJ(X)
(3.7.19)


62
if -X B (X)
<0, u = Sg(X)
=0, u = 0
(3.7.20)
>0, u =
S2(
Let these control laws be expressed by the following expressions:
u = S1 sgn (-XT§1) (3.7.21)
and
where
and
i = 1 or 2
U2 = S2 Sgn (^B2)
sgn (x) = sign of x
= S1 when (-XTB.) < 0
1 -1
= S? when (-X^B.) > 0
i -x
(3.7.22)
(3.7.23)
(3.7.24)
With these expressions for the control laws, the state equations (3.5.1)
become
X = A(X) + B S1 sgn (-X11^) + §2 S2 sgn (-XTB2) (3.7.25)
= F(X,X) (cf. Equation (3.7.3a)).
In the present quasilinearization algorithm the derivatives of
F(X,X) with respect to both X and X in constructing the matrix
(Equation (3.7.4)) are needed. One can see that computation of the
derivative of F(X,X) with respect to X will occur only as a general
ized function with no numerical value for computation in the limit,
because X appears only in the argument of a sign function. Instead


63
of proceeding to the limit the following approximation of the bang-bang
control was made. For i = 1 and 2
o *
u sa u =
i i
rsJ(X) if AA (-\TB ) < S*(X)
AA.(-\TB.) if S2(X) > AA.(-\TB.) £ S1(X)
1--1 l- l -l l -
S2(X) if AA.(-\TB.) > S2(X)
_ 1 1 1 1
(3.7.26)
*
where AA^ and AA^ are two positive constants. This function of
T 12
AA^(-\ B^) is called the saturation function (sat) when and are
unity. The change made in the optimal control is shown graphically in
o *
Figure 9 for u^ and u^, i = 1 or 2.
o *
The controls u. and u. have been plotted against the function
i i
T
-\ B^ near a switch point in Figures 9a and 9b, respectively. It can
* o
be seen that the approximation u^ differs from the optimal control u^
*
only in the portion KL. By increasing the value of AA^, u^ can be made
o
closer to u..
i
With the above approximation of the bang-bang control by a
"saturation" control represented by Equation (3.7.26), one would
*
be able to find the derivative of the control u^ (and hence, of F) with
respect to X. The derivative will be zero when the control is on a
constraint (X) and will be nonzero on the arc KL which appears near
a switching time. In order to represent the saturation control (3.7.26)
by its linearization, it is necessary that at least one of the W ,
i = l,2,...,m, which contains the information of the first derivatives,
be computed on the arc KL. Otherwise, this vital portion of the control
would go unaccounted for in the linearized equations. This may happen


(b) Approximation of Optimal Control
(Saturation)
Figure 9. Approximation of Bang-Bang Control by Saturation Control.
o


65
if the arc KL is too steep for a given selection of integration stations.
In such a case, when none of the W is computed on the switching por
tions of the control variables like the arc KL,the TPBVP, Equations
(3.7.5) and (3.7.6),cannot be solved as explained below.
First, from a physical reasoning, it can be seen that the linear
ized state equations would get decoupled from the adjoint equations if
all of the W^, i = l,2,...,m, show zero derivatives of F with respect
to \. This means that the first six equations of (3.7.5) would get
decoupled from the last six. But the boundary conditions (3.7.6) is such
that they are for the first six variables of e(t) only. Therefore, this
results in a situation where there are six first-order equations with
twelve boundary conditions, a situation which, in general, does not
have a solution.
From the point of view of computations with the present algorithm
it can be shown that the matrix C in equation (3.7.17) cannot be used to
solve for e
-m+1
With the system equations defined as (Equations (3.7.3a) and
(3.7.3b))
X = F(X,X)
X = G(X,X)
one obtains
[W], =
th
where the subscript i represents the i
interval.


66
Let P., Q., E., DD., R. and M., j
J J 1,2,3, and 4, represent
6x6 matrices. Let
[W], =
P P "
1 2
P P
3 4J.
where P = F, = [0] for all points other than those lying on the
2 L 4J
arcs such as KL in Figure 9b. Then
1
+ II V'1
1 + f hi P1 I hi P2
2 hi P3
I + 77 h. P.
2 l 4
\ Q2
^3 Q4
It may be seen that Q = [0] if P = [0].
Z Z
From Equation (3.7.13),
Di = [" + \ hi 'l]'1 [-; + 5 hi wi]
r9! q2
rR.
R7
X
E_1
i
2
1
2
R
E .
J
L 3
4J
L 3
4J
(say),
where
R1 R2
R3 R4
r-i + \ h.w.
2xi
and
R2 = 2 hi p2 =
P9 = [0].
[0] if


67
It may again be seen that
E9 = QlR9 + Q2R4 = [0-* since = Q2 = [0] when P2 = [0],
Now, consider the product D. D. D. of any three succes-
i l+l i+2
m
sive D in the product T D.. Let this multiplication be expressed as
1 i=l 1
E11 E21
E31 E41
E12 E22
E32 E42
E13 E23
E33 E43
DD1 DD2
DD3 DD4
The expression for DD2 is
DD2 = E11 E12 E23 + E21 E32 E23 + E11 E22 E43 + E21 E42 E43
If the upper right elements E ^ = E?2 = E^ = [0], it may clearly be
seen that DD2 = [0].
In the product
m
TT D. =
i=l 1
I
M3 M4
one would therefore obtain
M = [0] if P = [0] for all i, i = l,2,...,m.
With M_ = [0], the expression for C (Equation (3.7.18))
D = (-l)m B. Tr D. + B
H l r
1=1
m
becomes, after using the values of B. and B ,
At ~!C


68
0
0
, B =
I
(f
r
I
0
0
0
"i 0
i 0
m
, x ni
c = (-1)
= (-D
_L M2_
1
o
j-1
Thus, C becomes singular if F,. = 0 for all i, i = l,2,...,m.
A
For a given step size or subdivision in the t-interval (0,t^)
the singularity of C sets an upper limit on the steepness of the arc KL
of Figure 9b whichcan be used for approximating the bang-bang control.
This steepness of the arc KL depends on AA^ (or AA^) for a given X(t)
and X(t). So, in selecting AA^ and AA we have to make sure that they
are not too large. When the solution is obtained, however, the slope of
KL does not depend on the choice of AA and AA if we decide to choose
1 z
AA1 = AA = AA, say. This is because AA will be "absorbed" within X(t) ,
acting as a scale factor on X. In fact, if we define X as AA*X, the state
and adjoint equations of our system do not change, and we could therefore
select AA^ = AA^ = 1. The slope of the arc KL in the solution depends
on the value of AA*X and not on AA alone. However, when the solution
has not yet been obtained, the best value of AA need not be 1.
If the final time, t^, selected for our problem is much larger
than the minimum time, for a bang-bang optimal solution, it can be
expected that the arc KL will have a relatively small slope. If the
final time is gradually reduced, this slope will increase until it
becomes so large that the matrix C becomes singular as explained above.
At that point the solution obtained for the smallest t^ will very


69
nearly be a bang-bang control and will represent the approximate solu
tion of the minimum time problem.
The computation of the optimal final time via the quasilinear
ization method was done according to the stopping condition outlined
above. A final time would be guessed, and the TPBVP (Equations (3.7.1)
and (3.7.2)) would be solved. The final time would then be reduced by
reducing the integration step size, and the TPBVP would again be solved
The process would be continued until the matrix C becomes singular and
the TPBVP could not be solved any further.
3.7.3. A Simple Example Problem for
the Method of Quasilinearization
A simple problem was first taken up to explore the various
features of the quasilinearization algorithm constructed above. The
system was defined as
X
X.
2
1
X
u
2
(3.7.27)
(3.7.28)
The constraints on u were
-1 £ u £ 1
(3.7.29)
The cost function to be minimized is the final time t^.


70
The adjoint equations for the system are
^ = 0
L = -x.
(3.7.30)
The optimal control u is
u = sgn (-X )
(3.7.31)
With the approximation of the optimal control
u = sat (-AA\ )
Ct
(3.7.32)
the state and adjoint equations become
X. = X
x =
sat (-AA X2)
X, 0
(3.7.33)
X0 = -X.
1
The boundary conditions are given by Equations (3.7.28). The analytical
solution of the optimal control is given by
t
f
2
X
1
-1
X
2
t 1
u = 1
Xx = | t2 ) for 0 S t < 1
*\
u = -1
X^ = -1 + 2t t 2 > for l X = 2 t
2 J
The solution is shown graphically in Figure 10.
The problem was solved numerically by solving Equations (3.7.33)
and (3.7.28) for difieren' final times t by quasilinearization.


(C) (d)
1.0
0
-1.0
(e)
Curve 1 - X
Curve 2 X
Curve 3 -*
Curve 4 - \
Curve 5 - u
71
Figure 10. Graphs of Optimal and Nearly Optimal
Solutions Obtained via Quasilinearization
for Simple Example.


72
The solutions for t = 2.25, 2.05, and 2.005 were obtained and are shown
in Figures 10a, b, and c, respectively. With t = 2.00 the matrix C
became singular in iteration 10. The theoretical solution (t^ = 2.00)
is shown in Figure lOd. The results for t =2.005 is a reasonably good
approximation of the optimal solution.
For these problems, 25 time subdivision intervals were used .
The initial guess was deliberately poor, as shown in Figure lOe. The
solutions were obtained in 9 to 11 iterations from this guess in all
these cases.
The program originally written, according to Sylvester and
Meyer [25] did not have the provision for the amount of adjustment T)
in the iterations. Their method was found to be unstable for some of
the initial guesses.
3.7.4. The Results With the Kip-Up Problem
The kip-up problem was taken up after the method of quasilinear
ization was found successful in the case of the example problem. In the
kip-up problem, however, many difficulties were faced from the very
beginning and the problem could not finally be solved by this method.
A major difference between the human motion problem and the example
problem or the problem solved by Boykin and Sierakowski [26] is very
prominent. In the latter problems, the control variables switched only
once from one boundary to another in the entire trajectory, whereas,
in the human motion problem, there were many such switchings. This
made the human motion problem less amenable to iterative methods.


73
The program for the human motion problem was extremely lengthy,
taking more than eleven hundred statements and requiring the use of the
large core of the computer (IBM, 360-65). The subroutine (DIFEQ) which
generated the right side of the state and the adjoint equations and
their derivatives, turned out to be quite lengthy and required an
exorbitant amount of computing time. The quasilinearization program
called this subroutine at every station of the total interval and at
every iteration. As a result, the program required a tremendous amount
of computing timeabout 40 seconds per iteration. All computations
were done in double precision.
Several sources of difficulty were detected in the unsuccessful
attempts to solve the human motion problem by quasilinearization. The
central issue was the tremendous amount of computations with accuracy
required.
The total time interval was divided into 100 equal parts (seg
ments). As the first (and the only one) guess of the final time, these
segments were chosen to be 0.0216 second each. This made the final
time (2.16 seconds) equal to the time taken by the gymnast to do the
actual maneuver. With 100 segments, the program required the large
core of the computer. Even though a larger number of smaller segments
would have been preferred, this could not be done because it was
intended not to go beyond the large core. It was later found that
numerical integration of the nonlinear state equations needed time
steps at least as small as one-sixth of what was taken for quasilinear
ization. It was initially hoped that, since the quasilinearization
algorithm solves the linearized equations instead of the nonlinear


74
equations, the central difference solution would be stable for larger
integration step sizes. This was not the case.
It was proved theoretically that with perfect precision the
method was convergent for all initial guesses. However, it is well
known for the unmodified method of quasilinearization (7] = 1) that the
method is convergent only for certain initial guesses. It may therefore
be fair to expect that even with the modified method, the rate of con
vergence should depend on the initial guess and for some initial guesses,
this convergence may be extremely poor. For this reason, several initial
guesses were tried. The guess of the state variables was taken from the
experimental data which were shown to agree .veil with the computed motion
in Chapter 2. Different initial guesses for the adjoint variables were
tried. The first attempts simply used constant values for all the
adjoint variables. Convergence from this guess was nonexistent. Next,
attempts were made to generate the adjoint variables from forward inte
gration of the adjoint equation with the guessed values of the state
variables and a guessed value of adjoint variables at time t = 0. In
these cases the integrations were unstable with large numbers generated.
The method was not pursued further.
Lastly, the method suggested by Miele, Iyer and Well [31] was
tried for generating the initial guess of the adjoint variables. In
this method, an auxiliary optimization problem is constructed from
the original problem. It tries to make an optimal choice of the adjoint
variables such that the cumulative norm of the error in satisfying the
adjoint equations for a given state variable trajectory is minimized.
This is performed as follows.


75
Suppose u (X,X) is the optimal control. The state and adjoint
equations may then be written as
X = f (X,u (X, .)) = F(X,X)
X = -f^X,u*(X,X))X = G(X,\)
(3.7.34)
(3.7.35)
Suppose we have a guess of the state and the adjoint variables
given by X(t) and X(t). Since X(t) and X(t) do not satisfy Equations
(3.7.34) and (3.7.35), let
e = X + f,Tx>u*(X,X))X
so that e is the error in the adjoint equations (3.7.35). The above
equation can be rewritten as
T
X = f f,x(X,uX(X,X))X (3.7.36)
Now, consider the optimal control problem, where
a. X(t) is a given function of time t
b. X(t) is the state variable
c. e is the control variable
d. The system equation is given by Equation (3.7.36)
e. The cost function to be minimized is
1 r> T
j = I e e dt
2 2 J -
o
f. t^ is the final time (fixed) of the original problem
g. Boundary conditions are
X(0) and X(t ) are free.


76
For the optimal control problem posed above, we can construct
T
the Hamiltonian, using the Lagrange multipliers (6-dimensional
vector):
T
h2 = \ It + £*(£ ~ £,x X) (3.7.37)
The necessary conditions for optimization are
T
h9 ox
2,e "
and
e* = (H >
2 X
or, after performing the differentiations
H, = ^ + ?- 0T
2,f -* -
and
e = f, e
-* X -*
(3.7.38)
(3.7.39)
The boundary conditions are
f*(0) = f*(V = 2 (3.7.40)
because X(t) is free at t=0 and at t = tf.
Using Equation (3.7.38) in (3.7.39) and (3.7.40), one obtains
e = f, e (3.7.41)
~ ~ A.
and
e(0) = e(t ) 0 (3.7.42)
Clearly, Equations (3.7.36), (3.7.41) and (3.7.42) form a linear TPBVP
in X and e. This problem should be easier to solve, in theory, than the
original TPBVP of the state and adjoint variables and should give an
optimal choice for the multiples of X-


77
In several attempts this linear TPBVP could not be solved for
the guessed state trajectory by either the quasilinearization program or
by the IBM scientific subroutine package program DLBVP.
The prime reason for the failure of the method of quasilineariza
tion was finally found to be the numerical inaccuracies in the compu
tations which were dominant in spite of using the double precision
arithmetic. The problem was perpetuated and amplified by the large
numbers in the right side of the state and adjoint equations and in the
derivatives of these equations. The matrices to be inverted at the
various stages, one at every step of integration and another at the end
of the integration, were ill-conditioned for inversion. When a dif
ferent subroutine for inversion than what came with the QUASI program was
m
used, different numbers resulted. The entries of the matrices T and Tf D.
i=l i
were very large and resulted in large numbers for some entries of C.
This made the matrix C ill conditioned for inversion. Any error in
inverting the matrix C would be amplified in the values of e
This amplification was due to the multiplication of the inverse of C
by T, a matrix used in generating s If e was in error, all other
- -mfl -m+1
would be in error because they were generated from
If the inversion of C was accurate, then the first six entires
of computed from Equations (3.7.16,17,18) should be almost zero. But,
3
instead, large values of the order of 10 were obtained! This obviously
indicated that and hence all the were being computed inaccurately.
The quasilinearization program failed to solve the human motion
problem due to the above three reasons, and primarily due to the last
one, the numerical inaccuracies. This was felt to be rather difficult


78
to overcome since it was intimately related to the method used to
solve the linear TPBVP and the structure of the original TPBVP. So
far as the method was concerned, the key point was that the matrix C was
becoming ill conditioned. This occurred because the recursive rela
tionship between and ^ has been used to generate a relationship
m
between e and s which resulted in the product T D. with large
I IIH-1 jL=l ^
ra
entries. A look at the expression for C in terms of T D., B.,
i=l 1 i
and B (Equation (3.7.8)) would make it clear that with such a value
r
m
of T D C would automatically be ill conditioned.
i=l 1
The other standard methods of solving linear TPBVP (Equations (3.7.5),
(3.7.5)), for example, the transition matrix algorithm might have been
numerically more stable. However, other difficulties arose because these
methods require several forward integrations in one iteration. This
means calling the subroutine DIFEQ (the subroutine to generate the right
side of the differential equations and its derivatives) many more times.
This increases the computing time enormously.
With a step size small enough for the integration to be stable,
the storage requirements, computing time, and, therefore, the cost of
computing increases considerably. Even if these factors are absorbed,
it may still be necessary to try several initial guesses of the adjoint
variables to get the method to converge.
In view of the above problems, it was concluded that the
standard method of quasilinearization was not suitable for the human
motion problem and so should not be pursued further.


79 ,
3.8. Steepest Descent Methods for Solving
the Minimum-Time Kip-Up Problem
Three different formulations of first-order steepest descent
methods were used after the method of quasilinearization was unsuccess
ful in solving the minimum-time kip-up problem. These formulations
differ from each other in the construction of the cost functional,
handling of the terminal constraints, treatment of the control incre
ments and in the method of adjusting the final time. The basic features
of these three formulations are described below.
Formulation 1
a. The cost functional is the final time. The terminal errors
and the cost functional are reduced simultaneously.
b. The adjustment of the final time is done by extending or
truncating the final end of the trajectories.
c. The control functions take the form of a sequence of constrained
and unconstrained arcs. Improvements are made at the uncon
strained parts only, including the junctions of the constrained
and unconstrained arcs.
The method is based on the works of Bryson and Denham [27,28]
and Bryson and Ho [32].
Formulation 2
a. The cost functional is the sum of a scalar representing the
final time and a norm of the terminal error.
b. A change in the independent variable t is introduced by defin
ing the transformation


80
t = a t
where a is a constant, or
do
= 0
dT
so that a is treated as an additional state variable. The final
time t is directly proportional to a when is held fixed.
Long [29] used this transformation of the independent variable
to convert free end point TPBVP to fixed end point TPBVP for
solution by the method of quasilinearization.
The cost functional is reconstructed as
2 6 2
J = K O' + E K.S., K ,K. ,. . ,K > 0.
o.^xi o i 6
1=1
No terminal constraints were introduced in this formulation
since they (the §/s) are included in the cost functional,
c. The control functions are assumed to be free to change in any
direction while computing the gradient of the cost function.
That is, the control constraints were not considered when com
puting the gradient of the cost functional used to find a suit
able increment in the control and o'. The control constraints
were imposed in the next iteration during forward integration
of the state equations. When the computed control violated
a constraint in a subarc it was set equal to its limit, the
constraint function on the subarc. This approach for treating
constraints on the control has been used by Wong, Dressier and
Luenburger [33].


81
Formulation 3
This formulation consisted of the features (a) and (b) of
Formulation 2 and (c) of Formulation 1.
The derivations of the numerical algorithms for these formula
tions are now presented. The basic concepts on which these algorithms
are based are available in the literature [28,32]. The results are
derived in a manner suitable for analysis of the outcome of the numer
ical computations, and, thus, the derivations presented here are slightly
different from those found in the literature for any gradient method
approach to the computation of optimally controlled motion.
3.8.1. Derivations for Formulation 1
Suppose we have a continuous nominal control u^(t) and u^it)
and a nominal final time t These control histories have some parts
lying on the constraints S^(X), i = 1 or 2, and the remaining parts lie
away from the constraints. The parts lying on constraints will be
called "constrained arcs" and the parts lying off the constraints will
be called "unconstrained arcs." The interesections of constrained and
unconstrained arcs will be called "corner points." A nominal guess for
the control variables consists of specifying the corner points and
values of the control at unconstrained portions. On the constrained
arcs control variables are generated from constraint functions. An
initial choice of the control history and the final time will not, in
general, satisfy the boundary condition and will not do so in minimum
time either. One can improve upon the trajectories in the following way.
At first, we establish how a particular state variable X1 (the
th
i
component of the state vector X) changes at the final time due to


82
a small change in the control history and the final time. For that
purpose, let a cost functional be defined
J = X1(tf) (3.8.1)
Let \1(t) be an arbitrary time-varying vector of dimension six.
Since the system satisfies Equation (3.1.1), the final value of the
state variable will also be given by
*f T
j' = XX(t ) + f X1 (f-X) dt (3.8.2)
f do - -
If the control variables u (t) and u (t) change by a small
X j
amount 6u (t) and fiu (t) there will also be a small change in the
X i
state variable X(t), denoted by fix(t), throughout the trajectory.
It is clear that these changes in the control, denoted by fiu(t) and
in the state variables denoted by fix(t), will not be independent of
each other. Apart from changing the control history, an increment to
the final time t by a small amount 6t^ and small increment fiX(O) to the
initial state vector are also prescribed. The first-order change in J
due to the changes in the control and the final time is given by
Aj' = X1(tf) dtf + {Sx1 (\X)T 6x}t + (XX)T fiX(O)
tf tf
+ f {aV f, + (x1)} fix dt + f qV f, fiu dt.
(3.8.3)
The fiu is chosen in the following way: For the unconstrained parts,
fiu is completely free. The parts presently on the constraints will
remain on the constraints for the same periods of time as before.


83
For these portions, the change in control is given by the shift of the
constraint due to state changes according to the relation
6u (t) = S3 $X(t) (3.8.4)
1 "
Let c} denote all those portions of the trajectory of the
control u^(t), i = 1 or 2, which lie on any of the constraints s{ or
2 o
S.. Also, let C. denote all those portions of the control u. which
l i i
do not lie on a constraint. If the expressions for on the con
strained arcs given by Equations (3.8.4) are substituted in Equa
tion (3.8.3) and the integration of the last term of the right side of
o 1
Equation (3.8.2) is split into integrations over the intervals ,
o 1 , .
C and C one obtains
fij' = xx(t )dt + {ax1 (xV ax} + {(xV fix}
1 1 Z~Vf t=o
tf
+ Jo {(^1)T i'X+ ('X)} dt
+ f (\X)T f,u dt + f (xV #, S3 6X dt
o 1 j 1 X
(X1)T f, u dt + f (xV f, sJ 6x dt
" u2 2 1 2 X
If Xx(t) is computed such that
Xj(tf) = 1 for i = j
= 0 for i 4 j
where x{ = j element of X*
and
; i
X
l
X
1
(3.8.5)
(3.8.6)
(3.8.7)


84
where
6=0 on C?, 6-1 on
1 11 1
62 = 0 " 2' *2 = 1 n C2
and
u1 and u used in Equation (3.8.7) are computed only when
x,x 2X
the controls u^ and u^ are on a constraint and u^ and u^ are replaced by
the constraint expressions S^(X), one obtains
6j' = X1(t.) dt + (X1(0))T fix(0) + f (X1) f, 6U dt
f f - c ux 1
+ £'U S dt
= f1 (X (t_),u(t.))dt. + aX(0))T flx(0) + f (X1)1 f, flu.
- I I I o - u. 1
i.T
dt
+ lf0(X)T f,u 6u2 dt (3.8.8)
C2 2
where fi is the i^h element of the vector f(X,u).
Equation (3.8.8) is the desired expression for the change of
the state variable X1 at the final time t^ due to (1) a small arbitrary
increment §u(t) given to the control variable u(t) over the unconstrained
portions, (2) a small increase dt of the final time t^, and (3) an
arbitrary small change 6x(0) of the initial state vector X .
Similarly, one can find the expressions for the change in the
terminal value of any other state variable It can be seen that if
one constructs the (6 x6) matrix


85
R(t)
-[V
(t),
2
X (t),
X3(t)
4
X (t),
x5(t), x6(t)
]
so that R(t) satisfies
and
R(t^) = I (6x6 unit matrix)
R(t) =
6 f
l-u.
R(t)
(3.8.9)
(3.8.10)
where the meaning of the various terms in the parentheses of right
side of Equation (3.8.10) is the same as that in the same terms appear-
in Equation (3.8.7), then the change in the terminal value of the state
vector is given by
§X(t )=f dt + RT(0)SX(0) f RT f, Su dt + f RT f, §un dt .
f f ho u 1 u_o u 2
(3.8.11a)
If we choose that 6x(0) =0, we obtain
Sx(tf)
f dt + f RT f, 5u dt + f RT f, 6u dt.
- f J o -u 1 J o -u 2
C1 1 C2 2
(3.8.11b)
Following the method prescribed by Bryson and Ho [32], it will
now be attempted to make improvements in the terminal errors given by
§ = X(tf) Xf
and at the same time reduce the final time t^. Thus, since it is being
sought to minimize t^, one would maximize -dt^, or minimize dt^ with
respect to 6u_^, 6u^ subject to the constraint
6x(t ) = f(t )dt + f RT f, 6u dt + f RT f, §u dt
-f f f v o u 1 J o u 2
C, 1 C 2
(3.8.12)


86
with
6x(t ) = 6xp(t )
- f f
where OX (t^,) is a chosen decrement in the terminal error such that
§u maintains.the first-order approximations.
In this incremental minimization problem, the incremental cost
functional, dt^, to be minimized, and the constraints are linear in the
incremental control parameter §u. Such a problem does not have an
extremum. However, since these are linearized relations obtained from
a nonlinear system, the increments 6u §u and dt should be small for
1 ^ X
the first-order approximation to be valid. To limit the increments
6u 6u and dt the following quadratic penalty term to the incre-
X Zj X
mental cost dt^ is added:
I b dtf + \ So 6U1 Wl(t) dt + I Jo 6US W2(t) dt
(3.8.13)
where b is a positive scalar quantity and W (t) and W (t) are positive
X -J
scalar quantities specified as functions of time.
Adding these quantities to the cost functional and adjoining
the constraint relations (3.8.12) to the resulting expression by a
multiplier v (a six-dimensional vector), the following problem is
obtained.
Minimize wrt, &u $u and
X Z X
dt +
f 2
b dt^ + i f 6u7 W dt + i- f du^ W0dt + vT^f (t^)dt^
'f+2Jo VU1 Tl+2Jo 2 V
C1 C2
+ f Rrf, 6u dt+ f RTf, *u dt 6XP(tJ
C U1 1 C U2 2 f
}
(3.8.14)


87
If the derivatives of this functional with respect to 6u^, &u9, and
dt^ are set to zero, one obtains
dt = ^ [1 +vT f(t )] ,
f b f
(3.8.15)
and
s =
6u =
2
W.
iT
*2 2
Rv on C.
Rv on CL
P A
(3.8.16)
for an extremal.
Using Equations (3.8.15) and (3.8.16) in (3.8.12), one obtains
§XP = i fil + vTf3 -IMv (3.8.17)
b - M -
f
or
where
v = -
1 T
I. +- f f (tj
\jfiji b - f
n T -IT n T -IT
IM= R f, V,' f, Rdt+J R f, Wo R dt.
M 'io u 1 -u o -u 2 u
-i r
6*P -1 T
(3.8.18)
C1 1 1 C2 2 "2
(3.8.19)
The value of 6xJ (t^) the desired change in the terminal values of the
state variables, may be chosen as a decrement in the terminal error S.
>XP(t ) = e. §.
if li
(3.8.20)
where
0 < e. £ 1
i
. th
6xP(t ) is the iL11 element of ^XP.
if
and


88
The steepest descent algorithm for Formulation 1 can now be
described as follows:
1. Guess a nominal control history u (t) and u (t) and a final
time t^.
2. Integrate the state equations forward with the nominal control
and the nominal final time with the initial values of the state
vector given by X(0) = X Store X (t). Compute and store
- -o -
Find the norm
INI
3.
4.
6.
7.
for some positive i = 1,...,6 (to be specified).
Save the controls u^ and u^ in another variable COLD, the corner
times N in the variable NOLD and the final time t^ in TFOLD.
Set R(t^) = I, the (6 X6) unit matrix. Integrate backward
T
Equations (3.8.10). At the same time compute and store R f,^
T ^
and R f, .It is not necessary to store R(t).
- u
2
Select the positive constant b and the positive quantities
W (t) and W (t). Unless there is some special reason, W (t)
i. Z JL
and W (t) may be taken as a positive constant equal to W (to be
z
specified). In such a case, the storage for W^(t) and W (t)
will not be needed. Select e^, i = 1,2,...,6 such that
o < e. ^ l.
Compute I^ using Equation
Compute v, §u^, Su^, anc* dt
and (3.8.16). Note that §u
unconstrained parts C and
(3.8.19).
from Equations (3.8.18), (3.8.15),
and u^ are defined for the
C only, and are to be computed only
on those parts.


89
Change the final time t^ to t + dt^. If the integration step
size is h, this means that the total interval is to be increased or
decreased at the final end (depending upon whether dt^ is positive or
negative) by dt^/h, rounded to the nearest integer number of integra
tion steps. In the case of a positive dt^, the controls u^(t) and
u (t) in the interval TFOLD ^ t ^ t (new) will be given by extrapola-
tion of the existing curves. If a control function is on a constraint
at the final time, TFOLD, it should remain on the same constraint in
this period and is to be generated during the forward integration in the
next steps.
8. Set the control u. = UOLD. + Su., i = 1 or 2, for the uncon-
l li
strained portions. Integrate the state equations forward with
the new control. The corner times N are to be generated again
during the forward integration as described graphically in
Figure 11.
Figure 11 shows the different cases which may arise during the
forward integration. It is seen that a new corner time is generated at
the point where the unconstrained u^ + 6u^ curve, extrapolated if neces
sary, meets the constraint. This part of the forward integration makes
the programming complicated with many logical program statements.
9. Find the errors in the boundary conditions § and find the norm
j| §^jj as in step 2. If this norm is less than that of the
previous iteration go to step 3 to continue the iterations.
If it is not reduced, then do the following:
a. If dt^ is too large, increase b, and go to step 9c below.


Full Text

PAGE 1

'<1$0,&6 $1' 237,0,=$7,21 2) $ +80$1 027,21 352%/(0 %\ 786+$5 .$17, *+26+ $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( &281&,/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

72 0< )$7+(5 $1' 0< 027+(5

PAGE 3

$&.12:/('*0(176 ,W KDV EHHQ D YHU\ KDSS\ H[SHULHQFH WR ZRUN ZLWK 'U : + %R\NLQ -U GXULQJ P\ VWD\ DW WKH 8QLYHUVLW\ RI )ORULGD DP JUDWHIXO WR KLP IRU KLV KHOS DQG JXLGDQFH WKURXJKRXW WKLV ZRUN IURP VXJJHVWLQJ WKH WRSLF RI WKH GLVVHUWDWLRQ WR SURRIUHDGLQJ WKH PDQXVFULSW ZLVK WR H[SUHVV P\ GHHSHVW JUDWLWXGH WR KLP ERWK DV DQ HIILFLHQW DQG HQWKXVLDVWLF UHVHDUFK FRXQVHORU DQG DV D KXPDQ EHLQJ ZLVK WR WKDQN 'U 7 ( %XOORFN IRU WKH PDQ\ GLVFXVVLRQV KDG ZLWK KLP DERXW WKH WKHRU\ DQG QXPHULFDO PHWKRGV RI RSWLPL]DWLRQ 7KHVH GLVFXVVLRQV SURYLGHG PH ZLWK XQGHUVWDQGLQJ RI PDQ\ RI WKH FRQFHSWV WKDW ZHUH XVHG LQ WKLV ZRUN FKRVH 'UV / ( 0DOYHUQ 8 + .XU]ZHJ DQG $ 6ORWWHUEHFN WR EH RQ P\ VXSHUYLVRU\ FRPPLWWHH DV D ZD\ RI SD\LQJ WULEXWH WR WKHP DV H[FHOOHQW WHDFKHUV ,W LV D SOHDVXUH WR WKDQN WKHP 6SHFLDO JUDWLWXGH LV H[SUHVVHG WR 3URIHVVRU 0DOYHUQ IRU JRLQJ WKURXJK WKH GLVVHUWDWLRQ WKRURXJKO\ DQG PDNLQJ FRUUHFWLRQV DP WKDQNIXO WR 'UV 7 0 .KDOLO DQG 5 & $QGHUVRQ IRU H[DPLQLQJ WKLV GLVVHUWDWLRQ ZKHQ 'U $ 6ORWWHUEHFN OHIW WKH 8QLYHUVLW\ DP WKDQNIXO WR 0U 7RP %RRQH IRU KLV LQWHUHVW LQ WKLV ZRUN DQG IRU YROXQWHHULQJ KLV VHUYLFHV DV WKH WHVW VXEMHFW RI WKH H[SHULPHQWV 7KDQNV DUH DOVR GXH WR WKH 1DWLRQDO 6FLHQFH )RXQGDWLRQ ZKLFK SURYLGHG ILQDQFLDO VXSSRUW IRU PRVW RI WKLV ZRUN )LQDOO\ LW LV D SOHDVXUH WR WKDQN P\ IULHQG 5R\ 6DPUDV IRU KLV KHOS LQ WKH H[SHULPHQWV DQG 0UV (GQD /DUULFN IRU W\SLQJ WKH GLVVHUWDWLRQ LLL

PAGE 4

7$%/( 2) &217(176 3DJH $&.12:/('*0(176 LLL /,67 2) ),*85(6 YL 127$7,21 YL L L $%675$&7 L[ &+$37(5 ,1752'8&7,21 :K\ DQG :KDW '\QDPLFV DQG 2SWLPL]DWLRQ LQ +XPDQ 0RWLRQ 3UHYLRXV :RUN 7KH 3UREOHP 6WDWHPHQW 7KH .LS8S 0DQHXYHU 3UHVHQW :RUN f &+$37(5 (;3(5,0(17$7,21 $1' &216758&7,21 2) 7+( 0$7+(0$7,&$/ 02'(/ ,QWURGXFWLRQ 0DWKHPDWLFDO 0RGHO RI WKH .LS8S 7KH (TXDWLRQV RI 0RWLRQ 7KH (TXDWLRQV RI 0RWLRQ IRU WKH ([SHULPHQW DQG WKH ,QWHJUDWLRQ 6FKHPH ([SHULPHQWDO 3URFHGXUH 5HVXOWV DQG 'LVFXVVLRQ 6RXUFHV RI (UURUV ,PSHUIHFWLRQV LQ WKH 0RGHO (UURUV LQ )LOPLQJ DQG 3URFHVVLQJ WKH 'DWD 7KH ,QWHJUDWLRQ 6FKHPH &+$37(5 $1$/<7,& '(7(50,1$7,21 2) +,( 0,1,0807,0( .,383 675$7(*< ,QWURGXFWLRQ 0DWKHPDWLFDO )RUPXODWLRQ RI WKH .LS8S 3UREOHP %RXQGV RQ WKH &RQWUROV 7RUVLRQDO 6SULQJV LQ WKH 6KRXOGHU DQG +LS -RLQWV %RXQGDU\ &RQGLWLRQV LY

PAGE 5

7$%/( 2) &217(176 &RQWLQXHGf 3DJH &+$37(5 &RQWLQXHGf 7KH 1HFHVVDU\ &RQGLWLRQV RI 7LPH 2SWLPDO &RQWURO 7KH 6ROXWLRQ 0HWKRGV $ 4XDVLOLQHDUL]DWLRQ 6FKHPH IRU 6ROYLQJ WKH 0LQLPXP7LPH 3UREOHP 'HULYDWLRQ RI WKH 0RGLILHG 4XDVLOLQHDUL]DWLRQ $OJRULWKP $SSUR[LPDWLRQ RI WKH 2SWLPDO &RQWURO IRU WKH .LS8S 3UREOHP $ 6LPSOH ([DPSOH 3UREOHP IRU WKH 0HWKRG RI 4XDVLOLQHDUL]DWLRQ 7KH 5HVXOWV :LWK WKH .LS8S 3UREOHP 6WHHSHVW 'HVFHQW 0HWKRGV IRU 6ROYLQJ WKH 0LQLPXP7LPH .LS8S 3UREOHP 'HULYDWLRQV IRU )RUPXODWLRQ 'HULYDWLRQV IRU )RUPXODWLRQ 'HULYDWLRQV IRU )RUPXODWLRQ 7KH ,QWHJUDWLRQ 6FKHPH IRU WKH 6WHHSHVW 'HVFHQW 0HWKRGV ,QLWLDO *XHVV RI WKH &RQWURO )XQFWLRQ 5HVXOWV RI WKH 1XPHULFDO &RPSXWDWLRQV DQG &RPPHQWV &RPSDULVRQ RI WKH 0LQLPXP7LPH 6ROXWLRQ :LWK ([SHULPHQW &+$37(5 &21&/86,216 $1' 5(&200(1'$7,216 )25 )8785( :25. &RQFOXVLRQV 5HFRPPHQGDWLRQV IRU )XWXUH :RUN $33(1',; $ '(7(50,1$7,21 2) 7+( ,1(57,$ 3$5$0(7(56 2) 7+( .,383 02'(/ )520 7+(+$1$9$1 02'(/ $33(1',; % $1 ,19(67,*$7,21 2) $ 67((3(67 '(6&(17 6&+(0( )25 ),1',1* 237,0$/ %$1*%$1* &21752/ 62/87,21 )25 7+( .,383 352%/(0 /,67 2) 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ Y

PAGE 6

/,67 2) ),*85(6 )LJXUH 3DJH +DQDYDQnV 0DWKHPDWLFDO 0RGHO RI D +XPDQ %HLQJ 0DWKHPDWLFDO 0RGHO IRU .LS8S 7KH 7KUHH/LQN 6\VWHP 6NHWFK RI .LS8S $SSDUDWXV &RQILJXUDWLRQ 0HDVXUHG DQG 6PRRWKHG )LOP 'DWD RI $QJOHV DQG L_U IRU WKH .LS8S 0RWLRQ 0HDVXUHG DQG &RPSXWHG 9DOXHV RI FS IRU 6ZLQJLQJ 0RWLRQ 0HDVXUHG DQG &RPSXWHG 9DOXHV RI FS IRU .LS8S 0RWLRQ 8QPRGLILHG &RQWURO /LPLW )XQFWLRQV $SSUR[LPDWLRQ RI %DQJ%DQJ &RQWURO E\ 6DWXUDWLRQ &RQWURO *UDSKV RI 2SWLPDO DQG 1HDUO\ 2SWLPDO 6ROXWLRQV 2EWDLQHG YLD 4XDVLOLQHDUL]DWLRQ IRU 6LPSOH ([DPSOH 0RGLILFDWLRQ RI &RUQHU 3RLQW %HWZHHQ &RQVWUDLQHG DQG 8QFRQVWUDLQHG $UFV $IWHU &KDQJHV LQ WKH 8QFRQVWUDLQHG $UFV 6ROXWLRQ RI ([DPSOH 3UREOHP E\ WKH 0HWKRG RI 6WHHSHVW 'HVFHQW ,QLWLDO *XHVV IRU WKH &RQWURO )XQFWLRQV $ 1RQ2SWLPDO &RQWURO :KLFK $FTXLUHV %RXQGDU\ &RQGLWLRQV $SSUR[LPDWH 0LQLPXP 7LPH 6ROXWLRQ E\ )RUPXODWLRQ RI WKH 0HWKRG RI 6WHHSHVW 'HVFHQW $SSUR[LPDWH 0LQLPXP 7LPH 6ROXWLRQ E\ )RUPXODWLRQ RI WKH 0HWKRG RI 6WHHSHVW 'HVFHQW YL

PAGE 7

/,67 2) ),*85(6 &RQWLQXHGf )LJXUH 3DJH $QJOH +LVWRULHV IRU 6ROXWLRQ RI )LJXUH 'LIIHUHQFH %HWZHHQ 0HDVXUHG $QJOH DQG 0DWKHPDWLFDO $QJOH IRU +XPDQ 0RGHO 'XH WR 'HIRUPDWLRQ RI 7RUVR &RQVWUXFWLRQ RI .LS8S 0RGHO IURP +DQDYDQ 0RGHO YLL

PAGE 8

127$7,21 8VDJH 0HDQLQJ ; G[ f§ WRWDO GHULYDWLYH RI WKH TXDQWLW\ [ ZLWK UHVSHFW WR WLPH W ; [ LV D FROXPQ YHFWRU 7 7 [ [f 7UDQVSRVH RI [ GHILQHG RQO\ ZKHQ [ LV D YHFWRU RU D PDWUL[ [ \ [ SDUWLDO GHULYDWLYH RI [ ZLWK UHVSHFW WR \ R\ [ [ A \ R\ 3DUWLDO GHULYDWLYH RI WKH FROXPQ YHFWRU [ ZLWK UHVSHFW WR WKH VFDODU \ 7KH UHVXOW LV D FROXPQ YHFWRU ZKRVH LA FRPSRQHQW LV WKH SDUWLDO GHULYDWLYH RI WKH LAD FRPSRQHQW RI [ ZLWK UHVSHFW WR \ [ [Y g 3DUWLDO GHULYDWLYH RI WKH VFDODU [ ZLWK UHVSHFW WR WKH FROXPQ YHFWRU \ DOVR FDOOHG WKH JUDGLHQW RI [ ZLWK UHVSHFW WR \ ,W LV D URZ YHFWRU ZKRVH LAK HOHPHQW LV WKH SDUWLDO GHULYD [ WLYH RI [ ZLWK UHVSHFW WR WKH LAK HOHPHQW RI \ 9 \ 3DUWLDO GHULYDWLYH RI D FROXPQ YHFWRU [ E\ D FROXPQ YHFWRU \ 7KH UHVXOW LV D PDWUL[ ZKRVH LMfWK HOHPHQW LV WKH SDUWLDO GHULYDWLYH RI WKH LWK HOHPHQW RI [ ZLWK UHVSHFW WR WKH HOHPHQW RI \ LL LOO 7 Q 1RUP RI WKH FROXPQ YHFWRU [ 'HILQHG DV HLWKHU [ [ RU ( .[ L O WR EH VSHFLILHG ZKLFK RQHf ZKHUH [ LV D YHFWRU RI GLPHQVLRQ Q DUH JLYHQ SRVLWLYH QXPEHUV [A LV WKH LAK HOHPHQW RI [ YLLL

PAGE 9

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ '<1$0,&6 $1' 237,0,=$7,21 2) $ +80$1 027,21 352%/(0 %\ 7XVKDU .DQWL *KRVK 0DUFK &KDLUPDQ 'U :LOOLDP + %R\NLQ -U 0DMRU 'HSDUWPHQW (QJLQHHULQJ 6FLHQFH 0HFKDQLFV DQG $HURVSDFH (QJLQHHULQJ 4XHVWLRQV DERXW DSSOLFDELOLW\ RI DQDO\WLFDO PHFKDQLFV DQG XVHIXOQHVV RI RSWLPDO FRQWURO WKHRU\ LQ GHWHUPLQLQJ RSWLPDO KXPDQ PRWLRQV DULVH TXLWH QDWXUDOO\ DQG HVSHFLDOO\ LQ WKH FRQWH[W RI PDQnV LQFUHDVHG DFWLYLWLHV LQ RXWHU VSDFH DQG XQGHU ZDWHU 6R IDU YHU\ OLWWOH ZRUN KDV EHHQ GRQH WR DQVZHU WKHVH TXHVWLRQV ,Q WKLV GLVVHUWDn WLRQ LQYHVWLJDWLRQV WR DQVZHU WKHVH TXHVWLRQV DUH SUHVHQWHG $ SDUWLFXODU J\PQDVWLF PDQHXYHU QDPHO\ WKH NLSXS PDQHXYHU LV H[DPLQHG H[SHULPHQWDOO\ DQG WKHRUHWLFDOO\ $ PDWKHPDWLFDO PRGHO IRU D KXPDQ SHUIRUPHU LV FRQVWUXFWHG IRU WKLV PDQHXYHU IURP WKH EHVW SHUn VRQDOL]HG LQHUWLD DQG MRLQW FHQWHUV PRGHO RI D KXPDQ EHLQJ DYDLODEOH WRGD\ ([SHULPHQWV ZLWK WKH KXPDQ SHUIRUPHU DQG SKRWRJUDSKLF GDWD FROn OHFWLRQ PHWKRGV DUH GLVFXVVHG &RPSDULVRQV RI WKH REVHUYHG PRWLRQ ZLWK VROXWLRQV RI WKH PDWKHPDWLFDO PRGHO HTXDWLRQV DUH SUHVHQWHG 'LVFUHSDQn FLHV EHWZHHQ WKH DFWXDO PRWLRQ DQG WKH FRPSXWHG PRWLRQ DUH H[SODLQHG LQ WHUPV RI SULQFLSOHV RI PHFKDQLFV DQG HUURUV LQ PHDVXUHPHQWV 6RPH FKDQJHV LQ WKH PRGHO DUH VXJJHVWHG ,;

PAGE 10

$Q DSSUR[LPDWH DQDO\WLF VROXWLRQ RI WKH NLSXS PDQHXYHU SHUIRUPHG LQ PLQLPXP WLPH LV REWDLQHG IRU WKH PRGHO YLD RSWLPDO FRQWURO WKHRU\ 6HYHUDO QXPHULFDO PHWKRGV DUH XVHG WR GHWHUPLQH WKH VROXWLRQ ZKLFK LV FRPSDUHG ZLWK WKH REVHUYHG SHUIRUPDQFH RI WKH KXPDQ VXEMHFW 'LIILFXOn WLHV LQ VROYLQJ KXPDQ PRWLRQ SUREOHPV E\ H[LVWLQJ QXPHULFDO DOJRULWKPV DUH GLVFXVVHG LQ WHUPV RI IXQGDPHQWDO VRXUFHV RI WKHVH GLIILFXOWLHV )LQDOO\ UHFRPPHQGDWLRQV IRU LPPHGLDWHnIXWXUH ZRUN KDYH EHHQ PDGH [

PAGE 11

&+$37(5 ,1752'8&7,21 :K\ DQG :KDW 0DQnV LQFUHDVHG LQWHUHVW LQ WKH H[SORUDWLRQ RI VSDFH DQG WKH RFHDQV ZDV DQ LPSHWXV IRU D EHWWHU XQGHUVWDQGLQJ RI WKH PHFKDQLFV RI ODUJH PRWLRQ PDQHXYHUV SHUIRUPHG E\ KXPDQ EHLQJV ([SHULHQFH LQ VSDFH ZDONLQJ DQG FHUWDLQ DWKOHWLF HYHQWV EURXJKW RXW WKH IDFW WKDW KXPDQ LQWXLWLRQ GRHV QRW DOZD\V JLYH FRUUHFW DQVZHUV WR TXHVWLRQV RQ KXPDQ PRWLRQ )RU FHUWDLQ SUREOHPV WKH VROXWLRQV PXVW EH IRXQG E\ DQDO\WLFDO PHWKRGV VXFK DV PHWKRGV RI DQDO\WLFDO PHFKDQLFV DQG RSWLPDO FRQWURO %URDGO\ VSHDNLQJ WKLV ZRUN GHDOV ZLWK WKH DSSOLFDWLRQ RI WKH SULQFLSOHV RI PHFKDQLFV DQG RSWLPDO FRQWURO WKHRU\ LQ WKH DQDO\WLFDO GHWHUPLQDWLRQ RI KXPDQ PRWLRQ GHVFULSWRUV '\QDPLFV DQG 2SWLPL]DWLRQ LQ +XPDQ 0RWLRQ '\QDPLFV SURYLGHV WKH EDVLF IRXQGDWLRQ RI WKH DQDO\WLF SUREOHP ZKLOH RSWLPDO FRQWURO WKHRU\ FRPSOHWHV WKH IRUPXODWLRQ RI WKH PDWKHPDWn LFDO SUREOHP DQG SURYLGHV PHDQV WR VROYH WKH SUREOHP ,Q DQ\ HQGHDYRU RI DQDO\WLF GHWHUPLQDWLRQ RI D KXPDQ PRWLRQ WKH ILUVW VWHSV DUH FRQVWUXFn WLRQ RI D ZRUNDEOH PRGHO KDYLQJ WKH VDPH G\QDPLFV RI WKH PRWLRQ DV WKDW RI WKH KXPDQ SHUIRUPHU DQG REWDLQLQJ WKH HTXDWLRQV RI PRWLRQ IRU WKH KXPDQ PRGHO +RZHYHU WKH SULQFLSOHV RI PHFKDQLFV DORQH GR QRW JLYH HQRXJK LQIRUPDWLRQ IRU DQDO\WLFDO GHWHUPLQDWLRQ RI D GHVLUHG PDQHXYHU ZKHQHYHU WKHUH DUH VXIILFLHQW GHJUHHV RI IUHHGRP RI PRYHPHQW :nLWKRXW

PAGE 12

NQRZLQJ ZKDW JRHV RQ LQ WKH KXPDQ PRWRU V\VWHP RSWLPDO FRQWURO LV SUHVHQWO\ WKH RQO\ NQRZQ DQDO\WLFDO PHWKRG ZKLFK FDQ SURYLGH WKH UHPDLQn LQJ QHFHVVDU\ LQIRUPDWLRQ $IWHU D ZRUNDEOH G\QDPLF PRGHO RI WKH KXPDQ SHUIRUPHU KDV EHHQ REWDLQHG WKH UHPDLQLQJ SDUW RI WKH DQDO\WLF GHWHUPLQDWLRQ RI D SK\VLFDO PDQHXYHU LV D SUREOHP RI FRQWURO RI D G\QDPLF V\VWHP ZKHUH WKH SRVLWLRQ YHFWRUV DQGRU RULHQWDWLRQ RI WKH YDULRXV HOHPHQWV RI WKH PRGHO DQG WKHLU UDWH RI FKDQJH ZLWK UHVSHFW WR WLPH UHSUHVHQWLQJ WKH VWDWHV RI WKH G\QDPLF V\VWHP EHLQJ FRQVLGHUHGf LV WR EH GHWHUPLQHG 7KH VWDWH FRPSRQHQWV FKDQJH IURP RQH VHW RI LQLWLDOf YDOXHV WR DQRWKHU VHW RI ILQDOf YDOXHV DW D ODWHU WLPH 7KH FRQWURO YDULDEOHV WKDW LV WKH LQGHSHQGHQW YDULDEOHV ZKRVH VXLWDEOH FKRLFH ZLOO EULQJ WKH FKDQJH DUH WRUTXHV RI WKH YROXQWDU\ PXVFOH IRUFHV DW WKH MRLQWV RI WKH YDULRXV OLPEV +RZHYHU WKH SUREOHP IRUPXODWLRQ LV QRW PDWKHPDWLFDOO\ FRPSOHWH ZLWK WKH DERYH VWDWHPHQWV EHFDXVH WKHUH ZRXOG LQ JHQHUDO EH PRUH WKDQ RQH ZD\ RI WUDQVIHUULQJ D V\VWHP IURP RQH VWDWH WR DQRWKHU ZKHQ VXFK WUDQVIHUV DUH SRVVLEOH &RQVWUDLQWV DUH UHTXLUHG LQ WKH FRPSOHWH IRUn PXODWLRQ 7KH FRQFHSW RI RSWLPL]DWLRQ RI D FHUWDLQ SK\VLFDOO\ PHDQLQJn IXO TXDQWLW\ GXULQJ WKH PDQHXYHU DULVHV QDWXUDOO\ DW WKLV SRLQW $ FRVW IXQFWLRQDO WR EH PD[LPL]HG RU PLQLPL]HG JLYHV D EDVLF DQG QHHGHG VWUXFn WXUH WR WKH VFKHPH IRU H[HUWLQJ WKH FRQWURO WRUTXHV ,W PD\ EH H[SHFWHG ORJLFDOO\ WKDW XQOHVV JLYHQ VSHFLDO RUGHUV D KXPDQ EHLQJ VHOHFWV LWV RZQ SHUIRUPDQFH FULWHULRQ IRU RSWLPL]DWLRQ ZKLOH GRLQJ DQ\ SK\VLFDO DFWLYLW\ 6RPH RI WKH SK\VLFDOO\ PHDQLQJIXO TXDQWLWLHV WKDW PD\ EH RSWLPL]HG GXULQJ D SK\VLFDO DFWLYLW\ DUH WKH WRWDO WLPH WR SHUIRUP WKH DFWLYLW\ DQG WKH WRWDO HQHUJ\ VSHQW GXULQJ WKH DFWLYLW\

PAGE 13

3UHYLRXV :RUN 9HU\ OLWWOH ZRUN KDV EHHQ UHSRUWHG LQ WKH OLWHUDWXUH VR IDU ZKHUH WKH RSWLPL]DWLRQ FRQVLGHUDWLRQV KDYH EHHQ XVHG LQ WKH VWXG\ RI KXPDQ PRWLRQ (DUOLHU ZRUN LQ WKH VWXG\ RI WKH PHFKDQLFV RI PRWLRQ RI OLYLQJ EHLQJV ZDV GRQH SULPDULO\ IURP WKH YLHZ RI JURVVO\ H[SODLQLQJ FHUWDLQ PDQHXYHUV PRGHOLQJ WKH DSSOLFDELOLW\ RI SULQFLSOHV RI ULJLG ERG\ PHFKDQLFV 0RVW RI WKLV ZRUN ZDV GRQH XQGHU HLWKHU IUHH IDOO RU ]HUR JUDYLW\ FRQGLWLRQV 7KH PRGHOV ZHUH PDGH XS RI FRXSOHG ULJLG ERGLHV DQG FRQVHUYDWLRQ RI DQJXODU PRPHQWXP LQ WKH DEVHQFH RI H[WHUQDO WRUTXHV ZDV WKH PRVW RIWHQ XVHG SULQFLSOH RI PHFKDQLFV 7KH ULJKWLQJ PDQHXYHU RI D IUHH IDOOLQJ FDW LQ PLGDLU DWWUDFWHG WKH DWWHQWLRQ RI VHYHUDO DXWKRUV LQ WKH HDUO\ GD\V RI VWXGLHV RI OLYLQJ r REMHFWV 0DUH\nV >@ SKRWRJUDSKV RI D IDOOLQJ FDW HYRNHG GLVFXVVLRQV LQ LQ WKH )UHQFK $FDGPLH GHV 6FLHQFHV RQ ZKHWKHU DQ LQLWLDO DQJXn ODU YHORFLW\ ZDV QHFHVVDU\ LQ RUGHU WR SHUIRUP WKH ULJKWLQJ PDQHXYHU *X\RX >@ PRGHOHG WKH FDW E\ WZR FRXSOHG ULJLG ERGLHV DQG H[SODLQHG WKH SKHQRPHQRQ ZLWK WKH DLG RI WKH DQJXODU PRPHQWXP SULQFLSOH ZLWK WKH DQJXn ODU PRPHQWXP RI WKH HQWLUH FDW LGHQWLFDOO\ HTXDO WR ]HUR /DWHU PRUH SKRWRJUDSKLF VWXGLHV ZHUH PDGH E\ 0DJQXV >@ DQG 0F'RQDOG >@ 0F'RQDOG PDGH DQ H[WHQVLYH VWXG\ RI WKH IDOOLQJ FDWV ZLWK D KLJK VSHHG IUDPHVVHFRQGf PRWLRQ SLFWXUH FDPHUD +LV GHVFULSWLRQ RI WKHLU PRWLRQ DGGHG PDQ\ GHWDLOV WR SUHYLRXV H[SODQDWLRQV 0F'RQDOG IRXQG QR 1XPEHUV LQ EUDFNHWV GHQRWH UHIHUHQFH QXPEHUV OLVWHG LQ WKH /LVW RI 5HIHUHQFHV

PAGE 14

HYLGHQFH IRU WKH VLPSOH PRWLRQ RI 0DJQXV ,Q DGGLWLRQ KH VWXGLHG WKH H\HV DQG WKH YHVWLEXODU RUJDQ DV PRWLRQ VHQVRUV $PDU >@ PDGH RQH RI WKH PRVW FRPSOHWH RI WKH HDUO\ VWXGLHV RI KXPDQ PRWRU DFWLYLWLHV LQ 7KLV VWXG\ RI WKH UHODWLYH PRWLRQ RI WKH KHDG OLPEV DQG PDMRU VHFWLRQV RI WKH WUXQN ZDV PDGH ZLWK D YLHZ WR VWXG\ WKH HIILFLHQF\ RI KXPDQ PRWLRQ LQ FRQQHFWLRQ ZLWK LQGXVWULDO ODERU )LVFKHU >@ FRQVLGHUHG WKH PHFKDQLFV RI D ERG\ PDGH XS RI Q OLQNV DQG REWDLQHG HTXDWLRQV RI PRWLRQ ZLWKRXW LQWURGXFLQJ FRRUGLQDWHV +H PDGH GLVFXVVLRQV RI DSSOLFDWLRQV RI KLV WKHRU\ WR PRGHOV RI WKH KXPDQ ERG\ EXW GLG QRW JLYH DSSOLFDWLRQV IRU WKH HTXDWLRQV RI PRWLRQ KH KDG REWDLQHG ,Q UHFHQW \HDUV PRVW RI WKH DQDO\WLFDO VWXGLHV RI KXPDQ PRWLRQ KDYH EHHQ DVVRFLDWHG ZLWK KXPDQ EHLQJV LQ IUHH IDOO DV DSSOLHG WR DVWURQDXWV PDQHXYHULQJ LQ VSDFH ZLWK DQG ZLWKRXW H[WHUQDO GHYLFHV 0F'RQDOG >@ PDGH H[WHQVLYH H[SHULPHQWDO VWXGLHV RI KXPDQ PRWLRQV VXFK DV VSULQJERDUG GLYLQJ DQG WKH FDWGURS PDQHXYHU 0F&UDQN DQG 6HJDU >@ FRQVLGHUHG WKH KXPDQ ERG\ WR EH FRPSRVHG RI QLQH FRQQHFWHG SDUWV 7KH\ GHYHORSHG D SURFHGXUH IRU WKH QXPHULFDO VROXWLRQ RI WKHLU YHU\ FRPSOH[ HTXDWLRQ RI PRWLRQ $OWKRXJK VRPH QXPHULFDO UHVXOWV ZHUH SUHn VHQWHG QR JHQHUDO FRQFOXVLRQV ZHUH GUDZQ 7KH PRVW VLJQLILFDQW FRQWULEXWLRQ WR WKH DSSOLFDWLRQ RI UDWLRQDO PHFKDQLFV WR SUREOHPV LQ WKH UHRULHQWDWLRQ RI D KXPDQ EHLQJ ZLWKRXW WKH KHOS RI H[WHUQDO WRUTXHV ZDV PDGH E\ 6PLWK DQG .DQH >@ 6SHFLILFDOO\ WKH\ FRQVLGHUHG D PDQ XQGHU IUHH IDOO ,Q WKLV SDSHU WKH DXWKRUV SRLQWHG RXW WKDW WKH QXPEHU RI WKH XQNQRZQ IXQFWLRQV H[FHHGHG WKH QXPEHU RI WKH

PAGE 15

HTXDWLRQV RI PRWLRQV WKDW ZHUH REWDLQHG IRU WKH V\VWHP DQG UHFRJQL]HG WKH QHHG IRU RSWLPL]DWLRQ FRQVLGHUDWLRQV ,Q RUGHU WR JHW WKH DGHTXDWH QXPEHU RI HTXDWLRQV WKH\ LQWURGXFHG D FRVW IXQFWLRQDO WR EH RSWLPL]HG ZKLFK FRQVLVWHG RI DQ LQWHJUDO RYHU WKH WRWDO WLPH LQWHUYDO RI VRPH VXLWDEOH IXQFWLRQDO RI WKH XQGHWHUPLQHG JHQHUDOL]HG FRRUGLQDWHV 2SWLPL]DWLRQ RI WKLV IXQFWLRQDO EHFDPH D SUREOHP RI FDOFXOXV RI YDULDn WLRQV ZKLFK \LHOGHG WKH QHFHVVDU\ QXPEHU RI DGGLWLRQDO HTXDWLRQV WKH (XOHU/DJUDQJH HTXDWLRQVf WR VROYH WKH RULJLQDO SUREOHP FRPSOHWHO\ 7KH DSSURDFK RI 6PLWK DQG .DQH VXIIHUV IURP RQH PDMRU GUDZEDFNf§ LW LJQRUHV WKH LQWHUQDO IRUFHV RI WKH V\VWHP 7KH LQWHUQDO IRUFHV GXH WR PXVFOH JURXSV DW WKH YDULRXV MRLQWV RI WKH ERG\ VHJPHQWV DUH PRVWO\ YROXQWDU\ KDYH XSSHU ERXQGV LQ WKHLU PDJQLWXGHV DQG DUH UHVSRQVLEOH IRU WKH SDUWLDOO\ LQGHSHQGHQW PRYHPHQWV RI WKH YDULRXV OLPEV %HFDXVH WKH\ DUH LQWHUQDO IRUFHV LW LV SRVVLEOH WR HOLPLQDWH WKHP FRPSOHWHO\ LQ DQ\ HTXDWLRQV RI PRWLRQ 7KHVH FDQ EH REWDLQHG IRU H[DPSOH LI WKH HQWLUH V\VWHP LV FRQVLGHUHG DV D ZKROH +RZHYHU VXFK HTXDWLRQV ZLOO EH OLPLWHG LQ QXPEHU DW PRVW VL[ WKUHH IURP WKH FRQVLGHUDWLRQ RI WUDQVODWLRQ DQG WKUHH IURP WKH FRQVLGHUDWLRQ RI URWDWLRQf DQG ZLOO LQ JHQHUDO EH OHVV WKDQ WKH QXPEHU RI WKH XQNQRZQ IXQFWLRQV 7KH LQWURn GXFWLRQ RI D FRVW IXQFWLRQDO ZLOO \LHOG YLD WKH FDOFXOXV RI YDULDWLRQV WKH SURSHU QXPEHU RI HTXDWLRQV +RZHYHU WKH PDQHXYHU REWDLQHG PD\ EH EH\RQG WKH SK\VLFDO DELOLW\ RI WKH LQGLYLGXDO ,W LV WKHUHIRUH HVVHQn WLDO WR UHFRJQL]H WKH UROH RI DOO WKH LQWHUQDO YROXQWDU\ IRUFHV WKDW FRPH LQWR SOD\ GXULQJ D SK\VLFDO PDQHXYHU $\RXE >@ FRQVLGHUHG DQ RSWLPDO SHUIRUPDQFH SUREOHP RI WKH KXPDQ DUP WUDQVIHUULQJ D ORDG IURP RQH SRLQW RQ D WDEOH WR DQRWKHU SRLQW

PAGE 16

7KH PRWLRQ FRQVLGHUHG ZDV SODQDU ,QWHUQDO IRUFHV DQG FRQVWUDLQWV RQ WKH VWUHVVHV ZHUH FRQVLGHUHG $ WZROLQN PRGHO ZDV FRQVLGHUHG IRU WKH DUP DQG QXPHULFDO VROXWLRQV ZHUH REWDLQHG XVLQJ WKH PHWKRGV RI /LQHDU 3URJUDPPLQJ *HRPHWULF 3URJUDPPLQJ '\QDPLF 3URJUDPPLQJ DQG VLPXODWLRQ 7KH SHUIRUPDQFH FULWHULRQ ZDV D PDWKHPDWLFDO H[SUHVVLRQ IRU WKH WRWDO HIIRUW VSHQW GXULQJ WKH DFWLYLW\ 7KH PRWLRQ FRQVLGHUHG ZDV VLPSOH IURP WKH SRLQW RI YLHZ RI G\QDPLFV $OVR LW UHTXLUHG OHVV WKDQ WHQ SRLQWV WR GHVFULEH WKH HQWLUH PRWLRQ 7KLV DOORZHG FRQVLGHUDWLRQ RI PDQ\ SK\VLFDO FRQVWUDLQWV EXW WKH G\QDPLFV RI WKH KXPDQ ERG\ PRWLRQ FRQn VLGHUHG ZDV TXLWH GLIIHUHQW WKDQ ZKHQ ODUJH PRWLRQ RI WKH YDULRXV OLPEV DUH LQYROYHG $ OLVW RI UHIHUHQFHV RI ZRUNV RQ KXPDQ SHUIRUPDQFH IURP WKH SRLQW RI YLHZ RI ,QGXVWULDO (QJLQHHULQJ LV JLYHQ LQ $\RXEnV WKHVLV 7KH UHVHDUFK LQ WKH DUHD RI IUHH IDOO SUREOHPV VKRZHG WKDW DQDO\WLFDO VROXWLRQV DJUHHG TXDOLWDWLYHO\ ZLWK REVHUYDWLRQV LQ WKRVH FDVHV LQ ZKLFK UDWLRQDO PHFKDQLFV KDV EHHQ DSSOLHG ZLWK FDUH ([DPSOHV RI VXFK SUREOHPV DUH WKH FDWGURS SUREOHP DQG WKH MDFNNQLIHGLYHU PDQHXYHU 6PLWK DQG .DQHf $WWHPSWV DW DQDO\WLFDO VROXWLRQV RI DFWLYn LW\ SUREOHPV ZKLFK DUH QRW LQ WKH IUHH IDOO FDWHJRU\ KDYH QRW EHHQ FRPn SOHWHO\ VXFFHVVIXO 6XFK SUREOHPV DUH LQ DWKOHWLF DFWLYLWLHV VXFK DV UXQQLQJ SDUW RI WKH SROH YDXOW PDQHXYHU DQG SDUW RI WKH KLJK MXPS PDQHXYHUf DQG LQ DFWLYLWLHV DVVRFLDWHG ZLWK ZRUNLQJ RQ HDUWK 6LPXOWDQHRXVO\ ZLWK WKH VWXG\ RI WKH G\QDPLFV RI PRWLRQ VHYHUDO LQYHVWLJDWLRQV ZHUH PDGH IRU WKH GHWHUPLQDWLRQ RI WKH LQHUWLD SDUDPHWHUV RI KXPDQ EHLQJV DW YDULRXV FRQILJXUDWLRQV .QRZOHGJH RI LQHUWLD SDUDPn HWHUV LV HVVHQWLDO IRU SHUIRUPLQJ DQ\ G\QDPLF DQDO\VLV $ OLVW RI WKH

PAGE 17

UHVHDUFK DFWLYLWLHV LQ WKLV DUHD LV JLYHQ LQ 5HIHUHQFHV DQG +RZHYHU RQO\ +DQDYDQ >@ KDV SURSRVHG D SHUVRQDOL]HG PRGHO RI D KXPDQ EHLQJ 7KLV LQHUWLD PRGHO KDV EHHQ XVHG LQ WKH SUHVHQW LQYHVWLn JDWLRQ 7KH 3UREOHP 6WDWHPHQW 7KH SUHVHQW ZRUN EHORQJV WR D EURDGHU SURJUDP ZKRVH REMHFWLYH LV WR LQYHVWLJDWH WKH EDVLF DVSHFWV RI WKH DSSOLFDELOLW\ RI UDWLRQDO PHFKDQLFV WR WKH VROXWLRQV RI DQ\ KXPDQ DFWLYLW\ SUREOHP 7KH DVSHFWV SUHVHQWO\ EHLQJ FRQVLGHUHG DUH &RQVWUXFWLRQ RI DQ DSSURSULDWH SUHVRQDOL]HG PRGHO IRU WKH LQGLYLGXDOnV PDQHXYHU XQGHU FRQVLGHUDWLRQ )RUPXODWLRQ RI D ZHOOSRVHG PDWKHPDWLFDO SUREOHP IRU WKH DQDO\WLF GHVFULSWLRQ RI WKH PDQHXYHU 6ROXWLRQ RI WKH PDWKHPDWLFDO SUREOHP E\ D VXLWDEOH DQDO\WLFDO PHWKRG &RPSDULVRQ RI WKH DQDO\WLFDO VROXWLRQ ZLWK DQ DFWXDO PRWLRQ FRQGXFWHG LQ DQ H[SHULPHQW ZLWK D KXPDQ VXEMHFW 'HWHUPLQDWLRQ RI PXVFOH DFWLYLW\ DQG FRPSDULVRQ ZLWK FRPSXWHG PXVFOH WRUTXH KLVWRULHV IRU WKH PDQHXYHU ,I D FRPSOHWH DQDO\VLV EDVHG RQ WKH DERYH VWHSV UHVXOWV LQ WKH FRUUHFW PRWLRQ DV FRPSDUHG ZLWK WKH H[SHULPHQW WKHQ WKH UHVXOWV FDQ EH XVHG IRU WUDLQLQJ SXUSRVHV DQG GHVLJQ RI PDQPDFKLQH V\VWHPV EXW PRUH LPSRUWDQWO\ WKH UHVXOWV ZLOO HVWDEOLVK WKH DSSOLFDELOLW\ RI UDWLRQDO PHFKDQLFV WR WKH VROXWLRQ RI SUREOHPV RI KXPDQ DFWLYLW\ ,Q WKH SUHVHQW LQYHVWLJDWLRQ D SDUWLFODU J\PQDVWLF PDQHXYHU WKH NLSXS KDV EHHQ VHOHFWHG IRU DQDO\VLV DV RXWOLQHG DERYH 7KH PHWKRGV

PAGE 18

GHYHORSHG ZLOO RI FRXUVH EH YDOLG IRU RWKHU PDQHXYHUV EXW WKH DQD O\WL FDO PRGHO ZLOO EH SHUVRQDOL]HG WR WKH PDQHXYHU DQG LQGLYLGXDO $PRQJ DOO WKH FRPPRQ SK\VLFDO DQG DWKOHWLF DFWLYLWLHV WKH NLSXS PDQHXYHU ZDV IRXQG WR EH SDUWLFXODUO\ ZHOO VXLWHG IRU DQDO\VLV 7KH PRWLRQ LQYROYHV ODUJH PRWLRQV DQG LV FRQWLQXRXV DQG VPRRWK $OVR LW LV SODQDU DQG QHHGV UHODWLYHO\ IHZHU JHQHUDOL]HG FRRUGLQDWHV IRU LWV FRPSOHWH GHVFULSWLRQ VLQFH D FRUUHFWO\ H[HFXWHG NLSXS H[KLELWV WKUHH ULJLG OLQNV $W WKH VDPH WLPH LW LV QRW D WULYLDO SUREOHP IURP WKH SRLQW RI YLHZ RI RXU EDVLF REMHFWLYH 7KH SK\VLFDO TXDQWLW\ WKH SHUIRUPDQFH FULWHULRQf FKRVHQ IRU RSWLPL]DWLRQ PLQLPL]DWLRQ LQ WKLV FDVHf LV WKH WRWDO WLPH WR GR WKH PDQHXYHU 7KH .LS8S 0DQHXYHU 7KH NLSXS PDQHXYHU LV DQ H[HUFLVH WKDW D J\PQDVW SHUIRUPV RQ D KRUL]RQWDO EDU 7KH J\PQDVW VWDUWV IURP D SRVLWLRQ KDQJLQJ YHUWLFDOO\ GRZQ IURP WKH KRUL]RQWDO EDU DQG ULVHV WR WKH WRS RI WKH EDU E\ VZLQJLQJ KLV DUPV DQG OHJV LQ D SURSHU VHTXHQFH 'XULQJ WKH PDQHXYHU WKH PRWLRQ LV V\PPHWULF DQG GRHV QRW LQYROYH EHQGLQJ RI WKH HOERZV DQG WKH NQHHV 1RUPDOO\ WKH JULS RQ WKH EDU LV ORRVH PRVW RI WKH WLPH )RU DQ LQH[n SHULHQFHG SHUVRQ WKH PDQHXYHU LV QRW HDV\ WR SHUIRUP 3UHVHQW :RUN ,Q &KDSWHU D PDWKHPDWLFDO PRGHO IRU WKH NLSXS PRWLRQ DQG UHVXOWV RI ODERUDWRU\ H[SHULPHQWV WR WHVW WKH DFFXUDF\ RI WKH PRGHO DUH SUHVHQWHG )LUVW D PDWKHPDWLFDO PRGHO RI D SURIHVVLRQDO J\PQDVW IRU WKH NLSXS PRWLRQ KDV EHHQ FRQVWUXFWHG 7KH G\QDPLF HTXDWLRQV RI

PAGE 19

PRWLRQ IRU WKH PDWKHPDWLFDO PRGHO ZHUH WKHQ REWDLQHG 7ZR VHWV RI HTXDWLRQV RI PRWLRQ ZHUH GHULYHG RQH IRU WKH SXUSRVH RI YHULI\LQJ WKH DFFXUDF\ RI WKH PDWKHPDWLFDO PRGHO IURP H[SHULPHQWV DQG RQH IRU WKH SXUSRVH RI RSWLPL]DWLRQ RI WKH NLSXS PDQHXYHU 1H[W WKH UHVXOWV RI ODERUDWRU\ H[SHULPHQWV ZLWK WKH J\PQDVW DUH SUHVHQWHG 7KH J\PQDVW ZDV WROG WR SHUIRUP V\PPHWULF PDQHXYHUV RQ WKH KRUL]RQWDO EDU LQFOXGLQJ WKH NLSXS 7KH PDQHXYHUV ZHUH SKRWRJUDSKLFDOO\ UHFRUGHG 7ZR RI WKH PDQ\ UHFRUGV ZHUH VHOHFWHG RQH RI D VLPSOH VZLQJLQJ PRWLRQ ZLWK UHODWLYHO\ VPDOO RVFLOODWLRQV DQG DQRWKHU RI KLV TXLFNHVW NLSXS PDQHXYHU 7KH DQJOH PHDVXUHPHQWV IURP WKHVH ILOP UHFRUGV ZHUH WKHQ XVHG LQ WKH HTXDWLRQV RI PRWLRQ WR FKHFN WKH DFFXUDF\ RI WKH PDWKHPDWLFDO PRGHO $Q HUURU DQDO\VLV ZDV WKHQ SHUIRUPHG WR H[SODLQ WKH GLVDJUHHPHQW EHWZHHQ WKH H[SHULPHQWDO DQG WKH FRPSXWHG UHVXOWV ,Q &KDSWHU DQ DQDO\WLF VROXWLRQ RI WKH PLQLPXP WLPH NLSXS IRU WKH PDWKHPDWLFDO PRGHO ZDV REWDLQHG E\ QXPHULFDO FRPSXWDWLRQV )LUVW WKH DQDO\WLFDO SUREOHP RI WKH GHWHUPLQDWLRQ RI WKH NLSXS LQ PLQLn PXP WLPH ZDV VWDWHG LQ SUHFLVH PDWKHPDWLFDO WHUPV 7KLV LQYROYHG UHSUHn VHQWLQJ WKH HTXDWLRQV RI PRWLRQ LQ WKH VWDWH YDULDEOH IRUP VSHFLI\LQJ WKH ERXQGDU\ FRQGLWLRQV RQ WKH VWDWH YDULDEOHV HVWDEOLVKLQJ WKH ERXQGV RQ WKH FRQWURO YDULDEOHV DQG PRGHOLQJ WKH VWLIIQHVV RI WKH VKRXOGHU DQG WKH KLS MRLQWV DW H[WUHPH DUP DQG OHJ PRYHPHQWV $ VXUYH\ RI WKH QHFHVVDU\ FRQGLWLRQV IRU WLPH RSWLPDOLW\ JLYHQ E\ WKH RSWLPDO FRQWURO WKHRU\ KDV EHHQ SUHVHQWHG )LQDOO\ VHYHUDO QXPHULFDO VFKHPHV XVHG IRU VROYLQJ WKH NLSXS PDQHXYHU SUREOHP DUH SUHVHQWHG DQG WKH UHVXOWV RI WKH QXPHULFDO FRPSXWDWLRQV DUH GLVFXVVHG ,Q &KDSWHU ILQDO FRQFOXVLRQV RI WKH SUHVHQW LQYHVWLJDWLRQ DQG UHFRPPHQGDWLRQV IRU IXWXUH ZRUN KDYH EHHQ SUHVHQWHG

PAGE 20

&+$37(5 (;3(5,0(17$7,21 $1' &216758&7,21 2) 7+( 0$7+(0$7,&$/ 02'(/ ,QWURGXFWLRQ ,Q WKLV FKDSWHU PRGHOLQJ RI D KXPDQ EHLQJ IRU WKH NLSXS PDQHXYHU LV FRQVLGHUHG ,Q 6HFWLRQ D PDWKHPDWLFDO PRGHO IRU D SURIHVVLRQDO J\PQDVW LV FRQVWUXFWHG XVLQJ WKH SHUVRQDOL]HG PRGHO RI +DQDYDQ >@ ,Q 6HFWLRQ HTXDWLRQV RI PRWLRQ IRU WKH PDWKHPDWLFDO PRGHO DUH GHULYHG IRU WKH SXUSRVH RI XVLQJ WKHP LQ WKH DQDO\WLF GHWHUn PLQDWLRQ RI WKH VXEMHFWnV RSWLPDO NLSXS PRWLRQ $Q HTXLYDOHQW V\VWHP RI ILUVWRUGHU GLIIHUHQWLDO HTXDWLRQV DUH GHULYHG LQ 6HFWLRQ IRU WHVWLQJ WKH LQHUWLD SURSHUWLHV DQG VWUXFWXUH RI WKH PRGHO ,Q 6HFn WLRQ WKH ODERUDWRU\ H[SHULPHQWV SHUIRUPHG DUH GHVFULEHG 7KH UHVXOWV RI WKH H[SHULPHQWV DUH GLVFXVVHG LQ 6HFWLRQ $Q DQDO\VLV RI WKH FRPSDULVRQV EHWZHHQ WKH REVHUYHG DQG FRPSXWHG UHVXOWV DUH DOVR SUHVHQWHG 0DWKHPDWLFDO 0RGHO RI WKH .LS8S 7KH HTXDWLRQV RI PRWLRQ RI D GHIRUPDEOH ERG\ VXFK DV WKH KXPDQ ERG\ DUH XVXDOO\ SDUWLDO GLIIHUHQWLDO HTXDWLRQV 3UHVHQWO\ QRW HQRXJK LV NQRZQ RU PHDVXUDEOH DERXW WKH GHIRUPDWLRQ RI WKH KXPDQ ERG\ XQGHU YROXQWDU\ PRWLRQ WR GHWHUPLQH D SDUWLDO GLIIHUHQWLDO HTXDWLRQ PRGHO $OVR VXFK PRGHOV DUH TXLWH GLIILFXOW WR KDQGOH +RZHYHU IRU VLWXDWLRQV

PAGE 21

ZKHUH WKH GHIRUPDWLRQ LV VPDOO FRPSDUHG WR WKH GLVSODFHPHQW RI D ERG\ WKH GHIRUPDEOH ERG\ PD\ EH FRQVLGHUHG DV D ULJLG ERG\ LQ ZULWLQJ WKH HTXDWLRQV RI PRWLRQ 7KH ULJLG OLQN DVVXPSWLRQ KDV EHHQ XVHG ZLGHO\ LQ PRGHOLQJ KXPDQ EHLQJV 7KH SHUVRQDOL]HG PRGHO RI +DQDYDQ >@ LV EDVHG RQ WKLV DVVXPSWLRQ 7KH HOHPHQWV RI WKH +DQDYDQ PRGHO DUH VKRZQ LQ )LJXUH DQG FRQVLVW RI ILIWHHQ VLPSOH KRPRJHQHRXV JHRPHWULF VROLGV 7KLV FRQVWUXFWLRQ DOORZV D ODUJH QXPEHU RI GHJUHHV RI IUHHGRP IRU WKH PRGHO DQG PLQLPL]HV WKH GHIRUPDWLRQ RI WKH HOHPHQWV ZLWKRXW XQGXH FRPn SOH[LW\ $V WKH QXPEHU RI GHJUHHV RI IUHHGRP LQFUHDVHV WR WKH PD[LPXP LW LV OLNHO\ WKDW D PDWKHPDWLFDO PRGHO EDVHG RQ WKH +DQDYDQ PRGHO EHFRPHV PRUH DFFXUDWH +RZHYHU LQFUHDVHV LQ WKH GHJUHHV RI IUHHGRP LQFUHDVH WKH PRGHOnV FRPSOH[LW\ DQG PDNH LW GLIILFXOW WR DQDO\]H PDWKHn PDWLFDOO\ 2EVHUYDWLRQ RI D FRUUHFWO\ SHUIRUPHG NLSXS LQGLFDWHV WKDW WKH KXPDQ SHUIRUPHU PLJKW EH PRGHOHG TXLWH DFFXUDWHO\ DV D V\VWHP RI RQO\ WKUHH ULJLG OLQNV 7KH WZR DUPV IRUP RQH OLQN WKH KHDGQHFNWRUVR V\VWHP IRUPV DQRWKHU DQG WKH WZR OHJV IRUP WKH WKLUG OLQN 7KH VKRXOGHU DQG KLS MRLQWV PD\ EH DSSUR[LPDWHG DV VPRRWK KLQJHV ZKHUH WKHVH OLQNV DUH MRLQHG WRJHWKHU 'HIRUPDWLRQ RI WKH OLQN FRQVLVWLQJ RI WKH KHDG QHFN DQG WRUVR GXULQJ FHUWDLQ SHULRGV RI WKH PDQHXYHU LV GHWHFWDEOH ZKHQ REVHUYHG YLD KLJK VSHHG ILOPLQJ ,W ZDV IHOW WKDW WKH HIIHFW RI WKH GHIRUPDWLRQ RI WKH WRUVR ZRXOG EH QR PRUH VLJQLILFDQW WKDQ WKH VWDQGDUG GHYLDWLRQ LQ WKH +DQDYDQ LQHUWLD SDUDPHWHUV EHFDXVH WKLV SDUW RI WKH RULHQWDWLRQ RI WKH WRUVR LV GHWHUPLQHG E\ WKH OLQH MRLQLQJ WKH VKRXOGHU DQG WKH KLS MRLQW FHQWHUV

PAGE 22

)LJXUH R !! +DQDYDQnV 0DWKHPDWLFDO 0RGHO RI D +XPDQ %HLQJ

PAGE 23

7KH PXVFOH IRUFHV DFWLQJ DW WKH KLS DQG VKRXOGHU WR FDXVH OLQN PRWLRQ KDYH EHHQ UHSODFHG ZLWK WKHLU ULJLG ERG\ HTXLYDOHQW UHVXOWDQW IRUFHV DQG FRXSOHV ,I WKH PDVVHV RI WKH PXVFOHV FDXVLQJ WKH IRUFHV DUH VPDOO FRPSDUHG WR WKH RWKHU SRUWLRQV RI WKH OLQNV WKHQ WKH QHW HIIHFWV RI WKH IRUFHV DUH WKH WRUTXHV RI WKH FRXSOHV 7KH UHVXOWDQWV GR QRW DSSHDU LQ WKH HTXDWLRQV RI PRWLRQ 7KH WKUHHOLQN NLSXS PRGHO LV VKRZQ LQ )LJXUH ,W LV FRQn VWUXFWHG ZLWK HOHPHQWV RI WKH +DQDYDQ PRGHO 7ZHQW\ILYH DQWKURSRPHWULF GLPHQVLRQV RI WKH J\PQDVW ZHUH WDNHQ DQG XVHG LQ D FRPSXWHU SURJUDP IRU FDOFXODWLQJ ILUVW WKH LQHUWLD SURSHUWLHV RI WKH +DQDYDQ PRGHO DQG WKHQ WKRVH RI WKH NLSXS PRGHO 7KH GHWHUPLQDWLRQ RI WKH LQHUWLD SURSHUWLHV RI WKH NLSXS PRGHO IURP WKRVH RI WKH +DQDYDQ PRGHO LV SUHVHQWHG LQ $SSHQGL[ $ 7KH (TXDWLRQV RI 0RWLRQ 7KH PDWKHPDWLFDO PRGHO IRU WKH NLSXS PRWLRQ LV D WKUHHOLQN V\VWHP H[HFXWLQJ SODQH PRWLRQ XQGHU JUDYLW\ 7KH DFWLYH IRUFHV LQ WKH V\VWHP DUH WKH SXOO RI JUDYLW\ DFWLQJ RQ HDFK RI WKH HOHPHQWV RI WKH V\VWHP DQG WKH WZR PXVFOH WRUTXHV 7KH PXVFOH IRUFHV DW WKH VKRXOGHU DFWLQJ DW WKH MRLQW EHWZHHQ OLQNV DQG DUH UHSODFHG E\ WKH WRUTXH XA /LNHZLVH XA LV WKH WRUTXH IRU WKH KLS MRLQW EHWZHHQ OLQNV DQG 7KH V\VWHP LV VXVSHQGHG IURP D KLQJH DW WKH XSSHU HQG RI OLQN UHSUHn VHQWLQJ WKH ILVWV JULSSLQJ WKH KRUL]RQWDO EDU ZKLFK LV IUHH WR URWDWH RQ LWV VSKHULFDO EHDULQJV $OO MRLQW KLQJHV DUH DVVXPHG WR EH IULFWLRQn OHVV 7KH JHQHUDO WKUHHOLQN V\VWHP IRU ZKLFK WKH HTXDWLRQV RI PRWLRQ ZLOO EH GHULYHG LV VKRZQ ZLWK QRPHQFODWXUH LQ )LJXUH (TXDWLRQV RI PRWLRQ RI WKH V\VWHP ZHUH REWDLQHG YLD /DJUDQJHnV HTXDWLRQV DV IROORZV

PAGE 24

&HQWHU RI *UDYLW\ RI DQ (OHPHQW )LJXUH 0DWKHPDWLFDO 0RGHO IRU .LS8S

PAGE 25

&*, D r OHQJWK RI HOHPHQW GLVWDQFH EHWZHHQ WKH KLQJHV $ DQG % GLVWDQFH EHWZHHQ WKH FHQWHU RI JUDYLW\ RI HOHPHQW DQG WKH KLQJH GLVWDQFH EHWZHHQ WKH FHQWHU RI JUDYLW\ RI HOHPHQW DQG WKH KLQJH $ GLVWDQFH EHWZHHQ WKH FHQWHU RI JUDYLW\ RI HOHPHQW DQG WKH KLQJH % &* &* ORFDWLRQV RI FHQWHUV RI JUDYLW\ RI HOHPHQWV DQG UHVSHFWLYHO\ f DQJOH EHWZHHQ 2&*O DQG 2$ DQJOH EHWZHHQ $&* DQG $% P P PDVV RI HOHPHQWV DQG UHVSHFWLYHO\ = R ,A PRPHQWV RI LQHUWLD RI HOHPHQWV DQG UHVSHFWLYHO\ DERXW D[HV SHUSHQGLFXODU WR WKH [] SODQH WKURXJK WKHLU UHVSHFWLYH FHQWHUV RI JUDYLW\ J PRPHQW RI LQHUWLD RI WKH KRUL]RQWDO EDU DW WKH KLQJH DERXW LWV ORQJLWXGLQDO D[LV DFFHOHUDWLRQ GXH WR JUDYLW\ )LJXUH 7KH 7KUHH/LQN 6\VWHP

PAGE 26

,I ZH GHILQH $ iAUO K PU ,PrO PU P P ,Uf % P9O & P;; P9O ( PUA ) APU, PAOQU,f f§ PJU 0 PAJ 1 P Pf 9 P 9 : UDUJ 5 PUJ f ZLWK (TXDWLRQV f ZH FDQ H[SUHVV WKH /DJUDQJLDQ RI WKH V\VWHP DV f / FS >$ % FRV f & FRV FRV LMIf ( FRV L_I@ >) ( FRV ?MI@ f n FS>)% FRV f & FRV FRV L_ ( FRV L_I@ A W f f f f L_ >( FRV LMU@ FS ?>U >' FRV L-Uf ( FRV L_U@ 0 FRV FSDf 1 FRV FS 9 FRV FSf : FRV FSf 5 FRV FSLfLf f )RU WKH +DQDYDQ PRGHO RI XU V\VWHP WKH DQJOHV \ DQG DUH ]HUR ,I ZH GHILQH DQG X DV SRVLWLYH ZKHQ WKH\ WHQG WR LQFUHDVH WKH DQJOHV DQG LfU UHVSHFWLYHO\ ZH FDQ ZULWH WKH HTXDWLRQV RI PRWLRQ DV

PAGE 27

G %O B %O BGB %/ GW %H O A X G %O O GW f ) a 8 A f f f /HW XV GHILQH $ %&f FRV FRV ?_If ( FRV L_Uf D ) %&f FRV FRV L_If ( FRV LMW ] DA FRV Wf ( FRV LfL EO D Ef ) ( FRV If EJ ( FRV L_U F f f f f GA FS>%&f VLQ VLQ ?_f@ ?_L>' VLQ L_ ( VLQ ?_L@ L_U>' VLQ L_Uf ( VLQ L_U@ >%&f VLQ VLQ ?MIf@ f L_ >' VLQ ?-f ( VLQ ?_U@ 01f VLQ f 9:f VLQ f 5 VLQ FSOf f f f r G X L_I> L_U@ ( VLQ L_U f§ >%&f VLQ VLQ W_Uf@ = ; 9:f VLQ f 5 VLQ LMIf f f G X >' VLQ k ?cUf ( VLQ L_U@ ( VLQ L_U ( VLQ OMI R ] 5 VLQ L_Lf f

PAGE 28

:LWK (TXDWLRQV f ZH REWDLQ IURP (TXDWLRQV f f WKH HTXDWLRQV RI PRWLRQ D 3 G 9 } Fr G Dn3 E &r G n f f f ,W ZLOO EH KHOSIXO WR H[SUHVV WKH HTXDWLRQV RI PRWLRQ LQ QRUPDO IRUP LQ IRUPXODWLQJ RSWLPDO FRQWURO SUREOHPV IRU WKH V\VWHP )RU WKDW SXUSRVH ZH GHILQH WKH VWDWH YDULDEOHV DV [ [ [B H [ H ; L_U [ L_U $ f f $ f $ f f

PAGE 29

8VLQJ WKHVH GHILQLWLRQV WKH HTXDWLRQV RI PRWLRQ f f FDQ WKHQ EH ZULWWHQ LQ WKH QRUPDO IRUP DV 7R ZULWH GRZQ WKH HTXDWLRQV RI PRWLRQ LQ PRUH FRQYHQLHQW IRUPV ZH VKDOO IXUWKHU GHILQH WKH IROORZLQJ TXDQWLWLHV f f f f f

PAGE 30

$f _7 U O $;f _B; f§ [ f§ ; %;f BEO&E&Of DO&BD&Of BDLEDEOf EO& BE&Of BDL&D&Of DLEfDEOf f EO&E&Of DLF 9G DOE rEO! f EO&9Of BDL& D&O` DLE f DEO` f 8VLQJ WKH GHILQLWLRQVf f WKH HTXDWLRQV RI PRWLRQ f PD\ QRZ EH H[SUHVVHG E\ DQ\ RQH RI WKH IROORZLQJ HTXDWLRQV

PAGE 31

" F % ‘ M L6 UQ 6BQ 9 Yf 8S fR WKLV SRLQW WKLV DQDO\VLV KDV EHHQ YHU\ JHQn HUD DQG WKUHHGLPHQVLRQDO ZLWQ LG UHIHUHQWH WR D SODWH OLNH WZRGLPHQVLRQDO SUREOHP (TXDWLRQ !` ZLWQ WKH DLG RI "f FDU EH DSSOLHG WR DQ\ WKUHHRL[HQVLRQDO HODVWLFLW\

PAGE 32

ZLWK H[SUHVVHG LQ WHUPV RI S XVLQJ (TXDWLRQ f +DPLOWRQnV FDQRQLF HTXDWLRQV DUH WKHQ JLYHQ E\ FS Jf§ SFSWf f DQG 3 3Wf f )URP (TXDWLRQV f f ZH REWDLQ A S>)%&fFRV FRV _( FRV LIU@ L_U> -' FRV L_If ( FRV L_I@ >$ %&f FRV FRV L_f ( FRV ?_@ f S > 01f VLQ FS 9:f VLQ f 5 VLQ L_Uf@ f ,I ZH ZLVK WR LQWURGXFH WKH HIIHFWV RI WKH IULFWLRQ DW WKH KLQJH WKH HTXDWLRQ IRU S EHFRPHV RK S ) nS f ZKHUH )A LV WKH JHQHUDOL]HG IULFWLRQ WRUTXH DW WKH KLQJH 7KH ,QWHJUDWLRQ 6FKHPH 7KH LQWHJUDWLRQ VFKHPH LQWHJUDWHV (TXDWLRQV f DQG f 7KH LQLWLDO FRQGLWLRQ RI LV REWDLQHG IURP WKH PHDVXUHG YDOXHV RI 7KH LQLWLDO YDOXH RI S LV REWDLQHG IURP WKH GHILQLWLRQ RI S JLYHQ LQ (TXDWLRQ f 7R FRPSXWH WKH LQLWLDO YDOXH RI S KDV EHHQ FRPn SXWHG IRU WKLV VWDUWLQJ SRLQW RQO\ 7KH DQG L_U GDWD DUH GLIIHUHQWL DWHG QXPHULFDOO\ WR JHQHUDWH DQG ?-U YDOXHV DW HYHU\ VWHS DQG DUH FRPSXWHG DW HYHU\ VWHS E\ XVLQJ WKHVH YDOXHV 7KH YDOXH RI )A LV QRW NQRZQ D SULRUL DQG LW UHTXLUHV D VHSDUDWH H[SHULPHQW IRU LWV GHWHUPLQDWLRQ ,QWHJUDWLRQV ZHUH GRQH ZLWK )A DQG )A & VJQ

PAGE 33

ZLWK & GHWHUPLQHG H[SHULPHQWDOO\ 7KH GLIIHUHQFH EHWZHHQ WKH WZR FDVHV ZDV IRXQG WR EH LQVLJQLILFDQW HYHQ ZLWK & IWOE ZKLFK ZDV ZHOO DERYH WKH SRVVLEOH IULFWLRQ WRUTXH DW WKH EHDULQJV ([SHULPHQWDO 3URFHGXUH 7KH WHVW ULJ FRQVLVWHG RI D KRUL]RQWDO EDU DQG WZR PRWLRQ SLFWXUH FDPHUDV 7KH KRUL]RQWDO EDU ZDV PDGH RI D VKRUW VROLG URXQG VWHHO EDU LQFKHV LQ GLDPHWHU DQG LQFKHV ORQJ VXSSRUWHG E\ WZR YHU\ ULJLG YHUWLFDO FROXPQV WKURXJK D SDLU RI VHOIDOLJQLQJ VSKHULFDO EHDULQJV 7KH EHDULQJV DOORZHG IUHH URWDWLRQ RI WKH EDU ZLWK WKH DUP RI WKH VXEMHFW } 2QH PRYLH FDPHUD ZDV SODFHG ZLWK LWV OLQH RI VLJKW DOLJQLQJ ZLWK WKH KRUL]RQWDO EDU DQG DERXW IHHW DZD\ IURP WKH EDU DV VKRZQ LQ )LJXUH $OLJQPHQW RI WKH FDPHUDnV OLQH RI VLJKW ZLWK WKH KRUL]RQWDO EDU ZRXOG JLYH WKH FRUUHFW YHUWLFDO SURMHFWLRQ RI WKH WZR DUPV RQ WKH ILOP IRU GHWHUPLQLQJ WKH DQJOH FS GLUHFWO\ 7KH VHFRQG FDPHUD ZDV SODFHG LQ IURQW RI WKH KRUL]RQWDO EDU DW WKH VDPH HOHYDWLRQ DV WKH EDU 7KH ILOP WDNHQ LQ WKLV FDPHUD VKRZHG ZKHWKHU D SDUWLFXODU PRWLRQ ZDV V\Pn PHWULF RU QRW DERXW WKH YHUWLFDO SODQH RI PRWLRQ DQG DOVR WKH DQJOH EHWZHHQ WKH WZR DUPV ZKLFK LV UHTXLUHG IRU FRPSXWLQJ WKH PRPHQW RI LQHUWLD RI WKH DUPV 7KH ILOP VSHHG ZDV GHWHUPLQHG IURP WKH IODVKHV RI D VWUREH OLJKW UHJXODWHG E\ D VTXDUH ZDYH JHQHUDWRU ([SHULPHQWV 7KH H[SHULPHQWV ZHUH GRQH GXULQJ WZR VHSDUDWH SHULRGV ZLWK WKH VDPH VXEMHFW D SURIHVVLRQDO J\PQDVW $Q DYHUDJH RI H[SHULPHQWV RI WKH VXEMHFWnV SHUIRUPDQFH RQ WKH EDU ZHUH UHFRUGHG RQ ILOP HDFK GD\

PAGE 34

)LJXUH 6NHWFK RI .LS8S $SSDUDWXV &RQILJXUDWLRQ

PAGE 35

7KH VXEMHFW ZDV WROG WR DYRLG EHQGLQJ KLV DUPV DQG OHJV DQG WR PDLQWDLQ V\PPHWULF PRWLRQ ,Q WKH HDUO\ GD\V RI H[SHULPHQWDWLRQ KH ZDV WROG WR MXVW VZLQJ RQ WKH EDU E\ PRYLQJ KLV VWLII DUPV DQG OHJV UHODWLYH WR WKH WRUVR 7KHVH H[SHULPHQWV ZHUH GRQH ZLWK WKH LGHD RI REWDLQLQJ VPDOO DQJOH GDWD IRU YHULI\LQJ WKH LQHUWLD SURSHUWLHV RI WKH +DQDYDQ PRGHO 7KH ILOPLQJ RI WKH FDPHUD ZDV GRQH DW VSHHGV RI IUDPHV SHU VHFRQG DQG IUDPHV SHU VHFRQG DV GHWHUPLQHG IURP VWURERVFRSLF PHDVXUHPHQWVf ,Q ODWHU H[SHULPHQWV WKH VXEMHFW ZDV WROG WR SHUIRUP WKH PDQHXYHU ZLWK VRPH VSHFLILF REMHFWLYHV +H ZDV WROG WR SHUIRUP ZKDW KH WKRXJKW ZRXOG EH WKH NLSXS f LQ PLQLPXP WLPH f ZLWK PLQLPXP H[SHQGLWXUH RI HQHUJ\ DQG f SXWWLQJ OHDVW HIIRUW (DFK RI WKHVH PDQHXYHUV ZDV UHSHDWHG VHYHUDO WLPHV %HWZHHQ DQ\ WZR VXEVHTXHQW PDQHXYHUV WKH VXEMHFW ZDV JLYHQ DGHTXDWH UHVW SHULRGV WR DYRLG IDWLJXH 7KLV H[SHUn LPHQW ZDV FRQGXFWHG ZLWK WKH LGHD RI PDNLQJ RSWLPL]DWLRQ VWXGLHV DV ZHOO DV WHVWLQJ WKH PRGHO )RXU ZKLWH WDSHV ZHUH VWXFN WR WKH VXEMHFW RQ WKH VLGHV RI KLV XSSHU DQG ORZHU DUPV VLGHV RI KLV WRUVR DQG RQ WKH VLGHV RI KLV OHJV 7KHVH WDSHV ZHUH DOLJQHG EHWZHHQ MRLQW FHQWHUV DV VXJJHVWHG E\ WKH +DQDYDQ LQHUWLD PRGHO 3URFHVVLQJ WKH 'DWD 7KH ILOP VSHHG ZDV PHDVXUHG ZLWK WKH DLG RI D VWURERVFRSH E\ UXQQLQJ WKH FDPHUD ZLWK D GHYHORSHG ILOP ZLWK WKH VDPH VSHHG VHWWLQJ $IWHU UHPRYLQJ WKH OHQV WKH VKXWWHU ZDV H[SRVHG WR WKH VWURERVFRSH IODVK %\ DUUHVWLQJ WKH VKXWWHU LQ WKH VWURERVFRSH OLJKW WKH VKXWWHU VSHHG ZDV REWDLQHG

PAGE 36

7KH ILOPV ZHUH UXQ RQ DQ /: 3KRWR 2SWLFDO 'DWD $QDO\]HU )RU WKH SXUSRVH RI WHVWLQJ WKH LQHUWLD SURSHUWLHV WZR PDQHXYHUV ZHUH VHOHFWHG RQH IURP HDFK GD\nV ILOPLQJV 7KH ILOPV ZHUH SURMHFWHG SOXPE OLQH SHUSHQGLFXODUO\ RQ SDSHU IL[HG WR D YHUWLFDO ZDOO $V HDFK IUDPH ZDV SURMHFWHG WKH ZKLWH WDSHV IL[HG RQ WKH VXEMHFW QRZ FOHDUO\ YLVLEOH LQ WKH LPDJH ZHUH PDUNHG RXW RQ WKH SDSHU RI WKH SDG E\ PHDQV RI D SHQFLO DQG D VWUDLJKW HGJH ,Q WKLV ZD\ HDFK IUDPH ZDV WUDQVn IHUUHG RQ VHSDUDWH VKHHWV RI SDSHU 7KH DQJOHV DQG L_U ZHUH WKHQ PHDVXUHG IURP WKHVH WUDFHV 7KH DQJOH ZDV PHDVXUHG ZLWK UHVSHFW WR D YHUWLFDO UHIHUHQFH 7KH YHUWLFDO UHIHUHQFH ZDV REWDLQHG IURP D VKDUS ZLQGRZ ZDOO LQ WKH EDFNJURXQG 2I WKH WZR VHWV RI GDWD SURFHVVHG RQH ZDV VPRRWKHG EHIRUH XVLQJ LW LQ WKH LQWHJUDWLRQ VFKHPH 7KLV ZDV WKH RQH ILOPHG DW WKH KLJKHU VSHHG IRU WKH IDVW NLSXS PRWLRQ $ SORW RI WKH UDZ GDWD DQG WKRVH DIWHU SUHOLPLQDU\ VPRRWKLQJ IRU WKLV VHW DUH VKRZQ LQ )LJXUH 5HVXOWV DQG 'LVFXVVLRQ 7KH UHVXOWV RI WKH LQWHJUDWLRQ RI WKH HTXDWLRQV RI PRWLRQ IRU WZR RI WKH GDWD VHWV DQDO\]HG DUH VKRZQ LQ )LJXUHV DQG )LJXUH VKRZV GDWD IRU VZLQJLQJ PRWLRQ ZKLOH )LJXUH LV IRU WKH NLSXS $OVR LQ )LJXUH LV JLYHQ WKH FRPSXWHG UHVXOWV FRUUHVSRQGLQJ WR UHLQLWLDWLQJ WKH LQWHJUDWLRQ SURJUDP ZLWK WKH PHDVXUHG GDWD 'LIIHUn HQW VWDUWLQJ SRLQWV RI LQWHJUDWLRQ ZHUH VHOHFWHG WR HOLPLQDWH WKH HUURUV WKDW ZHUH JHQHUDWHG EHIRUH WKHVH SRLQWV ,Q )LJXUH FXUYH RI WKH FRPSXWHG YDOXHV IRU WKH XQVPRRWKHG GDWD DJUHHV ZHOO ZLWK FXUYH RI WKH PHDVXUHG YDOXHV IRU D OLWWOH PRUH

PAGE 37

$QJOHV 'HJUHHf IRU WKH .LS8S 0RWLRQ )LOP 6SHHG IUDPHVVHFRQGf WR

PAGE 38

7 K Fr UHV R W V R K r D L Q Y L VR IXU D UH DSSOLFDEOH WR S D WHV FRQVVWLU RI DQ\ U MLX HRr OD \HQV KDYLQJ FL I I H U HQW SURSHUWLHV DQ JHRPHF 2 ‘ &XW UR Qc KHUH RQ WKH H Q D \ V L V ZRXOG GHSHQG ‘ Q W K V W I R R 2 ‘ SLQWH F R Q V L G O U H G Y L ] V U JO H OD\HU FU PXOW L S D \ H U SODWHV WKLQ RU PRGHUDWHO\ WKLFN SL D WHV HWF DQG DOVR RQ WKH W\SH 2I GLVSL D FHPHQW UXQH W L RQ V 9 "UG 9 +DEL S > f KDV GHPRQVWUDWHG WKH DSROLFD L M 'LOL UY RI WKHVH UHVXOWV WR D VLQJOH OD\HU SODWH ,Q WKLV GLVVHUWDWLRQ D WKUHVD\HUHG HODWH SRSXn ODUO\ NQRZQ DV D VDQGZLFK SODWH ZLOO EH FRQVLGHUHG 6DQ GYU L FK RDWH $ VDQGZLFK SODWH FRQVLVWLQJ RI WKUHH OD\HUV LV VKHZQ LQ ILJXUH f 7QH IDFH OD\HUV DUH PXFK WKLQQHU WKDQ WKH FRUH $OO OD\HUV DUH XQLIRUPO\ WKLFN WKURXJKRXW 7KH WZR IDFHV DUH RI WKH VDPH WKLFNQHVV WW WKH FRUH WKLFNn QHVV EHLQJ W 7QH SUHVHQW DQDO\VLV LV FDSDEOH RI WUHDWLQJ DL[HG ERXQGDU\ YDOXH SUREOHPV 2Q WKH XSSHU VXUIDFH WKH OLQH $% VHSDUDWHV WKH WZR UHJLRQV DQG RYHU ZKLFK GLVSODFHPHQWV DQG VWUHVVHV UHVSHFWLYHO\ DUH SUHVFULEHG 2Q WKH ORZHU VXUIDFH WKH OLQH &' VHSDUDWHV WKH FRUUHVSRQGn LQJ UHJLRQV 7KH OLQH &' LV ORFDWHG H[DFWO\ EHORZ WKH OLQH $' $OVR DW DQ\ WZR SRLQWV ORFDWHF RQ WKH XSRHU DQG ORZHU VXUIDFHV RI WKH SODWH DQG KDYLQH WQH VDPH DQG [

PAGE 39

FS 5DGLDQf WR &'

PAGE 40

5DGLDQf &XUYH 0HDVXUHG DQG 6PRRWKHG 9DOXHV RI FS &XUYHV &RPSXWHG 9DOXHV RI FS 6WDUWHG DW 'LIIHUHQW 3RLQWV Z R

PAGE 41

6RXUFHV RI (UURUV 7KH IROORZLQJ DUH FRQVLGHUHG WR EH WKH VRXUFHV RI HUURUV UHVSRQVLEOH IRU WKH GLVDJUHHPHQW EHWZHHQ WKH FRPSXWHG DQG PHDVXUHG YDOXHV ,PSHUIHFWLRQV LQ WKH 0RGHO 7KH KXPDQ EHLQJ IRU WKH PRWLRQ VWXGLHV ZDV PRGHOHG DV D V\VWHP RI ULJLG ERGLHV 7KH UHVSRQVH RI WKH V\VWHP WR EH FRPSDUHG WR WKDW RI WKH ULJLG ERG\ PRGHO ZDV D VLQJOH JHQHUDOL]HG FRRUGLQDWH RI WKH V\VWHP 7KH HUURUV LQ PRGHOLQJ FDQ EH OXPSHG LQWR WKH RYHUODSSLQJ FDWHJRULHV RI f GHILQLWLRQ RI WKH JHQHUDOL]HG FRRUGLQDWHV RI WKH ULJLG HOHPHQWV RI WKH V\VWHP f GHIRUPDWLRQV RI OLQN OLQHV GXULQJ PRWLRQV IURP SULRU MRLQW FHQWHU PHDVXUHPHQWV DQG f VLJQLILFDQW YDULDWLRQV GXULQJ PRWLRQ LQ WKH LQHUWLD SURSHUWLHV RI WKH WRUVR ZLWK UHVSHFW WR WKH IL[HG FRRUn GLQDWH V\VWHP ,Q VHYHUDO H[SHULPHQWV WKH WRUVR GHIRUPHG ZLWK VLJQLIn LFDQW PRYHPHQW RI WKH VKRXOGHU MRLQW FHQWHUV ,Q WKHVH FDVHV WKH FRQn VWDQW LQHUWLD SURSHUWLHV PRGHO LV REYLRXVO\ LQFRUUHFW 7KHVH YDULDWLRQV QRW RQO\ FDXVH LQDFFXUDFLHV LQ WKH LQHUWLD SDUDPHWHUV EXW DOVR UHVXOW LQ HUURUV LQ WKH OLQN OLQHV RU DGGLWLRQDO HUURUV LQ WKH PDVV FHQWHU RI HOHPHQW 7KHVH HUURUV DUH UHIOHFWHG LQ HUURUV LQ WKH DQJOHV DQG L_U ZKLFK LQ WXUQ FDXVH D WLPH YDU\LQJ SKDVH VKLIW LQ WKH FRPSXWHG DQJOH FS (UURUV LQ )LOPLQJ DQG 3URFHVVLQJ WKH 'DWD 7KH SULPDU\ VRXUFH RI HUURUV LQ ILOPLQJ ZDV FRQVLGHUHG WR EH FDXVHG E\ LQDFFXUDFLHV LQ NQRZLQJ SUHFLVHO\ ZKHUH WKH OLQN OLQHV ZHUH LQ UHODWLRQ WR WKH ILOP SODQH $V PHQWLRQHG LQ 6HFWLRQ FDUH ZDV

PAGE 42

WDNHQ WR PLQLPL]H WKLV HUURU 7KDW LV WKH FDPHUDV ZHUH DOLJQHG ZLWK WKH KRUL]RQWDO EDU VR WKDW WKH OLQN OLQH RI WKH DUPV SURMHFWHG LQ WKH SOXPE OLQH SODQH RI WKH ILOP ZDV YHU\ QHDUO\ WKH FRUUHFW PRGHO UHIHUn HQFH OLQH 6LQFH WKH OLQN OLQHV RI WKH WRUVR DQG OHJV ZHUH QHDUO\ SOXPE OLQH YHUWLFDO QR FRUUHFWLRQV RI WKH LPDJH GDWD ZHUH UHTXLUHG IRU WKHVH OLQNV )LOPLQJ RI VWDWLF WKLQ URGV ZKLFK ZHUH FRQQHFWHG WR WKH EDU DW NQRZQ DQJOHV WR HDFK RWKHU DQG WKH YHUWLFDO SODQH SURGXFHV RYHUDOO PHDVXUHPHQW HUURUV RI DERXW GHJUHH VWDQGDUG GHYLDWLRQ (UURUV XS WR GHJUHHV FDQ EH H[SHFWHG LQ GDWD IURP ILOPV RI WKH PRWLRQ H[SHULPHQWV 7KHVH HUURUV FDQ FDXVH WKH UDWHV RI WKH DQJOHV WR EH LQ HUURU E\ PRUH WKDQ SHUFHQW 7KLV LV WKH SULPDU\ FDXVH RI WKH HUURU LQ WKH DPSOLWXGH RI WKH DQJOH FS FRPSXWHG IURP WKH G\QDPLFDO HTXDWLRQV 6HFRQG GHULYDWLYHV RI WKH GDWD FDQ EH LQ HUURU E\ PRUH WKDQ SHUFHQW 7KLV UXOHG RXW WKH XVH RI HTXDWLRQV VXFK DV (XOHUnV RU /DJUDQJHnVf 7KH ,QWHJUDWLRQ 6FKHPH 7KH LQWHJUDWLRQ VFKHPH XVHV DW DQ\ VWHS WKH PHDVXUHG YDOXHV RI f f DQG LMI DQG WKH FRPSXWHG YDOXHV RI DQG L_I VWRUHG SUHYLRXVO\ 2QFH D GLIIHUHQFH EHWZHHQ WKH PHDVXUHG DFWXDOf DQG WKH FDOFXODWHG YDOXHV RI FS KDV GHYHORSHG DW D WLPH W GXH WR DQ\ RI WKH VRXUFHV RI HUURUV GLVFXVVHG DERYH WKH V\VWHP FRQILJXUDWLRQ GHWHUPLQHG E\ WKH FDOFXODWHG YDOXH RI FS DQG WKH PHDVXUHG DFWXDOf YDOXHV RI DQG OMU DW WKH WLPH W ZLOO EH GLIn IHUHQW IURP WKDW RI WKH DFWXDO V\VWHP DW WKDW WLPH 7KLV ZLOO FDXVH WKH PRGHO WR KDYH D GLIIHUHQW UHVSRQVH DIWHU WLPH W WKDQ WKDW RI WKH DFWXDO V\VWHP ZKLFK KDV D GLIIHUHQW UHODWLYH FRQILJXUDWLRQ 7KLV LQ WXUQ ZLOO FDXVH D IXUWKHU GHYLDWLRQ EHWZHHQ WKH DFWXDO DQG WKH FDOFXODWHG PRWLRQ WKDW IROORZV WKLV LQVWDQW RI WLPH 7R UHGXFH WKLV

PAGE 43

HIIHFW RI SURSDJDWLRQ RI HUURU YLD WKH V\VWHP HTXDWLRQV VHYHUDO UHLQLWLDOL]DWLRQV RI FS DQG S ZHUH GRQH E\ UHVWDUWLQJ WKH LQWHJUDWLRQV DW GLIIHUHQW SRLQWV 9DULRXV RUGHU GLIIHUHQWLDWLRQ DQG LQWHJUDLRQ VFKHPHV ZHUH WHVWHG ZLWK LQVLJQLILFDQW GLIIHUHQFHV LQ WKH UHVXOWV IRU VPRRWKHG GDWD 7KHVH ZHUH GRQH ZLWK GDWD IURP ILOPLQJ DW ) IUDPHV SHU VHFRQG ZLWK D PD[LPXP LQWHJUDWLRQ VWHS VL]H RI ) VHFRQG $V PHQn WLRQHG SUHYLRXVO\ WKH PDLQ FDXVH RI DPSOLWXGH HUURU ZDV WKH HUURUV LQ WKH GHULYDWLYHV RI WKH UDZ XQVPRRWKHG GDWD 7KH UHVXOWV REWDLQHG IURP WKH H[SHULPHQWV VKRZ WKDW WKH PRGHO IRU WKH NLSXS PRWLRQ FRQVWUXFWHG IURP WKH +DQDYDQ PRGHO ZDV UHDVRQn DEO\ JRRG FRQVLGHULQJ LWV NLQHPDWLFDO VLPSOLFLW\ ,Q VSLWH RI LPSHUn IHFWLRQV LQ WKH PRGHO LWV G\QDPLF EHKDYLRU ZDV TXLWH VLPLODU WR WKH DFWXDO PRWLRQ VR WKDW WKLV PRGHO FRXOG SURYLGH UHDVRQDEOH HVWLPDWHV RI RSWLPDO KXPDQ SHUIRUPDQFH YLD WKH WKHRU\ RI RSWLPDO SURFHVVHV DQG QXPHULFDO VROXWLRQ PHWKRGV +RZHYHU WKH UHVXOWV REWDLQHG IURP WKH H[SHULPHQWV LQGLFDWH WKDW WKH DSSOLFDWLRQ RI UDWLRQDO PHFKDQLFV WR WKH DQDO\VLV DQG GHVLJQ RI PDQPDFKLQH V\VWHPV FRXOG SURYH LQDGHTXDWH XQOHVV WKH PRGHO DQG WKH GDWD JDWKHULQJ WHFKQLTXHV FDQ EH LPSURYHG 7KLV LV HVSHFLDOO\ WUXH LQ WKH GHVLJQ RI KLJK DFFXUDF\ RU ORZ WROHUDQFH V\VWHPV

PAGE 44

&+$37(5 $1$/<7,& '(7(50,1$7,21 2) 7+( 0,1,0807,0( .,383 675$7(*< ,QWURGXFWLRQ ,Q WKLV FKDSWHU WKH GHWHUPLQDWLRQ RI DQ DQDO\WLF VROXWLRQ RI WKH NLSXS PDQHXYHU LV SUHVHQWHG 7KH SUREOHP RI DQDO\WLFDO GHWHUPLQDWLRQ RI WKH NLSXS VWUDWHJ\ LQ PLQLPXP WLPH KDV EHHQ FDVW DV D SUREOHP RI RSWLPDO FRQWURO RI G\QDPLFDO V\VWHPV %HIRUH WKH WHFKQLTXHV RI WKH RSWLPDO FRQWURO WKHRU\ PD\ EH DSSOLHG WR WKH SUREOHP LW LV QHFHVVDU\ WR VWDWH WKH SK\VLFDO SUREOHP LQ WKH ODQJXDJH RI PDWKHPDWLFV DQG WR LQWURGXFH WKH SK\VLFDO FRQVWUDLQWV WKDW PXVW DOVR EH FRQVLGHUHG IRU WKH VROXWLRQ 7KXV WKH ILUVW IRXU VHFWLRQV RI WKLV FKDSWHU KDYH EHHQ GHYRWHG WR WKH IRUPXODWLRQ RI WKH PDWKHPDWLFDO SUREOHP ,Q 6HFWLRQ D VXUYH\ RI WKH QHFHVVDU\ FRQGLWLRQV IRU RSWLPDOLW\ REWDLQHG IURP WKH RSWLPDO FRQWURO WKHRU\ LV SUHVHQWHG 6LQFH WKH SUREOHP XQGHU FRQVLGHUn DWLRQ FDQQRW EH VROYHG LQ FORVHG IRUP QXPHULFDO PHWKRGV ZHUH XVHG WR REWDLQ WKH VROXWLRQ ,Q 6HFWLRQV WKH FKRLFH RI WKH QXPHULFDO PHWKRGV WKHLU GHULYDWLRQV DQG WKH UHVXOWV RI WKH QXPHULFDO FRPSXWDWLRQV DUH GLVFXVVHG ,Q 6HFWLRQ UHVXOWV RI WKH QXPHULFDO FRPSXWDWLRQV DUH FRPSDUHG ZLWK WKH DFWXDO PRWLRQ

PAGE 45

A0DWKHPDWLFDO )RUPXODWLRQ RI WKH .LS8S 3UREOHP 7KH SUREOHP LV WR GHWHUPLQH WKH PLQLPXP WLPH VWUDWHJ\ IRU WKH PDQ PRGHO WR NLSXS ZLWKRXW YLRODWLQJ FRQWURO FRQVWUDLQWV 7KHVH FRQn VWUDLQWV UHSUHVHQW WKH PD[LPXP WRUTXHV WKH PDQnV PXVFOHV FDQ H[HUW IRU DQ\ JLYHQ FRQILJXUDWLRQ )RUPXODWHG PDWKHPDWLFDOO\ ZH KDYH WKH IROORZn LQJ )RU WKH V\VWHP HTXDWLRQV ; I;Xf $;f %;fX f DQG WKH ERXQGDU\ FRQGLWLRQV ;f ; f§ f§ R JLYHQf f ZKHUH DQG JLYHQ E\ i;WIff ;WIf ;I ;I JLYHQ W ILQDO WLPH WR EH GHWHUPLQHG ;Wf LV WKH WLPHGHSHQGHQW VWDWH YHFWRU ;[Wf TMWf ;JWf FSWf ;Wf Wf [Wf Wf [Wf ?.Wf [JWf ,_UWf f f f ILQG D FRQWURO XWf >XWfXWf@ f VXFK WKDW VLPXOWDQHRXVO\ (TXDWLRQV f f DUH VDWLVILHG WA LV PLQLPL]HG DQG IRU DOO YDOXHV RI W A W e W WKH LQHTXDOLWLHV 6r;f r X[Wf r V-;f V?Df 6 XWf 6 6;f f

PAGE 46

DUH VDWLVILHG 6;f DUH JLYHQ IXQFWLRQV RI ; DQG UHSUHVHQW WKH ERXQGV RQ WKH FRQWURO XWf 7KH IXQFWLRQV I;Xf $;f DQG %;f ZHUH SUH YLRXVO\ JLYHQ LQ 6HFWLRQ i LV WKH HUURU LQ PHHWLQJ WKH WHUPLQDO YDOXHV RI WKH VWDWH YDULDEOHV %RXQGV RQ WKH &RQWUROV 7KH FRQWURO YDULDEOH XA LV WKH PXVFOH WRUTXH H[HUWHG DW WKH VKRXOGHU MRLQW DQG X LV WKDW H[HUWHG DW WKH KLS )RU WKH LQGLYLGXDO EHLQJ PRGHOHG WKH IXQFWLRQV X DQG X ZLOO KDYH XSSHU DQG ORZHU OLPLWV ZKLFK DUH IXQFWLRQV RI WKH VWDWH ; 6DPUDV >@ H[SHULPHQWDOO\ GHWHUPLQHG WKH PD[LPXP PXVFOH WRUTXHV DW WKH VKRXOGHU DQG KLS MRLQWV IRU YDULRXV OLPE DQJOHV DW WKH MRLQWV 7KLV ZDV GRQH IRU WKH VDPH VXEMHFW PRGHOHG LQ WKH SUHVHQW VWXG\ 7KHVH PHDVXUHPHQWV ZHUH PDGH XQGHU VWDWLF FRQGLWLRQV DQG WKH P£[LPXPV LQ HLWKHU IOH[LRQ RU H[WHQVLRQ ZHUH PHDVXUHG IRU WKH VKRXOGHU WRUTXH IRU YDULRXV YDOXHV RI DQG WKH KLS WRUTXH IRU YDULRXV YDOXHV RI L_L 7KH H[n SHULPHQWDO ERXQGV RQ WKH VKRXOGHU WRUTXH ZHUH WKHQ ILWWHG E\ SRO\QRPLDOV LQ 7KH KLS WRUTXH ERXQGV ZHUH H[SUHVVHG LQ SRO\QRPLDOV LQ ?MI (YHQ WKRXJK HDFK RI WKHVH ERXQGV PLJKW EH H[SHFWHG WR GHSHQG WR VRPH GHJUHH RQ DOO IRXU VWDWH YDULDEOHV ;A ;A ;A DQG ;A WKH ERXQGV RQ WKH VKRXOGHU WRUTXH X GHSHQG SULPDULO\ RQ ; DQG WKH ERXQGV RQ WKH 2 KLS WRUTXH X GHSHQG SULPDULO\ RQ ; 7KH PHDVXUHPHQWV RI 6DPUDV GR QRW ] R LQFOXGH WKH UDWH GHSHQGHQFH ; DQG ; $OWKRXJK WKH UDWH HIIHFW DSSHDUV WR EH PHDVXUDEOH LW LV D VHFRQGRUGHU HIIHFW DQG TXLWH GLIILFXOW WR REWDLQ 7KH FRQWURO OLPLW IXQFWLRQV DUH JLYHQ LQ )LJXUH 7KHVH IXQFn WLRQV DUH FRUUHFW RQO\ IRU D FHUWDLQ UDQJH RI YDOXHV RI WKH DQJOHV

PAGE 47

&RQWURO /LPLW IWOEf )LJXUH 8QPRGLILHG &RQWURO /LPLW )XQFWLRQV 6DPUDV >@f

PAGE 48

;f DQG ; 7KH YDOXHV RI 6 DQG 6 FDQ QHYHU EH SRVLWLYH DQG WKRVH RI 2 2 DQG FDQ QHYHU EH QHJDWLYH :KHQHYHU WKHVH VLJQ FRQGLWLRQV DUH YLRODWHG E\ H[WUHPH YDOXHV RI WKH VWDWHV 6n" LV VHW HTXDO WR ]HUR $OVR IURP H[WUDSRODWHG PHDVXUHPHQW GDWD DQ XSSHU OLPLW KDV EHHQ VHW IRU 6 DW IWOE DQG D ORZHU OLPLW KDV EHHQ VHW IRU DW IWOE 7RUVLRQDO 6SULQJV LQ WKH 6KRXOGHU DQG +LS -RLQWV 2XU G\QDPLFDO PRGHO DQG WKH FRQWURO OLPLW IXQFWLRQV RI WKH VKRXOGHU DQG WKH KLS GR QRW DFFRXQW IRU WKH VWLIIQHVV RI WKH VKRXOGHU DQG WKH KLS MRLQWV DW WKH H[WUHPLWLHV RI VKRXOGHU DQG OHJ PRYHPHQWV ,W KDV EHHQ REVHUYHG WKDW WKH VKRXOGHU MRLQWV SURGXFH D UHVLVWDQFH WR UDLVLQJ WKH DUP EH\RQG DQ DQJOH RI m r 7KH KLS MRLQWV UHVLVW PRYHn PHQW IRU L_I r RU IRU L_U r 7KH HIIHFWV RI WKHVH VWRSVf DUH LPSRUWDQW DQG PXVW EH LQFOXGHG LQ WKH PRGHO VLQFH WKH ILOP GDWD VKRZHG WKDW WKHVH OLPLWV ZHUH UHDFKHG 7KHUH DUH QR GDWD DYDLODEOH IRU WKH VWLIIQHVV RI WKHVH MRLQW VWRSV ,W ZDV REVHUYHG WKDW DOWKRXJK WKH MRLQWV ZHUH QRW ULJLG WKH\ ZHUH TXLWH VWLII ,W ZDV WKHUHIRUH GHFLGHG WR XVH VWLII WRUVLRQDO VSULQJ PRGHOV DW WKH PRGHOnV VKRXOGHU DQG WKH KLS MRLQWV 7KHVH ZRXOG EH DFWLYH ZKHQ WKH VWRS DQJOHV ZHUH H[FHHGHG )RU WKH VKRXOGHU WKH VSULQJ LV DFWLYH IRU A UDGLDQ )RU WKH KLS MRLQW WKH VSULQJ LV DFWLYH IRU LMM 6 UDGLDQ DQG L_U UDGLDQV 7KH VSULQJV KDYH HTXDO VWLIIQHVVHV 2QH JHQHUDWHV D IWOE WRUTXH DW WKH VKRXOGHU IRU D GHIOHFWLRQ RI UDGLDQ 7KLV FRUUHVSRQGV WR D MRLQW VWRS WRUTXH RI WKH RUGHU RI WKH PD[LPXP YROXQWDU\ WRUTXH DYDLOn DEOH DW WKH VKRXOGHU IRU WKH GHIOHFWLRQ RI UDGLDQ 7KLV JLYHV D VSULQJ FRQVWDQW RI .J IWOEUDG 7KH VSULQJ IRUFHV DW WKH VKRXOGHUV

PAGE 49

ZRXOG WKHUHIRUH EH HTXDO WR f IRU A UDGLDQ DQG WKRVH DW V WKH KLS MRLQWV ZRXOG EH L_Uf IRU f A UDGLDQV DQG f V V IRU A UDGLDQ 7KHVH WRUTXHV DW WKH VKRXOGHU DQG WKH KLS MRLQWV ZHUH DGGHG WR WKH YROXQWDU\ FRQWURO WRUTXHV XA DQG XA ZKHQ WKH VWRSV ZHUH DFWLYDWHG %RXQGDU\ &RQGLWLRQV 7KH ERXQGDU\ FRQGLWLRQV IRU WKH NLSXS PDQHXYHU ZHUH FKRVHQ IURP WKH H[SHULPHQWDO GDWD RI 6HFWLRQ 7KH LQLWLDO YDOXHV VHOHFWHG FRUUHVSRQG WR PRWLRQ ZKLFK KDV DOUHDG\ EHJXQ 7KLV LV EH\RQG WKH LQLWLDO XQV\PPHWULFDO PRWLRQ ZKLFK RFFXUV RQ EHJLQQLQJ WKH ILUVW VZLQJ 7KLV PRWLRQ LV GLIILFXOW WR PRGHO DQG LV QRW LPSRUWDQW LQ WKLV EDVLF UHVHDUFK 7KH ILQDO YDOXHV RI WKH VWDWH YDULDEOHV UHSUHVHQW WKH PRGHO DWRS WKH KRUL]RQWDO EDU VWLOO PRYLQJ XSZDUG DQG MXVW EHIRUH ERG\ FRQn WDFW ZLWK WKH EDU 2QFH WKH WRUVR FRQWDFWV WKH EDU WKH PRGHO LV QR ORQJHU YDOLGf 7KH DFWXDO PRWLRQ LQ WKH H[SHULPHQW WHUPLQDWHG VKRUWO\ DIWHU WKLV SRLQW ZKHQ WKH J\PQDVW XVHG WKH LPSDFW RI WKH KRUL]RQWDO EDU ZLWK KLV ERG\ WR VWRS KLPVHOI 7KH LQLWLDO DQG ILQDO YDOXHV RI WKH VWDWH YDULDEOHV IRU WKH RSWLPL]DWLRQ SUREOHP DUH OLVWHG LQ 7DEOH

PAGE 50

7$%/( %281'$5< &21',7,216 )25 $ 0,1,080 7,0( .,383 027,21 6WDWH 9DULDEOHV ,QLWLDO 9DOXH )LQDO 9DOXH 9 ; R ;I ; R ;I H ; [ 2 I H ; ;F R I A ; R f A ; R ;I 7KH 1HFHVVDU\ &RQGLWLRQV IRU 7LPH 2SWLPDO &RQWURO ,Q WKLV FKDSWHU ZH ORRN LQWR WKH QHFHVVDU\ FRQGLWLRQV IRU WKH PLQLPXP WLPH SUREOHP IRUPXODWHG LQ WKH SUHYLRXV FKDSWHU 7KH QHFHVVDU\ FRQGLWLRQV IRU RSWLPDOLW\ RI PRWLRQ IRU WKH FDVH ZKHQ WKH FRQVWUDLQWV RQ WKH FRQWURO DUH QRW D IXQFWLRQ RI WKH VWDWHV DUH JLYHQ LQ 5HIHUHQFH )RU WKH FDVH ZKHUH FRQWURO FRQVWUDLQWV GHSHQG RQ WKH VWDWHV WKH QHFn HVVDU\ FRQGLWLRQ UHTXLUHV D PRGLILFDWLRQ LQ WKH DGMRLQW HTXDWLRQV 7KHVH DUH REWDLQHG WKURXJK D FDOFXOXV RI YDULDWLRQV DSSURDFK >@ 7KLV DSSURDFK LV XVHG LQ WKH IROORZLQJ GHYHORSPHQWV :ULWLQJ WKH VWDWH HTXDWLRQV RI RXU V\VWHP DV ; I;Xf $;f %;fX f

PAGE 51

ZH FDQ FRQVWUXFW WKH FRVW IXQFWLRQ DV GW f ZKHUH W I LV IUHH 7KH +DPLOWRQLDQ LV WKHQ JLYHQ E\ +;X;f ?7I ?7$;f ?7%;fX ;7$;f ;7E[fX ?7%;f8 ZKHUH ;Wf LV WKH WLPHGHSHQGHQW VL[GLPHQVLRQDO FROXPQ YHFWRU RI DGMRLQW YDULDEOHV $ % % % DQG I DUH WKH TXDQWLWLHV DV GHILQHG E\ (TXDWLRQV f f LQ 6HFWLRQ 7KH PLQLPXPWLPH FRQWURO SROLF\ XrWf ZLOO EH JLYHQ E\ WKH RQH WKDW PLQLPL]HV WKH +DPLOWRQLDQ f SURYLGHG QR VLQJXODU DUFV DUH SUHVHQW :H QRWH WKDW LQ WKLV FDVH WKH +DPLOWRQLDQ LV D OLQHDU IXQFn WLRQ RI WKH FRQWURO X DQG WKHUHIRUH WKH PLQLPXP ZLWK UHVSHFW WR X RFFXUV RQO\ LQ WKH XSSHU DQG WKH ORZHU ERXQGV RI X LI WKHUH LV QR VLQJXODU VROXWLRQ 7KXV ZH KDYH UHFDOOLQJ WKH GHILQLWLRQV RI 6A LQ 6HFWLRQ 7 f ,I ; %A;f XA WKH PLQLPXP DOORZDEOH YDOXH RI XA 6r;f Df Df Ef Ff f ,I ?7% ;f 8/ f ,I ;7%;f X WKH PD[LPXP DOORZDEOH YDOXH RI XA 6-;f Ef WKH PLQLPXP DOORZDEOH YDOXH RI XU 6} Df f ,I ?7%;f X WKH PD[LPXP DOORZDEOH YDOXH RI X Ef

PAGE 52

f ,I ?7% ;f 7 RU ; % ;f XA XA SRVVLEOH VLQJXODU FRQWURO f X DQG X ZLOO EH GHWHUPLQHG E\ LQYHVWLJDWLQJ ZKHWKHU RU QRW WKHUH LV L &r D VLQJXODU VROXWLRQ ZLWK UHVSHFW WR WKHVH YDULDEOHV 7KH DGMRLQW HTXDWLRQV ZLOO EH GLIIHUHQW IRU WKH SRUWLRQV RI WKH R WUDMHFWRULHV IRU X FRUUHVSRQGLQJ WR FRQVWUDLQHG DQG XQFRQVWUDLQHG DUFV 7KH DGMRLQW HTXDWLRQV DUH LQ JHQHUDO JLYHQ E\ ?7 + f ; 7KLV \LHOGV Df :KHQ QHLWKHU X QRU X OLH RQ D FRQVWUDLQW ?7 + ?7$ ?7% X ;7% X f n; f f; fO[ [ Ef :KHQ DQ\ RQH RU ERWK X DQG X GHQRWHG E\ X L RU f OLH RQ = ; D FRQVWUDLQW GHQRWHG E\ M RU f WKH ULJKW VLGH RI (TXDWLRQ f RI WKH DGMRLQW YDULDEOHV KDV WKH DGGLWLRQDO WHUP ?WE 6L L f; DQG WKH HTXDWLRQ FDQ EH ZULWWHQ DV 7B fM ; ; $ ; % 8 [ %Q X = [ % 6 n; [ L L f ZKHUH LI ; % O O LI ? % L O 7KH ERXQGDU\ FRQGLWLRQV RQ WKH VWDWH DQG WKH DGMRLQW YDULDEOHV DUH

PAGE 53

;f JLYHQ ; ?f IUHH R ;W f JLYHQ ;I ?WIf IUHH DQG +WIf ?7IfW A f f 7KH VWDWH DQG DGMRLQW HTXDWLRQV WRJHWKHU ZLWK WKH FRQWURO ODZV DQG WKH ERXQGDU\ FRQGLWLRQV ZULWWHQ DERYH IRUP D WZRSRLQW ERXQGDU\ YDOXH SUREOHP 73%93f LQ WKH VWDWH DQG DGMRLQW YDULDEOHV ,I WKHVH R HTXDWLRQV FDQ EH VROYHG WKH RSWLPDO FRQWURO X ZLOO EH LPPHGLDWHO\ REWDLQHG IURP (TXDWLRQV Df f ,QYHVWLJDWLRQ RI 6LQJXODU 6ROXWLRQV 7 R ,W KDV EHHQ QRWHG WKDW LI c9 XA FDQQRW EH GHWHUPLQHG IURP WKH UHTXLUHPHQW WKDW WKH +DPLOWRQLDQ LV WR EH PLQLPL]HG ZLWK R 7 UHVSHFW WR X 7KH VDPH LV WUXH IRU X ZKHQf? % 6LQFH WKH WUHDWPHQW IRU XA LV WKHnVDPH DV IRU XA ZH VKDOO LQYHVWLJDWH D VLQJXODU FRQWURO IRU RQO\ XA 7 ,I WKH TXDQWLW\ ? %A RQO\ IRU D VLQJOH LQVWDQW RI WLPH WKHQ WKH VLWXDWLRQ LV QRW RI PXFK FRQFHUQ EHFDXVH WKH GXUDWLRQ RI WKH LQWHUYDO LV QRW ILQLWH DQG ZH FDQ VLPSO\ FKRRVH X XAW f RU XAWf RU ZKHUH XAW f FRQWURO DW WKH LQVWDQW SUHFHGLQJ W XAWf LV WKH LQVWDQW H[DFWO\ DIWHU W 7KH VLWXDWLRQ QHHGV VSHFLDO DWWHQWLRQ ZKHQ 7 ? %A IRU D ILQLWH LQWHUYDO RI WLPH ,I W 6 W e W LV DQ LQWHUYDO IRU ZKLFK Xr LV VLQJXODU LW LV = D FOHDU WKDW IRU RXU V\VWHP A W } WA IRU f

PAGE 54

DQG WKHUHIRUH G 7 +W A IRU f RU [? ?7% IRU WL W W f RU IRU WKH LQWHUYDO W A W A W WKH IROORZLQJ UHVXOWV PXVW KROG ; FM &DVH 2QO\ X LV VLQJXODU X LV QRQVLQJXODU 6LQFH X LV QRW A VLQJXODU X LV RQ D FRQVWUDLQW ERXQGDU\ DQG LV JLYHQ E\ X 6f M IRU WKH ORZHU FRQVWUDLQW M IRU WKH XSSHU FRQVWUDLQW 7KH DGMRLQW HTXDWLRQV DUH JLYHQ E\ (TXDWLRQ f f 7 7 7 7 L 7 L O ; $ ; % X ;6 ; % 6f f§ ; f f ` Y a I D \ f ; iL % ; n; i XL A f ; f f )URP (TXDWLRQV f f DQG f ZH REWDLQ K? M6L A6L r V V! f f§ ; ;; ,W LV WR EH REVHUYHG WKDW WKH QHFHVVDU\ FRQGLWLRQ f LV QRW H[SOLFLW LQ XA &DVH %RWK X DQG X DUH VLQJXODU 7KH YDOXH RI X LV QR ORQJHU ; D 7 M f DQG WKH WHUP ; % 6 LQ WKH ; (TXDWLRQ f GURSV RXW LQ WKLV f f f; FDVH $FFRUGLQJO\ RQH REWDLQV ;7>$[ % $@ ;7>% % %[ % X f ‘f ; ;;

PAGE 55

3URFHHGLQJ IURP WKH DVVXPSWLRQ WKDW X LV VLQJXODU RQH ZRXOG DOVR JHW e IRU WKLV FDVH ZKHQ ERWK XA DQG XA DUH VLQJXODU 7 &rf; %B $@ ?7>% % fAf; f; n f )URP (TXDWLRQV f f DQG f ZH FDQ VHH WKDW 7 7 RQO\ LI ERWK ? %A DQG ? %DUH ]HUR VLPXOWDQHRXVO\ LV LW SRVVLEOH WR ILQG D VLQJXODU VROXWLRQ E\ VXLWDEOH FKRLFHV RI XA DQG XA IURP WKH 7 7 W FRQGLWLRQ f ,I RQO\ RQH RI ? %A DQG ? %A VD\ ? %A LV ]HUR WKH UHTXLUHPHQW f§f§ A %f GRHV QRW \LHOG DQ HTXDWLRQ H[SOLFLW LQ GW G 7 X DV REVHUYHG LQ (TXDWLRQ f ,W LV WKXV UHTXLUHG WKDW f§f§ ? %f L f§n fO GW ZKLFK ZLOO EH H[SOLFLW LQ X GXULQJ WKH LQWHUYDO W A W A W -B / e WRJHWKHU ZLWK WKH UHTXLUHPHQW WKDW WKH UHODWLRQ f LV VDWLVILHG 7 DW W U WA 7KHVH WZR FRQGLWLRQV ZLOO HQVXUH WKDW ? %A LQ WKH LQWHUYDO WA A W 6 W ,W LV WR EH QRWHG WKDW VLQJXODU FRQWURO FRPSXWHG E\ WKH DERYH SURFHGXUH KDV QRW EHHQ SURYHG WR EH WKH PLQLPL]LQJ FRQWURO $GGLWLRQDO QHFHVVDU\ FRQGLWLRQV DQDORJRXV WR WKH FRQYH[LW\ FRQGLWLRQV IRU VLQJXODU FRQWUROV KDYH EHHQ REWDLQHG E\ 7DLW >@ DQG .HOOH\ .RSS DQG 0R\HU >@ IRU VFDODU FRQWURO DQG E\ 5REELQV >@ DQG *RK >@ IRU YHFWRU FRQWURO )RU WKH JHQHUDO FDVH RI YHFWRU FRQWURO WKHVH FRQGLWLRQV VXPPDUL]HG E\ -DFREVRQ >@ PD\ EH VWDWHG DV RQ VLQJXODU VXEDUFV /GW + LI T LV RGG f DQG f

PAGE 56

GS ,Q WKHVH HTXDWLRQV f§rf§ + ;?f LV WKH ORZHVW RUGHU WLPH GHULYDWLYH GW 3 RI + LQ ZKLFK WKH FRQWURO X DSSHDUV H[SOLFLWO\ DQG T S )RU D VFDODU FRQWURO (TXDWLRQ f LV VDWLVILHG LGHQn WLFDOO\ (TXDWLRQV f DQG f DOVR GR QRW FRQVWLWXWH VXIn ILFLHQF\ FRQGLWLRQV IRU PLQLPDOLW\ $ FRPSOHWH VHW RI VXIILFLHQF\ FRQGLWLRQV IRU VLQJXODU DUFV KDV QRW \HW EHHQ HVWDEOLVKHG LQ WKH OLWHUDWXUH RI RSWLPDO FRQWURO WKHRU\ IRU D JHQHUDO QRQOLQHDU V\VWHP :H FDQ VHH WKDW WKHUH DUH TXLWH VHYHUH UHVWULFWLRQV RQ WKH H[LVWHQFH RI VLQJXODU DUFV LQ WKH KXPDQ PRWLRQ SUREOHP ,Q WKH QXPHULFDO PHWKRGV XVHG LQ WKH SUHVHQW ZRUN WR GHWHUPLQH WKH RSWLPDO VROXWLRQ RQO\ LQ WKH PHWKRG RI TXDVLOLQHDUL]DWLRQ LV LW QHFHVVDU\ WR H[SUHVV WKH FRQWURO LWV RSWLPDO YDOXHf LQ WHUPV RI WKH VWDWH DQG DGMRLQW YDULDEOHV ZKLOH LQ WKH JUDGLHQW PHWKRGV ZKHUH VXFFHVVLYH LPSURYHPHQWV DUH PDGH LQ WKH FRQWURO YDULDEOHV WKLV LV QRW VR ,Q WKH DWWHPSWV ZLWK WKH TXDVLOLQHDUL]DWLRQ PHWKRG VLQJXODU VROXWLRQV ZHUH QRW FRQVLGHUHG LQ WKH FRQVWUXFWLRQ RI WKH WZRSRLQW ERXQGDU\ YDOXH SUREOHP LQ WKH VWDWH DQG DGMRLQW YDULDEOHV ,W ZDV GHFLGHG WKDW LI D VROXWLRQ WR WKH 73%93 ZDV REWDLQHG E\ TXDVLOLQHDUL]DWLRQ VLQJXODU DUFV ZRXOG EH ORRNHG IRU ODWHU 7KH JUDGLHQW PHWKRGV H[KLELW VLQJXODU DUFV DXWRPDWLFDOO\ LI WKHUH DUH DQ\ 7KH DGGLWLRQDO QHFHVVDU\ FRQGLn WLRQV IRU VLQJXODU DUFV VKRXOG EH FKHFNHG ZKHQ RIIFRQVWUDLQW DUFV DUH H[KLELWHG E\ WKH JUDGLHQW PHWKRG

PAGE 57

B7KH 6ROXWLRQ 0HWKRGV 7KH RSWLPDO FRQWURO SUREOHP IRUPXODWHG LQ WKH SUHFHGLQJ VHFWLRQ FDQQRW EH VROYHG LQ FORVHG IRUP 1XPHULFDO PHWKRGV PXVW WKHUHIRUH EH XVHG WR ILQG LWV VROXWLRQ ,Q WKH RSWLPDO FRQWURO WKHRU\ OLWHUDWXUH VHYHUDO QXPHULFDO PHWKRGV KDYH EHHQ SURSRVHG IRU VROYLQJ WKH GLIIHUn HQWLDO HTXDWLRQV DQG WKH RSWLPDOLW\ FRQGLWLRQV WKDW DULVH RXW RI RSWLPDO FRQWURO SUREOHPV VXFK DV WKH SUHVHQW RQH 1RQH RI WKHVH PHWKRGV JXDUDQn WHHV WKDW D VROXWLRQ ZLOO EH REWDLQHG UHDGLO\ ZKLOH VRPH RI WKH PHWKRGV GR QRW JXDUDQWHH WKDW D VROXWLRQ PD\ EH REWDLQHG DW DOO 7KH PHWKRGV DUH DOO LWHUDWLYH QHFHVVLWDWLQJ WKH XVH RI KLJKVSHHG FRPSXWHUV IRU DOO QRQWULYLDO SUREOHPV $ QRPLQDO JXHVVHG WUDMHFWRU\ LV LPSURYHG LWHUDWLYHO\ XQWLO WKH LPSURYHG VROXWLRQ VDWLVIDFWRULO\ PHHWV DOO WKH QHFHVVDU\ FRQGLWLRQV 'HSHQGLQJ RQ ZKHWKHU WKH PHWKRG UHTXLUHV ILQGLQJ WKH ILUVW RU ERWK ILUVW DQG VHFRQG GHULYDWLYHV RI WKH V\VWHP HTXDWLRQV ZLWK UHVSHFW WR WKH VWDWH DQG FRQWURO YDULDEOHV WKHVH PHWKRGV DUH FDOOHG )LUVW2UGHU RU 6HFRQG2UGHU PHWKRGV UHVSHFWLYHO\ 7KLV LV VR EHFDXVH WKH\ LQ HIIHFW PDNH ILUVWRUGHU RU VHFRQGRUGHU DSSUR[LPDWLRQV RI WKH V\VWHP HTXDWLRQV ZLWK UHVSHFW WR WKH VWDWH DQG FRQWURO YDULDEOHV 7KH ILUVW RUGHU PHWKRGV LQ JHQHUDO KDYH WKH SURSHUW\ WKDW WKH\ FDQ VWDUW IURP D SRRU JXHVV DQG PDNH IDVW LPSURYHPHQWV LQ WKH EHJLQQLQJ 7KH\ QHHG IHZHU FRPSXWDWLRQV LQ HDFK LWHUDWLRQ %XW WKHLU SHUIRUPDQFH LV QRW JRRG QHDU WKH RSWLPDO VROXWLRQ ZKHUH WKH FRQYHUJHQFH UDWH EHFRPHV YHU\ SRRU 7KH VHFRQGRUGHU PHWKRGV RQ WKH RWKHU KDQG QHHG D JRRG LQLn WLDO JXHVV WR EH DEOH WR VWDUW EXW KDYH H[FHOOHQW FRQYHUJHQFH SURSn HUWLHV QHDU WKH RSWLPDO VROXWLRQ %HFDXVH WKH VHFRQGRUGHU PHWKRGV

PAGE 58

QHHG FRPSXWDWLRQ RI WKH VHFRQG GHULYDWLYH RI WKH V\VWHP HTXDWLRQV WKH\ QHHG PRUH FRPSXWLQJ WLPH SHU LWHUDWLRQ ZKLFK PD\ EH H[FHVVLYH IRU VRPH SUREOHPV $SDUW IURP WKH ILUVW DQG VHFRQGRUGHU PHWKRGV PHQWLRQHG DERYH WKHUH LV DQRWKHU FODVV RI PHWKRGV ZKLFK WULHV WR FRPELQH WKH DGYDQWDJHV RI ERWK RI WKHVH PHWKRGV ZKLOH HOLPLQDWLQJ WKH GLVDGYDQWDJHV RI ERWK 7KH &RQMXJDWH *UDGLHQW 0HWKRG 3DUDOOHO 7DQJHQW 0HWKRG DQG WKH 'DYLGRQ )OHWFKHU3RZHOO 0HWKRG IDOO LQWR WKLV FODVV 7KHVH PHWKRGV ZRUN YHU\ PXFK OLNH WKH ILUVWRUGHU PHWKRG H[FHSW WKDW LQ WKH ILUVWRUGHU H[SDQVLRQ WKH FRHIILFLHQWV RI WKH ILUVWRUGHU WHUP RU WKH JUDGLHQW WHUP LV PRGLILHG E\ VRPH WUDQVIRUPDWLRQV 7KHVH WUDQVIRUPDWLRQV DUH JHQHUDWHG IURP WKH PRGLILHG JUDGLHQW WHUP RI WKH SUHYLRXV LWHUDWLRQ DQG WKH JUDGLHQW WHUP RI WKH FXUUHQW LWHUDWLRQ 7KLV KDV WKH HIIHFW RI XVLQJ WKH LQIRUPDWLRQ WKDW LV REWDLQHG IURP D VHFRQG GHULYDWLYH ,W LV QRW NQRZQ ZKLFK RI WKH VHYHUDO PHWKRGV XVHG IRU VROYLQJ RSWLPDO FRQWURO SUREOHPV LV JRRG IRU D JLYHQ SUREOHP DQG RQH PD\ KDYH WR WU\ PRUH WKDQ RQH PHWKRG LQ RUGHU WR REWDLQ WKH VROXWLRQ ,Q WKH SXEOLVKHG OLWHUDWXUH PRVW RI WKH LOOXVWUDWLRQV RI WKHVH PHWKRGV DUH VLPSOH ,Q WKHVH VLPSOH SUREOHPV FRQWURO RU VWDWH YDULDEOH KLVWRULHV GR QRW KDYH ZLGH RVFLOODWLRQV RU WKH V\VWHP HTXDWLRQV WKHPVHOYHV DUH QRW FRPSOLFDWHG 7KLV PDNHV LW WUXO\ GLIILFXOW IRU VRPHRQH ZLWKRXW SUHYLRXV H[SHULHQFH WR GHFLGH XSRQ WKH PHULWV RI WKHVH PHWKRGV 7KHUH LV QR SUHIHUHQFH OLVW DQG LW VHHPV FHUWDLQ WKDW WKHUH FDQQRW EH RQH ZKHUHE\ D GHFLVLRQ FDQ EH PDGH DV WR ZKLFK PHWKRG VKRXOG EH WULHG ILUVW VR WKDW D VROXWLRQ RI D JLYHQ SUREOHP ZLOO EH REWDLQHG PRVW HIILFLHQWO\ ,Q WKLV UHVSHFW GHFLGLQJ XSRQ D FRPSXWLQJ

PAGE 59

PHWKRG IRU D JLYHQ SUREOHP LV VWLOO DQ DUW DQG GHSHQGV ODUJHO\ RQ WKH SUHYLRXV H[SHULHQFH RI WKH LQGLYLGXDO WU\LQJ WR VROYH WKH SUREOHP ,Q WKH DWWHPSWV WR VROYH WKH PLQLPXP WLPH SUREOHP WKH PHWKRG RI TXDVLOLQHDUL]DWLRQ ZDV WDNHQ XS ILUVW 7KLV FKRLFH ZDV EDVHG RQ VHYHUDO IDFWRUV 7KLV LV WKH RQO\ PHWKRG ZKHUH WKH WZRSRLQW ERXQGDU\ YDOXH SUREOHP REWDLQHG IURP WKH QHFHVVDU\ FRQGLWLRQV RI RSWLPDOLW\ LV VROYHG GLUHFWO\ DQG WKLV IHDWXUH ZDV IRXQG YHU\ DWWUDFWLYH $V D VWDUWn LQJ JXHVV WKLV PHWKRG UHTXLUHV WKH WLPH KLVWRULHV RI WKH VWDWH DQG DGMRLQW YDULDEOHV 7LPH KLVWRULHV RI WKH VWDWH YDULDEOHV ZHUH DYDLODEOH IURP WKH H[SHULPHQWV ,W ZDV GHFLGHG WKDW LI WKH PHWKRG ZDV VXFFHVVn IXO IRU WKLV JXHVV DQ DUELWUDU\ DQG OHVV DFFXUDWH LQLWLDO JXHVV ZRXOG EH WULHG ODWHUf :KHQ LW FRQYHUJHV WKH PHWKRG KDV D TXDGUDWLF FRQYHUn JHQFH UDWH $OVR LQ VSLWH RI LWV EHLQJ D ZHOONQRZQ PHWKRG IRU VROYn LQJ QRQOLQHDU WZRSRLQW ERXQGDU\ YDOXH SUREOHPV VLQFH LW ZDV ILUVW LQWURGXFHG E\ %HOOPDQ DQG .DODED >@ LWV DSSOLFDWLRQV LQ VROYLQJ RSWLPDO FRQWURO SUREOHPV KDYH EHHQ YHU\ IHZ 7KHUH ZDV WKXV DQ DGGHG LQFHQWLYH IRU XVLQJ WKLV PHWKRGf§WR GHWHUPLQH LWV XVHIXOQHVV LQ VROYn LQJ IDLUO\ FRPSOLFDWHG RSWLPDO FRQWURO SUREOHPV 6\OYHVWHU DQG 0H\HU >@ SURSRVHG ZLWK GHPRQVWUDWLRQV DQ HIILFLHQW VFKHPH IRU VROYLQJ D QRQOLQHDU 73%93 XVLQJ WKH PHWKRG RI TXDVLOLQHDUL]DWLRQ 7KLV VFKHPH ZDV DYDLODEOH LQ WKH ,%0 6+$5( SURJUDP $%6 48$6, DQG ZDV XVHG E\ %R\NLQ DQG 6LHUDNRZVNL >@ ZKR UHSRUWHG H[FHOOHQW FRQYHUJHQFH SURSHUWLHV RI WKH VFKHPH IRU VRPH VWUXFWXUDO RSWLPL]DWLRQ SUREOHPV :LWK WKLV UHFRUG RI VXFFHVV WKH SURJUDP 48$6, ZDV WDNHQ XS IRU RXU SUREOHP %XW ZLWK RXU SUREOHP VHYHUDO GLIILFXOWLHV ZHUH HQFRXQWHUHG

PAGE 60

IURP WKH YHU\ EHJLQQLQJ )LUVW WKH EDQJEDQJ FRQWURO ODZ REWDLQHG IURP WKH QHFHVVDU\ FRQGLWLRQV KDG WR EH UHSODFHG E\ D VXLWDEO\ VWHHS VDWXUDWLRQ W\SH FRQWURO ODZ 6HFRQG D VOLJKW PRGLILFDWLRQ LQ FRPSXWDn WLRQ VFKHPH ZDV QHFHVVDU\ ZKHQ LW ZDV IRXQG WKDW WKH PHWKRG ZDV XQDEOH WR VROYH D VLPSOH H[DPSOH SUREOHP 7KH H[DPSOH SUREOHP FRXOG EH VROYHG ZLWK WKHVH PRGLILFDWLRQV %XW LQ VSLWH RI DOO WKHVH FKDQJHV DQG VXEn VHTXHQWO\ PDQ\ DWWHPSWV WR JHQHUDWH D JXHVV RI WKH DGMRLQW YDULDEOHV WKH PHWKRG FRXOG QRW EH PDGH WR ZRUN IRU WKH KXPDQ PRWLRQ SUREOHP 5HDVRQV IRU WKH GLIILFXOWLHV HQFRXQWHUHG DUH GLVFXVVHG LQ GHWDLO LQ 6HFWLRQ 'XULQJ WKH DWWHPSWV ZLWK TXDVLOLQHDUL]DWLRQ LW ZDV IRXQG WKDW FRPSXWDWLRQV RI WKH VHFRQG GHULYDWLYHV RI WKH V\VWHP HTXDWLRQV ZHUH WDNLQJ DQ H[RUELWDQW DPRXQW RI WLPH DQG WKLV ZDV WKH GHFLGLQJ IDFWRU IRU WKH QH[W FKRLFH RI D FRPSXWLQJ PHWKRG $OVR WKH DSSHDUDQFH RI WKH FRQWURO IXQFWLRQ OLQHDUO\ LQ WKH +DPLOWRQLDQ SXW UHVWULFWLRQV RQ WKH XVH RI PRVW RI WKH RWKHU VHFRQGRUGHU PHWKRGV 7KH QH[W DWWHPSWV ZHUH EDVHG RQ WKH ILUVWRUGHU VWHHSHVW GHVFHQW PHWKRG SURSRVHG E\ %U\VRQ DQG 'HQKDP >@ 7KH PRVW DWWUDFWLYH IHDWXUH RI WKLV PHWKRG LV WKDW WKH YDULRXV VWHSV LQYROYHG LQ LW UHQGHU WKHPVHOYHV WR FOHDU SK\VLFDO XQGHUVWDQGLQJ 7KLV PHWKRG GLUHFWO\ UHGXFHV WKH FRVW IXQFWLRQ LQ D V\VWHPDWLF ZD\ DQG RQH REWDLQV JRRG LQVLJKW LQWR WKH EDVLF VWHSV LQ WKH LWHUDWLYH FRPSXWDWLRQV DQG FDQ PDNH DGMXVWPHQWV WR LPSURYH FRQYHUJHQFH DQGRU VWDELOLW\ ZLWK UHODWLYH HDVH 7KHVH IHDWXUHV RI WKH PHWKRG RI VWHHSHVW GHVFHQW PD\ PRUH WKDQ RIIVHW WKH DGYDQWDJHV RI RWKHU PHWKRGV IRU VRPH FRPSOLFDWHG SUREOHPV ,Q WKH DWWHPSWV ZLWK WKLV PHWKRG WKUHH GLIIHUHQW IRUPXODWLRQV RI WKH PLQLPXP

PAGE 61

WLPH SUREOHP ZHUH WULHG ,Q WKH ILUVW IRUPXODWLRQ WKH FRPSXWDWLRQV ZHUH QRW SXUVXHG EH\RQG D FHUWDLQ SRLQW GXH WR FRPSXWDWLRQDO GLIILFXOWLHV 7KH VROXWLRQ ZDV REWDLQHG E\ WKH VHFRQG IRUPXODWLRQ DQG YHULILHG E\ WKH WKLUG IRUPXODWLRQ 7KHVH DWWHPSWV DUH GLVFXVVHG LQ 6HFWLRQ $ 4XDVLOLQHDUL]DWLRQ 6FKHPH IRU 6ROYLQJ WKH 0LQLPXP7LPH 3UREOHP ,Q 6HFWLRQ WKH DGMRLQW HTXDWLRQV DQG WKH RSWLPDO FRQWURO ODZV (TXDWLRQV f Dfff KDYH EHHQ GHULYHG IRU WKH PLQLPXP WLPH NLSXS SUREOHP 7KH V\VWHP HTXDWLRQV DQG WKH ERXQGDU\ FRQGLWLRQV RQ WKH VWDWH DQG WKH DGMRLQW YDULDEOHV DUH JLYHQ E\ (TXDn WLRQV f DQG f UHVSHFWLYHO\ )URP WKHVH HTXDWLRQV ZH FDQ UHDGLO\ VHH WKDW LI WKH FRQWURO YDULDEOHV XA DQG XA DSSHDULQJ LQ WKH V\VWHP DQG DGMRLQW HTXDWLRQV DUH UHSODFHG E\ WKHLU RSWLPDO H[SUHVVLRQV LQ WHUPV RI WKH VWDWH DQG WKH DGMRLQW YDULDEOHV RQH REWDLQV D QRQn OLQHDU 73%93 LQ WKH VWDWH DQG DGMRLQW YDULDEOHV ,I WKHVH HTXDWLRQV DUH VROYHG WKH RSWLPDO VWDWH DQG DGMRLQW YDULDEOH WUDMHFWRULHV ZLOO EH REWDLQHG DQG WKH RSWLPDO FRQWUROV FDQ EH FRQVWUXFWHG E\ XVLQJ WKH VWDWH DQG DGMRLQW YDULDEOHV DQG WKH RSWLPDO FRQWURO ODZV ,Q WKH 73%93 LQ WKH VWDWH DQG WKH DGMRLQW YDULDEOHV WKH ILQDO WLPH LV QRW D JLYHQ FRQVWDQW DQG LV WR EH GHWHUPLQHG IURP WKH LPSOLFLW UHODWLRQ f 7KLV PDNHV WKH SUREOHP RQH ZLWK D YDULDEOH HQG SRLQW 7KH PHWKRG RI TXDVLOLQHDUL]DWLRQ LV IRUPXODWHG SULPDULO\ IRU D IL[HGHQGSRLQW 73%93 ,Q SUREOHPV ZLWK YDULDEOH HQG SRLQWV WKH DGMXVWPHQW RI WKH ILQDO WLPH LV XVXDOO\ GRQH E\ D VHSDUDWH VFKHPH QRW LQWHJUDO ZLWK WKH TXDVLOLQHDUL]DWLRQ VFKHPH /RQJ >@ SURSRVHG D

PAGE 62

VFKHPH IRU FRQYHUWLQJ D YDULDEOH HQG SRLQW SUREOHP LQWR D IL[HGHQGn SRLQW SUREOHP ZLWK WKH DGMXVWPHQW RI WKH ILQDO WLPH EXLOW LQWR WKH TXDVLOLQHDUL]DWLRQ SURFHVV )RU WKH SUHVHQW V\VWHP KRZHYHU WKLV VFKHPH ZDV QRW SUDFWLFDEOH EHFDXVH WKH ERXQGDU\ FRQGLWLRQ f EHFRPHV WRR FRPSOLFDWHG WR KDQGOH LQ WKLV IRUPXODWLRQ ,W ZDV GHFLGHG WKDW ZLWK D VHSDUDWH DOJRULWKP IRU DGMXVWLQJ D WKH ILQDL WLPH GHVFULEHG ODWHU LQ WKLV VHFWLRQ WKH QRQOLQHDU 73%93 ZLWK IUHH ILQDO WLPH ZRXOG EH FRQYHUWHG WR D VHTXHQFH RI QRQOLQHDU 73%93nV ZLWK IL[HG ILQDO WLPHV (DFK RI WKHVH IL[HG ILQDO WLPH SUREOHPV ZRXOG WKHQ EH VROYHG E\ WKH PRGLILHG TXDVLOLQHDUL]DWLRQ DOJRULWKP XQWLO WKH FRUUHFW ILQDO WLPH ZDV REWDLQHG 7KH GHULYDWLRQ RI WKH PRGLILHG TXDVLOLQHDUL]DWLRQ DOJRULWKP LV GHVFULEHG EHORZ 'HULYDWLRQ RI WKH 0RGLILHG 4XDVLOLQHDUL]DWLRQ $OJRULWKP 7KH IL[HG ILQDO WLPH QRQOLQHDU 73%93 WR EH VROYHG IDOOV LQ WKH JHQHUDO FODVV RI SUREOHPV JLYHQ E\ G\ A JLWf f :LWK WKH ERXQGDU\ FRQGLWLRQ %M =rf %U F WI JLYHQ f \ J DQG F DUH RI GLPHQVLRQ Q %A DQG %A DUH PDWULFHV RI GLPHQVLRQ Q[Qf ,W LV EHLQJ DVVXPHG WKDW WKH 73%93 KDV EHHQ GHILQHG IRU WKH LQWHUYDO e W W IRU VRPH JLYHQ W ,Q WKH VWDWH DQG DGMRLQW HTXDWLRQV LI WKH H[SUHVVLRQV IRU RSWLPDO FRQWURO LQ WHUPV RI WKH VWDWH DQG WKH DGMRLQW YDULDEOHV DUH XVHG IRU WKH FRQWURO YDULDEOHV RQH REWDLQV

PAGE 63

; I;Xr;?ff );?f VD\f Df DQG ; +A;Xr;?f;f *;;f VD\f Ef ,Q WKH IRUPXODWLRQV RI WKH 73%93 JLYHQ E\ (TXDWLRQV f DQG f LW PD\ EH VHHQ WKDW IRU WKH NLSXS V\VWHP Q ; a) \ B; J ,2 L ,, X &4 DQG R 7KH DQG DSSHDULQJ LQ WKH PDWULFHV % DQG % UHSUHVHQW [ RUGHU QXOO ƒ< DQG XQLW PDWULFHV UHVSHFWLYHO\ /HW ]Wf EH DQ LQLWLDO JXHVV YHFWRU IRU \Wf ZKLFK VDWLVILHV WKH ERXQGDU\ FRQGLWLRQV f ,I J\Wf LV DSSUR[LPDWHG E\ LWV 7D\ORU VHULHV H[SDQVLRQ DERXW J]Wf NHHSLQJ RQO\ WKH ILUVWRUGHU WHUP RQH REWDLQV \]f \ J J\Wf J]Wf /HW : VR WKDW : LM f RU : SDUWLDO GHULYDWLYH RI WKH L LM WK M HOHPHQW RI \ HYDOXDWHG DW \ ] WK HOHPHQW RI J ZLWK UHVSHFW WR WKH

PAGE 64

:LWK WKH DERYH DSSUR[LPDWLRQ RI J\Wf (TXDWLRQ f EHFRPHV G\ f§ J[Wf :]Wf\]f DW RU GH G] UI J]Wf :]Wf H GW GW ZKHUH H \Wf ]Wf HUURU LQ WKH JXHVV ]Wf 5HDUUDQJLQJ WKH DERYH HTXDWLRQ RQH REWDLQV GH G] f§ :]WfV f§ J]Wf f GW GW 6LQFH ]Wf LV FKRVHQ WR VDWLVI\ WKH ERXQGDU\ FRQGLWLRQV %M ] f ]WIf F 6XEWUDFWLQJ WKLV HTXDWLRQ IURP (TXDWLRQ f RQH REWDLQV WKH ERXQGDU\ FRQGLWLRQV RQ WKH HUURU HWf DV %M ef %U HWIf f (TXDWLRQV f DQG f IRUP D OLQHDU 73%93 LQ HWf ZKLFK ZKHQ VROYHG ZLOO JLYH WKH YDOXHV RI WKH HUURU EHWZHHQ WKH JXHVVHG VROXWLRQ ]Wf DQG WKH DFWXDO VROXWLRQ \Wf EDVHG RQ WKH OLQHDUL]HG H[SUHVVLRQV RI WKH ULJKW VLGH RI (TXDWLRQV f DERXW WKH JXHVVHG VROXWLRQ ]Wf %HFDXVH RI XVLQJ WKH OLQHDUL]HG HTXDWLRQ LQVWHDG RI WKH IXOO QRQOLQHDU nQ HTXDWLRQV WKH YDOXHV RI HWf REWDLQHG E\ VROYLQJ (TXDWLRQV f DQG f ZLOO QRW EH WKH DFWXDO HUURU EHWZHHQ WKH JXHVV ]Wf DQG WKH VROXWLRQ +RZHYHU D QHZ JXHVV RI \Wf ZLOO EH REWDLQHG IURP HWf E\ ] Wf ]Wf 7f HWf @ f

PAGE 65

7KH DOJRULWKP RI 6\OYHVWHU DQG 0H\HU XVHV 7_ IRU DOO WKH WLPH ZKLFK LV WKH XVXDO TXDVLOLQHDUL]DWLRQ DOJRULWKP ,W ZDV IRXQG ZKLOH VROYLQJ D VLPSOH H[DPSOH SUREOHP WKDW ZLWKRXW WKH LQFRUSRUDWLRQ RI D PXOWLSOLHU @ LQ WKH H[SUHVVLRQ f LH XVLQJ ]n Wf ]Wf HWf WKH PHWKRG ZDV XQVWDEOH 7KH FRQYHUJHQFH SURSHUW\ RI WKH VFKHPH ZLWK WKH LQFRUSRUDWLRQ RI WKH PXOWLSOLHU @ FDQ EH XQGHUVWRRG IRU VPDOO YDOXHV RI @ E\ FRPSDULVRQ ZLWK WKH VWHSVL]H DGMXVWPHQW SURFHGXUH RI WKH XVXDO VWHHSHVW GHVFHQW DOJRULWKPV 7KH PDWKHPDWLFDO SURRI IRU WKH FRQYHUJHQFH SURSHUW\ IROORZV WKH SURRI RI 0LHOH DQG ,\HU >@ DQG LV QRZ JLYHQ 7KH LQWHJUDO VTXDUHG QRUP RI WKH HUURU LQ WKH JXHVVHG VROXWLRQ ]Wf FDQ EH H[SUHVVHG E\ WKH LQWHJUDO 6LPLODUO\ WKH HUURU LQ WKH VROXWLRQ ]nWf ]Wf @ HWf LV JLYHQ E\ W I ,I @ LV VXIILFLHQWO\ VPDOO RQH FDQ ZULWH J]nWf J]Wf J]]Wf 7LH ZKHUH J J ] \ :]Wf IURP (TXDWLRQ ff \ ] $OVR IRU DOO YDOXHV RI @ f ] ] @ H

PAGE 66

)URP WKHVH UHVXOWV RQH REWDLQV IRU VPDOO YDOXHV RI @ Mn M @ ^] J]Wf`7 ^H :H` 6LQFH HWf VDWLVILHV WKH GLIIHUHQWLDO HTXDWLRQ f WKLV ILQDOO\ \LHOGV W f Mn @ __ ] J]Wf__GW D QHJDWLYH TXDQWLW\ 7KXV IRU VXIILFLHQWO\ VPDOO YDOXHV RI @ WKH UHGXFWLRQ LQ WKH FRVW LV DVVXUHG ,Q WKH TXDVLOLQHDUL]DWLRQ DOJRULWKP ]AWf WDNHV WKH UROH RI ]Wf DV WKH QHZ JXHVV RI \Wf DQG WKH SURFHVV LV FRQWLQXHG XQWLO WKH HUURU LQ VDWLVI\LQJ WKH GLIIHUHQWLDO HTXDWLRQV LV UHGXFHG WR DQ DFFHSWDEOH YDOXH 7KH OLQHDU 73%93 RI WKH HUURU (TXDWLRQnV f DQG f LV VROYHG DV IROORZV 7KH WLPH LQWHUYDO W WR W WA LV GLYLGHG LQWR P VPDOO LQWHUn YDOV 7KLV UHVXOWV LQ P YDOXHV RI W DW ZKLFK WKH VROXWLRQ ZLOO EH FRPSXWHG (TXDWLRQ f FDQ EH ZULWWHQ LQ D ILQLWH FHQWUDO GLIIHUn HQFH VFKHPH DV UO == WW > @ H H ] ] L LO LO L L ] ] W W? I LO O LO Lf KL n f K An L A f WK ZKHUH K W W 7KH VXEVFULSW L GHQRWHV YDOXHV DW WKH L L L L VWDWLRQ L UDO 5HDUUDQJLQJ DQG VLPSOLI\LQJ WKH DERYH H[SUHVn VLRQ RQH REWDLQV L KZ fH f K: fH f U f L L L L L OO O L P

PAGE 67

ZKHUH U ] O OO f UXLLL fLLA LKL 9 f nf ] B = W W ; f f DQG f§ XQLW PDWUL[ RI GLPHQVLRQ Q [Q 7KH ERXQGDU\ FRQGLWLRQV (TXDWLRQ f UHGXFH WR % H % H L U P f (TXDWLRQ f FDQ EH FDVW LQWR WKH IROORZLQJ FRQYHQLHQW UHFXUVLYH H[SUHVVLRQ H H V O OLO L f ZKHUH DQG L K :f L K :f O L O L O V f§ K : f U O L L O f %\ UHSHDWHG VXEVWLWXWLRQ HTXDWLRQ f \LHOGV WKH IROORZLQJ UHODn WLRQVKLS EHWZHHQ HB DQG H P P P H 7 f 7 'f H f L P OO ZKHUH P L L 7 V ( f 77 'fV L M O f f RU PXOWLSO\LQJ E\ RQ ERWK VLGHV RI (TXDWLRQ f % H % 7 OfP % 77 H -/ O O f L P P f (TXDWLRQV f DQG f FDQ EH VROYHG VLPXOWDQHRXVO\ IRU DQG H WR JLYH P

PAGE 68

P ZKHUH P & OfP % 77 'f % L [ U f f :LWK H GHWHUPLQHG H H HB DUH GHWHUPLQHG LQ VXFFHVVLRQ E\ P P P XVLQJ WKH UHFXUVLYH UHODWLRQ f 7KHQ WKH QHZ LWHUDWH LV JLYHQ E\ ]LOAWf ]LWf 7f HWf 7KH VWRSSLQJ FRQGLWLRQ RI WKH DOJRULWKP LV JLYHQ E\ WKH IDFW WKDW H VKRXOG EH VPDOO :KHQ WKH\ DUH VPDOO LW PD\ EH VHHQ IURP (TXDWLRQ f WKDW WKH TXDQWLWLHV U ZLOO DOVR EH VPDOO )URP (TXDWLRQ f LW LV DOVR VHHQ WKDW VPDOO U FRUUHVSRQG WR VDWLVI\LQJ WKH FHQWUDO GLIIHUn HQFH H[SUHVVLRQ RI WKH GLIIHUHQWLDO HTXDWLRQV 7KDW LV WKH ILQLWH GLIn IHUHQFH HTXDWLRQ HUURU PXVW EH VPDOO 7KLV GRHV QRW PHDQ WKDW WKH GLIn IHUHQWLDO HTXDWLRQ HUURU LV VPDOO XQOHVV WKH LQWHUYDOV IRU WKH GLIIHUHQFHV DUH VXIILFLHQWO\ VPDOO 7KH ,%0 6+$5( SURJUDP $%6 48$6, LV D SURJUDP RI WKH SURFHGXUH RXWOLQHG DERYH ZLWKRXW WKH SURYLVLRQ RI WKH PXOWLSOLHU 7f LQ (TXDWLRQ f DQG WKHUHIRUH LV IRU @ 7KH SURJUDP ZDV PRGLILHG WR LQWURn GXFH DQG WR DGMXVW @ WR JHW WKH GHVLUHG FRQYHUJHQFH 7KH DOJRULWKP PD\ EH GHVFULEHG E\ WKH IROORZLQJ VWHSV 6HW XS WKH PDWULFHV % DQG % DQG JXHVV D QRPLQDO WUDMHFWRU\ -X U ]Wf WKDW VDWLVILHV WKH ERXQGDU\ FRQGLWLRQV f 6HW ,7(5 ,7(5 IRU ,WHUDWLRQf

PAGE 69

'R WKH IROORZLQJ IRU L OP D )LQG U DQG : DV GHILQHG LQ (TXDWLRQV f DQG L L f )LQG WKH ODUJHVW HOHPHQW RI UA VHDUFKLQJ EHWZHHQ WKH HOHPHQWV RI HDFK U A IRU L OP &DOO LW (0$; ,I (0$; VSHFLILHG PD[LPXP DOORZDEOH HUURU SULQW RXW ] DQG VWRS WKH FRPSXWDWLRQV E 8VLQJ (TXDWLRQ f ILQG DQG VA &DOFXODWH 7 DQG & DFFRUGLQJ WR (TXDWLRQV f DQG f &DOFXODWH WKH LQWHJUDO QRUP RI WKH HUURU KHUH WKH QRUP LV GHILQHG E\ WKH VXP RI VTXDUHV RI WKH HOHPHQWV RI WKH YHFWRU Uf 6HW O )LQG H XVLQJ (TXDWLRQ f PI 'HFLGH XSRQ D YDOXH RI 7@ 'LVFXVVLRQV RQ WKH FKRLFH RI 7@ ZLOO EH SUHVHQWHG LQ D ODWHU VHFWLRQ *HQHUDWH DQG VWRUH H H BH H XVLQJ (TXDWLRQ f P PO P O *HQHUDWH WKH QHZ JXHVV ]A L QQO E\ GRLQJ ] ] 7f H L L L 6HW ,7(5 ,7(5 )LQG DQG U L OP DQG ILQG (0$; DV LQ VWHS ,I -O XQVWDEOHf JR WR VWHS 6WRS LI (0$; D SUHVFULEHG YDOXH ,I -O WR WR VWHS WR FRQWLQXH WR WKH QH[W LWHUDWLRQ ,I WKLV VWHS KDV EHHQ SHUIRUPHG PRUH WKDQ D VSHFLILHG QXPEHU RI WLPHV LQ WKLV VLWXDWLRQ JR WR VWHS ,I QRW VWRUH WKH

PAGE 70

YDOXH RI WKH FXUUHQW 7M DQG 5HFRYHU WKH YDOXHV RI ] RI WKH SUHYLRXV LWHUDWLRQ E\ GRLQJ ] n ] 7 H L L 5HGXFH WKH YDOXH RI 7@ *HQHUDWH WKH QHZ E\ GRLQJ ] ] 7@ H 9 L L L *R WR VWHS ,I WKLV VWHS KDV EHHQ SHUIRUPHG PRUH WKDQ D VSHFLILHG QXPEHU RI WLPHV RU LI VWHS KDV EHHQ SHUIRUPHG DW OHDVW RQFH LQ WKLV LWHUDWLRQ JR WR VWHS ,I QRW VWRUH WKH YDOXH RI DQG 7@ 5HFRYHU WKH QHZ ]A DV LQ VWHS WKLV WLPH E\ LQFUHDVn LQJ @ WR LQFUHDVH VSHHG RI FRQYHUJHQFH *R WR VWHS )LQG RXW WKH PLQLPXP YDOXH RI WKDW KDYH EHHQ REWDLQHG LQ VWHSV DQG ,I WKLV YDOXH LV JUHDWHU WKDQ -O VWRS FRPn SXWDWLRQV DQG ORRN IRU WKH FDXVH RI WKH LQVWDELOLW\ ,I WKLV YDOXH LV OHVV WKDQ -O UHFDOO WKH 7@ FRUUHVSRQGLQJ WR WKLV DQG UHJHQHUDWH WKH ]A IRU WKLV FDVH *R WR VWHS ,Q WKLV SURJUDP WKH YDOXH RI 7@ ZDV VHOHFWHG IURP WKH FRQVLGHUn DWLRQ WKDW DW WKH VWDWLRQ P WKH PD[LPXP YDOXH RI VKRXOG EH OHVV WKDQ D SUHVFULEHG YDOXH M LQ SDUHQWKHVHV UHSUHVHQWV WKH WK HOHPHQW RI WKH YHFWRUf 7KLV SURFHGXUH OLPLWV WKH FKDQJHV LQ WKH M H[LVWLQJ WUDMHFWRU\ E\ OLPLWLQJ WKH PDJQLWXGH RI WKH PD[LPXP IUDFWLRQDO FKDQJH LQ WKH WHUPLQDO YDOXHV RI WKH YDULDEOHV QRW VSHFLILHG DW WKH ILQDO WLPH

PAGE 71

:KHQHYHU DQ LWHUDWLRQ ZDV IRXQG XQVWDEOH 7@ ZDV UHGXFHG E\ KDOI :KHQ WKHUH ZDV DQ LPSURYHPHQW D OLQHDU H[WUDSRODWLRQ IRUPXOD ZDV XVHG WR LQFUHDVH WKH YDOXH RI 7@ VR WKDW WKH QRUP RI WKH HUURU ZRXOG GHFUHDVH WR D GHVLUHG YDOXH ,Q VXFK DQ DWWHPSW KRZHYHU 7f ZDV QRW DOORZHG WR LQFUHDVH EH\RQG D FHUWDLQ PXOWLSOH RI LWV H[LVWLQJ YDOXH $SSUR[LPDWLRQV RI WKH 2SWLPDO &RQWURO IRU WKH .LS8S 3UREOHP 7KH PHWKRG RI TXDVLOLQHDUL]DWLRQ GLVUHJDUGV WKH TXHVWLRQ RI VLQJXODU VROXWLRQV LQ WKH SUHVHQW LQYHVWLJDWLRQ ,W ZDV IRXQG LQ 6HFWLRQ WKDW WKHUH ZHUH PDQ\ UHTXLUHPHQWV IRU WKH H[LVWHQFH RI D VLQJXODU FRQWURO DUT DQG WKH QHFHVVDU\ FRQGLWLRQV IRU WKH H[LVWHQFH RI VLQJXODU FRQWUROV DUH TXLWH FRPSOLFDWHG ,W ZDV GHFLGHG WKDW EHIRUH JRLQJ LQWR WKRVH FDVHV H[WUHPD ZLWKRXW VLQJXODU DUF ZRXOG EH ORRNHG IRU ILUVW DQG LI WKH FRPSXWDWLRQDO PHWKRG ZDV VXFFHVVIXO VLQJXODU VXEDUFV YRXOG EH ORRNHG IRU ODWHU ,I WKH VLQJXODU VROXWLRQV DUH QRW FRQVLGHUHG WKH RSWLPDO R R FRQWUROV XA DQG XA EHFRPH EDQJEDQJ DQG DUH JLYHQ E\ (TXDWLRQV Df WKURXJK Ef ,W LV FRQYHQLHQW WR UHZULWH WKHVH HTXDWLRQV DW WKLV SRLQW LQ WKH IROORZLQJ ZD\ I ; % ;f Xr 6r;f X[ Xr V-;f f

PAGE 72

LI ; % ;f Xr 6J;f Xf f Xf 6m /HW WKHVH FRQWURO ODZV EH H[SUHVVHG E\ WKH IROORZLQJ H[SUHVVLRQV Xr 6 VJQ ;7if f DQG ZKHUH DQG L RU 8 6 6JQ fA%f VJQ [f VLJQ RI [ 6 ZKHQ ;7%f f 6" ZKHQ ;A%f L [ f f f :LWK WKHVH H[SUHVVLRQV IRU WKH FRQWURO ODZV WKH VWDWH HTXDWLRQV f EHFRPH ; $;f % f 6 VJQ ;Af i f 6 VJQ ;7%f f );;f FI (TXDWLRQ Dff ,Q WKH SUHVHQW TXDVLOLQHDUL]DWLRQ DOJRULWKP WKH GHULYDWLYHV RI );;f ZLWK UHVSHFW WR ERWK ; DQG ; LQ FRQVWUXFWLQJ WKH PDWUL[ (TXDWLRQ ff DUH QHHGHG 2QH FDQ VHH WKDW FRPSXWDWLRQ RI WKH GHULYDWLYH RI );;f ZLWK UHVSHFW WR ; ZLOO RFFXU RQO\ DV D JHQHUDOn L]HG IXQFWLRQ ZLWK QR QXPHULFDO YDOXH IRU FRPSXWDWLRQ LQ WKH OLPLW EHFDXVH ; DSSHDUV RQO\ LQ WKH DUJXPHQW RI D VLJQ IXQFWLRQ ,QVWHDG

PAGE 73

RI SURFHHGLQJ WR WKH OLPLW WKH IROORZLQJ DSSUR[LPDWLRQ RI WKH EDQJEDQJ FRQWURO ZDV PDGH )RU L DQG R r X VD X L L UV-;f LI $$ ?7% f 6r;f $$?7%f LI 6;f $$?7%f e 6;f O O O O 6;f LI $$?7%f 6;f B f§ f§ f§ f§ f r ZKHUH $$A DQG $$A DUH WZR SRVLWLYH FRQVWDQWV 7KLV IXQFWLRQ RI 7 $$A? %Af LV FDOOHG WKH VDWXUDWLRQ IXQFWLRQ VDWf ZKHQ DQG DUH XQLW\ 7KH FKDQJH PDGH LQ WKH RSWLPDO FRQWURO LV VKRZQ JUDSKLFDOO\ LQ R r )LJXUH IRU XA DQG XA L RU R r 7KH FRQWUROV X DQG X KDYH EHHQ SORWWHG DJDLQVW WKH IXQFWLRQ L L 7 ? %A QHDU D VZLWFK SRLQW LQ )LJXUHV D DQG E UHVSHFWLYHO\ ,W FDQ r R EH VHHQ WKDW WKH DSSUR[LPDWLRQ XA GLIIHUV IURP WKH RSWLPDO FRQWURO XA r RQO\ LQ WKH SRUWLRQ ./ %\ LQFUHDVLQJ WKH YDOXH RI $$A XA FDQ EH PDGH R FORVHU WR X L :LWK WKH DERYH DSSUR[LPDWLRQ RI WKH EDQJEDQJ FRQWURO E\ D VDWXUDWLRQ FRQWURO UHSUHVHQWHG E\ (TXDWLRQ f RQH ZRXOG r EH DEOH WR ILQG WKH GHULYDWLYH RI WKH FRQWURO XA DQG KHQFH RI )f ZLWK UHVSHFW WR ; 7KH GHULYDWLYH ZLOO EH ]HUR ZKHQ WKH FRQWURO LV RQ D FRQVWUDLQW ;f DQG ZLOO EH QRQ]HUR RQ WKH DUF ./ ZKLFK DSSHDUV QHDU D VZLWFKLQJ WLPH ,Q RUGHU WR UHSUHVHQW WKH VDWXUDWLRQ FRQWURO f E\ LWV OLQHDUL]DWLRQ LW LV QHFHVVDU\ WKDW DW OHDVW RQH RI WKH : L OP ZKLFK FRQWDLQV WKH LQIRUPDWLRQ RI WKH ILUVW GHULYDWLYHV EH FRPSXWHG RQ WKH DUF ./ 2WKHUZLVH WKLV YLWDO SRUWLRQ RI WKH FRQWURO ZRXOG JR XQDFFRXQWHG IRU LQ WKH OLQHDUL]HG HTXDWLRQV 7KLV PD\ KDSSHQ

PAGE 74

Ef $SSUR[LPDWLRQ RI 2SWLPDO &RQWURO 6DWXUDWLRQf )LJXUH $SSUR[LPDWLRQ RI %DQJ%DQJ &RQWURO E\ 6DWXUDWLRQ &RQWURO R

PAGE 75

LI WKH DUF ./ LV WRR VWHHS IRU D JLYHQ VHOHFWLRQ RI LQWHJUDWLRQ VWDWLRQV ,Q VXFK D FDVH ZKHQ QRQH RI WKH : LV FRPSXWHG RQ WKH VZLWFKLQJ SRUn WLRQV RI WKH FRQWURO YDULDEOHV OLNH WKH DUF ./WKH 73%93 (TXDWLRQV f DQG fFDQQRW EH VROYHG DV H[SODLQHG EHORZ )LUVW IURP D SK\VLFDO UHDVRQLQJ LW FDQ EH VHHQ WKDW WKH OLQHDUn L]HG VWDWH HTXDWLRQV ZRXOG JHW GHFRXSOHG IURP WKH DGMRLQW HTXDWLRQV LI DOO RI WKH :A L OP VKRZ ]HUR GHULYDWLYHV RI ) ZLWK UHVSHFW WR ? 7KLV PHDQV WKDW WKH ILUVW VL[ HTXDWLRQV RI f ZRXOG JHW GHFRXSOHG IURP WKH ODVW VL[ %XW WKH ERXQGDU\ FRQGLWLRQV f LV VXFK WKDW WKH\ DUH IRU WKH ILUVW VL[ YDULDEOHV RI HWf RQO\ 7KHUHIRUH WKLV UHVXOWV LQ D VLWXDWLRQ ZKHUH WKHUH DUH VL[ ILUVWRUGHU HTXDWLRQV ZLWK WZHOYH ERXQGDU\ FRQGLWLRQV D VLWXDWLRQ ZKLFK LQ JHQHUDO GRHV QRW KDYH D VROXWLRQ )URP WKH SRLQW RI YLHZ RI FRPSXWDWLRQV ZLWK WKH SUHVHQW DOJRULWKP LW FDQ EH VKRZQ WKDW WKH PDWUL[ & LQ HTXDWLRQ f FDQQRW EH XVHG WR VROYH IRU H P :LWK WKH V\VWHP HTXDWLRQV GHILQHG DV (TXDWLRQV Df DQG Eff ; );;f ; *;;f RQH REWDLQV >:@ WK ZKHUH WKH VXEVFULSW L UHSUHVHQWV WKH L LQWHUYDO

PAGE 76

/HW 3 4 ( '' 5 DQG 0 M DQG UHSUHVHQW [ PDWULFHV /HW >:@ 3 3 3 3 ZKHUH 3 ) >@ IRU DOO SRLQWV RWKHU WKDQ WKRVH O\LQJ RQ WKH / DUFV VXFK DV ./ LQ )LJXUH E 7KHQ ,, 9n I KL 3 KL 3 KL 3 K 3 O ? 4 A 4 ,W PD\ EH VHHQ WKDW 4 >@ LI 3 >@ = = )URP (TXDWLRQ f 'L > ? KL nO@n > KL ZL@ U T U5 5 ; (B L 5 ( / / VD\f ZKHUH 5 5 5 5 UL ? KZ [L DQG 5 KL S 3 >@ >@ LI

PAGE 77

,W PD\ DJDLQ EH VHHQ WKDW ( 4O5 45 >r VLQFH 4 >@ ZKHQ 3 >@ 1RZ FRQVLGHU WKH SURGXFW f f B RI DQ\ WKUHH VXFFHV f L OO L P VLYH LQ WKH SURGXFW 7 /HW WKLV PXOWLSOLFDWLRQ EH H[SUHVVHG DV L O ( ( ( ( ( ( ( ( ( ( ( ( '' '' '' '' 7KH H[SUHVVLRQ IRU '' LV '' ( ( ( ( ( ( ( ( ( ( ( (f ,I WKH XSSHU ULJKW HOHPHQWV ( A (" (A >@ LW PD\ FOHDUO\ EH VHHQ WKDW '' >@ ,Q WKH SURGXFW P 77 L O m, 0 0 RQH ZRXOG WKHUHIRUH REWDLQ 0 >@ LI 3 >@ IRU DOO L L OP :LWK 0B >@ WKH H[SUHVVLRQ IRU & (TXDWLRQ ff OfP % 7U % + O U P EHFRPHV DIWHU XVLQJ WKH YDOXHV RI % DQG % $W a&

PAGE 78

% I U L fL P [ QL F f Bm/ 0B R ‘M 7KXV & EHFRPHV VLQJXODU LI ) IRU DOO L L OP f§ $ )RU D JLYHQ VWHS VL]H RU VXEGLYLVLRQ LQ WKH WLQWHUYDO WAf WKH VLQJXODULW\ RI & VHWV DQ XSSHU OLPLW RQ WKH VWHHSQHVV RI WKH DUF ./ RI )LJXUH E ZKLFKFDQ EH XVHG IRU DSSUR[LPDWLQJ WKH EDQJEDQJ FRQWURO 7KLV VWHHSQHVV RI WKH DUF ./ GHSHQGV RQ $$A RU $$Af IRU D JLYHQ ;Wf DQG ;Wf 6R LQ VHOHFWLQJ $$A DQG $$ ZH KDYH WR PDNH VXUH WKDW WKH\ DUH QRW WRR ODUJH :KHQ WKH VROXWLRQ LV REWDLQHG KRZHYHU WKH VORSH RI ./ GRHV QRW GHSHQG RQ WKH FKRLFH RI $$ DQG $$ LI ZH GHFLGH WR FKRRVH ] $$ $$ $$ VD\ 7KLV LV EHFDXVH $$ ZLOO EH DEVRUEHG ZLWKLQ ;Wf DFWLQJ DV D VFDOH IDFWRU RQ ; ,Q IDFW LI ZH GHILQH ; DV $$r; WKH VWDWH DQG DGMRLQW HTXDWLRQV RI RXU V\VWHP GR QRW FKDQJH DQG ZH FRXOG WKHUHIRUH VHOHFW $$A $$A 7KH VORSH RI WKH DUF ./ LQ WKH VROXWLRQ GHSHQGV RQ WKH YDOXH RI $$r; DQG QRW RQ $$ DORQH +RZHYHU ZKHQ WKH VROXWLRQ KDV QRW \HW EHHQ REWDLQHG WKH EHVW YDOXH RI $$ QHHG QRW EH ,I WKH ILQDO WLPH WA VHOHFWHG IRU RXU SUREOHP LV PXFK ODUJHU WKDQ WKH PLQLPXP WLPH IRU D EDQJEDQJ RSWLPDO VROXWLRQ LW FDQ EH H[SHFWHG WKDW WKH DUF ./ ZLOO KDYH D UHODWLYHO\ VPDOO VORSH ,I WKH ILQDO WLPH LV JUDGXDOO\ UHGXFHG WKLV VORSH ZLOO LQFUHDVH XQWLO LW EHFRPHV VR ODUJH WKDW WKH PDWUL[ & EHFRPHV VLQJXODU DV H[SODLQHG DERYH $W WKDW SRLQW WKH VROXWLRQ REWDLQHG IRU WKH VPDOOHVW WA ZLOO YHU\

PAGE 79

QHDUO\ EH D EDQJEDQJ FRQWURO DQG ZLOO UHSUHVHQW WKH DSSUR[LPDWH VROXn WLRQ RI WKH PLQLPXP WLPH SUREOHP 7KH FRPSXWDWLRQ RI WKH RSWLPDO ILQDO WLPH YLD WKH TXDVLOLQHDUn L]DWLRQ PHWKRG ZDV GRQH DFFRUGLQJ WR WKH VWRSSLQJ FRQGLWLRQ RXWOLQHG DERYH $ ILQDO WLPH ZRXOG EH JXHVVHG DQG WKH 73%93 (TXDWLRQV f DQG ff ZRXOG EH VROYHG 7KH ILQDO WLPH ZRXOG WKHQ EH UHGXFHG E\ UHGXFLQJ WKH LQWHJUDWLRQ VWHS VL]H DQG WKH 73%93 ZRXOG DJDLQ EH VROYHG 7KH SURFHVV ZRXOG EH FRQWLQXHG XQWLO WKH PDWUL[ & EHFRPHV VLQJXODU DQG WKH 73%93 FRXOG QRW EH VROYHG DQ\ IXUWKHU $ 6LPSOH ([DPSOH 3UREOHP IRU WKH 0HWKRG RI 4XDVLOLQHDUL]DWLRQ $ VLPSOH SUREOHP ZDV ILUVW WDNHQ XS WR H[SORUH WKH YDULRXV IHDWXUHV RI WKH TXDVLOLQHDUL]DWLRQ DOJRULWKP FRQVWUXFWHG DERYH 7KH V\VWHP ZDV GHILQHG DV ; ; ; X f f 7KH FRQVWUDLQWV RQ X ZHUH e X e f 7KH FRVW IXQFWLRQ WR EH PLQLPL]HG LV WKH ILQDO WLPH WA

PAGE 80

7KH DGMRLQW HTXDWLRQV IRU WKH V\VWHP DUH A / [ f 7KH RSWLPDO FRQWURO X LV X VJQ ; f f :LWK WKH DSSUR[LPDWLRQ RI WKH RSWLPDO FRQWURO X VDW $$}? f &W f WKH VWDWH DQG DGMRLQW HTXDWLRQV EHFRPH ; ;f [f VDW $$f ;f ; f ; ; f 7KH ERXQGDU\ FRQGLWLRQV DUH JLYHQ E\ (TXDWLRQV f 7KH DQDO\WLFDO VROXWLRQ RI WKH RSWLPDO FRQWURO LV JLYHQ E\ W I ; ; W X ;[ W f IRU 6 W r? X ;A W f§ W IRU OWA ; W 7KH VROXWLRQ LV VKRZQ JUDSKLFDOO\ LQ )LJXUH 7KH SUREOHP ZDV VROYHG QXPHULFDOO\ E\ VROYLQJ (TXDWLRQV f DQG f IRU GLILHUHQn ILQDO WLPHV W E\ TXDVLOLQHDUL]DWLRQ

PAGE 81

&f Gf Hf &XUYH f ; &XUYH ; &XUYH r &XUYH f ? &XUYH f X )LJXUH *UDSKV RI 2SWLPDO DQG 1HDUO\ 2SWLPDO 6ROXWLRQV 2EWDLQHG YLD 4XDVLOLQHDUL]DWLRQ IRU 6LPSOH ([DPSOH

PAGE 82

7KH VROXWLRQV IRU W DQG ZHUH REWDLQHG DQG DUH VKRZQ LQ )LJXUHV D E DQG F UHVSHFWLYHO\ :LWK W WKH PDWUL[ & EHFDPH VLQJXODU LQ LWHUDWLRQ 7KH WKHRUHWLFDO VROXWLRQ WA f LV VKRZQ LQ )LJXUH O2G 7KH UHVXOWV IRU W LV D UHDVRQDEO\ JRRG DSSUR[LPDWLRQ RI WKH RSWLPDO VROXWLRQ )RU WKHVH SUREOHPV WLPH VXEGLYLVLRQ LQWHUYDOV ZHUH XVHG 7KH LQLWLDO JXHVV ZDV GHOLEHUDWHO\ SRRU DV VKRZQ LQ )LJXUH O2H 7KH VROXWLRQV ZHUH REWDLQHG LQ WR LWHUDWLRQV IURP WKLV JXHVV LQ DOO WKHVH FDVHV 7KH SURJUDP RULJLQDOO\ ZULWWHQ DFFRUGLQJ WR 6\OYHVWHU DQG 0H\HU >@ GLG QRW KDYH WKH SURYLVLRQ IRU WKH DPRXQW RI DGMXVWPHQW 7f LQ WKH LWHUDWLRQV 7KHLU PHWKRG ZDV IRXQG WR EH XQVWDEOH IRU VRPH RI WKH LQLWLDO JXHVVHV 7KH 5HVXOWV :LWK WKH .LS8S 3UREOHP 7KH NLSXS SUREOHP ZDV WDNHQ XS DIWHU WKH PHWKRG RI TXDVLOLQHDUn L]DWLRQ ZDV IRXQG VXFFHVVIXO LQ WKH FDVH RI WKH H[DPSOH SUREOHP ,Q WKH NLSXS SUREOHP KRZHYHU PDQ\ GLIILFXOWLHV ZHUH IDFHG IURP WKH YHU\ EHJLQQLQJ DQG WKH SUREOHP FRXOG QRW ILQDOO\ EH VROYHG E\ WKLV PHWKRG $ PDMRU GLIIHUHQFH EHWZHHQ WKH KXPDQ PRWLRQ SUREOHP DQG WKH H[DPSOH SUREOHP RU WKH SUREOHP VROYHG E\ %R\NLQ DQG 6LHUDNRZVNL >@ LV YHU\ SURPLQHQW ,Q WKH ODWWHU SUREOHPV WKH FRQWURO YDULDEOHV VZLWFKHG RQO\ RQFH IURP RQH ERXQGDU\ WR DQRWKHU LQ WKH HQWLUH WUDMHFWRU\ ZKHUHDV LQ WKH KXPDQ PRWLRQ SUREOHP WKHUH ZHUH PDQ\ VXFK VZLWFKLQJV 7KLV PDGH WKH KXPDQ PRWLRQ SUREOHP OHVV DPHQDEOH WR LWHUDWLYH PHWKRGV

PAGE 83

7KH SURJUDP IRU WKH KXPDQ PRWLRQ SUREOHP ZDV H[WUHPHO\ OHQJWK\ WDNLQJ PRUH WKDQ HOHYHQ KXQGUHG VWDWHPHQWV DQG UHTXLULQJ WKH XVH RI WKH ODUJH FRUH RI WKH FRPSXWHU ,%0 f 7KH VXEURXWLQH ',)(4f ZKLFK JHQHUDWHG WKH ULJKW VLGH RI WKH VWDWH DQG WKH DGMRLQW HTXDWLRQV DQG WKHLU GHULYDWLYHV WXUQHG RXW WR EH TXLWH OHQJWK\ DQG UHTXLUHG DQ H[RUELWDQW DPRXQW RI FRPSXWLQJ WLPH 7KH TXDVLOLQHDUL]DWLRQ SURJUDP FDOOHG WKLV VXEURXWLQH DW HYHU\ VWDWLRQ RI WKH WRWDO LQWHUYDO DQG DW HYHU\ LWHUDWLRQ $V D UHVXOW WKH SURJUDP UHTXLUHG D WUHPHQGRXV DPRXQW RI FRPSXWLQJ WLPHf§DERXW VHFRQGV SHU LWHUDWLRQ $OO FRPSXWDWLRQV ZHUH GRQH LQ GRXEOH SUHFLVLRQ 6HYHUDO VRXUFHV RI GLIILFXOW\ ZHUH GHWHFWHG LQ WKH XQVXFFHVVIXO DWWHPSWV WR VROYH WKH KXPDQ PRWLRQ SUREOHP E\ TXDVLOLQHDUL]DWLRQ 7KH FHQWUDO LVVXH ZDV WKH WUHPHQGRXV DPRXQW RI FRPSXWDWLRQV ZLWK DFFXUDF\ UHTXLUHG 7KH WRWDO WLPH LQWHUYDO ZDV GLYLGHG LQWR HTXDO SDUWV VHJn PHQWVf $V WKH ILUVW DQG WKH RQO\ RQHf JXHVV RI WKH ILQDO WLPH WKHVH VHJPHQWV ZHUH FKRVHQ WR EH VHFRQG HDFK 7KLV PDGH WKH ILQDO WLPH VHFRQGVf HTXDO WR WKH WLPH WDNHQ E\ WKH J\PQDVW WR GR WKH DFWXDO PDQHXYHU :LWK VHJPHQWV WKH SURJUDP UHTXLUHG WKH ODUJH FRUH RI WKH FRPSXWHU (YHQ WKRXJK D ODUJHU QXPEHU RI VPDOOHU VHJPHQWV ZRXOG KDYH EHHQ SUHIHUUHG WKLV FRXOG QRW EH GRQH EHFDXVH LW ZDV LQWHQGHG QRW WR JR EH\RQG WKH ODUJH FRUH ,W ZDV ODWHU IRXQG WKDW QXPHULFDO LQWHJUDWLRQ RI WKH QRQOLQHDU VWDWH HTXDWLRQV QHHGHG WLPH VWHSV DW OHDVW DV VPDOO DV RQHVL[WK RI ZKDW ZDV WDNHQ IRU TXDVLOLQHDUn L]DWLRQ ,W ZDV LQLWLDOO\ KRSHG WKDW VLQFH WKH TXDVLOLQHDUL]DWLRQ DOJRULWKP VROYHV WKH OLQHDUL]HG HTXDWLRQV LQVWHDG RI WKH QRQOLQHDU

PAGE 84

HTXDWLRQV WKH FHQWUDO GLIIHUHQFH VROXWLRQ ZRXOG EH VWDEOH IRU ODUJHU LQWHJUDWLRQ VWHS VL]HV 7KLV ZDV QRW WKH FDVH ,W ZDV SURYHG WKHRUHWLFDOO\ WKDW ZLWK SHUIHFW SUHFLVLRQ WKH PHWKRG ZDV FRQYHUJHQW IRU DOO LQLWLDO JXHVVHV +RZHYHU LW LV ZHOO NQRZQ IRU WKH XQPRGLILHG PHWKRG RI TXDVLOLQHDUL]DWLRQ @ f WKDW WKH PHWKRG LV FRQYHUJHQW RQO\ IRU FHUWDLQ LQLWLDO JXHVVHV ,W PD\ WKHUHIRUH EH IDLU WR H[SHFW WKDW HYHQ ZLWK WKH PRGLILHG PHWKRG WKH UDWH RI FRQn YHUJHQFH VKRXOG GHSHQG RQ WKH LQLWLDO JXHVV DQG IRU VRPH LQLWLDO JXHVVHV WKLV FRQYHUJHQFH PD\ EH H[WUHPHO\ SRRU )RU WKLV UHDVRQ VHYHUDO LQLWLDO JXHVVHV ZHUH WULHG 7KH JXHVV RI WKH VWDWH YDULDEOHV ZDV WDNHQ IURP WKH H[SHULPHQWDO GDWD ZKLFK ZHUH VKRZQ WR DJUHH YHLO ZLWK WKH FRPSXWHG PRWLRQ LQ &KDSWHU 'LIIHUHQW LQLWLDO JXHVVHV IRU WKH DGMRLQW YDULDEOHV ZHUH WULHG 7KH ILUVW DWWHPSWV VLPSO\ XVHG FRQVWDQW YDOXHV IRU DOO WKH DGMRLQW YDULDEOHV &RQYHUJHQFH IURP WKLV JXHVV ZDV QRQH[LVWHQW 1H[W DWWHPSWV ZHUH PDGH WR JHQHUDWH WKH DGMRLQW YDULDEOHV IURP IRUZDUG LQWHn JUDWLRQ RI WKH DGMRLQW HTXDWLRQ ZLWK WKH JXHVVHG YDOXHV RI WKH VWDWH YDULDEOHV DQG D JXHVVHG YDOXH RI DGMRLQW YDULDEOHV DW WLPH W ,Q WKHVH FDVHV WKH LQWHJUDWLRQV ZHUH XQVWDEOH ZLWK ODUJH QXPEHUV JHQHUDWHG 7KH PHWKRG ZDV QRW SXUVXHG IXUWKHU /DVWO\ WKH PHWKRG VXJJHVWHG E\ 0LHOH ,\HU DQG :HOO >@ ZDV WULHG IRU JHQHUDWLQJ WKH LQLWLDO JXHVV RI WKH DGMRLQW YDULDEOHV ,Q WKLV PHWKRG DQ DX[LOLDU\ RSWLPL]DWLRQ SUREOHP LV FRQVWUXFWHG IURP WKH RULJLQDO SUREOHP ,W WULHV WR PDNH DQ RSWLPDO FKRLFH RI WKH DGMRLQW YDULDEOHV VXFK WKDW WKH FXPXODWLYH QRUP RI WKH HUURU LQ VDWLVI\LQJ WKH DGMRLQW HTXDWLRQV IRU D JLYHQ VWDWH YDULDEOH WUDMHFWRU\ LV PLQLPL]HG 7KLV LV SHUIRUPHG DV IROORZV

PAGE 85

6XSSRVH X ;;f LV WKH RSWLPDO FRQWURO 7KH VWDWH DQG DGMRLQW HTXDWLRQV PD\ WKHQ EH ZULWWHQ DV ; I ;X ; ffff );;f ; IA;Xr;;ff; *;?f f f 6XSSRVH ZH KDYH D JXHVV RI WKH VWDWH DQG WKH DGMRLQW YDULDEOHV JLYHQ E\ ;Wf DQG ;Wf 6LQFH ;Wf DQG ;Wf GR QRW VDWLVI\ (TXDWLRQV f DQG f OHW H ; I7[!Xr;;ff; VR WKDW H LV WKH HUURU LQ WKH DGMRLQW HTXDWLRQV f 7KH DERYH HTXDWLRQ FDQ EH UHZULWWHQ DV 7 ; I I[;X;;;ff; f 1RZ FRQVLGHU WKH RSWLPDO FRQWURO SUREOHP ZKHUH D ;Wf LV D JLYHQ IXQFWLRQ RI WLPH W E ;Wf LV WKH VWDWH YDULDEOH F H LV WKH FRQWURO YDULDEOH G 7KH V\VWHP HTXDWLRQ LV JLYHQ E\ (TXDWLRQ f H 7KH FRVW IXQFWLRQ WR EH PLQLPL]HG LV U! 7 M H H GW R I WA LV WKH ILQDO WLPH IL[HGf RI WKH RULJLQDO SUREOHP J %RXQGDU\ FRQGLWLRQV DUH ;f DQG ;W f DUH IUHH

PAGE 86

)RU WKH RSWLPDO FRQWURO SUREOHP SRVHG DERYH ZH FDQ FRQVWUXFW 7 WKH +DPLOWRQLDQ XVLQJ WKH /DJUDQJH PXOWLSOLHUV GLPHQVLRQDO YHFWRUf 7 K ? ,W ere a e[ ;f f 7KH QHFHVVDU\ FRQGLWLRQV IRU RSWLPL]DWLRQ DUH 7 K R[ H DQG Hr + f ; RU DIWHU SHUIRUPLQJ WKH GLIIHUHQWLDWLRQV + A 7 I r DQG H I H r ; r f f 7KH ERXQGDU\ FRQGLWLRQV DUH Irf Ir9 f EHFDXVH ;Wf LV IUHH DW W DQG DW W WI 8VLQJ (TXDWLRQ f LQ f DQG f RQH REWDLQV H I H f a a $ f§ DQG Hf HW f f &OHDUO\ (TXDWLRQV f f DQG f IRUP D OLQHDU 73%93 LQ ; DQG H 7KLV SUREOHP VKRXOG EH HDVLHU WR VROYH LQ WKHRU\ WKDQ WKH RULJLQDO 73%93 RI WKH VWDWH DQG DGMRLQW YDULDEOHV DQG VKRXOG JLYH DQ RSWLPDO FKRLFH IRU WKH PXOWLSOHV RI ;

PAGE 87

,Q VHYHUDO DWWHPSWV WKLV OLQHDU 73%93 FRXOG QRW EH VROYHG IRU WKH JXHVVHG VWDWH WUDMHFWRU\ E\ HLWKHU WKH TXDVLOLQHDUL]DWLRQ SURJUDP RU E\ WKH ,%0 VFLHQWLILF VXEURXWLQH SDFNDJH SURJUDP '/%93 7KH SULPH UHDVRQ IRU WKH IDLOXUH RI WKH PHWKRG RI TXDVLOLQHDUL]Dn WLRQ ZDV ILQDOO\ IRXQG WR EH WKH QXPHULFDO LQDFFXUDFLHV LQ WKH FRPSXn WDWLRQV ZKLFK ZHUH GRPLQDQW LQ VSLWH RI XVLQJ WKH GRXEOH SUHFLVLRQ DULWKPHWLF 7KH SUREOHP ZDV SHUSHWXDWHG DQG DPSOLILHG E\ WKH ODUJH QXPEHUV LQ WKH ULJKW VLGH RI WKH VWDWH DQG DGMRLQW HTXDWLRQV DQG LQ WKH GHULYDWLYHV RI WKHVH HTXDWLRQV 7KH PDWULFHV WR EH LQYHUWHG DW WKH YDULRXV VWDJHV RQH DW HYHU\ VWHS RI LQWHJUDWLRQ DQG DQRWKHU DW WKH HQG RI WKH LQWHJUDWLRQ ZHUH LOOFRQGLWLRQHG IRU LQYHUVLRQ :KHQ D GLIn IHUHQW VXEURXWLQH IRU LQYHUVLRQ WKDQ ZKDW FDPH ZLWK WKH 48$6, SURJUDP ZDV P XVHG GLIIHUHQW QXPEHUV UHVXOWHG 7KH HQWULHV RI WKH PDWULFHV 7 DQG 7I L O L ZHUH YHU\ ODUJH DQG UHVXOWHG LQ ODUJH QXPEHUV IRU VRPH HQWULHV RI & 7KLV PDGH WKH PDWUL[ & LOO FRQGLWLRQHG IRU LQYHUVLRQ $Q\ HUURU LQ LQYHUWLQJ WKH PDWUL[ & ZRXOG EH DPSOLILHG LQ WKH YDOXHV RI H 7KLV DPSOLILFDWLRQ ZDV GXH WR WKH PXOWLSOLFDWLRQ RI WKH LQYHUVH RI & E\ 7 D PDWUL[ XVHG LQ JHQHUDWLQJ V ,I H ZDV LQ HUURU DOO RWKHU PIO P ZRXOG EH LQ HUURU EHFDXVH WKH\ ZHUH JHQHUDWHG IURP ,I WKH LQYHUVLRQ RI & ZDV DFFXUDWH WKHQ WKH ILUVW VL[ HQWLUHV RI FRPSXWHG IURP (TXDWLRQV f VKRXOG EH DOPRVW ]HUR %XW LQVWHDG ODUJH YDOXHV RI WKH RUGHU RI ZHUH REWDLQHG 7KLV REYLRXVO\ LQGLFDWHG WKDW DQG KHQFH DOO WKH ZHUH EHLQJ FRPSXWHG LQDFFXUDWHO\ 7KH TXDVLOLQHDUL]DWLRQ SURJUDP IDLOHG WR VROYH WKH KXPDQ PRWLRQ SUREOHP GXH WR WKH DERYH WKUHH UHDVRQV DQG SULPDULO\ GXH WR WKH ODVW RQH WKH QXPHULFDO LQDFFXUDFLHV 7KLV ZDV IHOW WR EH UDWKHU GLIILFXOW

PAGE 88

WR RYHUFRPH VLQFH LW ZDV LQWLPDWHO\ UHODWHG WR WKH PHWKRG XVHG WR VROYH WKH OLQHDU 73%93 DQG WKH VWUXFWXUH RI WKH RULJLQDO 73%93 6R IDU DV WKH PHWKRG ZDV FRQFHUQHG WKH NH\ SRLQW ZDV WKDW WKH PDWUL[ & ZDV EHFRPLQJ LOO FRQGLWLRQHG 7KLV RFFXUUHG EHFDXVH WKH UHFXUVLYH UHODn WLRQVKLS EHWZHHQ DQG A KDV EHHQ XVHG WR JHQHUDWH D UHODWLRQVKLS P EHWZHHQ Hf DQG V ZKLFK UHVXOWHG LQ WKH SURGXFW 7 ZLWK ODUJH ‘f, f,,+ M/ O A UD HQWULHV $ ORRN DW WKH H[SUHVVLRQ IRU & LQ WHUPV RI 7 % L O L DQG % (TXDWLRQ ff ZRXOG PDNH LW FOHDU WKDW ZLWK VXFK D YDOXH U P RI 7 & ZRXOG DXWRPDWLFDOO\ EH LOO FRQGLWLRQHG L O 7KH RWKHU VWDQGDUG PHWKRGV RI VROYLQJ OLQHDU 73%93 (TXDWLRQV f ff IRU H[DPSOH WKH WUDQVLWLRQ PDWUL[ DOJRULWKP PLJKW KDYH EHHQ QXPHULFDOO\ PRUH VWDEOH +RZHYHU RWKHU GLIILFXOWLHV DURVH EHFDXVH WKHVH PHWKRGV UHTXLUH VHYHUDO IRUZDUG LQWHJUDWLRQV LQ RQH LWHUDWLRQ 7KLV PHDQV FDOOLQJ WKH VXEURXWLQH ',)(4 WKH VXEURXWLQH WR JHQHUDWH WKH ULJKW VLGH RI WKH GLIIHUHQWLDO HTXDWLRQV DQG LWV GHULYDWLYHVf PDQ\ PRUH WLPHV 7KLV LQFUHDVHV WKH FRPSXWLQJ WLPH HQRUPRXVO\ :LWK D VWHS VL]H VPDOO HQRXJK IRU WKH LQWHJUDWLRQ WR EH VWDEOH WKH VWRUDJH UHTXLUHPHQWV FRPSXWLQJ WLPH DQG WKHUHIRUH WKH FRVW RI FRPSXWLQJ LQFUHDVHV FRQVLGHUDEO\ (YHQ LI WKHVH IDFWRUV DUH DEVRUEHG LW PD\ VWLOO EH QHFHVVDU\ WR WU\ VHYHUDO LQLWLDO JXHVVHV RI WKH DGMRLQW YDULDEOHV WR JHW WKH PHWKRG WR FRQYHUJH ,Q YLHZ RI WKH DERYH SUREOHPV LW ZDV FRQFOXGHG WKDW WKH VWDQGDUG PHWKRG RI TXDVLOLQHDUL]DWLRQ ZDV QRW VXLWDEOH IRU WKH KXPDQ PRWLRQ SUREOHP DQG VR VKRXOG QRW EH SXUVXHG IXUWKHU

PAGE 89

6WHHSHVW 'HVFHQW 0HWKRGV IRU 6ROYLQJ WKH 0LQLPXP7LPH .LS8S 3UREOHP 7KUHH GLIIHUHQW IRUPXODWLRQV RI ILUVWRUGHU VWHHSHVW GHVFHQW PHWKRGV ZHUH XVHG DIWHU WKH PHWKRG RI TXDVLOLQHDUL]DWLRQ ZDV XQVXFFHVVn IXO LQ VROYLQJ WKH PLQLPXPWLPH NLSXS SUREOHP 7KHVH IRUPXODWLRQV GLIIHU IURP HDFK RWKHU LQ WKH FRQVWUXFWLRQ RI WKH FRVW IXQFWLRQDO KDQGOLQJ RI WKH WHUPLQDO FRQVWUDLQWV WUHDWPHQW RI WKH FRQWURO LQFUHn PHQWV DQG LQ WKH PHWKRG RI DGMXVWLQJ WKH ILQDO WLPH 7KH EDVLF IHDWXUHV RI WKHVH WKUHH IRUPXODWLRQV DUH GHVFULEHG EHORZ )RUPXODWLRQ D 7KH FRVW IXQFWLRQDO LV WKH ILQDO WLPH 7KH WHUPLQDO HUURUV DQG WKH FRVW IXQFWLRQDO DUH UHGXFHG VLPXOWDQHRXVO\ E 7KH DGMXVWPHQW RI WKH ILQDO WLPH LV GRQH E\ H[WHQGLQJ RU WUXQFDWLQJ WKH ILQDO HQG RI WKH WUDMHFWRULHV F 7KH FRQWURO IXQFWLRQV WDNH WKH IRUP RI D VHTXHQFH RI FRQVWUDLQHG DQG XQFRQVWUDLQHG DUFV ,PSURYHPHQWV DUH PDGH DW WKH XQFRQn VWUDLQHG SDUWV RQO\ LQFOXGLQJ WKH MXQFWLRQV RI WKH FRQVWUDLQHG DQG XQFRQVWUDLQHG DUFV 7KH PHWKRG LV EDVHG RQ WKH ZRUNV RI %U\VRQ DQG 'HQKDP >@ DQG %U\VRQ DQG +R >@ )RUPXODWLRQ D 7KH FRVW IXQFWLRQDO LV WKH VXP RI D VFDODU UHSUHVHQWLQJ WKH ILQDO WLPH DQG D QRUP RI WKH WHUPLQDO HUURU E $ FKDQJH LQ WKH LQGHSHQGHQW YDULDEOH W LV LQWURGXFHG E\ GHILQn LQJ WKH WUDQVIRUPDWLRQ

PAGE 90

W D W ZKHUH D LV D FRQVWDQW RU GR f§ G7 VR WKDW D LV WUHDWHG DV DQ DGGLWLRQDO VWDWH YDULDEOH 7KH ILQDO WLPH W LV GLUHFWO\ SURSRUWLRQDO WR D ZKHQ LV KHOG IL[HG /RQJ >@ XVHG WKLV WUDQVIRUPDWLRQ RI WKH LQGHSHQGHQW YDULDEOH WR FRQYHUW IUHH HQG SRLQW 73%93 WR IL[HG HQG SRLQW 73%93 IRU VROXWLRQ E\ WKH PHWKRG RI TXDVLOLQHDUL]DWLRQ 7KH FRVW IXQFWLRQDO LV UHFRQVWUXFWHG DV 2n ( .6 . RA[L R L 1R WHUPLQDO FRQVWUDLQWV ZHUH LQWURGXFHG LQ WKLV IRUPXODWLRQ VLQFH WKH\ WKH iVf DUH LQFOXGHG LQ WKH FRVW IXQFWLRQDO F 7KH FRQWURO IXQFWLRQV DUH DVVXPHG WR EH IUHH WR FKDQJH LQ DQ\ GLUHFWLRQ ZKLOH FRPSXWLQJ WKH JUDGLHQW RI WKH FRVW IXQFWLRQ 7KDW LV WKH FRQWURO FRQVWUDLQWV ZHUH QRW FRQVLGHUHG ZKHQ FRPn SXWLQJ WKH JUDGLHQW RI WKH FRVW IXQFWLRQDO XVHG WR ILQG D VXLWn DEOH LQFUHPHQW LQ WKH FRQWURO DQG Rn 7KH FRQWURO FRQVWUDLQWV ZHUH LPSRVHG LQ WKH QH[W LWHUDWLRQ GXULQJ IRUZDUG LQWHJUDWLRQ RI WKH VWDWH HTXDWLRQV :KHQ WKH FRPSXWHG FRQWURO YLRODWHG D FRQVWUDLQW LQ D VXEDUF LW ZDV VHW HTXDO WR LWV OLPLW WKH FRQVWUDLQW IXQFWLRQ RQ WKH VXEDUF 7KLV DSSURDFK IRU WUHDWLQJ FRQVWUDLQWV RQ WKH FRQWURO KDV EHHQ XVHG E\ :RQJ 'UHVVLHU DQG /XHQEXUJHU >@

PAGE 91

)RUPXODWLRQ 7KLV IRUPXODWLRQ FRQVLVWHG RI WKH IHDWXUHV Df DQG Ef RI )RUPXODWLRQ DQG Ff RI )RUPXODWLRQ 7KH GHULYDWLRQV RI WKH QXPHULFDO DOJRULWKPV IRU WKHVH IRUPXODn WLRQV DUH QRZ SUHVHQWHG 7KH EDVLF FRQFHSWV RQ ZKLFK WKHVH DOJRULWKPV DUH EDVHG DUH DYDLODEOH LQ WKH OLWHUDWXUH >@ 7KH UHVXOWV DUH GHULYHG LQ D PDQQHU VXLWDEOH IRU DQDO\VLV RI WKH RXWFRPH RI WKH QXPHUn LFDO FRPSXWDWLRQV DQG WKXV WKH GHULYDWLRQV SUHVHQWHG KHUH DUH VOLJKWO\ GLIIHUHQW IURP WKRVH IRXQG LQ WKH OLWHUDWXUH IRU DQ\ JUDGLHQW PHWKRG DSSURDFK WR WKH FRPSXWDWLRQ RI RSWLPDOO\ FRQWUROOHG PRWLRQ 'HULYDWLRQV IRU )RUPXODWLRQ 6XSSRVH ZH KDYH D FRQWLQXRXV QRPLQDO FRQWURO XAWf DQG XALWf DQG D QRPLQDO ILQDO WLPH W 7KHVH FRQWURO KLVWRULHV KDYH VRPH SDUWV O\LQJ RQ WKH FRQVWUDLQWV 6A;f L RU DQG WKH UHPDLQLQJ SDUWV OLH DZD\ IURP WKH FRQVWUDLQWV 7KH SDUWV O\LQJ RQ FRQVWUDLQWV ZLOO EH FDOOHG FRQVWUDLQHG DUFV DQG WKH SDUWV O\LQJ RII WKH FRQVWUDLQWV ZLOO EH FDOOHG XQFRQVWUDLQHG DUFV 7KH LQWHUHVHFWLRQV RI FRQVWUDLQHG DQG XQFRQVWUDLQHG DUFV ZLOO EH FDOOHG FRUQHU SRLQWV $ QRPLQDO JXHVV IRU WKH FRQWURO YDULDEOHV FRQVLVWV RI VSHFLI\LQJ WKH FRUQHU SRLQWV DQG YDOXHV RI WKH FRQWURO DW XQFRQVWUDLQHG SRUWLRQV 2Q WKH FRQVWUDLQHG DUFV FRQWURO YDULDEOHV DUH JHQHUDWHG IURP FRQVWUDLQW IXQFWLRQV $Q LQLWLDO FKRLFH RI WKH FRQWURO KLVWRU\ DQG WKH ILQDO WLPH ZLOO QRW LQ JHQHUDO VDWLVI\ WKH ERXQGDU\ FRQGLWLRQ DQG ZLOO QRW GR VR LQ PLQLPXP WLPH HLWKHU 2QH FDQ LPSURYH XSRQ WKH WUDMHFWRULHV LQ WKH IROORZLQJ ZD\ $W ILUVW ZH HVWDEOLVK KRZ D SDUWLFXODU VWDWH YDULDEOH ; WKH WK L FRPSRQHQW RI WKH VWDWH YHFWRU ;f FKDQJHV DW WKH ILQDO WLPH GXH WR

PAGE 92

D VPDOO FKDQJH LQ WKH FRQWURO KLVWRU\ DQG WKH ILQDO WLPH )RU WKDW SXUSRVH OHW D FRVW IXQFWLRQDO EH GHILQHG ;WIf f /HW ?Wf EH DQ DUELWUDU\ WLPHYDU\LQJ YHFWRU RI GLPHQVLRQ VL[ 6LQFH WKH V\VWHP VDWLVILHV (TXDWLRQ f WKH ILQDO YDOXH RI WKH VWDWH YDULDEOH ZLOO DOVR EH JLYHQ E\ rI 7 Mn ;;W f I ; I;f GW f I GR ,I WKH FRQWURO YDULDEOHV X Wf DQG X Wf FKDQJH E\ D VPDOO ; M DPRXQW X Wf DQG ILX Wf WKHUH ZLOO DOVR EH D VPDOO FKDQJH LQ WKH ; L VWDWH YDULDEOH ;Wf GHQRWHG E\ IL[Wf WKURXJKRXW WKH WUDMHFWRU\ ,W LV FOHDU WKDW WKHVH FKDQJHV LQ WKH FRQWURO GHQRWHG E\ ILXWf DQG LQ WKH VWDWH YDULDEOHV GHQRWHG E\ IL[Wf ZLOO QRW EH LQGHSHQGHQW RI HDFK RWKHU $SDUW IURP FKDQJLQJ WKH FRQWURO KLVWRU\ DQ LQFUHPHQW WR WKH ILQDO WLPH W E\ D VPDOO DPRXQW WA DQG VPDOO LQFUHPHQW IL;2f WR WKH LQLWLDO VWDWH YHFWRU DUH DOVR SUHVFULEHG 7KH ILUVWRUGHU FKDQJH LQ GXH WR WKH FKDQJHV LQ WKH FRQWURO DQG WKH ILQDO WLPH LV JLYHQ E\ $Mn ;WIf GWI ^6[ ?;f7 [`W ;;f7 IL;2f WI WI I ^D9 I [f` IL[ GW I T9 I ILX GW f 7KH ILX LV FKRVHQ LQ WKH IROORZLQJ ZD\ )RU WKH XQFRQVWUDLQHG SDUWV ILX LV FRPSOHWHO\ IUHH 7KH SDUWV SUHVHQWO\ RQ WKH FRQVWUDLQWV ZLOO UHPDLQ RQ WKH FRQVWUDLQWV IRU WKH VDPH SHULRGV RI WLPH DV EHIRUH

PAGE 93

)RU WKHVH SRUWLRQV WKH FKDQJH LQ FRQWURO LV JLYHQ E\ WKH VKLIW RI WKH FRQVWUDLQW GXH WR VWDWH FKDQJHV DFFRUGLQJ WR WKH UHODWLRQ X Wf 6 ;Wf f /HW F` GHQRWH DOO WKRVH SRUWLRQV RI WKH WUDMHFWRU\ RI WKH FRQWURO XAWf L RU ZKLFK OLH RQ DQ\ RI WKH FRQVWUDLQWV V^ RU R 6 $OVR OHW & GHQRWH DOO WKRVH SRUWLRQV RI WKH FRQWURO X ZKLFK O L L GR QRW OLH RQ D FRQVWUDLQW ,I WKH H[SUHVVLRQV IRU RQ WKH FRQn VWUDLQHG DUFV JLYHQ E\ (TXDWLRQV f DUH VXEVWLWXWHG LQ (TXDn WLRQ f DQG WKH LQWHJUDWLRQ RI WKH ODVW WHUP RI WKH ULJKW VLGH RI R (TXDWLRQ f LV VSOLW LQWR LQWHJUDWLRQV RYHU WKH LQWHUYDOV R & DQG & RQH REWDLQV ILMn [[W fGW ^D[ [9 D[` ^[9 IL[` =a9I W R WI -R ^Af7 Ln; n;f` GW I ?;f7 IX GW I [9 6 ; GW R M f; ;f7 I mX GW I [9 I V[ GW X f; ,I ;[Wf LV FRPSXWHG VXFK WKDW ;MWIf IRU L M IRU L M ZKHUH [^ M HOHPHQW RI ;r DQG L ; O ; f f f

PAGE 94

ZKHUH RQ &" RQ r rn r rQ & DQG X DQG X XVHG LQ (TXDWLRQ f DUH FRPSXWHG RQO\ ZKHQ [[ f; WKH FRQWUROV XA DQG XA DUH RQ D FRQVWUDLQW DQG XA DQG XA DUH UHSODFHG E\ WKH FRQVWUDLQW H[SUHVVLRQV 6A;f RQH REWDLQV Mn ;Wf GW ;ff7 IL[f I ;f I 8 GW I I Fr f X[ en8 6 GW I ; WBfXWffGW D;ff7 IO[f I ;f I IOX , f rR X L7 GW OI;f7 IX X GW f & ZKHUH IL LV WKH LAK HOHPHQW RI WKH YHFWRU I;Xf (TXDWLRQ f LV WKH GHVLUHG H[SUHVVLRQ IRU WKH FKDQJH RI WKH VWDWH YDULDEOH ; DW WKH ILQDO WLPH WA GXH WR f D VPDOO DUELWUDU\ LQFUHPHQW iXWf JLYHQ WR WKH FRQWURO YDULDEOH XWf RYHU WKH XQFRQVWUDLQHG SRUWLRQV f D VPDOO LQFUHDVH GW RI WKH ILQDO WLPH WA DQG f DQ DUELWUDU\ VPDOO FKDQJH [f RI WKH LQLWLDO VWDWH YHFWRU ; 6LPLODUO\ RQH FDQ ILQG WKH H[SUHVVLRQV IRU WKH FKDQJH LQ WKH WHUPLQDO YDOXH RI DQ\ RWKHU VWDWH YDULDEOH ,W FDQ EH VHHQ WKDW LI RQH FRQVWUXFWV WKH [f PDWUL[

PAGE 95

5Wf >9 Wf ; Wf ;Wf ; Wf [Wf [Wf @ VR WKDW 5Wf VDWLVILHV DQG 5WAf [ XQLW PDWUL[f 5Wf I OfX 5Wf f f ZKHUH WKH PHDQLQJ RI WKH YDULRXV WHUPV LQ WKH SDUHQWKHVHV RI ULJKW VLGH RI (TXDWLRQ f LV WKH VDPH DV WKDW LQ WKH VDPH WHUPV DSSHDU LQ (TXDWLRQ f WKHQ WKH FKDQJH LQ WKH WHUPLQDO YDOXH RI WKH VWDWH YHFWRU LV JLYHQ E\ i;W f I GW 57f6;f I 57 I 6X GW I 57 I iXQ GW I I KR Xf XBR X Df ,I ZH FKRRVH WKDW [f ZH REWDLQ 6[WIf I GW I 57 I X GW I 57 I X GW I R fX R fX & & Ef )ROORZLQJ WKH PHWKRG SUHVFULEHG E\ %U\VRQ DQG +R >@ LW ZLOO QRZ EH DWWHPSWHG WR PDNH LPSURYHPHQWV LQ WKH WHUPLQDO HUURUV JLYHQ E\ i ;WIf ;I DQG DW WKH VDPH WLPH UHGXFH WKH ILQDO WLPH WA 7KXV VLQFH LW LV EHLQJ VRXJKW WR PLQLPL]H WA RQH ZRXOG PD[LPL]H GWA RU PLQLPL]H GWA ZLWK UHVSHFW WR XBA XA VXEMHFW WR WKH FRQVWUDLQW [W f IW fGW I 57 I X GW I 57 I iX GW I I I Y R X R X & &f f

PAGE 96

ZLWK [W f [SW f I I ZKHUH 2; WAf LV D FKRVHQ GHFUHPHQW LQ WKH WHUPLQDO HUURU VXFK WKDW iX PDLQWDLQVWKH ILUVWRUGHU DSSUR[LPDWLRQV ,Q WKLV LQFUHPHQWDO PLQLPL]DWLRQ SUREOHP WKH LQFUHPHQWDO FRVW IXQFWLRQDO GWA WR EH PLQLPL]HG DQG WKH FRQVWUDLQWV DUH OLQHDU LQ WKH LQFUHPHQWDO FRQWURO SDUDPHWHU iX 6XFK D SUREOHP GRHV QRW KDYH DQ H[WUHPXP +RZHYHU VLQFH WKHVH DUH OLQHDUL]HG UHODWLRQV REWDLQHG IURP D QRQOLQHDU V\VWHP WKH LQFUHPHQWV X iX DQG GW VKRXOG EH VPDOO IRU A ; WKH ILUVWRUGHU DSSUR[LPDWLRQ WR EH YDOLG 7R OLPLW WKH LQFUHPHQWV X X DQG GW WKH IROORZLQJ TXDGUDWLF SHQDOW\ WHUP WR WKH LQFUH ; =M ; PHQWDO FRVW GWA LV DGGHG E GWI ? 6R 8 :OWf GW -R 86 :Wf GWf f ZKHUH E LV D SRVLWLYH VFDODU TXDQWLW\ DQG : Wf DQG : Wf DUH SRVLWLYH ; VFDODU TXDQWLWLHV VSHFLILHG DV IXQFWLRQV RI WLPH $GGLQJ WKHVH TXDQWLWLHV WR WKH FRVW IXQFWLRQDO DQG DGMRLQLQJ WKH FRQVWUDLQW UHODWLRQV f WR WKH UHVXOWLQJ H[SUHVVLRQ E\ D PXOWLSOLHU Y D VL[GLPHQVLRQDO YHFWRUf WKH IROORZLQJ SUREOHP LV REWDLQHG 0LQLPL]H ZUW tX X DQG ; = ; GW I f§ E GWA L I X :f GW L I GXA :GW Y7AI WAfGWA nI-R 98 7O-R 9 & & I 5UI X GW I 57I rX GW ;3W&r 8 &r f 8 I ` f

PAGE 97

,I WKH GHULYDWLYHV RI WKLV IXQFWLRQDO ZLWK UHVSHFW WR XA tX DQG GWA DUH VHW WR ]HUR RQH REWDLQV GW A > Y7 IW f@ I E I f DQG V X : s L7 r f 5Y RQ & 5Y RQ &/ 3 $ f IRU DQ H[WUHPDO 8VLQJ (TXDWLRQV f DQG f LQ f RQH REWDLQV i;3 L ILO Y7I ,0Y f E ‘ 0 I RU ZKHUH Y 7 I I WM ?MILML E I Q 7 ,7 Q 7 ,7 ,0 5 I 9n I 5GW5 I :R 5 GW 0 nLR Xf fX fR fX Xf L U r39 VL9 f7 f & f & f 7KH YDOXH RI [WAf WKH GHVLUHG FKDQJH LQ WKH WHUPLQDO YDOXHV RI WKH VWDWH YDULDEOHV PD\ EH FKRVHQ DV D GHFUHPHQW LQ WKH WHUPLQDO HUURU 6 !;3W f H i LI OL f ZKHUH H e L WK [3W f LV WKH L/ HOHPHQW RI A;3 LI DQG

PAGE 98

7KH VWHHSHVW GHVFHQW DOJRULWKP IRU )RUPXODWLRQ FDQ QRZ EH GHVFULEHG DV IROORZV *XHVV D QRPLQDO FRQWURO KLVWRU\ X Wf DQG X Wf DQG D ILQDO WLPH WA ,QWHJUDWH WKH VWDWH HTXDWLRQV IRUZDUG ZLWK WKH QRPLQDO FRQWURO DQG WKH QRPLQDO ILQDO WLPH ZLWK WKH LQLWLDO YDOXHV RI WKH VWDWH YHFWRU JLYHQ E\ ;f ; 6WRUH ; Wf &RPSXWH DQG VWRUH R )LQG WKH QRUP ,1, IRU VRPH SRVLWLYH L WR EH VSHFLILHGf 6DYH WKH FRQWUROV XA DQG XA LQ DQRWKHU YDULDEOH &2/' WKH FRUQHU WLPHV 1 LQ WKH YDULDEOH 12/' DQG WKH ILQDO WLPH WA LQ 7)2/' 6HW 5WAf WKH ;f XQLW PDWUL[ ,QWHJUDWH EDFNZDUG 7 (TXDWLRQV f $W WKH VDPH WLPH FRPSXWH DQG VWRUH 5 IA 7 A DQG 5 I ,W LV QRW QHFHVVDU\ WR VWRUH 5Wf X 6HOHFW WKH SRVLWLYH FRQVWDQW E DQG WKH SRVLWLYH TXDQWLWLHV : Wf DQG : Wf 8QOHVV WKHUH LV VRPH VSHFLDO UHDVRQ : Wf L = -/ DQG : Wf PD\ EH WDNHQ DV D SRVLWLYH FRQVWDQW HTXDO WR : WR EH ] VSHFLILHGf ,Q VXFK D FDVH WKH VWRUDJH IRU :AWf DQG : Wf ZLOO QRW EH QHHGHG 6HOHFW HA L VXFK WKDW R H A O &RPSXWH ,A XVLQJ (TXDWLRQ &RPSXWH Y iXA 6XA DQFr GW DQG f 1RWH WKDW iX XQFRQVWUDLQHG SDUWV & DQG f IURP (TXDWLRQV f f DQG pXA DUH GHILQHG IRU WKH &r RQO\ DQG DUH WR EH FRPSXWHG RQO\ RQ WKRVH SDUWV

PAGE 99

&KDQJH WKH ILQDO WLPH WA WR W GWA ,I WKH LQWHJUDWLRQ VWHS VL]H LV K WKLV PHDQV WKDW WKH WRWDO LQWHUYDO LV WR EH LQFUHDVHG RU GHFUHDVHG DW WKH ILQDO HQG GHSHQGLQJ XSRQ ZKHWKHU GWA LV SRVLWLYH RU QHJDWLYHf E\ GWAK URXQGHG WR WKH QHDUHVW LQWHJHU QXPEHU RI LQWHJUDn WLRQ VWHSV ,Q WKH FDVH RI D SRVLWLYH GWA WKH FRQWUROV XAWf DQG X Wf LQ WKH LQWHUYDO 7)2/' A W A W QHZf ZLOO EH JLYHQ E\ H[WUDSROD WLRQ RI WKH H[LVWLQJ FXUYHV ,I D FRQWURO IXQFWLRQ LV RQ D FRQVWUDLQW DW WKH ILQDO WLPH 7)2/' LW VKRXOG UHPDLQ RQ WKH VDPH FRQVWUDLQW LQ WKLV SHULRG DQG LV WR EH JHQHUDWHG GXULQJ WKH IRUZDUG LQWHJUDWLRQ LQ WKH QH[W VWHSV 6HW WKH FRQWURO X 82/' 6X L RU IRU WKH XQFRQ O OL VWUDLQHG SRUWLRQV ,QWHJUDWH WKH VWDWH HTXDWLRQV IRUZDUG ZLWK WKH QHZ FRQWURO 7KH FRUQHU WLPHV 1 DUH WR EH JHQHUDWHG DJDLQ GXULQJ WKH IRUZDUG LQWHJUDWLRQ DV GHVFULEHG JUDSKLFDOO\ LQ )LJXUH )LJXUH VKRZV WKH GLIIHUHQW FDVHV ZKLFK PD\ DULVH GXULQJ WKH IRUZDUG LQWHJUDWLRQ ,W LV VHHQ WKDW D QHZ FRUQHU WLPH LV JHQHUDWHG DW WKH SRLQW ZKHUH WKH XQFRQVWUDLQHG XA XA FXUYH H[WUDSRODWHG LI QHFHVn VDU\ PHHWV WKH FRQVWUDLQW 7KLV SDUW RI WKH IRUZDUG LQWHJUDWLRQ PDNHV WKH SURJUDPPLQJ FRPSOLFDWHG ZLWK PDQ\ ORJLFDO SURJUDP VWDWHPHQWV )LQG WKH HUURUV LQ WKH ERXQGDU\ FRQGLWLRQV i DQG ILQG WKH QRUP M_ iAMM DV LQ VWHS ,I WKLV QRUP LV OHVV WKDQ WKDW RI WKH SUHYLRXV LWHUDWLRQ JR WR VWHS WR FRQWLQXH WKH LWHUDWLRQV ,I LW LV QRW UHGXFHG WKHQ GR WKH IROORZLQJ D ,I GWA LV WRR ODUJH LQFUHDVH E DQG JR WR VWHS F EHORZ

PAGE 100

F F -O8OOW88WQX FRQVWUDLQW Wf ROG FRUQHU WLPH W QHZ FRUQHU WLPH Q XT ROG FRQWURO X QHZ FRQWURO X X LPSURYHG FRQWURO FRPSXWHG E\ JUDGLHQW DW WKH XQFRQVWUDLQHG DUF )LJXUH 0RGLILFDWLRQ RI WKH &RUQHU 3RLQW %HWZHHQ &RQVWUDLQHG DQG 8QFRQVWUDLQHG $UFV $IWHU &KDQJHV LQ WKH 8QFRQVWUDLQHG $UFV WR R

PAGE 101

:KDW LV WRR ODUJH LV WR EH IRXQG E\ WULDOV ,Q WKH SUHVHQW FDVH PRUH WKDQ ILYH LQWHJUDWLRQV VWHSV ZHUH IRXQG WR EH WRR ODUJH IRU D YDOXH RI GWA E ,I GWA LV QRW WRR ODUJH GHFUHDVH WKH H DQG JR WR VWHS F EHORZ F 6HW X 82/' WBA 7)2/' 1 12/' DQG JR WR VWHS DERYH 7KH VWRSSLQJ FRQGLWLRQV DUH JLYHQ E\ __ i__ LV D VPDOO QXPEHU PHDQLQJ WKDW WKH ERXQGDU\ FRQGLWLRQV KDYH EHHQ DGHTXDWHO\ PHW 7 Y If LV QHJDWLYH RU ]HUR 7KLV PHDQV WKDW WKH FRUUHF + WLRQV WR WKH ILQDO WLPH ZKLFK ZRXOG EH FRPSXWHG LQ WKH QH[W LWHUDWLRQ XVLQJ (TXDWLRQ f ZRXOG LQFUHDVH WKH ILQDO WLPH 7 7 )RU L DQG WKH TXDQWLWLHV Y 5 I DUH D SRVLWLYH ZKHQ XA LV JLYHQ E\ PHDQLQJ WKDW RQO\ D YLRODn WLRQ RI WKH FRQVWUDLQW ZLOO LPSURYH WKH FRVW E QHJDWLYH ZKHQ XA LV JLYHQ E\ 6 F =HUR RU D VPDOO QXPEHU ZKHQ XA LV QRW RQ DQ\ FRQVWUDLQW VR WKDW FRPSXWHG E\ (TXDWLRQ f VKRXOG EH ]HUR RU DQ DFFHSWDEO\ VPDOO QXPEHU &RPPHQWV RQ WKH $OJRULWKP 7KH IRUZDUG LQWHJUDWLRQ RI WKH VWDWH HTXDWLRQV DW HYHU\ LWHUDWLRQ UHTXLUHV VSHFLDO WUHDWPHQW EHFDXVH RI WKH SUHVHQFH RI WKH FRQVWUDLQHG DQG XQFRQVWUDLQHG DUFV 7KH LQWHJUDWLRQ IRUPXODV DUH VOLJKWO\ GLIIHUn HQW IRU FDVHV ZKHQ WKH ULJKW VLGHV RI WKH GLIIHUHQWLDO HTXDWLRQV DUH 2Q DQ XQFRQVWUDLQHG SRUWLRQ XAWf DQG XAWf DUH WLPH YDU\LQJ

PAGE 102

SUHVFULEHG DV WLPH YDU\LQJ IXQFWLRQV EXW RQ D FRQVWUDLQW WKH\ DUH H[SUHVVHG DV IXQFWLRQV RI VWDWH YDULDEOHV 7KLV GLIIHUHQFH LV WR EH WDNHQ LQWR DFFRXQW LQ WKH LQWHJUDWLRQ VFKHPH 7KH FRQWURO FRQVWUDLQLQJ ERXQGDULHV DUH QRW NQRZQ EHIRUH WKH VWDWH WUDMHFWRU\ LV NQRZQ 6LQFH WKH VWDWH WUDMHFWRU\ LV GHWHUPLQHG E\ IRUZDUG LQWHJUDWLRQ WKH GHWHUPLQDWLRQ RI WKH FRUQHU SRLQWV LV GLIn ILFXOW DIWHU WKH FRQWURO LV FKDQJHG DW RIIWKHFRQVWUDLQW SRUWLRQV )RU WKLV SXUSRVH D ILUVWRUGHU SUHGLFWLRQ RI WKH ORFDWLRQ RI WKH FRQn VWUDLQW DQG DQ H[WUDSRODWLRQ RI WKH XQFRQVWUDLQHG X X FXUYH ZDV PDGH WR GHWHUPLQH LI WKH\ LQWHUVHFW WR IRUP D FRUQHU SRLQW RQH VWHS DKHDG LQ WKH IRUZDUG VWDWH HTXDWLRQ LQWHJUDWLRQ 7KLV ZDV QHHGHG EHFDXVH WKH LQWHJUDWLRQ VFKHPH XVHG IRXU FRQVHFXWLYH VWRUHG VWDWHV WR JHQHUDWH WKH QH[W VWDWH 0XFK PRUH FRPSXWLQJ WLPH ZRXOG EH UHTXLUHG E\ JRLQJ EDFN WR DQ HDUOLHU SRLQW DQG UHGRLQJ WKH LQWHJUDWLRQV )LUVWRUGHU SUHGLFn WLRQV RI WKH VWDWHV ;f DQG ;B IRU WKH VWHS ZHUH PDGH IURP WKH VWHS R E\ WKH IRUPXODV .O . [ [ K [ DQG K LQWHJUDWLRQ VWHS VL]H FRQVWDQWf 2QO\ ;f DQG ;B DUH QHHGHG WR ILQG WKH FRQVWUDLQWV 6n" L ,W LV WR EH QRWLFHG WKDW WKH PRGLILFDWLRQ RI D FRUQHU SRLQW DV LOOXVWUDWHG LQ )LJXUH KDV QRW EHHQ DFFRXQWHG IRU LQ WKH GHULYDWLRQ RI WKH DOJRULWKP 7KH HUURUV LQ WKH H[SUHVVLRQ RI ;WAf FDXVHG E\ WKLV GHULYDWLRQ LQ WKH DOJRULWKP IURP WKH WKHRUHWLFDO GHULYDWLRQ ZLOO EH VPDOO RQO\ LI WKH FRQVWUDLQHG DQG XQFRQVWUDLQHG DUFV DUH PXFK ORQJHU WKDQ WKH VKLIW RI WKH FRUQHU SRLQW 7KLV LV D VLJQLILFDQW VRXUFH RI HUURU ZKHQ WKH XQFRQVWUDLQHG DUFV DUH VPDOO

PAGE 103

'HULYDWLRQV IRU )RUPXODWLRQ ,Q WKLV IRUPXODWLRQ ZH WUDQVIRUP WKH LQGHSHQGHQW YDULDEOH W FI7 f ZKHUH 7 LV WKH QHZ LQGHSHQGHQW YDULDEOH 7KHQ WKH V\VWHP HTXDWLRQV EHFRPH G; f§ ;n D I;Xf GHY n B f§ D G7 ZKHUH nf GHQRWHV GLIIHUHQWLDWLRQ ZLWK UHVSHFW WR 7 %RXQGDU\ FRQGLWLRQV DUH f f ;f ; JLYHQf R ZLWK ;7 f QRW VSHFLILHG DQG WR EH GHWHUPLQHG DQG f 7 WKH IL[HG ILQDO YDOXH RI 7 JLYHQ 7KH FRVW IXQFWLRQDO WR EH PLQLPL]HG LV L ( .i FY f OL R ZLWK WKH YDOXHV RI WKH DQG VSHFLILHG &RQVWUDLQWV RQ WKH FRQWURO R JLYHQ E\ (TXDWLRQ f UHPDLQ XQFKDQJHG 7KH VWHHSHVW GHVFHQW DOJRULWKP IRU PLQLPL]LQJ WKH FRVW IXQFWLRQDO RI (TXDWLRQ f ZDV FRQVWUXFWHG DV IROORZV /HW ;7f D YHFWRU RI GLPHQVLRQ DQG 7fWf D VFDODU EH DUELn WUDU\ IXQFWLRQV RI 7 6LQFH WKH V\VWHP VDWLVILHV (TXDWLRQV f WKH FRVW IXQFWLRQDO LV DOVR HTXDO WR

PAGE 104

-r L e L O L I I ;WIf;A. m ;7>FUI ;@G7 I F GU f ,Q WKLV H[SUHVVLRQ 6 KDV EHHQ UHSODFHG E\ ;WIf ;rf ,QWHJUDWLRQ E\ SDUWV \LHOGV WI W W W W Mn FS I ?7DI G7 >;7;@I I4I ?n; GW >7fD@I I LI IIG7 R ZKHUH L 6 >;KW [M@ .R L O )RU ILUVWRUGHU YDULDWLRQV LQ X DQG ; W f HMn FS [ FS ILD I ; >I D I IL[ 2n I ILX@ G7 Y aa f§$ a f§8 f§ WI f >;7 IL[@ I ;7 IL[ G7 > Q D I @n D G7 f f§ f§ W f§ WfR G nI R I /HW ;7f DQG 7fWf EH FKRVHQ VXFK WKDW ; 7If FS[ ;n7f D I![f ; Df Ef QnWf [7I Ff 9 nIfF Gf 7KHQ IL@ 2D I ;7D I ILX G7 Q Y f§ X Df f 2RI D I ; >I 6X I 2X @ G7 R f§ X X R Ef

PAGE 105

(TXDWLRQV f JLYH WKH JUDGLHQW RI WKH FRVW IXQFWLRQ f ZLWK UHVSHFW WR D DQG XWf /HW XV FKRRVH 6R H 7f V D R f X 7f 6 ?7 I HL7f Df 7f 6 ;7I 8 H7f OEf ZKHUH H H 7f HI7f DQG V DUH SRVLWLYH TXDQWLWLHV ,W FDQ EH VHHQ D WKDW LI WKHVH TXDQWLWLHV DUH FKRVHQ VXFK WKDW tD iX Wf DQG AXA7f DUH VXIILFLHQWO\ VPDOO WKHQ WKH ILUVWRUGHU DSSUR[LPDWLRQV DUH YDOLG DQG WKH UHGXFWLRQ RI WKH FRVW LV JXDUDQWHHG 7KH SXUSRVH RI PDNLQJ HA7f DQG H Wf IXQFWLRQV RI 7 LV WR KDYH FRQWURO RYHU WKH DPRXQW RI LPSURYHPHQWV iX DQG X GXULQJ WKH WLPH LQWHUYDO 7KH\ ZLOO QRUPDOO\ EH DOO &L RYHU H[FHSW IRU VSHFLDO UHDVRQV 7KH YDOXHV RI H H 7f DQG H 7f DUH WR EH VSHFLILHG LQGHSHQGHQWO\ 2QFH WKH\ DUH GHFLGHG XSRQ V PD\ EH FDOFXODWHG RQ WKH EDVLV RI KRZ PXFK LPSURYHPHQW WR WKH FRVW LV GHVLUHG LQ RQH LWHUDWLRQ ZKLOH UHPDLQLQJ ZLWKLQ WKH OLQHDU DSSUR[LPDn WLRQnV YDOLG UDQJH 6XSSRVH LQ DQ\ LWHUDWLRQ WKH FRVW LV DQG LW LV GHVLUHG WR UHGXFH WKH FRVW E\ HLQ WKH QH[W LWHUDWLRQ ZKHUH H A :LWK WKH FKRLFH RI X Wf X 7f DQG iD DOUHDG\ PDGH DERYH (TXDWLRQ Ef \LHOGV WI H V H 7, VF >H 7fD7I fH7f?7I f@G7 f DR G f§ f§ X f§ f§ X R

PAGE 106

'HILQLQJ WI % 2 WHnUfA7X f H7fA7nX f@ G7 f R 8 RQH REWDLQV HM V> H 7@ E@ D R f V HMH M? %f f (TXDWLRQ f JLYHV WKH YDOXH RI V UHTXLUHG LQ WKH GHWHUPLQDWLRQ RI X Wf X 7f DQG D YLD WKH JUDGLHQW WHUPV ZKLFK XQGHU ILUVW RUGHU SUHGLFWLRQV ZRXOG UHGXFH WKH FRVW E\ HM ,Q DFWXDO FRPSXWDWLRQ D GLIIHUHQW FKDQJH LQ WKH FRVW LV WR EH H[SHFWHG EHFDXVH H ZLOO EH ILQLWH DQG WKH ILUVWRUGHU SUHGLFWLRQ ZLOO QRW EH H[DFW 7KLV LV WUXH EHFDXVH WKH V\VWHP LV QRQOLQHDU DQG EHFDXVH LQ VRPH LQWHUYDOV RI 7 X PD\ QRW EH LPSOHPHQWHG GXH WR WKH FRQVWUDLQWV ,I WKH FRVW IXQFWLRQDO LV QRW LPSURYHG WKHQ H LV WR EH UHGXFHG DQG X DQG D DUH WR EH UHFRPSXWHG ,I WKH FRVW IXQFWLRQ LV UHGXFHG EXW WKH WHUPLQDO HUURU LV LQFUHDVHG PHDQLQJ WKHUHE\ WKDW WKH FRVW KDV GHFUHDVHG E\ UHGXFLQJ D EXW LQFUHDVLQJ WKH WHUPLQDO HUURUf .T LV WR EH UHGXFHG 7KH VHOHFWLRQ RI H ZDV GRQH LQ WKH IROORZLQJ ZD\ 7KH FKDQJH D LQ WKH FRVW GXH WR WKH FKDQJH LQ D DQG WKH FKDQJH LQ X7f DUH JLYHQ E\ V H 7f DQG V% UHVSHFWLYHO\ D R /HW V H 7f H V%f ZKHUH H A f D R D D VR WKDW WKH FKDQJH LQ FRVW GXH WR FKDQJH LQ D LV H WLPHV WKDW GXH WR WKH FKDQJH LQ XWf 7KHQ H LV JLYHQ E\

PAGE 107

H H E7f f D D R DQG WKHQ IURP (TXDWLRQ f V ZLOO EH JLYHQ E\ V HMI% H a f` f D R 6LQFH LW LV LQWXLWLYHO\ HDVLHU WR VSHFLI\ V WKDQ H WKH DGYDQWDJH RI FKRRVLQJ H LQ WKLV ZD\ LV REYLRXV FO 7KH 6WRSSLQJ &RQGLWLRQV 7KH H[DFW VWRSSLQJ FRQGLWLRQV IRU WKH FRPSXWDWLRQV VKRXOG DOVR FRUUHVSRQG WR WKH FRQGLWLRQV IRU RSWLPDOLW\ DQG WKH\ DUH VXJJHVWHG E\ (TXDWLRQV f &OHDUO\ ZKHQ WKH IROORZLQJ WKUHH FRQGLWLRQV DUH VDWLVILHG 7f RU VPDOOf R 7 7 ? I DQG ? I DUH ]HUR RU VPDOOf ZKHQ WKH FRQWURO YDULDEOHV XO X X DQG X UHVSHFWLYHO\ DUH QRW RQ D FRQVWUDLQW 7 7 ZKHQ Xf RU X DUH RQ D FRQVWUDLQW ; I RU ? I UHVRHF X X WLYHO\ DUH RI RSSRVLWH VLJQV WR WKRVH RI WKH FRQVWUDLQW LH SRVLWLYH RQ D ORZHU FRQVWUDLQW DQG QHJDWLYH RQ DQ XSSHU FRQVWUDLQW WKHQ QR LPSURYHPHQW RQ FRVW LV SRVVLEOH ZLWKRXW YLRODWLQJ WKH FRQVWUDLQWV 7KHVH LQGLFDWH VWRSSLQJ FRQGLWLRQ :KLOH SHUIRUPLQJ WKH ODVW FKHFN IRU VWRSSLQJ WKH DGMRLQW HTXDWLRQV PXVW EH PRGLILHG DFFRUGLQJ WR (TXDWLRQ f RI )RUPXODWLRQ ZKHQ DQ\ SRUWLRQ RI WKH FRQWURO WUDMHFWRULHV OLHV RQ D FRQVWUDLQW 7KLV LV QHFHVVDU\ LQ RUGHU WR WDNH LQWR DFFRXQW WKH GHSHQGHQFH RI WKH FRQWURO FRQVWUDLQWV RQ WKH VWDWH YDULDEOHV +RZHYHU WKHUH DUH VHYHUDO SUREOHPV WR H[SHFW IURP WKHVH VWRSSLQJ FRQGLWLRQV 7KHVH FRQGLWLRQV ZLOO QRW EH VDWLVILHG HYHQ LI

PAGE 108

D WUDMHFWRU\ LV VOLJKWO\ GLIIHUHQW IURP WKH RSWLPDO 7KH DGMRLQW YDULDEOHV DUH H[WUHPHO\ VHQVLWLYH ZLWK UHVSHFW WR FKDQJHV LQ WKH FRQWURO IXQFWLRQV DQG D VOLJKW LPSHUIHFWLRQ LQ WKH VROXWLRQ ZLOO \LHOG D VLJQLIn LFDQWO\ GLIIHUHQW VHW RI DGMRLQW YDULDEOHV 7KH\ ZLOO QRW PHHW WKH VWRSSLQJ FRQGLWLRQV GHVFULEHG DERYH $OVR WKH ILUVWRUGHU PHWKRGV VKRZ SRRU FRQYHUJHQFH QHDU WKH RSWLPDO VROXWLRQ DQG PD\ QHYHU JR VXIILFLHQWO\ FORVH WR WKH H[DFW VROXWLRQ LQ D UHDVRQDEOH DPRXQW RI FRPSXWDWLRQ $GGHG WR WKHVH SUREOHPV LV WKH SUREOHP RI FRPSXWDWLRQ HUURUV URXQG RII DQG WUXQFDWLRQ HUURUVf ZKLFK JURZ LQ LQWHJUDWLRQV RYHU D OHQJWK\ LQWHUn YDO DQG ZLOO EHJLQ WR VKRZ XS WKHQ WKH WHUPLQDO HUURUV DQG WKH JUDGLHQW RI WKH FRVW IXQFWLRQDO DUH UHGXFHG WR VPDOO YDOXHV ,Q YLHZ RI WKHVH IDFWRUV LW LV YHU\ XQOLNHO\ WKDW WKH VWRSSLQJ FRQGLWLRQV ZLOO EH SUHn FLVHO\ REWDLQHG 2QH VKRXOG WKHUHIRUH ILQG VRPH RWKHU VWRSn SLQJ FULWHULD WR GHFLGH ZKHQ WR VWRS WKH FRPSXWDWLRQV DQG DFFHSW DQ DSSUR[LPDWH VROXWLRQ 6LQFH LW LV GHVLUHG WR PLQLPL]H WKH WHUPLQDO HUURUV RQH FDQ WHVW GLUHFWO\ ZKHWKHU WKH\ DUH VPDOO HQRXJK RU QRW )RU WLPH RSWLPDOLW\ LW KDV EHHQ VHHQ WKDW WKH RSWLPDO VROXWLRQ LV EDQJEDQJ ZLWK WKH H[FHSn WLRQ RI VLQJXODU DUFV ,W LV YHU\ GLIILFXOW WR VWDUW ZLWK D FRQWLQXRXV QRPLQDO FRQWURO WUDMHFWRU\ DQG LPSURYH WR DQ H[DFW EDQJEDQJ FRQWURO LQ DQ\ SDUW RI WKH WUDMHFWRU\ 6R D VWHHS FRQWURO IXQFWLRQ DUF MRLQLQJ DQ XSSHU DQG ORZHU FRQVWUDLQW VKRXOG EH DQ DFFHSWDEOH DSSUR[LPDWLRQ RI D EDQJEDQJ VROXWLRQ ,I WKHUH DUH VLQJXODU DUFV WKH\ PXVW EH WHVWHG IRU RSWLPDOLW\ E\ VHHLQJ LI WKH\ DUH VWDEOH RU QRW $OVR 7@ VKRXOG EH VPDOO RU QHJDWLYH $ QHJDWLYH 7_ LQGLFDWHV WKDW WKH FRVW IXQFWLRQDO FDQ EH UHGXFHG IXUWKHU E\ LQFUHDVLQJ D 7KLV FRUUHVSRQGV WR LQFUHDVLQJ

PAGE 109

WKH ILQDO WLPH ZKLFK ZH ZLVK WR PLQLPL]H ,I ZH DOUHDG\ KDYH DFFHSWDEOH WHUPLQDO HUURUV QR IXUWKHU LQFUHPHQW LQ D LV QHHGHG LQ WKLV FDVH /DVWO\ ZLWK DOO WKH DERYH FRQGLWLRQV VDWLVILHG WKH ILQDO VWRSSLQJ FRQGLWLRQ LV WKH LQVLJQLILFDQW LPSURYHPHQW LQ WKH FRVW IXQFn WLRQDO E\ IXUWKHU FRPSXWDWLRQV &KRLFH RI WKH ,I DQ\ .B LV ODUJH FRPSDUHG WR WKH RWKHUV LW PD\ EH H[SHFWHG WKDW WKH FRUUHVSRQGLQJ ERXQGDU\ HUURU ZLOO EH UHGXFHG DW WKH H[SHQVH RI WKH RWKHUV 2Q WKH RWKHU KDQG QRW DOO HUURUV PD\ LPSURYH DFFHSWDEO\ LI DOO WKH DUH PDGH HTXDO ,I LV WRR VPDOO WKH PLQLPL]DWLRQ RI D L R ZLOO EH VORZ ,I LV ODUJH D PD\ EH UHGXFHG WRR PXFK UHVXOWLQJ LQ R ODUJH ERXQGDU\ FRQGLWLRQ HUURUV $ UHDVRQDEOH ZD\ WR VHOHFW .T LV WR LQFUHDVH RU GHFUHDVH ZLWK WKH FXUUHQW QRUP RI WKH WHUPLQDO HUURU R 3/ ,, LOO f L O 7KH YDOXHV RI WKH IRU L PD\ QHHG WR EH DGMXVWHG GXULQJ WKH LWHUDWLRQV WR DFKLHYH IDVWHU LPSURYHPHQW RI WKH LQGLYLGXDO WHUPLQDO HUURUV 7KH DOJRULWKP GHYHORSHG DERYH FDQ EH VXPPDUL]HG DV IROORZV 'HFLGH XSRQ WKH YDOXHV RI WKH TXDQWLWLHV .A .J H H 7f H 7f DQG H DV GLVFXVVHG DERYH ; = 0DNH D QRPLQDO JXHVV RI 7 XA7f XWf DQG D 7KLV ZLOO UHTXLUH D IHZ VLPXODWLRQ WULDOV

PAGE 110

,QWHJUDWH WKH VWDWH HTXDWLRQV f IRUZDUG ZLWK WKH QRPLQDO FRQWURO DQG WKH JLYHQ LQLWLDO YDOXHV $W HDFK LQWHn JUDWLRQ VWHS FKHFN LI WKH FRQWURO X Wf DQG X 7f DUH ZLWKLQ WKH DOORZDEOH ERXQGV WKH FRQVWUDLQWVf ZKLFK DUH WR EH FRPSXWHG DW HYHU\ LQWHJUDWLRQ VWHS %ULQJ WKH FRQWUROV RQ WKH ERXQGV LI WKH\ H[FHHG WKH ERXQGV 6WRUH X7f DQG ;7f &DOFXODWH WKH WHUPLQDO HUURUV DQG WKHLU QRUP 3 DQG GHWHUPLQH WKH TXDQWLW\ &DOFXODWH WKH FRVW 3 f§ D R 6HW WKH WHUPLQDO YDOXHV RI WKH DGMRLQW YDULDEOHV ; W f i 7_WIf IURP (TXDWLRQV DGf ,QWHJUDWH WKH DGMRLQW (TXDWLRQV EFf EDFNZDUGV &RPSXWH 7 7 DQG VWRUH DW HDFK VWHS WKH YDOXHV RI ; I 7f DQG ; I 7f f§ X f§ f§ X &DOFXODWH % H DQG V XVLQJ (TXDWLRQV f &DOFXODWH 8 7f DQG X 7f DQG D IURP (TXDWLRQV f -/ M 8SGDWH XA7f X 7f DQG KD E\ VHWWLQJ XA7f XA7f iXA7f X 7f X 7f X 7f DQG D D KD 6WRUH WKH ROG X 7f = = M [ XAL7f DQG D LQ 82/' DQG $2/' ,QWHJUDWH WKH VWDWH HTXDWLRQV IRUZDUG DV LQ VWHS DQG ILQG WKH YDOXH RI WKH FRVW IXQFWLRQDO ,I WKH FRVW IXQFWLRQDO LV QRW UHGXFHG IURP WKH SUHYLRXV YDOXH UHGXFH H UHVHW WKH YDOXHV RI X 7f X Wf DQG D WR WKH SUHYLRXV ; ] YDOXHV 82/' DQG $2/' WKDW ZHUH VWRUHG JR WR VWHS ,I WKH FRVW LV UHGXFHG EXW 3 WKH QRUP RI WKH HUURU KDV LQFUHDVHG UHGXFH WKH YDOXH RI UHVHW WKH YDOXHV RI X 7f R X 7f DQG D WR WKH SUHYLRXV YDOXHV WKDW ZHUH VWRUHG DQG JR WR VWHS

PAGE 111

,I ERWK WKH FRVW IXQFWLRQ DQG DUH UHGXFHG FKHFN WR VHH LI WKH VWRSSLQJ FRQGLWLRQV KDYH EHHQ PHW ,I QRW JR WR VWHS ZKLFK LV WKH QH[W LWHUDWLRQ ,I WKH QXPEHU RI LWHUDWLRQV LV JUHDWHU WKDQ D VSHFLILHG QXPEHU SXQFK RQ FDUGV WKH YDOXHV RI WKH FXUUHQW XA7f DQG XA7f DQG VWRS 0DQXDOO\ FKHFN WR VHH LI WKH SURJUDP LV SHUIRUPLQJ ZHOO ,I QHFHVVDU\ FKDQJH WKH YDOXHV RI L H H L 7f HfLf 5HVWDUW WKH SURJUDP LI QHFHVVDU\ D $ 6LPSOH 1XPHULFDO ([DPSOH RI WKH 0HWKRG $ VLPSOH VHFRQGRUGHU V\VWHP ZLWK VWDWHGHSHQGHQW FRQVWUDLQWV RQ WKH FRQWURO ZDV WDNHQ IRU VROXWLRQ E\ WKLV PHWKRG WR H[DPLQH WKH PHWKRGnV IHDWXUHV DV ZHOO DV LWV HIIHFWLYHQHVV 7KH V\VWHP ZDV GHILQHG DV IROORZV ZLWK WKH FRQVWUDLQWV RQ X JLYHQ E\ 7KH ERXQGDU\ FRQGLWLRQV ZHUH FKRVHQ DV ;f ;f 7KH V\VWHP LV WR PHHW WKH DERYH ERXQGDU\ FRQGLWLRQV LQ PLQLPXP WLPH

PAGE 112

6ROXWLRQ :LWK WKH FKDQJH RI WKH LQGHSHQGHQW YDULDEOH W *7 WKH VWDWH HTXDWLRQV EHFRPH DK ; fX D ZKHUH f GHQRWHV GLIIHUHQWLDWLRQ ZLWK UHVSHFW WR 7 :KLOH FRPSXWLQJ WKH DGMRLQW YDULDEOHV DQG WKH LPSURYHPHQWV LQ WKH FRQWURO X WKH FRQn WURO LV DVVXPHG WR EH FRPSOHWHO\ IUHH DV PHQWLRQHG HDUOLHU LQ WKLV FKDSWHU 7KH FRQVWUDLQWV ZHUH LPSRVHG ZKLOH GRLQJ WKH IRUZDUG LQWHn JUDWLRQ ZLWK WKH LPSURYHG FRQWURO X X LQ WKH QH[W LWHUDWLRQ 7KH HTXDWLRQV RI WKH DGMRLQW YDULDEOHV DUH JLYHQ E\ f 7 ; 2IY RU 7_ ?[ 9 7KH ERXQGDU\ FRQGLWLRQV RI WKH VWDWH DQG WKH DGMRLQW YDULDEOHV DUH Af ;f ;WIf .;WIf f ;JLWIf .;WIff n+Wff 2I L R 7@f

PAGE 113

7KH FRVW IXQFWLRQDO LV ? 9: f .;WIff 9n ,Q WKH DWWHPSWV WR VROYH WKLV SUREOHP VHYHUDO H[SHULPHQWV ZHUH GRQH ZLWK UHVSHFW WR WKH FKRLFHV RI WKH LQLWLDO JXHVV RI WKH ILQDO WLPH WKH TXDQWLW\ .T DQG HA7f ,W ZDV IRXQG WKDW FRQYHUJHQFH WR WKH ERXQGDU\ FRQGLWLRQV RQ WKH VWDWH YDULDEOHV DQG ;ZDV TXLWH UDSLG IURP DOO WKH LQLWLDO JXHVVHV WULHG ZKLFK PD\ QRW EH VXUSULVLQJ IRU WKLV VLPSOH SUREOHP +RZHYHU WR DFFHOHUDWH PLQLPL]DWLRQ RI WKH ILQDO WLPH VRPH LQLWLDO JXHVVHV ZHUH EHWWHU WKDQ RWKHUV ,W ZDV IRXQG WKDW LI WKH ILQDO WLPH LH WKH YDOXH RI D ZDV JXHVVHG ODUJHU WKDQ RSWLPDO WKHQ LQ WKH LQLWLDO LWHUDWLRQV DV WKH ERXQGDU\ HUURUV DUH LPSURYHG IRU D ODUJHU QRQPLQLPDO YDOXH RI D WKH FRQWURO WUDMHFWRU\ WDNHV D VKDSH RWKHU WKDQ RSWLPDO 2QFH WKH WHUPLQDO HUURUV KDYH EHHQ UHGXFHG DQG WKH ILQDO WLPH LV VWLOO QRW PLQLPDO UHGXFWLRQ LQ WKH ILQDO WLPH EHFRPHV YHU\ VORZ $Q\ ODUJH FKDQJH LQ D KDV D WHQGHQF\ WR JUHDWO\ LQFUHDVH WKH WHUPLQDO HUURUV IURP WKHLU SUHYLRXVO\ VPDOO YDOXHV ,W ZDV IRXQG WKDW IRU WKLV SUREOHP LI WKH JXHVVHG YDOXH RI WKH ILQDO WLPH LH Rf ZDV FKRVHQ OHVV WKDQ WKH DFWXDO PLQLPXP WLPH WKH FRQYHUJHQFH ZDV PRUH UDSLG ,Q VXFK D FDVH LW ZDV IRXQG WKDW WKH FRUn UHFWLRQV WR WKH FRQWURO LQ DQ\ LWHUDWLRQ DUH FRPSXWHG IRU D ILQDO WLPH OHVV WKDQ WKH PLQLPXP WLPH ZKLFK IRUFHV WKH FRQWURO WR PRYH WR WKH DSSURSULDWH FRQVWUDLQW ERXQGDULHV $W WKH VDPH WLPH WKH FRUUHFWLRQ RQ WKH D ZDV FRPSXWHG SRVLWLYH VR WKDW WKH FRUUHFWLRQ YDOXH RI D ZDV DSSURDFKHG DXWRPDWLFDOO\ LQ WKH DWWHPSWV WR UHGXFH WKH WHUPLQDO HUURUV

PAGE 114

/DUJH LQFUHDVHV LQ D ZHUH FKHFNHG E\ WKH SHQDOW\ WHUUD .T2 VR WKDW WKH FRVW IXQFWLRQDO ZDV PLQLPL]HG ZLWKRXW H[FHVVLYH RVFLOODWLRQV LQ WKH YDOXHV RI D RU X7f ,W ZDV IRXQG WKDW LQ WKH FRPSXWDWLRQ RI WKH FRUUHFWLRQ WR WKH FRQWURO E\ WKH IRUPXOD X V H Wf?7 V H Wf ? X LI HA7f LV FKRVHQ VXFK WKDW LW LV VPDOO ZKHUH WKH FRQWURO LV QHDU D FRQVWUDLQW ERXQGDU\ DQG ODUJH ZKHQ RII WKH FRQVWUDLQW WKH FRQYHUn JHQFH WR DQ RSWLPDO EDQJEDQJ VROXWLRQ LV DFFHOHUDWHG DIWHU WKH FRQWURO KDV WDNHQ D VKDSH VLPLODU WR WKH RSWLPDO FRQWURO )LJXUH VKRZV WKH FRQWURO WUDMHFWRULHV DW GLIIHUHQW LWHUDWLRQV DQG DW WKH VROXWLRQ 7KH H[DFW PLQLPXP WLPH VROXWLRQ LV EDQJEDQJ ZLWK RQO\ RQH VZLWFKLQJ DQG WKH ILQDO WLPH FDQ EH GHWHUPLQHG E\ IRUZDUG LQWHn JUDWLRQ RI WKH VWDWH HTXDWLRQV ZLWK WKLV FRQWURO ,Q WKLV ZD\ WKH PLQLPXP WLPH ZDV IRXQG WR EH VHFRQGV ,Q WKH VROXWLRQ REWDLQHG E\ WKH SHQDOW\ IXQFWLRQ PHWKRG WKH WHUPLQDO HUURUV IRU DQG ZHUH DQG UHVSHFWLYHO\ DQG WKH ILQDO WLPH Df ZDV 7KH YDOXHV RI .f DQG .f ZHUH VHOHFWHG WR EH IRU ERWK ZDV FKRVHQ E\ WKH R IRUPXOD f i ifRU R ZKHUH i ;A7Af f DQG [A7IAf ,W LV VHHQ WKDW WKH ILQDO WLPH LQ WKH VROXWLRQ REWDLQHG E\ WKH SHQDOW\ IXQFWLRQ PHWKRG LV D OLWWOH OHVV WKDQ WKH DFWXDO VROXWLRQ 6XFK D VLWXDWLRQ LV WR EH H[SHFWHG IURP WKLV NLQG RI IRUPXODWLRQ ZKHUH D WUDGH RII EHWZHHQ WKH WHUPLQDO HUURU DQG WKH ILQDO WLPH LV ERXQG WR

PAGE 115

X 1HDUHVW &RQWURO &RQVWUDLQW %RXQGDU\ ,QLWLDO *XHVV 7 VHFRQGV $W ,WHUDWLRQ 7 VHFRQGV $W $SSUR[LPDWH 6ROXWLRQ 7 VHFRQGV )LJXUH 6ROXWLRQ RI ([DPSOH 3UREOHP E\ WKH 0HWKRG RI 6WHHSHVW 'HVFHQW

PAGE 116

RFFXU LQ RUGHU WR UHGXFH WKH FRPSRVLWH FRVW IXQFWLRQ GHILQHG IRU WKLV SUREOHP )URP D YHU\ EDG LQLWLDO JXHVV WKH VROXWLRQ ZDV REWDLQHG LQ LWHUDWLRQV WDNLQJ D WRWDO FRPSXWLQJ WLPH RI VHFRQGV 'HULYDWLRQV IRU )RUPXODWLRQ ,Q WKLV IRUPXODWLRQ WKH WUDQVIRUPDWLRQ HTXDWLRQ RI WKH LQGHn SHQGHQW YDULDEOH WKH VWDWH HTXDWLRQV FRVW IXQFWLRQDO DQG WKH FRQWURO FRQVWUDLQW IXQFWLRQV LQ WKLV IRUPXODWLRQ DUH H[DFWO\ WKH VDPH DV IRU )RUPXODWLRQ 7KHUHIRUH (TXDWLRQV f WR f RI )RUPXODWLRQ DUH DOVR YDOLG IRU WKLV IRUPXODWLRQ 7KH GLIIHUHQFH EHWZHHQ WKH WZR DSSHDUV LQ WKH WUHDWPHQW RI WKH FRQWURO LQFUHPHQWV ,Q )RUPXODWLRQ WKH FRQWURO IXQFWLRQ LV FRQVLGHUHG WR OLH SDUWO\ RQ WKH FRQVWUDLQWV DQG WKH FRQWURO LQFUHPHQWV DUH SUHVFULEHG RQO\ RQ WKH SRUWLRQV RI WKH FRQn WURO WKDW GR QRW OLH RQ WKH FRQVWUDLQWV DV LQ )RUPXODWLRQ 7KH V\PEROV &r &r &K &N IRU SRUWLRQV RI WKH X DQG X KLVWRU\ WKDW DUH RII WKH ; $ ; ; FRQVWUDLQWV RU RQ WKH FRQVWUDLQW ZLOO EH XVHG DV LQ )RUPXODWLRQ &RQVLGHULQJ WKH UHODWLRQVKLS EHWZHHQ WKH FKDQJH LQ WKH FRQWURO DQG WKH FKDQJH LQ WKH VWDWH YDULDEOH VHH (TXDWLRQ ff DV LQ )RUPXODWLRQ RQH REWDLQV WKH IROORZLQJ ILUVWRUGHU UHODWLRQVKLS EHWZHHQ WKH LQFUHPHQW LQ WKH FRVW IXQFWLRQDO DQG WKH LQFUHPHQWV LQ X DQG FY Mn 7@f D I A7I X G7D I r X f/ & F f 7KH HTXDWLRQV IRU ;Uf DQG 7MWf DUH WKH VDPH DV LQ )RUPXODWLRQ (TXDWLRQ ff H[FHSW WKDW WKH ;n HTXDWLRQ LV QRZ JLYHQ E\ ; f

PAGE 117

H[SODLQHG FKDQJHV Ir 7KH WHUP LQ SDUHQWKHVHV RQ WKH ULJKW VLGH RI WKLV LQ )RUPXODWLRQ (TXDWLRQ f 3URFHHGLQJ DV LQ WKH GHULYDWLRQV LQ )RUPXODWLRQ RQH REWDLQV ?7I I 7 n 8 8 r e Q 7 7 G7 4L ; I I ; -R Xf 8 G7 HTXDWLRQ LV ZLWK REYLRXV f V HM a H 7f % D R 9 f Df LX I7 ; V V Ef  8 a  GD 7f V V f 2 FO 7KH TXDQWLWLHV H H H DQG H DUH WKH VDPH TXDQWLWLHV DV GHILQHG LQ )RUPXODWLRQ 7KH QXPHULFDO DOJRULWKP DQG WKH GLVFXVVLRQV RI VWRSSLQJ FRQGLn WLRQV IRU )RUPXODWLRQ DQG WKH FRPPHQWV RQ LQWHJUDWLRQ ZLWK FRQVWUDLQHG DQG XQFRQVWUDLQHG DUFV PDGH LQ )RUPXODWLRQ DUH YDOLG IRU WKLV IRUPXODWLRQ 7KH WUDQVIRUPDWLRQ RI WKH LQGHSHQGHQW YDULDEOH W RU XVHG LQ )RUPXODWLRQV DQG ZDV LQWURGXFHG IRU WKH IROORZLQJ UHDVRQ ,Q WKH XVXDO JUDGLHQW VFKHPHV IRU RSWLPL]DWLRQ RI WUDMHFWRULHV DQG DV LQ )RUPXODWLRQ WKH DGMXVWPHQW RI WKH ILQDO WLPH LV GRQH E\ H[WHQGLQJ RU WUXQFDWLQJ WKH ILQDO HQG RI WKH WUDMHFWRU\ 7KLV ZDV QRW FRQVLGHUHG HIILn FLHQW EHFDXVH WKH ILQDO WLPH WKRXJK EHLQJ DV LQGHSHQGHQW DV WKH FRQWURO X LQ GHWHUPLQLQJ WKH RSWLPDO WUDMHFWRU\ GRHV QRW DSSHDU LQ WKH V\VWHP

PAGE 118

HTXDWLRQV %\ WKH DERYH WUDQVIRUPDWLRQ D PHDVXUH RI WKH ILQDO WLPH Rn DSSHDUV LQ WKH V\VWHP HTXDWLRQV DQG WKHUHIRUH GLUHFW LPSURYHPHQW LQ FRQn YHUJHQFH ZDV H[SHFWHG 7KH ,QWHJUDWLRQ 6FKHPH IRU WKH 6WHHSHVW 'HVFHQW 0HWKRGV 7KH LQWHJUDWLRQ RI WKH RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV IRU WKH VWDWHV ZDV IRXQG WR EH XQVWDEOH HYHQ IRU PRGHUDWH WR YHU\ VPDOO LQWHJUDn WLRQ VWHS VL]HV ZKHQ WKH VLPSOH (XOHU LQWHJUDWLRQ VFKHPH ZDV XVHG 6XEVHTXHQWO\ VHYHUDO RWKHU LQWHJUDWLRQ VFKHPHV VXFK DV D IRXUWKRUGHU 5XQJH.XWWD DQ (XOHU SUHGLFWRU FRUUHFWRU DQG DQ $GDPV%DVKIRUWK SUHn GLFWRU FRUUHFWRU VFKHPH ZHUH WULHG 2XW RI WKHVH WULDOV WKH $GDPV %DVKIRUWK SUHGLFWRU FRUUHFWRU VFKHPH ZDV IRXQG WR EH WKH EHVW IRU RXU SUREOHP ,W UHTXLUHG OHVV FRPSXWDWLRQ SHU LQWHJUDWLRQ VWHS DQG DOORZHG ODUJHU VWHS VL]H WKDQ WKH RWKHU PHWKRGV 7KH LQWHJUDWLRQ VWHS VL]H ZDV KHOG IL[HG EHFDXVH WKLV ZRXOG VLJQLILFDQWO\ UHGXFH WKH LQWHUSRODWLRQ HUURUV IRU WKH GHWHUPLQDWLRQ RI WKH VWDWH DQG FRQWURO YDULDEOHV IURP WKHLU VWRUHG YDOXHV 7KHVH ZHUH QHHGHG IRU WKH EDFNZDUG LQWHJUDWLRQ RI WKH DGMRLQW HTXDWLRQV 7KH DGMRLQW HTXDWLRQV HTXDWLRQV IRU WKH DGMRLQW YDULDEOHV 5 ; DQG @f UHTXLUHG D VWHS VL]H IRU LQWHJUDWLRQ KDOI WKDW UHTXLUHG E\ WKH VWDWH HTXDWLRQV 7KH LQWHJUDWLRQ VFKHPH XVHG WKH IRXUWK RUGHU 5XQJH.XWWD PHWKRG IRU JHQHUDWLQJ WKH ILUVW IRXU SRLQWV IRU VWDUWn LQJ DQG $GDPV%DVKIRUWK SUHGLFWRUFRUUHFWRU IRUPXODV IRU JHQHUDWLQJ WKH VXEVHTXHQW SRLQWV 9DULRXV LQWHJUDWLRQ VWHS VL]HV ZHUH WHVWHG WR ILQG RXW WKH ODUJHVW RQH IRU ZKLFK WKH LQWHJUDWLRQV ZHUH VWDEOH )URP WKH WHVWV WKH VWHS VL]H VHFRQG ZDV IRXQG WR EH DGHTXDWH IRU WKH LQGHSHQGHQW YDULDEOHV W LQ )RUPXODWLRQ DQG W LQ )RUPXODWLRQV DQG IRU WKH

PAGE 119

LQWHJUDWLRQ RI WKH VWDWH HTXDWLRQV ,W ZDV DOVR IRXQG WKDW WKH LQWHJUDn WLRQV ZHUH VWDEOH LI DW WKH GLVFRQWLQXLWLHV RI WKH ULJKW VLGH RI WKH GLIIHUHQWLDO HTXDWLRQV WKH LQWHJUDWLRQ ZDV VWRSSHG DQG UHVWDUWHG IURP WKDW SRLQW 7KLV ZDV VR EHFDXVH WKH $GDPV%DVKIRUWK IRUPXODV ZHUH QRW YDOLG DW D GLVFRQWLQXLW\ DQG WKHUHIRUH EHWWHU UHVXOWV ZHUH REWDLQHG ZKHQ VWDUWLQJ IRUPXODV IRXUVWHS 5XQJH.XWWDf ZHUH XVHG DIWHU WKH GLVFRQn WLQXLW\ 7KLV IHDWXUH ZDV WKHUHIRUH LQWURGXFHG LQWR WKH SURJUDP ,QLWLDO *XHVV RI WKH &RQWURO )XQFWLRQ ,W ZDV IRXQG QHFHVVDU\ IRU WKH LQLWLDO JXHVV RI WKH FRQWURO IXQFWLRQ WR EH DV QHDUO\ RSWLPDO DV SRVVLEOH LI FRQVLGHUDEOH FRPSXWDn WLRQ WLPH ZDV WR EH VDYHG 6LPXODWLRQ VHYHUDO WULDO IRUZDUG LQWHn JUDWLRQVf ZDV QHFHVVDU\ WR JHQHUDWH DQ LQLWLDO JXHVV IRU WKH UHODWLYHO\ FRPSOLFDWHG FRQWURO IXQFWLRQ )URP WKH SULQFLSOHV RI PHFKDQLFV LW ZDV QRWHG WKDW IRU D URWDWLQJ V\VWHP WKH DQJXODU YHORFLW\ WHQGV WR LQFUHDVH ZKHQ WKH UDGLXV RI J\UDWLRQ RI WKH V\VWHP LV UHGXFHG DQG LW WHQGV WR GHFUHDVH ZKHQ WKH UDGLXV RI J\UDWLRQ LV LQFUHDVHG 7KH J\PQDVW DSSOLHG WKLV SULQFLSOH DQG FRXQWHUDFWHG WKH HIIHFW RI JUDYLW\ E\ WLPHO\ DGMXVWn PHQWV RI WKH UDGLXV RI J\UDWLRQ RI WKH ERG\ DERXW WKH KRUL]RQWDO EDU $OWKRXJK WKH J\PQDVW LV OLPLWHG LQ VWUHQJWK KH ZDV DEOH WR DGHTXDWHO\ VKRUWHQ RU H[WHQG KLV UDGLXV RI J\UDWLRQ (YHQ ZLWK VRPHZKDW RI D SK\VLFDO XQGHUVWDQGLQJ RI WKH PHFKDQn LFV RI WKH PRWLRQ DQG WKH EDQJEDQJ SULQFLSOH LW ZDV QRW SRVVLEOH WR GHYLVH D FRQWURO IRU WKH PRGHO WR SHUIRUP WKH GHVLUHG PDQHXYHU 7KLV ZDV SULPDULO\ GXH WR WKH IDFW WKDW D FDQGLGDWH FRQWURO IXQFWLRQ IRU DQ H[WUHn PXP FRQWURO FRXOG QRW EH VSHFLILHG IXOO\ EHIRUHKDQG 7KH ERXQGV RQ WKH FRQWURO ZHUH GHSHQGHQW RQ WKH VWDWH DQG WKXV ZHUH QRW NQRZQ D SULRUL

PAGE 120

(YHQ LI WKH ERXQGV RQ WKH FRQWURO FRXOG EH NQRZQ H[DFWO\ LW LV GLIILFXOW WR SUHGLFW WKH UHVSRQVH RI VXFK D FRXSOHG QRQOLQHDU V\VWHP 7KH ILOP GDWD RI WKH DFWXDO PRWLRQ ZHUH FDUHIXOO\ H[DPLQHG YLD WKH SULQFLSOHV RI PHFKDQLFV EXW ZHUH RI QR IXUWKHU KHOS LQ JHQHUDWLQJ DQ LQLWLDO JXHVV ,W ZDV IRXQG WKDW WKH XSSHU OLPLW RI WKH VKRXOGHU WRUTXH IRU VPDOOHU YDOXHV RI ZDV LQVXIILFLHQW WR DOORZ WKH PRGHO WR UHSURGXFH WKH H[SHULPHQWDOO\ GHWHUPLQHG PRWLRQ )URP WKH RSWLPDOLW\ FRQGLWLRQV LW ZDV NQRZQ WKDW WKH RSWLPDO FRQWURO VKRXOG EH HLWKHU SXUHO\ EDQJEDQJ RU EDQJEDQJ ZLWK VLQJXODU VXEDUFV 7KH FRQWURO ZDV WKHUHIRUH JXHVVHG VXFK WKDW LW FRLQFLGHG ZLWK WKH FRQVWUDLQWV RQ D PDMRU SRUWLRQ RI WKH WLPH LQWHUYDO 5HVXOWV RI WKH 1XPHULFDO &RPSXWDWLRQV DQG &RPPHQWV 6HYHUDO QXPHULFDO GLIILFXOWLHV ZHUH IDFHG GXULQJ FRPSXWDWLRQ E\ WKH VWHHSHVW GHVFHQW PHWKRGV 7KHVH ZHUH FDXVHG E\ 7KH V\VWHP HTXDWLRQV ZHUH TXLWH QRQOLQHDU 7KH NLSXS PRWLRQ ZDV XQVWDEOH 7KH FRQWURO IXQFWLRQ KDG PDQ\ VZLWFKHV DQG ODUJH RVFLOODWLRQV RFn FXUUHG LQ WKH VWDWH WUDMHFWRU\ 7KH V\VWHP ZDV QRW ORFDOO\ FRQWUROODEOH DERXW VHYHUDO WUDMHFWRULHV WKDW ZHUH WULHG 1XPHULFDO JUDGLHQW PHWKRGV KDYH VHYHUDO SUREOHPV ZLWK WKH PLQLPXP WLPH FULWHULRQ 7KH VWHHSHVW GHVFHQW DOJRULWKPV PDNH FRQWURO FKDQJHV DFFRUGLQJ WR WKH ORFDO JUDGLHQW DQG IRU WKH SUHVHQW V\VWHP WKHVH ZHUH YDOLG RQO\ LQ D YHU\ VPDOO QHLJKERUKRRG RI WKH FRQWURO IXQFWLRQ 'XH WR LQVWDELOLW\

PAGE 121

,OO RI WKH SHUWXUEDWLRQ HTXDWLRQV DERXW WKH NLSXS WUDMHFWRU\ H[SUHVVHG TXDQWLWDWLYHO\ E\ ODUJH HQWULHV RI WKH RUGHU WR LQ WKH PDWUL[ 5Wf LQ WKH HDUOLHU VHJPHQW RI WKH WUDMHFWRU\f DQ\ VPDOO SHUWXUEDWLRQ LQ DQ HDUOLHU VHJPHQW RI WKH WUDMHFWRU\ FDXVHG ODUJHU GHYLDWLRQV LQ WKH VWDWH YDULDEOHV LQ VHJPHQWV QHDU WKH WHUPLQDO WLPH 7KXV XQOHVV WKH FKDQJHV ZHUH YHU\ VPDOO WKH VWHHSHVW GHVFHQW IRUPXODV ZHUH QRW DEOH WR EULQJ DERXW WKH LPSURYHPHQW LQ WKH FRQWURO 7KH V\VWHP HTXDWLRQV UHTXLUHG YHU\ VPDOO LQWHJUDWLRQ VWHS VL]H 7KLV YLUWXDOO\ LQFUHDVHV WKH OHQJWK RI WKH WRWDO WLPH LQWHUYDO ,W UHTXLUHG DERXW LQWHJUDn WLRQ VWHSV IRU WKH IRUZDUG LQWHJUDWLRQ RI WKH VWDWH HTXDWLRQV DQG WZLFH DV PDQ\ VWHSV IRU WKH UHYHUVH LQWHJUDLRQ RI WKH DGMRLQW HTXDWLRQV :LWK VXFK D ORQJ LQWHJUDWLRQ LQWHUYDO WKH QXPHULFDO YDOXHV RI WKH JUDGLHQWV DUH H[SHFWHG WR EH OHVV DFFXUDWH GXH WR DFFXPXODWLRQ RI WUXQFDWLRQ DQG URXQGRII HUURUV 6XFK LQDFFXUDFLHV QHDU WKH HDUOLHU SDUWV RI WKH WUDn MHFWRU\ DUH HVSHFLDOO\ GHWULPHQWDO ZKHQ VPDOO FKDQJHV LQ WKH WHUPLQDO HUURUV DUH GHVLUHG DQG ZKHQ WKH JUDGLHQWV WKHPVHOYHV DUH VPDOO &RPSDUHG WR WKH SUHVHQW SUREOHP RSWLPDO FRQWURO SUREOHPV ZLWK VROXWLRQV SXEOLVKHG LQ WKH OLWHUDWXUH KDYH VROXWLRQV ZLWK IHZ VZLWFKHV LQ WKH FRQWURO 7KH PXOWLSOH VZLWFKHV LQ WKH FRQWURO IXQFWLRQ DQG RVFLOODWLRQV LQ WKH VWDWH WUDMHFWRU\ UHVXOW LQ D QXPEHU RI ORFDO PLQLPD $ VWHHSHVW GHVFHQW DOJRULWKP FDQ JHW VWXFN LQ D ORRS DW D ORFDO PLQLPXP )RU WKH )RUPXODWLRQV DQG LW ZDV IRXQG WKDW VHYHUDO ORFDO PLQLPD RI WKH FRPSRVLWH FRVW IXQFWLRQ H[LVWHG ZKLFK GLG QRW VDWLVI\ WKH RSWLPDOLW\ FRQGLWLRQV RI WKH RULJLQDO SUREOHP ,Q VXFK FDVHV LW ZDV QHFHVVDU\ WR H[LW WKH DOJRULWKP DQG PDNH PDQXDO FKDQJHV EHIRUH FRQWLQXLQJ WKH LWHUDWLRQV

PAGE 122

)RUPXODWLRQ ZDV WULHG LQLWLDOO\ VLQFH LW ZDV D GLUHFW DSSOLFDWLRQ RI D VLPSOH JUDGLHQW PHWKRG WR WKH VROXWLRQ RI WKH RULJLQDO SUREOHP 7KH EDVLF SUHPLVH RI WKH FRQWUROODELOLW\ RI WKH YDULDWLRQDO V\VWHP QDWXUDOO\ DULVHV KHUHLQ $ ILUVWRUGHU DSSUR[LPDWLRQ RI DQ LQFUHPHQW LQ WKH ILQDO VWDWH GXH WR LQFUHPHQWV iX DQG X LQ -/ e WKH FRQWURO DQG GWA LQ WKH ILQDO WLPH LV JLYHQ E\ FI (TXDWLRQ Eff G;WBf IW fGW I 57I GW 57I 8 GW I f I -&r 8 &r f 8 ,I GW G[W f I 57I X GW I 57I X GW I -R X -R X f ,W LV DVVXPHG WKDW 6X DQG iX DUH SLHFHZLVH FRQWLQXRXV -/ = /HW WKH FRQWURO LQFUHPHQWV EH WKH OLQHDU FRPELQDWLRQV XAWf eWf \ DQG tXWf
PAGE 123

7KHRUHP 7KHUH H[LVW 9 Wf DQG 9 Wf VXFK WKDW U! 7 f 7 U! 7 U, 5I 9 GW 5I 9 fR XA ! Xf GW LV QRQVLQJXODU LI DQG RQO\ LW I 57I I7 5 GW I 57I I7 5 GW f &r 8 8 &r 8 8 LV QRQVLQJXODU 3URRI ([WHQVLRQ RI +HUPHnV >@ WKHRUHP ff 7 7 LI SDULn LV REYLRXV LI RQH FKRRVHV 9 5 I DQG 9B 5 I f§ f§ X f§ X 7R SURYH WKH RQO\ LI SDUW DVVXPH WKDW WKH PDWUL[ I 57I I7 5 GW I 57I I7 5 GW r 8 8 &r f 8 8 f LV VLQJXODU EXW WKH H[SUHVVLRQ f LV QRQVLQJXODU ,I WKH PDWUL[ RI WKH H[SUHVVLRQ f LV VLQJXODU WKHQ WKHUH H[LVWV D YHFWRU F A VXFK WKDW 7 F 5 GW U U 5 GW F f RU 7 In 7 B7 7 7 B 7 F 5 I I 5 GW F F 5 I I 5 GW BFr XL XL Xf F 6LQFH ERWK WKH DERYH WHUPV DUH SRVLWLYH VHPLGHILQLWH WKH\ PXVW EH LQGLYLGXDOO\ ]HUR $OVR WKH LQWHJUDQGV RI WKH DERYH H[SUHVVLRQV DUH SRVLWLYH VHPLGHILQLWH IRU DOO WLPH 6R ZH ILQDOO\ KDYH

PAGE 124

DOPRVW HYHU\ZKHUH RQ &B r ? X f X DOPRVW HYHU\ZKHUH RQ & R 7 1RZ SUHPXOWLSO\LQJ WKH H[SUHVVLRQ f E\ F DQG SRVW PXOWLSO\LQJ E\ F DQG XVLQJ WKH UHVXOWV f RQH REWDLQV RU LV VLQJXODU 7KLV FRQWUDGLFWV WKH DVVXPSWLRQ WKDW WKLV PDWUL[ LV QRQVLQJXODU DQG FRPSOHWHV WKH SURRI RI WKH DERYH WKHRUHP )URP QRZ RQ WKH PDWUL[ f ZLOO EH FDOOHG WKH ORFDO FRQn WUROODELOLW\ PDWUL[ RU VLPSO\ WKH FRQWUROODELOLW\ PDWUL[ ,Q DOO VROXWLRQ DWWHPSWV ZLWK )RUPXODWLRQ WKLV PDWUL[ ZDV IRXQG WR KDYH GHWHUPLQDQWV RI WKH RUGHU RI WR ZLWK YDOXHV RI WKH HOHPHQWV UDQJLQJ IURP WR 7KH FRPSXWHG YDOXHV RI iX ZHUH RI WKH RUGHU IWOE LQ VRPH LQWHUYDOV 7KH ODUJH iX YDOXHV SHUVLVWHG HYHQ ZKHQ VPDOO FKDQJHV LQ WKH WHUPLQDO HUURUV ZHUH SURJUDPPHG ZLWK QR FKDQJH LQ WKH ILQDO WLPH DOORZHG 7KH ODUJH 6X FDXVHG LQVWDn ELOLW\ LQ WKH LWHUDWLRQV 7KLV LQGLFDWHG WKDW WKH WHUPLQDO VWDWH FRPn SRQHQWV FDQQRW EH UHDFKHG VLPXOWDQHRXVO\ ZLWK FRQWURO LQFUHPHQWV RI WKLV PHWKRG IRU WKH WUDMHFWRU\ FRQVWUXFWHG SUHYLRXVO\ 5DWKHU WKDQ DWWHPSW WR LnHGXFH WKH WHUPLQDO VWDWH FRPSRQHQWV VLPXOWDQHRXVO\ LW

PAGE 125

ZDV GHFLGHG WR IRUP D QRUP RI WKH WHUPLQDO HUURU WR LPSURYH WKH ORFDO FRQWUROODELOLW\ IRU UHGXFLQJ WKH WHUPLQDO HUURU 7KLV DSSURDFK ZDV XVHG LQ )RUPXODWLRQV DQG 7KH FRVW IXQFWLRQDO FKRVHQ IRU PLQLPL]DWLRQ WKH ILQDO WLPH ZDV DQRWKHU VRXUFH RI GLIILFXOW\ $W WKH PLQLPXP WLPH WKH WHUPLQDO VWDWHV DUH MXVW EDUHO\ UHDFKDEOH 7KH H[DFW PLQLPXP WLPH VROXWLRQ FDQQRW EH REWDLQHG E\ WKH VWHHSHVW GHVFHQW DOJRULWKPV OLNH )RUPXODWLRQ EHFDXVH WKH FRQWUROODELOLW\ PDWUL[ EHFRPHV VLQJXODU IRU WKH PLQLPXP WLPH WUDn MHFWRU\ 2WKHUZLVH D VPDOO QHJDWLYH GWA PD\ EH SUHVFULEHG IRU ZKLFK VXLWDEOH FKDQJH LQ WKH FRQWURO FRXOG EH IRXQG ZKLFK ZRXOG EULQJ WKH WHUPLQDO HUURU DW W GWA WR ]HUR 7KLV ZRXOG FRQWUDGLFW WKH PLQLPDOLW\ RI WAf &RPSXWDWLRQDO GLIILFXOWLHV ZLWK LQYHUVLRQ RI WKLV PDWUL[ PD\ EH H[SHFWHG WR DSSHDU VRPH WLPH EHIRUH WKH DFWXDO PLQLPXP WLPH LV UHDFKHG 7KH PDLQ SUREOHP ZDV IRXQG WR EH WKH GHWHUPLQDWLRQ RI WKH LQFUHPHQW LQ WKH ILQDO WLPH 7KH ILQDO WLPH LWVHOI EHLQJ WKH FRVW IXQFWLRQ LW LV GHVLUHG WKDW WKH LQFUHPHQW LQ WKH ILQDO WLPH EH QHJDWLYH 2Q WKH RWKHU KDQG FRQYHUJHQFH RI WKH WHUPLQDO HUURUV WR ]HUR PD\ UHTXLUH DQ LQFUHDVH LQ WKH ILQDO WLPH 8QOHVV SURSHU ZHLJKWV DUH JLYHQ WR WKHVH WHQGHQFLHV WKH YDOXH RI WKH ILQDO WLPH PD\ EHFRPH HLWKHU ODUJHU RU VPDOOHU WKDQ WKH DFWXDO PLQLPXP WLPH RI WKH SUREOHP :KLFK RQH RI WKH WZR KDV RFFXUUHG FDQQRW EH GHWHUPLQHG DV ORQJ DV WKH WHUPLQDO HUURUV DUH QRW VPDOO ,I WKH HUURUV DUH DFFHSWDEO\ VPDOO WKHUH ZRXOG UHPDLQ WKH SRVn VLELOLW\ WKDW WKH ILQDO WLPH FDQ EH UHGXFHG IXUWKHU 2Q WKH RWKHU KDQG LI WKH ILQDO WLPH KDV EHHQ XQNQRZLQJO\ UHGXFHG WR OHVV WKDQ WKH PLQLPXP ILQDO WLPH RI WKH SUREOHP DQG HPSKDVLV LV JUHDWHU RQ WKH UHGXFWLRQ RI WKH ILQDO WLPH WKH WHUPLQDO HUURUV ZLOO UHPDLQ ODUJH 7KXV WKH

PAGE 126

PLQLPXPWLPH VROXWLRQ IRU D FRPSOLFDWHG SUREOHP LV OLNHO\ WR UHVXOW LQ FRQVLGHUDEOH FRPSXWDWLRQV ZLWK WKHVH PHWKRGV 'XULQJ FRPSXWDWLRQV ZLWK )RUPXODWLRQV DQG LW ZDV IRXQG WKDW ORFDO PLQLPD RI WKH FRPSRVLWH FRVW IXQFWLRQDO H[LVWHG 5DSLG LPSURYHn PHQW RI WKH QRUP RI WKH WHUPLQDO HUURU ZDV PDGH LQ WKH ILUVW IHZ LWHUn DWLRQV IURP D SRRU FRQWURO IXQFWLRQ JXHVV EXW WKH UDW RI FRQYHUJHQFH EHFDPH H[WUHPHO\ VORZ 7KH FKDQJHV LQ WKH FRQWURO DQG WKH VWDWH WUDn MHFWRULHV EHFDPH H[WUHPHO\ VPDOO EHWZHHQ VXFFHVVLYH LWHUDWLRQV RQFH WKH HUURUV EHFDPH VPDOO )RUPXODWLRQV DQG GR QRW JXDUDQWHH UHGXFWLRQ RI DOO WKH WHUPLQDO HUURUV VLPXOWDQHRXVO\ IRU D JLYHQ VHW RI WKH ZHLJKWV DQG LW ZDV WKHUHIRUH QHFHVVDU\ WR UHDGMXVW WKHVH ZHLJKWV WR UHGXFH DOO WKH HUURUV LQ D UHDVRQDEOH QXPEHU RI LWHUDWLRQV 7KH LPSRUWDQW HYHQWV GXULQJ WKH FRPSXWDWLRQV DUH QRZ JLYHQ )RUPXODWLRQ ZDV XVHG ILUVW GXH WR WKH IROORZLQJ UHDVRQV D ,W LV PRUH GLIILFXOW WR PDNH D JRRG JXHVV IRU D FRQVWUDLQHG XQFRQVWUDLQHG DUFW\SH FRQWURO WKDQ IRU D FRQWURO ZKLFK LV IUHH WR FKDQJH HYHU\ZKHUH E ,Q )RUPXODWLRQ WKH FKDQJHV LQ WKH FRQWURO DUH FRPSXWHG HYHU\n ZKHUH RQ WKH WUDMHFWRU\ EXW LQ )RUPXODWLRQ WKH FKDQJHV RQ WKH XQFRQVWUDLQHG SDUWV DUH HVWLPDWHG E\ OLQHDU DSSUR[LPDWLRQV IRU VPDOO FKDQJHV LQ WKH VWDWH YDULDEOHV ,W ZDV IRXQG WKDW WKH FKDQJH LQ WKH FRQVWUDLQWV ZHUH ODUJH GXH WR VPDOO FKDQJHV LQ WKH VWDWHV 7KHUHIRUH WKH DOJRULWKP RI )RUPXODWLRQ ZDV OLNHO\ WR EH OHVV VWDEOH HVSHFLDOO\ ZKHQ VWDUWHG IURP D SRRU JXHVV F )RUPXODWLRQ DIWHU LW FHDVHV WR JLYH LPSURYHPHQW ZDV H[SHFWHG WR UHVXOW LQ D JRRG LQLWLDO JXHVV IRU VWDUWLQJ )RUPXODWLRQ

PAGE 127

,PSURYHPHQW ZDV PHDVXUHG E\ WKH WUHQG RI WKH FRQWURO WR D EDQJEDQJ FRQWURO RU D VWDEOH RIIWKHFRQVWUDLQW DUF IRU VLQJXODU VXEDUFf ZLWK D VLPXOWDQHRXV UHGXFWLRQ LQ WKH WHUPLQDO HUURU )RUPXODWLRQ VWDUWHG ZLWK D QRPLQDO JXHVV VKRZQ LQ )LJXUH ZLWK WKH WHUPLQDO HUURU i > @7 ,W PD\ EH QRWLFHG WKDW WKH ILQDO VWDWH LQ WKH LQLWLDO JXHVV LV IDU DZD\ IURP WKH WDUJHW SRLQW 7KH PRGHO KDV UHDFKHG RQO\ KDOI WKH UHTXLUHG KHLJKW ,W ZDV WKHUHIRUH DQWLFLSDWHG WKDW WKH QRPLQDO ILQDO WLPH ZDV OHVV WKDQ WKH PLQLPXP ILQDO WLPH IRU WKH SUREOHP 7KXV E\ SXWWLQJ OHVV HPSKDVLV RQ WKH UHGXFWLRQ RI WKH ILQDO WLPH NHHSLQJ .T VPDOOf WKH PLQLPXP WLPH VROXWLRQ ZRXOG EH DSSURDFKHG PRQRWRQLFDOO\ ZLWK WKH GHFUHDVH LQ WHUPLQDO HUURU $ ORFDO PLQLPXP RI WKH FRVW IXQFWLRQ ZDV REWDLQHG DIWHU LWHUn DWLRQV 7KLV ZDV GHWHUPLQHG E\ H[DPLQDWLRQ RI WKH JUDGLHQW ZKLFK ZDV TXLWH VPDOO 7KH TXDQWLW\ % GHILQHG LQ (TXDWLRQ ff WKH LQWHJUDO QRUP RI WKH JUDGLHQW RI WKH FRVW IXQFWLRQDO ZLWK UHVSHFW WR WKH FRQWUROV KDG D YDOXH RI 7KLV TXDQWLW\ ZDV ; IRU WKH LQLWLDO JXHVV 7KH WHUPLQDO HUURU ZDV QRW TXLWH DFFHSWDEOH DQG WKH FRQWURO ZDV RII WKH ERXQGDU\ PRVW RI WKH WLPH 7KH FRQWURO ZDV FKDQJHG PDQXDOO\ E\ DGGLQJ DQRWKHU VZLWFK LQ WKH FRQWURO QHDU WKH ILQDO WLPH $IWHU PRUH LWHUDWLRQV FRPSXWDWLRQV ZHUH VWRSSHG ZKHQ WKH WHUPLQDO HUURU i ZDV UHGXFHG WR > 7 @ DQG WKH FRQYHUJHQFH UDWH ZDV YHU\ SRRU 7KH FRQWURO DW WKLV VWDJH LV VKRZQ LQ )LJXUH 7KH ILQDO WLPH ZDV VHFRQGV D UHGXFWLRQ RI SHUFHQW IURP WKH LQLWLDO JXHVV ,W ZDV QRWLFHG

PAGE 128

&RQWURO IWOEf $FWXDO &RQWURO 1HDUHVW &RQWURO &RQVWUDLQW %RXQGDU\ )LJXUH ,QLWLDO *XHVV IRU WKH &RQWURO )XQFWLRQV

PAGE 129

$FWXDO &RQWURO 1HDUHVW &RQWURO &RQVWUDLQW %RXQGDU\ )LJXUH $ 1RQ2SWLPDO &RQWURO :KLFK $FTXLUHV %RXQGDU\ &RQGLWLRQV

PAGE 130

WKDW WKH FRQVWUDLQW ERXQGDULHV KDG PRYHG IDU DZD\ IURP WKHLU RULJLQDO ORFDWLRQV 2Q WKH RWKHU KDQG DOO WKH VLJQLILFDQW FKDQJHV LQ WKH FRQn WURO KDG EHHQ VPDOO FRPSDUHG WR X DQG RFFXUUHG LQ WKH ILUVW LWHUDWLRQV 6LQFH WKH RSWLPDO VROXWLRQ VKRXOG EH EDQJEDQJ RU SRVVLEO\ EDQJEDQJ ZLWK VLQJXODU VXEDUFV WKH FRQWURO ZDV PRGLILHG DJDLQ E\ SODFLQJ WKH FRQWUROV RQ WKH QHDUHU RI WKH WZR ERXQGDULHV 7KLV ZDV GRQH LQ DQ DWWHPSW WR UHGXFH WKH ILQDO WLPH E\ XVLQJ WKH DSSDUHQW H[FHVV FRQWURO HQHUJ\ 7KHVH FKDQJHV LQ WKH FRQWURO LQLWLDOO\ LQFUHDVHG WKH WHUPLQDO HUURUV EXW DOVR LQFUHDVHG WKH SURVSHFWV RI PHHWLQJ WKH WHUPLQDO FRQGLn WLRQV LQ VOLJKWO\ OHVV WLPH 7KH WHUPLQDO HUURU GHFUHDVHG LQ WKH VXEn VHTXHQW LWHUDWLRQV 7KLV WLPH LW ZDV IRXQG WKDW RYHU VHYHUDO VHJPHQWV HVSHFLDOO\ RQ WKH VHFRQG KDOI RI WKH FRQWURO LQWHUYDO WKH FRQVWUDLQW ERXQGDU\ PRYHG LQZDUG EXW WKH LQFUHPHQWV LQ WKH FRQWURO ZHUH FRPSXWHG RXWZDUG $V D UHVXOW WKH DFWXDO FKDQJH LQ WKH FRQWURO XVHG ZKHQ WKH FRQWURO ZDV QRW DOORZHG WR YLRODWH WKH FRQVWUDLQWV LQFUHDVHG WKH FRVW IXQFWLRQDO LQVWHDG RI GHFUHDVLQJ LW ,I WKH FRQWUROV ZHUH DOORZHG WR YLRODWH WKH FRQVWUDLQWV WKH FRVW GHFUHDVHG $W WKLV SRLQW LW ZDV QRWHG WKDW WKH WHUPLQDO HUURUV ZHUH TXLWH VHQVLWLYH WR VPDOO FKDQJHV LQ WKH FRQWURO 7KH ILQDO FRQGLWLRQV FRXOG EH PHW E\ DGMXVWLQJ WKH FRQWUROV RQO\ LQ WKH ODWHU SDUWV RI WKH WUDn MHFWRU\ 6OLJKW FKDQJHV LQ WKH HDUOLHU SDUWV RI WKH FRQWURO KLVWRU\ FDXVHG WZR SUREOHPV )LUVW WKH\ FDXVHG VLJQLILFDQW FKDQJHV LQ WKH FRQWURO ERXQGDULHV ZKLFK ZHUH LQ GLUHFWLRQV RSSRVLWH WR WKH GLUHFWLRQV IRU LPSURYHG FRVW 6HFRQG WKH FRPSXWHG FRQWURO LQFUHPHQWV ZHUH OHVV DFFXUDWH QHDU WKH EHJLQQLQJ RI WKH VROXWLRQ WLPH VR WKDW ZLWK KLJK

PAGE 131

VHQVLWLYLW\ LPSURYHPHQWV ZHUH OHVV OLNHO\ YLD FRQWURO LQFUHPHQWV QHDU WKH EHJLQQLQJ :KHQ QR FKDQJHV ZHUH DOORZHG LQ WKH HDUOLHU SDUW RI WKH FRQWURO KLVWRU\ WKH WHUPLQDO HUURUV UHGXFHG WR > @ DW WKH LWHUDWLRQ 7KH ILQDO WLPH ZDV VHFRQGV 7KH FRQYHUJHQFH UDWH RI WKH FRVW IXQFWLRQ ZDV DJDLQ H[WUHPHO\ VORZ LQ WKH ODVW VHYHUDO LWHUDWLRQV 7KH JUDGLHQW RI WKH FRVW IXQFWLRQDO ZLWK UHVSHFW WR WKH FRQWURO ZDV VPDOO DQG WKH JUDGLHQW ZLWK UHVSHFW WR D ZDV IRXQG WR RVFLOODWH EHWZHHQ SRVLWLYH DQG QHJDWLYH YDOXHV GXULQJ WKH ODVW VHYHUDO LWHUDWLRQV 7KH FRQWURO KLVWRU\ LV VKRZQ LQ )LJXUH 7KLV FRQWURO ZDV FRQVLGHUHG WR EH YHU\ QHDUO\ WKH PLQLPXP WLPH FRQWURO )URP WKH VROXWLRQ LW ZDV FOHDU WKDW WKHUH ZHUH QR VLQJXODU VXEDUFV DQG WKH RSWLPDO FRQWURO ZRXOG EH EDQJEDQJ LI IXUWKHU UHILQHn PHQW RI WKH VROXWLRQ ZDV PDGH +RZHYHU REVHUYLQJ WKH VHQVLWLYLW\ RI WKH ILQDO WLPH WR WKH FRQWURO FKDQJHV IURP )LJXUH WR )LJXUH DERXW b IRU ODUJH FRQWURO FKDQJHVf LW ZDV EHOLHYHG WKDW QR VLJQLILFDQW UHGXFn WLRQ LQ WKH ILQDO WLPH FRXOG EH IRXQG )RUPXODWLRQ ZDV XVHG WR DWWHPSW IXUWKHU LPSURYHPHQWV LQ WKH VROXWLRQ DQG WR FKHFN WKH YDOLGLW\ RI WKH DERYH DVVHUWLRQV 7KH FRQn WUROV ZHUH PRGLILHG E\ SODFLQJ WKHP H[DFWO\ RQ WKH FRQVWUDLQWV ZKHQ WKH\ ZHUH FORVH WR WKH FRQVWUDLQWV DQG RII WKH FRQVWUDLQW DUFV ZHUH PDGH VWHHSHU 7KH WHUPLQDO HUURUV LQLWLDOO\ LQFUHDVHG EHFDXVH RI WKHVH FKDQJHV )RUPXODWLRQ ZDV IRXQG WR FRQYHUJH PRUH VORZO\ WKDQ )RUPXODn WLRQ 7KLV ZDV GXH WR WKH IDFW WKDW LQ )RUPXODWLRQ WKH FKDQJHV LQ WKH FRQWURO ZHUH PDGH RQ UHODWLYHO\ VPDOO VHJPHQWV 7KH FKDQJHV LQ WKH FRQVWUDLQWV ZHUH IRXQG WR EH ODUJHU WKDQ WKRVH RI WKH FRQWURO LQFUHPHQWV

PAGE 132

&RQWURO IWOEf $FWXDO &RQWURO

PAGE 133

LQ WKH XQFRQVWUDLQHG SDUWV 7KLV ZDV EHFDXVH WKH FRQVWUDLQWV ZHUH YHU\ VHQVLWLYH WR FKDQJHV LQ WKH VWDWHV 7KH DOJRULWKP IRU )RUPXODWLRQ ZDV DEOH WR UHGXFH WKH WHUPLQDO HUURUV IRU LWHUDWLRQV XQWLO LW ZDV QHFHVVDU\ WR VWRS LQFUHPHQWV LQ WKH ILUVW KDOI RI WKH FRQWURO IXQFWLRQ $JDLQ WKH JUDGLHQW WKHUH EHFDPH WK QRLV\ DQG LQDFFXUDWH &RPSXWDWLRQV ZHUH VWRSSHG DW WKH LWHUDWLRQ ZKHQ WKH HUURUV ZHUH > @ 7KH HUURUV IRU WKH VWDWH YDULDEOHV ; ;f ; ;F DQG ;f ZHUH DFFHSW R R E DEO\ VPDOO DQG WKH HUURU IRU ;ZDV VOLJKWO\ JUHDWHU WKDQ ZKDW ZDV REWDLQHG EHIRUH E\ )RUPXODWLRQ 7KH YDOXHV RI WKH X LQ WKH ILQDO WHQ LWHUDWLRQV ZHUH RI WKH RUGHU IWOE /DUJHU YDOXHV UHVXOWHG LQ GLYHUJHQFH RU DQ LQFUHDVH LQ FRVW 7KH FRQWURO KLVWRU\ REWDLQHG E\ )RUPXODWLRQ LV VKRZQ LQ )LJXUH 7KH ILQDO WLPH LQ WKH WUDMHFWRU\ ZDV WKH VDPH DV WKH ILQDO WLPH RI )LJXUH 7KH ILQDO WLPH ZDV OHVV LQ WKH LQWHUPHGLn DWH LWHUDWLRQV EXW LW LQFUHDVHG EDFN WR WKLV YDOXH )URP WKHVH UHVXOWV LW ZDV FRQFOXGHG WKDW WKH VROXWLRQ VKRXOG LQGHHG EH EDQJEDQJ EXW QR VLJQLILFDQW LPSURYHPHQW LQ WKH ILQDO WLPH FRXOG EH DFKLHYHG ,W PD\ EH SRLQWHG RXW WKDW WKH VROXWLRQ Ef RI WKH ([DPSOH 3UREOHP LQ 6HFWLRQ VKRZV WKH ILQDO WLPH ZDV RQO\ SHUFHQW PRUH WKDQ WKH H[DFW EDQJEDQJ VROXWLRQ ILQDO WLPH RI %XW LQ WKH VROXWLRQ Ef WKH FRQWURO ZDV RII WKH FRQVWUDLQW GXULQJ WKH VZLWFKf IRU SHUFHQW RI WKH WRWDO WLPH $ SUHOLPLQDU\ LQYHVWLJDWLRQ RI D VWHHSHVW GHVFHQW VFKHPH IRU EDQJEDQJ VROXWLRQ LV GHVFULEHG LQ $SSHQGL[ %

PAGE 134

&RQWURO IWOEf $FWXDO &RQWURO

PAGE 135

$QJOHV 5DGLDQf

PAGE 136

7KH GLIIHUHQFH EHWZHHQ WKH VWDWH WUDMHFWRULHV IRU WKH VROXWLRQV RI )LJXUHV DQG ZDV LQVLJQLILFDQW 7KH WUDMHFWRULHV IRU WKH DQJOHV FS DQG ?MU DUH VKRZQ LQ )LJXUH IRU WKH VROXWLRQ RI )LJXUH ([DPLQDWLRQ RI WKH &RPSXWHG 6ROXWLRQ E\ WKH 3ULQFLSOHV RI 0HFKDQLFV 7KH FRPSXWHG VROXWLRQ FDQ EH H[SODLQHG TXDOLWDWLYHO\ E\ FRQVLGHUn LQJ WKH DYHUDJH PRWLRQ RI WKH OLQNV DQG WKH PHFKDQLFV RI URWDWLQJ V\VWHPV :H QRWLFH WKDW SRVLWLYH FRQWUROV WHQG WR UHGXFH WKH UDGLXV RI J\UDWLRQ RI WKH V\VWHP DW PRVW FRQILJXUDWLRQV DQG KHQFH WKH\ WHQG WR LQFUHDVH _FS> ZKLFK LV WKH PDMRU FRQWULEXWRU WR WKH DQJXODU PRPHQWXP RI WKH V\VWHP 7KH QHJDWLYH FRQWUROV GR WKH RSSRVLWH 7KH FRQWUROV UHPDLQ SRVLWLYH GXULQJ PRVW RI WKH WLPH LQ RUGHU WR REWDLQ LQFUHDVHG -FSM H[FHSW QHDU WKH HQG RI D VZLQJ L H DW WKH PD[LPXP DPSOLWXGH 7KHUH WKH FRQWUROV VZLWFK WR QHJDWLYH YDOXHV LQ RUGHU WR OLPLW WKH VZLQJ SULRU WR WKH ILQDO VZLQJ DQG WKXV VDYH WLPH ,W VKRXOG EH QRWHG WKDW WKH ILUVW VZLQJ VKRXOG EH MXVW KLJK HQRXJK VR WKDW ZLWK KLV OLPLWHG VWUHQJWK WKH J\PQDVW LV DEOH WR VZLQJ WR WKH WRS RQ WKH VHFRQG VZLQJ 7KXV GXULQJ WKH ILUVW WZR WLPHV WKH DQJOH UHDFKHG LWV PD[LPXP DPSOLWXGHV 7KHUH DUH IRXU VZLWFKHV HDFK LQ WKH FRQWUROV X DQG X $W WKH HQG RI WKH ODVW VZLQJ ZH VKRXOG QRW H[SHFW -/ = DQ\ PRUH VZLWFK +RZHYHU LQ RUGHU WR PHHW WKH WHUPLQDO FRQGLWLRQV WKH OHJV KDG WR EH EURXJKW GRZQ UHTXLULQJ DQRWKHU VZLWFK LQ X ] 7KLV VZLWFK DOVR KHOSHG WKH DQJOHV DQG FS WR UHDFK WKHLU WHUPLQDO YDOXHV $IWHU WKLV KDV KDSSHQHG RQH PRUH VZLWFK HDFK IRU WKH FRQWUROV ZDV QHHGHG WR PHHW WKH WHUPLQDO FRQGLWLRQV RQ WKH DQJXODU UDWHV

PAGE 137

:LWKRXW DQ\ WHUPLQDO FRQGLWLRQV RQ WKH DQJXODU UDWHV WKH VROXWLRQ FRXOG KDYH EHHQ REWDLQHG ZLWKRXW WKH ODVW VZLWFK LQ HDFK RI WKH FRQWUROV DQG LQ VOLJKWO\ OHVV ILQDO WLPH &RPSDULVRQ RI WKH 0LQLPXP7LPH 6ROXWLRQ :LWK ([SHULPHQW $ FRPSDULVRQ EHWZHHQ WKH FRQWURO KLVWRULHV RI WKH FRPSXWHG VROXWLRQ DQG WKH PDQHXYHU RI WKH J\PQDVW UHFRUGHG LQ WKH H[SHULPHQW ZLWK WKH VDPH ERXQGDU\ FRQGLWLRQV ZDV QRW SRVVLEOH EHFDXVH WKH FRQWURO IRUFHV XVHG E\ WKH J\PQDVW FRXOG QRW EH GHWHUPLQHG 7KH SKRWRJUDSKLF PHDVXUHPHQWV RI WKH DQJOHV ZHUH QRW DFFXUDWH HQRXJK IRU WZR VXFFHVVLYH QXPHULFDO GLIIHUHQWLDWLRQV QHHGHG IRU ILQGLQJ WKH FRQWURO WRUTXHV IRU WKH DFWXDO ULJLG ERG\ PRWLRQ IURP WKH HTXDWLRQV RI PRWLRQ 7KH WLPH KLVWRULHV RI WKH JHQHUDOL]HG FRRUGLQDWHV FS DQG L_I IRU WKH H[SHULPHQW DQG WKH FRPSXWHG VROXWLRQ DUH JLYHQ LQ )LJXUHV DQG 7KH WUDMHFn WRULHV RI DQG LML DUH TXLWH GLIIHUHQW LQ WKH WZR FDVHV 7KH GLIIHUn HQFHV DUH SULPDULO\ GXH WR WKH GLIIHUHQFHV EHWZHHQ SRUWLRQV RI WKH FRQn WURO OLPLW IXQFWLRQV XVHG LQ WKH PDWKHPDWLFDO PRGHO DQG WKH DFWXDO VWUHQJWK RI WKH J\PQDVW 'XULQJ WKH VLPXODWLRQ UXQV LW ZDV IRXQG WKDW WKH PRGHOnV DUP VWUHQJWK ZDV LQVXIILFLHQW IRU VPDOO YDOXHV RI 7KXV WKH DFWXDO VWDWH WUDMHFWRU\ ZDV QRW D JRRG JXHVV IRU VWDUWLQJ $ QRPn LQDO WUDMHFWRU\ KDG WR EH GHWHUPLQHG ZKLFK ZDV PRUH QHDUO\ FRUUHFW IRU D J\PQDVW ZLWK OHVV VWUHQJWK DW H[WUHPHV RI KLV OLPE PRYHPHQW ,W PD\ EH QRWLFHG WKDW LQ WKH PHDVXUHPHQWV RI WKH DQJOH RI WKH NLSXS PRWLRQ WKH DQJOH UHPDLQHG QRQQHJDWLYH WKURXJKRXW WKH PRWLRQ ZKHUHDV LQ WKH FRPSXWHG PLQLPXP WLPH VROXWLRQ EHFDPH QHJDWLYH IRU D VKRUW GXUDWLRQ ZLWK D PLQLPXP YDOXH RI UDGLDQV 7KLV

PAGE 138

GLVFUHSDQF\ LV ODUJHO\ GXH WR LQDFFXUDF\ LQ PRGHOLQJ 7KH PRGHOLQJ LQDFFXUDFLHV LQFOXGH PRGHOLQJ WKH KHDGWRUVR V\VWHP DV D ULJLG OLQN DQG LQDFFXUDFLHV LQ WKH LQHUWLD SDUDPHWHUV DQG WKH IXQFWLRQV GHVFULEn LQJ WKH FRQVWUDLQWV RQ WKH FRQWURO WRUTXHV )URP WKH SK\VLFDO FRQVLGHUDWLRQV LW FDQ EH VHHQ WKDW UDLVHG DUPV FDQ LQGHHG EHQG PRUH WKDQ UDGLDQV EHKLQG WKH WRUVR %XW WKHQ WKH EHQGLQJ LV VKDUHG E\ WKH GHIRUPDWLRQ RI WKH WRUVR DV GHPRQVWUDWHG LQ )LJXUH 8QGHU VXFK FRQGLWLRQV WKHUH ZLOO EH GLIIHUHQFHV LQ WKH DQJOHV DQG PHDVXUHG IURP WKH WDSH VWULSV DQG WKH FRUUHVSRQGLQJ DQJOHV RI WKH PRGHO EDVHG RQ OLQHV EHWZHHQ MRLQW FHQWHUV 7KLV LV LOOXVWUDWHG LQ )LJXUH ,Q WKH RSWLPL]DWLRQ SURFHGXUH DQ LQHTXDOLW\ FRQVWUDLQW RQ WKH DQJOH YRXOG EH DEOH WR NHHS IURP EHLQJ OHVV WKDQ D SUHVSHFLILHG YDOXH 6XFK D FRQVWUDLQW ZDV QRW FRQVLGHUHG LQ WKLV LQYHVWLJDWLRQ IRU VHYHUDO UHDVRQV )LUVW LW ZDV WKRXJKW WKDW LI WKH VWUHQJWK PHDVXUHn PHQWV WKH FRQWURO OLPLWVf ZHUH DFFXUDWH WKH VWDWHV ZRXOG UHPDLQ ZLWKLQ DFFHSWDEOH ERXQGV QDWXUDOO\ DQG ZLWKRXW UHTXLULQJ D FRQVWUDLQW RQ WKH VWDWHV LPSRVHG H[WHUQDOO\ 6HFRQG WKH H[DFW OLPLWV DQG WKH QDWXUH KDUG RU VRIWf RI WKH FRQVWUDLQWV RQ WKH DQJOHV QHHG IXUWKHU H[SHUn LPHQWDO LQYHVWLJDWLRQV $QG ODVWO\ LW ZDV DQWLFLSDWHG WKDW WKH YLRODWLRQ RI WKH VWDWH FRQVWUDLQW LI DQ\ ZRXOG QRW EH VLJQLILFDQW HQRXJK WR MXVWLI\ JRLQJ LQWR WKH FRPSOLFDWLRQV DVVRFLDWHG ZLWK KDUG VWDWH FRQVWUDLQWV

PAGE 139

)LJXUH 'LIIHUHQFH %HWZHHQ 0HDVXUHG $QJOH DQG 0DWKHPDWLFDO $QJOH IRU +XPDQ 0RGHO 'XH WR 'HIRUPDWLRQ RI 7RUVR

PAGE 140

&+$37(5 &21&/86,216 $1' 5(&200(1'$7,216 )25 )8785( :25. &RQFOXVLRQV 7KH UHVXOWV RI DQ LQYHVWLJDWLRQ LQYROYLQJ DSSOLFDWLRQ RI UDWLRQDO PHFKDQLFV DQG RSWLPDO FRQWURO WKHRU\ WR D KXPDQ PRWLRQ SUREn OHP KDYH EHHQ SUHVHQWHG 7KH NLSXS PDQHXYHU RI J\PQDVWLFV ZDV VHOHFWHG IRU WKLV SXUSRVH )LUVW D WKUHHOLQN PRGHO ZDV FRQVWUXFWHG IRU WKH KXPDQ SHUIRUPHUf§D SURIHVVLRQDO J\PQDVW 7KH G\QDPLF SURSn HUWLHV RI WKH PRGHO ZHUH FRPSDUHG ZLWK WKRVH RI WKH J\PQDVW E\ PHDQV RI H[SHULPHQWV $ PLQLPXPWLPH VWUDWHJ\ IRU WKH NLSXS PDQHXYHU ZDV WKHQ REWDLQHG E\ QXPHULFDO FRPSXWDWLRQ IRU WKH PDWKHPDWLFDO PRGHO 7KH VROXWLRQ REWDLQHG ZDV FRPSDUHG ZLWK DQ DFWXDO PLQLPXP WLPH PDQHXn YHU SHUIRUPHG E\ WKH J\PQDVW ,W ZDV IRXQG WKDW WKH KXPDQ EHLQJ PD\ EH PRGHOHG E\ ULJLG OLQNV IRU WKH SXUSRVH RI G\QDPLF DQDO\VLV RI KXPDQ PRWLRQ DQG PDQPDFKLQH V\VWHPV +RZHYHU WKH PRGHO FDQQRW EH WHVWHG HIIHFWLYHO\ XQOHVV DFFXUn DWH PHDVXUHPHQWV RI WKH DQJXODU YHORFLWLHV DQG DQJXODU DFFHOHUDWLRQV DORQJ ZLWK WKH DQJOHV DUH PDGH 3KRWRJUDSKLF GHWHUPLQDWLRQ RI WKH OLPE SRVLWLRQV LV QRW DFFXUDWH HQRXJK IRU GHWHUPLQLQJ ZLWKLQ WKH XQFHUWDLQn WLHV RI WKH PRGHO WKH GHULYDWLYHV RI WKH PRYHPHQWV LQYROYHG

PAGE 141

0RGLILFDWLRQV ZHUH QHHGHG IRU WKH VKRXOGHU DQG KLS MRLQWV WR DFFRXQW IRU WKH VWLIIQHVV DQG WKH GHIRUPDWLRQ RI WKHVH MRLQWV GXULQJ H[WUHPH DUP DQG OHJ PRYHPHQWV $Q DFFXUDWH NQRZOHGJH RI WKH PD[LPXP VWUHQJWK RI WKH SHUVRQ EHLQJ PRGHOHG DW WKH MXQFWLRQV RI WKH YDULRXV ERG\ VHJPHQWV LV QHFHVn VDU\ IRU FRUUHFWO\ GHWHUPLQLQJ WKH RSWLPDO SHUIRUPDQFH )RU WKLV UHDVRQ WKHVH PHDVXUHPHQWV PXVW EH WDNHQ DW VPDOO LQWHUYDOV RI WKH MRLQW DQJOHV DQG IRU WKH HQWLUH UDQJH RI WKH SRVVLEOH PRYHPHQWV VR WKDW D SRO\QRPLDO UHSUHVHQWDWLRQ RU LQWHUSRODWLRQ RI WKHVH OLPLWV ZLWK UHVSHFW WR WKH DQJOHV LV VXIILFLHQWO\ DFFXUDWH ,Q WKH SUHVHQW LQYHVn WLJDWLRQ WKH FRQWURO OLPLW IXQFWLRQV XVHG GLG QRW UHSUHVHQW WKH WUXH VWUHQJWK RI WKH J\PQDVW DW WKH H[WUHPLWLHV RI WKH DUP PRYHPHQW DQG DV D UHVXOW D VLJQLILFDQW GLIIHUHQFH LQ WKH DFWXDO PDQHXYHU RI WKH J\PQDVW DQG WKH RSWLPDO PRWLRQ RI WKH PDWKHPDWLFDO PRGHO ZDV REWDLQHG $IWHU DQ DFFXUDWH PDWKHPDWLFDO PRGHO KDV EHHQ FRQVWUXFWHG WKH RSWLPDO PRWLRQ KDV WR EH GHWHUPLQHG E\ QXPHULFDO FRPSXWDWLRQ 7KH DQDO\WLFDO GHWHUPLQDWLRQ RI WKH PLQLPXP WLPH NLSXS PDQHXYHU LQYROYHG ZRUNLQJ ZLWK D VLJQLILFDQWO\ QRQOLQHDU V\VWHP ZLWK FRQWURO FRQVWUDLQWV ZKLFK GHSHQG RQ WKH VWDWH YDULDEOHV 6HYHUDO QXPHULFDO PHWKRGV ZHUH XVHG WR REWDLQ WKH VROXWLRQ $ PRGLILHG TXDVLOLQHDUL]Dn WLRQ PHWKRG ZDV WULHG ILUVW EXW WKH DWWHPSW ZDV XQVXFFHVVIXO )LUVW RUGHU VWHHSHVW GHVFHQW PHWKRGV ZHUH WKHQ XVHG ZLWK WKUHH GLIIHUHQW IRUPXODWLRQV $ QHDUO\ RSWLPDO QXPHULFDO VROXWLRQ ZDV REWDLQHG IURP WKHVH IRUPXODWLRQV 7KH VROXWLRQ ZDV FRPSDUHG ZLWK H[SHULPHQWDO UHVXOWV

PAGE 142

,W ZDV IRXQG WKDW WKH PHWKRG RI TXDVLOLQHDUL]DWLRQ ZDV QRW VXLWDEOH IRU WKH KLJKO\ QRQOLQHDU KXPDQ PRWLRQ SUREOHPV LQYROYLQJ PXOWLSOH VZLWFKHV LQ WKH FRQWURO ,W ZDV DOVR QRWHG WKDW WKH PHWKRG ZRXOG QRW EH HIILFLHQW IRU SUREOHPV ZKLFK PD\ DGPLW VLQJXODU VROXWLRQV ,W RU DQ\ RWKHU PHWKRG ZKLFK GHWHUPLQHV WKH RSWLPDO VROXWLRQ YLD VROXWLRQ RI D WZRSRLQW ERXQGDU\ YDOXH SUREOHP RI WKH VWDWH DQG DGMRLQW YDULDEOHVf XVHV WKH RSWLPDO H[SUHVVLRQ IRU WKH FRQWURO YDULDEOHV LQ WHUPV RI WKH VWDWH DQG DGMRLQW YDULDEOHV 6HYHUDO SUREOHPV ZRXOG EH IDFHG LQ GHWHUPLQLQJ WKH RSWLPDO FRQWURO ZKHQ VLQJXODU DUFV DUH WR EH FRQVLGHUHG )LUVW WKH HTXDOLWLHV LQ WKH QHFHVVDU\ FRQGLWLRQV IRU VLQJXODU VXEDUFV ZRXOG EH GLIILFXOW WR YHULI\ LQ WKH OLPLWHG SUHFLVLRQ RI GLJLWDO FRPSXWDWLRQV 6HFRQG VXIILFLHQF\ FRQGLWLRQV IRU RSWLPDOLW\ RI VLQJXODU DUFV IRU D JHQHUDO QRQOLQHDU V\VWHP KDYH QRW \HW EHHQ HVWDEn OLVKHG /DVWO\ LI WKH LQLWLDO JXHVV RI WKH VWDWH DQG DGMRLQW YDULDEOHV LV SRRU WKHQ LW PD\ KDSSHQ WKDW LQ DQ LQWHUPHGLDWH LWHUDWLRQ WKH VWDWH DQG DGMRLQW YDULDEOH KLVWRULHV FRUUHVSRQG WR D VLQJXODU FRQWURO DUF RQ D FHUWDLQ WLPH LQWHUYDO EXW WKH\ GR QRW GR VR IRU WKH VDPH WLPH LQWHUYDO LQ WKH QH[W LWHUDWLRQ ,Q VXFK D FDVH WKH LWHUDWLRQV DUH OLNHO\ WR EH XQDEOH WR LPSURYH WKH VROXWLRQV 7KH PHWKRG RI TXDVLOLQHDUL]DWLRQ RU OLNHZLVH DQ\ VHFRQGRUGHU PHWKRG UHTXLUHV PRUH FRPSXWDWLRQ DQG VWRUDJH WKDQ ILUVWRUGHU PHWKRGV )RU WKH KXPDQ PRWLRQ WKH PHWKRG RI TXDVLOLQHDUL]DWLRQ UHTXLUHG DQ H[FHVn VLYH DPRXQW RI FRPSXWLQJ WLPH SHU LWHUDWLRQ DQG PRUH FULWLFDOO\ QHDUO\ PD[LPXP VWRUDJH 7KH VHFRQGRUGHU PHWKRGV ZHUH WKHUHIRUH QRW FRQVLGHUHG IXUWKHU

PAGE 143

([LVWLQJ ILUVWRUGHU VWHHSHVW GHVFHQW PHWKRGV DUH QRW HIILFLHQW IRU VROYLQJ VXFK SUREOHPV HLWKHU 7KRXJK WKH VROXWLRQ ZDV REWDLQHG E\ WKHVH PHWKRGV VLPXODWLRQ DQG SK\VLFDO UHDVRQLQJ SOD\HG DQ LPSRUWDQW UROH $ 'DYLGRQ)OHWFKHU3RZHOO VFKHPH RI D PRGLILHG JUDGLHQW PHWKRG ZDV DOVR XVHG EXW ZLWKRXW LPSURYHPHQW LQ WKH UHVXOWV 7KH PHWKRG RI FRQVWUDLQHG DQG XQFRQVWUDLQHG DUFV LV QRW HIIHFn WLYH DV D VWDUWLQJ PHWKRG ZKHQ WKH FRQWURO FRQVWUDLQWV RI WKH FRQVWUDLQHG DQG XQFRQVWUDLQHG DUFV DUH QRW NQRZQ LQ DGYDQFH 7KH HIIHFWLYHQHVV RI WKH FRQVWUDLQHGXQFRQVWUDLQHG DUF PHWKRG GHSHQGV RQ WKH VHQVLWLYLW\ RI WKH FRQWURO FRQVWUDLQWV WR FKDQJHV LQ WKH VWDWH YDULDEOHV ,WV FRQYHUn JHQFH LV SRRU ZKHQ WKH FRQVWUDLQWV DUH VHQVLWLYH WR FKDQJHV LQ WKH VWDWHV 2Q WKH RWKHU KDQG WUHDWLQJ WKH FRQWURO DV HQWLUHO\ IUHH ZKLOH FRPSXWLQJ WKH JUDGLHQWV DQG ODWHU LPSRVLQJ WKH FRQVWUDLQWV ZKLOH LPSOHn PHQWLQJ WKH FRQWURO LV D PXFK VLPSOHU VFKHPH DQG FRQYHUJHV PRUH UDSLGO\ ZKHQ D VLJQLILFDQW SRUWLRQ RI WKH FRQWURO KLVWRU\ LV DZD\ IURP WKH FRQn VWUDLQWV 7KH PHWKRG EHFRPHV LQHIIHFWLYH DQG WKHRUHWLFDOO\ LQFRUUHFWf ZKHQ FRQWUROV DUH PRVWO\ QHDU WKH FRQVWUDLQWV DQG WKH PRYHPHQW RI WKH FRQVWUDLQWV EHFRPHV VLJQLILFDQW (DFK RI WKH VWHHSHVW GHVFHQW DOJRULWKPV UHTXLUHV D JRRG LQLWLDO JXHVV ZKHQ VHYHUDO VZLWFKHV RFFXU LQ WKH RSWLPDO FRQWURO 7KH\ PD\ QRW EH DEOH WR SURGXFH D UHTXLUHG VZLWFK LQ WKH FRQWURO LQ SUREOHPV ZLWK PXOWLSOH FRQWURO VZLWFKHV ,Q )RUPXODWLRQV DQG RI WKH VWHHSHVW GHVFHQW PHWKRG WKH DGMXVWPHQW RI WKH ILQDO WLPH ZDV GRQH E\ DGMXVWLQJ WKH VWDWH YDULDEOH D LQWURGXFHG E\ FKDQJLQJ WKH LQGHSHQGHQW YDULDEOH IURP W WR 7 ZKHUH W RU

PAGE 144

7KLV FKDQJH ZDV H[SHFWHG WR LPSURYH WKH SHUIRUPDQFH RI WKH VWHHSHVW GHVFHQW PHWKRG ZLWK IUHH ILQDO WLPH EHFDXVH D DSSHDUHG LQ WKH VWDWH HTXDWLRQV 7KLV DSSURDFK ZDV QRW IRXQG WR EH PRUH HIILFLHQW WKDQ WKH FRQYHQWLRQDO PHWKRG RI FKDQJLQJ WKH ILQDO WLPH LH E\ H[WHQGLQJ RU WUXQFDWLQJ WKH ILQDO HQG RI WKH WUDMHFWRU\ 7KH JUDGLHQW RI WKH QRUP RI WKH WHUPLQDO HUURU ZLWK UHVSHFW WR \ ZDV H[WUHPHO\ VHQVLWLYH ZLWK UHVSHFW WR FKDQJHV LQ D DV ZHOO DV RWKHU FKDQJHV LQ WKH WUDMHFWRU\ 7KLV UHTXLUHG WKH FKDQJH =!D EH NHSW H[WUHPHO\ VPDOO LQ LWHUDWLRQV XVLQJ QHDUO\ RSWLPDO UHVXOWV ,W ZDV VLJQLILFDQW WKDW GXULQJ WKH ILUVW PDQXDO FKDQJH RI WKH FRQWURO DIWHU DFKLHYLQJ D ORFDO PLQLPXP LW ZDV QHFHVVDU\ WR LQFUHDVH D WR LWV RULJLQDO YDOXH RI LW KDG GURSSHG WR f DQG WUXQFDWH WKH WUDMHFWRU\ 7KLV DGMXVWPHQW LV WKH VDPH DV WKH FRQYHQWLRQDO PHWKRG RI DGMXVWPHQW RI WKH ILQDO WLPH )RU WKH UHODWLYHO\ TXLFN NLSXS PDQHXYHU ; E\WHV RI VWRUDJH ZLWK GRXEOH SUHFLVLRQ DULWKPHWLFf DQG D FRPSXWLQJ WLPH RI DERXW VL[ VHFRQGV SHU LWHUDWLRQ IRU ,%0 &RPSXWHU )RUWUDQ *f ZHUH UHTXLUHG IRU )RUPXODWLRQV DQG RI WKH VWHHSHVW GHVFHQW PHWKRG 5HFRPPHQGDWLRQV IRU )XWXUH :RUN 7KH IROORZLQJ DUHDV QHHG WR EH FRQVLGHUHG IRU IXWXUH ZRUN LQ WKH VWXG\ RI G\QDPLFV DQG DQDO\WLF GHWHUPLQDWLRQ RI KXPDQ PRWLRQV ,PSURYHPHQW RI WKH ,QHUWLD 0RGHO RI +DQDYDQ DQG 'DWD *DWKHULQJ ([SHULPHQWV 7KH PRVW VLJQLILFDQW LQDFFXUDF\ LQ WKH WKUHHOLQN LQHUWLD PRGHO IRU WKH NLSXS PDQHXYHU ZDV REVHUYHG WR EH WKH GHIRUPDWLRQ RI WKH VKRXOGHU DQG EHQGLQJ RI WKH WRUVR GXULQJ FHUWDLQ SHULRGV RI WKH PRWLRQ $Q DFFXUDWH GHWHUPLQDWLRQ RI WKH DYHUDJH ORFDWLRQ RI WKH MRLQW FHQWHUV

PAGE 145

DW WKH VKRXOGHU DQG KLS LV VXIILFLHQW IRU PRGHOLQJ WKH PLGGOH OLQN RI WKH WKUHHOLQN NLSXS PRGHO 7KH VWLIIQHVVHV RI WKH KLS DQG VKRXOGHU MRLQWV GXULQJ H[WUHPH DUP DQG OHJ PRYHPHQWV VKRXOG DOVR EH GHWHUPLQHG E\ H[SHULPHQW 7KH EHQGLQJ RI WKH WRUVR PLJKW EH DFFXUDWHO\ PRGHOHG E\ GLYLGLQJ WKH WRUVRKHDG OLQN LQWR WZR OLQNV 7KH XSSHU OLQN PLJKW FRQVLVW RI WKH KHDG DQG XSSHU WRUVR ZLWK WKH ORZHU WRUVR RI WKH +DQDYDQ PRGHO 7KHVH WZR OLQNV PLJKW EH MRLQHG E\ D VPRRWK KLQJH ZLWK D WRUVLRQDO VSULQJ DQG D YROXQWDU\ WRUTXH 7KH LQWURGXFWLRQ RI WKH DGGLWLRQDO GHJUHH RI IUHHGRP WR WDNH FDUH RI WKH GHIRUPDWLRQ RI WKH WRUVR ZLOO LQFUHDVH WKH FRPSOH[LW\ RI WKH G\QDPLFDO HTXDWLRQV RI WKH V\VWHP IXUWKHU :RUN QHHGV WR EH GRQH WR LPSURYH WKH GDWD JDWKHULQJ WHFKQLTXHV WKDW LV GHWHUPLQDWLRQ RI WKH JHQHUDOL]HG FRRUGLQDWHV DQG WKHLU UDWHV 3KRWRJUDSKLF PHDVXUHPHQWV DUH H[WUHPHO\ WLPH FRQVXPLQJ DQG LQDFFXUDWH 3UHOLPLQDU\ HYDOXDWLRQV >@ VKRZ WKDW WKH DQJXODU GLIIHUHQWLDWLQJ DFFHOHURPHWHUV $'$f ZLOO SURYLGH WKH GHVLUHG UDWH DQG DQJOH DFFXUn DFLHV 7KH GHYLFHV DUH TXLWH VPDOO DQG KDYH D ORZ SRZHU UHTXLUHPHQW :LWK D OLJKW ZHLJKW WHOHPHWU\ V\VWHP WKH KXPDQ SHUIRUPHU LV QRW HQFXPn EHUHG E\ ZLULQJ 2QFH DFFXUDWH GHWHUPLQDWLRQ RI WKH DQJOHV DQG WKHLU UDWHV LV SRVVLEOH WKH LQHUWLD PRGHO PD\ EH LPSURYHG E\ XVLQJ WKH H[SHULPHQWDO GDWD DQG VRPH RI WKH V\VWHP LGHQWLILFDWLRQ WHFKQLTXHV 0HDVXUHPHQW RI WKH 0XVFOH 7RUTXHV $Q DFFXUDWH NQRZOHGJH RI WKH VWUHQJWK RI WKH LQGLYLGXDO LV QHHGHG LQ WKH DQDO\WLF GHWHUPLQDWLRQ RI D JLYHQ PDQHXYHU ,W QHHGV WR EH LQYHVWLJDWHG KRZn WKH VWUHQJWK DW D MRLQW GHSHQGV RQ WKH UDWH RI

PAGE 146

FRQWUDFWLRQ RI WKH PXVFOH JURXS DQG WKH WLPH IRU ZKLFK WKH IRUFH DFWV 7KH DFWXDO PXVFOH IRUFHV RU WKHLU HTXLYDOHQW WRUTXHV GXULQJ D PDQHXYHU VKRXOG DOVR EH GHWHUPLQHG LQ RUGHU WR KDYH D EHWWHU XQGHUVWDQGLQJ RI WKH PXVFOH DFWLYLWLHV ,I DFFXUDWH LQIRUPDWLRQ RI WKH LQHUWLD SURSHUn WLHV DQG WKH DQJOHV DQG WKHLU UDWHV LV DYDLODEOH WKHVH IRUFHV FDQ EH REWDLQHG IURP WKH HTXDWLRQV RI PRWLRQ +RZHYHU GHWHUPLQDWLRQ RI WKHVH IRUFHV XVLQJ ELRPHGLFDO GHYLFHV VXFK DV HOHFWURP\RJUDSK\ HOHFWURGHV PLJKW JLYH YDOXDEOH LQIRUPDWLRQ LQ WKLV DUHD 'HWHUPLQDWLRQ RI %HWWHU 1XPHULFDO 7HFKQLTXHV IRU +XPDQ 0RWLRQ 3UREOHPV ,W ZDV FOHDU IURP WKH SUHVHQW LQYHVWLJDWLRQ RI WKH WZR VHFRQG GXUDWLRQ NLSXS PDQHXYHU WKDW DQDO\WLF VROXWLRQ RI PRUH FRPSOLn FDWHG DQG ORQJHU GXUDWLRQ PRWLRQ ZRXOG EH H[WUHPHO\ GLIILFXOW &RQVLGHUn DWLRQ RI VWDWHFRQVWUDLQWV PD\ EH QHFHVVDU\ WR HQVXUH WKDW WKH VWUHVVHV JHQHUDWHG GXULQJ WKH PRWLRQ DW DQ\ SDUW RI WKH KXPDQ ERG\ UHPDLQ ZLWKLQ FHUWDLQ OLPLWV $OVR FRQVWUDLQWV VKRXOG EH LPSRVHG RQ WKH UDWH RI FKDQJH RI WKH FRQWURO IRUFHV EHFDXVH D KXPDQ EHLQJ PD\ QRW EH DEOH WR H[HFXWH EDQJEDQJ FRQWURO 7KHVH FRQVWUDLQWV ZLOO IXUWKHU FRPSOLFDWH WKH RSWLPL]DWLRQ SUREOHPV DQG LQWURGXFH LQWHUHVWLQJ ELRPHFKDQLFDO TXHVWLRQV ,W WKHUHIRUH VHHPV WKDW VRPH QXPHULFDO PHWKRGV VKRXOG EH IRXQG ZKLFK ZRXOG JLYH DQ DSSUR[LPDWH H[WUHPXP L H QRW JLYH DQ H[DFW H[WUHPXPf EXW ZRXOG EH HIILFLHQW LQ KDQGOLQJ WKH FRQVWUDLQWV DQG RWKHU FRPSOLFDWLRQV RI WKH KXPDQ PRWLRQ SUREOHP

PAGE 147

$33(1',;(6

PAGE 148

$33(1',; $ '(7(50,1$7,21 2) 7+( ,1(57,$ 3$5$0(7(56 2) 7+( .,383 02'(/ )520 7+( +$1$9$1 02'(/ 7KH WKUHH HOHPHQWV RI WKH NLSXS PRGHO ZHUH FRQVWUXFWHG E\ FRPELQLQJ WKH HOHPHQWV RI WKH +DQDYDQ PRGHO 7KH LQHUWLD SURSHUWLHV RI WKH NLSXS PRGHO ZHUH REWDLQHG IURP JHRPHWULF FRQVLGHUDWLRQV DQG WKH SDUDOOHO D[HV DQG URWDWLRQ WKHRUHPV RI PRPHQW RI LQHUWLD )LJXUH VKRZV WKH WKUHH HOHPHQWV RI WKH NLSXS PRGHO DQG WKHLU FRPn SRQHQWV IURP WKH +DQDYDQ PRGHO 7KH GLPHQVLRQV RI WKH +DQDYDQ PRGHO LQFOXGLQJ WKH ORFDWLRQ RI WKH KLQJH D[HV $ DQG % FRXOG EH REWDLQHG IURP WKH SURJUDP RI +DQDYDQ ,QSXW RI WKLV SURJUDP ZHUH WKH DQWKURn SRPHWULF GLPHQVLRQV WDNHQ IURP WKH VXEMHFW 7KH IRUPXODV IRU WKH YDUn LRXV GLPHQVLRQV RI WKH HOHPHQWV RI WKH NLSXS PRGHO DUH SUHVHQWHG EHORZ 7KHVH IRUPXODV ZHUH DGGHG WR +DQDYDQnV SURJUDP LQ RUGHU WR REWDLQ WKH LQHUWLD SDUDPHWHUV RI WKH NLSXS PRGHO 60f >5f^O7@f`6/f@FRV \ 60f >5 f 6/ f I 7f f `6/f@FRV \ ULa 60f 60 f 60 f L >5f 6/f 6/f 5f@ FRV \ P >60f 60f 60f@ 6,<6,<U 5f 6/f 7@ f 6/f `FRV \@ _>6,<^5! 6/f 6/f 6/f a f`FRV \ U @

PAGE 149

)LJXUH &RQVWUXFWLRQ RI .LS8S 0RGHO IURP +DQDYDQ 0RGHO

PAGE 150

60f5f 60f@f6/f 60f >6/f@ f 6/f @ B 7 a 60f 60 f 60f A W 6/f 6/f '(/6+ 5f P 60f 60f 60f =L 60f>5f 5f U @ 6,<5f A f 6/f@ 6,<< f 60f >5 f r a 6/f 7_ f6/f@ 6,<< f  '(/6+ _V0ff6/f 60f >6/f 7@f6/f 60f>6/f 6/f5f@__60f 60f 60f ` P >60f 60f 60f@ L ,B 6,< O '(/6+ 7_ f 6/f @ = 6,<< f 60f > '(/6+ 6/f 7@ f 6/f @ 6,<6/f 6/f 5f  '(/6+@

PAGE 151

$QWKURSRPHWULF 'LPHQVLRQV RI WKH 6XEM HFW 'LPHQVLRQ 9DOXH LQFKHVf $QNOH &LUFXPIHUHQFH $X[LOLDU\ $UP &LUFXPIHUHQFH %XWWRFN 'HSWK &KHVW %UHDGWK &KHVW 'HSWK (OERZ &LUFXPIHUHQFH )LVW &LUFXPIHUHQFH )RUHDUP /HQJWK /RZHU DUP OHQJWKf )RRW /HQJWK .QHH &LUFXPIHUHQFH +HDG &LUFXPIHUHQFH +LS %UHDGWK 6KRXOGHU +HLJKW $FURPLDO +HLJKWf 6LWWLQJ +HLJKW 6SK\ULRQ +HLJKW 6WDWXUH 6XEVWHUQDO +HLJKW 7KLJK &LUFXPIHUHQFH 7LEDOH +HLJKW 7URFKDQWHULF +HLJKW 8SSHU $UP /HQJWK :HLJKW OE :DLVW %UHDGWK :DLVW 'HSWK :DLVW &LUFXPIHUHQFH

PAGE 152

,QHUWLD 3URSHUWLHV RI WKH .LS8S 0RGHO LQFKHV LQFKHV UO LQFKHV A U LQFKHV ,, &2 X LQFKHV fO VOXJ A WR ,, VOXJ f P VOXJ VOXJLQ VOXJLQ VOXJLQ OHQJWKV RI WKH HOHPHQWV DQG GLVWDQFHV RI WKH &*nV RI HOHPHQWV DQG IURP WKHLU XSSHU KLQJH SRLQWV PDVV RI WKH HOHPHQWV PRPHQWV RI LQHUWLD DERXW WKH FHQWHUV RI JUDYLW\ IRU HOHPHQWV

PAGE 153

$33(1',; % $1 ,19(67,*$7,21 2) $ 67((3(67 '(6&(17 6&+(0( )25 ),1',1* 237,0$/ %$1*%$1* &21752/ 62/87,21 )25 7+( .,383 352%/(0 $Q LQYHVWLJDWLRQ ZDV PDGH WR GHWHUPLQH WKH VXLWDELOLW\ RI WKH VWHHSHVW GHVFHQW DOJRULWKP RI %U\VRQ DQG 'HQKDP >@ IRU GHWHUPLQLQJ RSWLPDO EDQJEDQJ FRQWURO IRU WKH NLSXS SUREOHP 7KH LQYHVWLJDWLRQ GHVFULEHG LQ WKLV VHFWLRQ VKRZHG WKDW H[WUHPHO\ VPDOO FKDQJHV LQ WKH VZLWFKLQJ WLPHV ZHUH QHFHVVDU\ IRU WKH ILUVWRUGHU UHODWLRQVKLS EHWZHHQ WKH FKDQJHV LQ WKH VZLWFKLQJ WLPH DQG FKDQJHV LQ WKH WHUPLQDO VWDWH YHFWRU WR EH YDOLG 7KH VPDOO FKDQJHV LQ WKH VZLWFKLQJ WLPH UXOHG RXW WKH XVH RI IL[HG LQWHJUDWLRQ VWHS VL]H DV XVHG IRU WKH FRQWLQXRXV FRQWURO 7KH FKDQJH RI WKH VZLWFKLQJ WLPH E\ RQH LQWHJUDWLRQ VWHS ZDV IRXQG WR EH PXFK WRR ODUJH IRU WKH ILUVWRUGHU UHODWLRQVKLS WR EH YDOLG 7KHUHIRUH DQ DWWHPSW WR ILQG D EDQJEDQJ RSWLPDO FRQWURO E\ XVLQJ D IL[HG VWHS VL]H RI VHFRQG ZLWK D WRWDO RI DERXW LQWHn JUDWLRQ VWHSVf ZDV QRW VXFFHVVIXO (YHQ WKRXJK D VFKHPH IRU DYRLGLQJ XVH RI IL[HG LQWHJUDWLRQ VWHS VL]H ZDV DYDLODEOH WKH PHWKRG ZDV QRW SXUVXHG IXUWKHU EHFDXVH RI DQWLFLSDWHG QXPHULFDO SUREOHPV 7KH LPSRUn WDQW UHVXOWV RI WKH LQYHVWLJDWLRQ DUH QRZ SUHVHQWHG LQ PRUH GHWDLO 6XSSRVH HDFK RI WKH FRQWUROV X Wf DQG X Wf LV RQ HLWKHU WKH / = XSSHU OLPLW RU ORZHU OLPLW IRU DOO WLPH $OVR OHW WKH FRQWURO X Wf L RU KDYH WKH VZLWFKLQJ WLPHV WAWAMW LH DW WKHVH WLPHV 1 O WKH FRQWURO VZLWFKHV IURP DQ XSSHU WR D ORZHU OLPLW RU YLFH YHUVD

PAGE 154

:H VKDOO ILUVW ILQG RXW WKH FKDQJH LQ WKH ILQDO VWDWH YHFWRU GXH WR D VPDOO FKDQJH LQ RQH RI WKH VZLWFKLQJ WLPHV Wr )RU WKLV ZH FDQ XVH WKH UHVXOWV RI 6HFWLRQ (TXDWLRQ f ZKLFK LV ZULWWHQ DV [Wf ,WfGW 57f;f W I 57I 6XGW I 57I Xf GW %Of ,Q WKLV HTXDWLRQ &r DQG &r GHQRWH WKH XQFRQVWUDLQHG SRUWLRQV RI WKH FRQWURO WUDMHFWRULHV XAWf DQG XALWf UHVSHFWLYHO\ ,Q WKH SUHVHQW FDVH WKH XQFRQVWUDLQHG DUFV DUH WKH SRUWLRQV RI WKH FRQWURO WUDMHFWRULHV ZKLFK FKDQJH IURP RQH FRQVWUDLQW WR DQRWKHU GXH WR WKH VKLIW RI WKH VZLWFKLQJ WLPHV 7KH\ DUH WKHUHIRUH DURXQG WKH VZLWFKLQJ WLPHV DQG DUH QRW NQRZQ D SULRUL %XW VLQFH WKH VKLIWV LQ WKH VZLWFKLQJ WLPHV ZLOO R EH PDGH VPDOO LQ DQ\ LWHUDWLRQ WKH SUHVHQFH RI WKH LQWHJUDOV RYHU DQG &r FDQ EH LJQRUHG DV VHFRQGRUGHU WHUPV ZKLOH JHQHUDWLQJ 5Wf E\ EDFNZDUG LQWHJUDWLRQ RI (TXDWLRQV f 7KH YDOXH RI 5Wf ZLOO WKHUHIRUH EH WKH VROXWLRQ RI WKH IROORZLQJ HTXDWLRQV ZKHUH 5WIf [ XQLW PDWUL[f 5 In; nX 6[fXf r %f % f n; M IRU XA RQ WKH ORZHU FRQVWUDLQW M IRU XA RQ WKH XSSHU FRQVWUDLQW IRU X RQ WKH ORZHU FRQVWUDLQW M %f IRU XA RQ WKH XSSHU FRQVWUDLQW 6XSSRVH D VPDOO FKDQJH i[f DW WKH LQLWLDO FRQGLWLRQ RI WKH VWDWH YHFWRU ;f LV SUHVFULEHG VR WKDW WKH LQLWLDO VWDWH EHFRPHV

PAGE 155

; i;f $OVR OHW WKH VZLWFKLQJ WLPHV UHPDLQ XQFKDQJHG DQG WKH R ILQDO WLPH FKDQJHV IURP WI WR W GWI 7KH UHVXOWLQJ FKDQJH LQ WKH ILQDO YDOXHV RI WKH VWDWH YDULDEOHV FDQ EH REWDLQHG E\ VHWWLQJ iX LQ (TXDWLRQ %Of ZKLFK \LHOGV ;WIf 57f ;f IW f GWI %f ,I DW DQ\ RWKHU WLPH W £ W A W WKH VWDWH YHFWRU ;W! LV FKDQJHG E\ WKH DPRXQW [W f WKH FKDQJH LQ WKH ILQDO VWDWH YHFWRU LI WKH VDPH VZLWFKLQJ WLPHV DUH PDLQWDLQHG ZLOO VLPLODUO\ EH JLYHQ E\ ;WIf 57Wf 6;&Af IWIf GWI % f 1RZ FRQVLGHU D FKDQJH LQ WKH VZLWFKLQJ WLPH WA 6XSSRVH WKH FRQWURO X VZLWFKHV IURP WR DW WKLV VZLWFKLQJ WLPH DQG WKDW WKLV VZLWFKLQJ WLPH ZLOO EH DGYDQFHG E\ WKH DPRXQW GWM $OO RWKHU VZLWFKLQJ WLPHV UHPDLQ XQFKDQJHG &RQVLGHU WKH YDOXH RI WKH VWDWH YHFWRU ;Wf DW WKH WLPH WA GWA %HIRUH WKH FKDQJH LQ WKH VZLWFKLQJ WLPH ZH KDYH WR WKH ILUVW RUGHU F WL9 ;W-f ;WAf fM A GW WA PHDQV MXVW DIWHU WAf [Wf ;Wrf $ I Xf I Xf a ? X $ I 6 I X n 8 8 L GWL L GWL % f ZKHUH WKH YHFWRU $;f LV GHILQHG LQ (TXDWLRQ f

PAGE 156

$IWHU WKH FKDQJH LQ WKH VZLWFKLQJ WLPH ZH KDYH VLPLODUO\ ;Wr •WAf ;WAf $ I 6 I X f 8 8 % f )URP %f DQG %f ZH REWDLQ WKH FKDQJH LQ WKH VWDWH YHFWRU DW WLPH WA GWA GXH WR WKH FKDQJH LQ WKH VZLWFKLQJ WLPH •;Wr WAf IX 6 VMf GWr % f ,I WKH VZLWFK ZDV IURP WR ZH ZRXOG KDYH REWDLQHG 6A 6Af LQVWHDG RI 6A 6Af LQ (TXDWLRQ %f ,I GWA ZDV QHJDWLYH WKH UHODn WLRQ % f ZRXOG VWLOO EH YDOLG &RUUHVSRQGLQJ WR WKH FKDQJH LQ WKH VWDWH YHFWRU DW Wr GWr JLYHQ E\ (TXDWLRQ %f WKH FKDQJH LQ WKH ILQDO VWDWH YHFWRU JLYHQ E\ (TXDWLRQ %f LV IL;WIf 57WrWrfIX 66rfGWr IWIf GWI RU WR WKH ILUVW RUGHU m;WI! IWIfGWI 57L8OVUV! L GWL %f ,Q WKH QRPLQDO WUDMHFWRU\ VXSSRVH VZLWFKHV IURP WR RFFXU DW Wr Wr Wr DQG VZLWFKHV IURP 6r WR 6 RFFXU DW L L Wr Wr WA IRU L DQG 7KH UHVXOW Ef FDQ EH H[WHQGHG IRU WKH FDVH ZKHQ DQ\ RI WKH VZLWFKLQJ WLPHV W LV DGYDQFHG E\ GW 7KLV ZLOO \LHOG 1 [W f IW fGW = f L O 1f = f L -O 7 5 LfX 66" GWL U7X e! GW M %f

PAGE 157

7KH UHODWLRQV %f DQG %OOf DUH H[DFWO\ WKH VDPH DV WKH JUDGLHQW UHODWLRQV JLYHQ LQ >@ IRU EDQJEDQJ FRQWURO EXW DUH GHULYHG GLIIHUHQWO\ 7KLV GHULYDWLRQ EULQJV RXW WKH IDFW WKDW WKH FKDQJH LQ WKH ILQDO VWDWH YHFWRU ZLOO EH JLYHQ E\ WKH OLQHDU UHODWLRQV RQO\ LI WKH FKDQJH LQ WKH VWDWH YHFWRU DW D VZLWFKLQJ WLPH FDXVHG E\ WKH FKDQJH LQ VZLWFKLQJ WLPH LV VPDOO HQRXJK WR PDNH WKH UHODWLRQ %f YDOLG 7R ILQG WKH PD[LPXP YDOXH RI f[WfM YDOLG IRU XVH LQ H[SUHVn VLRQ %f WKH IROORZLQJ WHVW ZDV SHUIRUPHG )LUVW ZLWK RQH IRUZDUG DQG RQH EDFNZDUG LQWHJUDWLRQ ZLWK D QRPLQDO WUDMHFWRU\ WKH YDOXH RI 5f ZDV GHWHUPLQHG 7KH LQLWLDO WLPH W ZDV XVHG IRU W 6HYHUDO YDOXHV RI [f ZHUH FKRVHQ DQG IRU HDFK LQLWLDO VWDWH YHFWRU JLYHQ E\ ;T A[2f WKH VWDWH HTXDWLRQV ZHUH LQWHJUDWHG IRUZDUG ZLWK WKH VDPH VZLWFKLQJ WLPHV DQG ZLWK GWA 7KH ILQDO YDOXHV RI WKH VWDWH YHFWRU ;WIf REWDLQHG E\ WKH LQWHJUDWLRQ ZHUH XVHG WR ILQG WKH DFWXDO FKDQJHV LQ WKH ILQDO YDOXHV RI WKH VWDWH YHFWRU IURP WKH YDOXH RI WKH QRPLQDO WUDMHFWRU\ 7KHVH DFWXDO FKDQJHV 7 ZHUH WKHQ FRPSDUHG ZLWK WKH SUHGLFWHG FKDQJH 5f i;f )URP WKHVH FRPSDULVRQV LW ZDV IRXQG WKDW [f ZLWK HOHPHQWV RI WKH RUGHU RI ZDV WRR ODUJH 7KH UHODWLRQ %f ZDV YDOLG IRU D PXFK VPDOOHU Vm f [f 2Q WKH RWKHU KDQG WKH HOHPHQWV RI i;Wf FDXVHG E\ D FKDQJH LQ WKH VZLWFKLQJ WLPH E\ RQH LQWHJUDWLRQ VWHS RI VHFRQG XVHG LQ 6HFWLRQV DQG ZHUH IRXQG WR EH RI WKH RUGHU RI WR f§PXFK ODUJHU WKDQ ZKDW FRXOG EH XVHG LQ (TXDWLRQ %f )URP WKH PDWUL[ 5f ZKLFK KDG ODUJH HQWULHV LW ZDV FOHDU WKDW WKH FKDQJH LQ WKH VZLWFKLQJ WLPH VKRXOG EH PXFK VPDOOHU

PAGE 158

,Q RUGHU WR ILQG DQ RSWLPDO EDQJEDQJ FRQWURO E\ WKLV PHWKRG WKH IROORZLQJ IHDWXUHV LQ WKH GHWHUPLQDWLRQ RI WKH LQIOXHQFH IXQFWLRQ 5Wf VKRXOG EH LQFRUSRUDWHG $ QRPLQDO JXHVV FRQVLVWLQJ RI WKH VZLWFKLQJ WLPHV DQG D ILQDO WLPH LV WR EH PDGH ILUVW 7KH VZLWFKLQJ WLPHV VSHFLI\ WKH FRQWURO FRPSOHWHO\ E\ WHOOLQJ ZKLFK FRQVWUDLQWV WKH FRQWURO LV RQ ,QWHJUDWH WKH VWDWH HTXDWLRQV IRUZDUG ZLWK WKH LQLWLDO YDOXH ;A *HQHUDWH X IURP WKH FRQVWUDLQWV 6WRUH ;WAf ,W LV QRW QHFHVVDU\ WR VWRUH ;Wf DQG XWf IRU DQ\ RWKHU W ,QWHJUDWH WKH VWDWH HTXDWLRQV EDFNZDUGV DQG WKH LQIOXHQFH (TXDWLRQV %f VLPXOWDQHRXVO\ 8VH ILQDO YDOXH RI WKH VWDWH YDULDEOHV DV WKRVH REWDLQHG IURP WKH IRUZDUG LQWHJUDWLRQ *HQHUDWH FRQWURO IURP WKH FRQVWUDLQWV *HQHUDWLQJ WKH VWDWH DQG WKH FRQWURO YDULDEOHV DJDLQ GXULQJ WKH EDFNZDUG LQWHJUDWLRQ WKH\ ZHUH JHQHUDWHG RQFH LQ VWHS f LV QHFHVn VDU\ WR HOLPLQDWH LQWHUSRODWLRQ HUURUV 7KLV IHDWXUH KRZHYHU ZLOO QRW LQWURGXFH VLJQLILFDQWO\ PRUH FRPSXWDWLRQV ZKHQ WKH FRQWURO OLHV DOZD\V RQ D FRQVWUDLQW

PAGE 159

/,67 2) 5()(5(1&(6 0DUH\ 0 'HV 0RXYHPHQWV TXH &HUWDLQV $QLPDX[ ([HFXWHQW SRXU 5HWRPEHU VXU /HXUV 3LHGV /RUVTXnLOV 6RQW 3UHFLSLWHV GXQ /LHX (OHYH &RPSWHV 5HQGXV 9RO SS *X\RX 0 1RWH 5HODWLYH D OD &RPPXQLFDWLRQ GH 0 0DUH\ &RPSWHV 5HQGXV 9RO SS 0DJQXV 5 :LH 6LFK GLH )DOOHQGH .DW]H LQ GHU /XIW 8QGUHKW $UFK 1HHUODQGDLVHV GLH 3K\VLRORJLH 9RO SS 0F'RQDOG $ 7KH 5LJKWLQJ 0RYHPHQWV RI D )UHH )DOOLQJ &DW 3K\VLRO 9RO SS 0F'RQDOG $ +RZ 'RHV D )DOOLQJ &DW 7XUQ 2YHU" 6W %HUWK GRPHZnV +RVSLWDO 9RO SS 0F'RQDOG $ +RZ 'RHV D &DW )DOO RQ ,WV )HHW" 1HZ 6FLHQWLVW 9RO SS $PDU 7KH +XPDQ 0RWRU *HRUJH 5RXWOHGJH /RQGRQ )LVFKHU 7KHRUHWLVFKH *UXQGODJHQ IXU (LQH 0HFKDQLN GHU /HEHQGHQ .RUSHU % 7HXEQHU /HLS]LJ 0F'RQDOG $ +RZ 'RHV D 0DQ 7ZLVW LQ WKH $LU"f 1HZ 6FLHQWLVW 9RO SS 0F&UDQN 0 DQG 6HJDU 5 7RUTXH )UHH 5RWDWLRQDO '\QDPLFV RI D 9DULDEOH&RQILJXUDWLRQ %RG\ $SSOLFDWLRQ WR :HLJKWOHVV 0DQf 0 6 7KHVLV $LU )RUFH ,QVWLWXWH RI 7HFKQRORJ\ 6PLWK 3 DQG .DQH 7 5 2Q WKH '\QDPLFV RI WKH +XPDQ %RG\ LQ )UHH )DOO -RXUQDO RI $SSOLHG 0HFKDQLFV 9RO SS $\RXE 0 $ $ %LRPHGLFDO 0RGHO IRU WKH 8SSHU ([WUHPLW\ 8VLQJ 2SWLPL]LQJ 7HFKQLTXHV 3K' 7KHVLV 7H[DV 7HFK 8QLYHUn VLW\ 6DQWVFKL : 5 'X%RLV DQG 2PRWR & 0RPHQWV RI ,QHUWLD DQG &HQWHUV RI *UDYLW\ RI WKH /LYLQJ +XPDQ %RG\ $HURVSDFH 0HGLFDO 5HVHDUFK /DERUDWRU\ $05/7'5

PAGE 160

+DQDYDQ ( 3 $ 3HUVRQDOL]HG 0DWKHPDWLFDO 0RGHO RI WKH +XPDQ %RG\ $HURVSDFH 0HGLFDO 5HVHDUFK /DERUDWRU\ $05/75 +DQDYDQ ( 3 $ 3HUVRQDOL]HG 0DWKHPDWLFDO 0RGHO RI WKH +XPDQ %RG\ $,$$ 3DSHU 1R 6DPUDV 5 0XVFOH 7RUTXH 0HDVXUHPHQWV (IIHFWV RQ 2SWLPDO 0RWLRQ DQG +XPDQ 3HUIRUPDQFH (YDOXDWLRQ 0 6 7KHVLV 8QLYHUVLW\ RI )ORULGD 3RQWU\DJLQ / 6 %ROW\DQVNLL 9 *DPNUHOLGJH 5 9 DQG 0LVKFKHOHQNR ( 7KH 0DWKHPDWLFDO 7KHRU\ RI 2SWLPDO 3URFHVVHV ,QWHUVFLHQFH 3XEOLVKHUV 1HZ
PAGE 161

%U\VRQ $ ( DQG 'HQKDP : ) $ 6WHHSHVW $VFHQW 0HWKRG IRU 6ROYLQJ 2SWLPDO 3URJUDPPLQJ 3UREOHPV -RXUQDO RI $SSOLHG 0HFKDQLFV SS %U\VRQ $ ( DQG 'HQKDP : ) 2SWLPDO 3URJUDPPLQJ 3UREOHPV ZLWK ,QHTXDOLW\ &RQVWUDLQWV ,, 6ROXWLRQ RI 6WHHSHVW$VFHQW $,$$ -RXUQDO 9RO 1R SS /RQJ 5 6 1HZWRQ 5DSKVRQ 2SHUDWRU 3UREOHPV ZLWK 8QGHWHUPLQHG (QG 3RLQWV $,$$ -RXUQDO 9RO 1R SS 0LHOH $ DQG ,\HU 5 5 0RGLILHG 4XDVLOLQHDUL]DWLRQ 0HWKRG IRU 6ROYLQJ 1RQOLQHDU 7ZR3RLQW %RXQGDU\9DOXH 3UREOHPV 5LFH 8QLYHUVLW\ $HUR $VWURQDXWLFV 5HSRUW 1R 0LHOH $ ,\HU 5 5 DQG :HOO + 0RGLILHG 4XDVLOLQHDUL]DWLRQ DQG 2SWLPDO ,QLWLDO &KRLFH RI WKH 0XOWLSOLHUV 3DUW f§2SWLPDO &RQWURO 3UREOHPV 5LFH 8QLYHUVLW\ $HUR $VWURQDXWLFV 5HSRUW 1R %U\VRQ $ ( DQG %R < & $SSOLHG 2SWLPDO &RQWURO %ODLVGHOO 3XEOLVKLQJ &RPSDQ\ :DOWKDP 0DVVDFKXVHWWV :RQJ 3 'UHVVLHU 5 0 DQG /XHQEXUJHU $ &RPELQHG 3DUDOOHO7DQJHQWV3HQDOW\)XQFWLRQ $SSURDFK WR 6ROYH 7UDMHFWRU\ 2SWLPL]DWLRQ 3UREOHPV $,$$ -RXUQDO 9RO 1R SS +HUPHV + &RQWUROODELOLW\ DQG WKH 6LQJXODU 3UREOHP 6,$0 -RXUQDO RQ &RQWURO 6HU $ 9RO 1R SS /LWWOH / 7KH 'HVLJQ DQG $QDO\VLV RI D +XPDQ %RG\ 0RWLRQ 0HDVXUHPHQW 6\VWHP 0 6 7KHVLV 8QLYHUVLW\ RI )ORULGD

PAGE 162

%,2*5$3+,&$/ 6.(7&+ 7XVKDU .DQWL *KRVK ZDV ERUQ RQ $XJXVW LQ &DOFXWWD ,QGLD +H ZDV JUDGXDWHG LQ WKH \HDU IURP %DOO\JXQJH *RYHUQPHQW +LJK 6FKRRO &DOFXWWD ,Q WKH VDPH \HDU KH HQWHUHG WKH ,QGLDQ ,QVWLWXWH RI 7HFKQRORJ\ .KDUDJSXU WR VWXG\ 0HFKDQLFDO (QJLQHHULQJ +H UHFHLYHG WKH GHJUHHV %DFKHORU RI 7HFKQRORJ\ LQ 0HFKDQLFDO (QJLQHHUn LQJ ZLWK )LUVW &ODVV +RQRUV DQG 0DVWHU RI 7HFKQRORJ\ LQ 0DFKLQH 'HVLJQ LQ WKH \HDUV DQG UHVSHFWLYHO\ +H FDPH WR WKH 8QLYHUVLW\ RI )ORULGD WR SXUVXH IXUWKHU VWXGLHV LQ G\QDPLFV DQG FRQWUROV +H UHFHLYHG WKH GHJUHH RI 0DVWHU RI (QJLQHHULQJ IURP WKH 'HSDUWPHQW RI (QJLQHHULQJ 6FLHQFH DQG 0HFKDQLFV LQ WKH \HDU 6LQFH WKHQ KH KDV EHHQ ZRUNLQJ RQ KLV 3K' GHJUHH ZKLFK ZLOO EH DZDUGHG LQ 0DUFK IURP WKH VDPH GHSDUWPHQW

PAGE 163

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ UD\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $VVRFLDWH 3URIHVVRU RI (QJLQHHULQJ 6FLn HQFH 0HFKDQLFV DQG $HURVSDFH (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ &WFF6XA7A/= /DZUHQFH ( 0DOYHUQ 3URIHVVRU RI (QJLQHHULQJ 6FLHQFH 0HFKDQLFV DQG $HURVSDFH (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI (QJLQHHULQJ 6FLHQFH 0HFKDQLFV DQG $HURVSDFH (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ >?$B96 9AYHfIFYWA" 8OULFK + .XU]ZHJ f $VVRFLDWH 3URIHVVRU RI (QJLQHHULQJ 6FLn HQFH 0HFKDQLFV DQG $HURVSDFH (QJLQHHULQJ

PAGE 164

, FHUWLI\A WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7KRPDV ‹ %XOORFN $VVRFLDWH 3URIHVVRU RI (OHFWULFDO (QJLQHHUn LQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7DUHN 0 .KDOLO $VVLVWDQW 3URIHVVRU RI ,QGXVWULDO DQG 6\VWHPV (QJLQHHULQJ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH &RXQFLO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0DUFK 'HDQ *UDGXDWH 6FKRRO

PAGE 165

81,9(56,7< 2) )/25,'$ L LQ KL LQ} PX


UNIVERSITY OF FLORIDA
i in hi in mu
3 1262 08556 7450